MPX-32 ™

Resident Modules and Handlers
Revision 3.5

Technical Manual Volume |l

April 1950

il

| YRR AR

322-B135352-581 |

Il

Limited Rights

This manual is supplied without representation.qr warranty of any kind. Encore
Computer Corporation therefore assumes no responsibility and shall have no liability of
any kind arising from the supply or use of this publication or any material contained
herein.

Proprietary Information

The information contained herein is proprietary to Encore Computer Corporation
and/or its vendors, and its use, disclosure, or duplication is subject to the restrictions
stated in the standard Encore Computer Corporation License terms and conditions or
the appropriate third-party sublicense agreement.

Restricted Rights
Use, duplication, or disclosure by the Government is subject to restrictions as set forth

in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at 252.227.7013.

Encore Computer Cofporation
6901 West Sunrise Boulevard R
Fort Lauderdale, Florida 33313 A

™ MPX-32 is a trademark of Encore Computer Corporation

® CONCEPT/32 is a registered trademark of Encore Computer Corporation

Copyright © 1990 by Encore Computer Corporation
ALL RIGHTS RESERVED

Printed in the U.S.A. O

H.ADA
H.ALOC
H.BKDM
H.EXEC
H.EXSUB
H.FISE
H.IOCS
H.IP?? and H.SVC?
H.MDT
H.MEMM
H.MEMM2
H.MONS
H.MVMT
H.PTRAC
H.REMM
H.REXS
H.SURE
H.TAMM
H.TSM
H.VOMM

System Macros Cross-Reference

322-881552-3581
AT

MPX-32 '™

Resident Modules
Revision 3.5

Technical Manual Volume [I(A)

April 1990

History

The MPX-32 Release 3.2 Technical Manual, Publication Order Number 322-001550-
000, was printed September, 1983.

Publication Order Number 322-001550-100, (Revision 1, Release 3.2B) was printed
March, 1985.

Publication Order Number 322-001550-101, (Change 1 to Revision 1, Release 3.2C)
was printed December, 1985.

The MPX-32 Release 3.3 Technical Manual Volume I, Publication Order Number
322-001552-200, was printed December, 1986.

Publication Order Number 322-001552-300, (Revision 3, Release 3.4) was printed
January, 1988.

Publication Order Number 322-001552-400, (Revision 3.4U03) was printed October,
1989.

Publication Order Number 322-001552-500, (Revision 3.5) was printed April, 1990

This manual contains the following pages:

Title page H.BKDM
Copyright page .
e e s
v through xi/xii 1-1/1-2
Overview 2-1/2-2
3-1 through 3-5/3-6
1-1 through 1-2
H.EXEC
H.ADA Title page
Title page iii through vi
iii/iv 1-1 through 1-3/1-4
1-1/1-2 2-1 through 2-25/2-26
2-1 through 2-3/2-4 3-1 through 3-31/3-32
3-1/3-2
H.EXSUB
H.ALOC Title page
Title page . iii and iv
iii/iv 1-1/1-2
1-1/1-2 2-1 through 2-26

2-1 through 2-9/2-10
3-1/3-2

History

H.FISE

Title page

iii and iv

1-1 and 1-2

2-1 through 2-11/2-12

H.IOCS

Title page

iii through v/vi

1-1 through 1-3/1-4
2-1 through 2-15/2-16
3-1 through 3-27/3-28

H.IP?? and H.SVC?

Title page

ii/iv

1-1/1-2

2-1 through 2-3/2-4
3-1 through 3-16

HMDT

Title page

iii/iv

1-1/1-2

2-1 through 2-5/2-6
3-1 through 3-12

H.MEMM

Title page

iii and iv

1-1 and 1-2

2-1 through 2-4
3-1 through 3-14

H.MEMM2

Title page

ii/iv

1-1/1-2

2-1 through 2-6

H.MONS

Title page

iii through v/vi

1-1 through 1-3/1-4
2-1 through 2-26

vi

HMVMT

Title page
iii/iv
1-1/1-2

2-1 and 2-2

H.PTRAC

Title page
iii and iv
1-1 and 1-2

H.REMM

Title page

iii and iv

1-1 through 1-3/1-4
2-1 through 2-6

3-1 through 3-23/3-24

H.REXS

Title page

iii through vi

1-1 through 1-4
2-1 through 2-24
3-1 through 3-8

H.SURE N
Title page
iii/iv
1-1/1-2
2-1/2-2
H.TAMM
Title page

iii/iv

1-1/1-2
2-1 through 2-6
3-1 through 3-8

H.TSM

Title page

iii/iv

1-1/1-2

2-1 through 2-8

3-1 through 3-3/3-4

History

History

H.VOMM

Title page

iii and iv

1-1 through 1-3/1-4
2-1 through 2-8

3-1 through 3-29/3-30

System Macros Cross-Reference
A-1 through A-11

Title page (B)

H.DCSCI

Title page

iii through v/vi
1-1/1-2

2-1 through 2-12
3-11/3-12

H.DCXIO

Title page

iii through vii/viii

1-1 through 1-3/1-4
2-1 through 2-12

3-1 through 3-15/3-16

H.DPXIO

Title page

iii through vii/viii

1-1 through 1-3/1-4
2-1 through 2-10

3-1 through 3-23/3-24

H.F8XIO

Title page

iii/iv

1-1/1-2

2-1 through 2-7/2-8

H.GPMCS

Title page

iii/iv

1-1 and 1-4

2-1 through 2-13/2-14

H.HSDG

Title page

iii/iv

1-1/1-2

2-1 through 2-10
3-1 through 3-6

H.IBLG

Title page

iil/iv

1-1/1-2

2-1 through 2-8
3-1 through 3-7/3-8

H.MDXIO

Title

iii and iv

1-1 through 1-2
2-1 through 2-7/2-8
3-1/3-2

H.MTSCI

Title page

iii throuh v/vi
1-1/1-2

2-1 through 2-14
3-1 through 3-12

H.XIOS

Title page

iii through vi

1-1/1-2

2-1 through 2-11/2-12
3-1 through 3-7/3-8
4-1 through 4-3/4-4

vii

Documentation Conventions

Conventions used in directive syntax, messages, and examples throughout the
MPX-32 documentation set are described below.

Messages and Examples

Text shownin this distinctive font indicates an actual representation of a
system message or an example of actual input and output. For example,

VOLUME MOUNT SUCCESSFUL

or

TSM>!ACTIVATE MYTASK
TSM>

Lowercase ltalic Letters

In directive syntax, lowercase italic letters identify a generic element that must be
replaced with a value. For example,

$NOTE message

means replace message with the desired message. For example,
SNOTE 10/12/89 REV 3

In system messages, lowercase italic letters identify a variable element. For example,
BREAK ON:taskname

means a break occurred on the specified task.

Uppercase Letters

In directive syntax, uppercase letters specify the input required to execute that
directive. Uppercase bold letters indicate the minimum that must be entered. For
example,

$ASSIGN Ifc TO resource

means enter $AS or SASSIGN followed by a logical file code, followed by TO and a
resource specification. For example,

$AS OUT TO OUTFILE

In messages, uppercase letters specify status or information. For example,
TERMDEF HAS NOT BEEN INSTALLED

MPX-32 Technical Volume il

Documentation Conventions

Brackets []

An element inside brackets is optional. For example,
$CALL pathname [arg]

means supplying an argument (arg) is optional.

Multiple items listed within brackets means enter one of the options or none at all.
The choices are separated by a vertical line. For example,

$SHOW [CPUTIME | JOBS|USERS]
means specify one of the listed parameters, or none of them to invoke the default.

Items in brackets within encompassing brackets or braces can be specified only when
the other item is specified. For example,

BACKSPACE FILE [[FILES=] eofs]

indicates if eofs is supplied as a parameter, FIL= or FILES= can precede the value
specified.

Commas within brackets are required only if the bracketed element is specified. For
example, ‘

LIST [taskname][,[ownername] [, pseudonym]]
indicates that the first comma is required only if ownername and/or pseudonym is
specified. The second comma is required only if pseudonym is specified.
Braces { }

Elements listed inside braces specify a required choice. Choices are separated by a
vertical line. Enter one of the arguments from the specified group. For example,

[BLOCKED={Y|N}]
means Y or N must be supplied when specifying the BLOCKED option.

Horizontal Ellipsis ...
The horizontal ellipsis indicates the previous element can be repeated. For example,
$DEFM [par] [, par] ...

means one or more parameters (par) separated by commas can be entered.

Décumentation Conventions

Documentation Conventions

Vertical Ellipsis

The vertical ellipsis indicates directives, parameters, or instructions have been omitted.
For example,

$DEFM SI,ASSEMBLE,NEW,OP

SIFA %OP ASSM

means one or more directives have been omitted between the SDEFM and $IFA
directives.

Parentheses ()

In directive syntax, parentheses must be entered as shown. For example,
(value)

means enter the proper value enclosed in parentheses; for example, (234).

Special Key Designations

The following are used throughout the documentation to designate special keys:

<ctrl> control key

<ret> or <CR> carriage return/enter key
<tab> tab key

<break> break key

<bck> backspace key

 delete key -

When the <ctrl> key designation is used with another key, press and hold the control
key, then press the other key. For example,

<ctri>C

means press and hold the control key, then press the C.

Change Bars

Change bars are vertical lines (|) appearing in the right-hand margin of the page for
your convenience in identifying the changes made in MPX-32 Revision 3.5.

When an entire chapter has been changed or added, change bars appear at the chapter
title only. When text within figures has changed, change bars appear only at the top
and bottom of the figure box.

MPX-32 Technical Volume Il xi/xii

1 Technical Manual Volume Il Overview

1.1 Using the Manual

The information in this manual is divided into two parts:

Module Descriptions
Handler Descriptions

Each module has a self-contained description that is prefaced by a tab. The following
list includes the modules which are described in this manual:

H.ADA
H.ALOC
H.BKDM
H.EXEC
H.EXSUB
H.FISE
H.IOCS
H.IP?? and H.SVC?
HMDT
H.MEMM
H.MEMM2
H.MONS
H.MVMT
H.PTRAC
H.REMM
H.REXS
H.SURE
H.TAMM
H.TSM
H.VOMM

Each module description has the following format as applicable:

Overview
Entry Points
Subroutines

MPX-32 Technical Volume Il 1-1

Using the Manual

1-2

Each handler has a self-contained description that is prefaced by a tab. The following
list includes the handlers which are described in this manual.

H.DCSCI
H.DCXIO
H.DPXIO
H.F8XIO
H.GPMCS
H.HSDG
H.IBLG
H.MDXIO
H.MTSCI
H.XIOS

Each handler description has the following format, as applicable:

Overview
Usage

Entry Points
Subroutines

To customize this manual to a particular system, remove the descriptions of modules

or handlers that are not installed on the system.

