
c'

323-001551-600
III ~n IIHIIIIIIII~IIII HIIII~IIIIIII ~IIIIIIIIII~IIIIIIIIIIIIIIIII

MPX-32 TM'

Overview and System Services

Revision 3.5

Reference Manual Volume I

April 1990

Limited Rights

This manual is supplied without representation or warranty of any kind. Encore
Computer Corporation therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material
contained herein.

Proprietary Information

The information contained herein is proprietary to Encore Computer Corporation
and/or its vendors, and its use, disclosure, or duplication is subject to the restrictions
stated in the standard Encore Computer Corporation License terms and conditions or
the appropriate third-party sublicense agreement.

Restricted Rights

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at 252.227.7013.

Encore Computer Corporation
6901 West Sunrise Boulevard
Fort Lauderdale, Florida 33313

TM MPX-32 is a trademark of Encore Computer Corporation

® CONCEPT/32 is a registered trademark of Encore Computer Corporation

Copyright © 1990 by Encore Computer Corporation
ALL RIGHTS RESERVED
Printed in the U.S .A. o

1 Introduction

2 T ask Structure & Operation

3 Resource Management

4 Volume Resource Management

5 Resource Attachment & I/O

323-001551-600
11

MPX-32 ™
Overview

Revision 3.5

Reference Manual Volume I(A)

April 1990

. f .~ .. "
1'1f '\

~j

()

History

The MPX-32 Release 3.0 Reference Manual, Publication Order Number 323·001550·
000, was printed June, 1982.

Publication Order Number 323·001551.100, (Revision 1, Release 3.2) was printed
June, 1983.

Publication Order Number 323·001551.200, (Revision 2, Release 3.2B) was printed
March, 1985.

Publication Order Number 323·001551·201, (Change 1 to Revision 2, Release 3.2C)
was printed December, 1985.

Publication Order Number 323·001551·300, (Revision 3, Release 3.3) was printed
December, 1986.

Publication Order Number 323·001551·400, (Revision 4, Release 3.4) was printed
January, 1988.

Publication Order Number 323-001551·500, (Revision 3.4U03) was printed October,
1989.

Publication Order Number 323·01551·600, (Revision 3.5) was printed April, 1990.

This manual contains the following pages:

Title page
Copyright page
Title page Volume I(A)
iii/iv through xxxiii/xxxiv
1-1 through 1-24
2-1 through 2-53/2-54
3-1 through 3-37/3-38
4-1 through 4-51/4-52
5-1 through 5-65/5-66
Title page Volume I(B)
iii through xiii/xiv
6-1 through 6-253/6-254
7-1 through 7-212
A-I through A-7/A-8
B-1 through B-42
C-l through C-32
0-1 through 0-2
E-l through E-2
F-l through F-2
G-l through G-2
H-I through H-2
1-1/1-2
J-l through J-2
K-l through K-2
L-l through L-79/L-80

GL-l through GL-lO
IN-l through IN-31/IN-32

iii/iv

Oc.-~ ',. ,I

Contents

Page

Docu mentati on Co nventi ons .. xxxi

1 Introduction

1.1 System Description .. 1-1
1.1.1 Hardware Interrupts!fraps .. 1-5
1.1.2 Software Interrupt System .. 1-7
1.1.3 Task Priority Levels ... 1-7
1.1.4 Supervision and Allocation .. 1-7
1.1.5 Memory Allocation ... 1-8

1.1.5.1 Dynamic Allocation .. 1-8
1.1.6 File Management .. 1-8

1.1.6.1 Permanent Files .. 1-8
1.1.6.2 Temporary Files .. 1-9
1.1.6.3 Random Access Files ... 1-9
1.1.6.4 Disk File Protection .. 1-9
1.1.6.5 Dedicated System Files1-9
1.1.6.6 Multiprocessor Files .. .1-9

1.1.7 System Services .. l-l0
1.1.8 Input/Output Operations ... 1-1 0

1.1.8.1 Direct 1/0 .. 1-10
l.1.8.2
1.1.8.3
1.1.8.4

Device-Independent I/O ... 1-10
Logical File Codes ... 1-10
File Access .. 1-11

1.1.9 Communications Facilities ... 1-11
1.1.9.1 Intertask Messages .. l-11
1.1.9.2 Run Requests .. 1-11
1.1.9.3 Global Common ... 1-11
1.1.9.4
1.1.9.5
1.1.9.6

Shared Images ... l-ll
Datapool. ... 1-12
Internal Communications ... 1-12

1.1.10 Trap Processors .. 1-12
1.1.11 Timer Scheduler ... 1-12
1.1.12 Time Management ... 1-12
1.1.13 System Nonresident Media Mounting Task (J.MOUNT) I-13

1.2 System Command Processors .. I-13

MPX-32 Reference Volume I v

Contents

Page

f·",

tJ!
1.2.1 Tenninal Services Manager (TSM) .. I-13
1.2.2 Operator Communications (OPCOM) .. 1-14
1.2.3 Batch Processing ... 1-14

1.3 Program Development Utilities ... 1-15
1.3.1 Task Cataloging (CATALOG) ... 1-15

1.3.1.1 Privilege .. 1-15
1.3.1.2 Overlays .. 1-16

1.3.2 Task Debugger (AIDDB) ... 1-16
1.3.3 Macro Assembler (ASSEMBLE) ... 1-16
1.3.4 Macro Library Editor (MACLffiR) .. I-16
1.3.5 Subroutine Library Editor (LffiED) ... 1-17
1.3.6 Datapool Editor (DPEDIT) ... 1-17
1.3.7 Text Editor (EDIT) ... 1-17
1.3.8 Volume Manager (VOLMGR) ... 1-17
1.3.9 Volume Fonnatter (J.VFMT) ... 1-17
1.3.10 Assembler/X32 (ASMX32) ... 1-17
1.3.11 Macro Librarian/X32 (MACX32) ... 1-17
1.3.12 Object Librarian/X32 (OBJX32) ... 1-18.

/ ---,

1.3.13 Linker/X32 (LINKX32) ... 1-18
1.3.14 Symbolic Debugger/X32 (DEBUGX32) 1-18

1.4 Service Utilities .. 1-19
1.4.1 Source Update (UPDATE) ... 1-19
1.4.2 Media Conversion (MEDIA) .. 1-19

1.5 System Manager Utilities ... 1-20
1.5.1 M.KEY Editor (KEY) ... 1-20
1.5.2 MPX-32 System Start-up, Generation, and Installation

(SYSGEN) ... 1-20
1.6 Libraries .. 1-21

1.6.1 Subroutine Libraries ... 1-21
1.6.2 System Macro Libraries ... 1-21
1.6.3 Other ... 1-21

1.7 Minimum Hardware Configuration .. 1-22

2 Task Structure and Operation Overview

2.1 Task Identification .. 2-1
2.2 Task Structure .. 2-2

2.2.1 Nonbase Nonshared Tasks .. 2-3
2.2.2 Base Nonshared Tasks .. 2-3
2.2.3 Multicopied Tasks .. 2-3

()

vi Contents

Contents

Page

2.2.4 Shared Tasks ... 2-3
2.2.5 Unique Tasks .. 2-3

2.3 Task Execution ... 2-7
2.3.1 Task Activation Sequencing (M.ACTV, M.PTSK) 2-7

2.3.1.1 Phase 1 of Activation ... 2-7
2.3.1.2 Phase 2 of Activation ... 2-8

2.3.2 Task Service Area (TSA) ... 2-8
2.4 Central Processing Unit (CPU) Scheduling .. 2-10

2.4.1 Execution Priorities .. 2-1 0
2.4.2 Real-Time Priority Levels (1 to 54) ... 2-10
2.4.3 Time-Distribution Priority Levels (55 to 64) 2-10

2.4.3.1 Priority Migration ... 2-11
2.4.3.2 Situational Priority Increments 2-11
2.4.3.3 Time-Quantum Controls ... 2-11

2.4.4 State Chain Management.. .. 2-12
2.5 Internal Processing Unit (IPU) .. 2-15

2.5.1 Options .. 2-15
2.5.2 Biased Task Prioritization .. 2-15

2.5.2.1 Standard CPU/IPU Scheduler 2-15
2.5.2.2 Optional CPU/IPU Scheduler.. 2-15

2.5.3 Nonbiased Task Prioritization .. 2-16
2.5.4 IPU Task Selection and Execution ... 2-16
2.5.5 CPU Execution of IPU Tasks ... 2-16

2.5.5.1 Standard CPU/IPU Scheduler 2-16
2.5.5.2 Optional CPU /IPU Scheduler.. 2-17

2.5.6 Priority versus Biasing ... 2-17
2.5.7 IPU Accounting .. 2-17
2.5.8 IPU Executable System Services ... 2-18
2.5.9 IPU Scheduling .. .2-18

2.6 Scheduling Task Interrupts .. 2-20
2.6.1 Task Interrupt Levels .. 2-20

2.6.1.1 Task Interrupt Receivers .. 2-20
2.6.1.2 Scheduling .. 2-20
2.6.l.3 System Service Calls from Task Interrupt Levels 2-20
2.6.1.4 Task Interrupt Context Storage 2-21
2.6.l.5 Task Interrupt Level Gating 2-21

2.6.2 User Break Interrupt Receivers (M.BRK, M.BRKXIT) 2-21

('

MPX-32 Reference Volume I vii

Contents

viii

2.7 Intertask Communication ... 2-22
2.7.1 User End-Action Receivers (MXMEA, MXREA,

M.XIEA) ... 2-22
2.7.2 User Message Receivers (M.RCVR, M.GMSGP, M.XMSGR) 2-22
2.7.3 User Run Receivers (M.GRUNP, MXRUNR) 2-22
2.7.4 Receiving Task Services ... 2-23

2.7.4.1 Establishing Message Receivers (M.RCVR) 2-23
2.7.4.2 Establishing Run Receivers .. 2-23
2.7.4.3 Executing Message Receiver Programs 2-23
2.7.4.4 Executing Run Receiver Programs2-23
2.7.4.5 Obtaining Message Parameters (M.GMSGP) 2-24
2.7.4.6 Obtaining Run Request Parameters (M.GRUNP) 2-24
2.7.4.7 Exiting the Message Receiver (M.XMSGR) 2-24
2.7.4.8 Exiting the Run Receiver Task (M.EXIT,

M.XR UNR) ... 2-24
2.7.4.9 Waiting for the Next Request (M.SUSP, M.ANYW,

M.EA WAIT) ... 2-25
2.7.5 Sending Task Services .. 2-25

2.7.5.1 Message Send Service (M.SMSGR) 2-25
2.7.5.2 Send Run-Request Service (M.SRUNR) 2-26
2.7.5.3 Waiting for Message Completion 2-26
2.7.5.4 Waiting for Run-Request Completion 2-26
2.7.5.5 Message End-Action Processing (M.XMEA) 2-26
2.7.5.6 Run-Request End-Action Processing (M.XREA) 2-26

2.7.6 Parameter Blocks .. 2-26
2.7.6.1 Parameter Send Block (PSB) 2-27
2.7.6.2 Parameter Receive Block (PRB) 2-32
2.7.6.3 Receiver Exit Block (RXB)2-33

2.7.7 User Abort Receivers (M.SUAR)2-34
2.7.8 Task Interrupt Services Summary2-34
2.7.9 Arithmetic Exception Handling .. 2-34

2.7.9.1 Establishing Exception Handler 2-37
2.7.9.2 Changing a Return Address from an Exception

Handler .. 2-37
2.7.9.3 Exception Handler Input Arguments 2-37
2.7.9.4 Special Arithmetic Exception Processing and Ada

2.7.9.5
2.7.9.6

Tasks ... 2-41
Exception Handler Restrictions2-41
Related Arithmetic Exception Information2-41

Contents

(C

2.8
2.9
2.10

Contents

Page

CPU Dispatch Queue Area .. 2-42
I/O Scheduling ... 2-42
Swap Scheduling .. 2-43
2.10.1 Structure ... 2-43
2.10.2 Entry Conditions .. 2-43

2.10.2.1 Dynamic Expansion of Address Space
(M.GE/M.GD, M.MEMB) .. 2-43

2.10.2.2 Deallocation of Memory (M.FE/M.FD,
M.MEMFRE) ... 2-43

2.10.2.3 Request for Inswap2-43
2.10.2.4 Change in Task Status .. .2-43

2.10.3 Exit Conditions2-44
2.10.4 Selection of Inswap and Outswap Candidates 2-44

2.10.4.1 Outswap Process .. 2-45
2.10.4.2 Inswap Process ... 2-45

2.11 Task Termination Sequencing .. 2-46
2.11.1 Nonbase Mode Exit Task (M.EXIT) ... 2-46 .
2.11.2 Abort Task (M.BORT) .. 2-46
2.11.3 Delete Task (M.DELTSK) ... 2-46
2.11.4 Base Mode Exit Task (M_EXIT) .. 2-46

2.12 Task-Synchronized Access to Common Resources 2-49
2.13 MPX-32 Faultsffraps and Miscellaneous Interrupts 2-51
2.14 Real-Time Task Accounting On/Off .. 2-53

3 Resource Management Overview

3.1
3.2

3.3

General Resource Management .. .3-1
Support for Resource Types .. 3-1
3.2.1 Physical Resources .. .3-1
3.2.2 Logical Resources .. .3-1
Support for Resource Functions .. 3-2
3.3.1 Resource Creation ... 3-2
3.3.2 Resource Deletion ... 3-2
3.3.3 Resource Attachment3-2

3.3.3.1 Static Allocation .. .3-3
3.3.3.2 Dynamic Allocation3-3

3.3.4 Resource Access .. 3-3
3.3.4.1 Device Level ... 3-3
3.3.4.2 Execute Channel Program Level..3-3

MPX-32 Reference Volume I ix

Contents

x

3.3.4.3
3.3.4.4
3.3.4.5

Page

Logical Device Level .. .3-4
Logical File Level .. 3-4
Blocked Level ... 3-4

3.3.5 Resource Detachment ... 3-4
3.3.6 Resource Inquiry ... 3-5

3.3.6.1 Inquiry of Unattached Resources3-5
3.3.6.2 Inquiry of Attached Resources3-5

3.3.7 Resource Attribute Modification .. 3-5
3.4 Resource Attributes .. 3-6

3.4.1 Protection .. 3-6
3.4.2 Shareable Resources .. .3-6

3.4.2.1 Exclusive Use ... 3-7
3.4.2.2 Explicit Use .. 3-7
3.4.2.3 Implicit Use3-8

3.5 Resource Access Attributes ... 3-8
3.5.1 Access Attributes for Volumes3-8
3.5.2 Access Attributes for Directories .. .3-9
3.5.3 Access Attributes for Files .. .3-10
3.5.4 Access Attributes for Memory Partitions3-1O

3.6 Management Attributes3-11
3.6.1 Extension Attribute .. .3-11

3.6.1.1 Manual Extension Attribute3-11
3.6.1.2 Automatic Extension Attribute3-11

3.6.2 Contiguity Attribute3-11
3.6.3 Maximum and Minimum Extension Attributes3-12
3.6.4 Maximum File Size Attribute .. .3-12
3.6.5 Shared Attribute .. 3-12
3.6.6 End-Of-File Management Attribute .. .3-12
3.6.7 Fast Access Attribute3-13
3.6.8 Zero Attribute ... 3-13
3.6.9 File Type Attribute ... 3-14
3.6.10 No-Save Attribute .. .3-14

3.7 Operating System Memory Allocation3-15
3.7.1 I/O Buffer and I/O Queues .. .3-15
3.7.2 Blocking Buffers for Blocked I/O3-15
3.7.3 Large Buffers for Blocked Files .. .3-15

3.8 Memory Classes ... 3-16
3.9 Memory Allocation for Tasks .. 3-16

Contents

~-" '0

3.9.1
3.9.2
3.9.3

3.9.4
3.9.5

Contents

Page

Demand Page Processing (CONCEPT 32/2000 Only) 3-17
Static Memory Allocation ... 3-18
Dynamic Address Space Expansion/Contraction (M.GE,
M.FE, M.GD, M.FD, M.MEMB, M.MEMFRE) 3-19
Extended Indexed Data Space for Nonbase Mode Tasks 3-20
Intertask Shared Global Memory and Datapool Memory
(M.INCLUDE, M.EXCLUDE) ... 3-20

3.9.6 Shared Procedures for Nonbase Mode Tasks 3-21
3.9.7 Multiprocessor Shared Memory .. 3-22

3.10 Extended MPX-32 (Expanded Execution Space) 3-23
3.10.1 SYSGEN Infonnation for Extended MPX-32 3-27
3.10.2 SYSGEN EXTDMPX Directive .. 3-28
3.10.3 SYSGEN Aborts and Errors for Extended MPX-323-29
3.10.4 How to Create an Extended MPX-32 System3-29
3.10.5 How to Relocate Extended MPX-32 ... 3-31
3.10.6 CATALOG EXTDMPX Directive .. 3-32
3.10.7 TSM EXTDMPX Directive ... 3-33

3.11 Extended TSA (Expanded Execution Space) 3-34
3.11.1 Relocating the TSA .. 3-35

3.12 Mapped Out Option (CONCEPT 32/2000 Only) 3-37

4 Volume Resource Management

4.1 Symbolic Resource Management4-1
4.1.1 Types of Resources .. .4-1
4.1.2 Classes of Resources4-2
4.1.3 Classes of Resource Users4-2
4.1.4 Shareable Resource Control Mechanisms4-3

4.2 General Resource Control .. 4-4
4.2.1 Enqueue and Synchronous Notification Mechanism 4-4
4.2.2 Dequeue Mechanism ... 4-4

4.3 Shareable Resource Access Control4-5
4.3.1 Shareable Resource Locking4-5
4.3.2 Shareable Resource Synchronization4-5

4.4 Standard Disk Structure ... 4-6
4.4.1 Directory Structure ... 4-6

MPX-32 Reference Volume I xi

Contents

Page

4.4.2 Root Directory .. 4-6
4.4.3 Current Working Directory4-6

4.5 Pathnames ... 4-7
4.5.1 Executing Pathnames .. 4-7
4.5.2 Fully Qualified Pathnarnes .. .4-8
4.5.3 Partially Qualified Pathnames4-9
4.5.4 Fully Qualified Pathnarnes for Directories Only4-10
4.5.5 Partially Qualified Directory Pathnames4-11

4.6 Resource Protection .. .4-13
4.7 System Administration .. .4-13
4.8 Volumes .. 4-14

4.8.1 Overview of Formatted Volumes ... 4-14
4.8.2 Fonnatted Volume Type .. .4-15

4.8.2.1 System Volume4-15
4.8.2.2 User Volume .. .4-15
4.8.2.3 Multiprocessor Volume4-16

4.8.3 Access Attributes for Formatted Volumes4-16
4.8.3.1 Public Attribute .. 4-16
4.8.3.2 Nonpublic Attribute4-16

4.8.4 Mounting Fonnatted Volumes .. .4-17
4.8.4.1 Physical Mount .. .4-17
4.8.4.2 Logical Mount .. 4-18

4.8.5 Dismounting Formatted Volumes4-18
4.8.5.1 Logical Dismount .. .4-18
4.8.5.2 Physical Dismount4-19

4.8.6 Automatic Mounting at System Boot4-20
4.8.7 Components of a Volume .. .4-20

4.8.7.1 Boot Block .. 4-22
4.8.7.2 Volume Descriptor .. .4-22
4.8.7.3 Resource Descriptors (RDs)4-22

4.9 Directories .. 4-24
4.9.1 Volume Root Directory4-26
4.9.2 Creating Directories4-26
4.9.3 Protecting Directories .. .4-28
4.9.4 Protecting Directory Entries .. .4-28
4.9.5 Using Directories .. 4-28

o
xii Contents

Contents

4.10 Files ... 4-29
4.10.1 File Attributes .. 4-29
4.10.2 Obtaining File Space .. 4-30

4.10.2.1 Granularity ... 4-30
4.10.2.2 Contiguity .. 4-30
4.10.2.3 Extendibility .. .4-30
4.10.2.4 Size ... 4-31

4.10.3 File Names and Fast Access4-31
4.10.4 File Protection .. 4-32
4.10.5 Permanent Files4-32
4.10.6 Creating Files ... 4-32
4.10.7 Attaching Files .. .4-33
4.10.8 Assigning Files4-33
4.10.9 Opening Files ... 4-34
4.10.10 File Operations4-34

4.10.10.1 Sequential Access ... 4-35
4.10.10.2 Random Access .. .4-35

4.10.11 File Positioning .. .4-35
4.10.11.1 Absolute File Positioning Operations 4-36
4.10.11.2 Relative File Positioning Operations 4-36

4.10.12 File Access Modes4-36
4.10.12.1 Read Mode ... 4-37
4.10.12.2 Write Mode .. 4-38
4.10.12.3 Modify Mode4-38
4.10.12.4 Update Mode .. 4-39
4.10.12.5 Append Mode .. .4-39

4.10.13 Sharing Files ... 4-40
4.10.14 Closing Files ... 4-40
4.10.15 Detaching Files4-41
4.10.16 Deleting Files4-41
4.10.17 Temporary Files .. 4-41

4.10.17.1 Creating Temporary Files .. 4-41
4.10.17.2 Assigning Temporary Files .. 4-41
4.10.17.3 Opening and Accessing Temporary Files 4-42
4.10.17.4 Deleting and Detaching Temporary Files4-42
4.10.17.5 Making Temporary Files Permanent 4-42

MPX·32 Reference Volume I xiii

Contents

4.11 Memory Partitions - Nonbase Mode of Addressing4-43
4.11.1 Creating Memory Partitions4-43
4.11.2 Protecting Memory Partitions .. 4-43
4.11.3 Attaching Memory Partitions4-44
4.11.4 Accessing Memory Partitions4-44
4.11.5 Detaching Memory Partitions .. 4-44
4.11.6 Deleting Memory Partitions4-44
4.11.7 Sharing Memory Partitions4-45

4.12 Shared Images ... 4-45
4.12.1 Created Shared Images4-45
4.12.2 Protecting Shared Images .. 4-45
4.12.3 Attaching Shared Images ... 4-46
4.12.4 Accessing Shared Images .. 4-46
4.12.5 Detaching Shared Images .. 4-46

4.13 Multiprocessor Shared Volumes4-47
4.13.1 Multiprocessor Resources4-47
4.13.2 Multiprocessor Resource Access .. .4-47
4.13.3 Mounting Multiprocessor Volumes .. .4-49
4.13.4 Multiprocessor Resource Restrictions4-49

4.13.4.1 EOF Management4-49
4.13.4.2 EOM Management ... 4-50
4.13.4.3 Resource Deadlocks .. .4-50
4.13.4.4 ReservelRelease Multiported Disk Services

(M.RESP /M.RELP) .. 4-50
4.13.5 Optimum Use of Multiprocessor Resources4-51

5 Resource Assignment/Allocation and I/O

5.1 Introduction .. 5-1
5.2 MPX-32 Logical I/O (Device-Independent) .. 5-1

5.2.1 Logical File Codes .. 5-2
5.2.2 File Control Blocks ... 5-2

5.2.2.1 Logical I/O Initiation .. 5-2
5.2.3 Assignment vs. Allocation .. 5-2
5.2.4 Logical File Code Assignment.. ... 5-4

5.2.4.1 Making Assignments via Resource Requirement
Summary (RRS) .. 5-4

5.2.4.2 Temporary File Assignments5-14
5.2.5 Opening a Resource for Logical 1/0 .. 5-14

xiv Contents

(/

5.3

5.4

5.5

5.6
5.7

Contents

Page

Resource Conflicts and Error Handling ... 5 -15
5.3.1 Status Posting and Return Conventions 5-16
MPX-32 Volume Resource Access ... 5-20
5.4.1 Volume Resource Space Management.. 5-20
5.4.2 Temporary vs. Permanent Files .. 5-20
5.4.3 System Directory .. 5-21
MPX-32 Device Access ... 5-21
5.5.1 Magnetic Tape .. 5-21
5.5.2 Unformatted Media ... 5-25
5.5.3 Examples of Device Identification Levels 5-28
5.5.4 GPMC Devices ... 5-28
5.5.5 NULL Device ... 5-28
5.5.6 System Console .. 5-28
5.5.7 Special File Attributes .. 5-29
Samples .. 5-30
Device-Independent I/O Processing .. 5-32
5.7.1 Wait I/O .. 5-32

5.7.1.1 Wait I/O Errors ... 5-32
5.7.1.2 Wait I/O Exit and I/O Abort Processing 5-33
5.7.1.3 Error Processing and Status Inhibit 5-33

5. 7.2 No-Wait I/O .. 5-33
5.7.2.1 No-Wait I/O Complete Without Errors 5-33
5.7.2.2 No-Wait I/O Complete with Errors 5-34
5.7.2.3 No-Wait End-Action Return to IOCS5-34

5.7.3 Direct I/O .. 5-34
5.7.4 Blocked I/0 ... 5-34
5.7.5 End-of-File and End-of-Medium Processing 5-36
5.7.6 Software End-of-File for Unblocked Files 5-36

5.8 Spooled Output with Print or Punch Attribute 5-38
5.9 Setting Up File Control Blocks for Device-Independent I/O 5-38

5.9.1 Macros (M.DFCB/M.DFCBE) ... 5-39
5.9.2 Sample FCB Set-up Nonmacro5-40
5.9.3 Sample FCB Set-up Macro .. 5-40

MPX-32 Reference Volume I xv

Contents

Page

5.10 Setting Up TCPBs for the System Console ... 5-41
5.11 MPX-32 Device-Dependent I/O ... 5-43

5.11.1 Device-Dependent I/O Processing Overview5-43
5.11.2 Operational Description of Execute Channel

Program (EXCPM) ... 5-44
5.11.2.1 Logical Channel Prograrn .. 5-44
5.11.2.2 Physical Channel Program .. 5-44
5.11.2.3 Post Program-Controlled Interrupt (PPCI)

End-Action Receiver ... 5-44
5.11.2.4 Restrictions .. 5-45
5.11.2.5 Setting Up File Control Blocks for EXCPM

Requests ... 5-46
5.11.2.6 Post Program-Controlled Interrupt Notification

Packet ... 5-47
5.11.2.7 Macros (M.FCBEXP) .. 5-48

5.12 Resident Executive Services (H.REXS) .. 5-49
5.13 Resource Management (H.REMM) ... 5-50
5.14 Volume Management Module (H.VOMM) ... 5-51

5.14.1 H.VOMM Conventions .. 5-51
5.14.1.1 Entry Point Conventions5-51
5.14.1.2 Pathnames .. 5-51
5.14.1.3 Pathname Blocks (PNB) .. 5-52
5.14.1.4 Resource Identifiers ... 5-55
5.14.1.5 Allocation Units ... 5-55
5.14.1.6 File Segment Definitions ... 5-55

5.14.2 Calling/Retum Parameter Conventions 5-56
5.14.2.1 Unused Register ... 5-56
5.14.2.2 Specifying a Volume Resource 5-56
5.14.2.3 Status Codes ... 5-57
5.14.2.4 Caller Notification Packet (CNP)5-58
5.14.2.5 Pathnames/pathname Blocks5-59
5.14.2.6 Resource Create Block (RCB) 5-59

5.14.3 Bad Block Handling .. 5-64
5.14.4 Services .. 5-65

o
xvi Contents

Contents

('-
Page

6 Nonbase Mode System Services

6.1 Overview ... 6-1
6.1.1 Syntax Rules and Descriptions ... 6-2
6.1.2 IPU Executable Nonbase Mode System Services 6-3

6.2 Macro-Callable System Services .. 6-4
6.2.1 M.ACTV - Activate Task ... 6-5
6.2.2 M.ADRS - Memory Address Inquiry .. 6-6
6.2.3 M.ANYW - Wait for Any No-Wait Operation Complete,

Message Intenupt, or Break Intenupt .. 6-7
6.2.4 M.ASSN - Assign and Allocate Resource 6-8
6.2.5 M.ASYNCH - Set Asynchronous Task Intenupt 6-10
6.2.6 M.BACK - Backspace Record or File 6-11
6.2.7 M.BATCH - Batch Job Entry .. 6-13
6.2.8 M.BBTIM-Acquire Current Dateffime in Byte Binary

Fonnat ... 6-15
6.2.9 M.BORT - Abort Specified Task, Abort Self, or Abort with

Extended Message ... 6-16
6.2.9.1 M.BORT - Specified Task .. 6-16
6.2.9.2 M.BORT - Self ... 6-17

(/
6.2.9.3 M.BORT - With Extended Message 6-18

6.2.10 M.BRK - Breakffask Interrupt Link/Unlink 6-19
6.2.11 M.BRKXIT - Exit from Task Intenupt Level 6-19
6.2.12 M.BTIM - Acquire Current Date(fime in Binary Fonnat 6-20
6.2.13 M.CLOSER - Close Resource ... 6-21
6.2.14 M.CLSE - Close File ... 6-23
6.2.15 M.CMD - Get Command Line .. 6-24
6.2.16 M.CONABB - Convert ASCII Dateffime to Byte Binary

Fonnat .. 6-25
6.2.17 M.CONADB - Convert ASCII Decimal to Binary 6-26
6.2.18 M.CONAHB - Convert ASCII Hexadecimal to Binary 6-27
6.2.19 M.CONASB - Convert ASCII Date(fime to Standard

Binary ... 6-28
6.2.20 M.CONBAD-Convert Binary to ASCII Decirnal 6-29
6.2.21 M.CONBAF - Convert Binary Dateffirne to ASCll Format ... 6-30
6.2.22 M.CONBAH - Convert Binary to ASCII Hexadecimal 6-31
6.2.23 M.CONBBA - Convert Byte Binary Dateffime to ASCll 6-32

(0

MPX-32 Reference Volume I xvii

Contents

Page c
6.2.24 M.CONBBY - Convert Binary Date/fime to Byte Binary 6-33
6.2.25 M.CONBYB - Convert Byte Binary Date/fime to Binary 6-34
6.2.26 M.CONN - Connect Task to Interrupt 6-35
6.2.27 M.CPERM - Create Pennanent File .. 6-37
6.2.28 M.CTIM - Convert System Date/fime Format 6-39
6.2.29 M.CWAT-System Console Wait .. 6-41
6.2.30 M.DASN - Deassign and Deallocate Resource 6-42
6.2.31 M.DATE - Date and Time Inquiry .. 6-44
6.2.32 M.DEBUG - Load and Execute Interactive Debugger 6-45
6.2.33 M.DEFI' - Change Defaults .. 6-46
6.2.34 M.DELR - Delete Resource .. 6-48
6.2.35 M.DELTSK - Delete Task ... 6-50
6.2.36 M.DEVID - Get Device Mnemonic or Type Code 6-52
6.2.37 M.DIR - Create Directory .. 6-53
6.2.38 M.DISCON - Disconnect Task from Interrupt 6-55
6.2.39 M.DL IT - Delete Timer Entry .. 6-56
6.2.40 M.DMOUNT - Dismount Volume .. 6-57
6.2.41 M.DSMI - Disable Message Task Interrupt 6-59 (\
6.2.42 M.DSUB - Disable User Break Interrupt 6-60 ~)
6.2.43 M.DUMP - Memory Dump Request ... 6-61
6.2.44 M.EA W AIT - End Action Wait .. 6-63
6.2.45 M.ENMI - Enable Message Task Interrupt 6-64
6.2.46 M.ENUB - Enable User Break Interrupt 6-65
6.2.47 M.ENVRMT - Get Task Environment 6-66
6.2.48 M.EXCLUDE - Exclude Memory Partition 6-67
6.2.49 M.EXIT -Terminate Task Execution 6-69
6.2.50 M.EXTD - Extend File .. 6-70
6.2.51 M.FD - Free Dynamic Extended Indexed Data Space 6-72
6.2.52 M.FE - Free Dynamic Task Execution Space 6-73
6.2.53 M.FWRD - Advance Record or File ... 6-74
6.2.54 M.GADRL - Get Address Limits .. 6-76
6.2.55 M.GADRL2 - Get Address Limits .. 6-77
6.2.56 M.GD - Get Dynamic Extended Data Space 6-78
6.2.57 M.GDD - Get Dynamic Extended Discontiguous

Data Space .. 6-79
6.2.58 M.GE - Get Dynamic Task Execution Space 6-80
6.2.59 M.GETDEF-Get Definition for Terminal Function 6-81
6.2.60 M.GMSGP - Get Message Parameters 6-83 0, '
6.2.61 M.GRUNP-Get Run Parameters ... 6-84

xviii Contents

(

6.2.62
6.2.63
6.2.64
6.2.65
6.2.66
6.2.67
6.2.68
6.2.69
6.2.70
6.2.71
6.2.72

Contents

Page

M.GTIM - Acquire System Dateffime in Any Forrnat.. 6-85
M.GTSAD - Get TSA Start Address .. 6-86
M.HOLD - Program Hold Request ... 6-87
M.ID - Get Task Number .. 6-88
M.INCLUDE - Include Memory Partition 6-90
M.INQUIRY - Resource Inquiry ... 6-93
M.INT - Activate Task Interrupt ... 6-97
M.IPUBS - Set IPU Bias ... 6-98
M.LOC - Read Descriptor ... 6-99
M.LOCK - Set Exclusive Resource Lock 6-10 1
M.LOGR-Log Resource or Directory 6-103
6.2.72.1 Resource Specifications for Pathnames 6-103
6.2.72.2 Resource Specifications for Pathname Blocks 6-104
6.2.72.3 Resource Specifications for a Resource Identifier...6-104
6.2.72.4 Resource Specifications for a Logical File Code

(LFC), FCB Address, or Allocation Index 6-104
6.2.73 M.MEM - Create Memory Partition 6-1 08
6.2.74 M.MEMB -Get Memory in Byte Increments 6-110
6.2.75 M.MEMFRE - Free Memory in Byte Increments 6-111
6.2.76 M.MOD - Modify Descriptor .. 6-112
6.2.77 M.MODU - Modify Descriptor User Area 6-114
6.2.78 M.MOUNT-Mount Volume .. 6-115
6.2.79 M.MOVE-Move Data to User Address 6-117
6.2.80 M.MYID - Get Task Number.. .. 6-118
6.2.81 M.NEWRRS - Reformat RRS Entry 6-119
6.2.82 M.OLAY - Load Overlay Segment.. 6-121
6.2.83 M.OPENR - Open Resource .. 6-122
6.2.84 M.OSREAD - Physical Memory Read 6-124
6.2.85 M.OSWRIT - Physical Memory Write 6-125
6.2.86 M.PGOD - Task Option Doubleword Inquiry 6-126
6.2.87 M.PGOW - Task Option Word Inquiry 6-127
6.2.88 M.PNAM - Reconstruct Pathname .. 6-128
6.2.89 M.PNAMB - Convert Pathname to Pathname Block 6-129
6.2.90 M.PRIL - Change Priority LeveL ... 6-131
6.2.91 M.PRIV - Reinstate Privilege Mode to Privilege Task 6-132
6.2.92 M.PTSK - Parameter Task Activation 6-133
6.2.93 M.QATIM - Acquire Current Dateffime in ASCII Forrnat...6-138
6.2.94 M.RADDR - Get Real Physical Address 6-139
6.2.95 M.RCVR-Receive Message Link Address 6-140

MPX-32 Reference Volume I xix

Contents

xx

Page

6.2.96 M.READ-Read Record .. 6-141
6.2.97 M.RELP - Release Dual-Ported Disk/Set Dual-Channel

ACM Mode .. 6-142
6.2.98 M.RENAM-Rename File ... 6-143
6.2.99 M.REPLAC-Replace Pennanent File 6-144
6.2.100 M.RESP -Reserve Dual-Ported Disk/Set Single-Channel

ACM Mode .. 6-145
6.2.101 M.REWRIT -Rewrite Descriptor .. 6-146
6.2.102 M.REWRTU -Rewrite Descriptor User Area 6-147
6.2.103 M.ROPL-Reset Option Lower .. 6-148
6.2.104 M.RRES -Release Channel Resetvation 6-149
6.2.105 M.RSML - Resourcemark Lock ... 6-150
6.2.106 M.RSMU -Resourcemark Unlock ... 6-152
6.2.107 M.RSRV -Reserve ChanneL ... 6-153
6.2.108 M.RWND-Rewind File .. 6-154
6.2.109 M.SETS - Set User Status Word .. 6-155
6.2.11 0 M.SETSYNC - Set Synchronous Resource Lock 6-157
6.2.111 M.SETI -Create Timer Entry ... 6-159
6.2.112 M.SMSGR - Send Message to Specified Task 6-162
6.2.113 M.SOPL - Set Option Lower. ... 6-163
6.2.114 M.SRUNR-Send Run Request to Specified Task 6-164
6.2.115 M.SUAR-Set User Abort Receiver Address 6-166
6.2.116 M.SUME - Resume Task Execution 6-167
6.2.117 M.SURE-Suspend/Resume ... 6-168
6.2.118 M.SUSP - Suspend Task Execution 6-169
6.2.119 M.SYNCH - Set Synchronous Task Interrupt 6-170
6.2.120 M.TBRKON -Trap Online User's Task 6-171
6.2.121 M.TDAY -Time-of-Day Inquiry ... 6-172
6.2.122 M.TEMP-Create Temporary File ... 6-173
6.2.123 M.TEMPER - Change Temporary File to Permanent File 6-175
6.2.124 M.TRNC -Truncate File .. 6-177
6.2.125 M.TSCAN -Scan Terminal Input Buffer. 6-178
6.2.126 M.TSMPC - TSM Procedure Ca1l .. 6-179
6.2.127 M.TSTE-Arithrnetic Exception Inquiry 6-182
6.2.128 M.TSTS - Test User Status Word ... 6-183
6.2.129 M.TSTT - Test Timer Entry ... 6-184
6.2.130 M.TURNON - Activate Program at Given Time-of-Day 6-185
6.2.131 M.TYPE-System Console Type ... 6-187
6.2.132 M.UNLOCK-Release Exclusive Resource Lock 6-188
6.2.133 M. UNSYNC - Release Synchronous Resource Lock 6-190

Contents

tt ,-_/

(

Contents

Page

6.2.134 M. UPRIV - Change Task to Unprivileged Mode 6-192
6.2.135 M. UPSP - Upspace ... 6-193
6.2.136 M.VADDR- Validate Address Range 6-194
6.2.137 M.WAIT - Wait I/O ... 6-195
6.2.138 M.WEOF - Write EOF ... 6-196
6.2.139 M.WRIT - Write Record .. 6-197
6.2.140 M.XBRKR-Exit from Task Interrupt Level.. 6-198
6.2.141 M.XIEA-No-Wait I/O End-Action Return 6-199
6.2.142 M.XMEA - Exit from Message End-Action Routine 6-200
6.2.143 M.XMSGR-Exit from Message Receiver 6-201
6.2.144 M.XREA-Exit from Run Request End-Action Routine 6-202
6.2.145 M.XRUNR-Exit Run Receiver.. ... 6-203
6.2.146 M.xTIME -Task CPU Execution Time 6-204

6.3 Nonmacro-Callable System Services ... 6-205
6.3.1 Allocate File Space .. 6-206

6.3.2
6.3.3

6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.3.12

6.3.1.1 Clean-up Mode ... 6-206
6.3.1.2 Nonnal Mode ... 6-206
Allocate Resource Descriptor .. 6-208
Create Temporary File ... 6-209
6.3.3.1 VOMM Internal Call.. ... 6-209
6.3.3.2 External CalL .. 6-209
6.3.3.3 Default File Attributes .. 6-209
6.3.3.4 Volume Selection .. 6-209
Deallocate File Space ... 6-211
Deallocate Resource Descriptor ... 6-212
Debug Link Service .. 6-213
Eject/Purge Routine .. 6-214
Erase or Punch Trailer ... 6-215
Execute Channel Program .. 6-216
Get Extended Memory Array ... 6-217
ReadIW rite Authorization File ... 6-218
Release FHD Port ... 6-219

6.3.13 Reserve FHD Port ... 6-220
6.4 Compatible System Services ... 6-221

6.4.1 M.ALOC - Allocate File or Peripheral Device 6-222
6.4.2 M.CDJS - Submit Job from Disk File 6-226
6.4.3 M.CREATE - Create Pennanent File 6-228
6.4.4 M.DALC - Deallocate File or Peripheral Device 6-231

MPX-32 Reference Volume I xxi

Contents

6.4.5

6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18
6.4.19

Page

M.DELETE - Delete Pennanent File or Non-SYSGEN
Memory Partition•... 6-232
M.EXCL - Free Shared Memory ... 6-233
M.FADD - Pennanent File Address Inquiry 6-234
M.FILE - Open File ... 6-236
M.FSLR - Release Synchronization File Lock 6-237
M.FSLS - Set Synchronization File Lock 6-238
M.FXLR - Release Exclusive File Lock 6-240
M.FXLS - Set Exclusive File Lock 6-241
M.lNCL - Get Shared Memory ... 6-242
M.LOG - Pennanent File Log ... 6-244
M.PDEV - Physical Device Inquiry .. 6-246
M.PERM - Change Temporary File to Pennanent 6-248
M.SHARE - Share Memory with Another Task 6-250
M.SMULK - Unlock and Dequeue Shared Memory 6-252
M.USER - User Name Specification 6-253

7 Base Mode System Services

xxii

7.1 General Description ... 7-1
7.1.1 Syntax Rules and Descriptions ... 7-2

7.1.1.1 Parameter Specification ... 7-2
7.1.2 IPU Executable Base Mode System Services 7-5

7.2 Macro-Callable. System Services .. 7 -6
7.2.1 M_ACTV -Activate Task .. 7-7
7.2.2 M_ADRS - Memory Address Inquiry ... 7-8
7.2.3 M_ADVANCE-Advance Record or File 7-9
7.2.4 M_ANYWAIT- Wait for Any No-Wait Operation Complete,

Message Interrupt, or Break Interrupt 7-11
7.2.5 M_ASSIGN -Assign and Allocate Resource 7-12
7.2.6 M_ASYNCH - Set Asynchronous Task Interrupt 7-14
7.2.7 M_A WAIT ACTION - End Action Wait 7 -15
7.2.8
7.2.9
7.2.10

7.2.11

M_BACKSPACE - Backspace Record or File 7-16
M_BATCH-Batch Job Entry ... 7-18
M_BBTIM - Acquire Current Date/fime in Byte Binary
Fonnat ... 7-20
M_BORT - Abort Specified Task, Abort Self, or Abort with
Extended Message ... 7-21
7.2.11.1 M_BORT-Abort Specified Task 7-21
7.2.11.2 M_BORT - Abort Self .. 7-22

Contents

C--"
!:. i , .J

o

(

7.2.12
7.2.13
7.2.14
7.2.15

7.2.16
7.2.17

Contents

Page

7.2.11.3 M_BORT -Abort with Extended Message 7-23
M_BRK-Breakffask Interrupt Link/Unlink 7-24
M_BRKXIT - Exit from Task Interrupt Level 7-24
M_BTIM-Acquire Current Dateffime in Binary Format 7-25
M_CHANPROGFCB - Execute Channel Program
File Control Block .. 7-26
M_ CLOSER - Close Resource .. 7 -27
M_CLSE-Close File .. 7-29

7.2.18 M_CMD-Get Command Line ... 7-30
7.2.19 M_CONABB - Convert ASCII Dateffime to Byte Binary

Format ... 7-31
7.2.20 M_CONADB - Convert ASCII Decimal to Binary 7-32
7.2.21 M_CONAHB - Convert ASCII Hexadecimal to Binary 7-33
7.2.22 M_ CONASB - Convert ASCII Dateffime to

Standard Binary ... 7-34
7.2.23 M_CONBAD-Convert Binary to ASCn Decimal 7-35
7.2.24 M_CONBAF - Convert Binary Dateffime to ASCII Format .. 7-36
7.2.25 M_CONBAH - Convert Binary to ASCn Hexadecimal 7-37
7.2.26 M_CONBBA-Convert Byte Binary Dateffime to ASCII 7-38
7.2.27 M_CONBBY - Convert Binary Dateffime to Byte Binary 7-39
7.2.28 M_CONBYB-Convert Byte Binary Dateffime to Binary 7-40
7.2.29 M_CONN -Connect Task to Interrupt 7-41
7.2.30 M_CONSTRUCTPATH-Reconstruct Pathname 7-42
7.2.31 M_CONVERTTIME- Convert Time 7-43
7.2.32 M_CREATEFCB - Create File Control Block 7-45
7.2.33 M_CREATEP - Create Permanent File 7-46
7.2.34 M_CREATET - Create Temporary File 7-48
7.2.35 M_CTIM-Convert System Dateffime Format 7-50
7.2.36 M_CWAT - System Console Wait ... 7-51
7.2.37 M_DATE - Date and Time Inquiry ... 7-52
7.2.38 M_DEASSIGN - Deassign and Deallocate Resource 7-53
7.2.39 M_DEBUG - Load and Execute Interactive Debugger 7-55
7.2.40 M_DEFf - Change Defaults ... 7-56
7.2.41 M_DELETER - Delete Resource .. 7-57
7.2.42 M_DELTSK - Delete Task .. 7-59
7.2.43 M_DEVID - Get Device Mnemonic or Type Code 7-60
7.2.44 M_DIR - Create Directory ... 7-61
7.2.45 M_DISCON - Disconnect Task from Interrupt 7-63
7.2.46 M_DISMOUNT - Dismount Volume 7-64
7.2.47 M_DLTT - Delete Timer Entry ... 7-66

MPX-32 Reference Volume I xxiii

Contents

Page

7.2.48 M_DSMI - Disable Message Task Interrupt 7 -67
7.2.49 M_DSUB - Disable User Break Interrupt 7-68
7.2.50 M_DUMP-Memory Dump Request .. 7-69
7.2.51 M_ENMI-Enable Message Task Interrupt 7-70
7.2.52 M_ENUB -Enable User Break Interrupt 7-71
7.2.53 M_ENVRMT - Get Task Envirorunent 7-72
7.2.54 M_EXCLUDE-Exclude Shared Image 7-73
7.2.55 M_EXIT-Terminate Task Execution 7-75
7.2.56 M_EXTENDFILE-Extend File ... 7-76
7.2.57 M_EXTSTS - Exit With Status ... 7 -78
7.2.58 M_FREEMEMBYTES - Free Memory in Byte Increments 7-79
7.2.59 M_GETCTX-Get User Context .. 7-80
7.2.60 M_GETDEF -Get Definition for Terminal Function 7-81
7.2.61 M_GETMEMBYTES-Get Memory in Byte Increments 7-83
7.2.62 M_GETTIME - Get Current Date and Time 7-84
7.2.63 M_GMSGP - Get Message Parameters 7-86
7.2.64 M_GRUNP-Get Run Parameters .. 7-87
7.2.65 M_GTIM-Acquire System Date/fime in Any Format 7-88
7.2.66 M_GTSAD-Get TSA Start Address 7-89
7.2.67 M_HOLD - Program Hold Request .. 7 -90
7.2.68 M_ID - Get Task Number ... 7-91
7.2.69 M_INCLUDE-Inc1ude Shared Image 7-93
7.2.70 M_INQUIRER-Resource Inquiry ... 7-96
7.2.71 M_INT - Activate Task Interrupt.. .. 7-101
7.2.72 M_IPUBS-Set IPU Bias .. 7-102
7.2.73 M_LIMITS -Get Base Mode Task Address Limits 7-103
7.2.74 M_LOCK-Set Exclusive Resource Lock 7-104
7.2.75 M_LOGR-Log Resource or Directory 7-106

7.2.75.1 Resource Specifications for Pathnames 7-106
7.2.75.2 Resource Specifications for Pathname Blocks 7-107
7.2.75.3 Resource Specifications for a Resource Identifier ... 7-107
7.2.75.4 Resource Specifications for a Logical File Code

(LFC), FCB Address, or Allocation Index 7-107
7.2.76 M_MEM-Create Memory Partition 7-111
7.2.77 M_MOD-Modify Descriptor ... 7-113
7.2.78 M_MODU -Modify Descriptor User Area 7-115
7.2.79 M_MOUNT-Mount Volume ... 7-116
7.2.80 M_MOVE-Move Data to User Address 7-118
7.2.81 M_MYID-Get Task Number ... 7-120 C'
7.2.82 M_OPENR-Open Resource ... 7-121

xxiv Contents

Contents

("
Page

7.2.83 M_OPTIONDWORD- Task Option Doubleword Inquiry 7-124
7.2.84 M_OPTIONWORD-Task Option Word Inquiry 7-125
7.2.85 M_ OSREAD - Physical Memory Read 7 -126
7.2.86 M_OSWRIT - Physical Memory Write 7-127
7.2.87 M_PNAMB - Convert Pathname to Pathname Block 7-129
7.2.88 M_PRIL - Change Priority LeveL ... 7 -131
7.2.89 M_PRIVMODE - Reinstate Privilege Mode to

Privilege Task .. 7-132
7.2.90 M_PTSK _ Parameter Task Activation 7 -133
7.2.91 M_PUTCTX-Put User Context ... 7-138
7.2.92 M_QATIM - Acquire Current Date{fime in ASCII Format..7-139
7.2.93 M_RADDR-Get Real Physical Address 7-140
7.2.94 M_RCVR-Receive Message Link Address 7-141
7.2.95 M_READ-Read Record ... 7-142
7.2.96 M_READD - Read Descriptor .. 7-144
7.2.97 M_RELP - Release Dual-Ported Disk/Set Dual-Channel

ACM Mode .. 7-145
7.2.98 M_RENAME- Rename File ... 7-146
7.2.99 M_REPLACE - Replace Permanent File 7-147
7.2.100 M_RESP - Reserve Dual-Ported Disk/Set Single-Channel

ACM Mode .. 7-148
7.2.101 M_REWIND - Rewind File .. 7 -149
7.2.102 M_REWRIT - Rewrite Descriptor ... 7 -150
7.2.103 M_REWRTU -Rewrite Descriptor User Area 7-151
7.2.104 M_ROPL - Reset Option Lower.. ... 7-152
7.2.105 M_RRES - Release Channel Reservation 7-153
7.2.106 M_RSML - Resourcemark Lock .. 7-154
7.2.107 M_RSMU -Resourcemark Unlock .. 7-155
7.2.108 M_RSRV - Reserve Channel.. .. 7 -156
7.2.109 M_SETERA - Set Exception Return Address 7-157
7.2.110 M_SETEXA-Set Exception Handler 7-158
7.2.111 M_SETS -Set User Status Word ... 7-159
7.2.112 M_SETSYNC-Set Synchronous Resource Lock 7-161
7.2.113 M_SETT - Create Timer Entry .. 7 -163
7.2.114 M_SMSGR - Send Message to Specified Task 7-166
7.2.115 M_SOPL-Set Option Lower. .. 7-167
7.2.116 M_SRUNR - Send Run Request to Specified Task 7-168

M_SUAR-Set User Abort Receiver Address 7-170
M_SUME-Resume Task Execution 7-171 (' 7.2.117

7.2.118

MPX-32 Reference Volume I xxv

Contents

Page

7.2.119 M_SURE - Suspend/Resume ... 7-172
7.2.120 M_SUSP-Suspend Task Execution 7-173
7.2.121 M_SYNCH-Set Synchronous Task Interrupt 7-174
7.2.122 M_TBRKON - Trap Online User's Task 7-175
7.2.123 M_TDAY - Time-of-Day Inquiry .. 7-176
7.2.124 M_TEMPFILETOPERM-Change Temporary File to

Permanent File ... 7 -177
7.2.125 M_TRUNCATE-Truncate File ... 7-179
7.2.126 M_TSCAN -Scan Terminal Input Buffer. 7-180
7.2.127 M_TSMPC -TSM Procedure Call.. 7-181
7.2.128 M_TSTE-Arithmetic Exception Inquiry 7-184
7.2.129 M_TSTS - Test User Status Word ... 7-185
7.2.130 M_TSTT - Test Timer Entry .. 7-186
7.2.131 M_TURNON -Activate Program at Given Time-of-Day 7-200
7.2.132 M_TYPE-System Console Type .. 7-189
7.2.133 M_UNLOCK- Release Exclusive Resource Lock 7-190
7.2.134 M_UNPRIVMODE-Change Task to Unprivileged Mode ... 7-192
7.2.135 M_ UNSYNC - Release Synchronous Resource Lock 7 -193

/ ----,

7.2.136 M_UPSP - Upspace ... 7-195
7.2.137 M_ VADDR - Validate Address Range 7-196
7.2.138 M_ WAIT - Wait I/O ... 7-197
7.2.139 M_WRITE- Write Record ... 7-198
7.2.140 M_WRITEEOF - Write EOF .. 7-199
7.2.141 M_XBRKR - Exit from Task Interrupt Level.. 7-200
7.2.142 M_XIEA-No-Wait I/O End-Action Retuffi 7-201
7.2.143 M_XMEA- Exit from Message End-Action Routine 7-202
7.2.144 M_XMSGR-Exit from Message Receiver 7-203
7.2.145 M_XREA-Exit from Run Request End-Action Routine 7-204
7.2.146 M_XRVNR- Exit Run Receiver. ... 7-205
7.2.147 M_XTIME - Task CPU Execution Time 7-206

7.3 Nonmacro-Callab1e System Services .. 7-207
7.3.1 Debug Link Service ... 7-207
7.3.2 Eject/Purge Routine ... 7-208
7.3.3 Erase or Punch Trailer. .. 7 -209
7.3.4 Execute Channel Program ... 7-210
7.3.5 Get Extended Memory Array .. 7-211
7.3.6 Release FHD Port .. 7-212
7.3.7 Reserve FHD Port ... 7-212 o

xxvi Contents

Contents

('
Page

A MPX-32 Device Access .. A-l

B System Services Cross-Reference ... B-l

C MPX-32 Abort and Crash Codes .. C-l

0 Numerical Information ... D-l

E Powers of Integers ... E-l

F ASCII Interchange Code Set ... F-l

G IOP/MFP Panel Mode Commands .. G-l

H Standard Date and Time Formats .. H-l

Compressed Source Format .. .1-1

J Map Block Address Assignments .. J-l

K Control Switches .. K-l

L Data Structures ... L-l

Glossary ... GL-l

Index .. .1N-l

MPX-32 Reference Volume I xxvii

List of Figures ['"
'\J

Figure Page

1-1 MPX-32 Processors and Utilities ... 1-2
1-2 Hardware/Software Priorities ... 1-4

2-1 Nonbase Mode Nonshared Task Address Space ... 2-4
2-2 Nonbase Mode Shared Task Address Space ... 2-5
2-3 Base Mode Shared Task Address Space .. 2-6
2-4 Task Service Area (TSA) Structure ... 2-9

3-1 Sample Allocation of Common Memory Partitions and Common Code3-22
3-2 Extended MPX-32 Physical Memory3-25
3-3 Extended MPX-32 Program How Control3-27
3-4 Tasks' Logical Address Space Using Extended MPX-323-31
3-5 Task's Logical Address Space Using the EXTDMPX Directive

With TSA Keyword ... 3-36

4-1 Volume Fonnat .. 4-21
4-2 A Sample Hierarchical Directory Structure .. .4-25
4-3 Locating a File on a Volume ... 4-27

xxviii Contents

List of Tables

Table Page

1-1 CONCEP1'/32 Trap Vectors ... 1-5
1-2 CONCEP1'/32 Interrupt Vectors .. 1-6
1-3 MPX-32 Device Support .. 1-23

2-1 Nonbase Mode vs. Base Mode .. 2-2
2-2 MPX-32 State Queues .. 2-13
2-3 Task Interrupt Operation/Services Summary .. 2-35
2-4 H.IPOF Register Fixup ... 2-36
2-5 Task Tennination Sequencing (EXIT, ABORT, and DELETE) 2-47
2-6 MPX-32 Faultsffraps and Miscellaneous Interrupts 0 2-52

3-1 Static versus Dynamic Shared Memory3-18
3-2 Memory Partition Applications for Nonbase Mode Tasks 3-19

4-1 File Access Modes and Conditions4-37

('~
5-1 Assign/Open Resource Allocation Matrix ... 5-3
5-2 Multivolume Magnetic Tape Data Transfers Between Different

Operating Systems .. 5-22
5-3 Disk Description Table .. 5-27
5-4 MPX-32 Device Type Codes and Mnemonics .. 5-31
5-5 Assign/Open Block Mode Determination Matrix .. .5-35
5-6 EOF and EOM Description .. 5-37
5-7 Type Control Parameter Block .. 5-42
5-8 Execute Channel Program FCB Fonnat5-46
5-9 Notification Packet Layout for PPC! Receiver .. 5-47
5-10 Pennanent and Temporary File Resource Create Block (RCB) 5-59
5-11 Directory Resource Create Block (RCB) ... 5-62
5-12 Nonbase Mode Memory Partition Resource Create Block (RCB) 5-63

MPX·32 Reference Volume I xxix/xxx

o

o

(" ..

Documentation Conventions

Conventions used in directive syntax, messages, and examples throughout the
MPX-32 documentation set are described below.

Messages and Examples

Text shown in this distinctive font indicates an actual representation of a
system message or an example of actual input and output. For example,

or

VOLUME MOUNT SUCCESSFUL

TSM>!ACTIVATE MYTASK
TSM>

Lowercase Italic Letters

In directive syntax, lowercase italic letters identify a generic element that must be
replaced with a value. For example,

$NOTE message

means replace message with the desired message. For example,

$NOTE 10/12/89 REV 3

In system messages, lowercase italic letters identify a variable element. For example,

* *BREAK* * ON: taskname

means a break occurred on the specified task.

Uppercase Letters

In directive syntax, uppercase letters specify the input required to execute that
directive. Uppercase bold letters indicate the minimum that must be entered. For
example,

$ASSIGN lie TO resource

means enter $AS or $ASSIGN followed by a logical file code, followed by TO and a
resource specification. For example,

$AS OUT TO OUTFILE

In messages, uppercase letters specify status or information. For example,

TERMDEF HAS NOT BEEN INSTALLED

MPX-32 Reference Volume I xxxi

Documentation Conventions

Brackets [1

An element inside brackets is optional. For example,

$CALLpathname [arg]

means supplying an argument (arg) is optional.

Multiple items listed within brackets means enter one of the options or none at all.
The choices are separated by a vertical line. For example,

$SHOW [CPUTIME I JOBS I USERS]

means specify one of the listed parameters, or none of them to invoke the default.

Items in brackets within encompassing brackets or braces can be specified only when
the other item is specified. For example,

BACKSPACE FILE [[FILES=] eoft]

indicates if eofs is supplied as a parameter, FIL= or FILES= can precede the value
specified.

Commas within brackets are required only if the bracketed element is specified. For
example,

LIST [taskname][,[ownername] [,pseudonym]]

indicates that the first comma is required only if ownername and/or pseudonym is
specified. The second comma is required only if pseudonym is specified.

Braces { }

Elements listed inside braces specify a required choice. Choices are separated by a
vertical line. Enter one of the arguments from the specified group. For example,

[BLOCKED={Y I N}]

means Y or N must be supplied when specifying the BLOCKED option.

Horizontal Ellipsis ...

xxxii

The horizontal ellipsis indicates the previous element can be repeated. For example,

$DEFM (par] [,par] ...

means one or more parameters (par) separated by commas can be entered.

Documentation Conventions

o

c\]

o

Documentation Conventions

Vertical Ellipsis

The vertical ellipsis indicates directives, parameters, or instructions have been omitted.
For example,

$DEFM SI,ASSEMBLE,NEW,OP

$IFA %OP ASSM

means one or more directives have been omitted between the $DEFM and $IFA
directives.

Parentheses ()

In directive syntax, parentheses must be entered as shown. For example,

(value)

means enter the proper value enclosed in parentheses; for example. (234).

Special Key Designations

The following are used throughout the documentation to designate special keys:

<ctri>
<ret> or <CR>
<tab>
<break>
<bck>

control key
carriage return/enter key
tab key
break key
backspace key
delete key

When the <ctrl> key designation is used with another key. press and hold the control
key. then press the other key. For example.

<ctrl>C

means press and hold the control key. then press the C.

Change Bars

Change bars are vertical lines (I) appearing in the right-hand margin of the page for
your convenience in identifying the changes made in l\1PX-32 Revision 3.5.

When an entire chapter has been changed or added. change bars appear at the chapter
title only. When text within figures has changed. change bars appear only at the top
and bottom of the figure box.

MPX-32 Reference Volume I xxxiii/xxxiv

o

o

(1 Introduction

1.1 System Description

The Mapped Programming Executive (MPX-32) is a disk-oriented, multiprogramming
operating system that supports concurrent execution of multiple tasks in interactive,
batch, and real-time environments. MPX-32 provides memory management, terminal
support, multiple batch streams, and intertask communication.

MPX-32 uses the SelMAP to completely support the 16MB physical address space of
the CONCEPT/32 computers. Each task executes in a unique address space that can
be expanded under task control up to 2MB of memory on the 32/87, or 16MB on the
32/67, 32/97 and 32/2000. An integrated CPU scheduler and a swap scheduler
provide efficient use of main memory by balancing the in-core task set based on time­
distribution factors, software priorities, and task state queues. The SelMAP is used to
perform dynamic relocation of tasks during inswap.

Tasks operating under MPX-32 can be activated and/or resumed by hardware
interrupts, system service requests, interactive commands, job control directives, or by
the expiration of timers. Multiple copies of a task can be executed concurrently in
interactive, batch, or real-time environments. Through its various scheduling
capabilities, MPX-32 provides the flexibility needed to adapt system operation to
changing real-time conditions.

The MPX-32 software package is composed of various software modules including
the resident operating system (I/O Control System (IOCS), CPU and swap schedulers,
Resource Allocator, Volume Management module, reentrant system services, and
device and interrupt handlers), a Terminal Services Manager (TSM), a system
generator (SYSGEN), and utilities such as a Volume Formatter and Volume Manager.
Figure 1-1 describes the system nucleus, processors, and utilities.

The Internal Processing Unit (IPU) is a second central processor designed to work
with the CPU to increase system throughput. The IPU is attached to the SelBUS like
the CPU and shares all memory (including the resident operating system area) with
the CPU. The IPU's function is to execute user task level code in parallel with CPU
operation. (The IPU is optional hardware and must be specified during SYSGEN for
use on a system.)

To avoid contention between the IPU and CPU, there are IPU limitations. IPU
cannot:

• communicate with peripherals (perform I/O)

• process all supervisor call (SVC) system services

• execute interrupt control instructions

MPX-32 Reference Volume I 1-1

System Description

I
SYSTEM

COMMAND
PROCESSORS

TSMO.B)
OPCOM

1-2

SYSTEM NUCLEUS

IOCS
CPU SCHEDULER
SWAP SCHEDULER
RESOURCE ALLOCATOR
VOLUME MANAGEMENT MODULE

I
lANGUAGE

PROCESSORS

ASSEMBLER (I.B)
FORTRAN (I.B)
PASCAL (I.B)
COBOL (I.B)
BASlC(Q
ASMX32 (I.B)
FORTX32 (I.B)
GCF(I.B)
GCCO.B)

SYSTEM
MANAGER
UllUTIES

KEY(I.B)'
SYSGEN (I.B)
ACCOUNT O.B)
COMPRESS (I. B)
PROJECT (I.B)
VFMT(I.B)
SHUTD(I.B)
ENABLE (I)
LOGllME(I)
TERMOUTO)
LOGCNTO)

NOTE:

I - INTERACllVE
B - BATCH
R - REAL llME

Figure 1-1

1
PROGRAM

DEVELOPMENT
UllUTIES

CATALOG (I. B)
DEBUG O.B)
MACUBR (I.B)
UBED(I.B)
DPEDIT(Q
EDITORO.B)
UNKX32 (I.B)
DEBUGX32 (I.B)
MACX32 (I.B)
OBJX32 (I.B)
HELPT(I.B)
LO(I.B)
DBX(I.B)

MPX-32 Processors and Utilities

10

1
SERVICE
UllUllES

MEDIA (I.B)
UPDATE (I.B)
VOLMGR (I.B)
HLP(R)
OSCMP(I.B)
PASSWORD (I)
KEYWORD (I)

Rl006

o
Introduction

("

(

System Description

Therefore, the IPU and CPU manage task execution transparently around the IPU
limitations. For example, if the IPU is executing a task and encounters a service it
cannot perform, a trap is sent to the CPU, the CPU takes over execution of the task at
that point, and the task remains in the CPU until completion or reselection for IPU
execution.

MPX-32 standard features include:

• full support for 16MB physical addressability of the CONCEPT/32 computers

• up to 255 tasks executing concurrently

• 64 software priority levels, 10 of which are time distributed

• servicing of all standard (extended I/O (XIO» peripheral devices

• standard handlers for interrupts and traps

• intertask communications, including send/receive

• intertask shared memory partitions, such as Global Common and Datapool

• dynamic allocation and deallocation of memory and peripherals

• multiple batch streams, including multiple spooled input and output queues

• wait and no-wait I/O capabilities. including automatic blocking. buffering, and
queueing

• terminal support for up to 64 devices, including device-independent operation and
an extensive repertoire of online commands

• automatic task reentrancy through separation of pure code and data areas

• reentrant system services available to all tasks

• several levels of system security, including access restrictions based on task
ownership

• file management, assignment, and security

• up to 245 logical files (files or devices) opened concurrently per task if both static
and dynamic assignments are used

• project accounting capability

• transparent support of the IPU

• automatic mounting of public volumes at IPL

MPX-32 uses hardware and software priorities for scheduling and executing tasks.
Figure 1-2 shows the various MPX-32 software elements and the hardware and
software priority levels that are assigned to each.

MPX-32 Reference Volume I 1-3

System Description

TRAP
(HEX)

INTERRUPT
(HEX)

1-4

RELATIVE TRAP
AND INTERRUPT
HARDWARE PRIORITIES

00 POWER FAIL - SAFE
01 POWER ONIAUTOSTART
02 MEMORY PARITY
03 NON PRESENT MEMORY
04 UNDEANED INSTRUCTION
05 PRIVILEGE VIOLATION

06 SUPERVISOR CALL (SVC)
07 MACHINE CHECK
08 SYSTEM CHECK
09 MAP FAULT
OA UNDEFINED IPU INSTRUCTION
OB SIPU
oc ADDRESS SPECIFICATION
OD CONSOLE ATIENTION
OE PRIVILEGE MODE HALT
OF ARITHMETIC EXCEPTION
10 CACHE PARITY

0-3 EXTERNAL INTERRUPTS

4
1/0 SERVICE INTERRUPTS

13

14 -17 EXTERNAL INTERRUPTS

18 REAL TIME CLOCK

19

5E
EXTERNAL INTERRUPTS

SF INTERVAL TIMER INTERRUPT

60-6F EXTERNAL INTERRUPTS

SOFTWARE PRIORITIES (DECIMAL)

54
55

64

REAL TIME

TIME DISTRIBUTION

- IPoo

- IPAS

- IP02
- IP03 - EXEC

- IP04 - MONS

- IP05 - IOCS

---I IP06 t--
- FISE

- ALOC

- IP07 - TAMM

- IP08 - TSM

- IP09 r-- REXS

- IPU r--- REMM

- IPU,CPU r--- VOMM

f--- IPoe '-- M::tIM
r-- IP13
r-- IPHT
r-- IPOF

f--- H.IP10

r----t USER INTERRUPT HANDLERS I

r---t SYSTEM AND USER DEVICE HANDLERS I

f---I USER INTERRUPT HANDLERS

f----I IPCL - TIMER SCHEDULE

f---I USER INTERRUPT HANDLERS

r----t IPIT - CPU SCHEDULER

r----t USER INTERRUPT HANDLERS

{

TASKS, PROCESSORS I UTILITIES
EXECUTE EITHER AT CATALOGED
PRIORITY OR AT TIME DISTRIBUTION
PRIORITY, DEPENDING ON HOW
ACTIVATED.

I

I

I

I

I

R1OO7

Figure 1-2
Hardware/Software Priorities

Introduction

Ie·· .-".' , !

o

(

(

System Description

1.1.1 Hardware Interrupts/Traps

The CONCEPT/32 computers support up to 96 hardware interrupts and traps. See
Tables 1-1 and 1-2 for a description of CONCEPT/32 trap and interrupt vectors. The
exact number in a particular system depends on the user's requirements and the
number of peripheral devices in the configuration.

The highest hardware priority levels in the system are reserved for the basic system
integrity interrupts and traps. These include the power fail/power up traps and the
system override interrupts and traps. Lower levels are used for the I/O transfer
interrupts, memory parity trap, console interrupt, and I/O service interrupts.

The next lower group of interrupts and traps are used for exceptional conditions,
supervisor call requests, and the real-time clock. The exceptional conditions include
nonpresent memory trap, undefined instruction trap, privilege violation trap, and
arithmetic exception interrupt.

All lower hardware priority levels are used for external interrupts. User tasks can be
connected directly or indirectly to the external interrupts.

Table 1-1
CONCEPT/32 Trap Vectors

Relative Default Trap
priority Vector Location (TVL) Trap Condition

CPU IPU

00 80 20 Power fail trap (power down)
01 84 24 Autostart trap (power up)
02 88 28 Memory parity trap
03 8C 2C Nonpresent memory trap
04 90 30 Undefined instruction trap
05 94 34 Privilege violation trap
06 98 38 Supervisor call trap
07 9C 3C Machine check trap
08 AO 40 System check trap
09 A4 44 MAP fault trap
OA A8 48 Not used
OB AC 4C Undefined IPU instruction trap
OC BO 50 Address specification trap
OD B4 54 Console attention trap
OE B8 58 Privilege mode halt trap
OF BC 5C Arithmetic exception trap
10 CO 60 Cache memory parity trap

(all supported CONCEPT/32 computers
except the 32/2000)

11 C4 Demand page fault trap
(CONCEPT 32/2000 only)

MPX·32 Reference Volume I 1·5

System Description

Table 1-2
CONCEPT/32 Interrupt Vectors

Default Interrupt
Vector Location

Relative Priority (IVL) Interrupt Condition

1·6

00
01
02

03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12

13
14

17
18
19

5E
5F
60

6F

100
104
108
IOC
110
114
118
11C
120
124
128
12C
130
134
138
13C
140
144
148
14C
150

15C
160
164

278
27C
280

2BC

Extema1lsoftware interrupt 0
Extema1lsoftware interrupt 1
Extema1lsoftware interrupt 2
Extema1lsoftware interrupt 3
I/O channel 0 interrupt
1/0 channel 1 interrupt
I/O channel 2 interrupt
1/0 channel 3 interrupt
1/0 channel 4 interrupt

I/O channel 5 interrupt
I/O channel 6 interrupt
I/O channel 7 interrupt
I/O channel 8 interrupt
I/O channel 9 interrupt
I/O channel A interrupt
I/O channel B interrupt
I/O channel C interrupt
I/O channel D interrupt
I/O channel E interrupt
I/O channel F interrupt
Extema1lsoftware interrupts

Extema1lsoftware interrupts
Real-time clock interrupt
Extema1lsoftware interrupts

Extema1lsoftware interrupts
Interval timer interrupt
Extema1lsoftware interrupts

Introduction

o

(~

(

System Description

1.1.2 Software Interrupt System

MPX-32 provides 64 software priority levels for controlling the user's application.
All system scheduling is performed by priority. Multiple tasks can be assigned to any
priority level, thereby achieving a high level of multiprogramming versatility. The
software priority levels are used by the Resource Allocator for peripheral and memory
allocation, by the 1/0 supervisor for the queueing of 1/0 requests, and by MPX-32
whenever CPU control is allocated.

1.1.3 Task Priority Levels

Priorities 55 to 64 are time-sliced to provide for round-robin time distribution among
tasks of the same priority. Priorities 1 to 54 are not time distributed. A task's
cataloged priority is altered based on its eligibility to run. For example, a task's
priority is boosted when an I/O operation is completed and restored after a minimal
time quantum. Priority migration ensures maximum response to real-time events.

1.1.4 Supervision and Allocation

CPU scheduling is maintained through a set of state queues including the priority state
chains and such execution states as suspended, queued for memory, queued for
peripheral, 1/0 wait, etc. Each CPU dispatch queue entry defines all scheduling
attributes of a single task. The entry typically migrates among the state queues as the
task's execution eligibility changes. These state chains are also used by the swap
scheduler to select candidates for swapping.

The CPU scheduler is invoked whenever a scheduling event occurs. Scheduling
events include:

• external interrupts

• I/O completion

• timer expiration

• resource deallocation

• system service completion

IPU scheduling is maintained through state queues consisting of biased tasks
(C.RIPU) scheduled in addition to MPX-32 normal state queues for nonbiased tasks
(SQRT through SQ64). Any biased tasks are prioritized among themselves, and are
scheduled for execution based on priority. Any nonbiased tasks are also prioritized
among themselves, and are scheduled for execution according to priority. If a
nonbiased task waiting for execution has a higher priority level than a biased task also
waiting for execution, the nonbiased task is selected for execution.

An optional scheduling algorithm is available to boost the priority of IPU tasks and
allow them to run in the CPU.

MPX-32 Reference Volume I 1-7

System Description

1.1.5 Memory Allocation

The unit of memory allocation is a map block, which is 2KW on the CONCEPT/32
computer. Memory is allocated to tasks as needed. All tasks are loaded
discontiguously into a whole number of physical map blocks, utilizing the SelMAP to
create their contiguous logical address space. No partial map blocks are allocated.

The MPX-32 memory allocation scheme allows tasks to dynamically expand and
contract their address space by system service calls.

The unit of memory protection is called a protection granule and is 512W. Thus, it is
possible to have protected data areas within a map block. On a CONCEPT 32/2000
with mapped out image, the unit of memory protection is 2KW.

1.1.5.1 Dynamic Allocation

Dynamic allocation and deallocation are performed by the allocate and deallocate
system services. These services can be used to dynamically allocate and deallocate
any peripheral device, permanent and temporary disk files, or the system listed output
(SLO) and system binary output (SBO) files. By allocating peripheral devices
dynamically, each task has exclusive use of a peripheral only during the time required
to perform the task's I/O. Therefore, when peripherals are not allocated, other tasks
can use them on an as-needed basis.

Because the allocation of system-wide peripheral devices that are requested
dynamically cannot be guaranteed, a task must be prepared to accept a denial return.

A task requesting additional memory is automatically queued until the memory can be
allocated. For peripherals and file space, the caller can optionally queue for allocation
or take alternative action.

1.1.6 File Management

In the MPX-32 operating environment, files are used in several ways. Permanent files
are created for user programs, user data, and system programs. Temporary files
provide system scratch storage, user scratch storage, and system output data storage
for the system printer. Separation is maintained among files belonging to different
users.

The file management system for MPX-32 consists of the resident Volume
Management Module and the nonresident Volume Manager. Together, they supervise
all file space on the disks.

1.1.6.1 Permanent Files

1-8

Residing in disk storage, permanent files are defined by entries in a directory which
specify each file's name, binary creation date and time, absolute block number of
resource descriptor, resource ID flag and type and other directory entry control
information. Permanent files remain defined to the operating system until they are
explicitly deleted.

Introduction

o

System Description

Pennanent files can be accessed by multiple tasks for both input and output. Access
pennanent files by pathname. To locate the directory entry for a pennanent file,
MPX-32 translates the file name characters to a specific location in the directory. For
a complete description of pathnames, see Chapter 4.

Pennanent files are classified as either fast or slow depending on the speed at which
their directory entries can be located. A fast pennanent file is one whose entry can be
located with one disk access. Slow pennanent files require two or more disk accesses
to find each file's entry.

1.1.6.2 Temporary Files

Temporary files are files whose definitions are eliminated from the system upon
completion of the task requiring the space. Temporary file space is allocated and
deallocated by the Volume Management Module which is responsible for maintaining
space allocation maps for all available disks. Temporary files are typically used for
either system or user scratch storage.

1.1.6.3 Random Access Files

Any disk file may be accessed randomly by record number through standard IOCS
calls. The user sets a bit and specifies the relative disk block number in a file control
block (FCB) to utilize this feature.

1.1.6.4 Disk File Protection

File protection mechanisms are available to prevent unauthorized access to and
deletion of pennanent files. Protection of individual files can be specified when the
files are created. User files can also be protected on a per user basis. If a key is
associated with an owner name in the M.KEY file, it must be entered at logon.
Specific access rights are defined for each file by owner, project group, and other.

1.1.6.5 Dedicated System Files

To increase system throughput and minimize I/O delay time, IOCS supports disk
buffered I/O by using special system files. Four dedicated file codes exist in the
system. One file code is for buffered system input (SYC), two file codes are for
buffered system output (SLO, SBO), and one file code is for a system object file
(SGO). A system file can be assigned to a file code in the same manner a device is
assigned to a file code.

1.1.6.6 Multiprocessor Files

MPX-32 allows tasks executing in separate system environments to concurrently
access selected files. The operating system maintains resource integrity on these files
within the scope of volume management described in Chapter 4 of this manual. These
files must reside on a volume accessible by a multiported device.

MPX-32 Reference Volume I 1-9

System Description

1.1.7 System Services

MPX-32 offers resident system service routines that can perform frequently required
operations with maximum efficiency. Using the Supervisor Call instruction, tasks
running in batch, interactive, or real-time environments can call these routines.

All system service routines are re-entrant. Thus, each service routine is always
available to the currently active task.

The system service routines are standard modular components of MPX-32. However,
the open-ended design of the system gives each user freedom to add any service
routines required to tailor MPX-32 to a specific application.

1.1.8 Input/Output Operations

The Input/Output Control System (IOCS) provides I/O services that relieve the
programmer of detailed chores. While keeping software overhead to an absolute
minimum, IOCS receives and processes all I/O requests for both user and tasks. It
performs all logical error checking and parameter validation. IOCS also logically
processes all I/O operations and assigns I/O control to the appropriate device handler.
In turn, the device handler executes the I/O data exchange, processes service
interrupts, and performs device testing.

I/O operations for MPX-32 include the following general capabilities: direct I/O,
queued I/O requests, device independent I/O, device interchangeability, device
reassignment, and disk-buffered (blocked) I/O.

1.1.8.1 Direct I/O

I/O can be issued directly to acquire data at rates which prohibit the overhead of
10CS. Mechanisms are provided in IOCS to ensure that no conflict occurs with 10CS
file operations. The interface facilities provided in IOCS for direct I/O enable a task
to gain exclusive use of an I/O channel.

1.1.8.2 Device-Independent I/O

Normal I/O operations in the system occur to and from user-specified logical file
codes. These file codes are assigned and reassigned to the physical device where the
I/O commands are ultimately routed.

1.1.8.3 logical File Codes

1-10

The user logical file code consists of one to three ASCn characters. For each file
code defined and referenced by a user task, there is an entry in a file assignment table
(FAT). The FAT entry describes the device controller channel and the device the file
is assigned to. For a disk that is a shared device, additional addressing information is
provided for complete identification of the file. Each user task is allowed a maximum
of 245 static and dynamic logical file assignments.

Introduction

c

o

System Description

1.1.8.4 File Access

IOCS supports both random and sequential file access. Random or sequential access
is specified by the user. All files assigned to devices other than disk are considered
sequential. A file assigned to disk may be referenced by both random and sequential
transfers. Attempts to perfonn a write operation on a file specified as read-only, or
attempts to circumvent disk file protection and security, are aborted.

1.1.9 Communications Facilities

MPX-32 offers complete facilities for communications between individual users,
internal system elements, user tasks, and the operator and the system. Users
communicate with one another by sharing pennanent files, shared images, the
communication region, Global Common and Datapool partitions, and job status flags
which can be set and interrogated by system service routines. Tasks communicate
with one another by messages or run requests.

1.1.9.1 Intertask Messages

Tasks can establish message receivers for intertask communication. Messages are
buffered by MPX-32 in memory pool until the receiving task is eligible to receive.
The receiving task is interrupted asynchronously and optionally responds to the
sender. The sender optionally waits for a reply or elects to be interrupted
asynchronously by a response. Messages can be queued to an arbitrary depth.

1.1.9.2 Run Requests

A task can send a run request to any other task. A run request is similar to a message,
except that with a run request, the receiver may not yet be in execution. In such
cases, the receiving task is activated before the message is queued. The receiving task
can process run requests at any time.

1.1.9.3 Global Common

Global Common is an area of memory that many programs can access by using
symbolic names to identify specific storage cells. In this respect, Global Common is
comparable to local common. Unlike local common, however, access to Global
Common is not restricted to programs within a single task. Rather, programs
belonging to many independent tasks can freely access the same data and exchange
control infonnation within the Global Common area.

1.1.9.4 Shared Images

A shared image allows base mode tasks to share both code and data, for example,
shared subroutines and common data partitions. A shared image is built on disk by
the base mode linker (LINKX32) and is loaded into memory upon inclusion by a task.
Nonbase mode tasks can include the shared image as an initialized dynamic data
partition. Shared images are distinct from static and dynamic common in that the
memory is initialized with data from disk.

MPX-32 Reference Volume I 1-11

System Description

1.1.9.5 Datapool

Like Global Common, Datapool is an area of memory that many tasks can access
using symbolic references. In addition to providing all the advantages of Global
Common, Datapool provides a much wider range of structuring flexibility. For
example, where global common symbolic references must follow the same order as
the locations of the data in memory, symbolic references to Datapool may be entirely
independent of the actual positioning of data within the memory area.

1.1.9.6 Internal Communications

Internal system elements communicate through temporary files, system queues, and
the system communications region. The system communications region occupies
approximately 2KW of lower memory. It contains information common to all system
modules and processors.

1.1.10 Trap Processors

Trap processors are entered when any exceptional condition trap occurs. Certain traps
indicate task errors, such as a reference to nonpresent memory, a privilege violation,
or execution of an unimplemented instruction. These traps cause the violating task to
be aborted. When the arithmetic exception trap occurs, the overflow condition is
noted for use by the task in execution.

1.1.11 Timer Scheduler

The timer scheduler schedules events such as task activation, task resumption, flag
setting and resetting, and interrupt activation on a timed. basis.

1.1.12 Time Management

1-12

Time is kept in two different formats. The system maintains the time as a count of
clock interrupts, and the date as an ASCII constant. To allow for easy time stamping
of resources with the file system capabilities, time is also kept as a binary count of
100 microsecond units since midnight, and the date as the binary number of days
since January 1, 1960. See Appendix H for more details.

When entering the date and time, the user can specify daylight savings time and a
correction factor for time zone. These features are provided for the user who wants
the system to use a standard time base, such as GMT, for system operations, and to
display values of date and time in local time. For example, if a user states that local
time is 10: 00: 00, daylight savings time is in effect, and there is a two-hour
correction for time zone, the time kept by MPX-32 indicates 07: 00: 00. The
correction factor is kept so any user access of time indicates the local value.

Another feature allows the use of the international date format for entering the date.
Instead of entering 10 / 1 7 / 80, 1 7 OC T 80 can be entered. The date is always
displayed in the same format as it is entered at IPL time.

Introduction

o

o

System Description

1.1.13 System Nonresident Media Mounting Task (J.MOUNT)

J.MOUNT mounts both fonnatted volwnes and unfonnatted media. J.MOUNT is
nonnally in the Waiting for Run Request (RUNW) queue. When a task requires a
volwne to be physically mounted or dismounted, a run request is sent to J.MOUNT.
J . MOU NT then interacts with the operator through the system console to complete the
mount or dismount process.

1.2 System Command Processors

The Terminal Services Manager (TSM) and the interactive Operator Communications
(OPCOM) command processor provide access to MPX-32 interactive, batch, and real­
time processing environments.

1.2.1 Terminal Services Manager (TSM)

TSM provides interactive, time-shared access to the MPX-32 system for tenninals
connected either through ALIM or ACM controllers. It allows the user to:

• logon to MPX-32

• access any MPX-32 processor

• communicate with online users or the operator

• account for use of computer resources

• specify and pass parameters to interactive and batch tasks

• automate a series of tasks into a job, or submit a stream of jobs

• nest directive files

• construct loops to control processing in directive files

• request assignment of any MPX-32 resource

• specify alternative actions conditionally

• logoff from MPX-32

MPX-32 Reference Volume I 1-13

System Command Processors

1.2.2 Operator Communications (OPCOM)

OPCOM provides commands that set up the system for optimum response to changing
conditions. Using OPCOM directives, users can:

• list the status of all queues, tasks, I/O controllers, and mounted volumes

• control spooled print and punch output

• hold and continue execution of tasks

• activate and abort tasks

• connect tasks to interrupts

• establish resident and nonresident tasks

• display time-of-day clock

• create and delete timer scheduler queue entries

• delete allocation queue entries

• enable, disable, and initiate hardware interrupts

• reserve devices, release them, and place them off-line or online

• change the assignment of the system input device, the SGO file, and the destination
of the SLO and SBO spooled output files

• initiate the reading of the batch stream

• issue system debugging commands

• dump physical memory to the console

1.2.3 Batch Processing

1-14

Batch processing consists of spooling batch jobs to disk, interpreting job control
statements, and directing listed and binary spooled output to destination files and
devices. Multiple jobs are processed concurrently within limits established by
SYSGEN and the availability of computer resources. Tasks that use batch processing
compete with each other and with nonbatch tasks for computer resources under
standard MPX-32 allocation algorithms.

Each job is spooled to a separate system control (SYC) disk file prior to processing.
Jobs can be spooled to SYC files from card, magnetic tape, and paper tape peripheral
devices, and from blocked, temporary, and permanent disk files. The OPCOM
BATCH directive can be used to initiate spooling from peripheral devices and
permanent files. The batch job from entry system service (M.BATCH) is used by
TSM, and the Text Editor and can be invoked by a task to initiate spooling from
permanent and temporary disk files. The TSM $BATCH or $SUBMIT directives can
also be used to submit batch jobs.

Introduction

o

o

o

System Command Processors

Job sequence numbers show the order that jobs are entered and uniquely identify each
job and its tasks.

When a job completes, its spooled listed and binary output is automatically routed to
usable peripheral devices if no particular device(s) or permanent file(s) are specified
for the job. Usable devices for automatic selection are specified by SYSGEN and
OPCOM directives. Spooled output destination devices include line printers, card
punches, magnetic tapes, paper tapes, and disk files. Spooled output is selected for
processing based on the software priority of jobs and, within a given priority, on the
order in which jobs complete processing.

1.3 Program Development Utilities

1.3.1

MPX-32 supports both nonbase and base mode programs. Refer to the Task
Structures section of Chapter 2 for the nonbase and base task differences. Nonbase
and base modes cannot be mixed; therefore, separate program development utilities
exist for each mode.

Of the following utilities, only VOLMGR and J.VFMT are included on the MPX-32
Master SOT.

Task Cataloging (CATALOG)

Use the cataloger to catalog permanent nonbase mode load modules that execute as
tasks on the MPX-32 system. During cataloging, relocatable object modules produced
by the assembler or compilers are loaded and linked internally and externally to
library subroutines. The linked body of code thus produced is then sent to a selected
permanent file in relocatable or absolute format. In addition, the cataloger places a
preamble on this file. This preamble contains a summary of the resources required by
the task, such as memory, permanent files, and peripheral devices, and defines special
task characteristics (shared, resident, etc.). Once created, a task is known to the
system by the name of the permanent file where it resides. The task can then be
activated, saved, restored, or otherwise operated on by specifying its name in the
appropriate job control statement, system service call, or terminal directive.

1.3.1.1 Privilege

Whether a task is privileged or unprivileged can be defined by cataloger directives.
The ability to specify a privileged operation for a task can be restricted by owner
name.

By specifying whether tasks are privileged or unprivileged, users can control system
security. Tasks designated to run privileged are free to execute any instruction in the
instruction repertoire. They also have read/write access to all memory locations.

MPX-32 Reference Volume I 1·15

Program Development Utilities

1.3.1.2 Overlays

For efficient use of memory, the cataloger provides the user with facilities for dividing
large nonbase mode programs into overlays. The main program segment, the root,
and the overlay segments can be cataloged in relocatable format. Individual overlays
can be cataloged separately, permitting the user to modify or replace any overlay
without disturbing any of the others. Flexible symbol linkage is provided between the
root and its associated overlays and between individual overlays of various levels.

1.3.2 Task Debugger (AIDDB)

The task debugger is a directive-oriented processor that debugs a single, cataloged,
nonbase mode user task. It can be accessed with a DEBUG directive in TSM, with a
$DEBUG statement in batch, by coding an MDEBUG service call within the
cataloged task, or by using the break key after a task has been activated with TSM, in
which case TSM provides the option of calling M.DEBUG.

If the task the debugger is connected to has a shared CSECT, the debugger must be
attached at task activation (by the DEBUG directive in TSM or $DEBUG statement in
batch). The shared CSECT task is then loaded as multicopied and breakpoints set in
the CSECT do not impact other users of the shared CSECT.

Using AIDDB directives, users can:

• trace task execution

• set debugging traps within the task

• display and/or alter contents of the task's logical address space, general purpose
registers, etc.

• watch for privileged task entry into the operating system or other areas of memory
not usually accessed even by a privileged task

• perform other operations that facilitate task debugging

1.3.3 Macro Assembler (ASSEMBLE)

The Macro Assembler translates nonbase assembler directives and source code into
binary instructions for the CONCEPT/32 CPU.

1.3.4 Macro Library Editor (MACLlBR)

1-16

With the Macro Library Editor, nonbase mode macros that are used frequently can be
placed in a macro library where they are available for use by the Macro Assembler.
During execution, the Macro Library Editor transfers the macros from the source input
file to the macro library file. The macros entered into the library are listed on an
output file.

Introduction

o

()

o

(-
Program Development Utilities

1.3.5 Subroutine Library Editor (UBED)

The Subroutine Library Editor provides facilities for creating and modifying the
nonbase mode system subroutine library and any number of user subroutine libraries.
The user is provided with a listing of directives, module names, external definitions,
the quantity of library and directory space remaining on the disk, and the modules that
were specified for deletion but were not located in the library.

1.3.6 Datapool Editor (DPEDIT)

The Datapool Editor provides the ability to create and maintain dictionaries for access
to static or dynamic Datapool common memory partitions.

1.3.7 Text Editor (EDIT)

The Text Editor provides directives for building and editing text files, merging files or
parts of files into one file space, copying existing text from one location to another,
and, in general, for performing editing functions familiar to users of interactive
systems.

EDIT is typically used to create source files and to build job control files and general
text files. A job file built in the editor can be copied directly into the batch stream
using the editor BATCH directive.

1.3.8 Volume Manager (VOLMGR)

The Volume Manager creates or deletes permanent disk file space, special global
partitions, and/or a datapool partition (one that can be dynamically allocated in
memory when required by tasks). A primary use is to provide system and user
permanent file backup.

1.3.9 Volume Formatter (J.VFMT)

The Volume Formatter formats volumes (disks). It can operate on a fully functional
MPX-32 system or a starter system by the SDT.

1.3.10 Assembler/X32 (ASMX32)

The Assembler/X32 translates base mode assembler directives and source code into
binary base mode instructions for the CONCEPT/32 CPU.

1.3.11 Macro Librarian/X32 (MACX32)

The Macro Librarian/X32 builds and maintains base mode macro libraries that are
accessed by the macro assembler/X32. Frequently used base mode macros can be
placed in the macro libraries for easy access.

MPX-32 Reference Volume I 1-17

Program Development Utilities

1.3.12 Object Librarian/X32 (OBJX32)

The Object Librarian/X32 provides facilities for creating and modifying user object
libraries. The object libraries contain object files to be used in base mode programs.
The object librarian provides a log of the number of object files entered, the names of
the object files, when each file was entered, and the amount of available library space.

1.3.13 Linker/X32 (LlNKX32)

The Linker/X32 creates permanent base mode load modules that can execute as tasks
on MPX-32. During linking, object modules produced by the macro assembler/X32
or compilers are loaded and linked internally and externally to library subroutines.
The linked body of code becomes an executable image.

1.3.14 Symbolic Debugger/X32 (DEBUGX32)

1-18

The Symbolic Debugger/X32 is a directive-oriented processor used to debug base
mode executable images created by the Linker/X32. Using the debugger, users can:

• debug interactively, with debugger directives controlling the execution of the
program

• access program locations (memory addresses) by using hexadecimal addresses,
bases, or the global symbols defined in the source program - addresses are
displayed either in hexadecimal format or relative to a base or global symbol

• display data in ASCII, hexadecimal, or instruction format

• execute program instructions one at a time, showing the result after each instruction
is executed, or set traps to allow execution to proceed through many instructions to
a designated program checkpoint

• define bases

• debug privileged programs

• print a record of the debugging session

Introduction

t~"\

'-y

(

Service Utilities

1.4 Service Utilities

1.4.1 Source Update (UPDATE)

The Source Update utility provides facilities for revising source files. It permits the
user to enter new files, as well as to update existing files by adding, replacing, and
deleting source statements. Input can be in standard or compressed format. Either
format can be selected for the output file. Source Update can also produce a listing of
the control stream as it generates the output file.

1.4.2 Media Conversion (MEDIA)

The Media Conversion utility performs functions ranging from card duplication to
merging multiple media inputs into single or multiple media outputs. It provides
media editing, media-to-media conversion, code conversion, media copying, and
media verification. Rather than restricting the user to a fixed set of functions, the
Media Conversion utility is controlled by a language of directives.

MPX-32 Reference Volume I 1-19

System Manager Utilities

1.5 System Manager Utilities

1.5.1 M.KEY Editor (KEY)

KEY is a utility used to build an M.KEY file for the MPX-32 system. The M.KEY
file specifies valid owner names on the system and optionally sets, for each owner
name:

• a key and/or password to restrict access to the owner name during logon and to the
user name when accessing files

• OPCOM indicators restricting the owner's use of OPCOM directives

• an indicator that prevents the owner from cataloging privileged tasks (tasks that use
privileged system services or privileged variations of unprivileged system services)

• an indicator that prevents the owner from activating tasks cataloged as privileged

• default tab settings

• default working volume and directory specification

• default alphanumeric project names/numbers for accounting purposes

After KEY runs, only those owners established in the M.KEY file can logon to the
system and access files.

1.5.2 MPX-32 System Start-up, Generation, and Installation (SYSGEN)

1-20

Users can install a starter system by booting from the master System Oistribution
Tape (SOT). Using the starter system, which is fully operational, a user-configuration
of the system can be generated with the SYSGEN utility (running either interactively
or in batch). An online RESTART directive is available to test user-configured
systems. When a system has been tested, users can create their own SOT using the
VOLMGR SOT directive.

When SYSGEN runs, system tables are constructed and linked to the resident system
modules, handlers, and user-supplied resident modules and handlers as specified by
SYSGEN directives. A resident system image is formed and subsequently written to a
dynamically acquired permanent disk file. Concurrent with this process, a listing of
directives is built and a load map of the system is generated. The load map can be
saved on a system symbol table file specified by the user with the SYMT AB directive
and used subsequently in patching the system.

A system debugger can also be configured in the resident system image to assist in
patching or debugging resident system code, including user interrupt and I/O handlers.

Introduction

0···'1. i' ,

(~\

Libraries

1.6 Libraries

1.6.1 Subroutine Libraries

Subroutine libraries can simplify the development of applications. Subroutines can be
added, modified, or deleted. This permits one routine to be changed without having to
reassemble or recompile all of the subroutines needed for a task. Only the task must
be recataloged.

Subroutines on a subroutine library can be used by programs written in various
languages, including Assembly. They are accessed as object modules when a task is
cataloged. The subroutine library and directory for MPX-32 are called MPXLIB and
MPXDIR. User subroutine libraries can be built and modified by the LIBED utility.

1.6.2 System Macro Libraries

Two macro libraries are supplied as part of the MPX-32 system. They are used only
with programs written in assembly language. The first, M.MPXMAC, should be
accessed when code that uses MPX-32 system services is assembled. The second,
M.MACLIB, is used when code contains RTM monitor service calls. These macro
libraries provide macros containing equates for MPX-32 communication region
variables.

The user can expand, contract, or modify a macro library by using the MACLIBR
utility.

1.6.3 Other

The Scientific Subroutine Library is optionally available. It contains math and
statistical routines for scientific and engineering applications. A user group library is
also available. It is provided by and for users.

MPX-32 Reference Volume I 1-21

Minimum Hardware Configuration

1.7 Minimum Hardware Configuration

1-22

Minimum hardware requirements for MPX-32 operation on a CONCEPf/32 computer
are as follows:

• 128KW memory

• magnetic tape (class F) or lOP floppy disk

• I/O processor (lOP) or Multi-Function processor (MFP) console

• extended I/O disk

The minimum configuration must also include the prerequisites required to support the
items listed, for example, controllers, formatters, etc.

Devices supported by MPX-32 are listed in Table 1-3. Where appropriate, the code
used to access a device is shown in parentheses. The code indicating the appropriate
device, such as TY for a terminal on an ALIM, is used when accessing devices
connected with a communications link.

Introduction

!()\ ,J

Minimum Hardware Configuration

Model

Table 1-3
MPX-32 Device Support

Number Description

1603 Vector Processor 3300*
1604
2345
3050
7302
7410
8001
8002
8031
8050
8055
8060
8064
8121
8130
8140
8150
8160
8174
8175
8210

8211

8212

8255
8310
8311
8312
8313
8314
8315
8356
8357
8371
8317
8410
8510

Vector Processor 6410*
Real-Time Option Module
Multiprocessor Shared Memory System (MS)2
Reflective Memory Port (RMS) with wsc, RSC
Analog Digital Interface (ADI)
I/O processor
Multi-Function Processor (MFP)
Line printer/Aoppy disc controller (LP)
High Speed Tape Processor (HSTP) (XIO)
Disc Processor 11*
Universal Disc Processor (UDP)
High-Speed Disc Processor (HSDP)
80MB sealed media disc processor subsystem
80MB disc processor subsystem
300MB disc processor subsystem
675MB fixed module disc processor subsystem
Cache disc accelerator
Floppy disc with controller (FL)
Dual floppy disc with controller (FL)
High speed tape processor subsystem
75 ips 9-Track 1600/6250 bpi (M9)*
High speed tape processor subsystem
125 ips 9-Track 1600/6250 bpi (M9)*
High speed tape processor subsystem
125 ips 9-Track 800/1600/6250 bpi (M9)
Buffered tape processor
Band printer (300 lpm) (64 character) (LP)
Band printer (600 lpm) (64 character) (LP)
Band printer with form length select switch
Band printer with VFU (300 lpm) (64 character) (LP)
Band printer with VFU (600 lpm) (64 character) (LP)
Band printer with VFU (1000 lpm) (64 character) (LP)
Matrix Printer (80 col)
Matrix Printer (130 col)
Letter Quality Printer
96-character option set
Quarter-inch tape drive
Eight-line asynchronous communication controller*

* This product is no longer available but remains supported by MPX-32 in existing
installations.

Continued on next page

MPX-32 Reference Volume I 1-23

Minimum Hardware Configuration

1-24

Model·
Number

8511
8512
8520
8610
8846
8856
9020
9103

9109
9110
9116
9131
9202
9203
9223
9225
9226
9237
9245
9246
9247
9460
9462
9567

9568

9571

9577

Table 1-3
MPX-32 Device Support (Continued)

Description

Asynchronous Communication Multiplexer (ACM)*
Asynchronous Communication Multiplexer (ACM)*
Synchronous Communications Multiplexer (SCM)
Alphanumeric CRT (CT or TY)
160MB disc processor subsystem
340MB disc processor subsystem
Low Speed Tape Processor (LSTP) (XIO)
Extended (Gass D) General Purpose Multiplexer
Controller (GPMC)
Synchronous Line Interface Module (SUM)
Asynchronous Line Interface Module (ALIM)
Binary Synchronous Line Interface Module (BUM)
High Speed Data Interface II (HSD II)
Teletypewriter (30 cps) (CT or TY)
Alphanumeric CRT (95 character) (CT or TY)*
Matrix printer (340 cps) (LP)
Line printer (300 lpm) (64 character) (LP)*
Line printer (600 lpm) (64 character) (LP)*
Line printer (900 lpm) (64 character) (LP)*
Line printer (260 lpm) (96 character) (LP)*
Line printer (4361pm) (96 character) (LP)*
Line printer (600 Ipm) (96 character) (LP)*
Paper tape reader with controller (300 cps) (PT)
Paper tape reader/spooler (300 cps) (PT)
Low speed tape processor subsystem 45 ips 9-track
800 bpi (M9)*
Low speed tape processor subsystem 45 ips 9-track
800/1600 bpi (M9)
Low speed tape processor subsystem 75 ips 9-track
800/1600 bpi (M9)
75 ips Master magnetic tape unit 9-track (M9)*

* This product is no longer available but remains supported by MPX-32 in existing
installations.

Introduction

0 ·: ..

C·.· i ,

2 Task Structure and Operation Overview

2.1 Task Identification

The user can identify tasks by task name or task number. The task name is the name
of the load module or executable image file containing the task. The task number is a
sequential 24-bit number concatenated with an 8-bit DQE index and is assigned when
the task is activated. Task numbers are unique for each task in the system. If the task
is multicopied, use the task number.

Each task is also associated with an owner. Valid owner names are specified in the
M.KEY file, if it exists; otherwise, all owner names are valid. An owner can have any
number of tasks with the same or different task names active on the system at any
time.

In addition to the task numbers. each batch job is assigned a unique sequence number
when the job is entered in the batch stream.

Active tasks can be listed by:

• task number

• owner name

• task name

• batch sequence number (if batch)

• pseudonym used by MPX-32 to further identify the task. e.g .• by the terminal it is
running on

• any combination of the above

The system provides the OPCOM LIST directives and the system service M.ID for
listing any active task by specifying a unique combination of these attributes.

MPX·32 Reference Volume I 2·1

Task Structure

2.2 Task Structure

2-2

A task is structured to meet a user's particular requirements by defining the contents
of a unique address space. A unique address space is a mapped logical address space
whose maximum size varies, according to computer type. The unique address
maximum executable code region size depends on whether the nonbase or base
instruction set is being used. See Table 2-l.

Table 2-1
Nonbase Mode vs. Base Mode

Nonbase Mode Base Mode

Supported on All CONCEPf/32 computers All CONCEPf/32 computers

Maximum task size 2 MB (32/87) 2 MB (32/87)
16 MB (all others) 16 MB (all others)

Code/data size 0.5 MB 2 MB (32/87)
16 MB (All others)

Data-only size 1.5 MB (32/87) N/A
15.5 MB (All others)

Name of shareable area CSECT Read-only

Name of nonshareable area DSECT Read/write

Created by CATALOG LINKER/X32

Exists on disk as Load module Executable image

All tasks activated on a 32/87 have a 2MB logical address space.

Base mode tasks activated on all other CONCEPT/32 computers have a logical
address space of 2MB or 32KW plus the task size, whichever is larger. The automatic
logical address space sizing can be overridden by the SET LAS LINKX32 directive or
the TSM $SPACE directive.

Nonbase mode tasks activated on computers other than the 32/67 and 32/97 have a
logical address space of 2MB unless overridden by the $SPACE TSM directive.

A unique address space contains a copy of MPX-32 and a task that can:

• be nonshared

• share re-entrant code and data with another task

• share memory (common storage or user defined use) with another task

The memory size minus the operating system size equals the maximum task size. The
operating system size includes any static memory partitions and 4KW for use by the
Volume Management Module.

Shared memory considerations are described in Chapter 3.

Task Structure and Operation Overview

o

o

(
Task Structure

2.2.1 Nonbase Nonshared Tasks

This type of address space contains a single task including its task service area (TSA),
its code section (CSECT - write protected memory containing code and pure data),
and its data section (OSECT - read/write memory containing impure data). See
Figure 2-1. Tasks which are not sectioned have only a OSECf, which contains the
code and all data.

2.2.2 Base Nonshared Tasks

This type of address space contains a single task including its TSA, program stack,
read/write image section, and read-only image section.

2.2.3 Multicopied Tasks

An owner or several owners can have tasks with the same name and the same load
module active concurrently. This is accomplished by cataloging the task as
multicopied. To communicate with multicopy tasks, the task number must be used.

2.2.4 Shared Tasks

When a task is created, the user can specify that a program section is to be shared. A
program section, CSECf or read only, consists of code and pure data. This section is
write protected and mapped into the logical address space of each copy of the task. A
separate data section, OSECT or read/write, is mapped into each logical address space,
as illustrated in Figures 2-2 and 2-3. Shared tasks are implicitly multicopied tasks.

2.2.5 Unique Tasks

Although only one copy of a task that is unique can be active on the system at a given
time, the MPX-32 run request mechanism can be used to queue run requests to the
task, so that as soon as one user stops executing, another can begin. For more
information, see the Intertask Communication section of this chapter.

MPX·32 Reference Volume I 2·3

Task Structure

2-4

HIGi

LOW

CSECT
(PURE CODE & DATA)

AVAILABLE FOR
DYNAMIC DSECT

EXPANSION

DSECT
(IMPURE CODE & DATA)

NOTE: IF TASK IS NOT SECTIONED,
DSECT CONTAINS ALL CODE & DATA

TASK SERVICE AREA *

SYSTEM BUFFERS

OPERATING SYSTEM

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

~ __ ~MAP8LOCK

* TSA may be moved to indexed address space using the Cataloger EXTDMPX directive.

R1002

Figure 2-1
Nonbase Mode Nonshared Task Address Space

Task Structure and Operation Overview

,1-"
".J

<:
Task Structure

HIGH

LOW T

SHARED CSECT

AVAILABLE FOR
DYNAMIC DSECT

EXPANSION

UNIQUE DSECT

TASK SERVICE AREA •

SYSTEM BUFFERS

OPERATING SYSTEM

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

J}UAPBLOC.

• TSA may be moved to indexed address space using the Cataloger EXTDMPX directive.

Rl003

Figure 2-2
Nonbase Mode Shared Task Address Space

MPX-32 Reference Volume I 2-5

Task Structure

2-6

(OVERLAY TRANSIENT AREA)
READ - ONLY IMAGE SECTION

PROGRAM STACK

TASK SERVICE AREA

MPX-32

Figure 2-3
Base Mode Shared Task Address Space

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

PAGE

MAP BLOCK

Task Structure and Operation Overview

C~-"' .. ··\' I' i

Task Execution

2.3 Task Execution

Nonbase mode tasks are introduced to the system by a request to activate the
cataloged load module by name. Activation can be requested in several different
ways.

• Batch and interactive tasks are activated by the job control or TSM $RUN and
$EXECUTE directives.

• Real-time tasks can be activated by the M.ACTV or M.PTSK system services. The
requestor uses the M.PTSK service to rename the task or to specify additional or
alternate resource requirements for the task.

Real-time tasks can also be activated by the TSM $ACTN A TE directive the
OPCOM ACTIV ATE directive, timers, or interrupts.

The operating system enters base mode tasks in one of two ways: the initial dispatch
of the task, or as a result of an asynchronous event which includes messages, breaks,
or end-action notification. In either case, entry is through a call instruction.

2.3.1 Task Activation Sequencing (M.ACTV, M.PTSK)

The MPX-32 task management module performs task activation in two phases.

2.3.1.1 Phase 1 of Activation

When a task is activated by the M.ACTV service or the M.PTSK service, the MPX-32
resource manager runs for the task that issues the service call (the activating task). In
many cases, the activating task is TSM or OPCOM. Running at the priority specified
by the activating task, the resource manager constructs a rudimentary task service area
(TSA) for the new task in the task's address space and a rudimentary dispatch queue
entry (DQE) in the communications region. Data in the prototypes include: a task
number, parameters passed with the task (M.PTSK), the load module information
table (LMIT), and other basic data that define the task.

Initially, the DQE for the task is unlinked from the list of free DQE's maintained by
the CPU scheduler and linked to the preactivation state queue (PREA). See the State
Chain Management section in this chapter for information about the DQE. After the
prototype TSA and DQE are constructed, the DQE is unlinked from the PREA state
queue and linked to the appropriate ready-to-run queue. A context is set up in the
prototype TSA so that the resource manager can gain control for the second phase of
activation as soon as the new task becomes the highest priority ready-to-run task on
the system. There are several cases where task activation does not continue at the end
of phase I:

• activation with a run request for a single-copied task that is already active

• timer activation requests (M.SETT)

• RTM-compatible activation on an interrupt (CALM X'66' or M.CONN)

MPX-32 Reference Volume I 2-7

Task Execution

In the first case, the CPU scheduler can link the run request to an existing DQE. See
the User Run Receivers section in this chapter for infonnation on task run receivers.
In the last two cases, the task remains in the preactivation state queue until the timer
expires or the interrupt fires. At that point, such tasks are linked to the appropriate
ready-to-run queue as described previously.

2.3.1.2 Phase 2 of Activation

In this phase, the resource manager operates for the new task, and runs at the new
task's specified priority. It reads in the resource requirements summary (RRS) from
the load module file, merges them with static assignments, and validates the results.
Resources are allocated. The task's DQE can be linked and unlinked to various state
queues as it moves through stages of device and memory allocation.

If any parameters, assignments, or other task resource requirements specified in the
load module or by job control or TSM assignments are invalid, the resource manager
aborts the task during this phase and the task exits as described in the Task
Tennination Sequencing section of this chapter.

When the new task has allocated all resources required for execution, it is loaded into
memory, relocated, and the resource manager transfers control to the task at its
specified transfer address.

There are two exceptions to the control transfer at the end of phase 2. The first
exception is a task that has been initiated by the OPCOM ESTABLISH directive.
This task is linked into the suspended state queue (SUSP) instead of going into
execution. This allows MPX-32, like the RTM, to activate a task that resides
pennanently in memory (a resident task). In MPX-32, resident means locked in
memory. When an activating request occurs for a task that has been established (a
timer expires, an interrupt is issued, or the task is resumed), the task is ready to
execute and is brought into execution with just a context switch. If the task has been
cataloged as resident, no inswap is required.

The second exception is a task that has been activated with the MPX-32 Debugger
attached (TSM or job control DEBUG task name directive). Instead of transferring
control to the task, the resource manager first loads and then transfers control to the
debugger.

2.3.2 Task Service Area (TSA)

2-8

The task service area (TSA) is a section of memory associated with each active task.
The size of each task's TSA is fixed for the duration of the task's execution.
However, the sizes of TSA's among tasks is variable and is dependent on the task's
logical address space size and the amount of space reserved for I/O activity.

As shown in Figure 2-4, the number of blocking buffers, file assignment table (FAT)
entries, and the file pointer table (FPT) entries varies among tasks.

Task Structure and Operation Overview

if "'
·0·

~"'

(."\
I ,

/

(~

T.MIDLA

T.MEMLA

T.SHTBL

T.STBRGA

T.FATA

T.FPTA

T.PIOOA

T.SEGA

T.VATA

T.lDXA

T.RDBUFA

T.FSSP

T.SHIMDA

T.BBHCA

T.BBUFA

Task Execution

TSA VARIABLE AREA

256 TO 2048
HALFWORD ENTRIES FOR

MIDL TABLE

256 TO 2048
HALFWORD ENTRIES FOR

MEML TABLE

256 TO 2048
BYTE ENTRIES FOR

SHADOW MEMORY TABLE

GCL TASK STARTUP
BASE REGISTER SAVE AREA

(B3·B7) 5 WORDS

1 TO 254 16-WORD FAT
ENTRIES. RRST SIX

ARE RESERVED FOR
SYSTEM USE

1 TO 254 3·WORD FPT
ENTRIES. RRST SIX
ARE RESERVED FOR

SYSTEM USE

1 TO 254 1·WORD
PIC ENTRIES. FIRST
SIX ARE RESERVED
FOR SYSTEM USE.

SEGMENT DERNfTlON
AREA. 1 16·WORD ENTRY

FOR EACH SEGMENTED
FILE RESERVATION

IN THE FAT.

1 TO 255 2·WORD VAT
ENTRIES. FIRST IS

RESERVED FOR DEFAULT
WORKING VOLUME IF IT IS
A NONPUBLIC VOLUME.

OVERLAY INDEX TABLE
VARIABLE LENGTH.

192 WORD DUAL PROCESSOR
SHARED VOLUME RESOURCE

DESCRIPTOR BUFFER.

192 WORD VOLUME
MANAGEMENT MODULE

STACK AREA,
FILE BOUNDED.

16 WORD SHARED
IMAGE DESCRIPTORS.

1 TO 248 S·WORD HEAD CEllS.

1 TO 255 192·WORD
BLOCKING BUFFERS.
RRST IS RESERVED
FOR SYSTEM USE.

WORD

FIXED AREA

T.REGP

T.MPXBR+3W

PUSHDOWN STACK (T.REGS)
20 32·WORD MODULE CAll

OR
CONTEXT SWITCH LEVELS

BASE REGISTER STACK
20 S·WORD ENTRIES

CONTEXT SWITCH LEVEL

GENERAL PURPOSE
REGISTERS 0 . 7

71-__________ -i

S
PSD 9L.. __________I

MODULE CAll LEVEL

GENERAL PURPOSE
REGISTERS 0 . 7

7'-__________ --1
S

9

10

PSD

'-------------1
SCRATCHPAD

STORAGE

Figure 2-4
Task Service Area (TSA) Structure

T1001

MPX-32 Reference Volume I 2-9

Task Execution

For all tasks, a fixed number of buffers, FAT, and FPT entries are reserved for
MPX-32 use. For example, they are present in every TSA.

The pushdown stack area in the TSA provides reentrancy in calls to system modules.
At each call to a system module entry point, the stack pointer (T.REGP) is
incremented to the next 32-word pushdown level where the contents of the general
purpose registers (GPRs) and program status doubleword (PSD) are saved. Within
this 32-word level, 22 words are available for scratchpad storage by the module entry
point being called. T.REGP is decremented to the previous pushdown level upon
return to the entry point caller. Upon context switch away from a task, the next
pushdown level is used to preserve the contents of the task's registers and PSD. Ten
words are used at the context switch level.

2.4 Central Processing Unit (CPU) Scheduling

The MPX-32 CPU scheduler is responsible for allocating CPU execution time to
active tasks. Tasks are allocated CPU time based on execution priority and execution
eligibility. Execution priority is specified when a task enters (is cataloged into) the
system. Execution eligibility is determined by the task's readiness to run.

2.4.1 Execution Priorities

The MPX-32 system provides 64 levels of execution priority. These priority levels
are divided into two major categories. Real-time tasks operate in the priority range 1
to 54. Time-distribution tasks operate in the priority range 55 to 64.

2.4.2 Real-Time Priority levels (1 to 54)

MPX-32 schedules real-time tasks on a strict priority basis. The system does not
impose time-slice, priority migration. or any other scheduling algorithm that interferes
with the execution priority of a real-time task. Execution of an active real-time task at
its specified priority level is inhibited only when it is ineligible for execution (not
ready-to-run). Execution of a real-time task can always be preempted by a higher
priority real-time task that is ready-to-run.

2.4.3 Time-Distribution Priority levels (55 to 64)

2-10

For tasks executing at priority levels 55 to 64. MPX-32 provides a full range of
priority migration. situational priority increment, and time-quantum control.

Task Structure and Operation Overview

(

Central Processing Unit (CPU) Scheduling

2.4.3.1 Priority Migration

The specified execution priority of a time-distribution task is used as the task's base
execution priority. Each time-distribution task's current execution priority is
determined by the base priority level as adjusted by any situational priority increment.
The current execution priority is further adjusted by increasing the priority (by one
level) whenever execution is preempted by a higher priority time-distribution task, and
decreasing the priority whenever the task gains CPU control. The highest priority
achievable by a time-distribution task is priority level 55. The lowest priority is
clamped at the task's base execution level.

2.4.3.2 Situational Priority Increments

Time-distribution tasks are given situational priority increments to increase
responsiveness. The effect of situational priority increments is to give execution
preference to tasks that are ready-to-run after having been in a natural wait state. A
task that is CPU bound migrates toward its base execution priority. Situational
priority increments are invoked when a task is unlinked from a wait-state list, and
relinked to the ready-to-run list.

Situation

Terminal input wait complete
I/O wait complete
Message (send) wait complete
Run request (send) complete
Memory (inswap) wait complete
Preempted by real-time task

2.4.3.3 Time-Quantum Controls

Priority Increment

Base level + 2
Base level + 2
Base level + 2
Base level + 2
Base level + 3
Level 55

MPX-32 allows for the specification of two time-quantum values at SYSGEN. If
these values are not specified, system default values are used. The two quantum
values are provided for scheduling control of time-distribution tasks. The first
quantum value (stage 1) indicates the minimum amount of CPU execution time
guaranteed to a task before preemption by a higher priority time-distribution task.
The stage 1 quantum value is also used as a swap inhibit quantum after inswap. The
second quantum value represents the task's full-time quantum. The difference
between the first and second quantum values defines the execution period called
quantum stage 2. During quantum stage 2, a task may be preempted and/or
outswapped by any higher priority task. When a task's full-time quantum has expired,
it is relinked to the bottom of the priority list, at its base execution priority.

Time-quantum accumulation is the accumulated sum of actual execution times used by
this task. A task's quantum accumulation value is reset when the task voluntarily
relinquishes CPU control, for example, suspends, performs wait I/O, etc.

MPX-32 Reference Volume I 2-11

Central Processing Unit (CPU) Scheduling

2.4.4 State Chain Management

2·12

The current state of a task ready-to-run, waiting for I/O, etc., is reflected by the
linkage of the dispatch queue entry (DQE) associated with the task into the
appropriate state chain. Linkage is established via string forward and string backward
addresses and a state queue index in each DQE. The string forward address for a
given DQE points to the closest lower priority DQE and the string backward address
points to the closest higher priority DQE in a given state. The index points to a state
chain head cell, which contains the link forward/backward addresses from the DQE at
the top (highest priority task) of the state chain. At a given time, from anyone DQE
or from a head cell, an entire state chain queue can be examined by moving either
backward or forward through the DQE linkages.

The state queues are divided into two major categories: ready-to-run and waiting. See
Table 2-2. The ready-to-run category is subdivided by priority, with a single queue
for the real-time priorities and a separate queue for each of the time-distribution
priority levels. The waiting category is subdivided according to the resource or event
required to make the task eligible for execution.

Task Structure and Operation Overview

ie' 'J

(

State
Index

0

1

2

3

4

5

6

7

8

9

(10

11

12

13

14

15

16

17

18

19

Continued on next page

MPX-32 Reference Volume I

Label

FREE

PREA

CURR

SQRT

SQ55

SQ56

SQ57

SQ58

SQ59

SQ60

SQ61

SQ62

SQ63

SQ57

SWTI

SWIO

Central Processing Unit (CPU) Scheduling

Table 2-2
MPX-32 State Queues

Meaning

DQE is available (in free list)

Task activation in progress

Task is executing

Ready-to-Run Queues

Task is ready-to run at priority levell-54

at priority level 55

at priority level 56

at priority level 57

at priority level 58

at priority level 59

at priority level 60

at priority level 61

at priority level 62

at priority level 63

at priority level 64

Operation Wait Queues

Task is waiting for terminal input

Task is waiting for I/O

SWSM Task is waiting for message complete

SWSR Task is waiting for run request complete

SWLO Task is waiting for low speed output

Execution Wait Queues

SUSP Task is waiting for one of the following:

· Timer expiration
· Resume request
· Message request interrupt

2-13

.

Central Processing Unit (CPU) Scheduling

Table 2-2 o
MPX-32 State Queues (Continued)

State
Index Label Meaning

Execution Wait Queues

20 RUNW Task is waiting for one of the following
· Timer expiration
· Run request

21 HOLD Task is waiting for a continue request

22 ANYW Task is waiting for one of the following:

· Timer expiration
· No-wait I/O complete
· No-wait message complete
· No-wait run request complete
· Message request interrupt
· Break interrupt

Resource Wait Queues

23 SWDC Task is waiting for disc space allocation

24 SWDV Task is waiting for device allocation

25 N/A Reserved

26 MRQ Task is waiting for memory allocation

27 SWMP Task is waiting for memory pool allocation

28 SWGC Task is waiting in general wait queue

IPU State Queues *

29 CIPU Current IPU task

30 RIPU Requesting IPU task

* See the MPX-32 Technical Manual, Volume I for further details.

c
2-14 Task Structure and Operation Overview

(

Internal Processing Unit (IPU)

2.5 Internal Processing Unit (IPU)

The IPU is a user-transparent device managed by the MPX-32 operating system. The
IPU is scheduled as an additional resource to offload the CPU and improve system
throughput in a multitasking environment. The IPU can be used to execute task level
code and a limited set of system services.

Scheduling of tasks for IPU execution is controlled by the CPU executive (H.EXEC)
working with the IPU executive (H.CPU) for the standard scheduler. An optional
scheduler uses a different CPU executive, H.EXEC2, and a different IPU executive,
H.CPU2. The optional CPU/IPU scheduling logic is enabled by the SYSGEN DELTA
directive. The standard scheduler is more processor oriented whereas the optional
scheduler is more priority oriented. The following sections apply to both schedulers;
any differences are noted.

2.5.1 Options

Options for the IPU can be specified at catalog or execution time by TSM. The IPU
options are:

• IPUBIAS - When set, tasks that are IPU eligible are run by the IPU. Any time
during execution where eligibility ceases, the CPU is trapped and the task is
scheduled to execute at its cataloged priority in the CPU.

• CPUONL Y - When set, the IPU is ignored and the task is executed by the CPU.

If not specified, the first eligible processor executes the task.

Tasks that are compute bound may be biased to the IPU; tasks that are I/O bound may
be designated to run only in the CPU.

The CPU/IPU scheduling logic automatically adapts to tasks that alternate between
bursts of computing and bursts of I/O for nonbiased tasks.

2.5.2 Biased Task Prioritization

2.5.2.1 Standard CPUlIPU Scheduler

If the IPU scheduler finds more than one IPU-biased task waiting for processing, it
places the tasks in a ready-to-run queue (C.RIPU) in priority order among themselves.
The tasks are eligible for swapping while waiting.

2.5.2.2 Optional CPUlIPU Scheduler

Tasks that are IPU biased are not enqueued on the IPU ready to run queue (C.RIPU).
These tasks are linked to the ready to run lists SQRT through SQ64 with other task
types. Since the IPU-biased tasks do not enter a wait state, they are less likely
candidates for swapping than tasks that are in the wait state.

MPX-32 Reference Volume I 2-15

Internal Processing Unit (IPU)

IPU-biased tasks may have their priority boosted using the SYSGEN DELTA
directive. If the DELTA directive is set to 0, scheduling occurs on a priority basis
only. If the DELTA value is greater than 0 and less than or equal to 54, the value is
subtracted from the cataloged priority (boosting its priority) at scheduling time. For
example, when the DELTA is set to 5, a priority 20 IPU biased task competes for the
IPU at priority 15. Similarly, when an IPU bias task needs the CPU for a system
service, the boosted priority (15) is used to compete for the CPU. The DELTA does
not apply when an IPU-biased task executes task level code in the CPU.

2.5.3 Nonbiased Task Prioritization

If the IPU scheduler finds more than one nonbiased task waiting for processing (any
task in ready state queues SQRT thru SQ64), it places them in priority order among
themselves and schedules them for processing after execution. The highest priority
IPU -eligible task is scheduled in the IPU regardless of its bias or unbiased attribute.

2.5.4 IPU Task Selection and Execution

When the IPU task scheduler has found a task, it checks for IPU eligibility. For a
task to be eligible for IPU execution, the following conditions must be present:

• no pending task interrupts

• no system action requests, for example, aborts

• not CPU biased
• current execution address outside of resident operating system

If a task fails anyone of these tests, it is ineligible for IPU execution (i.e., ignored)
and the task scheduler proceeds to select the next task, if any.

If a task has been selected and is determined eligible for IPU processing, it is linked
to the current IPU task queue (C.CIPU), a Start IPU (SIPU) is executed from the
CPU, the IPU executive (H.IPU) fields the trap, loads the task's map registers
(LPSDCM), and executes the task.

Tasks running with batch priorities (55-64) are not subject to time distribution while
being executed in the IPU.

Note: Tasks running with batch priorities (55-64) cannot have their priorities
boosted via the DELTA value.

2.5.5 CPU Execution of IPU Tasks

2.5.5.1 Standard CPU/IPU Scheduler

2·16

Unbiased tasks require CPU execution for code sequences requiring operating system
execution. Unbiased tasks are also free to execute task level code in the CPU.

Task Structure and Operation Overview

[-":

Ily

o

C,.·
, /

Internal Processing Unit (lPU)

IPU biased tasks are executed by the CPU for only those code sequences requiring
operating system execution. When the PSD points back into the task, its CPU
execution is terminated immediately and the task is linked to the IPU request queue
(C.RIPU). If the IPU is running and this new task has a higher priority (lower
number) than the task the IPU is executing, the executing task is preempted by the
new task and replaced by the higher priority task. If the IPU is running and the new
task has a lower priority (higher number) than the task currently under execution, the
new task is placed in the IPU ready-to-run queue (C.RIPU).

2.5.5.2 Optional CPUlIPU Scheduler

When the highest and second highest priority tasks are IPU biased, the CPU executes
task level code of the second highest priority task. However, the task's priority will
not be boosted by the DELTA value in this case.

2.5.6 Priority versus Biasing

When there is a task in the IPU and it encounters a code sequence requiring CPU
execution, the task is linked to a ready-to-run state chain at its base priority.

Note: For the optional CPU/IPU scheduler, an IPU bias task is linked to the ready
to run state at base priority minus the DELTA value for code sequences
requiring CPU execution.

An IPU task that requires some CPU execution cannot execute in the CPU if a CPU­
only task of the same priority is in the CPU.

An IPU task that requires some CPU execution can execute in the CPU if:

• a non-CPU-only task of the same priority is in the CPU.

• the task in the CPU has a lower priority.

• there is no task in the CPU.

2.5.7 IPU Accounting

When the IPU and its interval timer handler are specified during SYSGEN, and the
IPU is used for task execution. the following message displays at EO] and when
logging off a terminal:

IPU EXECUTION TIME = xx HOURS- xx MINUTES- xx.xx SECONDS

xx is a decimal number

The IPU accounting can be turned off to reduce context switch time. Refer to the
Real-time Accounting On/Off section of this chapter for more information.

MPX-32 Reference Volume I 2-17

Internal Processing Unit (IPU)

2.5.8 IPU Executable System Services

When the execution address of the task is within the resident operating system, the
task cannot be scheduled to be executed by the IPU. However, when the execution
address of the task is within the task, the task can be executed by the IPU. Once the
task is in the IPU, the IPU can execute a limited set of system services. These are
memory reference only system services, since the IPU cannot execute any I/O
instructions. The system services that are executable in the IPU are listed in the
Nonbase Mode and Base Mode System Services chapters of this volume.

2.5.9 IPU Scheduling

2-18

Although the IPU is scheduled transparently by the operating system, users can restrict
a task to execute only in the CPU or bias a task to execute in the IPU. Tasks
designated as CPU only cannot execute in the IPU. IPU biased tasks and unbiased
tasks must meet the following requirements to execute in the IPU:

• no pending or active task interrupts. For example, I/O end action, breaks, etc. A
pending interrupt is an interrupt that has been recognized by the operating system
but has not yet been dispatched to the task.

• no system action requests; for example, abort, hold, etc.

• no context switching inhibited

• no temporary inhibit from IPU execution because it contains instructions not
executable by the IPU; for example, CD, BEl, etc.

• execution address of the task must be outside the resident operating system

• starting logical address of the task's task service area (TSA) must be greater than
the logical end of the resident operating system (Le., C.LOSEND). All user tasks
meet this requirement. System resident modules and tasks do not meet this
requirement.

If a task does not meet the above requirements, it cannot be executed in the IPU and
is scheduled for execution in the CPU.

Scheduling unbiased tasks includes checks for the following conditions:

• task is currently executing in the CPU

• task currently executing in the CPU that is not eligible to execute in the IPU

• is a task currently executing in the CPU that is eligible to execute in the IPU

If a task is not executing in the CPU, S.EXEC20, the main scheduling routine,
attempts to schedule a task for the IPU. If IPU eligible tasks are found, the task with
the highest priority is scheduled for IPU execution. S.EXEC20 then schedules the
highest priority ready-to-run task for CPU execution. IPU eligible tasks are
automatically considered CPU eligible. If an eligible task for either processor cannot
be found, that processor remains idle.

Note: For the optional CPU/IPU scheduler, tasks that are IPU biased may run on
the CPU.

Task Structure and Operation Overview

('

(

Internal Processing Unit (IPU)

If a task is currently executing in the CPU and it is not eligible for IPU execution, it
continues to be executed by the CPU. S.EXEC2:0 attempts to schedule a task for the
IPU. If an IPU eligible task cannot be found, the IPU remains idle.

If a task is currently executing in the CPU and is IPU eligible, the following factors
are considered in the order described by S.EXEC20:

• If the current task is IPU biased and the IPU is idle, the task is scheduled for IPU
execution.

• If the current task is IPU biased and the IPU is executing a task with a higher
priority than the current task, the current task is placed in the IPU request state
(RIPU). If the current task has a higher priority than the task executing in the IPU,
the task executing in the IPU is removed from execution and the current IPU biased
task is scheduled for execution.

For the optional CPU/IPU scheduler, if the current task is IPU biased, but the IPU
is executing a higher priority task, the CPU will run the current task.

• If the IPU is idle, S.EXEC20 performs a check to see if another task is requesting
CPU execution. If no other task is found, the current task remains in execution in
the CPU. If another task is found, the current CPU task is moved to the IPU for
execution. The highest priority task of the other tasks found is scheduled for CPU
execution.

For the optional CPU/IPU scheduler, if the IPU is idle and the current task is IPU
eligible, the task is scheduled for the IPU.

• If the IPU is busy, S.EXEC20 performs a check to see if another task is requesting
CPU execution. If no other task is found, the current task remains in execution in
the CPU. If a nonreal-time task is found, the current task remains in the CPU. If a
real-time task is found, the priority of the current task executing in the CPU is
compared with the priority of the current task executing in the IPU. If the CPU
task has a higher priority, the task in the IPU is replaced by the task in the CPU.
Otherwise, the current task remains in execution in the CPU.

These additional factors, considered in IPU scheduling, allow for a more predictable
operation and eliminate unnecessary scheduling overhead. Unless the user can be
assured of benefits through the use of IPU biasing or CPU-only restrictions, it is
recommended that tasks be run unbiased. This allows the MPX-32 executive to make
the decision on IPU usage.

MPX·32 Reference Volume I 2·19

Scheduling Task Interrupts

2.6 Scheduling Task Interrupts

In addition to the 64 execution priority levels available, the MPX-32 scheduler
provides a software interrupt facility within the individual task environment.

2.6.1 Task Interrupt Levels

Individual tasks operating in the MPX-32 environment may be organized to take
advantage of task unique software interrupt levels. Each task in the MPX-32 system
can have six levels of software interrupt, sometimes referred to as pseudo-interrupts:

Level Priority
o
1
2
3
4
5

Description
reserved for operating system use
debug
break
end action
message
normal execution - run request

2.6.1.1 Task Interrupt Receivers

An individual task is allowed to issue system service calls to establish interrupt
receiver addresses for both break and message interrupts. The debugger interrupt level
is used by the system to process tasks running in debug mode. The end action
interrupt level is used for system postprocessing of no-wait I/O, message, or run
requests. It is also used for executing end action routines specified by the user task.
The normal execution level is used for run-request processing and general base level
task execution.

2.6.1.2 Scheduling

Task interrupt processing is gated by the CPU scheduler during system service
processing. If a task interrupt request occurs while the task is executing in a system
service, the scheduler defers the interrupt until the service returns to the user task
execution area. If service calls are nested, the scheduler defers the task interrupt until
the last service executes and returns to the user task execution area. The user can
defer task interrupts through calls to Synchronize Task Interrupts (M.SYNCH) or
Disable Message Interrupts (M.DSMI).

2.6.1.3 System Service Calls from Task Interrupt Levels

2·20

A task can use the complete set of system services from any task interrupt level.
Tasks are prohibited from making Wait-For-Any calls (M.ANYW, M.EAWAIT) from
task interrupt levels.

Task Structure and Operation Overview

c

(

Scheduling Task Interrupts

2.6.1.4 Task Interrupt Context Storage

When a task interrupt occurs, the CPU scheduler automatically stores the interrupted
context into the TSA pushdown stack. This context is automatically restored when
the task exits from the active interrupt level.

2.6.1.5 Task Interrupt Level Gating

When a task interrupt occurs, the level is marked active. Additional interrupt requests
for that level are queued until the level active status is reset by the appropriate system
service call. When the level active status is reset, any queued request is processed.

2.6.2 User Break Interrupt Receivers (M.BRK, M.BRKXIT)

A task enables the break interrupt level by calling the M.BRK service to establish a
break interrupt receiver address. The level becomes active as a result of a break
interrupt request generated either from a hardware break or from an M.INT service
call which specified this task. When the break level is active, end action, message,
and normal execution processing are inhibited. The level active status is reset by
calling the M.BRKXIT service to exit from the pseudo-interrupt (break) level.

MPX·32 Reference Volume I 2·21

Intertask Communication

2.7 Intertask Communication

MPX-32 provides both message request and run-request send/receive processing.
Run-request services allow a task to queue an execution request with optional
parameter passing for another task. Message services allow a task to send a message
to another active task. The services provided for use by the destination tasks are called
receiving task services. Those provided for tasks which issue the requests are called
sending task services. Message and run-request services use the software interrupt
scheduling structure described in the previous section, Scheduling Task Interrupts.

2.7.1 User End-Action Receivers (M.XMEA, M.XREA, M.XIEA)

When a task issues a no-wait I/O, a message request, or a run request, a user-task
end-action routine address can be specified. If specified, the routine is entered at the
end-action priority level from the appropriate system postprocessing routine. When
the end-action level is active, processing at the message or normal execution level is
inhibited. The level active status is reset by calling the appropriate end-action service:

End-Action Type

I/O
Send message
Send run request

End-Action Exit Service
SVC 1,X'2C'
MXMEA
MXREA

2.7.2 User Message Receivers (M.RCVR, M.GMSGP, M.XMSGR)

A task can enable the message interrupt level by calling the M.RCVR system service
to establish a message interrupt receiver address. The level becomes active as the
result of a message send request specifying this task as the destination task.

When the message level is active, normal execution processing is inhibited. The
task's receiver can call the M.GMSGP system service to store the message in a user
receiver buffer. After appropriate processing, the message interrupt level may be reset
by calling the MXMSGR system service to exit from the message interrupt receiver.

2.7.3 User Run Receivers (M.GRUNP, M.XRUNR)

User run receivers execute at the normal task execution base level. The cataloged
transfer address is used as the run-receiver execution address. The run-receiver
mechanism is provided by the system to allow queued requests for task execution with
optional parameter passing.

When a run request is issued by the M.SRUNR service, the task load module name
may be used to identify the task to be executed. If a task of that load module name is
currently active and single-copied, the run request is queued from its existing DQE. If
the specified task is not active, or if the task is not a single-copied task, it is activated
and the run request is then linked to the new DQE. A new copy is activated for each
run request sent to a multicopied task by load module name or pathname vector. If

o

(\
\"'-._o-,,/)

the multicopied task is waiting for a run request, for example, in the RUNW state C· . \
chain, the task number must be specified.

2-22 Task Structure and Operation Overview

(

Intertask Communication

The task receiving the run request can call the M.GRUNP system service to store the
run parameters in a user receiver buffer. After appropriate processing, the run-receiver
task can exit by calling the M.XRUNR system service. Any queued run requests are
then processed.

When a task in the run-receiver mode enters its abort receiver, the run request has
already been terminated and the task issuing the run request has already received
status or call back depending on the options used. A new copy of the task is activated
to satisfy any queued run requests.

2.7.4 Receiving Task Services

2.7.4.1 Establishing Message Receivers (M.RCVR)

To receive messages sent from other tasks. a task must be active and have a message
receiver established. A message receiver is established by calling the system service
M.RCVR. and providing the receiver routine address as an argument with the call.

2.7.4.2 Establishing Run Receivers

Any valid task can be a run receiver. Although a set of special run receiver services
are provided. in the most simple case. they need not be used. The run receiver
mechanism is provided by the system to allow queued requests for task execution.
with optional parameter passing. The cataloged transfer address is used as the run
receiver execution address. The task load module name is used to identify the task to
be executed. If a run request is issued for a task not currently active. the task is
activated automatically. If the task is single-copied and currently active. the run
request is queued until the task exits. If the task is multicopied and currently active.
the load module is activated (multicopied) to process this request. When a single­
copied task exits. any queued run requests are executed.

2.7.4.3 Executing Message Receiver Programs

When a task is active and has an established message receiver. it can receive messages
sent from other tasks. A message sent to this task causes a software (task) interrupt
entry to the established message receiver.

2.7.4.4 Executing Run Receiver Programs

When a valid task is executed as a result of a run request sent by another task. it is
entered at its cataloged transfer address. A run receiver executes at the normal task
execution (base) level.

MPX-32 Reference Volume I 2-23

Intertask Communication

2.7.4.5 Obtaining Message Parameters (M.GMSGP)

When the message receiver is entered, R 1 contains the address of the message queue
entry in memory pool. The task can retrieve the message directly from memory pool,
or the task can call a receiver service (M.GMSGP) to store the message into the
designated receiver buffer. If the M.GMSGP service is used, the task must present the
address of a 5-word parameter receive block (PRB) as an argument with the call.

2.7.4.6 Obtaining Run Request Parameters (M.GRUNP)

When the run receiver is entered, Rl contains the address of the run-request queue
entry in memory pool. The task can retrieve the run request parameters directly from
memory pool, or the task can call a receiver service (M.GRUNP) to store the run
request parameters into the designated receiver buffer. If the M.GRUNP service is
used, the task must present the address of a 5-word parameter receive block (PRB) as
an argument with the call.

2.7.4.7 Exiting the Message Receiver (M.XMSGR)

When processing of the message is complete, the message interrupt level must be
exited by calling the M.xMSGR service. When M.xMSGR is called, the address of a
two-word receiver exit block (RXB) must be provided. The RXB contains the address
of the return parameter buffer, and the number of bytes (if any) to be returned to the
sending task. The RXB also contains a return status byte to be stored in the parameter
send block (PSB) of the sending task. Mter message exit processing is complete, the
message receiver queue for this task is examined for any additional messages to
process. If none exists, a return to the base level interrupted context is performed.

2.7.4.8 Exiting the Run Receiver Task (M.EXIT, M.XRUNR)

2-24

When run-request processing is complete, the task can use either the standard exit call
(M.EXIT), or the special run-receiver exit service (M.xRUNR).

If the standard exit service (M.EXIT) exits the run-receiver task, no user status or
parameters are returned. Only completion status is posted in the scheduler status word
of the parameter send block (PSB) in the sending task. Mter completion processing
for the run request is accomplished, the run receiver queue for this task is examined,
and any queued run request causes the task to be re-executed. If the run-receiver
queue for this task is empty, a standard exit is performed.

Task Structure and Operation Overview

,~

'-/

C--'."·· , ,
" ,I

.. (.....

Intertask Communication

If the special exit (MXRUNR) exits the run-receiver task, the address of a 2-word
receiver exit block (RXB) must be provided as an argument with the call. The RXB
contains the address of the return parameter buffer, and the number of bytes (if any) to
be returned to the sending task. The RXB also contains a return status byte to be
stored in the parameter send block (PSB) of the sending task. After completion
processing for the run request is accomplished, the exit control options in the RXB are
examined. If the wait exit option is used, the run receiver queue for this task is
examined for any additional run requests to be processed. If none exist, the task is put
into a wait-state, waiting for the receipt of new run requests. Execution of the task
does not resume until such a request is received. If the terminate exit option is used,
any queued run requests are processed. If the run receiver is empty, however, a
standard exit is performed.

2.7.4.9 Waiting for the Next Request (M.SUSP, M.ANYW, M.EAWAIT)

In addition to the wait options described in the Exiting the Run Receiver Task section,
a task can use the M.SUSP, M.ANYW, or M.EA W AIT system service. When
operating at the base execution level, a task that has established a message receiver
can use the M.SUSP service call to enter a wait-state until the next message is
received.

A task may also make use of the special M.ANYW service from the base software
level. The M.ANYW service is similar to M.SUSP. The difference is that whereas
the M.SUSP wait-state is ended only upon receipt of a message interrupt, timer
expiration, or resume, the M.ANYW wait-state is ended upon receipt of any message,
end action, or break software interrupt.

M.EA W AIT is similar to M.ANYW except that if no requests are outstanding, an
immediate return is made to the caller.

2.7.5 Sending Task Services

2.7.5.1 Message Send Service (M.SMSGR)

A task can send a message to another active task, providing the destination task has
established a message receiver. The sending task must identify the destination task by
task number. When the send message service (M.SMSGR) is called, the word
bounded address of a PSB must be provided as an argument. The PSB specifies the
message to be sent, whether or not any parameters are to be returned, and the address
of a user end-action routine. User status can be returned by the destination task. The
operating system also returns completion status in the PSB. No-wait and no-call-back
control options are also provided. An unprivileged user is limited to five no-wait
messages or to the value specified by the SYSGEN parameter MMSG.

MPX-32 Reference Volume I 2-25

Intertask Communication

2.7.5.2 Send Run-Request Service (M.SRUNR)

A task can send a run request to any active or inactive task, identifying the task by
load module name. When the run request service (M.SRUNR) is called, the word
bounded address of a PSB must be provided as an argument. The PSB format allows
for the specification of the run request parameters to be sent, any parameters to be
returned, scheduler and user status, as well as the address of a user end-action routine.
No-wait and no-call-back control options are also provided. An unprivileged user is
limited to five no-wait run requests.

Note: If a task activated with the TSM $ACTN ATE directive is sent a run request,
the queued run request is ignored. However, if the task is activated with a
run request and a second run request is sent to it, the queued run request is
executed.

2.7.5.3 Waiting for Message Completion

A message can be sent in the wait or no-wait mode. If the wait mode is used,
execution of the sending task is deferred until processing of the message by the
destination task is complete. If the no-wait mode is used, execution of the sending
task continues as soon as the request has been queued. The operation in progress bit
in the scheduler status field of the PSB may be examined to determine completion. A
sending task can issue a series of no-wait mode messages followed by a call to the
M.ANYW or M.EA WAIT system wait service. This allows a task to wait for the
completion of any no-wait messages previously sent. The completion of such a
message causes resumption at the point after the M.ANYW or M.EA WAIT call.

2.7.5.4 Waiting for Run-Request Completion

Waiting for a run-request completion follows the same form and has the same options
as waiting for message completion.

2.7.5.5 Message End-Action Processing (M.XMEA)

User specified end-action routines associated with no-wait message send requests are
entered at the end-action software interrupt level when the requested message
processing is complete. Status and return parameters are posted as appropriate. When
end-action processing is complete, the MXMEA service must be called to exit the
end-action software interrupt level.

2.7.5.6 Run-Request End-Action Processing (M.XREA)

Run-request end-action processing follows the same form and has the same options as
message end-action processing. The only difference is that the M.xREA service is
used instead of MXMEA.

2.7.6 Parameter Blocks

2-26

Parameters for run requests and messages are passed by parameter blocks established
within the user task. The parameter blocks are described in this section.

Task Structure and Operation Overview

{

Intertask Communication

2.7.6.1 Parameter Send Block (PSB)

The PSB describes a send request issued from one task to another. The same PSB
format is used for both message and run requests. The address of the PSB (word
bounded) must be specified when invoking the M.SMSGR or M.SRUNR services, but
is optional when invoking the M.PTSK service.

When a load module name is supplied in words 0 and 1 of the PSB, the operating
system searches the system directory only. For activations in directories other than
the system directory, a patbname or RID vector must be supplied.

When activating a task with the M.SRUNR or M.PTSK service, the value specified in
byte 0 of PSB word 2 (PSB.PRI) is used to determine the task's execution priority.
This value overrides the cataloged priorities of the sending and receiving tasks and the
priority specified in the PT ASK parameter block. However, priority clamping is used
to prevent time-distribution tasks from using this value to execute at a real-time
priority, and real-time tasks from executing at a time-distribution priority. Values that
can be specified in PSB.PRI are 1-64 (to be the task priority), 0 (to use the base
priority of the sending task), and X'FF' (to ignore the PSB priority field).

A PSB can be specified as a parameter for the M.PTSK service, along with the
required task activation (PT ASK) block. The PT ASK block also contains a priority
specification field. The PSB priority value always overrides the PTASK block priority
value.

A task number, not a load module name, must be used if sending a message request or
if sending a run request to a multicopied task which is waiting for a run request.

MPX-32 Reference Volume I 2-27

Intertask Communication

2·28

Word 0

1

2

3

4

5

6

7

o 7 8 15 16 23 24 31

Load module name (or task number if message or run request
to multicopied task). See Note 1.

Load module name or patbname vector or RID vector if activation
(or 0 if message or run request to multicopied task). See Note 2.

Priority (PSB.PRl). Reserved Number of bytes to be sent
See Note 3. PSB.SQUA). See Note 4.

Reserved Send buffer address (PSB.SBA). See Note 5.

Return parameter buffer length (bytes) Number of bytes returned
(PSB.RPBL). See Note 6. (PSB.ACRP). See Note 7.

Reserved Return parameter buffer address
(PSB.RBA). See Note 8.

Reserved No-wait request end-action address
(PSB.EAA). See Note 9.

Completion Processing User status Options
status start status (PSB.UST). (pSB.OPT).
(PSB.CST). (PSB.lST). See Note 12. See Note 13.
See Note lO. See Note 11.

Notes:

1. Word 0, bits 0-31:

For send message: Task number of the task to receive the message.

For run request: Zero if using pathname vector or RID vector in word 1, else
task number (word 1 must be 0), else characters 1 to 4 of the name of the load
module to receive the run request.

2. Word 1, bits 0-31:

For send message: Zero.

For run request: Zero if using task number in word 0, else pathname vector or
rid vector (word 0 must be zero), else characters 5-8 of the load module to
receive the run request.

3. Word 2, bits 0-7: Priority (PSB.PRI) - contains the priority at which the
receiver task is expected to be activated. Valid values are 1-64: 0 signifies the
base priority of the sending task and X'FF' generates activation priority based on
a combination of values that can be specified during task activation. The
following tables show how the priority of a receiver task is determined when
activated with M.SRUNR or with M.PTSK.

Task Structure and Operation Overview

\ ' (~'''.\

/

Intertask Communication

(When Activating with M.SRUNR

Cataloged
Priority of Priority Activates

Send Task Receive Task in PSB Receive Task at

1-54 1-54 0 Send Task Cataloged Priority
1-54 55-64 0 55 (Time-Distributed Clamp)

55-64 1-54 0 54 (Real-Time Clamp)
55-64 55-64 0 Send Task Cataloged Priority

* 1-54 1-54 PSB Priority

* 1-54 55-64 54 (Real-Time Clamp)

* 55-64 1-54 55 (Time-Distributed Clamp)

* 55-64 55-64 PSB Priority

* * X'FF' Receive Task Cataloged Priority

* none specified

When Activating with M.PTSK

Cataloged
Priority of Priority in

(Send Receive PTASK Activates
Task Task Block PSB Receive task at

1-54 1-54 0 0 Send Task Cataloged Priority
1-54 55-64 0 0 55 (Time-Distributed Clamp)
1-54 * 1-54 0 Send Task Cataloged Priority
1-54 * 55-64 0 55 (Time-Distributed Clamp)

55-64 1-54 0 0 54 (Real-Time Clamp)
55-64 55-64 0 0 Send Task Cataloged Priority
55-64 * 1-54 0 54 (Real-Time Clamp)
55-64 * 55-64 0 Send Task Catalog Priority

* 1-54 0 1-54 PSB Priority

* 1-54 0 55-64 54 (Real-Time Clamp)

* 55-64 0 1-54 55 (Time-Distributed Clamp)

* 55-64 0 55-64 PSB Priority

* * 1-54 1-54 PSB Priority

* * 1-54 55-64 54 (Real-Time Clamp)

* * 1-54 X'FF' PT ASK Block Priority

* * 55-64 1-54 55 (Real-Time Clamp)

* * 55-64 55-64 PSB Priority

* * 55-64 X'FF' PT ASK Block Priority

* * 0 X'FF' Receive Task Cataloged flriority

* none specified

MPX-32 Reference Volume I 2-29

Intertask Communication

2-30

4. Word 2, bits 16-31: Number of bytes to be sent (PSB.SQUA) - specifies the
number of bytes to be passed (0 to 768) with the message or run request.

5. Word 3, bits 8-31: Send buffer address (PSB.SBA) - contains the word address
of the buffer containing the parameters to be sent.

6. Word 4, bits 0-15: Return parameter buffer length (PSB.RPBL) contains the
maximum number of bytes (0-768) that may be accepted as returned parameters.

7. Word 4, bits 16-31: Number of bytes actually returned (PSB.ACRP) is set by
the send message or run request service upon completion of the request.

8. Word 5, bits 8-31: Return parameter buffer address (PSB.RBA) contains the
word address of the buffer into which any returned parameters are stored.

9. Word 6, bits 8-31: No-wait request end-action address (PSB.EAA) contains the
address of a user routine to be executed at an interrupt level upon completion of
the request.

to. Word 7, bits 0-7: Completion status (PSB.CST) is a bit encoded field that
contains completion status infonnation posted by the operating system as
follows:

Bit
o
1

2

3

4

5

6-7

Meaning When Set
operation in progress (busy)
destination task was aborted before completion of processing
for this request
destination task was deleted before completion of processing
for this request
return parameters truncated (attempted return exceeds return
parameter buffer length)
send parameters truncated (attempted send exceeds destination
task receiver buffer length)
rser end action routine not executed because of task abort
outstanding for this task (may be examined in abort receiver
to determine incomplete operation)
reserved

Task Structure and Operation Overview

/
I
'~

o

(

Intertask Communication

11. Word 7, bits 8-15: Processing start (initial) status (PSB.IST) is a value encoded
field that contains initial status information posted by the operating system as
follows:

Code

0
1
2
3
4

5

6

7

8
9

10

11
12
13
14
15

Definition

normal initial status
message request task number invalid
run request load module name not found in directory
reserved
file associated with run request load module name oes not have
a valid load module format
dispatch queue entry (DQE) space is unavailable for activation
of the load module specified by a run request
an I/O error was encountered while reading the directory
to obtain the file definition of the load module specified
in a run request
an I/O error was encountered while reading the file containing
the load module specified in a run request.
memory unavailable
invalid task number for run request to multicopied load module
in RUNW state
invalid priority specification - an unprivileged task cannot
specify a priority which is higher than its own execution priority
invalid send buffer address or size
invalid return buffer address or size
invalid no-wait mode end-action routine address
memory pool unavailable
destination task receiver queue is full

12. Word 7, bits 16-23: User Status (PSB.UST) - As defined by sending and
receiving tasks.

13. Word 7, bits 24-31: Options (PSB.OPT) contains user request control
specification. It is bit encoded as follows:

Bit Meaning When Set

24 request is to be issued in no-wait mode
25 do not post completion status or accept return parameters. This

bit is examined only if bit 24 is set. When this bit is set,
the request was issued in the no call-back mode.

MPX·32 Reference Volume I 2·31

Intertask Communication

2.7.6.2 Parameter Receive Block (PRB)

2-32

The PRB is used to control the storage of passed parameters into the receiver buffer of
the destination task. The same format PRB is used for both message and run requests.
The address of the PRB must be presented when either the M.GMSGP or M.GRUNP
services are invoked by the receiving task.

Word 0

1

2

3

4

Notes:

o 7 8 15 16 23 24

Status Parameter receiver buffer address (PRB.RBA).
(PRB.ST). See Note 2.
See Note 1.

Receiver buffer length (bytes) Number of bytes received
(PRB.RBL). See Note 3. (PRB.ARQ). See Note 4.

Owner name of sending task (Word 1) (PRB.OWN). See Note 5.

Owner name of sending task (Word 2) (pRB.OWN). See Note 5.

Task number of sending task (PRB.TSKN). See Note 6.

1. Status (PRS.ST) contains the status-value encoded status byte:

Code Definition
o normal status
1 invalid PRB address (PRB.ER01)
2 invalid receiver buffer address or size detected during

parameter validation (PRB.RBAE)
3 no active send request (PRB.NSRE)
4 receiver buffer length exceeded (pRB.RBLE)

31

2. Parameter receiver buffer address (PRB.RBA) contains the word address of the
buffer where the sent parameters are stored.

3. Receiver buffer length (PRB.RBL) contains the length of the receiver buffer (0 to
768 bytes).

4. Number of bytes received (PRB.ARQ) is set by the operating system and is
clamped to a maximum equal to the receiver buffer length.

5. Owner name of sending task (PRB.OWN) is a doubleword that is set by the
operating system to contain the owner name of the task that issued the parameter
send request.

6. Task number of sending task (PRB.TSKN) is set by the operating system to
contain the task activation sequence number of the task that issued the parameter
send request.

Task Structure and Operation Overview

o

(

(

Intertask Communication

2.7.6.3 Receiver Exit Block (RXB)

The receiver exit block (RXB) controls the return of parameters and status from the
destination (receiving) task to the task that issued the send request. It is also used to
specify receiver exit-type options. The same format RXB is used for both messages
and run requests. The address of the RXB must be presented as an argument when
either the M.xMSGR or M.xRUNR services are called.

o 7 8 15 16 23 24 31

Word 0 Return status Return parameter buffer address (RXB.RBA).
(RXB.ST). See Note 2.
See Note 1.

1 Options Reserved Number of bytes to be returned
(RXB.OPT). (RXB.RQ). See Note 4.
See Note 3.

Notes:

l. Return status (RXB.ST) contains status as defined by the receiver task. Used to
set the user status byte in the parameter send block (PSB) of the task which
issued the send request.

2. Return parameter buffer address (RXB.RBA) contains the word address of the
buffer containing the parameters which are to be returned to the task which issued
the send request.

3. Options (RXB.OPT) contains receiver exit control options. It is encoded as
follows:

Value
o

1

Exit Type
M.xRUNR
M.xMSGR

M.xRUNR

M.xMSGR

Meaning
wait for next run request.
return to point of task interrupt.

exit task, process any additional
run requests. If none exist,
perform a standard exit.
N/A

4. Number of bytes to be returned (RXB.PQ) contains the number of bytes (0 to
768) of information to be returned to the sending task.

MPX-32 Reference Volume I 2-33

Intertask Communication

2.7.7 User Abort Receivers (M.SUAR)

User abort receivers execute at the normal task execution base level. The user task
can establish an abort receiver by calling the M.SUAR service.

If an abort condition is encountered during task operation, control is transferred to the
task's abort receiver. Before entry, any active software interrupt level is reset, all
outstanding operations or resource waits are completed, and all no-wait requests are
processed. End-action routines associated with no-wait requests that complete while
the abort is outstanding are not executed. Status bits reflecting this are posted in the
appropriate FCBs. Any files opened or resources allocated at the time the abort
condition is encountered remain opened and/or allocated when the abort receiver is
executed.

The TSA stack is clean. The context at the time the abort condition is encountered is
stored in T.CONTXT. When the abort receiver is entered, R5 reflects task interrupt
status when the abort condition was encountered.

Bit

0-18
19
20
21

22-31

Meaning if Set

N/A
user break interrupt active.
end-action interrupt active.
message interrupt active.
N/A

The standard exit service (described in the Task Termination Sequencing section of
this chapter) exits from a task's abort receiver. If another abort condition is
encountered while a task is executing an abort receiver, the task is deleted.

A privileged task can reestablish its abort receiver through the M.SUAR service. An
unprivileged task is not allowed to reestablish its abort receiver after an abort
condition has been encountered. An attempt to do so results in a task delete.

2.7.8 Task Interrupt Services Summary

Table 2-3 summarizes the services described in this section including required
parameter blocks. For a detailed description of the parameter blocks for run and
message requests, see the Parameter Blocks section of this chapter.

2.7.9 Arithmetic Exception Handling

2-34

MPX-32 maintains a trap handler with the capability to do special handling of
arithmetic exceptions generated by a task. If the arithmetic exception trap is enabled,
any task can test for the occurrence of an exception via the T.EXCP flag in the
T.BIT! field of the TSA. For certain instructions, the destination register values are
modified as a result of an arithmetic exception. The H.IPOF Register Fixup table
(Table 2-4) shows how the different instruction types are modified. This capability
exists for both base and nonbase mode tasks.

Task Structure and Operation Overview

(
Sending

Task
Functions

Receiving
Task

Functions

Intertask Communication

The arithmetic exception trap is enabled by setting the arithmetic exception bit (bit 7)
of the task's PSD. By default, this bit is set whc!n a task is activated. Instructions are
provided in the base and nonbase mode instruction sets to manipulate this bit (see the
EAE and DAE instructions). When the trap is disabled, only the condition code
results are available to indicate that the exception has occurred, and the nature of the
exception type.

Base mode provides the capability of further arithmetic exception handling within a
task. By establishing an exception handler address within the task, the user provides
the operating system an entry point to the task upon occurrence of an arithmetic
exception.

Table 2-3
Task Interrupt Operation/Services Summary

Task Interrupt Priority LevelS Level 4 Level 3 Level 2

T ask Interrupt Run Abort Message End-Action End-Action End-Action Break
Functions Requests Requests Requests Run Message I/O Requests

Issue Request M.SRUNR M.BORT M.SMSGR MPX MPX MPX Hardware
ABORT SEND Break

BREAK
M.lNIT

Send Block PSB N/A PSB N/A N/A N/A N/A

Wait for Completion PSB N/A PSB N/A N/A N/A N/A
(wait)

Establish End-Action PSB N/A PSB N/A N/A N/A N/A
Receiver

Wait for Completion M.ANYW N/A M.ANYW N/A N/A N/A N/A
(no-wait)

Call-Back Information PSB N/A PSB N/A N/A N/A N/A

Establish Receiver N/A M.SUAR M.RCVR PSB PSB FCB M.BRK

Get Parameters M.GRUNP N/A M.GMSGP PSB PSB RI points N/A
to FCB

Receive Block PRB N/A PRB PSB PSB FCB TY's UDTor
Contents of
T.BREAK

Exit Receiver M.EXIT M.EXIT M.XMSGR M.xREA M.xMEA SVC 1,x'2C' M.BRKXIT
M.xRUNR

Exit Block RXB N/A RXB N/A N/A N/A N/A

Wait for Next Request RXB N/A M.SUSP N/A N/A N/A M.ANYW
(if M.xRUNR) M.ANYW

Disable Interrupt Level N/A N/A M.DSMI N/A N/A N/A N/A

Enable Interrupt Level N/A N/A M.ENMI N/A N/A N/A N/A

MPX-32 Reference Volume I 2-35

Intertask Communication

2-36

Instruction Type

Aoating Point Arithmetic

includes:

ADRFW ADRFD
SURFW SURFD
DVRFW DVRFD
"MPRFW MPRFD

ADFW ADFD

SUFW SUFD
DIVFW DIVFD
"MPFW MPFD

Fixed Point Arithmetic

includes:

ADMB AD.MH
ADMD ADR
ARMW ARMD
SUMB SU.MH
SUMD SUR
SUI DVMB

DVMW DVR
RND

Other

includes:

ABM ABR
FlXW FlXD
LNW LND
TRN TRNM

Table 2-4
H.JPOF Register Fixup

Exception Type

Exponent underflow -
positive or negative
fraction

Exponent overflow -
positive fraction

Exponent overflow -

negative fraction

Division by zero

Any

ADMW
ADRM

ADI
SUMW
SURM
DVMH

DVI

Any

SLA
SLAD

Destination

Register Results

0

Largest positive
number (7F. .. F)

Largest negative

number (80 ... 1)

Largest positive
number (7F ... F)

No change

(See specific CPU
Reference manual)

No change

(See specific CPU
Reference manual)

The occurrence of an arithmetic exception with traps enabled causes the following
events to occur:

1. The CPU generates a trap and transfers control to the arithmetic exception trap
handler (H.IPOF).

2. The trap handler sets the T.EXCP flag in the TSA and determines what type of
instruction caused the exception. If the exception was caused by one of the
floating point arithmetic instructions, then the trap handler modifies the
destination register values as described in Table 2-4.

Task Structure and Operation Overview

rf--~

"V

()

(

Intertask Communication

3. If the exception occurred during a base mode task which has an exception
handler established, and was caused by one of the floating point arithmetic
instructions that causes register results to be changed, an argument list is
constructed, and control is passed to the handler within the task via the CALL *
instruction. When the task's exception handling routine is complete, control may
be transferred back to the trap handler by using the RETURN* instruction.

* This refers to Call/Return and argument passing standards established for
FORTRAN 77 {X32.

4. The exception trap handler restores all original register and condition code
values, as well as the value of the task's current PSD, and allows the CPU to
transfer control back to the task which caused the exception. Task execution
resumes at the instruction following the trapped instruction.

Condition code values generated as a result of an arithmetic exception are defined in
each of the CONCEPT/32 reference manuals.

2.7.9.1 Establishing Exception Handler

The M_SETEXA (Set Exception Handler) system service establishes an exception
handler for base mode tasks. This service accepts as input either the address of the
new handler to be established or 0 if the handler is to be ignored by the system. It
provides as output the previous handler address. This allows a procedure to establish
a handler and reset the previous handler when it no longer needs to handle exception
conditions.

2.7.9.2 Changing a Return Address from an Exception Handler

The M_SETERA (Set Exception Return Address) system service can be called from
an established exception handler to change the return address. This service accepts
either the destination address where control is transferred upon exit from the handler
or zero if the destination address remains unchanged (for example, execution is
continued from the point of the trap).

2.7.9.3 Exception Handler Input Arguments

When an arithmetic exception handler exists within a task, it is entered from the
exception trap handler via the CALL * instruction. The use of this instruction implies
an argument list address in base mode R3. This list is a FORTRAN standard list
containing the following arguments:

• value contained in the program counter (PC) at the exception

• arithmetic exceptions data array

• exception type and status indicator

The arguments are passed according to the FORTRAN standard for argument list
construction. Assembly language programmers should take care in extracting desired
information.

MPX·32 Reference Volume I 2·37

Intertask Communication

2-38

The program cOWlter (PC) points to the instruction causing the exception. This may
be a left or right halfword, or a fullword instruction. The C-bits in the program status
doubleword (PSD) must be interpreted to determine the type of instruction.

The array contains information relevant to the arithmetic exception, for example,
register contents at the time of the exception, the exception PSD, the register number
to which the arithmetic modification was applied by the system arithmetic exception
trap handler, and the condition codes at the time of exception.

The status value contains information used by the FORTRAN run-time routines. It
includes the severity, system group, functional group, and type of exception.

The data structure of the argument list passed to the arithmetic exception handler of a
base mode task has the following format:

Word 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16-23

24

25

26-33

34

35

36

o 7 8 15 16 23 24 31

4

Descriptor pointer

Address pointer

Array pointer

Status pointer

Address descriptor pointer

Array descriptor pointer

Status descriptor pointer

3 0

3 8

1 I 2 0

4

8

3 0

Exception address

20

Exception general purpose registers

Exception PSD 1

Exception PSD 2

Exception base mode registers

Fixed register number

Condition codes

Status value

Task Structure and Operation Overview

o

(..
/

Intertask Communication

Word Description

o number of words of pointer information that follow. In this example, the
first word is a pointer to the descriptor list pointers for each argument in the
list and the remaining three words are pointers to the arguments.

1 address of the descriptor vector. That contains one entry for each
argument in the list. In this case, there are three. Each entry points to the
information which describes the data type and size of each argument.

2 address of the word which contains the address of the instruction causing
the arithmetic exception (word 14). Care must be taken if this parameter
is used as the instruction may be a halfword or a fullword instruction.

3 address of an array of information collected when the exception occurred
(words 15-35). The first word of the array contains the number of words
in the array. This is FORTRAN standard. The following 21 words contain
the 8 general purpose registers, the PSD, the 8 base mode registers,
the register which was modified by the trap handler, and the condition
codes at the time of the trap.

4 address of a status word supplied by the handler (word 36).

5

6

7

8

contains a pointer to the argument descriptor (word 8) for the first
argument value. The argument value is contained in word 14.

contains a pointer to the argument descriptor (words 9-12) for the second
argument. The argument value is contained in words 15 through 35.

contains a pointer to the argument descriptor (word 13) for the third
argument. The argument value is contained in word 36.

contains the FORTRAN data descriptor for the first argument. The'3' in
the left halfword indicates this argument is a word length integer data item.
The '0' in the right halfword indicates that there is no additional descriptive
information about this data item.

9-12 four words containing descriptive information for the second argument, the
exception array. The' 3' in the first halfword indicates this argument is a
word length integer data item. The '2' in the right halfword indicates 2
more pieces of descriptive information follow. The'l' in the first byte of
word 10 indicates that data is the size in bytes of one element of the argument.
The '2' in the second byte indicates that data is the size in bytes of the
entire argument. The' 4' in word 11 indicates each element of the array is
4 bytes in length. The '80' in word 12 is the total byte length of the
array (20 elements, 4 bytes each).

13 contains the FORTRAN data descriptor for the third argument. The'3' in
the left halfword indicates this argument is a word length integer data item.
The '0' in the right halfword indicates that there is no additional
descriptive information about this data item.

MPX-32 Reference Volume I 2-39

Intertask Communication

2·40

Word

14

15

16-23

24-25

26-33

34

35

Description

contains the address of the instruction causing the exception. It may be
the address of a full word instruction, a left halfword instruction, or a

. right half word instruction. The C-bits of the exception PSD must be
interpreted to determine the type of instruction. The PSD C-bits are
interpreted as follows:

Bit 30 Bit 31 Definition

o
o
1
1

o
1
o
1

fullword instruction
right halfword instruction
left half word instruction
invalid

first word of the exception array. FORTRAN uses this word to contain
the number of entries in the array for subscript validation.

8 words containing the contents of the 8 general purpose
registers at the time of the exception. The destination register of the
instruction causing the exception has had the modified value inserted.

2 words containing the PSD at the time of the exception. (Points
to either 2 or 4 bytes past the instruction which caused the
exception. (See word 14).

8 words containing the contents of the 8 base mode registers at
the time of the exception.

contains the register number which was modified as a result of the
arithmetic exception processing.

contains the 4-bit condition code value, extracted and right justified,
which was contained in the exception PSD.

36 contains status information generated by the arithmetic exception trap
handler in the following format:

Bits
0-3
4-7
8-15
16-31

o 4 8 16 31
1 1 52 status code

Description
severity - value 1 = warning
system group - value 1 = O/S Support Library
functional Group - value 52 = Arithmetic exception
status code, contains:

Status
Code

1
2
3
4
5
6

Description
exponent underflow, positive fraction
exponent overflow, positive fraction
exponent underflow, negative fraction
exponent overflow, negative fraction
divide by zero
fixed point exception if DQE.AF is set

Task Structure and Operation Overview

(

Intertask Communication

2.7.9.4 Special Arithmetic Exception Processing and Ada Tasks

Any privileged task can set the DQE.AF bit to receive a status code 6 in word 36 of
the argument list for fixed point exceptions. However, Ada tasks always have this bit
set. Ada tasks receive arithmetic exception reporting for instructions that are usually
not reported. These are: ABR, SLA, SLAD, TRN and TRNM.

The status codes in the right halfword of word 36 in the argument list are intercepted
by the ADA module. These codes are reassigned as follows:

Status
Code

1
2
3
4
5
6

Description
exponent underflow, positive fraction
exponent overflow, positive fraction
exponent underflow, negative fraction
exponent overflow, negative fraction
divide by zero
fixed point exception

2.7.9.5 Exception Handler Restrictions

Reassignment
2
1
2
1
4
o

Exception handlers execute with the following restrictions:

• Arithmetic exceptions encountered during execution of the user's arithmetic
exception handler are processed by the system arithmetic exception trap handler, but
do not cause the user's handler to be re-entered. Using the modified registers,
execution is continued from the point of the trap or at the address specified to the
set return address service.

• A user's arithmetic exception handler can be established only by base mode tasks.

2.7.9.6 Related Arithmetic Exception Information

The M.TSTE (Arithmetic Exception Inquiry) system service accesses the arithmetic
exception flag, T.EXCP, in the T.BITl field of the task's TSA. The results of this
service indicate whether an exception has occurred, and reset the T.EXCP flag. The
output of the service is condition code results. Once the T.EXCP flag is set, it is not
reset until this service is used or the task terminates. This is a nonbase mode system
service.

MPX·32 Reference Volume I 2·41

CPU Dispatch Queue Area

2.8 CPU Dispatch Queue Area

The CPU dispatch queue is a variable length table built at SYSGEN and contains a
maximum of 255 Dispatch Queue Entries (DQE's). Free DQE entries are linked into
the C.FREE head cell in the standard linked list format. When a task is activated, a
DQE is obtained from the free list and is used to contain all of the memory-resident
information necessary to describe the task to the system.

For example, the task sequence number, owner name, load module name, TSA
address, priority, and current state chain pointers are kept in the DQE, as are abort
codes, message and run receiver queue addresses, etc.

