
Xerox SIGMA 7 Computer

Reference Manual

90 O~ SOJ

Xerox SIGMA 7 Computer

90 09 50J

October 1973

XEROX

XG46, Rev. 0

File No.: 1 X03

Printed in USA

ii

REVISION

This publication is a revision of the Xerox SIGMA 7 Computer Reference Manual, 90 09 501. It incorporates
Publication Revision Package 90 09 501-1(7/71), which was a revision of Appendix D, Instruction Timing, pages 126
through 132. The change in text. from that of the previous manual is indicated by vertical lines in the margins of
these pages.

RELATED PUBLICATIONS

Publication No.

Xerox Sigma Glossary of Computer Terminology 900957

Xerox Symbol/LN, OPS Reference Manual 90 1790

Xerox Meta-Symbol/LN/OPS Reference Manual 90 09 52

Xerox Macro-Symbol/LN, OPS Reference Manual 90 1578

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

CONTENTS

J. SIGMA 7 SYSTEM

General Characteris tics __ 2
Real- Time Feotures ____________ _ 3
General-Purpose Features ______ . ___ _ 4
Time-Sharing Features ___ . ________ _ 5
Multiusage FE!atures 6

2. SIGMA 7 SYSTEM ORGANUZA TION 7

Information F()rmat 7
Core Memory 7

Dedicated Core Memory L.ocations 7
Information Boundaries 7

Computer Modes 8
CPU Fast Memory 8
Central Processing Unit _ 9

General Registers and Re9ister Block
Pointer 10

Memory Control Storage _ 10
Instruction Format 10
Immed i ate Operand J 1
Memory Refemnce Addresses 11
Memory Addr€!ss Control ___ 13
Memory Map <lnd Access Protection 13
Memory Write Locks ________ . ________ 14
Program Status, Doubl eword __ 16
Interrupt Syst€!m _____________ 17

Internal Inl-errupts ___ 17
External Interrupts ____ 19
States of an Interrupt Level 19
Control of the Interrupt S'ystem _____________ 20
Time of Int,errupt Occurrence ________________ 20
Single-Instruction InterrulPts _______ __. ______ 20

Trap System _______ __ 21
Nonallowed Operation Trap_________ 21
Unimplemented Instructiol"l Trap _______ 23
Push-Down Stack Limit Trap _______________ 23
Fixed-Poin~ Overflow Trap . ____________ 24
Floating-Pc)int Arithmetic Fault Trap __ _ 24
Decimal Arithmetic Fault Trap _________________ 25
Watchdog Timer Runout Trap ____ ___ 25
Call Instruc:tion Traps __ . 25

3. INSTRUCTION REPERTOIRE 26

Load/Store Instruction ______________________ 29
Analyze/Interpret Instructions 35
Fixed-Point Arithmetic Instructions _____ 37
Comparison Im,tructions_________ ._ 42
Logical Instruc:tions _________________ 44
Shift Instructiolns 45
Conversion Instructions_______ 47
Flooting-Point Arithmetic Instructions 48
Decimal Instrudions 52
Byte String Instructions 58
Push-Down Instructions 65

3. INSTRUCTION REPERTOIRE (cont.)

Execute/Branch Instructions ______ ._ 70
Call Instructions ______ 72
Control Instructions 73
Input/Output Instructions _______________ 80

4. INPUT/OUTPUT OPERATIONS 87

lOP Command Doubl ewords - _ .. -.- -_ .. __ . --'.' ".-- --.----- 88

5. OPERATOR CONTROLS 91

Processor Control Panel
Loading Operation _____ _

91
96

INDEX 133

APPBIJIXES

A. REFERENCE TABLES 98

Standard Symbols and Codes 98
Standard Character Sets 98
Control Codes 98
Special Code Properties 98
Standard 8-Bit Computer Codes (EBCDIC) 99
Standard 7-Bit Communication Codes

(ANSCII) 99
Standard Symbol-Code Correspondences 100
Hexadecimal Arithmetic 104

Hexadecimal Addition Table ________ 104
Hexadecimal Multiplication Table _______________ 104
Table of Powers of 16 10 105
Table of Powers of 1016-- ___ ._ 105

Hexadecimal-Decimal Integer Conversion Table 106
Hexadecimal-Decimal Fraction Conversion Table 112
Table of Powers of Two_____ _ __ 116
Mathematical Constants ___ 116

B. REFERENCE DIAGRAMS 117

Basic SIGMA 7 Instruction Execution Cycle _________ 118
Floating-Point Instruction Execution ____ 120

Floating-Point Multiplication and Division ___ 120
Floating-Point Addition and Subtraction ____ 121
Floating-Point Shift ________ 122

Edit Byte String Instruction Executivn __ .____ __ 123

C. SIGMA 7 INSTRUCTIONS (MNEMONICS) 124

D. INSTRUCTION TIMING 126

iii

ILLUSTRATIONS TABLES

Frontispiece - SIGMA 7 Computer System v 1. SJGMA 7 Dedicated Memory locations ___ 8

1. A Typical SIGMA 7 System 2. SIGMA 7 Interrupt locations 18

3. Summary of SIGMA 7 Trap System ·22
2. Information Boundaries 8 4. Glossary of Symbolic Terms 28

3. SIGMA 7 Central PrtScessing Unit 9 5. Analyze Table for SIGMA 7 Operation Codes_ 36

4. Index Displacement Alignment 13 6. Floating-Point Number Representation ___ 49

7. Condition Code Settings for Floating-Point
5. Generation of Actual Addresses 15 Instructions 51

6. Typical Interrupt Priority Chain 17 8. Status Bits for I/O Instructions 82

9. Program Status Doubleword Indicators 93
7. Interrupt level Operation 19 0-1. Basic Instruction Timing 127

8. Processor Control Panel 91 0-2. Additional Instruction Timing 132

iv

~9'>(;;_lilll' .. ,J

SIGMA 7 Computer

v

1. SIGMA 7 SYSTEM

A t)'pical SIGMA '7 system (see Figure 1) consists of the
fof/ewing major elements:

• A. memory consisting of up to eight magnetic core stor
c:ge units

• \. centra I procE~ssing unit (CPU) that addresses core
mt'rnory, fetchE~s and stores information, performs arith
metic and log ;(:0 I operations, sequences and controls

[
Core Memory

Unit
Core Memory

Unit

instruction execution, and controls the exchange of in
formation between core memory and other elements of
the system

• An input/output system controlled by one or more input /
output processors (lOPs), each providing data transfer
between core memory and peripheral input/output de
vices, and operating simultaneously with the CPU.

Core Memory
Unit

Core Memory
Unit

1 t __ ~·~ ____ t _____ I _______ I
L __________ ~ __

~--------------.. ---------------~--------
----.------------,-----------------------~~--------------~----~ r-------------~------~

~.-----------------------+------------------------~--------.. --------~----~ ~------------~

[
t

.,
Multiple:l(or

t

I/o PrOCE!SSOr

~

:':··H;~i·~~·· .. ·:::l
~~~Controilier } .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:. 

~ 

, 
va Device I 

t 

SIGMA 7 
Central Pro1cessing Unit 

~~:"'·'6~~'i'~~":·:':~~~ 

~~ Controller) .:.:.:.:.:.:.:.:.:.;.:.; ........... :.:. 

" 

I/O Device I/o Device 

Selector
U 

I/O Processor 

(':-:b~'~i~:~;':':) 

~~~ Controller ~~: .................................... :-

•

;=:> I/o ~evice

~ I/O Device
~ 15

L _____ Standard-Speed Periph4eral Devices ------ High-Speed Peripheral Devices

Figure 1. A Typical SIGMA 7 System

t Multiplexor lOP allc)ws up to 24 d~~vices (one per device controller) to operate simultaneously.