Technical Manual Volume Il Overview

Ada Programming Language
Support Module (H.ADA)
MPX-32 Technical Manual
Volume II

\"/‘// W \

Contents

Page

1 H.ADA Overview

1.1 General INfOMAtIONccooveuveieiiiiiieteetteeeeeeeeeeeeeeeeeeeeessneeeessesesesssnssssssannses 1-1

1.2 Ada Callable SVC Summaryccccceeeceeeveerceecvnescreeennens st 1-1

1.3 Subroutine SUMMATYccccceerrenerrerieseerirete st ee s see e seesaeseannas eeeeeenneenes 1-1
2 H.ADA - Ada Callable SVCs

2.1 SVC 2,X"A4" - Allocate Signal Stack Spacec.cccovveviviicvencneniinnescenenns 2-1

22 SVC2X’AS’ - Exit From Signal/Exception Statecccoeceevereereeneenenncn. 2-1

23 SVC2X’A6’ - Call ANy SVC SEIVICE ..ueveuiecrrecrreceieeeeereeeeaecnesssesenessneenns 2-2

24 SVC2X’A7’ - Return to Current Working Volumeccccccceeeevcrcenenenen. 2-3
3 H.ADA Subroutines

3.1 Subroutine S.ADAI - ReServedcouummviiiiereniicccciceeeececece e 3-1

3.2 Subroutine S.ADA?2 - Arithmetic Exception Handlingccccoceevruencnnss 3-1

3.4 Subroutine S.LADA3 - ReSEIVEdooooiiiioeeeieeeeeeeeeeeeeeeeeeeeeeeee e nee e e ean 3-1

3.4 Subroutine S.ADAG - RESEIVEueeeiiiieieieeeeeeeeeeeeeeeeeiteeeeeeeeesesessassnees 3-1

MPX-32 Technical Volume |l . iii/iv

1 H.ADA Overview

1.1 General Information ™
The Ada Programming Language Support Module (H.ADA) provides support for the
Ada environment on MPX-32. This support includes arithmetic exception processing

and abort processing. All system services are channeled through this module to
provide the Ada/MPX-32 interface.

'1.2. Ada Callable SVC Summary

SVC Number Description

2. X A4 allocate signal stack space
2.X’AS’ exit from signal/exception state
2.X’A6’ call any SVC service

22X AT return to current working volume and directory

1.3 Subroutine Summary

Subroutine Description

S.ADA1 dispatch task

S.ADA2 arithmetic exception handling
S.ADA3 dispatch control to abort receiver
S.ADA4 end-action processing

MDPY.29 Tachniral Valume |l 1-1/1-2

s

2 H.ADA - Ada Callable SVCs

2.1 SVC 2,X°’A4° - Allocate Signal Stack Space

This routine allocates space to an Ada task for arithmetic exception processing.

Entry Conditions

Calling Sequence

SvC 2.X'A4’

Registers

R3 logical address of stack

R4 number of bytes to use for stack
Exit Conditions

Return Sequence
M.RTRN

Registers

All registers unchanged.

Status
If CC1 is set, the address is invalid.

2.2 SVC 2,X’A5’ - Exit From Signal/Exception State

This routine restores the task registers and PSD for proper return to the Ada task.

Entry Conditions
Calling Sequence
svC 2X'AS
Registers

None

Exit Conditions

Return Sequence
M.RTRN

MPX-32 Technical Volume Il

2-1

SVC 2,X’A6’ - Call Any SVC Service

2.3 SVC 2,X’A6’ - Call Any SVC Service {

This routine intercepts all MPX-32 SVCs called by Ada tasks. This routine checks for
recursive SVC calls and verifies the destination address. The SVC is then executed
from this routine with the return address inside the entry point. After the SVC is
executed, the routine builds the condition codes and registers into the current TSA
stack frame and returns via M.RTRN.

Entry Conditions
Calling Sequence

SvC 2X'A6°

Registers

R1 address of an 8-word register block

R2 address of a 9-word out-register block with condition codes left justified
in the ninth word

R3 right 16 bits of the SVC instruction type and number

Exit Conditions

Return Sequence PO
M.RTRN NS
Status

CC1 if zero, no registers are affected

CCi1 if one, R3 contains one of the following error codes:

Code Meaning

1 invalid in-register buffer address
2 invalid out-register buffer address
3 recursive call to SVC

O

2-2 H.ADA - Ada Callable SVCs

SVC 2,X’A7’ - Return to Current Working Volume

(2.4 SVC 2,X’A7’ - Return to Current Working Volume

This routine restores the Ada task environment before returning to the task.

Entry Conditions
Calling Sequence

SVvC 2.XAT;

Registers

R1 address of buffer to receive volume name

R2 address of buffer to receive directory name
Exit Conditions

Return Sequence
M.RTRN

Status

Normal return if the volume and directory names are stored in the buffers

(Error return if either buffer contains an invalid address, then the volume and
directory names are not stored in the buffer. No error is reported.

MPX-32 Technical Volume li 2-3/2-4

TN

S

3 H.ADA Subroutines

3.1 Subroutine S.ADA1 - Reserved

3.2 Subroutine S.ADA2 - Arithmetic Exception Handling
This subroutine uses the argument list in H.IPOF.

Entry Conditions

Calling Sequence

BL S.ADA2

Registers

R1 address of H.IPOF’s argument list
R3 TSA address

R4 Ada exception handler routines
R6 PSD is being built

Exit Conditions

Return Sequence

No return.
LPSD address of Ada task exception handler

3.3 Subroutine S.ADA3 - Reserved

3.4 Subroutine S.ADA4 - Reserved

MPX-32 Technical Volume li

3-1/3-2

s

A

'\\w/;

Resource Allocator (H.ALOC)
MPX-32 Technical Manual
Volume II

N
\

¥

y{

g,

Contents

- Page
1 H.ALOC Overview
1.1 General INfOrMAationccccccuecrnerrerrerereseeseessesseesessaessessasssesnsessessssssaasssasss 1-1
1.2 Entry POINt SUIMIMATYccooeeeiveereeeeeereensneeeesrecsseeessseessssesssssssssssssssesesssssesssses 1-1
1.3 Subroutine SUIMMATYcccceceeveeenreeresersressesnessesressessesseraessesossessessasasssessanes 1-1
2 H.ALOC Entry Points
2.1 Entry Point 1 - Construct TSA and DQEcooeeeveerreeeenreerreeeeraereeseeneas 2-1
2.2 Entry Point 2 - Task Activation Processingecceveevereerereeseeseeresreseeseeens 2-1
2.3 Entry Point 3 - Task Exit PrOCESSINGcecceeeeeereerverueruesserneeessessersesssesasenens 2-1
2.4 Entry Point 4 - Allocate MEMOTYccocerererereeruivenressesaeseeresseesaessessessessasssens 2-1
2.5 Entry Point 5 - Deallocate MEMOTYccceceeererereeresaesessesseressasuessssessasaassesean 2-1
2.6 Entry Point 6 - Allocate File/DEVICEc.coeevereererrererreraerenreensessenesssersessennens 2-1
2.7 Entry Point 7 - Deallocate File/DEeViCEc.cvereererreresreneneensenseruessessssnessenee 2-3
2.8 Entry Point 8 - Get Dynamic Extended Data Spacecccceeureeuceemcucnceees 2-4
2.9 Entry Point 9 - Free Dynamic Extended Indexed Data Space 2-4
2.10 Entry Point 10 - Get Dynamic Task Execution Spaceccccecereerencrvesecunees 2-4
2.11 Entry Point 11 - Free Dynamic Task Execution Spaceccccececerrerernenene 2-4
2.12 Entry Point 12 - Share Memory With Another Taskccceceveveveeererernennes 2-5
2.13 Entry Point 13 - Get Shared Memory (INCLUDE)cccceceeeeeeneeceereecneanees 2-5
2.14 Entry Point 14 - Free Shared Memory (EXCLUDE).......ccccceceveverueeueennencess 2-6
2.15 Entry Point 15 - RESEIVED ...cuoucuircininininenneserecencnsaeneenesccesssessssssssesesensacs 2-6
2.16 Entry Point 16 - RESEIVEdccccereerererreereeenreeseneereesesseneenesessessesesneasessssessenes 2-6
2.17 Entry Point 17 - Allocate Disk File By Space Definitionc.cccecceveeereuencenes 2-6
2.18 Entry Point 18 - RESEIVEdccevururrisenmsunennscnunsessscsesessesissssesseseseesessssesseneas 2-7
2.19 Entry Point 19 - Unlock and Dequeue Shared Memoryccoceveneecueeeeene 2-7
2.20 Entry Point 20 - Deallocate Memory Due to SWappingc.cceceucevcrucnnnes 2-8
2.21 Entry Point 21 - Locate Allocated FPT/FATccccovvvvvveivvircnrccsccseccssunnnes 2-8
2.22 Entry Point 99 - SYSGEN InitialiZationcccccceeeeeeeeraesecssecsacceesuesssesssesence 2-9
3 H.ALOC Subroutines
3.1 Subroutine S.ALOC91 - Locate Shared Memory Table Entry 3-1
MPX-32 Technical Volume Il iii/iv

1 H.ALOC Overview

1.1 General Information

The Resource Allocator Module (H.ALOC) performs compatible mode services
associated with allocating and deallocating system resources.

1.2 Entry Point Summary

SVC
Entry Point Number Description
H.ALOC,1 N/A construct TSA and DQE
H.ALOC,2 N/A task activation processing
H.ALOC,3 N/A task exit processing
H.ALOC,5 N/A deallocate memory
H.ALOC,6 N/A allocate file/device
H.ALOC,7 N/A deallocate file/device
H.ALOC,8 69 get dynamic extended data space
H.ALOC,9 6A . free dynamic extended indexed data space
H.ALOC,10 67 get dynamic task execution space
H.ALOC,11 68 free dynamic task execution space
H.ALOC,12 71 share memory with another task
H.ALOC,13 72 get shared memory (INCLUDE)
H.ALOC, 14 79 free shared memory (EXCLUDE)
H.ALOC,15 N/A reserved
H.ALOC,16 N/A reserved
H.ALOC,17 N/A allocate disk file by space definition
H.ALOC,18 N/A reserved
H.ALOC,19 1F unlock and dequeue shared memory
H.ALOC,20 N/A deallocate memory due to swapping
H.ALOC,21 N/A locate allocated FPT/FAT
H.ALOC,99 N/A ~ SYSGEN initialization

N/A implies reserved for internal use by MPX-32

1.3 Subroutine Summary

Subroutine Description

S.ALOC91 locate shared memory table entry

MPX-32 Technical Volume Il 1-1/1-2

P

2

H.ALOC Entry Points

2.1

2.2

2.3

2.4

2.5

2.6

Entry Point 1 - Construct TSA and DQE
See HTAMM,2 for a detailed description of this entry point.

