T.0. 3185-4-638-2741-2

MPX-32
Release 1.5B

Reference Manual

—. Volume I

,{b\" /? "ﬂ\ ' /'?, o
S 2 0 /
-~ Jiiy -
= L1985 j
% €2 A—&; . \:-c September 1982

Publication Order Number: 323-003662-000

== GOULD

Electronics & Electrical Products

JUNB 3

This manual is supplied without representation or warranty of any kind. Gould Inc.,

S.E.L. Computer Systems Division therefore assumes no responsibility and shall have no

liability of any kind arising from the supply or use of this publication or any material O
contained herein.

LIMITED RIGHTS LEGEND
for
PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould S.E.L. and/or its vendors, and
its use, disclosure or duplication is subject to the restrictions stated in the Gould S.E.L.
license agreement Form No. 620-06(1/82) or the appropriate third-party sublicense
agreement. The information is provided to government customers with limited rights as
described in DAR 7-104.9A.

Copyright 1982 0
Gould Inc., S.E.L. Computer Systems Division
Printed in the U.S.A.

HISTORY

The MPX-32 Release 1.0 Reference Manual, Publication Order Number 323-001012-000,
was printed June, 1979.

Publication Order Number 323-001012-100 (Revision 1, Release 1.3) was printed
February, 1980.

Publication Order Number 323-001012-200 (Revision 2, Release 1.4) was printed July,
1980.

Publication Order Number 323-003662-000 (Revision 3, Release 1.5B) was printed
September, 1982. The updated manual contains the following pages:

Title page

Copyright page

iii/iv through xvii/xviii
I-1 through 1-10

2-1 through 2-56

3-1 through 3-18

4-1 through 4-63/4-64
5-1 through 5-58

6-1 through 6-33/6-34
7-1 through 7-7/7-8

8-1 through 8-9/8-10

9-1 through 9-14

10-1 through 10-24

11-1 through 11-29/11-30
A-1 through A-7/A-8

B-1 through B-21/B-22
C-1 through C-39/C-40
D-1 and D-2

E-1 and E-2

F-1 through F-3/F-4

G-1 through G-3/G-4
GL-1 through GL-11/GL-12
IN-1 through IN-17/IN-18

iii/iv

CONTENTS

' Page
1. THE ASSEMBLER (ASSEMBLE)

1 General Description « o oot v eeeeeeeossssssceesssossssssssssnnssss
2 Files and File Assignmentsccvveeveeeeeenn
1.2.1 Source Code (PREand SI) « o vevveenennn
1.2.2 Macro Libraries (MAC, MA2) . st t ettt eneeoscensccosescnnsns
1.2.3 Listing (LO) ¢« t v e v vveeeesoeonososecssossosossnsssssnns
1.2.4
1.2.5

1.
1.

Object Code (BOand GO) Ceeceesesesseeeansnans ..
Compressed Source (CS) v vvvenvreennenssnonnnss

1.2.6 Temporary Files (UT1, UT2) v vvveveerenesccccosansonsess .
3 OPLiONS ¢ o coseeosssoossssossssosssssssssssssssscsscsscssssssss .
4 Accessing the Assembler................ ceescescsssecsenssonns .
5 Assembler Directives ¢« v v v vt eeveettereneeesonsnnnns
6 Listingseeeeeennnn seseasacs ceesenans .
7
8

Errors and Aborts e « e e e v e o o« e s eeessseseesessessecssseeces
1.7.1 Aborts.....
EXampPleS ¢« e oo ssseesvsoesoessssssssossssssssssscassssssssnscses

r—-»—»—-»—-.—-»—‘)rv—)—-v—v—-»—-r—-v—
OVVVWOOOOENWWWNNNN -—

p—
|
—

2. THE CATALOGER (CATALOG)

2.1 General Description
2.1.1 Load Module Informationccveveeen ceeseenes

2 Resource Requirementseeeeeeeeceeecnncccccsscssss

3 Absolute Load Modules ¢ v v vttt vttt eteerennectecnccnnns

4 Sectioned versus Nonsectioned Tasks ceceeecnnnn cese e

S Segmented versus Nonsegmented Tasks

6

7

8

Object Modules and Load Modules cesesssessess
Password Protected Load Modules ¢« v ¢ et et teeeerecosccoonsas
The Cataloging Process. .. ceceeeeeceeeccccnscossccsssnnas
2.1.8.1 First PassS ¢ v ceeeeeeesssoscsoscscacscsocscsnnscs
2 Second Pass ¢« et ecteceecrsccrsnosscscssnsccanens
3 Common References....ceeeeeeen
L

5

Included or Excluded Object Modules « v v v v et veeeosnn
Selective Retrieval from SGO .. vt v v i ve e ennn
2.1.8.6 Symbol Tables (SYMTAB'S) v etvevenencsocnanonnas
2.1.9 Allocation and Use of Global Common and DATAPOOL
Partitions s e csssesssassssceses st . 2-10
Files and File Assignments ... eiieteneeencnennns ceeeen ceeeees 2-11
2.2.1 File Assignments Chart.............. 2 &
OpPLtiONS ¢ v vttt evessssssssesesssssssossssssssssscnnnsssassss 2-18
Usingthe Cataloger «.vviiiieeietieeeereteneeeonnensenncnsosses 2-18
2.4.1 Cataloging a Nonsegmented Taske s e e v v v e v veneeeeeesnnneaes 2-18
2.4.1.1 Job Organization 2 B
2.4.1.2 Recataloging the Load Module.ccevneiena.n 2-21
2.4.2 Cataloging a Segmented Task « e cvvevenet ettt enaess 2-21
2.4.2.1 Job Organization Cheerereseassssesesess 2221
2.4.2.2 Overlay Levels........ ceeeen ceesseneeen ceees 2-23

NNNI\)NNNtl\)NNNNNN

1
OV VVVWOWOWOONNANWNWE—

»
N

N
.
N

NN
e o
= W

£\)N
[) WAV]

2.7
2.8
2.9
2.10

TaSkS......................-...

NN
L)

* o

Accessingthe Cataloger vvi et ittt tiieenenneenns

Cataloger DireCtives .« . ..o eereeeecscsenocenonsas -
2.6.1 ABSOLUTE Directive « ¢ e v et veeeenennnns

2.6.2 ALLOCATE Directive. e et e et e eeeeesccocecess
2.6.3 ASSIGNI Directive c ¢ e ¢ e e vt eeseserscscncscans
2.6.4 ASSIGN2 Directive ¢ « e e e e e et eesecsosscsscnsns
2.6.5 ASSIGN3 DireCtive « « ot e e vt evesecsncscancssns
2.6.6 ASSIGNA Directive ¢ ¢ e e et v evesessscsssonecs
2.6.7 BUFFERS DIirective ¢ ceeeeeececscccconces
2.6.8 CATALOG Directive «.....
2.6.9 ENVIRONMENT Directive . e e eoeeeeeeecccocesas
2.6.10 EXCLUDE Directive. . cceeeeeecacoans
2.6.11 EXIT Directive ..o e e vt e e vteveseccnsosasnsnens
2.6.12 FILESDIrective ¢ « ¢ e e e et v eevsececasoccsncscas
2.6.13 INCLUDE Directive « e oeveeeeceocesss et e ee e
2.6.14 LINKBACK Directive « « « ¢ e e oo e s oo
2.6.15 LORIGIN DireCtive . « « e e e e v eeeeoccsccscccsses
2.6.16 OPTION Directive ¢ v ceeeeeesscecccssosscssnss
2.6.17 ORIGIN Directive....... ceceenss e o cee e
2.6.18 PASSWORD Directive . e o et e et eevseesccscccns
2.6.19 PROGRAMDIrective « oo coeveecescccsccsncees
2.6.20 PROGRAMX Directive ¢ v« v et e o eeeeceoconcsces
2.6.21 SYMTAB Directive c ¢ « ¢ttt e veenceensonsencsns
2.6.22 USERNAME DireCtive e e e eveeeesscscesccccses
ErrorsS oo e eeeeeesoscsoseocsosossssscscssscncsscnsosss
EXamples c v e v oviiiieeeneceneoscenennsceoncncnnss
LiStiNgS ¢« e e e e veenenenecssssenssonsssssssnsnnsnss
Creating RTM Tasks on the MPX- 32 System.............

2 Running RTMCATL A S ceseses
3 Semantic Differences
I
5

2.10.
2.10.
2.10.
2.10

.

2.10.1 Assembling RTM Object Modules

Transporting the Cataloged Task to an RTM System
RTMCATL Load Modules Cannot by Used on MPX-32
Systems ® & © @ ® & 0 9 O O O O S O O PP S S O S " S S O e e s oD

3. TASK STRUCTURE AND OPERATION

3.1

3.2

3.3

vi

General Description ¢ v v v vt ittt sesecennns
3.1.1 Multiple Dictionaries «...ceeeeeeeecccococsnsns
Static versus Dynamic DATAPOOL ... veeeeennn
DPEDIT Directives e v evveven. ceessen oo .o

Dictionary Records. e c e e e vt e eessesscascasonse

e e e

1.2
1.3
A4 Input Data Format .. e vt eeiinenneseeeenceness
1.5
les

Files and File Assignments Cecesssssecccnenes

The Input File (SYC) e v v v v v v v vt
The DATAPOOL Dictionary (DPD). vt vveeenenns

Save and Remap Files (OTandIN) ... vveveeennns

1

2 N
3.2.3 Audit Trail and Error Listings (LOand ER) . .vvvvvvvennn.. ce

4

5

Scratch Files (UTand XUD . vt v v v iiiiinnnnnnnnennnnnnnnns

OptioNS ¢t s e v v ssoessossssssscssssnssssssssssnssses

2.4.2.3 The Overlay Transient Areacceceeesccsososs
2.4.2.4 Resolution of External References in Segmented

® o 0o 0 0 0 0 0

5 Cataloging a Segmented Task in Stages
.6 Recataloging with Overlays......... .o

« o e o o o o o o . .

e o 0o 00 0 0 0

¥
Ll |

2-28

2-29
2-31
2-32
2-34
2-35

. 2-38

2-38
2-39
2-40
2-42
2-43
2-43
2-44

. 2-45

2-46
2-46
2-46
2-47
2-47
2-47
2-48
2-438
2-49
2-49
2-50
2-50
2-50
2-51
2-53
2-55
2-55
2-55
2-56
2-56
2-56

2-56

uuuuu\fuuw\»w

1
00 00 N NN NONWNN = -

W

F

A
W W W
L] L]
N &

WE»\.O
\O 00 N

USiNg DPEDIT .t iiettiteocseccseosssossoscsssssssssnssncsss
Accessing DPEDIT ... ittt eereeeeseesonocsssssssnnssncnss
DPEDIT DireCtives c e « ¢ c e c ot eseossossescsscsoscsscssssscssscsssas
/DPD Dir€CtiVe «vveeeeeeeeeeesoncensensessonssssssaes
JENTER Dir€Ctive «.oeeeeeeeeeosnceescossscsannssnsens
JLOG DIir€CtIVE o e e e eeeeeeeencenaeasessensosnacssonss
/REMAP DireCtive « oo oo teeeeeeeeseocncenssossansaness
JSAVE DireCtive . c o o e oot vvereeeoecensocnnscnesns
JVERIFY DireCtive o v v oo veveeeeecnseessnsenssescncsnss

3.6.1

3.6.2
3.6.3
3.6.4
3.6.5

3.6.6

Listings e v v e v v v
Errors

4. THE DEBUGGER (DEBUG)

4.1

4.2

4.3

= =
.

®© © 2 0 0. 606 0 00 00 000000000000 0000000000000 000000

ExampleS....-...-...............‘.........................

© © © 6 0 0 0 0 00060600 0006000000000 0000000000000 00

General DesCription v o ceeeeeeesesesssssssssssoscsscasssssssssss
Attaching DEBUG to a User Task cssccesavves cove e .

I/O © © © 0 0 0 0 © 0 00 00000000 00 000000000000 0000000000000

4.1.1
4.1.2

4.1.3
4.1.4

4.2.1

4.1.2.1 Termi

nalI/O ooooooooo ® ® 0 06 000 0000000000000 00

4.1.2.2 Command Files ..o veeeeeeeeecccecnosscnccnsase
4.1.2.3 SLO Files..... cececsssesseennee cesecsece s
Control Transfers .. ceeeeeeeeeecccscsoscsescsscccncssncsacsse
Break Handling. « « « s et ettt ittt neeneneennsennnns

File Assignments

Charteeeeeeeeeesoscesoscosossossoscncsss

Files and File Assignments o ..eoeeereeesseecesecsosocsssosssssns

Using the Debuggerocieeeeeesseesssssssossssssssssnsss
EXPressions v oeeeeesesssssssssosssssssscsssssnsssss .
4.3.1.1 Constants «c.eeeeeeecennnsans ceeesseeann

4.3.1

-P-P-P#-P#;P-P-P-P-P-P-P
NI I I I I I I I

o« o o e o o o
o o e o o o

. .
L] . . .
bt et et ps = \D OO N NN WN)

4.3.1.

4.3.1

4.3.1. Bases
4.3.1.

4.3.1.6 Opera

2 Register Content Referencesc0eveeveens
3 Memory Content (Indirect) References.cevee..
4
5

® © 0 06 0 06000005 0000000000000 000000000000

COUNT'oo---ooco.oo-ooooo-oo.oooooouoo.o

tOl’S ®© © 6 06 0606060006000 0000000000000 000000

Relative versus Absolute Expression Evaluation00c..

Address Displays

Address ReStriCtioNS. c oo eeeeeseesceccoccsesosocscsscnsses

Traps and Trap L

4.3.5.1 Setting @ Trap + v e veeeereeesonesssnesssnnnns

4.3.5.2 Nesting Trap Lists v v cveveeeteneencencnnenns
Accessing the Debuggerveveeeeeeseessscessscosssocnsscsns
Commands........l..'...'....l.........................

and References .. .ceeeeeeeeoccsscescnces

ABSOLUTECommand. .. .vceeeeeeeenn

BASE Command
BREAK Comman

© 6 0 0 06 06 00 0060006000600 000000 0000000000000

dOQ..QO.IOO...O.....Q..QO.....'.!...

CC COMMANd. . c e v eeeoesoescssosssassssssosssssssssss

CLEAR Comman
CM Command .
CR Command. .

® & 9 9 & & 5 5 0 S 0 P S S O s " e 0 0 ® & & o 5 o 9 o 5 0 0 0

®© 0 06 5 0 06 0 0 0 060 000 00 00 000000 000000800000 00

DELETE CommMmAand e .o e oo oeeeeocsssoccssccsocsssasssssscsss
DETACH Command e veeeeeseeeessocscscsoccsscssoosssns

DUMP Command
END Command.
EXIT Command
EXIT Command
FILE Command

® © 0 0 0 0 0 0 0 0 0 0 000 00000002 0 0600000000000 0

® 6 6 0 0 6 0 0 2 5 5 0 0 0 00 000008 000000000000 00 0

®© © 0 5 © 0 0 06 0 00 0 ¢ 0 00 00 0000 00 000 000000 00 00

® © 0 0 0 0 0 00060 0 0000 0000000000000 00000000

®© © 2 5 0 06 06 0 0 0 0 0 0 06060 00 0000000000000 0050000

vii

& F
e o o o
O O0ON O

4.5.15 FORMAT Command « . ceeveeeeescesososoccscsoccocsssesess 4-46
4.5.16 GOCommand....c... ceecsoccans ceeeseesesesecnennens 4-47
4.5.17 IFCommand «.eeeeeeeeseocoososssososcssosocsnscssesss 4-49
4.5.18 LIST Command.e e o v e o eeeeoecsessscscscsoscocososcssscsse 4-50
4,519 LOG Command. ..o eeeeeeeeeoeeneeencseenosonnsoansss 4-50
4.5.20 MSG Command...eeeoeeeeseoesococososososcoocsosesses eees U-51
4.5.21 RELATIVE Command oo U4-51
4.5.22 REVIEW Command « e ¢ e e e cveersevessososscnsccescses ees U-52
4.5.23 RUNCOmMMANd + ot eeeeeeeeeescosnosssossososonsosssess 4-52
4.,5.24 SET Command «.coeeeeeesocososcsososcsossossssossssssoes 4-53
4.5.25 SHOW Command e e s e e st e e e sesess e sseses s e 4-54
4.5.26 SNAP Command . e ceeeeeeeeeeoosscssoscosscsscssssscnneaes 4-55
4.5.27 STATUS Command ¢ e v e et eevecoceccsosssasoscosssscssscsss 4-55
4.5.28 STEPCommand ¢ cceeeeeeocosncoscsscnsocnsncss ceesssnse U-56
4.,5.29 TIME Command o v eeeeeessoososscesoscscsscosscssssscssses 4-56
4.5.30 TRACECommand «..cecoeeecoceces ceessecsestesesannn 4-57
4.5.31 TRACK Command e eeeeeeeeecsceecsososocccsosscscecscasses 4-60
4.5.32 WATCH Command « v e o oo veeeocecsocoacsosssescnseessns 4-61
Batch Considerations « .. eeeeeeeeececscsscssscoscasssccoccscesos 4-62
Listings and Reports . e e v oot vt teneeeseocseesesssssscnssosnsss 4-63
Errors oo eeeeeeeeecoscosocsscssscsocnscses e e ecces s ssoe e s e 4-63
EXamples o oo ot ieteerioeoseeoscssssoscnosssssscnssansss vees U-63

5. INTERACTIVE PROCESSING

o\
L] . e o
£ WLWN—

AN W

viii

General Description v v voveeeseessscssssess feteecesc et tenann 5-1
Files and File Assignments vveeteeteerncenenenseccnsnnsnns 5-1
OPtIONS 4 e v vttt eeteeenessesesossosososssssssssssssssssscnnsss 5-1
Usingthe Editor . « o ottt iietieeeceeetensccenccconscncnssnnss 5-2
5.4.1 Addressing Techniquesoveeeieiereeeenneennnnnnnns 5-2
5.4.1.1 Special Characters ¢« e e v v v evvoesssoscecccccess 5-2
5.4.1.2 Line and Range Addressing « « v cvevveeeeeecennnns 5-3
5.4.1.3 GrOUPS.: e e oot sosossssesscsessssososssnssanscs 5-3
5.4.1.4 Content Identifierso veeeeeieiiineeennnenns 5-4
5.4.1.5 Defaults «evvieiiienereneeeeteeconncncnnnnns 5-4
5.4.1.6 Special Command Defaults « .. ccvvveev e A
5.4.1.7 Descrition in Syntax Sectionsveeeeeeessensns 5-5
5.4.2 Linesand Line Numberscitiiieeineeeeoncenccscnns 5-6
5.4.2.1 Line Numbers Generated by the Editor.cceee. 5-6

5.4.2.2 Line Numbers at the Beginning and End of the
Workfile oo eesreeeneeeeeeeennonnsnsncnnss 5-7
5.4.2.3 Physical Position of Line Numbers ... ccoeeeeeenese 5-7
5.4.2.4 Text Output without Line Numbers 5-7
5.4.3 Accessing Files Created Outside the Editorcc0cveu. 5-8
5.4.4 Accessing Password Protected Files. ... cevv ettt 5-8
5.4.5 Accessing System Files .« c v ot i et i ittt iiiiitecnineenne 5-8
5.4.6 Entering and Editing Upper/Lower Case TeXt « e v evseveenesnns 5-9
5.4.7 Usingthe Break Key o v v et vt v ittt teeeenennescseesoncnnns 5-9
Accessing EDIT .o ii ittt ieieiieeseeensoeecsnnncnsssssssons 5-10
EDIT Commands. . coeveeeeeeeeesessosossocssssesonsssssssssss 5-11
5.6.1 APPEND Command ... v it eeeeeensoseeeasssssononnnsns 5-13
5.6.2 BATCHor RUNCommand ... eveeetttineeeeerseesonocnnns 5-14
5.6.3 CHANGE Command ... ev ittt neesteesseeennnnnnssnns 5-15
5.6.4 CLEAR COmmAnd «cveverieorenesenssesnsonosnssnnases 5-17
5.6.5 COLLECTCommand v veeereneonencennsecnnnssonases 5-18

