(AT RGO B

MPX-32 ™

Overview and System Services
Revision 3.5

Reference Manual Volume |

April 1990

Limited Rights '
s

This manual is supplied without representation or warranty of any kind. Encore
Computer Corporation therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material
contained herein.

Proprietary Information

The information contained herein is proprietary to Encore Computer Corporation
and/or its vendors, and its use, disclosure, or duplication is subject to the restrictions
stated in the standard Encore Computer Corporation License terms and conditions or
the appropriate third-party sublicense agreement.

Restricted Rights

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at 252.227.7013.

Encore Computer Corporation
6901 West Sunrise Boulevard N
Fort Lauderdale, Florida 33313

™ MPX-32 is a trademark of Encore Computer Corporation
® CONCEPT/32 is a registered trademark of Encore Computer Corporation

Copyright © 1990 by Encore Computer Corporation
ALL RIGHTS RESERVED

Printed in the U.S.A. 0

MPX-32 ™

Overview
Revision 3.5

Reference Manual Volume [(A)

April 1990

Introduction ,
Task Structure & Operation
Resource Management
Volume Resource Management
Resource Attachment & I/O

O B WN =

223-Br1551 -EEE

AREN AN UL RN AL

History

The MPX-32 Release 3.0 Reference Manual, Publication Order Number 323-001550-
000, was printed June, 1982.

Publication Order Number 323-001551-100, (Revision 1, Release 3.2) was printed
June, 1983.

Publication Order Number 323-001551-200, (Revision 2, Release 3.2B) was printed
March, 1985.

Publication Order Number 323-001551-201, (Change 1 to Revision 2, Release 3.2C)
was printed December, 1985.

Publication Order Number 323-001551-300, (Revision 3, Release 3.3) was printed
December, 1986.

Publication Order Number 323-001551-400, (Revision 4, Release 3.4) was prmted
January, 1988.

Publication Order Number 323-001551-500, (Revision 3.4U03) was printed October,
1989.

Publication Order Number 323-01551-600, (Revision 3.5) was printed April, 1990.
This manual contains the following pages:

Title page GL-1 through GL-10
Copyright page IN-1 through IN-31/IN-32
Title page Volume I(A)
iiifiv through xxxiii/xxxiv
1-1 through 1-24
2-1 through 2-53/2-54
3-1 through 3-37/3-38
4-1 through 4-51/4-52
5-1 through 5-65/5-66
Title page Volume I(B)
iii through xiii/xiv
6-1 through 6-253/6-254
-1 through 7-212

ough J-2
K-1 through K-2
L-1 through L-79/L-80

jii/iv

™
\
{
(|

Contents

Page

Documentation Conventions..............cccccccicivciicnncc s XXxXi
1 Introduction

1.1 System DEeSCIIPHIONc..ocueeviiruiiiiriieeiienertectee ettt ee et e e e e e 1-1

1.1.1 Hardware Interrupts/TTaps.........cccceeevvriiniiniiiiiiiiiciieiieneccnens 1-5

1.1.2 Software Interrupt System.........ccccceceeiiiviniiiiiinccinieinieiienieceeeene 1-7

1.1.3 Task Priority Levelscccouiriiioiieniieciiecececceee e 1-7

1.1.4 Supervision and AHlOCationcccccevevieciiniieniiiiiiiceiinceeeeans 1-7

1.1.5 Memory AHIOCAtION.......cccocuiiiruiriiiiniiitrreceie et st 1-8

1.1.5.1 Dynamic AIlOCAtiON.......c.ccererieriireienierrcnicsecieeieans 1-8

1.1.6 File Managementc..cccuevueruirirenienieneseiesieeeeee e seeeeesieseneenees 1-8

1.1.6.1 Permanent Filescccccoooveriniiiiiiniciiciiiicneee, 1-8

1.1.6.2 Temporary Files.........coociriiininniiniiiiieccccceeeee 1-9

1.1.6.3 Random Access Filesccccceviimmiiniinnieniccieenes 1-9

1.1.6.4 Disk File Protection.............ccoceviiiinnieniecniinnienes 1-9

1.1.6.5 Dedicated System Filesc.ccoccevvmiiiiiciniiiiinniinnns 1-9

1.1.6.6 Multiprocessor Filescccccoeiiiiiiiininiiiiinnn, 1-9

1.1.7 SysStem ServiCesccoivmiiiiriiiniieiinieeieeie e 1-10

1.1.8 Input/Output Operationscc.ccevviiiiiiiieincniniiiccice e 1-10

1.1.8.1 Direct I/O..cc.ooiiiiiiiiiiiieeeeec e 1-10

1.1.8.2 Device-Independent I/O ..o, 1-10

1.1.8.3 Logical File Codesccccecveviiniiiiiniiniiiieiiee. 1-10

L1.1.8.4 File ACCESS....couueiiiiiieniciieete ettt 1-11

1.1.9 Communications Faciliti€sccoccoeieeeiiiiiiiriiiniiiie e 1-11

1.1.9.1 Intertask MeSSages......ccecvervrerieniieeeieiieeiieeeeeneaeeanes 1-11

1.1.92 Run Requests..........ccooceiiiiiiiiiiiiiiiiiiicccceee 1-11

1.1.93 Global Commoncceeueemiierienieeneieiie e 1-11

1.1.9.4 Shared Images........cccccoeriiiiiiiiiiiiieicccc e 1-11

1.1.9.5 Datapool........cccooviiiiiiiiiiiiiiiiece e 1-12

1.1.9.6 Internal CommuniCationsc.ceoceeveeueerernerrenseennnnn. 1-12

L1.1.10 Trap Processors........ccocociiviiiiiniiiiiieiiniieecie e 1-12

1.1.11 Timer Scheduler............coooeiiiiiiiiie e 1-12

1.1.12 Time Managementc.ccouereienieneeieniene et ce e 1-12

1.1.13 System Nonresident Media Mounting Task (J.MOUNT)......... 1-13

1.2 System Command ProCessOrS.........ccceceeruireerireneuenieeeie s e 1-13

MPX-32 Reference Volume | v

Contents

vi

Page
1.2.1 Terminal Services Manager (TSM).......ccccocveimniniiinicnirincnanns 1-13
1.2.2 Operator Communications (OPCOM)..........cccccvvirivinrirvirinncne 1-14
1.2.3 Batch Processing..........cccceveruevuiniininiiincinnnenieninnncnessisneneens 1-14
1.3 Program Development UtIlitiescocccouviriininiincninciincnicncneinennens 1-15
1.3.1 Task Cataloging (CATALOG)c.cccceeurtemuenincnscnieenrecrecrennenne 1-15
1.3.1.1 Privilege......ooeeciiiiriiiiiiecieinecene e ceiesneane 1-15
1.3.1.2 OVEIlays....coooeiieiireiieiececiieeceie st seete et e 1-16
1.3.2 Task Debugger (AIDDB)ccccoovvvuerirrciniirnincincneeecnennnenen. 1-16
1.3.3 Macro Assembler (ASSEMBLE)..........cccveeivieivcieeeceeeeneen, 1-16
1.3.4 Macro Library Editor (MACLIBR).......ccccoccecuirinucninnennrenninen. 1-16
1.3.5 Subroutine Library Editor (LIBED).........cccceeeveiiveinniinneereieiennns 1-17
1.3.6 Datapool Editor (DPEDIT).........cccceccemviiuimnricrinennenninicneceieneen. 1-17
1.3.7 Text Editor (EDIT)ooovieieiieeieeeeie et eeveenrae e ens 1-17
1.3.8 Volume Manager (VOLMGR)cc.cocoviiiiniinenciininnccrcnicnneee 1-17
1.3.9 Volume Formatter (JLVEMT)uuuuneiiteeeeeeeeeeeeieeeeece e 1-17
1.3.10 Assembler/X32 (ASMX32)coovirreeieeeeecreieeeeeceetireeeeseseveeaes 1-17
1.3.11 Macro Librarian/X32 (MACX32) ..uuuieiiieiiiceeeeeeeeeeeeeeeeeeesnenns 1-17
1.3.12 Object Librarian/X32 (OBJX32)cceeeeeinirenererenecrcieennenens 1-18
1.3.13 Linker/X32 (LINKX32).....oouereeeveeeereeeseeesenereesseesseesseesssssseneens 1-18
1.3.14 Symbolic Debugger/X32 (DEBUGX32).......ccccccevienicenenirnecnne. 1-18
1.4 Service UIIHESeooveeeereeereeeeiiecieee et eereeeeteeeeeeerae e eaeeaaeeeseeesaeeesnnes 1-19
1.4.1 Source Update (UPDATE)........ccccooceeiimiiniiiniiniciecieicecneee 1-19
1.4.2 Media Conversion (MEDIA)...........couuuirimimiiiiieiieieiieeeeceeeereeennne 1-19
1.5 System Manager UtIlItIeS........ccccovueruireereniinientiecie e 1-20
1.5.1 MKEY Editor (KEY)....cooiiiiiteeiieeesie et ee e 1-20
1.5.2 MPX-32 System Start-up, Generation, and Installation
(SYSGEN) ..ottt ettt et sese s es s sse e s sn s ann 1-20
1.6 LIDIATIES.eeeieeeeeeieieiecieeeeeeee e eraeeseeeeateeesaaeeessaesenaaesssnenseesnseensaeensees 1-21
1.6.1 Subroutine Librariescccocoeeeeiiiieeeiieeeecreeecieeeeee e 1-21
1.6.2 System Macro Librariesccccoeeveeieeiiienicnsiineieieeeeeee e, 1-21
1.6.3 Other ...ttt et e 1-21
1.7 Minimum Hardware Configuration.............cccccoeueveiineeneninnienenrceccnnennes 1-22
Task Structure and Operation Overview
2.1 Task [AentifiCation..........cccueeieeirieeieeienieeecie et eetee e eeeeseeeeeraeernreeennns 2-1
2.2 Task StIUCLUTEcceeeeeieeeieceee ettt e tae e e e e e e er e eeennnnes 2-2
2.2.1 Nonbase Nonshared Tasks...........ccccceeereeiiireicnieecieeeeceeeeen e, 2-3
2.2.2 Base Nonshared Tasks.........ccccoeeieiieiieiciiee e 2-3
2.2.3 Multicopied Tasksccoeeererininenieiiieceecceee e 23

Contents

r(T,
A

Contents

23

24

2.5

2.6

Page

2.24 Shared Tasksccccerveevimiininnicnince ettt 2-3
225 Unique Tasksccooiiiniiiiiiiiiiice it 2-3
Task EXECULION........ccoiiiiiiiiiiiiiicccc it 2-7
2.3.1 Task Activation Sequencing (M.ACTV, M.PTSK).........ccceueee 2-7
23.1.1 Phase 1 of Activationcceeevuieciineinuiiicnieciennnenne 2-7
23.1.2 Phase 2 of ACtivationccceeevreienieeieercccnieerennecnens 2-8

2.3.2 Task Service Area (TSA) ..oueeveeieeeeeeeeeeeeeeeeee e 2-8
Central Processing Unit (CPU) Schedulingcccocoeceiiiniicninnnne. 2-10
2.4.1 Execution Prioriti€sccccceeiieiieiiinieniecriieeieee et 2-10
2.4.2 Real-Time Priority Levels (1 t0 54)...cc.cocooiiviiiininiinienieen. 2-10
2.43 Time-Distribution Priority Levels (55 to 64).........cccccoevueennnnne 2-10
2.4.3.1 Priority Migration........c.ccecueevieniineuieiecrieeiecieeieseeeneee 2-11
2.4.3.2 Situational Priority Incrementscc.ccocceevuennnennne. 2-11
24.3.3 Time-Quantum Controls.........ccceeevveerieineneeeeeiieenneen. 2-11

2.4.4 State Chain Management...........ccoocoeviiiiiiniiinieineee e ceee e 2-12
Internal Processing Unit (IPU)ccoooiiiiiiiiiiiiieceeeecee e 2-15
2.5.1 OPIONS ..ttt e 2-15
2.5.2 Biased Task Prioritizationc..cococeererniieeniiecieeniie e 2-15
2.5.2.1 Standard CPU/IPU Schedulerccccccoeivinuennnnnn. 2-15
2.5.2.2 Optional CPU/IPU Scheduler............cccocvrvurennnnnnn. 2-15

2.5.3 Nonbiased Task Prioritizationccocceevuieniiiniirnieenieniee, 2-16
2.5.4 IPU Task Selection and Execution..........ccccoeeevcciieiiinieninnnnne. 2-16
2.5.5 CPU Execution of IPU Tasks.......ccccoceivimniininiiiiiiniiiiiicenens 2-16
2.5.5.1 Standard CPU/IPU Schedulerccccooeeiiennnnne. 2-16
2.5.5.2 Optional CPU/IPU Scheduler...........cccccccevvuiivinnnnne. 2-17

2.5.6 Priority versus BiaSingccccoovveiriiiiiiniiiiece e 2-17
2.5.7 TPU ACCOUNIINGoouuiiiiiiiiniiiiiieetietciie ettt ee et et esee e 2-17
2.5.8 IPU Executable System Servicesccocvevercenienueeieneennnnn 2-18
2.5.9 TPU Schedulingcccoiiiiiiiiiiiiiiieeie e e 2-18
Scheduling Task INterruptscocoooiiiiiiiiiii e, 2-20
2.6.1 Task Interrupt Levels.........ccoccoooiiiiiiiii e, 2-20
2.6.1.1 Task Interrupt Receiversccococveviiiiiiiiienae. 2-20
2.6.1.2 Schedulingcccooieiiniiiiiiiiiiccee 2-20

2.6.1.3 System Service Calls from Task Interrupt Levels.....2-20
2.6.1.4 Task Interrupt Context Storage.............ccoeeeeeveennnn. 2-21
2.6.1.5 Task Interrupt Level Gatingccocooeeiiiiiiinnne. 2-21

2.6.2 User Break Interrupt Receivers (M.BRK, M.BRKXIT)............ 2-21

MPX-32 Reference Volume | vii

Contents

viii

2.7

Page
Intertask CommUNICAtIONcccceviruiiriiinrieriniee et seee s eeeeens 2-22
2.7.1 User End-Action Receivers (M.XMEA, M.XREA,
MLXTEA) ...ttt sttt sa e 2-22
2.7.2 User Message Receivers (M.RCVR, M.GMSGP, M.XMSGR) 2-22
2.7.3 User Run Receivers (M.GRUNP, M. XRUNR)..........ccceeuvrrenn.. 2-22
2.74 Receiving Task SErvices........coccovvviiiiniiirieeninienienieesceee e, 2-23
2.7.4.1 Establishing Message Receivers (M.RCVR)............. 2-23
2.7.4.2 Establishing Run Receivers..........cccccveveiencnneinennens 2-23
2.743 Executing Message Receiver Programs..................... 2-23
2.7.44 Executing Run Receiver Programsc..cccoeeeenee. 2-23
2.74.5 Obtaining Message Parameters (M.GMSGP)............ 2-24
2.7.4.6 Obtaining Run Request Parameters (M.GRUNP)2-24
2.7.4.7 Exiting the Message Receiver (M. XMSGR) 2-24
2.7.4.8 Exiting the Run Receiver Task (M.EXIT,
M.XRUNR) ..ottt ettt ein s 2-24
2749 Waiting for the Next Request (M.SUSP, M.ANYW,
M.EAWALIT) ..ottt 2-25
2.7.5 Sending Task SErviCeS.........cceorierieruieriraieeeiienrienriesveeereaeeeens 2-25
2.7.5.1 Message Send Service (M.SMSGR)cc.ceecevrernnnen. 2-25
2.7.5.2 Send Run-Request Service (M.SRUNR) 2-26
2.7.5.3 Waiting for Message Completionc.ccevereueennenns 2-26
2.7.54 Waiting for Run-Request Completion 2-26
2.7.5.5 Message End-Action Processing (M.XMEA)............ 2-26
2.7.5.6 Run-Request End-Action Processing (M.XREA)......2-26
2.7.6 Parameter BIOCKSccccereriniiniiieniiciesiiet et 2-26
2.7.6.1 Parameter Send Block (PSB)ccccovvvivivviviiereenenenne. 2-27
2.7.6.2 Parameter Receive Block (PRB).......coovveeovuveveeenannn. 2-32
2.7.6.3 Receiver Exit Block (RXB)cccccceveeiniiiieviiieeeennes 2-33
2.7.7 User Abort Receivers (M.SUAR)oovvviiviiiiiiiiiieeeeeeeeeeeene. 2-34
2.7.8 Task Interrupt Services Summaryccccoceevveiivceinnicnenennenn. 2-34
2.7.9 Arithmetic Exception Handling...............ccccocevciiinninincniiennnnenn. 2-34
2.7.9.1 Establishing Exception Handlerc.cocovrnnnnens 2-37
2.7.9.2 Changing a Return Address from an Exception
Handler........coooiiiiiiiiiitceecte e 2-37
- 2793 Exception Handler Input Argumentscccccoeeneee 2-37
2.7.9.4 Special Arithmetic Exception Processing and Ada
TASKS .ottt 2-41
2.7.9.5 Exception Handler Restrictions.........c..ccccccevvereennnnnee 2-41
2.7.9.6 Related Arithmetic Exception Information................ 2-41

Contents

N
A\

Contents

Page
2.8 CPU Dispatch QUeUE ATccccuiiiuiiiiiiiniiie e 2-42
29 T/O Schedulingc..coceiiiiiiiiiiiiie et 2-42
2.10 Swap Schedulingccooiviiiiiiiiniiecn e 2-43
2.10.1 STIUCKHUTE ...ooniiiiiiicieeccc e et 2-43
2.10.2 Entry Conditionscc.cocemevieieerinneeeeeneesie e s eeveseennes 2-43
2.10.2.1 Dynamic Expansion of Address Space
(M.GEM.GD, MMMEMB)cccecvmiiiiniinenecieneane. 2-43
2.10.2.2 Deallocation of Memory (M.FE/M.FD,
MMEMFRE).......ccccccomiiiiiieitcesecesee e 2-43
2.10.2.3 Request for InsSwapcccccooiiiiiniiiniiiiiiiee 2-43
2.10.2.4 Change in Task Statusccccoceerieiinienenirenrenienens 2-43
2.10.3 Exit Conditionscccceeeiimienienenieieeie et ce e 2-44
2.10.4 Selection of Inswap and Outswap Candidates 2-44
2.10.4.1 Outswap Process.........ccococeviviiiiiniiiniiiiiicicinne 2-45
2.10.4.2 Inswap Process.........cccccoviiiiviiiiininiiniiieeice, 2-45
2.11 Task Termination SEQUENCING...........cccocivuiriiniinieniiiie it 2-46
2.11.1 Nonbase Mode Exit Task (MLEXIT)......cccoooevviiiniiiiinciicnn 2-46
2.11.2 Abort Task (M.BORT)ccooiniiiiiiininie e 2-46
2.11.3 Delete Task (M.DELTSK)........cccoceriimiminirninieencniceereecnenee 2-46
2.11.4 Base Mode Exit Task (M_EXIT)cccooiieviiiirieeieee e, 2-46
2.12 Task-Synchronized Access to Common Resources.........cccccecueeeeienes 2-49
2.13 MPX-32 Faults/Traps and Miscellaneous Interruptscccceeeevennne 2-51
2.14 Real-Time Task Accounting On/Off...........ccccooiiiiiiiiiiniececeen, 2-53
Resource Management Overview
31 General Resource Managementccocoeueeeeeiiiiieiiniienie e 3-1
3.2 Support for Resource Types ..o, 3-1
3.2.1 Physical RESOUICEScccceouevuieiiiinicieniinece ittt 3-1
3.2.2 Logical RESOUICES.......cccuirieiiieiiictientieiteniie et ettt s 3-1
3.3 Support for Resource Functionsccccceueiiiiienicincninnccniincccnnnne. 3-2
3.3.1 Resource Creation..........occeiviicieinieienecine it sceneeaens 3-2
3.3.2 Resource Deletion...........cccoeciniierenieinieienieecnriee e 3-2
3.3.3 Resource Attachment..........ccocueiirnrcrininineneeec e 3-2
3.3.3.1 Static AlloCationcceveeveeenierceereeneenienecre e 33
3.3.3.2 Dynamic AllOCAtiON.......ccccereruiereieniiereenieeieneieseeee e 33
3.3.4 ReESOUICE ACCESSoeoueimiririieiiierieertenteteaesreeseesteseenseseenseseeneeseens 3-3
3.3.4.1 Device Level.......cccociiiiniiininiiniiciiicciccinicceaens 3-3
3.3.42 Execute Channel Program Level.............cccccccceueeenene. 3-3

MPX-32 Reference Volume | ix

Contents

34

35

3.6

3.7

3.8
3.9

Page

3.3.43 Logical Device Levelccccocuvviiivvnivcnniinnieeeeniieee. 34
3.3.44 Logical File Levelccccoevvininnvineniecceeneeeeeeee. 3-4
3345 Blocked Level...........oocouiiieeiieiiiiieeeeeeeeecee e 3-4

3.3.5 Resource Detachmentccceeevieeiivieeieeeeie e 34
3.3.6 Resource INQUIry.......ccccoeeevieeeiiintienienienie et ee st 3-5
3.3.6.1 Inquiry of Unattached Resources..........cc.ccoerurueucneenn. 3-5
3.3.6.2 Inquiry of Attached Resources.........ccccccevveencvinnennnen. 3-5

3.3.7 Resource Attribute Modificationccceeeeeevveeieeieeeiiineeecennenn, 3-5
RESOUICE ALITIDULESevvireeerirrreeeeieeetierieeeeceeenrareeee e ee e stae e eesesraaraeaeens 3-6
3.4.1 PrOtECHONcocceiieeeeeeeeeeee et eeee e eeeae e eeae e e erbe e e etaeeeeeneeas 3-6
3.4.2 Shareable RESOUICEScouvvriiveeiirieeieeieeeie e e e eeeaarae e s s 3-6
3421 EXCIUSIVE USE .uooeiiiiieeeiiieeeceeeceeee et 3-7
3422 EXPLCit USE ..cocoorieniiiiiieniieniiieee e 3-7

3423 Implicit USe ..o 3-8
Resource Access ATIDULESooeeeiieiiiieieceeieie et eeee e 3-8
3.5.1 Access Attributes for Volumesccccooevvieeieiieveeeieeneee e, 3-8
3.5.2 Access Attributes for Dir€Ctoriescovvveeveveeeeviieeeeeiiereeesennen. 39
3.5.3 Access Attributes for Filesccccoivieiiiiiiieiiiececeeececeeee e, 3-10
3.5.4 Access Attributes for Memory Partitions........c..ccccceevueevennnnnnn. 3-10
Management AHIIDULESc.cocveeuiiniiiiiniieiiitie et 3-11
3.6.1 EXtension AIIDULEcccoeeiieveieeieieieieeiiieeeeneeeeeerreeeeeneeeeenes 3-11
3.6.1.1 Manual Extension Attributeccceovvveeevnreeennnenn. 3-11
3.6.1.2 Automatic Extension Attribute...........ccccccoevevnreeenennn. 3-11

3.6.2 Contiguity AIIDULE......c.covueriiritiririenircie et 3-11
3.6.3 Maximum and Minimum Extension Attributes.............ccc......... 3-12
3.6.4 Maximum File Size Attribute.........c....coovivviereiiiieeeeeieeeeecieeee e, 3-12
3.6.5 Shared AttrDULE......cc.eeveeerreieeieieeecee ettt et ee e 3-12
3.6.6 End-Of-File Management Attributeccceeveevevrerrreneennennne. 3-12
3.6.7 Fast AcCess AtIIDULE........cccueeeeiueeeieiieieiecectieeeeeeie e e e e 3-13
3.6.8 Zero AMIIDULEoveeevveeeeiereeeeieeeeereee et 3-13
3.6.9 File Type AHIIDULEccoovimiiiiiiiiicieieiceteee e 3-14
3.6.10 NO-Save AtrIDULEooeeeeeiveeeeiiiee et 3-14
Operating System Memory AlloCation...........c.cccoveevirvienernienenninneennens 3-15
3.7.1 I/O Buffer and I/O QUEUESccveeeerveieeieecieeeeeeeeeiee e 3-15
3.7.2 Blocking Buffers for Blocked I/O.........ccccooiiininninineninene, 3-15
3.7.3 Large Buffers for Blocked Files........ccc.coccoviverinneneivinniinceiennns 3-15
MemoOry Classescocuiviiiiiiiiincciiici et et 3-16
Memory Allocation for Tasks .. 3-16
Contents

O

’,/ TN
N

Contents

Page
3.9.1 Demand Page Processing (CONCEPT 32/2000 Only)............ 3-17
3.9.2 Static Memory AlIOCAtIONcccueueevieirienieieeecre e eecaieeeeee 3-18
393 Dynamic Address Space Expansion/Contraction (M.GE,
M.FE, M.GD, M.FD, M. MEMB, M.MEMFRE) 3-19
3.94 Extended Indexed Data Space for Nonbase Mode Tasks......... 3-20
3.9.5 Intertask Shared Global Memory and Datapool Memory
(M.INCLUDE, M.EXCLUDE)......c.cccoeiiininieininicicececieeene 3-20
3.9.6 Shared Procedures for Nonbase Mode Tasksccccocevenenns 3-21
3.9.7 Multiprocessor Shared Memory...........ccccooveiiiiiiinininiincnennes 3-22
3.10 Extended MPX-32 (Expanded Execution Space)..........cccccccceuvvrinnnnene 3-23
3.10.1 SYSGEN Information for Extended MPX-32...............ccccccee. 3-27
3.10.2 SYSGEN EXTDMPX DIrective.......c..ccceeerircrinrcnencenineneennes 3-28
3.10.3 SYSGEN Aborts and Errors for Extended MPX-32................. 3-29
3.10.4 How to Create an Extended MPX-32 System..............cccccceeee 3-29
3.10.5 How to Relocate Extended MPX-32ccccivviiiiiiiinnininnn. 3-31
3.10.6 CATALOG EXTDMPX DIr€Ctivec.c.cecueruerveerecrueeineeieneennn 3-32
3.10.7 TSM EXTDMPX DIr€CtiVeccerueuerierieneinieeiieeeieeeecee e 3-33
3.11 Extended TSA (Expanded Execution Space)ccccccceviniiiiiinnnnnne. 3-34
3.11.1 Relocating the TSAcciiiiiiicecece e 3-35
3.12 Mapped Out Option (CONCEPT 32/2000 Only)ccevveiriirnnnnnnne 3-37
4 Volume Resource Management
4.1 Symbolic Resource Managementccccoeciiiiiiniiiiiciiiciiieiceiens 4-1
4.1.1 Types of RESOUICES.......c.ccoovimiiumiiriiiiiiieic i 4-1
4.1.2 Classes of RESOUICESccccouiviiiiiiiiniiiiiiiie e 4-2
4.1.3 Classes of Resource USErS.......cccccueeuiiiiniiiciiniiiceienieieceeeieeeae 4-2
4.1.4 Shareable Resource Control Mechanisms..........ccccccveeverueniieennne. 4-3
4.2 General Resource Control..........co.cevueiiiieriiciinniiiienciiene e 4-4
4.2.1 Enqueue and Synchronous Notification Mechanism 4-4
4.2.2 Dequeue MechanisSm.............ccciiiiiiiiiiiniiiiiiciccec 4-4
43 Shareable Resource Access Controlcocevueeiiiiciiinenncnenienieneens 4-5
4.3.1 Shareable Resource Lockingcccccoveviiiiiiiniiiniiniiiniiicninnnnne. 4-5
4.3.2 Shareable Resource Synchronizationccccecceeeviieciirnnieennnnnn. 4-5
44 Standard Disk SIUCIUIEuuurvereeeeemsesmsarnereassssenessseesssasssssssssssssens 4-6
4.4.1 DIirectory StIUCIUTEccccevuirrintiieerieniienerenteeeeneeresreeseesresseeseeaes 4-6

MPX-32 Reference Volume | Xi

Contents

4.4.2 ROOt DITECIOIY ..ottt 4-6
4.43 Current Working DireCtoryccccovuiiiiiiiiiiiiiiniicnciic e 4-6
4.5 Pathnames..........cccceoenneiiiiinnnnn ettt 4-7
4.5.1 Executing Pathnames............cccoccorviiiiiiiniininiieeececeieeee e 4-7
4.5.2 Fully Qualified Pathnamesccccoecivviiiiiniiiinniiicncceeee, 4-8
4.5.3 Partially Qualified Pathnamesc..ccccceveriinineninnciinnccnn, 4-9
4.5.4 Fully Qualified Pathnames for Directories Only 4-10
4.5.5 Partially Qualified Directory Pathnames..............ccccooeenieneenns 4-11
4.6 ReSOUICe ProteCtionocccooviiiiiiiiiiiiiiiiiie ettt 4-13
4.7 System AdminiStration...........ccocceeviiiiiiiiiiiiiiieie et e 4-13
4.8 VOLUIMES.ooiieitie ettt ettt bt et e 4-14
4.8.1 Overview of Formatted Volumes.............cocceovinniiiiinnininnnnnd 4-14
4.8.2 Formatted Volume Type.......ccocooiiiiiiiiiiiiiiiiiiicie 4-15
4.8.2.1 System VOIUIMEccoceeeiiiiiiiniiiiieieceeie e 4-15
4822 User VOIUME......coociiiiiiiiiieieiiiee et 4-15
4.8.2.3 Multiprocessor Volume............... J PR 4-16
4.8.3 Access Attributes for Formatted Volumes.............c..cccceinns 4-16
4.8.3.1 Public AHIDULEcceovviiieiiiiiiiicieeee e 4-16 O
4.8.3.2 Nonpublic Attribute............ccooveviiveeiiiiiiiieieae 4-16 R
4.8.4 Mounting Formatted Volumesccccccceriiiiiiinninncncnnennn. 4-17
4.8.4.1 Physical Mount.......ccccooiiiiiiiiiiiinicncenieseeas 4-17
4.8.42 Logical Mountcooiiviiiniiiiiiiiie i 4-18
4.8.5 Dismounting Formatted Volumesccccoccoviiiniiniiinniinnnnns 4-18
4.8.5.1 Logical DiSmountcccoocerviiiiiiniiniiiiccies 4-18
4.8.5.2 Physical DiSMOUNL.........ccceovireiriirieeereniennireeeenieenes 4-19
4.8.6 Automatic Mounting at System Bootcccooiinniiniins 4-20
4.8.7 Components of a VOIUME...........ccceruieiiiiniiiniieiic e 4-20
4.8.7.1 BoOt BIOCK....c..cocimiiiniiiiiieiiicctieceiece e 4-22
4.8.7.2 Volume DeSCIIPtorcccoevuireiiiniriiieniircieenreeieens 4-22
4.8.7.3 Resource Descriptors (RDSs).......cccccoeveiiivinnninicnnnene 4-22
4.9 DITECLOTIES ..ottt e e e 4-24
4.9.1 Volume Root DIireCtoryccccoeeviiviiiiieiiniinieiiiiece e 4-26
4.9.2 Creating DIreCtories.c.ccovuereeieririiiniieerteneeeeee e seee e 4-26
4.9.3 Protecting DIr€CtOIIesccoervirueriererieriiiinieieciie st eetetennenenas 4-28
4.9.4 Protecting Directory Entriesccccovvvniniiiiiniinniincnccnens 4-28
4.9.5 UsSINg DITECLOTIEScovuiiuiiniriireitieeeie sttt see e eaees 4-28

xii Contents

Contents

Page

10 FIES .ottt et st s s e 4-29
4.10.1 File AIIDULEScoeoiriiiiiriiiieicrcrcecceetiet et 4-29
4.10.2 Obtaining File Space...........cccooiiviiinieiiiiiiniiiniccccrceciees 4-30
4.10.2.1 Granularmityccccceeceenieeneneeneninenee e e 4-30
4.10.2.2 CONtGUILY .ccooovvevieiiiiiieienie ettt 4-30
4.10.2.3 Extendibility.......ccccccooviiiiinininiiinieiccee e 4-30
4.10.24 SHZE..ooneiiiieieee e 4-31

4.10.3 File Names and Fast ACCESS..........ccceverriminieneniiieeienecnnenrenens 4-31
4.10.4 File ProteCtion..........cccoceenieiinteeiienteieercieereresiteteieseenseseeesaens 4-32
4.10.5 Permanent Files........cccooceiiiiiiiiiniiniciiiiiiecteice e 4-32
4.10.6 Creating Filescccocirieniirieiiiiieceeeee et 4-32
4.10.7 Attaching Filesc.ccoeviiiiiiiniiiiiiiceicee e 4-33
4.10.8 Assigning Filescccooeiiiviiiiiiiiiicii e 4-33
4.10.9 Opening Filesccoomimiiiiiiiiniiccccc e 4-34
4.10.10 File Operations...........cccocvueeuiiiimieiiieie e 4-34
4.10.10.1 Sequential ACCESSc.ccouririririiriiiiiniiieiieeeeieeeaens 4-35
4.10.10.2 Random ACCESS.......cceovuivuiiiiiiiiciiiiicieecie e 4-35
4.10.11 File POSItIONINGooceeiuiiiiiiiiiieiieiieneie sttt 4-35
4.10.11.1 Absolute File Positioning Operations........................ 4-36
4.10.11.2 Relative File Positioning Operations......................... 4-36
4.10.12 File Access Modescccooiiiiiniiioieiiiiieiieceecece e 4-36
4.10.12.1 Read Modecoevveiiminiiiienicce e 4-37
4.10.12.2 Write MOdeccooviviniiiiiiiiiiit e 4-38
4.10.12.3 Modify Modecoccoeeumiiiiiniieceieee e 4-38
4.10.12.4 Update Mode..........cccoeuiiiiiiniiiiiciiicnccieecee 4-39
4.10.12.5 Append Mode........cccoooeiiiinieniiiiiienct e 4-39
4.10.13 Sharing Filescc.cccoviiiiiiniecine et 4-40
4.10.14 CloSIng Filescccooiiiiiiiiiiiiieeie ettt 4-40
4.10.15 Detaching Files........cccooimiiiiiiiiieieeie e 4-41
4.10.16 Deleting Filesccooiiieiiiiiicciee e 4-41
4.10.17 Temporary Filescccccooiiiiniiiiiniiiiiie et 4-41
4.10.17.1 Creating Temporary Filescccoovvviviniiinennne. 4-41
4.10.17.2 Assigning Temporary Files...........cccccoceininiincnnnns 4-41
4.10.17.3 Opening and Accessing Temporary Files.................. 4-42
4.10.17.4 Deleting and Detaching Temporary Files.................. 4-42
4.10.17.5 Making Temporary Files Permanent......................... 4-42

MPX-32 Reference Volume | Xiii

Contents

5

Xiv

Page
4.11 Memory Partitions - Nonbase Mode of Addressing..............ccccceuenee. 4-43
4.11.1 Creating Memory Partitionsccccccvvviiiiiiininicninccinee, 4-43
4.11.2 Protecting Memory Partitions..........cccceeeeeveiiiniininiiiiiiinin, 4-43
4.11.3 Attaching Memory Partitionsccceceviiieniininiiiieniicnn, 4-44
4.11.4 Accessing Memory Partitions..........ccccoeeeeiinieiiinniiinenrieecnn, 4-44
4.11.5 Detaching Memory Partitions...........c.ccooveiiiinniiiiiinnnic 4-44
4.11.6 Deleting Memory Partitionscccoeoveniiiinninniiiieiienens 4-44
4.11.7 Sharing Memory Partitions..........cccccecueiviiiniinncioniinniiiiniennes 4-45
4.12 Shared IMages........cccooueeieiierieniictiie ittt eane e 4-45
4.12.1 Created Shared Imagesccocevmveriiiiiiiiiiinicccce s 4-45
4.12.2 Protecting Shared Imagesc.cccevueeceeiiiinciiiciininiiieieee 4-45
4.12.3 Attaching Shared Images.........ccccccovviiviniiiiiiiininiiicciend 4-46
4.12.4 Accessing Shared Imagesc.ccccoevvviiniininiiiiinicicccne, 4-46
4.12.5 Detaching Shared Imagescc.coceeuevviiiiiniiininiciiicinns 4-46
4.13 Multiprocessor Shared Volumescccccoccoimiiiiniiniininiici, 4-47
' 4.13.1 Multiprocessor Resources...........ccoccoeviiiinineniicninciccienns 4-47
4.13.2 Multiprocessor Resource AcCCess..........cocvveivieiiiininiciiciiieeene. 4-47
4.13.3 Mounting Multiprocessor Volumes...........ccccccccoviiiiiiincinnnnnns 4-49
4.13.4 Multiprocessor Resource Restrictionsccoccuveviveinccicnncnne. 4-49
4.13.4.1 EOF Managementcccccocievuiiiueiiiiniiniccececens 4-49
4.13.4.2 EOM Managementcccoceivueriiiieeriiecnennresee e 4-50
4.13.4.3 Resource Deadlocks ... 4-50
4.13.4.4 Reserve/Release Multiported Disk Services
(M.RESP/M.RELP)......ccceceviiimiiiiiiiiciciccceieen, 4-50
4.13.5 Optimum Use of Multiprocessor Resourcesccco..e. 4-51
Resource Assignment/Allocation and I/O
5.1 INtrOAUCHION ..o 5-1
5.2 MPX-32 Logical I/O (Device-Independent).............ccccocoviiiiiiinnnnenne. 5-1
5.2.1 Logical File COES...........coorvirerrrrrrereiriienieiesineesesies s 5-2
5.2.2 File Control BLoCKS..........cccceiiiiiiiiiiiiiiiiiicicccc e 5-2
5.2.2.1 Logical I/O Initiation........ccccceevvieiuiiiienieininecie e 5-2
5.2.3 Assignment vs. AllOCAtION..........coceiiiiiuiiiiiiiiiiicci e 5-2
5.24 Logical File Code AsSignment..........cccocooceiiiiiiiniiincnienieneennnne. 5-4
5.24.1 Making Assignments via Resource Requirement
Summary (RRS).....oooiiiiiieeeee e 5-4
5.2.42 Temporary File Assignmentscccccoeiviiiincnnn. 5-14
5.2.5 Opening a Resource for Logical I/O...........cccoeoeiiiiniiicnie. 5-14

Contents

_

Contents

53

54

55

5.6
5.7

5.8
59

Page

Resource Conflicts and Error Handling................ccoooiiiiiiieiicienccnnien, 5-15
5.3.1 Status Posting and Return Conventions............cccccceeveiniennnnene. 5-16
MPX-32 Volume Resource ACCESScocevuririeniereeienieiieienieienieaes 5-20
5.4.1 Volume Resource Space Management.............ccoccoeenieniinnninninne, 5-20
5.4.2 Temporary vs. Permanent Files..............c.cccooiniiini, 5-20
543 System DITECIOTYcooviueriiiiiiieicie ettt 5-21
MPX-32 DEVICE ACCESScouiiuiiiiiiiiiiiiiiiiceie sttt 5-21
5.5.1 Magnetic Tapecccooceiiiniiiiiiiiicciei 5-21
5.5.2 Unformatted Media...........ccccocermiiinieiiiiniiiii e 5-25
5.5.3 Examples of Device Identification Levelsccccoceeenn. 5-28
5.54 GPMUC DEVICESoouiiuiiiiiiiiaiiiee ettt ettt 5-28
5.5.5 NULL DEVICEccoeuiiiimiiiiiiieriiiiiniectiiee et ettt s seennes 5-28
5.5.6 System COnSOLeccoevuieieiiiiiieiiie et 5-28
5.5.7 Special File Attributesccoceuireiriniieiienieie e 5-29
SAMPIES ..o 5-30
Device-Independent I/O Processingccccooeveeiincncciincnccecee e 5-32
571 Wait T/O oo 5-32
57.1.1 Wait I/O ErTors ..o 5-32
5.7.1.2 Wait I/O Exit and I[/O Abort Processing.................... 5-33

5.7.1.3 Error Processing and Status Inhibit 5-33

572 No-Wait I/O oo s 5-33
5.7.2.1 No-Wait I/O Complete Without Errors 5-33
5.7.2.2 No-Wait I/O Complete with Errors............................ 5-34

5.7.2.3 No-Wait End-Action Return to IOCS....................... 5-34

5.7.3 DIrect I/O .o 5-34
574 Blocked IO ...ooooiiiiiiii i 5-34
5.7.5 End-of-File and End-of-Medium Processingccccccoeeeuneen. 5-36
5.7.6 Software End-of-File for Unblocked Files..............cccccccooene. 5-36
Spooled Output with Print or Punch Attribute..........................l 5-38
Setting Up File Control Blocks for Device-Independent I/O 5-38
5.9.1 Macros (IM.DFCB/M.DFCBE) ..o 5-39
5.9.2 Sample FCB Set-up NonmMacro............cccccooveieiiinincnieie, 5-40
5.9.3 Sample FCB Set-up Macroccccoooiiiiiiiiiiiiciicec e, 5-40

MPX-32 Reference Volume | XV

Contents

xvi

5.10
5.11

5.12
5.13
5.14

Page
Setting Up TCPBs for the System Console...........c.ccoccveverirveriennnnne. 5-41
MPX-32 Device-Dependent I/O..........ccoeviiivciniiniiinininicncncccnnne 5-43
5.11.1 Device-Dependent I/O Processing Overview............ccceveuuennne 5-43
5.11.2 Operational Description of Execute Channel
Program (EXCPM).....cccocceiniininiiiiiiicieneeenccecieeereseesrenens 5-44
5.11.2.1 Logical Channel Program............ccccoceevrvviniininnnnnnnnn. 5-44
5.11.2.2 Physical Channel Programcccoceeviiiiniinnnnecns 5-44
5.11.2.3 Post Program-Controlled Interrupt (PPCI)
End-Action ReCEIVETceeeeeerrrieeiirieeeeeeteee e, 5-44
5.11.2.4 RESIIHCHONS ...oevveeeieieieiieeeeiiieeseesnereeeeineeeesneeessnnnas 5-45
5.11.2.5 Setting Up File Control Blocks for EXCPM
ReqUESES ..., 5-46
5.11.2.6 Post Program-Controlled Interrupt Notification
PaCKEL.... ..ot crree e e 5-47
5.11.27 Macros M. FCBEXP)......ccooovviiiiiiiiieciceee e 5-48
Resident Executive Services (HREXS)ooooooiiiiiiiciiiecrieeee 5-49
Resource Management (HLREMM)coccoiiiiininniininicciceieeeieeens 5-50
Volume Management Module (H.VOMM)c.ccooiiniiniiinicinicnene. 5-51
5.14.1 H.VOMM CONVENLIONS......ccccevieeunririeieeeeeeininnerreeeeseseeienvsseseseens 5-51
5.14.1.1 Entry Point Conventions..............ccecuevivievieeruecieenens 5-51
5.14.1.2 Pathnamescccccooeeiiviiiiiiieee e e eeeenvr e 5-51
5.14.1.3 Pathname Blocks (PNB).......ccooovveriiieeiiiiireeeeeeen, 5-52
5.14.1.4 Resource Identifiersc.cccccooevvvivevneeeieeeiicnineneenen, 5-55
5.14.1.5 Allocation UnitS.........ccccvvrireeeieiiccniieeeee e eeerreenneen. 5-55
5.14.1.6 File Segment Definitionscccccocueevenvenenninennnene. 5-55
5.14.2 Calling/Return Parameter Conventionsccccecocveveuieeneencen 5-56
5.14.2.1 Unused RegiSter..........cccocuieiiiiiiiiiinincniiiiciccecnenns 5-56
5.14.2.2 Specifying a Volume Resource...............ccceevviinninis 5-56
5.14.2.3 Status Codes.......ccovvveriuireriiiecieeeciiee e 5-57
5.14.2.4 Caller Notification Packet (CNP)........cooeeeerievevennnnnnn 5-58
5.14.2.5 Pathnames/Pathname BlocksSccccccvevvvrvvnnnieerennnn. 5-59
5.14.2.6 Resource Create Block (RCB)ccoooevevivvmnninnnennn. 5-59
5.14.3 Bad Block Handlingcccoceeiuerieninnineiieeieneeeee e 5-64
5144 SEIVICES .ot ee e er e e eitae e eeevae e eeearaeeeeanes 5-65

Contents

Contents

Page
6 Nonbase Mode System Services
6.1 OVEIVIBW ..ottt ettt et sttt et b e 6-1
6.1.1 Syntax Rules and DescCriptionsccccceeeeirinnicriencnenencene. 6-2
6.1.2 IPU Executable Nonbase Mode System Services 6-3
6.2 Macro-Callable System Servicescccouevueiriiiieiinieiieniese e 6-4
6.2.1 M.ACTV-Activate TasK........coocvrierieeiieniiniinienie e 6-5
6.2.2 M.ADRS -Memory Address INQUirycccceccceuevieninneniecnnncns 6-6
6.23 M.ANYW - Wait for Any No-Wait Operation Complete,
Message Interrupt, or Break Interruptcocoooiiiinnnnnn 6-7
6.24 M.ASSN - Assign and Allocate Resource..........ccceceevevnevneeennnn. 6-8
6.2.5 M.ASYNCH - Set Asynchronous Task Interrupt 6-10
6.2.6 M.BACK -Backspace Record or Fileccccooeiiiicinininnnnn. 6-11
6.2.7 M.BATCH-Batch Job Entrycc.ccoccocieiniiiinnnciinciecies 6-13
6.2.8 M.BBTIM - Acquire Current Date/Time in Byte Binary
Format ... 6-15
6.29 M.BORT - Abort Specified Task, Abort Self, or Abort with
Extended MesSSage........cccceeviiiiiieniiiieiiiie e 6-16
6.2.9.1 M.BORT - Specified Task...........ccocecueeiiiiinininncnn. 6-16
6.2.9.2 MBORT -Selfccooiiiiiiiiiiincece e, 6-17
6.2.9.3 M.BORT - With Extended Messageccccceeeenen. 6-18
6.2.10 M.BRK - Break/Task Interrupt Link/Unlinkcccccceenene 6-19
6.2.11 M.BRKXIT - Exit from Task Interrupt Levelcco...... 6-19
6.2.12 M.BTIM - Acquire Current Date/Time in Binary Format 6-20
6.2.13 M.CLOSER - Close Resource...........coceeeueeriieiieeneennieeneeeen, 6-21
6.2.14 M.CLSE-Close File.....c.ccccooiriiiiiniiiiiniciiciicie e 6-23
6.2.15 M.CMD-Get Command Linec..ccoccerieeiiiieinenienienieniens 6-24
6.2.16 M.CONABB - Convert ASCII Date/Time to Byte Binary
Format ... 6-25
6.2.17 M.CONADB - Convert ASCII Decimal to Binary................... 6-26
6.2.18 M.CONAHB - Convert ASCII Hexadecimal to Binary 6-27
6.2.19 M.CONASB - Convert ASCII Date/Time to Standard
BINAIY ..o e 6-28
6.2.20 M.CONBAD - Convert Binary to ASCII Decimal................... 6-29
6.2.21 M.CONBAF - Convert Binary Date/Time to ASCII Format ...6-30
6.2.22 M.CONBAH - Convert Binary to ASCII Hexadecimal 6-31
6.2.23 M.CONBBA - Convert Byte Binary Date/Time to ASCILI.......6-32

MPX-32 Reference Volume |

xvii

Contents

xviii

6.2.24
6.2.25
6.2.26
6.2.27
6.2.28
6.2.29
6.2.30
6.2.31
6.2.32
6.2.33
6.2.34
6.2.35
6.2.36
6.2.37
6.2.38
6.2.39
6.2.40
6.2.41
6.2.42
6.2.43
6.2.44
6.2.45
6.2.46
6.2.47
6.2.48
6.2.49
6.2.50
6.2.51
6.2.52
6.2.53
6.2.54
6.2.55
6.2.56
6.2.57

6.2.58
6.2.59
6.2.60
6.2.61

M.CONBBY - Convert Binary Date/Time to Byte Binary6-33

M.CONBYB - Convert Byte Binary Date/Time to Binary6-34
M.CONN - Connect Task to Interruptcccocovvervivrcnenenne. 6-35
M.CPERM - Create Permanent File.........c.ccccccecvinievirninnnnnenne. 6-37
M.CTIM - Convert System Date/Time Format 6-39
M.CWAT - System Console Waitc.ccccooeeeminnnuiccncnnnnne. 6-41
M.DASN - Deassign and Deallocate Resource..................c...... 6-42
M.DATE - Date and Time Inquiry..........cccccccovuiviininiiincnnincnnns 6-44
M.DEBUG - Load and Execute Interactive Debugger............. 6-45
M.DEFT - Change Defaultscccccccvrirverieeniininnenieeienanne. 6-46
M.DELR - Delete Resourceccooceviiiiiiiiiniiiniiciiiccne. 6-48
M.DELTSK - Delete Task........ccccceeerirviniciineiniiieienieneeienens 6-50
M.DEVID - Get Device Mnemonic or Type Code................... 6-52
M.DIR - Create DIreCtory.......ccccocuveverceieneeienieniinniinecneenreneennes 6-53
M.DISCON - Disconnect Task from Interruptc..c........ 6-55
M.DLTT - Delete Timer Entry.........ccccoeoiiiiiniiiniiciiinicnenne. 6-56
M.DMOUNT - Dismount Volume..........ccecceevviicvincieninnennen. 6-57
M.DSMI - Disable Message Task Interrupt...........c.ccccevennnnen. 6-59
M.DSUB - Disable User Break Interrupt............ccccccevviniinennen. 6-60
M.DUMP - Memory Dump Request...........cccocoeviniiiiinninnn. 6-61
M.EAWAIT - End Action Waitccccccecueieruininnenineninenaens 6-63
M.ENMI - Enable Message Task Interrupt.............ccccceeii. 6-64
M.ENUB - Enable User Break Interrupt..........ccccoceveeeviinennnnne. 6-65
M.ENVRMT - Get Task Environment...........cccccccevenvievcnurnennns 6-66
M.EXCLUDE - Exclude Memory Partition...........cc.ccevveeueeee. 6-67
M.EXIT - Terminate Task Executionccccccocooiivninninnns 6-69
M.EXTD -Extend Filecccooevieiiiiiniinininineciececcnce s 6-70
M.FD - Free Dynamic Extended Indexed Data Space 6-72
M.FE - Free Dynamic Task Execution Space...........ccc.ccccu.ee. 6-73
M.FWRD - Advance Record or File...........cccccecuvevinnininncnncns 6-74
M.GADRL - Get Address Limits.........c.ccccooiviiciiiineniencniennens 6-76
M.GADRL2 - Get Address Limits..........cceceeeeniirenieneneennennn. 6-77
M.GD - Get Dynamic Extended Data Space..........c.cccceeuvennne. 6-78
M.GDD - Get Dynamic Extended Discontiguous

Data SPace......c..coeveriiiiiiiiiictceet e 6-79
M.GE - Get Dynamic Task Execution Spaceccccccoeunee 6-80
M.GETDEEF - Get Definition for Terminal Function................ 6-81
M.GMSGP - Get Message Parameters...........cccocceueveecrerenienes 6-83
M.GRUNP - Get Run Parameterscccoceevevirviccnneneennnnene 6-84

Contents

rd

Contents

6.2.62
6.2.63
6.2.64
6.2.65
6.2.66
6.2.67
6.2.68
6.2.69
6.2.70
6.2.71
6.2.72

6.2.73
6.2.74
6.2.75
6.2.76
6.2.77
6.2.78
6.2.79
6.2.80
6.2.81
6.2.82
6.2.83
6.2.84
6.2.85
6.2.86
6.2.87
6.2.88
6.2.89
6.2.90
6.291
6.2.92
6.2.93
6.2.94
6.2.95

Page
M.GTIM - Acquire System Date/Time in Any Format............ 6-85
M.GTSAD - Get TSA Start Addressc.cocceevvieiniiiniiennns 6-86
M.HOLD - Program Hold Requestcccocoiiiiinnnnn, 6-87
M.ID-Get Task Numbercccocuiiiiiiiniinieiicciccece 6-88
M.INCLUDE - Include Memory Partition..........c.cceceveiennennes 6-90
M.INQUIRY - Resource Inquiry...........ccccccoiiinviniiiininnnen, 6-93
M.INT - Activate Task Interrupt...........ccocvemiiniiniiiicniciccens 6-97
M.IPUBS - Set IPU Biasccocooviciiiiiiiiiiiiiiiicciciecicieee, 6-98
M.LOC - Read DeSCIiptorcc.ccccueniiiiriiniiineneeeeeeie e 6-99
M.LOCK - Set Exclusive Resource Lock..........ccccoeeiinnn. 6-101
M.LOGR - Log Resource or Directoryccccceeveevivreranneen. 6-103
6.2.72.1 Resource Specifications for Pathnames 6-103
6.2.72.2 Resource Specifications for Pathname Blocks......... 6-104

6.2.72.3 Resource Specifications for a Resource Identifier...6-104
6.2.72.4 Resource Specifications for a Logical File Code

(LFC), FCB Address, or Allocation Index............... 6-104
M.MEM - Create Memory Partitioncccccoeveieeevveceennenn. 6-108
M.MEMB - Get Memory in Byte Increments 6-110
M.MEMFRE - Free Memory in Byte Increments 6-111
M.MOD - Modify Descriptor.........c.ccoceeviireiiininniiiniciecne 6-112
M.MODU - Modify Descriptor User Area............cccccceeuenee. 6-114
M.MOUNT -Mount Volume...........ccceovuiiiniinniciinieenniecen. 6-115
M.MOVE - Move Data to User Addresscc.cccceevureneenne. 6-117
M.MYID - Get Task Number.........c.cocuerieninnieiecieriececene. 6-118
M.NEWRRS -Reformat RRS Entry..........ccocooeiiiininninnnnn. 6-119
M.OLAY - Load Overlay Segment............ccceecuieriiianinnnnnen. 6-121
M.OPENR - Open Resource...........cccccceeviiviiiiiiiiinicicnn. 6-122
M.OSREAD - Physical Memory Readccccceeveviiniicennnes 6-124
M.OSWRIT - Physical Memory WTiteccccovvveeececonennnnns 6-125
M.PGOD - Task Option Doubleword Inquiryc.......... 6-126
M.PGOW - Task Option Word Inquirycccccceoiriinnnnnan. 6-127
M.PNAM - Reconstruct Pathname..............ccceniiiniiinncns 6-128
M.PNAMB - Convert Pathname to Pathname Block 6-129
M.PRIL - Change Priority Level..........ccccooiiiiniiicniininne 6-131
M.PRIV - Reinstate Privilege Mode to Privilege Task.......... 6-132
M.PTSK - Parameter Task Activationcccceecueeveceniinnennnes 6-133
M.QATIM - Acquire Current Date/Time in ASCII Format...6-138
M.RADDR - Get Real Physical Address............ccoceeevviennenneen. 6-139
M.RCVR -Receive Message Link Addressc..cccoveeeuenenes 6-140

MPX-32 Reference Volume | Xix

Contents

XX

6.2.96
6.2.97

6.2.98
6.2.99
6.2.100

6.2.101
6.2.102
6.2.103
6.2.104
6.2.105
6.2.106
6.2.107
6.2.108
6.2.109
6.2.110
6.2.111
6.2.112
6.2.113
6.2.114
6.2.115
6.2.116
6.2.117
6.2.118
6.2.119
6.2.120
6.2.121
6.2.122
6.2.123
6.2.124
6.2.125
6.2.126
6.2.127
6.2.128
6.2.129
6.2.130
6.2.131
6.2.132
6.2.133