Entry Point 2 - Task Activation Processing
See HTAMM,3 for a detailed description of this entry-peint.

Entry Point 3 - Task Exit Processing
See H-TAMM,4 for a detailed description of this entry point.

Entry Point 4 - Allocate Memory
See HMEMM,1 for a detailed description of this entry point.

Entry Point 5 - Deallocate Memory
See HMEMM,?2 for a detailed description of this entry point.

Entry Point 6 - Allocate File/Device

This entry point converts a three word RRS entry into a multiword RRS format.

Transfer is then passed to HREMM,6.

Entry Conditions

Calling Sequence

M.CALL H.ALOC6

Registers

R1 address of 3-word RRS entry

MPX-32 Technical Volume i

2-1

Entry Point 6 - Allocate File/Device

Exit Conditions

Return Sequence

®

M.RTRN Rl
(or)

M.RTRN R1,R6R7
Registers
R1 zero if allocation was unsuccessful. Otherwise, R1 is unchanged.
cC1 set if allocation denied:

R6 contains the scan mask

R7 contains the device requirements mask
cC2 set if allocation error:

Error Condition

R6 contains an error code
R7 contains zero

Registers -
R6 contains the following: R
Value Definition

1 permanent file nonexistent

2 illegal file password specified

3 no FAT/FPT space available

4 no blocking buffer space available

5 shared memory table entry not found

6 invalid shared memory table password specified

7 dynamic common specified in ASSIGN1

8 unrecoverable I/O error to directory

9 SGO assignment specified by terminal task

10 no UT file code exists for terminal task

11 invalid RRS entry

12 LFC in ASSIGN4 nonexistent

13 assigned device not on system

14 device in use by requesting task

15 SGO or SYC assignment by real-time task

16 common memory conflicts with allocated task

17 duplicate LFC allocation attempted

2-2

H.ALOC Entry Points

Entry Point 6 - Allocate File/Device

External Reference

System Macro

M.CALL
M.RTRN

System Services

H.REMM,6
H.REXS,20
H.REXS,76

System Subroutine
S.REXS8

2.7 Entry Point 7 - Deallocate File/Device

This entry point creates the calling sequence needed by HREMM,7. Transfer is then
passed to HREMM,7.

Entry Conditions
Calling Sequence
M.CALL H.ALOC,7
Registers

RS 1- to 3-character right-justified ASCII logical file code

Exit Conditions

Return Sequence
M.RTRN

Registers
None

Error Condition

ccC1 set if unrecoverable I/O error to directdry

MPX-32 Technical Volume Ii 2-3

Entry Point 7 - Deallocate File/Device

External Reference

System Macro
M.CALL
M.RTRN
System Service
H.REMM,7

System Subroutine
S.REXS8

2.8 Entry Point 8 - Get Dynamic Extended Data Space
See M.GD in the MPX-32 Reference Manual Volume I for a detailed description of

this entry point.

2.9 Entry Point 9 - Free Dynamic Extended Indexed Data Space
See M.FD in the MPX-32 Reference Manual Volume I for a detailed description of

this entry point.

2.10 Entry Point 10 - Get Dynamic Task Execution Space
See M.GE in the MPX-32 Reference Manual Volume I for a detailed description of

this entry point.

2.11 Entry Point 11 - Free Dynamic Task Execution Space
See M.FE in the MPX-32 Reference Manual Volume I for a detailed description of

2-4

this entry point.

H.ALOC Entry Points

Entry Point 12 - Share Memory With Another Task

2.12 Entry Point 12 - Share Memory With Another Task

See M.SHARE in the MPX-32 Reference Manual Volume I for a detailed description
of this entry point.

External Reference

System Macro
M.CALL
M.RTRN
System Service
H.REMM,12

System Subroutines

S.REXS8
S.REXS9
S.ALOC91

- 2.13 Entry Point 13 - Get Shared Memory (INCLUDE)
See M.INCL in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point.
External Reference

System Macro
M.CALL
M.RTRN
System Service
H.REMM,12

System Subroutines

S.REXS8
S.REXS9

MPX-32 Technical Volume Il * 2-5

Entry Point 14 - Free Shared Memory (EXCLUDE)

2.14 Entry Point 14 - Free Shared Memory (EXCLUDE)
See M.LEXCL in the MPX-32 Reference Manual Volume I for a detailed description of
this entry point.

External Reference

System Macro

M.CALL
M.RTRN

System Service
H.REMM, 14

System Subroutine
S.REXS8

2.15 Entry Point 15 - Reserved
2.16 Entry Point 16 - Reserved

2.17 Entry Point 17 - Allocate Disk File By Space Definition

This entry point creates a multi-word RRS entry from the parameters provided by the
caller. Transfer is then passed to H.REXS,21.

Entry Conditions
Calling Sequence
M.CALL H.ALOC,17

Registers

R4 LFC (bit O set for system FAT/FPT)

RS UDT index (bit O set for blocking buffer)
R6 - sector address

R7 number of sectors

2-6 H.ALOC Entry Points

JJJJJ

Entry Point 17 - Allocate Disc File By Space Definition

Exit Conditions
Return Sequence

M.RTRN RI1,R2R3RS5

Registers

R1 UDT address

R2 FPT address

R3 FAT address

RS blocking buffer address if required
CcC1 set if no FAT/FPT space

cc2 set if no blocking buffer space

External Reference

System Macro

M.CALL
M.RTRN

System Service
H.REXS,21

System Subroutine
S.REXS8

2.18 Entry Point 18 - Reserved

2.19 Entry Point 19 - Unlock and Dequeue Shared Memory

See M.SMULK in the MPX-32 Reference Manual Volume I for a detailed description

of this entry point.

External Reference

System Macro

M.CALL
M.RTRN
M.SHUT
M.OPEN

MPX-32 Technical Volume li

2-7

Entry Point 19 - Unlock and Dequeue Shared Memory

System Service
H.REMM,24

9'; “

System Subroutine
S.ALOC9I1

2.20 Entry Point 20 - Deallocate Memory Due to Swapping
See HMEMM,11 for a detailed description of this entry point.

2.21 Entry Point 21 - Locate Allocated FPT/FAT

This subroutine locates the FPT/FAT pair associated with a given logical file code
(LFC).
Entry Conditions ,
Calling Sequence
~M.CALL H.ALOC21
Registers

RS left-justified, blank-filled (bytes 1-3), 3-ASCII character LFC (bit O set

indicates system FPT/FAT) S

Exit Conditions

Return Sequence
M.RTRN and CC1 set if LFC not found

Registers

cc1 LFC not found

R2 FPT address

R3 FAT address

RS LFC with byte O clear

External Reference

System Macro
M.RTRN

System Subroutines

S.REMM12 5,
S.REXSS L«

2-8 H.ALOC Entry Points

Entry Point 99 - SYSGEN Initialization

(,:7 2.22 Entry Point 99 - SYSGEN Initialization

This entry point is for internal use only and is called during SYSGEN. H.ALOC sets
up its entry point table, then returns to SYSGEN.

MPX-32 Technical Volume II. 2-9/2-10

3 H.ALOC Subroutines

3.1 Subroutine S.ALOC91 - Locate Shared Memory Table Entry

This subroutine is used to find the first shared memory table (SMT) entry which

contains the partition name and owner name (or task number) specified by the caller.

Entry Conditions

Calling Sequence

BL S.ALOC91
Registers

R4.RS5 owner name
(or)

R4 zero

RS task number
R6,R7 partition name

Exit Conditions

Return Sequence

TRSW RO

Registers

R1 address of matching SMT or zero if not matched
R3 destroyed

R4-R7 unchanged

MPX-32 Technical Volume II

3-1/3-2

")

{ [
N A

Blocked Data Management Module (H.BKDM)
MPX-32 Technical Manual

Volume II

Contents

1 H.BKDM Overview
1.1 General INformationcccceververiiinnienincnecncienine et
1.2 Entry Point SUMMATYcc.cocieviriinrennereseeneeeesieseeeseneseeesessnesseeseeenee
1.3 Subroutine SUMMATYccccccevrrrernerrsnerereeseeesseesrereesseesenscssessnesnans
2 H.BKDM Entry Points
2.1 Entry Point H.BKOP - Predevice Access Processing
2.2 Entry Point H.BKPX - Postdevice Access Processing
3 H.BKDM Subroutines
3.1 Subroutine S BKDMI - Initialize Blocking Buffer
3.2 Subroutine S. BKDM2 - Read Logical Blocked Record
3.3 Subroutine S.BKDM3 - Verify Blocking Buffer.............ccceceeeean.e.
3.4 Subroutine S.BKDM4 - Perform Blocked Data Positioning
3.5 Subroutine SS BKDMS - Save FCB Parameters in SPAD
3.6 Subroutine S.BKDM6 - Write Logical Blocked Record.................

3.7 Subroutine S.BKDM?7 - Advance Logical Blocked Record

3.8 Subroutine S.BKDMS - Restore FCB Parameterscccceeuvvevenne.

MPX-32 Technical Volume i

iiifiv

-
// \

1 H.BKDM Overview

1.1 General Information

The Blocked Data Management Module (H.BKDM) performs all data management
operations pertaining to blocked I/O requests.

1.2 Entry Point Summary

SVC
Entry Point Number Description
H.BKOP N/A predevice access processing
H.BKPX N/A postdevice access processing

N/A implies called only by IOCS

1.3 Subroutine Summary

Subroutine Description

S.BKDM1 initialize blocking buffer
S.BKDM2 read logical blocked record
S.BKDM3 verify blocking buffer

S.BKDM4 perform blocked data positioning
S.BKDM5 save FCB parameters in SPAD
S.BKDM6 write logical blocked record
S.BKDM7 advance logical blocked record
S.BKDM8 restore FCB parameters from SPAD

MPX-32 Technical Volume i

1-1/1-2

S

2 H.BKDM Entry Points

2.1 Entry Point H.BKOP - Predevice Access Processing

This entry point performs predevice access processing on behalf of blocked data
requests. '

Entry Conditions
Calling Sequence

BU H.BKOP
Registers
R1 FCB address

Exit Conditions

Return Sequence
M.RTRN

Registers

: (- None

2.2 Entry Point H.BKPX - Postdevice Access Processing

This entry point performs postdevice access processing related to blocked I/O
requests.

Entry Conditions

Calling Sequence

BL H.BKPX
Registers
R1 FCB address

Exit Conditions

Return Sequence

TRSW RO
Registers
(R1 FCB address
g ;

MPX-32 Technical Volume i

2-1/2-2

C

3 H.BKDM Subroutines

3.1 Subroutine S.BKDM1 - Initialize Blocking Buffer

This routine is used to initialize a blocking buffer.