A
%

5.6.6 COMMAND Command «ceeeeeesossescossscsocssnscnsssns 5-21
5.6.7 COPYCommand ...ceeeeevonens Ceeeeccsesssesessnnen 5-22
5.6.8 DEBUG Command «..cceeeeoeoescsosesscscscscscscsssnsscs 5-26
5.6.9 DELETECommMAand .. c.oeeeeeeeesocaosssccosncscascssanss 5-26
5.6.10 EXITCommand «.ceeeeeeeseescesoscsoccssssssoscsssses 5-27
5.6.11 INSERTCommandeveeeeoceoscccscoscsoscsosssocssncaes 5-28
5.6.12 LISTCommand. . ceveeeeseeoecoscoscsccscscsosscscsssosss 5-30
5.6.13 MODIFY Command. .« coeeeeeceeesscossscscscscscsscssaans 5-32
5.6.14 MOVECommand «.c.ceeeeeosossocccscscsssssssscsscass 5-33
5.6.15 NUMBER Command ¢ e v oeeeeesssosccosscssossossossscsccsss 5-35
5.6.16 PREFACE CommMAand «.ceeeecescccscscscccscscsccsoscsscses 5-37
5.6.17 PRINTCommand «..eeeeeeeeescesencsscncocsscscccssnas 5-39
5.6.18 PUNCHCOMMANd .+t e eeeveeoeeoscssocssscssscsssnssssss 5-40
5.6.19 REPLACECommMAand ...vveereeeeossaoscoccscsosccscssess 5-41
5.6.20 SAVE Command ¢« c v e et cveeecocssccscaossscsscssccsosns 5-42
5.6.21 SCRATCHCommand «..eeeeeeeecsoesccosssasssssasass 5-44
5.6.22 SET Command ¢« cceeeeesecesssscsossssscssscesscscsscss 5-45
5.6.23 SHOW Command ... eveeeeeeersesssssssccscasscncnseans 5-50
5.6.24 STORE Command e v e o eeesesosesscesssccccccccssssncss 5-52
5.6.25 USECOMMANd @ o e vt eveeeesesscscssccsscsssscssscssssssaos 5-54
5.6.26 VERIFY Command .. cceeeeeeecososcoossosccocasssscssoss 5-56
5.6.27 WORKFILE Command. e « « t e e s eeeeveessecocsosscsscasascss 5-57
5.7 Edit ErrorS. c o e oo e et eooesossoscssossscssssosccssscscssssssssscnsass 5-58

6. THE FILE MANAGER (FILEMGR)

6.1 General DesCription ¢ o v v v eveeeessseesecsssesssssosnosssssnsssnse 6-1
6.1.1 The System Master Directory (SMD) .o vveeeeeeeeeeeasosons 6-1
6.1.2 System Files versus User FileS. . e e oot eeeeeeesscscssoncsasns 6-2
6.1.3 The Save/Restore Process..... et ecectsestesesetssansann 6-3
6.2 Files and File Assignmentscveeeeeeeeeeesnoesssncessncssnns 6-3
6.2.1 File Assignments Chart.ccceeeeeeeteeccecsccocsnnns 6-3
6.3 OPtIONS 4 ettt vttt ot toeeeesonssosssseseasssscscososssssssass 6-5
6.4 UsingtheFileManagerccieeieeiteeeeeceonceosccaccosansans 6-5
6.4.1 Computing the SizeofaFile.ttt 6-5
6.4.2 Using Wild Card Charactersin FileNames covvvneeeene 6-6
6.4.3 Password-Protected Files ¢ e et e e e vt teeecennonsscssccennse 6-6
6.4.4 Special Characters in File Namesccctetiietneneeceens 6-7
6.4.5 Notes on File-to-Tape Transfers «....eeeeeeteeenceecceans 6-7
6.4.6 Device Specifications « e e e v vceveeeseeeseececcccncccnnns 6-9
6.5 Accessingthe File Manager. . . oot tiieeeeeeeeeesecennncacsnnsns 6-9
6.6 FILEMGR Dir€cCtives «.cc oo cscccsssssssscssssanccsscs 6-10
6.6.1 CREATE and CREATEU DirecCtives ¢« « e s s e s oossoecseee ces. 6-12
6.6.2 CREATEM DIrective v voveeeeessensssscccsosssssosnncsss 6-14
6.6.3 DELETE and DELETEU Directives. c c e c e e e vttt e eeeececeens 6-17
6.6.4 DELETEW DireCtive ¢ c c s v eseveessessssccsssesssnsnsns 6-17
6.6.5 EXIT Directive. e o e o vt o vt eeeenerssccecossoasssssssssssss 6-19
6.6.6 EXPAND and EXPANDU Directives. cessssssesssss 6-19
6.6.7 LOG, LOGU, LOGC, and LOGS Directives ¢ v v cees oo ceessee 6-20
6.6.8 MEMO DireCtive oo e eveeesesooscssossssssssscscsssssns 6-21
6.6.9 PAGE Dir€Ctive v o v s e s e veseecsonccssseacsennsennss eeo 6-22
6.6.10 RESTORE and RESTOREU Directives ¢ e v e veeeeeeeossscnnns 6-22
€.6.11 REWIND DireCtive o o e s s cssssseescccecssssscssssscas .o 6-25
6.6.12 SAVE and SAVEU DireCtives « « c c e co st eesssecscsscscscsnse . 6-26
6.6.13 SAVELOG Directive « e vveveeeessencscness ceesenn ceseee 6-30

ix

6.6.14 DST DireCtive v veeeveetesessssesssesascssssssnsonses
6.6.15 SKIPFILE Directive Ceesssssesenenans
6.6.16 USERNAMEDirective .. ceveveeeessssssssosssosnsssssnns
6.7 EXamples o oo it iieeetirieeeeeeesnosssssssssossssssssssssssss
6.8 Errors o ceeeeeeeeeeeenns
6.9 LIStINES e o v vvveninneeenoocenssosssnsenssnsssssosonsonsanss
7. M.KEY EDITOR (KEY)
7.1 General DesCription oo v v v vttt tettseseneesssessscsossssnnssss
7.2 Fileand File Assignments « v oo v v vttt ereeeeeeeessssnncsosnsnsons
7.3 USIiNgKeY vttt nneeeesssossssssenossssssessssasssssssssnss
7.3.1 Input Record SyntaxX o o e v eeeveveosssssosnscsososssscsssssns
7.3.2 SampleInput File « c e e v v et ettt nntenceeeencennss cessaas
7.4 Accessing the M.KEY Editor cesecons cececcsosessseseses
7.5 Example s e e e s e s esesess e ses s en
8. THE SUBROUTINE LIBRARY EDITOR (LIBED)
8.1 General Description e oo eveeeeeesossssssses cee e ceeceeccannn
8.1.1 LIBED Directives SUMMAry « « « e e oot v e eoeoeses ceesesccc s
8.2 Files and File Assignments csecscescecesencsessssennsens
8.2.1 The Object Module File (LGO) v v v ettt venreececenocacnnnns
8.2.2 The Directive File (CTL) e e e v v v s eerecncocsssscoscsnnces
8.2.3 The Subroutine Library File (LIB). e e v e v v v v enenns Ceeeeaen
8.2.4 The Directory (DIR) & v v et et veeeeenosoocsocasscnscnsses
8.2.5 Listed Output (LLO) v vt vvenenenvnss Ceececeeseanaan
8.3 OpPtiONS ¢ oo vevceeececeossososssssssossasscssssscssssssssccsss .
8.4 USINGLIBED +cuiveettereeneoeoscesscscncnonsns
8.5 Accessing LIBED ceeses
8.6 Subroutine Library Editor DireCtives v« o veeeeesevcessccsosccosossss
8.6.1 DELETE DireCtive v oo vveeessssceccocccsonsssssssscsosss
8.6.2 EXIT Directive.. .o eeeevenennne
8.6.3 LOG DireCtiVe v o v vttt v vneosossessesenoccnsssssasans
3.7 LiStINgS ¢ o o oot vt eeeeeensesensssenssssnsncsosnssssnsssonnssses
3.8 Errors cccccececcoerscossncosscosossasecsssccnconssssscssscse
8.9 Examples......

9. THE MACRO LIBRARY EDITOR (MACLIBR)

9.1

9.2

General Description ¢ v cvvevtteeeennenns
9.1.1 MACLIBR Command Summary
Files and File Assignmentscc0eeeenn
9.2.1 Macro Library (MAC) v v evenennns
9.2.2 Macro Input File (SD) . v v v e v v e v enn
9.2.3 Directives (DIR) e v v v v venesnnns
9.2.4 Audit Trail (LO) v o e v v vv e,
9.2.5 ScratchFile...ooevvveeeenennns
OptIONS ¢ vt v vt veeeescsneensosssssssns
Using the Macro Library Editor
Accessing the Macro Library Editor........
Macro Library Editor Directives «vceeeoeees
9.6.1 /APPEND Directive «¢vveeeeeesss
9.6.2 /CREATE Directive «vveeeeesesns
9.6.3

® o s 00 0 0
® o0 0 0 0 0
e o 0o 0 0 0 0
e o 0 0 0 0 0
® o0 00 00
®© e 0 0 0 0 0
® o 0 0 0 0 0
® o 0 0 0 0 0
® e 5 0 0 0 0
® o 0 0 0 00

® o 0 00 0 00

.
.

® o 0 0 0 0 0

® o o 0 °

e o 0o 0 0 0 0

® o o 0 0 0 o

® o 0 0 0 0 0

.6. /DELETE Dir€Ctive «veeeeeeeeeeeocesesnnocoeses

® o 0 0 0 o

® o 0 0 0 0

OOOOOOOOOOOOOOOOOIOOOOOOOOOOOOOOOOOOO
WO NNNNAUMUVNNNDNNN - -

D 000NN WWW

6.4 JDISPLAY DireCtive o v v oo ot eeveeeoeoceeneeeesnssssses
6.5 JEND Directive «evoeeeeeeens ceceesessesceecens ceesee
6.6 JEXIT Directive « e v v oo veeens
.6.7 J/INSERT Directive « e ceveee..
6.8 JLOG Dir€Ctive v uveeeeeeeeeeessoonasonsenesns ceeeee. 9-10
6.9 /MACLIST Directive..eoeee..

9.6.10 /REPLACE Dir€Ctive v v veeeeeeeeoeoeocnnnnnsnes ceeeses 9-11
9.7 LiStingS e e e ot veenvencnnannss ceessssssnee Cecosssssssssens es 9-11
9.8 Errors «eoeeeeeeeeeeeecenns ceccesescsseee e csesescessesns . 9-12
9.9 Examples .o oo evvennnn ceeteeerenes ceeeesseesecsecnsaaasses e 9-13

10. MEDIA CONVERSION UTILITY (MEDIA)

10.1 MEDIA Directives Summary T e tecescsesssesesseseeennnanns 10-1
10.2 Files and File Assignments ...ccoeeeeeceenn cessesesssssne ceeeess 10-2
10.3 OPptionS ¢ e eeeeoeeeessssssssssssssscssscsscs cesscesses ceeees 10-4
10.4 UsingMEDIA........... ceetecsccccccncans cecccesscnane R [
10.4.1 Labels e o ccveeveeenn ceceseessssesaas ceeeeseseenens . 10-4

10.5 Accessing MEDIA........ csescsscssncns ctssssessesens cessee. 10-4
10.6 MEDIA Directives «.cceceeeeess ceceecceneanns ceeseseneesen e 10-5
10.6.1 General . v e vvveeeennne cececssesesesesesscessesnee e 10-5
10.6.2 BACKFILE Directive .. ccceceecesecsese cecssesans eeeess 10-6
10.6.3 BACKREC Directive ...e... et ececsserscee e ceecseaannn 10-6

4 BUFFER Directive « ¢ c ¢ e e o 00 e e ceeeersececssssessan s 10-7

5 CONVERT Directivee e .o eceseeescccccns ceccecns ceeeess 10-7

6 COPY Directive « e e e e e e eeeene certececsssscssssacssnns . 10-8

.7 DUMP Directive. . ceeeeeeeeesses ceceseoscsssssssscsss 10-8
8 END Directive « « e et eveeeeeceoscscssnna ceececsscsssss 10-9
9 EXIT Directive. . cecoeeeeeses e eesessesecscessssssssnens 10-9
.10 GOTODirective « e e e e eeveeeeacsoncns ceescens ceceeessl0-10
1 INCR Directive «...... ceececsesesscescsecsssasneees .10-11
.12 MESSAGE Directive « c e e e e e eeeeesescccscsccsssocsssssll-1l
10.6.13 MOVE Directive e « c e v e e v v ee e cesecessssssssssscssesell-12
10.6.14 OPTION Directive «ceeeeeeoeens ceecccssssecscsccssessl0-13
10.6.15 READ Directive « e e e e e e e ceeees ceeeccscsessesssnsssssll=15
10.6.16 REWIND Dir€Ctive « o c e e eevevevsccesccoccscans ceeceesall=15
10.6.17 SETC Directive ..ceeeeeeeccens cecesceenns ceeceesessll=-15
10.6.18 SKIPFILE Directive ceestecscsessescenensnns ee..10-16
10.6.19 SKIPREC DIireCtive «.cceceeccecoccscccscscsncsscas ee..10-16
10.6.20 VERIFY Directive «.ccceeeeececcsccscescsscssonse ...10-16
10.6.21 WEOF Directive..... ceecesseceanans ceececcsnnnn eee.l0-17
10.6.22 WRITE Directive «..cccc... cececcesccccsecnoens eeeeel0-17

10,7 ListingS eeeeeeeeeesocecosnsnons ceesecssrsesccscnreressen e ...10-18
10.8 ErrorS ¢veeeeeeeseeesececscscssososassossssosscsssscsssssccss ...10-19
10,9 ExampleS..eeeeeeesesescasscsssscssssossscssossonsscssssss eeoeo10-21

11. SOURCE UPDATE UTILITY (UPDATE)

11.1 General Description «..cevoeeeeeeossscscosocssssssscsssssssssss 1l-1
11.1.1 UPDATE Directives «cceeoeeeeeeesececsscscssnscsossss ll-1
11.2 Files and File Assignmentscceeeeeecsessessoscsacsss ceeeses 11-3
11.3 OPptions e v e eeveeesseessosssonsssssssosssssssosssssssssessss 11-6
I1. Using UPDATE. . ettt eeeseeseecsocsoscosscssosssnscosenssesnss 1I-7
11.4.1 Compressed Source Formatting « « « v e veveveeceececcnnceoss 11-7
11.4.2 Library Mode of Operationccveeeeeeeeecececcencesss 11-7

xi

11.5 Accessing UPDATE ... cieiet ettt enencnsocsnosecnnnsnessassll-ll
11.6 UPDATE DireCtives v e cveeeeeeoesecessosssssosssoscsssssssssessll=l2
General « oo vttt ettt teceresccrsssccssscsnsnssssnsnsesll=12
JADD Dir€Ctive «vveeeeeeeeoseeososeeossenssseensssssll-l2

11.6.1
11.6.2
11.6.3
11.
11
11
11
11

1

1

o) We) We) We) o) WEo) Yo) We)Y

11.6.
1

11.

.

11.6.15
11.6.16
11.6.17
11.6.18
11.6.19
11.6.20
11.6.21
11.6.22
11.6.23
11.6.24

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

/AS1 Directive (Reassign LFC to Disc File) ..ecvvvvevennnn

<11-13

/AS3 Directive (Reassign LFC to Device) e v v veveeeneeeness. 11213
/BKSP (Backspace) Directive. P B B L
/BLK (Blank Sequence Field) Directive....ecevveeeeneasaa.ll-14
JCOPY Dir€CtiVe v v v vveveecenesssescscssnsencosesessll=-l5
/DELETE Directive «..veeeescns Ceeecean S B B)
JEND Dir€Ctive «oveeeeeeeeeeeeseosasosscasensenssesssll-l5
JEXIT Dir€Ctive o c v v v vt veeeescescnscoasesacensenseessll-16
J/INSERT Directive « v evoveeeess P B B 14
JLIST DireCtive v v v veeeocecescocncnsanas I & B V4
/MOUNT Dir€Ctive o « v s e v v vevsvesesssscnscosssenensssll-18
/NBL (No Blank Sequence Field) Directive «vvveveveeeeeesosal1-18
INOLIST Dire€Ctive « v v e v vevevsesesoesnsoscacsssasnsessll=19
/NOSEQN Dir€Ctive « v e veeeeeeeeseoeeosossaansenns eeesl1-19
/REPLACE Directive «..... et eeeecececeanaean ceeessall-19
/REWIND Directive «..v... cececsesessessesens eeeeeesll=20
/SCAN DIr€Ctive «uceveveseecosescscscscssoascnsesessll=20
JSELECT DireCtive. c e o v ot eseeeocescscsossccscscssesssll=20
/SEQUENCE DireCtive «vceeeeereeesosseoceonoonens e oo 11221
/SKIP Directive «.cvevveeens ceesccenacns ceeeaaan eeea11-21
JUSR Dir€Ctive «.eeeeeeeeeocseocassennens ceeseseseessll=22
/WEOF Directive «.vovuene Ceesseeseanans ceeerneceasa 11222
I1.7 LiStiNgS ¢ oot e v ettt eeneeecsscannsenssssnososssnssonsosssll-23
11,8 Errors coceeecsssesossossosascss e B B2
11,9 ExampleS.eceeeeeeesososcscossosnsssnsscnns tesessesessssssssssll-26

MPX-32Device ACCESS. . et v ot tesssessososnsssssssosssess
System Services Cross Reference Chartscc0000eveees
MPX-32 AbortandCrashCodes. . . . vt v v v evenenennenn
Numerical Information vcveeeesseccnscsccsnssss ..
Powersof Integersi ittt eiecensnnccnnnnnns
ASCHl Interchange Code Setcciiitiiiecenncncnnns
IOPPanelCommandsccveeeescescsssosnccssssnsses

A-1
B-1
C-1
D-1
E-1
F-1
G-1

Glmsary oooooo-o-ooovoooco'o.no..o.o-.-.ooo-.oo.oooo.o.o-o'oooGL""].

lndeXtoooooooo'ooolloooo..ooo-oooo.ooooo-uoooo.vo.oo...ooooooo

xii

IN-1

T

AN

ILLUSTRATIONS

Title Page

Catalogingaload Module . . v v vt v et eveeeeecsnesssnnssooees 2-2
I/OOVErvVIiEW ot v vt v teennenenesosoasscscssanscscsnsaasanes 2=11
Simple Overlay Structureceeeevecsscessccosssscssasss 2-23
More Complex Overlay Structure. . ..o e veveeveesscennns ceeees 2-24
Default Memory Allocation for Overlays «eoece.. ceceecsssscsses 2-25
Modified Memory Allocation for Overlays 4
Recataloging Illustration. cecenen ceercenesesesnse 2-33

Datapool Editor Input Data Formatc00. e
Datapool Dictionary Entry Format......coeeeeeeeens cessssess 3-6
Datapoo! Editor Audit Trail Format ... eceeeeeescscsccsss ceess 3-16

DEBUG Memory Map A)
DEBUG Base Names « .« e e v v ceeeccssessscsssccscsssescscsce U4-18
DEBUG Command Address Restrictions «« cecesescscsasees U-22
Nested Trap ListS e e e e eeeeesennncens cecseeccnnen ceesseses U425

File-to-Tape Transfers « . ceeeeeeenesevecccocoonossnns ceess 6-8
Compressed Record Card Formatcceeeeeceeecsoscnnccnsns 11-8
Library Format (Magnetic Tape) v ccvcvecesececncscsssonsssss 11-9

Header Record Format o o c e e e e o ceeeeecososcsosossscscsscsssll=l0
Library End-of-Tape Format o oo e e e ccevessesoscsocccans eess.l1-10

xiii

TABLES

Table Title Page
1-1 Assembler File Assignments ... ccieittientrienieeneeennns S
2-1 Cataloger File Assignments. ... ceeteteeeeseeesessnnnsnnanss 2-14
3-1 DPEDIT File Assignments ¢« v v eeeeneeeseeseeens O
4-1 DEBUG PromptsandLabelsc0c0teeieeeecscanscccaess U=8
4-2 Debugger File Assignments .. cvvveeeieeeeerneenennns . S ¥4
4-3 Valid Use of EXpressions « e vveveeeeeens Ceeesstssssssnesees U4-29
4-4 Instructions that Breaka Trace ... ccvveveeneenn ceecesenaess B-59
6-1 File Manager File Assignmentsc.ceteeeeeneeceececscnenes 6-4
8-1 LIBED File Assignments ¢« . vcoveereeserteeescsscsssncssoasess 83
9-1 MACLIBR File Assignments .. .cveeeeeecssssssossoscssassssss 9I=U

10-1 MEDIA File Assignments.....cieeeeeecessssssecossossssssss 10-3
10-2 MEDIAOPtiOﬂDefinitionS..............................-..10-1“

11-1 UPDATE File ASSIZNMENTS «vvvveenennenenesnnennanennannas L1

xXiv

Documentation Conventions

Notation conventions used in command syntax and message examples throughout this
manual are described below.

lowercase letters

In command syntax, lowercase letters identify a generic element that must be replaced
with a value. For example,

'ACTIVATE taskname

means replace taskname with the name of a task, e.g.,
TACTIVATE DOCCONV

In messages, lowercase letters identify a variable element. For example,
BREAK ON:taskname

means a break occurred on the specified task.