~]~:·:-:·D~~f~:~:.;·:··~·

~~~Controller :~~ . ............................... ;.:.:-

I/o Device 

t'Selector lOP allow!; one device at a time to operate at a high-speed transfer rate of up to one 32-bit word per microsecond. 
A selector lOP may service up to 32 high-speed devices, and two selector lOPs may share a single memory bus. 

SIGMA 7 System 



GENERAL CHARACTERISTICS 

A SIGMA 7 computer system has features and operating 
characteristics that permit efficient functioning in real
time, ge:"er~l-purpose, time-sharing, and multi -usage 
computing environments: 

• WOi·d-oriented memory (32-b:t word plus parity bit) 
whi,;h con be addressed and altered as byte (8-bit), 
halfword (2-byte), word (4-byte), and doubleword 
(8-byte) quanti ties. 

• Full parity checkin~-4 for both CPU/memory and input/ 
output operations. 

• Mer-;~')ry expandable from 8192 to 131, 072 words (32, 768 
to 524, 288bytes}jn ;ncremer.tsof3192or 16, 384 words. 

• Direct addrE's:;ing of tht: entir€ core memory, within the 
primary ;nstrlJdion word and withvut the need for base 
registers, ind:;ect addressing, or indexing. 

• Indirect addre)sing, with or without post-indexing. 

• Displacement lndex registers, uutomatically self
adjl;s: ing for all Jato sizes. 

• Immediatt~ addressing of "perands, for greater storage 
efficienc,. and j.,r:reased speed. 

• Sixteen gpneral-plJrpose registers, expandable (in blot::ks 
of 16) to .J 12 to reduce transfer of data into and '.Jut of 
registers in :J multh.,sage environment. 

• Hardware memor} mapping (optional), which obviates 
the problem ':)f memory fragmentation and provid~ dy
naMic program reloca! ion. 

• Selecti","'! memory access protection with four modes 
{included with memory mapping} for system and infor
mation security and protectbn. 

• Sel~ctive memory write protection (optional). 

• Watchdog timer, assuring nonstop operation. 

• Real-time priority interrupt system with automatic iden
tification and priority assignment, fast response time, 
ar.d up to 240 le"els that can be individually armed, 
enabl ed, end triggered by program control. 

• Interruptibility of long instructions, guaranteeing fast 
response to interr'Jpts. 

• Automatic traps, for error conditions and for simulation 
of optional instructions not physically implemented, all 
under program control. 

• Power fai l-safe, for automatic, safe shutdown in the 
event of a power failure. 

• M~ltiple interval timers, with a choice of resolutions 
fo( independent time bases. 

2 General Characteristics 

• 

• 

Privileged instruction logic (master lsI ave modes), for 
concurrent I time-shared operation. 

Complete instruction set including: 

• Byte, halfword, word, and doubleword operations. 

• Use of all memory-referencing instructions for 
register-to-register opeH.,tions, with or without 
indirect addressing and post-index ing, and within 
the normal instruction format. 

• Multiple register operations. 

• Fixed-point arithmetic operations in halfword, 
word, and doubleword modes. 

• Optional floating-point hardware operations, in 
short and long formats, with significance, zero, 
and normalization control and checking, all under 
program control. 

• Full complement of logical operations (AND, OR, 
exclusive OR). 

• Comparison operations, including compare between 
limits (with limits in memory or in registers). 

• Call instructions permitting up to 64 dynamical!v 
variable, user-defined instructi ons, and permitti'lg 
a program to gain access to operating system func
tions without operating system intervention. 

• 

• 

• 

• 

• 

Optional decimal hardware operations, including 
arithmetic, edit, and pack lunpack. 

Push-down stack operations (hardware imple
mented) of single or multiple words, with auto
matic I imit checking, for dynamic space allocation, 
subroutine communication, and recursive routine 
capab i I ity . 

Automatic conversion operations, including binary / 
BCD and any other weighted-number systems. 

An analyze instruction, for facilitating effective 
address com pu ta t i on . 

An interpret instruction, for increased speed of 
interpretive programs. 

• Shift operations (left and right) or word or double
word, including logical, circular, arithmetic, and 
floating-point modes. 

Independently operating input/output system with the 
following features: 

• 

• 

Direct inpl,t/output of a full word, without the 
use of a channel. 

Up to eight input/output processors (lOPs). 



II 

.. 

• Multiplexor input/outpu~ processors (MIOPs) for 
simultaneous operation of up to 24 standard-speed 
devices per lOP. 

• Selector input/output pr1xessors (SlOPs) (8 or 32 
bits wide) for data rates approaching 4 million 
bytes per second. 

• Up to 32 device controllers can be connected to 
each SIOIP. 

• Both data and command chaining, for gather-read 
and scatte!r-write operatiions. 

• Up to 32, 000 ou~put control signals and input test 
signals. 

Comprehensive~ complement of modular software: 

e Expands in capabi/ ity and speed as system grows. 

• Ba::.ic system programming support: "Stand
A!one" S)'stems and Basic Control Monitor 
(BCM). 

• Operating systems: Real-time Batch Monitor 
(RBM), Batch Processing Monitor (BPM), Batch 
Time-Sharing Monitor (BTM), Universal Time
Sharing S)'stem (UTS), and Xerox Operating Sys
tem (XOS). When largelr computing capacity is 
required, UTS and XOS IJsers can expand to the 
X DS SI GMA 9 Computer. 

• Language processors that include: FORTRAN IV-H, 
Extended XDS FORTRAN IV, XDS ANS COBOL, 
BASIC, FLAG, Symbol, Macro-Symbol, Meta
Symbol; o,lso, utilities al1d applications software 
for both commercial and scientific users, e. g., 
Data Man.ogement System (DMS), General ized 
Sort and Merge, Manage, 1401 Simulator, Func
tional Mathemati cal Pro~,ramming System (FMPS), 
FMPS Matrix Generator/~eport Writer (GAMMA 3), 
Simulation Language (SL-l), General Purpose Dis
crete Simulation packagE! (GPDS), Graphic Display 
Library (GDL-l), Circuil~ Analysis Systems (CIRC
AC, CIRC-DC), etc. 

Standard and special-purpose peripheral equipment 
includes: 

• Rapid Access Data (RAD) files: Capacities to 
6.2 million bytes per unit; transfer rates to 3 mil
lion bytes per second; average access times from 
17 mill i seconds. 

e Magnetic tape units: 7-·track and 9-track sys
tems, IBM-compatible; high-speed units operate 
at 150 inches per second with transfer rates up 
to 120,000 bytes per second; and other units 
operate al~ 37.5 inches per second with trans
fer rates up to 20,800 bytes per second and 

at 75 inches per second with transfer rates up 
to 60,000 bytes per second. 

• Displays: Graphic display has standard character 
generator, vector generator, and close-ups, as 
weI I as light pen and alphanumeric/function key
board with a display rate of up to 100,000 char
acters per second. 

• Card equipment: Reading speeds of up to 1500 
cards per minute; punching speeds of up to 300 
cards per minute; intermixed binary and EBCDIC 
card codes. 

• Line printers: Fully buffered, with speeds of up 
to 1500 lines per minute; 132 print positions with 
64 characters. 

• 

• 

Keyboard/printers: Ten characters per second; 
also available with integral paper tape reader 
(20 characters per second) and punch (10 char
acters per second). 

Paper tape equipment: Readers with speeds of up 
to 300 characters per second; punches with speeds 
of up to 120 characters per second. 

• Graph plotters: Digital incremental, providing 
drift-free plotting in two axes in up to 300 steps 
per second at speeds from 30 mm to 3 inches per 
second. 

• Data communications equipment: A complete line 
of character- and message-oriented equipment to 
connect remote user terminals to the computer sys
tem via common carrier lines and local terminals 
directly. 

REAL-TIME FEATURES 

Real-time applications are characterized by a need for 
hardware that provi des qu i ck response to an ex terna I en vi ron
ment, speed great enough to keep up with the real-time pro
cess itself, and sufficient input/output flexibility to handle 
a wide variety of data types at varying speeds. The SIGMA 7 
system includes provisions for the following real-time com
puting features. 

Multil evel, True Priority Interrupt System. The real-time 
oriented SIGMA 7 system provides for quick response to 
interrupts by means of up to 224 external interrupt levels. 
The source of each interrupt is automatically identified 
and responded to according ta its priority. For further 
flexibility, each level can be individually disarmed (to 
discontinue accepting inputs to it) and disabled (to defer 
responding to it). Use of the disarm/disable feature 
makes programmed dynamic reassignment of priorities 
quick and easy, even while a real-time process is in 
progress. In establ ishing a configuration for the system, 
each group of 16 interrupt levels can have its priority 
assigned in different ways in order to meet the specific 

Real-Time Features 3 



needs of the problem; the way in which interrupt levels 
are programmed is not affected by the priority assignment. 

Programs that deal with interrupts from apecially designed 
equipment sometimes must be checked out before that 
equipment is actually available. To permit simulating this 
special equipment, any SIGMA 7 interrupt level can be 
triggered by the CPU itself through execution of a single 
instruction. This capability is also useful in establishing 
a hierarchy of responses. For example, in responding to a 
high-priority interrupt, after the urgent processing is com
pI eted, it may be desirable to assign a lower priority to 
the remaining portion in order to respond to other critical 
interrupt levels. The interrupt routine can accomplish this 
by triggering a lower-priority level, which processes the 
remaining data only after other interrupts have been 
handled. 

Certain instructions (READ DIRECT and WRITE DIRECT, de
scribed in Chapter 3) allow the program to completely in
terrogate the condition of the interrupt system at any time 
and to restore that system at a later time. 

Nonstop O~ration. When connected to special devices 
(on a ready~esume basis), the computer can sometimes be
come excessively delayed if the special device does not 
respond quickly. A built-in watchdog timer assures that 
the SIGMA 7 computer cannot be delayed for an exces
sive length of time. 

~~q1~:Ji_~~~~Clocks. Many real-time functions must be timed 
to occur at specific instants. Other timing information is 
also needed - elapsed time since a given event, for example, 
or the current time of day. SIGMA 7 can contain two or 
four real-time clocks with varying degrees of resolution 
(1 /60 second or 1/8 millisecond, for example) to meet these 
needs. These clocks also allow easy handl ing of separate 
time bases and relative time priorities. 

Rapid Context Sw itching. When responding to a new set of 
;-~ter~~~pt-inTti~tedcircumstances, a computer system must 
preserve the current operating environment, for co, ;tinuance 
later, while setting up the new environment. This changing 
of environments must be done quickly, with a minimum of 
"overhead" costs In time. In SIGMA 7, each one of up to 
32 blocks of general-purpose arithmetic registers can, if 
desired, be assigned to a specific environment. All rele
vant information about the current environment (instruction 
c:,jdress, current general register block, memory-protection 
key, etc.) is kept in a 64-bit program status doubleword 
(PSDL A single instruction stores the current PSD any
where in memory and loads a new one from Inemory to es
tablish a ne'v\< environment, which includes information 
identifying a new block of general-purpose registers. A 
SIGMA 7 s),"stem can thus preserve and change its operating 
environment completely through the execution of a single 
instruction. 

SimJltaneous I/O Channel Operation. The use of a multi
pT;~~~-i-;:;put/output--p~-;-cesso;:-(MIOPT permits up to 24 chan
ne Is with standard-speed devices to operate concurrentl y; the 
addition of more MIOPs increases this throughput. 

4 General-Purpose Features 

High-Speed Chunnel Operation. Tht.: use of the selector 
input!o'Jtput pr~)ces$()r (SlOP) permits very high-speed data 
transfer - up to one ~2-bit word per memory cycle. To 
meet special needs, data size can be a or 32 bits wide .. 

Memory Protection. Both foreground {real-time} andback-
ground programs can be run concurrently in a SIGMA 7 
system because a foreground program is protected against 
destruction by an unchecked background program. Optional 
memory write-protection guarantees that protected areas of 
memory can be written into onl y under predefined condi
tions. Under operating system control, the optional memory 
access-protection feature also prevents accessing of memory 
for specified combinations of reading, writing, and instruc
tion acquisition. 

Variable Precision Arithmetic. Much data encountered in 
real-time systems are 16 bits or less. To permit this length 
of data to be processed efficiently, SIGMA 7 provides half
word arithmetic operations in addition to fuHword oper
ations. Doubl eword arithmetic operations (for extended 
precision) are also included. 

Direct Data Input/Output. For handl ing asynchronous I/O, 
a 32-bit word can be transferred directl y t::> or from a 
general-purpose register, so that an I/O channel need not 
be occupied with relatively infrequent transmissions. 

Interleave/Overlap. To increase processing speeds, mem-
ory banks overlap cycles automatically wherever possible. 
Core memory addresses can be interleaved modul0-2 or 
modulo-4 on a bank basis to increase the probabil ity of 
over! appi ng . 

GENERAL-PURPOSE FEATURES 

General-purpose computing applications are characterized 
primarily by an emphasis on computation and internal data 
handling. Many operations are performed in floating-point 
format and on strings of characters. Other typical charac
teristics include decimal arithmetic operations, the need to 
convert binary numbers into decimal (far printing or display), 
and consi derabl e input /output at standard speeds. The 
SIGMA 7 system includes the following general-purpose 
computer features. 

Floating-Point Hardware (optional) Floating-point in-
structions are a~ailable in both short 132-bit) and long 
(64-bi t) formats. Under program control, the user can 
select optional zero checking, normolization, and signifi
cance checking (which causes the computer to trap when a 
post operation shift of more than two hexadecimul places 
occurs in the froction of a floating-point numbed. The 
significance checking feature permits the use of the short 
floating-point farmat (for high processing speed and storage 
economy) and the use of the long forrrot when loss of sig
nifi cance is detected. 

Decimal Arithm·:.tic Hardware (optional \. Decimal arith
metic instruct!ons··operateon~up t;-31 digits plus sign. Th', 
optional instruction set also includes pack /unpack instructions 



(for converting to/from the packed format of two digits per 
byte) and a generCJrized edit instruction (for zero suppres
sion, check protection, and formatting byte information 
with punctuation to display or print it). 

Indirect Addressin!~. This feature provides for simple 
tOblellnkages and-permits the U!ier to keep data sections 
of his program separate from procedure sections for ease 
of maintenance. 

Displacement Ind€!xing. The technique of indexing by 
Ill-eons of a "IT oatil19li(fisplacement' permits the user to 
access the desired unit of data without the need to con
sider its size. The index registers automatically align 
themsel ves appropriatel y; thus, the same index register 
can be used on arrays with different data sizes. For ex
ample, in a matrix multipl ication of any array of fullword, 
single-precision, fixed-point numbers, the results can be 
s~ored in a second array as double-precision numbers, using 
the same index qucmtity for both arrays. If an index regis
ter ccmtains the value of k, then the user alw'!ys accesses 
the k;!, el ement, whether it is a byte, halfword, word, or 
doubleword. Incrementing by various quantities according 
~o data size is not required; instead, incrementing is al
ways by units in a continuous arrclY table no matter which 
size of data el ,~ment is used. 

Powerful Instruction Set. The availability of more than 
lOO-~aior--;-;~st--':-~-ctions results in programs that are short, 
rapidly assembled, and quickly executed. 

!rans!ate Instruction. This instruction permits rapid trans-
lation between an)' two 8-bit codes (such as EBCDIC to 
ANSCIn; thus data from a variety of input sources can be 
easily handled and reconverted for output. 

_~onversion Instrudions. Two g,eneral ized conversion in-
5tructions provide IFor bidirectionol conversions between in
ternal binary and ony other wei9hted number system, 
including BCD. 

Call Instructions. Four instructions pem.:; :lOndl ing up i 0 

64-~-;;;-defined subroutines (as if th ~y wer~J built-in mrj

chine instructions) and gaining access to sr--,.-:cified oper
oting system services without requiring its intervention. 

.~nterpret Instruction. This instruction simplifies and speeds 
interpretive operations such as compi I ing, thus reducing the 
space and time requirements for c:ompilers. 

F,:)ur-Bit Condition Code. This feature simplifies the 
~hecking of results by automaticCllly providing information 
on almost every in!itruction execution (including indicators 
for overflow, underflow, zero, minus, and plus, as appro
pi iate) without requiring an extro instruction execution. 

TIME-SHARING FEATURES 

Time-sharing is thE! ability of a computer system to share 
its resources amon~, many users at the same time. Each 
user may perform a different task that requires a different 
share of the available resources ClOd, in many instances, 

each may be on-line in an interactive ("conversational ") 
mode with the computer. Other users may enter work to be 
batch processed. The SIGMA 7 system provides for the fol
lowing time-sharing computer features. 

Rapid Context Saving. When changing from one user to 
another, the operating environment can be swi tched quickl}' 
and easily. Stack-manipulating instructions permit fr'm 
one to 16 general-purpose registers to be stored in a push
down stack by a single instruction -with automatic updating 
of stack status information -and to be retrieved (again, by 
a single instruction) when needed. The current program 
status doubleword (which contains the entire description or 
the current user's environment and mode of operari::)n) can 
be stored anywhere in memory and 0 new program status 
doubleword loaded, all with a single instruction. 

Multi~'e Register Blocks. The opti::)nal availabil ity of up 
to 32 10CksOf 16 general-purpose registers further improves 
response time by reducing the need to store and IJad regis- . 
ter bl.ocks. As needed, each user can be assigned a dis
tinct block; the program status doubleward automatically 
points to the currently applicable register block. 

User Protection. The slave mode of operati'Jn I estr:crs eaci' 
user to his own set of instructions while reserving t._, the 
operating system those instructions that cauld, if used in
correctly, destroy another usel's program. ;\n .'pri )nal 
memory access-protection system prevents any user fron; 
accessing storage areas other than those assigned t:) him. 
This access protection permits the user to access certain 
areas for reading only, such as those containing public 
subroutines, whi Ie preventing him frJm reading, \':1" i t ing, 
or accessing instruction in areas set aside for ::)ther users 

Storage Management. SIGMA 7 memories are available 
in16-S;zes-(from 8192 to 131,072 'v':ords) to provide 
the capacity needed, while assuring potential for ex-
pansion. To assure efficient use of available memory, 
the optional memory map hardware permits storing a 
user's program in fragments (as small as 512 words) v .. ,her
ever space is available; yet, all fragments appear as a 
single, c.:mtiguous block of storage at execution time 
The memory mop also automatically and dynamically 
handles program relocation, so that the program appears 
to be stored in a standard way at execution time (even 
though it may actually be stored in c different set of 
locations each time it is brought i"t:::> memory\. The 
memory map for the full -sized SIGMA 7 memory is pro
vided as a single option no matter how small the actual 
memory may be. Thus, the system can always address 
a virtual memory of 131,072 words regardless of physical 
memory size. 

Input/Output Cap.:Jbil ity SIGMA -; can control up to 
eight inp~output processors (of two types) in various 
combinations. Each multiplexor I '0 processor can have 
up to 24 standard-speed I/O channels operating simul
taneously; selector I/O processors can have any ::)ne Df 
up to 32 high-speed I/O devices operating on each 
processor. The I/O processors operate semi -indepen-
dent�y of the central processor, leaving it free to pro
vide faster response to overall system needs. 

Time-Sharing Features 5 



Nonstop Operation. A watchuog timer assures that the 
system continues to operate even if certain special I/O 
capabilities are used with special devices that can cause 
delays or hal~s if they feT Multiple real-time clocks 
with varying resolutions permit establ ishing several inde
pendent time bases, thus allowing flexible allocation of 
time sl ices to each user. 

MULTIUSAGE FEATURES 

As implemented in the SIGMA 7 system, "multiusage" 
combines two or more computer application areas. The 
most difficult computing problems are associated with 
real-time applications. Similarly, the most difficult 
multiusage problems are associated with time-sharing ap
plications that include one or more real-time processes. 
Because the SIGMA 7 system has been designed on a real
time base, it is especially qualified for a mixture of 
applications in a multiusage environment. Many of. the 
hardware features that are required for specific application 
areas are equall y useful in others, al though in different 
ways. This multiple capabilitymakes SIGMA 7 particularly 
effective for multiusage applications. The major SIGMA 7 
mul tiusage computer features are; 

Priority Interrupt. In a multiusage environment, many 
elements operate asynchronously. Thus, a true priority 

6 Multiusage Features 

interrupt system is ~ssential. It all ows the computer system 
to respond quickl y (and in proper order') to the many de
mands made on it, without the high overhead costs of 
complicated programming, lengthy execution time, and 
extensive storage allocations. 

Quick Response. The many features that combine to 
produce a quick-response system - multiple register 
blocks, quick context saving, push-pull operations -
benefit all users because more of the computer's re
sources are available for useful work. 

Memory Protection. The optional memory protection 
features protect each user from every other user and 
also guarantee the integri ty of programs that are essen
tial to critical real-time appl ications. 

Input/Output. Because of its wide range of capacities 
and speeds (with and without channels), the SIGMA 7 
I/O system simultaneously satisfies the needs of many dif
ferent application areas economically, both in terms of 
equipment and of programming. 

Instruction Set. The large SIGMA 7 instruction set pro-
vides the computational and data-handling capabilities 
required for widely differing application areas; therefore, 
each user's program length (thus running time) is decreased 
and the speed of obtaining results is increased. 



2. SIGMA t SYS'TEM ORGANIZATION 

The primary elements in a basic SIGMA 7 system - a central 
processor, core mE!mory, and input/output processor - are 
all designed around a central, double bus structure. 
Each primary element of the syst,em operates asynchronously 
and semi -independently, automaitically overlapping the op
eration of the othE!r elements (when circumstances permit) 
for greater speed. The basic configuration can be expanded 
merely by increasing the number of , core memory modules 
(up to eight), increasing the number of buses (up to six), 
increasing the number of input/output processors (up to 
eight), or by increasing the number of central processors. 

INFORMATION IFORMAT 

The basic element of SIGMA 7 information is a 32-bit word, 
on which the bit positions are numbered from 0 through 31, 
as follows: 

A SIGMA 7 word can be divid421d into two 16-bit parts 
(called halfwords) in which the bit positions are numbered 
from 0 through 15, as follows: 

I 0 , , ,I. ~a,1 f~~r~ ~ "I" " .. J ,_, ". ~~ I ~~~ ,: "I" " .. .J 
A SIGMA 7 word con also be divided into four 8-bit parts 
(called bytes) in wlhich the bit pC1sitions are numbered from 
o through 7, as follows: 

[ Byte 0 I Byte 1 I 
01131.5670 I 2314567 

Byte 3 
6 7 0 I 

Two SIGMA 7 words can be combined to form a 64-bit 
element (called a doubleword) in which the bit positions 
cue numbered from 0 through 63, as follows: 

Four bits of informcltion can be e);pressed by means of a 
single hexadecimal digit. Hexadecimal digits (and their 
binary and decimal equivalents) eire expressed in the fol
lowing notation: 

Hexadecimal ----- Binary Decimal 

X'O' 0000 0 
X'l' 0001 1 
X'2' 0010 2 
X'3' 0011 3 
X'4' 0100 4 
X'5' 0101 5 
X'6' 0110 6 

H exadec i ma I Binary Decimal 

X'7' 0111 7 
X'8' 1000 8 
X'9' 1001 9 
X'A' 1010 10 
X'B' 1011 11 
X'C' 1100 12 
X'D' 1101 13 
X'E' 1110 14 
X'F' 1111 15 

Thus, a byte can be expressed as a 2-digit hexadecimal 
number, a halfword as a 4-digit hexadecimal number, a 
word as an 8-digit hexadecimal number, and a doubleword 
as a 16-digit hexadecimal number. In this reference man
ua I, a hexadecimal number is displayed as a string of hexa
decimal digits enclosed by single quotation marks and pre
ceded by the letter "X". For example, the binary number 
01011010 is expressed hexadecimally as X'5A'. 

CORE MEMORY 

SIGMA 7 core memory systems use a 33-bit word (four 8-bit 
bytes, plus a parity bit) as the basic unit of information. 
AI/ of memory is directly addressabl e by the CPU (except 
for memory locations 0 through 15) and by the lOPs. The 
SIGMA 7 addressing capability accommodates a maximum 
memory size of 131,072 words (524,288 bytes). Core mem
ory is modular and is available in increments of8192words 
(32,768 bytes), or 16,384 words (65,536 bytes). 

DEDICATED MEMORY LOCATIONS 

Memory locations 0 through 319 are reserved by standard 
XDS software for special purposes as shown in Table 1. 

INFORMATION BOUNDARIES 

SIGMA 7 instructions assume that bytes, halfwords, and 
doublewords are located in storage according to the 
following boundary conventions: 

1. A byte is located in bit positions 0 through 7, 8 
through 15, 16 through 23, or 24 through 31 of a word. 

2. A halfword is located in bit positiqns 0 through 15 or 
16 through 31 of a word. 

3. A doubleword is located such that bits 0 through 31 of 
the doubleword are contained within an even-numbered 
word, and bits 32 through 63 of the same doubleword 
must be contained within the next consecutive (odd
numbered) word. 

The various information boundaries are illustrated in Figure 2. 

SIGMA 7 System Organization 7 



• • I 
Doubieword Doubleword 

, 
I I 
I --~-.- ... • . 
I Word (even addres'i) Word (od'~ address) Word {even address} Word (odd address) I 
I I • . I 
I Halfword 0 Halfword 1 Halfword 0 Halfword 1 Halfword 0 Halfword 1 Halfword 0 Halfword 1 I 
I I 

:Byte 01 Byte 1 Byte 21 Byte 3 Byte 0 I Byte 1 Byte 21 Byte 3 Byte 01 Byte 1 Byte 21 Byte 3 Byte 01 Byte 1 Byte 21 Byte 3: 

Figure 2. Information Boundaries 

Table 1. SIGMA 7 Dedicated Memory Locations 

Location 
Decimol Hexadecimal Function 

0 0 
Addresses of general registers 

15 F 

16 10 
Reserved for future use 

31 IF 

32 20 
Cpu/Iop communication 

33 21 

34 22 
Program stored by LOAD . 
switch on the processor panel 

41 29 

42 2A 
Fi rst record read from peri-
phera� device during a load 

63 3F operation 

64 40 
Traps 

79 4F 

80 50 
Override interrupt levels 

87 57 

88 58 
Counter interrupt levels 

91 5B 

92 5C 
Input/output interrupt levels 

93 5D 

94 5E 
Reserved for future use 

95 5F 

96 60 
External interrupt levels 

319 13F 

8 Computer Modes/CPU Fast Memory 

COMPUTER MODES 

The SIGMA 7 computer operates in either the master mode 
or the slave mode. The mode of operation is determined 
by the state of the master/slave mode control bit in the 
arithmetic and cQfltrol unit. 

MASTER MODE 

The master mode is the basic operating mode of the 
computer. In this mode, all SIGMA 7 instructions are 
permissible. It is assumed that there is a resident execu
tive program (operating in the master mode) that controls 
and supports the other programs operating in the master 
or sl ave mode. 

SLAVE MODE 

The slave mode is the problem-solving mode of the com-
puter. In this mode, "privileged" instructions are pro-
hibited. Privileged instructions are those relating to input/ 
output and to changes in the basic control state of the com
puter. All privileged instructions are performed in the 
master mode only. Any attempt by a program to execute a 
privileged instruction while the computer is in the slave 
mode results in a return of control to the resident execu
tive program. 

The master/slave mode control bit can be changed only 
when the computer is in the master mode; thus, a slave pro
gram cannot directly change the computer mode from slave 
to master. However, the slave program can gain direct 
access to certain executive program operations by means 
of call instructions. The operations available through 
call instructions are established by the resident execu
tive program. 

CPU FAST MEMORY 

Several high-speed integrated circuit memories may be 
used in the SIGMA 7 CPU. These memories are cap
able of delivering information to (or receiving informa
tion from) the arithmetic and control unit simultaneously 
with the operation of core memory. These memories 
are not accessible to any other unit in a SIGMA 7 
system. 



CENTRAL PROCESSING UNIT 

This section describes the organi2:ation and operation of the 
I'he SIGMA 7 central processing unit in terms of informa
tion processing and' program control, instruction and data 

o 

GENERAL REGISTER BLOCK (TYPICAL) 

Index 
Regi sters 

formats, indirect addressing and indexing, memory map
p.ing and protection, overflow and trap conditions, and 
interrupt control. Basically, the SIGMA 7 CPU consists 
of a fast memory and an arithmetic and control unit (see 
Figure 3). ' 

l-ARITHMETIC AND CONTROL UNIT 

INSTRUCTION REGISTER 

o Indirect Address Flag 
o 

I I I I II I I Operation Code Field 
I 7 

I I I I I General Register Designator 

8 " 

[[[] Index Register Designator 
12 14 

Reference Address Field 

11111111111111111111 , 

1:[::;l;t::l:i:l::::::n:l::::,::]:]:::::i:::l:i:l:I:II:1:1:i:i:1I}:::::JJHWmtmIt::::m:1n:UJ:] 

2 i:::::::;::m:::;H::::,::::-;:::;:::;:;;:::;H::::;(:;I;tl:;:u:;;;:;::;;:;l;l:l;l:lI;:::;l:;;l::I;l;El;l!l!l:lI:;] 

3 1:::::;::':::::::::1,:::::::,:::,::1::::::::::;;::::::::::::::1H:t:;:::UI::;:}ft:m::m;;:HI;tI:;tU:;!J 

4 (:,,:::::::~:::',:U:::,:,':::,::::,:,;:;::::::n:;;I;;;H:I;:::t:t:t:;r;:;:;:;;::;;:;;:;:t;:,:::i:::;:';;};r;;1 

5 lE):::::" .:::':'i:::::,;::i:i;i:;:,:i,i::;i:i;i:I::;I:i:i::::::::;:;i::::::::::;':::::::;:;:;:Ii:;:;:;,:;:1 

6 10, , ,'d,':::':::,'" ::;:::::::;::H:[:::[,;::Ui:H:::!'U:m::U:?::;::::,::;':'::/::::;:;:m:;:::] 

7 EI::::;i::::;Ii::::;i!i:;:::i:j:i:i:::I::i:::i:::::::::;;::::::!:::i:i::;}::H:::::::'::;:::::II;;;J 

15 31 ...... T~o_/F_r~o~m ____ .... .... t----~.~ Core Memory 

I ~.~T~o~(_Fr~o_m ______ .. 

8 =:J 
9 =:J 

10 =:J 
11 =:J 
12 =:J 
13 ~ 

14 

15 ~----~ o ~ 

MEMORY CONTROL STORAGE 
Memory Map 

t--- 256 8-bit page addres.ses --f 
Memory Access Protection 

1111111111111~~nm 
~ 256 2-·bit access codes -I 
Memory Write Protection 

I I I I I I I I I I I I 1~\1JJJJ 
l---- 256 2·-bit write locks ----I 

31-digit 
Decimal 
Accumu
lator 

....... -VOP' rocessors 

• Read/Write 
Direct I lnterrupts 

• 
Priority Interrupt System 

Write Direct I 

PROGRAM STATUS DOU BLEWORD 

ITID Condition Code 
0 j 

[IIJ Floating-point Mode Control 
5 7 

0 Master/Slave Mode Control 
8 

D Memory Map Control 
9 

rn Arithmetic Trap Masks 
10 " 

I nstructi on Address 

111111111111111111 
15 31 

rn Write Key 
34 35 

ITIJ Interrupt Inhibits 
37 39 

IIIIII Register Block Pointer 
55 59 

Figure 3. SIGMA 7 Central Processing Unit 

Central Processing Unit 9 



GENEIUl: REGISTERS AND REGIST. BLOCK POINTER 

A high-speed memory, consisting of sixteen 32-bit 
words, is contained within the basic SIGMA 7 CPU for 
general-purpose register usage; these 16 words of fast 
memory are referred to as a register block. A SIGMA 7 
system may contain up to 32 such register blocks, and a 
5-bit control field (called the register block pointer) in 
the arithmetic and control unit selects the block currently 
avai lable to a program. The 16 general registers se
lected by the register block pot ...... er. referred to as the 
current register block. The register block pointer can be 
changed only when the computer i's in the master mode; 
thus, a slave program cannot change the register block 
pointer. 

Each general register in a current register block is identified 
by a 4-b it code in the range 0000 through 1111 (0 through 15 
in decimal, or X'O' through X'F' in hexadecimal notation). 
Any general register can be used as a fixed-point accumu
lator, floating-point accumulator, temporary storage, or can 
contain control information such as a data address, count, 
pointer, etc. Any {or all} of general registers 1 through 7 
can be used as index registers. Registers 12 through 15 are 
used as a decimal accumulator that is capable of containing 
31 decimal digits plus sign. The use of registers 12 through 15 
is automati c when a dec ima I instruction is executed; how
ever, these registers may be used for other purposes by in
structions not in the decimal instruction set. 

MEMOir( (O~JfOL STORAGE 

Three optional, high-speed integrated-circuit memories are 
avai lable for storage of a memory map, a set of memory ac
cess protection codes, and a set of memory write-protection 
codes, all of which can be changed only when the computer 
is in the master mode. 

Memory Map and Access Protection 

The optional memory map feature includes high-speed 
memories for both the memory mapand the access-protection 
codes. When the memory map is implemented :r. a 
SIGMA 7 computer, use of the map is determined by the 
state of the memory map control bi t in the arithmetic and 
control unit. 

Memory Map. Two terms are essential to a proper under
standing of the memory mapping concept: virtual address 
and ac tua I address. 

A virtual address is a value used by a machi ne-Ievel pro
gram to designate the location of an instruction, the loca
tion of an element of data, the location of a data address 
(indirect address), or to designate an explicit quantity, 
such as a count. Normally, virtual addresses are derived 
from programmer-suppl ied labels through an assembly (or 
compi lation) process followed by a loading process. Virtual 
addresses may also be computed during a program's execu
tion. Thus, virtual addresses include all instruction ad
dresses, data addresses, i nd i rec t addresses, and addresses 
used as counts within a stored program, as well as those 
addresses computed by the program. 

10 Instruction Format 

An actua I address is a value used by the CPU to access mem-
0ry for storage or retrieval of information, as required by the 
execution sequence of an instruction. Thus, actual addresses 
designate wired-in hardware storage locations. 

When the memory map is not implemented in a SIGMA 7 com
puter (or when the map is implemented but not in use, as 
determined by the memory map control bit), all virtual address 
values above 15 are used by the CPU as actual addresses. 
Virtual addresses in the range 0 through 15 are always used 
by the CPU as general register addresses rather than as core 
memory addresses. Thus, for example, if an instruction uses 
a virtual address of 5 as the address where a result is to be 
stored, the result is stored in general register 5 in the current 
register block instead of in core memory location 5. 

When the computer is operating with the memory map (i. e., 
the memory map is implemented and in effect), virtual ad
dresses in the range 0 through 15 are still used as general 
regi ster addresses. However, all v irtual addresses above 15 
are transformed into actual addresses, by replacing the high
order portion of the virtual address with a value obtained 
from the memory map. The memory map replacement process 
is described in the section "Memory Address Control". 

Memory Access Protection. When the computer is operating 
in the slave mode with the memory map, the access-protec
tion codes determine whether or not the program may access 
instructions from, read from, or write into specific regions 
of the virtual address continuum (vi rtual memory). If the 
slave program attempts to access a region of virtual memory 
that is so protected, program control is returned to the exe
cutive program. (The access-protection codes are described 
in the section" Memory Address Control" .) 

Memory Write Protection 

The optional memory write-protection feature operates inde
pendently of the memory map and access protection. The 
memory write-protection option includes the high-speed 
memory for the memory write locks. These locks oper
ate in conjunction with a 2-bit field, called the write 
key, in the arithmetic and control unit. The locks and 
the key determine whether or not the program (slave or 
master) may alter the contents of specific regions of core 
memory as accessed by actual addresses. The write key 
can be changed only when the computer is in the master 
mode; thus the current write key cannot be changed by a 
slave program. (The functions of the locks and key are 
described in the section "Memory Address Control". ) 

INSTRUCTION FORMAT 

The normal SI GMA 7 memory -addressing instruction has the 
following format: 

* 

Reference address 

This bit position indicates whether or not in
direct addressing is to be performed. Indirect 
addressing is performed (one level only) if this 



bit position contain~i a 1, and is not performed 
if thi~i bit position contains a O. 

Operation This i'-bit field conl'ains the code that desig
nates the operation to be performed. 

R This 4·-bit field desi~gnates any of the 16 regis
ters of the current mgister block as an operand 
source, result destination, or both. 

x 

Reference 
address 

This 3-bit field desi9nates anyone of registers 
1-7 of the current rE~gister block as an index 
reg i st.~r . X = 0 desi ~,na tes no index i ng; hence, 
regish~r 0 cannot be used as an index register. 

This 17-bit field contains the initial virtual ad
dress of the instruction operand. Although the 
contents of this field! is always, in itself, a word 
addres.s, the reference address field allows any 
word, doubleword, left halfword, or leftmost 
byte within a word iin memory to be directly 
addressed. Halfworcl and byte operations re
quire additional address bits for halfwords and 
bytes tthat do not be~,in on a word boundary. 
Thus, to address the second ha I fword of a word, 
the X field of the im.truction must designate a 
register that contaim. a 1 in its low-order bit 
posi tiCln. To address bytes 1, 2, or 3 of a word, 
the X field of the im;truction must designate a 
registe~r that contaim. 01, 10, or 11, respect
ively, in its two low-order bit positions. See 
"Index.ing and Index Registers" for a more com
plete description of the SIGMA 7 indexing 
proces!). 

Some SIGMA 7 i nstructi ons are of the immediate-addressing 
type. The format of these instnJctions provides for an 
operand within the instruction word itself, as shown below. 
The functions of thle Operation and R fields are identical to 
those of the normal instruction format. 

o 

Operand 

This bit position is shown codt::d with a 0 be
cause indirect addressing caimot be used with 
this type of instruction. If indirect addressing 
is attempted, the computer treats the instruc
tion as a nonexistent instruction. 

This field contains an operand that is 20 bits in 
length, with negativle numbers represented in 
two's-c:omplement form. 

There are several methods by which an instruction word 
may specify the source of an opemnd or the destination of 
CI result. Thes"," methods are explclined below. 

IMMEDIATE OPERAND 

The operation codE~ of an immediate operand instruction 
spec ifies that an operand is to be found in the operand 
Held (bit positions 12-31) of the instruction word itself, 

and not in a general register or core memory location. The 
operand field of this type of instruction cannot be modified 
by indexing. The following SIGMA 7 instructions are of 
the immediate operand type: 

Instruction Name 

load Immediate 

load Conditions and Floating 
Control Immediate 

Add Immediate 

Multipl y Immediate 

Compare Immediate 

Mnemonic 

1I 

lCFI 

AI 

MI 

CI 

The byte string instructions (see page 58) are similar to 
those of the immediate operand type in that they cannot be 
modified by indexing. However, the operand field of these 
instructions contains a byte address displacement (or a byte 
address) that is a virtual address subject to modification by 
the memory map. If an immediate or byte string instruction 
is indirectly addressed, it is treated as a nonexistent instruc
tion by the computer. 

MEMORY REFERENCE ADDRESSES 

Core memory locations ° through 15 are not accessible to 
the programmer because memory addressesOth-;;~g~re 
reserved as register designators for "register-to-register" 
operations. Thus, an instruction can treat any register of 
the current register block as if it were a location in core 
memory. Furthermore, the-register block can be used to 
hold an instruction (or a series of up to 16 instructions) for 
p-xecution just as if the instruction (or instructions) were in 
core memory. The only restriction upon the use of the 
register block for instruction storage is: 

If an instruction accessed from a general register uses 
the R field of the instruction word to designate the 
next higher-numbered regi ster and exec uti on of the 
instruction would alter the contents of the register so 
designated, the contents of that register should not be 
used as the next instruction in sequence because the 
operation of the instruction in the affected register 
would be unpredictable. 

In the maximum core memory configuration (131,072 words), 
memory addresses "wrap around" with address ° (general 
register 0) being the next consecutive memory address after 
X'1FFFF'(l31,071). Core memory location 16 follows gen
eral register 15 as the next location in ascending sequence. 

Direct Reference Address. If neither indirect addressing 
nor indexing is called for by the instruction, the reference 
address field of the instruction is a direct reference address. 

Indirect Reference Address. If indirect addressing is called 
for by the instruction (a 1 in bit position ° of the instruction 
word), the reference address fj eld is used to access a word 
location that contains the direct reference address in bit 

Instruction Format 1 J 



positions 15-31. The direct reference address then 
replaces the indirect referenc6 address. Indirect ad-
dressing is limited to one level. 

Index Reference Address. If indexing is called for by the 
instruction (a nonzero value in bit positions 12-14 of the 
instruction), the direct reference address is modified by 
addition of the displacement value in the general register 
(index) called for by the instruction (after scaling the dis
placement according to the instruction type). This final 
reference address value (after indirect addressing, index
ing, or both) is defined as the effective address of the 
instruction. If indirect addressing and indexing are both 
called for in an instruction, the index displacement is not 
used to modify the indirect reference address, but is used to 
modify the direct reference address obtained from the loca
tion pointed to by the indirect reference address. Thismethod 
of indexing after indirect addressing is called post
indexing. 

Register Address. If any instruction produces a virtual ad
dress that is a memory reference (i. e., a direct, indirect 
or indexed reference address) in the range 0 through 15, 
the CPU does not attempt to read from or write into core 
memory. Instead, the 4 low-order bits of the reference 
address are used as a general register address, and the gen
eral register (of the current register block) corresponding to 
this address is used as the operand location or result desti
nation. Thus, the instruction can use any register in the 
current register block as the source of an operand, the loca
tionofa direct addresst orthe destination of a result. Such 
usage is referred to as a "register-to-register" operation. 

Actual Address. An actual address is the address value 
actually used by the CPU to acceS5 core memory. If the 
memory map option is not implemented, or if the computer 
is not operating with the memory map, a" virtual addresses 
above 15 automati cally become actual address. However, 
if the computer is operating with the memory map feature, 
a" virtual address above 15 are transformed (usually into 
alternate addresses ina different memory page) by the mem
ory map, and these then become actual addresses. Virtual 
addresses below 16 are never transformed by thf'! memory 
map and thus always refer toa general register for a register
to-register operation. 

Effective Address. The effective address is defined as the 
final virtual address computed for an instruction. The 
effective address is usually used as the virtual address of 
an operand location or result destination. However, some 
instructions do not use the effective address as a location 
reference; instead, the effecti ve address is used to control 
the operation of the instruction (as in a shift instruction), 
to designate the address of an input/output device (as in 
an input/output instruction), or to designate a specific 
element of the system (as in a READ DIRECT or WRITE 
DIRECT instruction). 

Effective Location. An effective location is defined to be 
the actual location (in core memory or in the current regis
ter block) that is to receive the result of a memory
referencing instruction, and is referred to by means of an 
effective address. Because an effective address may be either 
an actual address or a virtual address, this definition of an 

12 Instruction Format 

effective location assumes, where applicable, the trans
formation of virtual addresses into actual address. 

Effective Operand. An effective operand is defined to be 
the contents of on actual location (in core memory or .in 
th~ current register block) that is to be used as on operand 