Entry Conditions

Calling Sequence

BL S.BKDM1
Registers
R1 FCB address

Exit Conditions

Return Sequence

TRSW RO
Registers

R2 FAT address
R3,R4 destroyed

3.2 Subroutine S.BKDM2 - Read Logical Blocked Record

This routine performs a read of a logical blocked record. For example, it transfers a

logical blocked record from a blocking buffer to a user’s data area.

Entry Conditions

Calling Sequence

BL S.BKDM2
Registers
R1 FCB address

MPX-32 Technical Volume 1l

Subroutine S.BKDM2 - Read Logical Blocked Record

Exit Conditions {;
Return Sequence ‘ »
TRSW RO
Registers
R1 FCB address
R2-R7 destroyed
3.3 Subroutine S.BKDM3 - Verify Blocking Buffer
This routine is used to verify that the blocking buffer contains valid control
information.
Entry Conditions
Calling Sequence
BL S.BKDM3
Registers
R3 address of the buffer P
s

Exit Conditions
Return Sequence
TRSW RO
Registers

R2R4-R6 destroyed
R3 address of the buffer

3.4 Subroutine S.BKDM4 - Perform Blocked Data Positioning
This routine performs blocked data positioning for the I/O.

Entry Conditions
Calling Sequence
BL S.BKDM4

Registers

R1 FCB address C

3-2 H.BKDM Subroutines

C

Subroutine S.BKDM4 - Perform Blocked Data Positioning

Exit Conditions

Return Sequence

TRSW RO
Registers

R1 FCB address
R2-R7 destroyed

3.5 Subroutine S.BKDMS5 - Save FCB Parameters in SPAD

This routine saves original FCB parameters and inserts new FCB parameters prior to

physical 1/O operations performed on behalf of a user who requested blocked I/O
operations.

Entry Conditions

Calling Sequence

BL S.BKDMS5

Registers

R1 FCB address

R3 blocking buffer address
R7 special status byte

Spad Cells Used:
1,2,3

Exit Conditions

Return Sequence

TRSW RO

Registers

R2 address of saved parameters
R4-R6 destroyed

3.6 Subroutine S.BKDMS6 - Write Logical Blocked Record

This routine performs a write of a logical blocked record. For example, it transfers a

logical blocked record from the user’s data area to a blocking buffer.

MPX-32 Technical Volume I

Subrodtine S.BKDME6 - Write Logical Blocked Record

Entry Conditions O

Calling Sequence

BL S.BKDM6
Registers
R1 FCB address

Exit Conditions

Return Sequence

TRSW RO
Registers

R1 FCB address
R2-R7 destroyed

3.7 Subroutine S.BKDM7 - Advance Logical Blocked Record

This routine performs an advance logical blocked record; no transfer is required, only
next read/write address is updated.

Entry Conditions

Calling Sequence

BL S.BKDM7

Registers

R1 FCB address

R2 current logical record
R3 blocking buffer address

Exit Conditions

Return Sequence

TRSW RO
Registers

R1 FCB address
R6 destroyed

3-4 H.BKDM Subroutines

Subroutine S.BKDMS8 - Restore FCB Parameters

(3.8 Subroutine S.BKDM8 - Restore FCB Parameters

This routine restores original FCB parameters*from the scratchpad subsequent to
physical operations performed on behalf of a user who requested blocked I/O
operations. -

Entry Conditions
Calling Sequence —

BL S.BKDMS8
Registers
R1 FCB address

Exit Conditions

Return Sequence

TRSW RO

Registers
e R2 address of saved parameters
(R4R6 destroyed

¢

MPX-32 Technical Volume Ii 3-5/3-6

Executive Module (H.LEXEC)
MPX-32 Technical Manual
Volume II

O

C

Contents

Page
1 H.EXEC Overview
1.1 General INfOIMAtioNcccevieumserscsecncnneisunseisessscssesssscessseenssnsesssnsssassssnnsnssace 1-1
1.2 Entry Point SUMMATYccccccrreneereecseesnneessesuesseessesaessasssesseessesssesssssassssassacs 1-1
1.3 Subroutine SUMMATYccccceeverreereecrenreenresseessessesssessessasssesseessesssessesssesssassas 1-2
2 H.EXEC Entry Points
2.1 Entry Point 1 - Interactive Input Startingccccecerereerecrereeseereeressessesessenes 2-1
2.2 Entry Point 2 - Terminal Qutput Startingcccceeceevereeveeneeersesseraeseeserseseenes 2-1
2.3 Entry Point 3 - Wait I/O Startingccceeeeeerereereenereressessesessessesasssssesseseenes 2-2
2.4 Entry Point 4 - No-Wait I/O Startingcccecereeeereressensraraereresseseesessssssssassens 2-2
2.5 Entry Point 5 - Wait for Any No-Wait Operation Completec.ccoeeurueee. 2-3
2.6 Entry Point 6 - Wait for MemOTy POOIcccccevrueeeerrecnensenecneseeeeesnsseesesees 2-4
2.7 Entry Point 7 - Memory Request Processing Completeccccceeueeevecvenenne. 2-4
2.8 Entry Point 8 - Wait for Memory Scheduler Eventocceeeeereevereervennn. 2-5
2.9 Entry Point 9 - Report Memory Scheduler Eventc.coceveveeererervenereenennen 2-6
2.10 Entry Point 10 - Report Memory Pool Availablecccoceeeeerrrveererrecranennen 2-6
2.11 Entry Point 11 - Completion of Unswappable /O Requestc.cceeuneee. 2-7
2.12 Entry Point 12 - No-Wait I/O Postprocessing Completeccccoceuereeeeuceee 2-7
2.13 Entry Point 13 - Wait for Peripheral RESOUICEcccceeeeveecrureccnueneucccrcecenans 2-8
2.14 Entry Point 14 - Wait for Disk File Spaceccccceeeveereevenerereeserrcesenersceecees 2-9
2.15 Entry Point 15 - Report Peripheral Resource Availableocoveueevenince 2-10
2.16 Entry Point 16 - Report Disk File Space Availablecccccceeeveceuererunncenee 2-11
2.18 Entry Point 17 - RESEIVEAc.coeereeeerereeceseeeeneentensenesssneesessessssessassesesnsens 2-11
2.18 Entry Point 18 - RESEIVEQcccceeriececreenrecrenreeseessensaessacnssssesasesenessessssassnnnes 2-11
2.19 Entry Point 19 - Resume Execution of Specified Taskcc.ceeuerreereensenns 2-11
2.20 Entry Point 20 - Suspend Execution of Current Taskcccccevuevvruvernnnnce. 2-12
2.21 Entry Point 21 - Suspend Execution of Specified Taskceceevivverennnee. 2-13
2.22 Entry Point 22 - Go to Specified Task Context (AIDDB)cccueuueeeee. 2-13
2.23 Entry Point 23 - Run User Break Receiver (AIDDB)ccccocvevuvvvincnnnne. 2-14
2.24 Entry Point 24 - RESEIVEQccevirveererversenrucesenesressessesscssissessssnesnessessesenns 2-15
2.25 Entry Point 25 - Wait for Any No-Wait Operation Complete 2-15
2.26 Entry Point 26 - Continue Specified Taskccceevuvuecrreenenrnierenrenenennenns 2-16
2.27 Entry Point 27 - General ENQUEUEccccvvereerennireenenrnteneeieseeeeeeeeseeeeeee 2-16
2.28 Entry Point 28 - Report Run Request Postprocessing Complete 2-17
MPX-32 Technical Volume Il iii

Contents

iv

Page
2.29 Entry Point 29 - Report Wait Mode Run Request Startingccccceeeveeene 2-18
2.30 Entry Point 30 - Enable AIDDB Mode Breakcccooeeveeeereecnneesueceesuenens 2-18
2.31 Entry Point 31 - Hold Current Taskcccceeveererreeceeseecseesaessessneeseesassssnans 2-19
2.32 Entry Point 32 - Hold Specified Taskccecerersusersunsenrscussnceesassensecassaeasnens 2-19
2.33 Entry Point 33 - Disable AIDDB Mode Breakcccceeeeeereecrveessaeccneccsaeen 2-20
2.34 Entry Point 34 - Report No-Wait Message Postprocessing Complete 2-21
2.35 Entry Point 35 - Report Wait Mode Message Startingcccceeeerveenennens 2-21
2.36 Entry Point 36 - General DEQUEUEcccceereererrccsosessassserassasenssssssnssesssosence 2-22
2.37 Entry Point 37 - Wait for Memory Availablecccceeereererenececeeccnearene 2-22
2.38 Entry Point 38 - Inhibit Asynchronous Abort/Deleteccccoeeeeeenenecvences 2-24
2.39 Entry Point 39 - Allow Asynchronous Abort/Deleteccccereeevervecuennenes 2-24
2.40 Entry Point 40 - End ACHON Witcccevueecerreeseenueseensesseraessensensessessessassnees 2-25
2.41 Entry Point 41 - Get USEr CONLEXLcccueevreeerreerreeerreesreeraesssessnessseessnsesssees 2-25
2.42 Entry Point 42 - Put User Context......... teveeresntesaesneeserereesaesstesessaseassnsesaees 2-25
2.43 Entry Point 43 - Reserved for Symbolic Debugger/X32cccocevevevveenenen. 2-25
H.EXEC Subroutines
3.1 Subroutine S.EXECI] - Interactive Input Completec.ccceereererverrerueeerenns 3-1
3.2 Subroutine S.EXEC2 - Terminal Output Completecccerererreeerrrrnereerene 3-1
3.3 Subroutine S.EXEC3 - Wait I/O COmpIEtecccouererireerecercrcrveruesesensesnnsens 3-2
3.4 Subroutine S.EXEC4 - No-Wait /O Completecccecereerereerercenuercecesaceneene 3-2
3.5 Subroutine S.EXEC4A - No Wait /O Complete (No Postprocessing) 3-3
3.6 Subroutine S.EXECS - Exit from INtEITuptc.coceverevercrieseresvnecnesncrenseunnens 3-4
3.7 Subroutine SEXECSA - Exit from Trap Handler w1th AbOTt .cceceeeveceennnneee 3-4
3.8 Subroutine S.EXEC6 - No-Wait /O Postprocessing Complete 3-5
3.9 Subroutine S.EXEC7 - Report Memory Pool Availablecoceveeererenncnnee 3-5
3.10 Subroutine S.EXECS - Link Entry to Queue by Priorityc.cecceueeuecucnnnn. 3-6.
3.11 Subroutine SEXECY - Unlink Entry from QUEUEc.ccceereuevvecuecrecercncacnne 3-7
3.12 Subroutine S.EXEC10 - Link Entry to Bottom of Queue..........ccccouerrucucee 3-7
3.13 Subroutine S.EXEC11 - Link Entry to Top of Queuec.cccoverereevciunucncenes 3-8
3.14 Subroutine S.EXEC12 - Report Memory Scheduler Event 3-10
3.15 Subroutine S.EXEC13 - Break Specified Taskccoceevvreeviernruerennerennennas 3-10
3.16 Subroutine S.EXEC14 - Resume Specified Taskccccecevereruenresnnrecnennnne 3-11
3.17 Subroutine SEXEC20 - CPU Schedulerccoeverernneircrnerneseesrersennnene 3-12
3.18 Subroutine S.EXEC21 - Process Task Interruptceceeeeermenrerrecennenenne 3-17
3.19 Subroutine S.EXEC23 - Unlink Messages in Receiver Queue................... 3-18
3.20 Subroutine S.EEXEC24 - RESETVEQcoverrurrurnrenrisrersresrernesenssessenassessssecsneencs 3-18
Contents