UPPERCASE LETTERS

In command syntax, uppercase letters specify a keyword must be entered as shown for
input, and will be printed as shown in output. For example,

SAVE filename
means enter SAVE followed by a filename, e.g.,

SAVE DOCCONYV

In messages, uppercase letters specify status or information. For example,
taskname,taskno ABORTED

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT

Braces { }

Elements placed one under the other inside braces specify a required choice. You must
enter one of the arguments from the specified group. For example,

counter
startbyte

means enter the value for either counter or startbyte.

XV

Brackets
>

An element inside brackets is optional. For example, A
[CURR]
means the term CURR is optional.

Items placed one under the other within brackets specify you may optionally enter one of
the group of options or none at all. For example,

base name
progname
means enter the base name or the program name or neither.

Items in brackets within encompassing brackets specify one item is required only when
the other item is used. For example, ‘

TRACE [lower address [upper address]]
means both the lower address and the upper address are optional, and the lower address
may be used alone. However, if the upper address is used, the lower address must also be
used.
Commas between multiple brackets within an encompassing set of brackets are semi-
optional; that is, they are not required unless subsequent elements are selected. For Y
example, -z
M.DFCB fcb,lfc [, [a],[b]> [c]> (4], [e]]
could be coded as
M.DFCB FCBI12,IN
or
M.DFCB FCB12,IN,,ERRAD

or

M.DFCB FCB13,0UT,,ERAD,,PCK

Horizontal Ellipsis ...
The horizontal ellipsis indicates the previous element may be repeated. For example,
name ,...,name

means you may enter one or more name values separated by commas.

Xvi

Vertical Ellipsis :

The vertical ellipsis specifies commands, parameters, or instructions have been
omitted. For example,

COLLECT |

LIST
means one or more commands have been omitted between the COLLECT and LIST
commands. -
Numbers and Special Characters

In a syntax statement, any number, symbol, or special character must be entered as
shown. For example,

(value)

means enter the proper value enclosed in parentheses; e.g., (234).

Underscore

In syntax statements, underscoring specifies the letters, numbers or characters that may
be typed by the user as an abbreviation. For example,

ACTIVATE taskname

means spell out the command verb ACTIVATE or abbreviate it to ACTI.
RESET

means type either RESET or RST.

In examples, all terminal input is underscored; terminal output is not. For example,
TSM > EDIT

means TSM was written to the terminal; EDIT is typed by the user.

Subscript Delta
cript De A

A subscript delta specifies a required space. For example,

EDT >STO ITSSPGM

means a space is required between O and T.

xvii/xviii

1. THE ASSEMBLER (ASSEMBLE)

The Macro Assembler (or Assembler) translates source code mnemonics into binary-
equivalent machine instructions for the 32/7x CPU and interprets Assembler directives.
Assembler directives provide the ability to use symbolic addresses and storage areas,
equate symbols, define references to external object modules, control listed output
characteristics, etc.

Within source provided to the Assembler, the user can access system services. This is
done either by setting up appropriate registers and using SVC or CALM instructions,
and/or using macro calls which are expanded into assembly-level code by the Assembler.

The Assembler uses the MPX-32 System Macro Library (M.MPXMAC) for MPX-32 SVC-
related services by default. The RTM System Macro Library (M.MACLIB) can also be
assigned for assembly to access RTM CALM equivalent services.

On a CONCEPT/32 computer, a new SVC type 15 replaces CALM instructions. During
reassembly of a program, the Assembler automatically converts CALM instructions to
their equivalent SVC 15,X'nn' number if OPTION 20 is set.

Also, an address exception trap will be generated when a doubleword operation code is
used with an incorrectly bounded operand; therefore coding changes will be required
when a trap occurs.

1.1 General Description

In developing Assembly language source code, four separate, non-MPX-32 documents are
key:

o The Macro Assembler Reference Manual, publication number 323-001220,
which documents Assembler directives.

o The SYSTEMS 32/70 Computer Reference Manual, publication number
301-000140, which documents the SYSTEMS 32/70 CPU instruction set
and mnemonics.

o The SYSTEMS 32/27 Single Slot Central Processing Unit, publication
number 301-000400, which documents the SYSTEMS 32/27 CPU
instruction set and mnemonics.

o The CONCEPT 32/87 Reference Manual, publication number 301-000810,
which documents the SYSTEMS 32/87 CPU instruction set and mnemonics.

After a successful assembly, the user has an object module which can be output to a
subroutine library file, output to a permanent file or device medium, or cataloged
immediately into a task suitable for execution on MPX-32. Object modules can be linked
together into a single task by assembling and cataloging them in the same job (an SGO
file is the default output for assembly and default input for the Cataloger), by accessing
the Subroutine Library during a separate Cataloger run, or by using $SELECT job control
statements prior to cataloging (batch only).

1-1

The Assembler dynamically establishes both a macro storage table and a symbol table in
memory before it starts assembly. As a default option, all available memory is allocated
for the symbol table and zero for the macro storage table. The ratio of available space
allocated for macro storage can be changed. From 0 to 80 percent of available memory
can be allocated to macro storage. The percentage is specified with an OPTION
statement as described in Section 1.3.

1.2 Files and File Assignments

This section describes the input and output files used by the Assembler.
1.2.1 Source Code (PRE and SI)

Source code is assigned to logical file codes (lfc's) PRE and SI. Source is input first from
PRE and then from SI. User program source should be assigned to SI while source
consisting of non-executable assembler directives (such as SET directives) can be
assigned to PRE. The user can input source code from any device or file. The default
assignment for SI is to SYC and for PRE is to NU (the null device).

1.2.2 Macro Libraries (MAC, MA2)

The System Macro Library provides a collection of macro definitions which can be used
by source programs. The user can add macros to the system library or create his own
macro library using the macro library Editor (MACLIBR) as described in Chapter 9 of this
volume. Rules and conventions for using macros residing in a macro library are the same
as for macros defined and used only within one program, and are described in the Macro
Assembler Reference Manual. In general, a macro is accessed in a source program by
using its name in the opcode/instruction field of a source statement and supplying any
required or optional parameters in the operand field.

The System Macro Library, M_(MPXMAC, is assigned by default for assembly to lfc
MAC. A different macro library (e.g., M\MACLIB for RTM-compatible macros) can be
assigned to MAC if desired.

The Assembler also supports another macro library, MA2. This library is searched by the
Assembler for every name found in the opcode/instruction field. It is searched before
the permanent symbol table and may be useful to override an existing opcode or
Assembler directive.

1.2.3 Listing (LO)

The Assembler produces a listing that pairs hexadecimal representation of object code
with the corresponding source statements. The listing lfc is LO. An SLO file is assigned
to LO by default. Listings are further described in the Macro Assembler Reference
Manual.

1-2

o

{
% 7

1.2.4 Object Code (BO and GO)

Object code is output on the file or device assigned to lfc BO as well as to lfc GO. The
default assignment for BO is to a system SBO file which is output to the system device
defined as POD at SYSGEN or via the OPCOM SYSASSIGN command. The default
assignment for lfc GO is to an SGO file. Other utilities such as LIBED and CATALOG
will access an SGO file for the job automatically; however, SGO is temporary and will be
lost if not used in the same job.

1.2.5 Compressed Source (CS)

The Assembler will optionally accept source program input or produce source output in
compressed format. To output compressed source, assign a file or device to lfc CS.
Compressed source as input is specified by assigning the name of the file or device to lfc
SI.

If both BO and CS are assigned to SBO files, the binary output is output prior to the
compressed source output.

1.2.6 Temporary Files (UT1, UT2)

UT! is a temporary file used to hold the source text for processing on pass 2 of the
Assembler. On pass 1, the Assembler writes the source text, along with the expanded
macro text, to UT! and on pass 2 reads UTI.

UT2 is a temporary file used for the cross reference and symbol table during the
assembly.

1-3

h=1

Table -1

Assembler File Assignments

Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Assembly Assignment for Assembly Comment
Source Code PRE Default: Permanent file built ASSIGN statements If the user specifies
ASSIGN1 using EDIT or MEDIA an assignment to PRE,
PRE=MPXPRE source is read from PRE
until an EOF is reached,
Options: then source is read from SI.
ASSIGNn
_ }filename
PRE= devmnc
SI Default: Work file built using EDT>BATCH
ASSIGN2 EDIT.
SI=SYC Permanent file built EDT > BATCH jobfile For further description
using EDIT or MEDIA or see "Accessing the
Assembler”
devmnc
2
Cards ?”?BATCH {g:iobﬂle }
Other device medium Same route shown for The file or device can
e.g., magnetic tape, cards. contain compressed source.
where file was copied
from cards of a file
via MEDIA.
Interactively. See
~ "Accessing the Assembler"
Options: $SELECT can only be used
ASSIGNn In batch.
Sl= {ﬂlename
devmnc
or
$SELECT
Macro Library MAC Default: Macro libraries are Accessed automaticalily MACLIB contains
ASSIGN1 maintained or created for macro calls RTM - compatible macros.
MAC = M.MPXMAC,,U via the MACLIBR Included In the source RTMMAC contains RTM macros
utility. code, for use with the RTM
Options: Catologer (see Section 2.10).
ASSIGNI1
.MACLIB,,U
MAC={userlib,,U
.RTMMAC,,U
C MA2 'None - o
=4 « e

¢l

-

Table 1-1 (Cont'd)
Assembler File Assignments

Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Assembly Assignment for Assembly Comment
Binary Object BO and GO Defaults: If a user file is ASSIGN statements. If an SBO file fills up,
Code ASSIGN2 assigned to BO or the Assembler automatically
BO = SBO GO, it must be allocates an additional 84
GO = SGO pre-established via sectors (500 cards). If
the FILEMGR utility. other than SBO, the utility
aborts. SBO output (the
Options: default assignment for Ifc
ASSIGNn BO) is routed to the
BO-= Tﬁlename device specified as the
" |devnmc Punched Output Device
(POD) during SYSGEN (see
ASSIGNn Volume 3) or reassigned
Go-:Jfilename via the OPCOM SYSASSIGN
devnmc command. (See Volume |,

Section 4.)

SGO output is routed to

a temp file accumulated fog
a job so that the object
code can be accessed by
utilities such as LIBED

and the Cataloger.

Thus, to enter the object
module(s) directly in a
library, run LIBED. To
catalog the object
module(s), immediately
run the Cataloger.

Note that if you want to
retain output and you are
not going to catalog or
enter the object module(s)
into a library during the
same job, make a permanent
copy on the file or device
assigned either to BO or
GO.

9-1

Table 1-1 (Cont'd)
Assembler File Assignments

Previous
Input/Output Logical Assignments Processor How Specified .
Description File Code for Assembly Assignment for Assembly Comment
Compressed Cs No default. Output is generated in
Output ASSIGNn compressed form. See
Cs- Jfilename the Macro Assembler
devnmc Reference Manual.
Listed Output- LO Default: N/A If an SLO file fills up
Source, Object, LO = SLO (comes to EOF) the
errors, if any. Assembler allocates an
Options: extra 2000 lines. If the
allocation fails or if
LO-= {filename LO is assigned to other
devnmc than SLO, the Assembler
aborts in this situation.
Temporary uTl ASSIGN3 Temporary file for
Source UTI1=DC,100 source text on pass 2.
Temporary uT?2 ASSIGN3
Source Table uUT2=DC,200,U
- o o
y % v 7

1.3 Options

The options used by the Assembler include control options and macro percentage
options. The default output control options are a listing, an object file, and a cross-
reference. The additional options are the compressed source output and the object
output to an SGO file. The macro percentage option is defaulted to 0 percent. Options
10-18 inclusive indicate a percentage of from 0-80. If more than one percentage is
specified, the lowest percentage is used.

Option Description

1 No listed Output (Source Listing)

2 No Punched Output (Binary Object)

3 List Internally Generated Symbols with Cross Reference

4 No Symbol Cross-Reference

5 Binary Output Directed to SGO File

7 Compressed Source Output

8 SI Not Blocked

9 LO, BO, and CS Not Blocked

10 Allot 0 Percent to Macro Storage

11 Allot 10 Percent to Macro Storage

12 Allot 20 Percent to Macro Storage

13 Allot 30 Percent to Macro Storage

14 Allot 40 Percent to Macro Storage

15 Allot 50 Percent to Macro Storage

16 Allot 60 Percent to Macro Storage

17 Allot 70 Percent to Macro Storage

18 Allot 80 Percent to Macro Storage

19 Outputs Symbolic Information to the Cataloger for use by the
Symbolic Debugger

20 Generates Replacement 15,X'nn' Instructions for Call Monitor
Instructions

1.4 Accessing the Assembler (LY

To access the Assembler as part of a batch job, create a job file using the EDITOR,
punch cards, or other media. The job file can be read to SYC and the job activated in
several ways:
from the OPCOM console:

" <Attention>"

??BATCH F,jobfile
D,devmnc

from the OPCOM program:

TSM>OPCOM

??BATCH F,jobfile
D,devmnc

from the EDITOR:

TSM>EDIT
. .

EDT>BATCH [jobfile]

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate the Assembler and run online, use the TSM ASSIGN commands to make
Assembler assignments equivalent to those preceding the EXECUTE ASSEMBLE
command on a jobfile, then proceed to issue Assembler directives. (SELECT and
OBJECT statements are not available when running the Assembler online.)

TSM>ASSEMBLE
ASS>
At the Assembler prompt, enter Assembler directives and source code.

1.5 Assembler Directives

See the Macro Assembler Reference Manual.

1-8

1.6 Listings

The Assembler produces a listing of source code, object code equivalents, symbol cross
references, and error diagnostics.

Typical Assembler output is shown and described in Chapter 7 of the Macro Assembler
Reference Manual.

1.7 Errors and Aborts

Errors are detected during both passes of Assembler processing. They are described in
Appendix H of the Macro Assembler Reference Manual. Abort codes are described in
Appendix C of this volume.

1.7.1 Aborts

When LO is assigned to an SLO file and end-of-file is detected, an additional allocation
of 2000 lines will be attempted. If the attempt is unsuccessful or if LO is not assigned to
an SLO file, the assembly will be aborted with abort code ASO03.

When BO is assigned to an SBO file and end-of-file is detected, an additional allocation
of 500 cards (84 sectors) will be attempted. If the attempt is unsuccessful or BO is not
assigned to an SBO file, the assembly will be aborted with abort code AS02.

A macro library is not required by the Assembler, but if one is provided, it must be in the
proper format if an attempt is made to read it. If the format is invalid, the assembly is
aborted. If a macro prototype from a macro library exceeds the remaining size of the
macro storage table, the following message is printed on the listing just preceding the
macro call, and the macro call is flagged by the Assembler:

THE FOLLOWING MACRO CAUSED A TABLE OVERFLOW
In some cases, a cross-reference is not generated because there is not enough memory
available to sort the cross-reference information. If this occurs, the following message
will be printed on LO:

¥XREF COULD NOT BE PERFORMED

There is not enough memory to store required macros and the symbol table. See Sections
1.1 and 1.3.

If the number of symbols in a program exceeds the maximum number of symbols that the
symbol table can hold, the following message is printed on the file or device assigned to
LO:

SYMBOL TABLE OVERFLOW

1-9

If the macro table size is exceeded due to too many bytes of in-line macros, in-line
FORM skeletons, repeated code, or macro-call argument data, the following message is

printed on the file or device assigned to LO:

MACRO TABLE OVERFLOW

1.8 Examples

Example 1 - In the sequence, the user assembles source code from a file name SJ.MEDIA,
outputs object code to a file name OJ.MEDIA, then catalogs the object into a load
module file named MEDIA. SLO output for the job is directed to a file named MOUT.

$JOB SJ.MEDIA OWNER SLOF=MOUT

SOPTION 17
SALLOCATE 16000

$ASSIGN3 UT1=DC,400
SASSIGN3 UT2=DC,800,U
SASSIGN! MAC=M.MACLIB,,U
$A1 BO=0OJ.MEDIA

SAl SI=SJ.MEDIA

SEXECUTE ASSEMBLE

SAl SGO=0J.MEDIA

SEXECUTE CATALOG
FILES 64

BUFFERS 16
ENVIRONMENT MULTICOPY
ASSIGN2 *IN=SYC

ASSIGN2 *OT=SLO,500
OPTION PROMPT

CATALOG MEDIA
$EOJ
$$

(Allocates 70% of Assembler address
space for macros)

(Allocates 16,000 bytes beyond minimum
Assembler requirement)

(Temporary file for Assembly)

(Temporary file for Assembly)

(Uses RTM-compatible macro library)

(Object code is now
cataloging)

assigned for

(Up to 64 files can be allocated
dynamically)

(Up to 16 buffers can be allocated
dynamically) :

(More than one copy of MEDIA can be
active at the same time)

(Default assignment for MEDIA)

(Default assignment for MEDIA)

(Provides MED prompt automatically in
interactive environment. User does not
have to use the TSM OPTION PROMPT
command)

2.6 Cataloger Directives

Cataloger directives are summarized below and described in detail on subsequent pages.

For recommended organization of Cataloger directives and job control statements see
Section 2.4.1.1 for a nonsegmented task and Section 2.4.2.1 for a segmented task.

Most Cataloger directives can be abbreviated to four characters. ASSIGN statements
following the CATALOG directive may be abbreviated to Al, A2, A3, or A4. PROGRAM
and PROGRAMX must be completely spelled out.

If a directive or parameter can be abbreviated, the abbreviation is indicated in syntax
statements by under lining.

Legal delimiters are commas and blanks. Commas need be used only where shown.

2-35

Directive

2 - 5 g ABSOLUTE

yR 5? ALLOCATE

39
40

ASSIGN1

ASSIGN2

A2 ASSIGN3

A3
45

44
45
46

46
40

ASSIGNY

BUFFERS

CATALOG

ENVIRONMENT

EXCLUDE

EXIT

FILES

2-36

Function

Specifies an absolute origin for the DSECT.
Allocates additional memory for main load module.

Equates permanent disc files (optionally unblocked) with lfc's used
in task to be cataloged.

Equates system SBO, SLO, SYC, or SGO with Ifc used in task to -

be cataloged.

Equates device (optionally unblocked) with Ifc used in task to be
cataloged. Default for tapes and discs is blocked. Assigns a
temporary disc file and its size (see Appendix A). Option for
unblocking applies only to these units.

Equates lfc in task to be cataloged with existing lfc. Equates the
assignment for this lfc to existing lfc's device assignment.

Establishes number of blocking buffers required for dynamic
assignments in non-shared tasks. In a shared task, establishes
total number of blocking buffers required.

Identifies and describes the load module(s) to be cataloged.

Describes memory class, residency, map size, and sharing or
multicopying requirements of task.

Specifies global names in library object modules not to include in
load module even though referenced in object modules being
cataloged.

Terminates Cataloger directive input.

Establishes number of dynamic disc file assignments in non-shared
task. In a shared task, establishes total disc file assignments.

.

mctuoe 47

LINKBACK 4 7

LORIGIN & 7

OPTION ,«::? @3
ORIGIN 4 @

PASSWORD 49

PROGRAM 46(
PROGRAMX S5O

SYMTAB 50

USERNAME S{)

ERrRoks S\

Specifies global names in library object modules to include in load
module being cataloged even though they are not referenced in
the object modules being cataloged on SGO.

Specifies overlay load modules at lower levels to link to the
current overlay load module.

Establishes new overlay origin and new overlay level.

Specifies default options for the cataloged load module.
Establishes new overlay léad module origin.

Provides Cataloger with WRITE access to previously protected
disc file containing load module or supplies or changes password

protection.