Page
M.READ-Read Record..........cccooceveeeueieieneiceniecrieecrenecnnn 6-141
M.RELP - Release Dual-Ported Disk/Set Dual-Channel
ACM MOdE ...ttt 6-142
M.RENAM-Rename Filecccooriiiniiiiiiiiiiiiines 6-143
M.REPLAC - Replace Permanent Filecc.cccccueeinenn. 6-144
M.RESP - Reserve Dual-Ported Disk/Set Single-Channel
ACM MO ...ttt st 6-145
M.REWRIT - Rewrite DeSCriptorcccocovviiniiiniinciniincnns 6-146
M.REWRTU - Rewrite Descriptor User Area........c.ccceueeee 6-147
M.ROPL - Reset Option Lower..........cccccccueveeeeincninnicncnn. 6-148
M.RRES -Release Channel Reservationcccccccueeunennee. 6-149
M.RSML - Resourcemark Lockccccoviieiiniinicnncncnnnenne. 6-150
M.RSMU - Resourcemark Unlockcooeeverceinieniieninennenne. 6-152
M.RSRYV -Reserve Channel...........cccocooeiiininiiiniinininnenn 6-153
M.RWND-Rewind Filecccccoovevinininiiiiiicniencee, 6-154
M.SETS - Set User Status Word........c.cccecviniviiniininncnnne 6-155
M.SETSYNC - Set Synchronous Resource Lock.................. 6-157
M.SETT - Create Timer Entryc.ccccoccceiniinniiiiniiinieenn, 6-159
M.SMSGR - Send Message to Specified Task 6-162
M.SOPL - Set Option LOWer..........ccccoecviviiiininiiiiiiccienne 6-163
M.SRUNR - Send Run Request to Specified Task................ 6-164
M.SUAR - Set User Abort Receiver Address.............c......... 6-166
M.SUME - Resume Task Execution..........cccccoceevieeniinnncnnee. 6-167
M.SURE - Suspend/Resume............cccovcueiiiniiiincnicienennns 6-168
M.SUSP - Suspend Task Execution.............ccccoeoeeveinninnnn, 6-169
M.SYNCH - Set Synchronous Task Interrupt............cccc..... 6-170
M.TBRKON - Trap Online User’s Task.............cccoeevvrernnee. 6-171
M. TDAY - Time-of-Day Inquirycccccccvvvvviivinnnninnnn. 6-172
M.TEMP - Create Temporary File............cccccoeevninninnnn. 6-173
M.TEMPER - Change Temporary File to Permanent File6-175
M.TRNC-Truncate Fileccccocriiiiiiiiiiie e, 6-177
M.TSCAN - Scan Terminal Input Buffer............cccccccoeeneee. 6-178
M.TSMPC - TSM Procedure Call............ccccevriiriiinciiennnnn. 6-179
M.TSTE - Arithmetic Exception Inquiryc..ccccccoevrnennnee. 6-182
M.TSTS - Test User Status Wordccccceveeviiriciniinennnen. 6-183
M.TSTT - Test Timer Entrycc.ccoceeveeiinniiniiceceiceeieeee, 6-184
M.TURNON - Activate Program at Given Time-of-Day6-185
M.TYPE - System Console Type.........ccccecvevuereermerenrenereuennes 6-187
M.UNLOCK - Release Exclusive Resource Lock................. 6-188
M.UNSYNC - Release Synchronous Resource Lock............ 6-190
Contents

Contents

Page

6.2.134 M.UPRIV - Change Task to Unprivileged Mode 6-192
6.2.135 M.UPSP - UPSPACEeeuvrueiriricnieirirentesinnesecnresresenesessenneeens 6-193
6.2.136 M.VADDR - Validate Address Rangec.ccccvvnnnennee 6-194
6.2.137 M.WAIT-Wait I/Occooiiiiiiiiiiiiii e, 6-195
6.2.138 M.WEOF -Write EOFcccccooiiiiiiiiinccecceeee 6-196
6.2.139 M.WRIT - Write Recordcc.ccceverirneiiinenencciniecnicennnen 6-197
6.2.140 M.XBRKR - Exit from Task Interrupt Level....................... 6-198
6.2.141 M.XIEA - No-Wait I/O End-Action Returmn...........cccocccueneee. 6-199
6.2.142 M.XMEA - Exit from Message End-Action Routine 6-200
6.2.143 M.XMSGR - Exit from Message Receiver............ccceeeeuene. 6-201
6.2.144 M.XREA - Exit from Run Request End-Action Routine6-202
6.2.145 M.XRUNR - Exit Run Receiver..........ccccoceeciiiinnieninncnncnne. 6-203
6.2.146 M.XTIME - Task CPU Execution Timeccccceoireienuene 6-204
6.3 Nonmacro-Callable System Services...........ccoeoveeveirveerieencirnieenereee 6-205
6.3.1 Allocate File Spacecccooceviniiniiniiiiiiciccicce 6-206
6.3.1.1 Clean-up Mode.........cccovriiviniiiiiiiiiiiciciie, 6-206

6.3.1.2 Normal Modecccoveeeireiiiiiieecieeeeeeee e 6-206

6.3.2 Allocate Resource Descriptorccooeviiiiiiiiiiiiincne. 6-208
6.3.3 Create Temporary File ... 6-209
6.3.3.1 VOMM Internal Call.........c.cccooeiiiiiinniiiiiiiineene 6-209

6.3.3.2 External Call.........cocoouiniiiiiiiiiiienie e 6-209

6.3.3.3 Default File Attributescoccueeuienneniennienieeneen. 6-209

6.3.3.4 Volume Selection..........cccceevireenirienveciencnencnennee 6-209

6.34 Deallocate File SPACEcoevvruerrrmrierenierieieeeisee e 6-211
6.3.5 Deallocate Resource Descriptor...........cccocooiiiiiiiiiiiiinnin, 6-212
6.3.6 Debug Link Service.........cocevviviieiiiiiiniiniieeiicie e 6-213
6.3.7 Eject/Purge Routine............ccocoeiiiiiiiiiiiiiiiincccic e 6-214
6.3.8 Erase or Punch Trailerc..ccooiviiiniiininiiiiciec e 6-215
6.3.9 Execute Channel Program..............c.cocooeuierviverenenerveserennnnn. 6-216
6.3.10 Get Extended Memory Arraycccceeeveneeenieeneececieeeeeens 6-217
6.3.11 Read/Write Authorization Filec.ccccccceevniiiniiiniiienn. 6-218
6.3.12 Release FHD POIt........occoiiiiniiiiiiiiiccecce 6-219
6.3.13 Reserve FHD Port.........cccooiviiiiniiiiiiiiicienie e 6-220
6.4 Compatible System SErviCescooeririenerieriieiie e seersiee e 6-221
6.4.1 M.ALOC- Allocate File or Peripheral Device 6-222
6.42 M.CDIJS - Submit Job from Disk File........cccoceniiniennnnnnne. 6-226
6.43 M.CREATE-Create Permanent Fileccocccovvinninnnnen. 6-228
6.44 M.DALC- Deallocate File or Peripheral Device................... 6-231

MPX-32 Reference Volume | xxi

Contents

Page
6.45. M.DELETE - Delete Permanent File or Non-SYSGEN
Memory Partition..........ccccceeviieiiiiiiniiieeieneneceee e 6-232
6.4.6 M.EXCL -Free Shared Memoryccccocvvviuinninnnnnncnecnnenns 6-233
6.4.7 M.FADD - Permanent File Address Inquiry..............cccu.u.... 6-234
6.48 MFILE-Open File..........cccccoueiiiiiiiiiinininrineiceencnene 6-236
6.49 M.FSLR -Release Synchronization File Lock 6-237
6.4.10 M.FSLS - Set Synchronization File Lock............ccccccvuueunenee. 6-238
6.4.11 M.FXLR -Release Exclusive File Lockcccccurrenennncees 6-240
6.4.12 M.FXLS - Set Exclusive File Lockccccceeiervniininiccnnnenne 6-241
6.4.13 M.INCL - Get Shared Memorycccceeeeeririncrnecrceneeennen. 6-242
6.4.14 M.LOG-Permanent File Log..........ccccoeniniinininninnnne. 6-244
6.4.15 M.PDEYV -Physical Device Inquiryc..cccccevrreeeciirenuuennnnne. 6-246
6.4.16 M.PERM - Change Temporary File to Permanent 6-248
6.4.17 M.SHARE - Share Memory with Another Task..................... 6-250
6.4.18 M.SMULK - Unlock and Dequeue Shared Memory.............. 6-252
6.4.19 M.USER - User Name Specification...........ccccceuevuevviiueneninnnnne 6-253
7 Base Mode System Services
7.1 General DesCriPtion.........c..cccovueruiiiieiiieiiiiienicee st seens 7-1
7.1.1 Syntax Rules and Descriptionsc.cuc.o..... heveeetenseerassareseness 7-2
7.1.1.1 Parameter Specification..........ccccoceviviiiuiiieniiiicncennnne. 7-2
7.1.2 IPU Executable Base Mode System Services........cccoceevuveeneenne 7-5
7.2 Macro-Callable System SEIVICESccccevuirieiiiiirieiiniiieie e 7-6
7.2.1 M_ACTV-Activate TasK........cccccoorviimiiiniriiiieeeeeeeeeeeeeeeeeeeee 7-7
7.2.2 M_ADRS - Memory Address Inquirycccccevvvvvircneennennnen. 7-8
7.23 M_ADVANCE- Advance Record or Fileccceevvvvvvieriinnnenn. 7-9
7.24 M_ANYWAIT - Wait for Any No-Wait Operation Complete,
Message Interrupt, or Break Interrupt..........cccccceeviviininnnnnn. 7-11
7.2.5 M_ASSIGN - Assign and Allocate Resource............ccevevennee. 7-12
7.2.6 M_ASYNCH - Set Asynchronous Task Interrupt..................... 7-14
7.2.7 M_AWAITACTION - End Action Waitccccoceevueriininnannne. 7-15
7.2.8 M_BACKSPACE - Backspace Record or File.......................... 7-16
7.29 M_BATCH-Batch Job Entrycccccccoviiiniiiiiniiiieee e, 7-18
7.2.10 M_BBTIM - Acquire Current Date/Time in Byte Binary
FOIMAL ...t e 7-20
7.2.11 M_BORT - Abort Specified Task, Abort Self, or Abort with
Extended MesSage......c.cccevuvievueiiiinieneiiiicieiieeeceee e 7-21
7.2.11.1 M_BORT - Abort Specified Task.........c.ceceevueurennene. 7-21
7.2.11.2 M_BORT - Abort Selfcccooevviriieciniccenicccennn. 7-22

xXii

Contents

Contents

7.2.12
7213
7.2.14
7.2.15

7.2.16
7.2.17
7.2.18
7.2.19

7.2.20
7.2.21
7.2.22

7.2.23
7.2.24
7.2.25
7.2.26
7.2.27
7.2.28
7.2.29
7.2.30
7.2.31
7.2.32
7.2.33
7.2.34
7.2.35
7.2.36
7.2.37
7.2.38
7.2.39
7.2.40
7.2.41
7.2.42
7.243
7.2.44
7.2.45
7.2.46
7.2.47

Page
7.2.11.3 M_BORT - Abort with Extended Message 7-23
M_BRK - Break/Task Interrupt Link/Unlinkccccceceue. 7-24
M_BRKXIT - Exit from Task Interrupt Level 7-24
M_BTIM - Acquire Current Date/Time in Binary Format7-25
M_CHANPROGFCB - Execute Channel Program
File Control BLockccociiiiiiiniiniiiiiniinccne e 7-26
M_CLOSER - Close ReSOUICE.........coeeeeeureriiecnreeeeirieeeenineeeenens 7-27
M_CLSE-CIl0S€ FIlEcovveeiieeiiieieeeeeeeeeeeveee e e 7-29
M_CMD -Get Command Linec.ccoeeeeeiieieeicieee e 7-30
M_CONABB - Convert ASCII Date/Time to Byte Binary
FOrmat ..o e 7-31
M_CONADB - Convert ASCII Decimal to Binary.................. 7-32
M_CONAHB - Convert ASCII Hexadecimal to Binary 7-33
M_CONASB - Convert ASCII Date/Time to
Standard Binary.........ccccooeiiiiniiiiiiiniee e 7-34
M_CONBAD - Convert Binary to ASCII Decimal.................. 7-35
M_CONBAF - Convert Binary Date/Time to ASCII Format..7-36
M_CONBAH - Convert Binary to ASCII Hexadecimal 7-37
M_CONBBA - Convert Byte Binary Date/Time to ASCII......7-38
M_CONBBY - Convert Binary Date/Time to Byte Binary7-39
M_CONBYB - Convert Byte Binary Date/Time to Binary7-40
M_CONN - Connect Task to Interruptccccceeeevencrennnae. 7-41
M_CONSTRUCTPATH - Reconstruct Pathname 7-42
M_CONVERTTIME - Convert Timeccceceevuveeernenceneennnne. 7-43
M_CREATEFCB - Create File Control Block 7-45
M_CREATEP - Create Permanent Filecccccooove . 7-46
M_CREATET - Create Temporary File.............c..cccocoiinane. 7-48
M_CTIM - Convert System Date/Time Format 7-50
M_CWAT - System Console Waitccccoiviniiiniinnenne. 7-51
M_DATE-Date and Time Inquiry......ccccccceeevimmiinncinnicennnn. 7-52
M_DEASSIGN - Deassign and Deallocate Resource 7-53
M_DEBUG - Load and Execute Interactive Debugger 7-55
M_DEFT - Change Defaultsccccocivviniiiiniiiniiicnien, 7-56
M_DELETER - Delete ReSOUICEcceeeveeiiiiniiiieeeceecirieieeene, 7-57
M_DELTSK -Delete TasK.......ooooeeeiioieiieeiiiiieeeeeee e, 7-59
M_DEVID - Get Device Mnemonic or Type Code.................. 7-60
M_DIR - Create DireCtory........cccoeeemuieriiiiieeiiieniieeesee e 7-61
M_DISCON - Disconnect Task from Interrupt 7-63
M_DISMOUNT - Dismount Volumeccccccevvvvvvvninnnenennn. 7-64
M_DLTT - Delete Timer Entry........c.ccccceeeiieneieciieneeeieeie e 7-66

MPX-32 Reference Volume | XXiii

Contents

XXiv

7.2.48
7.2.49
7.2.50
7.251
7.2.52
7.2.53
7.2.54
7.2.55
7.2.56
7.2.57
7.2.58
7.2.59
7.2.60
7.2.61
7.2.62
7.2.63
7.2.64
7.2.65
7.2.66
7.2.67
7.2.68
7.2.69
7.2.70
7.2.71
7.2.72
7.2.73
7.2.74
7.2.75

7.2.76
7.2.77
7.2.78
7.2.79
7.2.80
7.2.81
7.2.82

Page
M_DSMI - Disable Message Task Interrupt.............ccceeeenneee. 7-67
M_DSUB - Disable User Break Interrupt...........cccoccevvvvuennne. 7-68
M_DUMP - Memory Dump Request..........ccccovviirviviininnnncne 7-69
M_ENMI - Enable Message Task Interrupt...........cccecvuenencnns 7-70
M_ENUB - Enable User Break Interrupt...........ccccoceeviivuicenncns 7-71
M_ENVRMT - Get Task Environment............cocceeeenercenennnene 7-72
M_EXCLUDE - Exclude Shared Imagec.ccoeevenuervurennnne. 7-73
M_EXIT - Terminate Task EXeCutionccccccveveeeeeeeeennnnnnes 7-75
M_EXTENDFILE - Extend Filec.cccceeveviiniiniiiiniereneenene 7-76
M_EXTSTS - Exit With Status.......c.cccoceeiveiinininiciiiniicinieeenne 7-78
M_FREEMEMBYTES - Free Memory in Byte Increments....7-79
M_GETCTX -Get User COntextcccvveeeeueeeeervreeeeesnreeeeennns 7-80
M_GETDEEF - Get Definition for Terminal Function............... 7-81
M_GETMEMBYTES - Get Memory in Byte Increments........ 7-83
M_GETTIME - Get Current Date and Timeccueee..... 7-84
M_GMSGP - Get Message Parameters..........cccccueeeeeuienuennennne. 7-86
M_GRUNP - Get Run Parameterscccoccueeeenereeeecenreeeeennes 7-87
M_GTIM - Acquire System Date/Time in Any Format........... 7-88
M_GTSAD-Get TSA Start Addressccccoceevemveeeeirneennene. 7-89
M_HOLD - Program Hold Request............ccccccovivuinninninnnne. 7-90
M_ID-Get Task Number..........coooeeiiiieiiiiiiieveeeiee e 7-91
M_INCLUDE - Include Shared Imageccccccveeeuieenvrennnnnnee. 7-93
M_INQUIRER - Resource Inquiryccocevivviniiicnininnncenne. 7-96
M_INT - Activate Task Interrupt.........cccccocevveirnenveeneennenenne 7-101
M_IPUBS - Set IPU Bias........cccceevereninineeienecieccrenrcieneens 7-102
M_LIMITS - Get Base Mode Task Address Limits............... 7-103
M_LOCK - Set Exclusive Resource Lock........cccceveeenrnrennnn. 7-104
M_LOGR - Log Resource or Directorycccceeeeeernunennncnnen. 7-106
7.2.75.1 Resource Specifications for Pathnames 7-106
7.2.75.2 Resource Specifications for Pathname Blocks......... 7-107

7.2.75.3 Resource Specifications for a Resource Identifier...7-107
7.2.75.4 Resource Specifications for a Logical File Code

(LFC), FCB Address, or Allocation Index 7-107
M_MEM - Create Memory Partitioncccccceeevviieiiencnnnn. 7-111
M_MOD - Modify DescCriptor...........cccccevivuiniinnniinicnecicnnnnnn 7-113
M_MODU - Modify Descriptor User Area............cceceeuveunen. 7-115
M_MOUNT -Mount Volume.........ccceevveeeeiiieieieiieieieeieceee e, 7-116
M_MOVE -Move Data to User Address.......cccccceeeeeeeveeennnnnes 7-118
M_MYID-Get Task Number..........ccccovveeeeeiivvneneieeeieeeinnens 7-120
M_OPENR - Open Resource...........cccccovveeiivunniicenicnccieneenen. 7-121

Contents

Contents

Page

7.2.83 M_OPTIONDWORD - Task Option Doubleword Inquiry7-124

7.2.84 M_OPTIONWORD - Task Option Word Inquiry 7-125
7.2.85 M_OSREAD -Physical Memory Readcccccovuieiieiiennen. 7-126
7.2.86 M_OSWRIT - Physical Memory WTitecccccoceeveeveninnnes 7-127
7.2.87 M_PNAMB - Convert Pathname to Pathname Block 7-129
7.2.88 M_PRIL - Change Priority Level.........ccoccooieniiniinniiienee. 7-131
7.2.89 M_PRIVMODE - Reinstate Privilege Mode to

Privilege Task.....c.cccooiiiiiiiiii e 7-132
7.290 M_PTSK - Parameter Task Activationccccceeveeecrieeennenn. 7-133
7.291 M_PUTCTX -Put User COnteXt..........cocevvurrmeereeeriecenrnvenneennnt 7-138
7.2.92 M_QATIM - Acquire Current Date/Time in ASCII Format..7-139
7.293 M_RADDR - Get Real Physical Address..........ccoeeeeereunenne. 7-140
7.2.94 M_RCVR -Receive Message Link Addresscccccceeeeees 7-141
7.295 M_READ-Read Record...........cccouveevuieeciiieeeeece e 7-142
7.296 M_READD -Read Descriptorcccoceeeiinieiiieeeeneen e, 7-144
7.297 M_RELP -Release Dual-Ported Disk/Set Dual-Channel

ACM MOE ..o 7-145
7.298 M_RENAME-Rename File.........ccccoooeviiiiiiiiiiiiiiiiecieee. 7-146
7.2.99 M_REPLACE -Replace Permanent Fileccccccecenni. 7-147
7.2.100 M_RESP - Reserve Dual-Ported Disk/Set Single-Channel

ACM MOAE ... e 7-148
7.2.101 M_REWIND-Rewind File......cccccoeveiiiiiiiiiiiiceeeeeee. 7-149
7.2.102 M_REWRIT - Rewrite Descriptorccccoccecviinieiccncnnnnnn. 7-150
7.2.103 M_REWRTU - Rewrite Descriptor User Area...........c......... 7-151
7.2.104 M_ROPL -Reset Option Lower............ccccccecenieeninccnennnn. 7-152
7.2.105 M_RRES -Release Channel Reservationcccccccvcuvnvennnen. 7-153
7.2.106 M_RSML -Resourcemark LocK.........ccoeoveumvvevireeviiicrnnnennnnnn. 7-154
7.2.107 M_RSMU -Resourcemark Unlockccoovuvviiiiiiviiiivrnnenenenn. 7-155
7.2.108 M_RSRV -Reserve Channel.............ccccoovveiivviiieiicneieeecenne. 7-156
7.2.109 M_SETERA - Set Exception Return Address........................ 7-157
7.2.110 M_SETEXA - Set Exception Handler..........c..ccccocoeeneennnnene. 7-158
7.2.111 M_SETS -Set User Status Word.........cocoeevuvrerereevieeevnnnnnennn. 7-159
7.2.112 M_SETSYNC - Set Synchronous Resource Lock................. 7-161
7.2.113 M_SETT - Create Timer Entryccccccoooiriinniiniiieieeen. 7-163
7.2.114 M_SMSGR - Send Message to Specified Task 7-166
7.2.115 M_SOPL - Set Option Lower...........cccccccoeviiininciiiicniinnnnne. 7-167
7.2.116 M_SRUNR - Send Run Request to Specified Task............... 7-168
7.2.117 M_SUAR - Set User Abort Receiver Address....................... 7-170
7.2.118 M_SUME -Resume Task Executionccccccoeeuveeieeennnenn.n. 7-171

MPX-32 Reference Volume | XXV

Contents

XXVi

Page
7.2.119 M_SURE - Suspend/Resume..............ccccuvueeeriemneencrurnenennencns 7-172
7.2.120 M_SUSP - Suspend Task Execution...........ccecccuevevcrueiruennncen 7-173
7.2.121 M_SYNCH - Set Synchronous Task Interrupt....................... 7-174
7.2.122 M_TBRKON - Trap Online User’s Task........cccccceeuerceneenne. 7-175
7.2.123 M_TDAY - Time-of-Day Inquiryccccceveeenevencrurccnnnne. 7-176
7.2.124 M_TEMPFILETOPERM - Change Temporary File to
Permanent File ...t 7-177
7.2.125 M_TRUNCATE-Truncate File.........cccoouvvireenvirereircennnnnen. 7-179
7.2.126 M_TSCAN - Scan Terminal Input Buffer..............cccco...... 7-180
7.2.127 M_TSMPC -TSM Procedure Call..........cc.ccoevrrerviriiererenns 7-181
7.2.128 M_TSTE - Arithmetic Exception Inquiryc..ccccccoveeeueennnen. 7-184
7.2.129 M_TSTS - Test User Status Wordccccceeeuereeineveecirneeeenn. 7-185
7.2.130 M_TSTT -Test Timer Entrycccccocvvveeininnininiininennene 7-186
7.2.131 M_TURNON - Activate Program at Given Time-of-Day7-200
7.2.132 M_TYPE - System Console Type..........c.ccccevrvuicrnircrineennne 7-189
7.2.133 M_UNLOCK - Release Exclusive Resource Lock................ 7-190
7.2.134 M_UNPRIVMODE - Change Task to Unprivileged Mode...7-192
7.2.135 M_UNSYNC - Release Synchronous Resource Lock 7-193
7.2.136 M_UPSP - UPSPacecccceevuriuiiiieiiiiicciiiccieecnccnenes 7-195
7.2.137 M_VADDR - Validate Address Range............ccccoceevueruennnen. 7-196
7.2.138 M_WAIT-Wait I/O...cccuiiiiiiiiiiiniecccceeeetee e, 7-197
7.2.139 M_WRITE - Write Record.........cccccoeevvvreeeeinnnieeieeeceereeeeenn. 7-198
7.2.140 M_WRITEEOF - Write EOF.........ccceciiiniiniiincncciercen 7-199
7.2.141 M_XBRKR - Exit from Task Interrupt Level........................ 7-200
7.2.142 M_XIEA -No-Wait I/O End-Action Return.........ccouvevenen... 7-201
7.2.143 M_XMEA - Exit from Message End-Action Routine 7-202
7.2.144 M_XMSGR - Exit from Message Receiver.........cccoceeveennen. 7-203
7.2.145 M_XREA - Exit from Run Request End-Action Routine7-204
7.2.146 M_XRUNR - Exit Run ReCeivVer.......cccoovvrvriveviiereeriicnreenenn. 7-205
7.2.147 M_XTIME - Task CPU Execution Timecocooevuuvrevenennn. 7-206
7.3 Nonmacro-Callable System Services...........ccceevererverienenieenieneenenneeens 7-207
7.3.1 Debug Link SErvicCe........cccccevviirveiirieesienienieeieniesieseneeeseenees 7-207
7.3.2 Eject/Purge Routine...........ccecenvvvirveririienrienieenicceeenecnnenenne 7-208
7.3.3 Erase or Punch Trailer..........c.ccccviiiniiiiniiiiiinccninince e 7-209
7.34 Execute Channel Program............cccecvevenieninncnincncrnneennnne 7-210
7.3.5 Get Extended Memory Array..........coccveveveenieeeeerenresneseennenns 7-211
7.3.6 Release FHD Port.........cccooieiiiiiiiiiniiiiiieiceteece e 7-212
7.3.7 Reserve FHD Portcccocociiiiiiiiiinice e, 7-212

Contents

™

Contents

A MPX-32 Device ACCESS ...
B System Services Cross-Reference
C MPX-32 Abort and Crash Codes ...
D Numerical Information ...
E PowersofIntegers.......ooceeeeerresssree
F ASCllInterchange Code Set...............ooooone........
G IOP/MFP Panel Mode Commands......
H sStandard Date and Time Formats...........
| Compressed Source Format.........cooooooocoveeeeceneene.
J Map Block Address Assignments.....................
K Control Switches.............oooocooeooooocoeeeeeeeeseeoeceeeeee
L DataStructures ...
GIOSSAIY ...ttt ss s
INAEX ..t st ea e

MPX-32 Reference Volume |

Xxvii

List of Figures

Figure Page
1-1 MPX-32 Processors and Utilities..........cccceviviiiiniiuiniiniiniineniiecicciie v 1-2
1-2 Hardware/SOftWare PrIOTILIESoovveveverieereeerererereeerereeeiererereeeseesesessesssssssssssessees 1-4
2-1 Nonbase Mode Nonshared Task Address Space............ccccceveniviniiicnincnnnnnnnne. 2-4
2-2 Nonbase Mode Shared Task Address Spacecccoccevmieviiininiinicncniinnecnene, 2-5
2-3 Base Mode Shared Task Address Space...........cccovcvvivuieniiiniinicincniceecnenennns 2-6
2-4 Task Service Area (TSA) StIUCHUIEcccveiieeeieriieniiecte e eeeeree e e e v e ennen 2-9
3-1 Sample Allocation of Common Memory Partitions and Common Code......... 3-22
3-2 Extended MPX-32 Physical MemMOTYccccccemimvieeiiireniiecnieneetcne s 3-25
3-3 Extended MPX-32 Program Flow Controlcccccevuereniinieniencenecneenae 3-27
3-4 Tasks’ Logical Address Space Using Extended MPX-32..........ccccovevinenncns 3-31
3-5 Task’s Logical Address Space Using the EXTDMPX Directive

With TSA KEYWOIdooooiiieiieiieciecie ettt st eesae et eae e aesnaesesaaas 3-36
4-1 Volume FOrmatcocoeiiiiiiiiieiiii ettt s 4-21
4-2 A Sample Hierarchical Directory StruCture............ccccooueiniiiiriinenincciiieccnnne 4-25
4-3 Locating a File on @ VOIUMEcoooviiiiiiiiiiiiieceeee et 4-27

XXviii

Contents

List of Tables

Table

1-1
1-2
1-3

2-1
2-2
2-3

2-5
2-6

3-1
3-2

53
54
5-5
56
57
5-8

5-10
5-11
5-12

Page
CONCEPT/32 Trap VECOIS.....coueiuiiiiiiiiiceicieiiee e 1-5
CONCEPT/32 Interrupt VECLOTScc.coivuiiiiiiiiiiiiicie et eanes 1-6
MPX-32 DEVICE SUPPOIT.......ccuiriiriiriiiiieeieecet st saee e sens 1-23
Nonbase Mode vs. Base Modec..coooeeeiiiiiiiniiniiiiiiiiccnicceecee s 2-2
MPX-32 State QUEUES.....c.eeeeeerieeciieeiiirerrieeerieeeetteesstreestteesssteestaeesbeeesssaecnnseeas 2-13
Task Interrupt Operation/Services SUMMAryccccoevvivinieniiinicncniiccene 2-35
H.IPOF Register FIXupccccoioiiiiiiiiiiiiiiciececccnrecec s 2-36
Task Termination Sequencing (EXIT, ABORT, and DELETE)....................... 2-47
MPX-32 Faults/Traps and Miscellaneous Interrupts.............ccccoceeeeinnnnne. S 2-52
Static versus Dynamic Shared MemOryccocovceeeviriirniecniencce e, 3-18
Memory Partition Applications for Nonbase Mode Tasks.............cccceviinnnnnne. 3-19
File Access Modes and Conditions............cccueeivreieciineeniinreenenie e 4-37
Assign/Open Resource Allocation MatriXccoceeiiniiniirniinecnieneeiesee e 5-3
Multivolume Magnetic Tape Data Transfers Between Different
Operating SYSIEIMS.ccociiiiiiiiiiiiie ettt 5-22
Disk Description Tableccccoceoiiiiiiiniiiiiieiecccecie e 5-27
MPX-32 Device Type Codes and Mnemonicsccccoeveiiiiiicniiiniiiicinneinns 5-31
Assign/Open Block Mode Determination Matrixccccoveeniiieiiiiinncnne. 5-35
EOF and EOM DeSsCIiption..........cooovuiiiiiiiiiiiii it 5-37
Type Control Parameter Blockcccooooiiiiiiiiiiiiiiiccccc, 5-42
Execute Channel Program FCB Formatcccccciiiiiiiiiniininnininincccnns 5-46
Notification Packet Layout for PPCI Receiver..........cc.coovvviiiiiieniiniinccnnnne. 5-47
Permanent and Temporary File Resource Create Block (RCB) 5-59
Directory Resource Create Block (RCB)......c.cooiiiiiiniiiiiiiiicniccceceeeee 5-62
Nonbase Mode Memory Partition Resource Create Block (RCB) 5-63

MPX-32 Reference Volume | XXiX/XXX

Documentation Conventions

Conventions used in directive syntax, messages, and examples throughout the
MPX-32 documentation set are described below.

Messages and Examples

Text shown in this distinctive font indicates an actual representation of a
system message or an example of actual input and output. For example,

VOLUME MOUNT SUCCESSFUL

or

TSM>!ACTIVATE MYTASK
TSM>

Lowercase ltalic Letters

In directive syntax, lowercase italic letters identify a generic element that must be
replaced with a value. For example,

$SNOTE message

means replace message with the desired message. For example,
SNOTE 10/12/89 REV 3

In system messages, lowercase italic letters identify a variable element. For example,

BREAK ON:taskname

means a break occurred on the specified task.

Uppercase Letters

In directive syntax, uppercase letters specify the input required to execute that
directive. Uppercase bold letters indicate the minimum that must be entered. For
example,

$ASSIGN [fc TO resource

means enter $AS or $ASSIGN followed by a logical file code, followed by TO and a
resource specification. For example,

$AS OUT TO OUTFILE

In messages, uppercase letters specify status or information. For example,
TERMDEF HAS NOT BEEN INSTALLED

MPX-32 Reference Volume | XXXi

Documentation Conventions

Brackets []

An element inside brackets is optional. For example,
$CALL pathname [arg]

means supplying an argument (arg) is optional.

Multiple items listed within brackets means enter one of the options or none at all.
The choices are separated by a vertical line. For example,

$SHOW [CPUTIME|JOBS|USERS]
means specify one of the listed parameters, or none of them to invoke the default.

Items in brackets within encompassing brackets or braces can be specified only when
the other item is specified. For example,

BACKSPACE FILE [[FILES=] eofs]

indicates if eofs is supplied as a parameter, FIL= or FILES= can precede the value
specified.

Commas within brackets are required only if the bracketed element is specified. For
example,

LIST [taskname][,[ownername] [, pseudonym] |

indicates that the first comma is required only if ownername and/or pseudonym is
specified. The second comma is required only if pseudonym is specified.

Braces { }

Elements listed inside braces specify a required choice. Choices are separated by a
vertical line. Enter one of the arguments from the specified group. For example,

[BLOCKED={YIN}]
means Y or N must be supplied when specifying the BLOCKED option.

Horizontal Ellipsis ...

The horizontal ellipsis indicates the previous element can be repeated. For example,
$DEFM [par] [, par] ...

means one or more parameters (par) separated by commas can be entered.

xxxii Documentation Conventions

Documentation Conventions

(Vertical Ellipsis

The vertical ellipsis indicates directives, parameters, or instructions have been omitted.
For example,

SDEFM SI,ASSEMBLE,NEW, OP

SIFA %OP ASSM

means one or more directives have been omitted between the $DEFM and $IFA
directives.

Parentheses ()

In directive syntax, parentheses must be entered as shown. For example,

(value)

means enter the proper value enclosed in parentheses; for example, (234).

Special Key Designations

The following are used throughout the documentation to designate special keys:

<ctrl> control key
<ret> or <CR> carriage return/enter key
(<tab> tab key
- <break> break key
<bck> backspace key
 delete key

When the <ctrl> key designation is used with another key, press and hold the control
key, then press the other key. For example,

<ctrl>C

means press and hold the control key, then press the C.

Change Bars

Change bars are vertical lines (|) appearing in the right-hand margin of the page for
your convenience in identifying the changes made in MPX-32 Revision 3.5.

When an entire chapter has been changed or added, change bars appear at the chapter
title only. When text within figures has changed, change bars appear only at the top
and bottom of the figure box.

MPX-32 Reference Volume | XXXiii/XxXxiv

1 Introduction

1.1 System Description

The Mapped Programming Executive (MPX-32) is a disk-oriented, multiprogramming
operating system that supports concurrent execution of multiple tasks in interactive,
batch, and real-time environments. MPX-32 provides memory management, terminal
support, multiple batch streams, and intertask communication.

MPX-32 uses the SeIMAP to completely support the 16MB physical address space of
the CONCEPT/32 computers. Each task executes in a unique address space that can
be expanded under task control up to 2MB of memory on the 32/87, or 16MB on the
32/67, 32/97 and 32/2000. An integrated CPU scheduler and a swap scheduler
provide efficient use of main memory by balancing the in-core task set based on time-
distribution factors, software priorities, and task state queues. The SeIMAP is used to
perform dynamic relocation of tasks during inswap.

Tasks operating under MPX-32 can be activated and/or resumed by hardware
interrupts, system service requests, interactive commands, job control directives, or by
the expiration of timers. Multiple copies of a task can be executed concurrently in
interactive, batch, or real-time environments. Through its various scheduling
capabilities, MPX-32 provides the flexibility needed to adapt system operation to
changing real-time conditions.

The MPX-32 software package is composed of various software modules including
the resident operating system (I/O Control System (IOCS), CPU and swap schedulers,
Resource Allocator, Volume Management module, reentrant system services, and
device and interrupt handlers), a Terminal Services Manager (TSM), a system
generator (SYSGEN), and utilities such as a Volume Formatter and Volume Manager.
Figure 1-1 describes the system nucleus, processors, and utilities.

The Internal Processing Unit (IPU) is a second central processor designed to work
with the CPU to increase system throughput. The IPU is attached to the SelBUS like
the CPU and shares all memory (including the resident operating system area) with
the CPU. The IPU’s function is to execute user task level code in parallel with CPU
operation. (The IPU is optional hardware and must be specified during SYSGEN for
use on a system.)

To avoid contention between the IPU and CPU, there are IPU limitations. IPU
cannot:

* communicate with peripherals (perform I/O)
* process all supervisor call (SVC) system services
* execute interrupt control instructions

MPX-32 Reference Volume | 11

System Description

SYSTEM NUCLEUS
locs
CPU SCHEDULER
SWAP SCHEDULER
RESOURCE ALLOCATOR
VOLUME MANAGEMENT MODULE
SYSTEM SYSTEM PROGRAM
COMMAND P%Ncgggggs MANAGER DEVELOPMENT SERVICE
PROCESSORS UTILITIES UTILITIES UTIUTIES
TSM (1,B) ASSEMBLER (1,B) KEY(1,B) CATALOG (1,B) MEDIA (I,B)
OPCOM FORTRAN (1,B) SYSGEN (,B) DEBUG (1,B) UPDATE (I,B)
PASCAL (1,B) ACCOUNT (1,B) MACLIBR (1,B) VOLMGR (1,B)
COBOL (1,B) COMPRESS (1,B) LIBED (1,B)
BASIC () PROJECT (1,B) DPEDIT (1) DSCMP (1,B)
ASMX32 (1,B) VFMT (,8) EDITOR (,B) PASSWORD (1)
FORTX32 (1,B) SHUTD (1,B) LINKX32 (1,B) KEYWORD (I)
GCF (1,B) ENABLE (1) DEBUGX32 (1,B)
GCC(1B) LOGTIME (1) MACX32 (1,B)
TERMOUT () OBJX32 (1,B)
LOGCNT () HELPT (1,8)
LD (1,B)
DBX (1,B8)
NOTE:
| = INTERACTIVE
B - BATCH
R = REALTIME
R1006

Figure 1-1

MPX-32 Processors and Utilities

Introduction

System Description

Therefore, the IPU and CPU manage task execution transparently around the IPU
limitations. For example, if the IPU is executing a task and encounters a service it
cannot perform, a trap is sent to the CPU, the CPU takes over execution of the task at
that point, and the task remains in the CPU until completion or reselection for IPU
execution.

MPX-32 standard features include:

* full support for 16MB physical addressability of the CONCEPT/32 computers
* up to 255 tasks executing concurrently

* 64 software priority levels, 10 of which are time distributed

* servicing of all standard (extended I/O (XIO)) peripheral devices

* standard handlers for interrupts and traps

* intertask communications, including send/receive

* intertask shared memory partitions, such as Global Common and Datapool

* dynamic allocation and deallocation of memory and peripherals

* multiple batch streams, including multiple spooled input and output queues

* wait and no-wait I/O capabilities, including automatic blocking, buffering, and
queueing

* terminal support for up to 64 devices, including device-independent operation and
an extensive repertoire of online commands

* automatic task reentrancy through separation of pure code and data areas
* reentrant system services available to all tasks

* several levels of system security, including access restrictions based on task
ownership

* file management, assignment, and security

* up to 245 logical files (files or devices) opened concurrently per task if both static
and dynamic assignments are used

* project accounting capability
* transparent support of the [PU
* automatic mounting of public volumes at IPL

MPX-32 uses hardware and software priorities for scheduling and executing tasks.
Figure 1-2 shows the various MPX-32 software elements and the hardware and
software priority levels that are assigned to each.

MPX-32 Reference Volume | 1-3

System Description

RELATIVE TRAP
AND INTERRUPT
HARDWARE PRIORITIES
00 | POWER FAIL - SAFE 1P0O
o1 POWER ON/AUTOSTART IPAS
02 | MEMORY PARITY P02
03 | NONPRESENT MEMORY P03 EXEC
04 | UNDEFINED INSTRUCTION P04 MONS
05 | PRIVILEGE VIOLATION [1OCS
3 Y FISE
06 | SUPERVISOR CALL (SVC) L ALOC
T 07 | MACHINE CHECK P07 | TAMM |
(HFéQ)P 08 [SYSTEMCHECK P08 TSM
09 [MAPFAULT P09 REXS
0A | UNDEFINED IPU INSTRUCTION PU REMM
o8 |SiPU 1PU, CPU | VOMM |
oc | ADDRESS SPECIFICATION 1POC MEMM
0D | CONSOLE ATTENTION P13
0E [PRIVILEGE MODE HALT PHT
oOF | ARITHMETIC EXCEPTION IPOF
10 [CACHE PARITY H.IP10
0-3 | EXTERNAL INTERRUPTS USER INTERRUPT HANDLERS 1
4
VO SERVICE INTERRUPTS | SYSTEM AND USER DEVICE HANDLERS |
13
14 -17 | EXTERNAL INTERRUPTS ——— USER INTERRUPT HANDLERS]
18 REAL TIME CLOCK —— IPCL - TIMER SCHEDULE 1
INTERRUPT 19 — —
HEX s | EXTERNALINTERRUPTS 1 USERINTERRUPT HANDLERS 1
SF INTERVAL TIMER INTERRUPT — IPIT - CPU SCHEDULER 1
60 -6F | EXTERNAL INTERRUPTS —— USER INTERRUPT HANDLERS]
SOFTWARE PRIORITIES (DECIMAL)
1
TASKS, PROCESSORS / UTILITIES
REAL TIME EXECUTE EITHER AT CATALOGED
PRIORITY OR AT TIME DISTRIBUTION
54 PRIORITY, DEPENDING ON HOW
55 ACTIVATED.
TIME DISTRIBUTION
64

R1007

Figure 1-2
Hardware/Software Priorities

Introduction

System Description

1.1.1 Hardware Interrupts/Traps

The CONCEPT/32 computers support up to 96 hardware interrupts and traps. See
Tables 1-1 and 1-2 for a description of CONCEPT/32 trap and interrupt vectors. The
exact number in a particular system depends on the user’s requirements and the
number of peripheral devices in the configuration.

The highest hardware priority levels in the system are reserved for the basic system
integrity interrupts and traps. These include the power fail/power up traps and the
system override interrupts and traps. Lower levels are used for the I/O transfer
interrupts, memory parity trap, console interrupt, and I/O service interrupts.

The next lower group of interrupts and traps are used for exceptional conditions,
supervisor call requests, and the real-time clock. The exceptional conditions include
nonpresent memory trap, undefined instruction trap, privilege violation trap, and
arithmetic exception interrupt.

All lower hardware priority levels are used for external interrupts. User tasks can be
connected directly or indirectly to the external interrupts.

Table 1-1
CONCEPT/32 Trap Vectors
Relative Default Trap
priority Vector Location (TVL) Trap Condition
CPU IPU

00 80 20 Power fail trap (power down)

01 84 24 Autostart trap (power up)

02 88 28 Memory parity trap

03 8C 2C Nonpresent memory trap

04 90 30 Undefined instruction trap

05 94 34 Privilege violation trap

06 98 38 Supervisor call trap

07 9C 3C Machine check trap

08 A0 40 System check trap

09 A4 44 MAP fault trap

0A A8 48 Not used

0B AC 4C Undefined IPU instruction trap

0C B0 50 Address specification trap

0D B4 54 Console attention trap

OE B8 58 Privilege mode halt trap

OF BC 5C Arithmetic exception trap

10 Co 60 Cache memory parity trap
(all supported CONCEPT/32 computers
except the 32/2000)

11 C4 - Demand page fault trap
(CONCEPT 32/2000 only)

MPX-32 Reference Volume | 1-5

System Description

Table 1-2

CONCEPT/32 Interrupt Vectors

Default Interrupt

Vector Location
Relative Priority (IVL) Interrupt Condition
00 100 External/software interrupt 0
01 104 External/software interrupt 1
02 108 External/software interrupt 2
03 10C External/software interrupt 3
04 110 1/O channel 0 interrupt
05 114 I/O channel 1 interrupt
06 118 I/O chanrnel 2 interrupt
07 11C I/O channel 3 interrupt
08 120 I/O channel 4 interrupt
09 124 I/O channel § interrupt
0A 128 1/0 channel 6 interrupt
0B 12C I/O channel 7 interrupt
0C 130 I/O channel 8 interrupt
0D 134 I/O channel 9 interrupt
0E 138 I/O channel A interrupt
OF 13C I/O channel B interrupt
10 140 I/O channel C interrupt
11 144 I/O channel D interrupt
12 148 I/O channel E interrupt
13 14C 1/0 channel F interrupt
14 150 External/software interrupts
17 15C External/software interrupts
18 160 Real-time clock interrupt
19 164 External/software interrupts
5E 278 External/software interrupts
SF 27C Interval timer interrupt
60 280 External/software interrupts
6F 2BC

Introduction

System Description

1.1.2 Software Interrupt System

MPX-32 provides 64 software priority levels for controlling the user’s application.
All system scheduling is performed by priority. Multiple tasks can be assigned to any
priority level, thereby achieving a high level of multiprogramming versatility. The
software priority levels are used by the Resource Allocator for peripheral and memory
allocation, by the I/O supervisor for the queueing of I/O requests, and by MPX-32
whenever CPU control is allocated.

1.1.3 Task Priority Levels

Priorities 55 to 64 are time-sliced to provide for round-robin time distribution among
tasks of the same priority. Priorities 1 to 54 are not time distributed. A task’s
cataloged priority is altered based on its eligibility to run. For example, a task’s
priority is boosted when an I/O operation is completed and restored after a minimal
time quantum. Priority migration ensures maximum response to real-time events.

1.1.4 Supervision and Allocation

CPU scheduling is maintained through a set of state queues including the priority state
chains and such execution states as suspended, queued for memory, queued for
peripheral, I/O wait, etc. Each CPU dispatch queue entry defines all scheduling
attributes of a single task. The entry typically migrates among the state queues as the
task’s execution eligibility changes. These state chains are also used by the swap
scheduler to select candidates for swapping.

The CPU scheduler is invoked whenever a scheduling event occurs. Scheduling
events include:

* external interrupts

* I/O completion

* timer expiration

* resource deallocation

* system service completion

IPU scheduling is maintained through state queues consisting of biased tasks
(C.RIPU) scheduled in addition to MPX-32 normal state queues for nonbiased tasks
(SQRT through SQ64). Any biased tasks are prioritized among themselves, and are
scheduled for execution based on priority. Any nonbiased tasks are also prioritized
among themselves, and are scheduled for execution according to priority. If a
nonbiased task waiting for execution has a higher priority level than a biased task also
waiting for execution, the nonbiased task is selected for execution.

An optional scheduling algorithm is available to boost the priority of IPU tasks and
allow them to run in the CPU.

MPX-32 Reference Volume | 1-7

System Description

1.1.5 Memory Allocation

The unit of memory allocation is a map block, which is 2KW on the CONCEPT/32
computer. Memory is allocated to tasks as needed. All tasks are loaded
discontiguously into a whole number of physical map blocks, utilizing the SeIMAP to
create their contiguous logical address space. No partial map blocks are allocated.

The MPX-32 memory allocation scheme allows tasks to dynamically expand and
contract their address space by system service calls.

The unit of memory protection is called a protection granule and is 512W. Thus, it is
possible to have protected data areas within a map block. On a CONCEPT 32/2000
with mapped out image, the unit of memory protection is 2KW.

1.1.5.1 Dynamic Allocation

Dynamic allocation and deallocation are performed by the allocate and deallocate
system services. These services can be used to dynamically allocate and deallocate
any peripheral device, permanent and temporary disk files, or the system listed output
(SLO) and system binary output (SBO) files. By allocating peripheral devices
dynamically, each task has exclusive use of a peripheral only during the time required
to perform the task’s I/O. Therefore, when peripherals are not allocated, other tasks
can use them on an as-needed basis.

Because the allocation of system-wide peripheral devices that are requested
dynamically cannot be guaranteed, a task must be prepared to accept a denial return.

A task requesting additional memory is automatically queued until the memory can be
allocated. For peripherals and file space, the caller can optionally queue for allocation
or take alternative action.

1.1.6 File Management

In the MPX-32 operating environment, files are used in several ways. Permanent files
are created for user programs, user data, and system programs. Temporary files
provide system scratch storage, user scratch storage, and system output data storage
for the system printer. Separation is maintained among files belonging to different
users.

The file management system for MPX-32 consists of the resident Volume
Management Module and the nonresident Volume Manager. Together, they supervise
all file space on the disks.

1.1.6.1 Permanent Files

1-8

Residing in disk storage, permanent files are defined by entries in a directory which
specify each file’s name, binary creation date and time, absolute block number of
resource descriptor, resource ID flag and type and other directory entry control
information. Permanent files remain defined to the operating system until they are
explicitly deleted.

Introduction

T
¥ ;

System Description

1.1.6.2

1.1.6.3

1.1.64

1.1.6.5

1.1.6.6

Permanent files can be accessed by multiple tasks for both input and output. Access
permanent files by pathname. To locate the directory entry for a permanent file,
MPX-32 translates the file name characters to a specific location in the directory. For
a complete description of pathnames, see Chapter 4.

Permanent files are classified as either fast or slow depending on the speed at which
their directory entries can be located. A fast permanent file is one whose entry can be
located with one disk access. Slow permanent files require two or more disk accesses
to find each file’s entry.

Temporary Files

Temporary files are files whose definitions are eliminated from the system upon
completion of the task requiring the space. Temporary file space is allocated and
deallocated by the Volume Management Module which is responsible for maintaining
space allocation maps for all available disks. Temporary files are typically used for
either system or user scratch storage.

Random Access Files

Any disk file may be accessed randomly by record number through standard IOCS
calls. The user sets a bit and specifies the relative disk block number in a file control
block (FCB) to utilize this feature.

Disk File Protection

File protection mechanisms are available to prevent unauthorized access to and
deletion of permanent files. Protection of individual files can be specified when the
files are created. User files can also be protected on a per user basis. If a key is
associated with an owner name in the MLKEY file, it must be entered at logon.
Specific access rights are defined for each file by owner, project group, and other.

Dedicated System Files

To increase system throughput and minimize I/O delay time, IOCS supports disk
buffered I/O by using special system files. Four dedicated file codes exist in the
system. One file code is for buffered system input (SYC), two file codes are for
buffered system output (SLO, SBO), and one file code is for a system object file
(SGO). A system file can be assigned to a file code in the same manner a device is
assigned to a file code.

Multiprocessor Files

MPX.-32 allows tasks executing in separate system environments to concurrently
access selected files. The operating system maintains resource integrity on these files
within the scope of volume management described in Chapter 4 of this manual. These
files must reside on a volume accessible by a multiported device.

MPX-32 Reference Volume | 1-9

System Description

1.1.7 System Services

MPX-32 offers resident system service routines that can perform frequently required
operations with maximum efficiency. Using the Supervisor Call instruction, tasks
running in batch, interactive, or real-time environments can call these routines.

All system service routines are re-entrant. Thus, each service routine is always
available to the currently active task.

The system service routines are standard modular components of MPX-32. However,
the open-ended design of the system gives each user freedom to add any service
routines required to tailor MPX-32 to a specific application.

1.1.8 Input/Output Operations

The Input/Output Control System (IOCS) provides I/O services that relieve the
programmer of detailed chores. While keeping software overhead to an absolute
minimum, IOCS receives and processes all I/O requests for both user and tasks. It
performs all logical error checking and parameter validation. IOCS also logically
processes all I/O operations and assigns I/O control to the appropriate device handler.
In turn, the device handler executes the I/O data exchange, processes service
interrupts, and performs device testing.

1/O operations for MPX-32 include the following general capabilities: direct I/O,
queued I/O requests, device independent I/O, device interchangeability, device
reassignment, and disk-buffered (blocked) I/O.

1.1.8.1 Direct l/O

I/O can be issued directly to acquire data at rates which prohibit the overhead of
IOCS. Mechanisms are provided in IOCS to ensure that no conflict occurs with IOCS
file operations. The interface facilities provided in IOCS for direct I/O enable a task
to gain exclusive use of an I/O channel.

1.1.8.2 Device-Independent I/O

Normal I/O operations in the system occur to and from user-specified logical file
codes. These file codes are assigned and reassigned to the physical device where the
I/O commands are ultimately routed.

1.1.8.3 Logical File Codes

The user logical file code consists of one to three ASCII characters. For each file
code defined and referenced by a user task, there is an entry in a file assignment table
(FAT). The FAT entry describes the device controller channel and the device the file
is assigned to. For a disk that is a shared device, additional addressing information is
provided for complete identification of the file. Each user task is allowed a maximum
of 245 static and dynamic logical file assignments.

Introduction

—
i Y "

NS

System Description

1.1.8.4 File Access

IOCS supports both random and sequential file access. Random or sequential access
is specified by the user. All files assigned to devices other than disk are considered
sequential. A file assigned to disk may be referenced by both random and sequential
transfers. Attempts to perform a write operation on a file specified as read-only, or
attempts to circumvent disk file protection and security, are aborted.

1.1.9 Communications Facilities

MPX-32 offers complete facilities for communications between individual users,
internal system elements, user tasks, and the operator and the system. Users
communicate with one another by sharing permanent files, shared images, the
communication region, Global Common and Datapocl partitions, and job status flags
which can be set and interrogated by system service routines. Tasks communicate
with one another by messages or run requests.

Intertask Messages

Tasks can establish message receivers for intertask communication. Messages are
buffered by MPX-32 in memory pool until the receiving task is eligible to receive.
The receiving task is interrupted asynchronously and optionally responds to the
sender. The sender optionally waits for a reply or elects to be interrupted
asynchronously by a response. Messages can be queued to an arbitrary depth.

1.1.9.2 Run Requests

A task can send a run request to any other task. A run request is similar to a message,
except that with a run request, the receiver may not yet be in execution. In such
cases, the receiving task is activated before the message is queued. The receiving task
can process run requests at any time.

1.1.9.3 Global Common

Global Common is an area of memory that many programs can access by using
symbolic names to identify specific storage cells. In this respect, Global Common is
comparable to local common. Unlike local common, however, access to Global
Common is not restricted to programs within a single task. Rather, programs
belonging to many independent tasks can freely access the same data and exchange
control information within the Global Common area.

1.1.9.4 Shared Images

A shared image allows base mode tasks to share both code and data, for example,
shared subroutines and common data partitions. A shared image is built on disk by
the base mode linker (LINKX32) and is loaded into memory upon inclusion by a task.
Nonbase mode tasks can include the shared image as an initialized dynamic data
partition. Shared images are distinct from static and dynamic common in that the
memory is initialized with data from disk.

MPX-32 Reference Volume | 1-11

System Description

1.1.9.5 Datapool

1.1.9.6

1.1.10

1.1.11

C

Like Global Common, Datapool is an area of memory that many tasks can access
using symbolic references. In addition to providing all the advantages of Global
Common, Datapool provides a much wider range of structuring flexibility. For
example, where global common symbolic references must follow the same order as
the locations of the data in memory, symbolic references to Datapool may be entirely
independent of the actual positioning of data within the memory area.

Internal Communications

Internal system elements communicate through temporary files, system queues, and
the system communications region. The system communications region occupies
approximately 2KW of lower memory. It contains information common to all system
modules and processors.

Trap Processors

Trap processors are entered when any exceptional condition trap occurs. Certain traps
indicate task errors, such as a reference to nonpresent memory, a privilege violation,
or execution of an unimplemented instruction. These traps cause the violating task to
be aborted. When the arithmetic exception trap occurs, the overflow condition is
noted for use by the task in execution.

Timer Scheduler \n_/l

The timer scheduler schedules events such as task activation, task resumption, flag
setting and resetting, and interrupt activation on a timed basis.

1.1.12 Time Management

1-12

Time is kept in two different formats. The system maintains the time as a count of
clock interrupts, and the date as an ASCII constant. To allow for easy time stamping
of resources with the file system capabilities, time is also kept as a binary count of
100 microsecond units since midnight, and the date as the binary number of days
since January 1, 1960. See Appendix H for more details.

When entering the date and time, the user can specify daylight savings time and a
correction factor for time zone. These features are provided for the user who wants
the system to use a standard time base, such as GMT, for system operations, and to
display values of date and time in local time. For example, if a user states that local
time is 10:00:00, daylight savings time is in effect, and there is a two-hour
correction for time zone, the time kept by MPX-32 indicates 07:00:00. The
correction factor is kept so any user access of time indicates the local value.

Another feature allows the use of the international date format for entering the date.
Instead of entering 10/17/80, 170CT80 can be entered. The date is always
displayed in the same format as it is entered at IPL time.

Introduction

System Description

1.1.13 System Nonresident Media Mounting Task (J.MOUNT)

J.MOUNT mounts both formatted volumes and unformatted media. J.JMOUNT is
normally in the Waiting for Run Request (RUNW) queue. When a task requires a
volume to be physically mounted or dismounted, a run request is sent to JMOUNT.
J.MOUNT then interacts with the operator through the system console to complete the
mount or dismount process.

1.2 System Command Processors

The Terminal Services Manager (TSM) and the interactive Operator Communications
(OPCOM) command processor provide access to MPX-32 interactive, batch, and real-
time processing environments.

1.2.1 Terminal Services Manager (TSM)

TSM provides interactive, time-shared access to the MPX-32 system for terminals
connected either through ALIM or ACM controllers. It allows the user to:

logon to MPX-32

access any MPX-32 processor ‘

communicate with online users or the operator

account for use of computer resources

specify and pass parameters to interactive and batch tasks
automate a series of tasks into a job, or submit a stream of jobs
nest directive files

construct loops to control processing in directive files
request assignment of any MPX-32 resource

specify alternative actions conditionally

logoff from MPX-32

MPX-32 Reference Volume | 1-13

System Command Processors

M‘\
1.2.2 Operator Communications (OPCOM) (J

OPCOM provides commands that set up the system for optimum response to changing
conditions. Using OPCOM directives, users can:

* list the status of all queues, tasks, I/O controllers, and mounted volumes
* control spooled print and punch output

* hold and continue execution of tasks

* activate and abort tasks

* connect tasks to interrupts

* establish resident and nonresident tasks

* display time-of-day clock

* create and delete timer scheduler queue entries

* delete allocation queue entries

* enable, disable, and initiate hardware interrupts

* reserve devices, release them, and place them off-line or online

* change the assignment of the system input device, the SGO file, and the destination
of the SLO and SBO spooled output files

* initiate the reading of the batch stream
* issue system debugging commands
* dump physical memory to the console

1.2.3 Batch Processing

Batch processing consists of spooling batch jobs to disk, interpreting job control
statements, and directing listed and binary spooled output to destination files and
devices. Multiple jobs are processed concurrently within limits established by
SYSGEN and the availability of computer resources. Tasks that use batch processing
compete with each other and with nonbatch tasks for computer resources under
standard MPX-32 allocation algorithms.

