
c'

Ci

322-001552-500
11

MPX-32 ™
Resident Modules and Handlers

Revision 3.5

Technical Manual Volume II

April 1990

Limited Rights

This manual is supplied without representation. or warranty of any kind. Encore
Computer Corporation therefore assumes no responsibility and shall have no liability of
any kind arising from the supply or use of this publication or any material contained
herein.

Proprietary Information

The information contained herein is proprietary to Encore Computer Corporation
and/or its vendors, and. its use, disclosure, or duplication is subject to the restrictions
stated in the standard Encore Computer Corporation License terms and conditions or
the appropriate third-party sublicense agreement.

Restricted Rights

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at 252.227.7013.

Encore Computer Corporation
6901 West Sunrise Boulevard
Fon Lauderdale, Florida 33313

'I'M MPX-32 is a trademark of Encore Computer Corporation

® CONCEPI'/32 is a registered trademark of Encore Computer Corporation

Copyright © 1990 by Encore Computer Corporation
ALL RIGHTS RESERVED
Printed in the U.S.A.

o

o

c

H.ADA
H.ALOC
H.BKDM
H.EXEC
H.EXSUB
H.FISE
H.lOCS
H.lP?? and H.SVC?
H.MDT
H.MEMM
H.MEMM2
H.MONS
H.MVMT
H.PTRAC
H.REMM
H.REXS
H.SURE
H.TAMM
H.TSM
H.VOMM
System Macros Cross-Reference

322-001552-500
1IIIIIIIIImlmlmml

MPX-32IM
Resident Modules

Revision 3.5

Technical Manual Volume II(A)

April 1990

History

The MPX-32 Release 3.2 Technical Manual, Publication Order Number 322·001550-
000, was printed September, 1983.

Publication Order Number 322·001550·100, (Revision 1, Release 3.2B) was printed
March, 1985.

Publication Order Number 322·001550·101, (Change 1 to Revision 1, Release 3.2C)
was printed December, 1985.

The MPX-32 Release 3.3 Technical Manual Volume I, Publication Order Number
322·001552-200, was printed December, 1986.

Publication Order Number 322-001552·300, (Revision 3, Release 3.4) was printed
January, 1988.

Publication Order Number 322-001552·400, (Revision 3AV03) was printed October,
1989.

Publication Order Number 322-001552·500, (Revision 3.5) was printed April, 1990

This manual contains the following pages:

Title page
Copyright page
Title page (A)
v through xilxii

Overview

1-1 through 1-2

H.ADA

Title page
iiiliv
1-1/1-2
2-1 through 2-3/2-4
3-1/3-2

H.ALOC

Title page
iiiliv
1-1/1-2
2-1 through 2-9/2-10
3-1/3-2

H.BKDM

Title page
iii/iv
1-1/1-2
2-1/2-2
3-1 through 3-5/3-6

H.EXEC

Title page
iii through vi
1-1 through 1-3/1-4
2-1 through 2-2512-26
3-1 through 3-31/3-32

H.EXSUB

Title page
iii and iv
1-1/1-2
2-1 through 2-26

v

History

vi

H.FISE

Title page
iii and iv
1-1 and 1-2
2-1 through 2-1112-12

H.IOCS

Title page
iii through v/vi
1-1 through 1-3/1-4
2-1 through 2-15/2-16
3-1 through 3-27/3-28

H.IP?? and H.SVC?

Title page
iiiliv
1-111-2
2-1 through 2-3/2-4
3-1 through 3-16

H.MDT

Title page
iiiliv
1-111-2
2-1 through 2-5/2-6
3-1 through 3-12

H.MEMM

Title page
iii and iv
1-1 and 1-2
2-1 through 2-4
3-1 through 3-14

H.MEMM2

Title page
iiiliv
1-111-2
2-1 through 2-6

H.MONS

Title page
iii through v/vi
1-1 through 1-3/1-4
2-1 through 2-26

H.MVMT

Title page
iiiliv
1-111-2
2-1 and 2-2

H.PrRAC

Title page
iii and iv
1-1 and 1-2

H.REMM

Title page
iii and iv
I-I through 1-3/1-4
2-1 through 2-6
3-1 through 3-23/3-24

H.REXS

Title page
iii through vi
I-I through 1-4
2-1 through 2-24
3-1 through 3-8

H.SURE

Title page
iiiliv
1-1/1-2
2-112-2

H.TAMM

Title page
iiiliv
1-111-2
2-1 through 2-6
3-1 through 3-8

H.TSM

Title page
iiiliv
1-111-2
2-1 through 2-8
3-1 through 3-3/3-4

History

H.VOMM

Title page
iii and iv
1-1 through 1-3/1-4
2-1 through 2-8
3-1 through 3-29/3-30

System Macros Cross-Reference

A-I through A-ll

Title page (B)

H.DCSCI

Title page
iii through v/vi
1-1/1-2
2-1 through 2-12
3-11/3-12

H.DCXIO

Title page
iii through viilviii
1-1 through 1-3/1-4
2-1 through 2-12
3-1 through 3-15/3-16

H.DPXIO

Title page
iii through vii/viii
1-1 through 1-311-4
2-1 through 2-10
3-1 through 3-23/3-24

H.F8XIO

Title page
iiiliv
1-1/1-2
2-1 through 2-7/2-8

H.GPMCS

Title page
iiiliv
1-1 and 1-4
2-1 through 2-13/2-14

History

H.HSDG

Title page
iii/iv
1-111-2
2-1 through 2-10
3-1 through 3-6

H.IBLG

Title page
iiiliv
1-1/1-2
2-1 through 2-8
3-1 through 3-7/3-8

H.MDXIO

Title
iii and iv
1-1 through 1-2
2-1 through 2-7/2-8
3-1/3-2

H.MfSCI

Title page
iii throuh v/vi
1-111-2
2-1 through 2-14
3-1 through 3-12

H.XIOS

Title page
iii through vi
1-1/1-2
2-1 through 2-11/2-12
3-1 through 3-7/3-8
4-1 through 4-3/4-4

vii

"' .. '.',. u

Documentation Conventions

Conventions used in directive syntax, messages, and examples throughout the
MPX-32 documentation set are described below.

Messages and Examples

Text shown in this distinctive font indicates an actual representation of a
system message or an example of actual input and output. For example,

or

VOLUME MOUNT SUCCESSFUL

TSM>!ACTIVATE MYTASK
TSM>

Lowercase Italic Letters

In directive syntax. lowercase italic letters identify a generic element that must be
replaced with a value. For example,

$NOTE message

means replace message with the desired message. For example,
$NOTE 10/12/89 REV 3

In system messages, lowercase italic letters identify a variable element. For example,

BREAK ON: taskname

means a break occurred on the specified task.

Uppercase Letters

In directive syntax, uppercase letters specify the input required to execute that
directive. Uppercase bold letters indicate the minimum that must be entered. For
example,

$ASSIGN lfc TO resource

means enter $AS or $ASSIGN followed by a logical file code, followed by TO and a
resource specification. For example,

$AS OUT TO OUTFILE

In messages, uppercase letters specify status or information. For example,

TERMDEF HAS NOT BEEN INSTALLED

MPX·32 Technical Volume II ix

Documentation Conventions

Brackets []

An element inside brackets is optional. For example,

$CALL pathname [arg]

means supplying an argument (arg) is optional.

Multiple items listed within brackets means enter one of the options or none at all.
The choices are separated by a vertical line. For example,

$SHOW [CPUTIMEIJOBSIUSERs]

means specify one of the listed parameters, or none of them to invoke the default.

Items in brackets within encompassing brackets or braces can be specified only when
the other item is specified. For example,

BACKSPACE FILE [[FILES=] eofs]

indicates if eofs is supplied as a parameter, FIL- or FILES- can precede the value
specified.

Commas within brackets are required only if the bracketed element is specified. For
example,

LIST [taskname][,[ownername] [,pseudonym]]

indicates that the first comma is required only if ownername and/or pseudonym is
specified. The second comma is required only if pseudonym is specified.

Braces { }

Elements listed inside braces specify a required choice. Choices are separated by a
vertical line. Enter one of the arguments from the specified group. For example,

[BLOCKED={Y I N}]

means Y or N must be supplied when specifying the BLOCKED option.

Horizontal Ellipsis ...

x

The horizontal ellipsis indicates the previous element can be repeated. For example,

$OEFM [par] [,par] ...

means one or more parameters (par) separated by commas can be entered.

Documentation Conventions

Documentation Conventions

Vertical Ellipsis

The vertical ellipsis indicates directives, parameters, or instructions have been omitted.
For example,

$DEFM SI,ASSEMBLE,NEW,OP

$IFA top ASSM

means one or more directives have been omitted between the SDEFM and SIFA
directives.

Parentheses ()

In directive syntax, parentheses must be entered as shown. For example,

(value)

means enter the proper value enclosed in parentheses; for example, (234).

Special Key Designations

The following are used throughout the documentation to designate special keys:

<ctrb control key
<ret> or <CR> carriage return/enter key
<tab> tab key
<break> break key
<bek> backspace key
<deb delete key

When the <cbb key designation is used with another key, press and hold the control
key, then press the other key. For example,

<ctrbC

means press and hold the control key, then press the C.

Change Bars

Change bars are vertical lines (I) appearing in the right-hand margin of the page for I
your convenience in identifying the changes made in MPX-32 Revision 3.5. .

When an entire chapter has been changed or added, change bars appear at the chapter
title only. When text within figures has changed, change bars appear only at the top
and bottom of the figure box.

MPX·32 Technical Volume II xi/xii

()

'e··· , }
-. '"

1 Technical Manual Volume II Overview

1.1 Using the Manual

The information in this manual is divided into two parts:

Module Descriptions

Handler Descriptions

Each module has a self-contained description that is prefaced by a tab. The following
list includes the modules which are described in this manual:

H.ADA
H.ALOC
H.BKDM
H.EXEC
H.EXSUB
H.FISE
H.IOCS
H.IP?? and H.SVC?
H.MDT
H.MEMM
H.MEMM2
H.MONS
H.MVMT
H.PrRAC
H.REMM
H.REXS
H.SURE
H.TAMM
H.TSM
H.VOMM

Each module description has the following format as applicable:

Overview
Entry Points
Subroutines

MPX·32 Technical Volume II 1·1

Using the Manual

1-2

Each handler has a self-contained description that is prefaced by a tab. The following
list includes the handlers which are described in this manual.

H.DCSCI
H.DCXIO
H.DPXIO
H.F8XIO
H.GPMCS
H.HSDG
H.ffiLG
H.MDXIO
H.MTSCI
H.XIOS

Each handler description has the following format, as applicable:

Overview
Usage
Entty Points
Subroutines

To customize this manual to a particular system, remove the descriptions of modules
or handlers that are not installed on the system.

Technical Manual Volume II Overview

Ada Programming Language

Support Module (H. ADA)

MPX-32 Technical Manual

Volume II

(..... ~\
I ,

"

("

. ·.r

Contents

Page

1 H.ADA Overview

1.1 General lnfonnation .. 1-1
1.2 Ada Callable SVC Summary ... :.:::: 1-1
1.3 Subroutine Summary .. ~ 1-1

2 H.ADA - Ada Callable SVCs

2.1 SVC 2,X'A4' - Allocate Signal Stack Space ... 2-1
2.2 SVC 2,X' AS' - Exit From Signal/Exception State 2-1
2.3 SVC 2,X'A6' - Call Any SVC Service .. 2-2
2.4 SVC 2,X'AT - Return to Current Working Volume 2-3

3 H.ADA Subroutines

3.1 Subroutine S.ADAI - Reserved .. 3-1
3.2 Subroutine S.ADA2 - Arithmetic Exception Handling 3-1
3.4 Subroutine S.ADA3 - Reserved .. 3-1
3.4 Subroutine S.ADA4 - Reserved .. 3-1

(..
-....... "

f'

MPX-32 Technical Volume II iii/iv

('C, 1
1.1

H.ADA Overview

General Information "

The Ada Programming Language Suppon Module (H.ADA) provides suppon for the
Ada environment on htfPX-32. This suppon includes arithmetic exception processing
and abon processing. All system services are channeled through this module to
provide the Ada/MPX-32 interface.

1.2 - Ada Callable SVC Summary

SVC Number

2,X'A4'
2J('A5'
2J('A6'
2J('AT

Description

allocate signal stack space
exit from signal/exception state
call any SVC service
return to current working volume and directory

1.3 Subroutine Summary

Subroutine Description

S.ADAI
S.ADA2
S.ADA3
S.ADA4

dispatch task
arithmetic exception handling
dispatch control to abon receiver
end-action processing

MDY_'l? TCI"hnit"~1 VnllJmf:! II 1-1/1-2

2 H.ADA - Ada Callable SVCs

2.1 SVC 2,X'A4' - Allocate Signal Stack Space

This routine allocates space to an Ada task for arithmetic exception processing.

Entry Conditions

calling Sequence

SVC 2,X'A4'

Registers

R3 logical address of stack

R4 number of bytes to use for stack

Exit Conditions

Return Sequence

M.RTRN

Registers

All registers unchanged.

Status

If CCI is set, the address is invalid.

2.2 SVC 2,X' AS' - Exit From Signal/Exception State

This routine restores the task registers and PSD for proper return to the Ada task.

Entry Conditions

Calling Sequence

SVC 2X'AS'

Registers

None

Exit Conditions

Return Sequence

M.RTRN

MPX-32 Technical Volume II 2-1

SVC 2,X' A6' - Call Any SVC Service

2.3 SVC 2,X' AS' - Call Any SVC Service

This routine intercepts all MPX-32 SVCs called by Ada tasks. This routine checks for
recW'Sive sve calls and verifies the destination address. The SVC is then executed
from this routine with the return address inside the entry point. After the SVC is
executed, the routine builds the condition codes and registers into the current TSA
stack frame and returns via M.RTRN.

Entry Conditions

Calling Sequence

SVC 2.x'A6'

Registers

Rl address of an 8-word register block

R2 address of a 9-word out-register block with condition codes left justified
in the· ninth word

R3 right 16 bits of the SVC instruction type and number

Exit Conditions

2·2

Return Sequence

M.RTRN

Status

eCl if zero, no registers are affected

CCI if one, R3 contains one of the following error codes:

Code Meaning

1 invalid in-register buffer address
2 invalid out-register buffer address
3 recW'Sive call to SVC

H.ADA • Ada Callable SVCs

o

SVC 2,X' A7' - Return to Current Working Volume

(~~~ 2.4 SVC 2,X' A 7' - Return to Current Working Volume

(

This routine restores the Ada task environment before returning to the task.

Entry Conditions

Calling Sequence

SVC 2,X'A7';

Registers

Rl address of buffer to receive volume name

R2 address of buffer to receive directory name

Exit Conditions

Return Sequence

M.RTRN

if the volume and directory names are stored in the buffers

Status

Normal return

Error return if either buffer contains an invalid address, then the volume and
directory names are not stored in the buffer. No error is reported.

MPX·32 Technical Volume II 2·3/2·4

3 H.ADA Subroutines

3.1 Subroutine S.ADA 1 - Reserved

3.2 Subroutine S.ADA2 - Arithmetic Exception Handling

This subroutine uses the argument list in H.IPOF.

Entry Conditions

Calling Sequence

BL S.ADA2

Registers

R 1 address of H.1POF's argument list

R3 TSA address

R4 Ada exception handler routines

R6 PSD is being built

Exit Conditions

Return Sequence

No return.

LPSD address of Ada task exception handler

3.3 Subroutine S.ADA3 - Reserved

3.4 Subroutine S.ADA4 - Reserved

MPX·32 Technical Volume II 3-1/3·2

C·~: .. , .. /

c

Resource Allocator (H.ALOC)

MPX-32 Technical Manual

Volume II

(;

Contents

Page

1 H.ALOC Overview

1.1 General Infonnation .. 1-1
1.2 Entry Point Summary .. 1-1
1.3 Subroutine Summary ... 1-1

2 H.ALOC Entry Points

2.1 Entry Point 1 - Construct TSA and DQE ... 2-1
2.2 Entry Point 2 - Task Activation Processing ... 2-1
2.3 Entry Point 3 - Task Exit Processing ... 2-1
2.4 Entry Point 4 - Allocate Memory ; .. 2-1
2.5 Entry Point 5 - Deallocate Memory ... 2-1
2.6 Entry Point 6 - Allocate FileIDevice .. 2-1
2.7 Entry Point 7 - Deallocate FilelDevice ... 2-3
2.8 Entry Point 8 - Get Dynamic Extended Data Space 2-4
2.9 Entry Point 9 - Free Dynamic Extended Indexed Data Space 2-4
2.10 Entry Point 10 - Get Dynamic Task Execution Space 2-4
2.11 Entry Point 11 - Free Dynamic Task Execution Space 2-4
2.12 Entry Point 12 - Share Memory With Another Task 2-5
2.13 Entry Point 13 - Get Shared Memory (INCLUDE) 2-5
2.14 Entry Point 14 - Free Shared Memory (EXCLUDE) 2-6
2.15 Entry Point 15 - Reserved ~ 2-6
2.16 Entry Point 16 - Reserved ... 2-6
2.17 Entry Point 17 - Allocate Disk File By Space Definition 2-6
2.18 Entry Point 18 - Reserved ... 2-7
2.19 Entry Point 19 - Unlock and Dequeue Shared Memory 2-7
2.20 Entry Point 20 - Deallocate Memory Due to Swapping 2-8
2.21 Entry Point 21 - Locate Allocated FPTIFAT ... 2-8
2.22 Entry Point 99 - SYSGEN Initialization .. 2-9

3 H.ALOC Subroutines

3.1 Subroutine S.ALOC91 - Locate Shared Memory Table Entry 3-1

MPX·32 Technical Volume II iii/iv

",'

C","'" '"
1 '''I

-(

1 H.ALOC Overview

1.1 General Information

1.2

1.3

The Resource Allocator Module (H.ALOC) performs compatible mode services
associated with allocating and deallocating system resources.

Entry Point Summary

SVC
Entry Point Number Description

H.ALOC,l N/A construct TSA and DQE
H.ALOC,2 N/A task activation processing
H.ALOC,3 N/A task exit processing
H.ALOC,5 N/A deallocate memory
H.ALOC,6 N/A allocate file/device
H.ALOC,7 N/A deallocate file/device
H.ALOC,8 69 get dynamic extended data space
H.ALOC,9 6A free dynamic extended indexed data space
H.ALOC,lO 67 get dynamic task execution space
H.ALOC,ll 68 free dynamic task execution space
H.ALOC,12 71 share memory with another task
H.ALOC,13 72 get shared memory (INCLUDE)
H.ALOC,14 79 free shared memory (EXCLUDE)
H.ALOC,15 N/A reserved
H.ALOC,16 N/A reserved
H.ALOC,17 N/A allocate disk file by space definition
H.ALOC,18 N/A reserved
H.ALOC,19 IF unlock and dequeue shared memory
H.ALOC,20 N/A deallocate memory due to swapping
H.ALOC,2I N/A locate allocated FPTIFAT
H.ALOC,99 N/A SYSGEN initialization

N/A implies reserved for internal use by MPX-32

Subroutine Summary

Subroutine Description

S.ALOC9I locate shared memory table entry

MPX·32 Technical Volume II 1·111·2

o

o

C:

.". , (--'

2 H.ALOC Entry Points

2.1 Entry Point 1 - Construct TSA and DaE

See H.TAMM.2 for a detailed description of this entry point.

2.2 Entry Point 2 - Task Activation Processing

See H.TAMM,3 for a detailed description of this entry-point.

2.3 Entry Point 3 - Task Exit Processing

See H.TAMM,4 for a detailed description of this entry point.

2.4 Entry Point 4 - Allocate Memory

See H.MEMM,l for a detailed description of this entry point.

2.5 Entry POint 5 - Deallocate Memory

See H.MEMM.2 for a detailed description of this entry point.

2.6 Entry Point 6 - Allocate File/Device

This entry point converts a three word RRS entry into a multiword RRS fonnat.
Transfer·is then passed to H.REMM.6.

Entry Conditions

calling Sequence

M.CALL H.ALOC,6

Registers

Rl address of 3-word RRS entry

MPX·32 Technical Volume II

•

2·1

Entry POint 6 - Allocate File/Device

Exit Conditions

2-2

Return Sequence

M.RTRN R1

(or)

M.RTRN R1,R6,R7

Registers

Rl zero if allocation was unsuccessful. Otherwise, Rl is unchanged.
CC1 set if allocation denied:

R6 contains the scan mask
R7 contains the device requirements mask

CC2 set if allocation error:

R6 contains an error code
R 7 contains zero

Error Condition

Registers

R6 contains the following:

Value Definition

1 permanent file nonexistent
2 illegal file password specified
3 no FAT/FPT space available
4 no blocking buffer space available
5 shared memory table entry not found
6 invalid shared memory table password specified
7 dynamic common specified in ASSIGN 1
8 unrecoverable I/O error to directory
9 SGO assignment specified by terminal task
10 no UT file code exists for terminal task
11 invalid RRS entry
12 LFC in ASSIGN4 nonexistent
13 assigned device not on system
14 device in use by requesting task
15 SGO or SYC assignment by real-time task
16 common memory conflicts with allocated task
17 duplicate LFC allocation attempted

H.ALOC Entry POints

C)

Entry Point 6 - Allocate File/Device

External Reference

System Macro

M.CALL
M.RTRN

System Services

H.REMM,6
H.REXS,20
H.REXS,76

System Subroutine

S.REXS8

2.7 Entry Point 7 - Deallocate File/Device

This entry point creates the calling sequence needed by H.REMM,7. Transfer is then
passed to H.REMM,7.

Entry Conditions

Calling Sequence

M.CALL H.ALOC,7

Registers

RS 1- to 3-character right-justified AScn logical file code

Exit Conditions

Return Sequence

M.RTRN

Registers

None

Error Condition

CC1 set if unrecoverable I/O error to directory

MPX·32 Technical Volume II 2·3

Entry Point 7 - Deallocate File/Device

External Reference

System Macro

M.CALL
M.RTRN

System Service

H.REMM,7

System Subroutine

S.REXS8

2.8 Entry Point 8 - Get Dynamic Extended Data Space

See M.OD in the MPX-32 Reference Manual Volume I for a detailed description of
this entty point.

2.9 Entry Point 9 - Free Dynamic Extended Indexed Data Space

See M.FD in the MPX-32 Reference Manual Volume I for a detailed description of
this entty point.

2.10 Entry Point 10 - Get Dynamic Task Execution Space

See M.OE in the MPX-32 Reference Manual Volume I for a detailed description of
this entty point.

2.11 Entry Point 11 - Free Dynamic Task Execution Space

2·4

See M.FE in the MPX-32 Reference Manualyolume I for a detailed description of
this entty point.

H.ALOC Entry Points

a

o

Entry POint 12 - Share Memory With Another Task

(,C, 2.12 Entry Point 12 - Share Memory With Another Task

See M.SHARE in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.CALL
M.RTRN

System Service

H.REMM,12

System Subroutines

S.REXS8

S.REXS9

S.ALOC91

2.13 Entry Point 13 - Get Shared Memory (INCLUDE)

See M.INCL in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point.

External Reference

System Macro

M.CALL
M.RTRN

System Service

H.REMM,12

System Subroutines

S.REXS8

S.REXS9

MPX-32 Technical Volume II 2-5

Entry Point 14 • Free Shared Memory (EXCLUDE)

2.14 Entry Point 14 - Free Shared Memory (EXCLUDE)

See M.EXCL in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point.

External Reference

System Macro

M.CALL
M.RTRN

System Service

H.REMM,14

System Subroutine

S.REXS8

2.15 Entry Point 15 - Reserved

2.16 Entry Point 16 - Reserved

2.17 Entry Point 17 - Allocate Disk File By Space Definition

This entry point cn:ates a multi-wold RRS entry from the parameters provided by the
caller. Transfer is then passed to H.REXS,21.

Entry Conditions

2·6

calling Sequence

M.CALL H.ALOC,17

Registers

R4 LFC (bit 0 set for system FAT/FPI')
RS UDT index (bit 0 set for blocking buffer)
R6 sector address
R7 number of sectors

H.ALOC Entry Points

(\
\).
'<....J .

Entry Point 17 • Allocate Disc File By Space Definition

C Exit Conditions

(' "',
:,~. "

". '. ~,-"

(:;

Return Sequence

M.RTRN Rl,R2,R3,R5

Registers

Rl UDT address

R2 FPT address

R3 FAT address

R5 blocking buffer address if required

CCl set if no FAT/FPT space

CC2 set if no blocking buffer space

External Reference

System Macro

M.CALL
M.RTRN

System Service

H.REXS,2l

System Subroutine

S.REXS8

2.18 Entry Point 18 - Reserved

2.19 Entry Point 19 - Unlock and Dequeue Shared Memory

See M.SMULK in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.CALL
M.RTRN
M.SHUT
M.OPEN

MPX·32 Technical Volume II 2·7

Entry Point 19 - Unlock and Dequeue Shared Memory

System Service

H.REMM,24

System Subroutl ne

S.ALOC91

2.20 Entry Point 20 - Deallocate Memory Due to Swapping

See H.MEMM,ll for a detailed description of this entry point.

2.21 Entry Point 21 - Locate Allocated FPT/FA T

This subroutine locates the FPT/FAT pair associated with a given logical file code
(LFC).

Entry Conditions

calling Sequence

M.CALL H.ALOC,21

Registers

R5 left-justified, blank-filled (bytes 1-3), 3-ASCII character LFC (bit 0 set
indicates system FPT/FAT)

Exit Conditions

Return Sequence

M.RTRN and CCI set if LFC not found

Registers

CCI LFC not found

R2 FPT address

R3 FAT address
R5 LFC with byte 0 clear

External Reference

2-8

System Macro

M.RTRN

System Subroutines

S.REMMI2

S.REXS8

H.ALOC Entry Points

,o···~.\." \', "j)

o

Entry Point 99 - SYSGEN Initialization

(' 2.22 Entry Point 99 - SYSGEN Initialization

This entry point is for internal use only and is called during SYSGEN. H.ALOC sets
up its entry point table, then returns to SYSGEN.

MPX-32 Technical Volume II· 2-9/2-10

a

c·

"" \

/

{
"~-'"

" "

•.... : ."'>- ,,'

3 H.ALOC Subroutines

3.1 Subroutine S.ALOC91 - Locate Shared Memory Table Entry

This subroutine is used to find the first shared memory table (SMT) entry which
contains the partition name and owner name (or task number) specified by the caller.

Entry Conditions

Calling Sequence

BL SALOC91

Registers

R4,R5 owner name
(or)

R4 zero

R5 task number

R6,R7 panition name

Exit Conditions

Return Sequence

lRSW RO

Registers

Rl

R3

R4-R7

address of matching SMT or zero if not matched

destroyed

unchanged

MPX-32 Technical Volume II 3-1/3-2

0'

().

o

Blocked Data Management Module (H.BKDM)

MPX-32 Technical Manual

Volume II

()

()

Contents

· ... f

Page

1 H.BKDM Overview

1.1 General Infonnation 1-1
1.2 Entry Point Summary .. 1-1
1.3 Subroutine Summary ... 1-1

2 H.BKDM Entry Points

2.1 Entry Point H.BKOP - Predevice Access Processing 2-1
2.2 Entry Point H.BKPX - Postdevice Access Processing 2-1

3 H.BKDM Subroutines

3.1 Subroutine S.BKDM1 - Initialize Blocking Buffer 3-1
3.2 Subroutine S.BKDM2 - Read Logical Blocked Record 3-1
3.3 Subroutine S.BKDM3 - Verify Blocking Buffer .. 3-2

,(..... '

\ ',' -' ,,"

3.4 Subroutine S.BKDM4 - Perfonn Blocked Data Positioning 3-2
3.5 Subroutine S.BKDMS - Save FCB Parameters in SP AD 3-3
3.6 Subroutine S.BKDM6 - Write Logical Blocked Record 3-3
3.1 Subroutine S.BKDM1 - Advance Logical Blocked Record 3-4
3.S Subroutine S.BKDMS - Restore FeB Parameters 3-5

•

C"
;

MPX·32 Technical Volume II iii/iv

.,'

o

(----
.-

.c

1 H.BKDM Overview

1.1 General Information

The Blocked Data Management Module (H.BKDM) performs all data management
operations penaining to blocked I/O requests.

1.2 Entry Point Summary

Entry Point

H.BKOP
H.BKPX

SVC
Number Description

N/A predevice access processing
N/A postdevice access processing

N/A implies called only by IOCS

1.3 Subroutine Summary

Subroutine

S.BKDMI
S.BKDM2
S.BKDM3
S.BKDM4
S.BKDMS
S.BKDM6
S.BKDM7
S.BKDMS

DeSCription

initialize blocking buffer
read logical blocked record
verify blocking buffer
perform blocked data positioning
save FCB parameters in SP AD
write logical blocked record
advance logical blocked record
restore FCB parameters from SP AD

MPX·32 Technical Volume II 1·1/1·2

. ' ,(.'

('"

. . •... ~:

2 H.BKDM Entry Points

2.1 Entry Point H.BKOP - Predevice Access Processing

This entry point performs predevice access processing on behalf of blocked data
requests. .

Entry Conditions

Calling Sequence

BU H.BKOP

Registers

R 1 FCB address

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.2 Entry Point H.BKPX - Postdevice Access Processing

This entry point performs postdevice access processing related to blocked I/O
requests.

Entry Conditions

Calling Sequence

BL H.BKPX

Registers

R 1 FCB address

Exit Conditions

Retu rn Sequence

TRSW RO

Registers

Rl FCB address

MPX-32 Technical Volume II 2-1/2-2

3 H.BKDM Subroutines

3.1 Subroutine S.BKDM1 - Initialize Blocking Buffer

This routine is used to initialize a blocking buffer.

Entry Conditions

Calling Sequence

BL S.BKDMI

Registers

R I FeB address

Exit Conditions

Return Sequence

TRSW RO

Registers

R2

R3,R4

FAT address

destroyed

3.2 Subroutine S.BKDM2 - Read Logical Blocked Record

This routine performs a read of a logical blocked record. For example, it transfers a
logical blocked record from a blocking buffer to a user's data area.

Entry Conditions

Calling Sequence

BL S.BKDM2

Registers

R I FCB address

MPX-32 Technical Volume II 3-1

Subroutine S.BKDM2 - Read Logical Blocked Record

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl

R2-R7

FCB address

destroyed

3.3 Subroutine S.BKDM3 - Verify Blocking Buffer

This routine is used to verify that the blocking buffer contains valid control
information.

Entry Conditions

Calling Sequence

BL S.BKDM3

Registers

R3 address of the buffer

Exit Conditions

Return Sequence

TRSW RO

Registers

R2,R4-R6 destroyed

R3 address of the buffer

3.4 Subroutine S.BKDM4 - Perform Blocked Data Positioning

This routine performs blocked data positioning for the 110.

Entry Conditions

Calling Sequence

BL S.BKDM4

Registers

Rl FCB address

3-2 H.BKOM Subroutines

o

Subroutine S.BKDM4 - Perform Blocked Data Positioning

("~ Exit Conditions

'(

Return Sequence

TRSW RO

Registers

Rl

R2-R7

FCB address

destroyed

3.5 Subroutine S.BKDM5 - Save FeB Parameters in SPAD

This routine saves original FeB parameters and inserts new FeB parameters prior to
physical I/O operations performed on behalf of a user who requested blocked I/O
operations.

Entry Conditions

Calling Sequence

BL S.BKDMS

Registers

Rl

R3

FeB address

blocking buffer address

R 7 special status byte

Exit Conditions

Spad Cells Used:

1, 2, 3

Return Sequence

TRSW RO

Registers

R2

R4-R6

address of saved parameters

destroyed

3.6 Subroutine S.BKDM6 - Write Logical Blocked Record

This routine performs a write of a logical blocked record. For example, it transfers a
logical blocked record from the user's data area to a blocking buffer.

MPX-32 Technical Volume II 3-3

Subroutine S.BKDMS - Write Logical Blocked Record

Entry Conditions

calling Sequence

BL S.BKDM6

Registers

R 1 FCB address

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl
R2-R7

FCB address

destroyed

3.7 Subroutine S.BKDM7 - Advance Logical Blocked Record

This routine performs an advance logical blocked record; no transfer is required, only
next read/write address is updated.

Entry Conditions

calling Sequence

BL S.BKDM7

Registers

R 1 FCB address

R2 current logical record

R3 blocking buffer address

Exit Conditions

Return Sequence

TRSW RO

Registers

R 1 FCB address

R6 destroyed

3·4 H.BKDM Subroutines

C)

o

Subroutine S.BKDMS - Restore FeB Parameters

3.S Subroutine S.BKDMS - Restore FeB Parameters

This routine restores original FCB parameters "from the scratchpad subsequent to
physical operations performed on behalf of a user who requested blocked I/O
operations.

Entry Conditions

Calling Sequence

BL S.BKDMS

Registers

RI FCB address

Exit Conditions

Return Sequence

TRSW RO

Registers

R2

R4,R6

address of saved parameters

destroyed

MPX-32 Technical Volume II 3-5/3-6

/~~

! ' , \
, I

~"

o

. "

.. (....•.

C'

Executive Module (H. EXEC)

MPX-32 Technical Manual

Volume II

a

()

C·' ',\' .'-

Contents

Page

1 H.EXEC Overview

1.1 General Information 1-1
1.2 Entry Point Summary .. 1-1
1.3 Subroutine S~ ... 1-2

2 H.EXEC Entry Points

2.1 Entry Point 1 - Interactive Input Starting .. 2-1
2.2 Entry Point 2 - Tenninal Output Starting ... 2-1
2.3 Entry Point 3 - Wait 110 Starting ... 2-2
2.4 Entry Point 4 - No-Wait I/O Starting ... 2-2
2.5 Entry Point 5 - Wait for Any No-Wait Operation Complete 2-3
2.6 Entry Point 6 - Wait for Memory Pool .. 2-4
2.7 Entry Point 7 - Memory Request Processing Complete 2-4
2.8 Entry Point 8 - Wait for Memory Scheduler Event 2-5
2.9 Entry Point 9 - Report Memory Scheduler Event .. 2-6
2.10 Entry Point 10 - Report Memory Pool Available .. 2-6
2.11 Entry Point 11 - Completion of Unswappable I/O Request 2-7
2.12 Entry Point 12 - No-Wait I/O Postprocessing Complete 2-7
2.13 Entry Point 13 - Wait for Peripheral Resource .. 2-8
2.14 Entry Point 14 - Wait for Disk File Space ... 2-9
2.15 Entry Point 15 - Report Peripheral Resource Available 2-10
2.16 Entry Point 16 - Report Disk File Space Available 2-11
2.18 Entry Point 17 - Reserved .•... 2-11
2.18 Entry Point 18 - Reserved ... 2 -11
2.i9 Entry Point 19 - Resume Execution of Specified Task 2-11
2.20 Entry Point 20 - Suspend Execution of CUITent Task 2-12
2.21 Entry Point 21 - Suspend Execution of Specified Task : 2-13
2.22 Entry Point 22 - Go to Specified Task Context (AIDDB) 2-13
2.23 Entry Point 23 - Run User Break Receiver (AIDDB) 2-14
2.24 Entry Point 24 - Reserved ... 2-15
2.25 Entry Point 25 - Wait for Any No-Wait Operation Complete 2-15
2.26 Entry Point 26 - Continue Specified Task .. 2-16
2.27 Entry Point 27 - General Enqueue .. 2-16
2.28 Entry Point 28 - Report Run Request Postprocessing Complete 2-17

C1/

MPX-32 Technical Volume II iii

Contents

Page O·
. - II~

2.29 Entry Point 29 - Report Wait Mode Run Request Starting 2-18
2.30 Entry Point 30 - Enable AIDDB Mode Break ... 2-18
2.31 Entry Point 31 - Hold Current Task ... 2-19
2.32 Entry Point 32 - Hold Specified Task .. 2-19
2.33 Entry Point 33 - Disable AIDDB Mode Break .. 2-20
2.34 Entry Point 34 - Report No-Wait Message Postprocessing Complete 2-21
2.35 Entry Point 35 - Report Wait Mode Message Starting 2-21
2.36 Entry Point 36 - General DeQ.ueue .. 2-22
2.37 Entry Point 37 - Wait for Memory Available .. 2-22
2.38 Entry Point 38 - Inhibit Asynchronous AbortlDelete 2-24
2.39 Entry Point 39 - Allow Asynchronous AbortlDelete 2-24
2.40 Entry Point 40 - End Action Wait ...•.. 2-25
2.41 Entry Point 41 - Get User Context ... 2-25
2.42 Entry Point 42 - Put User Context .. 2-25
2.43 Entry Point 43 - Reserved for Symbolic DebuggerlX32 2-25

3 H.EXEC Subroutines

3.1 Subroutine S.EXEC 1 - Interactive Input Complete 3-1
3.2 Subroutine S.EXEC2 - Temrlnal Output Complete 3-1 ("',,\
3.3 Subroutine S.EXEC3 - Wait I/O Complete .. 3-2 \~' .
3.4 Subroutine S.EXEC4 - No-Wait I/O Complete .. 3-2
3.5 Subroutine S.EXEC4A - No Wait I/O Complete (No Postprocessing) 3-3
3.6 Subroutine S.EXEC5 - Exit from Interrupt .. 3-4
3.7 Subroutine S.EXEC5A - Exit from Trap Handler with Abort 3-4
3.8 Subroutine S.EXEC6 - No-Wait I/O Postprocessing Complete 3-5
3.9 Subroutine S.EXEC7 - Report Memory Pool Available 3-5
3.10 Subroutine S.EXEC8 - Link Entry to Queue by Priority 3-6.
3.11 Subroutine S.EXEC9 - Unlink Entry from Queue 3-7
3.12 Subroutine S.EXEC10 - Link Entry to Bottom of Queue 3-7
3.13 Subroutine S.EXEC11 - Link Entry to Top of Queue 3-8
3.14 Subroutine S.EXEC1+ - Report Memory Scheduler Event 3-10
3.15 Subroutine S.EXECI3 - Break Specified Task .. 3-10
3.16 Subroutine S.EXECI4 - Resume Specified Task 3-11
3.17 Subroutine S.EXEC20 - CPU Scheduler•.......•...................................... 3-12
3.18 Subroutine S.EXEC21 - Process Task Interrupt .. 3-17
3.19 Subroutine S.EXEC23 - Unlink Messages in Receiver Queue 3-18
3.20 Subroutine S.EXEC24 - Reserved .. 3-18

o
iv Contents

Contents

~. ('.".' Page

3.21 Subroutine S.EXEC25 - Terminate Next Run in Queue 3-18
3.22 Subroutine S.EXEC27 - Transfer Control to Abort Receiver 3-19
3.23 Subroutine S.EXEC30 - Reserved .. 3-19
3.24 Subroutine S.EXEC31 - No-Wait Run Request ... 3-19
3.25 Subroutine S.EXEC34 - Reserved .. 3-20
3.26 Subroutine S.EXEC35 - Report No-Wait Postprocessing 3-20
3.27 Subroutine S.EXEC4O - Reserved .. 3-20
3.28 Subroutine S.EXEC41 - Exit Run Receiver ... 3-21
3.29 Subroutine S.EXEC42 - Exit Message Receiver , 3-21
3.30 Subroutine S.EXEC44 - Change Priority of Current Task 3-22
3.31 Subroutine S.EXEC46 - Reserved .. 3-22
3.32 Subroutine S.EXEC47 - Reserved .. 3-22
3.33 Subroutine S.EXEC55 - Link Task to Ready to Run List 3-23
3.34 Subroutine S.EXEC56 - Resume Memory Scheduler 3-24
3.35 Subroutine S.EXEC57 - Link Task to Ready List by Priority 3-24
3.36 Subroutine S.EXEC59 - Reserved .. 3-25
3.37 Subroutine S.EXEC61 - Transfer Parameters from MRRQ 3-25
3.38 Subroutine S.EXEC62 - Validate RXB ~ 3-26
3.39 Subroutine S.EXEC68 - Construct and Vector Context 3-26
3.40 Subroutine S.EXEC69 - Postprocessing Merge Point 3-27
3.41 Subroutine S.EXEC72 - Report Wait I/O Starting 3-28
3.42 Subroutine S.EXEC75 - Situational Priority Increment 3-28
3.43 Subroutine S.EXEC77 - Reserved .. 3-29
3.44 Subroutine S.EXEC79 - Push Current Context onto Stack 3-29
3.45 Subroutine S.EXEC80 - Start IPU and Verify ~ ~ 3-30
3.46 Subroutine S.EXEC81 - Enter Debugger Entry Point Four 3-30
3.47 Subroutine S.EXEC82 - Push Calling Task onto the Stack 3-31

C .'.-:'

MPX·32 Technical Volume II v

List of Figures o
Figure Page

3-1 S.EXEC20 Path One ... 3-13
3-2 S.EXEC20 Path Two and Five ... 3-14
3-3 S.EXEC20 Path Three ••••.••.•...••.•.••••••..•...••••.••..•••..•.•.......•.....•••.............••... 3-15
3-4 S.EXEC20 Path. Four .. 3-16

vi Contents

1 H.EXEC Overview

1.1 General Information

The Executive Module (H.EXEC) perfonns as a CPU scheduler, by allocating the
CPU and IPU to tasks. The information listed in H.EXEC for entry points and
subroutines applies to EXEC, as well as EXEC2 and EXEC3.

1.2 Entry Point Summary __ _

SVC
Entry Point Number Description

H.EXEC,1
H.EXEC,2
H.EXEC,3
H.EXEC,4
H.EXEC,5
H.EXEC,6
H.EXEC,7
H.EXEC,S
H.EXEC,9
H.EXEC,10
H.EXEC,11
H.EXEC.12
H.EXEC,13
H.EXEC,14
H.EXEC.IS
H.EXEC,I6
H.EXEC,17
H.EXEC.I8
H.EXEC,19
H.EXEC,20
H.EXEC,21
H.EXEC,22
H.EXEC,23
H.EXEC,24
H.EXEC,25

H.EXEC,26
H.EXEC,27
H.EXEC,28
H.EXEC,29
H.EXEC,30
H.EXEC,31
H.EXEC,32
H.EXEC,33
H.EXEC,34
H.EXEC,3S
H.EXEC,36

NJA
NJA
N/A
NJA
N/A
NJA
NJA
N/A
NJA
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
NJA
N/A

MPX·32 Technical Volume II

interactive input starting
terminal output starting
wait I/O starting
no-wait I/O starting
wait for any no-wait operation complete
wait for memory pool .
memory request processing complete
wait for memory scheduler event
report memory scheduler event
report memory pool available
completion of unswappable I/O request
no-wait I/O postprocessing complete
wait for peripheral resource
wait for disk file space
report peripheral resource available
report disk file space available
reserved
reserved
resume execution of specified task
suspend execution of current task
suspend execution of specified task
go to specified task context (AIDDB)
run user break receiver (AIDDB)
reserved (AIDDB)
wait for any no-wait operation complete, message
interrupt or break interrupt
continue specified task
general enqueue
report run request postprocessing complete
report wait mode run request starting
enable AIDDB mode break
hold current task
hold specified task
disable AIDDB mode break
report no-wait message postprocessing complete
report wait mode message starting
general dequeue

1·1

Entry Point Summary

Entry Point

H.EXEC,37
H.EXEC,38
H.EXEC,39
H.EXEC,40
H.EXEC,41
H.EXEC,42
H.EXEC,43

SVC
number Description

N/A
N/A
N/A
lD***
70***
71***
N/A

wait for memory available
inhibit asynchronous abort/delete
allow asynchronous abort/delete
end action wait
get user context
put user context
reserved for Symbolic DebuggerIX32

*** This service is SVC 2,X'nn' callable.

N/A implies reserved for internal use by MPX-32.

1.3 Subroutine Summary

1·2

Subroutine

S.EXECI
S.EXEC2
S.EXEC3
S.EXEC4
S.EXEC4A
S.EXEC5
S.EXEC5A
S.EXEC6
S.EXEC7
S.EXEC8
S.EXEC9
S.EXEClO
S.EXECII
S.EXEC12
S.EXEC13
S.EXEC14
S.EXEC20
S.EXEC21
S.EXEC23
S.EXEC24
S.EXEC25
S.EXEC27
S.EXEC30
S.EXEC31
S.EXEC34
S.EXEC35
S.EXEC40
S.EXEC41
S.EXEC42
S.EXEC44

Description

interactive input complete
terminal output complete
wait 110 complete
no-wait 110 complete
no-wait 110 complete (no postprocessing)
exit from interrupt
exit from trap handler with abon
no-wait 110 postprocessing complete
repon memory pool available
link entry to queue by priority
unlink entry from queue
link entry to bottom of queue
link entry to top of queue
repon memory scheduler event
break specified task
resume specified task
CPU scheduler
process task interrupt
terminate messages in receiver queue
reserved
terminate next run request in receiver queue
transfer control to abon receiver
reserved
report no-wait run request postprocessing complete
reserved
repon no-wait mode message postprocessing complete
reserved
exit run receiver
exit message receiver
change priority level of current task

H.EXEC Overview

o

o

Subroutine

S.EXEC46
S.EXEC47
S.EXEC55
S.EXEC56
S.EXEC57
S.EXEC59
S.EXEC61
S.EXEC62
S.EXEC68
S.EXEC69
S.EXEC72
S.EXEC75
S.EXEC77
S.EXEC79
S.EXEC80
S.EXEC81
S.EXEC82

Description

reserved
reserved

Subroutine Summary

unlink task from designated list and link to ready list
resume memory scheduler
link task to ready list by priority
reserved
transfer parameters from MRRQ to receiver buffer
validate RXB
construct and vector context to end action PSD
common no-wait postprocessing merge point
repon wait I/O starting
situational priority increment
reserved
push current context onto stack for deferred EA pull
start IPU and verify
enter base mode debugger entry point four
push calling task context onto the stack

MPX·32 Technical Volume II 1·311-4

o

o

o

o;l~ ,
" ,/

2 H.EXEC Entry Points

2.1 Entry Point 1 - Interactive Input Starting
TIlis entry point is called to repolt the beginning of processing for an interactive input
request made by the C\11Tently executing task. The task is removed from the
associated ready-to-run list. and placed in the wait for interactive input list. A retum
to the calling routine is made when the input request completes.

Entry Conditions

calling Sequence

M.SHUT
UBI
M.CALL H.EXEC,l

Registers

RO,Bit 0

Exit Conditions

one indicates task is swappable during input processing

Return Sequence

CPU scheduler (when I/O complete, with M.OPEN status)

Registers

None

2.2 Entry Point 2 - Terminal Output Starting

TIlis entry point is called to repolt the beginning of processing for a tenninal output
request made by the currently executing task. The task is removed from the
associated ready-to-run list. and placed in the wait for terminal output list. A retum to
the calling routine is made when the output request completes.

Entry Conditions

calling Sequence

M.SHUT
UBI
M.CALL H.EXEC,2

Registers

RO,Bit 0 one indicates task is swappable during output processing

MPX-32 Technical Volume II 2-1

Entry Point 2 - Terminal Output Starting

Exit Conditions

Return Sequence

CPU scheduler (when 110 complete. with M.OPEN status)

Registers

None

2.3 Entry Point 3 - Wait 1/0 Starting

This entry point is called to repon the beginning of processing for a wait 110 request
made by the currently executing task. The task is removed from the associated
ready-to-run list. and placed in the wait for 110 list. A return to the calling routine is
made when the 110 request completes.

Entry Conditions

Calling Sequence

M.SHUT
UEI
M.CALL H.EXEC.3

Registers

RO.Bit 0 one indicates task is swappable during 110 processing

Exit Conditions

Return Sequence

CPU scheduler (when 110 complete. with M.OPEN status)

Registers

None

2.4 Entry Point 4 - No-Wait 1/0 Starting

2-2

This entry point is called to repon the beginning of processing for a no-wait 110
request made by the currently executing task. A return to the calling routine is made
after recording the no-wait 110 stan event.

H.EXEC Entry Points

o

Entry Point 4 - No-Wait 1/0 Starting

Entry Conditions

Calling Sequence

M.SHUf
UEI
M.CALL H.EXEC,4

Registers

RO,Bit °
Exit Conditions

one indicates task is swappable during 110 processing

Return Sequence

M.OPEN
M.RTRN

Registers

None

2.5 Entry Point 5 - Wait for Any No-Wait Operation Complete

This entry point is functionally identical to H.EXEC,25 except that it does not check
for outstanding message or break interrupt requests before placing a task on the
ANYW queue. All queued end action requests are processed before a return is made
to the calling routine. This entry point is used by IOCS when waiting for a particular
no-wait 110 request to complete.

Entry Conditions

Calling Sequence

M.CALL H.EXEC,5

Registers

R6

Exit Conditions

zero if indefinite wait; otherwise, this register contains the negative
number of timer units for timed wait

Return Sequence

M.RTRN

Registers

None

MPX-32 Technical Volume II 2-3

Entry Point 6 -Wait for Memory Pool

2.6 Entry Point 6 • Wait for Memory Pool
This entry point is called when the required m~JIlory pool space is not available. The
cUITently executing task is removed from the associated ready-to-run list, and placed
in the wait for memory pool list. A return to the calling routine is made when any
memory pool space is deallocated. The calling routine can then make another attempt
to allocate the required memory pool space.

Entry CondHions

Calling Sequence

M.CALL H.EXEC,6

Registers

None

Exit Conditions

Return Sequence

CPU scheduler

Registers

None

2.7 Entry Point 7 • Memory Request Processing Complete

This entry point is called by the memory scheduler when processing for a memory
request is complete. The DQE associated with the memory request will have been
unlinked from the memory request queue by the memory scheduler. The completed
memory request is processed by H.EXEC,7 according to request type. (The DQE
contains the request type information.) The task is then linked into the appropriate
ready-to-run list A rerum to the memory scheduler is made by issuing a M.RTRN.

Entry Conditions

2-4

Calling Sequence

M.CALL H.EXEC,7

Registers

R2 DQE address

H.EXEC Entry Points

()

o

o

Entry Point 7 • Memory Request Processing Complete

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.8 Entry Point 8 - Wail-for Memory Scheduler Event

This entry point is called by the memory scheduler when either no additional
processing of outstanding memory requests is possible, or the memory request list is
empty. C.RRUN is examined. If C.RRUN is not equal to zero, and the memory
request queue is not empty. the memory scheduler will be reexecuted. Otherwise, the
memory scheduler will be removed from the ready-to-run list and placed in the wait
for memory event list. A return to the memory scheduler occurs when:

• a new memory request is queued, or
• the memory request queue is not empty and the status of allocated memory changes

such that it either is deallocated or becomes more eligible for swapping.

Entry Conditions

Calling Sequence

M.CALL H.EXEC,8

Registers

None

Exit Conditions

Return Sequence

CPU scheduler

Registers

None

MPX·32 Technical Volume II 2·5

Entry Point 9". Report Memory Scheduler Event

2.9 Entry Point 9 - Report Memory Scheduler Event

This entry point is called when tile starus of allocated memory changes (it is either
deallocated, or becomes more eligible for swapping). This routine insures the
appropriate execution of the memory scheduler task. If the memory-request list is
empty, no additional processing is required and a retum is made to the user. If the
memory-request list is not empty, C.RRUN is incremented. and the memory scheduler
state is checked. If the memory scheduler is in the wait for memory event list, it is
removed from that list. and placed in the ready-to-run list at the priority of the highest
priority entry in the memory-request list. A return is then made to the calling routine.

Entry Conditions

calling Sequence

M.CALL H.EXEC,9

Registers

None

Exit CondHions

Return Sequence

M.RTRN

Registers

None

2.10 Entry Point 10 - Report Memory Pool Available

This entry point is called when memory pool space is deallocated. This routine
resumes the execution of all tasks in the wait for memory pool list. If the wait for
memory pool list is empty, no additional processing is required and a return is made
to the calling routine. Otherwise, each entry in the list is removed and placed in its
associated ready-to-run list. It is expected that when these tasks resume execution,
they will reissue the request for the required memory pool space. When all entries
have been ftushed from the wait for memory pool list. a return is made to the calling
routine.

Entry CondHions

2-6

Calling Sequence

M.CALL H.EXEC,lO

Registers

None

H.EXEC Entry Points

/~
i ' , I

'-.J

o·

C",,
. " ... :./

Exit Conditions

Return Sequence

M.RTRN

Registers

None

Entry Point 10 - Report Memory Pool Available

'".f

2.11 Entry Point 11 - Completion of Unswappable I/O Request

This entry point is called by the IOCS post-transfer processing logic, executing on
behalf of the current task. 'The count of unswappable 110 transfers in the DQE is
decremented If no other swap inhibit reasons exist, a call is made to H.EXEC,9 to
report the memory scheduler event. A return is then made to the calling routine.

Entry CondHions

calling Sequence

M.CALL H.EXEC,ll

Registers

None

(' .. Exit CondHlons

" c"\.···

Return Sequence

M.RTRN

Registers

None

2.12 Entry Point 12 - No-Wait I/O Postprocessing Complete

This entry point is called by the IOCS no-wait 110 postprocessing logic to exit from
the task interrupt state. The entry point clears the task interrupt processing lock, and
returns to the point of task interrupt It discards the most recent level of pushdown in
the TSA stack, then issues an M.RTRN to retum to the point of task interrupt

Entry CondHlons

Calling Sequence

M.CALL H.EXEC, 12

Registers

None

MPX·32 Technical Volume II 2·7

Entry Point 12 - No-Walt 110 Postprocessing Complete

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.13 Entry Point 13 - Wait for Peripheral Resource

This enay point is called when the required peripheral resource is not available. The
currently executing task is removed from the associated ready-to-run list and placed in
the wait for peripheral resource list A retum to the calling routine is made when the
specified peripheral is deallocated by its current user. The calling routine may then
make another attempt to allocate the device.

Entry Conditions

2·8

Calling Sequence

M.CALL H.EXEC,13

Registers

R6

R7

peripheral requirements specification:

Bits Definition

0-7 reserved
8-15 device type code
16-23 channel address
24-31 subchannel address

requirements mask:

Value Definition

X'OOFFOOOO' any device of this device type code
X'OOFFFFOO' any device of the specified type code,

on the specified channel
X'OOFFFFFF' the specific device described

by this type code, ~l address, and
subchannel address

H.EXEC Entry Points

o

o

Entry Point 13 - Wait for Peripheral Resource

Exit Conditions

Return Sequence

CPU scheduler

Registers

None

2.14 Entry Point 14 - Wait for Disk File Space

This entry point is called when the required disc file space is not available. The
currently executing task is removed from the associated ready-to-run list, and placed
in the wait for disk list. A return to the calling routine is made when any disk file
space is deallocated. The calling routine may then make another attempt to allocate
the required disk file space.

Entry Conditions

calling Sequence

M.CALL

Registers

R6

R7

H.EXEC,14

disk device requirements specification:

Bits Definition

0-7 reserved
8-15 device type code
16-23 channel address
24-31 subchannel address

disk device requirements mask:

Value

X'OOOOOOOO'
X' OOFFOOOO'
X'OOFFFFOO'

X'OOFFFFFF'

Definition

any disk
any disk of the specified tYpe code
any disk of the specified type code
on the specified channel
the specific disk device described
by this type code, channel address, and
sub-channel address

MPX·32 Technical Volume II 2·9

Entry Point 14 • Wait for Disk File Space

Exit CondHions

Return Sequence

CPU scheduler

Registers

None

2.15 Entry Point 15· Report Peripheral Resource Available
This entty point is called when a peripheral device is deallocated. This routine
resumes the execution of the tasks in the wait for peripheral resource list, which have
specified requirements that will be satisfied by the deallocated device. If no such
tasks exist, no additional processing is required and a return is made to the calling
routine. Otherwise, each such entry in the list is removed and placed in its associated
ready-to-run list. When these tasks resume execution, they are expected to reissue the
request for the required device. When all appropriate entries have been flushed from
the wait for peripheral resource list, a return is made to the calling routine.

Entry CondHlons

calling Sequence

M.CALL H.EXEC,15

Registers

R6 peripheral resource:

Bits Definition

0-7 reserved
8-15 device type code
16-23 channel address
24-31 subchannel address

Exit Conditions

2·10

Return Sequence

M.RTRN

Registers

None

H.EXEC Entry Points

0,
, ,

Entry Point 16· Report Disk File Space Available

('-: 2.16 Entry Point 16 - Report Disk File Space Available

This entry point is called when disk space is deallocated. This routine resumes the
execution of the tasks in the wait for disc list which have specified requirements that
may be satisfied by the deallocated disk file space. If no such tasks exist, no
additional processing is required and a return is made to the calling routine.
Otherwise, each such entry in the list is removed and placed in its associated ready­
to-run list When these tasks resume execution, they are expected to reissue the
request for the required space. When all appropriate entries have been flushed from
the list, a return is made to the calling routine.

Entry Conditions

Calling Sequence

M.CAU. H.EXEC,16

Registers

R6 disk device resource:

Bits Definition

Exit Conditions

0-7
8-15
16-23
24-31

Return Sequence

M.RTRN

Registers

None

reserved
device type code
channel address
subchanneladdress

2.17 Entry Point 17 • Reserved

2.18 Entry Point 18 - Reserved

2.19 Entry Point 19· Resume Execution of Specified Task

This entry point is called to resume execution of the specified task. This routine calls
S.EXECI4 to accomplish the resume function. A return is then made to the calling
routine.

MPX·32 Technical Volume II 2·11

Entry Point 19 • Resume Execution of Specified Task

Entry Conditions

calling Sequence

M.CALL H.EXEC,19

Registers

R2 DQE address of task to be resumed

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.20 Entry Point 20 - Suspend Execution of Current Task

This entry point is called to suspend execution of the current task, either for an
indefinite period, or for the specified number of time units. The specified time (if any)
is stored as a one-shot timer in the DQE along with a resume-program timer function
code. S.EXEC15 is then called to suspend execution of the current task. A return is
not made until the timer expires or until the task is resumed.

Entry Conditions

calling Sequence

M.CALL H.EXEC,20

Registers

R6 zero if indefinite suspend; otherwise, this register contains the negative
number of timer units for timed suspend

Exit Conditions

Return Sequence

M.RTRN (on time-out or resume)

Registers

None

2·12 H.EXEC Entry Points

o

o

Entry Point 21 - Suspend Execution of Specified Task

(:' 2.21 Entry Point 21 - Suspend Execution of Specified Task

This entry point is called to suspend execution of the specified task, either for an
indefinite period or for the specified number of time units. The specified time (if any)
is stored as a one-shot timer in the DQE of the specified task, along with a resume­
program timer function code. S.EXEC16 is then called to suspend execution of the
specified task. A return is then made to the calling routine.

Entry Conditions

calling Sequence

M.CALL H.EXEC,21

Registers

DQE of task to be suspended R2

R6 zero if indefinite suspend; otherwise, this register contains the negative
number of timer units for timed suspend

Exit CondHlons

Return Sequence

M.RTRN

Registers

None

2.22 Entry Point 22 - Go to Specified Task Context (AIDDS)

This entry point is called by AIDDB to either begin or continue processing of the task
being debugged. The execution context (registers and PSD) are contained in a
parameter block associated with the call. The AIDDB mode is reset and control is
passed to the specified user context, by pushing the context onto the TSA stack and
invoking the CPU scheduler.

MPX-32 Technical Volume II 2-13

Entry Point 22 • Go to Specified Task Context (AIDDB)

Entry Conditions

calling Sequence
-".f

M.CALL H.EXEC,22

Registers

Rl address of context block where:

Word Contents

0-7 RO-7
8-9 PSD

The context block must be word bounded.

Exit Conditions

Return Sequence

Control will be passed to the specified context AIDDB will not be re-entered until a
trap, break, or abort is encountered .

. 2.23 Entry Point 23 - Run User Break Receiver (AIDDB)

This entty point is called by AIDDB to initiate execution of the user break receiver.
The contents of T.CONTXT are pushed onto the TSA stack. The AIDDB mode is \,~ /
reset The user break request flag is set, and control is passed to the CPU scheduler.

Entry CondHions

Calling Sequence

M.CALL H.EXEC,23

Registers

None

Exit CondHions

2·14

Return Sequence

Control will be passed to the user break receiver by the CPU scheduler. AIDDB will
not be re-entered until a trap, break:, break exit, or abort is encountered.

H.EXEC Entry Points

o.

Entry Point 24 - Reserved

(' 2.24 Entry Point 24 - Reserved

("~

,

2.25 Entry Point 25 - Wait for Any No-Wait Operation Complete

This entry point is called to place the current task in a wait state, waiting for the
completion of any no-wait mode 110 request, no-wait mode message request, no-wait
mode run request, or the receipt of a message or break interrupt. The wait state can be
either indefinite in length or can have an associated time-out value. A return is not
made until one of the wait conditions is satisfied, or until expiration of the time-out
value.

Entry CondHlons

Calling Sequence

M.CALL H.EXEC,25

Registers

R6 zero if indefinite suspend; otherwise, this register contains the negative
number of timer units for timed suspend

Exit Conditions

Return Sequence

M.RTRN (on time-out or satisfaction of wait condition)

Registers

None

MPX·32 Technical Volume II 2·15

Entry Point 26 - Continue Specified Task

2.26 Entry Point 26 - Continue Specified Task

This entry point is called to continue a task that is in the hold state. The DQE of the
specified task is unlinked from the hold-state queue and linked to the ready-to-run
queue.

Note: If the task is not in the hold state, the hold request flag in the DQE is reset.
A return to the calling routine is then made.

Entry Conditions

Calling Sequence

M.RTRN

Registers

Rl DQE address of task to be continued

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.27 Entry Point 27 - General Enqueue

2·16

This entry point is called to place the current task in the general wait queue
(C.SWGQ). The task remains on the general wait queue until either the optional timer
expires, or a corresponding general dequeue call (to H.EXEC,36) is made.

H.EXEC Entry Points

o

o

Entry Point 27 - General Enqueue

(: Entry Conditions

c

Calling Sequence
M.CALL H.EXEC,27

Registers

R4 zero if indefinite wait, otherwise contains negative number of timer
units for timed wait.

R5

~6,R7

Exit Conditions

Bits Definition

o zero if nonnal (priority independent)
swapping (an outswapped task may be a
higher priority than an inswapped task);
one if the task is to be swapped
only by a higher priority task

1-23 unused
24-31 function code (0-255). See DQE.GQFN.

enqueue ID

Retum Sequence

M.RTRN (on timer expiration or dequeue call with corresponding function code and
ID - with M.OPEN in effect)

Note: Swap on priority restriction removed before M.RTRN.

Registers

R3 zero if wait state terminated by corresponding dequeue call, one if
wait state time-out

2.28 Entry Point 28 • Report Run Request Postprocessing
Complete

This entry point is called by the run-request postprocessing logic to exit from the end
action interrupt state. Its purpose is to clear the task interrupt processing lock, and to
return to the point of task interrupL It discards one level of pushdown in the TSA
stack. A M.RTRN will then be issued to return to the point of task interrupt or the
point following the M.ANYW call.

MPX-32 Technical Volume II 2-17

Entry Point 28 • Report'Run Request Postprocessing Complete

Entry Conditions

calling Sequence

M.CALL H.EXEC,28

Registers

None

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.29 Entry Point 29 - Report Wait Mode Run Request Starting

This entry point is called to report the beginning of processing for a wait mode run
request issued by the currently executing task. The task is removed from the
associated ready-to-run list, ~d placed in the wait for run complete list. A return to
the calling routine is made upon completion of the run request by the destination task.

Entry Conditions

calling Sequence

M.CALL H.EXEC,29

Registers

None

Exit Conditions

Return Sequence

CPU scheduler (when run request complete)

Registers

None

2.30 Entry Point 30 - Enable AIDDB Mode Break

2-18

This entry point is called by the AIDDB program to allow a break while the task is in
AIDDB mode. It is used in conjunction with H.EXEC,33 (Disable AIDDB Mode
Break).

H.EXEC Entry Points

o

•

Entry Point 30 - Enable AIDDB Mode Break

c: Entry Conditions

(-'"
"

,,,,,,,f

Calling Sequence

M.CALL H.EXEC,30

Registers

None

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.31 Entry Point 31 - Hold Current Task

This·entry point is called to remove the current task from execution and place it in a
hold state. Task execution does not continue until a continue request is issued to
H.EXEC,26.

Entry Conditions

calling Sequence

M.CALL H.EXEC,31

Registers

None

Exit Conditions

Return Sequence

M.RTRN (after continue request)

Registers

None

2.32 Entry Point 32 - Hold Specified Task
This entry point is called to place the specified task in a hold state. The hold request
system action interrupt flag is set in the DQE of the specified task. A return is then
made to the calling routine.

MPX·32 Technical Volume II 2·19

Entry Point 32 • Hold Specified Task

Entry Conditions

Calling Sequence

M.CALL H.EXEC,32

Registers

Rl DQE address of task to be placed in hold state

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.33 Entry Point 33 - Disable AIDDB Mode Break

This entry point is called by the AIDDB program to disable a break while the task is
in AIDDB mode. This routine is provided for use in conjunction with H.EXEC,30
(Enable AIDDB Mode Break). Normally, AIDDB mode break is not enabled.

Entry Conditions

calling Sequence

M.CALL H.EXEC,33

Registers

None

Exit Conditions

2·20

Return Sequence

M.RTRN

Registers

None

H.EXEC Entry Points

o

(
'~""

\

__ rC

Entry Point 34 - Report No-Walt Message Postprocessing Complete

2.34 Entry Point 34 - Report No-Wait Message Postprocessing
Complete

This entry point is called by the message request postprocessing logic to exit from the
end action interrupt state. Its purpose is to clear the task interrupt processing lock,
and to return to the point of task interrupt. It discards one level of pushdown in the
TSA stack. An M.RTRN is then issued to rerum to the point of task interrupt (or to
the point following the M.ANYW call).

Entry Conditions

Calling Sequence

M.CALL H.EXEC,34

Registers

None

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.35 Entry Point 35 - Report Wait Mode Message Starting

This entry point is called to report the beginning of processing for a wait mode
message request issued by the currently executing task. The task is removed from the
associated ready to run list, and placed in the wait for message complete list A return
to the calling routine is made when message processing by the destination task
completes.

Entry Conditions

Calling Sequence

M.CALL H.EXEC,35

Registers

None

MPX-32 Technical Volume II 2-21

Entry Point 35 • Report Walt Mode Message Starting

Exit Conditions

Return Sequence

CPU scheduler (when message request complete)

Registers

None

2.36 Entry Point 36· General Dequeue

This entry point is called to release the highest priority task queued for the specified
function code and Enqueue ID. If none exist, the request is ignored.

Entry Conditions

Calling Sequence

M.CALL H.EXEC,36

Registers

R5
R6,R7

function code (0-255)

enqueue ID

Exit Conditions

Return Sequence

M.RTRN (with M.SHUT inetfect)

Registers

R2 program number of dequeued task, or zero if none dequeued

2.37 Entry Point 37· Wait for Memory Available

This entry point is called when the required memory space is not available. The
currently executing task is removed from the associated ready-to-run list, and placed
in the memory request list A return to the calling routine is made when the memory
request has been satisfied.

Entry Conditions

Calling Sequence

M.CALL H.EXEC,37

2·22 H.EXEC Entry Points

Entry Point 37 -. Wait 'lor Memory Available

Registers

R5

R7

or

R7

bytes 0 and 1 specify the type of memory required:

Value Memory Class

1 E
2 H
3 S
4 Hl(CPU shadow)
5 H2(IPU shadow)
6 H3(CPU/IPU shadow)

Bytes 2 and 3 specify the number of memory
blocks required.

memory request definition word.
Byte 0 specifies the memory request type:

Value Definition

o
1
2
3
4
6
7

inswap task
pre-activation request
activation request
memory expansion request
IOCS buffer request
system buffer request
release swap file space (see H.MEMM,8)

Bytes 2 and 3 specify the map register to be used; subtract the .
contents of C.MSD from the map register number (0-31).

shared memory request definition word.
Byte 0 specifies the memory request type:

Value Definition

5 shared memory request

Bytes 1 through 3 specify the address of the appropriate SMT entry.

Exit Conditions

Return Sequence

CPU scheduler (when memory is allocated)

Registers

None

MPX-32 Technical Volume II 2·23

Entry Point 38 - Inhibit Asynchronous Abort/Delete

2.38 Entry Point 38 • Inhibit Asynchronous Abort/Delete
This entry point is called to inhibit an asynchronously requested task abort or task
delete. This entry point is used for gating purposes and is called when a program
sequence is started that must be completed in order to maintain system integrity. Any
asynchronous abort or delete requests received while abort/delete is inhibited is
deferred until the system critical sequence is complete, and a call is made to
H.EXEC,39 to remove the inhibit status.

Entry Conditions

calling Sequence

M.CALL H.EXEC,38

Registers

None

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.39 Entry Point 39 • Allow Asynchronous Abort/Delete

This entry point is called at the conclusion of a system critical program sequence, to
remove the asynchronous abort/delete inhibit state previously invoked by a call to
H.EXEC,38. Any deferred abon or delete requests are processed.

Entry Conditions

calling Sequence

M.CAU. H.EXEC,39

Registers

None

Exit Conditions

2·24

Return Sequence

M.RTRN

Registers

None

H.EXEC Entry Points

o

o

Entry Point 40 • End Action Wait

(~'" 2.40 Entry Point 40 • End Action Wait

See M.EAWAIT or M AWAITACTION in the MPX-32 Reference Manual Volume I
for a detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.41 Entry Point 41 • Get User Context

See M_GETcrx in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.42 Entry ·Point 42 • Put User Context

See M PUTcrx in the MPX-32 Reference Manual Volume I for a detailed
descriPtion of this entry point.

2.43 Entry Point 43 • Reserved for Symbolic Debugger/X32

MPX·32 Technical Volume II 2-25/2·26

3 H.EXEC Subroutines

3.1 Subroutine S.EXEC1 - Interactive Input Complete

This routine is called by the appropriate I/O handler from the interrupt service routine.
Its purpose is to report the completion of processing for an interactive input request.
The associated task is removed from the wait for interactive input list and linked to
the ready-to-run list (or to the memory-request list if an inswap is required).

Entry Conditions

Calling Sequence

BL S.EXECI

Registers

Rl DQE entry number

Exit Conditions

Return Sequence

TRSW RO

Registers

None returned.
None saved.

3.2 Subroutine S.EXEC2 - Terminal Output Complete

This routine is called by the appropriate I/O handler from the interrupt service routine.
Its purpose is to report the completion of processing for a terminal output request.
The associated task is removed from the wait for terminal output list and linked to the
ready-to-run list (or to the memory-request list if an inswap is required).

Entry Conditions

Calling Sequence

BL

Registers

Rl

S.EXEC2

DQE entry number

MPX-32 Technical Volume II 3-1

Subroutine S.EXEC2 - Terminal Output Complete

Exit Conditions

Retum Sequence

TRSW RO

Registers

None returned.
None saved.

3.3 Subroutine S.EXEC3 - Wait 1/0 Complete

This routine is called by the appropriate 110 handler from the interrupt service routine.
Its purpose is to repon the completion of processing for a wait 110 request. The
associated task is removed from the wait 110 list and linked to the ready-to-run list (or
to the memory-request list if an inswap is required).

Entry Conditions

calling Sequence

BL

Registers

Rl

S.EXEC3

DQE entry number

Exit Conditions

Retum Sequence

TRSW RO

Registers

R6 unchanged

3.4 Subroutine S.EXEC4 - No-Wait I/O Complete

3-2

This routine is called by the appropriate 110 handler from the interrupt service routine.
Its purpose is to repon the completion of processing for a no-wait 110 request. The
associated task may be in the wait for any 110 list. If so. it is removed from that list
and linked to the ready-to-run list (or to the memory request list if an inswap is
required).

The 110 queue entry is linked to the DQE task interrupt list and contains the no-wait
110 postprocessing service address. When the scheduler dispatches CPU control to
this task, the specified routine is entered as a preemptive system service. Preemptive
system services take precedence over execution of the task, but do not take precedence
over system services being executed on behalf of the task.

H.EXEC Subroutines

o

o·

Subroutine S.EXEC4 - No-Walt 1/0 Complete

(~:c Entry Conditions

('"
.)

calling Sequence

BL S.EXEC4

Registers

DQE entry number Rl
R6 110 queue entry address (the first eight words of the 110 queue entry

must be in the preemptive system service list entry header format)

Exit Conditions

Return Sequence

TRSW RO

Registers

R6 unchanged

3.5 Subroutine S.EXEC4A - No Wait 1/0 Complete (No
Postprocessing)

This routine is called by the appropriate handler from the interrupt service routine. Its
purpose is to report the completion of processing for a no-wait 110 request. The
associated task may be in the wait for any 110 list. If so, it is removed from that list
and linked to the ready-to-run list (or to the memory request list if an inswap is
required).

Entry Conditions

calling Sequence

BL

Registers

Rl
R6

Exit Conditions

S.EXEC4A

DQE entry number

110 queue entry address

Return Sequence

TRSW RO

Registers

R6 unchanged

MPX-32 Technical Volume II 3-3

Subroutine S.EXEC5 • Exit from Interrupt

3.6 Subroutine S.EXEC5 - Exit from Interrupt

This routine is called as an exit service by all interrupt service routines. Its purpose is
to allow CPU scheduling based on events which may have occurred at an interrupt
level. If lower level interrupts are active, processing continues at the last (highest)
interrupted level. If no interrupts are active, the CPU scheduler is entered.

Entry Conditions

Calling Sequence

BEl
DAIIDACI (for associated level)

BL S.EXEC5

Registers

R2 address of register save block containing registers from interrupted
environment

R6,R7 PSD from interrupted environment

Exit Conditions

Return Sequence

LPSD (or) CPU scheduler

Registers

None

3.7 Subroutine S.EXEC5A - Exit from Trap Handler with Abort

This routine is called as an exit service from the system error trap handlers:
nonpresent memory, undefined instruction, privilege error, address exception, and map .
fault. Its purpose is to request that the current task be aborted and transfer execution
back to the CPU scheduler, S.EXEC20. If lower levels of interrupt are active, a
system kill is executed.

Entry Conditions

Calling Sequence

BEl
BL

Registers

R2
R5

R6,R7

S.EXEC5A

address of register save area

abon code

PSD from interrupt environment

H.EXEC Subroutines

c·.".···".'
. ~,

("',"" "
,,.'

Subroutine S.EXEC5A • Exit from Trap Handler with Abort

Exit CondHlons

Return Sequence

CPU scheduler or MKll..L

Registers

None

3.8 Subroutine S.EXEC6 - No-Wait 110 Postprocessing
Complete
This routine is called to repon the completion of no-wait 110 postprocessing. Its
purpose is .to clear the task interrupt processing lock, and to return to the point of task
interrupt. It discards one level (the most recent) of pushdown in the TSA stack. An
M.RTRN is then issued to return to the point of task interrupt.

Entry CondHlona

calling Sequence

BL

Registers

None

Exit Conditions

S.EXEC6

Return Sequence

M.RTRN (to previous context)

Registers

None

3.9 Subroutine S.EXEC7 - Report Memory Pool Available

This routine is called when memory pool space is deallocated. The purpose of this
subroutine is to resume the execution of all tasks in the wait for memory pool list. If
the wait for memory pool list is empty, no additional processing is required and a
return is made to the calling routine. Otherwise. each entry in the list is removed and
placed in its associated ready-to-run list. It is expected that when these tasks resume
execution, they will re-issue the request for the required memory pool space. When
all entries have been flushed from the wait for memory pool list, a return is made to
the calling routine.

MPX-32 Technical Volume II 3-5

Subroutine S.EXEC7 - Report Memory Pool Available

Entry Conditions

Calling Sequence

BL

Registers

None

S.EXEC7

.•.

Exit Conditions

Return Sequence

TRSW RO

Registers

RS,R6

RI-R4,R7

saved

destroyed

3.10 Subroutine S.EXEC8 • Link Entry to Queue by Priority

This routine is a register-reentrant subroutine, callable from either a software or
interrupt priority level. Its purpose is to link an entry into the list associated with the
designated head cell, by priority. 'This routine assumes that a standard head cell and
entry header format are used. After the specified linkage is performed, a return is
made to the calling program.

Entry Conditions

Calling Sequence

(Gating as appropriate)

BL S.EXEC8

Registers

Rl
R2

head cell address

address of entry to be linked

Exit Conditions

3-6

Return Sequence

TRSW RO

Registers

R2,R4,R6,R7

Rl,R3,R5
saved

destroyed

H.EXEC Subroutines

o

0,

Subroutine S.EXEC9 - Unlink Entry from Queue

3.11 Subroutine S.EXEC9 • Unlink Entry from Queue

This routine is a register-reentrant subroutine, callable from either a software or
interrupt priority level. Its purpose is to unlink the specified entry from the list
associated with the designated head cell. This routine assumes that a standard head
cell and entry header format are used. After the entry is unlinked, a return is made to
the calling program.

Entry Conditions

Calling Sequence

(Gating as appropriate)

BL S.EXEC9

Registers

RI

R2

Exit Conditions

head cell address

address of entry to be unlinked

Return Sequence

TRSW

Registers

R2,R4-R7

RI,R3

RO

saved

destroyed

3.12 Subroutine S.EXEC10 • Link Entry to Bottom of Queue

This routine is a register-reentrant subroutine, callable from either a software or
interrupt priority level. Its purpose is to link an entry to the bottom of the list
associated with the specified head cell. This routine assumes that a standard head cell
and entry header format are used. After the specified linkage is performed, a return is
made to the calling program.

Entry Conditions

calling Sequence

(Gating as appropriate)

BL S.EXECIO

Registers

Rl
R2

head cell address
address of entry to be linked

MPX·32 Technical Volume II 3-7

Subroutine S.EXEC10 - Link Eritry to Bottom of Queue

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl,R2,R4-R7 saved

R3 destroyed

3.13 Subroutine S.EXEC11 - Link Entry to Top of Queue

This routine is a register-reentrant subroutine, callable from either a software or
interrupt priority level. Its purpose is to link an entry to the top of the list associated
with the specified head cell. This routine assumes that a standard head cell and entry
header format are used. After the specified linkage is performed, a return is made to
the calling program as shown in the following text;.

Entry Conditions

calling Sequence

(Gating as appropriate)

BL S.EXECll

Registers

Rl

R2
head cell address

address of entry to be linked

Exit Conditions

3-8

Return Sequence

TRSW RO

Registers

Rl,R4-R7

R2

R3

saved

address of linked entry

destroyed

H.EXEC Subroutines

Q

Q.

'0

Subroutine S.EXEC11 - Link Entry to Top of Queue

Word 0

1

2

Notes:

o 7 8
String forward address. See Note 1.

String backward address. See Note 2.

Priority. Count.
See Note 3. See Note 4.

15 16 23 24 31

Reserved

1. The string forward address is a one word field which points to the first entry in
the top-to-bottom chain. When the list is empty, the field contains the address of
the head cell. .

2. The string backward address is a one word field which points to the first entry in
the bottom-to-top chain. When the list is empty, the field contains the address of
the head cell.

3. The head cell priority is a one byte field which contains a dummy head cell
priority which is always zero.

4. The count value is a one byte field which contains the number of entries in the
list. This value is incremented/decremented as required by subroutines S.EXEC8
through S.EXECl1.

Word 0

1

2

Notes:

o 7 8 15 16

String forward address. See Note 1.

String backward address. See Note 2.

Priority. Available for use ~ defined
See Note 3. by entry format.

23 24 31

1. The string forward address is a one word field which points to the next entry in
the top-to-bottom chain. If this is the last entry in the top-to-bottom chain, the
string forward address will be the address of the head cell.

2. The string backward address is a one word field which points to the next entry
in the bottom-to-top chain. If this is the last entry in the chain, the string
backward address will be the address of the head cell.

3. The priority field is a one byte field containing the priority of this entry. The
acceptable range of this value is 1-255.

Priority zero is reserved for use as a dummy priority by the head cell.

The last entry in the top-to-bottom chain is the first entry in the bottom-to-top chain.
The last entry in the bottom-to-top chain is the first entry in the top-to-bottom chain.

MPX·32 Technical Volume II 3-9

Subroutine S.EXEC12 • Report' Memory Scheduler Event

3.14 Subroutine S.EXEC12 - Report Memory Scheduler Event
This routine is called when the status of allocated memoIY changes (it is either
deallocated or becomes mote eligible for swapping). The purpose of this subroutine is
to insure the appropriate execution of the memory scheduler task. If the memory­
request list is empty, no additional processing is tequin:d and a tetum is made to the
user. If the memory-request list is DOt empty, C.RRUN is incremented. and the
memory scheduler state is checked. If the memory scheduler is in the wait for
memory event list. it is temoved from that list and placed in the ready-to-run list at
the priority of the highest priority entry in the memory-request list. A return is then
made to the calling routine.

Entry Conditions

Calling Sequence

BL

Registers

None

S.EXEC12

Exit Conditions

Return Sequence

TRSW

Registers

, RO

R3,R6 saved

Rl.R2.R4.RS.R7 destroyed

3.15 Subroutine S.EXEC13 - Break Specified Task

3-10

This routine is called by the appropriate 110 handler from the interrupt service routine.
or by the M.INT monitor service. Its purpose is to set the AIDOB-break requested
fiag in the DQE if AIODB is associated with the task and if the AIDOB mode active
task interrupt fiag is not already set. If AIDDB is not associated with the task, but a
user break receiver has been established. the user-break requested fiag is set in the
DQE. If AIDOB is not associated with the task, and no user break receiver has been
established. the break is ignored. A return to the calling routine is made upon
completion of processing.

H.EXEC Subroutines

, ., 0.····

~.
I \

V

Q.

Subroutine S.EXEC13 - Break Specified Task

Entry Conditions

Calling Sequence

BL

Registers

R2

R3

Exit Conditions

S.EXEC13

DQE address of task to receive break

address of the 22 word scratchpad area (doubleword bounded)

Return Sequence

TRSW RO

Registers

R3-R3-4W
Rl,R2,R4
RS,R6,R7

scratchpad address
saved

destroyed

3.16 Subroutine S.EXEC14· Resume Specified Task

This routine can be called either from an interrupt service routine or from a system
service operating on behalf of a task. Its purpose is to resume the execution of a
suspended task. If the specified task is not in a suspended state, no action is taken. If
the specified task is suspended and outswapped, it"is unlinked from the suspended list,
and linked to the memory request list Otherwise, it is unlinked from the suspended
list, and linked to the ready-to-run list at its current priority.

Entry Conditions

Calling Sequence

BL S.EXECI4

Registers

R2 DQE address of task to be resumed

MPX-32 Technical Volume II 3-11

Subroutine S.EXEC14 - Resume Specified Task

Exit Conditions

Return Sequence

TRSW RO

Registers

None returned.

,I

3.17 Subroutine S.EXEC20 - CPU Scheduler

This routine is an internal H.EXEC subroutine. It is called by S.EXEC5 when all
outstanding intelTUpts or traps have been exited, or by M.RTRNIM.RTNA with the
return context on the TSA stack. Its purpose is to check for a ready-ta-run task that is
higher in priority than the currently executing task. This check is quickly made
because the linkage of any task to the ready-to-run queue will cause a priority
comparison between that task and the currently executing task. If the newly ready-to­
run task is of higher priority, an indicator is set for S.EXEC20. S.EXEC20 either
returns to the context of the current task, processes a task intelTUpt on behalf of the
current task, or selects a higher priority task for execution.

Entry Conditions

Calling Sequence

BU

Registers

None

S.EXEC20

exit Conditione

3-12

Return Sequence

Dispatch of CPU control

There are five paths through the scheduler (S.EXEC20):

1. task scheduled for execution (see Figure 3-1)

2. context switch inhibited, current task resumed (see Figure 3-2)

3. time quantum two has expired (see Figure 3-3)

4. higher priority task requested processor (see Figure 3-4)

5. no other tasks requesting CPU, current task resumed (see Figure 3-4)

Paths two and five resume the task previously in control of the CPU; rio context
switch takes place.

H.EXEC Subroutines

o

INTERNAL
LABELS

S)(20.5

S)(20.6

S)(20.9

5)(20.1

SX2O.2

Subroutine S.EXEC20 • CPU Scheduler

SCHEDULE
IPU

TASK

SCAN READY
QUEUES

FOR TASK

NO CURRENT TASK-
SELECT A TASK FOR EXECUTION

NOT EXECUTED IF IPU
NOT PRESENT

SET IDLE FLAG
NO AND LOAD

>--"'INTERVAl TIMER t---t.,

ESTABLISH
COMMONREGI

lOAD MAP
REGISTERS

SELECT TASK
FORIPU

exECUTION

POP USER'S
CONTEXT FROM

TSASTACK

LOAD NEW PC
AND DISPATCH

TO TASK

WITH IDLE COUNT

NOT EXECUTED IF IPU
NOT PRESENT

Figure 3-1
S.EXEC20 Path One

WAIT

86D1U03

MPX·32 Technical Volume II 3-13

Subroutine S.EXEC20 • CPU Scheduler

3-14

~
RESUME

CURRENT
TASK

YES

PATH 2

NOT EXECUTED IF IPU
NOT PRESENT

S.EXEC20

VERIFY

IfIIJ
RESPONSE

SELECT TASK
FORIPU

EXECUTION

POP USER'S
CONTEXT FROM

TSASTACK

LOAD NEW PC
AND DISPATCH

TO USER'S TASK

IPU OFF-lINE
OR

: NOT SYSGENED

NO
PATH 1

YES
PATH 3

YES
PATH 4

~
NO OTHER TASK
REOUESTING CPU -­
RESUME CURRENT TASK

88D1U02

Figure 3-2
S.EXEC20 Path Two and Five

H.EXEC Subroutines

o

o

(

('.''' .. '.''
" /

INTERNAL
LABELS

SX20.41

MPX·32 Technical Volume II

Subroutine S.EXEC20 • CPU Scheduler

PATH 3

UNLINK TASK
FROM CURRENT

LINK TO
READVQUEUE

Figure 3-3
S.EXEC20 Path Three

CURRENT TASK
TIME QUANTUM EXPIRED
CONTEXT SWITCHING
NOT INHIBITED

8601 R02

3-15

Subroutine S.EXEC20 • CPU Scheduler

3-16

INTERNAL
LABELS

SX20.H

SX2001

PATH 4

SX20.1
IN PATH 1

CURRENT TASK
CONTEXT SWITCH NOT INHIBITED
STAGE 2 NOT EXPIRED
HIGHER PRIORIlY TASK REQUESTING

YES

YES

BUMP PRIORIlY
BY40F

PRE-EMPTED
TASK

BUMP PRIORIlY
BY10F

PRE-EMPTED
TASK

ALLOW CURRENT TASK TO FINISH
MINIMUM TIME QUANTUM

Figure 3-4
S.EXEC20 Path Four

PATH 3

PATH 3

86D1R03

H.EXEC Subroutines

o

o

0-

Subroutine S.EXEC20 • CPU Scheduler

(: 3.18 Subroutine S.EXEC21 - Process Task Interrupt

(

This routine is called by S.EXEC20 to process any task interrupt requests, after the
CPU scheduler has detennined that the return address in the task context is not in the
operating system area. It processes both system action interrupt requests in
DQE.SAIR, and requested software task interrupts in DQE.RTI.

Entry Conditions

Calling Sequence

BU S.EXEC21

Registers

R2 DQE address

Exit Conditions

Return Sequence

Transfer control as appropriate for task interrupt, or return to interrupted context.

Task Interrupt Request Processing (S.EXEC21)

System Action Task Interrupts (DQE.SAIR):

Priority
(bit)

o
1
2
3
4
5
6
7

Description

deiete task request (DQE.DELR)
reserved
hold task request (DQE.HLDR)
abort task request (DQE.ABTR)
exit task request (DQE.EXTR)
suspend task request (DQE.SUSR)
run request (DQE.RRRQ)
reserved

Processing
routine

S.EXEC28

S.EXEC51
S.EXEC19
S.EXEC29
S.EXEC21
S.EXEC21

Requested Software Task Interrupts (DQE.RTI):

Priority
(bit)

o
1
2
3
4
5

6-7

Description

reserved
end action request (priority 1) (DQE.EAIR)
debug break request (DQE.DBBR)
user break request (DQE. UBKR)
end action request (priority 2) (DQE.EA2R)
message interrupt request (DQE.MSIR)
reserved

MPX·32 Technical Volume" 3-17

Subroutine S.EXEC23 • Unlink Messages In Receiver Queue

3.19 Subroutine S.EXEC23 • Unlink Messages'ln Receiver Queue 0
This routine is called from one of the task termination processing conttol subroutines
(S.EXEC19, S.EXEC28, or S.EXEC29). Its purpose is to unlink all messages from
the receiver queue and to terminate these messages, relinking any waiting tasks to
their respective ready-to-run queues. A rerum is then made to the calling routine.

Entry Conditions

Calling Sequence

BL

Registers

None

S.EXEC23

Exit Conditions

Return Sequence

TRSW RO

Registers

All registers desttoyed

3.20 Subroutine S.EXEC24· Reserved

3.21 Subroutine S.EXEC25 • Terminate Next Run in Queue

This routine is called from one of the task termination processing conttol subroutines
(S.EXEC19, S.EXEC28, or S.EXEC29). Its purpose is to unlink the next run request
from the receiver queue, and to terminate the requests with abnormal status. A return
is then made to the calliilg routine. '

Entry Conditions

3-18

Calling Sequence

BL

Registers

R3

S.EXEC2S

scratchpad address (doubleword bounded)

H.EXEC Subroutines

o

Subroutine S.EXEC25 - Terminate Next Run in Queue

Exit Conditions

Return Sequence

TRSW RO

Registers

R3-R3-4W scratchpad address
Rl,R2,R4-R7 destroyed

~

3.22 Subroutine S.EXEC27 - Transfer Control to Abort Receiver

This routine is called from the abort task processing control subroutine (S.EXEC19).
Its purpose is to transfer control to the user task abort receiver if one exists.
Otherwise, a return is made to the calling routine.

Entry CondHlons

calling Sequence

BL

Registers

R2

Exit Conditions

S.EXEC27

current task DQE address

Return Sequence

TRSW RO (or LPSD to abort receiver)

Registers

All registers preserved

3.23 Subroutine S.EXEC30 - Reserved

3.24 Subroutine S.EXEC31 - No-Wait Run Request

This routine is called to report the completion of no-wait run request postprocessing.
Its purpose is to clear the task interrupt processing lock, and to return to the point of
task interrupt It discards the most recent level of push down in the TSA. A
M.RTRN is then issued to return to the point of task interrupt.

MPX·32 Technical Volume II 3-19

Subroutine S.EXEC31 - No-Wait Run Request

Entry CondHlons

calling Sequence

BL S.EXEC31

Registers

None

Exit Conditions

Return Sequence

M.RTRN (to previous context)

Registers

None

3.25 Subroutine S.EXEC34 - Reserved

3.26 Subroutine S.EXEC35 - Report No-Wait Postprocessing

This routine is called to report the completion of no-wait mode message
postprocessing. Its purpose is to clear the task interrupt processing lock, and to return r)' ,
to ,the point of task interrupt. It discards the most recent level of pushdown in the ,-- '.'
TSA stack. An M.RTRN is then used to return to the point of task interrupt.

Entry Conditions

Calling Sequence

BL S.EXEC3S

Registers

None

Exit CondHlons

Return Sequence

CPU scheduler (to previous context)

Registers

None

3.27 Subroutine S.EXEC40 - Reserved

3-20 H.EXEC Subroutines

o·

Subroutine S.EXEC41 - Exit Run Receiver

('" 3.28 Subroutine S.EXEC41 - Exit Run Receiver

This routine is called to exit a run receiver when the MJCRUNR exit type is invoked.
Its purpose is to process the exit according to the specifications contained in the
receiver exit block (RXB). The run receiver queue will be examined, and if not
empty, the task is executed again at the point following the M.xRUNR call on behalf
of the next requesL If the queue is empty, the exit options are examined. If option bit
o is set, the task is placed in a wait-state, waiting for the next run request to be
received. If option bit 0 is reset, the task exits the system.

Entry Conditions

Calling Sequence

'BL

Registers

Rl
R2

R3

Exit CondHlons

S.EXEC41

current task DQE address

receiver exit block (RXB) address

scratchpad address (doubleword bounded)

Return Sequence

No return (rerun task or exit)

3.29 Subroutine S.EXEC42 - Exit Message Receiver

This routine is called to exit a message receiver when a M.XMSGR service has been
called. If the message Interrupt is not active, the task is aborted. Its purpose is to
reset the task interrupt lock and to process the exit according to the specifications in
the receiver exit block (RXB). The message receiver queue is examined, and if not
empty, the message interrupt is invoked again on behalf of the next request. If the
queue is empty, a return is made to the point of interrupt or following
M.SUSPIM.ANYW at the base execution level.

Entry Conditions

Calling Sequence

BL

Registers

Rl
R2

R3

S.EXEC42

current task DQE address

receiver exit block (RXB) address

scratchpad address (doubleword bounded)

MPX·32 Technical Volume II 3-21

Subroutine S.EXEC42 - exit Message Receiver

Exit Conditions

Return Sequence
"

No return to caller (rerun message receiver or return to user base level context)

3.30 Subroutine S.EXEC44 - Change Priority of Current Task

This routine is called to change the priority level of the current task. The specified
priority level is stored in DQE.CUP and DQE.BUP and as the_priority level of the
currently executing task. No relink of this task is required since it isJinked to the
special state chain for the currently executing task. A return is then made to the
calling routine.

Entry Conditions

calling Sequence

BL S.EXEC44

Registers

R6 priority level

. Exit Conditions

Return Sequence

TRSW RO

Registers

R2
Rl,R3-R7

current task DQE address

saved

3.31 Subroutine S.EXEC46 - Reserved

3.32 Subroutine S.EXEC47 - Reserved

3-22 H.EXEC Subroutines

o~

o

Subroutine S.EXEC55 - Link Task to Ready to Run List

(" 3.33 Subroutine S.EXEC55 - Link Task to Ready to Run List

C.,
.-V"')

This routine is called to link a task to the ready-to-run queue. It unlinks the task from
the designated list, then links the task to the ready list associated with its current
priority.

If the optional CPUIIPU scheduler has been selected by specifying the SYSGEN
DELTA directive, the task is linked at its base priority minus the delta value if the
following criteria is true:

1. The task is]PU biased.

2. The task is real time.

3. The task has none of the following characteristics:

•]PU inhibited,

• outstanding system or pseudosysrem action requests.

• PSD is in the operating system.

If the task does not meet any of these criteria, the task is linked to the ready-to-run list
as described above. If the task is outswapped and cannot run, it is linked to the
memory request queue and the memory scheduler is resumed.

Entry Conditions

calling Sequence

BEl

BL S.EXECSS

Registers

Rl

R2

designated list headcell address

DQE address

Exit Conditions

Return Sequence

TRSW RO

Registers

R2,R4,R7 saved

Rl,R3,RS,R6 destroyed

MPX·32 Technical Volume II , 3-23

Subroutine S.EXEC56 - Resume Memory Scheduler

3.34 Subroutine S.EXEC56· Resume Memory Scheduler
This routine is called as a result of a memory scheduler event. An immediate return is
made if no memory requests are queued. Otherwise, the memory scheduler is made
ready to run at the priority of the highest priority memory request queued.

Entry Conditions

Calling Sequence

BEl

BL

Registers

None

Exit Conditions

S.EXEC56

Return Sequence

TRSW RO

Registers

RI-R3,R5

R4,R6,R7
destroyed

saved

3.35 Subroutine S.EXEC57 • Link Task to Ready List by Priority

This routine is called to link the designated task to the ready-to-run list associated
with its current priority.

Entry Conditions

3-24

Calling Sequence

BEl

BL

Registers

R2

S.EXEC57

DQE address of specified task

H.EXEC Subroutines

Subroutine S.EXEC57 - Link Task to Ready List by Priority

(~. Exit Conditions

(

Return Sequence

TRSW RO

Registers

R2,R4,R6,R7

Rl,R3,RS
saved

desuoyed

3.36 Subroutine S.EXEC59 - Reserved

3.37 Subroutine S.EXEC61 - Transfer Parameters from MRRQ

This routine is called for the destination task after a request for message or run request
parameters has been made. The subroutine transfers the sent parameters from the
MRRQ entry to the receiver buffer specified in the PRB.

Entry Conditions

calling Sequence

BL

Registers

Rl

R2

R3

Exit CondHlons

S.EXEC61

MRRQ address

PRB address

scratchpad address (doubleword bounded)

Return Sequence

TRSW RO

Registers

Rl,R2,R4,RS saved

R3-R3-4W scratchpad address

R6 status code: O.OK, 4-receiver buffer length exceeded

R 7 desuoyed

MPX·32 Technical Volume II 3-25

Subroutine S.EXEC62 - Validate RXB

3.38 Subroutine S.EXEC62 - Validate RXB

This routine is called to validate the receiver exit block (RXB) after the destination
task has issued an exit from message or run request processing.

Entry Conditions

calling Sequence

BL

Registers

R2
R3

S.EXEC62

RXB address

scratchpad address (doubleword bounded)

Exit Conditions

Return Sequence

TRSW RO (CCI set indicates validation error)

Registers

Rl.R4,RS,R7 destroyed

R2 saved

R3-R3-4W scratchpad address

R6 error code if CCI set; otherwise. R6 is destroyed

3.39 Subroutine S.EXEC68 - Construct and Vector Context

This routine is called by the send request postprocessing logic to vector to a user­
specified end action routine. Control is transferred with mapped. unblocked status.

Entry Conditions

3-26

calling Sequence

BL

Registers

Rl
R6

S.EXEC68

PSB address

user end action routine address

H.EXEC Subroutines
•

o

~

U.

o

"
Subroutine S.EXEC68· Construct and Vector Context

Exit Conditions

Return Sequence

No rerum. LPSD to user end action routine.

Registers

R2 PSB address

-3:40 Subroutine S.EXEC69· Postprocessing Merge Point

This routine is called to remove the task interrupt processing lock and mark the task
interrupt request if additional end action entries are queued. The most recent level of
context in the TSA stack is discarded, and an MRTRN is issued to pop to the
previous context level.