Additional (swappable) information is maintained in the TSA. While a task is active,
its DQE is linked to one of the various ready-to-run or wait state chains provided by
the CPU scheduler to describe the task's current status. When a task exits, its DQE is
again linked to the free list.

2.9 1/0 Scheduling

2-42

I/O scheduling provides efficient service to I/O bound tasks while keeping the CPU
busy with compute-bound tasks. This allows the fullest possible utilization of both
the CPU and I/O devices.

A task that has been waiting for I/O to complete (SWTI or SWIO) is changed to an
executable state at a priority slightly higher than a similar compute-bound task when
the I/O completes, as described in the Situational Priority Increments section of this
chapter. At that time, the CPU scheduler interrupts the execution of the compute­
bound task so that the I/O-bound task can execute. The I/O-bound task requires
minimal CPU time before initiating another I/O request and returning to the SWTI or
SWIO state. The compute-bound task then resumes execution. The CPU scheduler
automatically adapts to tasks that alternate between bursts of computing and bursts of
I/O.

Task Structure and Operation Overview

('
Swap Scheduling

2.10 Swap Scheduling

The swap scheduler task (J.SW APR) processes entries in the memory request queue
(MRQ). It provides memory allocation and swap scheduling as appropriate to service
individual requests for memory.

Refer to Reference Manual Volume I, Chapter 3 for swapping techniques used for
demand page processing.

2.10.1 Structure

The swap scheduler is a memory resident, privileged task that is not operating system
resident. It executes at the priority of the highest priority task in the memory request
queue. The swap scheduler always occupies the first DQE. If a task requires
memory, the swap scheduler maps the task's TSA on top of its address space.

The swap scheduler remains suspended until resumed by the executive in response to
a swap scheduler event.

2.10.2 Entry Conditions

The swap scheduler task is normally suspended. It is relinked to the ready-to-run
queue by the executive in response to a system service calling the executive to report
a swap scheduler event. There are four basic types of swap scheduler events.

2.10.2.1 Dynamic Expansion of Address Space (M.GE/M.GD, M.MEMB)

When there is insufficient memory to satisfy a dynamic memory request for a task, the
task is linked into the memory request queue and the swap scheduler is resumed.

Memory is allocated in 2KW increments on a CONCEPT/32. These increments are
called map blocks.

2.10.2.2 Deallocation of Memory (M.FE/M.FD, M.MEMFRE)

When a task deallocates some or all of its memory, and the memory request queue is
not empty, the swap scheduler is resumed. Those tasks in the MRQ are then allocated
some or all of the deallocated memory.

2.10.2.3 Request for Inswap

When a currently outswapped task becomes eligible for execution, it is linked into the
memory request queue. The swap scheduler is resumed to process the inswap request.

2.10.2.4 Change in Task Status

When a task which had been previously ineligible for swapping becomes eligible, the
swap scheduler is resumed. Such status changes include the completion of an
unbuffered I/O operation, the release of a lock-in-memory flag, or the expiration of a
stage one time quantum.

MPX-32 Reference Volume I 2-43

Swap Scheduling

2.10.3 Exit Conditions

The swap scheduler signals the executive when it cannot process any more
outstanding requests, or when the memory request queue is empty. The swap
scheduler is unlinked from the ready-to-run queue and placed in a special wait-for­
memory-event state.

2.10.4 Selection of Inswap and Outswap Candidates

2·44

The swap scheduler attempts to allocate the memory required for the highest priority
task in the memory request queue. If there is insufficient free memory, the swap
scheduler examines the state queues on a priority basis, searching for the memory
class and number of map blocks required.

When the first outswap candidate that satisfies any current memory request is
determined, the task is outswapped.

When sufficient memory is available, the inswap process is initiated. The swap
scheduler processes entries in the memory request queue until the queue is empty or
until an available outswap candidate for a task requesting memory cannot be found.

Both outswap and inswap are serial processes which go to completion before the
memory request queue is reexamined. Dynamic memory requests are similar to
inswap requests, except that there is no associated disk file to read. Some tasks in the
memory request queue can be queued for both inswap and a dynamic request. There
must be sufficient memory for the inswap and dynamic requests before the inswap
process can proceed.

Task Structure and Operation Overview

(

Swap Scheduling

2.10.4.1 Outswap Process

The outswap process is initiated when inswap or dynamic memory is requested. The
outswap priority order can be specified by the system administrator. See the System
Administrator chapter in MPX-32 Reference Manual, Volume III. The following table
illustrates the default outswap priority order beginning with HOLD and ending with
SQRT.

Default Outswap Priority Order

Wait Queues Readv-to-Run Queues
HOLD SQ64
SUSP SQ63

RUNW SQ62
SWDV SQ61
SWDC SQ60
SWSR SQ59
SWSM SQ58
SWLO SQ57
SWFI SQ56
MRQ SQ55

ANYW RIPU
SWGQ SQRT
SWTI
SWIO
SWMP

The TSA of the outswap candidate is mapped into the swap scheduler and is used to
construct a new address space which represents the swappable map blocks in a
logically contiguous format. Then, the swap space is allocated and opened by the
swap scheduler. For F-class swap devices, a single write request is given to IOCS.
Command and data chains are built in the handler to perform the specified transfer.

Once output is complete, the memory is deallocated, and the memory request queue is
re-examined to find the highest priority candidate for inswap:

2.10.4.2 Inswap Process

When sufficient memory is available, the swap scheduler allocates the memory
required by the highest priority task in the memory request queue. If the request is
simply a dynamic one, the swap scheduler adjusts the TSA of the requestor to reflect
the newly allocated memory, and informs the CPU scheduler.

H the request requires an inswap, the swap scheduler reads the swapped image into the
newly allocated memory. For F-class swap devices, a single read request is given to
IOCS. Command and data chains are built in the handler to perform the specified
transfer.

Once inswap is complete, the swap scheduler cleans its map and re-examines the
memory request queue for the next inswap candidate.

MPX-32 Reference Volume I 2-45

Task Termination Sequencing

2.11 Task Termination Sequencing

Three types of task termination are provided by the MPX-32 executive: exit, abort,
and delete task execution.

2.11.1 Nonbase Mode Exit Task (M.EXIT)

The exit task service is called by a task that needs to terminate its execution in a
normal fashion. The sequence of system processing on task exit is described in Table
2-5.

2.11.2 Abort Task (M.BORT)

The nonbase mode abort task service is called by a task that wants to terminate its
execution in an abnormal fashion. It may also be initiated by the system when a task
encounters a system trap condition (e.g., undefined instruction, privilege violation, or
nonpresent memory) or by a system service because of a parameter validation error.

This service may also be asynchronously initiated by another task of the same owner
name or by the OPCOM ABORT directive. The sequence of system processing on
task abort is described in Table 2-5.

2.11.3 Delete Task (M.DEL TSK)

The delete task service is called by the system for a task that encounters a second
abort condition when processing an initial abort request. This service may also be
initiated asynchronously by another task of the same owner name or by the OPCOM
KILL directive. The sequence of system processing on task delete is reflected in
Table 2-5.

2.11.4 Base Mode Exit Task (M_ EXIT)

2·46

The base mode task entry structure allows base mode tasks to exit in a uniform
manner. Exit sequences require a 0 or an ASCII status code to be placed in RO. Any
entry into a subroutine may be exited by the execution of a RETURN instruction.

A base mode assembler task must exit any end-action receiver by a RETURN
instruction. If the exit from end action requires a receiver exit block (RXB), the RXB
address must be in R 1.

Task Structure and Operation Overview

()

Task Termination Sequencing

Table 2-5
Task Termination Sequencing (EXIT, ABORT, and DELETE)

System Action
Task Has

Task Exit Task Abort Task Delete

Outstanding Defers processing Same as exit, Terminates all

I/O until any except inhibits outstanding I/O.
outstanding I/O execution of
is complete. user no-wait I/O

end-action
routines. Task
abort is reflected
in appropriate
FCB(s).

Outstanding Unlinks all Same as exit. Same as exit.
Messages in outstanding
Receiver messages. Posts
Queue complete with

abnormal status.

Outstanding Defers processing Defers abort Call backs are

(No-wait Run until the processing until ignored.
Requests destination task all requests are
with Call completes. The complete. Task
Back exiting task is abort status is

placed in the ANYW reflected in run
state until the request parameter
destination task block.
has completed.

Run Terminates the Same as exit. Same as exit.
Requests current run
in Receiver request and posts
Queue appropriate status

in run request
parameter block.
Then activates a
new copy of the
task for next
run request in
queue, if any.

Continued on next page

MPX-32 Reference Volume I 2-47

Task Termination Sequencing

Table 2-5
(C·'~: , .

Task Termination Sequencing (EXIT, ABORT, and DELETE) (Continued)

System Action
Task: Has

Task: Exit Task: Abort Task: Delete

Task: Abort Not processed. Transfers control Not processed.
Receiver to task: after

other steps taken
above. Files are
not closed. Devices
and memory are not
deallocated.
(Remaining abort
processing by
system is
discontinued.)

Files Open Closes all open Same as exit. Does not
files close files
automatically. automatically.
Preserves Preserves

integrity of both integrity of
user and system system

files. critical
files. User
files are
left as is.

Devices/ Deallocated Same as exit. Same as exit.

Memory automatically.
Allocated

2-48 Task Structure and Operation Overview

(-

Task-Synchronized Access to Common Resources

2.12 Task-Synchronized Access to Common Resources

MPX-32 provides the structure for tasks to voluntarily synchronize access to a
common resource such as a disk file, a shareable device, a common data area, a
shared/included procedure area, or any other physical resource.

The capability provided by MPX-32 is a general resourcemark mechanism. Each task
using a marked resource must:

• use the M.RSML and M.RSMU (Resourcemark Lock/Unlock) services to
synchronize access to a resourcemark with other tasks

• make the association of a particular resourcemark with an actual resource

MPX-32 provides: a table of resourcemarks that are currently in use, a mechanism for
queuing tasks for each mark, and automatic unlock on a resourcemark when a task
terminates (aborts, exits, or is deleted), if the task has not unlocked the resourcemark
on its own.

A resourcemark is a decimal value from 1 to 64. Values 1-32 are for internal use,
values 33-64 are available for customer use. The default size of 0 can be increased by
using the SYSGEN RMTSIZE directive. When privileged tasks use the Lock/Unlock
services, MPX-32 checks that the index value provided is within the range from 1 to
the configured size of the resourcemark table. The system does not associate a
particular resource with a particular resourcemark. Thus, if several tasks use
synchronization service calls to gain access to a resourcemark and another task does
not, the outside task gains the resource just as if no restrictions were active for it.

Tasks synchronizing use of resources are responsible for using resourcemarks that
uniquely identify resources across the system. MPX-32 ensures only that a specified
mark is within the legal numeric range.

To use resource marking, each cooperating task:

• uses M.RSML to lock the resourcemark

• performs the access which requires synchronization

• uses M.RSMU to unlock the resourcemark and release the highest priority task
queued for the resourcemark

The task has several options available if the resourcemark is locked when it issues the
M.RSML call. As specified in the call, it can:

• obtain an immediate denial return and go on

• wait until it can gain ownership of the lock

• wait until it can gain ownership or until a specified number of timer units have
expired, whichever occurs first

If a single task uses more than one resourcemark, and it is synchronizing access to
more than one resource, the user must exercise care to avoid deadlock situations; for
example, task A is in wait for a lock owned by task B while task B is in turn waiting
for a lock owned by task A.

MPX-32 Reference Volume I 2-49

Task-Synchronized Access to Common Resources

2-50

A task using more than one resourcemark can avoid deadlocks by unlocking all locked
resourcemarks if it cannot succeed in locking anyone of them. The task then waits
for the critical unlock to occur before reattempting locks on all the other
resourcemarks in the set.

Sample Resourcemark Use by a Task

T4

PROGRAM T4
M.REQS
LIST NGLIST
EQU
M.RSML 33,0
M.WRIT ABC
M.RSMU 33
M.EXIT

$
LOCK RSM,INDEF.WAIT,NORM SWAP
WRITE TO CRITICAL FILE
UNLOCK RSM

ABC DATAW G' ABC' LFC SETUP
GEN 12/B 80,20/B(SBUF)
REZ 6W

SBUF RES 80B
END T4

Task Structure and Operation Overview

(-
MPX-32 Faults/Traps and Miscellaneous Interrupts

2.13 MPX-32 Faults/Traps and Miscellaneous Interrupts

MPX-32 provides interrupt and trap processors for all standard interrupts and traps. A
list of these interrupts with associated information is shown in Table 2-6.

Processing for trap levels 03, 04, 05, and 09 is dependent on the location of the
instruction causing the trap. A system crash (M.KILL; not OPCOM KILL) results if
the offending instruction is issued from a location within the MPX-32 system area. If
the instruction is issued from a location within a task area, the task is aborted.

When a system crash occurs as a result of a trap handler entry, the CPU halts with the
registers containing the following information:

Register

o
1
2
3
4
5

Contents

PSD word 0 (when trap generated)
PSD word 1 (when trap generated)
real address of instruction causing trap
instruction causing trap
CPU status word (from trap handler)
Crash code:

MPOl=X'4D503031' (Memory Parity Error - H.IP02)
NMOl=X'4E4D3031' (Nonpresent Memory - H.IP03)
UIOl=X'55493031' (Undefined Instruction - H.IP04)
PVOl=X'50563031' (Privilege Violation - H.lP05)
MCOl=X'4D433031' (Machine Check - H.IP07)
SCOl=X'53433031' (System Check - H.IP08)
MFOl=X'4D463031' (Map Fault - H.IP09)
CPOI=X'42543031' (Cache Parity - H.IPIO) 32/67 and 32/87
ADOl=X'4144303I' (Address Specification - H.lPOC)
HTOl=X'48543031' (Privilege Halt Trap - H.lPHT)

6 Real address of register save block
7 C'TRAP'=X'54524I50'

MPX-32 Reference Volume I 2-51

MPX-32 Faults/Traps and Miscellaneous Interrupts

Table 2-6
MPX-32 Faults/Traps and Miscellaneous Interrupts

Dedicated TVL System Action:
Relative Logical Description PSD in OS areal Abort
Priority Priority CPU IPU PSD in Task Area Code

00 00 80 20 Power fail trap Halt/halt N/A

01 01 84 24 Power on trap Halt/ha1t AUOI

02/12 12 88 28 Memory parity trap M.KILL/Abort MPOI

03/24 24 8C 2C Nonpresent memory M.KILL/Abort NMOI
trap task

04/25 25 90 30 Undefined M.KILLI Abort UIOI
instruction trap task

05/26 26 94 34 Privileged violation M.KILL/Abort PVOI
trap task

06 98 38 SVC trap Process SVC/ See
process SVC Note

07 9C 3C Machine check trap M.KILL/M.KILL MCOI

08 AO 40 System check trap M.KILL/M.KILL SCOI

09 A4 44 Map fault trap M.KILL/Abort MFOI
task

OA 48 Undefined IPU M.KILL/Abort UIOI
instruction trap task

OC OE BO 50 Address M.KILL/Abort AD02
specification trap task

OD OD B4 54 Console attention Process Int.I N/A
trap process int.

OE 27 B8 58 CPU halt trap M.KILL/Abort HTOI
task

OF!29 29 BC 5C Arithmetic Not enabled! N!A
exception trap record in TSA

10 CO 60 Cache memory parity M.KILLI Abort CPO 1
error trap task

18 18 160 N/A Real-time clock Process Int.! N/A
interrupt process int.

Note:

SVC Abort Codes

SVOI Unprivileged task using M.CALL
SV02 Invalid SVC number
SV03 Unprivileged task using privileged service
SV04 Invalid SVC type
SV05 Unprivileged task using M.RTRN
SV07 Invalid SVC for base register operation

o
2-52 Task Structure and Operation Overview

Real-Time Task Accounting OnlOff

2.14 Real-Time Task Accounting OnlOff

Disabling real-time task accounting allows users to improve context switch time for
real-time tasks using any of the MPX-32 schedulers (EXEC, EXEC2, or EXEC3).
The default mode is real-time task accounting on.

The overhead of multiple CD (command device) instructions that are executed every
context switch can be avoided when real-time task accounting is turned off. When
real-time task accounting is off and an IPU is present. then real-time task accounting
is turned off in both processors.

Three levels of control are provided:

System Wide Default
established at SYSGEN by the presence or absence of the MODE
ONRA and MODE OFRA directives in the /pARAMETERS subsection
of the //SOFfW ARE section.

The MODE ONRA is the default mode. which enables real-time task
accounting. The MODE OFRA directive disables real time accounting.
These directives do not affect tasks that are not real-time. These tasks
always have accounting enabled.

OPCOM Override
occurs with the !MODE ONRA and the !MODE OFRA commands.

These commands provide a convenient way to override the SYSGEN
defaults without performing a SYSGEN and RESTART to change the
default accounting mode. The !MODE ONRA command enables real­
time accounting. The !MODE OFRA command disables real-time
accounting.

This option has no effect on tasks that are not real-time. These tasks
always have accounting enabled.

CATALOG Override
occurs with the ENVIRONMENT ONRA and OFRA directives.

The ENVIRONMENT ONRA directive enables real-time accounting
regardless of the current default mode. The ENVIRONMENT OFRA
directive turns real-time accounting off regardless of the current default
mode. This option has no effect on tasks that are not real-time. These
tasks always have accounting enabled.

MPX-32 Reference Volume I 2-53/2-54

(-

3 Resource Management Overview

3.1 General Resource Management

A generalized resource management scheme means all resource operations work in a
standard and predictable manner on every resource. A resource is any source of aid or
support existing which is external to a task's body and is required by the task for that
task to perform its function.

3.2 Support for Resource Types

3.2.1

The operating system recognizes two types of resources: physical and logical. A
physical resource is any physical hardware supported by the operating system. A
logical resource is any entity existing only because of a mechanism provided by
software. Most often, the mechanism is merely a named and predictable data structure
imposed on a physical medium.

Physical Resources

The primary physical resources supported by the operating system are: the central
processing unit (CPU), computer memory (main storage), and I/O devices. In the
support of physical resources, all resource functions are supported in the same manner.
Definition and deletion of physical resources are accomplished by the system
generation (SYSGEN) process. Resource attachment, access, and detachment are a
subset of the functions allowed for logical resources. Physical resource inquiry is
more primitive and resource dependent than logical resource inquiries. The attributes
assigned to the management of physical resources are more resource dependent than
the attributes associated with logical resources. Attributes of physical resources can
only be modified by the SYSGEN process.

3.2.2 Logical Resources

The primary logical resources supported by the operating system are: disk volumes,
directories, files, and memory partitions. In the support of logical resources, all
resource functions are supported in the same manner. Definition and deletion of
logical resources are accomplished by utilities or system services. Resource
attachment, access, detachment, inquiry, and attribute modifications are provided for
logical resources and are implemented by system services.

MPX-32 Reference Volume I 3-1

Support for Resource Functions

3.3 Support for Resource Functions

To support all resources in a similar manner, all functions required to manage
resources must be provided and those resources must operate in a similar manner.
The following is a list of the functions provided:

Function

Resource creation

Resource deletion

Resource attachment

Resource access

Description

defines a resource to the operating system

removes the definition of a resource from
the operating system

connects to a resource for the purpose
of using the resource

uses a resource or transfers data to or
from a resource

Resource detachment disconnects a resource so it can be used
by others

Resource inquiry inquires about a resource to determine
specific information about it

Resource attribute modification modifies the attributes of a resource
to change its operational characteristics

Detailed descriptions of these functions are in the following sections.

3.3.1 Resource Creation

Before any resource can be used by a task in the operating system, the required
resource must be defined to the operating system. Utilities are provided for defining
resources. In most cases, the resources can be defined by directives or services issued
to the operating system. When a resource is created, all resource attributes are
defined.

3.3.2 Resource Deletion

The resource definition must be deleted so the resource can no longer be used. This is
accomplished by the use of a utility program. Usually, resources can be removed
using directives or services provided by the operating system.

3.3.3 Resource Attachment

3·2

Resource attachment is the process of securing a resource for use by a task.
Commands and/or service requests are issued to the operating system to attach a
resource. When a resource is to be attached, various parameters are specified
indicating how the resource is to be used. The directive or service to attach a resource
is unique to each type of resource. For example, volumes are mounted, memory
partitions are included, and files/devices are assigned.

Resource Management Overview

f··~

V

()

(

(~

Support for Resource Functions

There are two types of resource attachment provided by the operating system, static
and dynamic.

3.3.3.1 Static Allocation

Static allocation is invoked by declaring a task's resource requirements when the task
is cataloged or activated. Static allocation serves several purposes. Most importantly,
this form of allocation guarantees that a cataloged load module, when activated, has
all the resources required before it begins execution. Secondly, by declaring all of a
task's resources when it is cataloged or activated, the operating system can match sets
of resource requirements among all tasks in the activation state and more effectively
manage resources. Static allocation enables the operating system to allocate sets of
resources. This avoids deadlocks that can occur when a task requires multiple
resources and must dynamically allocate each one. Statically allocated resources can
be overridden at task activation.

3.3.3.2 Dynamic Allocation

3.3.4

In some applications, a task does not know what resources it requires until execution
begins. For this reason, dynamic resource allocation is provided. Dynamic allocation
is invoked by service requests from an executing task.

Resource Access

Resource access is the process of transferring data to or from a resource, pOSitioning a
resource, or otherwise manipulating a resource. Various applications require many
levels of access to a resource. The operating system provides the following levels of
resource access. The levels are described in order from the most device-dependent to
the least device-dependent access levels.

3.3.4.1 Device Level

The operating system provides integration of device-dependent I/O drivers. The user
is not required to design and code an MPX-32 I/O device handler. However, a user­
supplied I/O driver can be integrated into the operating system by the SYSGEN
utility.

3.3.4.2 Execute Channel Program Level

To perform device-dependent I/O operations where the operating system queues the
I/O requests, starts the I/O requests, and processes the operating system termination
functions, the user can build and execute physical or logical channel programs. These
channel programs can only be executed on devices that use extended I/O (XIO)
protocol.

MPX-32 Reference Volume I 3-3

Support for Resource Functions

3.3.4.3 Logical Device Level

With this level of access, the user can transact with a device while using specific
physical capabilities offered by the device. Logical device I/O supports applications
which require the use of a specific device for a capability provided explicitly by the
device.

With this level of access, a user perfonns I/O requests using a file control block
(FCB). The data fonnat inhibit option must be set in the FCB to gain access to the
device at this level.

3.3.4.4 Logical File Level

With this level of access, a user achieves a degree of device independence. When
device access is perfonned at this level, device-dependent characteristics are masked
from the user. This access level supports applications which require the illusion of
device commonality and independence.

3.3.4.5 Blocked Level

This is the highest level of device access provided by the operating system.
Explicitly intended for use by utility programs requiring the highest degree of device
commonality or sameness, blocked I/O works only with magnetic tape and disk
media. For all operations to perfonn identically regardless of which type of media is
manipulated, this access level emulates the operation of magnetic tape on both types
of media. All operations that are valid for magnetic tape media are provided. The
user can issue rewind, write end-of-file, advance file, backspace file, advance record,
backspace record, read record, and write record operations.

With blocked I/O, the user must access the media in a sequential manner. Records
can be transacted with the media in lengths of 254 bytes or less; longer records are
truncated. The operating system automatically perfonns intennediate record blocking
and buffering to or from the media.

For the maximum device independence, use the following subset of allowable
operations: rewind, read record, and write record.

Note: Append access is available on disk media but is not allowed on magnetic tape
media.

3.3.5 Resource Detachment

3-4

Resource detachment allows attached resources to be released and made available for
use by other tasks. When resources are detached, other tasks that can be queued
awaiting the availability of the resource are resumed to contend for attachment to the
resource.

Resources are detached explicitly by the appropriate dismount, exclude, or deassign
functions. Additionally. any resources a task has attached at the nonnal or abnonnal
termination of the task are automatically detached by the system.

Resource Management Overview

c."'·····' I' ,

(-

Support for Resource Functions

Resource detachment may cause the system to perfonn clean-up operations, such as
purging partially-filled blocking buffers and releasing exclusive locks outstanding on
the resource.

3.3.6 Resource Inquiry

Resource inquiry is provided so tasks can detennine the attributes of a resource.

3.3.6.1 Inquiry of Unattached Resources

At times it is necessary for a task to inquire about a resource. Given the name or
some other legal identifier, directives and services are provided to return infonnation
about resources. The operating system provides this infonnation through a resource
descriptor (RD). At a place common to all resource descriptors, the inquirer can
detennine the type of resource. Once this infonnation is obtained, the inquirer can
examine resource type-dependent data in the descriptor for more specific information.
Usually, such inquiries are made before the resource is attached.

3.3.6.2 Inquiry of Attached Resources

3.3.7

This type of inquiry is most often used when a resource has been statically attached.
It determines the logical or physical attributes of the connection, such as the access
modes, access level, physical device address, and parameters. The user must furnish
the logical file code, file control block (FeB) address, or allocation index to identify
the desired resource.

Resource Attribute Modification

At times, it is necessary to modify the protection and other access attributes of a
resource. Resource attribute modification, like resource inquiry, deals with operating
system data structures. The user of these functions should be familiar with the format
of these data structures. Also, it is recommended that user-supplied subroutines act as
a common interface to the functions. In this way, the user is less sensitive to changes
in system structures.

MPX-32 Reference Volume I 3-5

Resource Attributes

3.4 Resource Attributes

All logical resources have attributes. The attributes of resources control how the
resources are managed and determine who can use them.

The operating system ensures that all logical resources are defined in directories; for
example, by providing names. Protection is applied to resources to determine who
may use them and how they can use them. Resources can be shared (used by more
than one task at the same time). Resources can otherwise be declared as nonshared
(used by only one task at a time). Another set of attributes determines how the
resource can be accessed; for example, data can be read from but not written to the
resource, only certain areas of the resource can be written to, the resource can be
deleted, etc.

3.4.1 Protection

The protection provided by the operating system for logical resources is organized so
that a resource can be managed by the following:

Class

Owner

Project Group

Others

Description

is the person creating a resource. When the resource is created,
the owner establishes all attributes for the resource. The owner
can specify which project group and others can access the resource
and what their access capabilities are.

is the name of a group of users allowed to access the resource.

are users of a resource who are not the owner or members of the
project group.

A resource can be defined and managed as applicable to each class.

Protection is supplied for environments where desired. Since protection can be
harmful when it is not administered properly, the user is advised to protect resources
only to the level required. By default, owner and project group privileges are equal
and all owners belong to the same project group. This default method of operation
allows all users of the system to attach to all resources defined to the system.

When a task attempts to attach a resource, the system determines the owner, a member
of a project group, or an other arbitrary user is making the attempt to attach a
resource, the associated owner name is checked first, then the project group name. If
the task does not match either of the first two checks, the task is given the access
rights associated with an other arbitrary user. Otherwise, the task is given the access
rights for the level that was matched.

3.4.2 Shareable Resources

3-6

A resource can be defined as shareable when it is created. Shareable resources can be
attached to more than one task at the same time.

Resource Management Overview

Resource Attributes

When a shareable resource is attached, the requesting task indicates how the resource
is used. A shareable resource can be used in three modes: exclusive, explicit, and
implicit. The resource can only be attached in one mode at any time.

3.4.2.1 Exclusive Use

When a task requires exclusive use of a shared resource, the task can request it when
attaching to the resource. A resource attached for exclusive use can only be used by
the task that was granted the exclusive attachment. Once a resource has been attached
for exclusive use, other tasks requesting attachment can be denied or enqueued until
the resource becomes available.

A task may require exclusive access to a resource it is already attached to and may be
currently sharing with other tasks. In this case, the task must call the M.LOCK
service. The M.LOCK service determines whether the caller is the only task attached
to the resource. If so, the caller is immediately given exclusive access. Otherwise,
the caller is denied or enqueued until it receives exclusive access.

3.4.2.2 Explicit Use

When multiple tasks require simultaneous attachment to the same shareable resource,
the tasks can attach to the resource for explicit use. With explicit use, the attached
tasks can use the resource in a way that can destroy recorded data. It is the
responsibility of tasks using a resource in this mode to ensure that the integrity of the
data recorded on the resource is preserved.

The following mechanisms allow explicit users to preserve data integrity:

• A task can gain exclusive access to a resource by calling the M.LOCK service.

In this case, the M.LOCK service enqueues the caller until exclusive access can be
granted.

• A set of tasks can synchronize on access to the resource by calling the M.SYNC
and M.UNSYNC services.

Synchronization locking does not guarantee exclusive access to a resource; it is
merely a semaphore that is locked. The semaphore for the resource is returned
when the resource is attached and must be used as an input parameter to the
M.SYNC and M.UNSYNC services.

Another type of semaphore, the resourcemark, can be used for synchronizing access
to a resource or a set of resources. The use of semaphores requires that all tasks
attached to a resource in explicit use mode cooperate to preserve the integrity of the
resource.

MPX-32 Reference Volume I 3-7

Resource Attributes

3.4.2.3 Implicit Use

When a task attaches to a shared resource but does not explicitly declare exclusive or
shared use, the resource is attached for implicit use. Implicit use is the default usage
mode for all attachment to resources. fu this mode, the operating system
automatically allows the resource to be accessed by multiple tasks attached in
compatible access modes. With compatible access modes, the following access
combinations are allowed: multiple readers, multiple readers with a single writer,
single writer only, and two simultaneous writers.

3.5 Resource Access Attributes

All resources have a set of attributes to determine how the resource can be accessed.
This section defines the access attributes for each logical resource and defines the
purpose of these attributes.

3.5.1 Access Attributes for Volumes

3-8

Access to resources on a volume is determined by attributes assigned when the
volume is mounted and by the volume type. Refer to the Volume section in Chapter
4 of this manual.

Resource Management Overview

(.

Resource Access Attributes

3.5.2 Access Attributes for Directories

Directories have attributes detennining how they are managed. These attributes can
be specified for each user class (owner. project group. and others). The access
attributes are defined when a directory is created. Access attributes for directories are:

Access Description

Read A directory with read access can be attached like a file with
read-only access. A user assigning a directory in the read mode
must be familiar with the fonnat of directory entries to extract
meaningful infonnation. Read access lets the contents of a
directory be presented by the LOG service or directive with wild
card characters. If read access is not allowed. a directory
cannot be logged.

Add entry New directory entries can be added to a directory with add
entry access.

Delete entry Directory entries can be deleted from a directory with delete
entry access.

Delete directory A directory with delete directory access can be deleted when it
does not contain any active directory entries. Utilities. directives.
and services are provided to delete entries from directories.

Traverse

MPX-32 Reference Volume I

A directory can be searched when a patbname is being executed
by the system if it has traverse access. For example. a resource
can be located in a directory. The contents of a directory cannot
be presented with the LOG service or directive if wild card
characters are used and the user only has traverse access to the
directory.

3-9

Resource Access Attributes

3.5.3 Access Attributes for Files

Files have attributes determining how they are managed. These attributes can be
specified for each class of user: owner, project group, or other users. The access
attributes are defined when a file is created. This applies for both temporary and
permanent files. Access attributes for files are:

Access

Read

Write

Modify

Update

Append

Delete

Description

A file with read access can be attached for read only access.

A file with write access can be attached for read/write access. This
mode establishes all new data contents for a new or existing file. In this
mode, unused extensions to a file are automatically deleted when the file
is closed.

A file with modify access can be attached for read/write access. This
mode modifies the data contents of an existing file. When accessed in
this mode, files cannot be automatically extended.

A file with update access can be attached for read/write access. This
mode modifies the data contents of an existing file and appends new
data to the file. When accessed in this mode, files can automatically
extended.

A file with append access can be attached for read/write access. This
mode appends new data contents to an existing file. When accessed in
this mode, files can be automatically extended.

A file with delete access can be deleted if the directory containing the
file's directory entry allows delete entry access.

3.5.4 Access Attributes for Memory Partitions

3-10

Memory partitions have attributes determining how they are managed. They can be
specified for each class of user: owner, project group, or other. The access attributes
are defined when a memory partition is created. Access attributes for memory
partitions are:

Access Description

Read

Write

Delete

A memory partition with read access caD. be attached (included) for
read-only access.

A memory partition with write access can be attached (included) for
read/write access.

A memory partition with delete access can be deleted if the directory
containing the partition's directory entry allows delete entry access.

Resource Management Overview

c

(

('

Management Attributes

3.6 Management Attributes

All logical resources have a set of applicable management attributes regardless of
which user class is attached. Management attributes for resources are described in this
section.

3.6.1 Extension Attribute

Extension attributes apply only to permanent and temporary files.

3.6.1.1 Manual Extension Attribute

Manual extension attributes apply only to files. They enable a file to be manually
extended by the extend service or directive.

3.6.1.2 Automatic Extension Attribute

Automatic extension attributes apply only to files. They enable a file to be extended
automatically when data is written to the file. Automatic extension is subject to
restrictions inherent to access modes. For example, a file attached in the modify mode
cannot be extended.

3.6.2 Contiguity Attribute

Contiguity attributes apply only to extendible files. This attribute informs the
operating system that the file should be contiguous. When a file has this attribute and
is to be extended, the operating system attempts to allocate the new segment
contiguous to the last segment. If the contiguous extension fails, the system attempts
to allocate the new segment at any available location on the same volume. The
Volume Manager RESTORE directive can be used to attempt to restore a
discontiguous file contiguously if it contains the contiguous attribute.

MPX-32 Reference Volume I 3-11

Management Attributes

3.6.3 Maximum and Minimum Extension Attributes

3.6.4

The maximum and minimum extension attributes can only be described by a detailed
explanation of the extension algorithm. When a file is to be extended, the presence of
a dynamically user-supplied value, a minimum increment, and the maximum
increment is verified. The following chart shows the results of this verification.

Supplied Minimum Maximum
Value Increment Increment Result

No No No file is not extended

No No Yes maximum extension attempted

No Yes No minimum extension attempted

No Yes Yes maximum extension attempted first,
minimum attempted second

Yes No No supplied value attempted

Yes No Yes supplied value attempted first,
maximum extension attempted second

Yes Yes No supplied value attempted
first, minimum extension attempted second

Yes Yes Yes supplied value attempted first,
maximum extension attempted second,
minimum extension attempted third

Maximum File Size Attribute

Maximum file size attributes apply only to files and can be specified when a file is
created. If specified, a file does not become larger than the size specified. If a
maximum file size is not specified, a file can be extended a maximum of 31 times or
until file space cannot be acquired, whichever occurs first.

3.6.5 Shared Attribute

Shared attributes apply to files and directories and can be specified when the resource
is created. If specified, the resource can be attached and accessed by more than one
task. If shared is not specified, the resource can only be attached and accessed by one
task at a time. Memory partitions are always given the shared attribute.

3.6.6 End-Of-File Management Attribute

3-12

End-of-file management is an attribute of both blocked and unblocked files. It
controls how MPX-32 performs end-of-file accounting. The end-of-file management
attribute is set at the time of file creation.

Resource Management Overview

\ !

'" ~

(

(

(

Management Attributes

All files are created with EOFM=T/y, (either Tor Y may be specified) unless
EOFM=FjN (F or N) is specified. For files created with EOFM=T/y, end-of-file
management is performed through file descriptor accounting. For files created with
EOFM=FjN, EOF accounting is managed via an EOF indicator within the file
contents.

3.6.7 Fast Access Attribute

Fast access applies only to files and can be specified when a file is created. This
attribute enables files defined on a volume to be attached in one disk access through
the file identifier (RID). The RID identifies the volume where the file resides, the
block number of the file's resource descriptor (RD), and the creation date and time of
the file. Files created with the fast access attribute always retain their original RID as
long as they remain defined on the volume. A file explicitly deleted and subsequently
recreated is assigned a new RID.

System services using a resource create block (RCB) can create files with the fast
access attribute by setting the appropriate bit in the RCB. See the Resource Create
Block (RCB) section of Chapter 5 for information on the RCB.

When a Volume Manager RESTORE or COPY directive is performed on a file created
with the fast access attribute, the file retains its original RID. See MPX-32 Reference
Manual Volume II, Chapter 3.

3.6.8 Zero Attribute

Zeroing applies only to files and can be specified when a file is created. File space is
pre zeroed when a file is created or extended with this attribute.

MPX-32 Reference Volume I 3-13

Management Attributes

3.6.9 File Type Attribute

File type applies only to files. This is a 2-digit hexadecimal number that can
arbitrarily classify resources. File type codes are:

Value Description

00-39
40-5F
60-9F
AO-AF

BO
BA
BB
BC
BE
CO
CA
CE
CF
DO
DB
ED
EE
FD
FE
FF

available for customer use
reserved for system
available for customer use
reserved for system
base mode object file
base mode shared image (or BASIC file)
base mode object library file
base mode macro library file
base mode load module file
spooled output file
cataloged load module
MPX-32/COFF executable image
MPX-32/COFF shared image
memory disk save task (LMDSA VB) file
symbolic debugger command file
saved text editor file
stored text editor file
translated help file
text editor work file
SYSGEN generated file

3.6.10 No-Save Attribute

3-14

No-save applies only to files and can be specified when a file is created. A file with
this attribute cannot be saved by the Volume Manager SA VB directive unless the
SA VN parameter is Y.

Resource Management Overview

()

(

(

('"

Operating System Memory Allocation

3.7 Operating System Memory Allocation

Unless extended execution space is specified, MPX-32 occupies the lower portions of
each task's address space. This allows MPX-32 to run mapped with each task. On
CONCEPT 32/2000 systems running a mapped out image, MPX-32 runs unmapped
and each non-base task may choose to run with MPX-32 mapped into or mapped out
of its address space.

MPX-32 maintains lists of available memory for allocation to tasks and for I/O that
requires intermediate buffering.

3.7.1 1/0 Buffer and 1/0 Queues

The system memory pool is an area of memory which is contiguous to the resident
system and has a size specified at SYSGEN by the POOL directive. The entire
memory pool is write-protected from the unprivileged task and is intended for use
exclusively by system services. The memory pool is mapped into the address space of
each task and is allocated in doublewords. The maximum size of any entry is 192
words. Typical system uses of the memory pool area are:

• 1/0 queues - Approximately 26 words are allocated when 10CS queues a request
and deallocated when post-I/O processing is complete.

• Message or run-request buffers - Up to 192 words are allocated by the M.SMSGR
or M.SRUNR services and deallocated when receiver processing is complete.

3.7.2 Blocking Buffers for Blocked 1/0

File assignments for permanent files and devices optionally specify that a file is
blocked or unblocked. The default is blocked. If blocked, blocking buffers for the
files are allocated at load time in the task service area (TSA). The Catalog BUFFERS
directive may be used to provide additional blocking buffer space for dynamically
allocated, blocked files.

3.7.3 Large Buffers for Blocked Files

Large blocking buffers contain two or more 192-word blocks. The total number of
buffers should not exceed 247.

When using the TSM $ASSIGN directive with the BBUF parameter, large blocking
buffers can be allocated at load time in the task service area (TSA). The BBUF
parameter is only valid with a TSM $ASSIGN directive.

User-supplied large blocking buffers in multiples of 192-word blocks can also be
created using a 16-word expanded FCB. Byte 0 of word 15 contains the number of
192-word blocks within the large blocking buffer. The address of the buffer is placed
in bytes I through 3. When byte 0 does not specify a number of blocks, one blocking
buffer is automatically allocated.

MPX·32 Reference Volume I 3·15

Memory Classes

3.8 Memory Classes

When a nonbase mode task is cataloged, the user can specify the class of memory
required at run time. Memory classes E, H, and S are established at SYSGEN time,
and there are no limitations for the positioning or sizes of these classes. Memory
class D specifying SelBUS (DRAM) memory is configured above SRAM memory.
The Cataloger ENVIRONMENT directive indicates the class of memory with the
following parameters:

Parameter

S

H
E
D

Results

execution delayed until class S, H, or E is
available (default)
execution delayed until class H or E is available
execution delayed until class E is available
SelBUS (DRAM) memory (CONCEPT 32/2000 only)
This class of memory is non-executable and is not
recognized by the Cataloger ENVIRONMENT directive.

When the requested memory class is not installed, the first available lower class is
allocated to that task. If an excessive request is made, the requestor is aborted.

If there is no ENVIRONMENT parameter for memory class, tasks are loaded into any
memory class available.

Base mode tasks are loaded into any memory class available.

3.9 Memory Allocation for Tasks

3-16

The unit of memory allocation is called a map block and is 2KW on a CONCEPT/32.
All user tasks are discontiguously loaded into a whole number of physical map blocks,
utilizing the mapping mechanism to create their contiguous logical address space. No
partial map blocks are allocated.

This allows user tasks to dynamically expand and contract their address space by
using the memory management service calls described in Chapter 6.

The unit of memory protection is called a protection granule and is 512 words. Thus,
it is possible to protect a task's TSA even though it is in the same map block as the
data section (DSECT or read/write).

Resource Management Overview

(-

3.9.1

Memory Allocation for Tasks

On CONCEPT 32/2000 systems, memory allocation for tasks is handled differently
when a mapped out image is resident and demand page processing is in effect. Refer
to the next section for details.

Demand Page Processing (CONCEPT 32/2000 Only)

Demand page processing provides better physical memory management for a
multitask environment and allows for execution of tasks which are larger than the
available physical memory. When demand page processing is in effect for a task, it is
loaded on demand into memory in map block increments. As additional logical
address space is referenced in a task, the map block (page) needed to satisfy the
address is brought into memory (paged in) and added to the task's working set of map
blocks. The working set consists of the physical memory mapped into the logical
space of the task. .

As pages are no longer referenced by the task within a specified amount of time, they
are considered aged and are removed from the working set. Aged pages are either
modified or unmodified. Modified aged pages are linked to the task's page-out queue
or shared memory page-out queue for writing to the swap volume. After they are
paged out to the swap file, the physical memory can then be added to the free list
(freed) for reuse. Unmodified aged pages are simply freed. Freed pages which still
contain valid information from the last allocation can be retrieved. Paged out and
freed pages are not part of the task's working set.

When a new memory address not currently in the working set is referenced (page
fault), the page satisfying that address is sought, first from the free list or page-out
queue, then from the swap file or load module. Retrieving a page from the free list or
page-out queue improves efficiency by avoiding I/O from the load module or swap
file. Data is not read from the disk because the page exists in memory as it did when
queued for page-out.

Demand page is the default processing mode on a mapped out system image. For
information on installing a mapped out system image, refer to Reference Manual,
Volume III, Chapters 2 and 3. Demand page is not supported on mapped in images.

When demand page is supported, tasks are eligible for demand page processing when:

• the task is absolute (no relocation is necessary)

• the task's TSA is in extended memory and MPX-32 is mapped out of the task's
address space

The SYSGEN DEMAND directive can be used to specify that only those tasks
cataloged or linked as demand page are demand paged. Or, this directive can be used
to change the default priority level range in which an eligible task is demand paged.
Additional SYSGEN directives are available to fine tune your demand page processing
or inhibit it. Refer to Reference Manual, Volume III, Chapter 7 for details.

MPX-32 Reference Volume I

Memory Allocation for Tasks

3.9.2 Static Memory Allocation

3-18

The Cataloger determines the size in protection granules of a cataloged load module.
The Cataloger ALLOCATE directive may be used to specify additional bytes of
memory. The size of the TSA is determined at activation time and rounded up to a
number of protection granules. This value is added to the cataloged requirement to
determine task size. Additionally, the TSM $ALLOCATE directive may be used to
specify the total task size of the DSECT. The final sum is rounded up to a map block
increment. For information on static versus dynamic shared memory, see Table 3-1.
Information on memory partition applications for nonbase tasks is in Table 3-2.

Table 3-1
StatiC versus Dynamic Shared Memory

Characteristics Static Partitions Dynamic Partitions Shared Image

Logical addresses Fixed at SYSGEN Fixed by Volume Manager Determined
CREATE COMMON at link time

Physical addresses Fixed at SYSGEN Variable Variable

Allocation unit 2K words 2K words 2K words

Time of allocation SYSGEN Run time by M.INCLUDE Automatic by
acti vation or
M_INCLUDE

Time of deallocation Never When allocation count=O When allocation
count=<>

Inclusion Automatic by Run time by M.INCLUDE Automatic by
activation or activation or
M.INCLUDE M_INCLUDE

Exclusion Automatic by exit Automatic by exit Automatic by exit
or M.EXCLUDE or M.EXCLUDE or M_EXCLUDE

Owner names or None Established by M.INCLUDE None
task numbers caller

Swapping Never Swapped Swappable when user count=<> Swappable when
user count=<>

Resource Management Overview

(.... "" ..
J

o

Memory Allocation for Tasks

Table 3-2
Memory Partition Applications for Nonbase Mode Tasks

Characteristics Global Datapool Extended Common CSECfs

Cataloger resolves Yes Yes No Yes
references

Compiler resolves No No Yes N/A
references through
extended bases

Must be logically Yes No No Yes
below 128KW

Variables are order Yes No Yes N/A
dependent

Static Yes Yes Yes No

Dynamic Yes Yes Yes Yes

3.9.3 Dynamic Address Space Expansion/Contraction (M.GE, M.FE, M.GD,
M.FD, M.MEMB, M.MEMFRE)

A nonbase mode task can expand and contract its execution and extended data space
through the system services. The M.GE service appends a map block to the user's
execution space starting at the end of the DSECT. M.GE can be used more than once
to obtain additional map blocks, as long as they are available in the task's logical
address space. The M.FE service frees the most recently obtained map block; for
example, it works in the opposite order of M.GE. The M.GD service appends a map
block to the user's extended indexed data space, starting from 128KW. Like M.GE, it
can be used more than once. The M.FD service frees the most recently obtained map
block from the extended indexed data space; for example, it works in the opposite
order of M.GD. The M.GE and M.GD services do not apply to base mode tasks.

The M.MEMB service provides dynamic memory allocation capabilities for the user.
Memory is allocated in byte increments on doubleword boundaries. Allocation starts
at the next double word boundary following the user's last loaded address (T.END).
Any number of bytes can be specified up to the maximum available in the user's
logical address space. Each call to the service provides contiguous allocation for the
requested amount. Areas allocated by subsequent calls are not contiguous with
previously allocated areas. Allocated areas mayor may not be in extended memory.
The user should operate in extended mode (SEA) when addressing these areas. The
M.MEMFRE service frees memory, in random order, obtained from the M.MEMB
service. These two services cannot be used with the M.GE, M.GD, M.FE, and M.FD
services.

MPX-32 Reference Volume I 3-19

Memory Allocation for Tasks

3.9.4 Extended Indexed Data Space for Nonbase Mode Tasks

MPX-32 provides limited support for logical addresses above 128KW for nonbase
mode tasks. The following restrictions apply to the use of this address space:

• instructions cannot be executed in this logical space

• the user must reference this space by index registers. Negative offsets are invalid in
the word address field of any instruction as long as the indexed addressing mode is
active.

• no data initialization facilities are provided for this logical space

• the user must dynamically request this logical space to be mapped with the memory
management system services

• global is not supported in extended data space

3.9.5 Intertask Shared Global Memory and Datapool Memory (M.lNCLUDE,
M.EXCLUDE)

3-20

Intertask shared memory is provided through Global and Datapool memory partitions
and shared images. A task may include up to one hundred Global regions
(GLOBALOO - GLOBAL99) plus up to 101 Datapools (DATAPOOL, DPOOLOO­
DPOOL99).

Global and Datapool partitions can be defined using SYSGEN or the Volume
Manager utility. Shared images are created by the LINKER/X32. See the Shared
Images section of Chapter 4 for shared image information.

Partitions created at SYSGEN are considered permanently allocated and are assigned
both physical and logical memory attributes applying to any task that references the
partitions. This type of allocation is called static allocation. The static Global and
Datapool partitions are defined in integral numbers of pages.

Both Global and Datapool partitions are located in an integral number of physical map
blocks starting on a map block boundary. Areas are mapped into user space when
required. See the Static Memory Allocation and Dynamic Address Space
Expansion/Contraction sections of this chapter for a description of how MPX-32 maps
areas into user space.

Write protection is available and prevents the user from storing into a common area
that has write access. Dynamic shared memory partitions are defined with the Volume
Manager.

Resource Management Overview

ie,,". ~\
./

c

(
Memory Allocation for Tasks

There are several key distinctions between statically and dynamically allocated
common partitions:

• Static partitions are fixed in physical memory even when no task is sharing them.
Dynamic partitions are deallocated when their allocation count equals O.

• Statically allocated partitions are invoked on a system-wide basis. Dynamically
allocated partitions are based on a subsystem concept, where tasks issue an
M.INCLUDE request. A particular common partition, such as Datapool, can be
defined concurrently in several such subsystems. However, each subsystem has a
physically unique partition.

• Dynamically allocated common partitions can be excluded from a task by the
M.EXCLUDE system service. The user can elect to subsequently include another
dynamically allocated common area by M.INCLUDE. Statically allocated
partitions are not supported by the Volume Manager.

• All logical references to common, whether statically or dynamically allocated, are
resolved by the cataloger. The logical address of a system common partition is
fixed when the partition is defined.

• Load modules from one MPX-32 configuration are compatible with another even if
Global or Datapool are allocated different physical addresses. The only
compatibility requirement is that both systems employ the same logical
conventions.

Figure 3-1 illustrates a relatively complex view of the relationship between logical
address spaces and statically and dynamically allocated common partitions. The
figure also introduces the allocation considerations for shared procedures, which are
described in the section which follows.

In brief,

• Tasks A, B, and C reference a static Datapool partition.

• Tasks A and B use an M.lNCLUDE service for dynamic GLOBALIO.

• Tasks A, B, and C use M.lNCLUDE for GLOBAL02.

• Task 0 shares no memory or code with other tasks. Map blocks seven and up are
available to the task.

• Tasks A and B are shared. They have CSECT mapped at the same location in each
logical address space.

3.9.6 Shared Procedures for Nonbase Mode Tasks

MPX-32 supports shared procedures. A catalog parameter specifies a shared
procedure that must consist of a CSECT (pure code and data) and a DSECT (any
impure data). When a shared procedure is activated for the first time, the system
loader reads both the shared procedure section and the impure data section into
memory.

MPX-32 Reference Volume I 3·21

Memory Allocation for Tasks

The shared procedure section is mapped like an M.INCLUDE service request. Every
subsequent activation of the shared procedure causes only the impure data section of
the shared procedure to be loaded since the procedure section is already in memory,
has not been altered, and can be mapped like an M.INCLUDE service request.

Shared procedures, such as shared memory areas, have an allocation count to prevent
premature deallocation of the memory they occupy and a user count to control the
swapping of these partitions.

Shared procedure space is allocated in the highest available logical address. (See
Figure 3-1.)

STATIC DATAPOOL

GL10

UNUSED

GL02

CSECT

, .
TASK A " TASKB
DSECT . • DSECT

,

OPERATING
SYSTEM

TASK A + B
(SHARE CODE)

15

14

13

12

11

10

9

8

7

6

5

4

3

2

o

STATIC DATAPOOL

GL05

GL04

GL03

GL02

DSECT

OPERATING
SYSTEM

TASKC
(DOES NOT

SHARE CODE)

Figure 3-1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

DSECT

OPERATING
SYSTEM

TASKD
(DOES NOT

SHARE CODE
OR COMMON)

Sample Allocation of Common Memory Partitions and Common Code

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

3.9.7 Multiprocessor Shared Memory 87D12W07

3-22

Multiprocessor shared memory is memory that is shared between systems. This
portion of memory must be managed by the user. If not properly SYSGENed, it is
possible for MPX-32 nonresident tasks to be allocated memory in the shared memory
sections. This can allow corruption of the nonresident tasks by the other systems.

Resource Management Overview

(
"~

'-

(

Memory Allocation for Tasks

It is recommended that multiprocessor shared memory be used as follows:

• For memory that is shared between systems, create a static memory partition in the
multiprocessor shared memory via SYSGEN. The partition can be any size.

• Any remaining memory can be allocated to ,MPX-32 tasks. This memory should be
SYSGENed exclusively for a particular system. This memory can be divided
between systems as long as each area can be accessed by only one system. To
accomplish this, SYSGEN each area as present in one system and non-present in all
other systems.

3.10 Extended MPX-32 (Expanded Execution Space)

Extended MPX-32 is an optional mode of operation that allows a portion of the
MPX-32 operating system to be positioned into a task's extended memory. Using
extended MPX-32 results in more execution space for nonbase tasks.

Extended MPX-32 creates a split image that divides the operating system into two
sections:

• The nonextended section of the split image is nonbase code that is mapped into the
lower 128KW of user task space below the TSA.

• The extended section of the split image is translated into base code. This allows
part of the operating system to be removed from the lower 128KW task space and
placed in the extended address area where only data could previously be placed.

As a result of the split image, additional nonbase execution space is available in the
lower 128KW of the task's logical address space.

Extended MPX-32 can be located:

• at a specific logical map block address

• at the end of logical extended memory (MAXADDR)

• between the task service area and the task DSECT (MINADDR)

Using extended MPX-32 at MAXADDR increases the user's task execution space by
several map blocks.

The user can position extended MPX-32 by using the:

• SYSGEN EXTDMPX directive

• CATALOG EXTDMPX directive

• TSM EXTDMPX directive

The position of extended MPX-32 is determined during task activation, and is then
fixed. Each task chooses the position of extended MPX-32.

Note: Extended MPX-32 can only be used on CONCEPTj32 systems that have base
mode capability. Attempts to build (i.e., SYSGEN) or boot an extended
MPX-32 image on systems without this support result in a fatal abort.

MPX-32 Reference Volume I 3-23

Extended MPX-32 (Expanded Execution Space)

3-24

Control between extended and nonextended MPX-32 code is performed by adaptive
sequences. These sequences are generated by a combination of macro assembler
directives and special communication sequences that are recognized by SYSGEN
object processing. The adaptive sequences enable code linkage (e.g., branch requests)
between extended and nonextended MPX-32 code. These sequences change the
instruction mode so that code executed in extended MPX-32 is in base mode, and
code executed in nonextended MPX-32 is in nonbase mode. Code linkages for
extended to extended code or nonextended to nonextended code do not require
adaptive sequences.

The Macro Assembler SSECf directive places code and data in the appropriate
section of the operating system. Extended MPX-32 code is placed in the EXT_MPX
section, adaptive code is placed in the ADP _MPX section, and DSECf data is placed
in the DSECT section.

To allow direct reference by the extended code section of the split image, the
communication region, the DSECT section, and the ADP _MPX section must be
within the first 16KW of physical and logical memory.

Note: When using extended MPX, there is a minimal amount of code executed in
the adaptive sequences to switch between non-base and base execution modes
(and vice-versa). Generally, the time required for this mode switch is not
perceptible to the user.

Additionally on CONCEPT 32/87 systems only, task context switch times
may increase when extended MPX is used. Any increase is associated with
the number of map image descriptors (which are pre-loaded by hardware at
context switch time) associated with the task, including those describing
extended MPX. Therefore, it is desirable to minimize this number (called the
"map span"). This can be accomplished by using the EXTDMPX directive
(whether in SYSGEN or CATALOG) and specifying either MINADDR (if
sufficient logical task address space exists) or the lowest map block number
where no address space conflicts will result.

Figure 3-2 shows physical memory of extended MPX-32.

Resource Management Overview

" I (..... ".'.

Extended MPX-32 (Expanded Execution Space)

...................

EXTENDED MPX-32

.

EXTENDED MPX-32 TASK

MEMORY POOL MEMORY POOL

NONEXTENDED MPX-32 NONEXTENDED MPX-32

VARIABLE SIZE TABLES VARIABLE SIZE TABLES

DSECT REGION DSECT REGION

ADAPTIVE CODING ADAPTIVE CODING

COMMUNICATION REGION COMMUNICATION REGION

PHYSICAL MEMORY LOGICAL MEMORY

R1004

Figure 3-2
Extended MPX-32 Physical Memory

MPX·32 Reference Volume I 3-25

Extended MPX-32 (Expanded Execution Space)

3-26

Modules that can operate in extended MPX-32 are:

• Resource Allocator (H.ALOC)

• Executive Subroutine (H.EXSUB)

• File System Executive (H.FISE)

• Memory Management (H.MEMM)

• System Services (H.MONS)

• Program Trace (H.PTRAC)

• Resource Management (H.REMM)

• Resident Execution Services (H.REXS)

• Task Management (H. TAMM)

• Terminal Services (H.TSM)

• Volume Management (H.VOMM)

The object code for these modules is compressed into OH.32_E, a SYSGEN input
object file.

For users who have modified these modules, or who want to move their own modules
to extended memory, see the section How to Create an Extended MPX-32 System in
this chapter for further details.

The Macro Assembler can generate extended and nonextended object code from the
same properly converted source files. Assigning the logical file code PRE to
MPX_EXT generates extended MPX-32 object, while assigning it to MPX_NON
generates nonextended object.

Figure 3-3 illustrates program flow control for extended MPX-32.

Resource Management Overview

Extended MPX-32 (Expanded Execution Space)

MPX-32 BASE MODE MODULES

t t
ADAPTIVE CODE SEQUENCES

t t
MPX-32 NONBASE MODE MODULES

t t
INTERRUPT AND SUPERVISOR
TRAP PROCESS CALL PROCESS

_t t
EXTERNAL USER

REFERENCES TASK

R1005

Figure 3-3
Extended MPX-32 Program Flow Control

3.10.1 SYSGEN Information for Extended MPX-32

When SYSGEN is activated, an object prescan is performed, followed by an object
load. The object file assigned to logical file code OBR is scanned first. After this is
completed, the object file assigned to the logical file code OBJ is scanned. This
allows the extended MPX-32 object code in OH.32_E to preempt the equivalent
nonextended version.

MPX-32 Reference Volume I 3-27

Extended MPX-32 (Expanded Execution Space)

When creating an extended MPX-32 system, SYSGEN completes the following:

• SYSGEN performs two passes on the input object files. The first pass determines
the size of the DSECT and adaptive sections. The second pass builds the system.

• SYSGEN resolves all base mode references when an image is created. The DSECT
sections of the affected modules are placed in nonextended MPX-32, while the
EXT_MPX sections are placed in extended MPX-32.

• SYSGEN provides the linkage required by the split image operating system to
switch between the base and nonbase instruction modes. This additional adaptive
code is placed in the ADP _MPX section which is located in the first 16KW of
memory.

• SYSGEN resolves all references between the extended and nonextended modules.

3.10.2 SYSGEN EXTDMPX Directive

Syntax

The SYSGEN EXTDMPX directive designates where extended MPX-32 is logically
mapped into a task's address space. This directive can be overridden by the
CATALOG and TSM EXTDMPX directives. If a parameter is not specified, the
default is MINADDR.

The EXTDMPX directive can be used on a system wide basis to designate the starting
address of the TSA and extended MPX-32 (if configured). This directive applies only
to the TSA when extended MPX-32 is not configured.

The NOTSA or TSA option is ignored when the load module has been catologed in
the compatible mode, or using the TSA keyword in the Cataloger EXTDMPX
directive. The NOTSA or TSA option is effective only when the load module has been
cataloged using the SYSTSA keyword in the Cataloger EXTDMPX directive. When
this requirement is met, a TSM or M.PTSK request overrides the SYSGEN request.

If the EXTDMPX directive is not used, the default is MINADDR and NOTSA. This
directive establishes the default TSA and extended MPX-32 logical starting address
unless overridden via the CATALOG, TSM, or M.PTSK assignments.

EXTDMPX={logmapbll MAXADDR I MINADDR} [,NOTSA I ,TSA]

3-28

logmapbl is a decimal value between 64 and 2047 that specifies a starting map
block in the task's logical address space where the TSA (optionally) and
extended MPX-32 (if configured) are positioned. The NOTSA or TSA
keyword controls positioning of the TSA.

MAXADDR positions the TSA (optionally) and extended MPX-32 (if configured) at
the top of the the task's logical memory. The NOTSA or TSA keyword
controls positioning of the TSA.

MINADDR positions the l'SA and extended MPX-32 (if configured) at the bottom of .
the task's logical memory above MPX-32 (when mapped in), and below 0
the task's DSECT. The TSA keyword defaults to NOTSA for
MINADDR.

Resource Management Overview

("

Extended MPX-32 (Expanded Execution Space)

NOTSA directs the logical position of the TSA to be above MPX-32 (when
mapped in) and below extended MPX-32 (if configured and at
MINADDR), and below the task's DSEeI'.

TSA directs the repositioning of the TSA in accordance with the MAXADDR,
or logmapbl specification used. For MAXADDR the TSA is located at
the top of the task's logical memory followed by extended MPX-32 (if
configured). For logmapbl, the TSA logically starts at logmapbl
followed by extended MPX-32 (if configured).

Note: An error, ***INVALID KEYWORD, is displayed if NOTSA or TSA
keywords are incorrectly spelled and the image is not built.

At runtime, values for MAXADDR or logmapbl that conflict with the task's
code, data, or partition memory requirements cause an abnormal termination
in the task activation.

3.10.3 SYSGEN Aborts and Errors for Extended MPX-32

If extended MPX-32 errors are detected during SYSGEN, the following aborts may be
generated:

Code Message

SG37 COMMUNICATION REGION + DSECT + ADAPTIVE REGION
EXCEEDS 16KW

SG38 MPX EXTENDED CODE AREA EXTENDS PAST LOGICAL LIMIT

SG39 INVALID MPX EXTENDED CODE AREA LOGICAL MAP START

SG98 ERROR ENCOUNTERED DURING OBJECT PROCESSING PRECEDED
BY MESSAGE DESCRIBING THE ERROR CONDITION

3.10.4 How to Create an Extended MPX-32 System

The following information describes how to create an extended MPX-32 system using
the default modules and/or user-created modules.

MPX-32 Reference Volume I 3·29

Extended MPX-32 (Expanded Execution Space)

3-30

The MPX-32 SOT contains an input object file, OH.32_E. This object file contains
the modules that can execute in extended MPX-32. These modules are:

• Resource Allocator (H.ALOC)

• Executive Subroutine (H.EXSUB)

• File System Executive (H.FISE)

• Memory Management (H.MEMM)

• System Services (H.MONS)

• Program Trace (H.PTRAC)

• Resource Management (H.REMM)

• Resident Execution Services (H.REXS)

• Task Management (H.TAMM)

• Terminal Services (H.TSM)

• Volume Management (H.VOMM)

To create a split image system with any combination of the modules and any user­
created extended MPX-32 modules, complete steps 1 to 6 listed below.

To create a split image system with these modules in extended MPX-32, complete
steps 3 to 6 listed below.

1. Edit JH.32_E, the input source file, to contain the modules that will execute in
the extended MPX-32 region. These modules must meet the extended MPX-32
programming considerations.

2. Use COMPRESS to compress JH.32_E into OH.32_E, the input object file.
COMP32, an SOT file, contains the JCL for compressing nonextended modules
that are listed in JH.32 into OH.32, and extended modules that are listed in
JH.32_E into OH.32_E.

3. Assign OH.32 to logical file code OBJ.

4. Assign OH.32_E, the compressed input object file, to logical file code OBR. If
OH.32_E is not assigned to OBR, the system cannot create a split image and
extended MPX-32 is not available.

5. Specify the SYSGEN EXTDMPX directive (optional). This directive specifies
the starting logical map block number of extended MPX-32. If EXIDMPX is
not specified, extended MPX-32 is mapped in the end of the task service area
(MINADDR).

Note: If EXIDMPX=MINADDR, some languages and utilities (e.g. FORTRAN,
Macro Assembler) may not load (RM65), or may not be able to allocate
dynamic executable memory using M.GO, an M.MPXMAC macro, or
X:GDSPCE, a FORTRAN 77+ subroutine. To avoid this, use
EXTDMPX=MAXADDR at catalog time or in the JCL.

6. Run SYSGEN.

Resource Management Overview

()

(

0 ••

./

Extended MPX-32 (Expanded Execution Space)

3.10.5 How to Relocate Extended MPX-32

For tasks not affected by the size of the operating system, MINADDR is the
compatible mode of operation. For tasks impacted by the size of the operating
system, it is necessary to override the SYSGENed logical position of extended
MPX-32. The procedures for this are:

• Cataloger EXIDMPX directive

• TSM EXTDMPX directive

Figure 3-4 shows the logical task areas that can be created using an EXIDMPX
directive. Descriptions for the EXTDMPX directives follow the figures.

HIGH·

UNUSED

CSECT

EXTENDED
ADDRESS

PACE S

1 28KW

HIGH"
EXTENDED

MPX-32

UNUSED

CSECT

EXTENDED
ADDRESS
SPACE

128KW

HIGH"

UNUSED

EXTENDED
MPX-32

CSECT

EXTENDED
ADDRESS
SPACE

128KW

UNUSED

UNUSED

NONEXTENDED
ADDRESS
SPACE UNUSED

NONEXTENDED
ADDRESS
SPACE

DSECT

EXTENDED
MPX-32

TSA

NONEXTENDEIl
MPX-32

NONEXTENDED
ADDRESS
S PACE DSECT

TSA

NONEXTENDED
MPX-32

LON LON

EXTDMPX-MINADDR EXTDMPX-MAXADDR

" 2MB ON A 3'2J87
16MB ON A 3'2J87 OR 3'1197

Figure 3-4

DSECT

TSA

NONEXTENDED
MPX-32

LON

EXTDMPX-64

8601001

Tasks' Logical Address Space Using Extended MPX-32

MPX·32 Reference Volume I 3-31

Extended MPX-32 (Expanded Execution Space)

3.10.6 CATALOG EXTDMPX Directive

Syntax

This directive designates where extended MPX-32 is mapped into the task's logical
address space when the task executes. This directive may be used to dynamically
override the SYSGEN EXTDMPX directive. If this directive is not specified when
building a load module, the SYSGEN EXTDMPX directive remains in effect when
the task is executed.

The EXTDMPX directive can also be used to control repositioning the task's TSA in
the task's logical address space. When extended MPX-32 is configured, the
EXTDMPX directive positions the TSA and extended MPX-32 in the logical address
space of the task being cataloged. When extended MPX-32 is not configured, this
directive applies only to the TSA. This directive is functionally identical to the
EXTDMPX directive used in previous releases of MPX-32 and the Utilities unless the
optional TSA or SYSTSA keyword is used. Existing load modules that were
cataloged using previous versions of the Utilitites Release 3.2 run in the compatible
NOTSA mode. The NOTSA, TSA, and SYSTSA keywords are mutually exclusive.

Note: If EXTDMPX=MINADDR, some languages and utilities (Le. FORTRAN,
Macro Assembler) may not load (RM65), or may not be able to allocate
dynamic executable memory using M.GD, an M.MPXMAC macro, or
X:GDSPCE, a FORTRAN 77+ subroutine. To avoid this, use
EXTDMPX=MAXADDR at catalog time or within the JCL.

EXTDMPX[=] { logmapbll MINADDR I MAXADDR } [,NOTSA I ,TSA I ,SYSTSA]

3-32

logmapbl is a decimal value between 64 and 2047 that specifies a starting map
block in the task's logical address space where TSA (optionally) and
extended MPX-32 (if configured) are positioned. The NOTSA, TSA, or
SYSTSA keyword controls positioning of the TSA.

MINADDR positions the TSA and extended MPX-32 (if configured) at the bottom of
the task's logical memory above MPX-32 (when mapped in), and below
the task's DSECT. The TSA keyword defaults to NOTSA for
MINADDR.

MAXADDR positions the TSA (optionally) and extended MPX-32 (if configured) at
the top of the task's logical memory. The NOTSA or TSA keyword
controls positioning of the TSA.

NOTSA

TSA

directs the logical position of the TSA to be above MPX-32 (when
mapped in) and below extended MPX-32 (if configured and at
MINADDR), and below the task's DSEcr.

directs the repositioning of the TSA in accordance with the MAXADDR,
or logmapbl specification used. For MAXADDR the TSA followed by
extended MPX-32 is located at the top of the task's logical memory
respectively. For logmapbl, the TSA followed by extended MPX-32 (if
configured), logically starts at logmapbl.

Resource Management Overview

,-~

i\../

()

(

Extended MPX-32 (Expanded Execution Space)

SYSTSA defers positioning the TSA and extended MPX-32 (if configured) until
runtime. At runtime the TSM, M.PTSK, or the SYSGEN specification
directs positioning of the TSA and extended MPX-32.

3.10.7 TSM EXTDMPX Directive

Syntax

This directive dynamically overrides the SYSGEN and CATALOG directives for the
logical starting address of extended MPX-32. This directive is ignored if the task is
multicopy shared, or is a base mode task.

Note: If EXTDMPX=MINADDR, some languages and utilities (i.e. FORTRAN,
Macro Assembler) may not load (RM65), or may not be able to allocate
dynamic executable memory using M.GD, an M.MPXMAC macro, or
X:GDSPCE, a FORTRAN 77+ subroutine. To avoid this, use
EXTDMPX=MAXADDR at catalog time or within the JCL.

The NOTSA or TSA option is ignored when the load module has been catologed in
the compatible mode, or using the TSA keyword in the Cataloger EXTDMPX
directive. The NOTSA or TSA option is effective only when the load module has been
cataloged using the SYSTSA keyword in the Cataloger EXTDMPX directive. When
this requirement has been met, a TSM or M.PTSK request will override the SYSGEN
request.

EXTDMPX[=] {logmapbll MAXADDR I MINADDR} [,NOTSA I TSA]

logmapbl is a decimal value between 64 and 2047 that specifies a starting map
block in the task's logical address space where the TSA (optionally) and
extended MPX-32 (if configured) are positioned. The NOTSA or TSA
keyword controls positioning of the TSA.

MAXADDR positions the TSA (optionally) and extended MPX-32 (if configured) at
the top of the the task's logical memory. The NOTSA or TSA keyword
controls positioning of the TSA.

MINADDR positions the TSA and extended MPX-32 (if configured) at the bottom of
the task's logical memory above MPX-32 (when mapped in), and below
the task's DSECT. The TSA keyword defaults to NOTSA for
MINADDR.

NOTSA directs the logical position of the TSA to be above MPX-32 (when
mapped in) and below extended MPX-32 (if configured and at
MINADDR), and below the task's DSECT.

TSA directs the repositioning of the TSA in accordance with the MAXADDR,
or logmapbl specification used. For MAXADDR the TSA followed by
extended MPX-32 (if configured) is located at the top of the task's
logical memory. For logmapbl, the TSA followed by extended MPX-32
(if configured) logically starts at logmapbl.

MPX-32 Reference Volume I 3·33

Extended MPX-32 (Expanded Execution Space)

Note: An error, *ILLEGAL ENTRY, is displayed on the user's terminal if NOTSA
or TSA keywords are incorrectly spelled.

At runtime, values for MAXADDR or logmopbl that conflict with the task's
code, data, or partition memory requirements cause an abnormal termination
in the task activation.

3.11 Extended TSA (Expanded Execution Space)

3·34

The extended TSA feature is optionally available to any nonbase task. This feature
allows the user to move the task's TSA into the task's indexed (extended) address
space. Positioning the TSA in the task's indexed address space results in more direct
executable address space for code and directly addressable data.

The TSA varies in size from task to task and is greatly increased by the number and
type of I/O resources required by the task. Moving the TSA increases the user task's
direct address space by a minimum of 2 map blocks for tasks with little I/O
requirements and many more map blocks for tasks with heavy I/O requirements.
There is no degradation in performance by moving the task's TSA.

The position of the task's TSA is determined during task loading time and is fixed for
the duration of the task. Each task may choose the position of its TSA.

The EXTDMPX directive has added the optional keywords NOTSA (do not move the
TSA) and TSA (move the TSA) to direct MPX-32 in positioning the task's TSA.
Since the user may need to modify source in order to take advantage of this feature,
the CATALOG EXTDMPX directive is the central point of control for initiating the
move TSA capability. The SYSTSA keyword enables the TSM, M.PTSK, and
SYSGEN specifications for moving the TSA. The user can position the TSA by using
one of the following means:

CATALOG EXTDMPX directive

TSM EXTDMPX directive

M.PTSK SVC caIl

SYSGEN EXTDMPX directive

Tasks cataloged without the NOTSA, TSA, or SYSTSA keywords on the CATALOG
EXTDMPX directive will have their TSA and extended MPX-32 positioned
compatibly with versions of MPX-32 prior to 3.5. When a task is cataloged using the
TSA or NOTSA option on the CATALOG EXTDMPX directive any TSM, M.PTSK,
or SYSGEN request is ignored. When the task is cataloged specifying the SYSTSA
option of the CATALOG EXTDMPX directive, the position of the TSA and extended
MPX-32 (if present) may be determined by anyone of the foIlowing requests (listed
in order of precedence): TSM, M.PTSK, or SYSGEN EXTDMPX.

When the task is executing on a split MPX-32 image, the extended section of MPX-32
is positioned logically above and contiguous with the TSA. The TSA is positioned at
the logical address specified by the EXTDMPX directive keyword; MINADDR,
MAXADDR, or map block number. On non-split MPX-32 images only the TSA is
applicable.

Resource Management Overview

i:',,;, C-l>,

I "/

c

(
Extended TSA (Expanded Execution Space)

3.11.1 Relocating the TSA

User modules that reside within MPX-32 and do not reference data within the TSA of
non-resident tasks do not require code changes.

User modules that reside within MPX-32 and reference data within the TSA of non­
resident tasks may require code changes.

• When the non-resident task's TSA is repositioned at other than MINADDR,
extended addressing must be set to reference data within that task's TSA.

• Resident modules using C.TSAD to obtain the logical start of the non-resident
task's TSA must now use the M.TSAD macro to obtain the task's TSA address
when it is positioned at other than MINADDR.

For tasks not impacted by the size of their TSA, the default NOTSA keyword is the
compatible mode of operation.

Tasks that are impacted by the size of their TSA and reference data structures within
their TSA may require some code changes before repositioning their TSA.

• When the TSA is positioned at other than MINADDR, the task must set extended
addressing to reference data within its TSA.

• Tasks using C.TSAD to obtain the logical start to their TSA must now use the
M.GTSAD system service call to obtain their TSA address when it is positioned at
other than MINADDR.

Figure 3-5 shows the logical task areas that can be created using the EXTDMPX
directive with the TSA keyword. Refer to the appropriate manual for further
descriptions concerning the following: the EXTDMPX directive, refer to Reference
Manual Volume II; the M.TSAD macro, refer to Technical Manual Volume II; and the
M.GTSAD SVC call, refer to Reference Manual Volume I.

MPX-32 Reference Volume I 3-35

Extended TSA (Expanded Execution Space)

HIGH" HIGH" HIGH"

UNUSED

CSECT

UNUSED

DSECT

""EXTENDED
MPX-32

lSA

NONEXTENDED
MPX-32

lOW

ADD
SPA

EXTENDED
RESS
CE

1?f1 KW

NON
ADD

EXTENDED
RESS

SPA CE

lOW

"EXTENDED
MPX-32

lSA

UNUSED

CSECT

UNUSED

DSECT

NONEXTENDED
MPX-32

EXTENDED
ADDRESS
SPACE

128 KW

NONEXTENDED
ADDRESS
SPACE

UNUSED

""EXTENDED

MPX-32

lSA

CSECT

lJIIUSED

DSECT

NONEXTENDED
MPX-32

lOW

EXTDMPX-MINADDR, TSA EXTDMPX-MAXADDR, TSA EXTDMPX.64, TSA

" 2MB ON A 32187
16MB ON A 32167 OR 32197

.. EXTENDED MPX·32 IS PRESENT ONLY ON SPUT IMAGE OPERATING SYSTEMS

ON NON-SPUT IMAGES ONl YTHE TSA IS MOVED BY USING THE EXTDMPX DIREC1lVE

Rl00l

Figure 3-5

EXTENDED
ADDRESS
SPACE

~28KW

NONEXTENDED
ADDRESS
SPACE

Task's logical Address Space Using the EXTDMPX Directive with TSA Keyword

3-36 Resource Management Overview

c

Mapped Out Option (CONCEPT 3212000 Only)

3.12 Mapped Out Option (CONCEPT 32/2000 Only)

The mapped out feature is optionally available to any nonbase task executing on a
CONCEPT 32/2000 processor running an MPX-32 mapped out system image.
The creation of a mapped out MPX-32 image is specified at SYSGEN time via the
MACHINE directive or by an explicit assignment of LFC OBJ to a compressed
mapped out object file. This feature is available on a task by task basis and allows
the task to execute with MPX-32 removed from the task's logical address space.
Executing a task in the mapped out mode results in more direct (execution)
address space for code and directly addressable data with no performance degradation.

Since the user may need to modify source in order to take advantage of this
feature, the CATALOG ENVIRONMENT directive is the central point of control
for initiating the mapped out capability. It has the NOMAPOUT and MAPOUT
keywords added to explicitly define a task's mapped out state as well as the
SYSMAP keyword that defers the request until runtime. The user can specify
the mapped out or mapped in options using :

CATALOG ENVIRONMENT directive

TSM MAPOUT or NOMAPOUT directives

M.PTSK SVC call

SYSGEN MAPOUT or NOMAPOUT directives

Load modules built with a previous version of the MPX-32 Utilities Release 3.2
Cataloger run in the compatible mode with MPX-32 mapped into their address
space. Load modules built without the NOMAPOUT, MAPOUT, or SYSMAP
keywords on the CATALOG ENVIRONMENT directive will run in the compatible
mode. When a task is cataloged using the MAPOUT or NOMAPOUT option
on the CATALOG ENVIRONMENT directive any TSM, M.PTSK, or SYSGEN
request is ignored. When the task is Cataloged with the SYSMAP option on the
CATALOG ENVIRONMENT directive, the mapped out or mapped in option may
be determined by anyone of the following requests (listed in order of precedence):
TSM, M.PTSK, or SYSGEN MAPOUT or NOMAPOUT. Attempts to execute a
mapped out task on other than a mapped out MPX-32 system image will be
ignored and the task will execute mapped in.

The mapped state of MPX-32 with respect to the task is determined during task
loading time and is fixed for the duration of the task.

MPX-32 Reference Volume I 3-37/3-38

a

o

4 Volume Resource Management

4.1 Symbolic Resource Management

4.1.1

The MPX-32 operating system manages all of its major resources with a resource
management scheme. With this scheme, resources are named symbolically in
directories. The directory entries establish the symbolic name to a physical resource
relationship.

Each directory entry for a resource points to a resource descriptor. These resource
descriptors are the central data structure for volume resource management. They
contain all information required to manage the resource. They are stored on disk and
some portions are brought into memory as needed for efficiency. Utilizing this data
structure, all primary resources are managed in the same way.

The symbolic directory entry and the resource descriptor are defined when the
resource is created. A resource descriptor (RD) contains a unique identifier that can
identify the resource internally. The resource identifier (RID) allows the name to be
expressed and used by the system in a short and unambiguous manner.

The MPX-32 operating system also provides mechanisms that address the problems of
static and dynamic resource management.

Static resource management defines the access, protection, and allocation attributes of
a resource. To handle static management considerations adequately, all attributes are
specifiable when the resource is defined (created).

Static resource management provides guarantees to tasks that are activated (Le.,
requested for execution) ensuring the required resources will be available when the
task begins execution.

Dynamic resource management provides methods that allow convenient dynamic
attachment and access to a resource. To handle this requirement, the operating system
provides methods to enable a task to attach or access a resource, to enqueue on a
currently unavailable resource, to gain exclusive access to a shared resource, and to
synchronize on the use of a shared resource.

This generalized resource management scheme means the same protection mechanism,
the same resource management algorithms, and other resource operations work in a
standard and predictable manner on all resources.

This general scheme does not imply users of the resources cannot detect differences
between the types of resources but that, with the exception of memory attachment, the
user may not have to be concerned with the differences. For users having specific
needs or requirements for certain types of resources, a standard resource inquiry
mechanism is available to report all information known about a resource.

Types of Resources

There are four major types of resources managed by the MPX-32 operating system:
disk volumes, directories, files, and memory partitions.

MPX·32 Reference Volume I 4-1

Symbolic Resource Management

4.1.2 Classes of Resources

There are two classes of resources managed by the operating system: shareable and
nonshareable.

Shareable resources can be accessed by two or more concurrently executing tasks. For
example, the resource can be attached to a task while another task is currently attached
to it. Any major resource of the system can be declared as shareable when the
resource is created; for example, defined to the system.

Nonshareable resources can only be used by a single task at any time. For example,
the resource cannot be attached to a task while another task is currently attached to it.
Disk volumes, directories and files can be declared as nonshareable when the resource
is created; for example, defined to the system.

4.1.3 Classes of Resource Users

4-2

The MPX-32 operating system divides the users of resources into three classes: the
owner of the resource, any member of a group of users of the resource, and any other
arbitrary user of the resource. These classes control access rights to the resource.

• resource owners - The power to control access rights to the resource is given to
the owner of the resource. The resource owner is determined at the time the
resource is created. Generally, the resource owner is the creator of the resource.
When the resource is created, the owner assigns the logical attributes and protection
for the resource. These attributes can be changed after the resource is created, but
this privilege is allowed only to the resource owner.

• resource project groups - When a resource is created, the creator of the resource
can define the name of a group of users and specify the resource's attributes and
protection as it applies to all members of that group.

• other resource users - A user who is not the owner or a member of the project
group associated with the resource is also given a set of resource attributes and
protection as it applies within this perspective.

Volume Resource Management

',: C", .' '.

(.-....

"

Symbolic Resource Management

4.1.4 Shareable Resource Control Mechanisms

Shareable resources can be attached and accessed in three ways: exclusive, implicitly
shared, and explicitly shared. These three ways are mutually exclusive of one another.

• exclusive use - When a shareable resource is attached for exclusive use, the
resource is not available for use by any other task until the resource is detached
from the using task.

• implicit shared use - When a shareable resource is attached for implicitly shared
use, the resource can only be attached by another task that is attaching the resource
in a compatible access mode.

• explicit shared use - When a shareable resource is attached for explicit sharing, the
resource can only be attached by another task attempting to attach the resource for
explicit sharing. Tasks that are explicitly sharing a resource do not have to access
the resource in compatible access modes but are expected to use the shared resource
control mechanisms designed to preserve the integrity of the resource. See the
Sharing Files section of this chapter. Memory partitions are always attached for
explicit shared use.

MPX·32 Reference Volume I 4~

General Resource Control

4.2 General Resource Control

The needs for resource control include the following:

• time-critical task must be able to quickly attach and access a resource

• task must be able to enqueue on the access or attachment of a resource

• task must be able to gain exclusive use of a shared resource

• task that is sharing a resource must be able to synchronize on the use of that
resource

Potential users of resources must consider that conflicts for use of resources can occur.
When conflicts occur, the operating system furnishes the user with mechanisms that
aid in resolving the conflicts. These mechanisms are:

• the ability to attach a resource statically or dynamically

• the ability to enqueue for attachment or access to a resource

• the ability to attach a shareable resource for exclusive use

• the ability to synchronize on the use of an attached shareable resource

4.2.1 Enqueue and Synchronous Notification Mechanism

When a task is attempting to dynamically attach a resource, the resource may not be
available. If a denial return is furnished, the task is notified immediately and control
is returned to the task. If a denial return is not furnished, the task is enqueued for the
resource and removed from execution until the resource becomes available.

With the automatic enqueue mechanism, the task can optionally specify the length of
time it is willing to wait for availability of the resource. If the resource is available
within the prescribed time, the task is given normal completion status. If the resource
is not available in time, abnormal completion status is reported to the task.

4.2.2 Dequeue Mechanism

4-4

When an unavailable resource is released, the highest priority task enqueued for the
resource is attached to the resource and is made eligible for execution.

Volume Resource Management

Shareable Resource Access Control

4.3 Shareable Resource Access Control

Mter a shareable resource is attached, the tasks using the resource need mechanisms
for controlling its access. The following mechanisms provide lock control and
enqueue capabilities at attachment and momentary synchronization lock control and
enqueue capabilities at access.

4.3.1 Shareable Resource Locking

When a task desires to gain exclusive access to a shareable resource, the task can
attach to the resource for exclusive use. Once attached, no other tasks in the system
can attach to the resource. The resource remains attached until released.

Once a resource is attached, subsequent requestors of the resource may enqueue for
the resource;

4.3.2 Shareable Resource Synchronization

If a set of tasks desire to synchronize access to a shareable resource, the tasks may all
attach the resource for explicit shared usage and then employ the resource
synchronization locking mechanism. A resource that is synchronization locked should
not be accessed by any task other than those that have secured the synchronous lock,
but the operating system will not prevent concurrent access by other tasks not using
the lock.

Once a resource is locked, subsequent requestors of the'lock may enqueue for the
lock.

MPX·32 Reference Volume I 4·5

Standard Disk Structure

4.4 Standard Disk Structure

A uniform volume structure, coupled with a two-level directory structure, is
implemented in the MPX-32 operating system. The operating system supports
removable disk pack volumes. These volumes are constructed and managed using a
standard format. See the Volumes section of this chapter.

4.4.1 Directory Structure

The operating system incorporates a two-level directory structure that gives each user
of the system a perspective of being the only user of the system. See the Directories
section in this chapter.

The directory structure and the overall volume organization provide fast access for the
time-critical user. Specifically, a directory entry always points to a resource
descriptor. The resource descriptor has associated with it a unique volume relative
address. This reduces all symbolic file names to a short unambiguous name, for
example, the file identifier. By furnishing the file identifier, time-critical tasks are
guaranteed to acquire the file description in one access.

4.4.2 Root Directory

Each removable volume contains a master directory referred to as the root directory.
This directory is the directory of all directories defined on a volume. The root
directory can also contain the definition of other resources which are not directories.
All named resources on the volume can be located through the root directory.

4.4.3 Current Working Directory

4-6

A current working directory is a directory located on a mounted volume. A task can
reference resources defined in the directory without specifying a complete pathname
(see the following pathname discussion). A task can specify a 1- to 16-character
resource name and the operating system will prefix the current working directory and
volume name to form a complete pathname to locate the resource.

In the interactive environment, a current working directory is associated at logon.

In the batch environment, a current working directory is associated when a job starts
execution.

In the real-time (independent) environment, the current working directory is the same
as the one associated with the activator.

All named resources on a volume are accessible from the root directory.

Volume Resource Management

Pathnames

4.5 Path names

4.5.1

A patbname is an ASCII character string used to refer to any named resource defined
on a volume. The patbname contains a sequence of symbolic names. Each symbolic
name is delineated by special characters embedded in the patbname string. The
special characters enable the operating system to directly interpret the meaning of each
symbolic name. The last symbolic name in the patbname string is the target of the
patbname. A patbname target can be a file, directory or memory partition.

With a pathname, any named resource existing on a volume can be located for
attachment or inquiry. To locate a resource, the operating system requires the identity
of the volume and directory containing the resource (target). As previously
mentioned, the special characters embedded in the pathname string uniquely identify
the required components. These required components can be specified or implied.

A pathname that contains each of the required components is referred to as a fully
qualified pathname. Fully qualified pathnames are processed by examining the
patbname string from left to right or the end of the string. _ As each special character is
detected, the identified component is located in the appropriate system structure. An
identified volume is found in the mounted volume table (MVT), a directory is found
in the root directory of the volume and the target resource is found in the specified
directory. If a pathname component is not found. the processing of the pathname is
terminated at that point.

Each active task in the operating system has an associated current working volume
and directory. The current working volume and directory are associated with the task
when it becomes active in the operating system. The current working volume and
directory allow the task to reference resources defined in this association by
implication. That is, the task can reference a resource with a patbname that is not
fully qualified. For example, such a pathname may indicate the pathname execution is
to start at the root directory. In this case, the current working volume is implied. As
another example, only the resource name is specified. In this case, the current
working volume and directory are implied. The task can view this operation as if the
operating system were supplying the missing pathname components. The task must
consider the operating system is concatenating the current working volume or current
working volume and directory to the pathname supplied by the task. This
concatenated string must resolve to a fully qualified pathname to be successfully
executed by the operating system.

Executing Pathnames

When a pathname is presented to a command or service, the operating system parses
the pathname. As mentioned previously, the operating system interprets special
characters embedded in the patbname to have a specific meaning.

MPX-32 Reference Volume I 4-7

Pathnames

Special characters that are allowed to be specified in a pathname are as follows:

Special Character
@
A

(
)

Description
a volume
root directory of a volume
named directory on a volume
named resource on a volume

4.5.2 Fully Qualified Pathnames

4-8

A fully qualified pathname consists of all the information the operating system
requires to locate and identify a resource. Whenever the following pathnames are
presented to the log directive or service, only the specified resource will be logged.

1. @volumeA(directory)resource

@

volume

A

(

directory

)

indicates a volume is being specified

is the 1- to 16-character name of the volume where resource
resides. volume must be physically mounted on the system. The
system determines the physical device where volume is mounted.

indicates the root directory of the volume is being specified

indicates a directory is being specified

is the 1- to 16-character name of the directory on volume in which
resource is defined

indicates a resource is being specified

resource is the 1- to 16-character name of the resource to be located in
directory on volume

2. @volume(directory)resource

@

volume

directory

)

resource

indicates a volume is being specified

is the 1- to 16-character name of the volume where resource
resides

indicates a directory is being specified

is the 1- to 16-character name of the directory on volume where
resource is defined

In this example, the optional special character to indicate the root
directory is not used. However, this pathname is equivalent to the
preceding example.

indicates a resource is being specified

is the 1- to 16-character name of the resource to be located in
directory on volume

Volume Resource Management

c

o

Pathnames

3. @volumel\resource

@

volume

1\

indicates a volume is being specified

is the 1- to 16-character name of the volume where resource
resides

indicates the root directory of the volume is being specified

resource is the 1- to 16-character name of the resource to be located in the
root directory on volume

4.5.3 Partially Qualified Pathnames

The operating system allows the use of pathnames that are not fully qualified. The
use of such a partially qualified pathname causes the operating system to substitute
symbolic names that are not directly specified when the pathname is presented to a
directive or service.

The operating system makes the appropriate substitutions based on the association
with the user's current working volume and current working directory.

1. 1\(directory)resource

1\

directory

)

resource

2. I\resource

1\

indicates the root directory of the current working volume

indicates a directory is being specified

is the 1- to 16-character name of the directory on the volume
where resource is defined

indicates a resource is being specified

is the 1- to 16-character name of the resource to be located in
directory on volume

indicates the root directory of the current working volume

resource is the 1- to 16-character name of the resource defined in the root .
directory of the current working volume

MPX-32 Reference Volume I 4-9

Pathnames

4.5.4 Fully Qualified Pathnames for Directories Only

4-10

Any of the preceding pathnames can be used to locate or reference directories or any
other resources defined on a volume. The following pathname formats can only be
used when referencing directories. These formats are only allowed in the change
directory and log resource commands and services.

1. @volumeA(directory)
@volume(directory)

@

volume

A

(

directory

Usage:

indicates a volume is being specified

is the 1- to 16-character name of the volume where directory
resides

indicates the root directory of the volume is being specified

indicates a directory is being specified

is the 1- to 16-character name of the directory to be located in
volume

These pathname formats are equivalent to each other. If this pathname format is
used with a LOG RESOURCE directive, all files in directory on volume are
logged.

Volume Resource Management

(J'

('"

(

C:
"

Pathnames

2. @volumel\directory

@

volume

1\

directory

Usage:

indicates a volume is being specified

is the 1- to 16-character name of the volume where directory
resides

indicates the root directory of volume is being specified

is the 1- to 16-character name of the directory to be located in
volume

If this pathoame fonnat is used with the CHANGE DIRECTORY directive, the
directory name is changed to directory on volume.

If this pathoame fonnat is used with the LOG RESOURCE directive, directory
on volume is logged.

4.5.5 Partially Qualified Directory Pathnames

The operating system allows the use of pathnames that are not fully qualified. The
use of such a partially qualified pathoame causes the operating system to substitute
symbolic names that are not directly specified when the pathoame is presented to a
command or service.

1. I\(directory)

1\

directory

Usage:

indicates the root directory of the current working volume

indicates a directory is being specified

is the 1- to 16-character name of the directory to be located on the
current working volume

If this pathname fonnat is used with the CHANGE DIRECTORY directive, the
directory would change to directory. If this pathname fonnat is used with the
LOG RESOURCE directory, all files in directory are logged.

MPX-32 Reference Volume I 4-11

Pathnames

4·12

2. @volume"

@

volume

"
Usage:

indicates a volume is being specified

is the 1- to 16-character name of the volume where the required
directory resides

indicates the root directory of the volume is being specified

If this patbname format is used with the LOG RESOURCE directive and the
ROOT= option is reset, all directories in volume would be logged. If this
patbname format is used with the LOG RESOURCE directive and the ROOT=
option is set, the root directory in volume would be logged. This pathname
format is not valid with the CHANGE DIRECTORY directive.

3. "

"

Usage:

indicates the root directory of the current working volume. Most
often, this form of pathname determines the names of all
directories defined on the current working volume.

If this pathname format is used with the LOG RESOURCE directive, all
directories in the root directory of the current working volume are logged. This
pathname format is not valid with the CHANGE DIRECTORY directive.

4. "directory

"
directory

Usage:

indicates the root directory of the current working volume

is the 1- to 16-character name of the directory which resides on the
current working volume

If this pathname format is used with the CHANGE DIRECTORY directive, the
default working directory is changed to the directory specified on the current
working volume. If this pathname format is used with the LOG RESOURCE
directive, the directory is logged.

Volume Resource Management

()

()

(~

Resource Protection

4.6 Resource Protection

4.7

Protection is supplied for environments where protection is desired. When a resource
is created, the user can specify the protection attributes of the resource. Since
protection can be hannful as well as helpful, the user is advised to only protect
resources to the appropriate level required. Each resource defined to the system has
protection attributes that are unique and appropriate for the resource. For example,
files are protected from being accessed in certain modes (see the File Access Modes
section in this chapter), directories are protected from being searched or modified (see
the Protecting Directories section in this chapter), and memory partitions are protected
similarly to files (see the Protecting Memory Partitions section in this chapter).

Any of the major resources managed by the operating system can be protected from
the perspective of the owner of the resource, a member of a group of users of the
resource, or an arbitrary user of the resource. This protection scheme is versatile and
gives the owner of the resource a reasonable means to control the resource.

When a resource is created, the process requesting the creation of the resource is the
resource owner unless otherwise explicitly stated at the time of creation of the
resource. The owner of a resource assigns the attributes of all the levels of protection.

System Administration

With MPX-32, a system administrator (SA) can be designated to control certain
aspects of the operating system.

The SA defines who is allowed to logon the system in the key (M.KEY) file. Persons
defined in this file are referred to as users. Each user logging on the system has an
associated name, referred to as the owner name. While using the system, the user
creates temporary or permanent resources. The owner's name is recorded in these
resources to indicate their origin and to determine who is controlling the resources.
Furthermore, the SA assigns in the M.KEY file the capabilities associated with each
user.

The users allowed to logon the system are associated with a project group. The SA
defines the projects in the project (M.PRJCT) file. There is not a rigid relationship
between the users of the system and the projects to which they belong. Simply, each
user has an associated project group at log on time. Once logged on, users can change
their project group to any name contained in the project file. In some cases, the user
must supply a key to have the project group changed. This key is associated with the
project group name. Management of the project file is the responsibility of the SA
and the system allows only tasks with the SA attribute to modify the key and project
files.

The key and project files are optional. If these files are not present in the system
configuration, any user can log on the system and can be a member of any project
group.

Note: The SA is not restricted by any mechanism in the system. The SA can gain
access to protected resources, can execute privileged system functions, etc.

MPX·32 Reference Volume I 4·13

Volumes

4.8 Volumes

A volume is a fonnatted or unfonnatted storage medium that holds resources (files,
directories, memory partitions) which can be accessed by name. A fonnatted volume
is a disk medium with a standard MPX-32 fonnat. Its resources can be protected
through the fonnatting process or through the mount process.

4.8.1 Overview of Formatted Volumes

4-14

MPX-32 distinguishes three types of fonnatted volumes: system, user, and
multiprocessor. Volume type is detennined when the volume is mounted by the
options specified in the mount request. The system volume is automatically mounted
at system initialization, transparent to the user. Any volume mounted after system
initialization is either a user or multiprocessor volume. The exception is the swap
volume, which is a special-purpose user volume that is mounted on request with the
system volume during system initialization.

Each volume must be physically mounted on a device before tasks can assign and
access its resources. When requesting the physical mount of a volume, the requestor
assigns an access attribute to the volume which designates the volume as public or
nonpublic. This attribute detennines how all subsequent tasks mount and dismount
the volume and access its resources. Once physically mounted, public volume
resources are available for immediate access to any task. Nonpublic volume resources
are available to a task only after the task performs a logical mount of the volume.

Logical mount attaches a task to a nonpublic volume (public volumes do not require a
logical mount) and establishes the task as a user of the volume's resources. A request
for logical mount is either explicit or implicit. An explicit request is made by a task
or user through a mount directive, system service call, or RRS entry supplied during
task activation with the M.PTSK service (M_PTSK). An implicit request is issued
automatically as the result of TSM task activation or a physical mount request for a
.nonpublic volume. Once logically mounted to a volume, a task or user remains
mounted for the duration of a job or interactive session.

When a task no longer requires the use of a volume, it detaches through a logical
dismount and, optionally, a physical dismount of the volume. A logical dismount
detaches the requesting task from the volume. Logical dismount is requested
explicitly through a dismount directive or a system service call. It is requested
implicitly through task exit, end of job, or a TSM $EXIT command.

Physical dismount detaches a volume physically from the device where it is mounted.
Physical dismount is explicitly requested by a task or user through a dismount
command or a system service call. If other tasks or users are active on the volume,
physical dismount is delayed, but all subsequent requests to mount the volume are
denied. Use of resources on a public volume with dismount pending is not denied.

When the last task or user detaches from the volume, the volume is physically
dismounted from the device.

Volume Resource Management

/

()

Volumes

4.8.2 Formatted Volume Type

There are three types of formatted volumes on MPX-32: system, user, and
multiprocessor. On any MPX-32 system, there is only one system volume. All other
volumes on the system are user or multiprocessor volumes.

4.8.2.1 System Volume

The system volume is the volume automatically mounted at system IPL and
initialization. It contains the system bootstrap, system image, system directory
(created as the first directory on the volume), and at least the minimum subset of
system files needed to constitute a viable system.

MPX-32 refers to the system volume by the keyword SYSTEM and treats it as a
public volume. All users can access the volume without issuing any further mount
requests. Additionally, since the system volume is a public volume, it can be used to
acquire temporary files, swap files, and spooled input/output files.

The system volume cannot be dismounted from a running system and cannot be
mounted as a multiprocesor volume.

Note: The MPX-32 operating system can be configured with no system volume
when using 3.0 or later revisions of Reflective Memory System Software
(RMSS). See the RMSS manual for more information.

4.8.2.2 User Volume

A user volume is any volume mounted on a single processor after IPL. Unlike the
system volume, user volumes are not required to have bootstraps, system images, or
system files. A user volume is mounted either as public or nonpublic (see the
Multiprocessor Volume section in this chapter for an explanation of these attributes).

A user volume can be physically dismounted while the system is running, provided
that the volume's use and assign counts indicate the volume is not in use.

MPX-32 Reference Volume I 4·15

Volumes

4.8.2.3 Multiprocessor Volume

A multiprocessor volume is a specially mounted user volume that allows tasks
operating in -separate system environments to concurrently access any volume
resource. To mount a user volume as multiprocessor, the mount request must specify
the SYSID option and the requested device must be hardware and software configured
as a multiport device. Like user volumes, multiprocessor volumes are mounted as
public or nonpublic. In order to mount a volume as multiprocessor, the following
requirements must be met:

• The disk drive must be hardware configured as a dual-ported disk drive (only model
8055 and 8060 disk processors support dual-ported access). If a cache disk
accelerator is used, it must be hardware-configured as multiported.

• The disk drive must be identified as a multiported drive in the appropriate SYSGEN
DEVICE directive.

• The mount request must specify a SYSID parameter to identify the software port
for the caller's operating environment.

4.8.3 Access Attributes for Formatted Volumes

Access to a formatted volume is determined by an attribute assigned when the volume
is physically mounted to a device. In the mount request, the requesting task or user
specifies either the public or nonpublic attribute. This attribute determines how all
subsequent tasks and users mount or dismount the volume.

4.8.3.1 PubliC Attribute

A volume mounted as public is available for resource assignments by all tasks
subsequently activated on the system. No logical mount is required for the tasks to
gain access to the resources on a public volume.

Public volumes can store temporary files, swap files, and spooled input/output files.
The system volume and swap volume (if different from the system volume) are
automatically mounted as public volumes by the system initialization process.

Physical mount or dismount of a public volume can only be requested by the system
administrator. If there are current users on the volume, dismount is postponed and
completes only when the volume resources' use and assign counts indicate that the
volume is not in use.

4.8.3.2 Nonpublic Attribute

4-16

A nonpublic volume is a volume assigned specifically to the tasks that mount it. Any
task or user can request a physical mount or dismount of a nonpublic volume. Once
the volume is physically mounted on a device, each task needing access to its
resources must request a logical mount of the volume. The Resource Management
Module maintains use and resource assign counts on the volume for system
accounting.

Volume Resource Management

c

o

Volumes

4.8.4 Mounting Formatted Volumes

MPX-32 distinguishes two types of mounts: physical mount and logical mount. A
physical mount attaches a volume to a specific device and designates the volume as
public or nonpublic. A logical mount attaches a particular task or TSM environment
to a physically mounted nonpublic volume.

4.8.4.1 Physical Mount

Each volume must be physically mounted to a device before the volume's resources
can be assigned or allocated. When a task or user issues a mount request for a
volume, the mount is completed by J . MOUNT interacting with the system operator.

To request the physical mount of a volume, users or tasks issue the TSM $MOUNT
directive or OPCOM MOUNT directive, call the M.MOUNT system service
(M_MOUNT in base mode), or supply the proper device RRS entry when activating a
task with the M.PTSK (M_PTSK) service. The mount request specifies the device
where the volume should be mounted, whether the volume is public, and, optionally,
if the volume is multiprocessor. Only the system administrator can specify a volume
as public.

Each mount request activates J.MOUNT, the non-resident media mount task, which
issues the following mount instruction to the system console:

MOUNT VOLUME volname ON devmnc
REPLY R, H, A, OR DEVICE.

volname

devmnc

is the 1- to l6-character blank-filled, left-justified name given to the
volume when it was formatted by the Volume Formatter.

is the device mnemonic for the unit where the volume will be mounted. If
a specific channel and subaddress were specified in the mount request, a
specific drive is selected and named in the message. Otherwise, the
system selects a unit and names its complete address in the message.

R,H,A,DEVICE
are the possible responses. R allocates the device listed in the message
and resumes the task. H holds the task with the device deallocated. A
aborts the task. DEVICE allows the user to specify a different device to
allocate.

The system operator informs J .MOU~T when the volume is installed on the requested
device. J .MOUNT then notifies the task or user who requested the physical mount.

During physical mount. mount messages that require operator response display at the
system console. To inhibit the mount messages and operator intervention. specify the
NOMSG option in the mount request. the SYSGEN SNOP option at system
initialization, or the OPCOM MODE SNOP directive.

Once a volume is physically mounted, J.MOUNT reads the volume descriptor,
initializes a memory-resident mounted volume table (MVT) entry for the volume, and
verifies the volume integrity.

MPX-32 Reference Volume I 4-17

Volumes

4.8.4.2 Logical Mount

In addition to a physical mount, all nonpublic volumes also require a logical mount
before a task can access their resources. A logical mount causes allocation of a
volume assignment table (VAT) entry in the task's task service area (TSA). The VAT
entry is linked to the volume's MVT entry, provided the volume is physically
mounted. The volume's use count is incremented in the MVT entry. The task
becomes a user of the volume for subsequent resource assignments and system
accounting.

J.TSM handles the logical mount request in a different manner. The first logical
mount request for a nonpublic volume by a TSM user mounts the task J.TSM to the
volume. After the first logical mount completes, subsequent logical mounts by
TSM users do not affect the use count in the VAT or MVT.

A request for logical mount is either explicit or implicit.

Explicit Mount Request - A task or user issues an explicit request for logical
mount through the TSM $MOUNT directive or M.MOUNT system service
(M_MOUNT in base mode). It may be accomplished as a static assignment or as a
dynamic mount request during task execution.

Implicit Mount Request - An implicit request for logical mount issues as the result
of TSM task activation, a log-on attempt, execution of a $JOB statement with an
ownemame supplied, or a physical mount request for a nonpublic volume. During
task activation, all nonpublic volumes currently mounted in the user's TSM
environment and the task's default working volume (if nonpublic) are implicitly
logically mounted to the task. An implicit logical mount also occurs as the result of a
physical mount request in any form except the OpeOM mount request.

4.8.5 Dismounting Formatted Volumes

MPX-32 also distinguishes two types of volume dismounts: logical dismounts and
physical dismounts. Logical dismount detaches a particular task or user from a
nonpublic volume. Physical dismount detaches a volume from the device where it is
physically mounted.

4.8.5.1 Logical Dismount

4-18

When a task no longer requires the use of a nonpublic volume, it logically dismounts
the volume. Logical dismount detaches a task from a volume by decrementing the
volume's use count in its mounted volume table (MVT) entry and updating the task's
VAT entry.

A request for logical dismount is either explicit or implicit.

Volume Resource Management

o

(~

(~

Volumes

Explicit Dismount Request - A task can explicitly request a logical dismount of a
volume through the TSM $DISMOUNT directive or the M.DMOUNT system service
(M_DISMOUNT in base mode) with no CNP options necessary. For logical
dismount requests, device specificaton is optional.

Implicit Dismount Request - An implicit request for logical dismount issues as a
result of task exit, end of job, or a TSM $EXIT command. When a task exits, an
implicit dismount is performed for all volumes assigned in the task's VAT. A
physical dismount request also causes an implicit logical dismount, unless issued
using OPCOM.

A TSM logical dismount request only restricts the use of the nonpublic volume
resource for the TSM user who issued the request. Any other TSM users who have
the volume mounted in their TSM environment still have access to the volume
resources. A task logical dismount of the volume from J.TSM occurs only as a result
of a logical dismount by the last TSM user environment to have the volume mounted.
Public volumes do not require logical dismount.

4.B.5.2 Physical Dismount

To remove a volume from a device, a task or user must explicitly request a physical
dismount of the volume. Physical dismount is requested through the TSM
$DISMOUNT directive, OPCOM DISMOUNT directive, or the M.DMOUNT service
(M_DISMOUNT in base mode) using a CNP option with bit 0 of the option word set.
The dismount request specifies the volume name, the device where the volume is
mounted, and whether the volume is public.

Each dismount request activates J.MOUNT to handle the dismount. If there are no
other users or tasks on the volume (the MVT entry use count is 0), J.MOUNT initiates
a physical dismount by updating the volume descriptor, deallocating the mount device,
and clearing the MVT entry. J.MOUNT then issues a message to the system console
to inform the operator that the dismount has completed. It also signals by owner
name the user who last requested the volume's physical dismount. If operator
intervention is applicable, the operator must confirm the dismount of the volume. For
removable media, this insures the operator understands when it is safe to remove the
disk pack from the drive.

If there are current users on the volume (the MVT entry use count is greater than 0)
when a physical dismount is requested, the volume is placed in a state of pending
dismount. All subsequent requests to mount the nonpublic volume are denied. Public
volume resource access is still allowed. When the last user or task detaches from the
volume, or the last resource is deallocated on the volume, physical dismount
completes as described.

A physical dismount can be performed for a volume recognized by MPX-32 - even
if the volume is not present or the device containing the volume is not online. This
condition occurs when a volume was improperly removed, the drive was improperly
shut down, or the drive malfunctioned. A physical dismount clears the MVT entry
from the system. It also protects any volume that may have been placed in a drive
where a volume was incorrectly removed. If the volume names do not match,
MPX-32 does not update the information about the volume which is presently being
dismounted.

MPX-32 Reference Volume I 4-19

Volumes

During physical dismount, dismount messages requiring operator response display at
the system console. To inhibit the dismount messages and operator intervention,
specify the NOMSG option in the dismount request, the SYSGEN SNOP option at
system initialization, or the OPCOM MODE SIMM or SNOP directive at any time.

Only the system administrator can request the physical dismount of public volumes.

4.8.6 Automatic Mounting at System Boot

The task SYSINIT automatically mounts the system volume as part of the IPL
process. The volume mounted by SYSINIT is always given the system and public
volume attributes.

SYSINIT mounts the swap volume, if requested by the operator in response to a
system prompt. After the swap volume is mounted, it is used by the system swap per
(J.SW APR) for swap file space allocations. A new swap volume may be established
whenever the system is booted. There is no requirement to generate a new system
image via SYSGEN just to change the swap volume.

If a specific swap volume is not requested at IPL, the system volume is used as the
swap volume. The swap volume is always given the public volume attribute.

4.8.7 Components of a Volume

4-20

A volume is comprised of several components that are used for particular functions.
How a volume's structure is defined and how it is used determines the volume's total
functionality.

The component structures are:

• boot block

• volume resource descriptor

• volume root directory descriptor

• resource descriptors

• resource descriptor allocation map

• volume root directory

• space allocation map

The boot block and volume descriptor must reside in absolute fixed locations; other
portions are located in either relative fixed or nonfixed locations. See Figure 4-1 for a
description of the volume format.

Volume Resource Management

()

(

c-

IPL process for
system volumel
IPL error process
for user volume

Identifies:
- name
- allocation unit

size
- volume protection
- status, etc.
location of
resident system
(on system volume)

Points to
volume root
directory

Resource descriptors
room for maximum
number of resource
descriptors on
volume:
- directories
- files
- memory partitions

Fixed Area at
beginning of volume

Boot Block

Volume
Descriptor

System Pointer

Volume
Root Directory

Descriptor

Directory

Directory

File

File

Directory

File

Memory

Memory

Directory

File

Allocatable space

Volume Root
Directory·

• Directory file contains names of directories on the volume. Points to appropriate
resource descriptors.

Volumes

89D12Z02

MPX-32 Reference Volume I

Figure 4-1
Volume Format

4-21

Volumes

4.8.7.1 Boot Block

The system volume is mounted and used for IPL. When this is done, the boot block
is read into the system memory and executed, bringing in the resident system image.
The process is called a bootstrap. The boot block consists of a fixed number of the
first consecutive blocks on the volume. They are located at the beginning of the
volume to simplify the IPL process. For standard disk devices, the boot block begins
at head 0, track 0, sector 0.

The number of blocks dedicated to the boot block is determined as some common
denominator between the currently used sectoring (192W) and sectoring which is
power-of-two related. The boot block size will be large enough to facilitate the
bootstrap process currently required.

A bootstrap always occupies the boot block. The difference between system versus
user volumes is that system volumes have a system image.

4.8.7.2 Volume Descriptor

The volume descriptor is a form of resource descriptor used to define the volume on
which it resides. Its contents define protection and access privileges of the volume. It
identifies the name of the volume, whether it can be mounted as a system volume, the
volume's granularity, and other attributes, all of which are specified when the volume
is created. The volume descriptor is in a fixed location and is the next consecutive
block following the boot block.

The volume descriptor also points to key structures on the volume by giving their
location (starting block). The volume descriptor identifies the location of the resource
descriptor segments. Two segments are allowed, the first of which is obtained when
the volume is created. A segment descriptor is contained within the volume which
points to this segment and describes the amount of space allocated for descriptors
(number of descriptors/blocks). One additional entry is provided to enable obtaining
additional space for descriptors.

The volume descriptor contains a bootstrap descriptor which contains information
required by the bootstrap about the system image and the device on which it resides.
The bootstrap descriptor also describes the amount of space required for the system
image. Entry space is also provided in the bootstrap descriptor to hold a pointer to the
descriptor of a file having an alternate system image. Either image can be used at
system IPL.

Other information required by the mounting/dismounting process is kept in the
volume descriptor. Some of this information is also brought into an in-memory table
when the volume is attached (mounted). The volume descriptor is structured so the
information required for in-memory use (once the volume has been mounted) can be
moved into memory simply.

4.8.7.3 Resource Descriptors (RDs)

4-22

The resource descriptor describes a particular resource. Its contents define attributes
of the resource, its protection, requirements, limitations, etc.

Volume Resource Management

()

(

(

Volumes

Different types of descriptors are used to describe the generic resources made available
and managed by the operating system. The different descriptor tables are referred to
as directory resource descriptors, file resource descriptors, volume resource
descriptors, and memory resource descriptors.

The different types of resource descriptors are intermixed within the space allocated
for resource descriptors and identified by type by a fixed position field within the
resource descriptor. The initial amount of space reserved for obtaining resource
descriptors is specified when a volume is created. The creator also specifies whether
the space obtained for resource descriptors can be increased.

Resource descriptors are allocated and deallocated from the resource descriptor
segment and tracked via a bit map. Each segment contains its own bit map located at
the end of the segment. When the first segment no longer contains any free
descriptors, a second segment is obtained, if allowed. The descriptor is then obtained
from a second segment. All subsequent requests are then obtained from the second
segment until resource descriptors from the first become available.

All resource descriptors have three sections: a section containing information common
to all types of resource descriptors, a section containing information different for each
type, and a section for user supplied information. Certain resource descriptor
information can only be changed by the system.

Copies of permanent file resource descriptors can reside in the memory resident
descriptor table (MDT). This eliminates the disk access necessary to read the RDs,
and results in a reduction in the amount of time spent when allocating files. Refer to
the Rapid File Allocation Utility (I.MDTI) chapter in MPX-32 Reference Volume II
for details.

MPX-32 Reference Volume I 4-23

Directories

4.9 Directories

4-24

A directory is a list of names of resources, where the entry for each name points to a
resource descriptor (RD) that defines the basic characteristics of the resource
(protection, starting/ending sectors, etc.). The MPX-32 operating system directory
management is based on a two-level structure. Directories are:

• created on a volume

• named and protected when created as specified by the user

• associated with a user at logon (each user has a current working directory associated
with the logon owner name)

• changeable; for example, users can change their current working directory

Figure 4-2 illustrates the two-level directory structure. It deals with a disk volume
containing directories and files.

In the figure, alphabetic characters are used to represent directory names, numbers are
used to represent file names.

The following basic concepts are related to the operating system and the two-level
directory structure:

• volume root directory

• user directories

• access by pathnames

• protection

Conceptually, user directories are all the directories originating to the right of the
volume root in Figure 4-2. All directory access begins at a volume root directory.
The user can move to a different directory or file.

Protection is the means of restricting a user's access to a directory or file. For
example, if directory Y is protected, the user mayor may not be able to access file 40
and if file 40 is protected, the user mayor may not be able to modify file 40 or
perform other types of operations on the file.

Volume Resource Management

()

Directories

(
1

r--- DIRECTORY X 2

3

40

-
VOLUME ROOT

DIRECTORYY DIRECTORY 45
-

50

20

- DIRECTORYZ

21

87D12W08

c Figure 4-2
A Sample Hierarchical Directory Structure

MPX-32 Reference Volume I 4-25

Directories

4.9.1 Volume Root Directory

MPX-32 provides the ability to put all files on a system volume and also allows users
to dismount disk packs (as user volumes). This is the concept of a root directory for a
volume.

A volume root directory is maintained on every volume (see Figure 4-1) and lists the
names of the directories and resources (normally files) on the volume. To get from
one directory to another, the user starts from the volume root directory by using the
special character uparrow (A) to go to the current volume root directory.

4.9.2 Creating Directories

4-26

The create directory function creates a directory and defines its protection and other
attributes. Figure 4-3 illustrates the directory function where a user of directory X
wants to access file 3. (Also see Figure 4-2).

@volumeA(directory)file
A(directory)file

The user must have the ability to traverse the volume root directory and to add entries
in the volume root directory. The user gains access to the volume root directory as its
owner, as a member of its defined project group, or as other.

To create a directory, the owner provides information which is stored in the resource
descriptor for the directory:

• owner name - the name of the owner of the directory; the name can be different
from the owner's logon name.

• project group name - the name of a group of users identified by the owner to have
specific access privileges to the directory

• protection - the set of operations allowed separately for the owner, the defined
project group name, and all others

Once a directory has been created, entries for files or memory partitions are defined
using the create function.

Volume Resource Management

,4-)1

'\J

()

(.

(.

Directories

RESOURCE FILES
DESCRIPTORS

I t • • •
VOLUME (0

ROOT VOLUME

DIRECTORY ROOT

DESCRIPTOR 0
DIRECTORY

DIRECTORY X ~:
DIRECTORYY

FILE 1 l-------.. DIRECTORY
X

FILE2

FILE 40

FILE 45

FILE 3

FILE 50

DIRECTORYZ
FILE

FILE 20 3

FILE 21

UNUSED

UNUSED

NOTES:

1. THE ROOT DIRECTORY DESCRIPTOR POINTS TO THE VOLUME ROOT DIRECTORY.
2. THE VOLUME ROOT DIRECTORY CONTAINS THE NAME OF DIRECTORY X AND

POINTS TO ITS RESOURCE DESCRIPTOR.
3. THE RESOURCE DESCRIPTOR FOR X POINTS TO DIRECTORY X.
4. DIRECTORY X CONTAINS THE NAME OF FILE 3 AND POINTS TO THE RESOURCE

DESCRIPTOR FOR THE FILE.
5. THE RESOURCE DESCRIPTOR FOR FILE 3 POINTS TO FILE 3.

Figure 4-3
Locating a File on a Volume

MPX-32 Reference Volume I

87D12W09

4-27

Directories

4.9.3 Protecting Directories

The creator of a directory can allow or restrict the ability to read the resource
descriptor for the directory and to delete the directory.

• read - allows the directory to be read

• delete - allows the directory to be deleted

• traverse - allows the directory to be traversed via a patbname

These access rights can be applied separately to the owner, the project group, and all
other users.

4.9.4 Protecting Directory Entries

The creator of a directory can allow or restrict the ability to add resources to or delete
resources from the directory he creates.

• add - allows additions to the directory

• delete - allows deletions from the directory

These access rights can be applied separately to the owner, the project group, and all
other users.

4.9.5 Using Directories

4-28

Since all files and memory partitions are located in directories, different directories are
traversed in the process of creating and manipulating resources. Although the ability
to associate a working directory with a user at logon relieves the naive user from
having to know about directory access, many users will be accessing more than one
directory.

The SA establishes a special system file and other files that associate a working
directory with a user at logon. All files the user creates are automatically located in
this directory unless the user specifies otherwise. To access a resource within the
current working directory, only the name of the desired resource needs to be supplied.

The working directory associated with an owner name can be changed to a different
directory by using the change directory function or service and supplying the
pathname to the new working directory.

What the user can do in the new working directory depends on the protection defined
for the directory and whether the user owns it, supplies a project group name to gain
project group access rights to it, or is another user (other).

To locate a file in a directory other than the current working directory, a directory
pathname ending with the name of the file must be specified. To locate a directory
other than the current working directory, a patbname ending with the name of the
directory must be specified. Refer to the Pathnames section in this chapter for a
description of patbname conventions.

Volume Resource Management

o

o

Files

4.10 Files

4.10.1

Files are sets of information stored on a volume. A file is given a unique identity so
it can be referenced as a single entity for processing.

Files can store data, transactions, executable code, command sequences, etc. This
section considers files as resources and does not deal with the structure of information
within files.

Two types of files are allowed by the operating system: permanent and temporary.
Permanent files remain defined to the operating system until they are explicitly deleted
and they can be referred to in two ways: by their given name or by a unique identifier
(RID) assigned by the system which allows faster access to information about the file.
Temporary files are defined in the operating system as long as the task requiring them
is in execution and then they are automatically deleted.

Files are attached for use either statically or dynamically. Attachment for files is a
two phase process, where the first phase is assignment. Once assigned, they can be
opened for use in a particular access mode. The requestor then operates on the file
according to the allowed access. Files can be extended dynamically to obtain
additional space. Shareable files can be accessed by multiple users. Sharing is
normally restricted to compatible access modes.

A fast access mechanism is supported by tvlPX-32 which enables referencing
resources (directories, files, memory partitions) by their resource identifier (RID). All
resources defined on a volume have an associated RID. The creator of the resource
can obtain the resource's RID by specifying the appropriate address in the resource
create block (RCB) when the resource is created. See Chapter 5, Tables 5-16,5-17
and 5-18. This fast access mechanism should not be confused with the fast access
attribute which only applies to files. Refer to the section, Fast Access Attribute in
Chapter 3 of this volume.

File Attributes

The basic attributes of a file are defined when it is created and include:

• size

• extendibility

• access privileges

• sharability

• contiguity

• fast access

• protection

These attributes can only be altered while the file remains defined to the system.

MPX·32 Reference Volume I 4·29

Files

4.10.2 Obtaining File Space

Space is obtained for a file out of unused space on a volume. The user requests space
initially by the create function and subsequently by an extend function. A file can be
extended automatically by setting up appropriate parameters when the file is created.

The space obtained for a file is marked used to prevent duplicate use of the same
space. The space obtained for a file in any single allocation request is called a
segment. Files containing a single segment are contiguous, while those containing
multiple segments may not be contiguous.

There are certain efficiency tradeoffs resulting from obtaining space in different ways.
The most efficient use of space is gained from obtaining contiguous space. This can
be ensured by requesting the total amount of required space when the file is created
and by declaring the file nonextendible. Efficiency gained by using contiguous space
is most noticeable when randomly accessing a file. Files that need to be extendible
can gain some efficiency by extending space in fixed length segments. Although this
is not as efficient as creating a single contiguous file space, it is a significant
improvement over extending in variable length segments.

4.10.2.1 Granularity

The space on a disk volume is measured in units known as blocks. A block is the
logical sector size of all disk volumes the operating system supports. The block size
used is 192 words. To minimize fragmentation of unused space resulting in inefficient
usage of the available space, the space is obtained in allocation units consisting of a
fixed number of blocks.

The allocation unit size is determined only at the creation of a volume and can be any
number of blocks. The default size for an allocation unit is determined by the class of
the device on which the volume is mounted at the time it is created. Once an
allocation unit size is established for a given volume, it is fixed and does not change.
Although the volume can be subsequently mounted on other devices of the same class,
its allocation unit size remains unchanged.

4.10.2.2 Contiguity

For efficiency, it is desirable to obtain contiguous space for a file. In a contiguous
file, space is comprised of a single segment. A file is defined as contiguous when it is
created by indicating it is not extendible, and by not specifying multiple segment
creation option.

4.10.2.3 Extendibility

4-30

Frequently, it is difficult to determine all the space a file requires at creation and it is
necessary to be able to extend the file's space according to changing needs. If
specified at creation, a file's space can be extended beyond its current size.

Volume Resource Management

o

C)

o

Files

For extendible files, it is desirable to specify the lengths (number of blocks) in which
a file will grow. The length is specified when the file is created and becomes the
segment size to use whenever the file is extended. The segment size specified is
rounded to the next highest allocation unit defined for the volume on which the file is
created. If a segment size is not specified, a system default is applied. If the file is
created with the zero option specified, any extensions to the file are first zeroed.

A file can be extended by either fixed or variable length segments . .A fixed length
segment has its maximum increment equal to its minimum increment. A variable
length segment has its maximum increment greater than its minimum increment. For
fixed length segments, if the contiguous space required is not available, the file is not
extended. For variable length segments, the requested amount of space is obtained
except where the request is greater than any available contiguous space. In this case,
the largest available amount of contiguous space is obtained and the user is notified.

A file can be extended either manually or automatically. This is also defined at
creation of the file. For automatic extensions, the user of the file need not be aware of
requirements for additional space. When required, the file is extended without
notification. For manual extensions, the user is notified when more space is needed.
Optionally, the user extends the file via the extend function. If variable length
extensions are requested, the requested size extension is attempted. If the requested
size cannot be obtained, a second attempt is made for the maximum increment size. If
the maximum increment size cannot be obtained, an attempt is made for minimum
increment size. If none of the three sizes can be obtained, a denial is issued. For both
automatic and manual extensions requiring fixed size segments, if the request exceeds
the available contiguous space, the request is denied.

4.10.2.4 Size

A file's size is the amount of space obtained for it. The size of a file is determined at
creation of the file or by extending the file.

The size specified when a file is created is the minimum space allocated to the file
(initial space allocation). The close function will cause a truncation of the file's space
to the file's initial space or its minimum space requirement.

The maximum size allowed for a particular file to be extended can be specified at
creation of the file. The maximum size for the file can also be specified to prevent
users from extending a file beyond prescribed limits.

4.10.3 File Names and Fast Access

It is desirable to reference files in a simple fashion. Files are given symbolic names at
their creation and are then referenced by their name. Such files are called permanent
files. Files created without specifying a name are called temporary files.

All temporary and permanent files are known internally by a unique file identifier
(RID). This identifier is assigned internally at creation of the file and identifies the
resource descriptor block which defines the respective file's attributes and space.

MPX-32 Reference Volume I 4-31

Files

When referencing a file by its name, a given amount of time (overhead) is required to
obtain its definition from a directory. This can be excessive for some time-critical
applications. To eliminate the overhead of directory searches, a file may be referenced
by its RID. All temporary and permanent files can be referenced by their RID. When a
file is created and the fast access attribute is specified, the file's RID remains
unchanged throughout any operation performed on the file. For further details, refer
to Fast Access Attribute section in Chapter 3.

4.10.4 File Protection

In many applications, it is necessary to protect files from certain users and types of
access. The users of a file are granted its use only in the ways allowed them.
Protection can be applied to safeguard attaching and/or extending files.

Protection of files is established by the creator/owner at creation of the file. Only the
owner of the file can specify or modify the file's protection attributes.

4.10.5 Permanent Files

Permanent files are named files and are permanent to the system until explicitly
deleted. They are known to the system by one directory entry and are defined to the
system at their creation. There can be one and only one definition for a named file.
This definition is maintained and known to the system via a resource descriptor.

Permanent files can be used either shared or nonshared. This is determined by the
owner/creator. Permanent files are shared according to rules defined previously.

The allowed uses of a file can be altered at creation, assignment, and open. For files,
attachment is comprised of the last two phases (assign and open). By the time a task
accesses a file, all uses have been defined and verified. How each of these functions
alters the context of file use is described in the following sections.

4.10.6 Creating Files

4-32

The create function allocates file space, defines the attributes of a file, and builds a
resource descriptor which defines the file space. This resource descriptor also contains
the attributes of the file.

For permanent files, the user-supplied file name associates the directory entry,
resource descriptor (file attributes), and the file space. For temporary files and fast
access files. a unique file identifier is supplied by the system. This provides an
alternate method of association with a file and its attributes.

Files exist when they are created by the operating system. The creation of a file is
accomplished as requested by the successful completion of an executed create
function. Once a file is created. it can be attached and accessed by its name or
identifier.

Volume Resource Management

o

o

(

(

4.10.7

Files

At creation, the attributes of a file are defined either explicitly, by providing them as
specified parameters or implicitly, by omitting certain parameters. If parameters are
omitted, reasonable defaults, values, or attributes are assumed. If there is no
reasonable default for a parameter, the parameter must be supplied by the user.

Attaching Files

To secure a file for use, the file must be attached. When attachment of a file is
requested, the requestor is granted attachment on the basis of both the file's defined
allowances to the requestor and its availability. The two phases required for the
attachment of files are assignment and open.

4.10.8 Assigning Files

File assigning by the assign function is an attachment phase that associates a resource
with a task by a logical file code.

Nonshareable files allow only exclusive use. Once nonshareable files are assigned,
they cannot be used by others until released. A requestor of a nonshareable file that is
already assigned is enqueued or optionally denied on the request.

A requestor can also gain exclusive use of a shareable file by requesting its exclusive
assignment. As in the previous case, the requestor is enqueued or optionally denied if
the file is currently assigned to another task.

Shareable files can be shared in two ways: implicitly or explicitly. If shared use is
requested when the file is assigned, the file is explicitly shared. Assignment to a file
for explicit sharing is allowed only if there are no other tasks attached to the file or if
all others who are attached are explicitly sharing the file.

If neither shared or exclusive is specified when assigning a shareable file, it is
implicitly shared. This is allowed only if no other tasks are attached to the file or if
all other tasks are implicitly sharing the file in a compatible access mode.

In summary, the first task that attaches a file establishes the context of use for
subsequent requestors of the file. The context established by the first task can be
changed only when the file is detached from the tasks.

The desired access mode(s) for the requested file may be specified when assigning the
file. This defines the intended access for the file attachment.

A specific access mode or multiple access modes can be requested when assigning the
file for implicitly shared use. The attachment is granted if the requested access
mode(s) are compatible with those of users currently attached to the file.

Access modes can be omitted when assigning a file for implicit shared use. In this
case, the only access ensured is read access. Other access modes can be requested
when later opening the file. As a result, the requestor may be enqueued for the
request since there is no guarantee the requested access mode will be compatible with
other users.

MPX-32 Reference Volume I 4-33

Files

The required access mode(s) need not be specified for explicitly shared files. For
explicit sharing, there is no compatibility requirement since all sharers are expected to
synchronize and use locking to maintain file integrity. It is not possible for explicit
sharers to contend for file use as a result of specified access modes when opening the
file. They are guaranteed use of the file in the requested mode.

Assignment parameters are defined explicitly by providing them as specified
parameters or implicitly by default.

4.10.9 Opening Files

A file must be assigned before being opened. A file must be opened before any
operations to the file are allowed. The desired file is referenced as a required
parameter to the open function.

The access mode for a file is determined at open. The type of access allowed depends
on the allowances or restrictions associated with a file at creation and assignment.

The access mode in which the file is opened determines the position within the file.
The open function performs logical connections of control table information between
the file, system, and its requestor. Also, if required, a device handler is initialized for
the device where the file resides.

4.10.10 File Operations

4·34

The operating system provides a set of operations which can be performed on files.
The data structure within the file itself is of no concern to the operating system. The
lowest structure recognized by the operating system is the block.

Files can be accessed either sequentially or randomly. The intended access is
specified when opening the file. Files opened as sequential are operated on in a
sequential manner. Subsequent operations advance one block from the previous
position in the file. Files opened as random are processed or operated on in a random
manner. Each operation supplies a specific file relative block nwnber to which the
operation is performed.

The access method is determined at open by examining the random access indicator
contained in the file control block (FeB). If the random access indicator is not set,
the access method of the file is determined to be sequential access.

Three general types of operations are provided for use with files:

• read - transfer data from a file to memory

• write - transfer data from memory to a file

• position - move to an indicated position in a file

For read and write operations, parameters are supplied denoting: the memory address
to or from which the data is to be transferred, the number of data bytes to transfer and
the position in the file (implied for sequential access) at which the operation is to
commence. Position can also be specified independently of read or write operations,
in which case, no data transfer operations are performed during the position function.

Volume Resource Management

(
Files

4.10.10.1 Sequential Access

Sequential access gives the user the ability to transfer data to or from a file in a
sequential manner. The user is allowed to specify a buffer address aligned on an
arbitrary byte boundary and specify an arbitrary transfer count in bytes. The transfer
granularity to disk files is 192 words. This means transfers to or from a file are
executed in multiples of 192 words, for example, disk blocks. During output
operations to a disk file, only the requested number of bytes are output to the disk file.
Any bytes remaining to acquire the next highest 192 word boundary are automatically
zeroed by the disk controller.

The operating system recognizes file granularity. It does not recognize the data format
inside a file, therefore, the file system is not sensitive to record boundaries. A file
must be read in a form that is compatible with the way the file was written.

4.10.10.2 Random Access

If the random access indicator is set in the file control block (FeB) when a file is
opened, the access method of the file is determined to be random access. This means
the user must specify the file relative block number (192 words) where the requested
read or write operation is to begin. As with sequential access, the user is allowed to
specify a buffer address that starts on an arbitrary byte boundary and an arbitrary
transfer count in bytes. Also, as in sequential access, the operating system is only
cognizant of the 192 word granularity of a file, therefore, data formats denoting record
boundaries are not detectable.

The operating system supports extendible random access files. Using auto­
extendibility on random access files can cause the file to become discontiguous;
therefore, the efficiency of a program performing random access disk I/O might be
impaired. To prevent this, create the file with sufficient size to allow for possible
extension.

If automatic file extension is to be inhibited, the file must be created with the
appropriate attributes through VOLMGR. If autoextendibility is inhibited and an
attempt is made to access beyond the file, an EOM indicator is set.

It is necessary to initialize the file with a known data pattern and detect null records­
areas within the file that contain the initial data pattern. As an option, a file may be
sequentially initialized with a pattern of binary zeroes at creation.

4.10.11 File POSitioning

File positioning provides the capability for moving within a file without transferring
data to or from the file. The rules for file positioning are dependent on which access
method is in effect on the file. Two types of file positioning are allowed:

• absolute - the ability to position to the beginning or end-of-file

• relative - the ability to move to a location in a file with respect to the current
position in the file

MPX-32 Reference Volume I 4-35

Files

4.10.11.1 Absolute File Positioning Operations

Absolute positioning allows the user to position to the beginning-of-file or to the end­
of-file without regard to the current position in the file. Absolute positioning is used
with sequential and random access methods. Three operations are provided for
absolute positioning in a file:

• rewind file - position to the beginning-of-file and indicate beginning-of-medium

• backspace file - position to the beginning-of-file. Same as rewind.

• advance file - position to the end-of-file and indicate end-of-file. Any attempt to
advance a file beyond end-of-file causes an end-of-medium to be indicated.

4.10.11.2 Relative File Positioning Operations

Relative positioning allows the user to position to the beginning-of-record or to the
end-of-record with respect to the current position in the file. Relative positioning can
be used only with the sequential access method. Two operations are provided for
relative positioning in a file:

• backspace record - backspace a file block (192 words). The beginning-of-medium
indicator is set if this condition is detected.

• advance record - advance a file block (192 words). The end-of-file indicator is set
if this condition is detected. Additionally, the end-of-medium indicator is set if
positioning beyond end-of-file is attempted.

4.10.12 File Access Modes

4-36

File access modes control allowed access methods and combinations of operations
allowed to a file. The operating system defines five allowable access modes: read,
write, modify, update and append.

The mode in which a file is to be accessed is specified when the file is opened. Only
one access mode can be specified at open.

The following chart shows the access modes and the conditions determined when the
file is opened.

Volume Resource Management

()

Files

Table 4-1
File Access Modes and Conditions

Requested Allowed Allowed File Position EOF Position EOF Position
Mode Operation Access Methods at Open at Open at Close

Read Read, Sequential First block Highest Same position
ABS Position Random of file sequentially as at open
REL Position written block

number + 1

Write Read, Write, Sequential First block First block Highest
ABS Position, only of file of file sequentially
REL Position written block

number + 1

Modify Read, Write Sequential, First block Highest Same position
ABS Position, Random of file sequentially as at open
REL Positon written block

number + 1

Update Read, Write, Sequential, First block Highest Equal to position
ABS Position, Random of file sequentially at open or new
REL Position written block highest sequentially

number + 1 written block
number + 1 if
data was appended
to the file

Append Read, Write, Sequential * Highest Highest New highest
ABS Position, only sequentially sequentially sequentially
ReI Position written block written block written block

number number + 1 number + 1

• EOF refers to the actual end-of-file block (or defined end-of-file), not to any
software end-of-file (either blocked or unblocked) contained within the file.

• The EOF block is equal to the first block of a file when the file is created.

• The EOF block is equal to the last block of a file if the file is optionally
initialized with the binary zero pattern when the file is created.

* For blocked files, the file position at open is placed at the last blocked software
end-of-file before the defined end-of-file block.

4.10.12.1 Read Mode

A file opened in read mode allows read-only access to a file. The position of the file
after opening is the first block of the file. Read operations operate from the first block
of the file to the defined end-of-file.

Sequential and random access methods are allowed in the read mode. Additionally,
absolute and relative positioning is allowed with respect to the restrictions appropriate
to blocked files.

MPX-32 Reference Volume I 4-37

Files

4.10.12.2 Write Mode

A file opened in write mode allows sequential read and write access to a file. The
position of the file after opening is the first block of the file. Write operations operate
from the first block of the file to the last block of the file's allocated space (EOM).
With extendible files, additional file space can be automatically allocated when the
EOM condition is detected and the file is being written.

The write mode is provided to write the initial data contents of a newly created file.
Write mode can also establish new data contents for a file (Le., file rewrite). When a
file is opened in write mode, the end-of-file (EOF) indicator is automatically set to the
first block of the file. This step effectively discards the current data contents of the
file. As the file is sequentially written, the end-of-file indicator is moved and logically
exists at the end of all data that has been recorded in the file. Operating in this
manner allows the file, if shared, to be read while a single writer is establishing new
data contents for the file. This method of operation is only allowed when the writer is
the first task to open the file. Readers opening the file after the writer are able to read
all data the writer has written. Attempts by any reader to read data beyond the writer's
current position in the file cause that reader to be suspended (Le., blocked from
execution), until the writer has established additional new data in the file. The results
of this method of operation are only predictable when all sharers of the file are
accessing it sequentially. If the writer cannot be certain of sequential access, the
writer should attach (assign or open) the file for exclusive use.

When a file opened in the write mode is closed, the end-of-file position is recorded in
the resource descriptor for the file. This enables determination of the required size of
the file, and all existing and unused extensions to the space of the file are returned to
the pool of allocatable space on the volume.

Only the sequential access method is allowed in the write mode. Additionally,
absolute and relative positioning is allowed but discouraged if the file is to be
concurrently shared with readers on the file.

4.10.12.3 Modify Mode

4·38

A file opened in modify mode enables read and write access to a file. The position of
the file after opening is to the first block of the file. Modify operations operate from
the first block of the file to the defined end-of-file.

The modify mode is provided to allow modifications to be made to the existing data
contents of a file.

For blocked files, modify operations can rewrite or change the position of the blocked
software end-of-file. However, modify operations are still constrained to operate
within the original range of the first block of the file to the defined end-of-file block.

Sequential or random access methods are permitted in the modify mode. Since all or
portions of the existing data in the file can be modified, other tasks are not able to
gain concurrent access to the area of the file operated on by the modify mode.
Additionally, absolute and relative positioning is allowed with respect to the
restrictions appropriate to blocked files.

Volume Resource Management

.{"'\ I\.y

o

(

(

Files

4.10.12.4 Update Mode

A file opened in update mode enables read and write access to a file. The position of
the file after opening is to the first block of the file. Update operations operate from
the first block of the file to the last block of the files allocated space (EOM). With
extendible files, additional file space can be automatically allocated when the EOM
condition is detected and the file is being written.

The update mode is provided to allow modifications to be made to the existing data
contents of a file and to append new data to the file. Sequential and random access
methods are allowed in the update mode. Since existing data in the file can be
modified and new data can be appended, other tasks cannot gain concurrent access to
any portion of the file.

Although sequential and random access methods are permitted, appending new data to
a file must be done sequentially regardless of which access method is in effect on the
file. Additionally, absolute and relative positioning is allowed with respect to the
restrictions appropriate to blocked files.

4.10.12.5 Append Mode

A file opened in append mode allows new data to be appended to existing data in a
file. The position of the file after opening is at the end of existing data in the file.
Append operations operate from the file position at open to the last block of the file's
allocated space (EOM), i.e., rewind cannot go past the file's position at open. With
extendible files, additional file space can be automatically allocated when the EOM
condition is detected and the file is being written.

As new data is sequentially appended to an existing file, the end-of-file indicator is
moved and logically exists at the end of all data that has been appended to the file.
Operating in this manner allows the file, if shared, to be read by concurrently
executing tasks while new data is being appended to the file. This method of
operation is only allowed when the appender is the first task to open the file. Readers
opening the file after the appender are able to read all data the appender has written.
Attempts by any reader to read beyond the appender's current position in the file
cause that reader to be suspended (Le., blocked from execution) until the appender has
appended additional new data to the file. The results of this method of operation are
only predictable when all sharers of the file are accessing it sequentially. If the
appender cannot be certain of sequential access, the appender should attach (assign or
open) the file for exclusive use.

When a file opened in the append mode is closed, the end-of-file is recorded in the
resource descriptor for the file. Append mode, unlike write mode, does not return
unused space at the end-of-file to the pool of allocatable space on the volume.

Only the sequential access method is allowed in the append mode. Additionally,
absolute and relative positioning is allowed but discouraged if the file is to be
concurrently shared with readers on the file.

MPX-32 Reference Volume I 4-39

Files

4.10.13 Sharing Files

Shared access allows simultaneous access for users of differing access modes but
places restrictions on certain combinations for implicit sharing. Users who implicitly
share a file must open the file with access modes compatible with all other users of the
file. The following summarizes the compatible modes for any single access mode:

Access Mode

Read
Write
Modify
Update
Append

Compatible Access Mode

read, write*, or append
read*
append+
none
read or modify+

* Read and write are compatible only if the writer is the first task attached to
the file. If not, the writer must wait until the reader closes the file.

+ Append and modify are not compatible for blocked files.

Explicit sharing of a file allows the user to intermix all access modes, some
combinations of which are considered incompatible for implicit sharing.
Synchronization and file locking functions can be used to ensure locking out
simultaneous accesses to files when multiple writers/readers are sharing a file
explicitly and could thus yield undefined results. Explicit sharers do so knowingly,
and therefore, must perform their own synchronization and locking control.

4.10.14 Closing Files

4-40

Closing a file prohibits the requestor from subsequent operations to the file. The file
is then closed from the perspective of the requestor. For shared files, the file does not
become closed to other sharers of the file.

When a user closes a file after implicitly sharing it, the access modes available to
others for the same file can change. This is determined at the close of the file.
Closing can then allow the system to complete other requests for assigning or opening
the file, not formerly allowed.

In some access modes, the end-of-file is determined at its close. This also allows
determination of the required size of a file and enables the return of unused space.
For implicitly shared files, it can also mean that areas not previously accessible to
other sharers become accessible after any single-sharer closes.

Volume Resource Management

c···.··."'· v""· :
,'"

o

(

(

Files

4.10.15 Detaching Files

A file can be detached by requesting the deassign function. This frees the file and
returns it as an available resource to the system. The freeing of the file is from the
perspective of the requestor of the detachment. If the file is being shared and is
attached by other sharers, the sharers maintain attachment of the file. In all cases,
when a file is detached, its use count is decremented. The file is completely returned
to the system when the use count is decremented to 0 (file not in use). The file then
becomes available to other requestors who may have been suspended due to the file
having been in use.

4.10.16 Deleting Files

Permanent files are deleted by using a delete function. When the file is deleted, the
space obtained for the file is returned to the volume by marking its previously
occupied allocation units as available in the volume's allocation map. The entry for
the file is removed from its associated directory.

4.10.17 Temporary Files

Temporary files are a type of file resource specified and defined when they are created
by the create function. They are deleted from the system when the creator of the file
terminates execution.

Temporary files do not have names associated with them. They are referenced by a
unique assigned identifier called a resource identifier that contains an integer index
pointing directly to the file's resource descriptor.

4.10.17.1 Creating Temporary Files

Temporary files are created by executing a create function requesting a temporary file.
All parameters allowed for creating permanent files are also allowed for temporary
files except fast access. Because temporary files have no name and must be referenced
by their assigned identifier, they are already fast access. For example, their resource
descriptor can be found in one disk access. Temporary files can also be created by the
assign function.

Typically, most parameters allowed for creating a temporary file are not required.
When a temporary file is to be made permanent, these parameters establish the
attributes of the file to use when the file becomes permanent.

4.10.17.2 Assigning Temporary Files

Temporary files must be assigned by the assign function before they can be opened.
Assignment establishes the tables required to use the file and reserves the file for use
by the requestor.

Existing temporary files, those having previously been created by a create function,
are assigned (assign function) by using their resource identifier.

MPX·32 Reference Volume I 4·41

Files

The resource identifier is given to the requestor when the file is created. The
requestor also gives a logical file code (three characters) which becomes logically
equated to the resource identifier. Once the file has been assigned, it can be
referenced by its logical file code.

Temporary files not created by the create function can be both created and assigned by
the assign function. For such cases, the initial space allocated is specified by the
assigner or is a fixed number of allocation units.

Temporary files created at assignment are extendible. Reasonable defaults are
assumed for parameters normally specified when creating a temporary file. The device
where the temporary file is to be created can be specified indirectly by volume name.

4.10.17.3 Opening and Accessing Temporary Files

Temporary files are accessed initially by executing an open function. The access
modes that the file can be opened in are specified when assigning the file. The rules
for this function are the same rules that apply to permanent files.

4.10.17.4 Deleting and Detaching Temporary Files

The space used by a temporary file is freed by executing a deassign function.
Deletion of a temporary file is implied when the file is detached.

Because all files are detached at termination of a task, temporary files are then
implicitly deleted upon termination of the using task, whether the termination is
normal or not. The task has the ability to make a temporary file permanent before it
terminates.

4.10.17.5 Making Temporary Files Permanent

4·42

Temporary files can be made permanent through the use of the M.TEMPER system
service (M_ TEMPFILE TO PERM). Execution of this function creates an entry in the
directory specified by the pathname. The entry points to the resource descriptor for
the temporary file. For further information concerning directories and/or pathnames,
refer to the section Directories and the section Pathnames in this chapter.

Volume Resource Management

I--~.·.\

'-J

(~

('

Memory Partitions - Nonbase Mode of Addressing

4.11 Memory Partitions - Nonbase Mode of Addressing

4.11.1

Memory partitions are named areas of physical memory that can be shared by
concurrently executing nonbase mode tasks. Each memory partition has a relationship
with physical memory and with the logical address space associated with a task.
There are two types of memory partitions: static and dynamic.

Static partitions are defined when the operating system is generated using SYSGEN
and are created when that system is booted. When the static partition is defined, its
physical location, size, and logical location are specified. Partitions declared in this
manner permanently reserve the specified physical area of memory, which remains
reserved until the system is regenerated. Static memory partitions cannot be deleted.

To make the physical region available to the logical address space of a task, the task
must include the partition. Certain static partitions such as GLOBALnn and
DPOOLnn have known names to the system and can be automatically included.
MPX-32 specifically allows multiple definition of the same physical area. This allows
the same physical area to be mapped into a different logical address space for different
tasks. It also can be used to allow multiple partial map block partitions to be included
in the same map block.

Dynamic memory partitions are created by system utilities. When the memory
partition is defined, the user specifies the partition's relationship to the task's logical
address space. The partition's relationship to physical memory, for example, its size
is also specified, but the physical memory is not allocated until the dynamic partition
is allocated to a task.

Creating Memory Partitions

When memory partitions are created, the attributes of the partitions are defined. These
attributes include:

• name
• protection

• size
• location in logical address space

When a partition name is used to attach the partition, the size, location, and other
attributes are validated.

4.11.2 Protecting Memory Partitions

The protection allowed to memory partitions is the same as the protection allowed to
any other resource managed by the operating system, for example, owner, project
group, and other. In addition to the common forms of resource protection, partitions
can also be protected from write access.

MPX-32 Reference Volume I 4-43

Memory Partitions - Nonbase Mode of Addressing

4.11.3 Attaching Memory Partitions

To attach a partition, the partition must have been created. The requestor is granted
access to the partition based on the partition's access rights defined for the requestor.
Valid access rights for partitions are delete, read and write. For example, a particular
user cannot attach a partition that is protected from the user.

Memory partitions are always attached to a task for explicit shared use. A task is not
denied attachment of a shared partition if the user for whom the task is executing has
the proper access rights.

Once a partition has been attached, the nonbase mode task gains access to the partition
via the M.INCLUDE and M.EXCLUDE system services. The M.INCLUDE service
maps the partition into the task's logical address space, providing the space for the
partition is not currently allocated.

4.11.4 Accessing Memory Partitions

Once mapped into the task's logical address space, the task accesses the space of the
partition by using memory reference instructions. If the user associated with the task
does not have write access to the partition, the task is prevented from modifying the
contents of the partition.

4.11.5 Detaching Memory Partitions

The M.EXCLUDE service allows the task to map a memory partition out of the task's
logical address space. This makes the space available to include another partition or
to use the space in some other manner. A partition that has been excluded from the
task's address space cannot be referenced until it is again included.

Detaching memory partitions informs the system that the task no longer requires a
guarantee that the partition will remain available for access. If the partition is mapped
into the task's logical address space at the time of the detachment request, the
partition is excluded from the task's address space.

Detachment of a static memory partition does not release the physical memory
assigned to the partition nor does it modify the contents of the partition.

Detachment of a dynamic memory partition releases the physical memory assigned to
the partition if no other tasks currently have the partition attached. When the physical
memory used by a dynamic partition is released, the contents of the memory locations
are made available for any type of physical memory request.

4.11.6 Deleting Memory Partitions

4-44

Static memory partitions cannot be deleted. Dynamic memory partitions can be
deleted using the M.DELETE service.

Volume Resource Management

C·

."
I· '

o

Memory Partitions - Nonbase Mode of Addressing

4.11.7 Sharing Memory Partitions

Memory partitions can be attached and accessed by concurrently executing nonbase
mode tasks. The users of shared partitions have the use of shared resource
synchronization features.

Additionally, these users can develop their own protocol for sharing the resources.

4.12 Shared Images

Shared images are named areas of physical memory that can be shared by
concurrently executing base mode tasks. Shared images can be absolute or position
independent.

Absolute shared images have fixed logical addresses within a task's logical address
space.

Position independent shared images do not contain any relocatable address references.
Any references outside of the shared image are relative to a base used at execution
time. The logical address of a position independent shared image is defined to the
task at link time.

A shared image can contain both read-only and read/write program image sections.
At link time, a specification can be made to activate the shared image as single copy
or multicopy. A single-copy shared image (the default) has only one copy of both the
read only and the read/write sections in memory. Both sections are shared by all tasks
requesting inclusion of that image.

A multicopy shared image has a separate copy of the shared image for each including
task. A multicopy-shared shared image has a single copy of the read only section for
all tasks and a separate read/write section for each task.

4.12.1 Created Shared Images

Shared images are created by the LINKER/X32 when the attributes of the shared
images are defined. These attributes include:

• name
• protection

• size
• location in logical address space

The size, location, and other attributes are validated when a shared image name
attaches the shared image.

4.12.2 Protecting Shared Images

The protection allowed to shared images is defined at link time and is the same as the
protection allowed to any other resource managed by the operating system. This
protection is the owner, project group, and other scheme. In addition to the common
forms of resource protection, shared images can also be protected from write access.

MPX-32 Reference Volume I 4-45

Shared Images

4.12.3 Attaching Shared Images

To attach a shared image, the shared image must have been created. The requestor is
granted access to the shared image on the basis of the shared image's access rights
defined for the requestor. Valid access rights for shared images are read and write.

The access mode is requested at link time and a denial is made at include time if the
requested mode is incompatible with the shared image definition.

Shared images can be included into a task's address space by preassignment or
dynamic inclusion. A preassigned image is loaded and/or mapped into the referencing
task's logical address space at activation time and remains there until completion or
until the task excludes it via the M_EXCLUDE or M.EXCLUDE system service. A
dynamic image is loaded and/or mapped upon request by the M_INCLUDE or
M.INCLUDE system service.

4.12.4 Accessing Shared Images

All shared images to be included by a task, whether preassigned or dynamic, must be
defined by the user at link time.

When a shared image is linked, a version number and compatibility level can be
specified. This information is copied into the preamble for each task referencing the
shared image at link time, and is used to verify that the shared image requested at
activation is compatible with the shared image defined at link time.

The physical address of a shared image can be specified at link time enabling systems
with shared memory to share the image. This feature should be used with caution
because a task is given an immediate denial if the requested physical memory is
allocated to another task.

A shared image can be defined as resident at link time. A resident shared image is
then loaded into memory using the OPCOM INCLUDE directive, and remains in
memory until removed by the OPCOM EXCLUDE directive.

4.12.5 Detaching Shared Images

4·46

The M_EXCLUDE and M.EXCLUDE services allow the task to remove a shared
image from the task's logical address space. This function makes the space available
to include another shared image or to use the space in some other manner. A shared
image that has been excluded from the task's address space cannot be referenced until
it is again included.

If write back is requested, the read/write section is written back to the disk. If write
back is not requested, there is no write back. Write back is not performed until all
users have detached the shared image. The physical memory occupied by the shared
image is then available to other tasks, providing the image is not included as resident.

Volume Resource Management

C,'\
. ./

('

Multiprocessor Shared Volumes

4.13 Multiprocessor Shared Volumes

The multiprocessor shared volume is an MPX-32 feature that allows tasks, operating
in separate system environments, to obtain concurrent directory and file access. The
operating system maintains resource integrity against incompatible access or usage
modes on these resources within the scope of volume management described in this
chapter.

A volume is treated as multiprocessor only if it has been software mounted as
multiprocessor on a multiported drive. A multiported drive is defined to be any disk
drive that is hardware configured with the ability to communicate concurrently with
up to sixteen independent processors. The hardware characteristics of the disk drive
are defined by the appropriate DEVICE directive supplied to the SYSGEN utility. The
software characteristics of the volume are defined by the presence or absence of a
SYSID parameter when the volume is mounted.

The synchronization mechanism for multiprocessor resources is maintained by
software information kept in the resource descriptor (RD). Therefore, consideration
must be given to system performance and access restrictions on these resources. The
specific performance and restriction issues applying to multiprocessor resources are
discussed in the Multiprocessor Resource Access and Multiprocessor Resource
Restrictions sections.

Note: The system volume cannot be a multiprocessor volume.

4.13.1 Multiprocessor Resources

A multiprocessor resource is defined as a volume resource residing on a volume
mounted as a multiprocessor. Permanent files, temporary files, directories, the volume
descriptor map (DMAP) and the volume space map (SMAP) can be multiprocessor
resources. Memory partitions and space definitions are never treated as multiprocessor
resources regardless of where they reside.

Because the resource synchronization mechanism for multiprocessor files must be kept
on disk (in the RD) rather than in memory, additional system overhead is incurred in
the areas of create, delete, assign, open, close and deassign resource on multiprocessor
volumes. After a file is allocated, the actual number of I/O operations performed is
not affected by the multiprocessor characteristics of the resource.

4.13.2 Multiprocessor Resource Access

When the allocation status of a multiprocessor resource changes, l\1PX-32
synchronizes the update of the resource accounting information for that resource using
the multiprocessor lock in the last word of its resource descriptor (RD).

The multiprocessor lock acts as a semaphore for the resource. It is reserved by
MPX-32 for this purpose and should not be used for any other applications.

MPX-32 Reference Volume I 4-47

Multiprocessor Shared Volumes

4·48

If the multiprocessor lock is not set when MPX-32 attempts to allocate a resource,
MPX-32:

• sets the lock

• updates the allocation and access information in the RD

• releases the lock

If the multiprocessor lock is set when MPX-32 attempts to allocate a resource,
MPX-32:

• suspends the task for a specified length of time and then tries to allocate the
resource a second time

Use the SYSGEN OPTIMO directive to specify the length of time to suspend
between tries. When OPTIMO is not specified, MPX-32 suspends for one second
between tries.

• continues to suspend the task and retry until either the resource is free, or the
specified number of retries is reached.

Use the SYSGEN OPTRY directive to specify the number of times MPX-32 tries to
allocate a user level resource.

Setting OPTRY to 1 causes MPX-32 to issue an immediate denial when the
resource has the multiprocessor lock set. Setting OPTRY to 0, or failing to specify
a value for OPTRY causes MPX-32 to repeat the try/suspend mechanism until the
resource is allocated.

MPX-32 retries indefinitely critical file system structures (root directory, SMAP,
OMAP directories) until the resource is allocated.

When access to a multiprocessor resource is denied due to assignment access mode or
usage incompatibilities with another task, the requesting task is enqueued or
suspended as appropriate (provided that OPTRY has indicated that it will wait for the
resouce to become available). If the incompatibility is due to a task in the same CPU,
the requesting task is enqueued. If the incompatibility is due to a task in the other
CPU, the requesting task is suspended. If suspended, the try/suspend cycle as for
multiprocessor locks is performed.

The following conditions can determine if a task can be queued rather than suspended
for a multiprocessor resource:

1. The resource is exclusively locked, and the lock owner is in the same system
environment as the requesting task.

2. Incompatible access modes are encountered on an implicitly shared resource in
which the writer is known to be in the same system environment as the
requesting task.

3. A synchronous resource lock cannot be obtained because the lock is owned by
another task in the same system environment.

Volume Resource Management

. , C·-"\···

(

Multiprocessor Shared Volumes

4.13.3 Mounting Multiprocessor Volumes

Mounting a multiprocessor volume is signified by the presence of SYSID in the
mount request. The format for the mount request of a multiprocessor volume is:

MOUNT va/name ON devmnc SYSID=[MPn I DPx]

n is 0 through F

x is 0 or 1

Multiprocessor volumes can be mounted as public or nonpublic. However, the system
volume cannot be mounted as a multiprocessor volume.

When a multiprocessor volume is mounted, J.MOUNT prompts the operator for
permission to perform volume cleanup if the volume descriptor indicates the volume
was not previously dismounted. When volume cleanup is performed, no regard is
given to access from any other port. All resource descriptors are purged of any
software multiprocessor information. Therefore, the operator must ensure the integrity
of the mount process from all system environments prior to allowing volume cleanup.

If the operator indicates volume cleanup is not to be performed, and J .MOUNT
detects the port associated with the SYSID specification has not been previously
dismounted, the following message is displayed on the system console:

J.MOUNT - WARNING - VOLUME SHOWS PORT DESIGNATOR MP(DP)n ALREADY ALLOCATED
J.MOUNT - REPLY C TO CONTINUE, A TO ABORT:

4.13.4 Multiprocessor Resource Restrictions

Some features of volume management provided by MPX-32 are restricted when
applied to multiprocessor resources. This is a result of the additional system overhead
associated with the processing of these resources. The following sections describe
some of the more significant restrictions and potential conflicts that can apply when
resources are shared concurrently from separate system environments.

4.13.4.1 EOF Management

Dynamic end-of-file (EOF) information is not available to tasks sharing a
multiprocessor resource from separate system environments. The updated EOF
information is not available until the writer closes the resource and the reader
reallocates the file. However, tasks sharing multiprocessor resources within the same
system environment have access to the full range of EOF management allowed to
nonmultiprocessor resources. In this context, writer means any task accessing an
implicity or explicitly shared resource in write, update or append access mode.

MPX-32 Reference Volume I 4-49

Multiprocessor Shared Volumes

4.13.4.2 EOM Management

Dynamic end-of-medium (EOM) information is not available to tasks sharing a
multiprocessor resource from separate system environments. The updated EOM
information is not available until the extender has completed the service, and the other
task has reallocated the file. Tasks sharing multiprocessor resources within the same
system environment have access to the full range of EOM management allowed to
nonmultiprocessor resources. In this context, extender means any task accessing an
implicitly or explicitly shared resource in update or append access mode, as well as
any task requesting a manual extension of an extendible file.

4.13.4.3 Resource Deadlocks

When a task obtains exclusive use of a resource in such a way that it will not (or
cannot) release it, any task waiting to gain access to that resource is indefinitely
postponed. This situation results whenever a system failure occurs while the
multiprocessor RD lock has been set for a task accessing a multiprocessor resource
from that system. This usually is the situation when a task (attempting to gain access
to a multiprocessor resource in the operational system) appears to be cycling between
a suspended and ready-to-run state for an extended period of time.

Under these circumstances, the multiprocessor lock remains in effect until the volume
is remounted. This multiprocessor lock can be removed by using the OPCOM
UNLOCK directive from the operational system. Once I.UNLOCK has completed,
the volume can be remounted from the failed system, but volume cleanup must be
inhibited.

4.13.4.4 Reserve/Release Multiported Disk Services (M.RESP/M.RELP)

4-50

The multiprocessor features of MPX-32 do not use the reserve and release multiported
disk services. The M.RESP service causes the drive to be exclusively reserved to the
system environment from which the request was issued. The disk remains reserved
until explicitly released by the M.RELP service. If a volume is mounted on the
multiported disk drive at the time of a reserve request, it is inaccessible from the other
system environment until explicitly released.

MPX-32 performs an implicit reserve of the multiported disk that remains effective for
the duration of the IOCL used to set or release the software lock in the appropriate
resource descriptor.

The M.RESP and M.RELP services should not be used with the multiprocessor
features of MPX-32, or the result can be unpredictable system behavior.

Volume Resource Management

(:.

(/

c

Multiprocessor Shared Volumes

4.13.5 Optimum Use of Multiprocessor Resources

As a result of the restrictions imposed on multiprocessor resources, the following
steps can be taken on resources shared by tasks in separate system environments:

1. Do not rely on dynamic EOF management. When creating multiprocessor files,
specify EOF management is not in effect. For example:

CREATE F filename SIZE=nn EOFM=N

This sets EOF to the size of the file (EOM). In this way, concurrent access by
multiple tasks does not result in EOF detection until the physical EOF is reached.

2. Have the sharing tasks assign the file for explicit shared use. For example:

(Task 1) ASSIGN LFC TO filename ACCESS= (R) SHARED=Y

and
(Task 2) ASSIGN LFC TO filename ACCESS= (W) SHARED=Y

This allows concurrent access to the file by the reader and writer.
Synchronization can then be performed by the record structure in the file (which
results in less I/O overhead) or through the synchronous resource lock services
provided by MPX-32.

3. To avoid unnecessary I/O overhead associated with multiprocessor resources, do
not direct the creation of temporary or swap files on a multiprocessor volume
unless absolutely necessary. If the current working volume is a multiprocessor
volume, then additional I/O overhead is associated with processing SLO, SBO,
and SGO files on the volume.

4. Whenever a system failure occurs in one system, activate I.UNLOCK from the
running system. After I.UNLOCK completes, the failed system can be rebooted.
With volume cleanup inhibited, remount the volume from the port where the
system failure occurred.

MPX-32 Reference Volume I 4-51/4-52

o

o

(

('

5 Resource Assignment/Allocation and I/O

5.1 Introduction

This chapter is an overview of the user interfaces provided for task resource
assignment/allocation and the subsequent I/O services available. It assumes the reader
is familiar with the terms and concepts presented in Chapter 4.

The MPX-32 Resource Management Module (H.REMM) performs all operations
necessary to obtain the physical resources required to execute a task. The MPX-32
I/O control system (IOCS) receives and processes device-independent I/O requests
from both user tasks and MPX-32.

The following sections describe the MPX-32 I/O concepts and conventions of:

• logical, wait, no-wait, and device-dependent I/O

• error processing and status posting

• interfaces among 10CS, standard device handlers, and MPX-32

• special system file handling

• file control block (FCB) and type control parameter block (TCPB) setup

• I/O services available to MPX-32 users

5.2 MPX-32 Logical I/O (Device-Independent)

MPX-32 provides versatile logical device-independent I/O capabilities. The user can
code references to logical files and request an MPX-32 10CS to perform I/O.

Several important advantages are gained by performing logical file I/O:

• the user need not be aware of specific device handling requirements

• unprivileged tasks can perform I/O (the I/O instructions are part of the privileged
instruction set)

• tasks that perform logical I/O are easier to debug and modify

To provide MPX-32 with sufficient information to create the necessary linkages
between the user's logical files and the actual peripheral devices or disk files, the user
must:

• identify logical files with logical file codes

• describe logical file attributes with FCBs

• associate logical files with their target physical devices or disk files with logical file
code assignments

MPX-32 Reference Volume I 5-1

MPX-32 Logical I/O (Device-Independent)

5.2.1 Logical File Codes

Logical file codes (LFCs) are user defined 1- to 3-character ASCII codes that identify
logical files within tasks.

Logical file codes are configured into corresponding FCBs. Refer to the Setting Up
File Control Blocks for Device Independent I/O section in this chapter.

5.2.2 File Control Blocks

An FCB must be set up by the user to describe each logical file within a task, and to
describe certain attributes of each logical I/O operation.

Information collected by 10CS following each I/O operation is made available to the
user by the corresponding FCB. Space in the FCB is reserved for use by 10CS.

The Setting Up File Control Blocks for Device Independent I/O section in this chapter
describes the FCB format.

5.2.2.1 Logical I/O Initiation

To initiate a logical I/O operation, users must code into their task a call to one of the
data transfer or device access services, accompanied by the address of a corresponding
FCB.

5.2.3 Assignment vs. Allocation

5-2

The attachment of a task to a resource progresses through two phases: assignment and
allocation. The current phase of a particular resource attachment depends on the
amount of information supplied by the requestor up to that time.

Assignment is the process of associating an LFC with a system resource. This action
informs the system of a task's intention to use a resource, but does not describe the
usage (exclusive use, explicit shared, implicit shared) or the intended access mode
(read, write, modify, update or append). Hence, the resource is still susceptible to
allocation by other tasks, and no guarantee is made that the assigning task can obtain
the resource in any specific usage or access mode.

Allocation is the process of securing a resource for a specific usage and access mode
for the requesting task. At this point, the task has defined all of its intentions and can
perform logical I/O operations on the resource for the usage and access requested.

When an LFC is assigned to a system resource, the task can indicate the mode in
which it intends to use the resource (exclusive or explicit shared). If this is done, the
assignment becomes an allocation because these usage modes imply that the task is
allowed any access mode authorized to it by the resource creator. The task is
guaranteed access to the resource when logical I/O is initiated. If a usage mode is not
indicated at LFC assignment, implicit shared use of the resource is assumed by
default.

Resource Assignment/Allocation and 1/0

o

MPX-32 Logical 1/0 (Device-Independent)

When an LFC is attached to a resource with implicit shared use, the resource is not
allocated until a specific access mode is indicated. If this occurs at LFC assignment,
the assignment becomes an allocation or is deferred until the resource is opened. In
the latter case, the resource is not allocated until it is opened, and there is no
guarantee the specific access mode is obtained because other tasks may have allocated
the resource for implicit shared use in an incompatible access mode.

Refer to Table 5-1, Assign/Open Resource Allocation Matrix.

Table 5-1
Assign/Open Resource Allocation Matrix

Usage Usage Point when Is resource Allocation
specified specified access is allocated action at
at Assign at Open specified at Assign? Open

Exclusive Exclusive N/A Yes None

Explicit Shared N/A Yes Reallocate
and Dequeue

Implicit Shared N/A Yes None

Explicit Exclusive N/A Yes Deallocate
Shared and Allocate*

Explicit Shared N/A Yes None

Implicit Shared N/A Yes None

Implicit Exclusive Assign Yes Deallocate
Shared and Allocate*

Exclusive Open No Allocate*

Exclusive Assign Yes Deallocate
and Allocate*

Exclusive Open No Allocate *

Implicit Shared Assign Yes None

Implicit Shared Open No Allocate*

* No guarantee that a specific access mode (read, write, modify, update,
append) is available at open.

MPX-32 Reference Volume I 5-3

MPX-32 Logical 1/0 (Device-Independent)

5.2.4 Logical File Code Assignment

Before executing a logical I/O request, the task must associate the appropriate LFC
with the target peripheral device or disk file. This is accomplished by LFC
assignment.

At this time, the requestor can specify one or more access modes that apply to this
assignment. This set of access modes defines the set of allowable I/O operations that
can be performed on the resource for the duration of this assignment (read, write,
modify, update, and append). The access modes specified at assignment must not
allow more access than that allowed to this user by the resource creator or the
assignment will be denied. If no access modes are specified, the default access modes
in the resource descriptor for this user class are allowed.

A specific resource usage (exclusive or explicit shared) may also be declared at LFC
assignment. If not supplied, the resource is assumed to be assigned for implicit shared
use. In this case, the resource is not allocated to the requesting task at assignment,
unless only one access mode is allowed.

LFCs can be assigned to specific peripheral devices or files when a task is cataloged
(static assignment) or during task execution by the M.ASSN service (dynamic
assignment).

For tasks that run under TSM control (interactive or batch), static assignments can
also be made by the user at run time. For such assignments, if the LFC matches one
assigned at catalog time, it replaces the cataloged assignment. If the file code assigned
at run time does not match any cataloged assignment, it is added to the cataloged
assignments.

Dynamic assignments cannot override cataloged or run-time assignments, and any
attempt to do so is treated as an error. To accomplish dynamic override, the user task
must first deallocate (deassign) the static assignment by the M.DASN service.

The maximum number of assignments is 245. There is additional space reserved for
assignments needed by the operating system.

5.2.4.1 Making Assignments via Resource Requirement Summary (RRS)

5-4

The resource requirement summary (RRS) is a structure that defines the assignment
requirements of a resource to the Resource Management Module (H.REMM). It is
supplied by the Cataloger, LINKX32, or TSM for static assignment of resources to a
task or as an argument for the dynamic assignment of a particular resource.

There are distinct types of RRS entries recognized by REMM corresponding to the
resource modes and allocation mechanisms available. RRS entries are variable length
structures with the first four words generally common for all entries, and the
remaining number of words dependent on the RRS type. RRS entries always begin on
a double word boundary. They must contain an even number of words for static
assignments made by parameter task activation or load module activation where
pathnames are applied. RRS entries are presented to H.REMM in the following
formats.