A

Contents

3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
341
3.42
3.43
3.44
3.45
3.46
3.47

Page
Subroutine S.EXEC2S5 - Terminate Next Run in Queueccccevueeeeenenene. 3-18
Subroutine S.EXEC27 - Transfer Control to Abort Receiver 3-19
Subroutine S.EEXEC30 - ReSEIVEdccccevueeueereeneicreesneseneseesseesnneseesesnesseens 3-19
Subroutine S.EXEC31 - No-Wait Run Requestcccceeeevereceecsiranencueannane 3-19
Subroutine SEEXEC34 - Reservedcccoooerenrencecccnrceeseceianenecseneecnenene 3-20
Subroutine S.EXEC35 - Report No-Wait PoStprocessingc.ccceeeeveeceneene 3-20
Subroutine S.EEXEC40 - ReSEIVEdcucveveeveerseicenrenrerntirneersessaeessessesssenns 3-20
Subroutine S.EXEC41 - Exit Run RecCeiverccceueveevteneerencnensnenreennenne 3-21
Subroutine S.EXEC42 - Exit Message RECEIVETcceververreereernenveeseneenaenes 3-21
Subroutine S.EXEC44 - Change Priority of Current Taskccceveueee.. 3-22
Subroutine S.EXEC46 - ReSEIVedccccveeeerenercenenerseeecseseeseesessesseessenses 3-22
Subroutine S.EXECA47 - RESEIVEDccceeerrrrerenrerenenanreniesessssesassesessesssesenens 3-22
Subroutine S.EXECSS5 - Link Task to Ready to Run Listc.cccceceveruenne. 3-23
Subroutine S.EXEC56 - Resume Memory Schedulercccceeveeeeccancnen. 3-24
Subroutine S.EXECS57 - Link Task to Ready List by Priority 3-24
Subroutine S.EXECS9 - ReSETVEQcceevenecereeeserrceennsacanssesnneneencsenseeseonens 3-25
Subroutine S.EXEC61 - Transfer Parameters from MRRQccc........ 3-25
Subroutine S.EXEC62 - Validate RXBccccceeeerecneeneen. erereererereentetanresns 3-26
Subroutine S.EXEC68 - Construct and Vector Contextcceeeeeeereeneneen 3-26
Subroutine S.EXEC69 - Postprocessing Merge Pointccceceeeeeeenveenennes 3-27
Subroutine S.EXEC72 - Report Wait /O Startingccceceeeeeeececevrcenenes 3-28
Subroutine S.EXEC75 - Situational Priority Increment.......c.ccccccvervreeennnne 3-28
Subroutine S.EXECT77 - RESEIVEccceeerrererrerrerrecrenessessessaesnesssssessassaeses 3-29
Subroutine S.EXEC79 - Push Current Context onto Stackccccceueueeue. 3-29
Subroutine S.EXEC80 - Start IPU and Verifyccceeeeerererrannns reverereaeenes 3-30
Subroutine S.EXEC81 - Enter Debugger Entry Point Fourc.c...... 3-30
Subroutine S.EXEC82 - Push Calling Task onto the Stackccccuu..... 3-31

MPX-32 Technical Volume Il v

List of Figures @

Figure Page
3-1 S.EXEC20 Path ONecuuceicrisinmsuerencssisisessssissssssssessssssssssssssssssssssasssssns 3-13
3-2 S.EXEC20 Path TWO and FiVeccceeeererirscicriressesessesnssesesnssisaesessscsssaens 3-14
3-3 S.EXEC20 Path THICEccccvvnininrnrinnnnssnsesissisismsessesessssssssesssesssassesssssncas 3-15
3-4 S.EXEC20 Path FOUTccoceverenriernecesrismsineseisesusscnssssessisssssssssscssesesssesas 3-16
;‘\wﬂfi :
Contents

vi

1 H.EXEC Overview

1.1 General Information

The Executive Module (H.EXEC) performs as a CPU scheduler, by allocating the
CPU and IPU to tasks. The information listed in H.EXEC for entry points and
subroutines applies to EXEC, as well as EXEC2 and EXEC3.

1.2 Entry Point Summary

SvC
Entry Point Number Description
H.EXEC,1 N/A interactive input starting
H.EXEC,2 N/A terminal output starting
H.EXEC,3 N/A wait I/O starting
H.EXEC.,4 N/A no-wait I/O starting
H.EXEC,S N/A wait for any no-wait operation complete
H.EXEC,6 N/A wait for memory pool
H.EXEC,7 N/A memory request processing complete
H.EXEC,8 N/A wait for memory scheduler event
H.EXEC,9 N/A report memory scheduler event
H.EXEC,10 N/A report memory pool available
H.EXEC,11 N/A completion of unswappable I/O request
H.EXEC,12 N/A no-wait I/O postprocessing complete
H.EXEC,13 N/A wait for peripheral resource
H.EXEC,14 N/A wait for disk file space
H.EXEC,15 N/A report peripheral resource available
H.EXEC,16 N/A report disk file space available
H.EXEC,17 N/A reserved
H.EXEC,18 N/A reserved
H.EXEC,19 N/A resume execution of specified task
H.EXEC,20 N/A suspend execution of current task
H.EXEC,21 N/A suspend execution of specified task
H.EXEC,22 N/A go to specified task context (AIDDB)
H.EXEC,23 N/A run user break receiver (AIDDB)
H.EXEC,24 N/A reserved (AIDDB)
H.EXEC,25 N/A wait for any no-wait operation complete, message

interrupt or break interrupt

H.EXEC,26 N/A continue specified task
H.EXEC,27 N/A general enqueue
H.EXEC,28 N/A report run request postprocessing complete
H.EXEC,29 N/A report wait mode run request starting
H.EXEC,30 N/A . enable AIDDB mode break
H.EXEC,31 N/A hold current task
H.EXEC,32 N/A hold specified task
H.EXEC,33 N/A disable AIDDB mode break
H.EXEC,34 N/A report no-wait message postprocessing complete
H.EXEC,35 N/A report wait mode message starting
H.EXEC,36 N/A general dequeue

MPX-32 Technical Volume I

1-1

Entry Point Summary

SvC Y
Entry Point number Description (J
H.EXEC,37 N/A wait for memory available
H.EXEC,38 N/A inhibit asynchronous abort/delete
H.EXEC,39 N/A allow asynchronous abort/delete
H.EXEC,40 1D*** end action wait
H.EXEC,41 TO*** get user context
H.EXEC,42 T 1Rk put user context
H.EXEC,43 N/A reserved for Symbolic Debugger/X32

*** This service is SVC 2,X’nn’ callable.

N/A implies reserved for internal use by MPX-32. s

1.3 Subroutine Summary

Subroutine Description

S.EXEC1 interactive input complete

S.EXEC2 terminal output complete

S.EXEC3 wait I/O complete

S.EXEC4 no-wait /O complete

S.EXEC4A no-wait /O complete (no postprocessing)

S.EXECS exit from interrupt

S.EXECSA exit from trap handler with abort P
S.EXEC6 no-wait I/O postprocessing complete -
S.EXEC7 report memory pool available —
S.EXEC8 link entry to queue by priority

S.EXEC9 unlink entry from queue

S.EXEC10 link entry to bottom of queue

S.EXEC11 link entry to top of queue

S.EXEC12 report memory scheduler event

S.EXEC13 break specified task

S.EXEC14 resume specified task

S.EXEC20 CPU scheduler

S.EXEC21 process task interrupt

S.EXEC23 terminate messages in receiver queue

S.EXEC24 reserved

S.EXEC25 terminate next run request in receiver queue
S.EXEC27 transfer control to abort receiver

S.EXEC30 reserved

S.EXEC31 report no-wait run request postprocessing complete
S.EXEC34 reserved

S.EXEC35 report no-wait mode message postprocessing complete
S.EXEC40 reserved

S.EXECA41 exit run receiver

S.EXEC42 exit message receiver

S.EXEC44 change priority level of current task

H.EXEC Overview

Subroutine Summary

Subroutine Description

S.EXEC46 reserved

S.EXEC47 reserved

S.EXECSS unlink task from designated list and link to ready list
S.EXECS56 resume memory scheduler

S.EXECS7 link task to ready list by priority

S.EXECS59 reserved

S.EXEC61 transfer parameters from MRRQ to receiver buffer
S.EXEC62 validate RXB

S.EXEC68 construct and vector context to end action PSD
S.EXEC69 common no-wait postprocessing merge point
S.EXEC72 report wait I/O starting

S.EXEC75 situational priority increment

S.EXEC77 reserved _

S.EXEC79 push current context onto stack for deferred EA pull
S.EXECS80 start IPU and verify

S.EXECS81 enter base mode debugger entry point four
S.EXECS82 push calling task context onto the stack

MPX-32 Technical Volume li

1-3/1-4

2 H.EXEC Entry Points

2.1 Entry Point 1 - Interactive Input Starting

This entry point is called to report the beginning of processing for an interactive input
request made by the currently executing task. The task is removed from the
associated ready-to-run list, and placed in the wait for interactive input list. A return
to the calling routine is made when the input request completes.

Entry Conditions

Calling Sequence

M.SHUT
UEI
M.CALL H.EXEC,1

Registers

RO,Bit 0 one indicates task is swappable during input processing

Exit Conditions

Return Sequence
CPU scheduler (when /O complete, with M.OPEN status)

Registers

None

2.2 Entry Point 2 - Terminal Output Starting

This entry point is called to report the beginning of processing for a terminal output
request made by the currently executing task. The task is removed from the
associated ready-to-run list, and placed in the wait for terminal output list. A return to
the calling routine is made when the output request completes.

Entry Conditions

Calling Sequence

M.SHUT
UEI
M.CALL H.EXEC,2

Registers

RO,Bit 0 one indicates task is swappable during output processing

MPX-32 Technical Volume Il 2-1

Entry Point 2 - Terminal Output Starting

Exit Conditions » £

Return Sequence
CPU scheduler (when VO complete, with M.OPEN status)

Registers

None

2.3 Entry Point 3 - Wait I/O Starting

This entry point is called to report the beginning of processing for a wait I/O request
made by the currently executing task. The task is removed from the associated
ready-to-run list, and placed in the wait for /O list. A return to the calling routine is
made when the I/O request completes.