Entry Conditions

calling Sequence

BL

Registers

Rl

exit Conditions

S.EXEC69

current task DQE address

Return Sequence

No return to caller. M.RTRN to previous context level.

Registers

None

MPX-32 Technical Volume II 3-27

Subroutine S.EXEC72 • Report Wait 110 Starting

3.41 Subroutine S.EXEC72· Report Wait I/O Starting

This routine is called to process a report of wait mode 110 starting. A check is made
to see if the associated 110 has already completed. If so, an immediate retum is made.
Otherwise, the swap inhibit flag is set, unless RO bit 1 is set, and the task is linked to
the designated wait list.

Entry Conditions

calling Sequence

BU S.EXEC72

Registers

RO
Rl

Exit Conditions

bit 0 set indicates task is swappable during 110
address of wait list headcell

Return Sequence

No return to caller. CPU scheduler return to context on TSA stack when 110
complete.

Registers

None

3.42 Subroutine S.EXEC75 • Situationa' Priority Increment
This routine is called to increment the priority of the specified task. Priority
adjustment is bypassed if the specified task is a real time task.

Entry Conditions

calling Sequence

3-28

BL

Registers

R2

R4

S.EXEC7S

DQE address of target task

situational priority increment

H.EXEC Subroutines

0 ;·
.,

0-

Subroutine S.EXEC75 - Situational Priority Increment

Exit Conditions

Return Sequence

TRSW RO

Registers

RI-R4,R6,R7 saved

RS destroyed

3.43 Subroutine S.EXEC77 - Reserved

3.44 Subroutine S.EXEC79 - Push Current Context onto Stack

This routine is called to format a PSD with the privileged mode set, the condition
codes clear, the extended addressing mode clear, the right halfword instruction clear,
the arithmetic exception trap clear, and the PC pointing into H.EXEC25 in word 1.
Word 2 has the map mode set and CPIX of the specified task. The subroutine then
places the PSD and the registers with the contents at the end of the subroutine onto
the stack. After placing the information onto the stack, the subroutine returns to the
calling routine.

C:" Entry CondHions

Ci

Calling Sequence

BL

Registers

R2

Exit CondHions

S.EXEC79

DQE address of specified task

Return Sequence

Rl,R4JRS de$ttOyed

R2,R3,R6,R7 unchanged

MPX·32 Technical Volume II 3-29

Subroutine S.EXEC80· Start IPU and Verify

3.45 Subroutine S.EXEC80 • Start IPU and Verify

When this routine is called and IPU inhibit context switch is not set, it resets the IPU
run flag, statts the IPU and then initializes and statts the IPU verification timer. The
subroutine then returns control to the calling, routine.

Entry CondHions

Calling Sequence

BL S.EXEC80

Registers

None

Exit Conditions

Return Sequence

TRSW RO

Registers

RI-R3,RS-R7 unchanged

R4 destroyed

3.46 Subroutine S.EXEC81 • Enter Debugger Entry Point Four

This routine enters the base mode debugger's entry point 4.

Entry CondHions

3-30

Calling Sequence

BL S.EXEC81

Registers

R2 base register stack level. Used to load the task's base registers as
needed by the dispatcher and the debugger.

H.EXEC Subroutines

o·

Subroutine S.EXEC81 - Enter Debugger Entry Point Four

(:' Exit Conditions

Return Sequence

M.RTRN
or

M.RTRN

Registers

R7

CCI set, if error

status, if error

.'

3.47 Subroutine S.EXEC82 - Push Calling Task onto the Stack

This subroutine pushes the calling task context onto the task's TSA stack. A return
PSW is supplied to specify the instructions to be executed when that TSA stack level
is popped.

This subroutine cannot be used by the IPU.

Entry CondHlons

calling Sequence

BL S.EXEC82

Registers

R4 . return PSW

Exit Conditions

Return Sequence

TRSW RO

MPX·32 Technical Volume II 3-31/3-32
•

c·'······ ,

(

Executive Subroutine Module (H.EXSUB)

MPX-32 Technical Manual

Volume II

.'

Contents

Page

1 H.EXSUB Overview

1.1 General Information 1-1
1.2 Subroutine Summary ... 1-1

2 H.EXSUB Subroutines

2.1 Subroutine S.EXEC15 - Suspend Execution of Current Task 2-1
2.2 Subroutine S.EXEC16 - Suspend Execution of Specified Task 2-1
2.3 Subroutine S.EXECI7 - Abort Current Task ... 2-2
2.4 Subroutine S.EXEC 18 - Abort Specified Task ... 2-2
2.5 Subroutine S.EXECI9 - Abort Task Processing Control 2-3
2.6 Subroutine S.EXEC22 - Completion of All No-Wait Operations 2-4
2.7 Subroutine S.EXEC26 - Remove Task Gating ... 2-5
2.8 Subroutine S.EXEC28 - Delete Task Processing Control 2-5
2.9 Subroutine S.EXEC29 - Exit Task Processing Control 2-6
2.10 Subroutine S.EXEC32 - Completion of Wait Run Request 2-7

(:C~ 2.11
--"/' 2.12

Subroutine S.EXEC33 - Report No-Wait Run Request Complete 2-8
Subroutine S.EXEC36 - Report Wait Mode Message Complete 2-9

2.13 Subroutine S.EXEC37 - No-Wait Message Mode Complete 2-9
2.14 Subroutine S.EXEC38 - Inhibit Swap of Cur:rent Task 2-10
2.15 Subroutine S.EXEC39 - Enable Swap of CUrrent Task 2-11
2.16 Subroutine S.EXEC43 - Reactivate Run Receiver Task 2-11
2.17 Subroutine S.EXEC4S - Change Priority of Specified Task 2-12
2.18 Subroutine S.EXEC48 - Convert Number to DQE Address 2-13
2.19 Subroutine S.EXEC49 - Construct MRRQ .. 2-13
2.20 Subroutine S.EXECSO - Link MRRQ to Receiver Queue 2-14
2.21 Subroutine S.EXECS1 - Link Cur:rent Task to Wait State 2-15
2.22 Subroutine S.EXECS2 - Message/Run Request Processing ~ 2-15
2.23 Subroutine S.EXECS3 - Validate PSB ... 2-16
2.24 Subroutine S.EXECS4 - Move Byte String .. 2-17
2.25 Subroutine S.EXEC58 - Link MRRQ to Message Receiver 2-17
2.26 Subroutine S.EXEC60 - Validate PRB ... 2-18
2.27 Subroutine S.EXEC63 - Transfer Return Parameters 2-19
2.28 Subroutine S.EXEC64 - No-Wait Message Postprocessing 2-19
2.29 Subroutine S.EXEC65 - No-Wait Mode Run Request Postprocessing 2-20

(~:'
/

MPX-32 Technical Volume II iii

Contents
"

Page

2.30 Subroutine S.EXEC66 - Deallocate MRRQ ... 2-21
o

2.31 Subroutine S.EXEC67 - Link Entry to End Action Queue 2-22
2.32 Subroutine S.EXEC70 - Tenninate Run Requests in Queue of Task 2-22
2.33 Subroutine S.EXEC71 - Start-up of Run Receiver Task 2-23
2.34 Subroutine S.EXEC73 - Replace Context on TSA Stack 2-24
2.35 Subroutine S.EXEC74 - Reset Stack to User Level ~ 2-24
2.36 Subroutine S.EXEC76 - Update Execution Accounting Value 2-25
2.37 Subroutine S.EXEC78 - Move Context from Stack to T.CONTXT 2-26

o·
iv Contents

" 1 H.EXSUB Overview

1.1 General Information

The Executive Subroutine Module (H.EXSUB) lists subroutines called by the
Executive Module (H.EXEC). These subroutines involve scheduling tasks for
allocation by the CPU and IPU.

The subroutines of H.EXSUB can reside in extended memory.

1.2 Subroutine Summary

Subroutine

S.EXECIS
S.EXEC16
S.EXEC17
S.EXEC18
S.EXEC19
S.EXEC22
S.EXEC26
S.EXEC28
S.EXEC29
S.EXEC32
S.EXEC33
S.EXEC36
S.EXEC37
S.EXEC38
S.EXEC39
S.EXEC43
S.EXEC4S
S.EXEC48
S.EXEC49
S.EXECSO
S.EXECSI
S.EXECS2
S.EXECS3
S.EXECS4
S.EXECS8
S.EXEC60
S.EXEC63
S.EXEC64·
S.EXEC6S
S.EXEC66
S.EXEC67
S.EXEC70
S.EXEC71
S.EXEC73
S.EXEC74
S.EXEC76
S.EXEC78

Description

suspend execution of current task
suspend execution of specified task
abort current task
abort specified task
abort task processing control
wait for completion of all no-wait operations
remove task gating
delete task processing control
exit task processing control
report wait mode run request complete
report no-wait mode run request complete
report wait mode message complete
report no-wait mode message complete
inhibit swap of current task
enable swap of current task
reactivate run receiver task
change priority level of specified task
convert task number to DQE address
construct MRRQ
link MRRQ to run receiver of destination task
link current task to designated wait state
message or run request postprocessing
validate PSB
move byte string
link MRRQ to message receiver of destination task
validate PRB
transfer return parameters from destination task to MRRQ
no-wait mode message postprocessing
no-wait mode run request postprocessing
deallocate MRRQ
link entry to end action queue
terminate all run requests in receiver queue of current task
insure start-up of destination run receiver task
replace context on TSA stack
reset stack to user level
update task execution accounting value
move context from stack to T.CONTXT

MPX-32 Technical Volume II 1-1

o

o

o

('

2 H.EXSUB Subroutines

2.1 Subroutine S.EXEC15 - Suspend Execution of Current Task

This routine is called to suspend execution of the current task. The DQE for the
current task is unlinked from the ready-to-run list, and linked to the suspended list.
Control is then transferred to the CPU scheduler to select the next task for execution.

Entry Conditions

calling Sequence

BL

Registers

R6

Exit Conditions

S.EXEC15

zero if indefinite suspend; otherwise, contains negative timer units

Return Sequence

Branch to CPU scheduler; when resumed, the task continues operation at the most
recent context in the pushdown stack.

2.2 Subroutine S.EXEC16 - Suspend Execution of Specified
Task '

This routine is called to suspend execution of the specified task. The DQE is marked
to indicate that an asynchronous suspend has been requested. The suspend request is
processed on behalf of the task being suspended, when the CPU scheduler selects that
task for execution.

Entry Conditions

calling Sequence

BL

Registers

R2

R6

S.EXEC16

DQE address of task to be suspended

zero if indefinite suspend; otherwise, contains negative timer units

MPX·32 Technical Volume II 2-1

Subroutine S.EXEC16 - Suspend Execution of Specified Task

Exit CondHions

Return Sequence

TRSW RO

Registers

None returned.

"

2.3 Subroutine S.EXEC17 - Abort Current Task

This routine is called either from a system service, or from a system trap level. Its
purpose is to store the abort code and set the abort requested bit in the DQE. It then
resets the TSA stack to a level routine.

If the task has an abort receiver established, the DQE.ABRA flag is set and a return is
made to the calling routine. If no abort receiver is established, the DQE.ABRT flag is
set and the task is marked as leaving the system (by setting the DQE.TL VS flag). A
return is then made to the calling routine.

Entry CondHlons

calling Sequence

BL

Registers

RS

R6,R7

S.EXEC17

abort code characters 1-4

abort code characters 5-12

Exit CondHions

Return Sequence

TRSW RO

Registers

R2 DQE address of current task

R4,R7 saved

Rl,R3,RS,R6 destroyed

2.4 Subroutine S.EXEC18 - Abort Specified Task

2-2

This routine is called from a system service. Its purpose is to store the abort code and
set the abort requested asynchronous bit in the DQE. It is then returned to the calling
routine. The abort requested bit is not examined until the scheduler selects this task
for execution.

H.EXSUB Subroutines

U
~)

i "\
; ,;

c:
Subroutine S.EXEC18 • Abort Specified Task

If the specified task is in the SUSP, ANYW, HOLD or RUNW list, it is unlinked
from the wait list and linked to the ready-to-run list. If the task does not have an
abort receiver established, DQE.TL VS and DgE.ABRT are set. If an abort receiver
has been established, only DQE.ABRA is set.'

Entry Conditions

Calling Sequence

BL

Registers

Rl

R5

R6,R7

Exit Conditions

S.EXEC18

DQE address of task to be aborted

abort code characters 1-4

abort code characters 5-12

Return Sequence

TRSW RO

Registers

R2 DQE address of task to be aborted
R4,R7 saved

Rl,R3,R5,R6 destroyed

2.5 Subroutine S.EXEC19 - Abort Task Processing Control

This routine is an internal H.EXEC subroutine which is called only by S.EXEC21 to
process an abort request for the currently executing task. The purpose of S.EXEC19
is to control the sequencing of abort processing by calling the following abort
processing modules associated with the pertinent subsystems.

Module

S.EXEC26
S.EXEC23

S.EXEC22

S.EXEC25

S.EXEC43

S.EXEC27

S.REXS2

H.REXS38

S.EXEC76

Description

remove context switch gating, if any

terminate all messages in receiver queue
defer continued processing until all outstanding no-wait operations are
complete

terminate active run request, if any

reactivate task if additional run requests queued

transfer control to abort receiver, if any

remove task associated timers

disconnect interrupt (if interrupt connected)

update execution accounting value

MPX·32 Technical Volume II 2·3

Subroutine S.EXEC19 - Abort Task Processing Control

Module

[H.TSM,4]

Description

TSM task abortld~lete processing (called only ifTSM task)
H.REMM,3 close and deallocate system critical files

close and deallocate user 110 files/devices with blocking buffer purge
and automatic EOF as appropriate

deallocate all swap files and memory (excluding TSA)

deallocate TSA memory, DQE space, clear C.PRNO, transfer control
to the CPU scheduler

Entry Conditions

Calling Sequence

BU

Registers

None

S.EXEC19

Exit Conditions

Return Sequence

Clear C.PRNO
BU ' S.EXEC20

Registers

None

2.6 Subroutine S.EXEC22 - Completion of All No-Wait Operations

This routine is called from either the task abon or task exit processing control
subroutines (S.EXEC19 or S.EXEC29). Its purpose is to delay until all outstanding
no-wait processing is complete. It accomplishes this by calling H.EXEC,25 until the
number of outstanding no-wait requests is equal to zero. A retum is then made to the
calling routine.

Entry Conditions

2-4

Calling Sequence

BL

Registers

R2

S.EXEC22

current task DQE address

H.EXSUB Subroutines

(... '''' , !

J

Subroutine S.EXEC22 - Completion of All No-Wait Operations

Exit Conditions

Return Sequence

TRSW RO

Registers

RI-R5,R7

R6
saved

destroyed

2.7 Subroutine S.EXEC26 • Remove Task Gating

This routine is called from one of the task termination processing subroutines
(S.EXEC19, S.EXEC28, or S.EXEC29). Its purpose is to remove any outstanding
gating mechanisms, like a context switch or resource mark lock, associated with the
terminating task. A return is then made to the calling routine.

Entry Conditions

calling Sequence

BL S.EXEC26

Registers

R2 ., current task DQE address

Exit Conditions

Return Sequence

TRSW RO

Registers

All registers are preserved.

2.8 Subroutine S.EXEC28 • Delete Task ProceSSing Control

This routine is an internal H.EXEC subroutine which is called only by S.EXEC21 to
process a task delete request on behalf of the currently executing task. The purpose of
S.EXEC28 is to control the sequencing of the following delete task processing
modules associated with the pertinent subsystems.

Module Description

S.REXS2 remove task associated timers

H.REXS,38 disconnect interrupt (if connected)

S.EXEC26

H.IOCS,38

remove context switch gating if any

terminate all outstanding IJO requests

MPX-32 Technical Volume II 2-5

Subroutine S.EXEC28 • Delete Task Processing Control

Module

S.EXEC23

S.EXEC2S

H.REMM,3

S.EXEC43

S.EXEC76

[H.TSM,4]

S.REMM2

Description

terminate all messages in receiver queue

terminate active run request (if any)

close and deallocate system critical files

close and deallocate user 110 files/devices with minimal processing
required (no attempt to preserve data integrity)

deallocate all swap files and memory (excluding TSA)

deallocate TSA memory, DQE space, clear C.PRNO, transfer control
to CPU scheduler

reactivate task if additional run requests queued

update task execution accounting value

TSM task abort/delete processing (called only if TSM task)

deallocate TSA and DQE

Entry Conditions

Calling Sequence

BU S.EXEC28

Registers

None

Exit Conditions

Return Sequence

Clear C.PRNO

BU S.EXEC20

Registers

None

2.9 Subroutine S.EXEC29 - Exit Task Processing Control

2·6

This routine is an internal H.EXEC subroutine which is called only by S.EXEC21 to
process an exit request on behalf of the currently e;ltecuting task. The purpose of
S.EXEC29 is to control the sequencing of exit processing by the following exit
processing modules associated with the pertinent subsystems.

Module Description

S.REXS2 remove task associated timers

H.REXS,38 disconnect interrupt (if connected)

S.EXEC26 remove context switch or FISE gating, if any

H.EXSUB Subroutines

o

(~

Subroutine S.EXEC29 • Exit Task Processing Control

Module Description

S.EXEC22 defer continued processing until all outstanding no-wait operations are
complete

S.EXEC25 terminate active run request, if any

H.REMM,3 close and deallocate system critical files

close and deallocate user 110 files/devices with blocking buffer purge
and automatic EOF as appropriate

deallocate all swap files and memory (excluding TSA)

deallocate TSA memory, DQE space, clear CPRNO, transfer control
to CPU scheduler

S.EXEC43

S.EXEC76
[H.TSM,3]
S.REMM2

Entry Conditions

reactivate task if additional run requests queued

update task execution accounting value

TSM task exit processing (called only if TSM task)
deallocate TSA and DQE

Calling Sequence

BU

Registers

None

Exit Conditions

S.EXEC29

Return Sequence

Clear C.PRNO

BU S.EXEC20

Registers

None

2.10 Subroutine S.EXEC32 - Completion of Wait Run Request

TIUs routine is called by the appropriate run request exit processor on behalf of the
requested task. Its purpose is to report completion of the wait mode run request to the
requesting (waiting) task. The waiting task is removed from the wait list and placed
in the ready-to-run list (or in the memory request list if an inswap is required).

MPX·32 Technical Volume II 2·7

Subroutine S.EXEC32 - Completion of Wait Run Request

Entry Conditions

Calling Sequence

BL

Registers

Rl

R2

R3

S.EXEC32

DQE entry address of sending task

MRRQ address

address of 22 word scratchpad area (doubleword bounded)

Exit Conditions

Return Sequence

TRSW RO

Registers

R3-R3-4W scratchpad address

Rl,R2,R4-R7 destroyed

2.11 Subroutine S.EXEC33 - Report No-Wait Run Request
. Complete

This routine repons the completion of run request processing. The call is made on
behalf of the task which processed the run request. The requesting task may be in the
wait for any run request completion state. If SO, it is removed from that list and
linked to the ready-to-run list (or to the memory request list if an inswap is required).

The run request queue entry is linked to the DQE task interrupt list and contains the
no-wait mode run request postprocessing service address. When the scheduler
dispatches control to the task, the specified routine is entered as a preemptive system
service.

Entry Conditions

2·8

Calling Sequence

BL

Registers

Rl

R2

R3

S.EXEC33

DQE address of sending task

MRRQ address
address of 22 word scratchpad area (doubleword bounded)

H.EXSUB Subroutines

o

,. Subroutine S.EXEC33 - Report No-Walt Run Request Complete

("~~ Exit Conditions

Return Sequence

TRSW RO

Registers

R3-R3-4W scratchpad address

Rl,R2,R4-R7 destroyed

2.12 Subroutine S.EXEC36· Report Wait Mode Message
Complete

This routine is called by the appropriate message exit processor on behalf of the task
that processed the message. Its purpose is to report completion of wait mode message
processing to the waiting task. The waiting task is removed from the wait list and
placed in the ready-to-11l;D list or in the memory request list if an inswap is required.

Entry Conditions

calling Sequence

BL

Registers

Rl

R2

R3

Exit Conditions

S.EXEC36

DQE entry address of sending task

MRRQ address
address of 22 word scratchpad area (doubleword bounded)

Return Sequence

TRSW RO

Registers

R3-R3-4W scratchpad address

Rl,R2,R4-R7 destroyed

2.13 Subroutine S.EXEC37 • No-Wait Message Mode Complete

This routine is called to report the completion of message processing. The call is
made on behalf of the task which processed the message. The task which sent the
message may be in the wait for any message completion queue. If so, it is removed
from that list and linked to the ready-to-run list (or to the memory request list if an
inswap is required).

MPX-32 Technical Volume II 2·9

Subroutine S.EXEC37 - No-Wait Message Mode Complete

The message queue entry is linked to the DQE task intenupt list and contains the no­
wait mode message postprocessing service address. When the scheduler dispatches
control to the task, the specified routine is entered as a preemptive system service~

Entry Conditions

Calling Sequence

BL

Registers

Rl

R2

S.EXEC37

DQE address of requesting task

MRRQ address

R3 address of 22 word scratchpad area (doubleword bounded)

Exit Conditions

Return Sequence

TRSW RO

Registers

R3-R3-4W scratchpad address

Rl,R2,R4-RJ destroyed

2.14 Subroutine S.EXEC38 • Inhibit Swap of Current Task

This routine is called to set the inhibit swap ftag (DQE.LKIM) in the DQE of the
current task. A return is then made to the calling routine.

Entry Condltlona

Calling Sequence

2·10

BL

Registers

None

S.EXEC38

H.EXSUB Subroutines

O
···~

: tl.

(\"
~. } i '-/.-'

0 ..

.('~"'. ". \

-",>"

Subroutine S.EXEC38 • Inhibit Swap of Current Task

'Exit Conditions

Retum Sequence

TRSW RO

Registers

R2
Rl,R3-R7

destroyed

saved

2.15 Subroutine S.EXEC39 - Enable Swap of Current Task

This routine is called to reset the inhibit swap flag (DQELKIM) in the DQE of the
current task. A return is then made to the calling routine.

Entry Conditions

calling Sequence

BL

Registers

None

Exit Conditions

S.EXEC39

Retum Sequence

TRSW RO

Registers

R2
Rl,R3-R7

destroyed

saved

2.16 Subroutine S.EXEC43 - Reactivate Run Receiver Task
This routine is called to examine the run receiver queue of a run receiver task that has
used a standard M.EXlT call. S.EXEC43 is called by S.EXEC28. S.EXEC29, or
S.EXEC19. If queued run requests exist. a call to H.REMM.l is made to reactivate
the task. If H.REMM,l makes a denial return, all outstanding requests are terminated
with abnormal status. If H.REMM.l successfully starts the activation. S.EXEC43
links any remaining queued requests to the DQE of the task being activated A rerum
is then made to the calling routine.

MPX·32 Technical Volume II 2-11

Subroutine S.EXEC43 • Reactivate Run Receiver Task

Entry Conditions

Calling Sequence

BL

Registers

None

S.EXEC43

Exit Conditions

Return Sequence

TRSW RO

Registers

All registers are destroyed.

2.17 Subroutine S.EXEC45 - Change Priority of Specified Task

TIlis routine is called to change the priority level of the specified. not c~nt. task.
The specified task may either be in a ready-to-run state. or in a wait state. If the task
is in a ready-to-run state. the specified priority is stored in DQE.CUP and in
DQE.BUP. The task is then unlinked from its current ready-to-run list and relinked to
the ready to run list associated with the new priority. If the task was in a wait state. it
is relinked according to its new priority into the same wait list. A return is then made
to the calling program.

Entry Conditions

Calling Sequence

BL

Registers

Rl
R6

S.EXEC4S

DQE address of specified task

priority level

Exit Conditions

2·12

Return Sequence

TRSW RO

Registers

All registers are destroyed.

H.EXSUB Subroutines

{ \: \J ..

Subroutine S.EXEC48 • Convert Number to OQE Address

("<~' 2.18 Subroutine S.EXEC48 • Convert Number to DCE Address

This routine is called to calculate <the DQE address of the specified task.

Entry CondHions

Calling Sequence

BL S.EXEC48

Registers

R7 task activation sequence number of specified task

Exit CondHlons

Return Sequence

TRSW RO

Registers

R2 DQE address of specified task

Rl,R3-RS,R7 saved

R6 destroyed

2.19 Subroutine S.EXEC49 • Construct MRRQ

This routine is called to construct an MRRQ entry for either a message or run request.
Space for the MRRQ is allocated from memory pool. The MRRQ is constructed
according to the contents of the parameter send block (PSB) specified as a calling
parameter.

Entry CondHlons

Calling Sequence

BL

Registers

R2

R3

S.EXEC49

parameter send block (PSB) address

scratchpad address (doubleword bounded)

MPX-32 Technical Volume II 2-13

Subroutine S.EXEC49 • Construct MRRQ

Exit CondHions

Return Sequence

TRSW RO (CCI set indicates memory pool unavailable)

Registers

RI
R3-R3-4W

R2,R4

RS-R7

MRRQ address

scratchpad address

saved

destroyed

2.20 Subroutine S.EXEC50 - Link MRRQ to Receiver Queue

This routine is called to link the designated MRRQ entry to the run receiver queue of
the specified task. If the target task is in a RUNW wait state, it is unlinked from the
wait list and linked to the ready-to-run list. .

Entry CondHions

Calling Sequence

BL

Registers

RI
R2

R3

RS
R7

S.EXECSO

target task DQE address

MRRQ address

scratchpad address (doubleword bounded)

zero indicates unlink if in PREA list

task activation sequence number of target task

Exit CondHlons

2·14

Return Sequence

TRSW

Reglstera

R3-R3-4W

RI,R2
R4-R7

RO (CCI set indicates invalid target task)

scratchpad address

saved

destroyed

H.EXSUB Subroutines

o·~,
,.'. -'

Subroutine S.EXEC51 • Link Current Task to Walt State

(~ 2.21 Subroutine S.EXEC51 • Link Current Task to Wait State

(',"

""

This routine is called to place the currently executing task in the designated wait state.
If the task is a time-disttibution task, the execution time accounting value is updated
in the TSA. The current quantum value for next dispatch is updated in DQE.CQC for
both real-time and time-disttibution tasks. When linkage to the wait state is complete,
the memory scheduler is resumed if entries are queued in the memory request list.

Entry Conditions

Calling Sequence

BEl

BL S.EXEC51

Registers

Rl

R2

Exit Conditions

address of wait state headcell

current task DQE address

Return Sequence

No return to calling routine. M.RTRN to TSA stack context when task is ready to
run.

Registers

None

2.22 Subroutine S.EXEC52 • Message/Run Request Processing

This routine is called for the sending task when a message or run request has been
processed by the destination task. It transfers the return parameters to the return
buffer designated in the PSB, updates PSB staws, and deallocates the MRRQ.

Entry Conditions

Calling Sequence

BL

Registers

R2

R3

S.EXEC52

MRRQ address

scratchpad address (doubleword bounded)

MPX·32 Technical Volume II 2·15 '

Subroutine S.EXEC52 • Message/Run Request Processing

Exit· Conditions

Return Sequence

TRSW RO

Registers

R3 R3-4W scratchpad address

Ft5 saved

RI,R2.R4.R6.R7
destroyed

2.23 Subroutine S.EXEC53 - Validate PSB

This routine is called to validate the parameters contained in the parameter send block
(PSB) associated with a message or run request. An immediate rerum is made if the
most recent context on the TSA stack reflects a privileged caller. Otherwise.
S.REMM20 is called to verify the PSB address arguments, and general parameter
validation is performed.

Entry Conditions

calling Sequence

BL . S.EXECS3

Registers

R2
R3

Exit Conditions

PSB address
scratchpad address (doubleword bOunded)

Return Sequence

TRSW RO (CCI set indicates validation error)

scratchpad address

Registers

R3-R3-4W

R6 contains error code if CC I set, otherwise destroyed

R2 saved

Rl,R4.Ft5,R7 destroyed

2·16 H.EXSUB Subroutines

C)

Subroutine S.EXEC54 • Move Byte String
"

(~ 2.24 Subroutine S.EXEC54 • Move Byte String

This routine is a register reentrant routine which moves a byte string of the designated
length from the origin address to the destination address.

Entry Conditions

Calling Sequence

BL S.EXEC54
BL S.EXEC54A

BL S.EXEC54B

Registers

move from the task to the operating system
(mapped out mode)
move from the operating system to the task
(mapped out mode)

RI

R2
R7

origin (from) address

destination (to) address

negative number of bytes to be transferred

Exit Conditions

Return Sequence

TRSW

Registers

R3-R5

Rl.R2.R6.R7

RO

saved

destroyed

2.25 Subroutine S.EXEC58 • Link MRRQ to Message Receiver

This routine is called for the sending task to link an MRRQ entry to the message
receiver queue of the destination task.

Entry Conditions

Calling Sequence

BL

Registers

Rl
R2
R3

R7

S.EXEC58

destination task DQE address

MRRQ address

scratchpad address (doubleword bounded)

task activation sequence number of destination task

MPX·32 Technical Volume II 2·17

Subroutine S.EXEC58 • Link MRRQ to Message Receiver

Exit CondHions

Retum Sequence

TRSW

Registers

R3-R3-4W

RI,R2,R4

RS,R6,R7

RO (CCI set indicates invalid destination task)

scratchpad address

saved

destroyed

2.26 Subroutine S.EXEC60 • Validate PRB

This routine is called to validate the parameter receive block (PRB) of the destination
task, when the destination task has made a request for the message or run request
parameters. Validation is bypassed if the most recent pushdown on the TSA stack
reft.ects a privileged caller. Otherwise, general PRB validation is performed.

Entry CondHlons

calling Sequence

BL

Registers

R2
R3

Exit CondHlons

S.EXEC60

PRB address

scratchpad address (doubleword bounded)

Retum Sequence

TRSW RO (Cel set indicates validation error)

Registers

RI,R4,RS,R7 destroyed

R2 saved

R3-R3-4W scratchpad address
R6 error code if CCI set; otherwise, R6 is destroyed

2·18 H.EXSUB Subroutines·

000

0 :.·'0, ,

o

.. Subroutine S.EXEC63 - Transfer Return Parameters

(~, 2.27 Subroutine S.EXEC63 - Transfer Return Parameters
This routine is called for the destination task to transfer return parameters to the
MRRQ after the destination task has issued an exit from message or run request
processing.

Entry Conditions

Calling Sequence

BL S.EXEC63

Registers

Rl MRRQ address

R2 . RXB address

R3 scratchpad address (doubleword bounded)

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl.R2.R4,RS

R3-R3-4W

R6.R7

saved

scratchpad address

destroyed

2.28 Subroutine S.EXEC64 - No-Wait Message Postprocessing

This routine is invoked as a preemptive system service (end action priority 2) for the
sending task. It in tum calls S.EXECS2 to accomplish postprocessing of the MRRQ.
It will optionally vector to a user-specified end action routine, or call H.EXEC,34. to
report no-wait message postprocessing complete.

Entry Conditions

Calling Sequence .

Preemptive system service

Registers

R2 MRRQ address

MPX-32 Technical Volume II 2-19

Subroutine S.EXEC64 - No-Walt Message Postprocessing

Exit CondHions

Return Sequence

No return is made. S.EXEC64 exits to the user end action routine or to H.EXEC,34.

Registers

Rl PSB address on entry to user end action routine

2.29 Subroutine S.EXEC65 - No-Wait Mode Run Request
Postprocessing

This routine is invoked as a preemptive system service (end action priority 2) for the
sending task. It in tum calls S.EXECS2 to accomplish postprocessing of the MRRQ.
It will optionally vector to a user-specified end action routine, or call H.EXEC,28 to
report no-wait run request postprocessing complete.

Entry CondHlona

calling Sequence

Preemptive system service

Registers

R2 MRRQ address

Exit CondHlons

Return Sequence

No return is made. S.EXEC6S exits to the user end action routine or to H.EXEC,28.

Registers

Rl PSB address on entry to user end action routine

2-20 H.EXSUB Subroutines

o

o

Subroutine S.EXEC66 - Deallocate MRRQ

(: 2.30 Subroutine S.EXEC66 - Deallocate MRRQ

'This routine is called to deallocate an MRRQ 'fhen processing associated with the
MRRQ is complete. S.REMM22 is called to return the MRRQ space to memory
pool.

Entry Conditions

calling Sequence

BL

Registers

R2

R3

Exit Conditions

S.EXEC66

MRRQ address

scratchpad address (doubleword bounded)

Return Sequence

TRSW RO

Registers

R 1 ,R2,R4,R6,R7
destroyed

R3-R3-4W scratchpad address

RS saved

MPX·32 Technical Volume II 2·21

Subroutine S.EXEC67 - Link Entry to End Action Queue

2.31 Subroutine S.EXEC67 - Link Entry to End Action Queue

This routine is called for the destination task when destination task processing of a
no-wait mode message or run request is complete. Its purpose is to link the MRRQ
entry to the end action queue of the sending task. This causes the appropriate
postprocessing routine to be invoked as a preemptive system service on behalf of the
sending task. For more information, refer to the MPX-32 Reference Manual Volume
I, Chapter 2.

Entry Conditions

calling Sequence

BEl

BL

Registers

Rl

R2

R3

S.EXEC67

DQE address of sending task

MRRQ address

scratchpad address (doubleword bounded)

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl,R2,R4,R6

R3-R3-4W
RS,R7

saved

scratchpad address

destroyed

2.32 Subroutine S.EXEC70 - Terminate Run Requests in Queu~
of Task

2-22

This routine is called when an elTOr is encountered in attempting to reactivate a
terminating task with additional run requests queued. S.EXEC70 in tum calls
S.EXEC25 until the receiver queue is empty.

H.EXSUB Subroutines

o

Subroutine S.EXEC70 - Terminate Run Requests In Queue of Task

(' Entry Conditions

(

calling Sequence

BL

Registers

R2

R3

Exit Conditions

S.EXEC70

current task DQE address

scratch pad address (doubleword bounded)

Return Sequence

TRSW RO

Registers

Rl,R4-R7

R2

R3=R3-4w

destroyed

saved

scratchpad address

2.33 Subroutine S.EXEC71 - Start-up of Run Receiver Task

This routine js called to unlink the destination task from the RUNW or PREA list,
unless R5 is not zero, and to link the destination task to the ready list at the priority
specified in R6.

Entry Conditions

calling Sequence

BEl
BL

Registers

R2

R5

R6

S.EXEC71

DQE address of destination task
zero if task is to be unlinked from PREA list

priority

MPX-32 Technical Volume II 2-23

Subroutine S.EXEC71 - Start-up of Run Receiver Task

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl,R3,RS-R7 destroyed

R2,R4 saved

2.34 Subroutine S.EXEC73 - Replace Context on TSA Stack

This routine is called to replace the most recent context on the TSA stack with the
designated context block.

Entry Conditions

calling Sequence .

BL S.EXEC73

Registers

Rl

Exit Conditions

address of 10 word context block

Return Sequence

TRSW RO

Registers

Rl,R3

R2,R4-R7

saved

destroyed

2.35 Subroutine S.EXEC74 - Reset Stack to User Level

This routine is called on abnormal task termination to reset the stack to the point of
last user call.

Entry Conditions

2·24

calling Sequence

BL S.EXEC74

Registers

None

H.EXSUB Subroutines

0,',';'
"

0:

Subroutine S.EXEC74 - Reset Stack to User Level

exit CondHlons

Return Sequence

TRSW RO

Registers

Rl,R3,RS destroyed
R2,R4,R6,R7 saved

2.36 Subroutine S.EXEC76 - Update Execution Accounting
Value

This routine is called during wk termination processing. The interval timer is read
and the elapsed time added to T.rr AC in the TSA.

Entry CondHions

Calling Sequence

BL S.EXEC76

Registers

R2

exit CondHlons

cunent task DQE address

Retum Sequence

TRSW RO

Registers

Rl,R2,R4,R6,R7 saved

R3 current task TSA address

RS destroyed

MPX-32 Technical Volume II 2·25

"
Subroutine S.EXEC78 - Move Context from Stack to T.CONTXT

2.37 Subroutine S.EXEC78 - Move Context from Stack to
T.CONTXT

This routine is called when the context of the PSD, RO-R7, and PC are copied from
the TSA of the current task to the debug context area. After filling the T.CONTXT
area, it returns to the calling routine.

Entry Conditions

Calling Sequence

BL

Registers

None

S.EXEC78

Exit CondHlons

2-26

Return Sequence

TRSW RO

Registers

Rl

R2,R4,R5

R3
R6,R7

current pushdown address from T.REGP

unchanged

TSA address of current task

destroyed

H.EXSUB Subroutines

"

File System Executive (H.FISE)

MPX-32 Technical Manual

Volume II

o

Contents

Page

1 H.FISE Overview

1.1 General Infonn.ation 1-1
1.2 EntI"y Points ... 1-1

2 H.FISE Entry Points

2.1 Entry Point 1 - Reserved ... 2-1
2.2 Entry Point 2 - Reserved ... 2-1
2.3 Entry Point 3 - Allocate Temporary Disk Space .. 2-1
2.4 Entry Point 4 - Deallocate Temporary Disk Space 2-2
2.5 EntI"y Point 5 - Reserved ... 2-3
2.6 Entry Point 6 - Reserved ~ .. 2-3
2.7 Entry Point 7 - Reserved ... 2-3
2.8 EntI"y Point 8 - ASCII Compression ... 2-3
2.9 EntI"y Point 9 - Reserved ... 2-4

Entry Point 10 - Reserved ... 2-4
EntI"y Po4tt 11 - Reserved ... 2-4
Entry Point 12 - Create Pennanent File ... 2-4

(~~"
2.10
2.11
2.12
2.13 Entry Point 13 - Change Temporary File To Permanent 2-5
2.14 Entry Point 14 - Delete File or Memory Partition 2-5
2.15 Entry Point IS - Permanent File !..og ~ ... 2-6
2.16 Entry Point 16 - Reserved ... 2-6
2.17 EntI"y Point 17 - Reserved ~ ... 2-6
2.18 Entry Point 18 - Reserved ... 2-6
2.19 Entry Point 19 - Reserved. ... 2-6
2.20 EntI"y Point 20 - RTM CALM Create Permanent File 2-6
2.21 Entry Point 21 - RTM CALM .. 2-8
2.22 Entry Point 22 - Set Exclusive File Lock ... 2-9
2.23 Entry Point 23 - Release Exclusive File Lock ... 2-10
2.24 Entry Point 24 - Set Synchronization File Lock ; 2-10
2.25 EntI"y Point 25 - Release Synchronization File Lock 2-10
2.26 Entry Point 26 - Reserved ... 2-10
2.27 Entry Point 27 - Reserved. ... 2-10
2.28 Entry Point 28 - Reserved. ... 2-10
2.29 EntI"y Point 29 - Reserved. ... 2-10

\ C

MPX·32 Technical Volume II III

Contents

Page 0······
, .

2.30 Entry Point 30 - Reserved t! ••• 2-10
2.31 Entry Point 31 - Reserved ... 2-10
2.32 Entry Point 32 - Wait for FL T Entry Space ... 2-10
2.33 Entry Point 33 - Reserved; 2-11
2.34 Entry' Point 34 - Reserved. ... 2-11
2.35 Entry' Point 35 - Reserved ... 2-11
2.36 Entry Point 36 - Reserved ... 2-11
2.37 Entry Point 99 - SYSGEN Initialization .. 2-11

0.,
Iv Contents

(

1 H.FISE Overview

1.1 General Information
"

1.2

The File System Executive Module (H.FISE) performs the compatible mode file
system services.

Entry Points

SVC
Entry Point Number Description

H.FISE,1 reserved
H.FISE,2 reserved
H.FISE,3 NI A allocate temporary disk space
H.FISE,4 NI A deallocate temporary disk space
H.FISE,5 reserved
H.FISE,6 reserved
H.FISE,7 reserved
H.FISE,8 N/A ASCD compression
H.FISE,9 reserved
H.FISE,10 reserved
H.FISE,11 reserved
H.FISE,12 75 create permanent file
H.FISE,13 76 change temporary file to permanent
H.FISE,14 77 delete permanent file or non-SYSGEN memory partition
H.FISE,15 N/A permanent file log
H.FISE,16 reserved
H.FISE,17 reserved
H.FISE,18 reserved
H.FISE,19 reserved
H.FISE,20 N/A RTM CALM create permanent file
H.FISE,21 N/A RTM CALM change temporary file to permanent
H.FISE,22 21 set exclusive file lock
H.FISE,23 22 release exclusive file lock
H.FISE,24 23 set synchronization file lock
H.FISE,25 24 release synchronization file lock
H.FISE,26 reserved
H.FlSE,27 reserved
H.FlSE,28 reserved
H.FlSE,29 reserved
H.FlSE,30 reserved
H.FISE,31 reserved
H.FlSE,32 N/A wait for FL T entry space

N/A implies reserved for internal use by MPX-32.

MPX-32 Tec.hnical Volume II 1-1

Entry Polnfs

Entry Point

H.FISE,33
H.FISE,34
H.FISE,35
H.FISE,36
H.FISE,99

SVC
Number Description

NtA

reserved
reserved
reserved
reserved
SYSGEN initialization

Nt A implies reserved for internal use by MPX-32.

1·2

0 " ..

o

o
H.FISE Overview

· .. 2 H.FISE Entry Points

2.1 Entry Point 1 - Reserved

2.2 Entry Point 2 - Reserved

2.3 Entry Point 3 - Allocate Temporary Disk Space

This entry point is used to effect the allocation of temporary disk file space. The
space definition is computed and return is made to the caller. If the specified device
does not contain available space of sufficient length to satisfy the request, a denial
return is made to the caller with the space definition zeroed.

Entry Conditions

Calling Sequence

M.CALL H.FISE,3

Registers

R4 denial retum address in case of an unrecoverable 110 error to the
allocation map

RS unit definition table (UDT) index (entry number) of the entry which
defines the disk for which the space allocation is requested

R7 number of 192 word blocks requested for allocation

exit Conditions

Return Sequence

M.RTRN 5,6,7

Registers

RS
R6,R7

(or)

UDT index of the disk where the space was allocated

space definition of the allocated file space or zero if the requested
space was not available

Return Sequence

M.RTNA 4 R4 is the denial return address in case of an unrecoverable 110 error to
the allocation map

Registers

None

MPX·32 Technical Volume II 2·1

Entry Point 3 - Allocate Temporary Disk Space

Abort Cases

None

Output Messages

None

External Reference

System Macro

M.RTRN
M.RTNA

System Services

H.VOMM.19 M

2.4 Entry Point 4 • Deallocate Temporary Disk Space

This entry point is called to release temporary disk file space, making it available for
allocation.

,Entry Conditions

Calling Sequence

M.CALL H.FISE,4

Registers

R4

R5
R6
R7

denial return address in case of an unrecoverable I/O error to the
allocation map

UDT index of the disk on which the file resides

starting disk address

number of 192 word blocks to release

Exit Conditione

2·2

Return Sequence

M.RTRN

Registers

None

(or)

H.FISE Entry Points

o

Entry Point 4 • Deallocate Temporary Disk Space

Return Sequence

M.RTNA 4 R4 is the denial return address in case of an unrecoverable 110 error to
the allocation map

Registers

None

Abort Cases

None

Output Messages

None

External Reference

System Macro

M.RTRN
M.RTNA

System Services

H.VOMM,20

2.5 Entry Point 5 - Reserved

2.6 Entry Point 6 - Reserved

2.7 Entry Point 7 - Reserved

2.8 Entry Point 8 - ASCII Compression

This entry point performs compression on an ASCII character string to yield its
halfword equivalent.

Entry Conditions

calling Sequence

M.CALL H.FISE,8

Registers

R6,R7 contain the 1- to 8-character ASCn string, left-justified, and blank­
filled

MPX·32 Technical Volume II 2-3

Entry Point 8 - ASCII Compression

Exit CondHlons

Return Sequence

M.RTRN7

Registers

R7 contains the equivalent of the ASCII string in the right halfword

Abort cases

None

Output Messages

None

External Reference

System Macro

M.RTRN

2.9 Entry Point 9 • Reserved

2.10 Entry Poi nt 10 - Reserved

2.11 Entry Point 11 • Reserved

2.12 Entry Point 12 • Create Permanent File

See M.CREATE in the MPX-32 Reference Manual Volume I for a detailed
description of this entty point.

External Reference

System Macro

M.CALL
M.RTRN

2-4

System Services

H.VOMM,l
H.REX,20

H.FISE Entry Points

0·····
.' " ,

o

(

Entry Point 12 • Create Permanent File

System Subroutines

S.REXS8
S.REXS9

2.13 Entry Point 13 - Change Temporary File To Permanent
See M.PERM in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.CALL
M.RTRN

System Services

H.VOMM.9
H.VOMM.ll
H.VOMM.12
H.REXS.20

System Subroutines

S.REXS8
S.REXS9

2.14 Entry Point 14 - Delete File or Memory Partition

See M.DELETE in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.CALL
M.RTRN

Systems Services

H.VOMM.5
H.REXS.20

System Subroutines

S.REXS8
S.REXS9

MPX·32 Technical Volume II 2·5

Entry Point 15 - Permanent File Log

2.15 Entry Point 15 - Permanent File Log

This entry point provides a log of currently existing permanent files and memory
partitions. Information on the requested file is returned in the format of an eight word
SMD entry.

See M.LOO in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point.

External Reference

System Macro

M.CALL
M.RTRN

System Services

H.VOMM,lO

System Subroutines

S.REXS8
S.REXS9

2.16 Entry Point 16 - Reserved

2.17 Entry Point 17 - Reserved

2.18 Entry Point 18 - Reserved

2.19 Entry Point 19 - Reserved

2.20 Entry Point 20 - RTM CALM Create Permanent File

This entry point allocates disk space for the specified permanent file and writes a
corresponding entry into the directory. Optionally, the allocated space is zeroed.

Entry Conditions

Calling Sequence

CALM X'7S'
(or)
M.CALL H.FISE,20

2·6 H.FISE Entry Points

0······"'·;; ',: "

I .',1 O'~·.

Entry Point 20 • RTM CALM Create Permanent File

Registers

Rl bytes 1 and 2 contain the restricted file code, byte 3 contains the file
type code

R2

R3

R4.R5
R6,R7

Exit Conditions

file size

Bits Meaning if Set

o system file
1 prezero
10 not a save device
11 fast file
14 read only
15 password only

16-23 device type code
24-31 optional device address (if present, bit 16 is also set)

password or R4 is zero

file ruune

Return Sequence

M.RTRN

Registers

None

(or)

Return Sequence

M.RTRN 6,7

Registers

R6
Value Definition

1 file already exists
2 fast file collision mapping occurred
3 restricted access but no password supplied
4 disk space unavailable
5 specified device not configured or available
6 specified device is off-line
7 directory is full
8 specified device type is not configured
9 file ruune or password contain invalid characters

R7 zero

MPX·32 Technical Volume II 2·7

Entry Point 20:' RTM CALM Create Permanent File

Abort case.

FSOI

FS02

unrecoverable 110 error to directory
" unrecoverable 110 error to disk allocation map

Output Messages

None

External Reference

System Macro

M.RTRN
M.CALL

2.21 Entry Point 21 - RTM CALM

This entry point changes the 'status of a temporary file to pennanent. The file must be
an SLO or SBO file, and must be open, temporary, and allocated to the calling task.

Entry Conditions

2·8

calling Sequence

CALM X'76'

(or)

M.CALL

Registers

Rl
R2

R3

R4,RS

R6,R7

H.FISE,21

byte 3 contains the file type code

bytes 0, 1, and 2 contain the logical file code

Bit Meaning if Set

o system file
1 prezero

10 not a save device
11 fast file
14 read only
IS password only

password or R4 is zero

file name

H.FISE Entry Points

o·

Cl.
/,

Entry Point 21 - RTM CALM

('0' .. Exit Conditions

Return Sequence

M.RTRN

Registers

None

(or)

Return Sequence

M.RTRN 6,7

Registers

R6
Value Description

1 file already exists
2 fast file collision mapping occurred
3 restricted access but no password supplied
4 file not open, temporary, SLO or SBO file
7 directory is full
9 file name or password contain invalid characters

R7 zero

Abort Cases

FSO 1 unrecoverable 110 error to directory

FS02 unrecoverable 110 errror to disk allocation map

Output Messages

None

External Reference

System Macro

M.RTRN
M.CALL

2.22 Entry Point 22 - Set Exclusive File Lock

See M.FXLS in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point

MPX·32 Technical Volume II 2-9

Entry Point 23 • Release Exclusive File Lock

2.23 Entry Point 23 - Release Exclusive File Lock

See M.FXLR in the MPX-32 Reference Manual Volume I for a detailed description of
this entty point.

2.24 Entry Point 24 - Set Synchronization File Lock

See M.FSLS in the MPX-32 Reference Manual Volume I for a detailed description of
this entty point.

2.25 Entry Point 25 - Release Synchronization File Lock

2.26

2.27

2.28

2.29

2.30

2.31

~ee M.FSLR in the MPX-32 Reference Manual Volume I for a detailed description of
this entty point.

Entry Point 26 - Reserved

Entry Point 27 - Reserved

Entry Point 28 - Reserved

Entry Point 29 - Reserved

Entry Point 30 - Reserved

Entry Point 31 - Reserved

2.32 Entry Point 32 - Wait for FL T Entry Space

This entty point is provided for system static and dynamic allocation servi~s. It
returns immediately if FL T entty space is available, otherwise the task is placed in a
wait state until FL T space is available.

Entry Conditions

Calling Sequence

M.CALL H.FISE,32

2-10 H.FISE Entry Points

0 ',·
"

0

o

Entry Point 32- Walt for FL T Entry Space

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.33 Entry Point 33 - Reserved

2.34 Entry Point 34 - Reserved

2.35 Entry Point 35 - Reserved

2.36 Entry Point 36 - Reserved

2.37 Entry Point 99 - SYSGEN Initialization

This entry pOint is for internal use only and is called during SYSGEN. H.FISE sets
up its entry point table then returns to SYSGEN.

MPX·32 Technical Volume II 2·11/2·12

0···.··· . '.~

o

(
'.<

.. ,,/

"

Input/Output Control System (H.lOCS)

MPX-32 Technical Manual

Volume II

...

o

o

Contents (.. •.......•• ,.

/

Page

1 H.IOCS Overview

1.1 General InfoIlIlation 1-1
1.2 Entry Point Summary .. 1-1
1.3 Subroutine Summary ... 1-2

2 H.IOCS Entry Points

2.1 Entry Point 1 - Open File ... 2-1
2.2 Entry Point 2 - Rewind File .. 2-1
2.3 Entry Point 3 - Read Record ... 2-1
2.4 Entry Point 4 - Write Record .. 2-1
2.5 Entry Point 5 - Write End-of-File ... 2-1
2.6 Entry Point 6 - Reserved ... 2-1
2.7 Entry Point 7 - Advance Record ... 2-1
2.8 Entry Point 8 - Advance File .. 2-1

Entry Point 9 - Backspace Record .. 2-1
Entry Poi!1t 10 - Execute Channel Program ... 2-2
Entry Point 11 - Reserved ... 2-2

2.9

(' 2.10
2.11
2.12 Entry Point 12 - Reserve Channel .. 2-2
2.13 Entry Point 13 - Release Channel ... 2-2
2.14 Entry Point 14 - Reserved ... 2-2
2.15 Entry Point 15 - Suspend User Until I/O Complete ~ 2-2
2.16 Entry Point 16 - Reserved ... 2-3
2.17 Entry Point 17 - Get Memory Pool Buffer ... 2-3
2.18 Entry Point 18 - Reserved ... 2-4
2.19 Entry Point 19 - Backspace File ... 2-4
2.20 Entry Point 20 - Upspace .. 2-4
2.21 Entry Point 21 - Erase or Punch Trailer ... 2-4
2.22 Entry Point 22 - Eject/Purge Routine ... 2-4
2.23 Entry Point 23 - Close File ... 2-4
2.24 Entry Point 24 - Reserve Dual-Ported Disc/Set Single-Channel 2-5
2.25 Entry Point 25 - Wait 110 ... 2-5
2.26 Entry Point 26 - System Console Wait .. 2-5
2.27 Entry Point 27 - Release Dual-ported Disc/Set Dual-channel 8-line Mode 2-5
2.28 Entry Point 28 - Reserved ... 2-5

('
... '

MPX-32 Technical Volume II III

Contents

Page 0
2.29 Entry Point 29 - Handler Opcode Processing and I/O Queue Interface 2-5
2.30 Entry Point 30 - Adjust TCW Format to Bytes ... 2-6
2.31 Entry Point 31 - Adjust TCW Format to Halfwords 2-7
2.32 Entry Point 32 - Adjust TCW Format to Words .. 2-8
2.33 Entry Point 33 - Request End-action Task Interrupt with No I/O Request. 2-9
2.34 Entry Point 34 - No Wait I/O End-Action Return 2-10
2.35 Entry Point 35 - Reserved ... 2-10
2.36 Entry Point 36 - Restart I/O .. 2-10
2.37 Entry Point 37 - Virtual Address Validate ... 2-10
2.38 Entry Point 38 - Kill All Outstanding I/O .. 2-11
2.39 Entry Point 39 - Discontiguous E-Memory Data Address Check 2-12
2.40 Entry Point 40 - Discontiguous Data Address Check for 24 Bit Address 2-13
2.41 Entry Point 41 - Reserved ... _ .. 2-14
2.42 Entry Point 42 - Reserved ..•.. 2-14
2.43 Entry Point 43 - Reserved•... 2-14
2.44 Entry Point 44 - SYSGEN Initialization .. 2-15

3 H.lOCS Subroutines

3.1 Subroutine S.lOCSO - No-Wait I/O End-Action Entry 3-1
3.2 Subroutine S.lOCS 1 - Post I/O Processing .. 3-1
3.3 Subroutine S.IOCS2 - Reserved ... 3-4
3.4 Subroutine S.lOCS3 - Unlink I/O Queue ... 3-4
3.5 Subroutine S.lOCS4 - Buffer to Buffer Move Routine (Halfword) 3-5
3.6 Subroutine S.IOCSS - Peripheral Time-out .. 3-6
3.7 Subroutine S.IOCS6 - Buffer to Buffer Move Routine (Byte) 3-7
3.8 Subroutine S.lOCS7 - Buffer to Buffer Move Routine (Word) 3-7
3.9 Subroutine S.lOCS8 - Buffer to Buffer Move Routine (Doubleword) 3-8
3.10 Subroutine S.IOCS9 - Reserv=ed. ... 3-9
3.11 Subroutine S.lOCSlO - Delete 110 Queue and OS Buffer 3-9
3.12 Subroutine S.lOCSll - Allocate Memory Pool ... 3-9
3.13 Subroutine S.lOCSI2 - Store IOCDs for Extended I/O 3-10
3.14 Subroutine S.IOCSI3 - Allocate I/O Queue and Buffer Space 3-11
3.15 Subroutine S.IOCS 14 - Abort Code Formatting .. 3-12
3.16 Subroutine S.lOCSlS - Reserved ... 3-13
3.17 Subroutine S.IOCS 16 - Error Handling .. 3-13
3.18 Subroutine S.lOCSI7 - No-Wait I/O Exit .. 3-14
3.19 Subroutine S.IOCSI8 - Delete I/O Queue and OS Buffer 3-14

Iv Contents

Contents

(" Page

3.20 Subroutines SJOSI9A, B, C, and D - Move Memory 3-15
3.21 Subroutine SJOCS20 - Get Data Address and Transfer Count 3-16
3.22 Subroutine SJOCS21 - Reserved ... 3-17
3.23 Subroutine SJOCS22 - Reserved ... 3-17
3.24 Subroutine SJOCS23 - IOCS Exit ... 3-17
3.25 Subroutine SJOCS24 - Reserved ... 3-18
3.26 Subroutine SJOCS25 - Reserved ... 3-18
3.27 Subroutine SJOCS26 - Cose FPT and FAT if Close Request 3-18
3.28 Subroutine SJOCS27 - Validate FCB and Perfonn Implicit Open 3-19
3.29 Subroutine SJOCS28 - Initialize IOQ Entry .. 3-19
3.30 Subroutine SJOCS29 - Report I/O Complete .. 3-20
3.31 Subroutine S.IOCS30 - Initialize FCB ... 3-21
3.~2 Subroutine SJOCS31 - Mark Units Off-line .. 3-22
3.33 Subroutine S.IOCS32 - Predevice Access Request Validation 3-22
3.34 Subroutine S.IOCS33 - Disc FAT Processor ... 3-23
3.35 Subroutine S.IOCS34 - Allocate Variable IOQ Entry 3-24
3.36 Subroutine SJOCS35 - Reserved ... 3-25
3.37 Subroutine S.lOCS36 - File Segment Processor .. 3-25

(~ 3.38
3.39

Subroutine SJOCS37 - Update FAT and ART for Disc I/O 3-26
Subroutine SJOCS38 - Reserved ... 3-26

3.40 Subroutine SJOCS39 - Reserved ... 3-26
3.41 Subroutine SJOCS4O - Build lOCOs for XIO Transfers 3-26

MPX-32 Technical Volume II v/vi

o

(~

1 H.lOCS Overview

1.1 General Information

The Input/Output Control System Module (H.IOCS) performs the device-independent
ponion of the 110 request management. This includes preprocessing and
postprocessing of the 110 requests, as well as IOQ manipulation and management.

1.2 Entry Point Summary

Entry SVC
Point Number Description
H.IOCS,1 30 open file
H.lOCS,2 37 rewind file
H.IOCS,3 31 read record
H.IOCS,4 32 write record
H.lOCS,5 38 write end-of-file
H.lOCS,6 Nt A . reserved
H.lOCS,7 33 advance record
H.lOCS,8 34 advance file
H.lOCS,9 35 backspace record
H.IOCS,10 25 execute channel program
H.IOCS,11 Nt A reserved
H.IOCS,12 3A reserve channel
H.IOCS,13 3B release channel
H.IOCS,14 N/A reserved
H.IOCS,15 Nt A suspend user until 110 complete
H.lOCS,16 Nt A reserved
H.lOCS,17 Nt A get memory pool buffer
H.IOCS,18 Nt A reserved
H.lOCS,19 36 backspace file
H.IOCS,20 10 upspace
H.IOCS,21 3E erase or punch trailer
H.IOCS,22 OD eject/purge routine
H.IOCS,23 39 close file .
H.lOCS,24 26 reserve dual-ported disk/set single-channel 8-line mode
H.lOCS,25 3C wait 110
H.IOCS,26 3D system console wait
H.lOCS,27 27 release dual-ported disk/set dual-channel 8-line mode
H.lOCS,28 Nt A reserved
H.lOCS,29 NI A handler opcode processing and 110 queue start interface
H.lOCS,30 NI A adjust TCW format to bytes
H.lOCS,31 NI A adjust TCW format to halfwords
H.lOCS,32 Nt A adjust TCW format to words
H.lOCS,33 NtA request end-action task interrupt with no liD request

NtA implies reserved for internal use by MPX-32.

MPX-32 Technical Volume II 1-1

Entry Poilit Summary

Entry
Point
H.IOCS,34
H.IOCS,3S
H.IOCS,36
H.IOCS,37
H.IOCS,38
H.IOCS,39
H.IOCS,40
H.IOCS,41
H.IOCS,42
H.IOCS,43
H.IOCS,44

SVC
Number
2C
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Description
no-wait 110 end-action return
reserved
restan 110
virtual address validate
kill all outstanding I/O
discontiguous E-memory data address check
discontiguous data address check for 24 bit address
reserved
reserved
reserved
SYSGEN initialization

N/A implies reserved for internal use by MPX-32.

1.3 Subroutine Summary

1-2

Subroutine
S.IOCSO
S.IOCSI
S.IOCS2
S.IOCS3
S.IOCS4
S.IOCSS
S.IOCS6
S.IOCS7
S.IOCS8
SlOCS9
S.IOCSIO
S.IOCSII
S.IOCS12
S.IOCS13
S.IOCS14
S.IOCSIS
S.IOCS16
S.IOCS17
S.IOCS18
S.IOS19A, B, C, and D
S.IOCS20
S.IOCS21
S.IOCS22
S.IOCS23
S.IOCS24
S.IOCS2S
S.IOCS26

Description
no-wait I/O end-action entry
post I/O processing
reserved
unlink I/O queue
buffer to buffer move routine (haIfword)
peripheral time-out
buffer to buffer move routine (byte)
buffer to buffer move routine (word)
buffer to buffer move routine (doubleword)
reserved
delete I/O queue and OS buffer
allocate memory pool
store IOCDs for extended 110
allocate I/O queue and buffer space
abort code fOlUlatting
reserved
error handling
no-wait I/O exit
delete I/O queue and as buffer
move memory
get data address and transfer count
reserved
reserved
IOCS exit
reserved
reserved
close FPT and FAT if close request

H.IOCS Overview

o

o

c., Subroutine
S.IOCS27
S.IOCS28
S.IOCS29
S.IOCS30
S.IOCS31
S.IOCS32
S.IOCS33
S.IOCS34
S.IOCS35
S.IOCS36
S.IOCS37
S.IOCS38
S.IOCS39
S.IOCS40

Description
validate FCB and perform implicit open
initialize IOQ entry
report 110 complete
initialize FCB
mark units off-line
predevice access request validation
disk FAT processor
allocate variable IOQ entry
reserved
file segment processor
update FAT and ART for disk 110
reserved
reserved
build IOCDs for XIO transfers

MPX-32 Technical Volume II

Subroutine Summary

1·3/1-4

0" \ ':

o

" 2 H.lOCS Entry Points

2.1 Entry Point 1 - Open File

See M.Fll..E in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point '

2.2 Entry Point 2 - Rewind File

See M.CLSE or M_CLSE, and MRWND or M_REWIND in the MPX-32 Reference
Manual Volume I for a detailed description of this entry point

2.3 Entry Point 3 - Read Record

See M.READ or M READ in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point

2.4 Entry Point 4 - Write Record

See M.WRIT or M WRITE in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.5 Entry Point 5 - Write End-of-File

See M.CLSE or M CLSE, and M WEOF or M WRITEEOF in the MPX-32
Reference Manual Volume I for a detailed description of this entry point

2.6 Entry Point 6 - Reserved

2.7 Entry Point 7 - Advance Record
See M.FWRD or M ADVANCE in the MPX-32 Reference Manual Volume I for a
detailed description of this entIy point.

2.8 Entry Point 8 - Advance File
See M.FWRD or M ADVANCE in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.9 Entry Point 9 - Backspace Record

See M.BACK or M BACKSPACE in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

MPX·32 Technical Volume II 2·1

'. Entry Point 10 - Execute Channel Program

2.10 Entry Point 10 • Execute Channel Program
See the Execute Channel Program system service in the MPX-32 Reference Manual
Volume I for a detailed description of this entry point.

2.11 Entry Point 11 • Reserved

2.12 Entry Point 12· Reserve Channel

See M.RSRV or M RSRV in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.13 Entry Point 13 - Release Channel
See M.RRES or M RRES in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.14 Entry Poi nt 14 - Reserved

2.15 Entry Point 15 - Suspend User Until 1/0 Complete
This entry point checks the operation in progress bit in the FCB. If the bit is set,
suspend calls the executive to wait until 110 completes. If the bit is reset, suspend
performs a M.RTRN immediately.

Entry Conditions

2·2

Calling Sequence

M.CALL H.IOCS,lS

Registers

Rl FCB address (this address must be the address of the same FCB used to
initiate the transfer on which the 110 suspend is being made)

H.loes Entry Points

0':"
, :

C)

o

Entry Point 15 - Suspend User Until 1/0 Complete

Exit Conditions

Retum Sequence

M.RTRN

Registers

None

Abort Cases

None

Output Messages

None

2.16 Entry Point 16 - Reserved

2.17 Entry Point 17· Get Memory Pool Buffer

This entry point is used to obtain blocks of memory from the system memory pool.
The maximum amount of memory to allocate is 192 words. All memory can be
zeroed before returning to the calling task.

If memory is not available, the calling task is suspended by H.EXEC,6 until available.
All memory returned has the attribute that its virtual address is the same as its
absolute address.

Entry Conditions

Calling Sequence

M.CALL H.IOCS.17

Registers

RO bit 0 is set if zeroing of memory is desired or bit 0 is reset if no zeroing is
desired

R7 number of words to allocate

MPX·32 Technical Volume II 2·3

Entry POint 17 - Get Memory Pool Buffer

Exit CondHions

Return Sequence
"

M.RTRN R6,R7

Registers

R6 stan virtual (same as absolute) address

R7 actual number of words in buffer (may be more than requested amount)

Abort Cases

None

Output Messages

None

2.18 Entry Point 18 - Reserved

2.19 Entry Point 19 - Backspace File

See M.BACK or M BACKSPACE in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.20 Entry Point 20 - Upspace

See M.UPSP or M UPSP in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.21 Entry Point 21 - Erase or Punch Trailer

See the Erase or Punch Trailer system service in the MPX-32 Reference Manual
Volume I for a detailed description of this entry point.

2.22 Entry Point 22 - Eject/Purge Routine

See the EjectlPurge Routine system service in the MPX-32 Reference Manual Volume
I for a detailed description of this entry point.

2.23 Entry Point 23 - Close File

See M.CLSE or M CLSE in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

H.lOCS Entry Points

o

o

{"

(~

Entry Point 24 - Reserve Dual-Ported Disc/Set Single-Channel

2.24 Entry Point 24 - Reserve Dual-Ported Disc/Set Single-
Channel .,
See the M.RESP or M_RESP system service in the MPX-32 Reference Manual
Volume I for a detailed description of this entry point.

2.25 Entry Point 25 - Wait I/O

See M.WAIT or M WAIT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.26 Entry Point 26 - System Console Wait

See M.CWAT or M CWAT in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.27 Entry Point 27 - Release Dual-ported Disc/Set Dual-channel
8-line Mode

See the M.RELP or M_RELP system service in the MPX-32 Reference Manual
Volume I for a detailed description of this entry point.

2.28 Entry Point 28 - Reserved

2.29 Entry Point 29 - Handler Opcode Processing and I/O Queue
Interface

TIlis entry point performs the following functions:

• calls opcode processing entry point of the device handler to perform predevice
access processing

• places 110 request in a prioritized queue

• calls 110 queue start entry point of the device handler to stan 110 if the queue is not
currently driven

• branches to appropriate executive entry point to repon type of 110 initiated. For
wait 110. branches to 110 postprocessing; for no-wait 110, returns immediately to
the user.

MPX-32 Technical Volume II 2-5

.-

Entry Point 29 - Handler Opcode Processing and, 110 Queue Interface

Entry Conditions

calling Sequence

M.CALL H.lOCS,29

(or)

BU

Registers

H29.

R 1 FCB address

Exit Conditions

Return Sequence

used internally to H.lOCS
by blocked I/O routines

used by internal H.IOCS
routines to complete normal
I/O processing

See return sequence for S.IOCS 1.

2.30, Entry Point 30 - Adjust TCW Format to Bytes

This entry point adjusts the transfer control word (TCW) format to bytes. The
adjusted quantity is clamped so it does not exceed the maximum quantity specified.

Entry Conditions

2-6

Calling Sequence

M.CALL H.IOCS,30

Registers

Rl PCB address

R6 TCW
R7 maximum quantity

H.JOCS Entry Points

(),

Entry Point 30 - Adjust TCW Format to Bytes

Exit Conditions

Return Sequence

M.RTRN 4,6

Registers

R4 adjusted quantity

R6 adjusted TCW

Abort cases

1024 boundary error

Output Messages

None

2.31 Entry Point 31 - Adjust TCW Format to Halfwords

This entry point adjusts the transfer conttol word (Tew) format to halfwords. The
adjusted quantity is clamped so it does not exceed the maximum quantity specified.

Entry Conditions

calling Seq':Jence

M.CALL H.IOCS,31

Registers

Rl FCB address
R6 TCW

R7 maximum quantity

MPX·32 Technical Volume II 2·7

Entry Point 31 - Adjust TCW Format to Halfwords

Exit CondHlons .

Return Sequence

M.RTRN 4,6

Registers

R4 adjusted quantity

R6 adjusted TCW

Abort Cases

1024 boundary error

Output Messages

None

2.32 Entry Point 32 - Adjust TCW Format to Words

This entry point adjusts the transfer control word (TCW) format to words. The
adjusted quantity is clamped so it does not exceed the maximum quantity specified.

Entry Conditions

2·8

Calling Sequence

M.CALL H.IOCS,32

Registers

Rl FCB address

R6 TCW
R7 maximum quantity

H.lOCS Entry Points

o

.-

o

Entry Point 32 • Adjust TCW Format to Words

Exit CondHions

Retum Sequence

M.RTRN 4,6

Registers

R4 adjusted quantity

R6 adjusted TCW

Abort cases

1024 boundary error

Output Messages

None

2.33 Entry Point 33 - Request End-action Task Interrupt with No
1/0 Request

This entry point is used by J.TSM to process open denials at its end-action routine by
requesting an end-action task interrupt without performing an I/O request. A file
control block (PCB) is not needed.

{~- • Entry Conditions

calling Sequence

M.CALL H.IOCS,33

Registers

R7 end-action entry address

Exit CondHlona

Retum Sequence

M.RTRN

Registers

Rl passed unchanged to the end-action entry

Abort cases

None

Output Messages

None

MPX-32 Technical Volume II 2-9

"

,',

Entry Point 34 - No Walt 110 End-Action Return

2.34 Entry Point 34 - No Wait 1/0 End-Action Return

See M.XIEA or M XIEA in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.35 Entry Point 35 - Reserved

2.36 Entry Point 36 - Restart 1/0

This entry point is used to restart 110 for devices where no-wait 110 incurred error or
wait 110 retry abotted.

It is also used to restart 110 after an 110 channel is released back to the system.

Entry Conditions

calling Sequence

M.CALL H.IOCS,36

Registers

RO I/O queue address (from CDT.FIOQ)

Exit Conditions

Return Sequence

M.RTRN

Registers

None

Abort Cases

None

Output Messages

None

2.37 Entry Point 37 • Virtual Address Validate

2-10

This entry point verifies that a given virtual start address through an optional transfer
length is within a user's legal limits of program execution.

H.IOCS Entry Points

0 "·'·: , .

0-

('

(

Entry Point 37 - Virtual Address Validate

Entry Conditions

Calling Sequence

M.CALL H.lOCS,37

Registers

R6 bits 0-7 are ignored; bits 8-31 are the virtual start address
R7 bits 0-15 are ignored; bits 16-31 are the transfer length in bytes

Exit Conditions

2.38

Return Sequence

M.RTRN 6

Registers

R6 virtual start address (same as on entry), or zero (transfer outside legal
, limits)

Abort Cases

None

Output Messages

None

Entry Point 38 • Kill All Outstanding I/O

This entry point is used to terminate all outstanding I/O for the current executing task.

Peripheral timeout is forced for pending I/O whereas queued I/O is removed from the
CDT or UDT string. Appropriate status is set to indicate either device timeout or "I/O
killed" respectively.

This entry point also kills outstanding I/O issued by 1.TSM for a task issuing a
command line recall and edit read. The current IOQ associated with task's DCA is
checked for 1.TSM's program number. If found, the I/O is halted and normal kill
processing continues.

Entry Conditions

calling Sequence

M.CALL H.lOCS,38

Registers

None

MPX·32 Technical Volume II 2·11

Entry Point 38 - Kill All Outstanding 1/0

Exit CondHlons

Return Sequence

M.RTRN

Registers

None

Abort cases

None

Output Messages

None

2.39 Entry Point 39 - Discontiguous E-Memory Data Address
Check

nus entry point ensures that a given virtual data transfer is within E-memory and
does not cross noncontiguous memory blocks based on an optional transfer length.

Entry Conditions

2-12

calling Sequence

M.CALL H.lOCS,39

Registers

R6 bits 0-11 are ignored; bits 12-31 are the virtual stan address

R7 bits 0-15 are ignored; bits 16-31 are the transfer length in bytes

H.lOCS Entry Points

Entry Point 39 - Discontiguous E-Memory Data Address Check

Exit Conditions

Return Sequence

M.RTRN zero

Registers

RO Value

o
Definition

transfer address out of E-memory,
or transfer crosses noncontiguous
memory blocks

not 0 transfer address is within E-memory:

Abort cases

None

Output Messages

None

1 transfer address is in
operating system portion of
E-memory (virtual - absolute)

2 transfer address is not in
operating system portion of
E-memory (virtual .. absolute)

2.40 Entry Point 40 - Discontiguous Data Address Check for 24
Bit Address

This entry point ensures that a given virtual data transfer is within E-memory and
does not cross noncontiguous memory blocks based on an optional transfer length.

Entry Conditions

calling Sequence

M.CALL H.lOCS,40

MPX·32 Technical Volume II 2·13

Entry Point 40 • Dlscontlguous Data Address Check for 24 Bit Address

Exit Conditions

Return Sequence

M.RTRN zero

Registers

RO Value
-0-

, ..

Definition
transfer address out of E-memory,
or transfer crosses noncontiguous
memory blocks

not 0 transfer address is within E-memory:

1 transfer address is in
operating system portion of
E-memory (virtual = absolute)

2 transfer address is not in
operating system portion of
E-memory (virtual - absolute)

R6 bits 0-7 are ignored; bits 8-31 are the virtual start address

R7 bits 0-15 are ignored; bits 16-31 are the transfer length in bytes

Abort cases

None

Output Messages

None

2.41 Entry Point 41 - Reserved

2.42 Entry Point 42 - Reserved

2.43 Entry Point 43 - Reserved

2-14 H.JOCS Entry Points

(~'.

c.'

(

Entry Point 44 - SYSGEN Initialization

2.44 Entry Point 44 - SYSGEN Initialization

Performs any required H.IOCS initialization at SYSGEN time.

Entry Conditions

Calling Sequence

M.EIR

(or)

Branch to H.IOCS.I

Registers

None

Exit Conditions

Retum Sequence

M.XIR H.IOCS.

Registers

Same as on entry

Abort Cases

None

Output Messages

None

MPX-32 Technical Volume II

(special SYSGEN initialization termination macro)

2-15/2-16

(
3 H.lOCS Subroutines

3.1 Subroutine S.lOCSO - No-Wait I/Q End-Action Entry

This routine re-establishes file control block linkages to the IOQ file assignment table
and restores the user's call frame in the task service area to its context before device
access.

Entry Conditions

calling Sequence

LPSD IOQ.PSD

Registers

R3 IOQ address

Exit Conditions

Return Sequence

BU S.IOCSI

Registers

R3 IOQ address

from H.EXEC

3.2 Subroutine S.IOCS1 - Post 1/0 Processing

This routine is entered by a branch and link direcdy after a wait I/O request completes
or indirectly as a task interrupt service when a no-wait I/O request completes.

If wait I/O completed with errors, applicable error messages are output and I/O retry
attempted unless error processing is inhibited. If error processing is not applicable, an
abort message is output or the error return address is taken. Wait I/O would take the
error return in FCB word 6.

For the no-wait I/O requests or wait I/O requests, appropriate data conversions and
buffer transfers from system buffers to user buffers are performed. Any system buffer
which had been allocated and the I/O queue itself are deallocated.

If no-wait I/O completed with errors, the no-wait error end-action address in word 14
of the PCB is honored if present. The user must retum with H.IOCS.34 to exit the
error end-action service. If no error end-action address is present, status infonnation
is posted in the FCB and a return is made to the user. If an abort of this task had
been issued, the end-action routine is not called and a status bit is set to indicate this.

For wait I/O with errors for which retry is applicable yet the operator aborted, all
system buffers and the I/O queue are deallocated and the I/O queue is unlinked.

MPX-32 Technical Volume II 3-1

Subroutine S.IOCS1 - Post I/O'Processing

For no-wait 110 that completes without error, the no-wait normal end-action address in
word 13 of the FCB is honored if present. The user must return via H.IOCS,34 to
exit the normal end action service. If an abort had been issued for this task, the end­
action routine is not called and a status bit is set'to indicate this.

Wait 110 that completes without error always returns to the next instruction following
the original point of call.

Entry Conditions

Calling Sequence

BL S.lOCS 1 wait 110

(or)

LPSD (110 queue + 4W) no-wait 110

Registers

R3 110 queue address

Exit Conditions

3-2

Return Sequence

M.RTRN

(or)

normal wait I/O completion or error processing inhibited

M.RTNA R6 error rerum, wait I/O; address from FCB word 6

(or)

Xl

BL

FCB address

ERROR-END-ACI10N no-wait, complete with error
address from FCB.NWER

Note: User exits through H.IOCS,34.

H.lOCS Subroutines

(

Subroutine S.IOCS1 - Post 1/0 Processing

(or)

Xl FCB address

BL NORMAL-END-ACTION no-wait, complete without error
address for FCB.NWOK

Note: User exits through H.IOCS,34.

M.CALL H.EXEC,12

Wait 110 Retry

(or)

M.CALL

Registers

H.EXEC,l

H.EXEC,2

H.EXEC,3

None unless noted.

Abort cases

normal no-wait 110 completion,
or error processing inhibited,
or no end-action addresses specified

Note: Post I/O processing
is re-initiated when 110 completes.

wait 110 interactive input

wait I/O terminal output

wait I/O not interactive input
or terminal output

Note: Post 110 processing will be
reinitiated when I/O completes.

I006 INVALID BLOCKING BUFFER CONTROL CELLS IN BLOCKED
FILE ENCOUNTERED. PROBABLE CAUSES: (1) FILE IS
IMPROPERLY BLOCKED, (2) BLOCKING BUFFER IS
DESTROYED, (3) TRANSFER ERROR DURING FILE INPUT.

I021 IOCS HAS ENCOUNTERED AN UNRECOVERABLE I/O ERROR IN
ATTEMPTING TO PROCESS AN I/O REQUEST ON BEHALF OF
A TASK.

MPX·32 Technical Volume II 3-3

Subroutine S.IOCS1 • Post 110 Processing

Output Messages

*dtchsa INOP: R, A?

dt device type mnemonic (for example, LP)
ch channel number
sa subaddress

I/O ERR DEVICE: dtchsa STATUS (XXCCDDDD) -zzzzzzzz LFC kkk date time

dt
ch
sa
zzzzzzzz
IcJck
date
time

device type mnemonic
channel number
subaddress
actual status returned
logical file code associated with I/O
date stamp in format mmlddlyy
time stamp in format hh:mm:ss

For XIO devices, a second line is also displayed:

XIO SENSE STATUS - senseword

senseword sense status information returned in FCB.lSTl of an extended FCB.
Refer to the appropriate hardware technical manual for a description.

3.3 Subroutine S.IOCS2 • Reserved

3.4 Subroutine S.IOCS3 • Unlink 1/0 Queue

This routine unlinks the just completed I/O queue entry from the CDT or UDT active
I/O queue suing. This routine must be externally gated. .

Entry CondHions

Calling Sequence

BL S.IOCS3

Registers

R2 I/O queue address

R3 eDT address

H.lOCS Subroutines

o

o

(

Subroutine S.IOCS3 • Unlink 1/0 Queue

Exit CondHlons

Return Sequence .'
TRSW R7

Registers

Rl CDT addreS$

R2,R3,R5 unchanged
R4,R6,R7 destroyed

Abort Cases

None

Output Messages

None

3.5 Subroutine S.lOCS4· Buffer to Buffer Move Routine
(Halfword)

This routine moves the contents of one buffer to another buffer, one halfword at a
time. See S.lOS19A, B, C, or D which can peIform the same function.

(' Entry CondHlons

Calling Sequence

BL S.IOCS4

Registers

Rl from buffer halfword address

R2 to buffer halfword address

R4 negative number of bytes to convert

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl,R2,R4,R6 destroyed

MPX·32 Technical Volume II 3-5

Subroutine S.IOCS4 - Buffer to Buffer Move Routine (Halfword)

Abort Cases

None

Output Messages

None

"

3.6 Subroutine S.IOCS5 • Peripheral Time-out

This routine performs peripheral time-out checking for all devices with 110
outstanding. This routine is entered every timer unit, and will branch to the device
handler lost interrupt entry point for processing if the time limit is exceeded.

Entry Conditions

calling Sequence

BL S.IOCSS

Registers

None

Exit CondHlons

3-6

Return Sequence

TRSW RO

Registers

RI-R7 destroyed

Abort Cases

None

Output Messages

None

H.IOCS Subroutines

Subroutine S.lOCS6 - Buffer to Buffer Move Routine (Byte)

r-' 3.7 Subroutine S.lOCS6 - Buffer to Buffer Move Routine (Byte)
This routine moves the contents of. one buffer to another buffer one byte at a time.
See S.IOS19A, B, C, or D which can perform the same function.

Entry Conditions

calling Sequence

BL S.lOCS6

Registers

R 1 from buffer byte address

R2 'to buffer byte address
R4 negative number of bytes to move

Exit Conditions

Retum Sequence .

TRSW RO

Registers

Rl,R2,R4,R6 destroyed

Abort cases

None

Output Messages

None

3.8 Subroutine S.IOCS7 - Buffer to Buffer Move Routine (Word)

This routine moves the contents of one buffer to another buffer one word at a time.
See S.lOS19A, B, C, or D which can perform the same function.

Entry Conditions

calling Sequence

BL S.IOCS7

Registers

R 1 from buffer word address

R2 to buffer word address

R4 negative number of words to move

MPX·32 Technical Volume II 3·7

Subroutine S.IOCS7 • Buffer to Buffer Move Routine (Word)

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl,R2,R4,R6 destroyed

Abort Cases

None

Output Messages

None

3.9 Subroutine S.IOCS8 - Buffer to Buffer Move Routine
(Doubleword)

This routine moves the contents of one buffer to another buffer, one doubleword at a
time. See S.lOS19A, B, C or D which can perform the same function.

Entry Conditions .

Calling Sequence

'BL S.lOCS8

Registers

R 1 from buffer doubleword address
R2 to buffer doubleword address
R4 negative number of doublewords to move

exit Conditions

3-8

Return Sequence

TRSW RO

Registers

Rl,R2,R4,R6,R7 destroyed

Abort Cases

None

Output Messages

None

H.IOCS Subroutines

("
(; ...)

(....
. , -

('

(--

./

Subroutine S.IOCS9 • Reserved

3.10 Subroutine S.IOCS9 - Reserved

3.11 Subroutine S.IOCS10 - Delete 1/0 Queue and OS Buffer

This routine deallocates the 110 queue and any system memory pool areas used during
the 110 operation.

Entry CondHions

calling Sequence

BL S.IOCSI0

Registers

R3 110 queue address

Exit CondHlons

Return Sequence

TRSW R6

Registers

Rl
R2-R7

FCB address

destroyed

Abort cases

None

Output Messages

None

3.12 Subroutine S.IOCS11 - Allocate Memory Pool

This entty point is used to obtain memory from the system memory pool. The
maximum amount of memory which can be allocated is 192 words. An abort
condition OCCUIS if more than 192 words are requested. All memory can be zeroed
before relW'Ding to the calling task.

If memory is not available, the calling task will be suspended by H.EXEC,6 until
memory is available. All memory returned has the attribute that its vinual address is
the same as its absolute address.

MPX·32 Technical Volume II 3-9

Subroutine S.IOCS11 • Allocate Memory Pool

Entry Conditions

Calling Sequence

BL S.lOCSll

Registers

R7 number of words to allocate

Exit Conditions

Retum Sequence

TRSW R4

Registers

Rl,R3 reserved
R2,R4,RS destroyed

R6 address of memory pool

R7 actual number of words allocated

Abort Cases

None

Output Messages

None

3.13 Subroutine S.IOCS12 - Store lOCOs for Extended 1/0

This routine dynamically stores IOCDs· into the I/O queue as required during extended
I/O request processing. An abort condition ocCurs if there is not sufficient space for
the IOCDs.

Entry Conditions

Calling Sequence

BL S.lOCS12

Registers

R3 I/O queue address

R6 IOCD most significant word

R7 IOCD least significant word

3-10 H.IOCS Subroutines

.~.
L" 1

1'-./

(

Subroutine S.IOCS12 • Store lOCOs for Extended 110

Exit Conditions

Return Sequence

TRSW RO

Registers

R3 110 queue address

RS la~dynanllcI~location

R6 IOCD most significant word

R7 IOCD least significant word

Abort cases

None

Output Messages

None

3.14 Subroutine S.IOCS13 • Allocate 1/0 Queue and Buffer
Space

This routine must be called by the opcode processing entry point of device handlers
processing opcodes for which standard 110 queue entries are required, for example,
operations that result in a device access.

Entry Conditions

calling Sequence

BL S.IOCS13

Registers

Rl PCB address

MPX·32 Technical Volume II 3-11

Subroutine S.lOCS13 - Allocate tlO Queue and Buffer Space

Exit CondHlons

Return Sequence

TRSW RO

Registers

R2 destroyed

Abort Cases

I040 INVALID TRANSFER COUNT. TRANSFER COUNT TOO LARGE
FOR TRANSFER TYPE, TRANSFER COUNT NOT AN EVEN
MULTIPLE OF TRANSFER TYPE, OR DATA ADDRESS NOT
BOUNDED FOR TRANSFER TYPE.

Output Messages

None

3.15 Subroutine S.lOCS14 - Abort Code Formatting

This routine is used to determine which operation caused an abort and on which
logical file code (LFC) the abort occurred. A valid abort code must be specified in
register five upon entry.

Entry CondHlons

calling Sequence

BU S.lOCS14

Registers

R 1 PCB address

RS valid 4-character abort code

3-12 H.IOCS Subroutines

(~\

,

Subroutine S.IOCS14 - Abort Code Formatting

Exit CondHlons

Return Sequence

BU S.IOCSI6

Registers

RI FCB address

R4 destroyed

R5 abort code

R6 4-character (ASOI) operation causing the abon

R 7 1- to 3-character LFC where the abon occurred

Abort cases

None

Output Messages

None

3.16 Subroutine S.IOCS15 - Reserved

3.17 Subroutine S.IOCS16 - Error Handling

This routine processes user error exit parameters in the FCB. For 110 requests which
are not aboned, the 12-character abon message is saved in words 11, 12 and 13 of the
current call frame at the time of the abon. A task will not abort if anyone of the
following conditions exist:

• task is a no-wait 110 request
• error processing inhibit bit is set in the FCB
• valid error exit address is specified

Entry Conditions

calling Sequence

BU ,S.IOCSI6

Registers

R1
R2-R4

R5
R6,R7

FCB address

destroyed
4-character abon code

extended abon code

MPX·32 Technical Volume II 3-13

Subroutine S.IOCS16 • Error Handling

Exit Conditions

Return Sequence

BU S.IOCS17
M.RTRN
M.RTNA R6
M.CALL H.REXS,28

Registers

no-wait I/O request
error processing inhibit bit set
error exit address is valid
task is aborted

Rl FCB address (no-wait I/O requests only)

3.18 Subroutine S.IOCS17 - No-Wait 1/0 Exit

This routine processes no-wait I/O requests with an end-action address specified in the
FCB. The request is queued to DQE.TISF.

Entry Conditions

Calling Sequence

BU S.lOCS17

Registers

Rl FCB address

Exit Conditions

Return Sequence

M.RTRN

Registers

None

3.19 Subroutine S.IOCS18 - Delete 110 Queue and OS Buffer

This routine deallocates the 110 queue and any system memory pool buffer areas used
during 110. It is called from the handlers as a result of an OPCOM KILL request.
This routine is called with the CPU running unmapped.

Entry Conditions

3-14

calling Sequence

BL S.lOCS18

Registers

R3 I/O queue address

H.IOCS Subroutines

C'I
, /.

c

(

Subroutine S.lOCS18 • Delete I/O Queue and OS Buffer

Exit Conditions

3.20

Return Sequence

TRSW R6

Registers

Rl

R2-R7

110 queue address

destroyed

Abort Cases

None

Output Messages

None

, I

Subroutines S.IOS19A, B, C, and D· Move Memory

These routines- move memory from one memory location to a different memory
location. The move is petfonned using the largest transfer unit possible (such as
doublewords, words, halfwords, or bytes). The transfer quantity used depends on the
alignment of the address locations that memory is moving from and to. The choice of
which routine to use is dependent on whether the source and target address locations
reside in the task or operating system address space outlined as follows:

Entry Conditions

calling Sequence

BL
BL
BL
BL

Registers

S.IOS19A
S.IOS19B
S.IOS19C
S.IOS19D

move memory
move memory
move memory
move memory

Source
from task
from task
from as
from as

R 1 address memory is being moved from

R2 address memory is being moved to

R5 number of bytes of memory to be moved

MPX-32 Technical Volume II

Target
to task
to as
to task
to as

3-15

Subroutines S.lOS19A, S, C, and D - Move Memory

Exit Conditions

Return Sequence .,
TRSW RO

Registers

Rl contains the. next available memory address after the from address, which
is the sum of the contents of R 1 and R5

R2

R3
R4-R7

contains the next available memory address after the to address, which is
the sum of the contents of Rl and R5

unchanged

destroyed

Abort Cases

None

Output Messages

None

Scratchpad Usage

The last two words of the current stack level are used.

Note: For compatibility with nonextended and extended mode images, the calling
sequence which was used before version 3.5 can still be used: BL S.IOCS 19

3.21 Subroutine S.IOCS20 - Get Data Address and Transfer
Count

This routine extracts the user's data address and transfer count from an 8 or 16 word
FCB. The extracted transfer count is always in bytes and the extracted data address is
always a pure address, with no F and C bits. The transfer count is clamped to the
maximum value for the device or transfer type.

Entry Conditions

Calling Sequence

BL S.IOCS20

Registers

Rl FeB address

3-16 H.lOCS Subroutines

c

Subroutine S.lOCS20 - Get Data Address and Transfer Count

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl FeB address

R2,RS unchanged

R3,R4 destroyed

R6 data address

R7 transfer count

3.22 Subroutine S.IOCS21 - Reserved

3.23 Subroutine S.IOCS22 - Reserved

3.24 Subroutine S.IOCS23 - IOCS Exit

This routine exits IOCS by performing a return to the caller for wait 110 requests. For
no-wait I/O requests, IOCS is exited by calling S.lOCS 17. It calls to S.lOCS26 to
close the FPrs and FATs before returning to the caller by M.RTRN.

Entry Conditions

calling Sequence

BU S.lOCS23

Registers

Rl FCBaddress

MPX·32 Technical Volume II 3-17

Subroutine S.IOCS23 • IOCS Exit

Exit Conditions

Return Sequence

M.RTRN wait 110 requests
BU no-wait 110 requests

Registers

R2-R7 . destroyed

Abort Cases

I041 BLOCKING ERROR DURING NON-DEVICE ACCESS
I044 NON-DEVICE ACCESS I/O ERROR. THIS ERROR MAY BE

THE RESULT OF CHANNEL/CONTROLLER INITIALIZATION
FAILURE.

3.25 Subroutine S.IOCS24 • Reserved

3.26 Subroutine S.IOCS25· Reserved

3.27 Subroutine S.IOCS26· Close FPT and FAT If Close
Request

This routine is called by IOCS to complete close processing of a task. It causes the
FPr and FAT entries associated with the task's PCB to be closed.

Entry Conditions

Calling Sequence

BL SlOCS26

Registers

Rl FCB address

Exit Conditions

3-18

Return Sequence

TRSW RO

Registers

RI
R2-R7

PCB address

destroyed

H.lOCS Subroutines

t

(

Subroutine S.lOCS27 - Validate FCB and Perform Implicit Open

3.28 Subroutine S.IOCS27 - Validate FCB and Perform Implicit
Open

This routine checks to ensure there is a FCB.LFC and FPT.LFC match and that the
FCB is linked to the FPT. If 110 is outstanding, it is suspended. If the FCB is not
open, an implicit open is perfonned.

Entry CondHions

Calling Sequence

BL SJOCS27

Registers

Rl FCB address

Spad Cell Used

2

Exit CondHions

Return Sequence

TRSW RO

Registers

Rl FCB address
R2,R6,R7 destroyed

R3 FPT address

R4 24-bit mask

R5 unchanged

3.29 Subroutine S.lOCS28 -Initialize loa Entry

This routine initializes the IOQ parameters from the FCB, CDT, UDT, and FAT. It
also stores the program number into the IOQ and sets FCB.lOQA.

MPX·32 Technical Volume II 3-19

Subroutine S.IOCS28 • Initialize IOQ Entry

Entry CondHlona

calling Sequence

BL S.IOCS28

Registers

Rl FCB address (or TCPB address)

R2 FAT address (or zero)

R3 CDT address

R6 IOQ address

R7 number of extra words in this IOQ

Exit Conditions

Return Sequence

TRSW RO

Registers

RI-R3,R6 same as on entry (masked with X'FFFFF')

R4,R7 destroyed

RS unchanged

3.30 Subroutine S.IOCS29 - Report 1/0 Complete

This routine is called by handlers to report 110 completion. This routine is called with
the CPU running unmapped.
Note: IOQ.RTN can be used to save the return address before calling S.EXEC 1,

S.EXEC2, S.EXEC3, or S.EXEC4.

Entry CondHions

calling Sequence

BL S.IOCS29

Registers

Rt pro~number

R2 IOQ address

3-20 H.lOCS Subroutines

rf--~

'0

(

Subroutine S.IOCS29 • Report 1/0 Complete

Exit Conditions

Return Sequence

TRSW RO

Registers

R2,R6 IOQ address

Rl.R3-RS.R7
destroyed

3.31 Subroutine S.IOCS30 • Initialize FCB

This routine clears status in the user's FCB, establishes linkage from the FCB to the
FPr and inserts the specified operation code.

Entry Conditions

calling Sequence

BL S.IOCS30

Registers

Rl

R3
FCBaddress

FPr address

R4 X'OOFFFFFF' (24 bit mask value)

R5 hexadecimal opcode, X'O' to X'F'

exit Conditions

Return Sequence

TRSW RO

Registers

Rl FCBaddress
R2 FAT address

R3 FPf address
R4,R7 unchanged

R5 opcode

R6 destroyed

MPX·32 Technical Volume II 3-21

Subroutine S.lOCS31 - Mark Units Off-line

3.32 Subroutine S.IOCS31 - Mark Units Off-line

This routine marks a controller, and all the units connected to the controller off-line.

Entry Conditions

calling Sequence

BL S.IOCS3l

Registers

Rl CDT address

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl COT address

R3,R7 destroyed

3.33 Subroutine S.IOCS32 - Predevice Access Request
Validation

3-22

This routine uses the file control block (PCB) opcode and an internal table of valid
operations to check for the following violations. If any violation is found, the abort
code and reason for the abon is issued:

I002 AN UNPRIVILEGED TASK IS ATTEMPTING TO READ OR
WRITE DATA INTO AN UNMAPPED ADDRESS.

I003 AN UNPRIVILEGED TASK IS ATTEMPTING TO READ DATA
INTO PROTECTED MEMORY.

I008 DEVICE ASSIGNMENT IS REQUIRED FOR AN UNPRIVILEGED
TASK TO USE THE SERVICE.

I009 ILLEGAL OPERATION ON THE SYC FILE.
I028 ILLEGAL OPERATION ATTEMPTED ON AN OUTPUT ACTIVE

FILE OR DEVICE.
I038 WRITE ATTEMPTED ON UNIT OPENED IN READ-ONLY MODE.

A READ-WRITE OPEN WILL BE FORCED TO READ-ONLY IF
TASK HAS ONLY READ ACCESS TO UNIT.

If the transfer count is zero, the transfer is considered complete and control is passed
to S.IOCS23. If the opcode is read, end-of-file (EOp) status is returned.

H.IOCS Subroutines

()

Subroutine S.lOCS32 • Predevlce Access Request Validation

(•.. Entry Conditions

f'

Calling Sequence

BL S.lOCS32

Registers

Rl FCB address

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl
R2-R7

FCB address

destroyed

3.34 Subroutine S.IOCS33· Disc FAT Processor

This routine checks for EOF, EOM, and BOM on disk files. It is called by the disk
handlers at opcode processing time to check for a valid block number. It will also
extend the file for a write past EOM, if allowed. This routine enqueues a reader
trying to read past EOF on an implicit shared file if there is a writer on the file.

Entry Conditions

Calling Sequence

BL S.lOCS33

Registers,

R 1 FCB address

R2 FAT address
R 7 blocks spanned in operation (+ if forward, - if backward)

MPX-32 Technical Volume II 3-23

Subroutine S.IOCS33· Disc FAT Processor

Exit CondHlons

Return Sequence

TRSW RO

Registers

R3.R4 destroyed.

R5 starting relative disk position

R6 zero if operation within file bounds; -1 if operation caused an EOF, EOM,
or BOM; ·+1 if operation is to be truncated

IfR6 - +1

R7 actual number of blocks to transfer; otherwise this register is undefined

3.35 Subroutine S.IOCS34 - Allocate Variable loa Entry

This routine is called by the opcode processing entry point of device handlers
processing opcodes for which 110 queue ennies are required, for example, opcodes
resulting in a device access. It allows the handler to specify the amount of additional
space it wants added to the end of the IOQ entry for creation of the actual IOCL
chain. The IOQ may be extended by an additional three words if blocked 110 is being
done.

For F-class devices, this routine allocates and initializes an IOQ entry.

For D-class devices, this routine allocates and initializes an IOQ entry, allocates an
operating system 110 buffer if necessary, and builds a transfer control word (TCW) if
necessary.

Entry CondHlons

Calling Sequence

BL S.IOCS34

Registers

Rl FCB address

R7 number of words to extend the IOQ

Note: Enters S.IOCSI3 for completion of IOQ building.

Spad Cells Used

12, 13, 15-22

3-24 H.IOCS Subroutines

c.··\ ,/

(

Subroutine S.lOCS34 • Allocate Variable IOQ Entry

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl

R2

R3-R7

FeB address

destroyed

unchanged

3.36 Subroutine S.lOCS35 • Reserved

3.37 Subroutine S.lOCS36· File Segment Processor

This routine searches the segment descriptor list to find the real binary block number
that corresponds to the relative block number that is passed to this routine. This
routine also returns the number of blocks to the end of the current segment that
contains the starting relative block number.