Resource Assignment/Allocation and I/O

(

MPX-32 Logical 1/0 (Device-Independent)

Unless specified, the first four words of an RRS entry contain the following:

Word 0 Byte 0

Bytes 1,2,3

Word 1 Byte 0

cleared

contain a 1- to 3-character, left-justified,
blank-filled LFC

specifies the RRS type with the following value
significance:

Value Description

1
2
3
4
5
6

assign by patbnarne (RR.P A TH)
assign to temporary file (RR. TEMP)
assign to device (RRDEVC)
assign to LFC (RR.LFC2)
assign by segment definition (RR.SPACE)
assign by resource ID (RR.RID)
reserved for future use 7-8

9
10
11

12-255

mount by device mnemonic (RRMTDEV)
assign to ANSI labeled tape (RR.ANS)
assign to shadow memory (RR.SHRQ)
reserved

Byte 1

Bytes 2 and 3

specifies the size of this RRS entry in words

vary depending on the RRS type

Restriction: A value must be specified in the RRS type field. There are no defaults
applied to this portion of the RRS.

Word 2 Access specification field specifies the access restrictions to be applied
to the allocation of this resource. The bit interpretations are as follows:

Bit Meaning if Set

o allow read access (RR.READ)
1 allow write access (RR.WRITE)
2 allow modify access (RRMODFY)
3 allow update access (RR.UPDAT)
4 allow append access (RRAPPND)

5 -15 reserved
16 explicit shared use requested (RR.SHAR)
17 exclusive use requested (RR.EXCL)
18 assign as volume mount device (RR.MNT)

MPX-32 Reference Volume I 5·5

MPX-32 Logical 1/0 (Device-Independent)

5-6

Restrictions:

1. The bit pattern specified in bits 0 to 4 must not allow more access than specified
in the resource descriptor for this user.

2. Only one of bits 16 to 17 can be set to indicate the intended usage mode.
Successful allocation of a resource for exclusive use implies the setting of an
exclusive resource lock on that resource.

Defaults: If the access specification field is zero, the default access contained in
the resource descriptor for this user is used, and the resource is allocated
for implicit shared use.

Word 3 Options specification field specifies the allocation options that
are in effect for this assignment. The bit interpretations are as
follows:

Bit

o
1
2
3
4
5
6
7
8
9

10-12
13
14

15
16

17-31

Word 4-n RRS type dependent.

Meaning if Set

treat as SYC file (TSM/JOB only) (RR.SYC)
treat as SGO file (TSM/JOB only) (RR.SGO)
treat as SLO file (RR.SLO)
treat as SBO file (RR.SBO)
explicit blocked I/O (RR.BLK)
explicit unblocked I/O (RR.UNBLK)
inhibit mount message (RR.NOMSG)
reserved for system use
automatic open requested (RR.OPEN)
user buffer address to be supplied at open (RR.BUFF)
reserved for system use
mount as a public volume (RR.PUBLC)
by H. VOMM for special case handling of
VOMM assignments (RR.VOMM)
spool file when deallocated (RR.SEP)
mount as ANSI tape (RR.ANSI)
reserved

Resource Assignment/Allocation and I/O

()

(

MPX-32 Logical 1/0 (Device-Independent)

Type 1 (Assign by path name)

Syntax

$ASSIGN lfc TO pathname

Word 0

1

o
Zero

Type (RR.TYPE)

Access (RR.ACCS)

7 8 15 16

Logical file code (RR.LFC)

Size (RR.SlZE) I Plength (RR.PLEN).
See Note 1.

2

3 Options (RR.OPTS)

4-n Pathname (variable length) (RR.NAMEl). See Note 3.

Notes:

23 24

I Reserved.
See Note 2.

1. RR.PLEN contains character count of pathname/pathname block

2. Byte 3 is zero. This field is used by MPX-32 for big blocking buffers.

31

3. RR.NAMEI is the resource pathname or pathname block (PNB). Refer to this
chapter's H.VOMM Conventions section for format.

Type 2 (Assign to temporary file)

Syntax

$ASSIGN lfc TO TEMp [=(vo[name)]

Temporary files created in this manner cannot be made permanent unless they are
created on a volume which has a valid directory established for this user.

Word 0

1

o
Zero

Type (RR.TYPE)

Access (RR.ACCS)

Options (RR.OPTS)

7 8 15 16 23 24

Logical file code (RR.LFC)

Size (RR.SIZE) Initial file size (RR.PLEN).
See Note 1.

2

3

4-7 Volume name (RR.NAMEl). See Note 2.

MPX·32 Reference Volume I

31

5·7

MPX-32 Logical I/O (Device-Independent)

Notes:

1. RR.PLEN contains the initial file size in logical blocks. If a size is not supplied,
the system default is used. Refer to this chapter's Temporary File Assignments
section.

2. RR.NAME is a 1- to 16-character left-justified, blank-filled volume name. This
element of the RRS entry is optional. If supplied, the temporary file will be
created on the specified volume. Otherwise the file will be created on the task's
current working volume or any available public volume.

Type 3 (Assign to device)

Syntax

$ASSIGN lfc TO DEVICE=devmnc

5·8

Word 0

1

2

3

4

5

Notes:

o 1 7 8 15 16 17 23 24 31

Zero Logical file code (RR.LFC)

Type Size Density Zero
(RR.TYPE) (RR.sIZE) (RR.DENS).

See Note 1.

Access (RR.ACCS)

Options (RR.OPTS)

Device Volume Channel Subchannel
type number number number
(RR.DT3). (RR.VLNUM). (RR.CHN3). (RR.SCHN3).
See Note 2. See Note 3. See Note 4. See Note 5.

Unformatted ID (RR.UNFID). See Note 6.

1. RR.DENS contains an optional density specification for XIO high speed tape
units. When specified, this field has the following bit significance:

Bit Meaning if Set

o indicates 800 bpi Nonreturn to Zero Inverted (NRZI)
1 indicates 1600 bpi Phase Encoded (PE)
6 indicates 6250 bpi Group Coded Recording (GCR)

If this field is zero, 6250 bpi is set by default.

Resource Assignmentl Allocation and 1/0

,(--",
\J

(

MPX-32 Logical 1/0 (Device-Independent)

2. RRDT3 contains the device type code associated with this device. See Table
5-2. The device type code is the only required portion of this word. If a channel
or subchannel is supplied, bits 0 and 16 are set respectively to indicate the
presence of these portions of the device address. The Get Device Type Code
(M.DEVID) service can be used to obtain the correct value for byte 0 from the
appropriate device mnemonic.

3. RRVLUM contains the volume number for multivolume media.

4. RRCHN3 contains the logical channel number associated with this device.

5. RRSCHN3 contains the logical subchannel to be applied with the logical
channel number.

6. RR UNFID is a 1- to 4-character identifier to be associated with an unformatted
medium (magnetic tape, disk, or floppy disk). If nonzero, this name appears on
the mount/dismount messages; otherwise, SCRA is used as the default identifier.

Type 4 (Assign to LFC)

Syntax

$ASSIGN lfe TO LFC=lfe

An LFC to LFC assignment inherits all the access and assignment restrictions
specified by the original LFC assignment. The allowable access modes and blocking
status cannot be changed by assigning a second LFC to a resource.

Word 0

1

2

3

Notes:

o
Zero

Type (RR.TYPE)

Zero

Options (RR.OPTS).

7 8 15 16 23 24 31

Logical file code (RR.LFC)

Size (RR.SlZE) I Zero

Logical file code (RR.SFC). See Note l.

See Note 2.

1. RRSFC contains a 1- to 3- character, left-justified, blank-filled LFC. This LFC
must have been previously assigned to a resource.

2. RROPTS is the options specification field. Automatic OPEN may be selected by
specifying the option in this field.

MPX-32 Reference Volume I 5-9

MPX-32 logical 1/0 (Device-Independent)

Type 5 (Assign by segment definition)

Dynamic allocation only

Word 0

1

2

3

4

5

Notes:

o 7 8 15 16

Zero Logical file code (RR.LFC)

Type (RR.TYPE) Size (RRSIZE) UDT index
(RR.UDTI)

Access (RRACCS)

Options (RR.OPTS)

Starting block number (RRSTBLK). See Note 1.

Number of blocks (RR.NBLKS). See Note 2.

1. RR.STBLK is the starting block address of segment definition.

23 24 31

Zero

2. RR.NBLKS is the nwnber of contiguous blocks in definition. This type of RRS
is only valid for a contiguous volwne resource. Extendible files must be
allocated by other means.

Restriction: Allocation by segment definition is a privileged assignment mode. An
error condition is generated if this form of allocation is attempted by an
unprivileged task.

Type 6 (Assign by resource 10)

Syntax

$ASSIGN lfc TO RIO=(resid}

5-10

Word 0

1

2

3

4-7

8

9

10

11

o 7 8 15 16 23 24 31

Zero Logical file code (RR.LFC)

Type (RR.TYPE) Size (RRSIZE) Zero. See Note 1. I ReselVed

Access (RRACCS)

Options (RROPTS)

Volume name (RRNAMEl). See Note 2.

Binary creation date (RR.DA TE). See Note 3.

Binary creation time (RR.TlME). See Note 4.

Resource descriptor block address (RR.DOFF). See Note 5.

Reserved Resource type (RR.RTYFE).
See Note 6.

Resource Assignment/Allocation and I/O

o

(
MPX-32 Logical 1/0 (Device-Independent)

Notes:

1. Word 1, byte 2 is zero. This field is used by MPX-32 for big blocking buffers.

2. RRNAMEI is a 1- to 16-character, left-justified, blank-filled volume name.

3. RR.DATE is the binary creation date.

4. RRTIME is the binary creation time.

5. RRDOFF is the block address of resource descriptor.

6. RRRTYPE is the resource type value (right-justified).

Type 7 Reserved for Future Use

Type 8 Reserved for Future Use

Type 9 (Mount by device mnemonic)

Syntax

MOUNT vo/name ON devmnc

If the public volume option is selected, the volume is mounted for public use. Refer to
this manual's Chapter 6 for a description of the dynamic assignment/allocation
services M.ASSN and M.DASN.

Word 0

1

2

3

4-7

* 8

9

Notes:

o 1 7 8 15 16 17 23 24

Zero System ID (RR.SYSID). See Note 1.

Type (RR.TYPE) Size (RR.SIZE) Zero

Access (RR.ACCS)

Options (RR.OPTS)

Volume name (RR.NAMEl). See Note 2.

Device type Reserved Channel Subchannel
(RR.DT9) number number

(RR.CHN9) (RR.SCHN9)

Zero. See Note 3.

1. RRSYSID is a 3-character SYSID for dual/multi port volumes.

2. RR.NAMEI is a 1- to 16-character, left-justified, blank-filled volume name.

3. Word 9 is zero (reserved for system use).

31

* Word 8 is the device specification word. Format is the same as for type 3, word 4.
This element describes the device where the volume is to be mounted. If a complete
address is specified, an attempt is made to mount the volume on that device only.
Otherwise, the volume is mounted on any device that matches the portion of the
specification word supplied in the RRS.

MPX-32 Reference Volume I 5-11

MPX-32 Logical 1/0 (Device-Independent)

Type 10 (Assign to ANSI tape)

Syntax

$ASSIGN lfc TO @ANSITAPE(lvid)filename

5-12

Word 0

1

2

3

4

5

6

7

8

9

10-l3

14

15

Notes:

o 7 8 15 16 23 24

Zero Logical file code (RR.LFC)

Type (RR.TYPE) Size (RR.SIZE) Format (RR.FORM). Protect
See Note 1. (RR.PROT)

Access (RR.ACCS). See Note 2.

Options (RR.OPTS)

Record length (RR.RECL) Block size (RR.BSIZE)

Generation number (RR.GENN)

Generation version number (RR.GENV)

Absolute termination date (RR.EXPIA). See Note 3.

Relative termination date Logical volume identifier
(RR.EXPIR). See Note 3. (RR.LVID)

RR.L VID (cont.)

17 -character file identifier (RR.AFID)

RR.AFID (cont.) Reserved

Reserved

1. RR.FORM values are as follows:

Value

Numeric 0
ASCII F
ASCII D
ASCII S

Meaning

use default format
fixed length record format
variable length record format
spanned record format

31

2. RR.ACCS accesses a resource in the read, write, update, or append mode. The
access modes are mutually exclusive.

3. For the absolute termination date, word 7 is one blank followed by a 2-digit
number that specifies the year and the first digit of the 3-digit day. Word 8,
bytes 0 and 1 contain the remaining two digits of the day.

For the relative termination date, word 7 is zeroed; word 8, bytes 0 and 1 contain
the binary relative termination date.

Resource Assignment/Allocation and I/O

c·c.c.'"" '\
1,\, ",

(

MPX-32 Logical 1/0 (Device-Independent)

Type 11 (Assign to shadow memory)

Word 0

1

2

3

Notes:

o 7 8

Zero

Type (RR.TYPE) Size (RR.SIZE)

Start address (RR.SADD). See Note 2.

End address (RR.EADD). See Note 3.

15 16 23 24 31

Shadow flags (RR.SHAD).
See Note 1.

1. RR.SHAD contains the shadow flags that qualify the start and end addresses, or
specify what portions of the task are to be shadowed. The bit interpretations are
as follows:

Bit Meaning if Set

0-7
8
9
10
11
12
13
14
15

reserved
shadow the task (RR.SHTSK)
shadow the TSA (RR.SHTSA)
shadow the stack (RR.SHST)
shadow memory is required (RR.SHRQ)
shadow the entire task (RR.SHALL)
absolute address (RR.ABS)
relative to the code section origin (RR.CREL)
relative to the data section origin (RR.DREL)

2. RR.SADD is the starting logical byte address of the memory space to be put in
shadow memory. The address is considered relative to the start of the task
(T.BIAS), unless qualified with shadow flags in word 1.

3. RR.EADD is the ending logical byte address of the memory space to be put in
shadow memory. The address is considered to be relative to the start of the task
(T.BIAS), unless qualified with shadow flags in word 1.

The start and end addresses are specified as a byte address in the TSM SHADOW
directive and the RRS. The range of address space specified is inclusive. Internal to
MPX-32, these addresses are map block bounded. Due to the map block granularity
of 2KW, more address space than requested can be shadowed, but never less.

MPX·32 Reference Volume I 5·13

MPX-32 Logical 1/0 (Device-Independent)

5.2.4.2 Temporary File Assignments

Temporary files are created explicitly by the Create Temporary File (M.TEMP)
service and assigned by the resource identifier (RID) obtained when the file was
created.

Temporary files are implicitly created as the result of an LFC assignment, such as

ASSIGN OUT TO TEMP=(voiume)

When a temporary file is created in this manner, the resource is given the following
characteristics:

• All access modes are allowed.

• The file is shareable.

• The file is automatically and manually extendible.

• The initial file size is 16 blocks, unless a size is specified in the RRS.

• File extensions are made in a minimum of 32 block increments.

If blocked or unblocked is not specified as an assignment option to a temporary file,
all I/O is blocked by default.

5.2.5 Opening a Resource for Logical I/O

5-14

Before any service requested by the user to initiate an I/O operation is completed, the
user's logical file must be opened. This operation establishes the access mode for
subsequent 1/0 operations. The specified access mode must have been allowed by the
resource assignment or an error occurs.

If an access mode is not specified, the resource is opened for the appropriate default
access, unless only a specific access mode was allowed at assignment. In that case,
the resource is opened for the allowed access mode. The default access modes are
read access for files and update access for peripheral device assignments.

A resource usage mode, exclusively or explicitly shared, is also specified at open.
When this is done, the supplied usage overrides that specified at LFC assignment.
This results in the attachment to the resource reverting to an assignment, if allocated.
If the LFC assignment allocated the resource for a shareable usage, there is no
guarantee that the resource is available for reallocation when the usage specification is
overridden at open. A previously allocated resource can not be available at open in
this case.

The task performs the function directly with the M.OPENR service, automatically
during assignment, or automatically by IOCS when an I/O initiation service request is
made and the logical file is not open. In the latter case, the default access mode in
effect for that assignment applies.

When the logical file is properly opened, the FCB and FAT are linked together to
complete the I/O structure for IOCS.

Resource Assignment/Allocation and 1/0

c

o

(

Resource Conflicts and Error Handling

5.3 Resource Conflicts and Error Handling

In the course of processing resource assignments, conditions exist that require
additional information from the task requesting the resource. MPX-32 allows the user
the option of waiting for resources that are temporarily not available. The requesting
task can also dictate the manner in which error or denial status is presented.

The caller notification packet (CNP) is the mechanism used by the Resource
Management Module (H.REMM) and the Volume Management Module (H.VOMM)
for handling abnormal conditions that result during resource requests. This structure
is a standardized parameter optionally supplied to many of the services provided by
REMM and VOMM.

The CNP consists of a 5- to 6-word area containing the following information, all or
part may be used by the particular service being called:

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

MPX·32 Reference Volume I

Wait request time-out value interpreted as follows:

Value Description

o place the requesting task in a wait state
until the designated service can be completed

>0 return immediately with a denial code if
the service cannot be completed

-n place the requesting task in a wait state
until the designated service can be completed
or until the expiration of n timer units,
whichever occurs first

abnormal return address - if an error condition or denial
condition occurs, control is transferred back to the task at this
address

options field (bytes 0 and 1) - a bit sequence and/or value used
to provide additional information that is necessary to fully
define the calling sequence for a particular service

status field (bytes 2 and 3) - a right-justified, numeric value
identifying the return status for this call

actual file size created

reserved for future use

parameter link - required only for a resource assignment where
automatic open has been specified in the option word of the
RRS. If specified, this word must contain the address of a valid
FCB for this assignment.

5-15

Resource Conflicts and Error Handling

5.3.1 Status Posting and Return Conventions

5·16

The services that accept a CNP as a calling parameter adhere to a common status
posting and return convention. Status is always posted as a numeric value that
represents one of three conditions:

• successful - CCI not set indicates the service completed without any
abnormalities.

• error - indicates a condition occurred during execution that precluded any
continuation of the service. This condition has a positive numeric value identifying
an error condition specific to the service.

• denial - indicates the service was not completed due to resource nonavailability or
other system constraints which do not necessarily preclude the continuation of the
service at a later time. This condition is also represented by a numeric value
specific to the service, but is posted only if the caller has indicated that the task is
not to wait for the condition to be alleviated. Denial conditions are returned only
byH.REMM.

The following conventions apply to the posting of status and the return sequence
applied to service calls that accept a CNP as an input parameter:

• CCI is set to indicate the posting of a nonzero status value.

• The task is never aborted as the result of posting a status value.

• The location of status and return sequence for denials and errors is dependent on the
presence or absence of a CNP:

If CNP is supplied:

• Status is posted in the status field of the CNP.

• For all error conditions, the return is made by the abnormal return address if
supplied. Otherwise, a normal return occurs.

• For all denial conditions, the task is enqueued if requested; otherwise, the return
sequence is the same as an error condition.

If CNP is not supplied:

• Status is posted in R7.

• For all error conditions, a normal return occurs.

• For all denial conditions, the task is enqueued until the service can be completed.

Resource Assignment/Allocation and I/O

(~'

Resource Conflicts and Error Handling

The following is a summary of the status codes returned by H.REMM for resource
allocation:

Value

0
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34

35

Description

successful completion
unable to locate resource (invalid pathname or memory
partition definition)
specified access mode not allowed
FPT/FAT space not available
blocking buffer space not available
shared memory table (SMT) entry not found
volume assignment table (VAT) space not available
static assignment to dynamic common
unrecoverable I/O error to volume
invalid usage specification
dynamic partition definition exceeds memory limitations
invalid resource requirement summary (RRS) entry
LFC logically equated to an unassigned LFC
assigned device not in system
resource already allocated by requesting task
SGO or SYC assignment by real-time task
common memory conflicts with task's address space
duplicate LFC assignment attempted
invalid device specification
invalid resource ID (RID)
specified volume not mounted
J .MOUNT run request failed
resource is marked for deletion
assigned device is marked off-line
segment definition allocation by unprivileged task
random access not allowed for this access mode
user attempting to open SYC file in a write mode
resource already opened by this task in a different access mode
invalid access specification at open
specified LFC is not assigned to a resource for this task
invalid allocation index
close request issued for an unopened resource
attempt to release an exclusive resource lock that was not
owned by this task, or a synchronous lock that was not set
attempt to release an exclusive resource lock on a resource
that has been allocated for exclusive use
attempt to mount a public volume without the system
administrator attribute
attempt to exclude memory partition that is not mapped
into requesting task's address space

MPX-32 Reference Volume I 5-17

Resource Conflicts and Error Handling

5-18

Value

36
37
38
39
40
41
42
43
44
45
46
47
48
49

Description

physical memory already allocated
invalid I.MOUNT request
time out occurred while waiting for resource to become available
unable to perform write back
invalid load module
invalid physical address specified
user requested abort of mount process
user requested hold on mount process
writeback requested and shared image has no writeback section
loading error during inclusion of read-only section of shared image
unable to obtain resource descriptor lock (multiport only)
loading error during inclusion of read/write section of shared image
incompatible load address for shared image
excessive multicopied shared images with no read only section

Status codes in the range 50 to 63 represent denial conditions that result in suspension
of the task if a CNP is not supplied or enqueue is indicated by the time-out value in
the CNP:

Value

50
51

52
53
54
55
56
57
58
59
60
61

62-63
64

65

66
67
68
69

Description

resource is locked by another task
shareable resource is allocated by another task in an
incompatible access mode
volume space is not available
assigned device is not available
unable to allocate resource for specified usage
allocated resource table (ART) space is not available
task requires shadow memory and none is configured
volume is not available for mount with requested usage
shared memory table (SMT) space is not available
mounted volume table (MVT) space is not available
resource descriptor space definition conflict
unable to locate or retrieve resource descriptor
reserved
task's DSECT space requirements overlap the task's task
service area (TSA) space requirements
task's DSECT space requirements overlap the task's CSECT
space requirements or, if no CSECT, load module is too
large to fit in user's address space
software checksum. Error may be fixed by recataloging.
excessive memory request
excessive volume space requested
invalid user name specified

Resource Assignment/Allocation and 1/0

(~'
:.!. ~)

(

('.
0>

Value

70
71
72
73
74
75
76
77

78
79
80

81

82

83
84
85
86
87

88
89

90
91

92-255

Resource Conflicts and Error Handling

Description

invalid privileged activation
reserved
unable to resume SYSINIT on tape activation
file overlap. Check system console.
loading error
invalid work volume/directory
user attempted deallocation of TSA
a task destroyed the allocation linkages in it's dynamic
expansion space
unable to load debugger with task
invalid caller notification packet (CNP) address
shared image version level is not compatible with
executable image
invalid activation of a base mode task on a system
configured for non-base task execution
invalid activation of an ADA task on a system configured
without ADA support
insufficient logical address space to activate task
invalid logical position for extended MPX
reserved
cannot dismount the system volume
unable to dismount public volume because compatible mode
public volume dismount (CMPMM) option was specified at SYSGEN
unable to dismount public volume. SA attribute required
public dismount denied due to missing option for public
volume in the dismount request
reserved
unable to mount volume due to pending physical dismount
reserved

MPX-32 Reference Volume I 5·19

MPX-32 Volume Resource Access

5.4 MPX-32 Volume Resource Access

The MPX-32 Volume Management Module (H.VOMM) maintains a resource
descriptor (RD) list on disk for each mounted volume in the system. A descriptor
exists for every currently active volume resource (permanent files, temporary files,
directories and memory partitions). Each resource descriptor contains all the access,
accounting, and space definition information pertaining to the associated resource.

When a volume resource is assigned for I/O, H.REMM reads the associated resource
descriptor. The usage and access specifications supplied at assignment are verified
against those allowed by the resource descriptor for protection and resource integrity.
If a discrepancy exists, the task is aborted (static assignment) or the appropriate error
code is returned (dynamic assignment). In either case, the assignment is denied.

The description of a valid volume resource is placed in the file assignment table
(FAT). 10CS uses the FAT entry to map the appropriate disk and file. Access to disk
files is sequential, starting with the first relative block in the file, unless the user has
indicated random access in the FCB. However, random access is not allowed in the
write and append access modes.

Permanent files are accessed by pathname or resource identifier (an 8-word unique
identifier obtained when the resource was created). Temporary files are accessed by
resource identifier only.

5.4.1 Volume Resource Space Management

The MPX-32 Volume Management Module (H.VOMM) provides space management
for all currently mounted volumes in the system. Disk space is allocated to files from
the available space not dedicated to volume management, an area whose size is
determined when the volume is formatted. Volume space is allocated from this area
of the disk in units, each consisting of an integral number of 192 word blocks. Refer
to this chapter's Allocation Units section. MPX-32 prevents any task from
performing asynchronous aborts and deletes while a service that modifies the
allocation of disk space is acting on that task. Any such request is deferred until the
service completes.

5.4.2 Temporary vs. Permanent Files

5-20

Temporary files have all the access and protection attributes associated with
permanent files. However, temporary files are automatically deallocated, and their
volume space is returned to the pool of available space when a task exits or aborts.

Temporary files created by the Create Temporary File (M.TEMP) service can be
shared by tasks that received the associated resource identifier (RID) from the creating
task. In this case, the volume space allocated to the temporary file is not deallocated
until the last task assigned to it deallocates the file or exits.

Temporary files are made permanent if they are created on a specific volume in a valid
directory for the user making the request.

Resource Assignment/Allocation and I/O

o

MPX-32 Volume Resource Access

Permanent files and memory partitions remain defined on the volume until they are
explicitly deleted by a user who has access to them.

5.4.3 System Directory

The system directory is a special directory that resides on the system volume. It is
identified within the patbname structure by the keyword SYSTEM, a name reserved
for MPX-32.

All executable images or load modules with the system administrator attribute must
reside in the system directory.

Any other files created on a volume can reside in the system directory if desired.
However, no special significance is given to these files.

5.5 MPX-32 Device Access

When a device is assigned for I/O, H.REMM verifies that the device is available,
allocates blocking buffers required for blocked I/O to disk, magnetic tape, or floppy
disk, and identifies the device for 10CS in the FAT. If a device is not available (not
included in the SYSGEN configuration of a system, off-line, etc.), H.REMM aborts
the task (static assignment) or returns an error code (dynamic assignment).

Throughout the reference manual, the generic descriptor devmnc indicates that a
device can be specified.

MPX-32 specifies device addresses using a combination of three levels of
identification: device type, device channel/controller address, and device
address/subaddress. The combinations identifying device addresses include the
following:

• To allocate the first available device (of the type requested) specify the generic
device type mnemonic only.

• To allocate the first available device (of the type requested) on a specific channel or
controller specify the generic device type mnemonic and the channel/controller
address.

• To allocate a particular device specify the device type mnemonic,
channel/controller, and address/subaddress of the device.

MPX·32 Reference Volume I 5·21

MPX-32 Device Access

5.5.1 Magnetic Tape

5-22

A multivolume magnetic tape is a set of one or more physical reels of magnetic tape
(255 maximum) processed as a continuous reel. Multivolume magnetic tape
processing is supported under MPX-32 by the Multivolume Magnetic Tape
Management Module (H.MVMT).

The multivolume magnetic tape can be used to transfer data to any MPX-32 Revision
2 or 3 system (refer to Table 5-2). It must be used when data to be transferred cannot
fit on a single tape.

Table 5-2
Multivolume Magnetic Tape Data Transfers Between

Different Operating Systems

MPX-32 Source MPX-32 Destination
System Revision* System Revision** Result
Pre-3.3 Pre-3.3 Possible data loss at end of tape
Pre-3.3 3.3 or later H.MVMT treats magnetic tape as

pre-3.3, possible data
loss at end of tape

3.3 or later Pre-3.3 The pre-3.3 H.MVMT treats the
magnetic tape as pre-3.3, possible
data loss at end of tape.

3.3 or later 3.3 or later H.MVMT detects the new header
and expects a trailer.

* The source system generates the multivolume magnetic tape.

** The destination system reads the multivolume magnetic tape.

Resource Assignment/Allocation and 1/0

C··",
.. J

,0···"'··\ I •

MPX-32 Device Access

Multivolwne tape reels have the following format:

192 Word
header

End of tape
marker

Remaining End of file
data marker

192-word
trailer

The 192-word header is a tape label produced as the first record for each volwne of a
multivolwne file. The volwne nwnber and the reel identifier portions of this record
are verified during subsequent read operations. The header has the following format:

Words

o
1

2-3
4

5
6-7
8-9

10-11
12-13
14-15
16-17
18-19

20-191

Contents

reel ID (4-character ASCII entry)
volwne nwnber 1 to 255 in binary format
date (ASCII) in Gregorian format (mm/dd/yy)
time (byte binary) as follows:

Byte Meaning

o hour
1 minutes
2 seconds
3 intervals (1/60th of a second)

multivolume revision nwnber (ASCII) (0001)
'HEADER~)'>'

'FOR~MULT'
'IVOLUME)'>'
'MAGNETIC'
'~TAPES~F'
'OR~MPX-3'

'2~~~~V>~~'
reserved (zero)

MPX-32 Reference Volume I 5-23

MPX-32 Device Access

5·24

The format for the trailer is as follows:

Words

o
1

2-3
4*

5
6-7
8-9

10-11
12-13
14~15

16-17
18-19

20-191

Contents

reel ID (4-character ASCII entry)
volume number 1 to 255 in binary format
date (ASCII) in Gregorian format (mm/dd/yy)
time (byte binary) as follows:

Byte ~eaning

o hour
1 minutes
2 seconds
3 intervals (1/60th of a second)

multivolume revision number (ASCII) (0001)
'TRAILERts'
'FORt}MUL T'
'IVOLU~ts'

'~GNETIC'

't}TAPESt}F'
'ORt}MPX-3'
'2t}t}t}t}t}t}t} ,
reserved (zero)

* The date and time stored in the trailer is when the trailer was built; it indicates the
date and time stored in the header and should be identical to the date and time of
the header.

~ultivolume magnetic tape processing mode is invoked whenever an assignment to a
magnetic tape unit is encountered where multivolume is indicated by a volume
number.

~ultivolume processing is automatic for magnetic tape operations in the forward
direction, such as read, write, advance, and erase. For reverse direction operations,
such as rewind or backspace, the user is required to provide processing logic for
proper reel manipulation and positioning requests.

Volume numbers in the range of 1 to 255 are provided as an operations aid in
mounting and dismounting physical reels of magnetic tape. MPX-32 treats the
volume numbers in circular fashion (for example, volume 1 follows volume 255 in the
numbering scheme).

A scratch tape (SCRA) is not assigned if the multivolume mode is specified. Also, a
unit applicable for multivolume magnetic tape operations cannot be designated a
shared (SHR) device.

For multivolume magnetic tape processing, MPX-32 cannot pass end-of-medium
(EO~ indicators to the user by the FeB. If a read, write, or advance operation is
requested when tape is at end-of-medium, the system issues a dismount message to
the console teletypewriter for the current volume (reel), followed by a mount request
for the next sequential volume number before performing the requested operation.

Resource ASSignment! Allocation and 1/0

C··I. -."' .•. I .
,','i

C·~··'
!"' ,)

(

(

MPX-32 Device Access

Depending on the MPX-32 revision of the source system, read and write requests
complete the following for a multivolume magnetic tape:

Source
system* Request Result

Pre-3.3 Read No check for expanded header

Write No expanded header or trailer exists

3.3 or later Read at BOT Checks for expanded header.
If expanded header is detected,
bit 2 of DFf.FLGS is set.

Write Writes expanded header and trailer

* The source system generates the multivolume magnetic tape.

The system does not recognize multivolume mode specification when a magnetic tape
is positioned at load point and a rewind or backspace operation is requested.

For Volume Manager restore operations, special processing occurs if the file being
restored resides on two or more reels of a multivolume magnetic tape.

5.5.2 Unformatted Media

When a task is activated that has a device assignment to magnetic tape, disk, or floppy
disk, the resource is treated as an unformatted medium. This implies that a medium
must be mounted on the drive prior to the initiation of any I/O operations. The device
is treated, in effect, as one continuous file for sequential I/O operations. Table 5-3
lists the physical dimensions of the medium for the various disk drives supported by
MPX-32.

If the blocked or unblocked option is not selected at LFC assignment, all I/O to
unformatted media is blocked by default.

MPX-32 Reference Volume I 5-25

MPX-32 Device Access

5-26

When the resource is opened for I/O, a mount message is displayed on the operator's
console. This message is inhibited, if desired, by the SYSGEN directive or
assignment option. A mount message is not issued for assignments to shared devices.
The format of the mount message for unformatted media is:

MOUNT reel VOL volume ON devmnc
TASK taskname,taskno REPLY R,H,A OR DEVICE:
jobno

reel

volume

devmnc

taskname

specifies a 1- to 4-character identifier for the reel. If not
specified, the default is SCRA (Scratch).

identifies the volume number to mount if multivolume tape

is the device mnemonic for the tape unit selected in response to
the assignment. If a specific channel and subaddress are
supplied in the assignment, the specific tape drive is selected
and named in the message; otherwise, a unit is selected by the
system and its complete address is named in the message.

is the name of the task the unformatted medium is assigned to

taskno is the task number assigned to this task by the system

R,A,H OR DEVICE
the device listed in the message can be allocated and the task
resumed (R), a different device can be selected (DEVICE), the
task can be aborted (A), or the task can be held with the
specified device deallocated (H). If an R response is given and a
high speed XIO tape drive is being used, its density can be
changed when the software select feature is enabled on the tape
unit front panel. If specified, it overrides any specification made
at assignment. Values are:

Value

Nor 800

P or 1600
G or 6250

Description

indicates 800 bpi Nonreturn to Zero
inverted (NRZI)
indicates 1600 bpi Phase Encoded (PE)
indicates 6250 bpi Group Coded Recording
(GCR). Default

Example usage: RN, R1600, etc.

Note: Do not insert blanks or commas.

jobno if the task is part of a batch job, identifies the job by job
number

Resource Assignment/Allocation and 1/0

! . C'

(

MPX-32 Device Access

Response:

To indicate that the drive specified in the mount message is ready and proceed with
the task, mount the appropriate medium on the drive and type R (resume), optionally
followed by a density specification if the drive is a high speed XIO tape unit. To
abort the task, type A (abort). To hold the task and deallocate the specified device,
type H (hold). The task is then resumed by the CONTINUE directive. At this time, a
drive is selected by the system and the mount message is redisplayed.

To select a drive other than the drive specified in the message, enter the mnemonic of
the drive you want to use. Any of the three levels of device identification can be
used. The mount message is reissued. Mount the tape and type R (resume) if
satisfactory, or, if not satisfactory, type A (abort), H (hold), or select a device as just
described.

Table 5-3
Disk Description Table

SYSGEN FLOOI MH080 MH160 MH300 MH340 MH600
Disk Code

Unit Size Aoppy 80MB 160MB 300MB 340MB 600MB

Type MH MH MH MH MH MH

Sector Size 256B* 192W 192W 192W 192W 192W

Sectors!frack 26 20 20 20 20 20

Number 2 5 10 19 24 40
of Heads

Maximum 77 823 823 823 711 843
Cylinders

Sectors/ 52 100 200 380 480 800
Cylinder

Total Sectors 4004 82,300 164,600 312,740 341,280 674,400

Maximum
Data Byte 1.02MB 63.20MB 126.41MB 240. 15MB 262. 10MB 517.94MB
Capacity

* Smallest accessible block size=192W

MH=Moving Head
Sectors/Cylinder=(Sectors!frack) x (Number of Heads)
Total Sectors=(Sectors/Cylinder) x (Maximum Cylinders)
Maximum Data Byte Capacity=(Maximum Sectors) x 768 bytes/sector

MPX-32 Reference Volume I 5-27

MPX-32 Device Access

5.5.3 Examples of Device Identification Levels

Examples of the three types of device specification follow:

Form 1 - Generic Device Class

ASSIGN OUT TO DEV=M9 MULTIVOL=l ID=SRCE

In this example, the device assigned to logical file code (LFC) OUT is any 9-track
tape unit on any channel. The multivolume reel number is 1. The reel identifier is
SRCE and the tape is blocked.

Form 2 - Generic Device Class and Channel/Controller

ASSIGN OUT TO DEV=M910 ID=SRCE2 BLOCKED=N

In this example, the device assigned to logical file code (LFC) OUT is the first
available 9-track tape unit on channel 10. The specification is invalid if a 9-track
tape unit does not exist on the channel. The reel identifier is supplied. The tape is
unblocked and is not multivolume.

Form 3 - Specific Device Request

ASSIGN OUT TO DEV=M91001

In this example, the device assigned to logical file code (LFC) OUT is the 9-track
tape unit 01 on channel 10. The specification is invalid if unit 01 on channel lOis
not a 9-track tape. The tape reel identifier is SCRA. The tape is blocked and is not
multivolume.

5.5.4 GPMC Devices

GPMC/GPDC device specifications are similar to the general structure previously
described. For instance, the terminal at subaddress 04 on GPMC 01 whose channel
address is 20 would be identified as follows:

ASSIGN OUT TO DEV=TY2004

5.5.5 NULL Device

A special device type, NU, is available for null device specifications. Files accessed
using this device type generate an end-of-file (EOF) upon attempt to read and normal
completion upon attempt to write.

5.5.6 System Console

LFCs are assigned to the operator console by using the device type CT.

5-28 Resource ASSignment! Allocation and 1/0

MPX-32 Device Access

C 5.5.7 Special File Attributes

There are two special file attributes that can be applied to resources at LFC
assignment: print and punch. These attributes are supplied as options on the TSM
$ASSIGN statement. For example:

$ASSIGN OUT TO OUTPUT PRINT (permanent file)
$ASSIGN OUT TO TEMP= (vo/name) PRINT (temporary file)

See the Spooled Output with Print or Punch Attribute section in this chapter for a
description of the handling of special file attributes.

MPX·32 Reference Volume I 5-29

Samples

5.6 Samples

A description of device selection possibilities are as follows:

5-30

Disk

Tape

DC
DM
DM08
DM0801
DM0002
DF
DF04
DF0401
FL70FO

MT
M9
M910
M91002
M7
M712
M71201

Card Equipment

Line Printer

CR
CR78
CR7800

LP
LP7A
LP7AOO

any disk except memory disk
any moving head or memory disk
any moving head disk on channel 08
moving head disk 01 on channel 0 8
memory disk 02 on channel 00
any fixed head disk
any fixed head disk on channel 04
fixed head disk 01 on channel 04
floppy disk 0 on controller F channel 7 0

any magnetic tape
any 9-track magnetic tape
any 9-track magnetic tape on channell 0
9-track magnetic tape 02 on channell 0
any 7 -track magnetic tape
any 7 -track magnetic tape on channel 12
7 -track magnetic tape 01 on channel 12

any card reader
any card reader on channel 7 8
card reader 00 on channel 78

any line printer
any line printer on channel 7 A
line printer 0 0 on channel 7 A

Resource Assignmentl Allocation and 1/0

c

Samples

Table 5-4
MPX-32 Device Type Codes and Mnemonics

Device Device

Type Type
Code Mnemonic Device Description

00 CT Operator console (not assignable)

01 DC Any disk unit except memory disk

02 DM Any moving head or memory disk

03 DF Any fixed head disk

04 MT Any magnetic tape unit

05 M9 Any 9-track magnetic tape unit*

06 M7 Any 7-track magnetic tape unit*

OS CR Any card reader

OA LP Any line printer

OB PT Any paper tape reader-punch

OC TY Any teletypewriter (other than console)

OD CT Operator console (assignable)

OE FL Floppy disk

OF NU Null device

10 CA Communications adapter (binary
synchronous/asynchronous)

11 UO Available for user-defined applications
12 Ul Available for user-defined applications

13 U2 Available for user-defined applications

14 U3 Available for user-defined applications

15 U4 Available for user-defined applications
16 US Available for user-defined applications

17 U6 Available for user-defined applications
18 U7 Available for user-defined applications

19 US Available for user-defined applications

lA U9 Available for user-defined applications
IB LF Line printer/floppy controller (used only with SYSGEN)

N/A ANY Any nonfloppy disk except memory disk

* When both 7- and 9-track magnetic tape units are configured. the designation
must be 7 -track.

MPX-32 Reference Volume I 5-31

Device-Independent I/O Processing

5.7 Device-Independent I/O Processing

A task starts I/O operations (reads, writes, etc.) by issuing service calls to 10CS.
10CS validates the logical address of the task's data buffer (defined in the transfer
control word (TCW) of the FCB), and links an I/O request containing the TCW
infonnation to a queue for the appropriate device handler. The I/O requests are
queued by the software priority (1 to 64) of requesting tasks.

The handler issues appropriate instructions to the device controller (command device,
test device, or start I/O).

The controller perfonns the I/O. For example, it reads a record into the task's data
buffer. When the requested I/O is complete, the controller issues a service interrupt
(SI).

If the handler is passing the address of a list of directives or data (IOCL) for a
controller to operate on, the SI is returned from the controller when all operations
specified in the list have been completed.

The processing that occurs when the handler receives the SI interrupt from the
controller depends on whether the user has established a wait I/O or no-wait I/O
environment by the FCB.

5.7.1 Wait I/O

If wait I/O is indicated in the FCB, the task waits (suspends) until the I/O operation
completes. 10CS returns to the task at the point following the I/O service call.

5.7.1.1 Wait 1/0 Errors

5-32

If an error occurs during an I/O operation to tape or disk, the handler automatically
retries the operation. If retry operations fail, the handler passes the error to 10CS and
10CS posts status in the FCB (word 3, and optionally words 11 or 12). The task can
take action or not as described in the next section. When an error is detected on a
card reader, line printer, or other device that does not have automatic retry, and
operator intervention is applicable, the handler passes the error to 10CS and 10CS
issues a message on the system console indicating the device is not operating:

*devmnc INOP: R,A?

Sample criteria for the INOP message are: the printer runs out of paper, a card reader
or printer malfunctions, etc.

10CS allows the console operator to correct the condition or abort. If the device is
fixed, the operator types R (retry). 10CS re-establishes the entry conditions for the
handler (passes the TCW with the initial transfer count, etc.) and calls the handler to
retry the I/O operation that was in error. The error status is cleared and I/O proceeds
nonnally. If the operation aborts, 10CS starts abort processing.

Resource Assignmentl Allocation and 1/0

Device-Independent I/O Processing

(- 5.7.1.2 Wait 1/0 Exit and 1/0 Abort Processing

(-

c

If error processing is not applicable (disk or magnetic tape) or if the operator has
responded A (abort) to the INOP message, 10CS either aborts the task or transfers
control to the task at the address specified in word 6 of the FCB. If the task gains
control, it examines the contents of word 3 and optionally words 11 and 12 as
applicable, and performs its own exit or abort processing.

If the user has not defined an error return address for wait I/O in the FCB, 10CS
aborts the task and displays an abort message on the system console:

r/o ERR DEV: devmnc STATUS statusword LFC:lfc mm/dd/yy hh:mm:ss

10CS displays status word 3 from the FCB on the system console.

For I/O to XIO devices, a second line is displayed along with the I/O ERR message:

XIO SENSE STATUS = senseword

where senseword is the sense information returned in FCB.ISTl of an extended FCB.

5.7.1.3 Error Processing and Status Inhibit

The user sets word 2, bit 1 of the FCB to bypass error processing by handlers and
10CS. On error, the status word of the FCB is still set by 10CS (unless bit 3 is set as
described below), and 10CS transfers control to the task normally. The task must
perform any error processing.

If the user sets word 2, bit 3 of the FCB, he inhibits handlers from checking status in
any respect. No error status is returned to 10CS. All I/O appears to complete without
error.)

5.7.2 No-Wait I/O

If the user has indicated no-wait I/O in the FCB, 10CS returns control to the task
immediately after an I/O request is queued. The task continues executing in parallel
with its I/O. When the handler fields an SI interrupt for the specified I/O operation, it
notifies the l\1PX-32 executive. The executive links the I/O queue entry to a software
interrupt list for the task (a task interrupt). When the task is to gain control, the
executive passes control to IOCS. An unprivileged user is limited to five no-wait I/O
requests.

If the task issues a second concurrent no-wait I/O request to the same LFC, 10CS
immediately places the task in ANYW AIT (prior to starting the I/O) until the first I/O
completes end action processing.

5.7.2.1 No-Wait 1/0 Complete Without Errors

10CS checks the address specified by the user in the FCB for no-wait I/O end action
processing. If I/O completes successfully, it routes control to the address provided by
the user for normal end processing (word 13). If the user has not specified this
address in the FCB, IOCS returns control to the executive and the task continues
executing at the point where the task interrupt occurred.

MPX-32 Reference Volume I 5-33

Device-Independent 1/0 Processing

5.7.2.2 No-Wait 1/0 Complete with Errors

When IOCS gains control on a task interrupt and an error occurs, IOCS routes control
to the task at the user-supplied error return address in word 14 of the FCB. If the user
has not supplied this address, control is returned to the executive and then to the task
so that it continues execution where the task interrupt occurred.

The FCB (word 3 and optionally words 11 and 12) indicates the cause of an error.
The task is responsible for examining the word(s) and for any recovery procedure.
IOCS makes no attempt to recover from an error condition through operator
intervention when a task uses no-wait I/O.

5.7.2.3 No-Wait End-Action Return to 10CS

A task using no-wait 1/0 end-action processing should return to 10CS by an SVC
I,X'2C' after normal or error processing is complete. 10CS returns control to the
executive, which returns control to the task where the task interrupt occurred. In any
end-action processing, R 1 points to the FCB address.

5.7.3 Direct 1/0

Within a task, the user can temporarily bypass normal IOCS and handler functions by
coding a handler and attaching it to a specific channel (service interrupt level). Direct
I/O is totally under the user's control and acquires data at rates that prohibit 10CS
overhead.

To perform direct 1/0, the task passes a TCW directly to a device, completely
bypassing the IOCS. The task is responsible for any control structures related to the
1/0 operation (it does not, for example, have use of a FCB) and it must field interrupts
on its own. The user must be familiar with the hardware and its response to software
instructions, and must implement all support pertaining to 1/0 for the device.

Before connecting his own handler, the user issues a reserve channel call to 10CS.
IOCS then holds all outstanding or subsequent requests for the specified channel until
the task issues a release channel call. When 10CS receives the release request, it
resumes normal processing on the channel with the standard handler.

Direct 1/0 is not the same as developing an 1/0 handler and linking it into the system
at SYSGEN. Direct I/O is a privileged operation.

5.7.4 Blocked I/O

5-34

Blocked I/O processing is supported under MPX-32 by the Blocked Data Management
Module (H.BKDM).

I/O to disk files and magnetic tapes is blocked or unblocked depending on the device •
assignment or the setting of word 2, bit 5 of the FCB at open. If the user does not set
bit 5, I/O is blocked or unblocked as specified by the device assignment. If bit 5 is
set at open, I/O is blocked. The FCB definition overrides any assignment
specification of unblocked (specified explicitly at assignment).

Resource Assignmentl Allocation and 1/0

C'~"'"
. ,I

(-.

Device-Independent I/O Processing

For blocked I/O, REMM automatically allocates and uses a 192-word blocking buffer
that provides intermediate buffering between a task's data buffer and a device. A block
is 192 words long and records that can be packed into the block are a maximum of
254 bytes long. Longer records are truncated. The particular buffer used for blocked
I/O can be user-supplied by the FCB at open or allocated from the buffer area of the
TSA.

On input, 10CS transfers a block of records from a device into the blocking buffer and
moves them into the task's data buffer one logical record at a time. On output, 10CS
transfers one logical record at a time from the task's data buffer into the blocking
buffer and outputs the accumulated records in 192-word blocks.

Reads and writes to the same blocked file or tape by the same task are not mixed
because they interfere with the blocking buffer operations being performed by 10CS.
A read attempted while 10CS is writing out a group of records to the blocking buffer
(or a write when reading) is not executed and 10CS aborts the task.

Special care must be taken when writing to a blocked file in modify mode. Blocked
files are modified on a block-by-block basis rather than record-by-record. MPX-32
clears each block of a blocked file before writing records to the block. The user may
rewrite any number of records in the cleared block. However, since MPX-32 does not
preread the block before clearing it, the user must preread any records in a block
which will be modified and rewrite them, if necessary.

Table 5-5
Assign/Open Block Mode Determination Matrix

Fonn of Assignment Open by M.OPENR Open by
M.FILE

NoCNP CNP Word 2 CNP Word 2 FCB Word 2
Options Set Bit 10 Set Bit 11 set Bit 5 set

AS LFC TO path name Blocked Unblocked Blocked Blocked
AS LFC TO pathname
BLO=Y Blocked Unblocked Blocked Blocked
AS LFC TO path name
BLO=N Unblocked Unblocked Blocked Blocked

Al LFC=fiiename Blocked Unblocked Blocked Blocked

Al LFC=fiiename"U Unblocked Unblocked Blocked Blocked

Notes:

When bit 1 0 is set, the resource is opened in unblocked mode, overriding any
specification made at assignment.

When bit 5 or bit 11 is set, the resource is opened in blocked mode, overriding any
specification made at assignment.

If both bit 1 0 and bit 11 are set, the resource is opened in blocked mode.

MPX·32 Reference Volume I 5·35

Device-Independent I/O Processing

5.7.5 End-of-File and End-ot-Medium Processing

Table 5-6 describes the different types of end-of-file (EOF) and end-of-medium
(EOM) processing supported under MPX-32. EOF only occurs when the beginning of
the record to be transferred meets the specified condition. If EOF occurs in other than
the first block of the transfer, the transfer is truncated up to the EOF block with the
actual transfer count set to the truncated amount and no EOF indication. On the next
sequential transfer after the truncated record, the task receives the EOF indication.

5.7.6 Software End-ot-File tor Unblocked Files

5·36

For unblocked files, the EOF indicator is the data pattern X'OFEOFEOF' in the first
word of a disk sector. MPX-32 provides the M.WEOF service for nonbase tasks, or
M_ WRITEEOF service for base mode tasks, to generate the EOF indicator within a
file. In this way, MPX-32 provides the capability to create multiple file files.

Use of multiple file unblocked files created with EOFM=T/y (True or Yes
respectively).

The EOF data pattern is not written or detected in unblocked files created with
EOFM=T/y. The M.WEOF service in nonbase assembler and the M_ WRlTEEOF
service in base mode assembler, do not write an EOF pattern into an unblocked file
created with EOFM=T/y.

The EOF block recorded in the file descriptor for a file of this type is one block higher
than the last sequentially written block of the file. MPX-32 does not expect the EOF
block as the last block of the file.

The EOF pattern is detected on a read of an unblocked file, created with EOFM=T/y.
Any inconsistency between the EOF block recorded in the file descriptor and the last
block of sequentially written data in the file (EOF block + 1) is corrected. The disk
block containing the EOF data pattern is not part of the file contents.

Notes:

Use caution when accessing unblocked files in append mode that were created under a
pre-3.4U02 revision of MPX-32, with EOFM=T/y. Writing to such a file that has the
EOF data pattern in the end-of-file block causes loss of data on a subsequent read of
the EOF data sector.

Resource Assignment/Allocation and I/O

o

(

C"
,"

Device-Independent I/O Processing

Use the Media utility COPY command as described in the following procedure to
avoid the problem described above: I

• Create a scratch file for output.

• Use the MEDIA utility COPY command:

TSM>AS IN TO filename BLO=N
TSM>AS OT TO scratch file BLO=N
TSM>MEDIA
MED>COPY,IN,OT
MED>EXIT
MED>END

• Delete the scratch file.

Existing multiple file unblocked files created with EOFM=TjY can be preserved using
VOLMGR COPY command, with options for REPLACE, and EOFM=FjN.

Table 5-6
EOF and EOM Descri ption

EOF EOM

Read EOF occurs when the record EOM occurs when a record
with the EOF bit set in the block is read from a block that
buffer control word is read. is past the last block

written to the file.
Blocked

Write Not applicable EOM occurs when a record
is written to a block that is one or
more blocks past the end of the file
space for a file that cannot be

extended.

Read EOF occurs if the first word EOM occurs when a read
of data read has the data starts from two or more
pattern of X'OFEOFEOF' in blocks past the last block

Unblocked it. EOF will also occur written to the file
With Data if a read starts I block
Formatting past the last block written

to the file (EOF block in
the FAT).

Write Not applicable Same as Blocked Write EOM

Unblocked Read EOF occurs if a read Same as Unblocked Read
With Data starts 1 block past with Data Formatting EOM
Formatting the last block written to
Inhibited the file (EOF block in the FAT).

Write Not applicable Same as Blocked Write EOM

MPX·32 Reference Volume I 5·37

Spooled Output with Print or Punch Attribute

5.8 Spooled Output with Print or Punch Attribute

Real-time (not job related) permanent and temporary files are assigned with either the
print or punch attribute. When the file is deassigned, spooled output is automatically
generated on the auto-selectable print or punch device. If the file is temporary, it is
deleted when the output process is complete. If the file is permanent, it is not deleted
when the output process is complete.

5.9 Setting Up File Control Blocks for Device-Independent 1/0

5-38

The MPX-32 Logical Device-independent I/O section in this chapter describes the
function of an FCB. Parts of the FCB are required and must be defined by the user:

• a logical file code

• a transfer count and data buffer address for I/O operations controlled by this FCB

10CS assumes the following if no other special I/O characteristics are defined in the
FCB:

• wait I/O - IOCS returns to the calling task only when a requested operation on the
file or device assigned to this FCB is complete

• automatic retry on error by IOCS and some handlers, as described in the Device
Independent I/O Processing section in this chapter.

• device-dependent output and input are handled using standard techniques

• status information is returned in the FCB

• file and device access is sequential

Areas of the FCB define:

• no-wait I/O - Immediate return to the calling task after I/O operation is queued.
The user can define the return address to return to in the task when processing is
complete (normal or error).

• error processing inhibit - Only status is returned by handlers. No error processing
is performed by 10CS or handlers.

• special device output characteristics

• random access for disk files

Some areas of the FCB are defined by IOCS. 10CS stores the opcode each time the
task specifies a particular FCB, stores status returned by handlers, tracks actual record
length in bytes for each transfer, and builds and maintains I/O queue and file
assignment table (FAT) addresses. Refer to Appendix L for the 16-word format for
the FCB.

Resource Assignmentl Allocation and 1/0

o

("
Setting Up File Control Blocks for Device-Independent I/O

5.9.1 Macros (M.DFCB/M.DFCBE)

The M.DFCB macro defines an S-word FCB. The M.DFCBE macro defines a 16-
word FCB.

There is no base mode equivalent service for M.DFCB. The base mode equivalent
service for M.DFCBE is M_CREATEFCB.

Syntax

M.DFCB[E] label, ifc, count, buffer, [error] , [random] , [NWT] , [NER] , [DFI]
, [NST] , [RAN] , [ASC I BIN] , [LDR I NLD] , [INT I PCK] , [EVN I
BODD] , [556 I 800] , [nowait], [nowaiterror],[buffaddr]

label contains an ASCII string to use as symbolic label for the address of
this FCB.

ifc contains a logical file code.

count contains the transfer count. Specify in number of bytes.

buffer contains the start address of the data buffer.

[error] contains the error return address for wait I/O.

[random] contains the random access address.

[NWT] , [NER] , [DFI] , [NST] , [RAN]
specifies general control flags. Refer to the FCB in Appendix L for
flag descriptions.

[ASC I BIN] for CR or CP

[LDR I NLD]

[INT I PCK]

[EVN I ODD]

[556 I 800]

[nowait]

[nowaiterror]

[buffaddr]

for PT (reader)

for 7 -track mag tape

for parity, s

for bits per inch density

specifies address for normal no-wait I/O end action return.

specifies address for no-wait I/O error end action return.

specifies the address of a 192W user-supplied blocking buffer to be
used for blocked I/O.

MPX-32 Reference Volume I 5-39

Setting Up File Control Blocks for Device-Independent I/O

5.9.2 Sample FCB Set-up Nonmacro

User defines an FCB for terminal message output:

TERM GEN 8/0,24/C'UT'
GEN 12/B(TY.LEN),20/B(MESSAGE)
REZ 6W

MESSAGE EQU $
DATAB C' "M"J CREATE FAILED. ERRTYPE '

TY.LEN EQU $-MESSAGE
ERRTYPE EQU $-lB

Notes:

The source code uses TERM with M.WRIT to access this FCB. The logical file code
is UT. The transfer control word built with the GEN directive has a transfer count
equal to the message (TY. LEN EQU $-MESSAGE) computed by the Assembler.

The buffer start address is at MESSAGE (address is supplied by the Assembler). In the
actual message, "M indicates carriage return and "J indicates line feed before output.
The last byte of the message comes from R5 when an error occurs as defined by:

C .MSG EQU $
M.CONBAD
STB
M.WRIT

R7,ERRTYPE
TERM

5.9.3 Sample FCB Set-up Macro

5·40

MESSAGE

TY.LEN
ERRTYPE

M.DFCB
EQU
DATAB
EQU
EQU

TERM, UT, TY.LEN, MESSAGE
$
C' "M"J CREATE FAILED. ERRTYPE'
$-MESSAGE
$-lB

Resource Assignmentl Allocation and 1/0

(

(

(

Setting Up TCPBs for the System Console

5.10 Setting Up TCPBs for the System Console

Messages are sent from a task to the system console and a response is optionally read
back by a TCPB. The TCPB sets up task buffer areas for messages output by the task
and reads back from the console.

The TCPB is comprised of a write and an optional read transfer control word defined
like the TCW in word one of the FCB. If read back from the terminal is not desired,
the read TCW must be zero. The user must perform his own carriage return and line
feed.

The size of the read buffer should include space for both an input character count
preceding the message (provided by IOCS) and the carriage return (end-of-record)
character typed by the user at the end of an input line.

The count of input characters actually typed is placed by IOCS in the first byte of the
read buffer. This input count does not include the carriage return character.

The byte transfer count is normally used by a task as maximum allowed input before
termination. If the operator types in the maximum count without having typed a
carriage return, the read is terminated.

The end-of-record character (carriage return) is normally allowed for in both the read
and write buffer transfer count. If five characters are expected, the read transfer count
would typically be for six characters. This allows the operator to type in and verify
the accuracy of all five characters before terminating the input message by typing a
carriage return.

Message transfers are always in bytes, so the buffer address must be a byte address
(F-bit setting - bit 12).

If the NWT bit is set (word 2, bit 0), IOCS returns immediately to the calling task
after the message is queued. The task can subsequently examine the OP indicator set
by IOCS in word 2, bit 31 to see if the requested transfer is complete (0) or in process
(1).

MPX·32 Reference Volume I 5·41

Setting Up TCPBs for the System Console

Table 5-7
Type Control Parameter Block

Type Control Parameter Block (TCPB) 24·bit Address

This is the preferred TCPB format. The M.TYPE and M_TYPE system service
macros generate this format.

Word 0

1

2

o 7 8

Output quantity Output data buffer address (TCP.OTCW)
(TCP.OQ)

Input quantity Input data buffer address (TCP.ITCW)
(TCP.IQ)

o I 1 I Console device flags (TCP.FLGS)

Bit interpretations for TCP.FLGS:

Bit Meaning if set

o no-wait I/O
1 data buffer addresses are 24-bit addresses (TCP.LAD)

Note: TIris bit must be set.
31 operation in progress. This bit is reset after post-I/O

processing completes.

Type Control Parameter Block (TCPB) 19-bit Address Compatible Mode

Word 0

1

2

o 11 12 13

Output quantity (TCP.OQ) 1 Output data buffer address (TCP.OTCW)

Input quantity (TCP.lQ) 1 Input data buffer address (TCP.ITCW)

Console device flags (TCP.FLGS)

Bit interpretations for TCP.FLGS:

Bit Meaning if set

o no-wait I/O
31 operation in progress. TIris bit is reset after post-I/O processing

completes.

Note: Bit 12 of word 0 must be set.

31

31

5-42 Resource Assignment/Allocation and I/O

MPX-32 Device-Dependent I/O

5.11 MPX-32 Device-Dependent 1/0

5.11.1

MPX-32 allows the user to perform direct channel I/O to F-class I/O devices. Direct
channel I/O is accomplished by issuing a request to execute a logical or physical
channel program that was built by the user.

A logical channel program allows the user to use the specific physical attributes of the
device without having to be privileged or work with physical addressing. The user
can assign a logical file code to a physical device, but must be concerned with the
physical characteristics of the device. This gives the unprivileged user a way to use
the explicit functionality provided by the device that may not be provided by device­
independent I/O.

A physical channel program allows a privileged user to issue an I/O command list
(IOCL) directly to a channel/controller/device. The 10CL is issued to the channel
without any modification by the system. This allows a time critical user to issue
physical I/O command lists that do not require the normal overhead of logical I/O.

Device-Dependent 1/0 Processing Overview

A task can issue device-dependent I/O by issuing an Execute Channel Program
(EXCPM) request to IOCS for any XIO device allocated in the channel program
access mode. This enables the task to pass an I/O channel program that it has built to
a specified device with minimal 10CS overhead.

EXCPM support provides the user with the ability to perform direct channel I/O by
using either a logical channel program or a physical channel program. A logical
channel program is an IOCL built using logical addresses inside the building task's
logical address space. The operating system will change all addresses to physical and
resolve all physical address discontinuities by the use of data chaining before the
10CL is executed by the device. On completion of the I/O, control is returned to the
task in the same manner as any I/O request.

A physical channel program is an IOCL ready to be executed by the device and is
pointed to by a logical address. The area in memory containing the physical 10CL
must be made unswappable by the user. All addresses in a physical channel program
are physical addresses and discontinuities in the logical to physical mapping have
been resolved by the user. A task must be privileged to execute a physical channel
program.

A physical channel program started in the no-wait mode may have a post program­
controlled interrupt (PPCI) EA receiver associated with it. This special EA receiver
may be specified along with the normal EA receiver for no-wait I/O.

To issue an EXCPM to an 8-LAS device, that device must be in dual channel mode
(Le. FULL and NOECHO in the LOGONFLE, terminal set to HALF DUPLEX, and
TSM OPTION UNQUIET in effect).

The EXCPM support applies only to extended I/O F-class devices.

The console does not have channel program capabilities.

MPX-32 Reference Volume I 5-43

MPX-32 Device-Dependent 1/0

5.11.2 Operational Description of Execute Channel Program (EXCPM)

The task must specify the logical address and a time-out value for the channel
program in the FCB. The time-out value must be specified in seconds and placed in
the second halfword of word 2 in the FCB. If the value equals zero, not time out is
set for the EXCPM request. The logical address of the channel program must be
placed in word 8 of the FCB. The task starts the I/O operation by issuing an SVC
l,X'2S' or an M.CALL H.IOCS,10.

A SENSE buffer can be specified with an EXCPM request by placing the size of the
buffer, in bytes, in FCB.SSIZ and the address of the buffer in FCB.SENA. If a
SENSE buffer is specified, when the channel program terminates (normally or
abnonnally), a SENSE command is issued to the device and the information received
is placed in the buffer specified. The size of the sense buffer must be equivalent to the
number of bytes of sense status that a particular device will return. If the buffer size
is zero, no sense information is returned and a buffer is not needed.

5.11.2.1 Logical Channel Program

The task builds a channel program inside its logical address space using the standard
XIO commands and logical addressing. A logical 10CL must be contiguous in logical
memory and TIC commands cannot be used to create loops.

5.11.2.2 Physical Channel Program

The task must be privileged to execute a physical channel program. It must build a
physical IOCL using standard XIO commands and all related addresses must be
physical. It must also resolve all data area discontinuities with the use of data
chaining. After the physical IOCL is built, the task places the logical address of the
IOCL into word 8 of the expanded FCB and sets bit 2 in word 2 of the FCB to
indicate this is a physical [OCL. The user must insure that the memory containing the
physical IOCL is unswappable.

5.11.2.3 Post Program-Controlled Interrupt (PPCI) End-Action Receiver

5-44

A privileged task may specify that a PPCI end-action receiver be used with a physical
channel program issued in no-wait mode. This PPCI receiver will be entered when a
PPCI occurs during the execution of the IOCL by the device. The logical address of
the PPCI receiver must be placed in word 15 of the expanded FCB and bit 8 of word
2 of the FCB must be set.

The system builds a caller notification packet (CNP) to transfer control to the task's
PPCI receiver. The address of the CNP is passed to the task's PPCI receiver in
register three. The CNP contains pointers to a status queue where PPCI status is
posted.

The status queue will be located immediately after the notification packet in memory.
The default size of the status buffer is four doublewords. The user can specify the
number of doublewords desired in the status buffer in the first byte of word 15 in the
FCB.

Resource Assignment/Allocation and I/O

o

MPX-32 Device-Dependent I/O

When a PPCI is received by the handler's SI entry point, bit 8 of 10Q.CONT is
checked to see if a PPCI receiver is present. If a PPCI receiver is not present, the
interrupt level is exited without any status being posted. If a PPCI receiver is present,
the status received from the PPCI is posted in the status buffer that follows the
notification packet. When status is posted into the queue, the total PPCI received
count (NOT. STAR) is incremented by one and the address of the next status location
to use (NOT.STPT) is incremented by two words. If NOT.STPT points past the end
of the status buffer, NOT.STPT is reset to point to the start of the buffer.

After status is posted, the handler checks to see if the notification packet is on the task
interrupt queue in the task's DQE. If it is, the SI level is exited without issuing an
end-action request. If the notification packet is not on the task interrupt queue, a
request for end-action processing is made and the SI level is exited. If a task is at
end-action level, it is possible that PPCI interrupts can occur which will cause status
to be posted and another end-action request to be issued.

It is the task's responsibility to keep track of the number of PPCls previously
processed by the end-action routine. The task must also keep track of the position in
the status buffer of the last status that was previously processed. This information
will allow the end-action routine to know where the present status starts and whether
any status was overwritten in the buffer (status was overwritten if the interrupts
received minus the interrupts processed are greater than the length of the buffer).

The task uses the no-wait end-action return (SVC I,X'2C') to exit the PPCI end­
action level in the same manner that any no-wait end-action routine is exited.

5.11.2.4 Restrictions

The task must be privileged to execute a physical channel program and it must
execute a physical channel program in no-wait mode to be able to have a PPCI end­
action receiver.

The use of the TIC command to create loops is prohibited for logical channel
programs. The use of the TESTST AR and READ BACKWARD commands are also
prohibited in logical channel programs.

If the task does not want device I/O between channel programs, it must reserve the
device exclusively while it is using it. This can be done by assigning the device for
exclusive use or requesting an exclusive resource lock after the device is allocated.
With this method there is no way to reserve a controller or channel.

If the task wants SENSE information to be returned on an error condition, it must set
up a SENSE buffer to store the information. The SENSE buffer address must be
placed in bits 8 - 31 of word 9 of the expanded FCB being used for the I/O. The
length of the SENSE buffer, in bytes, must be placed in bits 0 - 7 of word 9 of the
expanded FCB. If SENSE information is not wanted on error, word 9 of the FCB
must be zero.

MPX-32 Reference Volume I 5-45

MPX-32 Device-Dependent 1/0

5.11.2.5 Setting Up File Control Blocks for EXCPM Requests

5-46

The differences between an FCB used for normal device-independent I/O and an FCB
used for an EXCPM request are shown in the following table. The EXCPM FCB
must be an expanded FCB.

Table 5-8
Execute Channel Program FCB Format

o 31

Word 0

1

2 PCP 1 PPI Channel Program

3-7

8

9

10

11-14

15

Word 2:

Bit

2

8

Word 8

Word 9:

Timeout

IOCL address

Sense buffer size Sense buffer address

Not used

PPCI status PPCI EA address
buffer size

Description

contains the Physical Channel Program (PCP) if set. If
not set, contains the Logical Channel Program.
contains the PPCI end-action receiver if set. If not set,
there is no PPCI end-action receiver.

contains the address of channel program to be executed

Bits Description

0-7 contain the size of user-supplied sense buffer
8-31 contain the address of user-supplied sense buffer

Word 15:

Bits Description

0-7 contain the size of the PPCI status buffer
8-31 contain the address of the PPCI end-action receiver

Resource ASSignment! Allocation and 1/0

c

o

(-

MPX-32 Device-Dependent 1/0

5.11.2.6 Post Prog ram·Controlied Interrupt Notification Packet

If a task sets up a PPCI end-action receiver to check status during execution of its
channel program, the status is returned in a notification packet. The address of the
notification packet is contained in register three upon entering the task's PPCI end­
action receiver. The notification packet is described in the following table.

Table 5-9
Notification Packet Layout for PPCI Receiver

o 7 8 15 16 23 24 31

Word 0 String forward address (NOT.SFA)

1 String backward address (NOT.SBA)

2 Link priority NOT.TYPE Reserved
(NOT.PRI) See Note 1

3 FCB address (NOT.CODE)

4 PSD 1 of task's PPCI receiver (NOT.PSDl)

5 PSD 2 of task's PPO receiver (NOT.PSD2)

6 Number of PPCIs received Number of status
since last buffer clear doublewords in status buffer
(NOT. STAR) (NOT.STAS)

7 Address of PPCI status buffer (NOT.STAA)

8 Address of buffer storing next status doubleword (NOT.STPT)

9 Reserved

lOon PPCI status buffer

Notes:

1. NOT.TYPE - Set to 1 for asynchronous notification.

2. Words 0-9 are updated by the operating system and must not be changed by the
user.

MPX·32 Reference Volume I 5·47

MPX-32 Device-Dependent I/O

5.11.2.7 Macros (M.FCBEXP)

Syntax

The M.FCBEXP macro can define a file control block (FCB) for an Execute Channel
Program request.

M.FCBEXP label,llc [, [cpaddr], [tout], [PCP], [NWI], [NST], [ssize], [sbujfer], [nowait],
[nowaiterror], [waiterror], fpsize] [,ppciaddr]]

5-48

label

lfc

[cpaddr]

[tout]

[PCP]

[NWI]

[NST]

[ssize]

[sbujfer]

[nowait]

is an ASCII string to use as symbolic label for address of FCB

is the logical file code; word 0, bits 8 - 31 of the FCB

is the logical address of channel program to be executed

is the time-out value specified in seconds

specifies physical channel program

specifies no-wait I/O request

is no status checking. All I/O appears to complete without error.

is the size of user-specified sense buffer

is the address of user-specified sense buffer

is the normal no-wait end-action return address

[nowaiterror] is the no-wait end-action error return address

[waiterror] is the wait I/O end-action error return address

[psize] is the size of PPCI status buffer to use

[,ppciaddr] is the PPCI end-action address

Resource Assignmentl Allocation and 1/0

Resident Executive Services (H.REXS)

5.12 Resident Executive Services (H.REXS)

The H.REXS module replaces H.MONS. It provides interfaces for all major system
services.

The following seven H.MONS entry points do not have equivalent H.REXS entry
points and, therefore, are still valid by their H.MONS calls.

SVC Macro Entry Point Description

I,X'40' M.ALOC H.MONS,21 Allocate file or peripheral device

l,X'41' M.DALC H.MONS,22 Deallocate file or peripheral
device

l,X'42' M.PDEV H.MONS,1 Physical device inquiry

H.MONS,2 Reserved

I,X'61' M.CDJS H.MONS,27 Submit job from disk file

1,x'73' M.LOG H.MONS,33 Permanent file log

I,X'74' M.USER H.MONS,34 User name specification

These entry points are included for compatibility purposes only and are described in
the Compatible Services section of Chapter 6. The H.REXS services run faster than
these H.MONS services and support more capabilities available in MPX-32.

All other H.REXS entry points perform the equivalent function as their H.MONS
counterparts transparent to the user. See the Macro-Callable System Services section
of Chapter 6 for H.REXS system service descriptions.

MPX-32 Reference Volume I 5-49

Resource Management (H.REMM)

5.13 Resource Management (H.REMM)

5-50

The H.REMM module replaces H.ALOC. It performs the allocation and assignment
of all system resources and is responsible for maintaining proper access compatibility
and usage rights for these resources, such as files, directories, partitions, devices, and
memory. The mechanisms for coordinating concurrent access to shared resources are
also contained within this module.

Whenever H.REMM services are called by their macro names, any optional parameter
not specified in the call is handled in one of the following ways:

• The appropriate register is assumed to have been previously loaded.

• The appropriate register is zeroed.

See the calling sequence description of each service to determine applicability of
missing parameter handling.

The following five H.ALOC entry points do not have equivalent H.REMM entry
points and, therefore, are still valid by their H.ALOC calls:

SVC Macro Entry Point DeSCription

l,X'lF' M.SMULK H.ALOC,19 unlock and dequeue shared
memory

l,X'71' M.SHARE H.ALOC,12 share memory with another task

1,X'n' M.lNCL H.ALOC,13 get shared memory (include)

l,X'79' M.EXCL H.ALOC,14 free shared memory (exclude)

N/A N/A H.ALOC,17 allocate file by space definition

These entry points are included for compatibility purposes only and are described in
the Compatible Services section of Chapter 6. The H.REMM services run faster than
these H.ALOC services and support more capabilities available in MPX-32.

All other H.REMM entry points perform the equivalent fU..'1.ctioD as their H.ALOC
counterparts transparent to the user. See the Macro-Callable System Services section
of Chapter 6 for H.REMM system service descriptions.

Resource Assignment/Allocation and 1/0

o

('--'\

U

o

(
'~

.. '

Volume Management Module (H.VOMM)

5.14 Volume Management Module (H.VOMM)

The Volume Management Module (H.VOMM) manipulates the MPX-32 volume
resident and related memory resident data structures to allow for creation, deletion,
and maintenance of user and system resources residing on MPX-32 volumes.

Resources that reside on MPX-32 volumes include temporary files, directories, and the
permanent files and memory partition definitions associated with the directories.

The volume resident data structures manipulated by H.VOMM include resource
descriptors (RDs), the resource descriptor allocation map (DMAP), the file space
allocation map (SMAP), the volume's directories, and their directory entries. The
memory resident data structures include the mounted volume table (MVT) and the file
assignment table (FAT).

5.14.1 H.VOMM Conventions

5.14.1.1 Entry Point Conventions

Entry points 1 through 16 and 23 are provided as user level services and are accessible
through unprivileged SVC calls.

Entry points 17 through 22, 24, and 25 are meant for MPX-32 system usage,
including internal H.VOMM usage, and are accessible only to privileged callers with
M.CALL.

5.14.1.2 Pathnames

Pathnames uniquely identify a volume resident resource by explicitly or implicitly
describing the volume, one or more directories, and the resource name. Pathnames
consist of variable length ASCII character strings that are resolved on-line by
H.VOMM in order to locate a resource.

H.VOMM supports a two level directory structure per volume including the root
directory (level 1), and user directories (level 2). In the examples which follow, VOL
means 1- to 16-character volume name, OIR means a 1- to 16-character directory
name, and FILE means a 1- to 16-character resource name.

Example 1

@VOL(OIR)FILE

The @VOL component defines the volume where the resource FILE is located and
implies that directory OIR should be located by the named volume's root directory.
Furthermore, resource FILE should be located by directory OIR.

MPX-32 Reference Volume I 5-51

Volume Management Module (H.VOMM)

Example 2

FILE

The missing volume and directory components imply that resource FILE should be
located by the user's current working volume and directory. The user's default current
working volume and directory are established when the user enters the system and can
be changed by the user.

Example 3

A (DIR)FILE

The A implies that the directory D IR should be located by the root directory of the
user's current working volume, and that resource FILE should be located by user
directory D IR.

Example 4

@SYSTEM(SYSTEM)FILE

The volume name SYSTEM and directory name SYSTEM are reserved names that
identify the current system (IPL) volume and the special system directory on that
volume.

5.14.1.3 Pathname Blocks (PNB)

5-52

The pathname block (PNB) is an alternative form of a pathname that can be used
interchangeably with pathnames. Because of its structure, it can be parsed faster than
a pathname. The PNB is a double word bounded, variable length ASCII character
string which H.VOMM can distinguish from a pathname since the PNB always starts
with an exclamation point.

H. VOMM provides a service to convert a pathname to a PNB. The examples which
follow illustrate common pathnames and their corresponding PNB.

Resource Assignment/Allocation and 1/0

o

o

o

Example 1

@VOL1(DIR1)FILEl

Example 2

FILEl

MPX-32 Reference Volume I

Word 0
1
2
3
4
5

6
7
8
9

10
11

12
13
14
15
16
17

Word 0
1

2
3

4
5

6
7
8
9

! VOL
blank

VOL 1
blank
blank
blank

! D I R
ROO T
D I R 1

blank
blank
blank

! RES
blank

F I L E
1 16 16 16

blank
blank

!V o L
W 0 R K

! D I R
W 0 R K

! RES
blank

F I L E
1 16 16 16

blank
blank

5-53

Volume Management Module (H.VOMM)

5-54

Example 3

(DIRECTORY) MYFILE

Example 4

Word 0
1

2
3

4
5
6
7

8
9

10
11
12
13

@SYSTEM(SYSTEM) LOAD MOD Word 0
1

2
3

4
5

6
7
8
9

!V o L
W 0 R K

! D I R
R 0 o T

D I R E
C TOR
Y ~ ~ ~

blank

! RES
blank

M Y F I
L E ~ ~

blank
blank

! VOL
S Y S T

! D I R
S Y S T

! RES
blank

LOA D
MOD ~

blank
blank

Resource Assignment! Allocation and 1/0

,(.,.~.,
I. /

>'

(.
5.14.1.4 Resource Identifiers

The fastest means of locating a volwne resource (once created) is by its resource
identifier (must be on a double word boundary). The resource identifier has the
following format:

Word 0-3

4

5

6

7

o 7 8 15 16

Volume name

Creation date

Creation time

Volume address of resource descriptor

Must contain zero I Resource type

23 24 31

Since the resource identifier contains the volwne address of the resource descriptor,
the resource descriptor (which points to and describes the resource) can be accessed
directly without going through the various directories which would otherwise have to
be traversed.

Given a valid patbname defining a resource, the corresponding resource descriptor
may be retrieved by the H. VOMM locate resource service. The first eight words of a
resource descriptor consist of the resource identifier.

5.14.1.5 Allocation Units

File space is allocated in allocation units. Allocation units are integral multiples of
I92-word disk blocks. Allocation unit size is a volume parameter which is specified
when the volume is formatted.

User calls to unprivileged H.VOMM entry points that allocate file space expect the
amount of file space to be specified in terms of 192-word disk blocks. H.VOMM then
rounds the nwnber of blocks requested up to the nearest nwnber of allocation units.

5.14.1.6 File Segment Definitions

The space associated with a file consists of one or more file segments. A file segment
is a set of contiguous allocation units on a volwne. When a file is created, its space
consists of one or more file segments. As the file is expanded, new file segments
become associated with the file. Different segments within one file are almost always
discontiguous.

MPX·32 Reference Volume I 5·55

Volume Management Module (H.VOMM)

A file segment is defined by a 2 word file segment definition with the following
format:

o 7 8 15 16 23 24 31

Word 0 Absolute 192W block volume segment address

1 Segment length in 192W blocks

Up to 32 file segment definitions can be stored in one resource descriptor. A file
cannot expand beyond 32 segments.

5.14.2 Calling/Return Parameter Conventions

5.14.2.1 Unused Register

No calling arguments are passed to an H.VOMM entry point by R3. Therefore, R3 is
an unused register which is preserved across all H.VOMM entry point calls.

5.14.2.2 Specifying a Volume Resource

5-56

Whenever an H.VOMM entry point requires a volume resource to be identified
(except H.VOMM,9) only one register is required regardless of whether pathname,
pathname block, resource identifier, or logical file code (if the resource is assigned and
opened) is supplied. Therefore, the following conventions are assumed by H.VOMM:

Identifier Supplied Calling Register Format

0 7 8 31

Pathname Vector Pathname length in bytes Pathname address

0 7 8 31

Pathname Block Pathname block length Pathname Block
Vector in bytes Address

0 7 8 31

Resource ID Vector Resource ID Resource ID Address
length = 32

0 7 8 31

Logical File Code Must be zero LFC

0 7 8 31

File Control Block Must be zero FCB Address

Resource ASSignment! Allocation and I/O

o

o

Volume Management Module (H.VOMM)

5.14.2.3 Status Codes

All H.VOMM entry points supply a status code to the caller indicating whether the
entry point operation was successful and, if not, why not. A status code summary
follows:

Status Code

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42

MPX-32 Reference Volume I

Indication

operation successful
pathoame invalid
pathoame consists of volume only
volume not mounted
directory does not exist
directory name in use
directory creation not allowed at specified level
resource does not exist
resource name in use
resource descriptor unavailable
directory entry unavailable
required file space unavailable
unrecoverable I/O error while reading DMAP
unrecoverable I/O error while writing DMAP
unrecoverable I/O error while reading resource descriptor
unrecoverable I/O error while writing resource descriptor
unrecoverable I/O error while reading SMAP
unrecoverable I/O error while writing SMAP
unrecoverable I/O error while reading directory
unrecoverable I/O error while writing directory
project group name or key invalid
reserved
invalid FCB or LFC
parameter address specification error
resource descriptor not currently allocated
pathoame block overflow
file space not currently allocated
change defaults not allowed
cannot access resource in requested mode or default system
image file cannot be deleted
operation not allowed on this resource type
required parameter was not specified
file extension denied; segment definition area full
file extension denied; file would exceed maximum size allowed
I/O error occurred when resource was zeroed
replacement file cannot be allocated
invalid directory entry
directory and file not on same volume
an unimplement~d entry point has been called
replacement file is not exclusively allocated to the caller
out of system space
cannot allocate FAT/FPT when creating a temporary file
deallocation error in zeroing file
resource descriptor destroyed or the resource descriptor
and the directory entry linkage has been destroyed

5-57

Volume Management Module (H.VOMM)

Status Code

43
44

45

46
47
48
49

50
51
52

53
99

Indication

invalid resource specification
internal logic error from Resource Management Module
(H.REMM). Abort task, try a different task. If
it fails, reboot system.
attempted to modify more than one resource descriptor
at the same time or attempted to r.ewrite resource
descriptor prior to modifying it
unable to obtain resource descriptor lock (multiprocessor only)
directory contains active entries and cannot be deleted
a resource descriptor's link count is zero
attempting to delete a permanent resource without
specifying a pathname or pathname block vector
resource descriptor contains unexpected resource descriptor type
directory entry deleted, but failed to release file space.
an attempt was made to deallocate free space or
to allocate space that is currently allocated on a volume
other than system disk
the file space create is less than the space requested
an attempt was made to deallocate free space or to
allocate space that is currently allocated on the system volume

In some cases, H.VOMM also displays H.REMM abort conditions. If a user calls an
H.VOMM service that calls an H.REMM service for processing and an abort
condition occurs within the H.REMM processing, the abort condition is returned to
H.VOMM. H.VOMM displays it to the user in the format IOxx where xx is the
specific H.REMM abort condition. For example, abort condition 1026 indicates
H.REMM error 26 has occurred. The TSM $ERR directive can determine the reason
for the error; for example $ERR RM26.

5.14.2.4 Caller Notification Packet (CNP)

5-58

The CNP format is described in the H.REMM documentation. If a call to an
H.VOMM entry point is accompanied by a CNP, the entry point status is always
posted in the CNP. In addition, the caller can use the CNP to supply a denial return
address that is to be taken if status is nonzero. If a CNP accompanies an H.VOMM
call, status is nonzero, and no denial return address is supplied, a normal return is
taken.

A CNP can be used to specify one or more options which are unique to the H.VOMM
entry point called. To determine whether options apply, see the individual H.VOMM
entry point descriptions.

If a CNP is not supplied, entry pOint status is always posted in register seven, a
normal return is always taken, and no options may be specified.

In any case, whether a CNP is supplied or not, CC1 is always set if return status is
nonzero.

Resource Assignment/Allocation and I/O

(

("

Volume Management Module (H.VOMM)

5.14.2.5 Pathnames/Pathname Blocks

Whenever an H.VOMM entry point returns a nonzero status when it cannot
completely resolve a pathname or pathname block, the address of the first
unresolvable item within the pathname or pathname block is returned to the caller.

5.14.2.6 Resource Create Block (RCB)

Each H.VOMM entry point that creates a permanent file, a temporary file, a memory
partition, or a directory may receive a resource create block (RCB) in order to fully
define the attributes of the resource that is created. RCB formats are described in
Tables 5-10, 5-11, and 5-12. RCBs must be double word bounded.

If an RCB is not supplied by the caller, the resource is created with the default
attributes described in Chapter 4.

Table 5-10
Permanent and Temporary File Resource Create Block (RCB)

o 7 8 15 16 23 24 31

Word 0 File owner name (RCB.OWNR)
1

2 File project group name (RCB.USER)

3

4 Owner rights specifications (RCB.OWRI). See Note 1.

5 Project group rights specifications (RCB.UGRI). See Note 1.

6 Other's rights specifications (RCB.OTRI). See Note 1.

7 Resource management flags (RCB.SFLG). See Note 2.

8 Maximum extension increment (RCB.MXEI). See Note 3.

9 Minimum extension increment (RCB.MNEI). See Note 4.

10 Maximum file size (RCB.MXSZ). See Note 5.

11 Original file size (RCB.OSIZ). See Note 6.

12 File starting address (RCB.ADDR). See Note 7.

13 File RID buffer (RCB.FAST). See Note 8.

14 Option flags (RCB.OPTS). See Note 9.

15 Default override (RCB.FREE). See Note 10.

MPX·32 Reference Volume I 5·59

Volume Management Module (H.VOMM)

5-60

Notes:

1. Rights specifications are optional:

Bit Description

o read access allowed (RCB.READ)
1 write access allowed (RCB.WRIT)
2 modify access allowed (RCB.MODI)
3 update access allowed (RCB.UPDA)
4 append access allowed (RCB.APPN)
9 delete access allowed (RCB.DELE)

2. Resource management flags. For any bit not set, system defaults apply and, in
some cases, the default is the equivalent of the bit being set (optional):

Bit

0-7

8-10
11
12
13
14
15
16
17
18
19
20

21

22
23
24
25
26
27
28

29-30
31

Description

resource type, equivalent to file type code, interpreted
as two hexadecimal digits, 0 - FF (RCB.FTYP)
reserved
file EOF management required (RCB.EOFM)
fast access (RCB.FSTF)
do not save (RCB.NSA V)
reserved for MPX-32 usage
file start block requested (RCB.SREQ)
file is executable (RCB.EXEC)
owner ID set on access (RCB.OWID)
project group ID set on access (RCB.UGID)
reserved
maximum file extension increment is zero. System
default value not used. (RCB.MXEF)
minimum file extension increment is zero. System
default value not used (RCB.MNEF)
reserved
zero file on creation/extension (RCB.ZERO)
file automatically extendible (RCB.AUTO)
file manually extendible (RCB.MANU)
file contiguity desired (RCB.CONT)
shareable (RCB.SHAR) (owner rights spec only)
link access (RCB.LINK)
reserved
file data initially recorded as blocked (RCB.BLOK)

3. Maximum extension increment is the desired file extension increment specified in
blocks (optional). Default is 64 blocks.

4. Minimum extension increment is the minimum acceptable file extension
increment specified in blocks (optional). Default is 32 blocks.

5. Maximum file size is the maximum extendible size for a file specified in blocks
(optional).

6. Original file size is the original file size specified in blocks (optional). Default
is 16 blocks.

Resource Assignment/Allocation and I/O

C·~···'
" , I

Volume Management Module (H.VOMM)

7. File starting address is the disk block where the file should start, if possible. If
the space needed is currently allocated, an error is returned (optional).

8. File RID buffer is the address within the file creator's task where the eight word
resource identifier (RID) is to be returned. If this parameter is not supplied (Le.,
is zero), the RID for the created file is not returned to the creating task.

9. Option flags bits are as follows:

Bit Description

o owner has no access rights (RCB.OWNA)
I project group has no access rights (RCB.USNA)
2 others have no access rights (RCB.OTNA)

3-6 reserved
7 multi-segment create
8 spool file type (RCB.SPOO)

9-15 reserved
16-23 maximum segment at creation (RCB.SEGN)
24-31 reserved

10. Default override - If set, these bits override any corresponding bit set in
RCB.SFLG and the system defaults (optional):

Bit Description

0-7
8-10

11
12
13

14-22
23
24
25
26
27

28-30
31

MPX-32 Reference Volume I

must be zero
reserved
file EOF management not required
fast access not required
resource can be saved
reserved
do not zero file on creation/extension
file is not automatically extendible
file is not manually extendible
file contiguity is not desired
resource is not shareable
reserved
file data initially recorded as unblocked

5-61

Volume Management Module (H. VOMM)

5-62

Table 5-11
Directory Resource Create Block (RCB)

o 7 8 15 16 23 24 31

Word 0-1 Directory owner name (RCB.OWNR)

Directory project group name (RCB.USER)

Owner rights specifications (RCB.OWRI). See Note 1.

2-3

4

5

6

7

Project group rights specifications (RCB.UGRI). See Note 1.

Notes:

8-10

11

12

13

14

15

Other's rights specifications (RCB.OTRI). See Note 1.

Resource management flags (RCB.SFLG). See Note 2.

Reserved

Directory original size (RCB.OSIZ). See Note 3.

Directory starting address (RCB.ADDR). See Note 4.

Directory RID buffer (RCB.FAST). See Note 5.

Option flags (RCB.OPTS). See Note 6.

Default override (RCB.FREE). See Note 7.

1. Rights specifications bits are as follows:

Bit Description

o read access allowed (RCB.READ)
8 directory may be traversed (RCB.TRAV)
9 directory may be deleted (RCB.DELE)
10 directory entries may be deleted (RCB.DEEN)
11 directory entries may be added (RCB.ADEN)

2. Resource management flags are optional:

Bit Description

13 do not save (RCB.NSA V)
27 shareable (RCB.SHAR)

3. Directory original size is the number of entries required (optional).

4. Directory starting address is the disk block number where the directory should
start, if possible. If the space needed is currently allocated, an error is returned
(optional).

5. Directory RID buffer is the address within the directory creator's task where the
eight word resource identifier (RID) is to be returned. If this parameter is not
supplied (i.e., is zero), the RID for the created directory is not returned to the
creating task.

Resource Assignment/Allocation and 1/0

()

Volume Management Module (H.VOMM)

6. Option flags are as follows:

Bit Description

o owner has no access rights (RCB.OWNA)
1 project group has no access rights (RCB.USNA)
2 others have no access rights (RCB.OTNA)

3-31 reserved

7. If default override is set, these bits override any corresponding bit set in
RCB.SFLG and the system defaults (optional).

Bit Description

0-7 must be zero
13 resource can be saved
27 resource is not shareable

Table 5-12
Nonbase Mode Memory Partition Resource Create Block (RCB)

o 7 8 15 16 23 24 31

Word 0-1 Partition owner name (RCB.OWNR)

(~.".\
2-3

4

Partition project group name (RCB.USER)

Owner rights specifications (RCB.OWRI). See Note 1.

5 Project group rights specifications (RCB.UGRI). See Note 1.

6 Other's rights specifications (RCB.OTRI). See Note 1.

7 Resource management flags (RCB.SFLG). See Note 2.

8-9 Reserved

10 Starting word page number (RCB.PPAG)

11 Partition original size (RCB.OSIZ). See Note 3.

12 Partition starting address (RCB.ADDR). See Note 4.

13 Partition RID buffer (RCB.FAST). See Note 5.

14 Option flags (RCB.OPTS). See Note 6.

15 Default override (RCB.FREE). See Note 7.

Notes:

1. Rights specifications are optional:

Bit Description

o read access allowed (RCB.READ)
1 write access allowed (RCB.WRIT)
9 delete access allowed (RCB.DELE)

c
MPX-32 Reference Volume I 5-63

Volume Man~ement Module (H.VOMM)

2. Resource management flags are optional:

UL Bit>w ·E>escription

13 do not save (RCB.NSAV)

3. Partition's original size is the number of protection granules required.

4. Partition's starting address is a 512-word protection granule number in the user's
logical address space where the partition is to begin.

5. Partition's-RID buffer is the address within the partition creator's task where the
eight word resource identifier (RID) is to be returned. If this parameter is not
supplied (i.e., is zero), the RID for the created partition is not returned to the
creating task.

6. Option flags are optional:

Bits Description

o owner has no access rights (RCB.OWNA)
1 project group has no access rights (RCB.USNA)
2 others have no access rights (RCB.OTNA)

3-8 reserved
9 defines a static partition (RCB.ST AT)

10-23 reserved
24-31 define memory class (RCB.MCLA). Values are:

Value

o
1
2
3

Memory Class

S (default)
E
H
S

7. If set, these bits override any corresponding bit set in RCB.SFLG and the system
defaults (optional):

Bits Description

0-7 must be zero
13 resource can be saved

5.14.3 Bad Block Handling

5-64

The process of initializing a volume with the media diagnostic and verification
program produces information describing any sections of a disk that may not be used.
This information may describe defective areas on the disk or areas that are reserved
for use by the diagnostic hardware built into some disk drives.

This information is written to the disk and later read by I.VFMT and I.MOUNT.
Using this information, these two programs mark all allocation units containing
defective or reserved areas as allocated. This prevents H.VOMM from allocating
space in a defective or reserved area.

Resource Assignmentl Allocation and 1/0

c
Volume Management Module (H.VOMM)

5.14.4 Services
,: ... :

Whenever H.VOMM services are called by their macro names, any optioilaJ. parameter
not specified in the call is handled in one of the following ways:

• The appropriate register is assumed to have been previously loaded.
• The appropriate register is zeroed.

See the calling sequence description of each H.VOMM service in the Macro-Callable
System Services section of Chapter 6 to determine applicability of missing parameter
handling.

MPX·32 Reference Volume I 5-65/5-66

'i.L

, ',: ~

?' ,

~. :

" .,,,,, .

... ; ... ""

o

-., C·.'.'-·

(~

6 Nonbase Mode System Services

7 Base Mode System Services

A MPX-32 Device Access

B System Services Cross-Reference

C MPX-32 Abort and Crash Codes

D Numerical Information

E Powers of Integers

F ASCII Interchange Code Set

G IOP/MFP Panel Mode Commands

H Standard Date and Time Formats

Compress Source Format

J Map -Block Address Assignments

K Control Switches

L Data Structures

Glossary

Index

323-001551-600
II ~IIIIIIIIIIIIIIIII HIIIII~IIII~ II~ IIII~ 11111111111111

MPX-32 1M

System Services

Revision 3.5

Reference Manual Volume 1(8)

April 1990

o

(~> Contents

Page

6 Nonbase Mode System Services

6.1 Overview ... 6-1
6.1.1 Syntax Rules and Descriptions ... 6-2
6.1.2 IPU Executable Nonbase Mode System Services 6-3

6.2 Macro-Callable System Services .. 6-4
6.2.1 M.ACTV - Activate Task ... 6-5
6.2.2 M.ADRS - Memory Address Inquiry .. 6-6
6.2.3 M.ANYW - Wait for Any No-Wait Operation Complete,

Message Interrupt, or Break Interrupt .. 6-7
6.2.4 M.ASSN - Assign and Allocate Resource 6-8
6.2.5 M.ASYNCH - Set Asynchronous Task Interrupt 6-10
6.2.6 M.BACK- Backspace Record or File 6-11
6.2.7 M.BATCH - Batch Job Entry .. 6-13
6.2.8 M.BBTIM - Acquire Current Dateffime in Byte Binary

Format ... 6-15
6.2.9 M.BORT - Abort Specified Task, Abort Self, or Abort with

Extended Message ... 6-16
6.2.9.1 M.BORT - Specified Task,,, 6-16
6.2.9.2 M.BORT - Self ... 6-17
6.2.9.3 M.BORT - With Extended Message, 6-18

6.2.10 M.BRK-Break{fask Interrupt Link/Unlink 6-19
6.2.11 M.BRKXIT - Exit from Task Interrupt Level 6-19
6.2.12 M.BTIM - Acquire Current Date!fime in Binary Format 6-20
6.2.13 M.CLOSER - Close Resource ... 6-21
6.2.14 M.CLSE - Close File ... 6-23
6.2.15 M.CMD - Get Command Line .. 6-24
6.2.16 M.CONABB- Convert ASCII Dateffime to Byte Binary

Format .. 6-25
6.2.17 M.CONADB - Convert ASCII Decimal to Binary 6-26
6.2.18 M.CONAHB - Convert ASCII Hexadecimal to Binary 6-27
6.2.19 M.CONASB - Convert ASCII Date{fime to Standard

Binary ... 6-28
6.2.20 M.CONBAD-Convert Binary to ASCII Decimal " 6-29
6.2.21 M.CONBAF - Convert Binary Date{fime to ASCII Format ... 6-30
6.2.22 M.CONBAH - Convert Binary to ASCII Hexadecimal 6-31

(' 6.2.23 M.CONBBA-Convert Byte Binary Date{fime to ASCIL 6-32

MPX-32 Reference Volume I

Contents

Page G
6.2.24 M.CONBBY - Convert Binary Date/fime to Byte Binary 6-33
6.2.25 M.CONBYB - Convert Byte Binary Date/fime to Binary 6-34
6.2.26 M.CONN - Connect Task to Interrupt 6-35
6.2.27 M.CPERM - Create Pennanent File .. 6-37
6.2.28 M.Cf1M - Convert System Date/fime Format 6-39
6.2.29 M.CWAT-System Console Wait .. 6-41
6.2.30 M.DASN - Deassign and Deallocate Resource 6-42
6.2.31 M.DATE-Date and Time Inquiry .. 6-44
6.2.32 M.DEBUG - Load and Execute Interactive Debugger 6-45
6.2.33 M.DEFT - Change Defaults .. 6-46
6.2.34 M.DELR - Delete Resource .. 6-48
6.2.35 M.DELTSK - Delete Task ... 6-50
6.2.36 M.DEVID - Get Device Mnemonic or Type Code 6-52
6.2.37 M.DIR - Create Directory .. 6-53
6.2.38 M.DISCON·· Disconnect Task from Interrupt 6-55
6.2.39 M.DLTT - Delete Timer Entry .. 6-56
6.2.40 M.DMOUNT - Dismount Volume .. 6-57
6.2.41 M.DSMI - Disable Message Task Interrupt.. 6-59
6.2.42 M.DSUB - Disable User Break Interrupt.. 6-60
6.2.43 M.DUMP - Memory Dump Request.. 6-61
6.2.44 M.EA W AIT - End Action Wait .. 6-63
6.2.45 M.ENMI - Enable Message Task Interrupt.. 6-64
6.2.46 M.ENUB - Enable User Break Interrupt.. 6-65
6.2.47 M.ENVRMT - Get Task Environment.. 6-66
6.2.48 M.EXCLUDE - Exclude Memory Partition 6-67
6.2.49 M.EXIT - Terminate Task Execution 6-69
6.2.50 M.EXTD - Extend File .. 6-70
6.2.51 M.FD - Free Dynamic Extended Indexed Data Space 6-72
6.2.52 M.FE - Free Dynamic Task Execution Space 6-73
6.2.53 M.FWRD - Advance Record or File ... 6-74
6.2.54 M.GADRL - Get Address Limits .. 6-76
6.2.55 M.GADRL2 - Get Address Limits .. 6-77
6.2.56 M.GD - Get Dynamic Extended Data Space 6-78
6.2.57 M.GDD - Get Dynamic Extended Discontiguous

Data Space .. 6-79
6.2.58 M.GE - Get Dynamic Task Execution Space 6-80
6.2.59 M.GETDEF - Get Definition for Terminal Function 6-81
6.2.60 M.GMSGP - Get Message Parameters 6-83
6.2.61 M.GRUNP-Get Run Parameters ... 6-84 0

iv Contents

Contents

Page

6.2.62 M.GTIM - Acquire System Dateffime in Any Fonnat.. 6-85
6.2.63 M.GTSAD - Get TSA Start Address .. 6-86
6.2.64 M.HOLD - Program Hold Request ... 6-87
6.2.65 M.lD - Get Task Number .. 6-88
6.2.66 M.lNCLUDE - Include Memory Partition 6-90
6.2.67 M.lNQUIRY - Resource Inquiry .. 6-93
6.2.68 M.lNT - Activate Task Interrupt , 6-97
6.2.69 M.lPUBS - Set IPU Bias ... 6-98
6.2.70 M.LOC - Read Descriptor ... 6-99
6.2.71 M.LOCK-Set Exclusive Resource Lock 6-101
6.2.72 M.LOGR- Log Resource or Directory <0 ••••• 6-103

6.2.72.1 Resource Specifications for Pathnames 6-103
6.2.72.2 Resource Specifications for Pathname Blocks 6-104
6.2.72.3 Resource Specifications for a Resource Identifier ... 6-104
6.2.72.4 Resource Specifications for a Logical File Code

(LFC), FCB Address, or Allocation Index 6-104
6.2.73 M.MEM - Create Memory Partition 6-108
6.2.74 M.MEMB - Get Memory in Byte Increments 6-110
6.2.75 M.MEMFRE - Free Memory in Byte Increments 6-111
6.2.76 M.MOD-Modify Descriptor .. 6-112
6.2.77 M.MODU - Modify Descriptor User Area 6-114
6.2.78 M.MOUNT - Mount Volume .. 6-115
6.2.79 M.MOVE - Move Data to User Address 6-117
6.2.80 M.MYID-Get Task Number.. .. 6-118
6.2.81 M.NEWRRS - Refonnat RRS Entry 6-119
6.2.82 M.OLAY - Load Overlay Segment.. 6-121
6.2.83 M.OPENR-Open Resource .. 6-122
6.2.84 M.OSREAD _ Physical Memory Read 6-124
6.2.85 M.OSWRIT - Physical Memory Write 6-125
6.2.86 M.PGOD -Task Option Doubleword Inquiry 6-126
6.2.87 M.PGOW -Task Option Word Inquiry 6-127
6.2.88 M.PNAM - Reconstruct Pathname .. 6-128
6.2.89 M.PNAMB - Convert Pathname to Pathname Block 6-129
6.2.90 M.PRIL-Change Priority Level.. ... 6-131
6.2.91 M.PRIV - Reinstate Privilege Mode to Privilege Task 6-132
6.2.92 M.PTSK - Parameter Task Activation 6-133
6.2.93 M.QATIM -Acquire Current Dateffime in ASCII Fonnat...6-138
6.2.94 M.RADDR - Get Real Physical Address 6-139
6.2.95 M.RCVR- Receive Message Link Address 6-140

MPX~32 Reference Volume I v

Contents

Page

6.2.96 M.READ-Read Record .. 6-141
6.2.97 M.RELP - Release Dual-Ported DiSk/Set Dual-Channel

ACM Mode .. 6-142
6.2.98 M.RENAM-Renrune File ... 6-143
6.2.99 M.REPLAC - Replace Pennanent File 6-144
6.2.100 M.RESP - Reserve Dual-Ported Disk/Set Single-Channel

ACM Mode .. 6-145
6.2.101 M.REWRIT -Rewrite Descriptor .. 6-146
6.2.102 M.REWRTU -Rewrite Descriptor User Area 6-147
6.2.103 M.ROPL-Reset Option Lower .. 6-148
6.2.104 M.RRES - Release Channel Reservation ~ 6-149
6.2.105 M.RSML - Resourcemark Lock ... 6-150
6.2.106 M.RSMU -Resourcemark Unlock ... 6-152
6.2.107 M.RSRV -Reserve Channel.. ... 6-153
6.2.108 M.RWND-Rewind File .. 6-154
6.2.109 M.SETS - Set User Status Word .. 6-155
6.2.110 M.SETSYNC-Set Synchronous Resource Lock 6-157
6.2.111 M.SETI-Create Timer Entry u u •••••••••••• 6-159 //
6.2.112 M.SMSGR - Send Message to Specified Task 6-162
6.2.113 M.SOPL - Set Option Lower. ... 6-163
6.2.114 M.SRUNR - Send Run Request to Specified Task 6-164
6.2.115 M.SUAR-Set User Abort Receiver Address 6-166
6.2.116 M.SUME-Resume Task Execution 6-167
6.2.117 M.SURE - Suspend/Resume ... 6-168
6.2.118 M.SUSP-Suspend Task Execution 6-169
6.2.119 M.SYNCH - Set Synchronous Task Interrupt.. 6-170
6.2.120 M.TBRKON - Trap Online User's Task 6-171
6.2.121 M.TDAY - Time-of-Day Inquiry ... 6-172
6.2.122 M.TEMP - Create Temporary File ... 6-173
6.2.123 M.TEMPER-Change Temporary File to Pennanent File 6-175
6.2.124 M.TRNC - Truncate File .. 6-177
6.2.125 M.TSCAN -Scan Tenninal Input Buffer. 6-178
6.2.126 M.TSMPC - TSM Procedure Call .. 6-179
6.2.127 M.TSTE-Arithmetic Exception Inquiry 6-182
6.2.128 M.TSTS -Test User Status Word ... 6-183
6.2.129 M.TSTI -Test Timer Entry ... 6-184
6.2.130 M.TURNON - Activate Progrrun at Given Time-of-Day 6-185
6.2.131 M.TYPE - System Console Type ... 6-187
6.2.132 M.UNLOCK-Release Exclusive Resource Lock 6-188 C
6.2.133 M. UNSYNC - Release Synchronous Resource Lock 6-190

vi Contents

.. c··.·

c~;

Contents

Page

6.2.134 M.UPRIV -Change Task to Unprivileged Mode 6-192
6.2.135 M.UPSP- Upspace ... 6-193
6.2.136 M.VADDR- Validate Address Range 6-194
6.2.137 M.WAIT - Wait I/O ... 6-195
6.2.138 M.WEOF - Write EOF ... 6-196
6.2.139 M.WRIT - Write Record .. 6-197
6.2.140 M.XBRKR - Exit from Task Interrupt Level.. 6-198
6.2.141 M.XIEA - No-Wait I/O End-Action Return 6-199
6.2.142 M.xMEA - Exit from Message End-Action Routine 6-200
6.2.143 M.xMSGR - Exit from Message Receiver 6-201
6.2.144 M.XREA - Exit from Run Request End-Action Routine 6-202
6.2.145 M.XRUNR- Exit Run Receiver ... 6-203
6.2.146 M.XTIME - Task CPU Execution Time 6-204

6.3 Nonmacro-Callable System Services ... 6-205
6.3.1 Allocate File Space .. 6-206

6.3.2
6.3.3

6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.3.12

6.3.1.1 Clean-up Mode ... 6-206
6.3.1.2 Normal Mode ... 6-206
Allocate Resource Descriptor .. 6-208
Create Temporary File ... 6-209
6.3.3.1 VOMM Internal Call ... 6-209
6.3.3.2 External Call .. 6-209
6.3.3.3 Default File Attributes .. 6-209
6.3.3.4 Volume Selection .. 6-209
Deallocate File Space ... 6-211
Deallocate Resource Descriptor ... 6-212
Debug Link Service .. 6-213
Eject/Purge Routine .. 6-214
Erase or Punch Trailer ... 6-215
Execute Channel Program .. 6-216
Get Extended Memory Array ... 6-217
Read/Write Authorization File ... 6-218
Release FHD Port ... 6-219

6.3.13 Reserve FHD Port ... 6-220
6.4 Compatible System Services ... 6-221

6.4.1 M.ALOC - Allocate File or Peripheral Device 6-222
6.4.2 M.CDJS - Submit Job from Disk File 6-226
6.4.3 M.CREATE - Create Permanent File 6-228
6.4.4 M.DALe - Deallocate File or Peripheral Device 6-231

MPX-32 Reference Volume I vii

Contents

7

viii

6.4.5

6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18
6.4.19

Page

M.DELETE - Delete Pennanent File or Non-SYSGEN
Memory Partition : .. 6-232
M.EXCL - Free Shared Memory ... 6-233
M.FADD - Pennanent File Address Inquiry 6-234
M.FILE - Open File ... 6-236
M.FSLR - Release Synchronization File Lock 6-237
M.FSLS - Set Synchronization File Lock 6-238
M.FXLR - Release Exclusive File Lock 6-240
M.FXLS -Set Exclusive File Lock 6-241
M.INCL - Get Shared Memory ... 6-242
M.LOG - Pennanent File Log ... 6-244
M.PDEV - Physical Device Inquiry .. 6-246
M.PERM - Change Temporary File to Pennanent 6-248
M.SHARE - Share Memory with Another Task 6-250
M.SMULK - Unlock and Dequeue Shared Memory 6-252
M.USER - User Name Specification 6-253

Base Mode System Services

7.1 General Description ... 7-1
7.1.1 Syntax Rules and Descriptions ... 7-2

7.1.1.1 Parameter Specification ... 7-2
7.1.2 IPU Executable Base Mode System Services 7-5

7.2 Macro-Callable System Services .. 7-6
7.2.1 M_Acrv -Activate Task .. 7-7
7.2.2 M_ADRS -Memory Address Inquiry ... 7-8
7.2.3 M_ADVANCE-Advance Record or File 7-9
7.2.4 M_ANYWAIT- Wait for Any No-Wait Operation Complete,

Message Interrupt, or Break Interrupt 7 -11
7.2.5 M_ASSIGN -Assign and Allocate Resource 7-12
7.2.6 M_ASYNCH - Set Asynchronous Task Interrupt 7-14
7.2.7 M_AWAITACTION-End Action Wait 7-15
7.2.8 M_BACKSPACE-Backspace Record or File 7-16
7.2.9 M_BATCH-Batch Job Entry ... 7-18
7.2.10 M_BBTIM-Acquire Current Dateffime in Byte Binary

Fonnat ... 7-20
7.2.11 M_BORT - Abort Specified Task, Abort Self, or Abort with

Extended Message ... 7 -21

o

7.2.11.1 M_BORT-Abort Specified Task 7-2l C"
7.2.11.2 M_BORT-Abort Self .. 7-22

Contents

(

7.2.12
7.2.13
7.2.14
7.2.15

Contents

Page

7.2.11.3 M_BORT - Abort with Extended Message 7-23
M_BRK - Break{fask Interrupt Link/Unlink 7-24
M_BRKXIT - Exit from Task Interrupt Level 7-24
M_BTIM - Acquire Current Dateffime in Binary Format 7-25
M_CHANPROGFCB - Execute Channel Program
File Control Block .. 7-26

7.2.16 M_CLOSER-Close Resource .. 7-27
7.2.17 M_CLSE-Close File .. 7-29
7.2.18 M_CMD - Get Command Line ... 7-30
7.2.19 M_CONABB-Convert ASCII Dateffime to Byte Binary

Format ... 7-31
7.2.20 M_CONADB-Convert ASCII Decimal to Binary 7-32
7.2.21 M_CONAHB - Convert ASCII Hexadecimal to Binary 7-33
7.2.22 M_ CONASB - Convert ASCII Dateffime to

Standard Binary ... 7 -34
7.2.23 M_CONBAD-Convert Binary to ASCII Decimal 7-35
7.2.24 M_CONBAF -Convert Binary Dateffime to ASCII Format..7-36
7.2.25 M_CONBAH-Convert Binary to ASCII Hexadecimal 7-37
7.2.26 M_CONBBA-Convert Byte Binary Dateffime to ASCII 7-38
7.2.27 M_CONBBY -Convert Binary Dateffime to Byte Binary 7-39
7.2.28 M_CONBYB -Convert Byte Binary Dateffime to Binary 7-40
7.2.29 M_CONN - Connect Task to Interrupt 7-41
7.2.30 M_CONSTRUCTPATH-Reconstruct Pathname 7-42
7.2.31 M_CONVERTTIME-Convert Time 7-43
7.2.32 M_CREATEFCB - Create File Control Block 7-45
7.2.33 M_CREATEP-Create Permanent File 7-46
7.2.34 M_CREATET-Create Temporary File 7-48
7.2.35 M_CTIM-Convert System DateffimeFormat 7-50
7.2.36 M_CWAT - System Console Wait ... 7-51
7.2.37 M_DATE - Date and Time Inquiry ... 7 -52
7.2.38 M_DEASSIGN -Deassign and Deallocate Resource 7-53
7.2.39 M_DEBUG-Load and Execute Interactive Debugger 7-55
7.2.40 M_DEFT-Change Defaults ... 7-56
7.2.41 M_DELETER - Delete Resource .. 7-57
7.2.42 M_DEL TSK - Delete Task .. 7 -59
7.2.43 M_DEVID-Get Device Mnemonic or Type Code 7-60
7.2.44 M_DIR - Create Directory ... 7-61
7.2.45 M_DISCON -Disconnect Task from Interrupt 7-63
7.2.46 M_DISMOUNT - Dismount Volume 7-64
7.2.47 M_DLTT - Delete Timer Entry ... 7-66

MPX-32 Reference Volume I ix

Contents

Page 0" "

7.2.48 M_DSMI-Disable Message Task Interrupt 7-67
7.2.49 M_DSUB -Disable User Break Interrupt 7-68
7.2.50 M_DUMP-Memory Dump Request .. 7-69
7.2.51 M_ENMI-Enable Message Task Interrupt 7-70
7.2.52 M_ENUB -Enable User Break Interrupt 7-71
7.2.53 M_ENVRMT-Get Task Environment 7-72
7.2.54 M_EXCLUDE - Exclude Shared Image 7 -73
7.2.55 M_EXIT - Terminate Task Execution 7 -75
7.2.56 M_EXTENDFILE-Extend File ... 7-76
7.2.57 M_EXTSTS - Exit With Status ... 7 -78
7.2.58 M_FREEMEMBYTES - Free Memory in Byte Increments 7-79
7.2.59 M_GETCTX-Get User Context .. 7-80
7.2.60 M_GETDEF -Get Definition for Terminal Function 7-81
7.2.61 M_GETMEMBYTES-Get Memory in Byte Increments 7-83
7.2.62 M_GETTIME-Get Current Date and Time 7-84
7.2.63 M_GMSGP-Get Message Parameters 7-86
7.2.64 M_GRUNP-Get Run Parameters .. 7-87
7.2.65 M_GTIM-Acquire System Date{fime in Any Format 7-88 //\
7.2.66 M_GTSAD-Get TSA Start Address 7-89 \,-~
7.2.67 M_HOLD-Program Hold Request .. 7-90
7.2.68 M_ID - Get Task Number ... 7-91
7.2.69 M_INCLUDE-Include Shared Image 7-93
7.2.70 M_INQUIRER-Resource Inquiry ... 7-96
7.2.71 M_INT -Activate Task Interrupt .. 7-101
7.2.72 M_IPUBS - Set IPU Bias .. 7-102
7.2.73 M_LIMITS -Get Base Mode Task Address Limits 7-103
7.2.74 M_LOCK-Set Exclusive Resource Lock 7-104
7.2.75 M_LOGR-Log Resource or Directory 7-106

7.2.75.1 Resource Specifications for Pathnames 7-106
7.2.75.2 Resource Specifications for Pathname Blocks 7-107
7.2.75.3 Resource Specifications for a Resource Identifier ... 7-107
7.2.75.4 Resource Specifications for a Logical File Code

(LFC), FCB Address, or Allocation Index 7-107
7.2.76 M_MEM-Create Memory Partition 7-111
7.2.77 M_MOD-Modify Descriptor ... 7-113
7.2.78 M_MODU -Modify Descriptor User Area 7-115
7.2.79 M_MOUNT-Mount Volume ... 7-116
7.2.80 M_MOVE-Move Data to User Address 7-118
7.2.81 M_MYID-Get Task Number ... 7-120
7.2.82 M_OPENR-Open Resource ... 7-121 c

x Contents

Contents

c--
Page

7.2.83 M_OPTIONDWORD- Task Option Doubleword Inquiry 7-124
7.2.84 M_OPTIONWORD-Task Option Word Inquiry 7-125
7.2.85 M_ OSREAD - Physical Memory Read 7 -126
7.2.86 M_ OSWRIT - Physical Memory Write 7 -127
7.2.87 M_PNAMB - Convert Pathname to Pathname Block 7 -129
7.2.88 M_PRIL - Change Priority Level.. .. 7 -131
7.2.89 M_PRlVMODE - Reinstate Privilege Mode to

Privilege Task .. 7-132
7.2.90 M_PTSK - Parameter Task Activation 7 -133
7.2.91 M_PUTCTX - Put User Context ... 7 -138
7.2.92 M_QATIM-Acquire Current Date{fime in ASCII Format..7-139
7.2.93 M_RADDR - Get Real Physical Address 7 -140
7.2.94 M_RCVR-Receive Message Link Address 7-141
7.2.95 M_READ - Read Record ... 7-142
7.2.96 M_READ D - Read Descriptor .. 7 -144
7.2.97 M_RELP - Release Dual-Ported Disk/Set Dual-Channel

ACM Mode .. 7-145
7.2.98 M_RENAME-Rename File ... 7-146
7.2.99 M_REPLACE-Replace Permanent File 7-147
7.2.100 M_RES P - Reserve Dual-Ported Disk/Set Single-Channel

ACM Mode .. 7-148
7.2.101 M_REWIND - Rewind File , 7 -149
7.2.102 M_REWRIT - Rewrite Descriptor ... 7-150
7.2.103 M_REWRTU -Rewrite Descriptor User Area 7-151
7.2.104 M_ROPL-Reset Option Lower ... 7-152
7.2.105 M_RRES - Release Channel Reservation 7-153
7.2.106 M_RSML - Resourcemark Lock .. 7 -154
7.2.107 M_RSMU - Resourcemark Unlock .. 7 -155
7.2.108 M_RSRV - Reserve Channel .. 7-156
7.2.109 M_SETERA-Set Exception Return Address 7-157
7.2.110 M_SETEXA - Set Exception Handler 7-158
7.2.111 M_SETS -Set User Status Word ... 7-159
7.2.112 M_SETSYNC - Set Synchronous Resource Lock , 7-161
7.2.113 M_SETT - Create Timer Entry .. 7-163
7.2.114 M_SMSGR - Send Message to Specified Task 7-166
7.2.115 M_SOPL - Set Option Lower ... 7-167
7.2.116 M_SR UNR - Send Run Request to Specified Task 7 -168

M_SUAR-Set User Abort Receiver Address 7-170
M_SUME - Resume Task Execution 7 -171 C\ 7.2.117

7.2.118

MPX-32 Reference Volume I xi

Contents

Page

7.2.119 M_SVRE - Suspend/Resume ... 7-172
7.2.120 M_SUSP-Suspend Task Execution 7-173
7.2.121 M_SYNCH-Set Synchronous Task Interrupt 7-174
7.2.122 M_TBRKON -Trap Online User's Task 7-175
7.2.123 M_TDAY -Time-of-Day Inquiry .. 7-176
7.2.124 M_TEMPFILETOPERM-Change Temporary File to

Permanent File ... 7 -177
7.2.125 M_TRUNCATE- Truncate File ... 7-179
7.2.126 M_TSCAN - Scan Terminal Input Buffer 7-180
7.2.127 M_TSMPC -TSM Procedure Call.. 7-181
7.2.128 M_TSTE - Arithmetic Exception Inquiry 7-184
7.2.129 M_TSTS - Test User Status Word ... 7-185
7.2.130 M_TSTT - Test Timer Entry .. 7-186
7.2.131 M_TVRNON -Activate Program at Given Time-of-Day 7-187
7.2.132 M_TYPE - System Console Type .. 7-189
7.2.133 M_UNLOCK-Release Exclusive Resource Lock 7-190
7.2.134 M_UNPRIVMODE-Change Task to Unprivileged Mode ... 7-192
7.2.135 M_UNSYNC -Release Synchronous Resource Lock 7-193
7.2.136 M_ UPSP - Upspace ... 7 -195
7.2.137 M_VADDR- Validate Address Range 7-196
7.2.138 M WAIT - Wait I/O ... 7-197
7.2.139 M_WRITE- Write Record ... 7-198
7.2.140 M_ WRITEEOF - Write EOF .. 7-199
7.2.141 M_XBRKR-Exit from Task Interrupt Level.. 7-200
7.2.142 M_XIEA-No-Wait I/O End-Action Retum 7-201
7.2.143 M_XMEA-Exit from Message End-Action Routine 7-202
7.2.144 M_XMSGR - Exit from Message Receiver 7-203
7.2.145 M_XREA-Exit from Run Request End-Action Routine 7-204
7.2.146 M_XRUNR- Exit Run Receiver. ... 7-205
7.2.147 M_XTIME-Task CPU Execution Time 7-206

7.3 Nonmacro-Callable System Services .. 7-207
7.3.1 Debug Link Service ... 7-207
7.3.2 E ject/Purge Routine ... 7 -208
7.3.3 Erase or Punch Trailer. .. 7 -209
7.3.4 Execute Channel Program ... 7-210
7.3.5 Get Extended Memory Array .. 7 -211
7.3.6 Release FHD Port .. 7-212
7.3.7 Reserve FHD Port ... 7-212

xII Contents

Contents

(~' Page

A MPX-32 Device Access .. A-l

B System Services Cross-Reference ... B-l

C MPX-32 Abort and Crash Codes .. C-l

0 Numerical Information ... D-l

E Powers of Integers ... E-l

F ASCII Interchange Code Set ... F-l

G IOP/MFP Panel Mode Commands .. G-l

H Standard Date and Time Formats .. H-l

Compressed Source Format .. .1-1

(J Map Block Address ASSignments1-1

K Control Switches .. K-l

L Data Structures ... L-l

Glossary ... GL-l

Index .. .IN-l

(/

MPX-32 Reference Volume I xiii/xiv

c'

c 6 Nonbase Mode System Services

6.1 Overview

MPX-32 resident nonbase mode system service routines perform frequently required
operations with maximum efficiency. Using the Supervisor Call instruction, tasks
running in any environment can call these routines.

All system service routines are reentrant. Thus, each service routine is always
available to the task that is currently active.

System service routines are provided as standard modular components of the MPX-32.
The open-ended design of the system allows routines to be added to tailor MPX-32 to
a specific application.

System services enable tasks to:

• activate, suspend, resume, abort, terminate, and hold task execution

• change a task's priority level

• create, test, and delete timers

• interrogate system clocks

• allocate and deallocate devices and files

• obtain the characteristics of a device or file

• communicate with other tasks with messages and status words

• load and execute overlays

• obtain information about the memory assigned to a task

• connect tasks to interrupts
• determine the arithmetic exception and option word status for a task

MPX-32 services are implemented as SVC traps. There are several ways of accessing
services:

1. By macro calls, with parameter passing as indicated in the individual
descriptions. The expansion code in the system macro library is then accessed
automatically during assembly to provide assembly language setup of appropriate
registers and instructions, including SVCs. in the user code.

2. By setting up appropriate registers and instructions directly and using appropriate
SVCs.

3. By following number 2 above but issuing an M.CALL request to the entry point
of the system module that provides the service.

MPX-32 Reference Volume I 6-1

Overview

The first two access paths are described for each system service. The third access path
is privileged, and is indicated primarily to provide the appropriate system module
names and entry point numbers for cross-reference to other documentation when
needed.

Special operations performed for a task are:

• Open - If not issued by the task, IOCS opens the file or device for the default
access in effect at that time.

• Close - If not issued by the task, the file is closed automatically and a device is
deallocated automatically during task termination.

Callable system services are described in alphabetical order by macro name.
Available system services that are not macro callable are described in the Nonmacro­
Callable System Services section.

Services for interactive tasks are described under Job Control Language.

6.1.1 Syntax Rules and Descriptions

6-2

System services can be called by their macro name, their SVC number, or their
module entry point number. It is recommended that whenever possible the macro
name be used. When a macro name is used, any optional parameter not specified in
the call is handled as follows:

• the appropriate register is assumed to have been previously loaded

(or)

• the appropriate register will be zeroed

Refer to the Calling Sequence description of each service to determine applicability of
missing parameter handling.

Defaults for optional parameters are documented in the description of each service.

When a required parameter is not specified or an invalid parameter is specified, an
error message is displayed in the listing regardless of the listing controls in effect.

The integrity of the condition code setting on exit is not guaranteed for system
services, except as documented for a particular service. Refer to the description of
each service to determine whether the exit condition code settings are applicable.

Nonbase Mode System Services

c

6.1.2

Overview

IPU Executable Nonbase Mode System Services

Once a task has gained entry into the IPU, there is a limited set of system services that
the IPU can execute. These are memory reference only system services, since the IPU
can not execute any I/O instructions. The following nonbase mode system services
are executable in the IPU:

SVC

M.ADRS
M.BBTIM
M.BTIM
M.CMD
M.CONABB
M.CONADB
M.CONAHB
M.CONASB
M.CONBAD
M.CONBAF
M.CONBAH
M.CONBBA
M.CONBBY
M.CONBYB
M.CfIM
M.DATE
M.DEVID
M.DSMI
M.DSUB
M.ENUB
M.ENVRMT
M.GTIM
M.GTSAD
M.OSREAD
M.OSWRIT
M.PGOD
M.PGOW
M.QATIM
M.SYNCH
M.TDAY
M.TSTE
M.TSIT

Description

Memory Address Inquiry
Acquire Current DatelTime in Byte Binary Format
Acquire Current Date!fime in Binary Format
Get Command Line
Convert ASCII Date!fime to Byte Binary Format
Convert ASCII Decimal to Binary
Convert ASCII Hexadecimal to Binary
Convert ASCII Date!fime to Standard Binary
Convert Binary to ASCII Decimal
Convert Binary Date!fime to ASCII Format
Convert Binary to ASCII Hexadecimal
Convert Byte Binary Date!fime to ASCII
Convert Binary Date!fime to Byte Binary
Convert Byte Binary Date!fime to Binary
Convert System Daterrime Format
Date and Time Inquiry
Get Device Mnemonic or Type
Disable Message Task Interrupt
Disable User Break Interrupt
Enable User Break Interrupt
Get Task Environment
Acquire System Date and Time in any Format
Get TSA Start Address
Physical Memory Read
Physical Memory Write
Task Option Doubleword Inquiry
Task Option Word Inquiry
Acquire Current Date!fime in ASCII Format
Set Synchronous Task Interrupts
Time-of-Day Inquiry
Arithmetic Exception Inquiry
Test Timer Entry

MPX-32 ·Reference Volume I 6-3

Macro-Callable System Services

6.2 Macro-Callable System Services

6·4

All nonbase mode system services are described in detail in the pages which follow,
arranged alphabetically by their macro name. System services which are supported for
nonbase mode tasks are prefaced by the characters "M.".

Nonbase Mode System Services

o

o

6.2.1

M.ACTV

M.ACTV - Activate Task

The M.ACTV service activates a task. The task assumes the owner name of the
caller. When a load module is supplied as input, the operating system searches in the
system directory only. For activations in other than the system directory, a pathname
or RID vector must be supplied as input.

The base mode equivalent service is M_ACTV.

Entry Conditions

Calling Sequence

M.ACTV loadmod

(or)

LD R6,vector
SVC I,X'52' (or) M.CALL H.REXS,15

loadmod is a doubleword containing the 1- to 8-ASCII character name left­
justified and blank filled, of a system load module for which an
activation request is to be queued. R7 contains the vector value; R6 is
zero.

vector the pathname vector or RID vector pointing to the load module to be
activated. vector must be supplied if the load module to be activated is
not in the system directory.

Exit Conditions

Return Sequence

M.RTRN 6,7

Registers

R6 contains zero if the service was performed
R7 contains the task activation number

(or)

R6 contains one if the task was already active
R7 task number of existing task with same name

(or)

MPX·32 Reference Volume I 6·5

M.ACTV

R6 Value Description

2 load module file not in directory
3 unable to allocate load module
4 file is not a valid load module
5 DQE is not available
6 read error on resource descriptor
7 read error on load module
8 insufficient logical/physical address space for task activation

40 invalid load module
84 invalid logical position for extended MPX-32

R 7 equals zero

6.2.2 M.ADRS - Memory Address Inquiry

The M.ADRS service provides the beginning and ending logical addresses of the
memory allocated to a task. The beginning address is the location into which the first
word was loaded and is a word address. The ending address is also a word address
and defines the last word allocated to the task.

This service can be executed by the IPU.

The base mode equivalent service is M_ADRS.

Entry Conditions

Calling Sequence

M.ADRS

(or)

SVC l,X'44' (or) M.CALL H.REXS,3

Exit Conditions

6-6

Return Sequence

M.lPURTN 6,7

Registers

R6 logical word address of the first location of the task's DSECT. This address
is always on a page boundary.

R7 logical word address of the last location available for loading or expansion
of the task's DSECT. This address is always on a map block boundary
minus one word.

Nonbase Mode System Services

.(.-" ' .
./

j

Co ••

\

• ~;'L

M.ANYW

6.2.3 M.ANYW - Wait for Any No-Wait Operation Complete, Message
Interrupt, or Break Interrupt

The M.ANYW service places the currently executing task in a state waiting for the
completion of any no-wait request, for the receipt of a message, or for a break
interrupt. The task is removed from the associated ready-to-run list, and placed in the
any-wait list. A return is made to the program location following the SVC instruction
only when one of the wait conditions has been satisfied or when the optional time-out
value has expired.

The base mode equivalent service is M_ANYWAIT.

Entry Conditions

Calling Sequence

M.ANYW time}

(or)

LW R6,time}
SVC 1,X'7C' (or) M.CALL H.REXS,37

time} contains zero if wait for an indefinite period is requested. Otherwise,
time} contains the negative number of time units to elapse before the
wait is tenninated.

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

MS31 USER ATTEMPTED TO GO TO THE ANY-WAIT STATE FROM AN
END-ACTION ROUTINE

MPX·32 Reference Volume I 6-7

M.ASSN

6.2.4 M.ASSN - Assign and Allocate Resource

The M.ASSN service associates a resource with a logical file code (LFC) used by a
process and allocates the resource. This function creates a FAT/FPf pair within the
user's TSA and associates an allocated resource table (ART) entry for system
administration and control of the resource while allocated. When implicit sharing is
indicated by the absence of a specified usage mode, the appropriate linkage is
established to coordinate concurrent access. The option is provided to allocate and
open a resource with a single call to this function.

The base mode equivalent service is M _ASSIGN.

Entry Conditions

Calling Sequence

M.ASSN rrsaddr [,cnpaddr]

(or)

LA R 1 ,rrsaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'52' (or) M.CALL H.REXS,21

rrsaddr

cnpaddr

is the address of an RRS entry Type I through 6

is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are time-out value,
abnormal return address, options field, status field, and parameter link.

The option field contains an access and usage specification for opening
this resource. This field is used only if the automatic open flag is set in
the option word of the RRS. See the M.OPENR service.

If automatic open is indicated in the RRS, word 5 of the CNP must
contain the address of a valid file control block (FCB) for this
assignment. See the M.OPENR service.

Exit Conditions

6·8

Return Sequence

(with CNP)

M.RTRNRS

(or)

M.RTRN RS (CC I set)

(without CNP)

M.RTRNRS

(or)

M.RTRN RS,R7 (CCI set)

Nonbase Mode System Services

[
\ __ /

c

M.ASSN

Registers

R5 contains the allocation index, a unique 32-bit integer number associated with
the allocated resource. This index can set and release resource locks for
exclusive or synchronous access.

R7 contains return status if a CNP is not supplied; otherwise, unchanged

Status

CC1 set

Posted in R7 or the status field of the CNP (status values 25-29 are returned only
when auto-open is indicated):

Value

1
2
3
4
7
8
9
11
12
13
14
15
17
19
20
22
23
24
25
27
28
29
38
46
50
51
54
55

Description

unable to locate resource (invalid pathname)
specified access mode not allowed
FAT/FPT space not available
blocking buffer space not available
static assignment to dynamic common
unrecoverable I/O error to volume
invalid usage specification
invalid RRS entry
LFC logically equated to unassigned LFC
assigned device not in system
resource already allocated by requesting task
SGO or SYC assignment by real-time task
duplicate LFC assignment attempted
invalid resource ID
specified volume not assigned
resource is marked for deletion
assigned device is marked off-line
segment definition allocation by unprivileged task
random access not allowed for this access mode
resource already opened in a different access mode
invalid access specification at open
specified LFC is not assigned to a resource for this task
time out occurred while waiting for resource to become available
unable to obtain resource descriptor lock (multiprocessor only)
resource is locked by another task
shareable resource is allocated in an incompatible access mode
unable to allocate resource for specified usage
ART space not available

Wait Conditions

When the resource is not available as indicated by status values 50-63, the task is
placed in a wait state, as appropriate, if specified by a CNP.

MPX·32 Reference Volume I 6·9

M.ASYNCH

6.2.5 M.ASYNCH - Set Asynchronous Task Interrupt

The M.ASYNCH service resets the asynchronous task interrupt mode back to the
default environment.

The base mode equivalent service is M_ASYNCH

Entry Conditions

Calling Sequence

M.ASYNCH

(or)

SVC l,X'lC' (or) M.CALL H.REXS,68

Exit Conditions

Return Sequence

M.RTRN

Status

CCl set if asynchronous task interrupt already set

6-10 Nonbase Mode System Services

o

c

o

M.BACK

6.2.6 M.BACK - Backspace Record or File

The M.BACK service perfonns the following functions for backspacing records:

• if the file is actively generating output, the service issues a purge before the
backspacing function. After the specified number of records are backspaced, the
service returns control to the user.

• backspaces the specified number of records

M.BACK perfonns the following functions for blocked files:

• if the file is actively generating output, the service issues an end-of-file and purge
before the backspace file function. Records are backspaced until an end-of-file
record is found.

• backspaces the specified number of files

• the read/write control word then points to the end-of-file just encountered

• the M.BACK service cannot be used for SYC files or unblocked files

The base mode equivalent service is M_BACKSPACE.

Entry Conditions

Calling Sequence

M.BACKfcbaddr [R],[number]

(or)

LA
LNW
SVC
SVC
BIW

Rl/cbaddr
R4,number
1,X'35' or M.CALL H.IOCS,9 } (or)
1,X'36' or M.CALL H.IOCS,19

R4,$-lW

is the FCB address Icbaddr

R indicates to backspace by record (SVCl,X'35'). If omitted, backspace
is by file (SVCl,X'36')

. number

$-lW

is the address of the word containing four times the number of records
or files to backspace, or the contents of R4 if not supplied

branches back to SVC until reaching the last word of R4

MP)(-32 Reference Volume I 6-11

M.BACK

Exit Conditions

6-12

Return Sequence

M.RTRN

Abort Cases

1006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED
FILE ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS
IMPROPERLY BLOCKED, (2) BLOCKING BUFFER IS
DESTROYED, OR (3) TRANSFER ERROR DURING FILE
INPUT.

1009 ILLEGAL OPERATION ON THE SYC FILE

Nonbase Mode System Services

r\
LJ

o

(

M.BATCH

6.2.7 M.BATCH - Batch Job Entry

The M.BATCH service submits a batch job stream located in a disk file. The disk file
is described by the calling parameter in Rl. Prior to calling this service, the specified
disk file should be rewound to purge the contents of the blocking buffer if it has been
dynamically built.

The base mode equivalent service is M_BATCH

Entry Conditions

Calling Sequence

M.BATCH arga [,cnpaddr]

(or)

LW Rl,arga
LA R7,cnpaddr (or) ZR R7
SVC 2,X'55' (or) M.CALL H.REXS,27

arga is a PN vector, a PNB vector, or an RID vector for a pennanent file; or
an LFC or an FCB address for a temporary file

cnpaddr is a CNP address or zero if CNP is not supplied

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

Registers

(without CNP)

M.RTRN R7 (CCI set)

R7 return status if a CNP is not supplied; otherwise, denial address

MPX-32 Reference Volume I 6-13

M.BATCH

Status
CCI set

Posted in R7 or in the status field of the CNP:

6-14

Value

o
1
2
3
4
5
6
7
14
18

Description

operation successful
pathname invalid
pathname consists of volume only
volume not mounted
directory does not exist
disk file has not been previously opened
unable to activate J.SSIN2. batch job not submitted
resource does not exist
unrecoverable I/O error while reading resource descriptor
unrecoverable I/O error while reading directory

Nonbase Mode System Services

o

o

(\

M.BBTIM

6.2.8 M.BBTIM· Acquire Current DatelTime in Byte Binary Format

The M.BBTIM service acquires the system date and time in byte binary format. The
date and time are returned in a two word buffer, the address of which is contained in
the call. Refer to Appendix H for date and time formats.

This service can be executed in the IPU.

The base mode equivalent service is M_BBTIM.

Entry Conditions

Calling Sequence

M.BBTIM addr

(or)

LA Rl,addr
ORMW Rl,=X'02000000'
SVC 2,X'50' (or) M.CALL H.REXS,74

addr is the address of a 2-word buffer to contain the date and time

Exit Conditions

Return Sequence

M.IPURTN

Registers

R 1 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

MPX-32 Reference Volume I 6-15

M.BORT

6.2.9 M.BORT - Abort Specified Task, Abort Self, or Abort with Extended
Message

6.2.9.1 M.BORT· Specified Task

This service allows the caller to abort another task. If the named task has been
swapped out, it is not aborted until it regains CPU control. If the specified task is not
in execution, the request is ignored.

The base mode equivalent service is M_BORT.

Entry Conditions

Calling Sequence

M.BORT abcode,taskname

(or)

LW
ZR
LW
SVC

R5,abcode

R6 } (or) LD R6,taskname
R7,taskno
l,X'56' (or) M.CALL H.REXS,19

abc ode

taskname

a 4 ASCII character abort code

is the address of a doubleword containing the name of the task or zero
in word 0 and the task number in word 1. A task number must be used
if the task is multicopied or shared. A task number of zero specifies
the current task.

Exit Conditions

6-16

Return Sequence

M.RTRN 7

Registers

R7 Contains the task number, or zero if any of the following conditions exist:

• specified task was not found

• specified task name was multicopy

• owner name of the task requesting an abort is not privileged and is restricted
from access to tasks with a different owner name

• task is exiting the system

Nonbase Mode System Services

o

o

M.BORT

6.2.9.2 M.BORT - Self

This service aborts the calling task by issuing an abort message, optionally performing
a post-abort dump, and performing the functions common to the normal termination
service.

Entry Conditions

Calling Sequence

M.BORT abcode

(or)

LW R5,abcode
SVC I,X'57' (or) M.CALL H.REXS,20

abcode contains the 4-character ASCn abort code

Exit Conditions

Return Sequence

M.RTRN

Output Messages

task number ABORT AT: xxxxxx:xx - yyyyy mm/dd/yy hh:mn:ss zzzz

task

number

xxxxxxxx
yyyyy
mm

dd
yy

hh

mn

ss

zzzz

is the 1- to 8-character name of the task being aborted

is the task number of the task being aborted

is the location where the abort occurred

is the beginning of the DSECT

is the month (2-character decimal number from 01 thru 12)

is the day (2-character decimal number from 01 thru 31)

is the year (2-character decimal number from 00 thru 99)

is the hour (2-character decimal number from 00 thru 23)

is the minutes (2-character decimal number from 00 thru 59)

is the seconds (2-character decimal number from 00 thru 59)

is the 4-character abort code

MPX-32 Reference Volume I 6-17

M.BORT

6.2.9.3 M.BORT· With Extended Message

A call to this service results in an abort of the specified task with an extended abort
code message.

Entry Conditions

Calling Sequence

M.BORT abcode,task,extcode

(or)

LD
LW
LI
LW
SVC

R2,extcode
R5,abcode

R6,O } (or) LD R6,taskname
R7,taskno
1,X'62' (or) M.CALL H.REXS,28

abcode

task

contains the abort code consisting of 4 ASCII characters

the address of a doubleword containing the name of the task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

extcode contains the extended abort code message consisting of 1 to 8 ASCII
characters, left-justified and blank-filled

Exit Conditions

6-18

Return Sequence

M.RTRN7

Registers

R7 zero if any of the following conditions exist:

• specified task was not found

• specified task name is multicopied

• owner name of the task requesting the abort is not privileged and is
restricted from access to tasks with a different owner name (by the
M.KEY file)

• task is exiting the system

Otherwise, contains the task number.

Nonbase Mode System Services

c

o

(

(

M.BRK

6.2.10 M.BRK - Break/Task Interrupt Link/Unlink

The M.BRK service allows the caller to clear the user break receiver or to establish
the address of a routine to be entered when another task or the operator activates the
caller task interrupt with an M.INT service.

The base mode equivalent service is M_BRK.

Entry Conditions

Calling Sequence

M.BRK breakaddr

(or)

LA R7,breakaddr
SVC 1,X'6E' (or) M.CALL H.REXS,46

breakaddr is the logical word address of the entry point of the task's break/task
interrupt routine or zero to clear the break receiver

Exit Conditions

6.2.11

Return Sequence

M.RTRN

M.BRKXIT - Exit from Task Interrupt Level

This service must be called after executing the task interrupt routine. The M.BRKXIT
transfers control back to the point of interruption by a task interrupt routine.

The base mode equivalent service is M~BRKXIT.

Entry Conditions

Calling Sequence

M.BRKXIT

(or)

SVC 1,X'70' (or) M.CALL H.REXS,48

Exit Conditions

Return Sequence

M.RTRN

MPX-32 Reference V()lume I 6-19

M.BTIM

6.2.12 M.BTIM - Acquire Current DatelTime in Binary Format

The M.BTIM service acquires the system date and time in binary fonnat The date
and time are returned in a two word buffer, the address of which is specified in the
call. Refer to Appendix H for date and time fonnats.

This service can be executed by the IPU.

The base mode equivalent service is M_BTIM.

Entry Conditions

Calling Sequence

M.BTIMaddr

(or)

LA
ORMW
SVC

Rl,addr
Rl.=X·OlOOOOOO·
2,X'SO' (or) M.CALL H.REXS,74

addr is the address of a 2-word buffer to contain the date and time

Exit Conditions

6-20

Return Sequence

M.IPURTN

Registers

Rl used by call; all others returned intact

Abort cases
RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS

OUT OF RANGE

Nonbase Mode System Services

o

f\
[,
\.J

o

M.CLOSER

6.2.13 M.CLOSER - Close Resource

The M.CLOSER service terminates operations in the current access mode on a
resource. The resource is marked closed in the file pointer table (FPT). The user­
count in the appropriate allocated resource table (ART) entry is decremented if
implicit shared use is in effect. For access modes other than read, the resource
descriptor is updated. If last accessed functionality is enabled, the resource descriptor
is also modified for read access mode. When the closing of a file implies a change of
use or access mode for that resource, any tasks waiting for access to the resource in a
compatible access mode are dequeued. If any logically equivalent resources are open,
no further action is taken. For blocked files, any active output blocking buffer is
purged. A close request to a resource that is already closed will result in an
immediate return with the appropriate status posted.

The base mode equivalent service is M _CLOSER.

Entry Conditions

Calling Sequence

M.CLOSER fcbaddr[,cnpaddr]

(or)

LA RI/cbaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'43' (or) M.CALL H.REMM,22

fcbaddr

cnpaddr

is the address of a file control block (FCB)

is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are abnormal return
address and status field.

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CC I set)

R7 contains return status if a CNP is not supplied; otherwise unchanged

MPX.32 Reference Volume I 6-21

M.CLOSER

Status
CC1 set

Posted in R7 or the status field of the CNP

6-22

Value

8
29
31
46

Description

unrecoverable I/O error to volume
logical file code associated with FCB does not exist
resource was not open
unable to obtain resource descriptor lock of a multiprocessor

Nonbase Mode System Services

M.CLSE

6.2.14 M.CLSE - Close File

The M.CLSE service marks a file closed in the file pointer table (FPT), and the count
of open files (DFf.OPCT) is decremented. If any logically equivalent files are open,
no further action is taken (for example, if count after decrementing is not equal to
zero).

If the file is a system file or blocked file, any active output blocking buffers are
purged. The file is marked closed by resetting the open bit in the file assignment table
(FAT).

For files assigned to SYC or sao, the current disk address updates the job table for
job control.

This service issues an EOF prior to purging system files SLO and SBO which were
opened for read/write. It also issues an EOF prior to purging for blocked files that are
actively generating output.

The service ignores close requests to a file that is already closed.

The base mode equivalent service is M _ CLSE.

Entry Conditions

Calling Sequence

M.CLSE fcbaddr [,[EOP] [,REW]]

(or)

LA

[~~E
SVC

Rl/cbaddr
1 X'38' (or) M.CALL H.IOCS 5J
1:X'37' (or) M.CALL H.IOCS: 2
1,X'39' (or) M.CALL H.IOCS,23

is the FCB address

writes EOF (SVC 1,X'38'). See the M.WEOF description.

fcbaddr

EOF

REW rewinds file or device (SVC 1,X'37'). See the M.RWND description.

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

I009 ILLEGAL OPERATION ON THE SYC FILE

I038 WRITE ATTEMPTED ON UNIT OPENED IN READ-ONLY MODE.
A READ-WRITE OPEN WILL BE FORCED TO READ-ONLY IF
TASK HAS ONLY READ ACCESS TO UNIT.

MPX·32 Reference Volume I 6-23

M.CMD

6.2.15 M.CMD - Get Command Line

The M.CMD service returns the portion of the command line between the program
name and the end of the line if the program name is specified on the command line.
If data does not exist or the command line has already been issued, a null string is
returned.

This service can be executed by the IPU.

The base mode equivalent service is M_CMD.

Entry Conditions

Calling Sequence

M.CMD

(or)

SVC 2,X'61' (or) M.CALL H.REXS,88

Exit Conditions

Return Sequence

M.RTRN R6,R7

Registers

R6 contains the length of the string in bytes, if found; otherwise, zero
R7 contains the first byte address of the string, if found; otherwise, zero

Nonbase Mode System Services

o

M.CONABB

6.2.16 M.CONABB - Convert ASCII Date/Time to Byte Binary Format

The M.CONABB service converts the system date and time from ASCII format to
byte binary format. Refer to Appendix H for date and time formats.

This service can be executed by the IPU.

The base mode equivalent service is M _ CONABB.

Entry Conditions

Calling Sequence

M.CONABB inbuffer,outbuffer

(or)

LA
ORMW
LA
SVC

R 1 ,inbuffer
Rl,=X'06000000'
R2,outbuffer
2,X'51' (or) M.CALL H.REXS,75

inbuffer is the address of a 4-word buffer containing the ASCII-formatted date
and time

outbuffer is the address of a 2-word buffer where the byte binary formatted date
and time is returned

Exit Conditions

Return Sequence

M.IPURTN

Registers

Rl,R2 used by ·call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

MPX-32 Reference Volume I 6-25

M.CONADB

6.2.17 M.CONADB· Convert ASCII Decimal to Binary

The M.CONADB service converts ASCII decimal doublewords to their binary
equivalent

An all blank double word converts to zero.

This service can be executed by the IPU.

The base mode equivalent service is M_CONADB.

Entry Conditions

Calling Sequence

M.CONADB [addr]

(or)

LD R6,addr
SVC 1,X'28' (or) M.CALL H.TSM,7

addr is the address of a decimal number (left-justified, doubleword-bounded,
ASCII-coded, blank-filled). If omitted, contents of R6 and R7 are
converted.

Exit Conditions

6-26

Return Sequence

M.IPURTN 6,7

Registers

R6 contains zero if a character is nonnumeric

R7 contains the binary equivalent of the input

Nonbase Mode System Services

o

c:

c:

M.CONAHB

6.2.18 M.CONAHB - Convert ASCII Hexadecimal to Binary

The M.CONAHB service converts ASCII hexadecimal doublewords to their binary
equivalent.

An all blank doubleword converts to zero.

This service can be executed by the IPU.

The base mode equivalent service is M _ CONAHB.

Entry Conditions

Calling Sequence

M.CONAHB [addr]

(or)

LD R6,addr
SVC 1,X'29' (or) M.CALL H.TSM,8

addr is the address of a hexadecimal number (left-justified, doubleword­
bounded, ASCII-coded, blank-filled). If omitted, contents of R6 and
R7 are converted.

Exit Conditions

Return Sequence

M.IPURTN 6,7

Registers

R6 contains zero if a character is not hexadecimal

R7 contains the binary equivalent of the input

MPX·32 Reference Volume I 6·27

M.CONASB

6.2.19 M.CONASB - Convert ASCII Date/Time to Standard Binary

The M.CONASB service converts the system date and time from ASCII fonnat to
binary fonnat. Refer to Appendix H for date and time fonnats.

This service can be executed by the IPU.

The base mode equivalent service is M_CONASB.

Entry Conditions

Calling Sequence

M.CONASB inhuffer,outbuffer

(or)

LA R 1 ,inbuffer
ORMW Rl,=X'05000000'
LA R2,outbuffer
SVC 2,X'51' (or) M.CALL H.REXS,75

inbuffer

outbuffer

is the address of a 4-word buffer containing the ASCII fonnatted date
and time

is the address of a 2-word buffer where the binary fonnatted date and
time is returned

Exit Conditions

6-28

Return Sequence

M.IPURTN

Registers

Rl.R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Nonbase Mode System Services

0 :'1
"

o

o

M.CONBAD

6.2.20 M.CONBAD - Convert Binary to ASCII Decimal

The M.CONBAD service converts binary words to their ASCII decimal equivalent.

This service can be executed by the IPU.

The base mode equivalent service is M _ CONBAD.

Entry Conditions

Calling Sequence

M.CONBAD [addr]

(or)

LW R5,addr
SVC l,X'2A' (or) M.CALL H.TSM,9

addr the address of a positive binary number

Exit Conditions

Return Sequence

M.IPURTN 6,7

Registers

R6,R7 ASCII result, right-justified with leading ASCII zeros

MPX-32 'Reference Volume I 6-29

M.CONBAF

6.2.21 M.CONBAF - Convert Binary DatelTime to ASCII Format

The M.CONBAF service converts the system date and time from binary format to
ASCII format. Refer to Appendix H for date and time formats.

This service can be executed by the IPU.

The base mode equivalent service is M_CONBAF.

Entry Conditions

Calling Sequence

M.CONBAF inbuffer,outbuffer

(or)

LA
ORMW
LA
SVC

inbuffer

outbuffer

Rl,inbuffer
Rl,=X'02000000'
R2,outbuffer
2,X'S1' (or) M.CALL H.REXS,7S

is the address of a 2-word buffer containing the binary formatted date
and time
is the address of a 4-word buffer where the ASCII formatted date and
time is returned

Exit Conditions

6-30

Return Sequence

M.IPURTN

Registers

R1,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Nonbase Mode System Services

o

o

M.CONBAH

6.2.22 M.CONBAH - Convert Binary to ASCII Hexadecimal

The M.CONBAH service converts binary words to their ASCII hexadecimal
equivalent.

This service can be executed by the IPU.

The base mode equivalent service is M_CONBAH.

Entry Conditions

Calling Sequence

M.CONBAH [addr]

(or)

LW R5,addr
SVC I,X'2B' (or) M.CALL H.TSM,lO

addr is the address of a binary number

Exit Conditions

Return Sequence

M.IPURTN 6,7

Registers

R6,R7 ASCII result, right-justified with leading ASCII zeros

MPX·32 Reference Volume I 6-31

M.CONBBA

6.2.23 M.CONBBA - Convert Byte Binary Date/Time to ASCII

The M.CONBBA service converts the system date and time from byte binary format
to ASCII format. Refer to Appendix H for date and time formats.

This service can be executed by the IPU.

The base mode equivalent service is M _ CONBBA.

Entry Conditions

Calling Sequence

M.CONBBA inhuffer,outbuffer

(or)

LA R 1 ,inbuffer
ORMW Rl,=X'04000000'
LA R2,outbujJer
SVC 2,X'51' (or) M.CALL H.REXS,75

inbuffer

outbuffer

is the address of a 2-word buffer containing the byte binary formatted
date and time

is the address of a 4-word buffer where the ASCII formatted date and
time is returned

Exit Conditions

6-32

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Nonbase Mode System Services

(" ... -~. ~,

.Y

c

M.CONBBY

6.2.24 M.CONBBY - Convert Binary Date/Time to Byte Binary

The M.CONBBY service converts the system date and time from binary fonnat to
byte binary fonnat. Refer to Appendix H for date and time fonnats.

This service can be executed by the IPU.

The base mode equivalent service is M_CONBBY.

Entry Conditions

Calling Sequence

M.CONBBY inbuffer,outbuffer

(or)

LA
ORMW
LA
SVC

Rl,inbuffer
Rl,=X'OI000000'
R2,outbuffer
2,X'51' (or) M.CALL H.REXS,75

inbuffer is the address of a 2-word buffer containing the binary fonnatted date
and time

outbuffer is the address of a 2-word buffer where the byte binary fonnatted date
and time is returned

Exit Conditions

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

MPX-32 Reference Volume I 6-33

M.CONBYB

6.2.25 M.CONBYB· Convert Byte Binary DatelTime to Binary

The M.CONBYB service converts the system date and time from the byte binary
fonnat to binary fonnat. Refer to Appendix H for date and time fonnats.

This service can be executed by the IPU.

The base mode equivalent service is M_CONBYB.

Entry Conditions

Calling Sequence

M.CONBYB inbufJer,outbufJer

(or)

LA
ORMW
LA
SVC

inbufJer

outbufJer

R 1 ,inbufJer
Rl,=X'03000000'
R2,outbufJer
2,X'51' (or) M.CALL H.REXS,75

is the address of a 2-word buffer containing the byte binary fonnatted
date and time

is the address of a 2-word buffer where the binary- fonnatted date and
time is returned

Exit Conditions

6·34

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Nonbase Mode System Services

o

o

(.

M.CONN

6.2.26 M.CONN - Connect Task to Interrupt

The M.CONN service indirectly connects a task to an interrupt level so that when the
interrupt occurs, the specified task will be scheduled for execution or for the
resumption of execution. If the specified task is not active, M.CONN will pre activate
it. If pre activation is required, but the actual interrupt connection is denied, M.CONN
deletes the residual task because the task would continue in the suspended state
indefinitely.

The base mode equivalent service is M _CONN.

Entry Conditions

Calling Sequence

M.CONN task,intlevel

(or)

LW
LI
LW
SVC

R5,intlevel

R6,O } (or) LD R6,task (or)
R7,taskno
I,X'4B' (or) M.CALL H.REXS,10

LW R6, PNV
LI R7,O

}

task is the address of a doubleword containing the name of a task (left­
justifed blank-filled 1- to 8-character ASCII) (system file only); or zero
in word 0 and the task number in word 1; or pathname or RID vector in
word 0 and zero in word 1. A task number must be used if the task is
multicopied or shared. A task number of zero specifies the calling task.

intlevel is the hardware priority level where the task is to be connected

Exit Conditions

Return Sequence

M.RTRN 6,7

MPX-32 Reference Volume I 6-35

M.CONN

6-36

Registers

R6 denial code:

Value

1
2
3
4

Description

task already connected to an interrupt
another task connected to the specified interrupt
interrupt not SYSGEN specified indirectly connectable
specified task not found in dispatch queue or the requesting
task is not privileged and the owner name is restricted by the
M.KEY file from access to tasks with a different owner name

R7 zero if task not connected to interrupt; otherwise, contains the task
number

Nonbase Mode System Services

o

c

(',

M.CPERM

6.2.27 M.CPERM - Create Permanent File

The M.CPERM service creates a permanent file. Permanent files are given names in
directories and remain known to the operating system until explicitly deleted.

This service allocates a resource descriptor and the initial file space requirements for
the file. Next, the specified attributes of the file are recorded in the resource
descriptor. Finally, the name of the file is established in the indicated directory.

When a directory entry is established, it is linked to the resource descriptor of the file.
This links the name of the file to the other attributes of the file. Typical file attributes
are:

• file name
• file resource identifier (RID)

• file protection attributes

• file management attributes

• file initial space requirements

To create with possible multiple segments, the CNP address must be supplied. Byte 0
of the CNP option field contains the maximum number segments, allowed at creation.
If M.CPERM creates a file with one segment which is less than the size requested,
condition code bit 1 is set and status is returned in the CNP.

Asynchronous aborts and deletes are inhibited during execution of this service.

The base mode equivalent service is M_CREATEP.

Entry Conditions

Calling Sequence

M.CPERM addr [,cnpaddr] [,rcbaddr]

(or)

LW Rl,addr
LA R2,rcbaddr (or) ZR R2
LA R7,cnpaddr (or) ZR R7
SVC 2,X'20' (or) M.CALL H.VOMM,l

addr

cnpaddr

rcbaddr

contains a PN vector or PNB vector

is the address of a CNP or zero if CNP not supplied

is the address of an RCB or zero if default attributes are desired

MPX·32 Reference Volume I 6-37

M.CPERM

Exit Conditions

6-38

Return Sequence

(with CNP)

M.RTRN

(or

M.RTNA (CCl set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCl set)

R 7 Return status if a CNP is not supplied; otherwise, unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and 110 chapter of Volume I.

Nonbase Mode System Services

c!

(""
M.CTIM

6.2.28 M.CTIM - Convert System DatelTime Format

The M.CTIM service converts the system date and time from one of three standard
formats to either of the other two formats. Refer to Appendix H for date and time
formats. This service is callable from specific case macros that provide the function
code in the macro call itself.

This service can be executed by the IPU.

The base mode equivalent service is M_CTIM.

Entry Conditions

Calling Sequence

M.CTIM Junet,inbuffer,outbuffer

(or)

LA
ORMW
LA
SVC

Junet

inbuffer

outbuffer

Funct
code

1
2
3
4
5
6

Rl,inbuffer
RlJunet
R2,outbuffer
2,X'51' (or) M.CALL H.REXS,75

is the address of a word that contains the function code (see chart
below) in byte 0, the most significant byte, and zeros in bytes 1, 2, and
3

is the address of a 2- or 4-word buffer where the user provides the date
and time, in any of the three standard formats, for the system to convert

is the address of a 2- or 4-word buffer where the system returns the
converted date and time values in the format requested

Buffer Length
Input format Return format in out

Binary Byte binary 2W 2W
Binary Quad ASCII 2W 4W
Byte binary Binary 2W 2W
Byte binary Quad ASCII 2W 4W
Quad ASCII Binary 4W 2W
Quad ASCII Byte binary 4W 2W

MPX-32 Reference Volume I 6-39

M.CTIM

Exit Conditions

6-40

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Nonbase Mode System Services

o

c

M.CWAT

6.2.29 M.CWAT - System Console Wait

The M.CW AT service suspends operation of the calling program uritil the specified
lID transfer is complete.

The base mode equivalent service is M_CWAT.

Entry Conditions

Calling Sequence

M.CWAT tcpb

(or)

LA RI,tcpb
SVC I,X'3D' (or) M.CALL H.lOCS,26

tcpb is the address of a type control parameter block (TCPB). See the Type
Control Parameter Block section of chapter 5.

Exit Conditions

Return Sequence

M.RTRN

MPX·32 Reference Vo1ume I 6-41

M.DASN

6.2.30 M.DASN - Deassign and Deallocate Resource

The M.DASN service deallocates a resource and disassociates it from a logical file
code. When a device associated with an unformatted medium is detached. a message
is issued to infonn the operator to dismount the medium, unless the message was
inhibited by user request or system constraints. Deallocation of a nonshared resource
makes it available to other tasks. Deallocation of a shared resource makes the
resource available if the caller is the last task to deallocate it or the access mode
changes as a result of the deallocation to allow other compatible tasks to attach to the
resource. Deallocation of SLO and SBO files results in their definitions being passed
to the system output task for processing. If the specified logical file code was equated
to other logical file codes in the system, only the specified LFC is deallocated. If a
close directive was not issued, the resource is also closed.

The M.DASN service can also issue a dismount message for an unfonnatted medium
with no resource deallocation.

The base mode equivalent service is M _DEASSIGN.

Entry Conditions

6·42

Calling Sequence

M.DASN arga[,cnpaddr]

(or)

LW RI,arga
LA R7,cnpaddr (or) ZR R7
SVC 2,X'S3' (or) M.CALL H.REXS,22

arga is the address of the allocation index obtained when the resource was
assigned

cnpaddr

(or)

the address of a file control block (FCB) which contains an LFC in
word 0

is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are abnormal return
address, options field, and status field.

Setting bit 0 of the options field of the CNP specifies issue dismount
message with no resource deallocation.

Nonbase Mode System Services

o

o

(Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

M.DASN

R7 contains the return status if a CNP is not supplied; otherwise, unchanged

Status

CCI set

Posted in R7 or in the status field of the CNP

Value

8
29
30
46

Description

unrecoverable I/O error to volume
logical file code associated with FCB not assigned
invalid allocation index
unable to obtain resource descriptor lock (multiprocessor only)

MPX·32 Reference Volume I 6-43

M.DATE

6.2.31 M.DATE - Date and Time Inquiry

The M.DATE service returns to the caller the date in ASCII, century, year, month and
day, calendar infonnation, and a count of the number of real-time clock interrupts
since midnight. To aid in converting the interrupt count to time-of-day, counts of the
number of interrupts per second and the number of interrupts per time unit are also
returned.

This service can be executed by the IPU.

The base mode equivalent service is M _DATE.

Entry Conditions

Calling Sequence

M.DATE pbaddr

(or)

LA R7,pbaddr
SVC I,X'IS' (or) M.CALL H.REXS,70

pbaddr is the logical word address of the first location of a parameter block
fonnatted as follows:

• Words 0 and I contain the current date in the fonnat entered at IPL
time.

• Word 2 Bytes

o
I
2
3

Contents in Binary

Century
Year
Month
Day

• Word 3 contains the number of clock interrupts since midnight
• Word 4 contains the number of clock interrupts per second;

initialized by SYSGEN

• Word 5 contains the number of clock interrupts per time unit;
initialized by SYSGEN

Exit Conditions

6-44

Return Sequence

M.IPURTN

Nonbase Mode System Services

M.DEBUG

6.2.32 M.DEBUG - Load and Execute Interactive Debugger

The M.DEBUG service causes one of the following events to occur:

• If the interactive debugger is currently loaded at the time the service is called,
control is transferred to the debugger.

• If the interactive debugger is not currently loaded at the time the service is called,
the debugger is loaded as an overlay segment, then control is transferred to the
debugger.

If the task is nonbase and has a shared CSECf, the debugger is not loaded and error
code 4 is returned. To debug a nonbase shared CSECf task, request the debugger at
task activation.

The base mode equivalent service is M_DEBUG.

Entry Conditions

Calling Sequence

M.DEBUG

(or)

SVC 1,X'63' (or) M.CALL H.REXS,29

('/ Exit Conditions

Return Sequence

M.RTRNR7

Registers

Normal Return to Debugger:

R7 contains the transfer address of the debugger if the debugger was loaded
by this service call, or zero if the debugger was already loaded when this
service was called

Abnormal Return Sequence to Caller:

R7 Value Description

2
4
5
6
7
8

MPX-32 Reference Volume I

debugger load module not found
invalid preamble
insufficient task space for loading
110 error on resource descriptor
I/O error on resource
loading error

6-45

M.DEFT

6.2.33 M.DEFT - Change Defaults

The M.DEFT service changes the caller's working current directory or project group
protection or both.

This service should be called with two separate calls if both project group protection
and the current working directory are being changed.

When both project group and working directory are specified in a single call, the
project group is changed before the current working directory is changed. After
changing the project group, if the attempt to establish the current working directory
fails, the new project group protection will remain in effect and the caller will be
notified through an error status code that the current working directory request failed.
The caller must determine whether to continue with the new project group or to
reestablish another project group.

The base mode equivalent service is M_DEFr.

Entry Conditions

6·46

Calling Sequence

M.DEFr [vector] [,cnpatidr] [,prjaddr] [,keyatidr]

(or)

LW
LA
LA
LA
SVC

RI,vector
R4,prjatidr (or) ZR R4
RS,keyaddr (or) ZR R5
R7,cnpatidr (or) ZR R7
2,X'27' (or) M.CALL H.VOMM,8

vector

·cnpaddr

prjaddr

contains a PN vector, PNB vector, or RID vector

is a CNP address or zero if a CNP is not supplied

keyaddr

is the address of the new project group name or zero if the project
group name will not be changed
is the address of the new project group key or zero if a key is not
supplied

Nonbase Mode System Services

o

o

M.DEFT

(~ Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)
M.RTNA (CC 1 set)

Registers

(without CNP)

M.RTRN

(or)
M.RTRN R7 (CC 1 set)

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment/Allocation and 110 chapter of Volume I.

MPX-32 Reference Volume I 6-47

M.DELR

6.2.34 M.DELR - Delete Resource

The M.DELR service explicitly deletes volume resources (Le., directories, files, and
memory partitions). A directory may be deleted only if it is empty. The caller must
have delete access to the resource in order to delete it.

First, this service deletes the directory entry for the specified resource. Next, the
volume space requirements are released. Finally, the resource descriptor is released.

If the resource is allocated at the time of the delete request, only the directory entry is
deleted. The volume space requirements and the resource descriptor for the resource
will be released when the last assignment to the resource is removed.

To delete a permanent file or memory partition, the pathname or pathname block must
be supplied. To delete a directory, the pathname or pathname block must be supplied
and all files which were defined in the directory must have been previously deleted.

To delete a temporary file, resource identifier (RID), the logical file code (LFC), or the
address of a file control block (FCB) must be supplied.

Asynchronous abort and delete are inhibited during execution of this service.

The base mode equivalent service is M_DELETER.

Entry Conditions

6-48

Calling Sequence

M.DELR [addr] [,cnpaddr]

(or)

LW Rl,addr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'24' (or) M.CALL H.VOMM,5

addr

cnpaddr

contains a PN vector, a PNB vector, an LFC, or an FCB

is a CNP address or zero if CNP not supplied

Nonbase Mode System Service"s

(

(',

/

M.DELR

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCl set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCl set)

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H. VOMM status codes in the
Resource Assignment! Allocation and I/O chapter of Volume I.

MPX·32 Reference Volume I 6·49

M.DELTSK

6.2.35 M.DEL TSK - Delete Task

The M.DELTSK service forces 110 completion and immediately aborts the specified
task. This service should be used only when abort fails to remove a task or when a
task is queued for a resource. File integrity can be affected because operations are not
allowed to complete normally. To preserve system integrity, the kill directive is
processed as an abort for the amount of time specified by KTIMO (SYSGEN). If this
does not remove the task, it is killed.

The base mode equivalent service is M_DELTSK.

Entry Conditions

Calling Sequence

M.DELTSK abcode,task,extcode

(or)

LD
LW
LI
LW
SVC

R2,extcode
RS,abcode

R6,O } (or) LD R6,taskname
R7,taskno
1,X'SA' (or) M.CALL H.REXS,31

abc ode

task

contains the 4-character ASCII abort code

the address of a doubleword containing the name of the task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

extcode contains the 1- to 8-character ASCII extended abort code message,
left-justified and blank-filled.

Exit Conditions

6-50

Return Sequence

M.RTRNR7

Registers

R7 contains the task number, zero if the specified task was not found or if the
requesting task is not privileged and the owner name is restricted by the
M.KEY file from access to tasks with a different owner name

Nonbase Mode System Services

o

o

c'

M.DELTSK

Output Messages

Modifies abort message to:

task number ABORT AT: xxxxxxxx - yyyy mm/dd/yy hh:mn:ss zzzzzzzz

task

number

xxxxxxxx

yyyy

mm

dd

yy

hh

mn

ss

zzzzzzzz

MPX-32 Reference Volume I

is the 1- to 8-character name of the task being aborted

is the task number of the task being aborted

is the location the abort occurred

is the bias to the logical start of the task

is the month (2-character decimal number from 01 thru 12)

is the day (2-character decimal number from 01 thru 31)

is the year (2-character decimal number from 00 thru 99)

is the hour (2-character decimal number from 00 thru 23)

is the minutes (2-character decimal number from 00 thru 59)

is the seconds (2-character decimal number from 00 thru 59)

is the extended message code supplied with the call to this
service

6-51

M.DEVID

6.2.36 M.DEVID - Get Device Mnemonic or Type Code

The M.DEVID service allows the user to pass a device mnemonic or a generic device
type code and receive the corresponding type code or mnemonic. Device mnemonic
and device type codes are listed in Appendix A.

This service can be executed by the IPU.

The base mode equivalent service is M _ DEVID.

Entry Conditions

Calling Sequence

M.DEVID id

(or)

LW R2,id
SVC 1,X'14' (or) M.CALL H.REXS,71

id is a word containing either a device mnemonic in the right halfword
and in the left zero halfword or a device type code in byte 3 and zero in
bytes 0-2

Exit Conditions

6·52

Return Sequence

M.IPURTN 2

Registers

Registers if input was a device mnemonic:

R2 bytes 0-2 contain zeros
byte 3 contains the corresponding device type code

Registers if input was a device type code:

R2 left halfword contains zero
right halfword contains the corresponding device mnemonic

Registers if input was a mnemonic or device type code not in the system device
type table (DTT):

R2 bit 0 is set
bits 1-31 are unchanged

Nonbase Mode System Services

((-"
_--,

M.DIR

6.2.37 M.DIR - Create Directory

The M.DIR service creates a permanent directory. Permanent directories are given
names in the root directory and remain known to MPX-32 until explicitly deleted.

Directories contain the names of permanent files and memory partitions that are
created in the directories.