Specifies which object modules from SGO to include in a load
module.

Specifies that no object modules from SGO can be included in a
load module.

When a load module for a task is cataloged separately, specifies
that symbol table references saved previously via CATALOG SYM
options be used.

Specifies user name associated with all default and dynamic files

associated with task. (May be overridden by JCL USERNAME
statement.)

2-37

2.6.1 The ABSOLUTE Directive

The ABSOLUTE directive allows the user to build an absolute load module (one that
requires no relocation by MPX-32 at load time). The user is responsible for insuring the
base address specified is higher than MPX-32 and the TSA. If the base address results in
an overlap between the task and MPX-32 or the task's TSA, the task will not load.
Memory between the end of the TSA and the start of the task is still allocated to the
task and is available for use by the task.

Syntax:
ABSOLUTE [base]
where:

base is a hexadecimal logical address that is to be the base address of the task.
This address is rounded up to the nearest 512 word boundary. If no base is
supplied, a value of 40000(¢) is used.

Note: The CSECT origin is not effected by this directive. The transient area option on
the CATALOG directive (TRA=X) has no effect when the ABSOLUTE directive is used.
Multiple ABSOLUTE directives are not allowed.

2.6.2 The ALLOCATE Directive

A task is always allocated enough memory to accommodate a cataloged load module.
ALLOCATE is used to increase the memory allocation for a task at execution time.
Other means of allocating more memory are the SALLOCATE or TSM ALLOCATE
commands, which are runtime-specific for a particular task and the M.GE service, used
within a task, to obtain memory dynamically.

The ALLOCATE directive used when cataloging a task gets additional memory every
time the task is run, i.e., it is static. The allocation cannot be reduced at runtime or by
dynamic service calls.

For further description of memory allocation in the logical address space of a task, see
Volume 1.

Syntax:
ALLOCATE bytes
where:
bytes specifies the number of additional bytes (in hex) to allocate to the task.

Note: If the size of the operating system plus the size of the task plus the size of the
allocate equals more than 128KW, the task cannot be loaded and an abort condition will
occur.

2-38

~

-

2. THE CATALOGER (CATALOG)

The Cataloger produces load modules that are ready to activate in one of three task
operating environments: real time, interactive, or batch.

2.1 General Description A
To produce the desired load module, the user creates a job stream of job control
commands and Cataloger directives. A careful distinction must be made between job
control commands for the job that executes the Cataloger, and directives which will
reside in the cataloged load module.

The Cataloger creates a load module which contains the transfer address of the task, a
Resource Requirement Summary Table, and relocation matrices, in addition to the
program code.

The load module resides in a permanent system file of the same name specified in the
CATALOG directive.

Assignment statements occurring between the SEXECUTE CATALOG command and the
CATALOG directive cause the Cataloger to create entries in the Resource Requirement
Summary Table (see the MPX-32 Technical Manual, Chapter 2) located in the load
module file (see the MPX-32 Technical Manual, Chapter 6). Directives and assignment
statements to the Cataloger are coded without the dollar sign ($). All directives must
begin in column one of their respective line.

A sample job stream follows:

$JOB TESTCAT DALE

SALLOCATE 28000 } Job Control Commands
SEXECUTE CATALOG

A2 INP=SYC

A2 OUT=SLO, 100

ALLOCATE 18000 Directives which will be cataloged
OPTION PROMPT in load module TEST!.

CATALOG TESTI

$EO3J

A simple load module is illustrated in Figure 2-1.

A4

*I-Z 2an314

S[npojy peo ® 3urdoreie)

€908

LOAD MODULE
INFORMATION
DEFINED

ASSEMBLER

OR
COMPILER OBJECT
RUN MODULE
(EXECUTE
ASSEMBLE)

11T
I
V/11111111101111))
1111111111711
iz,

OBJECT
CODE

LOAD MODULE ON
DISC READY TO
ACTIVATE ON MPX-32

DEFAULT RESOURCE
REQUIREMENTS
DEFINED

RELOCATION
MATRIX

(B 2.1.1 Load Module Information

The Cataloger ENVIRONMENT and CATALOG directives establish the following special
characteristics for a task:

Residency - a task defined as resident either remains in physical memory
unless it aborts (RTM-compatible) or remains resident until it exits or aborts
(MPX). In either case, it is not a candidate for swap to disc. Default is
nonresident, i.e., a task is swappable.

The task needs to execute in a special class of physical memory. E=requires
Class E memory; must execute within the first 128KW of memory. H=requires
high-speed memory; must execute in H or E. S=the task can execute in slow
memory or in any other class of memory that is available; this is the default
definition.

Multicopying - the task can be active concurrently in several logical address
spaces. The entire task is copied to physical memory each time it is
activated.

Sectioned Sharing - the task can be active concurrently in several logical
address spaces. The CSECT area of the task is copied into physical memory
once and a new DSECT area is established in physical memory each time the
task is activated. DSECT areas are deallocated as sharers exit. CSECT
remains allocated until all sharers exit.

No Sharing - the task is unique. Only one copy of the load module can be
active in one logical address space at a time (the default).

Privilege - any task which accesses a privileged system service must be
cataloged as privileged in order for the service to be executed. A privileged
task is allowed to write into any area of memory in its logical address space,
including the system area, and to execute the 32/75 privileged instruction
set. Default is unprivileged.

Base Priority - the priority (1-64) at which the task is executed if activated in
a real time environment (by the OPCOM ACTIVATE or ESTABLISH command,

another task, a timer, or an interrupt). If activated via TSM or in the
batchstream, this priority will be overridden.

Unless defined otherwise with the ENVIRONMENT directive, a task is:
nonresident,
unique,

executable in any memory class available (S, H, or E).

If not specified with the CATALOG directive, the base priority of a task is 60 and its
status is unprivileged.

(For further description of multicopying and sharing, see Section 2.1.3.)
The information on residency, priority, etc., is output by the Cataloger at the beginning

of the main load module for a task so that it is available for the MPX-32 allocator and
execution scheduler immediately upon activation.

% 7

2.1.2 Resource Requirements

The resource requirements for a task include all files and devices used by the task:
default assignments
runtime assignments that override the defaults

runtime assignments for required or optlonal files or devices that do not have
default assignments

dynamic assignments

A task's default resource requirements, if any, are established by ASSIGN directives used
when the main load module is cataloged. Runtime resources (required, optlonal or

overriding) are established by the user with ASSIGN directives when the task is activated
(at runtime).

Another type of resource requirement is for files or devices that are allocated
dynamically by the task via M.ALOC service calls. See Volume 1, Chapter 7.

A prerequisite for any blocked I/O used by a task is a blocking buffer, which the allocator
establishes in the Task Service Area (TSA). (Files on disc and magnetic tape are assumed
to be blocked unless you specnfy otherwise when using an ASSIGN directive or M.ALOC
service call.) Files also require table entries in the TSA.

The Cataloger preserves resource information on the default files and devices used by a
task, including the number of blocking buffers and table entries that are required. At
activation, runtime-assigned files and devices are allocated as specified (overriding file
and device assignments are merged into the defaults), so that the appropriate memory is
allocated for table space and buffers. However, if files and/or devices are allocated
dynamically by the task, you must indicate the number of additional file table entries and
buffers required.

Cataloger FILES and BUFFERS directives are used to account for dynamic assignments.
The FILES directive specifies the number of files and devices allocated dynamically (and
thus the number of table entries to leave room for) and the BUFFERS directive specifies
the number of blocking buffers required for blocked files or device media accessed
dynamically.

Resource requirements for shared tasks require special treatment because several
concurrent sharers of the task can use varying runtime assignments that imply varying
allocation of blocking buffers and file space. FILES and BUFFERS directives for
cataloging shared tasks must reflect the maximum number of files and devices that can
be assigned: default (or override), required, optional, and dynamic. This information is
required by the Cataloger in order to ensure that the TSA (Task Service Area) for each
sharer is the same size and that the DSECT section of the shared task begins at the same
location in each sharer's logical address space.

2-5

2.1.3 Absolute Load Modules

The Cataloger provides the capability for a user to build an absolute load module. An
absolute load module requires no relocation by the loader thereby reducing the allocation
time for the task.

The ABSOLUTE directive instructs the Cataloger to resolve all relocatable addresses
relative to the base address supplied by the user in the directive. The user is responsible
for selecting a base address large enough to be beyond the TSA (task service area) for the
task. The TSA is allocated after the end of MPX-32 and varies in size based on the
number of files and buffers required in the task.

Tasks that are cataloged as absolute may require recataloging if the size of MPX-32
changes. If there is an overlap between MPX-32 or the task's TSA and the absolute task
itself, the task will be aborted during the loading phase.

2.1.4 Sectioned versus Nonsectioned Tasks

The Cataloger supports both sectioned and nonsectioned tasks. Nonsectioned tasks are
allocated in a contiguous area in a user's logical address space (in effect, they are
comprised of one large DSECT). You can catalog nonsectioned tasks as multicopied, and
they will be copied into physical memory to support multiple concurrent activations; or
nonsectioned tasks can be cataloged unique, so that only one activation - exit can occur
at a time. Nonsectioned tasks cannot, however, be shared in the sense that sectioned
tasks can be.

Sectioned tasks use Assembler CSECT and DSECT directives to define pure code and
data (CSECT) and impure data (user dependent) sections of the task. The Cataloger
merges all CSECT's into a write-protected allocation in upper memory and all DSECT's
into a writable allocation in lower memory just above the task's TSA (Task Service
Area). Sectioned tasks can take advantage of the CSECT/DSECT sectioning to write-
protect pure code and data, but the primary purpose of CSECT/DSECT is to support
sharing. If shared, the CSECT of the task is copied into memory once and only the
DSECT is recopied with subsequent activations.

A sectioned task can be defined as shared, multicopied, or unique via an ENVIRONMENT
directive. A nonsectioned task can be defined as multicopied or unique only. The default
for any task is unique as described previously.

Footnote: A task can be developed with CSECT and DSECT directives that are NOP'd
for assembly, so that if use or size increases to a point where it is more efficient to use
the 8KW or 2KW CSECT than to multicopy, the user can remove the NOP's from the task
and recatalog to have the Cataloger build the CSECT and DSECT areas. If using
CSECT/DSECT to protect pure code and data, the same memory allocation described for
sharing is made by the Cataloger.

2-6

-

There are facets of memory allocation that should be considered in implementing
CSECT/DSECT. The minimum allocation for a CSECT area is 8KW on a 32/7x and 2KW
on a CONCEPT/32; DSECT is allocated in a separate map block along with the TSA. This
means that the minimum space used for the task's DSECT is 8KW or 2KW, including TSA
size. This allocation is required by the 8KW map block granularity of the 32/7x or the
2KW map block granularity of the CONCEPT/32. If a task is less than 8KW or 2KW
total, and would thus require only one 8KW or 2KW DSECT, multicopying and
nonsectioning may allow more efficient use of memory.

2.1.5 Segmented versus Nonsegmented Tasks

Two types of load module can be part of one task. There is one main load module. The
name supplied with the CATALOG directive for this module is the name used to activate
the task, determine its status, etc. There can be any number of overlay load modules
associated with a task, each constructed with a separate CATALOG directive. The main
and overlay load modules reside in separate disc files and are linked to each other via
system service calls within the object code.

If a task is comprised of a main load module and overlay modules, it is segmented, or
overlayed. If it does not use overlays, it is "nonsegmented".

2.1.6 Object Modules and Load Modules

Each load module is composed of one or more assembled or compiled 'modules' of object
code. For purpose of this discussion, an object module is the product of assembling or
compiling 'n' lines of source code terminated by an END directive or equivalent, and the
source module is the source code that forms the object module.

Object modules are normally named. The object module that contains a starting address
for the task is defined as such by providing a transfer address that indicates where to
begin execution.

It is generated in the Assembler by providing the transfer address with an END
directive. If more than one object module has a transfer address, the Cataloger takes
the transfer address for the last object module cataloged as the transfer address for the
module.

Since an object module produced by an assembly or compilation is identical in format to
any other object module, source modules for a task can be written in different
languages. The object modules produced by assembly or compilation can be interspersed
when they are cataloged into a task.

Object modules are normally output to SGO by the Assembler or compiler. They can be
accessed automatically for cataloging or they can be routed to a file and incorporated in

a subroutine library. Object modules are retrieved by the Cataloger as described in
Section 2.1.7.

Note: The load module files created by CATALOG are the proper size and are file type
CA.

2.1.7 Password-Protected Load Modules

Read only (RO) password protection can be supplied for a load module file via the
Cataloger PASSWORD directive. Or RO password protection may be supplied for a load
module file by using the FILEMGR utility. If a load module file is RO protected, you
must use a Cataloger PASSWORD directive when you catalog or recatalog the load
module.

If a task uses overlay load modules, each module may have a unique password.

Password only (PO) protection should not be supplied for a load module file. The task
will not activate.

2.1.8 The Cataloging Process

The Cataloger makes two passes through SGO, the user library (if assigned), and the
system subroutine library.

2.1.8.1 First Pass

On the first pass, the Cataloger searches through the file or device assigned to SGO -
normally the temporary system file SGO. (See File Assignments.) It builds a table that
includes all REF's and DEF's found in SGO object modules. A REF is output by the
assembler or compiler when it encounters an EXT directive in the source. A DEF is
output by the assembler or compiler when it encounters a DEF directive in the source.

If the Cataloger finds a REF on SGO with no corresponding DEF, it goes to the user
library. It adds DEF's it finds that match the REF's on SGO. It also adds any REF's it
finds within the object modules that contain the DEF's it was looking for, to the REF's in
the table. If it finds a REF in the user library with no corresponding DEF, or cannot find
a SGO REF on the user library, it searches the system subroutine library. It adds DEF's
it finds there that match the list of REF's it has built. It adds any REF's it finds within
the object modules that contain the DEF's it was looking for, to the REF's in the table.

The Cataloger now has a table that contains the names of all DEF's and REF's that were
found in the order they were found (SGO, user library, system subroutine library).

A7
{

N

2.1.8.2 Second Pass

The Cataloger retrieves an object module for the first occurrance of each DEF. (SGO,
user library, or system subroutine library.) It resolves all matching REF's to these
DEF's. If it has found two DEF's with the same name, it takes the first object module
that contains the DEF. (It notes duplicate DEF's on the listing output at the end of the
Cataloger run.) If any REF's cannot be resolved to DEF's, they are also noted on the
listing. Object modules are retrieved from the SGO in the order they are found.

2.1.8.3 Common References

The Cataloger follows the same procedure in the first pass for common block definitions
and references.

In the second pass, uninitialized common is allocated based on the largest area defined
for a given block. Initialized common is allocated based on the size required by the first
function code that initializes the block.

Note that this 'common' is not Global (GLOBALOO-GLOBAL99) or DATAPOOL. Global
and DATAPOOL areas are allocated separately in memory. This is common allocated
within the task itself, e.g., within a FORTRAN BLOCKDATA subprogram and/or by
COMMON op codes in the source.

2.1.8.4 Included or Excluded Object Modules

The INCLUDE directive can be used to specify object modules from a library to include
in a load module, even though they are not referenced on SGO. These are added to the
first pass REF's in the table built by the Cataloger. There is also an EXCLUDE
directive, which specifies DEF's in a library to exclude, even though they are referenced
on SGO. These are kept on the table and honored by not adding references to them in the
first pass.

2.1.8.5 Selective Retrieval from SGO

The PROGRAM directive can be used to specify names of object modules to include from
SGO. Since if no PROGRAM (or PROGRAMX) directive is used, all object modules are
taken, this is a means of retrieving SGO object modules selectively for a load module.
PROGRAMX excludes all object modules on SGO from a load module.

2.1.8.6 Symbol Tables (SYMTARB's)

A symbol table is built for each load module that is cataloged. It is the table described
previously with all references as resolved from the second pass. The symbol table is used
if a segmented task is being cataloged. Any external references not resolved for one
load module can be resolved when all SYMTAB's are present. SYMTAB's must be saved
and restored when a segmented task is cataloged in stages.

Symbols in the symbol table include all external references, all global symbols, and all
program names.

2.1.9 Allocation and Use of Global Common and DATAPOOL Partitions

Global common partitions (GLOBAL00-GLOBAL99) named in the object modules are
resolved directly to memory locations in system common defined via SYSGEN or the
FILEMGR. How DATAPOOL is structured and resolved depends upon a DATAPOOL
dictionary that the user creates with the Datapool Editor utility (DPEDIT).

Labeled common blocks are identified as Global by the name "Global" and "Globaldd"
where dd is two decimal digits from 00 through 99. When a common block with one of
these names is encountered by the Cataloger, space is not allocated for it in the module's
area. Instead, all references to the common block are linked to the core partition of the
same name. Therefore, a Global common memory partition must be created before a
program that references it can be cataloged. If the definition of the partition changes,
the programs that reference it must be recataloged.

DATAPOOL references in an object module are included in the table of external
references built by the Cataloger and they are resolved to locations in the DATAPOOL
area of system common according to the DATAPOOL dictionary supplied by the user (see
File Assignments).

The memory allocation unit on the 32/7x is 8KW and on the CONCEPT/32 is 2KW (one
mapblock). Global and DATAPOOL are memory partitions which can be defined at
SYSGEN or dynamically via the File Manager. In the latter case (dynamically), partitions
must be allocated in 16 page (8KW or 2KW) increments. In SYSGEN, protection granule
allocation is possible, providing the means to define multiple partitions within a
mapblock; however the allocation unit for the task remains | mapblock. The unused
partitions in a mapblock are write protected and are not included in the task's logical
address space.

For further description of Global common and DATAPOOL, see Volume 1. See also the
DATAPOOL editor, Volume 2, Chapter 3.

2.2 Files and File Assignments

Figure 2-2 provides an overview of Cataloger input sources and output routes. The path
taken by default if no special assignments are made for cataloging is shown with
arrows. It should be noted that the assignments covered in this section are external to
the task being cataloged and apply only to the cataloging process itself. Default
assignments used by the task which is being cataloged (internal assignments) are made
via Cataloger ASSIGN directives within the task as described in Section 2.6.

JOB OBJECT OBJECT SYSTEM USER DATAPOOL
IFILE CODE CODE ON SUBROUT INE SUBROUTINE]| | DICTIONARY
ON ON SGO FILE/ LIBRARY L IBRARY
SYC DEVICE (MPXLIB)
l
CATALOLG

!)

LOAD DUPLICATE/ PRINTER SYMBOL
MODULE SUBSTITUTE LISTING TABLE
ON DISC LOAD MODULE MAP AND FILE
ON CARDS ERRORS
820644

Figure 2-2. 1/O Overview

Job File - Contains Job Control Commands, including ASSIGN's, SELECT's, etc., and
Cataloger directives for the job. Cataloging can be one of several parts of a job
(including for example, compilation or assembly), or a single job using code stored on a
file, device, or library. For the required sequence of Cataloger directives, see USING
THE CATALOGER, Section 2.4. For sample job files used in cataloging, see Section 2.8.

The alternative routes for reading the file to SYC (interactive and batch) are described
in the File Assignment Table, Section 2.2.1, and Activation, Section 2.5.

Object Modules - The result of a compilation or assembly. Object modules can come
from SGO (same job as a compilation or assembly), from a permanent file or device
medium produced during a compilation or assembly, from a system library file (MPXLIB),
or from one or two user-built subroutine library file(s).

2-11

System Subroutine Library - A file named MPXLIB. If the SYSTEMS Scientific Runtime
Library has been purchased, it is delivered on magnetic tape and output to disc in the file
named MPXLIB. MPXLIB contains FORTRAN math subroutines and I/O formatting
routines. These 'external' object modules can be accessed by object modules written in
various languages, including Assembler.

The user can add object modules (subroutines) to the Scientific Runtime Library or
modify the library via the LIBED utility program. The Cataloger searches MPXLIB by
default (LIS=MPXLIB). (The directory for MPXLIB is on a file named MPXDIR.) The
user can develop a library of user object modules via LIBED and assign it instead of
MPXLIB. (See next description.)