by a memory-referencing instruction, and is referred to by 
means of on effective address. This definition of on ef
fective operand also presupposes the transformation of vir
tual address into actual addresses. 

Address Modification 

Indirect Addressing. The 7-bit operation code field of the 
SIGMA 7 instruction word provides for up to 128 instruc
tions, nearly all of which can use indirect addressing 
(the exceptions, already mentioned, are the immediate 
and byte string instructions). The indirect addressing 
operation, as cal led for by the indirect address bit (bit 
position 0) of the instruction word, is I imited to one 
level. Indirect addressing does not proceed to further levels, 
regardless of the contents of the word location pointed tCl by 
the reference address field of the instruction. Indirect ad
dressing occurs before indexing; that is, the 17-bit reference 
address field of the instruction is used to obtain a word, and 
the 17 low-order bits of the word thus obtained effectively 
replace the initial reference address field; then, indexing 
is carried out according to the operation code of the 
instruction. 

Indexing and Index Registers. The X field of the normal 
instruction word permits anyone of registers 1 through 7 
in the current regi ster block to be designated as an index 
register. The contents of this register are then treated as 
a displacement value. 

Figure 4 shows how the index ing operation takes place. As 
the instruction is brought from memory, it is loaded into a 
34-bit instruction register that initially contains O's in the 
two low-order bit positions (32 and 33). The di splacement val UE' 

from the index register is then aligned with the instruction 
regi ster (as an integer) accordi ng to the addressi ng type of 
the instruction. That is; if it is a byte operation, the dis
placement is lined up so that its low-order bit is aligned 
with the least significant bit of the 34-bit instruction regis
ter. The displacement is shifted one bit to the left of this 
position for a halfword operation, two bits to the left for a 
word operation, and three bits to the left for a doubleword 
operation. An addition process then takes place to develop 
a 19-bit address, which is referred to as the effective ad
dress of the instruction. High-order bits of the 32-bit dis
placement field are ignored in the development of this 
effective address (i. e., the 15 high-order bits are ignored 
for word operations, the 25 high-order bi ts are ignored for 
shift operations, and the 16 high-order bits are ignored for 
doubleword operations). However, the displacement value 
can cause the effective address to be less than the initial 
reference address within the instruction if the displacement 
value contains a sufficient number of high-order l's (i. e. f 

if the displacement is a negative integer in two's comple
ment form). 

The effective address of an instruction is always a 19-bitb)lte 
address value; however, thi s va lue is automati cally ad justed 



Instruction in memory: 

Instruction in instruction register: 

Byte operation indexing ,alignment: 

Halfword clperation inde>dng alignment: 

Word operation indexing alignment: 

Shift operation indexing ,::alignment: 

Doubleword operation 
indexing allignment: 

Effective virtual address: 

Figure 4. Index Displacement Alignment 

to the SIGMA 7 information boundclry conventions. Thus, 
foU" halfword operations, the low-order bit of the effective 
halfword address is 0; for word operations, t:le two low-order 
bits of the effective word address are O's; r-'ld for doubleword 
operations, the 3 low-order bits of :' ~ effe.tive doubleword 
address are 0' s. 

If no indexing is used with a byte operation, the ~ffe·.::tive 
byte is the first byte (bit positions 0-7) of a word location; 
if no indexing is used with a halfw()rd operation, ~he effec
tive halfword is the first halfword (bit positions 0-15) of a 
word location. A dClubleword oper,::ation always involves a 
word at an even-numbered word address and the word at the 
next sequential (odd-numbered) word address. If an odd
numbered word location is specified for a doubleword oper
ation, the low-order bit of the efflective address field (bit 
position 31) is autom,::atically forced to O. Thus, an odd
numbered word address (referring to the middle of a double
word) designates the same doubleword as an even-numbered 
word address, w!1en used for a doubleword operation. 

MEMORY ADDRESS [CONTROL 

With a SIGMA 7 computer, two optional methods are avail
able for controlling the use of core memory by 0 program; 

they are the memory map and the memory write locks. The 
memory map provides for dynamic relocatabil ity of programs 
and for access protection through inhibitions imposed on 
slave mode programs. The memory write locks provide mem
ory write protection for both master and slave mode programs. 

MEMORY MAP AND ACCESS PROTECTION 

The memory map can be represented as a series of 256 8-bit 
registers, each of which contains an 8-bit actual memory 
page address code for a specific 512-word page of virtual 
addresses, and a series of 256 2-bit registers, each of which 
contains a 2-bit access control code for a specific 512-word 
page of virtual addresses. (The access control codes are ap
plicable only to programs operating in the slave mode with 
the memory map. ) 

The memory page address codes are assigned to pages of vir
tual addresses as follows: 

I Memory page X I Memory page K I ~ ~ I Memory page N I 
Vi rtua I addresses 
XI101-X'1FF' 
(virtual page 0) 

Virtual addresses Virtual addresses 
X '200 ' -X ' 3FF' X' 1 FEOO'-X '1 FFFF' 
(virtual page J) (virtual page 255) 

Memory Address Control 13 



The access control codes are assigned as follows: 

I AC I AC I AC I AC I AC ~ il AC I AC I 

I 1 
·Virtual address~s ·Virtual addresses 
X'600'- X'7FF'l X'lFEOO'-X'lFFFF' 

Vi rtua I addresses (virtual page 255) 
X'400'-X'5FF' 

Virtua I addresses 
X'200'-X'3FF' 

Virtual addresses 
X'10'-X'lFF' 
(virtual page O) 

Virtual addresses 
X'lFCOO'-X'lFDFF' 

The memory page addresses and access control codes can 
be changed only by the privileged instruction MOVE 
TO MEMORY CONTROL (see "Control Instructions"). 

When the CPU is operating in the mapping mode, all mem
ory references used by the program (including instruction ad
dresses) whether direct, indirect, or indexed, are referred to 
as virtual addresses. Virtual addresses in the range 0 through 
15 are not used to address core memory; instead, the 4 low
order bits of the virtual address comprise a general register 
address. However, if an instruction produces a virtual ad
dress greater than 15, the 8 high-order bits of the virtual 
address are used to obtain the appropriate memory page ad
dress and access control codes. For example, if the 8 high
order bits of the virtual address are 0000 0000, the first page 
address code and the first access control code are used; if 
the 8 high-order bits of the virtual address are 00000001, 
the second page address and access control codes are used; 
and so on, through the 256th page address and control codes. 
Thus, each 512-word page of virtual addresses is associated 
with its own memory page address and access control codes. 

When the memory map is accessed, the CPU performs a test 
to determine whether or not there are any inhibitions on using 
the virtual address by a slave program. (If the CPU is in the 
master mode, this test is not performed.) The 2-bit access 
control code is interpreted as follows: 

AC Function 

00 The slave program can write into, read from, or access 
instructions from this page of virtual addresses. 

01 The slave program cannot write into, but can read from 
or access instructions from this page of virtual addresses. 

10 The slave program cannot write into or access instruc
tions from, but can read from this page of virtual ad
dresses. 

11 The slave program is denied any access to this page of 
vi rtual addresses. 

If the instruction being executed by the slave program fai Is 
this test, the instruction execution is aborted and the com
puter traps to location X'40', the "nonallowed operation" 
trap (see "Trap System"). 

If the instruction being executed by the slave program passes 
this test (or the CPU is in the master mode), the page address 

14 Memory Address Control 

bits in the accessed byte of the memory map replace the 8 
high-order bits of the virtual address, to produce the actua! 
address of the core memory location to be used by the in
struction. 

If the page address bits in the accessed byte of the memory 
map are all O's, and when combined with 9 low-order bits 
of the virtual address, an actual address is produced that 
corresponds to a word address in the range 0 through 15, 
the corresponding general register in the current register 
block is not accessed. In this one particular instance, a 
word address in the range 0 through 15 corresponds to actual 
core memory locations rather than general registers. 

Figure 5 illustrates the address modification and mapping 
process for an indirectly addressed, indexed, halfword 
operation. As the figure shows, word address 1 is the 
contents of the reference address field in the instruction 
stored in memory. The instruction is brought into the in
struction register, and word address 1 (assumed to be greater 
than 15) is converted from a virtual address to qn actual ad
dress by the memory map. The 17 low -order bi ts of the core 
memory location pointed to by word address I, labeled word 
address 2, then replaces word address 1 in the instruction reg
ister. The index register designated in the X field of the in
struction is then aligned for incrementing at the halfword
address leve I, the final virtual (effective) address is formed, 
and the effecti ve address (assumed to be greater than 15) is 
also transformed, through the memory map. The final 19-
bit core memory address, which automatically contains a 
low-order 0, is then used to access the halfword to be used 
as an operand for the instruction. 

MEMORY WRITE LOCKS 

The access control bits in the memory map provide access 
protection, through inhibitions imposed on slave programs. 
However, this protection is only avai 'able when the memory 
map is in effect, and is only operotive with respect to slave 
programs. An optional memory protection feature, indepen
dent of the map option, is provided by a lock and key tech
nique. A 2-bit write-protect lock (Wl) is provided for each 
512-word page of actual core memory addresses. The write
protect locks consist of 256 2-bit write locks, each as
signed to a 512-word page of actual addresses as follows: 

I Wl I Wl I Wl I Wl I Wl I~ 11 WL I Wl I 

1
• +. Actual addresses Actual addresses 
X'600'-X'7FF' X'lFEOO'-X'lFFFF' 

Actuo I addresses 
X'400'-X'5FF' 

Actual addresses 
X'200'-X '3FF' 

Actua I addresses 
O-X'IFF' 
(memory page 0) 

(memory page 255) 

Actual addresses 
X' lFCOO'-X' lFDFF' 

The write-protect locks can be changed only by the execu
tion of the privileged instruction MOVE TO MEMORY CON
TROL {see Control Instructions}. 



Instruction! in memory: 

Instruction in instruction register: 

The 8 high-order bits of the reference address are 
replaced with page addrE~ss Z from memory map: 

Actual address of memo!,)' location 
that contains the direct (Jddress: 

Direct address in memory: 

Indirect addressing replaces reference 
oddress with direct address: 

Halfword operation indexing alignment: 

Effective virtual address: 

The 8 high·-order bits of I'he effective address are 
replaced with page addrE!ss N from memory map: 

Final memc)ry address, which is the actual address of 
halfword location containing the effective halfword: 

"'i7"Ts""U" I is 
II II 

19-bit virtual alfword address 
mmmmmmmmm m 0 

Figure 5. Generation of Actual Memory Addresses 

The write-key (a 2-bit field in the arithmetic and control 
unit) works in conjunction with the lock storage to deter-
mi ne whether or not the program (whether slave or master) 
can write into a specific page of c:ore memory locations. 
The keys and locks control access Ifor writing, according to 
th.~ following rules: 

A lock value of 00 means that the corresponding mem
ory page is "un/!::>cked"; write 4JCCeSS to that page is 
permitted independent of the key value. 

A key value of 00 is a "skeletc)n" key that will open 
any lock; thus, write access tel any memory page is 
permitted independent of its lock value. 

A lock value other than 00 for a memory page permits 
write access to that page onl), if the key value is 
identical to the lock value. 

Thus, a program can write into a given memory page if 
the lock value is 00, if the key value is 00, or if the key 
value matches the lock value. 

Note that the memory access protection feature is provided 
with the map option and operates on virtual addresses, whereas 
the memory write protection feature is a separate option that 
operates on actual memory addresses. Thus, if the ac
cess protection feature is invoked (that is, the CPU is 
in the slave mode and is using the memory map), the access 
protection codes are examined at the time the virtual ad
dress is converted into an actua I address. Then, the locks 
and keys are examined to detennine whether or not the 
program (master or slave) is allowed to alter the contents 
of the core memory location corresponding to the final 
actual address. If an instruction attempts to write into 
a write-protected memory page, the computer aborts 

Memory Address Control 15 



the instruction, and traps to location X'40', which is 
the "nonallowed operation" trap (see Trap System). 

PROGRAM STATUS DOUBLEWORD 

The criticol control conditions of the SIGMA 7 CPU can be 
defined within 64 bits of information. These 64 bits are 
collectively referred to as the current program statusdouble
word (PSD). The current PSD can be considered as a 64-
bit internal CPU register, although it actually exists as a 
collection of separate registers and- flip-flops. When stored 
in memory, the PSD is always in the following format: 

Desig-
nation Function 

CC 

FS 

FZ 

FN 

Condition code. This generalized 4-bit code in
dicates the nature of the results of an instruction. 
The significance of the condition code bits depends 
on the particular instruction iust executed. After 
an instruction is executed, the instructions BRANCH 
ON CONDITIONS SET (OCS) and BRANCH ON 
CONDITIONS RESET (BCR) can be used, singly 
or in combination, to test for a particular condi
tion code setting' (these instructionsaredescribed 
in Chapter 3, "Execute/Branch Instructions"). 

In some operations, only a portion of the condition 
code is involved; thus, the term CC 1 refers to the 
first bit of the condition code, CC2 to the second 
bit, CC3 to the third bit, and CC4 to the fourth 
bit. Any program (slave or master mode) can change 
the current value of the condition code by e>cecuting 
either the instruction LOAD CONDITIONS AND 
FLOATING CONTROL IMMEDIATE (LCFI) or the 
instruction LOAD CONDITIONS AND FLOAT
ING CONTROL (LCF); any program can store 
the current condition code by executing STORE 
CONDITIONS AND FLOATING CONTROL 
(STCF). These instructions are described in 
Chapter 3, "Load/Store Instructions". 

Floating significance mode control 

Floating zero mode control 

Floating normalize mode control 

The three floating-point mode bits (FS, FZ, and 
FN) control the operation of the computer with 
respect to floating-point significance checking, 

16 Program Status Doubl eword 

Desig-
nation Function 

MS 

MM 

OM 

AM 

IA 

WK 

the generation of zero results, and the normal~za
tion of the results of floating-point additions and 
subtractions, respectively. (The floating-point 
mode controls are described in Chapter 3, "Float
ing-point Instructions".) Any program (slove or 
master) can change the state of the current floating
point mode controls by executing either the instruc
tion lCFI or the instruction lCF; any program can 
store the current state of the current floating-
point mode controls by executing the instruction 
STCF. 

Master/slave mode control. The computer is in 
the master mode when this bit is a 0; it is in the 
slave mode when this bit is a 1. The master/slave 
mode control cannot di rectly be changed by a slave 
program; however, a master mode program can change 
the control by executing either the instruction LOAD 
PROGRAM STATUS DOUBlEWORD (lPSD) or the in
struction EXCHANGE PROGRAM STATUS DOUBlE
WORD (XPSD). These two privileged instructions 
are described in Chapter 3, "Control Instructions". 

Memory map control. The optional memory map 
(if implemented) is in effect when this bit is a 1; 
it is not in effect when this bit is O. The memory 
map control cannot be changed by a slave program, 
A master mode program can change the memory 
map control by executing either the instruction 
lPSD or the instruction XPSD. 

Decimal mask. The decimal arithmetic trap (see 
"'Trap System") is in effect when this bit is a 1; 
the trap is not in effect when this bit is a o. The 
conditions that can cause a decimal arithmetic 
trap are described in Chapter 3, "Decimal In
structions". The decimal trap mask cannot be 
changed by a slave program; a master mode pro
gram can change the mask by executing either the 
instruction lPSD or the instruction XPSD. 

Arithmetic mask. The fixed-point arithmetic over
flow trap is in effect when this bit is a 1; the trap 
is not in effect when this bit is a O. The instruc
tions that can cause fixed-point overflow are 
described in the section "Trap System". The arith
metic trap mask cannot be changed by a slave program; 
a master mode program can change the mask by exe
cuting either the instruction LPSD or the instruction 
XPSD. 

Instruction address. This 17-bit field contains the 
virtual address of the next instruction to be executed. 

Write key. This field contains the 2-bit key used 
in conjunction with the optional memory protec
tion feature. A slave program cannot change the 
current write key; a master mode program can 
change the write key byexecuting either the in
struction LPSD or the instruction XPSD. 



Desig-
.nation Function 

CI Counter iinterrupt group inhibit. 

II Input/out·put interrupt glroup inhibit. 

EI External interrupt group inhibit. 

The three inhibit bits (CI, II, and EI) determine 
whether an interrupt can occur. The functions of 
the interrupt inhibits an!!! described in the section 
"Interrupt System". A slave program cannot change 
the state of the interrupt inhibits; a master mode 
program can change the interrupt inhibits by exe
cuting lPSD, XPSD, or ,·he instruction WRITE DI
RECT (WOI). The WD instruction is described in 
Chapter 3:, "Control Ins'tructions ". 

RP Register pointer. This 5-bit field selects one of 
the 32 possible blocks oiF general-purpose registers 
as the current register bllock. A slave program 
,cannot change the regislter pointer; a master mode 
program can change the register pointer by exe
cuting lPSD, XPSD, or the instruction LOAD REG
ISTER POINTER (lRP). The lRP instruction is de
scribed in Chapter 3, "Control Instructions ". 

INTERRUPT SlrSTEM 

The SIGMA 7 priority interrupt s)'Stem is an improved ver
sion of the system used successfully in XDS 900/9300 series 
computers. Up to 237 external and internal interrupt levels 
OJre normally availarble, each with a unique location (see 
Table 2) assigned in core memory, each with a unique pri
ority, and (except for the Power o'n and Power off interrupt 
levels) each capable of being sellectively armed and/or 
enabled by the cpu. Also, any interrupt level can be 
"triggered" by the CPU (supplied with a signal at the same 
physical point where the signal from the external source 
would enter the interrupt level). The triggering of an inter
rupt permits the testing of special systems programs before 
the special systems equipment is actually attached to the 
computer, and also permits an intE!rrupt-servicing routine to 
defer a portion of tine processing clssociated with an inter
rupt level by processing the urgent portion of an interrupt
servicing routine, triggering a lower-priority level (for a 
routine that handle~; the less-urgent part), then clearing the 
high-priority interrupt level so thCJt other interrupts may be 
processed before thl:! deferred interrupt. 

SIGMA 7 interrupt I,evelsare arran~,ed in groups that are con
nected in a predetermined priorit)1 chain by groups of levels. 
The priority of each level within ICI group is fixed; the first 
level has the highe:st priority and the last level has the low
est. The user has the option of ordering a machine with a 
priority chain starting with the override group and con
necting all remaining groups in any sequence. This allows 
the user to establ ish external interrupts above, between, or 
below the counter and input/outP'Jt groups of internal in
terrupts. Figure 6 illustrates th is with a configuration that 
CI typical user might establ ishi where (after the override 
group) the counter group of internal interrupts is given 

the second-highest priority, followed by the first group of 
external interrupts, then the input/output groupof internal 
interrupts, and finally all succeeding groups of external in
terrupts. 

1st Priority 2nd Priority 

Override 
~ 

. Counter 
Interrupts Interrupts 

y 3rd Priority 

External Interrupts Group 2 

~ 
4th Priority 

.. I nput/ Output 
- Interrupts 

~ 
5th Priority 

External Interrupts Group 3 

Figure 6. Typical Interrupt Priority Chain 

INTERNAL INTERRUPTS 

The three groups of internal interrupts include standard 
interrupts that are normally supplied with a SIGMA 7 sys
tem, as well as the optional power fail-safe and the addi
tiona� counter interrupts. 

Override Group (locations X'50' to X'56 1
) 

This group of seven interrupt levels always has the high
est priority in a SIGMA 7 system. The optional power 
fai I-safe feature inc I udes the Power on and Power off i nter
rupt levels. A system can contain 2 or 4 count-pulse inter
rupt levels that are triggered by pulses from clock sources. 
Counter 4 has a constant frequency of 500 Hz; counters 1, 
2, and 3 can be individually set to any of five manually 
switchable frequencies - the commercial line frequency, 
500 Hz, 2 kHz, 8 kHz, and a user-supplied external sig
nal - that may be different for each counter. (All counter 
frequencies are synchronous except for the I ine frequency 
and the signal supplied by the user.) Each of the count
pulse interrupt locations must contain one of the modify and 
test instructions (MTB, MTH, or MTW). Counter 4 uses the 
mapped location if map is currently invoked in the PSD. 
The results of any other instruction are unpredictable when 
the instruction is executed as the result of a count-pulse 
interrupt level advancing to the active state. When the 
modification (of the effective byte, halfword, or word) 
causes a zero result, the appropriate counter-equals-zero 
interrupt (see "Counter-Equals-Zero Group") is triggered. 
The override group also includes a memory parity interrupt 
level that is triggered whenever a memory pari ty error is 
reported to the CPU. 

Interrupt System 17 



Table 2. SIGMA 7 Interrupt Locations 

Location WRITE DIRECT PSD WRITE DIRECT 
Dec. Hex. Register bitt Function Availabi lity Inhibit Group codett 

80 50 none Pow .. onttt optional none 
81 51 Power offH't (as a set) 
82 52 16 Counter 1 count pulse optional 
83 53 17 Counter 2 count pulse (as a set) none 
84 54 18 Counter 3 count pu Ise 
85 55 19 Counter 4 count pulse standard 
86 56 20 Memory Pari ty 
87 57 Reserved for future use 

88 58 22 Counter 1 zero optional X'O' 
89 59 23 Counter 2 zero (as a set) CI 
90 5A 24 Counter 3 zero standard 
91 58 25 Counter 4 zero 

92 5C 26 Input/Output standard II 
93 50 27 Control Panel 
94 5E Reserved for future use 
95 5F Reserved for future use 

96 60 16 

External Group 2 X'2' 

111 6F 31 

112 70 16 

External Group 3 X'3' 

127 7F 31 

optional EI 

288 120 16 

External Group 14 X'E' 

303 12F 31 

304 130 16 

Externa; Group 15 X'F' 

319 13F 31 

tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the 
interrupt levels are selected by specific bit positions in register R. The numbers in this column indicate the bit position 
in register R that corresponds to the various interrupt levels. 

ttThe numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels. 

tttThese interrupts can not be disarmed, disabled, nor inhibited. 

Counter-Equals-Zero Group (Locations X'581 to X'5B) 

Each interrupt level in the counter-equals-zero group (called 
a counter-equals-zero interrupt) is associated with a caunt
pulse interrupt in the override group. When the execution 
of a modify and test instruction in the count-pulse interrupt 
location causes a zero result in the effective byte, halfword, 
or word location, the corresponding counter-equa Is-zero in
terrupt is triggered. The counter-equa Is-zero interrupts can 
oe :~!-.ib;tec or permitted as c group. If bit position 37 (CI) 

18 Interrupt System 

of the current program status doubleword contains a 0, the 
counter-equals-zero interrupts are allowed to interrupt the 
program being executed. However, if the CI bit is a 1, the 
counter-equals-zero interrupts are not a lIowed to interrupt 
the program. 

Input/Output Group (Locations X'SC' :lnd X'SD') 

This interrupt group includes two standard interrupts: the I 0 
interrupt and the control panel inte~rupt. The I/O inter;_':::-



level accepts interrupt signals from the standard I/O sys
tem. The I/O interrupt location is assumed to contain an 
EXCHANGE PROGRAM STATUS OOUBLEWORD (XPSD) 
in:struction that trans,fers program clontrol to a routine for 
servicing a" I/O interrupts. The I/O routine then con
tains an ACKNOWLEDGE I/O INlrERRUPT (AIO) instruc
tion that identifies the source and Ireason for the interrupt. 

The control panel interrupt level is. connected to the INTER
RUPT buttons on the processor contlrol panel and the free
standing console. The control panlel interrupt level can thus 
be triggered by the computer operator, allowing him to ini
tiote a specific routine. 

The interrupts in the input/output group can be inhibited or 
permitted by means of bit positioll"t 38 (II) of the program 
status doubleword. If II is a 0, the interrupts in the I/O 
group are allowed to interrupt the program being executed. 
HClwever, if the II biit is a 1, the interrupts are inhibited 
from interrupting the program. 

EXT'ERNAL INT!lfRUPTS 

A SIGMA 7 system can contain up to 14 groups of optional 
interrupt leve Is, wi th 16 levels in leach group. As shown in 
Figure 6, the groups can be conne<:ted in any priority se
quence. 

All external interrupts can be inhibited or permitted by means 
of bit position 39 (EI) of the progroom status doubleword. If 
EI is a 0, external interrupts are a IIf)wed to interrupt the pro
gram; however, if E I is a 1, a II ex!terna I interrupts are i n
hibited from interrup,t,ing the progn:lm. 

ST ATES OF AN INTE:RRUPT LEVEL 

A SIGMA 7 interrupt level is mechanized by means of three 
flip-flops. Two of the flip-flops alre used to define any of 
four mutually exclusive states: di51C1rmed, armed, waiting, 
and active. The third flip-flop is used as a level-enable. 
The various states and the conditions causing them to change 
state (see Figure 7) C]fe described in the following paragraphs. 

Disarmed ----
When an interrupt level is in the disarmed state, no signa I 
to that interrupt levc~1 is admitted; that is, no record is re
tained of the existence of the signnl, nor is any program 
interrupt caused by iit at any time. 

When an interrupt level is in th., armed state, it can 
accept and remember an interruplt signal. The receipt 
of such a signal adlvances the inlterrupt level to the 
waiting state. 

When an interrupt level in the armed state receives an in
terrrupt signal, it advances to the waiting state, and remains 
in the waiting state until it is allow~ to advance to the 

active state. If the level-enable flip-flop is off, the in
terrupt level can undergo all state changes except that 
of moving from the waiting to the active state. Further
more, if this flip-flop is off, the interrupt level is com
pletely removed from the chain that determines -the prior
ity of access to the CPU. Thus, an interrupt level in the 
waiting state with its level-enable in the off condition 
does not prevent an enabled, waiting interrupt of lower 
priority from moving to the active state. 

When an interrupt level is in the waiting state, the follow
ing conditions must all exist simultaneously before the level 
advances to the active state. 

1. The level must be enabled (i.e., its level-enable flip
flop must be set to 1). 

2. The CPU must be at an interruptible point in the exe
cution of a program. 

3. The group inhibit (CI, II, or EI, if appl icable) must be 
aO. 

4. No higher-priority interrupt level is in the active 
state or' is in the waiting state and totally enabled 
(i.e., enabled and not inhibited). 

Interrupt 
State 

Disarmed 

Armed 

Waiting 

Active 

FF 
Configuration 

~ 

Level 
Enable 

Source of 
Change Signal 

I~·~---------------CPU 

~ 
$ 

I 
I 

EtJ 

[;J 

CPU or 
External Signal 

t---CPU 

Interrupt 
Timing 

Group Inhibit 
off 

No higher-priority 
level active, or 
waiting and enabled 

Figure 7. Interrupt Level Operation 

Interrupt System 19 



Active 

When an interrupt meets all of the conditions necessary to 
permit it to move from the waiting state to the active state, 
it is permitted to do so by being acknowledged by the com
puter, which then executes the contents of the assigned in
terrupt location as the next instruction. The instruction 
address portion of the program status doubleword remains 
unchanged until the instruction in the interrupt location is 
executed. 

The instruction in the interrupt location must be one of the 
following: XPSD, MTB, MTH, or MTW. If the execution of 
any other instruction in an interrupt location attempted as 
the result of an interrupt level advancing to the active 
state, the results of the instruction are unpredictable. 

The use of the privi leged instruction XPSD in an interrupt 
location permits an interrupt-servicing routine to save the 
entire current machine environment and establish a new 
environment. If working registers are needed by the 
routine and additional register blocks are available, the 
contents of the current register block can be saved auto
matically with no time loss. This is accomplished by chang
ing the value of the register pointer, which results in the 
assignment of a new block of 16 registers to the routine. 

An interrupt level remains in the active state unti I it is 
cleared (removed from the active state) by the execution 
of the LPSD instruction or the WD instruction. An interrupt
servicing routine can itself be interrupted whenever a 
higher-priority interrupt level meets all of the condi
tions for becoming active; and then continued after the 
higher-priority interrupt is cleared. However, an 
interrupt-servicing routine cannot be interrupted by a 
lower-priority interrupt as long as it remains in the 
active state. Normally, the interrupt servicing routine 
clears its interrupt and transfers program control back 
to the point of interrupt by means of an lPSD instruc
tion with the same effective address as the XPSD in
struction in the interrupt location. 

CONTROL OF THE INTERRUPT SYSTEM 

The SIGMA 7 system has two points of interrupt control. 
One point of interrupt control is at the individual interrupt 
level. The WD instruction can be used to individually arm, 
disarm, enable, disable, or trigger any interrupt level ex
cept for the power fai I-safe interrupts (which are always 
armed, always enabled, and cannot be triggered). 

The second point of interrupt control is achieved by means 
of the interrupt inhibits (CI, II, and EI) in the program status 
doubleword. If an interrupt inhibit is set to 1, all interrupt 
levels in the corresponding group are effectively disabled; 
i. e., no interrupt in the group may advance from the wait
ing state to the active state and the group is removed from 
the interrupt recognition priority chai n. Thus, a waiting, 
enabled intprrupt level (in a group that is not inhibited) is 
not prevented from interrupting the program by a higher
priority, waiting, enabled interrupt level in a group thatis 
inhibited. However, if on interrupt group is inhibitedwhile 

20 Interrupt System 

a level in that group is in the active state, no lower-priority 
Interrupt level may advance to t"e active state. 

TIME OF INTERRUPT OCCURRENCES 

The SIGMA 7 CPU permits an interrupt to occur during the 
following time intervals (related to the execution cycle ~f 
an instruction) providing the control panel COMPUTE SWitch 
is in the RUN position and no "halt" condition exists: 

1. Between instructions: An interrupt is permitted between 
the completion of any instruction and the initiation of 
the next instruction. 

2. Between the initiation of on instruction and memory or 
register modification: For some instructions, an interrupt 
is permitted after an instruction has been in process and 
up to the point in time when a memory location or a general 
register ismodified. If an interruptoccursduringthistime 
interval, the instruction is aborted, the instruction address 
portion of the progrom status doubleword remains pointing 
to the interrupted instruction, and the instruction in the in
terrupt location is executed. After the interrupt-servicing 
routine has been processed, program control is returned to 
the interrupted instruction, and the interrupted instruction 
is then reinitialized. Most instrudions have such a short 
execution time that they are not abortable by on interrupt; 
thus, an interrupt normal I y occurs onl y before or after an 
instruction execution. 

3. Between instruction iterations: An interrupt is also per
mitted to occur during the execution of the following 
multiple-operand instructions: 

Move Byte String (MBS) 
Compare Byte String (CBS) 
Translate Byte String (TBS) 
Translate and Test Byte String (TTBS) 
Edit Byte String (EBS) 
Decimal Multiply (DM) 
Decimal Divide (DD) 
Move to Memory Control (MMC) 

The control and intermediate results of these instructions re
side in registers and memory; thus, the instruction can be 
interrupted between the completion of one iteration (oper
and execution cycle) and the point in time (during the next 
iteration) when a memory location or register is modified. 
If on interrupt occurs during this time, the current iteration 
is aborted and the instruction address portion of the program 
status doubleword remains pointing to the interrupted instruc
tion. After the interrupt-servicing routine is completed, the 
instruction continues from the point at which it was inter
rupted and does not begin anew. 

SINGLE-INSTRUCTION INTERRUPTS 

A single-instruction interrupt is a situation where an interrupt 
level is activated, the current program is interrupted, the single
instruction in the interrupt location is executed, the interrupt 
level is automatically cleared and armed, and the interrupted 
program continues without being disturbed or delayed (except 
for the time required for the single-instruction). 

If any of the fol lowing instructions is executed in any in
terrupt location, then that interrupt automatically becomes 
a single-instruction interrupt. 



Instruction Name 

Modify and Test B'yte 
Modify and Test Hlalfword 
Modify and Test Word 

Mnemonic 

MTB 
MTH 
MTW 

The modify and test instruction modifies the effective byte, 
halfword, or word (as described in the section "Fixed-:,point 
Arithmetic Instructions") but the current condition code re-

. mains unchanged (even if overflc)w occurs). The effective 
address of a modif:f and test instruction in an interrupt loca
tion (except counter 4) is always treated as an actual 
address, regardles!i of whether or not the memory map is 
currently being used. Counter 4 us~s the mapped location if 
map is currently invoked in the PSD. The execution of a 
modify and test instruction in an interrupt location, including 
mapped and unmapped counter .. l, is independent of the 
memory access protection codes and the write-protection 
locks; thus, a memory protection violation trap cannot 
occur (a nonexistent memory adldress wi II cause an unpre
dictable operation). Also, the fixed-point overflow trap 
cannot Occur as th,e result of overflow caused by executing 
MTH or MTW in an interrupt locc]tion. 

The execution of 01 modify and tesit instruction in an interrupt 
location automatic:ally clears and arms the corresponding in
terrupt level, allowing the interrupted program to continue. 

When a modify and test instruction is executed in a count
pulse interrupt location, all of the above conditions apply, 
in addition to the following: If I·he resultant value in the 
,effective location is zero, the c()rresponding counter
equals-zero interrupt is triggered!. 

TRAP SY!iTEM 
When a condition that is to resul t in an interrupt is 
sensed, a signal is sent to an interrupt level. If that 
level is "armed" it advances to the waiting state. When 
all of the conditi,ons for its acknowledgment have been 
achieved, the interrupt level eVEmtually advances to the 
active state, whene it finally causes the computer to take 
an instruction from a specific location in memory. The com
puter may execute many instructions between the time that 
the interrupt requesting condition is sensed and the time that 
the actual interrupt acknowledgment occurs. However, de
tecting any of the conditions listled in Table 3 results in a 
trap (the immediatle execution of the instruction in a unique 
location in memor>'). 

When a trap condition occurs, the CPU sets the trap state. De
lPending on the type of trap, the instruction currently being exe-' 
cuted by the CPU mayor may not be carried to completion. In 
any event, the instruction is terminated with a trap sequence., 
In this sequence, the instruction address (IA) portion of the 
program status doubleword (PSD), which has already been 
incremented by 1, is decremented by 1 and then the instruc
tion in the location associated with the trap is executed. 
An interrupt acknowledgment cannot occur until the execu
tion of the instruction in the trap location is completed. The 
instruction in the trap location must be an XPSD instruction; 
if the execution of any other instruction in a trap location 
lis attempted as the result of a trap activation, the results of 
the instruction are unpredictable .. The detai led operation of 
XPSD is described in Chapter 3, "Control Instructions". 

The XPSD instruction in a trap location is accessed without 
using the memory map, regardless of whether or not the mem
ory map is in effect when the trap condition occurs. Also, 
no memory protection violation or privileged instruction 
violation can occur as a result of either accessing'or execu-
ting an XPSD instruction in a trap location. Table 3 sum-
marizes the description of the trap system. 

NONALLOWED OPERATION TRAP 

The occurrence of one of the nonallowed operations always 
causes the computer to abort the instruction being 
executed (at the time that the nonollowed operation is 
detected) and to immediately execute the instruction in 
trap location X'40'. 

Nonexistent Instruction 

Any instruction that is neither standard nor optional on 
SIGMA 7 is defined as nonexistent (this includes immediate 
addressing instructions that are indirectly addressed). If 
execution of a nonexistent instruction is attempted, the 
computer traps to I ocati on X 1401 at the ti me the i nstruc ti on 
is decoded. The operation of the XPSD instruction in trap 
location X'40' (with respect to the condition code and in
struction address portions of the PSD) is as follows: 

1. Store the current PSD. The condition code stored is 
that which existed at the end of the instruction exe
cuted immediatel y prior to th~ nonexistent instruction. 

2. Load the new PSD. The current PSD is replaced by the 
contents ofthe doubleword location following the double
word location in which the current PSD was stored. 

3. Modi fy the new PSD: 

a. Set CCl to 1 (CC2, CC3, and CC4 remain set at 
the values loaded from memory). 

b. Ifbit position 9 of XPSD contains a 1, the instruction 
address loaded from memory is incremented by 8. If 
bit position 9 of XPSD contains a 0, the instruction 
addressremainsat the value loaded from memory. 

Nonexistent Memory Address 

Any attempt to access a nonex istent memory address causes a 
trap to location X'40 ' at the time of the request for memory 
service. A nonexistent memory address condition is detected 
by memory on the basis of the actual address presented to it. 
If the CPU is currently using the memory map, the virtual ad
dress will already have been modified by the memory map to 
generate an actual (but nonexistent) address. The operation 
of XPSD in trap location X'40' is as follows: 

1. Store the current PSD. 

2. Load the new PSD. 

3. Modify the new PSD: 

a. Set CC2 to 1 (CC1, CC3, and CC4 remain set ot 
the values loaded from memory). 

b. Ifbitposition90fXPSDcontainsa 1, the instruction 
address loaded from memory is incremented by 4. If 
bit position 9 ofXPSD contains a 0, the instruction 
address remains at the value loaded from memory. 

Trap System 21 



Table 3. Summary of SIGMA 7 Trap System 

Loc,ation 
Dec. Hex. Function 

PSO 
Mask Bit 

64 

65 

66 

67 

68 

69 

70 

72 

73 

74 

75 

40 

41 

42 

43 

45 

46 

48 

49 

4A 

48 

Nonallowed operotion 

1. Nonexistent instruction 

2. Nonexistent memory 
address 

3. Privileged instruction 
in slave mode 

4. Memory protection 

none 

Unimplemented instruction none 

Push-down stock limit TW, TSt 
reoched 

Fixed-poi'1t orithmetic AM 
overflow 

Floating-point fault 

1. Choracteristic overflow 

2. Divide by zero 

3. Significance check 

Decimal arithmetic fault 

Watchdog timer runout 

CALL 1 

CALL 2 

CALL 3 

CALL4 

none 

none 

FS, FZ, 
FN 

OM 

none 

none 

none 

none 

none 

Time of Occurrence 

Instruction decoding 

Prior to memory access 

Instruction decoding 

Prior to memory access 

Spec ial Action During XPSO 

Set eCl after new ee is 
loaded from memory. If bit 
9 of XPSO is 1, odd 8 to 
the new instruction address 
value loaded from memory. 

Set CC2 after new ce is 
loaded from memory. If bit 
9 of XPSO is 1, add 4 to 
the new instruction address 
value loaded from memory. 

Set CC3 after new CC is 
loaded from memory. I f bit 
9 of XPSD is 1, add 2 to 
the new instruction address 
value loaded from memory. 

Set Ce4 after new CC is loaded 
from memory. If bit 9 of XPSO is 
1, add 1 to the new instruction 
address value loaded from memory. 

Instruction decoding none 

At the time of stock limit none 
detection 

For aU instructions except OW none 
and 0 H, trap occurs after com
pletion of instruction. For OW 
and OH, instruction is aborted 
with memory, registers, CC1, 
CC3, CC4 unchanged. 

At time of fault detection; the 
condition code is set to indi
cate the reason for the trap 

At time of fault detection; the 
condition code is set to indi
cate the reason for the trap 

At time of runout 

Instruction decoding 

Instruction decoding 

Instruction decoding 

Instruction decoding 

none 

none 

none 

The R field of the CALL instruc
tion is ORed into new CC set-
t i ngs looded from memory. If 
bit 9 of XPSD is 1, theR field 
of the CALL instruction is ad
ded to the new instruction ad
dress value loaded from memory. 

t 
The push-down stack limit trap is masked within the stock p~inter doubleword for each push-down stack (see page 66). 

22 Trap System 



~'rivileged Instructi,on in Slave McKie 

An attempt to execute a privileged instruction while the 
CPU is in the slave mode causes a trap to location X'40' at 
the time of instruction decoding. The operation of XPSD 
in trap location X'40' is as follows: 

1. Store the current PSD. 

2. load the new PSD. 

3. Modify the new PS D. 

a. Set CC3 to 1 (CC 1, CC2, and CC4 remain at the 
values loaded from memory). 

b. If bit posit'ion 9 of XPSD contains a 1, the instruc
tion address loaded from memory is incremented 

,by 2. If bit position 9 ojF XPSD contains a 0, the 
instruction address remailr'ls at the value loaded 
from memory. 

The opt!!:ration codes, OC, 00, 2C, 20, and their indirectly 
addressed forms, 8C, 80, AC, AD, are both nonexistent 
and privileged. If one of these operation codes is used 
while the CPU is in the slave statE!, both CCI and CC3 will 
be set to l's after the new PSD hasi been loaded, and if bit 
pc)sition 9 of XPSD contains a 1, the instruction address 
loaded from memory is incremented by 10. 

Memory Protection Violation 

A memory protection violation can occur either because of 
a memory mop access control bit v'iolation (by a slave pro
gram using the memory mop) or because of a memory 
write lock violation (by either a slave or a master mode 
program). When either memory protection violation occurs, 
the CPU aborts execution of the current instruction (with
out changing proteded memory) and traps to location X'40'. 
The operation of the XPSD in trclP 10r'.jT;on X'40' is as 
fellows: 

1. Store the current PSD, 

2. load the current PSD. 

3. Modify the new PSD: 

a. Set CC4 to 1 (CC1, CC2" and CC3 remain at the 
values loaded from memory. 

b. If bit position 9 of XPSD contains a 1, the instruc
tion address loaded from memory is incremented 
by 1. If biit position 9 of XPSD contains a 0, the 
instruction address remairls at the value loaded 
from memo."y. 

An attempt to access a memory loclation that is both pro
tected and nonexistent causes both CC2 and CC4 to be set 
to l's after the new PSD has been loaded, and if bit posi
tion 9 of XPSD contains a 1, the instruction address loaded 
from memory is incremented by 5. 

UNIMPLEMENTED INSTRUCTION TRAP 

There are two SIGMA 7 optional instruction groups: the 
decimal option and the floating-point option. The decimal 
option includes the following instructions: 

Instruction Nome Mnemonic 0eeration Code 

Decimal Load DL X'7E' 
Dec ima I Store DST X?F' 
Decimal Add DA X'79' 
Dec ima I Subtract OS X'78' 
Decimal Multiply OM X'7B' 
Decimal Divide DO X?A' 
Decimal Compare DC X'7D' 
Decimal Shift Arithmetic DSA X?C' 
Pack Decimal Digits PACK X'76' 
Unpack Decimal Digits UNPK X?7' 
Edit Byte String EBS X'63' 

The floating-point option includes the following instructions: 

Floating Add Short FAS X'3D' 
Floating Add long FAl X'ID' 
Floating Subtract Short FSS X'3C' 
Floating Subtract long FSl X'lC' 
Floating Multiply Short FMS X'3F' 
Floating Multiply long FML X'lF' 
Floating Divide Short FDS X'3E' 
Floating Divide Long FDL X'IE' 

If on attempt is made to execute an instruction (directly or 
indirectly addressed) in either of these groups when th~ re
quired option is not implemented, the computer traps to lo
cation X'41'. An indirectly addressed EDIT BYTE STRING 