This service allocates a resource descriptor and the volume space requirements for the
directory. Next, the service records the indicated attributes of the directory in the
resource descriptor. Finally, the service establishes the name of the directory in the
indicated previous level, or parent directory.

When the directory is established, the directory entry is linked to the resource
descriptor of the new directory. This links the name of the new directory to the other
attributes of the new directory. Typical directory attributes are:

• directory name
• directory resource identifier (RID)

• directory protection attributes

• directory management attributes

• directory volume space requirements

Asynchronous abort and delete are inhibited during execution of this service.

The base mode equivalent service is M _ DIR.

Entry Conditions

Calling Sequence

M.DIR [[ARGA=]vector] [,[CNP=]cnpaddr] [,[RCB=]rcbaddr]

(or)

LW Rl,vector
LA R2,rcbaddr (or) ZR R2
LA R7,cnpaddr (or) ZR R7
SVC 2,X'23' (or) M.CALL H.VOMM,4

vector

cnpaddr

rcbaddr

contains a PN vector or PNB vector

is a CNP address or zero if CNP not supplied

is an RCB address or zero if default attributes are desired

MPX·32 Reference Volume I 6-53

M.DIR

Exit Conditions

6·54

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment/Allocation and 110 chapter of Volume I.

Nonbase Mode System Services

o

/'\

~J

o

(.

c

M.DISCON

6.2.38 M.DISCON - Disconnect Task from Interrupt

The M.DISCON service disconnects a task from a centrally connected interrupt level.

The base mode equivalent service is M_DISCON.

Entry Conditions

Calling Sequence

M.DISCON task

(or)

LI
LW
SVC

R6,O } (or) LD R6,taskname
R7,taskno
I,X'SD' (or) M.CALL H.REXS,38

task is the address of a doubleword containing the name of the task or zero
in word 0 and the task number in word 1. A task number must be used
if the task is multicopied or shared. A task number of zero specifies
the calling task.

Exit Conditions

Normal Return Sequence:

M.RTRN7

Registers

R 7 contains the task number

Abnormal Return Sequence:

M.RTRN 6,7

Registers

R6 contains denial code as follows:

Value

o
1

Description

no error
task not found in dispatch queue or the requesting

2
3

task is not privileged and the owner name is restricted from
access to tasks with a different owner name by the M.KEY file.
task not indirectly connected
task connected to an invalid interrupt

R7 zero if the task was not previously found or was not connected to an
interrupt level

MPX·32 Reference Volume I 6·55

M.DLTT

6.2.39 M.DL TT • Delete Timer Entry

The M.DLTI' service resets the timer for the specified task so that its specified
function is no longer performed upon time out. Deletion of the timer entry does not
delete the associated task. One-shot timers are deleted on expiration.

The base mode equivalent service is M_DLTI'.

Entry Conditions

Calling Sequence

M.DL TI' timer

(or)

LW R7,timer
SVC 1,X'47' (or) M.CALL H.REXS,6

timer is the right-justified 2-character ASCII name of a timer

Exit Conditions

6-56

Return Sequence

M.RTRN

Status

CC 1 set timer entry not found

Nonbase Mode System Services

(
M.DMOUNT

6.2.40 M.DMOUNT - Dismount Volume

The M.DMOUNT service performs a logical dismount and, optionally, a physical
dismount of a user volume.

For a nonpublic volume, M.DMOUNT decrements the use count for the volume in the
mounted volume table (MVT) entry, provided that the requestor has no resources
allocated on the volume. A physical dismount is performed if the MVT use count is
zero. Otherwise, the physical dismount is pending, and all mount requests for the
volume are denied.

For a physical dismount of a public volume, M.DMOUNT establishes a use count in
the MVT based on the total number of resources allocated on the volume at the time
the dismount request is made. When the use count is zero, a physical dismount is
performed. M.DMOUNT confirms the completed dismount with the system operator
through the system console, as specified in the CNP.

Only the system administrator can request the dismount of a public volume.

The base mode equivalent service is M_DISMOUNT.

Entry Conditions

Calling Sequence

M.DMOUNT voladdr [,cnpaddr]

(or)

LA
LA
SVC

Rl,voladdr
R7,cnpaddr (or) ZR R7
2,X'4A' (or) M.CALL H.REMM,19

voladdr specifies the address of a doubleword bounded field containing a
volume name

cnpaddr specifies the address of a caller notification packet, if notification is
desired.

Applicable portions of the CNP for this function are option field,
abnormal return address, status field, and Word 3.

Option field: (Word 2 of CNP)

Bit Meaning if set

o physical dismount requested
1 no logical dismount
2 public volume dismount request
3 inhibit operator interaction

Note: Bit 3 is ignored if the volume was mounted with operator
intervention inhibited.

MPX-32 Reference Volume I 6-57

M.DMOUNT

Word 3: Dismount device specification, if the option bit is set

Byte Definition

I device type code
2 channel address
3 subchanneladdress

Exit Conditions

6-58

Return Sequence

(with CNP) (without CNP)

M.RTRN

(or)

M.RTRN

(or)

M.RTNA (CCI set) M.RTRN R7 (CCI set)

Registers

R7 contains return status if a CNP is not supplied; otherwise, unchanged

Status
CCI set

Posted in R7 or in the status field of the CNP:

Value

14
20
86
87

88
89

Description

caller has outstanding resource assignments on this volume
volume not assigned to this task or volume is public
cannot dismount the system volume
unable to dismount public volume because compatible mode
public volume dismount (CMPMM) option was specified at SYSGEN
unable to dismount public volume. SA attribute required
unable to dismount public volume. Missing CNP option on
dismount request

Nonbase Mode System Services

M.DSMI

6.2.41 M.DSMI - Disable Message Task Interrupt

The M.DSMI service disables the task interrupts for messages sent to the calling task.
M.DSMI is useful for synchronization gating of the task message interrupts.

This service can be executed by the IPU~

The base equivalent service is M_DSMI.

Entry Conditions

Calling Sequence

M.DSMI

(or)

SVC 1,X'2E' (or) M.CALL H.REXS,57

Exit Conditions

Return Sequence

M.IPURTN

Status

CCI task interrupts were already disabled

MPX·32 Reference Volume I 6-59

M.DSUB

6.2.42 M.DSUB - Disable User Break Interrupt

The M.DSUB service deactivates the user break interrupt activated with the M.ENUB
service and allows user breaks by the terminal break key to be acknowledged.

This service can be executed by the IPU.

The base equivalent service is M _ DSUB.

Entry CondHlons

Calling Sequence

M.DSUB

(or)
SVC l,X'12' (or) M.CALL H.REXS,73

Exit CondHlons

6-60.

Return Sequence

M.IPURTN

Status

CC1 set user break already disabled

Nonbase Mode System Services;

()

o

(

('~.

M.DUMP

6.2.43 M.DUMP - Memory Dump Request

The M.DUMP service dumps the caller's program status doubleword (PSD), general
purpose registers, and specified memory limits to the SLO file. Start and end
addresses are truncated to the nearest eight-word boundaries and memory is dumped
between the truncated limits.

The format of the dump is side-by-side hexadecimal with ASCII. The PSD and
registers precede the specified memory limits. The PSD and registers are extracted
from the first level of push-down of the calling task. Optionally, R5 can specify the
address of a ten word block containing RO through R7 and the PSD to be dumped,
respectively. Any task can request a memory dump.

The base mode equivalent service is M_DUMP.

Entry Conditions

Calling Sequence

M.DUMP start, end [,mem3]

(or)

ZR
LW
LW
SVC

R5 (or) LA RS,mem3
R6,start
R7,end
I,X'4F' (or) M.CALL H.REXS,12

is the low logical word address requested in dump

is the high logical word address requested in dump

start

end

mem3 is the optional address of ten consecutive words containing RO through
R7 and a PSD, respectively. If RS is zero, the registers and PSD
dumped are taken from the current stack frame locations.

Exit Conditions

Return Sequence

M.RTRN6,7

MPX·32 Reference Volume I 6-61

M.DUMP

Registers

R6 is unchanged. or contains an error message as follows:

Value Description

1 high dump limit less than low limit
4 no FAT or FPT space available
5 request made with insufficient levels of push-down

available
6 cannot allocate SLO file
7 unrecoverable 110 error

R7 is unchanged. or contains zero if dump could not be performed

6-62 Nonbase Mode System Services

(._."
I' .',

~/

" '. C· -"

M.EAWAIT

6.2.44 M.EAWAIT - End Action Wait

The M.EA WAIT service waits for the completion of no-wait request or IJO end action
if any are queued. If no such requests or actions are outstanding, the service returns
immediately to the user. This service is similar to the M.ANYW service.

The base mode equivalent service is M _ A W AITAt"ION.

Entry CondHions

Calling Sequence

M.EAWAIT time

(or)

LW R6,time
SVC I,X'ID' (or) M.CALL H.EXEC,40

time contains the negative number of time units to elapse before the wait is
terminated, or zero if wait for an indefinite period is requested.

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

MS31 USER ATTEMPTED TO GO TO THE ANY-WAIT STATE FROM AN
END-ACTION ROUTINE

MPX·32 Reference Volume I 6-63

M.ENMI

6.2.45 M.ENMI- Enable Message Task Interrupt

The M.ENMI service enables task interrupts for messages sent to the calling task. It
removes an inhibit condition previously established by invoking the M.DSMI service.

The base mode equivalent service is M_ENMI.

Entry Conditions

Calling Sequence

M.ENMI

(or)

SVC I,X'2F' (or) M.CALL H.REXS,58

Exit Conditions

6·64

Return Sequence

M.RTRN

Status

CCI set task interrupts were already enabled

Nonbase Mode System. Services

'0

o

. . (.•...
M.ENUB

6.2.46 M.ENUB - Enable User Break Interrupt

The M.ENUB service activates the user break interrupt and causes further user breaks
from the user tenninal break key to be ignored.

This service can be executed by the IPU.

The base mode equivalent service is M_ENUB.

Entry Conditions

Calling Sequence

M.ENUB

(or)

SVC I,X'13' (or) M.CALL H.REXS,72

Exit Conditions

Return Sequence

M.IPURTN

Status

CCI set user break already enabled

MPX-32 Reference Volume I 6-65

M.ENVRMT

6.2.47 M.ENVRMT - Get Task Environment

The M.ENVRMT service obtains more information on the task environment than what
is provided in the task option word.

This service can be executed by the IPU.

The base mode equivalent service is M_ENVRMT.

Entry Conditions

Calling Sequence

M.ENVRMT

(or)

SVC 2,X'5E' (or) M.CALL H.REXS,85

Exit Conditions

6-66

Return Sequence

M.RTRNR7

Registers

R 7 contains the task environment word as follows:

1

2

3

4

5

6

7

8

9-31

Definjtjon

o if batch task or real-time task
1 if interactive

o if option NOCOMMAND is set
1 if option COMMAND is set

o if option NOERR is set
1 if option ERROR is set

o if cataloged or linked unprivileged
1 if cataloged or linked privileged

o if currently unprivileged
1 if currently privileged

o if TSA is not moved
1 if TSA is moved

o if MPX-32 is mapped into task address space
1 if MPX-32 is mapped out of task address space
(CONCEPT 32/2000)

o if task is not in demand page mode
1 if task is in demand page mode (CONCEPT 32/2000 only)

o if task is not in segment register mode
1 if task is in segment register mode (CONCEPT 32/2000 only)
reserved

Nonbase Mode System Services

0 ,' :.11

o

M.EXCLUDE

6.2.48 M.EXCLUDE - Exclude Memory Partition

The M.EXCLUDE service allows a nonbase task to dynamically deallocate any
common area previously included. This service causes the assign count and user
count to be decremented. The partition area is deleted and its resources returned to
the free list when the assign count goes to zero. This service is also called by the exit
processor (H.REMM,3) when a task aborts or ends abnormally while associated with a
memory partition. The partition is identified by the allocation index obtained when
the partition was included, or by the 1- to 8-character name used to create and with
the 1- to 8-character owner name or task number used to include it.

The base mode equivalent service is M _EXCLUDE.

Entry Conditions

Calling Sequence

M.EXCLUDE [arga],[cnpaddr][,argb]

(or)

LW
LD
LA
SVC

arga

argb

Rl,arga
R4,argb
R7,cnpaddr (or) ZR R7
2,X'41' (or) M.CALL H.REMM,14

contains a PN vector, PNB vector, the address of the 1- to 8-character
left-justified, blank-filled system partition name, or the allocation index
obtained when the partition was included.

is the address of a doubleword containing a left-justified task number in
word 0 and zero in word 1

(or)

a 1- to 8-character left-justified, blank-filled owner name used to
include the partition

(or)

not required, if an allocation index is used

cnpaddr is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are abnormal return
address and status field.

MPX-32 Reference Volume I 6-67

M.EXCLUDE

Exit Conditions

6-68

Return Sequence

(with CNP)

M.RTRN

(or)

(without CNP)

M.RTRN

(or)

M.RTNA (CCI set) M.RTRN R7 (CCI set)

Registers

R 7 return status if a CNP is not supplied; otherwise, unchanged

Status
CCI set

Posted in R 7 or the status field of the CNP:

Value Description

5
30
35

39
58

shared memory table (SMf) entry not found for this partition
invalid allocation index
attempt to exclude memory partition that is not mapped into
requesting task's address space
unable to write back data section
shared memory table space is not available

Nonbase Mode System Services

("' ..
J'

o

(/

M.EXIT

6.2.49 M.EXIT - Terminate Task Execution

The M.EXIT service perfonns all nonnal tennination functions required of exiting
tasks. All devices and memory are deallocated, related table space is erased, and the
task's dispatch queue entry is cleared.

The base mode equivalent service is M_EXIT.

Entry Conditions

Calling Sequence

M.EXIT

(or)

SVC 1,X'SS' (or) M.CALL H.REXS,18

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

RX92 TASK HAS ATTEMPTED NORMAL EXIT WITH MESSAGES IN
ITS RECEIVER QUEUE

MPX·32 Reference Volume I 6·69

M.EXTD

6.2.50 M.EXTD - Extend File

The M.EXTD service allows the space of a file to be manually extended. The caller
can specify the size of the requested extension or to use the default file extension
parameters defined when the file was created. If the specified size cannot be obtained,
M.EXTD tries to extend by the maximum extension size that was specified at resource
creation. If that size cannot be obtained, M.EXTD tries to extend by the minimum
extension size that was specified at resource creation. A CCI indicates that the
requested extension size is not obtained. If the file was created with the zero option
specified, the extension is zeroed.

This service extends only temporary or permanent files that are manually extendable.
Directories and memory partitions cannot be extended. The caller must have write,
update, or append access to extend the file.

The caller can extend a file regardless of whether the file is currently allocated.
Additionally, the caller can supply any allowable resource specification, for example,
pathname (PN), pathname block (PNB), resource ID (RID), logical file code (LFC) or
address of a file control block (FCB).

Asynchronous abort and delete are inhibited for execution of this entry point.

The base mode equivalent service is M_EXTENDFILE.

Entry Conditions

6-70

Calling Sequence

M.EXTD [addr],[cnpaddr][,blocks]

(or)

LW Rl,addr
LW R6,blocks (or) ZR R6
LA R7,cnpaddr (or) ZR R7
SVC 2,X'25' (or) M.CALL H.VOMM,6

addr

cnpaddr

blocks

contains a PN vector; a PNB vector, an RID vector, an LFC, or an PCB
address

is a CNP address or zero if CNP not supplied

is an address containing the number of blocks to extend the file by or
zero if RCB extension parameters specified during file creation are to
be used

Nonbase Mode System Services

o

o

(

(

M.EXTD

Exit Conditions

Return Sequence

(with CNP)

M.RTRN R6

(or)

M.RTNA (CC 1 set)

Registers

(without CNP)

M.RTRN R6

(or)

M.RTRN R7 (CCI set)

R6 contains the number of contiguous blocks file actually extended by

R7 contains the return status codes if a CNP is not supplied. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment! Allocation and I/O chapter of Volume I.

MPX-32 Reference Volume I 6-71

M.FD

6.2.51 M.FD - Free Dynamic Extended Indexed Data Space

The M.FD service allows a task to deallocate the most recently acquired extended
memory map block, thus contracting the task's address space.

Entry Conditions

Calling Sequence

M.FD

(or)

SVC 1,X'6A' (or) M.CALL H.REMM,9

Exit Conditions

6·72

Return Sequence

M.RTRNR3

Registers

R3 contains the new upper limit of extended memory, or zero if no extended
memory is left allocated, M.MEMB service is in use, or a multicopied
shared image is in use

Nonbase Mode System Services

M.FE

6.2.52 M.FE - Free Dynamic Task Execution Space

The M.FE service allows a task to dynamically deallocate the most recently acquired
execution space map block, thus contracting the task's address space.

Entry Conditions

Calling Sequence

M.FE

(or)

SVC 1,X'68' (or) M.CALL H.REMM,ll

Exit Conditions

Return Sequence

M.RTRN R3 (or) abort user with RM76

Registers

R3 contains the new upper address of execution space

Abort Cases

RM76 USER ATTEMPTED DEALLOCATION OF TSA

MPX·32 Reference Volume I 6-73

M.FWRD

6.2.53 M.FWRD - Advance Record or File

The M.FWRD seIVice perfonns the following functions for advancing records:

• verifies volume record if BOT is encountered on multivolume magnetic tape

• advances specified number of records

M.FWRD perfonns the following functions for blocked files.

• advance logical records until an end-of-file is found. The read/write control word
points to the first record after the end-of-file.

• verifies volume record if BOT is encountered on multivolume magnetic tape

• advances specified number of files

The M.FWRD seIVice is not applicable for SYC files or unblocked files.

The base mode equivalent service is M_ADV ANCE.

Entry Conditions

Calling Sequence

M.FWRD fcbaddr,[R],[number]

(or)

LA
LNW
SVC
SVC
BIB

fcbaddr

R

number

$-lW

Rl!cbaddr
R4,number

1,X'33' (or) M.CALL H.IOCS,7
1,X'34 (or) M.CALL H.IOCS,8

R4,$-lW

is the FCB address

} (or)

specified advance by record (SVCl,X'33'). If not specified, the default
is advance by file (SVCl,X'34').

is the address of the word containing the number of records or files to
be advanced, or the contents of R4 if not supplied

branches back to SVC the number of times specified by number

Exit Conditions

6-74

Return Sequence

M.RTRN

Nonbase Mode System Services

("-",
'~

c

M.FWRD

Abort Cases

1006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED
FILE ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS
IMPROPERLY BLOCKED, (2) BLOCKING BUFFER IS
DESTROYED, OR (3) TRANSFER ERROR DURING FILE
INPUT.

1007 THE TASK HAS ATTEMPTED TO PERFORM AN OPERATION
WHICH IS NOT VALID FOR THE DEVICE TO WHICH THE
USER'S FILE IS ASSIGNED (E.G., A READ OPERATION
SPECIFIED FOR A FILE ASSIGNED TO THE LINE PRINTER)

1009 ILLEGAL OPERATION ON THE SYC FILE

1030 ILLEGAL OR UNEXPECTED VOLUME NUMBER OR REEL ID
ENCOUNTERED ON MAGNETIC TAPE

Output Messages

Mount/dismount messages are displayed if EOT is encountered on multivolume
magnetic tape.

MPX-32 Reference Volume I 6-75

M.GADRL

6.2.54 M.GADRL - Get Address Limits

The M.OADRL service returns the logical addresses associated with the boundaries of
a nonbase mode task. The address returned in R5 reflects any increments previously
allocated using the M.OE service and the address returned in R7 reflects any
increments previously allocated using the M.OD service. These addresses do not
reflect any increments previously allocated using the M.INCL, M.INCLUDE, or
M.SHARE services.

Entry CondHions

calling Sequence

M.OADRL

(or)

SVC l,X'65' (or) M.CALL H.REXS,41

Exit Conditions

6-76

Return Sequence

M.RTRN 3,4,5,6,7

Registers

R3 contains the logical word address of the first location of the task's DSECf
(always on a page boundary)

R4 contains the logical word address of the last location in the DSECf
actually loaded by the loader plus one word

R5 contains the logical word address of the last location currently available in
the task's contiguously allocated DSECT (always a map block boundary
minus one word) .

R6 contains the logical word address of the first location of the task's CSECT
or COMMON allocation (always a map block boundary)

R7 contains the logical word address of the last location currently available in
the task's contiguously allocated extended indexed data space (always a
map block boundary minus one word). If the M.OD service has not
already been called, R5 contains the word address of the last word of
non-extended address space.

Nonbase Mode System Services

o

o

M.GADRL2

6.2.55 M.GADRL2 - Get Address Limits

The M.GADRL2 service returns the logical addresses associated with the boundaries
of a nonbase mode task. R3 contains any increments previously allocated using the
M.GE service. R5 contains any increments previously allocated by the M.GD service.
R6 contains increments previously allocated by the M.INCL, M.INCLUDE, or
M.SHARE services. R7 contains the upper address boundary of the task.

R6 and R7 return addresses not available from M.GADRL and give boundaries for
extended memory that reflect the use of the CATALOG or TSM SPACE directive and
the presence of extended MPX-32 or other partitions mapped into the logical extended
task address space.

Entry Conditions

Calling Sequence

M.GADRL2

(or)

SVC 2,X'7B' (or) M.CALL H.REXS,80

Exit Conditions

Return Sequence

M.RTRN 1,2,3,4,5,6,7

Registers

Rl contains the logical word address of the first location of the task's DSECT
(al ways on a page boundary)

R2 contains the logical word address of the last location in the DSECT
actually loaded by the loader, plus one word

R3 contains the logical word address of the last location currently available in
the task's contiguously allocated DSECT (always a map block boundary
minus one word)

R4 contains the logical word address of the first location of the task's CSECT
or COMMON allocation (always a map block boundary)

R5 contains the logical word address of the last location currently available in
the task's contiguously allocated extended indexed data space (always a
map block boundary minus one word). If the M.GD service has not
already been called, then R5 will contain the word address of the last
word of non-extended address space.

R6 contains the logical word address of the first allocated location of
extended address space which was obtained by inclusion via the M.INCL,
M.INCLUDE, or M.SHARE services (always a map block boundary). If
no extended maps have been included, R6 will equal R7.

R7 contains the logical word address of the last location in the task's logical
address space (always a map block boundary minus one word)

MPX-32 Reference Volume I 6-77

M.GD

6.2.56 M.GD - Get Dynamic Extended Data Space

The M.GD service allows the nonbase mode task to dynamically acquire an additional
map block of memory in its extended area. The memory is of the same type specified
when the task was cataloged. It is mapped in a logically contiguous manner, with the
first request map starting at 128KW. The task can call this service up to 192 times, if
sufficient memory exists, to expand its extended indexed data space. Alternately, the
task can choose to deallocate this space in the reverse order by M.FD. The task is
suspended until the allocation is successful.

Memory is allocated in 2KW increments.

Entry Conditions

Calling Sequence

M.GD

(or)

SVC 1,X'69' (or) M.CALL H.REMM,8

Exit Conditions

6·78

Return Sequence

M.RTRN R3,R4

Registers

R3 contains the logical address of the allocated memory, or zero if allocation
conflicts occurred

R4 contains ending logical word address of allocated memory or error code if
R3 is zero

Error Condition

R3 equals zero

R4 Value Description

1 attempted allocation of an excessive number of map blocks
2 attempted allocation exceeds physical memory configured
3 M.MEMB service in use

Nonbase Mode System Services

o

(~

c:'

M.GDD

6.2.57 M.GDD - Get Dynamic Extended Discontiguous Data Space

The M.GDD service allows a nonbase mode task to acquire an additional map block
of memory in its extended address space. The memory is mapped in logically
ascending order starting at the extended address origin. When the next contiguous
map block is shared, the map acquired is logically discontiguous with previous
M.GDD allocations. The M.FD service is used to deallocate the memory.

Exclusion of shared memory which is logically below the last map allocated by this
service creates an empty gap in the logical address space which does not get allocated
by a subsequent call to this service. The task can call this service repeatedly until it
has expanded its space to the logical limit (Le., limit varies with use of SPACE
directive). The task is queued until the allocation is successful.

This service reports an error if the M.MEMB service is in use or if the task has
included a multicopied shared image. If a multicopied shared image is included a
denial will be returned from the M.FD service also and exclusion of the image does
not enable the use of either M.GDD or M.FD.

Entry Conditions

Calling Sequence

M.GDD

(or)

SVC 2,X'7C' (or) M.CALL H.MEMM,9

Exit Conditions

Return Sequence

M.RTRN3,4

Registers

R3 logical address of allocated memory

R4 ending logical word address of allocated memory or error code if R3 is
zero

Error Condition

R3 equals zero

R4 Value Description

1 attempted allocation of an excessive number of map blocks
2 attempted allocation exceeds physical memory configured
3 M.MEMB service in use
4 Multicopied shared image is included

MPX·32 Reference Volume I 6-79

M.GE

6.2.58 M.GE· Get Dynamic Task Execution Space

The M.GE service allows the nonbase mode task to dynamically expand its memory
allocation in map block increments, starting at the end of its DSECf up to the end of
its logical address space. The additional memory is of the same type specified when
the task was cataloged. The task is mapped in a logically contiguous manner up to
the start of its CSECf or Global common, or 128KW, whichever occurs first. The
task is suspended until the allocation is successful.

Memory is allocated in 2KW increments.

Entry Conditions

Calling Sequence

M.GE

(or)

SVC l,X'67' (or) M.CALL H.REMM,10

Exit Conditions

6~80

Return Sequence

M.RTRN R3,R4

Registers

R3 contains the starting logical address of the new map block

R4 contains the ending logical address of the new map block

Error Condition

R3 equals zero

R4 Value Description

1 attempted allocation of an excessive number of map blocks
2 attempted allocation exceeds physical memory configured
3 M.MEMB service in use

Nonbase Mode System Services·

G

o

M.GETDEF

6.2.59 M.GETDEF - Get Definition for Terminal Function

The M.GEIDEF service returns, for the requested terminal function, an appropriate
string of bytes in the specified buffer and indicates the length of the returned string.
The user must specify the LFC of a terminal that is currently open and allocated, the
buffer address and a terminal function. For this service to operate, the partition
TERMPART must exist and have been initialized by I.IDEFI. For more information,
refer to MPX-32 Reference Manual, Volume n, Chapter 11.

The base mode equivalent service is M_GEIDEF.

Entry Conditions

Calling Sequence

M.GElDEF [tdefiblk]

(or)

LA R l,tdefiblk
SVC 2,X'7A' (or) M.CALL H.TSM,15

tdefiblk is the logical 24-bit word address of the first word of the
TERMDEF information block formatted as follows:

Word Description

o open and allocated terminal's LFC
1 user buffer 24 bit address for returned information
2 half word 0 is the requested function (2 ASCn

alphanumeric characters); half word 1 is reserved.
3 half word 0 is the user buffer length in bytes; half

word 1 is the length in bytes of string returned by the
service to the user's buffer

4 optional X coordinate for cursor positioning functions
5 optional Y coordinate for cursor positioning functions

Rl is assumed to contain the address if tdefiblk is not supplied.

MPX·32 Reference Volume I 6-81

M.GETDEF

Exit Conditions

6-82

Return Sequence

M.RTRN

CCI set

Registers

On nonnal completion the string for the requested function is in the
user's buffer, and the length of this string is in the TERMDEF
infonnation block string length field.

Error detected. The string length in the TERMDEF infonnation block
is set to 0 and the function contains the error number with the
following meanings:

!unction=error

error Description

I
2
3
4
5
6
7
8
9
10
11

N/A

invalid LFC supplied
unknown tenninal type
user buffer is too large (>2K)
cannot include partition
undefined function requested
user buffer is too small
partition data integrity suspect
invalid tenninal type supplied
invalid user buffer address
function is invalid for this tenninal
TERMDEF is not installed
TERMDEF infonnation block address is
invalid (CCI set only)

RI unchanged; CCI set if an error is detected.

Abort Cases

MFO! A MAP FAULT TRAP HAS OCCURRED. THIS IS THE RESULT
OF A BAD MEMORY REFERENCE OUTSIDE OF THE USER'S
ADDRESSABLE SPACE.

Nonbase Mode System Services

o

o

(~ /

M.GMSGP

6.2.60 M.GMSGP - Get Message Parameters

The M.GMSGP service is called from the message receiver routine of a task that has
received a message interrupt. It transfers the message parameters into the designated
receiver buffer, and posts the owner name and task number of the sending task into
the parameter receive block (PRB).

The base mode equivalent service is M_GMSGP.

Entry Conditions

Calling Sequence

M.GMSGP prbaddr

(or)

LA R2,prbaddr
SVC 1,X'7A' (or) M.CALL H.REXS,35

prbaddr is the logical address of the parameter receive block (PRB)

Exit Conditions

Return Sequence

M.RTRN6

Registers

R6 contains the processing status error code:

Value

MPX·32 Reference Volume I

o
1
2

3
4

Description

normal status
invalid PRB address
invalid receiver buffer address or size detected
during parameter validation
no active send request
receiver buffer length exceeded during transfer

6-83

M.GRUNP

6.2.61 M.GRUNP - Get Run Parameters

The M.GRUNP service is called by a task that received a run request. It transfers the
run parameters into the designated receiver buffer, and posts the owner name and task
number of the sending task into the Parameter Receive Block (PRB).

The base mode equivalent service is M _ GRUNP.

Entry Conditions

calling Sequence

M.GRUNP prbaddr

(or)

LA R2,prbaddr
SVC 1,X'7B' (or) M.CALL H.REXS,36

prbaddr is the logical address of the Parameter Receive Block (PRB)

Exit Conditions

6-84

Return Sequence

M.RTRN6

Registers

R6 contains the processing status error code:

Value Description

o normal status
1 invalid PRB address
2 invalid receiver buffer

address or size detected
during parameter validation

3 no active send request
4 receiver buffer length exceeded during transfer

Nonbase Mode System Services

0 ,·\
\.

,/"'"
I '

c

(- ..

M.GTIM

6.2.62 M.GTIM - Acquire System Date/Time in Any Format

The M.GTIM service acquires the system date and time in binary, byte binary, or
quad-ASCII fonnat, as described in Appendix H. The system date/time are also
retrievable by using any of the three specific case macros. These macros generate the
same SVC call, but the function code is provided by the macro.

This service can be executed by the IPU.

The base mode equivalent service is M_GTIM.

Entry Conditions

Calling Sequence

M.GTIMfunet,addr

(or)

LA
ORMW
SVC

Rl,addr
Rl/unet
2,X'50' (or) M.CALL H.REXS,74

funet is the address of a word containing the function code (see chart below)
in byte 0, most significant byte, and zeros in bytes 1, 2, and 3

addr is the address of a buffer where the service places the date and time in
the fonnat requested. This buffer is two or four words in length
depending on the fonnat.

Exit Conditions

Return Sequence

M.IPURTN

Registers

Function Code

1
2
3

Return Format Buffer Length

binary 2W
byte binary 2W
quad ASCII 4W

Rl byte 0 contains the function code and bytes 1-3 contain the buffer address
as used by the call. All other are returned intact.

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

MPX-32 Reference Volume I 6-85

M.GTSAD

6.2.63 M.GTSAD - Get TSA Start Address

The M.GTSAD service returns the TSA starting address of the calling task.

This service is callable by the IPU.

The base mode equivalent service is M_ GTSAD.

Entry Conditions

Calling Sequence

M.GTSAD

(or)

SVC 2,X'7D' (or) M.CALL H.REXS,91

Exit Conditions

6-86

Return Sequence

M.IPURTN Rl

Registers

Rl logical address of the TSA of the caller

Nonbase Mode System Services

M.HOLD

6.2.64 M.HOLD - Program Hold Request

The M.HOLD service makes the specified task ineligible for CPU control by setting
the hold bit in the CPU dispatch queue. The specified task remains on hold until the
user issues the OPCOM CONTINUE directive. If the specified task is not in the CPU
dispatch queue, the request is ignored.

The base mode equivalent service is M_HOLD.

Entry Conditions

Calling Sequence

M.HOLDtask

(or)

LI
LW
SVC

R6,O k } (or) LD R6,taskname
R7,tas no
I,X'SS' (or) M.CALL H.REXS,2S

task is the address of a doubleword containing the name of the task or zero
in word 0 and the task number in word 1. A task number must be used
if the task is multicopied or shared. A task number of zero specifies
the calling task.

Exit Conditions

Return Sequence

M.RTRN7

Registers

R7 contains the task number, or zero if the specified task was not found or
the requesting task is not privileged and the owner name is restricted from
access to tasks with a different owner name with the M.KEY file.

MPX·32 Reference Volume I 6-87

M.lD

6.2.65 M.ID - Get Task Number

The M.lD service allows the user to pass the address of a parameter block containing
any of the following: task number, task load module name, owner name, task
pseudonym. The service provides the missing items if a matching entry is found.
Initially, the caller passes zero (0) as the index value following the parameter block
address. If more than one task in the dispatch queue satisfies the given parameters,
the service returns to the caller with an index value in R5 for retrieval of further
entries. The caller is responsible for updating the index with the contents of R5 and
reissuing M.lD until all tasks that meet specifications have been identified or R5
equals zero.

The base mode equivalent service is M _ lD.

Entry Conditions

Calling Sequence

M.lD pbaddr,index

(or)

LW R5,index
LA R7,pbaddr
SVC I,X'64' (or) M.CALL H.REXS,32

pbaddr is the logical word address of the first location of a parameter block
formatted as follows:

Word Contents

o task activation sequence number
1-2 task load module name
3-4 owner name
5-6 pseudonym

The user supplies those items that are known and zeros the other words.

index is a variable equal to zero for initial call, then the previous DQE
address for each subsequent call

Exit Conditions

6-88

Return Sequence

M.RTRN 5

NonbaseMode.System Services

c

(

(

Registers

Normal Return:

R5 Bit 0 is set if more than one task satisfies the given parameters.
Bits 1-31 contain the DQE address of the first matching task
found. If no entry satisfies the given parameters, R5 equals
zero. R5 may be used as input for subsequent calls.

Abnormal Return:

CC 1 set Invalid parameter block address. R5 remains unchanged.

MPX-32 Reference Volume I

M.lD

6-89

M.lNCLUDE

6.2.66 M.lNCLUDE - Include Memory Partition

The M.INCLUDE service allows a nonbase task to include dynamic or static memory
partitions, or shared images into its address space. A static or dynamic partition can be
included at the logical address specified at creation or at a logical address specified in
the caller notification packet (CNP). The task is suspended until the inclusion is
complete. If the resource was not included by another task, an allocated resource table
(ART) and shared memory table (SMT) entry is established for the resource. The
resource is automatically allocated for explicit shared use. If inclusion is successful,
the assign and user counts are incremented for the resource.

The partition is identified by an 8-character partition name or a resource identifier
(RID) that was defined when the partition was created. If the partition is dynamic, it
is identified by an 8-character owner name that associates this copy of the partition
with a set of users. The shared image is identified by a resource pathname or a
resource identifier (RID) that was defined when the image was created.

Pre zeroing of partitions is not performed by this service. The resource is swappable,
if the user count goes to zero, and remains allocated until the assign count is zero.

The option is provided to lock the resource for exclusive use. The resource remains
locked until: the owner of the lock terminates, the Release Exclusive Lock
(M. UNLOCK) service is explicitly called, or the resource is excluded by the task.

If a partition has been included by a task, subsequent includes by that task are
ignored.

The equivalent base mode service is M _INCLUDE.

Note: To ensure proper inclusion, the first eight characters of a shared image file
name or partition name should be unique within the system.

Entry Conditions

6-90

Calling Sequence

M.INCLUDE [addr],[task] [,cnpaddr]

(or)

LW Rl,addr
LD R4,task
LA R7,cnpaddr (or) ZR R7
SVC 2,X'40' (or) M.CALL H.REMM,12

addr is an address of a resource 10 (RID), obtained when the partition was
created

(or)

an address of a pathname vector containing the character count in byte
o and the address of the pathname string in bytes 1, 2, and 3

Nonbase Mode System Services

c

·C~ ... '\······
"

M.lNCLUDE

task

cnpaddr

applies to dynamic partitions only; when supplied, specifies a
doubleword address containing the left-justified task number of the
original owner of the partition in word 0; word 1 is zero

(or)

a 1- to 8-character left-justified, blank-filled owner name

is the address of a caller notification packet (CNP) if notification is
desired or if a logical address for partition inclusion is specified

Applicable portions of the CNP for this function are time-out value,
abnormal return address, options field, and status field.

The option field has the following significance:

Bit Meaning if Set

o read/write access requested
1 reserved
2 set exclusive resource lock
3 reserved for MPX-32
4 logical address of partition is supplied in word 4

5-15 reserved

Defaults: If a CNP is not supplied, the partition is included as read-only with no
lock established and at the logical address specified at creation.

Exit Conditions

Return Sequence

(with CNP)

M.RTRN R3,RS

(or)

M.RTNA (CC 1 set)

Registers

(without CNP)

M.RTRN R3,RS

(or)

M.RTRN R7 (CC 1 set)

R3 contains the starting logical address of the shared memory partition
RS contains the allocation index, a unique 32-bit integer number that may be

used to set and release exclusive or synchronous locks on the partition
while it is allocated. It contains the nonzero biased SMT index in the first
byte and the address of the associated ART entry in the next three.

R7 contains the return status if a CNP is not supplied; otherwise, unchanged

MPX-32 Reference Volume I 6-91

M.lNCLUDE

6-92

Status

CCI set

Posted in R7 or the status field of the CNP:

Value

1
2
8
10
16
38

50
55
58
62

80
98

Wait Conditions

Description

memory partition definition not found
specified access mode not allowed
unrecoverable I/O error to volume
dynamic partition definition exceeds one megabyte
memory requirements conflict with task's address space
time out occurred while waiting for
shared memory to become available
partition is exclusively locked
allocated resource table (ART) is full
shared memory table (SMT) space unavailable
resource specified is not a static or dynamic partition and the
option field indicates a logical inclusion address is given
shared image version level is not compatible with executable image
requires more shadow memory than exists

When the partition is not available (status values 50 to 58), the task is placed in a wait
state, if specified in the CNP.

Nonbase Mode System Services

c:

M.lNQUIRY

6.2.67 M.lNQUIRY - Resource Inquiry

The M.INQUIRY service obtains information specific to a resource allocated by a
nonbase mode task. The information is returned as pointers to the data structures that
describe the resource. The resource must have been previously allocated, included for
memory partitions, by the caller. Resources are identified by a logical file code
obtained when the resource is allocated, a memory partition name defined when the
partition is created, or an allocation index obtained when the resource is allocated or
included. If not supplied as an argument, the caller is provided with the unique
allocation index that can set and release exclusive or synchronous locks on the
resource while it remains allocated. The caller must interpret the information in the
identified structures as the application dictates. This should be done by a user­
supplied subroutine that acts as a common interface between application programs and
this service. Resource inquiries are then less sensitive to changes in system structures.

The base mode equivalent service is M _INQUIRER.

Entry Conditions

Calling Sequence

M.INQUIRY [addrl],[addr2][,cnpaddr]

(or)

LA
LD
LA
SVC

addrl

addr2

RI,addrl
R4,addr2
R7,cnpaddr (or) ZR R7
2,X'48' (or) M.CALL H.REMM,27

is the address of an 8-word parameter description area where the
pointers to the appropriate system structure entries corresponding to
this resource are to be returned

is the address of a doubleword containing zero in byte 0 and a 1- to 3-
character, left-justified, blank-filled LFC in bytes 1, 2, and 3 of word 0
with word 1 zero

(or)

is the address of a doubleword containing the address of a 1- to 8-
character, left-justified, blank-filled memory partition name in word 0
and the left-justified task number or address of a 1- to 8-character left­
justified, blank-filled owner name in word 1

(or)

is the address of a doubleword containing zero in word 0 and the
allocation index obtained when the resource was assigned in word 1

cnpaddr is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are abnormal return
address and status field.

MPX-32 Reference Volume I 6-93

M.lNQUIRY

Exit Conditions

6-94

Return Sequence

(with CNP) (without CNP)

M.RTRNRS M.RTRN R5

(or) (or)

M.RTNA RS (CCl set) M.RTRN R5,R7 (CCl set)

Registers

R5 contains the allocation index if not supplied as an argument, or zero if
resource is undefined

R7 contains the return status if a CNP is not supplied; otherwise, unchanged

The interpretation of each word in the parameter description area and some of the
pertinent information that can be extracted from each structure is as follows:

Word 0 - Allocated resource table (ART) address:
number of tasks assigned to this resource
number of tasks currently using resource
exclusive lock owner (DQE index)
synchronous lock owner (DQE index)
current allocation usage mode
current allocation access mode (implicit shared)
shared relative EOF block number (implicit shared)
shared relative EOM block number (implicit shared)

Word 1 - File assignment table (FAT) address:
relative EOF block
relative EOM block
number of segments in file
current segment number
current access mode
relative file block position
volume number (unformatted media only)
unformatted 10 (unformatted media only)
assigned access restrictions
file attribute and status flags

Word 2 - Unit definition table (UDT) address:
device type code
logical channel number
logical subchannel number
physical channel number (if different from logical)
physical subchannel number (if different from logical)
sectors per block (disk/floppy)
sectors per allocation unit (disk/floppy)
sectors per track (disk/floppy)
number of heads (disk/floppy)
total number of allocation units (disk/floppy)
sector size (disk/floppy)

Nonbase Mode System Services

C· ',.,
, -

(
characters per line (TIY/tenninal)
lines per screen (TTY/tenninal)
tab size (1TY/tenninal)
tab settings (1TY/tenninal)

Word 3 - Device type table (OTI) address:
number of controller entries for device
ASCII device mnemonic
device type code

Word 4 - Controller definition table (COT) address:
controller I/O class
number of devices on controller
device type code
interrupt priority level
logical channel number
logical subchannel number of first device
address of interrupt handler
interrupt vector location
controller definition flags

M.lNQUIRY

Word 5 - Shared memory table (SMT) address. Applies only to memory
partitions:

number of tasks queued to partition
starting map register number
memory type
starting page number (for static partition only)
total number of pages (for static partition only)
number of map image descriptors
map image descriptor list

Word 6 - File pointer table (FPT) address:
logical file code associated with resource

Word 7 - Mounted volume table (MVT) address. Applies only to
volume resources:

volume name

MPX-32 Reference Volume I

current number of users of volume
volume definition flags
root directory resource 10
number of descriptors available on volume
number of allocation units available
volume access restrictions

M.lNQUIRY

Notes:

1. A value of zero returned in any word of the parameter description area implies
the corresponding structure does not apply to the resource for which the inquiry
was made. For example, only words 0 and 5 apply for memory partitions.

2. For volume resources, words 2 through 4 pertain to the device upon which the
volume is mounted.

3. The MPX-32 Technical Manual, Volume I, contains a complete description of the
various system structures.

Status

CCl set

Posted in R7 or the status field of the CNP:

Value

5
29
30

Description

shared memory table entry not found for partition
logical file code not assigned
invalid allocation index

Nonbase Mode~ystem Services.

c'

o

M.lNT

6.2.68 M.lNT - Activate Task Interrupt

The M.INT service allows the calling task to cause the previously declared break or
task interrupt receiver routine of the specified task to be entered.

The base mode equivalent service is M_INT.

Entry Conditions

Calling Sequence

M.INT task

(or)

ZR
LW
SVC

R6 } (or) LD R6,taskname
R7,taskno
I,X'6P' (or) M.CALL H.REXS,47

task the address of a double word containing the name of the task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

Exit Conditions

Return Sequence

M.RTRN6,7

Registers

R6 unchanged if R7 is zero. If R7 is not zero, bit 0 of R6 is one if the
specified task was not set up to receive a pseudointerrupt; otherwise bit 0
is zero. Bits 1-31 of R6 are zero in all cases.

R7 contains the task number, or zero if the specified task was not found or
the requesting task is not privileged and the owner name is restricted by
M.KEY file from access to tasks with a different owner name

MPX·32 Reference Volume I 6-97

M.lPUBS

6.2.69 M.lPUBS - Set IPU Bias

The M.IPUBS service allows the user to dynamically change the IPU bias state for the
current task.

The base mode equivalent service is M_IPUBS.

Entry Conditions

Calling Sequence

M.IPUBS bias

(or)

LI R7,bias
SVC 2,X'5B' (or) M.CALL H.REXS,82 .

bias is the IPU bias state requested as follows:

Value Description

o

1
2

nonbiased task; for example, can be executed by either
the CPU or IPU
CPU only; for example, can be executed only by the CPU
IPU bias; for example, can be executed by either the
CPU or IPU but is given priority status by the IPU

Exit Conditions

6·98

Return Sequence

M.RTRN R6,R7

Registers

R6. contains execution status as follows:

Value Description

o normal return
1 IPU is not configured in the system
2 IPU is currently marked off-line

R7 IPU bias state of the task before this service was issued as follows:

Value Description

o nonbiased task
1 CPU only
2 IPU bias

Nonbase Mode System Services

c

M.lOC

6.2.70 M.lOC - Read Descriptor

The M.LOC service reads a resource descriptor for a specified resource. This service
can examine the attributes of any volume resource. It is the responsibility of the caller
to be familiar with the fields of the resource descriptor to determine the recorded
information. It is recommended that this service is called by a user-supplied
subroutine(s) which acts as a common interface between application programs and this
service. Application programs are then less sensitive to changes in organization and
content of these data structures.

The base mode equivalent service is M_ READD.

Entry Conditions

Calling Sequence

M.LOC [addr],[rdaddr][,cnpaddr]

(or)

LW Rl,addr
LA R6,rdaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'2C' (or) M.CALL H.VOMM,13

addr contains a pathname (PN) vector, a pathname block (PNB) vector, a
resource identifier (RID) vector, an LFC, or a file control block (FCB)
address

rdaddr is the address of a read descriptor RD buffer. The buffer must be
doubleword bounded and 192W length

cnpaddr is the address of a CNP zero if CNP not supplied

Exit Conditions

Return Sequence

(with CNP)

M.RTRNR4

(or)

M.RTNA R2 (CC I set)

MPX·32 Reference Volume I

(without CNP)

M.RTRN R4

(or)

M.RTRN R7,R2 (CCI set)

6-99

M.LOC

6·100

Registers

Normal Return:

R4 contains the address of the mounted volume table entry (MVTE) for the
specified volume

R7 contains the return status if a CNP is not supplied. For return status codes,
refer to the H. VOMM status codes in the Resource Assignment! Allocation
and I/O chapter of Volume I.

Abnormal Return:

R2 contains the address of the last PN item processed

Nonbase Mode System Services

0)'·'
"

o

c

M.LOCK

6.2.71 M.LOCK - Set Exclusive Resource Lock

The M.LOCK service allows a task to obtain exclusive allocation of a resource, as
though it were nonshareable, for as long as the lock is owned. The resource must
have been previously allocated or included for memory partitions. The resource is
identified by either a logical file code (defined when the resource was assigned) or an
allocation index obtained when the resource was assigned or by a resource inquiry.
The task may request immediate denial if the lock is not available, or wait for an
indefinite or specified period of time. An exclusive resource lock may be obtained for
any allocated resource that is not being shared by multiple tasks at the time of the call
to this service.

The base mode equivalent service is M_LOCK.

Entry Conditions

Calling Sequence

M.LOCK [addr][,cnpaddr]

(or)

LW RS,addr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'44' (or) M.CALL H.REMM,23

addr is the address of the allocation index obtained when the resource was
assigned

cnpaddr

Exit Conditions

(or)

is the address of a file control block (FCB) which contains a LFC in
word 0

is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are time-out value,
abnormal return address, and status field.

Return Sequence

(with CNP) (without CNP)

M.RTRN

(or)

M.RTNA (CCl set)

MPX·32 Reference Volume I

M.RTRN

(or)

M.RTRN R7 (CCl set)

6·101

M.LOCK

~~ 0

6·102

R7 contains the return status if a CNP is not supplied; otherwise unchanged

Status
CC1 set

Posted in R7 or the status field of the CNP:

Value

29
30
38
46
50
51

Description

specified LFC is not assigned
invalid allocation index
time out occurred while waiting to become lock owner
unable to obtain resource descriptor lock (multiprocessor only)
resource is locked by another task
resource is allocated to another task

Wait Conditions

The task is placed in a wait state, as appropriate, if specified with the CNP.

Nonbase Mode System Services

o

c

M.LOGR

6.2.72 M.LOGR· Log Resource or Directory

The M.LOGR service provides the nonbase mode task with a convenient interface to
locate the directory entry and resource descriptor for a single resource or for all the
resources defined in a specified directory.

The caller must make a resource specification in the resource logging block (RLB).
The log service will evaluate the resource specification and determine whether to log a
single resource or all the resources defined in a directory. Some resource
specifications are ambiguous and require the caller to specify additional information so
the type of log function requested can be determined.

To log all the resources defined in a specified directory, the M.LOGR service must be
called repeatedly until the last resource in the directory is logged. The user must reset
bit 0 to zero in RLB.TYPE to indicate the first call. The operating system
automatically changes the contents of bit 0 to one to indicate recall. Once all
resources on the directory are logged, the operating system automatically resets bit 0
back to zero to indicate all resources have been logged.

Note: The M.LOGR system service does not search the memory resource descriptor
table (MDT) for resource descriptors.

6.2.72.1 Resource Specifications for Pathnames

The caller can specify any valid pathname that is recognized by the Volume
Management Module. The log service recognizes all valid pathname variations.
However, some pathnames are ambiguous within the context of this service and
require special considerations for the service to function with the expected results.

Specifically, pathnames that end with a directory specification are interpreted to mean
log the contents of the directory. Directories can be logged as resources in two ways.
The first is to supply a pathname that specifies the directory as a resource. This
specification is not ambiguous. The second way is to supply a pathname that ends
with a directory specification. This type of pathname is ambiguous and requires
special handling.

Examples

The following type of pathname always logs the directory entry and resource
descriptor for the specified resource.

@volume (directory) resource

The following type of patbname usually specifies to log the contents of the specified
directory. The meaning of this pathname can be changed by setting the log single flag
(RLB.LS) bit in the RLB flag word (RLB.INT). When the RLB.LS flag is set, the
directory entry and resource descriptor for the specified directory are returned.

@volume (directory)

The following type of pathname means log the specified directory. The directory
entry and resource descriptor for the specified directory are returned.

@volume"'directory

MPX·32 Reference Volume I 6-103

M.LOGR

6.2.72.2 Resource Specifications for Pathname Blocks

Pathname blocks are processed in the same manner as pathnames.

6.2.72.3 Resource Specifications for a Resource Identifier

When a resource identifier (RID) is furnished, the log service assumes the indicated
resource is a directory and attempts to log the indicated resource as a directory.

6.2.72.4 Resource Specifications for a Logical File Code (LFC), FCB Address. or
Allocation Index

When this type of resource specification is provided the log service makes the
following assumptions:

• The implied file control block (FCB) is assigned to a directory.

• The implied FCB is opened.

• The buffer address in the FCB is the buffer to be used by the log service for
locating directory entries.

• The transfer quantity in the PCB is the maximum size of the directory entry buffer.

• The FCB must be an extended FCB and must be opened in random. access mode.

• The buffer is empty on the initial call and positions to the beginning of the
directory and primes the supplied buffer. The directory is not read again until it is
exhausted.

The caller should assign the directory in read mode so the directory can be searched
by other users as it is being logged.

The base mode equivalent service is M_LOGR.

Entry Conditions

6·104

Calling Sequence

M.LOGR [rlbaddr][,cnpaddr]

(or)

LA R2.rlbaddr
LA R7,cnpadtir (or) ZR R7
SVC 2,X'29' (or) M.CALL H.VOMM,lO

rlbaddr

cnpaddr

is the address of the resource logging block (RLB)

is a CNP address or zero if not supplied

Nonbase Mode System Services

c

o

('.

Word 0

1

2-3

3

4

5

6

7

Notes:

M.LOGR

RLB Structure on Initial Call

o 7 8 15 16 23 24 31

PN vector or RID vector or zero (RLB.TGT). See Note 1.

192~word buffer address or zero (RLB.BUFA). See Note 2.

Reserved for system use

Parent directory RD block address (RLB.RDAD)

Type (RLB.TYPE) Zero (RLB.BOFF). See Note 3.
See Note 3.

Length. See Directory return buffer address (RLB.DIRA).
Note 4. See Note 4.

User FCB address or zero (RLB.FCB). See Note 5.

Flags. See Note 6. Reserved (RLB.INT)

I. If the PN vector length and address specify a resource, only one item is logged.
If the specification does not end with a resource, but with a directory, the entire
directory may be logged by repeated calls. A call by RID vector implies the RID
is for a directory and all entries may be logged. A value of zero implies the
entire contents of the current working directory.

2. This address must be double word bounded if this field is zero, the RD is not
returned.

3. The type value should be zero if the call is by PN vector (length and address) or
zero to indicate working directory. Type should be one to indicate a call by RID.
If all resources in a directory are to be logged, bit 0 of RLB.TYPE must be zero
to indicate the first call.

4. This word contains the address of a buffer and its length in words. The buffer
may be up to 16 words long. The log service will place the first n words of the
logged directory entry into this buffer. This provides the user access to the file
name and other attributes that exist only in the directory entry.

5. This service uses the system FCB by default. Phasing problems may occur, as
the directory to be logged must be deassigned between calls if multiple entries
are desired. In many cases, the impact of having an entry deleted just after it has
been logged, or having an entry appear after that portion in the directory has been
scanned, will be small or nonexistent. In other cases, such as saving files in a
directory, it may be major. To prevent these problems, the address of a FCB that
will be used to hold the directory while logging occurs may be provided.

MPX-32 Reference Volume I 6-105

M.LOGR

6. Bits in this word are assigned as follows:

Bit Description

0-1 reserved
2 if set, directory entry and resource descriptor for specified

directory are returned (RLB.LS)
3 root directory
4 used on return to indicate whether resource was located

(see description of RLB Structure on Return under Exit Conditions)
5-7 reserved

Exit Conditions

6-106

Return Sequence

(with CNP)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN R7

R 7 return status if a CNP is not supplied; otherwise CNP address. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Word 0

1

2

3

4

5

6

7

Notes:

RLB Structure on Return

o 7 8 15 16 23 24 31

PN vector or RID vector or zero (RLB.TGT)

I92-word buffer address or zero (RLB.BUFA)

MVTE address (RLB.MVTE). See Note 1.

Disk address of directory RD (RLB.RDAD). See Note 1.

Type (RLB.TYPE) Byte offset of entry (RLB.BOFF).
See Note 2.

Length Directory return buffer address (RLB.DIRA)

User FCB address or zero (RLB.FCB)

Rags. See Note 3. Reserved (RLB.lNT).

1. When all resources in a directory are to be logged, RLB.MVTE and RLB.RDAD
are used by the operating system as input after the first call.

Nonbase Mode System Services

M.LOGR

2. The operating system automatically changes the contents of bit 0 in RLB.TYPE
as follows:

Value Description

o all resources in the directory have been logged; do not recall
this service

1 recall this service and log the next resource in the directory

3. Bits in this word are assigned as follows:

Bit Contents

0-1 reserved
2 directory entry and resource descriptor for specified

directory are returned
3 root directory
4 zero if resource was not located

5-7 reserved

MPX-32 Reference Volume I 6-107

M.MEM

6.2.73 M.MEM - Create Memory Partition

The M.MEM service creates penn anent memory partition definitions. Pennanent
memory partition definitions are given names in directories and remain known to the
operating system until explicitly deleted.

MPX-32 uses memory partition definitions to relate named globally accessible areas of
memory to the tasks that require them.

This service allocates a resource descriptor and defines the memory requirements for
the partition. Next, the attributes of the partition are recorded in the resource
descriptor. Finally, the name of the partition is established in the indicated directory.

When a directory entry is established, the directory entry is linked to the resource
descriptor for the partition. This link relates the name of the partition to the other
attributes of the partition. Typical partition attributes are:

• partition name
• partition resource identifier (RID)

• partition protection attributes

• partition management attributes

• partition memory requirements

Asynchronous abort and delete are inhibited for execution of this service.

The base mode equivalent service is M _ MEM.

Entry Conditions

6-108

Calling Sequence

M.MEM vector,rcbaddr[,cnpaddr]

(or)

LW Rl,vector
LA R2,rcbaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'22' (or) M.CALL H.VOMM,3

contains a PN vector or PNB vector

is the address of the RCB

vector

rcbaddr

cnpaddr is the address a CNP or zero if CNP not supplied

Nonbase Mode System Services

Ie,· ~,
J

(J

M.MEM

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCl set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CC 1 set)

R7 contains the return status if a CNP is not supplied; otherwise unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource AssignmentJ Allocation and I/O chapter of Volume I.

MPX·32 Reference Volume I 6-109

M.MEMB

6.2.74 M.MEMB - Get Memory in Byte Increments

The M.MEMB service allows task to dynamically expand its memory allocation in
doubleword increments starting at the end of its DSECT up to the top of its logical
address space. The additional memory is the same type specified when the task was
cataloged. The task is mapped in a logically contiguous manner up to the end of its
address space. The task is suspended until the allocation is successful. Repeated calls
to this service are allowed. Allocation is not contiguous with previously allocated
space.

This service cannot be used with the M.GE or M.GD services, or a call to
H.MEMM,14.

The base mode equivalent service is M _ GETMEMBYTES.

Entry Conditions

Calling Sequence

M.MEMB bytes

(or)

LW R4,=bytes (or) LI R4,bytes
SVC 2,X'4B' (or) M.CALL H.REMM,28

bytes is the number of bytes to allocate

Exit Conditions

6·110

Return Sequence

M.RTRN R3,R4

~egisters

CCI contains zero
CC2 contains zero
R3 contains the 24-bit starting logical double word address of allocated

space
R4 contains the number of bytes actually allocated (modulo 2W)

(or)

CCI contains zero
CC2 contains zero
R3 contains the 24-bit starting logical doubleword address of allocated

space
R4 contains the number of bytes actually allocated (modulo 2W); however,

the number is less than requested.

Nonbase Mode System Services

o

\

""'-- /

M.MEMB

Error Condition

Allocation Denied:

CC 1 contains one
CC2 contains one
R3 contains zero
R4 contains zero

6.2.75 M.MEMFRE· Free Memory In Byte Increments

The M.MEMFRE service allows a task to dynamically deallocate acquired memory.
Deallocation can be random. The space address must have been previously obtained
from the M.MEMB service. All of the space obtained from a given call is
deallocated.

This service cannot be used with the M.FE or M.FD services.

The base mode equivalent service is M _ FREEMEMBYTES.

Entry Conditions

Calling Sequence

M.MEMFRE addr

(or)

LW R3,addr
SVC 2,X'4C' (or) M.CALL H.REMM,29

addr is the starting address of a dynamic space previously acquired from the
M.MEMB service

Exit Conditions

Return Sequence

M.RTRN R3 (or) abort user with RM77

Registers

R3 contains zero if de allocation could not be performed. Deallocation
address was not found in allocation table

Abort Cases

RM77 A TASK HAS DESTROYED THE ALLOCATION LINKAGES IN
ITS DYNAMIC EXPANSION SPACE

MPX·32 Reference Volume I 6-111

M.MOD

6.2.76 M.MOD - Modify Descriptor

The M.MOD service allows the owner of a resource to change the protection or other
resource management attributes of a resource. The owner can restrict or allow
attributes using this service.

Only certain information in a descriptor can be changed.

The caller is allowed to modify the following:

• the protection fields of the descriptor

• the accounting fields of the descriptor

• the extension attribute fields of the descriptor

• words 160 through 175 of the user data field of the descriptor

• the shared image field of the descriptor

Information such as the volume space occupied by the resource cannot be changed as
this would allow the caller to violate the integrity of the volume on which the resource
resides.

This service is the first part of a two step operation. The caller is required to read the
resource descriptor into memory in order to modify it. Once in memory, the resource
descriptor is locked until the caller writes the modified descriptor back to the volume
using the Rewrite Descriptor (M.REWRIT) service. The caller must issue the rewrite
before modifying another descriptor.

Only the resource owner or the system administrator can modify a resource descriptor.
The format of the descriptor and the type of data to be modified must be known by
the modifier.

The base mode equivalent service is M_MOD.

Entry Conditions

6-112

Calling Sequence

M.MOD [addr],[rdaddr][,cnpaddr]

(or)

LW Rl,addr
LA R6,rdaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'2A' (or) M.CALL H.VOMM,ll

addr

rdaddr

cnpaddr

contains a PN vector, a PNB vector, or a RID vector

is the address of an RD buffer doubleword bounded and 192W length

is the address of a CNP or zero if CNP not supplied

Nonbase Mode System Services

o

o

('

(' .. "
./

M.MOD

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 contains the retum status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignmentl Allocation and I/O chapter of Volume I.

MPX·32 Reference Volume I 6-113

M.MODU

6.2.77 M.MODU· Modify Descriptor User Area

The M.MODU service allows users with write, update, append, or modify access to a
resource to change the user area of the resource descriptor of that resource.

The user can change all fields in the user area of the resource descriptor, however,
some utilities use words 176 through 190. Only words 160 through 175 should be
modified. Word 191 of the resource descriptor is a reserved location; any changes to
this word are ignored.

This service is the first part of a two step operation. The caller is required to read the
user area of the resource descriptor into memory in order to modify it. Once in
memory, the resource descriptor is locked, for example, protected from access until
the caller writes the modified user area back to the volume using the Rewrite
Descriptor User Area (M.REWRTU) service. The caller must issue the rewrite before
modifying another descriptor or descriptor user area.

The base mode equivalent service is M_MODU.

Entry Conditions

Calling Sequence

M.MODU [addr],[uaaddr][,cnpaddr]

(or)

LW Rl,addr
LA R6.uaaddr
LA R7,cnpaddr
SVC 2,X'31' (or) M.CALL H.VOMM,26

addr

uaaddr

cnpaddr

contains a PN vector, a PNB vector, or an RID vector

is the address of a user area buffer doubleword bounded and 32W in
length

is the address of a CNP or zero if CNP not supplied

Exit Conditions

6-114

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CC 1 set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment! Allocation and I/O chapter of Volume I.

Nonbase Mode System Services

o

C.),,·" I

M.MOUNT

6.2.78 M.MOUNT· Mount Volume

The M.MOUNT service establishes a task or TSM environment as a user of a volume.
If the volume requested is not physically mounted, M.MOUNT notifies the operator to
mount the volume, and creates a mounted volume table (MVT) entry for the volume.
This entry remains in memory as long as there are established users of the volume.

If the volume requested is already physically mounted, M.MOUNT attempts a logical
mount

For nonpublic volumes, M.MOUNT allocates a volume assignment table (V AT) entry
within the user's TSA, provided that the requested usage classification is compatible.
A request to mount a public or nonpublic volume that is already physically and
logically mounted is ignored.

The base mode equivalent service is M_MOUNT.

Entry Conditions

Calling Sequence

M.MOUNT [rrsaddr] [,cnpaddr]

(or)

LA Rl,rrsaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'49' (or) M.CALL H.REMM,17

rrsaddr

cnpaddr

is the address of a resource requirement summary (RRS) entry type 9

is the address of a caller notification packet (CNP) if notification is
desired

Applicable portions of the CNP for this function are time-out value,
abnormal return address, and status field.

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (Cel set)

MPX·32 Reference Volume I

(without CNP)

M.RTRN

(or)

M.RTRN R7 (eel set)

6-115

M.MOUNT

6-116

Registers

R 7 contains the return status if a CNP is not supplied; otherwise, unchanged

Status
CC1 set

Posted in R7 or the status field of the CNP:

Value

1
2
6
8
11
13
18
20
21
34

37
38
39
42
43
53
55
57
59
73
91
93

94

Abort Cases

Description

invalid volume name
volume use not allowed to this user
volume assignment table (VAT) space not available
unrecoverable I/O error to volume
invalid RRS entry
mount device not in system
invalid mount device specified
unable to initialize volume - volume unsafe
J.MOUNT run request failed
attempt to mount a public volume without the system administrator
attribute
invalid J.MOUNT request
time out occurred while waiting for resource
volume already mounted
user requested abort of mount process
user requested hold on mount process
mount device unavailable
allocated resource table (ART) space not available for mount device
unable to mount volume for requested usage
mounted volume table (MVT) space not available
file overlap occurred
unable to mount volume due to pending physical dismount
unable to perform physical mount due to system shutdown in
progress
J.MOUNT attempted to mount an unformatted disk-volume

RM42 USER REQUESTED ABORT OF MOUNT PROCESS

Walt Conditions

When the volume is unavailable as indicated by status values 50-63, the task is placed
in a wait state, as appropriate.

Nonbase Mode System Services

o

o

('-','

M.MOVE

6.2.79 M.MOVE - Move Data to User Address

The M.MOVE service is used to move data in the task's logical address space to areas
of the task's logical address space which are write protected. This service cannot be
used in shared read only memory panitions.

The base mode equivalent service is M_MOVE.

Entry Conditions

Calling Sequence

M.MOVE inbuffer, outbuffer, number

(or)

LA R 1 ,inbuffer
LA R2,outbuffer
LI R4,number
SVC 2,X'62' (or) M.CALL H.REXS,89

inbuffer

outbuffer

number

Registers

Rl
R2
R4

Exit Conditions

is the byte address of the buffer to be moved

is the destination byte address

is the number of bytes to be moved

contains inbuffer
contains outbuffer
contains number

Normal Return Sequence:

M.RTRN

Abnormal Return Sequence:

M.RTRN R7

Registers

CCI set error condition
R7 contains error condition as a decimal value as follows:

Value Description

256 invalid source buffer address
257 destination buffer is in the operating system
258 destination buffer is in the TSA
259 invalid destination buffer address
261 invalid number of bytes to be moved

MPX·32 Reference Volume I 6·117

M.MYID

6.2.80 M.MYID - Get Task Number

The M.MYID service allows the user to obtain status on the currently executing task.

The base mode equivalent service is M_MYID.

Entry Conditions

Calling Sequence

M.MYID pbaddr

(or)

ZR R5
SBR
LA

RS,O
R7,pbaddr

SVC 1,X'64' (or) M.CALL H.REXS,32

pbaddr is the logical word address of the first location of a parameter block
formatted as follows:

Word Contents

o task activation sequence number
1-2 task load module name
3-4 owner name
5-6 pseudonym
7-8 current working directory, truncated to the first

eight characters
9 reserved
10 scheduling flags used by the scheduler to

indicate special status conditions

Exit Conditions

6-118

Return Sequence

M.RTRN5

Registers

CC1 set

RS,R7

Abort Cases

invalid parameter block address

unchanged

RX32 INVALID DOE ADDRESS

Nonbase Mode System Services

o

c

c

M.NEWRRS

6.2.81 M.NEWRRS - Reformat RRS Entry

The M.NEWRRS service converts a resource requirement summary (RRS) entry from
MPX-32 Revision 1.x format to the format acceptable for assignment processing by
the Resource Management Module (H.REMM). See the MPX-32 Revision 1.x
Technical Manual. It is intended for compatibility purposes and should only be used
when internal recoding of the RRS entry to the new format is impractical. This
service is automatically called during parameter task activation when an incompatible
RRS format is encountered in the activation parameter block. This results in
additional overhead during the activation of these tasks.

Entry Conditions

Calling Sequence

M.NEWRRS rrsaddr,newaddr[,cnpaddr]

(or)

LA
LA
LA
SVC

RI,rrsaddr
RS,newaddr
R7,cnpaddr (or) ZR R7
2,X'S4' (or) M.CALL H.REXS,76

rrsaddr

newaddr

is the address of the RRS entry to be reformatted

is the address where the reformatted RRS entry is to be built

cnpaddr

Restrictions:

This area where the reformatted RRS entry is to be built must be large
enough to account for the expanded size of the new RRS. Use the
following guidelines to determine the number of words required to
accommodate the expansion:

MPX-32 l.x RRS type

ASSIGNI
ASSIGN2
ASSIGN3 (disk)
ASSIGN3 (device)
ASSIGN4

Size if reformatted RRS

12 words
4 words
4-8 words
6 words
4 words

is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are abnormal return
address and status field.

MPX·32 Reference Volume I 6-119

M.NEWRRS

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

(without CNP)

M.RTRN

(or)

M.RTNA (CC 1 set) M.RTRN R7 (CC 1 set)

6·120

Registers

R7 contains the return status if a CNP is not supplied; otherwise, unchanged

Registers

CC1 set

Posted in R7 or the status field of the CNP:

Value Description

11 invalid RRS entry
20 specified volume not in system

Nonbase Mode System Services

o

M.OLAY

C" .. ~ 6.2.82 M.OLAY - Load Overlay Segment

(

The M.OLA Y service provides for loading an overlay segment into a nonbase mode
task. The actual loading is done by the Task Management Module (H. TAMM) and
control is returned to the caller upon completion, or to the overlay segment at its
cataloged transfer address. The named segment must have been defined to the
Cataloger as an overlay.

Entry CondHions

Calling Sequence

M.OLA Y filenamel,EXE]

(or)

LD
SVC
SVC

R6.filename
I,X'SO' (or) M.CALL H.REXS,13 } (or)
I,X'S1' (or) M.CALL H.REXS,14

filename is a doubleword containing the name of the file from which the overlay
segment is to be loaded. The name must be I to 8 ASCII characters,
left-justified and blank-filled

EXE

Exit Conditions

specifies transfer control to the overlay (SVC I,X'SI '). If not
specified, control returns to the caller.

Return Sequence

M.RTRN7

Registers

R7 contains the transfer address of the overlay segment or unchanged if the
EXE parameter is specified

Abort Cases

RX07, LD01-LD08
These abort messages occur when M.OLA Y cannot load the overlay
segment due to software checksum or data error.

RX08 OVERLAY IS NOT IN THE DIRECTORY
RX10 OVERLAY HAS AN INVALID PREAMBLE
RXll AN UNRECOVERABLE I/O ERROR HAS OCCURRED DURING

OVERLAY LOADING
RX33 OVERLAY LINKAGES HAVE BEEN DESTROYED BY LOADING

A LARGER OVERLAY

MPX·32 Reference Volume I 6-121

M.OPENR

6.2.83 M.OPENR - Open Resource

The M.OPENR service prepares a resource for logical I/O and defines the intended
access mode for subsequent operations on the resource. Protection is provided for
both the requestor and the resource against indiscriminate access. If appropriate,
additional FAT information is posted at this time. A blocking buffer can be allocated
if not previously specified, explicitly or implicitly, during allocation of the resource.
However, if a user-supplied buffer is specified in the FCB, that buffer is used and any
previously allocated blocking buffer is released. A mount message is issued as a
result of this function when the I/O is to be performed to a device associated with
unformatted media, and the message has not been inhibited by user request or
previous open on the resource by another user. An open request to a resource that is
already opened in the same access mode is ignored.

The base mode equivalent service is M _ OPENR.

Entry Conditions

6-122

Calling Sequence

M.OPENRJcbaddr [,cnpaddr]

(or)

Rl/cbaddr LA
LA
SVC

R7,cnpaddr (or) ZR R7
2,X'42' (or) M.CALL H.REMM,21

fcbaddr

cnpaddr

is the address of a file control block (FCB)

is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are time-out value,
abnormal return address, options field, and status field.

The options field describes the access and usage specification with
the following interpretation: .

Byte 0 contains an integer value representing the specific access for
which the resource is being opened. An error message will be
returned for an invalid integer. The following values are valid:

Value

o
1
2
3
4
5

6-255

Description

open for default access
open for read
open for write (resource redefined)
open for modify
open for update
open for append
reserved

Nonbase Mode System Services

(

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.OPENR

Byte I indicates the usage under which the resource is to be opened
with the following significance:

Bit Meaning if Set

o open for explicit shared use
I open for exclusive use
2 open in unblocked mode overrides any specification

made at resource assignment
3 open in blocked mode overrides any specification

made at resource assignment
4 resource data blocked. If the file is actually written to

in any access mode (append, modify, update, write),
the data will be recorded as blocked in the resource
descriptor when the file is closed, regardless of
whether the I/O was actually performed in blocked mode.

5 override with implicit shared use
6-7 reserved

Only one of bits 0 and I in byte 1 can be set. If set, any usage
specified at the time the resource was assigned is overridden. This
can result in a denial condition if the usage specified at open differs
from that specified at assignment.

If a CNP is not supplied or the specification in the options field is
zero: the resource is opened for read access for a volume resource
or update access for a device unless only a specific access mode
was allowed at assignment, in which case the resource is opened for
that access; the usage is implicit shared or that specified at resource
allocation, whichever is appropriate.

(without CNP)

M.RTRN

(or)

M.RTNA (CC 1 set) M.RTRN R7 (CCI set)

Registers

R7 return status if a CNP is not supplied; otherwise unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

MPX·32 Reference Volume I 6-123

M.OSREAD

6.2.84 M.OSREAD - Physical Memory Read

The M.OSREAD service moves an arbitrary number of bytes from a location in the
physical space of MPX-32 to a location in the calling task's logical address space.

The physical space of MPX-32 includes:

• nonextended MPX-32 -location 0 through the end of memory pool

• extended MPX-32 - the beginning of extended MPX-32 through the end of the
last map block of extended MPX-32

The base mode equivalent service is M_OSREAD. This service is executable by the
IPU.

Entry Conditions

Calling Sequence

M.OSREAD [inbuffer] [,outbuffer] [,number]

(or)

LA R 1 ,inbuffer
LA R2,outbuffer
LI R4,number
SVC 2,X'7E' (or) M.CALL H.REXS,93

inbuffer is the 24-bit pure address of the byte bounded source buffer (in the
physical space of MPX-32)

outbuffer

number

Registers

RI
R2
R4

is the 24-bit pure address of the byte bounded destination buffer (in the
task's logical address space)

is the number of bytes to be moved

contains inbuffer
contains outbuffer
contains number

Exit Conditions

6-124

Normal Return:

M.IPURTN

Abnormal Return:

M.IPURTN R7

Registers

CCl set
R7

error condition
error condition as a decimal value:

Value

256
259
261

Description

invalid source buffer address
invalid destination buffer address
invalid number of bytes to be moved

Nonbase Mode System Services

,-_/

c

M.OSWRIT

6.2.85 M.OSWRIT - Physical Memory Write

The M.OSWRIT service moves an arbitrary number of bytes from a location in the
logical address space of the calling task to a location in the physical space of
MPX-32.

The physical space of MPX-32 includes:

• nonextended MPX-32 - location 0 through the end of memory pool

• extended MPX-32 - the beginning of extended MPX-32 through the end of the
last map block of extended MPX-32

This service is available only to privileged users and is executable by the IPU. The
base mode equivalent service is M_OSWRIT.

Entry Conditions

Calling Sequence

M.OSWRIT [inbuffer] [,outbujfer] [,number]

(or)

LA
LA
LI
SVC

R 1 ,inbujfer
R2,outbujfer
R4,number
2,X' AF' (or) M.CALL H.REXS,94

inbuffer is the 24-bit pure address of the byte bounded source buffer (in the
task's logical address space)

outbuffer is the 24-bit pure address of the byte bounded destination buffer (in the
physical space of MPX-32)

number

Registers

Rl
R2
R4

Exit Conditions

is the number of bytes to be moved

contains inbuffer
contains outbuffer
contains number

Normal Return:

M.IPURTN

Abnormal Return:

M.IPURTN R7

MPX-32 Reference Volume I 6·125

M.OSWRIT

Registers

CC1 set error condition
R7 error condition as a decimal value:

Value

256
259
261

Description

invalid source buffer address
invalid destination buffer address
invalid number of bytes to be moved

6.2.86 M.PGOD - Task Option Doubleword Inquiry

The M.PGOD service provides the caller access to both the first and second program
option words. The first option word, which is the same word as supplied by the
M.PGOW service, resides in R7. The second word resides in R6.

This service can be executed by the IPU.

The base mode equivalent service is M _ OPTIONDWORD.

Entry Conditions

Calling Sequence

M.PGOD

(or)

SVC 2,X'CO' (or) M.CALL H.REXS,95

Exit Conditions

6-126

Return Sequence

M.IPURTN 6,7

Registers

R6 contains the 32-bit second option word
R7 contains the 32-bit first option word

Nonbase Mode System Services

(-.

c

M.PGOW

6.2.87 M.PGOW - Task Option Word Inquiry

The M.PGOW service provides the caller with the first 32-bit task option word. This
word is also called the program option word. Use the M.PGOD service to return the
first and second task option words.

This service can be executed by the IPU.

The base mode equivalent service is M_OPTIONWORD.

Entry Conditions

Calling Sequence

M.PGOW

(or)

SVC 1,X'4C' (or) M.CALL H.REXS,24

Exit Conditions

Return Sequence

M.IPURTN7

Registers

R7 contains the 32-bit first option word

MPX-32 Reference Volume I 6-127

M.PNAM

6.2.88 M.PNAM - Reconstruct Pathname

The M.PNAM service constructs and returns the pathname string that was used to
assign a file. In most cases, this service acquires the complete name of a file that was
statically assigned to a task. If a pathname component contains special characters, the
component is returned enclosed within single quotes.

The base mode equivalent service is M_CONSTRUCfPATH.

Entry Conditions

Calling Sequence

M.PNAM arga,pnaddr[,cnpaddr]

(or)

LW Rl,arga
L W R4,pnaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'2F' (or) M.CALL H.VOMM,16

arga

pnaddr

cnpaddr

is an FCB address or LFC for the assigned volume resource

is the PN address and maximum pathname length

is a CNP address or zero if CNP not supplied

Exit Conditions

6-128

Return Sequence

(with CNP)

M.RTRNR4

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN R4

(or)

M.RTRN R7 (CC I set)

R4 contains the actual PN length and PN address
R7 contains the return status if a CNP is not supplied; otherwise, unchanged.

For return status codes, refer to the H.VOMM status codes in the
Resource Assignment! Allocation and I/O chapter of Volume r.

Nonbase Mode System Services

('.".-.-.'" I,
/

M.PNAMB

6.2.89 M.PNAMB - Convert Path name to Path name Block

The M.PNAMB service converts a pathname to a fonn that can be more easily
analyzed by software. In most cases, utility programs use this to syntax check a
pathname that is read from a directive line.

When called, this service parses the entered pathname. If errors are detected in the
pathname syntax, this service is tenninated and Rl is updated to indicate the point
where the error was detected.

The base mode equivalent service is M_PNAMB.

Entry Conditions

Calling Sequence

M.PNAMB pnaddr,pnbaddr[,cnpaddr]

(or)

LW Rl,pnaddr
L W R4,pnbaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'2E' (or) M.CALL H.VOMM,lS

pnaddr

pnbaddr

cnpaddr

is the address and length of a PN vector, or zero for the current
working volume and directory

is the address and length of a PNB vector, or zero for the current
working volume and directory
is a CNP address or zero if CNP not supplied

Applicable portions of the CNP for this function are time-out value,
abnonnal return address, option field, and status field. The options
field of the CNP has the following interpretation:

Byte 0 is reserved

Byte 1 has the following significance when set:

MPX-32 Reference Volume I

Bit Meaning if Set

0-6 reserved
7 parsing of the pathname includes only the

volume and directory portions of the supplied
pathname. This bit is usually set by J.TSM.

6-129

M.PNAMB

Exit Conditions

6·130

Return Sequence

(with CNP)

M.RTRN RI,R4

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN RI,R4

(or)

M.RTRN R7 (CCI set)

R I contains the address of first PN character not processed and remaining
length

R4 contains the PNB address and the actual PNB length

R7 contains the return status if a CNP is not supplied; otherwise unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment! Allocation and I/O chapter of Volume I.

Nonbase Mode System Services

o

c

M.PRIL

6.2.90 M.PRIL - Change Priority Level

The M.PRIL service dynamically alters the priority level of the specified task. The
caller must be privileged. Valid priority levels for real-time tasks are 1-54 inclusive.
Valid priority levels for time distribution tasks are 55-64 inclusive. A real-time task
cannot be changed to a time distribution priority level and a time distribution task
cannot be changed to a real-time priority level. 110 continues to operate at base
priority level of the cataloged task.

The base mode equivalent service is M_PRIL.

Entry Conditions

Calling Sequence

M.PRIL task, priority

(or)

LW
ZR
LW
SVC

R5,priority

R6 } (or) LD R6,taskname
R7,taskno
I,X'4A' (or) M.CALL H.REXS,9

task is the address of a doubleword containing the name of the task or zero
in word 0 and the task number in word 1. A task number must be used
if the task is multicopied or shared. A task number of zero specifies
the calling task.

priority is the priority level to be assigned to the task. Valid priorities are 1
through 54 for a real-time task and 55 through 64 for a time­
distribution task.

Exit Conditions

Return Sequence

M.RTRN7

Registers

R7 contains the task number or zero if the specified task was not found

Abort Cases

RX06 UNPRIVILEGED TASK ATTEMPTED TO RESET A TASK
PRIORITY LEVEL, OR A PRIVILEGED TASK ATTEMPTED TO
RESET A TASK PRIORITY TO A LEVEL OUTSIDE THE RANGE
OF 1 TO 64, INCLUSIVELY

MPX-32 Reference Volume I 6-131

M.PRIV

6.2.91 M.PRIV - Reinstate Privilege Mode to Privilege Task

The M.PRIV service returns a task that was cataloged as privileged to the privileged
status if the privilege was changed with the M.UPRIV service.

The base mode equivalent service is M _PRIVMODE.

Entry Conditions

Calling Sequence

M.PRIV

(or)

SVC 2,X'57' (or) M.CALL H.REXS,78

Exit Conditions

6-132

Return Sequence

M.RTRN

Status

CC 1 set successful operation

Nonbase Mode System Services

M.PTSK

6.2.92 M.PTSK - Parameter Task Activation

The M.PTSK service overrides specific task parameters in the load module or
executable image preamble during activation. For unprivileged callers, some
parameters are overridden by those of the calling task. The task name, optional
resource requirements, and optional pseudonym are specified to the service call.
When a task name is supplied in words 2 and 3 of the parameter task activation block
(PTASK), the operating system defaults to a search in the system directory only. For
activations in other than the system directory, a pathname or RID vector must be
supplied.

Options 1-32 reside in task option word 1. Options 33-64 reside in task option word
2. If using options 33-64, the expanded Pf ASK block format must be used and bit 4
of Pf A.FLG2 must be set.

The base mode equivalent service is M_PTSK.

Entry Conditions

Calling Sequence

M.PTSK actaddr[,psbaddr]

(or)

LA R 1 ,actaddr
LA R2,psbaddr (or) ZR R2
SVC I,X'SF' (or) M.CALL H.REXS,40

actaddr

psbaddr

is the logical word address of the parameter task activation block.
Words 0 to 12 of the block are required if options 1 through 32 are set;
variable length RRS entries beginning in word 13 are optional. Words
o to 19 are required if options 33 through 64 are set and bit 4 of
PT A.FLG2 is set; variable length RRS entries beginning in word 20 are
optional. The structure of the PT ASK block follows.

is the logical address of the parameter send block (PSB) or zero if no
parameters are to be passed. If a load module name is supplied in the
PSB, the load module must be in the system directory. A pathname
vector or RID vector must be supplied if a load module is to be
activated from a user directory.

MPX·32 Reference Volume I 6·133

M.PTSK

The following is the structure of the expanded parameter task activation block:

Byte Word o 7 8 15 16 23 24 31

0 0 PTA.FLAG PTA.NRRS PTA.ALLO PTA.MEMS

4 1 PTA.NBUF PTA.NFll... PTA.PRIO PTA.SEGS

8 2-3 PTA.NAME

10 4-5 PTA.PSN

18 6-7 PTA.ON

20 8-9 PTA.PROJ

28 10 PTA. VAT PTA.FLG2 PTA.EXTD

2C 11 PTA.PGOW

30 12 PTA.TSW

34 13 PTA.RPTR

38 14 PTA.PG02

3C 15 PTA.FSIZ PTA.RSIZ

40 16-19 Reserved (zero)

50-nn 20-nn RRS List

Byte ,----

" (Hex) Symbol Description

0 PTA. FLAG contains the following:

Bit Contents

0 reserved
1 job oriented (PT A.JOB)
2 terminal task (PT A.TERM)
3 batch task (PT A.BTCH)
4 debug overlay required (PT A.DOL Y)
5 resident (PT A.RESD)
6 directive file active (PT A.DFIL)
7 SLO assigned to SYC (PT A.SLO)

For unprivileged callers, bits 0-3 are not
applicable. These characteristics are inherited
from the parent task.

1 PTA.NRRS number of resource requirements or zero if same as
summary entries in the load module or executable image
preamble

6-134 Nonbase Mode System Services

M.PTSK

(
Byte
(Hex) Symbol Description

2 PTAALLO memory requirement: number of 512-word pages
exclusive of TSA, or zero if same as the preamble

3 PTAMEMS memory class (ASCII E, H or S) or zero if memory
class is to be taken from the preamble. If the memory
class is to be taken from the preamble, the caller has
the option of specifying the task's logical address space
in this field as follows:

Bits Contents

0-3 hexadecimal value 0 through F representing
the task's logical address space in megabytes
where zero is 1MB and F is 16MB

4-7 zero

4 PTA.NBUF the number of blocking buffers required or
zero if same as the preamble

5 PTA.NFIL the number of FAT/FPT pairs to be reserved or
zero if same as the preamble

6 PTAPRIO the priority level at which the task is to be activated

c: or zero for the cataloged load module priority. See
the Parameter Send Block section in Chapter 2 of this
manual for more details.

7 PTASEGS the segment definition count or reserved (zero)

8 PTA. NAME contains the load module or executable image name,
left justified and blank filled, or word 2 is zero and
word 3 contains a pathname vector or RID vector

10 PTA.PSN contains the 1- to 8-character ASCII pseudonym, left
justified and blank filled, to be associated with the task
or zero if no pseudonym is desired. For unprivileged
callers, this attribute is inherited from the parent task
if zero is supplied or the parent is in a terminal or
batch job environment.

18 PTAON contains the 1- to 8-character ASCII owner name,
left-justified and blank-filled, to be associated with the
task or zero if the task to default to the current owner name.
Valid only when task has system administrator attribute.

20 PTA PRO} contains the 1- to 8-character ASCII project name,
left-justified and blank-filled, to be associated with files
referenced by this task, or zero if same as LMIT

28 PTA VAT the number of volume assignment table (V AT) entries
to reserve for dynamic mount requests or zero if same
as the preamble

#""'''''

MPX-32 Reference Volume I 6-135

M.PTSK

Byte
(~

(Hex) Symbol Description

29 PTA.FLG2 contains the following flags:

Bit Meaning if Set

0 debug activating task (PTA.DBUG)
1 Command Line Recall and Edit is in

effect for the task (PT A.CLRE)
2 NOTSA option (PTA.NTSA)
3 TSA option (PTA.TSA)
4 expanded PT ASK block flag (must be

set to use options 33-64) (PTA.EBLK)
5 reserved
6 NOMAPOUT option (PTA.NMAP)
7 MAPOUT option (PT A.MAP)

2A PTA.EXTD contains the following values:

Bit Meaning if Set

-1 maxaddr of extended MPX-32 and TSA
-2 minaddr of extended MPX-32 and TSA
0 invalid with PT A.TSA or PT A.NTSA option
n a positive number representing the starting

map block of extended MPX-32 and TSA

2C PTA.PGOW contains the initial value of the task option word or zero

30 PTA.TSW contains the initial value of the task status word or zero

34 PTA.RPTR contains a pointer to the resource requirement summary
list or, if an expanded PT ASK block is not used, the
RRS list begins here (see RRS list description - byte 50)

38 PTA.PG02 contains the initial value of the second task option word

3C PTA.FSIZ contains the length of the fixed portion of
the PT ASK block in bytes

3E PTA.RSIZ contains the number of bytes of the resource
requirement summary

40 Reserved

50 resource requirement summary list. Each entry contains
a variable length RRS. The RRS list has up to
384 words. Each entry must be double word bounded.
Each entry is compared with the RRS entries in
the LMIT. If the logical file code currently
exists, the specified LFC assignment will override the
cataloged assignment, otherwise the special assignment
will be treated as an additional requirement and merged
into the list. If MPX-32 Revision Lt format

(

6-136 Nonbase Mode System Services

(

Exit Conditions

M.PTSK

of the RRS is specified, it is converted to the fonnat
acceptable for assignment processing by the Resource
Management Module (H.REMM). See MPX-32
Revision l.x Technical Manual for fonnat of the RRS.

Return Sequence

M.RTRN 6,7

Registers

R6 equals zero if the service was perfonned

R7 contains the task number of the task activated by this service

(or)

R6 equals one if invalid attempt to multicopy a unique task

R7 task number of existing task with same name

(or)

RO destroyed

R6 Value Description

2 file specified in words 2 and 3 of the PT ASK block
not in directory

3 unable to allocate file specified in words 2 and 3
of the PT ASK block

4 file is not a valid load module or executable image
5 DQE is not available
6 read error on resource descriptor
7 read error on load module
8 insufficient logical/physical address space for task

activation
10 invalid priority
11 invalid send buffer address or size
12 invalid return buffer address or size
13 invalid no-wait mode end-action routine address
14 memory pool unavailable
15 destination task receiver queue full
16 invalid PSB address
17 RRS list exceeds 384 words
18 invalid RRS entry in parameter block

R7 contains zero if task not found

MPX-32 Reference Volume I 6-137

M.QATIM

6.2.93 M.QATIM - Acquire Current Date/Time in ASCII Format

The M.QATIM service acquires the system date and time in ASCII format. The date
and time are returned in a four word buffer, the address of which is specified in the
call. Refer to Appendix H for date and time formats.

This service can be executed by the IPU.

The base mode equivalent service is M _ QATIM

Entry Conditions

Calling Sequence

M.QATIM addr

(or)

LA Rl,addr
ORMW Rl,=X'03000000'
SVC 2,X'50' (or) M.CALL H.REXS,74

addr is the address of a 4-word buffer to contain the date and time

Exit Conditions

6-138

Return Sequence

M.IPURTN

Registers

Rl used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Nonbase Mode System Services

"'-- /'

I

(...•

('

M.RADDR

6.2.94 M.RADDR - Get Real Physical Address

The M.RADDR service allows unprivileged tasks to determine the physical memory
address associated with a given logical address.

The base mode equivalent service is M_RADDR.

Entry Conditions

Calling Sequence

M.RADDR [logicaladdr]

(or)

LA Rl,logicaladdr
SVC 1,X'OE' (or) M.CALL H.REXS,90

logicaladdr is the logical address to be translated

Exit Conditions

Return Sequence

Registers

R 7 contains the physical ,address

MPX·32 Reference Volume I 6-139

M.RCVR

6.2.95 M.RCVR - Receive Message Link Address

The M.RCVR service allows the caller to establish the address of a routine to be
entered for receiving messages sent by other tasks.

The base mode equivalent service is M _ RCVR.

Entry Conditions

Calling Sequence

M.RCVR recvaddr

(or)

LA R7,recvaddr
SVC l,X'6B' (or) M.CALL H.REXS,43

recvaddr is the logical word address of the entry point of the receive message
routine in the user's task

Exit Conditions

6·140

Return Sequence

M.RTRN7

Registers

R7 contains the receiver address or zero if the receiver address was invalid.

Nonbase Mode System Services

c

M.READ

6.2.96 M.READ - Read Record

The M.READ service performs the following functions:

• provides special random access handling for disk files

• unblocks system files and blocked files

• reads one record into the buffer indicated by the transfer control word (TCW) in the
FCB

The base mode equivalent service is M_READ.

Entry Conditions

Calling Sequence

M.READ fcbaddr

(or)

LA RI/cbaddr
SVC I,X'31' (or) M.CALL H.IOCS,3

fcbaddr is the FCB address. Appropriate transfer control parameters are defined
in the TCW.

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

I003 AN UNPRIVILEGED TASK IS ATTEMPTING TO READ DATA INTO
PROTECTED MEMORY

I006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED FILE
ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS IMPROPERLY
BLOCKED, (2) BLOCKING BUFFER IS DESTROYED, OR (3)
TRANSFER ERROR DURING FILE INPUT.

I030 ILLEGAL OR UNEXPECTED VOLUME NUMBER OR REEL ID
ENCOUNTERED ON MAGNETIC TAPE

I032 CALLING TASK HAS ATTEMPTED TO PERFORM A SECOND READ ON
A '$' STATEMENT THROUGH THE SYC FILE

I033

I034.

READ WITH BYTE GRANULARITY REQUEST MADE WITH NEGATIVE
BYTE OFFSET

READ WITH BYTE GRANULARITY REQUEST MADE WITHOUT SETTING
RANDOM ACCESS BIT IN FCB

MPX·32 Reference Volume I 6-141

M.READ

I035

RM02

READ WITH BYTE GRANULARITY REQUESTS ARE VALID FOR
UNBLOCKED FILES ONLY

ACCESS MODE NOT ALLOWED

Output Messages

DismountJmount messages if EOT is encountered and if a multivolume magnetic tape.

6.2.97 M.RELP - Release Dual·Ported Disk/Set Dual·Channel ACM Mode

The M.RELP service allows the privileged user to release a device from its reserved
state. This service applies to dual-port extended I/O disks. When issued to an eight­
line device that has been SYSGENed as full-duplex, this service can be used to set the
eight-line device from single-channel to dual-channel mode (applies to ACMs using
the H.F8XIO handler only).

The base mode equivalent service is M_RELP.

Entry Conditions

Calling Sequence

M.RELP fcbaddr

(or)

LA Rl/cbaddr
SVC 1,X'27' (or) M.CALL H.IOCS,27

fcbaddr is the FCB address

Exit Conditions

6-142

Return Sequence

M.RTRN

Nonbase Mode System Services

(

M.RENAM

6.2.98 M.RENAM - Rename File

The M.RENAM service changes the name of an existing permanent file. This service
can move a file from one directory to another directory on the same volume.

When called, this service creates the new name of the file in the specified directory
and then deletes the old name of the file from the specified directory.

The base mode equivalent service is M_RENAME.

Entry Conditions

Calling Sequence

M.RENAM [arga],[newaddr] [,cnpaddr]

(or)

LW Rl,arga
L W R2,newaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'2D' (or) M.CALL H.VOMM,14

arga

newaddr

cnpaddr

Exit Conditions

contains the old PN or PNB vector

contains the new PN or PNB vector

is a CNP address or zero if CNP not supplied

Return Sequence

(with CNP) (without CNP)

M.RTRN

(or)

M.RTNA R7 (CCI set)

Registers

M.RTRN

(or)

M.RTRN R7 (eCI set)

R7 contains the return status if a CNP is not supplied; otherwise, contains the
denial address. For return status codes, refer to the H.VOMM status
codes in the Resource Assignment! Allocation and I/O chapter of Volume
I.

MPX-32 Reference Volume I 6-143

M.REPLAC

6.2.99 M.REPLAC - Replace Permanent File

The M.REPLAC service replaces the data contents of an existing permanent file with
the data contents of an existing temporary file. The permanent file retains its original
directory entry and resource descriptor.

This service is provided so utility programs can change the data contents of a file
without changing any of the file's other attributes. In other words, this service
maintains the integrity of a file's resource identifier and therefore provides the fast file
mechanism.

This service can be used on any permanent file. At the completion of this service, the
temporary file is deallocated and deleted. An error condition is returned if the
permanent file is allocated to another task at the time of the service call.

This service should only be used on files with the fast access attribute. For files
which do not have this attribute, this same functionality can be accomplished by using
the Delete Resource (M.DELR) service followed by the Change Temporary File to
Permanent File (M.TEMPER) service.

The base mode equivalent service is M _REPLACE.

Entry Conditions

6-144

Calling Sequence

M.REPLAC [fcbaddr],fpnaddr][,cnpaddr]

(or)

LA R l/cbaddr
LW R2,pnaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'30' (or) M.CALL H.VOMM,23

fcbaddr is the FCB or LFC address of the temporary file, or the value in RI, if
not supplied

pnaddr

cnpaddr

is the pathname vector of the permanent file, or the value in R2, if not
supplied

is a CNP address or zero if CNP is not supplied. Bit 0, word 2 of the
CNP is disabled for M.REPLAC.

Nonbase Mode System Services

(

M.REPLAC

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CC 1 set)

Error condition

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CC 1 set)

Registers

CCI set

R7 contains the return status if a CNP is not supplied; otherwise, it is
unchanged. For return status codes, refer to the H. VOMM status codes in
the Resource Assignment! Allocation and I/O chapter of Volume I.

Abort Cases

VM38 REPLACEMENT FILE IS ALLOCATED BY ANOTHER TASK AND" BIT 0
IN THE CNP OPTION FIELD IS NOT SET, OR FILE IS
ALLOCATED BY OTHER CPU IN MULTI-PORT ENVIRONMENT

6.2.100 M.RESP - Reserve Dual-Ported Disk/Set Single-Channel ACM
Mode

The M.RESP service allows the privileged user to reserve a device to the requesting
CPU until such time as a release (M.RELP) is issued. This service applies to dual­
port extended 110 disks. When issued to an ACM that has been SYSGENed as full­
duplex, this service can reset the ACM from dual-channel to single-channel mode
(applies to ACMs using the H.F8XIO handler only).

The base mode equivalent service is M _ RESP.

Entry Conditions

Calling Sequence

M.RESP fcbaddr

(or)

LA Rljcbaddr
SVC 1,X'26' (or) M.CALL H.IOCS,24

fcbaddr is the FCB address

Exit Conditions

Return Sequence

M.RTRN

MPX-32 Reference Volume I 6-145

M.REWRIT

6.2.101 M.REWRIT - Rewrite Descriptor

The M.REWRIT service writes a modified resource descriptor back to a volume and
releases the modify lock on the descriptor. This is the last step of a two step
operation; the first step is M.MOD.

When this service is invoked, the indicated resource descriptor is read into an internal
buffer. The fields that are allowed to be modified are copied from the user supplied
resource descriptor buffer to the appropriate areas of the internal buffer. Upon
successful modification of the resource descriptor in the internal buffer, the resource
descriptor is written to the correct location on the volume and the modify lock is
released.

The base mode equivalent service is M _ REWRIT.

Entry Conditions

Calling Sequence

M.REWRIT rdaddr[,cnpaddr]

(or)

LA R6,rdaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'2B' (or) M.CALL H.VOMM,12

rdaddr

cnpaddr

is the address of the RD buffer, doubleword bounded and 192W in
length, containing the modified resource descriptor

is a CNP address or zero if CNP not supplied

Exit Conditions

6-146

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 contains the return status if a CNP is not supplied; otherwise, contains the
denial address. For return status codes, refer to the H. VOMM status
codes in the Resource Assignment/Allocation and I/O chapter of Volume
I.

Nonbase Mode System Services

(~)

M.REWRTU

6.2.102 M.REWRTU - Rewrite Descriptor User Area

The M.REWRTU service writes a modified resource descriptor back to a volume and
releases the modify lock on the descriptor. This is the last step of a two step
operation; the first step is M.MODU.

When this service is invoked, the indicated resource descriptor is read into an internal
buffer. The data from the buffer supplied by the user is then copied to the appropriate
areas of the internal buffer. Upon successful modification of the resource descriptor in
the internal buffer, the resource descriptor is written to the correct location on the
volume and the modify lock is released.

The base mode equivalent service is M_REWRTU.

Entry Conditions

Calling Sequence

M.REWRTU [uaaddr][,cnpaddr]

(or)

LA R6,uaaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'32' (or) M.CALL H.VOMM,27

uaaddr is the address of the buffer containing the modified user area. This
must be the same address supplied by the caller for use with the
associated Modify Descriptor User Area (H.VOMM,26) call;
doubleword bounded and 32W length.

cnpaddr is a CNP address or zero if CNP not supplied

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (eCI set)

R7 contains the return status if a CNP is not supplied; otherwise, contains the
denial address. For return status codes, refer to the H. VOMM status
codes in the Resource Assignment! Allocation and I/O chapter of Volume
I.

MPX·32 Reference Volume I 6-147

M.ROPL

6.2.103 M.ROPL - Reset Option Lower

The M.ROPL service allows the calling task to reset the option lower bit. Use the
M.SOPL (Set Option Lower) service to set the option lower bit.

The base mode equivalent service is M_ROPL.

Entry Conditions

Calling Sequence

M.ROPL

(or)

SVC 2,X'78' (or) M.CALL H.TSM,14

Exit Conditions

Return Sequence

M.RTRN

(or)

M.RTRN (CCI set)

Status

CCI set call caused the option lower bit to be reset

6·148 Nonbase Mode System Services

c

M.RRES

6.2.104 M.RRES - Release Channel Reservation

The M.RRES service releases the channel reserve indication from the controller
definition table (CDT) entry if the channel was reserved by the calling task. If the
channel was not reserved by the calling task, the request is ignored and control returns
to the task.

The base mode equivalent service is M_RRES.

Entry Conditions

Calling Sequence

M.RRES channel

(or)

LW Rl,channel
SVC 1,X'3B' (or) M.CALL H.IOCS,13

channel

Exit Conditions

specifies the channel number in hexadecimal. If using LW, the channel
number must be loaded into bits 24 to 31 of R 1.

Return Sequence

M.RTRN

MPX-32 Reference Volume I

M.RSML

6.2.105 M.RSML - Resourcemark Lock

The M.RSML service locks the specified resourcemark. It is used with the Unlock
Resourcemark service (M.RSMU) by tasks to synchronize access to a common
resource.

The base mode equivalent service is M_RSML.

Entry Conditions

6-150

Calling Sequence

M.RSML lockid,[timev][,P]

(or)

LI
ZR

[SBR
LI
SVC

lockid

timev

R4,timev
R5
RS,O]
R6,lockid
1,X'19' (or) M.CALL H.REXS,62

is a numeric resourcemark index value, 33 through 64 inclusive

is a numeric value which specifies the action to be taken if the lock is
already set and is owned by another task:

Value

+1
o
-n

Description

immediate denial return
wait until this task is the lock owner (default)
wait until this task is the lock owner, or until n
timer units have expired, whichever occurs first

If not specified, zero is default.

specifies that while this task is waiting to become lock owner, the
swapping mode is to be set to swap this task only if a higher priority
task is requesting memory space.

Otherwise, the task is a swap candidate if any task is requesting
memory.

Nonbase Mode System Services

~'-"\

(,j

Exit Conditions

Return Sequence

M.RTRNR7

Registers

M.RSML

R7 contains zero if the request was accepted, otherwise contains a request
denial code:

Value

MPX-32 Reference Volume I

1
2
3
4

Description

lock index exceeds maximum range
lock index is less than minimum range
lock is owned by another task (and timev=+ 1)
lock is owned by another task, timev=-n
and n timer units have expired

6-151

M.RSMU

6.2.106 M.RSMU - Resourcemark Unlock

The M.RSMU service unlocks a resourcemark which was locked by a call to the
M.RSML service. If any other tasks are waiting to lock the specified resourcemark,
the highest priority waiting task becomes the new lock owner.

The base mode equivalent service is M_RSMU.

Entry Conditions

Calling Sequence

M.RSMU lockid

(or)

LI R6,lockid·
SVC 1,X'lA' (or) M.CALL H.REXS,63

lockid is a numeric resourcemark index value, 33 through 64 inclusive

Exit Conditions

6-152

Return Sequence

M.RTRN R7

Registers

R7 contains zero if the request was accepted, otherwise contains a request
denial code:

Value

1
2
3

Description

lock index exceeds maximum range
lock index is less than minimum range
lock is not owned by this task

Nonbase Mode System Services

c\

c

(

M.RSRV

6.2.107 M.RSRV - Reserve Channel

The M.RSR V service reserves a channel by inserting the task number of the calling
task in the controller definition table (CDT) of the unit definition table (UDT). The
calling task must be privileged. If the task is unprivileged or the channel is already
reserved by another task, this service makes a denial return. If any requests are
currently queued for this channel, suspend is invoked until any I/O currently in
progress is complete. The standard handler is then disconnected from the service
interrupt (SI) level. After reserving a channel, the task must connect its own handler
to the SI dedicated location.

This service is not applicable for extended I/O channels.

The base mode equivalent service is M_RSRV.

Entry Conditions

Calling Sequence

M.RSRV channel,denial

(or)

L W R 1 ,channel
LA R 7 ,denial
SVC 1,X'3A' (or) M.CALL H.IOCS,12

channel is the hexadecimal channel number in bits 24 to 32. If using L W, load
channel number in R 1.

denial is the user's denial return address

Exit Conditions

Return Sequence

M.RTRN nonnal return

(or)

M.RTNA 7 denial return

MPX-32 Reference Volume I 6-153

M.RWND

6.2.108 M.RWND - Rewind File

The M.RWND service perrorms the following functions:

• issues an end-of-file and purge if the file is a system or blocked file that is output
active

• for system and blocked files, initializes blocking buffer control cells for subsequent
access

• rewinds a file or device

The base mode equivalent service is M_REWIND.

Entry Conditions

Calling Sequence

M.RWNDfcb

(or)

LA RIjcb
SVC 1,X'37' (or) M.CALL H.IOCS,2

fcb is the FCB address

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

1009 ILLEGAL OPERATION ON THE SYC FILE

6-154 Nonbase Mode System Services

("

M.SETS

6.2.109 M.SETS - Set User Status Word

The M.SETS service allows the calling task to modify any task's user status word. It
allows task-to-task communication when used with the M.TSTS (Test User Status
Word) service. The user status word is in the CPU dispatch queue (DQE.USW) and
has a value of zero until modified by this service. The service removes the user status
word from the queue, modifies it as specified, and replaces it in the queue.

The base mode equivalent service is M_SETS.

Entry Conditions

Calling Sequence

M.SETS junction,statusw[,task]

(or)

R4,task
R6/unction
R7,statusw

LD
LI
LW
SVC I,X'48' (or) M.CALL H.REXS,7

junction is the type of modification to perform. Valid values are:

Value

STF(I)
RSF(2)
STC(3)
INC(4)

Description

set flag
reset flag
set counter
increment counter

If using the macro call, the alphabetical code must be specified. If
loading registers, the corresponding numeric must be specified.

statusw contains a function parameter specific to function codes as follows:

Value Description

1 bit position in the status word to be set (1-31)
2 bit position in the status word to be reset (1-31)
3 value to set the status word
4 value to increment the status word

task is the address of a doubleword containing the 1 to 8 ASCII character
name of the task, left justified and blank filled, or zero in word 0 and
the task number in word 1. The task number must be used if the task
is multicopied or shared. A task number of zero or omission of the
argument specifies the calling task.

MPX-32 Reference Volume I 6-155

M.SETS

Exit Conditions

6·156

Return Sequence

M.RTRN5

Registers

R5 bit 0 is set if the specified task was not found in the dispatch queue or the
requesting task is not privileged and the owner name is restricted from
access to tasks with a different owner name by M.KEY file; otherwise, R5
is zero

Abort Cases

RXOS INVALID FUNCTION CODE HAS BEEN SPECIFIED FOR
REQUEST TO SET USER STATUS WORD

Nonbase Mode System Services

C· -" i)

" i C'

(-

M.SETSYNC

6.2.110 M.SETSYNC - Set Synchronous Resource Lock

The M.SETSYNC service is used with the Release Synchronous Lock service for
resource gating of explicitly shared resources when no automatic synchronization is
performed by the system. The mechanism allows a task to obtain synchronized access
to a resource that is concurrently allocated to multiple tasks. A synchronization lock
can be obtained for any resource, provided the resource was previously allocated, or
included for memory partitions by the calling task. Unlike an exclusive lock, the
synchronous lock does not prevent other tasks from allocating the resource in explicit
shared mode. It is the sharing tasks' responsibility to synchronize access by
cooperative use of the synchronous lock services. The resource is identified by either
a logical file code, defined when the resource was assigned, or an allocation index,
obtained when the resource was assigned or by a resource inquiry. If the
synchronization lock is not available, the calling task can obtain an immediate denial
return, or wait for an indefinite or specified period of time.

The base mode equivalent service is M_SETSYNC.

Entry Conditions

Calling Sequence

M.SETSYNC arga[,cnpaddr]

(or)

LW
LA
SVC

R5,arga
R 7 ,cnpaddr (or) ZR R 7
2,X'46' (or) M.CALL H.REMM,25

arga is an address the allocation index obtained when the resource was
assigned

(or)

is an address of a file control block (FCB) which contains an LFC in
word 0

cnpaddr is the address of a caller notification packet (CNP) if notification is
desired

Applicable portions of the CNP for this function are time-out value,
abnormal return address, and status field.

MPX-32 Reference Volume I 6-157

M.SETSYNC

Exit Conditions

6-158

Return Sequence

(with CNP) (without CNP)

M.RTRN

(or)

M.RTRN

(or)

M.RTNA (CCI set) M.RTRN R7 (CCI set)

Registers

R7 contains the return status if a CNP is not supplied; otherwise, unchanged

Status

CCI set

Posted in R7 or the status field of the CNP:

Value

29
30
38
46
50

Description

specified LFC was not assigned by this task
invalid allocation index
time out occurred while waiting to become lock owner
unable to obtain resource descriptor lock (multiprocessor only)
resource is locked by another task

Wait Conditions

The task is placed in a wait state, as appropriate, if specified in the CNP.

Nonbase Mode System Services

(J

c

M.SETT

6.2.111 M.SETT - Create Timer Entry

The M.SETT service builds an entry in the timer table so that the requested function
is performed upon time out. Timer entries can be created to activate a program,
resume a program, set a bit in memory, reset a bit in memory, or request an interrupt.
Any task can create a timer to activate or resume a program. Any task can create a
timer entry to set or reset bits provided the bit is within a static memory partition.
Only privileged tasks can set bits in the operating system and request an interrupt.

The base mode equivalent service is M_SETT.

Entry Conditions

Calling Sequence

M.SETT timer,t} ,t2/unction,arg4,arg5

(or)

LB R3/unction
SLL R3,24
ORMW R3,timer
LW R4,t}
LW R5,t2
LW (or LD) R6,arg4
(LW R7,arg5)
SVC l,X'45' (or) M.CALL H.REXS,4

timer is a word containing zeros in bytes a and 1, and a 2-character timer
identification in bytes 2 and 3

t1

t2

function

is the current value the timer will be set to in negative time units

is the value the timer will be reset to upon each time out in negative
time units. If the reset value is zero, the function is performed upon
time out and the timer entry is deleted. This case is called a one-shot
timer entry.

is the function to be timed, as follows:

Function

ACP(I)
RSP or RST(2)

STB(3)
RSB(4)
RQI(5)

Description

activate program
resume program
set bit
reset bit
request interrupt

If using the macro call, the alphabetic code must be specified. If
loading registers, the corresponding numeric must be specified in byte
O.

MPX-32 Reference Volume I 6-159

M.SETT

6-160

The function code and arg4 and arg5 contain values specific to the function being
timed as follows:

Function Code
Alphabetic Numeric

ACP

RSP

(or)

RST

STB

RSB

RQI

1

2

2

3

4

5

arg4 and arg5

arg4 is a doubleword containing the 1- to 8-
character name of the program to be activated if
system file, or pathname vector or RID vector
in the first half of the double word (R6) and zero
in the second half of the doubleword (R7). If
the task named is not currently in execution, it
is preactivated to connect the interrupt to the
task. This connection remains in effect until the
task aborts or the timer is deleted. On normal
exit, the timer table is updated to point to the
next generation.

arg5 is null.

arg4 is a double word containing the 1- to 8-
character name of the task to be resumed or the
task number in R7 and zero in R6.

arg5 is null.

arg4 is the task number in R7 and zero in R6.

arg5 is null.

arg4 is the address of the word in which the
bits are to be set. The address must be in a
static memory partition or the operating system.

arg5 is the bit configuration of the mask word
to be ORed.

arg4 is the address of the word in which the bit
is to be reset. The address must be in a static
memory partition or the operating system.

arg5 is the bit configuration of the mask word
to be ANDed.

arg4 is the priority level of the interrupt to be
requested.

arg5 is null.

Nonbase Mode System Services

(->
I'" ""

'"./

(
M.SETT

Exit Conditions

Return Sequence

M.RTRN R3

R3 unchanged and condition codes are not set

Error Condition

M.RTRN R3

If there are no timer entries available, R3 is zero and condition codes are not set.

If there are timer entries available, R3 is zero and one of the following condition
codes are set:

• CCI set if requested load module does not exist, or the requesting task is not
privileged and the owner name is restricted by the M.KEY file from access to tasks
with a different owner name

• CC2 set if requested task is not active

• CC3 set if attempting to create a duplicate timer ID

Abort Cases

RX02 INVALID FUNCTION CODE SPECIFIED FOR REQUEST TO
CREATE A TIMER ENTRY. VALID CODES ARE ACP(l), RSP
OR RST(2), STB(3), RSB(4) AND RQI(5).

RX03 TASK ATTEMPTED TO SET/RESET A BIT OUTSIDE OF A
STATIC PARTITION OR THE OPERATING SYSTEM

RX04 THE REQUESTING TASK IS UNPRIVILEGED OR HAS
ATTEMPTED TO CREATE A TIMER ENTRY TO REQUEST AN
INTERRRUPT WITH A PRIORITY LEVEL OUTSIDE THE RANGE
OF X'12' TO X'7F', INCLUSIVE

MPX-32 Reference Volume I 6-161

M.SMSGR

6.2.112 M.SMSGR - Send Message to Specified Task

The M.SMSGR service allows a task to send up to 768 bytes to the specified
destination task. Up to 768 bytes can be accepted as return parameters.

The base mode equivalent service is M_SMSGR.

Entry Conditions

Calling Sequence

M.SMSGR psbaddr

(or)

LA R2,psbaddr
SVC I,X'6C' (or) M.CALL H.REXS,44

psbaddr is the logical address of the parameter send block (PSB).

Exit Conditions

6-162

Return Sequence

M.RTRN6

Registers

R6 contains the processing initial error status if any:

Value Description

o normal initial status
1 task not found or the requesting task is not

privileged and the owner name is restricted by
the M.KEY file from access to tasks with a different
owner name

2-9 reserved
10 invalid priority
11 invalid send buffer address or size
12 invalid return buffer address or size
13 invalid no-wait mode end-action routine address
14 memory pool unavailable
15 destination task queue depth exceeded
16 invalid PSB address

Nonbase Mode System Services

(".' : \

-'

c

(

M.SOPL

6.2.113 M.SOPL - Set Option Lower

The M.SOPL service allows the calling task to set the option lower bit. Use the
M.ROPL (Reset Option Lower) service to reset the option lower bit.

The base mode equivalent service is M _ SOPL.

Entry Conditions

Calling Sequence

M.SOPL

(or)

SVC 2,X'77' (or) M.CALL H.TSM,13

Exit Conditions

Return Sequence

M.RTRN

(or)

M.RTRN (CCI set)

Registers

CCI set call caused the option lower bit to be set

MPX-32 Reference Volume I 6-163

M.SRUNR

6.2.114 M.SRUNR· Send Run Request to Specified Task

The M.SRUNR service allows a task to activate or reexecute the specified destination
task with a parameter pass of up to 768 bytes. Up to 768 bytes can be accepted as
return parameters.

When a task name is supplied in words 0 and 1 of the parameter send block (PSB),
the operating system defaults to a search in the system directory only. For activations
in other than the system directory, a pathname or an RID vector must be supplied.

If a task activated with the TSM ACTIVATE directive is sent a run request, the
queued run request is ignored. However, if a task is activated with a run request and a
second run request is sent, the queued run request is then executed.

The base mode equivalent service is M_SRUNR.

Entry Conditions

Calling Sequence

M.SRUNR psbaddr

(or)

LA R2,psbaddr
SVC l,X'6D' (or) M.CALL H.REXS,45

psbaddr is the logical address of the parameter send block (PSB).

Exit Conditions

6-164

Return Sequence

M.RTRN 6,7

Registers

R6 contains the processing initial error status if any:

Value

o
I
2
3
4

5
6
7
8

Description

normal initial status
reserved
file specified in the PSB was not found in directory
reserved
file specified in the PSB is not a load module or
executable image
dispatch queue entry (DQE) unavailable
I/O error on directory read
I/O error on load module read
memory unavailable

Nonbase Mode System Services

o

o

(

M.SRUNR

Value Description

9 invalid task number for run request to multicopied
load module in RUNW state

10 invalid priority
11 invalid send buffer address or size
12 invalid return buffer address or size
13 invalid no-wait mode end-action routine address
14 memory pool unavailable
15 destination task queue depth exceeded
16 invalid PSB address
17 reserved

R7 contains the task number of the destination task, or zero if the request was
not processed

MPX-32 Reference Volume I 6-165

M.SUAR

6.2.115 M.SUAR - Set User Abort Receiver Address

The M.SUAR service specifies an address where control is to return if an abort
condition occurs during task execution.

All files remain open prior to transferring to the specified address.

The base mode equivalent service is M_SUAR.

Entry Conditions

Calling Sequence

M.SUAR address

(or)

LA R7,address
SVC I,X'60' (or) M.CALL H.REXS,26

address is the logical address where control is transferred when a task
terminates

Exit Conditions

6-166

Return Sequence

M.RTRNR7

Registers

R 7 bit 0 is zero if the request is honored, or one if the request is denied
because the specified address is outside the user's allocated area; bits 1-31
are unchanged

Abort Cases

RX89 AN UNPRIVILEGED TASK HAS ATTEMPTED TO REESTABLISH
AN ABORT RECEIVER (OTHER THAN M.IOEX)

Nonbase Mode System Services

c

(

M.SUME

6.2.116 M.SUME - Resume Task Execution

The M.SUME service resumes a task that has been suspended. A request to resume a
task which is not suspended is ignored.

The base mode equivalent service is M_SUME.

Entry Conditions

Calling Sequence

M.SUME task

(or)

ZR
LW
SVC

R6 k } (or) LD R6,taskname
R7,tas no
I,X'53' (or) M.CALL H.REXS,16

task the address of a double word containing the name of a task or zero in
word 0 and the task number in word 1. Task number must be used if
the task is multicopied or shared.

Exit Conditions

Return Sequence

M.RTRNR7

Registers

R7 contains zero if the specified task was not found or the requesting task is
not privileged and the owner name is restricted by M.KEY file from
access to tasks with a different owner name; otherwise, unchanged

MPX-32 Reference Volume I 6-167

M.SURE

6.2.117 M.SURE - Suspend/Resume

The M.SURE service suspends the calling task and resumes the target task. The
suspend and resume functions are combined into one module providing faster context
switching. It does not replace M.SUSP and M.SUME. .

M.SVRE applies to real-time and time distribution tasks with the target task priority
higher than or equal to that of the calling task. Context switch time can be further
improved by turning real-time accounting off. This service is not recommended for
two IPU biased tasks.

The accounting option is turned off using the OFRA option to the MODE directive in
SYSGEN or OPCOM and the CATALOG ENVIRONMENT directive.

The base mode equivalent service is M_SURE.

Entry Conditions

Calling Sequence

M.SURE taskno

(or)

L W R7,taskno
SVC S,X'OO'

taskno is the task number of the target task

Exit Conditions

6-168

Return Sequence

No return. All registers are destroyed. When the service completes normally, CC I is
reset. The next instruction is in the target task.

Abnormal Return:

CCI set

R7 contains a code describing the reason for the error:

Value Description

I task not found
2 task not in suspend state
3 owner/access violation

Return is done via LPSD to the (;alling task.

Attempts to execute this service when the module H.SURE is not configured will
abort the calling task with an SV02 abort code.

Nonbase Mode System Services

C'" "". \ I

:-\
\.. j
"'--./

o

(

M.SUSP

6.2.118 M.SUSP - Suspend Task Execution

The M.SUSP service suspends the calling task or any other specified task for the
specified number of time units or for an indefinite time period. Suspending a task for
a time interval results in a one-shot timer entry to resume the task upon time-out of
the specified interval. A task suspended for an indefinite time interval must be
resumed through the M.SUME system service. A suspended task can also be resumed
upon receipt of a message interrupt. A message sent to a task that is synchronized
(M.SYNCH) and suspended is not received, but the task is resumed.

The base mode equivalent service is M_SUSP.

Entry Conditions

Calling Sequence

M.SUSP task,time}

(or)

LW
LI
LW
SVC

RS,time}

R6,O } (or) LD R6,taskname
R7,taskno
I,X'S4' (or) M.CALL H.REXS,17

task is the address of a doubleword containing the name of a task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

time} is zero, if requesting suspension for an indefinite time interval, or the
negative number of time units to elapse before the calling task is
resumed

Exit Conditions

Return Sequence

M.RTRN 7

Registers

R 7 contains zero if the specified task was not found or the requesting task is
not privileged and the owner name is restricted by the M.KEY file from
access to tasks with a different owner name; otherwise, contains the task
number

(or)

contains zero and CCI is set if the specified taskname is multicopied

MPX-32 Reference Volume I 6-169

M.SYNCH

6.2.119 M.SYNCH - Set Synchronous Task Interrupt

The M.SYNCH service causes message and task interrupts to be deferred until the
user makes a call to M.ANYW, M.EA WAIT, M.W AIT, or M.ASYNCH. When this
service is used, message interrupts are not interrupted by end-action interrupts. All
task interrupt levels cannot be interrupted, except by break, until they voluntarily
relinquish control.

If a synchronized task is suspended then a message is sent to the task, the message
receiver is not entered and the task resumes.

This service can be executed by the IPU.

The base mode equivalent service is M_SYNCH.

Entry Conditions

Calling Sequence

M.SYNCH

(or)

SVC I,X'lB' (or) M.CALL H.REXS,67

Exit Conditions

Return Sequence

M.lPURTN

Registers

CCI set synchronous task interrupt was already set

6·170 Nonbase Mode System Services

c

M.TBRKON

(. 6.2.120 M.TBRKON - Trap Online User's Task

(-/

The M.TBRKON service processes a pause or break from the terminal or calling task.
The service is also the default receiver for any online task and is called as a result of a
hardware or software break. If a transfer control word (TCW) is specified, a user
message is printed with the break message. Refer to the description of FCB word 1 in
Chapter 5 for more information on TCW s.

The base mode equivalent service is M _ TBRKON.

Entry Conditions

Calling Sequence

M.TBRKON tew

(or)

LW R2,tew (or) ZR R2
SVC 1,X'5C' (or) M.CALL H.TSM,6

tew is the address of a transfer control word

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

RX34 TASK HAS MADE A BREAK RECEIVER EXIT CALL WHILE NO
BREAK IS ACTIVE

TSOl USER REQUESTED REMOVAL FROM A BREAK REQUEST

MPX·32 Reference Volume I 6-171

M.TDAY

6.2.121 M.TDAY - Time-of-Day Inquiry

The M.TDA Y service obtains the time-of-day as computed from the real-time clock
interrupt counter. The counter is initialized using a SYSGEN parameter.

This service can be executed by the IPU.

The base mode equivalent service is M_TDAY.

Entry Conditions

Calling Sequence

M.TDAY

(or)

SVC 1,X'4E' (or) M.CALL H.REXS,ll

Exit Conditions

Return Sequence

MJPURTN 7

Registers

R7 Byte Contents

o hours (0 to 23)
1 minutes (0 to 59)
2 seconds (0 to 59)
3 interrupts (less than one second)

6-172 Nonbase Mode System Services

o

o

M.TEMP

6.2.122 M.TEMP - Create Temporary File

The M.TEMP service creates a temporary file. Temporary files are not given names
in directories and remain known to the operating system only for as long as the task
that created them is in execution. Typically, when the task that created a temporary
file terminates execution either normally or abnormally, associated temporary files are
automatically deleted by the operating system.

Temporary files can remain defined to the operating system after the task that created
them terminates execution if the temporary file is made permanent or is allocated or
assigned to another task when the creator terminates execution.

This service allocates a resource descriptor for the file and acquires the initial space
requirements for the file. The attributes of the file are then recorded in the resource
descriptor.

When a temporary file is created, the typical file attributes are:

• resource identifier (RID)

• protection attributes

• management attributes

• initial space requirements

The file's RID is returned only if an RCB address is specified and an ID address for
the file is also specified within the RCB.

To create a file with possible multiple segments, the CNP address must be supplied.
Byte 0 of the CNP option field contains the maximum number of segments allowed at
creation. If M.TEMP creates a file with one segment, and the size of the created file
is less than the size requested, condition code bit 1 is set and status is returned in the
CNP.

Asynchronous abort and delete are inhibited during execution of this service.

The base mode equivalent service is M_CREATET.

MPX·32 Reference Volume I 6-173

M.TEMP

Entry Conditions

Calling Sequence

M.TEMP [cnpaddr],[arga][,rcbaddr]

(or)

LW Rl,arga (or) ZR Rl
LA R2,rcbaddr (or) ZR R2
LA R7,cnpaddr (or) ZR R7
SVC 2,X'21' (or) M.CALL H.VOMM,2

cnpaddr

arga

rcbaddr

is a CNP address or zero if CNP not supplied

contains a PN (volume name only) vector. If arga is not specified, the
file is created on the current working volume.

is a RCB address or not specified if default attributes are desired

Exit Conditions

6-174

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CC 1 set)

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment! Allocation and I/O chapter of Volume I.

Nonbase Mode System Services

o

o

M.TEMPER

6.2.123 M. TEMPER - Change Temporary File to Permanent File

The M.TEMPER service makes a temporary file permanent. The temporary file is
given a name in the specified directory and the file's resource type is changed from
temporary to permanent. The file is made permanent with the attributes that were
defined when it was created and with any new attributes that were acquired while the
file's data was being established, such as additional extensions, end-of-file position. or
explicit resource descriptor modifications incurred prior to invocation of this service.
The temporary file can be made permanent only on the volume where the temporary
file resides, i.e., cross volume definitions are not allowed.

This service ensures exclusive use of a file while the initial file data is being
established. The integrity of the file is guaranteed before the file is defined in a
directory where others can gain access to it.

When the directory entry is established, it is linked to the resource descriptor of the
file. This link relates the name of the file to the other attributes of the file. These
attributes are the same as the attributes for a permanent file.

The base mode equivalent service is M _ TEMPFILETOPERM.

Entry Conditions

Calling Sequence

M.TEMPER [arga],[argb][,cnpaddr]

(or)

Rl,arga
R2,argb
R7,cnpaddr (or) ZR R7

LW
LW
LA
SVC 2,X'28' (or) M.CALL H.VOMM,9

arga

argb

cnpaddr

is an LFC or an FCB address

is a PN vector or PNB vector

is a CNP address or zero if CNP not supplied

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CC 1 set)

MPX·32 Reference Volume I

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CC 1 set)

6-175

M.TEMPER

Registers

R7

6-176

contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment! Allocation and I/O chapter of Volume 1.

Nonbase Mode System Services

()

c

c:

M.TRNC

6.2.124 M.TRNC - Truncate File

The M.TRNC service truncates the unused space of a file. This service is the
complement of the extend service (M.EXTD). Only manually extended files need to
be truncated.

This service truncates only temporary or pennanent files. Directories and memory
partitions cannot be truncated. The caller must have write, update or append access to
truncate the file. A file cannot be truncated to less than the minimum space
requirement of the file as defined when the file was created.

A file can be truncated regardless of whether it is currently allocated. Any allowable
resource specification can be supplied for example, pathname (PN), pathname block
(PNB), resource 10 (RID), logical file code (LFC), or address of a file control block
(FCB).

Asynchronous abort and delete are inhibited during execution of this service.

The base mode equivalent service is M_TRUNCATE.

Entry Conditions

Calling Sequence

M.TRNC [arga][,cnpaddr]

(or)

LW
LA
SVC

Rl,arga
R7,cnpaddr (or) ZR R7
2,X'26' (or) M.CALL H.VOMM,7

arga

cnpaddr

contains a PN vector, a PNB vector, an RID vector, an LFC, or an FCB

is a CNP address or zero if CNP not supplied

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CC I set)

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignmentl Allocation and I/O chapter of Volume I.

MPX·32 Reference Volume I 6·177

M.TSCAN

6.2.125 M.TSCAN - Scan Terminal Input Buffer

The M.TSCAN service parses the line buffer pointed to by T.LINBUF. The service is
used by tasks to scan a line of tenninal input The parameters (fields) to be scanned
are in the user's line buffer. Each call to M.TSCAN returns one parameter from the
line buffer and updates the current scan position. When a call returns a zero in R5 and
a carriage return in R4, end of line (EOL) has been reached. Each read from the
terminal reinitializes the line buffer and the pointer.

The base mode equivalent service is M_TSCAN.

Entry Conditions

Calling Sequence

M.TSCAN

(or)

SVC l,X'5B' (or) M.CALL H.TSM,2

Exit Conditions

6·178

Return Sequence

M.RTRN 4,5,6,7

(or)

M.RTRN CC I set if a line buffer is not found.

Registers

R4 contains the delimiting character; carriage return if CC 1 set

R5 number of significant characters before delimiter; zero if CCl set

R6,7 first eight characters of the character string, left-justified. The entire
character string is in words 0 through 3 of the tenninal line buffer.

Notes:

For nonbase mode tasks, the tenninal line buffer address can be obtained
by accessing the T.LINBUF variable in the TSA.

M.TSCAN ignores all blanks encountered before the first parameter or delimiter. If
M. TSCAN encounters a delimiter before the first parameter, it continues to ignore all
blanks until encountering the first parameter.

The M.RWND service resets the cursor at the first parameter of the current input line.
M.TSCAN scans the line without any additional IDCS calls.

Nonbase Mode System Services

o

(

M.TSMPC

6.2.126 M.TSMPC - TSM Procedure Call

The M.TSMPC service receives TSM procedure call directive strings and returns the
results of the directive or an error message to the user-supplied buffer. The service
supports the following procedure call directives: $BATCH, $DIRECTORY, $ERR,
$GETPARM, $LINESIZE, $PAGESIZE, $PROJECT, $RRS, $SET, $SETI, $TABS,
and $VOLUME.

The maximum size input string is 72 characters. The size of the output string depends
on the input directive as follows:

Directive

$BATCH

$DIRECTORY

$ERR

$GETPARM

$LINESIZE

$PAGESIZE

$PROJECT

$RRS

$SET/$SETI

$TABS

$VOLUME

Maximum Output

no output for normal processing

16-character directory name from the M.KEY file

212 characters and two carriage control characters (CRlLF)
per line for an abort code definition. The ASCII control
characters for LF and CR delimit the lines returned
from $ERR.

72 characters for a parameter value. If the specified
parameter exists but has not received a value, the
parameter name is returned. If the parameter does not exist,
an error message is returned.

no output for normal processing

no output for normal processing

8-character project name from the M.KEY file

variable length RRS entry for the user-supplied
LFC assignment

no output for normal processing

8 tab settings from the M.KEY file

16-character volume name from the M.KEY file

Error messages are a maximum of 80 characters and two ASCII control characters
(CRlLF) as EOL delimiters.

R 7 must be zero on entry to this service.

Refer to the Notes section below for information on the syntax of the directives.

The base mode equivalent service is M_TSMPC.

MPX-32 Reference Volume I 6-179

M.TSMPC

Entry Conditions

Calling Sequence

M.TSMPCpcb

(or)

LA Rl,pcb
ZR R7
SVC 2,X'AE' (or) M.CALL H.TSM,17

pcb is the address of a 4-word procedure call block (PCB)

Procedure Call Block (PCB)

The PCB contains the infonnation necessary for the service to complete a procedure
call. The fonnat of the PCB is as follows:

o 7 8 15 16 23 24 31

I Send buffer address (PCB.SBA) Word 0

1

2

3

Send quantity (pCB.SQUA)

IReturn buffer address (pCB.RBA)

Actual return length (PCB.ACRP) I Return buffer length (pCB.RPBL)

Send buffer address

Send quantity

Return buffer address

Actual return length

Return buffer length

is the address of a character string that represents a valid
TSM procedure call directive

contains the length in bytes of the TSM procedure call
directive

is the address of a buffer to contain either valid return
infonnation or an error message if CC 1 is set and R7
contains a value of 1

is the number of bytes returned from the procedure call

is the size of the supplied return buffer

Exit Conditions

6-180

Return Sequence

M.RTRN

or

M.RTRN R7 (CCI set)

Nonbase Mode System Services

(~

M.TSMPC

Registers

R7 Return status if error; otherwise, zeroed.

Status
CCI set

Posted in R7

Value

1
2
3
4
5
6
7
8
9

Description

return buffer contains error message
invalid send buffer address
send buffer size is zero
send buffer too long
invalid return buffer address
return buffer size is zero
return data has been truncated
invalid PCB address
invalid SVC from a non-TSM task

Note: For the syntax of the $BATCH, $ERR, $LINESIZE, $PAGESIZE, $SET, and
$SETI directives, refer to the MPX-32 Reference Manual Volume II, Chapter
1. The $RRS directive is similar to the $ASSIGN directive. Refer to the
$ASSIGN directive syntax in the MPX-32 Reference Volume II, Chapter 1
and specify $RRS rather than $ASSIGN. The syntax for $DIRECTORY,
$PROJECT, $TABS, and $VOLUME is the directive name or its 4-character
abbreviation plus $ if used. These directives display information only. The
syntax of the $GETPARM directive is as follows:

$GETP ARM parm

parm is the name of a parameter defined in the directive file
associated with the task. No percent sign precedes the
parameter name.

MPX-32 Reference Volume I 6-181

M.TSTE

6.2.127 M.TSTE - Arithmetic Exception Inquiry

The M.TSTE service resets the arithmetic exception status bit in the user's TSA and
returns CC 1 set or reset according to the status value. The status bit is set whenever
the user is in execution and an arithmetic exception trap occurs. The bit remains set
until this service is requested or the task terminates.

This service can be executed by the IPU.

The base mode equivalent service is M _ TSTE.

Entry Conditions

Calling Sequence

M.TSTE

(or)

SVC 1,X'4D' (or) M.CALL H.REXS,23

Exit Conditions

Return Sequence

M.IPURTN

None

Registers

PSD CC 1 contains the value of the arithmetic exception status bit

6-182 Nonbase Mode System Services

M.TSTS

6.2.128 M.TSTS - Test User Status Word

The M.TSTS service returns the 32-bit user status word of any executing task. The
user status word resides in the CPU dispatch queue (DQE.USW) and is modified by
the Set User Status Word (M.SETS) system service. These services treat the user
status word as either a set of 32 flags or as a 32-bit counter. Bit 0 is used as a status
flag.

The base mode equivalent service is M_TSTS.

Entry Conditions

Calling Sequence

M.TSTS task

(or)

ZR
LW
SVC

R6
R7,taskno
1,X'49'

} (or) LD R6,taskname

(or) M.CALL H.REXS,8

task the address of a double word containing the name of a task or zero in
word 1 and the task number in word 2. Task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

Exit Conditions

Return Sequence

M.RTRNR7

Registers

R7 bit 0 is set if the specified task was not found or the requesting task is not
privileged and the owner name is restricted by the M.KEY file from
access to tasks with a different owner name; otherwise, R7 returns the
user-status word

MPX-32 Reference Volume I 6-183

M.TSTT

6.2.129 M.TSTT - Test Timer Entry

The M.TSTT service returns to the caller the negative number of time units remaining
until the specified timer entry timeout. If the timer has expired, zero is returned.

This service can be executed by the IPU.

The base mode equivalent service is M_TSTT.

Entry Conditions

Calling Sequence

M.TSTT timer

(or)

LW R6,timer
SVC 1,X'46' (or) M.CALL H.REXS,5

timer is the 2-character ASCII name of a timer, right-justified

Exit Conditions

6-184

Return Sequence

M.RTRN7

Registers

R7 contains the negative number of time units remaining until time out or
contains zero if the timer has expired or does not exist

Nonbase Mode System Services

£'
\

(/

M.TURNON

6.2.130 M.TURNON - Activate Program at Given Time-of-Day

The M.TURNON service activates or resumes a specified task at a specified time and
reactivates or resumes it at specified intervals. M.TURNON creates a timer table
entry using a specified timer ID. When a load module or executable image name is
supplied, MPX-32 defaults to a search in the system directory only. For activations in
other than the system directory. a pathname or an RID vector must be supplied.

The base mode equivalent service is M_TURNON.

Entry Conditions

Calling Sequence

M.TURNON filename,time,[reset1,timerid

(or)

LD
LW
LW
LW
SVC

R6/dename
R4,time
RS,reset
R3,timerid
I,X'IE' (or) M.CALL H.REXS,66

filename is a left-justified blank-filled doubleword containing the 1- to 8-
character ASCII name of a system load module, executable image file,
the pathname vector, or RID vector pointing to the task to be activated
in R6, and zero in R7.

time

reset

timerid

is the time-of-day on the 24-hour clock when the task is activated. It is
a word value with the following format:

Byte Contents in Binary

o hours
1 minutes
2 seconds
3 zero

is the time interval on the 24-hour clock to elapse before resetting the
clock upon each time out. It has the same format as the time argument
above. The task is reactivated at each time out. If a reset value is not
specified, the comma denoting the field must still be specified and the
task is activated only once.

is a word variable containing the right-justified, zero-filled, 2-character
ASCII name of the timer that will be created

MPX-32 Reference Volume I 6-185

M.TURNON

Exit Conditions

6-186

Return Sequence

M.RTRN R3 nonzero

Error Condition

M.RTRN R3 zero if there are no timer entries available, the requested load
module or executable image does not exist,requested duplicate
timer 10 already exits or invalid timer ID

Nonbase Mode System Services

C-'" . !

J

o

(~

(/

M.TYPE

6.2.131 M. TYPE - System Console Type

The M.TYPE service types a user specified message and optionally reads from the
system console. Input message address is validated for the unprivileged task. The
operation is wait I/O.

If a response is not detected within 30 seconds of an M.TYPE, the M.TYPE
terminates with 0 bytes transferred if there is any queued console I/O. If a response is
detected within 30 seconds of an M.TYPE, the read does not timeout.

The maximum input or output is 80 characters. If no characters are specified, the
maximum is used.

M.TYPE builds a type control parameter block (TCPB) that defines the I/O buffer 24-
bit addresses for console messages and reads.

The base mode equivalent service is M_ TYPE.

Entry Conditions

Calling Sequence

M. TYPE outmess,outcount[,inmess ,incount]

(or)

LA Rl,tcpb
SVC 1,X'3F' (or) M.CALL H.IOCS,14

outmess
outcount
inmess

incount
tcpb

Exit Conditions

is the 24-bit address of the output message buffer

is the transfer count for output. Up to 80 bytes can be transferred.

is the 24-bit address of the input message buffer. If not specified,
TCPB word 2 is zeroed. The first byte of this field contains the actual
input quantity.

is the transfer count for input. Up to 80 bytes can be transferred.

is the address of the TCPB

Return Sequence

M.RTRN

Abort Cases

I003 AN UNPRIVILEGED TASK IS ATTEMPTING TO READ DATA
INTO PROTECTED MEMORY

I015 A TASK HAS REQUESTED A TYPE OPERATION AND THE TYPE
CONTROL PARAMETER BLOCK (TCPB) SPECIFIED INDICATES
THAT AN OPERATION ASSOCIATED WITH THAT TCPB IS
ALREADY IN PROGRESS

MPX·32 Reference Volume I 6-187

M.UNLOCK

6.2.132 M.UNLOCK - Release Exclusive Resource Lock

The M.UNLOCK service releases an exclusive resource lock set with the Set
Exclusive Resource Lock (M.LOCK) service. An exclusive resource lock can not be
released by a task other than the owning task. When called, the exclusive lock is
released if the task allocated the resource in a shareable mode; otherwise, the lock
cannot be released until the resource is deallocated. Once the lock is released, other
tasks can allocate the resource in a compatible access mode for the particular shared
usage. However, another task cannot exclusively lock the resource until this task, and
all other sharing tasks, deallocate the resource. Any outstanding exclusive resource
locks are released on task termination or on resource deallocation.

The base mode equivalent service is M_UNLOCK.

Entry Conditions

Calling Sequence

M.UNLOCK arga[,cnpaddr]

(or)

LW R5,arga
LA R 7 ,cnpaddr (or) ZR R 7
SVC 2,X'45' (or) M.CALL H.REMM,24

arga

cnpaddr

is the address of the allocation index obtained when the resource was
assigned (or) the address of a file control block (FCB) which contains
an LFC in word 0

is the address of a caller notification packet (CNP) if notification is
desired

Applicable portions of the CNP for this function are abnormal return
address and status field.

Exit Conditions

6-188

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CC I set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 contains the return status if a CNP is not supplied; otherwise, unchanged

Nonbase Mode System Services

(~)

Status

CCI set

Posted in R 7 or the status field of the CNP:

Value

29
30
32
33
46

Description

specified LFC not assigned by this task
invalid allocation index
an exclusive resource lock was not owned by this task
resource is not allocated in a shareable mode by this task
unable to obtain resource descriptor lock (applicable
for a multiprocessor only)

MPX·32 Reference Volume I

M.UNLOCK

6·189

M.UNSYNC

6.2.133 M.UNSYNC - Release Synchronous Resource Lock

The M.UNSYNC service is used with the Set Synchronous Resource Lock
(M.SETSYNC) service to perfonn gating on resources allocated for explicit shared
use. When the service is called, the synchronization lock is released, and all tasks
waiting to own the lock are polled.

A synchronization lock may not be cleared by any task other than the one that set the
lock.

A synchronization lock is automatically released when a task tenninates or deallocates
the resource.

The base mode equivalent service is M _ UNSYNC.

Entry Conditions

Calling Sequence

M.UNSYNC arga[,cnpaddr]

(or)

LW R5,arga
LA R7,cnpaddr (or) ZR R7
SVC 2,X'47' (or) M.CALL H.REMM,26

arga

cnpaddr

is the address of the allocation index obtained when the resource was
assigned

(or)

is the address of a file control block (FCB) which contains an LFC in
word 0
is the address of a caller notification packet (CNP) if notification is
desired

Applicable portions of the CNP for this function are abnormal return
address and status field.

Exit Conditions

6·190

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

Nonbase Mode System Services

o

o

(

(~

M.UNSYNC

Registers

R7 contains the return status if a CNP is not supplied; otherwise, unchanged

Status

Cel set

Posted in R7 or the status field of the CNP:

Value

29
30
32
46

Description

specified LFC was not assigned by this task
invalid allocation index
synchronization lock was not set
unable to obtain resource descriptor lock (multiprocessor only)

MPX-32 Reference Volume I 6-191

M.UPRIV

6.2.134 M.UPRIV - Change Task to Unprivileged Mode

The M.UPRIV service allows a task that was cataloged as privileged to operate in an
unprivileged state. This causes the calling task's protection image to be loaded at
every context switch. See the M.PRIV service to reinstate privilege status.

The base mode equivalent service is M _ UNPRIVMODE.

Entry Conditions

Calling Sequence

M.UPRIV

(or)

SVC 2,X'58' (or) M.CALL H.REXS,79

Exit Conditions

6-192

Return Sequence

M.RTRN

Nonbase Mode System Services

(

M.UPSP

6.2.135 M.UPSP - Upspace

If the M. UPSP service writes a volume record header if bottom of tape (BOT) is
encountered or performs an Erase/Write EOF if end of tape (EOT) is encountered on
multivolume magnetic tape. The M.UPSP service is not applicable to blocked or SYC
files.

The base mode equivalent service is M_UPSP.

Entry Conditions

Calling Sequence

M.UPSPfeb

(or)

LA RI.feb
SVC I,X'IO' (or) M.CALL H.IOCS,20

feb is the FCB address

Registers

R I FCB address

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

1006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED
FILE ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS
IMPROPERLY BLOCKED (2) BLOCKING BUFFER IS
DESTROYED, OR (3) TRANSFER ERROR DURING FILE
INPUT.

1009 ILLEGAL OPERATION ON THE SYC FILE

Output Messages

Mount/dismount messages if EOT on multivolume magnetic tape.

MPX·32 Reference Volume I 6-193

M.VADDR

6.2.136 M.VADDR - Validate Address Range

The M.VADDR service verifies the specified logical address provided.

The base mode equivalent service is M_ VADDR.

Entry Conditions

Calling Sequence

M. V ADDR addr ,bytes

(or)

LW R6,addr
LI R7,bytes
SVC 2,X'59' (or) M.CALL H.REXS,33

addr is the logical starting address of validation

bytes is the number of bytes to validate

Exit Conditions

6-194

Return Sequence

M.RTRN

Registers

CC2 set
CC3 set
CC4 set
RO-R7

address range crosses map block boundary
locations specified are protected
invalid address (not in caller's address space)
unchanged

Nonbase Mode System Services

c

o

(

('

M.WAIT

6.2.137 M. WAIT - Wait I/O

The M.W AIT service returns to the user when the I/O request associated with the
specified FCB is complete. The task is suspended until I/O completes.

The base mode equivalent service is M _WAIT.

Entry Conditions

Calling Sequence

M.WAITfcb

(or)

LA RItcb
SVC I,X'3C' (or) M.CALL H.IOCS,25

fcb is the FCB address

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

MS31 USER ATTEMPTED TO GO TO THE ANY-WAIT STATE FROM AN
END-ACTION ROUTINE

MPX·32 Reference Volume I 6-195

M.WEOF

6.2.138 M.WEOF - Write EOF

The M.WEOF selVice perfonns the following functions:

• prevents a write to a read-only file

• issues an end-of-file and purge if the file is a blocked file with an active blocking
buffer

• writes a software EOF record (a 192-word record with X'OFEOFEOF' in its first
word) immediately following the last record of an unblocked file created with
EOFM=F

• writes volume record if BOT is encountered on multivolume magnetic tape

• perfonns an erase and write EOF if EOT is encountered on multivolume magnetic
tape

The base mode equivalent service is M_ WRITEEOF.

Entry Conditions

Calling Sequence

M.WEOFfcb

(or)

LA Rl/cb
SVC l,X'38' (or) M.CALL H.IOCS,5

fcb is the FCB address

Exit Conditions

6-196

Return Sequence

M.RTRN

Abort Cases

1009 ILLEGAL OPERATION ON THE SYC FILE
1030 ILLEGAL OR UNEXPECTED VOLUME NUMBER OR REEL ID

ENCOUNTERED ON MAGNETIC TAPE

Output Messages

Dismount/mount messages if EOT encountered on multivolume magnetic tape.

Nonbase Mode System Services

c

()

("

(

6.2.139 M.WRIT - Write Record

The M,WRIT service perfonns the following functions:

• prevents a write to a read-only file

• provides special random access handling for disk files

• blocks records for system and blocked files

• writes volume record if BOT on multivolume magnetic tape

• perfonns an erase and write EOP if EOT on multivolume magnetic tape

• writes one record from the buffer pointed to by the TCW in the PCB

The base mode equivalent service is M _ WRITE.

Entry Conditions

Calling Sequence

M.WRITfcb

(or)

LA RIfcb
SVC 1,X'32' (or) M.CALL H.IOCS,4

fcb is the FCB address

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

M.WRIT

1006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED
FILE ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS
IMPROPERLY BLOCKED (2) BLOCKING BUFFER IS
DESTROYED, OR (3) TRANSFER ERROR DURING FILE
INPUT.

1009 ILLEGAL OPERATION ON THE SYC FILE
1038 WRITE ATTEMPTED ON UNIT OPENED IN READ-ONLY MODE.

A READ-WRITE OPEN WILL BE FORCED TO READ-ONLY IF
TASK HAS ONLY READ ACCESS TO UNIT.

RM02 ACCESS MODE NOT ALLOWED

Output Messages

Dismount/mount messages if EOT on multivolume magnetic tape.

MPX-32 Reference Volume I 6-197

M.XBRKR

6.2.140 M.XBRKR - Exit from Task Interrupt Level

The M.xBRKR service must be called after executing a task interrupt routine. This
service transfers control back to the point of interruption and resets the interrupt to the
level established before the break or M.INT.

The base mode equivalent service is M _ XBRKR.

Entry Conditions

Calling Sequence

M.xBRKR

(or)

SVC 1,X'70' (or) M.CALL H.REXS,48

Exit Conditions

6-198

Return Sequence

M.RTRN

Abort Cases

RX34 TASK HAS MADE A BREAK RECEIVER EXIT CALL WHILE NO
BREAK IS ACTIVE

Nonbase Mode System Services

/ ~-- ",

(

L­,-,

M.XIEA

6.2.141 M.XIEA - No-Wait 1/0 End-Action Return

The M.xIEA service exits any no-wait I/O end-action routine. Both normal and error
end-action routines must use this exit.

The base mode equivalent service is M_XIEA.

Entry Conditions

Calling Sequence

M.XIEA

(or)

SVC l,X'2C' (or) M.CALL H.IOCS,34

Exit Conditions

Return Sequence

BL S.EXEC6 no-wait I/O postprocessing complete

MPX·32 Reference Volume I 6-199

M.XMEA

6.2.142 M.XMEA - Exit from Message End-Action Routine

The M.xMEA service exits the end-action routine associated with a no-wait message
send request.

The base mode equivalent service is M_XMEA.

Entry Conditions

Calling Sequence

M.XMEA

(or)

SVC 1,X'7E' (or) M.CALL H.REXS,50

Exit Conditions

6-200

Return Sequence

M.RTRN return is to interrupt context at message interrupt or task base level

Abort Cases

RX99 TASK HAS MADE A MESSAGE END-ACTION ROUTINE EXIT
WHILE THE MESSAGE INTERRUPT WAS NOT ACTIVE

Nonbase Mode System Services

()

M.XMSGR

6.2.143 M.XMSGR· Exit from Message Receiver

The M.xMSGR service must be called to exit the message receiver code of the calling
task after the task has received a message from another task.

The base mode equivalent service is M _ XMSGR.

Entry Conditions

Calling Sequence

M.XMSGR [rxbaddr]

(or)

LA R2,rxbaddr
SVC I,X'SE' (or) M.CALL H.REXS,39

rxbaddr is the logical address of the receiver exit block (RXB)

Exit Conditions

Return Sequence

M.RTRN return is to interrupt context at task base level

Abort Cases

RX93 AN INVALID RECEIVER EXIT BLOCK (RXB) ADDRESS WAS
ENCOUNTERED DURING MESSAGE EXIT

RX94 AN INVALID RECEIVER EXIT BLOCK (RXB) RETURN BUFFER
ADDRESS WAS ENCOUNTERED DURING MESSAGE EXIT

RX95 TASK HAS MADE A MESSAGE EXIT WHILE THE MESSAGE
INTERRUPT WAS NOT ACTIVE

MPX-32 Reference Volume I 6-201

M.XREA

6.2.144 M.XREA - Exit from Run Request End-Action Routine

The M.XREA service exits the end-action routine associated with a no-wait run
request.

The base mode equivalent service is M_XREA.

Entry Conditions

Calling Sequence

M.XREA

(or)

SVC 1,X'7F' (or) M.CALL H.REXS,51

Exit Conditions

6-202

Return Sequence

M.RTRN return is to interrupt context at message interrupt or task base level

Abort Cases

RX90 TASK HAS MADE A RUN REQUEST END-ACTION ROUTINE
EXIT WHILE THE RUN REQUEST INTERRUPT WAS NOT
ACTIVE

Nonbase Mode System Services

o

M.XRUNR

6.2.145 M.XRUNR - Exit Run Receiver

The M.XRUNR service exits a task that is executing for a run request issued from
another task.

The base mode equivalent service is M_XRUNR.

Entry Conditions

Calling Sequence

M.XRUNR rxbaddr

(or)

LA R2,rxbaddr
SVC 1,X'7D' (or) M.CALL H.REXS,49

rxbaddr is the logical address of the receiver exit block (RXB)

Exit Conditions

Return Sequence

The run-receiver queue is examined. If the queue is not empty, the task is executed
again on behalf of the next request. If the queue is empty, the exit options in the
RXB are examined. If the option byte is zero, the task is placed in a wait state,
waiting for the next run request to be received. If the option byte is nonzero, the task
exits the system.

Note: If the task is re-executed, control is transferred to the instruction following
the M.XRUNR call.

Abort Cases

RX96

RX97

RX98

AN INVALID RECEIVER EXIT BLOCK (RXB) ADDRESS WAS
ENCOUNTERED DURING RUN RECEIVER EXIT

AN INVALID RECEIVER EXIT BLOCK (RXB) RETURN BUFFER
ADDRESS WAS ENCOUNTERED DURING RUN RECEIVER EXIT

TASK HAS MADE A RUN RECEIVER EXIT WHILE THE RUN
RECEIVER INTERRUPT WAS NOT ACTIVE

MPX·32 Reference Volume I 6·203

M.XTIME

6.2.146 M.XTIME· Task CPU Execution Time

The M.xTIME service returns to the caller the total accumulated processor execution
time in microseconds since the initiation of the task. If an IPU is present and IPU
accounting is enabled, the time returned includes accumulated IPU execution time, if
any. If the calling task is in the real time priority range and real time accounting is
turned off, the returned time will be zero.

The base mode equivalent service is M _ XTIME.

Entry Conditions

Calling Sequence

M.XTIME

(or)

SVC 1,X'2D' (or) M.CALL H.REXS,65

Exit Conditions

6-204

Return Sequence

M.RTRN 6,7

Registers

R6,R7 CPU execution time in microseconds

Note: For a task running at real time priority (1-54) real time accounting must be on
(ONRA) for the M.XTIME service to return the correct time.

Nonbase Mode System Services

(

(

Nonmacro-Callable System Services

6.3 Nonmacro-Callable System Services

The following system services are not in the system macro library but can be accessed
by the methods indicated for each service.

MPX-32 Reference Volume I 6-205

Allocate File Space

6.3.1 Allocate File Space

The Allocate File Space service examines the space allocation map (SMAP) on the
specified volume to locate a specified number of available contiguous allocation units.
When a sufficiently long string of zero bits is located in the SMAP, the bit string is
set to all ones and the SMAP is rewritten to the volume. The segment definition of
the corresponding file space is returned to the caller.

The user must be privileged. This service is used in clean-up mode for volume
mounting or in normal mode.

6.3.1.1 Clean-up Mode

This is indicated by bit one of Rl being set. In this mode, I/O is not performed
because the SMAP is assumed in memory. The FCB should have valid values for
FCB.ERWA, FCB.RECL, FCB.EQTY and FCB.ERAA. FCB.ERAA should contain
the EOM block number for SMAP, for example, FCB.RECLl192W.

6.3.1.2 Normal Mode

Bit zero of the flags should be reset, the other flag bits are then ignored. The input
FCB is also ignored. If a start block is specified, it is honored if possible; otherwise,
an error is produced.

Entry Conditions

6-206

Calling Sequence

M.CALL H.VOMM,19

Registers

Rl contains the FCB address and flags
R4 contains the starting block address or zero if anywhere
R5 contains the requested space size in blocks
R6 contains the MVTE address

Nonbase Mode System Services

(.--'.

y

(Exit Conditions

Return Sequence

M.RTRN R4,RS

(or)

M.RTRN R7 (CC 1 set)

Registers

contains the file segment definition

Allocate File Space

R4,R5

R7 contains the return status. For return status codes, refer to the H. VOMM
status codes in the Resource Assignment! Allocation and I/O chapter of
Volume I.

MPX·32 Reference Volume I 6·207

Allocate Resource Descriptor

6.3.2 Allocate Resource Descriptor

The Allocate Resource Descriptor service examines the resource descriptor allocation
map (DMAP) on the specified volume to locate an available resource descriptor (RD).
When a zero bit is located in the DMAP, the bit is set to I and the DMAP is rewritten
to the volume. The disk address of the corresponding RD is returned to the caller.

If an RD is not available, the DMAP is automatically extended by allocation of
available space on the volume. The DMAP is then re-examined as described above.

The user must be privileged.

Entry Conditions

Calling Sequence

M.CALL H.VOMM,17

Registers

Rl contains the FCB address with valid FCB.ERWA and FCB.EQTY

R6 contains the MVTE address

Exit Conditions

6-208

Return Sequence

M.RTRN R4

(or)

M.RTNA R7 (CC 1 set)

Registers

CCI reset
R4

contains the successful operation

contains the RD disk address

(or)

contains the error condition CCI set

R7 contains the return status. For return status codes, refer to the
H.VOMM status codes in the Resource Assignment/Allocation and I/O
chapter of Volume I.

Nonbase Mode System Services

("'" ,I

\'
/

(-
Create Temporary File

6.3.3 Create Temporary File

The Create Temporary File service creates a temporary file. The user must be
privileged. The mounted volume table entry (MVTE) and starting block can be
specified. This service functions as follows:

6.3.3.1 VOMM Internal Call

The file space is obtained and the RD is built in the system buffer. System FCB is
held open, assigned to the RD, but the RD is not written to disk.

6.3.3.2 External Call

The file space is obtained and the RD is built in the system buffer. The RD is written
to disk, and the system FCB is deassigned.

6.3.3.3 Default File Attributes

The temporary file is created with owner SYSTEM and no project group. AU access
is allowed, EOF management is inhibited, and the file is nonsegmented and
nonextendible.

6.3.3.4 Volume Selection

If MVTE is not specified, a mounted volume is selected as follows:

Value Description

a the current working volume is tried first
b the system volume is tried next
c public mounted volumes are tried next in MVT order

Entry Conditions

Calling Sequence

M.CALL H.VOMM,24

Registers

R4 contains the starting block address or zero if anywhere
R5 contains the number of blocks required
R6 contains the MVTE or zero if anywhere

MPX-32 Reference Volume I 6-209

Create Temporary File

Exit Conditions

6-210

Return Sequence

CC 1 set contains the error
R4 contains the starting block
R5 contains the size in blocks
R6 contains the MVTE

The RD for the created file is in the system buffer.

R 7 contains the return status. For return status codes, refer to the H. VOMM
status codes in the Resource Assignment! Allocation and I/O chapter of
Volume I.

Nonbase Mode System Services

(/

Deallocate File Space

6.3.4 Deallocate File Space

The Deallocate File Space service updates the space allocation map (SMAP) on the
specified volume in order to mark the specified file space as available. The user must
be privileged.

Entry Conditions

Calling Sequence

M.CALL H.VOMM,20

Registers

R4,R5
R6

Exit Conditions

contains the file segment definition
contains the MVTE address

Return Sequence

M.RTRN

(or)

M.RTRN R7 (CCI set)

Registers

R7 contains return status. For return status codes, refer to the H.VOMM
status codes in the Resource Assignment! Allocation and I/O chapter of
Volume I.

MPX-32 Reference Volume I 6-211

Deallocate Resource Descriptor

6.3.5 Deallocate Resource Descriptor

The Deallocate Resource Descriptor service allows privileged users to update the
resource descriptor allocation map (DMAP) on the specified volume to mark the
specified resource descriptor (RO) as available.

Entry Conditions

Calling Sequence

M.CALL H.VOMM,18

Registers

RI FCB address with valid FCB.ERWA and FCB.EQTY
R4 RD disk address
R6 MVTE address

Exit Conditions

6-212

Return Sequence

M.RTRN

(or)

M.RTRN R7 (CCI set)

Registers

R7 contains return status. For return status codes, refer to the H.VOMM
status codes in the Resource Assignmenti Allocation and I/O chapter of
Volume I.

Nonbase Mode System Services

o

Debug Link Service

6.3.6 Debug Link Service

The Debug Link service is used only by the interactive debugger when it transfers
control from the calling task to itself. The debugger places this SVC trap in the task
at the specified location.

Entry Conditions

Calling Sequence

SVC 1,X'66' (or) M.CALL H.REXS,42

Exit Conditions

Return Sequence

M.RTRN

MPX-32 Reference Volume I 6-213

Eject/Purge Routine

6.3.7 Eject/Purge Routine

The EjectlPurge Routine service perfonns the following functions:

• if a file is blocked and output active, issues a purge and returns to the user

• writes volume record if BOT is encountered on multivolume magnetic tape

• perfonns an erase and write EOF if EOT encountered on multivolume magnetic
tape

• eject is not applicable to SYC files

Entry Conditions

Calling Sequence

LA Rllcb
SVC I,X'OD' (or) M.CALL H.IOCS,22

fcb is the FCB address

Exit Conditions

6-214

Return Sequence

M.RTRN

Abort Cases

1009 ILLEGAL OPERATION ON THE SYC FILE

Output Messages

Mount/dismount messages if EaT is encountered on multivolume magnetic tape.

Nonbase Mode System Services

C1 . ../

Erase or Punch Trailer

6.3.8 Erase or Punch Trailer

The Erase or Punch Trailer service writes the volume record if BOT is encountered on
multivolume magnetic tape or performs an erase and write EOF if EOT is encountered
on multivolume magnetic tape.

Erase or punch trailer is not applicable to blocked or SYC files.

Entry Conditions

Calling Sequence

LA Rl/cb
SVC 1,X'3E' (or) M.CALL H.IOCS,21

fcb is the FCB address

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

1009 ILLEGAL OPERATION ON THE SYC FILE

Output Messages

Mount/dismount messages if EOT is encountered on multivolume magnetic tape.

MPX-32 Reference Volume I 6-215

Execute Channel Program

6.3.9 Execute Channel Program

The Execute Channel Program service is available to privileged users and allows
command and data chaining to General Purpose Multiplexer Controller (GPMC) and
extended I/O devices only. Logical execute channel is available to both privileged
and nonprivileged users. Physical execute channel is available only to privileged
users.

Entry Conditions

Calling Sequence

LA RI/cb
SVC I,X'2S' or M.CALL H.IOCS,lO

fcb is the FCB address

Exit Conditions

6-216

Return Sequence

M.RTRN

Abort Cases

I003 AN UNPRIVILEGED TASK IS ATTEMPTING TO READ DATA
INTO PROTECTED MEMORY

I043 INPUT/OUTPUT CONTROL LIST (IOCL) OR DATA ADDRESS
NOT IN CONTIGUOUS 'E' MEMORY (GPMC DEVICES ONLY)

1050 AN UNPRIVILEGED USER ATTEMPTED TO EXECUTE A
PHYSICAL CHANNEL PROGRAM

1051 A 'TESTSTAR' COMMAND WAS USED IN A LOGICAL CHANNEL
PROGRAM

1052 A LOGICAL CHANNEL WAS TOO LARGE TO BE MOVED TO
MEMORY POOL

1053 A 'TIC' COMMAND FOLLOWS A 'TIC' COMMAND IN A
LOGICAL CHANNEL PROGRAM

1054 A 'TIC' COMMAND ATTEMPTED TO TRANSFER TO AN
ADDRESS WHICH IS NOT WORD BOUNDED

1055 ILLEGAL ADDRESS IN LOGICAL IOCL. ADDRESS IS NOT
IN USER'S LOGICAL ADDRESS SPACE.

1056 A READ-BACKWARD COMMAND WAS USED IN A LOGICAL
CHANNEL PROGRAM

1057 ILLEGAL IOCL ADDRESS. IOCL MUST BE LOCATED IN THE
FIRST 128K WORDS OF MEMORY.

Nonbase Mode System Services

(

(

Get Extended Memory Array

6.3.10 Get Extended Memory Array

The Get Extended Memory Array service requests an array of extended memory. If
the request cannot be met, then all free memory, except 1/8 of the amount of physical
memory, is allocated to the task and a count of maps allocated is returned. This
service is intended for use by tasks that require the largest possible buffers without
being placed on the MRQ for an extended period.

Entry Conditions

Calling Sequence

LW Rl,maps
SVC 2,X'7F' (or) M.CALL H.MEMM,14

maps is the number of map blocks required

Exit Conditions

Return Sequence

M.RTRN

Registers

number of map blocks allocated R2
R3
R4

starting logical address of memory allocated or zero if an error occurred

ending logical address of memory allocated or error code as follows:

Value Description

1 CSECT overrun
2 request for more memory than physically exists
3 M.MEMB service in use
4 unable to allocate logically contiguous memory

R5 number of map blocks, all classes, that are now free

MPX·32 Reference Volume I 6·217

Read/Write Authorization File

6.3.11 Read/Write Authorization File

The Read/Write Authorization File service is available to privileged users for
perfonning the following functions:

• validates owner name and key and returning default infonnation, even if key is
invalid. Callable as M.CALL H.VOMM,25 only.

• validates project name and key. SVC callable by M.DEFT (H.VOMM,8).

The user must be privileged.

Entry Conditions

Calling Sequence

M.CALL H.VOMM,25

Registers

R2
R4,R5

R6,R7

zero validates owner name; one validates project name and key
contain the left-justified, blank-filled key, or R4 is zero and R5 contains
the compressed key
contain the left-justified, blank-filled name

Exit Conditions

6-218

Return Sequence

Registers

R2

R6,R7

CCI

contains the address of an area in T.BBUFA containing the authorization
entry, or zero if M.KEY file does not exist. The entry is two words for
project name and one word for compressed key.

unchanged if the name is valid. Both R6 and R 7 contain zero if the name
contains invalid characters, is not in the M.KEY file, or an incorrect key
is supplied.

is one if there is an unrecoverable I/O error

Nonbase Mode System Services

r(... ·.···~~
j

(

(~-

Release FHD Port

6.3.12 Release FHD Port

The Release FHD Port service releases the fixed head disk port reserved by the
Reserve PHD Port service. This release service is available only to privileged users
and is currently only supported by the four megabyte fixed head disk.

Entry Conditions

Calling Sequence

LA Rljeb
SVC 1,X'27' (or) M.CALL H.IOCS,27

feb is the FCB address

Exit Conditions

Return Sequence

M.RTRN

MPX·32 Reference Volume I 6·219

Reserve FHD Port

6.3.13 Reserve FHD Port

The Reserve PHD Port service reserves a fixed head port. This service is available
only to privileged tasks and is currently only supported by the four megabyte fixed
head disk.

Entry Conditions

Calling Sequence

LA Rl/cb
SVC 1,X'26' (or) M.CALL H.IOCS,24

fcb is the FCB address

Exit Conditions

6-220

Return Sequence

M.RTRN

Nonbase Mode System Services

o

(
Compatible System Services

6.4 Compatible System Services

This section contains H.ALOC, H.MONS, H.lOCS and H.FISE services that are
included for compatibility with 1.x and 2.x versions of MPX-32. Using compatible
services with noncompatible features, e.g., caller notification packet (CNP), is not
allowed.

The MPX-32 code for the support of the H.ALOC, H.MONS, and H.FISE services
can be optionally removed from the MPX-32 image by the SYSGEN NOCMS
directive. Attempted execution of an H.ALOC, H.MONS, or H.FISE service with the
support removed causes the calling task to abort with an SV09 abort code.

MPX·32 Reference Volume I 6-221

M.ALOC

6.4.1 M.ALOC - Allocate File or Peripheral Device

The M.ALOC service dynamically allocates a peripheral device, a penn anent disk file,
a temporary disk file, or a SLO or SBO file, and creates a File Assignment Table
(FAT) entry for the allocated unit and specified logical file code. This service may
also be used to equate a new logical file code with an existing logical file code.

Entry Conditions

6-222

Calling Sequence

M.ALOC retad,ljc/unction,arga,argb,[MOUNT],[UNBLOCKED][,W AIT]

(or)

LA
LI
SLL
ORMW
SBR
SBR
SBR
LA
LA
SVC

retad

ljc

function

Rl,retad
R5/unction
R5,24
R5,ifc
R5,O for MOUNT option inhibited
R5,1 for UNBLOCKED option
R5,2 for WAIT for resource requested
R6,arga
R7,argb
1,X'40' (or) M.CALL H.MONS,21

is the denial return logical address

is the 1 to 3-character ASCII logical file code to be assigned. The first
byte contains zero to accommodate the function code. The LFC is then
left-justified and blank-filled in the three remaining bytes.

is the function code as follows:

Value

1

2

3

4

5

Description

assign logical file code to a user or system
pennanent file
assign logical file code to a system file code -
the file must be blocked
assign logical file code to a peripheral device (if
the device is a disk drive, a fonnatted volume
must already be mounted on it)
assign logical file code to a defined logical file
code - the file must be blocked
assign logical file code to a system permanent
file only

Nonbase Mode System Services

(
.~

.~

o

(

M.ALOC

arga and argb are addresses of memory locations with contents unique to each
function as follows:

I arga is the I to 8 ASCII character permanent file name. If a user
name is not associated with the calling task, the system file of
the name specified is allocated. If a user name is associated
with the calling task, an attempt is made to allocate a user file
of the name specified. If unsuccessful, a system file is
allocated.

argb is ignored if specified

2 arga is the character string SLO or SBO in bytes I, 2, and 3

argb is the number of I92-word blocks required for allocation to the
file

3 arga is the device type code (see Appendix A, Table A-I) in byte 0
and optionally the channel number in byte 2 and the device
subaddress in byte 3. If the device sub address is present, the
most significant bit of byte 2 must be set. If the channel
number is present, bit 0 of byte 0 must be set. For magnetic
tape devices, byte I is the volume number or zero if single
volume.

argb if arga defines a disk file, this is the size of file (Le., the
number of I92-word blocks required). If arga defines a
magnetic tape, it is the 4-character reel identifier. For all other
devices, is zero.

4 arga is the previously defined logical file code

argb is zero

5 arga is the 1- to 8-character permanent file name of a system file

argb is ignored if specified

MOUNT specifies the mount message should not be sent

UNBLOCKED specifies the file being allocated is to be unblocked. If not
specified, the file is blocked automatically.