Each job is spooled to a separate system control (SYC) disk file prior to processing.
Jobs can be spooled to SYC files from card, magnetic tape, and paper tape peripheral
devices, and from blocked, temporary, and permanent disk files. The OPCOM
BATCH directive can be used to initiate spooling from peripheral devices and
permanent files. The batch job from entry system service (M.BATCH) is used by
TSM, and the Text Editor and can be invoked by a task to initiate spooling from
permanent and temporary disk files. The TSM $BATCH or $SUBMIT directives can
also be used to submit batch jobs.

1-14 Introduction

System Command Processors

Job sequence numbers show the order that jobs are entered and uniquely identify each
job and its tasks.

When a job completes, its spooled listed and binary output is automatically routed to
usable peripheral devices if no particular device(s) or permanent file(s) are specified
for the job. Usable devices for automatic selection are specified by SYSGEN and
OPCOM directives. Spooled output destination devices include line printers, card
punches, magnetic tapes, paper tapes, and disk files. Spooled output is selected for
processing based on the software priority of jobs and, within a given priority, on the
order in which jobs complete processing.

1.3 Program Development Utilities

MPX-32 supports both nonbase and base mode programs. Refer to the Task
Structures section of Chapter 2 for the nonbase and base task differences. Nonbase
and base modes cannot be mixed; therefore, separate program development utilities
exist for each mode.

Of the following utilities, only VOLMGR and J.VFMT are included on the MPX-32
Master SDT.

1.3.1 Task Cataloging (CATALOG)

Use the cataloger to catalog permanent nonbase mode load modules that execute as
tasks on the MPX-32 system. During cataloging, relocatable object modules produced
by the assembler or compilers are loaded and linked internally and externally to
library subroutines. The linked body of code thus produced is then sent to a selected
permanent file in relocatable or absolute format. In addition, the cataloger places a
preamble on this file. This preamble contains a summary of the resources required by
the task, such as memory, permanent files, and peripheral devices, and defines special
task characteristics (shared, resident, etc.). Once created, a task is known to the
system by the name of the permanent file where it resides. The task can then be
activated, saved, restored, or otherwise operated on by specifying its name in the
appropriate job control statement, system service call, or terminal directive.

1.3.1.1 Privilege

Whether a task is privileged or unprivileged can be defined by cataloger directives.
The ability to specify a privileged operation for a task can be restricted by owner
name.

By specifying whether tasks are privileged or unprivileged, users can control system
security. Tasks designated to run privileged are free to execute any instruction in the
instruction repertoire. They also have read/write access to all memory locations.

MPX-32 Reference Volume | 1-15

Program Development Utilities

1.3.1.2 Overlays

For efficient use of memory, the cataloger provides the user with facilities for dividing
large nonbase mode programs into overlays. The main program segment, the root,
and the overlay segments can be cataloged in relocatable format. Individual overlays
can be cataloged separately, permitting the user to modify or replace any overlay
without disturbing any of the others. Flexible symbol linkage is provided between the
root and its associated overlays and between individual overlays of various levels.

1.3.2 Task Debugger (AIDDB)

The task debugger is a directive-oriented processor that debugs a single, cataloged,
nonbase mode user task. It can be accessed with a DEBUG directive in TSM, with a
$DEBUG statement in batch, by coding an M.DEBUG service call within the
cataloged task, or by using the break key after a task has been activated with TSM, in
which case TSM provides the option of calling M.DEBUG.

If the task the debugger is connected to has a shared CSECT, the debugger must be
attached at task activation (by the DEBUG directive in TSM or $DEBUG statement in
batch). The shared CSECT task is then loaded as multicopied and breakpoints set in
the CSECT do not impact other users of the shared CSECT.

Using AIDDB directives, users can:

* trace task execution
* set debugging traps within the task %)

N
* display and/or alter contents of the task’s logical address space, general purpose
registers, etc.

* watch for privileged task entry into the operating system or other areas of memory
not usually accessed even by a privileged task

* perform other operations that facilitate task debugging

1.3.3 Macro Assembler (ASSEMBLE)

The Macro Assembler translates nonbase assembler directives and source code into
binary instructions for the CONCEPT/32 CPU.

1.3.4 Macro Library Editor (MACLIBR)

With the Macro Library Editor, nonbase mode macros that are used frequently can be
placed in a macro library where they are available for use by the Macro Assembler.
During execution, the Macro Library Editor transfers the macros from the source input
file to the macro library file. The macros entered into the library are listed on an
output file.

1-16 Introduction

Program Development Utilities

1.3.5 Subroutine Library Editor (LIBED)

The Subroutine Library Editor provides facilities for creating and modifying the
nonbase mode system subroutine library and any number of user subroutine libraries.
The user is provided with a listing of directives, module names, external definitions,
the quantity of library and directory space remaining on the disk, and the modules that
were specified for deletion but were not located in the library.

1.3.6 Datapool Editor (DPEDIT)

The Datapool Editor provides the ability to create and maintain dictionaries for access
to static or dynamic Datapool common memory partitions.

1.3.7 Text Editor (EDIT)

The Text Editor provides directives for building and editing text files, merging files or
parts of files into one file space, copying existing text from one location to another,
and, in general, for performing editing functions familiar to users of interactive
systems.

EDIT is typically used to create source files and to build job control files and general
text files. A job file built in the editor can be copied directly into the batch stream
using the editor BATCH directive.

1.3.8 Volume Manager (VOLMGR)

The Volume Manager creates or deletes permanent disk file space, special global
partitions, and/or a datapool partition (one that can be dynamically allocated in
memory when required by tasks). A primary use is to provide system and user
permanent file backup.

1.3.9 Volume Formatter (J.VFMT)

The Volume Formatter formats volumes (disks). It can operate on a fully functional
MPX-32 system or a starter system by the SDT.

1.3.10 Assembler/X32 (ASMX32)

The Assembler/X32 translates base mode assembler directives and source code into
binary base mode instructions for the CONCEPT/32 CPU.

1.3.11 Macro Librarian/X32 (MACX32)
The Macro Librarian/X32 builds and maintains base mode macro libraries that are

accessed by the macro assembler/X32. Frequently used base mode macros can be
placed in the macro libraries for easy access.

MPX-32 Reference Volume | 1-17

Program Development Utilities

1.3.12 Object Librarian/X32 (OBJX32)

The Object Librarian/X32 provides facilities for creating and modifying user object
libraries. The object libraries contain object files to be used in base mode programs.
The object librarian provides a log of the number of object files entered, the names of
the object files, when each file was entered, and the amount of available library space.

1.3.13 Linker/X32 (LINKX32)

The Linker/X32 creates permanent base mode load modules that can execute as tasks
on MPX-32. During linking, object modules produced by the macro assembler/X32
or compilers are loaded and linked internally and externally to library subroutines.
The linked body of code becomes an executable image.

1.3.14 Symbolic Debugger/X32 (DEBUGX32)

The Symbolic Debugger/X32 is a directive-oriented processor used to debug base
mode executable images created by the Linker/X32. Using the debugger, users can:

* debug interactively, with debugger directives controlling the execution of the
program

* access program locations (memory addresses) by using hexadecimal addresses,
bases, or the global symbols defined in the source program — addresses are
displayed either in hexadecimal format or relative to a base or global symbol

* display data in ASCII, hexadecimal, or instruction format

* execute program instructions one at a time, showing the result after each instruction
is executed, or set traps to allow execution to proceed through many instructions to
a designated program checkpoint

* define bases
* debug privileged programs
* print a record of the debugging session

1-18 Introduction

Service Utilities

1.4 Service Utilities

1.4.1 Source Update (UPDATE)

The Source Update utility provides facilities for revising source files. It permits the
user to enter new files, as well as to update existing files by adding, replacing, and
deleting source statements. Input can be in standard or compressed format. Either
format can be selected for the output file. Source Update can also produce a listing of
the control stream as it generates the output file.

1.4.2 Media Conversion (MEDIA)

The Media Conversion utility performs functions ranging from card duplication to
merging multiple media inputs into single or multiple media outputs. It provides
media editing, media-to-media conversion, code conversion, media copying, and
media verification. Rather than restricting the user to a fixed set of functions, the
Media Conversion utility is controlled by a language of directives.

MPX-32 Reference Volume | 1-19

System Manager Utilities

1.5 System Manager Utilities

1.5.1 M.KEY Editor (KEY)

KEY is a utility used to build an M.KEY file for the MPX-32 system. The MKEY
file specifies valid owner names on the system and optionally sets, for each owner
name:

* a key and/or password to restrict access to the owner name during logon and to the
user name when accessing files

* OPCOM indicators restricting the owner’s use of OPCOM directives

* an indicator that prevents the owner from cataloging privileged tasks (tasks that use
privileged system services or privileged variations of unprivileged system services)

* an indicator that prevents the owner from activating tasks cataloged as privileged
* default tab settings

* default working volume and directory specification

* default alphanumeric project names/numbers for accounting purposes

After KEY runs, only those owners established in the M.KEY file can logon to the
system and access files.

1.5.2 MPX-32 System Start-up, Generation, and Installation (SYSGEN)

Users can install a starter system by booting from the master System Distribution
Tape (SDT). Using the starter system, which is fully operational, a user-configuration
of the system can be generated with the SYSGEN utility (running either interactively
or in batch). An online RESTART directive is available to test user-configured
systems. When a system has been tested, users can create their own SDT using the
VOLMGR SDT directive.

When SYSGEN runs, system tables are constructed and linked to the resident system
modules, handlers, and user-supplied resident modules and handlers as specified by
SYSGEN directives. A resident system image is formed and subsequently written to a
dynamically acquired permanent disk file. Concurrent with this process, a listing of
directives is built and a load map of the system is generated. The load map can be
saved on a system symbol table file specified by the user with the SYMTAB directive
and used subsequently in patching the system.

A system debugger can also be configured in the resident system image to assist in
patching or debugging resident system code, including user interrupt and I/O handlers.

1-20 Introduction

Libraries

1.6 Libraries

1.6.1 Subroutine Libraries

Subroutine libraries can simplify the development of applications. Subroutines can be
added, modified, or deleted. This permits one routine to be changed without having to
reassemble or recompile all of the subroutines needed for a task. Only the task must
be recataloged.

Subroutines on a subroutine library can be used by programs written in various

languages, including Assembly. They are accessed as object modules when a task is
cataloged. The subroutine library and directory for MPX-32 are called MPXLIB and
MPXDIR. User subroutine libraries can be built and modified by the LIBED utility.

1.6.2 System Macro Libraries

Two macro libraries are supplied as part of the MPX-32 system. They are used only
with programs written in assembly language. The first, M.MPXMAC, should be
accessed when code that uses MPX-32 system services is assembled. The second,
M.MACLIB, is used when code contains RTM monitor service calls. These macro
libraries provide macros containing equates for MPX-32 communication region
variables.

The user can expand, contract, or modify a macro library by using the MACLIBR
utility.
1.6.3 Other

The Scientific Subroutine Library is optionally available. It contains math and
statistical routines for scientific and engineering applications. A user group library is
also available. It is provided by and for users.

MPX-32 Reference Volume | 1-21

Minimum Hardware Configuration

1.7 Minimum Hardware Configuration
Minimum hardware requirements for MPX-32 operation on a CONCEPT/32 computer

1-22

are as follows:

128KW memory
* magnetic tape (class F) or IOP floppy disk
* I/O processor (IOP) or Multi-Function processor (MFP) console

* extended I/O disk

The minimum configuration must also include the prerequisites required to support the

items listed, for example, controllers, formatters, etc.

Devices supported by MPX-32 are listed in Table 1-3. Where appropriate, the code
used to access a device is shown in parentheses. The code indicating the appropriate
device, such as TY for a terminal on an ALIM, is used when accessing devices

connected with a communications link.

Introduction

®

N

Minimum Hardware Configuration

(Table 1-3
MPX-32 Device Support
Model
Number Description

1603 Vector Processor 3300*
1604 Vector Processor 6410*
2345 Real-Time Option Module
3050 Multiprocessor Shared Memory System (MS)2
7302 Reflective Memory Port (RMS) with WSC, RSC
7410 Analog Digital Interface (ADI)
8001 1/O processor
8002 Multi-Function Processor (MFP)
8031 Line printer/Floppy disc controller (LP)
8050 High Speed Tape Processor (HSTP) (XIO)
8055 Disc Processor II*
8060 Universal Disc Processor (UDP)
8064 High-Speed Disc Processor (HSDP)
8121 80MB sealed media disc processor subsystem
8130 80MB disc processor subsystem
8140 300MB disc processor subsystem
8150 675MB fixed module disc processor subsystem
8160 Cache disc accelerator
. 8174 Floppy disc with controller (FL)
(‘ 8175 Dual floppy disc with controller (FL)
- 8210 High speed tape processor subsystem
75 ips 9-Track 1600/6250 bpi (M9)*
8211 High speed tape processor subsystem
125 ips 9-Track 1600/6250 bpi (M9)*
8212 High speed tape processor subsystem
125 ips 9-Track 800/1600/6250 bpi (M9)
8255 Butffered tape processor
8310 Band printer (300 Ipm) (64 character) (LP)
8311 Band printer (600 lpm) (64 character) (LP)
8312 Band printer with form length select switch
8313 Band printer with VFU (300 Ipm) (64 character) (LP)
8314 Band printer with VFU (600 Ipm) (64 character) (LP)
8315 Band printer with VFU (1000 lpm) (64 character) (LP)
8356 Matrix Printer (80 col)
8357 Matrix Printer (130 col)
8371 Letter Quality Printer
8317 96-character option set
8410 Quarter-inch tape drive
8510 Eight-line asynchronous communication controller*

* This product is no longer available but remains supported by MPX-32 in existing
installations.

Continued on next page

MPX-32 Reference Volume | 1-23

Minimum Hardware Configuration

Table 1-3
MPX-32 Device Support (Continued)
Model -
Number Description
8511 Asynchronous Communication Multiplexer (ACM)*
8512 Asynchronous Communication Multiplexer (ACM)*
8520 Synchronous Communications Multiplexer (SCM)
8610 Alphanumeric CRT (CT or TY)
8846 160MB disc processor subsystem
8856 340MB disc processor subsystem
9020 Low Speed Tape Processor (LSTP) (XIO)
9103 Extended (Class D) General Purpose Multiplexer
Controller (GPMC)
9109 Synchronous Line Interface Module (SLIM)
9110 Asynchronous Line Interface Module (ALIM)
9116 Binary Synchronous Line Interface Module (BLIM)
9131 High Speed Data Interface II (HSD II)
9202 Teletypewriter (30 cps) (CT or TY)
9203 Alphanumeric CRT (95 character) (CT or TY)*
9223 Matrix printer (340 cps) (LP)
9225 Line printer (300 Ipm) (64 character) (LP)*
9226 Line printer (600 Ipm) (64 character) (LP)*
9237 Line printer (900 Ipm) (64 character) (LP)* e
9245 Line printer (260 lpm) (96 character) (LP)* &
9246 Line printer (436 Ipm) (96 character) (LP)* N
9247 Line printer (600 Ipm) (96 character) (LP)*
9460 Paper tape reader with controller (300 cps) (PT)
9462 Paper tape reader/spooler (300 cps) (PT)
9567 Low speed tape processor subsystem 45 ips 9-track
800 bpi (M9)*
9568 Low speed tape processor subsystem 45 ips 9-track
800/1600 bpi (M9)
9571 Low speed tape processor subsystem 75 ips 9-track
800/1600 bpi (M9)
9577 75 ips Master magnetic tape unit 9-track (M9)*

* This product is no longer available but remains supported by MPX-32 in existing

installations.

1-24

Introduction

2 Task Structure and Operation Overview

2.1 Task ldentification

The user can identify tasks by task name or task number. The task name is the name
of the load module or executable image file containing the task. The task number is a
sequential 24-bit number concatenated with an 8-bit DQE index and is assigned when
the task is activated. Task numbers are unique for each task in the system. If the task
is multicopied, use the task number.

Each task is also associated with an owner. Valid owner names are specified in the
M.KEY file, if it exists; otherwise, all owner names are valid. An owner can have any
number of tasks with the same or different task names active on the system at any
time.

In addition to the task numbers, each batch job is assigned a unique sequence number
when the job is entered in the batch stream.

Active tasks can be listed by:

* task number

* owner name

* task name

* batch sequence number (if batch)

* pseudonym used by MPX-32 to further identify the task, e.g., by the terminal it is
running on
* any combination of the above

The system provides the OPCOM LIST directives and the system service M.ID for
listing any active task by specifying a unique combination of these attributes.

MPX-32 Reference Volume | 2-1

Task Structure

2.2 Task Structure

A task is structured to meet a user’s particular requirements by defining the contents
of a unique address space. A unique address space is a mapped logical address space
whose maximum size varies, according to computer type. The unique address
maximum executable code region size depends on whether the nonbase or base
instruction set is being used. See Table 2-1.

2-2

Table 2-1
Nonbase Mode vs. Base Mode

Nonbase Mode Base Mode
Supported on All CONCEPT/32 computers | All CONCEPT/32 computers
Maximum task size 2 MB (32/87) 2 MB (32/87)

16 MB (all others) 16 MB (all others)
Code/data size 0.5 MB 2 MB (32/87)

16 MB (All others)

Data-only size 1.5 MB (32/87) N/A

15.5 MB (All others)
Name of shareable area CSECT Read-only
Name of nonshareable area | DSECT Read/write
Created by CATALOG LINKER/X32
Exists on disk as Load module Executable image

All tasks activated on a 32/87 have a 2MB logical address space.

Base mode tasks activated on all other CONCEPT/32 computers have a logical

address space of 2MB or 32KW plus the task size, whichever is larger. The automatic
logical address space sizing can be overridden by the SET LAS LINKX32 directive or
the TSM $SPACE directive.

Nonbase mode tasks activated on computers other than the 32/67 and 32/97 have a
logical address space of 2MB unless overridden by the $SPACE TSM directive.

A unique address space contains a copy of MPX-32 and a task that can:

* be nonshared
* share re-entrant code and data with another task
* share memory (common storage or user defined use) with another task

The memory size minus the operating system size equals the maximum task size. The
operating system size includes any static memory partitions and 4KW for use by the
Volume Management Module.

Shared memory considerations are described in Chapter 3.

Task Structure and Operation Overview

Task Structure

2.2.1

2.2.2

2.23

2.24

2.25

Nonbase Nonshared Tasks

This type of address space contains a single task including its task service area (TSA),
its code section (CSECT — write protected memory containing code and pure data),
and its data section (DSECT — read/write memory containing impure data). See
Figure 2-1. Tasks which are not sectioned have only a DSECT, which contains the
code and all data.

Base Nonshared Tasks

This type of address space contains a single task including its TSA, program stack,
read/write image section, and read-only image section.

Multicopied Tasks

An owner or several owners can have tasks with the same name and the same load
module active concurrently. This is accomplished by cataloging the task as
multicopied. To communicate with multicopy tasks, the task number must be used.

Shared Tasks

When a task is created, the user can specify that a program section is to be shared. A
program section, CSECT or read only, consists of code and pure data. This section is
write protected and mapped into the logical address space of each copy of the task. A
separate data section, DSECT or read/write, is mapped into each logical address space,
as illustrated in Figures 2-2 and 2-3. Shared tasks are implicitly multicopied tasks.

Unique Tasks

Although only one copy of a task that is unique can be active on the system at a given
time, the MPX-32 run request mechanism can be used to queue run requests to the
task, so that as soon as one user stops executing, another can begin. For more
information, see the Intertask Communication section of this chapter.

MPX-32 Reference Volume | 2-3

Task Structure

T2 777222222222

(PURE CODE & DATA)

CSECT e

))
((

AVAILABLE FOR
DYNAMIC DSECT
EXPANSION

)
((

DSECT
(IMPURE CODE & DATA)
NOTE: IF TASK IS NOT SECTIONED,

PAGE —p

AA/ISAAAAAAAS SIS SIS IS AN S

TASK SERVICE AREA *

DSECT CONTAINS ALL CODE & DATA -

SYSTEM BUFFERS

))
(¢

OPERATING SYSTEM

))

Low

o’
—

} MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

* TSA may be moved to indexed address space using the Cataloger EXTDMPX directive.

R1002

2-4

Figure 2-1
Nonbase Mode Nonshared Task Address Space

Task Structure and Operation Overview

—
' N
/

N

C

Task Structure

HIGH 4 v
00000000 s 70000000
MAP BLOCK
SHARED CSECT B
MAP BLOCK
MAP BLOCK
[MAP BLOCK
AVAILABLE FOR
= omcoseoT 2w evoox
[~ MAP BLOCK
UNIQUE DSECT MAP BLOCK
PAGE W/ S A A
TASK SERVICE AREA * MAP BLOCK
SYSTEM BUFFERS
MAP BLOCK
|
MAP BLOCK
- OPERATING SYSTEM P
?
MAP BLOCK
Low }

* TSA may be moved to indexed address space using the Cataloger EXTDMPX directive.

R1003

Figure 2-2
Nonbase Mode Shared Task Address Space

MPX-32 Reference Volume | 2-5

Task Structure

SHARED IMAGE PARTITION
(ABSOLUTE)

MAP BLOCK

T,

DEBUGGER

7 MAP BLOCK

SHARED IMAGE PARTITION
(POSITION INDEPENDENT)

N

/' MAP BLOCK .
7 C

(OVERLAY TRANSIENT AREA)
READ / WRITE IMAGE SECTION

(OVERLAY TRANSIENT AREA)
READ - ONLY IMAGE SECTION

2-6

MAP BLOCK
PROGRAM STACK
PAGE
TASK SERVICE AREA
MAP BLOCK
MPX - 32
Figure 2-3 U
Base Mode Shared Task Address Space ’

Task Structure and Operation Overview

Task Execution

2.3 Task Execution

Nonbase mode tasks are introduced to the system by a request to activate the
cataloged load module by name. Activation can be requested in several different
ways.

* Batch and interactive tasks are activated by the job control or TSM $RUN and
$EXECUTE directives.

* Real-time tasks can be activated by the M.ACTV or M.PTSK system services. The
requestor uses the M.PTSK service to rename the task or to specify additional or
alternate resource requirements for the task.

Real-time tasks can also be activated by the TSM $ACTIVATE directive the
OPCOM ACTIVATE directive, timers, or interrupts.

The operating system enters base mode tasks in one of two ways: the initial dispatch
of the task, or as a result of an asynchronous event which includes messages, breaks,
or end-action notification. In either case, entry is through a call instruction.

2.3.1 Task Activation Sequencing (M.ACTV, M.PTSK)

The MPX-32 task management module performs task activation in two phases.

2.3.1.1 Phase 1 of Activation

When a task is activated by the M.ACTYV service or the M.PTSK service, the MPX-32
resource manager runs for the task that issues the service call (the activating task). In
many cases, the activating task is TSM or OPCOM. Running at the priority specified
by the activating task, the resource manager constructs a rudimentary task service area
(TSA) for the new task in the task’s address space and a rudimentary dispatch queue
entry (DQE) in the communications region. Data in the prototypes include: a task
number, parameters passed with the task (M.PTSK), the load module information
table (LMIT), and other basic data that define the task.

Initially, the DQE for the task is unlinked from the list of free DQE’s maintained by
the CPU scheduler and linked to the preactivation state queue (PREA). See the State
Chain Management section in this chapter for information about the DQE. After the
prototype TSA and DQE are constructed, the DQE is unlinked from the PREA state
queue and linked to the appropriate ready-to-run queue. A context is set up in the
prototype TSA so that the resource manager can gain control for the second phase of
activation as soon as the new task becomes the highest priority ready-to-run task on
the system. There are several cases where task activation does not continue at the end
of phase I:

* activation with a run request for a single-copied task that is already active
* timer activation requests (M.SETT)
* RTM-compatible activation on an interrupt (CALM X’66’ or M.CONN)

MPX-32 Reference Volume | 2-7

Task Execution

In the first case, the CPU scheduler can link the run request to an existing DQE. See
the User Run Receivers section in this chapter for information on task run receivers.
In the last two cases, the task remains in the preactivation state queue until the timer
expires or the interrupt fires. At that point, such tasks are linked to the appropriate
ready-to-run queue as described previously.

2.3.1.2 Phase 2 of Activation

In this phase, the resource manager operates for the new task, and runs at the new
task’s specified priority. It reads in the resource requirements summary (RRS) from
the load module file, merges them with static assignments, and validates the results.
Resources are allocated. The task’s DQE can be linked and unlinked to various state
queues as it moves through stages of device and memory allocation.

If any parameters, assignments, or other task resource requirements specified in the
load module or by job control or TSM assignments are invalid, the resource manager
aborts the task during this phase and the task exits as described in the Task
Termination Sequencing section of this chapter.

When the new task has allocated all resources required for execution, it is loaded into
memory, relocated, and the resource manager transfers control to the task at its
specified transfer address.

There are two exceptions to the control transfer at the end of phase 2. The first
exception is a task that has been initiated by the OPCOM ESTABLISH directive.
This task is linked into the suspended state queue (SUSP) instead of going into
execution. This allows MPX-32, like the RTM, to activate a task that resides
permanently in memory (a resident task). In MPX-32, resident means locked in
memory. When an activating request occurs for a task that has been established (a
timer expires, an interrupt is issued, or the task is resumed), the task is ready to
execute and is brought into execution with just a context switch. If the task has been
cataloged as resident, no inswap is required.

The second exception is a task that has been activated with the MPX-32 Debugger

attached (TSM or job control DEBUG task name directive). Instead of transferring
control to the task, the resource manager first loads and then transfers control to the
debugger.

2.3.2 Task Service Area (TSA)

The task service area (TSA) is a section of memory associated with each active task.
The size of each task’s TSA is fixed for the duration of the task’s execution.
However, the sizes of TSA’s among tasks is variable and is dependent on the task’s
logical address space size and the amount of space reserved for I/O activity.

As shown in Figure 2-4, the number of blocking buffers, file assignment table (FAT)
entries, and the file pointer table (FPT) entries varies among tasks.

2-8 Task Structure and Operation Overview

Task Execution

TMIDLA

T.MEMLA

T.SHTBL

T.STBRGA

T.FATA

T.FPTA

T.PIOQA

T.SEGA

T.VATA

TIDXA

T.RDBUFA

T.FSSP
T.SHIMDA

T.BBHCA
T.BBUFA

TSA VARIABLE AREA

256 TO 2048
HALFWORD ENTRIES FOR
MIDL TABLE

256 TO 2048
HALFWORD ENTRIES FOR
MEML TABLE

256 TO 2048
BYTE ENTRIES FOR
SHADOW MEMORY TABLE

GCL TASK STARTUP
BASE REGISTER SAVE AREA
(B3-B7) 5 WORDS

1TO 254 16-WORD FAT
ENTRIES. FIRST SIX
ARE RESERVED FOR
SYSTEM USE

1TO254 3-WORD FPT
ENTRIES. FIRST SIX
ARE RESERVED FOR
SYSTEM USE

1TO254 1-WORD

PIO ENTRIES. FIRST
SIX ARE RESERVED
FOR SYSTEM USE.

SEGMENT DEFINITION
AREA.1 16-WORD ENTRY
FOR EACH SEGMENTED
FILE RESERVATION
IN THE FAT.

1 TO 255 2-WORD VAT
ENTRIES. FIRST IS
RESERVED FOR DEFAULT
WORKING VOLUME IF IT IS
A NONPUBLIC VOLUME.

OVERLAY INDEX TABLE
VARIABLE LENGTH.

192 WORD DUAL PROCESSOR
SHARED VOLUME RESOURCE
DESCRIPTOR BUFFER.

192 WORD VOLUME
MANAGEMENT MODULE
STACK AREA,

FILE BOUNDED.

16 WORD SHARED
IMAGE DESCRIPTORS.

1TO 248 8-WORD HEAD CELLS.

1TO 255 192-WORD

BLOCKING BUFFERS.
FIRST IS RESERVED
FOR SYSTEM USE.

FIXED AREA
T.REGP
~L ~
N N
— TMPXBR+3W
PUSHDOWN STACK (TREGS) [
[| ! 20 32-WORD MODULE CALL
oR
CONTEXT SWITCH LEVELS o
BASE REGISTER STACK
L 20 8-WORD ENTRIES
WORD CONTEXT SWITCH LEVEL
0
GENERAL PURPOSE —~{_,
~_ REGISTERS 0 - 7 ~
7
8
PSD
9
WORD MODULE CALL LEVEL
,°.L
GENERAL PURPOSE —
N
™~ REGISTERS 0- 7 ~
7
8
PSD
10
~_ SCRATCHPAD

AN

STORAGE

-

T1001

Figure 2-4
Task Service Area (TSA) Structure

MPX-32 Reference Volume |

2-9

Task Execution

For all tasks, a fixed number of buffers, FAT, and FPT entries are reserved for
MPX-32 use. For example, they are present in every TSA.

The pushdown stack area in the TSA provides reentrancy in calls to system modules.
At each call to a system module entry point, the stack pointer (T.REGP) is
incremented to the next 32-word pushdown level where the contents of the general
purpose registers (GPRs) and program status doubleword (PSD) are saved. Within
this 32-word level, 22 words are available for scratchpad storage by the module entry
point being called. T.REGP is decremented to the previous pushdown level upon
return to the entry point caller. Upon context switch away from a task, the next
pushdown level is used to preserve the contents of the task’s registers and PSD. Ten
words are used at the context switch level.

2.4 Central Processing Unit (CPU) Scheduling

The MPX-32 CPU scheduler is responsible for allocating CPU execution time to
active tasks. Tasks are allocated CPU time based on execution priority and execution
eligibility. Execution priority is specified when a task enters (is cataloged into) the
system. Execution eligibility is determined by the task’s readiness to run.

2.4.1 Execution Priorities

The MPX-32 system provides 64 levels of execution priority. These priority levels
are divided into two major categories. Real-time tasks operate in the priority range 1
to 54. Time-distribution tasks operate in the priority range 55 to 64.

2.4.2 Real-Time Priority Levels (1 to 54)

MPX-32 schedules real-time tasks on a strict priority basis. The system does not
impose time-slice, priority migration, or any other scheduling algorithm that interferes
with the execution priority of a real-time task. Execution of an active real-time task at
its specified priority level is inhibited only when it is ineligible for execution (not
ready-to-run). Execution of a real-time task can always be preempted by a higher
priority real-time task that is ready-to-run.

2.4.3 Time-Distribution Priority Levels (55 to 64)

For tasks executing at priority levels 55 to 64, MPX-32 provides a full range of
priority migration, situational priority increment, and time-quantum control.

2-10 Task Structure and Operation Overview

O

Central Processing Unit (CPU) Scheduling

2.4.3.1 Priority Migration

The specified execution priority of a time-distribution task is used as the task’s base
execution priority. Each time-distribution task’s current execution priority is
determined by the base priority level as adjusted by any situational priority increment.
The current execution priority is further adjusted by increasing the priority (by one
level) whenever execution is preempted by a higher priority time-distribution task, and
decreasing the priority whenever the task gains CPU control. The highest priority
achievable by a time-distribution task is priority level 55. The lowest priority is
clamped at the task’s base execution level.

2.4.3.2 Situational Priority Increments

Time-distribution tasks are given situational priority increments to increase
responsiveness. The effect of situational priority increments is to give execution
preference to tasks that are ready-to-run after having been in a natural wait state. A
task that is CPU bound migrates toward its base execution priority. Situational
priority increments are invoked when a task is unlinked from a wait-state list, and
relinked to the ready-to-run list.

Situation Priority Increment
Terminal input wait complete Base level + 2
I/O wait complete Base level + 2
Message (send) wait complete Base level + 2
Run request (send) complete Base level + 2
Memory (inswap) wait complete Base level + 3
Preempted by real-time task Level 55

2.4.3.3 Time-Quantum Controls

MPX-32 allows for the specification of two time-quantum values at SYSGEN. If
these values are not specified, system default values are used. The two quantum
values are provided for scheduling control of time-distribution tasks. The first
quantum value (stage 1) indicates the minimum amount of CPU execution time
guaranteed to a task before preemption by a higher priority time-distribution task.
The stage 1 quantum value is also used as a swap inhibit quantum after inswap. The
second quantum value represents the task’s full-time quantum. The difference
between the first and second quantum values defines the execution period called
quantum stage 2. During quantum stage 2, a task may be preempted and/or
outswapped by any higher priority task. When a task’s full-time quantum has expired,
it is relinked to the bottom of the priority list, at its base execution priority.

Time-quantum accumulation is the accumulated sum of actual execution times used by
this task. A task’s quantum accumulation value is reset when the task voluntarily
relinquishes CPU control, for example, suspends, performs wait I/O, etc.

MPX-32 Reference Volume | 2-11

Central Processing Unit (CPU) Scheduling

™
2.4.4 State Chain Management (/

2-12

The current state of a task ready-to-run, waiting for I/O, etc., is reflected by the
linkage of the dispatch queue entry (DQE) associated with the task into the
appropriate state chain. Linkage is established via string forward and string backward
addresses and a state queue index in each DQE. The string forward address for a
given DQE points to the closest lower priority DQE and the string backward address
points to the closest higher priority DQE in a given state. The index points to a state
chain head cell, which contains the link forward/backward addresses from the DQE at
the top (highest priority task) of the state chain. At a given time, from any one DQE
or from a head cell, an entire state chain queue can be examined by moving either
backward or forward through the DQE linkages.

The state queues are divided into two major categories: ready-to-run and waiting. See
Table 2-2. The ready-to-run category is subdivided by priority, with a single queue
for the real-time priorities and a separate queue for each of the time-distribution
priority levels. The waiting category is subdivided according to the resource or event
required to make the task eligible for execution.

Task Structure and Operation Overview

Central Processing Unit (CPU) Scheduling

19

Table 2-2
MPX-32 State Queues
State
Index Label Meaning

0 FREE DQE is available (in free list)
1 PREA Task activation in progress
2 CURR Task is executing

Ready-to-Run Queues
3 SQRT Task is ready-to run at priority level 1-54
4 SQ55 at priority level 55
5 SQ56 at priority level 56
6 SQ57 at priority level 57
7 SQs8 at priority level 58
8 SQ59 at priority level 59
9 SQ60 at priority level 60
10 SQ61 at priority level 61
11 SQ62 at priority level 62
12 SQ63 at priority level 63
13 SQ57 at priority level 64

Operation Wait Queues
14 SWTI Task is waiting for terminﬂ input
15 SWIO Task is waiting for I/O
16 SWSM Task is waiting for message complete
17 SWSR Task is waiting for run request complete
18 SWLO Task is waiting for low speed output

Execution Wait Queues

SUSP Task is waiting for one of the following:

. Timer expiration
. Resume request
. Message request interrupt

Continued on next page

MPX-32 Reference Volume |

2-13

Central Processing Unit (CPU) Scheduling

2-14

Table 2-2
MPX-32 State Queues (Continued)
State
Index Label Meaning
Execution Wait Queues
20 RUNW Task is waiting for one of the following
. Timer expiration
. Run request
21 HOLD Task is waiting for a continue request
22 ANYW Task is waiting for one of the following:
. Timer expiration
. No-wait I/O complete
. No-wait message complete
. No-wait run request complete
. Message request interrupt
. Break interrupt
Resource Wait Queues
23 SWDC Task is waiting for disc space allocation
24 SWDV Task is waiting for device allocation
25 N/A Reserved
26 MRQ Task is waiting for memory allocation
27 SWMP Task is waiting for memory pool allocation
28 SWGC Task is waiting in general wait queue
IPU State Queues*
29 CIPU Current IPU task
30 RIPU Requesting IPU task

* See the MPX-32 Technical Manual, Volume I for further details.

Task Structure and Operation Overview

5
\

e

Internal Processing Unit (IPU)

2.5 Internal Processing Unit (IPU)

The IPU is a user-transparent device managed by the MPX-32 operating system. The
IPU is scheduled as an additional resource to offload the CPU and improve system
throughput in a multitasking environment. The IPU can be used to execute task level
code and a limited set of system services.

Scheduling of tasks for IPU execution is controlled by the CPU executive (H.EEXEC)
working with the IPU executive (H.CPU) for the standard scheduler. An optional
scheduler uses a different CPU executive, HEXEC?2, and a different IPU executive,
H.CPU?2. The optional CPU/IPU scheduling logic is enabled by the SYSGEN DELTA
directive. The standard scheduler is more processor oriented whereas the optional
scheduler is more priority oriented. The following sections apply to both schedulers;
any differences are noted.

2.5.1 Options

Options for the IPU can be specified at catalog or execution time by TSM. The IPU
options are:

* IPUBIAS — When set, tasks that are IPU eligible are run by the IPU. Any time
during execution where eligibility ceases, the CPU is trapped and the task is
scheduled to execute at its cataloged priority in the CPU.

* CPUONLY — When set, the IPU is ignored and the task is executed by the CPU.
If not specified, the first eligible processor executes the task.

Tasks that are compute bound may be biased to the IPU; tasks that are I/O bound may
be designated to run only in the CPU.

The CPU/IPU scheduling logic automatically adapts to tasks that alternate between
bursts of computing and bursts of I/O for nonbiased tasks.

2.5.2 Biased Task Prioritization

2.5.2.1 Standard CPU/IPU Scheduler

If the IPU scheduler finds more than one IPU-biased task waiting for processing, it
places the tasks in a ready-to-run queue (C.RIPU) in priority order among themselves.
The tasks are eligible for swapping while waiting.

2.5.2.2 Optional CPU/IPU Scheduler

Tasks that are IPU biased are not enqueued on the IPU ready to run queue (C.RIPU).
These tasks are linked to the ready to run lists SQRT through SQ64 with other task
types. Since the IPU-biased tasks do not enter a wait state, they are less likely
candidates for swapping than tasks that are in the wait state.

MPX-32 Reference Volume | 2-15

Internal Processing Unit (IPU)

IPU-biased tasks may have their priority boosted using the SYSGEN DELTA
directive. If the DELTA directive is set to 0, scheduling occurs on a priority basis
only. If the DELTA value is greater than O and less than or equal to 54, the value is
subtracted from the cataloged priority (boosting its priority) at scheduling time. For
example, when the DELTA is set to 5, a priority 20 IPU biased task competes for the
IPU at priority 15. Similarly, when an IPU bias task needs the CPU for a system
service, the boosted priority (15) is used to compete for the CPU. The DELTA does
not apply when an IPU-biased task executes task level code in the CPU.

2.5.3 Nonbiased Task Prioritization

If the IPU scheduler finds more than one nonbiased task waiting for processing (any
task in ready state queues SQRT thru SQ64), it places them in priority order among
themselves and schedules them for processing after execution. The highest priority

IPU-eligible task is scheduled in the IPU regardless of its bias or unbiased attribute.

2.5.4 IPU Task Selection and Execution

When the IPU task scheduler has found a task, it checks for IPU eligibility. For a
task to be eligible for IPU execution, the following conditions must be present:

* no pending task interrupts

* no system action requests, for example, aborts

* not CPU biased

* current execution address outside of resident operating system

If a task fails any one of these tests, it is ineligible for IPU execution (i.e., ignored)
and the task scheduler proceeds to select the next task, if any.

If a task has been selected and is determined eligible for IPU processing, it is linked
to the current IPU task queue (C.CIPU), a Start IPU (SIPU) is executed from the
CPU, the IPU executive (H.IPU) fields the trap, loads the task’s map registers
(LPSDCM), and executes the task.

Tasks running with batch priorities (55-64) are not subject to time distribution while
being executed in the IPU.

Note: Tasks running with batch priorities (55-64) cannot have their priorities
boosted via the DELTA value.

2.5.5 CPU Execution of IPU Tasks

2.5.5.1 Standard CPU/IPU Scheduler

Unbiased tasks require CPU execution for code sequences requiring operating system
execution. Unbiased tasks are also free to execute task level code in the CPU.

2-16 Task Structure and Operation Overview

Internal Processing Unit (IPU)

IPU biased tasks are executed by the CPU for only those code sequences requiring
operating system execution. When the PSD points back into the task, its CPU
execution is terminated immediately and the task is linked to the IPU request queue
(C.RIPU). If the IPU is running and this new task has a higher priority (lower
number) than the task the IPU is executing, the executing task is preempted by the
new task and replaced by the higher priority task. If the IPU is running and the new
task has a lower priority (higher number) than the task currently under execution, the
new task is placed in the IPU ready-to-run queue (C.RIPU).

2.5.5.2 Optional CPU/IPU Scheduler

When the highest and second highest priority tasks are IPU biased, the CPU executes
task level code of the second highest priority task. However, the task’s priority will
not be boosted by the DELTA value in this case.

2.5.6 Priority versus Biasing

When there is a task in the IPU and it encounters a code sequence requiring CPU
execution, the task is linked to a ready-to-run state chain at its base priority.

Note: For the optional CPU/IPU scheduler, an IPU bias task is linked to the ready
to run state at base priority minus the DELTA value for code sequences
requiring CPU execution.

An IPU task that requires some CPU execution cannot execute in the CPU if a CPU-
only task of the same priority is in the CPU.

An IPU task that requires some CPU execution can execute in the CPU if:

* a non-CPU-only task of the same priority is in the CPU.
* the task in the CPU has a lower priority.
* there is no task in the CPU.

2.5.7 IPU Accounting

When the IPU and its interval timer handler are specified during SYSGEN, and the
IPU is used for task execution, the following message displays at EOJ and when
logging off a terminal:

IPU EXECUTION TIME =xx HOURS- xx MINUTES- .xx.xx SECONDS

XX is a decimal number

The IPU accounting can be turned off to reduce context switch time. Refer to the
Real-time Accounting On/Off section of this chapter for more information.

MPX-32 Reference Volume | 2-17

Internal Processing Unit (IPU)

2.5.8 IPU Executable System Services

When the execution address of the task is within the resident operating system, the
task cannot be scheduled to be executed by the IPU. However, when the execution
address of the task is within the task, the task can be executed by the IPU. Once the
task is in the IPU, the IPU can execute a limited set of system services. These are
memory reference only system services, since the IPU cannot execute any I/O
instructions. The system services that are executable in the IPU are listed in the
Nonbase Mode and Base Mode System Services chapters of this volume.

2.5.9 IPU Scheduling

2-18

Although the IPU is scheduled transparently by the operating system, users can restrict
a task to execute only in the CPU or bias a task to execute in the IPU. Tasks
designated as CPU only cannot execute in the IPU. IPU biased tasks and unbiased
tasks must meet the following requirements to execute in the IPU:

* no pending or active task interrupts. For example, I/O end action, breaks, etc. A
pending interrupt is an interrupt that has been recognized by the operating system
but has not yet been dispatched to the task.

* no system action requests; for example, abort, hold, etc.
* no context switching inhibited

* no temporary inhibit from IPU execution because it contains instructions not
executable by the IPU; for example, CD, BEI, etc.

* execution address of the task must be outside the resident operating system

* starting logical address of the task’s task service area (TSA) must be greater than
the logical end of the resident operating system (i.e., CLOSEND). All user tasks
meet this requirement. System resident modules and tasks do not meet this
requirement.

If a task does not meet the above requirements, it cannot be executed in the IPU and
is scheduled for execution in the CPU.

Scheduling unbiased tasks includes checks for the following conditions:

* task is currently executing in the CPU
* task currently executing in the CPU that is not eligible to execute in the [PU
* is a task currently executing in the CPU that is eligible to execute in the [PU

If a task is not executing in the CPU, S.EXEC20, the main scheduling routine,
attempts to schedule a task for the IPU. If IPU eligible tasks are found, the task with
the highest priority is scheduled for IPU execution. S.EXEC20 then schedules the
highest priority ready-to-run task for CPU execution. IPU eligible tasks are
automatically considered CPU eligible. If an eligible task for either processor cannot
be found, that processor remains idle.

Note: For the optional CPU/TPU scheduler, tasks that are IPU biased may run on
the CPU.

Task Structure and Operation Overview

Internal Processing Unit (IPU)

If a task is currently executing in the CPU and it is not eligible for IPU execution, it
continues to be executed by the CPU. S.EXECZ0 attempts to schedule a task for the
IPU. If an IPU eligible task cannot be found, the IPU remains idle.

If a task is currently executing in the CPU and is IPU eligible, the following factors
are considered in the order described by S.EXEC20:

* If the current task is IPU biased and the IPU is idle, the task is scheduled for IPU
execution.

* If the current task is [PU biased and the IPU is executing a task with a higher
priority than the current task, the current task is placed in the [PU request state
(RIPU). If the current task has a higher priority than the task executing in the IPU,
the task executing in the IPU is removed from execution and the current IPU biased
task is scheduled for execution.

For the optional CPU/IPU scheduler, if the current task is IPU biased, but the IPU
is executing a higher priority task, the CPU will run the current task.

* If the IPU is idle, S.EXEC20 performs a check to see if another task is requesting
CPU execution. If no other task is found, the current task remains in execution in
the CPU. If another task is found, the current CPU task is moved to the IPU for
execution. The highest priority task of the other tasks found is scheduled for CPU
execution.

For the optional CPU/IPU scheduler, if the IPU is idle and the current task is [PU
eligible, the task is scheduled for the IPU.

* If the IPU is busy, S.EXEC20 performs a check to see if another task is requesting
CPU execution. If no other task is found, the current task remains in execution in
the CPU. If a nonreal-time task is found, the current task remains in the CPU. If a
real-time task is found, the priority of the current task executing in the CPU is
compared with the priority of the current task executing in the IPU. If the CPU
task has a higher priority, the task in the IPU is replaced by the task in the CPU.
Otherwise, the current task remains in execution in the CPU.

These additional factors, considered in IPU scheduling, allow for a more predictable
operation and eliminate unnecessary scheduling overhead. Unless the user can be
assured of benefits through the use of IPU biasing or CPU-only restrictions, it is
recommended that tasks be run unbiased. This allows the MPX-32 executive to make
the decision on IPU usage.

MPX-32 Reference Volume | 2-19

Scheduling Task Interrupts

2.6 Scheduling Task Interrupts
In addition to the 64 execution priority levels available, the MPX-32 scheduler
provides a software interrupt facility within the individual task environment.
2.6.1 Task Interrupt Levels

Individual tasks operating in the MPX-32 environment may be organized to take
advantage of task unique software interrupt levels. Each task in the MPX-32 system
can have six levels of software interrupt, sometimes referred to as pseudo-interrupts:

Level Priority Description

0 reserved for operating system use
1 debug

2 break

3 end action

4 message

5 normal execution — run request

2.6.1.1 Task Interrupt Receivers

An individual task is allowed to issue system service calls to establish interrupt
receiver addresses for both break and message interrupts. The debugger interrupt level
is used by the system to process tasks running in debug mode. The end action
interrupt level is used for system postprocessing of no-wait I/O, message, or run
requests. It is also used for executing end action routines specified by the user task.
The normal execution level is used for run-request processing and general base level
task execution.

2.6.1.2 Scheduling

Task interrupt processing is gated by the CPU scheduler during system service
processing. If a task interrupt request occurs while the task is executing in a system
service, the scheduler defers the interrupt until the service returns to the user task
execution area. If service calls are nested, the scheduler defers the task interrupt until
the last service executes and returns to the user task execution area. The user can
defer task interrupts through calls to Synchronize Task Interrupts (M.SYNCH) or
Disable Message Interrupts (M.DSMI).

2.6.1.3 System Service Calls from Task Interrupt Levels

A task can use the complete set of system services from any task interrupt level.
Tasks are prohibited from making Wait-For-Any calls M. ANYW, M.EAWAIT) from
task interrupt levels.

2-20 Task Structure and Operation Overview

'

Scheduling Task Interrupts

(2.6.1.4 Task Interrupt Context Storage

When a task interrupt occurs, the CPU scheduler automatically stores the interrupted
context into the TSA pushdown stack. This context is automatically restored when
the task exits from the active interrupt level.

2.6.1.5 Task Interrupt Level Gating

When a task interrupt occurs, the level is marked active. Additional interrupt requests
for that level are queued until the level active status is reset by the appropriate system
service call. When the level active status is reset, any queued request is processed.

2.6.2 User Break Interrupt Receivers (M.BRK, M.BRKXIT)

A task enables the break interrupt level by calling the M.BRK service to establish a
break interrupt receiver address. The level becomes active as a result of a break
interrupt request generated either from a hardware break or from an M.INT service
call which specified this task. When the break level is active, end action, message,
and normal execution processing are inhibited. The level active status is reset by
calling the M.BRKXIT service to exit from the pseudo-interrupt (break) level.

MPX-32 Reference Volume | 2-21

Intertask Communication

2.7

Intertask Communication

MPX-32 provides both message request and run-request send/receive processing.
Run-request services allow a task to queue an execution request with optional
parameter passing for another task. Message services allow a task to send a message
to another active task. The services provided for use by the destination tasks are called
receiving task services. Those provided for tasks which issue the requests are called
sending task services. Message and run-request services use the software interrupt
scheduling structure described in the previous section, Scheduling Task Interrupts.

2.7.1 User End-Action Receivers (M.XMEA, M.XREA, M.XIEA)

When a task issues a no-wait I/O, a message request, or a run request, a user-task
end-action routine address can be specified. If specified, the routine is entered at the
end-action priority level from the appropriate system postprocessing routine. When
the end-action level is active, processing at the message or normal execution level is
inhibited. The level active status is reset by calling the appropriate end-action service:

End-Action Type End-Action Exit Service
1/0 SvC 1.,X°2C

Send message M.XMEA

Send run request M.XREA

2.7.2 User Message Receivers (M.RCVR, M.GMSGP, M.XMSGR)

A task can enable the message interrupt level by calling the M.RCVR system service
to establish a message interrupt receiver address. The level becomes active as the
result of a message send request specifying this task as the destination task.

When the message level is active, normal execution processing is inhibited. The
task’s receiver can call the M.GMSGP system service to store the message in a user
receiver buffer. After appropriate processing, the message interrupt level may be reset
by calling the M.XMSGR system service to exit from the message interrupt receiver.

2.7.3 User Run Receivers (M.GRUNP, M.XRUNR)

2-22

User run receivers execute at the normal task execution base level. The cataloged
transfer address is used as the run-receiver execution address. The run-receiver
mechanism is provided by the system to allow queued requests for task execution with
optional parameter passing.

When a run request is issued by the M.SRUNR service, the task load module name
may be used to identify the task to be executed. If a task of that load module name is
currently active and single-copied, the run request is queued from its existing DQE. If
the specified task is not active, or if the task is not a single-copied task, it is activated
and the run request is then linked to the new DQE. A new copy is activated for each
run request sent to a multicopied task by load module name or pathname vector. If
the multicopied task is waiting for a run request, for example, in the RUNW state
chain, the task number must be specified.

Task Structure and Operation Overview

™
LW

Intertask Communication

The task receiving the run request can call the M.GRUNP system service to store the
run parameters in a user receiver buffer. After appropriate processing, the run-receiver
task can exit by calling the M.XRUNR system service. Any queued run requests are
then processed.

When a task in the run-receiver mode enters its abort receiver, the run request has
already been terminated and the task issuing the run request has already received
status or call back depending on the options used. A new copy of the task is activated
to satisfy any queued run requests.

2.7.4 Receiving Task Services

2.7.4.1 Establishing Message Receivers (M\.RCVR)

To receive messages sent from other tasks, a task must be active and have a message
receiver established. A message receiver is established by calling the system service
M.RCVR, and providing the receiver routine address as an argument with the call.

2.7.4.2 Establishing Run Receivers

Any valid task can be a run receiver. Although a set of special run receiver services
are provided, in the most simple case, they need not be used. The run receiver
mechanism is provided by the system to allow queued requests for task execution,
with optional parameter passing. The cataloged transfer address is used as the run
receiver execution address. The task load module name is used to identify the task to
be executed. If a run request is issued for a task not currently active, the task is
activated automatically. If the task is single-copied and currently active, the run
request is queued until the task exits. If the task is multicopied and currently active,
the load module is activated (multicopied) to process this request. When a single-
copied task exits, any queued run requests are executed.

2.7.4.3 Executing Message Receiver Programs
When a task is active and has an established message receiver, it can receive messages

sent from other tasks. A message sent to this task causes a software (task) interrupt
entry to the established message receiver.

2.7.4.4 Executing Run Receiver Programs
When a valid task is executed as a result of a run request sent by another task, it is

entered at its cataloged transfer address. A run receiver executes at the normal task
execution (base) level.

MPX-32 Reference Volume | 2-23

Intertask Communication

2.7.4.5 Obtaining Message Parameters (M.GMSGP)

When the message receiver is entered, R1 contains the address of the message queue
entry in memory pool. The task can retrieve the message directly from memory pool,
or the task can call a receiver service (M.GMSGP) to store the message into the
designated receiver buffer. If the M.GMSGP service is used, the task must present the
address of a 5-word parameter receive block (PRB) as an argument with the call.

2.7.4.6 Obtaining Run Request Parameters (M.GRUNP)

When the run receiver is entered, R1 contains the address of the run-request queue
entry in memory pool. The task can retrieve the run request parameters directly from
memory pool, or the task can call a receiver service (M.GRUNP) to store the run
request parameters into the designated receiver buffer. If the M.GRUNP service is
used, the task must present the address of a 5-word parameter receive block (PRB) as
an argument with the call.

2.7.4.7 Exiting the Message Receiver (M. XMSGR)

When processing of the message is complete, the message interrupt level must be
exited by calling the M. XMSGR service. When M.XMSGR is called, the address of a
two-word receiver exit block (RXB) must be provided. The RXB contains the address
of the return parameter buffer, and the number of bytes (if any) to be returned to the
sending task. The RXB also contains a return status byte to be stored in the parameter
send block (PSB) of the sending task. After message exit processing is complete, the
message receiver queue for this task is examined for any additional messages to
process. If none exists, a return to the base level interrupted context is performed.

2.7.4.8 Exiting the Run Receiver Task (M.EXIT, M.XRUNR)

When run-request processing is complete, the task can use either the standard exit call
(M.EXIT), or the special run-receiver exit service (M.XRUNR).

If the standard exit service (M.EXIT) exits the run-receiver task, no user status or
parameters are returned. Only completion status is posted in the scheduler status word
of the parameter send block (PSB) in the sending task. After completion processing
for the run request is accomplished, the run receiver queue for this task is examined,
and any queued run request causes the task to be re-executed. If the run-receiver
queue for this task is empty, a standard exit is performed.

2-24 Task Structure and Operation Overview

g

Intertask Communication

If the special exit (M.XRUNR) exits the run-receiver task, the address of a 2-word
receiver exit block (RXB) must be provided as an argument with the call. The RXB
contains the address of the return parameter buffer, and the number of bytes (if any) to
be returned to the sending task. The RXB also contains a return status byte to be
stored in the parameter send block (PSB) of the sending task. After completion
processing for the run request is accomplished, the exit control options in the RXB are
examined. If the wait exit option is used, the run receiver queue for this task is
examined for any additional run requests to be processed. If none exist, the task is put
into a wait-state, waiting for the receipt of new run requests. Execution of the task
does not resume until such a request is received. If the terminate exit option is used,
any queued run requests are processed. If the run receiver is empty, however, a
standard exit is performed.

2.7.49 Waiting for the Next Request (M.SUSP, M.ANYW, M.EAWAIT)

In addition to the wait options described in the Exiting the Run Receiver Task section,
a task can use the M.SUSP, ML ANYW, or M.EAWAIT system service. When
operating at the base execution level, a task that has established a message receiver
can use the M.SUSP service call to enter a wait-state until the next message is
received.

A task may also make use of the special MLANYW service from the base software
level. The M.ANYW service is similar to M.SUSP. The difference is that whereas
the M.SUSP wait-state is ended only upon receipt of a message interrupt, timer
expiration, or resume, the MLANYW wait-state is ended upon receipt of any message,
end action, or break software interrupt.

M.EAWAIT is similar to MLANYW except that if no requests are outstanding, an
immediate return is made to the caller.