Entry Conditions

Calling Sequence

BL S.IOCS36

Registers

Rl FCBaddress
R2 FAT address
R5 relative block number

Exit Conditions

Return Sequence

TRSW RO

Registers

R3 destroyed
R6 real binary disk address

R7 blocks to the end of this segment

MPX·32 Technical Volume II 3-25

..
Subroutine S.lOCS37 • Update FAT and ART for Disc 110

3.38 Subroutine S.IOCS37 - Update FAT and ART for Disc 1/0

TIlis routine updates the FAT and ART for implicit shared files at postprocessing time
for transfers to a disk file. TIlis routine updates the current disk position to the next
block to be transferred and updates the EOF block number for an output operation.

Entry Conditions

Calling Sequence

BL S.IOCS37

Registers

Rt PCB address

Exit Conditions

Return Sequence

TRSW RO

Registers

Rt FCB address

R2,R4-R7 destroyed

3.39 Subroutine S.IOCS38 - Reserved

3.40 Subroutine S.IOCS39 - Reserved

3.41 Subroutine S.IOCS40 - Build lOCOs for XIO Transfers

3-26

TIlis routine breaks down input/output control doublewords (lOCOs) into two or more
transfers and sets the data chaining bit in lOCO if discontiguous. The lOCOs are
stored in the IOCD buffer within the 110 queue and the IOCD buffer address is
incremented as required.

H.IOCS Subroutines

o

Subroutine S.lOCS40 • Build lOCOs for XIO Transfers

(~ .. Entry Conditions

calling Sequence

BL S.IOCS40

Registers

R3 IOQ address

R6 IOCD word 1 with command only (bits 8-31-<»
R7 IOCD word 2 with flags only (bits 8-31-0)

Input

IOQ.FCf2 logical data address
IOQ.FCT3 transfer count

IOQ.ISTI address to store the IOCD that is built

Exit CondHlons

Return Sequence

TRSW RO

Registers

R2,R4

Output

destroyed

IOQ.FCT2 address of end of data buffer

IOQ.FCT3 destroyed

IOQ.ISTI address to store next lOCO built

MPX·32 Technical Volume II 3-27/3-28

C'
{,o "

\ ,

(-'

Interrupt and Trap Processors (H.IP?? and H.SVC?)

MPX-32 Technical Manual

Volume II

Contents
(

Page

1 H.IP?? and H.SVC? Overview

1.1 General Description... 1- 1
1.2 Interrupt and Trap Processing (H.IP?? and H.SVC?) 1-1

1.2.1 Trap Processors .. ~~u •••••••••••••••••••••••••• 1-1

2 H.IP?? and H.SVC? Interrupt Processors

2.1 Console Attention Interrupt Processor (H.IP13) .. 2-1
2.2 Call Monitor (CALM) Interrupt Processor (H.IPOA) 2-2
2.3 Real-Time Clock Interrupt Processor (H.IPCL) ... 2-3

3 H.lP?? and H.SVC? Trap Processors

3.1 Power Fail Trap and Base Mode Task Dispatch Processor (H.IPoo) 3-1
3.2 Autostart Trap Processor - (H.lP AS) .. 3-2
3.3 Memory Parity Trap Processor (H.IP02) .. 3-3

(
3.4 Nonpresent Memory Trap Processor (H.IP03) ... 3-4
3.5 Undefined Instruction Trap Processor (H.IP04) ... 3-4
3.6 Privilege Violation Trap Processor (H.IP05) ... 3-5
3.7 SVC Trap Processor (H.IP06) ... 3-6
3.8 M.CALL SVC Processor (H.SVCO, H.SVC6) ... 3-7
3.9 Supervisor Call Trap Processor (H.SVC1, H.SVC2) 3-8
3.10 M.OPEN SVC Processor (H.SVC3) ..•................ 3-8
3.11 M.RTRNIM.RTNA SVC Processor (H.SVC4) .. 3-9
3.12 Invalid SVC Type Processor (H.SVCN) .. 3-9
3.13 Machine Check Trap Processor (H.IP07) ... 3 -1 0
3.14 System Check Trap Processor (H.IP08) ... 3-10
3.15 Map Fault Trap Processor (H.IP09) ... 3-12
3.16 Address Specification Trap Processor (H.IPOC) .. 3-13
3.17 CPU Halt Trap Processor (H.IPlIT) ... 3-14
3.18 Arithmetic Exception Trap Processor (H.IPOF) ... 3-15
3.19 Cache Memory Parity Error Trap Processor (H.IPlO) 3-16

MPX-32 Technical Volume II iii/iv

{'''.
I", __ i

(
1 H.lP?? and H.SVC? Overview

1.1 General Description , .
The Interrupt and Trap Processing Module (H.IP?? and H.SVC?) defines the routines
which activate interrupts and trap processing. These routines list the indication of
failure or interrupt and the action taken.

1.2 Interrupt and Trap Processing (H.lP?? and H.SVC?)

Interrupt Processor

H.IP13
H.IPOA
H.IPCL

1.2.1 Trap Processors

Trap Processor

H.IPOO
H.IPAS
H.IP02
H.IP03
H.IP04
H.IPOS
H.IP06
H.SVCO, H.SVC6
H.SVCl, H.SVC2
H.SVC3
H.SVC4
H.SVCN
H.IP07
H.IP08
H.IP09
H.IPOC
H.IPHT
H.IPOF
H.IPIO

MPX·32 Technical Volume II

Description

console attention interrupt processor
call monitor interrupt processor
real-time clock interrupt processor

Description

power fail trap and base mode task dispatch
autostart
memory parity
nonpresent memory
undefinedinsttuction
privilege violation
SVC trap processor
M.CALLSVC
supervisor call
M.OPEN SVC
M.RTRNIM.RTNA SVC
invalid SVC type
machine check
system check
map fault
address specification
CPU halt
arithmetic exception
cache memory parity error

1-111-2

o
Of

o

2 H.lP?? and H.SVC? Interrupt Processors

2.1 Console Attention Interrupt Processor (H.IP13)

The console interrupt processor is directly connected to the console interrupt and is
activated when a console interrupt occurs. This processor recognizes the console
interrupt, and issues a break request for the associated task.

Entry Conditions

calling Sequence

The processor is entered directly when a console interrupt occurs (priority level 13).
All registers are saved by this processor.

Exit Conditions

Return Sequence

All registers are restored to their content at the time of the interrupt. Exit is made to
the system with the standard interrupt exit sequence (BL S.EXEC5).

Abort cases

None

Output Messages

None

External Reference

System Macro

M.EQUS

MPX·32 Technical Volume II 2·1

Call Monitor (CALM) Interrupt Processor (H.lPOA)

2.2 Call Monitor (CALM) Interrupt Processor (H.IPOA)

This trap processor is entered wheo a CALM instruction is executed for emulation of
a RTM service. The processor detennines the module and entry point number. A
register push-down and PSD save is perfonned and control is transferred to the
specified module.

Entry Conditions

Calling Sequence

Occurrence of an interrupt signal at priority level X'27'

Exit Conditions

Return Sequence

LPSD IP27.Tl 1P27.Tl - address of MOD., E.P

Registers

Same as upon detection of interrupt

Abort Cases

CMOl

CM02

CM03

CALL MONITOR INTERRUPT PROCESSOR CANNOT LOCATE THE
'CALM' INSTRUCTION

EXPECTED 'CALM' INSTRUCTION DOES NOT HAVE CALM
(X'30') OPCODE

INVALID ' CALM' NUMBER

Output Messages

None

External Reference

2-2

System Macro

M.EQUS

CALM.TBL

H.IP?? and H.SVC? Interrupt Processors

Real-Time' Clock Interrupt Processor (H.lPCL)

(~.. 2.3 Real-Time Clock Interrupt Processor (H.lPCL)

The Real-Time Clock Interrupt Processor is directly connected to the specified real­
time clock interrupt and therefore is activated upon its occurrence. This processor
performs two primary functions:

• maintains the clock interrupt counter (C.INTC) used for time of day calculations
• processes any active DQE timers.

Entry Conditions

Calling Sequence

The processor is entered directly upon the occurrence of the real-time clock interrupt
to which it is connected

Exit Conditions

Return Sequence

BL S.EXECS

Registers

R2

R6,R7

address of register save area

PSD

Abort Cases

None

Output Messages

None

External Reference

System Macro

M.EQUS

MPX·32 Technical Volume II 2·312-4

"

(

3 H.lP?? and H.SVC? Trap Processors

3.1 Power Fail Trap and Base Mode Task Dispatch Processor
(H.IPOO)

Power fail trap processing performed at this level is installation and application
dependent; therefore, a minimal routine is provided for this level, which may be easily
overridden by a user-supplied routine. The routine saves the general purpose registers
(RO-R7)and the base mode registers (BO-B7). The CPU scratchpad is written to low
memory to provide the required parameters for a power up-auto-restart.

Entry Conditions

calling Sequence

Occurrence of interrupt or trap signal at priority level X'OO'

Exit CondHions

Return Sequence

None

Abort Cases

None

Output Messages

None

Base mode tasks are dispatched by a section of code in H.IPOO. Within H.IPOO's
code, the base mode instructions are contained in DATA W statements. H.IPOO is
assembled by the Macro Assembler and· the base mode instructions would not be
understood, otherwise.

At the end of the base mode task activation process, the task activation module
(H.TAMM) loads an SVC 1,X'55' (M.EXIT) instruction into R7, then branches to
BR.DISP in H.IPOO. The code at BR.DISP switches H.IPOO into base mode then
enters the task by executing a CALL instruction. If the task terminates with a
RETURN instruction, control returns to H.IPOO, the instruction contained in R7 is
executed, and the task terminates.

MPX·32 Technical Volume II 3-1

"
Autostart Trap Processor - (H.IPAS)

3.2 Autostart Trap Processor· (H.IPAS)

Processing at this level is application and installation dependent; therefore, a minimal
routine is provided which may be easily overridden by a user-supplied routine.

This trap occurs during the power up sequence, provided the following operating
conditions are met:

1. The CPU, IPU, and· system software traps are enabled.

2. The CPU scratchpad image is contained in dedicated memory locations X'300'
through X'6FC'.

3. The memory scratchpad image contains the CPU and IPU scratchpad keys.

4. A successful power down trap has been executed.

5. The integrity of the memory has been preserved.

Note: The system memory configuration must be core and/or MOS memory with a
battery backup.

Because the CPU scratchpad key is zeroed when H.IP AS is initialized, condition three
is not met Therefore, H.IP AS is not entered and either an automatic IPL or trap halt
is executed.

The H.IPAS trap handler may be replaced with a user-supplied, power-up, auto-restart
routine as follows:

1. Specify the new routine in the SYSGEN SYSTRAP directive.

2. Modify the trap vector table H.IP AS entry using the system macro M.TRPINT.
Priority level X'Ol' must be specified as the user-supplied auto-restart trap
priority level.

3. Meet the five operating conditions.

Entry CondHlons

Calling Sequence

Occurrence of interrupt or trap signal at priority level X'O 1 '

Exit Conditions '

3-2

Return Sequence

HALT

AbortCases

None

Output Messages

None

H.IP?? and H.SVC? Trap Processors

o

o

Memory Parity Trap Processor (H.lP02)

(~-;" 3.3 Memory Parity Trap Processor (H.IP02)
A memory parity error is an indication of total hardware failure and is treated as a
fatal system crash. Registers are loaded (for display) with the saved PSD and the
instruction resulting in the trap. and the M.KILL macro is invoked. Processing can be
continued at the point of interrupt with the registers and PSD intact, but 110 in
progress when the HALT was executed is temlinated.

C"'··
, ,./

Entry Conditions

Calling Sequence

Occurrence of interrupt signal at priority level X' 12', or trap signal at level X'02'

Note: Entry into this routine results in registers being loaded for console display as
follows:

Exit Conditlona

RO,Rl PSD saved by the hardware when the trap occurred

R2 physical address of the instruction causing the trap

R3 instruction being executed when trap occurred

R4 CPU status word stored when the trap occurred

R5 crash code

R6

R7

address of register save block

ASCII 'TRAP'

Retum Sequence

M.KILL (crash code - MPOl)

Abort Case

MPOl MEMORY ERROR OCCURRED IN A TASK'S LOGICAL ADDRESS
SPACE. THIS IS AN INTERNAL OR CPU FAILURE. RERUN
TASK.

Output Messages

None

External Reference

System Macro

M.Kll.L

MPX·32 Technical Volume II 3-3

Nonpresent Memory Trap Processor (H.IP03)

3.4 Nonpresent Memory Trap Processor (H.IP03)
This routine results in the task currently in execution being aboned. A register push­
down and PSD save is made, the abort request is reponed to the scheduler, and a
standard exit is performed.

Entry Conditions

calling Sequence

Occurrence of interrupt signal at priority level X'24', or trap signal at level X'03'

Exit Conditions

Return Sequence

BL S.EXECSA

Registers

R2

RS

R6,R7

register save area address

abort code

PSD

Abort cases

NMOl A NONPRESENT MEMORY TRAP ERROR CONDITION HAS OCCURRED.

Output Messages

None

3.5 Undefined Instruction Trap Processor (H.IP04)

This routine results in an abort of the task currently in execution.

Entry Conditions

calling Sequence

Occurrence of an interrupt signal at priority level X'2S', or trap signal at level X'04'

H.IP?? and H.SVC? Trap Processors

o

10

o

Undefined Instruction Trap Processor (H.lP04)

Exit Conditions

Return Sequence

BU S.EXECSA

Registers

R2

R5

R6.R7

register save. area address

abort code

PSD

Abort cases

"

UIOl UNDEFINED INSTRUCTION TRAP

Output Messages

None

3.6 Privilege Violation Trap Processor (H.IP05)

This routine results in an immediate abon of the task currently in execution.

Entry Conditions

calling Sequence

Occurrence of an interrupt signal at priority level X' 26' ,or a trap signal at level X'OS'

Exit Conditions

Return 'Sequence

BL S.EXECSA

R2 register save area address

R5 abort code

R6,R7 PSD

Abort cases

PVOl PRIVILEGE VIOLATION TRAP.

Output Messages

None

MPX-32 Technical Volume II 3-5

SVC Trap Processor (H •• P06)

3.7 SVC Trap Processor (H.IP06)

This processor provides the SVC secondary vC(ctor table and selects the appropriate
processing routine based on SVC type.

Entry CondHlons

Calling Sequence

Occurrence of a trap signal by execution of the SVC instruction. (Trap number 6.)

Exit CondHions

3-6

Return Sequence

SVCType

o
1
2
3
4
5
6
7
8
9

A-D
E
F

Description

M.CAU. processor (retain blocked state)
SVC Type '1' processor
SVC Type '2' processor
M.OPEN processor
M.RTRN/M.RTNA processor
M.SURE when H.SURE is configured
M.CAU. processo~ (unblocked interrupts)
communications software when configured
custom products when configured
diagnostics
event trace when configured
available for customer use
'CALM' replacement SVC

H.IP?? and H.SVC? Trap Processors

o

o

('" .. " . "

~~/

M.CALL SVC Processor (H.SVCO, H.SVC6)

3.8 M.CALL SVC Processor (H.SVCO, H.SVC6)

This processor provides the means to enter any system module that has a register push
down.

The default processing state for the M.CALL SVC processor for code assembled using
an MPX-32 PRE file is entry point 6 (H.SVC6). This processes with unblocked
interrupts. For code assembled without using an MPX-32 PRE file, entry point 0
(H.SVCO) is the default which processes with blocked interrupts.

The defaults can be overridden with the state parameter on individual M.CALL
specifications.

Entry Conditions

calling Sequence

The requestor must be privileged or in the case of SVCO processing, have the system
administrator attribute. Execution of the following code:

M.CALL mm, ee ['state]

mm is the module number being called (bits 20-23 of the SVC instruction)

ee is the entry point or SRID

stIJte is the state of processing:

RETAIN generates the compatible SVCO call with blocked interrupts

UEI generates the optimized SVC6 call with unblocked interrupts

Exit Conditions

Return Sequence

LSPD SVCO.Tl

Registers

All registers remain intact.

. Abort cases

SVCO.Tl - Address of the entry point
within the called module

SVOl UNPRIVILEGED TASK ATTEMPTING TO USE M.CALL

MPX·32 Technical Volume II

Supervisor Call Trap Processor (H.SVC1, H.SVC2)

3.9 Supervisor Call Trap Processor (H.SVC1, H.SVC2)

This trap processor is entered whenever an SVC type 1 or 2 is executed for an I/O
service, Monitor service, or dynamic debug service. The processor determines the
module entry point using the SVCl or SVC2 vector tables. A register push-down and
PSD save is performed and control is transferred to the specified module.

Entry CondHions

calling Sequence

SVC type 1 or 2 instruction is executed.

Exit Conditions

Return Sequence

LPSD SVCO.Tl SVCO.Tl .. address of MOD., E.P.

Registers

Same as upon detection of trap signal.

Abort cases

SV02 INVALID SVC NUMBER
SV03 UNPRIVILEGED TASK ATTEMPTING TO USE A 'PRIVILEGED-ONLY'

SERVICE

Output Messages

None

3.10 M.OPEN SVC Processor (H.SVC3)

This routine removes the task context switch inhibit state set by the M.SHUT
procedure.

Entry CondHlons

calling Sequence

Execution of the following code:

M.OPEN (SVC type '3' instruction)

Exit Conditions

Return Sequence

BU S.EXEC20

3-8 H.lP?? and H.SVC? Trap Processors

M.OPEN SVC Processor (H.SVC3)

(,~~- 3.11 M.RTRN/M.RTNA SVC Processor (H.SVC4)

This processor provides transfer control that allows system modules to return to the
calling program. A register pop-up is performed with specified registers preserved
returning control to the location specified or the location following the last CALM or
M.CALL. .

Entry Conditions

Calling Sequence

The requester must be privileged. Execution of the following code:

SVC type '4' instruction

WAIT

DATAB X'rr'

DATAB X'aa'

rr bits 0-7 indicate the registers to be preserved
through the pop-up. Each register is preserved
if its corresponding bit is set.

aa may contain a bit (0-7) set indicating the
corresponding register containing the address to
which to return.

Exit Conditions

Return Sequence

BU S.EXEC20

3.12 Invalid SVC Type Processor (H.SVCN)

Entry to this processor results in an abort of the currently executing task.

Entry Conditions

Calling Sequence

SVC type 'n' where n is any SVC vector
not configured (see SVC Trap Processor H.IP06:)

Exit Conditions

Return Sequence

BU S.EXEC20

Abort Cases

SVO 4 INVALID SVC TYPE

MPX-32 Technical Volume II 3-9

Machine Check Trap Processor (H.IP07)

3.13 Machine Check Trap Processor (H.IP07)

A machine check trap is treated as a fatal system crash. Registers are loaded for
display, and the M.KlLL macro is invoked. Processing may be continued at the point
of intenupt with the registers and PSD intact, but 110 in progress when the HALT was
executed is terminated.

Entry Conditions

calling Sequence

OcCUITence of a trap signal at priority level X'07'. Entry into this routine results in
registers being loaded for console display as follows:

Register Definition

RO,RI
R2

R3
R4
RS
R6
R7

PSD saved by the hardware when the trap ocCUlTed
physical address of instruction being executed when the
trap occurred
instruction being executed when trap occurred
CPU status word stored when the trap OCCUlTed
crash code
address of register save block
ASCII 'TRAP'

Exit Conditions

Return Sequence

M.KlLL (crash code MeOI)

Abort cases

MeOl MACHINE CHECK TRAP

Output Messages

None

External Reference

System Macro

M.EQUS

M.KnL

3.14 System Check Trap Processor (H.rpOS)

3-10

A system check trap is treated as a fatal system crash. Registers are loaded for
display, and the M.KlLL macro is invoked. Processing may be continued at the point
of intenupt with the registers and PSD intact, but 110 in progress when the HALT was
executed is terminated.

H.IP?? and H.SVC? Trap Processors

o

o

0-

System Check Trap Processor (H.lP08)

Entry Conditions

calling Sequence

Occurrence of a trap signal at priority level X'08'. Entry into this routine results in
registers being loaded for console display as follows:

Register

RO,Rl
R2

R3
R4
RS
R6
R7

Exit Conditions

Definition

PSD saved by the hardware when the trap occurred
physical address of instruction being executed when the
trap occurred
instruction being executed when trap occurred
CPU status word stored when the trap occurred
crash code
address of register save block
ASCII 'TRAP'

Return Sequence

M.Kll..L (crash code SCOI, SC02, se03, SC04)

Abort Cases

seOl SYSTEM CHECK TRAP OCCURRED AT AN ADDRESS LOCATED WITHIN
THE OPERATING SYSTEM

se02 SYSTEM CHECK TRAP OCCURRED WITHIN THE CURRENT TASK'S
SPACE

se03 SYSTEM CHECK TRAP OCCURRED AT A TIME WHEN THERE WERE NO
TASKS CURRENTLY BEING EXECUTED (C.PRNO EQUALS ZERO)

se04 SYSTEM CHECK TRAP OCCURRED WITHIN ANOTHER TRAP (C.GINT
DOES NOT EQUAL '1')

Output Messages

None

External Reference

System Macro

M.EQUS

M.KILL

MPX·32 Technical Volume II 3-11

Map Fault Trap Processor (H.IP09)

3.15 Map Fault Trap Processor (H.IP09)

This processor results in the task currently in execution being aborted. A register
push down and PSD save is made, the abon request is reported to the scheduler, and a
standard exit is performed.

Entry Conditions

calling. Sequence

Occurrence of trap signal at priority level X'09'

Exit Conditions

Return Sequence

BL S.EXECSA

Registers

R2

R5

R6,R7

Abort case

MFOl

register save area address

abottcode

PSD

A MAP FAULT TRAP HAS OCCURRED. THIS IS THE RESULT OF A
BAD MEMORY REFERENCE OUTSIDE OF THE USER'S ADDRESSABLE
SPACE.

Output Messages

None

External Reference

3-12

System Macro

M.EQUS

H.IP?? and H.SVC? Trap Processors

o

o

0:.

Address Specification Trap Processor (H.lPOC)

(~ 3.16 Address Specification Trap Processor (H.IPOC)
This processor results in an abort of the task currently in execution when the address
alignment of the operand of an instruction does not agree with the requirements of the
instruction or when the register address of a doubleword operation is not an even
number. A register push-down and PSD save is made, the abort request is reported to
the scheduler, and a standard exit is performed.

Entry Conditions

Calling Sequence

Occurrence of a trap signal at priority level X'OC'

Exit Conditions

Return Sequence

BL

Registers

R2

R5

R6,R7

S.EXECSA

register save area address

abort code

PSD

Abort Cases

AD02 ADDRESS SPECIFICATION ERROR OCCURRED WITHIN THE CURRENT
TASK

Output Messages

None

External Reference

System Macro·

M.EQUS

M.TBLS

MPX·32 Technical Volume II 3-13

CPU Halt Trap Processor (H.IPHT)

3.17 CPU Halt Trap Processor (H.IPHT)

This processor results in an abort of the privileged task currently in execution when a
halt instruction occurs in the user's address space. A register push-down and PSD
save is made, the abort request is reported to the scheduler, and a standard exit is
peIformed.

Entry Conditions

Calling Sequence

Occurrence of a trap signal at priority level X'OE'. The CPU must be in privileged
mode and the enable halt trap mode bit set with the SETCPU instruction.

Entry Conditions

Calling Sequence

BL S.EXECSA

Registers

R2

R5
R6,R7

Abort Case

register save area address

abort code

PSD

HTOl AN ATTEMPT WAS MADE TO EXECUTE A HALT INSTRUCTION IN
USER'S PROGRAM

Output Messages

None

External Reference

3-14

System Macro

M.EQUS

M.TBLS

H.IP?? and H.SVC? Trap Processors

o

o

ArIthmetic Exception Trap Processor (H.IPOF)

(~: 3.18 Arithmetic Exception Trap Processor (H.IPOF)

This processor has two entry points· - IPOF and IPOF.O. IPOF is entered and
executed by the CPU whenever the CPU detects an arithmetic exception trap. IPOF.O
is entered and executed by the IPU whenever the IPU detects an arithmetic exception
trap. In both cases, the current context is saved and a common reentrant section of
code is executed.

This section of code perfonns a set bit in memory instruction (SBM) on the arithmetic
exception bit of the user currently in execution. The arithmetic exception bit may
then be tested by requesting the Arithmetic Exception Inquiry monitor service.

Entry CondHlons

calling Sequence

Occurrence of an interrupt signal at priority level X'29', or trap signal at priority level
X' OF'

Exit Conditions

Return Sequence

Tasks without an exception handler:

LPSD IPOF.OLD IPOF.OLD-PSD saved by interrupt

Tasks with an exception handler:

LPSD T.EXCPAD T.EXCPAD=task exception handler address

Returns to destination registers are handled as follows:

Single Precision

underflow

positive overflow

negative overflow

Double Precision

underflow

positive overflow

negative overflow

Abort Cases

None

Output Messages

None

MPX·32 Technical Volume II

all zeros
7FFFFFFF
80000001

all zeros
7FFFFFFFFFFFFFFF
8000000000000001

3-15

Cache Memory Parity Error Trap Processor (H.IP.10)

3.19 Cache Memory Parity Error Trap Processor (H.IP10)

This processor results in an abort Qf the task currently in execution when the hardware
detects a failure in the cache memory hardware within the CPU. A register push­
down and PSD save is made, the abort request is reported to the scheduler, and a
standard exit is performed.

This processor is not applicable to the 3212000 computer.

Entry Conditions

Calling Sequence

Occurrence of a trap signal at priority level X'lO'

Exit Conditions

Return Sequence

BL S.EXEC5A

Registers

R2

R5

register save area address

abort code

R6,R7 PSD

Abort Case

CP02 CACHE PARITY ERROR OCCURRED IN TASK BODY

Output Messages

None

External Reference

3-16

System Macro

M.EQUS
M.TBLS

H.IP?? and H.SVC? Trap Processors

0·,'····· ,

(

Rapid File Allocation (H.MDT)

MPX-32 Technical Manual

Volume II

o

o

Contents

Page

1 Rapid File Allocation (H.MDT)

1.1 General Infonnation .. 1-1
1.2 Entry, Point Summary .. 1-1
1.3 Subroutine Summary ... 1-1

2 H.MDT Entry Points

2.1 Entry Point 1 - Zero the ~T .. 2-1
2.2 Entry Point 2 - Locate ~T Entry and Copy to Buffer 2-1
2.3 Entry Point 3 - Update or Create an ~T Entry ... 2-2
2.4 Entry Point 4 - Delete an ~T Entry .. 2-4

3 H.MDT Subroutines

3.1 Subroutine S.l\.IDT1 .. 3-1
3.1.1 Locate ~T Entries and Copy Infonnation ~ 3-1

3.2

(3.3
3.4

Subroutine S.l\.ID1'2 - Parse Pathname ... 3-4
Subroutine S.l\.IDTI - Hash an l\.IDT Entry ... 3-5
Subroutine S.l\.IDT4 .. 3-6
3.4.1 Locate an ~T Entry through the Scratchpad 3-6

3.S Subroutine S.l\.IDTS - Locate an ~T Directory Entry 3-7
3.6 Subroutine S.l\.IDT6 - Move or Zero an MDT Entry 3-8
3.7 Subroutine S.l\.IDT7 .. ~ : 3-10

3.7.1 Build a Pathname Block Vector in the MDT 3-10
3.8 Subroutine S.l\.IDTS - z.ero the MDT ... 3-11
3.9 Subroutine S.l\.IDT9 - Identify a Map Block Boundary 3-12

MPX-32 Technical Volume II III/Iv

"

o

0'.,' I ..

1 Rapid File Allocation (H.MDT)

1.1 General Information

The Rapid File Allocation Module (H. MDT) provides entry points and subroutines
that are used by H.VOMM and J.MDTI to manipulate the memory resident descriptor
table (MDT). The MDT is a memory-resident copy of permanent file resource
descriptors. Because the MDT is memory resident, a file can be allocated more
quickly through the MDT than throug!t the resource descriptors.

1.2 Entry Point Summary

SVC
Entry Point Number Description

H.MDT,l AA*** zero the MDT
H.MDT,2 AB*** locate an MDT entry and

copy to a buffer
H.MDT,3 AC*** update or create an MDT entry
H.MDT,4 AD*** delete an MDT entry

*** This service is SVC 2,x'nn' callable. All others are SVC 1,X'nn' callable.

1.3 Subroutine Summary

Subroutine

S.MDTl

S.MDT2
S.MDT3
S.MDT4
S.MDTS
S.MDT6
S.MDTI

S.MDTS
S.MDT9

Description

locate an MDT entry and copy
entry information to the scratchpad
parse pathname
hash an MDT entry
locate an MDT entry through the scratchpad
locate an MDT directory entry
move or zero an MDT entry
build a patbname block vector in
the MDT resource descriptor buffer
zero the MDT
identify a map block boundary

MPX·32 Technical Volume II 1·1/1·2

()

o

(

2 H.MDT Entry Points

2.1 Entry Point 1 - Zero the MDT
"

This entry point is used by the memory resident descriptor table (MDT) initialization
task (I.MDT!) to zero the MDT prior to initialization.

Entry Conditions

calling Sequence

M.CALL

Registers

R2

R5

Exit Conditions

H.MDT,l (or) SVC 2,X'AA'

physical address of destination buffer (MDT) to be zeroed

number of words to zero

Return Sequence

M.RTRN

Registers

RO-7

Abort Cases

None

unchanged

Output Messages

None

2.2 Entry Point 2 - Locate MDT Entry and Copy to Buffer

This cnny point locates a memory resident descriptor table (MDT) cnny that
corresponds with the specified pathname vector or pathname block vector. If the entry
exists, it is copied to the specified buffer. If the enny does not exist, error staws is
returned in R7.

MPX·32 Technical Volume II 2·1

Entry Point 2 • Locate MDT Entry and Copy to Buffer

Entry CondHlons

calling Sequence
o·

M.CALL H.MDT,2 (or) SVC 2,x' AB'

Registers

RI
R2

pathruune vector or pathname block vector
buffer address

Exit CondHlons

Return- Sequence

M.RTRN
R7

(CCI set indicates error)
zero or error status:

Abortcasea

. None

Status

I
2
3
7
8
60

Output Messages

None

External Reference

System Macro

M.BWORD

System Subroutines

S.V0MM28
S.V0MM29

Description

invalid pathname
pathname consists of volume only
volume not mounted
resource does not exist
resource name in use
invalid mode

2.3 Entry Point 3 - Update or Create an MDT Entry
This entry point updates and creates memory resident descriptor table (MDT) entties.
To create an entry, an empty MDT entry is allocated and the contents of a buffer are
written to the entry. To update an entry, the entry is overwritten by the buffer's
contents.

2·2 H.MDT Entry Points

o

o

Entry Point 3 • Update or Create an MDT Entry

Entry Conditions

Calling Sequence

M.CALL

Registers

Rl
R2

R7

exit Conditions

H.MDT,3 (or) SVC 2,X' AC'

pathname vector or pathname block vector

buffer address (this is not validated)

mode of the call:

Mode Meaning
-0- update

1 create

Return Sequence

M.RTRN (CCl set indicates error)

Registers

R7 zero or error status:

Abort Cases

None

Status

1
2
3
5
7
8

60

Output Messages

None

MPX·32 Technical Volume II

Description

invalid pathname
pathname consists of volume only
volume not mounted
file is not a permanent file
resource does DOt exist
resource name in use
invalid mode

2·3

Entry Point 3· Update or Create an MDT Entry

External Reference

System Macro

M.BWORD

System Subroutines

S.VOMM23

S.VOMM28

S.VOMM29

2.4 Entry Point 4 - Delete an MDT Entry

This entry point deletes a memory resident descriptor table (MDT) entry. The MDT
entry count, C.MDTAV, is updated.

Entry CondHlons

calling Sequence

M.CAU..

Registers

RI
R2

H.MDT,4 (or) SVC 2,X' AD'

pathname vector or pathname block vector

buffer address containing the resource descriptor of the entry to be
deleted. or zero if the VOMM rename service is used

Exit CondHlons

2-4

Return Sequence

M.RTRN

Registers

R7

(eCI set indicates error)

zero or error status:

Status Description

Abort cases

None

Output Messages

None

1 invalid pathname
2 pathname consists of volume only
3 volume not mounted
7 resource does not exist

H.MDT Entry Points

c

(~
External Reference

System Macro

M.BWORD

System Subroutines

S.VOMM23

S.VOMM28

S.VOMM29

MPX-32 Technical Volume II

Entry Point 4 - Delete an MDT Entry

2-5/2-6

0:

3 H.MDT Subroutines

3.1 Subroutine S.MDT1

3.1.1 Locate MDT Entries and Copy Information

This routine locates a memory resident descriptor table (MDT) entry in one of four
modes:

• locatellog

• create
• delete
• update

Entry information is rewmed to the scratchpad in the following format:

T.SPAD1 :Ed: RESOURCE NAME r;;1., . Dm:::~ T.SPAD5 ,....
-.J (SV1.DNAM)

,....,
~

T.SPAD9 NOT SUPPLIED

T.SPAD10 MVTE OF RESOURCE VOLUME
(SV1. MVTE)

T.SPAD11 MDT ENTRY PHYSICAL ADDRESS
(SV1.DIRA)

. T.SPAD12
MDT ENTRY INDEX

(SV1.DIRI)

HASH COUNT
T.SPAD13 (SV1. HASH)

T.SPAD14
FlAGS

(SV1. FlAG)

""'-.J NOT SUPPLIED
I"""'I~

87D12T12

MPX·32 Technical Volume II 3·1

Subroutines S.MDT1

Entry Conditions

Calling Sequence

BL

Registers

RI
R7

Exit Conditions

S.MDTI

pathname vector or pathname block vector

mode of the call:

Mode Meaning

I locatellog
2 create
4 delete
8 update

Return Sequence

3-2

BU

BU

Registers

R0-6

R7

SV1.XOK (normal)

(or)

SV1.XXX (error - CCI set)

unchanged

UDchanged or error status:

Status Description

I invalid pathname
2 pathname consists of volume only
3 volume not mounted
7 resource does not exist
8 resource name in use

60 invalid mode

0:

o

H.MOT Subroutines

Subroutines S.MDT1

(~ Scratchpad Usage

T.SPADl-4 SV1.NAME
T.SPADS-8 SV1.DNAM

T.SPADIO SV1.MVTE

T.SPADll SV1.DIRA

T.SPAD12 SV1.DIRI
T.SPAD13 SVl.HASH

T.SPAD14 SV1.FLAG

Abort Cases

None

Output Messages

None

External Reference

System Macro

M.PUSH

(

MPX·32 Technical Volume II 3-3

Subroutine S.MOT2 - Parse Pathname

3.2 Subroutine S.MDT2 - Parse Path name

This routine verifies the pathname. The parsed pathname is returned in the
scratchpad.

Entry Conditions

calling Sequence

BL

Registers

Rl
R7

Exit Conditions

S.MDT2

pathname vector or pathname block vector

mode of the call:

Mode Meaning

1 locate
2 create
4 delete

Return Sequence

BU

BU.

Registers

SV1.XOK (Normal)
(or)

SV1.XXX (error - CCI set)

Rl-6 unchanged

R7 unchanged or error status

Abort Cases

None

Output Messages

None

External Reference

System Macro

M.PUSH

H.MOT Subroutines

0",'
., ,,-'

(

Subroutine S.MDT3 - Hash an MDT Entry

3.3 Subroutine S.MDT3 • Hash an MDT Entry

This routine hashes a memory resident descriptor table (MDT) entry using the
directory name, resource name, and number of IViDT entries.

Entry Conditions

Calling Sequence

BL

Input

T.SPADI-4

T.SPADS-8

Exit Conditions

S.MDTI

resource name

directory name

Return Sequence

BU SVl.XOK

Registers

R 1-7 unchanged

Scratchpad Usage

T.SPADll
T.SPAD12

Abort cases

None

directory address

hash index

Output Messages

None

External Reference

System Macro

M.PUSH

MPX·32 Technical Volume II 3·5

Subroutine S.MDT4

3.4 Subroutine S.MDT4

Of

3.4.1 Locate an MDT Entry through the Scratch pad

This routine locates an available or existing entry depending on the flags stored in the
scratchpad. If a new MDT entry is to be created, the available MDT entry is marked
as allocated. This prevents another task from allocating the entry before creation is
complete.

Entry Conditions

Calling Sequence

BL

Input

S.MDT4

T.SPAD14 flags

Exit Conditions

3-6

Return Sequence

BU

BU

Registers

SVl.XOK (normal)
(or)

SV1.XXX (eITOr)

Rl-6 unchanged

R7 unchanged or eITOr status

Status Description

7 resource docs not exist
8 resource name in use
10 MDT entry unavailable

Scratchpad Usage

T. SPAD 1 1

T.SPAD12

Abort Cases

None

directory address

hash index

Output Messages

None

H.MDT Subroutines

0·······.-., .

o

External Reference

System Macro

M.PUSH

Subroutine S.MDT4

3.5 Subroutine S.MDT5 - Locate an MDT Directory Entry

TIlis routine locates a memory resident descriptor table (MDT) by searching a
particular directory. The name of the directory to be searched must be stored in the
scratchpad.

Entry Conditions

calling Sequence

BL S.MDTS

Input

R4 flags

R5 mode of the call:

T.SPADI

Exit Conditions

Mode Meaning

o
1

-1

locate
create
delete

resource name

Return Sequence

BU

BU

BU

Registers

SVl.XOK (normal)
(or)

SVl.ER07 (error)
(or)

SVl.ER08 (error)

Rl-6 unchanged
R7 error status:

Status Description

7 resource does not exist
8 resource name in use
10 MDT entry unavailable

MPX-32 Technical Volume" 3-7

· Subroutine S.MDTS • Locate an MDT Directory Entry

Scratchpad Usage

T.SPADll
T.SPAD12

AbortC8ses

None

MDT entry physical address

MDT entry index

Output .Messages

None

External Reference

System Macro

M.POP

M.PUSH

3.6 Subroutine S.MDT6 - Move or Zero an MDT Entry

This routine moves a block of words from one location to another, or zeros a range of
memory locations. The move is performed unmapped.

Warning: If a ttansfer spans a map block boundary, corruption of another task's
logical address space may occur. S.MDT9 can be used to identify map block
boundaries.

Entry Conditions

3-8

calling Sequence

BL

Registers

Rl
R2
RS

S.MDT6

physical sowce address

physical destination address

number of words to move, or zero to zero the specified range

H.MDT Subroutines

o

o

o

o

Subroutine S.MDT6 • Move or Zero an MDT Entry

Exit Conditions

Return Sequence

BU SV1.XOK

Registers

RO-R7

Abort cases

None

unchanged

Output Messages

None

External Reference

System Macro

M.PUSH

MPX·32 Technical Volume II 3-9

Subroutine S.MDT7

3.7 Subroutine S.MDT7

3.7.1 Build a Pathname Block Vector In the MDT

This routine builds a pathname block (PNB) vector in the last 20 words of the
memory resident descriptor table's (MDT) resource descriptor buffer. The buffer is
located in VOMM's dynamic memory area. The resource descriptor's buffer address
is passed to this routine; the address is used in building the PNB vector.

Warning: The address must be for a permanent file.

Entry Conditions

Calling Sequence

BL S.MDT7

Registers

R2 resource descriptor's buffer address

Exit Conditions

Return Sequence

BU SV1.XOK

Registers

Rl-7 unchanged

Abort Cases

None

Output Messages

None

External Reference

3-10

System Macro

M.PUSH

H.MOT Subroutines

Subroutine S.MDTB • Zero the MDT

("',~ 3.S Subroutine S.MDTS - Zero the MDT

("'"'."

.. '-.

This routine is used by J.MDTI to zero the memory resident descriptor table (MDT)
before the individual entries are initialized.

Entry Conditions

calling Sequence

BL

Registers

R2

R5

Exit Conditions

S.MDTS

MDT physical starting address

length of MDT in words

Return Sequence

BU SV1.XOK

Registers

Rl-7 unchanged

Abort cases

None

Output Messages

None

External Reference

System Macro

M.PUSH

MPX·32 Technical Volume II 3·11

Subroutine S.MDT9 - Identify a Map Block Boundary

3.9 Subroutine S.MDT9 -Identify a Map Block Boundary

This routine identifies a map block boundary. if one exists. in a buffer. If the buffer
spans two map blocks. the number of words in each map block is returned.

Warning: Swapping must be inhibited before calling this routine.

Entry Conditions

Calling Sequence

BL

Registers

Rl
RS

S.MDT9

buffer address

buffer length

Exit Conditions

Retum Sequence

BU SVl.XOK

Registers

Rl-S
R6.7

R6
R7

Abort Cases

None

unchanged

zero if buffer contained within one map block

(or)

number of words in first map block
number of words in second map block

Output Messages

None

Extemal Reference

3-12

System Macro

M.PUSH

H.MDT Subroutines

o

0'·
..

Memory Management (H.MEMM)

MPX-32 Technical Manual

Volume II

:l"'~~""" " j

Contents

Page

1 H.MEMM Overview

1.1 General InfoI1llation .. 1-1
1.2 Entry Points ... 1-1
1.3 Subroutine Summary ... 1-2

2 H.MEMM Entry Points

2.1 Entry Point 1 - Allocate Memory ... 2-1
2.2 Entry Point 2 - Deallocate Memory ... 2-2
2.3 Entry Point 3 - Get Dynamic Extended Data Space 2-2
2.4 Entry Point 4 - Free Dynamic Extended Indexed Data Space 2-2
2.5 Entry Point 5 - Get Dynamic Task Execution Space 2-2
2.6 Entry Point 6 - Free Dynamic Task Execution Space 2-3
2.7 Entry Point 7 - Include Memory Partition ... 2-3
2.8 Entry Point 8 - Exclude Memory Partition ~ 2-3
2.9 Entry Point 9 - Get Dynamic Extended Discontiguous Data Space 2-3

Entry Point 10 - Reserved ... 2-3
Entry Point 11 - Deallocate Memory Due to Swapping 2-3 (2.10

2.11
2.12 Entry Point 12 - Get Memory in Byte Increments 2-4
2.13 Entry Point 13 - Free Memory in Byte Increments 2-4
2.14 Entry Point 14 - Get Extended Memory Array .. 2-4

3 H.MEMM Subroutines

3.1 Subroutine S.~1 - Reserved ... 3-1
3.2 Subroutine S.MEMM2 - Locate Shared Memory Table Entry 3-1
3.3 Subroutine S.MEMM5 - Update Map Segment Descriptor 3-2
3.4 Subroutine S.MEM1vI7 - Remap User's Address Space 3-3
3.5 Subroutine S.~8 - Validate Buffer Address 3-4
3.6 Subroutine S.~11 - Deallocate Debugger Memory 3-5
3.7 Subroutine S.~12 - Create a Protection Image 3-5
3.8 Subroutine S.~13 - Reserved ... 3-6
3.9 Subroutine S.~14 - Update Shared Memory Protection Image 3-6
3.10 Subroutine S.~15 - Reserved ... 3-6
3.11 Subroutine S.~16 - Get System Buffer Space 3-6
3.12 Subroutine S.MEMMI7 - Free System Buffer Space 3-8

MPX·32 Technical Volume II iii

Contents

Page 0
3.13 Subroutine S.MEMM18 - Get Map Image Information 3-9
3.14 Subroutine S.MEMM19 - Update Map Segment Descriptor 3-10
3.15 Subroutine S.MEMM20 - Check-New Task Size 3-10
3.16 Subroutine S.MEMM21 - Create Pathname Search Identifier 3-11
3.17 Subroutine S.MEMM22 - Get Specified Physical Map Block 3-12
3.18 Subroutine S.MEMM23 - Deallocate Map Memory 3-13

o

o
Iv Contents

r
1 H.MEMM Overview

1.1 General Information

The Memory Management Module (H.MEMM) allocates memory and builds memory
paItitions. This module can reside in extended memory.

1.2 Entry Points

Entry Point SVC Number Description

H.MEMM,1
H.MEMM,2
H.MEMM,3
H.MEMM,4
H.MEMM,5
H.MEMM,6
H.MEMM,7
H.MEMM,8
H.MEMM,9

H.MEMM,IO
H.MEMM,11
H.MEMM,12
H.MEMM,13
H.MEMM,14

N/A
N/A
69
6A
67
68

40*
41*
7C*
N/A
N/A
4B*
4C*
7F*

allocate memory
deallocate memory
get dynamic extended data space
free dynamic extended indexed data space
get dynamic task execution space
free dynamic task execution space
include memory paItition
exclude memory paItition
get dynamic extended discontiguous data space
reserved
deallocate memory due to swapping
get memory in byte increments
free memory in byte increments
get extended memory array

* This service is SVC 2,X'nn' callable. All others are SVC 1,X'nn' callable.

N/A implies reserved for internal use by MPX-32.

MPX·32 Technical Volume II 1·1

Subroutine Summary

1.3 Subroutine Summary

1·2

Subroutine

S.MEMMI
S.MEMM2
S.MEMMS
S.MEMM7
S.MEMMS
S.MEMMII
S.MEMM12
S.MEMM13
S.MEMM14
S.MEMMlS
S.MEMM16
S.MEMM17
S.MEMMlS
S.MEMM19
S.MEMM20
S.MEMM21
S.MEMM22
S.MEMM23

Description

. reserved
locate shared memory table entry
update map segment descriptor for memory increas~
remap user's address space
validate buffer address
deallocate debugger memory
create a protection image
reserved
update shared memory protection image
reserved
get system buffer space
free system buffer space
get map image information
update map segment descriptor for memory decrease
check new task size
create pathname search identifier
get specified physical map block
deallocate map memory

H.MEMM Overview

o

2 H.MEMM Entry Points

2.1 Entry Point 1 - Allocate Memory

This entry point is called by H.TAMM entry points 2 and 3, and H.MEMM entry
points 3, 5, and 12. It is also called by the swapper. It allocates the memory required
for the calling task. The memory is returned in the form of map image descriptors
(MIDL) and memory attributes (MEML), one MIDL and one MEML per map block.
Swappable map counts in the DQE are incremented as needed based on the MEML
information. The entries in the memory allocation table are updated to reflect
allocation. Protection granules are returned as unprotected.

Entry Conditions

Calling Sequence

M.CALL

Registers

RI

R3

R5

Exit Conditions

H.MEMM,l or H.REMM,4

address of MIDL or zero

address of MEML or physical map to begin allocation if Rl is zero

right halfword is the number of map blocks required

Left halfword:

Value Memory Class

I

2

3

E

H

S

left halfword not used if physical request

Return Sequence

M.RTRN or MRTRN R5

Registers

If the request cannot be fully satisfied, no memory is allocated by this service.

CCI is set if unable to allocate all required memory and R5 contains the number of
map blocks that cannot be allocated now.

CC1 is reset if request is successful and R5 is unchanged.

Physical memory definitions in MIDL. Memory attributes returned in MEML.

DQE.CME, DQE.CMH, and DQE.CMS incremented for each swappable map.

MPX·32 Technical Volume II 2-1

Entry Point 2 - Deallocate Memory

2.2 Entry Point 2 - Deallocate Memory

This entry point is called by H.TAMM,4 and H.MEMM entry points 4, 6,8, and 13.
It deallocates memory as directed by the map image descriptor list (MIDL) and the
memory attribute list (MEML). Memory can be of mixed types and of mixed
swappable characteristics. The swappable count in the DQE is updated according to
the information in the MEML. Protection granules are set to show that a protected
map hole exists. If Rl is zero then deallocation begins with the physical map number
given and the caller is responsible for updating the MIDL, MEML, and DQE counts.

Entry Conditions

Calling Sequence

M.CALL

Registers

Rl

R3

R5

H.MEMM,2 or H.REMM,5

address of MIDL or zero

address of MEML or physical map number if Rl is zero

number of map blocks to deallocate

Exit Conditions

Return Sequence

M.RTRN

Registers

DQE.CME, DQE.CMH, and DQE.CMS are decremented for each swappable map.

Scratch pad Usage

None

2.3 Entry Point 3 - Get Dynamic Extended Data Space

See M.OD in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point

2.4 Entry Point 4 - Free Dynamic Extended Indexed Data Space

See M.FD in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point

2.5 Entry Point 5 - Get Dynamic Task Execution Space

2·2

See M.OE in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point

H.MEMM Entry Points

o
I

o

Entry Point 6 • Free Dynamic Task Execution Space

(- 2.6 Entry Point 6 • Free Dynamic Task Execution Space

See M.PE in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point

2.7 Entry Point 7 • Include Memory Partition

See M.INCLUDE or M INCLUDE in the MPX-32 Reference Manual Volume I for
a detailed description oftlns entry point

2.8 Entry Point 8 • Exclude Memory Partition

See M.EXCLUDE or M EXCLUDE in the MPX-32 Reference Manual Volume I for
a detailed description oftlns entry point

2.9 Entry Point 9 • Get Dynamic Extended Discontiguous. Data
Space

See M.GDD in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point

2.10 Entry Point 10· Reserved

2.11 Entry Point 11 • Deallocate Memory Due to Swapping

This entry point is called only by the swapper. It deallocates memory as directed by
the map image descriptor list (MIDL) and the memory attribute list (MEML) that are
required inputs to this routine. Memory can be of mixed types but all map blocks are
swappable. The swappable count in the DQE is updated according to the information
in the MEML. The protection granules are not changed.

Entry Conditions

calling Sequence

M.CALL

Registers

Rl

R3

R5

H.MEMM,ll

address of MIDL

address of MEML
number of map blocks to deallocate

Note: DQE.CME, DQE.CMH and DQE.CMS are decremented for each swappable
map. Protection registers are unchanged. MEML and MIDL reflect maps
deallocated..

MPX·32 Technical Volume II 2·3

Entry Point 11 - Deallocate Memory Due to Swapping

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.12 Entry Point 12 - Get Memory in Byte Increments

See M.MEMB or M GETMEMBYTES in the MPX-32 Reference Manual Volume I
for a detailed description of this entty point.

2.13 Entry Point 13 - Free Memory in Byte Increments

See M.MEMFRE or M FREEMEMBYTES in the MPX-32 Reference Manual
Volume I for a detailed description of this entty point.

2.14 Entry Point 14 - Get Extended Memory Array

2-4

See the Get Extended Memory AlTay system service in the MPX-32 Reference
Manual Volume I.

H.MEMM Entry Points

o

o

3 H.MEMM Subroutines

3.1 Subroutine S.MEMM1 • Reserved

3.2 Subroutine S.MEMM2 - Locate Shared Memory Table Entry

This subroutine finds the first entry in the shared memory table (SMT) that contains
the name and task number specified by the caller. It also finds a free entry.

Entry Conditions

calling Sequence

BL

Registers

S.MEMM2

address of partition RID or pathname shared identifier

8-character owner name (dynamic only)

Rl
R4,R5

R6,R7 first eight characters of partition or shared image name if the search
parameter in R 1 is a pathname identifier; otherwise, registers not used.

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl

R2

R3
R4-R6

R7

Status

CCl set
CC2 set
CC3 set

address of SMT entry or next available entry if not found

current stack pointer

TSA address

destroyed

error status; otherwise, R7 is destroyed

status = 5 SMT entry not found
status - 58 SMT entry not available
building entry found during scan

Scratchpad Usage

used to save return address

MPX·32 Technical Volume II 3-1

Subroutine S.MEMM5 - Update Map Segment Descriptor

3.3 Subroutine S.MEMMS - Update Map Segment Descriptor

This subroutine updates the map segment page count contained in DQE.MSD for
memory allocations.

Entry Conditions

Calling Sequence

BL

Registers

Rl

R5

S.MEMMS

starting T.MIDL address

bytes 0,1 contain the memory type
bytes 2,3 contain the number of maps

Exit Conditions

3·2

Return Sequence

TRSW RO

Registers

R2

R3
R4

Status

None

DQE address

TSA address

destroyed

Scratchpad Usage

None

H.MEMM Subroutines

,,(-,;

'\.J

(

(

("~ ... "
,

Subroutine S.MEMM7 • Remap User's Address Space

3.4 Subroutine S.MEMM7 - Remap User's Address Space
This subroutine is used during allocation and deallocation of memory to add or delete
physical maps from the user's address space. The hardware map registers are reloaded
with the new map images.

Entry Conditions

Calling Sequence

BL S.MEMM7

Registers

None (DQE.MSD, T.MEML, and T.MIDL have new image)

Exit Conditions

Return Sequence

TRSW RO

Registers

R3-RS

Status

None

destroyed

Scratchpad Usage

T.PSDI used to perform remap (restored)

MPX·32 Technical Volume II 3-3

Subroutine S.MEMMB • Validate Buffer Address

3.5 Subroutine S.MEMMS • Validate Buffer Address

This subroutine is used to verify a logical address provided by the user. The
following inquiries are made:

• Is the starting address lower than the DSECI' start address?

• Do the addresses specified cross a map block boundary?

• Are the addresses specified in a valid map block?

• Are the addresses specified in the extended address space?

• Are the addresses specified in a protected area?

Entry Conditions

Calling Sequence

BL

Registers

R6
R7

S.MEMMS

logical starting address

number of bytes to validate (buffer size). If zero, single address check
is made.

Exit Conditions

3-4

Return Sequence

TRSW RO

Registers

Rl

R2,R4,RS

Status

R3 is copied to Rl (restores context for IOCS)

destroyed

Code Meaning if Set

CC4 invalid address. For example, not mapped into user's space.

CC3 locations specified are protected

CC2 buffer crosses map block boundary

H.MEMM Subroutines

(.•.
.. ~ .. '\' 'I'?;

.",

o

Subroutine S.MEMM11 • Deallocate Debugger Memory

(,~o 3.6 Subroutine S.MEMM11 - Deallocate Debugger Memory

(

This subroutine deallocates the memory that was dynamically allocated for the loading
of the task debugger into the calling task's space. This routine is called by
H.REXS,30.

Entry Conditions

Calling Sequence

BL

Registers

None

Exit Conditions

S.MEMMII

Return Sequence

TRSW R7 (R7 contains return address)

Registers

All registers are destroyed.

3.7 Subroutine S.MEMM12 - Create a Protection Image

This subroutine creates a protection image for the calling task. The protection
granules in the MIDL entry are set. This subroutine protects every map block in the
task's logical space. This is allowed because when this subroutine is called, the only
memory allocated to the task is the memory for the TSA, which needs to be protected.

Entry Conditions

calling Sequence

BL S.MEMM12

Registers

R3 TSA address

Exit Conditions

Return Sequence

TRSW RO

Registers

All registers are destroyed.

MPX-32 Technical Volume II 3·5

Subroutine S.MEMM13 - Reserved

3.8 Subroutine S.MEMM13 - Reserved

3.9 Subroutine S.MEMM14 - Update Shared Memory Protection
Image

This subroutine updates the protection image of the calling task when a shared
memory panition is included. The protection granules in the MIDL are updated.

Entry Conditions

calling Sequence

BL

Registers

Rl

R4

S.MEMM14

shared memory table address

logical shared memory address

Exit Conditions

Return Sequence

TRSW RO

Registers

R2-R7 destroyed

3.10 Subroutine S.MEMM15 - Reserved

3.11 Subroutine S.MEMM1 f? - Get System Buffer Space

3-6

This subroutine is used by system services requiring temporary buffer space. Logical
contiguous memory is allocated in the DSECf of the task that called the system
service. If insufficient space is available in the DSECf, the memory is allocated in
the extended address space. Memory is allocated from low logical addresses to high.

Note: Calls to this subroutine should not be interleaved with calls to the dynamic
allocation services (H.MEMM,3 and H.MEMM,s) because holes may develop
in the task's address space.

H.MEMM Subroutines

o

0,

('

(~

Subroutine S.MEMM16 • Get System Buffer Space

Entry Conditions

Calling Sequence

BL S.MEMM16

Registers

R5 number of bytes of dynamic space requested

Exit Conditions

Return Sequence

TRSW RO

Registers

R3
R5

logical stan address of dynamic space

number of bytes allocated (number requested is rounded up to the
nearest map block boundary)

R 1 ,R2,R4,R6 destroyed

R7 error status; otherwise, R7 is destroyed

Error Condition

set CCl

R7 error code as follows:

Abort Cases

None

Scratchpad Usage

Value

1

2

4

Definition

number of bytes requested is negative or zero

logical space unavailable in task

attempt to expand task beyond limits of
physical memory

T.SPAD22 used for temporary storage

MPX·32 Technical Volume II 3-7

Subroutine S.MEMM17 - Free System Buffer Space

3.12 Subroutine S.MEMM17· Free System Buffer Space

This subroutine frees space that was allocated by S.MEMM16. Temporary buffer
space is returned starting with the high logical address in the task's extended space
and working down. If all the extended space allocated by S.MEMM 16 is freed and
the request is still not satisfied, temporary space in the DSECT is returned, again
working from high logical memory toward low.

Note: Services which use this subroutine should not call the dynamic deallocation
services (H.MEMM,4 and H.MEMM,6).

Entry Conditions

Calling Sequence

BL

Registers

R3

R5

S.MEMMI7

starting logical address of the space to deallocate

number of bytes of dynamic space to deallocate

Exit Conditions

3-8

Return Sequence

Registers

All registers are destroyed.

Error Condition

CCl invalid system buffer deallocation; only those maps within the
deallocation request range marked as system space are deallocated

H.MEMM Subroutines

o

o

(

Subroutine S.MEMM18 - Get Map Image Information

3.13 Subroutine S.MEMM18 • Get Map Image'lnformation

This subroutine scans a task's MIDL from a given lower bound up to and including a
given upper bound. The scan returns infonnation pertinent to the allocation or
deallocation of memory.

Entry Conditions

Calling Sequence

BL

Registers

Rl

R2

RS

Exit Conditions

S.MEMMl8

lower bound map index (relative to T.MIDL)

upper bound map index (relative to T.MIDL)

number of contiguous maps desired

Return Sequence

TRSW RO

Registers

Rl

R2

R4

R6,R7

Status

address of next available MIDL entry

address of last allocated MIDL entry (non-shared)

address of next available MIDL entry (may be discontiguous)

destroyed

CCl requested space not available

Scratchpad Usage

None

MPX.32 Technical Volume II 3·9

Subroutine S.MEMM19 - Update Map Segment Descriptor

3.14 Subroutine S.MEMM19· Update Map Segment Descriptor

This subroutine updates the map segment page count in DQE.MSD after memory
deallocation.

Entry CondHions

Calling Sequence

BL

Registers

None

S.MEMMI9

Exit CondHions

Return Sequence

TRSW RO

Registers

R2

R3

R4

RS

Status

None

DQE address

TSA address

new map segment descriptor count

destroyed

Scratchpad Usage

None

3.15 Subroutine S.MEMM20 • Check New Task Size

This subroutine is called before memory is allocated. It determines the new size of
the task in map blocks and verifies that the new task size does not exceed the total
amount of physical memory configured.

Entry CondHions

3-10

Calling Sequence

BL

Registers

R3

RS

S.MEMM20

TSA address
number of map blocks to be added to task space

H.MEMM Subroutines

o

(.

Subroutine S.MEMM20 - Check New Task Size

Exit Conditions

Return Sequence

TRSW RO

Registers

R4 number of map blocks in excess of physical memory if CC 1 is set;
otherwise, R4 is destroyed '\

R5 destroyed

Status

CC 1 task size exceeds total memory configured

3.16 Subroutine S.MEMM21 - Create Path name Search Identifier

This subroutine converts a pathname or pathname block into a one word pathname
search identifier. The identifier is used to search the shared memory tables, by
pathname, for an entry.

Entry Conditions

Calling Sequence

BL

Registers

Rl
R2

S.MEMM21

pathname or pathname block vector to be converted

address of 18 word work space if a pathname is to be converted or
zero if a pathname block is to be converted

MPX·32 Technical Volume II 3·11

Subroutine S.MEMM21 • Create Path name Search Identifier

Exit Conditions

Return Sequence

TRSW RO

Registers

RI

R2

R3

R4,RS
R6,R7

pathname search identifier

current stack address

TSA address

destroyed

first eight characters of file name

Scratchpad Usage

The following scratchpad locations are only used when RI, on entry, is a patbnarne
block and the file name portion is less than 16 characters:

T.SPAD 3,4 used to save eight characters of file name
T.SPAD .5,6 used for calculation of file name portion of patbnarne block

3.17 Subroutine S.MEMM22 - Get Specified Physical Map Block

This subroutine acquires physical map blocks for the operating system. The
subroutine checks whether the specified physical map block is available. If available,
the block is allocated. If not available, an allocation denial is returned. Only one map
block can be requested per subroutine call.

Map blocks allocated in this manner are unswappable. If sharing is desired,
MEML.SHR must be set. The acquired map blocks can be deallocated normally.

Entry Conditions

3-12

calling $equence

BL

Registers

RI

R3

RS

S.MEMM22

address of MIDL entry

address of MEML entry
physical map block requested (zero based)

H.MEMM Subroutines

o

o.

('~
','

Subroutine S.MEMM22 • Get Specified Physical Map Block

Exit Conditions

Return Sequence

TRSW RO

Registers

All preserved (if CCI not set)

Status

CC I not set: allocation perfonned

CCI set: allocation denied

Value Description

R5= X'IOO' invalid physical map number
R5< X'IOO' status byte MEM.STAT from the memory allocation table

(see MPX-32 Technical Manual Volume I, Chapter 2)

Scratchpad Usage

None

3.18 Subroutine S.MEMM23 - Deallocate Map Memory

This subroutine deallocates memory that was previously acquired.

Entry Conditions

Calling Sequence

BL S.MEMM23

Registers

R I address of MIDL or zero

R3 address of MEML or physical map number if RI is zero

R5 number of maps to deallocate
R4 number of maps to deallocate or not applicable if RI is zero

MPX·32 Technical Volume II 3-13

Subroutine S.MEMM23 - Deallocate Map Memory

Exit Conditions

3-14

Return Sequence

TRSW RO

Registers

RI-RS,R7 destroyed
R6 preserved

Scratch pad usage:

None

H.MEMM Subroutines

10
I
I

o.
'.1.-

Memory Pool Management (H.MEMM2)

MPX-32 Technical Manual

Volume II

o

Contents

Page

1 H.MEMM2 Overview

1.1 General Infonnation 1-1
1.2 Subroutine Surnm.ary ... 1-1

2 H.MEMM2 Subroutines

2.1 Subroutine S.MEl\1M9 - Allocate Memory Pool Buffer 2-1
2.2 Subroutine S.MEl\1M9A - Allocate IOQ Memory Pool 2-2
2.3 Subroutine S.MEl\1M9B - Allocate MSG Memory Pool 2-3
2.4 Subroutine S.MEl\1M10 - Release Memory Pool Buffer 2-4
2.5 Subroutine S.MEMM24 - Update System Structures for Memory Allocate2-5
2.6 Subroutine S.MEMM25 - Update Data Structures for Memory Deallocate 2-6

MPX.32 Technical Volume II iii/Iv

i('~-),\
"J i'

'\.,J

o

1 H.MEMM2 Overview

1.1 General Information

The Memory Pool Management Module (H.MEMM2) manages the allocation and
deallocation of memory pool buffers.

1.2 Subroutine Summary

Subroutine

S.MEMM9

S.MEMM9A

S.MEMM9B

S.MEMMlO

S.MEMM24

S.MEMM25

Description

allocate memory pool buffer

allocate IOQ memory pool

allocate MSG memory pool

release memory pool buffer

update system data structures for memory allocation

update system data structures for memory deallocation

MPX·32 Technical Volume II 1·1/1·2

o

("\.;
\0:'

o

(~"

" ' -"

2 H.MEMM2 Subroutines

2.1 Subroutine S.MEMM9 - Allocate Memory Pool Buffer

This subroutine is used by system services requiring temporary memory for IJO queue
entries, IJO buffering, and messages. Allocated and free lists are maintained to
validate subsequent deallocation requests. Buffers are allocated on a doubleword
boundary. The operating system uses S.MEMM9 to allocate memory pool as
required. Therefore, avoid indiscriminately using this subroutine so that system
contention for memory pool does not occur.

Entry Conditions

Calling Sequence

BL S.MEMM9

Registers

R7 number of words required

Exit CondHions

Return Sequence

TRSW

Registers

RI,R2

R3
R7

Status

RO

destroyed

starting doubleword-bounded address of memory pool

number of words rounded to two word increment

CCI no memory available and R3 is zero

Scratchpad Usage

None

MPX·32 Technical Volume II 2-1

Subroutine S.MEMM9A • Allocate loa Memory Pool

2.2 Subroutine S.MEMMSA • Allocate IOQ Memory Pool

This subroutine allocates temporary memory for system services from IOQ memory
pool. Memory is allocated on a doubleword boundary. If there is no room available
in IOQ pool, a branch to S.MEMM9 is made to try the miscellaneous pool. For
permanent IOQs, no rollover to the miscellaneous pool is done if the NOROLL option
is set. Permanent IOQs are indicated by bottom up allocation.

Entry Conditions

calling Sequence

BL

Registers

R7

S.MEMM9A

number of words required. If bit 0 set, indicates allocation is from the
bottom up.

Exit Conditions

2·2

Return Sequence

TRSW RO

Registers

R3

R7

Status

CCI set

R3

memory pool buffer address (doubleword bounded)

number of words allocated (modulo 2W)

no memory pool space available

zero

H.MEMM2 Subroutines

0'

o.

Subroutine S.MEMM98 • Allocate MSG Memory Pool

(' 2.3 Subroutine S.MEMM98 - Allocate MSG Memory Pool

(

This subroutine allocates temporary memory for system services from MSG memory
pool. Memory is allocated on a doubleword boundary. If there is no room available
in MSGPOOL, a branch to S.MEMM9 is made to try the miscellaneous pool if
C.MSGNR (no roll over option) is not set. Otherwise, return with status is processed.

Entry Conditions

calling Sequence

BL S.MEMM9B

Registers

R7 number of words required. If bit 0 is set, indicates allocation is from
the bottom up.

Exit Conditions

Return Sequence

TRSW

Registers

R3
R7

Status

CCI set

R3

RO

memory pool buffer address (doubleword bounded)

number of words allocated (modulo 2W)

no memory pool space available

zero

MPX·32 Technical Volume II 2·3

Subroutine S.MEMM10 - Release Memory Pool Buffer

2.4 Subroutine S.MEMM10 - Release Memory Pool Buffer

This subroutine deallocates a previously allocated memory pool buffer if the request
matches an entry in the memory pool allocated list.

Entry Conditions

Calling Sequence

BL

Registers

R3

R7

S.MEMMIO

starting address of memory pool

number of words to deallocate

Exit Conditions

2-4

Return Sequence

TRSW RO (with S.EXEC7)

Registers

Rl,R2,R4,R7 destroyed

Status

If event trace is on and the system debugger is present, the debugger prompt is
displayed on the operator's console and Rl contains one of the following abott
conditions:

Code Definition

1 buffer address in R3 is not in memory pool
2 buffer address in R3 is not allocated
3 invalid byte count is specified in the

deallocation request

H.MEMM2 Subroutines

0""·: ~ .. ,

o

Subroutine S.MEMM24 - Update System Structures for Memory Allocate

2.5 Subroutine S.MEMM24. - Update SY'stem Structures for
Memory Allocate

This subroutine updates the MA T A entries to show the map block is being allocated,
and updates the MPI'L to unlink this map block from the LRU free list. It also
updates the PTE if it exists.

Entry Conditions

calling Sequence

Unmapped Mode:

BL S.MEMM24

Registers

R 1 phyiscal address of MIDLs or zero

R2 memory type to allocate

Memory
Bit Type
o E
1 H
2 S
3 D
4 MP (Multiprocessor shared)

R3 physical address of MEMLs or zero

R 7 map block number to allocate or zero

Note: If R7 is a map block number, R2 is ignored.

Exit Conditions

Return Sequence

TRSW RO

Registers

R7 map number allocated

RO,RI,R4,R6 preserved, all others are destroyed

Status

CCI set if map block requested is not free

CC2 set if no map blocks of type requested are available for allocation

MPX·32 Technical Volume II 2·5

Subroutine S.MEMM2S - Update Data Structures for Memory Deallocate

2.6 Subroutine S.MEMM2S - Update Data Structures for Memory O~··
Deallocate

This subroutine updates the MAT A entries to show the map block is being
deallocated, and updates the MPTL to add this map block at the end of the LRU free
list It also updates the PTE if it exists and PST if desired.

Entry Conditions

Calling Sequence

Unmapped Mode:

BL S.MEMM2S

Registers

R3 address of MEML or zero if no PST is updated.

R7 physical map block number to deallocate

Exit Conditions

Return Sequence

TRSW RO

Registers

RO,Rl,R3-R7 unchanged

R2 destroyed

2·6 H.MEMM2 Subroutines

I
I
I

10

o

("

System Services (R.MONS)

MPX-32 Technical Manual

Volume II

o

o

o

Contents

Page

1 H.MONS Overview

1.1 General Infonnation .. 1-1
1.2 Entry Point Summary .. 1-1
1.3 RTM System Services Under MPX-32 .. 1-3

2 H.MONS Entry Points

2.1 Entry Point 1 - Physical Device Inquiry .. 2-1
2.2 Entry Point 2 - Permanent File Address Inquiry .. 2-1
2.3 Entry Point 3 - Memory Address Inquiry .. 2-1
2.4 Entry Point 4 - Create Timer Entry .. 2-2
2.5 Entry Point 5 - Test Timer Entry .. 2-2
2.6 Entry Point 6 - Delete Timer Entry .. 2-2
2.7 Entry Point 7 - Set User Status Word .. 2-2
2.8 Entry Point 8 - Test User Status Word ... 2-3
2.9 Entry Point 9 - Change Priority Level .. 2-3
2.10 Entry Point 10 - Connect Task to Interrupt .. 2-3
2.11 Entry Point 11 - Time-Of-Day Inquiry ... 2-4
2.12 Entry Point 12 - Memory Dump Request .. 2-4
2.13 Entry Point 13 - Load Overlay Segment .. 2-4
2.14 Entry Point 14 - Load and Execute Overlay .. 2-5
2.15 Entry Point 15 - Activate Task ... 2-5
2.16 Entry Point 16 - Resume Task Execution .. 2-5
2.17 Entry Point 17 - Suspend Task Execution .. 2-6
2.18 Entry Point 18 - Terminate Task Execution ... 2-6
2.19 Entry Point 19 - Abort Specified Task ... 2-6
2.20 Entry Point 20 - Abort Self ... 2-7
2.21 Entry Point 21 - Allocate File or Peripheral Device 2-7
2.22 Entry Point 22 - Deallocate File or Peripheral Device 2-7
2.23 Entry Point 23 - Arithmetic Exception Inquiry .. 2-7
2.24 Entry Point 24 - Task Option Word Inquiry .. 2-8
2.25 Entry Point 25 - Program Hold Request .. 2-8
2.26 Entry Point 26 - Set User Abort Receiver Address 2-8
2.27 Entry Point 27 - Submit Job from Disc File .. 2-9
2.28 Entry Point 28 - Abort with Extended Message .. 2-9

MPX-32 Technical Volume II iii

Contents

Page
(t '; U"~.·~ .. ".~··· \,' i,

2.29 Entry Point 29 - Load and Execute Interactive Debugger 2-9
2.30 Entry Point 30 - Delete Interactive Debugger .. 2-9
2.31 Entry Point 31 - Delete Task .. 2-10
2.32 Entry Point 32 - Get Task Number ... 2-10
2.33 Entry Point 33 - Permanent File Log ... 2-10
2.34 Entry Point 34 - Username Specification ... 2-11
2.35 Entry Point 35 - Get Message Parameters .. 2-11
2.36 Entry Point 36 - Get Run Parameters ... 2-11
2.37 Entry Point 37 - Wait for Any No-wait Operation 2-11
2.38 Entry Point 38 - Disconnect Task from Interrupt 2-12
2.39 Entry Point 39 - Exit from Message Receiver ... 2-12
2.40 Entry Point 40 - Parameter Task Activation .. 2-12
2.41 Entry Point 41 - Get Address Limits .. 2-13
2.42 Entry Point 42 - Debug Link Service ... 2-13
2.43 Entry Point 43 - Receive Message Link Address 2-13
2.44 Entry Point 44 - Send Message to Specified Task ~ 2-14
2.45 Entry Point 45 - Send Run Request to Specified Task 2-14
2.46 Entry Point 46 - Breakffask Interrupt Link ... 2-14
2.47 Entry Point 47 - Activate Task Interrupt .. 2-14
2.48 Entry Point 48 - Exit from Task Interrupt Level 2-15
2.49 Entry Point 49 - Exit Run Receiver .. 2-15
2.50 Entry Point 50 - Exit from Message End-Action Routine 2-15
2.51 Entry Point 51 - Exit from Run Request End-Action Routine 2-15
2.52 Entry Point 52 - RTM CALM Terminate Task Execution 2-16
2.53 Entry Point 53 - RTM CALM Activate Task .. 2-17
2.54 Entry Point 54 - RTM CALM Suspend Task Execution 2-18
2.55 Entry Point 55 - RTM CALM Allocate File or Device 2-19
2.56 Entry Point 56 - R TM CALM Physical Device Inquiry 2-20
2.57 Entry Point 57 - Disable Message Task Interrupt 2-21
2.58 Entry Point 58 - Enable Message Task Interrupt 2-21
2.59 Entry Point 59 - Get Physical Memory Contents 2-21
2.60 Entry Point 60 - Change Physical Memory Contents 2-21
2.61 Entry Point 61 - RTM CALM Permanent File Log 2-22
2.62 Entry Point 62 - Resourcemark Lock ... 2-23
2.63 Entry Point 63 - Resourcemark Unlock ... 2-23
2.64 Entry Point 64 - Remove RSM Lock on Task Termination 2-23
2.65 Entry Point 65 - Task CPU Execution Time .. 2-23

iv Contents

2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74

Contents

Page

Entry Point 66 - Activate Program at Given Time of Day 2-24
Entry Point 67 - Set Synchronous Task Interrupt 2-24
Entry Point 68 - Set Asynchronous Task Interrupt 2-24
Entry Point 69 - Reserved ... 2-24
Entry Point 70 - Date and Time Inquiry .. 2-25
Entry Point 71 - Get Device Mnemonic or Type Code 2-25
Entry Point 72 - Enable User Break Interrupt .. 2-25
Entry Point 73 - Disable User Break Interrupt ... 2-25
Entry Point 99 - SYSGEN Initialization .. 2-26

MPX·32 Technical Volume II v/vi

t '\
I C··

c:\

1 H.MONS Overview

1.1 General Information

The system services module (H.MONS) performs the compatible mode monitor
system services.

1.2 Entry Point Summary

SVC
Entry Point Number Description

H.MONS,l 42 physical device inquiry
H.MONS,2 43 pennanent file address inquiry
H.MONS,3 44 memory address inquiry
H.MONS,4 45 create timer entry
H.MONS,5 46 test timer entry
H.MONS,6 47 delete timer entry
H.MONS,7 48 set user status word
H.MONS,8 49 test user status word
H.MONS,9 4A * change priority level
H.MONS,10 4B connect task to interrupt
H.MONS,11 4E time of'day inquiry
H.MONS,12 4F memory dump request
H.MONS,13 50 load overlay segment
H.MONS,14 51 load and execute overlay segment
H.MONS,15 52 activate task
H.MONS,16 53 resume task execution
H.MONS,17 S4 suspend task execution
H.MONS,18 S5 tenninate task execution
H.MONS,19 56 abort specified task
H.MONS,20 S7 abort self
H.MONS,21 40 allocate file or peripheral device
H.MONS,22 41 deallocate file or peripheral device
H.MONS,23 4D arithmetic exception inquiry
H.MONS,24 4C task option word inquiry
H.MONS,25 58 program hold request
H.MONS,26 60 set user abort receiver address
H.MONS,27 61 submit job from disk file
H.MONS,28 62 abort with extended message
H.MONS,29 63 load and execute interactive debugger
H.MONS,30 NI A delete interactive debugger
H.MONS,31 5A delete task
H.MONS,32 64 get task number
H.MONS,33 73 pennanent file log
H.MONS,34 74 usemame specification

* Implies that this service is available to privileged users only. NI A implies reserved
for internal use by MPX-32.

MPX·32 Technical Volume II 1·1

Entry Point Summary

1·2

SVC
Entry Point Number Description

H.MONS,35 7A get message parameters
H.MONS,36 7B get run parameters
H.MONS,37 7C wait for any no-wait operation complete, message

interrupt or break interrupt
H.MONS,38 5D disconnect task from interrupt
H.MONS,39 5E exit from message receiver
H.MONS,40 5F* parameter task activation
H.MONS,41 65 get address limits
H.MONS,42 66 debug link service
H.MONS,43 6B recei ve message link address
H.MONS,44 6C send message to specified task
H.MONS,45 6D send run request to specified task
H.MONS,46 6E break/task interrupt link
H.MONS,47 6F activate task interrupt
H.MONS,48 70 exit from task interrupt level
H.MONS,49 7D exit run receiver
H.MONS,50 7E exit from message end-action routine
H.MONS,51 7F exit from run request end-action routine
H.MONS,52 N/A RTM CALM terminate task execution
H.MONS,53 N/A RTM CALM activate task
H.MONS,54 N/A RTM CALM suspend task execution
H.MONS,55 N/A RTM CALM allocation file or device
H.MONS,56 N/A RTM CALM physical device inquiry
H.MONS,57 2E disable message task interrupt
H.MONS,58 2F enable message task interrupt
H.MONS,59 N/A get physical memory contents
H.MONS,60 N/A change physical memory contents
H.MONS,61 N/A RTM CALM permanent file log
H.MONS,62 19 resource mark lock
H.MONS,63 lA resource mark unlock
H.MONS,64 N/A remove RSM lock on task termination
H.MONS,65 2D task CPU execution time
H.MONS,66 IE activate program at given time of day
H.MONS,67 IB set synchronous task interrupt
H.MONS,68 lC set asynchronous task interrupt
H.MONS,69 reserved
H.MONS,70 15 date and time inquiry
H.MONS,71 14 get device mnemonic or type code
H.MONS,72 13 enable user break interrupt
H.MONS,73 12 disable user break interrupt
H.MONS,99 N/A SYSGEN initialization

* Implies that this service is available to privileged users only. N/A implies reserved
for internal use by MPX-32.

H.MONS Overview

""~ l'i
'-J

RTM System Services Under MPX-32

(' 1.3 RTM System Services Under MPX-32

Generally, RTM CALM's operate under MPX-32 without any change in syntax or
function. A few seldom-used CALM's have been deleted, and others may have
additional restrictions applied to them. In general, however, the changes to the user's
source code should be minimal in the conversion from RTM to MPX-32.

SVC type 15 replaces CALM instructions. During reassembly of a program, the
assembler automatically converts CALM instructions to their equivalent SVC
IS,X'nn' number if option 20 is set.

Also, an address exception trap is generated when a doubleword operation code is
used with an incorrectly bounded operand; therefore. coding changes are required
when a trap occurs.

Under MPX-32 the following RTM CALM implementation is slightly different from
its RTM equivalent:

CALM Xi3' Pennanent File Log (The file definition is returned in sectors instead
of allocation units).

The following RTM CALM's have been deleted in MPX-32:

CALM X'62' Unlink Dynamic Job Queue Entry (not required in MPX-32).
M.DDJS or CALL M:UNLKJ

CALM X'63' Activate with Core Append (replaced by memory expansion and
contraction services of MPX-32). (M.ACAP was not in RTM run­
time)

CALM X'64' Retrieve Address of Appended Core (same as CALM X'63 ').
(M.APAD was not in RTM run-time)

CALM X'6S' Initialize reentrant library pointers (MPX-32 does not support the
RTM reentrant run-time library).

All Random Access Calls (MPX-32 does not support DRAH)

CALM X'S9' random access OPEN (CALL OPEN)

CALM X'SA' random access READ (CALL READ)

CALM X'SB' random access WRITE (CALL WRITE)

CALM X'SC' random access file (CALL DEFINE)

CALM X'SD' random access file (CALL FIND)

TSS CALM's

MPX-32 replaces TSS with TSM, an on-line support package. Therefore, all TSS
CALM's X'80' - X'84' have been deleted.

MPX·32 Technical Volume II 1·311·4

o

o

o.

(

(

('

2 H.MONS Entry Points

2.1 Entry Point 1 - Physical Device Inquiry

See M.PDEV in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point.

External Reference

System Macro

M.CALL
M.RTRN

System Service

H.REMM,27

System Subroutine

S.REXS8

2.2 Entry Point 2 - Permanent File Address Inquiry

See M.FADD in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.CALL
M.RTRN

System Service

H.FISE,lO

2.3 Entry Point 3 - Memory Address Inquiry

See M.ADRS or M ADRS in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume II 2·1

Entry Point 4 - Create Timer Entry

2.4 Entry Point 4 - Create Timer Entry

See M.SETI' or M SETI' in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.5 Entry Point 5 • Test Timer Entry

See M.TSTT or M TSTT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.6 Entry Point 6 • Delete Timer Entry

See M.DLTT or M DLTT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.7 Entry Point 7· Set User Status Word

See M.SETS or M SETS in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

2·2

System Macro

M.RTRN

H.MONS Entry Points

o

o

Entry Point 8 - Test User Status Word

(2.8 Entry Point 8 - Test User Status Word

(

See M.TSTS or M TSTS in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN
M.CALL
M.OPEN

2.9 Entry Point 9 - Change Priority Level

See M.PRll.. or M PRll.. in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN
M.CALL
M.OPEN

2.10 Entry Point 10 - Connect Task to Interrupt

See M.CONN or M CONN in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume II 2-3

Entry Point 11 - Time-Of-Day Inquiry

2.11 Entry Point 11 • Time-Of-Day Inquiry

See M.TDA Y or M TDA Y in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.12 Entry Point 12 • Memory Dump Request

See M.DUMP or M DUMP in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.SPAD
M.CAll.
M.RTRN

2.13 Entry Point 13 • Load Overlay Segment

See M.OLA Y in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

2-4

System Macro

M.CAll.
M.RTRN

H.MONS Entry Points

a

(\'

V

o·

Entry Point 14 - Load and Execute Overlay

2.14 Entry Point 14 - Load and Execute Overlay

See M.OLAY in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.CALL
M.RTRN

2.15 Entry Point 15 - Activate Task

See M.ACTV or M ACTV in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.16 Entry Point 16 - Resume Task Execution

See M.SUME or M SUME in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.CALL
M.RTRN
M.OPEN
M.IOFF
M.IONN

MPX-32 Technical Volume II 2-5

Entry Point 17 - Suspend Task Execution

2.17 Entry Point 17 - Suspend Task Execution

See M.SUSP or M SUSP in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN
M.CALL
M.OPEN
M.IONN
M.IOFF

2.18 Entry Point 18 - Terminate Task Execution

See M.EXIT or M EXIT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.19 Entry Point 19 - Abort Specified Task

See M.BORT or M BORT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

2·6

System Macro

M.RTRN
M.CALL
M.IOFF
M.IONN
M.OPEN

H.MONS Entry Points

o

Entry Point 20 - Abort Self

(/ 2.20 Entry Point 20 • Abort Self

See M.BORT or M BORT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry poim.

External Reference

System Macro

M.CALL

2.21 Entry Point 21 • Allocate File or Peripheral Device

See M.ALOC in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.CALL

System Service

H.ALOC.6

System Subroutine

S.REXS8

2.22 Entry Point 22 • Deallocate File or Peripheral Device

See M.DALC in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

2.23 Entry Point 23 • Arithmetic Exception Inquiry

See M.TSTE or M TSTE in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume II 2·7

Entry Point 24 - Task Option Word Inquiry

2.24 Entry Point 24 - Task Option Word Inquiry

See M.PGOW or M OPTIONWORD in the MPX-32 Reference Manual Volume I for
a detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.25 Entry Point 25 • Program Hold Request

See M.HOLD or M HOLD in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.26 Entry Point 26· Set User Abort Receiver Address

o

See M.SUAR or M SUAR in the MPX-32 Reference Manual Volume I for a detailed ()--~
description of this entry point. ' . ': .•

External Reference

System Macro

M.SPAD
M.CALL
M.RTRN

2-8

o.
H.MONS Entry POints

Entry Point 27 - Submit Job from Disc File

(2.27 Entry Point 27 - Submit Job from Disc File

See M.CDJS in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point

External Reference

System Macro

M.RTRN

2.28 Entry Point 28 - Abort with Extended Message

See M.BORT or M BORT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN
M.CALL
M.IOFF
M.IONN
M.OPEN

2.29 Entry Point 29 - Load and Execute Interactive Debugger

See M.DEBUG or M DEBUG in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTNA

2.30 Entry Point 30 - Delete Interactive Debugger

See the H.REXS,30 entry point description in this manual for a detailed description of
this entry point .

MPX-32 Technical Volume II 2·9

Entry Point 31 - Delete Task

2.31 Entry Point 31 - Delete Task

See M.DELTSK or M DELTSK in the MPX-32 Reference Manual Volume I for a
detailed description orthis entry point.

External Reference

System Macro

M.RTRN
M.CALL
M.IOFF
M.IONN
M.OPEN

2.32 Entry Point 32 - Get Task Number

See M.ID or MID, and M.MYID or M MYID in the MPX-32 Reference Manual
Volume I for a detailed description of thls entry point.

External Reference

System Macro

M.RTRN
M.RTNA

2.33 Entry Point 33 - Permanent File Log

See MLOG in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point.

External Reference

System Macro

M.CALL
M.RTRN

2·10

System Service

H.VOMM,lO

System Subroutine

S.REXS8

H.MONS Entry POints

a

Entry Point 34 - Username Specification

(~ 2.34 Entry Point 34 - Username Specification

See M.USER in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point

External Reference

System Macro

M.CALL
M.RTRN

2.35 Entry Point 35 - Get Message Parameters

See M.GMSGP or M GMSGP in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.36 Entry Point 36 - Get Run Parameters

See M.GRUNP or M GRUNP in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.37 Entry Point 37 - Wait for Any No-wait Operation

See M.ANYW or M ANYWAIT in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume II 2·11

Entry Point 38 - Disconnect Task from Interrupt

2.38 Entry Point 38 - Disconnect Task from Interrupt

See M.DISCON or M DISCON in the MPX-32 Reference Manual Volume I for a
detailed description orthis entry point.

External Reference

System Macro

M.RTRN

2.39 Entry Point 39 - Exit from Message Receiver

See M.xMSGR or M XMSGR in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.40 Entry Point 40 - Parameter Task Activation

See M.PTSK or M PTSK in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

2·12

System Macro

M.RTRN

H.MONS Entry Points

o

Entry Point 41 - Get Address Limits

(~' 2.41 Entry Point 41 - Get Address Limits

See M.GADRL in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.RTRN

2.42 Entry Point 42 - Debug Link Service

See the Debug Link system seIVice in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTNA

2.43 Entry Point 43 - Receive Message Link Address

See M.RCVR or M RCVR in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX-32 Technical Volume II 2-13

Entry Point 44 - Send Message to Specified Task

2.44 Entry Point 44 - Send Message to Specified Task

See M.SMSGR or M SMSGR in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.45 Entry Point 45 - Send Run Request to Specified Task
See M.SRUNR or M SRUNR in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.46 Entry Point 46 - Break/Task Interrupt Link

See M.BRK or M BRK in the MPX-32 Reference Manual Volume I for a detailed C~~\'
description of this-entry point. I

External Reference

System Macro

M.RTRN

2.47 Entry Point 47 - Activate Task Interrupt

See M.INT or M INT in the MPX-32 Reference Manual Volume I for a detailed
description of thiS entry point.

External Reference

System Macro

M.RTRN

2·14 H.MONS Entry Points

o

Entry Point 48 - Exit from Task Interrupt Level

c_: 2.48 Entry Point 48 - Exit from Task Interrupt Level

See M.BRKXIT or M BRKXlT and M.XBRKR or M XBRKR in the MPX-32
Reference Manual Voi'Wne I for a detailed description 'Of this entry point.

External Reference

System Macro

M.RTRN

2.49 Entry Point 49 - Exit Run Receiver

See MJ(R.UNR or M XRUNR in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.50 Entry Point 50 - Exit from Message End-Action Routine

See M.XMEA or M XMEA in the MPX-32 Reference Manual Volume I for a
detailed description 'Of this entry point.

External Reference

System Macro

M.RTRN

2.51 Entry Point 51 - Exit from Run Request End-Action Routine

See M.XREA or M XREA in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX-32 Technical Volume II 2-15

Entry Point 52 - RTM CALM Terminate Task Execution

2.52 Entry Point 52 - RTM CALM Terminate Task Execution

This entty point performs all normal termination functions required of exiting tasks.
All devices and memory area are deallocated, related table space is erased, and the
task's dispatch queue entry is cleared. If a timer or intenupt level is associated with
the task, it is reactivated, connected, and suspended. Resident tasks are merely
suspended.

Entry CondHlons

calling Sequence

CALM X'SS'

M.CALL R. MONS,S 2

Registers

None

Exit CondHions

Return Sequence

Return to EXEC for sweep of dispatch queue.

Registers

None

Abort cases
None

Output Messages

None

External Reference

System Macro

M.RTRN

2·16 H.MONS Entry Points

o

Entry Point 53 - RTM CALM Activate Task

("'" 2.53 Entry Point 53 - RTM CALM Activate Task

This entry point is used to activate a task. The task assumes the owner name of the
caller.

Entry Conditions

Calling Sequence

CALM X'52'

M.CALL H.MONS,53

Registers

R6,R7 1- to 8-ASCII character left-justified blank-filled program name for
which an activation request is to be queued

Exit Conditions

Return Sequence

M.RTRN

Note: If the task being activated is not in the system, an abort indication is not
given.

Registers

None

Abort cases

None

Output Messages

None

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume II 2·17

Entry Point 54 - RTM CALM Suspend Task Execution

2.54 Entry Point 54 • RTM CALM Suspend Task Execution

This entry point results in the suspension of the caller or any other task of the same
owner name for the specified number of time units or for an indefinite time period, as
requested. A task suspended for a time interval results in a one-shot timer entry to
resume the task upon time-out of the specified interval. A task suspended for an
indefinite time interval must be resumed through the M.SUME or M _ SUME system
services.

Entry Conditions

Calling Sequence

CALM X'54'

M.CALL H.MONS,54

Registers

R7 zero if suspension for an indefinite time interval is requested, or the
negative number of time units to elapse before the caller is resumed

Exit Conditions

Return Sequence

M.RTRN

Registers

None

Abort Cases

None

Output Messages

None

External Reference

2-18

System Macro

M.RTRN
M.IOFF
M.IONN
M.OPEN
M.CALL

H.MONS Entry Points

0···· , .

o.

Entry POint 55 - RTM CALM Allocate File or Device

(" 2.55 Entry Point 55 - RTM CALM Allocate File or Device

This entry point dynamically allocates a peripheral device, a pennanent disk file, a
temporary disk file, or an SLO or SBO file, and creates a file assignment table (FAT)
entry for the allocated unit and specified logical file code (LFC). This entry point
may also be used to equate a new LFC with an existing LFC.

Entry Conditions

Calling Sequence

CALM X'40'

M.CALL

Registers

Rl

R5

Exit Conditions

H.MONS,55

denial return address

byte 0 - function code as follows:

1 - assign LFC to a user or system pennanent file
2 = assign LFC to a system file code
3 = assign LFC to a peripheral device
4 = assign LFC to a defined LFC

bytes 1,2,3 - file code to be assigned

Return Sequence

M.RTRN

M.RTNA 1

M.RTNA2

Registers

None

Abort Cases

None

condition code 1 is set in the program status doubleword if the calling
task has read but not write access rights to the specified pennanent file

for denial returns if the requested file or device cannot be allocated

condition code 2 is set in the program status doubleword if the calling
task does not have read or write access rights to the specified
permanent file

Output Messages

None

MPX-32 Technical Volume II 2·19

Entry Point 56 - RTM CALM Physical Device Inquiry

2.56 Entry Point 56 • RTM CALM Physical Device Inquiry

This entry point returns to the caller physical device information describing the unit to
which a specified logical file code is assigned.

Entry Conditions

calling Sequence

CALM X'42'

M.CALL

Registers

R5

H.MONS,56

3-character logical file code for which physical device infonnation is
requested in bytes 1,2, and 3

Exit Conditions

2·20

Return Sequence

M.RTRN 7

Registers

R7

M.RTRN

Registers

R5

R6

R7

zero, if the specified logical file code is unassigned

5,6,7

disk - number of 192-word blocks in file
magnetic tape = reel identifier
all other devices - 0
bytes 0,1 - maximum number of bytes transferrable to device
bytes 2,3 - device mnemonic (2 ASCn characters)

bits 0-5 - device type code
bits 6-15 - device address
bits 16-23 - system file codes as follows:

Value Definition

o not a system file
1 SYC file
2 SOO file
3 SLO file
4 SBO file

H.MONS Entry Points

0·> .•

0,

Entry Point 56 • RTM CALM Physical Device Inquiry

R7 bits 24-31 - disk = number of 192-word blocks per allocation unit;
magnetic tape = volume number (0 if single volume); all other devices =
o

Note: If the file is an SYC or sao file that is not open. bits 13 through 15 of R7
are returned equal to I or 2. All other result bits are not applicable.

Abort Cases

None

Output Messages

None

External Reference

System Macro

M.RTRN

2.57 Entry Point 57 - Disable Message Task Interrupt

See M.DSMI or M DSMI in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

(, 2.58 Entry Point 58 - Enable Message Task Interrupt

See M.ENMI or M ENMI in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.59 Entry Point 59 - Get Physical Memory Contents

See H.REXS,59 for a detailed description of this entry point.

2.60 Entry Point 60 - Change Physical Memory Contents

See H.REXS,60 for a detailed description of this entry point.

MPX·32 Technical Volume II 2-21

Entry Point 61 - RTM CALM Permanent File Log

2.61 Entry Point 61 • RTM CALM Permanent File Log
This entry point provides a log of cuITently existing pennanent files.

Entry Conditions

Calling Sequence

CALM X,3'
M.CALL

Registers

R4

H.MONS,61

contains a byte-scaled value which specifies the type of log to be
performed as follows:

Value Definition

o specifies a single named system or user file
1 specifies all pennanent user files
2 specifies system files only
3 specifies user files
4 specifies a single named system file

Note: If R4 contains zero and a user name is associated with the calling program,
an attempt is made to locate the user file directory entty for the given file
name. If unsuccessful, the system file directory entty is located, if any. If a
user name is not associated with the calling program, the file is assumed to be
a system file.

RS

If R4 contains three and the calling program has an associated user name, that
user's files are logged or all files are logged if the calling program has no
associated user name.

contains the address of an 8-word area where file directory entry is to
be stored

Exit Conditions

2·22

Return Sequence

M.RTRN 4,5

Registers

R4 if R4 contains zero or four. R4 is destroyed. If R4 contains one, two,
or three, this entty point is called repeatedly to obtain all the pertinent
file definitiODS. The type parameter in R4 is specified in the first call
only. R4 is returned containing the address of the next directory entty
to be returned. The value returned in R4 must be unchanged upon the
subsequent call to this service.

. H.MONS Entry Points

>, 0 ,

R5

Abort cases

Entry Point 61 - RTM CALM Permanent File Log

contains zero if R4 contains zero or four and the specified file could
not be located, or R4 contains one, two, or three, and all pertinent files
have been logged. Otherwise, R5 is unchanged.

MS28 A PERMANENT FILE LOG HAS BEEN REQUESTED, BUT THE
ADDRESS SPECIFIED FOR STORAGE OF THE DIRECTORY ENTRY
IS NOT CONTAINED WITHIN THE CALLING TASK'S LOGICAL
ADDRESS SPECE.

Output Messages

None

External Reference

System Macro

M.CALL
M.RTRN

2.62 Entry Point 62 - Resourcemark Lock

See M.RSML or M RSML in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.63 Entry Point 63 - Resourcemark Unlock

See M.RSMU or M RSMU in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.64 Entry Point 64 • Remove RSM Lock on Task Termination

See H.REXS,64 for a detailed description of this entry point.

2.65 Entry Point 65 - Task CPU Execution Time

See M.XTIME or M XTIME in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN
M.IOFF
M.IONN

MPX-32 Technical Volume II 2-23

Entry Point 66 - Activate Program at Given Time of Day

2.66 Entry Point 66 - Activate Program at Given Time of Day

See M.TURNON or M TURNON in the MPX-32 Reference Manual Volume I for a
detailed description of this entty point.

External Reference

System Macro

M.CALL
M.RTRN

System Service

H.REXS,4

2.67 Entry Point 67 - Set Synchronous Task Interrupt

See M.SYNCH or M SYNCH in the MPX-32 Reference Manual Volume I for a
detailed description of this entty point.

External Reference

System Macro

M.RTRN

2.68 Entry Point 68 - Set Asynchronous Task Interrupt

See M.ASYNCH or M ASYNCH in the MPX-32 Reference Manual Volume I for a
detailed description of this entty point.

External Reference

System Macro

M.RTRN

2.69 Entry Point 69 - Reserved

2·24 H.MONS Entry Points

0-

Ehtry Point 70 - Date and Time Inquiry

(:,' 2.70 Entry Point 70 - Date and Time Inquiry
See M.DATE or M DATE in the MPX-32 Reference Manual Volume I for a detailed
description of this entry poim.

External Reference

System Macro

M.RTRN
M.OPEN
M.SHUT

2.71 Entry Point 71 - Get Device Mnemonic or Type Code

See M.DEVID or M DEVID in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

(" 2.72 Entry Point 72 - Enable User Break Interrupt

C~,
i

See M.ENUB or M ENUB in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.73 Entry Point 73 - Disable User Break Interrupt

See M.DSUB or M DSUB in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume II 2·25

Entry Point 99 - SYSGEN Initialization

2.74 Entry Point 99 - SYSGEN Initialization

2·26

This entry point is for internal use only and is called during SYSGEN. H.MONS sets
up its entry point table, then returns to SYSGEN.

H.MONS Entry Points

c'

Multivolume Magnetic Tape (H.MVMT)

MPX-32 Technical Manual

Volume II

o

Contents

Page

1 H.MVMT Overview

1.1 General Information .. 1-1
1.2 Entry Point Summary .. 1-1

2 H.MVMT Entry Points

2.1 Entry Point H.MVOP - Predevice Access Processing 2-1
2.2 Entry Point H.MVPX - Postdevice Access Processing 2-1

MPX·32 Technical Volume II iii/iv

1 H.MVMT Overview

1.1 General Information

The Multivolume Magnetic Tape Module (H.MVMT) perfonns all data management
operations for multivolume magnetic tape requests.