User Subroutine Library - A library of subroutines or programs (object modules) built by
the user after compilation or assembly by using the LIBED utility. The user can create
as many subroutine libraries and associated directories as he needs. The number of these
libraries and directories that can be assigned and accessed during a particular CATALOG
session is controlled by a variable set when the CATALOG program was assembled. The
maximum number of user libraries available is six, therefore, the maximum number of
subroutine libraries and associated directories that can be accessed is seven, (six user
libraries and the system library). If assigned to lfc LIS (and LID), a seventh user library
is searched instead of the library named MPXLIB. The lfcs for the user libraries are Lnn
(and Dnn), starting with LOl, etc. The subroutine libraries are searched in the lfc order
LIB, LO1, L02,...,L05, and LIS. The library associated with lfc LIB (and DIR) has the
distinct characteristic of always being searched before the other user libraries (Lnn) and
the system subroutine libraries. This provides the capability of establishing an
installation-wide subroutine library as an extension to the system subroutine library.

Note: Users who have acquired the source for the CATALOG
program may wish to adjust the maximum number of user
libraries for their particular requirements. The equated
variable MAXULIB located at the beginning of the program
contains the specified number. The CATALOG program is
nominally distributed with a maximum of six user libraries.

Users who have a universal subroutine library may wish to
recatalog the CATALOG program -to set the lfc LIB (and
DIR) to default to their subroutine library.

DATAPOOL Dictionary - A file built via the DPEDIT utility that contains names and
locations of DATAPOOL variables. Allows the Cataloger to find DATAPOOL locations
in common memory when DATAPOOL variable names are used in the task being
cataloged. More than one dictionary can be built with DPEDIT. It is up to the user to
assign the appropriate dictionary for his task when it is cataloged.

Load Module - A cataloged task that is ready for execution. The load module is normally
output to disc as a system file; however, output can be suppressed or directed to cards or
to a non-system file or device via Cataloger options. (See OPTIONS, Section 2.3.)

Printer Listing; Load Module Map and Errors - These are described in the LISTINGS
section. Can be suppressed. See OPTIONS.

Symbol Table (SYMTAB) - This is the mechanism for resolving external references. Used
when cataloging a task with overlays in separate Cataloger runs.

2-12

it)
N

2.2.1 File Assignments Chart

Table 2-1, columns 1-3, describes input files used by the Cataloger, their associated file
codes, if any, and default assignments, if any. Columns 4-6 relate the Cataloger input
files to previous use of other processors as applicable. Where it is feasible to override a
default assignment, or to supply more files than the defaults accommodate, columns 3-6
describe options. Output files are also included.

2-13

Table 2-1

N
— Cataloger File Assignments
=
Detfault and How Built
Cataloger Optional (Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Cataloging Assignment) for Cataloging Comment
Input
Object SGO Default: In assembly or compilation, Cataloger uses the SGO Compilation or
modules from SGO=SGO default assignments for file associated with the Assembly:
compilation object modules are: job for object code by SGO output is temporary.
.or assembly ' default. See "device" If you want to retain
GO=SGO (temp file for job) for SBO. output and you are not
going to catalog or enter the
BO=SBO (temp file output to object module(s) into a
card punch) library during the same
job, make a permanent copy.
See options next.
To enter the object
module(s) directly in
a library, run LIBED.
Default input assignment is
from SGO (LGO=SGO).
Option: In assembly or compilation, Change SGO assignment,
SGO=filename change GO or BO assignment e.g.,
disc to a file, e.g., $ASSIGN1 SGO=MYFILE
$ASSIGN]1 GO=MYFILE or
Use $SELECTF and $OBJECT, The object module(s)
e.g., from. the file are read
SOBJECT onto the SYC file
$SELECTF MYFILE with the job (via
$SELECTF) and
automatically
transferred by job
control to SGO because
of the SOBJECT directive.
Option: Change Go assignment, e.g., Change or add assignment, The Cataloger accesses
SGO=device ASSIGN3 GO=MT the specified device

or
Use default BO assignment to
card punch.

e.g.,
$ASSIGN3 SGO=MT

or
Use $SELECTD and $OBJECT,
e.g.,

SOBJECT

SSELECTD MT

for object modules

The object module(s)
from the device are
read onto the SYC file
and transferred to SGO
as in SELECTF above.

/

{
% 2

s1-¢

Table 2-1 (Cont'd)

Cataloger File Assignments

Default and How Built
Cataloger Optional (Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Cataloging Assignment) for Cataloging Comment
Object LIS LIS=MPXLIB {password],U Via LIBED utility, where MPXLIB/MPXDIR is Object modules
modules from default output assign- searched automatically (subroutines) for MPXLIB
System ments for library object during Catalog, whether can come from
Subroutine modules are: another assignment to Math Subroutine
Library and LIB and DIR is made or Library, optionally
Library LID LID=MPXDIR Password],U LIB=MPXLIB not. (See below.) with added user
Directory DIR=MPXDIR object modules; or a
or user can create and
Option: user library as Original SUBLIB is option- name his own library
User Library described below. tionally contained on of object modules when
and related FORTRAN installation tape he used LIBED and assign
directory as Math Subroutine Library it.
Object Option: Via LIBED utility, where The specified user library
modules from Lnn Lnn=user library, user supplies his own LIB and directory will be
user library LIB assword],U and DIR output assign- searched during Cataloging
and related LIB=user library, ments. in addition to the library
directory. Dnn Jpassword],U and directory assigned to
DIR LIS and LID.
Dnn=user directory,
,ﬁ)assword],U
DIR=user directory,
password],U
DATAPOOL DPD No default. If The DATAPOOL dictionary ASSIGN1 DPD-=dictionary The name of the
variables DATAPOOL variables is built via the DPEDIT dictionary that
used in used in object utility, where the DPD when the main load module corresponds to
object modules, use: directive is used to is cataloged. variables referenced
modules assign a file for the in the cataloged task
DPD-=dictionary dictionary. A device is must be supplied in
not acceptable. the main load module
of the task.
Global N/A N/A Global common memory N/A The Cataloger

Common Areas

partitions are defined

via SYSGEN or the
FILEMGR, with internal
structure (position of

data within a common area)
defined entirely by the
user,

determines the
location of a GLOBAL
name and resolves
references to its
location in common
memory.

91-¢

Table 2-1 (Cont'd)

Cataloger File Assignments

Default and How Built
Cataloger Optional (Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Cataloging Assignment) for Cataloging Comment
Symbol Table N/A N/A Previous run of the Use the SYMTAB directive
as Input Cataloger. See below. and specify the symbol
table file with SELECT,
e.g.
SYMTAB
SSELECTF SYMFILE
Symbol Table SYM No default. By Cataloger. SYM assign- Use the SYM option of the
as Output : ment must be made before CATALOG directive and
SYM = }filename using SYM option to build assign a file or device
devmnc table. to SYM, e.g.,
ASSIGN] SYM=SYMFILE
Job File SYyc SYC=SYC Work file built using EDITOR>BATCH
EDITOR. N
EDITOR>BATCH jobfile For further
Permanent file built description see
using EDIT or MEDIA. or "Accessing the
Cataloger®.
Cards. 29 | D,devmnc
PPBATCH {F,jobﬁle }
Other device medium e.g.,
magnetic tape, where job- Same route shown for
file was copied from cards.
cards or a file via
MEDIA.
Interactively. See
"Accessing the Cataloger”.
Temporary Y ASSIGN3 #5Y=DC,200 Internal file for ASSIGN3 #5Y=DC,200 Used to generate Symbolic
Symbolic - Cataloger Debug information during
Debug File load module construction

e
O

L1-¢C

Table 2-1 (Cont'd)

Cataloger File Assignments

Default and How Built
Cataloger Optional (Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for C?taloging Assignment) for Cataloging Comment
Output
Load Module N/A N/A By Cataloger. Can be main In CATALOG directive, Output to a file can
File load module, or in seg- user specifies name of be suppressed by the
mented task, an overlay the load module. This is NOP option on the
load module. also the name of the file CATALOG directive.
on which the Cataloger
builds the load module.
Duplicate or SBM Default of SBM=CP is By Cataloger. By using the CAR option For duplicate or
Substitute specified via the on the CATALOG command. substitute output,
Load Module CAR option on the Card output can be CAR option must be
in Card CATALOG directive. redirected to a file or used.
Format device other than the
Option: card punch by assigning
a different device to
Assign a file or the ifc SBM, e.g.,
device to SBM, e.g.,
SBM-=filename ASSIGN1 SBM=filename
Listing: SLO SLO=SLO, 100 By Cataloger. Outputs a Default output is to 100
Module Map map which outlines struc- record SLO file, which is
and Errors ture of load module and output to the device

Option:

ASSIGN1 SLO=filename
ASSIGN3 SLO=devmnc

defines number of records
and errors, if any. For
further description, see
Listings and Errors
sections.

assigned as system LOD.
Output can be redirected
to a file or device via
ASSIGN1 or ASSIGN3
SLO=statement,

Output of the module map
can be suppressed by
using the NOP option on
The CATALOG directive.

2.3 Options

OPTION 1 is used by the Cataloger to suppress the automatic subroutine library
search for external references. Therefore, all necessary object
modules must be explicitly specified via INCLUDE directives.

OPTION 19 is used by the Cataloger to include symbolic debug information which
is placed at the end of the load module (Note - this does not affect
memory requirements, it only increases disc usage).

Other options for cataloging a load module are specified as parameters of the CATALOG
directive. Their directives are:

NOM suppress printing the load module map.

NOP suppress load module output to the permanent system file
named in the CATALOG command.

CAR output the load module in punch card format to the file or
device specified by the logical file code SBM. The file will
be blocked. No EOF's are written until the end of the load
module.

Options for the task being cataloged can be specified with the OPTION directive (see
Section 2.6.16).

2.4 Using the Cataloger

This discussion is broken into two major areas, one which describes cataloging concerns
pertaining to a nonsegmented task (one load module, no overlays) and a second major
area that describes the more complex concerns when a task is segmented.

2.4.1 Cataloging a Nonsegmented Task

For a description of how the Cataloger resolves external references and allocates
common blocks, see Section 2.1.8.

2.4.1.1 Job Organization

The following organization of Cataloger and job control directives reflects all possible
directives pertaining to a nonsegmented task. It flags directives that are optional by

enclosing them in brackets. For detail descriptions, see individual commands in Section
2.6.

2-18

PR

The only Cataloger directive that is not optional is CATALOG. Directives shown
between SEXECUTE CATALOG and CATALOG can be in any order, but they must

precede the CATALOG directive for the main load module. EXCLUDE and/or INCLUDE
should precede a PROGRAM or PROGRAMX directive.

Directives in

Appropriate
Order Function
[$ASSIGNn] Supply override, optional, or additional assignments for
cataloging. (See File Assignments Chart.)
SOBJECT Can be used to get SOBJECT modules from a permanent file

S$SELECTF filename
$SELECTD devmnc

SEXECUTE CATALOG

ALLOCATE

ABSOLUTE

PASSWORD

USERNAME

FILES
BUFFERS

ASSIGNn

ENVIRONMENT

OPTION

or from a device medium. Use only if creating a job file to
run in batch. If interactive, use INCLUDE for this function.

Activates the Cataloger. Required.

Allocates additional memory for task at run time.

Specifies an absolute origin for the DSECT.

Required to establish or confirm password protection for the
load module file to be cataloged.

Required to establish that files used in default and dynamic
assignments for the task being cataloged are located in a

particular user directory, i.e., that they are not system
files.

Specifies number of dynamically assigned files and blocked
files or devices used by the task. (See Section 2.1.2.)

Supplies default assignments for task being cataloged.

Defines task residency, sharability, multicopy, map size, or
special memory class for task.

Specifies default options for task (0-31).

2-19

CATALOG loadmod [privilege] [priority] [options]

[EXCLUDE]
[INCLUDE]

PROGRAM
ROGRAMX

2-20

]

Supplies load module name. This is the name of both the
task and the file on which the load module is output by the
cataloger. Specifies if the task is privileged or not, and
establishes its base priority (1-64). Can also establish
output options.

Used for special treatment of object modules on user library
and system subroutine library. INCLUDE must be used if
PROGRAMX is used. See command descriptions.

Used for selective retrieval of object modules from SGO or
to bypass SGO completely.

P
N

2.4.1.2 Recataloging the Load Module

When a load module is recataloged and the cataloging process is successful, the old file is
deleted, and a new file is created with the same name, on the same disc as the old file.

2.4.2 Cataloging a Segmented Task

Overlays provide a means of segmenting tasks for more efficient memory utilization.
When it is impractical to have a large task in memory in its entirety, the task can be
divided into a main load module and one or more overlay load modules. A segmented (or
overlayed) task is brought into execution by activating the main load module.

The programmer must allocate sufficient space for the worst case memory utilization of
the overlays in his program when cataloging the main load module. This is done by
summing the memory requirements for the largest overlay at each level and issuing an
ALLOCATE directive for the proper amount.

2.4.2.1 Job Organization

The main load module in a segmented task is organized similarly to a nonsegmented task,
with the exception that if a symbol table (SYMTAB) is required, a SYMTAB directive
followed by $SELECT is used to retrieve it. A CATALOG directive is used for each
overlay load module that is cataloged. The order of the CATALOG directives is
significant. The CATALOG directive for the main load module must appear first. Low
level overlay load modules are cataloged immediately after the main load module and all
overiay load modules of a particular level are cataloged sequentially. The association of
an overlay load module at one level with an overlay load module at a lower level is
established by using the LINKBACK directive. These technicalities are described in
more detail in subsequent sections.

2-21

Directives in

Appropriate
Order Function
SOBJECT Can be used to get object modules from a permanent file or

{$SELECT filename }
SSELECTD devmnc

[SEXECUTE CATALOG]

(PASSWORD]
[ORIGIN]

[LORIGIN]
CATALOG loadmod O

[LINKBACK]

[FXCLUDE]
[INCLUDE]

[PROGRAM
PROGRAMX

2-22

from a device medium to SGO. Use only if creating a job
file to run in batch. If interactive, use INCLUDE for this
function. Use here only if cataloging an overlay load
module in a separate Cataloger job.

Activates the Cataloger. Required only if cataloging an
overlay load module in a separate Cataloger job.

Required to establish or confirm password protection for the
overlay load module file named with the following
CATALOG directive.

Establishes a new overlay origin for all load modules which
follow up to next ORIGIN or LORIGIN directive. Does not
establish new overlay level.

Establishes new overlay level for all load modules which
follow up to the next LORIGIN directive. Not required for
lowest overlay level.

Supplies load module name. This is the name of the file on
which the overlay load module is output by the Cataloger.
If it follows main module, it is taken as a low level
overlay. All subsequent modules up to LORIGIN directive
are at same level.

Specifies associated overlay load module at lower level.

Used for special treatment of object modules on user library
and system subroutine library. INCLUDE must be used if
PROGRAMX is used. See command descriptions.

Used for selective retrieval of object modules from SGO or
to bypass SGO completely.

i

2.4.2.2 Overlay Levels

Overlay load modules are accessed by the main load module and access each other via
system service calls. An overlay level consists of one or more overlay load modules that
do not reference each other internally and can thus be loaded into the same logical
memory locations within the task.

Low level overlays usually represent the overlays a main load module calls in after it is
loaded. Higher level overlays which follow are associated with one of the lower level
overlays.

The simplest overlay structure consists of a single overlay level. In this case, the overlay
modules share a single transient area. Each overlay, as it is accessed via a system
service such as M.OLAY replaces the previous overlay in memory.

Al A2 A3

820645

Figure 2-3. Simple Overlay Structure

2-23

An example of the logical structure of a task with more overlays and overlay levels is
presented in Figure 2-4. This task consists of a main load module and seven overlay load
modules. The overlay load modules are grouped into two levels: A and B. Level A
overlays are low level. Level B overlays are higher level.

MAIN

B3 B4 B5

Bl 32

820646

Figure 2-4. More Complex Overlay Structure

2-24

HIGH ‘ T8 UPPER BOUND
| W I
i
Bs | 8 | B3 | B B,
Y, LEVEL BORIGIN

iz

Al A

LEVEL A ORIGIN

MAIN LOAD MODULE

UPPER BOUND

TSA
Low

/Y UNUSED SPACE

820650

Figure 2-5. Default Memory Allocation for Overlays

2-25

The Cataloger ORIGIN (or LORIGIN) directives can be used to modify the overlay C
structure described previously. For example, a different origin can be set up for higher v
level load modules associated with A2 (B3, B4, and B5), so that space not being used when

A2 is in memory can be used. The total program memory requirements are thus reduced

and the programmer can lower the allocation amount in cataloging the main module.

Figure 2-6 illustrates how the overlay area is modified.

2-26

Le7¢

"9-2 34nbi4

SAe43A() 404 uOLIRI0||Y A4Owdl PaLjLpoyW

1G90Z8

E/! /3 /! /3 /! /! /3 /3 /Z‘<—UPPER BOUND

iS NOW MOVED DOWN

LEVEL B DEFAULT ORIGIN

HIGH MEMORY W U,

11111/////] Y/ ////A

Bg By | B3| B, B,
LEVEL B ORIGIN
MODIFIED FOR
B3 - BS BY
USING ORIG IN =t
DIRECTIVE
A2 Ay
MAIN LOAD
MODULE
TSA

LOW MEMORY

ESTABLISHED BY USE OF
LORIGIN DIRECTIVE, FOR
B1-8B5

LEVEL A ORIGIN

2.4.2.3 The Overlay Transient Area {\
e
If the programmer wants his overlays to be in low memory, he can use the overlay
transient area by specifying TRA=xxx on the BUILD or CATALOG directive. He must
then use the ORIGIN and LORIGIN directives to set the origins for his overlays.
s

2-28

2.4.2.4 Resolution of External References in Segmented Tasks

This section is based on the description of the cataloging process in Section 2.1.8. The
resolution of DEF's, REF's, and COMMON definitions and references in a task with
overlays is basically the same as described in that section, with several additions to the
order in which the table is constructed in the first pass. The order of search for external
references in segmented tasks is described below. For the main load module:

restored SYMTAB's, if any

other object modules in the main load module, if any

user library, if any (unless suppressed via SOPTION 1)

the system subroutine library (unless suppressed via SOPTION 1)

overlay load modules, beginning at the lowest level
If the external reference is contained in an overlay load module:

restored SYMTAB's

main load module

lower level overlay load modules associated with the current overlay, via a
LINKBACK directive, beginning at the lowest level

other object modules within the current overlay load module

user library, if any (unless suppressed via SOPTION 1)

system subroutine library (unless suppressed via SOPTION 1)

object modules in higher level overlay load modules associated with the

current overlay load module

Space for common blocks defined in the main load module is allocated with the main load
module. The amount of space for each uninitialized block is the largest amount required
in any load module that references it (main or overlay).

If a common block is defined outside the main load module, space for it is allocated with
the lowest level overlay load module that defines it.

2-29

If a common block is defined in two overlay modules at the same level, space for it is
allocated in both overlay load modules and references to it in higher level overlays are
resolved to one load module or the other, as applicable.

If a common block is initialized with data, the size of the block is determined by the first
occurrance of a definition that initializes the data, regardless of whether the same block
is initialized with a larger value in any subsequent object modules or load modules. An
overlay load module cannot initialize a common block that is defined in the main load
module or an associated overlay load module. The overlay load module is only allowed to
initialize common blocks it defines.

2-30

2.4.2.5 Cataloging a Segmented Task in Stages

The main load module can be cataloged in one session, with or without overlay load
modules. Overlay modules can be cataloged in subsequent sessions. If the transient area
size is not declared on the CATALOG directive for the main load module, a transient
area is reserved by the Cataloger that is large enough to accommodate any overlay
modules that are cataloged in the same run as the main load module. If overlay modules
cataloged separately from the main load module require more space, an adequate
transient area size must be specified when the main load module is cataloged.

The mechanism used to resolve external references when load modules are cataloged in
separate stages is the SYMTAB. The SYMTAB contains the definitions of all common
blocks and all DEF's from the previous cataloging session. All REF's must be resolved
when the SYMTAB is built. SYMTAB's created during the current session can be added to
the SYMTARB f{ile, if desired, so that SYMTARB's can be restored in subsequent runs.

SYMTAB's are saved by assigning a file or device to lfc SYM and specifying the SYM
option on the first load module being cataloged in the current session. They are restored
by using the SYMTAB directive followed by SSELECT, to retrieve the above file or
device.

Common blocks which are defined in cataloged load modules are not reallocated when
new load modules are cataloged. Common block sizes are not expanded as a result of
definitions contained in new load modules being cataloged.

References to Global Common and DATAPOOL are not affected, as these areas are
allocated in a separate area of memory from the task.