Entry Conditions

Calling Sequence

M.SHUT
UEI
M.CALL H.EXEC,3

Registers

RO,Bit 0 one indicates task is swappable during IO processing

Exit Conditions

Return Sequence
CPU scheduler (when /O complete, with M.OPEN status)

Registers
None

2.4 Entry Point 4 - No-Wait I/O Starting

This entry point is called to report the beginning of processing for a no-wait /'O
request made by the currently executing task. A return to the calling routine is made
after recording the no-wait I/O start event.

2-2 H.EXEC Entry Points

Entry Point 4 - No-Wait I/O Starting

(Entry Conditions

Calling Sequence

M.SHUT
UEI
M.CALL H.EXEC,4

Registers

RO,Bit 0 one indicates task is swappable during I/O processing

Exit Conditions

Return Sequence

M.OPEN
M.RTRN

Registers
None

2.5 Entry Point 5 - Wait for Any No-Wait Operation Complete

This entry point is functionally identical to H.EXEC,25 except that it does not check
4 for outstanding message or break interrupt requests before placing a task on the
(ANYW queue. All queued end action requests are processed before a return is made
to the calling routine. This entry point is used by IOCS when waiting for a particular
no-wait I/O request to complete. .

Entry Conditions

Calling Sequence
M.CALL H.EXEC,5

Registers
R6 zero if indefinite wait; otherwise, this register contains the negative
number of timer units for timed wait
Exit Conditions

Return Sequence
M.RTRN

Registers
None

MPX-32 Technical Volume Il 2-3

Entry Point 6 - Wait for Memory Pool

2.6 Entry Point 6 - Wait for Memory Pool

This entry point is called when the required mgmory pool space is not available. The
currently executing task is removed from the associated ready-to-run list, and placed
in the wait for memory pool list. A return to the calling routine is made when any
memory pool space is deallocated. The calling routine can then make another attempt
to allocate the required memory pool space.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,6

Registers
None

Exit Conditions

Return Sequence
CPU scheduler
Registers

None

2.7 Entry Point 7 - Memory Request Processing Complete

This entry point is called by the memory scheduler when processing for a memory
request is complete. The DQE associated with the memory request will have been
unlinked from the memory request queue by the memory scheduler. The completed
memory request is processed by H.EXEC,7 according to request type. (The DQE
contains the request type information.) The task is then linked into the appropriate
ready-to-run list. A return to the memory scheduler is made by issuing a M.RTRN.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,7

Registers
R2 DQE address

2-4 H.EXEC Entry Points

C

Entry Point 7 - Memory Request Processing Complete

Exit Conditions

Return Sequence
M.RTRN

Registers

None

2.8 Entry Point 8 - Waitfor Memory Scheduler Event

This entry point is called by the memory scheduler when either no additional
processing of outstanding memory requests is possible, or the memory request list is
empty. C.RRUN is examined. If C.RRUN is not equal to zero, and the memory
request queue is not empty, the memory scheduler will be reexecuted. Otherwise, the
memory scheduler will be removed from the ready-to-run list and placed in the wait
for memory event list. A return to the memory scheduler occurs when:

® a new memory request is queued, or

* the memory request queue is not empty and the status of allocated memory changes
such that it either is deallocated or becomes more eligible for swapping.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,8

Registers

None

Exit Conditions

Return Sequence
CPU scheduler

Registers
None

MPX-32 Technical Volume Il 2-5

Entry Point 9 - Report Memory Scheduler Event

2.9 Entry Point 9 - Report Memory Scheduler Event @

This entry point is called when the status of allocated memory changes (it is either
deallocated, or becomes more eligible for swapping). This routine insures the
appropriate execution of the memory scheduler task. If the memory-request list is
empty, no additional processing is required and a return is made to the user. If the
memory-request list is not empty, C.RRUN is incremented, and the memory scheduler
state is checked. If the memory scheduler is in the wait for memory event list, it is
removed from that list, and placed in the ready-to-run list at the priority of the highest
priority entry in the memory-request list. A return is then made to the calling routine.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,9

Registers
None

Exit Conditions

Return Sequence

M.RTRN N

SN
Registers NS
None

2.10 Entry Point 10 - Report Memory Pool Available

This entry point is called when memory pool space is deallocated. This routine
resumes the execution of all tasks in the wait for memory pool list. If the wait for
memory pool list is empty, no additional processing is required and a return is made
to the calling routine. Otherwise, each entry in the list is removed and placed in its
associated ready-to-run list. It is expected that when these tasks resume execution,
they will reissue the request for the required memory pool space. When all entries
have been flushed from the wait for memory pool list, a return is made to the calling
routine.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,10

Registers
None

2-6 ‘ H.EXEC Entry Points

Entry Point 10 - Report Memory Pool Available

Exit Conditions

Return Sequence
M.RTRN

Rt}

Registers
None

2.11 Entry Point 11 - Completion of Unswappable /O Request
This entry point is called by the IOCS post-transfer processing logic, executing on
behalf of the current task. The count of unswappable I/O transfers in the DQE is

decremented. If no other swap inhibit reasons exist, a call is made to HLEXEC,9 to
report the memory schedulér event. A return is then made to the calling routine.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,11

Registers
None
Exit Conditions

Return Sequence
M.RTRN

Registers
None

2.12 Entry Point 12 - No-Wait I/0 Postprocessing Complete

This entry point is called by the IOCS no-wait I/O postprocessing logic to exit from
the task interrupt state. The entry point clears the task interrupt processing lock, and

returns to the point of task interrupt. It discards the most recent level of pushdown
the TSA stack, then issues an M.RTRN to return to the point of task interrupt.
Entry Conditions

Calling Sequence
M.CALL H.EXEC,12

Registers
None

MPX-32 Technical Volume Il

in

Entry Point 12 - No-Wait /O Postprocessing Complete

Exit Conditions
Return Sequence

M.RTRN

Registers
None

2.13 Entry Point 13 - Wait for Peripheral Resource

This entry point is called when the required peripheral resource is not available. The
currently executing task is removed from the associated ready-to-run list and placed in
the wait for peripheral resource list. A return to the calling routine is made when the
specified peripheral is deallocated by its current user. The calling routine may then
make another attempt to allocate the device.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,13

Registers
R6 peripheral requirements specification:
Bits Definition
0-7 reserved
8-15 device type code
16-23 channel address
24-31 subchannel address
R7 requirements mask:
Value Definition

X’00FF0000° any device of this device type code

X’00FFFFO0’ any device of the specified type code,
on the specified channel

X’00FFFFFF’ the specific device described
by this type code, channel address, and
subchannel address

2-8 H.EXEC Entry Points

Entry Point 13 - Wait for Peripheral Resource

Exit Conditions

Return Sequence
CPU scheduler

Registers
None

2.14 Entry Point 14 - Wait for Disk File Space

This entry point is called when the required disc file space is not available. The

currently executing task is removed from the associated ready-to-run list, and placed

in the wait for disk list. A return to the calling routine is made when any disk file

space is deallocated. The calling routine may then make another attempt to allocate

the required disk file space.

Entry Conditions
Calling Sequence
M.CALL H.EXEC,14

Registers
R6 disk device requirements specification:
Bits Definition
0-7 reserved
8-15 device type code
16-23 channel address
24-31 subchannel address
R7 disk device requirements mask:
Value Definition
X’00000000° any disk
X’00FF0000’ any disk of the specified type code
X’00FFFF00’ any disk of the specified type code
on the specified channel
X’00FFFFFF’ the specific disk device described

MPX-32 Technical Volume li

by this type code, channel address, and
sub-channel address

2-9

-~ Entry Point 14 - Wait for Disk File Space

Exit Conditions

Return Sequence
CPU scheduler
Registers

None

2.15 Entry Point 15 - Report Peripheral Resource Available

This entry point is called when a peripheral device is deallocated. This routine
resumes the execution of the tasks in the wait for peripheral resource list, which have
specified requirements that will be satisfied by the deallocated device. If no such
tasks exist, no additional processing is required and a return is made to the calling
routine. Otherwise, each such entry in the list is removed and placed in its associated
ready-to-run list. When these tasks resume execution, they are expected to reissue the
request for the required device. When all appropriate entries have been flushed from
the wait for peripheral resource list, a return is made to the calling routine.

Entry Conditions
Calling Sequence

M.CALL H.EXEC,15

Registers

R6 peripheral resource:
Bits Definition
0-7 reserved
8-15 device type code
16-23 channel address
24-31 subchannel address

Exit Conditions

Return Sequence
M.RTRN

Registers

None

2-10

H.EXEC Entry Points

O

C

Entry Point 16 - Report Disk File Space Available

2.16 Entry Point 16 - Report Disk File Space Available

This entry point is called when disk space is deallocated. This routine resumes the
execution of the tasks in the wait for disc list which have specified requirements that
may be satisfied by the deallocated disk file space. If no such tasks exist, no
additional processing is required and a return is made to the calling routine.
Otherwise, each such entry in the list is removed and placed in its associated ready-
to-run list. 'When these tasks resume execution, they are expected to reissue the
request for the required space. When all appropriate entries have been flushed from
the list, a return is made to the calling routine.

Entry Conditions
Calling Sequence

M.CALL H.EXEC,16

Registers

R6 disk device resource:
Bits Definition
0-7 reserved
8-15 device type code
16-23 channel address
24-31 subchannel address

Exit Conditions

Return Sequence
M.RTRN

Registers
None

2.17 Entry Point 17 - Reserved

2.18 Entry Point 18 - Reserved

2.19 Entry Point 19 - Resume Execution of Specified Task

This entry point is called to resume execution of the specified task. This routine calls
S.EXEC14 to accomplish the resume function. A return is then made to the calling

routine.

MPX-32 Technical Volume i

2-11

Entry Point 19 - Resume Execution of Specified Task

Entry Conditions

@

Calling Sequence
M.CALL H.EXEC,19

Registers
R2 DQE address of task to be resumed

Exit Conditions

Return Sequence
M.RTRN «

Registers
None

2.20 Entry Point 20 - Suspend Execution of Current Task

This entry point is called to suspend execution of the current task, either for an
indefinite period, or for the specified number of time units. The specified time (if any)
is stored as a one-shot timer in the DQE along with a resume-program timer function
code. S.EXECIS is then called to suspend execution of the current task. A return is
not made until the timer expires or until the task is resumed.

\LW/ .