H.MVMT also recognizes the MPX-32 revision that is being used by the source
system. If the system is MPX-32 revision 3.3 or later, bit 2 of DFr.R..GS is set.

1.2 Entry Point Summary

Entry SVC
Point Number Description

H.MVOP NI A predevice access processing
H.MVPX NI A postdevice access processing

NI A implies called only by IOCS

MPX-32 Technical Volume II 1-1/1-2

2 H.MVMT Entry Points

2.1 Entry Point H.MVOP - Predevice Access Processing

This entry point performs predevice access processing for multivolume magnetic tape
requests.

Entry Conditions

Calling Sequence

BL H.MVOP

Registers

Rl FeB address

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl FeB address

2.2 Entry Point H.MVPX - Postdevice Access Processing

This entry point performs postdevice access processing related to multivolume
magnetic tape requests.

Entry Conditions

calling Sequence

BL H.MVPX

Registers

Rl FeB address

MPX·32 Technical Volume II 2·1

Entry Point H.MVPX • Postdevlce Access Processing

Exit Conditions

2-2

Return Sequence

TRSW RO

Registers

Rl FCB address

o

o
H.MVMT Entry Points

Program Trace (H.PTRAC)

MPX-32 Technical Manual

Volume II

'u·······"."
\' ·i

,': .~

C"
i ... \

Contents

Page

1 H.PTRAC Overview

1.1 General InfoI1Ilation .. 1-1
1.2 Debugger and Target Task Interaction ... 1-1

MPX·32 Technical Volume II iii

List of Figures

Figure Page

1-1 H.PfRAC - DBX Interface and Target Task Execution Control 1-2

(
-'10 .

... ~/

iv Contents

1 H.PTRAC Overview

1.1 General Information

H.PTRAC is an optional module. It provides:

• an interface between the DBX debugger and MPX-32

• debugger execution control of the target task

Within this section of the manual, the word debugger refers to the DBX debugger or a
user-supplied DB X-styled debugger. The words target task refer to the task being
debugged.

The H.PTRAC module is included in the system by the SYSGEN PROGRAM or
USERPROG directives in the !I'RAP section.

1.2 Debugger and Target Task Interaction

The debugger and the target task are individual tasks; the debugger is not mapped into
the target task's address space. The two tasks - the debugger and the target - are
activated in parallel; however, they do not execute at the same time. One of them is
always in the debug-wait state, and execution is interleaved between them through
H.PTRAC.

Through H.PI'RAC, the debugger can read and write to the target task's memory, and
control the target task's execution. Debugger access to the target task's memory is
done in the context of the target task. When the target task reaches an appropriate
break point, the task's context is relayed to the debugger through H.PTRAC. This
allows debugging of:

• tasks that are swapped out of memory and
• tasks whose size plus the debugger's size is greater than the available memory.

MPX·32 Technical Volume II 1·1

Debugger and Target Task Interaction

,0···::·" , ,

DBX DEBUGGER H.PTRAC TARGET TASK

MPX-32

{ H.PTRAC

87D12W10

Figure 1-1
H.PTRAC • DBX Interface and Target Task Execution Control o

1·2 H.PTRAC Overview

Resource Management (H.REMM)

MPX-32 Technical Manual

Volume II

o

Contents (..

Page

1 H.REMM Overview

1.1 General Infonnation .. 1-1
1.2 Entry Point Summary .. 1-1
1.3 Alternate Entry Points ... 1-2
1.4 Subroutine Summary ... 1-2
1.5 Alternate Subroutine Summary ... 1-3

2 H.REMM Entry Points

2.1 Entry Point 6 - Assign and Allocate Resource ... 2-1
2.2 Entry Point 7 - Deassign and Deallocate Resource : 2-3
2.3 Entry Point 13 - Reserved .. ; 2-4
2.4 Entry Point 17 - Mount Volume ... 2-4
2.5 Entry Point 18 - Reserved ... 2-5
2.6 Entry Point 19 - Dismount Volume .. 2-5
2.7 Entry Point 21 - Open Resource ... 2-5
2.8 Entry Point 22 - Close Resource .. 2-5
2.9 Entry Point 23 - Set Exclusive Resource Lock .. 2-5
2.10 Entry Point 24 - Release Exclusive Resource Lock 2-5
2.11 Entry Point 25 - Set Synchronous Resource Lock 2-5
2.12 Entry Point 26 - Release Synchronous Resource Lock 2-5
2.13 Entry Point 27 - Resource Inquiry .. 2-5
2.14 Entry Point 99 - SYSGEN Initialization .. 2-6

3 H.REMM Subroutines

3.1 Subroutine S.REMM4 - Issue Dismount Request .. 3-1
3.2 Subroutine S.REMM5 - Issue Mount Request ... 3-2
3.3 Subroutine S.REMM6 - Deallocate All Assigned Resources 3-3
3.4 Subroutine S.REMM6A - Deallocate All Assigned Resources 3-3
3.5 Subroutine S.REMM7 - Find Next Matching UDT 3-4
3.6 Subroutine S.REMMB - Deallocate FPrIFAT Buffer 3-5
3.7 Subroutine S.REMM9 - Check for Resource Allocation 3-6
3.8 Subroutine S.REMMI0 - Locate FPrIFAT/SMT .. 3-8
3.9 Subroutine S.REMMll - Allocate Blocking Buffer 3-9
3.10 Subroutine S.REMMI2 - Locate Allocated FPTIFAT 3-10

MPX-32 Technical Volume II iii

Contents

Page (.. ~~''''.' . . 1

'J
3.11 Subroutine S.REMM14 - Allocate FPT IF AT ... 3-11
3.12 Subroutine S.REMM23 - Find Associated MVT Entry 3-12
3.13 Subroutine S.REMM24 - Uncompress File Name 3-13
3.14 Subroutine S.REMM2S - Set Any Bit In Memory 3-13
3.15 Subroutine S.REMM26 - Clear Any Bit In Memory 3-14
3.16 Subroutine S.REMM27 - Test Any Bit In Memory 3-14
3.17 Subroutine S.REMM36 - Check Resource Compatibility 3-15
3.18 Subroutine S.REMM37 - Caller Notification Packet 3-16
3.19 Subroutine S.REMM38 - Queue for System Resource 3-17
3.20 Subroutine S.REMM42 - Gate System Prior to ART Access 3-18
3.21 Subroutine S.REMM43 - Ungate System After ART Access 3-19
3.22 Subroutine S.REMM44 - Self-Generated Resource Conflict 3-20
3.23 Subroutine S.REMM45 - Deallocate Blocking Buffers 3-21
3.24 Subroutine S.REMM46 - Allocate a Blocking Buffer Head 3-22
3.25 Subroutine S.REMM47 - Dismount of Volume ... 3-22

iv Contents

(

1 H.REMM Overview

1.1 General Information

1.2

The Resource Management Module (H.REMM) allocates and assigns all system
resources. These functions maintain proper access compatibility and usage rights for
resources. This function also coordinates concurrent access to shared resources. This
module can reside in extended memory.

Note: Many H.REMM services are alternate entry points and subroutines to the
H.T AMM and H.MEMM modules. These services are documented under the
appropriate H.T AMM or H.MEMM entry point or subroutine.

Entry Point Summary

svc
Entry Point Number Description

H.REMM,6 N/A assign and allocate resource
H.REMM,7 N/A deassign and deallocate resource
H.REMM,13 reserved
H.REMM,17 49* mount volume
H.REMM,18 reserved
H.REMM,19 4A* dismount volume
H.REMM,21 42* open resource
H.REMM,22 43* close resource
H.REMM,23 44* set exclusive resource lock
H.REMM,24 45* release exclusive resource lock
H.REMM,25 46* set synchronous resource lock
H.REMM,26 47* release synchronous resource lock
H.REMM,27 48* resource inquiry
H.REMM,99 N/A SYSGEN initialization

* This is SVC 2,X'nn' callable. All others are SVC 1,X'nn' callable.

N/A implies reserved for internal use by MPX-32.

MPX·32 Technical Volume II 1·1

Entry Point Summary

1.3 Alternate Entry Points

The following are alternate entry points to H.MEMM or H.TAMM entry points. For
alternate entry point information, refer to the H.TAMM or H.MEMM entry point
listed below.

SVC Alternate
Entry Point Entry Point Number Description

H.REMM,l
H.REMM,2
H.REMM,3
H.REMM,4
H.REMM,5
H.REMM,8
H.REMM,9
H.REMM,lO
H.REMM,ll
H.REMM,12
H.REMM,14
H.REMM,15
H.REMM,16
H.REMM,20
H.REMM,28
H.REMM,29

H.TAMM,2 N/A
H.TAMM,3 N/A
H.TAMM,4 N/A
H.MEMM,1 N/A
H.MEMM,2 N/A
H.MEMM,3 69
H.MEMM,4 6A
H.MEMM,5 67
H.MEMM,6 68
H.MEMM,7 40*
H.MEMM,8 41 *
H.MEMM,9 N/A
H.MEMM,lO N/A
H.MEMM,ll NI A
H.MEMM,12 4B*
H.MEMM,13 4C*

* This sevice is SVC 2,x' nn' callable.
callable.

construct TSA and DQE
task activation processing
task exit processing
allocate memory
deallocate memory
get dynamic extended data space
free dynamic extended indexed data space
get dynamic task execution space
free dynamic task execution space
include memory partition
exclude memory partition
reserved
reserved
deallocate memory due to swapping
get memory in byte increments
free memory in byte increments

All others are SVC l,X'nn'

N/A implies reserved for internal use by ?v1PX-32.

1.4 Subroutine Summary

1·2

Subroutine

S.REMM4
S.REMM5
S.REMM6
S.REMM6A
S.REMM7
S.REMMS
S.REMM9
S.REMMIO
S.REMMll
S.REMM12
S.REMM14
S.REMM23
S.REMM24
S.REMM25

Description

issue dismount request
issue mount request
deallocate all assigned resources
deallocate all assigned resources
find next matching UDT
deallocate FPr IF AT buffer
check for resource allocation
locate FPr/FAT/SMT with preprocessing
allocate blocking buffer
locate allocated FPrIFAT
allocate FPr/FAT
find associated MVT entry
uncompress file name
set any bit in memory

H.REMM Overview

o

('. Subroutine

S.REMM26
S.REMM27
S.REMM36
S.REMM37
S.REMM38
S.REMM42
S.REMM43
S.REMM44
S.REMM45
S.REMM46
S.REMM47

Description

clear any bit in memory
test any bit in memory
check resource compatibility

Subroutine Summary

caller notification packet M.RTRN processing
queue for system resource
gate system prior to ART access
ungate system after ART access
check for self-generated resource conflict
deallocate blocking buffers from the TSA
allocate a blocking buffer head cell from the TSA
complete pending dismount of public volume

1.5 Alternate Subroutine Summary

The following are alternate subroutines to H.TAMM or H.MEMM subroutines. For
alternate subroutine infonnation, refer to the H.T AMM or H.MEMM subroutine listed
below.

Alternate
Subroutine

S.REMMI
S.REMM2
S.REMM3
S.REMM13
S.REMM17
S.REMM19
S.REMM20
S.REMM21
S.REMM22
S.REMM28
S.REMM29
S.REMM30
S.REMM31
S.REMM32
S.REMM33
S.REMM34
S.REMM35
S.REMM39
S.REMM40
S.REMM41

Subroutine

S.TAMMI
S.TAMM2
S.MEMMI
S.MEMM2
S.MEMM5
S.MEMM7
S.MEMM8
S.MEMM9
S.MEMMI0
S.MEMMll
S.TAMM4
S.MEMM12
S.MEMM13
S.MEMM14
S.MEMMIS
S.MEMM16
S.MEMM17
S.MEMM18
S.MEMM19
S.MEMM20

MPX·32 Technical Volume II

Description

read and verify preamble
deallocate TSA and DQE
reserved
locate shared memory table entry
update map segment descriptor for memory increase
re-map user address space
validate buffer address
allocate memory pool buffer
release memory pool buffer
deallocate debugger memory
load debug overlay
create a protection image
reserved
update shared memory protection image
reserved
get system buffer space
free system buffer space
get map image infonnation
update map segment descriptor for memory decrease
check new task size

1·3/1·4

o

o

2 H.REMM Entry Points

2.1 Entry Point 6 - Assign and Allocate Resource

This entry point assigns and allocates a resource in the manner indicated by the RRS
entry supplied as an argument Compatibility checking is performed to insure proper
resource integrity during its allocation.

This entry point is for privileged users only. Nonprivileged users must use the
M.ASSN or M_ASSIGN system service described in the MPX-32 Reference Manual
Volume 1.

Entry Conditions

Calling Sequence

M.CALL

Registers

RI
R7

Exit Conditions

H.REMM,6

address of an RRS (type 1-6)

address of an CNP or zero

Return Sequence with CNP

M.RTRN RS
(or)

M.RTNA RS (CCI set)

Return Sequence without CNP

M.RTRN

(or)

M.RTRN

Registers

RS
R7

RS

RS,R7 (CCI set)

allocation index or zero
status if an error and CNP is not supplied

MPX·32 Technical Volume II 2·1

Entry Point 6 - Assign and Allocate Resource

2·2

Status

CCI set Error Code Definition

1 unable to locate resource
2 specified access mode not allowed
3 FATIFPf space not availa ble
4 blocking buffer space not available
5 shared memory table (SMT) entry not found
6 volume assignment table (VAT) not available
7 static assignment to dynam ic common
8 unrecoverable I/O error to volume
9 invalid usage specification
11 invalid RRS entry
12 LFC logically equated to unassigned LFC
13 assigned device not in system
14 resource already allocated by requesting task
15 sao or SYC assignment by real-time task
16 shared memory conflicts with task's address space
17 duplicate LFC assignment attempted
18 invalid device specification
19 invalid resource ID
20 specified volume not assigned or access not allowed
22 resource is marked for deletion
23 assigned device is marked off-line
24 segment definition allocation by unprivileged task
25 random access not allowed for this access mode
26 user attempting to open SYC file in a write mode
27 resource already opened in a different access mode
28 invalid access specification at open
29 unassigned LFC in FCB or invalid FCB address
38 time out occurred while waiting for resource to

become available
46 unable to obtain resource descriptor

lock. - multipon only
50 resource is exclusively locked by another task
51 shareable resource is allocated in an

incompatible access mode
52 volume space is not available
53 assigned device is not available
54 unable to allocate resource for specified

usage
55 allocated resource table (ART) space not

available
56 reserved

Note: Status values 25-29 are returned only when auto-open is indicated.

H.REMM Entry POints

o

(

Entry Point 6 - Assign and Allocate Resource

Scratchpad Usage

T.SPADl-2
T.SPAD3

T.SPAD4

T.SPAD5

T.SPAD6

T.SPAD7

T.SPAD8

T.SPAD9-20

T.SPAD21

directory back link for pathname

MVTE (volume resource) or UDT (device) address

used to build first word of FAT

used to build FAT access value

used for temporary storage

FPT address for error cleanup

temporary file resource descriptor block for error cleanup

used to build new RRS for temporary SGO, SLO, SBO assignment
from TSA information

used by S.REMM7 and S.REMM36

2.2 Entry Point 7 - Deassign and Deallocate Resource

This entry point performs the deassignment of a resource by detaching it from the
associated system structures and deallocating its related TSA structures.

This entry point is for privileged users only. Nonprivileged users must use the
M.DASN or M_DEASSIGN system service described in the MPX-32 Reference
Manual Volume I.

Entry Conditions

Calling Sequence

M.CALL

Registers

Rl

R7

H.REMM,7

32-bit allocation index or a FCB address

address of a CNP or zero

MPX.32 Technical Volume II 2·3

Entry Point 7 - Deassign and Deallocate Resource

Exit CondHlons

Return Sequence with CNP

M.RTRN
(or)

M.RTNA (CCI set)

Return Sequence wHhout CNP

M.RTRN
(or)

M.RTRN

Registers

R7

Status

CCI set

R7 (CCI set)

status if an error and CNP not supplied

Error Code Definition

8 unrecoverable 110 error
29 LFC not assigned
30 invalid allocation index
46 unable to obtain resource

descriptor lock (multiprocessor only)

Scratchpad Usage

T.SPADI-2

T.SPAD3-8

T.SPADI-19

used to build RID for resource deletion
used by S.TSM4 (spooled files only)

used by S.REMM4 (unfonnatted media only)

2.3 Entry Point 13 - Reserved

2.4 Entry Point 17 - Mount Volume

2-4

See M.MOUNT or M MOUNT in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point in reference to wait mode mount requests.

To request a mount in no-wait mode, the following conditions must be met:

• bit 12 of RR.GPrS must be set to indicate no-wait mode mount

• the task must be privileged
• a CNP must be supplied and it must contain the PSB address in CP.FCBA

• an end-action address must be supplied in CP.NADDR
• if a MUTE address is to be returned. bit 0 of CP.OPTS must be set.

H.REMM Entry Points

c-

Entry Point 18 - Reserved

C 2.5 Entry Point 18 - Reserved

2.6 Entry Point 19 - Dismount Volume

See M.DMOUNT or M DISMOUNT in the MPX-32 Reference Manual Volume I for
a detailed description of this entry point.

2.7 Entry Point 21 - Open Resource

See M.OPENR or M OPENR in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.8 Entry Point 22 - Close Resource

See M.CLOSER or M CLOSER in the MPX-32 Reference Manual I for a detailed
description of this enuY point.

2.9 Entry Point 23 - Set Exclusive Resource Lock

See M.LOCK or M LOCK in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

(2.10 Entry Point 24 - Release Exclusive Resource Lock

See M.UNLOCK or M_UNLOCK in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.11 Entry Point 25 - Set Synchronous Resource Lock

See M.SETSYNC or M SETSYNC in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point. .

2.12 Entry Point 26 - Release Synchronous Resource Lock

See M.UNSYNC or M UNSYNC in the MPX-32 Reference Manual I for a detailed
description of this entrY point.

2.13 Entry Point 27 - Resource Inquiry
See M.INQUIRY or M _INQUIRER in the MPX-32 Reference Manual Volume I for
a detailed description of this entry point.

MPX·32 Technical Volume II 2-5

, Entry Point 99 - SYSGEN Initialization

2.14 Entry Point 99 - SYSGEN Initialization

2·6

This entry point is for internal use only and is called during SYSGEN. H.REMM sets
up its entry point table, then returns to SYSGEN.

H.REMM Entry Points

I~""·; \0

C'~""" i ;

, .

(~

3 H.REMM Subroutines

3.1 Subroutine S.REMM4 - Issue Dismount Request

This subroutine issues a no-wait run request to J.MOUNT for the purpose of
perfonning a physical dismount of a fonnatted volume or issuing a dismount message
to the operator for an unfonnatted volume. Operator response is not required.

Entry Conditions

Calling Sequence

BL S.REMM4

Registers

R3 FAT address

Exit Conditions

Return Sequence

TRSW

Registers

R2,R6,R7

R3

Status

CCl set

RO

destroyed

FAT address

run request failed; no message issued

Scratchpad Usage

T.SPADl-8 used to build PSB for run request

MPX·32 Technical Volume II 3-1

Subroutine S.REMMS - Issue Mount Request

3.2 Subroutine S.REMMS • Issue Mount Request

This subroutine issues a mount request for an unfonnatted medium or a fonnatted
volume by invoking J.MOUNT.

Entry Conditions

calling Sequence

BL S.REMMS

Registers

Rl PCB address (for an unformatted medium) or a RRS address with bit
o set (for a fonnatted volume)

T.R7 CNP address or zero

Exit Conditions

3-2

Return Sequence

TRSW RO

Registers

Rl
R2,R3

R4

RS-R7

Status

CCI set

FCB or RRS address

destroyed

mount device type code (for an unformatted medium) or undefined
(for a fonnatted volume)

destroyed

Error Code Definition

8 unrecoverable 110 error (I.MOUNT)
20 unable to initialize volume (J.MOUNT)
21 J.MOUNT run request failed
42 abort request
'43 hold request

Device reallocation status can also be
returned when hold is requested.

Scratchpad Usage
T.SPADl-8 used to build PSB for J.MOUNT and to construct RRS for device

reallocation when hold is requested

H.REMM Subroutines

o

o

Subroutine S.REMMS - Deallocate All Assigned Resources

C 3.3 Subroutine S.REMMS - Deallocate All Assigned Resources

(c

TIris subroutine deal locates all assigned FPT/FAT's.

Entry Conditions

calling Sequence

BL

Registers

None

Exit Conditions

S.REMM6

Return Sequence

TRSW

Registers

R2

R3
R4-R7

Status

None

RO

current stack frame pointer
TSA address
destroyed

Scratchpad Usage

T.SPAD22 used to save caller's register one

3.4 Subroutine S.REMMSA - Deallocate All Assigned Resources

TIris subroutine deallocates all mount assignments in the volume assignment table
(VAT).

Entry Conditions

calling Sequence

BL

Registers

None

S.REMM6A

MPX·32 Technical Volume II 3·3

Subroutine S.REMMSA • Deallocate All Assigned Resources

Exit CondHions

Return Sequence

TRSW RO

Registers

R2

R3

R4-RS

R6-R7

Status

None

current stack frame pointer
TSA Address

unchanged

destroyed

Scratchpad Usage

T.SPAD22 used to save caller's register one

3.5 Subroutine S.REMM7 - Find Next Matching UDT

This subroutine locates the next UDT whose device address matches that portion of
the supplied device specification indicated by the mask in R4. CC 1 is set to indicate
an unsuccessful scan, and the resulting status is returned in R7.

Entry CondHlons

3-4

Calling Sequence

BL

Registers

R2

R4

R6

S.REMM7

UDT address from last call
device mask
device specification as follows:

Byte Definition

1 device type code
2 logical channel number
3 logical sub channel number

H.REMM Subroutines

t~\

'\..,j

(

Subroutine S.REMM7 - Find Next Matching UDT

Exit Conditions

Return Sequence

TRSW RO

Registers

R2 UDT address of next matching device (if successful); otherwise, R2 is
unchanged

R4

R5
R6

R7

Status

CCI set

device mask

destroyed
device specification

status if an error; otherwise, R7 is destroyed

Error Code Definition

13 device not in system
14 device already allocated by caller
23 device is marked off-line
50 device is exclusively locked

Scratchpad Usage

T.SPAD20 used to save the last matching UDT
T.SPAD21
T.SPAD22

used to save caller's Rl
used to store initial UDT address

3.6 Subroutine S.REMMS - Deallocate FPT/FAT Buffer

This subroutine deallocates the specified FPT and FAT. The assignment count in the
associated VAT is updated and, if extendible, the segment definition area is marked
available.

Entry Conditions

calling Sequence

BL S.REMMS

Registers

R2 FPf address

MPX·32 Technical Volume II 3·5

Subroutine S.REMMS - Deallocate FPT/FAT Buffer

Exit Conditions

Return Sequence

TRSW RO

Registers

R2

R3
R4,RS

Status

None

FPI' address
FAT address
destroyed

Scratchpad Usage

None

3.7 Subroutine S.REMM9 - Check for Resource Allocation

This subroutine checks the allocated resource table (ART) to determine if the specified
resource is currently allocated. If a match is found, CC2 is set and the address of the
associated ART entry is rerumed. If a match is not found, the address of the next
available ART entry or zero is returned depending on whether or not any ART entries
are available.

Entry Conditions

Calling Sequence

BL S.REMM9

Assumptions

Context switching is inhibited.

3-6 H.REMM Subroutines'

o

0,

(

Subroutine S.REMM9 - Check for Resource Allocation

Registers

R2

R4

search function code. Byte 0 contains:

Bit Meaning if Set

4 segment definition (AR.SPACE)
5 partition (AR.P ART)
6 device (AR.DEVe)

zero for all other resources

Bytes 1, 2 and 3 contain zero.

resource allocation key with following byte significance:

Volume Resource

Byte 0 contains the UDT index of the volume on which the resource resides

Bytes 1, 2 and 3 contain the absolute block address of the resource descriptor

Partition

Byte 0 contains the associated SMT index.

Bytes 1, 2 and 3 contain the associated SMT entry address.

Device

Bytes 0 and 1 contain the associated UDT index. Bytes 2 and 3 are zero.

Exit Conditions

Return Sequence

TRSW RO

Registers

R2

R4

RS,R6

R7

address of the associated ART entry if found, or the next available
entry if not found, or zero if not found and ART is full

resource allocation key

destroyed

status if an error; otherwise, R7 is destroyed

MPX·32 Technical Volume II 3-7

Subroutine S.REMM9 - Check for Resource Allocation

Status

CCI set

CC2 set

error (status in R7)

resource allocated:

Error Code Definition

55 ART is full

Scratchpad Usage

T.SPAD22 used for temporary storage

3.8 Subroutine S.REMM1 0 - Locate FPT/FAT/SMT

This subroutine preprocesses the search for an allocated FPT/FAT or partition along
with clearing CC 1 in the current stack frame.

Entry CondHions

Calling Sequence

BL

Registers

R5

S.REMMIO

32-bit allocation index or a FCB address

Exit CondHlons

3-8

Return Sequence

TRSW

Registers

Rl

R2

R3

R4

R5

R7

RO (with S.REMM12)

current stack frame address

FPT address (volume resource) or destroyed (partition)

FAT address (volume resource) or ART address (partition)

destroyed

destroyed if allocation index supplied; otherwise. R5 is unchanged
(volume resource or partition)

status if an error; otherwise. R7 is unchanged

H.REMM Subroutines

Subroutine S.REMM10 - Locate FPT/FAT/SMT

Status

CCl set

EnorCode ~funtion

29 LFC not assigned
30 invalid allocation index

CC2 set resource is a memoI)' partition

Scratchpad Usage

None

3.9 Subroutine S.REMM11 - Allocate Blocking Buffer

This subroutine allocates a free blocking buffer for the caller. The control word in the
blocking buffer is cleared and the buffer empty bit is set. The buffer is marked
allocated. The blocking buffer address is inserted in the FAT and the blocking buffer
active bit is set in the status word. If the FAT address provided is the system FAT,
the system blocking buffer is unconditionally allocated.

Entry Conditions

Csiling Sequence

BL

Registers

R3

Exit Conditions

S.REMMll

FAT address

Return Sequence

TRSW RO

Registers

eCl set

R3

R4

R5

no blocking buffer found (RS-O)

FAT address

destroyed

blocking buffer address (0 if no allocation)

MPX·32 Technical Volume II 3-9

Subroutine S.REMM12· Locate Allocated FPT/FAT

. 3.10 Subroutine S.REMM12 - Locate Allocated FPT/FAT

This subroutine locates the FPT/FAT pair associated with a given logical file code
(LFC) or allocation index.

Entry Conditions

Calling Sequence

BL

Registers

R5

S.REMMI2

32-bit allocation index, or right-justified LFC (bit 8 set indicates the
system FPT/FAT)

Exit Conditions

3-10

Return Sequence

TRSW RO

Registers

FPT address

FAT address

destroyed

R2

R3

R4

R5

R7

destroyed if allocation index supplied; otherwise, RS is unchanged

status if an error; otherwise, R7 is unchanged

Status

CCI set

Error Code Definition

Scratchpad Usage

None

29 LFC not assigned
30 invalid allocation index

H.REMM Subroutines

o

Subroutine S.REMM14 - Allocate FPT/FAT

3.11 Subroutine S.REMM14· Allocate FPT/FAT

TIlls subroutine locates an available FPT/FAT pair and initializes the FPT with the
supplied logical file code. The FAT is zeroed and the FPT linked to the FAT.
Unsuccessful completion is indicated by condition code settings. If bit 0 is set in
register five, a search is made for an associated pseudo-FAT in place of the FPT/FAT
allocation. TIlls FAT was allocated to the task when the temporary file was created.

Entry CondHlons

Calling Sequence

BL

Registers

Rl

R5

Exit Conditions

S.REMM14

resource descriptor address if bit 0 set in R5

logical file code (right-justified) or zero:

Bit Meaning if Set

o find pseudo-FAT for temporary file
1 deallocate dedicated file system FPI' IF A T
8 allocate system FPT/FAT

Return Sequence

TRSW RO

Registers

R2

R3
R4,R6

R5

R7

Status

CCI set

FPI' address

FAT address

destroyed

logical file code (byte 0 cleared)

status if an error; otherwise, R7 is destroyed

Error Code Definition

3 FPI'/FAT space unavailable
17 duplicate LFC assignment

Scratchpad Usage

None

MPX·32 Technical Volume II 3·11

Subroutine S.REMM23 - Find Associated MVT Entry

3.12 Subroutine S.REMM23· Find Associated MVT Entry

This subroutine locates the mounted volume table (MVT) entry associated with the
volume name passed to it as an argument. The address of the MVT entry is returned
as the result of the call, if found. Otherwise, an error status is posted.

Entry Conditions

Calling Sequence

BL

Registers

RI

S.REMM23

address of a volume name (left-justified and blank-filled to 16
characters)

Exit CondHions

3-12

Return Sequence

TRSW RO

Registers

Rl
R2

address of volume name

address of MVT entry, or zero if not found

desttoyed . R4,R6

RS

R7

address of the associated VAT entry, or :zero if public volume

status if an error; otherwise, R7 is destroyed

Status

CCl set volume is not assigned (error code is 20)

Scratchpad Usage

None

H.REMM Subroutines

(.~\

(J

Subroutine S.REMM24 - Uncompress File Name

(3.13 Subroutine S.REMM24 - Uncompress File Name

«~•

This subroutine converts 6-bit ASCII coded characters to 8-bit ASCII coded
characters. A hexadecimal 20 is added to each 6-bit value to get the new 8-bit value.

Exit Conditions

Return Sequence

TRSW RO

Registers

R2-R5

R6,R7

destroyed

8-bit ASCII coded name

3.14 Subroutine S.REMM25 - Set Any Bit In Memory

This subroutine sets any bit in memory.

Entry Conditions

calling Sequence

BL

Registers

R2

R4

Exit Conditions

S.REMM2S

base address of bit string

relative bit number (0-2**20)

Return Sequence

TRSW RO

Registers

R4,R5 destroyed

MPX·32 Technical Volume II 3·13

Subroutine S.REMM26 - Clear Any Bit In Memory

3.15 Subroutine S.REMM26 - Clear Any Bit In Memory

This subroutine clears any bit in memory.

Entry Conditions

calling Sequence

BL

Registers

R2

R4

Exit Conditions

S.REMM26

base address of bit string

relative bit number (0-2**20)

Return Sequence

TRSW RO

Registers

R4,R5 destroyed

3.16 Subroutine S.REMM27 - Test Any Bit In Memory

This subroutine tests the starus of any bit in memory.

Entry Conditions

3-14

Calling Sequence

BL

Registers

R2

R4

S.REMM27

base address of bit string

relative bit number (0-2**20)

H.REMM Subroutines

I{~~

v:

(

Subroutine S.REMM27 - Test Any Bit In Memory

Exit Conditions

Return Sequence

TRSW RO

Registers

R2

R4,R5

Status

CCI set

unchanged

destroyed

bit tested is set

3.17 Subroutine S.REMM36 - Check Resource Compatibility

This subroutine determines if the requested allocation access and usage are compatible
with the existing allocation status of the resource. If compatible, the allocated
resource table (ART) entry is updated appropriately. If not compatible, the task is
enqueued or denied as appropriate.

Entry Conditions

Calling Sequence

BL S.REMM36

Assumptions

Context switching is inhibited.

Registers

R2 ART address

R3 FAT address

T.R7 address of a caller notification packet or zero

Exit Conditions

Return Sequence

TRSW RO

Registers

R2

R3
R4-R6

R7

ART address

FAT address

destroyed

status if an error or denial; otherwise, R7 is destroyed

MPX·32 Technical Volume II 3·15

Subroutine S.REMM36 • Check Resource Compatibility

Status

CCI set

Error Code Definition

38 time out occurred during queue
50 resource is exclusively locked
51 incompatible access mode (implicit shared)
54 incompatible usage mode
56 reserved

Scratchpad Usage

T.SPAD21-22 used for temporary storage

3.18 Subroutine S.REMM37 - Caller Notification Packet

This subroutine perfonns the error/denial rerum processing for an entry point called
with an optional caller notification packet (CNP) and no rerum registers.

Entry Conditions

Calling Sequence

BL

Registers

Rl

R7

S.REMM37

address of current stack frame

error/denial status

Exit Conditions

3-16

Return Sequence

Return Sequence with CNP

M.RTRN
M.RTNA

Return Sequence without CNP

M.RTRN R7

Registers

R7 status (if CNP not supplied)

Status

CCI is always set. Status is the contents of R7.

H.REMM Subroutines

3.19

Scratch pad Usage

None

Subroutine S.REMM37 - Caller Notification Packet

Subroutine S.REMM38 - Queue for System Resource

nus subroutine places the caller on the general queue for the resource specified by the
supplied function code. If a CNP is present and indicates no-wait, the task is not
queued.

Entry Conditions

Calling Sequence

BL S.REMM38

Assumptions

Context switching inhibited.

Registers

R3

R5

R6

CNP address or zero

enqueue function code:

Code Definition

QVRES
QART
QSMT
QMVT
QSRL
QMNT

volume resource
allocated resource table
shared memory table
mounted volume table
synchronous resource lock
volume mount in progress

enqueue ID:

ID Queuing for

zero
ART
MVTE

system table space
address volume resource
address volume mount

MPX.32 Technical Volume II 3-17

Subroutine S.REMM38 - Queue for System Resource

Exit Conditions

Return Sequence

Context switching enabled.

TRSW RO

Registers

R3,R4,R7

Status

CCI set

CC2 set

destroyed

returning due to enqueue time out (status code posted in R7)

CNP indicated no queue

Scratchpad Usage

None

3.20 Subroutine S.REMM42 - Gate System Prior to ART Access

This subroutine ensures mutual exclusion whenever the system must read and/or
modify an allocated resource table (ART) entry to update the allocation status of a
resource. For a multiprocessor, shared volume resource, the resource descriptor (RD)
is locked, and the memory-resident ART entry updated with information from the
descriptor. Context switching is always inhibited as a result of calling this routine.

Entry Conditions

Calling Sequence

BL S.REMM42

Registers

R2 ART entry address

T.R7 CNP address or zero

Exit Conditions

3-18

Return Sequence

Context switching inhibited.

TRSW RO

Registers

R4

R7

destroyed
status, if error; otherwise, R7 is unchanged

H.REMM Subroutines

o

o

(.... ,.
.~ .

Status

CCl set

Subroutine S.REMM42 - Gate System Prior to ART Access

Error Code Definition

46 unable to obtain RD lock (multipart resources only)

Scratch pad Usage

T.SPAD9-10 saves RID for modify RD

T.SPADll-l3 builds CNP

T.SPADl5-22 saves caller's registers

3.21 Subroutine S.REMM43 - Ungate System After ART Access

This subroutine ensures that an allocated resource table (ART) entry is made available
to other tasks whenever the system has completed its access to it. If the access was
performed on a multiprocessor, shared volume resource, the ART information from
the memory-resident ART entry is pasted in the resource descriptor (RD), and the RD
lock is released. Context switching is always enabled as a result of calling this
routine. -

Entry CondHions

Calling Sequence

BL

Registers

R2

Assumptions

S.REMM43

ART entry address

Context switching inhibited. T.RDBUPA contains the appropriate RD (multiprocessor
resources only).

exit CondHlons

Return Sequence

Context switching enabled.

TRSW RO

Registers

R4

R7

destroyed

status, if error; otherwise, R7 is unchanged

MPX·32 Technical Volume II ,
3-19

Subroutine S:REMM43 - Ungate System After ART Access

Status

CCl set

CC4 set

Error Code

46

Definition

unable to release RD lock
(multiprocessor resources only)

assign count for current port ID equals zero (multiprocessor resources
only)

Scratchpad Usage

T.SPADl5-20 saves caller's registers

3.22. Subroutine S.REMM44 - Self-Generated Resource Conflict

This subroutine is called before a task is queued when a required resource is
incompatible with the calling task's usage/access rights. The task's FAT and FPT
areas are searched for two FATs pointing to the same allocated resource table (ART).
If two are found, an error condition is returned to the caller.

Entry Conditions

Calling Sequence

BL S.REMM44

Registers

R2 ART address

R3 FAT address

Exit Conditions

3-20

Return Sequence

TRSW RO

Normal Return

R2

R3

ART address

FAT address

H.REMM Subroutines

/~.

('-./)

o

Subroutine S.REMM44 - Self-Generated Resource Conflict

Abnonnal Return

CCl set

R2

R3
R5
R7

Abort Cases

error

ART address

FAT address

allocation index of previously assigned LFC

abort code

RM14 RESOURCE ALREADY ALLOCATED BY TASK

3.23 Subroutine S.REMM45· Deallocate Blocking Buffers

This subroutine deallocates a blocking buffer, or all blocking buffers within a large
blocking buffer, and the associated head cell from the task's TSA.

Entry Conditions

Calling Sequence

BL S.REMM45

Registers

R3 FAT address

Exit Conditions

Return Sequence

TRSW RO

Registers

R4 destroyed

Status

CCl set blocking buffer or any buffer within a large blocking buffer is already
deallocated

MPX·32 Technical Volume II 3·21

Subroutine S.REMM46 - Allocate a Blocking Buffer Head

3.24 Subroutine S.REMM46 - Allocate a Blocking Buffer Head

This subroutine locates a free blocking buffer head cell in the task's TSA and clears
the first word to allocate it The blocking buffer free to allocate bit is reset

Entry Conditions

Calling Sequence

BL

Registers

R7

S.REMM46

destroyed

Exit Conditions

Return Sequence

TRSW RO

Registers

R3

R4

Status

CCI set

head cell address is available; otherwise, R3 is destroyed

destroyed

no free head cells are found

3.25 Subroutine S.REMM47 • Dismount of Volume

This subroutine is called by H.REMM,7 when the last user/assigner on a volume
resource deallocates that resource.

The UDT index is used to detennine whether the resource is a public volume with
pending dismount. If it is, and there are no other ART entries allocated for it, a
physical dismount is immediately attempted.

Entry Conditions

3-22

Calling Sequence

BL

Registers

R3

R5

S.REMM47

FAT address

UDTindex

H.REMM Subroutines

o

o

Subroutine S.REMM47 - Dismount of Volume

Exit Conditions

Return Sequence

TRSW RO

Registers

R4-R7 destroyed

(.

MPX-32 Technical Volume II 3-23/3-24

,(,
~_J

(

Resident Executive Services (H.REXS)

MPX-32 Technical Manual

Volume II

4');
). 'j

,-y

C··-.'.~··.··) .,

Contents

Page

1 H.REXS Overview

1.1 General Infonnation 1-1
1.2 Entry Point Summary .. 1-1
1.3 Subroutine Summary ... 1-4

2 H.REXS Entry Points

2.1 Entry Point 1 - Reserved ... 2-1
2.2 Entry Point 2 - Reserved ... 2-1
2.3 Entry Point 3 - Memory Address Inquiry .. 2-1
2.4 Entry Point 4 - Create Timer Entry .. 2-1
2.5 Entry Point 5 - Test Timer Entry .. 2-1
2.6 Entry Point 6 - Delete Timer Entry .. 2-1
2.7 Entry Point 7 - Set User Status Word .. ; 2-2
2.8 Entry Point 8 - Test User Status Word ... 2-2
2.9 Entry Point 9 - Change Priority Level .. 2-2
2.10 Entry Point 10 - Connect Task to Interrupt .. 2-3
2.11 Entry Point 11 - Time-of-Day Inquiry ... 2-3
2.12 Entry Point 12 - Memory Dump Request .. 2-3
2.13 Entry Point 13 - Load Overlay Segment .. 2-4
2.14 Entry Point 14 - Load and Execute Overlay Segment 2-4
2.15 Entry Point 15 - Activate Task ... 2-4
2.16 Entry Point 16 - Resume Task Execution .. 2-5
2.17 Entry Point 17 - Suspend Task Execution .. 2-5
2.18 Entry Point 18 - Terminate Task Execution ... 2-5
2.19 Entry Point 19 - Abort Specified Task : ... 2-6
2.20 Entry Point 20 - Abort Self ... 2-6
2.21 Entry Point 21 - Assign and Allocate Resource ... 2-6
2.22 Entry Point 22 - Deassign and Deallocate Resource 2-6
2.23 Entry Point 23 - Arithmetic Exception Inquiry .. 2-7
2.24 Entry Point 24 - Task Option W oId Inquiry .. 2-7
2.25 Entry Point 25 - Program Hold Request .. 2-7
2.26 Entry Point 26 - Set User Abort Receiver Address 2-7
2.27 Entry Point 27 - Batch Job Entry ... 2-8
2.28 Entry Point 28 - Abort with Extended Message .. 2-8

c
MPX-32 Technical Volume II iii

Contents

Page o
2.29 Entry Point 29 - Load and Execute Interactive Debugger 2-9
2.30 Entry Point 30 - Delete Interactive Debugger .. 2-9
2.31 Entry Point 31 - Delete Task .. 2-10
2.32 Entry Point 32 - Get Task Number ... 2-10
2.33 Entry Point 33 - Validate Address Range .. 2-10
2.34 Entry Point 34 - Reserved ... 2-10
2.35 Entry Point 35 - Get Message Parameters .. 2-10
2.36 Entry Point 36 - Get Run Parameters ... 2-11
2.37 Entry Point 37 - Wait for Any No-Wait Operation Complete 2-11
2.38 Entry Point 38 - Disconnect Task from Interrupt 2-11
2.39 Entry Point 39 - Exit from Message Receiver ... 2-11
2.40 Entry Point 40 - Parameter Task Activation .. 2-12
2.41 Entry Point 41 - Get Addr~ss Limits .. 2-12
2.42 Entry Point 42 - Debug Link Service ... 2-12
2.43 Entry Point 43 - Receive Message Link Address 2-12
2.44 Entry Point 44 - Send Message to Specified Task 2-13
2.45 Entry Point 45 - $end Run Request to Specified Task 2-13
2.46 Entry Point 46 - BreakJTask Interrupt Link ... 2-13
2.47 Entry Point 47 - Activate Task Interrupt .. 2-13
2.48 Entry Point 48 - Exit from Task Interrupt Level 2-14
2.49 EntrY Point 49 - Exit Run Receiver .. 2-14
2.50 Entry Point 50 - Exit from Message End-Action Routine 2-14
2.51 Entry Point 51 - Exit from Run Request End-Action Routine 2-14
2.52 Entry Point 52 - Reserved ... 2-14
2.53 Entry Point 53 - Reserved ... 2-14
2.54 Entry Point 54 - Reserved ..•.. 2-14
2.55 Entry Point 55 - Reserved ... 2-15
2.56 Entry Point S6 - Reserved ... 2-15
2.57 Entry Point 57 - Disable Message Task Interrupt 2-15
2.58 Entry Point 58 - Enable Message Task Interrupt 2-15
2.59 Entry Point 59 - Get Physical Memory Contents 2-15
2.60 Entry Point 60 - Change Physical Memory Contents 2-16
2.61 Entry Point 61 - RescrY'ed ... 2-16
2.62 Entry Point 62 - Resourcemark I..ock ... 2-16
2.63 Entry Point 63 - Resourcemark Unlock ... 2-16
2.64 Entry Point 64 - Remove RSM I..ock on Task Termination 2-17
2.65 Entry Point 65 - Task CPU Execution Time .. 2-17

iv Contents

Contents

(' Page

2.66 Entry Point 66 - Activate Program at Given Time of Day 2-18
2.67 Entry Point 67 - Set Synchronous Task Interrupt 2-18
2.69 Entry Point 68 - Set Asynchronous Task Interrupt 2-18
2.69 Entry Point 69 - Reserved ... 2-18
2.70 Entry Point 70 - Date and Time Inquiry .. 2-19
2.71 Entry Point 71 - Get Device Mnemonic or Type Code 2-19
2.72 Entry Point 72 - Enable User Break Interrupt .. 2-19
2.73 Entry Point 73 - Disable User Break: Interrupt ... 2-19
2.74 Entry Point 74 - Acquire Daten'ime Services .. 2-20
2.75 Entry Point 75 - Conversion Services .. 2-20
2.76 Entry Point 76 - Reformat RRS Entry .. 2-20
2.77 Entry Point 77 - Reserved .. ~ 2-20
2.78 Entry Point 78 - Reinstate Privilege Mode to Privilege Task 2-21
2.79 Entry Point 79 - Change Task to Unprivileged Mode 2-21
2.80 Entry Point 80 - Get Address Limits .. 2-21
2.81 Entry Point 81 - Set Exception Return Address ... 2-21
2.82 Entry Point 82 - Set IPU Bias .. 2 -21
2.83 Entry Point 83 - Set Exception Handler ... 2-21
2.84 Entry Point 84 - Get Base Register Task Address Limits 2-21
2.85 Entry Point 85 - Get Task Environment ... 2-21
2.86 Entry Point 86 - Exit With Status ... 2-22
2.87 Entry Point 87 - Load Overlay in Position ... 2-22
2.88 Entry Point 88 - Get Command Line ... 2-23
2.89 Entry Point 89 - Move Data to the User Address 2-23
2.90 Entry Point 90 - Get Real Physical Address .. 2-23
2.91 Entry Point 91 - Get TSA Start Address .. 2-23
2.92 Entry Point 92 - RetUrn to the Operating System 2-23
2.93 Entry Point 93 - Physical Memory Read .. 2-23
2.94 Entry Point 94 - Physical Memory Write ... 2-24
2.95 Entry Point 95 - Get Task Option Word 1 and 2 2-24
2.96 Entry Point 99 - SYSGEN Initialization .. 2-24

3 H.REXS Subroutines

3.1 Subroutine S.REXS 1 - Locate Specified Task in Memory 3-1
3.2 Subroutine S.REXS2 - Delete Timers for Current Task 3-2
3.3 Subroutine S.REXS3 - Get DQE Address for Specified Task 3-3
3.4 Subroutine S.REXS4 - Validate Resourcemark Index 3-4

MPX·32 Technical Volume II v

Contents

Page l~)'

vi

3.5 Subroutine S.REXS5 - Get DQE Address from Task Number 3-4
3.6 Subroutine S.REXS6 - Reserved .. 3-5
3.7
3.B
3.9
3.10
3.11

Subroutine S.REXS7 - Zero Buffer .. 3-5
Subroutine S.REXSB - Clear Scratchpad in Current Stack Frame 3-6
Subroutine S.REXS9 - Create System Pathname in Word 10 3-6
Subroutine S.REXSIO - Test LFC Read Only or ReadlWrite Access 3-7
Subroutine S.REXS11 - Create System Pathname 3-8

Contents

'\~/

1 H.REXS Overview

1.1 General Information

The Resident Executive Services Module (H.REXS) performs resident executive
services. After an H.REXS entry point or system subroutine accepts a task request,
H.REXS can pass the task request to other resident modules for processing. Resident
executive services include timer management, date and time inquiry, conversion
routines, and task and controls communications such as task activate, suspend,
resume, abort, send, and receive. This module can reside in extended memory.

1.2 Entry Point Summary

Entry
Point

H.REXS,l
H.REXS,2
H.REXS,3
H.REXS,4
H.REXS,5
H.REXS,6
H.REXS,7
H.REXS,8
H.REXS,9
H.REXS,lO
H.REXS,11
H.REXS,12
H.REXS,13
H.REXS,14
H.REXS,15
H.REXS,16
H.REXS,17
H.REXS,18
H.REXS,19
H.REXS,20
H.REXS,21

SVC
Number

44*
45
46
47
48
49
4A**
4B
4E*
4F
50
51
52
53
54
55
56
57
52***

Description

reserved
reserved
memory address inquiry
create timer entry
test timer entry
delete timer entry
set user status word
test user staws word
change priority level
connect task to interrupt
time-of-day inquiry
memory dump request
load overlay segment
load and execute overlay segment
activate task
resume task execution
suspend task execution
terminate task execution
abort specified task
abort self
assign and allocate resource

* This service can be executed by the IPU.

** This service is available to privileged users only.

*** This service is SVC 2,X'nn' callable. All others are SVC l,X'nn' callable.

MPX·32 Technical Volume II 1-1

Entry Point Summary

Entry SVC l),
Point Number Description V
H.REXS,22 53*** deassign and deallocate resource
H.REXS,23 40* arithmetic exception inquiry
H.REXS,24 4C* task option word inquiry
H.REXS,25 58 program hold request
H.REXS,26 60 set user abort receiver address
H.REXS,27 55*** batch job entry
H.REXS,28 62 abort with extended message
H.REXS,29 63 load and execute interactive debugger
H.REXS,30 56*** delete interactive debugger
H.REXS,31 5A delete task
H.REXS,32 64 get task number
H.REXS,33 59*** validate address range
H.REXS,34 reserved
H.REXS,35 7A get message parameters
H.REXS,36 7B get run parameters
H.REXS,37 7C wait for any no-wait operation complete,

message interrupt or break interrupt
H.REXS,38 5D disconnect task from interrupt
H.REXS,39 5E exit from message receiver
H.REXS,40 5F** parameter task activation
H.REXS,41 65 get address limits
H.REXS,42 66 debug link service
H.REXS,43 6B recei ve message link address
H.REXS,44 6C send message to specified task
H.REXS,45 60 send run request to specified task
H.REXS,46 6E break/task interrupt link
H.REXS,47 6F activate task interrupt
H.REXS,48 70 exit from task interrupt level
H.REXS,49 70 exit run receiver
H.REXS,50 7E exit from message end-action routine
H.REXS,51 7F exit from run request end-action routine
H.REXS,52 reserved
H.REXS,53 reserved
H.REXS,54 reserved
H.REXS,55 reserved
H.REXS,56 reserved
H.REXS,57 2E* disable message task interrupt
H.REXS,58 2F enable message task interrupt
H.REXS,59 N/A get physical memory contents
H.REXS,60 N/A change physical memory contents
H.REXS,61 reserved
H.REXS,62 19 resourcemark lock

* This service can be executed by the IPU.
** This service is available to privileged users only.
*** This service is SVC 2,X'nn' callable. All others are SVC 1,X'nn' callable.

NI A implies reserved for internal use by MPX-32.

';\ C
1-2 H.REXS Overview

C/

(
. ~, ../'

Entry Point Summary

Entry SVC
Point Number Description

H.REXS,63 1A resourcemark unlock
H.REXS,64 N/A remove RSM lock on task termination
H.REXS,65 2D task CPU execution time
H.REXS,66 IE activate program at given time of day
H.REXS,67 IB* set synchronous task interrupt
H.REXS,68 IC set asynchronous task interrupt
H.REXS,69 reserved
H.REXS,70 15* date and time inquiry
H.REXS,71 14'" get device mnemonic or type code
H.REXS,72 13'" enable user break interrupt
H.REXS,73 12'" disable user break interrupt
H.REXS,74 50"'**'" acquire current date/time in ASCn format

acquire current date/time in binary format
acquire current date/time in byte binary format
acquire system date/time in any format
get current date/time

H.REXS,75 51"'*** convett ASCII date/time to byte binary format
convett ASCII date/time to standard binary
convett binary date/time to ASCII format
convett binary date/time to byte binary
convett byte binary date/time to Ascn
convett byte binary date/time to binary
convett system date/time format
convett time

H.REXS,76 54**'" reformat RRS entry
H.REXS,77 reserved
H.REXS,78 57"''''* reinstate privilege mode to privilege task
H.REXS,79 58*** change task to unprivileged mode
H.REXS,80 7B**'" get address limits
H.REXS,81 79*** set exception return address
H.REXS.82 5B*"'* set IPU bias
H.REXS.83 5C*** set exception handler
H.REXS,84 5D*"'* get base register task address limits
H.REXS.85 5E*** get task environment
H.REXS,86 5P** exit with status
H.REXS,87 N/A load overlay in position
H.REXS,88 61*** get command line
H.REXS,89 62*** move data to the user address
H.REXS,90 OE*** get real physical address

* This service can be executed by the IPU.

*** This service is SVC 2,x' nn' callable. All others are SVC I,X' nn' callable.

**** This service is SVC 2,X'nn' callable. This service can be executed by the IPU.

N/A implies reserved for internal use by MPX-32.

MPX-32 Technical Volume II 1-3

Entry Point Summary

Entry SVC
Point Number

H.REXS,91 7D"''''''''''
H.REXS,92 75"'''''''
H.REXS,93 7E "' ...
H.REXS,94 AF*
H.REXS,95 CO"'···
H.REXS,99 N/A

Description

get TSA address
return to the operating system
physical memory read
physical memory write
get task option words 1 and 2
SYSGEN initialization

• This service can be executed by the IPU.

"'''' ... This service is SVC 2,x'nn' callable. All others are SVC 1,X'nn' callable .

•••• This service is SVC 2,X'nn' callable. This service can be executed by the !PU.

N/ A implies reserved for internal use by MPX-32.

1.3 Subroutine Summary

Subroutine

S.REXSI
S.REXS2
S.REXS3
S.REXS4
S.REXS5
S.REXS6
S.REXS7
S.REXS8
S.REXS9
S.REXSI0
S.REXSll

Description

locate specified task in memory
delete timers for current task
get DQE address for specified task
validate resourcemark index
get DQE address from task number
reserved
zero buffer
clear scratchpad in current stack frame
create system pathname in word 10
test LFC for read only or read/write access
create system pathname in word 24

H.REXS Overview

0-

c·

(

2 H.REXS Entry Points

2.1 Entry Point 1 - Reserved

2.2 Entry Point 2 - Reserved

2.3 Entry Point 3 - Memory Address Inquiry

See M.ADRS or M ADRS in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.4 Entry Point 4 - Create Timer Entry

See M.SETI or M SETI in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.5 Entry Point 5 - Test Timer Entry

See M.TSTI or M TSTI in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.6 Entry Point 6 - Delete Timer Entry

See M.DLTI or M DLTI in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume II 2·1

Entry Point 7 - sefuser Status Word

2.7 Entry Point 7 - Set User Status Word

See M.SETS or M SETS in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.8 Entry Point 8 - Test User Status Word

See M.TSTS or M TSTS in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

M.CALL

M.OPEN

2.9 Entry Point 9 - Change Priority Level

See M.PRll.. or M PRll.. in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

2·2

System Macro

M.RTRN

M.CALL
M.OPEN

H.REXS Entry POints

Entry Point 10 - Connect Task to Interrupt

C 2.10 Entry Point 10 - Connect Task to Interrupt

(

('"

/

See M.CONN or M CONN in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.11 Entry Point 11 - Time-of-Day Inquiry

See M.TDA Y or M TDA Y in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.12 Entry Point 12 - Memory Dump Request

See M.DUMP or M DUMP in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.SPAD

M.CALL

M.RTRN

MPX·32 Technical Volume II 2·3

Entry Point 13 -load Overlay Segment

2.13 Entry Point 13 - Load Overlay Segment

See M.OLAY in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.CALL

M.RTRN

2.14 Entry Point 14 - Load and Execute Overlay Segment

See M.OLAY in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.CALL

M.RTRN

2.15 Entry Point 15 - Activate Task

See M.ACI'V or M ACI'V in the MPX-32 Reference Manual Volume I for a detailed
descri ption of this entry point.

External Reference

2-4

System Macro

M.RTRN

H.REXS Entry Points

C.'">' .. "
i

Entry Point 16 • Resume Task Execution

C 2.16 Entry Point 16 - Resume Task Execution

(

See M.SUME or M SUME in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.CALL

MJOFF

M.RTRN

M.IONN

M.OPEN

2.17 Entry Point 17 - Suspend Task Execution

See M.SUSP or M SUSP in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

M.IONN

M.CALL

M.IOFF

M.OPEN

2.18 Entry Point 18 - Terminate Task Execution

See M.EXIT or M EXIT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume II 2·5

Entry Point 19 - Abort Specified Task

2.19 Entry Point 19 - Abort Specified Task

See M.BORT or M BORT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

M.CALL

M.IOFF

M.IONN

M.OPEN

2.20 Entry Point 20 - Abort Self

See M.BORT or M BORT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.CALL

2.21 Entry Point 21 - ,Assign and Allocate Resource

See M.ASSN or M ASSIGN in the MPX-32 Reference Manual Volume I for a
detailed description-of this entry point.

2.22 Entry Point 22 - Deassign and Deallocate Resource .

2·6

See MDASN or M DEASSIGN in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

H.REXS Entry Points

o

0·", ..

Entry POint 23 - Arithmetic Exception Inquiry

C' 2.23 Entry Point 23 - Arithmetic Exception Inquiry

See M.TSTE or M TSTE in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.24 Entry Point 24 - Task Option Word Inquiry

See M.PGOW or M_OPTIONWORD in the MPX-32 Reference Manual Volume I f~r
a detailed description of this entry point

External Reference

System Macro

M.RTRN

2.25 Entry Point 25 - Program Hold Request

See M.HOLD or M HOLD in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.26 Entry Point 26 - Set User Abort Receiver Address

See M.SUAR or M SUAR in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.SPAD

M.CALL

M.RTRN

MPX·32 Technical Volume II 2-7

Entry Point 27 • Batch Job Entry

2.27 Entry Point 27 - Batch Job Entry

See M.BATCH or M BATCH in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.CALL
M.RTRN

System Services

H.VOMM,13

H.REXS,22

H.REXS,45

H.IOCS,23

System Subroutines

S.REXS8

S.V0MM23

S.REMM12

S.REMM37

2.28 Entry Point 28 - Abort with Extended Message

See M.BORT or M BORT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

M.CALL

M.IOFF

M.IONN

M.OPEN

2-8 H.REXS Entry Points

o

C)

o

Entry Point 29 - Load and Execute Interactive Debugger

c- 2.29 Entry Point 29 - Load and Execute Interactive Debugger

(

See M.DEBUG or M DEBUG in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTNA

2.30 Entry Point 30 • Delete Interactive Debugger

This entry point is used only by the interactive debugger to disassociate itself from a
task.

Entry Conditions

calling Sequence

SVC 2, X '56'
or

M.CALL

Registers

None

Exit Conditions

H.REXS,30

Return Sequence

M.RTRN

Registers

None

MPX·32 Technical Volume II 2·9

Entry Point 31 • DeletcfTask

2.31 Entry Point 31 - Delete Task

See M.DELTSK or M DELTSK in the MPX-32 Reference Manual Volume I for a
detailed description ofthls entry point.

External Reference

System Macro

M.RTRN

M.CALL

M.lOFF

M.lONN

M.OPEN

2.32 Entry Point 32 - Get Task Number

See M.ID or MID, and M.MYID or M MYID in the MPX-32 Reference Manual
Volume I for a detailed description of this entry point.

External Reference

System Macro

M.RTRN

M.RTNA

2.33 Entry Point 33 - Validate Address Range

See M.VADDR or M_ VADDR in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.34 Entry Point 34 - Reserved

2.35 Entry Point 35 - Get Message Parameters

See M.GMSGP or M GMSGP in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

2·10

System Macro

M.RTRN

H.REXS Entry Points

O~ I I','

0-

Entry Point 36 • 'Get Run Parameters

("'": 2.36 Entry Point 36· Get Run Parameters

See M.GRUNP or M_GRUNP in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.37 Entry Point 37 - Wait for Any No-Wait Operation Complete

See M.ANYW or M ANYW AIT in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.38 Entry Point 38· Disconnect Task from Interrupt

See M.DISCON or M DISCON in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.39 Entry Point 39· Exit from Message Receiver

See MJ{MSGR or M_XMSGR in the MPX-32 Reference Manual Volume I fpr a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

MPX-32 Technical Volume II 2·11

Entry Point 40 • Parameter Task Activation

2.40 Entry Point 40 - Parameter Task Activation

See M.PTSK or M PTSK in the :MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.41 Entry Point 41 - Get Address Limits

See M.GADRL in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro

M.RTRN

2.42 Entry Point 42 - Debug Link Service

See the Debug Link system service in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTNA

2.43 Entry Point 43 - Receive Message Link Address

See M.RCVR or M RCVR in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

2-12

System Macro

M.RTRN

H.REXS Entry Points

Entry Point 44 - Send Message to Specified Task

(c" 2.44 Entry Point 44 - Send Message to Specified Task

See M.SMSGR or M SMSGR in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.45 Entry Point 45 - Send Run Request to Specified Task

See M.SRUNR or M SRUNR in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.46 Entry Point 46 - Break/Task Interrupt Link

See M.BRK or M BRK in the MPX-32 Reference Manual Volume I for a detailed
description of this-entry point.

External Reference

System Macro

M.RTRN

2.47 Entry Point 47 - Activate Task Interrupt

See M.INT or M INT in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume" 2-13

Entry Point 48 - Exit from Task Interrupt Level

2.48 Entry Point 48 - Exit from Task Interrupt Level

See M.BRKXIT or M BRKXIT and M.XBRKR or M XBRKR in the :MPX-32
Reference Manual VoiUme I for a detailed description 'Of this entry point.

External Reference

System Macro

M.RTRN

2.49 Entry Point 49 - Exit Run Receiver

See MJCRUNR or M XRUNR in the :MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.50 Entry Point 50 - Exit from Message End-Action Routine

See M.XMEA or M XMEA in the :MPX-32 Reference Manual Volume I for a
detailed description 'Of this entry point.

External Reference

. System Macro

M.RTRN

2.51 Entry Point 51 - Exit from Run Request End-Action Routine

See M.XREA or M XREA in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.52 Entry Point 52 - Reserved

2.53 Entry Point 53 - Reserved

2.54 Entry Point 54 - Reserved

2·14 H.REXS Entry Points

Entry Point 55 • Reserved

(2.55 Entry Point 55 - Reserved

2.56 Entry Point 56 - Reserved

2.57 Entry Point 57 - Disable Message Task Interrupt

See M.DSMI or M DSMI in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.58 Entry Point 58 - Enable Message Task Interrupt

See M.ENMI or M ENMI in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.59 Entry Point 59 - Get Physical Memory Contents

This entry point forces the specified physical address to an 8-word boundary and
returns the memory contents of that 8-word block to the callers 8-word buffer area,
which must be on an 8-word boundary.

Entry Conditions

calling Sequence

M.CALL H.REXS,59

Registers

Rl
R2

Exit Conditions

physical address of memory

caller's buffer address, must be on an 8-word boundary

Return Sequence

M.RTRN

Registers

None

Abort cases

None

Output Messages

None

MPX·32 Technical Volume II 2·15

Entry Point 60 • Change Physical Memory Contents

2.60 Entry Point 60 - Change Physical Memory Contents

This entry point stores a given value at the physical address specified by the caller.

Entry Conditions

Calling Sequence

M.CALL H.REXS,60

Registers

R 1 physical address to change

R 7 value to be stored

Exit Conditions

Return Sequence

M.RTRN

Registers

None

Abort Cases

None

Output Messages

None

2.61 Entry Point 61 - Reserved

2.62 Entry Point 62 - Resourcemark Lock
See M.RSML or M_RSML in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.63 Entry Point 63 - Resourcemark Unlock

2-16

See M.RSMU or M_RSMU in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

H.REXS Entry Points

o

o

o

Entry Point 64 - Remove RSM Lock on Task Termination

(~' 2.64 Entry Point 64 - Remove RSM Lock on Task Termination

This entry point searches the resourcemark table for the calling task's program
number. If found, locks belonging to the task are cleared, the task is dequeued, and
the lock is given to the next task waiting for that resource.

Entry Conditions

calling Sequence

M.CALL H.REXS,64

Registers

None

Exit Conditions

Return Sequence

M.RTRN

Abort cases

None

Output Messages

None

External Reference

System Services

H.EXEC,36

2.65 Entry Point 65 - Task CPU Execution Time

See M.XTIME or M XTIME in the MPX-32 Reference Manual Volume I for a
detailed description of this entry poinL

External Reference

System Macro

M.RTRN

M.IOFF

M.IONN

MPX-32 Technical Volume II 2-17

Entry Point 66 • Activate Program at Given Time of Day

2.66 Entry Point 66 • Activate Program at Given Time of Day
See M.TURNON or M TURNON in the MPX-32 Reference Manual Volume I for a
detailed description of this entty point.

External Reference

System Macro

M.CALL

M.RTRN

System Services

H.REXSA

2.67 Entry Point 67 • Set Synchronous Task Interrupt

See M.SYNCH or M SYNCH in the MPX-32 Reference Manual Volume I for a
detailed description of this entty point.

External Reference

System Macro

M.RTRN

2.68 Entry Point 68 • Set Asynchronous Task Interrupt

See M.ASYNCH or M ASYNCH in the MPX-32 Reference Manual Volume I for a
detailed description of this entty point.

External Reference

System Macro

M.RTRN

2.69 Entry Point 69 - Reserved

2·18 H.REXS Entry Points

o

Entry Point 70 ~ Date and Time Inquiry

(" 2.70 Entry Point 70 - Date and Time Inquiry

See M.DATE or M_DATE in the MPX-32 Reference Manual Volume I for a detailed
description of this entry.

External Reference

System Macro

M.RTRN

2.71 Entry Point 71 - Get Device Mnemonic or Type Code

See M.DEVID or M DEVID in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

External Reference

System Macro

M.RTRN

2.72 Entry Point 72 - Enable User Break Interrupt

See M.ENUB or M ENUB in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

2.73 Entry Point 73 - Disable User Break Interrupt

See M.DSUB or M DSUB in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

System Macro

M.RTRN

MPX·32 Technical Volume II 2·19

Entry Point 74· Acquire DatelTime Services

2.74 Entry Point 74 - Acquire Date/Time Services

See the MPX-32 Reference Manual Volume I for a detailed description of the
following services:

M.BBTIM acquire current date/time in byte binary fonnat

M.BTIM acquire current date/time in binary fonnat

M.GTIM acquire system date/time in any fonnat
M.QATIM acquire current date/time in ASCII fonnat

M GETTIME get current date/time

External Reference

System Macro

M.RTRN

2.75 Entry Point 75 - Conversion Services

See the MPX-32 Reference Manual Volume I for a detailed description of the
following services:

M.CONABB

M.CONASB

M.CONBAF

M.CONBBA

conven ASCII date/time to byte binary format

conven ASCII date/time to standard binary

conven binary date/time to ASCII format

conven byte binary date/time to ASCII

M.CONBBY conven binary date/time to byte binary

M.CONBYB conven byte binary date/time to binary

M.CTIM conven system date/time fonnat

M CONVERTTIME conven time

External Reference

System Macro

M.RTRN

2.76 Entry Point 76 - Reformat RRS Entry

See M.NEWRRS in the MPX-32 Reference Manual Volume for a detailed description
of this entry point.

2.77 Entry Point 77 - Reserved

2-20 H.REXS Entry Points

~ , r, (.~ ..

J

Entry Point 78 - Reinstate Privilege Mode to Privilege Task

2.78 Entry Point 78 - Reinstate Privilege Mode to Privilege Task

See M.PRIV or M_PRIVMODE in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.79 Entry Point 79 - Change Task to Unprivileged Mode

See M.UPRIV or M UNPRIVMODE in the MPX-32 Reference Manual Volume I for
a detailed description of this entry point

2.80 Entry Point SO - Get Address Limits

See M.GADRL2 in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

External Reference

2.81

System Macro

M.RTRN

Entry Point 81 - Set Exception Return Address

See M SETERA in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point

2.82 Entry Point 82 - Set IPU Bias
See M.IPUBS or M IPUBS in the MPX-32 ReferenCe Manual Volume I for a detailed
description of this entry point

2.S3 Entry Point 83 - Set Exception Handler

See M SETEXA in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.84 Entry Point 84 - Get Base Register Task Address Limits

See M_LIMITS in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point

2.85 Entry Point 85 - Get Task Environment

See M.ENVRMT or M ENVRMr in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point

MPX·32 Technical Volume II 2-21

Entry Point 86 - Exit With Status

2.86 Entry Point 86 - Exit With Status

See M EXTSTS in the MPX-32 Reference Manual Volume I for a detailed
descriPtion of this entry point.

2.87 Entry Point 87· Load Overlay In Position

This entry point enables the symbolic debugger to load or load and execute an overlay
at an address other than T.BIAS. The entry point specifies a load address and whether
to execute the overlay after loading. The named segment to overlay must be
previously defined to the Cataloger as a multiple file overlay.

Entry Conditions

Calling Sequence

M.CALL

Registers

RS

R6,R7

H.REXS,87

byte 0 contains the following flags:

Bits Definition

o set indicates load and execute overlay

1 set indicates ignore TSA overlay index table and
overlay in separate file format

2-7 reserved

bytes 1 through 3 specify the logical load address for the overlay

overlay name (1- to 8-ASCn character, left-justified, blank-filled
system file name)

Exit Conditions

2·22

Return Sequence

M.RTRN R7

Registers

R7 unchanged, if the load and execute option was specified. Otherwise,
contains transfer address of the overlay segment.

H.REXS Entry Points

0 ','
, '

Entry Point 87 - Load Overlay in Position

Abort cases

RX07, LD01-08 CANNOT LOAD OVERLAY SEGMENT DUE TO SOFTWARE
CHECKSUM OR DATA ERROR

RX10

RXll

LDnn code indicates specific failure.

OVERLAY HAS AN INVALID PREAMBLE

AN UNRECOVERALBE I/O ERROR HAS OCCURRED DURING
OVERLAY LOAD ING

RX33 OVERLAY LINKAGES HAVE BEEN DESTROYED BY LOADING A
LARGER OVERLAY

Output Messages

None

2.88 Entry Point 88 - Get Command Line

See M.CMD or M CMD in the :MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.89 Entry Point 89 - Move Data to the User Address

See M.MOVE or M MOVE in the :MPX-32 Reference Manual Volume I for a
detailed description 'Of this entry point.

2.90 Entry Point 90 - Get Real Physical Address

See M.RADDR or M RADDR in the :MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.91 Entry Point 91 - Get TSA Start Address

See M.GTSAD or M GTSAD in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.92 Entry Point 92 - Return to the Operating System

See M.RTRNOS or M RTRNOS in the :MPX-32 Technical Manual Volume I for a
detailed description ofthls entry point.

2.93 Entry Point 93 • Physical Memory Read

See M.OSREAD or M OSREAD in the :MPX-32 Reference Manual Volume I for a
detailed description ofthls entry point.

MPX·32 Technical Volume II 2-23

Entry Point 93 • Physical Memory Read

2.94 Entry Point 94 - Physical Memory Write

See M.OSWRIT or M OSWRIT in the MPX-32 Reference Manual Volume I for a
detailed description oftms entry point.

2.95 Entry Point 95 • Get Task Option Word 1 and 2

See M.PGOD or M OPTIONDWORD in the MPX-32 Reference Manual Volume I
for a detailed description of this entty point.

2.96 Entry Point 99 • SYSGEN Initialization

2·24

This entry point is for internal use only and is called during SYSGEN. H.REXS sets
up its entry point table, then rerums to SYSGEN.

H.REXS Entry Points

(
~"'J"

.. . .." .. \. ' . .1

j

3 H.REXS Subroutines·

3.1 Subroutine S.REXS1 • Locate Specified Task in Memory

This subroutine locates the specified task in memory, then returns its dispatch queue
entry (DQE) address in R3 and its task number in R7. A task number must be
supplied as input for tasks that are multicopied or shared.

Entry CondHlons

Calling Sequence

BL

Registers

R6,R7

(or)

R6,R7

(or)

R6

R7

Exit Conditions

S.REXSI

1- to 8-ASCn character task name, left-justified, blank-filled

zero if current task

zero

task number

Return Sequence

Context switch inhibited (M.SHUT) if specified task is not the current task.

TRSW RO if an error

TRSW RO+ 1 W if successful

Registers

Rl,R5

R2,R4,R6

R3

R7

saved

destroyed

DQE address

task number

MPX·32 Technical Volume II 3·1

Subroutine S.REXS2 • Delete Timers for Current Task

3.2 Subroutine S.REXS2 • Delete Timers for Current Task

This subroutine searches the timer table for a timer that is allocated to the calling task.
If a match is found, the timer is marked available.

Entry Conditions

Calling Sequence

BL S.REXS2

Registers

None

Exit Conditions

3-2

Return Sequence

TRSW RO

Registers

Rl,RS,
R6,R7

R2,R4

R3

saved

destroyed

DQE address

H.REXS Subroutines

,(, ~'.'.)." ..
'J

Subroutine S.REXS3 - Get OaE 'Address for Specified Task

(~ 3.3 Subroutine S.REXS3 - Get OaE Address for Specified Task
This subroutine is used to determine if a specified task is currently activated. If the
task is not already activated, an attempt is made to activate it. Once the task is
activated, it is linked to the suspend state queue.

Entry Conditions

calling Sequence

BL S.REXS3

Registers

R6,R7

(or)

R6,R7

(or)

R6

R7

(or)

R6

R7

:("'. Exit Conditions

1- to 8-ASCII character task name, left-justified, blank-filled

zero if current task

zero

task number

patbname vector or RID vector

zero

Return Sequence

TRSW RO

Registers

Context switch inhibited (M.SHUT) if specified task is not the current task.

R1,R4,R5 saved

R6,R7

R2
R3

saved

destroyed

DQE address or zero if task not found

MPX.32 Technical Volume II 3·3

Subroutine S.REXS4 • Validate Resourcemark Index

3.4 Subroutine S.REXS4 - Validate Resourcemark Index

This subroutine validates a resourcemark for a nonprivileged caller.

Entry CondHlons

calling Sequence

BL S.REXS4

Registers

R6 resourcemark index

Exit CondHions

Return Sequence

TRSW RO if successful

Registers

R7
Xl
(or)

zero

address of byte in resourcemark table

Return Sequence

M.RTRN R7 if invalid index

Registers

R7 - I range exceeded

- 2 less than minimum range

3.5 Subroutine S.REXS5 - Get OaE Address from Task Number

This subroutine returns the DQE address of the task identified by the task number
supplied in R7.

Entry CondHions

calling Sequence

BL S.REXS5

Registers

R7 task number

H.REXS Subroutines

o

.(..•

Subroutine S.REXS5 - Get OQE Address from Task Number

Exit Conditions

Return Sequence

Context switch inhibited eM.SHUT) if specified task is not the current task.
TRSW RO if an error

TRSW RO+ 1 W if successful

Registers

R2,R6,R7

R3
destroyed
DQE address

3.6 Subroutine S.REXS6 - Reserved

3.7 Subroutine S.REXS7 - Zero Buffer

This subroutine is used to zero any contiguous memory buffer in word increments.

Entry Conditions

calling Sequence

BL S.REXS7

Registers

R2 address of buffer to zero
R7 number of words to zero

Exit Conditions

Return Sequence

TRSW RO

Registers

R2,R 7 destroyed

MPX-32 Technical Volume II 3-5

Subroutine S.REXS8 - Clear Scratch pad in Current Stack Frame

3.S Subroutine S.REXSS - Clear Scratch pad in Current Stack
Frame

This subroutine determines the location of the current push stack level in the caller's
TSA. All scratchpad words, except for words 0 through 9 which are the register save
area and the retum PSD, are then zeroed. All condition codes located in scratchpad
word 8, which is the first word of the retum PSD, are also cleared.

Entry Conditions

calling Sequence

BL S.REXS8

Registers

None

Exit Conditions

Return Sequence

TRSW RO

Registers

R2,R 7 destroyed
Status

All condition codes are cleared.

3.9 Subroutine S.REXS9 - Create System Path name in Word 10

This subroutine is used to create a system pathname starting at scratchpad word ten in
the current stack. The pathname is built using the filename supplied in scratchpad
words six and seven in the current stack.

Entry Conditions

3-6

calling Sequence

BL S.REXS9

Registers

None

Scratchpad Usage

Words 6 and 7 must contain the file (partition) name.

H.REXS Subroutines

o

C~'\. j,
'- ."

c····;.
/

(~'/

•. r'

Subroutine S.REXS9 - Create System Path name in Word 10

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl

R3

R6,R7

stack frame pointer

TSA address

file (partition) name

Scratchpad Usage

Words 10 through 17 contain the 8-word pathname.

3.10 Subroutine S.REXS10 • Test LFC Read Only or Read/Write
Access

nus subroutine searches the file pointer table (FPI') entries in the caller's TSA
searching for an LFC to match the LFC supplied as input Once a match is found in
the FPT. the file assignment table (FAT) is searched to determine if the disk file
associated with the specified LFC is read only or read/write restricted.

Entry Conditions

Calling Sequence

BL S.REXSI0

Registers

R5

Exit Conditions

bytes 1 through 3 contain the left-justified.
blank-filled, 1 to 3 ASCII character LFC

Return Sequence

TRSW RO

Registers

R3

R4,R7

R5

FAT address or zero if an error

destroyed

bit 0 set if read only

bytes 1 through 3 unchanged if LFC
found; otherwise, R5 is zero

MPX·32 Technical Volume II 3-7

Subroutine S.REXS11 - Create System Pathname

3.11 Subroutine S.REXS11 - Create System Path name

This subroutine is used to create a system pathname starting at scratchpad word 24 in
the current stack. The pathname is built using the file name supplied in scratchpad
words 6 and 7 in the current stack.

Entry Conditions

Calling Sequence

BL S.REXSll

Registers

None

Scratchpad Usage

Words 6 and 7 must contain the file (panition) name.

Exit Conditions

3-8

Return Sequence

TRSW RO

Registers

Rl

R3

R6,R7

stack frame pointer

TSA address

file (partition) name

Scratchpad Usage

Words 24 to 31 contain the 8-word pathname.

H.REXS Subroutines

0',·,-
. -

o

.- . (."",

(-_.---
~, ~,

Optimized Context Switch Time Module (H.SURE)

MPX-32 Technical Manual

Volume II

0 1
, '

/"-''-\ -

\,",~<) .

Contents

Page

1 H.SURE Overview

1.1 General Information .. 1-1
1.2 Entry Point Summary .. 1-1

2 H.SURE Entry Points

2.1 Entry Point H.SURE - Suspend Calling Task and Resume Target Task 2-1

()

MPX·32 Technical Volume II iii/iv

'.', 0·.········

1 H.SURE Overview

1.1 General Information

The Optimized Context Switch Time Module (H. SURE) performs a fast context
switch by suspending the calling task and resuming the target task in a single SVC.
This service applies to real time and time distribution tasks in base or nonbase mode.
The tasks must be CPU only or unbiased. This service is not recommended for two
IPU biased tasks.

Optimum performance for the service is achieved when all of the r61lowing conditions
are met and no errors are encountered:

• the target task is not outswapped

• the target task is of equal or higher priority than the calling task

• the target task is in the suspend state

• the target task is a real time task

• no owner/access violations occur

• in IPU configurations, at least one task is CPU only or unbiased and eligible to run
in the CPU at the time the service is called (i.e., the IPU is idle or the task in the
IPU is of higher priority then the target task)

• no outstanding system action or task interrupt requests are present (i.e., ABORT,
HOLD, DELETE, etc.)

• real time task accounting is turned off (using the OFRA option to the SYSGEN or
OPCOM MODE directives or the CATALOG ENVIRONMENT directive)

The H.SURE module is entered unmapped, retaining current maps, and with interrupts
blocked. The code sequences supporting the optimized case are sequential such that
no branches are taken to break the CPU pipeline. When an unoptimized case is
encountered, the map registers are reloaded and standard MPX-32 services
(S.EXEC14 and S.EXEC5) are used. The optimized case extracts the physical address
of the TSA for both the calling task and the target task and executes a LPSDCM to
the target task.

1.2 Entry Point Summary

Entry Point

H.SURE

SVC
Number

00···
Description

Suspend calling task and resume target task

••• This service is SVC 5, X'nn' callable.

MPX·32 Technical Volume II 1·111·2

2 H.SURE Entry Points

2.1 Entry Point H.SURE • Suspend Calling Task and Resume
Target Task

Refer to M.SURE or M_SURE in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

MPX·32 Technical Volume II 2·1/2·2

0'

o

C"

Task Management (H.TAMM)

MPX-32 Technical Manual

Volume II

o

Contents

Page

1 H.TAMM Overview

1.1 General Information .. 1-1
1.2 Entry Point Summary .. 1-1
1.3 Subroutine Summary ... 1-1

2 H.TAMM Entry Points

2.1 Entry Point 1 - Load Task Into Memory ... 2-1
2.2 Entry Point 2 - Construct TSA and DQE ... 2-2
2.3 Entry Point 3 - Task Activation Processing ... 2-4
2.4 Entry Point 4 - Task Exit Processing .. : 2-5
2.5 Entry Point 5 - Load Base Task Into Memory ... 2-5

3 H.TAMM Subroutines

3.1 Subroutine S.TAMMI - Read and Verify Preamble 3-1
3.2 Subroutine S.TAMM2 - Deallocate TSA and DQE 3-2

(3.3
3.4

Subroutine S.T AMM4 - Load Debug Overlay ... 3-2
Subroutine S.TAMMS - Calculate Nonbase Mode Task Size 3-3

3.5 Subroutine S.TAMM6 - Calculate the Base Mode Task Size 3-4
3.6 Subroutine S.TAMM7 - Set VOMM Stack, FPT, FAT Buffers 3-5
3.7 Subroutine S.TAMM9 - Change the EXTDMPX Environment 3-5
3.8 Subroutine S.TAMMI0 - Move Working Map Block 3-6
3.9 Subroutine S.T AMMII - Activate Program Trace Debugger 3-7

MPX·32 Technical Volume II iii/iv

o

o

1 H.TAMM Overview

1.1 General Information
The Task Management Module (H.TAMM) builds and activates new tasks.

1.2 Entry Point Summary

Entry Point

H.TAMM,l
H.TAMM,2
H.TAMM,3
H.TAMM,4
H.TAMM,5

Description

load task into memory
construct TSA and DQE
task activation processing
task exit processing
load base task into memory

1.3 Subroutine Summary

Subroutine

S.TAMMI
S.TAMM2
S.TAMM4
S.TAMMS
S.TAMM6

. S.TAMM7
S.TAMM9
S.TAMMIO
S.TAMMII

MPX-32 Technical Volume II

Description

read and verify preamble
deallocate TSA and DQE
load debug overlay
calculate the nonbase mode task size
calculate the base mode task size
set VOMM stack and buffers FPr and FAT in the TSA
change the EXTDMPX environment
move H.T AMM's working map block
activate the program trace debugger

1-1/1-2

(~

2 H.TAMM Entry Points

2.1 Entry Point 1 - Load Task Into Memory

This entry point loads a task into memory based on infonnation contained in the load
module preamble. The task service area (TSA) scratchpad area contains the preamble
load infonnation.

Entry Conditions

Calling Sequence

M.CAll H.TAMM,l

Registers

None

Exit Conditions

Return Sequence

M.RTRN R7

Registers

R7 loading staws as follows:

Value Definition

o successful loading
1 CSECT loading error
2 CSECT checksum error
3 CSECT relocation matrix loading error
4 CSECT relocation matrix checksum error
5 DSECT loading error
6 DSECT checksum error
7 DSECT relocation matrix loading error
8 DSEeI' relocation matrix checksum error

MPX·32 Technical Volume" 2·1

Entry Point 2 - Construct TSA and OQE

2.2 Entry Point 2 - Construct TSA and CaE

This entry point initializes a primitive TSA and DQE for task activation. This is
achieved in the following manner:

• Assign the load module with PN vector, PNB vector, or RID vector to support
multisegmented load modules.

• Open the load module.
• Read the load module's preamble.
• Scan active DQEs and identify single-copy load module with RID.

• Initialize the child's DQEand save the load module's RID in the child's DQE.
• Link the child's DQE to the preactivation chain.
• Initialize the child's TSA.
• Save the load module's FAT, segment definition, and static resource requirement in

the child's task through the child's TSA.
• Set the child's task to execute phase two, H.TAMM3.
• Return to caller.

Special Cases:

• Any load module starting with the letters 'SYSG' are treated as the SYSGEN task,
which requires special loading.

• Setting bit 0 of word 0 in the parameter block indicates passing of line buffer to
child task (for ICS only).

Entry CondHlons

2·2

calling Sequence

M.CALL H.T AMM,2

Registers

R 1 address of parameter block, or zero if none

R2 pathname, pathname block, or resource ID vector

H.TAMM Entry POints

(

C:

Entry Point 2 • Construct TSA and DOE

Exit CondHions

Return Sequence

M.RTRN R6,R7

Registers

R6 return status as follows:

Value Definition

o successful pre activation
1 attempt to multicopy unique load module
2 load module not found
3 unable to allocate load module
4 resource is not a load module
5 no more DQE's available
6 110 error on resource descriptor or device
7 110 error on reading load module preamble
8 insufficient logical/physical address

space for task activation

R7 DQE address of new task or zero

Scratchpad Usage

T.SPADI

T.SPAD2

T.SPAD3-11

T.SPAD13-16

T.SPAD22

used to hold new TSA address

used to hold MIDL counter

used by S.REMMI

used by S.REMMI

used to save original MSD count

MPX·32 Technical Volume II 2·3

Entry Point 3 - Task Activation Processing

2.3 Entry Point 3 - Task Activation Processing

This entry point is entered on behalf of a new task being activated. It performs all
necessary functions to complete the introduction of the new task to the system. This
is accomplished by the following sequence:

• Build a temporary FPT/FAT and VOMM stack in the TSA.

• Build a temporary load module FCB and FPT.

• Read the Catalog RRS if an RRS is indicated in the load module's preamble.

• Read the overlay index table if one is indicated in the load module's preamble.

• Save the overlay index table into the TSA.

• Initialize T.IDXA and set byte 0 to indicate the number of single-file fonnat
overlays.

• Build the TSA.

• Build a permanent load module FPT and FAT.

• Assign all required resources.

• Load the code/data section using the task loader, H.TAMMI.

• Load the task debugger, if required, using the debugger loader.

• Dispatch control to the user's task.

Note: The common error code return paths for the resource manager are found in
this entry point.

Entry CondHions

calling Sequence

Entered by pop of TSA stack built by H. T AMM,2.

Registers

All registers are zero.

Exit CondHions

Return Sequence

Dispatch to transfer address or to H.REXS,20 with abort code in RS.

Scratchpad Usage

T.SPADl-2 used for temporary storage

T.SPAD4-8 used to build CNP

T.SPAD9-16 used to reformat old RRS entry

T.SPAD17-20 used for temporary storage

2-4 H.TAMM Entry Points

Entry Point 4 - Task Exit Processing

2.4 Entry Point 4 - Task Exit Processing

This entry point performs task exit processing. The abort code, if any, is output The
task clean-up includes the de allocation of all peripherals, volume space, memory and
memory pool. Finally the TSA and DQE are deallocated and a return is made to the
scheduler with S.EXEC20.

Entry Conditions

Calling Sequence

M.CALL H.TAMM,4

Registers

None

Exit Conditions

Return Sequence

BU S.EXEC20 (CPU scheduler routine)

2.5 Entry Point 5 - Load Base Task Into Memory

This entry point loads a base image (task or shared image) into memory based on
information contained in the load module preamble. The task service area (TSA) spad
area and T LOA TTR contain the preamble load information.

Entry Conditions

calling Sequence

M.CALL H.TAMM.5

Registers

RO bit 0 set: indicates read/write writeback section is used. therefore no
checksum for that section

bit 0 not set: checksum all sections

MPX·32 Technical Volume II 2-5

Entry Point 5 - Load Base Task Into Memory

Exit Conditions

2·6

Return Sequence

M.RTRN R7

Registers

R7 loading status as follows:

Value Definition

o successful loading
1 CSEcr loading error
2 CSEcr checksum error
3 CSEcr relocation matrix loading error
4 CSEcr relocation matrix checksum error
5 DSEcr loading error
6 DSEcr checksum error
7 DSEcr relocation matrix loading error
8 DSECf relocation matrix checksum error

o

0.'. . \

...

H.TAMM Entry Points

3 H.TAMM Subroutines

3.1 Subroutine S.TAMM1 - Read and Verify Preamble

This subroutine reads the preamble of a load module into the system buffer. The
preamble is then verified for integrity. If error conditions exist. status is returned and
CCI is set. This subroutine is used for activation and overlay functions.

Entry Conditions

Calling Sequence

BL S.TAMMI

Registers

R2 pathname, pathname block, or resource ID vector

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl
R2

R3
R4-R6

R7

Status
CCI set
R7

address of preamble (T.BBUFA)

current register pointer (T.REGP)

address of TSA (C.REGS)

destroyed

error status; otherwise, R7 is destroyed

loading stams as follows:

Value Definition

o successful completion
2 load module not found
3 unable to allocate load module
4 invalid preamble (not a load module)
6 110 error on resource descriptor/device
7 110 error on resource

CC2 set shared image resource

MPX·32 Technical Volume II 3-1

Subroutine S.TAMM1 - Read and Verify Preamble

Scratchpad Usage

T.SPAD3-8 used to build RRS entry
T.SPAD9-11 used to build a CNP for load module allocation
T.SPAD13-14 used to save resource owner name
T.SPADlS-16 used to save load module name

3.2 Subroutine S.TAMM2 - Oeallocate TSA and OaE

This subroutine deallocates all TSA map blocks and updates the memory allocation
table. It also clears the tasks DQE and relinks it to the DQE free list

Entry Conditions

calling Sequence

BL S.TAMM2

Registers

None

Exit Conditions

Return Sequence

Return to S.EXEC20

Registers

None

3.3 Subroutine S.TAMM4 - Load Debug Overlay

This subroutine peIforms all memory management and set up requirements for loading
the debug overlay. The user's context is copied to T.CONTXT prior to dispatching
control to the debug overlay. DQE.ADM, DQE.DBAT, and T.DBHAT are all
initialized. T.CSOR points to the start of the debug overlay.

Entry Conditions

3-2

calling Sequence

BL S.TAMM4

Registers

None
Note: This subroutine is called by H.TSM,6, H.REXS,29, or H.TAMM,3.

H.TAMM Subroutines

Subroutine S.TAMM4· Load Debug Overlay

("0, Exit Conditions

Return Sequence

TRSW RO

Registers

destroyed RI-R6

R7 transfer address of debug overlay or error status as follows:

Status
CCl set

Scratchpad Usage

Value Definition

2 debugger load module not found
4 unable to load debugger (inhibit set or

sufficient contiguous maps not available)
5 insufficient task space for loading
6 110 error on resource descriptor
7 110 error on resource
8 loading error

T.PSDI replaced with debugger transfer address
T.SPAD3-11 used by S.TAMMI
T.SPAD12 used to save return address
T.SPAD13-16 used by S.TAMMI

T.SPAD17-22 used to build a pathname vector
T.SPADl-18 next stack frame used to store preamble data for H.TAMrvI,l

3.4 Subroutine S.TAMMS • Calculate Nonbase Mode Task Size

This subroutine calculates the DSECT and CSECT size of the nonbase mode task.

Entry Conditions

Calling Sequence

BL S.TAMMS

Registers

R3 TSA address (C.REGS)

MPX·32 Technical Volume" 3-3

Subroutine S. T AMM5 - Calculate Nonbase Mode Task Size

Exit Conditions

Return Sequence

TRSW RO

Registers

RI

R2
R3
R4-R6

R7

unchanged

address of working map (T.WKADR)

TSA address (C.REGS)

destroyed

unchanged

Abort cases

DSECI' overlaps TSA RM64

RM65 CSECT and DSECT overlap, or task too large for logical address space

3.5 Subroutine S.TAMMS - Calculate the Base Mode Task Size

This subroutine calculates the size of the base mode task.

Entry Conditions

calling Sequence

BL S.TAMM6

Registers

None

Exit Conditions

3-4

Return Sequence

TRSW RO

Registers

RI

R2

R3
R4-RS

R6-R7

Status

destroyed

unchanged

address of TSA (C.REGS)

destroyed

unchanged

CCI set logical address space not available

H.TAMM Subroutines

Subroutine S.TAMM7· Set VOMM Stack, FPT, FAT Buffers

r 3.6 Subroutine S.TAMM7 - Set VOMM Stack, FPT, FAT Buffers

This subroutine establishes the temporary VOMM stack, FPT, and FAT areas in the
TSA. It also establishes the temporary system buffers in the TSA.

Entry Conditions

Calling Sequence

BL S.TAMM7

Registers

None

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl,R2,R4,R6
destroyed

R3 TSA address (C.REGS)

3.7 Subroutine S.TAMM9 - Change the EXTDMPX Environment

This subroutine changes the EXTDMPX environment when the EXTDMPX partition
changes position in the task's logical address space. S.TAMM9 reloads the map
registers and revises the contents of T.MPXBR and the current base register stack
frame. It also reloads the base registers with new address values.

Entry Conditions

Calling Sequence

MJOFF
BL S.TAMM9

Registers

RO return address

MPX·32 Technical Volume II 3·5

Subroutine S.TAMM9· Change the EXTDMPX Environment

Exit Conditions

Return Sequence

TRSW RO

Registers

RO return address
Rl destroyed
R2 TSA address
R3-R4 unchanged
RS-R6 destroyed
R7 unchanged

Scratchpad Usage

T.SPAD7-8 used to build PSD

3.8 Subroutine S.TAMM10 - Move Working Map Block

This subroutine moves H.TAMM's working map block within the task's logical
address space, and out of the way of the task's address space. This prevents collision
between the TSA or other parts of the task being built and H.TAMM's working map
block. The working map block is deallocated after the task is completely built and
before it is dispatched.

Entry Conditions

calling Sequence

BL S.TAMM9

Registers

R 1 target address

R3 TSA address

3-6 H.TAMM Subroutines

o

Subroutine S.TAMM10· Move Working Map Block

Exit Conditions

Return Sequence

TRSW RO

Registers

RI

R2
R3

R4-R6

Status

destroyed

current stack address (T.REGP)

TSA address (C.REGS)

destroyed

CCI set if no logical address space is available

Scratch pad Usage

T.SPAD2 used to save return address

3.9 Subroutine S.TAMM11 • Activate Program Trace Debugger

This subroutine activates the program trace debugger by calling the M.PI'SK service.
It takes the debugger name from the preamble. The pathname vector and PI' ASK
parameter block are built in the current stack frame SP AD area.

Entry Conditions

calling Sequence

BL S.TAMMIO

Registers

R3 TSA address

MPX·32 Technical Volume II 3-7

Subroutine S. T AMM11 - Activate Program Trace Debugger

Exit Conditions

3-8

Return Sequence

TRSW RO

Registers

Rl
R2
R3
R4-R6
R7

Status

destroyed
CWTent stack address (T.REGP)
TSA address (C.REGS)
destroyed
status if an error; otherwise. R7 is destroyed

CCl set The error code is as follows:

Error Code

2 invalid debugger name
Pr ASK error code an error from M.PrSK call

Scratchpad Usage

T.SPADl-8 used to build debugger pathname
T.SPAD9-21 used to build PrASK parameter block

H.TAMM Subroutines

o

(

Terminal Services (H.TSM)

MPX-32 Technical Manual

Volume II

C
'~

'. ' ... \ ./

o

Contents

Page

1 H.TSM Overview

1.1 General Information .. 1-1
1.2 H.TSM Entry Point Summary .. 1-1
1.3 H.TSM Subroutine Summary ... 1-1

2 H.TSM Entry Points

2.1 Entry Point 1 - Terminal I/O Interface ... 2-1
2.2 Entry Point 2 - Syntax Scanner .. 2-2
2.3 Entry Point 3 - TSM Task Detach .. 2-3
2.4 Entry Point 4 - User Task Abort .. : 2-3
2.5 Entry Point 5 - Set User Tab Positions ... 2-4
2.6 Entry Point 6 - Break Processing Entry ... 2-4
2.7 Entry Point 7 - Convert ASCII Decimal to Binary 2-4
2.8 Entry foint 8 - Convert ASCII Hexadecimal to Binary 2-5
2.9 Entry Point 9 - Convert Binary to ASCII Decimal 2-5

Entry Point 10 - Convert Binary to ASCII Hexadecimal 2-5
Entry Point 11 - Relink Queued Entry by Priority 2-5

(2.10
2.11
2.12 Entry Point 12 - Remove and Deallocate Run Request Queue Entry 2-6
2.13 Entry Point 13 - Set Lower Option .. 2-6
2.14 Entry Point 14 - Reset Lower Option ... 2-6
2.15 Entry Point 15 - Get Terminal Function Definition (TERl\IDEF) 2-6
2.16 Entry Point 16 - Prepare SWTI Task for Execution 2-7
2.17 Entry Point 17 - TSM Procedure Call .. 2-7
2.18 Entry Point 18 - Prepare SWSM Task for Execution 2-7
2.19 Entry Point 19 - Activate J.TSM .. 2-8
2.20 Entry Point 99 - SYSGEN Initialization .. 2-8

3 H.TSM Subroutines

3.1 Subroutine S.TSM01 - Format Abort Message .. 3-1
3.2 Subroutine S.TSM02 - Convert Binary to ASCII Decimal 3-1
3.3 Subroutine S.TSM03 - Report Task Completion/Suspension 3-2
3.4 Subroutine S.TSM04 - Queue Real-Time SLO/SBO 3-2
3.5 Subroutine S.TSM05 - Build MRRQ and Link to lTSM 3-3

MPX·32 Technical Volume II iii/iv

1 H.TSM Overview
(

1.1 General Information

The Terminal Services Module (H.TSM) provides services for interfacing TSM
terminals to MPX-32.

1.2 H.TSM Entry Point Summary

Entry SVC
Point Number Description

H.TSM,l N/A tenninal I/O interface
H.TSM,2 5B syntax scanner
H.TSM,3 20 TSM task detach
H.TSM,4 N/A user task abort
H.TSM,5 59 set user tab positions
H.TSM,6 5C break processing entry
H.TSM,7 28* convert ASCII decimal to binary
H.TSM,8 29* convert ASCII hexadecimal to binary
H.TSM,9 2A* convert binary to ASOI decimal
H.TSM,lO 2B* convert binary to ASCII hexadecimal
H.TSM,ll N/A relink queued entry by priority
H.TSM,12 N/A remove and deallocate run request queue entry

(H.TSM,13 77 set lower option
H.TSM,14 78 reset lower option
H.TSM,15 7A*** get terminal function definition
H,TSM,16 prepare an SWTI task for execution
H,TSM,17 AE*** TSM procedure call
H,TSM,18 prepare SWSM task for execution
H,TSM,19 activate lTSM
H.TSM,99 N/A SYSGEN initialization

* This service can be executed by the IPU.

*** This service is SVC 2,X'nn' callable. All others are SVC 1,X'nn' callable.

N/A implies reserved for internal use by MPX-32.