2-31

2.4.2.6 Recataloging with Overlays

Care is required in recataloging some load modules and not others. Load modules whose
sizes increase will end up with allocations that overlap the address spaces of load
modules that are not being recataloged. In addition, resolution of external references
and common blocks within the task can be affected.

Overlap can be detected by examining the addresses of each load module, which are
printed in the module's map (see Listings, Section 2.9). Overlap is indicated when an
overlay's end address is greater than the beginning address of a higher level overlay or is
greater than the beginning address of the main load module.

Changing the size of the transient area changes the location of the main module in
relation to the overlay modules. If the size of the transient area is changed, all
previously cataloged overlay modules that reference the main load module must be
recataloged. \

When a load module is recataloged, the resolution of addresses for DEF's in object
modules and common blocks defined within the task may also change. As a result,
references to the object modules and common blocks by other load modules are incorrect
unless they are recataloged. Assume inter-module referencing for the task as illustrated
in Figure 2-7,

In the table at the bottom of Figure 2-7, if any load module(s) are recataloged, all other
load modules which correspond to X's in the vertical column beneath the load module
must also be recataloged, i.e., if the main load module is recataloged, Al and A2 must be
recataloged. If Al and A2 are recataloged, all load modules must be recataloged.

2-32

MAIN
{]
A1 A2
S)
| | | l
B1 B2 B3 B4 BS
Deusre—
Load Module Referenced
Main Al A2 B1| B2| B3| B4 B5
Main X X
A1l X X X
A2 X X X
B1 X
B2 X
83 X
B4 X
B8S X
820652
Figure 2-7. Recataloging Illustration

2-33

2.5 Accessing the Cataloger >
AN
To access the Cataloger as part of a batch job, create a job file using the EDITOR, punch
cards, or other media as described in Table 2-1. The job file can be read to SYC and the
job activated in several ways:
from the OPCOM console:
" <Attention>"
??BATCH |F,jobfile
?D,devmnc
from the OPCOM program:
TSM > OPCOM
??BATCH) F,jobfile
D,devmnc
’/t' "‘7\\
| P
from the EDITOR: .7
TSM > EDIT

EDT >BATCH [jobfile]

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate the Cataloger and run on-line, use the TSM ASSIGN commands to make
Cataloger assignments equivalent to those preceding the EXECUTE CATALOG command
on a jobfile, then proceed to issue Cataloger directives. (SELECT and OBJECT
statements are not available when running the Cataloger on-line.)

TSM >CATALOG
CAT> CATALOG loadmod privilege priority options
CAT > etc.

If there are no Cataloger commands involved in the cataloging task other than
CATALOG, the command line and parameters shown entered above at the CAT prompt
can be issued directly at the TSM prompt.

2-34

2.6.3

The ASSIGNI1 Directive

The ASSIGN1 directive is used to supply default file assignments for logical file codes
used by the task being cataloged. Assignments for a task must be cataloged with the

main load module. For a description of techniques used to set up logical file codes see
Volume 1, Chapter 7.

Syntax:

where:

lfc

filename

password

U

Examples:

spassword

ASSIGN1 lfc:filename[,password,U] (lic=...]

”

is a logical file code used in the task to denote a generic input or output
source,

is an 8-character maximum name of a permanent disc file to assign to the
Ifc.

Any one of the optional parameters following the file name may be entered
in the order shown in the syntax statement. Commas separate options. If an
option is missing, the comma must be supplied, as in:

filename,,U

is an 8-character maximum password for the disc file if it has been
password-protected.

If RO protected, the password is required to write to the file. If PO, the
password is required to read or write to the file.

the file is optionally unblocked. Default: blocked.

ASSIGN1 LIB=LIBRARY,,U DIR=DIRECTORY,,U

ASSIGN! OT=OUTFILE IN=INFILE,MYPASS

2-39

2.6.4

The ASSIGN2 Directive

The ASSIGN2 directive is used to supply default system file assignments to logical file
codes. At runtime, an lfc assignment to a system file results in IOCS creating one of the
types of files described below for use by the task:

SBO

SLO

SYC

SGO

System Binary Output. A type of temporary file created and used by IOCS
for buffering output to the device defined at SYSGEN or via the OPCOM
SYSASSIGN command as POD (Punched Output Device). Output from the
user task directed to the lfc associated with SBO will be buffered and routed
by IOCS to the POD.

System Listed Output. A type of temporary file created and used by IOCS
for buffering output to the device defined at SYSGEN or via the OPCOM
SYSASSIGN command as LOD (Listed Output Device). Output from the user
task directed to the lfc associated with SLO will be buffered and routed by
IOCS to the LOD.

System Control. A temporary system file associated only with jobs
processed in the batchstream. (One SYC per job.) SYC is used for buffering
input from the device defined at SYSGEN or via the OPCOM SYSASSIGN
command as SIO (System Input Device). Tasks that are not designed to run
solely in the batchstream should not make assignments to SYC. Batch tasks
can use SYC to input data records.

System General Object. A system file associated only with jobs processed in
the batchstream. SGO is a permanent file used by Job Control to accumulate
object code. The SGO file exists until a]ob is complete, at which time it is
deleted. User tasks designed to run only in batch can do I/O to the SGO file
as described in Section 2.1.8.

For further description of all the above system files, see Volume 1.

2-40

Syntax:

ASSIGN2 lfc= |\ SBO,cards (lfc=...]

where:
lfc
SBO

cards

SLO

printlines

SYC
SGO

SLO,printlines
SYC
SGO

is a logical file code used in the task
System Binary Output file

is the number of cards you expect to output as an object deck.
Determines size of SBO temporary file required.

System Listed Output file

number of printlines required for listed output.. Determines size of SLO
temporary file required.

System Control file. Use only if task runs solely in the batchstream.

System General Object file. Use only if task runs solely in the
batchstream.

2-41

4

2.6.5

The ASSIGN3 Directive {W

The ASSIGN3 directive is used to supply default device assignments for logical file codes
used by the task being cataloged. It also assigns a temporary disc file (see Appendix A).

Syntax:

where:
lfc
devmnc
blocks

reel

vol

Note:

Examples:

Tape:

Disc:

2-42

ASSIGN3 lfc=devmnc },blocks L,ul [ifc=...]

,reel [,vol]
is a logical file code used in the task
is a device mnemonic of a configured peripheral device. See Appendix A.
number of disc blocks (192 words) to be allocated for this file.
specifies a 1-4 character identifier for the reel. This parameter is required
in batch. This parameter is not required in TSM and if not specified, the
default is SCRA (scratch).

if multivolume tape, indicates volume number. Default: 0 (not multivolume)

specifies the tape or disc is optionally unblocked. Default: Blocked

RN

There must be no embedded blanks within an lfc assignment. Commas must o
be inserted for all nonspecified options (see Examples). One or more blanks
are the legal separator between one lfc assignment and the next.

A3 IN=M91000,SRCE,,U OT=PT

A3 IN=DC,20

2.6.6 The ASSIGN4 Directive

The ASSIGN#4 directive is used to associate one or more logical file codes used by the
task being cataloged with an existing lfc assignment. This assignment will remain for the
associated file or device even if the original assignment is deallocated.

Syntax:
ASSIGN4 lfc=lfc [lfc=lfc]

where:

lfc=lfc is a pair of logical file codes, where the first lfc is the new assignment and
the second is the lfc already associated with a file or device in any previous
ASSIGN directive (including ASSIGN4).
Any number of lfc to lfc associations can be established.

2.6.7 The BUFFERS Directive

The BUFFERS directive is used to specify the number of blocking buffers required for
dynamic assignments (with M.ALOC) used in a task.

If the task is shared, specify the total number of blocking buffers it requires. (See
Section 2.1.2.)

Syntax:
BUFFERS buffers
where:
buffers is the number of dynamic assignments requiring blocking buffers, or if a

shared task, total blocking buffers required.

If OPTION 19 is set, the number of buffers supplied is added to the 3 buffers
required by the Debugger.

2-43

2.6.8 The CATALOG Directive

The CATALOG directive is used to supply a load module file name. When cataloging the
main module of a task, specifies the task's privilege, priority, and optionally, selects
various output alternatives for the Cataloger. The name supplied for the main module is
the name used to activate the task, determine its status, etc. There can be any number
of overlay load modules associated with a task, each constructed with a CATALOG
directive. The modules reside on separate disc files. The optional parameters can be
specified in any order within the syntax statement.

Syntax:

CATALOG loadmod [,p] [,TRA=size] (,priority] [(NOMI[,NOPI[,CAR][,SYM]
- U

?

,O

where:

loadmod is the name of a permanent disc file where the main or overlay load module
is to be stored.

P,U,O for the main module only, specifies P for a privileged task, U for an
unprivileged task. If an overlay module, specifies O. Overlays assume the
privileged or unprivileged status of the main load module. Default:
unprivileged, main module.

TRA=size used with main load module to specify number of bytes (in hex) to allocate
for overlay transient area. Default is an area large enough to accommodate
all overlay load modules cataloged in the same run as the main load module.

priority for main load module only, specifies base priority (1-64). Default: 60.
Overlay load modules assume the priority of the related main load module.
If an overlay module, do not specify priority.

The priority at which the task is executed depends on how the task is
activated (online, batch, or real time). If in real time, the task maintains its
base priority as cataloged. If activated via TSM or in the batchstream, its
priority changes to the SYSGENed priorities of either TSM or Batch.

NOM optionally inhibits printing a main or overlay load module map.

NOP optionally inhibits output of a main or overlay load module to the file
specified as the load module file.

CAR optionally outputs the main or overlay load module on punch cards. Card
output can be redirected to a different medium by assigning the file code
SBM to the desired medium. (See Table 2-1.)

SYM saves the symbol table for a main or overlay load module on a device or

file. This option is used if cataloging load modules of a segmented task in
different runs of the CATALOG program.

2-44

Note:

RTM parameters RT and BP are ignored, without reporting an error, thus RTM
CATALOG directives will still work.

Files whose names begin with the letters SYSG are loaded with a TSA address of
X'38000'. This facilitates SYSGEN's remapping between host and target systems.

2.6.9

The ENVIRONMENT Directive

The ENVIRONMENT directive is used to establish residency, execution in a special class
of physical memory (E or H) and/or sharing characteristics for a task. As described in
Section 2.1.3, the entries with this directive supply information for the load module
information area in the main load module.

Unless defined otherwise with this directive, a task is:

nonresident

unique, i.e., not sharable, not multicopied

executable in any memory class available (S, H, or E)

Syntax:

JH| LMULTL [,MAP8192

ENVIRONMENT RESIDENT [,EJ [,SHARED] [,MApzous]

where:

S

RESIDENT makes the task resident in memory (locked in core); it cannot be swapped.

E

H

S
SHARED

MULTI

execute in Class E memory only. If unavailable, delay execution until
available.

execute in Class H or faster memory. If both Class H and E memory are
unavailable, delay execution until one or the other is available.

Note: if a 32/75 has no memory installed of the class requested, the first
lower speed memory available is allocated to the task.

Default: task is executed in any class memory available (H, S, or E).

copies the CSECT area of a sectioned task into physical memory once and
copies DSECT as needed for sharing. Use only with a sectioned task.

multicopies the entire load module into physical memory as needed for
concurrent activations. Can be a sectioned or nonsectioned task.

Default: the task is not available for multiple concurrent activations. One
copy of the load module can be active at one time in the system.

2-45

MAP2048 indicates map size of target system is 2KW.

MAP8192 indicates map size of target system is 8KW. Default.

2.6.10 The EXCLUDE Directive

The EXCLUDE directive is used to exclude object modules in a library (system or user)
from the load module being cataloged even though they are referenced in the object
modules coming from SGO.

Object modules included from a library during cataloging may also reference the
excluded object modules. The references will be ignored and the object modules will
remain excluded.

All global symbols in an object module that are referenced by the program must be
excluded for the object module to be excluded.

For further description of object modules and the cataloging process, see Section 2.1.

Syntax:
EXCLUDE name [name] ...
where:
name is the name of a global symbol in the object module.
2.6.11 The EXIT Directive

The EXIT directive is used to terminate Cataloger directive input.
Syntax:

EXIT

2.6.12 The FILES Directive

The FILES directive is used to specify the number of files required for dynamic
assignments (with M.ALOC) used in a task.

If the task is shared, specify the total number of files required. (See Section 2.1.2.)
Syntax:
FILES number

where:

2-46

®

number is an ASCII number of dynamic assignments or if a shared task, total logical
file codes assigned.

If OPTION 19 is set, the number of files supplied is added to the 5 files
required by the Debugger.

2.6.13 The INCLUDE Directive

The INCLUDE directive is used to include object modules from a library (system or user)
in a load module being cataloged even though they are not referenced in the object
modules on SGO. If PROGRAMX is used to ignore SGO as an input source, INCLUDE
must be used to retrieve object modules from a library.

Syntax:
INCLUDE name [name] ...
where:
name is the name of a global symbol in the object module.
2.6.14 The LINKBACK Directive

The LINKBACK directive specifies overlay load module(s) at lower level(s) for backward
links when cataloging an overlay load module. (Forward links from lower to higher level
overlay load modules are established automatically by the Cataloger.) Resolves
references to object modules and common in the current load module with references to

object modules and common blocks in the lower level overlay. (For further description,
see Section 2.4.2.4.)

Syntax:

LINKBACK loadmod [loadmod]

where:

loadmod is the name of an overlay load module at a lower level. User can supply
more than one name.

2.6.15 The LORIGIN Directive

The LORIGIN directive is used to establish a new overlay level. Can also establish an
origin for this level. Default origin is above the largest overlay load module at the

preceding level. LORIGIN need not be used for the lowest level of overlays, but must be
used for all higher levels.

2-47

Syntax:

LORIGIN {x bytes }
loadmod

where:

X bytes overrides the default origin of the modules at this level with specific offset
from beginning of overlay transient area. Specified by 'X', one or more
blanks, and the number of bytes in hexadecimal.

loadmod specifies the override origin at the end of a specific overlay load module at
the previous level. Does not have to be largest overlay at that level.

2.6.16 The OPTION Directive

The OPTION directive specifies up to 32 default options for the task being cataloged.
Options 1-32 set corresponding bits (0-31) in the option word in the Task Service Area
(TSA) of the task.

When the task is activated, the task can use the M.PGOW service to return the contents
of the TSA option word, check the bit settings, and take action as required.

Options 1-32 can also be specified before a task is run interactively or in batch. The

TSM or Job Control OPTION commands will override cataloged options 1-20. Ci ™
e
Syntax:
OPTION n [,n] ,...
where:
n is a number from 1-32 which sets the corresponding bit in the TSA status
word.
or
can be any of the following keywords:
PROMPT Set prompt option
DUMP Set dump option
LOWER Set lower case input option
IPUBIAS Set IPU bias option
CPUONLY Set CPU only option
2.6.17 The ORIGIN Directive

The ORIGIN directive establishes a new origin for overlay load modules which follow. h
Can be used to override the default origin for a set of overlays. (Default origin is above O
the largest overlay load module at the preceding level.)

2-48

Syntax:

ORIGIN { X bytes }
loadmod

where:
X bytes overrides the default origin of the modules at this level with specific offset
from beginning of overlay transient area. Specified by 'X', one or more

blanks, and the number of bytes in hexadecimal.

loadmod specifies the override origin at the end of a specific overlay load module at
the previous level. Does not have to be largest overlay at that level.

2.6.18 The PASSWORD Directive

The PASSWORD directive supplies the password required to write to a load module file
that already exists and is password protected. (See Section 2.1.7.)

If a load module file is being created for the first time, can be used to supply a password
for it. The file will be RO protected.

The PASSWORD directive remains in effect only for the current load module.

Syntax:
PASSWORD password
where:

password is the one to eight character password associated with the load module file
(if any); if not password protected, can be used to supply a password.

If no password is supplied, cancels the password previously associated with
the load module file.

2.6.19 The PROGRAM Directive

The PROGRAM directive is used to specify object modules to include from SGO in a
main or overlay load module. If omitted, all object modules on the file or device
assigned to SGO are cataloged. (See also PROGRAMX, which is used to exclude all object
modules on SGO from a load module.)

Syntax:

PROGRAM objmod [objmod]

2-49

where: UJ

objmod is the name of the object module to include. More than one name can be
specified.
2.6.20 The PROGRAMX Directive

The PROGRAMX directive is used to ignore the contents of the file or device assigned to
lfc SGO in cataloging a load module. An INCLUDE directive is required to get object
modules from a library if PROGRAMX is used. (See INCLUDE.)

Syntax:

PROGRAMX
2.6.21 The SYMTAB Directive

The SYMTAB directive is used when cataloging a segmented task in phases or when
recataloging a segmented task. Following SYMTAB, a SSELECT job control statement is
used to specify the name of a file or device assigned to lfc SYM in a previous run. (The
SYM option must also have been used with the CATALOG directive at the previous
session.) On the SYMTAB, the Cataloger has collected the names of all common blocks,
DEF's, and REF's used previously. . (

N
For further description of SYMTAB use, see Section 2.4.2.5.
Syntax:
SYMTAB
SSELECTF filename
SSELECTD devmnc
2.6.22 The USERNAME Directive
The USERNAME directive establishes usernames for default files or dynamically assigned
files used by the task being cataloged. If not used, files are expected to be system files.
Syntax:
USERNAME username [key]
where:
username is the one to eight character username establishing the directory in which
files are located. Username is normally the same as the owner name used to
logon to MPX, or can be any other owner name/user name from the M.KEY U
file. "

2-50

key

2.7
CTO0l

CT02

CTO03

CTO4

CTO05
CT06

if a user key is required to logon, it is also established in M.KEY. Supply the
valid key for the above user name/owner name.

Errors

Physical end-of-file encountered on subroutine library. The lfc of the library
in question is displayed. This results from the library being updated by
another user while it is allocated by the Cataloger.

Load module file specified with CATALOG cannot be allocated.

Unrecoverable 1/O error encountered on the DATAPOOL dictionary file
assigned to DPD.

Listed output space is depleted and additional SLO space cannot be
allocated.

Unrecoverable 1/O error on file or device assigned to SBM for symtab output.

An error occurred during the cataloging process and the reason is described
in the SLO output.

Below are the error messages output to SLO prior to the CT06 abort.
UNABLE TO DELETE LOAD MODULE, M.DELETE ERROR STATUS IS xx.

See the MPX-32 Reference Manual Volume 1 M.DELETE section for
further details.

UNABLE TO CREATE LOAD MODULE, M.CREATE ERROR STATUS IS xx.

See the MPX-32 Reference Manual Volume 1 M.CREATE section for
further details.

SYMBOL TABLE OVERFLOW
Allocate more memory for CATALOG to execute in:

UNDEFINED EXTERNAL "exname" REFERENCED IN "modname"
The program element (modname) references an external symbol
(exname) that cannot be found in the SGO file or any of the subroutine
libraries.

NO DATAPOOL CORE PARTITION DEFINED
A datapool partition must be defined in order to use datapool.

VALID DATAPOOL DICTIONARY FILE NOT ASSIGNED

Assign the datapool dictionary to lfc DPD.

2-51

2-52

UNDEFINED DATAPOOL "8-char name"
Datapool item could not be found in the datapool dictionary.

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - OUT OF SEQUENCE
Absolute origins are not supported in MPX-32.

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - CHECKSUM ERROR
Absolute origins are not supported in MPX-32,

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - ABSOLUTE ORIGIN
Absolute origins are not supported in MPX-32,

PROGRAM "8-char name", OBJECT RECORD X'xxxx" - BOUND ERROR
Bounding value must be between 0 and 32.

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - UNASSIGNED
FUNCTION CODE

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - ILLEGAL COMMON
ORIGIN

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - REFERENCE TO
UNDEFINED COMMON BLOCK

PROGRAM "8-char name", OBJECT RECORD X"'xxxx' - GLOBAL COMMON
INITIALIZE

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - PREMATURE END-
OF-FILE

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - DATAPOOL
REFERENCE OUT OF RANGE

MULTIPLE TRANSFER ADDRESS IN MODULE "8-char name"
MULTIPLY DEFINED EXTERNAL "8-char name"

ERROR IN FIELD x: ILLEGAL DIRECTIVE

ERROR IN FIELD x: ILLEGAL BLANK FIELD

ERROR IN FIELD x: ILLEGAL ENTRY

ERROR IN FIELD x: EXCESSIVE ASSIGNMENTS

ERROR IN FIELD x: MISSING DIRECTIVE

ERROR IN FIELD x: ILLEGAL FILE NAME

2.8 Examples

Example 1 - Cataloging a nonsegmented task. Note that although the CATALOG
directive BP parameter from RTM is kept, it will be ignored by MPX-32. The ability of a
task to run in a particular environment is not a function of cataloging. See Volume 1.