WAIT specifies the caller wishes to be queued for the resource and
relinquishes the CPU until the resource becomes available

MPX-32 Reference Volume I 6-223

M.ALOC

Exit Conditions

(or)

6-224

Return Sequence

M.RTRN

Registers

None

CC 1 is set in the program status doubleword if the calling task has read
but has not written access rights to the specified permanent file

Return Sequence

M.RTNA 1,6 denial returns if the requested file or device cannot be allocated

Registers

R6 equals zero if file or device is busy. Condition codes I to 4 are set as
follows:

Code Meaning if Set

CCI permanent file is exclusively locked
CC2 file lock table (FL T) is full
CC3 nonshared device is already allocated
CC4 disk space is not available

equals n if an error condition exists as described next. When R6 equals
n, are not applicable:

Value

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Condition Codes

permanent file does not exist
reserved
no FAT/FPT space available
no blocking buffer space available
shared memory table entry not found
reserved
dynamic common specified in ASSIGN 1
unrecoverable 110 error to directory
SGO assignment specified by terminal task
no UT file code exists for terminal task
invalid RRS entry
LFC in ASSIGN4 does not exit
assigned device not on system
device in use by requesting task
SGO or SYC assignment by real-time task
common memory conflicts with allocated task
duplicate LFC allocation attempted
call was incompatible

Nonbase Mode System Services

o

()

(.

M.ALOC

Abort Cases

MS16 TASK HAS REQUESTED DYNAMIC ALLOCATION WITH AN
INVALID FUNCTION CODE

Output Messages

MOUNT messages

MPX-32 Reference Volume I 6-225

M.CDJS

6.4.2 M.CDJS - Submit Job from Disk File

The M.CDJS service submits a job contained in a blocked permanent or temporary
disk file. Prior to calling this service, the specified file should be rewound to purge
the contents of the blocking buffer if it was dynamically built.

Entry Conditions

6-226

Calling Sequence

M.CDJS filename[,password]

(or)

LD
LD
SVC

R2,password
R6jilename
1,X'61' (or) M.CALL H.MONS,27

filename is the 1- to 8-character name of the blocked permanent disk file which
contains the job. If a user name is associated with the calling task, an
attempt is made to allocate a user file of the name specified. If
unsuccessful, a system file is allocated.

password

(or)

is zero in the first word and the address of a file control block
associated with a blocked temporary file in the calling task in the
second word.

Once submitted, the logical file code associated with the permanent or
temporary file is deallocated and may be reassigned.
is ignored if specified

Nonbase Mode System Services

(j

Exit Conditions

Return Sequence

M.RTRN7

Registers

R 7 zero if successful

(or)

M.CDJS

R7 bit 0 is set if the specified file does not exist, an invalid password was
specified, or the FCB is not associated with a temporary file; bits 1-31
are zero

(or)

R7 bit 1 is one if unable to activate system input task; bits 0, 2-31 are zero

MPX·32 Reference Volume I 6-227

M.CREATE

6.4.3 M.CREATE - Create Permanent File

The M.CREATE service allocates disk space for the specified pennanent file and
writes a corresponding entry into the specified directory. The allocated space can be
zeroed.

Entry Conditions

6-228

Calling Sequence

M.CREATE filename,blocks",,[RI P],password, [S] ,[N] ,[F], [type] [,Z]

(or)

LD
LW

[SBR
SBR
ZR
ZR

[~~RR
SBR
SVC

R6fzlename
R2,blocks

R2,2
R2,3

if N (not SAVE DEVICE file)]
if F (FAST file)

R3
R4 (or) LD R4,password
RI

RI,X'type' if type present
R I ,0 if S (system file)
RI,1 if Z (prezero)
I,X'7S' (or) M.CALL H.FISE,12

]
filename is a doubleword containing the I to 8 ASCII character, left-justified,

blank-filled name of the file. The operating system automatically
encloses the file name in single quotes; therefore, the single quote
character cannot be used in a file name.

blocks

[RIP]

password

[S]

[N]

[F]

is a variable word containing the size of the file specified as a multiple
of 192-word blocks

is ignored if specified

is ignored if specified

specifies the file is to be a system file. If not specified, the file is
created as a user file in the current user directory.
specifies the file is not to be saved in response to the SA VB DEVICE
File Manager directive
specifies the file is a fast file. If not entered, the file is created as a
slow file.

Nonbase Mode System Services

o

o

(j

(00'

M.CREATE

type is a 1- or 2-digit hexadecimal value that identifies the origin of the file.
File type codes are:

Value

00-39
40-5P
60-9F
AO-AF
BO
BA
BB
BC
BE
CO
CA
CE
CF
DO
DB
ED
EE
FD
FE
FF

Description

available for customer use
reserved for system
available for customer use
reserved for system
base mode object file
base mode shared image (or BASIC file)
base mode object library file
base mode macro library file
base mode load module file
spooled output file
cataloged load module
MPX-32/COFF executable image
MPX-32/COFF shared image
memory disk save task (J.MDSA VE) file
symbolic debugger command file
saved text editor file
stored text editor file
translated help file
text editor work file
SYSGEN generated file

[,Z] indicates the space allocated to the file is to be zeroed

Exit Conditions

Return Sequence

M.RTRN 6,7

Registers

R 7 zero if the file was not created; R6 contains the reason

R6 contains the reason the file was not created as follows:

Value

1
2

3
4
5

6
7

MPX·32 Reference Volume I

Description

file of the name specified already exists
fast file was specified and collision mapping occurred
with an existing directory entry
reserved
disk space is unavailable
specified device (channel and/or sub address) is not
configured, or no device of the type specified is available
specified device is off-line
directory is full

6·229

M.CREATE

6-230

Value Description

Abort Cases

8 specified device type (byte 1 of R3) is not configured
9 file name or password contains invalid characters or

imbedded blanks
10 access mode is invalid

FSOI UNRECOVERABLE I/O ERROR TO THE DIRECTORY

FS02 UNRECOVERABLE I/O ERROR TO FILE SPACE ALLOCATION
MAP

Nonbase Mode System Services

/- --. "',

(~

M.DALC

6.4.4 M.DALC - Deallocate File or Peripheral Device

The M.DALC service deallocates a peripheral device or disk file to which the
specified logical file code is assigned. Dynamic deallocation of a peripheral device or
permanent disk file makes that resource available to other tasks. Deallocation of SLO
and SBO files results in their definitions being passed to the assigned system output
device. If the specified logical file code was equated to other logical file codes in the
system, this service deallocates only the specified code.

Entry Conditions

Calling Sequence

M.DALC lfc

(or)

LW R5,ifc
SVC 1,X'41' (or) M.CALL H.MONS,22

ifc is the 1 to 3 ASCII character logical file code to be deallocated. The
LFC must be left-justified and blank filled in bytes 1,2, and 3. Byte 0
is zero unless the device is magnetic tape. If magnetic tape, bit 0 of
byte 0 set to 1 specifies the dismount message is to be displayed, but
the device is not deallocated; bit 0 of byte 0 reset to zero specifies the
dismount message is to be displayed and the device deallocated.

Exit Conditions

Return Sequence

M.RTRN

Output Messages

*task DISMOUNT reel FROM UNIT xx
*task DISMOUNT reel, VOL volno FROM UNIT xx

task is the load module name of the task requesting the magnetic tape unit to
be deallocated

reel is the reel identifier of the magnetic tape to be dismounted

volno is the volume number of the magnetic tape to be dismounted; if single
volume, this field is blank

xx is the device number of the nonshared magnetic tape unit from which the
tape is to be dismounted

MPX·32 Reference Volume I 6-231

M.DELETE
[~,

6.4.5 M.DELETE - Delete Permanent File or Non-SYSGEN Memory Partition ~j
The M.DELETE service deletes a permanent file or non-SYSGEN created memory
partition.

Entry Conditions

Calling Sequence

M.DELETE filename, [S] [,password]

(or)

LD R6Jzlename
ZR R3 (or) LI R3,G'S'
ZR R4 (or) LD R4,password
SVC I,X'77' (or) M.CALL H.FISE,14

filename

[S]

[,password]

is a doubleword containing the 1- to 8-character left justified, blank
filled name of an existing file to be deleted

specifies a system file is to be deleted. If not specified, the file is
assumed to be a user file whose user name is that which is associated
with the calling task.

is ignored if specified

Exit Conditions

6-232

Return Sequence

M.RTRN 6,7

Registers

R6,R7

R6

R7

unchanged if the deletion was successful

(or)

contains the reason that the specified file was not deleted:

Value

1

2
3

Description

file of the name specified does not exist or is a SYSGEN
created memory partition, or the file is allocated,
or no FL T space is available
invalid
access rights

zero if the specified file was not deleted

Abort Cases

FSOl
FS02

UNRECOVERABLE I/O ERROR TO THE DIRECTORY

UNRECOVERABLE I/O ERROR TO FILE SPACE ALLOCATION
MAP

, Nonbase Mode System Services

o

M.EXCL

6.4.6 M.EXCL· Free Shared Memory

The M.EXCL service allows a task to dynamically deallocate any common areas it has
previously shared using the M.SHARE service or included M.INCL service.

Entry Conditions

Calling Sequence

M.EXCL partition{,ownername I, tas/cno,TNUM}

(or)

LD R6,partition

LD R2,ownername } (or) L W R2,taskno
ZR R3

SVC 1,X'79' (or) M.CALL H.ALOC,14

partition is the name of the partition to be deallocated. The name must be
doubleword bounded, left-justified and blank-filled, such as
GLOBALOI

ownername is the owner name of the original owner of the partition

taskno is the left-justified task number of the original owner of the partition
TNUM specifies a task number is being used instead of an owner name

(.. Exit Conditions

Return Sequence

M.RTRN (or) abort user with AL39

Abort Cases

AL39 SHARED MEMORY ENTRY NOT FOUND

MPX-32 Reference Volume I 6-233

M.FADD

6.4.7 M.FADD - Permanent File Address Inquiry

The M.FADD service issues I/O directly. It provides the word address of the
beginning of a memory partition or the track, head, and sector address of the
beginning of a disk file. The device address for disk files is also included in the
result. Access restrictions are returned for disk files.

Entry Conditions

Calling Sequence

M.FADD name

(or)

LD R6,name
SVC I,X'43' (or) M.CALL H.MONS,2

name is a doubleword containing the 1- to 8-character ASCII, left-justified,
blank-filled permanent file name or partition name. If a file name is
specified, an attempt is made to locate the file in the current working
directory associated with the calling task. If the file is not found, an
attempt is made to locate the file in the system directory.

Exit Conditions for Case I, Denial Return

Return Sequence

M.RTRN7

Registers

R7 bit 0 is set to one indicating that the specified file name cannot be located;
bits 1-31 are zero

Exit Conditions for Case II, Memory Partition

Return Sequence

6·234

M.RTRN 6,7

Registers

R6 bit 0 is set to one indicating that the specified name is a memory
partition; bits 1-31 are the number of 512-word pages allocated to
partition

R7 contains the logical address of the first word of the specified partition

Nonbase Mode System Services

(t .
'\ __ /

(-
M.FADD

Exit Conditions for case III, Disk File

Return Sequence

M.RTRN6,7

Registers

R6 and R7 are returned with the address of the beginning of the disk file as follows:

0 5 6 12 13 15 16

I~ro I Device
address I~ I Track Number

1 7 8 15 16 23 24
Channel Device Head Sector
address sub address number number

The device address is the sum of the channel address and device subaddress. It is
positioned so that it may be ORed into a CD instruction (for nonmultiplexed and
nonextended devices).

The following additional parameters are returned:

31

31

• CC1 is set in the program status word if a password is required to write a read-only
file.

• CC2 is set if a password is required to read or write a password-only file.

• CC3 is set if the file is a system file or a core partition.

I

MPX·32 Reference Volume I 6-235

M.FILE

6.4.8 M.FILE - Open File

The M.FILE service perfonns the following functions:

• establishes appropriate linkages between a user FCB and an assigned file or device
• marks a file open for either update access or read-only operations. Increments

internal counts of tasks having the file open at this time.

• for SYC or SGO files, completes building the FAT based on job control
infonnation

• for system and blocked files, initializes the blocking buffer for subsequent accesss

• requests the initial mount message for statically allocated, nonshared magnetic tape
devices

Open requests to a file which is already opened are ignored.

Note: This system service is not excluded by the SYSGEN NOCMS directive.

Entry Conditions

Calling Sequence

M.FILE fcb[,RW]

(or)

LA
[SBR
SVC

fcb

[,RW]

RItcb
RI,I ifRW]
l,X'30' (or) M.CALL H.IOCS,l

is the FCB address

specifies update access to the file. If RW is not specified or if update
access is not compatible with existing access rights to the file, the file
is opened read-only.

Exit Conditions

6·236

Return Sequence

M.RTRN

Abort Cases

1020

RM29

AN ERROR HAS OCCURRED IN THE REMM OPEN PROCEDURE

INVALID FILE CONTROL BLOCK (FCB) ADDRESS OR
UNASSIGNED LFC IN FCB

Nonbase Mode System Services

o

o

M.FSLR

6.4.9 M.FSLR - Release Synchronization File Lock

The M.FSLR service is used for disk file gating. It is implemented with the Set
Synchronization File Lock service (M.FSLS) to control a synchronization lock
indicator. When M.FSLR is called, the synchronization lock is released, and the queue
of tasks waiting to own the lock is polled.

A synchronization lock can only be cleared by the task that set the lock.

A synchronization lock is automatically released when the owner task tenninates the
file is deallocated.

The locked file is deallocated.

Entry Conditions

Calling Sequence

M.FSLR lfca

(or)

LW R5,ifca
SVC I,X'24' (or) M.CALL H.FISE,25

lfca is the address of a word that contains an unused byte in byte 0, and a I­
to 3-character ASCII, left-justified, blank-filled logical file code in
bytes 1, 2, and 3

Exit Conditions

Return Sequence

M.RTRN R7

Registers

R7 Value Description

o request accepted, synchronization lock released
1 request denied, synchronization lock was not set
5 request denied, specified LFC not allocated
6 request denied, specified LFC is not assigned to a

permanent disk file

MPX·32 Reference Volume I 6·237

M.FSLS

6.4.10 M.FSLS - Set Synchronization File Lock

The M.FSLS service is used with the Release Synchronization File Lock service
(M.FSLR) for disk file gating. The M.FSLS and M.FSLR services control a
synchronization lock indicator that allows synchronized access to a disk file
concurrently allocated to multiple tasks. To use the M.FSLS service, the file must
have been previously allocated to the calling task.

Entry Conditions

Calling Sequence

M.FSLS ljca[,timev]

(or)

LW RS,ljca
LI R4,timev (or) ZR R4
SVC 1,x'23' (or) M.CALL H.FISE,24

ljca is the address of a word that contains an unused byte in byte 0, and a I­
to 3-character ASCII, left-justified, blank-filled logical file code in
bytes 1, 2, and 3

timev is a numeric value interpreted as follows:

Value Description

+ 1 return immediately with a denial code if the file
already has a synchronization lock set

o place the requesting task in a wait state until it
has become the owner of the synchronization lock

-n place the requesting task in a wait state until it
owns the synchronization lock, or until the expiration
of n timer units, whichever occurs first

Exit Conditions

6-238

Return Sequence

M.RTRN R7

Nonbase Mode System Services

o

o

(

Registers

R7

M.FSLS

Value Description

o request accepted, synchronization lock set
1 request denied, synchronization lock is already owned

by another task
2 request denied, time out occurred while waiting to

become lock owner
3 request denied, matching FLT entry not found
4 reserved
5 request denied, LFC not assigned to permanent disk file

MPX-32 Reference Volume I 6-239

M.FXLR

6.4.11 M.FXLR - Release Exclusive File Lock

The M.FXLR service is used in conjunction with the set exclusive file lock service
(M.FXLS) for disk file gating. When M.FXLR is called, the exclusive lock is
released and other tasks can allocate the associated disk file.

An exclusive file lock can not be released by a task other than the owning task.
Therefore, another task cannot exclusively lock the file until it is deallocated by the
owning task.

Any outstanding exclusive file locks are released on task tennination or on file
deallocation.

Entry Conditions

Calling Sequence

M.FXLR ljca

(or)

LW R5,ljca
SVC 1,X'22' (or) M.CALL H.FISE,23

ljca is the address of a word that contains an unused byte in byte 0, and a I­
to 3-character ASCII, left-justified, blank-filled logical file code in
bytes 1, 2, and 3

Exit Conditions

6-240

Return Sequence

M.RTRN R7

Registers

R7 Value Description

o request accepted, exclusive file lock released
29 request denied, specified LFC is not assigned by this task
30 request denied, invalid allocation index
32 request denied, an exclusive resource lock was not

owned by this task
33 request denied, resource is not allocated in a shareable

mode by this task

Nonbase Mode System Services

(

M.FXLS

6.4.12 M.FXLS - Set Exclusive File Lock

The M.FXLS service is used for disk file gating. It allows the calling task to gain
exclusive allocation of a file, as though the file were an unshared resource. The file
must have been previously allocated, and is identified by the address of logical file
code (LFC).

Entry Conditions

Calling Sequence

M.FXLS ljca[,timev]

(or)

LW
LI
SVC

R5,ljca
R4,timev (or) ZR R4
1,X'21' (or) M.CALL H.FISE,22

ljca is the address of a word that contains an unused byte in byte 0, and a I­
to 3-character ASCII, left-justified, blank-filled logical file code in
bytes 1, 2, and 3

timev is a numeric value interpreted as follows:·

Value Description

+1

o

-n

return immediately with a denial code if the file
is already allocated to another task
place the requesting task in a wait state until the
designated file can be exclusively locked
place the requesting task in a wait state until the
designated file can be exclusively locked, or until
the expiration of n timer units, whichever occurs first

Exit Conditions

Return Sequence

M.RTRNR7

Registers

R7 Value

0
1

2
3
4

6

MPX·32 Reference Volume I

Description

request accepted, file is exclusively locked
request denied, file is allocated to another task, or is
already exclusively locked
reserved
reserved
request denied, time out occurred while waiting to
become lock owner
request denied, LFC not assigned to permanent disk file

6·241

M.lNCL

6.4.13 M.lNCL - Get Shared Memory

The M.INCL service allows a task to dynamically include a memory partition into its
address space, e.g., GLOBALOI or DATAPOOL common. The task is suspended
until the inclusion is complete. The calling task that performs an M.INCL specifies
the owner name or task number, whichever was entered into the shared memory table.

Entry Conditions

Calling Sequence

M.INCL partition{,awnername I ,taskno} , [RW] ,[password] ,[denial][,TNUM]

(or)

LD
LD

ZR
ZR
ZR
LA

R6,partition
R2,awnername } (or)

RO
R4 (or) LD R4,password
R5
RO,denial
RO,O ifRW]

L W R2,taskno
ZR R3

[SBR
SVC 1,X'72' (or) M.CALL H.ALOC,13

partition is the doubleword-bounded, left-justified, blank-filled memory partition
name, such as GLOBALOI

awnername is the owner name of the original owner of the partition

taskno is the left-justified task number of the original owner of the partition

[RW] specifies read and write control desired

[password] is ignored if specified

[denial] is a denial retum address

[,TNUM] specifies a task number is being used instead of an owner name

Exit Conditions

6-242

Return Sequence

M.RTRN R3

Registers

R3 contains the starting address of the shared memory partition. This is a
20-bit address.

(or)

Nonbase Mode System Services

()

o

(-
M.RTNA

M.lNCL

RO,R3 for denial returns

R3 Value Description

1 entry not found in shared memory table
2 reserved
3 memory requirements conflict with task's

address space
4 entry not found in shared memory table after

returning from SWGQ state chain

RO address to return to within user task body

MPX·32 Reference Volume I 6·243

M.LOG

6.4.14 M.LOG - Permanent File Log

The M.LOG service provides a log of currently existing permanent files.

Entry Conditions

6-244

Calling Sequence

M.LOG type ,address[,filename]

(or)

LI R4,type
LA R5,address
LD R6,filename (if TYPE =N or 0)
SVC 1,X'73' (or) M.CALL H.MONS,33

type is a byte-scaled value which specifies the type of log to be performed
as follows:

address

[,filename]

Value Description

specifies a single named file in the current
working directory or system directory
specifies all permanent files in the current
working directory
specifies all permanent files in the system
directory
specifies all permanent files in the current
working directory
specifies a single named file in the system
directory

If type is N, an attempt is made to locate the file in the current working
directory associated with the calling task. If the file is not found, an
attempt is made to locate the file in the system directory.

is the address of an 8-word area within the calling task where a copy of
a SMD entry is to be stored

is a 1- to 8-character file name if type equals N or 0

Nonbase Mode System Services

(

(

c.·~ ..
. ~

Exit Conditions

Return Sequence

M.RTRN 4,5

M.LOG

An S-word SMD entry, if any, is stored at the address specified in address. The
password field contains zero to indicate the absence of a password.

Registers

R4 is zero if type is N or O. For type A, S, or U where the service is called
repeatedly, the type is specified only on the first call. R4 contains the
address of the next directory entry to be returned. R4 value must be
unchanged on subsystem calls to this service.

R5 contains zero if type equals N or 0 (R4 equals zero or four) or type is A,
S, or U (R4 equals one, two, or three) and file could not be found.
Otherwise, R5 is unchanged.

Abort Cases

MS28 A PERMANENT FILE LOG HAS BEEN REQUESTED, BUT THE
ADDRESS SPECIFIED FOR STORAGE OF THE DIRECTORY
ENTRY IS NOT CONTAINED WITHIN THE CALLING TASK'S
LOGICAL ADDRESS SPACE

Note: The M.LOO system service searches the memory resident descriptor table
(MDT) for resource descriptors before it searches the disk-resident resource
descriptors. For MDT information. refer to the Rapid File Allocation Utility
(J.MDTI) chapter in Volume II.

MPX-32 Reference Volume I 6-245

M.PDEV

6.4.15 M.PDEV - Physical Device Inquiry

The M.PDEV service returns physical device infonnation describing the unit to which
a specified logical file code is assigned.

Entry Conditions

Calling Sequence

M.PDEV ljc

(or)

LW R5,ljc
SVC I,X'42' (or) M.CALL H.MONS,1

ljc is a 1 to 3 ASCII character LFC, left-justified and blank filled, in bytes
1 to 3. For a system FATIFPf pair, bit 0 of byte is set.

Exit Conditions

(or)

6·246

Return Sequence

M.RTRN7

Registers

R7 zero if the specified logical file code is unassigned

Return Sequence

M.RTRN 4,5,6,7

Registers

R4 bit 0 is one for extended I/O (Class F) device; zero for all other device
classes
bits 1-7 are zero
byte 1 is zero
bytes 2 and 3 are 2-character ASCII device codes such as MT, DC, etc.}

R5 if disk, contains the number of 192-word blocks in file. If magnetic tape,
contains the 4-character ASCII reel identifier. For TSM terminal:

Byte Contents

2 number of hexadecimal characters in line
3 number of hexadecimal lines on screen

All other devices equal O.

R6 Bytes 0 and 1 maximum number of bytes transferrable to device
Byte 2 device channel number
Byte 3 device subaddress

Nonbase Mode System Services

C:
,/

R7 Byte 0

Byte 1
Bit 8
Bits 9-12
Bits 13-15

device type code as two hexadecimal digits.
See Appendix A.

zero if file is unblocked; one if file is blocked
zero
system file code, as follows:

Code Description

o not a system file
I SYC file
2 SGO file
3 SLO file
4 SBO file

M.PDEV

Bytes 2 and 3 for disk, the number of 192-word sectors per allocation
unit; for magnetic tape, the volume number or zero for
a single volume; for all other devices, zero

If the specified logical file code is assigned to SYC or SGO, and that file is not open,
bits 13 through 15 of R7 are returned as equal to one or two. No other returned
parameters are applicable.

When inquiring about physical device from the console terminal, R7 can be returned
equal to zero even though the LFC is assigned. When this occurs, the device type
code 00 (console terminal) is in R7.

MPX-32 Reference Volume I 6-247

M.PERM

6.4.16 M.PERM - Change Temporary File to Permanent

The M.PERM service changes the status of a temporary file allocated to the calling
task to permanent.

Entry Conditions

6·248

Calling Sequence

M.PERM filename, ifc [, [{RI P} ,password],[S],[N], [F],[type] [,Z]]

(or)

LD
LW

[~~R SBR
SBR
SBR

[tf SBR
SBR
ZR

[LD
SVC

R6Jilename
R2,=G'ifc'
R3
R3,6
R3,7
R3,2
R3,3
Rl
Rl,X'type' if type present
Rl,O
Rl,l
R4

if R - read only]
if P - password only
if N - not SA VE DEVICE file
if F - fast file

if S - system file]
if Z - pre zero

R4,password if file is to have a password]
1,X'76' (or) M.CALL H.FISE,13

filename is a doubleword containing the 1- to 8-character ASCII, left-justified,
blank-filled name of the file. The operating system automatically
encloses the file name in single quotes; therefore, the single quote
character cannot be used in a filename.

lfc is the 1- to 3-character ASCII, right-justified, zero-filled logical file
code assigned to an open, temporary SLO, or SBO file. The file is
marked as permanent in the calling task by this service if successful.

[{R,P}, password]
are ignored if specified

[S] specifies the file is to be a system file. If not specified, the file is
created as a user file if a user name is associated with the calling task,
or as a system file if no user name is associated with the calling task.

[N] is ignored if specified

[F] specifies the file is a fast file. If not specified, the file is created as a
slow file.

[type] is a 2-digit hexadecimal value that identifies the origin of the file. File
types codes are:

Value Description

00-39
40-SF
60-9F

AO-AF

available for customer use
reserved for system
available for customer use
reserved for system

Nonbase Mode System Services

o

o

(~

M.PERM

Value Description

BO base mode object file
BA base mode shared image (or BASIC file)
BB base mode object library file
BC base mode macro library file
BE base mode load module file
CO spooled output file
CA cataloged load module
CE MPX-32/COFF executable image
CF MPX-321COFF shared image
DO memory disk save task (J.MDSA VE) file
DB symbolic debugger command file
ED saved text editor file
EE stored text editor file
FD translated help file
FE text editor work file
FF SYSGEN generated file

[,z] is ignored if specified

Exit Conditions

Return Sequence

M.RTRN 6,7

Registers

R7 is unchanged if successful; otherwise is zero if the file was not created
R6 contains the reason that the file was not created:

Abort Cases

Value

1
2

3
4

7
9

Descri ption

file of the name specified already exists
fast file was specified and collision mapping occurred
with an existing directory entry
restricted access but no password supplied
file associated with the specified logical file code is not a
temporary file, not open, not SLO or SBO, or no FL T space
directory is full
file name contains invalid characters

FSOI UNRECOVERABLE I/O ERROR TO THE DIRECTORY

FS02 UNRECOVERABLE I/O ERROR TO FILE SPACE ALLOCATION
MAP

MPX-32 Reference Volume I 6-249

M.SHARE

6.4.17 M.SHARE - Share Memory with Another Task

The M.SHARE service dynamically creates a shared memory partition from the
partition definition in the system directory. This definition must have been previously
defined using the currently unsupported File Manager utility.

The call results in the creation of a new common area, which is uniquely identified by
the owner name or task number of the caller, and by the memory partition name. The
memory type is specified by the directory definition. Prezeroing is not performed by
this service. The partition is swappable with the task if the use count equals zero.
The partition is deallocated when the allocation count equals zero. The task is
suspended until the shared memory table entry is built and the memory allocation is
complete. The shared partition can be gated from use by other tasks to allow the
initial loading of data. This is called a data lock. Any tasks attempting to include this
partition while the lock is set are queued to the SWGQ state (general queue) and
remain there until the lock is reset by the M.SMULK service.

Options are:

• request read and write access, set bit 0 in RO

• request task number instead of owner name, set bit 1 in RO

• request data lock and includers to be enqueued, set bit 2 in RO

Entry Conditions

6·250

Calling Sequence

M.SHARE partition, [RW], fpassword],[TNUM] [,LOCK]

(or)

LD
ZR
SBR
SBR
SBR
LD
ZR
ZR
SVC

R6,partition
RO
RO,O if read/write
RO, I if task number requested
RO,2 if data lock requested
R4,password
R4 if no password
R5 if no password
I,X'71' (or) M.CALL H.ALOC,12

partition

[RW]

[password]

[TNUM]

[,LOCK]

is the doubleword-bounded, left-justified memory partition name

is ignored if specified

is ignored if specified
specifies a task number is being used instead of an owner name

specifies a data lock

Nonbase Mode System Services

('- ~ .. i'
i,,'

;Y

.('r\.
" .. ,/

M.SHARE

Exit Conditions

Return Sequence

M.RTRN R3 (or) abort user with AL40 or AL41

Registers

RO bit 4 is reset if share becomes an include

R3 contains the starting address of the memory partition if share is successful

Abort Cases

AL40 PARTITION DEFINITION NOT FOUND IN DIRECTORY

AL41 DIRECTORY DEFINITION NOT A DYNAMIC PARTITION

MPX·32 Reference Volume I 6·251

M.SMULK

6.4.18 M.SMULK - Unlock and Dequeue Shared Memory

The M.SMULK service unlocks the data lock associated with a particular shared
memory partition. See M.SHARE (ALOC,12) for use of data lock.

After M.SMULK is executed, the lock on the shared area is reset and aU users queued
to the shared area are relinked from the SWGQ (general queue wait state) to their
appropriate run state. They then have full access to the shared partition.

Entry Conditions

Calling Sequence

M.SMULK partition,ownername[,TNUM]

(or)

LD R2,ownername (or) { L W R2,taskno
ZR R3

SVC I,X'IF' (or) M.CALL H.ALOC,I9

partition is a left-justified, blank-filled, doubleword bounded memory partition
name

ownername is the owner name of the original owner of the partition
taskno is the left-justified task number of the original owner of the partition
[,TNUM] specifies a task number is being used instead of an owner name

Exit Conditions

6-252

Return Sequence

M.RTRN

Nonbase Mode System Services

(

M.USER

6.4.19 M.USER - User Name Specification

The M.USER service associates a user name with the calling task. This service can
nullify any user name associated with the calling task. The user name associated with
the task is used in file create, delete, log, and allocate services called subsequently.

Entry Conditions

Calling Sequence

M.USER [username][,key]

(or)

ZR R6 null usemame
ZR R7
SVC 1,X'74' (or) M.CALL H.MONS,34

(or)

LD R6,username
LD R4,key
SVC 1,X'74' (or) M.CALL H.MONS,34

[username] is the 1- to 8-characteruser name that is left-justified and blank-filled.

[,key]

Each character must have an ASCII equivalent in the range 01 through
7F.

is ignored if specified

If both parameters are omitted, username defaults to system on the current working
volume.

Exit Conditions

Return Sequence

M.RTRN 6,7

Registers

R6,R7 contain zero if the service was not performed because the specified user
name contains invalid characters or is not in the user name file or the
required key was not furnished; otherwise, unchanged

MPX·32 Reference Volume I 6·253/6·254

()

c

(7 Base Mode System Services

7.1 General Description

MPX-32 resident base mode system service routines perform frequently required
operations with maximum efficiency by using the Supervisor Call (SVC) instruction.
Tasks running in any environment can call these routines.

All system service routines are reentrant. Thus, each service routine is always
available to the task that is currently active.

System service routines are provided as standard modular components of MPX-32.
The open-ended design of the system, however, allows service routines to be added to
tailor MPX-32 to a specific application.

System services enable tasks to:

• activate, suspend, resume, abort, terminate and hold task execution

• change a task's priority level

• create, test, and delete timers

• interrogate system clocks

• allocate and deallocate devices and files

• obtain the characteristics of a device or file

• communicate with other tasks through messages and status words

• load and execute overlays

• obtain information about the memory assigned to a task

• connect tasks to interrupts

• determine the arithmetic exception and option word status for a task

MPX-32 services are implemented as SVC traps. There are several ways of accessing
services:

1. By macro calls, with parameter passing as indicated in the individual
descriptions. The expansion code in the system macro library is then accessed
automatically during assembly to provide Assembly language setup of
appropriate registers and instructions, including SVCs, in user code.

2. By setting up appropriate registers and instructions directly and using appropriate
SVCs.

3. By following number 2 above but issuing an M_CALL request to the entry point
of the system module that provides the service.

MPX-32 Reference Volume I 7-1

General Description

The first two access paths are described for each system service. The third access path
is privileged, and is indicated primarily to provide the appropriate system module
names and entry point numbers for cross-reference to other documentation when
needed.

Special operations performed for a task are:

• Open - If not issued by the task, IOCS opens the file or device for the default
access in effect at that time.

• Close - If not issued by the task, the file is closed automatically and a device is
deallocated automatically during task termination.

Callable system services are described in alphabetical order by macro name.
Available system services that are not macro callable are described in Section 7.3.

7.1.1 Syntax Rules and Descriptions

System services can be called by their macro name, their SVC number, or their
module entry point number. It is recommended that whenever possible the macro
name be used. When a macro name is used, any optional parameter not specified in
the call is handled as follows:

• the appropriate register is assumed to have been previously loaded

(or)

• the appropriate register will be zeroed

Refer to the calling sequence description of each service to determine applicability of
missing parameter handling.

Defaults for optional parameters are documented in the description of each service.

When a required parameter is not specified or an invalid parameter is specified, an
error message is displayed in the listing regardless of the listing controls in effect.

The integrity of the condition code setting on exit is not guaranteed for system
services, except as documented for a particular service. Refer to the description of
each service to determine whether the exit condition code settings are applicable.

Base mode system services can only be used with the Macro Assembler/X32. When
using base mode system services, expanded parameter specification rules apply.

7.1.1.1 Parameter Specification

7-2

Parameters can be specified to a base mode service in two ways: by keyword and by
position.

Base Mode System Services

(,

('

General Description

When parameters are specified by keyword, the parameters are not order dependent.
Each parameter is denoted by using the parameter keyword followed by an equal sign
followed by the value. Multiple parameter groups are separated by a comma. Refer
to Example 1.

When parameters are specified by position, only the value of a parameter is specified.
The parameters are order dependent and must be entered in the order shown in the
syntax of each service. Multiple parameter groups are separated by a comma. A
comma must also be inserted for an optional parameter not specified if a following
optional parameter is specified in the syntax. Refer to Example 2.

Keyword and positional parameters can be mixed within a syntax statement.
However, mixing is not recommended since the position is not advanced when
keyword parameters are processed by the assembler.

Example 1 - Specifying Parameters by Keyword

To create a permanent file using the M_CREATEP service, anyone of the following
keyword syntax variations are valid:

M_CREATEP PNADDR=addrl ,RCBADDR=addr2,CNP ADDR=addr3
M_CREATEP PNADDR=addrl,RCBADDR=addr2
M_CREATEP PNADDR=addrl,CNPADDR=addr3
M_CREATEP RCBADDR=addr2,CNPADDR=addr3,PNADDR=addrl

Example 2 - Specifying Parameters by Position

To create a permanent file using the M_CREATEP service, anyone of the following
positional syntax variations are valid:

M_CREATEP addrl,addr2,addr3
M_CREATEP addrl,addr2
M_CREATEP addr 1 "addr3
M_CREATEP addrl

Parameter Value Specification

Parameter values can be specified in the following ways:

• by a register name

• by a base register name

• by a label that refers to a required data structure

• by a label that refers to a memory location containing the address of a required data
structure

• by a literal

• by defaults

MPX-32 Reference Volume I 7-3

General Description

7-4

When using a register name RO through R7, the value to be used is in the specified
register. For example,

generates:
TRR R6,R4
SVC 2,x'4B'

!load correct register
! enter service

When using a base register name BO through B7, the value to be used is in the
specified base register. Specifying base registers BO through B3 may cause errors, as
the base mode operating system uses those registers for call and return instructions.
For example,

generates:

TBRR B6,R4
SVC 2,x'4B'

!load correct register
! enter service

When using a label that refers to a memory location, the associated register is
automatically selected. For example,

generates:

LW Rl,#A'FCBOUT'
SVC 2,X'42'

! get FCB address
! enter service

When using a label that refers to an absolute memory location and an explicitly
defined base register, the sum of the address of the label relative to the start of the
program segment and the contents of the register equal the destination address. For
example,

M_OPENR @FCBLOC(B3)

generates:

LW Rl,FCBLOC(B3)
SVC 2,X'42'

!get FCB address
renter service

When using a literal, the literal must be preceded by a # symbol. For example,

M_GETMEMBYTES #8192

generates:

LW R4,#8192
SVC 2,X'4B'

! get byte count
renter service

Base Mode System Services

o

o

(

General Description

When using defaults, the value passed to the service is the default value defined for
the missing parameter. For example,

M_AW AITACTION

generates:
LW R6,?O
SVC I,X'ID'

!ZERO is a location containing zero
tenter service

7.1.2 IPU Executable Base Mode System Services

Once a task has gained entry into the IPU, there is a limited set of system services that
the IPU can execute. These are memory reference only system services, since the IPU
cannot execute any I/O instructions. The following base mode system services are
executable in the IPU:

SVC

M_ADRS
M_BBTIM
M_BTIM
M_CMD
M_CONABB
M_CONADB
M_CONAHB
M_CONASB
M_CONBAD
M_CONBAF
M_CONBAH
M_CONBBA
M_CONBBY
M_CONBYB
M_CTIM
M_CONVERTTIME
M_DATE
M_DEVID
M_DSMI
M_DSUB
M_ENUB
M_ENVRMT
M_GETTIME
M_GTIM
M_GTSAD
M_OPTIONDWORD
M_OPTIONWORD
M_OSREAD
M_OSWRIT
M_QATIM
M_SYNCH
M_TDAY
M_TSTE
M_TSTT

MPX-32 Reference Volume I

Description

Memory Address Inquiry
Acquire Current Date{fime in Byte Binary Format
Acquire Current Date{fime in Binary Format
Get Command Line
Convert ASCII Date{fime to Byte Binary Format
Convert ASCII Decimal to Binary
Convert ASCII Hexadecimal to Binary
Convert ASCII Date{fime to Standard Binary
Convert Binary to ASCII Decimal
Convert Binary Date{fime to ASCII Format
Convert Binary to ASCII Hexadecimal
Convert Byte Binary Date{fime to ASCII
Convert Binary Date{fime to Byte Binary
Convert Byte Binary Date{fime to Binary
Convert System Date{fime Format
Convert Time
Date and Time Inquiry
Get Device Mnemonic or Type
Disable Message Task Interrupt
Disable User Break Interrupt
Enable User Break Interrupt
Get Task Environment
Get Current Date and Time
Acquire System Date and Time in any Format
Get TSA Start Address
Task Option Doubleword Inquiry
Task Option Word Inquiry
Physical Memory Read
Physical Memory Write
Acquire Current Date{fime in ASCII Format
Set Synchronous Task Interrupts
Time-of-Day Inquiry
Arithmetic Exception Inquiry
Test Timer Entry

7-5

Macro-Callable System Services

7.2 Macro-Callable System Services

All base mode system services are described in detail in the following pages. System
services that are supported for base mode tasks begin with IfM_If.

7-6 Base Mode System Services

:(,:
!

o

(

(

7.2.1 M_ACTV - Activate Task

The M_ACfV service activates a task. The task assumes the owner name of the
caller. When a load module is supplied as input, the operating system defaults to a
search in the system directory only. For activations in other than the system directory,
a pathname or RID vector must be supplied as input.

The nonbase mode equivalent service is M.ACTV.

Entry Conditions

Calling Sequence

M_ACTV [LOADMOD=]loadmod

(or)

LD R6,loadmod
SVC 1,X'52' (or) M_CALL H.REXS,15

loadmod is either a left-justified blank-filled doubleword containing the 1- to 8-
character ASCn name of the load module for which an activation
request is queued (must be a system file), or R6 is zero and R7 contains
the pathname vector or RID vector which points to the load module to
be activated

Exit Conditions

Return Sequence

M.RTRN 6,7

Registers

R6 equals zero if the service could be performed
R7 contains the task number of the task activated by this service

(or)

R6 equals one if invalid attempt to multicopy a unique load module
R7 task number of existing task with same name

(or)

R6 Value

2
3
4
5
6
7
8

MPX·32 Reference Volume I

Description

if load module file not in directory
unable to allocate load module
if file is not a valid load module
if DQE is not available
if read error on resource descriptor
if read error on load module
insufficient 10gicaVphysicai address space for task activation

7·7

7.2.2 M_ADRS - Memory Address Inquiry

The M_ADRS service provides the beginning and ending logical addresses of the
memory allocated to a task. The beginning address is the location into which the first
word was loaded and is a word address. The ending address is also a word address
and defines the last word allocated to the task.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.ADRS.

Entry Conditions

Calling Sequence

M_ADRS

(or)

SVC l,X'44' (or) M_CALL H.REXS,3

Exit Conditions

7-8

Return Sequence

M.IPURTN 6,7

Registers

R6

R7

logical word address of the first location of the task's DSECT. This
address is always on a page boundary.

logical word address of the last location available for loading or
expansion of the task's DSECT. This address is always on a map
block boundary minus one word.

Base Mode System Services

c

(

(

7.2.3 M_ADV ANCE - Advance Record or File

The M_ADV ANCE service performs the following functions for advancing records:

• verifies volume record if BOT is encountered on multivolume magnetic tape

• advances specified number of records

M_ADV ANCE performs the following functions for advancing files:

• if the file is blocked, logical records are advanced until an end-of-file is found. The
read/write control word will point to the first record after the end-of-file.

• verifies volume record if BOT is encountered on multivolume magnetic tape

• Advances specified number of files

The M_ADV ANCE service cannot be used for SYC files or unblocked disk files.

The nonbase mode equivalent service is M.FWRD.

Entry Conditions

Calling Sequence

M_ADVANCE [FCBADDR=}/cbaddr,[[MODE=]{RIF}] [NUMBER=}number

(or)

SVC
SVC
Bm

/cbaddr

R

F

1,X'33' (or) M_CALL H.IOCS,7 } (or)
1,X'34 (or) M_CALL H.IOCS,8
R4,$-lW

is the FCB address

specifies advance by record (SVC 1,x'33')

specifies advance by file (SVC 1,x'34'); F is the default

number is the address of the word containing the number of records or files to
be advanced, or a value of one, if not specified

$-W branches back to SVC the number of times specified by number

Registers

Rl contains /cbaddr

R4 contains number

MPX·32 Reference Volume I 7·9

Exit Conditions

7-10

Return Sequence

M.RTRN

Abort Cases

1006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED
FILE ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS
IMPROPERLY BLOCKED, (2) BLOCKING BUFFER IS
DESTROYED, OR (3) TRANSFER ERROR DURING FILE
INPUT.

1007 THE TASK HAS ATTEMPTED TO PERFORM AN OPERATION
WHICH IS NOT VALID FOR THE DEVICE TO WHICH THE
USER'S FILE IS ASSIGNED (E.G., A READ OPERATION
SPECIFIED FOR A FILE ASSIGNED TO THE LINE PRINTER)

1009 ILLEGAL OPERATION ON THE SYC FILE

1030 ILLEGAL OR UNEXPECTED VOLUME NUMBER OR REEL ID
ENCOUNTERED ON MAGNETIC TAPE

Output Messages

Mount/dismount messages if EOT encountered on multivolume magnetic tape.

Base Mode System Services

()

(~

7.2.4 M_ANYWAIT - Wait for Any No-Wait Operation Complete, Message
Interrupt, or Break Interrupt

The M_ANYW AIT service places the currently executing task in a state waiting for
the completion of any no-wait request, for the receipt of a message, or for a break
interrupt. The task is removed from the associated ready-to-run list, and placed in the
any-wait list. A return is made to the program location following the SVC instruction
only when one of the wait conditions has been satisfied or when the optional time-out
value has expired.

The nonbase mode equivalent service is M.ANYW.

Entry Conditions

Calling Sequence

M_ANYW AIT [[WAITTIME=]timel]

(or)

LW R6,rimel
SVC 1,X'7C' (or) M_CALL H.REXS,37

timel contains zero if wait for an indefinite period is requested; otherwise,
timel contains the negative number of time units to elapse before the
wait is terminated

Registers

R6 contains rimel; otherwise, zero

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

MS31 USER ATTEMPTED TO GO TO THE ANY-WAIT STATE FROM AN
END-ACTION ROUTINE

MPX-32 Reference Volume I 7-11

7.2.5 M_ASSIGN - Assign and Allocate Resource

The M_ASSIGN service associates a resource with a logical file code (LFC) used by a
process and allocates the resource. This function creates a file assignment table/file
pointer table (FAT/FPT) pair within the user's task service area (TSA) and, associates
an allocated resource table (ART) entry for system administration and control of the
resow-ce while allocated. When implicit sharing is indicated by the absence of a
specified usage mode, the appropriate linkage is established to coordinate concurrent
access. The option is provided to allocate and open a resource with a single call to
this function.

The nonbase mode equivalent service is M.ASSN.

Entry Conditions

7·12

Calling Sequence

M_ASSIGN [RRSADDR=]addr (.[CNPADDR=]cnpaddr]

(or)

LA
LA
SVC

addr

Rl,addr
R7,cnpaddr
2,X'52' (or)

(or) ZR R7
M_CALL H.REXS,21

is the address of a resource requirement summary (RRS) entry, (type 1
through 6)

cnpaddr is the address of a caller notification packet (CNP) if notification is
desired

Registers

Applicable portions of the CNP for this function are time-out value,
abnormal return address, option field, status field, and parameter link.

The option field contains an access and usage specification for opening
this resource. This field is used only if the automatic open flag is set in
the option word of the RRS. See the M_OPENR service.

If automatic open is indicated in the resource requirement summary,
word 5 of the CNP must contain the address of a valid file control
block (FCB) for this assignment. See the M_ OPENR service.

R 1 ' contains addr

R 7 contains cnpaddr; otherwise, zero

Base Mode System Services

(

Exit Conditions

Return Sequence

(with CNP)

M.RTRN R5

(or)

M.RTRN R5 (CC1 set)

Registers

(without CNP)

M.RTRN R5

(or)

M.RTRN R5,R7 (CC1 set)

R5 contains the allocation index, a unique 32-bit integer number associated
with the allocated resource. This index may be used to set and release
resource locks for exclusive or synchronous access.

R7 contains return status if a CNP is not supplied, otherwise, unchanged

Status

CC1 set

The following values are posted in R7 or the status field of the CNP. Status values
25-29 are returned only when auto-open is indicated.

Value

1
2
3
4
7
8
9

11
12
13
14
15
17
19
20
22
23
24
25
27
28

Description

unable to locate resource because of invalid pathname
specified access mode not allowed
FAT /FPT space not available
blocking buffer space not available
static assignment to dynamic common
unrecoverable I/O error to volume
invalid usage specification
invalid RRS entry
LFC logically equated to unassigned LFC
assigned device not in system
resource already allocated by requesting task
SGO or SYC assignment by real-time task
duplicate LFC assignment attempted
invalid resource ID
specified volume not assigned
resource is marked for deletion
assigned device is marked offline
segment definition allocation by unprivileged task
random access not allowed for this access mode
resource already opened in a different access mode
invalid access specification at open

MPX-32 Reference Volume I 7-13

Value Description

29 specified LFC is not assigned to a resource for this task
38 time out occurred while waiting for resource to become available
46 unable to obtain resource descriptor lock available to multiprocessor only
50 resource is locked by another task
51 shareable resource is allocated in an incompatible access mode
54 unable to allocate resource for specified usage
55 allocated resource table (ART) space not available

Wait Conditions

When the resource is not available, as indicated by status values 50-63, the task is
placed in a wait state, as appropriate, if specified with a CNP.

7.2.6 M_ASYNCH - Set Asynchronous Task Interrupt

The M_ASYNCH service resets the asynchronous task interrupt mode back to the
default environment.

The nonbase mode equivalent service is M.ASYNCH.

Entry Conditions

Calling Sequence

M_ASYNCH

(or)

SVC 1,x'lC'

Exit Conditions

Return Sequence

M.RTRN

Status

(or) H.REXS,68

CCI asynchronous task interrupt already set

7-14 Base Mode System Services

(

(

M_AWAITACTION

7.2.7 M_AWAITACTION - End Action Wait

The M_AWAITACTION service waits for the completion of no-wait request or I/O
end action. If no such requests or end actions are outstanding, the service returns
immediately. This service is similar to the M_.ANYW AIT service.

The nonbase mode equivalent service is M.EAWAIT.

Entry Conditions

Calling Sequence

M_AWAITACTION [[WAITTIME=]addr]

(or)

LW R6, addr (or)
SVC I,X'ID' (or)

ZR R6
M_CALL H.EXEC,40

addr is the address containing the negative number of time units to elapse
before the wait is terminated. If not specified, the task waits for an
indefinite period.

Registers

R6 contains addr; otherwise, zero

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

EX03 USER ATTEMPTED TO GO TO AN ANY-WAIT STATE FROM AN
END-ACTION ROUTINE

MPX-32 Reference Volume I 7-15

7.2.8 M_BACKSPACE - Backspace Record or File

The M_BACKSP ACE service performs the following functions for backspacing
records:

• if the file is actively generating output, issues a purge before backspacing. After the
specified number of records are backspaced, returns control to the user.

• backspaces the specified number of records

M_BACKSPACE performs the following functions for blocked files:

• if the file is actively generating output, issues an end-of-file and purge backspacing,
then backspaces records until an end-of-file record is found

• backspaces the specified number of files

• the read/write control word then points to the end-of-file just encountered

The nonbase mode equivalent service is M.BACK.

The M_BACKSPACE service may not be used for SYC files or unblocked files.

Entry Conditions

7-16

Calling Sequence

M_BACKSPACE [FCBADDR=lfcbaddr,[[MODE=] {RIF}], [NUMBER=]number

(or)

LA
LNW
SVC
SVC
BID

fcbaddr

R

F

number

$-W

Rl,fcbaddr
R4, number
l,X'3S' (or) M_CALL H.IOCS,9 } (or)
l,X'36 (or) M_CALL H.IOCS,19
R4,$-W

is the FCB address

specifies backspaces by record (SVC l,X'3S')

specifies backspaces by file (SVC l,X'36'); this is the default

is the address of the word containing four times the number of records
or files to backspace, or -4 if not supplied

branches back to SVC the number of times specified by number

Registers

R 1 contains fcbaddr

R4 contains number, negated, or -4 if not supplied

Base Mode System Services

C
-~·

, "
I:,

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

1006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED
FILE ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS
IMPROPERLY BLOCKED, (2) BLOCKING BUFFER IS
DESTROYED, OR (3) TRANSFER ERROR DURING FILE
INPUT.

1009 ILLEGAL OPERATION ON THE SYC FILE

MPX-32 Reference Volume I 7-17

7.2.9 M_BATCH - Batch Job Entry

The M_BATCH service submits a batch job stream located in a disk file. The disk
file is described by the calling parameter in Rl. Prior to calling this service, the
specified disk file should be rewound to purge the contents of the blocking buffer if it
has been dynamically built.

The nonbase mode equivalent service is M.BATCH.

Entry Conditions

Calling Sequence

M_BATCH [ARGADR=]arga [,[CNP=]cnpaddr]

(or)

LW RI,arga
LA R7,cnpaddr (or) ZR R7
SVC 2,X'55' (or) M_CALL H.REXS,27

arga

cnpaddr

is a PN vector, PNB vector, or RID vector for a permanent file; or an
LFC or FCB address for a temporary file

is a CNP address or zero if CNP is not supplied

Exit Conditions

7-18

Return Sequence

(with CNP)

M.RTRN

-(or)

M.RTRN R7 (CCI set)

Registers

(without CNP)

M.RTRN R7 (CCI set)

R7 return status if a CNP is not supplied; otherwise, denial address

Base Mode System Services

(Status

CC1 set

Posted in R 7 or in the status field of the CNP:

Value Description

o operation successful
1 pathname invalid
2 pathname consists of volume only
3 volume not mounted
4 directory does not exist
5 disk file has not been previously opened
6 unable to activate J .SSIN2, batch job not submitted
7 resource does not exist

14 unrecoverable I/O error while reading resource descriptor
18 unrecoverable I/O error while reading directory

MPX-32 Reference Volume I 7-19

7.2.10 M_BBTIM - Acquire Current Date/Time in Byte Binary Format

The M_BBTIM service acquires the system date and time in byte binary format. The
date and time are returned in a two word buffer, the address of which is contained in
the call. See Appendix H for date and time formats.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.BBTIM.

Entry Conditions

Calling Sequence

M_BBTIM [TIMBUF=] addr

(or)

LA Rl,addr
ORMW Rl,=X'02000000'
SVC 2,X'50' (or) M_CALL H.REXS,74

addr is the address of a 2-word buffer to contain the date and time

Exit Conditions

7·20

Return Sequence

M.IPURTN

Registers

R 1 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Base Mode System Services

"("".' .. ~" ", ' ,

'~f

(
7.2.11 M_BORT - Abort Specified Task, Abort Self, or Abort with Extended

Message

7.2.11.1 M_BORT - Abort Specified Task

This service allows the caller to abort another task. If the named task has been
swapped out, it is not aborted until it regains CPU control. See Chapter 2, Table 2-2.
If the specified task is not in execution, the request is ignored.

The nonbase mode equivalent service is M.BORT.

Entry Conditions

Calling Sequence

M_BORT [ABCODE=]abcode, [TASK=]task

(or)

LW
ZR
LW
SVC

R5,abcode
R6
R7,taskno
I,X'56'

} (or) LD R6,taskname

(or) M_CALL H.REXS,19

contains the abort code consisting of four ASCII characters abcode

task the address of a double word containing the name of the task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared.

Exit Conditions

Return Sequence

M.RTRN 7

Registers

R7 zero if any of the following conditions exist:

• the specified task was not found

• the specified task name was not single copied

• the owner name of the task requesting the abort is not privileged and is
restricted from access to tasks with a different owner name by the
M.KEY file

• the task is in the process of exiting the system

Otherwise, contains the task number.

MPX-32 Reference Volume I 7-21

7.2.11.2 M_BORT· Abort Self

This service aborts the calling task by issuing an abort message, optionally perfonning
a post-abort dump, and perfonning the functions common to the nonnal tennination
service as described in Chapter 2.

Entry Conditions

Calling Sequence

M_BORT [ABCODE=]abcode

(or)

LW R5,abcode
SVC 1,X'57' (or) M_CALL H.REXS,20

abcode contains the 4-character ASCII abort code

Exit Conditions

7·22

Return Sequence

M.RTRN

Output Messages

name number ABORTED AT: .x.x:uxn:x-yyyyy mm/dd/yy hh:mm:ss zzzz

name

number

xx.uxxxx
yyyyy

mm

dd

yy

hh

mn

ss

zzzz

is the 1- to 8-character name of the task being aborted

is the task number of the task being aborted

is the location where the abort occurred

is the beginning of the DSECT

is the month (2-character decimal number from 01 thru 12)

is the day (2-character decimal number from 01 thru 31)

is the year (2-character decimal number from 00 thru 99)

is the hour (2-character decimal number from 00 thru 23)

is the minutes (2-character decimal number from 00 thru 59)

is the seconds (2-character decimal number from 00 thru 59)

is the 4-character abort code

Base Mode System Services

o

~ "\
I I

V

()

7.2.11.3 M_BORT - Abort with Extended Message

A call to this service results in an abort of the specified task with an extended abort
code message.

Entry Conditions

Calling Sequence

M_BORT [ABCODE=]abcode, [TASK=]task, [EXTCODE=]extcode

(or)

LD R2,extcode
LW R5,abcode

LI R6,O } (or) LD R6,taskname
LW R7,taskno
SVC 1,X'62' (or) M_CALL H.REXS,28

contains the abort code consisting of 4 ASCII characters abc ode

task the address of a double word containing the name of the task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

extcode

Exit Conditions

contains the extended abort code message consisting of 1 to 8 ASCII
characters, left-justified, and blank-filled

Return Sequence

M.RTRN 7

Registers

R 7 zero if any of the following conditions exist:

• the specified task was not found

• the specified task name was not single copied

• the owner name of the task requesting the abort is not privileged and is
restricted from access to tasks with a different owner name by the
M.KEY file

• the task is in the process of exiting the system

Otherwise, contains the task number.

MPX-32 Reference Volume I 7-23

7.2.12 M_BRK - BreaklTask Interrupt Link/Unlink

The M_BRK service allows the caller to clear the user's break receiver or to establish
the address of a routine to be entered whenever another task or the operator activates
his task interrupt by an M_INT service.

The nonbase mode equivalent service is M.BRK.

Entry Conditions

Calling Sequence

M_BRK [BREAKADR=]brkaddr

(or)

LA R7,brkaddr
SVC l,X'6E' (or) M_CALL H.REXS,46

brkaddr is the logical word address of the entry point of the task's break/task
interrupt routine or zero to clear the break receiver

Exit Conditions

Return Sequence

M.RTRN

7.2.13 M_BRKXIT - Exit from Task Interrupt level

The M_BRKXIT service must be called at the conclusion of executing a task interrupt
routine. It transfers control back to the point of interruption.

The nonbase mode equivalent service is M.BRKXIT.

Entry Conditions

Calling Sequence

M_BRKXIT

(or)

RETURN

Exit Conditions

7-24

Return Sequence

M.RTRN

Base Mode System Services

c

o

M BTIM

7.2.14 M_BTIM - Acquire Current Date/Time in Binary Format

The M_BTIM service acquires the system date and time in binary format. The date
and time are returned in a two word buffer, the address of which is contained in the
call. See Appendix H for date and time formats.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.BTIM.

Entry Conditions

Calling Sequence

M_BTIM [TIMBUF=]addr

(or)

LA Rl,addr
ORMW Rl,=X'OlOOOOOO'
SVC 2,X'50' (or) M_CALL H.REXS,74

addr is the address of a 2-word buffer to contain the date and time

Exit Conditions

Return Sequence

M.IPURTN

Registers

R 1 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

MPX-32 Reference Volume I 7-25

7.2.15 M_CHANPROGFCB - Execute Channel Program File Control Block

The M_CHANPROGFCB service defines a file control block (FCB) for use with an
execute channel program request.

Entry Conditions

7-26

Calling Sequence

M_CHANPROGFCB [LABEL=]label, [LFC=]lfc, [CPADDR=]addrl,
[[TOUT=]sec], [[PCP=](YIN}], [[NWI=]{YIN}], [[NST=](YIN}],
[[SENSESIZE=]sizel], [[SENSEBUFFER=]addr2], [[NOWAIT=]addr3],
[[NOWAITERROR=] addr4], [[WAlTERROR=] addr5],
[[PPCISIZE=] size2], [[PPCIADDR=] addr6]

label is the ASCII string to use as the symbolic label for the address of this
FCB

lfc is the logical file code; word 0, bits 8-31 of the FCB

addr 1 is the logical address of the channel program to be executed

sec is the time-out value in seconds

PCP specifies physical channel program

NWI specifies no-wait I/O request

NST specifies status checking not requested

sizel is the size of the user specified sense buffer

addr2 is the address of the user specified sense buffer

addr3 is the normal no-wait end-action return address

addr4 is the no-wait end-action error return address

addr5 is the wait end-action error return address

size2 is the size of PPCI status buffer to use

addr6 is the PPCI end action address

Base Mode System Services

()

o

(7.2.16 M_CLOSER - Close Resource

The M CLOSER service terminates operations in the current access mode on a
resourCe. The resource is marked closed in the file pointer table (FPT). The user
count in the appropriate allocated resource table (ART) entry is decremented if
implicit shared use is in effect. For access modes other than READ, the resource
descriptor is updated. If last accessed functionality is enabled, the resource descriptor
is also modified for read access mode. When the closing of a file implies a change of
use or access mode for that resource, any tasks waiting for access to the resource in a
compatible access mode are dequeued. If any logically equivalent resources are open,
no further action is taken. For blocked files, any active output blocking buffer is
purged. A close request to a resource that is already closed will result in an
immediate return with the appropriate status posted.

The nonbase mode equivalent service is M.CLOSER.

Entry Conditions

Calling Sequence

M_CLOSER [FCBADDR=]fcbaddr[, [CNPADDR=]cnpaddr]

(or)

LA RI, fcbaddr
LA R7, cnpaddr
SVC 2,X'43' (or) M CALL H.REMM,22

fcbaddr

cnpaddr

is the address of a file control block (FCB)

is the address of a caller notification packet (CNP) if notification is
desired
Applicable portions of the CNP for this function are abnormal return
address and status field.

Registers

RI contains fcbaddr

R7 contains cnpaddr; otherwise, zero

MPX·32 Reference Volume I 7·27

Exit Conditions

7·28

Return Sequence

(with CNP) (without CNP)

M.RTRN

(or)

M.RTNA

Registers

M.RTRN

(or)

(CCl set)M.RTRN R7 (CCl set)

R7 return status if a CNP is not supplied; otherwise, unchanged

Status
CCl set

Posted in R7 or the status field of the CNP:

Value

8
29
31
46

Description

unrecoverable I/O error to volume
logical file code associated with FCB does not exist
resource was not open
unable to obtain resource descriptor lock of a multiprocessor

Base Mode System Services

(

7.2.17 M_CLSE - Close File

The M_ CLSE service marks a file closed in the file pointer table (FPT) and the count
of open files (DFT.OPCf) is decremented. If any logically equivalent files
(ASSIGN4) are open, no further action is taken (for example, if count after
decrementing is not equal to zero).

If the file is a system file or blocked file, the service purges any active output blocking
buffer. The file is marked closed (open bit cleared in FAT).

For files assigned to SYC or SGO, the current disk address updates the job table for
job control.

This service issues an EOF prior to purging system files SLO and SBO which were
opened for read/write. It also issues an EOF before purging for blocked files that are
output active.

The service ignores close requests to a file that is already closed.

The nonbase mode equivalent service is M.CLSE.

Entry Conditions

Calling Sequence

M_CLSE [FCB=lfcbaddr [, [EOFF=] EOF] [, [REWF=] REW]

(or)

LA Rl,fcbaddr

[SVC I,X'38' (or) M.CALL H.IOCS, 5J
SVC I,X'37' (or) M.CALL H.IOCS, 2
SVC I,X'39' (or) M.CALL H.IOCS,23

fcbaddr

EOF

REW

Exit Conditions

is the FCB address

writes EOF (SVC I,X'38'). See the M.WEOF service description.

rewinds file or device (SVC 1,x'37'). See the M.RWND service
description.

Return Sequence

M.RTRN

Abort Cases

1009 ILLEGAL OPERATION ON THE SYC FILE

1038 WRITE ATTEMPTED ON UNIT OPENED IN READ-ONLY MODE.
A READ-WRITE OPEN WILL BE FORCED TO READ-ONLY IF
TASK HAS ONLY READ ACCESS TO UNIT.

MPX·32 Reference Volume I 7·29

7.2.18 M_CMD - Get Command Line

The M_ CMD service returns the portion of the command line between the program
name and the end of the line if the program name is specified on the command line.
If data does not exist or the command line has already been issued, a null string is
returned.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CMD.

Entry Conditions

Calling Sequence

M_CMD

(or)

SVC 2,X'61' (or) M_CALL H.REXS,88

Exit Conditions

7·30

Return Sequence

M.RTRN R6,R7

Registers

R6 contains the length of the string in bytes, if found; otherwise, zero

R7 contains the first byte address of the string, if found; otherwise, zero

Base Mode System Services

7.2.19 M_CONABB - Convert ASCII Date/Time to Byte Binary Format

The M_CONABB service converts the system date and time from ASCll format to
byte binary format. See Appendix H for date and time formats.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONABB.

Entry Conditions

Calling Sequence

M_CONABB [ASCBUF=]ascbuf, [BBBUF=]bbbuf

(or)

LA Rl,ascbuf
ORMW Rl,=X'06000000'
LA R2,bbbuf
SVC 2,X'51' (or) M_CALL H.REXS,75

ascbuf is the address of a 4-word buffer containing the ASCll-formatted date
and time

bbbuf is the address of a 2-word buffer where the byte binary formatted date
and time is returned

Exit Conditions

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

MPX·32 Reference Volume I 7-31

7.2.20 M_CONADB - Convert ASCII Decimal to Binary

The M_CONADB service converts ASCII decimal doublewords to their binary
equivalent

An all blank double word converts to zero.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONADB.

Entry Conditions

calling Sequence

M_CONADB [[V ALUEADDR=]addr]

(or)

LD R6,addr
SVC 1,X'28' (or) M_CALL H.TSM,7

addr is the address of a left-justified, doubleword-bounded, ASCII-coded
decimal number, blank-filled. If not specified, contents of R6 and R7
are converted.

Exit Conditions

7·32

Return Sequence

M.IPURTN 6,7

Registers

R6 contains zero if a character is nonnumeric

R7 contains the binary equivalent of the input

Base Mode System Services

o

o

(

c"

7.2.21 M_CONAHB - Convert ASCII Hexadecimal to Binary

The M_CONAHB service converts ASCII hexadecimal doublewords to their binary
equivalent.

An all blank double word converts to zero.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONAHB.

Entry Conditions

Calling Sequence

M_CONAHB [[V ALUEADDR=]addr]

(or)

LD R6,addr
SVC 1,X'29' (or) M_CALL H.TSM,8

addr is the address of a left-justified, doubleword-bounded, ASCII-coded
hexadecimal number, blank-filled. If not specified, contents of R6 and
R 7 are converted.

Exit Conditions

Return Sequence

M.IPURTN 6,7

Registers

R6 contains zero if a character is not hexadecimal

R 7 contains the binary equivalent of the input

MPX·32 Reference Volume I 7·33

7.2.22 M_CONASB - Convert ASCII Date/Time to Standard Binary

The M_CONASB service converts the system date and time from ASCII fonnat to
binary fonnat. See Appendix H for date and time formats.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONASB.

Entry Conditions

Calling Sequence

M_CONASB [ASCBUF=]ascbuj, [BINBUF=]binbuf

(or)

LA
ORMW
LA
SVC

ascbuf

binbuf

Rl,ascbuf
Rl,=X'05000000'
R2,binbuf
2,X'51' (or) M_CALL H.REXS,75

is the address of a 4-word buffer containing the ASCII formatted date
and time

is the address of a 2-word buffer where the binary fonnatted date and
time is returned

Exit Conditions

7-34

Return Sequence

M.IPURTN

_ Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Base Mode System Services

o

o

(~

7.2.23 M_CONBAD· Convert Binary to ASCII Decimal

The M_CONBAD service converts binary words to their ASCII decimal equivalent.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONBAD.

Entry Conditions

Calling Sequence

M_CONBAD [[V ALUEADDR=]addr]

(or)

LW R5,addr
SVC 1,X'2A' (or) M_CALL H.TSM,9

addr the address of a positive binary number

Exit Conditions

Return Sequence

M.IPURTN 6,7

Registers

R6,R7 ASCII result, right-justified with leading ASCII zeros

MPX·32 Reference Volume I 7·35

7.2.24 M_CONBAF - Convert Binary Date/Time to ASCII Format

The M_CONBAF service converts the system date and time from binary format to
ASCII fonnat. See Appendix H for date and time fonnats.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONBAF.

Entry Conditions

Calling Sequence

M_CONBAF [BINBUF=]binbuf, [ASCBUF=]ascbuf

(or)

LA
ORMW
LA
SVC

binbuf

ascbuf

Rl,binbuf
Rl,=X'02000000'
R2,ascbuf
2,X'51' (or) M_CALL H.REXS,75

is the address of a 2-word buffer containing the binary formatted date
and time

is the address of a 4-word buffer where the ASCII formatted date and
time is returned

Exit Conditions

7·36

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Base Mode System Services

7.2.25 M_CONBAH - Convert Binary to ASCII Hexadecimal

The M_CONBAH service converts binary words to their ASCII hexadecimal
equivalent.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONBAH.

Entry Conditions

Calling Sequence

M_CONBAH [[V ALUEADDR=]addr]

(or)

LW R5,addr
SVC 1,X'2B' (or) M_CALL H.TSM,lO

addr is the address of a binary number

Exit Conditions

Return Sequence

M.IPURTN 6,7

Registers

R6,R7 ASCII result, right-justified with leading ASCII zeros

MPX·32 Reference Volume I 7·37

7.2.26 M_CONBBA· Convert Byte Binary DatelTime to ASCII

The M_CONBBA service converts the system date and time from byte binary format
to ASCn format. See Appendix H for date and time formats.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONBBA.

Entry Conditions

Calling Sequence

M_CONBBA [BBBUF=] bbbuf, [ASCBUF=] ascbu/

(or)

LA Rl,bbbu/
ORMW Rl,=X'04000000'
LA R2,ascbu/
SVC 2,X'51' (or) M_CALL H.REXS,75

bbbu/

ascbu/

is the address of a 2-word buffer containing the byte binary formatted
date and time

is the address of a 4~word buffer where the ASCII formatted date and
time is returned

Exit Conditions

7-38

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Base Mode System Services

()

o

7.2.27 M_CONBBY - Convert Binary Date/Time to Byte Binary

The M_CONBBY service converts the system date and time from binary format to
byte binary format. See Appendix H for date and time formats.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONBBY.

Entry Conditions

Calling Sequence

M_CONBBY [BINBUF=] binbuf, [BBBUF=] bbbuf

(or)

LA
ORMW
LA
SVC

Rl,binbuf
Rl,=X'OlOOOOOQ'
R2,bbbuf
2,X'51' (or) M_CALL H.REXS,75

binbuf is the address of a 2-word buffer containing the binary formatted date
and time

bbbuf is the address of a 2-word buffer where the byte binary formatted date
and time is returned

Exit Conditions

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

MPX·32 Reference Volume I 7·39

7.2.28 M_CONBYB - Convert Byte Binary Date/Time to Binary

The M_CONBYB service converts the system date and time from the byte binary
fonnat to binary fonnat. See Appendix H for date and time fonnats.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CONBYB.

Entry Conditions

Calling Sequence

M_CONBYB [BBBUF=]bbbuf, [BINBUF=]binbL(

(or)

LA
ORMW
LA
SVC

bbbuj

binbuj

Rl,bbbuj
Rl,=X'03000000'
R2,binbuj
2,X'51' (or) M_CALL H.REXS,75

is the address of a 2-word buffer containing the byte binary fonnatted
date and time

is the address of a 2-word buffer where the binary fonnatted date and
time is returned

Exit Conditions

7-40

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Base Mode System Services

7.2.29 M_CONN - Connect Task to Interrupt

The M_CONN service indirectly connects a task to an interrupt level so that when the
interrupt occurs, the specified task will be scheduled for execution (resumed). If the
specified task is not active, M_CONN will preactivate it. If preactivation is required,
but the actual interrupt connection is denied, M_CONN deletes the residual task
because the task would continue in the suspended state indefinitely.

The nonbase mode equivalent service is M.CONN.

Entry Conditions

Calling Sequence

M_CONN [TASK=]task, [INTLEVEL=]intlevel

(or)

LW
LI
LW
SVC

R5,intlevel
R6,O} LW R6, PNV (or) LD R6,taskname (or) LI R7 0
R7,taskno '
l,X'4B' (or) M.CALL H.REXS,10

task the address of a doubleword containing the left-justifed blank-filled I­
to 8-character ASCII name of the task (system file only); or zero in
word 0 and the task number in word 1; or pathname or RID vector in
word zero and zero in word one. A task number must be used if the
task is multicopied or shared. A task number of zero specifies the
calling task.

intlevel is the hardware priority level where the task is to be connected

Exit Conditions

Return Sequence

M.RTRN 6,7

Registers

R6 Denial Code:

Value

1
2
3
4

Description

task already connected to an interrupt
another task connected to the specified interrupt
interrupt not SYSGEN specified indirectly connectable
specified task not found in dispatch queue or the requesting
task is not privileged and the owner name is restricted
from access to tasks with a different owner name by
the M.KEY file.

R7 zero if task not connected to interrupt; otherwise, contains the task
number

MPX-32 Reference Volume I 7-41

M_CONSTRUCTPATH

7.2.30 M_CONSTRUCTPATH - Reconstruct Pathname

The M_CONSTRUCTPATH service constructs and returns the pathname string that
was used to assign a file. In most cases, this service acquires the complete name of a
file that was statically assigned to a task. IT a pathname component contains special
characters, the component is returned enclosed within single quotes.

The nonbase mode equivalent service is M.PNAM.

Entry Conditions

Calling Sequence

M_CONSTRUCTPATH [RESOURCE=]addrl , [PATH=]addr2
[,[CNPADDR=]cnpaddr]

(or)

LW
LW
LA
SVC

addrl

addr2

cnpaddr

Rl, addrl
R4, addr2
R7, cnpaddr
2,X'2F'

(or) ZR R7
(or) M_CALL H.VOMM,16

is an FCB address or LFC for the assigned volume resource

is the PN address and maximum length

is a CNP address or zero if CNP is not supplied

Registers

Rl contains addrl
R4 contains addr2
R 7 contains cnpaddr; otherwise, zero

Exit Conditions

7·42

Return Sequence

(with CNP)

M.RTRN R4

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN R4

(or)

M.RTRN R7 (CCI set)

R4 contains the actual PN length and PN address

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment/Allocation and I/O chapter of Volume I.

Base Mode System Services

(f(--~'

\\~j

(7.2.31 M_CONVERTTIME - Convert Time

The M_CONVERTIlME service returns the current date and time to the caller in the
requested format. The caller must specify both the input and output format. Refer to
Appendix H for date and time formats.

This service can be executed by the IPU.

Entry Conditions

Calling Sequence

M_CONVERTTIME [INBUFFER=]inbuffer, [INFORMAT=]valuein ,
[OUTBUFFER=]outbuffer, [OUTFORMAT=]valueout

(or)

SVC 2,X'51' (or) M_CALL H.REXS,75

inbuffer

value in

specifies the address of the input buffer

is the keyword for the input format. The three valid keywords are:

BIN 2-word internal binary value:
word 1 is the number of days since January 1, 1960
word 2 is the number of clock ticks since midnight

BYTE 8-byte binary value:

Byte Contents in Binary

o century
1 year
2 month
3 day
4 hour
5 minute
6 second
7 number of interrupts

QUAD 4-word ASCII string formatted the same as BYTE

specifies the address of the output buffer outbuffer

valueout is the keyword for the output format. The three valid keywords are the
same as for valuein.

Registers

R 1 contains inbuffer

R2 contains outbuffer

MPX-32 Reference Volume I 7-43

Exit Conditions

7-44

Return Sequence

M.RTRN

Registers

Rl,R2 used by the call

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

Base Mode System Services

C'" , ',"\"

"
\')

(

M CREATEFCB

7.2.32 M_CREATEFCB - Create File Control Block

The M_CREATEFCB service defines an expanded file control block (FCB).

Entry Conditions

Calling Sequence

M_CREATEFCB [LABEL=] label ,[LFC=] llc , [COUNT=] count,

label

llc

count

addrl

addr2

addr3

NWT

NER

DFI

NST

RAN

BIN

[DATABUFFER=] addrl, [[WAITERROR=]addr2] , [[RANDOM=]addr3] ,
[[NWT=] {YIN}], [[NER=] {YIN}], [[DFI=] {YIN}], [[NST=] {YIN}],
[[RAN=] {YIN}], [[BIN=] {YIN}], [[SKIPLDR=] {YIN}],
[[PACKED=] {Y IN}] , [[PARITY =] {O IE}] , [[BPI=] {5561800}] ,

[[NOWAIT=]addr4] , [[NOWAlTERROR=]addr5] , [[BLOCKBUFFER=]addr6]

is an ASCII string to be used as symbolic label for the address of this
FCB

is the logical file code

is the transfer count specified in number of bytes

is the start address of a data buffer, reserved on a word boundary

is the error return address for wait I/O

is the random access address

specifies the control flag for no-wait I/O

specifies the control flag for error return processing

specifies the control flag for data format

specifies the control flag for status checking by the handler

specifies the control flag for random access

SKIPLDR

specifies the control flag for use with a card reader

specifies the control flag for use with a paper tape reader

specifies the control flag for use with 5-track magnetic tape

indicates even or odd parity

PACKED

PARITY

BPI

addr4

addr5

addr6

designates bits per inch density

specifies the address for normal no-wait I/O end action return

specifies the address for no-wait I/O error end action return

specifies the address of a 192-word user-supplied blocking buffer to be
used for blocked I/O

MPX·32 Reference Volume I 7-45

7.2.33 M_CREATEP - Create Permanent File

The M_CREATEP service creates a permanent file. Permanent files are given names
in directories and remain known to the operating system until explicitly deleted.

This service allocates a resource descriptor and the initial file space requirements for
the file. Next, the specified attributes of the file are recorded in the resource
descriptor. As a final step, the name of the file is established in the indicated
directory.

When a directory entry is established, the directory entry is linked to the resource
descripto~ of the file. This links the name of the file to the other attributes of the file.
Typical file attributes are:

• file name
• file resource identifier (RID)

• file protection attributes

• file management attributes

• file initial space requirements

Asynchronous abort and delete are inhibited during execution of this service.

The nonbase mode equivalent service is M.CPERM.

Entry Conditions

7·46

Calling Sequence

~CREATEP [PNADDR=]addr [,[RCBADDR=]rcbaddr] [,[CNPADDR=]cnpaddr]

(or)

LW
LA
LA
SVC

RI, addr
R2, rcbaddr (or) ZR
R7, cnpaddr (or) ZR
2,X'20'(or) M_CALL

R2
R7

H.VOMM,1

addr

rcbaddr

cnpaddr

is an address containing a PN vector or PNB vector

is an RCB address or zero if default attributes are desired

is a CNP address or zero if CNP is not supplied

Registers

R I contains addr

R2 contains rcbaddr, otherwise, zero

R7 contains cnpaddr; otherwise, zero

Base Mode System Services

()

(

(

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 return status if a CNP is not supplied; otherwise unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment! Allocation and I/O chapter of Volume I.

MPX·32 Reference Volume I 7·47

1.2.34 M_CREATET - Create Temporary File

The M_CREATET service creates a temporary file. Temporary files are not given
names in directories and remain known to the operating system only for as long as the
task that created them is in execution. Typically, when a task terminates execution
(normally or abnormally), its temporary files are deleted by MPX-32.

If the temporary file is made permanent or is allocated (assigned) to another task when
the creator terminates execution, the file remains defined to MPX-32 after the task that
created it terminates execution.

This service allocates a resource descriptor for the file and acquires the initial space
requirements for the file. As a final step, it records the attributes of the file in the
resource descriptor.

When a temporary file is created, the typical file attributes are:

• file resource identifier (RID)

• file protection attributes

• file management attributes

• file initial space requirements

The file's RID is returned only if the RCB address is specified and an ID location
address for the file is also specified within the RCB.

Asynchronous abort and delete are inhibited during execution of this service.

The nonbase mode equivalent service is M.TEMP.

Entry Conditions

7-48

Calling Sequence

M_CREATET [[PATH=] vector] [,[RCBADDR=]rcbaddr] [,[CNPADDR=]cnpaddr]

(or)

LW
LA
LA
SVC

vector

rcbaddr

cnpaddr

Rl vector (or) ZR Rl
R2, rcbaddr (or) ZR R2
R7, cnpaddr (or) ZR R7
2,x'21' (or) M_CALL H.VOMM,2

is an address containing a PN (volume name only) vector or zero if the
file to be created is on a working volume

is a RCB address or zero if default attributes are desired

is a CNP address or zero if CNP is not supplied

Base Mode System Services

c;

(

Registers

R I contains vector; otherwise, zero

R2 contains rcbaddr; otherwise, zero

R 7 contains cnpaddr; otherwise, zero

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R 7 return status if a CNP is not supplied; otherwise, unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

MPX-32 Reference Volume I 7-49

7.2.35 M_CTIM - Convert System Date/Time Format

The M_ CfIM service converts the system date and time from one of three standard
formats (see Appendix H for date and time formats) to either of the other two formats.
This service is callable from specific case macros that provide the function code in the
macro call itself.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.CTIM.

Entry Conditions

7-50

Calling Sequence

M_CTIM [FUNCT=]jimct, [STIME=]addrl , [DTIME=]addr2

(or)

LA
ORMW
LA
SVC

tunet

addrl

addr2

RI,addrl
Rl/unet
R2,addr2
2,X'51' (or) H.REXS,75

is the address of a word that contains the function code (see chart
below) in byte 0 (most significant) and zeros in bytes 1, 2, and 3

is the address of a 2- or 4-word buffer where the user provides the date
and time, in any of the three standard formats, for the system to convert

is the address of a 2- or 4-word buffer where the system returns the
converted date and time values in the format requested by the user

Function Buffer Length
Code Input Format Return Format In Out

1 Binary Byte binary 2W 2W
2 Binary Quad ASCII 2W 4W
3 Byte binary Binary 2W 2W
4 Byte binary Quad ASCII 2W 4W
5 Quad ASCII Binary 4W 2W
6 Quad ASCII Byte binary 4W 2W

Base Mode System Services

Exit Conditions

Return Sequence

M.IPURTN

Registers

Rl,R2 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

7.2.36 M_CWAT - System Console Wait

The M_CWAT service suspends operation of the calling program until the specified
I/O transfer is complete.

The nonbase mode equivalent service is M.CWAT.

Entry Conditions

Calling Sequence

M_CWAT [TCP=]tcpb

(or)

LA Rl,tcpb
SVC 1,X'3D' (or) M_CALL H.IOCS,26

tcpb is the address of a type control parameter block (TCPB)

Exit Conditions

Return Sequence

M.RTRN

MPX-32 Reference Volume I 7-51

7.2.37 M_DATE - Date and Time Inquiry

The M_DATE service returns to the caller the date (in ASCII), calendar information
(century, year, month and day), and a count of the number of real-time clock
interrupts since midnight. To aid in converting the interrupt count to time-of -day, the
service also returns counts of the number of interrupts per second and the number of
interrupts per time unit.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.DA TE.

Entry Conditions

Calling Sequence

M_DATE [PBADR=]pbaddr

(or)

LA R7,pbaddr
SVC l,X'15' (or) M_CALL H.REXS,70

pbaddr is the logical word address of the first location of a parameter block
formatted as follows:

• Words 0 and 1 contain the current date in the format entered at IPL
time.

• Word 2

Bytes Contents in Binary

o century
1 year
2 month
3 day

• Word 3 contains the number of clock interrupts since midnight

• Word 4 contains the number of clock interrupts per second
(initialized by SYSGEN)

• Word 5 contains the number of clock interrupts per time unit
(initialized by SYSGEN)

Exit Conditions

7-52

Return Sequence

M.IPURTN

Base Mode System Services

o

o

(

7.2.38 M_DEASSIGN - Deassign and Deallocate Resource

The M_DEASSIGN service deallocates a resource and disassociates it from a logical
file code. When a device associated with any unfonnatted media is detached, a
message is issued to infonn the operator to dismount the medium, unless inhibited by
user request or system constraints.

Deallocation of a nonshared resource makes it available to other tasks. Deallocation
of a shared resource makes the resource available, if the caller is the last task to
deallocate it or the access mode changes as a result of the deallocation to allow other
compatible tasks to attach to the resource. Deallocation of SLO and SBO files result
in their definitions being passed to the system output task for processing.

If the specified logical file code has been equated to other logical file codes in the
system, only the specified LFC is deallocated. If a close has not been issued, the
resource is also closed. This function can also issue a dismount message for an
unformatted medium with no resource deallocation.

The nonbase mode equivalent service is M.DASN.

Entry Conditions

Calling Sequence

M_DEASSIGN [RESOURCE=]addr [,[CNPADDR=]cnpaddr]

(or)

LW RI, addr
LA R7, cnpaddr (or) ZR R7
SVC 2,X'53' (or) M_CALL H.REXS,22

addr is an address containing the allocation index obtained when the
resource was assigned

(or)

an address containing the address of a file control block (FCB) which
contains an LFC in word 0

cnpaddr

Registers

RI

R7

is the address of a caller notification packet (CNP) if notification is
desired

Applicable portions of the CNP for this function are abnormal return
address, option field, and status field.

The option field of the CNP has the following bit significance when
set:

o - issue dismount message with no resource deallocation

contains addr

contains cnpaddr; otherwise, zero

MPX-32 Reference Volume I 7·53

Exit Conditions

7-54

Return Sequence

(with CNP)

M.RTRN

(or)

(without CNP)

M.RTRN

(or)

M.RTNA (CCI set) M.RTRN R7 (CCI set)

Registers

R 7 return status if a CNP is not supplied; otherwise, unchanged

Status
CCI set

Posted in R 7 or in the status field of the CNP:

Value Description

8
29
30
46

unrecoverable I/O error to volume
logical file code associated with FCB not assigned
invalid allocation index
unable to obtain resource descriptor lock (multiprocessor only)

Base Mode System Services

o

c

7.2.39 M_DEBUG - Load and Execute Interactive Debugger

The M_DEBUG service causes one of the following events to occur:

• If the interactive debugger is currently loaded at the time the service is called,
control is transferred to the debugger.

• If the interactive debugger is not currently loaded at the time the service is called,
the debugger is loaded as an overlay segment, then control is transferred to the
debugger.

DEBUGX32 is loaded with base mode tasks.

The nonbase mode equivalent service is M.DEBUG.

Entry Conditions

Calling Sequence

M_DEBUG

(or)

SVC 1,X'63' (or) M_CALL H.REXS,29

Exit Conditions

Normal Return Sequence to Debugger:

M.RTRN R 7 contains the transfer address of the debugger if the debugger was
loaded by this service call. R7 contains zero if the debugger was
already loaded at the time this service was called.

Abnormal Return Sequence to Caller:

R7 Value Description

2 debugger load module not found
4 invalid preamble
5 insufficient task space for loading
6 I/O error on resource descriptor
7 I/O error on resource
8 loading error

MPX·32 Reference Volume I 7-55

7.2.40 M_DEFT - Change Defaults

The M_DEFf service changes the caller's working directory, project group protection,
or both.

The caller should invoke this service with two separate calls, as though changing
project group protection and changing the current working directory were two distinct
services. When both project group and working directory are specified, the service
changes the project group, before attempting to change the current working directory.
If the attempt to establish the current working directory fails, the new project group
protection remains in effect and the caller is notified by an error status code that the
current working directory request failed. The caller must determine whether to
continue with the new project group or to re-establish another project group.

The nonbase mode equivalent service is M.DEFT.

Entry Conditions

Calling Sequence

M_DEFT [ARGA=]arga [, [CNP=]cnpaddr] [, [PRJADR=]prjaddr]
[, [KEY ADR=] keyaddr]

(or)

LW RI,arga
LA R4,prjaddr (or) ZR R4
LA R5,keyaddr (or) ZR R5
LA R7,cnpaddr (or) ZR R7
SVC 2,X'27' (or) M_CALL H.VOMM,8

arga

cnpaddr

prjaddr

keyaddr

contains a PN vector, PNB vector, or RID vector

is a CNP address or zero if CNP is not supplied

is the address of the new project group name or zero if no change to
project group name

is the address of the new project group key or zero if not supplied

Exit Conditions

7-56

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 return status if a CNP is not supplied; otherwise, unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Base Mode System Services

o

o

M DElETER

7.2.41 M_DElETER - Delete Resource

The M_DELETER service explicitly deletes volume resources. This service must be
used to delete directories, files, and memory partitions. Callers cannot delete a
resource that they do not have delete access to.

This service first deletes the directory entry for the specified resource and then releases
the volume space requirements. Finally the service releases the resource descriptor.

If the resource is allocated at the time of the delete request, only the directory entry is
deleted. The volume space requirements and the resource descriptor for the resource
will be released when the last assignment to the resource is removed.

To delete a permanent file or memory partition, the patbname or pathname block must
be supplied. To delete a directory, the patbname or patbname block must be supplied
and all files which were defined in the directory must have been previously deleted.

To delete a temporary file, the caller can provide the resource identifier (RID), or
specify the logical file code (LFC), or the address of a file control block (FCB).

Asynchronous abort and delete are inhibited during execution of this service.

The nonbase mode equivalent service is M.DELR.

Entry Conditions

Calling Sequence

M_DELETER [RESOURCE:]addr [,[CNP ADDR=]cnpaddr]

(or)

LW Rl, addr
LA R7, cnpaddr (or) ZR R7
SVC 2,X'24' (or) M_CALL H.VOMM,5

addr

cnpaddr

Registers

is an address containing a PN vector, PNB vector, LFC. or FCB

is a CNP address or zero if CNP is not supplied

R 1 contains addr

R 7 contains cnpaddr; otherwise, zero

MPX-32 Reference Volume I 7-57

M DELETER

Exit Conditions

7-58

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCl set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCl set)

R 7 return status if a CNP is not supplied; otherwise, unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Base Mode System Services

()

o

(

(.

7.2.42 M_DEL TSK - Delete Task

The M_DELTSK service forces I/O completion and immediately aborts the specified
task. See Task Termination Sequencing in Chapter 2. This service should only be
used when abort fails to remove a task or when a task is queued for a resource. File
integrity can be affected because operations are not allowed to complete normally. To
preserve system integrity, the kill directive is processed as an abort for ten seconds. If
this does not remove the task, it is killed.

The nonbase mode equivalent service is M.DELTSK.

Entry Conditions

Calling Sequence

M_DELTSK [ABCODE=]abcode, [TASK=]task, [EXTCODE=]extcode

(or)

LD
LW
LI
LW
SVC

R2,extcode
R5,abcode

R6,O } (or) LD R6,taskname
R7, taskno
1,X'5A' (or) M_CALL H.REXS,31

contains the abort code consisting of four ASCII characters abc ode

task the address of a doubleword containing the name of the task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

extcode

Exit Conditions

contains the extended abort code message consisting of 1- to 8-ASCII
characters, left-justified, and blank-filled

Return Sequence

M.RTRN 7

Registers

R7 zero if the specified task was not found or the requesting task is not
privileged and the owner name is restricted from access to tasks with a
different owner name by the M.KEY file; otherwise, contains the task
number

MPX-32 Reference Volume I 7·59

Output Messages

Modifies abort message to:

ABORT task REASON: .xxxx zzzzzzzz AT: yyyyyyyy

zzzzzzzz is the extended message code supplied with the call to this service

7.2.43 M_DEVID - Get Device Mnemonic or Type Code

The M_DEVID service allows the user to pass a device mnemonic or a generic device
type code and receive the corresponding type code or mnemonic. See Appendix A for
device mnemonics and device type codes.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.DEVID.

Entry Conditions

Calling Sequence

M_DEVID [DEVID=J id

(or)

LW R2,id
SVC 1,X'14' (or) M_CALL H.REXS,71

id contains either a device mnemonic in the right halfword with the left
halfword zero or a device type code in byte 3 with zero in bytes 0-2

Exit Conditions

7-60

Return Sequence

M.IPURTN 2

Registers

Registers if input was a device mnemonic:

R2 bytes 0-2 contain zeros; byte 3 contains corresponding device type code

R2 left halfword contains zero; right halfword contains corresponding device
mnemonic

Registers if input was a mnemonic or device type code not in the system device type
table (DTT):

R2 bit 0 is set; bits 1-31 are unchanged

Base Mode System Services

7.2.44 M_DIR - Create Directory

The M_DIR service creates a permanent directory. Permanent directories are given
names in the root directory and remain known to MPX-32 until they are explicitly
deleted.

Directories contain the names of permanent files and memory partitions that are
created in the directories.

This service allocates a resource descriptor and the volume space requirements for the
directory. Next, it records the indicated attributes of the directory in the resource
descriptor. Finally, the service establishes the name of the directory in the indicated
parent directory.

When the directory is established, the directory entry is linked to the resource
descriptor of the directory. This links the name of the new directory to the other
attributes of the new directory. Typical directory attributes are:

• directory name

• directory resource identifier (RID)

• directory protection attributes

• directory management attributes

• directory volume space requirements

Asynchronous abort and delete are inhibited during execution of this service.

The nonbase mode equivalent service is M.DIR.

Entry Conditions

Calling Sequence

M_DIR [PNADR=]pnaddr [,[CNP=]cnpaddr] [,[RCB=]rcbaddr]

(or)

LW R 1 ,pnaddr
LA R2,rcbaddr (or) ZR R2
LA R7,cnpaddr (or) ZR R7
SVC 2,X'23' (or) M_CALL H.VOMM,4

pnaddr

cnpaddr

rcbaddr

contains a PN vector or PNB vector

is a CNP address or zero if CNP not supplied

is a RCB address or zero if default attributes are desired

MPX-32 Reference Volume I 7-61

Exit Conditions

7·62

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R 7 return status if a CNP is not supplied; otherwise, unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Base Mode System Services

o

(

(-/

c

7.2.45 M_DISCON - Disconnect Task from Interrupt

The M_DISCON service disconnects a task that has previously been connected to an
interrupt level.

The nonbase mode equivalent service is M.DISCON.

Entry Conditions

Calling Sequence

M_DISCON [TASK=]task

(or)

LI R6,O
LW R7,taskno
SVC I,X'5D'

} (or) LD R6,taskname

(or) M_CALL H.REXS,38

task the address of a double word containing the name of the task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

Exit Conditions

Normal Return Sequence

M.RTRN 7

Registers

R 7 contains the task number

Abnormal Return Sequence

M.RTRN 6,7

Registers

R6 contains denial code as follows:

Value

1

2
3

Description

task not found in dispatch queue or the requesting task is
not privileged and the owner name is restricted from access
to tasks with a different owner name by the M.KEY file
task not indirectly connected
task connected to invalid interrupt

R7 zero if the task was not previously connected to an interrupt level

MPX-32 Reference Volume I 7-63

7.2.46 M_DISMOUNT - Dismount Volume

The M_DISMOUNT service performs a logical dismoWlt and, optionally, a physical
dismoWlt of a user volume.

For a nonpublic volume, M_DISMOUNT decrements the use COWlt for the volume in
the mOWlted volume table (MVT) entry, provided the requestor has no resources
allocated on the volume. A physical dismoWlt is performed if the MVT use COWlt is
zero. Otherwise, the physical dismoWlt is pending, and all mOWlt requests for the
volume are denied.

For a physical dismoWlt of a public volume, M_DISMOUNT establishes a use COWlt
in the MVT based on the total number of resources allocated on the volume at the
time the dismOWlt request is made. When the use COWlt is zero, a physical dismoWlt
is performed. M_DISMOUNT confirms the completed dismoWlt with the system
operator through the system console, as specified in the CNP.

Only the system administrator can request the dismoWlt of a public volume.

The nonbase mode equivalent service is M.DMOUNT.

Entry Conditions

7-64

Calling Sequence

M_DISMOUNT [VOLADDR=]voladdr [,[CNPADDR=]cnpaddr]

(or)

LA R 1, voladdr
LA R7, cnpaddr (or) ZR R7
SVC 2,X'4A' (or) M_CALL H.REMM,19

voladdr

cnpaddr

is the address, doubleword bOWlded of the volume name

is the address of a caller notification packet if notification is desired

Applicable portions of the CNP for this fWlction are option field,
abnormal return address, status field, and Word 3.

Option field (Word 2 of CNP):

Bit Meaning if Set

o physical dismoWlt requested
1 no logical dismount
2 public volume dismoWlt request
3 inhibit operator interaction

Note: Bit 3 is ignored if the volume was mOWlted with operator intervention
inhibited.

Base Mode System Services

Word 3: Dismount device specification, if the option bit is set

Byte Definition

1 device type code
2 channel address
3 subchannel address

Registers

R 1 contains addr

R7 contains cnpaddr, otherwise, zero

Exit Conditions

Return Sequence

(with CNP) (without CNP)

M.RTRN

(or)

M.RTRN

(or)

M.RTNA (CCI set) M.RTRN R7 (CCI set)

Registers

R7 return status if a CNP is not supplied; otherwise, unchanged

Status
CCI set

Posted in R 7 or in the status field of the CNP:

Value

14
20
86
87

88
89

Description

caller has outstanding resource assignments on this volume
volume not assigned to this task or volume is public
cannot dismount the system volume
unable to dismount public volume because compatible mode
public volume dismount (CMPMM) option was specified
at SYSGEN
unable to dismount public volume. SA attribute required.
unable to dismount public volume. Missing CNP option on
dismount request.

MPX-32 Reference Volume I 7-65

M DLTT

7.2.47 M_DL TT - Delete Timer Entry

The M_DL IT service resets the timer for the specified task so that its specified
function is no longer performed upon time-out. Deletion of the timer entry does not
delete the associated task. One-shot timers are deleted on expiration.

The nonbase mode equivalent service is M.DLIT.

Entry Conditions

Calling Sequence

M_DLIT [TIMER=] timer

(or)

LW R7,timer
SVC l,X'47' (or) M_CALL H.REXS,6

timer specifies right-justified 2-character ASCII name of a timer

Exit Conditions

7-66

Return Sequence

M.RTRN

Status

CCI timer entry not found

Base Mode System Services

o

c

(

7.2.48 M_DSMI - Disable Message Task Interrupt

The M_DSMI service disables the task interrupts for messages sent to the calling task.
M_DSMI is useful for synchronization gating of the task message interrupts.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.DSMI.

Entry Conditions

Calling Sequence

M_DSMI

(or)

SVC I,X'2E' (or) M_CALL H.REXS,57

Exit Conditions

Return Sequence

M.IPURTN

Status

CCI task interrupts were already disabled

MPX-32 Reference Volume I 7-67

7.2.49 M_DSUB - Disable User Break Interrupt

The M_DSUB service deactivates the user break interrupt (see M_ENUB) and allows
user breaks by the terminal break key to be acknowledged.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.DSUB.

Entry Conditions

Calling Sequence

M_DSUB

(or)

SVC l,X'l2' (or) M_CALL H.REXS,73

Exit Conditions

7·68

Return Sequence

M.IPURTN

Status

CCl user break already disabled

Base Mode System Services

(

(

7.2.50 M_DUMP - Memory Dump Request

The M_DUMP service provides a dump of the caller's program status doubleword
(PSD), general purpose registers, and specified memory limits. The output is to a
SLO file in side-by-side hexadecimal with ASCII format, with the PSD and in
registers preceding the specified memory limits. The PSD and registers are extracted
from the first level of push-down of the calling task. Optionally, R5 can specify the
address of a ten word block containing RO through R7 and the PSD to be dumped,
respectively.

Any task can request a memory dump.

The nonbase mode equivalent service is M.DUMP.

Entry Conditions

Calling Sequence

M_DUMP [START=]start, [ENDADR=]end [,[CTXBUF=]ctxbuf]

(or)

ZR R5 (or) LA R5,ctxbuf
LW R6,start
LW R7,end
SVC 1,X'4F' (or) M_CALL H.REXS,12

start contains the low logical word address requested in dump

end contains the high logical word address requested in dump

ctxbuf is the optional address of ten consecutive words containing RO through
R7 and a PSD, respectively. If R5=O, the registers and PSD dumped
are taken from the first level of push-down.

Note: start and end are truncated to the nearest 8-word boundaries and memory is
dumped between the truncated limits.

Exit Conditions

Return Sequence

M.RTRN 6,7

Registers

R6 Value Description

1 high dump limit less than low limit
4 no FAT or FPT space available
5 request made with insufficient levels of push-down available
6 cannot allocate SLO file
7 unrecoverable I/O error

R 7 zero if dump could not be performed

MPX·32 Reference Volume I 7·69

7.2.51 M_ENMI - Enable Message Task Interrupt

The M_ENMI service enables task interrupts for messages sent to the calling task. It
removes an inhibit condition previously established by invoking the M_DSMI service.

The nonbase mode equivalent service is M.ENMI.

Entry Conditions

Calling Sequence

M_ENMI

(or)

SVC l,X'2F' (or) M_CALL H.REXS,58

Exit Conditions

7-70

Return Sequence

M.RTRN

Status

CCl set task interrupts were already enabled

Base Mode System Services

("

c

7.2.52 M_ENUB - Enable User Break Interrupt

The M_ENUB service activates the user break interrupt and causes further user breaks
from the user terminal break key to be ignored.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.ENUB.

Entry Conditions

Calling Sequence

M_ENUB

(or)

SVC I,X'13' (or) M_CALL H.REXS,72

Exit Conditions

Return Sequence

M.IPURTN

Status

CCI set user break already enabled

MPX-32 Reference Volume I 7-71

7.2.53 M_ENVRMT - Get Task Environment

The M_ENVRMT service obtains more information on the task environment than
provided in the task option word.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.ENVRMT.

Entry Conditions

Calling Sequence

M_ENVRMT

(or)

SVC 2,X'5E' (or) M_CALL H.REXS,85

Exit Conditions

7·72

Return Sequence

M.RTRN R7

Registers

R7 contains the task environment word as follows:

Definition

o if batch task or real-time task
1 if interactive

1 0 if option NOCOMMAND is set
1 if option COMMAND is set

2 0 if option NOERR is set
1 if option ERROR is set

3 0 if cataloged or linked unprivileged
1 if cataloged or linked privileged

4 0 if currently unprivileged
1 if currently privileged

5-6 reserved

7 0 if task is not in demand page mode
1 if task is in demand page mode (CONCEPT 32/2000 only)

8-31 reserved

Base Mode System Services

f-\
t~

' I C"'.··

7.2.54 M_EXCLUDE - Exclude Shared Image

The M_EXCLUDE service allows a base mode task to dynamically exclude a shared
image previously included. This service causes the assign count and user count to be
decremented. The shared image is deleted and its resources returned to the free list
when the assign count goes to zero. This service is also called by the exit processor
(H.REMM,3) whenever a task aborts or abnormally ends while associated with a
shared image. The shared image is identified by the allocation index obtained when
the shared image was included, or by the resource identifier (RID) used to create it
and the owner name used to include it.

The nonbase mode equivalent service is M.EXCLUDE.

Entry Conditions

Calling Sequence

M_EXCLUDE [RESOURCE=] addr [,[CNPADDR=]cnpaddr]

(or)

LW RI, addr
LA R7, cnpaddr (or) ZR R7
SVC 2,X'41' (or) M_CALL H.REMM,14

addr contains a PN vector, or PNB vector, an RID vector, or the allocation
index obtained from the M_INCLUDE service

cnpaddr is a CNP address or zero if CNP is not supplied. Applicable portions
of the CNP are abnormal return address and status field.

Registers

R 1 contains addr

R7 contains cnpaddr; otherwise, zero

Exit Conditions

Return Sequence

(with CNP)

M.RTRN R3, R5

(or)

M.RTRNA (CCl set)

MPX-32 Reference Volume I

(without CNP)

M.RTRN R3, R5

(or)

M.RTRN R7 (CCI set)

7-73

7-74

Registers

R7

Status
CCl set

contains the return status if a CNP is not supplied; otherwise, unchanged

Posted in R7 or the status field of the CNP:

Value

5
30
35

39
58

Description

unable to locate shared memory table entry
invalid allocation index
attempt to exclude shared image that is not mapped into the
calling task's address space
unable to write back data section
shared memory table space is not available

Base Mode System Services

/- -
I '

\,<-)

C"\
/,)

c:'

M EXIT

7.2.55 M_EXIT - Terminate Task Execution

The M_EXIT service performs all normal termination functions required of exiting
tasks. All devices and memory are deallocated, related table space is erased, and the
task's dispatch queue entry is cleared.

The nonbase mode equivalent service is M.EXIT.

Entry Conditions

calling Sequence

M_EXIT

(or)

SVC 1,X'SS' (or) M_CALL H.REXS,lS

RO must be preloaded with an ASCII abort code or zero. RO must contain zero for a
normal exit.

Exit Conditions

Return Sequence

M.RTRN RO

Registers

RO contains abort code on abnormal exits.

Abort Cases

RX92 TASK HAS ATTEMPTED NORMAL EXIT WITH MESSAGES IN
ITS RECEIVER QUEUE

MPX·32 Reference Volume I 7·75

7.2.56 M_EXTENDFILE - Extend File

The M_EXTENDFILE service allows the space of a file to be manually extended.
The caller may specify the size of the requested extension or use the default file
extension parameters defined when the file was created. If the file was created with
the zero option specified, the extension will be zeroed.

This service will only extend temporary or permanent files that are manually
extendable. Directories and memory partitions cannot be extended. The caller must
have write, update, or append access in order to extend the file.

The caller can extend a file regardless of whether the file is currently allocated.
Additionally, the caller can supply any allowable resource specification, such as
pathname (PN), pathname block (PNB), resource ID (RID), logical file code (LFC) or
address of a file control block (FCB).

Asynchronous abort and delete are inhibited during execution of this service.

The nonbase mode equivalent service is M.EXTD.

Entry Conditions

7-76

Calling Sequence

M_EXTENDFILE [RESOURCE=] addr [,[BLOCKS=] number]
[,[CNPADDR=] cnpaddr]

(or)

LW RI, addr
LN R6, number (or) ZR R6
LA R7, cnpaddr (or) ZR R7
SVC 2,X'25' (or) M_CALL H.VOMM,6

addr contains a PN vector, a PNB vector, an RID vector, an LFC, or an FCB

number

cnpaddr

Registers

is an address containing the number of blocks to extend the file by or
zero if RCB extension parameters specified during file creation are to
be used

is a CNP address or zero if not supplied

R I contains addr

R6 contains number; otherwise, zero

R 7 contains cnpaddr; otherwise, zero

Base Mode System Services

o

o

Exit Conditions

Return Sequence

(with CNP)

M.RTRN R6

(or)

M.RTNA (CCl set)

Registers

(without CNP)

M.RTRN R6

(or)

M.RTRN R7 (CCl set)

R6 contains the number of contiguous blocks the file is actually extended by

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment/Allocation and I/O chapter of Volume I.

MPX-32 Reference Volume I 7-n

7.2.57 M_EXTSTS - Exit With Status

The M_EXTSTS service provides exit status of a task, i.e., whether the exit was
successful. RO contains either zero or a valid 4-character ASCII abort code. If RO is
not zero or a valid abort code, the task is terminated with an RX36 abort condition.

Entry Conditions

Calling Sequence

M_EXTSTS [STATADDR=] addr

(or)

LW RO, addr
SVC 2,X'5F' (or) M_CALL H.REXS,86

addr is the address where the final status code is to be stored

Registers

RO contains addr

Exit Conditions

7·78

Abort Cases

RX36 STATUS IN RO IS NOT A ZERO OR A VALID ABORT CODE

Output Messages

task #number ABORT AT: xxxxxxxx - yyyyy mm/dd/yy hh:mn:ss zzzz

task

number

xxxxxxxx

yyyyy

mm

dd

yy

hh

mn

ss

zzzz

is the 1- to 8-character name of the task being aborted

is the task number of the task being aborted

is the location of the abort

is the beginning of the DSECT

is the month (2-character decimal number from 01 thru 12)

is the day (2-character decimal number from 01 tbm 31)

is the year (2-character decimal number from 00 thru 99)

is the hour (2-character decimal number from 00 tbm 23)

is the minutes (2-character decimal number from 00 thru 59)

is the seconds (2-character decimal number from 00 tbm 59)

is the 4-character abort code

Base Mode System Services

C,
"

M_FREEMEMBYTES

7.2.58 M_FREEMEMBYTES - Free Memory in Byte Increments

The M_FREEMEMBYTES service allows a task to dynamically deallocate acquired
memory. Deallocation can be random. The space address must have been previously
obtained from the M_GETMEMBYTES service. All of the space obtained from a
given call is deallocated.

The nonbase mode equivalent service is M.MEMFRE.

Entry Conditions

Calling Sequence

M_FREEMEMBYTES [MEMADDR=]addr

(or)

LW R3, addr
SVC 2,X'4C' (or) M_CALL H.REMM,29

addr is the starting address of dynamic space previously acquired from
the M_GETMEMBYTES service

Registers

R3 contains addr

Exit Conditions

Return Sequence

M.RTRN R3 (or) abort user with RM77

Registers

R3 equals zero if deallocation could not be performed. Deallocation address
was not found in allocation table.

Abort Cases

RM77 A TASK HAS DESTROYED THE ALLOCATION LINKAGES IN
ITS DYNAMIC EXPANSION SPACE

MPX-32 Reference Volume I 7-79

7.2.59 M_GETCTX - Get User Context

The M_GETcrx service is used to store the current values for user context into a
specified buffer. The buffer must be on a word boundary.

Entry Conditions

Calling Sequence

M_ GETCTX [BUFFER=] addr , [NUMBER=] number

(or)

LA RI, addr
LI R4, number
SVC 2,X'70' (or) M_CALL H.EXEC,41

addr

number

Registers

is a word bounded buffer address where the context is to be stored

is the number of bytes allocated for the buffer

R I contains addr

R4 contains number

Exit Conditions

7·80

Return Sequence

M.RTRN R6, R7

Registers

Normal Return:

eel =0

R6 contains debugger status word 1

R7 contains debugger status word 2

Return On Error Condition

eel = 1
R7 contains error condition as a hexadecimal value as follows:

Value Description

257 destination buffer is in the operating system
258 destination buffer is in the TSA
259 invalid destination buffer address
260 buffer length not a word multiple

Base Mode System Services

(

7.2.60 M_GETDEF - Get Definition for Terminal Function

The M_GETDEF service returns, for the requested terminal function, an appropriate
string of bytes in the specified buffer and indicates the length of the returned string.
The user must specify the LFC of a terminal that is currently open and allocated, the
buffer address and a terminal function. For this service to operate, the partition
TERMPART must exist and have been initialized by J.TDEFI. For more information,
refer to the MPX-32 Reference Manual, Volume II, Chapter II.

The nonbase mode equivalent service is M.GETDEF.

Entry Conditions

Calling Sequence

M_GETDEF [IBADDR=] ibaddr

(or)

LA R 1, ibaddr
SVC 2,X'7A' (or) M_CALL H.TSM,15

ibaddr is the logical 24-bit word address of the first word of the TERMDEF
information block formatted as follows:

Word

o
1
2

3

4
5

Description

open and allocated terminal's LFC
user buffer 24 bit address for returned information
halfword 0 is the requested function (2 ASCII
alphanumeric characters); halfword 1 is reserved
halfword 0 is the user buffer length in bytes;
halfword 1 is the length in bytes of the string returned
by the service to the user's buffer
optional X coordinate for cursor positioning functions
optional Y coordinate for cursor positioning functions

Rl is assumed to contain the address if ibaddr is not supplied.

MPX-32 Reference Volume I 7-81

Exit Conditions

7-82

Return Sequence

M.RTRN On normal completion, the string for the requested function is in the
user's buffer, and the length of this string is in the TERMDEF
information block string length field.

CCI set Error detected. The string length in the TERMDEF information block is
set to 0 and the function contains the error number with the following
meanings:

Registers

junction=error

error Description

I
2
3
4
5
6
7
8
9
10
11

N/A

invalid LFC supplied
unknown terminal type
user buffer is too large (>2K)
cannot include partition
undefined function requested
user buffer is too small
partition data integrity suspect
invalid terminal type supplied
invalid user buffer address
function is invalid for this terminal
TERMDEF is not installed
TERMDEF information block address is
invalid (CCI set only)

R I unchanged. CCI set if an error is detected.

Abort Cases

MFOl A MAP FAULT TRAP HAS OCCURRED. THIS IS THE RESULT
OF A BAD MEMORY REFERENCE OUTSIDE OF THE USER'S
ADDRESSABLE SPACE.

Base Mode System Services

/

C··"
I· ...•

M_GETMEMBVTES

7.2.61 M_GETMEMBVTES - Get Memory in Byte Increments

The M_GETMEMBYfES service allows a task to dynamically expand its memory
allocation in double word increments starting at the end of its DSECT up to the end of
its logical address space. The additional memory is of the same type specified when
the task was linked. The task is mapped in a logically contiguous manner up to the
end of its address space. The task is suspended until the allocation is successful.
Repeated calls to this service are allowed. Allocation is not contiguous with
previously allocated space.

The nonbase mode equivalent service is M.MEMB.

Entry Conditions

Calling Sequence

M_GETMEMBYfES [NUMBER=]number

(or)

LI R4, number
SVC 2,X'4B' (or) M_CALL H.REMM,28

number is the number of bytes to allocate

Registers

R4 contains number

Exit Conditions

Return Sequence

M.RTRN R3,R4

Registers

CCl equals zero
CC2 equals zero
R3 contains the 24-bit starting logical doubleword address of allocated space
R4 contains the number of bytes actually allocated, modulo 2W

(or)

CC 1 equals zero
CC2 equals one
R3 contains the 24-bit starting logical double word address of allocated space
R4 contains the number of bytes actually allocated (modulo 2W);

however, the number is less than requested.

Error Condition

Allocation Denied:

CCl
CC2
R3
R4

equals one
equals one
equals zero
equals zero

MPX-32 Reference Volume I 7-83

7.2.62 M_GETTIME - Get Current Date and Time

The M_ GETIIME service returns the current date and time to the caller in anyone of
the three standard formats described in Appendix H.

This service can be executed by the IPU.

Entry Conditions

7-84

Calling Sequence

M_GETIIME [OUTBUFFER=]addr,[OUTFORMA T=]value
(or)

LA RI,addr
ORMW RI,)"OlOOOOOO' (or) ORMW RI,X'02000000' (or)
ORMW RI,X'03000000'
(or)

SVC 2,X'50' (or) M_CALL H.REXS,74

addr specifies the address of the output buffer

value is the keyword for the format in which the date and time will be
returned. The three valid keywords are:

Function
Code

1

2

Keyword

BIN

BYTE

Format

2-word internal binary value as follows:

Word Contents

1 number of days since
January I, 1960

2 number of clock ticks
since midnight

8-byte binary value as follows:

Byte

o
1
2
3
4
5
6
7

Contents in Binary

century
year
month
day
hour
minute
second
number of interrupts

Base Mode System Services

o

o

Registers

Function
Code

3

Keyword

QUAD

M GETTIME

Format

4-word ASCII string formatted as follows:

Halfword

o
1
2
3
4
5
6
7

Contents in ASCII

century
year
month
day
hour
minute
second
number of interrupts

R1 byte 0 contains the function code; bytes 1-3 contain addr

Exit Conditions

Return Sequence

M.RTRN

Registers

R1 byte 0 contains the function code and bytes 1-3 contain the address as
used by the call. All others are returned intact.

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

MPX-32 Reference Volume I 7-85

7.2.63 M_GMSGP - Get Message Parameters

The M_GMSGP service is called from the message receiver routine of a task that has
received a message interrupt. It transfers the message parameters into the designated
receiver buffer, and posts the owner name and task number of the sending task into
the parameter receive block (PRB). For description of the PRB, see Chapter 2.

The nonbase mode equivalent service is M.GMSGP.

Entry Conditions

Calling Sequence

M_GMSGP [PRB=]prbaddr

(or)

LA R2,prbaddr
SVC l,X'7A' (or) M_CALL H.REXS,35

prbaddr is the logical address of the parameter receive block (PRB)

Exit Conditions

7-86

Return Sequence

M.RTRN 6

Registers

R6 contains the processing status error code:

Value

o
1
2

3
4

Description

normal status
invalid PRB address
invalid receiver buffer address or size detected during
parameter validation
no active send request
receiver buffer length exceeded during transfer

Base Mode System Services

.t~ '-j

7.2.64 M_GRUNP· Get Run Parameters

The M_GRUNP service transfers the run parameters into the designated receiver
buffer, and posts the owner name and task number of the sending task into the
parameter receive block (PRB). It is called by a task that is executing for a run
request. See Chapter 2.

The nonbase mode equivalent service is M.GRUNP.

Entry Conditions

Calling Sequence

M_GRUNP [PRB=]prbaddr

(or)

LA R2,prbaddr
SVC 1,X'7B' (or) M_CALL H.REXS,36

prbaddr is the logical address of the parameter receive block (PRB)

Exit Conditions

Return Sequence

M.RTRN 6

Registers

R6 contains the processing status error code:

Value Description

o normal status
1 invalid PRB address
2 invalid receiver buffer address or size detected during

parameter validation
3 no active send request
4 receiver buffer length exceeded during transfer

MPX·32 Reference Volume I 7·87

7.2.65 M_GTIM - Acquire System Date/Time in Any Format

The M_ GTIM service acquires the system date and time in anyone of the three
standard formats described in Appendix H. The user can also get the system date/time
by using any of the three specific case macros. These macros generate the same SVC
call but the function code is provided by the macro.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.GTIM.

Entry Conditions

Calling Sequence

M_GTIM [FUNCT=]jimet, [TIMBUF=] timbuJ

(or)

LA
ORMW
SVC

Junet

timbuJ

Rl,timbuJ
Rlfunet
2,X'50' (or) M_CALL H.REXS,74

is the address of a word containing the function code (see chart below)
in byte 0 (most significant) and zeros in bytes 1, 2, and 3

is the address of a buffer where the service places the date and time in
the format requested by the user. This buffer is 2 or 4 words in length
depending on the format desired.

Function Code Return Fonnat Buffer Length

1 Binary 2W
2 Byte binary 2W
3 Quad ASCII 4W

Exit Conditions

7·88

Return Sequence

M.IPURTN

Registers

Rl byte 0 contains the function code and bytes 1-3 contain the buffer address
as used by the call. All others are returned intact.

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT

Base Mode System Services

~ .

. '-/

M GTSAD

7.2.66 M_GTSAD - Get TSA Start Address

The M_GTSAD service returns the TSA starting address of the calling task.

This service is callable by the IPU.

The nonbase mode equivalent service is M.GTSAD.

Entry Conditions

Calling Sequence

M_GTSAD

(or)

SVC 2,X'7D' (or) M_CALL H.REXS,91

Exit Conditions

Return Sequence

M.IPURTN Rl

Registers

Rl logical address of the TSA of the caller

MPX-32 Reference Volume I 7-89

7.2.67 M_HOLD - Program Hold Request

The M_HOLD service makes the specified task ineligible for CPU control by setting
the hold bit in the CPU dispatch queue. The specified task remains in the hold state
until the operator issues the OPCOM CONTINUE directive. If the specified task is
not in the CPU dispatch queue, the request is ignored.

The nonbase mode equivalent service is M.HOLD.

Entry Conditions

Calling Sequence

M_HOLD [T ASKID=]task

(or)

LI
LW
SVC

task

R6,O } (or) LD R6,taskname
R7,taskno
1,X'58 (or) M_CALL H.REXS,25

the address of a double word containing the name of the task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

Exit Conditions

7-90

Return Sequence

M.RTRN 7

Registers

R 7 zero if the specifie9 task was not found or the requesting task is not
privileged and the owner name is restricted from access to tasks with a
different owner name by the M.KEY file; otherwise, contains the task
number.

Base Mode System Services

7.2.68 M_ID - Get Task Number

The M_ID service allows the user to pass the address of a parameter block containing
any of the following: task number, task name, owner name, or task pseudonym. The
service will provide the missing items if a matching entry is found. Initially, the
caller passes zero as the index value following the parameter block address. If more
than one task in the dispatch queue satisfies the given parameters, the service returns
to the caller with an index value in R5 for retrieval of further entries. The caller is
responsible for updating the index with the contents of R5 and reissuing M_ID until
all tasks that meet specifications have been identified or R5 equals zero.

The nonbase mode equivalent service is M.ID.

Entry Conditions

Calling Sequence

M_ID [PBADDR=]pbaddr, [INDEX=] index

(or)

LW R5,a variable equal to 0 or an index
LA R 7 ,pbaddr
SVC I,X'64' (or) M_CALL H.REXS,32

pbaddr is the logical word address of the first location of a parameter block
formatted as follows:

Word Contents

o task activation sequence number
1-2 task name
3-4 owner name
5-6 pseudonym

The user supplies those items that are known and zeros the other words.

index is a variable equal to zero for initial call, then previous DQE address
for each subsequent call

Exit Conditions

Return Sequence

M.RTRN 5

MPX-32 Reference Volume I 7-91

7-92

Registers

Normal Return:

R5 bit 0 is set if more than one task satisfies the given parameters. Bits 1-31
contain the DQE address of the first matching task found. If no entry
satisfies the given parameters, R5 equals zero. R5 may be used as input
for subsequent calls.

Abnormal Return:

CCI set parameter block address is invalid; R5 remains unchanged

Base Mode System Services

7.2.69 M_INCLUDE -Include Shared Image

The M_INCLUDE service allows a base mode task to include a shared image or a
memory partition into its address space. A static or dynamic partition can be included
at the logical address specified at creation or at a logical address specified in the caller
notification packet (CNP). The task is suspended until the inclusion is complete. If
the resource was not included by another task, an allocated resource table (ART) and a
shared memory table (SMT) entry are established for the resource. The resource is
automatically allocated for explicit shared use. If inclusion is successful, the assign
and user counts are incremented for the resource.

The shared image is identified by resource pathname or a resource identifier (RID) that
was defined when the partition was created. A partition is identified by an 8-character
partition name, or a resource identifier (RID) that was defined when the partition was
created. If the partition is dynamic, it is identified by an 8-character owner name that
is used to associate this copy of the partition with a particular set of users.

Prezeroing of partitions is not performed by this service. The resource is swappable
with the task if the user count goes to zero, and remains allocated until the assign
count is zero.

The option is provided to lock the resource for exclusive use. However, the resource
remains locked until: the owner of the lock terminates, the Release Exclusive Lock
(M_UNLOCK) service is explicitly called, or the resource is excluded by the task.

Once a shared image has been included by a task, subsequent includes by that task are
ignored.

The equivalent nonbase mode service is M.INCLUDE.

Note: To ensure proper inclusion, the first eight characters of a shared image file
name or partition name should be unique within the system.

Entry Conditions

Calling Sequence

M_INCLUDE [RESOURCE=] addr [,[CNPADDR=]cnpaddr]
(or)
LW
LA
SVC

RI, addr
R7, cnpaddr (or) ZR R7
2,X'40' (or) M_CALL H.REMM,12

addr

cnpaddr

contains a PN vector, an PNB vector, or an RID vector

is the address of a caller notification packet (CNP) if notification is
desired or if a logical address for partition inclusion is specified

Applicable portions of the CNP for this function are time-out value,
abnormal return address, option field, and status field.

MPX-32 Reference Volume I 7-93

The option field has the following significance:

Bit Meaning if Set

o read/write access
1 use written back data section
2 set exclusive resource lock
3 reserved for MPX-32
4 logical address of partition is supplied in word 4
5-15 reserved

Registers

R 1 contains addr

R7 contains cnpaddr; otherwise zero

Exit Conditions

7-94

Return Sequence

(with CNP)

M.RTRN R3, R5

(or)

M.RTRNA (CCI set)

(without CNP)

M.RTRN R3,R5

(or)

M.RTRN R7 (CCI set)

Base Mode System Services

(

("

Registers

R3 contains the starting logical address of the shared image

R5 contains the allocation index which can be used to identify the shared
image for the resource lock and image exclusion services. It contains the
nonzero bias SMT index in the first byte and the address of the associated
ART entry in the next three.

R7 contains the return status if a CNP is not supplied; otherwise, unchanged

Status

CC1 set Posted in R 7 or the status field of the CNP:

Value

1
2
8
16
35
36
37
38
40
41
44
45
47

48
49

55
58
62

80

98

MPX-32 Reference Volume I

Description

unable to locate shared image file
requested access mode not allowed
unrecoverable I/O error to volume
memory requirements conflict with task's address space
resource is not a shared image
requested physical memory already allocated
nonpresent physical memory requested
time out occurred waiting for shared memory to become available
invalid load module
invalid requested physical memory
write back requested and shared image has no write back section
loading error during inclusion of read only section of shared image
loading error during inclusion of read and write section of
shared image
incompatible load addresses for shared image
excessive multicopied shared images with no read-only section
(only three are allowed)
allocated resource table (ART) is full
shared memory table (SMT) space unavailable
resource specified is not a static or dynamic partition and the
option field indicates a logical inclusion address is given
shared image version level is not compatible with executable
image
requires more shadow memory than exists

7-95

7.2.70 M_INQUIRER - Resource Inquiry

The M_INQUIRER service obtains information specific to a resource allocated by a
base mode task. The information is returned as pointers to the various data structures
within the system that describe the resource. The resource must have been previously
allocated or included for memory partitions by the caller. Resources are identified by
a logical file code (LFC) obtained when the resource was allocated, a memory
partition name defined when the partition was created, or an allocation index obtained
when the resource was allocated or included. If not supplied as an argument, the caller
is provided with the unique allocation index which can be used to set and release
exclusive or synchronous locks on the resource while it remains allocated.

It is the caller's responsibility to interpret the information in the identified structures.
This should be done by a user-supplied subroutine that acts as a common interface
between application programs and this service. In this way, resource inquiries will be
less sensitive to changes in system structures.

The nonbase mode equivalent service is M.INQUlRY.

Entry Conditions

7-96

Calling Sequence

M_INQUIRER [BUFFER=] addrl, [RESOURCE=] addr2 [,[CNPADDR=] cnpaddr]

(or)

LA
LD
LA
SVC

addrl

addr2

Rl, addrJ
R4, addr2
R7, cnpaddr or
2,X'48' (or)

ZR R7
M_CALL H.REMM,27

is the address of an 8-word parameter description area where the
pointers to the appropriate system structure entries corresponding to
this resource are to be returned

is the address of a doubleword containing zero in byte 0 and a 1- to 3-
character, left-justified, blank-filled LFC in bytes I, 2, and 3 of word 0
with zero in word 1

(or)

the address of a doubleword containing a 1- to 8-character,left­
justified, blank-filled memory partition name in word 0 and the left­
justified task number or address of a 1- to 8-character (left-justified,
blank-filled) owner name in word 1

(or)

the address of a double word containing zero in word 0 and the
allocation index obtained when the resource was assigned in word 1

cnpaddr is the address of a caller notification packet (CNP) if notification is
desired. Applicable portions of the CNP for this function are abnormal
return address and status field.

Base Mode System Services

C",," 1, '.

/'

Registers

R I contains addr J

R4 contains addr2

R 7 contains cnpaddr, otherwise, zero

Exit Conditions

Return Sequence

(with CNP)

M.RTRN R5

(or)

M.RTNA R5 (CCI set)

Registers

(without CNP)

M.RTRN RS

(or)

M.RTRN RS,R7 (CCI set)

R5 contains the allocation index if not supplied as an argument, or zero if
resource is undefined

R 7 contains the return status if a CNP is not supplied; otherwise, unchanged

The interpretation of each word in the parameter description area and other pertinent
information that can be extracted from each structure follows:

Word 0 - Allocated resource table (ART) address:

• number of tasks assigned to this resource

• number of tasks currently using resource

• exclusive lock owner (DQE index)

• synchronous lock owner (DQE index)

• current allocation usage mode

• current allocation access mode (implicit shared)

• shared relative EOF block number (implicit shared)

• shared relative EOM block number (implicit shared)

MPX·32 Reference Volume I 7·97

Word 1 - File assignment table (FAT) address:

• relative EOF block

• relative EOM block

• number of segments in file

• current segment number

• current access mode

• relative file block position

• volume number (unformatted media only)

• unformatted ID (unformatted media only)

• assigned access restrictions

• file attribute and status flags

Word 2 - Unit definition table (UDT) address:

• device type code

• logical channel number

• logical subchannel number

• physical channel number (if different from logical)

• physical subchannel number (if different from logical)

• sectors per block (disk/floppy)

• sectors per allocation unit (disk/floppy)

• sectors per track (disk/floppy)

• number of heads (disk/floppy)

• total number of allocation units (disk/floppy)

• sector size (disk/floppy)

• characters per line (TTY/terminal)

• lines per screen (TTY/terminal)

• tab size (TTY/terminal)

• tab settings (TTY/terminal)

Word 3 - Device type table (DTT) address:

• number of controller entries for device

• ASCII device mnemonic

• device type code

()

7-98 Base Mode System Services

(Word 4 - Controller definition table (CDT) address:

• controller 1/0 class

• number of devices on controller

• device type code

• interrupt priority level

• logical channel number

• logical subchannel number of first device

• address of interrupt handler

• interrupt vector location

• controller definition flags

Word 5 - Shared memory table (SMT) address (applies to memory partitions and
shared images):

Extractable information:

• starting map register number

• memory type

• starting page number

• total number of pages

• number of map image descriptors

• address of map image descriptor list

Word 6 - File pointer table (FPT) address:

• logical file code associated with resource

Word 7 - Mounted volume table (MVT) address (applies only to volume resources):

• volume name

• current number of users of volume

• volume definition flags

• root directory resource ID

• number of descriptors available on volume

• number of allocation units available

• volume access restrictions

A value of zero returned in any word of the parameter description area implies the
corresponding structure does not apply to the resource for which the inquiry was
made. For example, only words 0 and 5 apply for memory partitions or shared
images.

For volume resources, words 2 through 4 pertain to the device upon which the volume
is mounted.

MPX-32 Reference Volume I 7-99

7-100

The MPX-32 Technical Manual Volume I contains a complete description of the
various system structures.

Status

CCI set

Posted in R7 or the status field of the CNP:

Value Description

5 shared memory table entry not found for partition
10 illegal address range
29 logical file code not assigned
30 invalid allocation index

Base Mode System Services

o

o

MINT

7.2.71 M_INT - Activate Task Interrupt

The M_INT service allows the calling task to cause the previously declared break/task
interrupt receiver routine of the specified task to be entered.

The nonbase mode equivalent service is M.INT.

Entry Conditions

Calling Sequence

M_INT [TASK=] task

(or)

ZR R6 } (or) LD R6,taskname
L W R 7 ,taskno
SVC I,X'6F' (or) M_CALL H.REXS,47

task the address of a double word containing the name of the task or 0 in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of 0 specifies the
calling task.

Exit Conditions

Return Sequence

M.RTRN 6,7

Registers

R6 unchanged if R7 is zero. If R7 is not zero, bit 0 of R6 is one if the
specified task was not set up to receive a pseudointerrupt; otherwise bit 0
is zero. Bits 1-31 of R6 are zero in all cases.

R7 zero if the specified task was not found or the requesting task is not
privileged and the owner name is restricted from access to tasks with a
different owner name by the M.KEY file; otherwise, contains the task
number

MPX-32 Reference Volume I 7-101

7.2.72 M_IPUBS - Set IPU Bias

The M_IPUBS service allows the user to dynamically change the IPU bias state for
the current task.

The nonbase mode equivalent service is M.IPUBS.

Entry Conditions

Calling Sequence

M_IPUBS [BIAS=] bias

(or)

LW R7,bias
SVC 2,X'5B' (or) M_CALL H.REXS,82

bias is the IPU bias state requested as follows:

Value Description

o
1
2

nonbiased task; can be executed by either the CPU or IPU
CPU only; can be executed only by the CPU
IPU bias; can be executed by either the CPU or IPU
but is given priority status by the IPU

Exit Conditions

7-102

Return Sequence

M.RTRN R6,R7

Registers

R6 contains execution status as follows:

Value Description

o normal return
1 IPU is not configured in the system
2 IPU is currently marked off-line

R7 contains the IPU bias state of the task before this service was issued as
follows:

Value Description

o nonbiased task
1 CPU only
2 IPU bias

Base Mode System Services

c

<-

7.2.73 M_LlMITS - Get Base Mode Task Address Limits

The M_LIMITS service returns the current task limits of a specified base mode task
into sequential word locations of a specified buffer until all the limits are provided or
the buffer is full. The values returned are the TSA base address, the stack lower
bound, the stack upper bound, the read-only section low address, and the read/write
section low address.

Entry Conditions

Calling Sequence

M_LIMITS [BUFFER=] addr, [NUMBER=] number

(or)

LA RI, addr
LI R4, number
SVC 2,X'5D' (or) M_CALL H.REXS,84

addr is the word bounded address of a buffer where the task address limits
are to be stored

number is the number of bytes allocated for the buffer

Registers

RI

R4

contains addr

contains number

Exit Conditions

Return Sequence

Normal Return:

M.RTRN

Abnormal Return:

M.RTRN R7

Registers

CC 1 error condition

R7 contains the error condition as a hexadecimal value as follows:

Value

257
258
259
260

MPX·32 Reference Volume I

Description

destination buffer is in the operating system
destination buffer is in the TSA
invalid destination buffer address
buffer length not a word multiple

7·103

7.2.74 M_lOCK - Set Exclusive Resource lock

The M_LOCK service allows a task to obtain exclusive allocation of a resource, as
though it were nonshareable, for as long as the lock is owned. The resource must
have been previously allocated (included for memory partitions), and is identified by
either a logical file code, LFC (defined when the resource was assigned) or an
allocation index (obtained when the resource was assigned or by a resource inquiry).
The task may request immediate denial if the lock is not available, or wait for an
indefinite or specified period of time. An exclusive resource lock may be obtained for
any allocated resource that is not being shared by multiple tasks at the time of the call
to this service.

The nonbase mode equivalent service is M.LOCK.

Entry Conditions

Calling Sequence

M_LOCK [ARGA=] arga [,[CNP=]cnpaddr]

(or)

LW R5,arga
LA R7,cnpaddr (or) ZR R7
SVC 2,X'44' (or) M_CALL H.REMM,23

arga is an address containing the allocation index obtained when the
resource was assigned

cnpaddr

(or)

an address containing the address of a file control block (FCB) which
contains a LFC in word 0

is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are time-out value,
abnormal return address, and status field.

Exit Conditions

7-104

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

Base Mode System Services

Registers

R7 return status if a CNP is not supplied; otherwise unchanged

Status

CC1 set

Posted in R 7 or the status field of the CNP:

Value

29
30
38
46
50
51

Description

specified LFC is not assigned
invalid allocation index
timeout occurred while waiting to become lock owner
unable to obtain resource descriptor lock (multiprocessor only)
resource is locked by another task
resource is allocated to another task

Wait Conditions

The task is placed in a wait state, as appropriate, if specified with the CNP.

MPX-32 Reference Volume I 7-105

7.2.75 M_LOGR - Log Resource or Directory

The M_LOGR service provides the base mode task with a convenient interface to
locate the directory entry and resource descriptor for a single resource or for all the
resources defined in a specified directory.

The caller must make a resource specification in the resource logging block (RLB).
The log service will evaluate the resource specification and determine whether to log a
single resource or all the resources defined in a directory. Some resource
specifications are ambiguous and require the caller to specify additional information so
the type of log function requested can be determined.

To log all the resources defined in a specified directory, the M_LOGR service must be
called repeatedly until the last resource in the directory is logged. The user must reset
bit 0 to zero in RLB.TYPE to indicate the first call. The operating system
automatically changes the contents of bit 0 to one to indicate recall. Once all
resources on the directory are logged, the operating system automatically resets bit 0
back to zero to indicate all resources have been logged.

Note: The M_LOGR system service does not search the memory resource descriptor
table (MDT) for resource descriptors.

7.2.75.1 Resource Specifications for Pathnames

7-106

The caller can specify any valid pathname that is recognized by the Volume
Management Module. The log service recognizes all valid patbname variations.
However, some patbnames are ambiguous within the context of this service and
require special considerations for the service to function with the expected results.

Specifically, patbnames that end with a directory specification are interpreted to mean
log the contents of the directory. Directories can be logged as resources in two ways .

. The first is to supply a patbname that specifies the directory as a resource. This
specification is not ambiguous. The second way is to supply a pathname that ends
with a directory specification. This type of patbname is ambiguous and requires
special handling.

Examples

The following type of patbname always logs the directory entry and resource
descriptor for the specified resource.

@volume (directory) resource

The following type of patbname usually specifies to log the contents of the specified
directory. The meaning of this pathname can be changed by setting the log single flag
(RLB.LS) bit in the RLB flag word (RLB.INT). When the RLB.LS flag is set, the
directory entry and resource descriptor for the specified directory are returned.

@volume (directory)

The following type of patbname means log the specified directory. The directory
entry and resource descriptor for the specified directory are returned.

@volumeAdirectory

Base Mode System Services

o

7.2.75.2 Resource Specifications for Pathname Blocks

Pathname blocks are processed in the same manner as pathnames.

7.2.75.3 Resource Specifications for a Resource Identifier

When a resource identifier (RID) is furnished, the log service assumes the indicated
resource is a directory and attempts to log the indicated resource as a directory.

7.2.75.4 Resource Specifications for a Logical File Code (LFC), FCB Address, or
Allocation Index

When this type of resource specification is provided the log service makes the
following assumptions:

• The implied file control block (FCB) is assigned to a directory.

• The implied FCB is opened.

• The buffer address in the FCB is the buffer to be used by the log service for
locating directory entries.

• The transfer quantity in the FCB is the maximum size of the directory entry buffer.

• The FCB must be an extended FCB and must be opened in random access mode.

• The buffer is empty on the initial call and positions to the beginning of the
directory and primes the supplied buffer. The directory is not read again until it is
exhausted.

The caller should assign the directory in read mode so the directory can be searched
by other users as it is being logged.

The nonbase mode equivalent service is M.LOGR.

Entry Conditions

Calling Sequence

M_LOGR [RLBADDR=] addrl [, [CNPADDR=] addr2]

(or)

LA R2,addrl
LA R7,addr2 (or) ZR R7
SVC 2,X'29' (or) M_CALL H.VOMM,lO

addr 1 is the address of the resource logging block (RLB)

addr2 is a CNP address or zero if not supplied

MPX-32 Reference Volume I 7-107

7·108

Word 0

1

2-3

4

5

6

7

Notes:

RLB Structure on Initial Call

o 7 8 15 16 23 24 31

PN vector or RID vector or zero (RLB.TGT). See Note 1.

192-word buffer address or zero (RLB.BVFA). See Note 2.

Reserved for system use

Type (RLB.TYPE) Zero (RLB.BOFF). See Note 3.
See Note 3.

Length. See Directory return buffer address (RLB.DIRA).
Note 4. See Note 4.

User FCB address or zero (RLB.FCB). See Note 5.

Flags. See Note 6. Reserved (RLB.INT).

1. If the PN vector length and address specify a resource, only one item is logged.
If the specification does not end with a resource, but with a directory, the entire
directory may be logged by repeated calls. A call by RID vector implies the RID
is for a directory and all entries may be logged. A value of zero implies the
entire contents of the current working directory.

2. This address must be double word bounded if this field is zero, the RD is not
returned.

3. The type value should be zero if the call is by PN vector (length and address) or
zero to indicate working directory. Type should be one to indicate a call by RID.
If all resources in a directory are to be logged, bit 0 of RLB.TYPE must be zero
to indicate the first call.

4. This word contains the address of a buffer and its length in words. The buffer
may be up to 16 words long. The log service will place the first n words of the
logged directory entry into this buffer. This provides the user access to the file
name and other attributes that exist only in the directory entry.

5. This service uses the system FCB by default. Phasing problems may occur, as
the directory to be logged must be deassigned between calls if multiple entries
are desired. In many cases, the impact of having an entry deleted just after it has
been logged, or having an entry appear after that portion in the directory has been
scanned, will be small or nonexistent. In other cases, such as saving files in a
directory. it may be major. To prevent these problems, the address of a FCB that
will be used to hold the directory while logging occurs may be provided.

Base Mode System Services

(j

(

6. Bits in this word are assigned as follows:

Bit Description

0-1 reserved
2 if set, directory entry and resource descriptor for specified

directory are returned (RLB.LS)
3 root directory
4 used on return to indicate whether resource was located

(see description of RLB Structure on Return under Exit Conditions)
5-7 reserved

Exit Conditions

Return Sequence

(with CNP)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN R7

R7 return status if a CNP is not supplied; otherwise CNP address. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Word 0

1

2

3

4

5

6

7

Notes:

RLB Structure on Return

o 7 8 15 16 23 24 31

PN vector or RID vector or zero (RLB.TGT)

192-word buffer address or zero (RLB.BVFA)

MVTE address (RLB.MVTE). See Note 1.

Disk address of directory RD (RLB.RDAD). See Note 1.

Type (RLB.TYFE) Byte offset of entry (RLB.BOFF)
See Note 2.

Length Directory return buffer address (RLB.DIRA)

User FeB address or zero (RLB.FCB)

Flags. See Note 3. Reserved (RLB.INT)

1. When all resources in a directory are to be logged, RLB.MVTE and RLB.RDAD
are used by the operating system as input after the first call.

MPX-32 Reference Volume I 7-109

7-110

2. The operating system automatically changes the contents of bit 0 in RLB.TYPE
as follows:

Value Description

o all resources in the directory have been logged; do not recall
this service

1 recall this service and log the next resource in the directory

3. Bits in this word are assigned as follows:

Bit Contents

0-1 reserved
2 directory entry and resource descriptor for specified

directory are returned
3 root directory
4 zero if resource was not located

5-7 reserved

Base Mode System Services

(':

(

('"
" .. .-1

7.2.76 M_MEM - Create Memory Partition

The M_MEM service creates permanent memory partition definitions. Permanent
memory partition definitions are given names in directories and remain known to the
operating system until explicitly deleted.

MPX-32 uses memory partition definitions to establish the relationship of named
globally accessible areas of memory to the tasks that require them.

This service first allocates a resource descriptor and defines the memory requirements
for the partition. Next, the attributes of the partition are recorded in the resource
descriptor. Finally, the name of the partition is established in the indicated directory.

When a directory entry is established, the directory entry is linked to the resource
descriptor for the partition. This link relates the name of the partition to the other
attributes of the partition. Typical partition attributes are:

• name
• resource identifier (RID)

• protection attributes

• management attributes

• memory requirements

Asynchronous abort and delete are inhibited during execution of this service.

The nonbase mode equivalent service is M.MEM.

Entry Conditions

Calling Sequence

M_MEM [[pNADDR=]pnaddr] [, [RCB=] rcbaddr] [, [CNP=] cnpaddr]

(or)

LW R 1 ,pnaddr
LA R2,rcbaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'22' (or) M_CALL H.VOMM,3

pnaddr

rcbaddr

cnpaddr

contains a PN vector or PNB vector

is the RCB address (required)

is a CNP address or zero if CNP is not supplied

MPX-32 Reference Volume I 7-111

Exit Conditions

7-112

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 return status if a CNP is not supplied; otherwise unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Base Mode System Services

,(... '.C".'\

j

(7.2.77 M_MOD - Modify Descriptor

The M_MOD service allows the owner of a resource to change or alter the protection
or other resource management attributes of a resource. The owner can restrict or allow
attributes with this mechanism.

This service limits which information in a descriptor can be changed. For example, the
volume space occupied by the resource cannot be changed because it would allow the
caller to violate the integrity of the volume on which the resource resides.

The caller can modify:

• protection fields of the descriptor

• accounting fields of the descriptor

• extension attribute fields of the descriptor

• user data field of the descriptor (words 160 through 175)

• shared image field of the descriptor

This service is the first part of a two step operation. The caller must read the resource
descriptor into memory in order to modify it. Once read into memory, the resource
descriptor is locked (for example, protected from access) until the caller writes the
modified descriptor back to the volume with the M_REWRIT service. The caller
must issue the rewrite before modifying another descriptor.

Only the resource owner or the system administrator can modify a resource descriptor.
The format of the descriptor and the type of data to be modified must be known by
the modifier.

The nonbase mode equivalent service is M.MOD.

Entry Conditions

Calling Sequence

M_MOD [[pNADDR=]pnaddr] [, [RD=] rdaddr] [, [CNP=] cnpaddr]

(or)

LW Rl,pnaddr
LA R6,rdaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'2A' (or) M_CALL H.VOMM,11

pnaddr

rdaddr

cnpaddr

contains a PN vector, PNB vector, or RID vector

is an RD buffer address (doubleword bounded, 192W length)

is a CNP address or zero if CNP is not supplied

MPX·32 Reference Volume I 7·113

Exit Conditions

7·114

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 Return status if a CNP is not supplied; otherwise, unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Base Mode System Services

()

M MODU

7.2.78 M_MODU - Modify Descriptor User Area

The ~MODU service allows users with write, update, append, or modify access to a
resource to change or alter the user area of the resource descriptor of that resource.

The user can change all fields in the user area of the resource descriptor, however,
only words 160 through 175 should be modified. Words 176 through 190 are used by
some utilities. Word 191 of the resource deSCriptor is a reserved location, and any
changes to this word are ignored.

This service is the first part of a two step operation. The caller first reads the user
area of the resource descriptor into memory to modify it. The resource descriptor is
then locked (protected from access) until the caller writes the modified user area back
to the volume with the Rewrite Descriptor User Area (M_REWRTU) service. The
caller then must issue the rewrite before modifying another descriptor or descriptor
user area.

The nonbase mode equivalent service is M.MODU.

Entry Conditions

Calling Sequence

M_MODU [PNADDR=]pnaddr [,[UAADDR=] uaaddr] [,[CNP=] cnpaddr]

(or)

LW
LA
LA
SVC

RI,pnaddr
R6,uaaddr
R7,cnpaddr
2,X'31' (or) H.VOMM,26

pnaddr contains a PN vector, PNB vector, or RID vector

uaaddr is a user area buffer address (doubleword bounded, 32W length)

cnpaddr is a CNP address or zero if CNP is not supplied

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CC1 set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CC1 set)

R7 Return status if a CNP is not supplied; otherwise unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

MPX-32 Reference Volume I 7-115

7.2.79 M_MOUNT - Mount Volume

The M_MOUNT service establishes a task or TSM environment as a user of a
volume. If the volume requested is not physically mounted, M_MOUNT notifies the
operator to mount the volume, and creates a mounted volume table (MVT) entry for
the volume. This entry remains in memory as long as there are established users of
the volume.

If the volume requested is already physically mounted, M_MOUNT attempts a logical
mount.

For nonpublic volumes, M_MOUNT allocates a volume assignment table (VAT) entry
within the user's TSA, provided that the requested usage classification is compatible.
A request to mount a public or nonpublic volume that is already physically and
logically mounted is ignored.

The nonbase mode equivalent service is M.MOUNT.

Entry Conditions

Calling Sequence

M_MOUNT [RRSADDR=] addrl [,[CNPADDR=] addr2]

(or)

LA RI, addrl
LA R7, addr2 (or)
SVC 2,X'49' (or)

ZR R7
M_CALL H.REMM,17

addrl

addr2

Registers

is the address of an RRS entry (type 9). See Chapter 5 in the MPX-32
Reference Manual Volume I for a description of RRS entries.

is the address of a caller notification packet (CNP) if notification is
desired. Applicable portions of the CNP for this function are time-out
value, abnormal return address, and status field.

R I contains addr 1

R7 contains addr2; otherwise, zero

Exit Conditions

7-116

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (Cel set)

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

Base Mode System Services

(.
M MOUNT

Registers

R 7 return status if a CNP is not supplied; otherwise, unchanged

Status
CC1 set

Posted in R7 or the status field of the CNP:

Value Description

invalid volwne name
volwne use not allowed to this user
volwne assignment table (VAT) space not available
unrecoverable I/O error to volwne
invalid RRS entry
mount device not in system
invalid mount device specified
unable to initialize volwne (volwne unsafe)
J.MOUNT run request failed
system administrator attribute required to mount public volume
time out occurred while waiting for resource
user requested abort of mount process
user requested hold on mount process
mount device unavailable

1
2
6
8
11
13
18
20
21
34
38
42
43
53
55
57
59
73
91
93

allocated resource table (ART) space not available for mount device
unable to mount volwne for requested usage

94

Abort Cases

mounted volwne table (MVT) space not available
file overlap occurred; check system console
unable to mount volwne due to pending physical dismount
unable to perform physical mount due to system shutdown in
progress
J.MOUNT attempted to mount an unformatted disk volume

RM42 USER REQUESTED ABORT OF MOUNT PROCESS

Wait Conditions

When the volwne is unavailable (status values 50-63), the task is placed in a wait
state, as appropriate.

MPX-32 Reference Volume I 7-117

\

7.2.80 M_MOVE - Move Data to User Address

The M_MOVE service moves an arbitrary number of bytes from a location in the
user's logical address space to a location in the user's read only memory section or the
user's read/write memory section. This service can be used to set traps or modify data
in the user's memory sections. This service cannot be used in shared read-only
memory sections.

The nonbase mode equivalent service is M.MOVE.

Entry Conditions

Calling Sequence

M_MOVE [BUFFER=] inbujfer, [DESTADDR=] outbuffer, [NUMBER=] number

(or)

LA R 1, inbuffer
LA R2, outbuffer
LI R4, number
SVC 2,X'62' (or) M_CALL H.REXS,89

inbujfer

outbujfer

number

Registers

is the byte address of the buffer to be moved

is the destination byte address

is the number of bytes to be moved

Rl contains inbuffer

R2 contains outbuffer

R4 contains number

Exit Conditions

7-118

Return Sequence

Normal Return:

M.RTRN

Abnormal Return:

M.RTRN R7

Base Mode System Services

~,(

it/'

(~

Registers

CCI set

R7
error condition

contains the error condition as a hexadecimal value as follows:

Value

256
257
258
259

Description

invalid source buffer address
destination buffer is in the operating system
destination buffer is in the TSA
invalid destination buffer address

MPX-32 Reference Volume I 7-119

M MYID

7.2.81 M_MYID - Get Task Number

The M_MYID service allows the user to obtain status on the currently executing task.

The nonbase mode equivalent service is M.MYID.

Entry Conditions

Calling Sequence

M_MYID [PBADDR=] pbaddr

(or)

ZR
SBR
LA
SVC

R5
R5,O
R7,pbaddr
I,X'64' (or) M_CALL H.REXS,32

pbaddr is the logical word address of the first location of a parameter block
formatted as follows:

Word Contents

o task activation sequence number
1-2 task load module name
3-4 owner name
5-6 pseudonym
7 -8 current working directory, truncated to the first eight

characters
9 reserved
10 scheduling flags (DQE.USHF)

Exit Conditions

7-120

Return Sequence

M.RTRN 5

Registers

CCI set

R5,R7

parameter block address

unchanged

Abort Cases

RX32 INVALID DQE ADDRESS

Base Mode System Services

(
7.2.82 M_OPENR - Open Resource

The M_ OPENR service prepares a resomce for logical I/O and defines the intended
access mode for subsequent operations on the resource. Protection is provided for both
the requestor and the resource against indiscriminate access. If appropriate, additional
FAT information is posted at this time. A blocking buffer may be allocated if not
previously specified, explicitly or implicitly, during allocation of the resource.
However, if a user-supplied buffer is specified in the FCB, that buffer will be used and
any previously allocated blocking buffer will be released. A mount message is issued
as a result of this function when the I/O is to be performed to a device associated with
unformatted media, and the message is not inhibited by user request or previous open
on the resomce by another user. An open request to a resource that is already opened
in the same access mode is ignored.

The nonbase mode equivalent service is M.OPENR.

Entry Conditions

Calling Sequence

M_OPENR [FCBADDR=]Jcbaddr [,[CNPADDR=] cnpaddr]

(or)

LA RI,Jcbaddr
LA R7, cnpaddr (or) ZR R7
SVC 2,X'42' (or) M_CALL H.REMM,21

Jcbaddr

cnpaddr

is the address of a file control block (FCB)

is the address of a caller notification packet (CNP) if notification is
desired. The applicable items of the CNP for this function are time-out
value, abnormal return address, option field, and status field.

The option field describes the access and usage with the following
interpretation:

byte 0 contains an integer value representing the specific access
for which the resource is being opened. An error will be
returned for an invalid integer. The following values are
valid:

Value

o
1
2
3
4
5

6-255

Description

open for default access
open for read
open for write (resomce redefined)
open for modify
open for update
open for append
reserved

MPX-32 Reference Volume I 7-121

Registers

byte I indicates the usage under which the resource is to be
opened with the following bit significance when set. Only
one of bits 0 and I in byte I may be set. If set, any usage
specified at the time the resource was assigned is
overridden. This may result in a denial condition if the
usage specified at open differs from that specified at
assignment.

Bit Meaning if Set

o open for explicit shared use
I open for exclusive use
2 open in unblocked mode (overrides any specification

made at resource assignment)
3 open in blocked mode (overrides any specification

made at resource assignment)
4 resource data blocked. If the file is actually written

to in any access mode (append, modify, update,
write), the data will be recorded as blocked in the
resource descriptor at the time the file is closed,
regardless of whether or not the I/O was actually
performed in blocked mode.

5-7 reserved

If a CNP is not supplied or the specification in the option field is zero:

1. The resource is opened for read access for a volume resource or
update access for a device unless only a specific access mode was
allowed at assignment. In that case the resource will be opened
for that access.

2. The usage will be implicit shared or that specified at resource
allocation, whichever is appropriate.

R 1 contains /cbaddr

R 7 contains cnpaddr; otherwise, zero

Exit Conditions

7-122

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

Base Mode System Services

Registers

R7 contains the return status if a CNP is not supplied; otherwise, unchanged

Status

CCl set

Posted in R7 or the status field of the CNP:

Value

2
4
9
25
27
28
29
38
46
54

Description

specified access mode not allowed
blocking buffer not available
invalid usage specification
random access not allowed for this access mode
resource already opened in a different access mode
invalid access specification
no LFC that matches FCB file code
time out occurred waiting for resource
unable to obtain resource descriptor lock (multiprocessor only)
unable to allocate resource for specified usage

Wait Conditions

If an access or usage specification made at open changes the nature of the resource
allocation, the task may be placed in a wait state, as appropriate, if specified in the
CNP.

MPX-32 Reference Volume I 7-123

M_OPTIONDWORD

7.2.83 M_OPTIONDWORD· Task Option Doubleword Inquiry

The M_OPTIONDWORD service provides the caller access to both the first and
second program option words. The first option word, which is the same word as
supplied by the M_OPTIONWORD service, resides in R7. The second word resides
inR6.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.PGOD.

Entry Conditions

Calling Sequence

M_OPTIONDWORD

(or)

SVC 2,X'CO' (or) M_CALL H.REXS,95

Exit Conditions

7-124

Return Sequence

M.IPURTN 6,7

Registers

R6 contains the 32-bit second option word

R7 contains the 32-bit first option word

Base Mode System Services

c

7.2.84 M_OPTIONWORD - Task Option Word Inquiry

The M_OPTIONWORD service provides the caller with the 32-bit task option word.
This word is also called the program option word.

This service may be executed by the IPU.

The nonbase mode equivalent service is M.PGOW.

Entry Conditions

Calling Sequence

M_OPTIONWORD

(or)

SVC 1,x'4C' (or) M_CALL H.REXS,24

Exit Conditions

Return Sequence

M.RTRN 7

Registers

R7 contains the 32-bit task option word

MPX-32 Reference Volume I 7-125

7.2.85 M_ OSREAD - Physical Memory Read

The M_ OSREAD service moves an arbitrary number of bytes from a location in the
physical space of MPX-32 to a location in the calling task's logical address space.

The physical space of MPX-32 includes:

• nonextended MPX-32 - location 0 through the end of memory pool

• extended MPX-32 - the beginning of extended MPX-32 through the end of the
last map block of extended MPX-32

The nonbase mode equivalent service is M.OSREAD. This service is executable by
the IPU.

Entry Conditions

Calling Sequence

M_ OSREAD [[BUFFER=] inbuffer] [. [DEST ADDR=] outbuffer]
[,[NUMBER=] number]

(or)

LA
LA
LI
SVC

R l,inbuffer
R2,outbuffer
R4,number
2,X'7E' (or) M_CALL H.REXS,93

inbuffer

outbuffer

number

Registers

Rl
R2
R4

is the 24-bit pure address of the byte bounded source buffer (in the
physical space of MPX-32)

is the 24-bit pure address of the byte bounded destination buffer (in the
task's logical address space)

is the number of bytes to be moved

contains inbuffer
contains outbuffer
contains number

Exit Conditions

7-126

Normal Return:

M.IPURTN

Abnormal Return:

M.IPURTN R7

error condition

Registers

CCI set
R7 error condition as a decimal value:

Value

256
259
261

Description

invalid source buffer address
invalid destination buffer address
invalid number of bytes to be moved

Base Mode System Services

,(, ~.

_f

(...

M.OSWRIT

7.2.86 M_OSWRIT - Physical Memory Write

The M OSWRIT service moves an arbitrary number of bytes from a location in the
calling -task's logical address space to a location in the physical space of MPX-32.

The physical space of MPX-32 includes:

• nonextended MPX-32 -location 0 through the end of memory pool
• extended MPX-32 - the beginning of extended MPX-32 through the end of the

last map block of extended MPX-32

This service is available only to privileged users and is executable by the IPU. The
nonbase mode equivalent service is M.OSWRIT.

Entry Conditions

Calling Sequence

M OSWRIT [[BUFFER=] inbuffer] [,[DESTADDR=] outbuffer]
- [,[NUMBER=] number]

(or)

LA
LA
LI
SVC

R 1 ,inbuffer
R2,outbuffer
R4,number
2,X' AF' (or)

inbuffer is the 24-bit pure address of the byte bounded source buffer (in the
task's logical address space)

outbuffer is the 24-bit pure address of the byte bounded destination buffer (in the
physical space of MPX-32)

number

Registers

RI
R2
R4

Exit Conditions

is the number of bytes to be moved

contains inbuffer
contains outbuffer
contains number

Normal Return:

M.IPURTN

Abnormal Return:

M.IPURTN R7

MPX·32 Reference Volume I 7·127

7-128

Registers

CCI set
R7

error condition
error condition as a decimal value:

Value

256
259
261

Description

invalid source buffer address
invalid destination buffer address
invalid number of bytes to be moved

Base Mode System Services

("i
/

M PNAMB

7.2.87 M_PNAMB - Convert Pathname to Pathname Block

The M_PNAMB service converts a pathname to a form that can be analyzed by
software. In most cases, utility programs use this to check the syntax of a pathname
in a directive line. When called, this service parses the input pathoame. If any errors
are detected in the pathoame syntax, this service terminates and updates Rl to indicate
the point where the error was detected.

The nonbase mode equivalent service is M.PNAMB.

Entry Conditions

Calling Sequence

M_PNAMB [[PNADDR=]pnaddr] , [[PNB=]pnbaddr] [,[CNP=] cnpaddr]

(or)

LW Rl,pnaddr
LW R4,pnbaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'2E' (or) M_CALL H.VOMM,15

contains a PN vector

contains a PNB vector

pnaddr

pnbaddr

cnpaddr is a CNP address or zero if CNP is not supplied. Applicable portions
of the CNP for this function are time-out value, abnormal return
address, option field, and status field.

The option field of the CNP has the following interpretation:

Byte 0 is reserved

Byte 1

MPX·32 Reference Volume I

has the following significance when set:

Bit Meaning if Set

0-6 reserved
7 parsing of the pathname includes only the volume

and directory portions of the supplied pathname.
This bit is usually set by J.TSM.

7·129

Exit Conditions

7-130

Return Sequence

(with CNP)

M.RTRN Rl,R4

(or)

M.RTNA (eel set)

Registers

(without CNP)

M.RTRN Rl,R4

(or)

M.RTRN R7 (eel set)

R 1 address of first PN character not processed and remaining length

R4 PNB address and actual PNB length

R7 return status if a CNP is not supplied; otherwise unchanged. For return
status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Base Mode System Services

7.2.88 M_PRIL - Change Priority Level

The M_PRIL service is provided to the privileged caller to dynamically alter the
priority level of the specified task. Valid priority levels for real-time tasks are 1-54
inclusive. Valid priority levels for time distribution tasks are 55-64 inclusive. A
real-time task cannot be changed to a time distribution priority level and a time
distribution task cannot be changed to a real-time priority level. I/O continues to
operate at base priority level of the cataloged task.

The nonbase mode equivalent service is M.PRIL.

Entry Conditions

Calling Sequence

M_PRIL [TASK=] task, [PRTY=]priority

(or)

LW
ZR
LW
SVC

R5,priority

R6,=O } (or) LD R6,taskname
R7,taskno
1,X'4A' (or) M_CALL H.REXS,9

task the address of a doubleword containing the name of the task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

priority is the priority level to be assigned to the task (1-54 for a real-time task;
55-64 for a time-distribution task)

Exit Conditions

Return Sequence

M.RTRN 7

Registers

R7 zero if the specified task was not found; otherwise, contains the task
number

Abort Cases

RX06 UNPRIVILEGED TASK ATTEMPTED TO RESET A TASK
PRIORITY LEVEL, OR A PRIVILEGED TASK ATTEMPTED TO
RESET A TASK PRIORITY TO A LEVEL OUTSIDE THE RANGE
OF 1 TO 64, INCLUSIVELY

MPX-32 Reference Volume I 7-131

7.2.89 M_PRIVMODE - Reinstate Privilege Mode to Privilege Task

The M_PRIVMODE service allows a task that was linked as privileged to return to a
privileged status. See the M_UNPRIVMODE service.

The nonbase mode equivalent service is M.PRIV .

. Entry Conditions

calling Sequence

M_PRIVMODE

(or)

SVC 2,X'57' (or) M_CALL H.REXS,78

Exit Conditions

7-132

Return Sequence

M.RTRN

Status

CCI set successful operation

Base Mode System Services

7.2.90 M_PTSK - Parameter Task Activation

The M_PTSK service overrides specific task parameters in the load module or
executable image preamble during activation. For unprivileged callers, some
parameters are overridden by those of the calling task. The task name, optional
resource requirements, and optional pseudonym are specified to the service call.
When a task name is supplied in words 2 and 3 of the parameter task activation block
(PTASK), the operating system defaults to a search in the system directory only. For
activations in other than the system directory, a pathname or RID vector must be
supplied.

Options 1-32 reside in task option word 1. Options 33-64 reside in task option word
2. If using options 33-64, the expanded PTASK block format must be used and bit 4
of PTA.FLG2 must be set.

The nonbase mode equivalent service is M.PTSK.

Entry Conditions

Calling Sequence

M_PTSK [ACf ADR=] actaddr [, [PSB=] psbaddr]]

(or)

LA R 1 ,actaddr
LA R2,psbaddr (or) ZR R2
SVC 1,X'5F' (or) M_CALL H.REXS,40

actaddr

psbaddr

is the logical word address of the parameter task activation block.
Words 0 to 12 of the block are required if options 1 through 32 are set;
variable length RRS entries beginning in word 13 are optional. Words
o to 19 are required if options 33 through 64 are set and bit 4 of
PT A.FLG2 is set; variable length RRS entries beginning in word 20 are
optional. The structure of the PT ASK block follows.

is the logical address of the parameter send block (PSB) or zero if no
parameters are to be passed. If a load module name is supplied in the
PSB, the load module must be in the system directory. A pathname
vector or RID vector must be supplied if a load module is to be
activated from a user directory.

MPX-32 Reference Volume I 7-133

7-134

The following is the structure of the expanded parameter task activation block:

Byte

0

4

8

10

18

20

28

2C

30

34

38

3C

40

50-nn

Byte
(Hex)

o

1

Word o 7 8 15 16 23 24 31

0 PTA.FLAG PTA.NRRS PTA.ALLO PTA.MEMS

1 PTA.NBUF PTA.NFIL PTA.PRIO PTA.SEGS

2-3 PTA.NAME

4-5 PTA.PSN

6-7 PTA.ON

8-9 PTA.PRO]

10 PTA. VAT PTA.FLG2 PTA.EXTD

11 PTA.PGOW

12 PTA.TSW

13 PTA.RPTR

14 PTA.PG02

15 PTA.FSIZ PTA.RSIZ

16-19 Reserved (zero)

20-nn RRS List

Symbol Description

PTA FLAG contains the following:

PTANRRS

Bit Contents

o reserved
1 job oriented (PTAJOB)
2 terminal task (PTA TERM)
3 batch task (PT ABTCH)
4 debug overlay required (PT ADOL Y)
5 resident (PTARESD)
6 directive file active (PTADFIL)
7 SLO assigned to SYC (PTASLO)

For unprivileged callers, bits 0-3 are not
applicable. These characteristics are inherited
from the parent task.

number of resource requirements or zero if same as
summary entries in the load module or executable image
preamble

Base Mode System Services

(i'

M_PTSK

(--
Byte
(Hex) Symbol Description

2 PTAALLO memory requirement: number of 512-word pages
exclusive of TSA, or zero if same as the preamble

3 PTAMEMS memory class (ASCII E, H or S) or zero if memory
class is to be taken from the preamble. IT the memory
class is to be taken from the preamble, the caller has
the option of specifying the task's logical address space
in this field as follows:

Bits Contents

0-3 hexadecimal value 0 through F representing
the task's logical address space in megabytes
w here zero is 1 MB and F is 16MB

4-7 zero

4 PTANBUF the number of blocking buffers required or
zero if same as the preamble

5 PTANFIL the number of FAT/FPT pairs to be reserved or
zero if same as the preamble

6 PTAPRIO the priority level at which the task is to be activated

('-, or zero for the cataloged load module priority. See
the Parameter Send Block section in Chapter 2 of this
manual for more details.

7 PTASEGS the segment definition count or reserved (zero)

8 PTA NAME contains the load module or executable image name,
left justified and blank filled, or word 2 is zero and
word 3 contains a pathname vector or RID vector

10 PTAPSN contains the 1- to 8-character ASCII pseudonym, left
justified and blank filled, to be associated with the task
or zero if no pseudonym is desired. For unprivileged
callers, this attribute is inherited from the parent task
if zero is supplied or the parent is in a terminal or
batch job environment.

18 PTA ON contains the 1- to 8-character ASCII owner name,
left-justified and blank-filled, to be associated with the
task or zero if the task to default to the current owner name.
Valid only when task has system administrator attribute.

20 PTA PRO] contains the 1- to 8-character ASCII project name,
left-justified and blank-filled, to be associated with files
referenced by this task, or zero if same as LMIT

28 PTA VAT the number of volume assignment table (V AT) entries
to reserve for dynamic mount requests or zero if same

('
as the preamble

MPX-32 Reference Volume I 7-135

7-136

Byte
(Hex)

29

2A

2C

30

34

38

3C

3E

40

50

Symbol

PTA.FLG2

PTA.EXTD

PTA.PGOW

PTA.TSW

PTA.RPTR

PTA.PG02

PTA. FS IZ

PTA.RSIZ

Reserved

Description

contains the following flags:

Bit Meaning if Set

o debug activating task (PTA.DBUG)
1 Command Line Recall and Edit is in

effect for the task (PT A.CLRE)
2-3 reserved
4 expanded PTASK block flag (must be

set to use options 33-64) (PTA.EBLK)
5 reserved
6 NOMAPOUT option (PTA.NMAP)
7 MAPOUT option (PT A. MAP)

contains the following values:

Bit Meaning if Set

-1
-2
o
n

maxaddr of extended MPX-32
minaddr of extended MPX-32
extended MPX-32 is not specified
a positive number representing a
map block of MPX-32

contains the initial value of the task option word or zero

contains the initial value of the task status word or zero

contains a pointer to the resource requirement summary
list or, if an expanded PTASK block is not used, the
RRS list begins here (see RRS list description - byte 50)

contains the initial value of the second task option word

contains the length of the fixed portion of
the PT ASK block in bytes

contains the number of bytes of the resource
requirement summary

resource requirement summary list. Each entry contains
a variable length RRS. The RRS list has up to
384 words. Each entry must be double word bounded.
Each entry is compared with the RRS entries in
the LMIT. If the logical file code currently
exists, the specified LFC assignment will override the
cataloged assignment, otherwise the special assignment
will be treated as an additional requirement and merged
into the list. If MPX-32 Revision Lx format
of the RRS is specified, it is converted to the format

Base Mode System Services

c·

.....---~ (\

\ I

\''t" •. ..--'"

c

(-

f"

('-

Byte
(Hex)

Exit Conditions

Symbol Description

acceptable for assignment processing by the Resource
Management Module (H.REMM). See MPX-32
Revision 1.x Technical Manual for format of the RRS.

Return Sequence

M.RTRN6,7

Registers

R6 equals zero if the service was performed

R7 contains the task number of the task activated by this service

(or)

R6 equals one if invalid attempt to multicopy a unique task

R7 task number of existing task with same name

(or)

RO destroyed

R6 Value Description

2 file specified in words 2 and 3 of the PT ASK block
not in directory

3 unable to allocate file specified in words 2 and 3
of the PTASK block

4 file is not a valid load module or executable image
5 DQE is not available
6 read error on resource descriptor
7 read error on load module
8 insufficient logical/physical address space for task

activation
10 invalid priority
11 invalid send buffer address or size
12 invalid return buffer address or size
13 invalid no-wait mode end-action routine address
14 memory pool unavailable
15 destination task receiver queue full
16 invalid PSB address
17 RRS list exceeds 384 words
18 invalid RRS entry in parameter block

R7 contains zero if task not found

MPX·32 Reference Volume I 7-137

7.2.91 M_PUTCTX - Put User Context

The M_PUTCTX service overwrites the most recent user context that was previously
saved in the TSA stack area. If control is transferred to the user before the context is
stored again, this will be the context used. The values are loaded as words from the
specified address, up to the last even word allocated in the block or until all context is
provided.

If an attempt is made to modify the most significant byte of program status
doubleword (PSD) I, only the condition code values are changed.