Entry Conditions

Calling Sequence

M.CALL H.EXEC,20

Registers

R6 zero if indefinite suspend; otherwise, this register contains the negative

number of timer units for timed suspend

Exit Conditions

Return Sequence

M.RTRN (on time-out or resume)

Registers

None

2-12 H.EXEC Entry Points

Entry Point 21 - Suspend Execution of Specified Task

2.21 Entry Point 21 - Suspend Execution of Specified Task

This entry point is called to suspend execution of the specified task, either for an
indefinite period or for the specified number of time units. The specified time (if any)
is stored as a one-shot timer in the DQE of the specified task, along with a resume-
program timer function code. S.EXEC16 is then called to suspend execution of the
specified task. A return is then made to the calling routine.

Entry Conditions

Calling Sequence -
M.CALL H.EXEC,21

Registers
R2 DQE of task to be suspended
R6 zero if indefinite suspend; otherwise, this register contains the negative
number of timer units for timed suspend
Exit Conditions

Return Sequence
M.RTRN

Registers

None

2.22 Entry Point 22 - Go to Specified Task Context (AIDDB)

This entry point is called by AIDDB to either begin or continue processing of the task
being debugged. The execution context (registers and PSD) are contained in a
parameter block associated with the call. The AIDDB mode is reset and control is
passed to the specified user context, by pushing the context onto the TSA stack and
invoking the CPU scheduler.

MPX-32 Technical Volume |l 2-13

Entry Point 22 - Go to Specified Task Context (AIDDB)

Entry Conditions

Calling Sequence
M.CALL H.EXEC,22

)

Registers
R1 address of context block where:
Word Contents
67 RO-7
8-9 PSD

The context block must be word bounded.

Exit Conditions

Return Sequence

Control will be passed to the specified context. AIDDB will not be re-entered until a
trap, break, or abort is encountered.

.2.23 Entry Point 23 - Run User Break Receiver (AIDDB)

This entry point is called by AIDDB to initiate execution of the user break receiver.

The contents of T.CONTXT are pushed onto the TSA stack. The AIDDB mode is

reset. The user break request flag is set, and control is passed to the CPU scheduler.
Entry Conditions

Calling Sequence
M.CALL H.EXEC,23

Registers

None

Exit Conditions

Return Sequence

Control will be passed to the user break receiver by the CPU scheduler. AIDDB will
not be re-entered until a trap, break, break exit, or abort is encountered.

2-14 . H.EXEC Entry Points

Entry Point 24 - Reserved

2.24 Entry Point 24 - Reserved

2.25 Entry Point 25 - Wait for Any No-Wait Operation Complete

This entry point is called to place the current task in a wait state, waiting for the
completion of any no-wait mode I/O request, no-wait mode message request, no-wait
mode run request, or the receipt of a message or break interrupt. The wait state can be
either indefinite in length or can have an associated time-out value. A return is not
made until one of the wait conditions is satisfied, or until expiration of the time-out
value.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,25

Registers
R6 zero if indefinite suspend; otherwise, this register contains the negative
number of timer units for timed suspend
Exit Conditions

Return Sequence

M.RTRN (on time-out or satisfaction of wait condition)

Registers
None

MPX-32 Technical Volume Il 2-15

Entry Point 26 - Continue Specified Task

2.26 Entry Point 26 - Continue Specified Task

This entry point is called to continue a task that is in the hold state. The DQE of the
specified task is unlinked from the hold-state queue and linked to the ready-to-run
queue.

Note: If the task is not in the hold state, the hold request flag in the DQE is reset.
A return to the calling routine is then made.

Entry Conditions

Calling Sequence
M.RTRN

Registers
R1 DQE address of task to be continued

Exit Conditions

Return Sequence
M.RTRN

Registers
None

2.27 Entry Point 27 - General Enqueue

This entry point is called to place the current task in the general wait queue
(C.SWGQ). The task remains on the general wait queue until either the optional timer
expires, or a corresponding general dequeue call (to HEEXEC,36) is made.

2-16 H.EXEC Entry Points

Entry Point 27 - General Enqueue

Entry Conditions

Calling Sequence
M.CALL H.EXEC,27

Registers
R4 zero if indefinite wait, otherwise contains negative number of timer
units for timed wait.
RS
Bits Definition
0 zero if normal (priority independent)
swapping (an outswapped task may be a
higher priority than an inswapped task);
one if the task is to be swapped
only by a higher priority task
1-23 unused
24-31 function code (0-255). See DQE.GQFN.
R6,R7 enqueue ID

Exit Conditions

Return Sequence

M.RTRN (on timer expiration or dequeue call with corresponding function code and
ID - with M.OPEN in effect)

Note: Swap on priority restriction removed before M.RTRN.

Registers

R3 zero if wait state terminated by corresponding dequeue call, one if
wait state time-out

2.28 Entry Point 28 - Report Run Request Postprocessing
Complete

This entry point is called by the run-request postprocessing logic to exit from the end
action interrupt state. Its purpose is to clear the task interrupt processing lock, and to
return to the point of task interrupt. It discards one level of pushdown in the TSA
stack. A M.RTRN will then be issued to return to the point of task interrupt or the
point following the M. ANYW call.

MPX-32 Technical Volume Il , 2-17

A3

Entry Point 28 - Report Run Request Postprocessing Complete

Entry Conditions

Calling Sequence
M.CALL H.EXEC,28
Registers

None

Exit Conditions

Return Sequence
M.RTRN

Registers

None

2.29 Entry Point 29 - Report Wait Mode Run Request Starting

This entry point is called to report the beginning of processing for a wait mode run
request issued by the currently executing task. The task is removed from the
associated ready-to-run list, and placed in the wait for run complete list. A return to
the calling routine is made upon completion of the run request by the destination task.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,29

Registers

None

Exit Conditions

2.30 Entry Point 30 - Enable AIDDB Mode Break

2-18

Return Sequence
CPU scheduler (when run request complete)

Registers

None

This entry point is called by the AIDDB program to allow a break while the task is in
AIDDB mode. It is used in conjunction with H.EXEC,33 (Disable AIDDB Mode

Break).

H.EXEC Entry Points

®

; (/"‘“*\

R

| Entry Point 30 - Enable AIDDB Mode Break

Entry Conditions

f 3
,f -

Calling Sequence
M.CALL H.EXEC,30

Registers

None

Exit Conditions

Return Sequence
M.RTRN

Registers

None

2.31 Entry Point 31 - Hold Current Task

This entry point is called to remove the current task from execution and place it in a

hold state. Task execution does not continue until a continue request is issued to
H.EXEC,26.
(Entry Conditions

Calling Sequence
M.CALL H.EXEC,31

Registers
None

Exit Conditions

Return Sequence _
M.RTRN (after continue request)

Registers
None

2.32 Entry Point 32 - Hold Specified Task

This entry point is called to place the specified task in a hold state. The hold request
system action interrupt flag is set in the DQE of the specified task. A return is then

made to the calling routine.
C

MPX-32 Technical Volume i

2-19

Entry Point 32 - Hold Specified Task

Entry Conditions Ay

Calling Sequence o

M.CALL H.EXEC,32
Registers
R1 DQE address of task to be placed in hold state

Exit Conditions

Return Sequence
M.RTRN

Registers
None

2.33 Entry Point 33 - Disable AIDDB Mode Break

This entry point is called by the AIDDB program to disable a break while the task is
in AIDDB mode. This routine is provided for use in conjunction with H.EXEC,30
(Enable AIDDB Mode Break). Normally, AIDDB mode break is not enabled.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,33

Registers

None

Exit Conditions

Return Sequence
M.RTRN

Registers
None

2-20

N

H.EXEC Entry Points

Entry Point 34 - Report No-Wait Message Postprocessing Complete

2.34 Entry Point 34 - Report No-Wait Message Postprocessing

Entry Conditions

Complete

This entry point is called by the message request postprocessing logic to exit from the
end action interrupt state. Its purpose is to clear the task interrupt processing lock,
and to return to the point of task interrupt. It discards one level of pushdown in the
TSA stack. An MLRTRN is then issued to return to the point of task interrupt (or to
the point following the M. ANYW call).

Calling Sequence
M.CALL H.EXEC,34

Registers
None

Exit Conditions

Return Sequence
M.RTRN

Registers
None

2.35 Entry Point 35 - Report Wait Mode Message Starting

This entry point is called to report the beginning of processing for a wait mode
message request issued by the currently executing task. The task is removed from the
associated ready to run list, and placed in the wait for message complete list. A return
to the calling routine is made when message processing by the destination task
completes.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,35
Registers

None

MPX-32 Technical Volume li ' 2-21

Entry Point 35 - Report Wait Mode Message Starting

Exit Conditions | (ﬂ‘.ﬁ
Return Sequence o
CPU scheduler (when message request complete)
Registers
None
2.36 Entry Point 36 - General Dequeue
This entry point is called to release the highest priority task queued for the specified
function code and Enqueue ID. If none exist, the request is ignored.
Entry Conditions
Calling Sequence
M.CALL H.EXEC,36
Registers
RS function code (0-255)
R6,R7 enqueue ID
Exit Conditions M
AN
Return Sequence
M.RTRN (with M.SHUT in effect)
Registers
R2 program number of dequeued task, or zero if none dequeued

2.37 Entry Point 37 - Wait for Memory Available

This entry point is called when the required memory space is not available. The
currently executing task is removed from the associated ready-to-run list, and placed
in the memory request list. A return to the calling routine is made when the memory
request has been satisfied.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,37

2-22 H.EXEC Entry Points

Entry Point 37 - Wait for Memory Available

(Registers

RS bytes 0 and 1 specify the type of memory required:
Value Memory Class
1 E
2 H
3 S
4 H1(CPU shadow)
5 H2(IPU shadow)
6 H3(CPU/IPU shadow)
Bytes 2 and 3 specify the number of memory
blocks required.
R7 memory request definition word.

Byte O specifies the memory request type:

Value Definition

inswap task

pre-activation request

activation request

memory expansion request

IOCS buffer request

system buffer request

release swap file space (see HMEMM,38)

NOAAWNO—=O

Bytes 2 and 3 specify the map register to be used; subtract the
contents of C.MSD from the map register number (0-31).

or
R7 shared memory request definition word.
Byte O specifies the memory request type:
Value Definition
5 shared memory request
Bytes 1 through 3 specify the address of the appropriate SMT entry.
Exit Conditions

Return Sequence
CPU scheduler (when memory is allocated)

Registers

(\ None

MPX-32 Technical Volume i 2-23

-~

Entry Point 38 - Inhibit Asynchronous Abort/Delete

2.38 Entry Point 38 - Inhibit Asynchronous Abort/Delete O

This entry point is called to inhibit an asynchronously requested task abort or task
delete. This entry point is used for gating purposes and is called when a program
sequence is started that must be completed in order to maintain system integrity. Any
asynchronous abort or delete requests received while abort/delete is inhibited is
deferred until the system critical sequence is complete, and a call is made to
H.EXEC,39 to remove the inhibit status.