1.3 H.TSM Subroutine Summary

Subroutine Description

S.TSMOI fonnat abort message
S.TSM02 convert binary to ASCII decimal
S.TSM03 report task completion/suspension
S.TSM04 queue real-time SLOISBO
S.TSM05 build MRRQ and link to lTSM with no current task

(~
, ,._/j

MPX-32 Technical Volume II 1-1/1-2

o

0-

2 H.TSM Entry Points

2.1 Entry Point 1 - Terminal 1/0 Interface

This entry point performs the special case processing required to support the SYC
command files and TSM terminal I/O. H.IOCS transfers to H. TSM for any I/O
operation if either the SYC bit or the TSM bit is set in the caller's FAT. H.IOCS
performs general validation and set-up of the caller's FCB prior to entering this entry
point. H.TSM,1 transfers control to the appropriate I/O routine based on the opcode
found in byte 0 of the FCB.

Open Logic

A line buffer is allocated for TSM tasks, and the address of the initialized buffer is
placed in T.LINB UFo

Multiple open requests are ignored if T.LINBUF is not equal to zero.

Read Logie

A detemrination is made whether to read from the temrinal or SYC command file.

For temrinal I/O, input is buffered through the line buffer to allow the task to be
swapped while in S'WI1 (a prompt is generated if this option is in effect). The actual
read request is reissued using the system FPI' and FCB. Lower case input is allowed
if that option is in effect.

For command line recall and edit temrinal reads, a break is sent to 1.TSM. J.TSM
then performs a read in the same manner as for SYC command file input.

For SYC command file input, a message is sent to ITSM where the actual read is
performed into the caller's line buffer. J.TSM also performs any necessary macro
processing and $ detection. If the TEXT option is in effect, the record is echoed to
the temrinal for interactive tasks or the SLO file for batch tasks.

After I/O is complete, including post 110 processing, the contents of the input buffer
are moved back to the caller's buffer. All characters from the carriage return (if any)
to the end of the buffer are blank-filled. The transfer count in the FCB is updated to
reflect the actual number of characters entered before the carriage return. Finally, the
scheduler is informed that temrinal input is complete and return is made back to the
caller unless a break was detected during the read, then H.MONS,47 is called.

WrHe Logic

First the line count (T.LINNO) is checked to see if a screen size has been specified. If
so, the current position of the cursor is checked against the maximum count. A
prompt message is written when the bottom of the screen is reached. After a user
response, the count is reset to top of screen. Next, the caller's TCW is clamped with
the maximum transfer specified in UDT.CHAR. Break detection is enabled and the
scheduler is informed that terminal output is in progress. Finally, the write service is
reissued to IOCS with a new FCB (from T.BFCB).

MPX·32 Technical Volume II 2·1

Entry Point 1 - Terminal 110 Interface

When 110 is complete, the scheduler is informed and a test for break is made. If a
break occurred, this service calls H.MONS,47. Otherwise, return is made to the
instruction following the original IOCS call.

Close Logic

The line buffer pointed to by T.LINBUF is deallocated by S.REMM22.

Rewind Logic

The cursor position in the line buffer is reset to the first input character.

Entry Conditions

calling Sequence

M.CALL H.TSM,l

Registers

Rl address of user's FCB

Output Conditions

Updated FCB

External Reference

System Macro

H.IOCS,l
H.IOCS,3
H.IOCS,4
H.IOCS,19
H.IOCS,23
H.EXEC,7
S.REMM22

Tenninsl Messages

ENTER CR FOR MORE
prompt>

where prompt is the 3-character task abbreviation

2.2 Entry Point 2 • Syntax Scanner
See M.TSCAN in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

2·2 H.TSM Entry Points

Entry Point 3 - TSM Task Detach

c· 2.3 Entry Point 3 - TSM Task Detach

This entry point is entered by the scheduler as part of the exit process for online or
batch tasks. The terminal line buffer is deallocated and an exit message is sent to
J.TSM via H.TSM.

This entry point will also detach a user task from TSM if called through SVC
1,X'20'. If this entry point is called from a user task through the SVC, LFC UT and
all assignments to LFC UT must be deallocated first.

Entry Conditions

Calling Sequence

M.CALL

Registers

None

Exit Conditions

Return Sequence

M.RTRN
(or)

H.TSM,3

M.RTRN and CC 1 set if not a TSM task

Registers

None

2.4 Entry Point 4 - User Task Abort

This entry point is entered by the scheduler when an online or batch task aborts. For
interactive tasks, the abort code and PSW address are written to the user's terminal. If
the terminal is malfunctioning, the abort code is written to the system console device.
Then this entry point merges with entry point 3.

Entry Conditions

Calling Sequence

M.CALL H.TSM,4

Registers

None

MPX·32 Technical Volume II 2·3

Entry Point 4 - User Task Abort

Exit Conditions

Return Sequence

M.RTRN

Registers

None

2.5 Entry Point 5 - Set User Tab Positions
This entry point is used by the editor to pass the user's specified tab positions to the
UDT. The user's tabs are examined by the terminal handler during formatted I/O
processing and the cursor is adjusted as appropriate.

Entry Conditions

calling Sequence

(caller must be a TSM task)

LD R6, TABS

SVC 1,X'59' (or) M.CAll. H.TSM,5

TABS is a doubleword containing up to eight
tab positions. These positions must be in ascending
order with zero indicating no more tabs.

Exit Conditions

Return Sequence

M.RTRN

(or)

M.RTRN and CC 1 set if no terminal found

Registers

None

2.6 Entry Point 6 - Break Processing Entry

See M.TBRKON in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.7 Entry Point 7 - Convert ASCII Decimal to Binary

2-4

See M.CONADB or M CONADB in the MPX-32 Reference Manual Volume I for a
detailed description of tliis entry point

H.TSM Entry Points

(...... '''.'' '. pi

Entry Point 8 - Convert ASCII Hexadecimal to Binary

(2.8 Entry Point 8 - Convert ASCII Hexadecimal to Binary

(

(

See M.CONAHB or M CONAHB in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.9 Entry Point 9 - Convert Binary to ASCII Decimal

See M.CONBAD or M CONBAD in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.10 Entry Point 10 - Convert Binary to ASCII Hexadecimal

See M.CONBAH or M CONBAH in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point.

2.11 Entry Point 11 - Relink Queued Entry by Priority

This entry point is used to relink a queued entry according to its new priority. It is
used by the REDIRECT, REMOVE and URGENT directives as well as by J.TSM and
J.SOEX.

Entry Conditlo~s

calling Sequence

M.CALL H.TSM,ll

Registers

R2 address of MRRQ

R3 head cell address

R7 new priority (zero implies relink to top of queue)

Exit Conditions

Return Sequence

M.RTRN

Registers

All unchanged

MPX-32 Technical Volume II 2-5

Entry Point 12 • Remove and Deallocate Run Request Queue Entry

2.12 Entry Point 12 - Remove and Deallocate Run Request
Queue Entry

This entry point is used to unlink and deallocate a MRRQ which does not contain call
back processing. This entry point is used by J.TSM and J.SOEX.

Entry Conditions

Calling Sequence

M.CALL H.TSM,12

Registers

R2 address of MRRQ

R3 head cell address

Exit Conditions

Return Sequence

M.RTRN

Registers

All registers are unchanged.

2.13 Entry Point 13 - Set Lower Option

See M.SOPL or M SOPL in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.14 Entry Point 14 - Reset Lower Option

See M.ROPL or M ROPL in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.15 Entry Point 15 - Get Terminal Function Definition
(TERMDEF)

2-6

See M.GETDEF in the MPX-32 Reference Manual Volume I for a detailed'
description of this entry point.

H.TSM Entry Points

o

(

Entry Point 16 • Prepare SWTI Task for Execution

2.16 Entry Point 16 - Prepare SWTI Task for Execution

This entry point removes a task from the SWTI wait state and prepares it for
execution. This entry point is called by J.TSM when terminal input for a task is
complete.

Entry Conditions

Calling Sequence

M.CALL H.TSM,16

Registers

R2 DQE address of the SWTI task that is to be prepared

Exit Conditions

Return Sequence

M.RTRN

2.17 Entry Point 17 - TSM Procedure Call

See M.TSMPC or M TSMPC in the MPX-32 Reference Manual Volume I for a
detailed description of this entry point

2.18 Entry Point 18 - Prepare SWSM Task for Execution

This entry point removes a task from the SWSM wait state and prepares it for
execution. This entry point is called by J.TSM when performing TSM procedure calls
(M.TSMPC/M_ TSMPC).

Entry Conditions

calling Sequence

M.CALL H.TSM,18

Registers

R2 DQE address of the SWSM task that is to be prepared

Exit Conditions

Return Sequence

M.RTRN

MPX·32 Technical Volume II 2-7

Entry Point 19 - Activate J.TSM

2.19 Entry Point 19 - Activate J.TSM

This entry point activates J.TSM and is called due to the following conditions:

• If TSM exit is specified in the SYSGEN directives, this entry point is called to
activate J.TSM
- when a user attempts to log on to the system
or
- when an independent task performs an M.DEFI' or M.BATCH.

• If TSM exit is not specified in the SYSGEN directives, this entry point is called to
activate J. TSM by SYSINIT
- when the system is booted.

This entry point is intended for use only by the MPX-32 operating system.

Entry Conditions

Calling Sequence

M.CALL

Registers

None

Exit Conditions

H.TSM,19

Return Sequence

M.RTRN

(or)

M.RTRN and CC 1 set if M.PrSK error

Registers

R7 status from M.PrSK

2.20 Entry Point 99 - SYSGEN Initialization

There is no SYSGEN initialization required. Return is made with TRSW through RD.

2·8 H.TSM Entry Points

[
o

3 H.TSM Subroutines

3.1 Subroutine S.TSM01 - Format Abort Message

This subroutine formats the abort message for terminals and real-time tasks. The task
is assumed to be in the abort or delete sequence.

Entry Conditions

Calling Sequence

BL S.TSMOI

Registers

None

Exit Conditions

Return Sequence

TRSW RO

Registers

R5 abort message length

R6 address of abort message

Message Fonnat

taskname #taskno ABORT AT: psw-bias mmJddlyy hh:mm:ss abortcode

""'" ."
3.2 Subroutine S.TSM02 - Convert Binary to ASCII Decimal

This subroutine is functionally the same as H.TSM,9. See M.CONBAD or
M_CONBAD in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

MPX·32 Technical Volume II 3·1

Subroutine S.TSM03· Report Task Completion/Suspension

3.3 Subroutine S.TSM03 - Report Task Completion/Suspension

This subroutine is called in the exit, abort, delete, or hold sequence by TSM
interactive and batch tasks. The routine sends a wait message to its parent, typically
J.TSM, passing the IPU and CPU time, abon PSD and bias.

Entry CondHions

Calling Sequence

BL S.TSM03

Registers

R5 Value Meaning

2 task is terminating
4 task is entering a hold state

Exit Conditions

Return Sequence

TRSW RO

Registers

All registers are destroyed.

3.4 Subroutine S.TSM04 - Queue Real-Time SLO/SBO

This subroutine is called during the deallocation of real-time SLO or SBO. The
routine sends a no-wait run request to J.SOEX. The run request format is described in
MPX-32 Reference Manual, Volume I Chapter 2. In addition, the resource descriptor
of the file is modified from temporary to spool type.

Entry CondHlons

Calling Sequence

BL S.TSM04

Registers

R3 FAT address

3-2 H.TSM Subroutines

Subroutine S.TSM04 - Queue Real-Time SLO/SBO

Exit Conditions

Return Sequence

TRSW RO

Registers

All registers are destroyed.

3.5 Subroutine S.TSM05· Build MRRQ and Link to J.TSM

This subroutine is called by the operating system when a message is to be displayed
on the system console, but there is no current task; therefore, a stack is not available
for performing an M.CALL. The routine builds a message request queue in memory
pool and links it to the message receiver head cell in J.TSM's DQE. The format of
the message request queue is described in MPX-32 Reference Manual Volume I,
Chapter 2.

Entry Conditions

Calling Sequence

LA Rl,addr

BL S.TSM05

addr

Exit Conditions

is the address of a message buffer containing the character
count in byte 0

Return Sequence

TRSW RO

Abort cases

eCl is set if message is not linked.

MPX-32 Technical Volume II 3-313-4

o

Volume Management Module (H.VOMM)

MPX-32 Technical Manual

Volume II

o

Contents

Page

1 H. VOMM Overview

1.1 General Information .. 1-1
1.2 Entry Point Summary .. 1-2
1.3 Subroutine Summary ... 1-3

2 H. VOMM Entry Points

2.1 Entry Point 1 - Create Permanent File ... 2-1
2.2 Entry Point 2 - Create Temporary File ... 2-1
2.3 Entry Point 3 - Create Memory Partition ... 2-1
2.4 Entry Point 4 - Create Directory ... : 2-2
2.5 Entry Point 5 - Delete Resource ... 2-2
2.6 Entry Point 6 - Extend File .. : .. 2-2
2.7 Entry Point 7 - Truncate File .. 2-3
2.8 Entry Point 8 - Change Defaults ... 2-3
2.9 Entry Point 9 - Change Temporary File to Permanent File 2-3

Entry Point 10 - Log Resource or Directory _ 2-3
Entry Point 11 - Modify Descriptor ... 2-4 (2.10

2.11
2.12 Entry Point 12 - Rewrite Descriptor ... 2-4
2.13 Entry Point 13 - Read Descriptor ... 2-4
2.14 Entry Point 14 - Rename File ... 2-4
2.15 Entry Point 15 - Convert Pathname to Pathname Block 2-4
2.16 Entry Point 16 - Reconstruct Pathname ... 2-5
2.17 Entry Point 17 - Allocate Resource Descriptor .. 2-5
2.18 Entry Point 18 - Deallocate Resource Descriptor ~. 2-5
2.19 Entry Point 19 - Allocate File Space .. 2-5
2.20 Entry Point 20 - Deallocate File Space .. 2-6
2.21 Entry Point 21 - Reserved ... 2-6
2.22 Entry Point 22 - Reserved ... 2-6
2.23 Entry Point 23 - Replace Permanent File .. 2-6
2.24 Entry Point 24 - Create Temporary File ... 2-6
2.25 Entry Point 25 - ReadlWrite Authorization File .. 2-7
2.26 Entry Point 26 - Modify Descriptor User Area .. 2-8
2.27 Entry Point 27 - Rewrite Descriptor User Area ... 2-8
2.28 Entry Point 99 - SYSGEN Initialization .. 2-8

("'

MPX·32 Technical Volume II iii

Contents

Page

3 H.VOMM Subroutines

3.1 Subroutine S.VOMMI - Get Directory Entry .. 3-1
3.2 Subroutine S.VOMM2 - Get Next Pathname Item 3-3
3.3 Subroutine S.VOMM3 - Get Next Pathname Block Item 3-4
3.4 Subroutine SV1.S30 - Calculate Hash Index ... 3-5
3.5 Subroutine S.VOMM4 - Restore Priority for Multiport 3-6
3.6 Subroutine S.VOMMS - Change Priority for Multiport 3-7
3.7 Subroutine S.VOMM6 - Read Resource Descriptor 3-8
3.8 Subroutine S. VOMM7 - Validate Privilege ... 3-8
3.9 Subroutine S.VOMM8 - Get Resource Descriptor 3-9
3.10 Subroutine S.VOMM9 - Return Resource Descriptor 3-10
3.11 Subroutine S.VOMMI0 - Validate Address ... 3-11
3.12 Subroutine S. VOMMII - Allocate File Space ... 3-11
3.13 Subroutine S.VOMMI2 - Get File Space .. 3-12
3.14 Subroutine S.VOMMI3 - Deallocate File Space 3-15
3.15 Subroutine S.VOMMI4 - Read Resource Descriptor 3-16
3.16 Subroutine S.VOMMI5 - Delete Directory Entry 3-17
3.17 Subroutine S.VOMMI6 - Release File Space .. 3-17
3.18 Subroutine S.VOMMI7 - Build Resource Descriptor 3-18
3.19 Subroutine S.VOMMI8 - Zero Resource Space .. 3-19
3.20 Subroutine S.VOMMI9 - Create Directory Entry 3-19
3.21 Subroutine S.V0MM20 - Return Resource ID to Caller 3-20
3.22 Subroutine S.V0MM21 - Reserved .. 3-20
3.23 Subroutine S.V0MM22 - Reserved .. 3-20
3.24 Subroutine S.V0MM23 - Determine Resource Specification 3-21
3.25 Subroutine S.V0MM24/25 - Push and Pop ... 3-22
3.26 Subroutine S.V0MM26 - Assign/Open Read Only 3-22
3.27 Subroutine S.V0MM27 - Assign/Open Read Write 3-23
3.28 Subroutine S.V0MM28 - Create VOMM Environment 3-24
3.29 Subroutine S.V0MM29 - Delete VOMM Environment 3-25
3.30 Subroutine S.VOMM30 - Write ... 3-25
3.31 Subroutine S.VOMM31 - Read .. 3-26
3.32 Subroutine S.V0MM32 - Merge RCB ... 3-27
3.33 Subroutine S.VOMM33 - Set ART Flags .. 3-28
3.34 Subroutine S.VOMM34 - Increment Critical I/O Error Count 3-28

iv Contents

1 H.VOMM Overview

1.1 General Information

The Volume Management Module (H. VOMM) is responsible for the dynamic
manipulation of the disk data strucrures in MPX-32. The basic disk volume layout is
defined by the Volume Formatter (lVFMT) when a disk volume is initialized; this
layout is verified prior to access by the mount program (J.MOUNT).

H. VOMM provides the following facilities:

• disk resource creation and deletion

• resource logging and location

• file space management (extension and truncation)

• resource attribute modification

H.VOMM deals with memory resident tables (the mounted volume table (MVT» and
disk-resident structures (file space allocation maps, directories and descriptors). The
MVT is set up at volume mount time; the disk-resident strucrures are accessed on an
as needed basis. The latter requirement means some H. VOMM entries must obtain
dynamic memory on a per entry basis from the callers address space.

The integrity of the space allocation map is crucial in preventing file overlaps. If
H.VOMM detects potential overlap areas, H.VOMM halts the system. For further
information, refer to the MPX-32 Reference Manual, Volume ill, Chapter 6.

H. VOMM helps maintain the integrity of the disk file system space. During
execution, H. VOMM inhibits the completion of any task's asynchronous abort or
delete requests for all entty points which modify the allocation of disk space. This
includes RD and file space. Any request is deferred until leaving the respective entry
point.

In addition, H.VOMM helps protect the integrity of critical disk data structures
(SMAP, DMAP, RDs, and directories) from I/O errors that may occur during their
manipulation. This protection is handled through the MVT, which maintains a count
of any such errors. The count is used later, during volume dismount processing, and
again, during the subsequent volume mount attempt

All interlocks within H. VOMM, for example, update access to the file space allocation
map, are provided by Resource Management Module (H.REMM) allocation/open
calls, thus obtaining exclusive access only to required structures. This gating
mechanism allows concurrent H.VOMM activities on a 'per volume' basis.

All entry points within H.VOMM specify their entry conditions by calling
S.VOMM28. This routine creates the requested environment for that entry point, thus
providing (dynamic) buffers and FCBs as required, and setting up parameters for the
generated normal and abnormal exit sequences.

The dynamic memory region is accessed through T.BASEP, which contains the entry
depth count in bits 0 through 7 and the address of the memory in bits 8 through 24.

MPX·32 Technical Volume II 1·1

General Information

1.2

1·2

H. VOMM subroutines utilize a register save stack, which is located in the caller's task «)t
service area (TSA). The macro M.PUSH saves the caller's registers, returning the~JI
address of the pushed registers in R3, and M.POP restores the last-pushed register set.
The stack operates from high to low addresses, thus allowing positive displacement
access in extended addressing mode. The pointer in the TSA (T.FSSP) is copied into
the communication region (C.FSSP) whenever a task is scheduled, and points to the
next frame area (each frame is eight words long).

H. VOMM gains access to the various disc structures in one of two ways:

• Shon resource ID (SRID) - this mechanism is used to access structures in a file-like
manner, and is used for directories and allocation maps.

• Space definition - this mechanism is used to access descriptors.

H.VOMM uses either read mode (for examination) to allow access to other readers, or
update mode (for content modification), an exclusive use mode. By convention,
H.REMM does not allow access by resource ID (RID) to a structure whose resource
descriptor (RD) is held open in update mode by space definition.

If a resource is located on a multiprocessor volume and it is shared on MPX-32
Revision 3.3 or later, then H. VOMM uses the multiprocessor resource descriptor
format; otherwise, H.VOMM uses the dual-processor resource descriptor format.

Entry Point Summary

Entry Point SVC Number Description

H.VOMM,1 20* create permanent file
H.VOMM,2 21* create temporary file
H.VOMM,3 22* create memory partition
H.VOMM,4 23* create directory
H.VOMM,5 24* delete resource
H.VOMM,6 25* extend file
H.VOMM,7 26* truncate file
H.VOMM,8 27* change defaults
H.VOMM,9 28* change temporary file to permanent file
H.VOMM,10 29* log resource or directory
H.VOMM,11 2A* modify descriptor
H.VOMM,12 2B* rewrite descriptor
H.VOMM,13 2C* read descriptor
H.VOMM,14 2D* rename file
H.VOMM,15 2E* conven pathname to pathname block
H.VOMM,16 2F* reconstruct pathname
H.VOMM,17 N/A allocate resource descriptor
H.VOMM,18 N/A deallocate resource descriptor
H.VOMM,19 N/A allocate file space
H.VOMM,20 N/A deallocate file space
H.VOMM,21 N/A reserved
H.VOMM,22 N/A reserved
H.VOMM,23 30* replace permanent file
H.VOMM,24 N/A create temporary file

H.VOMM Overview

" i ~ C

Entry Point Summary

Entry Point

H.VOMM,25
H.VOMM,26
H.VOMM,27
H.VOMM,99

SVC Number Description

N/A
31*
32*
N/A

read/write authorization file
modify descriptor user area
rewrite descriptor user area
SYSGEN initialization

* This service is SVC 2,X'nn' callable. N/A implies reserved
for internal use by MPX-32.

1.3 Subroutine Summary

Subroutine

S.VOMM1
S.VOMM2
S.VOMM3
SV1.S30
S.VOMM4
S.VOMMS
S.VOMM6
S.VOMM7
S.VOMM8
S.VOMM9
S.VOMMlO
S.VOMMll
S.VOMM12
S.VOMM13
S.VOMM14
S.VOMM15
S.VOMM16
S.VOMM17
S.VOMM18
S.VOMM19
S.VOMM20
S.VOMM21
S.VOMM22
S.VOMM23
S.VOMM24/25
S.VOMM26
S.VOMM27
S.VOMM28
S.VOMM29
S.VOMM30
S.VOMM31
S.VOMM32
S.VOMM33
S.VOMM34

Description

get directory entry
. get next pathname item

get next pathname block item
calculate hash index'
restore original priority for multi port
change priority for multiport
read resource descriptor for modification
validate privilege
get resourCe descriptor
return resource descriptor
validate address
allocate file space
get file space
deallocate file space
read resource descriptor by resource specification
delete directory entry
release file space
build resource descriptor
zero resource space if requested
create directory entry
return resource ID to caller
reserved
reserved
determine resource specification type
push and pop
assign/open for read only
assign/open for read/write
create VOMM environment
delete VOMM environment
write
read
merge RCB
set ART flags
increment critical I/O error count in MVT

MPX·32 Technical Volume II 1·311·4

o

(

2 H. VOMM Entry Points

2.1 Entry Point 1 • Create Permanent File

See M.CPERM or M CREATEP in the MPX-32 Reference Manual, Volume I for a
detailed description of this enny point.

Asynchronous abon and delete are inhibited for execution of this enny point.

External References

System Service

H.VOMM,24

2.2 Entry Point 2· Create Temporary File

See M.TEMP or M CREATET in the MPX-32 Reference Manual, Volume I for a
detailed description-of this enny point.

Asynchronous abon and delete are inhibited for execution of this entry point.

Extern~1 References

System Service

H.VOMM,24

2.3 Entry Point 3 • Create Memory Partition

See M.MEM or M MEM in the MPX-32 Reference Manual, Volume I for a detailed
description of this enny point.

Asynchronous abon and delete are inhibited for execution of this entry point.

External References

System Service

H.VOMM.24

System Subroutine

S.REMM14

MPX·32 Technical Volume II 2-1

Entry Point 4· Create Directory

2.4 Entry Point 4 - Create Directory

See M.DIR or M DIR in the MPX-32 Reference Manual, Volume I for a detailed
description of thiS entry point.

Asynchronous abon and delete are inhibited for execution of this entry point

External References

System Service

H.VOMM,24

2.5 Entry Point 5 - Delete Resource

See M.DELR or M DELETER in the MPX-32 Reference Manual, Volume I for a
detailed description-of this entry point

Asynchronous abon and delete are inhibited for execution of this entry point

External References

System Services

H.VOMM,18
H.VOMM,20

2.6 Entry Point 6 • Extend File

See M.EXTD or M EXTENDFILE in the MPX-32 Reference Manual, Volume I for a
detailed description-of this entry point.

Asynchronous abon and delete are inhibited for exection of this entry point

External References

2·2

System Service

H.VOMM,19

System Subroutine

S.REMM9

H. VOMM Entry Points

o

o

o

Entry Point 7 - Truncate File

r 2.7 Entry Point 7 - Truncate File

(

See M.TRNC or M TRUNCATE in the MPX-32 Reference Manual, Volume I for a
detailed description-of this entry point.

Asynchronous abort and delete are inhibited for exection of this entry point.

External References

System Service

H.VOMM,20

Scratchpad Usage

T.SPADI
T.SPAD2
T.SPAD3

2.8 Entry Point 8 - Change Defaults

See M.DEFf or M DEFf in the MPX-32 Reference Manual, Volume I for a detailed
description of this entry point.

External References

System Services

H.VOMM,13
H.VOMM,25

2.9 Entry Point 9 - Change Temporary File to Permanent File

See M.TEMPER or M TEMPFILETOPERM in the MPX-32 Reference Manual,
Volume I for a detailed description of this entry point.

2.10 Entry Point 10 - Log Resource or Directory

See MLOGR or M LOGR in the MPX-32 Reference Manual, Volume I for a detailed
description of this entry point.

External References

System Service

H.REMM.7

MPX·32 Technical Volume II 2·3

Entry Point 11 - Modify Descriptor

2.11 Entry Point 11 - Modify Descriptor

See M.MOn or M_MOn in the MPX-32 Reference Manual, Volume I for a detailed
description of this entry point.

External References

System Service

H.REMM,7

2.12 Entry Point 12 - Rewrite Descriptor

See M.REWRIT or M REWRIT in the MPX-32 Reference Manual, Volume I for a
detailed description orthis entry point.

External References

System Service

H.REMM,7

System Subroutine

S.REMM12

2.13 Entry Point 13 - Read Descriptor

See M.LOC or M READD in the MPX-32 Reference Manual, Volume I for a detailed
description of this-entry point.

2.14 Entry Point 14 - Rename File

See M.RENAM orM RENAME in the MPX-32 Reference Manual, Volume I for a
detailed description of this entty point.

2.15 Entry Point 15 - Convert Pathname to Pathname Block

See M.PNAMB or M PNAMB in the MPX-32 Reference Manual Volume I for a
detailed description of this entty point.

External References

2-4

Scratchpad Usage

T.SPAD2
T.SPAD3

H. VOMM Entry Points

o

o

o

Entry Point 16 - Reconstruct Pathname

r 2.16 Entry Point 16· Reconstruct Pathname

See M.PNAM or M CONSTRUCfPATH in the MPX-32 Reference Manual, Volume
I for a detailed description of this entry point.

External References

System Service

H.REMM,7

Scratchpad Usage

T.SPADI
T.SPAD2
T.SPAD3
T.SPAD4

2.17 Entry Point 17 • Allocate Resource Descriptor

See the Allocate Resource Descriptor system service in the MPX-32 Reference
Manual Volume I for a detailed description of this entry point

External References

System Service

H.REMM,7

2.18 Entry Point 18· Deallocate Resource Descriptor

See the Deallocate Resource Descriptor system service in the MPX-32 Reference
Manual Volume I for a detailed description of this entry point

External References

System Service

H.REMM,7

2.19 Entry Point 19 • Allocate File Space

See the Allocate File Space system service in the MPX-32 Reference Manual Volume
I for a detailed description of this entry point

External References

System Service

H.REMM,7

MPX·32 Technical Volume II 2·5

Entry Point 20 - Deallocate File Space

2.20 Entry Point 20 - Deallocate File Space

See the Deallocate File Space system service in the MPX-32 Reference Manual
Volume I for a detailed description of this entry point.

External References

System Service

H.REMM.7

2.21 Entry Point 21 - Reserved

2.22 Entry Point 22 - Reserved

2.23 Entry Poi nt 23 - Replace Permanent File

See M.REPLAC or M REPLACE in the MPX-32 Reference Manual, Volume I for a
detailed description oftrus entry point.

External References

System Service

H.REMM,7

System Subroutine

S.REMM9

2.24 Entry Point 24 - Create Temporary File

This entry point creates a temporary file for system calls. Resource descriptor for the
created file will be in the system buffer.

Entry CondHlons

Calling Sequence

M.CALL H.VOMM,24

Registers

R4 StaIt block; or zero

R5 number of blocks required

R6 MVTE or zero

2-6 H.VOMM Entry Points

o

Entry Point 24 - Create Temporary File

Exit Conditions

Return Sequence

TRSW RO

Registers

Contiguous creation:

R4 stan block

R5 size in blocks

R6 MVTE
R7

(or)

RD disk address

Noncontiguous creation:

R4 number of segments created

R5 end of medium block number created

R6 MVTE

R7 RD disk address

CCl is set if error.

External References

System Services

H.REMM,7
H.VOMM,17
H.VOMM,18
H.VOMM,19
H.REXS,74

2.25 Entry Point 25 - ReadlWrite Authorization File

See the ReadlWrite Authorization File system service in the MPX-32 Reference
Manual Volume I for a detailed description of this entry point.

External References

System Services

H.MONS,44
H.FISE,8

MPX·32 Technical Volume II 2·7

Entry Point 26 - Modify Descriptor User Area

2.26 Entry Point 26 - Modify Descriptor User Area

See M.MODU or M MODU in the MPX-32 Reference Manual, Volume I for a
detailed description of this entry point.

2.27 Entry Point 27 - Rewrite Descriptor User Area

See M.REWRTU or M REWRTU in the MPX-32 Reference Manual, Volume I for a
detailed description of this entry point.

2.28 Entry Point 99 - SYSGEN Initialization

2·8

This entry point is for internal use only and is called during SYSGEN. H.VOMM
sets up its entry point table, then returns to SYSGEN.

H.VOMM Entry Points

o

(~

3 H.VOMM Subroutines

3.1 Subroutine S. VOMM1 - Get Directory Entry

This subroutine parses a patbname (PN) or a pathname block (PNB) in order to return
a directory entry. This subroutine is callable in three different modes to perform three
distinct functions as described below.

The lookup mode determines the existence or nonexistence of a given resource.

The create mode is called after the lookup mode to perform hashing of the last item in
the PNIPNB into the parent directory, updating hash counts as it goes. The active and
free entry counts for the directory are also updated.

The delete mode is called after the lookup mode to verify the existence of the resource
to be deleted. It updates the hash counts and entry counts for the directory, but the
user must set the delete bit in the entry and rewrite the entry to the directory.

S.VOMMI requires two registers as input. Rl contains the address of a PN-or PNB
to be parsed. R7 contains a bit pattern to define the operation to be performed. If the
resource is to be looked up, only the directory is opened read only. If the user
indicates a create or a delete is to follow, S.VOMMI opens the directory in the update
mode. In any case, the directory is assigned and opened upon return to the caller.
The caller must close and deallocate the directory.

S.VOMMI returns all parameters except the error code in the current scratchpad area.
See below for details.

Entry Conditions

Calling Sequence

BL

Registers

Rl

R7

S.VOMMI

address of PBIPNB to parse

Bit Meaning if Set

29 indicates delete to follow
30 indicates create to follow
31 indicates lookup mode

MPX·32 Technical Volume II 3·1

Subroutine S. VOMM1 - Get Directory Entry "

Exit CondHlona 0
Return Sequence

TRSW RO

Registers

Rl pathname or pathname block vector
R7 status code

Output fonnat <in scratchpad)

SV l.NAM 1 T.SPAD1 name (0-3)
T.SPAD2 name (4-7)
T.SPAD3 name (8-11)
T.SPAD4 name (12-15)

SV1.DNAM T.SPAD5 directory (0-3)
T.SPAD6 directory (4-7)
T.SPAD7 directory (8-11)
T.SPAD8 directory (12-15)

SV1.RDAD T.SPAD9 directory resource descriptor address
SV1.MVTE T.SPADI0 path mounted volume table entry
SV1.DIRI T.SPADI2 directory Index
SVl.HASH T.SPADI3 hash count
SV1.FLAG T.SPADI4 flags
SVl.TYPE T.SPADI5 type code

/~",.

SV1.FCB T.SPADI6 file control block address ~)
SV1.DIRR T.SPADI7 directory buffer ending address
SV1.DIRE T.SPADI8 directory size (bytes)
SV1.BLOK T.SPADI9 directory starting block number

Flag bits are assigned as follows:

Bit Meaning if Set

24 if set, causes S. V0MM27 to supply a default time-out value when
assigning the directory for multipon files (SV1.TMO)

25 log service call (SV1.LOG)
26 volume only scan required (SV1.VOLO)
27 patbname block input (reset for patbname) (SV1.PNB)
28 update access (SV1.CRE + SVl.DELE) (SV1.UPD)
29 delete mode (SV l.DELE)
30 create mode (SV1.CRE)
31 lookup mode (SV1.LOOK)

o
3-2 H.VOMM Subroutines

c
Subroutine S.VOMM1 - Get Directory Entry

Internal subroutines used by S.VOMMl:

SVl.SlO

SVl.S20

SVl.S30

SVl.S40

get next pathnameJpathname block item

move string (R7) to destination (R3) (16 characters blank-filled if
needed)

see subroutine SV 1.S30
scan directory for matching name

Input Registers

R4

R5
o for scan or delete, or create flag for create

o for scan (first scan only)

1 for create (second scan only)

-1 for delete (second scan only)

SVl.S50 a second entry into SV1.S30 (Entry into directory open for update.
Save registers and jumps in after the open to allow hash setup, etc.)

SV1.S60

S.VOMM2

S.VOMM3

find mounted volume table entry (MVTE) for volume

see subroutine S. VOMM2

see subroutine S. VOMM3

3.2 Subroutine S. VOMM2 - Get Next Pathname Item

This subroutine examines the specified pathname (PN) to return the next item to the
caller. Item length and item type are also returned. If an item length exceeds the
allowed limit, a syntax error is returned.

The user must update the address of the next unprocessed character in the PN (add the
item size) and must not change the number of characters left to process or change the
previous item type for repetitive calls.

Entry Conditions

calling Sequence

BL

Registers

Rl

R5

R6

S.VOMM2

address of next unprocessed character in PN

state (0 first call, S.VOMM2 reply subsequent)

pathname vector

MPX·32 Technical Volume II 3-3

Subroutine S.VOMM2· Get Next Pathname Item

Exit CondHions

Return Sequence

TRSW RO

Registers

Rl

R5

R6
R7

Value Definition

o named item
4 current volume or directory
8 system volume or directory
12 root directory

state (byte 0) and state flags (bytes 1-3)

updated PN vector for next call

replied name vector

3.3 Subroutine S.VOMM3 - Get Next Pathname Block Item

This subroutine examines the specified pathname block (PNB) to return the next item
to the caller. Item length and item type are also returned. If a syntax error is
detected, the address of the next PNB item points to the beginning of the item being
processed when the error was detected.

The user must update the address of the next unprocessed character in the PN (add the
item size) and must not change the number of characters left to process or change the
previous item type for repetitive calls.

Entry CondHions

3-4

Calling Sequence

BL

Registers

Rl

R5
R6

S.VOMM3

address of next unprocessed character in PNB
state (0 first call, S.VOMM3 reply subsequent)

pathname block vector

H.VOMM Subroutines

Subroutine S.VOMM3 - Get Next Pathname Block Item

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl

R5

R6

R7

Value Definition

o named item
4 current volume or directory
8 system volume or directory
12 root directory

state (byte 0) and state flags (bytes 1-3)

updated PNB vector for next call

replied name vector

3.4 Subroutine SV1.S30 - Calculate Hash Index

This subroutine hashes the specified 16-character resource or directory name in order
to produce an index which will be used to locate a directory entry corresponding to
the name. A hash count (indicating the current number of unsuccessful attempts to
locate the desired directory entry) is supplied by the caller for the proper hashing
algorithm to be determined as follows:

16 Character
Name

Word 0 A

1 B

2 C

3 D

Hash Count Hashing Algorithm

o ((a+b)/n)*s ... hash count
where:
a = 1 bit circulated to right of word 0
+ == exclusive OR

n b - word 1
n == total number of entries
s entry size 64 bytes
Words 2 and 3 are ignored

MPX·32 Technical Volume II 3·5

Subroutine SV1.S30 • Calculate Hash Index

Entry Conditions

Calling Sequence

BL

Registers

R2

R4

R5

Exit Conditions

SVl.S30

stack area address of 16-character name

flag (bit 2 is on for create)

Value Definition

o scan (first scan only)
1 create (second scan only)
-1 delete (second scan only)

Return Sequence

TRSW RO

3.5 Subroutine S.VOMM4 • Restore Priority for Multiport

TIlls subroutine restores priority and swap status for the multipon environment if
S.VOMMS was called. If S.VOMMS was not called, this subroutine does not perform
any action.

Entry Conditions

3-6

Calling Sequence

BL

Registers

None

S.VOMM4

H.VOMM Subroutines

Subroutine S.VOMM4 - Restore Priority for Multipart

Exit Conditions

Return Sequence

TRSW RO

Registers

T.DPINFO (I word) contains the following:

Bytes 0-2 Priority
Bit Meaning if set

30 task is swappable (T.SWP)
31 real-time task (T.RT)

3.6 Subroutine S.VOMM5 - Change Priority for Multiport

This subroutine changes priority and locks the resource descriptor for the multiport
environment.

Entry Conditions

calling Sequence

BL S.VOMM5

Registers

RI FCB address

Exit Conditions

Return Sequence

TRSW RO

Registers

CCI set
T.DPINFO

error
(1 word) contains the following:

Bytes 0-2 Priority
Bit Meaning if set

30 task is swappable (T.SWP)
31 real-time task (T.RT)

MPX.32 Technical Volume II 3-7

Subroutine S. VOMM6 - Read Resource Descriptor

3.7 Subroutine S. VOMM6 - Read Resource Descriptor

This subroutine is intended to be called only by H.VOMM,11 (M.MOD or M _MOD)
and H.VOMM,26 (M.MODU or M _MODU). Its function is to set up the appropriate
VOMM environment dependent on the caller. The resource descriptor is read into the
system buffer if the call is from M.MODU or M MODU; otherwise. the resource
descriptor is read into the user buffer. -

Entry Conditions

calling Sequence

BL S.VOMM6

T.BIT2 is set in the task service area (TSA) if the call is from H. VOMM,26.

Registers

None

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl

R3
address of FCB that read the resource descriptor

address of buffer containing the resource descriptor

3.8 Subroutine S. VOMM7 - Validate Privilege

3-8

This subroutine is comprised of two additional subroutines, S. VOMM7 A and
S.VOMM7B. These subroutines check to see if the caller has sufficient access to a
resource. The test (any bit ma~h) is made against owner, project group and other
rights depending on the current caller.

This subroutine can also check to see if a call originated as a system call. In this case,
enter with R4 equal to zero. Upon exit, an error (CCI set) is produced if the call is
not a system call.

H.VOMM Subroutines

o

o

Subroutine S.VOMM7 - Validate Privilege

Entry Conditions

Calling Sequence

BL S.VOMM7 resource descriptor is in VOMM's dynamic buffer
resource descriptor is in the system buffer
resource descriptor address is in R2

BL S.VOMM7A
BL S.VOMM7B

Registers

R4

Exit Conditions

access request bits as follows:

Value Description

o check if call is from system
routine or system administrator

-1 check if call is from system
routine only

Return Sequence

TRSW RO

Registers

eel set

eel reset

no bits in R4 match access bits in the resource descriptor

any bit in R4 matches access bits in the resource descriptor

3.9 Subroutine S. VOMM8 - Get Resource Descriptor

This subroutine examines the specified resource descriptor allocation map (DMAP) to
locate a zero bit corresponding to an available resource descriptor (RD). When a zero
bit is located, the bit is set to one, and the DMAP bit number in this segment is
returned to the caller. If no RDs are available, condition code one is set prior to
returning to the caller. S. VOMM8 assumes the FCB has been assigned and opened
prior to being called and contains the DMAP buffer address.

MPX·32 Technical Volume II 3-9

Subroutine S. VOMM8 • Get Resource Descriptor

Entry Conditions

calling Sequence

BL

Registers

Rl
R4

Exit Conditions

S.VOMM8

FCB address

buffer length (bits)

Return Sequence

TRSW RO

Registers

Cel set

R4

RD unavailable

DMAP bit number in this DMAP segment

3.10 Subroutine S. VOMM9 • Return Resource Descriptor

o

This subroutine examines the specified resource descriptor allocation map (DMAP) bit
number for this DMAP segment to reset the corresponding bit in the DMAP. If the U~
resource descriptor is not currently allocated, condition code I is set prior to returning .
to the caller.

Entry. Conditions

calling Sequence

3-10

BL

Registers

RI
R4

R6

S.VOMM9

FCB address

DMAP bit number in this DMAP segment

mounted volume table entry (MVTE) address

0,
H.VOMM Subroutines

Subroutine S.VOMM9· Return Resource Descriptor

Exit CondHlons

Return Sequence

TRSW RO

Registers

eel set RD was not allocated

3.11 Subroutine S.VOMM10 - Validate Address

This subroutine validates the address range input. S.REMM20 is called to check the
address range and its response is checked.

Entry CondHions

Catling Sequence

BL

Registers

R6

R7

(Exit Conditions

S.VOMMIO

address to be checked

size to check

Return Sequence

TRSW RO

Registers

eel set address range is invalid

All registers are unchanged.

3.12 Subroutine S.VOMM11 - Allocate File Space

This subroutine marks the space map as allocated and writes it to SMAP using the
FeB given.

The FeB is expected to contain the address and size of the memory buffer. It is
assumed exclusively open on SMAP to provide SMAP lock against other users. The
last portion of SMAP is expected to be available in the buffer, with FeB showing
values having read that section last.

MPX-32 Technical Volume II 3-11

Subroutine S. VOMM11 - Allocate File Space

Entry CondHions

Calling Sequence

BL

Registers

RI
R4

S.VOMMII

FCB address

bit position relative to SMAP start of the last + I bit to be allocated

Exit Conditions

Return Sequence

TRSW RO

Registers

CCI set

R7

write error

contains the error codes as follows:

Value Definition

17 SMAP write error
52 SMAP bit double-set

3.13 Subroutine S.VOMM12· Get File Space

This subroutine scans the file space allocation map (SMAP) to locate the requested
free allocation units (free allocation units are indicated by zero bit settings). The
necessary SMAP file manipulation is provided with the exception of allocation/open
processing. A starting allocation unit can be specified. If it is not available, a failure
indication is given.

The FCB is expected to contain the address and size of the memory buffer and it is
assumed exclusively open on SMAP to provide SMAP lock against other users.

Entry CondHions

3-12

Calling Sequence

BL

Registers

RI

R4

R6

R7

S.VOMMI2

FCB address

starting bit number of relative SMAP or zero if anywhere

mounted volume table entry (MVfE) address

number of allocation units required

H.VOMM Subroutines

o

o

Subroutine S. VOMM12 - Get File Space

Exit CondHlons

Return Sequence

TRSW RO

Registers

eel reset

R4

R7

if space found

contains bit number in SMAP of next bit after section used

unchanged

Memory buffer holds the last or only portion of SMAP containing the
requested free space.

(or)

eel set

R4,RS

R7

Internal Subroutines

space not found

unchanged

contains the error code as follows:

Value Definition

11 no space available
16 SMAP read error

SV12.1oo check space map section for unallocated bit string

Input Registers

R2 address of starting word

RS bit number in word to stan at

R7 allocation unit requested (buffer bound)

Exit Registers
R2 address of next word to process

R5 next allocation unit bit

R7 bits remaining (may be ·VE or 0 if allocation unit found)

R3· R6 destroyed

SV 12.200 check space map section for allocated bit string

Input Registers
R2 address of starting word

R5 bit number in word to stan at

R7 buffer boundary

MPX·32 Technical Volume II 3-13

Subroutine S. VOMM12 - Get File Space

3-14

Exit Registers

R2 address of next word to process

RS next allocation unit bit
R7
R3-R6

bits remaining (may be -VE or 0 if allocation unit found)

destroyed

SVI2.300 scan map buffer for length of zero bits at high end of buffer or zero bit
string anywhere of requested size

Input Registers

Rl file control block (FeB) address
RS number of bits to scan
R7 allocation unit requested (buffer bound)

Exit Registers

string found eel reset

R2
R4

starting bit address of requested string (first occurrence)

length of zero bits at high end of buffer
eel set
R4

SV I 2.400

string not found

length of zero bits at high end of buffer

mark space map section as allocated

Input Registers

R I file control block (FeB) address
R4

R7

exit Registers

relative bit number from beginning of buffer
number of allocation units

All registers are preserved.

H.VOMM Subroutines

o

Subroutine S. VOMM13 - Deallocate File Space

('~' 3.14 Subroutine S.VOMM13 - Deallocate File Space

This subroutine deal locates the space map and writes it to the file space allocation
map (SMAP) using FCB #3. FCB #3 is expected to contain the address and size of
the memory buffer and is assumed to be exclusively opened on SMAP to provide
SMAP lock against other users.

Entry Conditions

Calling Sequence

BL S.VOMM13

Registers

R4

R7
bit position relative to SMAP start of the first bit to be deallocated

number of allocation units to be deallocated

Exit Conditions

Return Sequence

TRSW RO

Registers

CCI set

R7
error

contains the error code as follows:

Value Description

16 SWAP read error
17 SMAP write error

MPX·32 Technical Volume II 3-15

Subroutine S.VOMM14· Read Resource Descriptor

3.15 Subroutine S.VOMM14 - Read Resource Descriptor

This subroutine reads a resource descriptor given a pathname (PN), pathname block
(PNB), resource ID (RID), LFC or FCB as input. If desired, the FCB that reads the
resource descriptor is left open. If the read is successful, the mounted volume table
Entry (MVTE) address is given.

Entry Conditions

Calling Sequence

BL

Registers

RI
R2

Exit Conditions

S.VOMMI4

PN, PNB, RID, LFC or FCB address

FCB address

Bit Meaning if set

I

2

3

FCB is left assigned and opened
read/write. If multipart, resource
descriptor is locked and priority is
changed to one.
directory is assigned and opened
read/write
resource descriptor is not locked
for multipart

Return Sequence

TRSW RO

Registers

RS type of resource specification

R7 contains MVTE and resource descriptor is in specified FCB buffer

3-16

(or)

CCI set

R7
elTOr condition

contains the elTOr code

H.VOMM Subroutines

o

Subroutine S.VOMM15 • Delete Directory Entry

3.16 Subroutine S. VOMM15 - Delete Directory Entry

This subroutine locates and deletes a directory entry given a pathname (PN) or
pathname block (PNB) as input.

Entry CondHlons

Calling Sequence

BL S.VOMM15

Registers

RI PN or PNB address

Exit CondHlons

Return Sequence

TRSW RO

Registers

eel set

R7

(or)

eel reset

error conditions

contains error code

delete is successful

3.17 Subroutine S.VOMM16 - Release File Space

This subroutine returns file space to the free allocation area. It truncates a file to EOF
or releases all file space as directed by the input parameter.

Entry Conditions

calling Sequence

BL

Registers

RI

R6

R7

S.VOMMI6

resource descriptor address

mounted volume table entry (MVTE) address

specifies operation to take place as follows:

• negative indicates delete file
• positive or 0 indicates truncate

MPX·32 Technical Volume II 3-17

Subroutine S. VOMM16 - Release File Space

Exit Conditions

Return Sequence

TRSW RO

Registers

eel reset
(or)

eel set

R7

successful operation. All registers unchanged.

error condition

contains an error code

3.18 Subroutine S.VOMM17 - Build Resource Descriptor

This subroutine builds a resource descriptor for a permanent or temporary file in the
system buffer. This subroutine expects a resource descriptor for a system temporary
file to be present in the VOMM resource descriptor buffer and an appropriate resource
create block (ReB) to be present in B.RCB. If these conditions are present, the
resource descriptor in the system buffer is modified to reflect the attributes of a
specific resource, such as directory, file, and memory partition.

Entry Conditions ,

calling Sequence

BL S.VOMM17

Registers

R7 resource type code

Exit Conditions

3-18

Return Sequence

TRSW RO

Registers

None

H.VOMM Subroutines

o

o·

Subroutine S.VOMM18 - Zero Resource Space

3.19 Subroutine S.VOMM18 - Zero Resource Space

This subroutine zeroes the disk space associated with a resource. It assumes the
presence of a valid working resource descriptor in B.RDBUF.

Entry Conditions

Calling Sequence

BL S.VOMM18

Registers

R6 mounted volume table entry (MVTE) address

Exit Conditions

Return Sequence

TRSW RO

Registers

None

3.20 Subroutine S.VOMM19 - Create Directory Entry

This subroutine processes a pathname (PN) for the purpose of creating a directory
entty for the resource defined by the PN and the specified identifier. This subroutine
is called when a permanent file, directory, or COMMON is created, a temporary file is
made permanent, or files are renamed.

Entry Conditions

Calling Sequence

BL

Registers

None

Exit Conditions

S.VOMM19

Return Sequence

TRSW RO

Registers

CCl set

R7
if error return

error status

MPX-32 Technical Volume II 3-19

Subroutine S. VOMM20 - Return Resource ID to Caller

3.21 Subroutine S.VOMM20 - Return Resource ID to Caller

This subroutine transfers a resource ID (RID) for a resource to the address specified in
the incoming resource create block (ReB). The ReB is assumed in the ReB area in
the VOMM environment.

Entry Conditions

calling Sequence

BL S.VOMM20

Registers

None

Exit Conditions

Return Sequence

TRSW RO

Registers

All registers are unchanged.

3.22 Subroutine S.VOMM21 - Reserved

3.23 Subroutine S. VOMM22 - Reserved

3-20 H.VOMM Subroutines

o

o

o

Subroutine S.VOMM23 - Determine Resource Specification

(' 3.24 Subroutine S.VOMM23 • Determine Resource Specification

(

c:

This subroutine examines the resource specification parameter to detennine its fonnat:
pathname, pathname block (PNB), resource ID (RID), shon RID (SRID), or FCB.

Entry Conditions

Calling Sequence

BL S.VOMM23

Registers

R 1 resource specification

Note: An FCB or LFC will have its top byte clear as it is either a G'.o:x' or an
address. It is as convenient to provide an FCB address as to provide the
contents of word 0 of an FCB. Other forms of the resource specification
contain a byte count in byte 0 followed by the address of the pathname,
pathname block, RID, or SRID.

Exit Conditions

Return Sequence

TRSW RO

Registers

R7

(or)

CCI set

resource specification code as follows:

Value Definition

o pathname
1 pathname block
2 RID
3 SRID
4 FCB address
5 LFC
6 allocation index

If the reply code is 4 or 5, Rl contains the FPI' address of the
allocated FCB or LFC.

failure condition (all registers unchanged)

MPX·32 Technical Volume, II 3-21

Subroutine S. VOMM24/25 - Push and Pop

3.25 Subroutine S.VOMM24/25 - Push and Pop

This subroutine is used by M.PUSH and M.POP to push/pop the VOMM stack to
save all registers or restore all registers. C.FSSP points to the current stack level
pointer and it is decremented by M.PUSH and incremented by M.POP.

Entry Conditions

Calling Sequence

BL
BL

Registers

None

Exit CondHions

S.VOMM24

S.VOMM25

Return Sequence

TRSW RO

Registers

R3 current stack level pointer

3.26 Subroutine S. VOMM26 - Assign/Open Read Only

This subroutine assigns a resource for read-only operations.

Entry CondHions

3-22

calling Sequence

BL S.VOMM26

Registers assignment by SRID

Rl

R5

R6

R7

address of FCB to perform request

zero

resource descriptor block number

mounted volume table entry (MVTE) address

Registers assignment by space definHion

Rl

R5

R6

R7

address of FCB to perform request

UDTindex

starting block number

number of blocks

H.VOMM Subroutines

Subroutine S.VOMM26 - Assign/Open Read Only

Exit Conditions

Return Sequence

TRSW RO

Registers

R7

(or)

eel set

R7

unchanged if no abnonnal conditions

abnonnal conditions detected

contains abnonnal condition value as follows:

Value Definition

44 REMM error occurred

3.27 Subroutine S.VOMM27· Assign/Open Read Write

This subroutine assigns a resource for read and write operations.

Entry Conditions

Calling Sequence

BL S.VOMM27

Registers assignment by SRID

Rl

R5

R6

R7

address of FeB to perfonn request

zero

resource descriptor block number

mounted volume table entry (MVTE) address. If bit 0 is set then
apply default timeout on resource assignment.

Registers aSSignment by space definition

Rl

R5

R6

R7

address of FeB to perfonn request

UDT index

starting block number

number of blocks

MPX·32 Technical Volume II 3-23

Subroutine S. VOMM27 • Assign/Open Read Write

Exit Conditions

Return Sequence

TRSW
R7

(or)

CCI set

R7

RO
unchanged if no abnormal conditions

abnormal conditions detected

contains the REMM error number

3.28 Subroutine S.VOMM28 - Create VOMM Environment

This subroutine gets dynamic system memory if the context bit is on in the control
word and has not been previously allocated. To save RO, which contains the address
of the control word, one level of stack is pushed.

Entry Conditions

Calling Sequence

BL

Registers

None

S.VOMM28

exit Conditions

3-24

Return Sequence

TRSW RO

Registers

R3

T.BASEP

C.FSSP

address of caller's TSA

address of dynamic storage area in TSA

address of stack in communication region

H.VOMM Subroutines

o

0.·

Subroutine S.VOMM29 - Delete VOMM Environment

(" . 3.29 Subroutine S.VOMM29 • Delete VOMM Environment

This subroutine releases the service entry push frame, deallocates all FCBs specified at
the service entry, and releases dynamic memory.

Entry CondHlons

Calling Sequence

BL

Registers

None

Exit Conditions

S.VOMM29

Return Sequence

TRSW RO

Registers

CCl set

Rl
R3
R5

deal location error occurs

contains T.REGP

points to the context control word

contains error code .

3.30 Subroutine S.VOMM30· Write

This subroutine issues an IOCS write for the caller. It monitors the I/O status and
returns CC 1 if an error occurs.

Entry Conditions

calling Sequence

BL S.VOMM30

Registers

Rl address of FCB to perform request

MPX·32 Technical Volume II 3·25

Subroutine S. VOMM30 - Write

Exit Conditions

Return Sequence

TRSW RO

Registers

R7
(or)

eel set

R7

unchanged if no abnormal conditions

abnormal conditions detected
contains abnormal condition value as follows:

Value Definition

I shott transfer
2 unrecoverable I/O error

3.31 Subroutine S. VOMM31 • Read

This subroutine issues an lacS read for the caller. It monitors the I/O status and
returns ee I if an error occurs.

Entry Conditions

Calling Sequence

3-26

. BL

Registers

RI

S.YOMM31

address of FCB to perform request

H.VOMM Subroutines

o

Subroutine S.VOMM31 - Read

Exit Conditions

Return Sequence

TRSW RO

Registers

R7

(or)

CCI set

R7

unchanged if no abnonnal conditions

abnonnal conditions detected

contains abnonnal condition value as follows:

Value Definition

1 short transfer
2 unrecoverable va error
3 end-of-medium detected
4 end-of-file detected

3.32 Subroutine S.VOMM32· Merge RCB

This subroutine fonns an RCB by merging the entry ReB, which may be absent, with
default values. Volume name and owner name defaults are applied from the TSA.
The ReB is fonned in B.RCB in dynamic memory.

Entry CondHions

calling Sequence

BL

Registers

R2
R3

Exit CondHions

S.VOMM32

users RCB address or zero if not specified

default ReB address

Return Sequence

TRSW RO

Registers

Cel set

R2
address error on RCB
address of working RCB in dynamic memory buffer

MPX·32 Technical Volume II 3·27

Subroutine S. VOMM33 - Set ART Flags

3.33 Subroutine S.VOMM33 • Set ART Flags

This subroutines sets AR.DELET and/or AR.TRUNC flags in the ART if the resource
to be deleted or truncated meets one of the following conditions:

• The resource is cwrently allocated.

• A multiported resource is assigned by another CPU.

Entry Conditions

calling Sequence

BL

Registers

Rl
R6

R7

S.VOMM33

RD address

MVTE address

negative value indicates delete file; positive or zero indicates truncate
file.

Exit Conditions

Return Sequence

TRSW RO

Registers

CC2 set AR.DELET or AR. TRUNC is set in the ART

3.34 Subroutine S. VOMM34 - Increment Critical 1/0 Error Count

This routine is called evety time an error code of 12 through 19 is returned. These
codes indicate an 110 error has occurred during a read or write of a critical data
structure on the disk (directoty. RD. SMAP. DMAP).

Entry Conditions

3-28

calling Sequence

BL

Registers

Rl

S.VOMM34

FCB address used in read or write attempt

H.VOMM Subroutines

o

Subroutine S.VOMM34 -Increment Critical 1/0 Error Count

(' Exit Conditions

Return Sequence

TRSW RO

Registers

All registers are preserved.

MPX·32 Technical Vol~me II 3-29/3·30 '

(
A System Macros Cross-Reference

A.1 System Macros Cross-Reference

Macro name Description Reference

HMP.INIT MIOP Initialization Vol. I, Ch. 1

IB.INIT MIOP Initialization Vol. I, Ch. 1

M.ACIV and Activate Task H.REXS,15; HMONS,15
M ACIV

M.ADRS and Memory Address Inquiry H.REXS,3; HMONS,3
M ADRS

M ADVANCE Advance Record or File H.IOCS,7 ;H.IOCS,8

M.ALOC Allocate File or Peripheral Device H.MONS,21

M.ANYWand Wait for any No-Wait Operation H.REXS,37;H.REMM,6
M ANYWAIT Complete, Message Interrupt or H.MONS,37

Break

M ASSIGN and Assign! Allocate Resource H.REXS,21; H.REMM,6
M.ASSN

M.ASYNCH and Set Asynchronous Task Interrupt H.REXS,68

(
M_ASYNCH

M_AW AITACTION End Action Wait H.EXEC,40

M.BACK. and Backspace File or Record H.IOCS,9; H.IOCS,19
M BACKSPACE Vol. I, Ch. 1

M.BATCH and Batch Job Entry H.REXS,27
M_BATCH

M.BBTIM and Acquire Current Dateffime in Byte H.REXS,74
M BBTIM Binary Format

M.BORT and Abort Specified Task H.REXS,19; HMONS,19
M BORT

Abort Self H.REXS,20; HMONS,20

Abort with Extended Message H.REXS,28; HMONS,28

M.BRK and BreakfI'ask Interrupt Link H.REXS,46; HMONS,46
MBRK

M.BRKXIT and Exit from Task Interrupt Level H.REXS,48; HMONS,48
M BRKXIT

M.BTIMand Acquire Current Dateffime in Binary H.REXS,74
MBTIM Format

M.CALL Call to System Module Vol. I, Ch. 1

M.CDJS Submit Job from Disc File H.MONS,27

C M.CLOSER and Close Resource H.REMM,22
M CLOSER

MPX·32 Technical Volume" A-1

System Macros Cross-Reference

Macro name Description Reference 0 M.CLSEand Close File H.lOCS,2; H.lOCS,S
M CLSE H.IOCS,23

M.CMDand Get Command Line H.REXS,88
M_CMD

M.CONABB and Convert ASCll DatelTime to Byte H.REXS,7S
M_CONABB Binary Format

M.CONADB and Convert ASCll Decimal to Binary H.TSM,7
M_CONADB

M.CONAHB and Convert ASCn Hexadecimal to H.TSM.8
M_CONAHB Binary

M.CONASB and Convert ASCll DatelTime to H.REXS.7S
M_CONASB Standard Binary

M.CONBAD and Convert Binary to ASCn Decimal H.TSM.9
M_CONBAD

CONBAF and Convert Binary DatelTime to ASCll H.REXS.7S
M_CONBAF Format

M.CONBAH and Convert Binary to ASCll H.TSM,lO
M_CONBAH Hexadecimal

M.CONBBA and Convert Byte Binary Datetrime to H.REXS,7S
M_CONBBA ASCll (\
M.CONBBY and Convert Binary Daterrime to Byte H.REXS,7S ~J
M CONBBY Binary

M.CONBYB and Convert Byte Binary Datetrime to H.REXS,7S
M CONBYB Binary

M.CONNand Connect Task to Interrupt H.REXS,lO; H.MONS,lO
M CONN

M_CONSTRUCTPATH Reconstruct Pathname H.VOMM.16

M_CONVERTI1ME Convert Time H.REXS.75

M.CPERM Create Permanent File H.VOMM,l

M.CREATE Create Permanent File H.FISE,12

M_CREATEP Create Permanent File H.VOMM,l

M_CREATET Create Temporary File H.VOMM,2; H.VOMM,24

M.CTIMand Convert System DatelTune Fonnat H.REXS,7S
M_CTIM

M.CWATand System Console Wait H.lOCS,26
M_CWAT

M.DALe Deallocate File or H.MONS,22
Peripheral Device

M.DASN DeassignlDeallocate Resource H.REXS,22; H.REMM,7 0
A·2 System Macros Cross-Reference

System Macros Cross-Reference

(Macro name Description ' Reference

M,DATE and Date and Time Inquiry H.REXS,70
M DATE

M DEASSIGN Deassign and Deallocate Resource H.REXS,22;H.REMM,7

M.DEBUG and Load and Execute H.REXS,29; H.MONS,29
M_DEBUG Interactive Debugger

M.DEFT and Change Defaults H.VOMM,8
M DEFr

M.DELETE Delete Permanent File or H.FISE,14
Non-SYSGEN Memory Partition

M DELETER and Delete Resource H.VOMM,5
M.DELR

M.DEL TSK and Delete Task H.REXS,31; H.MONS,31
M DELTSK

M.DEVID and Get Device Mnemonic or Type Code H.REXS,71
M DEVID

M.DFCB Create a File Control Block (FCB) Vol. I, Ch. 1

M.DFCBE Create an Expanded File Control Vol. I, Ch. 1
Block (FCB)

(' M.DIR and Create Directory H.VOMM,4
M DIR

M.DISCON and Disconnect Task from Interrupt H.REXS,38; H.MONS,38
M_DISCON

MDISMOUNT Dismount Volume H.REMM,19

M.DLTTand Delete Timer Entry H.REXS,6; H.MONS,6
M DLTT

M.DMOUNT Dismount Volume H.REMM,19

M.DSMI and Disable Message Task Interrupt H.REXS,57
M DSMI

M.DSUB and Disable User Break Interrupt H.REXS,73
M DSUB

M.DUMP and Memory Dump Request H.REXS,12; H.MONS,12

M DUMP

M.EAWAIT End Action Wait H.EXEC,40

M.EIR Resident System Module Vol. I, Ch. 1
Initialization Entry Macro

M.ENMI and Enable Message Task Interrupt H.REXS,58

MENMI

M.ENUB and Enable User Break Interrupt H.REXS,72

('~ M ENUB

MPX.32 Technical Volume II A·3

System Macros Cross-Reference

Macro name Description Reference 0
M.ENVRMT and Get Task Environment H.REXS,85
MENVRMT

M.EXCL Free Shared Memory (EXCLUDE) H.ALOC,14

M. EXCLUDE and Exclude Memory Partition H.MEMM,8; H.REMM,14
M_EXCLUDE

M.EXIT and Terminate Task Execution H.REXS,18; H.MONS,18
M EXIT

M.EX1D and Extend File H.VOMM,6
M EXTENDFILE

M_EXTSTS Exit With Status H.REXS,86

M.FADD Permanent File Address Inquiry H.MONS,2

M.FCBEXP Create a File Control Block (FCB) Vol. I, Ch. 1
for Execute Channel Program

M.FD Free Dynamic Extended Indexed H.MEMM,4j H.REMM,9
Data Space H.ALOC,9

M.PE Free Dynamic Task Execution H.MEMM,6j H.REMM,11
Space H.ALOC,ll

M.FILE Open File H.IOCS,l

M_FREEMEMBYTES Free Memory in Byte Increments H.MEMM,13; H.REMM,29 (~

M.FSLR Release Synchronization File Lock H.FISE,2S
,,~)

M.FSLS Set Synchronization File Lock H.FISE,24

M.FWRD Advance File or Record H.IOCS,7; H.IOes,8
Vol. I, Ch. 1

M.FXLR Release Exclusive File Lock H.FISE,23

M.FXLS Set Exclusive File Lock H.FISE,22

M.GADRL Get Address Limits H.REXS,41; H.MONS,41

M.GD Get Dynamic Extended H.MEMM,3; H.REMM,8
Data Space

M.GDD Get Dynamic Extended Dis- H.MEMM,9
contiguous Data Space

M.GE Get Dynamic Task Execution Space H.MEMM,S; H.REMM,lO
H.ALOC,lO

M GETCTX Get User Context H.EXEC,41

M.GETDEF Get Terminal Function Definition H.TSM,15

M GETMEMBYTES Get Memory in Byte Increments H.MEMM,12

M GETTIME Get Current Date and Time H.REXS,74

0-

A-4 System Macros Cross-Reference

System Macros Cross-Reference

(" Macro name Description Reference
" .. ' M.GMSGPand Get Message Parameters H.REXS,3S; H.MONS,3S

M GMSGP

M.GRUNPand Get Run Parameters H.REXS,36; H.MONS,36
M_GRUNP

M.GTIM and Acquire System Date/Time in any H.REXS,74
MGTIM Format

M.GTSADand Get TSA Start Address H.REXS,91
M GTSAD

M.HOLDand Program Hold Request H.REXS,2S; H.MONS,2S
M HOLD

M.ID and Get Task Number H.REXS,32; H.MONS,32
MID

M.INCL Get Shared Memory (INCLUDE) H.ALOC,13

M.INCLUDE and Include Memory Partition HMEMM,7; H.REMM,12
M INCLUDE

M.INIT Initialize Device Handler Vol. I, Ch. 1
Parameters

M.INITX Initialize Device Handler Vol. I, Ch. 1
Parameters

(~ , ' ,

M_INQUIRER and Resource Inquiry H.REMM,27
M.INQUIRY

M.!NT and Activate Task Interrupt H.REXS,47; H.MONS,47
M !NT

M.IOFF Inhibit InteITUpt Signals Vol. I, Ch. 1

M.IONN Allow Interrupt Signals Vol. I, Ch. 1

M.IPUBS and Set IPU Bias H.REXS,82
M_IPUBS

M.IPUOFF IPU OffLine Vol. I, Ch. 1

M.IPUON IPU Online Vol. I, Ch. 1

M.IPUR1N IPU Return Vol. I, Ch. 1

M.IVC Cormect Entry Point to InteITUpt Vol. I, Ch. 1
Vector Location

M.Kn.L Halt Computer Vol. I, Ch. 1

M_LIMITS Get Base Mode Task Address H.REXS,84
Limits

MLOC Read Descriptor H.VOMM,13

MLOCKand Set Exclusive Resource Lock H.REMM,23
M LOCK

C',
MPX-32 Technical Volume II A-5

System Macros Cross-Reference

Macro name Description Reference

M.LOG Permanent File Log H.FISE,15; H.MONS,33

M.LOGRand Log Resource or Directory H.VOMM,lO
MLOGR

M.MEM and Create Memory Partition H.VOMM,3
MMEM

M.MEMB Get Memory in Byte Increments H.MEMM,12

M.MEMFRE Free Memory in Byte Increments H.MEMM,13

M.MODand Modify Descriptor H.VOMM,ll
MMOD

M.MODT Build Module Address Table Entry Vol. I, Ch. 1

M.MODU and Modify Descriptor User Area H.VOMM,26
M_MODU

M.MOUNT and Mount Volume H.REMM,17
M MOUNT

M.MOVE and Move Data to User Address H.REXS,89
M MOVE

M.MYIDand Get Task Number H.REXS,32; H.MONS,32
M MYID

M.NEWRRS Reformat RRS Entry H.REXS,76

M.OLAY Load Overlay Segment H.REXS,13; H.MONS,13
Load and Execute Overlay Segment H.REXS,14; H.MONS,14

M.OPEN Allow Context Switching Vol. I, Ch. 1

M.OPENR and Open Resource H.REMM,21
M OPENR

M OPTIONDWORD Task Option Doubleword Inquiry H.REXS,95

M OPTIONWORD Task Option Word Inquiry H.REXS,24; H.MONS,24

M.OSREAD and Physical Memory Read H.REXS,93

M OSREAD

M.OSWRIT and Physical Memory Write H.REXS,94

M OSWRIT

M.PGOD Task Option Doubleword Inquiry H.REXS,95

M.PDEV Physical Device Inquiry H.MONS,l

M.PERM Change Temporary File to H.FISE,13

Permanent

M.PGOW Task Option Word Inquiry H.REXS,24; H.MONS,24

M.PNAM Reconstruct Pathname H.VOMM,16

C.·.'.""·' \ ' \-
I

A·6 System Macros Cross-Reference

System Macros Cross-Reference

(~~ Macro name Description Reference

M.PNAMB and Convert Pathname to Pathname H.VOMM.15
M PNAMB Block

M.PRll.. and Change Priority Level H.REXS.9; H.MONS,9
M PRll..

M.PRIV and Reinstate Privileged Mode H.REXS,78
M PRIVMODE to Privileged Task

M.PTSKand Parameter Task Activation H.REXS,40; H.MONS,40
M PTSK

M PUTCTX Put User Context HEXEC,42

M.QATIM and Acquire Current Dat.eJTime in H.REXS,74
M_QATIM ASCII Format

M.RADDRand Get Real Physical Address H.REXS,90
M RADDR

M.RCVR and Receive Message Link Address H.REXS,43; HMONS,43
M RCVR

M.READ and Read Record H.IOCS,3
M READ

M READD Read Descriptor H.VOMM,13

f~
M.RELP and Release Dual Ported Disc H.IOCS,27
M RELP

M.RENAM and Rename File H.VOMM,14
M_RENAME

M.REPLAC and Replace File H.VOMM,23
M_REPLACE

M.RESP and Reserve Dual Ported Disc H.IOCS,24
M RESP

M REWIND Rewind File H.IOCS,2

M.REWRIT and Rewrite Descriptor H.VOMM,12
M REWRIT

M.REWRTU and Rewrite Descriptor User Area H.VOMM,27
M_REWRTU

M.ROPL and Reset Option Lower H.TSM,14
M ROPL

M.RRES and Release Channel Reservation H.IOCS,13
M RRES

MPX·32 Technical.Volume II A·7

System Macros Cross-Reference

Macro name Description Reference 0 M.RSMLand Resourcemark Lock H.REXS,62
M RSML

M.RSMU and Resourcemark Unlock H.REXS,63
M RSMU

M.RSRVand Reserve Channel H.IOCS,12
M_RSRV

M.R1NA Return to Specified Address Vol I, Ch. 1

M.RTRN Return In-Line Vol. I, Ch. 1

M.RTRNOS Return to Operating System H.REXS,92

M.RWND Rewind File H.IOCS,2

M SETERA Set Exception Return Address H.REXS,81

M SETEXA Set Exception Handler H.REXS,83

M.SETS and Set User Status Word H.REXS,7; H.MONS,7
M_SETS

M.SETSYNC and Set Synchronous Resource Lock H.REMM,25
M_SETSYNC

M.SETTand Create Timer Entry H.REXS,4; H.MONS,4
M SETT

M.SHARE Share Memory with Another Task H.ALOC,12

M.SHUT Inhibit Context Switching Vol. I, Ch. 1

M.SMSGR and Send Message to Specified Task H.REXS,44; H.MONS,44
M_SMSGR

M.SMULK Unlock and Dequeue Shared H.ALOC,19
Memory

M.SOPLand Set Option Lower H.TSM,13
M_SOPL

M.SPAD Scrarcbpad Reference Vol. I, Ch. 1

M.SRUNRand Send Run Request to Specified H.REXS,4S; H.MONS,4S
M_SRUNR Task

M.SUARand Set User Abon Receiver Address H.REXS,26; H.MONS,26
M_SUAR

M.SUMEand Resume Task Execution H.REXS,16; H.MONS,16
M SUME

M.SUSPand Suspend Task Execution H.REXS,17; H.MONS,17
M_SUSP

o
A-a System Macros Cross-Reference

System Macros Cross-Reference

(' ", Macro name Description Reference

M.SVCP Build SVC Type 1 Protect Bits Vol. I, Ch. 1

M.SVCP2 Build SVC Type 2 Protect Bits Vol. I, Ch. 1

M.SVCT Build SVC Type 1 Table Entry Vol. I, Ch. 1

M.SVCT2 Build SVC Type 2 Table Entry Vol. I, Ch. 1

M.SYNCH and Set Synchronous Task Interrupt H.REXS,67
M SYNCH

M.TBRKON Break Processing Entry H.TSM,6

M.IDAYand Time-of-Day Inquiry H.REXS,11; H.MONS,11
M TDAY

M.TEMP Create Temporary File H.VOMM:,2; H.VOMM:,24

M.TEMPER and Change Temporary File to H.VOMM:,9
M TEMPFILETOPERM Permanent File

M.TRAC System Trace Vol. I, Ch. 1

M.TRNC and Truncate File H.VOMM:,7
M TRUNCATE

M.TSCAN Syntax Scanner H.TSM,2

M.TSTE and Arithmetic Exception Inquiry H.REXS,23; H.MONS,23
M TSTE

(M.TSTS and Test User Status Word H.REXS,8; H.MONS,8
M TSTS

M.TSTT and Test Timer Entry H.REXS,5; H.MONS,5
M TSIT

M.TURNON and Activate Program at Given H.REXS,66
M TURNON Time of Day

M.TYPE and System Console Type Vol. I, Ch. 1
M TYPE

M.UNLOCK and Release Exclusive Resource Lock H.REMM,24
M UNLOCK

M UNPRIYMODE Change Task to Unprivileged Mode H.REXS,79

M.UNSYNC and Release Synchronous Resource Lock H.REMM,26
M UNSYNC

M.UPRIV Change Task to Unprivileged Mode H.REXS,79

M.UPSP and Upspace HJOCS,20

M UPSP

M.USER U sername Specification H.MONS,34

M.USHUT Inhibit User Task Context Vol. I, Ch. 1

Switching

C~\

MPX-32 Technical Volume II A-9

System Macros Cross-Reference

A-10

Macro name

M.VADDR and
M VADDR

M.WAIT and
M WAIT

M.WEOF

M.WRIT and
M WRITE

M_WRITEEOF

M.XBRKR and
M XBRKR

M.XIEAand
M XIEA

M.XIR

M.xMEA and
M XMEA

M.XMSGR and
M XMSGR

MJ{REA and

M XREA

M.XRUNR and
M XRUNR

M.XTIME and
M XTIME

Description

Validate Address Range

Wait I/O

Write End of File (BOF)

Write Record

Write EOF

Exit from Task Interrupt Level

No-wait I/O End-Action Return

Resident System Module
Initialization Exit Macro

Exit from Message End-Action
Routine

Exit from Message Receiver

Exit from Run Request End-Action

Routine

Exit Run Receiver

Task CPU Execution Time

Reference

H.REXS,33

H.IOCS,25

H.IOCS,5

H.IOCS,4

H.IOCS,5

H.REXS,48; H.MONS.48

H.IOCS.34

Vol. I, Ch. 1

H.REXS,50; H.MONS,50

H.REXS,39; H.MONS,39

H.REXS.51; H.MONS,51

H.REXS,49; H.MONS,49

H.REXS,65

System Macros Cross-Reference

1(... '~~'.'.~\.
',i

C)

System Macros Cross-Reference

MPX·32 Technical Volume II A·11

()

c

H.DCSCI
H.DCXIO
H.DPXIO
H.FBXIO
H.GPMCS
H.HSDG
H.IBLG
H.MDXIO
H.MTSCI

. H.XIOS·

322-001552-500
11111111111111 ~IIIIIIIIIIIIIIIIIIIII~ 11111111111111111111111111111111111

MPX-32IM
Resident Handlers

Revision 3.5

Technical Manual Volume 11(8)

April 1990

o

(

(~

Multi-Function Processor Disk Handler C?DCSCI)

MPX-32 Technical Manual

Volume II

(.i.·-""
'j

(Contents

Page

1 H.DCSCI Overview

1.1 Introduction ... 1-1
1.2 Modules Used by H.DCSCI .. 1-1
1.3 SYSGEN Considerations .. 1-1

2 H.DCSCI Structures and Entry Points

2.1 Introduction ... 2-1
2.2 Data Structures .. 2-1

2.2.1 DCA .. 2-1
2.2.2 SCSI CDB ... 2-1
2.2.3 HAT ... : 2-2
2.2.4 Status Doub1eword ... 2-2

2.3 Entry Points ... 2-3
2.3.1 Entry Point OP. - Opcode Processor ... 2-3
2.3.2 IOQ Driver .. 2-4

(2.3.3 Entry Point IQ.XIO .. 2-4
2.3.4 Entry Point IQ.XIO.1 ... 2-5
2.3.5 Service Interrupt Processor .. 2-5
2.3.6 Entry Point SI ... 2-5
2.3.7 SI.UNLNK Routine .. 2-8

2.4 SI.Exit Routine .. 2-9
2.4.1 Entry Point LI.XIO - Lost Interrupt Processor 2-9
2.4.2 Entry Point PX. - Post-Transfer Processor 2-10
2.4.3 Entry Point SO. - SYSGEN Initialization 2-12

3 H.DCSCllssuing 1/0 Operations

3.1 Overview ... 3-1
3.2 CPU Instructions ... 3-1

3.2.1 Activate Channel Interrupt (ACI) .. 3-2
3.2.2 Clear Queue .. 3-2
3.2.3 Deactivate Channel Interrupt (DACI) .. 3-3
3.2.4 Disable Channel Interrupt (DCI) .. 3-3
3.2.5 Enable Channel Interrupt (ECI) ... 3-3
3.2.6 Halt I/O (RIO) .. 3-3
3.2.7 Reset Channel (RSCHNL) ... 3-3
3.2.8 Reset Controller (RSC1L) .. 3-3

MPX·32 Technical Volume II iii

Contents

Page

3.2.9 Start 1/0 (SIO) .. 3-3
3.2.10 Stop 1/0 (STPIO) .. 3-3
3.2.11 Test 1/0 (TIO) ... 3-4

3.3 Channel Commands .. 3-4
3.3.1 Channel Control .. 3-5_~_
3.3.2 Initialize Channel .. 3-5
3.3.3 Initialize Subaddress ... 3-6
3.3.4 Inquiry ... 3-6
3.3.5 No Operation .. 3-6
3.3.6 Read Capacity ... 3-6
3.3.7 Read .. 3-6
3.3.8 Reassign Block ... 3-7
3.3.9 Release .. , 3-7
3.3.10 Reserve .. 3-7
3.3.11 Rezero ... 3-7
3.3.12 Seek ... 3-7
3.3.13 Sense ... 3-7
3.3.14 Transfer Command Packet ... 3-8
3.3.15 Transfer in Channel .. 3-8
3.3.16 Write ... 3-8

3.4 IOCS Service (SVC) Calls .. 3-9
3.5 Error Processing .. 3-10

iv Contents

(

(....

/

List of Tables .

Table

2-1
2-2
3-1
3-2
3-3

Page

H.DCSCI Device-Dependent DCA Information .. 2-1
Interrupts and Responses by SI .. 2-7
CPU Instructions ... 3-2
H.DCSCI Channel Commands ... 3-5
IDCS SVC Calls ... 3-9

MPX·32 Technical Volume II v/vi

o

o

(

("

1 H.DCSCI Overview

1.1 Introduction

The multi-function processor (MFP) disk handler (H.DCSCI) provides user tasks with
an I/O path to small computer system interface (SCSI) disks connected to an MFP.
H.DCSCI performs the following:

• builds the SCSI command data blocks (CDBs)

• issues channel programs
• collects and reports status about the I/O operation to the user task and MPX-32

• queues I/O operations for a particular disk and issues the next queued I/O operation

This section discusses the modules used by H.DCSCI and the SYSGEN
considerations.

1.2 Modules Used by H.DCSCI

H.DCSCI calls the following modules: H.IFXIO, XIO.SUB, and H.IOCS. H.IFXIO
is the interrupt fielder and corresponds one-to-one with the channel. XIO.SUB is the
extended I/O common subroutine package that performs extended I/O functions.
H.IOCS performs device-independent I/O request management. This includes
preprocessing and postprocessing of I/O requests and I/O queue (IOQ) management.
For more information about H.IFXIO, XIO.SUB, and H.IOCS refer to the H.XIOS
and H.IOCS sections in this manual.

1.3 SYSGEN Considerations

To include H.DCSCI as part of MPX-32, specify H.DCSCI in the SYSGEN directive
file. The SYSGEN CONTROLLER and DEVICE directives are used to specify the
MFP and H.DCSCI, respectively: Each SCSI disk drive has a unique device
subaddress that is specified with the DEVICE directive. H.DCSCI is system re­
entrant, which means that only one copy should be configured into MPX-32. For
more information about the SYSGEN directive file, refer to the System Generation
(SYSGEN) chapter in Volume III of the MPX-32 Reference Manual.

Following are examples of the CONTROLLER and DEVICE directives that configure
MPX-32 for SCSI disk suppon:

CONTROLLER-DM76,PRIORITY=lO,CLASS=F,MUX=MFP,SUBCH=O
DEVICE=OO,DTC=DM,SHR,DISC=ANY,HANDLER=H.DCSCI

MPX-32 Technical Volume II 1-1/1-2

(
I· " .. ' .. I; ,

.f

c

(

(

2 H.DCSCI Structures and Entry Points

2.1 Introduction

This section describes the data structures and the entry points that H.DCSCI uses to
perform I/O.

2.2 Data Structures

2.2.1

This section describes the following data structures:

• device context area (DCA)

• small computer system interface (SCSI) command data block (CDB)

• handler address table (HAT)

• status doubleword

Other data structures that H.DCSCI uses to perfonn I/O are the unit definition table
(DDT), controller definition table (CDT), I/O queue (IOQ), file control block (FCB),
and file assignment table (FAT). For more information about these data structures,
refer"to the MPX-32 Technical Manual Volume I, Chapter 2.

DCA

The DCA stores subchannel operation information. It contains a common section
(words 0 through 35) and a device-dependent section. A DCA must be specified for
each subchannel. Table 2-1 lists the H.DCSCI device-dependent information. For
more information about the DCA common section, refer to the MPX-32 Technical
Manual Volume I, Chapter 2.

Table 2-1
H.DCSCI Device-Dependent DCA Information

Word Hex Byte Meaning

36 90 time out (DCA.MAX)
37 94 handler flag word (DCACDBF)

38/39 98/9C read capacity buffer (DCA.RCAP)
40 AO sectors per track (DCA.SPT)
41 A4 current lOCO address (DCAAt)
42 A8 error queue (DCA.ERRQ)
43 AC EOF buffer (DCAEOFB)

44/48 BOIB4 local handler storage (DCASA VR)

2.2.2 SCSI COB

H.DCSCI uses the SCSI CDB to communicate I/O requests to SCSI device
controllers. For more information about the SCSI CDB, refer to ANSI SCSI
Committee Working Document X3T9.2/82.2.

MPX-32 Technical Volume II 2-1

Data Structures

2.2.3 HAT

The HAT contains the addresses and the names of the entry points to the H.OCSCI
1/0 processing routines. It is used by modules suCh as SYSINIT and the I/O control
system (IOCS) to access H.OCSCI.

2.2.4 Status Doubleword

2-2

A status doubleword contains the result of the last executed I/O command doubleword
(lOCO) when an I/O termination occurs. The MFP generates a status doubleword
when an interrupt occurs or when it receives a status stored response from a start I/O
(SIO) or halt I/O (HID) instruction.

When an I/O operation completes, H.DCSCI checks the 16 status bits in the status
doubleword for error conditions. H.DCSCI considers the I/O operation complete if
the status doubleword has the channel end and device end bits set. If other bits are
set, H.DCSCI issues a sense lOCO for additional information about the error.

H.DCSCI stores the sense information in the OCA and maps the status bits, sense bits,
and drive status bits to the user's file control block (FCB). For more information
about the FCB, refer to the System Tables and Variables chapter in the MPX-32
Technical Manual, Volume I. A status doubleword has the following format:

o 7 8 15 16 23 24

Word 1 Subchannel. IOCD address.
See Note 1. See Note 2.

2 Status. See Note 3. I Residual byte count. See Note 4.

Notes:

1. This field contains the subchannel address of the interrupting device.

2. The lOCO address points 8 bytes past the last executed lOCO.

3. This field contains the following status bits:

Bit
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Definition
reserved
post program-controlled interrupt
incorrect length
channel program check
channel data check
reserved
interface control check
reserved
device busy
status modifier
controller end
attention
channel end
device end
unit check
unit exception

31

H.DCSCI Structures and Entry Points

t, I
. ·C·· ."''' .. '

(
Data Structures

4. This field contains the number of bytes not transferred for the last IOCD
processed.

2.3 Entry Points

2.3.1

Entry points are H.DCSCI routines that perform specific 110 processing. The HAT
contains the addresses and names of these routines. This section describes the
processing performed by H.OCSCI in the following entry points:

• opcode processor '(OP.)

• IOQ driver

• service interrupt processor
• lost interrupt processor (LI.XIO)

• post-transfer processor (PX.)

• SYSGEN initialization (SG.)

• execute channel program opcode processor (XCHANP). For more information
about this entry poin~, refer to the H.XIOS section in this manual.

Entry Point OP. - Opcode Processor

Entry point OP. processes the opcode placed in the FCB by the 110 service originally
called by the user. (OP. is a subroutine extention of H.IOCS,29.) It then indicates the
appropriate action for H.IOCS,29 by taking one of the following returns to
H.IOCS,29:

BU SERVCOMP service complete, no device access required

BU IOLINK link request to IOQ

!fOP. takes return IOLINK, it must first call IOCS subroutine S.IOCS13 to allocate
and initialize an IOQ. OP. then builds an IOCL into the IOQ using IOCS subroutines
S.IOCS12 and IOCS entry point S.IOCS40. If necessary, OP. also obtains space to
build the SCSI CDB.

Entry Conditions

Calling Sequence

BL *lW,X2

Registers

Rl FCB address

R2

R3
HAT address

UDT address

MPX·32 Technical Volume II

X2 contains the HAT address. The 1 W offset from
this address is the address of OP.

2-3

Entry Points

Exit Conditions

Return Sequence

See descriptions of SERVCOMP and IOLINK.

Registers

R 1 FCB address

2.3.2 10Q Driver

The IOQ driver issues SIO instructions for the IOCLs. H.OCSCI can queue a
maximum of 32 outstanding requests per channel. The IOQ driver has two entry
points: IQ.XIO and IQ.XIO.1. These entry points are identical except that IQ.XIO
activates the interrupt level upon entry and deactivates it before exiting. IQ.XIO and
IQ.XIO.l issue an SIO instruction for the first request in the IOQ.

2.3.3 Entry POint IQ.XIO

H.IOCS,29 calls entry point IQ.XIO when H.IOCS,29 queues an I/O request. It
blocks external interrupts and enters IQ.XIO with the following calling sequence.

Entry Conditions

calling Sequence

BL *2W,X2

Registers

RO return address

X2 contains the HAT address. The 2W offset from
this address is the address of IQ.XIO.

R3 UDT address of the device to start

R7 IOQ address

Exit Conditions

2-4

Return Sequence

DACI

TRSW RO

Registers

R7 IOQ address_

deactivate interrupt level

return to calling routine

H.DCSCI Structures and Entry Points

o

o

o

c

(

Entry Points

2.3.4 Entry Point IQ.XIO.1

The service interrupt processor calls IQ.xIO.l to drive the IOQ when an 110 request
completes. LUcrO calls IQ.xIO.l to clear the IOQ when a RIO instruction times out.

Entry Conditions

Calling Sequence

BL
(or)

BU

Registers

IQJcrO.l

IQ.xIO.l

RO return address SI

return to call

return is set up

R3 UDT address of device to start

Exit Conditions

Return Sequence

TRSW RO RO set up prior to return if call is from LUcrO

Registers

Rl CRT address

R2 DCA address

2.3.5 Service Interrupt Processor

The service interrupt processor perfonns postaccess processing associated with the
device access which just completed. It has one entry point, SI, and two routines,
SI. UNLNK and SI.EXIT that perfonn the logic sequence described in the following
section.

2.3.6 Entry Point SI

SI services interrupts and perfonns device-dependent logic. It is entered directly from
the extended I/O interrupt fielder program (R.IFXIO) with the interrupt level active
when one of the following conditions occur:

• an 110 request completes nonnally

• status checking is inhibited

• status contains a channel end with no device end

• a sense lOCO, unexpected interrupt, or device time out occurs

MPX-32 Technical Volume II 2-5

Entry Points

2-6

The following text describes the SI routines that H.OCSCI enters when one of these
conditions occur. '

Normal Completion or Status Checking Inhibited Routine - H.OCSCI enters this
routine when an I/O request completes with no errors or when status checking is
inhibited. It performs any required device-specific processing. An example is the
collection of sense information about an I/O operation that just completed.

The extended I/O common routines collect sense information only when an I/O
request produces an error or when the I/O request was for an execute channel program
and sense information was requested.

This routine:

• checks for a reserve request. If the request exists, the routine increments the reserve
count.

• checks for an advance or backspace file request. If the request exists, the routine
sets EOF and EOM or BOM and continues processing at SI.EXIT. If no request
exists, the routine updates the FAT.

• computes the transfer count

• continues processing at SI. UNLNK

Channel End with No Device End Routine - H.OCSCI enters this routine when an
I/O request produces an interrupt whose status contains channel end and no device
end. This is not a normal case except when a reserve request is issued to a dual­
ported disk that is reserved to the opposing CPU. Any other condition is treated as an
unexpected interrupt "" ~/

This routine checks for a channel end from a reserve request. If there is no channel
end, the routine continues processing as an unexpected interrupt. It then updates the
time out in the UDT, shows the I/O as active, and continues processing at SI.EXIT.

Normal Sense Command with loa Routine..;; H.DCSCI enters this routine following
an interrupt caused by issuing a sense lOCO for an I/O request that completed with an
error indication. This routine examines the status and sense information, initiates
error recovery if applicable, and sets the appropriate indicators based on the sense
data. It then computes the actual transfer count (if an error condition is indicated),
updates the IOQ transfer count, and continues processing at SI.UNLNK.

Unexpected Interrupt Routine - H.DCSCI enters this routine when an interrupt
occurs that was not expected. This routine increments the spurious interrupt count for
the device and the channel and continues processing at SI.EXIT.

Device TIme Out Routine - H.OCSCI enters this routine when an HIO instruction
generates an interrupt. (The HIO instruction was issued for a timed-out device.) This
routine sets the error condition and the time out flag in the IOQ. It then continues
driving the IOQ and processing at SI.EXIT. "

H.DCSCI Structures and Entry Points

(

Entry Points

Table 2-2lists the cause of interrupts and the response by SI in perfonning
conditional service interrupt processing.

Table 2-2
Interrupts and Responses by 51

Cause of Interrupt Response by Sl

Channel end with checks for a reserve request (if dual port),
no device end continues processing at SI.EXIT

Device time out marks unrecoverable error condition and
actual transfer count in the 10Q,
HDCSCl continues to drive the queue

Execute channel sets error condition in the 10Q if an error is
program indicated. If sense information is required,

issues a sense lOCO and continues processing at
SI.EXIT. If no error is found and no sense
information is required, continues processing at
SI.UNl.NK.

1'0 request issues sense lOCO and continues processing
completes with at SI.EXIT
error

Normal sense if execute channel program was requested,
command with continues processing at SI.UNLNK, otherwise,
IOQ completes the actual transfer count computed and

updates the IOQ

Rewind or clears device rewinding or seeking bit, continues
seek complete processing at SI.EXIT

Spurious interrupt increments spurious interrupt count, and
when device is not exits the interrupt level. Continues
configured processing at SI.EXIT

Spurious interrupt increments spurious count for the device
when device is and the channel, continues processing at
configured but SI.EXIT·
interrupt is
not expected

MPX-32 Technical Volume II 2·7

Entry Points

Entry Conditions

Calling Sequence

BU *3W,X2

Registers

R 1 CRT address

R3 UDT address

Exit Conditions

Return Sequence

BU

(or)

BU

Registers

S1.UNLNK

S1.EXIT

X2 contains the HAT address. The 3W offset from
this address is the address of S1.

SI unlinks the I/O request, reports the I/O
request as complete and IOQ processing continues

SI exits the interrupt level without unlinking
the I/O request and reporting the I/O as complete.
It then initiates error retry or collects sense data.

Rl IOQ address for S1.UNLNK

R2 DCA address

2.3.7 SI.UNLNK Routine

The SI. UNLNK routine unlinks the IOQ entry from the UDT and reports I/O complete
to MPX-32. SI.UNLNK is entered with the interrupt level active. SI.UNLNK is also
entered when a device times out due to a kill request or if a device malfunctions.

Entry Conditions

calling Sequence

BU SI.UNLNK

Registers

R 1 IOQ address

R2 DCA address

R7 IQ. return address

2·8 H.DCSCI Structures and Entry Points

["~"

I(~/

c

Entry Points

Exit Conditions

Return Sequence

Continues with remainder of SI logic.

Registers

Registers are not changed.

2.4 SI.Exit Routine

The SI.EXIT routine continues driving the 10Q and exits the interrupt level. SI.EXIT
is entered with the interrupt level active.

Entry Conditions

Calling Sequence

BU SI.EXIT

Registers

R2 DCA address

Exit Conditions

Return Sequence

Continues with remainder of SI logic.

Registers

Registers remain unchanged.

2.4.1 Entry Point LI.XIO - Lost Interrupt Processor

S.IOCS5 calls LIJGO to take corrective measures when an expected interrupt fails to
occur. It is also called from H.IOCS,38 when a kill request is issued to a task and the
task has an I/O operation in progress. In both cases, the I/O request terminates with
an HIO instruction. If the controller responds to the HIO instruction, SI.A performs
the required interrupt handling. LUGO performs the following:

• activates the interrupt level

• increments the lost interrupt count (if LI.XIO is entered due to a lost interrupt)

• issues the mo if it has not already been issued
• LI.XIO blocks external interrupts, deactivates the interrupt level, and returns to the.

calling routine.

• clears outstanding I/O queue entries

MPX-32 Technical Volume II 2-9

51.Exit Routine

If the HIO instruction has already been issued but fails to generate an interrupt,
LUQO is entered again and takes the following actions:

• activates the interrupt level

• increments lost interrupt count (if LUQO is entered due to a lost interrupt)

• marks the device as offline and malfunctioning

• unlinks the I/O request from the IOQ

• reports the I/O request as complete with errors (if the HIO instruction was issued
because of a lost interrupt)

• branches and links to IQ.XIO.l to clear any pending I/O requests to the failing
device

• blocks external interrupts, deactivates the interrupt level, and returns to calling
routine

Entry Conditions

Calling Sequence

BL *4W,Xl

Registers

RO return address

Xl contains the HAT address. The 4W offset from
this address is the address of LI.xIO.

R3 UDT address of device to halt

Exit Conditions

Return Sequence

TRSW RO

Registers

Registers remain unchanged.

2.4.2 Entry POint PX. - Post-Transfer Processor

2-10

S.IOCS 1 calls entry point PX. to perform processing after completion of the I/O
request and before returning to the requesting task. px. executes at the task priority
and with low system overhead.

H.DCSCI Structures and Entry Points

c

(

SI.Exit Routine

Entry Conditions

Calling Sequence

BL *5W,X2 X2 contains the HAT address. The 5W offset from
this address is the address of PX.

Registers

Rl FCB address

R2 HAT address

R3 UDT address

Exit Conditions

Return Sequence

TRSW RO

Registers

R 1 FCB address

Notes:

If an advance file or a backspace file request is issued, px. updates the current
position in the FAT.

. If a read track label zero request is issued, H.OCSCI builds a dummy record that
specifies the number of logical blocks available on the disk. This record also specifies
that the highest available disk block is defective. This is necessary because SCSI
disks do not support the read track label zero request

If an open request is performed, H.DCSCI fills in the sectors per track field
(UDT.SPJ') in the UDT.

MPX-32 Technical Volume II 2-11

SI.Exit Routine

2.4.3 Entry Point SG. - SYSGEN Initialization

SYSGEN calls entry point SG. to initialize certain handler parameters and data
structures during the construction of an MPX-32 image. One DCA is initialized for
each UDT entry containing the name of the handler. SYSGEN overlays any
remaining DCA's and the remainder of the code in H.DCSCI. SG. updates the DCA
with the default time out for VO. SG. also updates the CHT, CDT, and the UDT to
identify the device as a SCSI disk.

Entry Conditions

Calling Sequence

BL *6W,XI

Registers

Not applicable.

Exit Conditions

Return Sequence

Xl is the HAT address. The 6W offset from this
address is the address of SG.

M.XIR standard handler SYSGEN exit macro

Registers

Registers are not changed.

2·12 H.Dcscr Structures and Entry POints

3 H.DCSCllssuing 1/0 Operations

3.1 Overview

There are two ways to issue If 0 operations to a SCSI disk drive via H.DCSCI:
device-dependent I/O and device-independent I/O. Both methods use the same data
structures, channel commands, and CPU instructions.