Entry Conditions

Calling Sequence

M_PUTCTX [BUFFER=] addr , [NUMBER=] number

(or)

LA RI, addr
LI R4, number
SVC 2,X'71' (or) M_CALL H.EXEC,42

addr

number

Registers

RI

R4

is a word bounded logical address in memory whose context is returned

is the number of bytes allocated for the context block

contains addr

contains number

Exit Conditions

7-138

Return Sequence

Normal Return Sequence:

M.RTRN

Abnormal Return Sequence:

M.RTRN R7

error condition

Registers

CCI set

R7 contains an error condition as a hexadecimal value as follows:

Value Description

256 invalid source buffer address
260 buffer length not a word multiple

Base Mode System Services

c

(-

7.2.92 M_QATIM - Acquire Current Date/Time in ASCII Format

The M_QATIM service acquires the system date and time in ASCII format. The date
and time are returned in a 4-word buffer, the address of which is contained in the call.
See Appendix H for date and time formats.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.QA TIM.

Entry Conditions

Calling Sequence

M_QATIM [TIMBUF=]addr

(or)

LA
ORMW
SVC

addr

Exit Conditions

Rl,addr
Rl,=X'03000000'
2,X'50' (or) M_CALL H.REXS,74

is the address of a 4-word buffer to contain the date and time

Return Sequence

M.IPURTN

Registers

R 1 used by call; all others returned intact

Abort Cases

RX13 FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS
OUT OF RANGE

MPX-32 Reference Volume I 7-139

7.2.93 M_RADDR - Get Real Physical Address

The M_RADDR service allows unprivileged tasks to determine the physical memory
address associated with a given logical address.

The nonbase mode equivalent service is M.RADDR.

Entry Conditions

Calling Sequence

M_RADDR [[LOGADDR=]logicaladdr]

(or)

LA RI,logicaladdr
SVC I,X'OE' or M_CALL H.REXS,90

logicaladdr is the logical address to be translated

Exit Conditions

Registers

R 7 contains the physical address

7-140 Base Mode System Services

t····;
~/

("
7.2.94 M_RCVR - Receive Message Link Address

The M_RCVR service allows the caller to establish the address of a routine to be
entered for the purpose of receiving messages sent by other tasks.

The nonbase mode equivalent service is M.RCVR.

Entry Conditions

Calling Sequence

M_RCVR [RCVRADR=] recvaddr

(or)

LA R7,recvaddr
SVC 1,X'6B' (or) M_CALL H.REXS,43

recvaddr is the logical word address of the entry point of the receive message
routine in the user's task

Exit Conditions

Return Sequence

M.RTRN 7

Registers

R7 contains zero if the receiver address was invalid; otherwise contains the
receiver address

MPX-32 Reference Volume I 7-141

7.2.95 M_READ - Read Record

The M_READ service performs the following functions:

• provides special random access handling for disk files

• unblocks system files and blocked files

• reads one record into the buffer indicated by the transfer control word (TCW) in the
FCB

The nonbase mode equivalent service is M.READ.

Entry Conditions

Calling Sequence

M_READ [FCBADDR=]addr
(or)
LA RI, addr
SVC I,X'31' (or) M_CALL H.IOCS,3

addr

Registers

RI

is the FCB address. Appropriate transfer control parameters are defined
in the TCW. See Chapter 5 in the MPX-32 Reference Manual Volume
I for further details concerning the FCB word.

contains addr

Exit Conditions

7-142

Return Sequence

M.RTRN

Abort Cases

I003 AN UNPRIVILEGED TASK IS ATTEMPTING TO READ DATA INTO
PROTECTED MEMORY

I006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED FILE
ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS IMPROPERLY
BLOCKED, (2) BLOCKING BUFFER IS DESTROYED, OR (3)
TRANSFER ERROR DURING FILE INPUT.

I030 ILLEGAL OR UNEXPECTED VOLUME NUMBER OR REEL ID
ENCOUNTERED ON MAGNETIC TAPE

I032 CALLING TASK HAS ATTEMPTED TO PERFORM A SECOND READ ON
A '$' STATEMENT THROUGH THE SYC FILE

I033 READ WITH BYTE GRANULARITY REQUEST MADE WITH NEGATIVE
BYTE OFFSET

I034 READ WITH BYTE GRANULARITY REQUESTS MADE WITHOUT
SETTING RANDOM ACCESS BIT IN FCB

Base Mode System Services

(
M READ

I035 READ WITH BYTE GRANULARITY REQUESTS ARE VALID FOR
UNBLOCKED FILES ONLY

Output Messages

Dismount/mount messages if EOT and multivolume magnetic tape.

MPX-32 Reference Volume I 7-143

M READD

7.2.96 M_READD - Read Descriptor

The M_READD service reads a resource descriptor for a specified resource. This
service can examine the attributes of any volume resource. It is the responsibility of
the caller to be familiar with the fields of the resource descriptor in order to determine
the recorded information. This service should be called by a user-supplied subroutine
that acts as a common interface between application programs and this service. In this
way, application programs are less sensitive to changes in organization and content of
these data structures.

The nonbase mode equivalent service is M.LOC.

Entry Conditions

Calling Sequence

M_READD [RESOURCE=]addrl , [RDADDR=]addr2 [, [CNPADDR=]addrJ]

(or)

LW
LA
LA
SVC

addrl

addr2

addrJ

RI, addrl
R6, addr2
R7, addr3 (or)
2,X'2C' (or)

ZR R7
M_CALL H.VOMM,13

contains a PN vector, a PNB vector, an RID vector, an LFC, or an FCB
address

is the address of a resource descriptor buffer, double word bounded and
192W in length

is a CNP address or zero if CNP not supplied

Registers

R I contains addr 1

R6 contains addr2

R7 contains addr3; otherwise, zero

Exit Conditions

7-144

Return Sequence

(with CNP)

M.RTRN R4

(or)

M.RTNA R2 (CCI set)

(without CNP)

M.RTRN R4

(or)

M.RTRN R7,R2 (CCI set)

Base Mode System Services

(~

()

M READD

Registers

R2 contains the address of the last PN item processed in an abnormal return

R4 contains the MVfE address for the volume specified

R 7 contains the return status if a CNP is not supplied. For return status
codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

7.2.97 M_RELP - Release Dual-Ported Disk/Set Dual-Channel ACM Mode

The M_RELP service applies to dual-port extended I/O disks and allows the
privileged user to release a device from its reserved state. When issued to an ACM
that has been SYSGENed as full-duplex, this service can be used to set the ACM from
single-channel to dual-channel mode (applies to ACMs using the H.F8XIO handler
only).

The nonbase mode equivalent service is M.RELP.

Entry Conditions

Calling Sequence

M_RELP [FCB= 1fcb

(or)

LA Rl/cb
SVC l,X'27' (or) M_CALL H.IOCS,27

fcb is the FCB address

Exit Conditions

Return Sequence

M.RTRN

MPX·32 Reference Volume I 7-145

M RENAME

7.2.98 M RENAME - Rename File

The M_RENAME service changes the name of an existing pennanent file. This
service can move a file from one directory to another directory on the same volwne.

When called, this service creates the new name of the file in the specified directory
and then deletes the old name of the file from the specified directory.

The non base mode equivalent service is M.RENAM.

Entry Conditions

Calling Sequence

M_RENAME [FILEADDR=]addrl, [PNADDR=]addr2 [, [CNPADDR=]addr3]

(or)

LW RI, addrl
LW R2, addr2
LA R7, addrJ (or) ZR R7
SVC 2,X'2D' (or) M_CALL H.VOMM,14

addr 1 contains the old PN or PNB vector

addr2 contains the new PN or PNB vector

addrJ is a CNP address or zero if CNP is not supplied

Registers

R I contains addrl

R2 contains addr2

R7 contains addrJ; otherwise, zero

Exit Conditions

7-146

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA R7 (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 contains the return status if a CNP is not supplied; otherwise, contains the
denial address. For return status codes, refer to the H.VOMM status
codes in the Resource Assignment! Allocation and I/O chapter of Volume
I.

Base Mode System Services

(

M REPLACE

7.2.99 M_REPLACE - Replace Permanent File

The M_REPLACE service replaces the data contents of an existing permanent file
with the data contents of an existing temporary file. The permanent file retains its
original directory entry and resource descriptor.

This service allows utility programs to change the data contents of a file without
changing any of the file's other attributes. This service maintains the integrity of a
file's resource identifier.

This service can be used on any permanent file. When this service completes, the
temporary file is deallocated and deleted. An error condition is returned if the
permanent file is allocated to another at the time of the service call and bit 0 of the
CNP option field is not set.

This service should only be used on files with the fast access attribute. For files that
do not have this attribute, the same functionality can be accomplished by using the
Delete Resource (M_DELETER) service followed by the Change Temporary File to
Permanent File (M_ TEMPFILETOPERM) service.

The nonbase mode equivalent service is M.REPLAC.

Entry Conditions

Calling Sequence

M_REPLACE [RESOURCE=]addrJ ,[pATH=]vector [, [CNPADDR=]addr2]

(or)

LA
LW
LA
SVC

RI, addrl
R2, vector
R7, addr2 (or) ZR R7
2,X'30' (or) M_CALL H.VOMM,23

addrl

vector

addr2

is the FCB or LFC address of the temporary file

is the pathname vector of the permanent file

is a CNP address or zero if CNP is not supplied

Registers

R I contains addr 1

R2 contains vector

R7 contains addr2; otherwise, zero

MPX-32 Reference Volume I 7-147

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

error condition

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

Registers

CCI set

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment/Allocation and I/O chapter of Volwne I.

7.2.100 M_RESP - Reserve Dual-Ported Disk/Set Single-Channel ACM
Mode

The M_RESP service applies to dual-port extended I/O disks and allows the
privileged user to reserve a device to the requesting CPU until such time as a release
(M_RELP) is issued. When issued to an ACM that has been SYSGENed as full­
duplex, this service can reset the ACM from dual-channel to single-channel mode
(applies to ACMs using the H.F8XIO handler only).

The nonbase mode equivalent service is M.RESP.

Entry Conditions

Calling Sequence

M_RESP [FCB=]fcb

(or)

LA RIJcb
SVC l,X'26' (or) M_CALL H.IOCS,24

fcb is the FCB address

Exit Conditions

7-148

Return Sequence

M.RTRN

Base Mode System Services

O
--~

1:1 .

C\ ,
....

7.2.101 M_REWIND - Rewind File

The M_REWIND service performs the following functions:

• issues an end-of-file and purge if the file is a system or blocked file which is output
active

• for system and blocked files, initializes blocking buffer control cells for subsequent
access

• rewinds the file or device

The nonbase mode equivalent service is M.RWND.

Entry Conditions

Calling Sequence

M_REWIND [FCBADDR=] addr

(or)

LA RI, addr
SVC I,X'37' (or) M_CALL H.IOCS,2

addr is the FCB address

Registers

R I contains addr

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

I009 ILLEGAL OPERATION ON THE SYC FILE

MPX-32 Reference Volume I 7-149

M REWRIT

7.2.102 M_REWRIT - Rewrite Descriptor

The M_REWRIT service writes a modified resource descriptor back to a volume and
releases the modify lock on the descriptor. This is the last step of a two step
operation (the first step is ~MOD).

When this service is invoked, the indicated resource descriptor is read into an internal
buffer. The fields that are allowed to be modified are copied from the user supplied
resource descriptor buffer to the appropriate areas of the internal buffer. Upon
successful modification of the resource descriptor in the internal buffer, the resource
descriptor is written to the correct location on the volume and the modify lock is
released.

The nonbase mode equivalent service is M.REWRIT.

Entry Conditions

Calling Sequence

M_REWRIT [[RD=]rdaddr] [, [CNP=]cnpaddr]

(or)

LA R6,rdaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'2B' (or) M_CALL H.VOMM,12

rdaddr

cnpaddr

is the RD buffer address. This must be the same address supplied by
the caller for use with the associated Modify Descriptor (H.VOMM,1I)
call; double word bounded, 192W length

is a CNP address or zero if CNP not supplied

Exit Conditions

7-150

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 return status if a CNP is not supplied; otherwise, denial address. For
return status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Base Mode System Services

7.2.103 M_REWRTU - Rewrite Descriptor User Area

The M_REWRTU service writes a modified resource descriptor back to a volume and
releases the modify lock on the descriptor. This is the last step of a two step
operation; the first step is M_MODU.

When this service is invoked, the indicated resource descriptor is read into an internal
buffer. The data from the buffer supplied by the user is then copied to the appropriate
areas of the internal buffer. Upon successful modification of the resource descriptor in
the internal buffer, the resource descriptor is written to the correct location on the
volume and the modify lock is released.

The nonbase mode equivalent service is M.REWRTU.

Entry Conditions

Calling Sequence

M_REWRTU [[UA=]uaaddr] [, [CNP=]cnpaddr]

(or)

LA R6,uaaddr
LA R7,cnpaddr (or) ZR R7
SVC 2,X'32' (or) M_CALL H.VOMM,27

uaaddr is the user area buffer address. This must be the same address supplied
by the caller for use with the associated Modify Descriptor User Area
(H.VOMM,26) call; double word bounded and 32W length.

cnpaddr is a CNP address or zero if CNP is not supplied

Entry Conditions

Calling Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 return status if a CNP is not supplied; otherwise denial address. For
return status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

MPX-32 Reference Volume I 7-151

7.2.104 M_ROPL - Reset Option Lower

The M_ROPL service allows the calling task to reset the option lower bit. Use the
M_SOPL (Set Option Lower) service to set the option lower bit.

The nonbase mode equivalent service is M.ROPL.

Entry Conditions

Calling Sequence

M_ROPL

(or)

SVC 2,X'78' (or) M_CALL H.TSM,14

Exit Conditions

7-152

Return Sequence

M.RTRN

(or)

M.RTRN

Status

CCI set

(CCI set)

call caused the option lower bit to be reset

Base Mode System Services

o

o

(
7.2.105 M_RRES - Release Channel Reservation

If the specified channel has not been reserved by this task, the M_RRES service
ignores the request to release the channel and returns to the task. If the channel has
been reserved by this task, the channel reserve indication is removed from the CDT
entry.

After releasing the reserved channel, if any requests had been queued while the
channel was reserved, 10CS resumes I/O to the associated device.

This service is not applicable for extended I/O channels.

The nonbase mode equivalent service is M.RRES.

Entry Conditions

Calling Sequence

M_RRES [CHAN=]channel

(or)

LW R1,channel
SVC 1,X'3B' (or) M_CALL H.IOCS,13

channel specifies the channel number (hexadecimal). If LW, load bits 24 to 31
ofR!.

Exit Conditions

Return Sequence

M.RTRN

MPX-32 Reference Volume I 7-153

7.2.106 M_RSML - Resourcemark Lock

The M_RSML service is called to lock the specified resourcemark. It is used in
conjunction with the Unlock Resourcemark service (M_RSMU) by tasks to
synchronize access to a common resource. For further deSCription, see Chapter 2.

The nonbase mode equivalent service is M.RSML.

Entry Conditions

Calling Sequence

M_RSML [LCKID=]lockid, [[TOPT=]timev] [, [POPT=]p]

(or)

LI R4,timev
ZR R5

[SBR R5,O]
LI R6,lockid
SVC 1,X'19' (or) M_CALL H.REXS,62

lockid

timev

P

is a numeric resourcemark index value, 33 to 64 inclusive

is a numeric value which specifies action to be taken if the lock is
already set and is owned by another task:

Value Description

+ 1 immediate denial return
o wait until this task is the lock owner (default)
-n wait until this task is the lock owner, or until n timer

units have expired, whichever occurs first

indicates that while this task is waiting to become lock owner, the
swapping mode is to be set to swap this task only if a higher priority
task is requesting memory space. Otherwise, the task is a swap
candidate if any task is requesting memory.

Exit Conditions

Return Sequence

M.RTRN R7

7-154 Base Mode System Services

~'"
~)

o

(

Registers

R 7 zero if the request was accepted, otherwise contains a request denial code:

Value

1
2
3
4

Description

lock index exceeds maximum range
lock index is less than minimum range
lock is owned by another task (and timev = +1)
lock is owned by another task, timev = -n and
n timer units have elapsed

7.2.107 M_RSMU - Resourcemark Unlock

The M_RSMU service unlocks a resourcemark which has previously been locked by a
call to the Resourcemark Lock (M_RSML) service. If any other tasks are waiting to
lock the specified resourcemark, the highest priority waiting task becomes the new
lock owner.

The nonbase mode equivalent service is M.RSMU.

Entry Conditions

Calling Sequence

M_RSMU [LCI<ID=]lockid

(or)

LI R6,lockid
SVC 1,X'lA' (or) M_CALL H.REXS,63

lockid is a numeric resourcemark index value. 33 to 64 inclusive

Exit Conditions

Return Sequence

M.RTRN R7

Registers

R7 zero if the request was accepted, otherwise contains a request denial code:

Value

1
2
3

MPX-32 Reference Volume I

Description

lock index exceeds maximum range
lock index is less than minimum range
lock is not owned by this task

7-155

7.2.108 M_RSRV - Reserve Channel

M_RSR V is a privileged service. If the task is unprivileged or the channel has been
reserved previously by another task, this service makes a denial return. If the channel
has not previously been reserved, the task number is stored in the CDT or UOT entry
to mark the reservation. If any requests are currently queued for this channel, suspend
is invoked until completion of any I/O currently in progress is complete. The standard
handler is then disconnected from the service interrupt (SI) level. After reserving a
channel, the task must connect its own handler to the SI dedicated location.

This service is not applicable for extended I/O channels.

The nonbase mode equivalent service is M.RSRV.

Entry Conditions

Calling Sequence

M_RSRV [CHAN=] channel ,[DENADR=]denial

(or)

L W R 1 ,channel
LA R 7 ,denial
SVC l,X'3A' (or) M_CALL H.IOCS,12

channel

denial

specifies the channel number (hexadecimal) in bits 24 to 32. If using
L W, load channel number in R 1.

is the user's denial return address

Exit Conditions

Return Sequence

M.RTRN nonnal return

(or)

M.RTNA 7 denial return

Abort Cases

I014 UNPRIVILEGED USER ATTEMPTING TO RESERVE CHANNEL

7-156 Base Mode System Services

C·-"··\·· "

1.-; "

(

(

M_SETERA

7.2.109 M_SETERA - Set Exception Return Address

The M_SETERA service changes the destination address upon exit from an
established exception handler. This service can only be called from within an
exception handler established by the M_SETEXA system service.

Entry Conditions

Calling Sequence

M_SETERA [TASK=]addr

(or)

LA R7, addr
SVC 2,X'79' (or) M_CALL H.REXS,8l

addr is the address where execution continues upon exit from the handler

Registers

R 7 contains addr or zero if the execution is to continue from point of trap

Exit Conditions

Return Sequence

M.RTRN R7

Registers

Normal Return:

R 7 contains previous value

Abnormal Return:

CCl set

R7

error condition

contains error condition (hexadecimal equivalent) as follows:

Value Description

259 invalid destination address

Abort Cases

RX15 ATTEMPT TO SET EXCEPTION RETURN ADDRESS WHEN
ARITHMETIC EXCEPTION NOT IN PROGRESS

MPX-32 Reference Volume I 7-157

7.2.110 M_SETEXA - Set Exception Handler

The M_SETEXA service establishes a task exception handler, changes the location of
the current task exception handler, or deletes the current task exception handler in base
mode.

Entry Conditions

Calling Sequence

M_SETEXA [TASKID=]addr

(or)

LA R7, addr
SVC 2,X'5C' (or) M_CALL H.REXS,83

addr is the task address of the exception handler

Registers

R 7 contains addr

Exit Conditions

7-158

Return Sequence

M.RTRN R7

Registers

Normal Return:

R 7 contains previous value

Abnormal Return:

CCI set error condition

R 7 contains the error condition as hexadecimal value as follows:

Value Description

259 invalid destination buffer address

Base Mode System Services

,{

i~\.~/:

(-----'
,' '

' .
. j

(
7.2.111 M_SETS - Set User Status Word

The M_SETS service allows the calling task to modify any task's user status word.
Along with the Test User Status Word (M_TSTS) service, this is one of the means
provided by MPX-32 for task-to-task communication. The user status word resides in
the CPU dispatch queue (DQE.USW) and has a value of zero until modified by this
service. The user status word is removed from the queue, modified as specified, and
replaced in the queue.

The nonbase mode equivalent service is M.SETS.

Entry Conditions

Calling Sequence

M_SETS [FUNCT=lfunction, [STATW=]statusw [, [TASK=] task]

(or)

LD
LI
LW
SVC

R4,task
R6function
R7,statusw
I,X'48' (or) M_CALL H.REXS,7

function specifies the type of modification to be performed:

STF (1)
RSF (2)
STC (3)
INC (4)

set flag
reset flag
set counter
increment counter

If using the macro call, specify the alphabetic code. If loading registers,
specify the corresponding numeric.

statusw contains a function parameter specific to function codes as follows:

Value Description

1 bit position in the status word to be set (1 to 31)
2 bit position in the status word to be reset (1 to 31)
3 value to which the status word is to be set
4 value by which the status word is to be incremented

task is the address of a doubleword containing the name of the task, or zero
in word 0 and the task number in word 1. A task number must be used
if the task is multicopied or shared. A task number of zero or omission
of the argument specifies the calling task.

MPX-32 Reference Volume I 7·159

Exit Conditions

7-160

Return Sequence

M.RTRN 5

Registers

R5 bit 0 set if the specified task was not found in the dispatch queue or the
requesting task is not privileged and the owner name is restricted from
access to tasks with a different owner name by the M.KEY file; otherwise,
zero

Abort Cases

RXOS INVALID FUNCTION CODE HAS BEEN SPECIFIED FOR
REQUEST TO SET USER STATUS WORD

Base Mode System Services

o

()

c-
7.2.112 M_SETSVNC - Set Synchronous Resource Lock

The M_SETSYNC service is used in conjunction with the Release Synchronous Lock
(M_UNSYNC) service for resource gating of explicitly shared resources where there
is no automatic synchronization performed by the system. The mechanism allows a
task to obtain synchronized access to a resource that has been concurrently allocated
to multiple tasks. A synchronization lock can be obtained for any resource, provided
it has been previously allocated (included for memory partitions) by the calling task.
Unlike an exclusive lock, the synchronous lock does not prevent other tasks from
allocating the resource in explicit shared mode. It is the sharing tasks' responsibility
to synchronize access by cooperative use of the synchronous lock services. The
resource is identified by either a logical file code (LFC), defined when the resource
was assigned, or an allocation index, obtained when the resource was assigned or by a
resource inquiry. If the synchronization lock is not available, the calling task can
obtain an immediate denial return, or wait for an indefinite or specified period of time.

The nonbase mode equivalent service is M.SETSYNC.

Entry Conditions

Calling Sequence

M_SETSYNC [ARGA=]arga [, [CNP=]cnpaddr]

(or)

LW R5,arga
LA R7,cnpaddr (or) ZR R7
SVC 2,x'46' (or) M_CALL H.REMM,25

arga is an address containing the allocation index obtained when the
resource was assigned

(or)

an address containing the address of a file control block (FCB) which
contains an LFC in word 0

cnpaddr is the address of a caller notification packet (CNP) if notification is
desired

Applicable portions of the CNP for this function.are time-out value,
abnormal return address, and status field.

MPX·32 Reference Volume I 7·161

Exit Conditions

7-162

Return Sequence

(with CNP) (without CNP)

M.RTRN

(or)

M.RTRN

(or)

M.RTNA (CCI set) M.RTRN R7 (CCI set)

Registers

R7 return status if a CNP is not supplied; otherwise, unchanged

Status
CCI set

Posted in R7 or the status field of the CNP:

Value Description

29
30
38
46
50

specified LFC was not assigned by this task
invalid allocation index
timeout occurred while waiting to become lock owner
unable to obtain resource descriptor lock (multiprocessor only)
resource is locked by another task

Wait Conditions

The task is placed in a wait state, as appropriate, if specified by the CNP.

Base Mode System Services

o

o

(

(

7.2.113 M_SETT - Create Timer Entry

The M_SEIT service builds an entry in the timer table so that the requested function
is performed upon time-out. Timer entries can be created to activate a program,
resume a program, set a bit in memory, reset a bit in memory, or request an interrupt.
Any task may create a timer to activate or resume a program. Timer entries to set or
reset bits can be created by any task, provided the bit is within a static memory
partition. Only privileged tasks can set bits in the operating system and request an
interrupt.

The nonbase mode equivalent service is M.SEIT.

Entry Conditions

Calling Sequence

M_SEIT [TIMER=] timer , [SETVAL=]t1 , [RSTVAL=]t2, [FUNCT=lfunction,
[ARG4=]arg4, [ARG5=] arg5

(or)

LB R3function
SLL R3,24
ORMW R3,timer
LW R4,t1
LW R5,t2
LW (or LD) R6,arg4
(LW R7,arg5)
SVC 1,X'45' (or) M,...CALL H.REXS,4

timer is a word containing zeros in bytes 0 and 1, and a 2-character timer
identification in bytes 2 and 3

t1

t2

function

contains the current value to which the timer will be set in negative
time units

contains the value to which the timer will be reset upon each time-out
in negative time units. If the reset value is zero, the function is
performed upon time-out and the timer entry is deleted. This case is
called a "one-shot" timer entry.

specifies the function to be timed:

ACP (1) activate program
RSP or RST (2) resume program
STB (3) set bit
RSB (4) reset bit
RQI (5) request interrupt

If using the macro call, specify the alphabetic code. If loading
registers, specify the corresponding numeric.

MPX-32 Reference Volume I 7-163

7-164

The function and arg4 and arg5 contain values specific to the function being timed as
follows:

Alphabetic

ACP

RSP

(or)

RST

STB

RSB

RQI

Function Code
Numeric

1

2

2

3

4

5

arg4 and arg5

arg4 is a double word containing the
1- to 8-character name of the program
to be activated (system file), or
pathname vector or RID vector in the first
half of the doubleword and zero in the
second half of the double word. If the
task named is not currently in
execution, it is preactivated to connect
the interrupt to the task. This connection
remains in effect until the task
aborts or the timer is deleted. On
normal exit, the timer table is updated
to point to the next generation.

arg5 is null.

arg4 is a double word containing the
1- to 8-character name of the task to be
resumed or zero in R6 and the task number
in R7.

arg5 is null.

arg4 is the task number entered into R7
and R6 is zeroed.

arg5 is null.

arg4 contains the address of the word
in which the bits are to be set. The
address must be within a static memory
partition or the operating system.

arg5 contains the bit configuration of
the mask word to be ORed.

arg4 contains the address of the word
in which the bit is to be reset. The
address must be within a static memory
partition or the operating system.

arg5 contains the bit configuration of
the mask word to be ANDed.

arg4 contains the priority level of the
interrupt to be requested.

arg5 is null.

Base Mode System Services

/

o

(

(

Normal Return Sequence:

M.RTRN R3

R3 is nonzero and condition codes are not set

Error Condition

M.RTRN R3

If there are no timer entries available, R3 is zero and condition codes are not set.

If there are timer entries available, R3 is zero and one of the following condition
codes are set:

• CCI set if requested load module does not exist or the requesting task is not
privileged and the owner name is restricted from access to tasks with a different
owner name by the M.KEY file

• CC2 set if requested task is not active

• CC3 set if attempting to create a duplicate timer ID

Abort Cases

RX02

RX03

RX04

INVALID FUNCTION CODE SPECIFIED FOR REQUEST TO
CREATE A TIMER ENTRY. VALID CODES ARE ACP(l), RSP
OR RST(2), STB(3), RSB(4) AND RQI(5).

TASK ATTEMPTED TO SET/RESET A BIT OUTSIDE OF A
STATIC PARTITION OR THE OPERATING SYSTEM

THE REQUESTING TASK IS UNPRIVILEGED OR HAS
ATTEMPTED TO CREATE A TIMER ENTRY TO REQUEST AN
INTERRRUPT WITH A PRIORITY LEVEL OUTSIDE THE RANGE
OF X'12' TO X'7F', INCLUSIVE

MPX-32 Reference Volume I 7-165

7.2.114 M_SMSGR - Send Message to Specified Task

The M_SMSGR selVice allows a task to send up to 768 bytes to the specified
destination task. Up to 768 bytes can be accepted as return parameters. For further
description, see Chapter 2.

The nonbase mode equivalent selVice is M.SMSGR.

Entry Conditions

Calling Sequence

M_SMSGR [pSB=]psbaddr

(or)

LA R2,psbaddr
SVC I,X'6C' (or) M_CALL H.REXS,44

psbaddr is the logical address of the parameter send block (PSB). See Chapter
2 for PSB description.

Exit Conditions

7-166

Return Sequence

M.RTRN 6

Registers

R6 contains the processing start (initial) error status if any:

Value Description

o normal initial status
1 task not found or the requesting task is not privileged

and the owner name is restricted from access to tasks
with a different owner name by the M.KEY file

2-9 reserved
10 invalid priority
11 invalid send buffer address or size
12 invalid return buffer address or size
13 invalid no-wait mode end-action routine address
14 memory pool unavailable
15 destination task queue depth exceeded
16 invalid PSB address

Base Mode System Services

o

o

(

(.

7.2.115 M_SOPL - Set Option Lower

The M_SOPL service allows the calling task to set the option lower bit. Use the
M_ROPL (Reset Option Lower) service to reset the option lower bit.

The nonbase mode equivalent service is M.SOPL.

Entry Conditions

Calling Sequence

M_SOPL

(or)

SVC 2,X'7?' (or) M_CALL H.TSM,13

Exit Conditions

Return Sequence

M.RTRN

(or)

M.RTRN (CCI set)

Registers

CCI set call caused the option lower bit to be set

MPX-32 Reference Volume I 7-167

7.2.116 M_SRUNR - Send Run Request to Specified Task

The M_SRUNR service allows a task to activate or re-execute the specified
destination task with a parameter pass of up to 768 bytes. Up to 768 bytes can be
accepted as return parameters. For further description, see Chapter 2.

If a task activated with the TSM ACTIVATE directive is sent a run request, the
queued run request is ignored. However, if a task is activated with a run request and a
second run request is sent, the queued run request is then executed.

When a task name is supplied in words 0 and 1 of the parameter send block (PSB),
the operating system defaults to a search in the system directory only. For activations
in other than the system directory, a pathname or RID vector must be supplied.

The nonbase mode equivalent service is M.SRUNR.

Entry Conditions

Calling Sequence

M_SRUNR [PSB=]psbaddr

(or)

LA R2,psbaddr
SVC 1,X'6D' (or) M_CALL H.REXS,45

psbaddr is the logical address of the parameter send block (PSB). See Chapter
2.

Exit Conditions

7·168

Return Sequence

M.RTRN 6,7

Registers

R6 contains the processing start (initial) error status if any:

Value Description

o
1
2
3
4

5
6
7
8

normal initial status
reserved
file specified in the PSB not found in directory
reserved
file specified in the PSB is not a load module or executable
image
dispatch queue entry (DQE) unavailable
I/O error on directory read
I/O error on load module read
memory unavailable

Base Mode System Services

()

Value Description

9 invalid task number for run request to multicopied
load module in RUNW state

10 invalid priority
11 invalid send buffer address or size
12 invalid return buffer address or size
13 invalid no-wait mode end-action routine address
14 memory pool unavailable
15 destination task queue depth exceeded
16 invalid PSB address
17 reserved

R7 contains the task number of the destination task, or zero if the request was
not processed

MPX-32 Reference Volume I 7-169

7.2.117 M_SUAR - Set User Abort Receiver Address

The M_SUAR service sets up an address to return control to if an abort condition
occurs during task execution.

All files remain open prior to transferring to the user specified address. See Task
Termination Sequencing in Chapter 2.

The nonbase mode equivalent service is M.SUAR.

Entry Conditions

Calling Sequence

M_SUAR [RCVADR=]address

(or)

LA R7,address
SVC 1,X'60' (or) M_CALL H.REXS,26

address is the logical address to which control will be transferred on task
termination

Exit Conditions

7-170

Return Sequence

M.RTRN R7

Registers

R7 bit 0 is zero if the request is honored. or one if the request is denied
because the specified address is outside the user's allocated area; bits 1-31
are unchanged

Abort Cases

RX89 AN UNPRIVILEGED TASK HAS ATTEMPTED TO REESTABLISH
AN ABORT RECEIVER (OTHER THAN M.IOEX)

Base Mode System Services

c

7.2.118 M_SUME - Resume Task Execution

The M_SUME service reswnes a task that has been suspended. A request to reswne a
task which is not suspended is ignored.

The nonbase mode equivalent service is M.SUME.

Entry Conditions

Calling Sequence

M_SUME [TASK=] task

(or)

ZR R6 } (or) LD R6,taskname
LW R7,taskno
SVC l,X'53' (or) M_CALL H.REXS,l6

task the address of a doubleword containing the name of a task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared.

Exit Conditions

Return Sequence

M.RTRN R7

Registers

R7 zero if the specified task was not found or the requesting task is not
privileged and the owner name is restricted from access to tasks with a
different owner name by the M.KEY file; otherwise, unchanged

MPX-32 Reference Volume I 7-171

7.2.119 M_SURE - Suspend/Resume

The M_SURE service suspends the calling task and resumes the target task. The
suspend and resume functions are combined into one module providing faster context
switching. It does not replace M_SUSP and M_SUME.

M_SURE applies to base mode realtime and time distribution tasks with the target
task priority higher than or equal to that of the calling task. Context switch time can
be further improved by turning real-time accounting off. This service is not
recommended for two IPU biased tasks.

The accounting option is turned off using the OFRA option to the MODE directive in
SYSGEN and OPCOM and the Catalog ENVIRONMENT directive.

The nonbase mode equivalent service is M.SURE.

Entry Conditions

Calling Sequence

M_SURE taskno

(or)

LW R7,taskno
SVC 5,X'OO'

taskno is the task number of the target task

Exit Conditions

7-172

Return Sequence

No return. All registers are destroyed. When the service completes normally, CCI is
reset. The next instruction is in the target task.

Abnormal Return:

CCI set

R7 contains a code describing the reason for the error:

Value

I
2
3

Description

task not found
task not in suspend state
owner/access violation

Return is done via LPSD to the calling task.

Base Mode System Services

(

(~

7.2.120 M_SUSP - Suspend Task Execution

The M_SUSP service results in the suspension of the caller or any other specified task
for the specified number of time units or for an indefinite time period, as requested. A
task suspended for a time interval results in a one-shot timer entry to resume the task
upon time-out of the specified interval. A task suspended for an indefinite time
interval must be resumed through the M_SUME system service. Suspension of a task
can also be ended upon receipt of a message interrupt. A message sent to a task that
is synchronized (M_SYNCH) and suspended is not received, but the task is resumed.

The nonbase mode equivalent service is M.SUSP.

Entry Conditions

Calling Sequence

M_SUSP [TASK=]task, [TIM=]timel

(or)

LW R5,timel

LI R6,O } (or) LD R6,taskname
LW R7,taskno
SVC 1,x'54' (or) M_CALL H.REXS,17

task the address of a doubleword containing the name of a task or zero in
word 0 and the task number in word 1. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

timel contains zero, if suspension for an indefinite time interval is requested,
else the negative number of time units to elapse before the caller is
resumed.

Exit Conditions

Return Sequence

M.RTRN 7

Registers

R7 zero if the specified task was not found or the requesting task is not
privileged and the owner name is restricted from access to tasks with a
different owner name by the M.KEY file; otherwise, contains the task
number

(or)

zero and CC 1 is set if the specified task name is multicopied

MPX-32 Reference Volume I 7-173

7.2.121 M_SYNCH - Set Synchronous Task Interrupt

The M_SYNCH service causes message and task interrupts to be deferred until the
user makes a call to M_ANYW AIT, M_A W AIT ACTION, M_ WAIT, or
M_ASYNCH. When this service is used, message interrupts are not interrupted by
end-action interrupts. All task interrupt levels cannot be interrupted, except by break,
until they voluntarily relinquish control.

If a synchronized task is suspended then a message is sent to the task, the message
receiver is not entered and the task resumes.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.SYNCH.

Entry Conditions

Calling Sequence

M_SYNCH

(or)

SVC 1,X'IB' (or) M_CALL H.REXS,67

Exit Conditions

7-174

Return Sequence

M.IPURTN

Registers

CCI set synchronous task interrupt was already set

Base Mode System Services

7.2.122 M_TBRKON - Trap Online User's Task

The M_TBRKON service processes a pause or break from the terminal or calling task.
The service is also the default receiver for any online task and is called as a result of a
hardware or software break. If a transfer control word (TCW) is specified, a user
message is printed with the brelk message. Refer to the description of FCB Word 1
in Chapter 5 for more information.

The nonbase mode equivalent service is M.TBRKON.

Entry Conditions

Calling Sequence

M_TBRKON [TCW=]tcw

(or)

L W R2,tcw (or) ZR R2
SVC 1, X'5C' (or) M_CALL H.TSM,6

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

TSOl USER REQUESTED REMOVAL FROM A BREAK REQUEST
RX34 TASK HAS MADE A BREAK RECEIVER EXIT CALL WHILE NO

BREAK IS ACTIVE

MPX·32 Reference Volume I 7·175

M TDAY

7.2.123 M_TDAY - Time-of-Day Inquiry

The M_TDAY service obtains the time-of-day as computed from the real-time clock
interrupt counter. The counter is initialized with a SYSGEN parameter.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.TDA Y.

Entry Conditions

Calling Sequence

M_TDAY

(or)

SVC 1,X'4E' (or) M_CALL H.REXS,ll

Exit Conditions

7-176

Return Sequence

M.IPURTN 7

Registers

R7 Byte Contents

o hours (0 to 23)
1 minutes (0 to 59)
2 seconds (0 to 59)
3 interrupts (less than one second)

Base Mode System Services

(....... ~.
~J

(

(

(-

M_ TEMPFILETOPERM

7.2.124 M_TEMPFILETOPERM - Change Temporary File to Permanent File

The M_ TEMPFILETOPERM service makes a temporary file permanent. The
temporary file is given a name in the specified directory and the file's resource type is
changed from temporary to permanent. The file is made permanent with the attributes
that were defined when it was created and with any new attributes that were acquired
while the file's data was being established, such as additional extensions, end-of-file
position, or explicit resource descriptor modifications incurred prior to invocation of
this service. The temporary file can be made permanent only on the volume where the
temporary file resides; for example, cross volume definitions are not allowed.

This service ensures exclusive use of a file while the initial file data is being
established. The integrity of the file can be guaranteed before the file is defined in a
directory where others can gain access to it.

When the directory entry is established, it is linked to the resource descriptor of the
file. This link relates the name of the file to the other attributes of the file. These
attributes are the same as the attributes for a permanent file.

The nonbase mode equivalent service is M.TEMPER.

Entry Conditions

Calling Sequence

M_ TEMPFILETOPERM [RESOURCE=] addrl , [PNADDR=] addr2
[, [CNPADDR=]addr3]

(or)

LW RI, addr]
LW R2, addr2
LA R7, addr3 (or)
SVC 2,X'28' (or)

ZR R7
M_CALL H.VOMM,9

addr] is an LFC or FCB address

addr2 contains a PN vector or PNB vector

addr3 is a CNP address or zero if CNP is not supplied

Registers

R I contains addr]

R2 contains addr2

R7 contains addr3; otherwise, zero

MPX·32 Reference Volume I 7·177

M_ TEMPFILETOPERM

Exit Conditions

7-178

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

R7 contains the status if a CNP is not supplied; otherwise, unchanged. For
return status codes, refer to the H.VOMM status codes in the Resource
Assignment/Allocation and I/O chapter of Volume I.

Base Mode System Services

(

(

(-

7.2.125 M_TRUNCATE - Truncate File

The M_TRUNCATE service allows the caller to truncate the unused space of a file.
This service is the complement of the extend service (M_EXTENDFILE). Only files
manually extended may need to be truncated.

This service truncates only temporary or permanent files. Directories and memory
partitions cannot be truncated. The caller must have write, update or append access to
truncate the file. A file cannot be truncated to less than the minimum space
requirement of the file as defined when the file was created.

A file can be truncated regardless of whether it is currently allocated. Additionally,
any allowable resource specification can be supplied, such as patbname (PN),
pathname block (PNB), resource ID (RID), logical file code (LFC), or address of a file
control block (FCB).

Asynchronous abort and delete are inhibited during execution of this service.

The nonbase mode equivalent service is M.TRNC.

Entry Conditions

Calling Sequence

M_TRUNCATE [RESOURCE=]addrl [, [CNPADDR=]addr2]
(or)

LW
LA
SVC

RI, addrl
R7, addr2 (or)
2,X'26' (or)

ZR R7
M_CALL H.VOMM,7

addrl contains a PN vector, PNB vector, RID vector, LFC, or FCB

addr2 is a CNP address or zero if CNP is not supplied

Registers

R I contains addrl

R7 contains addr2; otherwise, zero

Exit Conditions

Return Sequence

(with CNP)

M.RTRN
(or)

M.RTNA (CCI set)

Registers

(without CNP)

M.RTRN

(or)
M.RTRN R7 (CCI set)

R7 contains the return status if a CNP is not supplied; otherwise, unchanged.
For return status codes, refer to the H.VOMM status codes in the
Resource Assignment/Allocation and 1/0 chapter of Volume I.

MPX-32 Reference Volume I 7-179

7.2.126 M_TSCAN - Scan Terminal Input Buffer

The M_TSCAN service parses the line buffer pointed to by T.LINBUF. The service is
used by tasks to scan a line of tenninal input. The parameters (fields) to be scanned
are in the user's line buffer. Each call to M_TSCAN returns one parameter from the
line buffer and updates the current scan position. When a call returns a zero in R5 and
a carriage return in R4, end of line (EOL) has been reached. Each read from the
terminal reinitializes the line buffer and the pointer.

The nonbase mode equivalent service is M.TSCAN.

Entry Conditions

Calling Sequence

M_TSCAN

(or)

SVC l,X'5B' (or) M_CALL H.TSM,2

Exit Conditions

7·180

Return Sequence

M.RTRN 4,5,6,7

(or)

M.RTRN CCI set if a line buffer is not found.

Registers

R4

R5

R6,7

Note:

contains the delimiting character; carriage return if CCI set

number of significant characters before delimiter; zero if CCI set

first eight characters of the character string, left-justified. The entire
character string is in words 0 through 3 of the tenninal line buffer.

Base mode tasks must locally define the value of T.LINBUF in order to
access that field of the TSA.

M_ TSCAN ignores all blanks encountered before the first parameter or
delimiter. If M_ TSCAN encounters a delimiter before the first parameter, it
continues to ignore all blanks until encountering the first parameter.

The M_RWND service resets the cursor at the first parameter of the current input line.
M_ TSCAN scans the line without any additional IOCS calls.

Base Mode System Services

,(,,--
, ,

,/Y

7.2.127 M_T5MPC - T5M Procedure Call

The M_ TSMPC service receives TSM procedure call directive strings and returns the
results of the directive or an error message to the user-supplied buffer. The service
supports the following procedure call directives: $BATCH, $DIRECTORY, $ERR,
$GETPARM, $LINESIZE, $PAGESIZE, $PROJECT, $RRS, $SET, $SETI, $TABS
and $VOLUME.

The maximum size input string is 72 characters. The size of the output string depends
on the input directive as follows:

Directive

$BATCH

$DlRECTORY

$ERR

$GETPARM

$LINESIZE

$PAGESIZE

$PROJECT

$RRS

$SET/$SETI

$TABS

$VOLUME

Maximum Output

no output for normal processing

16-character directory name from the M.KEY file

212 characters and two carriage control characters (CR/LF)
per line for an abort code definition. The ASCII control
characters for LF and CR delimit the lines returned from $ERR.

72 characters for a parameter value. If the specified parameter
exists but has not received a value, the parameter name
is returned. If the parameter does not exist, an error message
is returned.

no output for normal processing

no output for normal processing

8-character project name from the M.KEY file

variable length RRS entry for user-supplied LFC assignment

no output for normal processing

8 tab settings from the M.KEY file

16-character volume name from the M.KEY file

Error messages are a maximum of 80 characters and two ASCII control characters
(CR/LF) as EOL delimiters.

R 7 must be zero on entry to this service.

Refer to the Notes section below for information on the syntax of the directives.

The nonbase mode equivalent service is M.TSMPC.

MPX-32 Reference Volume I 7-181

Entry Conditions

Calling Sequence

M_TSMPCpcb

(or)

LA RI,pcb
ZR R7
SVC 2,X'AE' (or) M.CALL H.TSM,17

pcb is the address of a 4-word procedure call block

Procedure Call Block (PCB)

7-182

The PCB contains the infonnation necessary for the service to complete a procedure
call. The fonnat of the PCB is as follows:

o 7 8 15 16 23 24 31

I Send buffer address (PCB.SBA) Word 0

1

2

3

Send quantity (PCB.SQUA)

I Return buffer address (PCB.RBA)

Actual return length (PCB.ACRP) I Return buffer length (pCB.RPBL)

Send buffer address

Send quantity

Return buffer address

Actual return length

Return buffer length

is the address of a character string that represents a valid
TSM procedure call directive

contains the length in bytes of the TSM procedure call
directive

is the address of a buffer to contain either valid return
information or an error message if CCI is set and R7
contains a value of 1

is the number of bytes returned from the procedure call

is the size of the supplied return buffer

Base Mode System Services

Exit Conditions

Return Sequence

M.RTRN

(or)

M.RTRN R7 (CCI set)

Registers

R7 return status if error; otherwise, zeroed

Status
CCI set

Posted in R7:

Value Description

I
2
3
4
5
6
7
8
9

return buffer contains error message
invalid send buffer address
send buffer size is zero
send buffer too long
invalid return buffer address
return buffer size is zero
return data has been truncated
invalid PCB address
invalid SVC from a non-TSM task

Note: For the syntax of the $BATCH, $ERR, $LINESIZE, $PAGESIZE, $SET, and
$SETI directives, refer to the MPX-32 Reference Manual Volume II, Chapter
1. The $RRS directive is similar to the $ASSIGN directive. Refer to the
$ASSIGN directive syntax in the MPX-32 Reference Manual Volume II,
Chapter I and specify $RRS rather than $ASSIGN. The syntax for
$DIRECfORY, $PROJECT, $TABS, and $VOLUME is the directive name
or its 4-character abbreviation plus the $ if used. These directives display
information only. The syntax of the $GETPARM directive is as follows:

$GETP ARM parm

parm is the name of a parameter defined in the directive file associated
with the task. No percent sign (%) precedes the parameter name.

MPX-32 Reference Volume I 7-183

7.2.128 M_ TSTE - Arithmetic Exception Inquiry

The M_TSTE service resets the arithmetic exception status bit in the user's TSA and
returns CCI set or reset according to the status value. The status bit is set whenever
the user is in execution and an arithmetic exception trap occurs. The bit remains set
until this service is requested, or the task terminates.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.TSTE.

Entry Conditions

Calling Sequence

M_TSTE

(or)

SVC I,X'4D' (or) M_CALL H.REXS,23

Exit Conditions

Return Sequence

M.IPURTN

(~"'.
. I

J

Registers ',,--/

PSD CCI contains the value of the arithmetic exception status bit

o
7-184 Base Mode System Services

7.2.129 M_TSTS - Test User Status Word

The M_TSTS service returns the 32 bit user status word of any specified task in
execution. The user status word resides in the CPU dispatch queue (DQE. USW) and
is modified by the Set User Status Word (M_SETS) service. These two services treat
the user status word as either a set of 32 flags or as a 32 bit counter. Bit 0 is used as
a status flag.

The nonbase mode equivalent service is M.TSTS.

Entry Conditions

Calling Sequence

M_TSTS [TASK=]task

(or)

ZR
LW
SVC

R6 } (or) LD R6,taskname
R7,taskno
1,X'49' (or) M_CALL H.REXS,8

task the address of a doubleword containing the name of a task or zero in
word 1 and the task number in word 2. A task number must be used if
the task is multicopied or shared. A task number of zero specifies the
calling task.

Exit Conditions

Return Sequence

M.RTRN 7

Registers

R7 bit 0 is set if the specified task was not found or the requesting task is not
privileged and the owner name is restricted from access to tasks with a
different owner name by the M.KEY file; otherwise, R7 returns the user­
status word

MPX-32 Reference Volume I 7-185

7.2.130 M_TSTT - Test Timer Entry

The M_TSTT service returns to the caller the negative number of time units remaining
until the specified timer entry time-out. If the timer has expired, the result returned is
zero.

This service can be executed by the IPU.

The nonbase mode equivalent service is M.TSTT.

Entry Conditions

Calling Sequence

M_ TSTT [TIMER=] timer

(or)

LW R6,timer
SVC 1,X'46' (or) M_CALL H.REXS,5

timer 2-character ASCII name of a timer, right-justified

Exit Conditions

7-186

Return Sequence

M.RTRN 7

Registers

R 7 negative number of time units remaining until time-out or zero if the
timer has expired or does not exist

Base Mode System Services

o

('
7.2.131 M_TURNON - Activate Program at Given Time-of-Day

The M_TURNON service activates or resumes a specified task at a specified time and
reactivates (resumes) it at specified intervals by creating a timer table entry using a
specified timer ID. When a load module or executable image name is supplied as
input, the operating system defaults to a search in the system directory only. For
activations in other than the system directory, a pathname or RID vector must be
supplied as input.

The nonbase mode equivalent service is M.TURNON.

Entry Conditions

Calling Sequence

M_TURNON [FNAME=]filename, [TIME=] time [, [RST=] reset],
[TIMID=] time rid

(or)

LD
LW
LW
LW
SVC

filename

R6,filename
R4,time
R5,reset
R3,timerid
l,X'iE' (or) H.REXS,66

is either a left-justified blank-filled double word containing the 1- to 8-
character ASCII name of the load module or executable image file
(must be a system file),

(or)

R6 contains the patbname vector or RID vector which points to the task
to be activated and R 7 is zero

time is the time-of-day on the 24-hour clock when the task is activated. It is
a word value with the following format:

reset

timerid

Byte Contents

o binary hours
I binary minutes
2 binary seconds
3 zero

is the time interval on the 24-hour clock to elapse before resetting the
clock upon each time out. It has the same format as the time argument
above. The task is reactivated at each time out. If a reset value is not
specified, the comma denoting the field must still be specified and the
task is activated only once.

is a word variable containing the right-justified, zero-filled, 2-character
ASCII name of the timer that will be created

MPX-32 Reference Volume I 7-187

Exit Conditions

7-188

Return Sequence

M.RTRN R3 nonzero

Error Condition

M.RTRN R3 zero if there are no timer entries available, the requested load module
or executable image does not exist, attempting to create a duplicate
timer ID, or invalid timer ID

Base Mode System Services

7.2.132 M_TYPE - System Console Type

The M_ TYPE service types a user specified message and optionally reads from the
system console. Input message address is validated for the unprivileged task.
Operation is wait I/O.

The maximum input or output is 80 characters. If no characters are specified, the
maximum is used.

M_TYPE builds a type control parameter block (TCPB) which defines input and
output buffer 24-bit addresses for console messages and reads.

The nonbase mode equivalent service is M.TYPE.

Entry Conditions

Calling Sequence

M_TYPE [OUTMES=]addrl , [OUTCNT=]numl [, [INMES=]addr2,
[INCNT=]num2]

(or)

SVC 1,X'3F' (or) M_CALL H.lOCS,14

is the 24-bit address of the output message buffer addrl

numl is the transfer count for output. Up to 80 bytes can be transferred.

addr2 is the the 24-bit address of the input message buffer. If not specified,
TCPB word 2 is zeroed. The first byte of this field contains the actual
input quantity.

num2 is the transfer count for input. Up to 80 bytes can be transferred.

Registers

Rl contains address of the type control parameter block (TCPB)

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

1003 AN UNPRIVILEGED TASK IS ATTEMPTING TO READ DATA
INTO PROTECTED MEMORY

1015 A TASK HAS REQUESTED A TYPE OPERATION AND THE TYPE
CONTROL PARAMETER BLOCK (TCPB) SPECIFIED INDICATES
THAT AN OPERATION ASSOCIATED WITH THAT TCPB IS
ALREADY IN PROGRESS

MPX-32 Reference Volume I 7-189

M_UNLOCK

7.2.133 M_UNLOCK - Release Exclusive Resource Lock

The M_ UNLOCK service is used with the Set Exclusive Resource Lock (M_LOCK)
service. When called, the exclusive lock is released if the task has the resource
allocated in a shareable mode; otherwise, the lock cannot be released until deallocation
of the resource. Once the lock is released, other tasks can allocate the resource in a
compatible access mode for the particular shared usage. However, another task is not
able to exclusively lock the resource until this task, and all other sharing tasks,
deallocate the resource.

The nonbase mode equivalent service is M.UNLOCK.

Entry Conditions

Calling Sequence

M_UNLOCK [ARGA=]arga [, [CNP=]cnpaddr]

(or)

LW R5,arga
LA R7,cnpaddr (or) ZR R7
SVC 2,X'45' (or) M_CALL H.REMM,24

arga is an address containing the allocation index obtained when the
resource was assigned

cnpaddr

(or)

an address containing the address of a file control block (FCB) which
contains an LFC in word 0

is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are abnormal return
address and status field.

Exit Conditions

7-190

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCI set)

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCI set)

Base Mode System Services

Registers

R7 return status if a CNP is not supplied; otherwise, unchanged

Status
CCI set

Posted in R7 or the status field of the CNP:

Value

29
30
32
33
46

Notes:

Description

specified LFC not assigned by this task
invalid allocation index
an exclusive resource lock was not owned by this task
resource is not allocated in a shareable mode by this task
unable to obtain resource descriptor lock (multiprocessor only)

1. An exclusive resource lock can not be released by a task other than the owning
task.

2. Any outstanding exclusive resource locks are released on task termination or on
resource de allocation.

MPX·32 Reference Volume I 7·191

M_UNPRIVMODE

7.2.134 M_UNPRIVMODE - Change Task to Unprivileged Mode

The M_UNPRIVMODE service allows a task that was linked as privileged to operate
as unprivileged. This causes the calling task's protection image to be loaded at every
context switch. See the M_PRIVMODE service to reinstate privilege status.

The nonbase mode equivalent service is M.UPRIV.

Entry Conditions

Calling Sequence

M_UNPRIVMODE

(or)

SVC 2,X'58' (or) M_CALL H.REXS,79

Exit Conditions

7·192

Return Sequence

M.RTRN

Base Mode System Services

(~.'\
.. ./

o

(

7.2.135 M_UNSYNC - Release Synchronous Resource Lock

The M_UNSYNC service is used with the Set Synchronous Resource Lock
(M_SETSYNC) service to perfonn gating on resources that have been allocated for
explicit shared usage. When called, the synchronization lock is released, and all tasks
waiting to own the lock are polled.

The nonbase mode equivalent service is M.UNSYNC.

Entry Conditions

Calling Sequence

M_UNSYNC [ARGA=]arga [, [CNP=]cnpaddr]

(or)

LW R5,arga
LA R7,cnpaddr (or) ZR R7
SVC 2,X'47' (or) M_CALL H.REMM,26

arga is an address containing the allocation index obtained when the
resource was assigned

(or)

an address containing the address of a file control block (FCB) which
contains an LFC in word 0

cnpaddr is the address of a caller notification packet (CNP) if notification is
desired.

Applicable portions of the CNP for this function are abnormal return
address and status field.

Exit Conditions

Return Sequence

(with CNP)

M.RTRN

(or)

M.RTNA (CCl set)

Registers

(without CNP)

M.RTRN

(or)

M.RTRN R7 (CCl set)

R 7 return status if a CNP is not supplied; otherwise, unchanged

MPX·32 Reference Volume I 7-193

M_UNSYNC

Status
CCI set

Posted in R7 or the status field of the CNP:

Value

29
30
32
46

Notes:

Description

specified LFC was not assigned by this task
invalid allocation index
synchronization lock was not set
unable to obtain resource descriptor lock (multiprocessor only)

1. A synchronization lock may only be cleared by the task that set the lock.

2. A synchronization lock is automatically released when a task terminates or
deallocates the resource.

Base Mode System Services

o

o

7.2.136 M_UPSP - Upspace

The M_UPSP service is not applicable to blocked or SYC files. If BOT is present on
multivolume magnetic tape, volume record (header) is written. If EOT is present on
multivolume magnetic tape, an erase and write EOF is performed.

The nonbase mode equivalent service is M.UPSP.

Entry Conditions

Calling Sequence

M_UPSP [FCB= 1fcb

(or)

LA RI,fcb
SVC I,X'tO' (or) M_CALL H.IOCS,20

fcb is the FCB address

Registers

R I FCB address

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

1006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED
FILE ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS
IMPROPERLY BLOCKED, (2) BLOCKING BUFFER IS
DESTROYED, OR (3) TRANSFER ERROR DURING FILE
INPUT.

1009 ILLEGAL OPERATION ON THE SYC FILE

Output Messages

Mount/dismount messages if EOT on multivolume magnetic tape.

MPX-32 Reference Volume I 7-195

7.2.137 M_VADDR - Validate Address Range

The M_ V ADDR service verifies the specified logical address.

The nonbase mode equivalent service is M.V ADDR .

. Entry Conditions

Calling Sequence

M_ VADDR [STARTADDR=]addr, [RANGE=]num

(or)

LW R6, addr
LI R7, num
SVC 2,X'59' (or) M_CALL H.REXS,33

addr is the logical starting address

num is the number of bytes to validate

Registers

R6 contains addr

R7 contains num

Exit Conditions

7-196

Return Sequence

M.RTRN

address range crosses map block boundary

locations specified are protected

Registers

CC2 set

CC3 set

CC4 set

RO-R7

invalid address (not in caller's address space)

unchanged

Base Mode System Services

o

(

(

(

M WAIT

7.2.138 M_WAIT - Wait I/O

The M_ WAIT service provides return to the user when the I/O request associated with
the specified FCB is complete. The task is suspended until I/O completes.

The nonbase mode equivalent service is M.WAIT.

Entry Conditions

Calling Sequence

M_WAIT [FCB=]fcb

(or)

LA Rl/cb
SVC 1,X'3C' (or) M_CALL H.IOCS,25

fcb is the FCB address

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

MS31 USER ATTEMPTED TO GO TO THE ANY-WAIT STATE FROM AN
END-ACTION ROUTINE

MPX·32 Reference Volume I 7-197

M WRITE

7.2.139 M_ WRITE - Write Record

The M_ WRITE service performs the following functions:

• prevents a write to a read-only file

• provides special random access handling for disk files

• blocks records for system and blocked files

• writes a volume record if BOT encountered on multivolume magnetic tape

• performs an erase and write EOF if EOT encountered on multivolume magnetic
tape

• writes one record from the buffer pointed to by the TCW in the FCB

The nonbase mode equivalent service is M.WRIT.

Entry Conditions

Calling Sequence

M_ WRITE [FCBADDR=]addr

(or)

LA RI, addr
SVC I,X'32' (or) M_CALL H.IOCS,4

addr is the FCB address

Registers

R I contains addr

Exit Conditions

7-198

Return Sequence

M.RTRN

Abort Cases

I006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED FILE
ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS IMPROPERLY
BLOCKED, (2) BLOCKING BUFFER IS DESTROYED, OR (3)
TRANSFER ERROR DURING FILE INPUT.

I009 ILLEGAL OPERATION ON THE SYC FILE

I038 WRITE ATTEMPTED ON UNIT OPENED IN READ-ONLY MODE. A
READ-WRITE OPEN WILL BE FORCED TO READ-ONLY IF TASK HAS
ONLY READ ACCESS TO UNIT.

RM02 ACCESS MODE NOT ALLOWED

Output Messages

Dismount/mount messages if EOT on multivolume magnetic tape.

Base Mode System Services

7.2.140 M_WRITEEOF - Write EOF

The M_ WRlTEEOF service performs the following functions:

• prevents a write to a read-only file

• issues an end-of-file and purge if the file is a blocked file with an active blocking
buffer

• writes a software EOF record (a I92-word record with X'OFEOFEOF' in its first
word) immediately following the last record of an unblocked file created with
EOFM=F

• writes a volume record if BOT is encountered on multivolume magnetic tape

• performs an erase and write EOF if EOT is encountered on multivolume magnetic
tape

The nonbase mode equivalent service is M.WEOF.

Entry Conditions

Calling Sequence

M_ WRITEEOF [FCBADDR=] addr

(or)

LA RI, addr
SVC I,X'38' (or) M_CALL H.lOCS,5

addr is the FCB address

Registers

R 1 contains addr

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

1009 ILLEGAL OPERATION ON THE SYC FILE

1030 ILLEGAL OR UNEXPECTED VOLUME NUMBER OR REEL ID
ENCOUNTERED ON MAGNETIC TAPE

Output Messages

Dismount/mount messages if EOT encountered on multivolume magnetic tape.

MPX-32 Reference Volume I 7-199

7.2.141 M_XBRKR - Exit from Task Interrupt Level

The M_XBRKR service must be called at the conclusion of executing a task interrupt
routine. It transfers control back to the point of interruption and resets the interrupt to
the level established before the break or M_INT.

The nonbase mode equivalent service is M.XBRKR.

Entry Conditions

Calling Sequence

M_XBRKR

(or)

RETURN

Exit Conditions

7·200

Return Sequence

M.RTRN

Abort Cases

RX34 TASK HAS MADE A BREAK RECEIVER EXIT CALL WHILE NO
BREAK IS ACTIVE

Base . Mode System Services

(/

(---

7.2.142 M_XIEA - No-Wait I/O End-Action Return

The M_XIEA service is required to exit from a no-wait I/O end-action routine. Both
normal and error end-action routines use this exit.

The nonbase mode equivalent service is M.XIEA.

Entry Conditions

Calling Sequence

M_XIEA

(or)

RETURN

Exit Conditions

Return Sequence

BL S.EXEC6 no-wait 1/0 postprocessing complete

MPX-32 Reference Volume I 7-201

7.2.143 M_XMEA - Exit from Message End-Action Routine

The M_XMEA service is called to exit the end-action routine associated with a no­
wait message send request. For further description, see Chapter 2.

The nonbase mode equivalent service is M.xMEA.

Entry Conditions

Calling Sequence

M_XMEA

(or)

RETURN

Exit Conditions

7·202

Return Sequence

M.RTRN interrupts context at message interrupt or task base level

Abort Cases

RX99 TASK HAS MADE A MESSAGE END-ACTION ROUTINE EXIT
WHILE THE MESSAGE INTERRUPT WAS NOT ACTIVE

Base Mode System Services

7.2.144 M_XMSGR - Exit from Message Receiver

The M_XMSGR service must be called to exit the message receiver code of the
calling task after the task has received a message from another task. For further
description, see Chapter 2.

The nonbase mode equivalent service is M.xMSGR.

Entry Conditions

Calling Sequence

M_XMSGR [[RXB=]rxbaddr]

(or)

LA RI,rxbaddr
RETURN

rxbaddr is the logical address of the receiver exit block (RXB)

Exit Conditions

Return Sequence

M.RTRN interrupts context at task base level

Abort Cases

RX93 AN INVALID RECEIVER EXIT BLOCK (RXB) ADDRESS WAS
ENCOUNTERED DURING MESSAGE EXIT

RX94 AN INVALID RECEIVER EXIT BLOCK (RXB) RETURN BUFFER
ADDRESS WAS ENCOUNTERED DURING MESSAGE EXIT

RX95 TASK HAS MADE A MESSAGE EXIT WHILE THE MESSAGE
INTERRUPT WAS NOT ACTIVE

MPX·32 Reference Volume I 7·203

7.2.145 M_XREA - Exit from Run Request End-Action Routine

The M_XREA service is called to exit the end-action routine associated with having _
sent a no-wait run request.

The nonbase mode equivalent service is M.XREA.

. Entry Conditions

Calling Sequence

M_XREA

(or)

RETURN

Exit Conditions

7-204

Return Sequence

M.RTRN interrupts context at message interrupt or task base level

Abort Cases

RX90 TASK HAS MADE A RUN REQUEST END-ACTION ROUTINE
EXIT WHILE THE RUN REQUEST INTERRUPT WAS NOT
ACTIVE

Base Mode System Services

C;-------, , ,

7.2.146 M_XRUNR - Exit Run Receiver

The M_XRUNR service is called to exit a task which was executing for a run request
issued from another task.

The nonbase mode equivalent service is M.XRUNR.

Entry Conditions

Calling Sequence

M_XRUNR [[RXB=] rxbaddr]

(or)

LA R 1 ,rxbaddr
RETURN

rxbaddr is the logical address of the receiver exit block (RXB). For further
description, see Chapter 2.

Exit Conditions

Return Sequence

The run-receiver queue is examined and if not empty, the task is executed again on
behalf of the next request. If the queue is empty, the exit options in the RXB are
examined. If option byte is zero, the task is placed in a wait state, waiting for the
next run request to be received. If option byte is nonzero, the task exits the system.

Note: If the task is re-executed, control is transferred to the instruction following
the M_XRUNR call.

Abort Cases

RX96

RX97

RX98

AN INVALID RECEIVER EXIT BLOCK (RXB) ADDRESS WAS
ENCOUNTERED DURING RUN RECEIVER EXIT

AN INVALID RECEIVER EXIT BLOCK (RXB) RETURN BUFFER
ADDRESS WAS ENCOUNTERED DURING RUN RECEIVER EXIT

TASK HAS MADE A RUN RECEIVER EXIT WHILE THE RUN
RECEIVER INTERRUPT WAS NOT ACTIVE

MPX·32 Reference Volume I 7·205

7.2.147 M_XTIME - Task CPU Execution Time

The M_XTIME service returns to the caller the total accumulated processor execution
time in microseconds since the intitiation of the task. If an IPU is present and IPU
accounting is enabled, the time returned includes accumulated IPU execution time, if
any. If the calling task is in the real time priority range and real time accounting is
turned off, the returned time will be zero.

The nonbase mode equivalent service is M.xTIME.

Entry Conditions

Calling Sequence

M_XTIME

(or)

SVC l,X'2D' (or) M_CALL H.REXS,65

Exit Conditions

7-206

Return Sequence

M.RTRN 6,7

Registers

R6,R 7 CPU execution time in microseconds

Base Mode System Services

o

o

(

(

Nonmacro-Callable System Services

7.3 Nonmacro-Callable System Services

7.3.1 Debug Link Service

The Debug Link service is used only by the interactive debugger to transfer control to
the debugger. The debugger places this SVC trap in the user's task at the desired
location.

Entry Conditions

Calling Sequence

SVC 1,x'66' (or) M_CALL H.REXS,42

Exit Conditions

Return Sequence

M.RTRN

MPX-32 Reference Volume I 7-207

Eject/Purge Routine

7.3.2 Eject/Purge Routine

The Eject/Purge Routine service performs the following functions:

• if a file is blocked and output active, issues a purge and returns to the user

• writes a volume record if BOT is encountered 'on multivolume magnetic tape

• performs an erase and write EOF if EOT is encountered on multivolume magnetic
tape

• eject is not applicable to SYC files

Entry Conditions

Calling Sequence

LA Rl/cb
SVC 1,x'OD' (or) M_CALL H.IOCS,22

fcb is the FCB address

Exit Conditions

7-208

Return Sequence

M.RTRN

Abort Cases

1009 ILLEGAL OPERATION ON THE SYC FILE

Output Messages

Mount/dismount messages if EOT encountered on multivolume magnetic tape.

Base Mode System Services

4~--~- '" '-j

{

Erase or Punch Trailer

7.3.3 Erase or Punch Trailer

The Erase or Punch Trailer service writes the volume record if BOT is encoWltered on
multivolume magnetic tape, or performs an erase and write EOF if EOT is
encoWltered on multivolume magnetic tape.

Erase or punch trailer is not applicable to blocked or SYC files.

Entry Conditions

Calling Sequence

LA RItcb
SVC 1,x'3E' (or) M_CALL H.IOCS,2I

fcb is the FCB address

Exit Conditions

Return Sequence

M.RTRN

Abort Cases

1009 ILLEGAL OPERATION ON THE SYC FILE

Output Messages

MOWlt/dismount messages if EOT encoWltered on multivolume magnetic tape.

MPX-32 Reference Volume I 7-209

Execute Channel Program

7.3.4 Execute Channel Program

The Execute Channel Program service is available to privileged users and allows
command and data chaining to General Purpose Multiplexer Controller (GPMC) and
extended I/O devices only. Logical execute channel is available to both privileged
and nonprivileged users. Physical execute channel is available only to privileged users.

Entry Conditions

Calling Sequence

LA RItcb
SVC l,X'25' (or) M_CALL H.IOCS,lO

fcb is the FCB address

Exit Conditions

7-210

Return Sequence

M.RTRN

Abort Cases

1003

1043

1050

1051

1052

1053

1054

1055

1056

1057

AN UNPRIVILEGED TASK IS ATTEMPTING TO READ DATA INTO
PROTECTED MEMORY

INPUT/OUTPUT CONTROL LIST (IOCL) OR DATA ADDRESS NOT IN
CONTIGUOUS 'E' MEMORY (GPMC DEVICES ONLY)

AN UNPRIVILEGED USER ATTEMPTED TO EXECUTE A PHYSICAL
CHANNEL PROGRAM

A 'TESTSTAR' COMMAND WAS USED IN A LOGICAL CHANNEL
PROGRAM

A LOGICAL CHANNEL WAS TOO LARGE TO BE MOVED TO MEMORY
POOL

A 'TIC' COMMAND FOLLOWS A 'TIC' COMMAND IN A LOGICAL
CHANNEL PROGRAM

A ' TIC' COMMAND ATTEMPTED TO TRANSFER TO AN ADDRESS
WHICH IS NOT WORD BOUNDED

ILLEGAL ADDRESS IN LOGICAL IOCL. ADDRESS IS NOT IN
USER'S LOGICAL ADDRESS SPACE

A READ-BACKWARD COMMAND WAS USED IN A LOGICAL CHANNEL
PROGRAM

ILLEGAL IOCL ADDRESS. IOCL MUST BE LOCATED IN THE
FIRST 128K WORDS OF MEMORY

Base Mode System Services

Get Extended Memory Array

7.3.5 Get Extended Memory Array

The Get Extended Memory Array service requests an array of extended memory. If
the request cannot be met, then all free memory, except one-eighth of the amount of
physical memory, is allocated to the task and a count of maps allocated is returned.
This service is intended for use by tasks that require the largest possible buffers
without being placed on the MRQ for an extended period.

Entry Conditions

Calling Sequence

LW Rl,maps
SVC 2,x'7F' (or) M_CALL H.MEMM,14

maps is the number of map blocks required

Exit Conditions

Return Sequence

M.RTRN

Registers

R2 number of map blocks allocated

R3 starting logical address of memory allocated or zero if an error occurred

R4 ending logical address of memory allocated or error code as follows:

Value

1
2
3
4

Description

CSECT overrun
request for more memory than physically exists
M_GETMEMBYTES service in use
unable to allocate logically contiguous memory

R5 number of map blocks, all classes, that are now free

MPX-32 Reference Volume I 7-211

Release FHD Port

7.3.6 Release FHD Port

The Release FHD Port service releases the fixed head disk port reserved by the
Reserve FHD Port service. The release service is available only to privileged users
and is only supported by the four megabyte fixed head disk.

Entry Conditions

Calling Sequence

LA Rltcb
SVC I,X'27' (or) M_CALL H.lOCS,27

fcb is the FCB address

Exit Conditions

Return Sequence

M.RTRN

7.3.7 Reserve FHD Port

The Reserve FHD Port service reserves a fixed head disk port. This service is
available only to privileged tasks and is only supported by the four megabyte fixed
head disk.

Entry Conditions

Calling Sequence

LA RItcb
SVC 1,x'26' (or) M_CALL H.IOCS.24

fcb is the FCB address

Exit Conditions

7-212

Return Sequence

M.RTRN

Base Mode System Services

(~

'_c~",i

(- A MPX-32 Device Access

A.1 Description

Throughout the MPX-32 Reference Manual, the generic descriptor devmnc indicates
that a device can be specified.

Under MPX-32, device addresses are specified using a combination of three levels of
identification. They are device type, device channel/controller address, and device
address/subaddress.

A device can be specified using the generic device type mnemonic only, which results
in allocation of the first available device of the type requested. Device type
mnemonics are listed in Table A-I.

A second method of device specification is achieved by using the generic device type
mnemonic and specifying the channel/controller address. This results in allocation of
the first available device of the type requested on the specified channel or controller.

The third method of device selection requires specification of the device type"
mnemonic, channel/controller, and device address/subaddress. This method allows
specification of a particular device.

MPX-32 Reference A-1

Description

Table A-1
Device Type Mnemonics and Codes

Device Device
Type Type
Code Mnemonic Device Description

()() CT Operator console (not assignable)
01 DC Any disk unit except memory disk
02 DM Any moving head or memory disk
03 DF Any fixed head disk
04 MT Any magnetic tape unit
05 M9 Any 9-track magnetic tape unit*
06 M7 Any 7-track magnetic tape unit*
08 CR Any card reader
OA LP Any line printer
OB PT Any paper tape reader-punch
OC TY Any teletypewriter (other than console)
OD CT Operator console (assignable)
OE FL Floppy disk
OF NU Null device
10 CA Communications adapter (binary synchronous/asynchronous)
11 UO Available for user-defined applications
12 Ul Available for user-defined applications
13 U2 Available for user-defined applications
14 U3 Available for user-defined applications
15 U4 Available for user-defined applications
16 US Available for user -defined applications
17 U6 Available for user-defined applications
18 U7 Available for user-defined applications
19 U8 Available for user-defined applications
lA U9 Available for user-defined applications
IB LF Line printer/floppy controller (used only with SYSGEN)
N/A ANY Any nonfloppy disk except memory disk

* When both 7- and 9-track magnetic tape units are configured, the designation
must be 7-track.
!

A-2 MPX-32 Device Access

c

Special Device Specifications and Handling

A.2 Special Device Specifications and Handling

A.2.1 Magnetic Tape/Floppy Disk

Syntax

For magnetic tape and floppy disks, unblocking, density, a reel identifier, and
multivolume number (magnetic tape only) can be included in the device specification.

$ASSIGN lfc TO DEV=devmnc [BLOCKED= {Y 1 N }]
[DENSITY= {N 1 PIG 1800 11600 16250}] [ID=id] [MULTIVOL=number]

lfc is a 1- to 3-character logical file code

DEV=devmnc
devmnc is the device specification of a configured peripheral device (see
the Description section)

[BLOCKED={ YIN}]
if Y is specified, medium is blocked. If N is specified, medium is not
blocked. If not specified the default is blocked.

[DENSITY={N 1 PIG 1800 11600 1 6250}]
specifies density of high speed XIO tape. If not specified, the default is
6250 bpi. Values are as follows:

Value

Nor 800
P or 1600
G or 6250

Description

indicates 800 bpi nonretum to zero inverted (NRZI).
indicates 1600 bpi phase encoded (PE).
indicates 6250 bpi group coded recording (GCR).
This is the default.

[ID=id] id specifies a 1- to 4-character identifier for the reel. If not specified, the
default is SCRA (scratch).

[MULTIVOL=number]
number is a volume number. If multivolume tape, number must be
specified. If not specified, the default is not multivolume (0). This option
is not valid for use with floppy disks.

When the task that has an assignment to tape is activated, a mount message indicates
the name of the task and other infonnation on the system console:

reel

MOUNT reel VOL volume ON devmnc
TASK taskname, taskno REPLY R, H, A, OR DEVICE:
jobno

specifies a 1- to 4-character identifier for the reel. If not specified, the
default is SCRA (Scratch).

MPX-32 Reference A-3

Special Device Specifications and Handling

A·4

volume identifies the volume number to mount if multivolume tape

devmnc is the device mnemonic for the tape unit selected in response to the
assignment. If a specific channel and subaddress are supplied in the
assignment, the specific tape drive is selected and named in the message;
othelWise, a unit is selected by the system and its complete address is
named in the message.

jobno identifies the job by job number if the task is part of a batch job

taskname is the name of the task to which the tape is assigned

taskno is the task number assigned to the task by the system

R,H,A, OR DEVICE

Response:

the device listed in the message can be allocated and the task resumed
(R), a different device can be selected (DEVICE), the task can be aborted
(A), or the task can be held with the specified device deallocated (H). If
an R response is given and a high speed XIO tape drive is being used, its
density can be changed when the software select feature is enabled on the
tape unit front panel. If specified, it overrides any specification made at
assignment. Example usage: RN, R1600, etc.

Note: Do not insert blanks or commas.

To indicate the drive specified in the mount message is ready and proceed with the
task, mount the tape on the drive and type R (resume), optionally followed by a
density specification if the drive is a high speed XIO tape unit. To abort the task, type
A (abort). To hold the task and deallocate the specified device, type H (hold). The
task can be resumed by the OPCOM CONTINUE directive; at which time, a tape
drive is selected by the system and the mount message redisplayed.

To select a tape drive other than the drive specified in the message, enter the
mnemonic of the drive to be used. Any of the three levels of device identification can
be used. The mount message is reissued. Mount the tape and type R if satisfactory,
or if not satisfactory, abort, override, or hold as described.

Examples of the three methods of device specification follow:

Type 1 • GeneriC Device Class
$ASSIGN OUT TO DEV=M9 MUL=l ID=MVOL

In this example, the device assigned to logical file code (LFC) OUT is any 9-track
tape unit on any channel. The multivolume reel number is 1. The reel identifier is
MVOL and the tape is blocked.

MPX·32 Device Access

c

C~

Special Device Specifications and Handling

Type 2 • Generic Device Class and Channel/Controller

$ASSIGN OUT TO DEV=M910 ID=MVOL BLO=N

In this example, the device assigned to logical file code (LFC) OUT is the first
available 9-track tape unit on channel 10. The specification is invalid if a 9-track
tape unit does not exist on the channel. The reel identifier is MVOL. This is not a
multivolume tape and is unblocked.

Type 3 • Specific Device Request

$ASSIGN OUT TO DEV=M91001

In this example, the device assigned to logical file code (LFC) OUT is the 9-track
tape unit 01 on channel 10. The specification is invalid if unit 01 on channel 10 is
not a 9-track tape. The tape reel identifier is SCRA. The tape is blocked and is not
multivolume.

A.2.2 Temporary Disk Space

Syntax

For a temporary disk file the following can be specified: size, blocking, printing or
punching, and access.

$ASSIGN lfc TO TEMP[=(volname)] [ACCESS=([READ] [WRITE] [MODIFY] [UPDATE] [APPEND])]
[BLOCKED={ V IN}] [PRINT I PUNCH] [SIZE=blocks]

lfc is a 1- to 3-character logical file code

TEMP[=(volname)]
volname is the 1- to 16-character volume name where temporary space is
allocated. If not specified, the default is the current working volume or
any public volume.

[ACCESS=([READ] [WRITE] [MODIFY] [UPDATE] [APPEND])]
specifies the types of access for the file. If not specified, the default is the
access specified at file creation.

[BLOCKED={ V IN}]
if Y is specified, the file is blocked. If N is specified, the file is
unblocked. If not specified, the default is blocked.

[PRINT I PUNCH]
indicates the file is to be printed (pRINT) or punched (PUNCH) after
de assignment

[SIZE=blocks]

MPX·32 Reference

blocks is the number of 192-word blocks required. If not specified, the
default is 16 blocks.

A·5

Special Device Specifications and Handling

Examples

In the following example, the device assigned to logical file code (LFC) OUT is the
current working volume or any public volume and the file prints to the SLO device
after deassignrnent.

AS OUT TO TEM PRI

The following example designates the system volume as the device for the temporary
blocked file.

AS OUT TO TEMP=(SYSTEM) BLO=Y

A.3 GPMC Devices
GPMC/GPDC device specifications follow the general structure just described. The
terminal at subaddress 04 on GPMC 01 whose channel address is 20 would be
identified as follows:

$AS DEV TO DEV=TY2004

A.4 Null Device

A special device type, NU, is available for null device specifications. Files accessed
using this device type generate an end-of-file (EOF) when a read is attempted and
normal completion when a write is attempted.

A.5 System Console

Logical file codes are assigned to the system console by using the device type cr.

A.6 Special System Files

A-6

There are four special mnemonics provided for access to special system files: SLO,
SBO, SGO and SYC. These are assigned with the $ASSIGN statement, as in:

$ASSIGN OUT TO SLO

For nonbatch tasks, SLO and SBO files are allocated dynamically by the system and
used to disk buffer output to a device selected automatically. For batch tasks, use of
SLO and SBO files is identical, except that automatic selection of a device can be
overridden by assigning a specific file or device.

MPX-32 Device Access

o

C'"
I __ " \

(

(

A.7 Samples

A description of device selection possibilities is constructed as follows:

Disk

DC
DM
DM08
DM0801
DMOOO2
DF
DF04
DF0401

Tape

MT
M9
M910
M91002

Card Equipment

CR
CR78
CR7800

Line Printer

LP
LP7A
LP7AOO
LP7EAO

MPX-32 Reference

Any disk except memory disk
Any moving head or memory disk
Any moving head disk on channel 08
Moving head disk 0 1 on channel 0 8
Memory disk 02 on channel 00
Any fixed head disk
Any fixed head disk on channel 04
Fixed head disk 01 on channel 0 4

Any magnetic tape
Any 9-track magnetic tape
Any 9-track magnetic tape on channel 10
9-track magnetic tape 02 on channell 0

Any card reader
Any card reader on channel 78
Card reader 00 on channel 78

Any line printer
Any line printer on channel 7 A
Line printer 0 0 on channel 7 A
Serial printer AO on ACM channel 7E

Samples

A-7/A-8

(-"\
.)

(- B System Services Cross-Reference

B.1 Macro Name Listing

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M.ACTV Activate Task I,X'S2' H.REXS,IS 6.2

M_ACTV Activate Task I,X'S2' H.REXS,IS 7.2

M.ADRS Memory Address 1,x'44' H.REXS,3 6.2
Inquiry

M_ADRS Memory Address I,X'44' H.REXS,3 7.2
Inquiry

M_ADVANCE Advance Record 1,x'33' H.IOCS,7 7.2
Advance File 1,x'34' H.IOCS,8 7.2

M.ALOC Allocate File or I,X'40' H.MONS,21 6.4
Peripheral Device

M.ANYW Wait for Any No-wait I,X'7C' H.REXS,37 6.2
Operation Complete,

(Message Interrupt,
or Break Interrupt

M_ANYWAIT Wait for Any No-wait I,X'7C' H.REXS,37 7.2
Operation Complete,
Message Interrupt,
or Break Interrupt

M_ASSIGN Assign and Allocate 2,X'S2' H.REXS,21 7.2
Resource

M.ASSN Assign and Allocate 2,X'S2' H.REXS,21 6.2
Resource

M.ASYNCH Set Asynchronous l,X'lC' H.REXS,68 6.2
Task Interrupt

M_ASYNCH Set Asynchronous I,X'IC' H.REXS,68 7.2
Task Interrupt

M_AW AITACTION End Action Wait 1,x'ID' H.EXEC,40 7.2

M.BACK Backspace Record 1,x'3S' H.IOCS,9 6.2
Backspace File 1,x'36' H.IOCS,19 6.2

M_BACKSPACE Backspace Record I,X'3S' H.IOCS,9 7.2
Backspace File I,X'36' H.IOCS,l9 7.2

M.BATCH Batch Job Entry 2,X'SS' H.REXS,27 6.2

M_BATCH Batch Job Entry 2,X'SS' H.REXS,27 7.2

(/

MPX-32 Reference B-1

Macro Name Listing
(.'

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M.BBTIM Acquire Current 2,x'50' H.REXS,74 6.2
Date/Time in Byte
Binary Fonnat

M_BBTIM Acquire Current 2,X'50' H.REXS,74 7.2
Date/Time in Byte
Binary Fonnat

M.BORT Abort Specified Task 1,x'56' H.REXS,19 6.2
Abort Self 1,x'57' H.REXS,20 6.2
Abort With Extended 1,x'62' H.REXS,28 6.2
Message

M_BORT Abort Specified I,X'56' H.REXS,19 7.2
Task

Abort Self 1,x'57' H.REXS,20 7.2
Abort With Extended 1,x'62' H.REXS,28 7.2
Message

M.BRK Break/Task l,X'6E' H.REXS,46 6.2
Interrupt Link/Unlink

/-'.

M_BRK Break/Task I,X'6E' H.REXS,46 7.2
Interrupt Link/Unlink "'--- .

M.BRKXIT Exit From Task I,X'70' H.REXS,48 6.2
Interrupt Level

M_BRKXIT Exit From Task N/A N/A 7.2
Interrupt Level

M.BTIM Acquire Current 2,X'50' H.REXS,74 6.2
Date/Time in
Binary Fonnat

M_BTIM Acquire Current 2,X'50' H.REXS,74 7.2
Date/Time in
Binary Fonnat

M.CDJS Submit Job from I,X'6l' H.MONS,27 6.4
Disc File

M_CHANPROGFCB Execute Channel N/A N/A 7.2
Program File
Control Block

M.CLOSER Close Resource 2,X'43' H.REMM,22 6.2

M_CLOSER Close Resource 2,X'43' H.REMM,22 7.2

M.CLSE Close File 1,X'39' H.IOCS,23 6.2

M_CLSE Close File l,X'39' H.IOCS,23 7.2 (;'

8-2 System Services Cross-Reference

('
Macro Name Listi ng

Volume I
Module, Ref. Manual

Macro Description SVC E.P. Section

M.CMD Get Command Line 2,X'61' H.REXS,88 6.2

M_CMD Get Command Line 2,X'61' H.REXS,88 7.2

M.CONABB Convert ASCII 2,X'51' H.REXS,75 6.2
Dateffime to
Byte Binary Fonnat

M_CONABB Convert ASCII 2,X'51 ' H.REXS,75 7.2
Dateffime to
Byte Binary Fonnat

M.CONADB Convert ASCII 1,X'28' H.TSM,7 6.2
Decimal to Binary

M_CONADB Convert ASCII 1,X'28' H.TSM,7 7.2
Decimal to Binary

M.CONAHB Convert ASCII 1,X'29' H.TSM,8 6.2
Hex to Binary

M_CONAHB Convert ASCII 1,X'29' H.TSM,8 7.2
Hex to Binary

(M.CONASB Convert ASCII 2,X'51' H.REXS,75 6.2
Dateffime to
Standard Binary

M_CONASB Convert ASCII 2,X'51' H.REXS,75 7.2
Dateffime to
Standard Binary

M.CONBAD Convert Binary to I,X'2A' H.TSM,9 6.2
ASCII Decimal

M_CONBAD Convert Binary to 1,X'2A' H.TSM,9 7.2
ASCII Decimal

M.CONBAF Convert Binary 2,X'51' H.REXS,75 6.2
Dateffime to
ASCII Fonnat

M_CONBAF Convert Binary 2,X'51' H.REXS,75 7.2
Dateffime to
ASCII Fonnat

M.CONBAH Convert Binary to 1,X'2B' H.TSM,10 6.2
ASCII Hex

M_CONBAH Convert Binary to 1,X'2B' H.TSM,lO 7.2
ASCII Hex

M.CONBBA Convert Byte Binary 2,X'51' H.REXS,75 6.2

('~ Dateffime to ASCII

MPX-32 Reference B-3

Macro Name Listing
(~':
'"/ Volume I

Module, Ref.Manual
Macro Description SYC E.P. Section

M_CONBBA Convert Byte Binary 2,X'SI' H.REXS,7S 7.2
Date/Time to ASCII

M.CONBBY Convert Binary 2,x'SI' H.REXS,7S 6.2
Date/Time to Byte Binary

M_CONBBY Convert Binary 2,x'SI' H.REXS,7S 7.2
Dateffime to Byte Binary

M.CONBYB Convert Byte Binary 2,x'SI' H.REXS,7S 6.2
Date/Time to Binary

M_CONBYB Convert Byte Binary 2,X'SI' H.REXS,7S 7.2
Dateffime to Binary

M.CONN Connect Task to I,X'4B' H.REXS,lO 6.2
Interrupt

M_CONN Connect Task to I,X'4B' H.REXS,IO 7.2
Interrupt

M_CONSTRUCTPATH Reconstruct 2,X'2F' H.YOMM,16 7.2
Pathname

M_CONVERTIIME Convert Time 2,x'SI' H.REXS,7S 7.2 ",
M.CPERM Create Permanent 2,X'20' H.YOMM,1 6.2

File

M.CREATE Create Permanent I,X'7S' H.FISE,12 6.4
File

M_CREATEFCB Create File Control N/A N/A 7.2
Block

M_CREATEP Create Permanent File 2,X'20' H.YOMM,1 7.2

M_CREATET Create Temporary File 2,X'21' H.YOMM,2 7.2

M.CTIM Convert System 2,X'Sl' H.REXS,7S 6.2
Date/Time Format

M_CTIM Convert System 2,X'Sl' H.REXS,7S 7.2
Dateffime Format

M.CWAT System Console Wait I,X'3D' H.lOCS,26 6.2

M_CWAT System Console Wait I,X'3D' H.IOCS,26 7.2

M.DALC Deallocate File I,X'4I' H.MONS,22 6.4
or Peripheral Device

M.DASN Deassign and 2,X'S3' H.REXS,22 6.2
Deallocate Resource

0

8·4 System Services Cross-Reference

(r Macro Name Listing

Volume I
Module, Ref. Manual

Macro Description SVC E.P. Section
--

M.DA1E Date and Time I,X'IS' H.REXS,70 6.2
Inquiry

M_DA1E Date and Time I,X'iS' H.REXS,70 7.2
Inquiry

M_DEASSIGN Deassign and 2,X'S3' H.REXS,22 7.2
Deallocate Resource

M.DEBUG Load and Execute I,X'63' H.REXS,29 6.2
Interactive Debugger

M_DEBUG Load and Execute I,X'63' H.REXS,29 7.2
Interactive Debugger

M.DEFT Change Defaults 2,X'27' H.VOMM,8 6.2

M_DEFT Change Defaults 2,X'27' H.VOMM,8 7.2

M.DELE1E Delete Permanent I,X'77' H.FISE,I4 6.4
File or Non-SYSGEN
Memory Partition

M_DELE1ER Delete Resource 2,X'24' H.VOMM,5 7.2

(M.DELR Delete Resource 2,X'24' H.VOMM,S 6.2

M.DELTSK Delete Task 1,X'5A' H.REXS,31 6.2

M_DELTSK Delete Task 1,X'SA' H.REXS,31 7.2

M.DEVID Get Device Mnemonic 1,X'14' H.REXS,71 6.2
or Type Code

M_DEVID Get Device Mnemonic 1,X'14' H.REXS,71 7.2
or Type Code

M.DFCB Create File Control N/A N/A S.9.l
Block

M.DIR Create Directory 2,X'23' H.VOMM,4 6.2

M_DIR Create Directory 2,X'23' H.VOMM,4 7.2

M.DISCON Disconnect Task l,x'SD' H.REXS,38 6.2
from Interrupt

M_DISCON Disconnect Task 1,X'SD' H.REXS,38 7.2
from Interrupt

M_DISMOUNT Dismount Volume 2,X'4A' H.REMM,19 7.2

M.DLTT Delete Timer Entry 1,X'47' H.REXS,6 6.2

M_DLTT Delete Timer Entry 1,X'47' H.REXS,6 7.2

M.DMOUNT Dismount Volume 2,x'4A' H.REMM,19 6.2

(".

MPX-32 Reference B-5

Macro Name Listing .(
i\ . e-J

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M.DSMI Disable Message 1,X'2E' H.REXS,57 6.2
Task Interrupt

M_DSMI Disable Message 1,X'2E' H.REXS,57 7.2
Task Interrupt

M.DSUB Disable User I,X'12' H.REXS,73 6.2
Break Interrupt

M_DSUB Disable User I,X'12' H.REXS,73 7.2
Break Interrupt

M.DUMP Memory Dump Request I,X'4F' H.REXS,12 6.2

M_DUMP Memory Dump Request I,X'4F' H.REXS,12 7.2

M.EAWAIT End Action Wait I,X'ID' H.EXEC,40 6.2

M.ENMI Enable Message 1,x'2F' H.REXS,58 6.2
Task Interrupt

M_ENMI Enable Message I,X'2F' H.REXS,58 7.2
Task Interrupt

M.ENUB Enable User I,X'13' H.REXS,n 6.2
Break Interrupt

M_ENUB Enable User I,X'13' H.REXS,72 7.2
Break Interrupt

M.ENVRMT Get Task 2,X'5E' H.REXS,85 6.2
Environment

M_ENVRMT Get Task 2,X'5E' H.REXS,85 7.2
Environment

M.EXCL Free Shared Memory I,X'79' H.ALOC,14 6.4

M.EXCLUDE Exclude Memory 2,X'41' H.REMM,14 6.2
Partition

M_EXCLUDE Exclude Shared 2,x'41' H.REMM,14 7.2
Image

M.EXIT Terminate Task I,X'55' H.REXS,18 6.2
Execution

M_EXIT Terminate Task I,X'55' H.REXS,18 7.2
Execution

M.EXTD Extend File 2,X'25' H.VOMM,6 6.2

M_EXTENDFILE Extend File 2,X'25' H.VOMM,6 7.2

M_EXTSTS Exit With Status 2,x'5F' H.REXS,86 7.2

M.FADD Permanent File I,X'43' H.MONS). 6.4 (-
Address Inquiry \ .

~/

8-6 System Services Cross-Reference

(
Macro Name Listing

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M.FD Free Dynamic Extended I,X'6A' H.REMM,9 6.2
Indexed Data Space

M.FE Free Dynamic Task I,X'68' H.REMM,11 6.2
Execution Space

M.FILE Open File l,X'30' H.IOCS,1 6.4

M_FREEMEMBYTES Free Memory in Byte 2,X'4C' H.REMM,29 7.2
Increments

M.FSLR Release I,X'24' H.FISE,25 6.4
Synchronization File Lock

M.FSLS Set Synchronization I,X'23' H.FISE,24 6.4
File Lock

M.FWRD Advance Record l,X'33' H.IOCS,7 6.2
Advance File I,X'34' H.IOCS,8 6.2

M.FXLR Release Exclusive I,X'22' H.FISE,23 6.4
File Lock

M.FXLS Set Exclusive I,X'21' H.FISE,22 6.4

(File Lock

M.GADRL Get Address Limits I,X'65' H.REXS,4I 6.2

M.GADRL2 Get Address Limits 2,X'7B' H.REXS,80 6.2

M.GD Get Dynamic 1,X'69' H.REMM,8 6.2
Extended Data Space

M.GDD Get Dynamic 2,X'7C' H.MEMM,9 6.2
Extended Discontiguous
Data Space

M.GE Get Dynamic Task I,X'67' H.REMM,lO 6.2
Execution Space

M_GETCTX Get User Context 2,X'70' H.EXEC,41 7.2

M.GETDEF Get Terminal Function 2,X'7A' H.TSM,15 6.2
Definition

M_GETDEF Get Terminal Function 2,X'7A' H.TSM,15 7.2
Definition

M_GETMEMBYTES Get Memory in Byte 2,X'4B' H.REMM,28 7.2
Increments

M_GETTlME Get Current Date 2,X'50' H.REXS,74 7.2
and Time

M.GMSGP Get Message 1,X'7A' H.REXS,35 6.2

(Parameters

MPX-32 Reference 8-7

Macro Name Listing
(' .~

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M_GMSGP Get Message I,X'7A' H.REXS,35 7.2
Parameters

M.GRUNP Get Run Parameters I,X'7B' H.REXS,36 6.2

M_GRUNP Get Run Parameters 1,X'7B' H.REXS,36 7.2

M.GTIM Acquire System 2,X'50' H.REXS,74 6.2
Dateffime in
Any Format

M_GTIM Acquire System 2,X'50' H.REXS,74 7.2
Dateffime in
Any Format

M.GTSAD Get TSA Start Address 2,X'7D' H.REXS,91 6.2

M_GTSAD Get TSA Start Address 2,X'7D' H.REXS,91 7.2

M.HOLD Program Hold 1,x'58' H.REXS,25 6.2
Request

M_HOLD Program Hold I,X'58' H.REXS,25 7.2
Request

M.lD Get Task Number I,X'64' H.REXS,32 6.2

M_ID Get Task Number I,X'64' H.REXS,32 7.2

M.INCL Get Shared Memory IX'72' H.ALOC,13 6.4

M.INCLUDE Include Memory 2,X'40' H.REMM,12 6.2
Partition

M_INCLUDE Include Shared 2,X'40' H.REMM,12 7.2
Image

M_INQUIRER Resource Inquiry 2,x'48' H.REMM,27 7.2

M.INQUIRY Resource Inquiry 2,X'48' H.REMM,27 6.2

M.INT Activate Task I,X'6F' H.REXS,47 6.2
Interrupt

M_INT Activate Task I,X'6F' H.REXS,47 7.2
Interrupt

M.IPUBS Set IPU Bias 2,X'5B' H.REXS,82 6.2

M_IPUBS Set IPU Bias 2,X'5B' H.REXS,82 7.2

M_LIMITS Get Base Mode 2,X'5D' H.REXS,84 7.2
Task Address Limits

M.LOC Read Descriptor 2,X'2C' H.VOMM,13 6.2

M.LOCK Set Exclusive 2,X'44' H.REMM,23 6.2
Resource Lock (,/

8-8 System Services Cross-Reference

Macro Name Listing

(
Volume I

Module, Ref.Manual
Macro Description SVC E.P. Section

M_LOCK Set Exclusive 2,X'44' H.REMM,23 7.2
Resource Lock

M.LOG Permanent File Log l,X'73' H.MONS,33 6.4

M.LOGR Log Resource 2,X'29' H.VOMM,lO 6.2
or Directory

M_LOGR Log Resource 2,X'29' H.VOMM,10 7.2
or Directory

M.MEM Create Memory 2,x'22' H.VOMM,3 6.2
Partition

M_MEM Create Memory 2,X'22' H.VOMM,3 7.2
Partition

M.MEMB Get Memory in 2,X'4B' H.REMM,28 6.2
Byte Increments

M.MEMFRE Free Memory in 2,x'4C' H.REMM,29 6.2
Byte Increments

M.MOD Modify Descriptor 2,X'2A' H.VOMM,l1 6.2

(M_MOD Modify Descriptor 2,X'2A' H.VOMM,ll 7.2

M.MODU Modify Descriptor 2,X'3l' H.VOMM,26 6.2
User Area

M_MODU Modify Descriptor 2,X'31' H.VOMM,26 7.2
User Area

M.MOVNT Mount Volume 2,X'49' H.REMM,17 6.2

M_MOVNT Mount Volume 2,X'49' H.REMM,17 7.2

M.MOVE Move Data to User 2,X'62' H.REXS,89 6.2
Address

M_MOVE Move Data to User 2,X'62' H.REXS,89 7.2
Address

M.MYID Get Task Number l,X'64' H.REXS,32 6.2

M_MYID Get Task Number 1,X'64' H.REXS,32 7.2

M.NEWRRS Reformat RRS Entry 2,X'54' H.REXS,76 6.2

M.OLAY Load Overlay Segment 1,X'50' H.REXS,13 6.2
Load and Execute 1,X'51' H.REXS,14 6.2
Overlay

M.OPENR Open Resource 2,X'42' H.REMM,21 6.2

M_OPENR Open Resource 2,x'42' H.REMM,21 7.2

C
M_OPTIONDWORD Task Option 2,X'CO' H.REXS,95 7.2

Doubleword Inquiry

MPX-32 Reference 8-9

Macro Name Listing
(~\

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M_OPTIONWORD Task Option Word 1,x'4C' H.REXS,24 7.2
Inquiry

M.OSREAD Physical Memory 2,X'7E' H.REXS,93 6.2
Read

M_OSREAD Physical Memory 2,x'7E' H.REXS,93 7.2
Read

M.OSWRIT Physical Memory 2,x'AF' H.REXS,94 6.2
Write

M_OSWRIT Physical Memory 2,x'AF' H.REXS,94 7.2
Write

M.PDEV Physical Device 1,x'42' H.MONS,l 6.4
Inquiry

M.PERM Change Temporary l,X'76' H.FISE,13 6.4
File to Permanent

M.PGOD Task Option 2,X'CO' H.REXS,9S 6.2
Doubleword Inquiry

M.PGOW Task Option Word l,x'4C' H.REXS,24 6.2
Inquiry

M.PNAM Reconstruct 2,X'2F' H.VOMM,16 6.2
Pathname

M.PNAMB Convert Pathname 2,X'2E' H.VOMM,lS 6.2
to Pathname Block

M_PNAMB Convert Pathname 2,X'2E' H.VOMM,lS 7.2
to Pathname Block

M.PRIL Change Priority Level l,X'4A' H.REXS,9 6.2

M_PRIL Change Priority Level l,X'4A' H.REXS,9 7.2

M.PRIV Reinstate Privilege 2,X'S?' H.REXS,78 6.2
Mode to Privilege Task

M_PRIVMODE Reinstate Privilege 2,X'S?' H.REXS,78 7.2
Mode to Privifege Task

M.PTSK Parameter Task l,X'SF' H.REXS,40 6.2
Activation

M_PTSK Parameter Task l,x'SF' H.REXS,40 7.2
Activation

M_PUTCTX Put User Context 2,x'71' H.EXEC,42 7.2

0

8-10 System Services Cross-Reference

("
Macro Name Listing

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M.QATIM Acquire Current 2,x'50' H.REXS,74 6.2
Date/fime in
ASCII Format

M_QATIM Acquire Current 2,X'50' H.REXS,74 7.2
Date/fime in
ASCII Format

M.RADDR Get Real Physical I,X'OE' H.REXS,90 6.2
,Address

M_RADDR Get Real Physical I,X'OE' H.REXS,90 7.2
Address

M.RCVR Receive Message I,X'6B' H.REXS,43 6.2
Link. Address

M_RCVR Receive Message 1,X'6B' H.REXS,43 7.2 '

Link Address

M.READ Read Record 1,X'31' H.IOCS,3 6.2

M_READ Read Record 1,X'31' H.IOCS,3 7.2

(M_READD Read Descriptor 2,X'2C' H.VOMM,13 7.2

M.RELP Release Dual- l,X'27' H.IOCS,27 6.2
ported Disc/Set Dual-
channel ACM Mode

M_RELP Release Dual- l,X'27' H.IOCS,27 7.2
ported Disc/Set Dual-
channel ACM Mode

M.RENAM Rename File 2,X'2D' H.VOMM,14 6.2

M_RENAME Rename File 2,X'2D' H.VOMM,14 7.2

M.REPLAC Replace Permanent 2,X'30' H.VOMM,23 6.2
File

M_REPLACE Replace Permanent 2,X'30' H.VOMM,23 7.2
File

M.RESP Reserve Dual- l,X'26' H.IOCS,24 6.2
ported Disc/Set
Single-channel
ACMMode

M_RESP Reserve Dual- l,X'26' H.IOCS,24 7.2
ported Disc/Set
Single-channel
ACMMode

C~' M_REWIND Rewind File 1,X'37' H.IOCS,2 7.2
..

M.REWRIT Rewrite Descriptor 2,X'2B' H.VOMM,12 6.2

MPX-32 Reference 8-11

Macro Name listing
(~
~)

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M_REWRIT Rewrite Descriptor 2,X'2B' H.VOMM,12 7.2

M.REWRTU Rewrite Descriptor 2,X'32' H.VOMM,27 6.2
User Area

M_REWRTU Rewrite Descriptor 2,X'32' H.VOMM,27 7.2
User Area

M.ROPL Reset Option Lower 2,X'78' H.TSM,14 6.2

M_ROPL Reset Option Lower 2,X'78' H.TSM,14 7.2

M.RRES Release Channel 1,X'3B' H.IOCS,13 6.2
Reservation

M_RRES Release Channel I,X'3B' H.IOCS,13 7.2
Reservation

M.RSML Resourcemark Lock 1,X'19' H.REXS,62 6.2

M_RSML Resourcemark Lock 1,X'19' H.REXS,62 7.2

M.RSMU Resourcemark Unlock 1,X'lA' H.REXS,63 6.2

M_RSMU Resourcemark Unlock 1,X'lA' H.REXS,63 7.2

M.RSRV Reserve Channel 1,X'3A' H.IOCS,12 6.2
/~ '\

U
M_RSRV Reserve Channel 1,X'3A' H.IOCS,12 7.2

M.RWND Rewind File 1,X'37' H.IOCS,2 6.2

M_SETERA Set Exception 2,X'79' H.REXS,81 7.2
Return Address

M_SETEXA Set Exception 2,X'5C' H.REXS,83 7.2
Handler

M.SETS Set User Status Word 1,X'48' H.REXS,7 6.2

M_SETS Set User Status Word 1,X'48' H.REXS,7 7.2

M.SETSYNC Set Synchronous 2,X'46' H.REMM,25 6.2
Resource Lock

M_SETSYNC Set Synchronous 2,X'46' H.REMM,25 7.2
Resource Lock

M.SETT Create Timer Entry 1,X'45' H.REXS,4 6.2

M_SETT Create Timer Entry 1,X'45' H.REXS,4 7.2

M.SHARE Share Memory with 1,X'71' H.ALOC,12 6.4
Another Task

M.SMSGR Send Message to 1,X'6C' H.REXS,44 6.2
Specified Task

M_SMSGR Send Message to 1,X'6C' H.REXS,44 7.2 C'i Specified Task

8-12 System Services Cross-Reference

(
Macro Name Listing

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M.SMVLK Unlock and Dequeue I,X'lF' H.ALOC,19 6.4
Shared Memory

M.SOPL Set Option Lower 2,X'77' H.TSM,13 6.2

M_SOPL Set Option Lower 2,X'77' H.TSM,13 7.2

M.SRUNR Send Run Request to 1,X'6D' H.REXS,45 6.2
Specified Task

M_SRUNR Send Run Request to 1,X'6D' H.REXS,45 7.2
Specified Task

M.SUAR Set User Abort 1,X'60' H.REXS,26 6.2
Receiver Address

M_SUAR Set User Abort 1,X'60' H.REXS,26 7.2
Receiver Address

M.SUME Resume Task I,X'53' H.REXS,16 6.2
Execution

M_SUME Resume Task I,X'53' H.REXS,16 7.2
Execution

(M.SURE Suspend/Resume 5,X'OO' N/A 6.2

M_SURE Suspend/Resume 5,X'OO' N/A 7.2

M.SUSP Suspend Task I,X'54' H.REXS,17 6.2
Execution

M_SUSP Suspend Task I,X'54' H.REXS,17 7.2
Execution

M.SYNCH Set Synchronous I,X'IB' H.REXS,67 6.2
Task Interrupt

M_SYNCH Set Synchronous I,X'IB' H.REXS,67 7.2
Task Interrupt

M.TBRKON Trap On-line User's 1,X'5C' H.TSM,6 6.2
Task

M_TBRKON Trap On-line User's 1,X'5C' H.TSM,6 7.2
Task

M.TDAY Time-of-Day Inquiry I,X'4E' H.REXS,ll 6.2

M_TDAY Time-of-Day Inquiry I,X'4E' H.REXS,ll 7.2

M.1EMP Create Temporary 2,X'21' H.VOMM,2 6.2
File

MPX-32 Reference 8-13

Macro Name Listing ('!
" .. J

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M.1EMPER Change Temporary 2,X'28' H.VOMM,9 6.2
File to Permanent File

M_1EMPFILETOPERM Change Temporary 2,X'28' H.VOMM,9 7.2
File to Permanent File

M.TRNC Truncate File 2,X'26' H.VOMM,7 6.2

M_TRUNCA1E Truncate File 2,X'26' H.VOMM,7 7.2

M.TSCAN Scan Terminal Input l,X'SB' H.TSM,2 6.2
Buffer

M_TSCAN Scan Terminal Input l,X'SB' H.TSM,2 7.2
Buffer

M.TSMPC TSM Procedure 2,X'AB' H.TSM,17 6.2
Call

M_TSMPC TSM Procedure 2,X'AB' H.TSM,17 7.2
Call

M.TS1E Arithmetic l,X'4D' H.REXS,23 6.2
Exception Inquiry

M_TS1E Arithmetic l,X'4D' H.REXS,23 7.2
Exception Inquiry

M.TSTS Test User Status l,X'49' H.REXS,8 6.2
Word

M_TSTS Test User Status I,X'49' HREXS,8 7.2
Word

M.TSTT Test Timer Entry l,X'46' H.REXS,S 6.2

M_TSTI Test Timer Entry I,X'46' H.REXS,S 7.2

M.TVRNON Activate Program at l,X'IE' H.REXS,66 6.2
Given Time of Day

M_TVRNON Activate Program at I,X'IE' H.REXS,66 7.2
Given Time of Day

M.TYPE System Console Type l,X'3F' H.IOCS,14 6.2

M_TYPE System Console Type I,X'3F' H.IOCS,l4 7.2

M.VNLOCK Release Exclusive 2,X'4S' H.REMM,24 6.2
Resource Lock

M_VNLOCK Release Exclusive 2,X'45' HREMM,24 7.2
Resource Lock

(~
c· "

8-14 System Services Cross-Reference

(- Macro Name Listing

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

M_UNPRlVMODE Change Task to 2,X'58' H.REXS,79 7.2
Unprivileged Mode

M.UNSYNC Release Synchronous 2,X'47' H.REMM,26 6.2
Resource Lock

M_UNSYNC Release Synchronous 2,X'47' H.REMM,26 7.2
Resource Lock

M.UPRIV Change Task to 2,X'58' H.REXS,79 6.2
Unprivileged Mode

M.UPSP Upspace 1,x'lO' H.IOCS,20 6.2

M_UPSP Upspace I,X'lO' H.IOCS,20 7.2

M.USER User Name I,X'74' H.MONS,34 6.4
Specification

M.VADDR Validate Address 2,X'59' H.REXS,33 6.2
Range

M_VADDR Validate Address 2,X'59' H.REXS,33 7.2

(
Range

M.WAIT Wait I/O 1,x'3C' H.IOCS,25 6.2

M_WAIT Wait I/O I,X'3C' H.IOCS,25 7.2

M.WEOF WriteEOF I,X'38' H.IOCS,5 6.2

M.WRIT Write Record I,X'32' H.IOCS,4 6.2

M_WRlTE Write Record I,X'32' H.IOCS,4 7.2

M_WRITEEOF WriteEOF 1,x'38' H.IOCS,5 7.2

M.xBRKR Exit from Task I,X'70' H.REXS,48 6.2
Interrupt Level

M_XBRKR Exit from Task N/A N/A 7.2
Interrupt Level

M.XIEA No-wait I/O End- 1,x'2C' H.IOCS,34 6.2
action Return

M_XIEA No-wait I/O End- N/A N/A 7.2
action Return

M.XMEA Exit from Message I,X'7E' H.REXS,50 6.2
End-action Routine

M_XMEA Exit from Message N/A N/A 7.2
End-action Routine

('-

MPX-32 Reference 8-15

Macro Name Listing

C'
Volume I

Module, Ref.Manual
Macro Description SVC E.P. Section

M.XMSGR Exit from Message I,X'SE' H.REXS,39 6.2
Receiver

M_XMSGR Exit from Message N/A N/A 7.2
Receiver

M.xREA Exit from Run Request 1,x'7F' H.REXS,SI 6.2
End-action Routine

M_XREA Exit from Run Request N/A N/A 7.2
End-action Routine

M.XRUNR Exit Run Receiver l,X'7D' H.REXS,49 6.2

M_XRUNR Exit Run Receiver N/A N/A 7.2

M.XTIME Task CPU Execution I,X'2D' H.REXS,6S 6.2
Time

M_XTIME Task CPU Execution I,X'2D' H.REXS,65 7.2
Time

N/A Allocate File Space N/A H.VOMM,19 6.3

N/A Allocate Resource N/A H.VOMM,17 6.3 ("
Descriptor \ __ ./

N/A Create Temporary File N/A H.VOMM,24 6.3

N/A Deallocate File Space N/A H.VOMM,2D 6.3

N/A Deallocate Resource N/A H.YOMM,18 6.3
Descriptor

N/A Debug Link Service I,X'66' H.REXS,42. 6.3

"N/A Debug Link Service- 1,x'66' H.REXS,42 7.3
Base Mode

N/A Eject/Purge Routine I,X'DD' H.IOCS,22 6.3

N/A Eject/Purge Routine- I,X'DD' H.IOCS,22 7.3
Base Mode

N/A Erase or Punch Trailer I,X'3E' H.IOCS,21 6.3

N/A Erase or Punch I,X'3E' H.IOCS,21 7.3
Trailer - Base Mode

N/A Execute Channel I,X'2S' H.IOCS,lO 6.3
Program

N/A Execute Channel I,X'2S' H.IOCS,lO 7.3
Program - Base Mode

0

8-16 System Services Cross-Reference

(
Macro Name Listing

Volume I
Module, Ref.Manual

Macro Description SVC E.P. Section

N/A Get Extended 2,X'7F' H.MEMM,14 6.3
Memory Array

N/A Get Extended 2,X'7F' H.MEMM,14 7.3
Memory Array - Base Mode

N/A Read/Write N/A H.VOMM,25 6.3
Authorization File

N/A Release PHD Port 1,X'27' H.IOCS,27 6.3

N/A Release FHD Port - 1,X'27' H.IOCS,27 7.3
Base Mode

N/A Reserve PHD Port 1,X'26' H.IOCS,24 6.3

N/A Reserve FHD Port- 1,X'26' H.IOCS,24 7.3
Base Mode

N/A Reserved for 2,X'56' H.REXS,30 N/A
Interactive Debugger

N/A Reserved for Rapid N/A
File Allocation:

(Zero MDT 2,X'AA' H.MDT,l
LocatelRead MDT Entry 2,X'AB' H.MDT,2
Update/Create MDT Entry 2,X'AC' H.MDT,3
Delete MDT Entry 2,X'AD' H.~T,4

N/A Set Tabs in UDT 1,X'59' H.TSM,5 N/A

N/A TSM Task Detach 1,X'20' H.TSM,3 N/A

(-

MPX-32 Reference 8-17

Alphabetic Listing ,("
\ -'j)

B.2 Alphabetic Listing

Volume I
Module, Ref.Manual

Description Macro SVC E.P. Section

Abort Self M.BORT I,X'S?' H.REXS,20 6.2
M_BORT I,X'S?' H.REXS,20 7.2

Abort Specified M.BORT I,X'S6' H.REXS,19 6.2
Task M_BORT I,X'S6' H.REXS,19 7.2

Abort With Extended M.BORT I,X'62' H.REXS,28 6.2
Message M_BORT l,X'62' H.REXS,28 7.2

Acquire Current M.QATIM 2,x'SO' H.REXS,74 6.2
Daterrime in M_QATIM 2,X'SO' H.REXS,74 7.2
ASCII Fonnat

Acquire Current M.BTIM 2,X'SO' H.REXS,74 6.2
Daterrime in M_BTIM 2,X'SO' H.REXS,74 7.2
Binary Fonnat

Acquire Current M.BBTIM 2,X'SO' H.REXS,74 6.2
Daterrime in M_BBTIM 2,X'SO' H.REXS,74 7.2
Byte Binary Fonnat

Acquire System M.GTIM 2,X'SO' H.REXS,74 6.2
Daterrime in M_GTIM 2,X'SO' H.REXS,74 7.2
Any Fonnat

Activate Program at M.TURNON l,X'IE' H.REXS,66 6.2
Given Time of Day M_TURNON I,X'lE' H.REXS,66 7.2

Activate Task M.ACTV I,X'52' H.REXS,15 6.2
M_ACTV I,X'52' H.REXS,lS 7.2

Activate Task M.INT I,X'6F' H.REXS,47 6.2
Interrupt M_INT I,X'6F' H.REXS,47 7.2

Advance File M.FWRD I,X'34' H.IOCS,8 6.2
M_ADVANCE I,X'34' H.IOCS,8 7.2

Advance Record M.FWRD 1,X'33' H.lOCS,7 6.2
M_ADVANCE 1,X'33' H.IOCS,7 7.2

Allocate File or M.ALOC 1,X'40' H.MONS,21 6.4
Peripheral Device

Allocate File N/A N/A H.VOMM,19 6.3
Space

Allocate Resource N/A N/A H.VOMM,17 6.3
Descriptor

Arithmetic M.TSTE 1,X'4D' H.REXS,23 6.2

(' Exception Inquiry M_TSTE 1,X'4D' H.REXS,23 7.2 ('i
, .. ~/

8-18 System Services Cross-Reference

(-~
Alphabetic Listing

Volume I
Module, Ref.Manual

Description Macro SYC E.P. Section

Assign and Allocate M.ASSN 2,X'52' H.REXS,21 6.2
Resource M_ASSIGN 2,X'52' H.REXS,21 7.2

Backspace File M.BACK I,X'36' H.lOCS,19 6.2
M_BACKSPACE I,X'36' H.lOCS,19 7.2

Backspace Record M.BACK 1,X'35' H.IOCS,9 6.2
M_BACKSPACE 1,X'35' H.lOCS,9 7.2

Batch Job Entry M.BATCH 2,X'55' H.REXS,27 6.2
M_BATCH 2,X'55' H.REXS,27 7.2

BreakJTask M.BRK I,X'6E' H.REXS,46 6.2
Interrupt Link/Unlink: M_BRK 1,X'6E' H.REXS,46 7.2

Change Defaults M.DEFT 2,X'27' H.YOMM,8 6.2
M_DEFT 2,X'27' H.YOMM,8 7.2

Change Priority M.PRIL I,X'4A' H.REXS,9 6.2
Level M_PRIL 1,X'4A' H.REXS,9 7.2

Change Task to M.UPRIY 2,X'58' H.REXS,79 6.2
Unprivileged Mode M_UNPRIYMODE 2,X'58' H.REXS,79 7.2

(Change Temporary M.PERM 1,X'76' H.FISE,13 6.4
File to Permanent

Change Temporary M.TEMPER 2,X'28' H.YOMM,9 6.2
File to M_TEMPFILETOPERM 2,X'28' H.YOMM,9 7.2
Permanent File

Close File M.CLSE 1,X'39' H.IOCS,23 6.2
M_CLSE 1,X'39' H.IOCS,23 7.2

Close Resource M.CLOSER 2,X'43' H.REMM,22 6.2
M_CLOSER 2,X'43' H.REMM,22 7.2

Connect Task to M.CONN 1,X'4B' H.REXS,lO 6.2
Interrupt M_CONN 1,X'4B' H.REXS,lO 7.2

Convert ASCII M.CONABB 2,X'51' H.REXS,75 6.2
DatefTime to M_CONABB 2,X'51' H.REXS,75 7.2
Byte Binary Format

Convert ASCII M.CONASB 2,X'51' H.REXS,75 6.2
Dateffime to M_CONASB 2,X'51' H.REXS,75 7.2
Standard Binary

Convert ASCII M.CONADB 1,X'28' H.TSM,7 6.2
Decimal to Binary M_CONADB 1,X'28' H.TSM,7 7.2

Convert ASCII Hex M.CONAHB I,X'29' H.TSM,8 6.2
to Binary M_CONAHB 1,X'29' H.TSM,8 7.2

(~--

MPX-32 Reference 8-19

Alphabetic Listing
(~)1' \.,

Volume I
__ .:J

Module, Ref.Manual
Description Macro SVC E.P. Section

Convert Binary M.CONBAF 2,X'Sl' H.REXS,7S 6.2
Date/Time to M_CONBAF 2,X'Sl' H.REXS,7S 7.2
ASCII Fonnat

Convert Binary M.CONBBY 2,X'Sl' H.REXS,7S 6.2

Date/Time to M_CONBBY 2,X'Sl' H.REXS,7S 7.2
Byte Binary

Convert Binary to M.CONBAD l,X'2A' H.TSM,9 6.2
ASCII Decimal M_CONBAD l,X'2A' H.TSM,9 7.2

Convert Binary to M.CONBAH l,X'2B' H.TSM,lO 6.2
ASCII Hex M_CONBAH l,X'2B' H.TSM,lO 7.2

Convert Byte M.CONBBA 2,X'Sl' H.REXS,7S 6.2
Binary Date/Time M_CONBBA 2,X'Sl' H.REXS,7S 7.2
to ASCII

Convert Byte M.CONBYB 2,X'Sl' H.REXS,7S 6.2
Binary Date/Time M_CONBYB 2,X'Sl' H.REXS,7S 7.2
to Binary

Convert Pathname M.PNAMB 2,X'2E' H.VOMM,lS 6.2
to Pathname Block M_PNAMB 2,X'2E' H.VOMM,lS 7.2

Convert System M.CTIM 2,X'Sl' H.REXS,7S 6.2
Date/Time Format M_CTIM 2,X'Sl' H.REXS,7S 7.2

Convert Time M_CONVERTTlME 2,X'Sl' H.REXS,7S 7.2

Create Directory M.DIR 2,X'23' H.VOMM,4 6.2
M_DIR 2,X'23' H.VOMM,4 7.2

Create File Control M.DFCB N/A N/A S.9.l
Block

Create File Control M_CREATEFCB N/A N/A 7.2
Block

Create Memory M.MEM 2,X'22' H.VOMM,3 6.2
Partition M_MEM 2,X'22' H.VOMM,3 7.2

Create Pennanent M.CREATE l,X'7S' H.FISE,12 6.4
File

Create Permanent M.CPERM 2,X'20' H.VOMM,l 6.2
File M_CREATEP 2,X'20' H.VOMM,l 7.2

Create Temporary M.TEMP 2,x'21' H.VOMM,2 6.2
File M_CREATET 2,X'2l' H.VOMM,2 7.2

Create Temporary N/A N/A H.VOMM,24 6.3
File

()

8·20 System Services Cross-Reference

(
Alphabetic Listing

Volume I
Module, Ref.Manual

Description Macro SVC E.P. Section

Create Timer Entry M.SETT 1,X'45' H.REXS,4 6.2
M_SETT 1,X'45' H.REXS,4 7.2

Date and Time M.DATE 1,X'15' H.REXS,70 6.2
Inquiry M_DATE 1,X'15' H.REXS,70 7.2

Deallocate File or M.DALC 1,X'41' H.MONS,22 6.4
Peripheral Device

Deallocate File N/A N/A H.VOMM,20 6.3
Space

Deallocate Resource N/A N/A H.VOMM;18 6.3
Descriptor

Deassign and M.DASN 2,X'53' H.REXS,22 6.2
Deallocate Resource M_DEASSIGN 2,X'53' H.REXS,22 7.2

Debug Link Service N/A 1,X'66' H.REXS,42 6.3

Debug Link Service- N/A 1,X'66' H.REXS,42 7.3
Base Mode

(~
Delete Pennanent M.DELETE 1,X'77' H.FISE,14 6.4
File or Non-SYSGEN
Memory Partition

Delete Resource M.DELR 2,X'24' H.VOMM,5 6.2
M_DELETER 2,X'24' H.VOMM,5 7.2

Delete Task M.DELTSK 1,X'5A' H.REXS,31 6.2
M_DELTSK 1,X'5A' H.REXS,31 7.2

Delete Timer Entry M.DLTT 1,X'47' H.REXS,6 6.2
M_DLTT 1,X'47' H.REXS,6 7.2

Disable Message M.DSMI 1,X'2E' H.REXS,57 6.2
Task Interrupt M_DSMI 1,X'2E' H.REXS,57 7.2

Disable User Break M.DSUB 1,X'12' H.REXS,73 6.2
Interrupt M_DSUB 1,X'12' H.REXS,73 7.2

Disconnect Task M.DISCON 1,X'5D' H.REXS,38 6.2
from Interrupt M_DISCON 1,X'5D' H.REXS,38 7.2

Dismount Volume M.DMOUNT 2,X'4A' H.REMM,19 6.2
M_DISMOUNT 2,X'4A' H.REMM,19 7.2

Eject/Purge Routine N/A I,X'OD' H.IOCS,22 6.3

Eject/Purge Routine- N/A 1,X'OD' H.IOCS,22 7.3
Base Mode

Enable Message M.ENMI 1,X'2F' H.REXS,58 6.2

(Task Interrupt M_ENMI 1,X'2F' H.REXS,58 7.2

MPX-32 Reference 8-21

Alphabetic Listing

t i' .. \ 1'.1,' ,

,/

Volume I
Module, Ref.Manual

Description Macro SVC E.P. Section

Enable User Break M.ENUB I,X'13' H.REXS,n 6.2
Interrupt M_ENUB I,X'l3' H.REXS,n 7.2

End Action Wait M.EAWAIT I,X'ID' H.EXEC,40 6.2
M_AWAITACTION 1,x'ID' H.EXEC,40 7.2

Erase or Punch N/A 1,X'3E' H.IOCS,21 6.3
Trailer

Erase or Punch N/A 1,X'3E' H.IOCS,21 7.3
Trailer - Base Mode

Exclude Memory M.EXCLUDE 2,X'41' H.REMM,14 6.2
Partition

Exclude Shared M_EXCLUDE 2,X'41' H.REMM,14 7.2
Image

Execute Channel N/A 1,X'2S' H.IOCS,lO 6.3
Program

Execute Channel N/A l,X'2S' H.IOCS,lO 7.3
Program - Base Mode

Execute Channel M_CHANPROGFCB N/A N/A 7.2
Program File
Control Block

Exit from Message M.xMEA l,X'7E' H.REXS,SO 6.2
End-action Routine M_XMEA N/A N/A 7.2

Exit from Message M.xMSGR l,X'SE' H.REXS,39 6.2
Receiver M_XMSGR N/A N/A 7.2

Exit from Run M.xREA I,X'7F' H.REXS,Sl 6.2
Request End-action M_XREA N/A N/A 7.2
Routine

Exit from Task M.BRKXIT l,X'70' H.REXS,48 6.2
Interrupt Level M - BRKXIT N/A N/A 7.2

M.xBRKR l,X'70' H.REXS,48 6.2
M -XBRKR N/A N/A 7.2

Exit Run Receiver M.XRUNR l,X'7D' H.REXS,49 6.2
M_XRUNR N/A N/A 7.2

Exit With Status M_EXTSTS 2,X'SF' H.REXS,86 7.2

Extend File M.EXTD 2,X'2S' H.VOMM,6 6.2
M_EXTENDFILE 2,X'2S' H.VOMM,6 7.2

Free Dynamic M.FD l,X'6A' H.REMM,9 6.2
Extended Indexed
Data Space (f ",

~,y

8-22 System Services Cross-Reference

(
Alphabetic Listing

Volume I
Module, Ref.Manual

Description Macro SVC E.P. Section

Free Dynamic Task M.FE I,X'68' H.REMM,11 6.2
Execution Space

Free Memory in M.MEMFRE 2,X'4C' H.REMM,29 6.2
Byte Increments M_FREEMEMBYTES 2,X'4C' H.REMM,29 7.2

Free Shared Memory M.EXCL I,X'79' H.ALOC,14 6.4

Get Address Limits M.GADRL 1,x'65' H.REXS,41 6.2

Get Address Limits M.GADRL2 2,X'7B' H.REXS,80 6.2

Get Base Mode M_LIMITS 2,X'5D' H.REXS,84 7.2
Task Address Limits

Get Command Line M.CMD 2,X'61' H.REXS,88 6.2
M_CMD 2,X'61' H.REXS,88 7.2

Get Current Date M_GETTlME 2,X'50' H.REXS,74 7.2
and Time

Get Device Mnemonic M.DEVID I,X'14' H.REXS,71 6.2
or Type Code M_DEVID I,X'14' H.REXS,71 7.2

(
Get Dynamic M.GD 1,x'69' H.REMM,8 6.2
Extended Data Space

Get Dynamic Extended M.GDD 2,X'7C' H.MEMM,9 6.2
Discontiguous Data Space

Get Dynamic Task M.GE I,X'67' H.REMM,lO 6.2
Execution Space

Get Extended N/A 2,X'7F' H.MEMM,14 6.3
Memory Array

Get Extended N/A 2,X'7F' H.MEMM,14 7.3
Memory Array -
-Base Mode

Get Memory in M.MEMB 2,X'4B' H.REMM,28 6.2
Byte Increments M_GETMEMBYTES 2,X'4B' H.REMM,28 7.2

Get Message M.GMSGP I,X'7A' H.REXS,35 6.2
Parameters M_GMSGP 1,X'7A' H.REXS,35 7.2

Get Real M.RADDR I,X'OE' H.REXS,90 6.2
Physical Address M_RADDR I,X'OE' H.REXS,90 7.2

Get Run Parameters M.GRUNP I,X'7B' H.REXS,36 6.2
M_GRUNP 1,X'7B' H.REXS,36 7.2

Get Shared Memory M.INCL 1,X'72' H.ALOC,13 6.4

('

MPX-32 Reference 8-23

Alphabetic Listing (.. _ .. /

Volume I
Module, Ref.Manual

Description Macro SVC E.P. Section

Get Task M.ENVRMT 2,X'5E' H.REXS,85 6.2
Environment M_ENVRMT 2,X'5E' H.REXS,85 7.2

Get Task Number M.ID 1,X'64' H.REXS,32 6.2
M_ID 1,X'64' H.REXS,32 7.2
M.MYID 1,X'64' H.REXS,32 6.2
M_MYID 1,X'64' H.REXS,32 7.2

Get Terminal M.GETDEF 2,X'7A' H.TSM,15 6.2
Function Definition M_GETDEF 2,X'7A' H.TSM,I5 7.2

Get TSA Start M.GTSAD 2,X'7D' H.REXS,91 6.2
Address M_GTSAD 2,X'7D' H.REXS,91 7.2

Get User Context M_GETCTX 2,x'70' H.EXEC,41 7.2

Include Memory M.INCLUDE 2,X'40' H.REMM,12 6.2
Partition

Include Shared M_INCLUDE 2,X'40' H.REMM,12 7.2
Image

Load and Execute M.DEBUG 1,X'63' H.REXS,29 6.2
Interactive Debugger M_DEBUG 1,x'63' H.REXS,29 7.2

Load Overlay Segment M.OLAY I,x'50' H.REXS,13 6.2
Load and Execute l,X'5l' H.REXS,14 6.2
Overlay

Log Resource M.LOGR 2,X'29' H.VOMM,lO 6.2
or Directory M_LOGR 2,X'29' H.VOMM,lO 7.2

Memory Address M.ADRS I,X'44' H.REXS,3 6.2
Inquiry M_ADRS l,X'44' H.REX::;,3 7.2

Memory Dump M.DUMP 1,X'4F' H.REXS,12 6.2
Request M_DUMP I,X'4F' H.REXS,12 7.2

Modify Descriptor M.MOD 2,X'2A' H.VOMM,ll 6.2
M_MOD 2,X'2A' H.VOMM,Il 7.2

Modify Descriptor M.MODU 2,X'31' H.VOMM,26 6.2
User Area M_MODU 2,X'3l' H.VOMM,26 7.2

Mount Volume M.MOUNT 2,X'49' H.REMM,17 6.2
M_MOUNT 2,X'49' H.REMM,17 7.2

Move Data to M.MOVE 2,X'62' H.REXS,89 6.2
User Address M_MOVE 2,x'62' H.REXS,89 7.2

No-wait I/O End- M.xIEA 1,X'2C' H.lOCS,34 6.2
action Return M_XIEA N/A N/A 7.2

Open File M.FILE 1,X'30' H.IOCS,l 6.4 ('
•. /

8-24 System Services Cross-Reference

Alphabetic Listing

(Volume I
Module, Ref.Manual

Description Macro SVC E.P. Section

Open Resource M.OPENR 2,X'42' H.REMM,21 6.2
M_OPENR 2,X'42' H.REMM,21 7.2

Parameter Task M.PTSK 1,X'5F' H.REXS,40 6.2
Activation M_PTSK 1,X'SF' H.REXS,40 7.2

Permanent File M.FADD 1,X'43' H.MONS,2 6.4
Address Inquiry

Permanent File Log M.LOG 1,X'73' H.MONS,33 6.4

Physical Device M.PDEV I,X'42' H.MONS,1 6.4
Inquiry

Physical Memory M.OSREAD 2,X'7E' H.REXS,93 6.2
Read M_OSREAD 2,X'7E' H.REXS,93 7.2

Physical Memory M.OSWRIT 2,X'AF' H.REXS,94 6.2
Write M_OSWRIT 2,X'AF' H.REXS,94 7.2

Program Hold M.HOLD 1,X'58' H.REXS,25 6.2
Request M_HOLD I,X'58' H.REXS,25 7.2

Put User Context M_PUTCTX 2,X'71 , H.EXEC,42 7.2

(Read Descriptor M.LOC 2,x'2C' H.VOMM,13 6.2
M_READD 2,X'2C' H.VOMM,13 7.2

Read Record M.READ I,X'31' H.lOCS,3 6.2
M_READ I,X'3l' H.IOCS,3 7.2

Read/Write N/A N/A H.VOMM,25 6.3
Authorization File

Receive Message M.RCVR I,X'6B' H.REXS,43 6.2
Link Address M_RCVR 1,X'6B' H.REXS,43 7.2

Reconstruct M.PNAM 2,X'2F' H.VOMM,16 6.2
Pathname M_CONSTRUCTPATH 2,X'2F' H.VOMM,16 7.2

Reformat RRS Entry M.NEWRRS 2,X'54' H.REXS,76 6.2

Reinstate Privilege M.PRIV 2,X'S7' H.REXS,78 6.2
Mode to Privilege M_PRIVMODE 2,X'57' H.REXS,78 7.2
Task

Release Channel M.RRES l,X'3B' H.IOCS,13 6.2
Reservation M_RRES 1,X'3B' H.IOCS,13 7.2

Release Dual-ported M.RELP 1,X'27' H.IOCS,27 6.2
Disc/Set Dual-channel M_RELP I,X'27' H.IOCS,27 7.2
ACMMode

Release Exclusive M.FXLR 1,X'22' H.FISE,23 6.4
File Lock

(-' Release Exclusive M.UNLOCK 2,X'4S' H.REMM,24 6.2
Resource Lock M_UNLOCK 2,X'4S' H.REMM,24 7.2

MPX-32 Reference 8-25

Alphabetic Listing

Volume I (;
Module, Ref.Manual

Description Macro SVC E.P. Section

Release PHD Port N/A 1,X'27' H.IOCS,27 6.3

Release PHD Port- N/A 1,x'27' H.IOCS,27 7.3
Base Mode

Release M.FSLR 1,X'24' H.FISE,25 6.4
Synchronization
File Lock

Release Synchronous M.UNSYNC 2,X'47' H.REMM,26 6.2
Resource Lock M_UNSYNC 2,X'47' H.REMM,26 7.2

Rename File M.RENAM 2,X'2D' H.VOMM,14 6.2
M_RENAME 2,x'2D' H.VOMM,14 7.2

Replace M.REPLAC 2,X'30' H.VOMM,23 6.2
Pennanent File M_REPLACE 2,X'30' H.VOMM,23 7.2

Reserve Channel M.RSRV 1,X'3A' H.IOCS,12 6.2
M_RSRV 1,X'3A' H.IOCS,12 7.2

Reserve Dual-ported M.RESP I,X'26' H.IOCS,24 6.2
Disc/Set Single-channel M_RESP I,X'26' H.IOCS,24 7.2
ACMMode

Reserve PHD Port N/A I,X'26' H.IOCS,24 6.3

Reserve PHD Port- N/A 1,X'26' H.IOCS,24 7.3
Base Mode

Reserved for N/A 2,x'56' H.REXS,30 N/A
Interactive
Debugger

Reserved for N/A N/A
Rapid File
Allocation:

Zero MDT 2,X'AA' H.MDT,1
Locate/Read MDT Entry 2,X'AB' H.MDT,2
Update/Create MDT Entry 2,X'AC' H.MDT,3
Delete MDT Entry 2,x'AD' H.MDT,4

Reset Option Lower M.ROPL 2,X'78' H.TSM,14 6.2
M_ROPL 2,X'78' H.TSM,14 7.2

Resource Inquiry M.INQUIRY 2,X'48' H.REMM,27 6.2
M_INQUIRER 2,X'48' H.REMM,27 7.2

Resourcemark Lock M.RSML I,X'19' H.REXS,62 6.2
M_RSML 1,x'19' H.REXS,62 7.2

Resourcemark Unlock M.RSMU I,X'IA' H.REXS,63 6.2
M_RSMU I,X'IA' H.REXS,63 7.2

()
8-26 System Services Cross-Reference

Alphabetic Listing

(Volume I
Module, Ref.Manual

Description Macro SVC E.P. Section

Resume Task M.SUME I,X'53' H.REXS,16 6.2
Execution M_SUME I,X'53' H.REXS,16 7.2

Rewind File M.RWND I,X'37' H.IOCS,2 6.2
M_REWIND I,X'37' H.IOCS,2 7.2

Rewrite Descriptor M.REWRIT 2,X'2B' H.VOMM,12 6.2
M_REWRIT 2,X'2B' H.VOMM,12 7.2

Rewrite Descriptor M.REWRTU 2,X'32' H.VOMM,27 6.2
User Area M_REWRTU 2,X'32' H.VOMM,27 7.2

Scan Terminal M.TSCAN l,X'5B' H.TSM,2 6.2
Input Buffer M_TSCAN I,X'SB' H.TSM,2 7.2

Send Message to M.SMSGR I,X'6C' H.REXS,44 6.2
Specified Task M_SMSGR I,X'6C' H.REXS,44 7.2

Send Run Request M.SRUNR I,X'6D' H.REXS,45 6.2
to Specified Task M_SRUNR I,X'6D' H.REXS,4S 7.2

Set Asynchronous M.ASYNCH I,X'IC' H.REXS,68 6.2
Task Interrupt M_ASYNCH I,X'IC' H.REXS,68 7.2

("".
Set Exception M_SETEXA 2,X'SC' H.REXS,83 7.2
Handler

Set Exception M_SETERA 2,X'79' H.REXS,81 7.2
Return Address

Set Exclusive M.FXLS I,X'21' H.FISE,22 6.4
File Lock

Set Exclusive M.LOCK 2,X'44' H.REMM,23 6.2
Resource Lock M_LOCK 2,X'44' H.REMM,23 7.2

Set IPU Bias M.IPUBS 2,X'SB' H.REXS,82 6.2
M_IPUBS 2,X'SB' H.REXS,82 7.2

Set Option Lower M.SOPL 2,X'77' H.TSM,13 6.2
M_SOPL 2,X'77' H.TSM,13 7.2

Set Synchronization M.FSLS I,X'23' H.FISE,24 6.4
File Lock

Set Synchronous M.SETSYNC 2,X'46' H.REMM,2S 6.2
Resource Lock M_SETSYNC 2,X'46' H.REMM,2S 7.2

Set Synchronous M.SYNCH 1,X'IB' H.REXS,67 6.2
Task Interrupt M_SYNCH 1,X'lB' H.REXS,67 7.2

Set Tabs in UDT N/A I,X'S9' H.TSM,S N/A

MPX-32 Reference 8-27

Alphabetic Listing

Volume I
,(~

Module, Ref.Manual
-_/

Description Macro SVC E.P. Section

Set User Abort M.SUAR I,X'60' H.REXS,26 6.2
Receiver Address M_SUAR l,X'60' H.REXS,26 7.2

Set User Status M.SETS I,X'48' H.REXS,7 6.2
Word M_SETS l,X'48' H.REXS,7 7.2

Share Memory with M.SHARE I,X'71' H.ALOC,12 6.4
Another Task

Submit Job from M.CDJS 1,X'61 ' H.MONS,27 6.4
Disc File

Suspend/Resume M.SURE S,X'OO' N/A 6.2
M_SURE S,x'OO' N/A 7.2

Suspend Task M.SUSP I,X'S4' H.REXS,17 6.2
Execution M_SUSP I,X'S4' H.REXS,17 7.2

System Console Type M.TYPE I,X'3F' H.IOCS,14 6.2
M_TYPE I,X'3F' H.IOCS,14 7.2

System Console Wait M.CWAT I,X'3D' H.IOCS,26 6.2
M_CWAT I,X'3D' H.IOCS,26 7.2

Task CPU Execution M.xTIME 1,x'2D' H.REXS,6S 6.2
Time M_XTIME I,X'2D' H.REXS,6S 7.2

Task Option M.PGOD 2,X'CO' H.REXS,9S 6.2
Doubleword Inquiry M_OPTIONDWORD 2,X'CO' H.REXS,9S 7.2

Task Option Word M.PGOW I,X'4C' H.REXS,24 6.2
Inquiry M_OPTIONWORD I,X'4C' H.REXS,24 7.2

Terminate Task M.EXIT I,X'SS' H.REXS,18 6.2
Execution M_EXIT I,X'SS' H.REXS,18 7.2

Test Timer Entry M.TSTT 1,X'46' H.REXS,S 6.2
M_TSTT I,X'46' H.REXS,S 7.2

Test User Status M.TSTS I,X'49' H.REXS,8 6.2
Word M_TSTS 1,X'49' H.REXS,8 7.2

Time-of-Day Inquiry M.TDAY 1,X'4E' H.REXS,11 6.2
M_TDAY I,X'4E' H.REXS,ll 7.2

Trap On-line User's M.TBRKON I,X'SC' H.TSM,6 6.2
Task M_TBRKON I,X'SC' H.TSM,6 7.2

Truncate File M.TRNC 2,X'26' H.VOMM,7 6.2
M_TRUNCATE 2,x'26' H.VOMM,7 7.2

TSM Procedure M.TSMPC 2,X'AE' H.TSM,17 6.2
Call M_TSMPC 2,X'AE' H.TSM,17 7.2

TSM Task Detach N/A I,X'20' H.TSM,3 N/A

Unlock and Dequeue M.SMULK I,X'IF' H.ALOC,19 6.4

C Shared Memory

8·28 System Services Cross-Reference

Alphabetic Listing
('~~

Volume I
Module, Ref.Manual

Description Macro SVC E.P. Section

Upspace M.UPSP 1,X'1O' H.IOCS,20 6.2
M_UPSP 1,X'1O' H.IOCS,20 7.2

User Name M.USER 1,X'74' H.MONS,34 6.4
Specification

Validate Address M.VADDR 2,x'59' H.REXS,33 6.2
Range M_VADDR 2,X'59' H.REXS,33 7.2

Wait for Any M.ANYW 1,X'7C' H.REXS,37 6.2
No-wait Operation M_ANYWAIT 1,X'7C' H.REXS,37 7.2
Complete, Message
Interrupt, or Break
Interrupt

Wait I/O M.WAIT 1,X'3C' H.IOCS,25 6.2
M_WAIT 1,X'3C' H.IOCS,25 7.2

WriteEOF M.WEOF 1,X'38' H.IOCS,5 6.2
M_WRITEEOF 1,X'38' H.IOCS,5 7.2

Write Record M.WRIT 1,X'32' H.IOCS,4 6.2
M_WRlTE 1,X'32' H.IOCS,4 7.2

(

MPX-32 Reference 8-29

SVC Listing

B.3 SVC Listing C
Volume I

SVC Module, Ref.Manual
I,X'nn' Description E.P. Macro Section

OO-OA Reserved

OB Reserved for
Vector Processor

DC Reserved

00 Eject/PUrge H.lOCS,22 N/A 6.3
Routine

Eject/PUrge H.lOCS,22 N/A 7.3
Routine - Base Mode

OE Get Real H.REXS,90 M.RADDR 6.2
Physical Address M_RADDR 7.2

OF Reserved for N/A N/A
Vector Processor

10 Upspace H.lOCS,20 M.UPSP 6.2
M_UPSP 7.2

11 Reserved

12 Disable User H.REXS,73 M.DSUB 6.2
('"

'~.

Break Interrupt M_DSUB 7.2

13 Enable User H.REXS,72 M.ENUB 6.2
Break Interrupt M_ENUB 7.2

14 Get Device Mnemonic H.REXS,71 M.DEVID 6.2
or Type Code M_DEVID 7.2

15 Date and Time H.REXS,70 M.DATE 6.2
Inquiry M_DATE 7.2

16 ADIMaximum N/A M.ADIMAX N/A
IOCBs

17 ADII/O N/A M.ADIO N/A

18 ADIEAI N/A M.ADffiAI N/A

19 Resourcemark H.REXS,62 M.RSML 6.2
Lock M_RSML 7.2

lA Resourcemark H.REXS,63 M.RSMU 6.2
Unlock M_RSMU 7.2

1B Set Synchronous H.REXS,67 M.SYNCH 6.2
Task Interrupt M_SYNCH 7.2

lC Set Asynchronous H.REXS,68 M.ASYNCH 6.2
Task Interrupt M_ASYNCH 7.2

(" " j,i

./

8-30 System Services Cross-Reference

SVC Listing

(~-
Volume I

SVC Module, Ref.Manual
l,X'nn' Description E.P. Macro Section

10 End Action Wait H.EXEC,40 M.EAWAIT 6.2
M_AWAITACTION 7.2

IE Activate Program H.REXS,66 M.TURNON 6.2
at Given Time of Day M_TURNON 7.2

IF Unlock and H.ALOC,19 M.SMULK 6.4
Dequeue Shared Memory

20 TSM Task Detach H.TSM,3 N/A N/A

21 Set Exclusive H.FISE,22 M.FXLS 6.4
File Lock

22 Release H.FISE,23 M.FXLR 6.4
Exclusive File Lock

23 Set Synchronization H.FISE,24 M.FSLS 6.4
File Lock

24 Release H.FISE,25 M.FSLR 6.4
Synchronization
File Lock

c: 25 Execute Channel H.IOCS,lO N/A 6.3
Program

Execute Channel H.IOCS, 10 N/A 7.3
Program - Base Mode

26 ReservePHD Port H.IOCS,24 N/A 6.3
Reserve PHD Port - N/A 7.3
Base Mode

Reserve Dual- M.RESP 6.2
ported Disc/Set M_RESP 7.2
Single-channel
ACMMode

27 Release FHD Port H.IOCS,27 N/A 6.3
Release FHD Port - N/A 7.3
Base Mode

Release Dual- M.RELP 6.2
ported Disc/Set M_RELP 7.2
Dual-channel
ACMMode

28 Convert ASCII H.TSM,7 M.CONADB 6.2
Decimal to Binary M_CONADB 7.2

29 Convert ASCII H.TSM,8 M.CONAHB 6.2
Hex to Binary M_CONAHB 7.2

<~
MPX-32 Reference 8-31

SVC Listing

Volume I Ci
SVC Module, Ref.Manual
1,X'nn' Description E.P. Macro Section

2A Convert Binary H.TSM,9 M.CONBAD 6.2
to ASCII Decimal M_CONBAD 7.2

2B Convert Binary H.TSM,IO M.CONBAH 6.2
to ASCII Hex M_CONBAH 7.2

2C No-wait I/O End-action H.IOCS,34 M.XIEA 6.2
Return

2D Task CPU Execution H.REXS,65 M.XTIME '6.2
Time M_XTlME 7.2

2E Disable Message H.REXS,57 M.DSMI 6.2
Task Interrupt M_DSMI 7.2

2F Enable Message H.REXS,58 M.ENMI 6.2
Task Interrupt M_ENMI 7.2

30 Open File- H.IOCS,I M.FILE 6.4

31 Read Record H.IOCS,3 M.READ 6.2
M_READ 7.2

32 Write Record H.IOCS,4 M.WRIT 6.2
M_WRITE 7.2

33 Advance Record H.IOCS,7 M.FWRD 6.2
t'/'~"

M_ADVANCE 7.2

34 Advance File H.IOCS,8 M.FWRD 6.2
M_ADVANCE 7.2

35 Backspace Record H.IOCS,9 M.BACK 6.2
M_BACKSPACE 7.2

36 Backspace File H.IOCS,19 M.BACK 6.2
M_BACKSPACE 7.2

37 Rewind File H.lOCS,2 M.RWND 6.2
M_REWIND 7.2

38 Write bOF H.IOCS,5 M.WEOF 6.2
M_WRITEEOF 7.2

39 Close File H.IOCS,23 M.CLSE 6.2
M_CLSE 7.2

3A Reserve Channel H.IOCS,12 M.RSRV 6.2
M_RSRV 7.2

3B Release Channel H.IOCS,13 M.RRES 6.2
Reservation M_RRES 7.2

8-32 System Services Cross-Reference

SVC Listing

C~, Volume I
SVC Module, Ref.Manual
l,X'nn' Description E.P. Macro Section

3C Wait I/O H.IOCS,25 M.WAIT 6.2
M_WAIT 7.2

3D System Console H.IOCS,26 M.CWAT 6.2
Wait M_CWAT 7.2

3E Erase or Punch H.IOCS,21 N/A 6.3
Trailer

Erase or Punch H.IOCS,21 N/A 7.3
Trailer - Base Mode

3F System Console H.IOCS,14 M.TYPE 6.2
Type M_TYPE 7.2

40 Allocate File or H.MONS,21 M.ALOC 6.4
Peripheral Device

41 Deallocate File H.MONS,22 M.DALC 6.4
or Peripheral Device

42 Physical Device H.MONS,l M.PDEV 6.4
Inquiry

43 Permanent File H.MONS,2 M.FADD 6.4

(', Address Inquiry
/" 44 Memory Address H.REXS,3 M.ADRS 6.2

Inquiry M_ADRS 7.2

45 Create Timer H.REXS,4 M.SETT 6.2
Entry M_SETT 7.2

46 Test Timer Entry H.REXS,5 M.TSTT 6.2
M_TSTT 7.2

47 Delete Timer H.REXS,6 M.DLTT 6.2
Entry M_DLTT 7.2

48 Set User Status H.REXS,7 M.SETS 6.2
Word M_SETS 7.2

49 Test User Status H.REXS,8 M.TSTS 6.2
Word M_TSTS 7.2

4A Change Priority H.REXS,9 M.PRIL 6.2
Level M_PRIL 7.2

4B Connect Task to H.REXS,1O M.CONN 6.2
Interrupt M_CONN 7.2

4C Task Option Word H.REXS,24 M.PGOW 6.2
Inquiry M_OPTIONWORD 7.2

C ,~/~

MPX-32 Reference 8-33

SVC Listing

Volume I C: .J

SVC Module, Ref.Manual
1,X'nn' Description E.P. Macro Section

4D Arithmetic H.REXS,23 M.TSTE 6.2
Exception Inquiry M_TSTE 7.2

4E Time-of-Day Inquiry H.REXS,l1 M.TDAY 6.2
M_TDAY 7.2

4F Memory Dump H.REXS, 12 M.DUMP 6.2
Request M_DUMP 7.2

50 Load Overlay Segment H.REXS,13 M.OLAY 6.2

51 Load and Execute H.REXS,14 M.OLAY 6.2
Overlay

52 Activate Task H.REXS,15 M.ACTV 6.2
M_ACTV 7.2

53 Resume Task H.REXS,16 M.SUME 6.2
Execution M_SUME 7.2

54 Suspend Task H.REXS,17 M.SUSP 6.2
Execution M_SUSP 7.2

55 Tenninate Task H.REXS,18 M.EXIT 6.2
Execution M_EXIT 7.2

56 Abort Specified H.REXS,19 M.BORT 6.2
/~"

~J' Task M_BORT 7.2

57 Abort Self H.REXS,20 M.BORT 6.2
M_BORT 7.2

58 Program Hold H.REXS,25 M.HOLD 6.2
Request M_HOLD 7.2

59 Set Tabs in UDT H.TSM,5 N/A N/A

5A Delete Task H.REXS,31 M.DELTSK 6.2
M_DELTSK 7.2

5B Scan Tenninal H.TSM,2 M.TSCAN 6.2
Input Buffer M_TSCAN 7.2

5C Trap On-line H.TSM,6 M.TBRKON 6.2
User's Task M_TBRKON 7.2

5D Disconnect Task H.REXS,38 M.DISCON 6.2
from Interrupt M_DISCON 7.2

5E Exit from H.REXS,39 M.xMSGR 6.2
Message Receiver

5F P-cU'aIlleter Task H.REXS,40 M.PTSK 6.2
Activation M_PTSK 7.2

('\,
.111

8-34 System Services Cross-Reference

\.

SVC Listing

(Volume I
SVC Module, Ref.Manual
I,X'nn' Description E.P. Macro Section

60 Set User Abort H.REXS,26 M.SUAR 6.2
Receiver Address M_SUAR 7.2

61 Submit Job from H.MONS,27 M.CDJS 6.4
Disc File

62 Abort With H.REXS,28 M.BORT 6.2
Extended Message M_BORT 7.2

63 Load and Execute H.REXS,29 M.DEBUG 6.2
Interactive Debugger M_DEBUG 7.2

64 Gel Task Number H.REXS,32 M.ID 6.2
M_ID 7.2
M.MYID 6.2
M_MYID 7.2

65 Get Address H.REXS,41 M.GADRL 6.2 .

Limits

66 Debug Link H.REXS,42 N/A 6.3
Service

Debug Link H.REXS,42 N/A 7.3

(Service - Base Mode

67 Get Dynamic Task H.REMM,10 M.GE 6.2
Execution Space

68 Free Dynamic H.REMM,11 M.FE 6.2
Task Execution Space

69 Get Dynamic H.REMM,8 M.GD 6.2
Extended Data Space

6A Free Dynamic H.REMM,9 M.FD 6.2
Extended Indexed
Data Space

6B Receive Message H.REXS,43 M.RCVR 6.2
Link Address M_RCVR 7.2

6C Send Message to H.REXS,44 M.SMSGR 6.2
Specified Task M_SMSGR 7.2

6D Send Run Request H.REXS,45 M.SRUNR 6.2
to Specified Task M_SRUNR 7.2

6E Break/Task H.REXS,46 M.BRK 6.2
Interrupt M_BRK 7.2
Link/Unlink

6F Activate Task H.REXS,47 M.INT 6.2
Interrupt M_INT 7.2

(

MPX-32 Reference B·35

SVC Listing

Volume I (/
SVC Module, Ref.Manual
1,X'nn' Description E.P. Macro Section

70 Exit from Task H.REXS,48 M.BRKXIT 6.2
Interrupt Level M.xBRKR 6.2

71 Share Memory H.ALOC,12 M.SHARE 6.4
with Another Task

72 Get Shared Memory H.ALOC,13 M.INCL 6.4

73 Permanent File Log H.MONS,33 M.LOO 6.4

74 User Name Specification H.MONS,34 M.USER 6.4

75 Create Permanent File H.FISE,12 M.CREA1E 6.4

76 Change Temporary H.FISE,13 M.PERM 6.4
File to Permanent

77 Delete Permanent File H.FISE,14 M.DELETE 6.4
or Non-SYSGEN
Memory Partition

78 Reserved

79 Free Shared Memory H.ALOC,14 M.EXCL 6.4

7A Get Message Parameters H.REXS,35 M.GMSGP 6.2
M_GMSGP 7.2

/('~

7B Get Run Parameters H.REXS,36 M.GRUNP 6.2
M_GRUNP 7.2

7C Wait for Any H.REXS,37 M.ANYW 6.2
No-wait Operation M_ANYWAIT 7.2
Complete, Message
Interrupt, or Break
Interrupt

7D Exit Run Receiver H.REXS,49 M.xRUNR 6.2

7E Exit from Message H.REXS,50 M.XMEA 6.2
End-action Routine

7F Exit from Run H.REXS,51 M.xREA 6.2
Request End-action
Routine

80-FFF Available for
customer use

B-36 System Services Cross-Reference

SVC Listing

(Volume I
SVC Module, Ref.Manual
2,X'nn' Description E.P. Macro Section

DO-IF Reserved

20 Create Permanent H.VOMM.l M.CPERM 6.2
File M_CREATEP 7.2

21 Create Temporary H.VOMM.2 M.TEMP 6.2
File M_CREATET 7.2

22 Create Memory H.VOMM,3 M.MEM 6.2
Partition M_MEM 7.2

23 Create Directory H.VOMM,4 M.DIR 6.2
M_DIR 7.2

24 Delete Resource H.VOMM,S M.DELR 6.2
M_DELETER 7.2

25 Extend File H.VOMM.6 M.EXTD 6.2
M_EXTENDFlLE 7.2

26 Truncate File H.VOMM.7 M.TRNC 6.2
M_TRVNCATE 7.2

27 Change Defaults H.VOMM.8 M.DEFT 6.2
M_DEFT 7.2

(28 Change Temporary H.VOMM.9 M.TEMPER 6.2
File to Permanent File M_TEMPFlLETOPERM 7.2

29 Log Resource or H.VOMM,lO M.LOGR 6.2
Directory M_LOGR 7.2

2A Modify Descriptor H.VOMM.ll M.MOD 6.2
M_MOD 7.2

2B Rewrite H.VOMM,12 M.REWRIT 6.2
Descriptor M_REWRIT 7.2

2C Read Descriptor H.VOMM.13 M.LOC 6.2
M_READD 7.2

2D Rename File H.VOMM.14 M.RENAM 6.2
M_RENAME 7.2

2E Convert Pathname H.VOMM,IS M.PNAMB 6.2
to Pathname Block M_PNAMB 7.2

2F Reconstruct H.VOMM.16 M.PNAM 6.2
Pathname M_CONSTRUCTPATH 7.2

30 Replace H.VOMM,23 M.REPLAC 6.2
Permanent File M_REPLACE 7.2

31 Modify Descriptor H.VOMM.26 M.MODU 6.2
User Area M_MODU 7.2

(~/

MPX·32 Reference 8·37

SVC Listing

Volume I C
SVC Module, Ref.Manual
2,X'nn' Description E.P. Macro Section

32 Rewrite H.VOMM,27 M.REWRTU 6.2
Descriptor User Area M_REWRTU 7.2

33 DBX Interface to N/A N/A N/A
H.P1RAC

34 Reserved
forH.P1RAC

35-3F Reserved

40 Include Memory H.REMM,12 M.INCLUDE 6.2
Partition

Include Shared M_INCLUDE 7.2
Image

41 Exclude Memory H.REMM,14 M.EXCLUDE 6.2
Partition

Exclude Shared M_EXCLUDE 7.2
Image

42 Open Resource H.REMM,21 M.OPENR 6.2
M_OPENR 7.2

43 Close Resource H.REMM,22 M.CLOSER 6.2
M_CLOSER 7.2

44 Set Exclusive H.REMM,23 M.LOCK 6.2
Resource Lock M_LOCK 7.2

45 Release Exclusive H.REMM,24 M.UNLOCK 6.2
Resource Lock M_UNLOCK 7.2

46 Set Synchronous H.REMM,25 M.SETSYNC 6.2
Resource Lock M_SETSYNC 7.2

47 Release H.REMM,26 M.UNSYNC 6.2
Synchronous M_UNSYNC 7.2
Resource Lock

48 Resource Inquiry H.REMM,27 M.INQUIRY 6.2
M_INQUIRER 7.2

49 Mount Volume H.REMM,17 M.MOUNT 6.2
M_MOUNT 7.2

4A Dismount Volume H.REMM,19 M.DMOUNT 6.2
M_DISMOUNT 7.2

4B Get Memory in H.REMM,28 M.MEMB 6.2
Byte Increments M_GETMEMBYTES 7.2

0
8·38 System Services Cross-Reference

SVC Listing

("
Volume I

SVC Module, Ref.Manual
2,X'nn' Description E.P. Macro Section

4C Free Memory in H.REMM,29 M.MEMFRE 6.2
Byte Increments M_FREEMEMBYTES 7.2

4D-4E Reserved

4F Reserved

50 Acquire Current H.REXS,74 M.QATIM 6.2
Dateffime in M_QATIM 7.2
ASCII Format

Acquire Current H.REXS,74 M.BTIM 6.2
Dateffime in M_BTIM 7.2
Binary Format

Acquire Current H.REXS,74 M.BBTIM 6.2
Dateffime in M_BBTIM 7.2
Byte Binary Format

Acquire System H.REXS,74 M.GTIM 6.2
Dateffime in M_GTIM 7.2
Any Format

Get Current H.REXS,74 M_GETTIME 7.2
Date and Time

(51 Convert ASCII H.REXS,7S M.CONABB 6.2
Dateffime to M_CONABB 7.2
Byte Binary Format

Convert ASCII H.REXS,75 M.CONASB 6.2
Dateffime to M_CONASB 7.2
Standard Binary

Convert Binary H.REXS,75 M.CONBAF 6.2
Dateffime to M_CONBAF 7.2
ASCII Format

Convert Binary H.REXS,7S M.CONBBY 6.2
Dateffime to M_CONBBY 7.2
Byte Binary

Convert Byte H.REXS,7S M.CONBBA 6.2
Binary Dateffime M_CONBBA 7.2
to ASCII

Convert Byte H.REXS,7S M.CONBYB 6.2
Binary Dateffime M_CONBYB 7.2
to Binary

Convert System H.REXS,75 M.CTIM 6.2
Dateffime Format M_CTIM 7.2

Convert Time H.REXS,7S M_CONVERTTIME 7.2

52 Assign and H.REXS,21 M.ASSN 6.2
Allocate Resource M_ASSIGN 7.2

(

MPX-32 Reference 8-39

SVC Listing

Co Volume I
~? SVC Module, Ref. Manual

2,X'nn' Description E.P. Macro Section

53 Deassign and H.REXS,22 M.DASN 6.2
Deallocate Resource M_DEASSIGN 7.2

54 Reformat RRS H.REXS,76 M.NEWRRS 6.2
Entry

55 Batch Job Entry H.REXS,27 M.BATCH 6.2
M_BATCH 7.2

56 Reserved for H.REXS,30 N/A N/A
Intemctive Debugger

57 Reinstate H.REXS,78 M.PRIV 6.2
Privilege Mode M_PRIVMODE 7.2
to Privilege Task

58 Change Task to H.REXS,79 M.UPRIV 6.2
Unprivileged Mode M_UNPRIVMODE 7.2

59 Validate Address H.REXS,33 M.VADDR 6.2
Range M_VADDR 7.2

5A Reserved

5B Set IPU Bias H.REXS,82 M.IPUBS 6.2
M_IPUBS 7.2 ('---\

5C Set Exception H.REXS,83 M_SElEXA 7.2 \'-.j

Handler

5D Get Base Mode H.REXS,84 M_LIMITS 7.2
Task Address Limits

5E Get Task H.REXS,85 M.ENVRMT 6.2
Environment M_ENVRMT 7.2

5F Exit With Status H.REXS,86 M_EXTSTS 7.2

60 Reserved

61 Get Command Line H.REXS,88 M.CMD 6.2
M_CMD 7.2

62 Move Data to H.REXS,89 M.MOVE 6.2
User Address M_MOVE 7.2

63-6F Reserved

70 Get User Context H.EXEC,41 M_GETCTX 7.2

71 Put User Context H.EXEC,42 M_PUTCTX 7.2

72-74 Reserved for Symbolic
DebuggerIX32

75 -Reserved for MPX-32

' : 0
8-40 System Services Cross-Reference

SVC Listing

(" Volume I
SVC Module, Ref.Manual
2,X'nn' Description E.P. Macro Section

76 Allocate Shadow Memory H.SHAD N/A N/A

77 Set Option Lower H.TSM,13 M.SOPL 6.2
M_SOPL 7.2

78 Reset Option Lower H.TSM,14 M.ROPL 6.2
M_ROPL 7.2

79 Set Exception H.REXS,81 M_SETERA 7.2
Return Address

7A Get Terminal H.TSM,15 M.GETDEF 6.2
Function Definition M_GETDEF 7.2

7B Get Address Limits H.REXS,80 M.GADRL2 6.2

7C Get Dynamic H.MEMM,9 M.GDD 6.2
Extended Discontiguous
Data Space

7D Get TSA Start H.REXS,91 M.GTSAD 6.2
Address M_GTSAD 7.2

7E Physical Memory Read H.REXS,93 M.OSREAD 6.2
M_OSREAD 7.2

(- 7F Get Extended H.MEMM,14 N/A 6.3
Memory Array

Get Extended H.MEMM,14 N/A 7.3
Memory Array -
Base Mode

80-9F Reserved for ACX-32

AO-A3 Reserved for Swapper

A4-A9 Reserved for Ada

AA-AD Reserved for Rapid N/A N/A
File Allocation:
Zero MDT H.MDT,l
Locate/Read MDT Entry H.MDT,2
Update/Create MDT H.MDT,3
Entry
Delete MDT Entry H.MDT,4

AE TSM Procedure Call H.TSM,17 M.TSMPC 6.2
M_TSMPC 7.2

AF Physical Memory Write H.REXS,94 M.OSWRIT 6.2
M_OSWRIT 7.2

BO-BE Reserved for RMSS

C
BF Reserved

MPX-32 Reference 8-41

SVC Listing

Volume I (~;
SVC Module, Ref.Manual
2,X'nn' Description E.P. Macro Section

CO Task Option H.REXS,95 M.PGOD 6.2
Doubleword Inquiry M_OPTIONDWORD 7.2

CI-C7 Reserved

N/A Allocate File H.VOMM,19 N/A 6.3
Space

N/A Allocate H.VOMM,17 N/A 6.3
Resource Descriptor

N/A Create File N/A M.DFCB 5.9.1
Control Block N/A M_CREATEFCB 7.2

N/A Create Temporary H.VOMM,24 N/A 6.3
File

N/A Deallocate File H.VOMM,20 N/A 6.3
Space

N/A Deallocate H.VOMM,18 N/A 6.3
Resource Descriptor

N/A Execute Channel N/A M_CHANPROGFCB 7.2
Program File
Control Block

N/A Read/Write H.VOMM,25 N/A 6.3
/'

Authorization File

Volume I
SVC Module, Ref.Manual
5,X'nn' Description E.P. Macro Section

00 Suspend/Resume N/A M.SURE 6.2
M_SURE 7.2

8-42 System SeN ices Cross-Reference

(

c MPX-32 Abort and Crash Codes

C.1 AC - Accounting

ACOl INSUFFICIENT SLO SPACE FOR ACCOUNTING LISTING

C.2 AD - Address Specification Trap Handler (H.lPOC)

ADOl

AD02

AD03

ADDRESS SPECIFICATION ERROR OCCURRED WITHIN THE
OPERATING SYSTEM

ADDRESS SPECIFICATION ERROR OCCURRED WITHIN THE
CURRENT TASK

TRAP OCCURRED WHILE NO TASKS WERE IN ACTIVE STATE

AD04 TRAP OCCURRED WITHIN ANOTHER INTERRUPT TRAP ROUTINE

C.3 AL - Allocator (H.ALOC) (Compatibility Mode Only)

ALOI-AL06 Reserved

AL07 THE COMBINED FILE ASSIGNMENTS FOR A TASK EXCEEDS
NUMBER SPECIFIED. THE CATALOGED ASSIGNMENTS ARE
COMBINED WITH THOSE DEFINED BY $ASSIGN STATEMENTS.
SEE CATALOGER FILES DIRECTIVE AND RECATALOG IF
NEEDED.

AN ASSIGNED PERMANENT FILE IS NONEXISTENT AL08

AL09 AN ASSIGNED DEVICE IS NOT CONFIGURED IN THE SYSTEM.
AN ASSIGNED DEVICE IS OFF-LINE.

ALIO-ALII Reserved

ALl2 UNABLE TO LOAD PROGRAM BECAUSE OF I/O ERROR OR
ADDRESSING INCONSISTENCIES IN LOAD MODULE PREAMBLE

ALl3 AN UNRECOVERABLE I/O ERROR HAS OCCURRED DURING THE
READ OF THE TASK PREAMBLE INTO THE TSA

AL14 Reserved

AL15 AN ASSIGNED DEVICE TYPE IS NOT CONFIGURED IN THE
SYSTEM

AL16 A RESIDENT REQUEST HAS BEEN ISSUED FOR A TASK
REQUIRING AN SLO, SBO, SGO OR SYC FILE. RESIDENT
TASKS CANNOT USE SYSTEM FILES.

ALI7-1\T,18 Reserved

MPX-32 Reference C-1

AL - Allocator (H.ALOC) (Compatibility Mode Only)

C-2

AL19

AL20

AL21

AL22

AL23

AL24

AL25

AL26

AL27

AL28

AL29

AL30

AL31

AL32

AL33

AL34

AL35

A FILE CODE TO FILE CODE ASSIGNMENT (ASSIGN4) HAS
BEEN MADE TO AN UNDEFINED FILE CODE. A FILE CODE
MUST BE DEFINED BEFORE A SECOND FILE CODE CAN BE
EQUATED BY AN ASSIGN4.

USER ATTEMPTED DEALLOCATION OF TSA

DESTROYED TASK MIDL WAS DETECTED WHILE ATTEMPTING TO
ALLOCATE DYNAMIC EXECUTION SPACE

A SOFTWARE CHECKSUM ERROR HAS OCCURRED DURING TASK
LOADING

AN INVALID USER NAME IS CATALOGED WITH THE TASK. THE
USER NAME IS NOT CONTAINED IN THE M.KEY FILE OR A
VALID KEY IS NOT SPECIFIED.