SJOB CAT!1 FADEN

SOBJECT

(Object) (Object modules to be cataloged.)

SEXECUTE CATALOG

CATALOG MODULE BP U (Task is unprivileged; entire contents of the
SGO file are cataloged.)

$EQJ

Example 2 - Cataloging a segmented (overlaid) task. This sample produces the load
modules in Figure 2-6.

SJOB CAT2 JAN

SOBJECT

(Object) (Object modules to be cataloged.)

SEXECUTE CATALOG

ASSIGN2 A=SL0O,250

ASSIGN2 B=SYC

ASSIGN3 C=DC,500

CATALOG MAIN

PROGRAM PROGA

CATALOG Al OV

PROGRAM PROGB

CATALOG A2 0O

PROGRAM PROGC

LORIGIN Al (Establishes new overlay level and an origin at
the end of overlay Al)

CATALOG B1 O

LINKBACK Al (Links overlay Bl to lower level overlay Al)

PROGRAM PROGD

CATALOG B2 O

LINKBACK Al

PROGRAM PROGE

ORIGIN A2 (Establishes overlay origin at the end of
Overlay A2; does not change overlay level)

CATALOG B3 O

LINKBACK A2

PROGRAM PROGF

CATALOG B4 O

LINKBACK A2

PROGRAM PROGG

CATALOG B5 O

LINKBACK A2

PROGRAM PROGH

SEOJ

2-53

Example 3 - Cataloging a main load module with no linkage to overlay load modules. U
$JOB CAT3 TERI

SOPTION 5 (Routes load module to an SGO file)
SEXECUTE FORTRAN

(Source) (Programs to be cataloged)

SEXECUTE CATALOG

ASSIGN2 AB=SLO,100 CD=SBO,50

ALLOCATE 1000 (Allocates 1000 additional hexadecimal bytes

of memory for task)

ASSIGN1 XY=AFILE

CATALOG MODULE2 TRA=500 P 61
(Overlay transient aréa is 500 hexadecimal
bytes)

SEOJ

Example 4 - Cataloging overlay load modules with no link to main load module

$JOB CAT4 BATMAN

SOBJECT
(Object) (Object modules to be cataloged)
SOPTION 5 (Routes output to SGO File)
SEXECUTE ASSEMBLE
(Source) (Proc)iuces object modules to be cataloged on
SGO
SEXECUTE CATALOG N
CATALOG OVERLAY1 O Lo
PROGRAM PROGA e

CATALOG OVERLAY2 O
PROGRAM PROGB
SEOJ

Example 5 - Cataloging with a user library

$JOB CAT6 ROBIN
SOBJECT
(Object)
$ASSIGN1 DIR=ULIBDIR,,U LIB=ULIB,,U
SASSIGN1 SYM=SYMFILE (File for SYMTAB output)
SEXECUTE CATALOG
ASSIGN?2 1=SYC 2=SLO, 1000
(Default assignment for MAINSEG)
CATA MAINSEG TRA=1520 ,,,,,SYM
(Note that commas are used to get default
parameters for priority, NOM etc.)

EXCLUDE OVISUB (OV2SUB is referenced by object modules in
MAINSEG but is to be included in OV1.)
INCLUDE MAINSUB (MAINSUB, referenced by object modules in

OV1 but not by object modules in MAINSEG; is
to be included in MAINSEG.)
CATALOG OVl O
INCLUDE OV1SUB U
PROGRAMX (OV1 consists only of OV1SUB)
SEOJ

2-54

C

Example 6 - Cataloging overlay load modules linked to main segment

$JOB CAT7 OWNER

SOBJECT

(Object)

SEXECUTE CATALOG

SYMTAB (Restores SYMTAB Saved in Example 5 for
Linkage to MAINSEG to OV2 and OV3.)

$SELECTF SYMFILE

CATALOG OV2 0O

PROGRAM OVZ2MAIN OV2SUB

CATALOG OV3 O

PROGRAM OV3MAIN

SEOJ

2.9 Listings

Sample load module map. Not supplied.

2.10 Creating RTM Tasks on the MPX-32 System

The RTM Cataloger is available on MPX-32 systems for users who want to take
advantage of the program development capabilities of MPX-32 to produce programs for
systems running under an RTM system.

The name of the alternate Cataloger is RTMCATL.

2.10.1 Assembling RTM Object Modules

MPX-32 will accept most Call Monitor (CALM) instructions in a form that is
syntactically and functionally equivalent to RTM CALM'. Thus, source code that uses
CALM's can be built to run on RTM or MPX-32, If the code is to run on MPX-32, several
CALM's require modification. If the code is to run on RTM systems, make no
modification. See the RTM Reference Manual for RTM CALM descriptions and the
MPX-32 Reference Manual, Volume 1, Chapter 8 for exceptions related to MPX-32.

Also note that although much of the source code for RTM is compatible with MPX-32,
the Communications Region (C.'s) and Task Service Area (T.'s) are constructed
differently in the two systems. Thus, some coding sequences will not work on both
systems correctly and others will. Two different versions of the source code may be
required, one to run on each system. In some cases, the same source assembled against
the RTM macro library (M.RTMMAC) for RTM systems and against the RTM-MPX
compatible library (M.MACLIB) for MPX-32 systems will however, work.

The MPX-32 Assembler allows users to expand RTM macro calls by using the RTM Macro
Library as follows:

$SASSIGN1 MAC = M.RTMMAG,,U

This is the same file called M.MACLIB on an RTM system.

2-55

2.10.2 Running RTMCATL

See the RTM Cataloger description in the RTM Reference Manual, for logical file codes
and assignments which apply to using RTMCATL.

FORTRAN programs require an appropriate runtime library for cataloging. Subroutine
libraries and directories normally used on an RTM system for cataloging (SUBLIB and
SUBLIBD) must be available to run RTMCATL successfully. They are dynamically
assigned to logical file codes LIS and LID by the RTM Cataloger.

RTMCATL is accessed just like CATALOG (see Section 2.5). Where the CATALOG
directive is shown with MPX-32 parameters, use the CATALOG directive and the RTM
syntax shown in the RTM Reference Manual.

2.10.3 Semantic Differences

Note that in RTM documentation, the term program applies to both the separate object
modules produced in an assembly or compilation and the output of the Cataloger (an
accumulation of one or more object modules).

In MPX-32 documentation, the word program seldom appears, and is replaced by the
terms object module, load module, and task. For clarification of how MPX-32
documentation uses these terms, see Section 2.1.5.

MPX-32 also uses the terms segmented and nonsegmented to differentiate between tasks
with overlays (segmented) and tasks without overlays (nonsegmented). See Section 2.1.4
for clarification of these terms.

2.10.4 Transporting the Cataloged Task to an RTM System

The MPX-32 File Manager (see Section 6 of this volume) can be used to copy the
cataloged load module file to magnetic tape and the RTM File Manager (see the RTM
Reference Manual) can be used to copy the load module file to an RTM system.

2.10.5 RTMCATL Load Modules Cannot be Used on MPX-32 Systems

Tasks produced with the special Cataloger will not run correctly on the MPX-32 system.
They do not have the same load format as MPX-32 tasks.

2-56

(

S

3. THE DATAPOOL EDITOR (DPEDIT)

DATAPOOL is a memory partition defined either at SYSGEN or via the File Manager
utility (FILEMGR). The DATAPOOL partition is structured via DATAPOOL dictionaries
that are built and maintained via the DATAPOOL Editor (DPEDIT). DPEDIT provides the
ability to add, change, delete, and equate variables in an existing dictionary or build a
new dictionary.

3.1 General Description

With most common partitions (Global Common 00-99, for example) a task must define all
locations of the common partition to use any one location. The size defined for each
location must also be consistent across tasks which access the memory partition. Thus to
change any location in a common partition (other than DATAPOOL), the source for all
tasks which access the partition must be modified to reflect the new sequence and/or
size of all variables when one changes. (Such tasks must then be reassembled and
recataloged.)

DATAPOOL and DATAPOOL dictionaries provide the ability to reference memory
locations symbolically by name and to define only the locations actually used by task.

With DATAPOOL, if a variable is changed, it is changed once in a dictionary and all tasks
which reference the partition are simply recataloged with the modified dictionary. (If
multiple dictionaries are used, their modification depends on whether they reference
DATAPOOL locations whose offset would be affected by the change. The user can, if
desired, group variables into different offsets from the beginning of the DATAPOOL
partition so that tasks which are not related need not be concerned with a redefined
location.)

3.1.1 Multiple Dictionaries

Having multiple DATAPOOL dictionaries for a single DATAPOOL partition provides the
ability to let the DATAPOOL dictionary act as a translator. For example, if one
dictionary defines the variable A as a 1 word offset from the beginning of DATAPOOL
partition and a second dictionary defines the variable D as the same offset, A and D
become equivalent values for the tasks which use the dictionaries. Multiple dictionaries
also allow the user to selectively access locations by communicating tasks. For example,
Task A provides | byte of status, Task B provides a second byte, Task C provides two
more bytes, and Task D's dictionary allows it to pick up all four bytes of status. By
providing a separate dictionary for each task, the user ensures that a task cannot modify
a location not defined in it's dictionary.

In summary, via DATAPOOL dictionaries, the user has the ability to structure and access
DATAPOOL in a number of ways, depending on the needs of tasks which communicate
with each other. The reader is also referred to Volume 1, Chapter 2 for a description of
various intertask communication features available with MPX-32, including run requests
and messages.

3.1.2 Static versus Dynamic DATAPOOL

SYSGEN can be used to permanently allocate memory specified for the DATAPOOL
partition in protection granule increments. SYSGEN marks the allocated protection
granules as unavailable for outswap and creates an entry defining the partition in the
System Master Directory (SMD).

Alternatively, the File Manager CREATEM directive can be used to create a DATAPOOL
memory partition. A DATAPOOL partition defined via CREATEM is allocated
dynamically when required by a task. Whereas a DATAPOOL partition created via
SYSGEN is defined in protection granules, a DATAPOOL partition created via the
FILEMGR is 8KW minimum on a 32/7x and 2KW on a CONCEPT/32. DATAPOOL cannot
be created via both utilities. If SYSGEN is used, CREATEM cannot be used for
DATAPOOL, and vice versa.

For dynamic allocation and deallocation, MPX-32 has the ability to generate multiple
DATAPOOL map block(s) into more than one logical address space. If created in the
FILEMGR, there can be more than one physical copy of DATAPOOL in memory at a
time, depending on the association of tasks that access it simultaneously. Physical space
is not taken up permanently (as it is with a SYSGEN-created DATAPOOL partition), thus
it is reasonable to have multiple DATAPOOL partitions. Each task structures and shares
a given DATAPOOL partition via a DATAPOOL dictionary. All tasks which access the
same 'DATAPOOL' do so by specifying the same dictionary during cataloging and by using
M.SHARE and M.INCL.

For further description of the use of system common areas such as DATAPOOL, see
Volume 1, Chapter 2.

3.1.3 DPEDIT Directives

Directive Function

/DPD Assigns the DATAPOOL directory a new permanent file name.
J/ENTER Precedes data records. Data records are the mechanism for

adding, deleting, or changing symbols in the DATAPOOL.

/LOG Provides audit trail listing of all elements in the DATAPOOL
directory.

/REMAP Reuses the DATAPOOL partition by rebuilding from the /SAVE
directory entries and hashing them into the DATAPOOL
directory.

/SAVE Preserves binary contents of each active entry in the

DATAPOOL directory.
/VERIFY Verifies DATAPOOL elements in the directory. Assures proper

bounding, checks for duplicate entries, corrects improper
relative addresses, and provides error flags.

3-2

®

f‘iéi\
N

3.1.4 Input Data Format

Data records are the means of structuring a DATAPOOL dictionary. They are built in
80-byte card image format and are used to add, delete, or change DATAPOOL symbols.

The structure of a data record is shown in Figure 3-1 and described in this section.

All fields of the data record except the SOURCE and DESCRIPTION fields must be left-
justified and contain no embedded blanks. The VARIABLE SYMBOL field is used to
contain the one- to eight-character (ASCII) name of the symbol to be added, deleted, or
changed. The function to be performed is specified by the U field.

The U field specifies add by a blank, delete by a minus sign, or change by an asterisk.

The add function must include the fields up to and including the BASE SYMBOL field.
The remaining fields are optional. A symbol can be added to the dictionary if it has not
been previously defined in the dictionary and if its address is within the range of the
DATAPOOL memory partition. If the PRECISION option is specified, address bounding is
verified before adding the symbol to the dictionary.

The delete function utilizes only the VARIABLE SYMBOL and U fields. The remaining
fields are ignored. A symbol can be deleted only if it is not used as a base. If the symbol
to be deleted references a base, the responsibility count for the base symbol is
decremented. Responsibility count is the number of times the symbol is used as a base
for other symbols.

The change function must include the VARIABLE SYMBOL and U fields. The remaining
fields are optional. All fields of a symbol can be changed if the symbol is not being used

as a base. If the symbol being changed is used as a base, no changes can be made in the
BASE SYMBOL or DISPLACEMENT fields.

Each column on the data record which is blank results in no change to the corresponding
column of the original specification; a column which contains a number sign (#) causes
the corresponding column of the original specification to be blanked; and a column which
contains any other character results in a replacement of the corresponding column of the
original specification.

Note that the change function is column oriented. When an entire field is to be replaced,
the high-order columns of the field should be padded with number signs (#) in order to
blank out unwanted characters from the original specification. For example, the BASE
SYMBOL field should be padded with number signs (#) when it is to be entirely replaced
by a new symbol which has fewer characters than in the original BASE SYMBOL field.

The E field, which equates symbols with base symbols, must contain an 'EQU'. Any other
character string is invalid.

The BASE SYMBOL field is used in conjunction with the VARIABLE SYMBOL field and
the E field. The base symbol referenced must have been previously defined by the

DATAPOOL dictionary. This field may optionally contain a dollar sign ($) which
indicates location 0 of the dictionary.

The DISPLACEMENT field modifies the base symbol location if a plus sign (+) is inserted
in column 22. Absence of the plus sign (+) in column 22 causes the displacement to be
ignored.

The purpose of the T field is for user documentation of symbol type, but if used, must
contain either E, F, I, or L.

If the P field contains L, B, H, W, or D, the specified boundary will be verif.ied against
the actual symbol address to ensure proper bounding.

The purpose of the D field is for user documentation of array dimensions, but if used,
must contain decimal integer(s).

The SOURCE and DESCRIPTION fields provide for user documentation. The SOURCE
field provides a User Descriptor Area to identify the originator of the symbol. An
asterisk in the first column of the DESCRIPTION field will cause a page eject during a
LOG ALPHA. An asterisk in the second column of the DESCRIPTION field causes a page

eject during a LOG relative function. The remaining columns of the DESCRIPTION field
can be used for comments.

i

variasLE [v

| svmeou 3 svmeoL oussuacement Jivie] o Jlisouncelainl oescriPion]

1] a[3] 41 58] 1{o]o[w|nfrzdramairs{ssjrrylrejon; nfsn| g 3 0 O A O L T T R
. 1

[]e———
LANK = Aggwon
<

€QU = Equase

BASE SYMBOL | &———r

$ = 0 (Beginning of Dicsonery)
asseeses = Bam Symbol

(oispiacement | +

X'nanan’ = Hoxadesimel Byws
AnnRnaen = Deciral Bvess
annnnond = Decims! Bytss
nnnanrni = Deoimsl Words

= Degimel D

T g

(&

»[0]

—[r]

INOTE: If the DISPLACEMENT ontry is wesified, a pius sign (+) must bs pressst in esloma 22).

*For Page Ejest Dwring LOG REL

*For Pege Ejsat Dwing LOG ALPHA

W = Word

M = Holtword
8 = Byte
LBt

1= integer
€ = Fliost
F = Finid
L = Logica!

820647

Figure 3-1. Datapool Editor Input Data Format

3-5

3.1.5

Figure 3-2 shows the format for a DATAPOOL dictionary entry built by the DATAPOOL
used by the Cataloger and loader to resolve
references to DATAPOOL symbols within a tasks logical address space. When a task is
cataloged, the user specifies which DATAPOOL dictionary to use by assigning the

Editor.

Dictionary Records

The dictionary entries are

dictionary file to the logical file code DPD.

t = i
\ s

WORD
1.20 DATAPOOL EDITOR INPUT DATA IMAGE (80 BYTES)
21 ZERO RELATIVE ADDRESS
¢4t 441 4 4 4t 2 J 1 ¢+ 1 41 41 1 ¢4 4 ¢+ 1 111 14/
0O 1 2 3 45 6 7 8 9 1011 1213141516 17 18 19 20 21 22 23 24 2526 27 28 29 O N
22 “?o LSCATE ;H‘sAEcNTﬂY RESPONSIBILITY COUNT
41 1 1 4 1 111]°.1 | I T N N N N N N N N N (N T S R
01 2 3 45 6 7 8 9 1011 121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 1
23 RESERVED STATUS
j W T N T TS T O O N NS A N U U DU T N TN N A N NN A U I G S '
01 2 3 45 6 7 8 9 1011 1213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 N
DICTIONARY ENTRY ACTIVE (SET) ________j
COLLISION ENTRY OCCURRED AT THIS ENTRY(SET)
24 RESERVED
° | S T N N N N I U N N U (S U U N (N T (N N T T N TN TN N T N 1
0O 1 2 3 45 6 7 8 9 1011 1213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1
Figure 3-2. Datapool Dictionary Entry Format

820648

Figure 3-2. Datapool Dictionary Entry Format

3.2 Files and File Assignments

Files required by DPEDIT are described in this section.

3.2.1 The Input File (SYC)

The input file includes both DPEDIT directives and the data cards described in the
previous section. Data cards follow the DPEDIT ENTER directive. The logical file code
for input is SYC. The default assignment is ASSIGN2 SYC = SYC.

3.2.2 The DATAPOOL Dictionary (DPD)

The user must create a permanent file space for the DATAPOOL dictionary via the
FILEMGR before running DPEDIT. When the dictionary file is created by the user, its
contents are initialized to zeros. The size of the file created should be sufficient to
contain twice the number of symbols which will be defined in the dictionary. The blocks
are constructed with eight records per block. To determine the size of the file to be
created, double the number of entries and divide by eight. The minimum allowable size
is five blocks.

The dictionary file for output is associated with the logical file code DPD with an
ASSIGN1 unless you need to produce more than one version of the dictionary, in which

case, the DPD directive is used to switch from the assigned file to subsequent files. See
Section 3.2.4.

3.2.3 Audit Trail and Error Listings (LO and ER)

As DPEDIT processes directives, it produces one line of listed output for each operation
it performs. Any operations that produce errors are listed to a separate file or device.
The lfc for the audit trail is LO. The lfc for the error lines is ER.

Defaults:

LO=SLO
ER=SLO

All listed output can be produced on one file or device by using an ASSIGN4 to equate the
two file codes.

3.2.4 Save and Remap Files (OT and IN)

The REMAP directive can be used to restructure an existing DATAPOOL dictionary that

has been saved (via the /SAVE directive) from a previous DPEDIT run or in the current
DPEDIT run.

The file or device to use for /SAVE is assigned to lfc OT. The file or device to use when
this file is remapped is assigned to Ifc IN. Before a remap, use the DPD directive to
assign a different file or device for DATAPOOL dictionary output. Or, the name of the
file can be specified with /REMAP. If the assignment is not changed, the existing
dictionary is overwritten.

3.2.5 Scratch Files (UI and XUI)

A temporary file for sort resulting from a LOG directive (lfc's Ul and XU is assigned by
DPEDIT by default to a disc file, 100 blocks. The temporary file is unblocked.