(EBS) instruction is always treated as a nonexistent instruc
tion rather than as an unimplemented instruction. The move 
to memory control (MMC) instruction is always considered 
implemented even if the memory map option or the memory
protection option are not implemented. The operation of 
the XPSD in trap location X'41' is as follows: 

1. Store the current PSD. The condition code stored is 
that which existed at the end of the instruction imme
diately prior to the unimplemented instruction. 

2. Load the new PSD. The condition code and the in
struction address portions of the PSD remain at the 
values loaded from memory. 

PUSH-DOWN STACK LIMIT TRAP 

Push-down stack overflow or underflow can occur duri ng 
execution of any of the following instructions: 

Instruction Name 

Push Word 
Pull Word 
Push Multiple 
Pull Multiple 
Modify Stack Pointer 

Mnemonic 

PSW 
PLW 
PSM 
PlM 
MSP 

Trap System 23 



During the execution of any stack-manipulatlng instruction 
(see Push-down Instructions) the stack is either pushed. 
(words added to stack) or pulled (words removed from 
stack). In either case, the space count and word count 
fields of the stack pointer doubleword are tested prior 
to moving any words. If execution of the instruction. 
would cause th~ space count to become less than 0 or 
greater than 21 -1, the instruction !s aborted with mem
ory and registers unchanged; then, if bit 32 (TS) of the 
stack pointer doubleword is 0, the CPU traps to loca
tion X'421. If execution of the instruction would cause 
the word count to become less than 0 or greater than 
215_1, the instruction is aborted with memory and registers 
unchanged; then, if bit 48 (TW) of the stack pointer 
doubleword is a 0, the CPU traps to location X'421. If 
trapping does occur, the condition code remains at the value 
it had immediately prior to the instruction that caused the 
trap. When trapping is inhibited, either CCl or CC3 is 
set to 1 (or both CCl and CC3 are set to lIs) to indicate 
the reason"for aborting the instruction. The stack pointer 
doubleword, memory, and registers are modified only if 
the instruction is successfully executed. The execution 
of XPSD in trap location X'421 is as follows: 

1. Store the current PSD. The condition code stored is 
that which existed immediately prior to the execution 
of the aborted push-down instruction. 

2. Load the new PSD. The condition code and instruction 
address portions of the PSD remain at the values loaded 
from memory. 

FIXED-POINT OVERfIIIIM!.: TRAP 

Fixed-point overflow can occur for any of the following 
instructions: 

Instruction Name 

Load Complement Word 
Load Absolute Word 
Load Complement Doubleword 
Load Absolute Doubleword 
Add Immediate 
Add Ha I fword 
Add Word 
Add Doubleword 
Subtract Halfword 
Subtract Word 
Subtract Doubleword 
Divide Halfword 
Divide Word 
Add Word to Memory 
Modi fy and Test Hal fword 
Modi fy and Test Word 

Mnemonic 

LCW 
LAW 
LCD 
LAD 
AI 
AH 
AW 
AD 
SH 
SW 
SO 
DH 
OW 
AWM 
MTH 
MTW 

E:-:c·:pt fo;- tha instructions DIVIDE HALFWORD (DH) and 
DIVIDE WORD (OW), the instruction execution is allowed 
to proceed to completion, CC2 is set to 1 and CC3 and 
CC4 represent the actual result (0, -, or +) after overflow. 

24 Trap System 

If the fixed-point arithmetic trap mask (bit 11 of PSD) is a 
1, the CPU traps to location X' 43' instead of executing the 
next instruction in sequence. 

For OW and DH, the instruction execution is aborted with
out changing any registers and CC2 is set to 1; but CC1, 
CC3, and CC4 remain unchanged from their values at the 
end of the instruction immediately prior to the OW or DH. 
If the fixed-point arithmetic trap mask is a 1, the CPU traps 
to location X'.q.3' instead of executing the next instruction 
in sequence. 

1. Store the current PSD. If the instruction causing the 
trap was an instruction other than OW or OH, the 
stored condition codet is interpreted as follows: 

2. 

Sf.! tt CC2 CC3 CC4 Meani ng 

o 
1 

o 
o 

o 
1 

o 

resu It after overflow is zero 
result after overflow is 
negative 
resu It after overflow is 
positive 
no carry from bit positionO 
carry from bit position 0 

If the instruction causing the trap was OW or OH, the 
stored condition code is interpreted as follows: 

CC2 ~ CC4 Meaning 

overflow 

Load the new PSO. The condition code and instruc
tion address portions of the PSD remain at the value 
loaded from memory. 

FLOATING-POINT ARITHMETIC FAULT TRAP 

Floating-point fault detection is performed after the opera
tion called for by the instruction code is performed, but be
fore any results are actually loaded into the general registers; 
thus, the floating-point operation that causes an arithmetic 
faultisnotcarried to completion (in the sense that the orig
inal contents of the general registers remain unchanged). 
Instead, the computer traps to location X'441 with the cur
rent condition code indicating the reason for the trap. A 
characteristic overflow or an attempt to divide by zero 
always results in a trap condition; a significance check or 
a characteristic underflow result in a trap condition only 
if the floating-point mode controls (FS, FZ, and FN) in the 
program status doubleword are set to the appropriate state. 

fA hyphen (-) indicates that the condition code bit is not 
affected by the condition given under the "Meaning" 
heading. 

ttcc 1 remains unchanged for the instructions LCW, LAW, 
LCD, and LAD. 



If a floating-point instruction causes a trap, the execution 
of XPSD in trap location X'44' i~s as follows: 

1. Store the current PSD. If division is attempted with 
a zero divisor or if choract4!ristic overflow occurs, 
the stored condition code ill interpreted as follows: 

2. 

CCI CC2 CC3 CC4 Meaning 

0 0 0 divide by zero 

0 0 characteristic overflow, neg-
ativle result 

0 0 characteristic overflow, posi-
tive result 

If none of the Clbove conditiclns occurs, but character
istic underflow occurs with the floating zero (FZ) mode 
bit set to 1, the stored condition code is interpreted 
as follows: 

o 

o 

chanJcteristic underflow, neg
atiVE! result 

chamcteristic underflow, posi
tive result 

If none of the <lbove conditions occurs, but an addition 
or subtraction results in eithl:1!r a zero result (with 
FS:= 1 and FN = 0), or a postn()rmalization shift of more 
than two hexadecimal places (with FS= I and FN=O), 
the stored condition code is interpreted as follows: 

CCI CC2 CC3 CC4 Meaning 

o o 

o o 

o 

o 

o 

zero result of addition or sub
traction 

more than 2 postnormalizing 
shifts, negative result 

more than 2 postnormalizing 
shifts, positive result 

load the new PSD. The condition code and instruction 
address portions of the PSD rE!main at the values loaded 
from memory. 

DeCIMAIL ARITHMETI~: FAULT TRAP 

When either of two decimal fault Iconditions occur (see 
DE~cimal Instructions), the normal s.equencing of instruction 
execution is halted, CCl and CC2 are set according to the 
reason for the fault condition, and CC3, CC4, memory, and 
the decimal accumulator remai n unchanged by the instruc
ti()n. If the decimal arithmetic trap mask (bit position 10 
of PSD) is a 0, the instruction execution sequence con
tinues with the next instruction (in sequence) at the time of 
fault detection; however, if the dE!cimal arithmetic trap 
mask bit is a 1, tht!t computer trclPS to location X'45' at 
the time of fault det4!ction. 

The execution of XPSD in trap location X'45' is as follows: 

1. Store the current PSD. The stored condition code is 
interpreted as follows: 

CC 1 CC2 CC3 CC4 Meaning 

o all digits legal and overflow 

o illegal digit detected 

2. load the new PSD. The condition code and instruction 
address portions of the PSD remain at the values loaded 
from memory. 

WATCHDOG T~ER RUNOUT TRAP 

The instruction watchdog timer insures that the CPU must 
periodically reach interruptible points of operation in the 
execution of instructions. An interruptible point is a time 
during the execution of a program when on interrupt request 
(if present) would be acknowledged. Interruptible points 
occur at the end of every instruction and during the .execu
tion of-some instructions (such as the byte string group). The 
watchdog timer measures elapsed time from the lost inter
ruptible point. If the maximum allowable time has been 
reached before the next time that an interrupt could be 
recognized, the current instruction is aborted and the watch
dog timer runout trap is activated. Except for a nonexistent 
address used with READ DIRECT (RD) or WRITE DIRECT 
(WD) instructions, programs trapped by the watchdog timer 
cannot (in general) be continued. Execution of XPSD in 
trap location X'46' is as foil ows: 

1. Store the current PSD. The stored condition code is, 
in general, meaningless. 

2. load the new PSD. The instruction address portion of 
the PSD remain at the values loaded from memory; 
however, the resulting condition code is, generally, 
meaningless. 

CALL INSTRUCTION TRAPS 

The four call instructions (CAll, CAl2, CAl3, and CAL4) 
couse the computer to trap to location X '48' (for CAL 1) 
X'49' (for CAL2), X'4A' (for CAL3), orX'48' (for CAL4). 
Execution of XPSD in the trap location is as follows: 

1. Store the current PSD. The stored condition code is 
that which existed at the end of the instruction im
mediately prior to the call instruction. 

2. Load the new PSD. 

3. Modify the new PSD. 

a. The R field of the call instruction is logically 
ORed with the condition code value loaded from 
memory, and the result is loaded into the condi
tion code. 

b. If bit 9 of XPSD contai"s a 1, the R field of the 
call instruction is added to the instruction ad
dress loaded from memory. 

If bit 9 of XPSD contains a 0, the instruction ad
dress remains at the value loaded from memory. 

Trap System 25 



This section describes all SIGMA 7 instructions, grouped in
to the following functional classes: 

Page 

1. Load and Store 29 
2. Analyze and Interpret 35 
3. Fixed-Point Arithmetic 37 
4. Comparison 42 
5. logical 44 
6. Shift 45 
7. Conversion 47 
8. Floating-Point Arithmetic 48 
9. Decimal 52 

10. Byte String 58 
11. Push Down 65 
12. Execute and Branch 70 
13. Call 72 
14. Control 73 
15. Input/Output 80 

SIGMA 7 instructions are described in the following format: 

MNEMONIC <D INSTRUCTION NAME ® 

(Addressing type <!>, Optional ~ 
Privileged @, Interrupt Action@) 

Description @ 

A ffec ted (!) Trap @ 

Symbol ic notation ® 

Condition Code Settings@ 

Trap Action@ 

Example@ 

1. MNEMONIC is the code used by the SIGMA 7 assem
blers tq produce the instruction's basic operation code. 

2. INSTRUCTION NAME is the instruction's descriptive 
title. 

3. The instruction's addressing type is one of the following: 

a. Byte index alignment: the reference address field 
of the instruction (plus the displacement value) can 
be used to address a byte in core memory or in the 
current block of general registers. 

b. Halfword index al ignment: the reference address 
field of the instruction (plus the displacement value) 
can be used to address a halfword in core memory 
or in the current block of general registers. 

c. Word index alignment: the reference address field 
of the instruction (plus the displacement value) can 
be used to address any word in core memory or in 
the current block of general registers. 

26 Instruction Repertoire 

d. Doubleword index aiignment: the reference address 
field of the instruction (plus the displacement value) 
can be used to address any doubleword in core mem
ory or in the current block of general registers. The 
addressed doubleword is automatically located 
within doubleword storage boundaries. 

e. Immediate operand: the instruction word contains 
an operand value used as part of the instruction 
execution. If indirect addressing is attempted 
with this type of instruction (i. e., bit 0 of the 
instruction word is a 1), the instruction is treated 
as a nonexistent instruction, in which case the 
computer unconditionally aborts execution of the 
instruction (at the time of operation code decoding) 
and traps to location X '40', the II nona II owed 
operation" trap. Indexing does not apply to this 
type of instruction. 

f. Immediate displacement: the instruction word con
tains an address displacement used as part of the 
instruction execution. If indirect addressing is at
tempted with this type of instruction, the computer 
treats the instruction as a nonexistent instruction, 
in which case the computer unconditionally aborts 
execution of the instruction (at the time of opera
tion code decoding) and traps to location X'40'. 
Indexing does not apply to this type of instruction. 

4. If the instruction is not in the standard SIGMA 7 i"n
struction set, it is labeled "optional". If execution of 
an optional instruction is attempted on a computer in 
which the instruction is not implemented, the computer 
unconditionally aborts execution of the instruction (at 
the time of operation code decoding) and trops to loca
tion X'41 I, which is the "unimplemented instruction 
trap". 

5. If the instruction is not executable while the computer 
is in the slave mode, it is labeled "privileged". If 
execution of a privileged instruction is attempted 
while the computer is in the slave mode, the com
puter unconditionally aborts execution of the instruc
tion (at the time of operation code decoding) and traps 
to location X'40'. 

6. If the instruction can be successfully resumed after its 
execution sequence has been interrupted by on interrupt 
acknowledgment, the instruction is labeled "continue 
after interrupt". Otherwise, the instruction is either 
completed or the instruction is aborted and then re
started after the interrupt is cleared. In the case of 
the "continue after interrupt" instructions, certain gen
eral registers contain intermediate results or control in
formation that allows the instruction tocontinue properly 
In the case of aborted instructions, all offected registers 
are restored to the values they contained immediately 
before the aborted instruction was begun. 



7. Instruction format: 

a. Indirect addressing - If bit position 0 of the in
struction format contains an asterisk (*), the in
struction can utilize indirect addressing; however, 
if bit position 0 of the instrlliction format contains 
a 0, the instruction is of thE~ immediate addressing 
type, which is treated as a nonexistent instruction 
if indirect addressing is attempted (resulting in a 
trap to locati()n X'40'). 

b. Operation code - The operation code field (bit 
positions 1-7) of the instrucf'ion is shown in hexa
decimal notation. 

IC. R field - If the register addrless field (bit positions 
a-11) of the instruction format contains the char
acter "R", the instruction CCIIl specify any register 
in the current block of genelral registers as an op
erand source, result destination, or both; otherwise, 
the function of this field is determined by the in
struction. 

d. X field - If the index registE~r address field (bit 
positions 12-14) of the instn..Jctionformatcontains 
the character "X", the instruction can specify in
dexing with anyone of registers 1 through 7 in the 
current block e,f general regi!iters; otherwise, the 
function of this field is determined by the instruc
tion. 

.!. Reference address field - Nc'rmally, the reference 
address field (bit positions 15-31) of the instruc
tion format is used as the initial address value for 
an instruction operand. For instructions of the im
mediate addressing type, the, effective address of 
the instruction is not used to access an operand; 
instead, the effective addre!is itself is used as an 
operand. In these cases, th.! function of the ef
fective address is represented in the lower half of 
the reference address field in the instruction for
mat diagram. 

f. Value field - In some fixed-point arithmetic in
structions, bit positions 12-3:1 of the instruction 
format contain the word "value". This field is 
treated as a 20-bit integer, with negative inte
gers represented in two's complement form. 

g. Displacement field - In the byte string instructions, 
bit positions 12-31 of the indruction format con
tain the word "displacement." In the execution 
of the instruction, this field is used to modify the 
source address of an operand" the destination ad
dress of a result, or both. 

h. Ignored fields - In the instruction format diagrams, 
any area that i~s shaded repres,ents a field or bit po
sition that is ignored by the computer (i. e., the con
tent of the shaded field or bit has no effect on instruc
tion execution) but should be coded with O's so as to 
preclude confl ict with possible modifications. 

In any format diagram of a general register or mem
ory word modified by an instnJction, a shaded area 
represents a field whose content is indeterminate 
after execution of the instru(:tion. 

8. Thedescription of the instruction defines the operations 
performed by the computer in response to the instruction 
configuration depicted by the instruction format diagram. 
Any instruction configuration that causes an unpredict
able result is so specified in the description. 

9. All programmable registers and storage areas that can be 
affected by the instruction are I isted (symbol ica"y) after 
the word" Affected". The instruction address portion of 
the program status doubleword is considered to be af
fected only if a branch condition can occur as a result 
of the instruction execution, since the instruction ad
dress is updated (incremented by 1) as part of every in
struction execution. 

10. All trap conditions that may be invoked by the execu
tion of the instruction are listed after the word "Trap". 
SIGMA 7 trap locations are summarized in the section 
"Trap System". 

11. The symbol ic notation presents the instruction operation 
as a series of general ized symbolic statements. The sym
bolic terms used in the notation are defined in Table 4. 

12. Condition Code settings are given for each instruction 
that affects the condition code. A 0 or a 1 under any 
of columns I, 2, 3, or 4 indicates that the instruction 
causes a 0 or 1 to be placed in CC 1, CC2, CC3, or 
CC4, respectivel y, for the reasons given. If a hyphen 
(-) appears in columns 1, 2, 3, or 4, that portion of the 
condition code is not affected by the reason given for 
the condition code bit(s) containing a 0 or 1. For ex
ample, the following condition code settings are given 
for a comparison instruction: 

2 3 4 Result of comparison 

0 0 equal 

0 register operand is arithmetically 
less than effective operand 

0 register operand is arithmetically 
greater than effective operand 

0 the logical product (AND) of the 
two operands is zero 

the logical product of the two 
operands is nonzero 

CC1 is unchanged by the instruction. CC2 indicates 
whether or not the two operands have l's in corres
ponding bit positions, regardless of their arithmetic 
relationship. CC3 and CC4 are set according to the 
arithmetic relationship of the two operands, regard
less of whether or not the two operands have 1 's in 
corresponding bit positions. For example, if the 
register operand is arithmetically less than the effec
tive operand and the two operands both have l's in at 
least one corresponding bit position, the condition 
code setting for the comparison instruction is: 

2 3 4 

o 

The above statements about the condition code are valid 
only if no trap occurs before the successful completion of 

Instruction Repertoire 27 



the instruction execution cycle. If a trap does occur 
during the instruction execution, the condition code 
is normally reset to the value it contained before 'the 
instruction was started, and then the appropriate trap 
location is activated. 

13. Actions taken by the computer for those trap con
ditions that may be invoked by the execution of 
the instruction are described. The description 
includes the criteria for the trap condition, any 
controll ing trap mask or inhibit bits, and the action 
taken by the computer. In order to avoid unnecessary 
repetition, the two trap conditions that apply to all 

instructions (i. e., nonallowed operations and 
watchdog timer runout) are not described for each 
instruction. 

14. Some instruction descriptions provide one or more' 
examples to illustrate the results of the instruction. 
These examples are intended only to show how the 
instructions operate, and not to demonstrate their 
full capability. Within the examples, hexadecimal 
notation is used to represent the contents of generol 
registers and storage locations (condition code set
tings are shown in binary notation. The choracter "x" 
is used to indicate irrelevant or ignored informotion. 

Table 4. Glossary of Symbolic Terms 

Term 

( ) 

AM 

R 

Rul 

x 

RA 

Meaning 

Contents of 

Fixed-point arithmetic trap mask - bit 11 of 
the program status doubleword. If this bit is 
a 1, the computer traps to location X'431 

after executing an instruction that causes 
fixed-point overflow; if this bit is a 0, the 
computer does not trap to location X'431. 

Instruction register - the internal CPU register 
used to hold instructions obtained from memory 
while they are being decoded. 

General register address value - the 4-bit 
contents of bit positions 8-11 (the R field) of 
an instruction word, also expressed symbol i
cally as (1)8-11. In the instruction descrip
tions, register R is the general register (of 
the current register block) that corresponds to 
the R field address value. 

Odd register address value - register Ru 1 
is the general register pointed to by the 
value obtained by logically DRing 0001 into 
the address value for register R. Thus, if the 
R field of an instruction contains an even 
value, Ru 1 = R + 1 and if the R field con
tains an odd value, Ru 1 = R. 

Index register address value - the 3-bit 
contents of bit positions 12-14 (the X field) 
of an instruction word. If X = 0 for an 
instruction, no indexing is performed. If 
x"lo for an instruction, indexinA is per
formed (after indirect addressing if indirect 
addressing is called for) with general register 
X in the current register block. 

Reference address - the contents of bit 
positions 15-31 of an instruction word. This 
17-bit field is capable of directly addressing 
any general register in the current register 
block (by using a value in the range 0-15) or 
any word in core memory in the address range 
16 through 131,071. This address value is 
the initial address value for any subsequent 
address computations, memory mapping, or 
both computation and mapping. 

28 Instruction Repertoire 

Term 

EVA 

EBL 

EB 

EHL 

EH 

EWL 

EW 

EDL 

ED 

CC 

FN 

Meaning 

Effective virtual address - the virtual address 
value obtained as a result of indirect addressing 
and/or indexing. This address value is inde
pendent of the program1s actual location in core 
memory, and is the final address value before 
memory mapping is performed. 

Effective byte location - the byte location 
pointed to by the effective virtual address of an 
instruction for a byte operation. 

Effective byte - the 8-bit contents of the effec
tive byte location, or (EBL). 

Effective halfword location - the halfword loca
tion pointed to by the effective virtual address of 
an instruction for a halfword operation. 

Effective halfword - the 16-bit contents of the 
effective halfword location, or (EHL). 

Effective word location - the word location pointed 
to by the effective virtual address of an instruc
tion for a word operation. 

Effective word - the 32-bit contents of the 
effective word location, or (EWL). 

Effective doubleword location - the doubleword 
location pointed to by the effective virtual address 
of an instruction for a doubleword operation. If 
an odd-numbered word location is specified for 
a doubleword operation, the low-order bit of the 
effective address field (bit position 31) is auto
matically forced to O. Thus, an odd-numbered 
word address (referring to the middle of a double
word) desi gnates the same doubleword as an even
numbered word address, when used for a double
word operation. 

Effective doubl·eword - the 64-bit contents of 
the effective doubleword location, or (EDL). 

Condition code - a 4-bit value (whose bit 
positions are labeled CC1, CC2, CC3, and 
CC4) that is establ ished as part of the exe
cution of most SIGMA 7 instructions. 

Floating normalize mode control- bit 7 of the 
program status doubleword. If this bit is a 0, 



Table 4. Glossary of Symbolic Terms (cont.) 

Term 

FN 
(cont .) 

FS 

FZ 

IA 

X'n' 

Meaning 

the results of floating-point additions and 
subtractions are to be normalized; if this bit 
is a 1, the results are not normalized. 

Floatin~9 significance mode control - bit 5 of 
the pro!gram status doubleword. If this bit is 
a 1, thlel computer tralPS to location X I441 

when more than two hexadecimal places of 
postnormalization shifting are required for a 
floating-point addition or subtraction; if this 
bit is OJ, no significance checking is performed. 

Floatinl~ zero mode control - bit 6 of the 
program status doubleword. If this bit is aI, 
the computer traps to location X I44 1 when 
either c:haracteristic underflow or a zero re
sult occ:urs for a floating-point multiplication 
or division; if this bit is a 0, characteristics 
underfl()w and zero results are treated as 
normal Iconditions. 

Instruction address - the 17-bit value that 
defines the virtual address of an instruction 
immedicJtely prior to the time that the instruc
tion is executed. 

Hexadedmal qualifier - a hexadecimal value 
(n) is an unsigned string of hexadecimal digits 

LOAD /STORE INISTRUCnONS 
The following load/store instructions are implemented in 
SIGMA 7 computers:: 

Instruction Name Mnemonic 

Load I mmed i a te LI 
Load Byte LB 
Load Halfword LH 
Load Word L W 
Load Doubleword LD 
Load Complement Halfword LCH 
Load Absolute Halfword LAH 
Load Complement Wlord LCW 
Load Absolute Word LAW 
Load Complement Doubleword LCD 
Load Absolute Doubleword LAD 
Load Selective LS 
Load Multiple LM 
Load Conditions and Floating Contlrol 

Immediate LCFI 
Load Conditions and Floating Contl'ol LCF 
Exchange Word XW 
Store Byte STS 
Store Halfword STH 
Store Word STW 
Store Doub I eword S TD 
Store Selective STS 
Store Multiple STM 
Store Conditions and Floating Control STCF 

SIGMA 7 load and sl'ore instructions operate with informa
tion fields of byte, hl:Jlfword, word, and doubleword lengths. 

Term 

Xln l 

(cont .) 

n 

u 

SE 

Meaning 

(0 through 9 and A through F) surrounded by 
si ngle quotation' marks and preceded by the 
qualifier "X" (for example, 7B016 is written 
XI7BO'. 

AND (logical product, where 0 n 0 = 0, 
On 1 = 0, 1 n 0 = 0, and 1 n 1 = 1). 

OR (logical inclusive OR, where 0 u 0 = 0, 
o u 1 = 1, 1 u 0 = 1, and 1 u 1 = 1). 

EOR (logical exclusive OR, where 000 = 0, 
0@1 = 1, 1@0= 1, and 1@1 = 0). 

Sign extension - some SIGMA 7 instructions 
operate on two operands of different lengths. 
The two operands are .nade equal in length by 
extending the sign of the shorter operand by the 
required number of bit positions. For positive 
operands, the result of sign extension is high
order OIS prefixed to the operand; for negative 
operands, high-order l's are prefixed to the 
operand. This sign extension process is per
formed after the operand is accessed from 
memory and before the operation called for by 
the instruction code is performed. 

Load instructions load the information indicated into one or 
more general registers of the current register block. Load 
instructions do not affect core memory storage; however, 
nearly all load instructions provide acondition code setting 
that indicates the followi ng information about the contents 
of the affected general register(s) after the instruction is 
successfully completed: 

Condition code settings: 

2 3 4 Result 

o o zero -the result in the affected register(s) 
is all O's. 

o negative - register R contains a 1 in bit 
position O. 

o positive - register R contains a 0 in bit 
position 0, and at least one 1 appears in 
the remainder of the affected register(s) 
(or appeared during execution of the cur
rent instruction.) 

o no fixed-point overflow - the result in 
the affected register(s) is arithmetically 
correct. 

fixed-point overflow - the result in the 
affected register(s) is arithmetically 
incorrect. 

Store instructions affect only that portion of memory storage 
that corresponds to the length of the information field speci
fied by the operation code of the i nstructionj thus, register 
bytes are stored in memory byte locations, register halfwords 
in memory halfword locations, register words in memory 

Load/Store Instructions 29 



word locations, and register doublewords in memory double
word locations. Store instructions do not affect the contents 
of the general register specified by the R field of the instruc
tion, unless the same register is also specified by the effec
tive virtual address of the instruction. 

LOADIMME_D~IA~T~E~ __ __ 
(Immediate operand) 

LOAD IMMEDIATE extends the sign of the value field (bit 
position 12 of the instruction word) 12 bit positions to the 
left and then loads the 32-bit result into register R. 

Affected: (R), CC3, CC4 

(I)12-31SE - R 

Condition code settings: 

2 3 4 Result in R 

0 0 zero 
0 1 negative 
1 0 positive 

If 1I is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of opera
tion code decoding) and traps to location X'40' with the 
contents of register R and the condition code unchanged. 

LB LOAD BYTE 
(Byte index ~Iignment) 

LOAD BYTE loods the effective byte into bit positions 24-31 
of register R and clears bit positions 0-23 of the register to 
allOls. 

Affected: (R), CC3, CC4 
EB - R24-31 ; 0 - RO- 23 
Condition code settings: 

2 3 4 Resu I tin R 

o 0 zero 
1 0 nonzero 

LOAD HALFWORD 
(Halfword index alignment) 

LOAD HALFWORD extends the sign of the effective half
word 16 bit positions to the left and then loads the 32-bit 
result into register R. 

Affected: (R),CC3,CC4 

EHSE - R 

30 Load/Store Instructions 

Condition code setlir.~s: 

2 3 4 Result in R 

0 0 zero 
0 1 negative 
1 0 positive 

LW LOAD WORD 
(Word index al ignment) 

LOAD WORD loads the ef!ective word into register R. 

Affected: (R),CC3,CC4 
EW - R 

Condi tion code settings: 

2 3 4 Resu It in R 

o 0 
o 1 
1 0 

zero 
negative 
positive 

. LO LOAD DOUBLEWORD 
(Doubleword index alignment) 

LOAD DOUBLEWORD loads the 32 low-order bits of the ef
fective doubleword into register Ru 1 and then loads the 32 
high-order bits of the effective doubleword into register R. 

If R is an odd value, the result in register R is the 32 high
order bits of the effective doubleword. The condition code 
settings are based on the effective doubleword, rather than 
the final result in register R (see example 3, below). 

Affected: (R),(Ru 1 ),CC3,CC4 
ED32-63 - Rul; EDO_31 - R 

Condition code settings: 

2 3 4 Effective doubl eword 

o 0 
o 1 
1 0 

zero 
negative 
positive 

Example 1, even R field value: 

ED 
(R) 
(Ru1) 
CC 

Before execution After execution 

X 10 123456789ABC DEf' X 10 123456789ABC DEF I 
xxxxxxxx XI 012345671 

xxxxxxxx X I 89ABCDEf' 
xxxx xxl0 

Example 2, odd R field value: 

ED 
(R) 
CC 

X '0 123456789ABC DEF' X '0 123456789ABC DEF' 
xxxxxxxx X 1012345671 

xxxx xxl0 



Example 3, odd R field value: 

ED X'OOOOOOOOl2345678' 
(R) xxxxxxxx 
CC xxxx 

X'OOOOOOOOl2345678' 
X '00000000' 
xxl0 

LOAD COMPLEMENT tiALFWORD 
(Halfwordindex ··olignm.!l!-nt)' 

1:1, , ~~ , • ,I .. R" ..I.. ~ ../,,:. II , Reference address 

tOAD COMPLEMENT HALFWORD extends the sign of the 
effective halfword 16 bit positions to the left and then loads 
the 32-bit two's complement of the result into register R. 
(Overflow cannot occur.) 

Affected: (R),CC3,CC4 

_~HS~ -R 
Condit"ion code sett'ings: 

2 

l.AH 

3 4 Result in R -
0 0 zero 
0 1 negative 
1 0 positive 

LOAD ABSOLUTE HALFWOR D 
(Halfword i""dex -alignment)' 

If the effective halfword is positive, LOAD ABSOLUTE 
I-v\LFWORD extends the sign of the effective halfword 16 
bit positions to the left and then loads the 32-bit result in 
register R. If the effective halfw()rd is negative, LAH ex
tends the sign of th4! effective halfword 16 bit positions to 
the left and then loads the 32-bit two's complement of the 
result into register R. (Overflow cannot occur.) 

Affected: (R),CC3,CC4 

IEH SEI - R 
C:ond ition code settings: 

1 2 3 4 Result in R 

0 0 zero 
1 0 nonzero 

LCW LOAD COMPLEMENT WORD 
(Word index alignment) 

Ei 3A I R I X I : Referenc~ address 
, • " • ,'" " " .. , .... " " "I» " " "",, " " "I~ ~ ~ " o I , 314 

LOAD COMPLEMENT WORD loads the 32-bit two's com
plement of the effective word into register R. Fixed-point 
overflow occurs if the effective w,:>rd is _231 (X '80000000" 
in which case the result in registelr R is -231 and CC2 is set 
t() 1; otherwise, CC2 is reset to O. 

Affected: (R),CC2,CC3, CC4 Tmp: Fixed-point overflow. 
-EW - R 

Condi tion code settings: 

2 3 4 Result in R 

0 0 0 zero 
0 1 negative 

0 1 0 positive 
0 no fixed-point overflaw 
1 0 fixed-point overflow 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'43' afterexe
cution of LOAD COMPLEMENT WORD; otherwise, the com
puter executes the next instruction in sequence. , 
LAW LOAD ABSOLUTE WORD 

rNord index 'alignment)' 

If the effective word is positive, LOAD ABSOLUTE WORD 
loads the effective word into register R. If the effective 
word is negative, LAW loads the 32-bit two's complement 
of the effeCtive word into register R. Fixed-point overflow 
occurs if the effective word is -231 (X '80000000'), in which 
case the result in register R is _231 and CC2 is set to 1; 
otherwise, CC2 is reset to O. 

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow 
IEWI- R 

Condition code settings: 

2 3 4 Result in R 

0 0 0 zero 
1 0 nonzero 

0 no fixed-point overflow 
1 0 fixed-point overflow (sign bft on) 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a I, the computer traps to location X'43' afterexe
cution of LOAD ABSOLUTE WORD; otherwise, the compu
ter executes the next instruction in sequence. 

LCD LOAD COMPLEMENT DOUBLEWORD 
(D~u~I!~o~d index 01 ignment) 

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit two's 
complement of the effective doubleword, loads the 32 low
order bits of the result into register Rul, and then loads the 
32 high-order bits of the result into register R. 

If R is an odd value, the result in register R is the 32 high
order bits of the two1s complemented doubleword. The con
dition code settings are based on the two's complement of 
the effective doubleword, rather than the final result in 
register R. 

Fixed-point overflow occurs if the effective doubleword is 
-263 (X '8000000000000000 '), in which case the result in 

Load/Store Instructions 3J 



registers Rand Ru 1 is _~3 and CC2 is set to 1; otherwise, 
CC2 is reset to O. 

Affected: (R),(Ru 1 ),CC2, Trap: Fixed-point overflow 
CC3,CC4 

[-ED]32-63 - Rul; [-ED]0_31 - R 

Condition code settings: 

2 3 4 Two's complement of effective doubleword 

0 0 0 zero 
0 1 negative 

0 1 0 positive 
0 no fixed-point overflow 
1 0 fixed-point overflow 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X 1431 after exe
cution of LOAD COMPLEMENT DOUBLEWORDi otherwise, 
,the computer ex~c~t.!s the next instruction in sequence. 

Example 1, even R field value: 

ED 
(R) 
(Rul ) 
CC 

Before execution 

X '0123456789ABCDEF ' 
xxxxxxxx 
xxxxxxxx 
xxxx 

Example 2, odd R field value: 

ED X'0123456789ABCDEF' 
(R) xxxxxxxx 
CC xxxx 

After execution 

X '0123456789ABC DEF' 
X' FEOCBA981 

X 1 7654321P 
xOOl 

X '0 123456789ABC DEF' 
X' FEOCBA98' 
xOOl 

!LAD LOAD ABSOLUTE DOUBLEWORD ' 
(Doubleword index alignment) 

If the effective doubleword is positive, LOAD ABSOLUTE 
DOUBLEWORD loads the 32 low-order bits of the effective 
doubleword into register Ru 1, and then loads the 32 high
order bits of the effective doubleword into register R. If R 
is an odd value, the result in register R is the 32 high-order 
bits of the effective doubleword. The condition code settings 
are based on the effective doubleword, rather than the finaJ 
result in register R. 

If the effective doubleword is negative, LAD forms the 64-
bit two1s complement of the effective doubleword, loads the 
32 low-order bits of the two's complemented doubleword in
to register Rul, and then loads the 32 high-order bits of the 
two's complemented doubleword into register R. If R is an 
odd value, the result in register R is the 32 high-order bits 
of the two's complemented doubleword. The condition code 
settings are based on the two's complement of the effective 
doubleword, rather than the final result in register R. 

,-

Fixed-point overflow occurs if the effective doubleword is 
1_~3 (X '8000000000000000'), in which case the result in 

32 Load/Store Instructions 

registers Rand Rul IS 263 and CC2 is set ,,,I 1; otherwise, 
CC2 is reset to O. 

Affected: (R),(Rul),CC2, Trap: Fixed-point overflow 
CC3,CC4 

1ED132-63 - Rul; 1ED10_31 - R 

Condition code settings: 

2 3 4 Absolute value of effective doubleword 

0 0 0 zero 
1 0 nonzero 

0 no fixed-point overflqw 
1 0 fixed-point overflow (sign bit on) 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
, (AM) is a 1, the computer traps to location X'431 after exe

cution of LOAD ABSOLUTE DOUBLEWORD; otherwise, the 
computer executes the next instruction in sequence. 

Example 1, even R field value: 

Before execution 

ED X'Q123456789ABCDEF' 
(R) xxxxxxxx 
(Ru 1) xxxxxxxx 
CC xxxx 

Example 2, even R field value: 

ED X'FEOCBA9876543210' 
(R) xxxxxxxx 
(R u 1) xxxxxxxx 
CC xxxx 

Example 3, odd R field value: 

After execution 

X'0123456789ABCDEF' 
X'012345671 

X '89ABC DEF' 
xOl0 

XI FE DC BA 9876543210' 
X'012345671 

X'89ABCDFO' 
xOlO 

ED 
(R) 
CC 

X '0 123456789ABC DEF' X '0 1 ~3456789ABC DEF' 
xxxxxxxx X'01234567' 
xxxx x010 

LS LOAD SELECTIVE 
(Word index alignment' 

o I 2 

Register Rul contains a 32-bit mask. If R is an even value, 
LOAD SELECTIVE loads the effective word into register R 
in those bit positions selected by a 1 in corresponding bit 
positions of register Ru 1. The contents of register R are not 
affected in those bit positions selected by a 0 in correspond
ing bit positions of register Ru 1. 

If R is an odd value, LS logically ANDs the contents of 
register R with the effective word and loads the result into 
register R. If corresponding bit positions of register Rand 
the effective word both contain l's, a 1 remains in register 
Ri otherwise, a 0 is placed in the corresponding bit position 
of regi ster R. 

Affected: (R), CC3, CC4 

If R is even, [EWn(RulUu[(R)n(Rul)]-R 
If R is odd, EWn(R)- R 



Condition code settings: 

2 3 4 Result in R 

0 0 zero 

0 bit 0 of registe'f R is a 1 

0 bit 0 of registe'r R is a 0 and bit positions 
1-31 of register R contain at least one 1 

f:.cample 1, even R field value: 

Before execution 

EW X' 01234567' 
(Ru 1) X'FFOOFFOO' 
(R) xxxxxxxx 
CC xxx x 

Example 2, odd R field value: 

EW 
(R) 
CC 

LM 

Before execution 

'X'89ABCDEF' 
X' FOFOFOFO' 
xxx x 

LOAD MULTIPLE 
(Word ind~!!x alignment) 

EI 2A 
01231456 

,After execution 

X'01234567' 
X' FFOOFFOO' 
X'01xx45xx' 
xx10 / 

After execution 

X'89ABCDEF' 
X'80AOCOEO' 
xxOl 

LOAD MULTIPLE loads a sequential set of words into a se
quential set of registers. The set of words to be loaded be
gins with the word pointed to by the effective address of LM, 
and the set of registers begins with register R. The set of reg
isters is treated mc,dulo 16 (i. e., the next register loaded 
after register 15 is register 0 in th,e current register block). 

The number of word:) to be loaded into the general registers 
i~i determined by the, value of the c1ondition code immediately 
before the execution of LM. (The desired value of the con
dition code can be :)et with LCF Olr LCFI.) An initial value 
of 0000 for the condition code causes 16 consecutive words 
to be loaded into the register block. 

Affected: (R) to (R-tCC-1) 
(EWL) -R, (EWL+ 1) - R+1, .•. , (EWL-tCC-l) - R+CC-l 

If the instruction stclrts loading words from an accessible 
region of memory and then crosses into an inaccessiblemem
ory region, either the memory prol'ection trap or the nonex
istent memory address trap can occ;ur. In either case, the 
trap is activated wah the condition code unchanged from 
the value it contained before the ~~xecution of LM. The ef
fective address of the instruction permits the trap routine to 
compute how many registers have been loaded. Since it is 
permissible to use indirect addressing or indexing through a 
general register, or even to execute an instruction located 
in a general register, a trapped LM instruction may have 
already overwritten the index, direct address, or the LM 
instruction itself, thus destroying ~lny possibility of contin
uing the program successfully. If such programming must 
be done, it is advisable that the f4!!gister containing the di
met address, index displacement, or instruction be the last 
n~gister loaded by the LM instruction. 

If the effective virtual address of the LM instruction is in 
the range 0 through 15, then the words to be loaded are 
taken from the general registers rather than from core mem
ory. In this case the results will be unpredictable if any of 
the source registers are also used as destination registers. 

LCFI LOAD CONDITIONS AND FLOATING 
CONTROL IMMEDIATE 
(Immediate operand) 

If bit position 10 of the instruction word contains a 1, LOAD 
CONDITIONS AND FLOATING CONTROL IMMEDIATE 
loads the contents of bit positions 24 through 27 of the in
struction word into the condition code; however, if bit 10 
is 0, the condition code is not affected. 

If bit position 11 of the instruction ward contains a 1, LCFI 
loads the contents of bit positions 29 through 31 of the in
struction word into the floating significance (FS), floating 
zero (FZ), and floating normalize (FN) mode control bits, 
respectively (in the program status doubleword); however, 
if bit 11 is 0, the FS, FZ and FN control bits are not af
fected. The functions of the floating-point control bits 
are described in the section "Floating-point Instructions". 

Affected: CC, FS, FZ, FN 

If (1)10 = 1, (1)24-27 -- CC 

If (1)10 = 0, CC is not affected 

If (1)11 = 1, (1)29-31 - FS, FZ, FN 

If (1)11 = 0, FS, FZ, and FN not affected 

Condition code settings, 

2 3 

if (1)10 = 1: 

4 

If LCFI is indirectly addressed, it is treated as a nonexis
tent instruction, in which case the computer uncondition
ally aborts execution of instruction (at the time of operation 
code decoding) and traps to location X'40' with the condi
tion code unchanged. 

LOAD CONDITIONS AND FLOATING 
CONTROL 
(Byte index alignment) 

If bit position 10 of the instruction word contains a 1, LOAD 
CONDITIONS AND FLOA lING CONTROL loads bits 0 
through 3 of the effective byte into the condition code; how
ever, if bit 10 is 0, the condition code is not affected. 

If bit position 11 of the instruction word contains a 1, LCF 
loads bits 5 through 7 of the effective byte into the floating 
significance (FS), floating zero (FZ), and floating normalize 
(FN) mode control bits, respectively; however, if bit 11 is 
0, the FS, FZ and FN control bits are not affected. The 

load/Store Instruct;ons 33 



functions of the floating-point mode control bits are de
scribed in the section "Floating-point Instructions". 

Affected: CC, FS, FZ, FN 
If (1)10 = 1, EB0-3-- CC 

I f (I) 1 0 = 0, CC not affected 

If (1)11 = 1, EB
5

_7 - FS, FZ, FN 

If (1)11 = 0, FS, FZ, FN not affected 

Condition code settings, if (1)10 = 1: 

2 3 4 

XW EXCHANGE WORD 
(Word i~dex align~ent) 

EXCHANGE WORD exchanges the contents of register R 
with the contents of the effective word location. 

Affected: (R), (EWL),CC3,CC4 
(R) - (EWL) 

Condition code settings: 

2 3 4 Result in R 

0 0 zero 
0 1 negative 
1 0 positive 

STS STORE BYTL_ 
(Byte index alignment) 

STORE BYTE stores the contents of bit positions 24-31 of 
register R into the effective byte location. 

Affected: (EBL) 

(R)24-31 - EBL 

S TH STORE HALFWOR 0 
(Halfword index alignment) 

STORE HALFWORD stores the contents of bit positions 16-31 
of register R into the effective halfword location. If the in
formation in register R exceeds halfword data limits, CC2 is 
set to 1 i otherwise, CC2 is reset to O. 

Affected: (EHL),CC2 

(R)16-31 - EHL 

Condition code settings: 

2 3 4 Information in R 

0 (R)~_ ~6 = all O's ~r all l's 

(R)0-16 :/ all O's or all l's 

34 Load/Store Instructions 

r STW STO~E WORD 
(Word index alignment) 

I~I, , ,~: , . J . R J" ~I; "" ~~:e:~:~~ ,~~d::~" ~ " 
STORE WORD stores the contents of register R into the ef
fective word location. 

Affected: (EWL) 
(R) - EWL 

STD STORE DOUBLEWORD 
(Doubleword index alignment) 

STORE DOUBLEWORD stores the contents of register R into the 
32 high-order bit positionsoftheeffectivedoubleword loca
tion and then stores the contents of register Ru 1 into the 32 low
order bit positions of the effective doubleword location. 

Affected: (EDL) 
(R) - EDL

O
_
31

; (Rul) - EDL
32

_
63 

Example 1, even R field value: 

Before execution 

(R) X'01234567' 
(Rul) = X'89ABCDEF' 
(EDL) = xxxxxxxxxxxxxxxx 

Example 2, odd R field value: 

(R) X'89ABCDEF' 
(E DL) = xxxxxxxxxxxxxxxx 

After execution 

X '01234567' 
X'89ABCDEF' 
X '0 123456789ABC DEF I 

X '89ABC DEF' 
X '89ABC DEF89ABC DEF I 

STS STORE SELECTIVE 
0/'Iord index alignment) 

Register Rul contains 0 32-bit mask. If R is an even value, 
STORE SELECTIVE stores the contents of register R into the 
effective word location in those bit positions selected by a 1 
in corresponding bit positions of register Ru 1; the effective 
word remains unchanged in those bit positions selected by a 
o in corresponding bit positions of register Rut. 

If R isan odd value, STS logically inclusive ORs the contents 
of register R with the effective word and stores the result 
into the effective word location. The contents of register 
R are not affected. 

Affected: (EWL) 
If R is even, [(R)n(Ru 1)] u [EWn(~f)] - EWL 
If R is odd, (R) u EW - EWL 

Example 1, even R field value: 

(R) 
(Ru 1) 
EW 

Before execution 

X'12345678' 
X' FOFOFOFO' 
xxxxxxxx 

After execution 

X'12345678' 
X' FOFOFOFO' 
X'lx3x5x7x' 



Example 2, odd R field value: 

(R) 
lEW 

STM 

Before ex,ecution 

XI OOFFOOFF' 
XI 123456781 

AiFter execution 

XIiOOFFOOFF' 
X" 12FF56FF' 

STORE MULTIPLE 
I~Ord index al ignment)' 

STORE MULTIPLE stores the contents of a sequential set of 
registers into a sequential set of wo~d locations. The set of 
locations begins wah the location pointed to by the effective 
word address of STM, and the set of registers begins with 
register R. The set of registers is treated modulo 16 (i .e., 
the next sequential register after Iregister 15 is register 0). 
The number of registers to be stOrE~d is determined by the 
value of the condition code immediately before execution 
of STM. (The condition code can be set to the desired val