ACCESS TO AN ASSIGNED PERMANENT FILE IS BY PASSWORD
ONLY, AND A VALID PASSWORD WAS NOT INCLUDED ON THE
CATALOGED ASSIGNMENT OR JOB CONTROL STATEMENT
ASSIGNMENT

UNDEFINED RESOURCE REQUIREMENT SUMMARY (RRS) TYPE
(INTERNAL FORMAT OF AN ASSIGNMENT STATEMENT IS

WRONG)

THE TASK HAS REQUESTED MORE BLOCKING BUFFERS THAN
WERE SPECIFIED DURING CATALOG. SEE CATALOGER BUFFER
DIRECTIVE AND RECATALOG IF NEEDED.

THERE ARE NO FREE ENTRIES IN SHARED MEMORY TABLE FOR
GLOBAL, DATAPOOL, CSECT, OR OTHER SHARED AREAS

TASK IS ATTEMPTING TO SHARE AN UNDEFINED GLOBAL OR
DATAPOOL MEMORY PARTITION

TASK IS ATTEMPTING TO EXCLUDE UNDEFINED MEMORY
PARTITION

THE REQUESTED DEVICE IS ALREADY ASSIGNED TO THE
REQUESTING TASK VIA ANOTHER FILE CODE. USE ASSIGN4
OR DEALLOCATE BEFORE REALLOCATING.

LOGICAL FILE CODE ALREADY ALLOCATED BY CALLER (E.G.,
A CARD READER MAY BE ASSIGNED TO LFC 'IN' AND A
MAGNETIC TAPE CANNOT BE ASSIGNED TO THE SAME FILE
CODE). USE ASSIGN4 OR DEALLOCATE BEFORE
REALLOCATING.

DYNAMIC COMMON BLOCK MAY NOT BE ASSIGNED VIA ASSIGNl
DIRECTIVE

SHARED MEMORY DEFINITION CONFLICTS WITH CALLER'S
ADDRESS SPACE

SHARED MEMORY PARTITION NOT DEFINED IN DIRECTORY

ATTEMPT TO SHARE A DIRECTORY ENTRY THAT IS NOT A
MEMORY PARTITION

MPX·32 Abort and Crash Codes

()

(AL36

AL37

AL38

AL39

AL40

AL41

AL42

AL43

AL44

AL45

AL46

('~ AL47

AL48

AL49

AL50

AL51

AL52

AL53

AL54

AL55

MPX-32 Reference

AL - Allocator (H.ALOC) (Compatibility Mode Only)

INVALID PASSWORD SPECIFIED FOR SHARED MEMORY
PARTITION

ATTEMPT TO EXCLUDE UNDEFINED SHARED MEMORY PARTITION

ATTEMPT TO ACTIVATE A PRIVILEGED TASK BY
UNAUTHORIZED OWNER

SHARED MEMORY ENTRY NOT FOUND

PARTITION DEFINITION NOT FOUND IN DIRECTORY

DIRECTORY DEFINITION NOT A DYNAMIC PARTITION

INVALID PASSWORD FOR A MEMORY PARTITION

TASK HAS ATTEMPTED TO ALLOCATE AN UNSHARED RESOURCE
THAT WAS NOT AVAILABLE DURING TASK ACTIVATION IN A
MEMORY-ONLY ENVIRONMENT

UNABLE TO RESUME 'SYSBUILD' TASK DURING INITIAL TASK
ACTIVATION IN A MEMORY-ONLY ENVIRONMENT

UNABLE TO DEALLOCATE INPUT DEVICE AFTER DYNAMIC TASK
ACTIVATION IN A MEMORY-ONLY ENVIRONMENT

TASK HAS ATTEMPTED TO SHARE MEMORY VIA A DYNAMIC
MEMORY PARTITION IN A MEMORY-ONLY ENVIRONMENT

DYNAMIC MEMORY PARTITIONS CANNOT BE GREATER THAN 1
MEGABYTE

THE USER HAS ATTEMPTED TO EXCLUDE A SHARED PARTITION
WHOSE ASSOCIATED MAP BLOCKS ARE NOT DESIGNATED AS
BEING SHARED IN THE TASK'S TSA

THE TASK'S DSECT SPACE REQUIREMENTS OVERLAP THE
TASK'S TSA SPACE REQUIREMENTS

THE TASK'S DSECT SPACE REQUIREMENTS OVERLAP THE
TASK'S CSECT SPACE REQUIREMENTS, OR IF NO CSECT,
LOAD MODULE IS TOO LARGE TO FIT IN USER'S ADDRESS
SPACE

DESTROYED TASK MIDL DETECTED WHILE ATTEMPTING TO
ALLOCATE SYSTEM BUFFER SPACE

AN ERROR CONDITION PERTAINING TO FILE SYSTEM
STRUCTURES HAS OCCURRED. THIS ERROR IS NOT A
FUNCTION OF THE COMPATIBILITY INTERFACE.

DESTROYED TASK MIDL WAS DETECTED WHILE ATTEMPTING TO
ALLOCATE EXTENDED INDEXED DATA SPACE

INVALID COMPATIBLE RRS TYPE

ACCESS MODE IS NOT ALLOWED

C-3

AT - ANSI Labeled Tapes

C.4 AT - ANSI Labeled Tapes

ATOl INCORRECT OR NO RUN PARAMETERS RECEIVED

AT02 INCORRECT STATUS RETURNED FROM J.ATAPE RUN REQUEST

AT03 AN ERROR OCCURRED

AT04 I/O ERROR OCCURRED ON TAPE

C.s AU - Auto-Start Trap Processor

AUOl TRAP OCCURRED ON AUTO-START

C.6 BT - Block Mode Timeout Trap

BTOl BLOCK MODE TIMEOUT TRAP

C.7 CM - Call Monitor Interrupt Processor (H.IP27 and H.IPOA)

CMOl

CM02

CM03

CM04

CM05

C.S CP-Cache

CPOl

CP02

CP03

CP04

C-4

CALL MONITOR INTERRUPT PROCESSOR CANNOT LOCATE THE
'CALM' INSTRUCTION

EXPECTED 'CALM' INSTRUCTION DOES NOT HAVE CALM
(X'30') OPCODE

INVALID ' CALM' NUMBER

'CALM' NUMBER TOO LOW (OUT OF BOUNDS)

'CALM' NUMBER TOO BIG (OUT OF BOUNDS)

CACHE PARITY ERROR OCCURRED WITHIN THE OPERATING
SYSTEM

CACHE PARITY ERROR OCCURRED IN TASK BODY

TRAP OCCURRED WHILE NO TASKS WERE IN ACTIVE STATE

TRAP OCCURRED IN ANOTHER INTERRUPT TRAP ROUTINE

MPX-32 Abort and Crash Codes

("

("

,"

EX - Exit! Abort

c.g EX - Exit! Abort

EXOl AN ABORT HAS OCCURRED IN THE TASK EXIT SEQUENCE

EX02 AN ABORT HAS OCCURRED DURING THE TASK ABORT SEQUENCE
AND HAS BEEN CHANGED TO A DELETE (KILL) TASK
SEQUENCE

EX03 USER ATTEMPTED TO GO TO AN ANY WAIT STATE FROM AN
END-ACTION ROUTINE

C.10 FS - File System (H.MONS)(Compatibility Mode Only)

FSOl

FS02

FS03

FS04

FS05

FS06

FS07

UNRECOVERABLE I/O ERROR TO THE DIRECTORY

UNRECOVERABLE I/O ERROR TO F!LE SPACE ALLOCATION MAP

ATTEMPT TO ADD A NEW FILE, BUT THE DIRECTORY IS FULL

A DISC ALLOCATION MAP CHECKSUM ERROR WAS DETECTED

ATTEMPT TO ALLOCATE DISC SPACE THAT IS ALREADY
ALLOCATED

ATTEMPT TO DEALLOCATE DISC SPACE THAT IS NOT
ALLOCATED

USER HAS CALLED AN ENTRY POINT IN H.FISE THAT NO
LONGER EXISTS

C.11 HE - Online Help Facility

HEOl ABNORMAL TERMINATION WHILE TRANSLATING HELP FILES
(HELPT)

C.12 HT - Halt Trap Processor (H.lPHT)

HTOl AN ATTEMPT WAS MADE TO EXECUTE A HALT INSTRUCTION IN
USER'S PROGRAM

HT02 AN ATTEMPT.WAS MADE TO EXECUTE A HALT INSTRUCTION IN
AN INTERRUPT TRAP ROUTINE

HT03 AN ATTEMPT WAS MADE TO EXECUTE A HALT INSTRUCTION
WHEN NO TASKS WERE IN AN ACTIVE STATE

HTO 4 Reserved

HT05 AN ATTEMPT WAS MADE TO EXECUTE A HALT INSTRUCTION
WHEN USER WAS UNMAPPED

MPX-32 Reference

HT - Halt Trap Processor (H.lPHT)

C.13 10 - Input/Output Control Supervisor (HJOCS)

C-6

1001

1002

1003

Reserved

AN UNPRIVILEGED TASK IS ATTEMPTING TO READ OR WRITE
DATA INTO AN UNMAPPED ADDRESS

AN UNPRIVILEGED TASK IS ATTEMPTING TO READ DATA INTO
PROTECTED MEMORY

1004-1005 Reserved

1006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED
FILE ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS
IMPROPERLY BLOCKED, (2) BLOCKING BUFFER IS
DESTROYED, OR (3) TRANSFER ERROR DURING FILE INPUT.

1007 THE TASK HAS ATTEMPTED TO PERFORM AN OPERATION WHICH
IS NOT VALID FOR THE DEVICE TO WHICH THE USER'S FILE
IS ASSIGNED(E.G., A READ OPERATION SPECIFIED FOR A
FILE ASSIGNED TO THE LINE PRINTER) .

1008 DEVICE ASSIGNMENT IS REQUIRED FOR AN UNPRIVILEGED
TASK TO USE THIS SERVICE

1009 ILLEGAL OPERATION ON THE SYC FILE

1010-1014 Reserved

1015 A TASK HAS REQUESTED A TYPE OPERATION AND THE TYPE
CONTROL PARAMETER BLOCK(TCPB) SPECIFIED INDICATES
THAT AN OPERATION ASSOCIATED WITH THAT TCPB IS
ALREADY IN PROGRESS

1016 INVALID BLOCKING BUFFER CONTROL CELL(S) ENCOUNTERED
DURING WRITE OF BLOCKED FILE. THIS ERROR IS USUALLY
CAUSED BY A USER SPECIFIED BLOCKING BUFFER THAT HAS
BEEN DESTROYED.

1017

1018

1019

1020

1021

1022

1023

OPEN ATTEMPTED ON A FILE AND FPT HAS NO MATCHING
FILE CODE. PROBABLE CAUSE: (1) BAD OR MISSING RRS IN
PREAMBLE (2) LFC IN FCB HAS BEEN DESTROYED.

Reserved

AN ERROR HAS OCCURRED IN THE REMM CLOSE PROCEDURE

AN ERROR HAS OCCURRED IN THE REMM OPEN PROCEDURE

ICCS HAS ENCOUNTERED AN UNRECOVERABLE I/O ERROR IN
ATTEMPTING TO PROCESS AN I/O REQUEST ON BEHALF OF A
TASK

AN ILLEGAL IOCS ENTRY POINT HAS BEEN ENTERED BY A
TASK

A H.VOMM DENIAL HAS OCCURRED IN READING THE RESOURCE
DESCRIPTOR TO GET MORE SEGMENT DEFINITIONS

MPX-32 Abort and Crash Codes

c

(.

C,,'
/

10 - Input/Output Control Supervisor (H.lOCS)

1024 ILLEGAL ADDRESS, TRANSFER COUNT OR TRANSFER TYPE
(I.E., IMPROPER BOUNDING FOR DATA TYPE) SPECIFIED IN
THE FCB

1025-1027 Reserved

1028 ILLEGAL OPERATION ATTEMPTED ON AN OUTPUT ACTIVE FILE
OR DEVICE

1029

1030

1031

Reserved

ILLEGAL OR UNEXPECTED VOLUME NUMBER OR REEL 10
ENCOUNTERED ON MAGNETIC TAPE

Reserved

1032 CALLING TASK HAS ATTEMPTED TO PERFORM A SECOND READ
ON A '$' STATEMENT THROUGH THE SYC FILE

1033

1034

1035

READ WITH BYTE GRANULARITY REQUEST MADE WITH
NEGATIVE BYTE OFFSET

READ WITH BYTE GRANULARITY REQUEST MADE WITHOUT
SETTING RANDOM ACCESS BIT IN FCB

READ WITH BYTE GRANULARITY REQUESTS ARE VALID FOR
UNBLOCKED FILES ONLY

1036-1037 Reserved

1038 WRITE ATTEMPTED ON UNIT OPENED IN READ-ONLY MODE. A
READ-WRITE OPEN WILL BE FORCED TO READ-ONLY IF TASK
HAS ONLY READ ACCESS TO UNIT.

1039 Reserved

1040 INVALID TRANSFER COUNT. TRANSFER COUNT TOO LARGE
FOR TRANSFER TYPE, TRANSFER COUNT NOT AN EVEN
MULTIPLE OF TRANSFER TYPE, OR DATA ADDRESS NOT
BOUNDED FOR TRANSFER TYPE.

1041 BLOCKING ERROR DURING NON-DEVICE ACCESS

1042 BLOCKED DATA MANAGEMENT MODULE (H.BKDM) IS NOT
CONFIGURED IN THE SYSTEM

1043 INPUT/OUTPUT CONTROL LIST (IOCL) OR DATA ADDRESS NOT
IN CONTIGUOUS 'E' MEMORY (GPMC DEVICES ONLY)

1044 NON-DEVICE ACCESS I/O ERROR. THIS ERROR MAY BE THE
RESULT OF CHANNEL/CONTROLLER INITIALIZATION FAILURE.

1045 MULTIVOLUME MAGNETIC TAPE MODULE (H.MVMT) IS NOT
CONFIGURED IN THE SYSTEM

1046 Reserved

1047

MPX·32 Reference

CLASS 'E' DEVICE TCW IS NOT IN CLASS 'E' MEMORY.
THIS TYPE OF ERROR INDICATES A MAP FAILURE.

C-7

10 - Input/Output Control Supervisor (H.IOCS)

c-s

1048-1049 Reserved

1050 AN UNPRIVILEGED USER ATTEMPTED TO EXECUTE A PHYSICAL
CHANNEL PROGRAM

1051 A 'TESTSTAR' COMMAND WAS USED IN A LOGICAL CHANNEL
PROGRAM

1052 A LOGICAL CHANNEL WAS TOO LARGE TO BE MOVED TO
MEMORY POOL

1053 A 'TIC' COMMAND FOLLOWS A ' TIC' COMMAND IN A LOGICAL
CHANNEL PROGRAM

1054 A 'TIC' COMMAND ATTEMPTED TO TRANSFER TO AN ADDRESS
WHICH IS NOT WORD BOUNDED

1055 ILLEGAL ADDRESS IN LOGICAL IOCL. ADDRESS IS NOT IN
USER'S LOGICAL ADDRESS SPACE.

1056 A READ-BACKWARD COMMAND WAS USED IN A LOGICAL
CHANNEL PROGRAM

1057 ILLEGAL IOCL ADDRESS. IOCL MUST BE LOCATED IN THE
FIRST 128K WORDS OF MEMORY.

1058-1060 Reserved

1061 INVALID LFC IN FCB

1062 ERROR OCCURRED ON IMPLICIT OPEN

1063-1076 Reserved

1077 ATTEMPT TO USE DATA FLOW CONTROL (OTHER THAN WISM),
THAT IS NOT SUPPORTED BY THE CURRENTLY INSTALLED
CONTROLLER

1078 ATTEMPT TO ISSUE AN EXECUTE CHANNEL PROGRAM TO A
WRITE SUB-CHANNEL AND THE SUB-CHANNEL WAS NOT IN
DUAL CHANNEL MODE

1079 Reserved

1080 ILLEGAL ACCESS MODE FOR VOLUME RESOURCE

1081-1097 Reserved

1098 H.VOMM DENIAL HAS OCCURRED ON IOCS AUTOMATIC FILE
EXTENSION REQUEST FOR THE LFC SPECIFIED IN THE ABORT
MESSAGE

1099 INTERNAL SYSTEM ERROR DETECTED AT THE ADDRESS
RELATIVE '1'0 rocs WHICH IS SPECIFIED IN THE ABORT
MESSAGE

MPX·32 Abort and Crash Codes

'C" .--." ,

(
IP-IPU

C.14 IP -IPU

IPOI ABNORMAL TASK TERMINATION IN IPU

C.15 LD - Task Activation Loading (H.TAMM)

LOOI LOAD CODE SECTION ERROR

LOO2 CODE SECTION CHECKSUM ERROR

LOO3 BIAS CODE ERROR

LOO4 CODE MATRIX CHECKSUM ERROR

LOO5 LOAD DATA SECTION ERROR

LOO6 DATA SECTION CHECKSUM ERROR

LOO? BIAS DATA ERROR

LD08 DATA MATRIX CHECKSUM ERROR

LOO9 GCF RiO RELOCATION ERROR

LOIO GCF R/W RELOCATION ERROR

C.16 MC - Machine Check Trap

MeOI MACHINE CHECK TRAP

C.17 MF - Map Fault Trap

MFOI A MAP FAULT TRAP HAS OCCURRED. THIS IS THE RESULT OF
A BAD MEMORY REFERENCE OUTSIDE OF THE USER'S
ADDRESSABLE SPACE.

C.18 MM - Memory Disk

MMOI REQUEST FOR MEMORY DISC Ilo TO A LOCATION OUTSIDE
THE MEMORY DISC BOUNDARIES

MPX-32 Reference C-g

MP - Memory Parity Trap (H.lP02)

C.19 MP - Memory Parity Trap (H.lP02)

MPOl MEMORY ERROR OCCURRED IN A TASK'S LOGICAL ADDRESS
SPACE. THIS IS AN INTERNAL OR CPU FAILURE. RERUN
TASK.

MP02 MEMORY ERROR OCCURRED IN ANOTHER INTERRUPT TRAP
ROUTINE (NESTED TRAPS, CONTEXT LOST)

MP03 MEMORY ERROR OCCURRED WHILE NO TASKS WERE IN THE
ACTIVE STATE

MP04 MEMORY ERROR OCCURRED IN A MAP BLOCK RESERVED FOR
THE O/S

MP05 ERROR OCCURRED WHILE CURRENT TASK WAS IN THE
UNMAPPED MODE

C.20 MS - System Services (H.MONS) (Compatibility Mode Only)

C-10

MSOl PERMANENT FILE ADDRESS INQUIRY SERVICE FOUND A
NUMBER OF ALLOCATION UNITS IN THE UNIT DEFINITION
TABLE THAT DO NOT CORRESPOND TO ANY KNOWN DISC.

MS 02 -MS 0 8 Reserved

MS09
TASK HAS ATTEMPTED TO CONNECT A TASK TO AN INTERRUPT
LEVEL NOT DEFINED FOR INDIRECTLY CONNECTED TASKS

MSlO-MSll Reserved

MSl2 OVERLAY IS PASSWORD PROTECTED

MSl3-MSl5 Reserved

MSl6 TASK HAS REQUESTED DYNAMIC ALLOCATION WITH AN
INVALID FUNCTION CODE

MSl7 FILE NAME CONTAINS CHARACTERS OUTSIDE RANGE OF X'20'
TO X'5F', INCLUSIVELY

MS18-MS20 Reserved

MS2l MULTIVOLUME MAGNETIC TAPE ALLOCATION REQUEST MADE TO
SCRATCH (SCRA) TAPE

MS22 MULTI-VOLUME MAGNETIC TAPE ALLOCATION REQUEST MADE
ON SHARED TAPE DRIVE

MS23 TASK HAS ISSUED A 'MOUNT MESSAGE ONLY' ALLOCATION
REQUEST TO A NON-ALLOCATED DRIVE OR TO A DEVICE
WHICH IS NOT A MAGNETIC TAPE

MPX·32 Abon and Crash Codes

c

o

(

MS - System Services (H.MONS) (Compatibility Mode Only)

MS24 TASK HAS SPECIFIED AN ILLEGAL VOLUME NUMBER (ZERO IF
TAPE IS MULTIVOLUME, NONZERO IF TAPE IS SINGLE
VOLUME)

MS2 5-MS 2 7 Reserved

MS28 A PERMANENT FILE LOG HAS BEEN REQUESTED, BUT THE
ADDRESS SPECIFIED FOR STORAGE OF THE DIRECTORY ENTRY
IS NOT CONTAINED WITHIN THE CALLING TASK'S LOGICAL
ADDRESS SPACE

MS29 Reserved

MS30 TASK HAS ATTEMPTED TO OBTAIN A PERMANENT FILE LOG IN
A MEMORY-ONLY ENVIRONMENT

MS3l USER ATTEMPTED TO GO TO THE ANY-WAIT STATE FROM AN
END-ACTION ROUTINE

MS32

MS33

Reserved

ALLOCATION ERROR IN RTM M.ALOC CALL

MS34-MS86 Reserved

MS87 NO DENIAL RETURN ADDRESS SPECIFIED ON CALM M.ALOC
EMULATION

C.21 NM - Nonpresent Memory Trap

NMOl A NONPRESENT MEMORY TRAP ERROR CONDITION HAS
OCCURRED.

C.22 OC - Operator Communications

oeOl THE OPERATOR HAS REQUESTED THAT THE TASK BE ABORTED

C.23 PT - Task Activation (J.TSM)

PTOl INVALID ATTEMPT TO MULTICOPY A UNIQUE TASK

PT02 FILE SPECIFIED IS NOT IN DIRECTORY

PT03 UNABLE TO ALLOCATE FILE

PT04 FILE IS NOT A VALID LOAD MODULE OR EXECUTABLE IMAGE

PT05 DQE IS NOT AVAILABLE

PTO 6 READ ERROR ON RESOURCE DESCRIPTOR

MPX·32 Reference C-11

PT - Task Activation (J.TSM)

PT07

PT08

PT09

PT10

PTll

PT12

PT13

PT14

PT1S

PT16

PT17

PT18

READ ERROR ON LOAD MODULE

INSUFFICIENT LOGICAL/PHYSICAL ADDRESS SPACE FOR TASK
ACTIVATION

CALLING TASK IS UNPRIVILEGED

INVALID PRIORITY

INVALID SEND BUFFER ADDRESS OR SIZE

INVALID RETURN BUFFER ADDRESS OR SIZE

INVALID NO-WAIT MODE END ACTION ROUTINE ADDRESS

MEMORY POOL UNAVAILABLE

DESTINATION TASK RECEIVER QUEUE FULL

INVALID PSB ADDRESS

RRS LIST EXCEEDS 384 WORDS

INVALID RRS ENTRY IN PARAMETER BLOCK

C.24 PV - Privilege Violation Trap

PVOl PRIVILEGE VIOLATION TRAP

C.25 RC - Record Manager

RCOl LESS THAN ONE BLOCK ON READ

RC02 NOT A MULTIPLE NUMBER OF BLOCKS READ

RC03 NO MORE IOC'S AVAILABLE

RC04 ERROR CONDITION ON READ

RCOS PREMATURE END-OF-FILE

RC06 END-OF-MEDIUM ON OUTPUT FILE

RC07 WRITE ATTEMPTED ON UNOPENED FILE

RC08 USER RECORD SIZE TOO LARGE

RC09 READ NOT ALLOWED AFTER WRITE

RC10 ERROR ON WRITE

RCll END-OF-MEDIUM ON OUTPUT FILE

C-12 MPX·32 AbOrt and Crash Codes

RC - Record Manager

RC12

RC13

INTERNAL FILE POSITION ERROR

RESOURCE CANNOT BE OPENED

RC14 INTERNAL FILE POSITION ERROR

RC15 INVALID BLOCKING BUFFER CELL

C.26 RE - Restart

RE01 RESTART IS INVALID IN BATCH OR COMMAND FILE MODE

C.27 RF - Rapid File Allocation

RF01 INVALID PATHNAME

RF02 PATHNAME CONSISTS OF VOLUME ONLY

RF03 VOLUME NOT MOUNTED

RF 04 Reserved

RF05 FILE IS NOT A PERMANENT FILE

RF06

RF07

RF08

RF09

RF10

RF11-RF14

RF15

Reserved

RESOURCE DOES NOT EXIST

RESOURCE NAME IN USE

Reserved

MDT ENTRY UNAVAILABLE

Reserved

VOLUME MUST BE MOUNTED PUBLIC

RF16-RF59 Reserved

RF60 INVALID MODE

RF 61-RF 9 8 Reserved

RF99 WARNING, INPUT ERRORS ENCOUNTERED, CHECK SLO OUTPUT

C.28 RM - Resource Management (H.REMM)

RM01

RM02

MPX-32 Reference

UNABLE TO LOCATE RESOURCE

ACCESS MODE NOT ALLOWED

C-13

RM - Resource Management (H.REMM)

C-14

RM03

RM04

RM05

RM06

RM07

RM08

RM09

RMl0

RMll

RM12

RM13

RM14

RM15

RM16

RM17

RM18

RM19

RM20

RM21

RM22

RM23

RM24

RM25

RM26

RM27

RM28

RM29

RM30

TOO MANY ASSIGNMENTS

BLOCKING BUFFER SPACE NOT AVAILABLE OR INVALID
BUFFER ADDRESS

SHARED MEMORY TABLE (SMT) ENTRY NOT FOUND

TOO MANY MOUNT REQUESTS

STATIC ASSIGN TO DYNAMIC COMMON

UNRECOVERABLE I/O ERROR

INVALID USAGE SPECIFICATION

INVALID PARAMETER ADDRESS

INVALID RESOURCE REQUIREMENT SUMMARY (RRS) ENTRY

INVALID LFC TO LFC ASSIGNMENT

DEVICE NOT IN SYSTEM OR OFF-LINE

RESOURCE ALREADY ALLOCATED BY TASK

INVALID SYC/SGO ASSIGNMENT

COMMON CONFLICTS WITH TASK ADDRESS SPACE

DUPLICATE LFC ASSIGNMENT

INVALID DEVICE SPECIFICATION

INVALID RESOURCE ID (RID)

VOLUME UNASSIGNED OR ACCESS NOT ALLOWED

UNABLE TO MOUNT. J.MOUNT RUN REQUEST FAILED

RESOURCE MARKED FOR DELETION

ASSIGNED DEVICE IS MARKED OFF-LINE

UNABLE TO LOCATE MOUNTED VOLUME TABLE(MVT) ENTRY

RANDOM ACCESS NOT ALLOWED

ATTEMPT TO WRITE ON SYC

RESOURCE ALREADY OPENED IN DIFFERENT MODE

INVALID ACCESS SPECIFICATION AT OPEN

INVALID FILE CONTROL BLOCK(FCB) ADDRESS OR
UNASSIGNED LFC IN FCB

INVALID ALLOCATION INDEX

MPX-32 Abort and Crash Codes

C:

(RM31

RM32

RM33

RM34

RM35

RM36

RM37

RM38

RM39

RM40

RM41

RM42

RM43

RM44

RM45

RM46

RM47

RM48

RM49

RM50

RM51

RM52

RM53

RM54

RM55

MPX-32 Reference

RM - Resource Management (H.REMM)

RESOURCE NOT OPEN

LOCK NOT OWNED BY THIS TASK

RESOURCE IS NOT ALLOCATED IN A SHARABLE MODE

SYSTEM ADMINISTRATOR ATTRIBUTE IS REQUIRED TO MOUNT
A PUBLIC VOLUME

RESOURCE IS NOT A SHARED IMAGE

PHYSICAL MEMORY ALREADY ALLOCATED

ATTEMPT TO ALLOCATE NONPRESENT PHYSICAL MEMORY

TIME OUT WAITING FOR RESOURCE

UNABLE TO PERFORM WRITE BACK

INVALID LOAD MODULE

INVALID PHYSICAL ADDRESS SPECIFIED

USER REQUESTED ABORT OF MOUNT PROCESS

USER REQUESTED HOLD ON MOUNT PROCESS

WRITEBACK REQUESTED AND SHARED IMAGE HAS NO
WRITEBACK SECTION

LOADING ERROR DURING INCLUSION OF READ ONLY SECTION
OF SHARED IMAGE

UNABLE TO OBTAIN RESOURCE DESCRIPTOR LOCK (MULTIPORT
ONLY)

LOADING ERROR DURING INCLUSION OF READ/WRITE SECTION
OF SHARED IMAGE

INCOMPATIBLE LOAD ADDRESSES FOR SHARED IMAGE

TASK HAS REQUESTED EXCESSIVE NUMBER OF MULTICOPIED
SHARED IMAGES WITH NO READ ONLY SECTION

RESOURCE IS LOCKED BY ANOTHER TASK

SHAREABLE RESOURCE IS ALLOCATED BY ANOTHER TASK IN
AN INCOMPATIBLE ACCESS MODE

VOLUME SPACE IS NOT AVAILABLE

ASSIGNED DEVICE IS NOT AVAILABLE

UNABLE TO ALLOCATE RESOURCE FOR SPECIFIED USAGE

ALLOCATED RESOURCE TABLE (ART) SPACE IS NOT
AVAILABLE

C-15

RM - Resource Management (H.REMM)

C-16

RM56

RM57

RM58

RM59

RM60

RM61

RM62

RM63

RM64

RM65

RM66

RM67

RM68

RM69

RM70

RM71

RM72

RM73

RM74

RM75

RM76

RM77

RM78

RM79

RM80

TASK REQUIRES SHADOW MEMORY AND NONE IS CONFIGURED

VOLUME IS NOT AVAILABLE FOR MOUNT WITH REQUESTED
USAGE

SHARED MEMORY TABLE (SMT) SPACE IS NOT AVAILABLE

MOUNTED VOLUME TABLE (MVT) SPACE IS NOT AVAILABLE

RESOURCE DESCRIPTOR SPACE DEFINITION CONFLICT

UNABLE TO LOCATE OR RETRIEVE RESOURCE DESCRIPTOR

INVALID OPTION IN CNP

SEGMENTED TASK SUPPORT NOT PRESENT.

THE TASK'S DSECT SPACE REQUIREMENTS OVERLAP THE
TASK'S TASK SERVICE AREA(TSA) SPACE REQUIREMENTS

THE TASK'S DSECT SPACE REQUIREMENTS OVERLAP THE
TASK'S CSECT SPACE REQUIREMENTS, OR IF NO CSECT,
LOAD MODULE IS TOO LARGE TO FIT IN USER'S ADDRESS
SPACE

SOFTWARE CHECKSUM. ERROR MAY BE FIXED BY
RECATAJ..JOGING.

EXCESSIVE MEMORY REQUEST

EXCESSIVE VOLUME SPACE REQUESTED

INVALID USERNAME SPECIFIED

INVALID PRIVILEGED ACTIVATION

Reserved

UNABLE TO RESUME SYSINIT ON TAPE ACTIVATION

FILE OVERLAP HAS OCCURRED. PLEASE CHECK THE SYSTEM
CONSOLE

LOADING ERROR

INVALID WORK VOLUME/DIRECTORY

USER ATTEMPTED DEALLOCATION OF TSA

A TASK HAS DESTROYED THE ALLOCATION LINKAGES IN ITS
DYNAMIC EXPANSION SPACE

UNABLE TO LOAD TASK DEBUGGER WITH TASK

INVALID CALLER NOTIFICATION PACKET (CNP) ADDRESS

SHARED IMAGE VERSION LEVEL IS NOT COMPATIBLE WITH
EXECUTABLE IMAGE

MPX·32 Abort and Crash Codes

o

o

RM81

RM82

RM83

RM84

RM85

RM86

RM87

RM88

RM89

RM90

RM91

RM92

RM93

RM94

RM95

RM96

RM97

RM98

RM - Resource Management (H.REMM)

INVALID ACTIVATION OF A BASE MODE TASK ON A SYSTEM
CONFIGURED FOR NON-BASE TASK EXECUTION.

INVALID ACTIVATION OF AN ADA TASK ON A SYSTEM
CONFIGURED WITHOUT ADA SUPPORT.

INSUFFICIENT LOGICAL ADDRESS SPACE TO ACTIVATE TASK

INVALID LOGICAL POSITION FOR EXTENDED MPX

PTRACE DEBUG REQUESTED AND H.PTRAC NOT CONFIGURED

CANNOT DISMOUNT THE SYSTEM VOLUME.

PUBLIC VOLUME DISMOUNT DENIED DUE TO COMPATIBLE MODE
PUBLIC DISMOUNT OPTION SET FOR THIS SYSTEM.

PUBLIC DISMOUNT DENIED. SYSTEM ADMINISTRATOR
ATTRIBUTE REQUIRED FOR THIS OPERATION.

PUBLIC DISMOUNT DENIED DUE TO MISSING OPTION FOR
PUBLIC VOLUME IN THE DISMOUNT REQUEST

GCL LOADMODULE OR SHIM CANNOT BE RELOCATABLE

UNABLE TO ACCESS VOLUME DUE TO PENDING PHYSICAL
DISMOUNT.

READ ONLY OR READ WRITE LOAD ADDRESS IS INVALID

UNABLE TO PERFORM PHYSICAL MOUNT DUE TO SYSTEM
SHUTDOWN IN PROGRESS.

J.MOUNT ATTEMPTED TO MOUNT AN UNFORMATTED DISC
VOLUME.

AN UNBIASED TASK REQUIRES SHADOW MEMORY ON A SYSTEM
WITH NO OVERLAPPING CPU/IPU SHADOW REGION

A BIASED TASK REQUIRES SHADOW MEMORY THAT DOES NOT
EXIST ON THE SPECIFIED PROCESSOR

Reserved

THE TASK REQUIRES MORE SHADOW MEMORY THAN EXISTS

C.29 RX - Resident Executive Services (H.REXS)

RXOI

RX02

RX03

MPX-32 Reference

Reserved

INVALID FUNCTION CODE SPECIFIED FOR REQUEST TO
CREATE A TIMER ENTRY. VALID CODES ARE ACP (1), RSP
OR RST (2), STB (3), RSB (4) AND RQI (5).

TASK ATTEMPTED TO SET/RESET A BIT OUTSIDE OF A
STATIC PARTITION OR THE OPERATING SYSTEM.

C-17

RX - Resident Executive Services (H.REXS)

C-18

RX04

RX05

RX06

RX07

RX08

RX09

RXIO

RXll

RX12

RX13

RX14

THE REQUESTING TASK IS UNPRIVILEGED OR HAS ATTEMPTED
TO CREATE A TIMER ENTRY TO REQUEST AN INTERRUPT WITH
A PRIORITY LEVEL OUTSIDE THE RANGE OF X'12' TO
X'7Ft, INCLUSIVELY

INVALID FUNCTION CODE HAS BEEN SPECIFIED FOR REQUEST
TO SET USER STATUS WORD

UNPRIVILEGED TASK ATTEMPTED TO RESET A TASK PRIORITY
LEVEL, OR A PRIVILEGED TASK ATTEMPTED TO RESET A
TASK PRIORITY TO A LEVEL OUTSIDE THE RANGE OF 1 TO
64, INCLUSIVELY

CANNOT LOAD OVERLAY SEGMENT DUE TO SOFTWARE CHECKSUM
OR DATA ERROR

OVERLAY IS NOT IN THE DIRECTORY

Reserved

OVERLAY HAS AN INVALID PREAMBLE

AN UNRECOVERABLE I/O ERROR HAS OCCURRED DURING
OVERLAY LOADING

Reserved

FUNCTION CODE SUPPLIED TO A DATE/TIME SERVICE IS OUT
OF RANGE

DESTINATION BUFFER ADDRESS IS INVALID OR PROTECTED

RX15 ATTEMPT TO SET EXCEPTION RETURN ADDRESS WHEN
ARITHMETIC EXCEPTION NOT IN PROGRESS

RX16-RX24 Reserved

RX25 OPERATOR HAS ABORTED TASK IN RESPONSE TO MOUNT
MESSAGE

RX26-RX28 Reserved

RX29 TASK HAS ATTEMPTED TO LOAD THE INTERACTIVE TASK
DEBUGGER OVERLAY IN A MEMORY-ONLY ENVIRONMENT

RX30-RX31 Reserved

RX32 INVALID DQE ADDRESS

RX33 OVERLAY LINKAGES HAVE BEEN DESTROYED BY LOADING A
LARGER OVERLAY

Rx34

RX35

TASK HAS MADE A BREAK RECEIVER EXIT CALL WHILE NO
BREAK I S ACTIVE

Reserved

MPX-32 Abort and Crash Codes

c

/' '-,
()
,_/

o

(:~

C'
, ,

RX36

RX - Resident Executive Services (H.REXS)

STATUS IN REGISTER ZERO IS NOT A ZERO OR A VALID
ABORT CODE

Rx37-RX85 Reserved

RX86

RX87

RX88

RX89

RX90

RX91

RX92

RX93

RX94

RX95

RX96

RX97

RX98

RX99

TASK HAS MADE AN END ACTION ROUTINE EXIT WHILE END
ACTION WAS NOT ACTIVE

Reserved

RESERVED FOR DEBUG LINK SERVICE

AN UNPRIVILEGED TASK HAS ATTEMPTED TO REESTABLISH AN
ABORT RECEIVER (OTHER THAN M.IOEX)

TASK HAS MADE A RUN REQUEST END ACTION ROUTINE EXIT
WHILE THE RUN REQUEST INTERRUPT WAS NOT ACTIVE

TASK HAS ATTEMPTED NORMAL EXIT WITH A TASK INTERRUPT
STILL ACTIVE

TASK HAS ATTEMPTED NORMAL EXIT WITH MESSAGES IN ITS
RECEIVER QUEUE

AN INVALID RECEIVER EXIT BLOCK (RXB) ADDRESS WAS
ENCOUNTERED DURING MESSAGE EXIT

AN INVALID RECEIVER EXIT BLOCK (RXB) RETURN BUFFER
ADDRESS WAS ENCOUNTERED DURING MESSAGE EXIT

TASK HAS MADE A MESSAGE EXIT WHILE THE MESSAGE
INTERRUPT WAS NOT ACTIVE

AN INVALID RECEIVER EXIT BLOCK (RXB) ADDRESS WAS
ENCOUNTERED DURING RUN RECEIVER EXIT

AN INVALID RECEIVER EXIT BLOCK (RXB) RETURN BUFFER
ADDRESS WAS ENCOUNTERED DURING RUN RECEIVER EXIT

TASK HAS MADE A RUN RECEIVER EXIT WHILE THE RUN
RECEIVER INTERRUPT WAS NOT ACTIVE

TASK HAS MADE A MESSAGE END-ACTION ROUTINE EXIT
WHILE THE MESSAGE INTERRUPT WAS NOT ACTIVE

C.30 SB - System Binary Output

SBOI AN I/O ERROR HAS BEEN ENCOUNTERED ON THE DEVICE
ASSIGNED AS THE SYSTEM BINARY (PUNCHED) OUTPUT
DEVICE

SB02 THE SYSTEM OUTPUT PROGRAM HAS ENCOUNTERED AN
UNRECOVERABLE I/O ERROR IN ATTEMPTING TO READ A
PUNCHED OUTPUT FILE FROM DISC

SB03

MPX-32 Reference

DENIAL OF FILE CODE TO FILE CODE ALLOCATION FOR
J.SOUT2 INDICATES LOSS OF SYSTEM INTEGRITY

C-19

SB - System Binary Output

SB04 SYSTEM BINARY OUTPUT ABORTED BY OPERATOR

SBOS NO TIMER ENTRY FOR SYSTEM BINARY OUTPUT (SYSTEM
FAULT)

SB06 FIVE ECHO CHECK ERRORS DETECTED WHILE ATTEMPTING TO
PUNCH A SINGLE CARD

C.31 SC - System Check Trap Processor

seOI SYSTEM CHECK TRAP OCCURRED AT AN ADDRESS LOCATED
WITHIN THE OPERATING SYSTEM

se02 SYSTEM CHECK TRAP OCCURRED WITHIN THE CURRENT TASK'S
SPACE

se03 SYSTEM CHECK TRAP OCCURRED AT A TIME WHEN THERE WERE
NO TASKS CURRENTLY BEING EXECUTED (C.PRNO EQUALS
ZERO)

se04 SYSTEM CHECK TRAP OCCURRED WITHIN ANOTHER TRAP
(C.GINT DOES NOT EQUAL '1')

C.32 SD - SCSI Disk

C-20

SOOO

SOOI

S002

S003

S004

SOOS

S006

SOO?

sooa

S009

NO ADDITIONAL SENSE INFORMATION

NO INDEX/SECTOR SIGNAL

NO SEEK COMPLETE

WRITE FAULT

DRIVE NOT READY

DRIVE NOT SELECTED

NO TRACK ZERO FOUND

MULTIPLE DRIVES SELECTED

LOGICAL UNIT COMMUNICATIONS FAILURE

TRACK FOLLOWING ERROR

SOlO-SOlS Reserved

S016 ID CRC OR ECC ERROR

SOl? UNRECOVERED READ ERROR OF DATA BLOCKS

SOl8 NO ADDRESS MARK FOUND IN ID FIELD

MPX·32 Abort and Crash Codes

()

o

("

(

so - SCSI Disk

SD19

SD20

SD21

NO ADDRESS MARK FOUND IN DATA FIELD

NO RECORD FOUND

SEEK POSITIONING ERROR

DATA SYNCHRONIZATION MARK ERROR SD22

SD23 RECOVERED READ DATA WITH TARGET'S READ RETRIES (NOT
WITH ECe)

SD24

SD25

SD26

SD27

SD28

SD29

SD30

SD31

SD32

RECOVERED READ DATA WITH TARGET'S ECC CORRECTION
(NOT WITH RETRIES)

DEFECT LIST ERROR

PARAMETER OVERRUN

SYNCHRONOUS TRANSFER ERROR

PRIMARY DEFECT LIST NOT FOUND

COMP ARE ERROR

RECOVERED ID WITH TARGET'S ECC CORRECTION

Reserved

INVALID COMMAND OPERATION CODE

8033 ILLEGAL LOGICAL BLOCK ADDRESS. ADDRESS GREATER THAN
THE LBA RETURNED BY THE READ CAPACITY DATA WITH PMI
BIT NOT SET IN CDB

SD34 ILLEGAL FUNCTION FOR DEVICE TYPE

S035 Reserved

SD36 ILLEGAL FIELD IN CDB

SD37 INVALID LUN

SD38 INVALID FIELD IN PARAMETER LIST

8039 WRITE PROTECTED

8040 MEDIUM CHANGE

8041 POWER ON OR RESET OR BUS DEVICE RESET OCCURRED

8042 MODE SELECT PARAMETERS CHANGED

SD43-SD47 Reserved

SD48 IMCOMPATIBLE CARTRIDGE

MPX-32 Reference C-21

so - SCSI Disk

C.33

C-22

SD49 MEDIUM FORMAT CORRUPTED

SD50 NO DEFECT SPARE LOCATION AVAILABLE

SD51-SD63 Reserved

SD64 RAM FAILURE

SD65 DATA PATH DIAGNOSTIC FAILURE

SD66 POWER ON DIAGNOSTIC FAILURE

SD67 MESSAGE REJECT ERROR

SD68 INTERNAL CONTROLLER ERROR

SD69 SELECT/RESELECT FAILED

SD70 UNSUCCESSFUL SOFT RESET

SD71 SCSI INTERFACE PARITY ERROR

SD72 INITIATOR DETECTED ERROR

SD73 INAPPROPRIATE/ILLEGAL MESSAGE

SG - System Generator (SYSGEN)

SGOl

SG02

SG03

INVALID LOADER FUNCTION CODE IN BINARY OBJECT MODULE
FROM THE SYSTEM RESIDENT MODULE (OBJ) FILE

INVALID BINARY RECORD READ FROM SYSTEM RESIDENT
MODULE (OBJ) FILE (BYTE 0 MUST BE X'FF' OR X'DF')

SEQUENCE ERROR IN MODULE BEING READ FROM TEMPORARY
FILE

SG04 CHECKSUM ERROR IN MODULE BEING READ FROM TEMPORARY
FILE

SG05

SG06

SG07

SG08

SG09

SG10

UNABLE TO FIND CDT AND/OR UDT FOR I/O MODULE LOAD

UNABLE TO OBTAIN ADDITIONAL MEMORY REQUIRED FOR
RESIDENT SYSTEM IMAGE MODULE LOADING

UNABLE TO OBTAIN MEMORY REQUIRED FOR RESIDENT SYSTEM
IMAGE CONSTRUCTION

NON-RELOCATABLE BYTE STRING ENCOUNTERED IN BINARY
MODULE BEING PROCESSED FROM TEMPORARY FILE

UNABLE TO ALLOCATE TEMPORARY FILE SPACE

OVERRUN OF SYSGEN ADDRESS SPACE BY SYSTEM BEING
GENERATED. PROBABLE ERRONEOUS SIZE SPECIFICATION IN
PATCH OR POOL DIRECTIVE.

MPX·32 Abort and Crash Codes

I (' Ci. j

I
I
I
I
I
I
I
I
I
I
I
I

SGll

SG12

SG13

SG14

SG15

SG16

SG17

SG18

SG19

(~
SG20

SG21

SG22

SG23

SG24

SG25

SG26

SG27

SG28

MPX·32 Reference

SG - System Generator (SYSGEN)

SEQUENCE ERROR WHILE READING OBJECT MODULE FROM FILE
ASSIGNED TO 'OBJ'

CHECKSUM ERROR WHILE READING OBJECT MODULE FROM FILE
ASSIGNED TO 'OBJ'

UNABLE TO ALLOCATE DISC SPACE FOR SYMTAB FILE.
POSSIBLE CAUSES ARE INSUFFICIENT DISC SPACE OR
ACCESS RIGHTS DENIAL.

UNABLE TO ALLOCATE DISC SPACE FOR SYSTEM IMAGE FILE.
POSSIBLE CAUSES ARE INSUFFICIENT DISC SPACE, ACCESS
RIGHTS DENIAL, OR ATTEMPTING TO SYSGEN OVER CURRENT
DEFAULT IMAGE.

MAXIMUM NUMBER (240) OF SYMBOL TABLE/PATCH FILE
ENTRIES EXCEEDED

MISSING SYSTEM OR SYMTAB DIRECTIVE

INVALID IPU INTERVAL TIMER PRIORITY. MUST NOT BE
BETWEEN X'78' AND X'7F'.

MAXIMUM SIZE OF 88K FOR TARGET SYSTEM HAS BEEN
EXCEEDED

ATTEMPT TO DEFINE INTERRUPT VECTORING ROUTINE AS
SYSTEM REENTRANT. ONLY DEVICE HANDLERS MAY BE SYSTEM
REENTRANT.

UNABLE TO FIND "LINK" DEVICE IN UDT

INSUFFICIENT ROOM IN MEMORY POOL FOR DOWNLOAD FILE
LIST

Reserved

SHARE DIRECTIVE SPECIFIED WITHOUT ENOUGH SMT
ENTRIES. ENTRIES MUST EXCEED OR BE EQUAL TO THE
NUMBER OF PARTITIONS PLUS MEMORY DISCS.

ATTEMPT TO DEFINE PARTITION STARTING MAPBLOCK NUMBER
IN OPERATING SYSTEM AREA

ATTEMPT TO DEFINE PARTITION STARTING MAPBLOCK NUMBER
IN NON-CONFIGURED PHYSICAL MEMORY

ATTEMPT TO USE A MODULE INCOMPATIBLE WITH THE TARGET
MACHINE TYPE. THE OFFENDING MODULE NAME IS THE LAST
ENTRY ON THE LISTING FOLLOWED BY THREE ASTERISKS
(***).

THE DEVICE SPECIFIED IN EITHER THE SWAPDEV, SID, LOD
OR POD DIRECTIVE IS NOT INCLUDED IN THE
CONFIGURATION BEING BUILT

THE NULL DEVICE SPECIFICATION WHICH IS REQUIRED TO
BE INCLUDED IN EVERY CONFIGURATION IS MISSING

C-23

SG - System Generator (SYSGEN)

SG29

SG30

SG31

SG32

SG33

SG34

SG35

SG36

SG37

SG38

SG39

SG40

SG41

SYSINIT OBJECT MODULE MISSING ON SYSGEN OBJECT INPUT
FILE (OBJ). IT MUST BE THE LAST MODULE.

THE FILE ASSIGNED TO FILE CODE OBJ DOES NOT CONTAIN
VALID OBJECT CODE

THE GENERATED IMAGE CONTAINS UNSATISFIED EXTERNAL
REFERENCES. SEE THE SLO OUTPUT FOR MORE DETAILS.
THIS IS NOT A FATAL ABORT AND THE SYSTEM IMAGE IS
PRODUCED.

ONE OR MORE REQUESTED OBJECT MODULES COULD NOT BE
LOCATED ON THE INPUT OBJECT FILE. SEE THE SLO
OUTPUT FOR MORE DETAILS. THIS IS NOT A FATAL ABORT
AND THE SYSTEM IMAGE IS PRODUCED.

EVENT TRACE HAS BEEN ENABLED WITH NO MEMORY
PARTITION RESERVED FROM X'78000' TO X'80000'

Reserved

INSUFFICIENT MEMORY POOL FOR STATIC PARTITION

UNMAPPED DEBUG MODULE (H.DBUG2) IS MISSING ON SYSGEN
OBJECT INPUT FILE. IT MUST BE THE LAST MODULE IF THE
SYSTEM DEBUGGER IS TO BE CONFIGURED.

COMMUNICATION REGION + DSECT + ADAPTIVE REGION
EXCEEDS 16KW

MPX EXTENDED CODE AREA EXTENDS PAST LOGICAL LIMIT

INVALID MPX EXTENDED CODE AREA LOGICAL MAP START

DIRECTIVE ERRORS ENCOUNTERED. IMAGE PRODUCED.

H.IPPF COULD NOT BE LOCATED ON THE INPUT OBJECT
FILE. MODULE IS NECESSARY FOR DEMAND PAGE.

SG42-SG97 Reserved

SG98 ERROR ENCOUNTERED DURING OBJECT PROCESSING PRECEDED
BY MESSAGE DESCRIBING THE ERROR CONDITION

SG99 DIRECTIVE ERRORS ENCOUNTERED

C.34 SH - Shadow Memory (J.SHAD)

SH01 J.SHAD ABORTED. SEE OUTPUT (UT IF INTERACTIVE OR SLO
IF BATCH), FOR ACTUAL ERROR DESCRIPTION(S).

C.35 SN - System Input Task (J.SSIN)

SNOO INVALID RUN REQUEST PARAMETERS

C-24 MPX-32 AbOrt and Crash Codes

o

o

(

SS - Sort/Merge (FSORT2)

C.36 SS - Sort/Merge (FSORT2)

SSOl CTL NOT ALLOCATED

SS02 HEADER DIRECTIVE MISSING

S803 CONTROL FILE EMPTY

SS04 DIRECTIVE CODE NOT VALID

SS05-SS06 Reserved

SS07 OUTPUT FILE CODE (OUT) NOT ALLOCATED

8808 RECORD LENGTH NOT DIVISIBLE INTO INPUT PHYSICAL
RECORD LENGTH

8S09 RECORD LENGTH EXCEEDS INPUT PHYSICAL RECORD LENGTH

SS10 INPUT RECORD LENGTH EXCEEDS MAXIMUM ALLOWED (4095)

SSll RECORD LENGTH NOT DIVISIBLE INTO OUTPUT PHYSICAL
RECORD LENGTH

SS12

S813

SS14

RECORD LENGTH EXCEEDS OUTPUT BLOCK LENGTH

OUTPUT PHYSICAL RECORD LENGTH EXCEEDS MAXIMUM
ALLOWED (4095)

.. 1 PRESENT BUT NOT A DISC FILE

.. 2 PRESENT BUT NOT A DISC FILE

COMPARISON INDICATOR NOT VALID

Reserved

WK1 HAS BEEN ALLOCATED BY THE USER

WK2 HAS BEEN ALLOCATED BY THE USER

SS15

SS16

S817

8818

SS19

SS20 FIELD DIRECTIVE ERROR: STARTING POSITION IS GREATER
THAN FIELD ENDING POSITION

8S21

8822

FIELD DIRECTIVE ERROR: STARTING POSITION EXCEEDS
RECORD LENGTH

FIELD DIRECTIVE ERROR: ENDING POSITION EXCEEDS
LOGICAL RECORD LENGTH

S823-8S27 Reserved

S828 INAPPROPRIATE COMBINATION OF TOURNAMENT PARAMETERS
EXCEEDS MEMORY POOL LIMITS

SS29 DISC SPACE CANNOT BE ALLOCATED FOR WORK FILE 1

MPX-32 Reference C-25

SS - Sort/Merge (FSORT2)

SS30 DISC SPACE CANNOT BE ALLOCATED FOR WORK FILE 2

SS31 FILE TO FILE ALLOCATION FOR WORKFILE HAS FAILED

SS32 SORT BUFFER TOO SMALL

SS33-SS39 Reserved

SS40 INPUT FILES ARE EMPTY: NO RECORD INPUT OR SORTED

SS41 WKl OR WK2 FILES TOO SMALL

SS42 MERGE ONLY SELECTED BUT NO MERGE FILES (MGI-MG8) ARE
ASSIGNED

SS43-SS47 Reserved

SS48 SORT ATTEMPTED WITHOUT GOOD CALL TO SORT:HDR

SS49-SS57 Reserved

SS58 INAPPROPRIATE COMBINATION OF BUFFER PARAMETERS
DETECTED DURING OUTPUT PHASE

SS59 END OF MEDIUM DETECTED ON THE OUT FILE

SS60-SS68 Reserved

SS69 COMPARE TABLE TYPE DESTROYED: SORT PROBLEM

SS70-SS97 Reserved

SS98 ERROR OPENING FILE LO

SS99 ERROR OPENING FILE OUT

C.37 ST - System Output Task (J.SOUT)

ST01 UNRECOVERABLE WRITE ERROR TO DESTINATION DEVICE

ST02 UNABLE TO PERFORM ALLOCATION OF SEPARATOR FILE CODE

ST03 UNABLE TO ISSUE MAGNETIC TAPE MOUNT MESSAGE VIA
ALLOCATION SERVICE

Whenever a system output task aborts, the task may be restarted with the OPCOM
REPRINT or REPUNCH commands.

C.38 SV - SVC Trap Processor (H.lP06)

SV01 UNPRIVILEGED TASK ATTEMPTING TO USE M.CALL

SV02 INVALID SVC NUMBER

C-26 MPX-32 Abort and Crash Codes

Ie)

(

(

SV - SVC Trap Processor (H.lP06)

SV03 UNPRIVILEGED TASK ATTEMPTING TO USE A 'PRIVILEGED­
ONLY' SERVICE

SV04

SV05

SV06

SV07

INVALID SVC TYPE

UNPRIVILEGED TASK ATTE¥~TING TO USE M.RTRN

INVALID MODULE NUMBER OR ENTRY POINT

ATTEMPTING TO USE A SVC WHICH IS INVALID FOR BASE
REGISTER OPERATIONS

SVOB SVC 0, 1 OR 2 ATTEMPTED THAT WOULD RESULT IN A TSA
STACK OVERFLOW (I.E. T.REGP GREATER THAN T.LASTP)

SV09 ATTEMPT TO USE A COMPATIBLE MODE SERVICE WITH NOCMS
SPECIFIED IN SYSGEN

C.39 SW - Swap Scheduler Task (J.SWAPR)

SWOl I/O ERROR ON INSWAP OR OUTSWAP

SW02 EOM DETECTED ON SWAP FILE

SW03 CAN NOT CREATE SWAP FILE SPACE DIRECTORY IN MEMORY
POOL

SW04 SWAP FILE SPACE DIRECTORY IS FULL

SW05 TASK HAS REQUESTED INSWAP BUT WAS NEVER OUTSWAPPED

C.40 SX - System Output Executive (J.SOEX)

SXOl INVALID RUN REQUEST HEAD CELL COUNT

SX02 LOAD MODULE J.SOUT DOES NOT EXIST

C.41 SV - System Initialization (SVSINIT)

SYOl SYSTEM HALT OCCURRED DURING SYSINIT PHASE ONE
PROCESSING

SY02 SYSTEM HALT DUE TO MEMORY PARITY ERROR BEING
DETECTED IN THE OPERATING SYSTEM

MPX-32 Reference C-27

TO - Terminal Type Set/Reset Utility (J.TSET)

C.42 TO - Terminal Type Set/Reset Utility (J.TSET)

TD01 ATTEMPTED TO RUN J.TSET IN BATCH MODE

TD02 J.TSET WAS UNABLE TO OPEN UT FOR PROCESSING

C.43 TS - Terminal Support

TS01 USER REQUESTED REMOVAL FROM A BREAK REQUEST

TS02 USER REQUESTED REMOVAL FROM A RESOURCE WAIT STATE
QUEUE

TS03 TASK RUNNING FROM SPECIFIED TERMINAL WAS ABORTED
WHEN THE TERMINAL DISCONNECTED

TS04 REMOVAL OF A JOB WAS REQUESTED

C.44 UI - Undefined Instruction Trap

ur01 UNDEFINED INSTRUCTION TRAP

ur02 UNEXPECTED DEBUGX32 BREAKPOINT FOUND AND DEBUGX32
NOT ATTACHED

C.45 VF - Volume Formatter (J.VFMT)

VF01 ERROR HAS OCCURRED. SEE SLO FILE FOR EXPLANATION.

VF02 OPEN FAILURE ON AUDIT TRAIL DEVICE/FILE

VF03 EOF/EOM ON AUDIT TRAIL DEVICE/FILE

VF04 I/O ERROR ON AUDIT TRAIL DEVICE/FILE

C.46 VM - Volume Management Module (H. VOMM)

C-28

In some cases, H.VOMM displays H.REMM abort conditions. If a user calls an
H.VOMM service which in tum calls an H.REMM service for processing and an abort
condition occurs within the H.REMM processing, the abort condition is returned to
H.VOMM which displays it to the user in the format 10xx where xx is the specific
H.REMM abort condition. For example, abort condition 1026 indicates H.REMM
error 26 has occurred. The TSM $ERR command can be used to determine the reason
for the error, i.e., $ERR RM26.

VM01 INVALID PATHNAME

VM02 PATHNAME CONSISTS OF VOLUME ONLY

MPX·32 Abort and Crash Codes

o

(d
VM03

VM04

VM05

VM06

VM07

VM08

VM09

VMIO

VMll

VM12

VM13

VM14

VM15

VM16

VM17

VM18

VM19

VM20

VM21

VM22

VM23

VM24

VM25

VM26

VM27

VM28

VM29

VM30

MPX·32 Reference

VM - Volume Management Module (H.VOMM)

VOLUME NOT MOUNTED

DIRECTORY DOES NOT EXIST

DIRECTORY NAME IN USE

DIRECTORY CREATION NOT ALLOWED AT SPECIFIED LEVEL

RESOURCE DOES NOT EXIST

RESOURCE ALREADY EXISTS

RESOURCE DESCRIPTOR UNAVAILABLE

DIRECTORY ENTRY UNAVAILABLE

REQUIRED FILE SPACE UNAVAILABLE

UNRECOVERABLE I/O ERROR READING DMAP

UNRECOVERABLE I/O ERROR WRITING DMAP

UNRECOVERABLE I/O ERROR READING RESOURCE DESCRIPTOR

UNRECOVERABLE I/O ERROR WRITING RESOURCE DESCRIPTOR

UNRECOVERABLE I/O ERROR READING SMAP

UNRECOVERABLE I/O ERROR WRITING SMAP

UNRECOVERABLE I/O ERROR READING DIRECTORY

UNRECOVERABLE I/O ERROR WRITING DIRECTORY

PROJECTGROUP NAME OR KEY INVALID

Reserved

INVALID FILE CONTROL BLOCK(FCB) OR LFC

PARAMETER ADDRESS SPECIFICATION ERROR

RESOURCE DESCRIPTOR NOT CURRENTLY ALLOCATED

PATHNAME BLOCK OVERFLOW

FILE SPACE NOT CURRENTLY ALLOCATED

'CHANGE DEFAULTS' NOT ALLOWED

RESOURCE CANNOT BE ACCESSED IN REQUESTED MODE OR
DEFAULT SYSTEM IMAGE FILE CANNOT BE DELETED

OPERATION NOT ALLOWED ON THIS RESOURCE TYPE
(RESOURCE IS NOT CORRECT TYPE)

REQUIRED PARAMETER WAS NOT SPECIFIED

C-29

VM - Volume Management Module (H.VOMM)

C-30

VM31

VM32

VM33

VM34

VM35

VM36

VM37

VM38

VM39

VM40

VM41

VM42

VM43

VM44

. VM45

VM46

VM47

VM48

VM49

VM50

VM51

FILE EXTENSION DENIED. SEGMENT DEFINITION AREA FULL.

FILE EXTENSION DENIED. FILE WOULD EXCEED MAXIMUM
SIZE ALLOWED.

I/O ERROR OCCURRED WHEN RESOURCE WAS ZEROED

REPLACEMENT FILE CANNOT BE ALLOCATED

INVALID DIRECTORY ENTRY

DIRECTORY AND FILE ARE NOT ON THE SAME VOLUME

AN UNIMPLEMENTED ENTRY POINT HAS BEEN CALLED

REPLACEMENT FILE IS ALLOCATED BY ANOTHER TASK AND
BIT 0 IN THE CNP OPTION FIELD IS NOT SET, OR FILE IS
ALLOCATED BY OTHER CPU IN MULTI-PORT ENVIRONMENT

OUT OF SYSTEM SPACE

CANNOT ALLOCATE FAT/FPT WHEN CREATING A TEMPORARY
FILE

DEALLOCATE ERROR IN ZEROING FILE

RESOURCE DESCRIPTOR DESTROYED OR THE RESOURCE
DESCRIPTOR AND THE DIRECTORY ENTRY LINKAGE HAS BEEN
DESTROYED

INVALID RESOURCE SPECIFICATION

INTERNAL LOGIC ERROR FROM RESOURCE MANAGEMENT MODULE
(H.REMM). ABORT TASK, TRY A DIFFERENT TASK AND IF IT

FAILS, REBOOT SYSTEM .

ATTEMPTED TO MODIFY MORE THAN ONE RESOURCE
DESCRIPTOR AT THE SAME TIME OR ATTEMPTED TO REWRITE
A RESOURCE DESCRIPTOR PRIOR TO MODIFYING IT

RESOURCE DESCRIPTOR IS LOCKED BY ANOTHER CPU
(MULTI-PORT ONLY)

DIRECTORY CONTAINS ACTIVE ENTRIES AND CANNOT BE
DELETED

A RESOURCE DESCRIPTOR'S LINK COUNT IS ZERO

ATTEMPTING TO DELETE A PERMANENT RESOURCE WITHOUT
SPECIFYING A PATHNAME OR PATHNAME BLOCK VECTOR

RESOURCE DESCRIPTOR CONTAINS UNEXPECTED RESOURCE
DESCRIPTOR TYPE

DIRECTORY ENTRY DELETED BUT FAILED TO RELEASE FILE
SPACE

MPX-32 Abort and Crash Codes

c

("

VMS2

VM - Volume Management Module (H.VOMM)

AN ATTEMPT WAS MADE TO DEALLOCATE FREE SPACE OR TO
ALLOCATE SPACE THAT IS CURRENTLY ALLOCATED ON A
VOLUME OTHER THAN SYSTEM DISC

VMS 3 THE FILE SPACE CREATED IS LESS THAN THE SPACE
REQUESTED

VMS4-VM98 Reserved

VM99 AN ATTEMPT WAS MADE TO DEALLOCATE FREE SPACE OR TO
ALLOCATE SPACE THAT IS CURRENTLY ALLOCATED ON THE
SYSTEM VOLUME

C.47 VO - Volume Manager (VOLMGR)

VOOI

VOO2

VOO3

VOO4

voos
VOO6

MPX·32 Reference .

ERROR HAS OCCURRED. SEE SLO FILE FOR EXPLANATION.

OPEN FAILURE ON AUDIT TRAIL DEVICE/FILE

EOF/EOM ON AUDIT TRAIL DEVICE/FILE

I/O ERROR ON AUDIT TRAIL DEVICE/FILE

Reserved

I/O ERROR ON THE TAPE DURING SAVE OPERATION. TAPE
HAS BEEN BACKSPACED TO THE END OF THE LAST SAVED
FILE. ALL FILES ON THE IMAGE PRIOR TO THE TAPE I/O
ERROR ARE SAVED ON THE TAPE.

C-31

Crash Codes

C.48 Crash Codes

C32

When system crash occurs as a result of a trap handler entry, the CPU halts with the
registers containing the following information:

Register

o
1
2
3
4
5

Contents

PSD Word 0 (when trap generated)
PSD Word 1 (when trap generated)
Real address of instruction causing trap
Instruction causing trap
CPU status word (from trap handler)
Crash code:

MP01=X'4D503031'
NM01=X'4E4D3031 '
UI01=X'55493031 '
PV01=X'50563031 '
MC01=X' 40433031 '
SC01=X'53433031 '
MFOl=X'4D463031 '
CPOl=X'43503031 '
SWOl=X'53573031 '

(See H.lP02 Codes)
(Nonpresent Memory - H.lP03)
(Undefined Instruction - H.lP04)
(Privilege Violation - H.IP05)
(Machine Check - H.IP07)
(System Check - H.IP08)
(Map Fault - H.IP09)
(Cache Parity Error - H.IPlO) 32/67, 32/87 and 32/97
(See SWAPR codes)

6 Real address of register save block
7 C'TRAP'=X'54524150'

For further description, see Volume I, Chapter 2.

MPX·32 Abort .and Crash Codes

(" D Numerical Information

2 n n 2- n -
1 a 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.0625
32 5 0.03125
64 6 0.015625

128 7 0.0078125

256 8 0.00390625
512 9 0.001 953 125

1024 10 0.000 976 562 5
2048 11 0.000 488 281 25

4096 12 0.000 244 140 625
8192 13 0.000 122 070 3125

16384 14 0.000 061 03515625
32768 15 0.000 030 517 578125

(-~ 65536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629394531 25
262144 18 0.000 003 814697265625
524288 19 0.000 001 907348 632 812 5

1048 576 20 0.000 000 953 674 316 406 25
2 097152 21 0.000 000 476 837 158 203 125
4194304 22 0.000 000 238 418 579 101 562 5
8388608 23 0.000 000 119209289550 781 25

16777216 24 0.000 000 059 604 644 775 390 625
33554432 25 0.000 000 029 802 322 387 695 312 5
67108864 26 0.000 000 014 901 161 19384765625

134 217728 27 0.000 000 007 450 580 596 923 828 125

268435456 28 0.000 000 003 725 290 298461 914 062 5
536870 912 29 0.000 000 001 862645149230 957 031 25

1 073741824 30 0.000 000 000 931 322574615478515625
2147483 648 31 0.000 000 000 465661 2873077392578125

87D13C01

MPX-32 Reference 0-1

Numerical Information

2 n n 2 -n c
4294967296 32 0.000 000 000 232 830 643 653 869 628 906 25
8589934592 33 0.000000000116415321826934814453125

17179869184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029103830456 733 703 613 281 25

68 719 476 736 36 0.000000000014551915228366851806640625
137438 953 472 37 0.000 000 000 007 275 957 614183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712951 660 156 25
549755813888 39 0.000 000 000 001 818989403545 856 475 830 078125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 7729282379150390625
2 199 023255552 41 0.000 000 000 000 454 747 350 886 464 118957519531 25
4398046511104 42 0.000 000 000 000 227 373 675 443 232 059478759 765 625
8 796 093 022 208 43 0.000 000 000 000 113686 837 7216160297393798828125

17592186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869689941 40625
35 184 372 088 832 45 0.000 000 000 000 028 421 709430 404 007 434 844 970703 125
70368 744 177 664 46 0.000000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140737488 355 328 47 0.000 000 000 000 007 105 427357601 001 858711 242 675 781 25

281 474976710656 48 0.000 000 000 000 003 552 713 678800 500 929 355 621 337890 625
562949953 421 312 49 0.000000000 000 001776356 839400 250 464 677 810668 945 312 5

1 125899 906 842 624 50 0.00000000000000088817841970012523233890533447265625
2251799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616169452 667236328125

4 503 599 627 370 496 52 0.000000 000000 000 222 044 604 925 031 308 084 726 333 618164062 5
9007199 254 740 992 53 0.000000 000 000 000 111022302462 515 654 042 363166809 082 03125

18014398509481984 54 0.000 000 000 000 000 055 511 151 231 257827021181 583 404 541 015625
36 028 797 018 963 968 55 0.000 000 000 000 000 027755 575 615 628913510590 7917022705078125

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814456755 295 395 851 135 253 90625
144115 188075855 872 57 0.000 000 000 000 000 006 938 893 903 907228377 647 697 925 567 626 953 125
288230376151711744 58 0.000 000 000 000 000 003 469446951953614188 823 848962 783 813 476562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976807094 411 924481 391 906738 281 25

1 152921 504606846976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 963 369 140 625 r·~' 2305 843 009213693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773602981 120347976684 570 312 5 U 4611686018427387904 62 0.000 000 000 000 000 000 216 840 434 497100886 801 490 560 173988342 285 15625
9223 372 036 854 775 808 63 0.000000 000 000 000 000 108 420 217 248 550 443 400 745 380 086 994 171142 578125

87013001

(. "' ..
'J

0-2 Numer:lcallnformation

(~~ E Powers of Integers

E.1 Powers of Sixteen in Decimal

16n n 16-n

1 0 0.10000 00000 00000 00000 x 10
16 1 0.62500 00000 00000 00000 x 10-1

256 2 0.39062 50000 00000 00000 x 10-2

4 096 3 0.24414 06250 00000 00000 x 10-3

65 536 4 0.15258 78906 25000 00000 x 10-4

1 048 576 5 0.95367 43164 06250 00000 x 10-6

16 777 216 6 0.59604 64477 53906 25000 x 10-7

268 435 456 7 0.37252 90298 46191 40625 x 10-8

4 294 967 296 8 0.23283 06436 53869 62891 x 10-9

68 719 476 736 9 0.14551 91522 83668 51807 x 10-10

1 099 511 627 776 10 0.90949 47017 72928 23792 x 10-11

17 592 186 044 416 11 0.56843 41886 08080 14870 x 10-13

281 474 976 710 656 12 0.35527 13678 80050 09294 x 10-14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10-15

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10-16

1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10-18

(,

MPX·32 Reference E·1

Powers of Ten in Hexadecimal

E.2 Powers of Ten in Hexadecimal
;(--,

L ""', "/

IOn n 10·n

1 0 1.0000 0000 0000 0000
A 1 0.1999 9999 9999 999A

64 2 0.28FS C28F SC28 FSC3 X 16-1

3E8 3 0.4189 374B C6A7 EF9E X 16-2

2710 4 0.68DB 8BAC 710C B296 X 16-3

1 86AO S 0.A7CS AC47 IB47 8423 X 16-4

F 4240 6 0.10C6 F7AO BSED 8D37 X 16-4

98 9680 7 0.IAD7 F29A BCAP 4858 X 16-5

SF5 Eloo 8 0.2AF3 1DC4 6118 73BF X 16-6

3B9A CAOO 9 0.44B8 2FAO 9B5A 52CC X 16-7

2 540B E400 10 0.6DF3 7F67 5EF6 EADF X 16-8

17 4876 E800 11 O.APEB FFOB CB24 AAFF X 16-9

E8 D4A5 1000 12 0.1197 9981 2DEA 1119 X 16-9

918 4E72 AOOO 13 0.IC25 C268 4976 81C2 X 16-10

5AP3 107A 4000 14 0.2D09 370D 4257 3604 X 16-11

3 8D7E A4C6 8000 15 0.480E BE7B 9D58 566D X 16-12

23 86F2 6FCl 0000 16 0.734A CASF 6226 FOAE X 16-13

163 4578 5D8A 0000 17 0.B877 AA3~ 36A4 B449 X 16-14

DFO B6B3 A764 0000 18 0.1272 5DDI D243 ABAI X 16-14

8AC7 2304 89E8 0000 19 0.1D83 C94F B6D2 AC35 X 16-15

E-2 Powers of Integers

F ASCII Interchange Code Set

Row Col a 2 3 4 5 6 7

Bil Positions

4 a 1-0 0 a a 0 a 0 a

lfr[
1- r-O a 0 a 1 1 1 1
2- f--O a 1 1 a a 1 1

3 a 1 a 1 a 1 a 1

0000 a NUl DLE SP 0 @ P , P
12-0-9-8-1 12-11-9-8-1 No Punch 0 8-4 11-7 8-1 12-11-7

0001 1 SOH DC1 ! 1 A Q a q
12-9-1 11-9-1 12-8-7 1 12-1 11-8 12-0-1 12-11-8

0010 2 STX DC2 . 2 B R b r
12-9-2 11-9-2 8-7 2 12-2 11-9 12-0-2 12-11-9

0011 3 ETX DC3 # 3 C S c s
12-9-3 11-9-3 8-3 3 12-3 0-2 12-0-3 11-0-2

0100 4 EOT DC4 $ 4 D T d I
9-7 9-8-4 11-8-3 4 12-4 0-3 12-0-4 11-0-3

0101 5 ENQ NAI< % 5 E U e u
0-9-8-5 9-8-5 0-8-4 5 12-5 0-4 12-0-5 11-0-4

0110 6 ACK SYN & 6 F V f v
0-9-8-6 9-2 12 6 12-6 0-5 12-0-6 11-0-5

(- 0111 7 BEL Em I 7 G W 9 w
0-9-8-7 0-9-6 8-5 7 12-7 0-6 12-0-7 11-0-6

1000 8 BS CAN (8 H X h x
11-9-6 11-9-8 12-8-5 8 12-8 0-7 12-0-8 11-0-7

1001 9 HT EM) 9 I Y i Y
12-9-5 11-9-8-1 11-8-5 9 12-9 0-8 12-0-9 11-0-8

1010 A LF SUB . : J Z j z
0-9-5 9-8-7 11-8-4 8-2 11-1 0-9 12-11-1 11-0-9

1011 6 VT ESC + ; K [k [
12-9-8-3 0-9-7 12-8-6 11-8-6 11-2 12-8-2 12-11-2 12-0

1100 C FF FS < L \ I , ,
12-9-8-4 11-9-8-4 0-8-3 12-8-4 11-3 0-8-2 12-11-3 12-11

1101 D CR GS - = M I m }
12-9-8-5 11-9-8-5 11 8-6 11-4 11-8-5 12-11-4 11-0

1110 E SO AS > N 1\ n -
12-9-8-6 11-9-8-6 12-8-3 0-8-6 11-5 11-8-7 12-11-5 11-0-1

1111 F SI us I ? 0 0 DEL
12-9-8-7 11-9-8-7 0-1 0-8-7 11-6 0-8-5 12-11-6 12-9-7

87013601

MPX·32 Reference F·1

ASCII Interchange Code Set

Some positions in the ASCII code chart may have different graphic representation on various devices as:

F·2

ASCII

[
I
A

Control Characters:

NUL -
SOH -
STX -
ETX -
EOT -
ENQ -
ACK -
BEL -
BS
HT
LF
VT
FF
CR
SO
SI
OLE -
DC1
DC2 -

Null
Start of Heading (CC)
Start of Text (CC)
End of Text (CC)
End of Transmission (CC)
Enquiry (CC)
Acknowledge (CC)
Bell (audible or attention signal)
Backspace (FE)
Horizontal Tabulation (punch card skip) (FE)
Line Feed (FE)
Vertical Tabulation (FE)
Form Feed (FE)
Carriage Return (FE)
Shift OUt
Shift In
Data Link Escape (CC)
Device Control 1
Device Control 2"

IBM 029

I
¢

I
>

DC3 -
DC4 -
NAK -
SYN
ETB -
CAN -
EM
SS
ESC -
FS
GS
AS
US
DEL -
SP
(CC)
(FE)
(IS)

Device Control 3
Device Control 4 (stop)
Negative Acknowledge (CC)
Synchronous Idle (CC)
End of Transmission Block (CC)
Cancel
End of Medium
Start of Special Sequence
Escape
File Separator (IS)
Group Separator (IS)
Record Separator (IS)
Unit Separator (IS)
Delete
Space (normally nonprinting)
Communication Control
Format Effector
Information Separator

87D13C02

ASCII Interchange Code Set

c

o

G IOP/MFP Panel Mode Commands

AS

AS=xxxxx.x.u

BAS

BASn=xxxxx.x.u

CLE

CRMD=xxxx.:ux.:uxxx
=.xxx.xxtXXXXXX

CS

CS=xxxxx.x.u

EA

EXEC

GPR

GPRn=xxxxxxxx

HALT

IPL

IPL=xxxx

IS

IS=xxxxxxxx

MA=xxxxxx
<ret>

MAV=xxxxxx
<ret>

MD=xxxxx.x.u
=xxxxxxxx
<ret>

MSGE

OVR

MPX-32 Reference

Clear address stop

Set address stop at address xxxxx.x.u

Read base registers

Write base register n (0-7) with xxxxxxxx

Clear memory

Load CRAM with xxxxxxx.:ux.:u
Load CRAM with data and increment address

Read control switches

Set control switches to xxxxxxxx

Read effective address

Execute CRAM

Read general puIpOsc registers

Write general purpose register n (0-7) with xxxxxxxx

Halt

IPL from default address

IPL from channeUsubaddress xxxx

Clear instruction stop

Set instruction stop at address .xxx:xxxxx

Read physical memory address location xxxxxx
Increment and read memory address

Read virtual memory address location xxxxxx
Increment and read memory address

Write memory data xxxxxxxx into last location addressed
Increment and write memory data xxxxxxxx
Increment and write previous data

Message between primary and secondary panels (lOP only)

Toggle clock override

G-1

IOP/MFP Panel Mode Commands

G·2

PC=.x:tD:U

PRIP

PSD

PSD=~

PSW

PSW-~

RS

RS=.no:xxxx

RST

RUN

SECP

STEP
<ret>

WS

@@C

@@P

(LF)

Notes:

Load program counter with address .x:tD:U

Set primary panel (master; lOP only)

Read program status doubleword (1 and 2)

Write program status word (2) with xx:o:xxu

Read program status word (1)

Write program status word (1) with xx:o:xxu

Clear read operand stop

Set read operand stop at address .no:xxxx

Reset

Run

Set secondary panel (master and slave; lOP only)

Instruction step
Continuation of instruction step

Clear write operand stop

Set write operand stop at address x.o:x.nu

Enter console mode

Enter panel mode

Repeat command

1. Press the return key «ret» after each command.

2. LOCK ON and LOCK OFF are not supported by the CRT panel.

Console Mode

To change from panel mode to console mode, enter @@C<ret>.

Upon receipt of the <ret> following the @@C command, the firmware moves the
cursor on the CRT to the extreme left margin of the next line.

To return to the panel mode, enter@@P<ret>. When the panel mode is selected, /I is
the prompt

IOP/MFP Panel Mode Commands

Ie' I)

c

H Standard Date and Time Formats

H.1 Description
With the advent of the new MPX-32 file system, proper maintenance of the system
date and time becomes more important than ever before as all file system resources
will be time stamped to aid in management. It is vital the date and time be kept in a
manner that is at once useful in this application and also convenient to convert into
other fonnats that the user might require.

System date and time are kept in standard binary fonnat. This fonnat consists of two
words: the first word contains the date and the second word contains the time. The
date is maintained as the number of days since January 1, 1960 and the time is
maintained as the binary count of system time units since midnight, adjusted to 100
microsecond granularity.

For the convenience of the user, monitor seIVice calls are provided to convert the date
and time between any of three standard fonnats. These are:

1. Binary Fonnat (described above)

2. B)1e Binary Fonnat

3. ASCII Fonnat (sometimes referred to as quad ASCII fonnat)

Byte binary format time consists of two words: the first word contains date
infonnation and the second word contains time information. In byte binary fonnat, the
date is kept as four distinct values instead of one. Byte 0 of the date word is the
binary century, byte 1 is the binary year in that century, byte 2 is the binary month
and byte 3 the binary day of the month. Time is kept in a similar manner with byte 0
being the hour, byte 1 the minute, byte 2 the second, and byte 3 the number of clock
ticks.

ASCII fonnat consists of four words of information. The first two words contain the
ASCII century, year, month, and day in successive halfwords. The second two words
contain the hour, minutes, seconds, and clock ticks in a similar fashion. In ASCII
fonnat, use of a 120-hertz clock can cause truncation of the clock tick fields, allowing
for only two ASCII digits.

MPX·32 Reference H·1

Date/Time Standard Formats

H.2 Date/Time Standard Formats ()
Binary

Date Time

Days since 1/1/60 Clock ticks since midnight

Word 1 Word 2

Byte Binary

Date Time

Bin Bin Bin Bin Bin Bin Bin Bin
Cent. Year Month Day Hour Min. Sec. Ints.

Word 1 Word 2

Quad ASCII

Date

Century Year Month Day

Wordl Word 2

Time

Hour Minute Second Interrupt

Word 3 Word 4

o
H-2 Standard Date and Time Formats

(

(

I Compressed Source Format

Compressed source files are blocked files that consist of 120 byte records. The last
record may be less than 120 bytes and has a data type code of 9F. The structure of a
compressed record is described below.

Each record contains 6 control bytes:

1 byte

1 byte

2 bytes

2 bytes

data type code, BF (9F indicates last record)

byte count, number of data bytes in record

checksum, halfword sum of data bytes

sequence number, record sequence number starting at zero

Data is recorded as follows:

1 byte

1 byte

n-bytes

blank count, number of blanks before data

data count, number of data bytes

actual ASCII data

. (this sequence is repeated until the end of a line is reached)

1 byte EOL character, FF

MPX-32 Reference 1-1/1-2

(.. '
- /

o

r J Map Block Address Assignments

Map Block # Page # Address Range
DecimaI!Hex Decimal/Hex Hexadecimal

00/00 00/00 00000 - 01FFF
01/01 04/04 02000 - 03FFF
02/02 08/08 04000 - 05FFF
03/03 12/OC 06000 - 07FFF
04/04 16/10 08000 - 09FFF
05/05 20/14 OAOOO - OBFFF
06/06 24/18 OCOOO - ODFFF
07/07 28/IC OEOOO - OFFFF
08/08 32/20 10000 - I1FFF
09/09 36/24 12000 - 13FFF
10/0A 40/28 14000 - 15FFF
lI/OB 44/2C 16000 - 17FFF
12/OC 48/30 18000 - 19FFF
13/00 52/34 lAOOO - lBFFF
14/0E 56/38 lCOOO - 10FFF
15/0F 6O/3C lEOOO - IFFFF

(16/10 64/40 20000 - 21FFF
17/11 68/44 22000 - 23FFF
18/12 72/48 24000 - 25FFF
19/13 76/4C 26000 - 27FFF
20/14 80/50 28000 - 29FFF
21/15 84/54 2AOOO - 2BFFF
22/16 88/58 2COOO - 20FFF
23/17 92/5C 2EOOO - 2FFFF
24/18 96/60 30000 - 31FFF
25/19 100/64 32000 - 33FFF
26/1 A 104/68 34000 - 35FFF
27/1B 108/6C 36000 - 37FFF
28/IC 112/70 38000 - 39FFF
29/10 116/74 3AOOO - 3BFFF
30/1E 120/78 3COOO - 30FFF
3I/IF 124/7C 3EOOO - 3FFFF
32/20 128/80 40000 - 41FFF
33/21 132/84 42000 - 43FFF
34/22 136/88 44000 - 45FFF
35/23 140/8C 46000 - 47FFF
36/24 144/90 48000 - 49FFF
37/25 148/94 4AOOO - 4BFFF

(

MPX-32 Reference J-1

Map Block Address Assignments

Map Block # Page # Address Range if
'- .. f"

DecimallHex Decimal/Hex Hexadecimal

38/26 152/98 4COOO - 4DFFF
39/27 156/9C 4EOOO - 4FFFF
40/28 160/AO 50000 - 51FFF
41/29 164/A4 52000 - 53FFF
42/2A 168/A8 54000 - 55FFF
43/2B 172/AC 56000 - 57FFF
44/2C 176/B0 58000 - 59FFF
45/2D 180/B4 5AOOO - 5BFFF
46/2E 184/B8 5COOO - 5DFFF
47/2F 188/BC 5EOOO - 5FFFF
48/30 192/CO 60000 - 61FFF
49/31 196/C4 62000 - 63FFF
50/32 200/C8 64000 - 65FFF
51/33 204/CC 66000 - 67FFF
52/34 208/00 68000 - 69FFF
53/35 212/04 6AOOO - 6BFFF
54/36 216/08 6COOO - 6DFFF
55/37 220/OC 6Eooo - 6FFFF
56/38 224/E0 70000 - 71FFF
57/39 228/E4 72000 - 73FFF
58/3A 232/E8 74000 - 75FFF
59/3B 236/EC 76000 - 77FFF
6O/3C 240/F0 78000 - 79FFF
61/3D 244/F4 7 AOOO - 7BFFF
62/3E 248/F8 7COOO - 7DFFF
63/3F 252/FC 7EOOO - 7FFFF

Extended Memory 128KW to 256KW - IB
64/40 256/100 80000 - FFFFF

Extended Memory 256KW to 384KW - 1B
128/80 512/200 100000 - 17FFFF

Extended Memory 384KW to 512KW - 1B
192/CO 768/300 180000 - IFFFFF

Extended Memory 512KW to 1024KW - IB
256/100 1024/400 200000 - 3FFFFF

Extended Memory 1024KW to 2048KW - 1B
512/200 2048/800 400000 - 7FFFFF

Extended Memory 2048KW to 4096KW - 1B
1024/400 4096/1000 800000 - FFFFFF

(-)

J-2 Map Block Address Assignments

(

(/

K Control Switches

While rebooting the system, various initialization processes can be inhibited or
enabled by setting the appropriate control switches. The switch assignments are:

Switch

o
1

2

3

4

5
6

7

8

9

Function if Set

Inhibits volume clean-up by J.MOUNT.

SYSINIT enters the system debugger before processing patches.

Inhibits patch processing (see Reference Manual, Volume ill,
Chapter 9, Entry Conditions).

Inhibits terminal initialization.

Inhibits accounting functions including the M.KEY, M.PRJCT,
M.ACCNT, and M.ERR files.

Inhibits processing of the sequential task activation table at IPL time.

If J .MOUNT encounters an invalid resource descriptor due to
an invalid resource descriptor type field or space definition,
it branches and links to the system debugger (if present) with
R2 pointing to the resource descriptor.

J.MOUNT prereads the file space bit map (SMAP) or the resource
descriptor allocation bit map (DMAP). J .MOUNT will not perform file
overlap protection.

Delete spooled output files instead of resubmitting them for processing.

Inhibits activating LOADACS during IPL or RESTART operations.

10 Enables faster memory initialization by checking only one location
per map block to determine if that map block is present. It is not
recommended that this switch be set on the first IPL after power up.

11 Inhibits initialization of the memory descriptor table (MDT).

12 For RMSS: inhibits booting of nodes while J.BOOT executes.

The control switches can be accessed by the console. The proper time to set the
switches is while the system is waiting for the date and time to be entered. To set, for
example, switch 3, the following must be entered on the IOP/MFP console:

ENTER DATE AND TIME: @@P
/ /CS=lOOOOOOO Tenninal Initialization Inhibited
//@@C
<CR>
INVALID DATE FORMAT=MM/DD/XX
ENTER DATE AND TIME:

Refer to the CONCEPT 32/2000 Operations manual for instructions for setting control
switches on the Amiga console.

During power up, control switches are prezeroed if the proper firmware revision level
has been installed. Power up without prezeroing can cause unexpected system
responses due to incorrect control settings.

All control switch settings are preserved during system reboots not involving system
power up (i.e., online restart and IPL).

MPX·32 Reference K·1/K·2

(L Data Structures

L.1 Introduction

This appendix contains some of the more frequently used data structures. Below is a
list of those structures.

Caller Notification Packet (CNP)

Controller Definition Table (COT)

Dispatch Queue Entry (DQE)

File Control Block (FCB). 16 Word

File Control Block (FCB). 8 Word

File Control Block (FCB). High Speed Data

File Pointer Table (FPf)

Parameter Task Activation Block (Pf ASK)

TSM Procedure Call Block (PCB)

Pathname Blocks (pNB)

Post Program-Controlled Interrupt Notification Packet (PPCI)

Parameter Receive Block (pRB)

Parameter Send Block (PSB)

Resource Create Block (RCB)

Resource Identifiers (RID)

Resource Logging Block (RLB)

Resource Requirement Summary (RRS) Entries

Receiver Exit Block (RXB)

Type Control Parameter Block (TCPB)

Unit Definition Table (UDT)

MPX-32 Reference L-1

Caller Notification Packet (CNP)

L.2 Caller Notification Packet (CNP)

l·2

The caller notification packet (CNP) is the mechanism used by the Resource
Management Module (H.REMM) and the Volume Management Module (H.VOMM)
for handling abnormal conditions that may result during resource requests. All or part
of this structure can be used by a particular service being called. The CNP must be
on a word boundary.

o 7 8 15 16 23 24 31

Word 0 Time-out value (CP.TIMO)

1 Abnormal return address (CP.ABRET)

2 Option field (CP.OPTS). See Note 1. I Status field (CP.STAT). See Note 2.

3-4 Reserved (See Note 3.)

5 Automatic open FCB address (CP.FCBA)

Notes:

1. A bit sequence and/or value used to provide additional information that can be
necessary to fully define the calling sequence for a particular service.

2. A right-justified numeric value identifying the return status for this call.

3. Refer to the individual system service description in the MPX-32 Reference
Manual Volume I for interpretation of these words.

Data Structures

Controller Definition Table (COT)

L.3 Controller Definition Table (COT)

The controller definition table (COT) is a system resident structure used to identify
information required by handlers and the I/O processor for a specific controller. The
COT is built by the SYSGEN process, one for each controller configured on the
system. The COT identifies devices (DOTs) associated with the controller, the
handler address associated with the controller, and defines other pertinent controller
information.

o 7 8 15 16 23 24

String forward address (CDT.FIOQ)

String backward address (CDT.BIOQ)

31

Word 0

1

2 Link priority Number of Class (CDT.CLAS). Flags (CDT.FLG2).
(CDT .LPRI). entries in list See Note 3. See Note 4.
See Note 1. (CDT.IOCT).

See Note 2.

3 CDT index (CDT.INDX) Device type code Interrupt priority
(CDT.DTC) level
See Note 5. (CDT.IPL)

4 Number units Number requests Channel number Subaddress of
on controller outstanding (CDT.CHAN) first device
(CDT.NUOC) (CDT.IORO) (CDT. SUB A)

5 Program number Interrupt handler address (CDT.SlHA) or controller
if reserved information block (CDT.CIF)
(CDT.PNRC)

6 Flags UDT address of first device on controller
(CDT.FLGS). (CDT.UDTA)
See Note 6.

7 I/O status TI address (CDT.TIAD)
(CDT.IOSn. or
See Note 7. SI address if extended I/O (CDT.SIAD)

8

9-23

UDT address unit 0* (CDT.UTO)

UDT address unit 1 * (CDT.UTl) through
UDT address unit 15* (CDT.U1F)

*Initialized by SYSGEN

Notes:

1. Always zero (head cell)

2. Number of entries in list (zero if none)

MPX-32 Reference L-3

Controller Definition Table (CDT)

L-4

3. Values in CDT.a..AS are assigned as follows:

Value Meaning
X'OD' TCW type with extended addressing capability
X'OE' TCW type
X'OP' extended I/O

4. Bits in CDT.FLG2 are assigned as follows:

Bit Meaning if Set
o SCSI device (COT.SCSI)

1-7 reselVed for future use

5. Por example, 01 for any disk, 04 for any tape, etc. Valid device type codes are
listed in Appendix A.

6. Bits in CDT.FLGS are assigned as follows:

~
o
1

2
3

4
5

6
7

Meaning if Set
extended I/O device (CDT.PCLS)
I/O outstanding (set by handler, reset by 10CS)
(CDT.IOU1)
GPMC device (COT.GPMC)
initialization (INC) needs to be performed for this
controller (CDT.PINT)
D-class (CDT.xGPM)
used only when 10Qs are linked to the COT. Set when
SIO is accepted by the controller. Reset when 10Q is
unlinked from the CDT or when I/O is reported complete
to 10CS in the case of operator intelVention type errors
(CDT.IOU5).
lOP controller (CDT.IOP)
controller malfunction (CDT.MALF)

7. Bits in CDT.lOST are assigned as follows:

~
o
1
2
3
4
5

6
7

Meaning if Set
IOQ linked to UDT (CDT.NIOQ)
multiplexing controller (CDT.MUXC)
use standard XIO interface
16MB GPMC (CDT.xGPS)
cache controller (COT.CAC)
H.P8XIO has determined if the controller is
pre-8512-2 or not (CDT.CKFL)
controller not pre-8512-2 (CDT.FLOW)
reselVed for FMS

Data Structures

c

(

(

(~

Dispatch Queue Entry (DQE)

L.4 Dispatch Queue Entry (DQE)

The dispatch queue entry (DQE) contains all of the core-resident infonnation required
to describe an active task to the system. It is always linked to the CPU scheduler
state chain that describes the current execution status of the associated task.

Word No. Byte
(Decimal) (Hex) o 7 8 15 16 23 24 31

0 0 DQE.SF

1 4 DQE.SB

2 8 DQE.CUP DQE.BUP DQE.IOP DQE.US

3 C DQE.NVM/DQE.T AN

4-5 10 DQE.ON

6-7 18 DQELMN

8-9 20 DQE.PSN

10 28 DQE.USW

11 2C DQE.USHF

12 30 DQE.MSD

13 34 DQE.KCTR

14 38 DQE.MMSG DQE.MRUN DQE.MNWI DQE.GQFN

15 3C DQE.UF2 DQE.IPUF DQE.NWIO DQE.SOPO

16 40 DQE.CQC

17 44 DQE.SH DQE.SHF DQE.TIFC DQE.RILT

18 48 DQE.UTSI

19 4C DQE.UTS2

20 50 DQE.DSW

21 54 DQE.PRS

22 58 DQE.PRM

23 5C Reserved DQE.TSKF DQE.MSPN DQE.MST

24 60 DQE.PSSF

25 64 DQE.PSSB

26 68 DQE.PSPR DQE.PSCT DQE.ILN DQE.RESU

27 6C DQE.TISF

28 70 DQE.TISB

29 74 DQE.TIPR DQE.TICT DQE.SWIF DQE.UBIO

30 78 DQE.RRSF

31 7C DQE.RRSB

32 80 DQE.RRPR DQE.RRCT DQE.NSCT

33 84 DQE.MRSF

34 88 DQE.MRSB

MPX-32 Reference L-5

Dispatch Queue Entry (DQE)

Word No. Byte
(Decimal) (Hex)

35 8C
36 90
37 94

38-40 98
41 A4

42-43 A8
AC

44-51 BO

52 DO

53 D4

54 D8

55 DC

56 EO

57 E4

58-63 FC

Byte
(Hex) Symbol

0 DQE.SF

4 DQE.SB

8 DQE.CUP

DQE.BUP

DQE.IOP

L·6

o 7 8 15 16 23 24 31

DQE.MRPR DQE.MRCT DQE.NWRR DQE.NWMR

DQE.RTI DQE.NWLM DQE.ATI Reserved

DQE.SAlR/DQE.TAD

DQE.ABC

DQE.TSAP

DQE.SRIDIDQE.PGOL

DQE.SRID/DQE.PGOC DQE.SRID/Reserved

DQE.CDIR/DQE.CVOL

DQE.GID Reserved DQE.ASH

DQE.ACX2

DQE.MRQ DQE.MEM DQE.MEMR

DQE.MRT Reserved DQE.RMMR

DQE.MAPN DQE.CME

DQE.CMH DQE.CMS

Reserved

Description

String forward linkage address;
Field length = IW;
Standard linked list format;
Contains address of next (top-to-bottom) entry in chain.

String backward linkage address;
Field length = IW;
Standard linked list format;
Contains address of next (bottom-to-top) entry in chain.

Current user priority;
Standard linked list format;
This priority is adjusted for priority migration based on
situational priority increments. Situational priority
increments are based on the base level priority
(DQE.BUP) of the task.

Base priority of user task;
Field length = IB;
Used by scheduler to generate DQE.CUP (current priority)
based on any situational priority increments.

I/O priority;
Field length = IB;
Initially set from base priority;
Used for I/O queue priority.

Data Structures

(. -'\
. ./

Dispatch Queue Entry (DQE)

("~
Byte
(Hex) Symbol DescriQtion

DQE.US State chain index for this user task;
Field length = 1B;
Range: zero through X'lE';
Indicates currem state of this task, such as ready-to-run
priority, I/O wait, resource block, etc.

Label Index Task descriQtion

FREE 00 DQE is available (in free list)
PREA 01 activation in progress
CURR 02 currently executing task or is pre-empted

time-distribution task in quantum stage one
SQRT 03 ready to run (priority level 1 to 54)
SQ55 04 ready to run (priority level 55)
SQ56 05 ready to run (priority level 56)
SQ57 06 ready to run (priority level 57)
SQ58 07 ready to run (priority level 58)
SQ59 08 ready to run (priority level 59)
SQ60 09 ready to run (priority level 60)
SQ61 OA ready to run (priority level 61)
SQ62 OB ready to run (priority level 62)
SQ63 OC ready to run (priority level 63)
SQ64 OD ready to run (priority level 64)

(SWTI OE waiting for terminal input
SWIO OF waiting for I/O
SWSM 10 waiting for message complete
SWSR 11 waiting for run request complete
SWLO 12 waiting for low speed output
SUSP 13 waiting for timer expiration, resume

request, or message interrupt
RUNW 14 waiting for timer expiration, or run request
HOLD 15 waiting for a continue request
ANYW 16 waiting for timer expiration, no-wait I/O

complete, no-wait message complete, no-wait
run request complete, message interrupt,
or break interrupt

SWDC 17 waiting for disk space
SWDV 18 waiting for device allocation
SWFI 19 waiting for file system
MRQ lA waiting for memory
SWMP 1B waiting for memory pool
SWGQ lC waiting in general wait queue
CIPU ID current IPU task in execution
RIPU IE IPU requesting state

MPX-32 Reference L-7

Dispatch Queue Entry (DQE)

Byte c::
(Hex) Symbol Description

C OQE.NUM OQE entry number;
Field length = IB;
Used as an index to OQE address table (OAT);
Range: one through "N"(for MPL index compatibility);
Used by scheduler to set C.PRNO to reflect
the currently executing task. This value is also
used as the MPL index. It is used by the scheduler
to initialize the CPIX in the PSO before loading the
map for this task.

OQE.TAN Task activation sequence number;
Field length = 1 W;
This number is assigned by the activation service
and uniquely identifies a task.

Note: The most significant byte of this value
is the OQE entry number and is accessible as
OQE.NUM.

10 OQE.ON Owner name;
Field length = 10.

18 OQE.LMN Load module name;
Field length = 10.

20 OQE.PSN Pseudonym associated with task;
Field length = 10;
This parameter is an optional argument accepted by the
pseudo task activation service. It can be used to
uniquely identify a task within a subsystem, such as
multi batch. It contains descriptive infonnation useful
to the system operator or to other tasks within a
subsystem. Conventions used to generate a pseudonym
are detennined by the associated subsystem.
A system-wide convention should be used to establish
pseudonym prefix conventions to avoid confusion
between subsystems.

28 OQE.USW User status word;
Field length = 1 W.

2C DQE.USHF Scheduling flags;
Field length = 1 W;
Used by the scheduler to indicate special status
conditions.

(.~\ .J

L-8 Data Structures

Dispatch Queue Entry (DQE)

(Byte
(Hex) Symbol Description

Bit Meaning When Set

00 load protection image requested (DQE.LPI)
01 single copy load module (DQE.SING)
02 task is indirectly connected (DQE.INDC)
03 task is privileged (DQE.PRIV)
04 task has message receiver (DQE.MSGR)
05 task has break receiver (DQE.BRKR)
06 task quantum stage one expired (DQE.QSIX)
07 task quantum stage two expired (DQE.QS2X)
08 in-swap I/O error (DQE.INER)
09 wait I/O request outstanding (DQE. WIOA)
10 wait I/O complete before in-progress notification

(DQE.WIOC)
11 inhibit message pseudointerrupt (DQE.INMI)
12 batch origin task (DQE.BAOR)
13 running in TSM environment (DQE.TMOR)
14 task abort in progress (DQE.ABRT)
15 task is in pre-exit state (DQE.PRXT)
16 run receiver mode (DQE.RRMD)
17 wait send message outstanding (DQE. WMSA)
18 wait message complete before link to wait

(/
queue (DQE. WMSC)

19 wait mode send run request outstanding
(DQE.WRRA)

20 wait mode send run request complete before
link to wait queue (DQE.WRRC)

21 debug associated with task (DQE.DBA T)
22 real-time task (DQE.RT)
23 time-distribution task initial dispatch (DQE.TDID)

Set by:
• H.ALOCI on activation of TID task .
• S.EXEC51 when task is linked to wait state.
• H.EXEC7 on completion of inswap or other

memory request.
Reset by:
• S.EXEC20 on initial dispatch of task after

activation
• Wait state tennination
• In-swap

24 task delete in progress (DQE.DELP)
25 task abort (with abort receiver) in progress

(DQE.ABRA)
26 abort receiver established (DQE.ABRC)
27 asynchronous abort/delete inhibited

(DQE.ADIN)
28 asynchronous delete deferred (DQE.ADDF)
29 task is inactive (DQE.INAC)

(~ 30 asynchronous abort deferred (DQE.AADF)
,< 31 activation timer in effect (DQE.ACIT)

MPX·32 Reference L·9

Dispatch Queue Entry (DQE)

L-10

Byte
(Hex)

30

34

38

Symbol

DQE.MSD

DQE.KCfR

DQE.MMSG

DQE.MRUN

DQE.MNWI

DQE.GQFN

Description

Physical address of MIDL in TSA;
Field length = 1 W.

Kill/abort timer;
Field length = 1 W.

Maximum number of no wait messages
allowed to be sent by this task;
Field length = lB.

Maximum number of no-wait run requests allowed
to be sent by this task;
Field length = lB.

Maximum number of no-wait I/O requests allowed
to be concurrently outstanding for this task;
Field length = I B.

Contains the generalized queue (SWGQ)
function code;
Field length = IB;
Function codes are queued as follows:

Code Meaning

01 volume resource (QVRES)
02 ART space (QART)
03 mount in progress (QMNT)
04 resourcemark lock (QRSM)
05 reserved for eventmark (QEVM)
06 read wait for writer (QGEN)
07 shared memory table (QSMT)
08 synchronous resource lock (QSRL)
09 mounted volume table (QMVT)
OA dual-port lock (QDPLK)
OB suspend dual-port lock (QSUSP)
OC debug wait (QDBGW)
OD remote message area (QMSG)
OE remote message event (QSER)
OF remote allocate area (QASMP)
10 remote deallocate area (QDSMP)
11 remote abort area (QAMSG)
12 remote enable/disable area (QOMSG)
13 wait for TSM (QWTSM)

Data Structures

Byte
(Hex)

3C

MPX-32 Reference

Symbol

DQE.UF2

DQE.lPUF

DQE.NWIO

DQE.SOPO

Dispatch Queue Entry (DQE)

Description

Scheduling flags;
Field length = lB;

Bit Meaning if Set

o enable debug mode break. (DQE.EDB)
1 generalized wait queue time-out (DQE.GQTO)
2 task interrupts are synchronized (DQE.SYNC)
3 task is part of a job (DQE.JOB)
4 ACX-32 task flag (DQE.ACX)
5 special arithmetic function requested (DQE.AF)
6 reserved
7 run request tenninated (DQE.RRT)

IPU flag byte;
Field length = IB;

Bit Meaning if Set

IPU inhibit flag (DQE.IPUH)
IPU bias flag (DQE.IPUB)
CPU only (DQE.IPUR)

o
1
2
3 OS execution direction flag (set when PSD

is in user area) (DQE.OSD)
base register task (DQE.BASE)
Ada task (DQE.ADA)

4
5
6
7

PTRACE debugger task (DQE.PDBG)
H.PTRAC task association control bit
(DQE.PTRA)

Number of no-wait I/O requests;
Field length = lB.

Priority bias only swapping control flags;
Field length = lB;

Bit Meaning if Set
o SWGQ state priority-based swapping

(DQE.GQPO)
1 swap inhibit due to bit map access

(DQE.BMAP)
2 inhibit swap device while accessing MDT

(DQE.MDTA)
3 user swap inhibit flag (DQE. USWI)
4 user swap on priority only flag (DQE.USPO)

5-7 reserved

L-11

Dispatch Queue Entry (DQE)

Byte C
(Hex) Svmbol Description

40 DQE.CQC Current quantum count;
Field length = 1 W;
Used by the scheduler to accumulate elapsed execution
time for the task to compare the level unique
stage one and stage two time-distribution values.

44 DQE.SH Used by J.SWAPR to swap shadow memory;
Field length = lB.

DQE.SHF Shadow memory flag;
Field length = 1B;

Bit Meaning if Set

0 task requests shadow memory (DQE.SHAD)
1 IPU shadow memory requested (DQE.SHI)
2 IPU/CPU Common Shadow Memory

requested (DQE.SHB).

DQE.TIFC Timer function code;
Field length = 1B;

Value Meaning

00 not active
01 request interrupt
02 resume program from suspend (SUSP)

queue
03 resume program from any-wait (ANYW)

queue
04 resume program from run-request-wait

(RUNW) queue
05 resume program from generalized

(SWGQ) queue
06 resume program from peripheral device

(SWDV) queue
07 resume program from disk space (SWDC)

queue

DQE.RILT Request Interrupt (RI) level for timer;
Field length = 1B;
Identifies the interrupt level to be requested upon
timer expiration.

48 DQE.UTSI User timer slot word 1;
Field length = 1W;
Current timer value;
Contains negative number of timer units before
time out

0
L-12 Data Structures

Dispatch Queue Entry (DQE)

("
Byte
(Hex) Symbol DescriQtion

4C DQE.UTS2 User timer slot word 2;
Field length = 1 W;
Reset timer value;
Contains negative number of timer units;
Used to reset the current timer value when
it expires.

50 DQE.DSW Base mode debugger status word (PCALL);
Field length = 1 W.

54 DQE.PRS Peripheral requirement specification;
Field length = 1 W;

Bit DescriQtion

0-7 reserved
8-15 device type code
16-23 channel address
24-31 subchannel address or contains first

word of SWGQ ID.

58 DQE.PRM Peripheral requirements mask;

("
Field length = 1 W;

Value Meaning

X 'OOFFOOOO , any device of this type code
X'OOFFFFOO' any device of the specified type

code on the specified channel
X'OOFFFFFF' the specified device as described

by type code, channel, and
subchannel address, or contains
second word of SWGQ ID.

5C Reserved Field length = IB

DQE.TSKF Task flags;
Field length = IB;

Bit Meaning if Set

0 real-time accounting disabled
(DQE.RTAC)

1-2 reserved for RMSS
3 task is running with MPX-32 mapped out

(DQE.MAPO)
4 reserved for MPX-32
5 task is demand paged (DQE.DPG)
6 inhibit page out (DQE.NPGO)

(
7 reserved

MPX·32 Reference L-13

Dispatch Queue Entry (DQE)

L-14

Byte
(Hex)

60

64

68

Symbol

DQE.MSPN

DQE.MST

DQE.PSSF

DQE.PSSB

DQE.PSPR

DQE.PScr

DQE.lLN

DQE.RESU

Description

TSA maps required to span MIDLs and MEMLs;
Field length = lB.

Static memory type specification;
Field length = IB;

Value Memory Class

01 E
02 H
03 S
04 HI
05 H2
06 H3

This field is used to specify the type
of memory required for in-swap.

Pre-emptive system seIVice head cell string
fOIWard linkage address;
Standard head cell fonnat;
Field length = I W;
Contains address of next (top-to-bottom) entry in chain.

Pre-emptive system seIVice head cell string
backward linkage address;
Standard head cell fonnat;
Field length = IW;
Contains address of next (bottom-to-top) entry in chain.

Pre-emptive system seIVice head cell dummy
priority (always zero);
Standard head cell fonnat;
Field length = lB.

Pre-emptive system seIVice head cell number of
entries in list;
Standard head cell fonnat;
Field length = lB.

Interrupt level number;
Field length = IB;
Identifies associated interrupt level for interrupt
connected tasks.

Reserved usage index;
Field length = lB.

Data Structures

C· -"', . I

o

Dispatch Queue Entry (DQE)

('-
Byte
(Hex) Symbol Description

6C DQE.TISF Task interrupt head cell string fOlward linkage address;
Standard head cell fonnat;
Field length ::: I W;
Contains address of next (top-to-bottom) entry in chain.

70 DQE.TISB Task interrupt head cell string backward linkage address;
Standard head cell fonnat;
Field length = IW;
Contains address of next (bottom-to-top) entry in chain.

74 DQE.TIPR Task interrupt head cell dummy priority (always zero);
Standard head cell fonnat;
Field length = lB.

DQE.TICT Task interrupt head cell number of entries in list;
Standard head cell fonnat;
Field length = lB.

DQE.SWIF Swapping inhibit flags;
Field length = IB;

Bit Task Meaning if Set

0 resident (DQE.RESP)

(- I locked in memory (DQE.LKIM)
2 unbuffered I/O in progress (DQE.IO)
3 outswapped (DQE.OTSW)
4 leaving system (DQE.TL VS)
5 forced unswappable during tenninal output

(DQE.FCUS)
6 forced unswappable because swap file has

not been allocated for it (DQE.FCRS)
7 imbedded in the operating system

(DQE.INOS)

DQE.UBIO Number of unbuffered I/O requests currently outstanding;
Field length = lB.

78 DQE.RRSF Run receiver head cell string forward linkage address;
Standard head cell fonnat;
Field length = IW;
Contains address of next (top-to-bottom) entry in chain.

7C DQE.RRSB Run receiver head cell string backward linkage address;
Standard head cell fonnat;
Field length = IW;
Contains address of next (bottom-to-top) entry in chain.

80 DQE.RRPR Run receiver head cell dummy priority (always zero);
Standard head cell fonnat;
Field length = lB.

("
,

MPX-32 Reference L-15

Dispatch Queue Entry (DQE)

L-16

Byte
(Hex)

84

88

8C

90

Symbol

DQE.RRCf

DQE.NSCf

DQE.MRSF

DQE.MRSB

DQE.MRPR

DQE.MRCf

DQE.NWRR

DQE.NWMR

DQE.RTI

Description

Run receiver head cell number of enuies in list;
Standard head cell fonnat;
Field length = lB.

Number of map blocks outswapped;
Field length = 1H.

Message receiver head cell suing forward
Linkage address;
Standard head cell fonnat;
Field length = 1W;
Contains address of next (top-to-bottom) entry in chain.

Message receiver head cell suing backward
Linkage address;
Standard head cell fonnat;
Field length = 1W;
Contains address of next (bottom-to-top) entry in chain.

Message receiver head cell dummy priority (always zero);
Standard head cell fonnat;
Field length = lB.

Message receiver head cell number of enuies in list;
Standard head cell fonnat;
Field length = lB.

Number of no-wait mode run requests outstanding;
Field length = lB.

Number of no-wait mode message requests outstanding;
Field length = lB.

Requested task interrupt flags;
Field length = lB;

Bit Meaning if Set

o reserved
1 priority one end action request. Used for

pre-emptive system services. (DQE.EAlR)
2 debug break request (DQE.DBBR)
3 user break request (DQE.UBKR)
4 priority two end action request (DQE.EA2R)
5 message interrupl.request (DQE.MSIR)

6-7 reserved

Data Structures

o

0·.·.\ • J

Dispatch Queue Entry (DQE)

("
Byte
(Rex) Symbol Description

DQE.NWLM No-wait run request limit.
Field length = lB.

DQE.ATI Active task interrupt ftags;
Field length = lB;

Bit Meaning if Set

0 reserved
1 priority one active end action (DQE.AEAI)
2 active debug break (DQE.ADM)
3 active user break (DQE.AUB)
4 priority two active end action (DQE.AEA)
5 active message interrupt (DQE.AMI)

6-7 reserved

Reserved Field length = lB.

94 DQE.SAIR System action task interrupt request;

Bit Meaning if Set
0 request for delete of this task (DQE.DELR)
I reserved

(2 hold task request (DQE.HLDR)
3 abort task request (DQE.ABTR)
4 exit task request (DQE.EXTR)
5 suspend task request (DQE.SUSR)
6 run receiver mode request (DQE.RRRQ)
7 reserved

DQE.TAD TSA address (logical);
Field length = 1 W;
Byte zero contains DQE.SAIR.

98 DQE.ABC Abort code;
Field length = 3W.

A4 DQE.TSAP Physical address of the TSA

A8-AC DQE.SRID If DQE.DPG is reset;
Used swap space linked list;
Field length = 2W.

DQE.PGOL If DQE.DPG is set;
Forward pointer to MPTL (MAP.SF);
Field length = lRW
Backward pointer to MPTL (MAP.SB)
Field length = lRW

DQE.PGOC Number of pages queued for pageout
Field length = lRW

(~ Reserved Field length = lRW

MPX-32 Reference L-17

Dispatch Queue Entry (DQE)

L-18

Byte
(Hex)

BO

DO

D1

D2

D4

D8

DC

Symbol

DQE.CDIR

DQE.CVOL

DQE.GID

Reserved

DQE.ASH

DQE.ACX2

DQE.MRQ

DQE.MEM

DQE.MEMR

DQE.MRT

Reserved

DQE.RMMR

Description

Load module RID at activation;
Field length = 8W.

Current working volume at activation;
Field length = 8W.

Group swap identification;
Field length = lB.

1 Byte

Number of shadow memory blocks currently allocated
Field length = 1 H.

Advance communication word;
Field length = 1W.

Memory request double word;
Reserved field length = lB.

Type of memory requested;
Field length = IB;

Value Memory Oass

01 E
02 H
03 S

Number of memory blocks required;
Field length = I H.

Memory request type code;
Field length = IB;

Value Meaning

00 in-swap only
01 preactivation request
02 activation request
03 memory expansion request
04 IOCS buffer request
05 shared memory request
06 system buffer request
07 release swap file space

If DQE.MRT equals 05, the next three bytes will
contain the address of the shared memory table entry.

Field length = lB.

Map register for requested memory;
Field length = I H.

Data Structures

,,- " (.Ii

'c'/

Dispatch Queue Entry (CQE)

(C
Byte
(Hex) Symbol Description

EO DQE.MAPN Inclusive span of maps in use;
Field length = tH.

DQE.CME Number of swappable class E map blocks
currently allocated;
For resident tasks, if not zero, reflects the
total number of map blocks in use.
Field length = tH.

E4 DQE.CMH Number of swappable class H map
blocks currently allocated;
For resident tasks, if not zero, reflects the
total number of map blocks in use.
Field length = 1 H.

DQE.CMS Number of swappable class S map blocks
currently allocated;
For resident tasks, if not zero, reflects the
total number of map blocks in use.
Field length = t H.

E8 Reserved Reserved for MPX-32

("':

MPX·32 Reference L·19

File Control Block (FCB), 16 Word

L.S File Control Block (FCB), 16 Word

L-20

Wool 0 7 8 12 13 31

1

3

4

5

6

7

8

9

10

11

12

13

14

Logical file code (FCB.LFC)

~--~ m-__

~~

No-wait I/O nonnal end-action service address (FCB.NWOK)

No-wait I/O error end-action service address (FCB.NWER)

15 Number of
buffers
(FCB.BBN)

Address of blocking buffer (FCB.BBA)

Shaded areas are set by the system. TlFCB
Word 0

Bit 0 Reserved

Bits 1-7 Operation code (FCB.OPCD) - type of function requested of the device
handler. This field is set by lacs as a function of the executed service.

Bits 8-31 Logical file code (FCB.LFC) - any combination of three ASCII
characters is allowed. The LFC must match the previously assigned LFC
of the I/O resource being accessed.

Word 1

Bits 0-31 Reserved

Word 2

Bits 0-7 General control flags (FCB.GCFG) - these eight bits enable the user to
specify the manner in which an operation is to be performed by lacs. 1(' ~ .. :

The interpretation of these bits is shown as follows: .Y

Data Structures

File Control Block (FeB), 16 Word

(
Meaning

Bit if Set Definition
0 NWT 10CS returns to the user immediately after the

I/O operation is queued. If reset, 10CS exits to the
calling program only when the requested operation
has been completed.

1 NER error processing is not performed by either the device
handler or 10CS. An error return address is ignored
and a nonnal return is taken to the caller; however,
the device status is posted in the FCB unless bit
3 is set. If reset, nonnal error recovery is
attempted. Normal error processing for disk and
magnetic tape is automatic error retry. Error
processing for unit record devices except the
system console is accomplished by 10CS typing
the message INOP to the console, which allows
the operator to retry or abort the I/O operation.
If the operator aborts the I/O operation, or if
automatic error retry for disk or magnetic tape is
unsuccessful, an error status message is typed
to the console and the error return address is
taken if provided. Otherwise, the task is aborted.

2 OF! data formatting is inhibited. Otherwise, data

(/
fonnatting is perfonned by the appropriate device
handler. See Table L-l for more explanation.

3 NST device handlers perfonn no status checking and no
status infonnation is returned. All I/O appears
to complete without error. Otherwise, status
checking is performed and status infonnation
is returned as necessary.

4 RAN file accessing occurs in the random mode.
Otherwise, sequential accessing is performed.
Note: This bit is set if word 2 bit 12 is set.

S reserved (M.FILE)

6 EXP must be 1 for 16-word FCB.

7 IEC this bit is reserved for internal 10CS use.

Bits 8-12 Special Control Specification (FCB.SCFG). - This field
contains device control specifications unique to certain devices.
Interpretation and processing of these specifications are perfonned
by the device handlers. A bit setting is meaningful only when a
particular type of device is assigned as indicated in Table L-l.

Bits 13-31 reserved for extended control specifications

Meaning
Bit if Set Definition
13 RXON software read flow control required

C for 8-Line ACM (FCB.RXON)

MPX·32 Reference L·21

File Control Block (FCB), 16 Word

Device Bit 2=0

Line mterpret first
Printer character as
(LP) carnage

control

Discs, Report EOF if
(DM,DF, X'OFEOFEOF'
FL) encountered

in word 0 of
1st block
during read
of unblocked
file

M.READ
8-Line
Asynchronous Perform
Communications special
Multiplexer character
(TY) formatting

M.WRIT

mterpret first
character as
carnage
control

Device Bit 10=0

Line Printer (LP) Reserved

Discs,
(DM,DF,
FL)

M.READ
8-Line
Asynchronous (If bit 2=0)
Communications convert lower
Multiplexer case
(TY) character

to upper case

M.WRIT

Continued on next page

L·22

Bit 2=1

Table L-1
Special Control Flags

Bit 8=0 Bit 8=1 Bit 9=0

Interpret first Form No form
character as control control
data
See bit 8

X'OFEOFEOF'
in word 0
not
recognized
as EOF

M.READ M.READ M.READ M.READ

No special ASCII control ASCII control Echo by
character passed as character controller
formatting data detect

M.WRIT SVC 1,X'3E' SVC 1,X'3E' M.WRIT

mterpret first Stop Start Normal
character as transmitting transmitting write
data break break

Bit 10=1 Bit 11=0 Bit 11=1 Bit 12=0

Reserved Reserved Reserved Reserved

Normal read

M.READ M.READ M.READ M.READ

Inhibit No special Special Do not purge
conversion character character type ahead

detect detect buffer

M.WRIT M.WRIT M.WRIT M.WRIT

Normal write Write with
input sub-
channel
monitoring
plus software
flow control

Bit 9=1

M.READ

No echo by
controller

M.WRIT

Initialize
device (load
UART
parameters)

Bit 12=1

Reserved

Read with byte
granularity
(word 2 bit
4 set)

M.READ

Purge type
ahead buffer

M.WRIT

Data Structures

File Control Block (FCB), 16 Word

Table L-1
Special Control Flags (Continued)

Device (Bit 2=0) (Bit 2=1) Bit 8 Bit 9 Bit 10 Bit 11 Bit 12

ALIM Read: Bit 2 Bit 8 Bit 9 Read On Read:
(Asynch- receive
ronous data 0 1 0 =Blind mode reset 1= Inhibit
Line (bytes) 0 0 1 =Echo on read conversion
Interface defined 1 N/A N/A =Receive data of lower
Module) for 0 0 0 =Receive data case
Terminals transfer characters
(TV) count to upper

Write case
Write: 0 N/A 0 =Formatted write 0= Convert
formatted 0 N/A 1 =Initialize device

1 N/A N/A =Unformatted write

MPX·32 Reference L·23

File Control Block (FCB), 16 Word

Word 3
(~
'/

Bits 0-31 Status word (FCB.SFLG) - 32 indicator bits are set by 10CS to
indicate the status, error, and abnonnal conditions detected
during the current or previous operation. The assignment of
these bits is shown as follows:

Meaning
Bits if Set Definition

0 OP operation in progress. Request has
been queued. (Note: Reset after post I/O
processing complete.)

1 ERR error condition found
2 BB invalid blocking buffer control pointers

have been encountered during file blocking
or unblocking

.-=--L-- PRO write protect violation
4 INOP device inoperable
5 BOM beginning-of-medium (BOM) (load point)

or illegal volume number (multivolume
magnetic tape)

6 EOF end-of-file

.2-- EOM end-of-medium (end of tape, end of
(~

disk file) \ J

8-9 reserved "-.-.../'

10 TIME last command exceeded time-out value
and was tenninated

11-15 reserved
16 ECHO echo
17 INT post program-controlled interrupt
18 LEN incorrect length
19 PROG channel program check
20 DATA channel data check
21 CTRL channel control check
22 INTF interface check
23 CHAI chaining check
24 BUSY busy
25 ST status modified
26 CTR controller end
27 AnN attention
28 CHA channel end
29 DEY device end
30 CHK unit check
31 EXC unit exception

Word 4

Bits 0-31 Record length (FCB.RECL) - this field is set by 10CS to indicate the

C actual number of bytes transferred during read/write operations.

L·24 Data Structures

(0

File Control Block (FCB), 16 Word

WordS

Bits 0-7 ReselVed

Bits 8-31 I/O queue address (FCB.IOQA) - this field is used by 10CS to point
to the I/O queue for an I/O request initiated from this FCB

Word 6

Bits 0-7 Special status bits (FCB.SPST). The interpretation
of these bits is shown below:

Bits Definition

o no-wait normal end action not taken

1 no-wait error end action not taken

2 request killed, I/O not issued

3 if set, exceptional condition has occurred in the
I/O request

4 if set, software read flow control required

5-7 reselVed

Bits 8-31 Wait I/O error return address (FCB.ERRT) - this field is set by the
user and contains the address to which control is to be transferred

Word 7

in the case of an unrecoverable error when control bits 1 and 3
of word 2 are reset. If this field is not initialized and an
unrecoverable error is detected under the above conditions, the
requesting task is aborted.

Bits 0-7 Index to FPT (FCB.FPTI) - this field is set by 10CS to index into the
associated entry in the file pointer table (FPT)

Bits 8-31 FAT address (FCB.FATA) - this field is set by 10CS to point to the
associated file assignment table (FAT) entry.

Word 8

Bits 0-7

Bits 8-31

Word 9

ReselVed

Data buffer address (FCB.ERW A) - start address of data area
for read or write operations. (24 bit pure address)

Bits 0-31 Quantity (FCB.EQTY}- number of bytes of data to be transferred

MPX·32 Reference L·25

File Control Block (FCB), 16 Word

L·26

Word 10

Bits 0-31

Word 11

Random access address (FCB.ERAA) - this field contains a
block number (zero origin) relative to the beginning of the
disk file. It is the start address for the current read or
write operation with word 2 bit 4 set and word 2 bit 12 reset.

or

For disk read requests with word 2 bits 4 and 12 set (read with
byte granularity), this word defines the byte offset relative to the
beginning of the file. Note: If word 9 is zero, the file retains
its position prior to the call.

Bits 0-31 Status word one (FCB.lSTl) - these are the first 32 bits
of status returned by the sense command

Word 12

Bits 0-31 Status word two (FCB.lST2) - these are the second 32 bits
of status returned by the sense command

Word 13

Bits 0-7 Reserved

Bits 8-31 No-wait I/O (FCB.NWOK) - nonnal completion return address.
This user routine must be exited by calling the M.XIEA service.

Word 14

Bits 0-7 Reserved

Bits 8-31 No-wait I/O (FCB.NWER) - error completion return address.
This user routine must be exited by calling the M.xIEA service.

Word 15 (Applicable only to volume resource.)

Bits 0-7 (FCB .BBN) - Number of 192 word buffers for user supplied blocking
buffers. A value of one or zero in this field specifies one
blocking buffer.

Bits 8-31 Blocking buffer address (FCB.BBA) - starting address
of a contiguous area of memory FCB.BBN buffers long

Data Structures

c

(~

(-

File Control Block (FCB), 16 Word

Table L-2
Device Functions (Standard Devices)

IOCS Line
Op Printer

Operation Code (LP)

Open 0 IOCS
(M.FILE) opens

Rewind 1 Eject,set
(M.RWND) BOMbit

word 3 bit 5
in FCB

Read Record 2 Spec error
(M.READ)

Write record 3 Write from
(M.WRIT) data buffer

Write EOF 4 NOP*
(M.WEOF)

Execute 5 Spec error
Channel

*NOP - No operation performed

Continued on next page

MPX·32 Reference

Disk
Mag Tape (DM/DF/ Handler=F8XIO
(M9/M'1) DC/Floppy) (8-Line)

IOCS opens IOCS opens Initialize lOP
channel if
necessary

Rewind Tape Set current SENSE operation
block address
to zero (FAT)

Read to data Read to data Read to data
buffer buffer buffer

Write from Write from Write record to

data buffer. data buffer. terminal
If blocked If blocked IOCS
writes n writes n
data buffers data buffers
to blocking to blocking
buffer before buffer before
output output

WriteEOF If blocked, NOP*
IOCS writes
EOF. If
unblocked
writes
X'OFEOFEOF'

Execute Execute Execute channel
Channel Channel Program
Program Program

L·27

File Control Block (FCB), 16 Word

Table L-2
f
";"'~..7

Device Functions (Standard Devices) (Continued)

IOCS Line Disk
Op Printer MagTape (DM/DF/ Handler=F8XIO

Operation Code (LP) (M9/MT) DC/Floppy) (8-Line)

Advance 6 Spec error Advance If blocked, Set data terminal
Record record advance ready
(M.FWRD) record. If

unblocked,
advance one
192W block.

Advance 7 Spec error Advance file Spec error Reset data
File (past EOF) tenninal ready
(M.FWRD)

Backspace 8 Spec error Backspace If blocked, Used by J.TINIT to
Record record backspace initialize terminals
(M.BACK) record. If

unblocked
backspace
one 192W
block

Backspace 9 Spec error Backspace Spec error Reset request to
File file to send
(M.BACK) previous command

EOF

Upspace A Upspace Multivolume Spec error Set request to send
(M.UPSP) only. If BOT, on F-class command

writes volume disks. For
record. If floppy only:
EOT, performs format
ERASE, writes diskette.
EOF, and New diskettes
issues MOUNT must be
message. formatted

prior to

normal usage.

Erase or B NOP Multivolume NOP Set/reset break
Punch only. Same (depends on flags
Trailer as upspace in FCB)

Not user above.
IOCS/handler Erases 4" of
provides call tape before
automatically writing

Continued on next page

L-28 Data Structures

File Control Block (FCB), 16 Word

Table L-2
Device Functions (Standard Devices) (Continued)

IOCS Line Disk
Op Printer MagTape (DM/DF/ Handler=F8XIO

Operation Code (LP) (M9/MT) DC/Floppy) (8-Line)

Eject! C Eject to Write NOP Define special
Punch top of dummy character
Leader form record
(M.EJECT) with eject

control
character
as first
character

Close D IOCS IOCS IOCS NOP
(M.CLSE) closes closes closes

Reserve E Spec error Spec error Reserve Set single-channel
PHD port-4MB operation (default)
Port disk only. command

Else, spec
error
Reserve
Dual
Ported
Disk

Release F Spec error Spec error Release Set dual-channel
PHD port-4MB operation
Port disk only.

Else, spec
error
Reserve
Dual
Ported
Disk

MPX-32 Reference L-29

File Control Block (FCB), 16 Word

Table L-3
Device Functions (Terminals, Handler Action Only)

IOCS
Op Handler = H.ASMP

Operation Code (ALIM)

Open 0 NOP*
M.FILE

Rewind 1 NOP*
M.RWND

Read record 2 Read to data buffer
M.READ

Write record 3 Write record to terminal
M.WRIT

WriteEOF 4 NOP*
M.WEOF

Execute channel 5 Execute channel

Advance record 6 Connect communications channel
M.FWRD

Advance file 7 Disconnect communications channel
M.FWRD

Backspace record 8 Initialize device and set time-out value
M.BACK

Backspace 9 Clear break status flag word
file M.BACK

Upspace A Spec error**
M.UPSP

Erase/punch B Transmit break
trailer

Eject/punch C Spec error**
leader
M.EJECT

Close D NOP*
M.CLSE

ReserveFHD E Spec error**
port

Release FHD F Spec error**
port

* NOP = No operation performed

** Spec Error = Illegal operation code

L·30 Data Structures

File Control Block (FCB), 16 Word

Table L-4
Standard Carriage Control Characters and Interpretation

Hexa- Result on Directly
Control decimal Result on Allocated Printer

Character Value a Tenninal (Serial or parallel) SLO
Blank 20 One linefeed, Single space Single space

one carriage before print before print
return before
write

0 30 Two linefeeds, Double space Double space
one carriage before print before
return before
write

1 31 Five linefeeds, Page eject (slew) Page eject (slew)
one carriage before print before print
return before
write

+ 2B No linefeed, No space before No space before
no carriage print (overprint) print (overprint)
return before
write (line
append)

- 2D Five linefeeds, Single space Page eject, save
one carriage before print and print
return before up to three user
write supplied title lines.

See Note 1.

< 3C One linefeed, Single space Set inhibit spooler
one carriage bef-ore print title line in this file.
return before
write

> 3E One linefeed, Single space Set enable spooler
one carriage before print title line in this file.
return before
write

= 3D One linefeed, Single space Page eject and clear
one carriage before print up to three user-
return before supplied title lines
write in this file.

Notes:

1. User-supplied title lines have the same effect as this character. Supplying a
fourth title line clears the first three, but only one page is ejected. User-supplied
titles are retained by the spooler and are repeated at the top of each page until
cleared or the spool file ends.

MPX-32 Reference l-31

File Control Block, Compatible Mode 8 word (FCB)

L.6 File Control Block, Compatible Mode 8 word (FCB)

L·32

Word 0 7~8 ______ ~12~1~3 __________________________ ~1

o Logical fIle·code (FCB.LFC)

1 Transfer control word (FCB.TCW)

2 General control Special flags Random access address
flags (FCB.SCFG) (FCB.CBRA)
(FCB.GCFG)

3

4

5

6

7

Shaded areas are set by the system.
A.LSW.FCB

Word 0

Bit 0

Bits 1-7

Bits 8-31

Reserved

Operation code (FCB.OPCD) - type of function requested of
the device handler. This field is set by IOCS as a function of the
requested service.

Logical file code (FCB.LFC) - any combination of three ASCII
characters is allowed.

Word 1 (FCB.TCW)

This word supplies a transfer control word ('fCW) that describes a data buffer
and transfer quantity. If no TCW definition is supplied, the transfer buffer
defaults to location zero of the task's logical address space and is 4096 words
long.

Bits 0-11 Quantity - 12 bit field specifying the number of data
items to be transferred. This quantity must include the
carriage control character, if applicable. The transfer quantity
is in units detennined by the address in bits 12 to 31.

Data Structures

c

(
File Control Block, Compatible Mode 8 word (FCB)

Bits 12-31 Fonnat code and buffer address- bits 12, 30 and 31
specify byte, halfword, or word quantities for data transfers.
They are interpreted as follows:

Word 2

Type of
Transfer
Byte
Halfword
Word

F
(12)

1
o
o

C
(30,31)

xx
xl
00

Address
13-31
13-30
13-29

Bits 0-7 General control flags (FCB.GCFG) - these eight bits enable the user to
specify the manner in which an operation is to be perfonned by IOCS.
The interpretation of these bits is shown below:

MPX-32 Reference L-33

File Control Block, Compatible Mode 8 word (FCB)

L·34

Bit

o

1

2

3

4

5
6

7

Meaning
if Set

NWT

NER

DF!

NST

RAN

EXP

IEC

Definition

IOCS returns to the user immediately after the
I/O operation is queued. If reset, IOCS exits to the
calling program only when the requested operation
has been completed.
error processing is not performed by either the device
handler or IOCS. An error return address is ignored
and a normal return is taken to the caller; however,
the device status is posted in the FCB unless bit
3 is set. If reset, normal error recovery is
attempted. Normal error processing for disk and
magnetic tape is automatic error retry. Error
processing for unit record devices except the
system console is accomplished by IOCS typing
the message INOP to the console, which allows
the operator to retry or abort the I/O operation.
If the operator aborts the I/O operation, or if
automatic error retry for disk or magnetic tape is
unsuccessful, an error status message is typed
to the console and the error return address is
taken if provided. Otherwise, the task is aborted.

data formatting is inhibited. Otherwise, data
formatting is performed by the appropriate device
handler. See Table L-5 for more explanation.

device handlers perform no status checking and no
status information is returned. All I/O appears
to complete without error. Otherwise, status
checking is performed and status information
is returned as necessary.

file accessing occurs in the random mode.
Otherwise, sequential accessing is performed.

reserved (M.FILE)

must be 0 for 8 word FCB.

this bit is reserved for internal IOCS use.

Bits 8-12 Special Control Specification (FCB.SCFG). - This field
contains device control specifications unique to certain devices.
Interpretation and processing of these specifications are performed
by the device handlers. A bit setting is meaningful only when a
particular type of device is assigned as indicated in Table L-2.

Bits 13-31 Random access address (FCB.CBRA) - This field contains
a block number (zero origin) relative to the beginning of the disk
file, and specifies the base address for read or write operations.

Data Structures

File Control Block, Compatible Mode 8 word (FCB)

Table L-5
Special Control Flags (8 Word FeB)

Device Bit 2=0 Bit 2=1 Bit 8=0 Bit 8=1 Bit 9=0 Bit 9=1

Line Interpret first Interpret first Form No form
Printer character as character as control control
(LP) carriage data

control See bit 8

Oiscs, Report EOF if X'OFEOFEOF'
(OM,OF, X'OFEOFEOF' in word 0
FL) encountered not

in word 0 of recognized
1st block: asEOF
during read
of unblocked
file

M.READ M.READ M.READ M.READ M.READ M.READ
8-Line
Asynchronous Perform No special ASCn control ASCn control Echo by No echo by
Communications special character passed as character controller controller
Multiplexer character formatting data detect
(TY) formatting

M.WRIT M.WRIT SVC I,X'3E' SVC 1,x'3E' _ M.WRIT M.WRIT

Interpret first Interpret first Stop Start Normal Initialize
character as character as transmitting transmitting write device (load
carriage data break break DART
control parameters)

Device Bit 10:0 Bit 10=1 Bit 11=0 Bit 11=1 Bit 12=0 Bit 12=1

Line Printer (LP) Reserved Reserved Reserved Reserved Reserved Reserved

Discs,
(OM,OF,
FL)

M.READ M.READ M.READ M.READ M.READ M.READ
8-Line
Asynchronous (If bit 2=0) Inhibit No special Special Do not purge Purge type
Communications convert lower conversion character character type ahead ahead buffer
Multiplexer case detect detect buffer
(IT) character

to upper case

M.WRIT M.WRIT M.WRIT M.WRIT M.WRIT M.WRIT

Normal write Write with
input sub-
channel
monitoring
plus software
flow control

Continued on next page

M?X·32 Reference L-35

File Control Block, Compatible Mode 8 word (FCB)

Table L-S (/
Special Control Flags (8 Word FeB) (Continued)

Device (Bit 2=0) (Bit 2=1) Bit 8 Bit 9 Bit 10 Bit 11 Bit 12

ALIM Read: Bit 2 Bit 8 Bit 9 Read On Read:
(Asynch- receive
ronoDS data 0 1 0 =Blind mode reset 1= Inhibit
Line (bytes) 0 0 1 =Echo on read conversion
Interface defined 1 N/A N/A =Receive data of lower
Module) for 0 0 0 =Receive data case
Terminals transfer characters
(TY) count to upper

Write case
Write: 0 N/A 0 =Formatted write 0= Convert
formatted 0 N/A 1 =Initialize device

1 N/A N/A =Unformatted write

. \ c·<~·

L·36 Data Structures

(,

File Control Block, Compatible Mode 8 word (FCB)

Word 3

Bits 0-31 Status word (FCB.SFLG) - 32 indicator bits are set by 10CS to
indicate the status, error, and abnonnal conditions detected
during the current or previous operation. The assignment of
these bits is shown as follows:

Meaning
Bits if Set Definition

0 OP operation in progress. Request has
been queued. (Note: Reset after post I/O
processing complete.)

1 ERR error condition found
2 BB invalid blocking buffer control pointers

have been encountered during file blocking
or unblocking

3 PRO write protect violation
4 INOP device inoperable
5 BOM beginning-of-medium (BOM) (load point)

or illegal volume number (multivolume
magnetic tape)

6 EOF end-of-file
7 EOM end-of-medium (end of tape, end of

disk file)
8-9 reselVed
10 TIME last command exceeded time-out value

and was tenninated
11-15 reselVed
16 ECHO echo
17 INT post program-controlled interrupt
18 LEN incorrect length
19 PROG channel program check
20 DATA channel data check
21 CTRL channel control check
22 INTF interface check
23 CHAI chaining check
24 BUSY busy
25 ST status modified
26 CTR controller end
27 ATTN attention
28 CRA channel end
29 DEV device end
30 CHK unit check
31 EXC unit exception

MPX·32 Reference L-37

File Control Block, Compatible Mode 8 word (FCB)

~4 C

L·38

Bits 0-31 Record length (FCB.RECL) - this field is set by IOCS to indicate the
actual number of bytes transferred during read/write operations.

Word 5

Bits 0-7 ReseIVed

Bits 8-31 I/O queue address (FCB.lOQA) - this field is used by IOCS to point
to the I/O queue for an I/O request initiated from this FCB

Word 6

Bits 0-7 Special status bits (FCB.SPST). The interpretation
of these bits is shown below:

Bits Definition

o no-wait normal end action not taken

1 no-wait error end action not taken

2 kill command, I/O not issued

3 if set, exceptional condition has occurred in the
I/O request

4 if set, software read flow control required

5-7 reseIVed

Bits 8-31 Wait I/O error return address (FCB.ERRT) - this field is set by the
user and contains the address to which control is to be transferred

Word 7

in the case of an unrecoverable error when control bits 1 and 3
of word 2 are reset. If this field is not initialized and an
unrecoverable error is detected under the above conditions, the
user is aborted.

Bits 0-7 Index to FPT (FCB.FPTI) - this field indexes into the appropriate
entry in the file pointer table (FPT)

Bits 8-31 FAT address (FCB.FATA) - this field points to the file assignment
table (FAT) entry associated with all I/O perfonned for this
FCB. This field is supplied by IOCS.

Data Structures

c

(
File Control Block (FCB), High Speed Data

L.7 File Control Block (FCB), High Speed Data

The following section details the 16 words that make up the FCB for the HSD.

WOld 0

o

1

2

3

4

5

6

7

8

9

7 8 15 16 23 24

Logical file code (FCB.LFC)

31

~--~ 10

11

12

13

14

15

Shaded areas are set by the system.
T2FCB

Word 0

Bit 0 Reserved

Bits 1-7 Contain the operation code, set by IOCS that specifies the type of
function requested of H.HSOO.

Bits 8-31 Contain the logical file code associated with the device for the I/O
operation.

Word I

This word is reserved and should be set to zero.

MPX·32 Reference L-39

File Control Block (FCB), High Speed Data

L-40

Word 2

Bits 0-7

Bit

o

1

2

3

4,5

6

7

Contain control flags that enable the user to specify how an operation
is to be performed by lacs. Following is the meaning of these bits
when they are set:

Meaning When Set

lacs returns to the user immediately after the
I/O operation is queued (no wait I/O). If reset,
lacs exits to the calling program only when the
HSD completes the requested operation (wait I/O).

H.HSDG and lacs do not perform error processing.
lacs ignores the error return address and takes
a normal return to the caller. H.HSDG posts
device status in the FCB (unless bit 3 is set).
If reset, H.HSDG and lacs perform error processing.

specifies physical execute channel program. If
reset, specifies logical channel program or non­
execute channel program I/O request.

lacs performs no status checking and does not
return status information. All I/O appears to complete
without error. If reset, lacs performs status checking
and returns status information.

Reserved, should be zero.

specifies 16 word FCB. Must be set to l.

reserved for internal lacs use.

Data Structures

(

File Control Block (FCB), High Speed Data

Bits 8-23 contain the following special flags:

Bit Meaning When Set

8 specifies request device status after a transfer.
H.HSDG adds an 10CB to the 10CL to retrieve
device-specific status after the data transfer completes.

9 specifies send device command prior to data transfer.
H.HSDG prefixes the transfer with an 10CB that sends
a device command word to the device. The value sent
is the 32-bits contained in word 10 of the FCB.

10 specifies disable time out for this request. This
bit indicates the operation will take an indeterminable
period of time. In most cases this applies only to
read operations.

11 specifies set UDDCMD from the least significant
byte of word 2. This bit indicates that the UDDCMD
byte in the data transfer 10CB must be set to the least
significant byte of FCB word 2. This allows the user
to pass additional control information to the device
without modifying the device driver.

12 specifies disable asynchronous status notification
during no-wait I/O.

13 specifies the execute channel program request INIT.
By setting this bit, all preliminary I/O data structures
are set up based on the I/O command list address provided in
word 8 of the FCB. When set, this bit prepares for future
cyclic I/O requests but does not issue any I/O.

14 specifies the execute channel program request GO. This
bit issues an SIO for the most recently processed INIT
execute channel program request (see bit 13).

15-23 reserved

Note: For further information on the HSD FCB please see the H.HSDG
section in the MPX-32 Technical Manual Volume II.

Bits 24-31 if bit 11 is set, these bits define the UDDCMD field of the generated
10CB, overriding the default value from a handler table. This field
applies only to FCB format.

MPX-32 Reference L-41

File Control Block (FCB), High Speed Data

L·42

Word 3

10CS uses this word to indicate status, error, and abnonnal conditions detected
during the current or previous operation. Following is the meaning of the bits
when they are set:

Bit Meaning When Set

0 operation in progress. Request has been queued.
This bit is reset after post I/O processing completes.

1 error condition found
2, 3 not applicable, should never be returned
4 device inoperable, HSD not present or offline

5-15 not applicable, should never be returned
16 a time-out occurred and a CD tenninate was

issued.
17,18 not applicable, should never be returned

19 there was data remaining in the HSD fifo when
the transfer count equaled zero.

20 a parity error occurred during the current data
transfer.

21 a non-present memory error occurred during
the current data transfer.

22 program violation. An invalid operation code
was detected.

23 device inoperative
24 HSD data buffer overflow. Some data from the

device was lost.
25 external tennination
26 10CB address error
27 error on TI address fetch
28 device EOB
29 Non-device access errors precluded request queuing.

For a list of the errors, see word 12.
30,31 non-execute channel program type of 10CB in

error as follows:

Value Meaning

00 data transfer
01 device status
10 command transfer

Word 4

This word specifies the record length. For non-execute channel program I/O,
IOCS sets this word to indicate the number of bytes transferred during read or
write operations.

Data Structures

/-,

"'-J

(

(

File Control Block (FeB), High Speed Data

WordS

Bits 0-7 reserved

Bits 8-31 specify the IOQ address. 10CS sets this field to point to the IOQ
entry initiated from this FCB.

Word 6

Bits 0-7 specify special status as follows:

Bit Meaning When Set

o no-wait normal end action not taken
1 no-wait error end action not taken
2 kill command, I/O not issued
3 an exception condition has occurred in the I/O request
4 not used

5-7 reserved

Bits 8-31 contain the wait I/O error return address. The user sets this field to
the address where control is to be transferred for unrecoverable errors
when bits 0, 1, and 3 of word 2 are reset. If this field is not
initialized and an unrecoverable error is detected under the above
conditions, the user task is aborted.

Word 7

Bits 0-7 set by the I/O control system (IOCS), contains an index to the file
pointer table (FPT) entry for this I/O operation.

Bits 8-15 supplied by the 10CS, points to the file assignment table (FAT) entry
associated with this FCB.

MPX·32 Reference L-43

File Control Block (FCB), High Speed Data

L·44

Word 8

Bits 0-7 reselVed

Bits 8-31 these bits are used as the data address, a logical lOCI... address, or a
physical lOCI... address as follows:

Word 9

Data address - This is the starting address of the data area for FCB
fonnat I/O operations. This address must be a word address.

Logical lOCI... address - This is a logical, doubleword address that
points to a user-supplied IOCL for SIO fonnat I/O operations. For
more infonnation about SIO fonnat, refer to Reference Manual
Volume I, Chapter 3. The execute channel program entry point
(H.IOCS,IO) must be used and bit 2 of word 2 of the FCB is reset.
All addresses within the IOCL are assumed to be logical and map
block boundary crossings need not be resolved.

Physical lOCI... address - This is a physical, double word address that
points to a user-supplied IOCL for SIO fonnat I/O operations. The
execute channel program entry point (H.IOCS,IO) must be used and
bit 2 of word 2 of the FCB is set. All addresses within the lOCI... are
assumed to be physical and all map block boundary crossings are
assumed to be resolved.

This word specifies the number of bytes of data to be transferred.

Word 10
For nonexecute channel program fonnat, this word defines a device command.

Word 11
ReselVed -, should be set to zero.

Word 12
This word contains status sent from the user's device or if bit 29 of word 3 is set,
this word defines the opcode processor (BP5) detected errors as follows:

Value Explanation

1
2
3

4

5

6
7
8

9
10

request made with non-expanded FCB
FCB fonnat transfer count was zero
FCB fonnat, byte transfer count was not
a multiple of 4 bytes
SIO fonnat with a physical IOCL request
by an unprivileged caller
SIO fonnat with a physical rOCL request
by a nonresident caller
first lOeB in caller's lOCI... is a transfer in channel
caller's IOCL not on a doubleword boundary
SIO fonnat IOCL contains an lOeB with a
zero transfer count
infinite transfer in channel loop
consecutive SOBNZ's in lOCI...

Data Structures

i.(.I., ... ·.·.·.
I.'

Word 13

11
12

13

14

15

16

Bits 0-7 reselVed

File Control Block (FCB), High Speed Data

SOBNZ target is not in the lOa...
the transfer address is not on a word
boundary
unprivileged caller's input buffer includes
protected locations
unprivileged caller's input buffer is unmapped
either in MPX-32 or below DSECf
cyclic I/O request was made for which no cyclic
10Q is current
cyclic I/O request was made and permanent 10Q
support was not sysgened into the system

Bits 8-31 contain the address of the user-supplied routine to branch to for no­
wait I/O normal completion. This routine must be terminated by
calling H.lOCS,34 (no-wait I/O end action return). If word 2 bit 12
is reset, this address plus one word is the location where control is
transferred on asynchronous status notification.

Word 14

Bits 0-7 reselVed

Bits 8-31 contain the address of the user-supplied routine to branch to for no­
wait I/O error completion. This routine must be terminated by
calling H.IOCS,34 (no-wait I/O end action return).

Word 15
ReselVed - should be set to zero.

MPX-32 Reference L-45

File Pointer Table (FPT)

L.S File Pointer Table (FPT)

L-46

The file pointer table (FPT) provides the linkage between the file control block (FCB)
and the file assignment table (FAT). It also allows for multiple logical file code
assignments to be made equivalent to the same FAT. The linkage to the FAT is
performed at assignment. The linkage to the FCB is performed at open and is re­
established if necessary for every operation at opcode processing time. The FPT
resides in the task's service area.

FPT entries one to six are reserved for the system as follows:

Entry 1 - System LFC *s*
Entry 2 - Load module LFC *LM
Entry 3 - H.VOMM resource descriptor LFC (1)
Entry 4 - H.VOMM directory LFC (2)
Entry 5 - H.VOMM DMAP/SMAP LFC (3)
Entry 6 - H.VOMM modify resource descriptor LFC X'FFFEE'

Each FPT entry has the following format:

Word 0

1

2

Notes:

o
Reserved

Flags (FPT.FLGS).
See Note 1.

Reserved

7 8 15 16 23 24

Logical file code (FPT.LFC)

FCB address (FPT.FCBA)

FAT address (FPT.FATA)

1. Bits in FPT.FLGS are assigned as follows:

Bit Meaning if Set

o reserved
1 multiple FPT entries exist that point to the same FAT

(Le., $ASSIGN4 or $ASSIGN lfc TO LFC = lfc statements)
2 FPT busy flag
3 FPT open
4 this FPT entry is not in use
5 pseudo-SYC assignment (used by TSM)
6 pseudo-FPf for unassigned tempory file
7 reserved

31

Data Structures

Parameter Task Activation Block

L.9 Parameter Task Activation Block

The following is the structure of the expanded parameter task activation block:

Byte Word o 7 8 15 16 23 24 31
0 0 PTA FLAG PTA.NRRS PTAALLO PTAMEMS

4 1 PTANBUF PTANFIL PTA.PRIO PTA.SEGS

8 2-3 PTA.NAME

10 4-5 PTAPSN

18 6-7 PTA.ON

20 8-9 PTA.PRO]

28 10 PTA VAT PTAFLG2 PTAEXTD

2C 11 PTA.PGOW

30 12 PTATSW

34 13 PTA.RPTR

38 14 PTA.PG02

3C 15 PTAFSIZ PTA.RSIZ

40 16-19 Reserved (zero)

50-nn 20-nn RRS List

('
Byte
(Hex) Symbol Description

0 PI'AFLAG contains the following:

Bit Contents

0 reserved
1 job oriented (PI' A.JOB)
2 tenninal task (PI' A TERM)
3 batch task (PI' ABTCH)
4 debug overlay required (PI' A.DOL y)
5 resident (PI' ARESD)
6 directive file active (PI' ADFll..)
7 SLO assigned to SYC (PI' A.SLO)

For unprivileged callers, bits 0-3 are not
applicable. These characteristics are inherited
from the parent task.

1 PI'ANRRS number of resource requirements or zero if same as
summary entries in the load module or executable image
preamble

(~

MPX-32 Reference L-47 '

Parameter Task Activation Block

Byte (~
(Hex) Symbol Description

2 PTA.ALLO memory requirement: number of 512-word pages
exclusive of TSA, or zero if same as the preamble

3 PTA.MEMS memory class (ASCII E, H or S) or zero if memory
class is to be taken from the preamble. If the memory
class is to be taken from the preamble, the caller has
the option of specirying the task's logical address space
in this field as follows:

Bits Contents

0-3 hexadecimal value 0 through F representing
the task's logical address space in megabytes
where zero is 1MB and F is 16MB

4-7 zero

4 PTA.NBUF the number of blocking buffers required or
zero if same as the preamble

5 PTA.NFIL the number of FAT/FPT pairs to be reserved or
zero if same as the preamble

6 PTA.PRIO the priority level at which the task is to be activated
or zero for the cataloged load module priority. See
the Parameter Send Block section in Chapter 2 '\
of the MPX-32 Reference Manual Volume I, i

',--~/

for more details.

7 PTA.SEGS the segment definition count or reserved (zero)

8 PTA.NAME contains the load module or executable image name,
left justified and blank filled, or word 2 is zero and
word 3 contains a pathname vector or RID vector

10 PTA.PSN contains the 1- to 8-character ASCII pseudonym, left
justified and blank filled, to be associated with the task
or zero if no pseudonym is desired. For unprivileged
callers, this attribute is inherited from the parent task
if zero is supplied or the parent is in a terminal or
batch job environment.

18 PTA. ON contains the 1- to 8-character ASCII owner name,
left-justified and blank-filled, to be associated with the
task or zero if the task to default to the current owner name.
Valid only when task has system administrator attribute.

20 PTA. PRO] contains the 1- to 8-character ASCII project name,
left-justified and blank-filled, to be associated with files
referenced by this task, or zero if same as LMIT

28 PTA. VAT the number of volume assignment table (V AT) entries
to reserve for dynamic mount requests or zero if same
as the preamble

C
L-48 Data Structures

Parameter Task Activation Block

(-
Byte
(Hex) Symbol Description

29 PI'A.FL02 contains the following flags:

Bit Meaning if Set

0 debug activating task (PI' A.DBUO)
1 Command Line Recall and Edit is in

effect for the task (PI' A.CLRE)
2 NOTSA option (PI' A.NTSA)
3 TSA option (PI' A.TSA)
4 expanded PI' ASK block flag (must

be set to use options 33-64) (PI'A.EBLK)
5 reserved (zero)
6 enables NOMAPOUT option (PI' A.NMAP)
7 enables MAPOUT option (PI' A.MAP)

2A PI'A.EXTD contains the following values:

Bit Meaning if Set
-1 maxaddr of extended MPX-32 and TSA
-2 minaddr of extended MPX-32 and TSA
0 invalid with PI' A.TSA or PI' A.NTSA option
n a positive number representing a

map block of MPX-32 and TSA

(2C PI'A.PGOW contains the initial value of the task option word or zero

30 PI'A.TSW contains the initial value of the task status word or zero

34 PI'A.RPTR contains a pointer to the resource requirement summary
list or, if an expanded PI' ASK block is not used, the RRS
list begins here (see resource requirement summary list
description below)

38 PI'A.PG02 contains the initial value of the second task option word

3C PI'A.FSIZ contains the length of the fixed portion of
the PI' ASK block in bytes

3E PI'A.RSIZ contains the number of bytes of the resource
requirement summary

40 Reserved

MPX-32 Reference L-49

Parameter Task Activation Block

Byte
(Hex)

50

Symbol Description

resource requirement summary list. Each entry contains
a variable length RRS. The RRS list has up to 384 words. I
Each entry must be doubleword bounded. Each entry is
compared with the RRS entries in the LMIT. If the
logical file code currently exists, the specified
LFC assignment will override the cataloged assignment,
otherwise the special assignment will be treated
as an additional requirement and merged into the
list. If MPX-32 Revision 1.x fonnat of the
RRS is specified, it is converted to the fonnat acceptable
for assignment processing by the Resource Management
Module (H.REMM). See MPX-32 Revision l.x
Technical Manual for fonnat of the RRS.

L.10 TSM Procedure Call Block (PCB)

The PCB contains the infonnation necessary for the service to complete a procedure
call. The fonnat of the PCB is as follows:

o 7 8 15 16 23 24 31

I Send buffer address (pcB.SBA) Word 0

1

2

3

Send quantity (pCB.SQUA)

I Return buffer address (pcB.RBA)

Actual return length (pcB.ACRP) I Return buffer length (pCB.RPBL)

Send buffer address

Send quantity

Return buffer address

Actual return length
Return buffer length

is the address of a character string that represents a valid
TSM procedure call directive
contains the length in bytes of the TSM procedure call
directive
is the address of a buffer to contain either valid return
infonnation or an error message if CCl is set and R7
contains a value of I
is the number of bytes returned from the procedure call
is the size in bytes of the supplied return buffer

L.11 Path name Blocks (PNB)

L-50

The pathname block (PNB) is an alternative fonn of a pathname that can be used
interchangeably with pathnames. Because of its structure, it can be parsed faster than
a pathname. The PNB is a doubleword bounded, variable length ASCII character
string which H. VOMM can distinguish from a pathname since the PNB always starts
with an exclamation point.

Data Structures

(

Pathname Blocks (PNB)

H. VOMM provides a service to convert a pathname to a PNB. The examples which
follow illustrate common pathnames and their corresponding PNB.
Example 1

@VOLl(DIRl)FILEl Word 0 ! VOL
1 blank
2 VOL 1
3 blank
4 blank
5 blank

6 ! D I R
7 ROO T
8 D I R 1
9 blank

10 blank
11 blank

12 ! RES
13 blank
14 F I L E
15 1 16 16 16
16 blank
17 blank

Example 2

FILEl Word 0 ! VOL
1 W 0 R K

2 ! D I R
3 W 0 R K

4 ! RES
5 blank

6 F I L E
7 1 16 16 16
8 blank
9 blank

MPX-32 Reference L-51

Pathname Blocks (PNB)

L·52

Example 3

(DIRECTORY) MYFILE

Example 4

Word 0
1

2
3

4
5
6
7

8
9

10
11
12
13

@SYSTEM(SYSTEM) LOADMOD Word 0
1

2
3

4
5

6
7
8
9

! VOL
W 0 R K

! D I R
ROO T

D IRE
C TOR
Y 16 16 16

blank

! RES
blank

M Y F I
L E 16 16

blank
blank

! VOL
S Y S T

! D I R
S Y S T

! RES
blank

LOA D
MOD 16

blank
blank

Data Structures

(

Post Program-Controlled Interrupt Notification Packet (PPCI)

L.12 Post Program-Controlled Interrupt Notification Packet
(PPCI)

If a task sets up a PPCI end-action receiver to check status during execution of its
channel program, the status is returned in a notification packet. The address of the
notification packet is contained in register three upon entering the task's PPCI end­
action receiver. The notification packet is described below.

o 7 8 15 16 23 24 31

Word 0 String forward address (NOT.SFA)

1 String backward address (NOT.SBA)

2 Link priority NOT.TYPE Reserved
(NOT.PRI) See Note 1.

3 FCB address (NOT. CODE)

4 PSD 1 of task's PPCI receiver (NOT.PSDl)

5 PSD 2 of task's PPCI receiver (NOT.PSD2)

6 Number of PPCls received Number of status
since last buffer clear doublewords in status buffer
(NOT. STAR) (NOT.STAS)

7 Address ofPPCI status buffer (NOT.STAA)

8 Address of buffer storing next status doubleword (NOT.S1FT)

9 Reserved

10-n PPCI status buffer

Notes:

1. NOT. TYPE - Set to 1 for asynchronous notification.

2. Words 0-9 are updated by the operating system and must not be changed by the
user.

MPX-32 Reference L-53

Parameter Receive Block (PRB)

L.13 Parameter Receive Block (PRB)

L·54

The parameter receive block (PRB) is used to control the storage of passed parameters
into the receiver buffer of the destination task. The same fonnat PRB is used for
message and run requests. The address of the PRB must be presented when the
M.GMSGP or M.GRUNP services are invoked by the receiving task.

Word 0

1

2

3

4

Notes:

o 78 15 16 2324

Status (pRB.ST) IParameter receiver buffer address (PRB.RBA)

Receiver buffer length (pRB.RBL) Number of bytes actually received
(pRB.ARQ)

Owner name of sending task, word one (pRB.OWN)

Owner name of sending task, word two

Task number of sending task (pRB.TSKN)

1. Status (PRS.ST) contains the status-value encoded status byte:

Code Definition
o nonnal status
1 invalid PRB address (PRB.EROI)
2 invalid receiver buffer address or size detected during

parameter validation (pRB.RBAE)
3 no active send request (pRB.NSRE)
4 receiver buffer length exceeded (PRB.RBLE)

2. Parameter receiver buffer address (PRB.RBA) contains the word address of the
buffer where the sent parameters are stored.

31

3. Receiver buffer length (PRB.RBL) contains the length of the receiver buffer (0 to
768 bytes).

4. Number of bytes received (pRB.ARQ) is set by the operating system and is
clamped to a maximum equal to the receiver buffer length.

5. Owner name of sending task (PRB.OWN) is a doubleword that is set by the
operating system to contain the owner name of the task that issued the parameter
send request.

6. Task number of sending task (PRB.TSKN) is set by the operating system to
contain the task activation sequence number of the task that issued the parameter
send request.

Data Structures

(
Parameter Send Block (PSB)

L.14 Parameter Send Block (PSB)

The parameter send block (PSB) describes a send request issued from one task to
another. The same PSB format is used for both message and run requests. The
address of the PSB (word bounded) must be specified when invoking the M.SMSGR
or M.SRUNR services, but is optional when invoking the M.PTSK service.

When a load module name is supplied in words 0 and 1 of the PSB, the operating
system searches the system directory only. For activations in directories other than
the system directory, a patbname or RID vector must be supplied.

When activating a task with the M.SRUNR or M.PfSK service, the value specified in
byte 0 of PSB word 2 (pSB.PRI) is used to determine the task's execution priority.
This value overrides the cataloged priorities of the sending and receiving tasks and the
priority specified in the PT ASK block. However, priority clamping is used to prevent
time-distribution tasks from using this value to execute at a real-time priority, and
real-time tasks from executing at a time-distribution priority. Values that can be
specified in PSB.PRI are 1-64 (to be the task priority), zero (to use the base priority of
the sending task), and X'FF' (to ignore the PSB priority field).

A PSB can be specified as a parameter for the M.PTSK service, along with the
required task activation (PT ASK) block. The PT ASK block also contains a priority
specification field. The PSB priority value always overrides the PT ASK block priority
value.

o 7 8 15 16 23 24 31

Load module or executable image name (PSB.LMN) or zero if activation
(or task number (psB.TSKN) if message or run request to multicopied task)

Load module or executable image name, patbname vector, or RID vector
if activation (or zero if message or run request to multicopied task)

Priority Reserved Number of bytes to be sent (PSB.SQUA)
(PSB.PRI)

Reserved Send buffer address (PSB.SBA)

Return parameter buffer length Number of bytes actually
in bytes (PSB.RPBL) returned (PSB.ACRP)

Reserved Return parameter buffer address (PSB.RBA)

Reserved No-wait request end action address (PSB.EAA)

Completion Processing User status Options
status (PSB.CST) start status (pSB.UST) (pSB.OPT)

(psB.IST)

MPX·32 Reference L·55

Parameter Send Block (PSB)

L·56

Word 0

Bits 0-31

Word 1

Bits 0-31

Word 2

Bits 0-7

Load module or executable image name - contains characters 1
through 4 of the name of the load module or executable image to
receive the run request or

Task number - contains the task number of the task to receive
the message or the task number of the multicopied load module
or executable image to receive the run request.

Load module or executable image name - contains characters 5
through 8 of the name of the load module or executable image to
receive the run request, or zero if the message or run request is
sent to multicopied load module or executable image.

Contains the priority at which the receiver task is expected to be
activated. Valid values are 1-64, zero, (for base priority of the
sending task) and X'FF', which generates activation priority
based on a combination of values that can be specified during
task activation.

The following tables show how the priority of a receiver task is detennined when
activated with M.SRUNR or with M.PfSK.

When Activating with M.SRUNR

Cataloged
Priority of Priority Activates

Send Task Receive task inPSB Receive task at

1-54 1-54 0 Send task cat. priority
1-54 55-64 0 55 (time-dist. clamp)

55-64 1-54 0 54 (real-time clamp)
55-64 55-64 0 Send task cat. priority

* 1-54 1-54 PSB priority

* 1-54 55-64 54 (real-time clamp)

* 55-64 1-54 55 (time-disL clamp)

* 55-64 55-64 PSB priority

* * X'FF' Receive task cat. priority

* not specified

Data Structures

(

(,~

Cataloged
Priority of

Send Receive
Task task

1-54 1-54
1-54 55-64
1-54 *
1-54 *

55-64 1-54
55-64 55-64
55-64 *
55-54 *

* 1-54

* 1-54

* 55-64

* 55-64

* *
* *
* *
* *
* *

* *
* *

* not specified

Bits 8-15

Bits 16-31

Word 3

Bits 0-7

Bits 8-31

Word 4

Bits 0-15

Bits 16-31

MPX-32 Reference

Parameter Send Block (PSB)

When Activating with M.PTSK

Priority in
PTASK
block PSB

o 0
o 0

1-54 0
55-64 0

o 0
o 0

1-54 0
55-64 0

o 1-54
o 55-64
o 1-54
o 55-64

1-54 1-54
1-54 55-64
1-54 X'FF'

55-64 1-54
55-64 55-64
55-64 X'FF'

o X'FF'

reserved

Activates
Receive task at

Send task cat priority
55 (time-dist. clamp)
Send task cat. priority
55 (time-dist. clamp)
54 (real-time clamp)
Send task cat. priority
54 (real-time clamp)
Send task cat. priority
PSB priority
54 (real-time clamp)
55 (time-dist.clamP)
PSB priority
PSB priority
54 (real-time clamp)
PT ASK block priority
55 (real-time clamp)
PSB priority
PT ASK block priority
Receive task cat. priority

Number of bytes to be sent - specifies the number of bytes to
be passed (0 to 768) with the message or run request.

reserved

Send buffer address - contains the word address of the buffer
containing the parameters to be sent.

Return parameter buffer length - contains the maximum number
of bytes (0 to 768) that may be accepted as returned parameters.

Number of bytes actually returned - set by the send message or
run request service upon completion of the request.

L-57

Parameter Send Block (PSB)

WordS

Bits 0-7

Bits 8-31

Word 6

Bits 0-7

Bits 8-31

Word 7

Bits 0-7

L·58

reserved

Return parameter buffer address - contains the word address of
the buffer where any returned parameters are stored.

reserved

No-wait request end-action address - contains the address of a
user routine to be executed at a software interrupt level upon
completion of the request.

Completion status - contains completion status infonnation
posted by the operating system as follows:

Bit Meaning if Set

o operation in progress (PSB.OIP)

I

2

destination task was aborted before completion of
processing for this request (pSB.DT A)

destination task was deleted before completion of
processing for this task (pSB.DTD)

3 return parameters truncated - attempted return
exceeds return parameter buffer length (PSB.RPT)

4 send parameters truncated - attempted send exceeds
destination task receiver buffer length (pSB.SPT)

S user end-action routine not executed because of
task abort outstanding for this task (can be examined
in abort receiver to detennine incomplete operation)
(pSB.EANP)

6-7 reserved

Data Structures

,,/ ... '"
\~J

Parameter Send Block (PSB)

(Bits 8-15 Processing start (initial) status - contains initial status
infonnation posted by the operating system as follows:

Bit Meaning if Set

0 nonnal initial status (pSB.IST)

1 message request task number invalid (pSB.TSKE)

2 run request load module or executable image name not
found (PSB.LMNE)

3 reserved

4 file associated with run request load module or
executable image name does not have a valid
load module or executable image fonnat (pSB.LMFE)

5 dispatch queue entry (DQE) space is unavailable for
activation of the load module or executable image
specified by a run request (pSB.DQEE)

6 an I/O error was encountered while reading the
directory to obtain the file definition of the
load module or executable image specified in a run
request (PSB.SMIO)

7 an I/O error was encountered while reading the
file containing the load module or executable image
specified in a run request (pSB.LMIO)

(8 memory unavailable

9 invalid task number for run request to module
or executable image in RUNW state

10 invalid priority specification. An unprivileged
task can not specify a priority which is higher than
its own execution priority (PSB.PRIE).

11 invalid send buffer address or size (pSB.SBAE)

12 invalid return buffer address or size (pSB.RBAE)

13 invalid no-wait mode end action routine address
(pSB.EAE)

14 memory pool unavailable (pSB.MPE)

15 destination task receiver queue is full (pSB.DTQF)

Bits 16-23 User status - defined by the destination task.

MPX-32 Reference L-59

Parameter Send Block (PSB)

Bits 24-31 Options - contains user-request control specification as follows:

Bit Meaning if Set

24 request is to be issued in no-wait mode (pSB.NWM)

25 do not post completion status or accept return
parameters. This bit is examined only if bit 24 is
set. When this bit is set, the request was issued
in the no call back mode. (pSB.NCBM).

L.15 Resource Create Block (RCB)

L-60

Each H.VOMM entry point that creates a penn anent file, a temporary file, a memory
partition, or a directory may receive a resource create block (RCB) in order to fully
define the attributes of the resource that is created. RCB fonnats are described in the
next three tables. RCBs must be doubleword bounded.

If an RCB is not supplied by the caller, the resource is created with the default
attributes described in the MPX-32 Reference Manual Volume I, Chapter 4.

Permanent and Temporary File Resource Create Block (RCB)

Word 0
1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

o 7 8 15 16 23 24 31

File owner name (RCB.OWNR)

File project group name (RCB.USER)

Owner rights specifications (RCB.OWRI). See Note 1.

Project group rights specifications (RCB.UGRI). See Note 1.

Other's rights specifications (RCB.OTRI). See Note 1.

Resource management flags (RCB.SFLG). See Note 2.

Maximum extension increment (RCB.MXEI). See Note 3.

Minimum extension increment (RCB.MNEI). See Note 4.

Maximum file size (RCB.MXSZ). See Note 5.

Original file size (RCB.OSIZ). See Note 6.

File starting address (RCB.ADDR). See Note 7.