With device-dependent If 0, the user performs direct channel I/O to the SCSI disk
drive via H.DCSCI. The user builds a channel program that H.OCSCI accesses with a
physical or logical address. The user also builds an accompanying SCSI command
data block (CDB) if there is a transfer command packet (TCP) channel command in
the channel program. To initiate the If 0 operation, the user issues an execute channel
program (EXCPM) request.

With device-independent If 0, the user initiates If 0 operations by issuing service
(SVC) calls to the I/O control system (lOCS). IOCS verifies the logical address that
the user places in the task's file control block (FCB) and links the If 0 request to
H.DCSCI. H.DCSCI then constructs the necessary channel program and CDB and
issues the appropriate CPU instruction to initiate the I/O operation.

This section discusses CPU instructions, channel commands, IOCS service calls, and
error processing. For more information about issuing If 0 operations, refer to the
Resource AssignmentJAllocation and IJO chapter in Volume I of the MPX-32
Reference Manual.

3.2 CPU Instructions

H.DCSCI uses CPU instructions to perform If 0 to an MFP. The CPU instructions
have the following format:

o 5 6 8 9 12 13 15 16

Opcode. Register. Instruction. Augurnent code. Constant.
See Note 1. See Note 2. See Note 3. See Note 4.

Notes:

l. Bits 0-5 specify the hexadecimal operation code O-FC.

2. Bits 6-8 specify the general purpose register. When these bits are nonzero, the
register contents are added to the constant specified in bits 16-31 to form the
logical channel and subaddress.

3. Bits 13-15 specify the augment code up to hexadecimal 7.

31

4. ~its 16-31 specify a constant that is added to the contents of the register specified
by bits 6-8. This forms the logical channel and subaddress. If bits 6-8 are zero,
this field specifies the logical channel and subaddress.

MPX·32 Technical Volume II 3·1

CPU Instructions

The MFP generates a condition code to report the result of a CPU instruction.
Following are the possible condition codes:

Condition
Code

0001

0010

0011

1000

Meaning

Channel busy - request denied because channel
internal process queue is full.

Channel inoperative or undefined - request denied
because channel is not present, functional, or
defined.

Sub channel busy - request denied because of
outstanding halt 110 (HIO), stop 110 (STPIO), or
clear queue instruction.

Request accepted and queued - the CPU instruction
was accepted by the channel for execution.

Table 3-1 lists and the following text describes the CPU instructions.

Instruction

Table 3-1
CPU Instructions

activate channel interrupt (ACI)
clear queue
deactivate channel interrupt (DACI)
disable channel interrupt (DCI)
enable channel interrupt (ECl)
halt I/O (RIO)
resetchanneIORSCFn{L)
reset controller (RSCTL)
start I/O (SIO)
stop I/O (STPIO)
test I/O (TIO)

Hex
Opcode

E
7
F
D
C
6
5
8
2
4
3

3.2.1 Activate Channel Interrupt (ACI)

The ACI instruction causes the MFP to assert its interrupt priority level and actively
contend for recognition from the CPU. While contending for recognition, the channel
cannot request another interrupt

3.2.2 Clear Queue

3·2

The clear queue instruction tenninates all outstanding 110 operations for the specified
subaddress. The current operation tenninates with channel end and device end status.
Queued operations tenninate with channel end, device end, and unit exception status
to indicate that they were not initiated.

H.DCSCI Issuing 1/0 Operations

c

(

CPU Instructions

3.2.3 Deactivate Channel Interrupt (DACI)

The DACI instruction causes the MFP to suspend contention for interrupt priority. If
an interrupt request is queued and enabled, the channel may now issue an interrupt.

3.2.4 Disable Channel Interrupt (DCI)

The DCI instruction prevents the MFP from requesting interrupts from the CPU.

3.2.5 Enable Channel Interrupt (ECI)

The ECI instruction allows the MFP to request interrupts from the CPU.

3.2.6 Halt 1/0 (HIO)

The HIO instruction causes the MFP to terminate an 110 operation and post a status
doubleword that contains device end (DE) and channel end (CE) status.

3.2.7 Reset Channel (RSCHNL)

The RSCHNL instruction causes the MFP to stop operation, reset all activity, and
become idle. RSCHNL resets all subchannels and any requesting or active interrupt
levels.

3.2.8 Reset Controller (RSCTL)

The RSCTL instruction causes the addressed sub channel to terminate an 110
operation. If the subchannel is hung, RSCTL resets the device so that 110 operation
may resume. If the addressed subchannel is not currently being serviced, RSCTL
clears the 110 request. The MFP presents any pending status for the addressed
subchannel to the CPU. RSCTL does not generate final status.

3.2.9 Start 1/0 {SIO}

The SIO instruction initiates an I/O operation to the specified channel or subchannel.
If this channel or subchannel is present and available, it accepts the SIO instruction.
The channel or subchannel then perfonns the 110 operation specified by the SIO
instruction. If the I/O operation cannot be started, the MFP returns the appropriate
condition codes and status.

3.2.10 Stop I/O (STPIO)

The STPIO instruction tenninates the 110 operation at the addressed subchannel when
the current channel command has been executed. STPIO resets the data chain and
command chain flags, and the MFP returns the appropriate condition codes and status.

MPX-32 Technical Volume II 3-3

CPU Instructions

3.2.11 Test 1/0 (TIO)

The TIO instruction verifies the current state of the channel or subchannel and clears
pending interrupt conditions. The MFP returns condition codes that reflect the status
of the cha~el and addressed subchannel.

3.3 Channel Commands

3-4

Channel commands contain the information required for data transfers. This
information includes the type of operation, the address in CPU memory where data is
to be moved to or from, flags that indicate to the MFP what to do after completing
execution of the channel command, and the amount of data (in bytes) to transfer.

Channel commands are specified in I/O command doubleword (IOCD) format as
follows:

o 7 8 15 16 23 24

Word 1 Command Data address
opcode
See Note 1.

2 Flags Byte count
See Note 2.

Notes:

1. The command opcode field specifies the command to be executed.

2. The flags are defined as follows:

.1!L
o
1
2
3
4

5-15

Meaning when set

data chain
command chain
suppress incorrect length
skip read data
post program-controlled interrupt
not used (must be zero)

31

H.DCSCI Issuing 110 Operations

o

(

('

Channel Commands

Table 3-2 lists and the following text describes the channel commands that can be
issued for a SCSI disk.

Table 3-2
H.DCSCI Channel Commands

Command Opcode

channel control x'80'
initialize channel x'OO'
initialize subaddress x'FO'
inquiry x'B3'
no operation x'03'
read capacity x'53'
read x'02'
reassign block x'13'
release x'C3'
reserve x'A3'
rezero x'37'
seek x'07'
sense x'04'
transfer command packet x'D3'
transfer in channel x'08'
write x'Ol'

3.3.1 Channel Control

The channel control command returns three words of channel information. Word 1 is
the board model number, word 2 is the firmware model number, and word 3 is the
firmware revision level.

3.3.2 Initialize Channel

The initialize channel command transfers disk drive information to the MFP and sets
the status buffer address for the MFP. The status buffer address must be doubleword
bounded and specified in the data address field. The byte count field is ignored. The
initialize channel command, performed by H.DCSCI, must be the first channel
command to any channel that has an MFP configured.

MPX-32 Technical Volume II 3-5

Channel Commands

3.3.3 Initialize Subaddress

The initialize subaddress command initializes several channel operations with the
infonnation from the byte in memory specified by the data address field. The byte
count must be one. Following is the fonnat of the byte:

Bit Meaning when set

o clear SIO queue on error. As each queued
SIO is cleared, termination status is returned
indicating this action. If reset, when a queued
SIO command tenninates in error, continue
processing SIO queue.

1 reserved
2 use drive-specified block size. If reset,

convert logical block size of 256 bytes to
simulate block size of 768.

3-7 reserved

3.3.4 Inquiry

The inquiry command returns infonnation about the device such as the peripheral
device type, vender identification, and device-type qualifier. Refer to ANSI SCSI
Committee Work Document X3T9.2/82.8 for more infonnation about the infonnation
returned for this command.

3.3.5 No Operation

The no operation command is a non-data transfer command that executes without
selecting an associated disk drive. The byte count and data address must be zero.

3.3.6 Read Capacity

The read capacity command returns two words of infonnation. The first word is the
total number of logical blocks on the disk. The second word contains the byte count
of each logical block. The byte count specifies the maximum number of bytes
returned. This command cannot be data chained.

3.3.7 Read

3-6

The read command transfers data from the disk to the address specified in the data
address field. The byte count must be greater than zero.

H.DCSCllssuing I/O Operations

~_c-- _,

\\.J

(

Channel Commands

3.3.8 Reassign Block

The reassign block command reassigns a logical block on the specified disk. The data
address specifies the address of the defect list. The byte count is the length of the
defect list and must be greater than zero. For more information about defect lists,
refer to the ANSI SCSI Committee Work Document X3T9.2/82.8.

3.3.9 Release

The release command releases a reserved device by the reserving CPU. The release is
not issued if more than one task has the device reserved. The data address and byte
count fields are ignored.

3.3.10 Reserve

The reserve command reserves a device to the requesting CPU until a release
command is issued. The data address and byte count fields are ignored.

3.3.11 Rezero

The rezero command loads zero into an internal register. The MFP uses this register
to calculate the next logical block address for a read or wri~ command. The data
address and byte count fields are ignored.

3.3.12 Seek

The seek command loads the specified logical block address into an internal register.
The MFP uses this register to calculate the logical block address for the next read or
write operation. The data address field points to a buffer that contains a 1-, 2-, or 4-
byte logical disk address. This address may specify a byte boundary in memory. The
byte count field indicates that a 1-, 2-, or 4-byte seek address was specified. If one or
two bytes are specified, the remaining bytes of the seek register are filled with zeros.
This command cannot be data chained.

Note: If the logical block size of the media is 256 and a 768 block size emulation is
enabled, the logical block address is multiplied by three before it is saved in
the register.

3.3.13 Sense

The sense command causes H.DCSCI to issue an extended sense command to the
specified device for the number of bytes requested in the byte count field. For more
information about the returned information, refer to ANSI SCSI Committee Working
Document X3T9.2/82.2.

MPX-32 Technical Volume II 3-7

Channel Commands

3.3.14 Transfer Command Packet

The transfer command packet command sends a SCSI CDB to a device. The data
address specifies the address of the CDB built by the user. The byte count specifies
the length of the CDB. If a data transfer is required with the CDB, the command
chain flag must be set. This command must be command chained to a write or a read
command that specifies the data address and byte count.

3.3.15 Transfer in Channel

The transfer in channel command causes IOCD execution to continue at the address
specified in the data address field. A transfer in channel command cannot point to
another transfer in channel command, and it cannot be the first command in a channel
program. The handler uses a transfer in channel command to link channel commands
in the device context area (DCA) to channel commands in the VO queue (IOQ).

3.3.16 Write

3·8

The write command transfers data to the disk from the address specified in the data
address field. The byte count must be greater than zero.

H.DCSCllssuing 1/0 Operations

IOCS Service (SVC) Calls

3.4 ICCS Service (SVC) Calls

Table 3-3 lists the SVC calls, their applicable functions, and the bit setting for the
FCB field FCB.SCFG:

Notes:

Table 3-3
IOCS SVC Calls

Function SVC FCB.SCFG

advance file l,x'34' 0000
advance record l,x'33' 0000
backspace file l,x'36' 0000
backspace record l,x'35' 0000
execute channel program 1,x'25' n/a
format unit l,x'IO' nla
getJremove bad block l,x'OD' 0100
initialize subaddress l,x'3E' 0001
inquiry l,x'OD' 0101
mode select 1,x'38' 0101
mode sense 1,x'38' n/a
open n/a n/a
read capacity l,x'OD' 0110
read data 1,x'31' 0000
read defect data 1,x'3E' 0010
read diagnostic data 1,x'3E' 0011
read extended data l,x'31 ' 0000
readMFP l,x'OD' 0001
reassign block(s) 1,x'3E' 0000
release unit 1,x'27' n/a
reserve unit 1,x'26' 0010
request sense 1,x'35' 0010
rewind 1,x'37' 0010
rezero 1,x'OD' 0011
seek l,x'OD' 0010
send diagnostics l,x'OD' 1000
test unit ready 1,x'OD' 0000
write data ·1,x'32' 0000
write diagnostic data l,x'3E' 0100
write EOF 1,x'38' 0000

Notes

1
3
4
5
6
7

2,8

2
2

2,9
2, 13

2
2, 10

11

2

12
2
2
2

2, 13

1. FCB.IOQA must contain the logical address of the channel program to execute.

2. FCB.ERWA specifies the buffer address. FCB.EQTY specifies the byte count

3. FCB.ERW A specifies the address of the buffer that contains the SCSI command
packet to be sent to the unit. FCB .EQTY specifies the byte count.

4. FCB.ERW A specifies the buffer address. To get and remove a bad block, the
buffer must contain the bad block number.

MPX-32 Technical Volume II 3-9

loes Service (SVC) Calls

5. FCB.ERWA and FCB.EQTY specify the address of the buffer that contains the
initialization parameters and the these parameters, respectively. The byte count
must be one.

6. The byte count specified in FCB.EQTY must be larger than the expected data.
H.DCSCI sets the suppress incorrect length bit.

7. FCB.ERWA specifies the address of the buffer that contains the mode select
parameters. The requestor specifies these parameters. FCB.EQTY specifies the
byte count for the mode select parameter data.

8. The first byte specified by the buffer address in FCB.ERWA is the page code for
the mode sense function. For more information about page codes, refer to ANSI
Committee Working Document X3T9.2/82.2. The byte count specified in
FCB.EQTY must be large enough for the returned data. RDCSCI sets the
suppress incorrect length bit in the read command.

9. The first byte in the buffer specified by the address in FCB.ERW A is the format
of the requested data as follows: x'OO' block format, x'04' bytes from index
format, x'OS' physical format. The byte count specified in FCB.EQTY must be
large enough for the amount of data to be returned. H.DCSCI sets the suppress
incorrect length bit in the read command.

10. The byte count must be from 1 to 12 bytes.

11. FCB.ERWA specifies the address of the buffer that contains the block
addressees). Each block is four bytes. FCB.EQTY specifies the number of
blocks to reassign.

12. FCB.ERWA specifies the address of the buffer that contains the seek argument.
FCB.EQTY specifies the length of the seek argument.

13. FCB.BBA must contain the logical block address.

3.5 Error Processing

3-10

If an I/O operation terminates abnormally, H.OCSCI posts information about the I/O
operation in the FCB. This information is device status in FCB word 3, bits 16
through 31, and sense data in FCB words 11 and 12. For more information about the
status, refer to the status doubleword section in Chapter 2 of this document

The following is a list of the sense data returned for H.OCSCI:

FCB
Word

11

12

BIte

0
1
2
3

0-3

Sense Data Notes

device subaddress
sense key 1
error class/code 2
not used

channel status 3

H.DCSCllssuing 1/0 Operations

()

(
Error Processing

Notes:

1. The values for the sense key byte ~~defined as follows:

Value Meaning

o no sense
1 recovered error
2 not ready
3 medium error
4 hardware error
5 illegal request
6 unit attention
7 data protect
8 blank check
9 vendor unique
A copy aborted
B aborted command
C equal comparison satisfied
D volume overflow
E miscompare
F reserved

2. This specifies extended sense data format. For more information, refer to
ANSI Committee Working Document X3T9.2J82.2.

3. This word contains channel status in bits 0 through 16 and the residual byte
count in bits 17 through 31.

MPX-32 Technical Volume" 3-11/3-12

,if' ---",\
1,_,)

(

Extended I/O Disk Handler (H.DCXIO)

MPX-32 Technical Manual

Volume II

o

o

Contents

-Page

1 H.DCXIO Overview

1.1 General Information .. 1-1
1.2 Disks Supported .. 1-1
1.3 Track Format ... 1-2
1.4 Dual Subchannel I/O ... 1-2
1.5 Multiport Support for XIO Disk Processor Phase II 1-2

1.5.1 Implicit Device Reservation ... 1-2
1.5.2 Explicit Device Reservation ... 1-3

1.6 System Failure in Multiport Environment .. 1-3
1.7 Maximum Byte Transfer and IOCD Generation : 1-3
1.8 Hardware/Software Relationship .. 1-3

2 H.DCXIO Commands

2.1 Extended I/O Commands .. 2-1
2.2 Initialize Channel (mCH) ... 2-2

2.2.1 Drive Attribute Register Layout ... 2-4
2.2.2 Generation of Drive Attribute Registers .. 2-4

2.3 Initialize Controller (mC) .. 2-6
2.4 Sense (SENSE) .. 2-6
2.5 Transfer in Channel (TIC) .. 2-9
2.6 Write Data (WD) ... 2-9
2.7 Write Sector Label (WSL) .. 2-9
2.8 Write Track Label (WTL) ... 2-9
2.9 Read Data (RD) ... 2-10
2.10 Read Sector Label (RSL) .. 2-10
2.11 Read Track Label (R TL) ... 2-10
2.12 Read Angular Position (RAP) ... 2-10
2.13 No Operation ~OP) : .. 2-10
2.14 Seek Cylinder (SKC) .. 2-10
2.15 Format for No Skip cmSK) ... 2-10
2.16 Lock Protect Label (LPL) ... 2-11
2.17 Load Mode Register (LMR) ... 2-11
2.18 Reserve (RES) ... 2-11
2.19 Release (REL) ... 2-11

MPX-32 Technical Volume II iii

Contents

Page

2.20 Rezero (XEZ) .. 2-11
2.21 Test Star (T'ESS) ... 2-11
2.22 Increment Head Address (IRA) .. 2-12
2.23 Priority Override (POR) .. 2-12
2.24 Set Reserve Track Mode (SRM) ... 2-12
2.25 Reset Reserve Track Mode (XRM) .. 2-12
2.26 Read ECC (REC) .. 2-12

3 H.DCXIO Usage

3.1 CPU Instructions ... 3-1
3.2 Condition Codes .. 3-2

3.2.1 SIO Instructions .. 3-3
3.2.2 mo Instructions .. " 3-3
3.2.3 ACI, DACI, RSCTL, RSCHNL, DCI, and ECI Instructions 3-3

3.3 XIO CPU Instructions ... 3-4
3.3.1 Start I/O (SIO) .. 3-4
3.3.2 Test I/O (TIO) ... 3-4
3.3.3 Halt I/O (IDO) .. 3-4
3.3.4 Halt Channel (HCHNL) and Reset Channel (RSCHNL) 3-4
3.3.5 Stop I/O (STPIO) ... : 3-5
3.3.6 Reset Controller (RSCTL) .. 3-5
3.3.7 Enable Channel Interrupt (ECI) ... 3-5
3.3.8 Disable Channel Interrupt (DCI) .. 3-5
3.3.9 Activate Channel Interrupt (AC!) .. 3-5
3.3.10 Deactivate Channel Interrupt (DACI) .. 3-5

3.4 Related Data Structures ... 3-6
3.4.1 Device Context Area (DCA) .. 3-6
3.4.2 Status Doubleword .: : .. 3-8
3.4.3 Input/Output Control Doubleword (IOCD) 3-8
3.4.4 Sense Buffer .. 3-8
3.4.5 IN'CH Buffer ... 3-9
3.4.6 Status Returned to User's FCB .. 3-9

3.5 Handler Entry Points ... 3-9
3.6 Error Processing for Conventional I/O Requests ... 3-9
3.7 XIOIIOP Disk Error Processing ... 3-10

3.7.1 Abort the I/O Request .. 3-10
3.7.2 Retry the I/O Request ... 3-11
3.7.3 Perform Read ECC Correction Logic .. 3-11
3.7.4 Rezero and Retry .. 3-11 C

iv Contents

Contents

(P~

3.8 Floppy Disk Error Processing ... 3-12
3.8.1 Abort the lIO Request .. 3-12
3.8.2 Retry the I/O Request ... 3-12
3.8.3 Rezero and Retry .. 3-12

3.9 Error Processing for Execute Channel Program Requests 3-13
3.10 SYSGEN Considerations .. 3-13
3.11 XIO Disk Processor/lOP Disk Processor Subaddressing 3-13
3.12 Floppy Disk Subaddressing .. 3-13
3.13 Sample XIO Disk Processor SYSGEN Directives 3-14
3.14 Sample lOP Disk Processor SYSGEN Directives 3-15
3.15 Sample Floppy Disk SYSGEN Directives ... 3-15

(

MPX·32 Technical Volume II v

List of Figures

Figure Page

2-1 Initialize Channel I/O Command Doubleword and Buffer 2-3
3-1 Status Returned to User's FCB .. 3-10

vi Contents

List of Tables

Page Table

3-1 XIO Device-Dependent Disk Information .. 3-7

MPX-32 Technical Volume II vii/viii

~(.... " .'
~i

(

(

(

1 H.DCXIO Overview

1.1 General Information

1.2

The Extended I/O Disk Handler (H.DCXIO) is a software component of MPX-32
intended to provide support for Extended I/O Disk Processors (XIO), Input/Output
Disk Processors (lOP), and Floppy Disk Controllers (lOP) connected to an MPX­
based CONCEPT/32 computer.

The product is designed to support any number and mix of extended I/O disk drives
listed below. These include fixed-head disks (FHD), moving-head disks (MHD),
cartridge module drives (CMD), fixed module drives (FMD), minimodule drives
(Winchester) (MMD) and floppy disks.

The design supports IOCS callable I/O service requests as described in the MPX-32
Reference Manual, Volume I.

An execute channel program capability has been incorporated to allow the user to
execute his own IOCD list. Error conditions are detected and noted in the FCB,
however, error correction and error retry are the responsibility of the user. Reserve
and release IOCDs should never be included within an execute channel program
IOCD list. See sections 2.18 and 2.19.

Disks Supported

The lOP disk controller and XIO disk processor Phase I support the single-ported
versions of the following disks. The XIO disk processor Phase II supports both single
and multiported versions of the following disks:

Maximum

Formatted

Encore Data Byte
Manufacturer 10# Type Heads Cylinders Capacity

CDC 9320 MHD 5 823 63.20MB

CDC 9323 MHD 19 823 240.15MB

CDC 8104 FHD 4 64 3.93MB

CDC 8117 CMD 1+1 823 2528MB

CDC 8122 MMD 5 823 6320MB

CDC 8127 MMD 10 823 126.41MB

CDC 8858 MHD 24 711 262. 10MB

CDC 8155 FMD 40 843 517.94MB

CDC 8172 Floppy 2 77 1.02MB

CDC - Control Data Corporation
MHD - removable media, moving-head disk
FHD - captive media, moving-head disk
CMD - cartridge module drive, removable and captive media
FMD - fixed module drive
MMD - minimodule drive (Winchester)

Moving head disks (MHD) and the 600MB fixed module drive are available in both
single and multiport versions.

SYSGEN
Device

Code

MH080

MH300

FHOO5

CD032

MH080

MHI60

MH340

MH600

FLOOl

MPX-32 Technical Volume II 1-1

Disks Supported

The 5-megabyte fixed-head disk (FHD) is by definition a fixed-head device with 256
fixed heads. However, software must treat this unit as a moving-head disk with 64
cylinders and 4 heads. The fixed-head disk can be single or multiported.

A cartridge module drive (CMD) is two devices in one package. The first is the
removable media and the second is the captive media. MPX-32 software dedicates the
even subchannel to the removable media and the odd subchannel to the captive media.
Cartridge module drives only operate in the single-port mode.

1.3 Track Format

The disk processor and lOP disk support two track formats. One format, designated
F16, provides 16 data sectors where each data sector contains storage for 1024 data
bytes. The second format, designated F20, provides 20 data sectors where each data
sector contains 768 data bytes. While the disk processor and lOP disk are capable of
supporting both track formats, only the F20 format is supported by MPX-32.

1.4 Dual Subchannell/O
The disk processor and lOP disk firmware allow two communication paths to each
device. These paths are called subchannels and occur in sequential even and odd
pairs. This is to say that a device with a unit address plug of 1 has software
sub address assignments of 02 and 03. For further information, concerning XIO disk
processor subaddressing refer to section 3.11.

Under MPX-32, dual-subchannel I/O is applicable only to cartridge module drives
where the even subchannel is dedicated to the removable media and the odd
subchannel is dedicated to the captive media. For SYSGEN purposes, this device
must be assigned an even subaddress on the device directive. The odd subaddress is
configured automatically by SYSGEN.

For devices other than cartridge module drives, the odd subchannel address is
unusable and should never be assigned on the SYSGEN DEVICE directive.

1.5 Multiport Support for XIO Disk Processor Phase II

Multiporting allows CPUs to share a single disk drive. In order to maintain disk and
system integrity, mechanisms must exist to prevent the CPUs from accessing the
device at the same time. This is accomplished through device reservation and makes
the device inaccessible to the nonreserving CPU. Device reservation can be implicit
or explicit

1.5.1 Implicit Device Reservation

1·2

Implicit device reservation is a disk processor function and is transparent to the
operating system. If a drive is multiported, the disk processor automatically issues a
reserve command to the device before initiating an I/O request. Once the I/O is
complete, the disk processor issues a release command. An 1/0 request from the
opposing CPU is postponed from the time the reserve is issued until the release is
performed. .

H.DCXIO Overview

I"
'llJ

(
Multiport Support for XIO Disk Processor Phase II

1.5.2 Explicit Device Reservation

Explicit device reservation makes a device inaccess!ble to the opposing CPU for a
user requested period of time. The explicit device reservation is user invoked through
the M.RESP service request The device remains unavailable to the opposing CPU
until the user releases the device through the M.RELP service request. When
performing explicit device reservation, the release timer switch located on the disk
drive must be set to the off position to disable the drive from performing its own
release. This is a drive performed release which is different from the implicit disk
processor release mentioned above. Also, the channel 1 and channel 2 inhibit
switches located on the disk drive must be in the off position. If more than one user
on the same CPU has a device explicitly reserved at the same time, the drive is not
released until the last such user explicitly releases it

1.6 System Failure in Multiport Environment

In a multipart environment, one of the systems may fail while the shared disk is
reserved. If this happens, the shared disk can be accessed by an opposing processor
through the J.UNLOCK system task. See Chapter 3 of the Technical Manual, Volume
I.

1.7 Maximum Byte Transfer and lOCO Generation

The MPX-32 services available for user read and write requests allow for a maximum
transfer of 65K bytes per request Any larger requests are truncated to this amount.

S.lOCS40 processes read and write requests by building the necessary data chained
IOCDs to span map blocks. The number of IOCDs generated for any transfer request
depends on the size of the transfer and the placement buffer within the MAP block.

1.8 Hardware/Software Relationship

The disk handler consists of four parts: H.lFXIO, H.DCXIO, XIO.SUB, and the
DCAs. H.lFXIO is the interrupt fielder and corresponds one for one with the channel.
H.DCXIO is a system reentrant handler that processes device-dependent functions.
XIO.SUB is the XIO common subroutine package the disk handler calls to perform all
common XIO functions. The common XIO subroutine package is described in detail
in the XIO Common Subroutines and Device Handlers chapter. Device context areas
(DCAs) are areas of storage and record keeping and correspond one for one with the
number of subchannels configured. They are physically located at the end of
H.DCXIO.

Up to four disk drives can be connected to any lOP disk controller. The number of
disk controllers configured per system is limited by the number of lOP channels and
mechanical restrictions.

Up to eight disk drives can be connected to any disk processor. The number of disk
processors configured per system is limited by the number of channels and cabinet
space available.

MPX-32 Technical Volume II 1-3/1-4

o

o

(

2 H.DCXIO Commands

2.1 Extended 1/0 Commands

Extended I/O (XIO) provides channel commands for completing I/O requests. All
channel commands have the following IOCD format:

o 7 8 15 16 23 24 31
Word 1 Command code. Absolute data address or TIC

See Note 1. branch address. See Note 2.

2 Flags. Byte count.
See Note 3.

Notes:

1. The command code field defines the operation that is performed during command
execution.

2. The absolute data address must be a 24-bit absolute address. The TIC branch
address must be a 24-bit word-bounded absolute address.

3. Flag bits have the following significance:

Bit Description

o
1
2
3
4

5-15

data chain (DC)
command chain (cq
suppress incorrect length indication (SLI)
skip read data (SKIP)
postprogram controlled interrupt (PPCI)
zero

MPX·32 Technical Volume II 2·1

Extended I/O Commands

2.2

2-2

XIO channel commands are:

Hexadecimal MPX-32 Used by
Channel Command Command Code Service Call MPX Software

initiate channel (INCH) 00 none yes
initialize controller (INC) FF none yes
sense (SENSE) 04 none yes
transfer in channel (TIC) 08 none yes
write data (WD) 01 M.WRIT yes
write sector label (WSL)* 31 none no
write track label (WTL)* 51 none no
read data (RD) 02 M.READ yes
read sector label (RSL)* 32 none no
read track label (RTL) 52 none no
read angular position (RAP)* A2 none no
no operation (NOP) 03 none yes
seek cylinder (SKC) 07 none yes
format for no skip (FNSK) OB none no
lock protected labels (LPL)* 13 none no
load mode register (LMR) IF none yes
reserve (RES)* 23 M.RESP yes
release (REL)* 33 M.RELP yes
rezero (XEZ) 37 none yes
test star (TESS) AB none no
increment head address (IHA) 47 none no
priority override (POR)* 43 none no
set reserve track mode (SRM)* 4F none no
reset reserve track mode (XRM)* SF none no
read ECC (REC) B2 none yes

*These commands are supported only by the XIO disk processor.

Initialize Channel (INCH)

The Initialize Channel (INCH) command relays disk drive information to the disk
processor, declares a buffer area, and makes the declared buffer area available to the
disk processor. INCH must be the first I/O command to any channel that has a disk
processor configured. INCH is performed automatically by the disk handler.

The data address specified in the INCH IOCD points to a 9-word buffer that must
begin on a word boundary. The first word of this 9-word buffer must contain a 24-bit
address that points to a file-bounded 224 word buffer. This buffer is used by the disk
processor for record keeping. The remaining 8 words contain disk drive information
for each configured drive. See Figure 2-1.

H.DCXIO Commands

I . C··."'·'· \)

(

(

Initialize Channel (INCH)

INCH lOCO 00 9-word buffer address

Byte count = 36 1 0

Word 1 224-word buffer address ..
2 Drive attribute register, drive 0

3 Drive attribute register, drive 1

4 Drive attribute register, drive 2

9-Word Bu ffer 5 Drive attribute register, drive 3

6 Drive attribute register, drive 4

7 Drive attribute register, drive 5

8 Drive attribute register, drive 6

9 Drive attribute register, drive 7

224-word buffer-file bounded L ..
J

Figure 2-1
Initialize Channel 1/0 Command Doubleword and Buffer

Note: The above description applies only to the XIO disk processor. The lOP disk
processor and floppy disk are handled differently.

MPX-32 Technical Volume II 2-3

Initialize Channel (INCH)

2.2.1 Drive Attribute Register Layout

o 7 8 15

I Flags.
See Note 1

Sector count.
See Note 2.

Notes:

1. Bit Meaning

0-1 10 = FHD
01 =MHD
11 = MHD with PHD option
00 = reserved

2 1 ... cartridge module drive
3 reserved
4 1 = drive not present

16 23

MHDcount.
See Note 3.

5 1 ... drive is dual-ported (XIO disk processor only)
6-7 zero (reserved for future use)

2. Sector count is the number of sectors per track (20 decimal).

24 31

FHD count.
See Note 4.

3. MHD count is the number of heads on the MHD or the number of heads for the
removable media portion of the cartridge module drive.

o
I

4. PHD count is the number of heads for the captive media portion of the cartridge (~
module drive. "'-J

2.2.2 Generation of Drive Attribute Registers

80 MB single-port moving head disk:

2·4 .

DATAW X'40140500'

Value Meaning

40 moving head disk
14 20 sectors per track
05 5 MHD count
00 zero PHD count

80 MB dual-port moving head disk:

DATAW X'44140500'

Value

44

14
05
00

Meaning

dual-port indication
moving head disk
20 sectors per track
5 MHDcount
zero PHD count o

H.DCXIO Commands

5 MB single-port fixed head disk:

DATAW X'40140400'

Value

40
14
04
00

Meaning

moving head disk
20 sectors per track
4 MHD count
zero FHD count

32 MB cartridge module drive:

DATAW X'20140101'

Value

20
14
01
01

Meaning

cartridge module drive
20 sectors per track
1 removable media count
1 capri ve media count

300 MB single port moving head disk:

DATAW X'40141300'

Value

40
14
13
00

Drive that is not present:

Meaning

moving head disk
20 sectors per track
19 MHD count
zero FHD count

DATAW X'0800000'

Value
u

Meaning

08 drive not present

MPX-32 Technical Volume II

Initialize Channel (INCH)

2-5

Initialize Controller (INC)

2.3 Initialize Controller (INC)

The INC command allows the controller initialization information to be passed to the
lOP disk controller. This information is four words of drive configuration data and is
loaded into the drive attribute registers. The format for the drive configuration data is
the same as format for the drive attribute registers.

2.4 Sense (SENSE)

2-6

The SENSE command retrieves the result of the last SIO processed by a subchannel.
SENSE can also determine certain retry requirements. The results of SENSE are
stored in the DCA structure associated with the device. See section 3.4. Some of the
sense information generated is passed to the user. See section 3.4.5.

The following diagram shows the information returned from a sense command. This
does not apply to the floppy disk. See the Line Printer/Floppy Disk Controller
Technical Manual for sense information.

Word 1

2

3

4

o 7 8 15 16

Cylinder 1 Track

Mode byte. Contents of SENSE buffer register.
See Note 1. See Note 2.

Drive attribute register. See Note 3.

Drive status. I Not used
See Note 4.

23 24 31

.1 Sector

H.DCXIO Commands

(

(-

Notes:

1. Mode byte bit assignments are:

Bit Function

o
1

2
3

4

5

6

7

one implies the drive carriage will be offset
effective only when bit 0 is set to one;
zero implies a positive track offset and
one implies a negative track offset; a
positive offset is an offset toward the
next higher cylinder number
one implies a read timing offset
effective only when bit 2 is set to one;
zero implies that a positive read strobe
timing adjustment will be used; one implies
that a negative read strobe timing adjustment
will be used
one implies diagnostic mode for error correction
code (ECC) generation and checking.
one implies that reserved tracks can be accessed
without causing an error; a zero implies that
reserved track data cannot be written. lOP disks
should be zero.
one implies the associated subchannel (SSC) will
access the captive media portion of a cartridge
module drive (CMD).
one implies the channel functions will use
the RAM buffer for data operations, i.e., buffer
mode is invoked. lOP disks are zero.

Sense (SENSE)

When all mode bits are set to the zero state, data operations occur between main
memory and a moving head disk (MHD); this setting is the normal mode. A halt
channel directive (HCHNL) places all channels in this mode. A halt I/O (HIO)
does not change the selected subchannel' s mode.

MPX-32 Technical Volume II 2-7

Sense (SENSE)

2. Sense buffer register bit assignments are:

Bit ~eaning

8 command rejected
9 intervention requested
10 spare
II. equipment check
12 data check
13 data over or under run
14 disk fonnat error
15 defective track encountered
16 last track flag encountered
17 alternate track
18 write protection error
19 write lock error
20 mode check
21 invalid memory address
22 release fault
23 chaining error
24 lost revolution
25 disk addressing or seek error
26 buffer check
27 ECC error in sector label
28 ECC error in data
29 ECC error in track label
30 reserve track access error
31 uncorrectable ECC

Note: Bits 18-19,21-23,26, and 30 are not applicable for lOP disks.
3. Drive attribute register. See section 2.2.1 in this chapter for further details.

o
2-8 H.DCXIO Commands

(

Sense (SENSE)

4. Drive status bit assignments are:

Bit Meaning

o seek end
1 unit selected
2 sector pulse counter bit 0
3 sector pulse counter bit 1
4 sector pulse counter bit 2
5 sector pulse counter bit 3
6 sector pulse counter bit 4
7 sector pulse counter bit 5
8 disk drive detected a fault
9 seek error
10 on cylinder
11 unit ready
12 write protected
13 drive is busy
14 spare

. 15 spare

Note: Bits 2-7 and 13 are not applicable for lOP disks.

2.5 Transfer in Channel (TIC)

The TIC command causes input/output command double word (IOCD) execution to
continue at the address specified in the TIC command. TIC serves as a branch for
IOCD execution. A TIC command cannot point to another TIC command and TIC
cannot be the first command in an IOCD list TIC is used by the handler to link
IOCDs in the device context area to IOCDs in the I/O queue (IOQ). See the DCA
infonnation in section 3.4.

2.6 Write Data (WO)

The WD command is a user write request that transfers data to the disk from the
address specified in the IOCD.

2.7 Write Sector Label (WSL)

The WSL command writes sector labels to the disk. WSL is not currently used by the
disk handler.

2.8 Write Track Label (WTL)

The WTL command writes track labels to the disk. WTL is not currently used by the
disk handler.

MPX-32 Technical Volume II 2-9

Read Data (RD)

2.9 Read Data (RD)

The RD command transfers data from the disk to the address specified in the IOCD.
RD is used in the user read request.

2.10 Read Sector Label (RSL)

The RSL command reads sector labels from the disk. RSL is not currently used by
the disk handler.

2.11 Read Track Label (RTL)

The RTL command reads track labels from the disk. RTL is not currently used by the
disk handler.

2.12 Read Angular Position (RAP)

The RAP command reads the sector pulse counter from the disk. RAP is not
currently used by the disk handler.

2.13 No Operation (NOP)

The NOP command is a nondata transfer command that executes without an
associated disk drive. A nonzero transfer count gi.ves incorrect length status on
completion of the command.

Completed read data IOCDs within the I/O queue (IOQ) IOCD list are changed to
NOP commands at entry point SI. of H.DCXIO when performing error correction
code (ECC) logic.

2.14 Seek Cylinder (SKC)

The SKC command causes a disk head seek or select to the specified cylinder, track,
and sector. The address specified in SKC points to a memory word which contains
the following:

o 1516 2324 31

Cylinder Track Sector

Entry point OP. of H.DCXIO computes the cylinder, track, and sector address for
user requested reads and writes, and stores this information into the IOQ. SJOCS12
is then called to build the seek IOCD and store it into the IOQ.

2.15 Format for No Skip (FNSK)

2·10

The FNSK command is used to format a disk. FNSK is not currently used by the disk
handler.

H.DCXIO Commands

tf" '0)

Lock Protect Label (LPL)

2.16 Lock Protect Label (LPL)

The LPL command involves write lock. LPL is not currently used by the disk
handler.

2.17 Load Mode Register (LMR)

The LMR command identifies a byte of information that specifies the manner in
which I/O is to take place with the disk. The address specified in the input/output
control doubleword (lOCD) points to this byte of information which is physically
located in the I/O queue. See section 2.4 in this chapter, word 2, byte a of the sense
information, for interpretation of the mode bits. The disk handler automatically
generates LMR as the first IOCD presented for disk access user requests. LMR
physically resides in the IOQ.

2.18 Reserve (RES)

The RES command causes a device to be reserved to the requesting CPU until such
time as a release (REL) is issued. RES is user callable through the M.RESP service
routine and is associated with dual-port operations. Execute channel programs must
never include a reserve command and should use the M.RESP service routine when
device reservation is desired. RES is a functional NOP for the lOP disk controller.

2.19 Release (REL)

The REL command causes a reserved device to be released by the reserving CPU.
The release is not issued if more than one task has the device reserved. REL is user
callable through the M.RELP service routine and is associated with dual-port
operations. Execute channel programs must never include a release command and
should use the M.RELP service routine when device release is desired. REL is a
functional NOP for the lOP disk controller.

2.20 Rezero (XEZ)

The XEZ command is a recalibration request to the disk which resets the drive's seek
logic and causes the drive to locate cylinder and track zero. Entry point SI. of
H.OCXIO uses XEZ to recover from seek and drive fault errors. XEZ is in the device
context area (DCA).

2.2·1 Test Star (TESS)

The TESS command compares the currently addressed cylinder, track, and sector to
that specified by the Test Star IOeD. TESS can skip the next sequential IOCD.
TESS is not currently used by the disk handler.

MPX-32 Technical Volume II 2·11

Increment Head Address (IHA)

2.22 Increment Head Address (IHA)

The IHA command selects sector zero of the next sequential track in the associated
disk drive. IHA is not currently used by the disk handler.

2.23 Priority Override (POR)

The POR command provides a mechanism for overriding and disabling dual-ported
disk drive reserve functions. The drive specified in POR is reserved for the requesting
channel until the channel releases the drive. POR is not currently used by the disk
handler.

2.24 Set Reserve Track Mode {SRM}

The SRM command allows all data areas designated as reserve tracks to be read or
written. The reserve track mode jumper must be set on the Device Interface Adapter
(DIA) board. SRM is not currently used by the disk handler.

2.25 Reset Reserve Track Mode (XRM)

The XRM command makes all data areas designated as reserve tracks unavialable for
write operations. XRM is not currently used by the disk handler.

2.26 Read ECC (REC)

2-12

The REC command causes the disk processorlIOP disk to compute and present error
correction information needed to recover from a disk read error. The information
returned to the address specified in the REC lOCO contains:

o 15 16 31
I Displacement. See Note 1. I Correction Mask. See Note 2. I

Notes:

1. Displacement is the number of bits from the end of the last sector transferred to
the last bit in the field found to contain the error.

2. Correction mask is a 9-bit mask that corrects of inaccurate memory data.

REC recovers from data errors at entry point SI. of H.DCXIO.

H.DCXIO Commands

3 H.DCXIO Usage

3.1 CPU Instructions

The extended I/O (XIO) philosophy provides CPU instructions for accomplishing I/O
requests. All CPU instructions have the following format:

o 5 6 8 9 12 13 15 16 31

Opcode. Register. Instruction code. Augment code. Constant
See Note 1. See Note 2. See Note 3. See Note 4.

Notes:

1. Bits 0-5 specify the hexadecimal operation code O-PC.
2. Bits 6-8 specify the general register. When these bits are nonzero, the register

contents are added to a constant to form the logical channel and subaddress.

3. Bits 13-15 specify the augment code up to a hexadecimal 7.

4. Bits 16-31 specify a constant that is added to the contents of the register to form
the logical channel and subaddress. If the register is zero, only constant is used
to specify the logical channel and subaddress.

MPX·32 Technical Volume II 3·1

Condition Codes

3.2 Condition Codes

3-2

Condition codes are generated for all extended VO instructions and indicate if the
initiation of an I/O instruction was successful. For extended I/O, the four nonnal
condition code bits are interpreted as a four bit hexadecimal number ranging from 0 to
F. The following are the 16 possible condition code responses to an extended I/O
instruction.

Hexadecimal
Condition code value Meaning

CCI CC2 CC3 CC4

0 0 0 0 0 accepted will echo
0 0 0 I 1 channel busy
0 0 1 0 2 channel inoperable or undefined
0 0 1 1 3 subchannel busy
0 1 0 0 4 status stored
0 1 0 1 5 unsupported transaction
0 1 1 0 6 unassigned
0 1 1 1 7 unassigned
1 0 0 0 8 request accepted
1 0 0 1 9 unassigned
1 0 I 0 A unassigned
1 0 1 I B unassigned
1 1 0 0 C unassigned
1 1 0 1 D unassigned
1 1 I 0 E unassigned
1 1 I 1 F unassigned

Condition code checking within the disk handler varies depending on the instruction
issued.

H.DCXIO Usage

Condition Codes

3.2.1 SIO Instructions

The following are condition code checking and disk handler actions perfonned by the
common XIO subroutines.

Hexadecimal
instruction Codes

o
1

2

3
4

5

6-7

8

9-F

3.2.2 HIO Instructions

Hexadecimal
instruction codes

Meaning

request accepted

channel busy

channel inoperative
or undefined

subchannel busy

status stored

unsupported
transaction

unassigned

request accepted

unassigned

Action

Action

continue nonnal processing

delay, then reissue request

set operator intervention bit, show
error condition for FCB, abort I/O request

exit handler, wait for interrupt

branch to XIO.SUB and process
as if an interrupt occurred

show error condition for FCB,
abort the I/O request

show error condition for FCB, abort
the I/O request

continue nonnal processing

show error condition for FCB, abort
the I/O request

4

Meaning

status stored branch to XIO.SUB and process
as though an interrupt had occurred

No other condition codes are checked.

3.2.3 ACI, DACI, RSCTL, RSCHNL, DCI, and ECllnstructions

No condition codes are checked.

MPX·32 Technical Volume \I 3·3

XIO CPU Instructions

3.3 XIO CPU Instructions .

Hexadecimal
InstnIction Codes

2
3
6
5
5
4
8
C
D
E
F

Description

start I/O (SIO)
test I/O (TIO)
halt I/O (HIO)
halt channel (HCHNL)
reset channel (RSCHNL)
stop I/O (STPIO)
reset controller (RSCI'L)
enable channel interrupt (ECI)
disable channel interrupt (DCI)
activate channel interrupt (ACI)
deactivate channel interrupt (DACI)

3.3.1 Start 1/0 (SIO)

The SIO instruction begins I/O execution if the subchannel number is valid and the
channel has no pending final status. If the channel has pending final status, the SIO
instruction is rejected with a status stored condition code response. Because there is
no indicator of I/O completion, the status stored response is the same as an interrupt
status presentation. SIO is used by entry point IQ. of XIO.SUB.

3.3.2 Test 1/0 (TIO)

Test I/O (TIO) instruction tests controller status and returns appropriate condition
codes and status reflecting the state of the channel and addressed subchannel. TIO is
used by entry point SI. of XIO.SUB before exiting the interrupt level.

3.3.3 Halt 1/0 (HIO)

The mo instruction terminates all activities in a specific subchannel at the end of its
current sector. HIO does not halt I/O on a malfunctioning device. HIO does not
affect subchannels other than the subchannel addressed; however, HIO generates a
status stored response if status is pending in any of the channel's subchannels and it
rejects the HIO instruction. Because there is no indicator of I/O completion, the status
stored response is the same as an interrupt status presentation. HIO is used by entry
point LI. of XIO.SUB to recover from I/O requests that time· out

3.3.4 Halt Channel (HCHNL) and Reset Channel (RSCHNL)

3-4

The HCHNL and reset channel (RSCHNL) instructions are the same and terminate all
activity in the channel. Before issuing HCHNL or RSCHL, an INCH command must
be performed. See section 2.2 in this chapter for further details. The RSCHNL
instruction is used by the initialization entry point of H.IFXIO.

H.DCXIO Usage

o

C·
i I

XIO CPU Instructions

3.3.5 Stop 1/0 (STPIO)

The STPIO instruction performs a termination of an IOCD list by stopping IOCD
execution at the completion of the current IOCD. STPIO applies only to the
addressed subchannel; however, if there is pending status for any sub channel
associated with the addressed channel, STPIO is not executed and a status stored
condition code response is returned. Because there is no indicator of I/O completion,
the status stored response is the same as an interrupt status presentation. STPIO is not
used by the disk handler.

3.3.6 Reset Controller (RSCTL)

The RSCTL instruction causes the addressed subchannel to immediately terminate its
I/O operation. If the subchannel is in a hung condition, the device is reset so that I/O
operations can resume. RSCTL is always accepted, never generates a status stored
response, and never generates an interrupt. RSCTL is used at initialization entry point
of H.IFXIO before issuing the INCH command.

3.3.7 Enable Channel Interrupt (ECI)

The ECI instruction causes the addressed channel to enable request interrupts from the
CPU. ECI is used at initialization entry point of H.IFXIO after issuing the INCH
command.

3.3.8 Disable Channel Interrupt (DCI)

The DCI instruction causes the addressed channel to disable requesting interrupts from
the CPU. DCI is used at initialization entry point of H.IFXIO before issuing the
INCH command.

3.3.9 Activate Channel Interrupt (ACI)

The ACI instruction causes the addressed channel to begin actively contending with
other interrupt levels. This prevents the addressed channel level and all lower priority
levels from requesting an interrupt. ACI is used by XIO.SUB to protect certain
sensitive code paths.

3.3.10 Deactivate Channel Interrupt (DAel)

The DACI instruction causes the addressed channel to remove its interrupt level from
contention. DACI is used by XIO.SUB before entry points SI. and IQ. exiting.

MPX·32 Technical Volume II 3·5

Related Data Structures

3.4 Related Data Structures

This section outlines the data structures used by the disk handler. Information on the
following data structures is located in the MPX-32 Technical Manual Volume I,
Chapter 2:

• I/O queue (IOQ)

• unit definition table (UDT)

• controller definition table (COT)

• file control block (FCB)

• file assignment table (FAT)

3.4.1 Device Context Area (DCA)

3-6

A DCA is a data structure that exists for each subchannel and serves as a storage area
for sub channel and subchannel operation information. The DCA contains a common
section and a device-dependent section. See the MPX-32 Technical Manual, Volume
I, Chapter 2 for a description of the common section.

H.DCXIO Usage

Related Data Structures

(-
Table 3-1

XIO Device-Dependent Disk Information

Hex
Word Byte

o 15 16 31

36-37 90 Rezero lOCO used for error retry (DCA.REZO)

38-39 98 TIe lOCO used with rezero (DCA. TIC)

40-41 AO Load mode lOCO prototype (DCA.LMOD)

42-43 A8 Read EeC lOCO (DCA.RECC)

44 BO ECC data buffer (DCA.ECe)

45 B4 Number of ECC corrections this device (DCA.ECNJ)

46 B8 Bit displacement remainder I Byte displacement
(DCA.BITD) for ECe for ECC (DCA.BYTD)

47 BC Current lOCO address (DCA.A1)

48 CO Last buffer address for previous lOCO (DCA.A2)

49 C4 Start buffer address for current lOCO (DCA.A3)

50 C8 Address of end of erring sector (DCA.A4)

51 CC Address of erring halfword (DCA. AS)

52 DO Number of bytes transferred for current lOCO (DCA.Bl)

(53 D4

54 08

End of current lOCO buffer (DCA.B2)

Stams save cell for ECC logic (DCA.WST3)

55 DC Stams save cell for ECC logic (DCA.WST4)

56 EO Sector/cylinder for disk (DCA.SCYL)

57 E4 EOF buffer for nondata transfer command (DCA.EOFB)

58 E8 Address of initialize controller routine (DCA.INCA)

59 EC Not used (DCA.UNUl/DCA.UNU2)
60
61 F4 Number of uncorrectable lIO errors this device (DCA.UREC)

62 F8 NOP lOCO for error retry (DCA.NOP)
63
64 100 NOP TIC lOCO for error retry (DCA.NOPT)

MPX-32 Technical Volume II 3-7

Related Data Structures

3.4.2 Status Doubleword

A status doubleword is used each time an interrupt is generated or as a result of the
status stored response to a SIO or HIO instruction. It has the following fonnat:

o 8 9 15 16

Word 1 Subchannel. IOCD Address.
See Note 1. See Note 2.

2 Status. Residual Byte Count
See Note 3. See Note 4.

Notes:

1. Subchannel is the subchannel address of interrupting device.

2. IOCD address points 8 bytes past the last IOCD processed.

3. Status bits are defined as follows:

Bit Definition

o ECHO (ECHO)
1 program controlled interrupt (PCI)
2 incorrect length (lL)
3 program check (PCK)
4 channel data check (CDC)
5 channel control check (CCC)
6 interface control check (ICC)
7 chaining check (CC)
8 device busy (DB)
9 status modified (SM)
10 controller end (CNE)
11 attention (ATT)
12 channel end (CE)
13 device end (DE)
14 unit check (UC)
15 unit exception (UE)

4. Residual byte count is the number of bytes not transferred for the last IOCD
processed.

31

3.4.3 Input/Output Control Doubleword (lOCO)

See section 2.1 in this chapter for infonnation on the input/output control double word.

3.4.4 Sense Buffer

See section 2.4 in this chapter for infonnation on the SENSE buffer.

3·8 H.DCXIO Usage

(

(

('

Related Data Structures

3.4.5 INCH Buffer

See section 2.2 in this chapter for information on the INCH buffer.

3.4.6 Status Returned to User's FCB

The handler places the following information into the IOQ. This information is
relayed to the user's file control block (FCB) by 10CS. Not all sense information is
returned to the user by the handler.

3.5 Handler Entry Points

3.6

See XIO Common Subroutine Package and Handlers (H.XIOS) in the MPX-32
Technical Manual, Volume II, the XIO Common Subroutines and Device Handlers
Chapter for a description of XIO device-dependent entry points.

Error Processing for Conventional 1/0 Requests

When an 110 operation completes, the 16 status bits presented in the status
doubleword are checked for error conditions. If only channel end (CE) and device end
(DE) are presented, the I/O operation is considered complete with no errors and
normal post-access processing is continued. If other bits are found to be set, the
common routine issues a sense command for additional information about the error.
The sense infonnation is stored in the device context area (DCA). See section 2.4.
The status bits, sense bits~ and drive status bits are then interrogated to determine the
appropriate action as shown in Figure 3-1.

100 WORD BECOMES FCB woRp

SPECIAL Brrs I STATUS STATUS .. SPECIAL BITS I STATUS
SET BY HANDLER Brrs SeT BY HANDLER Brrs IOO.IOST FCB.SELa

CONTENTS OF
seNSE BUFFER·

MODE SENSE BUFFER
WOR02

BYTE REGISTER
IOO.IST'

STATUS I RESIDUAL
STATUS WORD 2

BITS BYTE COUNT

COMPUTED BY

IOO.!ST2

NUMBER OF BYTES HANDLER
10Q.UTRN TRANSFERRED

• FOR THE ELOPPY DISC, THIS IS SENSE BYTES 0·3.
(SEE FLOPPY DISC CONTROLLER TECHNICAL MANUAL).

NOTE:

CONTENTS OF .. MODE SENSE BUFFER BYTE REGISTER
FCB.IST'

STATUS I RESIDUAL
Brrs BYTE COUNT

FCB.!ST2

NUMBER OF BYTES
TRANSFERRED FCB.RECL

FOR EXECUTE CHANNEL PROGRAM REQUESTS, IOO.lSTl CONTAINS STATUS WORD 1 AND IOO.UTRN IS INVALID.

_ Figure 3-1
Status Returned to User's FeB

MPX"'32 Technical Volume II 3-9

Error Processing for Conventional 1/0 Requests

3.7 XIO/IOP Disk Error Processing

3.7.1 Abort the 1/0 Request

3·10

The following status bits, sense bits, and drive status bits abort the I/O request:

Status Bit Meaning

3 program check
. 4 channel data check
5 channel control check
6 interface control check
7 chaining check

Sense Bit Meaning
8 command reject
9 operator intervention required*
10 spare
11' equipment check
12 data check
14 disk format error
18 write protect error**
19 write lock error
20 mode check
21 invalid memory address
23 chaining error
30 reserve track access error

Drive Status Bit Meaning
12 write protected**

* This condition also causes the device inoperable bit (4) in word 3 of the FeB to be
set

** If I/O request is a write, this condition also causes the write protect violation bit
(3) in word 3 of the FeB to be set

The above errors set the error condition found bit (1) in word 3 of the FeB. This
indicates to the user that the 1/0 operation completed abnormally. I/O requests that
time-out are aborted with the time-out bit set in the FeB.

H.OCXIO Usage

o

XIO/IOP Disk Error Processing

3.7.2 Retry the 1/0 Request

The following sense bits cause five retries of the entire IOeD list. If this fails, rezero
and retry are perfonned.

Sense Bit

13
14
27
29
31

Meaning

data over or under run
disk fonnat error
Eee error in sector label
Eee error in track label
uncorrectable Eee

3.7.3 Perform Read ECC Correction Logic

The following sense bit causes ECC logic to be perfonned:

Sense Bit

28
Meaning

ECe error in data

When an Eee error in data is detected, the read ECC command is issued to obtain
correction infonnation. The infonnation is invalid if the status returned from the read
ECC command contains other than channel end (CE) and device end (DE) or if the bit
displacement exceeds the sector size. If the infonnation is invalid, the error correction
logic is bypassed and error retry is initiated as per section 3.7.2.

When the correction infonnation is valid, the bit displacement locates the address of
the erring bits. If the address is outside the user's buffer, no error correcting takes
place and the I/O request is considered complete without error. If the address is
within the user's buffer, the data is corrected. The IOCD list is then modified to begin
data transfer from the point of interruption and the I/O transfer is continued.

3.7.4 Rezero and Retry

The following sense bit and drive status bits cause drive recalibration and retry of the
whole IOCD list (maximum of 5 times):

Sense Bit Meaning

25 disk addressing or seek error

Drive Status Bit Meaning

8 disk drive detected a fault
9 seek error

If error retry is unsuccessful, the error condition found bit (1) in word 3 of the FeB is
set. This indicates that the I/O operation completed abnonnally. The sense bits and
drive status bits not listed do not affect nonnal postaccess processing.

MPX-32 Technical Volume II 3-11

Floppy Disk Error Processing

3.8 Floppy Disk Error Processing

3.8.1 Abort the 1/0 Request

The following status bits and sense bits abort the I/O request:

Status Bit

3
4
5
6
7

Sense Bit

Meaning

program check
channel data check
channel control check
interface control check
chaining check

Meaning

o command reject
1 intervention requested
3 equipment check
6 illegal address
9 write protected

The above errors set the error condition found bit (1) in word 3 of the FCB indicating
that the 110 operation completed abnonnally. 110 requests which time-out are aborted
with the time-out bit set in the FCB.

3.8.2 Retry the 1/0 Request

The following sense bits cause five retries of the whole lOCO list. If this fails, rezero
and retry is performed.

Sense Bit

2
4
7
8
13
15

Meaning

bus out check
data check
ID address mark
illegal ST ARlfonnat register
overrunlunderrun
ID address mark

3.8.3 Rezero and Retry

3-12

The following sense bit causes drive recalibration and retry of the whole lOCO list,
maximum of five times:

Sense Bit

5

Meaning

overrun

If error retry is unsuccessful, the error condition found bit 1 in word 3 of the FCB is
set indicating that the 110 operation completed abnormally.

H.DCXIO Usage

o

(
Error Processing for Execute Channel Program Requests

3.9 Error Processing for Execute Channel Program Requests

It is not possible to perform error processing for execute channel programs at the
handler level. Information returned consists of status words 1 and 2 passed to FCB
words 11 and 12. If bits other than channel end (CE) and device end (DE) are
present, bit 1, error condition found, of word 3 in the FCB is set. Bits 16-31 of word
3 are valid. Sense information is returned as described in the MPX-32 Reference
Manual Volume I, Chapter 5. Error correction and error retry are the responsibility of
the user.

3.10 SYSGEN Considerations

3.11

SYSGEN CONTROLLER and DEVICE directives are used to define XIO disks
configured in an MPX-32 system. See Volume III of the MPX-32 Reference Manual
for details.

XIO Disk Processor/lOP Disk Processor Subaddressing

Each disk drive attached to an XIO disk processor or lOP disk processor is assigned a
unique device subaddress. This device sub address is determined by a plug installed in
the drive or by switches contained in the drive. Plug or switch values range from 0 to
7. The device subaddress specified in the SYSGEN DEVICE directive is the plug or
switch value (0 to 7) multiplied by two and converted to its hexadecimal equivalent.
For example, plug or switch value 7 is specified as 'E'. Therefore, only even
subaddresses may be specified in SYSGEN DEVICE directives. If more than one
device is specified in the directive, the increment field (INC) must be specified and
must be an even number.

Cartridge module drives also conform to the above rules. Because a cartridge module
drive is two drives in one cabinet, the captive media portion of the drive is
automatically configured by SYSGEN to be the odd subaddress following the even
subaddress (removable medium) specified in the DEVICE directive. MPX-32 treats
the captive media as a fixed head disk (DF). All direct references to the captive media
portion of a cartridge module drive must specify fixed head disk (DF) as the device
type code.

3.12 Floppy Disk Subaddressing

Valid floppy disk sub addresses are limited to 0 and 1. Either one or two SYSGEN
DEVICE directives can be used when specifying floppy disks. If one DEVICE
directive is used to configure two devices, the Count field (n) of the DEVICE directive
must be two and the increment field (INC) must be one or omitted.

MPX·32 Technical Volume II 3·13

Sample XIO Disk Processor SYSGEN Directives

3.13 Sample XIO Disk Processor SYSGEN Directives

3·14

1. CONTROLLER=DM08,PRLQRITY=09,CLASS=F,MUX=XIO,-
HANDLER=(H.IFXIO,I)

2. DEVICE=00,DTC=DM,HANDLER=(H.DCXIO,S),DISC=MH080

3. DEVICE=(02,2,2),DTC=DM,DISC=MH300

4. DEVICE=06,DTC=DM,DISC=CD032

5. DEVICE=(08,2,2),DTC=DM,DISC=CD032

6. DEVICE=OC,DTC=DM,DISC=(MH080,D)

1. The CONTROLLER directive specifies an F-cIass XIO disk processor on
channel 08 at priority level 09. The handler name (interrupt fielder) is
H. IFXIO and is channel reentrant, one copy per channel.

2. This DEVICE directive specifies an 80MB moving head disk assigned to
sub address 00. The handler is H. DCXIO and is system reentrant (one copy per
system).

3. This DEVICE directive specifies two 300MB moving head disks assigned to
subaddresses 02 and 04.

4. This DEVICE directive specifies a 32MB cartridge module drive whose
removable media is assigned to subaddress 06. The captive media is assigned
to sub address 07 automatically by SYSGEN.

5. This DEVICE directive specifies two 32MB cartridge module drives whose
removable media are assigned subaddresses 08 and OA. Their captive media
are assigned subaddresses 09 and OB automatically by SYSGEN.

6. This DEVICE directive specifies an 80MB dual ported moving head disk
assigned to subaddress ~C.

H.DCXIO Usage

o

(-'

('

Sample lOP Disk Processor SYSGEN Directives

3.14 Sample lOP Disk Processor SYSGEN Directives

1. CONTROLLER=DM7E,PRlORlTY=13,CLASS=F,MUX=lOP,SUBCH=E,­
HANDLER";'-(H. lFXlO, I)

2. DEVlCE=EO,DTC=DM,HANDLER=(H.DCXlO,S),DlSC=MH080

3. DEVlCE~E2,DTC=DM,DlSC=CD032

1. The CONTROLLER directive specifies an F-class lOP disk processor on
channel 7E at priority level 13. The handler name, interrupt fielder, is
H. lFXlO and is channel reentrant, one copy per channel.

2. This DEVICE directive specifies an 80MB moving head disk assigned to
controller address E and device subaddress O. The handler is H. DCXIO and is
system reentrant, one copy per system.

3. This DEVICE directive specifies a 32MB cartridge module drive assigned to
controller address E. The removable media is assigned to device subaddress 2
and the captive media is assigned to device sub address 3 automatically by
SYSGEN.

3.15 Sample Floppy Disk SYSGEN Directives

1. CONTROLLER=LF7E,PRIORITY=13,CLASS-F,MUX=IOP,SUBCH=F,­
HANDLER=(H. IFXIO, I)

2. DEVICE=FO,DTC=FL,HANDLER=(H.DCXIO,S),DISC=FL001

3. DEVICE=F1,DTC=FL,DISC=FL001
or

4. DEVICE=(FO,2,1),DTC=FL,HANDLER-(H.DCXIO,S),DISC=FL001

1. The CONTROLLER directive specifies an F-class lOP line printer/floppy disk
on channel 7E at priority 13. The handler name, interrupt fielder, is
H. IFXIO and is channel reentrant, one copy per channel.

2. This DEVICE directive specifies a floppy disk assigned to controller address F
and device subaddress O. The handler is H. DCXIO and is system reentrant, one
copy per system.

3. This DEVICE directive specifies a floppy disk assigned to controller address F
and device subaddress 1.

4. This DEVICE directive specifies two floppy disks assigned to controller address
F. The floppy disks are assigned device subaddresses of 0 arid 1. The handler
name is H. DCXIO and is channel reentrant, one copy per system.

MPX·32 Technical Volume II 3·15/3·16

,0' 'v

o

(

High Speed Disk Handler (H.DPXIO)

MPX-32 Technical Manual

Volume II

(Contents

Page

1 H.DPXIO Overview

1.1 General Information .. 1-1
1.2 Disks Supported .. 1-2
1.3 Track Format ... 1-2
1.4 Dual Subchannel I/O ... 1-2
1.5 Dual Port Support for HSDPs ... 1-2

1.5.1 Implicit Device Reservation ... 1-2
1.5.2 Explicit Device Reservation ... 1-3

1.6 System Failure in Dual Port Environment ... 1-3
1.7 Maximum Byte Transfer and I/O Command Doubleword Generation 1-3
1.8 Hardware/Software Relationship .. 1-3

2 H.DPXIO Commands

2.1 Extended I/O Commands .. 2-1
2.2 Initialize Channel (INCH) ... 2-2

(2.3 Initialize Controller (INC) .. 2-5
2.4 Sense .. 2-5
2.5 Transfer in Channel (TIC) .. 2-8
2.6 Write Data (WD) ... 2-8
2.7 Write Sector Label (WSL) .. 2-8
2.8 Write Track Label (Wn) ... 2-8
2.9 Read Data (RD) ... 2-8
2.10 Read Express Bus With ECC (RE) ... ~ 2-8
2.11 Read Express Bus With No ECC (RENO) ... 2-8
2.12 Read Sector Label (RSL) .. 2-8
2.13 Read Vendor Label (RVL) .. 2-8
2.14 Read Track I..abel (RTL) ... 2-9
2.15 Read Angular Position (RAP) ... 2-9
2.16 No Operation (NOP) .. .' 2-9
2.17 Seek Cylinder, Track, and Sector (SKC) .. 2-9
2.18 Format Track (FMT) ... 2-9
2.19 Load Mode Register (LMR) ... 2-9
2.20 Reserve (RES) .. 2-10
2.21 Release (REL) ... 2-10

MPX·32 Technical Volume II iii

Contents

Page

2.22 Increment Head Address (IRA) .. 2-10
2.23 Priority Override (POR) .. 2-10
2.24 Read ECC (REC) .. 2-10

3 H.DPXIO Usage

iv

3.1 CPU Instructions ... 3-1
3.2 Condition Codes .. 3-2
3.3 Extended lIO CPU Instructions .. 3-2

3.3.1 Start I/O (SID) .. : 3-3
3.3.2 Test liD (TID) ... 3-3
3.3.3 Halt liD (IDO) .. 3-3
3.3.4 Halt Channel (HCHNL) and Reset Channel (RSCHNL) 3-4
3.3.5 Stop I/O (STPIO) .. 3-<4-
3.3.6 Reset Controller (RSCT'L) .. .' ... 3-4
3.3.7 Enable Channel Interrupt (ECI) ... 3-4
3.3.8 Disable Channel Interrupt (DCI) .. 3-4
3.3.9 Activate Channel Interrupt CACI) .. 3-5
3.3.10 Deactivate Channel Interrupt (DACI) .. 3-5

3.4 Related Data Structures ... 3-5
3.4.1 Device Context Area (DCA) .. 3-6
3.4.2 Status Doubleword ... 3-7
3.4.3 liD Command Doubleword (IOCD) .. 3-7
3.4.4 Sense Buffer .. 3-7
3.4.5 mCH Buffer ... 3-8

3.5 Handler Entry Points ... 3-8
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.5.10
3.5.11
3.5.12
3.5.13
3.5.14
3.5.15

Entry Point OP. - Opcode Processor .. 3-8
I/O Queue (IOQ) Driver ... 3-9
Entry Point IQ.XIO .. 3-10
Entry Point IQ.XIO.1 ... 3-11
Service Interrupt Processor .. 3-11
Entry Point SI.A ... 3-12
SI. UNLNK Routine .. 3-13
SI.EXIT Routine ... 3-14
Conditional Service Interrupt Processing 3-15
Normal Completion or Status Checking Inhibited 3-15
Channel End with No Device End ... 3-16
Normal Sense Command with IOQ ... 3-16
Unexpected Interrupt .. 3-16
Device Time Out .. 3-17
Entry Point LI.XIO - Lost Interrupt Processor 3-17 .

Contents

(

3.6
3.7

3.8
3.9
3.10
3.11

Contents

Page

3.5.16 Entry Point PX. - Post-Transfer Processing 3-18
3.5.17 Entry Point SG. - SYSGEN Initialization 3-19
Error Processing for Conventional lIO Requests 3-20
HSDP Error Processing ... 3-21
3.7.1 Abort the 1/0 Request .. 3-21
3.7.2 Retry the lIO Request ... 3-22
3.7.3 Perform Read ECC Correction Logic .. 3-22
3.7.4 Rezero and Retry .. 3-22
Error Processing for Execute Channel Program Requests 3-23
SYSGEN Considerations .. 3-23
HSDP Subaddressing .. 3-23
Sample HSDP SYSGEN Directives ... 3-23

MPX·32 Technical Volume II v

· List of Figures

Figure Page

1-1 Simplified Software Block Diagram .. 1-1
2-1 IN"CH IOCD and Buffer .. 2-3
3-1 Status Returned to User's FCB ...•........ 3-20

o
vi Contents

(~

(-

(

List of Tables

Table

3-1
3-2
3-3

Page

CPU Instructions ... 3-2
HSDP Device-Dependent Disk Information .. 3-6
Interrupts and Responses by SLA .. 3-15

MPX-32 Technical Volume II vii/viii

('

(

(

1 H.DPXIO Overview

1.1 General Information

The high speed disk handler (H.DPXIO) provides support for high speed disk
processors (HSDPs) connected to an MPX-32 based CONCEPT/32 computer.

H.DPXlO supports:

• any number and mix of extended I/O disk drives
• I/O control system (lOCS) callable I/O service requests as described in Volume I of

the MPX-32 Reference Manual

• direct channel I/O with the execute channel program (EXCPM) request as described
in Volume I of the ~X-32 Reference Manual

The handler consists of the common XIO subroutine package (XIO.SUB), the device
handler logic (H.DPXIO), the interrupto fielder (H.IFXlO), and the device context area
(DCA). Figure 1-1 presents a simplified overview of the relationship between these
components and the operating system.

~
PRE·DEVICE ACCESS

PROCESSING

• ~
COMMON

PRE·START II 0
PROCESSING

• 1:i...QfXIQ
DEVICE DEPENDENT

PRE·START 1/0
PROCESSING

+
.I::1..QfXIQ

ISSUE START II 0
TO DEVICE

+
~

REPORT II 0
STARTING

..

" '.
"

usJ I/O
UEST REO

.....
....

"
'"

"

" " .. -.
" ",

"

" "
" ... ,

.Q!;A
DATA AREA

CONTAINING
DEVICE

IN FORMA TION

Figure 1-1

.
I
51

INTER RUPT

" "
"

.
",

",
"
'" .•..

"

.

'"
" .,

"

Simplified Software Block Diagram

MPX·32 Technical Volume II

J::J.J.rnQ.
AELDTHE

INTERRUPT

t
mSl.!.6.

COMMON POST
INTERRUPT

PROCESSING

• J::i..QfXIQ
DEVICE DEPENDENT

POST INTERRUPT
PROCESSING

• H QPXIO
EXIT

INTERRUPT
LEVEL

t
~

REPORTIIO
COMPLETE

1·1

Disks Supported

1.2 Disks Supported

1.3

The HSDP supports single and dual ported ve.,ions of the following disks:

Maximum

Fonnatted SYSGEN
Encore Data Byte Device

Manufacturer 10# Type Sectors Heads Cylinders Capacity Code

CDC 8138 RSD 22 5 823 690527,040 any

Fujitsu 8884 FMD 30 20 842 400,926,720 any

Fujitsu 8887 FMD 45 10 823 284,428,800 any

CDC 8888 XMD 54 16 1064 732,168,192 any

Fujitsu 8889 FMD 45 20 842 581,990,400 any

CDC - Control Data Corporation

RSD - removable storage drives

XMD - extended module drives

FMD - fixed module drives

Track Format

The HSDP supports variable track fonnats, where each data sector contains 768 data
bytes. Allocation units are a factor of the track sectoring.

1.4 Dual Subchannel I/O

The HSDP firmware allows two communication paths to each device. These paths are
called subchannels and occur in sequential even and odd pairs. For example. a device
with a unit address plug of 1 has software sub address assignments of 02 and 03.

1.5 Dual Port Support for HSDPs

Dual porting allows CPUs to share a disk drive. To maintain disk and system
integrity. the CPUs cannot access the device at the same time. This is accomplished
through device reservation, which makes the device inaccessible to the nonreserving
CPU. Device reservation can be implicit or explicit

1.5.1 Implicit Device Reservation

1·2

Implicit device reservation is a HSDP function that is transparent to the operating
system. If a drive is dual ported. the HSDP automatically issues a reserve command
to the device before initiating an I/O request. Once the 110 is complete, the HSDP
issu~s a release command. An I/O request from the opposing CPU is postponed from
the time the HSDP issues the reserve until the release is performed. For more
information about the reserve and release commands, refer to section 2.19 and 2.20.

H.DPXIO Overview

'.' 0:·"·· '.

(

Dual Port Support for HSDPs

1.5.2 Explicit Device Reservation

Explicit device reservation makes a device inaccessible to the opposing CPU for the
requested time period. The explicit device reservation is invoked through the
M.RESP service request. The device remains unavailable to the opposing CPU until
the device is released with the M.RELP service request. When performing explicit
device reservation, the release timer switch on the disk drive must be off to disable the
drive from performing its own release. This is a drive-performed release, which is
different from the implicit HSDP release. Also, the channel 1 and channel 2 inhibit
switches on the disk drive must be off.

If more than one user on the same CPU has a device explicitly reserved at the same
time, the drive is not released until the last such user explicitly releases it.

1.6 System Failure in Dual Port Environment

1.7

In a dual-port environment, a system may fail while the shared disk is reserved. If
this happens, an opposing processor can access the shared disk through the
lUNLOCK system task. For more information, refer to Chapter 3 of the Technical
Manual, Volume 1. .

Maximum Byte Transfer and I/O Command Doubleword
Generation

The MPX-32 services available for user read and write requests allow for a maximum
transfer of 65K bytes per request Any larger requests are truncated to 65K bytes.

S.IOCS40 processes read and write requests by building the necessary data-chained
IJO command doublewords (IOCDs) to span map blocks. The number of IOCDs
generated for a transfer request depends on the size of the transfer and the placement
buffer within the MAP block.

1.8 Hardware/Software Relationship

The handler consists of H.IFXIO, H.DPXIO, XIO.SUB, and the device context areas
(DCAs). H.IFXIO is the interrupt fielder and corresponds one-to-one with the
channel. H.DPXIO is a system reentrant handler that processes device-dependent
functions. XIO.SUB is the extended I/O common subroutine package the handler
calls to perform all extended I/O functions. DCAs are areas of storage and record
keeping and correspond one-to-one with the number of subchannels configured. They
are physically located at the end of H.DPXIO.

Up to eight disk drives can be connected to any HSDP. (Four disk drives are
normally supported; however, there is an eight drive option available.) The number of
HSDPs configured per system is limited by the number of channels and cabinet space
available.

MPX-32 Technical Volume II 1-3/1-4

o

o

('

(

2 H.DPXIO Commands

2.1 Extended 1/0 Commands

Extended I/O provides channel commands for completing I/O requests. All channel
commands have the following I/O command doubleword (IOCD) format:

o 7 8 15 16 23 24

Word 1 Command code. Absolute data address or transfer
See Note 1. in channel (TIC) branch address.

See Note 2.

2 Flags. See Note 3. I Byte count See Note 4.

Notes:

1. The command code defines the operation that is performed during command
execution.

2. The absolute data address must be a 24-bit absolute address. The TIC branch
address must be a 24-bit, word-bounded, absolute address.

3. The flags are defined as follows:

Bit

o
1
2
3
4
5-15

Descri ption

data chain (DC)
command chain CCC)
suppress incorrect length (SIL)
skip read data (SKIP)
post program-controlled interrupt (PPCI)
zero

4. The byte count specifies the amount of data (in bytes) to transfer.

MPX-32 Technical Volume II

31

2-1

Extended 1/0 Commands

2.2

2·2

Following are the extended I/O channel commands:

Hexadecimal MPX-32 Used by
Channel Command Command Code Service Call MPX Software

Initiate channel (INCH) 00 none
Initialize controller (INC) FF none
Sense 04 none
Transfer in channel (TIC) 08 none
Write data (WD) 01 M.WRIT
Write sector label (WSL) 31 none
Write track fonnat (WTF) 41 none
Write track label (WTL) 51 none
Read data (RD) 02 M.READ
Read express bus with ECC (RE) 12 none
Read express bus with no ECC (RENO) 22 none
Read sector label (RSL) 32 none
Read vendor label (RVL) 42 none
Read track label (RTL) 52 none
Read angular position (RAP) A2 none
No operation (NOP) 03 none
Seek cylinder, track. and sector (SKC) 07 none
Format track (FMT) OB none
Load mode register (LMR) IF none
Reserve (RES) 23 M.RESP
Release (REL) 33 M.RELP
Rezero (XEZ) 37 none
Increment head address (IHA) 47 none
Priority override (FOR) 43 none
Read ECC (REC) B2 none

Initialize Channel (INCH)

The INCH command transfers disk drive information to the HSDP, declares a buffer
area, and makes the declared buffer area available to the HSDP. INCH must be the
first IOCD to any channel that has an HSDP configured. INCH is performed
automatically by the handler.

The data address specified in the INCH IOCD points to a 9-word buffer that must
begin on a word boundary. The first word of this 9-word buffer must contain a 24-bit
address that points to a file-bounded, 224-word buffer. The HSDP uses this buffer for
record keeping. The remaining 8 words contain disk drive information for each
configured drive. See Figure 2-1.

yes
yes
yes
yes
yes
no
no
no
yes
no
no
no
no
no
no
yes
yes
no
yes
yes
yes
yes
no
no
yes

H.DPXIO Commands

[~
/:1' '\

~i

Initialize Channel (INCH)

INCH lOCO 00 9-word buffer address

Byte count = 3610

Word 1 224-word buffer address-L

2 Drive attribute register, drive 0

3 Drive attribute register, drive 1

4 Drive attribute register, drive 2

9-Word Bu ffer 5 Drive attribute register, drive 3

6 Drive attribute register, drive 4

7 Drive attribute register, drive 5

8 Drive attribute register, drive 6

(
9 Drive attribute register, drive 7

224-word buffer-file bounded I ..
1

Figure 2-1
INCH lOCO and Buffer

Following is the format of the drive attribute register:

o 7 8 15 16 23 24 31

I
Flags. See Sector count See MHD count. See Reserved (zero)

Note 1. Note 2. Note 3.

(

MPX·32 Technical Volume II 2·3

"

Initialize Channel (INCH)

2-4

Notes:

1. The flags are assigned as follows:

2.

Bit ~eaning

0-1 drive type:
00 = reserved
01 = MHD
10 = reserved
11 = reserved

2-3 optimize seeks:
00 = optimize seeks and post IOCLs out of order
01 = optimize seeks and post IOCLs in order
10 = do not optimize seeks
11 == do not optimize seeks

4 drive present:
0= yes
1 = no

5 dual port:
o =no
1 == yes

6-7 sector size:
00 - 768 bytes
01 - 1024 bytes
10 - 2048 bytes
11 - reserved

Sector count is the number of sectors per track. This count is variable and
drive-dependent.

3. MHD count is the number of heads on the drive.

The following examples show the declaration of drive attribute registers.

80 ~ single-port moving head disk:

DATAW X' 40 160500'

Value ~eaning

40 moving head disk, optimize seeks and post out of order, drive
present. not dual ported, 768 byte sector size

16 22 sectors per track
05 5 MHO count
00 reserved, zero

H.DPXIO Commands

Initialize Channel (INCH)

80 MB dual-port moving head disk:

DATAW X'64160500'

Value

64

16
05
00

Meaning

moving head disk, do not optimize seeks,
dual ported, 768 byte sector size
22 sectors per track
5 MHD count
reserved, zero

Drive that is not present:

DATAW X'0800000'

Value

08

Meaning

drive not present

2.3. Initialize Controller (INC)

The INC command allows the controller initialization information to be passed to the
HSDP. This information is 8 words of drive configuration data and is loaded into the
drive attribute registers. The format for the drive configuration data is the same as
format for the drive attribute registers.

2.4 Sense

The sense command retrieves the results of the last SIO processed by a subchannel.
The sense command also determines retry requirements. The results of a sense
command are stored in the DCA structure associated with the device. Some of the
sense information is passed to the user. The following shows the format of the
information returned from a sense command.

o 7 8 15 16 23 24 31

Word 1

2

Cylinder

Mode byte.
See Note l.

Drive atttibute register.

I Track

Contents of sense buffer register.
See Note 2.

See Note 3. 3

4 Drive status. See Note 4. I Not used

MPX-32 Technical Volume II

I Sector

2-5

Sense

2·6

Notes:

1. Mode byte bit assignments are:

Bit Function

o one implies the drive carriage is offset
1 effective only when bit 0 is set to one,

zero implies a positive track offset, and
one implies a negative track offset
a positive offset is an offset toward the
next higher cylinder number

2 one implies a read timing offset
3 effective only when bit 2 is set to one,

zero implies that a positive read strobe timing adjustment
one implies that a negative read strobe timing adjustment

4 one implies diagnostic mode for error correction
code (ECC) generation and checking

5 controls the transfer of an ID during
express bus read commands,
zero implies this function is enabled

6 enables auto retry according to the firmware auto retry algorithms,
zero implies enabled

7 disables the subchannel from interacting with the disk drive.
(for diagnostics use only)
zero implies disabled

When all mode bits are zero, data operations occur between maih memory and a
moving head disk (MHD); this setting is the normal mode. A halt channel (HCHNL)
instruction places all channels in this mode. A halt 110 (mO) instruction does not
change the selected subchannel's mode. For more information about the HIO and
HCHNL instructions. refer to section 3.3.3 and 3.3.4 respectively.

H.DPXIO Commands

o

. I 0"

Sense

2. Sense buffer register bit assignments are:

Bit Meaning
8 command rejected
9 intervention requested
10 unit select error
11 equipment check
12 reserved (zero)
13 reserved (zero)
14 disk format error
15 defective track encountered
16 reserved (zero)
17 at alternate track
18 write protection error
19 write lock error
20 mode check
21 invalid memory address
22 release fault
23 chaining error
24 lost revolution
25 disk addressing or seek error
26 reserved (zero)
27 reserved (zero)
28 ECC error in data
29 reserved (zero)

(
30 reserved (zero)
31 uncorrectable ECC

3. Drive attribute register. For more information, refer to section 2.2 in this chapter.
4. Drive status bit assignments are:

Bit Meaning

o seek end
1 unit selected
2 sector pulse counter bit 0
3 sector pulse counter bit 1
4 sector pulse counter bit 2
5 sector pulse counter bit 3
6 sector pulse counter bit 4
7 sector pulse counter bit 5
8 disk drive detected a fault
9 seek error
10 on cylinder
11 unit ready
12 write protected
13 drive is busy
14 reserved (zero)
15 reserved (zero)

MPX·32 Technical Volume II 2·7

Transfer in Channel (TIC)

2.5 Transfer in Channel (TIC)

The TIC c9mmand causes lOCO execution to continue at the address specified in the
TIC command. TIC serves as a branch for lOCO execution. A TIC command cannot
point to another TIC command and cannot be the first command in an lOCO list
(IOCL). The handler uses a TIC command to link lOCOs in the device context area
(DCA) to lOCOs in the I/O queue (lOQ). See the DCA information in Section 3.4.

2.6 Write Data (WD)

The WD command transfers data to the disk from the address specified in the IOCD.

2.7 Write Sector Label (WSL)

The WSL command writes sector labels to the disk. WSL is not currently used by the
handler.

2.8 Write Track Label (WTL)
The WTL command writes track labels to the disk. WTL is not currently used by the
handler.

2.9 Read Data (RD)
The RD command transfers data from the disk to the address specified in the IOCD.
RD is used in a user read request.

2.10 Read Express Bus With ECC (RE)

The RE command reads data from the disk to the express bus. If an ECC error
occurs, the sector in error is not transferred to the express bus.

2.11 Read Express Bus With NoECC (RENO)

The RENO command reads data from the disk to the express bus. Any ECC errors
are ignored.

2.12 Read Sector Label (RSL)

The RSL command reads sector labels from the disk. RSL is not currently used by
the disk handler.

2.13 Read Vendor Label (RVL)
The RVL command reads a vendor label from the disk to memory.

2·8 H.DPXIO Commands

(

c:

Read Track Label (RTL)

2.14 Read Track Label (RTL)

The RTL command reads track labels from the disk. RTL is not currently used by the
handler.

2.15 Read Angular Position (RAP)
The RAP command reads the sector pulse counter from the disk. RAP is not
currently used by the handler. ~

2.16 No Operation (NOP)

The NOP command is a non-data transfer command that executes without selecting an
associated disk drive. A nonzero transfer count gives incorrect length status on
completion of the command.

2.17 Seek Cylinder, Track, and Sector (SKC)

The SKC command causes a disk head seek or select to the specified cylinder, track,
and sector. The address in the SKC points to a memory word which contains the
following:

o 15 16 23 24 31

Cylinder Track Sector

Entry point OP. of H.DPXIO computes the cylinder, track, and sector address
for user requested reads and writes, and stores this information into the IOQ.
S.IOCS12 is then called to build the SKC IOCD and store it into the IOQ.
For more information about OP., refer to section 3.5.1.

2.18 Format Track (FMT)

The FMf command formats a track on the disk. FMT is not currently used by the
handler.

2.19 Load Mode Register (LMR)

The LMR command points to a byte of information that specifies the mode in which
I/O is to take place with the disk. The address specified in the LMR IOCD points to
this byte of information which is physically located in the IOQ. For a description of
the mode bits, refer to section 2.4. The handler automatically generates LMR as the
first IOCD presented for disk access user requests. LMR physically resides in the
IOQ.

MPX-32 Technical Volume II 2-9

Reserve (RES)

2.20 Reserve (RES)

The RES command reserves a device to the requesting CPU until a release (REL)
command is issued. RES can be called with the M.RESP service routine and is
associated with dual-port operations. Execute channel program requests must never
include a RES command; instead use the M.RESP service routine to reserve a device.

2.21 Release (REL)

The REL command releases a reserved device by the reserving CPU. The release is
not issued if more than one task has the device reserved. REL can be called with the
M.RELP service routine and is associated with dual-port operations.· Execute channel
program requests must never include a REL command; instead use the M.RELP
service routine to release a device.

2.22 Increment Head Address (IHA)

The IHA command selects sector zero of the next sequential track in the associated
disk drive. IRA is not currently used by the handler.

2.23 Priority Override (POR)

The POR command overrides and disables dual-ported disk drive reserve functions.
The drive specified in POR is reserved for the requesting channel until the channel
releases the drive. paR is not currently used by the handler.

2.24 Read ECC (REC)

2-10

The REC command causes the HSDP to compute and present error correction
information needed to recover from a disk read error. The information returned to the
address specified in the REC IOCD contains:

o 15 16 31

Displacement See Note 1. I Correction Mask. See Note 2.

Notes:

1. Displacement is the number of bits from the end of the last sector transferred to
the last bit in the field found to contain the error.

2. Correction mask is an II-bit mask that corrects inaccurate memory data.

REC recovers from data errors at entry point SLA of H.DPXIO. For more
information about SLA, refer to section 3.5.6.

H.DPXIO Commands

3 H.DPXIO Usage

3.1 CPU Instructions

Extended I/O provides CPU instructions for accomplishing I/O requests. All CPU
instructions have the following format:

o
Opcode.
See Note 1.

Notes:

5 6

Register.
See Note 2.

8 9
Instruction
code

12 13

Augument code.
See Note 3.

1. Bits 0-5 specify the hexadecimal operation code a-Fe.

15 16

Constant.
See Note 4.

2. Bits 6-8 specify the general purpose register. When these bits are nonzero, the
register contents are added to a constant to form the logical channel and
sub address.

3. Bits 13-15 specify the augment code up to hexadecimal 7.

4. Bits 16-31 specify a constant that is added to the contents of R to form the
logical channel and subaddress. If R is zero, this field specifies the logical
channel and sub address.

31

MPX-32 Technical Volume II 3-1

Condition Codes

3.2 Condition Codes

3.3

3-2

Condition codes indicate if the initiation of an I/O instruction was successful. For
extended I/O, the condition code bits are interpretea as a four bit hexadecimal number
from 0 to F. Condition code checking within the handler varies depending on the
instruction issued. The following are the 16 possible condition code responses to an
extended I/O instruction.

Hexadecimal
Condition code value Meaning

CCI CC2 CC3 CC4 --
0 0 0 0 0 unassigned
0 0 0 1 1 unassigned
0 0 1 0 2 channel inoperable or undefined
0 0 1 1 3 subchannel busy
0 1 0 0 4 unassigned
0 1 0 1 5 unsupported transaction

0 1 1 0 6 unassigned
0 1 1 1 7 unassigned
1 0 0 0 8 command accepted
1 0 0 1 9 unassigned
1 0 1 0 A unassigned
1 0 1 1 B unassigned
1 1 0 0 C unassigned
1 1 0 1 D unassigned
1 1 1 0 E unaSSigned
1 1 1 1 F unassigned

Extended 1/0 CPU Instructions

Table 3-1
CPU Instructions

Hexadecimal
Instruction Instruction Code

Start 110 (SIO) 2
Test 110 (110) 3
Halt 1(0 (HIO) 6
Halt channel (HCHNL) S
Reset channel (RSCHNL) S
Stop 110 (STPIO) 4
Reset controller (RSCI'L) 8
Enable channel interrupt (Eel) C
Disable channel interrupt (DC!) D
Activate channel interrupt (ACI) E
Deactivate channel interrupt (DACI) F

H.DPXIO Usage

(~~
" .J

(-

(

3.3.1

3.3.2

Extended 1/0 CPU Instructions

Start 1/0 (510)

The SIO instruction begins I/O execution if the subchannel number is valid. Entry
point IQ.xIO of H.DPXIO issues an S10.

The following are the condition codes and handler actions performed in response to a
SIO instruction.

Condition
code (hex value l Meaning Action

0-1 unassigned show error condition for FCB,
abort the I/O request

2 channel inoperative set operator intervention bit,
or undefined show error condition for FCB,

abort I/O request

3 subchannel busy exit handler, wait for interrupt

4 unassigned show error condition for FCB,
abort the I/O request

5 unsupported show error condition for FCB,
transaction abort the I/O request

6-7 unassigned show error condition for FCB,
abort the I/O request

8 request accepted . continue normal processing

9-F unassigned show error condition for FCB,
abort the I/O request

Test 1/0 (TIO)

The TIO instruction tests controller status and returns appropriate condition codes and
status reflecting the state of the channel and addressed subchannel. Entry point SI.A
of H.DPXIO issues a TIO instruction before exiting the interrupt level.

3.3.3 Halt 1/0 (HIO)

The HIO instruction terminates all activities for the specified subchannel at the end of
its current sector. HIO does not halt I/O on a malfunctioning device. HIO does not
affect subchannels other than the subchannel addressed; however, HIO generates a
status stored response if status is pending in any of the channel's subchannels and it
rejects the HIO instruction. Because there is no indicator of I/O completion, the status
stored response is the same as an interrupt status presentation. Entry point LI.XIO of
H.DPXIO uses a HIO instruction to recover from I/O requests that time out.

MPX·32 Technical Volume II 3·3

Extended 1/0 CPU Instructions

The following is the condition code and handler action performed in response to a
HIO instruction.

Condition
code (hex value)

4
Meaning
status stored

Action
branch to SI. processing in the
handler and process as though
an interrupt had occurred

3.3.4 Halt Channel (HCHNL) and Reset Channel (RSCHNL)

The HCHNL and RSCHNL instructions are the same and terminate all activity in the
channel. Before issuing HCHNL or RSCHL, an INCH command must be performed.
See section 2.2 in this chapter. No condition codes are checked with these
instructions. The initialization entry point of H.IFXIO uses a RSCHNL instruction.

3.3.5 Stop 1/0 (STPIO)

The STPIO instruction perfonns an orderly tennination of the current IOCL by
stopping IOCD execution at the completion of the current IOCD. STPIO applies only
to the addressed subchannel. The current IOCL operation terminates, status is posted,
and all queued IOCL entries are deleted. STPIO is not used by the handler.

3.3.6 Reset Controller (RSCTL)

The RSCI'L instruction causes the addressed subchannel to do an orderly tennination
of its 110 operation. If the subchannel is in a hung condition, the device is reset so
that 110 operations can resume. RSCI'L is always accepted, it never generates a status
stored response, or an interrupt. No condition codes are checked with this instruction.
RSCI'L is used at initialization entry point of H.IFXIO before issuing the INCH
command.

3.3.7 Enable Channel Interrupt (ECI)

The ECI instruction causes the addressed channel to enable request interrupts from the
CPU. No condition codes are checked with this instruction. ECI is used at
initialization entry point of H.IFXIO after issuing the INCH command.

3.3.8 Disable Channel Interrupt (DCI)

3-4

The DCI instruction causes the addressed channel to disable requesting interrupts from
the CPU. This instruction does not clear any pending HSDP status. No condition
codes are checked with this instruction. DCI is used at initialization entry point of
H.IFXIO before issuing the INCH command.

H.DPXIO Usage

o

o

('"

(

Extended 1/0 CPU Instructions

3.3.9 Activate Channel Interrupt (ACI)

The ACI instruction causes the addressed channel to begin acp,vely contending with
other intenupt levels. This prevents the addressed channel level and all lower priority
levels from requesting an intenupt. No condition codes are checked with this
instruction. H.DPXIO uses an ACI instruction to protect certain sensitive code paths.

3.3.10 Deactivate Channel Interrupt (DACI)

The DACI instruction causes the addressed channel to remove its intenupt level from
contention. No condition codes are checked with this instruction. H.DPXIO entry
points SI.A and IQ.XIO use a DACI instruction before exiting.

3.4 Related Data Structures

This section outlines the data structures used by the handler. For more information
about the following data structures, refer to the MPX-32 Technical Manual, Volume I,
Chapter 2:

• 1'0 queue (IOQ)
• unit definition table (UDT)
• controller definition table (CDT)

• file control block (FCB)

• file assignment table (FAT)

MPX-32 Technical Volume II 3·5

Related Data Structures

3.4.1 Device Context Area (DCA)

3·6

The DCA is a data structure that stores subchannel operation infonnation. A DCA
exists for each subchannel. The DCA contains a common section and a device­
dependent section. Table 3-2 lists the HSDP device-dependent disk infonnation.
Refer to the MPX-32 Technical Manual, Volume I, Chapter 2 for a description of the
common section.

Table 3·2
HSDP Device-Dependent Disk Information

Hex
Word Byte

o 15 16
36 90 Time out (DCA MAX)
37 94 Mode byte for drive (DCA.MODE)
38/39 98/9C Queue associated with error (DCA.ERRQ)
40/41 AOIA4 Load mode lOCO prototype (DCALMOD)
42143 A8/AC Read ECC lOCO (DCA.RECC)
44 BO ECC data buffer (DCA.ECC)
45 B4 Number of ECC corrections this device (DCA.ECNT)
46 B8 Bit displacement remainder I Byte displacement for ECC

for ECC (DCA.BITD) (DCA.BYTD)
47 BC Current lOCO address (DCA.AI)
48 CO Buffer address for current lOCO (DCA.Al)
49 C4 Buffer address for last lOCO (DCA.A3)
50 C8 Buffer address for previous to last lOCO (DCA.A4)
51 CC Unused sector area last buffer address (DCA.G1)
52 DO Unused sector area buffer count (DCA.CI)
53 D4 Buffer count for current IOCL (DCA.C2)
54 D8 Status save cell for ECC logic (DCA.WST3)
55 DC Status save cell for ECC losdc (DCA.WST4)
56 EO Sector/cylinder for disk (DCA,.sCYL)
57 E4 EOF buffer for nondata transfer command (DCA.EOFB)
58 E8 Address of initialize controller routine (DCA.INCA)
59 EC Buffer count for last IOCL (DCA.C3)
60 FO Save area for subroutine return (DCA.SA VR)
61 F4 Number of uncorrectable I/O errors this device (DCA. UREC)
62 F8 Buffer.count for previous to last lOCI.. (DCA.C4)
63-65 FC-I04 3 word buffer for ECC (DCA.EBUF)

H.DPXIO Usage

31

o

(

(

Related Data Structures

3.4.2 Status Doubleword

A status doubleword reports the result of the last executed IOCD when an I/O
termination occurs. It is generated as a result of an interrupt or a status stored
response to a SIO or HIO instruction. The following shows the status doubleword
format:

Word 0 8 9 15 16 31 .------------------+---------------------------------.
1 Subchannel. See Note 1. I lOCO address. See Note 2.

2 Status. See Note 3. 1 Residual byte count See Note 4.

Notes:

1. Subchannel is the subchannel address of interrupting device.

2. IOCD address points 8 bytes past the last executed IOCD.

3. Status bits are defined as follows:

Bit
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Definition
reserved (zero)
reserved (zero)
incorrect length (IL)
program check (PCK)
channel data check (CDC)
reserved (zero)
reserved (zero)
chaining check (cq
device busy (DB)
reserved (zero)
reserved (zero)
reserved (zero)
channel end (CE)
device end (DE)
unit check (U q
unit exception (UE)

4. Residual byte count is the number of bytes not transferred for the last IOCD
processed.

3.4.3 I/O Command Doubleword (lOCO)

See section 2.1 in this chapter for information about IOCDs.

3.4.4 Sense Buffer

See section 2.4 in this chapter for information about the sense buffer.

MPX·32 Technical Volume II 3·7

Related Data Structures

3.4.5 INCH Buffer

See section 2.2 in this chapter for information about the INCH buffer.

3.5 Handler Entry Points

The handler services I/O requests for the calling routine. (Only one copy of the
handler is configured regardless of the number of devices or channels specified with
the specific device type.) The handler is made part of the resident operating system
and proper linkages are established by naming the handler in the DEVICE statement
within the SYSGEN directive file. The handler consists of the following routines:

• opcode processor (OP.),
• I/O queue driver (IQJOO),

• service input processor (SI.),

• lost interrupt processor (LI.XIO),

• execute channel program opcode processor (XCHANP). For more information
about this processor, refer to the XIO.SUB chapter in the MPX-32 Technical
Manual, Volume II.

The HAT table is the means by which linkages are established between the I/O control
system (H.IOCS) and the I/O processing routines. The handler has six entry points
which are defined in the following HAT table and described in the following sections.