ue before ,execution of STM with ILCF or LCFI.) An initial 
value of 0000 for the condition cCtde causes 16 general regi
sters to be stored. 

Affected: (EW L) to (EW L + CC-l) 
(R) - EWL, (R + 1 )-·EWL + 1, ... , (R+ CC-1)- EWL + CC-l 

If the instruction stOirts storing word!~ into an accessible region 
of the memory and then crosses inlto an inaccessible memory 
region, either the memory protectic)fl trap or the nonexistent 
memory address trap can occur. In either case, the trap is 
activated with the condition code unchanged from the value 
it contained before the execution of STM. The effective 
address of the instruction permits l"he trap routine to com
pute how many words of memory have been changed. Since 
H is permissible to use' indirect addressing through one of 
the affected locations, or even to execute an instruction lo
cated in one of the affected locations, a trapped STM 
instruction may haVE~ already overwritten the direct address, 
or the STM instruction itself, thus destroying any possibility 
of continuing the program successfully. If such programming 
must be done, it is advisable that the direct address, or the 
STM instruction, oClcupy the last 10lcation in which the con
tc!nts of a register are to be stored b)' the STM instruction. 

If the effective virtual address of ,the STM instruction is in 
the range 0 through 15, then the registers indicated by the 
R field of the STM instruction are stored in the general reg
isters rather than iln core memory.. In this case the results 
will be unpredictable if any of thE! source registers are also 
used as destination registers. 

S'TCF STORE CONDITIO NS AI\ID FLOATING CONTROL 
(Byte index alignment) 

[, ~;, J~~1~1'" ~ ..I,,: .. " ,,~:~e::~~~a~d~":~h",,1 
STORE CONDITIONS AND FLOATING CONTROL stores 
the current condition code and thE! current values of the 
floating significance (FS), floatin!~ zero (FZ), and floating 
normalize (FN) mode control bits of the program status 
doubleword into the effective bytE! location as follows: 

Affected: (EBL) 
(PSD)O_7 - EBL 

ANALYZE/INTERPRET INSTRUCTIONS 

ANLZ ANALYZE 
~ord index alignment) 

The ANALYZE instruction treats the effective word as a 
SIGMA 7 instruction and calculates the effective virtual 
address that would be generated by the instruction if the 
instruction were to be executed. ANALYZE produces an 
answer to the question, "What effective virtual address 
would be used by the instruction located at N if it were 
executed now?" The ANALYZE instruction determines 
the addressing type of the "analyzed" instruction, calcu
lates its effective virtual address (if the instruction is not 
an immediate-operand instruction), and loads the effective 
virtual address into register R as a displacement value 
(the condition code settings for the ANALYZE instruction 
indicate the addressing type of the analyzed instruction). 

The nonexistent instruction, the privileged instruction vio
lation, and the unimplemented instruction trap conditions 
can never occur during execution of the ANLZ instruction. 
However, either the nonexistent memory address condition 
or the memory protection violation trap condition (or both) 
can occur as a result of any memory access initiated by the 
ANLZ instruction. If either of these trap conditions occur, 
the instruction address stored by on XPSD in trap location 
X'40 ' is always the virtual address of the ANLZ instruction. 

The detailed operation of ANALYZE is as follows: 

1. The contents of the location pointed to by the effective 
virtual address of the ANLZ instruction is obtained. This 
effective word is the instruction to be analyzed. From a 
memory-protection viewpoint, the instruction (to be ana
lyzed) is treated as an operand of the ANLZ instruction; 
that is, the analyzed instruction may be obtained from 
any memory area to which the program has read access. 

2a. If the operation code portion of the effective word spec
ifies an immediate-addressing instruction type, the 
condition code is set to indicate the addressing type, 
and instruction execution proceeds to the next instrucr
tion in sequence after ANLZ. The original contents of 
register R are not changed when the analyzed instruc
tion is of the immediate-addressing type. 

2b. If the operation code portion of the effective word spec
ifies a reference-addressing instruction type, the condi
tion code is set to indicate the addressing type of the 
analyzed instruction and the effective address of the 
analyzed instruction is computed (using all of the normal 
address computation rules). If bit 0 of the effective word 
is a 1, the contents of the memory locat:on specified by 
bits 15-31 of the effective word are obtained and then 

Analyze/lnterpret Instructions 35 



used as a direct address. Thp. nonallowed operation 
trap (memory protection violation or nonexistent memory 
address) can occur as a resu I t of the memory access. I n
dexingisalwaysperformed(with an index register in the 
current register bl9Ck) if bits 12-14 of the analyzed in
struction are nonzero. The effective virtual address of 
the analyzed instruction is aligned as an integer dis
placement value and loaded into register R, accord
ing to the instruction addressing type, as follows: 

Byte Addressing: 

Halfword Addressing: 

Word Addressing: 

Doubleword Addressing: 

Operation codes and mnemonics for the SIGMA 7 instruc
tion set are shown in Table 5. Circled numbers in the table 
indicate the condition code value (decimal) available to the 
next instruction after ANALYZE when a direct-addressing 
operation code in the corresponding addressing type is analyzed. 

Affected: (R), CC 

Condition code settings: 

2 3 4 Instruction addressing type 

0 0 0 byte 
0 0 1 immediate byte 
0 1 0 halfword 
1 0 0 word 
1 0 1 immediate, word 
1 1 0 doubleword 

0 direct addressing (eWO = 0) 
1 indirect addressing (EWo = 1) 

INT INTERPRET . .., 
(Word index alignment) 

INTERPRET loads bits 0-3 of the effective word into the 
condition code, loads bits 4-15 of the effective word 
into bit positions 20-31 of register R (and loads O's into 
the remai nder of register R), and then loads bi ts 16-31 
of the effective word into bit positions 16-31 of register 
Rul (and loads O's into bit positions 0-15 of register Rul). 
If R is an odd value, INT loads bits 0-3 of the elfective 
word into the condition code, loads bits 16-31 of the ef
fective word into bit positions 16-31 of register R, and 

36 Anal yze/lnterpret Instructions 

Table 5. ANALYZE Table for SIGMA 7 Operation Codes 

X X'OO'+n 20+ 40+ 60+ 

00 - AI TTBS CBS 
01 

LCFI® 
CI TBS CD MBS 

02 LI - -
03 - MI - EBS 

04 CAll SF ANLZ 8DR 
OS CAL2 S CS BIR 
06 CAL3 - XW AWM 
07 CAL4 - STS EXU 

08 PLW CVS EOR BCR 
09 PSW CVA® OR BCS 
OA PLM LM LS BAl 
OB PSM STM AND INT 

OC - - SIO RO 
00 

lPSO@ 
- TlO WD 

OE WAIT TOV AIO 
OF XPSO lRP HIO MMC 

10 AD AW AH lCF 
11 CO CW CH CB 
12 lO lW lH lB 
13 MSP MTW MTH MTB 

14 - - - STCF 
15 STO STW STH STB ® 
16 - OW DH 0 PACK 0 
17 - MW MH UNPK 

18 SO SW SH DS 
19 ClM ClR - DA 
lA lCO lCW lCH DD 
IB LAD LAW lAH OM 

1C FSL FSS - OSA 
10 FAL FAS - DC 
IE FOL FOS - OL 
1F FML FMS - DST 

loads O's into bit positions 0-15 of register R (bits 4-15 
of the effective word are ignored in this case). 

Affected: (R), (Ru 1), CC 

EW
O

_
3 

- CC 

EW 4-15 - R20- 31 ; 0 - RO- 19 
EW

16
- 31 - Rul 16_31 ; 0 - Rul 0_15 

Condition code settings: 

2 3 4 

EWO 

Example 1, even R field value: 

Before execution 

EW X' 12345678' 
(R) xxxxxxxx 
(Ru 1) xxxxxxxx 
CC xxxx 

After execution 

X' 1 2345678' 
X '00000234' 
X '00005678' 
0001 



FIXED·POIIT ARITIIIETIC .STRUCTIONS 
._---- - -_._- - -----, 

The fol lowing fixed-point arithmeHc instructions are includ
ed as a standard feature of the SIGMA 7 computer:_ 

Instruction Name 

Add Immediate 
Add Halfword 
Add Word 
Add Doubleword 
Subtract Halfword 
Subtract Word 
Subtract Doubleworcl 
Multiply Immediate 
Multiply Halfword 
Multiply Word 
Divide Halfword 
Divide Word 
Add Word to MemorJf 
Modify and Test Byt~! 
Modify and Test Ha I Fword 
Modify and Test Word 

Mnemonic 

AI 
AH 
AW 
AD 
SH 
SW 
SO 
MI 
MH 
MW 
DH 
OW 
AWM 
MTB 
MTH 
MTW 

The fixed-point arithmetic instruction set performs binary 
addition, subtraction, multiplicatkm, and division with in
teger operands that may be data, addresses, index values, 
or counts. One opelrand may be either in the instruction 
word itself or may be in one or two of the current general 
registers; the second operand may be either in core memory 
or in one or two of the current gen4eral registers. For most 
of these instructions, both operandli may be in the same gen
eral register, thus p4~rmitting the doubling, squaring, or 
clearing the contenh of a register by using a reference ad
dress value equal to the R field value. 

All fixed-point arithmetic instructions provide a condition 
code setting that indicates the follc)wing information about 
the result of the operation called for by the instruction: 

Condition code settings: 

2 3 4 Result 

o 

o 0 zero - The result" in the specified general 
register(s} is all :zeros. 

o negative - The ilnstruction has produced a 
fixed-point negative result. 

o positive - The instruction has produced a 
fixed-point positive result. 

fheed-point overlrlow has not occurred dur
ing execution of an add, subtract, or 
divide instruction, and the result is 
correct . 

fi>:ed-point overflow has occurred during 
execution of an (]dd, subtract, or divide 
instruction. For addition and subtrac
tion, the incormct result is loaded into 
th.~ designated register(s). For a divide 
instruction, the designated register(s), 
and CC 1, CC3, and CC4 are not af
fec:ted. 

2 3 4 Result ------
o 

.~ 

I~ 

no carry - For an add or subtract instruc
ti on, there was no carry of a \ -bi t out of 
the high-order (sign) bit position of the 
result. 

carry:-' For an add or subtract instruction, 
there was a 1-bit carry out of the sign bit 
position of the result. (Subtracting zero 
will always produce carry.) 

ADD IMMEDIATE 
(Immediate operand) 

o I 2 

The value field (bit positions 12-31 of the instruction word) 
is treated as a 20-bit, two1s complement integer. ADD 
IMMEDIATE extends the sign of the value field (bit position 
12 of the instruction word) 12 bit positions to the left, odds 
the resulting 32-bit value to the contents of register R, and 
loads the sum into register R. 

Affected: (R), CC Trap: Fixed-point overflow 

(R) + (1)12-3\ SE - R 

Condition code settings: 

2 3 4 Result in R 

o 0 zero 
o 1 .negati ve 
1 0 positive 

o no fixed-point overflow 
1 fixed-point overflow 

o no carry from bit position 0 
1 carry from bit position 0 

If AI is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and traps to location X'40 ' with the contents 
of register R and the condition code unchanged. 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'43' after 
loading the sum into register Ri otherwise, the computer 
executes the next instruction in sequence. 

AH ADD HALFWORD 
(Halfword index alignment) 

ADD HALFWORD extends the sign of the effective halfword 
16 bit positions to the left (to form a 32-bit word in which 
bit positions 0-15 contain the sign of the effective halfword), 
adds the 32-bit result to the contents of register R, and loads 
the sum into register R. 

Affected: (R), CC 
(R) + EHSE - R 

Trap: Fixed-point overflow 

Fixed-Point Arithmetic Instructions 37 



Condition code settings: 

2 3 ~ Result in R 

o 0 zero 
o 1 negative 
1 0 positive . 

o no fixed-point overflow 
1 fixed-point overflow 

o no ccrry from bit position 0 
1 ccrry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
is 1, the computer traps to location X'431 after loading the 
sum into register R; otherwise, the computer executes the 
next instruction in sequence. 

AW' ADD WORD 
(Word index al ignment) 

ADD WORD adds the effective word to the contents of reg
ister R and loads the sum into register R. 

Affected: (R), CC 
(R) + EW ---.:.. R 

Condition code settings: 

___ 2 __ 3 __ 4 Result in R 

o 0 zero 
o 1 negative 
1 0 positive 

Trap: Fixed-point overflow 

o 
1 

no fixe~-point overflow 
fixed-point overflow 

o 
1 

no carry from bit position 0 
carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a I, the computer traps to location X'431 after 
loading the sum into register R; otherwise, the com?Uter 
executes the next instruction in sequence. 

AD ADD DOUBlEWORD 
(Doubleword index alignment) 

ADD DOUBLEWORD adds the effective doubleword to the 
contents of registers Rand Ru 1 (treated as a single, 64-bit 
register); loads the 32 low-order bits of the sum into reg
ister Ru 1 and then loads the 32 high-order bits of the sum 
into register R. R must be an even value; if R is an odd 
value, the result in register R is unpredictable. 

Affected: (R), (Ru 1), CC Trap: Fixed-point overflow 
(R, Rul) + ED- R, Rul 

Condition code settings: 

2 3 4 Result in R, Rul 

o 0 
o 1 

zero 
negative 

38 Fixed-Point Arithmetic Instructions 

234 Result in R, Ru 1 

positive 

o 
1 

o 
1 

o 
no fixed-point overflow 
fixed-point overflow 
no carry from bit position 0 
carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'431 after 
looding the sum into registers R and Rul; otherwise. the 
computer executes the next instruction in sequence. 

Example 1, even R field value: 

ED 
(R) 
(Rul) 
CC 

Before execution 

X' 33333333EEEEEEEE ' 
X'l1111111' 
X 133333333' 
xxxx 

After execution 

X'33333333EEEEEEEE' 
X 1444444451 

X '222222211 
0010 

SH SUBTRACT HAlFWORD 
(Halfword index alignment) 

SUBTRACT HAlFWORD extends the sign of the effective 
halfword 16 bit positions to the left (to form a 32-bit word 
in which bit positions 0-15 contain the sign of the effec
tive halfword), forms the two's complement of the resulting 
word, adds the complemented word to the contents of reg
ister R, and loads the sum into register R. 

Affected: (R), CC 
-EH + (R)-R 

SE 

Trap: Fixed-point overflow 

Condition code settings: 

o 
1 

234 

o 
1 

o 0 
o 1 
1 0 

Result in R 

zero 
negative 
positive 
no fixed-point overflow 
fixed-point overflow 
no carry from bit position 0 
carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'43' after 
loading the sum into register R; otherwise, the computer 
executes the next instruction in sequence. 

SW SUBTRACT WORD 
~ord index alignment) 

SUBTRACT WORD forms the two's complement of the effec
tive word, adds that complement to the contents of register 
R, and loods the sum into register R. 

Affected: (R), CC 
-EW + (R)- R 

Trap: Fixed-point overflow 



Condition code set·tings: 

2 3 4 Result in R 

o 0 zero 
o 1, negative 
1 0 positive 

o no fixed-point' overflow 
1 fixed-point overflow 

10 no carry from bit position 0 
1 carry from bit position 0 

llf CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the c:omputer traps to location X'43' after 
~oading the sum into register R; otherwise, the computer 
.~xecutes the next jinstruction in sequence. 

so ! SUBTRACT DOUBlEWORD 
(Doubleword index alignment) 

SUBTRACT DOUBlEWORD forms the 64-bit two's comple
ment of the effective doubleword" adds the complemented 
doubleword to the contents of registers Rand Ru 1 (treated 
as a single, 64-bit register), loads the 32 low-order bits 
()f the sum into register Ru 1 and I,oads the 32 high-or.der bits 
of the sum into register R. R musit be an even value; if R is 
(m odd value, the Iresult in regist4er R is unpredictable. 

Affected: (R),(Ru l),CC 
··ED + {R, Rul)-.. R, Ru1 

Trrap: Fixed-point overflow 

Condition code settings: 

1 234 

o 
'I 

o 
1 

o 0 
o 1 
1 0 

IResult in R, Ru! 

zero 
negative 
positive 
no fixed-point overflow 
fixed-point ovrerflow 
no carry from bit position 0 
.carry from bit lposition 0 

If CC2 is set to 1 olnd the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps ,to location X'43' after the 
result is loaded int,o registers Rand Ru1; otherwise, the com
puter executes the next instruction in sequence. 

hU MULTIPLY IMMEDIATE 
(Immediate operand) 

The value field (bit positions 12-,31 of the instructions word) 
is treated as a 20-bit, two's complement integer. MUlTI
PLY IMMEDIATE e,xtends the sign of the value field (bit 
position 12) of the instruction word 12 bit positions to the 
left and multiplies the resulting 32-bit value by the con
I'ents of reg i ster Ru 1, then loads the 32 high-order bits of 
the product into register R, and tlhen loads the 32 low-
c)rder bits of the pr,oduct into register Ru 1. 

If R is an odd value, the result in register R is the 32 low
order bits of the product. Thus, in order to generate a 64-
bit product, the R field of the instruction must be even and 
the multiplicand must be in register R+1. The condition code 
settings are based on the 64-bit product formed duri ng in
struction execution, rather than on the final contents of 
register R. Overflow cannot occur. 

Affected: (R), (Ru1), CC2, CC3, CC4 

(Ru1)x (1)12-31SE -R,Ru1 

Condition code settings: 

2 3 4 64-b it produc t 

o 0 zero 

o negative 

o positive 

o result is correct, os represented in reg
ister Ru1 

result is not correctly representoble in 
register Ru 1 alone 

If MI is indirectly oddressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of opera
tion code decoding) and traps to location X '40' with the 
contents of register R, register Ru1, and the condition code 
unchanged; otherwise, the computer executes the next in
struction in sequence. 

Example 1, even R field value: 

Before execution 

(1)12-31 = X'70000' 

(R) xxxxxxxx 

(Rul ) X'10001000' 

CC xxxx 

Example 2, odd R field value: 

(1)12-3'1 = X'01234' 

(R) X '00030002' 

CC xxxx 

After execution 

X'7000Q' 

X '00007000' 

X '70000000' 

xll0 

X'01234' 

X '369C2468 , 

x010 

MH MULTIPLY HALFWORD 
(Halfword index alignment) 

MULTIPLY HALFWORD multiplies the contents of bit posi
tions 16-31 of register R by the effective halfword (with 
both halfwords treoted as signed, two's complement inte
gers) ond stores the product in regi ster Ru 1 (overflow can
not occur). If R is an even value, the original multiplier 
in register R is preserved, allowi ng repetitive halfword 
multiplication with a constant multiplier; however, if R is 

Fixed-Point Arithmetic Instructions 39 



on odd value, the product is IOcxted into the same register. 
Overflow cannot occur. 

Affected: (Rul), CC3, CC4 

(R)16-31 x EH -R~l 

Condition code settings: 

2 3 .. Result in Rul 

o 0 zero 
o 1 negative 
1 0 positive 

Example l, even R field value: 

EH 
(R) 
(Ru 1) 
CC 

Before execution 

X'FFFF' 
X 'xxxxOOOA ' 
xxxxxxxx 
xxx x 

Example 2, odd R field value: 

EH X'FFFF' 
(R) X 'xxxxOOOA , 
CC xxxx 

MW; 
..J 

MULTIPLY WORD 
(Word index al ignment) 

After execution 

X'FFFF' 
X 'xxxxOOOA , 
X'FFFFFFF6' 
xxOl 

X'FFFF' 
X'FFFFFFF6' 
xxOl 

MULTIPLY WORD multiplies the contents of register Rul by 
the effective word, loads the 32 high-order bits of the prod
uct into register R and then loads the 32 low-order bits of 
the product into register Ru 1 (overflow cannot occur). 

If R is an odd value, the result in register R is the 32 low
order bits of the product. Thus, in order to generate a 64-
bit product, the R field of the instruction must be even and 
the multipl icand must be in register R+ 1. The condition 
code settings are based on the 64-bit product formed dur
ing instruction execution, rather than on the final contents 
of register R. 

Affected: (R), (Rul), CC 
(Rul) x EW -- R, Rul 

Condition code settings: 

2 3 4 64-bit product 

o 0 zero 

o negative 

o positive 

o result is correct, as represented in reg
ister Rul 

result is not correctly representable in 
register Ru 1 alone 

40 Fixed-Point Arithmetic Instructions 

I DH. DIVIDE HAlFWORD 
(Halfword index aligrvnent) 

DIVIDE HAlFWORD divides the contents of register R (treat
ed as a 32-bit fixed-point integer) by the effective halfword 
and loads the quotient into register R. If the absolute value 
of the quotient cannot be correctly represented in 32 bits, 
fixed-point overflow occurs; in which case CC2 is set to 1 
and the contents of register R, and CC1, CC3, and CC4 
are unchanged. 

Affected: (R), CC2, CC3, Trap: Fixed-point overflow 
CC4 

(R)-:-EH- R 

Condition code settings: 

2 3 .. Result in R 

o 0 0 zero quotient, no overflow 
o 0 1 negative quotient, no overflow 
o 1 0 positive quotient, no overflow 
1 fixed-point overflow 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'43' with the 
contents of register R, CC1, CC3, and CC4 unchanged. 

DW DIVIDE WORD 
(Word index 01 ignment) 

DIVIDE WORD divides the contents of registers Rand Ru 1 
(treated as a 64-bit fixed-point integer) by the effective 
word, loads the integer remainder into register R and then 
loads the integer quotient into register Ru 1. If a nonzero 
remainder occurs, the remainder has the same sign as the 
dividend (original contents of register R). If R is an odd 
value, OW forms a 64-bit register operand by extending 
the sign of the contents of register R 32 bi t positions to the 
left, then divides the 64-bit register operand by the effec
tive word, and loads the quotient into register R. In this 
case, the remainder is lost and only the contents of register 
R are affected. 

If the absolute value of the quotient cannot be correctly 
represented in 32 bits, fixed-point overflow occurs; in 
which case, CC2 is set to 1 and the contents of register R, 
register Rul, CC1, CC3, and CC4 remain unchanged; other
wise, CC2 is reset to 0, CC3 and CC4 reflect the quotient 
in register Ru 1, and CCl is unchanged. 

Affected: (R), (Ru 1), CC2 Trap: Fixed-point overflow 
CC3, CC4 

(R,Rul) -:- EW- R (remainder), Rul (quotient) 

Condition code settings: 

234 

000 
001 

Result in Rul 

zero quotient, no overflow 
negative quotient, no overflow 



Condition code settings: 

2 3 4 Result in Rul 

o 0 positive quotient, no overflow . 
I fixed-point overflow 

If CC2 is set to I and the fixed-point arithmetic trap mask 
(AM) is a I, the computer traps tOI location X'43' with the 
original contents of register R, segister Ru 1, eCl, CC3, and 
CC4 unchanged; otherwise, the computer executes the next 
instruction in sequence. 

ADD WOR[) TO MEMORY 
(Word ind-~"x align';;ent) 

ADD WORD TO MEMORY adds the contents of register R to 
the effective word and stores the sum in the effective word 
location. The sum is stored regardless of whether or not ov
erflowoccurs. 

Affected: (EWL), CC 
EW + (R)-- EWL 

Trap: Fixed-point overflow 

Condition code settings: 

o 

234 

o 
I 

o 0 
o I 
1 0 

Result in EWl 

zero 
negative 
positive 
no fixed-point overflow 
fixed-point overflow 
no carry from bit position 0 
carry from bit posH ion 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to Ilocation X'43' after the 
result is stored in the effective word location; otherwise, 
the computer executes the next instruction in sequence. 

MODIFY AND TEST BYTE 
(Byte index al ignmentY 

If the value of the R field is nonzero'l the high-order bit of 
the R field (bit positioln S of the instruction word) is extend
ed 4 bit positions to the left, to form a byte with bit posi
tions 0-4 of that byte equal to the hiigh-order bit of the R 
field. This byte is added to the effective byte and then 
(if no memory protection violation occurs) the sum is stored 
in the effective byte location and the condition code is set 
according to the value of the resultant byte. This process 
allows modification of a byte by any number in the range 
-8 through +7, followed by a test. 

If the value of the R field is zero, the effective byte is 
tested for being a zem or nonzero value. The condition 
code is set according to the result olF the test, but the 
effective byte is not affected. A memory write-protection 

violation cannot occur in this case; however, a memory 
read-protection violation can occur. 

Affected: CC if (I)S-11 == 0; 
(EBl) and CC if (1)8-11 I 0 

If (1)8-111- 0, EB + (I)S-IlSE- EBL and set CC 

If (1)8-11 = 0, test byte and set CC 

Condition code settings: 

2 3 4 Result in EBl . 

0 0 0 zero 
0 1 0 nonzero 

0 no carry from byte 
1 carry from byte 

If MTB is executed in an interrupt location, the condition 
code is not affected (see Chapter 2, "Single-Instruction 
Interrupts") • 

MTH MODIFY AND TEST HALFWORD 
(Halfword index alignment) 

If the value of the R field is nonzero, the high-order bit of 
the R field (bit position 8 of the instruction word) is extended 
12 bit positions to the left, to form a halfword with bit posi
tions 0-11 of that halfword equal to the high-order bit ofthe 
R field. This halfword is added to the effective halfword and 
then (if no memory protection violation occurs) the sum is 
stored in the effective halfword location and the condition 
code is set according to the value of the resultant halfword. 
The sum is stored regardless of whether or not overflow oc
curs. This process allows modification of a halfword by any 
number in the range -S through +7, followed by a test. 

If the value of the R field is zero, the effective halfword is 
tested for being a zero, negative, or positive value. The 
condition code is set, according to the result of the test, 
but the effective holfword is not affected. A memory write
protection violation cannot occur in this case; however, a 
memory read-protection violation can occur. 

Affected: CC if (I)S-l1 = 0; Trap: Fixed-point overflow 

(EHl) and CC if (I)S_II I- 0 

If (I)S-11 = 0, test halfword and set CC 

If (I)S-11 I- 0, EH + (I)S-11 SE ~ EHL and set CC 

Condition code settings: 

2 3 4 Result in EHL 

o 0 zero 
o 1 negative 
1 0 positive 

o no fixed-point overflow 
1 fixed-point overflow 

o no carry from hal fword 
1 carry from hal fword 

Fixed-Point Arithmetic Instructions 41 



If CC2 is set to 1 and the fixed-point arithmetic trap 
mask (AM) is a 1, the computer traps to location X'43' 
after the result is stored in the effective halfword loca
tion; otherwise, the computer executes the next instruc
tion in sequence. However, if MTH is executed in an 
interrupt location, the condition code is not affected 
and no fixed-point overflow trap can occur (see "5ingle-
Instruction Interrupts"). . 

MTW MODIFY AND TEST WORD 
(Word index alignment) 

I f the value of the R field is nonzero, the high-order 
bit of the R field (bit position 8 of the instruction 
word) is extended 28 bit positions to the left, to form 
a word with bit positions 0-27 of that word equal to 
the high-order bit of the R field. This word is added 
to the effective word and then (if no memory protec
tion violation occurs) the sum is stored in the effective 
word location and the condition code is set according 
to the value of the resultant word. The sum is stored 
regardless of whether or not overflow occurs. This 
process allows modification of a word by any number 
in the range -8 through +7, followed by a test. 

If the value of the R field is zero, the effective word 
is tested for being a zero, negative, or positive value. 
The condition code is set according to the result of the 
test, but the effective word is not affected. A memory 
write-protection violation cannot occur in this cose; 
however, a memory read-protection violation can occur. 

Affected: CC if (1)8-11 = 0; Trap: Fixed-point overflow 

(EWl) and CC if (1)8-11 I 0 

If (1)8-11 = 0, test word and set CC 

If (1)8-11 I 0, EW + IS-l1 SE -EWl and set CC 

Condition code settings: 

2 3 4 Result in EWl 

o 0 zero 
o 1 negative 
1 0 positive 

o no fi xed-poi nt overfl ow 
1 fixed-point overflow 

o no carry from word 
1 carry from word 

If CC2 is set to 1 and the fixed-point arithmetic trap 
mask (AM) is a 1, the computer traps to location X'43' 
after the result is stored in the effective word location; 
otherwise, the computer executes the next instruction 
in sequence. However, if MTW is executed in an 
interrupt location, the condition code is not affected 
and no fixed-point overflow trap can occur (see "Single
Instruction Interrupts"). 

42 Comparison Instructions 

COMPARISON INSTRUCTIONS 

The following comparison instructions are available to 
51 GMA 7 computers: 

Instruction Name 

Compare Immediate 
Compare Byte 
Compare Hal fword 
Compare Word 
Compare Doubleword 
Compare Selective 
Compare With Limits in Register 
Compare With Limits in Memory 

Mnemonic 

CI 
CB 
CH 
CW 
CD 
CS 
ClR 
ClM 

All SIGMA 7 comparison instructions produce a condition 
code setting which is indicotive of the results of the com
parison, without affecting the effective operand in memory 
and without affecting the contents of the designated reg ister. 

CI COMPARE IMMEDIATE 
(Immediate operand) 

COMPARE IMMEDIATE extends the sign of the value field 
(bit position 12) of the instruction word 12 bit positions to 
the left, compares the 32-bit result with the contents of reg
ister.R (with both operands treated as signed fixed-point 
quantities), and then sets the condition code according to 
the results of the comparison. 

Affected: CC2, CC3, CC4 

(R) : (1)12-31 SE 

Condition code setti ngs : 

2 3 4 Resu It of Compari son 

o 

o 0 equal 

o 1 

o 
register value less than immediate value 

register value greater than immediate 
value 

no l-bits compare, (R) n (I) 12-32SE = 0 

one or more l-bits compare, 

(R) n (I)12-32SE I 0 

If CI is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and then traps to location X'40' with the 
condition code unchanged. 

I 

C8 I COMPARE BYTE 
(Byte index al ignment) 

COMPARE BYTE compares the contents of bit positions 
24-31 of register R with the effective byte (with both bytes 



treated as positive' integer magnitudes) and sets the condi
tion code according to the results of the comparison. 

Affected: CC2, CC3, CC4 

(R)24-31 : EB 

Condition code set,tings: 

2 3 4 Result of Comparison 

o 

o 0 equal 

o I 

o 
register byte 14tSS than effective byte 

Iregister byte glreater than effective byte 

1110 I-bits compare, (R)24-31 n EB = 0 

(lne or more I-bits compare, 
(R)24-31 n EB l 0 

<:H COMPARE HALFWORD 
(Halfword index alignment) 

COMPARE HALFWORD extends thcuign ofthe effective half
word 16 bit positions to the left, then compares the resultant 
32-bit word with the contents of reg lister R (with both words 
treated as signed, fj)(ed-point quantities) and sets the condi
tion code according to the results of the comparison. 

Affected: eC2, eC3, CC4 
(R) : EHSE 

Condition code settiings: 

2 3 4 ,B:esult of Compcnison 

o 0 equal 

o 

o 

register word le~ss than effective half
word with sign lextended 

o r1egister word greater than effective 
halfword with siign extended 

no I-bits compere, (R) n EHSE = 0 

one or more I-bits compare, 
(R) n EHSE 10 

~cw ' COMPARE WORD 
rNord index alignment) 

COMPARE WORD compares the contents of register R with 
the effective word, with both words treated as signed fixed
point quantities, and sets the condiition code according to 
the results of the cOl1r'1parison. 

Affected: CC2, CC3, CC4 
(R) : EW 

Ccmdition code settings: 

2 3 4 

o 0 
o 1 

Re,sult of Comparison 

equal 
register word lesis than effective word 

2 

o 
1 

3 4 

o 
Result of Comparison 

register word greater than effective word 
no l-bits compare, (R) n EW = 0 
one or more l-bits compare, (R) nEW 10 

, ~.D COMPARE DOUBLEWORD 
(Doubleword index 01 ignment) 

COMPARE DOUBLEWORD compares the effective double
word with the contents of registers Rand Ru 1 (with both 
doublewords treated as signed, fixed-point quantities) and 
sets the condition code according to the results of the com
parison. If the R field of CD is an odd value, CD forms a 
64-bit register operand (by dupl icating the contents of reg
ister R for both the 32 high-order bits and the 32 low-order 
bits) and compares the effective doubleword with the 64-bit 
register operand. The condition code settings are based on 
the 64-bit comparison. 

Affected: CC3, CC4 
(R, Rul) : ED 

Condition code settings: 

cs 

2 3 4 Result of Comparison 

o 0 equal 

o register doubleword less than effective 
doubleword 

o register doubleword greater than effective 
doubleword 

COMPARE SELECTIVE 
(Word index alignment) 

COMPARE SELECTIVE compares the contents of register R 
wi th the effec ti ve word in on I y those bit posi t ions se I ec ted by 
a 1 in corresponding bitpositionsofregister Rul (mask). The 
contentsofregisterRand the effective word are ignored in 
those bit posi tions designated by a 0 in corresponding bitpo
sitions of register Ru 1. The selected contents of register R 
and the effective word are treated as positive integer mag
nitudes, and the condition code is set according to the re
sult of the comparison. If the R field of CS is an odd value, 
CS compares the contents of register R with the logical prod
uct (AND) of the effective word and the contents of register R. 

Affected: CC3, CC4 
If R is even: (R) n{Rul) : EW n{Rul) 
If R is odd: (R) : EW nCR) 

Condition code settings: 

2 3 4 Results of Comparison under Mask in Ru 1 

o 0 equal 
o 1 register word less than effective word 
1 0 register word greater than effective word 

(if R is even) 

Comparison Instructions 43 



COMPARE WITH LIMITS IN REGISTERS 
(Word index aligrvnent) 

COMPARE WITH LIMITS IN REGISTERS simultaneously com
pares the effective word with the contents of register Rand 
with the contents of register Rul (with all three words treat
ed as signed fixed-point quantities), and sets the condition 
code according to the results of the comparisons. 

Affected: CC 
(R): EW,(Rul): EW 

Condition code settings: 

2 3 4 Result of Comparison 

o 0 
o 1 
1 0 

o 
o 
1 

o contents of R equal to effective word 
1 contents of R less than effective word 
o contents of R greater than effective word 

contents of Ru 1 equal to effective word 
contents of Ru 1 less than effective word 
contents of Ru 1 greater than effective word 

aM I COMPARE WITH LIMITS IN MEMORY 
- --- (Doubleword index alignment) 

COMPARE WITH LIMITS IN MEMORY simultaneously com
pares the contents of register R with the 32 high-order bits 
of the effective doubleworCJ and with the 32 low-order bits 
of the effective doubleword, with all three words treated 
as 32-bit signed quanti~ies, and sets the condition code 
according to the results of the comparisons. 

Affected: CC 
(R) : ED0-31; (R) : ED32_63 

Condition code settings: 

2 3 4 Resul t of Comparison 

0 0 contents of R equal to most significant 
word, (R) = ED

O
_

31 

0 contents of R less than most significant 
word, (R) < ED0-31 

0 contents of R greater than most signifi-
cant word, (R) > ED0-31 

0 0 contents of R equal to least significant 
word, (R) = ED

32
_
63 

0 contents of R less than least significant 
word, (R) < ED

32
_
63 

0 contents of R greater than least signifi-
cant word, (R) > ED

32
_
63 

44 Logical Instructions 

. LOGICAL ItSTRUCTIONS 
All logical operations are performed bit by corresponding 
bit between two operands; one operand is in register R c:Jnd 
the other operand is the effective word. The result of the 
logical operation is loooed into register R. 

OR OR WORD 
(Word index alignment) 

OR WORD logically ORs the effective word into register R. 
If corresponding bits of register R and the effective word are 
both 0, a 0 remains in register R; otherwise, a 1 is placed in 
the corresponding bit position of register R. The effective 
word is not affected. 

Affected: (R), CC3, CC4 
(R) u EW-R, where OuO =0, Ou 1 = 1, 1 uO= 1, 1 u 1 = 1 

Condition code settings: 

2 3 4 Result in R 

o -0 zero 

o 1 

o 
bit 0 of register R is a 1 

bit 0 of register R is a 0 and bit positions 
1-31 of register R contain at least one 1 

EOR EXCLUSIVE OR WORD 
(Word index alignment) 

EXCLUSIVE OR WORD logically exclusive ORs the effective 
word into register R. If corresponding bits of register Rand 
the effective word are different, a 1 is placed in the corre
sponding bit position of register R; if the contents of the 
corresponding bit positions are alike, a 0 is placed in the 
corresponding bit position of register R. The effective word 
is not affected. 

Affected: (R), CC3, CC4 
(R)@EW - R, where O@O = 0, O@ 1 = 1, 

1@0=1, 1@1=0 

Condition code settings: 

2 3 4 Result in R 

o 0 zero 

o 1 

o 
bit 0 of register R is a 1 

bit 0 of register R is a 0 and bit positions 
1-31 of register R contain at least one 1 

AND AND WORD 
N/ord index alignment) 

AND WORD logically ANDs the effective word into register 
R. If corresponding bits of register R and the effective word 



are both 1, a 1 remains in register Ri otherwise, a 0 is 
placed in the corresponding bit pO!5ition of register R. The 
effective word is not affected. 

Affected: (R), CC3, CC4 
(R) n EW - R, where 0 n 0 = 0, 0 n 1 = 0, 

1 n 0 = 0, 1 n 1 = 1 

Condition code settings: 

234 

o 0 

Result in R 

ZE~ra 

o bit 0 of register R is a 1 

Obit 0 of register R is a 0 and bit positions 
1-,31 of register R contain at least one 1 

SHin IISTRUC1rD1S 
The instruction format for logical, !Circular, and arithmetic 
shift operations is: 

5 .1 SHIFT 
(Word index al ignment) 

If neither indirect addressing nor indexing is called for in 
the instruction SHIFT, bit positions 21-23 of the reference 
address field determine the type, olnd bit positions 25-31 
determine the directi()n and amount of the shift. Honly in
direct addressing is called for in th,e instruction, bits 15-31 
of the instruction are used to access the indirect word and 
then bits 21-31 of the indirect word determine the type, 
direction, and amount of the shift" If only indexing is 
caned for in the instrtJction, bits 211-23 of the instruction 
word determine the type of shift; thll! direction and amount 
of shift are determined by bits 25-31 of the instruction plus 
bits 25-31 of the specified index re!~ister. H both indirect 
addressing and indexing are called for in the instruction, 
bits 15-31 of the instruction are used to access the indirect 
word and then bits 21-23 of the indirect word determine the 
type of shift; the direc:tion and amount of the shiftare deter
mined by bits 25-31 ()f the indirect word plus bits 25-31 of 
the specified index register. 

Bit positions 15-20 and 24 of the effective virtual address 
are ignored. Bit positions 21, 22 and 23 of the effective 
virtual address determine the type of shift, as follows: 

21 22 23 Sh i ft T )I'I!!. 

0 0 0 logical, single regish~r 
0 0 1 logical, double register 
0 1 0 Circular, single regist'er 
0 1 1 Circular, double reghter 

0 0 Arithmetic, single reghter 
0 1 Arithmetic, double rel9ister 
1 0 Undefined 
1 1 Undefined 

Bit positions 25 through 31 ofthe effective virtual address are 
a shift count that detennines the direct~ion and amount of the 
shift. The shift count (C) is treated asc] 7-bit signed binary 

integer, with the high-order bit (bit position 25) as the sign 
(negative integers ore represented in two's complement form). 
A positive shift count causes a left shift of C bit positions. 
A negative shift count causes a right shift of I C I bit posi
tions. The value of C is within the range: -64 ~ C ~ +63. 

All double-register shift operations require an even value for 
the R field of the instruction, and treat registers Rand Ru 1 
as a 64-bit register with the high-order bit (bit position Oof 
register R) as the sign for the entire register. If the R field 
of SHIFT is an odd value and a double-register shift opera
tion is specified, a register doubleword is formed by dupli- , 
cating the contents of register R for both the 32 high-order 
bits and the 32 low-order bits of the doubleword. The shi ft 
operation is then performed and the 32 high-order bits of the 
result are loaded into register R. 

Overflow occurs (on left shifts only) whenever the value of 
the sign bit (bit position 0 of register R) changes. At the 
completion of logical left, circular left, and arithmetic left 
shifts, the condition code is set as follows: 

2 3 4 

o 

o 

Result of Sh i ft 

even number of l's shifted off left end of 
register R 

odd number of l's shifted off left end of 
register R 

no overflow on left shift 

overflow on left shift 

At the completion of logical right, circular right, an~ arith
metic right shifts, the condition code is set as follows: 

2 3 4 

o 0 

Logical Shift, Single Register 

If the shift count, C, is positive, the contents of register R 
are shifted left C places, with O's copied into vacated bit 
positions on the right. (Bits shifted past RO are lost.) If C 
is negative, the contents of register R are shifted right IC I 
places, with O's copied into vacated bit positions on the 
left. (Bits shifted past R31 are lost.) 

Affected: (R), CC1, CC2 

Logical Shift, Double Register 

If the shift count, C, is positive, the contents of registers 
Rand Ru 1 are shifted left C places, with O's copied into 
vacated bit positions on the right. Bits shifted past bit posi
tion 0 of register Ru 1 are copied into bit position 31 of reg
ister R. (Bits shifted past RO are lost.) If C ;s negative, the 
contents of registers Rand Rul are shifted right Ie I places, 

Shift Instructions 45 



with O's copied into vacated bit positions on the left. Bits 
shifted post bit position 31 of register R are copied into bit 
position 0 of register Ru1. (Bits shifted past Ru131 ore lost.) 

Affected: (R), (Ru I), CCI, CC2 

Circular Shift, Single Register 

If the shift count, e, is positive, the contents of registerR 
are shifted left e places. Bits shifted past bit position 0 
ore copied into bit position 31. {No bits are lost.) If C 
is negative, the contents of register R are shifted right leI 
places. Bits shifted post bit position 31 are copied into 
bit position O. (No bits are lost. ) 

Affected: (R), ee 1, CC2 

Circular Shift, Double Register 

If the shift count, e, is positive, the contents of registers 
Rand Ru 1 are shifted left e places. Bits shifted past bit 
position 0 of register R are copied into bit position 31 of 
register Rul. (No bits are lost.) If C is negative, the 
contents of registers Rand Rul are shifted right Ici places. 
Bits shifted past bit position 31 of register Ru1 are copied 
into bit position 0 of register R. (No bits are lost.) 

Affected: (R), (Rul), CCI, eC2 

Arithmetic Shift, Single Register 

If the shift count, e, is positive, the contents of register 
R are shifted left e places, with O's copied into vacated 
bit positions on the right. (Bits shifted post RO are lost.) 
If e is negative, the contents of register R are shifted right 
lei places, with the contents of bit position 0 copied into 
vacated bit positions on the left. (Bits shifted past R31 are 
lost. ) 

Affected: (R), eCl, CC2 

Arithmetic Shift, Double Register 

If the shift count, C, is positive, the contents of registers 
Rand Rul are shifted left e places, with O's copied into 
vacated bit positions on the right. Bits shifted past bit 
position 0 of register Ru 1 are copied into bit position 31 

.of register R. (Bits shifted post RO are lost.) If e is nega
tive, the contents of registers Rand Ru 1 are shifted right ICI 
places, with the contents of bit position 0 of register R 
copied into vacated bit positions on the left. Bits shifted 
past bit position 31 of register R are copied into bit posi
tion 0 of register Rul. (Bits shifted post Ru131 are lost.) 

Affected: (R), (Rul), CC1, CC2 

046 Shift Instructions 

FLOATII-IG-POINT SHIFT 

Floating-point numbers are defined on page 47. The for
mat fOf' the floating-point shift instruction is: 

SF SHIFT FLOATING 
(Word index alignment) 

If indirect addressing or indexing is called for in the in
struction word, the effective virtual address is computed 
as for the instruction SHIFT (see page 44) except that bit 
position 23 of the effective virtual address determines the 
type of shift. If bit 23 is a 0, the contents of register R 
are treated as a short-format floating-point number; if bit 
23 is a 1, the contents of registers Rand Ru 1 are treated 
as a long-format floating-point number. 

The shift count, C, in bit positions 25 through 31 of the 
effective virtual address determines the amount and direc
tion of the shift. The shift count is treated as a 7-bit 
signed binary integer, with the high-order bit (bit position 
25) as the sign (negative integers are represented in two's 
complement form). 

The absolute value of the shift count determines the number 
of hexadecimal digit positions the floating-point number is 
to be shifted. If the shift count is positive, the floating
point number is shifted left; if the count is negative, the 
number is shifted right. 

SHIFT FLOATING loads the floating-point number from th,~ 
register(s) specified by the R field of the instruction into a 
set of internal registers. If the number is negative, it is 
two's complemented. A record of the original sign is re
tained. The floating-point number is then separated into 
a characteristic and a fraction, and CC 1 and CC2 are both 
reset to O's. 

A positive shift count produces the following left shift op
erations: 

1. If the fraction is normalized (i.e., is less than 1 and is 
equal to or greater than 1/16), or the fraction is all 
0'5, CCI is set to 1. 

2. If the fraction field is all O's, the entire floating-point 
number is set to all O's (true zero), regardless of the 
sign and the characteristic of the original number. 

3. If the fraction is not normalized, the fraction field is 
shifted 1 hexadecimal digit position (4 bit positions) to 
the left and t he characteristic field is decremented by 
1. Vacated digit positions at the right of the fraction 
are filled with hexadecimal O's. 

H the characteristic field underflows (i.e., is all 115 

as the result of being decremented), CC2 is set to 1. 
However, if the characteristic field does not under
flow, the shift process (shift fraction, and decrement 
characteristic) continues until the fraction is normal
ized, until the characteristic field underflows, or 
until the fraction is shifted left C hexadecimal digit 



positions, whichever occurs first. (Any two, or all 
three, of the terminating clonditions can occur 
simultaneousl)!'. ) 

4. At the completion of the left shift operation, the floating
point result is 100ded back into the general register{s). 
If the number was originally negative, the two's com
plement of the resultant numher is loaded into the gen
eral register(s). 

5 The condition ,code settings f.ollowing a floating-point 
left shift are as follows: 

2 

o 0 

Result 

o () true zero (all O's) 

o negative 

o positive 

C digits shifted (fraction unnormal
ized, no characteristic underflow) 

fraction nClrmalized (incfudes true 
zero) 

characterhitic underflow 

A negative shift count produces the following right shift op
erations (again assuming that nego!tive numbers are two's 
complemented before and after thE~ shift operation): 

1. The fraction field is shifted 1 hexadecimal digit posi
tion to the right and the chanlcteristic field is incre
mented by 1. Vacated digit positions at the left are 
filled with hexadecimal O·s. 

2. If the characteristic field overflows (i.e., is all O's as 