2.7.5 Sending Task Services

2.7.5.1 Message Send Service (M.SMSGR)

A task can send a message to another active task, providing the destination task has
established a message receiver. The sending task must identify the destination task by
task number. When the send message service (M.SMSGR) is called, the word
bounded address of a PSB must be provided as an argument. The PSB specifies the
message to be sent, whether or not any parameters are to be returned, and the address
of a user end-action routine. User status can be returned by the destination task. The
operating system also returns completion status in the PSB. No-wait and no-call-back
control options are also provided. An unprivileged user is limited to five no-wait
messages or to the value specified by the SYSGEN parameter MMSG.

MPX-32 Reference Volume | 2-25

Intertask Communication

2.7.5.2 Send Run-Request Service (M.SRUNR)

A task can send a run request to any active or inactive task, identifying the task by
load module name. When the run request service (M.SRUNR) is called, the word
bounded address of a PSB must be provided as an argument. The PSB format allows
for the specification of the run request parameters to be sent, any parameters to be
returned, scheduler and user status, as well as the address of a user end-action routine.
No-wait and no-call-back control options are also provided. An unprivileged user is
limited to five no-wait run requests.

Note: If a task activated with the TSM $ACTIVATE directive is sent a run request,
the queued run request is ignored. However, if the task is activated with a
run request and a second run request is sent to it, the queued run request is
executed.

2.7.5.3 Waiting for Message Completion

A message can be sent in the wait or no-wait mode. If the wait mode is used,
execution of the sending task is deferred until processing of the message by the
destination task is complete. If the no-wait mode is used, execution of the sending
task continues as soon as the request has been queued. The operation in progress bit
in the scheduler status field of the PSB may be examined to determine completion. A
sending task can issue a series of no-wait mode messages followed by a call to the
M.ANYW or M.LEAWAIT system wait service. This allows a task to wait for the
completion of any no-wait messages previously sent. The completion of such a
message causes resumption at the point after the MLAANYW or MLEAWAIT call.

2.7.5.4 Waiting for Run-Request Completion

Waiting for a run-request completion follows the same form and has the same options
as waiting for message completion.

2.7.5.5 Message End-Action Processing (M.XMEA)

User specified end-action routines associated with no-wait message send requests are
entered at the end-action software interrupt level when the requested message
processing is complete. Status and return parameters are posted as appropriate. When
end-action processing is complete, the M.XMEA service must be called to exit the
end-action software interrupt level.

2.7.5.6 Run-Request End-Action Processing (M.XREA)
Run-request end-action processing follows the same form and has the same options as
message end-action processing. The only difference is that the M.XREA service is
used instead of M.XMEA.

2.7.6 Parameter Blocks

Parameters for run requests and messages are passed by parameter blocks established
within the user task. The parameter blocks are described in this section.

2-26 Task Structure and Operation Overview

O

Intertask Communication

2.7.6.1 Parameter Send Block (PSB)

The PSB describes a send request issued from one task to another. The same PSB
format is used for both message and run requests. The address of the PSB (word
bounded) must be specified when invoking the M.SMSGR or M.SRUNR services, but
is optional when invoking the M.PTSK service.

When a load module name is supplied in words O and 1 of the PSB, the operating
system searches the system directory only. For activations in directories other than
the system directory, a pathname or RID vector must be supplied.

When activating a task with the M.SRUNR or M.PTSK service, the value specified in
byte O of PSB word 2 (PSB.PRI) is used to determine the task’s execution priority.
This value overrides the cataloged priorities of the sending and receiving tasks and the
priority specified in the PTASK parameter block. However, priority clamping is used
to prevent time-distribution tasks from using this value to execute at a real-time
priority, and real-time tasks from executing at a time-distribution priority. Values that
can be specified in PSB.PRI are 1-64 (to be the task priority), O (to use the base
priority of the sending task), and X’FF’ (to ignore the PSB priority field).

A PSB can be specified as a parameter for the M.PTSK service, along with the
required task activation (PTASK) block. The PTASK block also contains a priority
specification field. The PSB priority value always overrides the PTASK block priority
value.

A task number, not a load module name, must be used if sending a message request or
if sending a run request to a multicopied task which is waiting for a run request.

MPX-32 Reference Volume | 2-27

Intertask Communication

2-28

0 7 8 15 16 23 24 31
Word 0 | Load module name (or task number if message or run request
to multicopied task). See Note 1.

1 | Load module name or pathname vector or RID vector if activation
(or 0 if message or run request to multicopied task). See Note 2.

2 | Priority (PSB.PRI). Reserved Number of bytes to be sent
See Note 3. PSB.SQUA). See Note 4.

3 | Reserved Send buffer address (PSB.SBA). See Note 5.

4 | Return parameter buffer length (bytes) Number of bytes returned
(PSB.RPBL). See Note 6. (PSB.ACRP). See Note 7.

5 | Reserved Return parameter buffer address

(PSB.RBA). See Note 8.
6 | Reserved No-wait request end-action address
(PSB.EAA). See Note 9.

7 | Completion Processing User status Options
status start status (PSB.UST). (PSB.OPT).
(PSB.CST). (PSB.IST). See Note 12. See Note 13.
See Note 10. See Note 11.

Notes:

Word 0, bits 0-31:
For send message: Task number of the task to receive the message.

For run request: Zero if using pathname vector or RID vector in word 1, else
task number (word 1 must be 0), else characters 1 to 4 of the name of the load
module to receive the run request.

Word 1, bits 0-31:
For send message: Zero.

For run request: Zero if using task number in word 0, else pathname vector or
rid vector (word O must be zero), else characters 5-8 of the load module to
receive the run request.

Word 2, bits 0-7: Priority (PSB.PRI) — contains the priority at which the
receiver task is expected to be activated. Valid values are 1-64: O signifies the
base priority of the sending task and X'FF’ generates activation priority based on
a combination of values that can be specified during task activation. The
following tables show how the priority of a receiver task is determined when
activated with M.SRUNR or with M.PTSK.

Task Structure and Operation Overview

O

Intertask Communication

When Activating with M.SRUNR

Cataloged
Priority of Priority Activates
Send Task Receive Task in PSB Receive Task at
1-54 1-54 0 Send Task Cataloged Priority
1-54 55-64 0 55 (Time-Distributed Clamp)
55-64 1-54 0 54 (Real-Time Clamp)
55-64 55-64 0 Send Task Cataloged Priority
* 1-54 1-54 PSB Priority
* 1-54 55-64 54 (Real-Time Clamp)
* 55-64 1-54 55 (Time-Distributed Clamp)
* 55-64 55-64 PSB Priority
* * XFF’ Receive Task Cataloged Priority

*
none specified

When Activating with M.PTSK

Cataloged
Priority of Priority in
Send Receive PTASK Activates
Task Task Block PSB Receive task at
1-54 1-54 0 0 Send Task Cataloged Priority
1-54 55-64 0 0 55 (Time-Distributed Clamp)
1-54 * 1-54 0 Send Task Cataloged Priority
1-54 * 55-64 0 55 (Time-Distributed Clamp)
55-64 1-54 0 0 54 (Real-Time Clamp)
55-64 55-64 0 0 Send Task Cataloged Priority
55-64 * 1-54 0 54 (Real-Time Clamp)
55-64 * 55-64 0 Send Task Catalog Priority
* 1-54 0 1-54 PSB Priority
* 1-54 0 55-64 54 (Real-Time Clamp)
* 55-64 0 1-54 55 (Time-Distributed Clamp)
* 55-64 0 55-64 PSB Priority
* * 1-54 1-54 PSB Priority
* * 1-54 55-64 54 (Real-Time Clamp)
* * 1-54 X'FF’ PTASK Block Priority
* * 55-64 1-54 55 (Real-Time Clamp)
* * 55-64 55-64 PSB Priority
* * 55-64 X'FF’ PTASK Block Priority
* * 0 X'FF’ Receive Task Cataloged Priority
* hone specified

MPX-32 Reference Volume |

2-29

Intertask Communication

2-30

4. Word 2, bits 16-31: Number of bytes to be sent (PSB.SQUA) — specifies the
number of bytes to be passed (0 to 768) with the message or run request.

5. Word 3, bits 8-31: Send buffer address (PSB.SBA) — contains the word address
of the buffer containing the parameters to be sent.

6. Word 4, bits 0-15: Return parameter buffer length (PSB.RPBL) contains the
maximum number of bytes (0-768) that may be accepted as returned parameters.

7. Word 4, bits 16-31: Number of bytes actually returned (PSB.ACRP) is set by
the send message or run request service upon completion of the request.

8. Word 5, bits 8-31: Return parameter buffer address (PSB.RBA) contains the
word address of the buffer into which any returned parameters are stored.

9. Word 6, bits 8-31: No-wait request end-action address (PSB.EAA) contains the
address of a user routine to be executed at an interrupt level upon completion of
the request.

10. Word 7, bits 0-7: Completion status (PSB.CST) is a bit encoded field that
contains completion status information posted by the operating system as

destination task was aborted before completion of processing

destination task was deleted before completion of processing

return parameters truncated (attempted return exceeds return

send parameters truncated (attempted send exceeds destination

rser end action routine not executed because of task abort
outstanding for this task (may be examined in abort receiver

follows:
Bit Meaning When Set
0 operation in progress (busy)
1
for this request
2
for this request
3
parameter buffer length)
4
task receiver buffer length)
5
to determine incomplete operation)
6-7 reserved

Task Structure and Operation Overview

C

Intertask Communication

11. Word 7, bits 8-15: Processing start (initial) status (PSB.IST) is a value encoded
field that contains initial status information posted by the operating system as

follows:
Code

Definition

RN -=O

8
9

10

11
12
13
14
15

normal initial status

message request task number invalid

run request load module name not found in directory

reserved

file associated with run request load module name oes not have
a valid load module format

dispatch queue entry (DQE) space is unavailable for activation
of the load module specified by a run request

an I/O error was encountered while reading the directory

to obtain the file definition of the load module specified

in a run request

an I/O error was encountered while reading the file containing
the load module specified in a run request.

memory unavailable

invalid task number for run request to multicopied load module
in RUNW state

invalid priority specification — an unprivileged task cannot
specify a priority which is higher than its own execution priority
invalid send buffer address or size

invalid return buffer address or size

invalid no-wait mode end-action routine address

memory pool unavailable

destination task receiver queue is full

12. Word 7, bits 16-23: User Status (PSB.UST) — As defined by sending and
receiving tasks.

13. Word 7, bits 24-31: Options (PSB.OPT) contains user request control
specification. It is bit encoded as follows:

Bit

Meaning When Set

24
25

request is to be issued in no-wait mode

do not post completion status or accept return parameters. This
bit is examined only if bit 24 is set. When this bit is set,

the request was issued in the no call-back mode.

MPX-32 Reference Volume | 2-31

Intertask Communication

2.7.6.2 Parameter Receive Block (PRB)

The PRB is used to control the storage of passed parameters into the receiver buffer of
the destination task. The same format PRB is used for both message and run requests.
The address of the PRB must be presented when either the M.GMSGP or M.GRUNP
services are invoked by the receiving task.

0 7 8 15 16 23 24 31
Word 0 | Status Parameter receiver buffer address (PRB.RBA).
(PRB.ST). See Note 2.
See Note 1.
1 | Receiver buffer length (bytes) Number of bytes received
(PRB.RBL). See Note 3. (PRB.ARQ). See Note 4.

Owner name of sending task (Word 1) (PRB.OWN). See Note 5.
Owner name of sending task (Word 2) (PRB.OWN). See Note 5.
Task number of sending task (PRB.TSKN). See Note 6.

Notes:

1. Status (PRS.ST) contains the status-value encoded status byte:

Code Definition
0 normal status
1 invalid PRB address (PRB.ERO1)
2 invalid receiver buffer address or size detected during
parameter validation (PRB.RBAE)
3 no active send request (PRB.NSRE)
4 receiver buffer length exceeded (PRB.RBLE)

2. Parameter receiver buffer address (PRB.RBA) contains the word address of the
buffer where the sent parameters are stored.

3. Receiver buffer length (PRB.RBL) contains the length of the receiver buffer (0 to
768 bytes).

4. Number of bytes received (PRB.ARQ) is set by the operating system and is
clamped to a maximum equal to the receiver buffer length.

5. Owner name of sending task (PRB.OWN) is a doubleword that is set by the
operating system to contain the owner name of the task that issued the parameter
send request.

6. Task number of sending task (PRB.TSKN) is set by the operating system to
contain the task activation sequence number of the task that issued the parameter
send request.

2-32 Task Structure and Operation Overview

Intertask Communication

2.7.6.3 Receiver Exit Block (RXB)

The receiver exit block (RXB) controls the return of parameters and status from the
destination (receiving) task to the task that issued the send request. It is also used to
specify receiver exit-type options. The same format RXB is used for both messages
and run requests. The address of the RXB must be presented as an argument when
either the M.XMSGR or M. XRUNR services are called.

0 7 8 15 16 23 24 31
Word 0 | Return status Retum parameter buffer address (RXB.RBA).
(RXB.ST). See Note 2.
See Note 1.
1 | Options Reserved Number of bytes to be returned
(RXB.OPT). (RXB.RQ). See Note 4.
See Note 3.

Notes:

1. Return status (RXB.ST) contains status as defined by the receiver task. Used to
set the user status byte in the parameter send block (PSB) of the task which
issued the send request.

2. Return parameter buffer address (RXB.RBA) contains the word address of the
buffer containing the parameters which are to be returned to the task which issued
the send request.

3. Options (RXB.OPT) contains receiver exit control options. It is encoded as

follows:
Value Exit Type Meaning
0 M.XRUNR wait for next run request.
M.XMSGR return to point of task interrupt.
1 M.XRUNR exit task, process any additional

run requests. If none exist,
perform a standard exit.
M.XMSGR N/A

4. Number of bytes to be returned (RXB.PQ) contains the number of bytes (0 to
768) of information to be returned to the sending task.

MPX-32 Reference Volume | 2-33

Intertask Communication

2.7.7 User Abort Receivers (M.SUAR)

User abort receivers execute at the normal task execution base level. The user task
can establish an abort receiver by calling the M.SUAR service.

If an abort condition is encountered during task operation, control is transferred to the
task’s abort receiver. Before entry, any active software interrupt level is reset, all
outstanding operations or resource waits are completed, and all no-wait requests are
processed. End-action routines associated with no-wait requests that complete while
the abort is outstanding are not executed. Status bits reflecting this are posted in the
appropriate FCBs. Any files opened or resources allocated at the time the abort
condition is encountered remain opened and/or allocated when the abort receiver is
executed.

The TSA stack is clean. The context at the time the abort condition is encountered is
stored in T.CONTXT. When the abort receiver is entered, R5 reflects task interrupt
status when the abort condition was encountered.

Bit Meaning if Set
0-18 N/A
19 user break interrupt active.
20 end-action interrupt active.
21 message interrupt active.
22-31 N/A

The standard exit service (described in the Task Termination Sequencing section of
this chapter) exits from a task’s abort receiver. If another abort condition is
encountered while a task is executing an abort receiver, the task is deleted.

A privileged task can reestablish its abort receiver through the M.SUAR service. An
unprivileged task is not allowed to reestablish its abort receiver after an abort
condition has been encountered. An attempt to do so results in a task delete.

2.7.8 Task Interrupt Services Summary

Table 2-3 summarizes the services described in this section including required
parameter blocks. For a detailed description of the parameter blocks for run and
message requests, see the Parameter Blocks section of this chapter.

2.7.9 Arithmetic Exception Handling

2-34

MPX-32 maintains a trap handler with the capability to do special handling of
arithmetic exceptions generated by a task. If the arithmetic exception trap is enabled,
any task can test for the occurrence of an exception via the T.EXCP flag in the
T.BIT1 field of the TSA. For certain instructions, the destination register values are
modified as a result of an arithmetic exception. The H.IPOF Register Fixup table
(Table 2-4) shows how the different instruction types are modified. This capability
exists for both base and nonbase mode tasks.

Task Structure and Operation Overview

(V

Intertask Communication

The arithmetic exception trap is enabled by setting the arithmetic exception bit (bit 7)
of the task’s PSD. By default, this bit is set when a task is activated. Instructions are
provided in the base and nonbase mode instruction sets to manipulate this bit (see the
EAE and DAE instructions). When the trap is disabled, only the condition code
results are available to indicate that the exception has occurred, and the nature of the
exception type.

Base mode provides the capability of further arithmetic exception handling within a
task. By establishing an exception handler address within the task, the user provides
the operating system an entry point to the task upon occurrence of an arithmetic

exception.
Table 2-3
Task Interrupt Operation/Services Summary
Task Interrupt Priority Level 5 Level 4 Level 3 Level 2
Task Interrupt Run Abort Message End-Action | End-Action End-Action Break
Functions Requests Requests Requests Run Message 1/0 Requests
Issue Request M.SRUNR M.BORT | M.SMSGR MPX MPX MPX Hardware
ABORT SEND Break
BREAK
ML.INIT
Sending | Send Block PSB N/A PSB N/A N/A N/A N/A
Task
Functions | Wait for Completion PSB N/A PSB N/A N/A N/A N/A
(wait)
Establish End-Action PSB N/A PSB N/A N/A N/A N/A
Receiver
Wait for Completion M.ANYW N/A M.ANYW N/A N/A N/A N/A
(no-wait)
Call-Back Information PSB N/A PSB N/A N/A N/A N/A
Establish Receiver N/A M.SUAR M.RCVR PSB PSB FCB M.BRK
Get Parameters M.GRUNP N/A M.GMSGP PSB PSB R1 points N/A
to FCB
o Receive Block PRB N/A PRB PSB PSB FCB TY's UDT or
Receiving Contents of
Task T.BREAK
Functions
Exit Receiver M.EXIT MEXIT | M.XMSGR M.XREA MXMEA SVC 1,X2C’ | M.BRKXIT
M.XRUNR
Exit Block RXB N/A RXB N/A N/A N/A N/A
Wait for Next Request RXB N/A M.SUSP N/A N/A N/A M.ANYW
(if M. XRUNR) M.ANYW
Disable Interrupt Level N/A N/A M.DSMI N/A N/A N/A N/A
Enable Interrupt Level N/A N/A M.ENMI N/A N/A N/A N/A

MPX-32 Reference Volume | 2-35

Intertask Communication

2-36

Table 2-4

H.IPOF Register Fixup

Destination
Instruction Type Exception Type Register Results
Floating Point Arithmetic Exponent underflow - 0

includes:

ADRFW ADRFD
SURFW SURFD
DVRFW DVRFD
MPRFW MPRFD

positive or negative
fraction

Exponent overflow -
positive fraction

Largest positive
number (7F...F)

ADFW ADFD Exponent overflow - Largest negative
SUFW SUFD negative fraction number (80...1)
DIVFW DIVFD
MPFW MPFD Division by zero Largest positive
number (7F...F)
Fixed Point Arithmetic Any No change
(See specific CPU
includes: Reference manual)
ADMB ADMH ADMW
ADMD ADR ADRM
ARMW ARMD ADI
SUMB SUMH SUMW
SUMD SUR SURM
SuUI DVMB DVMH
DVMW DVR DVI
RND
Other Any No change
(See specific CPU
includes: Reference manual)
ABM ABR SLA
FIXW FIXD SLAD
LNW LND
TRN TRNM

The occurrence of an arithmetic exception with traps enabled causes the following
events to occur:

1.

2.

The CPU generates a trap and transfers control to the arithmetic exception trap

handler (H.IPOF).

The trap handler sets the T.EXCP flag in the TSA and determines what type of
instruction caused the exception. If the exception was caused by one of the
floating point arithmetic instructions, then the trap handler modifies the
destination register values as described in Table 2-4.

Task Structure and Operation Overview

e

N

e A

Intertask Communication

3. If the exception occurred during a base mode task which has an exception
handler established, and was caused by one of the floating point arithmetic
instructions that causes register results to be changed, an argument list is
constructed, and control is passed to the handler within the task via the CALL*
instruction. When the task’s exception handling routine is complete, control may
be transferred back to the trap handler by using the RETURN* instruction.

* This refers to Call/Return and argument passing standards established for
FORTRAN 77/X32.

4. The exception trap handler restores all original register and condition code
values, as well as the value of the task’s current PSD, and allows the CPU to
transfer control back to the task which caused the exception. Task execution
resumes at the instruction following the trapped instruction.

Condition code values generated as a result of an arithmetic exception are defined in
each of the CONCEPT/32 reference manuals.

2.7.9.1 Establishing Exception Handler

The M_SETEXA (Set Exception Handler) system service establishes an exception
handler for base mode tasks. This service accepts as input either the address of the
new handler to be established or O if the handler is to be ignored by the system. It
provides as output the previous handler address. This allows a procedure to establish
a handler and reset the previous handler when it no longer needs to handle exception
conditions.

2.7.9.2 Changing a Return Address from an Exception Handler

The M_SETERA (Set Exception Return Address) system service can be called from
an established exception handler to change the return address. This service accepts
either the destination address where control is transferred upon exit from the handler
or zero if the destination address remains unchanged (for example, execution is
continued from the point of the trap).

2.7.9.3 Exception Handler Input Arguments

When an arithmetic exception handler exists within a task, it is entered from the
exception trap handler via the CALL* instruction. The use of this instruction implies
an argument list address in base mode R3. This list is a FORTRAN standard list
containing the following arguments:

* value contained in the program counter (PC) at the exception

* arithmetic exceptions data array

* exception type and status indicator

The arguments are passed according to the FORTRAN standard for argument list
construction. Assembly language programmers should take care in extracting desired
information.

MPX-32 Reference Volume | 2-37

Intertask Communication

2-38

The program counter (PC) points to the instruction causing the exception. This may
be a left or right halfword, or a fullword instruction. The C-bits in the program status
doubleword (PSD) must be interpreted to determine the type of instruction.

The array contains information relevant to the arithmetic exception, for example,
register contents at the time of the exception, the exception PSD, the register number
to which the arithmetic modification was applied by the system arithmetic exception
trap handler, and the condition codes at the time of exception.

The status value contains information used by the FORTRAN run-time routines. It
includes the severity, system group, functional group, and type of exception.

The data structure of the argument list passed to the arithmetic exception handler of a
base mode task has the following format:

Word 0

O 0 N N U b W

e e e e
wm AW N = O

16-23
24
25
26-33
34
35
36

0 7 8 15 16 23 24 31

4

Descriptor pointer

Address pointer

Array pointer

Status pointer

Address descriptor pointer

Array descriptor pointer

Status descriptor pointer

| 2

W0 [H MW w

Exception address

20

Exception general purpose registers

Exception PSD 1

Exception PSD 2

Exception base mode registers

Fixed register number

Condition codes

Status value

Task Structure and Operation Overview

Intertask Communication

Word Description

0 number of words of pointer information that follow. In this example, the
first word is a pointer to the descriptor list pointers for each argument in the
list and the remaining three words are pointers to the arguments.

1 address of the descriptor vector. That contains one entry for each
argument in the list. In this case, there are three. Each entry points to the
information which describes the data type and size of each argument.

2 address of the word which contains the address of the instruction causing
the arithmetic exception (word 14). Care must be taken if this parameter
is used as the instruction may be a halfword or a fullword instruction.

3 address of an array of information collected when the exception occurred
(words 15-35). The first word of the array contains the number of words
in the array. This is FORTRAN standard. The following 21 words contain
the 8 general purpose registers, the PSD, the 8 base mode registers,
the register which was modified by the trap handler, and the condition
codes at the time of the trap.

4 address of a status word supplied by the handler (word 36).

contains a pointer to the argument descriptor (word 8) for the first
argument value. The argument value is contained in word 14.

6 contains a pointer to the argument descriptor (words 9-12) for the second
argument. The argument value is contained in words 15 through 35.

7 contains a pointer to the argument descriptor (word 13) for the third
argument. The argument value is contained in word 36.

8 contains the FORTRAN data descriptor for the first argument. The ’3’ in
the left halfword indicates this argument is a word length integer data item.
The ’0’ in the right halfword indicates that there is no additional descriptive
information about this data item.

9-12 four words containing descriptive information for the second argument, the
exception array. The ’3’ in the first halfword indicates this argument is a
word length integer data item. The 2’ in the right halfword indicates 2
more pieces of descriptive information follow. The ’1’ in the first byte of
word 10 indicates that data is the size in bytes of one element of the argument.
The ’2’ in the second byte indicates that data is the size in bytes of the
entire argument. The 4’ in word 11 indicates each element of the array is
4 bytes in length. The *80’ in word 12 is the total byte length of the
array (20 elements, 4 bytes each).

13 contains the FORTRAN data descriptor for the third argument. The '3’ in
the left halfword indicates this argument is a word length integer data item.
The ’0’ in the right halfword indicates that there is no additional
descriptive information about this data item.

MPX-32 Reference Volume | 2-39

Intertask Communication

Word

C
Description /

14

15

16-23

24-25

26-33

34

35

36

2-40

contains the address of the instruction causing the exception. It may be
the address of a fullword instruction, a left halfword instruction, or a

‘right halfword instruction. The C-bits of the exception PSD must be

interpreted to determine the type of instruction. The PSD C-bits are
interpreted as follows:

Bit 30 Bit 31 Definition
0 0 fullword instruction
0 1 right halfword instruction
1 0 left halfword instruction
1 1 invalid

first word of the exception array. FORTRAN uses this word to contain
the number of entries in the array for subscript validation.

8 words containing the contents of the 8 general purpose
registers at the time of the exception. The destination register of the
instruction causing the exception has had the modified value inserted.

2 words containing the PSD at the time of the exception. (Points
to either 2 or 4 bytes past the instruction which caused the
exception. (See word 14).

8 words containing the contents of the 8 base mode registers at
the time of the exception.

contains the register number which was modified as a result of the ~
arithmetic exception processing.
contains the 4-bit condition code value, extracted and right justified,
which was contained in the exception PSD.
contains status information generated by the arithmetic exception trap
handler in the following format:
0 4 8 16 31
I 1 | 1 | 52 | status code |
Bits Description
0-3 severity — value 1 = waming
4-7 system group — value 1 = O/S Support Library
8-15 functional Group — value 52 = Arithmetic exception
16-31 status code, contains:
Status
Code Description
1 exponent underflow, positive fraction
2 exponent overflow, positive fraction
3 exponent underflow, negative fraction
4 exponent overflow, negative fraction
5 divide by zero
6 fixed point exception if DQE.AF is set C

Task Structure and Operation Overview

Intertask Communication

2.7.9.4 Special Arithmetic Exception Processing and Ada Tasks

Any privileged task can set the DQE.AF bit to receive a status code 6 in word 36 of
the argument list for fixed point exceptions. However, Ada tasks always have this bit
set. Ada tasks receive arithmetic exception reporting for instructions that are usually
not reported. These are: ABR, SLA, SLAD, TRN and TRNM.

The status codes in the right halfword of word 36 in the argument list are intercepted
by the ADA module. These codes are reassigned as follows:

Status
Code Description Reassignment
1 exponent underflow, positive fraction 2
2 exponent overflow, positive fraction 1
3 exponent underflow, negative fraction 2
4 exponent overflow, negative fraction 1
5 divide by zero 4
6 fixed point exception 0

2.7.9.5 Exception Handler Restrictions

Exception handlers execute with the following restrictions:

* Arithmetic exceptions encountered during execution of the user’s arithmetic
exception handler are processed by the system arithmetic exception trap handler, but
do not cause the user’s handler to be re-entered. Using the modified registers,
execution is continued from the point of the trap or at the address specified to the
set return address service.

* A user’s arithmetic exception handler can be established only by base mode tasks.

2.7.9.6 Related Arithmetic Exception Information

The M.TSTE (Arithmetic Exception Inquiry) system service accesses the arithmetic
exception flag, T.EXCP, in the T.BIT1 field of the task’s TSA. The results of this
service indicate whether an exception has occurred, and reset the T.EXCP flag. The
output of the service is condition code results. Once the T.EXCP flag is set, it is not
reset until this service is used or the task terminates. This is a nonbase mode system
service.

MPX-32 Reference Volume | 2-41

CPU Dispatch Queue Area

2.8 CPU Dispatch Queue Area

The CPU dispatch queue is a variable length table built at SYSGEN and contains a
maximum of 255 Dispatch Queue Entries (DQE’s). Free DQE entries are linked into
the C.FREE head cell in the standard linked list format. When a task is activated, a
DQE is obtained from the free list and is used to contain all of the memory-resident
information necessary to describe the task to the system.

For example, the task sequence number, owner name, load module name, TSA
address, priority, and current state chain pointers are kept in the DQE, as are abort
codes, message and run receiver queue addresses, etc.

Additional (swappable) information is maintained in the TSA. While a task is active,
its DQE is linked to one of the various ready-to-run or wait state chains provided by
the CPU scheduler to describe the task’s current status. When a task exits, its DQE is
again linked to the free list.

2.9 /0O Scheduling

2-42

I/O scheduling provides efficient service to I/O bound tasks while keeping the CPU
busy with compute-bound tasks. This allows the fullest possible utilization of both
the CPU and I/O devices.

A task that has been waiting for I/O to complete (SWTI or SWIO) is changed to an
executable state at a priority slightly higher than a similar compute-bound task when
the I/O completes, as described in the Situational Priority Increments section of this
chapter. At that time, the CPU scheduler interrupts the execution of the compute-
bound task so that the I/O-bound task can execute. The I/O-bound task requires
minimal CPU time before initiating another I/O request and returning to the SWTI or
SWIO state. The compute-bound task then resumes execution. The CPU scheduler
automatically adapts to tasks that alternate between bursts of computing and bursts of
I/0.

Task Structure and Operation Overview

C

Swap Scheduling

2.10 Swap Scheduling

2.10.1

2.10.2

2.10.2.1

2.10.2.2

2.10.2.3

2.10.2.4

The swap scheduler task (J.SWAPR) processes entries in the memory request queue
(MRQ). It provides memory allocation and swap scheduling as appropriate to service
individual requests for memory.

Refer to Reference Manual Volume I, Chapter 3 for swapping techniques used for
demand page processing.
Structure

The swap scheduler is a memory resident, privileged task that is not operating system
resident. It executes at the priority of the highest priority task in the memory request
queue. The swap scheduler always occupies the first DQE. If a task requires
memory, the swap scheduler maps the task’s TSA on top of its address space.

The swap scheduler remains suspended until resumed by the executive in response to
a swap scheduler event.
Entry Conditions

The swap scheduler task is normally suspended. It is relinked to the ready-to-run
queue by the executive in response to a system service calling the executive to report
a swap scheduler event. There are four basic types of swap scheduler events.

Dynamic Expansion of Address Space (M.GE/M.GD, M.MEMB)

When there is insufficient memory to satisfy a dynamic memory request for a task, the
task is linked into the memory request queue and the swap scheduler is resumed.

Memory is allocated in 2KW increments on a CONCEPT/32. These increments are
called map blocks.
Deallocation of Memory (M.FE/M.FD, M.MEMFRE)

When a task deallocates some or all of its memory, and the memory request queue is
not empty, the swap scheduler is resumed. Those tasks in the MRQ are then allocated
some or all of the deallocated memory.

Request for Inswap

When a currently outswapped task becomes eligible for execution, it is linked into the
memory request queue. The swap scheduler is resumed to process the inswap request.

Change in Task Status

When a task which had been previously ineligible for swapping becomes eligible, the
swap scheduler is resumed. Such status changes include the completion of an
unbuffered 1/O operation, the release of a lock-in-memory flag, or the expiration of a
stage one time quantum.

MPX-32 Reference Volume | 2-43

Swap Scheduling

2.10.3

2.104

2-44

Exit Conditions \ 4

The swap scheduler signals the executive when it cannot process any more
outstanding requests, or when the memory request queue is empty. The swap
scheduler is unlinked from the ready-to-run queue and placed in a special wait-for-
memory-event state.

Selection of Inswap and Outswap Candidates

The swap scheduler attempts to allocate the memory required for the highest priority
task in the memory request queue. If there is insufficient free memory, the swap
scheduler examines the state queues on a priority basis, searching for the memory
class and number of map blocks required.

When the first outswap candidate that satisfies any current memory request is
determined, the task is outswapped.

When sufficient memory is available, the inswap process is initiated. The swap
scheduler processes entries in the memory request queue until the queue is empty or
until an available outswap candidate for a task requesting memory cannot be found.

Both outswap and inswap are serial processes which go to completion before the

memory request queue is reexamined. Dynamic memory requests are similar to

inswap requests, except that there is no associated disk file to read. Some tasks in the

memory request queue can be queued for both inswap and a dynamic request. There

must be sufficient memory for the inswap and dynamic requests before the inswap .
process can proceed.

Task Structure and Operation Overview

Swap Scheduling

2.10.41

Outswap Process

The outswap process is initiated when inswap or dynamic memory is requested. The
outswap priority order can be specified by the system administrator. See the System
Administrator chapter in MPX-32 Reference Manual, Volume III. The following table
illustrates the default outswap priority order beginning with HOLD and ending with
SQRT.

Default Outswap Priority Order

Wait Queues Ready-to-Run Queues
HOLD SQ64
SUSP SQ63
RUNW SQ62
SWDV SQ61
SWDC SQ60
SWSR SQ59
SWSM SQ58
SWLO SQ57
SWFI SQs56
MRQ SQ55
ANYW RIPU
SWGQ SQRT
SWTI
SWIO
SWMP

2.10.4.2

The TSA of the outswap candidate is mapped into the swap scheduler and is used to
construct a new address space which represents the swappable map blocks in a
logically contiguous format. Then, the swap space is allocated and opened by the
swap scheduler. For F-class swap devices, a single write request is given to IOCS.
Command and data chains are built in the handler to perform the specified transfer.

Once output is complete, the memory is deallocated, and the memory request queue is
re-examined to find the highest priority candidate for inswap.

Inswap Process

When sufficient memory is available, the swap scheduler allocates the memory
required by the highest priority task in the memory request queue. If the request is
simply a dynamic one, the swap scheduler adjusts the TSA of the requestor to reflect
the newly allocated memory, and informs the CPU scheduler.

If the request requires an inswap, the swap scheduler reads the swapped image into the
newly allocated memory. For F-class swap devices, a single read request is given to
IOCS. Command and data chains are built in the handler to perform the specified
transfer.

Once inswap is complete, the swap scheduler cleans its map and re-examines the
memory request queue for the next inswap candidate.

MPX-32 Reference Volume | 2-45

Task Termination Sequencing

2.11 Task Termination Sequencing

2111

2.11.2

2113

2114

2-46

Three types of task termination are provided by the MPX-32 executive: exit, abort,
and delete task execution.

Nonbase Mode Exit Task (M.EXIT)

The exit task service is called by a task that needs to terminate its execution in a
normal fashion. The sequence of system processing on task exit is described in Table
2-5.

Abort Task (M.BORT)

The nonbase mode abort task service is called by a task that wants to terminate its
execution in an abnormal fashion. It may also be initiated by the system when a task
encounters a system trap condition (e.g., undefined instruction, privilege violation, or
nonpresent memory) or by a system service because of a parameter validation error.

This service may also be asynchronously initiated by another task of the same owner
name or by the OPCOM ABORT directive. The sequence of system processing on
task abort is described in Table 2-5.

Delete Task (M.DELTSK)

The delete task service is called by the system for a task that encounters a second
abort condition when processing an initial abort request. This service may also be
initiated asynchronously by another task of the same owner name or by the OPCOM
KILL directive. The sequence of system processing on task delete is reflected in
Table 2-5.

Base Mode Exit Task (M_EXIT)

The base mode task entry structure allows base mode tasks to exit in a uniform
manner. Exit sequences require a 0 or an ASCII status code to be placed in RO. Any
entry into a subroutine may be exited by the execution of a RETURN instruction.

A base mode assembler task must exit any end-action receiver by a RETURN
instruction. If the exit from end action requires a receiver exit block (RXB), the RXB
address must be in R1.

Task Structure and Operation Overview

(

S

Task Termination Sequencing

Table 2-5
Task Termination Sequencing (EXIT, ABORT, and DELETE)
System Action
Task Has
Task Exit Task Abort Task Delete
Outstanding Defers processing Same as exit, Terminates all
I/0 until any except inhibits outstanding I/O.
outstanding I/O execution of
is complete. user no-wait I/O
end-action
routines. Task
abort is reflected
in appropriate
FCB(s).
Outstanding Unlinks all Same as exit. Same as exit.
Messages in outstanding
Receiver messages. Posts
Queue complete with
abnormal status.
Outstanding Defers processing Defers abort Call backs are
No-wait Run until the processing until ignored.
Requests destination task all requests are
with Call completes. The complete. Task
Back exiting task is abort status is
placed in the ANYW reflected in run
state until the request parameter
destination task block.
has completed.
Run Terminates the Same as exit. Same as exit.
Requests current run
in Receiver request and posts
Queue appropriate status
in run request
parameter block.
Then activates a
new copy of the
task for next
run request in
queue, if any.
Continued on next page
MPX-32 Reference Volume | 2-47

Task Termination Sequencing

2-48

Table 2-5
Task Termination Sequencing (EXIT, ABORT, and DELETE) (Continued)

Task Has

System Action

Task Exit Task Abort Task Delete

Task Abort Not processed. Transfers control Not processed.

Receiver to task after

other steps taken
above. Files are
not closed. Devices
and memory are not
deallocated.
(Remaining abort
processing by
system is
discontinued.)

Files Open Closes all open Same as exit. Does not
files close files
automatically. automatically.
Preserves Preserves
integrity of both integrity of
user and system system
files. critical

files. User
files are
left as is.

Devices/ Deallocated Same as exit. Same as exit.

Memory automatically.

Allocated

Task Structure and Operation Overview

®

Task-Synchronized Access to Common Resources

2.12 Task-Synchronized Access to Common Resources

MPX-32 provides the structure for tasks to voluntarily synchronize access to a
common resource such as a disk file, a shareable device, a common data area, a
shared/included procedure area, or any other physical resource.

The capability provided by MPX-32 is a general resourcemark mechanism. Each task
using a marked resource must:

* use the M.RSML and M.RSMU (Resourcemark Lock/Unlock) services to
synchronize access to a resourcemark with other tasks

* make the association of a particular resourcemark with an actual resource

MPX-32 provides: a table of resourcemarks that are currently in use, a mechanism for
queuing tasks for each mark, and automatic unlock on a resourcemark when a task
terminates (aborts, exits, or is deleted), if the task has not unlocked the resourcemark
on its own.

A resourcemark is a decimal value from 1 to 64. Values 1-32 are for internal use,
values 33-64 are available for customer use. The default size of O can be increased by
using the SYSGEN RMTSIZE directive. When privileged tasks use the Lock/Unlock
services, MPX-32 checks that the index value provided is within the range from 1 to
the configured size of the resourcemark table. The system does not associate a
particular resource with a particular resourcemark. Thus, if several tasks use
synchronization service calls to gain access to a resourcemark and another task does
not, the outside task gains the resource just as if no restrictions were active for it.

Tasks synchronizing use of resources are responsible for using resourcemarks that
uniquely identify resources across the system. MPX-32 ensures only that a specified
mark is within the legal numeric range.

To use resource marking, each cooperating task:

* uses ML(RSML to lock the resourcemark
* performs the access which requires synchronization

* uses M.(RSMU to unlock the resourcemark and release the highest priority task
queued for the resourcemark

The task has several options available if the resourcemark is locked when it issues the
M.RSML call. As specified in the call, it can:

* obtain an immediate denial return and go on

* wait until it can gain ownership of the lock

* wait until it can gain ownership or until a specified number of timer units have
expired, whichever occurs first

If a single task uses more than one resourcemark, and it is synchronizing access to
more than one resource, the user must exercise care to avoid deadlock situations; for
example, task A is in wait for a lock owned by task B while task B is in turn waiting
for a lock owned by task A.

MPX-32 Reference Volume | 2-49

Task-Synchronized Access to Common Resources

A task using more than one resourcemark can avoid deadlocks by unlocking all locked @
resourcemarks if it cannot succeed in locking any one of them. The task then waits

for the critical unlock to occur before reattempting locks on all the other

resourcemarks in the set.

Sample Resourcemark Use by a Task

PROGRAM T4
M.REQS
LIST NGLIST
T4 EQU $
M.RSML 33,0 LOCK RSM, INDEF .WAIT,NORM SWAP
M.WRIT ABC WRITE TO CRITICAL FILE
M.RSMU 33 UNLOCK RSM
M.EXIT
ABC DATAW G’ABC’ LFC SETUP
GEN 12/B 80,20/B (SBUF)
- REZ 6W
SBUF RES 80B
END T4

VN

e’

2-50 Task Structure and Operation Overview

MPX-32 Faults/Traps and Miscellaneous Interrupts

2.13 MPX-32 Faults/Traps and Miscellaneous Interrupts

MPX-32 provides interrupt and trap processors for all standard interrupts and traps. A
list of these interrupts with associated information is shown in Table 2-6.

Processing for trap levels 03, 04, 05, and 09 is dependent on the location of the
instruction causing the trap. A system crash (M.KILL; not OPCOM KILL) results if
the offending instruction is issued from a location within the MPX-32 system area. If
the instruction is issued from a location within a task area, the task is aborted.

When a system crash occurs as a result of a trap handler entry, the CPU halts with the
registers containing the following information:

Register Contents

PSD word 0 (when trap generated)

PSD word 1 (when trap generated)

real address of instruction causing trap

instruction causing trap

CPU status word (from trap handler)

Crash code:
MPO01=X"4D503031" (Memory Parity Error - H.IP02)
NMO1=X"4E4D3031’ (Nonpresent Memory - H.IP03)
UlI01=X"55493031" (Undefined Instruction - H.IP04)
PV01=X"50563031" (Privilege Violation - H.IP05)
MC01=X"4D433031" (Machine Check - H.IP07)
SC01=X"53433031" (System Check - H.IPO8)
MF01=X"4D463031’ (Map Fault - H.IP09)
CP01=X’42543031" (Cache Parity - H.IP10) 32/67 and 32/87
ADO01=X"41443031" (Address Specification - H.IPOC)
HTO01=X"48543031" (Privilege Halt Trap - H.IPHT)

6 Real address of register save block
7 C’'TRAP’=X’54524150’

N h W =O

MPX-32 Reference Volume | 2-51

MPX-32 Faults/Traps and Miscellaneous Interrupts

Table 2-6
MPX-32 Faults/Traps and Miscellaneous Interrupts
Dedicated TVL System Action:
Relative | Logical Description PSD in OS area/ Abort
Priority | Priority | CPU IPU PSD in Task Area | Code
00 00 80 20 Power fail trap Halt/halt N/A
01 01 84 24 Power on trap Halt/halt AU01
02/12 12 88 28 Memory parity trap M.KILL/Abort MPO1
03/24 24 8C 2C Nonpresent memory M.KILL/Abort NMO1
trap task
04/25 25 90 30 Undefined M.KILL/Abort U101
instruction trap task
05/26 26 94 34 Privileged violation M.KILL/Abort PV01
trap task
06 98 38 SVC trap Process SVC/ See
process SVC Note
07 9C 3C | Machine check trap MKILL/M.KILL | MCO01
08 A0 40 System check trap MKILLMKILL | SCO1
09 A4 44 Map fault trap M.KILL/Abort MFO01
task
0A 48 Undefined IPU M.KILL/Abort U101
instruction trap task
0oC OE B0 50 Address M.KILL/Abort ADO02
specification trap task
0D 0D B4 54 Console attention Process Int./ N/A
trap process int.
OE 27 B8 58 CPU halt trap M.KILL/Abort HTO1
task
0F/29 29 BC 5C Arithmetic Not enabled/ N/A
exception trap record in TSA
10 Co 60 Cache memory parity | M.KILL/Abort CPO1
€rror trap task
18 18 160 N/A | Real-time clock Process Int./ N/A
interrupt process int.
Note:

SVC Abort Codes

Sv01 Unprivileged task using M.CALL

Sv02
Svo3
SV04

Invalid SVC number
Unprivileged task using privileged service
Invalid SVC type

SVO05 Unprivileged task using M.RTRN

SvVo07

Invalid SVC for base register operation

2-52

Task Structure and Operation Overview

‘}‘““’_,/ :

Real-Time Task Accounting On/Off

2.14 Real-Time Task Accounting On/Off

Disabling real-time task accounting allows users to improve context switch time for
real-time tasks using any of the MPX-32 schedulers (EXEC, EXEC2, or EXEC3).
The default mode is real-time task accounting on.

The overhead of multiple CD (command device) instructions that are executed every
context switch can be avoided when real-time task accounting is turned off. When
real-time task accounting is off and an IPU is present, then real-time task accounting
is turned off in both processors.

Three levels of control are provided:

System Wide Default
established at SYSGEN by the presence or absence of the MODE
ONRA and MODE OFRA directives in the /PARAMETERS subsection
of the /SOFTWARE section.

The MODE ONRA is the default mode, which enables real-time task
accounting. The MODE OFRA directive disables real time accounting.
These directives do not affect tasks that are not real-time. These tasks
always have accounting enabled.

OPCOM Override
occurs with the !MODE ONRA and the !MODE OFRA commands.

These commands provide a convenient way to override the SYSGEN
defaults without performing a SYSGEN and RESTART to change the
default accounting mode. The !MODE ONRA command enables real-
time accounting. The 'MODE OFRA command disables real-time
accounting.

This option has no effect on tasks that are not real-time. These tasks
always have accounting enabled.

CATALOG Override
occurs with the ENVIRONMENT ONRA and OFRA directives.

The ENVIRONMENT ONRA directive enables real-time accounting
regardless of the current default mode. The ENVIRONMENT OFRA
directive turns real-time accounting off regardless of the current default
mode. This option has no effect on tasks that are not real-time. These
tasks always have accounting enabled.

MPX-32 Reference Volume | 2-53/2-54

3 Resource Management Overview

3.1 General Resource Management

A generalized resource management scheme means all resource operations work in a
standard and predictable manner on every resource. A resource is any source of aid or
support existing which is external to a task’s body and is required by the task for that
task to perform its function.

3.2 Support for Resource Types

The operating system recognizes two types of resources: physical and logical. A
physical resource is any physical hardware supported by the operating system. A
logical resource is any entity existing only because of a mechanism provided by
software. Most often, the mechanism is merely a named and predictable data structure
imposed on a physical medium.

3.2.1 Physical Resources

The primary physical resources supported by the operating system are: the central
processing unit (CPU), computer memory (main storage), and I/O devices. In the
support of physical resources, all resource functions are supported in the same manner.
Definition and deletion of physical resources are accomplished by the system
generation (SYSGEN) process. Resource attachment, access, and detachment are a
subset of the functions allowed for logical resources. Physical resource inquiry is
more primitive and resource dependent than logical resource inquiries. The attributes
assigned to the management of physical resources are more resource dependent than
the attributes associated with logical resources. Attributes of physical resources can
only be modified by the SYSGEN process.

3.2.2 Logical Resources

The primary logical resources supported by the operating system are: disk volumes,
directories, files, and memory partitions. In the support of logical resources, all
resource functions are supported in the same manner. Definition and deletion of
logical resources are accomplished by utilities or system services. Resource
attachment, access, detachment, inquiry, and attribute modifications are provided for
logical resources and are implemented by system services.

MPX-32 Reference Volume | 3-1

Support for Resource Functions

3.3 Support for Resource Functions

To support all resources in a similar manner, all functions required to manage
resources must be provided and those resources must operate in a similar manner.
The following is a list of the functions provided:

Function Description

Resource creation defines a resource to the operating system

Resource deletion removes the definition of a resource from
the operating system

Resource attachment connects to a resource for the purpose
of using the resource

Resource access uses a resource or transfers data to or
from a resource ‘

Resource detachment disconnects a resource so it can be used
by others

Resource inquiry inquires about a resource to determine

specific information about it

Resource attribute modification modifies the attributes of a resource
to change its operational characteristics

Detailed descriptions of these functions are in the following sections.

3.3.1 Resource Creation

Before any resource can be used by a task in the operating system, the required
resource must be defined to the operating system. Utilities are provided for defining
resources. In most cases, the resources can be defined by directives or services issued
to the operating system. When a resource is created, all resource attributes are
defined.

3.3.2 Resource Deletion

The resource definition must be deleted so the resource can no longer be used. This is
accomplished by the use of a utility program. Usually, resources can be removed
using directives or services provided by the operating system.

3.3.3 Resource Attachment

Resource attachment is the process of securing a resource for use by a task.
Commands and/or service requests are issued to the operating system to attach a
resource. When a resource is to be attached, various parameters are specified
indicating how the resource is to be used. The directive or service to attach a resource
is unique to each type of resource. For example, volumes are mounted, memory
partitions are included, and files/devices are assigned.

Resource Management Overview

Support for Resource Functions

There are two types of resource attachment provided by the operating system, static
and dynamic.

3.3.3.1 Static Allocation

Static allocation is invoked by declaring a task’s resource requirements when the task
is cataloged or activated. Static allocation serves several purposes. Most importantly,
this form of allocation guarantees that a cataloged load module, when activated, has
all the resources required before it begins execution. Secondly, by declaring all of a
task’s resources when it is cataloged or activated, the operating system can match sets
of resource requirements among all tasks in the activation state and more effectively
manage resources. Static allocation enables the operating system to allocate sets of
resources. This avoids deadlocks that can occur when a task requires multiple
resources and must dynamically allocate each one. Statically allocated resources can
be overridden at task activation.

3.3.3.2 Dynamic Allocation

In some applications, a task does not know what resources it requires until execution
begins. For this reason, dynamic resource allocation is provided. Dynamic allocation
is invoked by service requests from an executing task.

3.3.4 Resource Access

Resource access is the process of transferring data to or from a resource, positioning a
resource, or otherwise manipulating a resource. Various applications require many
levels of access to a resource. The operating system provides the following levels of
resource access. The levels are described in order from the most device-dependent to
the least device-dependent access levels.

3.3.4.1 Device Level

The operating system provides integration of device-dependent I/O drivers. The user
is not required to design and code an MPX-32 I/O device handler. However, a user-
supplied I/O driver can be integrated into the operating system by the SYSGEN
utility.

3.3.4.2 Execute Channel Program Level

To perform device-dependent I/O operations where the operating system queues the
1/O requests, starts the I/O requests, and processes the operating system termination
functions, the user can build and execute physical or logical channel programs. These
channel programs can only be executed on devices that use extended I/O (XIO)
protocol.

MPX-32 Reference Volume | 3-3

Support for Resource Functions

3.3.4.3 Logical Device Level

With this level of access, the user can transact with a device while using specific
physical capabilities offered by the device. Logical device I/O supports applications
which require the use of a specific device for a capability provided explicitly by the
device.

With this level of access, a user performs I/O requests using a file control block
(FCB). The data format inhibit option must be set in the FCB to gain access to the
device at this level.

3.3.4.4 Logical File Level

With this level of access, a user achieves a degree of device independence. When
device access is performed at this level, device-dependent characteristics are masked
from the user. This access level supports applications which require the illusion of
device commonality and independence.

3.3.4.5 Blocked Level

This is the highest level of device access provided by the operating system.
Explicitly intended for use by utility programs requiring the highest degree of device
commonality or sameness, blocked I/O works only with magnetic tape and disk
media. For all operations to perform identically regardless of which type of media is
manipulated, this access level emulates the operation of magnetic tape on both types
of media. All operations that are valid for magnetic tape media are provided. The
user can issue rewind, write end-of-file, advance file, backspace file, advance record,
backspace record, read record, and write record operations.

With blocked I/O, the user must access the media in a sequential manner. Records
can be transacted with the media in lengths of 254 bytes or less; longer records are
truncated. The operating system automatically performs intermediate record blocking
and buffering to or from the media.

For the maximum device independence, use the following subset of allowable
operations: rewind, read record, and write record.

Note: Append access is available on disk media but is not allowed on magnetic tape
media.

3.3.5 Resource Detachment

Resource detachment allows attached resources to be released and made available for
use by other tasks. When resources are detached, other tasks that can be queued
awaiting the availability of the resource are resumed to contend for attachment to the
resource.

Resources are detached explicitly by the appropriate dismount, exclude, or deassign
functions. Additionally, any resources a task has attached at the normal or abnormal
termination of the task are automatically detached by the system.

34 Resource Management Overview

O

Support for Resource Functions

Resource detachment may cause the system to perform clean-up operations, such as
purging partially-filled blocking buffers and releasing exclusive locks outstanding on
the resource.

3.3.6 Resource Inquiry

Resource inquiry is provided so tasks can determine the attributes of a resource.

3.3.6.1 Inquiry of Unattached Resources

At times it is necessary for a task to inquire about a resource. Given the name or
some other legal identifier, directives and services are provided to return information
about resources. The operating system provides this information through a resource
descriptor (RD). At a place common to all resource descriptors, the inquirer can
determine the type of resource. Once this information is obtained, the inquirer can
examine resource type-dependent data in the descriptor for more specific information.
Usually, such inquiries are made before the resource is attached.

3.3.6.2 Inquiry of Attached Resources

This type of inquiry is most often used when a resource has been statically attached.
It determines the logical or physical attributes of the connection, such as the access
modes, access level, physical device address, and parameters. The user must furnish
the logical file code, file control block (FCB) address, or allocation index to identify
the desired resource.

3.3.7 Resource Attribute Modification

At times, it is necessary to modify the protection and other access attributes of a
resource. Resource attribute modification, like resource inquiry, deals with operating
system data structures. The user of these functions should be familiar with the format
of these data structures. Also, it is recommended that user-supplied subroutines act as
a common interface to the functions. In this way, the user is less sensitive to changes
in system structures.

MPX-32 Reference Volume | 3-5

Resource Attributes

3.4 Resource Attributes

All logical resources have attributes. The attributes of resources control how the
resources are managed and determine who can use them.

The operating system ensures that all logical resources are defined in directories; for
example, by providing names. Protection is applied to resources to determine who
may use them and how they can use them. Resources can be shared (used by more
than one task at the same time). Resources can otherwise be declared as nonshared
(used by only one task at a time). Another set of attributes determines how the
resource can be accessed; for example, data can be read from but not written to the
resource, only certain areas of the resource can be written to, the resource can be
deleted, etc.

3.4.1 Protection

The protection provided by the operating system for logical resources is organized so
that a resource can be managed by the following:

Class Description

Owner is the person creating a resource. When the resource is created,
the owner establishes all attributes for the resource. The owner
can specify which project group and others can access the resource
and what their access capabilities are.

Project Group is the name of a group of users allowed to access the resource.

Others are users of a resource who are not the owner or members of the
project group.

A resource can be defined and managed as applicable to each class.

Protection is supplied for environments where desired. Since protection can be
harmful when it is not administered properly, the user is advised to protect resources
only to the level required. By default, owner and project group privileges are equal
and all owners belong to the same project group. This default method of operation
allows all users of the system to attach to all resources defined to the system.

When a task attempts to attach a resource, the system determines the owner, a member
of a project group, or an other arbitrary user is making the attempt to attach a
resource, the associated owner name is checked first, then the project group name. If
the task does not match either of the first two checks, the task is given the access
rights associated with an other arbitrary user. Otherwise, the task is given the access
rights for the level that was matched.

3.4.2 Shareable Resources

A resource can be defined as shareable when it is created. Shareable resources can be
attached to more than one task at the same time.

3-6 Resource Management Overview

Resource Attributes

When a shareable resource is attached, the requesting task indicates how the resource
is used. A shareable resource can be used in three modes: exclusive, explicit, and
implicit. The resource can only be attached in one mode at any time.

3.4.2.1 Exclusive Use

When a task requires exclusive use of a shared resource, the task can request it when
attaching to the resource. A resource attached for exclusive use can only be used by
the task that was granted the exclusive attachment. Once a resource has been attached
for exclusive use, other tasks requesting attachment can be denied or enqueued until
the resource becomes available.

A task may require exclusive access to a resource it is already attached to and may be
currently sharing with other tasks. In this case, the task must call the M.LOCK
service. The M.LOCK service determines whether the caller is the only task attached
to the resource. If so, the caller is immediately given exclusive access. Otherwise,
the caller is denied or enqueued until it receives exclusive access.

3.4.2.2 Explicit Use

When multiple tasks require simultaneous attachment to the same shareable resource,
the tasks can attach to the resource for explicit use. With explicit use, the attached
tasks can use the resource in a way that can destroy recorded data. It is the
responsibility of tasks using a resource in this mode to ensure that the integrity of the
data recorded on the resource is preserved.

The following mechanisms allow explicit users to preserve data integrity:

* A task can gain exclusive access to a resource by calling the M.LOCK service.

In this case, the M.LOCK service enqueues the caller until exclusive access can be
granted.

* A set of tasks can synchronize on access to the resource by calling the M.SYNC
and M.UNSYNC services.

Synchronization locking does not guarantee exclusive access to a resource; it is
merely a semaphore that is locked. The semaphore for the resource is returned
when the resource is attached and must be used as an input parameter to the
M.SYNC and M.UNSYNC services.