HAT DATAW
ACW
ACW
ACW
ACW
ACW
ACW

6
OP.
IQJ(JO
SI.A
LI.XIO
PX.
SG.

number of entries in table
opcode processor address
I/O queue driver address
service interrupt processor address
lost interrupt processor address
post transfer· processor address
SYSGEN initialization address

3.5.1 Entry Point OP. - Opcode Processor

3·8

Entry point OP. processes the opcode placed in the file control block (FCB) by the
I/O service originally called by the user. It then indicates to H.IOCS,29 what action is
to be taken. (Entry point OP. is a subroutine extension of H.IOCS,29, a portion of
IOCS logic that is common to all I/O services that can initiate a physical device
access.) To indicate what action is to be taken, OP. takes one of the following returns
to H.IOCS,29:

BU

BU

BU

ILOPCODE opcode is illegal for this device

SERVCOMP service complete, no device access required

IOLINK link request to IOQ

H.OPXIO Usage

o

(.

(

Handler Entry Points

If return 3 (lOLINK) is taken, OP. must first:

1. call IOCS subroutine S.IOCS13 to allocate and initialize an IOQ
2. build into the IOQ entry an IOCL with the proper command codes and flags

using IOCS subroutines S.IOCS12 and IOCS entry point R.IOCS,40

Entry Conditions

Calling Sequence

BL *lW,X2

Registers

R 1 FCB address

register X2 contains the address of
the device-dependent handler HA T table.
The one word offset from this address
contains the address of OP.

R2 device-dependent handler HAT address

R3 UDT address

Exit Conditions

Return Sequence

See descriptions of ILOPCODE, SERVCOMP, and IOLINK.

Registers

R 1 FCB address

3.5.2 110 Queue (IOQ) Driver

The IOQ driver issues SIO instructions for the built IOCDs. The HSDP can queue a
maximum of 32 outstanding requests per channel. It has two entry points: IQ.xIO
and IQXIO.1. IQ.XIO and IQ.XIO.l are identical except that IQ.XIO activates the
interrupt level upon entry and deactivates it before exiting. IQ.XIO and IQ.xIO.l
issue an SIO instruction for the first request in the IOQ.

MPX·32 Technical Volume II 3-9

Handler Entry Points

The following is the basic logic sequence within the IOQ queue driver with the entry
points noted: -

• IQ.XIO activates the interrupt level.
• IQ.XIO.l determines which I/O request to process.
• IQ.XIO.2 performs the following:

• checks if the device is online and functioning
• checks for a release request. if there is a request. decrements the reserve count

• gets various I/O request parameters from the IOQ and sets up for an SIO.
These include the time-out value, the IOCL address. and the channel and
subchannel.

• issues an SIO
• examines condition codes presented by the SIO and takes appropriate action
• deactivates the interrupt level if entered at IQ.xIO
• returns to the calling routine

3.5.3 Entry Point IQ.XIO

H.IOCS.29 calls entry point IQ.XIO each time H.lOCS.29 queues an I/O request and,
depending on the queueing scheme, when the channel or device is not busy. It blocks
external in~rrupts and enters IQ.XIO by the calling sequence.

Entry Conditions

calling Sequence

BL *2W,X2

Registers·

RO return address

register X2 contains the device dependent handler
HAT address. The address in the HAT table
points to the subroutine IQ.XIO.

R3 UDT address of the device to start

R7 IOQ address

Exit Conditions

3·10

Return Sequence

DACI
TRSW RO

Registers

R7 IOQ address

deactivate interrupt level
returns to calling routine

H.DPXIO Usage

o

(

(

Handler Entry Points

3.5.4 Entry Point IQ.XIO.1

The SLA entry point calls IQ.xIO.l to drive the IOQ following completion of an I/O
request. The lost interrupt processor (LLXIO) calls IQ.XIO.l to flush the IOQ
following a HIO instruction that timed out. For more information about LI.XIO, refer
to section 3.5.4. IQ.xIO.l is entered with the interrupt level active by the calling
sequence.

Entry Conditions

Calling Sequence

BL

(or)

BU

Registers

IQ.XIO.l

IQ.xIO.l

if return to call is desired

if return is set-up

RO return address (SI.A)

'R3 UDT address of device to start

Exit Conditions

Return Sequence

TRSW RO

Registers

R 1 em address

R2 DCA address

RO is properly set up prior to return if call is
from Ll.XIO

3.5.5 Service Interrupt Processor

The service interrupt processor performs postaccess processing associated with the
device access which just completed. It has one entry point, Sl.A, and two routines,
SI.UNLNK. and SI.EXIT, that perform the following basic logic sequence within the
service interrupt processor:

• SI.A entry point:
• determines which device caused the interrupt (status presentation)

• determines the cause of the interrupt and branches to the appropriate
action

• performs nonnal device-specific postaccess processing

• updates the actual transfer quantity (if required)

• SI.UNLNK routine:
• unlinks the IOQ entry from the IOQ

• deletes the IOQ if a kill request was issued

MPX·32 Technical Volume II 3-11

Handler Entry Points

• repons 110 complete

• continues processing at SI.EXIT

• SI.EXIT routine:

• branches to IQ.xIO.1 to continue driving the IOQ (this mayor may not
return)

• tests for any more status pending and if so, branches back to SI.;
otherwise, deactivates the interrupt level

• exits from the interrupt via S.EXEC5

3.5.6 Entry Point SI.A

Entry point SI.A is entered directly from the XIO interrupt fielder program (H.IFXIO)
to service the interrupts and to perform device-dependent logic. The calling sequence
enters SI.A with the interrupt level active. Device-dependent service interrupt calls
occur:

• when 110 completes normally or when status checking is inhibited

• when status contains channel end with no device end

• following a normal sense command (with IOQ)

• following an unexpected interrupt

• following a device time out

Entry Conditions

Calling Sequence

BU "'3W,X2 X2 is the address of the handler' s HAT

Registers

Rl CHT address

R3 UDT address

3-12 H.OpXIO Usage

~.~.
I .

'~

(

Handler Entry Points

Exit Conditions

Return Sequence

BU

(or)

BU

Registers

SI.UNLNK

SI.EXIT

the I/O request is to be unlinked, reported
complete, and IOQ processing continued

exit the interrupt level without unlinking the
110 request and reporting the I/O complete to
initiate error retry or collect sense information.

Rl IOQ address (required for SI.UNLNK only)

R2 DCA address

3.5.7 SI.UNLNK Routine

The SI.UNLNK routine unlinks the IOQ entry from the UDT and reports I/O complete
to the executive. The calling sequence enters SI.UNLNK with the interrupt level
active. SI.UNLNK is also entered if a device timed out due to a kill command or if a
device malfunctioned.

Entry Conditions

Calling Sequence

BU SI.UNLNK

Registers

Rl IOQ address

R2 DCA address

R7 IQ. return address

Exit Conditions

Return Sequence

Continues with remainder of SI. logic.

MPX-32 Technical Volume II 3·13

Handler Entry Points

3.5.8 SI.EXIT Routine

The SI.EXIT routine continues driving the IOQ and exits the interrupt level. The
calling sequence enters SI.EXIT with the interrupt level active.

Entry Conditions

Calling Sequence

BU SI.EXIT

Registers

R2 DCA address

Exit Conditions

Return Sequence

Continues with remainder of S1. logic.

3·14 H.DPXIO Usage

(

Handler Entry Points

3.5.9 Conditional Service Interrupt Processing

Table 3-3 lists the cause of interrupts and the response by SLA in performing
conditional service interrupt processing.

Table 3-3
Interrupts and Responses by SI.A

Cause of
Interrupt

Channel end with no device end

Device time out

Execute channel program

If 0 request complete with error

Normal sense command with IOQ

Rewind or seek complete

Spurious interrupt when device
is not configured

Spurious interrupt when device
is configured but interrupt is
not expected

Response by SI.A

checks for a reserve request
(if a dual port disk) continues
processing at SI.EXIT

marks unrecoverable error condition in the IOQ;
actual transfer count in IOQ handler continues to
drive the queue

sets error condition in IOQ if an error
is indicated. If sense information is required,
issues a sense command and continues processing
at SLEXIT; otherwise, if no error is found and
no sense information is required, continues
processing at SI.UNLNK.

issues sense command and
continues processing at SI.EXIT

if execute channel program was
requested, continues processing at SLUNLNK;
otherwise, completes the actual transfer count
computed and updates the IOQ

clears device rewinding or seeking bit;
continues processing at SI.EXIT "

increments spurious interrupt
count, and exits the interrupt level;
continues processing at SI.EXIT

increments spurious count
for the device and the
channel

3.5.10 Normal Completion or Status Checking Inhibited

The handler enters this routine when an 110 request completes with no errors or when
status checking is inhibited. It performs any device-specific processing necessary
under these conditions. An example is the collection of sense information about the
110 operation just completed. The XIO common routines collect sense information
only when an 110 request produces an error or the 110 request was for an execute
channel program and sense information was requested.

MPX-32 Technical Volume II 3-15

Handler Entry Points

This routine perfonns the following:

• checks for a reserve request. If the request exists. the routine increments the reserve
count.

• checks for an advance or backspace file request. If the request exists. the routine
sets EOF and EOM or BOM and continues processing at SI.EXIT. If no request
exists, the routine updates the FAT.

• computes the transfer count
• continues processing at SI. UNLNK

3.5.11 Channel End with No Device End

The handler enters this routine when an I/O request produces an interrupt whose status
contains channel end and no device end. This is not a nonnal case except when a
reserve is issued to a dual ported disk that is reserved to the opposing CPU. Any
other condition is treated as an unexpected interrupt.

This routine perfonns the following:

• checks for a channel end from a reserve request If there is no channel end, the
routine continues processing as an unexpected interrupt.

• updates the time out in the UDT and shows the I/O as active

• continues processing at SI.EXIT

3.5.12 Normal Sense Command with loa
I

The handler enters this routine following an interrupt caused by issuing a sense
command on behalf of an I/O request that completed with an error indication. This
routine examines the status and sense infonnation, initiates error recovery if
applicable, and performs the following:

• sets the appropriate indicators based on the sense data

• computes the actual transfer count if an error condition is indicated and updates the
10Q transfer count

• continues processing at SI. UNLNK

3.5.13 Unexpected Interrupt

3-16

The handler enters the unexpected interrupt routine when an interrupt occurs' that was
not expected. This routine perfonns the following:

• increments spurious interrupt count for the device

• increments spurious interrupt count for the channel

• continues processing at SI.EXIT

H.DPXIO Usage

0·

'··'
.,

(-\
~)

o

(

Handler Entry Points

3.5.14 Device Time Out

The device time out routine is entered by an interrupt that was generated by issuing a
HIO instruction for a device that timed out. This routine perfonns the following:

• sets the error condition in the IOQ

• sets the time out flag in the IOQ

• continues driving the IOQ

• continues processing at SLEXIT

3.5.15 Entry Point LI.XIO - Lost Interrupt Processor

SJOCS5 calls LLXIO to take corrective measures when an expected interrupt fails to
occur. It is also called from H.IOCS,38 when a kill command is issued to a task and
the task has I/O in progress. In both cases, the I/O request tenninates with a HIO
instruction. If the controller responds to the HIO, SLA perfonns the required interrupt
handling.

The following is the basic logic sequence within LI.XIO:

• activate the interrupt level

• increment the lost interrupt count if not a kill request

• issue the HIO if it has not already been issued

• block external interrupts

• 'deactivate the interrupt level

• return to calling routine

• clears outstanding I/O queue entries

If the HIO has already been issued but fails to generate an interrupt, LLXIO is entered
again and takes the following actions:

• activates the interrupt level

• increments lost interrupt count if not a kill request

• marks the device as off-line

• marks the device as malfunctioning

• unlinks the 110 request from the IOQ
• reports the 110 request as complete with errors if the HIO was issued because of an

interrupt which failed to occur

• branches and links to IQ.XIO.l to flush any pending 110 requests to the failing
device

• blocks external interrupts

• deactivates the interrupt level

• returns to calling routine

MPX-32 Technical Volume II 3-17

Handler Entry Points

Entry Conditions

Calling Sequence

S.IOCS5 and H.IOCS,38 call LUCIO with interrupts blocked by:

BL *4W,Xl register Xl contains the device-dependent handler HAT
address. The address in the HAT points to LUCIO.

Registers

RO return address

R3 UDT address of device to halt

Exit Conditions

Return Sequence

TRSW RO

Registers

None

3.5.16 Entry Point PX •. - Post-Transfer Processing

S.IOCS 1 calls the entry point px. to perform processing after completion of the I/O
request and before returning to the requesting task. This entry point executes at the
task priority and at a low level of system overhead.

Entry Conditions

Calling Sequence

BL *5W,X2

Registers

R 1 FeB address

R2 device-dependent handler HAT address
R3 UDT address

3-18 H.DPXIO Usage

c'

(
Handler Entry Points

Exit Conditions

Return Sequence

TRSW RO

Registers

R 1 FCB address

If an advance file or a backspace file was performed, update the current position in the
FAT.

3.5.17 Entry Point SG. - SYSGEN Initialization

SYSGEN calls the entry point SG. to initialize certain handler parameters, device
context areas (DCAs), and data structure elements during the construction of an
MPX-32 image. The repeated assembly of the macro DCA.DAT A creates a
maximum number of DCA's. During the execution of this entry point:

• one DCA is initialized for each UDT entry containing the name of the handler.
SYSGEN overlays any remaining DCA's and the remainder of the code in the
handler

• the DCA is updated with the number of sectors per cylinder and the default time
out for I/O

• the IOCDs for the LOAD MODE and read ECC are built and stored in the DCA

SYSGEN overlays any remaining DCAs and the remainder of the code in the handler.

Entry Conditions

Calling Sequence

The last entry point, and it is computed from information in the HAT table.

Registers

None

Exit Conditions

Return Sequence

M.XIR

Registers

None

this is the standard handler SYSGEN exit macro

MPX·32 Technical Volume II 3·19

Error Processing for Conventional 1/0 Requests

3.6 Error Processing for Conventional 1/0 Requests

IOQ.lOST

IOQ.lST1

IOQ.lST2

IOQ.LfTRN

NOTE:

When an I/O operation completes, the 16 status bits presented in a status double word
are checked for error conditions. If only channel end and device end are presented, the
I/O operation is considered complete with no errors and normal post-access processing
is cohtinued. If other bits are set, the handler issues a sense command for additional
information about the error. The sense information is stored in the DCA. See Section -
2.4 in this chapter for further details. The status bits, sense bits, and drive status bits
are mapped to the user's FCB as shown in Figure 3-1.

100 WORD BECOMES FCB WORD

SPECIAL BITS STATUS STATUS SPECIAL BITS STATUS
SET BY HANDLE R BITS SET BY HANDLER BITS

FCB.SFlG

CONTENTS OF
SENSE BUFFER

CONTENTS OF MODE WORD MODE
BYTE SENSE BUFFER BYTE SENSE BUFFER

REGISTER REGISTER
FCB.IST1

STATUS RESIDUAL STATUS WORD 2 STATUS RESIDUAL
BITS BYTE COUNT BITS BYTE COUNT

FCB.IST2

COMPUTED BY
NUMBER OF BYTES HANDLER NUMBER OF BYTES

TRANSFERRED TRANSFERRED FCB.RECl

FOR EXECLfTE CHANNEL PROGRAM REQUESTS,lOO.lSTl CONTAINS STATUS WORD 1 AND 100.LfTRN IS VALID INVALID.

87D5COl

Figure 3-1
Status Returned to User's FeB

3-20 H.DPXIO Usage

HSDP Error Processing

3.7 HSDP Error Processing

3.7.1 Abort the I/O Request

The status bits, sense bits, and drive status bits listed below abort the I/O request.
These errors set the error condition found bit (1) in word 3 of the FCB. This indicates
that the I/O operation completed abnormally. I/O requests that time-out are aborted
with bit lOin word 3 of the FCB set.

Status

3
4
5
6
7

Sense

8
9
10
11
12
14
18
19
20
21
23
30

Bit Meaning

program check
channel data check
channel control check
interface control check
chaining check

Bit Meaning

command reject
operator intervention required*
spare
equipment check
data check
disk format error
write protect error**
write lock error
mode check
invalid memory address
chaining error
reserve track access error

Drive Status Bit Meaning

12 write protected**

* This condition also causes the device inoperable bit (4) in word 3 of the FCB to be
set.

** If I/O request is a write, this condition also causes the write protect violation bit
(3) in word 3 of the FCB to be set

MPX-32 Technical Volume II 3-21

HSDP Error Processing

3.7.2 Retry the 1/0 Request

The following sense bits cause five retries of the IOCL. If this fails, rezero and retry
are perfortiled.

Sense Bit

13
14
27
29
31

Meaning

data overrun or underrun
disk fonnat error
ECC error in sector label
ECC error in track label
uncorrectable ECC

3.7.3 Perform Read ECC Correction Logic

The following sense bit causes ECC logic to be perfonned:

Sense Bit

28

Meaning

ECC error in data

When an ECC error in data is detected, the REC command is issued to obtain
correction infonnation. The infonnation is invalid if the status returned from the REC
command contains any bits set other than channel end and device end or if the bit
displacement exceeds the sector size. If the infonnation is invalid, the error correction
logic is bypassed and error retry is initiated.

When the correction infonnation is valid, the bit displacement locates the address of
the erring bits. If the address is outside the user's buffer, no error correcting takes
place and the I/O request is considered complete without error. If the address is
within the user's buffer, the data is corrected. The IOCL is modified to begin data
transfer from the point of interruption and the I/O transfer is continued.

3.7.4 Rezero and Retry

3-22

The following sense bit and drive status bits cause drive recalibration and retry of the
IOCL (maximum of 5 times):

Sense Bit Meaning

25 disk addressing or seek error

Drive Status Bit Meaning

8 disk drive detected a fault
9 seek error

If error retry is unsuccessful, the error condition found bit (1) in word 3 of the FCB is
set. This indicates that the I/O operation completed abnomially. The sense bits and
drive status bits not listed do not affect nonnal post-access processing.

H.DPXIO Usage

Error Processing for Execute Channel Program Requests

3.8 Error Processing for E_xecute Channel Program Requests

. It is not possible to perfonn error processing for execute channel programs at the
handler level. Infonnation returned consists of status words 1 and 2 passed to FCB
words 11 and 12. If bits other than channel end (CE) and device end (DE) are
present, bit 1, error condition found, of word 3 in the FCB is set. Bits 16-31 of word
3 are valid. Sense infonnation is returned as described in the MPX-32 Reference
Manual Volume I, Chapter S. Error correction and error retry are the responsibility of
the user.

3.9 SYSGEN Considerations

SYSGEN CONTROLLER and DEVICE directives define the HSDP disks configured
in an MPX-32 system. For more information, refer to Volume m of the MPX-32
Reference Manual.

3.10 HSDP Subaddressing

3.11

Each disk drive attached to an HSDP is assigned a unique device subaddress. This
device subaddress is detennined by a plug installed in the drive or by switches
contained in the drive. Plug or switch values range from 0 to 7. The device
subaddress specified in the SYSGEN DEVICE directive is the plug or switch value (0
to 7) multiplied by two and converted to its hexadecimal equivalent. For example,
plug or switch value 7 is specified as 'E'. Therefore, only even subaddresses may be
specified in SYSGEN DEVICE directives. If more than one device is specified in the
directive, the increment field (INC) must be specified and must be an even number.

Sample HSDP SYSGEN Directives

1.

2.

l.

2.

CONTROLLER=DM04, PR10R1TY=05, CLASS=F ,MUX=X10, HANDLER= (H. IFX10, 1)1

DEV1CE=OO,DTC=DM,HANDLER=(H.DPX10,S),D1SC=ANY

The CONTROLLER directive specifies an F-class X10 disk processor on
channel 4 at priority level 5. The handler name (interrupt fielder) is H. 1FXIO
and is channel reentrant, one copy per channel.

This DEVICE directive specifies any disk assigned to sub address 00. The
handler is H. DPX10 and is system reentrant (one copy per system).

MPX·32 Technical Volume II 3-2313-24

(\
')

(

lOP Eight-Line Full Duplex Handler (H.F8XlO)

MPX-32 Technical Manual

Volume II

o

o

(Contents

Page

1 H.FBXIO Overview

1.1 General Information .. 1-1

2 H.FBXIO Usage

2.1 Entry Points ... 2-1
2.1.1 Opcode Processor (OP.) ... 2-1
2.1.2 1/0 Queue Processor (IQ.xIO) ... 2-2
2.1.3 Service Interrupt Processor (S1.) .. 2-2
2.1.4 Lost Interrupt Processor (L1.XIO) .. 2-2
2.1.5 Posttransfer Processing (pX.) ... 2-2
2.1.6 Pre-SIO Processor (pRE.SIO) .. 2-3
2.1.7 SYSGEN Initialization Processor (SG.) .. 2-3

2.2 Options .. 2-3
2.2.1 Read Echoplex .. 2-3
2.2.2 ASCII Control Character Detect .. 2-3

(2.2.3 Special Character Detect .. 2-3
2.2.4 Purge Input Buffer .. 2-4
2.2.5 Read with Software Flow Control ... 2-4
2.2.6 Read with Hardware Flow Control .. 2-4
2.2.7 Write with Software Flow Control .. 2-4
2.2.8 Write with Hardware Flow Control ... 2-4

2.3 Subroutines .. 2-5
2.3.1 Normal ; ... 2-5
2.3.2 Unexpt ... 2-5
2.3.3 Snsnoioq .. : 2-5
2.3.4 Sense ... 2-5
2.3.5 Cenode .. 2-5
2.3.6 Timeo .. 2-6

2.4 Device Context Area ... 2-6
2.4.1 DCA Word 9 ... 2-6
2.4.2 DCA Word 28 ... 2-6
2.4.3 DCA Word 29 ... 2-7
2.4.4 DCA Word 34 ... 2-7
2.4.5 DCA Word 35 ... 2-7 .
2.4.6 DCA Word 36 ... 2-7

MPX·32 Technical Volume II iii/iv

o

o

(1 H.FaXIO Overview

1.1 General Information

The lOP Eight-Line Full Duplex Handler (H.F8XIO) is system level reentrant, i.e.,
only one copy is required regardless of the number of eight-line communication
multiplexers configured in a system. Reentrancy is accomplished by device context
areas (DCAs). The appropriate number of DCAs are initialized in the SYSGEN
initialization entry point. As with all XIO device handlers, interrupts are fielded by
the XIO channel executive program (H.IFXIO) and then turned over to the service
interrupt entry point of H.F8XIO for processing.

MPX-32 Technical Volume II 1-1/1-2

o

o

(

(

2 H.FaXIO Usage

2.1 Entry Points

2.1.1 Opcode Processor (OP.)

This entry point provides the interface for processing an opcode stored in the user's
file control block (FCB). Depending on the particular opcode, this processing mayor
may not involve device access.

The eight-line handler supports 14 IOCS opcodes enabling support of all command
codes recognized by the eight-line multiplexer plus necessary standard functions, such
as open. The opcodes and their functions are as follows:

Handler 8 Line
OP Call function command

00 M.FILE open, perfonn inch if necessary
01 M.RWND sense status 04
02 M.READ read. See the Options section 8E,8A,OA,02, or 06
03 M.WRIT write. See Note 1. OD,OI,OS, or FF
04 M.WEOF NOP 03
05 SVC I,X'25' EXCPGM (execute channel program)
06 M.FWRD,R set data tenninal ready 17
07 M.FWRD reset data tenninal ready 13
08 M.BACK,R define ACE parameters (INIT) FF
09 M.BACK reset request to send 1B
OA M.UPSP set request to send IF
OB SVC I,X'3E' set or reset break. See Note 2. 37 or 33
OC SVC I,X'OD' define special character OB
OD M.CLSE close
OE SVCl,X'26' - set half duplex. See Note 3.
OF SVCl,X'27' set full duplex. See Note 3.

For an explanation of the individual command codes, see the Eight-Line
Asynchronous Communications Multiplexer MPX-32 Technical Manual Volume 1.

MPX-32 Technical Volume II 2-1

Entry Points

Notes:

1. If bit 1 is set in FCB.SCFG, the write is interpreted as an init and a define ACE
parameters command (FF) is issued. If bit 1 in FCB.SCFG is reset and bit 3 in
FCB.SCFG is set, a write with input sub channel monitoring command (05) is
issued. If both bits 1 and 3 in FCB.SCFG are reset, a write command (01) is
issued.

2. If bit 0 in FCB.SCFG is set, a set break command (37) is issued. If bit 0 in
FCB.SCFG is reset, a reset break command (33) is issued. It is not necessary to
issue a reset break after a break interrupt is received.

3. The following status is returned in the condition codes:

CC 1 0 = successful

CC2 0

CC3 0
CC4 1 = previously full duplex

or

CC 1 0 = unsuccessful

CC2,CC3 00 = not SYSGENed for full duplex
01 = service not legal using the write subaddress
10 = not initialized for FULL by J.TINIT
11 = not initialized for NOECHO by J.TINIT

CC4 0

2.1.2 110 Queue Processor (IQ.XIO)

This entry point performs standard I/O queue scheduling.

2.1.3 Service Interrupt Processor (SI.)

This entry point consists of the six standard subroutines described in the Subroutines
section.

2.1.4 Lost Interrupt Processor (LI.XIO)

This entry point performs standard lost interrupt and kill I/O processing.

2.1.5 Posttransfer Processing (PX.)

2·2

This entry point performs conversion of lower case ASCII to upper case on formatted
read operations. This processing can be inhibited by setting bit 10 in FCB.GCFG.

In addition, reads performed for TSM tasks must have the data copied from the
operating system buffer to the user's buffer.

H.F8XIO Usage

o

(

Entry Points

2.1.6 Pre-SIO Processor (PRE.SIO)

This entry point is called by XIO.SUB prior to issuing an SIO. This entry point
checks for asynchronous attention interrupts on the read sub address while a write is in
progress for half duplex devices. If this is true, a break is issued to the task and the
interrupt routine is exited.

2.1.7 SYSGEN Initialization Processor (SG.)

This entry point creates DCAs at assembly time and initializes them at SYSGEN time.
In order to implement the full duplex capabilities of H.F8XIO, it is necessary to have
two unit definition table (UDT) entries per port. For example, one UDT for read, one
UDT for write. To accomplish this, SYSGEN directives must specify both the read
subaddresses configured (0 through 7) and the write subaddresses configured (8
through F).

If two corresponding UDT entries are SYSGENed, all operations are requested using
the read subaddress' UDT. Write operations are queued to the read subaddress' UDT
for half duplex, and to the write subaddress' UDT for full duplex. If only half duplex
operation is desired, only the read subaddresses need to be specified in the SYSGEN
directives.

Note:
Devices SYSGENed as half duplex can still be initialized as full duplex in order to
make use of full duplex commands such as read echoplex.

2.2 Options

2.2.1 Read Echoplex

This option causes a read command (02) to be issued if bit one is set in FCB.SCFG.
If the bit is not set, a read echoplex command (06) is issued.

2.2.2 ASCII Control Character Detect

This option allows input to terminate whenever a control character (X'OO' through
X' IF') or a delete (X'7F') is detected. This option is selected by setting bit zero in
FCB.SCFG before issuing the read. This option is implied in the read echoplex
command.

2.2.3 Special Character Detect

This option allows input to terminate whenever a predefined 8-bit character is
detected. This option is selected by setting bit three in FCB.SCFG before issuing the
read. .

MPX·32 Technical Volume II 2·3

Options

2.2.4 Purge Input Buffer

This option specifies any input data held in the type ahead buffer is to be purged
before any new incoming data. This option is selected by setting bit 4 in FCB.SCFG
before issuing the read. This option is forced following a ring or break interrupt.

2.2.5 Read with Software Flow Control

This option enables XONIXOFF protocol if the UDT.RXON bit is set in UDT.BIT2,
or bit 13 (FCB.RXON) of FCB.GCFG is set. The DTR line is normally used for
control (command SA), but if UDT.RDTR is not set, the RTS line is used (command
OA). As this operation uses the write subchannel for XON/XOFF transmission,
Echoplex must be performed locally by the terminal device, not the controller
(command 06). When used in the RTS mode, this command is the functional
complement of the write with input subchannel monitor (command 05).

2.2.6 Read with Hardware Flow Control

This option enables hardware flow control using the DTR line (command SE). It is
used only when the UDT.RHWF bit is set in UDT.BIT2.

2.2~ 7 Write with Software Flow Control

This option enables XONIXOFF protocol if the UDT.WXON bit is set in UDT.BIT2,
or bit 11 of FCB.GCFG is set. WXON (command 05), monitors the CTS line and the
input subchannel for the XON/XOFF (OCllOC3) control codes. This option was
previously referred to as write with input subchannel monitoring and is a functional
equivalent

2.2.8 Write with Hardware Flow Control

2-4

This option enables hardware flow control by monitoring the crs line (command
OD). It is used only when the UDT.WHWF bit is set in UDT.BIT2.

H.FaXIO Usage

(

(

Subroutines

2.3 Subroutines

2.3.1 Normal

This subroutine is called by XIO.SUB when an I/O operation completes normally or
when error processing is inhibited. Special processing is not performed unless the
operation is a formatted read.

For formatted reads that are not on a TSM device, a check is made for an ETX
character. If one is found, the end-of-file indicator is set.

For formatted reads that are on a TSM device, in addition to ETX, a check is made for
a carriage return, backspace, tab, or delete. Appropriate actions are taken if any of
these are found.

2.3.2 Unexpt

This subroutine is called by XIO.SUB when an unexpected interrupt occurs. A sense
status command is issued in order to determine the reason for the interrupt and the
interrupt routine is exited.

2.3.3 Snsnoioq

This subroutine is called by XIO.SUB in response to an interrupt generated by a sense
command issued by the UNEXPT subroutine. The sense data is examined to
determine whether the unexpected interrupt was due to a ring, break, or DSR or RLSD
failure. If none of these is true, the routine is exited.

If the interrupt was due to a ring, bit UDT.LOGO is set in the UDT. If the interrupt
was due to DSR or RLSD failure, bit UDT.DEAD is set in the UDT. A break is then
issued to the task which has the device allocated. If another ring is expected, the task
must reset UDT.LOGO.

2.3.4 Sense

This subroutine is called by XIO.SUB when an 110 operation completes in error. A
sense status command is executed prior to calling this subroutine. This subroutine
examines the status to determine if the error was due to DSR or RLSD failure. If so,
bit UDT.DEAD is set in the DDT, and an error flag is set in the IOQ.

Next, the status is tested for attention, unit check, or unit exception. If any of these
occurred, a break is issued to the task and the error bit is st:t. Status is then tested for
channel errors. If errors are found, the error bit is set in the IOQ.

2.3.5 Cenode

This subroutine is called by XIO.SUB when channel end, but no device end, is found
in the status. This condition does not occur with the 8-line asynch.

MPX·32 Technical Volume II 2·5

Subroutines

2.3.6 Timeo

This subroutine is called by XIO.SUB when an 110 operation does not complete and
times out. An HIO (halt I/O) is issued prior to calling this subroutine. TIMEO
processing consists of setting the error processing inhibit bit in the IOQ, returning to
XIO.SUB, and performing all security checks for special processing.

2.4 Device Context Area

The following DCA fields contain information specific to H.F8XIO.

2.4.1 DCA Word 9

Equate Name

DCA.FLAG (bytes 0-2 only)

Definition

When set, bits are defined as follows:

Bit

0-5
6-15
16
17
18
19

20

Equate
Name

W.R
PRG
DUAL.CH
DCA.SMEN

DCA.LGIN

Definition

defined in DCA
reserved for common subroutine usage
read and write configured
force purge type ahead buffer
dual channel mode
a security timeout violation has occurred on this device.
Set by H.F8XIO.
the unit is currently being logged in on. Set byJ.TSM.

2.4.2 DCA Word 28

2-6

Equate Name

DCA.STMP
Definition
Time stamp for current read operation to the appropriate terminal. If a timeout occurs
before the system time is greater than or equal to this value, it is not treated as a
security violation. This allows forced I/O timeouts without causing the terminal to be
logged off.

H.FaXIO Usage

2.4.3 DCA Word 29

Equate Name
""c'

DCASEC
Definition

Bytes defined as follows:

fu:!L
o

Equate
Name

DCALOGC

1 DCALOGT

2,3 DCATRMT

2.4.4 DCA Word 34

Equate Name
DCA.RA

Definition

Device Context Area

Definition

Maximum number of failed logon attempts allowed
for this device. Range 0 through 255. Set by J.TINIT.
Timeout value in seconds for a read during
login. Range 0 through 255. Set by lTINIT.
Timeout value in seconds for ~. read during a
normal terminal session. Range 0 through 59940.
Set by J.TINIT.

Save return address across S.EXEC13.

2.4.5 DCA Word 35

Equate Name
DCAWOSB

Definition

Save operating system buffer word count.

2.4.6 DCA Word 36

Equate Name

DCATSMP
Definition

Save TSM SI process address.

MPX-32 Technical Volume" 2-7/2-8

,0.)· .. ''-=.,

c

(

General Purpose Multiplexer Support (H.GPMCS)

MPX-32 Technical Manual

Volume IT

o

o

Contents

Page

1 H.GPMCS Overview

1.1 General Infoffi1ation .. 1-1
1.2 Hardware Structure ... 1-3
1.3 Software Block Diagram ... 1-4

2 H.GPMCS Usage

2.1 GPDC Device Handlers (H.??MP) ... 2-1
2.1.1 Entry Point OP. - Opcode Processing ... 2-1
2.1.2 Entry Point IQ.- Queue Start Interrupt Service 2-2
2.1.3 Entry Point S1. - Queue Drive Interrupt Service 2-2
2.1.4 Entry Point L1.- Lost (Timed-Out) Interrupt Processing 2-3
2.1.5 Entry Point PX. - Posttransfer .. 2-4
2.1.6 Entry Point SP.- Spurious Interrupt Processing 2-5
2.1.7 Entry Point 01. - Error Processing .. 2-5

(2.1.8 Entry Point SG.??? - SYSGEN Initialization 2-6
2.2 GPMC Interrupt Fielder (H.MUXO) ... 2-6

2.2.1 Entry Point S1. - Interrupt Fielder ... 2-7
2.2.2 Entry Point SG. - SYSGEN Initialization 2-7

2.3 Common Logic .. : 2-8
2.3.1 Subroutine S.GPMCO - Report GPMC Status 2-8
2.3.2 Subroutine S.GPMC1 - I/O Initiation Logic 2-8
2.3.3 Subroutine S.GPMC2 - Lost Interrupt Logic 2-9
2.3.4 Subroutine S.GPMC3 - Initiation and 10Q Entry Acquisition 2-9
2.3.S Subroutine S.GPMC4 - Execute Channel Opcode Processor 2-10
2.3.6 Subroutine S.GPMCS - Build 10CDs for I/O Reads and Writes 2-11

2.4 GPMC Support Macros ... 2-11
2.4.1 ill.DATl, IB.DAT2 .. 2-11
2.4.2 M.IB .. 2-12
2.4.3 GPDC.IT ... 2-12

2.S M.DIB .. 2-12
2.6 Device Context Area ... 2-13

MPX·32 Technical Volume II iii/iv

(1 H.GPMCS Overview

1.1 General Information

The General Purpose Multiplexer Controller (GPMC) is structured as follows:

• All General Purpose Device Controller (GPDC) handlers supplied are system re­
entrant, therefore, only one copy of a handler is needed per system. Customers
writing their own handlers do not need to make them reentrant; however, if they are
not, interrupt reentrancy must be specified in the SYSGEN directives.

• All handlers and the interrupt executive use common logic contained within the
GPMC.SUB module. GPMC.SUB is loaded only once when a GPMC is
configured. Customers writing their own handlers do not need to use the common
logic within GPMC.SUB, although in most cases it can simplify design and
development.

• SYSGEN creates only one controller definition table (CDT) entry per GPMC
(regardless of the number of device addresses). The COT fields utilized are as
follows:

CDT.CLAS

CDT.FLGS

COT.lOST

COT.SmA

COT.UTn

hexadecimal OD for Model 9103

bit 2 (COT.GPMC) set to indicate a GPMC controller

bit 0 (COT.NIOQ) set if IOQ is linked to UDT
bit 1 (COT.MUX) set to indicate a multiplexing controller

points to the H.MUXO HAT

where n is a hexadecimal digit from 0 to F. The UTn
is a table of sixteen entries, each of which corresponds
to a chamlel. If a device is configured, the
corresponding entry contains the address of the UDT,
or zero if no UDT corresponds.

• SYSGEN creates one Wlit definition table (UDT) entry for each GPMC device
address configured. The UDT fields utilized are as follows:

UDT.DCAA

UDT.SmA

UDT.STA2

UDT.TIAD

UOT head cell

MPX-32 Technical Volume II

points to the DCA which corresponds to the device

points to the appropriate device handler HAT

bit 0 set to indicate IOQs are linked from UDT

filled with the TI location address (for debug purposes
only)

IOQ entries are queued here

1-1

General Information

1-2

An execute channel program capability is incorporated to allow users to execute their
own IOCD list. Error conditions are detected and noted in the file control block
(FCB), however, error correction is the responsibility of the user. The information
contained within the FCB is as follows:

100 WORD BECOMES FCB WORP

SPECIAL BITS STATUS STATUS SPECIAL BITS STATUS
SET BY HANDLER BITS SET BY HANDLER BITS FCB.SFlG IOO.lOST

FCB.ISTl IOO.ISTl
CURRENT IOCl ADDRESS STATUS WORD 1 • CURRENT IOCl ADDRESS

IF ERROR OCCURRED IF ERROR OCCURRED

RESIDUAL STATUS WORD 2 RESIDUAL
BYTE COUNT BYTE COUNT

lOO.lST2 FCB.IST2

COMPUTED BY
NUMBER OF BYTES HANDLER NUMBER OF BYTES

TRANSFERRED TRANSFERRED lOQ.UTBN FCB.RECl

87D12UOl

Customer written handlers must use the device context area (DCA) because H.MUXO
and GPMC.SUB reference certain locations within the DCA.

GPMC supports the following devices:

9103 extended GPMC, Class D (16MB)

9109 synchronous line interface module (SLIM)

9110 asynchronous line interface module (ALIM)

9112 paper pape reader/punch controller

9116 binary synchronous line interface module (BLIM)

H.GPMCS Overview

t':
''-)

(..

1.2 Hardware Structu re

Controll er

Channels

Hardware Structure

SelBUS

GPWC
9103

I

GPDC interface
9105 or 9106

GPDC Bus = GPDC Chassis

ALiM 9110

BSLIM 9116

Refer to the GPMC Technical Manual, 325-329104/9103 for details of the GPMC
operation. Refer to the appropriate technical manual part number 325-32xxxx, where
.xx..U' is the model number, for details of a particular GPDC channels operation.

MPX-32 Technical Volume II 1-3

Software Block Diagram

1.3 Software Block Diagram

A simplified overview of the relationship between the GPMC and the operating
system is presented below.

USER 1/0
REQUEST

1-4

ti!QQ§
PRE-OEVICE

ACCESS
PROCESSING

f:J.11Mf
DEVICE

DEPENDENT
OPCODE

PROCESSING

GeMQ,§!.!B
COMMON

PRE-START II 0
PROCESSING

I::f.11Mf
DEVICE

DEPENDENT
PRE-START 1/0
PROCESSING

~eMQS!.!a
ISSUE

START 1/0
TO DEVICE

~
REPORTI/O

STARTING

· · . .

. . · ·

· ·

. · . · . . .
QQA

DATA AREA
CONTAINING

- DEVICE
INFORMATION

. . . · . · • • . .
• •

· · •

.
• . · .

•
• . . · . . .

-.. --.

.
. .

·

~
FIELD THE
INTERRUPT

f:i.11Me
DEVICE

DEPENDENT
POST INTERRUPT

PROCESSING

~eMQS!.!a
TEST GPMC

DEVICE
STATUS

I::I.1:lMe
DEVICE

• DEPENDENT

.

POST INTERRUPT
PROCESSING

.I:1..WWl
EXIT

INTERRUPT
LEVEL

~
REPORT 1/0
COMPLETE

•

87D12T11

SI
INTERRUPT

I

H.GPMCS Overview

{~·I
~

("\
"'-/

o

(

2 H.GPMCS Usage

2.1 GPDC Device Handlers (H. ??MP)

By specifying a handler name using the SYSGEN DEVICE directive, the handler is
made part of the resident operating system and proper linkages are established. The
device dependent handler HAT table is the means by which linkages are established
between the Input/Output Control System (H.lOCS) and the I/O processing routines.

When an interrupt occurs, the device handlers are not entered directly. The interrupt
is handled by the GPMC Interrupt Fielder (H.MUXO) which passes the interrupt to the
appropriate handler. For a description of H.MUXO, see section 2.2.

GPDC device handlers have eight entry points.

2.1.1 Entry Point OP. - Opcode Processing

This entry point is a subroutine extension of H.lOCS,29. This entry processes the
opcode placed in the file control block (FCB) by the I/O service originally called by
the user.

OP. examines the opcode and other pertinent FCB control specifications, and
indicates to H.IOCS,29 what action is to be taken. To indicate the action to be taken,
OP. takes one of three possible returns to H.lOCS,29 as follows:

BU
BU
BU

ILOPCODE
SERVCOMP
IOLINK

1. opcode is illegal for this device
2. service complete, no device access required
3. link request to I/O queue

If return 3 (IOLINK) is taken, OP. must first call subroutine S.IOCS13 to allocate
and initialize an IOQ: then, build an I/O command list (IOCL) with the proper
command codes and flags into the the 10Q entry using subroutines S.IOCS12 and
S.GPMC5.

Entry Conditions

Calling Sequence

BL *lW,X2

Registers

Rl FCB address

register X2 contains the address of the device
dependent handler HAT table. The one word offset
from this address ~ontains the address of OP.

R2 device dependent handler HAT address

R3 UDT address

MPX-32 Technical Volume II 2-1

GPDC Device Handlers (H. ??MP)

J:vit 1',,"'" It I" .. ",. -_ .. """ "
Return Sequence

See descriptions of n..OPCODE. SERVCOMP and IOLINK in the previous text.

Registers

R 1 FCB address

2.1.2 Entry Point IQ.- Queue Start Interrupt Service

This entry point is entered from H.IOCS.29 and issues a start I/O (SIO) for the first
request in the I/O queue. Upon entry. this entry point sets the interrupt linkage such
that subsequent interrupts at this level will cause execution of device handler entry
point SI. (Queue Drive Interrupt Service Routine). Entry point IQ. merges with
entry point SI. at the preaccess processing phase before calling subroutine S.GPMCI
to issue the start I/O.

Enfry Conditions

Calling Sequence

M.IOFF

BL *2W.X2

M.IONN

Registers

RO return address

block interrupts

register X2 contains the address of the device
dependent handler HAT table. The 2-word offset
from this address contains the address of IQ.

unblock interrupts

R3 UDT address of the device to start

Exit Conditions

Return Sequence

Returns to H.IOCS.

2.1.3 Entry Point SI. - Queue Drive Interrupt Service

2·2

This entry point is entered from the GPMC Interrrupt Fielder (H.MUXO) and performs
postaccess processing associated with the device access which has just completed.
Typically. postaccess processing includes device testing. updating IOQ status
information, unlinking the queue entry for which processing has been completed, and
finding the next highest priority queue entry in the I/O queue for processing.

H.GPMCS Usage

o

(

GPDC Device Handlers (H. ??MP)

This entry point also performs preaccess processing associated with the next queued
device access request. Typically, preaccess processing includes updating the 10Q
entry and making minimal format conversions which might be necessary to service the
request.

This entry point is also entered to process a lost interrupt.

When the queue has been emptied, processing is discontinued and the interrupt
linkage is set to the spurious entry point (SP.).

Entry Conditions

Calling Sequence

Entered from H.MUXO as the result of completion of a command issued to a device.
Refer to the GPMC Interrupt Fielder (H.MUXO) section in this chapter.

Registers

RO return address

R3 device context area (DCA) address

.'
Exit Conditions

Return Sequence

After issuing the next command or after determining the I/O queue is empty, entry
point SI. returns to H.MUXO to perform the following:

• report I/O complete via the appropriate executive routine

• restore the state of the machine to mapped, block all interrupts, and issue a
deactivate request on the interrupt level being serviced

• exit by S.EXEC5

2.1.4 Entry Point L1.- Lost (Timed-Out) Interrupt Processing

This entry point is entered from S.lOCS5 to perform appropriate measures for a
device when an expected interrupt fails to occur. This entry point is also entered from
H.IOCS,38 to kill an outstanding I/O request.

This entry point maintains a count of time outs. In addition, a CD terminate is
executed to force entry into entry point SI. for processing the time out.

Lost interrupt processing is part of the GPMC.SUB module. Its entry point in the
device handler is through BU S.GPMC2.

MPX-32 Technical Volume II 2-3

GPDC Device Handlers (H.??MP)

Entrj Conditions

Calling Sequence

M.IOFF

BL *4W,X2

M.IONN

Registers

R2 HAT address

R3 UDT address

Exit Conditions

Return Sequence

Registers

TRSW RO

block interrupts

from S.IOCS5 (or) H.IOCS,38

unblocked interrupts

2.1.5 Entry Point PX. - Posttransfer

This entry point is called from S.IOCS 1 if a device requires lengthy posttransfer
processing.

Entry Conditions

Calling Sequence

BL *5W,X2 from S.IOCSI

Registers

RO return address

R 1 FCB address

R2 HAT address

R3 UDT address

Exit Conditions

Return Sequence

TRSW RO to S.IOCSI

2·4 H.GPMCS Usage

o

(

GPDC Device Handlers (H. ??MP)

2.1.6 Entry Point SP.- Spurious Interrupt Processing

This entry point is entered from H.MUXO to prevent a spurious interrupt from causing
illegal execution of handler entry points. This entry point maintains a count of all
spurious interrupts.

Entry Conditions

Calling Sequence

Entered from H.MUXO. Refer to the GPMC Interrupt Fielder (H.MUXO) section in
this chapter.

Registers

None

Exit Conditions

Return Sequence

Returns to H.MUXO (see entry point SI.).

2.1.7 Entry Point 01. - Error Processing

This entry point is entered to determine if operation intervention is applicable when
IOCS detects an error or abnormal condition during device access.

Entry Conditions

Calling Sequence

BL *7W,R2 from SJOCSI

Registers

R 1 FCB address

R2 HAT address

R3 IOQ address

Exit Conditions

Return Sequence

TRSW RO

• Return 1 - Operator intervention not applicable. Selected when operator
intervention is not applicable to the condition that occurred.

• Return 2 - Operator intervention applicable. Selected when an error message must
be displayed on the operator's console. The operator is given the opportunity to
specify retry attempt or abort of the I/O operation.

MPX-32 Technical Volume II 2-5

GPDC Device Handlers (H. ??MP)

2.1.8 Entry Point SG.??? - SYSGEN initiaiization

This entry point is called by SYSGEN to initialize cenain handler parameters, device
context areas (DCAs), and data structure elements during the construction of an
MPX-32 image. A maximum of 64 DCAs are created by the repeated assembly of
macro GPDC.IT. During execution of this entry point, one DCA is initialized for
each UDT entry containing the name of the handler. Any remaining DCAs and the
remainder of the code in the handler are overlayed by SYSGEN.

Entry Conditions

Calling Sequence.

BL last entry point, it is computed from information in the HAT table

Registers

None

Exit Conditions

Return Sequence

M.XIR

Registers

None

2.2 GPMC Interrupt Fielder (H.MUXO)

2·6

The GPMC Interrupt Fielder (H.MUXO) is used to service all I/O interrupts which are
generated by completing I/O requests. One copy of H.MUXO is required for each
GPMC. By using a SYSGEN CONTROLLER directive, H.MUXO is made part of the
resident operating system and proper linkages are established.

H.MUXO is entered each time an interrupt occurs at the level the GPMC is configured.
H.MUXO queries the GPMC for the channel that caused the interrupt, and then vectors
to the handler's service or spurious interrupt entries by the contents of m.EP in the
Device Context Area (DCA) which is built by SYSGEN and filled by the handler.
Since H.MUXO is entered only on an interrupt, it contains only one entry point that
handles both service or spurious interrupts. IOCS goes directly to the device handler
by using the contents of UDT.SnIA. .

The handler entry point is found by:

1. Locating the device UDT through the list CDT.UTn.

2. Locating the DCA whose address is saved in UDT.CBLK.

3. Branching through IB.EP in the DCA.

H.MUXO has two entry points.

H.GPMCS Usage

o

(

(

GPMC Interrupt Fielder (H.MUXO)

2.2.1 Entry Point SI. - Interrupt Fielder

This entry point is entered each time an interrupt occurs at the level for which a
GPMC is configured. Upon entry, the following is performed:

1. The new program status double word (PSD) is set so the machine state is
unmapped, interrupts are unblocked, extended addressing option is set, and the
interrupt level being serviced is active. The current map at the time of the
interrupt is retained.

2. The global interrupt count (C.GINT) is incremented and all registers are saved.

3. The device that caused the interrupt is determined and the device context area
(DCA) address associated withi the interrupt level is loaded into register three.

4. Control is transferred to the appropriate entry point within the device handler to
process the interrupt.

When the device handler has determined the I/O queue is empty, control is returned to
entry point SI.1.00 in H.MUXO to perform the following:

Report I/O complete by the appropriate executive routine.

Restore the state of the machine to mapped, block all inteI1J.lpts, and ensure a
deactivate request is being serviced on the interrupt.

Entry Conditions

Calling Sequence

Entered as a result of an interrupt.

Registers

None

Registers

Through S.EXEC5

2.2.2 Entry Point SG. - SYSGEN Initialization

This entry point is called by SYSGEN to initialize certain interrupt fielder parameters
and data structure elements during the construction of an MPX-32 image. After
execution, the code associated with this entry point is overlayed by SYSGEN.

Entry Conditions

Calling Sequence

BL last entry point

Registers

R7 CRT address

MPX-32 Technical Volume II 2-7

GPMC Interrupt Fielder (H.MUXO)

Return Sequence

M.xIR

Registers

None

2.3 Common Logic

Module GPMC.SUB is loaded by SYSGEN if a GPMC is configured on the system.
The subroutines contained within GPMC.SUB are reentrant; therefore, only one copy
is needed per system.

2.3.1 Subroutine S.GPMCO - Report GPMC Status

Entry Conditions

Calling Sequence

RO return address

R2 IOQE address

R3 interrupt block address

Exit Conditions

Return Sequence

RO-R4

R5,R6

R7

unchanged

destroyed

device status in right halfword

2.3.2 Subroutine S.GPMC1 - 1/0 Initiation Logic

Entry Conditions

Calling Sequence

R2 IOQ address

R3 interrupt block address

R6 IOCL address

2-8 H.GPMCS Usage

(~

Common Logic

2.3.3 Subroutine S.GPMC2 - Lost Interrupt Logic

Entry Conditions

Calling Sequence

RO IOCS return address

R2 handler address (unused)

R3 UDT address

Exit Conditions

Return Sequence

(Direct to IOCS.)

RO-R3

R4-R7

unchanged

destroyed

Refer to section 2.1.4.

2.3.4 Subroutine S.GPMC3 - Initiation and loa Entry Acquisition

If the opcode vector table entry bit 0 is set, an IOQ is built for the user by calling
S.lOCS13. If bit 1 in the word is set, the IOQ is extended by enough space to hold
the absolutized IOCL necessary to perform the requested I/O.

Entry Conditions

Calling Sequence

RO H.??MP return address (not used)

R 1 FeB address

R2 opcode vector table address

R3 UAT address

Exit Conditions

Return Sequence

(Through vector table.)

RO, Rl unchanged

R3 interrupt block address

Other Registers

Indeterminate.

MPX-32 Technical Volume II 2-9

Common Logic

2.3.5 Subroutine S.GPMC4 - Execute Channei Opcode Processor

The execute channel program opcode processor is called by the GPMC device
handlers to process either physical or logical execute channel program requests. The
basic logic sequence for processing the physical execute channel program request is:

• abort request if requesting task is not privileged

• build and initialize an 10Q

• abort request if the lOCO is not located in the first 128K words of memory

• store user specified time-out value into 10Q

• return to H.IOCS to link the I/O request

The basic logic sequence for processing the logical execute channel program request
is:

1. validate legality of lOCO requests and transfer addresses

2. compute number of lOCOs required to satisfy the request

3. build and initialize an 10Q

4. build lOCO list within the 10Q

5. store user specified time-out value in 10Q

6. return to H.IOCS to link the I/O request

Entry Conditions

Calling Sequence

This entry point is called from the opcode processing entry point (OP.) of GPMC
device dependent handlers (H. ??MP) by branching indirect through the opcode
processing table.

Registers

R 1 FCB address

Exit Conditions

Return Sequence

BU {OLINK if 10CD list valid

(or)

BU CABORT if 10CD list invalid

Registers

R 1 FCB address

R3 10Q address

2-10 H.GPMCS Usage

(

Common Logic

2.3.6 Subroutine S.GPMC5 - Build lOCOs for 1/0 Reads and Writes

This subroutine breaks down the lOCO into one or more transfers and sets the data
chaining bit in lOCO if discontiguous, absolutes the lOCO address, and stores lOCOs
into the lOCO buffer within the I/O queue and increments the lOCO buffer address as
required.

Entry Conditions

Calling Sequence

BL S.GPMC5

Registers

R3 I/O queue address

R6 lOCO word 1 with order byte and flags only (bits 16-31) is zero

R 7 lOCO word 2 is zero

Exit Conditions

Return Sequence

TRSW RO

Abort Cases

1038 dynamic storage space for lOCOs within 10Q exhausted

2.4 GPMC Support Macros

2.4.1 IB.DAT1,IB.OAT2

This macro defines the standard information for a device context area. Special handler
information should be inserted between IB.DATl and IB.DAT2. The latter macro
closes the device context area and computes its size. This macro must start on a
doubleword boundary.

For use by unique handler logic, the SET label H.IOCL always points to the physical
address of IB.IOCL in the current device context area.

Calling Sequence

IB.DATI

(handler specific information)

IB.DAT2

Use the REPT directive to get multiple copies of the device context area.

MPX-32 Technical Volume II 2-11

GPMC Support Macros

This macro establishes the device context area offset labels. It maps to the contents of
IB.DATI. Special handler information may be equated starting at IB.DFSIZ, which is
doubleword bounded.

Calling Sequence

M.IB

2.4.3 GPDC.lT

This macro generates the SYSGEN initialization logic for a GPMC handler.

Calling Sequence

GPDC.IT lab [,timout], DGPMC

lab starting label, SG. lab

timout is a positive number indicating the number of seconds for device time-out.
If not provided, a word variable "PA6"should contain the negative time-
out count. .'

DGPMC must be provided. The macro sets bit 3 of CDT.IOST to indicate a D­
class GPMC.

2.5 M.DIB

2-12

This macro is called by GPDC.IT to initialize the device context area. This macro
contains special case code for the ALIM (Model 9110) handler.

Calling Sequence

M.DIB type, DGPMC

type is the information passed to GPDC.IT as lab

DGPMC is the information passed to GPDC.lT as DGPMC

H.GPMCS Usage

(

Device Context Area

2.6 Device Context Area

Decimal
Word Definition

m.QEADR 0 current IOQ entry address

m.CMPQE * 1 address of IOQ entry just completed

m.COTO * 2 prototype for device CDs & TOs

H.AUT H.AUTCNT * 3 GPMC status/residual byte count

m.DQEAD 4 address of UDT location that points
to DQE of allocating task

B.CDTA * 5 address of COT

m.UDTA * 6 address of UDT

m. m. m. m. * 7 see Note 1
LICNT SPCNT OPKODE DHBF

m.EP * 8 handler entry address to use
(queue drive or spurious interrupt)

m.EXIT 9 .' return address from handler entry

IB.LITIM * 10 time-out value (in timer units)

H.CNT 11 1/0 transfer count in bytes

H.BUF 12 I/O buffer address

H.NCT 13 negative to transfer count remaining

m.lOCL 14 current IOCB address if transfer
error occurred

TemporaIy storage 15 handler dependent

Optional device 16 handler dependent
dependent infonnation

* referenced by GPMC/SUB or H.MUXO

Note:

1. LINCT
SPCNT
OPKODE
DBHF

MPX-32 Technical Volume II

lost interrupt count
spurious interrupt count
IOCS byte operation code
device handler bit flags as follows:

Bit Definition

6 postprocessing needed (tells H.MUXO to report
I/O completion)

7 CD terminate issued by lost interrupt entry

2-13/2-14

('.

(

High-Speed Data Handler (H.HSDG)

MPX-32 Technical Manual

Volume II

Contents

Page

1 H.HSDG Overview

1.1 Introduction ... 1-1
1.2 SYSGEN Considerations .. 1-1

2 H.HSDG - Data Structures

2.1 Introduction ... 2-1
2.2 IOCB .. 2-1
2.3 FCB .. 2-3

3 1/0 Request Processing

3.1 Introduction .. 3-1
3.2 SIO Format .. 3-1

3.2.1 Physical 10CLs ... : 3-1
3.2.2 Logical 10CLs .. 3-1

«
3.2.3 Cyclic I/O (SIO Format) .. 3-2
3.2.4 SIO Format-Specific 10CBs ... 3-2

3.2.4.1 TIC ... 3-2
3.2.4.2 SOBNZ .. 3-2

3.2.5 SIO Format Asynchronous Status Presentation and Notification .. 3-3
3.3 FeB Format ... 3-4
3.4 IOCS Entry Points ... 3-5
3.5 Status ... 3-5
3.6 Device Considerations ... 3-6

MPX·32 Technical Volume II iii/iv

1 H.HSDG Overview

1.1 Introduction

The high-speed data (HSD) handler (H.HSDG) provides a software interface between
user tasks and the HSD. The HSD is a D-c1ass I/O controller that performs
handshaking with the CPU. It also fetches and stores the data and status for I/O
operations requested by the user task. H.HSDG, in tum, performs the following:

• issues channel programs

• collects status about the I/O operation from the HSD and reports the status to the
user task and MPX-32

Note: If the HSD is jumpered for inter-bus link (IBL) mode, refer to the Inter-Bus
Link Mode Handler (H.IBLG) behind the H.IBLG tab in this manua1.

1.2 SYSGEN Considerations

To include H.HSDG as part of MPX-32, specify H.HSDG in the SYSGEN directive
file. For more information about the SYSGEN directive file, refer to the System
Generation (SYSGEN) Chapter in Volume III of the MPX-~2 Reference Manual.

Following are examples of the CONTROLLER and DEVICE directives that configure
MPX-32 for the HSD:

CONTROLLER-U040,PRIORITY=09,CLASS=D,HANDLER=(H.HSDG,I)
DEVICE=OO,DTC=UO

MPX·32 Technical Volume II 1·1/1·2

(

(

2 H.HSDG - Data Structures

2.1 Introduction

This section describes the following data structures:

• I/O command block (lOCB)

• file control block (FCB)

Other data structures that H.HSDG uses to perfonn I/O are the controller definition
table (CDT), I/O queue (IOQ), and file assignment table (FAT). For more infonnation
about these data structures, refer to the MPX-32 Technical Manual, Volume I, Chapter
2.

2.2 IOCB

The IOCB contains the infonnation required for data transfers. This infonnation
includes the type of operation, the amount of data (in words) to transfer, the address in
CPU memory where data is to be moved to or from, and status about the I/O
operation or external device.

One or more IOCBs make up an I/O command list (IOCL).,H.HSDG initiates I/O
operations by loading the address of the IOCL into the transfer interrupt (TI) location
assigned to the device. It then issues the start I/O command device instruction to
begin IOCL execution.

Following is the IOCB fonnat:

o 7 8 15 16 23 24

HSDCMD unDCMD I Transfer count.
See Note 1. See Note 2. See Note 3.

Word 0

1

2

3

Data address or device command See Note 4.

Not used by hardware. See Note 5.

HSD/device status word. See Note 6.

MPX·32 Technical Volume II

31

2·1

IOCB

2-2

Notes:

1. HSDCMD is the HSD command. It defines the operation of the controller as
follows:

Bit Meaning When Set

o input transfer (read), reset indicates output transfer (write)
1 command transfer, word 1 of loeB is sent to device
2 device status request, store in word 3 of loeB
3 continue on error
4 interrupt when IOCB processing completes
5 transfer in channel, branch to specified loeB
6 command chain, execute next IOCB
7 data chain, continue transfer with address and count

specified in the next IOCB

2. UDDCMD is the user device-dependent command byte. It is passed by the
HSD to the user device.

3. Transfer count is the amount of data (in 32-bit words) to transfer when the
operation is not a command transfer or a transfer in channel.

4. Data address is the physical address of the data buffer to be read into or
written from for data transfer operations, or the address of the next IOCB to
process for a transfer in channel request Device command is a 32-bit value
sent to the device if HSDCMD bit 1 is set. For more infonnation see the
description for FCB word 2, bit 9 and FCB word 10 in the FCB section in
this chapter.

5. This word is not used and is available for use by software. The exception is
the subtract one and branch nonzero (SOBNZ) request. For more
infonnation about the SOBNZ request, refer to the Start 1/0 Request Fonnat
section in Chapter 3.

6. This word stores operation status when an interrupt on end-of-block is
requested or stores external device status returned if bit 2 of word 1 is set.

H.HSDG- Data Structures

,r ... " ..
\,--)

(

FeB

2.3 FeB

The FCB contains information about a requested 110 operation. H.HSDG uses the
FCB to report status about the 110 operation to the requesting task.

When a resource is opened, the 110 control system (loeS) links the FCB associated
with the task (located in the task's address space) to a FAT entry. This creates a
logical connection between the task and the HSD that can be used for subsequent 110
requests. When a task requests an 110 operation for that logical connection, loeS
links the FCB to an 110 queue (IOQ) entry.

Note: To minimize 110 overhead, use the opened FCB for all 110 to a specific
logical file code (LFC). Using alternate FCBs is possible, but not
recommended because it changes the links among the FCB, file pointer table
(FPT), and FAT that were established at open time. If alternate FCBs are
used, an explicit close must be performed for each LFC used. Because
MPX-32 relies on information in the FCB during 110 processing, do not
modify the FCB from the time the 110 operation is issued until it completes
end-action processing.

After the 110 operation completes, the HSD posts status in the FCB associated with
the task.

"
This section details the 16-word FCB used by the HSD. In the following word format,
the shaded regions designate areas which are reserved and used by the MPX-32
operating system.

MPX·32 Technical Volume II 2·3

FeB

2·4

Word 0

o

1

2

3

4

5

6

7

8

9

7 8 15 16 23 24 31

Logical me code (FCB.LFC)

10
r-.. ~

11

12

13

14

15

Word 0 T2001

Bit 0 is a system flag that is set by H.HSDG when an execute channel program
has an asynchronous notification packet associated with it

Bits 1-7 contain the operation code, which is a hexadecimal digit set by IOCS that
specifies the type of function requested of H.HSDG.

Bits 8-31 contain the logical file code associated with the device for the I/O
operation.

Word 1

This word is reserved and should be set to zero. For more information, refer to bit 6
of word 2.

Word 2

Bits 0-7 contain control flags that enable the user to specify how an operation is to
be performed by IOCS. Following is the meaning of these bits when they
are set:

H.HSDG • Data Structures

FeB

(~. Bit Meaning When Set

0 IOCS returns to the user immediately after the
110 operation is queued (no wait 110). If reset,
IOCS exits to the calling program only when the
HSD completes the requested operation (wait I/O).

1 H.HSDG and IOCS do not perform error processing.
IOCS ignores the error return address and takes
a normal return to the caller. H.HSDG posts
device status in the FCB (unless bit 3 is set).
If reset, H.HSDG and IOCS perform error processing.

2 specifies physical execute channel program. If
reset, specifies logical channel program or non-
execute channel program 110 request

3 IOCS performs no status checking and does not
return status information. All I/O appears to complete
without error. If reset, IOCS performs status checking
and returns status information.

4,5 reserved, should be zero.

6 specifies 16 word FCB. Must be set to 1.

7 reserved for internal 10CS use.

('

MPX·32 Technical Volume II 2·5

FeB

Bits 8-23 contain the following special flags: ,1(\
11\\ ;

Bit Meaning When Set
'~

8 specifies request device status after a transfer.
H.HSDG adds an loeB to the IOCL to retrieve
device-specific status after the data transfer
completes. This bit applies only to FCB format.
For more information about FCB format, refer to
Chapter 3.

9 specifies send device command prior to data transfer.
H.HSDG prefixes the transfer with an IOCB that sends
a device command word to the device. The value sent
is the 32-bits contained in word 10 of the FCB. This
bit applies only to FCB format.

10 specifies disable time out for this request This
bit indicates the operation will take an indeterminable
period of time. In most cases this applies only to
read operations. This bit applies to FCB and SIO format.
For more information about SIO format, refer to chapter 3.

11 specifies set UDDCMD from the least significant
byte of word 2. This bit indicates"that the UnDCMD
byte in the data transfer loeB must be set to the least
significant byte of FCB word 2. This allows the user
to pass additional control information to the device
without modifying the device driver. This bit applies
only to FCB format.

12 specifies disable asynchronous status notification
during no-wait I/O. This bit applies only to SIO format.

13 specifies the execute channel program request INIT.
By setting this bit, all preliminary I/O data structures
are set up based on the I/O command list address provided in
word 8 of the FCB. When set, this bit prepares for future
cyclic I/O requests but does not issue any I/O (refer
to Chapter 3 for further information). This bit applies
only to SIO format.

14 specifies the execute channel program request GO. This
bit issues an SIO for the most recently processed INIT
execute channel program request (see bit 13). This bit
applies only to SIO format.

15-23 reserved

Bits 24-31 if bit 11 is set, these bits define the UDDCMD field of the generated
loeB, overriding the default value from a handler table. This field
applies only to FCB format.

(~\

2-6 H.HSDG • Data Structures

(

(

(

FeB

Word 3

IOCS uses this word to indicate status, error, and abnonnal conditions detected during
the current or previous operation. Following is the meaning of the bits when they are
set:

Bit Meaning When Set

Word 4

o

1
2,3
4

5-15
16

17, 18
19

20

21

22

23
24

25
26
27
28
29

30,31

operation in progress. Request has been queued.
This bit is reset after post I/O processing completes.
error condition found
not applicable, should never be returned
device inoperable, HSD not present or oflline
not applicable, should never be returned
a time-out occurred and a CD tenninate was
issued.
not applicable, should never be returned
there was data remaining in the HSD fifo when
the transfer count equaled zero.
a parity error occurred during the current data
transfer.
a non-present memory error occurred during
the current data transfer.
program violation. An invalid opeiation code
was detected.
device inoperative
HSD data buffer overflow. Some data from the
device was lost.
external termination
IOCB address error
error on TI address fetch
device EOB
BP5 error precluded request queuing. For a list
of the BP5 errors, see word 12.
non-execute channel program type of IOCB in
error as follows:

Value

00
01
10

Meaning

data transfer
device status
command transfer

This word specifies the record length. For non-execute channel program I/O, laCS
sets this word to indicate the operations.

MPX-32 Technical Volume" 2-7

FeB

2·8

Word 5
Bi~ 0-7 reserved

Bi~ 8-31 specify the IOQ address. IOCS se~ this field to point to the IOQ entry
initiated from this FCB.

Word 6
Bi~ 0-7 specify special status as follows:

Bit Meaning When Set

o no-wait nonnal end action not taken
1 no-wait error end action not taken
2 kill command, 110 not issued
3 an exception condition has occurred in the 110 request
4 reserved

5-7 reserved

Bi~ 8-31 contain the wait 110 error return address. The user se~ this field to the
address where control is to be transferred for unrecoverable errors when
bi~ 0, 1, and 3 of word 2 are reset. If this field is not initialized and an
unrecoverable error is detected under the above conditions, the user task is
aborted.

Word 7
Bi~ 0-7 set by the 110 control system (IOCS), contains an index to the file pointer

table (FPf) entry for this 110 operation.

Bi~ 8-15 supplied by the IOCS, points to the file assignment table (FAT) entry
associated with this FCB.

H.HSDG • Data Structures

(

FeB

Note: Words 8 through 15, described in the following text, are valid only if bit 6 of
word 2 is set

reserved

WordS
Bits 0-7

Bits 8-31 these bits are used as an expanded data address, a logical IOCL address,
or a physical IOCL address as follows:

Expanded data address - This is the starting address of the data area for FCB fonnat
110 operations. This address must be a word address. For more infonnation about
FCB fonnat, refer to Chapter 3.

Logical IOCL address - This is a logical, doubleword address that points to a user­
supplied IOCL for SIO format I/O operations. For more infonnation about SIO
format, refer to chapter 3. The execute channel program entry point (H.IOCS,10)
must be used and bit 2 of word 2 of the FCB is reset. All addresses within the IOCL
are assumed to be logical and map block boundary crossings need not be resolved.

Physical IOCL address - This is a physical, doubleword address that points to a user­
supplied IOCL for SIO format I/O operations. The execute channel program entry
point (H.IOCS,10) must be used and bit 2 of word 2 of the FCB is set. All addresses
within the IOCL are assumed to be physical and all map block boundary crossings are
assumed to be resolved.

Word 9

Bits
0-31

Word 10

Definition
expanded quantity - number of bytes of data to be transferred
(or)
for XIO requests (execute channel program), bits 0-7 indicate
the number of bytes of sense and bits 8-31 contain the user-specified
sense buffer address.

For nonexecute channel program fonnat, this word defines a device command.

Word 11

Reserved - should be set to zero.

MPX-32 Technical Volume" 2-9

FeB

2-10

Word 12

This word contains status sent from the user's device or if bit 29 of word 3 is set, this
word defines the opcode processor (EP5) detected errors as follows:

Word 13

Value

1
2
3

4

5

6
7
8

9
10
11
12

13

14

15

16

Explanation

request made with non-expanded FCB
FCB format transfer count was zero
FCB format, byte transfer count was not
a multiple of 4 bytes
SIO format with a physical loeL request
by an unprivileged caller
SJO format with a physical JoeL request
by a nonresident caller
first loeB in caller's JOCL is a transfer in channel
caller's JoeL not on a doubleword boundary
SJO format JoeL contains an JoeB with a
zero transfer count
infinite transfer in channel loop
consecutive SOBNZ's in JOCL
SOBNZ target is not in the JOCL
the transfer address is not on a word
boundary "
unprivileged caller's input buffer includes
protected locations
unprivileged caller's input buffer is unmapped
either in MPX-32 or below DSECT
cyclic 110 request was made for which no cyclic
IOQ is current
cyclic 110 request was made and permanent IOQ
support was not sysgened into the system

Bits 0-7 reserved

Bits 8-31 contain the address of the user-supplied routine to branch to for no-wait
110 normal completion. This routine must be terminated by calling
H.IOCS,34 (no-wait 110 end action return). If word 2 bit 12 is reset, this
address plus one word is the location where control is transferred on
asynchronous status notification.

Word 14
Bits 0-7

Bits 8-31

Word 15

reserved

contain the address of the user-supplied routine to branch to for no-wait
110 error completion. This routine must be terminated by calling
H.IOCS,34 (no-wait 110 end action return).

Reserved - should be set to zero.

H.HSDG - Data Structures

(

3 1/0 Request Processing

3.1 Introduction

H.HSDG accepts requests for 110 operations in two fonnats: start 110 (SIO) and file
control block (FCB). This chapter describes these fonnats and the 110 functions that
can be requested with these fonnats.

3.2 SIO Format

3.2.1

In SIO fonnat, the user constructs an 110 command list (IOCL) and places the address
of the IOCL in FCB word 8. An IOCL is comprised of one or more 110 command
blocks (IOCBs) and can be logical or physical.

To initiate IOCL execution, the user puts the address of the user-supplied FCB in
register 1 and issues the following call

M.CALL H.IOCS,lO

Physical IOCls

A physical IOCL is ready to be processed by the HSD. AU· addresses are physical and
all map block crossings are assumed to be resolved. Tasks must be privileged and
resident to use a physical IOCL. To indicate that an IOCL is physical, the task must
set bit 2 in FCB word 2.

3.2.2 logical IOCls

A logical IOCL represents the desired operation in tenns of the logical address space
of the task. It must be transfonned into a physical IOCL before it can be processed
by the HSD. H.HSDG converts logical IOCLs into physical IOCLs as follows:

• H.HSDG converts the logical addresses in data transfer IOCBs to physical
addresses.

• H.HSDG breaks requests at a physical map block boundary (2KW) when a transfer
crosses a boundary. This action resolves discontinuities in the logical-to-physical
mapping by breaking the request into physically contiguous segments.

• H.HSDG saves the address of word 2 of the logical IOCB in word 2 of the physical
IOCB. This allows control and status to pass back to the logical IOCL once the 110
operation specified by the physical IOCL executes. For more infonnation, refer to
the SIO Fonnat Asynchronous Status Presentation and Notification section in this
chapter.

After the conversion of the logical to physical IOCL is complete, H.HSDG updates
the transfer in channel (TIC) request addresses to reflect the final address of the target
IOCB. .

MPX-32 Technical Volume II 3-1

SIO Format

3.2.3 Cyclic 1/0 (SIO Format)

This feature accelerates the cyclic execute channel program (EXCPM) 110. Cyclic liD
means that the user repetitively issues the same I/O command list (IOCL), logical or
physical. with the same buffers and transfer counts. The following two bits, bit 13
(INIT) and bit 14 (GO) in word 2 of the FCB regulate execution of this feature. To
use this feature, the task must be resident and the IOQPOOL SYSGEN directive along
with the parameter PERMIOQ (see MPX-32 Reference Manual Volume III) must be
included in the system image SYSGEN directive file.

When the first IOCL for cyclic usage is issued, the INIT bit must be set. The INIT bit
flags the handler which performs all pre-SIO processing for this EXCPM request up to
but not including issuing the I/O. Subsequent EXCPM requests with the GO bit set
and the INIT bit reset, bypass the pre-SIO processing and issue the I/O previously set
up by the INIT request. This causes pre-SID overhead to be processed only once for a
cyclic I/O request.

A cyclic I/O request remains current until such time as a CLOSE or another INIT
EXCPM request is issued. If another EXCPM request is issued with the INIT bit set,
it becomes the new current cyclic I/O. Non-cyclic I/O requests may be interspersed
between cyclic I/O requests without affecting the current cyclic request. The INIT and
GO bits are ignored in the FCB format (non-EXCPM) I/O requests.

3.2.4 SIO Format-Specific 10eBs

This section describes the following SIO format IOCBs:

• transfer in channel (TIC)

• subtract one and branch nonzero (SOBNZ)

3.2.4.1 TIC

The TIC command instructs the HSD to continue processing the IOCL at the address
specified in 10CB word 1. This is an unconditional branch in the IOCL. A TIC can
be used to link IOCLs to form one logically contiguous command set or cause the
device to re-execute an IOCL.

3.2.4.2 SOBNZ

3-2

The SOBNZ command is a special version of the TIC command. It permits the task
to specify that a series of IOCBs may be executed a specific number of times.
Following is the IOCB format of the SOBNZ command:

1/0 Request Processing

f-~· . .
'G' .! " ,/.j

(
Word 0

1

2

3

Notes:

o 7 8

HSDCMD UDDCMD
See Note 1. See Note 2.

Address of IOCB to branch to

Initial count
See Note 3.

Address of IOCB to branch to

SIO Format

15 16 23 24 31

Not used

Current count
See Note 3.

1. HSDCMD is the HSD command. It defines the operation of the controller as
follows:

2.

3.

Bit Meaning When Set

o input transfer (read), reset for output (write)
1 command transfer, IOCB word 1 sent to device
2 device status request, store in IOCB word 3
3 continue on error _
4 interrupt on end of block (when IQCB processing

completes). For a TIC or SOBNZ command, this bit
should be set in the IOCB that immediately precedes
the TIC or SOBNZ command if an interrupt is required.

5 TIC, branch to specified IOCB
6 command chain, execute next IOCB
7 data chain, continue transfer with address and

count specified in the next IOCB

Bits 0 through 4 and 7 should be reset.

UDDCMD is the user device dependent command byte and is passed by the
HSD to the user device.

This field should be set to the number of times the loop is to be executed
plus one.

For physical IOCLs, the IOCB preceding the SOBNZ must have the following bits
set: interrupt on end-of-block bit (bit 4 of word 0), and the most high order bits in
word 2 (bits 0 and 1). If an interrupt on end-of-block is desired for the IOCB
preceding the SOBNZ, bit 4 of word 0 and only the most high order bit in word 2 (bit
0) should be set in that IOCB. This is done by H.HSDG for logical IOCLs.

3.2.5 SIO Format Asynchronous Status Presentation and Notification

Asynchronous status presentation allows the user to generate an interrupt and receive
status from H.HSDG upon completion of any IOCB within the IOCL. It is specified
by setting bit 4 of IOCB word O.

MPX-32 Technical Volume II 3-3

SIO Format

H.HSDG notifies software of asychronous status presentation via notification packets.
These packets are a logical extension to the I/O end-action routines in MPX-32. They
are delivered with the same priority as I/O end-action routines so that notification
routines and end-action routines will not interrupt each other.

The prerequisites for asynchronous status notification are as follows:

• The I/O operation is in SIO format

• No-wait I/O is specified. Asynchronous status notification is the default when
performing no-wait 110. To disable the notification at the completion of each IOCB
that has the interrupt on end of block bit set (bit 4, word 0), set bit 12 of FCB word
2.

• Asynchronous status notification is enabled in the FCB (bit 12 of FCB word 2 is
reset).

• FCB word 13 is supplied and is non-zero.

• Asynchronous status presentation is requested (bit 4 of IOCB word 0 is set).

The user can verify that status was posted by checking the right halfword of word 2 of
the IOCB. If the value of word 2 in the IOCB has been incremented by one, status
was posted in word 3 of the IOCB.

3.3 FeB Format

3-4

The FCB format provides an interface to the user device compatible with standard
devices. The user issues requests with the FCB data structure. A device command
and/or a data transfer can be initiated from an FCB request. For more information
about the FCB, refer to Chapter 2.

For data transfer requests, the buffer address and byte count describe the user buffer
for the operation. The user places the address of this buffer in the expanded random
access address field (bytes 1, 2, and 3 in FCB word 8).

To initiate the 110 request, the user places the address of the user-supplied FCB in
register 1 and issues a M.READ or a M. WRIT service call.

H.HSDG processes the FCB request in two phases. First, H.HSDG computes the
required size of the IOCL. It then adds the size of the IOCL to the size of the 110
queue (IOQ) entry. IOCS allocates the IOQ from memory pool and the IOCS routine
INIT.lOQ initializes the IOQ. H.HSDG constructs the IOCL according to the table
based on the task's operation code. It then queues the request to the CDT and
initiates the request When the request completes, H.HSDG places the final status in
the FCB.

110 Request Processing

()

IOCS Entry Points

(~ 3.4 Ices Entry Points

Following is a list of the IOCS entry points and the applicable HSD I/O function.
All of the entry points, with the exception of EXCPM, are used with FCB format.

IOCS
Entry
Point N arne Use

1
2
3
4
5
10
7
8
9
19
20
21
22
13
24
27

Notes:

OPEN
RWND
READ
WRITE
WEOF
EXCPM
ADVR
ADVF
BKSR
BKSF
UPSP
ERPI'
EJCT
CLOSE
RSVP
RLSP

devicelhandler init (note 1)
rewind device (note 5)
input data transfer (note 2)
output data transfer (note 2)
write end-of-file (note 5)
SIO request format (note 3)
advance record (note 5)
advance file (note 5)
backspace record (note 5)
backspace file (note 5)
up space (note 5)
erase or punch trailer (note 5)
eject (note 5)
devicelhandler reset (note 4)
reserve port (note 5)
release port (note 5)

1. Only called once until close. This function is intended for user device-specific
processing as required. H.HSDG contains a test device instruction that ensures
the presence of the HSD. This can be expanded by the user as needed.

2. May cause device command transfer and/or device status request.

3. Applicable only to SIO fonnat.

4. This is the complementary function to device open.

5. This entry point can be expanded by the user to perfonn user-defined processing.
The entry point dispatches to a common entry point in H.HSOO. H.HSDG uses
an internal table, which can be specified by the user at open, to set the
UDDCMD field of the IOCB. H.HSDG uses FCB word 10 as the device
command word (lOCB word one) and sends it to the device.

3.5 Status

The HSD posts controller status about the transfer in the IOCB. To obtain specific
information about the device, perfonn the following:

• SID format - construct an 10CB and set bits 2 and 4 in word O. This causes the
HSD to request the device status, and store it in IOCB word 3. (Bit 0 of IOCB
word 3 of the returned status is set to indicate device status as opposed to controller
status.)

MPX·32 Technical Volume" 3·5

I .

Status

• FCB format - set bit 8 of FCB word 2. When the I/O operation completes, FCB CZ ~
word 12 contains the device status. The device status which is returned relates to a
particular device. For more information about controller status returned refer to
word 3 of the FCB format section in Chapter 2.

3.6 Device Considerations

3·6

Following is a list of device considerations:

• The device will not interrupt at end-of-list unless explicitly instructed. To ensure
that the device will interrupt when its idle, software must set bit 4 of IOCB word 0
(if command or data chaining, bits 6 and 7 of word 0, respectively, are not
specified).

• If there is a FIFO overftow or non-present memory and the IOCB has the continue
on error bit (bit 3, word 0) set, the device posts status and interrupts only if the
interrupt on end-of-block bit (bit 4, word 0) is set. The HSD should interrupt when
it posts error status. When the HSD is operated in mode two, only nonpresent
memory errors are affected when the continue on error bit is set. Therefore, it is
recommended that mode two be used and continue on error bit be reset. For more
information about HSD mode two, refer to the High-Speed Data Interface Technical
Manual.

• If the device stops a transfer due to device end-of-block and is executing an IOCB
in a data chain sequence that is not the last IOCB in that sequence, it stops
processing the IOCL. The device will not interrupt unless bit 4 of word 0 was set
in the IOCB currently being processed or it is operating in mode two. Interrupt on
end-of-block for an IOCB of this nature is not the normal case. However, this
varies depending on whether it is the last data-chained IOCB.

If the IOCB where device end-of-block is posted also specifies command chain and
no interrupt on end-of-block, the device does not post the residual byte count. No
residual byte count is provided when there is no interrupt. To avoid this, operate the
device in mode 2. For more information about HSD mode two, refer to the High­
Speed Data Interface Technical Manual.

• When external mode is active and the software issues a CD start I/O, the device
rejects the command with a privilege violation. No indication is given to software.
The operation times out, and a halt I/O instruction is issued that kills the currently
running external operation. This can occur when the device is operated in a
combination of internal (normally used) and external control modes. The user
device can force an error at the end of each external mode transfer to cause an
interrupt each time. If H.HSDG had started a transfer, it restarts the operation.

Any device time out must be set long enough to ensure that the external transfer
can complete. This prevents the time out routine from aborting the transfer.

• Interrupts on TIC IOCBs must be avoided. To determine if the HSD has executed a
TIC, software should set the interrupt on end-of-block bit (bit 4, word 0) in the
previous IOCB. If the TIC causes a channel program loop and the HSD completes
the IOCB preceding the TIC before the software deactivates the interrupt, the HSD
waits until the level becomes inactive. Software can perform a loop counting
operation and modify the branch address. The interrupt service routines must run
with the interrupt level active until software modifies the address.

I/O Request Processing

o

(-

Inter-Bus Link Handler (H.mLG)
MPX-32 Technical Manual

Volume IT

('

'.

Contents

Page

1 H.lBLG Overview

1.1 Introduction ... 1-1
1.2 H.ffiLG Operation ... 1-1
1.3 SYSGEN Considerations .. 1-1

2 H.IBLG Data Structures

2.1 Introduction ... 2-1
2.2 IOCB .. 2-1
2.3 FCB .. 2-2

3 H.lBLG - 1/0 Request Processing

3.1 Introduction ... 3-1
3.2 SIO Format .. i ••••••••••••••••••••••••••••••••• 3-1

3.2.1 Physical IOCLs ... 3-1

(
3.2.2 I...ogical IOCLs .. 3-1
3.2.3 SIO Format-Specific IOCBs ... 3-2

3.2.3.1 TIC ... 3-2
3.2.3.2 SOBNZ .. 3-2

3.2.4 SIO Format Asynchronous Status Presentation and Notification .. 3-3
3.3 FCB Format ... 3-3
3.4 IOCS Entry Points ... 3-4
3.5 Status ... 3-5
3.6 Device Considerations ... 3-5

(~

MPX·32 Technical Volume II iii/iv

I "\ C-~.··· , i

(

1 H.lBLG Overview

1.1 Introduction

H.IBLG is a modified version of the H.HSDG handler that is tailored for use with the
HSD when it is jumpered for inter-bus link (IBL) mode. IBL mode allows two CPUs
to communicate via two HSDs cabled together. For more information about the
H.HSDG handler, refer to the High-Speed Data Handler section in this manual behind
the H.HSDG tab.

The HSD is a D-c1ass I/O controller that performs handshaking with the CPU. It also
fetches and stores the data and status for I/O operation requested by the user task.
H.IBLG, in tum, performs the following:

• issues channel programs

• collects status about the I/O operation from the HSD and reports the status to the
user task and MPX-32

1.2 H.lBLG Operation

H.mLG uses link interrupts to control the I/O operations between the two CPUs. If
one CPU posts an output operation, H.IBLG issues a link interrupt to the other CPU.
H.mLG always sends the link interrupt from the CPU that is posting a write operation
to the CPU posting the read operation.

The CPU that posts the read operation waits for a link interrupt before starting the
read operation. If a link interrupt was issued prior to the read operation, the CPU
starts the read operation at once; otherwise, the CPU holds the read operation until the
link interrupt is issued. Both CPUs must have an 1/0 operation posted for the I/O
operation to occur.

1.3 SYSGEN Considerations

To include H.IDLG as pan of MPX-32, specify H.IDLG in the SYSGEN directive
file. For more information about the SYSGEN directive file, refer to the System
Generation (SYSGEN) chapter in Volume III of the MPX-32 Reference Manual.

Following are examples of the CONTROLLER and DEVICE directives that configure
MPX-32 for the HSD when it is in IDL mode:

CONTROLLER=U040,PRIORITY=09,CLASS=~,HANDLER=(H.IBLG,I)

DEVICE=OO,DTC=UO

MPX-32 Technical Volume II 1-1/1-2

o

o

(

2 H.lBLG Data Structures

2.1 Introduction

This section describes the following data structures:

• I/O command block (lOCB)

• file control block (FCB)

Other data structures that H.lBLG uses to perfonn I/O are the controller definition
table (CDT), I/O queue (IOQ), and file assignment table (FAT). For more infonnation
about these data structures, refer to the MPX-32 Technical Manual, Volume I, Chapter
2.

2.2 IOCB

The IOCB contains the infonnation required for data transfers. This infonnation
includes the type of operation, the amount of data (in words) to transfer, the address in
CPU memory where data is to be moved to or from, and status about the 110
operation or external device.

One or more IOCBs make up an 110 command list (IOCL). H.mLG initiates 110
operations by loading the address of the IOCL into the tranSfer interrupt (TI) location
assigned to the device. It then issues the start 1/0 command device instruction to
begin IOCL execution.

Following is the IOCB fonnat:

Word 0

1

2

3

o 7 8 15 16

HSDCMD I UDDCMD I Transfer count
See Note 1. See Note 2.

Data address or device command. See Note 4.

Not used by hardware. See Note S.

HSD/device status word. See Note 6.

MPX·32 Technical Volume II

23 24 31

See Note 3.

2·1

IOCB

Notes:

1. HSDCMD is the HSD command. It defines the operation of the controller as
follows:

Bit Meaning When Set

o input transfer (read), reset indicates output transfer (write)
1 command transfer, word 1 of IOCB is sent to device
2 device status request, store in word 3 of IOCB
3 continue on error
4 interrupt when IOCB processing completes
5 transfer in channel, branch to specified IOCB
6 command chain, execute next 10CB
7 data chain, continue transfer with address and count

specified in the next IOCB

2. UDDCMD is the user device-dependent command byte. It is passed by the HSD
to the user device.

3. Transfer count is the amount of data (in 32-bit words) to transfer when the
operation is not a command transfer or a transfer in channel.

4. Data address is the physical address of the data buffer to be read into or written
from for data transfer operations, or the address of the next IOCB to process for a
transfer in channel request. Device command is a 32-bit value sent to the device
if HSDCMD bit 1 is set. For more information see the description for FCB word
2, bit 9 and FCB word 10 in the FCB section in this chapter.

5. This word is not used and is available for use by software. The exception is the
subtract one and branch nonzero (SOBNZ) request. For more information about
the SOBNZ request, refer to the Start 110 Request Format section in chapter 3.

6. This word stores ~peration status when an interrupt on end-of-block is requested
or stores external device status returned if bit 2 of word 1 is set.

2.3 FeB

2·2

The FCB contains information about a requested 110 operation. H.lBLG uses the
FCB to report status about the 110 operation to the requesting task.

When a resource is opened, the 110 control system (IOCS) links the FCB associated
with the task (located in the task's address space) to a FAT entry. This creates a
logical connection between the task and the HSD that can be used for subsequent 110
requests. When a tasks requests an 110 operation for that logical connection, 10CS
links the FCB to an 110 queue (IOQ) entry.

H.IBLG Data Structures

()

(

FeB

Note: To minimize 1/0 overhead, used the opened FCB for all 110 to a specific
logical file code (LFC). Using alternate FCBs is possible, but not
recommended because it changes the links among the FCB, file pointer table
(FPT), and FAT that were established at open time. If alternate FCBs are
used, an explicit close must be performed for each LFC used. Because
MPX-32 relies on information in the FCB during 110 processing, do not
modify the FCB from the time the 110 operation is issued until it completes
end-action processing.

After the 110 operation completes, the HSD posts status in the FCB associated with
the task.

The following section details the 16 words that make up the FCB for the HSD.

Ward 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

o 7 8 15 16 23 24

* IOpcode Logical file code (FCB.LFC)
(FCB.OPCD)

Reserved

Control flags Special flags Random access UDDCMDof
(FCB.GCFG) (FCB.SCFG) address 10CB if bit

(FCB.CBRA) 11 of word

.' 2 is set

Status flags (FCB.SFLG)

Record length in bytes (FCB.RECL)

Reserved IOQ address (FCB.IOQA)

Special status Wait 110 error return address (FCB.ERRT)
(FCB.SPST)

Index to FPT FAT address (FCB.FATA)

Reserved Expanded data address (FCB.ERW A)

Number of bytes to transfer (FCB.EQTY)

Device command for non-EXCPM (FCB.ERAA)

Reserved

Extended 110 status (FCB.IST2)

Reserved No-wait 110 normal end-action address
(FCB.NWOK)

Reserved No-wait 110 error end-action address
(FCB.NWER)

Reserved

MPX·32 Technical Volume II

31

2·3

FeB

2-4

Word 0
Bit 0 is a system flag that is set by H.IBLG when an execute channel program

has an asynchronous notification packet associated with it

Bits 1-7 contain the operation code, which is a hexadecimal digit set by IOCS that
specifies the type of function requested of H.IBLG.

Bits 8-31 contain the logical file code associated with the device for the I/O
operation.

Word 1

This word is reserved. For more information, refer to bit 6 of word 2.

Word 2
Bits 0-7 contain control flags that enable the user to specify how an operation is to

be performed by IOCS. Following is the meaning of these bits when they
are set:

Bit Meaning When Set

o IOCS returns to the user immediately after the
I/O operation is queued (no wait I/O). If reset,
IOCS exits to the calling program only when the
HSD completes the requested operation (wait I/O).

1 H.mLG and IOCS do not perform error processing.
IOCS ignores the error return address and takes
a normal return to the caller. H.IBLG posts
device status in the FCB (unless bit 3 is set).
If reset, H.lBLG and IOCS perform error processing.

2 specifies physical execute channel program. If
reset, specifies logical channel program or non­
execute channel program I/O request.

3 IOCS performs no status checking and does not
return status information. All I/O appears to complete
without error. If reset, IOCS performs status checking
and returns status information.

4, 5 not applicable, should be zero.

6 specifies expanded FCB (words 8 through 15). This
enables larger I/O byte transfers, a 24-bit addressing
field, and a 32-bit random access address. When this
bit is set, IOCS assumes the FCB is 16 words long. IOCS
uses the information in words 8 and 9 instead of the
data in word 1. This bit should be set

7 reserved for internal 10CS use.

H.IBLG Data Structures

(~

(

FeB

Bits 8-15 contain the following special flags:

Bit Meaning When Set

8 specifies request device status after a transfer.
H.IBLG adds an loeB to the loeL to retrieve
device-specific status after the data transfer
completes. This bit applies only to FCB format. For
more information about FCB format, refer to chapter 3.

9 specifies send device command prior to data transfer.
H.IBLG prefixes the transfer with an loeB that sends
a device command word to the device. The value sent
is the 32-bits contained in word 10 of the FCB. This
bit applies only to FeB format.

10 specifies disable time out for this request. This
bit indicates the operation will take an indeterminable
period of time. In most cases this applies only to
read operations. This bit applies to FCB and SID format.
For more information about SIO format, refer to chapter 3.

11 specifies set unncMD from the least significant
byte of word 2. This bit indicates that the UDDCMD
byte in the data transfer 10CB must be set to the least
significant byte of FCB word 2. This allows the user
to pass additional control information to the device
without modifying the device driver. This bit applies
only to FCB format.

12 specifies disable asynchronous status notification
during no-wait I/O. This bit applies only to SID format.

13-23 reserved

Bits 24-31 if bit 11 is set, these bits define the UDDCMD field of the generated
loeB, overriding the default value from a handler table. This field
applies only to FCB format.

Word 3

IOCS uses this word to indicate status, error, and abnormal conditions detected during
the current or previous operation. Following is the meaning of the bits when they are
set:

Bit Meaning When Set

o operation in progress. Request has been queued.
This bit is reset after post I/O processing completes.

1 error condition found
2, 3 not applicable, should never be returned

4 device inoperable
5-15 not applicable, should never be returned

16 a time-out occurred and a CD terminate was
issued.

17, 18 not applicable, should never be returned

MPX-32 Technical Volume II 2-5

FeB

2·6

Word 4

Bit

19

20

21

22

23
24

25
26
27
28
29

30,31

Meaning When Set

there was data remaining in the HSD FIFO when
the transfer count equaled zero.
a parity error occurred during the current data
transfer.
a non-present memory error occurred during
the current data transfer.
program violation. An invalid operation code
was detected.
device inoperative
HSD data buffer overflow. Some data from the
device was lost.
external tennination
IOCB address error
error on TI address fetch
device BOB
EP5 error precluded request queuing. For a list
of the EP5 errors, see word 12.
non-execute channel program type of IOCB in
error as follows:

Value

00
01
10

Meaning .'

data transfer
device status
command transfer

This word specifies the record length. For non-execute channel program I/O, IDCS
sets this word to indicate the number of bytes transferred during read/write operations.

WordS
Bits 0-7

Bits 8-31

Word 6
Bits 0-7

reserved

specify the IOQ address. IOCS sets this field to point to the IOQ entry
initiated from this PCB.

specify special status as follows:

Bit Meaning When Set

o no-wait nonnal eno action not taken
1 no-wait error end action not taken
2 kill command, I/O not issued
3 an exception condition has occurred

in the 110 request
4 reserved

5-7 reserved

H.lBLG Data Structures

o

o

FeB

Bits 8-31 contain the wait 110 error return address. The user sets this field to the
address where control is to be transferred for unrecoverable errors when
bits 0, 1, and 3 of word 2 are reset. If this field is not initialized and an
unrecoverable error is detected under the above conditions, the user task is
aborted.

Word 7
Bits 0-7 This field, set by the I/O control system (IOCS), contains an index to the

file pointer table (FPr) entry for this I/O operation.

Bits 8-15 This field, supplied by the IOCS, points to the file assignment table
(FAT) entry associated with this FCB.

Note: Words 8 through IS, described in the following text, are valid only if bit 6 of
word 2 is set

Word 8
Bits 0-7

Bits 8-31

Word 9

reserved

These bits are used as an expanded data address, a logical IOCL address,
or a physical 10CL address as follows:

Expanded data address - This is the starting address of the data area for
FCB fonnat I/O operations. This address must be a word address. For
more infonnation about FCB fonnat, refer to section 3.3 ..

Logical IOCL address - This is a logical, doubleword address that points
to a user-supplied IOCL for SIO fonnat I/O operations. For more
infonnation about SIO fonnat, refer to section 3.2. The execute channel
program entry point (H.lOCS,lO) must be used and bit 2 of word 2 of the
FCB is reset. All addresses within the IOCL are assumed to be logical
and map block boundary crossings need not be resolved.

Physical IOCL address - This is a physical, doubleword address that
points to a user-supplied IOCL for SIO fonnat I/O operations. The
execute channel program entry point (H.lOCS,IO) must be used and bit 2
of word 2 of the FCB is set All addresses within the IOCL are assumed
to be physical and all map block boundary crossings are assumed to be
resolved.

Bits Definition
0-31 expanded quantity - number of bytes of data to be transferred

(or)

Word 10

for XIO requests (execute channel program), bits 0-7 indicate the
number of bytes of sense and bits 8-31 contain the user-specified sense
buffer address.

For nonexecute channel program format, this word defines a device command.

MPX·32 Technical Volume II 2·7

FeB

2-8

Word 11

Reserved.

Word 12

This word contains status sent from the user's device or if bit 29 of word 3 is set, this
word defines the opcode processor (EPS) detected errors as follows:

Word 13
Bits 0-7

Bits 8-31

Word 14
Bits 0-7

Bits 8-31

Word 15

Value Explanation

1
2
3

4

S

6
7
8

9
10
11
12

13

14

reserved

request made with non-expanded PCB
PCB fonnat transfer count was zero
PCB fonnat, byte transfer count was not
a multiple of 4 bytes
SIO format with a physical IOCL request
by an unprivileged caller
SIO format with a physical JOCL request
by a nonresident caller
first IOCB in caller's IOCL is a transfer in channel
caller's IOCL not on a doubleword boundary
SIO format IOCL contains an IOCB with a
zero transfer count
infinite transfer in channel loop
consecutive SOBNZ's in IOCL .'
SOBNZ target is not in the IOCL
the transfer address is not on a word
boundary
unprivileged caller's input buffer includes
protected locations
unprivileged caller's input buffer is unmapped
either in MPX-32 or below DSECT

contain the address of the user-supplied routine to branch to for no-wait
110 nonna! completion. This routine must be tenninated by calling
H.IOCS,34 (no-wait 110 end action return). If word 2 bit 12 is reset, this
address plus one word is the location where control is transferred on
asynchronous status notification.

reserved

contain the address of the user-supplied routine to branch to for no-wait
110 error completion. This routine must be terminated by calling
H.IOCS,34 (no-wait 110 end action return).