the result of being incrementE~d), CC2 is set to 1. How
ever, if the chc]racteristic field does not overflow, the 
shift process {sh ift fraction, and increment character
istic} continues until the characteristic field overflows 
or unti I the fradion is shifted right Ici hexadecimal 
digit positions, whichever occ:urs first. (Both termin
ating conditions can occur simultaneously.) 

3. If the resultant fraction field is all O's, the entire 
floating-point number is set to all O's (true zero), re
gardless of the :sign and the characteristic of the origi
nal number. 

4. At the completion of the right shift operation, the 
floating-point result is loaded back into the general 
register{s}. If the number was originally negative, the 
two's complement of the resuhant number is loaded in
to the general register(s}. 

5. The condition code settings following a floating-point 
right shift are as follows: 

2 3 4 Result 

o 0 true zero {cd I zeros} 

o 1 negative 

o positive 

o 0 Ic I digits shifted (no characteristic 
overflow) 

o characterisf'ic overflow 

Floating Shift, Single Register 

The short-formot floating-point number in register R is shifted 
according to the rules established above for floating-point 
shift operotions. 

Affectec: (R), CC 

Floating Shift, Double Register 

The long-format floating-point number in registers Rand Ru 1 
is shifted according to the rules established above for floating
point shift operations. (If the R field of the instruction word 
is an odd value, a long-formot floating-point number is gen
erated by duplicating the contents of register R, and the 32 
high-order bits of the result are loaded into register R. ) 

Affected: (R), (Ru 1 ), CC 

CONVERSION INSTRUCTIONS .. 
The following two conversion instructions are provided by the 
SI GMA 7 computer: 

Instruction Name 

Convert by Addition 
Convert by Subtracti on 

Mnemonic 

CVA 
CVS 

These two conversion instructions can be used to accompl ish 
bidirectional translation between binary code and any other 
weighted binary code, such as BCD. 

The effecti ve addresses of the i nstructi ons CO NVE R T BY 
ADDITION and CONVERT BY SUBTRACTION each point 
to the starting location of a conversion table of 32 words, 
containing weighted values for each bit position of register 
Ru 1. The 32 words of the conversion table are considered to 
be 32-bit positive quantities, and are referred to as conver
sion values. The intermediate results of these instructions 
are accumulated in internal CPU registers until the instruc
tion is completed; the result is then loaded into the appro
priate general register. Both instructions use a counter {n} 
that is set to 0 at the beginning of the instruction execution 
and is incremented by 1 with each iteration, unti I a total of 
32 iterations have been performed. 

If an interrupt or memory protection violation trap occurs during 
the execution of either instruction, the instruction sequence is 
aborted (without having changed the contents of register R or 
Ru 1) and restarted (at the beginning of the instruction sequence) 
after the interrupt or trap routine is processed. 

CVA CONVERT BY ADDITION 
tword index alignment) 

CONVERT BY ADDITION initially clears the internal A reg
ister and sets an internal counter {n} to O. If bit position n 

Conversion Instructions 47 



of register Rul contains a 1, CVA adds the nth conversion 
value (contents of the word location pointed toby the ef
fective address plus n) to the contents of the A register, 
accumulates the sum in the A register, and increments n 
by 1. If bit position n.of register Ru1 contains a 0, CVA 
only increments n. If n is less than 32 after being incre
mented, the next bit position of register Ru 1 is examin.ed, 
and the addition process continues through n equal to 31; 
the result is then loaded into register R. If, on any itera
tion, the sum has exceeded the value 232 -1, CCl is set to 
1; otherwise, CCl is reset to O. 

Affected: (R), CC1, CC3, CC4 
o --A, 0 --n 

If (Ru1) = 1, then (EWl + n) + (A) -A, n + 1-n 
n 

If (Ru 1) = 0, then n + 1 - n 
n 

If n < 32, repeat; otherwise, (A) - R and continue to 
next instruction 

Condition code settings: 

o 

cvs 

2 3 4 Resu I tin R 

o 0 zero 

o bit 0 of register R is a 1 

o bit 0 of register R is a 0 and bit positions 
1-31 of register R contain at least one 1 

sum is correct (less than 232) 

sum is greater than 232 - 1 

CONVERT BY SUBTRACTION 
C'Nord index alignm~nt) 

CONVERT BY SUBTRACTION loads the internal A register 
with the contents of register R, clears the internal B regis
ter, end sets an internal counter (n) to O. All conversion 
values are considered to be 32-bit positive quantities. If 
the nth conversion value (the contents of the word location 
pointed to by the effective address plus n) is equal to or less 
than the current contents of the A register, CVS increments 
n by 1, adds the two's complement of the nth conversion 
value to the contents of the A register, stores the sum in 
the A register, and stores a 1 in bit position n of the B reg-
i ster. If the nth conversi on val ue is greater than the current 
contents of the A register, CVS only increments n by 1. If 
n is less than 32 after being incremented, the next con
version value is compared and the process continues through 
n equal to 31; the remainder in the A register is loaded into 
register R, and the converted quantity in the B register is 
loaded into register Rul. 

Affected: (R), (Ru 1), CC3, CC4 

{R)-A, O-B, O--n 

If (EWl + n) 5 (A) then A - (EWl + n) - A, 
1 -Bn, n+ 1--n 

If (EWl + n) > (A) then n + 1 - n 

48 Floating-Point Arithmetic Instructions 

If n < 32, repeat; otherwise, (A) - R, (8) - Ru 1 and 
continue to the next instruction 

Condition code settings: 

2 3 4 Result in Ru1 

o 0 zero 

.- o bit 0 of register Ru 1 is a 1 

Obit 0 of register Ru 1 is a 0 and bit posi
tions 1-31 of register Ru 1 contain at 
least one 1 

FLOATING-POINT I ARITHMElE INSTRUCTIONS 
The following floating-point arithmetic instructions are 
available as optional SIGMA 7 instructions: 

Instruction Name 

Floating Add Short 
F I oat i ng Add long 
Floating Subtract Short 
Floating Subtract long 
Flooting Multiply Short 
Floating Multiply long 
Floating Divide Short 
Floating Divide long 

Mnemonic 

FAS 
FAl 
FSS 
FSl 
FMS 
FMl 
FDS 
FDl 

FLOATING-POINT NUMBERS 

SIGMA 7 accommodates two number formats for floating
point arithmetic: short and long. A short-format flooting
point number consists of a sign (bit 0), a biasedt, base 16 
exponent, which is called a characteristic (bits 1-7), and 
a six-digit hexadecimal fraction (bits 8-31). A long-format 
flooting-point number consists of a short-format flooting
point number followed by an additional eight hexadecimal 
digits of fractional significance and occupies a doubleword 
memory location or an even-odd pair of general registers. 

A SIGMA 7 floating-point number (N) has the following 
format: 

1 +1 ChOracter-1 :") : I 
'" ,I.,. ,",. ""I"""""""""I~"""~""vI,.n"''' _ istic (C) Fraction (F 

A floating-point number (N) has the following formal 
definition: 

1. N = F x 16C- 64 where F = 0 or 

16-6 5 IF 15 1 (short format) or 

16- 14 5 IFI5 1 (long format) 

and 0 5 C 5 127 

tThe bias value of 4016 is added to the exponent for the 
purpose of making it possible to compare the absolute mag
nitude of two numbers, i. e., without reference to a sign 
bit. This manipulation effectively removes the sign bit, 
making each characteristic a 7-bit positive number. 



2. A positive floating-point number with a fraction of zero 
and a characteristic of zero is a "true" zero. A positive 
floating-point number with a fraction of zero and a non
zero characteristic is an "abncmnal" zero. Forfloating
point multipl ication and division, an abnormal zero is 
treated as a tru,e zero. However, for addition and 
subtraction, an abnormal zero' is treated the same as 
any nonzero operand. 

3. A positive floating-point numloer is normal ized if and 
only if the fracHon is contain4eci in the interval 

1/16 ~ F < 1 

4. A negative floating-point number is the two's comple
ment of its positive representation. 

5. A negative floating-point number is normalized if and 
only if its two's complement is, a normalized positive 
number. 

By this_definition, a floating-point number of the form 

1 xxx xxxx 1111 0000 • •• 0000 

is normal ized, and a floating-poinl~ number of the form 

lxxx xxxx 0000 0000 ••• ()()()() 

is illegal and, whenever generated by floating-point in
structions, is converted to the form 

1 yyy yyyy 1111 0000 . .. 0000 

where yy ••. y is 1 less than xx ... x. Table 6 contains 
examples of floating-point numbers. 

Modes of Operation 

SIGMA 7 contains three mode control bits that ace used to 
qualify floating-point operations. These mode control bits 
are identified as FS (floating significance), FZ (floating 
zero), and FN (floating normalize), and are contained 
in bit pJsitions 5, 6, and 7, respectively, of the program 
status d-:>ubleword (PSD5-7)' 

The floating-point mode is established by setting the three 
floating-point mode control bits. This can be performed by 
any of the following instructions: ' 

Instruction Name Mnemonic Page 

load Conditions and Floating Control lCF 32 

lead Conditions and Floating Control 
Immediate lCFI 32 

load Program Status Doubleword lPSD 72 

Exchange Program Status Doubleword XPSD 72 

The floating-point mode control bits are stored by executing 
either of the following instructions: 

Instruction Name 

Store Conditions and Floating Control 

Exchange Program Status ooubleword 

Mnemonic Page 

STCF 34 

XPSo 72 

Table 6. Floa"ting-point Number Representation 

Dec imal Number Short Floatifl!~-point Format Hexadecimal Value 

± C F 

+(16+63)(1_2-24) 0 111 1111 1111 1111 1111 1111 1111 1111 7F FFFFFF 

+(16 +3)(5/16) 0 100 0011 0101 ()()()() 0000 0000 0000 0000 43 500000 

+( 16 -3)(209/256) 0 011 1101 1101 0001 0000 0000 0000 0000 3D 010000 

+(16 -63)(2047/4096) 0 000 0001 0111 1111 1111 0000 0000 0000 01 7FFOOO 

+(16 -64)(1/16) 0 000 0000 0001 0000 0000 0000 0000 0000 00 100000 

o (called true zero) 0 000 0000 0000 0000 0000 0000 0000 0000 00 000000 

-(16 -64)(1/16) 1 111 1111 1111 0000 0000 0000 0000 0000 FF FOOOOO 

-(16 -63)(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FE 801000 

-( 16 -3) (209/256) 1 100 0010 0010 1111 0000 0000 0000 0000 C2 2 FOOOO 

-( 16+3)(5/16) 1 011 1100 1011 0000 0000 0000 0000 0000 BC BOOOOO 

_(16+63)(1_224) 1 000 0000 0000 0000 0000 ()()()() 0000 000 1 80 000001 

Special Case': 

-(16e)( 1) 1 e 0000 0000 0000 0000 0000 0000 

_( 16e+ 1)( 1/16) 
is changed to --I e + 1 1111 0000 0000 0000 0000 0000 
whenever generated as the result of a floating-point instruction. 

Floating-Point Arithmetic Instructions 49 



UNIMPLEME NTED FLOATING-POINT INSTRUCnO NS 

If the optional floating-point instruction set is not imple
mented in the computer and execution of a floating-point 
arithmetic instruction is attempted, the computer uncondi
tionally aborts execution of the instruction (at the time of 
operation code decoding). The computer then traps to .10-
cation X'411, with the contents of the condition code and 
all general registers unchanged. Location X'411 is the 
"unimplemented instruction" trap location. 

FLOATING-POINT ADD· AND SUBTRACT 

The floating normalize (FN), floating zero (FZ), and floating 
significance (FS) mode control bits determine the operation of 
floating-point addition and subtraction (if characteristic 
overflow does not occur) as follows: 

FN Floating normalize: 

FN = 0 The results of additions and subtractions are 
to be postnormalized. If characteristic under
flow occurs, if the result is zero, or if more 
than two postnormalization hexadecimal shifts 
are required, the settings for FZ and FS de
termine the resultant action. If none of the 
above conditions occur, the condition code 
is set to 0010 if the result is positive or to 
0001 if the result is negative. 

FN = 1 Inhibit postnormalization of the results of ad
ditions and subtractions. The settings of FZ 
and FS have no effect on the instruction op
eration. If the result is zero, the result is 
set to true zero and the condition code is set 
to 0000. If the result is positive, the con
dition code is set to 0010. If the result is 
negative, the condition code is set to 0001. 

FZ Floating zero: (applies only if FN = 0) 

FZ = 0 If the final result of an addition or sul,trac
tion operation cannot be expressed in normal
ized form because of the characteristic being 
reduced below zero, underflow has occurred, 
in which case the result is set equal to true 
zero and the condition code is set to 1100. 
(Exception: if a trap results from significance 
checking with FS = 1 and FZ = 0, an under
flow generated in the process of postnormal
izing is ignored. ) 

FZ = 1 Characteristic underflow causes the computer 
to trap to location X'44' with the contents of 
the general registers unchanged. If the result 
is positive, the condition code is set to 1110. 
If the result is negative, the condition code 
is set to 1101. 

FS Floating significance: (applies only if FN = 0) 

FS = 0 Inhibit signifiance trap. If the result of an 
addition or subtraction is zero, the result is 

50 Floating-Point Arithmetic· Instructions 

FS = 1 

set equal to true zero, the condition code is 
set to 1000, and the computer executes the 
next instruction in sequence. If more thon 
two hexadecimal places of postnormalization 
shifting are required and characteristic under
flow does not occur, the condition code is set 
to 1010 if the result is positive, or to 1001 if 
the result is negative; then, the computer ex
ecutes the next instruction in sequence. (Ex
ception: if characteristic underflow occurs 
with FS = 0, FZ determines the resultant action.) 

The computer traps to location X'44' if more 
than two hexadecimal places of postnormal
ization shifting are required or if the result is 
zero. The condition code is set to 1000 if the 
result is zero, to 1010 if the result is positive, 
or to 1001 if the result is negative; however, 
the contents of the general registers are not 
changed. (Exception: if a trap results from 
characteristic underflow with FZ = 1, the re
sults of significance testing are ignored. ) 

If characteristic overflow occurs, the CPU always traps to 
location X'44 1 with the general registers unchanged and the 
condition code set to 0110 if the result is positive, or to 
0101 if the result is negative. 

FLOATING-POINT MULTIPLY AND DIVIDE 

The floating zero (FZ) mode control bit alone determines 
the operation of floating-point multiplication and division 
(if characteristic overflow does not occur and division by 
zero is not attempted) as follows: . 

FZ Floating zero: 

FZ = 0 If the final result of a multiplication or divi
sion operation cannot be expressed in normal
ized form because of the characteristic being 
reduced below zero, underflow has occurred. 
If underflow occurs, the result is set equal to 
true zero and the condition code is set to 1100. 
If underflow does not occur, the condition code 
is set to 0010 if the result is positive, to 0001 
if the result is negative, or to 0000 if the result 
is zero. 

FZ = 1 Underflow causes the computer to trap to loca
tion X'44' with the contents of the general 
registers unchanged. The condition code is 
set to 1110 if the result is positive, or to 1101 
if the result is negative. If underflow does 
not occur, the resultant action is the same 
as that for FZ = O. 

If the divisor is zero ina floating-point division, the com
puter always traps to location X'441 with the general reg
isters unchanged and the condition code set to 0100. If 
characteristic overflow occurs, the computer always traps 
to location X'441 with the general registers unchanged and 
the condition code set to 0110 if the result is positive, or 
to 0101 if the result is negative. 



CONDITION CODES FOR 
LOA TlNG-POINT INSTRUCTIONS 

The condition code settings for flclOting-point instructions 
are summarized in Table 7. The following provisions apply 
to all floating-point instructions: 

1. Underflow and overflow dete(:tion apply to the final 
characteristic, not to any "intermediate" value. 

2" If a floating-point operation I'esults in a trap, the 
original contents of all genenll registers remain un-
changed. ' 

3. All shifting and truncation ar4~ performed on absolute 
magnitudes. If the fraction ili negative, then the two's 
complement is formed after shifting or truncation. 

FAS FLOATING ADD SHORT 
N'/ord index alignment, optional) 

The effective word and the conten'ts of register R are loaded 
into a set of interna~ registers and a low-order hexadecimal 
zero (guard digit) is appended to both fractions, extending 
them to seven hexadecimal digits E~ach. FAS then forms the 
flooting-point sum of the two numbers. If no floating-point 
arithmetic fault occurs, the sum is loaded into register R as 
a short-format fI oati ng-poi nt number. 

Affected: (R), CC 
(R)+ EW-R 

Traps: Unimplemented in
struction, floating
point arithmetic fault 

I FAL FLOATING ADD LONG 
(Doubleword index alignment, optional) 

The effective doublewa-d and the contents of registers Rand 
Rul are loaded into a set of internal registers. 

The operation of FAL is identical to that of FLOATING ADD 
SHORT (FAS) except that the fractions to be added are each 
14 hexadecimal digits long, guard digits are not appended 
to the fractions, and R must be an even value for correct re
sults. If no floating-point arithmetic fault occurs, the sum 
is loaded into registers Rand Ru 1 as a long-format floating-' 
poi nt number. 

Affected: (R), (Ru 1), CC 
(R, Rul) + ED - R, Rul 

Traps: Unimplemented in
struction, floating
point arithmetic fault 

FSS FLOATING SUBTRACT SHORT 
(Word index alignment, optional) 

The effective word and the contents of register R are loaded 
into a set of internal registers. 

FLOATING SUBTRACT SHORT forms the two's complement 
of the effective word and then operates identically to 
FLOATING ADD SHORT (FAS). If no floating-point arith
metic fault occurs, the difference is loaded into register R 
as a short-fa-mat floating-point number. 

Affected: (R), CC 
(R) - EW-R 

Traps: Unimplemented jn
struction, floating
point arithmetic fault 

Tabl.~ 7. Condition Code SettinSJs for Floating-point Instructions 

Condition Code Meaning if no trap to location X'441 occurs Meaning if trap to location X '441 occurs 

1 2 3 4 
1--' 

O/A, or -A + ij) with FN=l\ I .® 0 0 0 0 A x 0, 
0 0 0 1 N <0 

norma • 
0 0 1 0 N>O 

results • 
f--. 

0 1 0 ~ 
.® div ide by zero I 

0 1 0 • overflow, N < 0 always trapped 
0 1 1 0 • overflow, N > 0 

t-. 

@Ii 
0 0 0 -A + AQ) -A+ A I 
0 0 1 N < 0 I > 2 postnormal-I FS=O, FN=O, and N < 0 > 2 postnormal- FS=l, FN=O, and no 
0 1 0 N > 0 izing shifts no underflow N > 0 J izing shifts underflow with FZ=l 

1 1 0 0 underflow with FZ=O and no trap by FS=l CD • 
1 1 0 1 • underflow, N < 0 J FZ=l 
1 1 1 0 • underflow, N>O _. , 

Notes: CD resu It set to true zero 

® ..... indicates impossible configurations 

@ applies to add and subtract only where FN=O 

Floating-Point Arithmetic Instructions 51 



FSL ' FLOATING SUBTRACT LONG 
(Doubleword index aligrvnent, optional) 

The effective doubleword and the contents of registers R and 
Ru 1 are loaded into a set of internal registers. 

FLOA TING SUBTRACT LONG forms the two's comple
ment of the effective doubleword and then operates iden
tically to FLOATING ADD LO~G (FAL). If no floating
point arithmetic fault occurs, the difference is looded 
into registers R and Rul as long-format floating-point 
number. 

Affected: (R), (Ru 1), CC 
(R,Rul) - ED- R,Rul 

Traps: Unimplemented in
struction, floating
point arithmetic fault 

FMS FLOA TlNG MULTIPLY SHORT 
(Word index aligrvnent, optional) 

The effective word (multiplier) and the contents of reg
ister R (multiplicand) are loaded into a set of internal 
registers, and both numbers are then prenormalized (if 
necessary). The product of the fractions contains 12 hexa
decimal digits. If no floating-point arithmetic fault occurs, 
the product is loaded into register R as a properly truncated 
short-format floati ng-poi nt number. 

The result of floating-multiply is always postnormalized. At 
most, one place of postnormalizing shift may be required. 
Truncation takes place after postnormalization. 

Affected: (R),CC 
(R) x EW-R 

Traps: Unimplemented in
struction, floating
point arithmetic fault 

FML' FLOATING MULTIPLY LONG 
(Doubleword index alignment, optional) 

The effective doubleword (multiplier) and the contents of 
registers Rand Rul (multiplicand) are loaded into a set of 
internal registers. FLOA TING MULTIPLY LONG then op
etates identically to FLOATING MUL TIPL Y SHORT (FMS), 
except that the multiplier and the multiplicand fractions are 
each 14 hexadecimal digits long, the product fraction is 28 
hexadecimal digits long, and R must be an even value for 
correct results. If no floating-point arithmetic fault occurs, 

52 Decimal Instructions 

the postnormalized product is truncated to a long-format 
floating-point number and loaded into registers Rand Ru 1. 

Affected: (R), (Rul), CC 
(R, Rul) x ED - R, Rul 

Traps: Uni mpl emented i n
struction, floating
point arithmetic fault 

FDS FLOATING DIVIDE SHORT 
rNord index aligrvnent, optional) 

The effective word (divisor) and the contents of register R 
(dividend) are loaded into a set of internal registers and both 
numbers are then prenormalized (if necessary). FLOATING 
DIVIDE SHORT then forms a floating-point quotient with a 
6-digit, normalized hexadecimal fraction. If no floating
point arithmetic fault occurs, the quotient is loaded into 
register R as a short-format floating-point number. 

Affected: (R), CC Traps: Unimplemented in-
(R) .;. EW - R struction, floating

point arithmetic fault 

FDl FLOATING DIVIDE LONG 
(Doubleword index alignment, optional) 

The effective doubleword (divisor) and the contents of 
registersRandRu1 (dividend) are loaded into a set of inter
nal registers. FLOATING DIVIDE LONG then operates 
identically to FLOATING DIVIDE SHORT (FDS), except 
that the divisor, dividend, and quotient fractions are each 
14 hexadecimal digits long, and R must be an even value 
for correct results. If no floating-point arithmetic fault 
occurs, the quotient is loaded into registers R and Ru 1 as a 
long-format floating-point number. 

Affected: (R), (Ru 1 ), CC 
(R, Ru1).;. ED - R, Ru1 

Traps: Unimplemented in
struction, floating
point arithmetic fault 

DECIMAL INSTRUCTIONS 
The following instructions comprise the optional decimal in
struction set: 

Instruction Name 

Decimal Load 
Dec imal Store 
Decimal Add 
Decimal Subtract 
Decimal Multiply 
Decimal Divide 
Dec imal Compare 
Decimal Shift Arithmetic 
Pack Decimal Digits 
Unpack Decimal Digits 
Edit Byte String (described under 

B}'te String Instructions) 

Mnemonic 

DL 
DST 
DA 
OS 
DM 
DD 
DC 
DSA 
PACK 
UNPK 
EBS 



PACKED DECIMAl. NUMBERS 

All SIGMA 7 decimal arithmetic instructions aperate on 
packed decimal nurnbers, each co,nsisting of from 1 to 31 
decimal digits (in absolute form) plus a decimal sign. A 
decimal digit is a 4-bit code in the range 0000 through 1001, 
where 0000 = 0, 0001 .:= 1, 0010 = 2, 0011 = 3, 0100::; 4, 
0101 .:= 5, 0110 .:= 6, 0111 = 7, 1000 = 8, and 1001 = 9. A 
positive decimal sign is ° 4-bit cctde of the form: 1010(X'A'~ 
l100(X'C'), 1I1O(X'E'), or 1111 (X'F"). A negative decimal 
sign is a 4-bit code of the form: 1011 (X'B') or J 101 (X'D'). 
However, the decimal sign codes ~generated for the result of 
a decimal instructictn are: 1100 (X'C') for positive results, 
and 1101 (X'D') for negative results. The format of packed 
decimal numbers is: 

[digit I digit ~;r;;;;;n 
o , 2 J 4 S I> 7 0 , .~~ 1..-'"'=-.,........-""';1--:-7'""""":'-:;-' 

For the,decimal arHhmetic instructions, a packed decimal 
number must occupy' an integral number (1 through 16) of 
consecutive bytes. Thus, a decimnl number must contain an 
odd number of decimal digits, the high-order digit (zero or 
nonzero) of the number must be in bit positions 0-3 of the 
first byte, the decimal sign must be in bit positions 4-7 of 
the last byte, and 0111 decimal digits and the decimal sign 
must be 4-bit codes of the form de,scribed above. 

ZONED DECIMAl. NUMBERS 

In zoned decimal format, a single decimal digit is contained. 
within bit positions 4-7 of a byte, and bit positions 0-3 of 
the byte are referred to as the "zone" of the decimal digit. 
A zoned decimal number consists of from 1 to 31 bytes, with 
the decimal sign appearing as the zone for the last byte, as 
follows: 

A decimal number can be converted from zoned to packed 
format by means of the instruction PACK DECIMAL DIGITS. 
A decimal number can be converted from packed to zoned 
format by means of t'he instruction UNPACK DECIMAL 
DIGITS. 

DECIMAL ACCUMtJLATO~ 

All decimal arithmetic instructions imply the use of registers 
12 through 15 of the· current regist1er bank as the decimal ac
cumulator, and registers 12 through 15 are treatedasasingle 
16-byte register. Tlhe entire decirnal accumulator is used in 
every decimal arithrnetic instructicm. 

DECIMAI....ibTRUCTION FORMAT 

25 26 271 it 29 3D 31 
I 

The indirect address bit (position 0), the operation code 
(positions 1-7), the index field (12-14), and the reference 
address field (15-31) all have the same functions for the 
decimal instructions as they do for any other SIGMA 7 byte 
addressing instruction. However, bit positions 8~ 11 of the 
instruction word do not refer to a general register; instead, 
the contents of this field (designated by the character ilL ") 
designate the length, in bytes, of a packed decimal number. 
(If L = C', a length of 16 bytes is assumed. ) 

UNIMPLEMENTED DECIMAL INSTRUCTIONS 

If the optional decimal arithmetic instructions described in. 
this section are not implemented in a SIGMA 7 computer, 
the computer unconditionally aborts the execution of the 
instruction (at the time of operation code decoding), and 
traps to location X'41', which is the "unimplemented in
struction" trap location. 

ILLEGAL DIGIT AND SIGN DETECTION 

Prior to executing any decimal instruction, fhe computer 
checks all decimal operands for the presence of illegal deci
mal digits or illegal decimal signs. For all decimal arithme
tic instructions except DECIMAL MUL TIPL Y and DECIMAL 
DIVIDE, an illegal decimal digit is a sign code (i. e., in the 
range X'A' through X'F') that appears anywhere except in 
bit positions 4-7 of the least significant byte (the sign posi
tion) of the packed decimal number; an illegal decimal sign 
is a digit code (i. e. I in the range X'O' through X'9') that 
appears in the sign position of the packed decimal number. 

For the instructions DECIM; ,L MULTIPLY and DECIMAL 
DIVIDE, the effective decimal operand is checked for ille
gal digits or signs as above. However, the operand in the 
decimal accumulator is checked to verify that there is 
at least one legal decimal sign code somewhere in the 
number. (This type of check is a result of the interrupti
bility of these instructions, which may leave the decimal 
accumulator with a partially-completed result containing 
an intemal sign code.) For these two instructions, the 
illegal sign and digit check also includes a check for an 
illegal L field in the instruction. Illegal L fields are X'O' 
and the range X'9' to X'F'. 

If an illegal digit or sign is detected, the computer uncon
ditionally aborts the execution of the instruction (at the time 
that the illegal digit or sign is detected), sets CCI to 1 and 
resets CC2 to O. If the decimal arithmetic fault trap mask 
(bit position 10 of the program status doubleword) is a 0, 
the computer then executes the next instruction in sequence; 
however, if the decimal arithmetic fault trap mask (PSD 1 0) 
is aI, the computer traps to location X'45'. In either case, 
the contents of the decimal accumulator, the effective deci
mal operand, CC3, and CC4 remain unchanged. 

OVERFLOW DETECTION 

Arithmetic overflow can occur during execution of the fol
lowing decimal instructions: 

DECIMAL ADD: overflow occurs when the sum of the two 
decimal numbers exceeds the 31-digit capacity of the deci
mal accumulator (+1031 -1 to -1031 +1). 

Decimal Instructions 53 



DECIMAL SUBTRACT: overflow occurs when the difference 
between the two dec imal numbers exceeds the 31-digit cap
acity of the decimal accumulator. 

DECIMAL DIVIDE: overflow occurs either when the divisor 
is zer"o, or when the dividend is greater than 14 digits in 
length and the absolute value of the significant digits. to 
the left of the 15th digit position (counting from the right) 
is greater than or equal to the absolute value of the divisor. 

If arithmetic overflow occurs during execution of DECIMAL 
ADD, DECIMAL SUBTRACT, or DECIMAL DIVIDE, the com
puter unconditionally aborts execution of the instruction (at 
the time of overflow detection), resets CCl to 0, and sets 
CC2 to 1. Then, if the decimal arithmetic fault trap mask 
(PSD 1 0) is a 1, the computer traps to location X'45' i if the 
decimal arithmetic fault trap mask is a 0, the computer exe
cutes the next instruction in sequence. In either case, the 
contents of the decimal accumulator, memory storage, CCl; 
and CC4 remain unchanged. 

DECIMAL INSTRUCTION NOMENCLATURE 

For the purpose of abbreviating the instruction descriptions 
to follow, the symbol ic term "DECA II is used to represent 
the decimal accumulator, and the symbolic term "EDO" is 
used to represent the effective decimal operand of the in
struction. For the instructions DECIMAL lOAD, DECIMAL 
ADD, DECIMAL SUBTRACT, DECIMAL MUlTIPl V, DECI
MAL DIVIDE, and DECIMAL COMPARE, the effective dec
imal operand is a packed decimal number that is "l" bytes 
in length, where l is the numeric value of bit positions 8-
11 of the instruction word, and a value of 0 for l designates 
16 bytes. The effective byte addresses of these instructions 
point to the byte location that contains the most significant 
byte (high-order digits) of ,the decimal number, and the ef
fective byte address plus l-l (where l = 0 = 16) points to 
the least significant byte (low-order digit and sign) of the 
decimal number. Thus, for these instructions, the effective 
decimal operand (EDO) is the contents of the byte string 
that begins with the effective byte location, is l bytes in 
length, and ends with the effective byte location plus l-l. 

CONDITION CODE SETTINGS 

All decimal instructions provide condition code settings, 
using CC 1 to indicate whether or not an illegal digit or sign 
hasbeendetected, and CC2 ta indicate whether or not over
flow has occurred. Most (butnotall) of the decimal instruc
tions provide condition code settings, using CC3 and CCo4 to 
indicate whether the decimal number in the decimal accumu
lator is zero, negative, or positive, as follows: 

CC3 CC4 Result in DECA -- --
o 0 zero - the decimal accumulator contains a 

positive or negative decimal sign code in the 
4 low-order bit positions; the remainder of 
the decimal accumulator contains all O·s. 

o negative - the decimal accumulator contains 
a negative decimal sign code in the 4 low
order bit positions; the remainder of the deci
mal accumulator contains at least one non-zero 
decimal digit. 

54 Decimal Instructions 

CC3 CC4 

o 
Result in DECA 

positive - the decimal accumulator contains 
a positive decimal sign code in the .. low-
order bit positions; the remainder of the deci
mal accumulator contains at least one non'zero 
decimal digit. 

OL DECIMAL lOAD 
(Byte index alignment, optional) 

If no illegal digit or illegal sign is detected in the effective 
decimal operand, DEOMAl lOAD expands the effective 
decimal operand to 16 bytes (31 digits + sign) by appending 
high-order O's, and then loads the expanded decimal num
berinto the decimal accumulator. Ifthe result in the decimal 
accumulator is zero, the converted sign remains unchanged. 

Affected: (DECA), CC Traps: Unimplemented in
struction, decimal 
arithmetic 

(EBl to EBl + l-l) - DECA 

Condition code settings: 

2 3 4 Result in DECA 

0 illegal digit or sign detected, instruction 
aborted 

0 0 0 0 
zero } no illegal digi t or illegal 

0 0 0 1 negative sign detected, instruction 

0 0 0 positive 
completed 

OST DECIMAL STORE 
(Byte index al i gnment, optional) 

I: I, , :;. , • J ~ " ..I" ~ .J ,,: .. " ~~~~~~~~e,,~~~r::IU J 
If no illegal digit or sign is detected in the decimal ac
cumulator, DECIMAL STORE stores the low-order l bytes 
of the decimal accumulator into memory flom the effec
tive byte location to the effective byte location plus l-l. 
If the decimal accumulator contains more significant in
fonnation than is actually stored (i. e., at least one non
zero digit was not stored), CC2 is set to 1; olherwise 
CC2 is reset to O. If the result in memory is zero, the con
verted sign remains unchanged. 

Affected: (EBl to EBl + l-1), Traps: Unimplemented in-
CCl, CC2 struction, decimal 

arithmetic 

(DECA) low-order bytes - EBl to EBl + l-l 

Condition code settings: 

2 3 4 Result of DST 

o 

o 0 

o 

illegal digit or sign detected, instruction 
aborted 

all significant in-} 
formation stored no illegal digit or 

. .• illegal sign de-
some Significant t t d . t t" " f. ec e , inS ruc Ion 
In ormation not ltd 
stored comp e e 



Dj DECIMAL ADD 
(Byte index alignment, optional) 

9 10 I 12 13 14 15 16 17 II 19 20 21 22 23 24 25 26 71 21 29 30 31 

If no illegal digit or sign is detectled in the effective deci
mal operand or in the decimal acc1umulator, DECIMAL ADD 
expands the effective decimal ope1rand to 16 bytes (31 digits 
plus sign) by appending high-order O's, algebraically adds 
the expanded decim,al number to the contents of the entire 
decimal accumulatolr, and then loads the sum into the deci
mal accumulator. If the result in i~he decimal accumulator 
is zero, the resultin!9 sign is forced to the positive form. 

Overflow occurs if the sum exceeds the capacityofthedeci
mal accumulator (i.~. i if the absolute value of the sum is equal 
to or greater than 10.3 ), in whi ch C4lse CC 1 is reset to 0, CC2 
is set to 1, and the instruction aborted with the previous con
tents of thedecimal4lccumulator, CC3andCC4unchanged. 

Affected: (DECA), CC Traps: Unimplemented in-
(DECA) + EDO -' DECA struction, decimal 

arithmetic 

Condition code settings: 

2 3 4 Result in DECA 

0 illegal digit or } sign detected instruction aborted 
0 overflow 

0 0 0 0 zero 

} nel illegal digit or sign 
0 0 0 negative dE!tected, no overflow, 

0 0 0 p<)sitive 
instruction completed 

os DECIMAL SUBTRACT 
(Byte inde)c alignment, optional) 

G, , ~~ , . J ~ " "I., ~ " ,,: .. " ~~:~»~~:en~:_:r::I" ,,,,,,I 
If no illegal digit Of' sign is detected in the effective deci
mal operand or in the decimal accumulator, DECIMAL SUB
TRACT expands the ,effective decimal operand to 16 bytes 
(31 digits plus sign) by appending high-order O's, algebrai
cally subtracts the expanded decimal number from the con
tents of the entire decimal accumulator, and then loads the 
difference into the d,ecimal accumulator. If the result in 
the decimal accumulator is zero, the resulting sign is 
forced to the positive form. 

Overflow occurs if the difference ,exceeds the capacity of 
the decimal accumulator (i. e. , if i~he absolute value of the 
difference is equal to or greater than 1031 ), in which case 
CCl is reset to 0, CC2 is set to 1, and the instruction is 
aborted with the contents of the previous decimal accumu-
100tor, CC3 and CC4, unchanged. 

Affected: (DECA), CC 
(DECA) - EDO - DECA 

Traps: Unimplemented instruc
tion, decimal arithmetic 

Condition code settings: 

2 3 4 Result in DECA 

0 illegal digit or } 
si gn detected • .' Instruct. on aborted 

0 1 overflow 

0 0 0 0 zero 

} no illegal digit or sign de-
0 0 0 1 negative tected, no overflow, in-

0 0 0 positive 
struction completed 

DM DECIMAL MUL n PLY 
(Byte index alignment, optional, continue after 
interrupt) 

If no illegal digit or sign is detected in the effective deci
mal operand and there is at least one decimal sign in the 
decimal accumulator, DECIMAL MULTIPLY multiplies the 
effective decimal operand (multiplicand) by the entire 
contents of the decimal accumulator (multiplier) and then 
loads the prOduct into the decimal accumulator. If the 
result in the decimal accumulator is zero, the resulting 
sign is forced to the positive form. 

No overflow can occur; however, an indeterminate resul t 
occurs (with an incorrect condition code indication, and 
with no trap activation) if any of the following conditions 
are not satisfied before the initial execution of DECIMAL 
MULTIPLY: 

1. The 4 low-order bit positions of the decimal accumu
lator must contain the sign of the multiplier. 

2. The 16 high-order digit positions of the decimal accu
mulator (i.e., general registers 12 and 13) must con
tain oliO's. 

3. The effective decimal operand must not exceed 15deci
mal digits (i. e. , the value of L must not exceed 8). 
The illegal values of Lore X'O' and the range X'9' to 
X'F'. An illegally coded L field is recognized as on 
illegal digit or sign and the instruction is aborted. 

This instruction can be interrupted during the course of its 
execution, and then be resumed, without producing an er
roneous product (provided that the contents of the decimal 
accumulator are not altered between the interruption and 
continuation). Actually, the instruction is reexecuted, 
but since there is no initializing phase, it begins with the 
same iteration that was started prior to the interrupt. 

Affected: (DECA), CC 
(DECA) x EDO - DECA 

Condition code settings: 

Traps: Unimplemented in
struction, decimal 
arithmetic 

2 3 4 Result in DECA -------
o illegal digit or sign detected, instruc

ti on aborted 

Decimal Instructions 55 



1 2 3 4- Result in DECA 

0 0 0 0 zero } no illegal digit or sign 
0 0 0 1 negative detected, instruction 

0 0 0 posrtive 
completed 

DD _ DECIMAL DIVIDE 
(Byte index alignment, optional, continue after 
interrupt) 

If there is no illegal digit or sign 'in the effective deci
mal operand and if there is at least one decimal sign in 
the decimal accumulator, DECIMAL DIVIDE divides the 
contents of the decimal accumulator (dividend) by the ef
fective decimal operand (divisor). Then, if no overflow 
has occurred, the computer loads the quotient (15 decimal 
digits plus sign) into the 8 low-order bytes of the decimal 
accumulator (registers 14 and 15), and loads the remainder 
(also 15 decimal digits plus sign) into the 8 high-order bytes 
of the decimal accumulator (registers 12 and 13). The sign 
of the remainder is the same as that of the original divi
dend. If the quotient is zero, the sign of the quotient is 
forced to the posi ti ve form. 

Overflow can occur ifanyof the following conditionsare not 
satisfied before the initial execution of DECIMAL DIVIDE: 

1. The divisor must not be zero. 

2. If the length of the dividend is greater than 15 decimal 
digits, the absolute value of the significant digits to 
the I eft of the 15th digi t position (i. e., those di gi ts in 
registers 12 and 13) must be less than the absolute 
value of the divisor. 

3. The effective decimal operand must not exceed 15 deci
mal digits (i. e., the value of L must not exceed 8). 
The illegal values of l are X'O' and the range X'9' to 
X'F'. An illegally coded L field is recognized as an 
illegal digit or sign and the instruction is aborted. 

This instruction can be interrupted during the course of its 
execution, and can then be resumed without producing an 
erroneous result (provided that the contents of the decimal 
accumulator are not altered between interruption and con
tinuation). Actually, the instruction is reexecuted, but 
since there is no initializing phase, it begins with the 
same iteration that was started prior to the interrupt. 

Affected: (DECA), CC Traps: Unimplemented in-
(DECA) .;. EDO - struction, decimal 

arithmetic 

Condi ti on code settings: 

2 3 4 Result in DECA 

0 illegal digit or } 
sign detected 

i nstructi on aborted 
0 1 overflow 

0 0 0 0 zera quotient } no illegal digit or 

0 0 0 t· t· t sign detected, no 
nega Ive quo len overflow, instruc-

0 0 0 positive quotient tion completed 

- 56 Decimal Instructions 

DC DECIMAL COMPARE 
(Byte index alignment, optional) 

If there is no illegal digit or Hlegal sign in the effective 
decimal operand or in the decimal accumulator, DEOMAl 
COMPARE expands the effective decima~ operand to 16 
bytes (31 digits plus sign) by appending high-order O·s, al
gebraically compares the expanded decimal number to the 
contents of the entire decimal accumulator, and sets CC3 
and CC4 according to the result of the comparison (a posi
tive zero compares equal to a negative zero). 

Affected: CC 
(DECA) : EDO 

Traps: Unimplemented in
struction, decimal 
arithmetic 

Condition code settings: 

2 3 4 Result of comparison 

0 illegal digit or sign detected, instruction 
aborted 

0 0 0 ,0 (DECAl equals EDO l no illegal digit 
0 0 0 (DECA) less than EDO or sign detected, 

0 0 0 (DECA) greater than 
instruction com-

EDO 
pleted 

DSA DECIMAL SHIFT ARITHMETIC 
(Byte index alignment, optional) 

If no illegal digit or sign is detected in the decimal accu
mulator, DECIMAL SHIFT ARITHMETIC arithmetically shifts 
the contents of the decimal accumulator (excluding the 
decimal sign), with the direction and amount of the shift 
determined by the effective virtual address of the instruc
tion. If the result in the decimal accumulator is zero, the 
resulting sign remains unchanged. 

If no indirect addressing or indexing is used with DSA, the 
shift count C is the contents of bit positions 10-31 of the 
instruction word. If only indirect addressing is used with 
DSA, the shift count is the contents of bit positions 16-31 
of the word pointed to by the indirect address in the 
instruction word. If indexing only is used with DSA, the 
shift count is the contents of bit positions 16-31 of the 
instruction word plus the contents of bit positions 14-29 
of the designated index register (bits 0-13, JO, and 31 of 
the index are ignored). If indirect addressing and indexing 
are both used with DSA, the shift count is the sum of the 
contents of bit positions 16-31 of the word pointed to by 
the indirect address and the contents of bit positions 14-29 
of the designated index register. 

The shift count, C, is treated as a 16-bit signed binary in
teger, with negative integers in two's complement form. 
If the shift count is positive, the contents of the decimal 
accumulator are shifted left C decimal digit positions; if 
the shift count is negative, the contents of the decimal 



accumulator are shifted right -C decimal digit positions. In 
either case, the decimal sign is not shifted, vacated deci
mal digit positions are filled wHh 0'5, and any digits shifted 
out of the decimal accumulator l::1re lost, Although the rangt~ 
of possible values for C is 2 -15 ~ C '! 2 5_ 1, a shift account 
greater than +31 or I'ess than -31 is interpreted as a shift 
count of exactly +31 or -31. 

If any nonzero decimal digit is shifted out of the decilTlQl 
accumulator durirll9 a left shift, CC2 is set to 1; otherwise, 
CC2 is reset to O. CC2 is unconditionally reset to 0 at the 
completion of a ri!;Jht shift. 

Affected: (DECAl, CC TI'Ops: Unimplemented 
instruction, decimal 
arithmetic 

Condition code set·tings: 

2 

0 

0 

0 

0 

0 0 

0 

PACK 

3 4 Result in DECA 

illegal digit OIr sign detected, instruction 
aborted 

0 0 zero 

0 negative 

0 positive 
no illegal digit 

right shift or no non- 0Ir sign detected, 
zero digit shiflted out instruction com-
of DECA on I eft shift pleted 

1 0Ir mOIre nonzero 
digit(s) shifted out 
.:>f DECA on lelft shift 

PACK DECIMAL DIGITS 
(Byte indE!x alignment, c>ptional, continue after 
interrupt) 

[, ~,~ " J ~ 
PACK DECIMAL DIGITS converts the effective decimal 
operand (assumed tc. be in zoned format) into a packed 
decimal number and, if necessary, appends sufficient high
order O's to prodUCE! a decimal number that is 16 bytes (31 
decimal digits plus sign) in length. The zone (bits 0-3) of 
the low-order digit olf the effective decimal operand is used 
to select the sign code for the packed decimal number; all 
other zones are ign()red in forming the packed decimal 
number. If no illegal digit or sigrl appears in the packed 
decimal number, it is then loaded into the decimal accu
mulator. If the result in the decimal accumulator is zero, 
the resul ting sign remains unchanged. 

The L field of this instruction specifies the length, in bytes, 
of the resultant packed decimal number in the decimal accu
mulator; therefore, ,the length of the effective decimal oper
and is 2L-l bytes (where L = 0 implies a length of 31 bytes 
for the effective dec:imal operand) .. 

This instruction can be interrupted during the course of its 
execution, and can then be resume!d without producing an 
erroneous result (provided that the contents of t'he decimal 
accumulator are not altered betweon interruption and con
tinuation). Actuall}I, the instruction is re-executed, but 

since there is no initializing phase, it begins with the 
same iteration that was started prior to the interrupt. 

Affected: (DECA), CC Traps: Unimplemented in
struction, decimal 
arithmetic 

packed (EBL to EBL + 2L -2)- DECA 

Condition code settings: 

2 3 4 Result in DECA 

0 illegal digit or sign detected, instruction 
aborted 

0 0 0 0 zero 
} no illegal digit 0< sign 

0 0 0 1 negative detected, instruction 

0 0 0 positive 
completed 

Example 1, L = 6: 

EDO 

(DECA) 

CC 

BefOire execution 

X'FOF1F2F3 
F4F5F6F7 
F8F9FO' 

XXXXXXXX 

xxxxxxxx 
XXXXXXXX 

XXXXXXXX 

XXX X 

After execution 

X'FOF1F2F3 
F4F5F6F7 
F8F9FO' 

x '00000000 
OOOOOOOO 
00000123 
4567890C' 

0010 

Example 2, L = 6: 

EDO X'OO0938F7 X'000938F7 
E6558483 E6558483 
02FlBO' 02FI80 1 

(DECA) XXXXXXXX X 100000000 
xxxxxxxx 00000000 
xxxxxxxx 00000987 
xxxxxxxx 65432100' 

CC xxxx 0001 

UNPK UNPACK DECIMAL DIGITS 
(Byte index alignment, optional, continue after 
interrupt) 

If no illegal digit or sign is detected in the decimal accu
mulator (assumed to be in packed decimal format), UNPACK 
DECIMAL DIGITS converts the contents of the low-order L 
bytes of the decimal accumulator to zoned decimal format 
and stores the result, as a byte string, from the effective byte 
location to the effective byte location plus 2L-2. The con
tents of the 4 low-order bit positions of the decimal accu
mulator are used to select the sign code for the last digit of 
the string; a zone of 1111 (XI F') is used for all other digits. 
The contents of the decimal accumulator remain unchanged, 
and only 2L-l bytes of memory are altered. If the decimal 

Decimal Instructions 57 



accumulator contains more significant information than is 
actually unpacked and stored, CC2 is set to 1; otherwise 
CC2 is reset to O. If the result in memory is zero, the 