Another type of semaphore, the resourcemark, can be used for synchronizing access
to a resource or a set of resources. The use of semaphores requires that all tasks
attached to a resource in explicit use mode cooperate to preserve the integrity of the
resource.

MPX-32 Reference Volume | 3-7

Resource Attributes

3.4.2.3 Implicit Use

When a task attaches to a shared resource but does not explicitly declare exclusive or
shared use, the resource is attached for implicit use. Implicit use is the default usage
mode for all attachment to resources. In this mode, the operating system
automatically allows the resource to be accessed by multiple tasks attached in
compatible access modes. With compatible access modes, the following access
combinations are allowed: multiple readers, multiple readers with a single writer,
single writer only, and two simultaneous writers.

3.5 Resource Access Attributes

All resources have a set of attributes to determine how the resource can be accessed.
This section defines the access attributes for each logical resource and defines the
purpose of these attributes.

3.5.1 Access Attributes for Volumes

Access to resources on a volume is determined by attributes assigned when the
volume is mounted and by the volume type. Refer to the Volume section in Chapter
4 of this manual.

3-8 Resource Management Overview

Resource Access Attributes

3.5.2 Access Attributes for Directories

Directories have attributes determining how they are managed. These attributes can
be specified for each user class (owner, project group, and others). The access
attributes are defined when a directory is created. Access attributes for directories are:

Access
Read

Add entry
Delete entry

Delete directory

Traverse

MPX-32 Reference Volume |

Description

A directory with read access can be attached like a file with
read-only access. A user assigning a directory in the read mode
must be familiar with the format of directory entries to extract
meaningful information. Read access lets the contents of a
directory be presented by the LOG service or directive with wild
card characters. If read access is not allowed, a directory

cannot be logged.

New directory entries can be added to a directory with add
entry access.

Directory entries can be deleted from a directory with delete
entry access.

A directory with delete directory access can be deleted when it
does not contain any active directory entries. Utilities, directives,
and services are provided to delete entries from directories.

A directory can be searched when a pathname is being executed
by the system if it has traverse access. For example, a resource
can be located in a directory. The contents of a directory cannot
be presented with the LOG service or directive if wild card
characters are used and the user only has traverse access to the
directory.

Resource Access Attributes

3.5.3 Access Attributes for Files

Files have attributes determining how they are managed. These attributes can be
specified for each class of user: owner, project group, or other users. The access
attributes are defined when a file is created. This applies for both temporary and
permanent files. Access attributes for files are:

Access

Description

Read
Write

Modify

Update

Append

Delete

A file with read access can be attached for read only access.

A file with write access can be attached for read/write access. This
mode establishes all new data contents for a new or existing file. In this
mode, unused extensions to a file are automatically deleted when the file
is closed.

A file with modify access can be attached for read/write access. This
mode modifies the data contents of an existing file. When accessed in
this mode, files cannot be automatically extended.

A file with update access can be attached for read/write access. This
mode modifies the data contents of an existing file and appends new
data to the file. When accessed in this mode, files can automatically

extended.

A file with append access can be attached for read/write access. This
mode appends new data contents to an existing file. When accessed in
this mode, files can be automatically extended.

A file with delete access can be deleted if the directory containing the
file’s directory entry allows delete entry access.

3.5.4 Access Attributes for Memory Partitions

Memory partitions have attributes determining how they are managed. They can be
specified for each class of user: owner, project group, or other. The access attributes
are defined when a memory partition is created. Access attributes for memory

partitions are:

A memory partition with read access can be attached (included) for

A memory partition with write access can be attached (included) for

Access Description
Read

read-only access.
Write

read/write access.
Delete

3-10

A memory partition with delete access can be deleted if the directory
containing the partition’s directory entry allows delete entry access.

Resource Management Overview

C

e

Management Attributes

3.6 Management Attributes

All logical resources have a set of applicable management attributes regardless of
which user class is attached. Management attributes for resources are described in this
section.

3.6.1 Extension Attribute

Extension attributes apply only to permanent and temporary files.

3.6.1.1 Manual Extension Attribute

Manual extension attributes apply only to files. They enable a file to be manually
extended by the extend service or directive.

3.6.1.2 Automatic Extension Attribute

Automatic extension attributes apply only to files. They enable a file to be extended
automatically when data is written to the file. Automatic extension is subject to
restrictions inherent to access modes. For example, a file attached in the modify mode
cannot be extended.

3.6.2 Contiguity Attribute

Contiguity attributes apply only to extendible files. This attribute informs the
operating system that the file should be contiguous. When a file has this attribute and
is to be extended, the operating system attempts to allocate the new segment
contiguous to the last segment. If the contiguous extension fails, the system attempts
to allocate the new segment at any available location on the same volume. The
Volume Manager RESTORE directive can be used to attempt to restore a
discontiguous file contiguously if it contains the contiguous attribute.

MPX-32 Reference Volume | 3-11

Management Attributes

3.6.3 Maximum and Minimum Extension Attributes

The maximum and minimum extension attributes can only be described by a detailed
explanation of the extension algorithm. When a file is to be extended, the presence of
a dynamically user-supplied value, a minimum increment, and the maximum
increment is verified. The following chart shows the results of this verification.

Supplied Minimum Maximum

Value Increment Increment Result
No No No file is not extended
No No Yes maximum extension attempted
No Yes No minimum extension attempted
No Yes Yes maximum extension attempted first,
minimum attempted second
Yes No No supplied value attempted
Yes No Yes supplied value attempted first,

maximum extension attempted second

Yes Yes No supplied value attempted
first, minimum extension attempted second

Yes Yes Yes supplied value attempted first,
maximum extension attempted second,
minimum extension attempted third

3.6.4 Maximum File Size Attribute

Maximum file size attributes apply only to files and can be specified when a file is
created. If specified, a file does not become larger than the size specified. If a
maximum file size is not specified, a file can be extended a maximum of 31 times or
until file space cannot be acquired, whichever occurs first.

3.6.5 Shared Attribute

Shared attributes apply to files and directories and can be specified when the resource
is created. If specified, the resource can be attached and accessed by more than one
task. If shared is not specified, the resource can only be attached and accessed by one
task at a time. Memory partitions are always given the shared attribute.

3.6.6 End-Of-File Management Attribute
End-of-file management is an attribute of both blocked and unblocked files. It

controls how MPX-32 performs end-of-file accounting. The end-of-file management
attribute is set at the time of file creation.

3-12 Resource Management Overview

Management Attributes

All files are created with EOFM=T/Y, (either T or Y may be specified) unless
EOFM=F/N (F or N) is specified. For files created with EOFM=T/Y, end-of-file
management is performed through file descriptor accounting. For files created with
EOFM=F/N, EOF accounting is managed via an EOF indicator within the file
contents.

3.6.7 Fast Access Attribute

Fast access applies only to files and can be specified when a file is created. This
attribute enables files defined on a volume to be attached in one disk access through
the file identifier (RID). The RID identifies the volume where the file resides, the
block number of the file’s resource descriptor (RD), and the creation date and time of
the file. Files created with the fast access attribute always retain their original RID as
long as they remain defined on the volume. A file explicitly deleted and subsequently
recreated is assigned a new RID.

System services using a resource create block (RCB) can create files with the fast
access attribute by setting the appropriate bit in the RCB. See the Resource Create
Block (RCB) section of Chapter S for information on the RCB.

When a Volume Manager RESTORE or COPY directive is performed on a file created
with the fast access attribute, the file retains its original RID. See MPX-32 Reference
Manual Volume II, Chapter 3.

3.6.8 Zero Attribute

Zeroing applies only to files and can be specified when a file is created. File space is
prezeroed when a file is created or extended with this attribute.

MPX-32 Reference Volume | 3-13

Management Attributes

3.6.9 File Type Attribute

File type applies only to files. This is a 2-digit hexadecimal number that can

arbitrarily classify resources. File type codes are:

Value

Description

00-39

40-5F

60-9F

AQO-AF
BO
BA
BB
BC
BE
Co
CA
CE.
CF
DO
DB
ED
EE
FD
FE
FF

available for customer use

reserved for system

available for customer use

reserved for system

base mode object file

base mode shared image (or BASIC file)
base mode object library file

base mode macro library file

base mode load module file

spooled output file

cataloged load module

MPX-32/COFF executable image
MPX-32/COFF shared image

memory disk save task (J.MDSAVE) file
symbolic debugger command file

saved text editor file

stored text editor file

translated help file

text editor work file

SYSGEN generated file

3.6.10 No-Save Attribute

No-save applies only to files and can be specified when a file is created. A file with
this attribute cannot be saved by the Volume Manager SAVE directive unless the

SAVN parameter is Y.

3-14

Resource Management Overview

Operating System Memory Allocation

3.7 Operating System Memory Allocation

Unless extended execution space is specified, MPX-32 occupies the lower portions of
each task’s address space. This allows MPX-32 to run mapped with each task. On
CONCEPT 32/2000 systems running a mapped out image, MPX-32 runs unmapped
and each non-base task may choose to run with MPX-32 mapped into or mapped out
of its address space.

MPX-32 maintains lists of available memory for allocation to tasks and for I/O that
requires intermediate buffering.

3.7.1 /O Buffer and I/O Queues

The system memory pool is an area of memory which is contiguous to the resident
system and has a size specified at SYSGEN by the POOL directive. The entire
memory pool is write-protected from the unprivileged task and is intended for use
exclusively by system services. The memory pool is mapped into the address space of
each task and is allocated in doublewords. The maximum size of any entry is 192
words. Typical system uses of the memory pool area are:

* I/O queues — Approximately 26 words are allocated when IOCS queues a request
and deallocated when post-1/O processing is complete.

* Message or run-request buffers — Up to 192 words are allocated by the M.SMSGR
or M.SRUNR services and deallocated when receiver processing is complete.

3.7.2 Blocking Buffers for Blocked I/O

File assignments for permanent files and devices optionally specify that a file is
blocked or unblocked. The default is blocked. If blocked, blocking buffers for the
files are allocated at load time in the task service area (TSA). The Catalog BUFFERS
directive may be used to provide additional blocking buffer space for dynamically
allocated, blocked files.

3.7.3 Large Buffers for Blocked Files

Large blocking buffers contain two or more 192-word blocks. The total number of
buffers should not exceed 247.

When using the TSM $ASSIGN directive with the BBUF parameter, large blocking
buffers can be allocated at load time in the task service area (TSA). The BBUF
parameter is only valid with a TSM $ASSIGN directive.

User-supplied large blocking buffers in multiples of 192-word blocks can also be
created using a 16-word expanded FCB. Byte 0 of word 15 contains the number of
192-word blocks within the large blocking buffer. The address of the buffer is placed
in bytes 1 through 3. When byte 0 does not specify a number of blocks, one blocking
buffer is automatically allocated.

MPX-32 Reference Volume | 3-15

Memory Classes

3.8 Memory Classes

When a nonbase mode task is cataloged, the user can specify the class of memory
required at run time. Memory classes E, H, and S are established at SYSGEN time,
and there are no limitations for the positioning or sizes of these classes. Memory
class D specifying SelBUS (DRAM) memory is configured above SRAM memory.
The Cataloger ENVIRONMENT directive indicates the class of memory with the
following parameters:

Parameter Results
S execution delayed until class S, H, or E is
available (default)
H execution delayed until class H or E is available
E execution delayed until class E is available
D SelBUS (DRAM) memory (CONCEPT 32/2000 only)

This class of memory is non-executable and is not
recognized by the Cataloger ENVIRONMENT directive.

When the requested memory class is not installed, the first available lower class is
allocated to that task. If an excessive request is made, the requestor is aborted.

If there is no ENVIRONMENT parameter for memory class, tasks are loaded into any
memory class available.

Base mode tasks are loaded into any memory class available.

3.9 Memory Allocation for Tasks

The unit of memory allocation is called a map block and is 2KW on a CONCEPT/32.
All user tasks are discontiguously loaded into a whole number of physical map blocks,
utilizing the mapping mechanism to create their contiguous logical address space. No
partial map blocks are allocated.

This allows user tasks to dynamically expand and contract their address space by
using the memory management service calls described in Chapter 6.

The unit of memory protection is called a protection granule and is 512 words. Thus,
it is possible to protect a task’s TSA even though it is in the same map block as the
data section (DSECT or read/write).

3-16 Resource Management Overview

Memory Allocation for Tasks

On CONCEPT 32/2000 systems, memory allocation for tasks is handled differently
when a mapped out image is resident and demand page processing is in effect. Refer
to the next section for details.

3.9.1 Demand Page Processing (CONCEPT 32/2000 Only)

Demand page processing provides better physical memory management for a
multitask environment and allows for execution of tasks which are larger than the
available physical memory. When demand page processing is in effect for a task, it is
loaded on demand into memory in map block increments. As additional logical
address space is referenced in a task, the map block (page) needed to satisfy the
address is brought into memory (paged in) and added to the task’s working set of map
blocks. The working set consists of the physical memory mapped into the logical
space of the task.

As pages are no longer referenced by the task within a specified amount of time, they
are considered aged and are removed from the working set. Aged pages are either
modified or unmodified. Modified aged pages are linked to the task’s page-out queue
or shared memory page-out queue for writing to the swap volume. After they are
paged out to the swap file, the physical memory can then be added to the free list
(freed) for reuse. Unmodified aged pages are simply freed. Freed pages which still
contain valid information from the last allocation can be retrieved. Paged out and
freed pages are not part of the task’s working set.

When a new memory address not currently in the working set is referenced (page
fault), the page satisfying that address is sought, first from the free list or page-out
queue, then from the swap file or load module. Retrieving a page from the free list or
page-out queue improves efficiency by avoiding I/O from the load module or swap
file. Data is not read from the disk because the page exists in memory as it did when
queued for page-out.

Demand page is the default processing mode on a mapped out system image. For
information on installing a mapped out system image, refer to Reference Manual,
Volume III, Chapters 2 and 3. Demand page is not supported on mapped in images.

When demand page is supported, tasks are eligible for demand page processing when:

* the task is absolute (no relocation is necessary)

* the task’s TSA is in extended memory and MPX-32 is mapped out of the task’s
address space

The SYSGEN DEMAND directive can be used to specify that only those tasks
cataloged or linked as demand page are demand paged. Or, this directive can be used
to change the default priority level range in which an eligible task is demand paged.
Additional SYSGEN directives are available to fine tune your demand page processing
or inhibit it. Refer to Reference Manual, Volume III, Chapter 7 for details.

MPX-32 Reference Volume | 3-17

Memory Allocation for Tasks

3.9.2 Static Memory Allocation

3-18

The Cataloger determines the size in protection granules of a cataloged load module.

The Cataloger ALLOCATE directive may be used to specify additional bytes of

memory. The size of the TSA is determined at activation time and rounded up to a
number of protection granules. This value is added to the cataloged requirement to
determine task size. Additionally, the TSM $ALLOCATE directive may be used to

specify the total task size of the DSECT. The final sum is rounded up to a map block

increment. For information on static versus dynamic shared memory, see Table 3-1.
Information on memory partition applications for nonbase tasks is in Table 3-2.

Table 3-1

Static versus Dynamic Shared Memory

Inclusion

Exclusion

Owner names or
task numbers

Swapping

Automatic by
activation or
M.INCLUDE

Automatic by exit
or M.EXCLUDE

None

Never Swapped

Run time by M.INCLUDE

Automatic by exit
or M.EXCLUDE

Established by M.INCLUDE
caller

Swappable when user count=0

Characteristics Static Partitions Dynamic Partitions Shared Image
Logical addresses Fixed at SYSGEN Fixed by Volume Manager Determined
CREATE COMMON at link time

Physical addresses Fixed at SYSGEN Variable Variable

Allocation unit 2K words 2K words 2K words

Time of allocation SYSGEN Run time by M.INCLUDE Automatic by
activation or
M_INCLUDE

Time of deallocation = Never When allocation count=0 When allocation

count=0

Automatic by

activation or
M_INCLUDE

Automatic by exit
or M_LEXCLUDE

None

Swappable when
user count=0

Resource Management Overview

Memory Allocation for Tasks

Table 3-2
Memory Partition Applications for Nonbase Mode Tasks

Characteristics Global Datapool Extended Common CSECTs
Cataloger resolves Yes Yes No Yes
references
Compiler resolves No No Yes N/A

references through
extended bases

Must be logically Yes No No Yes
below 128KW

Variables are order Yes No Yes N/A
dependent

Static Yes Yes Yes No
Dynamic Yes Yes Yes Yes

3.9.3 Dynamic Address Space Expansion/Contraction (M.GE, M.FE, M.GD,
M.FD, M.MEMB, M.MEMFRE)

A nonbase mode task can expand and contract its execution and extended data space
through the system services. The M.GE service appends a map block to the user’s
execution space starting at the end of the DSECT. M.GE can be used more than once
to obtain additional map blocks, as long as they are available in the task’s logical
address space. The M.FE service frees the most recently obtained map block; for
example, it works in the opposite order of M.GE. The M.GD service appends a map
block to the user’s extended indexed data space, starting from 128KW. Like M.GE, it
can be used more than once. The M.FD service frees the most recently obtained map
block from the extended indexed data space; for example, it works in the opposite
order of M.GD. The M.GE and M.GD services do not apply to base mode tasks.

The M.MEMB service provides dynamic memory allocation capabilities for the user.
Memory is allocated in byte increments on doubleword boundaries. Allocation starts
at the next doubleword boundary following the user’s last loaded address (T.END).
Any number of bytes can be specified up to the maximum available in the user’s
logical address space. Each call to the service provides contiguous allocation for the
requested amount. Areas allocated by subsequent calls are not contiguous with
previously allocated areas. Allocated areas may or may not be in extended memory.
The user should operate in extended mode (SEA) when addressing these areas. The
M.MEMERE service frees memory, in random order, obtained from the M.MEMB
service. These two services cannot be used with the M.GE, M.GD, M.FE, and M.FD
services.

MPX-32 Reference Volume | 3-19

Memory Allocation for Tasks

3.9.4 Extended Indexed Data Space for Nonbase Mode Tasks

MPX-32 provides limited support for logical addresses above 128KW for nonbase
mode tasks. The following restrictions apply to the use of this address space:

* instructions cannot be executed in this logical space

* the user must reference this space by index registers. Negative offsets are invalid in
the word address field of any instruction as long as the indexed addressing mode is
active.

* no data initialization facilities are provided for this logical space

* the user must dynamically request this logical space to be mapped with the memory
management system services

* global is not supported in extended data space

3.9.5 Intertask Shared Global Memory and Datapool Memory (M.INCLUDE,
M.EXCLUDE)

Intertask shared memory is provided through Global and Datapool memory partitions
and shared images. A task may include up to one hundred Global regions
(GLOBALOO - GLOBALS99) plus up to 101 Datapools (DATAPOOL, DPOOL00-
DPOOL99).

Global and Datapool partitions can be defined using SYSGEN or the Volume
Manager utility. Shared images are created by the LINKER/X32. See the Shared
Images section of Chapter 4 for shared image information.

Partitions created at SYSGEN are considered permanently allocated and are assigned
both physical and logical memory attributes applying to any task that references the
partitions. This type of allocation is called static allocation. The static Global and
Datapool partitions are defined in integral numbers of pages.

Both Global and Datapool partitions are located in an integral number of physical map
blocks starting on a map block boundary. Areas are mapped into user space when
required. See the Static Memory Allocation and Dynamic Address Space
Expansion/Contraction sections of this chapter for a description of how MPX-32 maps
areas into user space.

Write protection is available and prevents the user from storing into a common area
that has write access. Dynamic shared memory partitions are defined with the Volume
Manager.

3-20 Resource Management Overview

O

Memory Allocation for Tasks

There are several key distinctions between statically and dynamically allocated
common partitions:

* Static partitions are fixed in physical memory even when no task is sharing them.
Dynamic partitions are deallocated when their allocation count equals 0.

* Statically allocated partitions are invoked on a system-wide basis. Dynamically
allocated partitions are based on a subsystem concept, where tasks issue an
M.INCLUDE request. A particular common partition, such as Datapool, can be
defined concurrently in several such subsystems. However, each subsystem has a
physically unique partition.

* Dynamically allocated common partitions can be excluded from a task by the
M.EXCLUDE system service. The user can elect to subsequently include another
dynamically allocated common area by M.INCLUDE. Statically allocated
partitions are not supported by the Volume Manager.

* All logical references to common, whether statically or dynamically allocated, are
resolved by the cataloger. The logical address of a system common partition is
fixed when the partition is defined.

* Load modules from one MPX-32 configuration are compatible with another even if
Global or Datapool are allocated different physical addresses. The only
compatibility requirement is that both systems employ the same logical
conventions.

Figure 3-1 illustrates a relatively complex view of the relationship between logical
address spaces and statically and dynamically allocated common partitions. The
figure also introduces the allocation considerations for shared procedures, which are
described in the section which follows.

In brief,

* Tasks A, B, and C reference a static Datapool partition.
* Tasks A and B use an M.INCLUDE service for dynamic GLOBAL10.
* Tasks A, B, and C use M.INCLUDE for GLOBALOQ2.

* Task D shares no memory or code with other tasks. Map blocks seven and up are
available to the task.

* Tasks A and B are shared. They have CSECT mapped at the same location in each
logical address space.

3.9.6 Shared Procedures for Nonbase Mode Tasks

MPX-32 supports shared procedures. A catalog parameter specifies a shared
procedure that must consist of a CSECT (pure code and data) and a DSECT (any
impure data). When a shared procedure is activated for the first time, the system
loader reads both the shared procedure section and the impure data section into
memory.

MPX-32 Reference Volume | 3-21

Memory Allocation for Tasks

™
The shared procedure section is mapped like an M.INCLUDE service request. Every (/
subsequent activation of the shared procedure causes only the impure data section of
the shared procedure to be loaded since the procedure section is already in memory,
has not been altered, and can be mapped like an M.INCLUDE service request.

Shared procedures, such as shared memory areas, have an allocation count to prevent
premature deallocation of the memory they occupy and a user count to control the
swapping of these partitions.

Shared procedure space is allocated in the highest available logical address. (See

Figure 3-1.)
STATIC DATAPOOL 15 STATIC DATAPOOL 15 15
GL10 14 GLO5 14 14
13 GLo4 13 13
UNUSED
12 GLo3 12 12
GL02 1 GL02 11 11
10 10 10
CSECT
9 9 9
8 8 8 ’/f' ™~
7 7 7 N
6 6 6
‘0 5 5 5
“ DSECT
TASKA'. TASKB 4 4 4
DSECT *, DSECT DSECT
. 3 3 3
2 2 2
OPERATING 1 OPERATING 1 OPERATING 1
SYSTEM SYSTEM SYSTEM
0 0 0
TASKA + B TASK C TASK D
(SHARE CODE) (DOES NOT (DOES NOT
SHARE CODE) SHARE CODE
OR COMMON)
Figure 3-1
Sample Allocation of Common Memory Partitions and Common Code
. 87D12W07
3.9.7 Multiprocessor Shared Memory
Multiprocessor shared memory is memory that is shared between systems. This
portion of memory must be managed by the user. If not properly SYSGENed, it is
possible for MPX-32 nonresident tasks to be allocated memory in the shared memory
sections. This can allow corruption of the nonresident tasks by the other systems. 0

3-22 Resource Management Overview

Memory Allocation for Tasks

It is recommended that multiprocessor shared memory be used as follows:
* For memory that is shared between systems, create a static memory partition in the
multiprocessor shared memory via SYSGEN. The partition can be any size.

* Any remaining memory can be allocated to MPX-32 tasks. This memory should be
SYSGENed exclusively for a particular system. This memory can be divided
between systems as long as each area can be accessed by only one system. To
accomplish this, SYSGEN each area as present in one system and non-present in all
other systems.

3.10 Extended MPX-32 (Expanded Execution Space)

Extended MPX-32 is an optional mode of operation that allows a portion of the
MPX-32 operating system to be positioned into a task’s extended memory. Using
extended MPX-32 results in more execution space for nonbase tasks.

Extended MPX-32 creates a split image that divides the operating system into two
sections:

* The nonextended section of the split image is nonbase code that is mapped into the
lower 128K W of user task space below the TSA.

* The extended section of the split image is translated into base code. This allows
part of the operating system to be removed from the lower 128KW task space and
placed in the extended address area where only data could previously be placed.

As a result of the split image, additional nonbase execution space is available in the
lower 128KW of the task’s logical address space.

Extended MPX-32 can be located:

* at a specific logical map block address
* at the end of logical extended memory (MAXADDR)
* between the task service area and the task DSECT (MINADDR)

Using extended MPX-32 at MAXADDR increases the user’s task execution space by
several map blocks.

The user can position extended MPX-32 by using the:
* SYSGEN EXTDMPX directive

* CATALOG EXTDMPX directive

* TSM EXTDMPX directive

The position of extended MPX-32 is determined during task activation, and is then
fixed. Each task chooses the position of extended MPX-32.

Note: Extended MPX-32 can only be used on CONCEPT/32 systems that have base

mode capability. Attempts to build (i.e., SYSGEN) or boot an extended
MPX-32 image on systems without this support result in a fatal abort.

MPX-32 Reference Volume | 3-23

Extended MPX-32 (Expanded Execution Space)

3-24

Control between extended and nonextended MPX-32 code is performed by adaptive
sequences. These sequences are generated by a combination of macro assembler
directives and special communication sequences that are recognized by SYSGEN
object processing. The adaptive sequences enable code linkage (e.g., branch requests)
between extended and nonextended MPX-32 code. These sequences change the
instruction mode so that code executed in extended MPX-32 is in base mode, and
code executed in nonextended MPX-32 is in nonbase mode. Code linkages for
extended to extended code or nonextended to nonextended code do not require
adaptive sequences.

The Macro Assembler SSECT directive places code and data in the appropriate
section of the operating system. Extended MPX-32 code is placed in the EXT_MPX
section, adaptive code is placed in the ADP_MPX section, and DSECT data is placed
in the DSECT section.

To allow direct reference by the extended code section of the split image, the
communication region, the DSECT section, and the ADP_MPX section must be
within the first 16KW of physical and logical memory.

Note: When using extended MPX, there is a minimal amount of code executed in
the adaptive sequences to switch between non-base and base execution modes
(and vice-versa). Generally, the time required for this mode switch is not
perceptible to the user.

Additionally on CONCEPT 32/87 systems only, task context switch times
may increase when extended MPX is used. Any increase is associated with
the number of map image descriptors (which are pre-loaded by hardware at
context switch time) associated with the task, including those describing
extended MPX. Therefore, it is desirable to minimize this number (called the
"map span"). This can be accomplished by using the EXTDMPX directive
(whether in SYSGEN or CATALOG) and specifying either MINADDR (if
sufficient logical task address space exists) or the lowest map block number
where no address space conflicts will result.

Figure 3-2 shows physical memory of extended MPX-32.

Resource Management Overview

Extended MPX-32 (Expanded Execution Space)

...................

EXTENDED MPX-32

MEMORY POOL

MEMORY POOL

NONEXTENDED MPX-32

VARIABLE SIZE TABLES

NONEXTENDED MPX-32

VARIABLE SIZE TABLES

DSECT REGION

DSECT REGION

ADAPTIVE CODING

COMMUNICATION REGION

ADAPTIVE CODING

PHYSICAL MEMORY

COMMUNICATION REGION

LOGICAL MEMORY

R1004

Figure 3-2

Extended MPX-32 Physical Memory

MPX-32 Reference Volume |

3-25

Extended MPX-32 (Expanded Execution Space)

3-26

Modules that can operate in extended MPX-32 are:

Resource Allocator (H.ALOC)
Executive Subroutine (H.EXSUB)
File System Executive (H.FISE)
Memory Management (H MEMM)
System Services (HLMONS)
Program Trace (H.PTRAC)
Resource Management (H.REMM)
Resident Execution Services (H.REXS)
Task Management (H.TAMM)
Terminal Services (H. TSM)
Volume Management (H.VOMM)

The object code for these modules is compressed into OH.32_E, a SYSGEN input
object file.

For users who have modified these modules, or who want to move their own modules
to extended memory, see the section How to Create an Extended MPX-32 System in
this chapter for further details.

The Macro Assembler can generate extended and nonextended object code from the
same properly converted source files. Assigning the logical file code PRE to
MPX_EXT generates extended MPX-32 object, while assigning it to MPX_NON
generates nonextended object.

Figure 3-3 illustrates program flow control for extended MPX-32.

Resource Management Overview

®

C

Extended MPX-32 (Expanded Execution Space)

MPX-32 BASE MODE MODULES

v t

ADAPTIVE CODE SEQUENCES

v i

MPX-32 NONBASE MODE MODULES

v t

INTERRUPT AND SUPERVISOR
TRAP PROCESS CALL PROCESS
EXTERNAL USER
REFERENCES TASK
R1005
Figure 3-3

Extended MPX-32 Program Flow Control

3.10.1 SYSGEN Information for Extended MPX-32

When SYSGEN is activated, an object prescan is performed, followed by an object
load. The object file assigned to logical file code OBR is scanned first. After this is
completed, the object file assigned to the logical file code OBJ is scanned. This
allows the extended MPX-32 object code in OH.32_E to preempt the equivalent
nonextended version.

MPX-32 Reference Volume | 3-27

Extended MPX-32 (Expanded Execution Space)

3.10.2

Syntax

When creating an extended MPX-32 system, SYSGEN completes the following:

* SYSGEN performs two passes on the input object files. The first pass determines
the size of the DSECT and adaptive sections. The second pass builds the system.

* SYSGEN resolves all base mode references when an image is created. The DSECT
sections of the affected modules are placed in nonextended MPX-32, while the
EXT_MPX sections are placed in extended MPX-32.

* SYSGEN provides the linkage required by the split image operating system to
switch between the base and nonbase instruction modes. This additional adaptive
code is placed in the ADP_MPX section which is located in the first 16KW of
memory.

* SYSGEN resolves all references between the extended and nonextended modules.

SYSGEN EXTDMPX Directive

The SYSGEN EXTDMPX directive designates where extended MPX-32 is logically
mapped into a task’s address space. This directive can be overridden by the
CATALOG and TSM EXTDMPX directives. If a parameter is not specified, the
default is MINADDR.

The EXTDMPX directive can be used on a system wide basis to designate the starting
address of the TSA and extended MPX-32 (if configured). This directive applies only
to the TSA when extended MPX-32 is not configured.

The NOTSA or TSA option is ignored when the load module has been catologed in
the compatible mode, or using the TSA keyword in the Cataloger EXTDMPX
directive. The NOTSA or TSA option is effective only when the load module has been
cataloged using the SYSTSA keyword in the Cataloger EXTDMPX directive. When
this requirement is met, a TSM or M.PTSK request overrides the SYSGEN request.

If the EXTDMPX directive is not used, the default is MINADDR and NOTSA. This
directive establishes the default TSA and extended MPX-32 logical starting address
unless overridden via the CATALOG, TSM, or M.PTSK assignments.

EXTDMPX={logmapbl | MAXADDR | MINADDR} [[NOTSA | ,TSA]

3-28

logmapbl is a decimal value between 64 and 2047 that specifies a starting map
block in the task’s logical address space where the TSA (optionally) and
extended MPX-32 (if configured) are positioned. The NOTSA or TSA
keyword controls positioning of the TSA.

MAXADDR positions the TSA (optionally) and extended MPX-32 (if configured) at
the top of the the task’s logical memory. The NOTSA or TSA keyword
controls positioning of the TSA.

MINADDR positions the TSA and extended MPX-32 (if configured) at the bottom of
the task’s logical memory above MPX-32 (when mapped in), and below
the task’s DSECT. The TSA keyword defaults to NOTSA for
MINADDR.

Resource Management Overview

U
P \
! \

Extended MPX-32 (Expanded Execution Space)

NOTSA

TSA

directs the logical position of the TSA to be above MPX-32 (when
mapped in) and below extended MPX-32 (if configured and at
MINADDR), and below the task’s DSECT.

directs the repositioning of the TSA in accordance with the MAXADDR,
or logmapbl specification used. For MAXADDR the TSA is located at
the top of the task’s logical memory followed by extended MPX-32 (if
configured). For logmapbl, the TSA logically starts at logmapbl
followed by extended MPX-32 (if configured).

Note: An error, ***INVALID KEYWORD, is displayed if NOTSA or TSA
keywords are incorrectly spelled and the image is not built.

At runtime, values for MAXADDR or logmapbl that conflict with the task’s
code, data, or partition memory requirements cause an abnormal termination
in the task activation.

3.10.3 SYSGEN Aborts and Errors for Extended MPX-32
If extended MPX-32 errors are detected during SYSGEN, the following aborts may be

generated:

Code

Message

SG37

SG38
SG39
SG98

COMMUNICATION REGION + DSECT + ADAPTIVE REGION
EXCEEDS 16KW

MPX EXTENDED CODE AREA EXTENDS PAST LOGICAL LIMIT
INVALID MPX EXTENDED CODE AREA LOGICAL MAP START

ERROR ENCOUNTERED DURING OBJECT PROCESSING PRECEDED
BY MESSAGE DESCRIBING THE ERROR CONDITION

3.10.4 How to Create an Extended MPX-32 System

The following information describes how to create an extended MPX-32 system using
the default modules and/or user-created modules.

MPX-32 Reference Volume | 3-29

Extended MPX-32 (Expanded Execution Space)

3-30

The MPX-32 SDT contains an input object file, OH.32_E. This object file contains
the modules that can execute in extended MPX-32. These modules are:

Resource Allocator (H. ALOC)
Executive Subroutine (HLEXSUB)
File System Executive (H.FISE)
Memory Management (HMEMM)
System Services (H.MONS)
Program Trace (H.PTRAC)
Resource Management (H REMM)
Resident Execution Services (H.REXS)
Task Management (H.TAMM)
Terminal Services (H.TSM)
Volume Management (H.VOMM)

To create a split image system with any combination of the modules and any user-
created extended MPX-32 modules, complete steps 1 to 6 listed below.

To create a split image system with these modules in extended MPX-32, complete
steps 3 to 6 listed below.

1.

Edit JH.32_E, the input source file, to contain the modules that will execute in
the extended MPX-32 region. These modules must meet the extended MPX-32
programming considerations.

Use COMPRESS to compress JH.32_E into OH.32_E, the input object file.
COMP32, an SDT file, contains the JCL for compressing nonextended modules
that are listed in JH.32 into OH.32, and extended modules that are listed in
JH.32_E into OH.32_E.

Assign OH.32 to logical file code OBJ.

Assign OH.32_E, the compressed input object file, to logical file code OBR. If
OH.32_E is not assigned to OBR, the system cannot create a split image and
extended MPX-32 is not available.

Specify the SYSGEN EXTDMPX directive (optional). This directive specifies
the starting logical map block number of extended MPX-32. If EXTDMPX is
not specified, extended MPX-32 is mapped in the end of the task service area
(MINADDR).

Note: If EXTDMPX=MINADDR, some languages and utilities (e.g. FORTRAN,

6.

Macro Assembler) may not load (RM65), or may not be able to allocate
dynamic executable memory using M.GD, an M.MPXMAC macro, or
X:GDSPCE, a FORTRAN 77+ subroutine. To avoid this, use
EXTDMPX=MAXADDR at catalog time or in the JCL.

Run SYSGEN.

Resource Management Overview

Extended MPX-32 (Expanded Execution Space)

3.10.5 How to Relocate Extended MPX-32

For tasks not affected by the size of the operating system, MINADDR is the

compatible mode of operation. For tasks impacted by the size of the operating
system, it is necessary to override the SYSGENed logical position of extended
MPX-32. The procedures for this are:

* Cataloger EXTDMPX directive
* TSM EXTDMPX directive

Figure 3-4 shows the logical task areas that can be created using an EXTDMPX
directive. Descriptions for the EXTDMPX directives follow the figures.

HIGH" HIGH® HIGH®
EXTENDED
MPX-32
EXTENDED %Elgéggo %B%réggo
ADDRESS
UNUSED | SD0CF SPACE UNUSED ADDRE
UNUSED
EXTENDED
MPX-32
128 KW 128 KW 128 KW
CSECT CSECT CSECT
UNUSED NONEXTENDED NONEXTENDED
UNUSED QBR@ESS UNUSED QBRSE S8
DSECT
NONEXTENDED
EXTENDED |ADDRESS
MPX-32 SPACE DSECT DSECT
TSA TSA TSA
NON NONEXTENDED NONEXTENDED
ﬁé{%’;om MPX-32 MPX-32
LoW Low Low
EXTDMPX=MINADDR EXTDMPX=-MAXADDR EXTDMPX=64
* 2MB ON A 32/87
16MB ON A 32/67 OR 32/97 86D1Q01
Figure 3-4

Tasks’ Logical Address Space Using Extended MPX-32

MPX-32 Reference Volume | 3-31

Extended MPX-32 (Expanded Execution Space)

3.10.6 CATALOG EXTDMPX Directive

Syntax

This directive designates where extended MPX-32 is mapped into the task’s logical
address space when the task executes. This directive may be used to dynamically
override the SYSGEN EXTDMPX directive. If this directive is not specified when
building a load module, the SYSGEN EXTDMPX directive remains in effect when
the task is executed.

The EXTDMPX directive can also be used to control repositioning the task’s TSA in
the task’s logical address space. When extended MPX-32 is configured, the
EXTDMPX directive positions the TSA and extended MPX-32 in the logical address
space of the task being cataloged. When extended MPX-32 is not configured, this
directive applies only to the TSA. This directive is functionally identical to the
EXTDMPX directive used in previous releases of MPX-32 and the Utilities unless the
optional TSA or SYSTSA keyword is used. Existing load modules that were
cataloged using previous versions of the Utilitites Release 3.2 run in the compatible
NOTSA mode. The NOTSA, TSA, and SYSTSA keywords are mutually exclusive.

Note: If EXTDMPX=MINADDR, some languages and utilities (i.e. FORTRAN,
Macro Assembler) may not load (RM65), or may not be able to allocate
dynamic executable memory using M.GD, an M.MPXMAC macro, or
X:GDSPCE, a FORTRAN 77+ subroutine. To avoid this, use
EXTDMPX=MAXADDR at catalog time or within the JCL.

EXTDMPX([=] { logmapb! | MINADDR | MAXADDR } [[NOTSA | ,TSA | ,SYSTSA]

3-32

logmapbl is a decimal value between 64 and 2047 that specifies a starting map
block in the task’s logical address space where TSA (optionally) and
extended MPX-32 (if configured) are positioned. The NOTSA, TSA, or
SYSTSA keyword controls positioning of the TSA.

MINADDR positions the TSA and extended MPX-32 (if configured) at the bottom of
the task’s logical memory above MPX-32 (when mapped in), and below
the task’s DSECT. The TSA keyword defaults to NOTSA for
MINADDR.

MAXADDR positions the TSA (optionally) and extended MPX-32 (if configured) at
the top of the task’s logical memory. The NOTSA or TSA keyword
controls positioning of the TSA.

NOTSA directs the logical position of the TSA to be above MPX-32 (when
mapped in) and below extended MPX-32 (if configured and at
MINADDR), and below the task’s DSECT.

TSA directs the repositioning of the TSA in accordance with the MAXADDR,
or logmapbl specification used. For MAXADDR the TSA followed by
extended MPX-32 is located at the top of the task’s logical memory
respectively. For logmapbl, the TSA followed by extended MPX-32 (if
configured), logically starts at logmapbl.

Resource Management Overview

" /,

Extended MPX-32 (Expanded Execution Space)

3.10.7

Syntax

SYSTSA defers positioning the TSA and extended MPX-32 (if configured) until
runtime. At runtime the TSM, M.PTSK, or the SYSGEN specification
directs positioning of the TSA and extended MPX-32.

TSM EXTDMPX Directive

This directive dynamically overrides the SYSGEN and CATALOG directives for the
logical starting address of extended MPX-32. This directive is ignored if the task is
multicopy shared, or is a base mode task.

Note: If EXTDMPX=MINADDR, some languages and utilities (i.e. FORTRAN,
Macro Assembler) may not load (RM65), or may not be able to allocate
dynamic executable memory using M.GD, an M.MPXMAC macro, or
X:GDSPCE, a FORTRAN 77+ subroutine. To avoid this, use
EXTDMPX=MAXADDR at catalog time or within the JCL.

The NOTSA or TSA option is ignored when the load module has been catologed in
the compatible mode, or using the TSA keyword in the Cataloger EXTDMPX
directive. The NOTSA or TSA option is effective only when the load module has been
cataloged using the SYSTSA keyword in the Cataloger EXTDMPX directive. When
this requirement has been met, a TSM or M.PTSK request will override the SYSGEN
request.

EXTDMPX([=] {logmapbl | MAXADDR | MINADDR} [,NOTSA | TSA]

logmapbl is a decimal value between 64 and 2047 that specifies a starting map
block in the task’s logical address space where the TSA (optionally) and
extended MPX-32 (if configured) are positioned. The NOTSA or TSA
keyword controls positioning of the TSA.

MAXADDR positions the TSA (optionally) and extended MPX-32 (if configured) at
the top of the the task’s logical memory. The NOTSA or TSA keyword
controls positioning of the TSA.

MINADDR positions the TSA and extended MPX-32 (if configured) at the bottom of
the task’s logical memory above MPX-32 (when mapped in), and below
the task’s DSECT. The TSA keyword defaults to NOTSA for
MINADDR.

NOTsA directs the logical position of the TSA to be above MPX-32 (when
mapped in) and below extended MPX-32 (if configured and at
MINADDR), and below the task’s DSECT.

TSA directs the repositioning of the TSA in accordance with the MAXADDR,
or logmapbl specification used. For MAXADDR the TSA followed by
extended MPX-32 (if configured) is located at the top of the task’s
logical memory. For logmapbl, the TSA followed by extended MPX-32
(if configured) logically starts at logmapbi.

MPX-32 Reference Volume | 3-33

Extended MPX-32 (Expanded Execution Space)

Note: An error, *ILLEGAL ENTRY, is displayed on the user’s terminal if NOTSA
or TSA keywords are incorrectly spelled.

At runtime, values for MAXADDR or logmapbl that conflict with the task’s
code, data, or partition memory requirements cause an abnormal termination
in the task activation.

3.11 Extended TSA (Expanded Execution Space)

3-34

The extended TSA feature is optionally available to any nonbase task. This feature
allows the user to move the task’s TSA into the task’s indexed (extended) address
space. Positioning the TSA in the task’s indexed address space results in more direct
executable address space for code and directly addressable data.

The TSA varies in size from task to task and is greatly increased by the number and
type of I/O resources required by the task. Moving the TSA increases the user task’s
direct address space by a minimum of 2 map blocks for tasks with little I/O
requirements and many more map blocks for tasks with heavy I/O requirements.
There is no degradation in performance by moving the task’s TSA.

The position of the task’s TSA is determined during task loading time and is fixed for
the duration of the task. Each task may choose the position of its TSA.

The EXTDMPX directive has added the optional keywords NOTSA (do not move the
TSA) and TSA (move the TSA) to direct MPX-32 in positioning the task’s TSA.
Since the user may need to modify source in order to take advantage of this feature,
the CATALOG EXTDMPX directive is the central point of control for initiating the
move TSA capability. The SYSTSA keyword enables the TSM, M.PTSK, and
SYSGEN specifications for moving the TSA. The user can position the TSA by using
one of the following means:

CATALOG EXTDMPX directive
TSM EXTDMPX directive
M.PTSK SVC call

SYSGEN EXTDMPX directive

Tasks cataloged without the NOTSA, TSA, or SYSTSA keywords on the CATALOG
EXTDMPX directive will have their TSA and extended MPX-32 positioned
compatibly with versions of MPX-32 prior to 3.5. When a task is cataloged using the
TSA or NOTSA option on the CATALOG EXTDMPX directive any TSM, M.PTSK,
or SYSGEN request is ignored. When the task is cataloged specifying the SYSTSA
option of the CATALOG EXTDMPX directive, the position of the TSA and extended
MPX-32 (if present) may be determined by any one of the following requests (listed
in order of precedence): TSM, M.PTSK, or SYSGEN EXTDMPX.

When the task is executing on a split MPX-32 image, the extended section of MPX-32
is positioned logically above and contiguous with the TSA. The TSA is positioned at
the logical address specified by the EXTDMPX directive keyword; MINADDR,
MAXADDR, or map block number. On non-split MPX-32 images only the TSA is
applicable.

Resource Management Overview

“‘m‘/

Extended TSA (Expanded Execution Space)

3.11.1 Relocating the TSA

User modules that reside within MPX-32 and do not reference data within the TSA of
non-resident tasks do not require code changes.

User modules that reside within MPX-32 and reference data within the TSA of non-
resident tasks may require code changes.

* When the non-resident task’s TSA is repositioned at other than MINADDR,
extended addressing must be set to reference data within that task’s TSA.

* Resident modules using C.TSAD to obtain the logical start of the non-resident
task’s TSA must now use the M.TSAD macro to obtain the task’s TSA address
when it is positioned at other than MINADDR.

For tasks not impacted by the size of their TSA, the default NOTSA keyword is the
compatible mode of operation.

Tasks that are impacted by the size of their TSA and reference data structures within
their TSA may require some code changes before repositioning their TSA.

* When the TSA is positioned at other than MINADDR, the task must set extended
addressing to reference data within its TSA.

* Tasks using C.TSAD to obtain the logical start to their TSA must now use the
M.GTSAD system service call to obtain their TSA address when it is positioned at
other than MINADDR.

Figure 3-5 shows the logical task areas that can be created using the EXTDMPX
directive with the TSA keyword. Refer to the appropriate manual for further
descriptions concerning the following: the EXTDMPX directive, refer to Reference
Manual Volume II; the M.TSAD macro, refer to Technical Manual Volume II; and the
M.GTSAD SVC call, refer to Reference Manual Volume 1.

MPX-32 Reference Volume | 3-35

Extended TSA (Expanded Execution Space)

HIGH" HIGH" HIGH"
**EXTENDED
MPX-32
TSA
EXTENDED EXTENDED EXTENDED
ADDRESS ADDRESS UNUSED ADDRESS
SPACE UNUSED SPACE SPACE
** EXTENDED
MPX-32
TSA
_128 KW 128 KW 128 KW
CSECT CSECT CSECT
UNUSED NONEXTENDED NONEXTENDED
ADDRESS UNUSED ADDRESS
UNUSED SPACE SPACE
DSECT
NONEXTENDED
**EXTENDED |ADDRESS
MPX-32 SPACE DSECT DSECT
TSA
NONEXTENDED NONEXTENDED NONEXTENDED
MPX-32 MPX-32 MPX-32
LOW LOW LOW

EXTDMPX=MINADDR, TSA EXTDMPX=-MAXADDR, TSA EXTDMPX=64, TSA

* 2MB ON A 32/87
16MB ON A 32/67 OR 32/97

“* EXTENDED MPX-32 IS PRESENT ONLY ON SPLIT IMAGE OPERATING SYSTEMS

ON NON-SPLIT IMAGES ONLY THE TSA IS MOVED BY USING THE EXTDMPX DIRECTIVE

R1001

Figure 3-5
Task’s Logical Address Space Using the EXTDMPX Directive with TSA Keyword

3-36 Resource Management Overview

C

Mapped Out Option (CONCEPT 32/2000 Only)

3.12 Mapped Out Option (CONCEPT 32/2000 Only)

The mapped out feature is optionally available to any nonbase task executing on a
CONCEPT 32/2000 processor running an MPX-32 mapped out system image.
The creation of a mapped out MPX-32 image is specified at SYSGEN time via the
MACHINE directive or by an explicit assignment of LFC OBJ to a compressed
mapped out object file. This feature is available on a task by task basis and allows
the task to execute with MPX-32 removed from the task’s logical address space.
Executing a task in the mapped out mode results in more direct (execution)
address space for code and directly addressable data with no performance degradation.

Since the user may need to modify source in order to take advantage of this
feature, the CATALOG ENVIRONMENT directive is the central point of control
for initiating the mapped out capability. It has the NOMAPOUT and MAPOUT
keywords added to explicitly define a task’s mapped out state as well as the
SYSMAP keyword that defers the request until runtime. The user can specify
the mapped out or mapped in options using :

CATALOG ENVIRONMENT directive

TSM MAPOUT or NOMAPOUT directives
M.PTSK SVC call

SYSGEN MAPOUT or NOMAPOUT directives

Load modules built with a previous version of the MPX-32 Utilities Release 3.2
Cataloger run in the compatible mode with MPX-32 mapped into their address
space. Load modules built without the NOMAPOUT, MAPOUT, or SYSMAP
keywords on the CATALOG ENVIRONMENT directive will run in the compatible
mode. When a task is cataloged using the MAPOUT or NOMAPOUT option
on the CATALOG ENVIRONMENT directive any TSM, M.PTSK, or SYSGEN
request is ignored. When the task is Cataloged with the SYSMAP option on the
CATALOG ENVIRONMENT directive, the mapped out or mapped in option may
be determined by any one of the following requests (listed in order of precedence):
TSM, M.PTSK, or SYSGEN MAPOUT or NOMAPOUT. Attempts to execute a
mapped out task on other than a mapped out MPX-32 system image will be
ignored and the task will execute mapped in.

The mapped state of MPX-32 with respect to the task is determined during task
loading time and is fixed for the duration of the task.

MPX-32 Reference Volume | 3-37/3-38

4 volume Resource Management

4.1 Symbolic Resource Management

The MPX-32 operating system manages all of its major resources with a resource
management scheme. With this scheme, resources are named symbolically in
directories. The directory entries establish the symbolic name to a physical resource
relationship.

Each directory entry for a resource points to a resource descriptor. These resource
descriptors are the central data structure for volume resource management. They
contain all information required to manage the resource. They are stored on disk and
some portions are brought into memory as needed for efficiency. Utilizing this data
structure, all primary resources are managed in the same way.

The symbolic directory entry and the resource descriptor are defined when the
resource is created. A resource descriptor (RD) contains a unique identifier that can
identify the resource internally. The resource identifier (RID) allows the name to be
expressed and used by the system in a short and unambiguous manner.

The MPX-32 operating system also provides mechanisms that address the problems of
static and dynamic resource management.

Static resource management defines the access, protection, and allocation attributes of
a resource. To handle static management considerations adequately, all attributes are
specifiable when the resource is defined (created).

Static resource management provides guarantees to tasks that are activated (i.e.,
requested for execution) ensuring the required resources will be available when the
task begins execution.

Dynamic resource management provides methods that allow convenient dynamic
attachment and access to a resource. To handle this requirement, the operating system
provides methods to enable a task to attach or access a resource, to enqueue on a
currently unavailable resource, to gain exclusive access to a shared resource, and to
synchronize on the use of a shared resource.

This generalized resource management scheme means the same protection mechanism,
the same resource management algorithms, and other resource operations work in a
standard and predictable manner on all resources.

This general scheme does not imply users of the resources cannot detect differences
between the types of resources but that, with the exception of memory attachment, the
user may not have to be concerned with the differences. For users having specific
needs or requirements for certain types of resources, a standard resource inquiry
mechanism is available to report all information known about a resource.

4.1.1 Types of Resources

There are four major types of resources managed by the MPX-32 operating system:
disk volumes, directories, files, and memory partitions.

MPX-32 Reference Volume | 4-1

Symbolic Resource Management

4.1.2 Classes of Resources

There are two classes of resources managed by the operating system: shareable and
nonshareable. '

Shareable resources can be accessed by two or more concurrently executing tasks. For
example, the resource can be attached to a task while another task is currently attached
to it. Any major resource of the system can be declared as shareable when the
resource is created; for example, defined to the system.

Nonshareable resources can only be used by a single task at any time. For example,
the resource cannot be attached to a task while another task is currently attached to it.
Disk volumes, directories and files can be declared as nonshareable when the resource
is created; for example, defined to the system.

4.1.3 Classes of Resource Users

The MPX-32 operating system divides the users of resources into three classes: the
owner of the resource, any member of a group of users of the resource, and any other
arbitrary user of the resource. These classes control access rights to the resource.

* resource owners — The power to control access rights to the resource is given to
the owner of the resource. The resource owner is determined at the time the
resource is created. Generally, the resource owner is the creator of the resource.
When the resource is created, the owner assigns the logical attributes and protection
for the resource. These attributes can be changed after the resource is created, but
this privilege is allowed only to the resource owner.

* resource project groups — When a resource is created, the creator of the resource
can define the name of a group of users and specify the resource’s attributes and
protection as it applies to all members of that group.

* other resource users — A user who is not the owner or a member of the project
group associated with the resource is also given a set of resource attributes and
protection as it applies within this perspective.

4-2 Volume Resource Management

Symbolic Resource Management

4.1.4 Shareable Resource Control Mechanisms

Shareable resources can be attached and accessed in three ways: exclusive, implicitly
shared, and explicitly shared. These three ways are mutually exclusive of one another.

* exclusive use — When a shareable resource is attached for exclusive use, the
resource is not available for use by any other task until the resource is detached
from the using task.

* implicit shared use — When a shareable resource is attached for implicitly shared
use, the resource can only be attached by another task that is attaching the resource
in a compatible access mode.

* explicit shared use — When a shareable resource is attached for explicit sharing, the
resource can only be attached by another task attempting to attach the resource for
explicit sharing. Tasks that are explicitly sharing a resource do not have to access
the resource in compatible access modes but are expected to use the shared resource
control mechanisms designed to preserve the integrity of the resource. See the
Sharing Files section of this chapter. Memory partitions are always attached for
explicit shared use.

MPX-32 Reference Volume | 4-3

General Resource Control

4.2 General Resource Control

The needs for resource control include the following:

* time-critical task must be able to quickly attach and access a resource
* task must be able to enqueue on the access or attachment of a resource
* task must be able to gain exclusive use of a shared resource

* task that is sharing a resource must be able to synchronize on the use of that
resource

Potential users of resources must consider that conflicts for use of resources can occur.

When conflicts occur, the operating system furnishes the user with mechanisms that
aid in resolving the conflicts. These mechanisms are:

* the ability to attach a resource statically or dynamically

* the ability to enqueue for attachment or access to a resource

* the ability to attach a shareable resource for exclusive use

* the ability to synchronize on the use of an attached shareable resource

4.2.1 Enqueue and Synchronous Notification Mechanism

When a task is attempting to dynamically attach a resource, the resource may not be
available. If a denial return is furnished, the task is notified immediately and control
is returned to the task. If a denial return is not furnished, the task is enqueued for the
resource and removed from execution until the resource becomes available.

With the automatic enqueue mechanism, the task can optionally specify the length of
time it is willing to wait for availability of the resource. If the resource is available
within the prescribed time, the task is given normal completion status. If the resource
is not available in time, abnormal completion status is reported to the task.

4.2.2 Dequeue Mechanism

When an unavailable resource is released, the highest priority task enqueued for the
resource is attached to the resource and is made eligible for execution.

Volume Resource Management

Shareable Resource Access Control

4.3 Shareable Resource Access Control

After a shareable resource is attached, the tasks using the resource need mechanisms
for controlling its access. The following mechanisms provide lock control and
enqueue capabilities at attachment and momentary synchronization lock control and
enqueue capabilities at access.

4.3.1 Shareable Resource Locking

When a task desires to gain exclusive access to a shareable resource, the task can
attach to the resource for exclusive use. Once attached, no other tasks in the system
can attach to the resource. The resource remains attached until released.

Once a resource is attached, subsequent requestors of the resource may enqueue for
the resource.

4.3.2 Shareable Resource Synchronization

If a set of tasks desire to synchronize access to a shareable resource, the tasks may all
attach the resource for explicit shared usage and then employ the resource
synchronization locking mechanism. A resource that is synchronization locked should
not be accessed by any task other than those that have secured the synchronous lock,
but the operating system will not prevent concurrent access by other tasks not using
the lock.

Once a resource is locked, subsequent requestors of the lock may enqueue for the
lock.

MPX-32 Reference Volume | 4-5

Standard Disk Structure

4.4 Standard Disk Structure

A uniform volume structure, coupled with a two-level directory structure, is
implemented in the MPX-32 operating system. The operating system supports
removable disk pack volumes. These volumes are constructed and managed using a
standard format. See the Volumes section of this chapter.

4.4.1 Directory Structure

The operating system incorporates a two-level directory structure that gives each user
of the system a perspective of being the only user of the system. See the Directories
section in this chapter.

The directory structure and the overall volume organization provide fast access for the
time-critical user. Specifically, a directory entry always points to a resource
descriptor. The resource descriptor has associated with it a unique volume relative
address. This reduces all symbolic file names to a short unambiguous name, for
example, the file identifier. By furnishing the file identifier, time-critical tasks are
guaranteed to acquire the file description in one access.

4.4.2 Root Directory

Each removable volume contains a master directory referred to as the root directory.
This directory is the directory of all directories defined on a volume. The root
directory can also contain the definition of other resources which are not directories.
All named resources on the volume can be located through the root directory.