~ -~ ~
I3 .} E
Table 3 - 1
DPEDIT File Assignments Page | of 2
Previous
Input/Output Logical Assignments Processor How Specitied
Description File Code for DPEDIT " Assignment for DPEDIT Comment
Directives and SYC Default: Work file built using EDT >BATCH
Data Records ASSIGN2 EDIT.
SYC = SYC Permanment file built EDT>BATCH jobfile For further description
using EDIT or MEDIA. or see "Accessing DPEDIT."
7?BATCH { D, devnmc

Cards. F, jobtile ’

Other device medium Same route shown for

e.g., magnetic tape, cards.

where jobfile was

copied from cards or a

file via MEDIA.

Interactively. See

"Accessing DPEDIT."

Source data records Source data records

following an /ENTER may be accessed by a

directive are the $SELECT Statement

primary means of in batch.

input to DPEDIT. See

Section 3.1 for

detailed description.
Existing IN No default. File space must be By assignment and
Dictionary for ASSIGNn pre-established via use of the /REMAP
REMAP Input the FILEMGR utility. or /DPD directive.

IN = ﬂlename}
devnmc
Output oT No default. Same as above. By assignment and
Dictionary to . use of the /SAVE
use in oT - f"""’"‘} directive.
devnmc

Subsequent Remap

01-¢

Table 3 - | (Cont'd)

DPEDIT File Assignments Page 2 of 2
Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for DPEDIT Assignment for DPEDIT Comment
DATAPOOL DPD No default. Same as above. By assignment. A dif- Unblocked
Dictionary ferent file or device
ASSIGNn can be accessed by using
the DPD directive.
DPD = {filename }
devmnc
Audit Trail LO Default: N/A, unless using a An ASSIGNY4 can be used to
ASSIGN2 disc file (see above) equate LO to ER so that
LO=SLO listings are provided on
the same SLO file,
Options:
LO = {filename }
devmnc
Separate Error ER Default: See above.
Listing ASSIGN2
ER = SLO
Options:
ASSIGN2
ER = {filename}
devmnc
Temporary disc ul Default:
file ASSIGN3 Ul=DC,l00,U
Temporary disc XUl Default:
file ASSIGN4 XUI1=Ul
‘A A A
% 7 N s N

3.3 Options

None.

3.4 Using DPEDIT

For further description of the use and allocation of DATAPOOL (and GLOBAL) system
common areas, particularly in context of a task's logical address space, see Volume 1,
Chapter 2.

3.5 Accessing DPEDIT

To access DPEDIT as part of a batch job, create a job file using the EDITOR, punch
cards, or other media as described in Table 3-1. The job file contains DPEDIT directives
and data records preceded by Job Control ASSIGN's, etc. A job file can be read to SYC
and the job activated in several ways:

from the OPCOM console:
" <Attention>"
??BATCH {F,jobfile }
D,devmnc
from the OPCOM program:
TSM > OPCOM
??BATCH {F,jobﬁle }
D,devmnc

from the EDITOR:

TSM > EDIT

EDT >BATCH [jobfile]

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate DPEDIT and run online, use the TSM ASSIGN commands to make DPEDIT
assignments equivalent to those preceding the EXECUTE DPEDIT command on a jobfile,
then proceed to issue DPEDIT directives.

TSM > ASSIGN] DPD=filename,,U
TSM >DPEDIT
DPE > /directive

3-11

3.6 DPEDIT Directives

DPEDIT directives are summarized in Section 3.1.3. They are described in detail in
subsequent pages.

A comma between parameters is the legal delimiter. Blanks embedded after the
directive in a DPEDIT command line are ignored. A

3.6.1 /DPD Directive

The /DPD directive assigns a different permanent file to the DPD logical file code. It is
used to maintain multiple dictionary files during a single edit run.

Syntax:
/DPD filename
where:

filename is the name of a permanent file containing the dictionary to assign to DPD.
The file is dynamically allocated using RTM services and is thus
automatically unblocked. Only one blank is allowed between the "/DPD"
portion of the directive and the filename.

3.6.2 /ENTER Directive

The /ENTER directive indicates that data cards are to be processed by the Datapbol
Editor. These data cards are used to add symbols to the datapool dictionary, delete
symbols from the dictionary, and change parameters defining a symbol in the dictionary.

The data cards that are to be processed as a result of the /ENTER directive must follow
the directive. Processing of data cards continues until a directive or an end-of-file
indicator is encountered. Multiple /ENTER directives may be used.

A symbol can be added to the dictionary if it has not been previously defined in the
dictionary and if its address is within the range of the datapool memory partition. If the
Precision option is specified, address bounding will be verified before adding the symbol
to the dictionary.

A symbol can be deleted only if it is not used as a base. If the variable symbol to be
deleted references a base, the responsibility count for the base symbol is decremented.

The responsibility count is the number of times the symbol is used as a base for other
symbols.

All fields of a variable symbol can be changed if the variable symbol is not being used as
a base. If the variable symbol being changed is used as a base, changes cannot be made
in the Base Symbol or Displacement fields.

Syntax
/ENTER

@

O

Example(s)

JENTER

LIMA EQUS

A EQUS + 100W F W 10

B EOUA + 10W **

In this example, the data cards containing the data cards to be processed follow the
Enter directive.

3-13

3.6.3 /LOG Directive

The /LOG directive provides a listed output audit trail of all symbols defined in the
DATAPOOL dictionary, the total number of entries in the dictionary, and the number of
active entries.

Syntax:
/LOG [typel
where:
type specifies the type of output desired. ALPHA specifies that the listed output

will be ordered alphabetically. REL specifies that listed output will be
produced in the sequence in which the DATAPOOL items reside in the
DATAPOOL memory partition. If no type is specified, both types of output
will be generated.

Example(s)

/LOG ALPHA
/LOG
/LOG REL

3.6.4 /REMAP Directive

The /REMAP directive is used to expand or rebuild a DATAPOOL dictionary without
having to recreate dictionary entries through the /ENTER directive data record
sequence.

/REMAP rebuilds a dictionary from the dictionary specified with a /SAVE directive or
built during a previous run and assigned to lfc IN. Each entry is remapped through the
hash coding scheme and written to the dictionary assigned to lfc DPD via the /DPD
directive. Or the dictionary to be used for output can be 'assigned' to DPD via the
optional file parameter on the /REMAP directive.

Note that the dictionary output file is initially destroyed by the /REMAP function, i.e., if
you have built one dictionary and do not make a reassignment through /DPD or the file
parameter, the dictionary you built will be lost.

Syntax:
/REMAP (file] , [R]

where:

file is an optional field which contains the name of a permanent file to assign to
DPD. Or the /DPD directive can be used for the same function.

R if specified in this field, the file assigned to the logical file code IN will be

rewound before processing the dictionary entry records.

3.6.5 /SAVE Directive

The /SAVE directive preserves the contents of each active entry in the DATAPOOL
dictionary in dictionary entry records on the file assigned to the logical file code OT. An
end-of-file is written to OT when the function is complete. The dictionary entry record
is a binary record containing the entire dictionary entry. (See Figure 3-2.) A checksum
and a sequence number are included in the record.

When a directive is issued, 'DPD' and 'OT' should not be assigned to the same file.
Syntax:

/SAVE

3.6.6 /VERIFY Directive

The /VERIFY directive checks each active entry in the datapool dictionary for proper
placement in the dictionary, for precision to assure proper bounding, and for relative
address within the range of the DATAPOOL to ensure that the computed value at entry
time is correct. Any discrepancies detected in the dictionary are noted on a listed
output file.

Improperly mapped entries are corrected and no error flags are generated. If an
improperly mapped entry is encountered, and an entry of the same name is already in the
dictionary, the current entry being verified is deleted and an error flag is generated.

Incorrect relative addresses are corrected and an error flag is generated. Invalid entries,
that is, entries with no base symbol in the dictionary, or entries whose data record is
invalid, are deleted and error flags are generated.
Range and precision errors generate flags.
Syntax:

[VERIFY

Example(s)
$ASSIGN1 DPD=DPDI1

SEXECUTE DPEDIT
/REMAP ,R
/VERIFY

In this example, Datapool Editor will verify DPD1 after remapping it.

3-15

3.7 Listings

The DATAPOOL Editor has two listed output files, the audit trail (accessed through the
logical file code LO) and the error audit trail (accessed through the logical file code
ER). If either of these files overflows and is assigned to a System Listed Output (SLO)
file, the old SLO is dynamically deallocated (released for system output on job
termination) and a new SLO file is allocated with the same size requirements as the
original. Figure 3-3 describes audit trail format.

The audit trail contains a definition of the operations performed, the source records
(Figure 3-1), the relative address within the DATAPOOL of the symbol defined by the
dictionary entry, the number of disc accesses required to get the entry, the number of
times this symbol is used as a base, and when applicable, an error code defining why the

requested operation was not performed.

AUDIT TRAIL FORMAT

PAGE HEADING:

CURRENT DATA FILE: Name (1)

ERROR RELATIVE RESPONSIBILITY COLLISION
° CODE FUNCTION DATA CARD ADDRESS COUNT MAPP ING
(EC) (RA) (RC) (™)
FORMAT EXPLANATION
PRINT COLUMNS HEADING DESCRIPTION
1-4 ERROR CODE REFER TO ERROR CODES DESCRIPTION
9-14 FUNCTION ADD, DELETE, LOG, OR CHANGE
17-96 DATA CARD
101-108 RELATIVE ADDRES Hexadecimal address assigned to this
variable symbol relative to the
beginning of the datapool core partition.
112-115 RESPONSIBILITY COUNT Decimal number of times that symbol is
used as a base.
117-119 COLLISION MAPPING Decimal number of disc accesses required

to locate this entry.

(1) name= °MAIN’ if specified by SASSIGN1; otherwise, names=File specified by DPD or
REMAP directive.

820649

Figure 3-3. DATAPOOL Editor Audit Trail Format

3-16

N

3.8 Errors

The following console messages are issued by the DATAPOOL Editor.
DPEDIT devmnc CKSM

The DATAPOOL Editor has encountered a checksum error on the input (IN) file to the
REMAP function.

DPEDIT devmnc SQER

The DATAPOOL Editor has encountered a sequence error on the input (IN) file to the
REMAP function.

These messages are only output if IN is assigned to a card device. The "devmnc"
specification gives the device mnemonic, including the device address of the device to
which IN is currently assigned. After the message is issued, the editor enters a program
hold. To retry the read, reposition the deck in the reader and enter the operator
command CONTINUE DPEDIT. If no retry is desired, enter the operator command
ABORT DPEDIT.

For a description of abort codes, see Appendix C. Error messages EC11 through EC25
and ERnn are described in Appendix C. They report diagnostic error conditions which
could cause an abort.

3.9 Examples

Example 1 - Saving Several Dictionaries

$JOB DPEDIT1 MEYERS
$ASSIGN1 DPD=DPD1,,U
SASSIGN3 OT=MT,DPDS
SEXECUTE DPEDIT

/SAVE Save Dictionary DPD1

/DPD DPD2 Assign DPD to Dictionary DPD?2
/SAVE Save DPD2

/DPD DPD3 Assign DPD to DPD3

/SAVE Save DPD3

SEOJ

$$

Example 2 - Remapping a Dictionary

$JOB DPEDIT2 MEYERS
SASSIGN1 DPD=DPDI,,U
SASSIGN3 IN=MT,DPDS
SEXECUTE DPEDIT
/REMAP ,R

/VERIFY

/REMAP DPD2

/REMAP DPD3

/ENTER

A EQU $

$EO]

$$

Rewind IN and Remap DPD!1
Verify DPD!

(See Figure 3-1 for column placement)

Example 3 - Expanding, Saving, and Remapping a Dictionary

$JOB DPEDIT3 MEYERS
SEXECUTE FILEMGR
EXPAND DPD1,100
'SASSIGN3 OT=MT,DPDT
SASSIGN4& IN=OT
SEXECUTE DPEDIT
/SAVE

/REMAP DPDI,R

$EOJ

s$

Example 4 - Saving a Dictionary on Cards

3-18

$JOB DPEDIT4 MEYERS
SASSIGN1 DPD=DPD1,,U
$ASSIGN3 OT=CP
SEXECUTE DPEDIT
/SAVE

SEOJ

$$

Expand Dictionary Size

Save DPD1
Rewind IN and Remap DPD1

N

4. THE DEBUGGER (DEBUG)

The MPX-32 Debugger is used to debug a single, cataloged user task. It can be accessed
with a DEBUG command in TSM, with a SDEBUG statement in batch, by coding a
M.DEBUG service call within the cataloged task, or by using the Break key after a task
has been activated via TSM, in which case TSM provides the option of calling M.DEBUG.

If a command or job control statement is used, the user's task is activated and DEBUG
gains control just before the system would transfer control to the user task's transfer
address. In cases where the user task is already running, the context of the task (general
purpose registers and PSD) just prior to the M.DEBUG call is retained and control is
transferred to DEBUG to start debugging at that point in the user's task.

When DEBUG gains control, it prompts the user for a DEBUG command. DEBUG
commands allow the user to:

trace task execution
set debugging traps within the task

display and/or alter contents of the task's logical address space, general
purpose registers, etc.

watch for privileged task entry into the operating system or other areas of
memory not usually accessed even by a privileged task

perform other operations that facilitate task debugging
This chapter concentrates on interactive (online) functioning of DEBUG. Batch functions

are described in terms of differences between batch and online operation in Section 4.6,
Batch Considerations.

4.1 General Description
DEBUG terms are summarized below.

Absolute Expression An input expression whose value is determined solely by the
terms and operators specified; i.e., an expression which is not
relative. See "Relative Expression".

Base A type of expression term representing any 32-bit number,
usually a memory address.

Base Table Internal DEBUG storage containing the definitions of all
special bases and user bases. Maintained by the BASE and
CLEAR commands. Displayed by the SHOW command.

Count

Deferred Command

Immediate Command

Log File

Relative Expression

Special Base

Status Report

Trap or
Trap Instruction

Trap Address

Trap List

y-2

A special expression term equal to the number of occurrences

of the most recently-occurring trap since that trap was set by
the SET command.

A command whose execution is deferred until the occurrence
of a trap. Deferred commands are added to the trap list
currently being built rather than being executed
immediately. See "Immediate Command".

A command which is executed immediately rather than being
added to a trap list; not a deferred command.

A circular (wrap-around) temporary disc file on which DEBUG
maintains a record of the last 100 (approximate) screens of
terminal 1/0O.

An input expression assumed by DEBUG to represent a
displacement from a base address. The base is automatically
added to the value of the expression. See "Absolute
Expression".

Any of the following bases, which are automatically defined
by DEBUG:

N - Current Program Counter
$PSD - Program Status Doubleword
STSA - Task Service Area

$DSS - DSECT Start

SDSE - DSECT End

SPCH - Patch Area

$Css - CSECT Start

SCSE - CSECT end

An analysis of the user task's context, showing the user PSD
and registers for each currently active task interrupt level
(e.g., I/O end action receiver active).

An SVC 1,X'66' (H.MONS,29 call) instruction used by
DEBUG to replace a user instruction in setting a trap in the

user task; the control transfer caused by the execution of this
instruction (to DEBUG's Entry Point 3).

The address in the user task where a trap instruction has been
placed by the SET command.

The sequence of DEBUG commands which is executed upon
the occurrence of a trap.

,} - \

C

Ny

™,

(Trap List Terminator

Trap Table

User Base
User Context

User PSD

Any command which directs control away from a trap list.
A trap list terminator must be the last command of a trap
list. The following commands are trap list terminators:

BREAK
END
EXIT
FILE
GO
TRACE
TRACK
WATCH

Internal DEBUG storage containing the definitions of all
currently set traps, including their trap addresses, COUNT's,
and trap lists. Maintained by the SET, DELETE, and CLEAR
commands. Displayed by the LIST command.

Any base other than the special bases; defined by the BASE
command.

The user Program Status Doubleword (PSD) and user
registers, collectively.

The PSD maintained by DEBUG to indicate the PSD in
effect for the user task. On entry to DEBUG, the user PSD
is the last PSD in effect for the user task as of the moment
of the control transfer; on entry to the user task, it is the
PSD to be in effect as the user task gains control; while
DEBUG has control, the user PSD may be modified by the
following commands:

BREAK
CC
GO
TRACE
TRACK
WATCH

4-3

»
User Registers The eight words of memory used by DEBUG to contain the (__}"‘/
user registers in effect for the user task. When DEBUG
gains control, the user registers are as reported in the Task
Service Area (TSA) in T.CONTXT; on entry to the user task,
the user registers contain the register contents to be in
effect as the user task gains control; while DEBUG has
control, the user registers may be changed by the CR
command.

User Task The task being debugged.

Ut

4.1.1 Attaching DEBUG to a User Task

DEBUG functions essentially as an unsolicited overlay of the user task being debugged;
i.e., the user neither catalogs DEBUG as an overlay nor identifies any overlay transient
area for DEBUG when the user task is cataloged.

The DEBUG overlay receives special handling by MPX-32. The M.DEBUG system service
(H.MONS,29, SVC 1,X'63") attaches DEBUG to the calling task as follows:

1.

DEBUG is loaded at the beginning of the map block below the user task's
pure code and data section (CSECT) and/or common areas. The lower
address of the user's CSECT, if any, is thus decreased by the size of
DEBUG (8KW). (Refer to the DEBUG memory map in Figure 4-1.)

The area "T.CONTXT" is initialized in the calling task's TSA. T.CONTXT
contains eight words for the user's register contents at the point of call
and two words for the user's PSD at the point of call. It is used by
DEBUG to determine the last known context of the user task upon entry
to any DEBUG entry point.

Control is passed to DEBUG's Entry Point 1 (startup entry point). Any

task interrupt levels active at this point remain in effect. They are
analyzed by DEBUG and displayed in a status report.

4-5

EXTENDED ADDRESS SPACE

- o o = P
- - an P

GLOBAL COMMON/DATAPOOL

CSECT

DEBUG PATCH AREA

DEBUG

T
i i in

DSECT

TSA

OPERATING SYSTEM

128KW

820653

4-6

Figure 4-1. Debug Memory Map

In response to the TSM 'DEBUG' command, MPX-32 calls M.DEBUG on behalf of the user
task as the last stage of task activation. In this situation, T.CONTXT is initialized with
all registers zeroed and the user PSD indicates the user task's cataloged transfer
addresses. Control is passed to DEBUG's Entry Point | instead of the user task's
cataloged transfer address. The combination of DEBUG and the user task is still a single
task, with a single TSA and a single dispatch queue entry.

Also, if a task is activated from TSM (TSM > RUN loadmod) and the user depresses the
Break key while the task is processing, TSM provides the alternative of attaching
DEBUG. In this case, the task context is saved as described previously in step 2.

4.1.2 /O
4.1.2.1 Terminal 1/O

When DEBUG is attached to a task, it obtains the screen size from the Unit Definition
Table (UDT) for the terminal device assigned to the logical file code UT (User
Terminal). (This is the screen size defined at SYSGEN.)

The number of lines per screen (any non-negative 32-bit number) is used by DEBUG. If
the user has defined a value of 0 lines per screen, DEBUG disables the full-screen logic
(described below). The minimum allowable screen width (number of characters per line)
for debugging is 72 characters, and the maximum is 132 characters, the width of a
System Listed Output (SLO) file.

The screen size detected by DEBUG is used to allocate a log file (a temporary disc file)
large enough to contain approximately 100 full screens. The log file is manipulated by
the LOG and REVIEW commands. It contains a record of the most recent screens of I/O
to the user's terminal, providing a complete audit trail of the debugging session. The
user is warned 10 screens before the end of the log file space is reached and the oldest
records begin to be overwritten by the most recent (a circular file).

The screen width detected by DEBUG is also used to calculate how many words per line
will fit into displays such as SNAP's. The format of a screen record is illustrated in
Section 4.9.

The screen height is used to enable DEBUG to pause when a full screen of lines has been
written to the terminal (terminal write operations by the user task are counted) with no
intervening terminal input. This prevents long displays (e.g., SNAP's) from running off
the top of the screen before they can be read by the user. A SYSGEN'd height of zero
lines signifies that the terminal is a hard-copy device and disables the full-screen logic.
A consequence of this disabling is that long SNAP's, for example, cannot be terminated
prematurely.

When at the end of a full screen of consecutive output, DEBUG displays the message "CR
FOR MORE?", the possible responses and their effects are as follows.

Response Effect
Carriage Return The display continues.
Anything Else Terminates the current command; the next command is read

from the terminal.

Terminal input and output are labelled with prefix characters (prompts) that indicate,
both on the terminal and on the log file, who said what and when. The prompt for an
input command from the terminal is on<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>