resulting sign remains unchanged. 

This instruction can be interrupted during the course of its 
execution, and can then be resumed without producing an 
erroneous result (provided that the contents of the decimal 
accumulator are not altered between interruption and 'con
tinuation). Actually, the instruction is re-executed, but 
since there is no initializing phase, it begins with the same 
iteration that was started prior to the interrupt. 

Affected: (EBL to EBL + 2L -2), 
CC1, CC2 

Traps: Unimplemented 
instruction, deci
mal arithmetic 

zoned (DECA)- EBL to EBL + 2L -2 

Condition code settings: 

2 3 4 Result of UNPK 

o illegal digit or sign detected, instruction 
aborted 

o 0 

o 

Example 1, 

(DECA) 

EDO 

CC 

Example 2, 

(DECA) = 

EDO 

CC 

Example 3, 

(DECA) = 

all significant infor
mation zoned and 
stored 

some significant 
information not 
zoned and stored 

L = 10: 

Before execution 

X'OOOOOQOO 
00000001 
23456789 
01234560' 

xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxx xxx 

xxxx 

L = 8: 

X '00000000 
23000000 
10001234 
0012345C' 

xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxx 

xxxx 

L = 4: 

X '00001 001 
00001002 
00001003 
000l004F' 

58 Byte String Instructions 

no illegal digit 
or sign detected, 
instruction com
pleted 

After execution 

X '00000000 
00000001 
23456789 
01234560' 

X'FOFOFOFl 
F2F3F4F5 
F6F7F8F9 
FOF1F2F3 
F4F506' 

OOxx 

X '00000000 
23000000 
10001234 
oo1234SC' 

X'F1FOFOFO 
F1F2F3F4 
FOFOF1F2 
F3F4CS' 

Olxx 

X '00001 001 
00001002 
00001003 
OOOiOO4F' 

EDO xxxxxxxx 
xxxxxxxx 

X'FOFOFOFl 
FOFOC4' 

cc xxxx Olxx 

1 BYTE STRING INSTRUCTIONS 

Five instructions provide for the manipulation of strings of 
consecutive bytes. Four of these instructions are standard 
with the SIGMA 7 computer, and one additional instruction 
(EDIT BYTE STRING) is provided with the decimal option. 
The byte string instructions and their mnemonic codes ore 
as follows: 

Instruction Name Mnemonic 

Move Byte String 
Compare Byte String 

MBS 
CBS 
TBS 
TTBS 
EBS 

Translate Byte String 
Translate and Test Byte String 
Edit Byte String (optional) 

These instructions are in the immediate displacement class, are 
memory-to-memory operations, and proceed one byte at a 
time (except for the instruction MOVE BYTE STRING, which 
proceeds four' bytes at a time under certain conditions). These 
operations are under the control of information that must be 
looded into certain general registers before the instruction 
is executed; hence, they may be interrupted after any indiv
idual byte operation. The general format for the information 
in the instruction word and in the general registers is as 
follows: 

Instruction word: 

Contents of register R: 

Contents of register Ru 1: 

Designation 

Operation 

R 

Displ acement 

Function 

The 7-bit operation code of the instruc
tion. (If any byte string instruction is 
indirectly addressed, the computer traps 
to location X'40' at the time of opera
tion code decoding. ) 

The 4-bit field that identifies register R 
of the current general register bank. 

A 20-bit field that contains a signed byte 
displacement value, used to form an ef
fective byte oddress. The displacement 
value is right-justified in the 20-bit field, 
and negative values are in two's comple
ment form. 



Designation Function 

Mask/Fill An 8-bit field used only with TRANS
LATE AND TEST BYTE STRING and 
EDIT BYTE STRING. The purpose of this 
field is explairled in the detailed dis
cussion of the TTBS and EBS instructions. 

Source Address A 19-bit field that normally contains the 
byte address of the first (most significant) 
byte of the sOlurce byte string operand~ 
lihe effective SloUrce address is the source 
clddress in register R plus the displace
ment value in the instruction word. 

Count 

Destination 
Address 

An 8-bit field l'hat contains the true count 
(from 0 to 255) ,of the number of bytes in
volved in the operation. This field is 
decremented by 1 as each byte in the 
destination bytE! string is processed. A 
o count means "'no operation" wi th re
spect to the registers and main memory. 

A 19-bit field tlhat contains the byte 
address of the first (most significant) 
byte of the destiination byte string oper
and. This field is incremented by 1 as 
ejJch byte in thE! destination byte string 
is processed. 

ffn any byte string j'nstruction, any portion of registers R or 
Ru 1 that is not explicitly defined (i.e., in the shaded part 
of the register diaglram for the imitruction) should be coded 
with zeros. 

Since the value Ru 1 is obtained by performing a logical 
inclusive OR with the value 0001 and the value of the R 
field of the instruction word, the two control registers are 
Rand R + 1 if R is even. However" if R is an odd value, reg
ister R contains an address value l'hat functions both as a 
source operand address and as a destination operand ad
dress. Also, if register 0 is designated in any byte string 
instruction (except for TRANSLATE AND TEST BYTE STRING 
and EDIT BYTE STRING), its contents are ignored and a zero 
source address valule is obtained. Thus, the following three 
cases exist for most byte string instructions, depending on 
whether the value of the R field of the instruction word is 
even and nonzero, odd, or zero: 

Case I: R is even and nonzero 

The effective sourc.! address is the address in register R plus 
the displacement in the instruction word; the destination 
address is the addre:ss in register R+ 1, but .without the dis
placement added. 

Case II: R is odd 

The effective source address is the address in register R plus 
the displacement in the instruction word; the destination 
address is also the address in regist'er R, but without the 
displacement added. 

Case III: R is zero 

The effective source address is the displacement value in 
the instruction word; the destination address is the address 
in register 1. In this case, the source byte string operand 
i$ always a single byte. 

In the descriptions of the byte-string instructions, the fol
lowing abbreviations and terms are used: 

D Displacement, (1)12-31 

SA Source address, (R) 13-31 

ESA 

C 

DA 

SBS 

DBS 

Effective source address, [(R) 13-31 +(1) 12-31] 13-31 

The contents of bit positions 13-31 of register R 
are added (right aligned) to the contents of bit po
sitions 12-31 of the instruction word; the 19 low
order bits of the result are used as the effective 
source address. 

Count, (Ru 1)0_7 

Desti nati on address, (Ru 1) 13-31 

Source byte string, the byte string that begins with 
the byte location pointed to by the 19-bit effective 
source address and is C bytes in length (if R is non
zero) or is 1 byte in length (if R is 0). 

Destination byte string, the byte string that begins 
with the byte location pointed to by the destination 
address and is always C bytes in length. 

MBS MOVE BYTE STRING 
(Immediate displacement, continue after interrupt) 

I~ 61 I R i : DiSPlacement: I 
o I 2 3 14 5 6 7 8 9 10 " 12 13 14 IS 16 17 18 ,,120 21 22 23 24 25 26 27128 29 30 31 

MOVE BYTE STRING copies the contents of the source byte 
string (Ieftto right) into the destination byte string. The pre
vi ous contents of the desti nati on byte stri ng are destroyed, bu t 
the contents of the source byte stri ng are not affec ted unl ess 
the destination byte string overlaps the source byte string. 

When the destination byte string overlaps the source byte 
string, the resulting destination byte string contains one or 
more repetitions of bytes from the source byte string. Thus, 
if a destination byte string of C bytes begins with the kth 
byte of a source byte string (numbering from 1), the first 
k-l bytes of the source byte string are duplicated in the 
destination byte string x number of times, where x=C/(k-l). 
For example, if the destination byte string begins with the 
second byte of the source byte string, the first byte of the 
source byte string is duplicated throughout the destination 
byte string. 

If both byte strings begin with the same byte (i.e., k = 1) 
and the R field of MBS is nonzero, the destination byte 
string is read and replaced into the same memory locations. 
However, if both byte strings begin with the same byte and 
the R field of MBS is zero, the first byte of the byte string 

Byte String Instructions 59 



is duplicated throughout the remainder af the byte string 
(see "Case III ", below). 

Affected: (OBS), (R), (Ru 1) 
(SBS)- OBS 

If MBS is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and traps to location X'40' with the contents 
of register R and the destination byte string unchanged. 

A speed advantage can be g"ained in the MBS instruction if 
the source and destination byte strings both begin on the 
same byte within their respective words. This allows all 
bytes (except possibly the first few bytes and the last few 
bytes to be moved in fullword units. 

Case I: even, nonzero R field (Ru 1 =R+ 1) 

Contents of register R: 

Contents of register R+ 1: 

The source byte string begins with the byte location pointed 
to by the source address in register R plus the displacement 
in MBS; the destination byte string begins with the byte lo
cation pointed to by the de~tination address in register R+ 1. 
Both byte strings are C bytes in length. When the instruc
tion is completed, the destination and source addresses are 
each incremented by C, and C is set to zero. 

Case II: odd R field (Rul=R) 

Contents of register R: 

The source byte string begins with the byte location poin
ted to by the address in register R plus the displacement in 
MBS; the destination byte string begins with the byte lo
cation pointed to by the destination address in register R. 
Both byte strings are C bytes in length. When the instruc
tion is completed, the destination address is incremented by 
C, and Cis set to zero. 

Case III: zero R field (Rul=1r 

Contents of register 1 

I Count I··.V. ••. :··· •• · .••. ~·······.,~·, I D~tination addr~ss 1 
o 2 J 14 3 ,~, 16 (h fJ 14 13;16 17 II 10126 21 22 25;24 23 26 271H 2+ 30 31 

The source byte string consists of a single byte, the contents 
of the byte location pointed to by the displacement in MBS; 
the destination byte string begins with the byte location 

60 Byte String Instructions 

pointed to by the destination address in register 1 and is C 
bytes in length. In this case, the source byte is duplicated 
throughout the destination byte string. When the instruction 
is completed, the destination address is incremented by C 
and C is set to zero. 

CBS COMPARE BYTE STRIN G 
(Immediate displacement, continue after interrupt) 

COMPARE BYTE STRING compares, as magnitudes, the con
tents of the source byte string with the contents of the des
tination byte string, byte by corresponding byte, beginning 
with the first byte of each string. The comparison continues 
until the specified number of bytes have been compared or 
until an inequality is found. When CBS terminates, CC3 
and CC4 are set to indicate the result of the last comparison. 
If the CBS instruction terminates due to inequality, the count 
in register Ru 1 is one greater than the number of bytes re
maining to be compared; the source address in register Rand 
the destination address in register Ru1 indicate the locations 
of the unequal bytes. 

Affected: (R), (Ru 1 ), CC3, CC4 
(SBS) : (DBS) 

Condition code settings: 

2 3 .. 

o 0 

o 

o 

Result of CBS 

source byte string equals destination 
byte string 

source byte string less than destination 
byte string 

source byte string greater than destination 
byte string 

If CBS is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and traps to location X'40' with the contents 
of register R and the destination byte string unchanged. 

Case I: even, nonzero R field (Ru1=R+1) 

Contents of register R 

Contents of regi ster R+ 1 

The source byte string begins with the byte location 
pointed to by the source address in register R plus the 
displacement in CBS; the destination byte string begins 
with the byte location pointed to by the destination ad
dress in register R+1. Both byte strings are C bytes in 
length. 



Case II: odd R field (Ru1=R) 

Contents of register R 

The source byte string begins with the byte locatlon 
pointed to by the address in register R plus the displace
ment in CBS; the destination byte string begins with the byte 
location pointed to by the destinat"ion address in register R. 
Both byte strings arE~ C bytes in length. 

Case III: zero R field (Ru1=1) 

Contents o! register 1 

I D~tinatiOn address ~ "I.i " .. ,,-,, " " .. " "" ,~ 
The sou,rce byte string consists of a single byte, the contents 
of' the location pointed to by the displacement in CBS; the 
destination byte string begins with the byte location pointed 
to by the destination address in reoister 1 and is C bytes in 
length. In this case, the source b;vte is compared with each 
byte of the destination byte string until an inequality is found. 

IBS TRANSLA TE BYTE STRING 
(Immediate displacement, continue after interrupt) 

TRANSLA TE BYTE STRING replacE~s each byte of the des
tination byte string with a source byte located in a transla
tion table. The destination byte st'ring begins with the byte 
location pointed to by the destination address in register 
Ru 1, and is C bytes in length. Th.~ translation table con
sists of up to 256 consecutive byte locations, with the first 
byte location of the table pointed to by the displacement 
in T8S plus the source address in register R. A source byte 
is defined as that which is in the byte location pointed to 
by the 19 low-order bits of the sum of the following values: 

1. The displacement in bit positic)I1s 12-31 of the TBS in
struction 

2. The current contents of bit positions 13-31 of register 
R (source addres,s) 

3. The numeric value of the CUrrE!nt destination byte, the 
8-bit contents of the byte loccltion pointed to by the 
current desti natiion address in bit positions 13-31 of 
register (Ru 1) 

A Hected: (0 BS) ,(Ru 1) 
translated (DBS) - .. DBS 

If TBS is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and ttraps to locatioln X'40' with the contents 
of register R and the destination byte string unchanged. 

Case I: even, nonzero R field (Ru 1 =R+ 1) 

Contents of register R 

Contents of register R+ 1 

The destination byte string begins with the byte location 
pointed to by the destination address in registerR + 1 and isC 
bytes in length. The source byte string (translation table) 
begins with the byte location pointed to by the displacement 
in TBS plus the source address in register R. When the in
struction is completed, the destination address is incremented 
by C, C is set to zero, and the source address remains un
changed. 

Case II: odd R field {Ru1=R} 

Because of the interruptible nature of TRANSLA TE BYTE 
STRING, the results of the instruction are unpredictable 
when an odd-numbered general register is specified by the 
R field of the instruction word. 

Case III: zero R field (Ru 1 =1) 

Contents of register. 1 

The destination byte string begins with the byte location 
pointed to by the destination address in register 1 and is C 
bytes in length. The source byte string (translation table) 
begins with the location pointed to by the displacement in 
TBS. When the instruction is completed, the destination 
address is incremented by C and C is set to zero. 

IlBS TRANSLATE AND TEST BYTE STRING 
(Immediate displacement, continue after interrupt) 

TRANSLATE AND TEST BYTE STRING compares the mask in 
bit positions 0-7 of register R with source bytes in a byte 
translation table. The destination byte string begins with 
the byte location pointed to by the destination address in 
register Ru 1, and is C bytes in length. The byte transla
tion table and the translation bytes themselves are identical 
to that described for the instruction TRANSLATE BYTE 
STRING. The destination byte string is examined (without 
being changed) until a translation byte (source byte) is found 
that contains a 1 in any of the bit positions selected by a 1 
in the mask. When such a translation byte is found, TTBS 
replaces the mask with the logical product (AND) of the 
translation byte and the mask, and terminates with CC4 set 
to 1. If the TTBS instruction terminates due to the above 

Byte String Instructions 61 



condition, the count (C) in register Rul is one greater than 
the number of bytes remoining to be compared and the des
tination address in register Ru 1 indicates the location of the 
destination byte that caused the instruction to terminate. If 
no translation byte is found that satisfies the above concli
tion after the specified number of destination bytes have 
been compared, TTBS terminates with CC4 reset to O. In 
no case does the TTBS instruction change the source byte 
string. 

Affected: (R), (Ru 1), CC4 

If translated (SBS) n mask 1.0, translated (SBS) n mask
mask and stop 

If translated (SBS) n mask = 0, continue 

Condition code setti ngs: 

2 3 4 Result of TTBS 

o translation bytes and the mask do not 
compare ones anyplace 

the last translation byte compared with 
the mask contained at least one 1 corre
sponding to a 1 in the mask 

If TTBS is indirectly addressed, it is treated as a nonexist
ent instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of opera
tion code decoding) and traps to location X'40' with the 
contents of register R and the destination byte string un
changed. 

Case I: even, nonzero R field (Ru 1 =R+ 1) 

Contents of regi ster R 

Contents of register R+ 1 

The destination byte string begins with the byte location 
pointed to by the destination address in register R+ 1 and is 
C bytes in length. The source byte string (translation table) 
begins with the byte location pointed to by the displacement 
in TTBS plus the source address in register R. 

Case II: odd R field 

Because of the interruptible nature of TRANSLATE AND 
TEST BYTE STRING, the results of the instruction are un
predictable when an odd-numbered general register is speci
fied by the R field of the instruction word. 

Case III: zero R field (Ru 1 =1) 

Contents of register 1 

62 Byte String Instructions 

The destination byte string begins with the byte location 
pointed to by the destination address in register 1 and is C 
bytes in length. The source byte string (translation table) 
begins with the location pointed to by the displacement in 
TTBS. In this case, the instruction automatically provides 
a mask of eight l's. (This is an exception to the general. 
rule, used in the other byte string instructions, that register 
o provides all O's as its contents. ) 

EBS EDIT BYTE STRING 
(Immediate displacement, optiona I, continue after 
interrupt) 

EDIT BYTE STRING converts a decimal information field 
from packed decimal format to zoned decimal format, under 
control of the editi ng pattern in the destination byte string, 
and replaces the destination byte string with the edited, 
zoned result. (See page 52 for a description of packed and 
zoned decimal formats.) EBS proceeds 1 byte at a time, 
starting with the first (most significant) byte of the editing 
pattern, and continues until all bytes in the editing pattern 
have been processed. The fill character, contained in bit 
positions 0-7 of register R, replaces the pattern byte under 
specified conditions. More than one decimal number field 
can be edited by a single EBS instruction if the pattern in 
memory is, in fact, a series of patterns corresponding to a 
series of number fields. In such cases, however, after the 
EBS instruction is completed, the condition code indicates 
the result of the last decimal number field processed and 
register 1 contains the byte address (or the byte address 
plus 1) of the last significance indicator in the edited des
tination byte string. (This allows the insertion of a floating 
dollar sign, etc. with a subsequent instruction.) 

The results of EBS are unpredictable if the R field of EBS is 
an odd value, or if the R field of EBS is O. 

Contents of register R 

Contents of register R+ 1 

The destination byte string is an editing pattern that begins 
in the byte location pointed to by the destination ad
dress in register R+l, and is C bytes in length. The deci
mal information field, which must be in packed decimal 
format, begins with the byte location pointed to by the 
displacement in EBS plus the source address in register R. 
The decimal information field must contain legal decimal 
digit and sign codes (packed format) and must begin with 
a decimal digit. 

The destination byte string (the editing pattern) may contain 
any a-bit codes desired. However, four byte codes in the 



editing pattern have special meanings. These codes are as 
follows: 

Binary value Function Abbreviation 

00100000 (X'20') Digit selector ds 

00100001 (X'21') Significclnce start 55 

0010 0010 (X'22~') Field seFlOration fs 

00100011 (X'23:') Immediat'e sig- si 
nificanCE!.start 

Before executing EBS, the condition code should be set to 
0000 if the high-ordE!r digit of the decimal number is in the 
left half of a byte, and should be S4~t to 0100 if the high
order digit is in the right half of a byte. 

The editing operation performed on each pattern byte of the 
destination byte strin!9 is determined by the following con
ditions: 

1. the pattern byte obtained from the destination byte 
string 

2. the decimal digH obtained frorTI the decimal number 
field 

3. the current state of the conditic)n code 

Depending upon variolus combinations of these conditions, 
the instruction EDIT B,YTE STRING performs one (and only 
one) of the following actions with the pattern byte and the 
decimal digit: 

1. the fill character (contents of bit positions 0-7 of reg
ister R) or a blank character (character code X '40') re
places the byte in the destinatkln byte string 

2. the decimal digit is expanded t.) zoned decimal format 
(by generating X"Fd', where d iis the decimal digit)and 
replaces the path~rn byte in the destination byte string 

3. the pattern byte remains unchanged 

In general, the normal editing procE'ss is as follows: 

1. Each byte of the destination byte string is replaced by 
a fill character until significanc:e is present, either in 
the destination b),te string or in the decimal informa
tion field. Significance is indicated by any of the 
following: 

a. the pattern byte is X'23' (immediate significance 
start), wh ich begins significance with the current 
decimal digit. 

b. the pattern byte is X'21' (significance start), which 
begins signifiicance with th43 following pattern byte. 

c. the current decimal digit is nonzero, which begins 
significance with the current pattern byte. 

2. After significancE' is encountered, each pattern byte 
that is X'20' (digit selector), X'21' (significance start), 
or X'23' (immediate significancE! start) is replaced by 
a zoned decimal number from th.e decimal field and all 

other pattern bytes are unchanged. This process con
tinues until any of the following conditions occurs. 

a. a positive sign is encountered in the decimal field, 
in which case subsequent pattern bytes are replaced 
by blank characters (X'40') until significance is 
again present, until a field separator is encoun
tered, or until the destination byte string is entirely 
processed, whichever occurs first. 

b. a negative sign is encountered in the decimal field, 
in which case subsequent pattern bytes are unchang
ed until significance is again present, until a field· 
separator is encountered, or until the destination 
byte string is entirely processed, whichever occurs 
first. 

c. a pattern byte of X'22' (field separator) is encoun
tered, in which case the field separator is replaced 
by a fi II character; subsequent pattern bytes are re
pi aced by the fi" character until si gnificance is 
again present, until a positive, or negative sign is 
encountered, or until the destination byte string is 
entirel y processed, whichever occurs first. 

d. the destination byte string is entirely processed, in 
wh'ich case the computer executes the next i nstruc
tion in sequence. 

The detai led operation of EDIT BYTE STRING is as given 
below. 

The explanation is necessarily quite detailed due to the high 
degree of flexibility inherent in EBS. Condition code set
tings are made continuously during the editing process and 
these settings help determine how each subsequent pattern 
byte wi II be edited. The summary of condition code settings 
given on the next page will help clarify the discussion below. 

1. If the count in bit position 0-7 of register R+ 1 is a non
zero, a pattern byte is obtained from the destination 
byte string; if the count in register R+ 1 is 0, the com
puter executes the next instruction in sequence. 

2. If the pattern byte is a digit selector (X'20', a signifi
cance start (X'21'), or immediate significance start 
(X'23'), a digit is accessed from the decimal informa
tion field as follows: 

a. a decimal byte is obtained from the byte location 
pointed to by the displacement in EBS plus the 
source address in register R. 

b. if bits 0-3 of the decimal byte are a sign code, the 
computer automatically aborts execution of EBS and 
traps to location X'4S', with the contents of reg
ister R, register R+ 1, the condition code, and the 
destination byte string unchanged from their cur
rent contents. 

c. if CC2 is currently set to 0, the digit to be 
used for editing is the left digit (bits 0-3) of 
the decimal byte; however, if CC2 is currently 
set to I, the digit to be used is the right 
digit (bits 4-7) of the decimal byte. In either 
case, CC3 is set to 1 if the digit is nonzero. 
If CC2 is set to 1 and the right digit (bits 4-7) of 

Byte String Instructions 63 



the decimal byte is a sign code" the computer 
automatically aborts execution of EBS and traps 
to location X'45' as described above. 

d. one of the following editing actions is performed. 

Conditions 

Pattern byte = SI(X '23') 

Pattern byte = SS(X'2l') 
CC4 = 1 

Pattern byte = SS 
CC4 = 0 
nonzero digit 

Pattern byte = SS 
eC4 = 0 
digit = 0 

Pattern byte = 0 S(X '20') 
CC4 = 1 

Pattern byte = OS 
CC4 = 0 
nonzero digit 

Pattern byte = OS 
CC4 = 0 
digit = 0 

Action 

Expand digit to zoned 
format, store in pattern 
byte location, and set 
CC4 to f (startsignifi
cance) 

Expand digit to zoned 
format and store in pat
tern byte location (be
cause CC4 = 1 means 
significance already 
encountered 

Expand digit to zoned 
format, store in pattern 
byte location, (becal,lse 
nonzero digit begins 
significance) and set 
CC4 to 1 

Store fi II character in 
pattern byte location 
(because significance 
starts wi th next pattern 
byte) and set CC4 to 1 

Expand digit to zoned 
format, and store digit 
in pattern byte location 

Expand digit to zoned 
format, store digit in 
pattern byte location, 
and set CC4 to 1 to 
signal significance 

Store fill character in 
pattern byte location 
(because significance 
not encountered yet) 

Mark 

Model 

None 

Mode 1 

Mode 2 

None 

Model 

None 

e. if CC2 is currently reset to 0 and if bits 4-7 of the 
decimal byte are a positive decimal sign code, 
eCl is set to 1, CC4 is reset to 0, and the source 
address in register R is incremented by 1. If CC2 
is currently reset to 0 and if bits 4-7 of the deci
mal byte are a negative decimal sign code, CCl 
and CC4 are both set to 1, and the source address 
is incremented by 1. Otherwise, CC2 is added to 
the source address and then CC2 is inverted. 

f. if marking is invoked at step d, above, one of the 
two following marking operations ore performed: 

Mode 1: load bits 13-31 of register R+l into bit 
positions 13-31 of register 1; bit positions 
0-12 of register are unpredictable. 

Mode 2: Load bits 13-31 of register R+l into bit 
positions 13-31 of r~gister 1 and then 

64 Byte String Instructions 

3. 

4. 

increment the contents of register 1 by 
1; bi t posi ti ons 0-12 of reg ister 1 are 
unpredictable. 

If marking is not applicable (i.e., significance has 
not been encountered, the contents of register 1 . 
are not affected. 

If the pattern byte is a field separator (X'221), the fill 
character is stored in the pattern byte location. CC 1, 
CC3, and CC4 are all reset to 0'5, and CC2 remains 
unchanged. 

If the pattern byte is not a digit selector, significance 
start, immediate significance start or field separator, 
one of the following actions are performed: 

Conditions 

CCl = 0 } 
CC4 =0 

CCl = 1 } 
CC4 =0 

CC4 = 1 

Action 

store fill character in pattern byte 
location 

store blank character (X'40') in pattern 
byte location 

none (pattern byte remains unchanged) 

5. Increme~t the destination address in register Ru 1, de
crement the count in register Rul. If the count is still 
nonzero, process the next pattern byte as above, other
wise, execute the next instruction in sequence. 

Affected: (R) .. (Ru1) Traps: Unimplemented in-
(register 1), (oBS),CC struction, decimal 

arithmetic 
edited (SBS) - oBS 

Condition code settings: 

o 

o 

2 3 4 Result of EBS 

o 

o significance is not present, no sign digit 
has been encountered 

significance is present, no sign digit has 
been encountered 

o a positive sign has been encountered 

a negative sign has been encountered 

next digit to be processed is left digit 
of byte 

next digit to be processed is right digit 
of byte 

o no nonzero digit has been encountered 

a nonzero digit has been encountered 

If EBS is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and traps to location X'40' with the contents 
of register R, register Ru1, register 1, the destination byte 
string, and the condition code unchanged. 

If the decimal instruction set is not implemented, the com
puter unconditionally aborts execution of EBS (at the time 
of operation code decoding) and traps to location X '41' with 
the condition code, the contents of register R, register Rul, 
register 1, and the destination byte string unchanged. 



If an illegal digit or' sign is detect'ed in the decimal infor
mation field, the computer unconditionally aborts execution 
of the instruction (at the time the illegal digit or sign is en
c()untered) and traps to location X 145' with the contents of 
register R, register Rv 1, register 1" the destination byte 
stdng, and the condition code containing the results of the 
last editing operation performed bEt fore the illegal digit or 
sign was encountered. . 

In the following examples, the he)cadecimal codes for the 
digit selector (x'20'), the significclnce start (X'21'), the 
field separation (X'22'), and the immediate significance 
start (X'23') are represented.by thEt character groups ds, ss, 
fs, and si, respectively. Also, th4!!! symbol b is used to re 
represent the character blank (X'40'). 

Example 1, before execution: 

The instruction word is: X '63600000' 

The contents of regisJer 6 are: X'5,COOO100' 

The contents of regis,ter 7 are: X'OICOOlooo' 

The contents of the decimal informlotion field beginning at 
byte location X'l00' are: OOOOQ()O+ 

The contents of the destination by tie string beginning at 
byte location X'l000' are: 

ds ds, ds ds ss . ds ds 1> C R 

The condition code is: 0000 

Example 1, after execution: 

The instruction word is unchanged 

The new contents of register 6 are: X'5Coool04' 

The new contents of register 7 are: X'OOOOl00c' 

The contents of the decimal information field are unchanged 

The new contents of the destination byte string are: 

* * * * * * • 001)1)1) 

The new condition code is: 1000 

The contents of register 1 are: X'):xxOl006' 

By subsequent programming, a floal~ing dollar sign can be 
inserted in front of the first significant character of the 
edited byte string b>, using the contents of register 1, minus 
1, as the address of the byte locatiion where the dollar sign 
is to be inserted. 

E)cample 2, before execution: 

The initial conditions are identicall to example 1, except 
that the contents of the decimal information field are: 
06 54 32 1-

Example 2, after execution: 

The instruction word and the decimal field are unchanged 

The new contents of registers 6 and 7 are identical to those 
given for example 1 

The new contents of the destination byte string are 

*6,543.211>CR 

The new condition code is: 1011 

The new contents of register 1 are: X'xxxOl001' 

Example 3, before execution: 

The initial conditions are identical to example 1, except 
that the contents of the decimal field are: 

00 54 32 1+ 

Exampl e 3, after executi on : 

The in;;truction word and the decimal field are unchanged 

The new contents of registers 6 and 7 are identica I to that 
given for example 1 

The new contents of the destination byte string are 

***543.211)1)1> 

The new condition code is: 1010 

The new contents of register 1 are: X'xxxOl003' 

Example 4, before execution: 

The instructi~n word is: X '634001 00' 

The contents of register 4 are: X '7BOOl 000' 

The contents of reg ister 5 are: X'19002ooo' 

The contents of the decimal information field beginning at 
byte location X'1100' are: 

06 12500+ 01. 234+ 03 5-

The contents of the destination byte string beginning at 
byte location X'2000' are: 

A dsds si • dsdsds fs B dsds ss. dsds C fs 0 si dsds END 

The condition code is: 0100 

Example 4, after execution: 

The instruction word is unchanged 

The new contents of register 4 are: X'7Bool009' 

The new contents of register 5 are: X'00002019' 

The decimal information field is unchanged 

The new contents of the destination byte string are: 

, 6 1 2 • 500' 1/ # 1 2 • 3415" 0 3 5 END 

The new condition code is: 1011 

The new contents of register 1 are: X'xxx02013' 

PUSH-DOWN INSTRUCTIONS 

The term "push-down processing" refers to the programming 
technique (used extensively in recursive routines) of storing 
the context of a calculation in memory, proceeding with a 
new set of information, and then activating the previously 
stored information. Typically, this process involves a re
served area of memory (stack) into which operands are 
pushed (stored) and from which operands ore pulled 
(loaded) on a last-in, first-out basis. The SIGMA 7 computer 

Push-Down Instructions 65 



provides for simplified and efficient programming of pt.,Ish
down processing by means of the following instructions: 

Instruction Name 

Push Word 
Pull Word 
Push Multiple 
Pull Multiple 
Modify Stack Pointer 

Mnemonic 

PSW 
PlW 
PSM 
PlM 
MSP 

STACK POINTER DOUBLEWORD 

Each of these instructions operates with respect to a memory 
stack that is defined by a doubleword located at the effec
tive address of the instruction. This doubleword, referred 
to as a stack pointer doubleword (SPO), has the following 
structure: 

Bit positions 15 through 31 of the SPO contain a 17-bit ad
dress field that points to the location of the word currently 
at the top (highest-numbered address) of the operand stack. 
In a push operation, the top-of-stack address is incremented 
by 1 and then an operand in a general register is pushed 
(stored) into that location, thus becoming the contents of 
the new top of the stack; th~ contents of the previous top of 
the stack remain unchanged. In a pull operation, the con
tents of the current top of the stack are pulled (loaded) into 
a general register and then the top-of-stack address is de
cremented by 1; the previous contents of the stack re
main unchanged. 

Bit positions 33 through 47 of the SPO, referred to as the 
space count, contain a 15-bit count (0 to 32,767\ of the 
number of word locations currently available in the region 
of memory allocated to the stack. Bit positions 49 through 
63 of the SPO, referred to as the word count, contain a 15-
bit count (0 to 32,767) of the number of words currently in 
the stack. In a push operation, the space count is decre
mented by 1 and the word count is incremented by 1; ina 
pull operation, the space count is incremented by 1 and the 
word count is decremented by 1. At the beginning of all 
push-down instructions, the space count and the word count 
are each tested to determine whether or not the instruction 
would cause either count field to be incremented above the 
upper limit of 215-1 (32,767), or to be decremented below 
the lower limit of O. If execution of the push-down instruc
tion would cause either count limit to be exceeded, the 
computer unconditionally aborts execution of the instruc
tion, with the stack, the stack pointer doubleword, and the 
contents of general registers unchanged. Ordinarii y, the 
computer traps to location X'42' after aborting a push-down 
instruction because of impending stack limit overflow or 
underflow, and with the condition code unchanged from the 
value it contained before execution of the instruction. 

66 Push-Down Instructions 

However, this trap action can be selectively inhibited by 
setting either {or both) of the trap inhibit bits in the SPD to 1. 

Bit position 32 of the SPO, referred to as the trap-on-space 
(TS) inhibit bit, determines whether or not the computer i~ 
to trap to location X'402' as a result of impending overflow 
or underflow of the space count (SP033-407), as follows: 

TS Space count overflow/underflow action 

o If the execution of a pull instruction would cause the 
space count to exceed 215-1, or if the execution of a 
push instruction would cause the space count to be less 
than 0, the computer traps to location X'402' with the 
condition code unchanged. 

Instead of trapping to location X'42', the computer 
sets CCl to 1 and then executes the next instruction 
in sequence. 

Bit position 48 of the SPO, referred to as the trap-on-word 
(TW) inhibit bit, determines whether or not the computer is 
to trap to location X'42' as a result of impending overflow 
or underflow of the word count (SP0409-63)' as follows: 

TW Word count overflow/underflow action 

o If the execution of a push instruction would cause the 
word count to exceed 2 15-1, or if the execution of a 
pull instruction would cause the word count to be less 
than 0, the computer traps to location X'42' with the 
condition code unchanged. 

Instead of trapping to location X'42', the computer 
sets CC3 to 1 and then executes the next instruction 
in sequence. 

PUSH-DOWN CONDITION CODE SETTINGS 

If the execution of a push-down instruction is attempted and 
the computer traps to location X'42', the condition code re
mains unchal"'p .. : ;r-.)i:i trle "alue it contained immediatel y 
before t1e ins,"ruction ",- " executed. 

If the execution of a push-down instruction is attempted and 
the instruction is aborted because of impending stack limit 
overflow or underflow (or both) but the push-down stack 
limit trap is inhibited by one (or both) of the inhibits (TS 
and TW), then, CCl or CC3 is set to 1 (or both are set to 
1 's) to indicate the reason for aborting the push-down in
struction, as follows: 

2 3 4 

o 

o 

Reason for abort 

impending overflow of word count on a 
push operation or impending underflow 
of word count on a pull operation. The 
push-down stack limit trap was inhibited 
by the TW bit (SP0408 ) 

impending overflow of space count on a 
pull operation or impending underflow 
of space count on a push operation. The 
push-down stack limit trap was inhibited 
by the TS bit (SP0

32
) 



2 3 4 Reason for abClr~ 

impending overflow of word count and 
underflow of space count on' a push op
eration or impending overflow of space 
count and undlarflow of word count on 
a pull operatic.n. The push-down stock 
limit trap was inhibited by both ,the TW 
and the TS bit!! 

If (]I push-down instruction is succ:essfully executed, CCI 
and CC3 are reset to 0 at the completion of the instruction. 
Also, CC2 and CC4 are independl4mtly set to indicate the 
current status of the space count ,and the word count, re
s.pectively, as follows: 

2 3 4 Status of space· and word counts 

o 0 the current spcllce count and the current 
word count are' both greater than zero 

o Ithe current spcllce count is greater than 
:zero, but the c:urrent word! count is zero, 
iindicating that the stack is now empty. 
IIf the next operation on the stack is a 
I~ull instruction, the instruction will be 
l::lborted 

o lthe current word count is greater than 
:l.ero, but the c:urrent space count is zero, 
iindicating that the stack is now full. If 
l~he next operaltion on the stack is a push 
iinstruction, thE! instruction will be aborted 

If the computer does not trap to I.)cation X'421 as a result 
of impending stac~ I imit overflo~/underflow, CC2 and 
CC4 indicate the status of the spclce and word counts at 
the termination of lrhe push-down instruction, regardless 
of whether or not the space and word counts were actually 
modified by the instruction. In the following descriptions 
(If the push-down instruction, onl y those condition codes 
(Ire given that can actually be pn>duced by the instruction, 
provided the computer does not trap to location X'42'. 

F·SW PUSH WORD 
(Doubleword index alignment) 

[:L. ~~ , . ,I, : " .L ~ ..I.,: I, .: ~~ference ~ddress 
PUSH WORD stores the contents (If register R into the push
down stack defined by the stack pointer doubleword located 
CIt the effective doubleword addrE!SS of PSW. If the push 
operation can be successfully performed, the instruction 
clperates as follows: 

1. The current top-of-stack address (SPD 15-31) is incre
mented by I, to po i nt to the new top-of-stack 
location. 

2. The contents of register R arE! stored in the location 
poi nted to by lrhe new top-of-stack address. 

3. The space count (SPD33-47) is decremented by 1 and 
the word counlt (SPD49-63) hi incremented by 1. 

4. The condition code is set to reflect the new status of 
the space count. 

Affected: (SPD), (TSA+ 1), Trap: push-down stack limit 
CC 

(SPD)15-31 + 1 -SPDI5_31 
(R)-(SPD

15
_

31
) 

(SPD)33_47- 1 - SPD33_47 

(SPD) 49-63 + 1 - SPD 49-63 

Condition code settings: 

1 2 3 4 Result of PSW 

0 0 0 0 space count is greater I 
than 0 

0 0 0 space count is now 0 

0 0 0 word count = 215_1, 
TW = 1 

0 0 space count = 0, 
TS = 1 

0 space count = 0, word 
count = 0, TS = 1 

0 word count = 215_1, 
space count = 0, 
TW = 1, and T S = 1 

PLW PULL WORD 
(Doubleword index alignment) 

instruction 
completed 

instruction 
aborted 

PULL WORD loads register R with the word currentl y at the 
top of the push-down stack defi ned by the stack poi nter 
doubleword located at the effective doubleword address of 
PLW. If the pull operation can be performed successfully, 
the instruction operates as follows: 

1. Register R is loaded with the contents of the location 
poi nted to by the current top-of-stack address 
(SPD I5-31 ). 

2. The current top-of-stack address is decremented by 1, 
to point to the new top-of-stack location. 

3. The space count (SPD33-47) is incremented by 1 and 
the word cou"l)t (SPD49-63) is decremented by 1. 

4. The condition code is set to reflect the status of the 
new word count. 

Affected: (SPD), (R), CC Trap: Push-down stack limit 

{(SPD)15_31) - R; {SPD)15_31 -1 -SPDI5_31 

(SPD)33_47 + 1-SPD33_47 

(S PO) 49-63 -1 ----=-- S PO 49-63 

Push-Down Instructions 67 



Condition code settings: 

2 3 4 Result of PLW 

0 0 0 0 word count is greater I 
than 0 instruction 

0 0 0 word c;ount is now 0 completed 

0 0 word count = 0, TW = 1 

0 space count = 0, 
word count = 0, TW:. 1 

0 0 0 space count = 215- 1, instruction 
TS = 1 aborted 

0 space count = 215_1, 
word count = 0, TS = 1 
and TW = 1 

PSM PUSH MULTIPLE 
(Doubleword index alignment) 

PUSH MULTIPLE stores the contents of a sequential set of 
general registers into the push-down stack defined by the 
stock pointer doubleword located at the effective double
word address of PSM. The condition code is assumed to 
contain a count of the number of registers to be pushed in
to the stock. (An initial value of 0000 for the condition 
code specifies that all 16 general registers are to be pushed 
into the stock.) The registers are treated as a circular set 
(with register 0 following register 15) and the first register 
to be pushed into the stack is register R. The last register 
to be pushed into the stack is register R+CC-l, and the 
contents of this register become the contents of the new 
top-of-stack location. 

If there is sufficient space in the stack for all of the speci
fied registers, PSM operates as follows: 

1. The contents of registers R to R + CC -1 are stored in 
on ascending sequence, beginning with the location 
pointed to by the current top-of-stack address 
(SPD15-31) plus 1 and ending with the current top
of-stock address plus CC. 

2. The current top-of-stack address is incremented by the 
value of CC, to point to the new top-of-stack location. 

3. The space count (SPD33- 47) is decremented by the 
value of CC and the word count is incremented by 
the value of CC. 

4. The condition code is set to reflect the new status of 
the space count. 

Affected: (SPD), (TSA+ 1) to Trap: Push-down stack limit 
(TSA+CC), CC 

(R)--(SPD)15_31 + 1 •.. (R+CC-1)-(SPD)15_31+CC 

(SPD)15_31+CC -- SPD 15_31 
(SPD)33_47-CC - SPD33_47 

(SPD)49_63+CC-SPD 49-63 

68 Push -Down Instructions 

Condition code settings: 

2 3 .. Resu I t of PSM 

0 0 0 0 space count> o) 
0 1 0 0 space count = 0 

0 0 0 word count + CC> 215_1, 
TW = 1 

. 1 0 0 0 space count <ee, TS = 1 

0 0 1 space count < CC, word 
count = 0, TS = 1 

0 0 space count <ec, word 
count + CC> 215_1, 
TS = 1, and TW = 1 

0 0 space count = 0, TS = 1 

0 space count = 0, word 
co un t = 0, TS = 1 

0 space count = Of word 
count + CC > 2 5-1, 
TS = 1, and TW = 1 

instruction 
completed 

instruction 
aborted 

If the instruction starts storing words into an accessible re
gion of memory and then crosses into an inaccessible memory 
region, either the memory protection trap or the nonexistent 
memory address trap can occur. In ei ther case, the trap is 
activated with the condition code unchanged from the value 
it contained before the execution of PSM. The effective ad
dress of the instruction permits the trap routi ne to compute 
how many words of memory have been changed. Since it is 
permissible to use indirect addressing through one of the af
fected locations, or even to execute an instruction located 
in one of the affected locations; a trapped PSM instruction 
may have already overwritten the direct address, or the . 
PSM instruction itself, thus destroying any possibility of 
continuing the program successfully. If such programming 
must be done, it is advisable that the direct address, or the 
PSM instruction, occupy the lost location in which the con
tents of a register are to be stored by the PSM instruction. 

If the address of the elements within the stack (pointed to 
by the top-of-stack address) is in the range 0 through IS, 
then the registers indicated by the R field of the PSM in
struction are stored in the general registers rather than in 
core memory. In this case the results wi II be unpredictable 
if any source registers are also used as destination registers. 

PLM PULL MULTIPLE 
(Doubleword index alignment) 