4.4.3 Current Working Directory

A current working directory is a directory located on a mounted volume. A task can
reference resources defined in the directory without specifying a complete pathname
(see the following pathname discussion). A task can specify a 1- to 16-character
resource name and the operating system will prefix the current working directory and
volume name to form a complete pathname to locate the resource.

In the interactive environment, a current working directory is associated at logon.

In the batch environment, a current working directory is associated when a job starts
execution.

In the real-time (independent) environment, the current working directory is the same
as the one associated with the activator.

All named resources on a volume are accessible from the root directory.

4-6 Volume Resource Management

Pathnames

4.5 Pathnames

A pathname is an ASCII character string used to refer to any named resource defined
on a volume. The pathname contains a sequence of symbolic names. Each symbolic
name is delineated by special characters embedded in the pathname string. The
special characters enable the operating system to directly interpret the meaning of each
symbolic name. The last symbolic name in the pathname string is the target of the
pathname. A pathname target can be a file, directory or memory partition.

With a pathname, any named resource existing on a volume can be located for
attachment or inquiry. To locate a resource, the operating system requires the identity
of the volume and directory containing the resource (target). As previously
mentioned, the special characters embedded in the pathname string uniquely identify
the required components. These required components can be specified or implied.

A pathname that contains each of the required components is referred to as a fully
qualified pathname. Fully qualified pathnames are processed by examining the
pathname string from left to right or the end of the string. As each special character is
detected, the identified component is located in the appropriate system structure. An
identified volume is found in the mounted volume table (MVT), a directory is found
in the root directory of the volume and the target resource is found in the specified
directory. If a pathname component is not found, the processing of the pathname is
terminated at that point.

Each active task in the operating system has an associated current working volume
and directory. The current working volume and directory are associated with the task
when it becomes active in the operating system. The current working volume and
directory allow the task to reference resources defined in this association by
implication. That is, the task can reference a resource with a pathname that is not
fully qualified. For example, such a pathname may indicate the pathname execution is
to start at the root directory. In this case, the current working volume is implied. As
another example, only the resource name is specified. In this case, the current
working volume and directory are implied. The task can view this operation as if the
operating system were supplying the missing pathname components. The task must
consider the operating system is concatenating the current working volume or current
working volume and directory to the pathname supplied by the task. This
concatenated string must resolve to a fully qualified pathname to be successfully
executed by the operating system.

4.5.1 Executing Pathnames
When a pathname is presented to a command or service, the operating system parses

the pathname. As mentioned previously, the operating system interprets special
characters embedded in the pathname to have a specific meaning.

MPX-32 Reference Volume | 4-7

Pathnames

Special characters that are allowed to be specified in a pathname are as follows:

Special Character Description
@ a volume
A root directory of a volume
(named directory on a volume
) named resource on a volume

4.5.2 Fully Qualified Pathnames

A fully qualified pathname consists of all the information the operating system
requires to locate and identify a resource. Whenever the following pathnames are
presented to the log directive or service, only the specified resource will be logged.

L.

@volumeMdirectory)resource

@

volume

A

(

directory

)

resource

indicates a volume is being specified

is the 1- to 16-character name of the volume where resource
resides. volume must be physically mounted on the system. The
system determines the physical device where volume is mounted.

indicates the root directory of the volume is being specified
indicates a directory is being specified

is the 1- to 16-character name of the directory on volume in which
resource is defined

indicates a resource is being specified

is the 1- to 16-character name of the resource to be located in
directory on volume

@volume(directory)resource

@

volume

(

directory

)

resource

indicates a volume is being specified

is the 1- to 16-character name of the volume where resource
resides

indicates a directory is being specified

is the 1- to 16-character name of the directory on volume where
resource is defined

In this example, the optional special character to indicate the root
directory is not used. However, this pathname is equivalent to the
preceding example.

indicates a resource is being specified

is the 1- to 16-character name of the resource to be located in
directory on volume

Volume Resource Management

Pathnames

3. @volume’reso

@

volume

A

resource

4.5.3 Partially Qualifie

urce
indicates a volume is being specified

is the 1- to 16-character name of the volume where resource
resides

indicates the root directory of the volume is being specified

is the 1- to 16-character name of the resource to be located in the
root directory on volume

d Pathnames

The operating system allows the use of pathnames that are not fully qualified. The
use of such a partially qualified pathname causes the operating system to substitute
symbolic names that are not directly specified when the pathname is presented to a

directive or service.

The operating system makes the appropriate substitutions based on the association
with the user’s current working volume and current working directory.

1. Adirectory)resource

A

(

directory

)

resource

2. MNresource

A

resource

MPX-32 Reference Volume |

indicates the root directory of the current working volume
indicates a directory is being specified

is the 1- to 16-character name of the directory on the volume
where resource is defined

indicates a resource is being specified

is the 1- to 16-character name of the resource to be located in
directory on volume

indicates the root directory of the current working volume

is the 1- to 16-character name of the resource defined in the root °
directory of the current working volume

Pathnames

4.5.4 Fully Qualified Pathnames for Directories Only

Any of the preceding pathnames can be used to locate or reference directories or any
other resources defined on a volume. The following pathname formats can only be
used when referencing directories. These formats are only allowed in the change
directory and log resource commands and services.

1. @volume™(directory)

@volume(directory)

@ indicates a volume is being specified

volume is the 1- to 16-character name of the volume where directory
resides

A indicates the root directory of the volume is being specified

(indicates a directory is being specified

directory is the 1- to 16-character name of the directory to be located in
volume

Usage:

These pathname formats are equivalent to each other. If this pathname format is
used with a LOG RESOURCE directive, all files in directory on volume are
logged.

4-10 Volume Resource Management

q

Pathnames

(- 2. @volumerdirectory

@ indicates a volume is being specified

volume is the 1- to 16-character naine of the volume where directory
resides

A indicates the root directory of volume is being specified

directory is the 1- to 16-character name of the directory to be located in
volume

Usage:

If this pathname format is used with the CHANGE DIRECTORY directive, the
directory name is changed to directory on volume.

If this pathname format is used with the LOG RESOURCE directive, directory
on volume is logged.

4.5.5 Partially Qualified Directory Pathnames

The operating system allows the use of pathnames that are not fully qualified. The
use of such a partially qualified pathname causes the operating system to substitute
symbolic names that are not directly specified when the pathname is presented to a

(command or service.
1. A(directory)
A indicates the root directory of the current working volume
(indicates a directory is being specified
directory is the 1- to 16-character name of the directory to be located on the

current working volume
Usage:

If this pathname format is used with the CHANGE DIRECTORY directive, the
directory would change to directory. If this pathname format is used with the
LOG RESOURCE directory, all files in directory are logged.

MPX-32 Reference Volume | 4-11

Pathnames

4-12

@volume® O

@ indicates a volume is being specified

volume is the 1- to 16-character name of the volume where the required
directory resides

A indicates the root directory of the volume is being specified

Usage:

If this pathname format is used with the LOG RESOURCE directive and the
ROOT= option is reset, all directories in volume would be logged. If this
pathname format is used with the LOG RESOURCE directive and the ROOT=
option is set, the root directory in volume would be logged. This pathname
format is not valid with the CHANGE DIRECTORY directive.

A

A indicates the root directory of the current working volume. Most
often, this form of pathname determines the names of all
directories defined on the current working volume.

Usage:

If this pathname format is used with the LOG RESOURCE directive, all
directories in the root directory of the current working volume are logged. This

pathname format is not valid with the CHANGE DIRECTORY directive. \; ’ /
Adirectory
A indicates the root directory of the current working volume
directory is the 1- to 16-character name of the directory which resides on the
current working volume
Usage:

If this pathname format is used with the CHANGE DIRECTORY directive, the
default working directory is changed to the directory specified on the current
working volume. If this pathname format is used with the LOG RESOURCE
directive, the directory is logged.

Volume Resource Management

Resource Protection

4.6 Resource Protection

Protection is supplied for environments where protection is desired. When a resource
is created, the user can specify the protection attributes of the resource. Since
protection can be harmful as well as helpful, the user is advised to only protect
resources to the appropriate level required. Each resource defined to the system has
protection attributes that are unique and appropriate for the resource. For example,
files are protected from being accessed in certain modes (see the File Access Modes
section in this chapter), directories are protected from being searched or modified (see
the Protecting Directories section in this chapter), and memory partitions are protected
similarly to files (see the Protecting Memory Partitions section in this chapter).

Any of the major resources managed by the operating system can be protected from
the perspective of the owner of the resource, a member of a group of users of the
resource, or an arbitrary user of the resource. This protection scheme is versatile and
gives the owner of the resource a reasonable means to control the resource.

When a resource is created, the process requesting the creation of the resource is the
resource owner unless otherwise explicitly stated at the time of creation of the
resource. The owner of a resource assigns the attributes of all the levels of protection.

4.7 System Administration

With MPX-32, a system administrator (SA) can be designated to control certain
aspects of the operating system.

The SA defines who is allowed to logon the system in the key (M.KEY) file. Persons
defined in this file are referred to as users. Each user logging on the system has an
associated name, referred to as the owner name. While using the system, the user
creates temporary or permanent resources. The owner’s name is recorded in these
resources to indicate their origin and to determine who is controlling the resources.
Furthermore, the SA assigns in the MLKEY file the capabilities associated with each
user.

The users allowed to logon the system are associated with a project group. The SA
defines the projects in the project (M.PRJCT) file. There is not a rigid relationship
between the users of the system and the projects to which they belong. Simply, each
user has an associated project group at log on time. Once logged on, users can change
their project group to any name contained in the project file. In some cases, the user
must supply a key to have the project group changed. This key is associated with the
project group name. Management of the project file is the responsibility of the SA
and the system allows only tasks with the SA attribute to modify the key and project
files.

The key and project files are optional. If these files are not present in the system

configuration, any user can log on the system and can be a member of any project

group.

Note: The SA is not restricted by any mechanism in the system. The SA can gain
access to protected resources, can execute privileged system functions, etc.

MPX-32 Reference Volume | 4-13

.

Volumes

4.8 Volumes

A volume is a formatted or unformatted storage medium that holds resources (files,
directories, memory partitions) which can be accessed by name. A formatted volume
is a disk medium with a standard MPX-32 format. Its resources can be protected
through the formatting process or through the mount process.

4.8.1 Overview of Formatted Volumes

MPX-32 distinguishes three types of formatted volumes: system, user, and
multiprocessor. Volume type is determined when the volume is mounted by the
options specified in the mount request. The system volume is automatically mounted
at system initialization, transparent to the user. Any volume mounted after system
initialization is either a user or multiprocessor volume. The exception is the swap
volume, which is a special-purpose user volume that is mounted on request with the
system volume during system initialization.

Each volume must be physically mounted on a device before tasks can assign and
access its resources. When requesting the physical mount of a volume, the requestor
assigns an access attribute to the volume which designates the volume as public or
nonpublic. This attribute determines how all subsequent tasks mount and dismount
the volume and access its resources. Once physically mounted, public volume
resources are available for immediate access to any task. Nonpublic volume resources
are available to a task only after the task performs a logical mount of the volume.

Logical mount attaches a task to a nonpublic volume (public volumes do not require a
logical mount) and establishes the task as a user of the volume’s resources. A request
for logical mount is either explicit or implicit. An explicit request is made by a task
or user through a mount directive, system service call, or RRS entry supplied during
task activation with the M.PTSK service (M_PTSK). An implicit request is issued
automatically as the result of TSM task activation or a physical mount request for a
‘nonpublic volume. Once logically mounted to a volume, a task or user remains
mounted for the duration of a job or interactive session.

When a task no longer requires the use of a volume, it detaches through a logical
dismount and, optionally, a physical dismount of the volume. A logical dismount
detaches the requesting task from the volume. Logical dismount is requested
explicitly through a dismount directive or a system service call. It is requested
implicitly through task exit, end of job, or a TSM $EXIT command.

Physical dismount detaches a volume physically from the device where it is mounted.
Physical dismount is explicitly requested by a task or user through a dismount
command or a system service call. If other tasks or users are active on the volume,
physical dismount is delayed, but all subsequent requests to mount the volume are
denied. Use of resources on a public volume with dismount pending is not denied.

When the last task or user detaches from the volume, the volume is physically
dismounted from the device.

4-14 Volume Resource Management

NS

Volumes

4.8.2 Formatted Volume Type

There are three types of formatted volumes on MPX-32: system, user, and
multiprocessor. On any MPX-32 system, there is only one system volume. All other
volumes on the system are user or multiprocessor volumes.

4.8.2.1 System Volume

The system volume is the volume automatically mounted at system IPL and
initialization. It contains the system bootstrap, system image, system directory
(created as the first directory on the volume), and at least the minimum subset of
system files needed to constitute a viable system.

MPX-32 refers to the system volume by the keyword SYSTEM and treats it as a
public volume. All users can access the volume without issuing any further mount
requests. Additionally, since the system volume is a public volume, it can be used to
acquire temporary files, swap files, and spooled input/output files.

The system volume cannot be dismounted from a running system and cannot be
mounted as a multiprocesor volume.

Note: The MPX-32 operating system can be configured with no system volume
when using 3.0 or later revisions of Reflective Memory System Software
(RMSS). See the RMSS manual for more information.

4.8.2.2 User Volume

A user volume is any volume mounted on a single processor after IPL. Unlike the
system volume, user volumes are not required to have bootstraps, system images, or
system files. A user volume is mounted either as public or nonpublic (see the
Multiprocessor Volume section in this chapter for an explanation of these attributes).

A user volume can be physically dismounted while the system is running, provided
that the volume’s use and assign counts indicate the volume is not in use.

MPX-32 Reference Volume | 4-15

Volumes

4.8.2.3 Multiprocessor Volume

A multiprocessor volume is a specially mounted user volume that allows tasks
operating in separate system environments to concurrently access any volume
resource. To mount a user volume as multiprocessor, the mount request must specify
the SYSID option and the requested device must be hardware and software configured
as a multiport device. Like user volumes, multiprocessor volumes are mounted as
public or nonpublic. In order to mount a volume as multiprocessor, the following
requirements must be met:

* The disk drive must be hardware configured as a dual-ported disk drive (only model
8055 and 8060 disk processors support dual-ported access). If a cache disk
accelerator is used, it must be hardware-configured as multiported.

* The disk drive must be identified as a multiported drive in the appropriate SYSGEN
DEVICE directive.

* The mount request must specify a SYSID parameter to identify the software port
for the caller’s operating environment.

4.8.3 Access Attributes for Formatted Volumes

Access to a formatted volume is determined by an attribute assigned when the volume
is physically mounted to a device. In the mount request, the requesting task or user
specifies either the public or nonpublic attribute. This attribute determines how all
subsequent tasks and users mount or dismount the volume.

4.8.3.1 Public Attribute

A volume mounted as public is available for resource assignments by all tasks
subsequently activated on the system. No logical mount is required for the tasks to
gain access to the resources on a public volume.

Public volumes can store temporary files, swap files, and spooled input/output files.
The system volume and swap volume (if different from the system volume) are
automatically mounted as public volumes by the system initialization process.

Physical mount or dismount of a public volume can only be requested by the system
administrator. If there are current users on the volume, dismount is postponed and
completes only when the volume resources’ use and assign counts indicate that the
volume is not in use.

4.8.3.2 Nonpublic Attribute

4-16

A nonpublic volume is a volume assigned specifically to the tasks that mount it. Any
task or user can request a physical mount or dismount of a nonpublic volume. Once
the volume is physically mounted on a device, each task needing access to its
resources must request a logical mount of the volume. The Resource Management
Module maintains use and resource assign counts on the volume for system
accounting.

Volume Resource Management

J

Volumes

4.8.4 Mounting Formatted Volumes

MPX-32 distinguishes two types of mounts: physical mount and logical mount. A
physical mount attaches a volume to a specific device and designates the volume as
public or nonpublic. A logical mount attaches a particular task or TSM environment
to a physically mounted nonpublic volume.

4.8.4.1 Physical Mount

Each volume must be physically mounted to a device before the volume’s resources
can be assigned or allocated. When a task or user issues a mount request for a
volume, the mount is completed by JJMOUNT interacting with the system operator.

To request the physical mount of a volume, users or tasks issue the TSM SMOUNT
directive or OPCOM MOUNT directive, call the M.MOUNT system service
(M_MOUNT in base mode), or supply the proper device RRS entry when activating a
task with the M.PTSK (M_PTSK) service. The mount request specifies the device
where the volume should be mounted, whether the volume is public, and, optionally,
if the volume is multiprocessor. Only the system administrator can specify a volume
as public.

Each mount request activates . MOUNT, the non-resident media mount task, which
issues the following mount instruction to the system console:

MOUNT VOLUME volname ON devmnc
REPLY R, H, A, OR DEVICE.

volname s the 1- to 16-character blank-filled, left-justified name given to the
volume when it was formatted by the Volume Formatter.

devmnc is the device mnemonic for the unit where the volume will be mounted. If
a specific channel and subaddress were specified in the mount request, a
specific drive is selected and named in the message. Otherwise, the
system selects a unit and names its complete address in the message.

R,H,A,DEVICE
are the possible responses. R allocates the device listed in the message
and resumes the task. H holds the task with the device deallocated. A
aborts the task. DEVICE allows the user to specify a different device to
allocate.

The system operator informs J. MOUNT when the volume is installed on the requested
device. J.MOUNT then notifies the task or user who requested the physical mount.

During physical mount, mount messages that require operator response display at the
system console. To inhibit the mount messages and operator intervention, specify the
NOMSG option in the mount request, the SYSGEN SNOP option at system
initialization, or the OPCOM MODE SNOP directive.

Once a volume is physically mounted, JJ MOUNT reads the volume descriptor,

initializes a memory-resident mounted volume table (MVT) entry for the volume, and
verifies the volume integrity.

MPX-32 Reference Volume | 4-17

Volumes

4.8.4.2 Logical Mount

In addition to a physical mount, all nonpublic volumes also require a logical mount
before a task can access their resources. A logical mount causes allocation of a
volume assignment table (VAT) entry in the task’s task service area (TSA). The VAT
entry is linked to the volume’s MVT entry, provided the volume is physically
mounted. The volume’s use count is incremented in the MVT entry. The task
becomes a user of the volume for subsequent resource assignments and system
accounting.

J.TSM handles the logical mount request in a different manner. The first logical
mount request for a nonpublic volume by a TSM user mounts the task J.TSM to the
volume. After the first logical mount completes, subsequent logical mounts by
TSM users do not affect the use count in the VAT or MVT.

A request for logical mount is either explicit or implicit.

Explicit Mount Request — A task or user issues an explicit request for logical
mount through the TSM $MOUNT directive or M.MOUNT system service
(M_MOUNT in base mode). It may be accomplished as a static assignment or as a
dynamic mount request during task execution.

Implicit Mount Request — An implicit request for logical mount issues as the result
of TSM task activation, a log-on attempt, execution of a $JOB statement with an
ownername supplied, or a physical mount request for a nonpublic volume. During
task activation, all nonpublic volumes currently mounted in the user’s TSM
environment and the task’s default working volume (if nonpublic) are implicitly
logically mounted to the task. An implicit logical mount also occurs as the result of a
physical mount request in any form except the OPCOM mount request.

4.8.5 Dismounting Formatted Volumes

MPX-32 also distinguishes two types of volume dismounts: logical dismounts and
physical dismounts. Logical dismount detaches a particular task or user from a
nonpublic volume. Physical dismount detaches a volume from the device where it is
physically mounted.

4.8.5.1 Logical Dismount

When a task no longer requires the use of a nonpublic volume, it logically dismounts
the volume. Logical dismount detaches a task from a volume by decrementing the
volume’s use count in its mounted volume table (MVT) entry and updating the task’s
VAT entry.

A request for logical dismount is either explicit or implicit.

4-18 Volume Resource Management

Volumes

Explicit Dismount Request — A task can explicitly request a logical dismount of a
volume through the TSM $DISMOUNT directive or the M.DMOUNT system service
(M_DISMOUNT in base mode) with no CNP options necessary. For logical
dismount requests, device specificaton is optional.

Implicit Dismount Request — An implicit request for logical dismount issues as a
result of task exit, end of job, or a TSM $EXIT command. When a task exits, an
implicit dismount is performed for all volumes assigned in the task’s VAT. A
physical dismount request also causes an implicit logical dismount, unless issued
using OPCOM.

A TSM logical dismount request only restricts the use of the nonpublic volume
resource for the TSM user who issued the request. Any other TSM users who have
the volume mounted in their TSM environment still have access to the volume
resources. A task logical dismount of the volume from J.TSM occurs only as a result
of a logical dismount by the last TSM user environment to have the volume mounted.
Public volumes do not require logical dismount.

4.8.5.2 Physical Dismount

To remove a volume from a device, a task or user must explicitly request a physical
dismount of the volume. Physical dismount is requested through the TSM
$DISMOUNT directive, OPCOM DISMOUNT directive, or the M.DMOUNT service
(M_DISMOUNT in base mode) using a CNP option with bit O of the option word set.
The dismount request specifies the volume name, the device where the volume is
mounted, and whether the volume is public.

Each dismount request activates JMOUNT to handle the dismount. If there are no
other users or tasks on the volume (the MVT entry use count is 0), J MOUNT initiates
a physical dismount by updating the volume descriptor, deallocating the mount device,
and clearing the MVT entry. JMOUNT then issues a message to the system console
to inform the operator that the dismount has completed. It also signals by owner
name the user who last requested the volume’s physical dismount. If operator
intervention is applicable, the operator must confirm the dismount of the volume. For
removable media, this insures the operator understands when it is safe to remove the
disk pack from the drive.

If there are current users on the volume (the MVT entry use count is greater than 0)
when a physical dismount is requested, the volume is placed in a state of pending
dismount. All subsequent requests to mount the nonpublic volume are denied. Public
volume resource access is still allowed. When the last user or task detaches from the
volume, or the last resource is deallocated on the volume, physical dismount
completes as described.

A physical dismount can be performed for a volume recognized by MPX-32 — even
if the volume is not present or the device containing the volume is not online. This
condition occurs when a volume was improperly removed, the drive was improperly
shut down, or the drive malfunctioned. A physical dismount clears the MVT entry
from the system. It also protects any volume that may have been placed in a drive
where a volume was incorrectly removed. If the volume names do not match,
MPX-32 does not update the information about the volume which is presently being
dismounted.

MPX-32 Reference Volume | 4-19

Volumes

During physical dismount, dismount messages requiring operator response display at
the system console. To inhibit the dismount messages and operator intervention,
specify the NOMSG option in the dismount request, the SYSGEN SNOP option at
system initialization, or the OPCOM MODE SIMM or SNOP directive at any time.

Only the system administrator can request the physical dismount of public volumes.

4.8.6 Automatic Mounting at System Boot

The task SYSINIT automatically mounts the system volume as part of the IPL
process. The volume mounted by SYSINIT is always given the system and public
volume attributes.

SYSINIT mounts the swap volume, if requested by the operator in response to a
system prompt. After the swap volume is mounted, it is used by the system swapper
(J.SWAPR) for swap file space allocations. A new swap volume may be established
whenever the system is booted. There is no requirement to generate a new system
image via SYSGEN just to change the swap volume.

If a specific swap volume is not requested at IPL, the system volume is used as the
swap volume. The swap volume is always given the public volume attribute.

4.8.7 Components of a Volume

A volume is comprised of several components that are used for particular functions.
How a volume'’s structure is defined and how it is used determines the volume’s total
functionality.

The component structures are:

* boot block

* volume resource descriptor

* volume root directory descriptor

* resource descriptors

* resource descriptor allocation map
* volume root directory

* space allocation map

The boot block and volume descriptor must reside in absolute fixed locations; other
portions are located in either relative fixed or nonfixed locations. See Figure 4-1 for a
description of the volume format.

4-20 Volume Resource Management

Volumes

Fixed Area at
beginning of volume

IPL process for
system volume/ Boot Block
IPL error process
for user volume
Identifies:
- name Volume
- allocation unit Descriptor
size
- volume protection
- status, etc.
Location of
resident system System Pointer
(on system volume)
Points to Volume
volume root Root Directory
directory Descriptor
Resource descriptors Directory
room for maximum Directory
number of resource
descriptors on File
volume: File
- directories Directory
- files
- memory partitions File
Memory
Memory
Directory
File

resource descriptors.

Allocatable space

Volume Root
Directory*

* Directory file contains names of directories on the volume. Points to appropriate

89D12202

Figure 4-1
Volume Format

MPX-32 Reference Volume |

4-21

Volumes

4.8.7.1 Boot Block

The system volume is mounted and used for [PL. When this is done, the boot block
is read into the system memory and executed, bringing in the resident system image.
The process is called a bootstrap. The boot block consists of a fixed number of the
first consecutive blocks on the volume. They are located at the beginning of the
volume to simplify the IPL process. For standard disk devices, the boot block begins
at head 0, track 0, sector 0.

The number of blocks dedicated to the boot block is determined as some common
denominator between the currently used sectoring (192W) and sectoring which is
power-of-two related. The boot block size will be large enough to facilitate the
bootstrap process currently required.

A bootstrap always occupies the boot block. The difference between system versus
user volumes is that system volumes have a system image.

4.8.7.2 Volume Descriptor

The volume descriptor is a form of resource descriptor used to define the volume on
which it resides. Its contents define protection and access privileges of the volume. It
identifies the name of the volume, whether it can be mounted as a system volume, the
volume’s granularity, and other attributes, all of which are specified when the volume
is created. The volume descriptor is in a fixed location and is the next consecutive
block following the boot block.

The volume descriptor also points to key structures on the volume by giving their
location (starting block). The volume descriptor identifies the location of the resource
descriptor segments. Two segments are allowed, the first of which is obtained when
the volume is created. A segment descriptor is contained within the volume which
points to this segment and describes the amount of space allocated for descriptors
(number of descriptors/blocks). One additional entry is provided to enable obtaining
additional space for descriptors.

The volume descriptor contains a bootstrap descriptor which contains information
required by the bootstrap about the system image and the device on which it resides.
The bootstrap descriptor also describes the amount of space required for the system
image. Entry space is also provided in the bootstrap descriptor to hold a pointer to the
descriptor of a file having an alternate system image. Either image can be used at
system IPL.

Other information required by the mounting/dismounting process is kept in the
volume descriptor. Some of this information is also brought into an in-memory table
when the volume is attached (mounted). The volume descriptor is structured so the
information required for in-memory use (once the volume has been mounted) can be
moved into memory simply.

4.8.7.3 Resource Descriptors (RDs)

4-22

The resource descriptor describes a particular resource. Its contents define attributes
of the resource, its protection, requirements, limitations, etc.

Volume Resource Management

Volumes

Different types of descriptors are used to describe the generic resources made available
and managed by the operating system. The different descriptor tables are referred to
as directory resource descriptors, file resource descriptors, volume resource
descriptors, and memory resource descriptors.

The different types of resource descriptors are intermixed within the space allocated
for resource descriptors and identified by type by a fixed position field within the
resource descriptor. The initial amount of space reserved for obtaining resource
descriptors is specified when a volume is created. The creator also specifies whether
the space obtained for resource descriptors can be increased.

Resource descriptors are allocated and deallocated from the resource descriptor
segment and tracked via a bit map. Each segment contains its own bit map located at
the end of the segment. When the first segment no longer contains any free
descriptors, a second segment is obtained, if allowed. The descriptor is then obtained
from a second segment. All subsequent requests are then obtained from the second
segment until resource descriptors from the first become available.

All resource descriptors have three sections: a section containing information common
to all types of resource descriptors, a section containing information different for each
type, and a section for user supplied information. Certain resource descriptor
information can only be changed by the system.

Copies of permanent file resource descriptors can reside in the memory resident
descriptor table (MDT). This eliminates the disk access necessary to read the RDs,
and results in a reduction in the amount of time spent when allocating files. Refer to
the Rapid File Allocation Utility (J.MDTTI) chapter in MPX-32 Reference Volume II
for details.

MPX-32 Reference Volume | 4-23

Directories

4.9 Directories t(/“

A directory is a list of names of resources, where the entry for each name points to a
resource descriptor (RD) that defines the basic characteristics of the resource
(protection, starting/ending sectors, etc.). The MPX-32 operating system directory
management is based on a two-level structure. Directories are:

* created on a volume

* named and protected when created as specified by the user

* associated with a user at logon (each user has a current working directory associated
with the logon owner name)

* changeable; for example, users can change their current working directory

Figure 4-2 illustrates the two-level directory structure. It deals with a disk volume
containing directories and files.

In the figure, alphabetic characters are used to represent directory names, numbers are
used to represent file names.

The following basic concepts are related to the operating system and the two-level
directory structure:

* volume root directory

* user directories

* access by pathnames

* protection

Conceptually, user directories are all the directories originating to the right of the
volume root in Figure 4-2. All directory access begins at a volume root directory.
The user can move to a different directory or file.

Protection is the means of restricting a user’s access to a directory or file. For
example, if directory Y is protected, the user may or may not be able to access file 40
and if file 40 is protected, the user may or may not be able to modify file 40 or
perform other types of operations on the file.

4-24 Volume Resource Management

Directories

VOLUME ROOT

DIRECTORY X

40

DIRECTORY

DIRECTORY Y

45

50

DIRECTORY Z

20

| [
N

21

87D12W08

A Sample Hierarchical Directory Structure

MPX-32 Reference Volume |

Figure 4-2

4-25

Directories

4.9.1 Volume Root Directory @

MPX-32 provides the ability to put all files on a system volume and also allows users
to dismount disk packs (as user volumes). This is the concept of a root directory for a
volume.

A volume root directory is maintained on every volume (see Figure 4-1) and lists the
names of the directories and resources (normally files) on the volume. To get from
one directory to another, the user starts from the volume root directory by using the
special character uparrow () to go to the current volume root directory.

4.9.2 Creating Directories

The create directory function creates a directory and defines its protection and other
attributes. Figure 4-3 illustrates the directory function where a user of directory X
wants to access file 3. (Also see Figure 4-2).

@volumeNdirectory)file
A(directory)file

The user must have the ability to traverse the volume root directory and to add entries
in the volume root directory. The user gains access to the volume root directory as its
owner, as a member of its defined project group, or as other.

To create a directory, the owner provides information which is stored in the resource
descriptor for the directory:

* owner name — the name of the owner of the directory; the name can be different e /}
from the owner’s logon name.

* project group name — the name of a group of users identified by the owner to have
specific access privileges to the directory

* protection — the set of operations allowed separately for the owner, the defined
project group name, and all others

Once a directory has been created, entries for files or memory partitions are defined
using the create function.

O

4-26 Volume Resource Management

Directories

RESOURCE

DESCRIPTORS

FILES

VOLUME
ROOT
DIRECTORY
DESCRIPTOR

v

DIRECTORY X

DIRECTORY'Y

FILE 1

FILE2

FILE 40

FILE 45

FILE3

FILE 50

DIRECTORY Z

FILE 20

FILE 21

UNUSED

UNUSED

1

NOTES:

—_

VOLUME
ROOT
DIRECTORY

DIRECTORY
X

FILE

THE ROOT DIRECTORY DESCRIPTOR POINTS TO THE VOLUME ROOT DIRECTORY.

2. THE VOLUME ROOT DIRECTORY CONTAINS THE NAME OF DIRECTORY X AND
POINTS TO ITS RESOURCE DESCRIPTOR.

3. THE RESOURCE DESCRIPTOR FOR X POINTS TO DIRECTORY X.

4. DIRECTORY X CONTAINS THE NAME OF FILE 3 AND POINTS TO THE RESOURCE
DESCRIPTOR FOR THE FILE.

5. THE RESOURCE DESCRIPTOR FOR FILE 3 POINTS TO FILE 3.

87D12W09

MPX-32 Reference Volume |

Figure 4-3
Locating a File on a Volume

4-27

Directories

4.9.3 Protecting Directories

The creator of a directory can allow or restrict the ability to read the resource
descriptor for the directory and to delete the directory.

* read — allows the directory to be read
* delete — allows the directory to be deleted
* traverse — allows the directory to be traversed via a pathname

These access rights can be applied separately to the owner, the project group, and all
other users.

4.9.4 Protecting Directory Entries

The creator of a directory can allow or restrict the ability to add resources to or delete
resources from the directory he creates.

* add — allows additions to the directory
* delete — allows deletions from the directory

These access rights can be applied separately to the owner, the project group, and all
other users.

4.9.5 Using Directories

Since all files and memory partitions are located in directories, different directories are
traversed in the process of creating and manipulating resources. Although the ability
to associate a working directory with a user at logon relieves the naive user from
having to know about directory access, many users will be accessing more than one
directory.

The SA establishes a special system file and other files that associate a working
directory with a user at logon. All files the user creates are automatically located in
this directory unless the user specifies otherwise. To access a resource within the
current working directory, only the name of the desired resource needs to be supplied.

The working directory associated with an owner name can be changed to a different
directory by using the change directory function or service and supplying the
pathname to the new working directory.

What the user can do in the new working directory depends on the protection defined
for the directory and whether the user owns it, supplies a project group name to gain
project group access rights to it, or is another user (other).

To locate a file in a directory other than the current working directory, a directory
pathname ending with the name of the file must be specified. To locate a directory
other than the current working directory, a pathname ending with the name of the
directory must be specified. Refer to the Pathnames section in this chapter for a
description of pathname conventions.

4-28 Volume Resource Management

¢

y

Files

4.10 Files

4.10.1

Files are sets of information stored on a volume. A file is given a unique identity so
it can be referenced as a single entity for processing.

Files can store data, transactions, executable code, command sequences, etc. This
section considers files as resources and does not deal with the structure of information
within files.

Two types of files are allowed by the operating system: permanent and temporary.
Permanent files remain defined to the operating system until they are explicitly deleted
and they can be referred to in two ways: by their given name or by a unique identifier
(RID) assigned by the system which allows faster access to information about the file.
Temporary files are defined in the operating system as long as the task requiring them
is in execution and then they are automatically deleted.

Files are attached for use either statically or dynamically. Attachment for files is a
two phase process, where the first phase is assignment. Once assigned, they can be
opened for use in a particular access mode. The requestor then operates on the file
according to the allowed access. Files can be extended dynamically to obtain
additional space. Shareable files can be accessed by multiple users. Sharing is
normally restricted to compatible access modes.

A fast access mechanism is supported by MPX-32 which enables referencing
resources (directories, files, memory partitions) by their resource identifier (RID). All
resources defined on a volume have an associated RID. The creator of the resource
can obtain the resource’s RID by specifying the appropriate address in the resource
create block (RCB) when the resource is created. See Chapter 5, Tables 5-16, 5-17
and 5-18. This fast access mechanism should not be confused with the fast access
attribute which only applies to files. Refer to the section, Fast Access Attribute in
Chapter 3 of this volume.

File Attributes

The basic attributes of a file are defined when it is created and include:
* size

* extendibility

* access privileges

* sharability

* contiguity

* fast access

* protection

These attributes can only be altered while the file remains defined to the system.

MPX-32 Reference Volume | 4-29

Files

4.10.2

4.10.2.1

4.10.2.2

4.10.2.3

4-30

Obtaining File Space O

Space is obtained for a file out of unused space on a volume. The user requests space
initially by the create function and subsequently by an extend function. A file can be
extended automatically by setting up appropriate parameters when the file is created.

The space obtained for a file is marked used to prevent duplicate use of the same
space. The space obtained for a file in any single allocation request is called a
segment. Files containing a single segment are contiguous, while those containing
multiple segments may not be contiguous.

There are certain efficiency tradeoffs resulting from obtaining space in different ways.
The most efficient use of space is gained from obtaining contiguous space. This can
be ensured by requesting the total amount of required space when the file is created
and by declaring the file nonextendible. Efficiency gained by using contiguous space
is most noticeable when randomly accessing a file. Files that need to be extendible
can gain some efficiency by extending space in fixed length segments. Although this
is not as efficient as creating a single contiguous file space, it is a significant
improvement over extending in variable length segments.

Granularity

The space on a disk volume is measured in units known as blocks. A block is the

logical sector size of all disk volumes the operating system supports. The block size

used is 192 words. To minimize fragmentation of unused space resulting in inefficient

usage of the available space, the space is obtained in allocation units consisting of a TN
fixed number of blocks. & J

The allocation unit size is determined only at the creation of a volume and can be any
number of blocks. The default size for an allocation unit is determined by the class of
the device on which the volume is mounted at the time it is created. Once an
allocation unit size is established for a given volume, it is fixed and does not change.
Although the volume can be subsequently mounted on other devices of the same class,
its allocation unit size remains unchanged.

Contiguity

For efficiency, it is desirable to obtain contiguous space for a file. In a contiguous
file, space is comprised of a single segment. A file is defined as contiguous when it is
created by indicating it is not extendible, and by not specifying multiple segment
creation option.

Extendibility

Frequently, it is difficult to determine all the space a file requires at creation and it is
necessary to be able to extend the file’s space according to changing needs. If
specified at creation, a file’s space can be extended beyond its current size.

Volume Resource Management

Files

4.10.24

4.10.3

For extendible files, it is desirable to specify the lengths (number of blocks) in which
a file will grow. The length is specified when the file is created and becomes the
segment size to use whenever the file is extended. The segment size specified is
rounded to the next highest allocation unit defined for the volume on which the file is
created. If a segment size is not specified, a system default is applied. If the file is
created with the zero option specified, any extensions to the file are first zeroed.

A file can be extended by either fixed or variable length segments. A fixed length
segment has its maximum increment equal to its minimum increment. A variable
length segment has its maximum increment greater than its minimum increment. For
fixed length segments, if the contiguous space required is not available, the file is not
extended. For variable length segments, the requested amount of space is obtained
except where the request is greater than any available contiguous space. In this case,
the largest available amount of contiguous space is obtained and the user is notified.

A file can be extended either manually or automatically. This is also defined at
creation of the file. For automatic extensions, the user of the file need not be aware of
requirements for additional space. When required, the file is extended without
notification. For manual extensions, the user is notified when more space is needed.
Optionally, the user extends the file via the extend function. If variable length
extensions are requested, the requested size extension is attempted. If the requested
size cannot be obtained, a second attempt is made for the maximum increment size. If
the maximum increment size cannot be obtained, an attempt is made for minimum
increment size. If none of the three sizes can be obtained, a denial is issued. For both
automatic and manual extensions requiring fixed size segments, if the request exceeds
the available contiguous space, the request is denied.

Size

A file’s size is the amount of space obtained for it. The size of a file is determined at
creation of the file or by extending the file.

The size specified when a file is created is the minimum space allocated to the file
(initial space allocation). The close function will cause a truncation of the file’s space
to the file’s initial space or its minimum space requirement.

The maximum size allowed for a particular file to be extended can be specified at
creation of the file. The maximum size for the file can also be specified to prevent
users from extending a file beyond prescribed limits.

File Names and Fast Access

It is desirable to reference files in a simple fashion. Files are given symbolic names at
their creation and are then referenced by their name. Such files are called permanent
files. Files created without specifying a name are called temporary files.

All temporary and permanent files are known internally by a unique file identifier
(RID). This identifier is assigned internally at creation of the file and identifies the
resource descriptor block which defines the respective file’s attributes and space.

MPX-32 Reference Volume | 4-31

Files

4.10.4

4.10.5

4.10.6

4-32

When referencing a file by its name, a given amount of time (overhead) is required to
obtain its definition from a directory. This can be excessive for some time-critical
applications. To eliminate the overhead of directory searches, a file may be referenced
by its RID. All temporary and permanent files can be referenced by their RID. When a
file is created and the fast access attribute is specified, the file’s RID remains
unchanged throughout any operation performed on the file. For further details, refer

to Fast Access Attribute section in Chapter 3.

File Protection

In many applications, it is necessary to protect files from certain users and types of
access. The users of a file are granted its use only in the ways allowed them.
Protection can be applied to safeguard attaching and/or extending files.

Protection of files is established by the creator/owner at creation of the file. Only the
owner of the file can specify or modify the file’s protection attributes.

Permanent Files

Permanent files are named files and are permanent to the system until explicitly
deleted. They are known to the system by one directory entry and are defined to the
system at their creation. There can be one and only one definition for a named file.
This definition is maintained and known to the system via a resource descriptor.

Permanent files can be used either shared or nonshared. This is determined by the
owner/creator. Permanent files are shared according to rules defined previously.

The allowed uses of a file can be altered at creation, assignment, and open. For files,
attachment is comprised of the last two phases (assign and open). By the time a task
accesses a file, all uses have been defined and verified. How each of these functions
alters the context of file use is described in the following sections.

Creating Files

The create function allocates file space, defines the attributes of a file, and builds a
resource descriptor which defines the file space. This resource descriptor also contains
the attributes of the file.

For permanent files, the user-supplied file name associates the directory entry,
resource descriptor (file attributes), and the file space. For temporary files and fast
access files, a unique file identifier is supplied by the system. This provides an
alternate method of association with a file and its attributes.

Files exist when they are created by the operating system. The creation of a file is
accomplished as requested by the successful completion of an executed create
function. Once a file is created, it can be attached and accessed by its name or
identifier.

Volume Resource Management

C

Files

4.10.7

4.10.8

At creation, the attributes of a file are defined either explicitly, by providing them as
specified parameters or implicitly, by omitting certain parameters. If parameters are
omitted, reasonable defaults, values, or attributes are assumed. If there is no
reasonable default for a parameter, the parameter must be supplied by the user.

Attaching Files

To secure a file for use, the file must be attached. When attachment of a file is
requested, the requestor is granted attachment on the basis of both the file’s defined
allowances to the requestor and its availability. The two phases required for the
attachment of files are assignment and open.

Assigning Files

File assigning by the assign function is an attachment phase that associates a resource
with a task by a logical file code.

Nonshareable files allow only exclusive use. Once nonshareable files are assigned,
they cannot be used by others until released. A requestor of a nonshareable file that is
already assigned is enqueued or optionally denied on the request.

A requestor can also gain exclusive use of a shareable file by requesting its exclusive
assignment. As in the previous case, the requestor is enqueued or optionally denied if
the file is currently assigned to another task.

Shareable files can be shared in two ways: implicitly or explicitly. If shared use is
requested when the file is assigned, the file is explicitly shared. Assignment to a file
for explicit sharing is allowed only if there are no other tasks attached to the file or if
all others who are attached are explicitly sharing the file.

If neither shared or exclusive is specified when assigning a shareable file, it is
implicitly shared. This is allowed only if no other tasks are attached to the file or if
all other tasks are implicitly sharing the file in a compatible access mode.

In summary, the first task that attaches a file establishes the context of use for
subsequent requestors of the file. The context established by the first task can be
changed only when the file is detached from the tasks.

The desired access mode(s) for the requested file may be specified when assigning the
file. This defines the intended access for the file attachment.

A specific access mode or multiple access modes can be requested when assigning the
file for implicitly shared use. The attachment is granted if the requested access
mode(s) are compatible with those of users currently attached to the file.

Access modes can be omitted when assigning a file for implicit shared use. In this
case, the only access ensured is read access. Other access modes can be requested
when later opening the file. As a result, the requestor may be enqueued for the
request since there is no guarantee the requested access mode will be compatible with
other users.

MPX-32 Reference Volume | 4-33

Files

4.10.9

The required access mode(s) need not be specified for explicitly shared files. For
explicit sharing, there is no compatibility requirement since all sharers are expected to
synchronize and use locking to maintain file integrity. It is not possible for explicit
sharers to contend for file use as a result of specified access modes when opening the
file. They are guaranteed use of the file in the requested mode.

Assignment parameters are defined explicitly by providing them as specified
parameters or implicitly by default.

Opening Files

A file must be assigned before being opened. A file must be opened before any
operations to the file are allowed. The desired file is referenced as a required
parameter to the open function.

The access mode for a file is determined at open. The type of access allowed depends
on the allowances or restrictions associated with a file at creation and assignment.

The access mode in which the file is opened determines the position within the file.
The open function performs logical connections of control table information between
the file, system, and its requestor. Also, if required, a device handler is initialized for
the device where the file resides.

4.10.10 File Operations

4-34

The operating system provides a set of operations which can be performed on files.
The data structure within the file itself is of no concern to the operating system. The
lowest structure recognized by the operating system is the block.

Files can be accessed either sequentially or randomly. The intended access is
specified when opening the file. Files opened as sequential are operated on in a
sequential manner. Subsequent operations advance one block from the previous
position in the file. Files opened as random are processed or operated on in a random
manner. Each operation supplies a specific file relative block number to which the
operation is performed.

The access method is determined at open by examining the random access indicator
contained in the file control block (FCB). If the random access indicator is not set,
the access method of the file is determined to be sequential access.

Three general types of operations are provided for use with files:

* read — transfer data from a file to memory
* write — transfer data from memory to a file
* position — move to an indicated position in a file

For read and write operations, parameters are supplied denoting: the memory address
to or from which the data is to be transferred, the number of data bytes to transfer and
the position in the file (implied for sequential access) at which the operation is to
commence. Position can also be specified independently of read or write operations,
in which case, no data transfer operations are performed during the position function.

Volume Resource Management

(

P

Files

4.10.10.1 Sequential Access

Sequential access gives the user the ability to transfer data to or from a file in a
sequential manner. The user is allowed to specify a buffer address aligned on an
arbitrary byte boundary and specify an arbitrary transfer count in bytes. The transfer
granularity to disk files is 192 words. This means transfers to or from a file are
executed in multiples of 192 words, for example, disk blocks. During output
operations to a disk file, only the requested number of bytes are output to the disk file.
Any bytes remaining to acquire the next highest 192 word boundary are automatically
zeroed by the disk controller.

The operating system recognizes file granularity. It does not recognize the data format
inside a file, therefore, the file system is not sensitive to record boundaries. A file
must be read in a form that is compatible with the way the file was written.

4.10.10.2 Random Access

If the random access indicator is set in the file control block (FCB) when a file is
opened, the access method of the file is determined to be random access. This means
the user must specify the file relative block number (192 words) where the requested
read or write operation is to begin. As with sequential access, the user is allowed to
specify a buffer address that starts on an arbitrary byte boundary and an arbitrary
transfer count in bytes. Also, as in sequential access, the operating system is only
cognizant of the 192 word granularity of a file, therefore, data formats denoting record
boundaries are not detectable.

The operating system supports extendible random access files. Using auto-
extendibility on random access files can cause the file to become discontiguous;
therefore, the efficiency of a program performing random access disk I/O might be
impaired. To prevent this, create the file with sufficient size to allow for possible
extension.

If automatic file extension is to be inhibited, the file must be created with the
appropriate attributes through VOLMGR. If autoextendibility is inhibited and an
attempt is made to access beyond the file, an EOM indicator is set.

It is necessary to initialize the file with a known data pattern and detect null records-
areas within the file that contain the initial data pattern. As an option, a file may be
sequentially initialized with a pattern of binary zeroes at creation.

4.10.11 File Positioning

File positioning provides the capability for moving within a file without transferring
data to or from the file. The rules for file positioning are dependent on which access
method is in effect on the file. Two types of file positioning are allowed:

* absolute — the ability to position to the beginning or end-of-file

* relative — the ability to move to a location in a file with respect to the current
position in the file

MPX-32 Reference Volume | 4-35

Files

4.10.11.1 Absolute File Positioning Operations

Absolute positioning allows the user to position to the beginning-of-file or to the end-

of-file without regard to the current position in the file. Absolute positioning is used
with sequential and random access methods. Three operations are provided for

absolute positioning in a file:

* rewind file — position to the beginning-of-file and indicate beginning-of-medium
* backspace file — position to the beginning-of-file. Same as rewind.

* advance file — position to the end-of-file and indicate end-of-file. Any attempt to
advance a file beyond end-of-file causes an end-of-medium to be indicated.

4.10.11.2 Relative File Positioning Operations

Relative positioning allows the user to position to the beginning-of-record or to the
end-of-record with respect to the current position in the file. Relative positioning can
be used only with the sequential access method. Two operations are provided for

relative positioning in a file:

* backspace record — backspace a file block (192 words). The beginning-of-medium

indicator is set if this condition is detected.

* advance record — advance a file block (192 words). The end-of-file indicator is set

if this condition is detected. Additionally, the end-of-medium indicator is set if

positioning beyond end-of-file is attempted.

4.10.12 File Access Modes

4-36

File access modes control allowed access methods and combinations of operations
allowed to a file. The operating system defines five allowable access modes: read,

write, modify, update and append.

The mode in which a file is to be accessed is specified when the file is opened. Only

one access mode can be specified at open.

The following chart shows the access modes and the conditions determined when the

file is opened.

Volume Resource Management

Files

Table 4-1
File Access Modes and Conditions
Requested Allowed Allowed File Position EOF Position EOF Position
Mode Operation Access Methods at Open at Open at Close
Read Read, Sequential First block Highest Same position
ABS Position ~ Random of file sequentially as at open
REL Position written block
number + 1
Write Read, Write, Sequential First block First block Highest
ABS Position, only of file of file sequentially
REL Position written block
number + 1
Modify Read, Write Sequential, First block Highest Same position
ABS Position, Random of file sequentially as at open
REL Positon written block
number + 1
Update Read, Write, Sequential, First block Highest Equal to position
ABS Position, Random of file sequentially at open or new
REL Position written block highest sequentially
number + 1 written block
number + 1 if
data was appended
to the file
Append Read, Write, Sequential * Highest Highest New highest
) ABS Position, only sequentially sequentially sequentially
Rel Position written block written block written block
] number number + 1 number + 1
e EOF refers to the actual end-of-file block (or defined end-of-file), not to any
software end-of-file (either blocked or unblocked) contained within the file.
e The EOF block is equal to the first block of a file when the file is created.
e The EOF block is equal to the last block of a file if the file is optionally
initialized with the binary zero pattern when the file is created.
* For blocked files, the file position at open is placed at the last blocked software
end-of-file before the defined end-of-file block.

4.10.12.1 Read Mode

A file opened in read mode allows read-only access to a file. The position of the file
after opening is the first block of the file. Read operations operate from the first block
of the file to the defined end-of-file.

Sequential and random access methods are allowed in the read mode. Additionally,
absolute and relative positioning is allowed with respect to the restrictions appropriate
to blocked files.

MPX-32 Reference Volume |

.

4-37

Files

4.10.12.2 Write Mode

A file opened in write mode allows sequential read and write access to a file. The
position of the file after opening is the first block of the file. Write operations operate
from the first block of the file to the last block of the file’s allocated space (EOM).
With extendible files, additional file space can be automatically allocated when the
EOM condition is detected and the file is being written.

The write mode is provided to write the initial data contents of a newly created file.
Write mode can also establish new data contents for a file (i.e., file rewrite). When a
file is opened in write mode, the end-of-file (EOF) indicator is automatically set to the
first block of the file. This step effectively discards the current data contents of the
file. As the file is sequentially written, the end-of-file indicator is moved and logically
exists at the end of all data that has been recorded in the file. Operating in this
manner allows the file, if shared, to be read while a single writer is establishing new
data contents for the file. This method of operation is only allowed when the writer is
the first task to open the file. Readers opening the file after the writer are able to read
all data the writer has written. Attempts by any reader to read data beyond the writer’s
current position in the file cause that reader to be suspended (i.e., blocked from
execution), until the writer has established additional new data in the file. The results
of this method of operation are only predictable when all sharers of the file are
accessing it sequentially. If the writer cannot be certain of sequential access, the
writer should attach (assign or open) the file for exclusive use.

When a file opened in the write mode is closed, the end-of-file position is recorded in
the resource descriptor for the file. This enables determination of the required size of
the file, and all existing and unused extensions to the space of the file are returned to
the pool of allocatable space on the volume.

Only the sequential access method is allowed in the write mode. Additionally,
absolute and relative positioning is allowed but discouraged if the file is to be
concurrently shared with readers on the file.

4.10.12.3 Modify Mode

4-38

A file opened in modify mode enables read and write access to a file. The position of
the file after opening is to the first block of the file. Modify operations operate from
the first block of the file to the defined end-of-file.

The modify mode is provided to allow modifications to be made to the existing data
contents of a file.

For blocked files, modify operations can rewrite or change the position of the blocked
software end-of-file. However, modify operations are still constrained to operate
within the original range of the first block of the file to the defined end-of-file block.

Sequential or random access methods are permitted in the modify mode. Since all or
portions of the existing data in the file can be modified, other tasks are not able to
gain concurrent access to the area of the file operated on by the modify mode.
Additionally, absolute and relative positioning is allowed with respect to the
restrictions appropriate to blocked files.

Volume Resource Management

@

N

e

Files

4.10.12.4 Update Mode

A file opened in update mode enables read and write access to a file. The position of
the file after opening is to the first block of the file. Update operations operate from
the first block of the file to the last block of the files allocated space (EOM). With
extendible files, additional file space can be automatically allocated when the EOM
condition is detected and the file is being written.

The update mode is provided to allow modifications to be made to the existing data
contents of a file and to append new data to the file. Sequential and random access
methods are allowed in the update mode. Since existing data in the file can be
modified and new data can be appended, other tasks cannot gain concurrent access to
any portion of the file.

Although sequential and random access methods are permitted, appending new data to
a file must be done sequentially regardless of which access method is in effect on the
file. Additionally, absolute and relative positioning is allowed with respect to the
restrictions appropriate to blocked files.

4.10.12.5 Append Mode

A file opened in append mode allows new data to be appended to existing data in a
file. The position of the file after opening is at the end of existing data in the file.
Append operations operate from the file position at open to the last block of the file's
allocated space (EOM), i.e., rewind cannot go past the file’s position at open. With
extendible files, additional file space can be automatically allocated when the EOM
condition is detected and the file is being written.

As new data is sequentially appended to an existing file, the end-of-file indicator is
moved and logically exists at the end of all data that has been appended to the file.
Operating in this manner allows the file, if shared, to be read by concurrently
executing tasks while new data is being appended to the file. This method of
operation is only allowed when the appender is the first task to open the file. Readers
opening the file after the appender are able to read all data the appender has written.
Attempts by any reader to read beyond the appender’s current position in the file
cause that reader to be suspended (i.e., blocked from execution) until the appender has
appended additional new data to the file. The results of this method of operation are
only predictable when all sharers of the file are accessing it sequentially. If the
appender cannot be certain of sequential access, the appender should attach (assign or
open) the file for exclusive use.

When a file opened in the append mode is closed, the end-of-file is recorded in the
resource descriptor for the file. Append mode, unlike write mode, does not return
unused space at the end-of-file to the pool of allocatable space on the volume.

Only the sequential access method is allowed in the append mode. Additionally,
absolute and relative positioning is allowed but discouraged if the file is to be
concurrently shared with readers on the file.

MPX-32 Reference Volume | 4-39

Files

4.10.13 Sharing Files

Shared access allows simultaneous access for users of differing access modes but
places restrictions on certain combinations for implicit sharing. Users who implicitly
share a file must open the file with access modes compatible with all other users of the
file. The following summarizes the compatible modes for any single access mode:

Access Mode Compatible Access Mode

Read read, write*, or append
Write read*

Modify append+

Update none

Append read or modify+

* Read and write are compatible only if the writer is the first task attached to
the file. If not, the writer must wait until the reader closes the file.

+ Append and modify are not compatible for blocked files.

Explicit sharing of a file allows the user to intermix all access modes, some
combinations of which are considered incompatible for implicit sharing.
Synchronization and file locking functions can be used to ensure locking out
simultaneous accesses to files when multiple writers/readers are sharing a file
explicitly and could thus yield undefined results. Explicit sharers do so knowingly,
and therefore, must perform their own synchronization and locking control.

4.10.14 Closing Files

Closing a file prohibits the requestor from subsequent operations to the file. The file
is then closed from the perspective of the requestor. For shared files, the file does not
become closed to other sharers of the file.

When a user closes a file after implicitly sharing it, the access modes available to
others for the same file can change. This is determined at the close of the file.
Closing can then allow the system to complete other requests for assigning or opening
the file, not formerly allowed.

In some access modes, the end-of-file is determined at its close. This also allows
determination of the required size of a file and enables the return of unused space.
For implicitly shared files, it can also mean that areas not previously accessible to
other sharers become accessible after any single-sharer closes.

4-40 Volume Resource Management

Files

4.10.15 Detaching Files

A file can be detached by requesting the deassign function. This frees the file and
returns it as an available resource to the system. The freeing of the file is from the
perspective of the requestor of the detachment. If the file is being shared and is
attached by other sharers, the sharers maintain attachment of the file. In all cases,
when a file is detached, its use count is decremented. The file is completely returned
to the system when the use count is decremented to O (file not in use). The file then
becomes available to other requestors who may have been suspended due to the file
having been in use.