Reserved - should be set to zero.

H.IBLG Data Structures

o

(-

(

3 H.lBLG - 1/0 Request Processing

3.1 Introduction

H.ffiLG accepts requests for 110 operations in two fonnats: start 110 (SIO) and file
control block (FCB). This chapter describes these fonnats and the 110 functions that
can be requested with these fonnats.

3.2 SIO Format

3.2.1

In SIO fonnat, the user constructs an 110 command list (IOCL) and places the address
of the IOCL in FCB word 8. An JOCL is comprised of one or more 110 command
blocks (JOCBs) and can be logical or physical.

To initiate JOCL execution, the user puts the address of the user-supplied FCB in
register 1 and issues the following call to the 110 control system (IOCS):

M.CALL H.IOCS,lO

Physical IOCLs

A physical IOCL is ready to be processed by the device. A1l addresses are physical
and all map block crossings are assumed to be resolved. Tasks must be privileged and
resident to use a physical JOCL. To indicate that an JOCL is physical, the task must
set bit 2 in FeB word 2.

3.2.2 Logical IOCLs

A logical IOCL represents the desired operation in tenns of the logical address space
of the task. It must be transformed into a physical IOCL before it can be processed
by the device. H.IBLG converts logical IOCLs into physical IOCLs as follows:

• H.ffiLG converts the logical addresses in data transfer IOCBs to physical addresses.
• H.ffiLG breaks requests at a physical map block boundary (2KW) when a transfer

crosses a boundary. This action resolves discontinuities in the logical-to-physical
mapping by breaking the request into physically contiguous segments.

• H.ffiLG saves the address of word 2 of the logical IOCB in word 2 of the physical
10CB. This allows control and status to pass back to the logical loeL once the 110
operation specified by the physical loeL executes. For more infonnation, refer to
the SIO Fonnat Asynchronous Status Presentation and Notification section in this
chapter.

After the conversion of the logical to physical IOCL is complete, H.IBLG updates the
transfer in channel (TIC) request addresses to reflect the final address of the target
loeB.

MPX·32 Technical Volume II 3-1

SIO Format

3.2.3 SIO Format-Specific 10CBs

This section describes the following SIO format IOCBs:

• transfer in channel (TIC)

• subtract one and branch nonzero (SOBNZ)

3.2.3.1 TIC

The TIC command instructs the HSD to continue processing the IOCL at the address
specified in IOCB word 1. This is an unconditional branch in the IOCL. A TIC can
be used to link IOCLs to form one logically contiguous command set or cause the
device to re-execute an IOCL.

3.2.3.2 SOBNZ

3-2

The SOBNZ command is a special version of the TIC command. It permits the task
to specify that a series of IOCBs may be executed a specific number of times.
Following is the IOCB format of the SOBNZ command:

Ward 0

1

2

3

Notes:

o 7 8 15 16 23 24 31

HSDCMD UDDCMD Not used
See Note 1. See Note 2.}

Address of IOCB to branch to.

Initial counL See Note 3. Current count. See Note 3.

Address of IOCB to branch to.

1. HSDCMD is the HSD command. It defines the operation of the controller as
follows:

Bit Meaning When Set

o input transfer (read), reset for output (write)
1 command transfer, IOCB word 1 sent to device
2 device status request, store in IOCB word 3
3 continue on error
4 interrupt on end of block (when IOCB processing

completes). For a TIC or SOBNZ command, this bit
should be set in the IOCB that immediately precedes
the TIC or SOBNZ command if an interrupt is required.

5 TIC, branch to specified IOCB
6 command chain, execute next IOCB
7 data chain, continue transfer with address and

count specified in the next IOCB

Bits 0 through 4 and 7 should be reset.

H.IBLG • 110 Request Processing

o

(

(

510 Format

2. UDDCMD is the user device dependent command byte and is passed by the
HSD to the user device.

3. This field should be set to the number of times the loop is to be executed
plus one.

For physical IOCLs, the IOCB preceding the SOBNZ must have the following bits
set: interrupt on end-of-block bit (bit 4 of word 0), and the most high order bits in
word 2 (bits 0 and 1). If an interrupt on end-of-block is desired for the IOCB
preceding the SOBNZ, bit 4 of word 0 and only the most high order bit in word 2 (bit
0) should be set in that IOCB. This is done by H.mLG for logical IOCLs.

3.2.4 SIO Format Asynchronous Status Presentation and Notification

Asynchronous status presentation allows the user to generate an interrupt and receive
status from H.IBLG upon completion of any IOCB within the IOCL. It is specified
by setting bit 4 of IOCB word O.

H.mLG notifies software of asychronous status presentation via notification packets.
These packets are a logical extension to the I/O end-action routines in MPX-32. They
are delivered with the same priority as I/O end-action routilles so that notification
routines and end-action routines will not interrupt each other .

..

The prerequisites for asynchronous status notification are as follows:

• The I/O operation is in SIO format
• No-wait I/O is specified. Asynchronous status notification is the default when

performing no-wait 110. To disable the notification at the completion of each IOCB
that has the interrupt on end of block bit set (bit 4, word 0), set bit 12 of FCB word
2.

• Asynchronous status notification is enabled in the FCB (bit 12 of FCB word 2 is
reset).

• FCB word 13 is supplied and is non-zero.

• Asynchronous status presentation is requested (bit 4 of IOCB word 0 is set).

The user can verify that status was posted by checking the right halfword of word 2 of
the IOCB. If the value of word 2 in the IOCB has been incremented by one, status
was posted in word 3 of the IOCB.

3.3 FeB Format
The FCB format provides an interface to the user device compatible with standard
devices. The user issues requests with the FCB data structure. A device command
and/or a data transfer can be initiated from an FCB request. For more information
about the FCB, refer to section 2.3.

For data transfer requests, the buffer address and byte count describe the user buffer
for the operation. The user places the address of this buffer in the expanded random
access address field (bytes 1, 2, and 3 in FCB word 8).

MPX·32 Technical Volume II 3-3

FeB Format

To initiate the 110 request,' the user places the address of the user-supplied FCB in
register 1 and issues a M.READ or a M. WRIT service call.

H.IBLG processes the FCB request in two phases. First, H.IBLG computes the
required size of the IOCL. It then adds the size of the IOCL to the size of the 110
queue (IOQ) entry. IOCS allocates the IOQ from memory pool and the IOCS routine
INIT.IOQ initializes the IOQ. H.mLG constructs the IOCL according to the table
based on the task's operation code. It then queues the request to the CDT and
initiates the request When the request completes, H.IBLG places the final status in
the PCB.

3.4 loes Entry Points

Following is a list of the IOCS entry points and the applicable HSD 110 function.
All of the entry points, with the exception of EXCPM, are used with PCB format

IOCS
Entry
Point

1
2
3
4
5
10
7
8
9
19
20
21
22
13
24
27

Name

OPEN
RWND
READ
WRITE
WEOF
EXCPM
ADVR
ADVP
BKSR
BKSF
UPSP
ERPT
EJCT
CLOSE
RSVP
RLSP

Use

devicelhandler init (note 1)
rewind device (note 5)
input data transfer (note 2)
output data transfer (note 2)
write end-of-file (note 5)
SIO request format (note 3)
advance record (note 5)
advance file (note 5)
backspace record (note 5)
backspace file (note 5)
up space (note 5)
erase or punch trailer (note 5)
eject (note 5) .
devicelhandler reset (note 4)
reserve port (note 5)
release port (note 5)

H.IBLG ·.,0 Request Processing

o

o

(

(

loes Entry Points

Notes:

1. Only called once until close. This function is intended for user device-specific
processing as required. H.IBLG contains a test device instruction that ensures
the presence of the HSD. This can be expanded by the user as needed.

2. May cause device command transfer and/or device status request.
3. Applicable only to SIO fonnat.

4. This is the complementary function to device open. It consists of a null routine.
5. This entry point can be expanded by the user to perfonn user-defined processing.

The entry point dispatches to a common entry point in H.IBLG. H.IBLG uses an
internal table, which can be specified by the user at open, to set the UDOCMD
field of the loeB. H.mLG uses FCB word 10 as the device command word
(loeB word one) and sends it to the device.

3.5 Status

3.6

The HSD posts controller status about the transfer in the loeB. To obtain specific
infonnation about the device, perfonn the following:

• SIO fonnat - construct an 10CB and set bits 2 and 4 in word O. This causes the
HSD to request the device status, and store it in loeB word 3. (Bit 0 of loeB
word 3 of the returned status is set to indicate device status as opposed to controller
status.)

• FCB fonnat - set bit 8 of FCB word 2. When the I/O operation completes, FCB
word 12 contains the device status. For more infonnation about the status returned,
refer to FCB word 3 in section 2.3.

Device Considerations

Following is a list of device considerations:

• The device will not interrupt at end-of-list unless explicitly instructed. To ensure
that the device will interrupt when its idle, software must set bit 4 of loeB word 0
(if command or data chaining, bits 6 and 7 of word 0, respectively, are not
specified).

• If there is a FIFO overflow or non-present memory and the loeB has the continue
on error bit (bit 3, word 0) set, the device posts status and interrupts only if the
interrupt on end-of-block bit (bit 4, word 0) is set. The HSD should interrupt when
it posts error status. When the HSD is operated in mode two, only nonpresent
memory errors are affected when the continue on error bit is set. Therefore, it is
recommended that mode two be used and continue on error bit be reset. For more
infonnation about HSD mode two, refer to the High-Speed Data Interface Technical
Manual.

MPX·32 Technical Volume II 3·5

Device Considerations

3-6

• If the device stops a transfer due to device end-of-block and is executing an IOCB
in a data chain sequence that is not the last IOCB in that sequence, it stops
processing the IOCL. The device will not interrupt unless bit 4 of word 0 was set
in the IOCB currently being processed or it is operating in mode two. Interrupt on
end-of-block for an IOCB of this nature is not the normal case. However, this
varies depending on whether it is the last data-chained IOCB.

If the IOCB where device end-of-block is posted also specifies command chain and
no interrupt on end-of-block, the device does not post the residual byte count. No
residual byte count is provided when there is no interrupt To avoid this, operate the
device in mode 2. For more information about HSD mode two, refer to the High­
Speed Data Interface Technical Manual.

• When external mode is active and the software issues a CD start 1/0, the device
rejects the command with a privilege violation. No indication is given to software.
The operation times out, and a halt I/O instruction is issued that kills the currently
running external operation. This can occur when the device is operated in a
combination of internal (normally used) and external control modes. The user
device can force an error at the end of each external mode transfer to cause an
interrupt each time. If H.IBLG had started a transfer, it restarts the operation.

Any device time out must be set long enough to ensure that the external transfer
can complete. This prevents the time out routine from aborting the transfer.

• Interrupts on TIC IOCBs must be avoided. To determint; if the HSD has executed a
TIC, software should set the interrupt on end-of-block bit (bit 4, word 0) in the
previous IOCB. If the TIC causes a channel program loop and the HSD completes
the IOCB preceding the TIC before the software deactivates the interrupt, the HSD
waits until the level becomes inactive. Software can perform a loop counting
operation and modify the branch address. The interrupt service routines must run
with the interrupt level active until software modifies the address.

• All I/O operations must be matched with the opposite operation by both CPUs. For
example, a read IOCB by one CPU must match a write IOCB from the other CPU.
The following example illustrates this restriction with IOCLs that contain more than
one IOCB:

CPU A
(one 10CL)

read IOCD
writelOCB
write IOCB
read IOCB

CPUB
(one IOCL)

write IOCB.
readlOCB
read IOCB
writelOCB

• 10CLs can have any number of IOCBs, as long as the IOCLs match with the
opposite operations and supply the same transfer count.

• The first 10CB in an IOCL must be a read or a write IOCB. If a write IOCB is the
first IOCB in the IOCL, H.mLG issues a start I/O for the IOCL and generates a
link interrupt to the other CPU. If a read IOCB is the first IOCB in the IOCL,
H.mLG waits for a link interrupt from the other CPU before starting the IOCL.

H.IBLG ·1/0 Request Processing

(

Device Considerations

• H.ffiLG sends only one link interrupt per IOCL. The following example illustrates
this restriction:

CPUC
(one 10CL)

readlOCD
writelOCB
writelOCB
read IOCB

CPUD
(one IOCB per IOCL)

write IOCB (one 10CL)
read IOCB (one IOCL)
read IOCB (one IOCL)
write 10CB (one IOCL)

In this example, CPU C holds the first read 10CB until CPU D perfonns the first
write IOCB. When CPU D executes the write IOCB, H.ffiLG sends a link interrupt
to CPU C. CPU C then waits for a read IOCB from CPU D. CPU D's read IOCB
is held, waiting for H.IBLG to send a link interrupt. H.IBLG will not issue this
interrupt, because it issues only one link interrupt per IOCL. CPU D will hold the
read IOCB indefinitely and CPU C's IOCL never completes successfully.

• To halt an I/O operation, call entry point 4 of H.ffiLG. (A CD terminate (halt I/O)
will not work.) The user must get the handler address table (HAT) address from
the controller definition table (CDT) and perform a BL instruction to the fourth
entry in the HAT. Word 3 of the FCB associated with the I/O operation contains
status that indicates an error has occurred and a CD terminate was issued. The
following example shows the statements that call entry point 4 and halt any
outstanding I/O:

LW R3,CDT.SIHA,X3 R3 contains the CDT address
BL *4W,X3

MPX·32 Technical Volume II 3-7/3-8

.'

(~ ..

Memory Disk Handler (H.MDXIO)

MPX-32 Technical Manual

Volume II

.'

(

(-

Contents

Page

1 H.MDXIO Overview

2

1.1 General Information .. 1-1
1.2 Hardware/Software Relationship .. 1-1
1.3 Size of Memory Discs ... 1-2

H.MDXIO Usage

2.1 Dual-Port Memory Disc Support .. 2-1
2.1.1 Implicit Device Reservation ... 2-1
2.1.2 Explicit Device Reservation ... 2-1

2.2 Dual Subchannel I/O ... 2-1
2.3
2.4
2.5

2.6

System Failure in Dual-Port Memory Disc Environment 2-1
Maximum Byte Transfer and IOCD Generation .. 2-2
Extended I/O Commands ... ;, 2-2
2.5.1 Transfer in Channel (TIC) .. 2-3
2.5.2 Write Data (WD) .. 2-3
2.5.3 Read Data (RD) .. 2-3
2.5.4 Read Track Label (RlL) .. 2-3
2.5.5 Reserve (RES) .. 2-4
2.5.6 Release (REL) ... 2-4
2.5.7 Rezero (XEZ) .. 2-4
Related Data Structures ... 2-4
2.6.1 Device Context Area (DCA) .. 2-4
2.6.2 Input/Output Control Doubleword (IOCD) 2-5
2.6.3 Status Returned to User's FCB .. 2-5

2.7 Error Processing for Execute Channel Program Requests 2-6
2.8 SYSGEN Considerations .. 2-6

2.8.1 Memory Disc Subaddressing .. 2-6
2.8.2 Sample XIO Disc Processor SYSGEN Directives 2-7

3 H.MDXIO Entry Points

3.1 H.MDXIO Entry Points .. 3-1

MPX·32 Technical Volume II iii

List of Figures

Figure Page

2-1 Status Returned to User's FCB ... ; 2-6

. \ O·~\·

Iv Contents

(

(

1 H.MDXIO Overview

1.1 General Information

1.2

The Memory Disc Handler (H.MDXIO) is a software component of MPX-32 that
controls a memory disk. H.MDXIO also translates disk sector numbers to memory
locations within a specified partition. Reads and writes can then be performed by
copying inline. There is no asynchronous 110 when using a memory disk. No-wait
110 is supported for memory disks, as are all functions previously available to users of
disk files. Unlike other disks, memory disk no-wait end-action routines are entered
immediately following an 110 request. This difference allows the CPU to retain
control instead of directing the 110 request to a controller.

H.MDXIO can support up to eight memory disks of various sizes. The design
supports IOCS callable 110 service requests as described in the MPX-32 Reference
Manual, Volume I.

An execute channel program capability allows users to execute their IOCD list. Error
conditions are detected and noted in the FCB; however, error correction and error retry
are the responsibility of the user. Reserve and release IOCDs should never be
included within an execute channel program IOCD list.

Warning: Memory disk cannot be used as a physical cache, disk.

Hardware/Software Relationship

The memory disk handler consists of four parts: H.IFXIO, H.MDXIO, XIO.SUB, and
the DCAs. H.IFXIO is the interrupt fielder and corresponds one for one with the
channel. H.MDXIO is a system handler which controls memory disks. XIO.SUB is
the XIO common subroutine package the disk handler calls to perform all common
XIO functions. The common XIO subroutine package is described in detail in the
XIO Common Subroutines and Device Handlers Chapter. Device context areas
(DCAs) are areas of storage and record keeping and correspond one for one with the
number of subchannels configured. They are physically located at the end of
H.DCXIO.

Up to eight memory disks can be configured on channel 00 on even only subchannels
(starting on subchannel 00). However, a memory disk cannot be configured on the
same channels and subaddress as the null device. This reduces the number of memory
disks to seven for most systems.

MPX-32 Technical Volume II 1-1

Size of Memory Discs

1.3 Size of Memory Discs

1·2

The maximum size of a memory disk is limited by the physical memory that is
available and the memory requirements of system tasks.

The minimum size of the memory disk is limited by the fixed amount of space
occupied on a disk after formatting that disk. To calculate the memory size of the files
residing on the disk after formatting, add the following items:

• the total number of bytes for the required data files on the disk (Le. directories and
temporary files)

• 768 bytes multiplied by the number of resource descriptors specified by the
MAXRES and MAXROOT parameters of I.VFMT.

• 17KB are required for listing directories and resource descriptors on the disk.

H.MDXIO Overview

o

(.

(

2 H.MDXIO Usage

2.1 Dual-Port Memory Disc Support

Dual porting allows two CPUs to share a single memory disk through the
multiprocessor shared memory system (MSMS). A dual-ported memory disk is only
located in MSMS memory because the memory disk semaphore (bit 0 of the memory
disk) must be cached to the other CPU. Memory bus controller (MBC) shared
memory does not cache bit settings.

In order to maintain disk and system integrity, mechanisms must exist to prevent both
CPUs from accessing the memory disk at the same time. This is accomplished
through device reservation and makes the device inaccessible to the nonreserving
CPU. Device reservation can be implicit or explicit

2.1.1 Implicit Device Reservation

Implicit device reservation is processed by the memory disk dual-port semaphore.
When dual-port access to the memory disk is required, the processor attempts to set
the semaphore. When successful, the memory disk I/O is performed.

2.1.2 Explicit Device Reservation

2.2

Explicit device reservation makes a memory disk inaccessible to the opposing CPU
for a user-requested period of time. The explicit device reservation is user invoked
through the M.RESP service request The device remains unavailable to the opposing
CPU until the user releases the device through the M.RELP service request. If more
than one user on the same CPU has a device explicitly reserved at the same time, the
drive is not released until the last such user explicitly releases it.

Dual Subchannell/O

For memory disk drives, the odd subchannel address is unusable and should never be
assigned on the SYSGEN DEVICE directive.

2.3 System Failure in Dual-Port Memory Disc Environment

In a dual-port memory disk environment, one of the systems' may fail while the shared
memory disk is reserved. If this happens, the shared memory disk can be accessed by
the opposing processor through the J.UNLOCK system task. See Chapter 3 of the
Technical Manual, Volume I. .

MPX·32 Technical Volume II 2·1

Maximum Byte Transfer and lOCO Generation

2.4 Maximum Byte Transfer and lOCO Generation

The MPX-32 services available for user read and write requests allow for a maximum
transfer of 65K bytes per request. Requests larger than this are truncated to this
amount.

S.IOCS40 processes read and write requests by building data-chained JOCDs as
necessary to span map blocks. The number of IOCDs generated for any transfer
request depends on how large the transfer is and where the buffer begins within the
MAP block.

2.5 Extended 1/0 Commands

2-2

Extended 110 (XIO) provides channel commands for completing 110 requests. All
channel commands have the following IOCD fonnat:

o 7 8 15 16 31

Word 1 Command code. Absolute data address or TIC branch address.
See Note 1. See Note 2.

2 Flags. See Note 3. I Byte count

Notes:

1. The command code field defines the operation that will be perfonned during
command execution.

2. The absolute data address must be a 24-bit absolute address. The TIC branch
address must be a 24-bit word-bounded absolute address.

3. Flag bits have the following significance:

B.itL
o
1
2
3
4

5-15

Description

data chain (DC)
command chain (CC)
suppress incorrect length indication (SLI)
skip read data (SKIP)
post program-controlled interrupt (PPCI)
zero

H.MDXIO Usage

(-

("

Extended I/O Commands

XIO channel commands are:

Hexadecimal MPX-32 Used by
Channel Command Command Code Service Call MPX-32 Software

sense (SENSE)* 04 none yes
transfer in channel (TIC) 08 none yes
write data (WD) 01 M.WRIT yes
read data (RD) 02 M.READ yes
read track label (RTL) 52 none no
seek cylinder (SKC) 07 none yes
reserve (RES) 23 M.RESP yes
release (REL) 33 M.RELP yes
rezera (XEZ) 37 none yes

*When the sense command is used, IOQ.lSTI is cleared.

While an IOCD containing a command code not listed is ignored, the command chain
and data chain bits of that IOCD are interpreted.

2.5.1 Transfer In Channel (TIC)

The TIC command causes input/output command double word (IOCD) execution to
continue at the address specified in the TIC command. TIC serves as a branch for
lOCO execution. A TIC command cannot point to another TIC command and TIC
cannot be the first command in an lOCO list .

2.5.2 Write Data (WD)

The WD command is a user write request that transfers data to the disk from the
address specified in the IOCD. WD is used for a user write request.

2.5.3 Read Data (RD)

The RD command transfers data from the disk to the address specified in the IOCD.
RD is used in the user read request.

2.5.4 Read Track Label (RTL)

~ When the RTL command is specified, the H.MDXIO handler returns a pseudo-track
label with the following information changed in the track label buffer:

Bytes Contents

12-15 number of sectors on the memory disk
27 number of sectors per track (20)
28 number of heads (1)

MPX·32 Technical Volume II 2·3

Extended 1/0 Commands

2.5.5 Reserve (RES)

The RES command reserves a memory disk for the requesting CPU until a release
(REL) is issued. RES is user callable through the M.RESP service routine and is
associated with dual-port memory disk operations. Execute channel programs must
never include a reserve command and should use the M.RESP service when device
reservation is desired.

2.5.6 Release (REL)

The REL command releases a reserved memory disk from the reserving CPU. The
release is not issued if more than one task has the memory disk reserved. REL is user
callable through the M.RELP service routine and is associated with dual-port memory
disk operations. Execute channel programs must never include a release command
and should use the M.RELP service routine when memory disk release is desired.

2.5.7 Rezero (XEZ)

The XEZ command is a recalibration request to the memory disk which resets the
handler's seek logic to cylinder and track zero.

2.6 Related Data Structures
.'

The following data structures are used by the memory disk handler and are
documented in the Systems Table chapter of the Technical Manual, Volume I:

• I/O queue (IOQ)

• unit definition table (UDT)

• controller definition table (CDT)

• file control block (FCB)

• file assignment table (FAT)

Other data structures used by the memory disk handler are the device context area
(DCA) and the input/output control doubleword (IOCD).

2.6.1 Device Context Area (DCA)

2-4

The device context area (DCA) is a data structure that exists for each subchannel and
serves as a storage area for sub channel and subchannel operation information. The
DCA contains a common section and a device-dependent section. See Technical
Manual, Volume I Chapter 2 for a description of the common section.

H.MDXIO Usage

C'.~ "

()

("

(

Related Data Structures

Hex
Word byte

o 31

36-37 90 Rezero lOCO used for error retry (DCA.REZO)

38-39 98 TIC lOCO used with rezero (DCA.TIC)

40-41 AO Load mode lOCO prototype (DCA.LMOO)

42-43 A8 Read ECC lOCO (DCA.RECC)

44 BO ECC data buffer (DCA.ECC)

45 B4 Reserved

46 B8 EOF buffer for nondata transfer command (DCA.EOFB)

47 BC Address of initialize controller routine (DCA.INCA)

48-49 CO NOP lOCO for error retry (DCANOP)

50 C8 NOP TIC lOCO for error retry (DCA.NOPT)

52 DO Byte address of memory disk (DCA.OFFS)

53 D4 Size of memory disk in bytes (DCA.MSIZ)

54 08 Flags for memory disk (DCA.MDFL)

55 DC Address of shared memory table (SMT) for memory disk (DCA.SMT A)

56 EO Sector or cylinder for disk (DCA.SCYL)

2.6.2 Input/Output Control Doubleword (lOCO)

The IOCD fonnat and information is located in the extended 110 Command section of
this chapter.

2.6.3 Status Returned to User's FeB

The handler places the following information into the IOQ. This information is
relayed to the user's file control block (FCB) by IOCS. See Figure 2-1.

MPX-32 Technical Volume II 2·5

Related Data Structures

IOOWQRp .

SPECIAL BITS STATUS STATUS
SET BY HANDLER BITS 1Oa.IOST

SENSE BUFFER*
MODE CONTENTS OF WOR02
BYTE SENSE BUFFER

REGISTER
100.ISTl

STA11JS RESIDUAL STATUS WORD 2
BITS BYTE COUNT 1OO.lST2

COMPUTED BY
NUMBER OF BYTES HANDLER

IOQ.UTRN TRANSFERRED

* FOR lHE FLOPPY DISC. lHlS IS SENSE BYTES 0 - 3.
(SEE FLOPPY DISC CONTROLLER TECHNICAL MANUAL).

NOTE:

BECOMES FCB WORP

SPECIAL BITS STATUS
SET BY HANDLER BITS FCB.SFLG

MODE CONTENTS OF
BYTE SENSE BUFFER

REGISTER
FCB.ISTI

.. STATUS RESIDUAL
BITS BYTE COUNT

FCB.lST2

.. NU~ER OF BYTES
TRANSFERRED FCB.RECl

FOR EXECUTE CHANNEL PROGRAM REQUESTS, 1Oa.1ST1 CONTAINS STATUS WORD 1 AND 1OO.l1TRN IS INVALID •

. '
Figure 2-1

Status Returned to User's FeB

2.7 Error Processing for Execute Channel Program Requests

Requests for I/O outside the memory disk boundaries result in an MMO 1 abort.
Information returned consists of status words 1 and 2 passed to FCB words 11 and 12;
If bits other than channel end (CE) and device end (DE) are present, bit I, error
condition found, of word 3 in the PCB is set Bits 16-31 of word 3 are valid. Error
correction and error retry are the responsibility of the user.

2.8 SYSGEN Considerations

SYSGEN CONTROLLER and DEVICE directives are used to define XIO disks
configured in an MPX-32 system. See the SYSGEN chapter in Volume HI of the
MPX-32 Reference Manual.

2.8.1 Memory Disc Subaddresslng

2·6

Each memory disk is assigned a unique device subaddress. Only even subaddresses
can be specified in SYSGEN DEVICE directives. If more than one device is specified
in a directive, the increment field (INC) must be specified and must be an even
number.

H.MDXIO Usage

o

o

(

SYSGEN Considerations

2.8.2 Sample XIO Disc Processor SYSGEN Directives

1. CONTROLLER=DMOO,CLASS=M
2. DEVICE=02,DTC=DM,HANDLER=(H.MDXIO,S),DISC=1024

3. DEVICE=04,DTC=DM,DISC=(1024,D),HANDLER=(H.MDXIO,S),START=256

Notes:

1. This CONTROLLER directive allows up to 8 memory disks on channel O.
2. This DEVICE directive assigns a 1024 KB memory disk to subaddress 02.

The handler is H .MDXIO and is system reentrant (one copy per system).

3. This DEVICE directive assigns a 1024 KB dual-ported memory disk to
subaddress 04 starting at decimal map block 256. The handler is H. MOXIO.

MPX·32 Technical Volume II 2·7/2·8

.'

3 H.MDXIO Entry Points

3.1 H.MDXIO Entry Points
See the XIO Common Subroutine Package and Handlers (H.XIOS) chapter for a
description of XIO device-dependent entry points. Note the following differences:

• Entry points SI., LI.XIO, and PRE.XIO are invalid and cause a branch to
ILOPCODE.

• The OP. entry point only supports returns through ILOPCODE and SERVCOMP
because this entry point processes the IOCDs.

• The IQ.XIO entry point processes execute channel requests.

"

MPX·32 Technical Volume II 3-113-2

c'

(

Multi-Function Processor Tape Handler (H.MTSCI)

MPX-32 Technical Manual

Volume II

Contents

Page

1 H.MTSCIOverview

1.1 Introduction ... 1-1
1.2 Modules Used by H.M1'SCI ... 1-1
1.3 SYSGEN Considerations .. 1-1

2 H.MTSCI Structures and Entry Points

2.1 Introduction ... 2-1
2.2 Data Structures .. 2-1

2.2.1 DCA .. 2-1
2.2.2 SCSI CDB ... 2-1
2.2.3 HAT .. 2-2
2.2.4 Status Doub1eword ... 2-2

2.3 Entry Points .. 2-4
2.3.1 Entry Point OP. - Opcode Processor : ~ 2-4
2.3.3 IOQ Driver .. 2-5

(2.3.3 Entry Point IQ.XIO .. 2-5
2.3.4 Entry Point IQ.XID.1 ... 2-6
2.3.5 Service Interrupt Processor .. 2-6
2.3.6 Entry Point SI. .. 2-6
2.3.7 SI.UNLNK Routine .. 2-9
2.3.8 SI.EXIT Routine ... 2-10
2.3.9 Entry Point LI.XIO - Lost Interrupt Processor 2-10
2.3.10 Entry Point PX. - Post-Transfer Processor 2-12
2.3.11 Entry Point SG. - SYSGEN Initialization 2-13
2.3.12 Entry Point PRE.SIO - Pre-SID Processor 2-13

3 H.MTSCllssuing 1/0 Operations

3.1. Overview ... 3-1
3.2 CPU Instructions ... 3-2

3.2.1 Activate Channel Interrupt (ACI) .. 3-3
3.2.2 Clear Queue .. 3-3
3.2.3 Deactivate Channel Interrupt (DACI) .. 3-3
3.2.4 Disable Channel Interrupt (DCI) .. 3-3
3.2.5 Enable Channel Interrupt (ECI) ... 3-3
3.2.6 Halt 110 (HIO) .. 3-4
3.2.7 Reset Channel (RSCHNL) ... 3-4

MPX·32 Technical Volume II Iii

Contents

iv

3.2.8
3.2.9
3.2.10
3.2.11

Page

Reset Controller (R.SC1L) .. 3-4
Start 110 (SIO) .. 3-4
Stop 110 (STPIO) .. 3-4
Test 110 (TIO) ... 3-4

3.3 Channel Commands .. 3-5
3.3.1 Backspace One Filemark .. 3-6
3.3.2 Backspace One Record ... 3-6
3.3.3 Channel Control .. 3-6
3.3.4 Initialize Channel .. 3-7
3.3.5 Initialize Subaddress ... 3-7
3.3.6 Inquiry ... 3-7
3.3.7 No Operation .. 3-7
3.3.8 Read .. 3-7
3.3.9 Release .. 3-8
3.3.10 Reserve ... 3-8
3.3.11 Rewind .. 3-8
3.3.12 Sense .. : 3-8
3.3.13 Space Forward One Filemark ... 3-8
3.3.14 Space Forward One Record .. 3-9 (" -'\
3.3.15 Space Multiple Filemarks ... 3-9 ~_ . ./
3.3.16 Transfer Command Packet ... 3-9
3.3.17 Transfer in Channel .. 3-9
3.3.18 Write .. 3-9
3.3.19 Write Multiple Filemarks ... 3-9
3.3.20 Write One Filemark .. 3-9

3.4 IOCS Service (SVC) Calls .. 3-10
3.5 Error Processing .. 3-11

o
Contents

(- List of Tables

Table Page

2-1 H.MTSCI Device-Dependent DCA Infonnation .. 2-1
2-2 Interrupts and Responses by SI .. 2-8
3-1 CPU Instructions ... 3-3
3-2 H.MTSCI Channel Commands ... 3-6
3-3 IOCS SVC Calls ... 3-10

.'

(

MPX-32 Technical Volume II v/vi

o

.'

o

(

1 H.MTSCI Overview

1.1 Introduction

The multi-function processor (MFP) tape handler (H.MTSCI) provides user tasks with
an 110 path to small computer system interface (SCSI) tape drives connected to an
MFP. H.MTSCI performs the following:

• builds the SCSI command data blocks (CDBs)

• issues channel programs
• collects and reports status about the 110 operation to the user task and MPX-32

• queues I/O operations for a particular tape drive and issues the next queued I/O
operation

This section discusses the modules used by H.MTSCI and the SYSGEN
considerations.

1.2 Modules Used by H.MTSCI

H.MTSCI calls the following modules: H.IFXIO, XIO.SUB, and HJOCS. H.IFXIO
is the interrupt fielder and corresponds one-to-one with the .channel. XIO.SUB is the
extended 110 common subroutine package that performs extended I/O functions.
H.IOCS performs device-independent 110 request management. This includes
preprocessing and postprocessing of 110 requests and 110 queue (IOQ) management.
For more information about H.IFXIO, XIO.SUB, and H.IOCS refer to the H.XIOS
and HJOCS sections in this manual.

1.3 SYSGEN Considerations

To include H.MTSCI as part of MPX-32, specify H.MTSCI in the SYSGEN directive
file. The SYSGEN CONTROLLER and DEVICE directives are used to specify the
MFP and H.MTSCI, respectively. Each SCSI tape drive has a unique device
subaddress that is specified with the DEVICE directive. H.MTSCI is system
reentrant, which means that only one copy should be configured into MPX-32. For
more infonnation about the SYSGEN directive file, refer to the System Generation
(SYSGEN) Chapter in Volume m of the MPX-32 Reference Manual.

Following are examples of the CONTROLLER and DEVICE directives that configure
MPX-32 for SCSI tape drive support:

CONTROLLER=M976,PRIORITY=13,CLASS=F,MUX=MFP,SUBCH=7,CACHE
DEVICE=70,DTC=M9,HANDLER=(H.MTSCI,S)

MPX·32 Technical Volume II 1·1/1·2

o

"

o

(

2 H.MTSCI Structures and Entry Points

2.1 Introduction

This section describes the data structures and the entry points that H.MTSCI uses to
perfonn I/O.

2.2 Data Structures

This section describes the following data structures:

• device context area (DCA)

• small computer system interface (SCSI) command data block (CDB)

• handler address table (RAT)

• status doubleword

Other data structures that H.MTSCI uses to perfonn 110 are the unit definition table
(UDT), controller definition table (CDT), I/O queue (IOQ), file control block (FCB),
and file assignment table (FAT). For more infonnation about these data structures,
refer to the MPX-32 Technical Manual Volume I, Chapter 2.

2.2.1 DCA

The DCA stores subchannel operation infonnation. It contains a common section
(words 0 through 35) and a device-dependent section. A DCA must be specified for
each subchannel. Table 2-1 lists the H.MTSCI device-dependent infonnation. For
more infonnation about the DCA common section, refer to the MPX-32 Technical
Manual, Volume I, Chapter 2.

2.2.2 SCSI CDB

Table 2-1
H.MTSCI Device-Dependent DCA Information

Word Hex Byte Meaning

33
34/41

42
43

84
881A4

A8
AC

Time out (DCAMAX)
Buffer for inquiry data (DCA.INQ)
Handler flag word (DCA.CDBF)
Error queue (DCA.ERRQ)

H.MTSCI uses the SCSI CDB to communicate I/O requests to SCSI device
controllers. For more infonnation about the SCSI CDB, refer to ANSI SCSI
Committee Working Document X3T9.2/82.2.

MPX·32 Technical Volume II 2-1

Data Structures

2.2.3 HAT

The HAT contains the addresses and the names of the entry points to the H.MTSCI
110 processing routines. It is used by modules such as SYSINIT and the 110 control
system (IOCS) to access H.MTSCI.

2.2.4 Status Doubleword

2·2

A status doubleword contains the result of the last executed 110 command doubleword
(IOCD) when an 110 termination occurs. The MFP generates a status doubleword
when an interrupt occurs or when it receives a status stored response from a start 110
(SIO) or halt I/O (mO) instruction.

When an 110 operation completes, H.MTSCI checks the 16 status bits in the status
doubleword for error conditions. H.MTSCI considers the I/O operation complete if
the status doubleword has the channel end and device end bits set. If other bits are
set, H.MTSCI issues a sense IOCD for additional information about the error.

H.MTSCI stores the sense information in the DCA and maps the status bits, sense
bits, and drive status bits to the user's file control block (FCB). For more information
about the FCB, refer to the System Tables and Variables Chapter in the MPX-32
Technical Manual, Volume I. A status doubleword has the following format:

.'

o 7 8 15 16 23 24 31

Word 1 Subchannel. lOCO address.
See Note 1. See Note 2.

2 Status. Residual byte counL
See Note 3. See Note 4.

H.MTSCI Structures and Entry Points

o

o

(

Data Structures

Notes:

1. This field contains the subchannel address of the interrupting device.
2. The lOCO address points 8 bytes past the last executed lOCO.

3. This field contains the following status bits:

Bit Definition
o reserved
1 post program-controlled interrupt
2 incorrect length
3 channel program check
4 channel data check
5 reserved
6 interface control check
7 reserved
8 device busy
9 status modifier
10 controller end
11 attention
12 channel end
13 device end
14 unit check
15 unit exception

4. This field contains the number of bytes not transferred for the last lOCO
processed.

MPX·32 Technical Volume II 2·3

Entry Points

2.3 Entry Points

Entry points are H.MTSCI routines that perfonn specific 110 processing. The HAT
contains the addresses and names of these routines. This section describes the
processing perfonned by H.MTSCI in the following entry points:

• opcode processor (OP.)

• IOQ driver

• service interrupt processor

• lost interrupt processor (LUCIO)

• post-transfer processor (pX.)

• SYSOEN initialization (SO.)

• execute channel program opcode processor (XCHANP). For more information
about this entry point, refer to the HJCIOS section in this manual.

• pre-SIO processor (pRE.SIO)

2.3.1 Entry Point OP. - Opcod~ Processor

Entry point OP. processes the opcode placed in the FCB by the I/O service originally
called by the user. (OP. is a subroutine extention of H.lOCS,29.) It then indicates the
appropriate action for H.lOCS,29 by taking one of the following returns to
H.lOCS,29:

BUILOPCODE opcode is illegal for this device

BU SERVCOMP service complete, no device access required

BU 10LINK link request to IOQ

IfOP. takes return 10LINK, it must first call IOCS subroutine S.lOCS13 to allocate
and initialize an IOQ. OP. then builds an IOCL into the IOQ using IOCS subroutines
S.lOCS12, and IOCS entry point S.lOCS40. If necessary, OP. also obtains space to
build the SCSI CDB.

Entry Conditions

Calling Sequence

BL *lW,X2 X2 contains the HAT address. The 1 W offset from
this address is the address of OP. .

Registers

Rl FCB address

R2 HAT address

R3 UDT address

2-4 H.MTSCI Structures and Entry Points

o

o

Entry Points

(_. Exit Conditions

(

Return Sequence

See descriptions of n..OPCODE, SERVCOMP, and IOLINK.

Registers

R 1 FCB address

2.3.2 IOQ Driver

The IOQ driver issues SIO instructions for the IOCLs. H.MTSCI can queue a
maximum of 32 outstanding requests per channel. The IOQ driver has two entry
points: IQ.XIO and IQ.XIO.1. These entry points are identical except that IQ.xIO
activates the interrupt level upon entry and deactivates it before exiting. IQ.XIO and
IQ.XIO.l issue an SIO instruction for the first request in the IOQ.

2.3.3 Entry Point IQ.XIO

H.IOCS,29 calls entry point IQ.XIO when H.lOCS,29 queues an I/O request. It
blocks external interrupts and enters IQ.XIO with the following calling syntax.

Entry Conditions

Calling Sequence

BL "'2W,X2 X2 contains the HAT address. The 2W offset from this
address is the address of IQ.XIO.

Registers

RO return address

R3 UDT address of the device to start

R7 IOQ address

Exit Conditions

Return Sequence

DACI

TRSW RO

Registers

R7 IOQ address

MPX·32 Technical Volume II

deactivate interrupt level

return to calling routine

2·5

Entry Points

2.3.4 Entry Point IQ.XIO.1

The service interrupt processor calls IQ.XIO.l to drive the IOQ when an 110 request
completes. LI.XIO calls IQ.XIO.l to clear the IOQ when a HIO instruction times out.

Entry CondHlons

Calling Sequence

BL

(or)

BU

Registers

IQ.XIO.l

IQ.XIO.l

return to call

return is set up

RO return address SI.

R3 UDT address of device to start

Exit Conditions

Return Sequence

TRSW RO RO set up prior to return if call is from LI.XIO

Registers

Rl

R2

CHT address

DCA address

2.3.5 Service Interrupt Processor

The service interrupt processor performs postaccess processing associated with the
device access which just completed. It has one entry point, SI. and two routines,
SI. UNLNK and SI.EXIT that perform the logic sequence described in the following
section.

2.3.6 Entry Point SI.

2-6

SI. services interrupts and performs device-dependent logic. It is entered directly from
the extended 110 interrupt fielder program (H.IFXIO) with the interrupt level active
when one of the following conditions occur:

• an 110 request completes normally

• status checking is inhibited

• status contains a channel end with no device end

• a sense lOCO, unexpected interrupt, or device time out occurs

H.MTSCI Structures and Entry Points

o

o

(

(

Entry Points

The following paragraphs describe the SI routines that H.MTSCI enters when one of
these conditions occur.

Normal Completion or Status Checking Inhibited Routine - H.MTSCI enters this
routine when an 110 request completes with no errors or when status checking is
inhibited. It perfonns any required device-specific processing. An example is the
collection of sense infonnation about an 110 operation that just completed.

The extended 1/0 common routines collect sense infonnation only when an 110
request produces an error or when the 110 request was for an execute channel program
and sense information was requested.

This routine:

• checks for a reserve request. If the request exists, the routine increments the reserve
count.

• checks for an advance or backspace file request If the request exists, the routine
sets EOF and EOM or BOM and continues processing at SI.EXIT. If no request
exists, the routine updates the FAT.

• computes the transfer count
• continues processing at SI. UNLNK

Channel End with No Device End Routine - H.MTSCI enters this routine when an
1/0 request produces an interrupt whose status contains channel end and no device
end. This condition is treated as an unexpected interrupt

This routine checks for a channel end from a reserve request. If there is no channel
end, the routine continues processing as an unexpected interrupt. It then updates the
time out in the UDT, shows the 110 as active, and continues processing at SI.EXIT.

Normal Sense Command with IOQ Routine - H.MTSCI enters this routine
following an interrupt caused by issuing a sense lOCO for an I/O request that
completed with an error indication. This routine examines the status and sense
information, initiates error recovery if applicable, and sets the appropriate indicators
based on the sense data. It then computes the actual transfer count (if an error
condition is indicated), updates the IOQ transfer count, and continues processing at
SI.UNLNK.

Unexpected Interrupt Routine - H.MTSCI enters this routine when an interrupt
occurs that was not expected. This routine increments the spurious interrupt count for
the device and the channel and continues processing at SI.EXIT.

Device Time Out Routine - H.MTSCI enters this routine when an HIO instruction
generates an interrupt (The HIO instruction was issued for a timed-out device.) This
routine sets the error condition and the time out flag in the IOQ. It then continues
driving the IOQ and processing at SLEXIT.

MPX-32 Technical Volume II 2-7

Entry Points

Table 2-2 lists the cause of interrupts and the response by SI. in perfonning
conditional service interrupt processing.

Table 2-2
Interrupts and Responses by SI.

Cause of Interrupt Response by SI.

Channel end with checks for a reserve request. continues
no device end processing at SI.EXIT
Device time out marks unrecoverable error condition and

actual transfer count in the IOQ,
H.MTSCI continues to drive the Queue

Execute channel sets error condition in the IOQ if an error is
program indicated. If sense infonnation is required,

issues a sense IOCD and continues processing at
SI.EXIT. If no error is found and no sense
infonnation is required, continues processing at
SI.UNLNK.

110 request issues sense IOCD and continues processing
completes with at SI.EXIT
error
Normal sense if execute channel program was requested,
command with continues processing at SI.UNLNK, otherwise,
IOQ completes the actual transfer count computed and

updates the IOQ
Rewind or clears device rewinding or seeking bit, continues
seek complete processing at SI.EXIT
Spurious interrupt increments spurious interrupt count, and
when device is not exits the interrupt level. Continues
configured processing at SI.EXIT
Spurious interrupt increments spurious count for the device
when device is and the channel, continues processing at
configured but SI.EXIT
interrupt is
not expected

Entry Conditions

calling Sequence

BU *3W,X2

Registers

Rl CHT address

R3 UDT address

2·8

X2 contains the HAT address. The 3W offset from this
address is the address of SI.

H.MTSCI Structures and Entry Points

o

o

(
Entry Points

Exit Conditions

Return Sequence

BU SI.UNLNK

(or)

BU

Registers

SI.EXIT

SI unlinks the I/O request, reports the I/O
request as complete and IOQ processing
continues

SI. exits the interrupt level without unlinking the I/O
request and reporting the I/O as complete. It
then initiates error retry or collects sense data.

R 1 IOQ address for SI. UNLNK

R2 DCA address

2.3.7 SI.UNLNK Routine

The SI.UNLNK routine unlinks the 10Q entry from the UDT and reports I/O complete
to MPX-32. SI.UNLNK is entered with the interrupt level :,lctive. SI.UNLNK is also
entered when a device times out due to a kill request or if a device malfunctions.

Entry Conditions

calling Sequence

BU SI.UNLNK

Registers

Rl IOQ address

R2 DCA address

R7 IQ. return address

Exit Conditions

Return Sequence

Continues with remainder of SI. logic.

Registers

The registers are unchanged.

MPX·32 Technical Volume II 2·9

Entry Points

2.3.8 SI.EXIT Routine

The SI.EXIT routine continues driving the IOQ and exits the interrupt level. SI.EXIT
is entered with the interrupt level active.

Entry CondHlons

Calling Sequence

BU SI.EXIT

Registers

R2 DCA address

Exit Conditions

Return Sequence

Continues with remainder of SI. logic.

Registers

The registers are unchanged.
.'

2.3.9 Entry Point LI.XIO - Lost Interrupt Processor

2·10

S.lOCSS calls LUCIO to take corrective measures when an expected interrupt fails to
occur. It is also called from H.lOCS,38 when a kill request is issued to a task and the
task has an 110 operation in progress. In both cases, the 110 request terminates with
an HIO instruction. If the controller responds to the HIO instruction, SI.A performs
the required interrupt handling. LI.XIO performs the following:

• activates the interrupt level

• increments the lost interrupt count (if LI.XIO is entered due to a lost interrupt)

• issues the HIO if it has not already been issued

• branches to service interrupt routine if the HIO instruction produces a status stored
condition. If status is not stored, LI.XIO blocks external interrupts, deactivates the
interrupt level, and returns to the calling routine.

H.MTSCI Structures and Entry Points

0'·
I

o

(

Entry Points

If the HIO instruction has already been issued but fails to generate an interrupt,
LIJCIO is entered again and takes the following actions:

• activates the interrupt level

• increments lost interrupt count (if LIJCIO is entered due to a lost interrupt)

• marks the device as oflline and malfunctioning

• unlinks the 110 request from the IOQ

• reports the 110 request as complete with errors (if the HIO instruction was issued
because of a lost interrupt)

• branches and links to IQJCIO.l to clear any pending 110 requests to the failing
device

• blocks external interrupts, deactivates the interrupt level, and returns to calling
routine

Entry Conditions

Calling Sequence

BL *4W,Xl Xl contains the HAT address. The 4W offset from this
address is the address of LI.XIO .

Registers

RO
R3

Exit Conditions

return address

UDT address of device to halt

Return Sequence

TRSW RO

Registers

The registers are unchanged.

MPX·32 Technical Volume II

. '

2·11

Entry Points

2.3.10 Entry Point PX. - Post-Transfer Processor

S.IOCS 1 calls entty point px. to perform processing after completion of the 110
request and before returning to the requesting task. PX. executes at the task priority
and with low system overhead.

Entry Conditions

calling Sequence

BL *SW,X2

Registers

R 1 PCB address

R2 HAT address
R3 UDT address

X2 contains the HAT address. The 5W offset from this
address is the address of PX.

Exit Conditions

2-12

Return Sequence

TRSW RO

Registers

Rl FCB address

Note: When px. is called after an open command completes, H.MTSCI issues an
inquiry channel command to the tape unit. (The inquiry channel command
returns information abouJ the vendor.) If the vendor is Exabyte or Fujitsu,
Px. sets a flag that prevents H.MTSCI from setting the immediate bit when
building a rewind COB for these drives.

'H.MTSCI Structures and Entry Points

o

(

Entry Points

2.3.11 Entry Point SG. - SYSGEN Initialization

SYSGEN calls entry point SG. to initialize certain handler parameters and data
structures during the construction of an MPX-32 image. One DCA is initialized for
each UDT entry containing the name of the handler. SYSGEN overlays any
remaining DCA's and the remainder of the code in H.MTSCI. SG. updates the DCA
with the default time out for I/O. SG. also updates the CHT, COT, and the UDT to
identify the device as a SCSI tape.

Entry Conditions

Calling Sequence

BL *7W,X2

Registers

Not applicable.

Exit Conditions

Return Sequence

X2 is the HAT address. The 7W offset from this
address is the address of SG.

M.XIR standard handler SYSGEN exit macro

Registers

The register are unchanged.

2.3.12 Entry Point PRE.SIO - Pre-SIO Processor

Entry point PRE.SIO returns control to entry point IQ.XIO of the IOQ driver.

Entry Conditions

Calling Sequence

BL *5W,X2 X2 contains the HAT address. The 5W offset from this
address is the address of PRE.SIO.

Registers

Rl IOQ address
R2 DCA

MPX·32 Technical Volume II 2·13

Entry Points

Exit Conditions

2·14

Return Sequence

TRSW RO

Registers

The registers are unchanged.

(.~ "\\

V

.'

o
H.MTSCI Structures and Entry Points

3 H.MTSCI Issuing 1/0 Operations

3.1 Overview

There are two ways to issue 110 operations to a SCSI tape drive via H.MTSCI:
device-dependent 110 and device-independent 110. Both methods use the same data
structures, channel commands, and CPU instructions.

With device-dependent 110, the user performs direct channel 110 to the SCSI tape
drive via H.MTSCI. The user builds a channel program that H.MfSCI accesses with
a physical or logical address. The user also builds an accompanying SCSI command
data block (CDB) if there is a transfer command packet (TCP) channel command in
the channel program. To initiate the 110 operation, the user issues an execute channel
program (EXCPM) request.

With device-independent 110, the user initiates 110 operations by issuing service
(SVC) calls to the 110 control system (IOCS). IOCS verifies the logical address that
the user places in the task's file control block (FCB) and links the 110 request to
H.MTSCI. H.MTSCI then constructs the necessary channel program and CDB and
issues the appropriate CPU instruction to initiate the 110 operation.

This section discusses CPU instructions, channel commands. IOCS service calls. and
error processing. For more information about issuing 110 operations, refer to the
Resource Assignment/Allocation and 110 chapter in Volume I of the MPX-32
Reference Manual.

MPX·32 Technical Volume II 3-1

CPU Instructions

3.2 CPU Instructions

3-2

H.MTSCI uses CPU instructions to perfonn 110 to an MFP. The CPU instructions
have the following fonnat:

o 5 6 8 9 12 13 15 16
Opcode. Register. Instruction. Augment code. Constant
See Note 1. See Note 2. See Note 3. See Note 4.

Notes:

1. Bits 0-5 specify the hexadecimal operation code O-FC.

31

2. Bits 6-8 specify the general purpose register. When these bits are nonzero, the
register contents are added to the constant specified in bits 16-31 to fonn the
logical channel and subaddress.

3. Bits 13-15 specify the augment code up to hexadecimal 7.

4. Bits 16-31 specify a constant that is added to the contents of the register specified
by bits 6-8. This fonns the logical channel and subaddress. If bits 6-8 are zero,
this field specifies the logical channel and subaddress.

,
The MFP generates a condition code to report the result of a CPU instruction.
Following are the possible condition codes: .

Condition
Code

0001

Meaning

channel busy - request denied because channel
internal process queue is full

00 1 0 channel inoperative or undefined - request denied
because channel is not present, functional, or
defined

0011 subchannel busy - request denied because of
outstanding halt 1/0 (HIO), stop 110 (STPIO), or
clear queue instruction

1000 Request accepted and queued - the CPU instruction
was accepted by the channel for execution

H.MTSCllssulng 1/0 Operations

o

(

(

CPU Instructions

Table 3-1 lists and the following text describes the CPU instructions.

Table 3-1
CPU Instructions

Hex
Instruction ~ode

Activate channel interrupt (ACI) E
Clear queue 7
Deactivate channel interrupt (DACI) F
Disable channel interrupt (DCI) D
Enable channel interrupt (ECI) C
Halt I/O (HIO) 6
Reset channel (RSCHNL) 5
Reset controller (RSCTL) 8
Start I/O (SIO) 2
Stop I/O (S1PIO) 4
Test I/O (TIO) 3

3.2.1 Activate Channel Interrupt (ACI)

The ACI instruction causes the MFP to as sen its interrupt priority level and actively
contend for recognition from the CPU. While contending for recognition, the channel
cannot request another interrupt

3.2.2 Clear Queue

The clear queue instruction tenninates all outstanding I/O operations for the specified
subaddress. The current operation tenninates with channel end and device end status.
Queued operations tenninate with channel end, device end, and unit exception status
to indicate that they were not initiated.

3.2.3 Deactivate Channel Interrupt (DACI)

The DACI instruction causes the MFP to suspend contention for interrupt priority. If
an interrupt request is queued and enabled, the channel may now issue an interrupt.

3.2.4 Disable Channel Interrupt (DCI)

The DCI instruction prevents the MFP from requesting interrupts from the CPU.

3.2.5 Enable Channel Interrupt (ECI)

The ECI instruction allows the MFP to request interrupts from the CPU.

MPX·32 Technical Volume II 3-3

CPU Instructions

3.2.6 Halt 1/0 (HIO)

The HIO instruction causes the MFP to terminate an 1/0 operation and post a status
doubleword that contains device end (DE) and channel end (CE) status.

3.2.7 Reset Channel (RSCHNL)

The RSCHNL instruction causes the MFP to stop operation, reset all activity, and
become idle. RSCHNL resets all subchannels and any requesting or active interrupt
levels.

3.2.8 Reset Controller (RSCTL)

The RSCTL instruction causes the addressed subchannel to terminate an I/O
operation. If the subchannel is hung, RSCTL resets the device so that I/O operation
may resume. If the addressed subchannel is not cunently being serviced, RSCTL
clears the I/O request The MFP presents any pending status for the addressed
subchannel to the CPU. RSCTL does not generate final status.

3.2.9 Start 1/0 (SIO)

The SIO instruction initiates an I/O operation for the specified channel or subchannel.
If this channel or subchannel is present and available, it accepts the SIO instruction.
The channel or subchannel then performs the I/O operation specified by the SIO
instruction. If the I/O operation cannot be started, the MFP returns the appropriate
condition codes and status.

3.2.10 Stop 110 (STPIO)

The STPIO instruction terminates the I/O at the addressed subchannel when the
current channel command has been executed. STPIO resets the data chain and
command chain flags, and the MFP returns the appropriate condition codes and status.

3.2.11 Test 110 (TIO)

3-4

The TIO instruction verifies the current state of the channel or sub channel and clears
pending interrupt conditions. The MFP returns condition codes that reflect the status
of the channel and addressed sub channel.

H.MTSCllssuing 110 Operations

0·· · ,"

o

Channel Commands

(- 3.3 Channel Commands

(

(

Channel commands contain the information required for data transfers. This
information includes the type of operation, the address in CPU memory where data is
to be moved to or from, flags that indicate to the MFP what to do after completing
execution of the channel command, and the amount of data (in bytes) to transfer.

Channel commands are specified in 110 command doubleword (IOCD) format as
follows:

o 7 8 15 16 23 24

Word 1 Command opcode. Data address.
See Note 1.

2 Flags. See Note 2. I Byte count.

Notes:

1. The command opcode field specifies the command to be executed.

2. The flags are defined as follows:

MPX·32 Technical Volume II

J!L
o
1
2
3
4

5-15

Meaning When Set

data chain
command chain
suppress incorrect length
skip read data
post program-controlled interrupt
not used - must be zero

31

3·5

Channel Commands

Table 3-2 lists and the following text describes the channel commands that can be
issued for a SCSI tape.

Table 3-2
H.MTSCI Channel Commands

Command Opcode

Backspace one filemark x'73'
Backspace one record x'53'
Channel control x'SO'
Initialize channel x'OO'
Initialize subadd.ress x'FO'
Inquiry x'B3'
No operation x'03'
Read x'02'
Release x'C3'

. Reserve x'A3'
Rewind x'23'
Sense x'04'
Space forward one filemark x'63'
Space forward one record x'43'
Space multiple filemarks x'E3'
Transfer command packet x'D3"
Transfer in channel x'OS'
Write x'or
Write multiple filemarks x'13'
Write one filemark x'93'

3.3.1 Backspace One Fllemark

The backspace one filemark command rewinds the tape one filemark. The data
address and byte count fields are ignored.

3.3.2 Backspace One Record

The backspace one record command rewinds the tape one record. The data address
and byte count fields are ignored.

3.3.3 Channel Control

3·6

The channel control command returns three words of channel information. Word 1 is
the board model number, word 2 is the firmware model number, and word 3 is the
firmware revision level.

H.MTSCllssuing 110 Operations

o

(

Channel Commands

3.3.4 Initialize Channel

The initialize channel command transfers tape drive information to the MFP and sets
the status buffer address for the MFP. The status buffer address must be doubleword
bounded and specified in the data address field. The byte count field is ignored. The
initialize channel command, performed by H.MTSCI, must be the first channel
command to any channel that has an MFP configured.

3.3.5 Initialize Subaddress

The initialize sub address command initializes several subaddress-specific channel
operations with the information from the byte in memory specified by the data address
field. The byte count must be one. Following is the format of the byte:

3.3.6 Inquiry

Bit Meaning When Set

o clear SIO queue on error. As each
queued SIO is cleared, termination
status is returned indicating this
action. If reset, when a queued
SIO command terminates in error,

1
2

continue processing SIO queue
reserved
use drive-specified block size. If
reset, convert logical block size of
256 bytes to simulate block size of
768

3-7 reserved

The inquiry command returns information about the device such as the peripheral
device type, vender identification, and device-type qualifier. Refer to ANSI SCSI
Committee Work Document X3T9.2/82.8 for more information about the information
returned for this command.

3.3.7 No Operation

The no operation command is a non-data transfer command that executes without
selecting an associated tape drive. The byte count and data address must be zero.

3.3.8 Read

The read command transfers data from the tape to the address specified in the data
address field. The byte count must be greater than zero.

MPX-32 Technical Volume II 3-7

Channel Commands

3.3.9 Release

The release command releases a reserved device by the reserving CPU. The release is
not issued if more than one task has the device reserved. The data address and byte
count fields are ignored.

3.3.10 Reserve

The reserve command reserves a device to the requesting CPU until a release
command is issued. The data address and byte count fields are ignored.

3.3.11 Rewind

The rewind command rewinds the tape. The data address and byte count fields are
ignored.

3.3.12 Sense

The sense command causes H.MfSCI to issue an extended sense command to the
specified device for the number of bytes requested in the byte count field. The sense
data returned is shown below. For more information about the returned information,
refer to ANSI SCSI Committee Working Document X3T9.2182.2.

Bit Meaning When Set
o no sense
1 recovered error
2 not ready
3 medium error
4 hardware error
5 illegal request
6 unit attention
7 data protect
8 blank check
9 vendor unique
A copy aboned
B aborted command
C equal comparison satisfied
D volume overflow
E miscompare
F reserved

3.3.13 Space Forward One Filemark

3-8

The space forward one filemark command advances the tape one filemark. The data
address and byte count fields are ignored.

H.MTSCllssulng 110 Operations

C".\·' • I

(

Channel Commands

3.3.14 Space Forward One Record

The space fOlward one record command advances the tape one record. The data
address and byte count fields are ignored.

3.3.15 Space Multiple Filemarks

The space multiple filemarks command advances the tape the number of filemarks
specified by the byte count. The data address field is ignored.

3.3.16 Transfer Command Packet

The transfer command packet command sends a SCSI COB to a device. The data
address specifies the address of the COB built by the user. The byte count specifies
the length of the CDB. If a data transfer is required with the COB, the command
chain fiag must be sel This command must be command chained to a write or a read
command that specifies the data address and byte count.

3.3.17 Transfer in Channel

The transfer in channel command causes lOCO execution to continue at the address
specified in the data address field. A transfer in channel com.mand cannot point to
another transfer in channel command, and it cannot be the first command in a channel
program. The handler uses a transfer in channel command to link channel commands
in the device context area (DCA) to channel commands in the 110 queue (l0Q).

3.3.18 Write

The write command transfers data to the tape from the address specified in the data
address field. The byte count must be greater than zero.

3.3.19 Write Multiple Filemarks

The write multiple filemarks command writes to the tape the number of filemarks
specified in the byte count field. The data address field is ignored.

3.3.20 Write One Filemark

The write one filemark command writes one filemark on the tape. The data address
and byte count fields are ignored.

MPX-32 Technical Volume II 3·9

IOCS Service (SVC) Calls

3.4 IOCS Service (SVC) Calls

3-10

Table 3-3 lists the SVC calls, their applicable functions, and the bit setting for the
FCB field FCB.SCFG:

Notes:

Table 3-3
IOCS SVC Calls

Function SVC

Advance filemark 1,x'34'
Advance filemarks 1,x'34'
Advance record 1,x'33'
Advance records 1,x'33'
Backspace filemark 1,x'36'
Backspace filemarks 1,x'3S'
Backspace record l,x'3S'
Backspace records 1,x'36'
Backspace sequential filemarks 1,x'3S'
Backspace to end of data l,x'3S'
Erase 1,x'3A'
Erase long l,x'3A'
Execute channel program l,x'2S'
Initialize subaddress l,x'3E'
Inquiry l,x'3S'
Mode select 1,x'26'
Mode sense l,x'26'
Open n/a
Read block limits 1,x'27'
Read blocks 1,x'31'
Read data 1,x'31'
ReadMFP 1,x'27'
Release' unit 1,x'10'
Reserve unit l,x'10'
Rewind 1,x'37'
Test unit ready 1,x'27'
Unload unit l,x'26'
Write data 1,x'32'
Write EOF filemark 1,x'38'
Write BOF filemarks 1,x'38'

FCB.SCFG Notes

0000
0001 1
0000
0001 1
0000
0010 1
0000
0101 1
0011 1
0100
0000
0001
n/a 11

0010 2
0001 3,4
0001 S,6
0000 3,6
n/a 10

0001 3
0001 3,7
0000 3,8
0010 3,9
0001 12
0000 12
0000
0000 3
0010
0000 3,6
0000
0001 1

1. FCB.EQTY specifies the number of filemarks or records (whichever is
applicable).

2. FCB.ERW A specifies the address of the buffer that contains the initialization
parameters. PCB.EQTY specifies the size of the initialization parameters.

3. PCB.ERW A specifies the buffer address.

4. FCB.EQTY specifies the buffer length.

H.MTSCllssulng 110 Operations

o

c

(~
S.

6.
7.
8.
9.
10.

11.

12.

IOCS Service (SVC) Calls

FCB.ERWA specifies the address of the buffer that contains the SCSI command
packet to be sent to the unit.

FCB .EQTY specifies the byte count.

FCB.EQTY specifies the block count.

FCB.ERW A specifies the address of the read buffer.

FCB.EQTY specifies a byte count of 1 to 12 bytes.

The SVC call is not applicable because it is perfonned by H.MTSCI.

FCB.IOQA must contain the logical address of the channel program to execute.

To issue a third-party reserve or release request, use the execute channel program SVC
call.

3.5 Error Processing

If an I/O operation tenninates abnonnally, H.MTSCI posts infonnation about the I/O
operation in the FCB. This infonnation is device status in FCB word 3 (bits 16
through 31), and sense data in FCB words II and 12. For more infonnation about the
returned status, refer to the status doubleword data structure in Chapter 2 of this
document.

The following is a list of the sense data returned for H.MTSCI:

FCB
Word

11

12

MPX·32 Technical Volume II

Byte

0
1
2
3

0-3

Sense Data

error class/code
segment number
tape indicator bits
residual byte count (msb)

channel status

Notes

1

2

3

3·11

Error Processing

3-12

Notes:

1. This specifies extended sense data fonnat. For more infonnation, refer to ANSI
Committee Working Document X3T9.2/82.2.

2.
The following are the tape indicator bits:

Bit Definition
o filemark encountered
1 EOMIBOM encountered
2 illegal length
3 reserved

4-7 sense key infonnation.
refer to the sense channel
command description in this
chapter.

3. Contains channel status in bits 0 through 16 and the residual byte count in bits 17
through 31.

H.MTSCllssuing 1/0 Operations

.1 'ji

(--

(~/

XIO Common Subroutine Package & Device Handlers (H.XIOS)

MPX-32 Technical Manual

Volume II

(-

(

c

Contents

Page

1 H.XIOS Overview

1.1 XIO Common Subroutine and Device Handlers .. 1-1
1.2 General Information .. 1-1

2 XIO.SUB Subroutines

3

2.1 General Information .. 2-1
2.2 110 Queue Driver (IQ.XIO) .. 2-1
2.3 Entry Point IQ.XIO ... 2-2
2.4 Entry Point IQ.XIO.1 .. 2-3
2.5
2.6
2.7
2.8
2.9

Entry Point IQ.XIO.2 .. 2-4
Service Interrupt Processor (SI.) ... 2-4
Entry Point SI ... 2-5
Entry Point SI.~ ... 2-6 ,
Entry Point SI.EXIT .. 2-7
2.9.1 Conditional SI. Processing ... 2-7

2.10 Lost Interrupt Processor (U.XIO) .. 2-9
2.11 Execute Channel Program. Opcode Processor (EXCPM) 2-10
2.12 SYSGEN Initialization (COM.INIT) .. 2-11

Device Dependent Handlers (H. ??XIO)

3.1 General Information .. 3-1
3.2 Entry Point OP. - Opcode Processing .. 3-1
3.3 Entry Point IQ.XIO - 110 Queue Driver ... 3-2
3.4 Entry Point SI. - Service Interrupt Processor .. 3-2
3.5 Normal Completion or Status Checking Inhibited 3-3
3.6 Channel End with No Device End .. 3-4
3.7 Normal Sense Command with IOQ .. 3-4
3.8 Unexpected Interrupt ... 3-5
3.9 Device Time Out ... ; : 3-5
3.10 Sense Command without IOQ .. 3-5
3.11 Entry Point LI.XIO - Lost Interrupt Processor ... 3-5
3.12 Entry Point PX. - Posttransfer Processing ... 3-6
3.13 Entry Point PRE.SIO - Prestart 110 Processor ... 3-6
3.14 Entry Point SG. - SYSGEN Initialization .. 3-7

MPX·32 Technical Volume II iii

Contents

Page C~'

4 XIO Interrupt Fielder (H.IFXIO)

4.1 General Information .. 4-1
4.2 Entry Point HI. - Interrupt Fielder .. 4-1
4.3 Entry Point H2. - Initialize Channel ... 4-2
4.4 Entry Point Ill. - SYSGEN Initialization .. 4-2

c
Iv Contents

List of Figures

Figure Page

1-1 Simplified Software Block Diagram .. 1-1

(

MPX-32 Technical Volume II v

List of Tables

Table Page

2-1 Interrupts and Responses by S1. Processor .. 2-8

vi Contents

(

1 H.XIOS Overview

1.1 XIO Common Subroutine and Device Handlers

1.2 General Information

MPX-32 contains an XIO subroutine package that performs the I/O functions that are
common to all XIO devices. Individual device handlers contain only device
dependent logic and are structured to use the common XIO subroutines.

The concept of an XIO device handler under MPX-32 consists of: the common XIO
subroutine package (XIO.SUB), the device dependent logic (H.??XIO), the interrupt
fielder (H.IFXIO), and the device context area (DCA). A simplified overview of the
relationship between these components and the operating system is presented in Figure
1-1.

H.lOCS
PRE-DEVICE ACCESS

PROCESSING

+
XIQ.SUB

COMMON
PRE-START 1/0
PROCESSING

• H??XIO
DEVICE DEPENDENT

PRE-START 1/0
PROCESSING

•
XIO.SUB

ISSUE START 1/0
TO DEVICE

+
H.!OCS

REPORT 1/0
STARTING

...

I
USER 1/0

UEST REO

...................

OQA
DATA AREA
CONTAINING

DEVICE
INFORMATION

Figure 1-1

..
I

..

I S
INTER RUPT

'l,;."~." ••

Simplified Software Block Diagram

MPX-32 Technical Volume II

H.IFXIO
FIELD THE

INTERRUPT

t
XIO.SUB

COMMON POST
INTERRUPT

PROCESSING

+
H ??XIQ

DEVICE DEPENDENT
POST INTERRUPT

PROCESSING

+
XIO,SUB

EXrr
INTERRUPT

LEVEL

t
H,EXEC

REPORT 1/0
COMPLETE

87D12T10

1-1/1-2

.'

c

2 XIO.SUB Subroutines

2.1 General Information
The common XIO subroutine package (XIO.SUB) is made part of the resident
operating system by naming an F-class device handler within a SYSGEN directive
file. The routines are re-entrant requiring only one copy per system. The common
XIO subroutine package consists of four routines:

• the I/O queue driver (IQ.XIO)

• the service interrupt processor (SI.)

• the lost interrupt processor (LI.XIO)
• the execute channel program opcode processor (EXCPM).

A fifth routine, COM.lNIT, is used by SYSGEN during MPX-32 image construction
and is subsequently overlayed.

XIO device handler linkage to IQ.XIO and LI.XIO is accomplished by substituting the
subroutine name within the handler HAT table and defining the routine as an external.
System calls to these two routines are accomplished by branching indirect through the
HAT table address. The service interrupt processor (SI.) is called directly from the
channel interrupt fielder (H.IFXIO), while the execute channel program opcode
processor (EXCPM) is called from the opcode processing entry point (OP.) of XIO
device dependent handlers (H.??XIO).

2.2 1/0 Queue Driver (IQ.XIO)

The I/O queue driver issues start I/O (SIO) commands for the calling routine. It has
three entry points: IQ.XIO, IQXIO.l and IQ.XIO.2. IQ.XIO and IQ.XIO.l are
identical except IQ.XIO activates the interrupt level upon entry and deactivates it
before exiting. IQ.XIO and IQ.XIO.l issue an SIO for the first request in the I/O
queue. IQ.XIO.2 issues an SIO for a specific entry within the I/O queue.

MPX-32 Technical Volume" 2-1

1/0 Queue Driver (IQ.XIO)

The following is the basic logic sequence within the 1/0 queue driver with the three
entry points noted:

• IQJOO enters here to activate the interrupt leve1.

• IQ.XIO.l enters here to determine which 110 request to process.

• IQ.XIO.2 enters here to:

• check if device is online and functioning

• branch and link to device specific handler logic to perfonn any modifications to
the 110 request

• get various 110 request parameters from the IOQ and set up for an SIO. These
include the time-out value, the IbCn list address, and the channel and
subchannel to stan.

• issue an SIO

• examine condition codes presented by the SIO and take appropriate action

• deactivate the interrupt level if entered at IQ.XIO .
• return to calling routine

2.3 Entry Point IQ.XIO
.'

Entry Point IQ.XIO is called by H.IOCS,29 each time H.IOCS,29 queues an 110
request and, depending on the queueing scheme, the channel or device is not busy. It
blocks external interrupts and enters IQ.XIO by the calling sequence.

Entry Conditions

2·2

Calling Sequence

BL *2W,X2

Registers

RO return address

register X2 contains the device dependent handler
device dependent handler HAT address. The address in
the HAT table points to the common subroutine IQ.XIO
entry point.

R3 UDT address of the device to stan

R7 IOQ address

XIO.SUB Subroutines

(j

c

(

Exit Conditions

Return Sequence

DACI

TRSW

Registers

RO

R7 IOQ address

2.4 Entry Point IQ.XIO.1

deactivate interrupt level

returns to calling routine

Entry Point IQ.XIO

Entry Point IQ.XIO.l is called by the SI. service interrupt routine to drive the 110
queue following completion of an I/O request. LI.XIO calls IQ.xIO.l to flush the I/O
queue following a halt 110 command that times out. IQ.xIO.l is entered with the
interrupt level active by the calling sequence.

Entry Conditions

Calling Sequence

BL IQ.XIO.l if return to call is desired

(or)

BU IQ.XIO.l if return is set-up

Registers

RO return address (SI. only)

R3 UDT address of device to start

Exit Conditions

Return Sequence

TRSW RO RO is properly set-up prior to return if call is from LI.XIO

Registers

Rl CHT address

R2 DCA address

MPX·32 Technical Volume" 2·3

Entry Point IQ.XIO.2

2.5 Entry Point IQ.XIO.2

Entry Point IQJOO.2 can be called by device dependent handlers to perform a start
I/O on behalf of a specific I/O request to collect sense information, perform error
retry, continue with the present I/O request, etc. It is entered with the interrupt level
active by the calling sequence.

Entry Conditions

Calling Sequence

BL IQ.XIO.2

Registers

RO return address

Rl IOQ address

R2 DCA address

R3 UDT address

Exit Conditions

Return Sequence

TRSW RO

Registers

Rl CHT address

R2 DCA address

2.6 Service Interrupt Processor (SI.)

2-4

The service interrupt processor (SI.) performs postaccess processing associated with
the device access which just completed. It has three entry points called SI.,
SI.UNLNK and SI.EXIT. SI.UNLNK and SI.EXIT are also callable from the device
dependent logic.

XIO.SUB Subroutines

c

. . ('.' ...•..

Service Interrupt Processor (SI.)

The following is the basic logic sequence within the service interrupt processor with
the three enny points noted.

• SI. enters here to:

• detennine which device caused the interrupt (status presentation)

• detennine cause of interrupt and branch to appropriate action. See the
Conditional SI. Processing section for cause of interrupt infonnation.

• branch and link to device dependent handler logic to perfonn any nonnal device
specific postaccess processing

• update actual transfer quantity if required

• SI.UNLNK enters here to:

• unlink IOQ enny from I/O queue

• delete the IOQ if a kill request was issued

• report I/O complete

• SI.EXIT enters here to:

• branch and link to IQ.XIO.l to continue driving the I/O queue (this mayor may
not return)

• test for any more status pending and if so, branch back to SI.; otherwise,

• deactivate the interrupt level

• exit from the interrupt via S.EXEC5

2.7 Entry Point 51.

Enny point SI. is entered directly from the XIO interrupt fielder program (H.IFXIO).
This enny point can also be entered from the I/O queue driver (IQ.XIO) and the lost
interrupt processor (LI.XIO) as a result of a status stored response to the start 110 and
halt 110 instructions. SI. is entered with the interrupt level active by the calling
sequence.

Entry Conditions

Calling Sequence

BU SI.

Registers

R3 CHT address
R6 specifies 0 if entered from the XIO interrupt fielder (H.IFXIO)

(or)

specifies the UDT address of the device on whose behalf the SIO or HIO
was issued when the status stored response was generated.

MPX-32 Technical Volume II 2-5

Entry Point SI.

Exit Conditions

Return Sequence

If entered from the XIO interrupt fielder (H.IFXIO):

Return Sequence

BU S.EXEC5

Registers

R2

R6,R7

register save area address

oldPSD

If entered from the I/O queue driver (IQ.XIO) or the lost interrupt processor (LI:XIO):

Return Sequence

BU IQ.XIO.l

Registers

RO return address to either IOCS or the lost interrupt fielder (LI.XIO)

R3 UDT address of completing device

2.8 Entry Point SI.UNLNK

Entry point SI. UNLINK can be entered from device dependent handlers (H.1?XIO) if
the I/O request should not be issued. For example, a release request is issued for a
dual-ported disc while another user still has the device reserved. SI. UNLNK is
entered with the interrupt level active by the calling sequence.

Entry Conditions

calling Sequence

BU SI.UNLNK

Registers

Rl IOQ address

R2 DCA address

R7 IQ. return address as passed to device dependent handler logic

Exit Conditions

Return Sequence

Continues with remainder of SI. logic. See the Service Interrupt Processor section.

2-6 XIO.SUB Subroutines

o

c

(

c

Entry Point SI.EXIT

2.9 Entry Point SI.EXIT

Entry point SI.EXIT can be entered from device dependent handlers (H. ??XIO) to
continue driving the 110 queue and to exit the interrupt level. SI.EXIT is entered with
the interrupt level active by the calling sequence.

Entry Conditions

Calling Sequence

BU SI.EXIT

Registers

R2 DCA address

Exit CondHlons

Return Sequence

Continues with remainder of SI. logic. See the Service Interrupt Processors section.

2.9.1 Conditional SI. Processing

Table 2-1 describes the cause of interrupts and response by the service interrupt
processor (SI.) in performing conditional SI. processing.

MPX-32 Technical Volume II 2·7

Entry Point SI.EXIT

Table 2-1
Interrupts and Responses by SI. Processor

Cause or interrupt Response by SI. processor

Channel end with Branch and link H.1?XIO with R2 = DCA address and R3 =
no device end UDT address. IfH.1?XIO returns this call, R2 = DCA

address and processing continues at SI.EXIT.

Device If the kill command was issued, continue processing at
time out SI.UNLNK; otherwise, branch and link H. ??XIO with R2 =

DCA address and R3 = UDT address. If H.1?XIO returns
this call, R2 = DCA address, an unrecoverable error
condition is marked in the IOQ, actual transfer count in IOQ
is zeroed, and the SI.processor continues at SI.UNLNK.

Execute channel Set error condition in IOQ if error is indicated. If sense
program information is required, the sense command is issued and

processing continues at SI.EXIT; otherwise, if no error is
found and no sense information is required, processing
continues at SI.UNLNK.

I/O request Issue sense command and continue processing at SI.UNLNK.
complete with error "

Normal If execute channel program was requested, continue pro-
sense command cessing at SI.UNLNK; otherwise, branch and link to H.1?XIO
with IOQ with R2 = DCA address and R3 = UDT address. IfH.??XIO

returns this call, R2 = DCA address, actual transfer count is
computed and updates IOQ, processing continues at SI.UNLNK.

Postprogram If PPCI notification is not desired, exit the interrupt level, other-
controlled wise, store status doubleword into PPCI notification packet
interrupt buffer. SI. processor reports PPCI to user PPCI through S.EXEC4

asynchronous notification call. Exit the interrupt level.

Rewind or Clear device rewinding or seeking bit, and continue processing
seek complete at SI.EXIT.

Special sense Branch and link to H.1?XIO with R2 .. DCA address and R3 =
command with UDT address. If H. ??XIO returns this call, R2 ... DCA
noIOQ address and processing continues at SI.EXIT.

Spurious Increment spurious interrupt count, and exit the interrupt
interrupt when level if the service interrupt processor was entered from
device is not H.IFXIO, processing continues at SI.EXIT.
configured

Spurious Branch and link to H. ?1XIO with R2 - DCA address and R3 =
interrupt when UDT address. If H. ??XIO returns this call, R2 = DCA
device is address, SI. processor increments spurious count for the
configured but device and the channel, and continues processing at SI.EXIT.
interrupt is
not expected

2·8 XIO.SUB Subroutines

(

(-

Lost Interrupt Processor (LI.XIO)

2.10 Lost Interrupt Processor (LI.XIO)

The lost interrupt processor (LUCIO) is called from S.IOCS5 to take corrective
measures when an expected interrupt fails to occur. It is also called from H.IOCS,38
when a kill command is issued to a task and the task has I/O in progress. In both
cases, the I/O request is terminated with a Halt I/O (HIO) instruction. If the controller
responds to the RIO, SI. performs the required interrupt handling.

The following is the basic logic sequence within the lost interrupt processor (LUCIO):

• activate the interrupt level

• increment the lost interrupt count if not a kill request

• issue the RIO if it has not already been issued

• branch to service interrupt routine (SI.) if the RIO instruction produced a status
stored condition; otherwise,

• block external interrupts

• deactivate the interrupt level

• return to calling routine

If the RIO has already been issued but fails to generate an interrupt, the lost interrupt
service routine (LI.XIO) is en~ered once again and the following actions are taken:

• activate the interrupt level

• increment lost interrupt count if not a kill request

• the device is marked off-line

• the device is marked malfunctioning

• the IOQ request is unlinked from the I/O queue

• the 10Q is deallocated if the HIO was issued as a result of a "KlLL"request

• the I/O request is reported as complete with errors if the HIO was issued because of
an interrupt which failed to occur .

• branch and link to IQJCIO.l to flush any pending I/O requests to the failing device

• block external interrupts

• deactivate the interrupt level

• return to calling routine

MPX·32 Technical Volume II 2·9

Lost Interrupt Processor (LI.XIO)

Entry Conditions

Calling Sequence

The lost interrupt processor (LI.XIO) is called from S.IOCS5 and H.IOCS,38 with
interrupts blocked by:

BL *4W,XI register Xl contains the device dependent handler
HAT address. The address in the HAT table points to
the lost interrupt processor (LI.XIO).

Registers

RO return address

R3 UDT address of device to halt

Exit Conditions

Return Sequence

TRSW RO

Registers

None .'

2.11 Execute Channel Program Opcode Processor (EXCPM)

2-10

The execute channel program opcode processor (EXCPM) is called by all XIO device
handlers to process either physical or logical execute channel program requests.

The basic logic sequence for processing the physical execute channel program request
is: .

• abort request if requesting task is not privileged

• determine if notification package is required

• build and initialize an IOQ

• store user specified time-out value into IOQ

• store sense buffer information into IOQ if sense information desired

• set up notification packet if required

• return to H.IOCS to link the I/O request

XIO.SUB Subroutines

c

(

Execute Channel Program Opcode Processor (EXCPM)

The basic logic sequence for processing the logical execute channel program request
is:

• validate legality of IOCD requests and transfer addresses

• compute number of IOCDs required to satisfy the request

• build and initialize an IOQ
• build IOCD list within the IOQ
• build seek data within IOQ

• convert seek data to cylinder/track/sector format

• store user specified time-out value in IOQ

• store sense buffer information into IOQ if sense information desired

• return to H.lOCS to link the I/O request

This entry point is called from the Opcode Processing entry point (OP.) of XIO device
dependent handlers (H. ??XIO) by branching indirect through the opcode processing
table.

Entry Conditions

Calling Sequence

BU *OPTAB,X2

Registers

R 1 FCB address

Exit Conditions

Return Sequence

BU

(or)

BU

Registers

Rl

R3

IOLINK

CABORT

FCB address

IOQ address

"
register X2 contains the opcode word index
into OPfAB

if IOCD list valid

if IOCD list invalid

2.12 SYSGEN Initialization (COM.INIT)

The SYSGEN initialization (COM.INIT) entry point is executed by SYSGEN during
MPX-32 image construction and subsequently overlayed. This entry point contains
only the standard M.EIR and M.XIR entry and exit macros.

MPX-32 Technical Volume II 2-11/2-12

c

.'

c

c

3 Device Dependent Handlers (H. ??XIO)

3.1 General Information

XIO device dependent handlers (H. ??XIO) are used in conjunction with the XIO
common subroutine package (XIO.SUB) to service I/O requests on behalf of the
calling routine. Each device dependent handler contains only that logic which is
specific to a device or class of devices. Only one copy of any device dependent
handler is configured regardless of the number of devices or channels specified with
the specific device type. The handler is made part of the resident operating system
and proper linkages are established by naming the handler in the DEVICE statement
within the SYSGEN directive file.

The device dependent handler HAT table is the means by which linkages are
established between the inputJoutput control system (H.IOCS) and the 110 processing
routines. The XIO device dependent handlers (H. ??XIO) have seven entry points
which are defined in the following HAT table and described in the following sections.

HAT DATAW 7 number of entries in table
ACW OP. opcode processor
ACW IQ.XIO . I/O queue driver
ACW SI. service interrupt processor
ACW LI.XIO lost interrupt processor

.'
ACW PX. posttransfer processor
ACW PRE.SIO prestart 110 processor
ACW SG. SYSGEN initialization

3.2 Entry Point OP. - Opcode Processing
This entry point OP. is actually a subroutine extension of H.IOCS,29, a portion of
IOCS logic common to all 110 services which are capable of initiating a physical
device access. It is called to process the opcode placed in the file control block (FCB)
by the 110 service originally called by the user.

The purpose of OP. is to examine the opcode and other pertinent FCB control
specifications, and to indicate to H.IOCS,29 what action is to be taken. In order to
indicate what action is to be taken, OP. takes one of the following returns to
H.IOCS,29:

BU

BU

BU

BU

n..OPCODE

SERVCOMP

10LINK

POSTPROS

opcode is illegal for this device

service complete, no device access required

link request to I/O queue

link request to I/O queue and postprocessing is required

If return 3 (IOLINK) or 4 (pOSTPROS) is taken, OP. must first:

1. Call IOCS subroutine S.IOCS13 to allocate and initialize an IOQ.

2. Build into the IOQ entry an 110 command list (IOCL) with the proper command
codes and flags using IOCS subroutines S.IOCS 12 and IOCS entry point
H.IOCS,40.

MPX·32 Technical Volume II 3·1

Entry Point OP.· Opcode Processing

Taking return 4 (poSTPROS) also indicates that after the request has been completed C· ;

but before return to or notification of the user, the device postprocessing entry point
PX. must be called.

Entry Conditions

Calling Sequence

BL *lW,X2

Registers

R 1 FCB address

register X2 contains the address of the device
dependent handler HAT table. The one word offset
from this address contains the address of OP.

R2 device dependent handler HAT address
R3 UDT address

Exit Conditions

Return Sequence

See descriptions of ILOPCODE, SERVCOMP, IOLINK ana POSTPROS above.

Registers

Rl FCB address

3.3 Entry Point IQ.XIO • 1/0 Queue Driver

The entry point IQ.XIO contains the address of the IQ.XIO common subroutine, all
calls to this entry point are funneled to common processing. Refer to the Entry Point
IQ.XIO section in Chapter 2.

3.4 Entry Point SI. - Service Interrupt Processor

3·2

The entry point SI. contained in the device dependent handlers is entered from the SI.
common subroutine whenever device dependent logic should be considered. Six calls
are made to device dependent service interrupt processing. Depending upon the
specific device, these six entrY points can contain executable code; however, they must
be included within the device dependent handler to properly interphase with the XIO
common subroutines. Device dependent service interrupt calls occur:

• when 110 completes normally or when status checking is inhibited

• when status contains channel end with no device end

• following a nonnal sense command (with IOQ)

• following an unexpected interrupt

• following a device time out

• following a sense command (without IOQ)

Device Dependent Handlers (H. ??XIO)

c

Entry Point SI. • Service Interrupt Processor

(":- Entry Conditions

(

Calling Sequence

BL NW,XI

Registers

register Xl is the SI. entry point address within the
device dependent handler logic as contained in the HAT
table. NW specifies an N word offset into an SI.
device dependent entry point jump table. The jump table
contains an unconditional branch to the desired
executable code.

R I device dependent handler SI. address

R2 DCA address

R3 UDT address

Exit Conditions

Return Sequence

TRSW RO

(or)

BU

(or)

BU

Registers

SI.UNLNK

SI.EXIT

if typical interrupt post access processing is desired
for the interrupt type

if the I/O request is to be unlinked,
reported complete, and I/O queue processing
continued

if the interrupt level is to be exited without
unlinking the I/O request and reporting the 110
complete. An example of this would be following a
branch and link to IQ.x10.2 (BL IQ.XIO.2) to initiate
error retry or collect sense information.

RI IOQ address (required for SI.UNLNK only)

R2 DCA address

3.5 Normal Completion or Status Checking Inhibited

This routine is called by the XIO common subroutine when an I/O request completes
with no errors or when status checking is inhibited. It can be used to perform any
device specific processing necessary under these conditions. An example would be
the collection of sense information pertinent to the I/O operation just completed. The
XIO common routines collect sense information only when an I/O request produces an
error or the I/O request was for an execute channel program and sense information
was requested.

MPX-32 Technical Volume II 3-3

Normal Completion or Status Checking Inhibited

A TRSW RO return from this routine:

• unlinks the IOQ from the 110 queue

• reports I/O complete

• continues driving the 110 queue

• exits the interrupt level by S.EXEC5

3.6 Channel End with No Device End

This routine is called by the XIO common subroutine when an 1/0 request produces
an interrupt whose status contains channel end and no device end. This is not a
normal case for most device types. However, it does occur for magnetic tapes when a
rewind is initiated and for XIO discs when a reserve is issued to a dual-ported disc
that is reserved to the opposing CPU.

A TRSW RO return from this routine waits for the device end interrupt.

3.7 Normal Sense Command with IOQ

3-4

This routine is called by the XIO common subroutine follo'}'ing an interrupt caused by
issuing a sense command on behalf of an 110 request that completed with an error
indication. This is the routine that will normally examine the status and sense
information and initiate error recovery if applicable.

A TRSW RO return from this routine:

• computes actual transfer coum if an error condition is indicated and update the IOQ
transfer count

• unlinks the IOQ from the 110 queue

• reports 110 complete
• continues driving the 110 queue

• exits the interrupt level by S.EXECS

It should be noted that the TRSW RO return does not set the error condition flag in the
IOQ.

Device Dependent Handlers (H. ??XIO)

c

(

Unexpected Interrupt

3.8 Unexpected Interrupt

This routine is called by the XIO common subroutine when an interrupt occurs that
was not expected. This routine allows for ring in or wake-up logic applicable to some
devices. Other applications can apply.

A TRSW RO return from this routine:

• increments spurious interrupt count for the device

• increments spurious interrupt count for the channel

• continues driving the 110 queue if required

• exits the interrupt level by S.EXEC5

3.9 Device Time Out

This routine is called by the XIO common subroutine following the interrupt
generated by issuing a halt 110 (HIO) instruction on behalf of a device that timed out
This routine allows for device dependent recovery from 110 requests that fail to
complete.

A TRSW RO return from this routine:

• sets the error condition in the IOQ

• sets the time out flag in the IOQ
• zeros the transfer count in the IOQ

• unlinks the IOQ from the 110 queue

• reports 110 complete

• continues driving the 110 queue

• exits the interrupt level by S.EXEC5

3.10 Sense Command without IOQ

3.11

This routine is called by the XIO common subroutine following an interrupt generated
by issuing a sense command with no IOQ associated with the request. This routine
may be used in conjunction with a ring in or wake-up capability applicable to some
devices. Other applications can apply.

A TRSW RO return from this routine continues driving the 110 queue, and exits the
interrupt level by S.EXECS.

Entry Point LI.XIO • Lost Interrupt Processor

The lost interrupt processor HAT table entry point contains the address of the LI.XIO
common subroutine so, all calls to this entry point are funneled to common
processing. Refer to the Lost Interrupt Processor (LI.XIO) section in Chapter 2 for
details.

MPX·32 Technical Volume II 3-5

Entry Point PX. - Posttransfer Processing

3.12 Entry Point PX. - Posttransfer Processing

The entry point px. is called by S.IOCSI whenever return from the opcode processor
(OP.) is by POSTPROS. It is used to perfonn any processing after completion of the
110 request but before returning to the requesting task. This entry point executes at
the task priority and at a low level of system overhead.

Entry Conditions

Calling Sequence

BL *5W,X2

Registers

R 1 FCB address

R2 device dependent handler HAT address
R3 UDT address

Exit Conditions

Return Sequence

TRSW RO

Registers

R 1 FCB address

3.13 Entry Point PRE.SIO - Prestart 1/0 Processor

The entry point PRE.SIO is called by the XIO common 1/0 queue driver (IQ.XIO)
just prior to issuing the start I/O (SID) request. It allows for modification to the I/O
request such as the lOCO list, subchannel number, time-out value, etc. It also allows
for removal of the I/O request as may be necessary when a release is issued to a
device that is still reserved by another task.

Entry Conditions

Calling Sequence

BL *6W,X3

Registers

Rl IOQ address

R2 DCA address
R3 device dependent handler HAT table address

R7 IQ.XIO return address

3·6 Device Dependent Handlers (H. ??XIO)

(:

(

Entry Point PRE.SIO - Prestart 1/0 Processor

Exit Conditions

Return Sequence

TRSW RO

(or)

BU SLUNLNK

Registers

Rl IOQ address

R2 DCA address

if SID is to be issued

if I/O request is to be removed from the
I/O queue

R7 IQ.XIO return address as passed to this routine

3.14 Entry Point SG .• SYSGEN Initialization

The entry point SG. is called by SYSGEN to initialize certain handler parameters,
device context areas (DCAs), and data structure elements during the construction of an
MPX-32 image. A maximum number of DCA's are created via the repeated assembly
of the macro DCA.DAT A. During the execution of this entry point, one DCA is
initialized for each UDT entry containing the name of the handler. Any remaining
DCA's and the remainder of the code in the handler will be overlayed by SYSGEN.

Entry Conditions

Calling Sequence

BL last entry point, and it is computed from information in the HAT table

Registers

None

Exit Conditions

Return Sequence

M.XIR

Registers

None

this is the standard handler SYSGEN exit macro

MPX·32 Technical Volume II 3-7/3·8

4 XIO Interrupt Fielder (H.lFXIO)

4.1 General Information
The XIO interrupt fielder (H.IFXIO) is used in conjunction with the XIO common
subroutine package to service I/O interrupts generated by completing I/O requests.
One copy of the interrupt fielder is required for each channel connected to an extended
1/0 (XIO) device. The interrupt fielder is made part of the resident operating system
and proper linkages are established by naming the interrupt fielder in the
CONTROLLER statement within the SYSGEN directive file.

The XIO interrupt fielder (H.IFXIO) has three entry points which are defined in the
following HAT table and described in the following sections.

HAT DATAW 3 number of entries in table

ACW HI. interrupt fielding entry point

ACW H2. channel initialization

ACW HI. SYSGEN initialization entry point

4.2 Entry Point H1. - Interrupt Fielder

The entry point HI. is entered by the service interrupt (SI) vector address contained
in scratchpad and perfonns the following functions:

• increments the global interrupt count

• fetches the channel definition table (CHT) address associated with the interrupt
level

• saves registers
• branches to the SI. common subroutine entry point

Entry Conditions

Calling Sequence

entered as a result of an interrupt

Registers

None

MPX-32 Technical Volume 1\ 4-1

Entry Point H1. -Interrupt Fielder

Exit Conditions

Return Sequence

BU S1. this is the S1. common subroutine entry point

Registers

R3 CRT address associated with the interrupt level

4.3 Entry Point H2. - Initialize Channel

The entry point H2. is entered from the opcode processing (OP.) entry point of a
device dependent handler (H. ??XIO) as a result of the first open request to a device
connected to the channel. H2. can reset, initialize and enable the channel.

Entry Conditions

Calling Sequence

BL *CRT.INCH,X2

Registers

R 1 FCB address

R2 CRT address

R3 DCA address

Exit Conditions

Return Sequence

TRSW RO

TRSW RO+IW

Registers

R 1 FCB address

error return, channel not initialized and all devices
have been marked off-line

initialization complete

R2 CRT address (initialization complete return only)

R3 DCA address (initialization complete return only)

4.4 Entry Point HI. - SYSGEN Initialization

4·2

The entty point HI. is called by SYSGEN to initialize certain interrupt fielder
parameters and data structure elements during the construction of an MPX-32 image.
It also provides memory locations required for disc and tape controllers at channel
initialization. Once executed, this entty point is overlayed by SYSGEN, except for
the memory locations needed by the disc and tape.

XIO Interrupt Fielder (H.lFXIO)

Entry Point HI. - SYSGEN Initialization

Entry Conditions

Calling Sequence

BL last entry point

Registers

R3 CRT address

Exit Conditions

Return Sequence

M.XIR this is the standard handler SYSGEN exit macro

Registers

None

MPX·32 Technical Volume II 4-3/4-4

(
IDIl

MPX-32 Resident Modules & Handlers
Technical Manual
No. 322-001552-500

READER'S
COMMENT

FORM

Please use this form to communicate your views about this manual. The form is
preaddressed and stamped for your convenience.

I rate this manual's:

Accuracy
Clarity
Completeness
Examples
Figures
Index
Organization
Retrievability of Information

Additional comments:

Excellent Good

If you wish a reply, please print your name and mailing address:

What is your occupation/title?

Thank you for your cooperation.

Fair

Note: Copies of Encore publications are available through your Encore
representative or the customer service office serving your locality.

Poor

FOlD HERE --- ---------------- ----- ---- -- -----1- -I]

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 2356 FORT LAUDERDALE. FL

POSTAGE WILL BE PAID BY AOORESEE

ENCORE COMPUTER CORPORATION
ATTENTION: DOCUMENTATION COORDINATOR
6901 W. SUNRISE BLVD.
P.O. BOX 409148
FT. LAUDERDALE, FL 33340-9970

I •• 11".111 .. 11 111111.1.1 .. 1.1 ••• 11 e, .1.1'1 •• 111

FOLD HERE

PLEASE TAPE DO NOT STAPLE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

ILLJ
I ~'
I ~ ,
I C!: /

Z
10

...J
lex:
II­

=> lu
I