Entry Conditions

Callfng Sequence
M.CALL H.EXEC,38

Registers

None

Exit Conditions

Return Sequence

M.RTRN

Registers

None ;,/ "““"\z
N

2.39 Entry Point 39 - Allow Asynchronous Abort/Delete

This entry point is called at the conclusion of a system critical program sequence, to
remove the asynchronous abort/delete inhibit state previously invoked by a call to
H.EXEC,38. Any deferred abort or delete requests are processed.

Entry Conditions

Calling Sequence
M.CALL H.EXEC,39
Registers

None

Exit Conditions

2-24

Return Sequence
M.RTRN

Registers

None C?'

H.EXEC Entry Points

Entry Point 40 - End Action Wait

2.40 Entry Point 40 - End Action Wait
See M.EAWAIT or M_AWAITACTION in the MPX-32 Reference Manual Volume I
for a detailed description of this entry point.

External Reference

System Macro
M.RTRN

2.41 Entry Point 41 - Get User Context
See M_GETCTX in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.42 Entry Point 42 - Put User Context

See M_PUTCTX in the MPX-32 Reference Manual Volume I for a detailed
description of this entry point.

2.43 Entry Point 43 - Reserved for Symbolic Debugger/X32

MPX-32 Technical Volume li 2-25/2-26

3 H.EXEC Subroutines

3.1 Subroutine S.EXEC1 - Interactive Input Complete

This routine is called by the appropriate I/O handler from the interrupt service routine.
Its purpose is to report the completion of processing for an interactive input request.
The associated task is removed from the wait for interactive input list and linked to
the ready-to-run list (or to the memory-request list if an inswap is required).

Entry Conditions

Calling Sequence

BL S.EXEC1

Registers

R1 DQE entry number
Exit Conditions

Return Sequence
TRSW RO

Registers

None returned.
None saved.

3.2 Subroutine S.EXEC2 - Terminal Output Complete

This routine is called by the appropriate I/O handler from the interrupt service routine.
Its purpose is to report the completion of processing for a terminal output request.
The associated task is removed from the wait for terminal output list and linked to the
ready-to-run list (or to the memory-request list if an inswap is required).

Entry Conditions
Calling Sequence

BL S.EXEC2
Registers
R1 DQE entry number

MPX-32 Technical Volume Il 3-1

-

Subroutine S.EXEC2 - Terminal Output Complete

Exit Conditions

Return Sequence
TRSW RO

Registers

None returned.
None saved.

3.3 Subroutine S.EXEC3 - Wait I/O Complete

This routine is called by the appropriate /O handler from the interrupt service routine.
Its purpose is to report the completion of processing for a wait I/O request. The
associated task is removed from the wait I/O list and linked to the ready-to-run list (or

to the memory-request list if an inswap is required).

Entry Conditions

Calling Sequence

BL S.EXEC3

Registers

R1 DQE entry number
Exit Conditions

3.4 Subroutine S.EXEC4 - No-Wait 1/0 Complet_e

3-2

Return Sequence

TRSW RO
Registers
R6 unchanged

This routine is called by the appropriate /O handler from the interrupt service routine.
Its purpose is to report the completion of processing for a no-wait I/O request. The
associated task may be in the wait for any /O list. If so, it is removed from that list
and linked to the ready-to-run list (or to the memory request list if an inswap is

required).

The IO queue entry is linked to the DQE task interrupt list and contains the no-wait
/O postprocessing service address. When the scheduler dispatches CPU control to
this task, the specified routine is entered as a preemptive system service. Preemptive
system services take precedence over execution of the task, but do not take precedence

over system services being executed on behalf of the task.

H.EXEC Subroutines

K)f “&\(‘Z .
N

Subroutine S.EXEC4 - No-Wait I/O Complete

Entry Conditions
Calling Sequence

BL S.EXEC4

Registers

R1 DQE entry number

R6 I/O queue entry address (the first eight words of the I/O queue entry

T must be in the preemptive system service list entry header format)

Exit Conditions

Return Sequence

TRSW RO
Registers
R6 unchanged

3.5 Subroutine S.EXEC4A - No Wait I/O Complete (No
Postprocessing) '

This routine is called by the appropriate handler from the interrupt service routine. Its
purpose is to report the completion of processing for a no-wait I/O request. The
associated task may be in the wait for any I/O list. If so, it is removed from that list
and linked to the ready-to-run list (or to the memory request list if an inswap is

required).
Entry Conditions

Calling Sequence

BL S.EXEC4A

Registers

R1 DQE entry number

R6 I/O queue entry address
Exit Conditions

Return Sequence

TRSW RO
Registers
R6 unchanged

MPX-32 Technical Volume Il 3-3

Subroutine S.EXECS - Exit from Interrupt

3.6 Subroutine S.EXECS - Exit from Interrupt

This routine is called as an exit service by all interrupt service routines. Its purpose is
to allow CPU scheduling based on events which may have occurred at an interrupt
level. If lower level interrupts are active, processing continues at the last (highest)
interrupted level. If no interrupts are active, the CPU scheduler is entered.

Entry Conditions

Calling Sequence

BEI

DAVDACI (for associated level)

BL
Registers
R2

R6,R7

Exit Conditions

S.EXECS

address of register save block containing registers from interrupted

environment
PSD from interrupted environment

Return Sequence
LPSD (or) CPU scheduler

Registers

None

3.7 Subroutine S.EXECS5A - Exit from Trap Handler with Abort

This routine is called as an exit service from the system error trap handlers:

nonpresent memory, undefined instruction, privilege error, address exception, and map -

fault. Its purpose is to request that the current task be aborted and transfer execution
back to the CPU scheduler, S.EXEC20. If lower levels of interrupt are active, a
system kill is executed.

Entry Conditions

Calling Sequence

BEI
BL

Registers

R2
RS
R6,R7

S.EXECSA

address of register save area
abort code
PSD from interrupt environment

H.EXEC Subroutines

Subroutine S.EXEC5A - Exit from Trap Handler with Abort

Exit Conditions

Return Sequence
CPU scheduler or M.KILL

Registers

None

3.8 Subroutine S.EXEC6 - No-Wait I/0 Postprocessing
Complete

This routine is called to report the completion of no-wait I/O postprocessing. Its
purpose is to clear the task interrupt processing lock, and to return to the point of task
interrupt. It discards one level (the most recent) of pushdown in the TSA stack. An
M.RTRN is then issued to return to the point of task interrupt.

Entry Conditions
Calling Sequence
BL S.EXEC6

Registers
None

Exit Conditions

Return Sequence
M.RTRN (to previous context)

Registers
None

3.9 Subroutine S.EXEC7 - Report Memory Pool Available

This routine is called when memory pool space is deallocated. The purpose of this
subroutine is to resume the execution of all tasks in the wait for memory pool list. If
the wait for memory pool list is empty, no additional processing is required and a
return is made to the calling routine. Otherwise, each entry in the list is removed and
placed in its associated ready-to-run list. It is expected that when these tasks resume
execution, they will re-issue the request for the required memory pool space. When
all entries have been flushed from the wait for memory pool list, a return is made to
the calling routine.

MPX-32 Technical Volume Il 3-5

Subroutine S.EXEC7 - Report Memory Pool Available

Entry Conditions {}
¢)’,
Calling Sequence .
BL S.EXEC7
Registers
None
Exit Conditions
Return Sequence
TRSW RO
Registers
RS,R6 saved
R1-R4,R7 destroyed
3.10 Subroutine S.EXECS - Link Entry to Queue by Priority
This routine is a register-reentrant subroutine, callable from either a software or
interrupt priority level. Its purpose is to link an entry into the list associated with the
designated head cell, by priority. This routine assumes that a standard head cell and N
entry header format are used. After the specified linkage is performed, a return is k
»

made to the calling program.

Entry Conditions

Calling Sequence
(Gating as appropriate)

BL S.EXECS8

Registers

R1 head cell address

R2 address of entry to be linked

Exit Conditions
Return Sequence
TRSW RO
Registers

R2,R4,R6,R7 saved
R1,R3,RS destroyed

3-6

H.EXEC Subroutines

Subroutine S.EXECS - Unlink Entry from Queue

3.11 Subroutine S.EXECS - Unlink Entry from Queue

This routine is a register-reentrant subroutine, callable from either a software or
interrupt priority level. Its purpose is to unlink the specified entry from the list
associated with the designated head cell. This routine assumes that a standard head
cell and entry header format are used. After the entry is unlinked, a return is made to
the calling program.

Entry Conditions

Calling Sequence
(Gating as appropriate)

BL S.EXEC9

Registers

Rl head cell address

R2 address of entry to be unlinked
_Exit Conditions

Return Sequence

TRSW RO
Registers

R2R4-R7 saved
R1,R3 destroyed

3.12 Subroutine S.EXEC10 - Link Entry to Bottom of Queue

This routine is a register-reentrant subroutine, callable from either a software or
interrupt priority level. Its purpose is to link an entry to the bottom of the list
associated with the specified head cell. This routine assumes that a standard head cell
and entry header format are used. After the specified linkage is performed, a return is
made to the calling program.

Entry Conditions

Calling Sequence
(Gating as appropriate)

BL S.EXEC10

Registers

R1 head cell address

R2 address of entry to be linked

MPX-32 Technical Volume Il 3-7

Subroutine S.EXEC10 - Link Entry to Bottom of Queue

Exit Conditions (}J
Return Sequence
TRSW RO
Registers
R1,R2,R4-R7 saved
R3 destroyed

3.13 Subroutine S.EXEC11 - Link Entry to Top of Queue

This routine is a register-reentrant subroutine, callable from either a software or
interrupt priority level. Its purpose is to link an entry to the top of the list associated
with the specified head cell. This routine assumes that a standard head cell and entry
header format are used. After the specified linkage is performed, a return is made to
the calling program as shown in the following text.

Entry Conditions

Calling Sequence
(Gating as appropriate)

BL S.EXEC11 P
Registers \\/ |
R1 head cell address
R2 address of entry to be linked
Exit Conditions
Return Sequence
TRSW RO
Registers
R1,R4-R7 saved
R2 address of linked entry
R3 destroyed

3-8 H.EXEC Subroutines

Subroutine S.EXEC11 - Link Entry to Top of Queue

0 7 8 15 16 23 24 31
Word 0 | String forward address. See Note 1.
1 | String backward address. See Note 2.

2 | Priority. Count. Reserved
See Note 3. See Note 4.

Notes:

1. The string forward address is a one word field which points to the first entry in
the top-to-bottom chain. When the list is empty, the field contains the address of
the head cell. '

2. The string backward address is a one word field which points to the first entry in
the bottom-to-top chain. When the list is empty, the field contains the address of
the head cell.

3. The head cell priority is a one byte field which contains a dummy head cell
priority which is always zero.

4. The count value is a one byte field which contains t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>