4.10.16 Deleting Files

Permanent files are deleted by using a delete function. When the file is deleted, the
space obtained for the file is returned to the volume by marking its previously
occupied allocation units as available in the volume’s allocation map. The entry for
the file is removed from its associated directory.

4.10.17 Temporary Files

Temporary files are a type of file resource specified and defined when they are created
by the create function. They are deleted from the system when the creator of the file
terminates execution.

Temporary files do not have names associated with them. They are referenced by a
unique assigned identifier called a resource identifier that contains an integer index
pointing directly to the file’s resource descriptor.

4.10.17.1 Creating Temporary Files

Temporary files are created by executing a create function requesting a temporary file.
All parameters allowed for creating permanent files are also allowed for temporary
files except fast access. Because temporary files have no name and must be referenced
by their assigned identifier, they are already fast access. For example, their resource
descriptor can be found in one disk access. Temporary files can also be created by the
assign function.

Typically, most parameters allowed for creating a temporary file are not required.
When a temporary file is to be made permanent, these parameters establish the
attributes of the file to use when the file becomes permanent.

4.10.17.2 Assigning Temporary Files

Temporary files must be assigned by the assign function before they can be opened.
Assignment establishes the tables required to use the file and reserves the file for use
by the requestor.

Existing temporary files, those having previously been created by a create function,
are assigned (assign function) by using their resource identifier.

MPX-32 Reference Volume | 4-41

Files

The resource identifier is given to the requestor when the file is created. The
requestor also gives a logical file code (three characters) which becomes logically
equated to the resource identifier. Once the file has been assigned, it can be
referenced by its logical file code.

Temporary files not created by the create function can be both created and assigned by
the assign function. For such cases, the initial space allocated is specified by the
assigner or is a fixed number of allocation units.

Temporary files created at assignment are extendible. Reasonable defaults are
assumed for parameters normally specified when creating a temporary file. The device
where the temporary file is to be created can be specified indirectly by volume name.

4.10.17.3 Opening and Accessing Temporary Files

Temporary files are accessed initially by executing an open function. The access
modes that the file can be opened in are specified when assigning the file. The rules
for this function are the same rules that apply to permanent files.

4.10.17.4 Deleting and Detaching Temporary Files

The space used by a temporary file is freed by executing a deassign function.
Deletion of a temporary file is implied when the file is detached.

Because all files are detached at termination of a task, temporary files are then
implicitly deleted upon termination of the using task, whether the termination is
normal or not. The task has the ability to make a temporary file permanent before it
terminates.

4.10.17.5 Making Temporary Files Permanent

Temporary files can be made permanent through the use of the M.TEMPER system
service (M_TEMPFILE TO PERM). Execution of this function creates an entry in the
directory specified by the pathname. The entry points to the resource descriptor for
the temporary file. For further information concerning directories and/or pathnames,
refer to the section Directories and the section Pathnames in this chapter.

4-42 Volume Resource Management

®

Memory Partitions — Nonbase Mode of Addressing

4.11 Memory Partitions — Nonbase Mode of Addressing

4111

4.11.2

Memory partitions are named areas of physical memory that can be shared by
concurrently executing nonbase mode tasks. Each memory partition has a relationship
with physical memory and with the logical address space associated with a task.
There are two types of memory partitions: static and dynamic.

Static partitions are defined when the operating system is generated using SYSGEN
and are created when that system is booted. When the static partition is defined, its
physical location, size, and logical location are specified. Partitions declared in this
manner permanently reserve the specified physical area of memory, which remains
reserved until the system is regenerated. Static memory partitions cannot be deleted.

To make the physical region available to the logical address space of a task, the task
must include the partition. Certain static partitions such as GLOBALnn and
DPOOLnn have known names to the system and can be automatically included.
MPX.-32 specifically allows multiple definition of the same physical area. This allows
the same physical area to be mapped into a different logical address space for different
tasks. It also can be used to allow multiple partial map block partitions to be included
in the same map block.

Dynamic memory partitions are created by system utilities. When the memory
partition is defined, the user specifies the partition’s relationship to the task’s logical
address space. The partition’s relationship to physical memory, for example, its size
is also specified, but the physical memory is not allocated until the dynamic partition
is allocated to a task.

Creating Memory Partitions

When memory partitions are created, the attributes of the partitions are defined. These
attributes include:

* name

* protection

* size

* location in logical address space

When a partition name is used to attach the partition, the size, location, and other
attributes are validated.

Protecting Memory Partitions

The protection allowed to memory partitions is the same as the protection allowed to
any other resource managed by the operating system, for example, owner, project
group, and other. In addition to the common forms of resource protection, partitions
can also be protected from write access.

MPX-32 Reference Volume | 4-43

Memory Partitions — Nonbase Mode of Addressing

4113

4.11.4

4.11.5

4.11.6

4-44

Attaching Memory Partitions

To attach a partition, the partition must have been created. The requestor is granted
access to the partition based on the partition’s access rights defined for the requestor.
Valid access rights for partitions are delete, read and write. For example, a particular
user cannot attach a partition that is protected from the user.

Memory partitions are always attached to a task for explicit shared use. A task is not
denied attachment of a shared partition if the user for whom the task is executing has
the proper access rights.

Once a partition has been attached, the nonbase mode task gains access to the partition
via the M.INCLUDE and M.EXCLUDE system services. The M.INCLUDE service
maps the partition into the task’s logical address space, providing the space for the
partition is not currently allocated.

Accessing Memory Partitions

Once mapped into the task’s logical address space, the task accesses the space of the
partition by using memory reference instructions. If the user associated with the task
does not have write access to the partition, the task is prevented from modifying the

contents of the partition.

Detaching Memory Partitions

The M.EXCLUDE service allows the task to map a memory partition out of the task’s
logical address space. This makes the space available to include another partition or
to use the space in some other manner. A partition that has been excluded from the
task’s address space cannot be referenced until it is again included.

Detaching memory partitions informs the system that the task no longer requires a
guarantee that the partition will remain available for access. If the partition is mapped
into the task’s logical address space at the time of the detachment request, the
partition is excluded from the task’s address space.

Detachment of a static memory partition does not release the physical memory
assigned to the partition nor does it modify the contents of the partition.

Detachment of a dynamic memory partition releases the physical memory assigned to
the partition if no other tasks currently have the partition attached. When the physical
memory used by a dynamic partition is released, the contents of the memory locations
are made available for any type of physical memory request.

Deleting Memory Partitions

Static memory partitions cannot be deleted. Dynamic memory partitions can be
deleted using the M.DELETE service.

Volume Resource Management

Memory Partitions — Nonbase Mode of Addressing

4.11.7 Sharing Memory Partitions

Memory partitions can be attached and accessed by concurrently executing nonbase
mode tasks. The users of shared partitions have the use of shared resource
synchronization features.

Additionally, these users can develop their own protocol for sharing the resources.

4.12 Shared Images

Shared images are named areas of physical memory that can be shared by
concurrently executing base mode tasks. Shared images can be absolute or position
independent.

Absolute shared images have fixed logical addresses within a task’s logical address
space.

Position independent shared images do not contain any relocatable address references.
Any references outside of the shared image are relative to a base used at execution
time. The logical address of a position independent shared image is defined to the
task at link time.

A shared image can contain both read-only and read/write program image sections.

At link time, a specification can be made to activate the shared image as single copy
or multicopy. A single-copy shared image (the default) has only one copy of both the
read only and the read/write sections in memory. Both sections are shared by all tasks
requesting inclusion of that image.

A multicopy shared image has a separate copy of the shared image for each including
task. A multicopy-shared shared image has a single copy of the read only section for
all tasks and a separate read/write section for each task.

4.12.1 Created Shared Images

Shared images are created by the LINKER/X32 when the attributes of the shared
images are defined. These attributes include:

* name

* protection

* size

* location in logical address space

The size, location, and other attributes are validated when a shared image name
attaches the shared image.

4.12.2 Protecting Shared Images

The protection allowed to shared images is defined at link time and is the same as the
protection allowed to any other resource managed by the operating system. This
protection is the owner, project group, and other scheme. In addition to the common
forms of resource protection, shared images can also be protected from write access.

MPX-32 Reference Volume | 4-45

Shared Images

4.12.3

4.12.4

4.12.5

4-46

Attaching Shared Images

To attach a shared image, the shared image must have been created. The requestor is
granted access to the shared image on the basis of the shared image’s access rights
defined for the requestor. Valid access rights for shared images are read and write.

The access mode is requested at link time and a denial is made at include time if the
requested mode is incompatible with the shared image definition.

Shared images can be included into a task’s address space by preassignment or
dynamic inclusion. A preassigned image is loaded and/or mapped into the referencing
task’s logical address space at activation time and remains there until completion or
until the task excludes it via the M_EXCLUDE or M.EXCLUDE system service. A
dynamic image is loaded and/or mapped upon request by the M_INCLUDE or
M.INCLUDE system service.

Accessing Shared Images

All shared images to be included by a task, whether preassigned or dynamic, must be
defined by the user at link time.

When a shared image is linked, a version number and compatibility level can be
specified. This information is copied into the preamble for each task referencing the
shared image at link time, and is used to verify that the shared image requested at
activation is compatible with the shared image defined at link time.

The physical address of a shared image can be specified at link time enabling systems
with shared memory to share the image. This feature should be used with caution
because a task is given an immediate denial if the requested physical memory is
allocated to another task.

A shared image can be defined as resident at link time. A resident shared image is
then loaded into memory using the OPCOM INCLUDE directive, and remains in
memory until removed by the OPCOM EXCLUDE directive.

Detaching Shared Images

The M_EXCLUDE and M.EXCLUDE services allow the task to remove a shared
image from the task’s logical address space. This function makes the space available
to include another shared image or to use the space in some other manner. A shared
image that has been excluded from the task’s address space cannot be referenced until
it is again included.

If write back is requested, the read/write section is written back to the disk. If write
back is not requested, there is no write back. Write back is not performed until all
users have detached the shared image. The physical memory occupied by the shared
image is then available to other tasks, providing the image is not included as resident.

Volume Resource Management

AN
e

Multiprocessor Shared Volumes

4.13 Multiprocessor Shared Volumes

4.13.1

4.13.2

The multiprocessor shared volume is an MPX-32 feature that allows tasks, operating
in separate system environments, to obtain concurrent directory and file access. The
operating system maintains resource integrity against incompatible access or usage
modes on these resources within the scope of volume management described in this
chapter.

A volume is treated as multiprocessor only if it has been software mounted as
multiprocessor on a multiported drive. A multiported drive is defined to be any disk
drive that is hardware configured with the ability to communicate concurrently with
up to sixteen independent processors. The hardware characteristics of the disk drive
are defined by the appropriate DEVICE directive supplied to the SYSGEN utility. The
software characteristics of the volume are defined by the presence or absence of a
SYSID parameter when the volume is mounted.

The synchronization mechanism for multiprocessor resources is maintained by
software information kept in the resource descriptor (RD). Therefore, consideration
must be given to system performance and access restrictions on these resources. The
specific performance and restriction issues applying to multiprocessor resources are
discussed in the Multiprocessor Resource Access and Multiprocessor Resource
Restrictions sections.

Note: The system volume cannot be a multiprocessor volume.

Multiprocessor Resources

A multiprocessor resource is defined as a volume resource residing on a volume
mounted as a multiprocessor. Permanent files, temporary files, directories, the volume
descriptor map (DMAP) and the volume space map (SMAP) can be multiprocessor
resources. Memory partitions and space definitions are never treated as multiprocessor
resources regardless of where they reside.

Because the resource synchronization mechanism for multiprocessor files must be kept
on disk (in the RD) rather than in memory, additional system overhead is incurred in
the areas of create, delete, assign, open, close and deassign resource on multiprocessor
volumes. After a file is allocated, the actual number of I/O operations performed is
not affected by the multiprocessor characteristics of the resource.

Multiprocessor Resource Access

When the allocation status of a multiprocessor resource changes, MPX-32
synchronizes the update of the resource accounting information for that resource using
the multiprocessor lock in the last word of its resource descriptor (RD).

The multiprocessor lock acts as a semaphore for the resource. It is reserved by
MPX-32 for this purpose and should not be used for any other applications.

MPX-32 Reference Volume | 4-47

Multiprocessor Shared Volumes

4-48

If the multiprocessor lock is not set when MPX-32 attempts to allocate a resource,
MPX-32:

* sets the lock
* updates the allocation and access information in the RD
* releases the lock

If the multiprocessor lock is set when MPX-32 attempts to allocate a resource,
MPX-32:

* suspends the task for a specified length of time and then tries to allocate the
resource a second time

Use the SYSGEN DPTIMO directive to specify the length of time to suspend
between tries. When DPTIMO is not specified, MPX-32 suspends for one second
between tries.

* continues to suspend the task and retry until either the resource is free, or the
specified number of retries is reached.

Use the SYSGEN DPTRY directive to specify the number of times MPX-32 tries to
allocate a user level resource.

Setting DPTRY to 1 causes MPX-32 to issue an immediate denial when the
resource has the multiprocessor lock set. Setting DPTRY to 0, or failing to specify
a value for DPTRY causes MPX-32 to repeat the try/suspend mechanism until the
resource is allocated.

MPX-32 retries indefinitely critical file system structures (root directory, SMAP,
DMAP directories) until the resource is allocated.

When access to a multiprocessor resource is denied due to assignment access mode or
usage incompatibilities with another task, the requesting task is enqueued or
suspended as appropriate (provided that DPTRY has indicated that it will wait for the
resouce to become available). If the incompatibility is due to a task in the same CPU,
the requesting task is enqueued. If the incompatibility is due to a task in the other
CPU, the requesting task is suspended. If suspended, the try/suspend cycle as for
multiprocessor locks is performed.

The following conditions can determine if a task can be queued rather than suspended
for a multiprocessor resource:

1. The resource is exclusively locked, and the lock owner is in the same system
environment as the requesting task.

2. Incompatible access modes are encountered on an implicitly shared resource in
which the writer is known to be in the same system environment as the
requesting task.

3. A synchronous resource lock cannot be obtained because the lock is owned by
another task in the same system environment.

Volume Resource Management

27N
./

Multiprocessor Shared Volumes

4.13.3

Mounting Multiprocessor Volumes

Mounting a multiprocessor volume is signified by the presence of SYSID in the
mount request. The format for the mount request of a multiprocessor volume is:

MOUNT volname ON devmnc SYSID=[MPn | DPx]

n is O through F
X isOorl

Multiprocessor volumes can be mounted as public or nonpublic. However, the system
volume cannot be mounted as a multiprocessor volume.

When a multiprocessor volume is mounted, JJMOUNT prompts the operator for
permission to perform volume cleanup if the volume descriptor indicates the volume
was not previously dismounted. When volume cleanup is performed, no regard is
given to access from any other port. All resource descriptors are purged of any
software multiprocessor information. Therefore, the operator must ensure the integrity
of the mount process from all system environments prior to allowing volume cleanup.

If the operator indicates volume cleanup is not to be performed, and JJ MOUNT
detects the port associated with the SYSID specification has not been previously
dismounted, the following message is displayed on the system console:

J.MOUNT - WARNING - VOLUME SHOWS PORT DESIGNATOR MP (DP)n ALREADY ALLOCATED
J.MOUNT - REPLY C TO CONTINUE, A TO ABORT:

4.13.4

4.13.4.1

Multiprocessor Resource Restrictions

Some features of volume management provided by MPX-32 are restricted when
applied to multiprocessor resources. This is a result of the additional system overhead
associated with the processing of these resources. The following sections describe
some of the more significant restrictions and potential conflicts that can apply when
resources are shared concurrently from separate system environments.

EOF Management

Dynamic end-of-file (EOF) information is not available to tasks sharing a
multiprocessor resource from separate system environments. The updated EOF
information is not available until the writer closes the resource and the reader
reallocates the file. However, tasks sharing multiprocessor resources within the same
system environment have access to the full range of EOF management allowed to
nonmultiprocessor resources. In this context, writer means any task accessing an
implicity or explicitly shared resource in write, update or append access mode.

MPX-32 Reference Volume | 4-49

Multiprocessor Shared Volumes

4.13.4.2

41343

4.13.44

4-50

EOM Management

Dynamic end-of-medium (EOM) information is not available to tasks sharing a
multiprocessor resource from separate system environments. The updated EOM
information is not available until the extender has completed the service, and the other
task has reallocated the file. Tasks sharing multiprocessor resources within the same
system environment have access to the full range of EOM management allowed to
nonmultiprocessor resources. In this context, extender means any task accessing an
implicitly or explicitly shared resource in update or append access mode, as well as
any task requesting a manual extension of an extendible file.

Resource Deadlocks

When a task obtains exclusive use of a resource in such a way that it will not (or
cannot) release it, any task waiting to gain access to that resource is indefinitely
postponed. This situation results whenever a system failure occurs while the
multiprocessor RD lock has been set for a task accessing a multiprocessor resource
from that system. This usually is the situation when a task (attempting to gain access
to a multiprocessor resource in the operational system) appears to be cycling between
a suspended and ready-to-run state for an extended period of time.

Under these circumstances, the multiprocessor lock remains in effect until the volume
is remounted. This multiprocessor lock can be removed by using the OPCOM
UNLOCK directive from the operational system. Once JJUNLOCK has completed,
the volume can be remounted from the failed system, but volume cleanup must be
inhibited.

Reserve/Release Multiported Disk Services (M.RESP/M.RELP)

The multiprocessor features of MPX-32 do not use the reserve and release multiported
disk services. The M.RESP service causes the drive to be exclusively reserved to the
system environment from which the request was issued. The disk remains reserved
until explicitly released by the M.RELP service. If a volume is mounted on the
multiported disk drive at the time of a reserve request, it is inaccessible from the other
system environment until explicitly released.

MPX-32 performs an implicit reserve of the multiported disk that remains effective for
the duration of the IOCL used to set or release the software lock in the appropriate
resource descriptor.

The M.RESP and M.RELP services should not be used with the multiprocessor
features of MPX-32, or the result can be unpredictable system behavior.

Volume Resource Management

®

Multiprocessor Shared Volumes

4.13.5 Optimum Use of Multiprocessor Resources

As a result of the restrictions imposed on multiprocessor resources, the following
steps can be taken on resources shared by tasks in separate system environments:

1. Do not rely on dynamic EOF management. When creating multiprocessor files,
specify EOF management is not in effect. For example:

CREATE F filename SIZE=nn EOFM=N

This sets EOF to the size of the file (EOM). In this way, concurrent access by
multiple tasks does not result in EOF detection until the physical EOF is reached.

2. Have the sharing tasks assign the file for explicit shared use. For example:

(Task 1) ASSIGN LFC TOﬁlename ACCESS=(R) SHARED=Y
and
(Task 2) ASSIGN LFC 'I'Oﬁlename ACCESS= (W) SHARED=Y

This allows concurrent access to the file by the reader and writer.
Synchronization can then be performed by the record structure in the file (which
results in less I/O overhead) or through the synchronous resource lock services
provided by MPX-32.

3. To avoid unnecessary I/O overhead associated with multiprocessor resources, do
not direct the creation of temporary or swap files on a multiprocessor volume
unless absolutely necessary. If the current working volume is a multiprocessor
volume, then additional I/O overhead is associated with processing SLO, SBO,
and SGO files on the volume.

4. Whenever a system failure occurs in one system, activate JJUNLOCK from the
running system. After JUNLOCK completes, the failed system can be rebooted.
With volume cleanup inhibited, remount the volume from the port where the
system failure occurred.

MPX-32 Reference Volume | 4-51/4-52

C

5 Resource Assignment/Allocation and I/O

5.1 Introduction

This chapter is an overview of the user interfaces provided for task resource
assignment/allocation and the subsequent I/O services available. It assumes the reader
is familiar with the terms and concepts presented in Chapter 4.

The MPX-32 Resource Management Module (H.REMM) performs all operations
necessary to obtain the physical resources required to execute a task. The MPX-32
I/O control system (IOCS) receives and processes device-independent I/O requests
from both user tasks and MPX-32.

The following sections describe the MPX-32 I/O concepts and conventions of:

* logical, wait, no-wait, and device-dependent I/O

* error processing and status posting

* interfaces among IOCS, standard device handlers, and MPX-32

* special system file handling

* file control block (FCB) and type control parameter block (TCPB) setup
* I/O services available to MPX-32 users

5.2 MPX-32 Logical IO (Device-Independent)

MPX-32 provides versatile logical device-independent I/O capabilities. The user can
code references to logical files and request an MPX-32 IOCS to perform 1/O.

Several important advantages are gained by performing logical file I/O:

* the user need not be aware of specific device handling requirements

* unprivileged tasks can perform I/O (the I/O instructions are part of the privileged
instruction set)

* tasks that perform logical I/O are easier to debug and modify

To provide MPX-32 with sufficient information to create the necessary linkages
between the user’s logical files and the actual peripheral devices or disk files, the user
must:

* identify logical files with logical file codes

* describe logical file attributes with FCBs

* associate logical files with their target physical devices or disk files with logical file
code assignments

MPX-32 Reference Volume | 5-1

MPX-32 Logical I/O (Device-Independent)

5.2.1 Logical File Codes

Logical file codes (LFCs) are user defined 1- to 3-character ASCII codes that identify
logical files within tasks.

Logical file codes are configured into corresponding FCBs. Refer to the Setting Up
File Control Blocks for Device Independent I/O section in this chapter.

5.2.2 File Control Blocks

An FCB must be set up by the user to describe each logical file within a task, and to
describe certain attributes of each logical I/O operation.

Information collected by IOCS following each I/O operation is made available to the
user by the corresponding FCB. Space in the FCB is reserved for use by IOCS.

The Setting Up File Control Blocks for Device Independent I/O section in this chapter
describes the FCB format.

5.2.2.1 Logical I/O Initiation

To initiate a logical I/O operation, users must code into their task a call to one of the
data transfer or device access services, accompanied by the address of a corresponding
FCB.

5.2.3 Assignment vs. Allocation

The attachment of a task to a resource progresses through two phases: assignment and
allocation. The current phase of a particular resource attachment depends on the
amount of information supplied by the requestor up to that time.

Assignment is the process of associating an LFC with a system resource. This action
informs the system of a task’s intention to use a resource, but does not describe the
usage (exclusive use, explicit shared, implicit shared) or the intended access mode
(read, write, modify, update or append). Hence, the resource is still susceptible to
allocation by other tasks, and no guarantee is made that the assigning task can obtain
the resource in any specific usage or access mode.

Allocation is the process of securing a resource for a specific usage and access mode
for the requesting task. At this point, the task has defined all of its intentions and can
perform logical I/O operations on the resource for the usage and access requested.

When an LFC is assigned to a system resource, the task can indicate the mode in
which it intends to use the resource (exclusive or explicit shared). If this is done, the
assignment becomes an allocation because these usage modes imply that the task is
allowed any access mode authorized to it by the resource creator. The task is
guaranteed access to the resource when logical I/O is initiated. If a usage mode is not
indicated at LFC assignment, implicit shared use of the resource is assumed by
default.

Resource Assignment/Allocation and I/O

MPX-32 Logical I/0 (Device-Independent)

When an LFC is attached to a resource with implicit shared use, the resource is not

allocated until a specific access mode is indicated. If this occurs at LFC assignment,

the assignment becomes an allocation or is deferred until the resource is opened. In

the latter case, the resource is not allocated until it is opened, and there is no
guarantee the specific access mode is obtained because other tasks may have allocated

the resource for implicit shared use in an incompatible access mode.

Refer to Table 5-1, Assign/Open Resource Allocation Matrix.

Table 5-1
Assign/Open Resource Allocation Matrix
Usage Usage Point when Is resource Allocation
specified specified access is allocated action at
at Assign at Open specified at Assign? Open
Exclusive Exclusive N/A Yes None
Explicit Shared N/A Yes Reallocate
and Dequeue
Implicit Shared N/A Yes None
Explicit Exclusive N/A Yes Deallocate
Shared and Allocate*
Explicit Shared N/A Yes None
Implicit Shared N/A Yes None
Implicit Exclusive Assign Yes Deallocate
Shared and Allocate*
Exclusive Open No Allocate*
Exclusive Assign Yes Deallocate
and Allocate*
Exclusive Open No Allocate*
Implicit Shared Assign Yes None
Implicit Shared Open No Allocate*

* No guarantee that a specific access mode (read, write, modify, update,
append) is available at open.

MPX-32 Reference Volume |

MPX-32 Logical /O (Device-independent)

5.2.4 Logical File Code Assignment

Before executing a logical I/O request, the task must associate the appropriate LFC
with the target peripheral device or disk file. This is accomplished by LFC
assignment.

At this time, the requestor can specify one or more access modes that apply to this
assignment. This set of access modes defines the set of allowable I/O operations that
can be performed on the resource for the duration of this assignment (read, write,
modify, update, and append). The access modes specified at assignment must not
allow more access than that allowed to this user by the resource creator or the
assignment will be denied. If no access modes are specified, the default access modes
in the resource descriptor for this user class are allowed.

A specific resource usage (exclusive or explicit shared) may also be declared at LFC
assignment. If not supplied, the resource is assumed to be assigned for implicit shared
use. In this case, the resource is not allocated to the requesting task at assignment,
unless only one access mode is allowed.

LFCs can be assigned to specific peripheral devices or files when a task is cataloged
(static assignment) or during task execution by the M.ASSN service (dynamic
assignment).

For tasks that run under TSM control (interactive or batch), static assignments can
also be made by the user at run time. For such assignments, if the LFC matches one
assigned at catalog time, it replaces the cataloged assignment. If the file code assigned
at run time does not match any cataloged assignment, it is added to the cataloged S
assignments.

Dynamic assignments cannot override cataloged or run-time assignments, and any
attempt to do so is treated as an error. To accomplish dynamic override, the user task
must first deallocate (deassign) the static assignment by the M.DASN service.

The maximum number of assignments is 245. There is additional space reserved for
assignments needed by the operating system.

5.2.4.1 Making Assignments via Resource Requirement Summary (RRS)

The resource requirement summary (RRS) is a structure that defines the assignment
requirements of a resource to the Resource Management Module (HREMM). It is
supplied by the Cataloger, LINKX32, or TSM for static assignment of resources to a
task or as an argument for the dynamic assignment of a particular resource.

There are distinct types of RRS entries recognized by REMM corresponding to the
resource modes and allocation mechanisms available. RRS entries are variable length
structures with the first four words generally common for all entries, and the
remaining number of words dependent on the RRS type. RRS entries always begin on
a doubleword boundary. They must contain an even number of words for static
assignments made by parameter task activation or load module activation where
pathnames are applied. RRS entries are presented to HLREMM in the following
formats.

Resource Assignment/Allocation and I/0

MPX-32 Logical /O (Device-Independent)

Unless specified, the first four words of an RRS entry contain the following:

Word 0 Byte 0 cleared

Bytes 1,2,3 contain a 1- to 3-character, left-justified,
blank-filled LFC

Word1 Byte 0 specifies the RRS type with the following value
significance:
Value Description
1 assign by pathname (RR.PATH)
2 assign to temporary file (RR. TEMP)
3 assign to device (RR.DEVC)
4 assign to LFC (RR.LFC2)
5 assign by segment definition (RR.SPACE)
6 assign by resource ID (RR.RID)
7-8 reserved for future use
9 mount by device mnemonic (RR.MTDEV)
10 assign to ANSI labeled tape (RR.ANS)
11 assign to shadow memory (RR.SHRQ)
12-255 reserved
Byte 1 specifies the size of this RRS entry in words

Bytes 2 and 3 vary depending on the RRS type

Restriction: A value must be specified in the RRS type field. There are no defaults
applied to this portion of the RRS.

Word 2 Access specification field specifies the access restrictions to be applied
to the allocation of this resource. The bit interpretations are as follows:

Bit Meaning if Set
0 allow read access (RR.READ)
1 allow write access (RR.WRITE)
2 allow modify access (RR.MODFY)
3 allow update access (RR.UPDAT)
4 allow append access (RR.APPND)
5-15 reserved
16 explicit shared use requested (RR.SHAR)
17 exclusive use requested (RR.EXCL)
18 assign as volume mount device (RR.MNT)

MPX-32 Reference Volume | 5-5

MPX-32 Logical I/0 (Device-Independent)

Restrictions:

O

1. The bit pattern specified in bits O to 4 must not allow more access than specified
in the resource descriptor for this user.

2. Only one of bits 16 to 17 can be set to indicate the intended usage mode.
Successful allocation of a resource for exclusive use implies the setting of an
exclusive resource lock on that resource.

Defaults:

Word 3

Word 4-n

If the access specification field is zero, the default access contained in
the resource descriptor for this user is used, and the resource is allocated
for implicit shared use.

Options specification field specifies the allocation options that
are in effect for this assignment. The bit interpretations are as

follows:
Bit

OO NHEWLWN=O

10-12
13
14

15
16
17-31

RRS type dependent.

Meaning if Set

treat as SYC file (TSM/JOB only) (RR.SYC)
treat as SGO file (TSM/JOB only) (RR.SGO)
treat as SLO file (RR.SLO)

treat as SBO file (RR.SBO)

explicit blocked I/O (RR.BLK)

explicit unblocked I/O (RR.UNBLK)

inhibit mount message (RR.NOMSG)
reserved for system use |
automatic open requested (RR.OPEN) e
user buffer address to be supplied at open (RR.BUFF)

reserved for system use

mount as a public volume (RR.PUBLC)

by H.VOMM for special case handling of

VOMM assignments (RR.VOMM)

spool file when deallocated (RR.SEP)

mount as ANSI tape (RR.ANSI)

reserved

Resource Assighment/Allocation and I/O

MPX-32 Logical I/O (Device-Independent)

Type 1 (Assign by pathname)

Syntax
$ASSIGN Ifc TO pathname
0 78 15 16 23 24 31
Word 0 | Zero Logical file code (RR.LFC)
1 | Type (RR.TYPE) Size (RR.SIZE) Plength (RR.PLEN). Reserved.
See Note 1. See Note 2.

2 | Access (RR.ACCS)
3 | Options (RR.OPTS)
4-n | Pathname (variable length) (RR.NAMEI). See Note 3.

Notes:

1. RR.PLEN contains character count of pathname/pathname block
2. Byte 3 is zero. This field is used by MPX-32 for big blocking buffers.

3. RR.NAME]1 is the resource pathname or pathname block (PNB). Refer to this
chapter’s H.-VOMM Conventions section for format.

Type 2 (Assign to temporary file)

Syntax
$ASSIGN Ifc TO TEMP [=(volname)]

Temporary files created in this manner cannot be made permanent unless they are
created on a volume which has a valid directory established for this user.

0 7 8 15 16 23 24 31
Word 0 | Zero Logical file code (RR.LFC)
1 | Type (RR.TYPE) Size (RR.SIZE) Initial file size (RR.PLEN).
See Note 1.
Access (RR.ACCS)
Options (RR.OPTS)
4-7 | Volume name (RR.NAME]1). See Note 2.

MPX-32 Reference Volume | 5-7

MPX-32 Logical I/0 (Device-Independent)

Notes:

RR.PLEN contains the initial file size in logical blocks. If a size is not supplied,
the system default is used. Refer to this chapter’s Temporary File Assignments
section.

RR.NAME is a 1- to 16-character left-justified, blank-filled volume name. This

element of the RRS entry is optional. If supplied, the temporary file will be
created on the specified volume. Otherwise the file will be created on the task’s

current working volume or any available public volume.

Type 3 (Assign to device)

Syntax

$ASSIGN Ifc TO DEVICE=devmnc

Word 0

01 7 8 15 16 17 23 24 31
Zero Logical file code (RR.LFC)
1 | Type Size Density Zero
(RR.TYPE) | (RR.SIZE) (RR.DENS).
See Note 1.
2 | Access (RR.ACCS)
Options (RR.OPTS)

4 Device Volume Channel Subchannel
type number number number
(RR.DT?3). (RR.VLNUM). (RR.CHN3). (RR.SCHN3).
See Note 2. See Note 3. See Note 4. See Note 5.

5 | Unformatted ID (RR.UNFID). See Note 6.

Notes:

RR.DENS contains an optional density specification for XIO high speed tape
units. When specified, this field has the following bit significance:

Bit Meaning if Set

0 indicates 800 bpi Nonreturn to Zero Inverted (NRZI)
1 indicates 1600 bpi Phase Encoded (PE)

6 indicates 6250 bpi Group Coded Recording (GCR)
th

If this field is zero, 6250 bpi is set by default.

Resource Assignment/Allocation and I/0

MPX-32 Logical I/O (Device-Independent)

2. RR.DT3 contains the device type code associated with this device. See Table
5-2. The device type code is the only required portion of this word. If a channel
or subchannel is supplied, bits 0 and 16 are set respectively to indicate the
presence of these portions of the device address. The Get Device Type Code
(M.DEVID) service can be used to obtain the correct value for byte 0 from the
appropriate device mnemonic.

3. RR.VLUM contains the volume number for multivolume media.

4. RR.CHN3 contains the logical channel number associated with this device.

5. RR.SCHN3 contains the logical subchannel to be applied with the logical
channel number.

6. RR.UNFID is a 1- to 4-character identifier to be associated with an unformatted
medium (magnetic tape, disk, or floppy disk). If nonzero, this name appears on
the mount/dismount messages; otherwise, SCRA is used as the default identifier.

Type 4 (Assign to LFC)

Syntax
$ASSIGN Ifc TO LFC=ifc
An LFC to LFC assignment inherits all the access and assignment restrictions

specified by the original LFC assignment. The allowable access modes and blocking
status cannot be changed by assigning a second LFC to a resource.

0 7 8 15 16 23 24 31
Word 0 | Zero Logical file code (RR.LFC)
1 | Type (RR.TYPE) Size (RR.SIZE) lZero
2 | Zero Logical file code (RR.SFC). See Note 1.
3 | Options (RR.OPTS). See Note 2.

Notes:

1. RR.SFC contains a 1- to 3- character, left-justified, blank-filled LFC. This LFC
must have been previously assigned to a resource.

2. RR.OPTS is the options specification field. Automatic OPEN may be selected by
specifying the option in this field.

MPX-32 Reference Volume | 5-9

MPX-32 Logical I/O (Device-Independent)

Type 5 (Assign by segment definition)
Dynamic allocation only

0 7 8 15 16 23 24 31
Word 0 | Zero Logical file code (RR.LFC)
1 | Type (RR.TYPE) Size (RR.SIZE) UDT index Zero
(RR.UDTI)
Access (RR.ACCS)

Options (RR.OPTS)
Starting block number (RR.STBLK). See Note 1.
Number of blocks (RR.NBLKS). See Note 2.

[V I - L I)

Notes:

1. RR.STBLK is the starting block address of segment definition.

2. RR.NBLKS is the number of contiguous blocks in definition. This type of RRS
is only valid for a contiguous volume resource. Extendible files must be
allocated by other means.

Restriction: Allocation by segment definition is a privileged assignment mode. An
error condition is generated if this form of allocation is attempted by an
unprivileged task.

Type 6 (Assign by resource ID)

Syntax
$ASSIGN Ifc TO RID=(resid)

0 7 8 15 16 23 24 31
Word 0 | Zero Logical file code (RR.LFC)
1 | Type (RR.TYPE) Size (RR.SIZE) Zero. See Note 1. [Reserved
2 | Access (RR.ACCS)
3 | Options (RR.OPTS)
4-7 | Volume name (RR.NAMEI1). See Note 2.
8 | Binary creation date (RR.DATE). See Note 3.
9 | Binary creation time (RR.TIME). See Note 4.
10 | Resource descriptor block address (RR.DOFF). See Note 5.

11 | Reserved Resource type (RR.RTYPE).
See Note 6.

5-10 Resource Assignment/Allocation and I/0

Ci

MPX-32 Logical I/O (Device-Independent)

Notes:

1. Word 1, byte 2 is zero. This field is used by MPX-32 for big blocking buffers.
2. RR.NAMEI is a 1- to 16-character, left-justified, blank-filled volume name.

3. RR.DATE is the binary creation date.

4. RR.TIME is the binary creation time.

5. RR.DOFF is the block address of resource descriptor.

6. RR.RTYPE is the resource type value (right-justified).

Type 7 Reserved for Future Use
Type 8 Reserved for Future Use

Type 9 (Mount by device mnemonic)

Syntax
MOUNT volname ON devmnc
If the public volume option is selected, the volume is mounted for public use. Refer to

this manual’s Chapter 6 for a description of the dynamic assignment/allocation
services MLASSN and M.DASN.

01 7 8 15 16 17 23 24 31
Word 0 | Zero System ID (RR.SYSID). See Note 1.
1 | Type (RR.TYPE) Size (RR.SIZE) Zero

2 | Access (RR.ACCS)
3 | Options (RR.OPTS)
4-7 | Volume name (RR.NAME1). See Note 2.

*8 | |Device type Reserved Channel Subchannel
(RR.DT9) number number
(RR.CHNY9) (RR.SCHN9)

9 | Zero. See Note 3.

Notes:

1. RR.SYSID is a 3-character SYSID for dual/multi port volumes.
2. RR.NAMEI is a 1- to 16-character, left-justified, blank-filled volume name.
3. Word9 is zero (reserved for system use).

* Word 8 is the device specification word. Format is the same as for type 3, word 4.
This element describes the device where the volume is to be mounted. If a complete
address is specified, an attempt is made to mount the volume on that device only.
Otherwise, the volume is mounted on any device that matches the portion of the
specification word supplied in the RRS.

MPX-32 Reference Volume | 5-11

MPX-32 Logical /O (Device-Independent)

Type 10 (Assign to ANSI tape)

Syntax
$ASSIGN Ifc TO @ANSITAPE(lvid) filename

0 78 15 16 23 24 31
Word 0 | Zero Logical file code (RR.LFC)
1| Type (RR.TYPE) Size (RR.SIZE) Format (RR.FORM). Protect
See Note 1. (RR.PROT)
Access (RR.ACCS). See Note 2.
Options (RR.OPTS)
Record length (RR.RECL) LBlock size (RR.BSIZE)

Generation number (RR.GENN)

Generation version number (RR.GENV)

Absolute termination date (RR.EXPIA). See Note 3.

N N N s W

Relative termination date
(RR.EXPIR). See Note 3. (RR.LVID)

Logical volume identifier

9| RR.LVID (cont.)

10-13 | 17-character file identifier (RR.AFID)

14| RR.AFID (cont) | Reserved

15 | Reserved

Notes:

1. RR.FORM values are as follows:

Value Meaning

Numeric 0 use default format
ASCII F fixed length record format
ASCIID variable length record format
ASCII S spanned record format

2. RR.ACCS accesses a resource in the read, write, update, or append mode. The

access modes are mutually exclusive.

3. For the absolute termination date, word 7 is one blank followed by a 2-digit
number that specifies the year and the first digit of the 3-digit day. Word 8,

bytes 0 and 1 contain the remaining two digits of the day.

For the relative termination date, word 7 is zeroed; word 8, bytes 0 and 1 contain

the binary relative termination date.

5-12 Resource Assignment/Allocation and /O

C

v

MPX-32 Logical /O (Device-Independent)

Type 11 (Assign to shadow memory)

0 7 8 15 16 23 24 31
Word 0 | Zero
1 | Type (RR.TYPE) Size (RR.SIZE) Shadow flags (RR.SHAD).
See Note 1.

2 | Start address (RR.SADD). See Note 2.
3 | End address (RR.EADD). See Note 3.

Notes:

1. RR.SHAD contains the shadow flags that qualify the start and end addresses, or
specify what portions of the task are to be shadowed. The bit interpretations are

as follows:
Bit Meaning if Set
0-7 reserved
8 shadow the task (RR.SHTSK)
9 shadow the TSA (RR.SHTSA)
10 shadow the stack (RR.SHST)
11 shadow memory is required (RR.SHRQ)
12 shadow the entire task (RR.SHALL)
13 absolute address (RR.ABS)
14 relative to the code section origin (RR.CREL)
15 relative to the data section origin (RR.DREL)

2. RR.SADD is the starting logical byte address of the memory space to be put in
shadow memory. The address is considered relative to the start of the task
(T.BIAS), unless qualified with shadow flags in word 1.

3. RR.EADD is the ending logical byte address of the memory space to be put in
shadow memory. The address is considered to be relative to the start of the task
(T.BIAS), unless qualified with shadow flags in word 1.

The start and end addresses are specified as a byte address in the TSM SHADOW
directive and the RRS. The range of address space specified is inclusive. Internal to
MPX-32, these addresses are map block bounded. Due to the map block granularity
of 2KW, more address space than requested can be shadowed, but never less.

MPX-32 Reference Volume | 5-13

MPX-32 Logical I/O (Device-Independent)

5.2.4.2 Temporary File Assighments

Temporary files are created explicitly by the Create Temporary File (M.TEMP)
service and assigned by the resource identifier (RID) obtained when the file was
created.

Temporary files are implicitly created as the result of an LFC assignment, such as
ASSIGN OUT TO TEMP=(volume)

When a temporary file is created in this manner, the resource is given the following
characteristics:

* All access modes are allowed.

* The file is shareable.

* The file is automatically and manually extendible.

* The initial file size is 16 blocks, unless a size is specified in the RRS.
* File extensions are made in a minimum of 32 block increments.

If blocked or unblocked is not specified as an assignment option to a temporary file,
all I/O is blocked by default.

5.2.5 Opening a Resource for Logical I/O

5-14

Before any service requested by the user to initiate an I/O operation is completed, the
user’s logical file must be opened. This operation establishes the access mode for
subsequent I/O operations. The specified access mode must have been allowed by the
resource assignment or an error occurs.

If an access mode is not specified, the resource is opened for the appropriate default
access, unless only a specific access mode was allowed at assignment. In that case,
the resource is opened for the allowed access mode. The default access modes are
read access for files and update access for peripheral device assignments.

A resource usage mode, exclusively or explicitly shared, is also specified at open.
When this is done, the supplied usage overrides that specified at LFC assignment.
This results in the attachment to the resource reverting to an assignment, if allocated.
If the LFC assignment allocated the resource for a shareable usage, there is no
guarantee that the resource is available for reallocation when the usage specification is
overridden at open. A previously allocated resource can not be available at open in
this case.

The task performs the function directly with the M.OPENR service, automatically
during assignment, or automatically by IOCS when an I/O initiation service request is
made and the logical file is not open. In the latter case, the default access mode in
effect for that assignment applies.

When the logical file is properly opened, the FCB and FAT are linked together to
complete the I/O structure for IOCS.

Resource Assignment/Allocation and I/O

N

(

/

e

Resource Conflicts and Error Handling

5.3 Resource Conflicts and Error Handling

In the course of processing resource assignments, conditions exist that require
additional information from the task requesting the resource. MPX-32 allows the user
the option of waiting for resources that are temporarily not available. The requesting
task can also dictate the manner in which error or denial status is presented.

The caller notification packet (CNP) is the mechanism used by the Resource
Management Module (H.REMM) and the Volume Management Module (H.VOMM)
for handling abnormal conditions that result during resource requests. This structure
is a standardized parameter optionally supplied to many of the services provided by
REMM and VOMM.

The CNP consists of a 5- to 6-word area containing the following information, all or
part may be used by the particular service being called:

Word 0 Wait request time-out value interpreted as follows:
Value Description
0 place the requesting task in a wait state

until the designated service can be completed

>0 return immediately with a denial code if
the service cannot be completed

-n place the requesting task in a wait state
until the designated service can be completed
or until the expiration of » timer units,
whichever occurs first

Word 1 abnormal return address — if an error condition or denial
condition occurs, control is transferred back to the task at this
address

Word 2 options field (bytes 0 and 1) — a bit sequence and/or value used

to provide additional information that is necessary to fully
define the calling sequence for a particular service

status field (bytes 2 and 3) — a right-justified, numeric value
identifying the return status for this call

Word 3 actual file size created
Word 4 reserved for future use
Word 5 parameter link — required only for a resource assignment where

automatic open has been specified in the option word of the
RRS. If specified, this word must contain the address of a valid
FCB for this assignment.

MPX-32 Reference Volume | 5-15

Resource Conflicts and Error Handling

5.3.1 Status Posting and Return Conventions

The services that accept a CNP as a calling parameter adhere to a common status
posting and return convention. Status is always posted as a numeric value that
represents one of three conditions:

* successful — CC1 not set indicates the service completed without any
abnormalities.

* error — indicates a condition occurred during execution that precluded any
continuation of the service. This condition has a positive numeric value identifying
an error condition specific to the service.

* denial — indicates the service was not completed due to resource nonavailability or
other system constraints which do not necessarily preclude the continuation of the
service at a later time. This condition is also represented by a numeric value
specific to the service, but is posted only if the caller has indicated that the task is
not to wait for the condition to be alleviated. Denial conditions are returned only
by HREMM.

The following conventions apply to the posting of status and the return sequence
applied to service calls that accept a CNP as an input parameter:

* CC1 is set to indicate the posting of a nonzero status value.

* The task is never aborted as the result of posting a status value.

* The location of status and return sequence for denials and errors is dependent on the
presence or absence of a CNP:

If CNP is supplied:
* Status is posted in the status field of the CNP.

* For all error conditions, the return is made by the abnormal return address if
supplied. Otherwise, a normal return occurs.

* For all denial conditions, the task is enqueued if requested; otherwise, the return
sequence is the same as an error condition.

If CNP is not supplied:

* Status is posted in R7.

* For all error conditions, a normal return occurs.

* For all denial conditions, the task is enqueued until the service can be completed.

5-16 Resource Assignment/Allocation and /0

@

N

Resource Conflicts and Error Handling

allocation:

Value

The following is a summary of the status codes returned by H.REMM for resource

Description

0
1

W W W NN DN DNDNDNDNDNDNDN F o e o pd pd et ped ok
R—, O CR AT NEON RO VXTI UNMBELR~R,OPRITN AW

33

34

35

successful completion

unable to locate resource (invalid pathname or memory
partition definition)

specified access mode not allowed

FPT/FAT space not available

blocking buffer space not available

shared memory table (SMT) entry not found

volume assignment table (VAT) space not available
static assignment to dynamic common

unrecoverable I/O error to volume

invalid usage specification

dynamic partition definition exceeds memory limitations
invalid resource requirement summary (RRS) entry
LFC logically equated to an unassigned LFC

assigned device not in system

resource already allocated by requesting task

SGO or SYC assignment by real-time task

common memory conflicts with task’s address space
duplicate LFC assignment attempted

invalid device specification

invalid resource ID (RID)

specified volume not mounted

J.MOUNT run request failed

resource is marked for deletion

assigned device is marked off-line

segment definition allocation by unprivileged task
random access not allowed for this access mode

user attempting to open SYC file in a write mode
resource already opened by this task in a different access mode
invalid access specification at open

specified LFC is not assigned to a resource for this task
invalid allocation index

close request issued for an unopened resource

attempt to release an exclusive resource lock that was not
owned by this task, or a synchronous lock that was not set
attempt to release an exclusive resource lock on a resource
that has been allocated for exclusive use

attempt to mount a public volume without the system
administrator attribute

attempt to exclude memory partition that is not mapped
into requesting task’s address space

MPX-32 Reference Volume | 5-17

Resource Conflicts and Error Handling

Value

i .W’m\
Description b

36
37
38
39
40
41
42
43
44
45
46
47
48
49

physical memory already allocated

invalid J.JMOUNT request

time out occurred while waiting for resource to become available
unable to perform write back

invalid load module

invalid physical address specified

user requested abort of mount process

user requested hold on mount process

writeback requested and shared image has no writeback section
loading error during inclusion of read-only section of shared image
unable to obtain resource descriptor lock (multiport only)

loading error during inclusion of read/write section of shared image
incompatible load address for shared image

excessive multicopied shared images with no read only section

Status codes in the range 50 to 63 represent denial conditions that result in suspension
of the task if a CNP is not supplied or enqueue is indicated by the time-out value in

the CNP:

Value

Description

50
51

52
53
54
55
56
57
58
59
60
61
62-63
64

65
66
67

68
69

5-18

resource is locked by another task

shareable resource is allocated by another task in an

incompatible access mode N
volume space is not available

assigned device is not available

unable to allocate resource for specified usage

allocated resource table (ART) space is not available
task requires shadow memory and none is configured
volume is not available for mount with requested usage
shared memory table (SMT) space is not available
mounted volume table (MVT) space is not available
resource descriptor space definition conflict

unable to locate or retrieve resource descriptor

reserved

task’s DSECT space requirements overlap the task’s task
service area (TSA) space requirements

task’s DSECT space requirements overlap the task’s CSECT
space requirements or, if no CSECT, load module is too
large to fit in user’s address space

software checksum. Error may be fixed by recataloging.
excessive memory request

excessive volume space requested

invalid user name specified

Resource Assignment/Allocation and I/O

Resource Conflicts and Error Handling

Value

Description

70
71
72
73
74
75
76
71

78
79
80

81
82

83
84
85
86
87

88
89

90
91
92-255

invalid privileged activation

reserved

unable to resume SYSINIT on tape activation

file overlap. Check system console.

loading error

invalid work volume/directory

user attempted deallocation of TSA

a task destroyed the allocation linkages in it’s dynamic
expansion space

unable to load debugger with task

invalid caller notification packet (CNP) address

shared image version level is not compatible with
executable image

invalid activation of a base mode task on a system
configured for non-base task execution

invalid activation of an ADA task on a system configured
without ADA support

insufficient logical address space to activate task

invalid logical position for extended MPX

reserved

cannot dismount the system volume

unable to dismount public volume because compatible mode
public volume dismount (CMPMM) option was specified at SYSGEN
unable to dismount public volume. SA attribute required
public dismount denied due to missing option for public
volume in the dismount request

reserved

unable to mount volume due to pending physical dismount
reserved

MPX-32 Reference Volume | 5-19

MPX-32 Volume Resource Access

N
5.4 MPX-32 Volume Resource Access {,

The MPX-32 Volume Management Module (H.VOMM) maintains a resource
descriptor (RD) list on disk for each mounted volume in the system. A descriptor
exists for every currently active volume resource (permanent files, temporary files,
directories and memory partitions). Each resource descriptor contains all the access,
accounting, and space definition information pertaining to the associated resource.

When a volume resource is assigned for I/O, H.REMM reads the associated resource
descriptor. The usage and access specifications supplied at assignment are verified
against those allowed by the resource descriptor for protection and resource integrity.
If a discrepancy exists, the task is aborted (static assignment) or the appropriate error
code is returned (dynamic assignment). In either case, the assignment is denied.

The description of a valid volume resource is placed in the file assignment table
(FAT). IOCS uses the FAT entry to map the appropriate disk and file. Access to disk
files is sequential, starting with the first relative block in the file, unless the user has
indicated random access in the FCB. However, random access is not allowed in the
write and append access modes.

Permanent files are accessed by pathname or resource identifier (an 8-word unique
identifier obtained when the resource was created). Temporary files are accessed by
resource identifier only.

5.4.1 Volume Resource Space Management

The MPX-32 Volume Management Module (H.VOMM) provides space management
for all currently mounted volumes in the system. Disk space is allocated to files from
the available space not dedicated to volume management, an area whose size is
determined when the volume is formatted. Volume space is allocated from this area
of the disk in units, each consisting of an integral number of 192 word blocks. Refer
to this chapter’s Allocation Units section. MPX-32 prevents any task from
performing asynchronous aborts and deletes while a service that modifies the
allocation of disk space is acting on that task. Any such request is deferred until the
service completes.

5.4.2 Temporary vs. Permanent Files

5-20

Temporary files have all the access and protection attributes associated with
permanent files. However, temporary files are automatically deallocated, and their
volume space is returned to the pool of available space when a task exits or aborts.

Temporary files created by the Create Temporary File (M. TEMP) service can be
shared by tasks that received the associated resource identifier (RID) from the creating
task. In this case, the volume space allocated to the temporary file is not deallocated
until the last task assigned to it deallocates the file or exits.

Temporary files are made permanent if they are created on a specific volume in a valid
directory for the user making the request.

Resource Assignment/Allocation and /O

MPX-32 Volume Resource Access

Permanent files and memory partitions remain defined on the volume until they are
explicitly deleted by a user who has access to them.

5.4.3 System Directory

The system directory is a special directory that resides on the system volume. It is
identified within the pathname structure by the keyword SYSTEM, a name reserved
for MPX-32,

All executable images or load modules with the system administrator attribute must
reside in the system directory.

Any other files created on a volume can reside in the system directory if desired.
However, no special significance is given to these files.

5.5 MPX-32 Device Access

When a device is assigned for I/O, HLREMM verifies that the device is available,
allocates blocking buffers required for blocked I/O to disk, magnetic tape, or floppy
disk, and identifies the device for IOCS in the FAT. If a device is not available (not
included in the SYSGEN configuration of a system, off-line, etc.), HREMM aborts
the task (static assignment) or returns an error code (dynamic assignment).

Throughout the reference manual, the generic descriptor devmnc indicates that a
device can be specified.

MPX-32 specifies device addresses using a combination of three levels of
identification: device type, device channel/controller address, and device
address/subaddress. The combinations identifying device addresses include the
following:

* To allocate the first available device (of the type requested) specify the generic
device type mnemonic only.

* To allocate the first available device (of the type requested) on a specific channel or
controller specify the generic device type mnemonic and the channel/controller
address.

* To allocate a particular device specify the device type mnemonic,
channel/controller, and address/subaddress of the device.

MPX-32 Reference Volume | 5-21

MPX-32 Device Access

5.5.1 Magnetic Tape

A multivolume magnetic tape is a set of one or more physical reels of magnetic tape

(255 maximum) processed as a continuous reel. Multivolume magnetic tape
processing is supported under MPX-32 by the Multivolume Magnetic Tape
Management Module (H.MVMT).

The multivolume magnetic tape can be used to transfer data to any MPX-32 Revision
2 or 3 system (refer to Table 5-2). It must be used when data to be transferred cannot

fit on a single tape.

Table 5-2

Multivolume Magnetic Tape Data Transfers Between
Different Operating Systems

MPX-32 Source MPX-32 Destination

System Revision* | System Revision** Result

Pre-3.3 Pre-3.3 Possible data loss at end of tape

Pre-3.3 3.3 or later H.MVMT treats magnetic tape as
pre-3.3, possible data
loss at end of tape

3.3 or later Pre-3.3 The pre-3.3 HMVMT treats the
magnetic tape as pre-3.3, possible
data loss at end of tape.

3.3 or later 3.3 or later H.MVMT detects the new header
and expects a trailer.

* The source system generates the multivolume magnetic tape.

** The destination system reads the multivolume magnetic tape.

5-22

Resource Assignment/Allocation and I/O

S

MPX-32 Device Access

(Multivolume tape reels have the following format:

192 Word | Data | End of tape | Remaining | End of file | 192-word
header marker data marker trailer

The 192-word header is a tape label produced as the first record for each volume of a
multivolume file. The volume number and the reel identifier portions of this record
are verified during subsequent read operations. The header has the following format:

Words Contents
0 reel ID (4-character ASCII entry)
1 volume number 1 to 255 in binary format
2-3 date (ASCII) in Gregorian format (mmj/dd/yy)
4 time (byte binary) as follows:
Byte Meaning
0 hour
1 minutes
2 seconds
3 intervals (1/60th of a second)
5 multivolume revision number (ASCII) (0001)
6-7 "HEADERBY’
- 8-9 "FORPMULT’
(10-11 'IVOLUMEY’
~ 12-13 "MAGNETIC’
14-15 "WTAPESHF’
16-17 "ORPMPX-3’
18-19 2bbbbppp’
20-191 reserved (zero)

MPX-32 Reference Volume | 5-23

MPX-32 Device Access

5-24

~
The format for the trailer is as follows: ‘(_
Words Contents
0 reel ID (4-character ASCII entry)
1 volume number 1 to 255 in binary format
2-3 date (ASCII) in Gregorian format (mmj/dd/yy)
4* time (byte binary) as follows:
Byte Meaning
0 hour
1 minutes
2 seconds
3 intervals (1/60th of a second)
5 multivolume revision number (ASCII) (0001)
6-7 "TRAILERY’
8-9 "FORPMULT’
10-11 "IVOLUMEp’
12-13 "MAGNETIC’
14-15 "WTAPESHBF’
16-17 ’ORPMPX-3’
18-19 200000
20-191 reserved (zero)

* The date and time stored in the trailer is when the trailer was built; it indicates the
date and time stored in the header and should be identical to the date and time of 7
the header. \ J

Multivolume magnetic tape processing mode is invoked whenever an assignment to a
magnetic tape unit is encountered where multivolume is indicated by a volume
number.

Multivolume processing is automatic for magnetic tape operations in the forward
direction, such as read, write, advance, and erase. For reverse direction operations,
such as rewind or backspace, the user is required to provide processing logic for
proper reel manipulation and positioning requests.