File RID buffer (RCB.FASn. See Note 8.

Option flags (RCB.OPTS). See Note 9.

Default override (RCB.FREE). See Note 10.

Data Structures

()

Resource Create Block (RCB)

(Notes:

1. Rights specifications are optional:

Bit Description

0 read access allowed (RCB.READ)
1 write access allowed (RCB. WRIT)
2 modify access allowed (RCB.MODI)
3 update access allowed (RCB.UPDA)
4 append access allowed (RCB.APPN)
9 delete access allowed (RCB.DELE)

2. Resource management flags. For any bit not set, system defaults apply and, in
some cases, the default is the equivalent of the bit being set (optional):

Bit Description

0-7 resource type, equivalent to file type code, interpreted
as two hexadecimal digits, 0 - FF (RCB .FfYP)

8-10 reserved
11 file EOF management required (RCB.EOFM)
12 fast access (RCB.FSTF)
13 do not save (RCB.NSA V)
14 reserved for MPX-32 usage
15 file start block requested (RCB.SREQ)
16 file is executable (RCB.EXEC)
17 owner ID set on access (RCB.OWID)
18 project group ID set on access (RCB. UGID)
19 reserved
20 maximum file extension increment is zero. System

default value not used. (RCB.MXEF)
21 minimum file extension increment is zero. System

default value not used (RCB.MNEF)
22 reserved
23 zero file on creation/extension (RCB.ZERO)
24 file automatically extendible (RCB.AUTO)
25 file manually extendible (RCB.MANU)
26 file contiguity desired (RCB.CONT)
27 shareable (RCB.SHAR) (owner rights spec only)
28 link access (RCB.LINK)

29-30 reserved
31 file data initially recorded as blocked (RCB.BLOK)

3. Maximum extension increment is the desired file extension increment specified in
blocks (optional). Default is 64 blocks.

4. Minimum extension increment is the minimum acceptable file extension
increment specified in blocks (optional). Default is 32 blocks.

5. Maximum file size is the maximum extendible size for a file specified in blocks
(optional).

(C 6. Original file size is the original file size specified in blocks (optional). Default
is 16 blocks.

MPX·32 Reference L-61

Resource Create Block (RCB)

L-62

7. File starting address is the disk block where the file should start, if possible. If
the space needed is currently allocated, an error is returned (optional).

8. File RID buffer is the address within the file creator's task where the eight word
resource identifier (RID) is to be returned. If this parameter is not supplied (i.e.,
is zero), the RID for the created file is not returned to the creating task.

9. Option flags bits are as follows:

Bit Description

o owner has no access rights (RCB.OWNA)
1 project group has no access rights (RCB.USNA)
2 others have no access rights (RCB.OTNA)

10. Default override - If set, these bits override any corresponding bit set in
RCB.SFLG and the system defaults (optional):

Bit Description

0-7
8-10
11
12
13

14-22
23
24
25
26
27

28-30
31

must be zero
reserved
file EOF management not required
fast access not required
resource can be saved
reserved
do not zero file on creation/extension
file is not automatically extendible
file is not manually extendible
file contiguity is not desired
resource is not shareable
reserved
file data initially recorded as unblocked

Data Structures

o

(
Resource Create Block (RCB)

Directory Resource Create Block (RCB)

o 7 8 15 16 23 24 31

Word 0-1 Directory owner name (RCB.OWNR)

Directory project group name (RCB.USER)

Owner rights specifications (RCB.OWRI). See Note 1.

2-3

4

5

6

7

Project group rights specifications (RCB.UGRI). See Note 1.

Notes:

8-10

11

12

13

14

15

Other's rights specifications (RCB.01RI). See Note 1.

Resource management flags (RCB.SFLG). See Note 2.

Reserved

Directory original size (RCB.OSIZ). See Note 3.

Directory starting address (RCB.ADDR). See Note 4.

Directory RID buffer (RCB.FAS1). See Note 5.

Option flags (RCB.OPTS). See Note 6.

Default override (RCB.FREE). See Note 7.

1. Rights specifications bits are as follows:

Bit

o
8
9
10
11

Description

read access allowed (RCB.READ)
directory may be traversed (RCB.1RA V)
directory may be deleted (RCB.DELE)
directory entries may be deleted (RCB.DEEN)
directory entries may be added (RCB.ADEN)

2. Resource management flags are optional:

Bit Description

13 do not save (RCB.NSAV)
27 shareable (RCB.SHAR)

3. Directory original size is the number of entries required (optional).
4. Directory starting address is the disk block number where the directory should

start, if possible. If the space needed is currently allocated, an error is returned
(optional).

5. Directory RID buffer is the address within the directory creator's task where the
eight word resource identifier (RID) is to be returned. If this parameter is not .
supplied (i.e., is zero), the RID for the created directory is not returned to the
creating task.

MPX-32 Reference L-63

Resource Create Block (RCB)

L·64

6. <?ption flags are as follows:

Bit Description

o owner has no access rights (RCB.OWNA)
1 project group has no access rights (RCB.USNA)
2 others have no access rights (RCB.OTNA)

7. If default override is set, these bits override any corresponding bit set in
RCB.sFLG and the system defaults (optional).

Notes:

Bit Description

0-7 must be zero
13 resource can be saved
27 resource is not shareable

Memory Partition Resource Create Block (RCB)

Word 0-1

2-3

4

5

6

7

8-9

10

11

12

13

14

15

o 7 8 15 16 23 24 31

Partition owner name (RCB.OWNR)

Partition project group name (RCB.USER)

Owner rights specifications (RCB.OWRI). See Note 1.

Project group rights specifications (RCB.UGRI). See Note 1.

Other's rights specifications (RCB.01RI). See Note 1.

Resource management flags (RCB.SFLG). See Note 2.

Reserved

Starting word page number (RCB.PPAG)

Partition original size (RCB.OSIZ). See Note 3.

Partition starting address (RCB.ADDR). See Note 4.

Partition RID buffer (RCB.FAST). See Note 5.

Option flags (RCB.OPTS). See Note 6.

Default override (RCB.FREE). See Note 7.

1. Rights specifications are optional:

Bit

o
1
9

Description

read access allowed (RCB.READ)
write access allowed (RCB. WRIT)
delete access allowed (RCB.DELE)

Data Structures

c

(- "--
\,,~-

o

(.

(

Resource Create Block (RCB)

2. Resource management flags are optional:

Bit Description

13 do not save (RCB.NSAV)

3. Partition's original size is the number of protection granules required.

4. Partition's starting address is a 5 12-word protection granule number in the user's
logical address space where the partition is to begin.

5. Partition's RID buffer is the address within the partition creator's task where the
eight word resource identifier (RID) is to be returned. If this parameter is not
supplied (Le., is zero), the RID for the created partition is not returned to the
creating task.

6. Option flags are optional:

Bits Description

o owner has no access rights (RCB.OWNA)
1 project group has no access rights (RCB.USNA)
2 others have no access rights (RCB.OTNA)
9 defines a static partition (RCB.ST AT)

24-31 define memory class (RCB.MCLA). Values are:

Value

o
1
2
3

Memory Class

S (default)
E
H
S

7. If set, these bits override any corresponding bit set in RCB.SFLG and the system
defaults (optional):

Bits Description

0-7 must be zero
13 resource can be saved

MPX·32 Reference L-65

Resource Identifiers (RID)

L.16 Resource Identifiers (RID)

L·66

The fastest means of locating a volume resource (once created) is by its resource
identifier (must be on a double word boundary). The resource identifier has the
following format:

Word 0-3

4

5

6

7

o 7 8 15 16

Volume name

Creation date

Creation time

Volume address of resource descriptor

Must contain zero I Resource type

23 24 31

Since the resource identifier contains the volume address of the resource descriptor,
the resource descriptor (which points to and describes the resource) can be accessed
directly without going through the various directories which would otherwise have to
be traversed.

Given a valid pathname defining a resource, the corresponding resource descriptor
may be retrieved by the H. VOMM locate resource service. The first eight words of a
resource descriptor consist of the resource identifier.

Data Structures

(-"

'--J

Resource Logging Block (RLB)

L.17 Resource Logging Block (RLB)

The resource logging block (RLB) is a word-bounded data structure used to pass
infonnation between H.VOMM and the caller. The infonnation is used to locate a
directory entry and resource descriptor for a single resource or for all resources
defined in a particular directory.

Word 0

I

2

3

4

5

6

7

Notes:

o 7 8 IS 16 23 24

Pathname vector or RID address (RLB.TGT)

Resource directory buffer address (192W) (RLB.BVFA). See Note 1.

Associated mounted volume table entry address (RLB.MV1E)

Parent directory RD block address (RLB.RDAD)

Type (RLB.TYPE). Buffer offset (RLB.BOFF)
See Note 2.

Length. Return buffer address (RLB.DIRA)
See Note 3.

User FCB address (RLB.FCB)

Flags. Reserved (RLB.INT)
See Note 4.

1. Optional. If not specified, a resource directory is not returned.

2. Bits in RLB.TYPE are assigned as follows:

Bits Meaning if Set

o indicates recall (RLB.RECA)
1-7 reserved

31

3. This word contains the address of a buffer and its length in words (the buffer can
be up to 16 words long).

4. Bits in the flags byte are assigned as follows:

MPX·32 Reference

Bits Meaning if Set

0-1 reserved
2 directory entry and resource descriptor for specified

directory are returned
3 root directory
4 resource is located

5-7 reserved

L-67

Resource Requirement Summary (RRS) Entries

L.18 Resource Requirement Summary (RRS) Entries

L-68

The resource requirement summary (RRS) is a doubleword bounded data structure
used to identify the resources required by a task to the resource manager. Resources
are statically allocated using the information in the RRS entry. The RRS is generally
built by processors requiring static allocation of resources, such as TSM, cataloger,
etc., or supplied as an argument for dynamic allocation.

For compatibility purposes, revision l.x RRS formats can be used. The details of these
formats can be found in Chapter 2 of a revision l.x Technical Manual.

Type 1 • Assign by Pathname

Word 0

1

2

3

4-n

o 7 8 15 16

Zero Logical file code (RR.LFC)

Type Size Plength
(RR.TYPE). (RR.SIZE) (RR.PLEN)
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Pathname (variable length) (RR.NAMEl)

Type 2 . Assign to Temporary File

o 7 8 15 16

Zero Logical file code (RR.LFC)

23 24

Reserved.
See Note 2.

23 24

Word 0

1 Type Size Initial file size

2

3

4-7

(RR.TYPE). (RR.SIZE) (RR.PLEN)
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Volume name (16 characters; left-justified, blank-filled) (RR.NAMEl)
(Volume name is optional)

31

31

Data Structures

c

(

Resource Requirement Summary (RRS) Entries

Type 3 - Assign to Device

Word 0

1

2

3

4

5

o 7 8 15 16

Zero Logical file code (RR.LFC)

Type Size Density
(RR.TYPE). (RR.SIZE) (RR.DENS).
See Note 1. See Note 5.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Device type Volume Channel number
(RR.DT3). number See Note 7.
See Note 6. (RR.VLNUM) (RR.CHN3)

Unformatted ID (1-4 characters) (RR.UNFlD)

Type 4 - Assign to LFC

Word 0

1

2

3

o 7 8 15 16

Zero Logical file code (RR.LFC)

Type Size Zero
(RR.TYPE). (RR.SIZE)
See Note 1.

Zero Logical file code (RR.SFC)

Options (RR.OPTS). See Note 4.

Type 5 - Assign by Segment Definition

Ward 0

1

2

3

4

5

MPX-32 Reference

o 7 8 15 16

Zero Logical file code (RR.LFC)

Type Size UDT index
(RR.TYPE). (RR.SIZE) (RR.UDTI)
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Starting block number (RR.STBLK)

Number of blocks (RR.NBLKS)

23 24 31

Zero

Subchannel
number
(RR.SCHN3)

23 24 31

23 24 31

Reserved

L-69

Resource Requirement Summary (RRS) Entries

L-70

Type 6 - Assign by Resource 10

078 15 16

Word 0

1

2

3

4-7

Zero Logical file code (RR.LFC)

Type (RR.TYPE). Size (RR.SJZE) Zero

See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Volume name (16 characters; left-justified, blank-filled)
(RR.NAMEl)

Binary creation date (RR.DATE)

Binary creation time (RR.TIME)

Resource descriptor block address (RR.DOFF)

23 24

Reserved

8

9

10

11 Reserved Resource type (RR.RTYPE)

Type 7 - Reserved for Future Use

Type 8 - Reserved for Future Use

Type 9 - Mount by Device Mnemonic

o 7 8 15 16

Word 0

1

Zero System ID (RR.SYSID).

Type Size (RR.SJZE) Zero
(RR.TYPE).

See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

23 24

See Note 11.

2

3

4-7 Volume name (16 characters; left-justified, blank-filled)
(RR.NAMEl)

31

8 Device type Reserved Channel number Subchannel
(RR.DT9). (RR.CHN9). number
See Note 8. See Note 9. (RR.SCHN9)

9 Zero

31

Data Structures

Resource Requirement Summary (RRS) Entries

Type 10· Assign to ANSI Tape

078 15 16 23 24

Word 0

1

Zero Logical file code (RR.LFC)

Type (RR.TYPE). Size (RR.SIZE) Fonnat (RRFORM)
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Record length (RR.RECL) Block size (RR.BSIZE)

Generation number (RR.GENN)

Generation version number (RR.GENV)

Absolute tennination date (RR.EXPIA)

Protect
(RR.PROn

2

3

4

5

6

7

8 Relative tennination date Logical volume identifier (RRL VID)

9

10-13

14

15

(RR.EXPIR)

RR.LVID (conl)

17-character file identifier (RR.AFID)

RR.AFID (conL) Reserved

Reserved

Type 11 • Assign to Shadow Memory

078 15 16 23 24

Word 0

1

2

3

Notes:

Zero

Type (RR.TYPE) Size Shadow flags
See Note 1. (RR.SIZE) (RR.SHAO). See Note 10.

Start address (RR.SADD)

End address (RR.EADD)

1. Bits in RR.TYPE are assigned as follows:

MPX·32 Reference

Value
1
2
3
4
5
6
7
8
9
10
11

12-255

Meaning

assign by patbname (RR.PATH)
assign to temporary file (RR.TEMP)
assign to d~vice(RR.DEVC)
assign to secondary LFC (RR.LFC2)
assign to segment definition (RR.SP ACE)
assign by resource 10 (RR.RID)
reseIVed for future use
reseIVed for future use
mount by device mnemonic (RR.MTDEV)
assign to ANSI labeled tape (RR.ANS)
assign to shadow memory (RR.SHTYP)
reseIVed

31

31

L·71

Resource Requirement Summary (RRS) Entries

2. Byte 3 is zero. This field is used by MPX-32 for big blocking buffers. 0
3. Bits in RR.ACCS are assigned as follows:

Bits Meaning if Set

0 read access allowed (RR.READ)
1 write access allowed (RR. WRITE)
2 modify access allowed (RR.MODFY)(not valid for ANSI

tapes)
3 update access allowed (RR.UPDAT)
4 append access allowed (RR.APPND)

5-15 reserved
16 explicit shared use requested (RR.SHAR)
17 exclusive use requested (RR.EXCL)
18 assign as volume mount device (RR.MNT)

19-31 reserved

4. Bits in RR.OPfS are assigned as follows:

Bits Meaning if Set

0 treat as SYC file (RR.SYC) (TSM/JOB only)
1 treat as SGO me (RR.SGO) (TSM/JOB only)
2 treat as SLO file (RR.SLO)
3 treat as SBO file (RR.SBO)
4 explicit blocked option (RR.BLK)

'5 explicit unblocked option (RR. UNBLK)
6 inhibit mount message (RR.NOMSG) r<-'

I
\

7 reserved for system use ',--..

8 automatic open requested (RR.OPEN)
9 user-supplied blocking buffer address in FCB (RR.BUFF)

10-11 reserved for system use
12 mount with no-wait (RR.NOWT)
13 mount as public volume (RR.PUBLC)
14 set by H. VOMM for special case handling of VOMM

assignments (RR. VOMM)
15 me is spooled when deallocated (RR.SEP)
16 ANSI labeled tape on RRS type 3 (RR.ANSI)

17-31 reserved

5. RR.DENS contains the density specification for XIO high speed tape units.
When specified, this field has the following bit significance:

Bits Meaning if Set

o indicates 800 bpi nonretum to zero inverted (NRZI)
1 indicates 1600 bpi phase encoded (PE)
6 indicates 6250 bpi group coded recording (GCR)

If this field is zero, 6250 BPI is set by default.

(J
L-72 Data Structures

(

Resource Requirement Summary (RRS) Entries

6. RR.DT3 specifies whether or not a channel is present and specifies the device
type:

Bits Meaning if Set
o channel present

1-7 device type

7. RR.CHN3 specifies whether or not a subchannel is present and specifies the
channel number:

Bits Meaning if Set
o subchannel is present. Examined only if bit zero of

RR.DT3 is set.
1-7 channel number

8. RR.DT9 specifies whether or not a channel is present and specifies the device
type:

Bits Meaning if Set
o channel present

1-7 device type

9. RR.CHN9 specifies whether or not a subchannel is present and specifies the
channel number:

Bits
o

1-7

Meaning if Set
subchannel is present. Examined only if RR.DT9 is set.
channel number

10. RR.SHAD contains the shadow flags that qualify the start and end addresses, or
specify what portions of the task are to be shadowed:

Bits Meaning if Set
0-7 reserved
8 shadow the task (RR.SHTSK)
9 shadow the TSA (RR.SHTSA)
10 shadow the stack (RR.SHST)
11 shadow memory is required (RR.SHRQ)
12 shadow the entire task (RR.SHALL)
13 absolute address (RR.ABS)
14 relative to the code section origin (RR.CREL)
15 relative to the data section origin (RR.DREL)

11. RR.SYSID is the ID for mounting a multiprocessor volume. Valid IDs are:

Multiported (MP) 0 through F

Dual Ported (DP) 0 or 1

For more infonnation on mounting multiprocessor volumes see the MPX-32
Reference Manual Volume I, Chapter 4, Mounting Multiprocessor Volumes.

MPX-32 Reference L-73

Receiver Exit Block (RXB)

L.19 Receiver Exit Block (RXB)

L-74

The receiver exit block (RXB) is used to control the return of parameters and status
from the destination (receiving) task to the task that issued the send request. It is also
used to specify receiver exit options. The same fonnat RXB is used for both
messages and run requests. The address of the RXB must be presented as an
argument when either the M.XMSGR or M.xRUNR services are called.

o 7 8 15 16 23 24 31

Word 0 Rett.n1l status Return parameter buffer address (RXB.RBA)
(RXB.S1)

Options Reserved I Number of bytes to be returned
(RXB.OP1) (RXB.RQ)

1

Notes:

1. Return status (RXB.ST) contains status as defined by the receiver task. Used to
set the user status byte in the parameter send block (PSB) of the task which
issued the send request.

2. Return parameter buffer address (RXB.RBA) contains the word address of the
buffer containing the parameters which are to be returned to the task which issued
the send request.

3. Options (RXB.OPT) contains receiver exit control options. It is encoded as
follows:

Value
o

I

Exit Type
M.XRUNR
M.xMSGR

M.XRUNR

M.XMSGR

Meaning
wait for next run request.
return to point of task interrupt.

exit task, process any additional
run requests. If none exist,
perfonn a standard exit.
N/A

4. Number of bytes to be returned (RXB.PQ) contains the number of bytes (0 to
768) of infonnation to be returned to the sending task.

Data Structures

(-
Type Control Parameter Block (TCPB)

L.20 Type Control Parameter Block (TCPB)

The type control parameter block (TCPB) allows I/O to and from the system console
by setting up task buffer areas for messages output by a task and optional reads back
from the console. If no input is desired, word one of the TCPB must be zero.

See the MPX -32 Reference Manual Volume I, Chapter 5 for further details on the
TCPB.

o 11 12 13

Word 0 Output quantity See Output data address
(TCP.OQ) Note 1. (TCP.OTCW)

1 Input quantity See Input data address
(TCP.IQ) Note 1. (TCP.ITCW)

2 Console Teletype Flags
(TCP.FLGS). See Note 2.

Notes:

1. Bit 12 is setto 1.

2. Bits in TCP.FLGS are assigned as follows:

MPX-32 Reference

Bits

o
31

Meaning if Set

no-wait I/O

operation in progress. This bit is reset after post-I/O
processing completes.

31

L-75

Type Control Parameter Block (TCPB)

L-76

Type Control Parameter Block (TCPB) using 24-bit address:

o 7 8 15 16 23 24 31

Word 0 Output Output data buffer address (TCP.OTCW)
quantity
(TCP.OQ)

1 Input Input data buffer address (TCP.ITCW)
quantity
(TCP.lQ)

2 Console device flags (TCP.FLGS) See Note 1.

Notes:

1. Bit interpretations for TCP.FLGS are:

Bits Meaning if Set
o no-wait I/O
1 data buffer addresses are 24-bit addresses (TCP.LAO)

Note: This bit must be set.

31 operation in progress. This bit is reset after
post-I/O processing completes.

Data Structures

o

C'
" "

(~

(

Unit Definition Table (UDT)

L.21 Unit Definition Table (UDT)

The unit definition table (UDT) is a system resident structure that identifies device­
dependent information required by a handler for a specific device. The UDT is built
by the SYSGEN process, one for each device configured in the system. During
SYSGEN, each UDT is linked to its corresponding controller definition table (eDT)
and its associated controller and handler.

Word 0

1

2

3

o 7 8 15 16 23 24

UDT index (UDT.UDTI) CDT index (UDT.CDTI)

Unit status Device type code Logical Logical
(UDT.STAT). (UDT.DTC). channel number subaddress
See Note 1. See Note 2. (UDT.CHAN) (UDT.SUBA)

Reserved Address of dispatch queue entry of task which has
device allocated if device is not shared (UDT.DQEA)

Physical channel Physical Sectors per block Sectors per
number subaddress (UDT.SPB) allocation unit
(UDT.PCHN) (UDT.PSUB) or (UDT.SPAU)

number of or

31

characters number of lines per

4

5
6

7

8
9

10

11

12

13

14

15

MPX-32 Reference

per line screen (UDT LINE).
(UDT.CHAR). See Note 4.
See Note 3.

Flags Number of sectors Maximum byte transfer
(UDT.FLGS). per track on (UDT.MBX)
See Note 5. disk or global

line counter if a
terminal (UDT.SPT)

Number of sectors on disk or tab setting if a terminal (UDT.SECS)

Sector size, on disk or a tab Number of heads on disk or a tab
setting if a terminal (UDT.SSIZ) setting if a terminal (UDT.NHDS)

Serial number if tape or removable disk (UDT.SERN). See Note 6.
Peripheral time-out value (UDT.PTOV)

Reserved Address of device context area (UDT.DCAA)
or handler name at initialization (UDT.HNAM)

Bit flags (UDT.BIT2). See Note 7. Associated allocated resource
table index if assigned (UDT.ARTI)

Service interrupt handler address (UDT.SIHA)

Reserved Secondary flags Reserved Reserved
(UDT.CXR) (UDT.BIT3) (UDT.SHFL) (UDT.DQEN)
See Note 8. See Note 9.

or UDT.HIST. See Note 10
Address of first IOQ linked to this device (UDT.FIOQ)

Address of last IOQ linked to this device (UDT.BIOQ)

Link Priority Link Count Unit Status byte 2 (UDT.STA2).
(UDT.LPR1) (UDT.IOCT) See Note 11.

L-77

Unit Definition Table (UDT)

L-78

Notes:

1. Bits in UDT.STAT are assigned as follows:

Bit Meaning if Set

o online (UDT.ONLI)
1 dual-portd XIO disk (UDT.DPDC)
2 allocated (UDT .ALOC)
3 tenninal in use and not in wait (UDT.USE)
4 system output unable to allocate (UDT.NOAL)
5 shared device (UDT.SHR)
6 premounted (UDT.PREM)
7 tenninal (TSM) device (UDT. TSM)

2. For example, 01 for any disk, 04 for any tape. etc. Valid device type codes are
listed in Appendix A.

3. For disks, contains the number of sectors per block (UDT.SPB). For tenninals,
contains the number of characters per line (UDT.CHAR).

4. For disks, contains the number of sectors per allocation unit (UDT.SPAU). For
SLO or tenninals, contains the number of lines per page or screen (UDT.LINE).

5. Bits in UDT.FLGS are assigned as follows:

Bit

o
1
2
3
4
5
6
7

Meaning if Set

extended I/O device (UDT.FCLS)
I/O outstanding (UDT.lOUT)
removable disk pack (UDT.RMDV)
a break has been requested for this device (UDT.LOGO)
autoselectable for batch SLO (UDT.BSLO)
autoselectable for batch SBO (UDT.BSBO)
autoselectable for real-time SLO (UDT.RSLO)
autoselectable for real-time SBO (UDT.RSBO)

6. If the device is a tenninal or console, the first halfword is the current tenninal
type for TERMDEF (UDT.crDF) and the second halfword is the default
tenninal type (UDT.DTDF).

7. Bits in UDT.BITI are assigned as follows:

Bits

o
1
2
3
4
5
6
7
8
9
10

Meaning if Set

port is private; else switched (UDT.DIAL)
port is connected to modem (UDT.MODM)
port has graphic capability (UDT.GRFC)
port is full duplex (UDT.FDUX)
port is configured multidrop (UDT.MDRA)
volume mounted on device (UDT.VOL)
echo by computer (UDT.ECHO)
device has failed. Log off TSM (UDT.DEAD)
cache device (UDT.CAC)
inhibit automatic line wrap (UDT.NRAP)
spool device requires fonn feed after printing rather
than before; initial fonn feed is inhibited (UDT.FEOP)

Data Structures

c

(/

Bits

11
12
13
14
15

Unit Definition Table (UDT)

Meaning if Set

quarter inch cartridge tape drive (UDT.QITD)
software read flow control required (UDT.RXON)
software write flow control required (UDT.WXON)
hardware read flow control required (UDT.RHWF)
hardware write flow control required (UDT.WHWF)

8. For switched port, contains the value specified in the LOGONFLE CXR = option
(UDT.CXR)

9. Bits in UDT.BIT3 are assigned as follows:

Bits Meaning if Set

o SCSI device (UDT.SCSI)
1-7 reserved

to. UDT.HIST is used as an address save area by pseudo device handlers, such as
ON. IPXI 0

11. Bits in UDT.STA2 are assigned as follows:

Bits

0
1
2
3
4
5
6
7
8

9

to
11
12

13
14
15

MPX-32 Reference

Meaning if Set

IOQ linked from UDT (UDT.IOQ)
lOP device (initialized by SYSGEN) (UDT.lOP)
device malfunction (UDT.MALF)
operator intervention applicable (UDT.lNTV)
use standard XIO interface
floppy disk
cartridge module drive
moving head disk with fixed head option
if software read flow control enabled, use
DTR line; otherwise, use RTS line. (UDT.RDTR)
memory disk (UDT.MD) or valid command line recall and
edit device (UDT.CLRE)
memory allocated for memory disk (UDT.MDAL)
start address of memory disk specified at SYSGEN (UDT.MDST)
multiport device is shared with an MPX-32 Revision 3.2C
or earlier version (UDT.PPV)
device is exclusive ANSI (UDT.ANSI)
serial printer (UDT.SLPR)
port is switched and CXR=N option has been specified
(UDT.DCXR)

L-79/L-80

if
!'\<~/

(

Glossary

access method

access mode

aged page

A software package that provides the ability to access fields
within records, to classify or order records according to the
contents of fields, and to perform other such functions.

Defines the range of operations to be performed on a
resource.

A page which has not been referenced within a predetermined
frame of time during demand page processing. This page is
no longer considered a part of the task's working set.

allocated resource table (ART)

allocation

allocation unit

argument

assign

assignment

asynchronous

A system resident table with an entry for each currently
allocated resource in the system.

The process of securing a resource for a specific usage and
access mode for a task.

A mechanism for grouping more than one block on a
formatted disc, or other mass medium, at one time. Usually
specified in multiples of 192-word disc blocks. See disc
block.

A value (string or integer) that is assigned to a parameter.

To associate a resource with a logical file code used by a
process.

The process of associating a logical file code with a system
resource. Does not guarantee the resource for a specific use
or access mode for a task.

Implies one entity does not wait for or otherwise
acknowledge another entity when it performs an operation.

asynchronous notification

base mode

blocked I/O

blocking buffers

MPX-32 Reference

A process does not stop execution waiting for notification. It
receives a software interrupt when an asynchronous operation
is complete.

Implies the base register instruction set that allows executable
programs of up to 4096KW (16MB).

The process of packing records equal to or less than 254
bytes so that more than one record is stored in a 192-word
disc block.

Buffers used for packing records for blocked I/O. See
blocked I/O.

GL-1

Glossary

GL·2

caller notification packet (CNP) (("
A structure used to supply additional calling parameters and '-..7

classes of users

command file

CONCEPf/32

configuration

data files

data management

Datapool

to control the handling of abnonnal conditions that may occur
during resource requests.

A three-level grouping of users into OWNER,
PROrnCfGROUP and OTHER. Used to pennit or limit
access to a resource by 'class'.

A file containing commands known to a particular operating
system or process.

A tenn which implies the entire line of CONCEPT/32
computers; for example, the 32/67.

Hardware: the physical hardware related to a CPU. Software:
adapting the operating system to a hardware configuration
with the SYSGEN processor.

Files containing data or transactions that have been processed
or will be processed by a task.

The ability to structure data into records using buffers.

An area of memory that contains the same functionality as
Global Common but with the added flexibility of symbolic
references being independent of the actual positioning of data
within the memory area. See Global Common.

deallocate To detach a resource from a process.

deassign To remove the association between a logical file code and a
resource and deallocate the resource.

dequeue To remove from a prioritized list.

demand page Allocation of memory when the logical page is referenced by
the task on demand. The process of allocating physical
memory when pages are referenced and deallocating physical
memory when pages are no longer active. Pages that are no
longer active are considered aged and removed from the
task's working set.

device A peripheral unit such as a card reader, a printer, a disc drive,
or a tape drive. Distinguished from media used with devices.

device access Levels are physical I/O, logical device I/O, and logical file
I/O.

device-dependent I/O Tasks perfonn operations to a specified device with minimal
10CS overhead.

device-independent I/O Tasks perfonn I/O operations through the use of operating
system calls whicb are independent of the device used to
perfonn. the operation.

Glossary

o

(

(

direct I/O

Glossary

Tasks perfonn operations bypassing IOCS and handler
functions by coding its own handler and attaching it to a
specific channel.

directory A list of file names and/or memory partition names. Stored
on disc like a regular file. Located via a resource descriptor
for the directory. Directory names are 1 to 16 characters in
length and valid characters for names are A to Z, 0 to 9, dot
(.) and underscore (_).

directory descriptor The resource descriptor for a directory.

disc block A common unit of measurement (some number of words)
used to measure file space on fonnatted media throughout a
system. The number of words in a block is oriented to the
most common sector size on discs used with the system.

DMAP See resource descriptor allocation map.

dynamic assignment The association of a logical file code with a system resource
during task execution.

enqueue To put into a list ordered by software priority.

exclusive use

executable image

explicit shared use

extended code

A resource is not available for use by any other task until that
resource is deallocated by the using task. Guarantees access
to a resource, within the access limitations imposed by the
resource creator, when logical I/O is initiated.

A file of object code produced by the LINKER/X32.

A resource can be used concurrently by more than one task.
Each task maintains resource integrity by establishing its own
synchronization and locking mechanisms. Each task is
guaranteed access to the resource, within access limitations
imposed by the resource creator, when logical I/O is initiated.

That part of the operating system that has been modified to
run in the extended execution space.

extended file control block

file

file control block (FCB)

file descriptor

MPX-32 Reference

A file control block set up by the user which contains more
infonnation than the standard file control block. See file
control block.

A set of infonnation stored on a mass medium such as disc or
tape that is given a unique identity (number and often name)
and treated as a single entity for processing.

Set up by the user to describe logical files within a task.
Describes attributes of logical I/O operation.

A resource descriptor for a file.

GL-3

Glossary

file identifier

file segment

A unique identifier stored in the resource descriptor for a file
when the file is created. Used to access the resource
descriptor without a directory search.

Set of contiguous allocation units on a volume identifying the
space associated with a file. Each file segment definition
contains the absolute 192-word block volume segment
address and the segment length in 192-word blocks
(maximum of 32 file segment definitions per file).

file space allocation map (SMAP)

filename

format

formatted volume

Global Common

implicit shared use

job file

library file

load module file

GL-4

A bit map used to allocate space on a volume.

A 1- to 16-character name supplied for a permanent file when
it is created on a mass medium. Used in most cases thereafter
to identify the file. Valid characters for filenames are the
upper-case letters A to Z, the decimal numbers 0 to 9, and the
special characters dot C.) and underscore (_). Filenames to
be used with the compatible interfaces, for example Editor,
File Manager, and Media, are limited to 1 to 8 characters.

Standard organization of information.

A disc pack or floppy disc that contains standard volume
system structures established by the Volume Formatter utility.

An area of memory accessible by using symbolic names to
identify specific storage cells. Programs belonging to many
independent tasks can freely access the same data and
exchange control information within the Global Common
area.

A resource is available for concurrent use by other tasks in a
compatible access mode. Does not guarantee access when
logical I/O is initiated. Resource integrity is automatically
maintained by the system.

A command file designed to run in the batch or interactive
environment.

Object modules or source modules identified by name that are
output to a single file. Modules on library files can be used
separately and repeatedly. For example, object modules can
be retrieved by name during cataloging and inserted with
existing code. The ability to edit the contents of library files
by name is also normally available.

A file of object code produced by the Cataloger that is ready
to relocate from disc into memory and execute as a process.
Load module files can be activated by name and are
controlled by name or task number.

Glossary

,(.... ~.'\
, !

~/

r logical device I/O

logical dismount

Glossary

I/O where the physical characteristics of a device are not
determined automatically by the file management system
(device and data formatting are inhibited), allowing the user
to exert control over a particular physical device or device
medium.

The action taken by MPX-32 to disassociate a volume from
the requesting task. A TSM logical dismount disassociates
the volume from the requesting context.

logical file code (LFC) User defined 1- to 3-character ASCII codes identifying logical
files within tasks.

logical file I/O

logical mount

logical resource

map block

medium (singular)
media (Plural

memory descriptor

memory partitions

modular

I/O where the physical characteristics of a device and device
medium (device format control, data conversion, data
formatting) are performed automatically for the user so that
he gains a degree of device independence.

The action taken by MPX-32 to associate a physically
mounted volume to a task. A TSM logical mount associates
the volume to the TSM context requesting the mount.

Any entity existing only because of a mechanism provided by
software. The primary logical resources are: disc volumes,
directories, files, and memory partitions.

A 2048-word unit of memory allocation. In demand page
processing, a page is a map block.

A contiguous source of input or output that is used for a
particular peripheral device. For example, a disc pack is the
medium mounted on a disc drive; a tape is the medium
mounted on a tape drive; paper is the medium used on a
printer; a deck of cards is the medium used on a card reader.
The operating system distinguishes use of media from use of
devices.

The resource descriptor for a memory partition.

Named areas of physical memory that can be shared by
concurrently executing tasks.

Construction in independent layers. Each higher level layer
builds on the layer beneath it and provides its own standard
interfaces to the levels above and below it.

mounted volume table (MVT)

MPX-32 Reference

A system resident table with an entry for each physically
mounted volume. Each entry contains information used by
the system to maintain volume accounting information.

GL-5

Glossary

Gl-6

multi copied tasks Tasks with the same name and the same concurrent load
module activity, owned by a single owner or several owners.
This is accomplished by cataloging a task as multicopy. Task
numbers must be used to communicate with multi copied
tasks. See task number.

multiprocessor volume A specially mounted user volume that allows tasks operating
in separate system environments to concurrently access any
volume resource.

multivolume magnetic tape

nonbase mode

nonpublic volume

object file

owner

owner name

page

page fault

A set of I through 255 maximum physical reels of magnetic
tape processed as a continuous reel.

Implies the nonbase register instruction set which allows
executable programs of up to 128KW.

A volume assigned specifically to the tasks that mount it.
Remains physically mounted until use and assign counts
equal O.

A file of assembled or compiled code that can be cataloged or
linked into a task.

The user who has possession of and can control access to a
file, device, memory partition, or directory. Usually the
owner of a resource is the user who created its resource
descriptor.

A 1- to 8-character name supplied at logon which remains
unchangeable through logoff'. The following characters
cannot be used in owner names: blanks, commas, semicolons,
equal signs, line feeds. dollar signs. percent signs,
exclamation points. and left or right parentheses. All other
characters are valid. Owner names are associated with any
task or process activated on the system and noted by any
process that acts in the owner's behalf. Owner name is also
associated with any resources a user creates unless the user
specifies otherwise. Specifying a different owner when
creating a resource definition does not change the user's
owner name; it only specifies the owner name associated with
the resource.

A 512-word unit of memory protection. Also referred to as a
protection granule. Four pages compose a map block.

For demand page processing, a page is a map block brought
into memory and removed from memory during the life of a
demand page task.

The reference of a page within the logical address space
which is not currently a part of the task's working set.

Glossary

page in

page out

parameter

pathname

pathnamc block

pennanent files

physical dismount

physical mount

physical resource

portable

Glossary

Bringing into logical memory a page needed to satisfy an
address referenced by a task.

The removal of aged pages from the task's logical address
space.

A symbolic name in a process or directive file that can be
assigned an argument.

Variable length ASCII character strings which uniquely
identify a volume resident resource by explicitly or implicitly
describing the volume, one or more directories, and the
resource name.

Doubleword bounded variable length ASCII character string
beginning with "!" which uniquely identifies a volume
resident resource by explicitly or implicitly describing the
volume, one or more directories, and the resource name.

Files that remain defined on a volume until explicitly deleted.

The action taken by MPX-32 to disassociate a volurrie from
an assigned mount device and deallocate the device.

The action taken by MPX-32 to allocate a mount device and
associate that device to the assigned volume name.

Any physical hardware that MPX-32 supports. Tasks access
the resource to perfonn their functions. The primary physical
resources are: the CPU, computer memory (main storage),
and input/output devices.

Can be used on any compatible device in a single system -
configunttion. Can also be carried to a compatible device on
a different system hardware configuration. Usually describes a
volume.

post program-controlled interrupt receiver

process

project group name

protect

protection granule

MPX·32 Reference

User supplied end-action receiver entered when a hardware
post progntm-controlled interrupt is encountered.

A body of code scheduled for CPU time as a single entity. A
load module is a process, in loadable fonn, stored on disc.
Same as task.

A name that is specified at logon and can also be changed.
Identifies a group of users that have a defined set of rights
when they access a resource.

To limit access to a resource. See classes of users.

A 512-word unit of memory protection. Also referred to as a
page in a non-demand page context. Four protection granules
compose a map block.

-GL"7

Glossary

GL-8

public volume

real time task

requestor

resource

A volume available for resource assignments by all tasks
activated in the system.

Synonymous with time critical process.

The process which requests a function. Each process on a
system has an associated owner name. The system process
that requests a function for a user (e.g., in the interactive
environment) keeps track of the owner name so that the user
thinks of himself as the 'requestor'.

Any source of support that exists external to a task and that
the task needs to perform its function. A resource can be
physical or logical.

resource create block (RCB)
Defines access attributes for permanent files, temporary files,
memory partitions, and directories when the particular
resource is created. If not supplied at resource creation,
system default attributes are assumed.

resource descriptor (RD)
Contains access, accounting, and space definition information
pertaining to mounted volume resources, permanent files,
temporary files, directories and partitions.

resource descriptor allocation map (DMAP)

resource identifier (RID)

A bit map used for the allocation of resource descriptors on a
volume.

The fastest way to locate an already created volume resource.
The RID is in the first eight words of a resource descriptor
and contains the volume address of the resource descriptor,
which points to and describes the resource.

resource logging block (RLB)
A parameter block used as input to the M.LOGR service for
logging resources.

Resource Management Module (H.REMM)
Performs allocation and assignment of all system resources
and maintains access compatibility and usage rights for these
resources. Also contains synchronization mechanisms for
concurrent access to shared resources.

resource requirement summary (RRS)

root directory

SMAP

Defines assignment requirements of a resource. Entries are
variable length, doubleword bounded. There are 9 types of
entries.

The directory of all directories defined on a volume.

See file space allocation map.

Glossary

()

(

(-

source file

static assignment

status posting

swap volume

symbolic

Glossary

A file of source code to be assembled or compiled into object
code.

The association of a logical file code with a system resource
during task activation.

The process of returning information that indicates whether a
service was completed successfully, with errors, or denied.

A volume used as the primary medium for swap file
allocations.

A representation of a physical resource, e.g., a name that
represents an entity but is not the entity itself.

synchronous notification
A process waits on further processing until it is notified that
an operation is done or that there is something inhibiting the
operation (e.g., a resource is not available or other processes
are in contention for the resource).

system administrator attribute (SA)

system directory

system volume

task

task name

task number

temporary files

time critical process

traverse

MPX-32 Reference

Gives an unprivileged user the ability to execute privileged
SVC's, allows a user to mount public volumes, and allows a
user to change his owner name. A user with the system
administrator attribute is, however, restricted to resource
access limitations imposed by the resource creator.

Special directory on the system volume which contains
volume resources necessary for system operation.

A volume containing the system and bootstrap images from
which the current system was IPLed. This volume is
automatically mounted by the SYSINIT task at system
initialization.

Synonymous with process.

The name supplied when a task is cataloged or linked.

An 8-digit hexadecimal number assigned to a task by
MPX-32 when the task is activated. The task number is
unique and identifies a particular copy or sharer of a task.

Unnamed files that are referenced by resource identifiers.
They are automatically deleted from the system and their
volume space made available when the last task assigned to
them terminates execution.

A process which has time constraints. Same as a real time
task.

To pass through a directory on the way to another directory
or resource.

GL-9

Glossary

GL-10

type control parameter block (TCPB)

unformatted media

usage mode

user

volume

Set up by the user for sending and receiving messages
to/from the system console.

A medium (magnetic tape, disc pack or floppy disc) that does
not contain valid volume format information, but must be
mounted before initiation of I/O operations.

Defines the degree to which multiple tasks can concurrently
allocate a resource. Usage modes are: exclusive use, explicit
shared, and implicit shared.

A person who uses a system. Processes and commands that
activate processes are either initiated by a user or initiated on
behalf of a user.

A medium that has a standard format. Disc packs can be
formatted as volumes.

volume assignment table (VAT)
A task resident table with an entry for each non-public
volume currently assigned to the task.

Volume Management Module (H.VOMM)

working set

Manipulates volume resident and related memory resident
structures in order to allow for creation, deletion, and
maintenance of user and system resources which reside on
volumes; for example, provides space management for all
currently mounted volumes in the system.

The pages (map blocks) of a task that arc actively being
referenced within a predetermined frame of time.

Glossary

(

{

Index

- A-
Abort a Task, (Vl)2-46, (Vl)6-16, (Vl)6-50,

(Vl)7-21, (Vl)7-59, (V2)2-6
Abort Codes, C-I

display description, (V2)1-58
system files, (V3)10-18

Abort Receiver, (Vl)2-34, (Vl)6-166,
(Vl)7-170

Abort Self Service, (Vl)6-17, (VI)7-22
Abort Specified Task Service, (VI)6-16,

(Vl)7-21
Abort with Extended Message Service,

(VI)6-18, (Vl)7-23
ACM{MFP

controller record
defaults, (V3)10-33
syntax, (V3)lO-33

initialization fonnat, (V3)lO-35
set dual-channel mode, (Vl)6-142,

(Vl)7-145
set single-channel mode, (Vl)6-145,

(Vl)7-148
true full-duplex operation, (V3)IO-37

Acquire Current Dateffime in ASCII Fonnat
Service, (Vl)6-138, (VI)7-139

Acquire Current Dateffime in Binary
Fonnat Service, (Vl)6-20, (Vl)7-25

Acquire Current Dateffime in Byte Binary
Fonnat Service, (Vl)6-15, (Vl)7-20

Acquire System Dateffime in Any Fonnat
Service, (Vl)6-85, (Vl)7-88

ACS
CONCEPT 32/67 usage, (V3)12-2
description, (V3)12-1
directive summary, (V3)12-5
DUMPACS

description, (V3)12-5 .
directive summary, (V3)12-5
directives

CHECKSUM, (V3)12-6
COMPARE, (V3)12-6
DUMP, (V3)12'-8
EXIT, (V3)12-9
MODE, (V3)12-10
REVISION, (V3)12-12

errors, (V3)12-16
firmware file, (V3)12-2
LOADACS

description, (V3) 12-4
directive file (M.ACS), (V3)12-1

MPX·32 Reference

directive summary, (V3)12-5
directives

COPY, (V3)12-7
ENABLE, (V3)12-8
LOAD, (V3)12-9
PATCH, (V3)12-11
VERIFY, (V3)12-13

errors, (V3) 12-14
M.ACS, (V3)12-1

sample file, (V3)12-13
Activate a Task, see Task, execution
Activate Job, (Vl)6-226

also see Task, execution
Activate Load Modules, (V3)7-10, (V3)7-50
Activate Program at Given Time-of-Day

Service, (Vl)6-185, (V1)7-187
Activate Task Interrupt Service, (VI)6-97,

(VI)7-101
Activate Task Service, (Vl)6-5, (Vl)7-7
Add

new users to the system, (V3)10-4
project group names to the system,

(V3)1O-12
Advance Record or File Service, (Vl)6-74

(Vl)7-9 '
AIDDB, (Vl)1-16
ALIM

initialization fonnat, (V3)lO-26
tenninal record

defaults, (V3)IO-25
syntax, (V3)IO-25

Allocate, resource, (Vl)5-1, (Vl)5-2, (Vl)5-3,
(VI)6-8, (VI)7-12

Allocate File or Peripheral Device Service,
(Vl)6-222

Allocate File Space Service, (Vl)6-206
Allocate Resource Descriptor Service, (Vl)6-208
Allocated Resource Table (ART)

display, (V4)2-15
specify size, (V3)7-11

Allocation Unit, (Vl)5-55
Alterable Control Store, see ACS
Analyze, system tables and queues, (V4)2-3
ANSI Labeled Tapes

assign
LFC, (V2)1-38
RRS, (Vl)5-12

dismount, (V2)7-8
display, (V2)7-10, (V2)7-11
examples, (V2)7-6

IN·1

exclude support, (V3)7-40
file records

fixed-length, (V2)7-2
spanned, (V2)7-3
variable-length, (V2)7-3

implementation levels, (V2)7-5
interchange with other systems, (V2)7-4
labels, (V2)7-4
LVID, (V2)7-1
messages, (V2)7-5
mount, (V2)7-9
overview, (V2)7-1
tape drives, (V2)7-3
usage, (V2)7-2
utilities

ADMOUNT, (V2)7-8
AMOUNT, (V2)7-9
ASTAT, (V2)7-10
AVOLM, (V2)7-11
J.LABEL, (V2)7-13, (V3)10-62

VID, (V2)7-2
write header labels, (V2)7-13

Archive, floppy disk, (V 4)2-42
~thmet~c Exception Handling, (Vl)2-34
ArithmetIc Exception Inquiry Service,

(V1)6-182, (Vl)7-184
ASCII Dateffime to Binary Conversion,

(VI)6-28, (VI)7-34
ASCII Decimal to Binary Conversion,

(V1)6-26, (VI)7-32
ASCII Files, display two, (V4)2-24
ASCII Hex to Binary Conversion,

(VI)6-27, (VI)7-33
ASCII Interchange Code Set, F-I
ASMX32, (VI)I-17
ASSEMBLE, (VI)I-16
Assemble'r/X32, (VI)1-17
Assembly Source Code Flowchart Tool,

(V4)2-28
Assign

arithmetic result to a parameter,
(V2)1-96

integer value to a parameter, (V2)1-96
logical file codes, (V2)1-36
resource, (VI)5-2. (V1)5-3, (V1)6-8,

(VI)7-12
~tring value to a parameter, (V2)1-94

AssIgn and Allocate Resource Service,
(Vl)6-8, (Vl)7-12

Asynchronous Task Interrupt Service,
(VI)6-10, (Vl)7-14

Automatic Batch Job Submission on
Boot-up, (V4)2-15

Automatic IPL, (V3)6-4
Automatic Mounting of Public Volumes,

(Vl)4-20, (V3)9-11

IN·2

- B-

Backspace Record or File Service,
(Vl)6-11, (VI)7-16

Backspace magnetic tape, (V2)3-22
Bad Blocks, (Vl)5-64
Base Mode

exclude support, (V3)7-40
nonshared tasks, (Vl)2-3
system services, (Vl)7-1

Batch Environment
accessing, (V2)1-12
example, (V2)1-109

Batch Job Entry Service, (Vl)6-13, (Vl)7-18
Batch Processing

activate job, (Vl)6-13, (VI)7-18
(V2)1-45, (V2)1-59, (V2)1-102,
(V2)2-8

change job priority, (V2)1-103
continuous processing, (V2)2-31,

(V3)7-36
example, (V2)1-109, (V2)I-110
maximum number of active jobs,

(V3)7-32
overview, (Vl)l-14
specify priority level, (V3)7-11
terminate input stream, (V2)1-106

Batch Stream Memory Pool Interaction,
(V2)1-115

Binary Dateffime to ASCII Conversion
(VI)6-30, (Vl)7-36 '

Binary Dateffime to Byte Binary
Conversion, (Vl)6-33, (VI)7-39

Binary to ASCII Decimal Conversion,
(Vl)6-29, (VI)7-35

Binary to ASCII Hexadecimal Conversion
(VI)6-31, (V1)7-37 '

Blocked I/O, (Vl)3-4, (VI)3-15, (Vl)5-34
Blocking Buffers, (VI)3-15
Boot Block, (VI)4-22
Booting the System

from Master SOT, (V3)2-12
control switches, (V3)2-21, K-I

from User SDT, (V3)4-4
Bootstrap program, (V3)5-1
Bootstrapping, (V3)5-1

philosophy, (V3)2-22
Branch

backward, (V2)1-62
conditional, (V2)1-64, (V2)1-66,

(V2)1-69
forward, (V2)1-63

Break Key, (Vl)6-60, (Vl)6-65, (Vl)7-68,
(Vl)7-71, (V2)1-19

Break/fask Interrupt Link/Unlink
Service, (Vl)6-19, (V1)7-24

Index

(

(

Building SYSGEN Input File
COMPRESS task, (V3)3-2
directive input file, (V3)3-1
object input file, (V3)3-1

Byte Binary Daterrime to ASCn
Conversion, (Vl)6-32, (Vl)7-38

Byte Binary Daterrime to Binary
Conversion, (Vl)6-34, (Vl)7-40

-c-
C.TRACE, (V3)7-64
Caller Notification Packet, see CNP
Carriage Control Characters, L-31
Case Sensitivity, TSM, (V2)1-20
CATALOG

overlays, (Vl)I-16
privilege, (Vl)1-15

C~OT array, specify size, (V3)7-12
CDT, L-3
Central Processing Unit, see CPU
Change

current working directory, (VI)6-46,
(Vl)7-56, (V2)1-48, (V2)1-104

default system input device, (V2)2-56
default system output device, (V2)2-56
directories, (V2) 1-11
key, (V2)1-9
owner attributes, (V3) 1 0-7
password, (V2)1-1O
project group, (Vl)6-46, (Vl)7-56,

(V2)1-11, (V2)1-48
project group name key, (V3) 10-13
SBO device, (V2)2-37
SLO device, (V2)2-37
tabs. (V4)2-56
task priority, (Vl)6-131, (V1)7-131

Change Defaults Service, (VI)6-46, Vl)7 -56
Change Priority Level Service, (Vl)6-131,

(Vl)7-131
Change Task to Unprivileged Mode Service,

(Vl)6-192, (VI)7-192
Change Temporary File to Permanent File

Service, (V1)6-175, (Vl)6-248,
(Vl)7-177

Channel Configuration, (V3)7 -13
Channel Reservation, (Vl)6-153, (V1)7-156
Channel Reservation Release, (Vl)6-149,

(Vl)7-153
Channel Status, display, (V2)2-46
Check TERMDEF Additions, (V4)2-I9
Clear

break receiver, (Vl)6-19. (VI)7-24
M.KEY file, (V3) 10-9
M.PRJCT file, (V3)1O-14
options, (V2)1-81
TSM directives, (V2)I-49

MPX-32 Reference

Close File Service, (Vl)6-23, (VI)7-29
Close Resource Service, (Vl)6-2I (VI)7-27
CNP '

description, (Vl)5-I5
PPCI receiver, (VI)5-44, (VI)5-47, L-53
return conventions, (Vl)5-16
status posting, (Vl)5-16, (Vl)5-58
structure, L-2

Command Line, (Vl)6-24, (Vl)7-30, (V2)I-85
(V2)1O-I '

Command Line Recall and Edit
disable, (V2)10-8
edit, (V2)1O-2
enable, (V2) 1 0-8
introduction, (V2)1O-1
MPX.PRO file, (V2)1O-6
recall, (V2) 10-4

Common Area, see Memory Partition
Communicating

with another task, (V2)1-14, (V2)2-22,
(V2)2-42

with other terminals, (V2)1-14
Communication

internal, (Vl)I-12
intertask, (VI)I-II, (Vl)2-22, (V2)2-42

Communications Facilities, (VI) 1-11
Compare Program Source Files,

(V4)2-25
Compatibility Mode Services

exclude support, (V3)7-40, (V3)7-61
COMPRESS

accessing, (V2)4-I
at SYSGEN, (V3)7-1
description, (V2)4-1, (V3)3-2
error messages, (V2)4-3
example, (V2)4-4
logical file codes, (V2)4-2, (V2)4-3

Compressed Source Format, 1-1
CONCEPT/32

interrupts and traps, (Vl)l-5
machine type, (V3)7-34

Conditional Branch, (V2)1-64, (V2)1-66,
(V2)1-69

Conditional Processing, (V2) 1-29
Configuration Module, (V4)2-18
Connect Task to Interrupt Level, (V2)2-1O
Connect Task to Interrupt Service, (Vl)6-35

(Vl)7-4I '
Console

configuration, (V3)2-1, (V3)7 -34
device definition, (V3)7 -21

Context Switch Timing for M.SURE,
(V4)2-20

Continue Task Execution, (V2)1-20,
(V2)2-11

Control Switches, (V3)2-21, K-l

IN-3

Controller Definition Table (COT), L-3
Controller Status, display, (V2)2-46
Convert

ASCII date/time to binary, (Vl)6-28,
(Vl)7-34

ASCII decimal to binary, (Vl)6-26,
(Vl)7-32

ASCII hex to binary, (Vl)6-27, (Vl)7-33
binary date/time to ASCII, (Vl)6-30,

(Vl)7-36
binary date/time to byte binary,

(Vl)6-33, (Vl)7-39
binary to ASCII decimal, (VI)6-29,

(Vl)7-35
binary to ASCII hexadecimal, (VI)6-31,

(Vl)7-37
byte binary date/time to ASCII, (VI)6-32,

(Vl)7-38
byte binary date/time to binary, (VI)6-34,

(VI)7-40
date and time formats, (VI)7-43
pathname to pathname block, (Vl)6-129,

(VI)7-129
Convert ASCII Daterrime to Byte Binary

Format Service, (Vl)6-25, (VI)7-3I
Convert ASCII Daterrime to Standard

Binary Service, (Vl)6-28, (VI)7-34
Convert ASCII Decimal to Binary Service,

(VI)6-26, (VI)7 -32
Convert ASCII Hexadecimal to Binary

Service, (VI)6-27, (VI)7-33
Convert Binary Daterrime to ASCII Format

Service, (Vl)6-30, (Vl)7-36
Convert Binary Daterrime to Byte Binary

Service, (VI)6-33, (V1)7-39
Convert Binary to ASCII Decimal Service,

(VI)6-29, (V1)7-35
Convert Binary to ASCII Hexadecimal

Service, (V1)6-31, (VI)7-37
Convert Byte Binary Daterrime to ASCII

Service, (VI)6-32, (VI)7 -38
Convert Byte Binary Daterrime to Binary

Service, (VI)6-34, (Vl)7 -40
Convert Pathname to Pathname Block

Service, (V1)6-129, (VI)7-129
Convert System Daterrime Format Service,

(Vl)6-39, (VI)7-50
Convert Tape to MPX-32 2.x, (V2)3-23
Convert Time Service, (Vl)7 -43
Copy a File, (V2)3-25
CPU

dispatch queue area, (VI)2-42
execution of IPU tasks, (Vl)2-16
scheduling, (VI)l-7, (Vl)2-10

IN·4

execution priorities, (VI)2-10
real-time priority levels, (Vl)2-10

state chain management, (Vl)2-12
time-distribution priority levels,

(Vl)2-11
CPU Execution Time

display, (V2)1-99
for the task, (Vl)6-204, (Vl)7-206

Crash Codes, (Vl)2-51, C-32
Crash Dump Analyzer, (V4)2-3
Create

directory, (Vl)4-26, (Vl)6-53,
(Vl)7-61, (V2)3-32

FCB, (Vl)5-39, (Vl)7-45
file, (Vl)4-32, (Vl)6-37, (Vl)6-228,

(Vl)7-46, (V2)1-50, (V2)3-34
memory partition, (Vl)4-43, (Vl)6-108,

(VI)7-Ill, (V2)3-29
shared image, (Vl)4-45
temporary file, (V 1)4-41, (V 1)6-173,

(Vl)6-209, (Vl)7-48
timer entry, (V1)6-I59, (VI)7-I63
timer table, (V2)2-58

Create Directory Service, (VI)6-53,
(Vl)7-61

Create File Control Block Service, (VI)7 -45
Create Memory Partition Service,

(VI)6-108, (VI)7-1II
Create Permanent File Service, (VI)6-37,

(VI)6-228, (VI)7-46
Create Temporary File Service, (VI)6-I73,

(VI)6-209, (VI)7-48
Create Timer Entry Service, (VI)6-I59,

(VI)7-163
CSECT, (VI)2-3, (V1)3-21
Current Working Directory

change, (V1)6-46, (VI)7-56, (V2)1-48,
(V2)1-104

description, (VI)4-6

- 0-

Datapool, (Vl)l-12, (V1)3-I9, (VI)3-20,
(V3)7-39

Datapool Editor, (VI)I-17
Date and Time

conversion
any format, (VI)6-39, (V1)7-43, (VI)7-50
ASCII to binary, (VI)6-28, (V1)7-34
ASCII to byte binary, (VI)6-25,

(VI)7-3I
binary to ASCII, (VI)6-30, (VI)7-36
binary to byte binary, (V1)6-33,

(Vl)7-39
byte binary to ASCII, (VI)6-32,

(Vl)7-38
byte binary to binary, (VI)6-34,

(VI)7-40
display, (V2)2-57

Index

c

(

(

c

formats, H-l
inquiry

any format, (Vl)6-85, (Vl)7-84,
(Vl)7-88

in ASCII, (Vl)6-44, (Vl)6-138,
(Vl)7-52, (Vl)7-139

in binary, (Vl)6-20, (Vl)7-25
in byte binary, (Vl)6-15, (Vl)7-20

system update, (V2)2-20
Date and Time Inquiry Service, (VI)6-44,

(Vl)7-52
Deallocate File or Peripheral Device Service,

(Vl)6-231
Deallocate File Space Service, (Vl)6-211
Deallocate Resource Descriptor Service,

(Vl)6-212
Deassign and Deallocate Resource Service,

(Vl)6-42, (Vl)7-53
Debug Link Service, (Vl)6-123, (Vl)7-207
Debugger

execute, (Vl)6-45, (Vl)7-55
system, see System Debugger
task

AIDDB, (Vl)1-16
specify default, (V3)7-16
transfer control to, (Vl)6-213,

(Vl)7-207
unsupported, (V 4)2-44

DEBUGX32, (Vl)1-18
Decrease File Size, (V2)3-65
Default

SBO device, (V3)7-45
SID device, (V3)7-51
SLO device, (V3)7-63
task debugger, (V3)7-16
user directory, (V3) 1 0-4
user project group, (V3)10-4
user volume, (V3)10-4

Define FCB Macro, (Vl)5-39
Define Parameters, (V2)1-51
Delete

directory, (V2)3-38
file, (Vl)4-41, (Vl)6-232, (V2)1-53,

(V2)3-39
memory partition, (Vl)4-44, (Vl)6-232,

(V2)3-37
owner from system, (V3)1O-9
project group name from system,

(V3)1O-13
resources, (VI)6-48, (VI)7-57
SBO file, (V2)2-14
SLO file, (V2)2-13
task, (Vl)6-50, (Vl)7-59, (V2)1-20

from dispatch queue, (V2)2-25
timer entry, (Vl)6-56, (VI)7-66

MPX-32 Reference

Delete Permanent File or Non-SYSGEN
Memory Partition Service, (Vl)6-232

Delete Resource Service, (VI)6-48, (Vl)7 -57
Delete Task Service, (Vl)6-50, (Vl)7-59
Delete Timer Entry Service, (Vl)6-56,

(Vl)7-66
Deliverable Software for MPX-32, (V3)2-3
Demand Page

define environment, (V3)7-lO, (V3)7-12,
(V3)7-17, (V3)7-28

description, (Vl)3-17
inhibit support, (V3)7-4O
support, (V1)3-17, (V3)7-10, (V3)7-12

(V3)7-17, (V3)7-28
Demonstration

MPX-32, (V4)1-1
TERMDEF, (V4)2-28, (V4)2-31
TSM scanner, (V4)2-59

Detect File Overlap, (V4)2-27
Device

access, (VI)5-21, (Vl)5-28, A-I
formatting, (VI)5-47
functions, (VI)5-41, (VI)5-44, L-27, L-30
handlers, (V3)7-15
information display, (V4)2-24
inquiry, (VI)6-246
mnemonics, (VI)6-52, (Vl)7-60, A-6
specification, (VI)5-28, A-I
status display, (V2)2-46
type codes, (VI)6-52, (VI)7-60, (V3)7-15,

A-6, L-3, L-77
Device Initializer/Loader, see DEVINITL
Device-Dependent I/O, (VI)5-43
Device-Independent I/O, (VI)5-1, (Vl)5-32
DEVINITL

activate, (V3)11-6
directive file, (V3)11-1
directive summary, (V3)1l-7
directives

DEV_CNTRL, (V3)11-8
DEVICE, (V3)1l-9
IDENT, (V3)11-9
OPTION, (V3)11-10
REREAD, (V3)11-11
RETRY, (V3)11-11
WCS_FILE, (V3)1l-12

errors, (V3)11-13
example, (V3)1l-12
firmware file, (V3)11-3
messages, (V3)11-13

Dial-up Port Protection, (V4)2-43
Direct I/O, (VI)5-34
Directive Files

chaining, (V2)1-27
errors, (V2)1-28, (V2)1-29
examples, (V2)1-111

IN-5

executing tasks, (V2)1-27
macros, <"2)1-30
nesting, (V2)1-28
read from, <"2)1-89
transfer control, <"2)1-46

Directives, read from a file, (V2) 1-89
Directory

access attributes, <"1)3-9
change current working, (Vl)6-46,

<"1)7-56, (V2)1-48, <"2)1-104
create, <"1)4-26, <"1)6-53, ("1)7-61,

("2)3-32
current working, <"1)4-6
delete, ("2)3-38
description, ("1)4-24
display, <"2)3-44
log information, <"1)6-103, <"1)7-106
protection, ("1)4-24, <"I)4-28
RCB, ("1)5-62, L-63
root, ("1)4-6, <"1)4-26
size allocation, <"2)3-14, <"2)3-15
structure, <"I)4-6, <"I)4-26
system, <"I)5-21
usage, <"1)4-28
user default, <"2)1-11, <"3)10-4

Disable, logons, ("2)1-54
Disable Channel Interrupt <DCI or 01),

<"2)2-15
Disable Message Task Interrupt Service,

("1)6-59, <"1)7-67
Disable User Break Interrupt Service,

<"1)6-60, <"1)7-68
Disconnect Task from Interrupt Level,

<"2)2-15
Disconnect Task from Interrupt Service,

<"1)6-55, ("1)7-63
Disk Descriptions, <"1)5-27
Disk Device Codes, <"3)7-21
Disk Dump by File, <"4)2-23
Disk Dump by Sector, (V4)2-22
Disk Error History, display, <"4)2-24
Disk Space Usage, ("4)2-26
Disks, device definitions, <"3)7-19
Dismount a "olume, <"1)4-18, ("1)6-57,

<"1)7-64, <"2)1-55, <"2)2-16
Dismount "olume Service, ("1)6-57,

<"1)7-64
Dispatch Queue, <"I)2-42

number of entries, <V3)7 -26
Dispatch Queue Entry (DQE), L-5
Display

abort code description, ("2)1-58
active SWAPPER time, <"4)2-53
allocated resource table, (V4)2-15
ANSI labeled tape information, ("2)7-10,

<"2)7 -11

IN·6

channel status, (V2)2-46
communications region, (V4)2-55
controller status, <V2)2-46
CPU execution time, (V2)1-99
date and time, (V2)2-57
device information, (V4)2-24
device status, ("2)2-46
directories, ("2)3-11, ("2)3-44
disk error history, ("4)2-24
disk space usage, (V4)2-26
file contents, ("2) 1-76
file listing, ("2)3-8, (V2)3-9, <"2)3-42,

("2)3-44, ("2)3-46
GPRs, ("1)6-61, (Vl)7-69
inswaps, ("4)2-54, ("4)2-55
IPU status, ("2)2-46
IPU traps, ("2)2-26
job accounting file, (V2)1-33, (V2)2-26
job queue, ("2)1-99
load module information, <"4)2-35
logged on users, <"2)1-99, <"2)1-106
MDT, ("4)2-35
memory, ("2)2-46
memory address and contents, ("2)2-41
memory limits, ("1)6-61, <"1)7-69
memory partitions, ("2)3-12, <"2)3-13,

<"2)3-44
outswaps, <"4)2-54, <"4)2-55
owners and attributes, <"3)10-9
project group names, <"3)10-13
PSD, <"1)6-61, ("1)7-69
rapid file allocation MDT, <"4)2-35
resources, ("2)3-8, <"2)3-44
saved files, <"2)3-43
shared memory includes, <"4)2-54,

<"4)2-55
system configuration, ("4)2-18
system dispatch queue, <"2)2-26
system output queues, ("2)2-26
system patch file, <"2)2-26
tabs, <"4)2-56
task exit status, <"1)7-78
task identification, <"1)6-88, ("1)7-91
task status, <"2)2-26, ("2)2-46
two ASCII files, <"4)2-24
UDT entry, ("4)2-60
volume status, <"2)2-46
word locations, <"2)2-18, <"2)2-45

DMAP, <"1)5-51, ("1)6-208, <"1)6-212
DPEDIT, <"1)1-17
DQE, L-5
DRAM, <"1)3-16, <"3)7-52, ("3)7-54, <"3)7-55
DSECT, <"1)3-21
Dual-Ported Disk

release, <"1)6-142, <"1)7-145
reserve, (V1)6-145, ("1)7-148

Index

(

Dump, see Display
Dump Disk File, (V4)2-23
Dump System-Configured Disk, (V4)2-22
DUMPACS, see ACS
Duplicate Floppy Disk, (V4)2-42
Dynamic Memory Allocation, (VI)I-8,

(VI)3-19

- E -
EDIT, (VI)I-17
Eight-Line Asynch, see ACM
Eight-Line Serial Printer, device definition

(V3)7-21 '
Eject/Purge Routine Service, (VI)6-214,

(VI)7-208
Enable, logons, (V2)1-57
Enable Channel Interrupt (ECI or EI),

(V2)2-19
Enable Message Task Interrupt Service,

(VI)6-64, (VI)7 -70
Enable User Break Interrupt Service,

(VI)6-65, (VI)7-71
End Action Wait Service, (Vl)6-63,

(VI)7-15
End-Action Receivers, (VI)2-22
End-of-Job Designation, (V2)1-58
ENTER CR FOR MORE, (V2)1-21, (V2)1-83

(V3)7-22 '
Environments, operating, (V2)1-11,

(V2)1-13
EOF, write, (VI)6-23, (VI)6-193, (Vl)6-196,

(VI)6-197, (VI)6-214, (VI)6-215,
(VI)7-29, (Vl)7-195, (VI)7-198,
(VI)7-199, (Vl)7-208, (VI)7-209

EOF Management, (VI)3-12, (VI)4-49,
(VI)5-36, (VI)5-37

EOM Management, (VI)4-50, (Vl)5-36,
(VI)5-37

Erase or Punch Trailer Service, (VI)6-215,
(VI)7-209

Error Codes, unsupported software, (V4)2-60
Establish a Label, (V2)1-52
Exception Handler, (Vl)7-158
Exception Return Address, (VI)7-157
Exclude Memory Partition Service, (VI)6-67
Exclude Shared Image Service, (VI)7-73
Exclusive File Lock

release, (VI)6-240
set, (VI)6-241

EXCPM, (Vl)5-43, (Vl)5-46
Execute a Task, see Task, execution
Execute Channel Program, (Vl)5-48, (Vl)7-26
Execute Channel Program (EXCPM),

(Vl)5-43, (Vl)5-46
Execute Channel Program File Control

Block Service, (Vl)7-26

MPX-32 Reference

Execute Channel Program Service,
(Vl)6-216, (Vl)7-210

Exit
J .MDTI, (V2)5-4
message end-action routine, (VI)6-200,

(Vl)7-202
message receiver, (VI)6-201, (Vl)7-203
no-wait I/O end-action routine, (VI)6-199,

(Vl)7-201
OPCOM, (V2)2-22
run receiver, (Vl)6-203, (Vl)7-205
run request end-action routine, (Vl)6-202,

(Vl)7-204
task execution, see Task, execution
TSM, (V2)1-59
VOLMGR, (V2)3-40

Exit from Message End-Action Routine
Service, (Vl)6-200, (Vl)7-202

Exit from Message Receiver Service,
(VI)6-201, (VI)7-203

Exit from Run Request End-Action Routine
Service, (VI)6-202, (Vl)7-204

Exit from Task Interrupt Level Service,
(Vl)6-19, (Vl)6-198, (VI)7-24, (VI)7-200

Exit Run Receiver Service, (VI)6-203,
(Vl)7-205

Exit With Status Service, (Vl)7-78
Expand Task's Logical Address Space,

(V2)1-101
Extend File Service, (VI)6-70, (VI)7-76
Extended Memory, array, (V1)6-217,

(Vl)7-211
Extended MPX-32

aborts and errors, (Vl)3-29
CATALOG, (Vl)3-32
create system, (VI)3-29
description, (VI)3-23
designate location, (VI)3-23
macro assembler, (Vl)3-24
move the non-base TSA, (V2) 1-60
performance, (VI)3-23
physical memory, (VI)3-25
program flow control, (VI)3-27
relocate, (Vl)3-31
resident modules, (VI)3-26, (V3)2-4
SYSGEN, (Vl)3-27, (Vl)3-28,

(V3)7-28
task's logical address space, (Vl)3-31
TSM, (VI)3-33, (V2)1-60

Extended TSA, (VI)3-34
Extendibility, (Vl)4-30

- F -

Fast Access, (Vl)3-13, (VI)4-29
FAT, (Vl)5-20, (Vl)5-51
Faults, (VI)2-51

IN-7

FCB
create, (Vl)5-48, (Vl)7-45
define, (Vl)5-39
description, (Vl)5-2, (Vl)5-38
structure

16-word, L-20
compatible (8-word), L-32
high speed data, L-39

FHDPort
release, (VI)6-219, (VI)7-212
reserve, (VI)6-220, (Vl)7-212

File
access attributes, (VI)3-10
access methods, (Vl)4-34
access modes, (Vl)4-36
address inquiry, (Vl)6-234
allocation, (Vl)6-222
append mode, (Vl)4-39
assign temporary, (VI)4-4I, (VI)5-14
assignment, (Vl)4-29, (Vl)4-33
attachment, (VI)4-29, (VI)4-33
attributes, (Vl)4-29
backspace, (Vl)6-11, (Vl)7-16
block, (VI)4-30
blocked I/O, (VI)3-15
close, (VI)4-40, (Vl)6-23, (Vl)7-29
contiguous space, (Vl)4-30
copy, (V2)3-25
create permanent, (VI)4-32, (Vl)6-37,

(VI)6-228, (V1)7-46, (V2)1-50, (V2)3-34
create temporary, (Vl)4-41, (Vl)6-173,

(Vl)6-209, (Vl)7-48
deallocate, (VI)6-231
delete permanent, (Vl)4-4I, (Vl)6-232,

(V2)1-53, (V2)3-39
delete temporary, (VI)4-42
description, (VI)4-29
detach permanent, (V 1)4-41
detach temporary, (Vl)4-42
display contents, (V2) 1-76
display listing, (V2)3-42, (V2)3-44,

(V2)3-46
EOF management, (V1)3-12
extension

automatic, (VI)3-11, (Vl)4-31
contiguous, (Vl)3-11
manual, (Vl)3-11, (Vl)4-31
maximum, (VI)3-12
minimum, (Vl)3-12

fast access, (Vl)3-13, (Vl)4-29,
(Vl)4-31

granularity, (Vl)4-30
increase size, (V2)3-41
log information, (Vl)6-103, (Vl)6-244,

(Vl)7-106
management, see File Management

IN-a

modify mode, (Vl)4-38
mUltiprocessor, (VI)1-9
names, (Vl)4-31
no-save, (Vl)3-14
open permanent, (Vl)4-29, (Vl)4-34,

(Vl)6-236
open temporary, (VI)4-42
operations, (Vl)4-34
permanent, (Vl)1-8, (Vl)4-29, (Vl)4-32
positioning

absolute, (Vl)4-36
relative, (Vl)4-36

print, (V2) 1-84
protection, (Vl)I-9, (Vl)4-32
random access, (VI)I-9, (Vl)4-35
rapid allocation, (V2)5-1
RCB, (Vl)5-59, L-60
read mode, (Vl)4-37
rename, (Vl)6-143, (Vl)7-146, (V2)1-87,

(V2)3-47
replace contents, (Vl)6-144, (Vl)7-147
restore from tape, (V2)3-48, (V2)3-53
rewind, (Vl)6-I54, (V1)7-149
save, (V2)3-54, (V2)3-57
segment definition, (VI)5-55
sequential access, (VI)4-35
shared, (Vl)3-12, (Vl)4-40
size allocation, (Vl)3-12, (Vl)4-30,

(Vl)4-31, (Vl)5-55, (V2)3-14,
(V2)3-15, (V2)3-65

size extension, (Vl)4-30, (Vl)6-70,
(Vl)7-76

sort contents, (V2)8-1
space, (Vl)4-30, (Vl)4-31
space allocation, (Vl)6-206, (Vl)6-211
system, (Vl)1-9
temporary, (Vl)I-9, (Vl)4-29, (VI)4-4I,

(Vl)5-14
temporary to permanent, (Vl)4-42,

(Vl)6-175, (Vl)6-248, (Vl)7-177
truncate, (VI)6-177, (Vl)7-179
types, (Vl)3-14
update mode, (VI)4-39
write mode, (Vl)4-38
zeroing, (VI)3-13

File Assignment Table (FAT), (VI)5-20,
(Vl)5-5I

File Control Block, see FCB
File Management

disk file protection, (Vl)I-9
multiprocessor files, (V 1) 1-9
permanent files, (Vl)1-8
random access files, (VI) 1-9
system files, (VI)1-9
temporary files, (VI) 1-9

File Overlap Detection Utility, (V4)2-27

Index

(. -... "
j

File Pointer Table (FPT), L-46
Firmware

display, (V3)12-5
load (ACS/WCS), (V3)12-4
load (DEVINITL), (V3)11-3

Fixed Head Disk, see FHD
Flag

reset (false), (V2)I-SS
set (true), (V2)1-95

Floppy Disk
archive, (V4)2-42
duplication, (V4)2-42
fOrDlat, (V4)2-42
media initialization (J .FORMF),

(V3)10-42
Format

floppy disk, (V3) 10-42
memory disk, (V3)10-59

FPT, L-46
Free Dynamic Extended Indexed Data Space

Service, (VI)6-72
Free Dynamic Task Execution Space Service,

(VI)6-73
Free Memory in Byte Increments Service,

(VI)6-111, (VI)7-79
Free Shared Memory Service, (VI)6-233
FSORT2

access, (V2)S-S
directives

field, (V2)S-14
header, (V2)S-13
usage notes, (V2)S-15

examples, (V2)S-12, (V2)S-17
extra memory, (V2)8-7
format

blocked, (V2)S-5
direct access blocked, (V2)S-6
direct access unblocked, (V2)8-6
special blocked, (V2)S-6
special unblocked, (V2)S-6
unblocked, (V2)S-6

input data elements, (V2)8-5
introduction, (V2)8-1
logical file codes, (V2)S-I, (V2)S-5
options, (V2)S-7
subroutines

- G-

SORT:FLD, (V2)S-11
SORT:HDR, (V2)8-1O
SORT:P AR, (V2)S-9
SORT:X, (V2)S-12

Get Address Limits Service, (Vl)6-76,
(Vl)6-77

Get Base Mode Task Address Limits
Service, (Vl)7-103

MPX-32 Reference

Get Command Line Service, (VI)6-24,
(VI)7-30

Get Current Date and Time Service,
(VI)7-84

Get Definition for TerDlinal Function
Service, (VI)6-81, (VI)7-S1

Get Device Mnemonic or Type Code
Service, (Vl)6-52, (VI)7-60

Get Dynamic Extended Data Space
Service, (VI)6-78

Get Dynamic Extended Discontiguous Data
Space Service, (VI)6-79

Get Dynamic Task Execution Space Service,
(VI)6-S0

Get Extended Memory Array Service,
(VI)6-217, (Vl)7-211

Get Memory in Byte Increments Service,
(VI)6-110, (VI)7-S3

Get Message Parameters Service, (VI)6-83,
(VI)7-S6

Get Real Physical Address Service,
(VI)6-139, (VI)7-140

Get Run Parameters Service, (Vl)6-S4,
(Vl)7-87

Get Shared Memory Service, (Vl)6-242
Get Task Environment Service, (VI)6-66,

(Vl)7-72
Get Task Number Service, (Vl)6-88,

(Vl)6-11S, (VI)7-91, (VI)7-120
Get TSA Start Address Service, (Vl)6-S6,

(Vl)7-89
Get User Context Service, (VI)7-S0
Global Common, (VI) 1-11, (VI)3-19,

(VI)3-20, (V3)7-39
GPMC Devices, specification, (Vl)5-28
Granularity, (VI)4-30

- H-
H.ALOC, (VI)5-50
H.BKDM, (Vl)5-34
H.DBUG 1, see System Debugger
H.DBUG2, see System Debugger
H.ICP, (V4)2-32
H.MDT, (V3)7-35
H.MDXIO, (V3)1O-58
H.MONS, (VI)5-49
H.MVMT, (Vl)5-22
H.REMM, (Vl)5-1, (Vl)5-4, (Vl)5-50

status codes, (Vl)5-17
H.REXS, (Vl)5-49
H.VOMM, (Vl)5-20, (Vl)5-51

status codes, (VI)5-57
system services, (VI)5-65

Handlers, device, (V3)7-15
Hardware

channel configuration, (V3)7-13

IN-9

device characteristics, (V3)1O-19
disk descriptions, (Vl)5-27
I/O device definitions, (V3)7-l8
machine type configuration, (V3)7-34
memory disk configuration, (V3)7-13
minimum configuration, (VI) 1-22
shadow memory configuration,

(V3)1O-56
starter system addresses, (V3)2-I

Hardware Interrupts!fraps, (VI) 1-5
Hardware Priorities, (Vl)1-5
HELP, (V2)9-l
Help, online, see Online Help
HELP, VOLMGR, (V2)3-4l
Help Files

description, (V2)9-9
offline, (V2)2-35
online, (V2)2-36
specify location, (V3)7-30

HELPT, (V2)9-1, (V2)9-l4
HSO Interface, FCB settings, L-39

- I -

Identify a Job, (V2)1-72
Implicit Mount Management, (V3)7-13
Include Memory Partition Service, (Vl)6-90
Include Shared Image Service, (VI)7-93
Increase File Size, (V2)3-41
Increase Memory Allocation, (V2) 1-35
Indicate Object Records, (V2)I-80
Indirectly Connected Interrupt Response

Timing Module, (V4)2-32
Indirectly Connected Task Linkage Block

(ITLB), (V3)7-32
Inhibit

banner page, (V2)2-31, (V3)7-33,
(V3)7-36

demand page, (V3)7 -40
mount message, (V2)1-77, (V2)2-31,

(V2)2-33, (V3)7 -36
operator intervention, (V2)2-31,

(V3)7-36, (V3)1O-44
public volume dismount, (V3)7-13

INIT
description, (V3) 10-19
errors, (V3)10-39
LOGONFLE, see LOGONFLE

Initial Program Load (IPL), (V3)6-1
Initialize

ACM, (V3)1O-19
ACM(MFP, (V3)1O-35
ALIM, (V3)10-l9, (V3)10-26
devices (OEVINITL), (V3)II-l
disks online, (V3)13-20
OP II. (V3)13-12, (V3)13-21
floppy disk, (V3) 1 0-42

IN-10

non-TSM devices, (V3)10-20
SCSI disk, (V3)13-12, (V3)13-23
TSM devices, (V3)10-20
UDP, (V3)13-l2, (V3)13-2l

Input/Output, see I/O
Input/Output Control System (IOCS), (Vl)I-IO,

(Vl)5-1, (VI)5-38
Install

a starter system, (V3)2-l
a user SOT, (V3)4-3

INSTALLSOT, (V3)2-17, (V3)2-l8
Instruction Sequence Timing Tool, (V4)2-38
Integers, powers of, E-I
Interactive Environment

accessing, (V2)1-12
sample task, (V2)1-107
priority level, (V3)7-62

Interactive String Search, (V4)2-52
Interactive Task, (V2)1-25
Internal Processing Unit, see IPU
Interrupt Processors, (Vl)2-51, (V3)7-46
Interrupt, task, see Task, interrupt
Intertask Communication, (VI)I-ll, (Vl)2-22,

(Vl)2-23, (Vl)6-l62, (Vl)7-166

I/O

run requests, (Vl)l-ll
user status word, (Vl)6-155, (Vl)6-183,

(Vl)7-159, (VI)7-185

blocked, (VI)5-34
device definitions, (V3)7-18
device-dependent, (VI)5-43
device-independent, (Vl)l-lO, (Vl)5-1,

(Vl)5-32
direct, (Vl)I-IO, (Vl)5-34
direct channel, (VI)5-43
file access, (Vl)1-ll
10CS, (Vl)l-lO
logical, (Vl)5-1
logical file codes, see LFC
no-wait, (Vl)5-33
processing, (Vl)l-lO, (Vl)5-32, (Vl)5-38
scheduling, (VI)2-42
status, (Vl)5-38
terminate in process, (V2)I-19, (V2)1-27
wait, (Vl)5-32

10CS, (Vl)l-lO, (Vl)5-1, (Vl)5-38
10Q Memory Pool, specify size, (V3)7-31
IPL, automatic, (V3)6-4
IPU

accounting, (VI)2-17
configuration, (V3)7-32
CPU execution of tasks, (V1)2-16
display status, (V2)2-46
display traps, (V2)2-26
executable system services, (VI)2-18

base, (VI)7-5

Index

(

(

nonbase, (VI)6-3
general description, (Vl)2-15
offline, (V2)2-35
online, (V2)2-36
options, (Vl)2-15
priority versus biasing, (VI)2-17
scheduling, (VI)2-18
set bias, (VI)6-98, (Vl)7 -102
task prioritization

biased, (Vl)2-15
nonbiased, (Vl)2-16

task selection, (V 1)2-16
IPU/CPU Scheduler, (Vl)2-16

selection, (V3)7 -17

- J -

J.DSCMP
description, (V3) 14-1
disk status report, (V3)14-3
error messages, (V3)14-6
logical file codes, (V3)14-2
performance, (V3)14-2
segment report, (V3)14-3, (V3)14-4
usage, (V3)14-3

J.DTSAVE, (V3)7-27, (V3)1O-44
J.FORMF, (V3)1O-42
J.HLP, (V2)9-1, (V3)7-30
J.INIT

conventions, (V3)9-2
dedicated names, (V3)9-2
directive summary, (V3)9-3
directives

Change Contents of
Memory Location, (V3)9-3

Comments, (V3)9-8
Conditional, (V3)9-6
Define Base Address, (V3)9-3
Define Named Value, (V3)9-4
Define Patch Area, (V3)9-6
Enter Value into Patch Area, (V3)9-7
Exit, (V3)9-4
Go to Patch Area, (V3)9-5
Return from Patch Area, (V3)9-6
Select Patch Options, (V3)9-5

entry conditions, (V3)9-S
examples, (V3)9-10
exit conditions, (V3)9-8
external references, (V3)9-9
introduction, (V3)9-1

J.LABEL, (V3)lO-62
J.MDREST. (V3)1O-58, (V3)1O-61
J.MDSA VE, (V3)1O-58, (V3)1O-60
J.MDT!

access, (V2)5-2
contents, (V2)5-1
description, (V2)5-1

MPX-32 Reference

errors, (V2)5-S
examples, (V2)5-6
exit, (V2)5-4
input files, (V2)5-4
logical file codes, (V2)5-3, (V2)5-4
programming considerations, (V2)5-7

J.MOUNT, (Vl)I-13
J.sHAD

accessing, (V2)6-1
directives

EXIT, (V2)6-3
SHADOW, (V2)6-3

errors, (V2)6-4
examples, (V2)6-5
introduction, (V2)6-1
logical file codes, (V2)6-2

J.SHUTD
error messages, (V3)l0-48
using, (V3)1O-45

J.TDEFI Program, (V2)11-4
J.TSET Utility, (V2)11-21
J.UNLOCK, (V2)2-58, (V3)1O-53
J.VFMT, (Vl)1-17, (V3)13-1

access, (V3)13-4
CONFIRM option, (V3)13-4
directive syntax, (V3)13-3
directives

COPY, (V3)13-5
EDITFMAP. (V3)13-7
EXIT, (V3)13-9
FORMAT, (V3)13-9
INITIALIZE, (V3)13-12
NEWBOOT, (V3)13-16
REPLACE, (V3)13-17

errors, (V3)13-18
examples, (V3)13-1S
introduc lion, (V3) 13-1
logical file codes, (V3) l3-1
media management, see Media

Management
usage, (V3)13-2

JCL
conditional processing, (V2) 1-29
directive files. (V2)1-27
directive summary, (V2)1-2
directive syntax, (V2)1-33
directives, see TSM, directives
introduction, (V2)1-1
macro looping, (V2) 1-29
parameter passing, (V2)1-29
parameter replacement, (V2)1-30
spooled input control, (V2)1-30

Job Accounting File. display, (V2)1-33,
(V2)2-26

Job Accounting Program (M.ACCNT),
(V3)1O-15

IN-11

Job Activation, (Vl)6-226
also see Task, execution

Job Control Language, see JCL
Job Identification, (V2)1-72
Job Number, (V2)2-5
Job Processing

data flow, (V2)1-31
terminating conditions, (V2)1-32

Job Queue, display, (V2)1-99

- K-
Key, (V2)1-9, (V3)l0-4
KEY, (Vl)1-20, (V3)1O-2

directive summary, (V3)10-4
directives

ADD, (V3)10-4
CHANGE, (V3)10-7
DEFAULTS, (V3)1O-8
DELETE, (V3)1O-9
LOG, (V3)1O-9
NEWFILE, (V3)10-9
X, (V3) 10-10

examples, (V3)1O-1O
M.KEY file, (V3)1O-3
usage, (V3)1O-3

KEYWORD Task, (V2)1-9
Kill a Task, (V2)2-25

- L -

Label, establish, (V2)1-52
Label ANSI Tape Utility (I.LABEL),

(V3) 10-62
Large Buffers, (Vl)3-15
Laser Printer Utility, (V4)2-34
LFC

assignments, (V2)1-21, (V2)1-36
in FCB, (Vl)5-38
overview, (V1)5-2

UBED, (Vl)1-l7
Libraries

scientific subroutine. (VI) 1-21
subroutine, (VI)1-21
system macro, (Vl)1-21
user group, (Vl)1-21

Linker/X32, (VI)1-18
UNKX32, (Vl)1-18
List, see Display
LMIT, (VI)2-7
Load an~ Execute Interactive Debugger

Service, (Vl)6-45, (VI)7-55
Load Module Information. (V4)2-35
Load Module Information Table (LMIT),

(Vl)2-7
Load Overlay Segment Service, (Vl)6-l21
Load Shared Image into Memory, (V2)2-24

IN-12

LOADACS, see ACS
Log Contents of Rapid File Allocation MDT

(V4)2-35 '
Log Off the System, (V2)l-l4, (V2)1-59
Log On the System, (V2)1-S

multiple logons, (V2)1-S, (V3)7-33
Log Resource or Directory Service,

(Vl)6-103, (Vl)7-106
Logged on Users, display, (V2)1-106
Logical Address

task boundaries, (Vl)6-76, (Vl)6-77
verify, (Vl)6-194, (Vl)7-196

Logical Channel Program, (Vl)5-43, (Vl)5-44
Logical Dismount, (Vl)4-1S
Logical File Codes, see LFC
Logical I/O, (Vl)5-1
Logical Mount, (V 1)4-18
Logoff, remote terminal, (V4)2-37
Logon

disable, (V2)1-54
enable, (V2)1-57
multiple, (V2)1-8, (V3)7-33
SYSTEM, (V3)7-33, (V3)7-61

Logon Attempt Counter, (V3)1O-22
Logon Timeout Counter, (V3)1O-23
LOGONFLE, (V2) 11-17, (V3) 10-20

format, (V3)10-20
sample, (V3)10-38
security counters, (V3) 10-22
security examples, (V3)1O-24

- M-

M.ACCNT File, (V3) 1 0-11. (V3) 10-15
delete contents. (V2)2-37

M.ACS, see ACS
M.ACTV, (Vl)2-7, (V1)6-5
M.ADRS, (Vl)6-6
M.ALOC, (VI)6-222
M.ANYW, (Vl)2-25, (Vl)6-7
M.ASSN, (VI)6-8
M.ASYNCH, (Vl)6-1O
M.BACK, (V 1)6-11
M.BATCH, (V1)6-13, (V4)2-17
M.BBTIM. (Vl)6-15
M.BORT. (Vl)2-46, (V1)6-16
M.BRK. (Vl)2-21, (Vl)6-19
M.BRKXIT, (Vl)2-21, (Vl)6-19
M.BTIM. (VI)6-20
M.CDJS, (Vl)6-226
M.CLOSER. (Vl)6-21
M.CLSE, (Vl)6-23
M.CMD, (Vl)6-24
M.CNTRL File, (V3)1O-17
M.CONABB, (Vl)6-25
M.CONADB, (Vl)6-26
M.CONAHB. (Vl)6-27

Index

(

(

M.CONASB, (VI)6-28
M.CONBAD, (VI)6-29
M.CONBAF, (VI)6-30
M.CONBAH, (VI)6-31
M.CONBBA, (VI)6-32
M.CONBBY, (VI)6-33
M.CONBYB, (VI)6-34
M.CONN, (VI)6-35
M.CPERM, (VI)6-37
M.CREA TE, (VI)6-228
M.CTIM, (VI)6-39
M.CWAT, (VI)6-41
M.DALC, (VI)6-231
M.DASN, (VI)6-42
M.DATE, (VI)6-44
M.DEBUG, (VI)6-45
M.DEFf, (VI)6-46
M.DELETE, (VI)6-232
M.DELR, (VI)6-48
M.DELTSK, (Vl)2-46, (VI)6-50
M.DEVID, (VI)6-52
M.DIR, (Vl)6-53
M.DISCON, (VI)6-55
M.DLIT, (VI)6-56
M.DMOUNT, (VI)6-57
M.DSMI, (VI)6-59
M.DSUB, (Vl)6-60
M.DUMP, (VI)6-61
M.EAW AlT, (VI)2-25, (VI)6-63
M.ENMI, (VI)6-64
M.ENUB, (Vl)6-65
M.ENVRMT, (VI)6-66
M.ERR File, (V3)IO-I8
M.EXCL, (VI)6-233
M.EXCLUDE, (VI)3-20, (Vl)6-67
M.EXIT, (Vl)2-24, (VI)2-46, (VI)6-69
M.EXTO, (V1)6-70
M.FADD, (Vl)6-234
M.FD, (VI)2-43, (Vl)3-19, (Vl)6-72
M.FE, (VI)2-43, (VI)3-19, (VI)6-73
M.FILE, (VI)6-236
M.FSLR, (VI)6-237
M.FSLS, (VI)6-238
M.FWRD, (Vl)6-74
M.FXLR, (Vl)6-240
M.FXLS, (VI)6-24I
M.GADRL, (VI)6-76
M.GADRL2, (VI)6-77
M.GD, (Vl)2-43, (VI)3-I9, (Vl)6-78,
M.GDD, (VI)6-79
M.GE, (VI)2-43, (Vl)3-19, (Vl)6-80
M.GETDEF, (VI)6-81, (V2)1l-18

errors, (V2) 11-19
M.GMSGP, (VI)2-22, (Vl)2-24, (VI)6-83
M.GRUNP, (VI)2-22, (Vl)2-24, (Vl)6-84
M.GTIM, (VI)6-85

MPX-32 Reference

M.GTSAD, (VI)6-86
M.HOLD, (VI)6-87
M.ID, (VI)6-88
M.INCL, (VI)6-242
M.INCLUDE, (VI)3-20, (VI)6-90
M.INQUIR Y, (VI)6-93
M.INT, (VI)6-97
M.IPUBS, (VI)6-98
M.KEY Editor, see KEY
M.KEY File, (VI)4-13, (V3)IO-3
M.LOC, (VI)6-99
M.LOCK, (VI)6-101
M.LOO, (VI)6-244
M.LOOR, (VI)6-103
M.MACLffi, (VI)I-21
M.MEM, (Vl)6-108
M.MEMB, (VI)2-43, (VI)3-19, (VI)6-110
M.MEMFRE, (VI)2-43, (VI)3-19, (VI)6-111
M.MOD, (Vl)6-112
M.MODU, (Vl)6-114
M.MOUNT, (Vl)6-115
M.MOUNT File, (V3)1O-43
M.MOVE, (Vl)6-117
M.MPXMAC, (Vl)1-21
M.MYID, (Vl)6-118
M.NEWRRS, (Vl)6-119
M.OLAY, (Vl)6-121
M.OPENR, (Vl)6-122
M.OSREAD, (Vl)6-124
M.OSWRIT, (Vl)6-I25
M.PDEV, (Vl)6-246
M.PERM, (Vl)6-248
M.PGOD, (Vl)6-126
M.PGOW, (Vl)6-127
M.PNAM, (Vl)6-128
M.PNAMB, (Vl)6-129
M.PRIL, (VI)6-131
M.PRIV, (Vl)6-132
M.PRJCf File, (V3)1O-II
M.PTSK, (Vl)2-7, (VI)6-133
M.QATIM, (VI)6-138
M.RADDR, (VI)6-139
M.RCVR, (VI)2-22, (Vl)2-23, (VI)6-I40
M.READ, (Vl)6-I41
M.RELP, (Vl)6-I42
M.RENAM, (Vl)6-I43
M.REPLAC, (Vl)6-144
M.RESP, (Vl)6-I45
M.REWRIT, (Vl)6-146
M.REWRTU, (Vl)6-147
M.ROPL, (Vl)6-148
M.RRES, (Vl)6-149
M.RSML, (Vl)6-150
M.RSRV, (Vl)6-153
M.RWNO, (Vl)6-154
M.SETS, (Vl)6-155

IN-13

M.SETSYNC, (Vl)6-157
M.sETT, (Vl)6-159
M.SHARE, (Vl)6-250
M.SMSGR, (Vl)2-25, (Vl)6-162
M.SMULK, (Vl)6-252
M.SOPL, (VI)6-163
M.SRUNR, (Vl)2-26, (Vl)6-164
M.sUAR, (Vl)2-34, (Vl)6-166
M.SUME, (Vl)6-167
M.sURE, (Vl)6-168

context switch timing, (V 4)2-20
M.SUSP, (Vl)2-25, (Vl)6-169
M.SYNCH, (Vl)6-170
M.TBRKON, (Vl)6-171
M.TDAY, (Vl)6-172
M.TEMP, (Vl)6-173
M.TEMPER, (Vl)6-175
M.TRNC, (Vl)6-177
M.TSCAN, (Vl)6-178
M.TSMPC, (Vl)6-179
M.TSTE, (V1)6-182
M.TSTS, (VI)6-183
M.TSTT, (VI)6-184
M.TURNON, (VI)6-185
M.TYPE, (VI)6-187
M.UNLOCK, (Vl)6-188
M.UNSYNC, (Vl)6-190
M.UPRIV, (VI)6-192
M.UPSP, (VI)6-193
M.USER, (V1)6-253
M.VADDR, (VI)6-194
M.WAIT, (VI)6-195
M.WEOF, (VI)6-196
M.WRIT, (V1)6-197
MXBRKR, (Vl)6-198
MXIEA, (VI)2-22, (VI)6-I99
MXMEA, (VI)2-22, (VI)2-26, (VI)6-200
MXMSGR, (VI)2-22, (VI)2-24, (VI)6-201
MXREA, (VI)2-22, (VI)2-26, (VI)6-202
MXRUNR, (VI)2-22, (VI)2-24, (VI)6-203
MXTIME, (VI)6-204
M_ACTV, (V1)7-7
M_ADRS, (Vl)7-8
M_ADVANCE, (V1)7-9
M_ANYWAIT, (Vl)7-11
M_ASSIGN, (VI)7-12
M_ASYNCH, (Vl)7-I4
M_AWAITACTION, (VI)7-I5
M_BACKSPACE, (Vl)7-16
M_BATCH, (Vl)7-18
M_BBTIM, (Vl)7-20
M_BORT, (Vl)7-21
M_BRK, (VI)7 -24
M_BRKXIT, (VI)7-24
M_BTIM, (VI)7 -25
M_CHANPROGFCB, (VI)7-26

IN-14

M_ CLOSER, (VI)7 -27
M_CLSE, (Vl)7-29
M_CMO, (VI)7-30
M_CONABB, (VI)7-3I
M_CONADB, (VI)7-32
M_CONAHB, (VI)7-33
M_CONASB, (Vl)7-34
M_CONBAD, (VI)7-35
M_CONBAF, (Vl)7-36
M_CONBAH, (Vl)7-37
M_CONBBA, (VI)7-38
M_CONBBY, (VI)7-39
M_CONBYB, (VI)7-40
M_CONN, (VI)7-4I
M_CONSTRUCTPATH, (VI)7-42
M_CONVERTTIME, (VI)7-43
M_CREATEFCB, (Vl)7-45
M_CREATEP, (Vl)7-46
M_CREATET, (Vl)7-48
M_CTIM, (VI)7-50
M_CWAT, (VI)7-51
M_DA TE, (VI)7 -52
M_DEASSIGN, (VI)7-53
M_DEBUG, (VI)7 -55
M_DEFT, (VI)7-56
M_DELETER, (VI)7 -57
M_DELTSK, (VI)7-59
M_DEVID, (V1)7-60
M_DIR, (VI)7-6I
M_DISCON, (VI)7-63
M_DISMOUNT, (VI)7-64
M_DLTT, (VI)7-66
M_DSMI, (VI)7 -67
M_DSUB, (VI)7-68
M_DUMP, (V1)7-69
M_ENMI, (VI)7-70
M_ENUB, (VI)7-7l
M_ENVRMT, (VI)7-72
M_EXCLUDE, (VI)7 -73
M_EXIT, (VI)2-46, (Vl)7-75
M_EXTENDFILE, (VI)7-76
M_EXTSTS, (V1)7-78
M_FREEMEMB YTES, (VI)7 -79
M_GETCTX, (VI)7-80
M_GETDEF, (VI)7-8I
M_GETMEMBYTES, (Vl)7-83
M_GETIlME, (Vl)7-84
M_GMSGP, (VI)7-86
M_GRUNP, (Vl)7-87
M_GTIM, (Vl)7-88
M_GTSAD, (Vl)7-89
M_HOLD, (VI)7-90
M_ID, (VI)7-9I
M_INCLUDE, (Vl)7-93
M_INQUIRER, (Vl)7-96
M_INT, (Vl)7-101

if
~

Index

(

M_IPUBS, (Vl)7-102
M_LIMITS, (Vl)7-103
M_LOCK, (Vl)7-104
M_LOGR, (Vl)7-106
M_MEM, (Vl)7 -111
M_MOD, (Vl)7-113
M_MODU, (Vl)7-115
M_MOUNT, (Vl)7-116
M_MOVE, (Vl)7-118
M_MYID, (Vl)7-120
M_OPENR, (Vl)7-121
M_OPTIONDWORD, (Vl)7-124
M_OPTIONWORD, (Vl)7-125
M_OSREAD, (Vl)7-126
M_OSWRIT, (Vl)7-127
M_PNAMB, (Vl)7-129
M_PRIL, (Vl)7 -131
M_PRNMODE, (Vl)7-132
M_PTSK, (Vl)7-133
M_PUTCTX, (Vl)7 -138
M_QATIM, (Vl)7-139
M_RADDR, (Vl)7-140
M_RCVR, (Vl)7-141
M_READ, (Vl)7-142
M_READD, (Vl)7-144
M_RELP, (Vl)7-145
M_RENAME, (Vl)7-146
M_REPLACE, (Vl)7-147
M_RESP, (Vl)7-148
M_REWIND, (Vl)7-149
M_REWRIT, (Vl)7-150
M_REWRTU, (Vl)7-151
M_ROPL, (Vl)7-152
M_RRES, (Vl)7-153
M_RSML, (Vl)7-154
M_RSMU, (Vl)7-155
M_RSRV, (Vl)7-156
M_SETERA, (Vl)2-37, (Vl)7-157
M_SETEXA, (Vl)2-37, (Vl)7-158
M_SETS, (Vl)7-159
M_SETSYNC, (Vl)7-161
M_SETT, (Vl)7-163
M_SMSGR, (Vl)7-166
M_SOPL, (Vl)7-167
M_SRUNR, (Vl)7-168
M_SUAR, (Vl)7-170
M_SUME, (Vl)7 -171
M_SURE, (Vl)7 -172
M_SUSP, (Vl)7-173
M_SYNCH, (Vl)7-174
M_TBRKON, (Vl)7-175
M_TDA Y, (Vl)7-176
M_ TEMPFILETOPERM, (VI)7-177
M_TRUNCATE, (Vl)7-179
M_TSCAN, (Vl)7-180
M_TSMPC, (Vl)7-181

MPX-32 Reference

M_TSTE, (Vl)7-184
M_TSTS, (Vl)7-185
M_TSTT, (Vl)7-186
M_TURNON, (Vl)7-187
M_TYPE, (Vl)7-189
M_UNLOCK, (Vl)7-190
M_UNPRNMODE, (Vl)7-192
M_UNSYNC, (Vl)7-193
M_UPSP, (Vl)7-195
M_VADDR, (Vl)7-196
M_WAIT, (Vl)7-197
M_ WRITE, (Vl)7 -198
M_ WRlTEEOF, (Vl)7-199
M_XBRKR, (Vl)7 -200
M_XIEA, (Vl)7-201
M_XMEA, (Vl)7-202
M_XMSGR, (Vl)7-203
M_XREA, (Vl)7 -204
M_XRUNR, (Vl)7 -205
M_XTIME, (Vl)7 -206
Machine Type, (V3)2-27, (V3)7-34
MACLIBR, (Vl)1-16
Macro Assembler, (Vl)1-16
Macro Directive Files, (V2)1-30
Macro Librarian/X32, (Vl)1-17
Macro Libraries, (Vl)1-21
Macro Library Editor, (Vl)1-16
Macro Looping, (V2)1-29
MACX32, (Vl)1-17
Magnetic Tape

advance, (Vl)6-74, (Vl)7-9, (V2)3-64,
(V2)3-65

backspace, (V2)3-22
convert, (V2)3-23
multivolume

description, (Vl)5-22
write EOF, (Vl)6-193, (Vl)6-196,

(Vl)6-197, (Vl)6-214, (Vl)6-215,
(Vl)7-195, (Vl)7-198, (Vl)7-199,
(Vl)7-208, (Vl)7-209

write volume record, (Vl)6-193, (Vl)6-196,
(Vl)6-197, (Vl)6-214, (Vl)6-215,
(Vl)7-195, (Vl)7-198, (Vl)7-199,
(Vl)7-208, (Vl)7-209

restore files, (V2)3-48, (V2)3-53
rewind, (V2)3-53

Map Block, (Vl)3-16
address assignments, J-l

Mapped Out, (Vl)3-37
Mapped Programming Executive, see MPX-32
Master System Distribution Tape, see SDT
MDT, (V3)7-35
MEDIA, (Vl)1-19
Media, unformatted, (Vl)5-25
Media Conversion, (Vl)1-19
Media Flaw Data, (V3)13-21

IN-15

Media Flaw Map, (V3)13-23
Media Management

during SDT boot, (V3)13-22
edit media flaw data, (V3)13-21
EDITFMAP directive, (V3)13-7
INITIALIZE directive, (V3)13-12
initialize media, (V3)13-20
media flaw map. (V3)13-23
SCSI disks, (V3)13-23
terminology, (V3)13-19

Memory
deallocate, (Vl)6-111, (Vl)7-79
display, (V2)2-46
physical read, (Vl)6-124. (Vl)7-126
physical write, (Vl)6-125, (Vl)7-127
search, (V2)2-41
shadow, (V2)1-98, (V3)lO-54

Memory Address
display, (V2)2-41
get physical, (V1)6-139, (VI)7-140
inquiry, (VI)6-6, (VI)7-8

Memory Address Inquiry Service, (VI)6-6,
(Vl)7-8

Memory Allocation
blocked I/O, (V1)3-15
deallocate map block, (VI)6-72,

(Vl)6-73
demand page, (Vl)3-17
dynamic. (V1)1-8, (VI)3-19
expand, (Vl)6-80, (Vl)6-110, (Vl)7-83
extended area, (VI)6-78, (VI)6-79
extended data space, (Vl)3-20
increase, (V2) 1-3 5
map block, (Vl)3-16
MPX-32, (Vl)3-15
static, (Vl)3-18
task, (Vl)3-16

Memory Classes, (Vl)3-16, (V3)1O-56
Memory Disk

abort cases, (V3)lO-59
access, (V3)lO-59
configuration, (V3)7-13, (V3)1O-59
dismount, (V3)10-59
errors, (V3)lO-60
format, (V3)lO-59
mount, (V3) lO-59
overview, (V3)10-58
restore task (J.MDREST), (V3)10-61
save task (J.MDSA VE), (V3)10-60
usage, (V3)10-59

Memory Dump Request Service, (Vl)6-61,
(V07-69

Memory Partition, (Vl)3-20
access, (VI)4-44
access attributes, (VI)3-1 0
attach, (Vl)4-44

IN-16

create, (Vl)4-43, (Vl)6-108, (Vl)6-250,
(VI)7-111, (V2)3-29

Datapool, see Datapool
define static, (V3)7-39
delete, (Vl)4-44, (Vl)6-232, (V2)3-37
detach, (Vl)4-44
display, (V2)3-44
dynamic, (Vl)3-18
exclude, (Vl)6-67
extended common, (Vl)3-19
global common, see Global Common
include, (VI)6-90, (Vl)6-242
nonbase addressing, (VI)4-43
protection, (VI)3-1 0, (VI)3-20,

(Vl)4-43
RCB, (Vl)5-63, L-64
share, (V1)4-45
static, (Vl)3-18
unlock, (Vl)6-252

Memory Pool, (V2)1-115
IOQ size, (V3)7 -31
MSG size, (V3)7-38
size, (V3)7-46
system, (Vl)3-15

Memory Pool Monitor, (V4)2-42
Memory Resident Descriptor Table (MDT),

(V2)5-1. (V2)5-7, (V3)7-35
Memory Size, (V3)7-51
Memory Types, (V1)3-16, (V3)lO-56
Memory Word, reset, (V2)2-32
Message

end-action processing, (VI)2-26
inhibit batch, (V3)7-11
maximum no-wait, (V3)7-36
receive from other tasks. (VI)2-23,

(Vl)6-140, (VI)7-141
send to console, (Vl)6-187, (Vl)7-189,

(V3)7-11
send to task, (Vl)2-25, (Vl)6-162,

(Vl)7-166, (V2)2-42
send to terminal, (V2)1-80, (V2)1-101,

(V3)7-11
system files, (V3)lO-18

Message End-Action Routine Exit,
(VI)6-200, (Vl)7-202

Message Parameters, (Vl)2-24, (VI)6-83,
(Vl)7-86

Message Receiver
establish, (Vl)2-23
exit, (Vl)2-24, (Vl)6-201, (V1)7-203

Minimum Hardware Configuration, (Vl)I-22
Modify

page size, (V2)1-83, (V3)7-21
screen width, (V2)1-75, (V3)7-21

Modify Descriptor Service, (VI)6-112,
(V1)7-113

Index

(~

Modify Descriptor User Area
Service, (Vl)6-114, (Vl)7-115

Modify Swap Parameters, (V4)2-53
Mount

memory disk, (V3)10-59
multiprocessor volume, (VI)4-49
public volume, (V3)9-11
volume, (Vl)4-49, (Vl)6-115, (Vl)7-116,

(V2)1-77, (V2)2-33
volume (M.MOUNT), (V3)10-43

Mount Volume Service, (Vl)6-115, (Vl)7-116
Move Data to User Address Service,

(Vl)6-117, (Vl)7-118
Move Non-base TSA, (Vl)3-28, (Vl)3-32,

(V2)1-60
MPX-32

batch processing, (Vl)I-14
build, (V3)1-I, (V3)3-1
command processors, (Vl)I-3
communications facilities, (Vl)I-11
CPU scheduling, (Vl)I-7
data transfers between revisions,

(Vl)5-22
delimiters, (V2)1-26
deliverable software, (V3)2-3
demonstration package, (V4)1-4
extended, see Extended MPX-32
features, (Vl)I-3
file management, (Vl)I-8
input/output operations, (Vl)I-10
installation, (V3)2-1
introduction, (V 1) 1-1
maintenance, (V3) 1-1
mapped in, (V2)1-79
mapped out, (Vl)3-37, (V2)1-76
memory allocation, (Vl)I-8, (Vl)3-15
priority levels, (Vl)I-7
recovery, (V3)6-1
restart, (V3)5-1
shutdown, (V3) 1 0-45
software interrupt system, (Vl)I-7
system administration, (Vl)4-13, (V3)10-1
system description, (VI) 1-1
system services, (VI) 1-10, (VI)6-1,

(Vl)7-1
test, (V3)3-1
time management, (Vl)1-12
timer scheduler, (Vl)I-12
trap processors, (Vl)I-12
utilities, see Utilities

MPX.PRO
customizing, (V2)10-7
description, (V2)10-6
errors, (V2)10-9
predefined functions, (V2)10-6
sample file, (V2)10-10

MPX-32 Reference

TSM special keys, (V2)1-15
MPXDEMO, (V4)1-4
MSG Memory Pool, specify size, (V3)7-38
Multicopied Tasks, (Vl)2-3
Multiprocessor, recovery, (V2)2-58, (V3)10-53
Multiprocessor Lock, (Vl)4-47
Multiprocessor Recovery Task (J.UNLOCK),

(V3)10-53
Multiprocessor Resource, (Vl)4-47, (Vl)4-51,

(V3)7-27
Multiprocessor Shared Memory, (Vl)3-22,

(V3)7-52, (V3)7-55
Multiprocessor Shared Volume, (Vl)4-47,

(Vl)4-49
Multiprocessor User Volume, (Vl)4-16
MVT, (Vl)5-51

- N -

No-Wait I/O, (Vl)5-33
No-Wait I/O End-Action Return Service,

(Vl)6-199, (Vl)7-201
No-Wait I/O Requests, maximum number,

(V3)7-36
No-Wait Messages, maximum number, (V3)7-36
No-Wait Run Requests, maximum number,

(V3)7-38
Nonpublic Volume, (Vl)4-16
NULL Device, specification, (Vl)5-28, (V3)7-25
Numerical Information, D-l

- 0-
Object Librarian/X32, (Vl)1-18
Object Records, indicate, (V2)1-80
OBJX32, (Vl)I-18
Omine

device, (V2)2-35
help files, (V2)2-35
IPU, (V2)2-35

Online
device, (V2)2-36
help files, (V2)2-36
IPU, (V2)2-36

Online Disk Media Management, (V3)13-19
also see Media Management

Online Help
access, (V2)9-3
choices within, (V2)9-5
components, (V2)9-1
description, (V2)9-1
display sample, (V2)9-2
errors, (V2)9-15
help files

description, (V2)9-9
omine, (V2)2-35
online, (V2)2-36

IN-17

specify location, (V3)7-24
translate, (V2)9-14

help key, (V2)9-3
HELPr, (V2)9-1, (V2)9-14
J.HLP, (V3)7-30
keywords, (V2)9':2, (V2)9-12
modify infonnation, (V2)9-8
print help screen, (V2)9-6
sample

display, (V2)9-2
topic entry, (V2)9-11

topic entries, (V2)9-2, (V2)9-10
translate files, (V2)9-14

Online Restart, (V3)5-1
Online System Patch Facility, see J.INIT
OPCOM, (Vl)1-14, (V2)2-1

activate, (V2)2-3
batch jobs, (V2)2-5
directive abort, (V2)2-6
directive summary, (V2)2-1
directive syntax, (V2)2-5
directives

IN-18

ABORT, (V2)2-6
ACTIVATE, (V2)2-7
BATCH, (V2)2-8
BREAK, (V2)2-9
CONNECT, (V2)2-10
CONTINUE, (V2)2-11
DEBUG, (V2)2-12
DELETETIMER, (V2)2-12
DEPRINT, (V2)2-13
DEPUNCH, (V2)2-14
DISABLE, (V2)2-15
DISCONNECT, (V2)2-15
DISMOUNT, (V2)2-16
DUMP, (V2)2-18
ENABLE, (V2)2-19
ENTER, (V2)2-20
ESTABLISH, (V2)2-21
EXCLUDE, (V2)2-22
EXIT, (V2)2-22
HOLD, (V2)2-23
INCLUDE, (V2)2-24
KILL, (V2)2-25
LIST, (V2)2-26
MODE, (V2)2-31
MODIFY, (V2)2-32
MOUNT, (V2)2-33
OFFLINE, (V2)2-35
ONLINE, (V2)2-36
PURGEAC, (V2)2-37
REDIRECT, (V2)2-37
REPRINT, (V2)2-38
REPUNCH, (V2)2-39
REQUEST, (V2)2-40
RESUME, (V2)2-40

SEARCH, (V2)2-41
SEND, (V2)2-42
SETTIMER, (V2)2-44
SNAP, (V2)2-45
STATUS, (V2)2-46
SYSASSIGN, (V2)2-56
TIME, (V2)2-57
TURNON, (V2)2-58
UNLOCK, (V2)2-58
WAIT, (V2)2-60

exit, (V2)2-22
functionality, (V2)2-1
job numbers, (V2)2-5
owner names, (V2)2-4, (V2)2-5
restrict directives, (V2)2-3
set system operations, (V2)2-31
system console, (V2)2-4
system task restrictions, (V2)2-4
task names, (V2)2-4
task numbers, (V2)2-4

Open, resource, (Vl)5-3
Open File Service, (Vl)6-236
Open Resource Service, (VI)6-122,

(Vl)7-121
Operating Environments, (V2)1-11,

(V2)1-13
Operator Communications, see OPCOM
Operator Console, see Console
Operator Intervention Inhibit, (V3) I 0-44
Option Word Inquiry, (VI)6-126, (VI)6-127,

(VI)7-124, (Vl)7-125
Options

TSM, see TSM, options
VOLMGR, see VOLMGR, options

Others, (V1)3-6, (Vl)4-40, (V3)7-42
Overlay, load, (Vl)6-121
Owner, (V3)7-43, (V3)1O-3
Owner Name, (V2)1-8, (V2)2-4, (V3)10-4

validation, (VI)6-218

- p-

Page Size, (V2)1-83, (V3)7-21
Panel Mode Commands, G-l
Parameter, assign a value, (V2)1-94
Parameter Passing, (V2)1-29
Parameter Receive Block (pRB), (Vl)2-32, L-54
Parameter Replacement

append a value, (V2)1-30
macro files, (V2)1-30

Parameter Send Block (PSB), (Vl)2-27, L-55
Parameter Task Activation Block (PT ASK),

(Vl)6-134, (V1)7-134, L-47
Parameter Task Activation Service,

(Vl)6-133, (Vl)7-133
Password, (V2)1-9, (V3)7-44, (V3)10-4

for tenninal ports, (V4)2-43

Index

(-

(

PASSWORD Task, (V2)1-10, (V3)7-49
Patch Area, (V3)7-45
Patch Facility, see J.INIT
Patch File, (V3)7-45
Pathname,

execution, (VI)4-7
fully qualified, (Vl)4-8, (Vl)4-10
partially qualified, (Vl)4-9, (Vl)4-11
reconstruct, (Vl)6-128
syntax check, (Vl)6-129, (Vl)7-129
with VOLMGR, (V2)3-15

Pathname Block (PNB), (VI)5-52, L-50
PCB, (Vl)6-180, (Vl)7-182, L-50
Peripheral Device

allocate, (Vl)6-222
deallocate, (VI)6-231

Pennanent File Address Inquiry
Service, (Vl)6-234

Pennanent File Log Service, (Vl)6-244
Pennanent Files, see File, pennanent
Physical Channel Program, (Vl)5-43, (Vl)5-44
Physical Device Inquiry Service, (VI)6-246
Physical Dismount, (Vl)4-19
Physical Memory Read Service, (VI)6-124,

(VI)7-126
Physical Memory Write Service, (Vl)6-125,

(Vl)7-127
Physical Mount, (VI)4-17
PNB, (Vl)S-52, L-SO
Port Protection, (V4)2-43
Post Program-Controlled Interrupt (PPCI),

caller notification packet, (Vl)5-47, L-S3
end-action receiver, (VI)5-44

Powers of Integers, E-I
PPCI, (Vl)5-44, (Vl)5-47, L-53
PRB, (Vl)2-32, L-54
Print a File, (V2) 1-84
Printers

device definition, (V3)7-21, (V3)7-25
laser support, (V4)2-34
serial, fonnatter/spooler, (V4)2-S1

Priority
change batch job, (V2)1-I03
change task, (Vl)6-131, (Vl)7-131
increments, (Vl)2-11
levels, (Vl)I-7

batch jobs, (V3)7-11
interactive tasks, (V3)7 -62

migration, (Vl)2-11
task execution, (Vl)2-10

Privilege Mode, (Vl)6-132, (Vl)7-132
Privilege Task, (Vl)6-132, (Vl)7-132
Process a Different Directive File, (V2)1-46
Program Development Utilities, (VI)I-I5
Program Hold Request Service, (Vl)6-87,

(Vl)7-90

MPX-32 Reference

PROJECT
directive summary, (V3)10-12
directives

ADD, (V3)lO-12
CHANGE, (V3)lO-13
DELETE, (V3)lO-13
LOG, (V3)10-13
NEWFILE, (V3)10-14
X, (V3)lO-14

examples, (V3)IO-14
M.PRJCf file, (V3)lO-11
usage, (V3)lO-11

Project Group, (V2)1-1l, (V3)7-48, (V3)lO-1l
change, (Vl)6-46, (VI)7-56, (V2)1-48
user default, (V3)1O-4
validate, (Vl)6-218

Protection Granule, (Vl)3-16
PSB, (Vl)2-27, L-S5
Pseudonym, (V2)2-27
PTASK Block, (Vl)6-134, (VI)7-134, L-47
Public Volume

automatic mount, (V3)9-11
description, (VI)4-16
dismount, (V2)I-SS, (V2)2-16
mount, (V2)I-77, (V2)2-33

Purge, (Vl)6-214, (Vl)7-208
Put User Context Service, (Vl)7-138

- R -
Random Access, (Vl)1-9, (Vl)4-35
Rapid File Allocation Utility, see J.MDT!
RCB

description, (Vl)5-S9, L-60
directory, (VI)5-62, L-63
file, (Vl)5-59, L-60
memory partition, (Vl)5-83, L-64

RDTR, (V2)3-6
read from tape, (V2)3-46

Read Descriptor Service, (VI)6-99,
(Vl)7-144

Read Directives, from a file, (V2)I-89
Read RDTR from Tape, (V2)3-46
Read Record Service, (VI)6-I41. (VI)7-I42
Read/LoCk Write/Unlock (RLWU), (V3)7-48
Read/Write Authorization File Service,

(Vl)6-218
Real-Time Clock

interrupts per second, (V3)7-39
interrupts per time unit, (V3)7-42

Real-Time Environment, accessing, (V2)1-12
Real-Time Task Accounting, (Vl)2-53,

(V2)2-31. (V3)7-36
Realtime Debugger, (V4)2-44
Recall Command Lines, (V2)1-85, (V2)l0-4
Receive Message Link Address Service,

(Vl)6-140, (Vl)7-141

IN-19

Receiver Exit Block (RXB), (Vl)2-33, L-74
Reconstruct Pathname Service, (Vl)6-128,

(Vl)7-42
Records

backspace, (Vl)6-11, (Vl)7-16
read, (Vl)6-141, (Vl)7-142
write, (Vl)6-197, (Vl)7-198

Recover Multiprocessor, (V2)2-58, (V3)10-53
Recovering the System, (V3)6-1
Redirect SLO/SBO Output, (V2)2-37
Reflective Memory System Software (RMSS),

(VI)4-15, (V3)7-41
Refonnat RRS Entry Service, (VI)6-119
Reinstate Privilege Mode to Privilege Task

Service, (VI)6-132, (VI)7-132
Release Channel Reservation Service,

(Vl)6-149, (Vl)7-153
Release Dual-Ported Disk/Set Dual-Channel

ACM Mode Service, (VI)6-142,
(Vl)7-145

Release Exclusive File Lock Service,
(Vl)6-240

Release Exclusive Resource Lock Service,
(VI)6-188, (VI)7-190

Release FHD Port Service, (Vl)6-219,
(Vl)7-212

Release Synchronization File Lock Service,
(Vl)6-237

Release Synchronous Resource Lock
Service, (V1)6-190, (Vl)7-193

Remote Tenninal Logoff, (V4)2-37
Remove a Job, (V2)1-86
Remove Shared Image from Memory,

(V2)2-22
Rename

file, (Vl)6-143, (VI)7-146, (V2)1-87,
(V2)3-47

volume, (V 4)2-44
Rename File Service, (VI)6-143, (VI)7-146
Replace Permanent File Service, (VI)6-144,

(VI)7-147
Reprint SLO, (V2)2-38
Repunch SBO, (V2)2-39
Request Interrupt (RI), (V2)2-40, (V2)2-44
Reserve Channel Service. (Vl)6-153,

(Vl)7-156
Reserve Dual-Ported Disk/Set Single­

Channel ACM Mode Service,
(VI)6-145, (Vl)7-148

Reserve FHD Port Service, (Vl)6-220,
(Vl)7-212

Reset a Flag, (V2)1-88
Reset a Memory Word, (V2)2-32
Reset Option Lower Service, (Vl)6-148,

(Vl)7-152

IN-20

Resident Executive Services (H.REXS),
(Vl)5-49

Resident Shared Image
load, (V2)2-24
remove, (V2)2-22

Resource Control, (Vl)4-4
Resource Create Block, see RCB
Resource Descriptor (RD)

allocation map, (VI)6-208, (VI)6-212
description, (VI)4-I, (Vl)4-22, (VI)5-20,

(VI)5-51
modify, (VI)6-112, (Vl)7-113
modify user area, (VI)6-114, (VI)7-115
read, (VI)6-99, (Vl)7-144
rewrite, (VI)6-146, (Vl)7-150
rewrite user area, (Vl)6-147, (Vl)7-151

Resource Descriptor Tape Record, see RDTR
Resource Identifier (RID), (Vl)4-31, (Vl)5-1O,

(VI)5-55, L-66
Resource Inquiry Service, (VI)6-93,

(Vl)7-96
Resource Logging Block (RLB), (VI)6-105,

(VI)7-108, L-67
Resource Management, (VI)3-1, (Vl)4-1

dynamic, (Vl)4-1
static, (VI)4-1

Resource Management Module, see H.REMM
Resource Requirement Summary (RRS),

(VI)5-4, L-68
Resourcemark Lock Service, (Vl)6-150,

(VI)7-154
Resourcemark Table, increase size, (V3)7-49
Resourcemark Unlock Service, (Vl)7-155
Resources

access, (VI)3-3
blocked I/O, (Vl)3-4
execute channel program, (VI)3-3
logical device, (VI)3-4
logical file, (VI)3-4

access attributes
directories, (VI)3-9
files, (VI)3-10
memory partitions, (VI)3-10
volumes, (Vl)3-8

allocate, (V1)5-1, (Vl)5-2, (Vl)5-3,
(Vl)6-8, (VI)7-I2

dynamic, (VI)3-3
static, (VI)3-3, (VI)3-18

assign, (VI)5-1, (VI)5-2, (VI)5-3,
(VI)5-4, (V1)6-8, (VI)7-12

attach, (VI)3-2, (VI)5-2
attributes, (V1)3-6

modify, (VI)3-5
protection, (VI)3-6

classes, (VI)4-2
conflicts, (VI)5-15

Index

create, (VI)3-2
deadlock, (VI)4-50
deallocate, (VI)6-42, (VI)7-53
deassign, (VI)6-42, (Vl)7-53
define, (Vl)3-2
delete, (Vl)3-2, (VI)6-48, (Vl)7-57
dequeue, (VI)4-4
detach, (VI)3-4
directory structure, (VI)4-6
disk structure, (Vl)4-6
display listing, (V2)3-44
enqueue, (VI)4-4
error handling, (Vl)5-15
exclusive allocation, (VI)6-101,

(Vl)6-188, (Vl)7-104, (Vl)7-190
extension, (Vl)3-11
functions, (VI)3-2
I/O, (Vl)5-1
inquiry, (Vl)3-5, (Vl)6-93, (Vl)7-96
log information, (Vl)6-103, (Vl)7-106,

(V2)3-42, (V2)3-43, (V2)3-44
logical, (Vl)3-1
modify attributes, (Vl)3-5
multiprocessor, (VI)4-47
nonshareable, (VI)4-2
open, (Vl)5-3, (Vl)5-14, (VI)6-122,

(VI)7-121
other, (Vl)3-6, (VI)4-2, (V3)7-42
owner, (Vl)3-6, (Vl)4-2, (V3)7-43
pathnames, (VI)4-7
physical, (VI)3-1
print, (Vl)5-38
project group, (Vl)3-6, (Vl)4-2, (V3)7-48
protection, (V 1)4-13
punch, (Vl)5-38
shareable, (VI)3-6, (Vl)4-2

access control, (VI)4-5
exclusive, (Vl)3-7, (Vl)4-3
explicit, (VI)3-7, (Vl)4-3
implicit, (Vl)3-8, (VI)4-3

terminate operations, (VI)6-21, (Vl)7-27
types, (VI)3-1, (Vl)4-1
unformatted media, (Vl)5-25
user classes, (VI)3-6, (VI)4-2

Restart, (V3)5-1
Restore files from tape, (V2)3-48, (V2)3-53
Restrictions, user, (V3)l0-4
Resume Task Execution, (VI)6-167, (VI)7-171,

(V2)2-40
Resume Task Execution Service, (Vl)6-167,

(VI)7-171
Return Pathname String, (Vl)6-l28,

(VI)7-42
Rewind File Service, (Vl)6-154, (Vl)7-149
Rewind Magnetic Tape, (V2)3-53

MPX·32 Reference

Rewrite Descriptor Service, (VI)6-146,
(VI)7-150

Rewrite Descriptor User Area Service,
(Vl)6-147, (Vl)7-151

RID, (Vl)4-31, (Vl)5-10, (VI)5-55, L-66
RLB, (Vl)6-105, (Vl)7-108, L-67
RMSS, (Vl)4-15, (V3)7-41
Root Directory, (VI)4-6
RRS, (Vl)5-4, L-68
RTOM Interval Timer, (V3)7-32
Run Receiver, (Vl)2-22, (Vl)2-23

establish, (VI)2-23
exit, (VI)2-24, (Vl)6-203, (Vl)7-205

Run Request, (VI)I-ll
end-action processing, (VI)2-26
exit, (VI)6-202, (VI)7-204
parameters, (Vl)2-24, (Vl)6-84, (Vl)7-87
send to task, (Vl)2-26, (Vl)6-164,

(Vl)7-168
RXB, (VI)2-33, L-74

-5-
Save Files, (V2)3-54, (V2)3-57

display, (V2)3-43
Save Image, directory, (V2)3-4
Save Tape, (V2)3-1, (V2)3-2
SBO

change default device, (V2)2-56
delete file, (V2)2-14
logical file code assignment, (V2)1-22,

(V2)1-36
output, redirect, (V2)2-37
repunch files, (V2)2-39
specify default device, (V3)7-45

Scan Terminal Input Buffer Service,
(V1)6-178, (VI)7-180

Scanner Demo, (V4)2-59
Scheduler, select IPU/CPU, (V3)7-17
Scheduling

CPU, see CPU scheduling
I/O, (V1)2-42
IPU, «VI)2-18
swap, see Swap Scheduling
task interrupt, (VI)2-20

Scratchpad, (V3)7-36
Screen Logic, TSM, (V2)1-21
Screen Width, (V2)1-75
SCSI Disk

device definition, (V3)7-13
media management, (V3)13-23
utility, (V4)2-50

SDT
master

boot from, (V3)2-12
contents, (V3)2-3
create, (V2)3-60

IN-21

Unstall, <'13)2-1
magnetic tape, ("3)2-10
utility tape, ("3)2-10

user
boot from, <'13)4-4
create, ("2)3-58, <'13)4-1
Unstall, <'13)4-3

Search Memory for a Value, <'12)2-41
Search

within a file or files, <'14)2-38
within a source file,

("4)2-30, <'14)2-52
Securi ty, <'13) 10-22

limit logon time, <'13)10-23
limit tenninall/O inactivity, ('13)10-23
LOGONFLE examples, ('13)10-24
restrict logon attempts, <'13)10-22

Select Initial Input Source, <'12)1-93
Select Records

from a device, ('12) 1-90
from a file, <'12)1-91
from initial input source, ('12) 1-93
library format

from a device, <'12)1-92
from a file, <'12)1-93

Send a Message
to a task, <'11)6-162, <'11)7-166,

<'12)2-42
to terminal users, ('12)1-101
to the console, ('11)6-187, <'11)7-189,

('13)7 -11
to user's tenninal, <V2)1-80, <V3)7-11

Send Message to Specified Task Service,
<VI)6-162, ('11)7-166

Send Run Request to Specified Task
Service, ('11)6-164, (V1)7-168

Sequential Access, ('11)4-35, ('11)5-38
Serial Printer Fonnatter/Spooler,

<'14)2-51
Set Asynchronous Task Interrupt Service,

<'11)6-10, <'11)7-14
Set Exception Handler Service, ('11)7-158
Set Exception Return Address Service,

('11)7-157
Set Exclusive File Lock Service, (VI)6-241
Set Exclusive Resource Lock Service,

('11)6-101, ('11)7-104
Set Flag

false, ('12) 1-88
true, <'12)1-95

Set IPU Bias Service, (V1)6-98, (V1)7-102
Set Option Lower Service, (Vl)6-163,

('11)7-167
Set Synchronization File Lock Service,

('11)6-238

IN·22

Set Synchronous Resource Lock Service,
("1)6-157, (,,1)7-161

Set Synchronous Task Interrupt Service,
<'11)6-170, <'11)7-174

Set Timer, ('12)2-44
Set User Abort Receiver Address Service,

('11)6-166, ("1)7-170
Set User Status Word Service, ('11)6-155,

('11)7-159
SGO, logical file code assignment, ('12) 1-22,

(V2)1-36
Shadow Memory

access, ('13) 10-57
allocate task space, ('12) 1-98
assign by RRS, ('11)5-13
configurations, <'13) 10-54, ('13) 10-56
error messages, <'13)10-57
memory classes, (V3)1O-56
overview, ('13)10-54
SYSGEN error messages, ('13)7-56

Shadow Utility, see J.SHAD
Share Memory with Another Task Service,

(Vl)6-250
Shared Image

access, <'11)4-46
attach, (VI)4-46
create, ("I)4-45
description, <'11)1-11, ('11)4-45
detach, (VI)4-46
exclude, ('11)7-73
include, ('11)7-93
load into memory, ('12)2-24
protection, (V 1)4-45
remove from memory, <'12)2-22

Shared Memory, ('11)3-21, (V3)7-51
deallocate, (VI)6-233
dynamic partitions, ('11)3-18
multiprocessor, (VI)3-22
static partitions, (VI)3-18
SYSGEN error messages, (V3)7-51

Shared Memory Table (SMT), ('13)7-51
Shared Tasks, (VI)2-3
SHUTDOWN Macro

error messages, ('13)10-49
introduction, ('13) 10-45, (V3) 10-46
modify, ('13) 1 0-47
usage, (V3)1O-46

SID
change the default, ('12)2-56
specify default device, <'13)7-51

SJ.SW APR2, ('13)10-49
SJ .XX.ER. <'13) 1 0-18
SLO

change default device, <'12)2-56
delete file, <'12)2-13

Index

(..
.. _ ..

"

,
""-...--/

(

c\

logical file code assignment, (V2)1-22,
(V2)1-36

output, (V2)1-103
redlirect, (V2)2-37

reprint files, (V2)2-38
specify default device, (V3)7-33
SYSGEN, title, (V3)7 -63

Small Computer System Interface,
see SCSI Disk

SMAP, (Vl)5-51, (Vl)6-206, (Vl)6-211
Software, unsupported, (V 4)2-1
Software Interrupt System, (Vl)I-7
Software Priorities, (Vl)I-5
Sort/Merge, see FSORT2
Source Compare Program, (V4)2-25
Source Search Tool, (V4)2-30
Space Allocation, (VI)6-206
Special Keys, TSM, (V2)1-15
Split Image, see Extended MPX-32
Spool Batch Records

from a device, (V2)1-90
from a file, (V2)1-91
library format

from a device, (V2)1-92
from a file, (V2)1-93

Spooled Input
control, (V2)1-30
terminating conditions, (V2)1-32

Spooled Output, see SLO
Starter System, (V3)2-1
State Chain

head cell, (VI)2-12
queue, (VI)2-12

State Chain History, (V 4)2-27
State Queues, (VI)2-13
Static Memory Allocation, (VI)3-18
Status Codes

H.REMM, (Vl)5-17
H.VOMM, (Vl)S-S7

String Search, (V4)2-38
Submit Batch Job, (V2)1-4S, (V2)1-102
Submit Batch Job on Boot-up, (V4)2-15
Submit Job from Disk File Service,

(Vl)6-226
Subroutine Libraries, (Vl)1-21
Subroutine Library Editor, (Vl)1-17
Suspend Task Execution Service, (Vl)6-169,

(Vl)7-173
Suspend/Resume Service, (VI)6-168,

(Vl)7-172
SVC Type 1 Table, (V3)7-58
Swap Device, (V3)7-58
Swap File Size, (V3)7-46
Swap Monitor Program, (V4)2-54, (V4)2-55
Swap Parameter Modifier Program, (V4)2-53
Swap Quantum, (V3)7-59

MPX-32 Reference

Swap Scheduler
algorithms, (V3)1O-50
call back swap-on priority only (CB.SOPO),

(V3)10-51
description, (V3)1O-49
errors, (V3)1O-53
swap thrash control, (V3)1O-51
task group outswap limits, (V3)lO-52
user set inhibit flag (US.SWIF),

(V3)10-51
user set swap-on priority only (US.sOPO),

(V3)1O-S1
wait state ordering, (V3)lO-SO
wait state swap-on priority only (SOPO),

(V3)lO-51
Swap Scheduling, (VI)2-43

entry conditions, (VI)2-43
exit conditions, (VI)2-44
inswap process, (Vl)2-45
outswap process, (Vl)2-45
selection of inswap and outswap

candidates, (VI)2-44
structure, (VI)2-43

Swapper Percentage Active Monitor, (V4)2-53
SYC

description, (V2)l-16
I/O input limitations, (V2)l-23
logical file code assignment, (V2)l-21,

(V2)l-36
parameter replacement, (V2)1-30
terminalI/O, (V2)l-23

Symbol Table File Name, (V3)7-60
Symbolic Debugger/X32, (Vl)1-18
Synchronization File Lock

release, (Vl)6-237
set, (Vl)6-238

Synchronized Access, (Vl)6-157,
(Vl)6-190, (Vl)7-161, (Vl)7-193

SYSGEN, (Vl)I-20, (V3)3-1, (V3)7-1
access, (V3)7-4
description, (V3)7-1
directive input file, (V3)3-1
directive summary, (V3)7-4
directives

ACTIVATE, (V3)7-10
AGE, (V3)7-10
ARTSIZE, (V3)7-11
BATCHMSG, (V3)7-11
BATCHPRI, (V3)7-11
BEGPGOUT, (V3)7-12
COOTS, (V3)7-12
jCHANNELS, (V3)7-13
CMIMM, (V3)7-13
CMPMM, (V3)7-13
CONTROLLER, (V3)7-13
DBGFILE, (V3)7-16

IN-23

IN-24

DEBUGlLC, (V3)7-16
DELTA, (V3)7-17
DE1\.1AND, (V3)7-17
DEVICE, (V3)7-18
DISP, (V3)7-26
DPTIMO, (V3)7-27
DPTRY, (V3)7-27
DTSA VE, (V3)7-27
/IEND, (V3)7-28
ENDPGOUT, (V3)7-28
EXTDMPX, (Vl)3-28, (V3)7-28
/FILES, (V3)7-30
FLTSIZE, (V3)7-30
/,HARDWARE, (V3)7-30
HELP, (V3)7-30
/INTERRUPTS, (V3)7-31
IOQPOOL, (V3)7-31
!PU, (V3)7-32
ITIM, (V3)7-32
ITLB, (V3)7-32
JOBS, (V3)7-32
KTIMO, (V3)7-33
LOD, (V3)7-33
LOGON, (V3)7-33
MACHINE, (V3)7-34
MAPOUT, (V3)7-35
MDT, (V3)7-35
/MEMORY, (V3)7-35
MMSG. (V3)7-36
MNWI, (V3)7-36
MODE, (V3)7-36
MODULE, (V3)7-37
/MODULES, (V3)7-38
MRUN, (V3)7-38
MSGPOOL, (V3)7-38
MTIM, (V3)7-39
NAME, (V3)7-39
NOANSI, (V3)7-40
NOBASE, (V3)7-40
NOCMS, (V3)7-40
NODEMAND, (V3)7-40
NOLACC, (V3)7-41
NOMAPOUT, (V3)7-41
NOSYSVOL, (V3)7-41
NOTDEF, (V3)7-41
NOTSMEXIT, (V3)7-42
NTIM, (V3)7-42
OTHERS, (V3)7-42
/OVERRIDE, (V3)7-43
OWNER, (V3)7-43
OWNER NAME, (V3)7-44
/PARAMETERS, (V3)7-44
/PARTITION, (V3)7-44
PASSWORD, (V3)7-44
PATCH, (V3)7-45
PCHFILE, (V3)7-45

POD, (V3)7-45
POOL, (V3)7-46
PRIORITY, (V3)7-46
PROGRAM, (V3)7-47
PROJECT, (V3)7-48
RLWU, (V3)7-48
/RMSTABLS, (V3)7-49
RMTSIZE, (V3)7-49
SAPASSWD, (V3)7-49
/SECURITY, (V3)7-49
SEQUENCE, (V3)7-50
SGOSIZE, (V3)7-50
SHARE, (V3)7 -51
SID, (V3)7-51
SIZE, (V3)7-51
SMD, (V3)7-57
//SOFTWARE, (V3)7-57
SVC, (V3)7-58
SWAPDEV, (V3)7-58
SWAPLIM, (V3)7-59
SWAPSIZE, (V3)7-59
SWP, (V3)7-60
SYCSIZE, (V3)7-60
SYMTAB, (V3)7-60
/SYSDEVS, (V3)7-60
SYSMOD, (V3)7-61
SYSONLY, (V3)7-61
SYSTEM, (V3)7-61
SYSTRAP, (V3)7-62
/TABLES, (V3)7-62
TERMPRI, (V3)7-62
TIMER, (V3)7 -62
TIlLE, (V3)7 -63
TQFULL, (V3)7 -63
TQMIN, (V3)7-63
TRACE, (V3)7-64
/TRAPS, (V3)7-64
TSMEXIT, (V3)7-64
USERPROG, (V3)7-65
/vp, (V3)7-65
VP, (V3)7-65
VPID, (V3)7-65

logical file code summary, (V3)7-3
logical file codes, (V3)7-2
object input file, (V3)3-1
options, (V3)7-3
running, (V3)3-3

SYSINIT, (V3)2-23
System

build, (V3)1-1, (V3)3-1
maintenance, (V3) 1-1
new default image, (V3)5-3
recovery, (V3)6-1
restart, (V3)5-1
shutdown, (V3) 1 0-45
test, (V3)3-1, (V3)3-4

Index

System Administrator, (Vl)4-13
System Administrator Services

abort codes and messages, (V3)10-18
ACM/MFP initialization, (V3)10-35
ALIM initialization, (V3)10-26
ANSI tape label utility (J.LABEL),

(V3)10-62
device initialization, (V3)10-19
floppy disk initialization (J.FORMF),

(V3)10-42
INIT, (V3)10-20
introduction, (V3)10-1
job accounting (M.ACCNT), (V3)10-15
KEY program, see KEY
LOGONFLE, (V3)10-20
M.CNTRL, (V3)10-17
M.ERR and xx.ERR files, (V3)10-18
M.KEY, (V3)10-3
M.PRJc:r, (V3)10-11
memory disk partition, (V3)10-58
multiprocessor recovery (J.UNLOCK),

(V3)10-53
operator intervention inhibit, (V3) 1 0-44
password control, (V3)7-49
PROJECT program, see PROJECT
security, (V3)10-22
shadow memory, (V3)10-54
swap scheduler control, (V3)10-49
system console messages, (V3)10-41
system date/time backup (J.DTSA VE),

(V3) 10-44
system date/time update, (V2)2-20
system shutdown, (V3)10-45
terminal initialization, (V3) 1 0-19
volume mount (M.MOUNT), (V3)10-43

SYSTEM as Ownemame, (V3)7-33, (V3)7-61
System Binary Output, see SBO
System Builder, (V3)2-23
System Console, (V2)2-4

configuration, (V3)2-1
device definition, (V3)7-21
device specification, (Vl)5-28
messages, (V3)10-41

System Console Type Service, (Vl)6-187,
(VI)7-189

System Console Wait Service, (Vl)6-41,
(Vl)7-51

System Control File, see SYC
System Date and Time, update, (V2)2-20
System Daterrime Backup Program

(J.DTSAVE), (V3)10-44
System Debugger (H.DBUG 1, H.DBUG2)

accessing, (V3)8-6
arithmetic operators, (V3)8-2
attach, (V2)2-12
base characters, (V3)8-4

MPX-32 Reference

bases, (V3)8-4
breakpoints, (V3)8-3
console address for stand-alone I/O,

(V3)7-16
directive list example, (V3)8-32
directive summary, (V3)8-7
directives

AB (Absolute), (V3)8-9
AD (Address), (V3)8-9
AR (Arithmetic), (V3)8-10
AS (Assemble Instruction), (V3)8-10
BA (Base), (V3)8-10
BR (Breakpoint), (V3)8-11
BY (Bye), (V3)8-11
CB (Change Base Register), (V3)8-12
CD (Display Command List), (V3)8-12
CE (Zero Command List), (V3)8-12
CH (Display Controller Definition

Table Entry), (V3)8-12
CL (Terminate Build Directive List

Mode), (V3)8-13
CM (Change Memory), (V3)8-13
CO (Continue), (V3)8-13
CR (Change Register), (V3)8-14
CS (Build Directive List), (V3)8-14
CT (Continue then Terminate),

(V3)8-14
CX (Execute Directive List), (V3)S-14
DB (Display Base Register), (V3)S-15
DE (Delete), (V3)S-IS
DI (Display Instruction), (V3)S-15
DM (Display Memory), (V3)8-15
DQ (Display Dispatch Queue Entry),

(V3)8-16
DR (Display Register), (V3)S-16
DS (Display Symbolic), (V3)8-16
DT (Display Event Trace), (V3)8-17
DU (Dump), (V3)8-17
EC (Echo), (V3)8-17
ET (Enter Event Trace Point),

(V3)8-17
GO (Go), (V3)S-18
HC (Display Dispatch Queue Head

Cell), (V3)S-IS
LB (List Breakpoint), (V3)S-19
LP (Line Printer), (V3)8-19
L T (List Mobile Event Trace Point),

(V3)S':19
MR (Map Register), (V3)8-19
MS (Modify CPU Scratchpad

Location), (V3)8-20
PD (Display Patch List), (V3)8-20
PE (Zero Patch List), (V3)S-20
PR (Terminate Build Patch

List Mode), (V3)8-21
PS (program Status), (V3)8-21

IN-25

PI' (Build Patch List), (V3)8-21
PV (Convert Physical Address to

Virtual Address), (V3)8-21
PX (Execute Patch List), (V3)8-21
RB (Reset Bases), (V3)8-22
RE (Remap), (V3)8-22
RT (Remove Event Trace Point),

(V3)8-22
SE (Search Equivalent), (V3)8-23
SM (Set Mask), (V3)8-23
SP (Scratchpad Dump), (V3)8-23
SY (Symbolic), (V3)8-23
TB (Trace Back), (V3)8-24
TE (Terminate), (V3)8-24
TR (Trace), (V3)8-24
TS (Trace Stop), (V3)8-25
TY (Terminal), (V3)8-25
UD (Display Unit Definition Table

Entry), (V3)8-25
VP (Convert Virtual Address to

Physical Address), (V3)8-26
display a program, (V3)8-29
display memory, (V3)8-27
execution breakpoints, (V3)8-3
expressions, (V3)8-5
indirection, (V3)8-5
introduction, (V3)8-1
operator restrictions, (V3)8-5
parts of, (V3)8-1
patch list example, (V3)8-33
practice session, (V3)8-26
registers, (V3)8-5
special functions, (V3)8-3
special operators, (V3)8-2

System Dispatch Queue, display, (V2)2-26
System Distribution Tape, see SDT
System General Output, see SGO
System Generation, see SYSGEN
System Halt Analysis, (V3)6-2
System Image

build a new default, (V3)5-3
filename, (V3)7-61

System Input Device, see SID
System Listed Output, see SLO
System Modules

replace, (V3)7-61
specify, (V3)7-65

System Nonresident Media Mounting
Task, (Vl)1-13

System Output Queues, display, (V2)2-26
System Patch File, display, (V2)2-26
System Protection, (V3)3-5
System Recovery, (V3)6-1
System Restart, (V3)5-1

IN-26

System Services
base mode, (Vl)7-1

IPU executable, (Vl)7-5
syntax rules, (Vl)7-2

cross reference, B-1
H.VOMM macros, (Vl)5-65
nonbase mode, (V 1)6-1

IPU executable, (VI)6-3
overview, (VI)I-lO
return conventions, (Vl)5-16
status posting, (V1)5-16

System Shutdown
error messages, (V3)10-48
J.SHUTD, (V3)10-45
overview, (V3)10-45
SHUTDOWN, (V3)1O-45, (V3)10-46
volume clean-up, (V3)10-46

System Start-up, Generation, and
Installation, see SYSGEN

System Task Restrictions, (V2)2-4
System Volume, (VI)4-15, (V3)5-5

-T-

Tab Settings, TSM, (V2)1-20
Tabs, (V4)2-56
Tape Drive, device definition, (V3)7-23
Task

abort dump, (V3)7-36
abort, see Task, execution, abort
base nonshared, (VI)2-3
base shared, (VI)2-6
change priority, (VI)6-13I, (Vl)7-131
connect to interrupt level, (Vl)6-35,

(VI)7-41, (V2)2-10
create timer, (V1)6-159, (Vl)7-163
delete timer, (Vl)6-56, (Vl)7-66,

(V2)2-12
demand page, (Vl)3-17
disconnect from interrupt level,

(V2)2-15
display status, (V2)2-26, (V2)2-46
environment, (Vl)6-66, (Vl)7-72
execution, (Vl)2-7

abort, (Vl)2-46, (Vl)6-16,
(Vl)6-50, (Vl)7-21, (Vl)7-59,
(V2)1-19, (V2)2-6

return control, (VI)6-166,
(VI)7-170

attach debugger, (V2)1-19, (V2)2-12
continue, (V2)1-19, (V2)1-20,

(V2)1-49, (V2)2-11
delete task, (V2) 1-20
from directive files, (V2)1-27,

(V2)1-89
from system service, (Vl)6-5,

(Vl)7-7

Index

(

hold, (VI)6-87, (Vl)7-90,
(V2)1-19, (V2)2-23

kill, (V2)2-25
phase 1 of activation, (Vl)2-7
phase 2 of activation, (VI)2-8
priorities, (VI)2-10
resume, (Vl)6-167, (Vl)6-185,

(Vl)7-171, (Vl)7-187, (V2)2-1O,
(V2)2-40, (V2)2-44, (V2)2-58

suspend, (Vl)6-41, (Vl)6-169,
(V1)7-51, (Vl)7-173

suspend/resume, (VI)6-168,
(Vl)7-172

tennination, (Vl)2-46, (VI)2-47,
(Vl)6-69, (Vl)7-75

TSA, (VI)2-8
under OPCOM, (V2)2-7, (V2)2-21,

(V2)2-44
under TSM, (V2)1-16, (V2)1-34,

(V2)1-45, (V2)1-59, (V2)1-88,
(V2)1-102

exit status, (Vl)7 -78
hold, (V2)2-23
identification, (VI)2-1, (VI)6-88,

(Vl)7-91
interactive, characteristics, (V2)l-25
interrupt, (V2)1-19

context storage, (Vl)2-21
level gating, (Vl)2-21
levels, (Vl)2-20
OPCOM, (V2)2-6, (V2)2-9,

(V2)2-25
receivers, (VI)2-20
scheduling, (VI)2-20
system services (Vl)2-20, (VI)6-19,

(VI)6-55, (VI)6-59, (Vl)6-64,
(Vl)6-97, (Vl)6-170, (Vl)6-171,
(Vl)6-198, (Vl)7-24, (VI)7-63,
(Vl)7-67, (Vl)7-70, (VI)7-101,
(Vl)7-174, (Vl)7-175, (VI)7-200

system services summary, (VI)2-35
user break receivers, (Vl)2-21

limits of base mode, (Vl)7-103
multicopied, (Vl)2-3
name, (VI)2-1
nonbase mode vs. base mode, (Vl)2-2
nonbase nonshared, (VI)2-3, (VI)2-5
nonbase shared, (VI)2-6
number, (Vl)2-1
obtain status, (Vl)6-118, (V1)7-120
option word inquiry, (Vl)6-126,

(V 1)6-1 27, (Vl)7-124, (Vl)7-125
override parameters, (Vl)6-133, (VI)7-133
priorities, (VI)2-1 0
priority levels, (Vl)l-7
privileged, (Vl)6-132, (Vl)7-132

MPX·32 Reference

shared, (Vl)2-3
specify user name, (Vl)6-253
state, (VI)2-12, (Vl)2-13, (V2)1-20,

(V2)2-28, (V2)2-52
structure, (VI)2-2
swap scheduling, (V3)10-49
tennination, see Task, execution,

tennination
test timer, (Vl)6-184, (Vl)7-186
unique, (VI)2-3
unprivileged, (VI)6-192, (VI)7 -192

Task Cataloger, see CATALOG
Task CPU Execution Time Service,

(Vl)6-204, (Vl)7-206
Task Debugger, (Vl)1-16
Task Identification, (VI)2-1
Task Interrupt, see Task, interrupt
Task Name, (Vl)2-1, (V2)2-4
Task Number, (VI)2-1, (V2)2-4
Task Option Doubleword Inquiry Service,

(VI)6-126, (Vl)7-124
Task Option Word Inquiry Service,

(Vl)6-127, (Vl)7-125
Task Service Area, see TSA
Task Structure, (VI)2-2
Task-Synchronized Access to Common

Resources, (VI)2-49
TCPB, (VI)5-41, L-75
TCW, (Vl)5-37
TDEFLIST File, (V2) 1 1-5
Temporary Files, see File, temporary
TERMDEF

access with M.GETDEF, (VI)6-81,
(V2)11-18

access with M_GETDEF, (Vl)7-81
components

J.TDEFl, (V2) 1 1-4
J.TSET, (V2)11-21
LOGONFLE, (V2)11-17
M.GETDEF, (V2)11-18
TDEFLIST, (V2) 1 1-5
TERMDEF file, (V2)11-8
TERMPART, (V2) 1 1-3

demo, (V4)2-28, (V4)2-31
exclude support, (V3)7-41
file

booleans, (V2)l1-9
control strings, (V2) 1 1-9
cursor addressing, (V2)ll-10
sample, (V2)11-12

illustration, (V2) 11-2
infonnation block, (V2)11-18
utility, (V 4)2-19

Terminal Definition Facility, see TERMDEF
Terminal I/O

close, (V2)1-24

IN·27

example session, (V2)1-108
exit, (V2)1-14, (V2)1-59
input limitations, (V2)1-23
open, (V2)1-24
reads, (V2)1-23
rewind scanner, (V2)1-24
scan input buffer, (Vl)6-178, (Vl)7-180
SYC, (V2)1-23
type identification, (V2) 11-8, (V2) 11-17,

(V2)11-21
wait state, (Vl)6-195, (Vl)7-197,

(V2)1-105, (V2)2-60
wakeup, (V2)1-8, (V2)1-20
writes, (V2)1-24

Terminal Initialization, (V3)3-5, (V3)lO-19
Terminal Initializer/Loader, (V4)2-56
Tenninal Services Manager, see TSM
Terminal Timeout Counter, (V3)lO-23
Terminal, user, see UT
Terminate a Directive File, (V2)1-58
Terminate Processing, (V2)1-49
Terminate Task Execution Service,

(Vl)6-69, (Vl)7-75
TERMPART, (V2)11-3
Test Timer Entry Service, (Vl)6-184,

(Vl)7-186
Test User Status Word Service, (V1)6-183,

(Vl)7-185
Testing a SYSGENed System, (V3)3-4
Text Editor, (V1)I-17
Time and Date Formats, H-I
Time Instruction Sequences, (V4)2-38
Time Management, (Vl)l-12
Time-of-Day Inquiry Service, (VI)6-172,

(Vl)7-176
Time Quantum

controls, (VI)2-11
maximum, (V3)7-63
minimum, (V3)7-63

Time Units, (V3)7-39, (V3)7-42
Timer Entry

create, (V1)6-159, (VI)7-163
delete, (Vl)6-56, (Vl)7-66
test, (Vl)6-184, (VI)7-186

Timer Scheduler, (VI)1-12
Timer Table Entries, (V3)7-62
Trap Handlers, (Vl)2-51, (V3)7-47

override defaults, (V3)7-62
Trap Online User's Task Service, (VI)6-171,

(Vl)7-175
Trap Processors, (VI)I-12, (VI)2-51,

(V3)7-47
Truncate File Service, (VI)6-177, (Vl)7 -179
TSA

description, (Vl)2-8
extended (VI)3-34

IN·28

move, (Vl)3-28, (V1)3-32, (V2)1-60
pushdown stack area, (Vl)2-10
starting address, (Vl)6-86, (Vl)7-89
structure, (Vl)2-10

TSM, (Vl)l-13, (V2)1-1
break key, (V2)1-19
break processor, (V2)1-27
case sensitivity, (V2)1-20
conditional processing, (V2)1-29
device initialization, (V3)1O-19
directive syntax, (V2)1-33
directives

$$, (V2)1-I06
$$$, (V2)1-I06
$ACCOUNT, (V2)1-33
$ACTIVATE, (V2)1-34
$ALLOCATE, (V2)1-35
$ASSIGN, (V2)1-36
$ASSIGNI, (V2)1-41
$ASSIGN2, (V2)1-42
$ASSIGN3, (V2)1-43
$ASSIGN4, (V2) 1-44
$BATCH, (V2)1-45
$CALL, (V2)1-46
$CHANGE, (V2)1-48
$CLEAR, (V2)1-49
$CONTINUE, (V2)1-49
$CREATE, (V2)1-50
$DEBUG, (V2)1-50
$DEFM, (V2)1-51
$DEFNAME, (V2)1-52
$DELETE, (V2)1~53
$DIRECTORY, (VI)6-179, (VI)7-181
$DISABLE (V2)1-54
$DISMOUNT, (V2)1-55
$ENABLE (V2)1-57
$END, (V2)1-58
$ENDM, (V2)1-58
$EOJ, (V2)1-58
$ERR, (V2)1-58
$EXECUTE, (V2)1-59
$EXIT, (V2)1-59
$EXTDMPX, (Vl)3-33, (V2)1-60
$GETPARM, (Vl)6-181
$GOBACK, (V2) 1-62
$GOTO, (V2)1-63
$IFA, (V2)1-64
$IFF, (V2)1-66
$IFP, (V2)1-64
$IFf, (V2)1-69
$INIT PRO, (V2)IO-7
$JOB, (V2)1-72
$LINESIZE, (V2)1-75
$LIST, (V2)1-76
$MAPOUT, (V2)1-76
$MOUNT, (V2)1-77

Index

(

(

$NOMAPOUT, (V2)1-79
$NOTE, (V2)1-80
$OBJECf, (V2)1-80
$OPTION, (V2)1-81
$PAGESIZE, (V2)1-83
$PRINT, (V2)1-84
$PROJECT, (Vl)6-179, (Vl)7-181
$RECALL, (V2) 1-85
$REMOVE, (V2) 1-86
$RENAME, (V2) 1-87
$RESElF, (V2) 1-88
$RESTART, (V3)5-2
$RRS, (Vl)6-181
$RUN, (V2)1-88
$SELECf, (V2)1-89
$SELECTD, (V2)1-90
$SELEClF, (V2)1-91
$SELECfLD, (V2)1-92
$SELECfLF, (V2)1-93
$SELECfS, (V2)1-93
$SET, (V2)1-94
$SElF, (V2)1-95
$SETI, (V2) 1-96
$SHADOW, (V2)1-98
$SHOW, (V2)1-99
$SIGNAL, (V2)1-lOl
$SPACE, (V2)1-101
$SUBMIT, (V2)1-102
$SYSOUT, (V2)1-103
$TABS, (Vl)6-179, (Vl)7-181
$URGENT, (V2)1-104
$USERNAME, (V2)1-104
$VOLUME, (Vl)6-179, (Vl)7-181
$WAIT, (V2)1-105
$WHO, (V2)1-106
%label, (V2)1-52

exit, (V2)1-59
exit when inactive, (V3)7-42
interactive tasks, (V2)1-25
introduction, (V2)1-1
JCL directive summary, (V2)1-2
macro looping, (V2)1-29
options, (V2)1-17, (V2)1-24, (V2)1-81

abort, (V2)1-18, (V2)1-81
clear, (V2)1-17, (V2)1-81
command, (V2)1-17, (V2)1-81
cpuonly, (V2)1-18, (V2)1-81
dump, (V2)1-19, (V2)1-81
error, (V2)1-18, (V2)1-81
ipubias, (V2)1-19, (V2)1-81
1/c, (V2)1-19, (V2)1-81
lower, (Vl)6-148, (Vl)6-163,

(Vl)7-152, (V1)7-167, (V2)1-17,
(V2)1-81

noabort, (V2)1-18, (V2)1-81
nocommand, (V2) 1-17, (V2) 1-81

MPX-32 Reference

noerror, (V2)1-18, (V2)1-81
nowrap, (V2)1-18, (V2)1-81
prompt, (V2)1-17, (V2)1-81
quiet, (V2)1-18, (V2)1-81
retain, (V2)1-17, (V2)1-81
text, (V2)1-17, (V2)1-81
u/c, (V2)1-19, (V2)1-81
unquiet, (V2)1-18, (V2)1-81
wrap, (V2)1-18, (V2)1-81

parameter passing, (V2)1-29
procedure call block, (Vl)6-180, (Vl)7-182, L-50
procedure call directive strings, (Vl)6-179,

(Vl)7-181
scanner, (V2)1-25
screen logic, (V2)1-21
set options, (V2)1-81
special keys, (V2)1-15
tab settings, (V2)1-20

TSM Procedure Call Block (PCB), (Vl)6-180,
(Vl)7-182, L-50

TSM Procedure Call Service, (Vl)6-179,
(Vl)7-181

TSM Scanner Demo, (V4)2-59
Type Control Parameter Block (TCPB),

(Vl)5-41, L-75

- U -

UDT, (V2)1l-4, (V2)1l-17, (V2)11-21, L-77
UDT Display, (V4)2-60
Unformatted Media, (Vl)5-25
Unique Tasks, (Vl)2-3
Unit Definition Table (UDT), (V2) 1 1-4,

(V2)1l-17, (V2)1l-21, L-77
Unlock and Dequeue Shared Memory

Service, (Vl)6-252
Unsupported Software, (V4)2-1
UPDATE, (Vl)1-19
Upspace Service, (V1)6-193, (Vl)7-195
User Context

overwrite, (Vl)7-138
store values, (Vl)7-80

User Modules, (V3)7-37
User Name, (Vl)6-253
User Name Specification Service, (Vl)6-253
User Status Word, (Vl)6-155, (Vl)6-183,

(Vl)7-159, (Vl)7-185
User Terminal, see UT
User Volume, (Vl)4-15
UT

device definition, (V3)7-21
exit, (V2)1-59
I/O input limitations, (V2)1-23
logical file code assignment, (V2)1-21
wait state, (V2)1-105, (V2)2-60
wakeup, (V2)1-8, (V2)1-20, (V3)10-20

IN-29

Utilities
AlDDB, (Vl)1-16
ASMX32, (Vl)l-17
CATALOG,~eCATALOG
DEBUGX32, (Vl)I-IS
DPEDIT, (VI)I-17
EDIT, (VI)1-17
illustration, (VI) 1-3
J.VFMf, see J.VFMf
KEY, see KEY
LIBED, (VI)l-17
LINKX32,(Vl)I-IS
MACLIBR, (Vl)1-l6
MACX32, (VI)I-17
MEDlA, (Vl)l-19
OBJX32, (V1)1-18
SYSGEN, see SYSGEN
UPDATE, (VI)1-19
VOLMGR, see VOLMGR

- V-

Validate Address Range Service, (Vl)6-194,
(VI)7-196

Vector Processor Configuration,
(V3)7-65, (V3)7-66

VOLMGR, (VI)l-17, (V2)3-1
access, (V2)3-14
BRIEF option, (V2)3-8
clear options, (V2)3-23
directive summary, (V2)3-7
directive syntax, (V2)3-1S
directives

IN-30

BACKSPACE FILE, (V2)3-22
BACKSPACE IMAGE, (V2)3-22
CLEAR, (V2)3-23
CONVERT, (V2)3-23
COPY, (V2)3-25
CREATE COMMON, (V2)3-29
CREATE DIRECTORY, (V2)3-32
CREATE FILE, (V2)3-34
DELETE COMMON, (V2)3-37
DELETE DIRECTORY, (V2)3-3S
DELETE FILE, (V2)3-39
EXIT, (V2)3-40
EXTEND, (V2)3-41
HELP, (V2)3-41
LOG FILE, (V2)3-42
LOG IMAGE, (V2)3-43
LOG RESOURCE, (V2)3-44
LOG SA VEFILE, (V2)3-46
RENAME, (V2)3-47
RESTORE DIRECTORY, (V2)3-48
RESTORE POSITION, (V2)3-53
FUEVVIND, (V2)3-53
SAVE, (V2)3-54
SAVE INCREMENTAL, (V2)3-57

SDT, (V2)3-58
SDT MASTER, (V2)3-60
SET, (V2)3-61
SKIP END, (V2)3-64
SKIP FILE, (V2)3-64
SKIP IMAGE, (V2)3-65
TRUNCATE, (V2)3-65

errors, (V2)3-66
global options, (V2)3-1S, (V2)3-19
help, (V2)3-41
introduction, (V2)3-1
local options, (V2)3-18, (V2)3-19
logical file code assignments, (V2)3-16
options, (V2)3-17

BRIEF, (V2)3-S
clear, (V2)3-23
global, (V2)3-1S, (V2)3-19
local, (V2)3-IS, (V2)3-19
set, (V2)3-61
time, (V2)3-20

resource descriptor tape record, (V2)3-6
save image, (V2)3-3
save tape fonnat, (V2)3-1
save tape structure, (V2)3-2
set options, (V2)3-61
temporary files, (V2)3-17
time options, (V2)3-20
wild card characters, (V2)3-15, (V2)3-17

Volume, (Vl)4-14
access attributes, (Vl)3-8, (Vl)4-16
automatic public mount, (V3)9-11
boot block, (Vl)4-22
descriptor, (Vl)4-22
dismount, (Vl)4-14, (VI)4-18, (V1)6-57,

(V 1)7-64 , (V2)1-55, (V2)2-16
explicit, (Vl)4-19
implicit, (Vl)4-19
logical, (VI)4-18
physical, (Vl)4-19

fonnatted, (V 1)4-14
mount, (Vl)4-14, (Vl)4-17, (VI)6-115,

(Vl)7-116, (V2)1-77, (V2)2-33
explicit, (VI)4-18
implicit, (Vl)4-18
logical, (VI)4-18
physical, (VI)4-17

mUltiprocessor, (Vl)4-16, (Vl)4-47,
(Vl)4-49

nonpublic, (VI)4-16
public, (Vl)4-16, (Vl)4-20

inhibit dismount, (V3)7-13
rename, (V4)2-44
resource access, (VI)5-20
space management, (VI)5-20
status, display, (V2)2-46
structure, (Vl)4-20, (Vl)4-21

Index

['

system, (Vl)4-15, (Vl)4-20
types, (Vl)4-15
user, (Vl)4-15
user default, (V3) 1 0-4

Volume Compress, see J .DSCMP
Volume Formatter, see J.VFMT
Volume Management Module, see H.VOMM
Volume Manager, see VOLMGR
Volume Resource Management, (Vl)4-1

-w-
Wait for Any Break Interrupt Service,

(Vl)6-7, (Vl)7-11
Wait for Any Message Interrupt Service,

(Vl)6-7, (Vl)7-11
Wait for Any No-Wait Operation Complete

Service, (Vl)6-7, (Vl)7-11
Wait I/O, (Vl)5-32
Wait I/O Service, (Vl)6-195, (Vl)7-197
Wait States, (V1)2-25, (Vl)2-26, (Vl)6-63,

(V1)6-195, (Vl)7-11, (Vl)7-15,
(V1)7-197, (V2)1-105, (V2)2-60,
(V3)1O-50, (V3)10-51

Wakeup, (V2)1-8, (V2)1-20, (V3)10-20
Word Locations, dump, (V2)2-18, (V2)2-45
Write EOF Service, (VI)6-196, (VI)7-199
Write Record Service, (Vl)6-197, (VI)7-198
xx.ERR Files, (V3)1O-18

MPX-32 Reference IN-31/IN-32

(fH)

MPX-32 Overview & System Services
Reference Manual
No. 323-001551-600

READER'S
COMMENT

FORM

Please use this form to communicate your views about this manual. The form is
pre addressed and stamped for your convenience.

I rate this manual's:

Accuracy
Clarity
Completeness
Examples
Figures
Index
Organization
Retrievability of Information

Additional comments:

Excellent Good

If you wish a reply, please print your name and mailing address:

What is your occupation/title?

Thank you for your cooperation.

Fair

Note: Copies of Encore publications are available through your Encore
representative or the customer service office serving your locality.

Poor

FOLD HERE ------------------ ----- --- -- ---Ir-]

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 2356 FORT lAUDERDALE, FL

POSTAGE WILL BE PAID BY ADDRESEE

ENCORE COMPUTER CORPORATION
ATTENTION: DOCUMENTATION COORDINATOR
6901 W. SUNRISE BLVD.
P.O. BOX 409148
FT. LAUDERDALE, FL 33340-9970

11111 ••• 1111.11 •••• 1111 ••• 1.1 •• 1.111.11 .••• 1.1 •••• 111

FOLD HERE

PLEASE TAPE DO NOT STAPLE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

LLI
:z
-I

~
:z
0
-I
CC

~
::>
u

C . ".