Volume numbers in the range of 1 to 255 are provided as an operations aid in
mounting and dismounting physical reels of magnetic tape. MPX-32 treats the
volume numbers in circular fashion (for example, volume 1 follows volume 255 in the
numbering scheme).

A scratch tape (SCRA) is not assigned if the multivolume mode is specified. Also, a
unit applicable for multivolume magnetic tape operations cannot be designated a
shared (SHR) device.

For multivolume magnetic tape processing, MPX-32 cannot pass end-of-medium
(EOM) indicators to the user by the FCB. If a read, write, or advance operation is
requested when tape is at end-of-medium, the system issues a dismount message to
the console teletypewriter for the current volume (reel), followed by a mount request
for the next sequential volume number before performing the requested operation.

™.
|)

Resource Assignment/Allocation and /O

MPX-32 Device Access

Depending on the MPX-32 revision of the source system, read and write requests
complete the following for a multivolume magnetic tape:

Source
system* Request Result
Pre-3.3 Read No check for expanded header

Write No expanded header or trailer exists

3.3 or later | Read at BOT | Checks for expanded header.
If expanded header is detected,
bit 2 of DFT.FLGS is set.

Write Writes expanded header and trailer

* The source system generates the multivolume magnetic tape.

The system does not recognize multivolume mode specification when a magnetic tape
is positioned at load point and a rewind or backspace operation is requested.

For Volume Manager restore operations, special processing occurs if the file being
restored resides on two or more reels of a multivolume magnetic tape.

5.5.2 Unformatted Media

When a task is activated that has a device assignment to magnetic tape, disk, or floppy
disk, the resource is treated as an unformatted medium. This implies that a medium
must be mounted on the drive prior to the initiation of any I/O operations. The device
is treated, in effect, as one continuous file for sequential I/O operations. Table 5-3
lists the physical dimensions of the medium for the various disk drives supported by
MPX-32.

If the blocked or unblocked option is not selected at LFC assignment, all I/O to
unformatted media is blocked by default.

MPX-32 Reference Volume | 5-25

MPX-32 Device Access

5-26

-
When the resource is opened for I/O, a mount message is displayed on the operator’s (/
console. This message is inhibited, if desired, by the SYSGEN directive or

assignment option. A mount message is not issued for assignments to shared devices.

The format of the mount message for unformatted media is:

MOUNT reel VOL volume ON devmnc
TASK taskname,taskno REPLY R,H,A OR DEVICE:

Jjobno

reel specifies a 1- to 4-character identifier for the reel. If not
specified, the default is SCRA (Scratch).

volume identifies the volume number to mount if multivolume tape

devmnc is the device mnemonic for the tape unit selected in response to
the assignment. If a specific channel and subaddress are
supplied in the assignment, the specific tape drive is selected
and named in the message; otherwise, a unit is selected by the
system and its complete address is named in the message.

taskname is the name of the task the unformatted medium is assigned to

taskno is the task number assigned to this task by the system

R,A,H OR DEVICE
the device listed in the message can be allocated and the task
resumed (R), a different device can be selected (DEVICE), the
task can be aborted (2), or the task can be held with the N
specified device deallocated (H). If an R response is given and a N
high speed XIO tape drive is being used, its density can be
changed when the software select feature is enabled on the tape
unit front panel. If specified, it overrides any specification made
at assignment. Values are:

Value Description
N or 800 indicates 800 bpi Nonreturn to Zero
inverted (NRZI)
P or 1600 indicates 1600 bpi Phase Encoded (PE)
G or 6250 indicates 6250 bpi Group Coded Recording

(GCR). Default.

Example usage: RN, R1600, etc.
Note: Do not insert blanks or commas.

Jobno if the task is part of a batch job, identifies the job by job
number

Resource Assignment/Allocation and I/O

MPX-32 Device Access

Response:

To indicate that the drive specified in the mount message is ready and proceed with
the task, mount the appropriate medium on the drive and type R (resume), optionally
followed by a density specification if the drive is a high speed XIO tape unit. To
abort the task, type A (abort). To hold the task and deallocate the specified device,
type H (hold). The task is then resumed by the CONTINUE directive. At this time, a
drive is selected by the system and the mount message is redisplayed.

To select a drive other than the drive specified in the message, enter the mnemonic of
the drive you want to use. Any of the three levels of device identification can be
used. The mount message is reissued. Mount the tape and type R (resume) if
satisfactory, or, if not satisfactory, type A (abort), H (hold), or select a device as just

described.
Table 5-3
Disk Description Table
SYSGEN FLOO1 MHO080 MH160 MH300 MH340 MH600
Disk Code
Unit Size Floppy 80MB 160MB 300MB 340MB 600MB
Type MH MH MH MH MH MH
Sector Size 256B* 192W 192W 192W 192w 192W
Sectors/Track | 26 20 20 20 20 20
Number 2 5 10 19 24 40
of Heads
Maximum 77 823 823 823 711 843
Cylinders
Sectors/ 52 100 200 380 480 800
Cylinder
Total Sectors | 4004 82,300 164,600 312,740 341,280 674,400
Maximum
Data Byte 1.02MB 6320MB 1264IMB 240.15SMB 262.10MB 517.94MB
Capacity
* Smallest accessible block size=192W
MH=Moving Head
Sectors/Cylinder=(Sectors/Track) x (Number of Heads)
Total Sectors=(Sectors/Cylinder) x (Maximum Cylinders)
Maximum Data Byte Capacity=(Maximum Sectors) x 768 bytes/sector

MPX-32 Reference Volume | 5-27

MPX-32 Device Access

5.5.3 Examples of Device ldentification Levels
Examples of the three types of device specification follow:

Form 1 - Generic Device Class
ASSIGN OUT TO DEV=MY9 MULTIVOL=1 ID=SRCE

In this example, the device assigned to logical file code (LFC) OUT is any 9-track
tape unit on any channel. The multivolume reel number is 1. The reel identifier is
SRCE and the tape is blocked.

Form 2 - Generic Device Class and Channel/Controller
ASSIGN OUT TO DEV=M910 ID=SRCE2 BLOCKED=N

In this example, the device assigned to logical file code (LFC) OUT is the first
available 9-track tape unit on channel 10. The specification is invalid if a 9-track
tape unit does not exist on the channel. The reel identifier is supplied. The tape is
unblocked and is not multivolume.

Form 3 - Specific Device Request
ASSIGN OUT TO DEV=M91001

In this example, the device assigned to logical file code (LFC) OUT is the 9-track
tape unit 01 on channel 10. The specification is invalid if unit O1 on channel 10 is
not a 9-track tape. The tape reel identifier is SCRA. The tape is blocked and is not
multivolume.

5.5.4 GPMC Devices

GPMC/GPDC device specifications are similar to the general structure previously
described. For instance, the terminal at subaddress 04 on GPMC 01 whose channel
address is 20 would be identified as follows:

ASSIGN OUT TO DEV=TY2004

5.5.5 NULL Device

A special device type, NU, is available for null device specifications. Files accessed
using this device type generate an end-of-file (EOF) upon attempt to read and normal
completion upon attempt to write.

5.5.6 System Console

LFCs are assigned to the operator console by using the device type CT.

5-28 Resource Assignment/Allocation and I/O

MPX-32 Device Access

(| 5.5.7 Special File Attributes

There are two special file attributes that can be applied to resources at LFC
assignment: print and punch. These attributes are supplied as options on the TSM
$ASSIGN statement. For example:

$ASSIGN OUT TO OUTPUT PRINT (permanent file)
SASSIGN OUT TO TEMP= (volname) PRINT (temporary file)

See the Spooled Output with Print or Punch Attribute section in this chapter for a
description of the handling of special file attributes.

MPX-32 Reference Volume | 5-29

Samples

5.6 Samples

5-30

A description of device selection possibilities are as follows:

Disk

Tape

DC

DM
DMO8
DM0801
DM0002
DF
DF04
DF0401
FL70F0

MT

M9
M910
M91002
M7
M712
M71201

Card Equipment

Line Printer

CR
CR78
CR7800

LP
LP7A
LP7A00

any disk except memory disk

any moving head or memory disk

any moving head disk on channel 08
moving head disk 01 on channel 08
memory disk 02 on channel 00

any fixed head disk

any fixed head disk on channel 04

fixed head disk 01 on channel 04

floppy disk O on controller F channel 70

any magnetic tape

any 9-track magnetic tape

any 9-track magnetic tape on channel 10
9-track magnetic tape 02 on channel 10
any 7-track magnetic tape

any 7-track magnetic tape on channel 12
7-track magnetic tape 01 on channel 12

any card reader
any card reader on channel 78
card reader 00 on channel 78

any line printer
any line printer on channel 7A
line printer 00 on channel 7A

Resource Assignment/Allocation and /O

e

®

Samples

Table 5-4
MPX-32 Device Type Codes and Mnemonics
Device Device
Type Type
Code Mnemonic Device Description
00 CT Operator console (not assignable)
01 DC Any disk unit except memory disk
02 DM Any moving head or memory disk
03 DF Any fixed head disk
04 MT Any magnetic tape unit
05 M9 Any 9-track magnetic tape unit*
06 M7 Any 7-track magnetic tape unit*
08 CR Any card reader
0A LP Any line printer
0B PT Any paper tape reader-punch
0C TY Any teletypewriter (other than console)
0D CT Operator console (assignable)
O0E FL Floppy disk
OF NU Null device
10 CA Communications adapter (binary
synchronous/asynchronous)
11 uo Available for user-defined applications
12 Ul Available for user-defined applications
13 U2 Auvailable for user-defined applications
14 U3 Available for user-defined applications
15 U4 Available for user-defined applications
16 Us Available for user-defined applications
17 [8[Available for user-defined applications
18 U7 Available for user-defined applications
19 U8 Available for user-defined applications
1A U9 Available for user-defined applications
1B LF Line printer/floppy controller (used only with SYSGEN)
N/A ANY Any nonfloppy disk except memory disk
* When both 7- and 9-track magnetic tape units are configured, the designation
must be 7-track.

MPX-32 Reference Volume |

5-31

Device-Independent I/O Processing

5.7 Device-Independent I/O Processing {/

A task starts I/O operations (reads, writes, etc.) by issuing service calls to IOCS.
IOCS validates the logical address of the task’s data buffer (defined in the transfer
control word (TCW) of the FCB), and links an I/O request containing the TCW
information to a queue for the appropriate device handler. The I/O requests are
queued by the software priority (1 to 64) of requesting tasks.

The handler issues appropriate instructions to the device controller (command device,
test device, or start I/O).

The controller performs the I/O. For example, it reads a record into the task’s data
buffer. When the requested I/O is complete, the controller issues a service interrupt
(SI).

If the handler is passing the address of a list of directives or data (IOCL) for a
controller to operate on, the SI is returned from the controller when all operations
specified in the list have been completed.

The processing that occurs when the handler receives the SI interrupt from the
controller depends on whether the user has established a wait I/O or no-wait I/O
environment by the FCB.

5.7.1 Wait /O

If wait I/O is indicated in the FCB, the task waits (suspends) until the I/O operation
completes. IOCS returns to the task at the point following the I/O service call.

5.7.1.1 Wait I/O Errors

5-32

If an error occurs during an I/O operation to tape or disk, the handler automatically
retries the operation. If retry operations fail, the handler passes the error to IOCS and
IOCS posts status in the FCB (word 3, and optionally words 11 or 12). The task can
take action or not as described in the next section. When an error is detected on a
card reader, line printer, or other device that does not have automatic retry, and
operator intervention is applicable, the handler passes the error to IOCS and IOCS
issues a message on the system console indicating the device is not operating:

*devmnc INOP: R,A?

Sample criteria for the INOP message are: the printer runs out of paper, a card reader
or printer malfunctions, etc.

IOCS allows the console operator to correct the condition or abort. If the device is
fixed, the operator types R (retry). IOCS re-establishes the entry conditions for the
handler (passes the TCW with the initial transfer count, etc.) and calls the handler to
retry the I/O operation that was in error. The error status is cleared and I/O proceeds
normally. If the operation aborts, IOCS starts abort processing.

Resource Assighment/Allocation and /O

Device-Independent I/O Processing

5.7.1.2 Wait /O Exit and I/0 Abort Processing

If error processing is not applicable (disk or magnetic tape) or if the operator has
responded A (abort) to the INOP message, IOCS either aborts the task or transfers
control to the task at the address specified in word 6 of the FCB. If the task gains
control, it examines the contents of word 3 and optionally words 11 and 12 as
applicable, and performs its own exit or abort processing.

If the user has not defined an error return address for wait I/O in the FCB, IOCS
aborts the task and displays an abort message on the system console:

I/0 ERR DEV: devmnc STATUS statusword LFC:lfc mmi/ddlyy hh:mm:ss
IOCS displays status word 3 from the FCB on the system console.

For 1/O to XIO devices, a second line is displayed along with the I/O ERR message:
XIO SENSE STATUS = senseword

where senseword is the sense information returned in FCB.IST1 of an extended FCB.

5.7.1.3 Error Processing and Status Inhibit

The user sets word 2, bit 1 of the FCB to bypass error processing by handlers and
IOCS. On error, the status word of the FCB is still set by IOCS (unless bit 3 is set as
described below), and IOCS transfers control to the task normally. The task must
perform any error processing.

If the user sets word 2, bit 3 of the FCB, he inhibits handlers from checking status in
any respect. No error status is returned to IOCS. All I/O appears to complete without
error.

5.7.2 No-Wait /O

If the user has indicated no-wait I/O in the FCB, IOCS returns control to the task
immediately after an I/O request is queued. The task continues executing in parallel
with its I/O. When the handler fields an SI interrupt for the specified I/O operation, it
notifies the MPX-32 executive. The executive links the I/O queue entry to a software
interrupt list for the task (a task interrupt). When the task is to gain control, the
executive passes control to IOCS. An unprivileged user is limited to five no-wait I[/O
requests.

If the task issues a second concurrent no-wait I/O request to the same LFC, IOCS
immediately places the task in ANYWAIT (prior to starting the 1/O) until the first /O
completes end action processing.

5.7.2.1 No-Wait I/O Complete Without Errors

IOCS checks the address specified by the user in the FCB for no-wait I/O end action
processing. If I/O completes successfully, it routes control to the address provided by
the user for normal end processing (word 13). If the user has not specified this
address in the FCB, IOCS returns control to the executive and the task continues
executing at the point where the task interrupt occurred.

MPX-32 Reference Volume | 5-33

Device-Independent I/O Processing

5.7.2.2 No-Wait I/0 Complete with Errors

When IOCS gains control on a task interrupt and an error occurs, IOCS routes control
to the task at the user-supplied error return address in word 14 of the FCB. If the user
has not supplied this address, control is returned to the executive and then to the task
so that it continues execution where the task interrupt occurred.

The FCB (word 3 and optionally words 11 and 12) indicates the cause of an error.
The task is responsible for examining the word(s) and for any recovery procedure.
IOCS makes no attempt to recover from an error condition through operator
intervention when a task uses no-wait I/O.

5.7.2.3 No-Wait End-Action Return to IOCS

A task using no-wait I/O end-action processing should return to IOCS by an SVC
1,X’2C’ after normal or error processing is complete. IOCS returns control to the
executive, which returns control to the task where the task interrupt occurred. In any
end-action processing, R1 points to the FCB address.

5.7.3 Direct /O

Within a task, the user can temporarily bypass normal IOCS and handler functions by
coding a handler and attaching it to a specific channel (service interrupt level). Direct
I/O is totally under the user’s control and acquires data at rates that prohibit IOCS
overhead.

To perform direct I/O, the task passes a TCW directly to a device, completely
bypassing the IOCS. The task is responsible for any control structures related to the
I/O operation (it does not, for example, have use of a FCB) and it must field interrupts
on its own. The user must be familiar with the hardware and its response to software
instructions, and must implement all support pertaining to I/O for the device.

Before connecting his own handler, the user issues a reserve channel call to IOCS.
IOCS then holds all outstanding or subsequent requests for the specified channel until
the task issues a release channel call. When IOCS receives the release request, it
resumes normal processing on the channel with the standard handler.

Direct I/O is not the same as developing an I/O handler and linking it into the system
at SYSGEN. Direct I/O is a privileged operation.

5.7.4 Blocked /O

5-34

Blocked I/O processing is supported under MPX-32 by the Blocked Data Management
Module (H.BKDM).

I/O to disk files and magnetic tapes is blocked or unblocked depending on the device

assignment or the setting of word 2, bit 5 of the FCB at open. If the user does not set
bit 5, I/O is blocked or unblocked as specified by the device assignment. If bit 5 is
set at open, I/O is blocked. The FCB definition overrides any assignment
specification of unblocked (specified explicitly at assignment).

Resource Assignment/Allocation and /O

R

C

Device-Independent I/O Processing

For blocked I/O, REMM automatically allocates and uses a 192-word blocking buffer
that provides intermediate buffering between a task’s data buffer and a device. A block
is 192 words long and records that can be packed into the block are a maximum of
254 bytes long. Longer records are truncated. The particular buffer used for blocked
I/O can be user-supplied by the FCB at open or allocated from the buffer area of the
TSA.

On input, IOCS transfers a block of records from a device into the blocking buffer and
moves them into the task’s data buffer one logical record at a time. On output, IOCS
transfers one logical record at a time from the task’s data buffer into the blocking
buffer and outputs the accumulated records in 192-word blocks.

Reads and writes to the same blocked file or tape by the same task are not mixed
because they interfere with the blocking buffer operations being performed by IOCS.
A read attempted while IOCS is writing out a group of records to the blocking buffer
(or a write when reading) is not executed and IOCS aborts the task.

Special care must be taken when writing to a blocked file in modify mode. Blocked
files are modified on a block-by-block basis rather than record-by-record. MPX-32
clears each block of a blocked file before writing records to the block. The user may
rewrite any number of records in the cleared block. However, since MPX-32 does not
preread the block before clearing it, the user must preread any records in a block
which will be modified and rewrite them, if necessary.

Table 5-5
Assign/Open Block Mode Determination Matrix
Form of Assignment Open by M.OPENR Open by
M.FILE
No CNP CNP Word 2 | CNP Word 2 | FCB Word 2
Options Set | Bit 10 Set Bit 11 set Bit 5 set
AS LFC TO pathname | Blocked Unblocked Blocked Blocked
AS LFC TO pathname
BLO=Y Blocked Unblocked Blocked Blocked
AS LFC TO pathname
BLO=N Unblocked Unblocked Blocked Blocked
Al LFC=filename Blocked Unblocked Blocked Blocked
Al LFC=filename, U Unblocked | Unblocked Blocked Blocked

Notes:

When bit 10 is set, the resource is opened in unblocked mode, overriding any

specification made at assignment.

When bit 5 or bit 11 is set, the resource is opened in blocked mode, overriding any

specification made at assignment.

If both bit 10 and bit 11 are set, the resource is opened in blocked mode.

MPX-32 Reference Volume |

5-35

Device-Independent I/O Processing

5.7.5 End-of-File and End-of-Medium Processing

Table 5-6 describes the different types of end-of-file (EOF) and end-of-medium
(EOM) processing supported under MPX-32. EOF only occurs when the beginning of
the record to be transferred meets the specified condition. If EOF occurs in other than
the first block of the transfer, the transfer is truncated up to the EOF block with the
actual transfer count set to the truncated amount and no EOF indication. On the next
sequential transfer after the truncated record, the task receives the EOF indication.

5.7.6 Software End-of-File for Unblocked Files

For unblocked files, the EOF indicator is the data pattern X’OFEOFEOF’ in the first
word of a disk sector. MPX-32 provides the M.WEOF service for nonbase tasks, or
M_WRITEEOF service for base mode tasks, to generate the EOF indicator within a
file. In this way, MPX-32 provides the capability to create multiple file files.

Use of multiple file unblocked files created with EOFM=T/Y (True or Yes
respectively).

The EOF data pattern is not written or detected in unblocked files created with
EOFM=T/Y. The M.WEOF service in nonbase assembler and the M_WRITEEOF
service in base mode assembler, do not write an EOF pattern into an unblocked file
created with EOFM=TY/Y.

The EOF block recorded in the file descriptor for a file of this type is one block higher AN
than the last sequentially written block of the file. MPX-32 does not expect the EOF </
block as the last block of the file.

The EOF pattern is detected on a read of an unblocked file, created with EOFM=T/Y.
Any inconsistency between the EOF block recorded in the file descriptor and the last
block of sequentially written data in the file (EOF block + 1) is corrected. The disk
block containing the EOF data pattern is not part of the file contents.

Notes:

Use caution when accessing unblocked files in append mode that were created under a
pre-3.4U02 revision of MPX-32, with EOFM=T/Y. Writing to such a file that has the
EOF data pattern in the end-of-file block causes loss of data on a subsequent read of
the EOF data sector.

5-36 Resource Assignment/Allocation and /O

Device-Independent I/O Processing

Use the Media utility COPY command as described in the following procedure to
avoid the problem described above:

* Create a scratch file for output.

* Use the MEDIA utility COPY command:

TSM>AS IN TO filename BLO=N
TSM>AS OT TO scratchfile BLO=N

TSM>MEDIA
MED>COPY, IN, OT
MED>EXIT
MED>END

* Delete the scratch file.

Existing multiple file unblocked files created with EOFM=T/Y can be preserved using
VOLMGR COPY command, with options for REPLACE, and EOFM=F/N.

Table 5-6
EOF and EOM Description
EOF EOM
Read | EOF occurs when the record EOM occurs when a record
with the EOF bit set in the block | is read from a block that
buffer control word is read. is past the last block
written to the file.
Blocked
Write | Not applicable EOM occurs when a record
is written to a block that is one or
more blocks past the end of the file
space for a file that cannot be
extended.
Read | EOF occurs if the first word EOM occurs when a read
of data read has the data starts from two or more
pattern of X’0FEOFEOF’ in blocks past the last block
Unblocked it. EOF will also occur written to the file
With Data if a read starts 1 block
Formatting past the last block written
to the file (EOF block in
the FAT).
Write | Not applicable Same as Blocked Write EOM
Unblocked | Read | EOF occurs if a read Same as Unblocked Read
With Data starts 1 block past with Data Formatting EOM
Formatting the last block written to
Inhibited the file (EQF block in the FAT).
Write | Not applicable Same as Blocked Write EOM

MPX-32 Reference Volume |

5-37

Spooled Output with Print or Punch Attribute

™,
5.8 Spooled Output with Print or Punch Attribute {/

Real-time (not job related) permanent and temporary files are assigned with either the
print or punch attribute. When the file is deassigned, spooled output is automatically
generated on the auto-selectable print or punch device. If the file is temporary, it is
deleted when the output process is complete. If the file is permanent, it is not deleted
when the output process is complete.

5.9 Setting Up File Control Blocks for Device-Independent I/O

The MPX-32 Logical Device-independent I/O section in this chapter describes the

function of an FCB. Parts of the FCB are required and must be defined by the user:

* alogical file code |
* a transfer count and data buffer address for I/O operations controlled by this FCB

IOCS assumes the following if no other special I/O characteristics are defined in the
FCB:

* wait I/O — IOCS returns to the calling task only when a requested operation on the
file or device assigned to this FCB is complete

* automatic retry on error by IOCS and some handlers, as described in the Device
Independent I/O Processing section in this chapter.

* device-dependent output and input are handled using standard techniques N
* status information is returned in the FCB
* file and device access is sequential

Areas of the FCB define:

* no-wait [/O — Immediate return to the calling task after I/O operation is queued.
The user can define the return address to return to in the task when processing is
complete (normal or error).

* error processing inhibit — Only status is returned by handlers. No error processing
is performed by IOCS or handlers.

* special device output characteristics
* random access for disk files

Some areas of the FCB are defined by IOCS. IOCS stores the opcode each time the
task specifies a particular FCB, stores status returned by handlers, tracks actual record
length in bytes for each transfer, and builds and maintains I/O queue and file
assignment table (FAT) addresses. Refer to Appendix L for the 16-word format for
the FCB.

5-38 Resource Assignment/Allocation and I/O

Setting Up File Control Blocks for Device-Independent I/O

5.9.1 Macros (M.DFCB/M.DFCBE)

The M.DFCB macro defines an 8-word FCB. The M.DFCBE macro defines a 16-
word FCB.

There is no base mode equivalent service for M.DFCB. The base mode equivalent
service for M.DFCBE is M_CREATEFCB.

Syntax

M.DFCBIE] label, Ifc, count, buffer, [error] , [random] , [NWT] , [NER] , [DFI]
, [INST] , [RAN], [ASC | BIN] , [LDR | NLD] , [INT | PCK] , [EVN |
BODD] , [556 | 800] , [nowait], [nowaiterror],[buffaddr]

label contains an ASCII string to use as symbolic label for the address of
this FCB.

Ifc contains a logical file code.

count contains the transfer count. Specify in number of bytes.

buffer contains the start address of the data buffer.

[error] contains the error return address for wait 1/O.

[random] contains the random access address.

[NWT], [NER], [DFI], [NST], [RAN]
specifies general control flags. Refer to the FCB in Appendix L for
flag descriptions.

[ASC | BIN] for CR or CP

[LDR I NLD] for PT (reader)

[INT | PCK] for 7-track mag tape
[EVN I ODD] for parity, s

[556 1 800] for bits per inch density

[nowait] specifies address for normal no-wait I/O end action return.

[nowaiterror] specifies address for no-wait 1/O error end action return.

[buffaddr] specifies the address of a 192W user-supplied blocking buffer to be
used for blocked I/O.

MPX-32 Reference Volume | 5-39

Setting Up File Control Blocks for Device-Independent I/O

>
5.9.2 Sample FCB Set-up Nonmacro (7

User defines an FCB for terminal message output:

TERM GEN 8/0,24/Cc’Ut’ l

GEN 12/B(TY.LEN),20/B (MESSAGE)
REZ 6w
MESSAGE EQU $
DATAB C’ "M"J CREATE FAILED. ERRTYPE '/
TY.LEN EQU $-MESSAGE
ERRTYPE EQU $-1B
Notes:

The source code uses TERM with M.WRIT to access this FCB. The logical file code
is UT. The transfer control word built with the GEN directive has a transfer count
equal to the message (TY.LEN EQU $-MESSAGE) computed by the Assembler.

The buffer start address is at MESSAGE (address is supplied by the Assembler). In the
actual message, "M indicates carriage return and " J indicates line feed before output.
The last byte of the message comes from RS when an error occurs as defined by:

C.MSG EQU S
M.CONBAD A
STB R7,ERRTYPE N/
M.WRIT TERM

5.9.3 Sample FCB Set-up Macro

M.DFCB TERM, UT, TY.LEN, MESSAGE

MESSAGE EQU S

DATAB C’ "M"J CREATE FAILED. ERRTYPE '/
TY.LEN EQU $~-MESSAGE
ERRTYPE EQU $-1B

5-40 Resource Assignment/Allocation and I/O

Setting Up TCPBs for the System Console

5.10 Setting Up TCPBs for the System Console

Messages are sent from a task to the system console and a response is optionally read
back by a TCPB. The TCPB sets up task buffer areas for messages output by the task
and reads back from the console.

The TCPB is comprised of a write and an optional read transfer control word defined
like the TCW in word one of the FCB. If read back from the terminal is not desired,
the read TCW must be zero. The user must perform his own carriage return and line
feed.

The size of the read buffer should include space for both an input character count
preceding the message (provided by IOCS) and the carriage return (end-of-record)
character typed by the user at the end of an input line.

The count of input characters actually typed is placed by IOCS in the first byte of the
read buffer. This input count does not include the carriage return character.

The byte transfer count is normally used by a task as maximum allowed input before
termination. If the operator types in the maximum count without having typed a
carriage return, the read is terminated.

The end-of-record character (carriage return) is normally allowed for in both the read
and write buffer transfer count. If five characters are expected, the read transfer count
would typically be for six characters. This allows the operator to type in and verify
the accuracy of all five characters before terminating the input message by typing a
carriage return.

Message transfers are always in bytes, so the buffer address must be a byte address
(F-bit setting - bit 12).

If the NWT bit is set (word 2, bit 0), IOCS returns immediately to the calling task
after the message is queued. The task can subsequently examine the OP indicator set
by IOCS in word 2, bit 31 to see if the requested transfer is complete (0) or in process

(D).

MPX-32 Reference Volume | 5-41

Setting Up TCPBs for the System Console

Table 5-7
Type Control Parameter Block

Type Control Parameter Block (TCPB) 24-bit Address

This is the preferred TCPB format. The M.TYPE and M_TYPE system service
macros generate this format.

0 1 7 8 31
Word 0 | Output quantity Output data buffer address (TCP.OTCW)
(TCP.OQ)
1 | Input quantity Input data buffer address (TCP.ITCW)
(TCP.IQ)
2{ 0 | 1 |cConsole device flags (TCP.FLGS)

Bit interpretations for TCP.FLGS:

Bit Meaning if set
no-wait I/O
1 data buffer addresses are 24-bit addresses (TCP.LAD)
Note: This bit must be set.
31 operation in progress. This bit is reset after post-1/0

processing completes.

Type Control Parameter Block (TCPB) 19-bit Address Compatible Mode

0 11 12 13 31
Word 0]Output quantity (TCP.0Q) 1 |Output data buffer address (TCP.OTCW)
1 |Input quantity (TCP.IQ) 1 |Input data buffer address (TCP.ITCW)
2| Console device flags (TCP.FLGS)

Bit interpretations for TCP.FLGS:
Bit Meaning if set

0 no-wait [/O
31 operation in progress. This bit is reset after post-1/O processing
completes.

Note: Bit 12 of word 0 must be set.

5-42 Resource Assighment/Allocation and I/O

(

~

MPX-32 Device-Dependent I/O

5.11 MPX-32 Device-Dependent I/O

5.11.1

MPX-32 allows the user to perform direct channel I/O to F-class I/O devices. Direct
channel I/O is accomplished by issuing a request to execute a logical or physical
channel program that was built by the user.

A logical channel program allows the user to use the specific physical attributes of the
device without having to be privileged or work with physical addressing. The user
can assign a logical file code to a physical device, but must be concerned with the
physical characteristics of the device. This gives the unprivileged user a way to use
the explicit functionality provided by the device that may not be provided by device-
independent I/O.

A physical channel program allows a privileged user to issue an I/O command list
(IOCL) directly to a channel/controller/device. The IOCL is issued to the channel
without any modification by the system. This allows a time critical user to issue

physical I/O command lists that do not require the normal overhead of logical I/O.

Device-Dependent I/O Processing Overview

A task can issue device-dependent I/O by issuing an Execute Channel Program
(EXCPM) request to IOCS for any XIO device allocated in the channel program
access mode. This enables the task to pass an I/O channel program that it has built to
a specified device with minimal IOCS overhead.

EXCPM support provides the user with the ability to perform direct channel I/O by
using either a logical channel program or a physical channel program. A logical
channel program is an IOCL built using logical addresses inside the building task’s
logical address space. The operating system will change all addresses to physical and
resolve all physical address discontinuities by the use of data chaining before the
IOCL is executed by the device. On completion of the 1/O, control is returned to the
task in the same manner as any I/O request.

A physical channel program is an IOCL ready to be executed by the device and is
pointed to by a logical address. The area in memory containing the physical [IOCL
must be made unswappable by the user. All addresses in a physical channel program
are physical addresses and discontinuities in the logical to physical mapping have
been resolved by the user. A task must be privileged to execute a physical channel
program.

A physical channel program started in the no-wait mode may have a post program-
controlled interrupt (PPCI) EA receiver associated with it. This special EA receiver
may be specified along with the normal EA receiver for no-wait I/O.

To issue an EXCPM to an 8-LAS device, that device must be in dual channel mode
(i.e. FULL and NOECHO in the LOGONFLE, terminal set to HALF DUPLEX, and
TSM OPTION UNQUIET in effect).

The EXCPM support applies only to extended I/O F-class devices.

The console does not have channel program capabilities.

MPX-32 Reference Volume | 5-43

MPX-32 Device-Dependent I/O

5.11.2

5.11.21

5.11.2.2

5.11.23

5-44

Operational Description of Execute Channel Program (EXCPM)

The task must specify the logical address and a time-out value for the channel
program in the FCB. The time-out value must be specified in seconds and placed in
the second halfword of word 2 in the FCB. If the value equals zero, not time out is
set for the EXCPM request. The logical address of the channel program must be
placed in word 8 of the FCB. The task starts the I/O operation by issuing an SVC
1,X’25’ or an M.CALL H.IOCS,10.

A SENSE buffer can be specified with an EXCPM request by placing the size of the
buffer, in bytes, in FCB.SSIZ and the address of the buffer in FCB.SENA. If a
SENSE buffer is specified, when the channel program terminates (normally or
abnormally), a SENSE command is issued to the device and the information received
is placed in the buffer specified. The size of the sense buffer must be equivalent to the
number of bytes of sense status that a particular device will return. If the buffer size
is zero, no sense information is returned and a buffer is not needed.

Logical Channel Program

The task builds a channel program inside its logical address space using the standard
XIO commands and logical addressing. A logical IOCL must be contiguous in logical
memory and TIC commands cannot be used to create loops.

Physical Channel Program

The task must be privileged to execute a physical channel program. It must build a
physical IOCL using standard XIO commands and all related addresses must be
physical. It must also resolve all data area discontinuities with the use of data
chaining. After the physical IOCL is built, the task places the logical address of the
IOCL into word 8 of the expanded FCB and sets bit 2 in word 2 of the FCB to
indicate this is a physical [OCL. The user must insure that the memory containing the
physical IOCL is unswappable.

Post Program-Controlled Interrupt (PPCI) End-Action Receiver

A privileged task may specify that a PPCI end-action receiver be used with a physical
channel program issued in no-wait mode. This PPCI receiver will be entered when a

PPCI occurs during the execution of the IOCL by the device. The logical address of

the PPCI receiver must be placed in word 15 of the expanded FCB and bit 8 of word

2 of the FCB must be set.

The system builds a caller notification packet (CNP) to transfer control to the task’s
PPCI receiver. The address of the CNP is passed to the task’s PPCI receiver in
register three. The CNP contains pointers to a status queue where PPCI status is
posted.

The status queue will be located immediately after the notification packet in memory.
The default size of the status buffer is four doublewords. The user can specify the
number of doublewords desired in the status buffer in the first byte of word 15 in the
FCB.

Resource Assignment/Allocation and I/O

™

)3'}

MPX-32 Device-Dependent /O

5.11.24

When a PPCI is received by the handler’s SI entry point, bit 8 of IOQ.CONT is
checked to see if a PPCI receiver is present. If a PPCI receiver is not present, the
interrupt level is exited without any status being posted. If a PPCI receiver is present,
the status received from the PPCI is posted in the status buffer that follows the
notification packet. When status is posted into the queue, the total PPCI received
count (NOT.STAR) is incremented by one and the address of the next status location
to use (NOT.STPT) is incremented by two words. If NOT.STPT points past the end
of the status buffer, NOT.STPT is reset to point to the start of the buffer.

After status is posted, the handler checks to see if the notification packet is on the task
interrupt queue in the task’s DQE. If it is, the SI level is exited without issuing an
end-action request. If the notification packet is not on the task interrupt queue, a
request for end-action processing is made and the SI level is exited. If a task is at
end-action level, it is possible that PPCI interrupts can occur which will cause status
to be posted and another end-action request to be issued.

It is the task’s responsibility to keep track of the number of PPCIs previously
processed by the end-action routine. The task must also keep track of the position in
the status buffer of the last status that was previously processed. This information
will allow the end-action routine to know where the present status starts and whether
any status was overwritten in the buffer (status was overwritten if the interrupts
received minus the interrupts processed are greater than the length of the buffer).

The task uses the no-wait end-action return (SVC 1,X’2C’) to exit the PPCI end-
action level in the same manner that any no-wait end-action routine is exited.

Restrictions

The task must be privileged to execute a physical channel program and it must
execute a physical channel program in no-wait mode to be able to have a PPCI end-
action receiver.

The use of the TIC command to create loops is prohibited for logical channel
programs. The use of the TESTSTAR and READ BACKWARD commands are also
prohibited in logical channel programs.

If the task does not want device I/O between channel programs, it must reserve the
device exclusively while it is using it. This can be done by assigning the device for
exclusive use or requesting an exclusive resource lock after the device is allocated.
With this method there is no way to reserve a controller or channel.

If the task wants SENSE information to be returned on an error condition, it must set
up a SENSE buffer to store the information. The SENSE buffer address must be
placed in bits 8 - 31 of word 9 of the expanded FCB being used for the I/O. The
length of the SENSE buffer, in bytes, must be placed in bits 0 - 7 of word 9 of the
expanded FCB. If SENSE information is not wanted on error, word 9 of the FCB
must be zero.

MPX-32 Reference Volume | 5-45

MPX-32 Device-Dependent /O

5.11.2.5 Setting Up File Control Blocks for EXCPM Requests

The differences between an FCB used for normal device-independent I/O and an FCB
used for an EXCPM request are shown in the following table. The EXCPM FCB
must be an expanded FCB.

Table 5-8
Execute Channel Program FCB Format
0 31
Word 0
1
2 PCP 1 PPI Channel Program
Timeout
37
8 | IOCL address
9 | Sense buffer size | Sense buffer address
10 | Not used
11-14
15 | PPCI status PPCI EA address
buffer size
Word 2:
Bit Description
2 contains the Physical Channel Program (PCP) if set. If
not set, contains the Logical Channel Program.
8 contains the PPCI end-action receiver if set. If not set,
there is no PPCI end-action receiver.
Word 8 contains the address of channel program to be executed
Word 9:
Bits Description
0-7 contain the size of user-supplied sense buffer
8-31 contain the address of user-supplied sense buffer
Word 15:
Bits Description
0-7 contain the size of the PPCI status buffer
8-31 contain the address of the PPCI end-action receiver

5-46

Resource Assignment/Allocation and /O

C

C

MPX-32 Device-Dependent I/O

5.11.2.6 Post Program-Controlled Interrupt Notification Packet

If a task sets up a PPCI end-action receiver to check status during execution of its
channel program, the status is returned in a notification packet. The address of the
notification packet is contained in register three upon entering the task’s PPCI end-
action receiver. The notification packet is described in the following table.

Table 5-9
Notification Packet Layout for PPCI Receiver

0 7 8 15 16 23 24 31
Word 0 | String forward address (NOT.SFA)

ot

String backward address (NOT.SBA)

NOT.TYPE
See Note 1

2 | Link priority Reserved

(NOT.PRI)

3 | FCB address (NOT.CODE)

4| PSD 1 of task’s PPCI receiver (NOT.PSD1)

5 | PSD 2 of task’s PPCI receiver (NOT.PSD2)

6 | Number of PPCIs received Number of status
since last buffer clear doublewords in status buffer
(NOT.STAR) (NOT.STAS)

7 | Address of PPCI status buffer (NOT.STAA)

8 | Address of buffer storing next status doubleword (NOT.STPT)

9 | Reserved

10-n | PPCI status buffer

Notes:
1. NOT.TYPE - Set to 1 for asynchronous notification.

2. Words 0-9 are updated by the operating system and must not be changed by the
user.

MPX-32 Reference Volume | 5-47

MPX-32 Device-Dependent I/1O

5.11.2.7 Macros (M.FCBEXP)

Syntax

The M.FCBEXP macro can define a file control block (FCB) for an Execute Channel
Program request.

M.FCBEXP label,lfc [, [cpaddr], [tout], [PCP], [NWI], [NST], [ssize], [sbuffer], [nowait],

5-48

[nowaiterror],

label

Ifc
[cpaddr]
[tout]
[PCP]
[(NWI]
[NST]
[ssize]
[sbuffer]
[nowait]
[nowaiterror]
[waiterror]
[psize]
[,ppciaddr]

[waiterror), [psize] [,ppciaddr] |

is an ASCII string to use as symbolic label for address of FCB
is the logical file code; word 0, bits 8 - 31 of the FCB

is the logical address of channel program to be executed

is the time-out value specified in seconds

specifies physical channel program

specifies no-wait 1/O request

is no status checking. All I/O appears to complete without error.
is the size of user-specified sense buffer

is the address of user-specified sense buffer

is the normal no-wait end-action return address

is the no-wait end-action error return address

is the wait I/O end-action error return address

is the size of PPCI status buffer to use

is the PPCI end-action address

Resource Assignment/Allocation and I/O

Resident Executive Services (H.REXS)

5.12 Resident Executive Services (H.REXS)
The H.REXS module replaces HHMONS. It provides interfaces for all major system

services.

The following seven H.MONS entry points do not have equivalent HREXS entry
points and, therefore, are still valid by their HHMONS calls.

SvC Macro Entry Point Description
1,X°40° M.ALOC H.MONS 21 Allocate file or peripheral device
1,X41° M.DALC H.MONS,22 Deallocate file or peripheral
device
1,X°42° M.PDEV H.MONS,1 Physical device inquiry
H.MONS,2 Reserved
1,X’61° M.CDJS H.MONS,27 Submit job from disk file
1,.X°73 M.LOG H.MONS,33 Permanent file log
1,.X74° M.USER H.MONS 34 User name specification

These entry points are included for compatibility purposes only and are described in
the Compatible Services section of Chapter 6. The H.REXS services run faster than
these H.MONS services and support more capabilities available in MPX-32.

All other H.LREXS entry points perform the equivalent function as their HMONS
counterparts transparent to the user. See the Macro-Callable System Services section
of Chapter 6 for HREXS system service descriptions.

MPX-32 Reference Volume |

5-49

Resource Management (H.REMM)

5.13 Resource Management (H.REMM)

The HREMM module replaces H ALOC. It performs the allocation and assignment
of all system resources and is responsible for maintaining proper access compatibility
and usage rights for these resources, such as files, directories, partitions, devices, and
memory. The mechanisms for coordinating concurrent access to shared resources are
also contained within this module.

5-50

Whenever HRREMM services are called by their macro names, any optional parameter
not specified in the call is handled in one of the following ways:

* The appropriate register is assumed to have been previously loaded.

* The appropriate register is zeroed.

See the calling sequence description of each service to determine applicability of

missing parameter handling.

The following five H.ALOC entry points do not have equivalent H.REMM entry
points and, therefore, are still valid by their H ALOC calls:

SvcC Macro Entry Point Description
1.X'1F’ M.SMULK H.ALOC,19 unlock and dequeue shared
memory
1,X’71° M.SHARE H.ALOC,12 share memory with another task
1,X’72° M.INCL H.ALOC,13 get shared memory (include)
1,.X’79’ M.EXCL H.ALOC,14 free shared memory (exclude)
N/A N/A H.ALOC,17 allocate file by space definition

These entry points are included for compatibility purposes only and are described in
the Compatible Services section of Chapter 6. The H.REMM services run faster than
these H.ALOC services and support more capabilities available in MPX-32.

All other HREMM entry points perform the equivalent function as their HALOC
counterparts transparent to the user. See the Macro-Callable System Services section
of Chapter 6 for HHREMM system service descriptions.

Resource Assighment/Allocation and I/O

Volume Management Module (H.VOMM)

5.14 Volume Management Module (H.VOMM)

The Volume Management Module (H.VOMM) manipulates the MPX-32 volume
resident and related memory resident data structures to allow for creation, deletion,
and maintenance of user and system resources residing on MPX-32 volumes.

Resources that reside on MPX-32 volumes include temporary files, directories, and the
permanent files and memory partition definitions associated with the directories.

The volume resident data structures manipulated by H.VOMM include resource
descriptors (RDs), the resource descriptor allocation map (DMAP), the file space
allocation map (SMAP), the volume’s directories, and their directory entries. The
memory resident data structures include the mounted volume table (MVT) and the file
assignment table (FAT).

5.14.1 H.VOMM Conventions

5.14.1.1 Entry Point Conventions

Entry points 1 through 16 and 23 are provided as user level services and are accessible
through unprivileged SVC calls.

Entry points 17 through 22, 24, and 25 are meant for MPX-32 system usage,
including internal H.VOMM usage, and are accessible only to privileged callers with
M.CALL.

5.14.1.2 Pathnames

Pathnames uniquely identify a volume resident resource by explicitly or implicitly
describing the volume, one or more directories, and the resource name. Pathnames
consist of variable length ASCII character strings that are resolved on-line by
H.VOMM in order to locate a resource.

H.VOMM supports a two level directory structure per volume including the root
directory (level 1), and user directories (level 2). In the examples which follow, VOL
means 1- to 16-character volume name, DIR means a 1- to 16-character directory
name, and FILE means a 1- to 16-character resource name.

Example 1

@VOL(DIR)FILE

The @VOL component defines the volume where the resource FILE is located and
implies that directory DIR should be located by the named volume’s root directory.
Furthermore, resource FILE should be located by directory DIR.

MPX-32 Reference Volume | 5-51

Volume Management Module (H.VOMM)

5.14.1.3

5-52

Example 2

FILE

The missing volume and directory components imply that resource FILE should be
located by the user’s current working volume and directory. The user’s default current
working volume and directory are established when the user enters the system and can
be changed by the user.

Example 3

~(DIR)FILE

The ~ implies that the directory DIR should be located by the root directory of the
user’s current working volume, and that resource FILE should be located by user
directory DIR.

Example 4

@SYSTEM(SYSTEM) FILE

The volume name SYSTEM and directory name SYSTEM are reserved names that
identify the current system (IPL) volume and the special system directory on that
volume.

Pathname Blocks (PNB)

The pathname block (PNB) is an alternative form of a pathname that can be used
interchangeably with pathnames. Because of its structure, it can be parsed faster than
a pathname. The PNB is a doubleword bounded, variable length ASCII character
string which H-VOMM can distinguish from a pathname since the PNB always starts
with an exclamation point.

H.VOMM provides a service to convert a pathname to a PNB. The examples which
follow illustrate common pathnames and their corresponding PNB.

Resource Assignment/Allocation and I/O

C

J

Example 1

@VOL1 (DIR1)FILE1l Word 0 ' VOL
1 blank
2 VOoOL1l
3 blank
4 blank
5 blank
6 ! DI R
7 ROOT
8 DIRL1
9 blank
10 blank
11 blank
12 ! RE S
13 blank
14 FIULE
I51]1BBY
16 blank
17 blank

Example 2

FILEl Word 0 ' VO L
1 W O R K
2 ! DI R
3 WORK
4 ! R E S
5 blank
6 FIULE
7118 BY
8 blank
9 blank

MPX-32 Reference Volume | 5-53

Volume Management Module (H.VOMM)

Example 3
(DIRECTORY) MYFILE Word 0
1
2
3
4
5
6
7
8
9
10
11
12
13
Example 4

@SYSTEM (SYSTEM) LOADMOD Word 0

OO~ i W =~

5-54

XHH | OO0
XOW|OH |WO
Lo v s B I B> v B B O

:

o
=
2 o

=

M <
= 1
= H

S

R

- N -
ok O Ik

-l
mltnH [0 O
IRl e N

:

=Rt
(o]
o w

1

Resource Assignment/Allocation and I/O

AN

5.14.14

5.14.1.5

5.14.1.6

Resource Identifiers

The fastest means of locating a volume resource (once created) is by its resource
identifier (must be on a doubleword boundary). The resource identifier has the
following format:

0 7 8 15 16 23 24 31
Word 0-3 | Volume name

4 | Creation date

Creation time

5
6 | Volume address of resource descriptor
2

Must contain zero Resource type

Since the resource identifier contains the volume address of the resource descriptor,
the resource descriptor (which points to and describes the resource) can be accessed
directly without going through the various directories which would otherwise have to
be traversed.

Given a valid pathname defining a resource, the corresponding resource descriptor
may be retrieved by the H.-VOMM locate resource service. The first eight words of a
resource descriptor consist of the resource identifier.

Allocation Units

File space is allocated in allocation units. Allocation units are integral multiples of
192-word disk blocks. Allocation unit size is a volume parameter which is specified
when the volume is formatted.

User calls to unprivileged H.VOMM entry points that allocate file space expect the
amount of file space to be specified in terms of 192-word disk blocks. H.VOMM then
rounds the number of blocks requested up to the nearest number of allocation units.

File Segment Definitions

The space associated with a file consists of one or more file segments. A file segment
is a set of contiguous allocation units on a volume. When a file is created, its space
consists of one or more file segments. As the file is expanded, new file segments
become associated with the file. Different segments within one file are almost always
discontiguous.

MPX-32 Reference Volume | 5-55

Volume Management Module (H.VOMM)

5.14.2

5.14.2.1

5.14.2.2

5-56

A file segment is defined by a 2 word file segment definition with the following
format:

0 7 8 15 16 23 24 31
Word 0 | Absolute 192W block volume segment address

1 | Segment length in 192W blocks

Up to 32 file segment definitions can be stored in one resource descriptor. A file
cannot expand beyond 32 segments.

Calling/Return Parameter Conventions

Unused Register

No caliing arguments are passed to an H-VOMM entry point by R3. Therefore, R3 is
an unused register which is preserved across all HVOMM entry point calls.

Specifying a Volume Resource

Whenever an H.VOMM entry point requires a volume resource to be identified
(except H-VOMM,9) only one register is required regardless of whether pathname,
pathname block, resource identifier, or logical file code (if the resource is assigned and
opened) is supplied. Therefore, the following conventions are assumed by H.VOMM:

Identifier Supplied Calling Register Format

0 7 8 31
Pathname Vector I Pathname length in bytes J Pathname address

0 7 8 31
Pathname Block Pathname block length Pathname Block
Vector in bytes Address

0 7 8 31
Resource ID Vector | Resource ID Resource ID Address

length = 32

0 7 8 31
Logical File Code | Must be zero | LrC |

0 7 8 31
File Control Block | Must be zero | FCB Address]

Resource Assignment/Allocation and /0O

(

Ve

Volume Management Module (H.VOMM)

5.14.2.3 Status Codes

All HVOMM entry points supply a status code to the caller indicating whether the
entry point operation was successful and, if not, why not. A status code summary

follows:
Status Code

Indication

[N T NS T NS T NG T S T NS N T NG T N I R e e e N e
PUAN A AR DONN RO O AT NPERPOLR,OPRXTIRANRE LN~ O

29
30
31
32
33
34
35
36
37
38
39
40
41
42

MPX-32 Reference Volume |

operation successful

pathname invalid

pathname consists of volume only

volume not mounted

directory does not exist

directory name in use

directory creation not allowed at specified level

resource does not exist

resource name in use

resource descriptor unavailable

directory entry unavailable

required file space unavailable

unrecoverable I/O error while reading DMAP
unrecoverable I/O error while writing DMAP
unrecoverable I/O error while reading resource descriptor
unrecoverable I/O error while writing resource descriptor
unrecoverable I/O error while reading SMAP
unrecoverable I/O error while writing SMAP
unrecoverable I/O error while reading directory
unrecoverable I/O error while writing directory

project group name or key invalid

reserved

invalid FCB or LFC

parameter address specification error

resource descriptor not currently allocated

pathname block overflow

file space not currently allocated

change defaults not allowed

cannot access resource in requested mode or default system
image file cannot be deleted

operation not allowed on this resource type

required parameter was not specified

file extension denied; segment definition area full

file extension denied; file would exceed maximum size allowed
1/O error occurred when resource was zeroed
replacement file cannot be allocated

invalid directory entry

directory and file not on same volume

an unimplemented entry point has been called
replacement file is not exclusively allocated to the caller
out of system space

cannot allocate FAT/FPT when creating a temporary file
deallocation error in zeroing file

resource descriptor destroyed or the resource descriptor
and the directory entry linkage has been destroyed

5-57

Volume Management Module (H.VOMM)

5.14.24

5-58

Status Code Indication
43 invalid resource specification
4 internal logic error from Resource Management Module

(HREMM). Abort task, try a different task. If
it fails, reboot system.

45 attempted to modify more than one resource descriptor
at the same time or attempted to rewrite resource
descriptor prior to modifying it

46 unable to obtain resource descriptor lock (multiprocessor only)
47 directory contains active entries and cannot be deleted
48 a resource descriptor’s link count is zero
49 attempting to delete a permanent resource without
specifying a pathname or pathname block vector
50 resource descriptor contains unexpected resource descriptor type
51 directory entry deleted, but failed to release file space.
52 an attempt was made to deallocate free space or

to allocate space that is currently allocated on a volume
other than system disk
53 the file space create is less than the space requested
99 an attempt was made to deallocate free space or to
allocate space that is currently allocated on the system volume

In some cases, H.-VOMM also displays H.REMM abort conditions. If a user calls an
H.VOMM service that calls an HREMM service for processing and an abort
condition occurs within the H.LREMM processing, the abort condition is returned to
H.VOMM. H.VOMM displays it to the user in the format 10xx where xx is the
specific HREMM abort condition. For example, abort condition 1026 indicates
H.REMM error 26 has occurred. The TSM $ERR directive can determine the reason
for the error; for example $ERR RM26.

Caller Notification Packet (CNP)

The CNP format is described in the HLREMM documentation. If a call to an
H.VOMM entry point is accompanied by a CNP, the entry point status is always
posted in the CNP. In addition, the caller can use the CNP to supply a denial return
address that is to be taken if status is nonzero. If a CNP accompanies an HVOMM
call, status is nonzero, and no denial return address is supplied, a normal return is
taken.

A CNP can be used to specify one or more options which are unique to the HVOMM
entry point called. To determine whether options apply, see the individual HVOMM
entry point descriptions.

If a CNP is not supplied, entry point status is always posted in register seven, a
normal return is always taken, and no options may be specified.

In any case, whether a CNP is supplied or not, CC1 is always set if return status is
nonzero.

Resource Assignment/Allocation and I/O

C

J

Volume Management Module (H.VOMM)

5.14.2.5 Pathnames/Pathname Blocks

Whenever an H.-VOMM entry point returns a nonzero status when it cannot
completely resolve a pathname or pathname block, the address of the first
unresolvable item within the pathname or pathname block is returned to the caller.

5.14.2.6 Resource Create Block (RCB)

Each H.VOMM entry point that creates a permanent file, a temporary file, a memory
partition, or a directory may receive a resource create block (RCB) in order to fully

define the attributes of the resource that is created. RCB formats are described in

Tables 5-10, 5-11, and 5-12. RCBs must be doubleword bounded.

If an RCB is not supplied by the caller, the resource is created with the default

attributes described in Chapter 4.

Permanent and Temporary File Resource Create Block (RCB)

Word 0

O R0 N N AW N e

e e e e
N b W N =D

Table 5-10

0 7 8 IS5 16 23 24 31

File owner name (RCB.OWNR)

File project group name (RCB.USER)

Owner rights specifications (RCB.OWRI). See Note 1.

Project group rights specifications (RCB.UGRI). See Note 1.

Other’s rights specifications (RCB.OTRI). See Note 1.

Resource management flags (RCB.SFLG). See Note 2.

Maximum extension increment (RCB.MXEI). See Note 3.

Minimum extension increment (RCB.MNEI). See Note 4.

Maximum file size (RCB.MXSZ). See Note 5.

Original file size (RCB.OSIZ). See Note 6.

File starting address (RCB.ADDR). See Note 7.

File RID buffer (RCB.FAST). See Note 8.

Option flags (RCB.OPTS). See Note 9.

Default override (RCB.FREE). See Note 10.

MPX-32 Reference Volume |

5-59

Volume Management Module (H.VOMM)

5-60

Notes:

1.

2.

Rights specifications are optional:

Bit

Description

O W ~=O

read access allowed (RCB.READ)
write access allowed (RCB.WRIT)
modify access allowed (RCB.MODI)
update access allowed (RCB.UPDA)
append access allowed (RCB.APPN)
delete access allowed (RCB.DELE)

Resource management flags. For any bit not set, system defaults apply and, in
some cases, the default is the equivalent of the bit being set (optional):

Bit

Description

0-7

8-10
11
12
13
14
15
16
17
18
19
20

21

22
23
24
25
26
27
28
29-30
31

resource type, equivalent to file type code, interpreted
as two hexadecimal digits, 0 - FF (RCB.FTYP)
reserved

file EOF management required (RCB.EOFM)

fast access (RCB.FSTF)

do not save (RCB.NSAYV)

reserved for MPX-32 usage

file start block requested (RCB.SREQ)

file is executable (RCB.EXEC)

owner ID set on access (RCB.OWID)

project group ID set on access (RCB.UGID)
reserved

maximum file extension increment is zero. System
default value not used. (RCB.MXEF)

minimum file extension increment is zero. System
default value not used (RCB.MNEF)

reserved

zero file on creation/extension (RCB.ZERO)

file automatically extendible (RCB.AUTO)

file manually extendible (RCB.MANU)

file contiguity desired (RCB.CONT)

shareable (RCB.SHAR) (owner rights spec only)
link access (RCB.LINK)

reserved

file data initially recorded as blocked (RCB.BLOK)

Maximum extension increment is the desired file extension increment specified in
blocks (optional). Defau<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>