PULL MULTIPLE loads a sequential set of general registers 
from the push-down stack defined by the stack pointer 
doubleword located at the effective doubleword address 
of PLM. The condition code is assumed to contain a count 
of the number of words to be pulled from the stock. (An in
itial value of 0000 for the condition code specifies that 
16 words are to be pul ~ed from the stack.) The registers 
are treated as a circular set (with register ° following 



register 15), the first register to b4~ loaded from the stack 
is register R + CC -1, and the contents of the current top
of -stack location become the contents of this register. The 
IClst register to be loaded is registEtf R. 

If there is a sufficient number of words in the stack to load 
all of the specified registers, PLM operates as follows: 

1.. Registers R + CC -1 to register R are loaded in a de-
scending sequence, beginnin~, with the contents of 
the location pointed to by thEt current top·-of-stack 
address (SPD15.-31) and ending with the contents of 
the location pointed to by thEt, current top·-of-stack 
address minus CC -1. 

2. The current top-of-stack address is decremented by 
the value of CC, to point to lthe new top-of-stock 
location. 

3.. The space count (SPD33-47) is incremented by the 
value of CC and the word count is decremented by 
the value of CC. 

4.. The condition c:ode is set to r4eflect the new status 
of the word count. 

Affected: (SPD), (R+CC-1) Trap: Push-down stack limit 
to (R), CC 

«SPD)15_31)-R+CC-1, •.. , 

«SPD)15_31 -ICC-.J! )-R 

(SPD)15_31 - CC --SPD15_31 
(SPD)33_47 + CC --SPD33_47 

(SPD)49_63 - CC --SPD 49-63 

Condition code settings: 

2 3 4 Result of PLM 

0 0 0 0 word count > 0 '\ instruction completed 
0 0 0 1 word count = 0 

0 0 0 word count < ce, TW = 1 

0 0 1 word count = 0, TW = 1 

0 0 space count = 0, word 
count < CC, lVl = 1 

0 space count = 0, word 
count = 0, TW:= 1 instruction 

0 0 0 space count + CC>2
15

_1, 
aborted 

TS = 1 

0 0 space count + C:C >2
15

_1, 
word count < ee, TS = 1, 
and TW = 1 

0 space count + C:C>2
15

_1, 
word count = 0, TS = 1, 
olnd TW = 1 

H the instruction starts loading fro,m an existent region of 
memory and then crosses a memory page boundary into an 
inaccessible memory region, either the memory protection 
trap or the nonexistent memory address trap can occur. In 
either case, the trap is activated with the condition code 

unchanged from the value it contained before the execution 
of PLM. The effective address of the instruction permits 
the trap routine to compute how many registers have been 
loaded. Since it is permissible to use indexing or indirect 
addressing through a general register, or even to execute 
an instruction located in a general register, a trapped PLM 
instruction may have already overwritten the index, direct 
address, or the PLM instruction itself, thus destroying any 
possibility of continuing the program successfully. If such 

. prograrr"Tling must be done, it is advisable that the register 
containing the direct address, index displacement, or in
struction be the last register loaded by the PLM instruction. 

If the address of the elements within the stack (pointed to 
by the top-of-stack address) is in the range 0 through 15, 
then the words to be loaded are taken from the general re
gisters rather than from core memory. In this case the re
sults will be unpredictable if any of the source registers 
are also used as destination registers. 

MSP MODIFY STACK POINTER 
(Doubleword index alignment) 

MODIFY STACK POINTER modifies the stack pointer double
word, located at the effective doubleword address of MSP, 
by the contents of register R. Register R is assumed to have 
the following format: 

Bit positions 16 through 31 of register R are treated as a 
signed integer, with negative integers in two's complement 
form (i. e., a fixed-point halfword). The modifier is alge
braicallyadded to the top-of-stack address, subtracted from 
the space count, and added to the word count in the stack 
pointer doubleword. If, as a result of MSP, either the space 
count or the word count would be decreased below 0 or in
creased above 215_1, the instruction is aborted. Then, the 
computer either traps to location X'42' or sets the condition 
code to reflect the reason for aborting, depending on the 
stack limit trap inhibits. 

If the modification of the stack pointer doubleword can be 
successfully performed, MSP operates as follows: 

1. The modifier in register R is algebraically added to the 
current top-of-stack address (SPD)15-31, to point to a 
new top-of-stack location. (If the modifier is negative, 
it is extended to 17bitsbyappendingahigh-order 1.) 

2. The modifier is algebraically subtracted from the cur
rent space count (SPD33-47) and the result becomes 
the new space count. 

3. The modifier is algebraically added to the current word 
count (SPD49-63) and the result becomes the new word 
count. 

4. The condition code is set to reflect the new status of 
the new space count and new word count. 

Affected: (SPD), CC Trap: Push-down stack limit 

Push-Down Instructions 69 



(SPD)15_31 + (R)16-3ISE -SPDI5_31 

(SPD)33_47 - (R)16-31- SPD33-47 

(SPD)49_63 + (R)16_31 - SPD 49-63 

Condition code settings: 

2 3 4 Result of MSP ------
o 0 0 0 space count > 0, 

word count> 0 

000 space count> 0, 
word count = O. 

o 

o 

o 0 space count = 0, 
word count > 0 

o space count = 0, 
word count = 0, 
modifier = 0 

instruction 
completed 

If CC 1, or CC3, or both CC I and CC3 are liS after exe
cution of MSP, the instruction was aborted but the push
down sta-ck limit trap was inhibited by the trap-on-space 
inhibit (SPD32), by the trap-on-word inhibit (SPD4S), or 
both. The condition code is set to reflect the reason for 
aborting as follows: 

o 

234 Status of space count and word count 

o 

o 

o word count > 0 

word count = 0 

o S word count + modifier S 215_1 

word count + modifier < 0, and TW = 1 
or word count + modi fi er > 215_1 and 
TW = 1 

space count> 0 

space count = 0 

Os space count - modifier s 215_1 

space count - modifier < 0, and TS = 1 
or space count - modifier> 215-1 
TS = 1 

EXECUTE/BRANCH INSTRUCTIONS 

The EXECUTE instruction can be used to insert another in
struction into the program sequence, and the branch instruc
tions can be used to alter the program sequence, either 
unconditionally or conditionally. If a branch is uncondi
tional (or conditional and the branch condition is satisfied), 
the instruction pointed to by the effective oddress of the 
branch instruction is normally the_next instruction to be ex
ecuted. If a branch is conditional and the condition for 
the branch is not satisfied, the next instruction is normally 
taken from the next location, in ascending sequence, after 
the branch instruction. 

Prior to the time that an instruction is accessed from memory 
for execution, bit positions 15-31 of the program status 
doubleword contain the virtual address of the instruction, 
referred to as the instruction address. At this time, the 

70 Execute/Branch Instructions 

computer traps to location X'40' if the actual address of 
the instruction is nonexistent or instruction-occess pro
tected. If the instruction address is existent and is 
not instruction-occess protected, the instruction is ac
cessed and the instruction address portion of the program 
status doubleword is incremented by 1, so that it now con
tains the virtual address of the next instruction in sequenc"e 
(referred to as the updated instruction address). 

If a trap condition occurs during the execution sequence of 
. any instruction, the computer decrements the updated in

struction address by 1 and then traps to the location assigned 
to the trap condition. If neither a trap condition nor a 
satisfied branch condition occurs during the execution of an 
instruction, the next instruction is accessed from the location 
poi nted to by the updated i nstruc ti on address. If a sati sfi ed 
branch condition occurs during the execution of a branch 
instruction (and no trap condition occurs), the next instruc
tion is accessed from the location pointed to by the effec
tive address of the branch instruction. Thus, during execu
tion of a branch instruction, the updated instruction address 
is decremented, unchanged, or replaced, as determined by 
the following critera: 

1. Trap condition. A nonallowed operation trap condition 
can occur during execution of a branch instruction, but 
onl y if an attempt is made to access either a nonexis
tent memory address or an address that is not available 
to the slave program for instruction access. The trap 
condition occurs in the following situations: 

a. The branch instruction is indirectly addressed, but 
the address of the location containing the direct 
address is either nonexistent or unovailabl e to the 
slave program for read access. 

b. The branch instruction is unconditional (or the 
branch is conditional and the condition for the 
branch is satisfied), but the effective address of 
the branch instruction is unavailable to the slave 
program for instruction access. 

c. The effective address of any branch instruction 
(conditional or unconditional) is nonexistent. 

If any of the above situations occur, the computer 
aborts execution of the branch instruction, decrements 
the updated instruction address by 1, and traps to loca
tion X'40'. In this case, the instruction address value 
(IA) stored by the XPSD instruction in location X'40' is 
the address of the aborted branch instruction. 

2. No branch condition. If the branch instruction is con
ditional, the condition for the branch is not satisfied, 
and no trap condition occurs, the updated instruction 
address remains unchanged. Then, instruction execu
tion proceeds with the instruction pointed to by the 
updated instruction address. 

3. Branch condition. If the branch instruction is uncon
ditional (or if the branch instruction is conditional and 
the condition for the branch is satisfied) and no trap 
condition occurs, the updated instruction address is 
replaced by the effective virtual address of the branch 
instruction. Then, instruction execution proceeds with 
the instruction pointed to by the effective virtual ad
dress of the branch instruction. 



lEX II EXECUTE 
~ord index alignment) 

Reference ~ress 
EXECUTE causes the computer to access the instruction in 
I'he location pointed to by the effective address of EXU and 
execute the subject instruction. The execution of the sub
ject instruction, including the prrocessing of trap and in
I'errupt conditions, is performed exactly as if the subject 
instruction were initially accessed instead of the EXU in
struction. If the subject instruction is another EXU, the 
computer executes the subject imitruction pointed to by the 
c!ffective address of the second EXU as described above. 
Such "chains" of EXECUTE instrucHons maybe of any length, 
(md are processed (without affecting the updated instruction 
CJddress) unti I on i nstruc ti on other than EXU is encountered. 
After the final subject instruction is executed, instruction 
E~xecution proceeds with the next instruction in sequence 
CJfterthe initial EXU (unless the !object instruction is on 
LPSD or XPSD instruction, or is e branch instruction and 
the branch condition is satisfied). 

If an interrupt activation occurs between the beginning of 
an EXU instruction (or chain of EXU instructions) and the 
last interruptible point in the subject instruction, the com
puter processes the interrupt-servicing routine for the ac
tive interrupt level and then returns program control to the 
EXU instruction (or the intial imtruction of a chain of 
EXU instructions), which is started anew. Note that a pro
gram is interruptible after every instruction access, includ
ing accesses made with the EXU instruction, and the inter
ruptibility of the subject instruction is the some as the 
normal interruptibil ity for that imitruction. 

If a trap condition occurs betweel'1l the beginning of on EXU 
instruction (or chain of EXU instnJctions) and the completion 
of the subject instruction, the computer traps to the appro
priate trap locetion. The instructrion address stored by the 
XPSD instruction In the trap locat'ion is the address of the 
[XU instruction (or the initial instruction of a chain of 
[XU instructions). 

Affected: Determined by 
subject iinstruction 

Traps: Determined by 
subject instruction 

Condition code settings: Determined by subject instruction 

8CS BRANCH ON CONDITIONS SET 
0I/ord indElx 01 ignment) 

H , ~~ .. J ~ ,,,.I.. ~ J,: '"'' " 
8RANCH ON CONDITIONS SET forms the logical product 
(AND) of the R field of the instruc,tion word and the current 
condition code. If the logical product is nonzero, the 
branch condition is sotisfied and instruction execution pro
(:eeds with the instruction pointecl to by the effective ad
dress of the BCS instruction. However, if the logical 
product is zero, the branch conclition is unsatisfied and 
instruction execution then proceeds with the next instruc
Hon in normal sequence. 

Affected: (IA) if CC n R ,0 
If CC n (1)8-11 ,0, EVA1S_31 - IA 

If CC n (1)8-11 = 0, IA not affected 

If the R field of BCS is 0, the next instruction to be exe
cuted after BCS is always the next instruction in ascending 
sequence, thus effectively producing a "no operation" 
instruct:on. 

BCR BRANCH ON CONDITIONS RESET 
~ord index alignment) 

BRANCH ON CONDITIONS RESET forms the logical pro
duct (AND) of the R field of the instruction word and the 
current condition code. If the logical product is zero, the 
branch condition is satisfied and instruction execution then 
proceeds with the instruction pointed to by the effective ed
dress of the BCR instruction. However, if the logical pro
duct is nonzero, the branch condition is unsatisfied and in
struction execution then proceeds with the next instruction 
in normal sequence. 

Affected: (IA) if CC n R = 0 

If CC n (1)8-11 = 0, EVA 15_31 - IA 

IF CC n (1)8-11 ,9, IA not affected 

If the R field of BCR is 0, the next instruction to be execu
ted after BCR is always the instruction located at the·effec
tive address of BCR, thus effectively producing a "branch 
unconditionally" instruction. 

SIR BRANCH ON INCREMENTING REGISTER 
~ord index al ignment) 

BRANCH ON INCREMENTING REGISTER computes the 
effective virtual address (EVA) and then increments the 
contents of general register R by 1. If the result is a nega
tive value, the branch condition is satisfied and instruction 
execution then proceeds with the instruction pointed to by 
the effective address of the BIR instruction. However, if 
the result is zero or a positive value, the branch condition 
is not satisfied and instruction execution proceeds with the 
next instruction in normal sequence. 

Affected: (R), (lA) 

(R) + 1 -R 

If (R)O = 1, EVA15- 31 -IA 

If (R)O = 0, IA not affected 

If the effective address of BIR is unavailable to the slave 
program for instruction access and the branch condition is 
satisfied, or if the effective address of BIR is nonexistent, 

Execute/Branch Instructions 71 



the computer aborts execution of the BIR instruction and 
traps to location X'40'. In this case, the instruction address 
stored by the XPSD instruction in location X'40' is the vir
tual address of the aborted BIR instruction. If the computer 
traps because of instruction access protection, register R will 
contain the value that existed justbeforethe BIR instruction. 

BDR BRANCH ON DECREMENTING REGISTER 
rNord index alignment) 

BRANCH ON DECREMENTING REGISTER computes the 
ef'fective virtual address (EVA) and then decrements the 
contents of general register R by 1. If the resul t is a posi
tive value, the branch condition is satisfied and instruction 
execution then proceeds with the instruction pointed to by 
the effective address of the BDR instruction. However, if 
the result is zero or a negative value, the branch condition 
is unsatisfied and instruction execution proceeds with the 
next instruction in normal sequence. 

Affected: (R), (JA) 

(R) - 1- R 

If (R)O = 0 and (R)1_31 -10, EVA 15..Jl - IA 

if (R)O = 1 or (R) = 0, IA not affected 

If the effective address of BDR is unavailable to the slave 
program for instruction access and the branch condition is 
satisfied, or if the effective address of BDR is nonexistent, 
the computer aborts execution of the BDR instruction and 
traps to location X'40'. In this case, the instruction address 
stored by the XPSD instruction in location X'40' is the vir
tual address of the aborted BDR instruction. If the computer 
traps because of instruction access protection, register R will 
contain the value that existed just before the BDR instruction. 

BAt. BRANCH AND LINK 
rN ord index a I ignment) 

BRANCH AND LINK determines the effective virtual ad
dress, loads the updated instruction address (the virtual ad
dress of the next instruction in normal sequence after the 
BAL instruction) into bit positions 15-31 of general regis
ter R, clears bit positions 0-14 of register R to O's and then 
replaces the updated instruction address with the effective 
virtual address. Instruction execution proceeds with the 
instruction pointed to by the effective address of the BAL 
i nstruc tion. 

Affected: (R), (IA) 

IA- R
15

_
31

;0 -R
O

_
14

; EVA
15

_
31 

- IA 

If the effective address of BAL is either nonexistent or is 
unavailable to the slave program for instruction access, 

n CALL Instructions 

the computer aborts execution of the BAL instruction (after 
loading the updated instruction address into register R) and 
traps to location X'40'. In this case, the instruction ad
dress stored by the XPSD instruction in location X'4Q 1 is 
the virtual address of the BAL instruction. 

CALL INSTRUCnONS 
Each of the four call instructions causes the computer to 
trap to a specific location for the next instruction in se
quence. The four call instructions, their mnemonics, and 
the locations to which the computer traps are: 

Instruction Name Mnemonic Trap Location 

CALL 1 CAll X'48' 
CALL 2 CAL2 X'49 1 

CALL 3 CAL3 X'4A' 
CALL 4 CAL4 X'4B ' 

Each of these four trap locations must contain an EXCHANGE 
PROGRAM STATUS DOUBLEWORD (XPSD) instruction. Exe
cution of XPSD in the trap location for a call instruction is 
described on page 74. If the XPSD instruction is coded with 
bit position 9 set to 1, the next instruction (executed after 
the XPSD) is taken from one of 16 possible locations, as des
ignated by the value in the R field of the call instruction. 
Each of the 16 locations may contain an instruction that 
causes the computer to branch to a specific routine; thus, 
the four call instructions can be used to enter any of as 
many as 64 unique routines. 

CAll CALL 1 
(Word index alignment) 

CALL 1 causes the computer to trap to location X'48 I
• 

CAl2 CALL 2 
~ord index alignment) 

CALL 2 couses the computer to trap to location X'49 1
• 

CA13 CALL 3 
(Word index alignment) 

CALL 3 causes the computer to trap to location X'4A'. 

CALL 4 
~or~_ index alignment) 

CALL 4 causes the computer to trap to location X'4B'. 



CONTROL INSTRUCTIONS 

The following privileged instrucltions are used to cantrol 
the basic operating conditions olF the SIGMA 7 computer: 

Instruction Name Mnemonic 

load Program Status Doubl eword 
Exchange Program Status Doubl eword 
load Register Poinlter 

lPSD 
XPSD 
lRP 
MMC 
WAIT 
RD 
WD 

Move to Memory Control 
Wait 
Read Direct 
Write Direct 

If execution of an:y control instruction is attempted while 
the computer is in the slave modle (i.e., while bit 8 of the 
current program St4JtUS doubleword is a 1), the computer un
conditionally aborts execution 01F the instruction (at the time 
of operation code decoding) and Irraps to location X'40'. 

PROGRAM STATUS DOUBLEWORD 
The SIGMA 7 program status doubleword has the following 
structure when stored in memory: 

Sit Desig-
Position nation ~LJnction 

10-3 CC Condition code 
.5 FS Flloating signific:ance mask 
6 FZ Fl10ating zero m4lsk 

7 FN Flloating normaliize mask 

a MS Master /SI ave m4xJe control 

9 MM Memory Map mclde control 

10 OM Decimal arithmE!tic trap mask 

11 AM Fiixed-point arithmetic overflowtrapmask 
15-31 IA Instruction addmss 

34,35 WK Write key 

37 CI Counter interrupt group inhibit 

:38 II I/o interrupt gr'oup inhibit 

39 EI External interrupt inhibit 
55-59 RP R~~gister pointer 

the detailed functions of the various portions of the SIGMA 
7 program status dOlubl eword are described on page 15. 

. LPSD lOAD PROGRAM STATIUS DOUBlEWORD 
(Doublew4:>rd index alignment, privileged) 

I~ OE I ~ '~I~I X I: Reference' addre .. 
1 2 3 14 3 6 '8 10 11 12 13 U is 16 17 1 1 4 

l.OAD PROGRAM STATUS DOUBlEWORD replaces bits 0 
through 39 of the current program status doubl eword with 
bits 0 through 39 of the effective doubleword. The follow
ing conditional oPEtrations are also performed: 

1. If bit position 8 (lP) of lPSD contains a 1, bits 55 
through 59 of the current program status doubl eword 
(register pointer) are replaced by bits 55 through 59 
of the effective doubleword; if bit 8 of lPSD is a 0, 
the current register pointer value remains unchanged. 

2. If bit position 10 (Cl) of lPSD contains a 1, the 
highest-priority interrupt level currently in the active 
state is cleared (i. e., reset to either the armed state 
Cil the disarmed state); the interrupt level is armed if 
bit 11 of lPSD (AD) is a 1, or is disarmed if bit 11 of 
LPSD is O. If bit 10 of lPSD is a 0, no interrupt level 
is affected in any way, regardless of whether bit 11' 
of lPSD is 1 or O. (Interrupt levels are described in 
detail on page 18.) 

Those portions of the effective doubleword that correspond 
to undefined fields in the program status doubleword are 
i~nored. 

Affected: (PSD), interrupt system if (1)10 = 1 

ED
O

_
3 

- CC; ED
5

_
7 

- FS, FZ, FN 

ED
8
-.MS; ED

9
-MM 

ED10 - OM; EDll - AM 

ED
15

_
31

- IAi ED
34

_
35 

- WK 

ED
37

_
39

- CI, II, EI; If (1)8 = 1, ED
55

_
59
-- RP 

If (I) 1 0 = 1 and (I) 11 = 1, cI ear and arm interrupt 

If (1)10 = 1 and (1)11 = 0, clear and disarm interrupt 

XPSD EXCHANGE PROGRAM STATUS DOU BlEWORD 
(Doubleword index alignment, privileged) 

EXCHANGE PROGRAM STATUS DOUBLEWORD stores the 
entire program status doubleword and then replaces the cur
rent program status doubleword with a new program status 
doubleword. 

Use of the memory map in interpreting the XPSD instruction 
address depends on the combined settings of bit 9 of the 
current PSD and bit 10 of the XPSD instruction, and on 
whether or not the XPSD is executed in an interrupt or trap 
location as the result of an interrupt or trap: 

1. If the XPSD instruction is executed in an interrupt or 
trap location, the map is used to interpret the indirect 
reference address and the effective address if, and only 
if, a 1 is contained in bit positions 9 (MM) of the cur
rent PSD and 10 (MP) of XPSD. 

2. The same logic applies with one exception when the 
instruction is not executed in an interrupt or trap lo
cation. The exception is that if the program is in the 
mapping mode (PSD9 = 1), the map is used to interpret 
the indirect reference address regardless of the state 
of XPSD IO• 

Control Instructions 73 



These conditions are summarized in the truth table shown 
below. General information on memory addressing is con
tained in Chapter 2 under "Memory Control Storage", "Mem
ory Reference Addresses", and "Memory Address Control I! • 

XPSDro PSD9 XPSD Address Type Map? 

1 
Ind. Ref. Addr. yes 

1 Effect. Addr. yes 

0 
Ind. Ref. Addr. no 
Effect. Addr. no 

1 
Ind. Ref. Addr. no I vest 

0 Effect. Addr. no 

0 Ind. Ref. Addr. no 
Effect. Addr. no 

tllYes li only if XPSD not executed in an interrupt or 
trap location. 

The current program status doubleword is stored in the double
word location pointed to by the effective address of XPSD 
in the following form: 

The current program status doubleword is replaced by a new 
program status doubleword as follows: 

1. The effective address of XPSD is incremented by 2, so 
that it points to the next doubleword location. The ad
dress thus generated is subject to the same mapping con
sideration as the original effective address (i.e., mapping 
is performed with the new address if bit 10 of XPSD is 
a 1 and bit 9 of the current program status doubleword 
is also a 1; otherwise, mapping is not performed). The 
contents of the next doubleword location are referred 
to as the second effective doubleword, or ED2. 

2. Bits 0 through 35 of the current program status double
word are unconditionally replaced by bits 0 through 35 
of the second effective doubleword. The affected por
tions of the program status doubleword are: 

Bit 
Position Designation Function 

0-3 CC Condition code 

5-7 FS, FZ, FN Floating control 

8 MS Master/slave mode control 

9 MM Mapping mode control 

10 DM Decimal arithmetic trap mask 

11 AM Fixed-point arithmetic trap mask 

15-31 IA Instruction address 

34-35 WK Write key 

3. A logical inclusive OR is performed between bits 37 
through 39 of the current program status doubl eword 

74 Control Instructions 

and bits 37 through 39 of the second effective double
word. 

Bit 
Position Desisnation Function 

37 CI Counter interrupt inhibit 

38 II I/o interrupt inhibit 

39 EI External interrupt inhibit 

If any (or all) of bits 37, 38, or 39 of the second effec
tive doubleword are O's, the corresponding bits in the 
current program status doubleword remain unchanged; 
if any (or all) of bits 37, 38, or 39 of the second effec
tive doubleword are I's, the corresponding bits in the 
current program status doubl eword are set to l's. See 
page 19 for a detai I ed discussion of the interrupt inhibits. 

4. If bit position 8 (lP) of XPSD contains a 1, bits 55-59 of 
the current program status doubleword {register pointer} 
are replaced by bits 55 through 59 of the second effec
tive doubleword; if bit 8 of XPSD is a 0, the current 
register pointer value remains unchanged. 

The following additional operations are performed on the new 
program status doubleword if, and only if the XPSD is being 
executed as the result of a nonallowed operation (trap to lo
cation X'40') or a call instruction (trap to location X'48 1

, 

X'491
, X'4A', or X'4B'): 

1. Nonallowed operations - the following additional func
tions are performed when XPSD is being executed as a 
resu I t of a trap to location X' 40' : 

a. Nonexistent instruction - if the reason for the trap 
condition is an attempt to execute a nonexistent in
struction, bit position 0 of the new program status 
doubleword (CC 1) is set to 1. Then, if bit 9 (AI) 
of XPSD is a I, bit positions 15-31 of the new pro
gram status doubleword (next instruction address) 
are incremented by 8. 

b. Nonexistent memory address - if the reason for the 
trap condition is an attempt to access or write into 
a nonexistent memory region, bit position 1 of the 
new program status doubleword (CC2) is set to 1. 
Then, if bit 9 of XPSD is a I, the instruction ad
dress portion of the new program status doubleword 
is incremented by 4. 

c. Privileged instruction violation - if the reason for 
the trap condition is an attempt to execute a privi
leged instruction while the computer is in the slave 
mode, bit position 2 of the new program status double
word (CC3) is set to 1. Then, if bit position 9 of 
XPSD is 1, the instruction address portion of the new 
program status doubleword is incremented by 2. 

d. Memory protection violation - if the reason for the 
trap condition is an attempt to read from or write into 
a memory reg ion to wh i ch the program does not have 
proper access, bit position 3 of the new program status 
doubleword (CC4) issetto 1. Then, ifbit90f XPSD 
is a I, the instruction address portion of the new 
program status doubleword is incremented by 1. 



There are cert!lin circumstances under which two of the 
above nonallowed operations can occur simultaneously. 
The following operation CodE!S (including th"eir counter
parts) are considered to be b()th nonexistent and privi
leged: X'OC', X'OD', X'2C', and X'2D'. If anyone of 
these operation codes is used as an instruction while 
the computer i~; in the slave rnode, CC 1 and CC3 are 
both set to I's; if bit 9 of XPSD is a 1, the instruction 
address portion of the new pn)gram status doubleword is 
incremented b>, 10. If an attempt is made to access or 
write into a mE~mory region that is both nonexistent and 
prohibited to the program by r~eans of the memory con
trol feature, CC2 and CC4 are both set to I's; if bit 9 
of XPSD is a 1, the instruction address of the new pro
gram status doubleword is incremented by 5. 

2. C:l1I instructions - the followiing additional functions 
are performed when XPSD is being executed as a result 
ofa trap to location X' 481

, X' 491
, X'4A', or X'4B' : 

a: The R field of the call instruction causing the 
trap is logically inclusivtely ORed into bit posi
tions 0-3 (CC) of the new PSD. 

b. If bit position 9 of XPSD contains a 1, the R field 
of the call instruction causing the trap is added 
to the instruction address portion of the new PSD. 

If bit position 9 of XPSD contains a 0, the instruction ad
dress portion of the new PSD always remains at the value 
established by the second effectiv,e doubleword. Bit posi
tion 9 of XPSD is effective only if the instruction is being 
executed as the result of a nonallc)wed operation trap or a 
call instruction traf3. Bit position 9 of XPSD must be coded 
with a 0 in all othelr cases; otherwise, the results of the 
XPSD instruction arle undefined. 

Affected: (EDL), (PSD) 

If (1)10 = 1, effective address is virtual 

If (Iho = 0, effective address is ac:tual 

PSD-EDL 

E1)20_3 - CC; EI)25_7 - FS" FZ, FN 

EI)2a - MS; ED29 - MM 

ED210 - OM; EO'211 -AM 

ED215_31 - IA; ED234_35 - .. WK 

ED237 -39 u CI, II, EI - CI, II, EI 

If (I)S = 1, ED255_59 - RP 

If (I)S = 0, RP not aHected 

If nonexistent instrudion, 1-eCl then, if (1)9 = 1, 
IA + S-IA 

If nonexistent memo."y address, 1--CC2 then, if (1)9= 1, 
IA+4-IA 

If privileged instrudion violation, 1-CC3 then, 
if (1)9 = 1, IA + 2 -- IA 

If memory protection violation, 1--- CC4 then, if (1)9= 1, 
IA+ l-IA 

If call instruction, CC u CALLS_ll--·CC then, 
if (1)9 = 1, fA + CALLS- 11 -IA 

If (1)9 = 0, fA not affected 

LRP LOAD REGISTER POINTER 
rNord index alignment, privileged) 

1:1. , ,~~ 
LOAD P.EGISTER POINTER loads bits 23 through 27 of the, 
effective word into the register pointer (RP) portion of the 
current program status doubleword. Bit positions 0 through 
22 and 28 through 31 of the effective word are ignored, and 
no other portion of the program status doubleword is affected. 
If the register pointer is loaded with a value that points to a 
nonexistent block of general registers, the computer subse
quently generates either all 1's or all 0'5 as the contents of 
the nonexistent block of general registers, whenever an in
struction designates a general register by means of the R field 
or the reference address field. 

Affected: RP 
EW23_27 -RP 

MMC MOVE TO MEMORY CONTROL 
rNord index alignment, privileged, continue 
after interrupt) 

MOVE TO MEMORY CONTROL loads a string of one or 
more words into one of the three blocks of memory control 
registers (memory control registers are described on page 
12). Bit positions 12-14 of MMC are not used as an in-
dex register address; instead, they are used to specify which 
block of memory control registers is to be loaded, as follows: 

Bit position 
12 13 14 

100 
010 
001 

Function 

Load memory map block addresses 
Load access protection 
Load memory write protection locks 

If bit positions 12-14 of MMC contain either all O's or more 
than a single 1, the instruction produces an undefined result. 
Also, if an attempt is made to load unimplemented memory 
control storage, the contents of the general registers speci
fied by the MMC instruction are undefined at the completion 
of the" instruction, and the implemented memory control stor
age (if any) is not affected. 

Bit positions 15-31 (reference address field) of MMC are ig
nored insofar as the operation of the instruction is concerned, 
and the results of the instruction are the some whether or not 
MMC is indirectly addressed. 

The R field of MMC designates on even-odd poir of general 
registers (R and Ru1) that are used to control the loading of 

Control Instructions 75 



the specified bank of memory control registers. Registers R 
and Ru 1 are assumed to contain the following information: 

Register R: 

Register Ru 1: 

Bit positions 15 through 31 of register R contain the virtual 
address of the first word of "the control image to be loaded 
into the specified block of memory control registers. Bit 
positions 0 through 7 of register Ru 1 contain a count of the 
number of words to be loaded. If bits 0-7 of register Ru 1 
are initially all O's, a word count of 256 is implied.} 

Bit positions 15 through 22 of register Rul point to the be
ginning of the memory region controlled by the registers to 
be loaded. The significance of this field is different for the 
3 modes of MMC. 

The R field of the MMC instruction must be an even value 
for proper operation of the instruction; if the R field of MMC 
is an odd value, the operation of the instruction is undefined. 

If MCC is indirectly addressed and the indirect reference ad
dress is nonexistent, the nonallowed operation trap (location 
X'40') is activated. The effective virtual address of the MMC 
instruction however, is not used as a memory reference (thus 
does not affect the normal operation of the instruction). 

Affected: (R), (Ru 1), memory control storage 

LOADING THE MEMORY MAP 

The following diagrams representtheconfigurationof MMC, 
register R, and register Ru 1 that are required to load the 
memory map: 

The instruction format is: 

The contents of register Rare: 

The contents of register Ru 1 are: 

Memory Map Control Image 

The initial address value in bit positions 15-31 of register R 
is the virtual address of the first word of the memory map 
control image. The word length of the control image to be 
loaded is specified by the initial count in bit positions 0-7 
of register Ru 1. A word count of 64 is sufficient to load the 
entire block of memory map control registers. The memory map 
control registers are treated as a circular set, with the first 
register following the last; thus, a word count greater than 
64 causes the first registers loaded to be overwritten. 

76 Control Instructi ons 

Each word of the memory map control image is assumed to 
be in the following format: 

Memory Map Loading Process 

Bit positions 15-22 of register Ru 1 initially points to the first 
512-word page of virtual addresses that is to be controlled 
by the map image being loaded. MMC moves the map image 
into the memory map control registers one word at a time, thus 
loading the page address for four consecutive memory map 
registers with each image wurd. As each word is loaded into 
the memory map, the virtual address of the image area is in
cremented by 1, the word count is decremented by 1, and the 
value in bit positions 15-22 of register Ru 1 is incremented by 
4; this process continues until the word count is reduced to O. 
When the loading process is completed, bit positions 15-31 of 
register R contain a value equal to the sum of the initial map 
image address plus the initial word count. Also, bit positions 
0-7 of register Ru 1 contain all O's, and bit positions 15-22 of 
register Ru 1 contain a value equal to the sum of the initial 
contents plus 4 times the initial word count. 

LOADING THE ACCESS PROTECTION CONTROLS 

The following diagrams represent the configurations of MMC, 
register R, and register Ru 1 that are required to load the ac
cess protection controls: 

The instruction format is: 

The contents of register Rare: 

0000 0000 0000 000 Program control image address 

Access Protection Control Image 

The initial address value in register R is the virtual address 
of the first word of the access control image, and the word 
length of the first control image is specified by the initial 
count in register Ru 1. A word count of 16 is sufficient to 
load the entire block of access protection control registers. 
The access protection control registers are treated as a cir
cular set, with the first register following the last; thus, a 
word count greater than 16 causes the first registers loaded 
to be overwritten. Each word of the access control image 
is assumed to be in the following format: 

Access Control Loading Process 

Bit positions 15-20 of register Ru 1 initially point to the first 
512-word page of virtual addresses that is to be controlled 



by the access control image. WAC moves the access con
trol image into the access control registers one word at a 
f'ime, thus loading the controls for 16 consecutive 512-word 
pages with each image word. As each word is loaded, the 
virtual address of the control ima!ge is incremented by 1, 
the word count is decremented by 1, and the value in bit 
F)()sitions 15-20 of register Ru 1 is incremented by 4; this 
Ftrocess continues until the word cClunt is reduced to O. ' When 
the loading process iis completed, r4~gister R contains a value 
E~ual to the sum of the initial control image address plus the 
initial word count. Also, the final word count is 0, and bit po
sitions 15-20ofregisterRul contain. a value equal to the sum 
of the initial contents plus 4 time:i the initial word count. 

LOADING THE MEMORY WRITI: PROTECTION LOCKS 

The following diagrclms represent the configurations of MMC, 
register R, and register Ru 1 that are required to load the 
memory write prote4:tion locks: 

The instruction format is: 

[~L ~I~ , . J .R"" ~ ~,~ ~ .O,~I~~I"O'~~~:'?~~~I~~~~I 
The contents of register Rare: 

The contents of register Ru 1 are: 

[- Count 
01231456 

Memory Lock Control Image 

The initial addres5 value in registEtr R is the virtual address 
of the first word of ~he memory lock control image, and word 
length of the image is specified b)' the initial count in reg
ister Ru 1. A word c:ount of 16 is sufficient to load the en
tire block of memO!")f locks. The memory lock registers are 
treated as a circular set, with the register for memory ad
dresses 0 through XllFF' immediatE,ly following the register 
for memory addresses XII FEOOI through X 11 FFFF'; thus, a 
word count greater than 16 causes the first registers loaded 
to be overwritten. Each word of the lock image is assumed 
to be in the following format: 

Memory Lock Loading Process 

Bit positions 15-20 ()f register Ru 1 initially point to the first 
5112-word page of actual core memory addresses that is to 
bE~ controlled by the memory lock 'image. MMC moves the 
lock image into the lock registers I word at a time, thus 
loading the locks for 16 consecutive 512-word pages with 
each image word. As each word h loaded, the virtual od
dress of the lock imclge is incremented by I, the word count 
is decremented by 1 j' and the valu4~ in bit positions 15 -20 
of register Rul is incremented by 4; this process continues 
until the word count is reduced to O. When the loading 
process is completed, register R contains a va lue equal to 

the sum of the initial lock image address plus the initial 
word count. Also, the final word count is 0, and bit posi
tions 15-20 of register Ru1 contain a value equal to the sum 
of the initial contents plus 4 times the initial word count. 

INTERRUPTION OF MMC 

The execution of MMC can be interrupted after each word 
of the control image has been moved into the specified con
trol register. Immediately prior to the time that the instruc
tion in the interrupt (or trap) location is executed, the 
instruction address portion of the program status daubleword 
contains the virtual address of the MMC instruction, register 
R contains the virtual address of the next word of the control 
image to be loaded, and register Ru 1 contains a count of the 
number of control image words remaining to be moved and a 
value pointing to the next memory control register to be 
loaded. 

WAIT WAIT 
(Word index alignment, privileged) 

Reference ~ddress 
WAIT causes the CPU to cease a" operations until an inter
rupt activation occurs, or until the computer operator man
uall y moves the COMPUTE switch (on the processor control 
panel or on the free-standing console) from the RUN posi
tion to IDLE and then back to RUN. The instruction ad
dress portion of the PSD is updated before the computer 
begins waiting; therefore, while the CPU is waiting, the 
INSTRUCTION ADDRESS indicators contain the virtual ad
dress of the next location in ascending sequenceafter·WAIT 
and the contents of the next location are displayed in the 
DISPLAY indicators (on the processor control panel and on 
the free-standing console). If any input/output operations 
are bei ng performed when WAIT is executed, the operations 
proceed to their normal termination. 

When an interrupt activation occurs while the CPU is wait
ing, the computer processes the interrupt-servicing routine. 
Norma"y, the interrupt-servicing routine begins with an 
XPSD instruction in the interrupt location, and ends with 
an LPSD instruction at the end of the routine. After the 
LPSD instruction is executed, the next instruction to be 
executed in the interrupted program is the next instruction 
in sequence after the WAIT instruction. If the interrupt is 
to a single-instruction interrupt location, the instruction 
in the interrupt location is executed and then instruction 
execution proceeds with the next instruction in sequence 
after the WAIT instruction. When the COMPUTE switch 
is moved from RUN to IDLE and back to RUN while the 
CPU is waiting, instruction execution proceeds with the 
next instruction in sequence after the WAIT instruction. 

If WAIT is indirectly addressed and the indirect reference 
address is nonexistent, the nonallowed operation trap (loca
tion X1401) is activated. The effective virtual address of 
the WAIT instruction, however, is not used as a memory 
reference (thus does not affect the normal operation of the 
instruction). 

Control Instructions 77 



RD READ DIRECT 
0/Vord index alignment, privileged) 

The CPU is capable of directly communicating with other 
elements of the SIGMA 7 system, as well as performing in
ternal control operations, by means of the READ DIRECT/ 
WRITE DIRECT (RD/WD) lines. The RD/WD lines consist 
of 16 address lines, 32 data lines, 2 condition code lines, 
and various control lines, that are -connected to various 
CPU circuits and to specia," systems equipment. 

READ DIRECT causes the CPU to present bits 16 through 31 
of the effective virtual address to other elements of the 
SIGMA 7 system on the RD/WD address lines. Bits 16-31 
of the effective virtual address identify a specific element 
of the SIGMA 7 system that is expected to return informa
tion (2 condition code bits plus a maximum of 32 data bits) 
to the CPU. The significance and number of data bits re
turned to the CPU depend on the selected element. If the 
R field of RD is nonzero, up to 32 bits of the returned data 
are loaded into general register R; however, if the R field 
of RD is 0, the returned data is ignored and general regis
ter 0 is not changed. The condition code is set by the ad
dressed element, regardless of the value of the R field. 

Bits 16-19 of the effective virtual address of RD determine 
the mode of the RD instruction, as follows: 

Bit Position 
16 17 18 

000 
o 0 0 
001 
o 0 1 

19 Mode 

o Internal computer control 
1 Unassigned 
o XDS testers 

1 } Assigned to various groups. of standard 
XDS products 

o 
1 Special systems control (for customer use 

with specially designed equipment) 

If bits 16-19 of the effective virtual address are ncnzero 
(mode 1 through mode F), CC 1 and CC2 are set to zero and 
CC3 and CC4 are set according to the state of the two con
dition code lines from the external device. 

READ DIRECT 
INTERNAL COMPUTER CONTROL (MODE 0) 

In this mode, the condition code is unconditionally set ac
cording to the states of the four SENSE switches on the pro
cessor control panel. If a particular SENSE switch is set, 
the corresponding bit of the condition code is set to 1; if a 
SENSE switch is reset, the corresponding bit of the concH
tion code is set to 0 (see "SENSE" in chapter 5). 

Read SENSE Switches 

The following configuration of RD can be used to read the 
control panel SENSE switches: 

In this case, only the condition code is affected. 

78 Control Instructions 

Read and Reset MEMORY FAULT Indicators 

Each core memory module is associated with a MEMORY FAULT 
indicator that is turned 0., whenever a memory parity or over
temperature condition occurs. The following configuration, 
of RD is used to record and reset the MEMORY FAULT indi
cators. 

If the R field of RD is nonzero, bit positions 0-23 of register 
R are reset to all O's, bit positions 24-31 'are set according 
to the current states of the MEMORY FAULT indicators, and 
all MEMORY FAULT indicators are reset. If a bit position 
in register R is set to 1, a memory fault has been detected 
in the corresponding core memory module. If the R field of 
RD is 0, the MEMORY FAULT indicators and the contents 
of register 0 remain unchanged {although the condition code 
is still set to the value of the SENSE switches}. The MEM
ORY FAULT indicators are also reset by means of the SYS 
RESET/CLEAR switch on the processor control panel (or on 
the free-standing console). 

Affected: (R), CC, MEMORY FAULT Indicators 

WD WRITE 01 RECT 
N'/ord index al ignment, privileged) 

WRITE DIRECT causes the CPU to present bits 16 through 31 
of the effective virtual address to other elements of the SIG
MA 7 system on the RD/WD address lines (see READ DIRECT). 
Bits 16-31 of the effective virtual address identify a specific 
element of the SIGMA 7 system that is to receive control in
formation from the CPU. If the R field of WD is nonzero, 
the 32-bit contents of register R are transmitted to the speci
fied element on the RD/WD data lines. If the R field of 
WD is 0, 32 0'5 are transmitted to the specified element (in
stead of the contents of register 0). The condition code is 
set by the addressed element, regardless of the value of the 
R field. 

Bits 16-19 of the effective virtual address determine the 
mode of the WD instruction, as follows: 

Bit Position 
16 17 18 19 Mode 

o 
o 
o 
o 

o 0 
o 0 
o .1 
o 1 

o Internal computer control 
1 Interrupt control 
o XDS testers 

1 }ASSigned to various groups of standard 
XDS products 

o 
1 Special systems control (for customer use 

with specially designed equipment) 

If bits 16-19 of the effective virtual address are nonzero 
(mode 1 through mode F), CCl and CC2 are set to zero and 
CC3 and CC4 are set according to the state of the two con
dition code I ines from the external device. 



WRITE DIRE~CT 

I""IRNAL COMPUTER COtilTROL (MODE 0) 

In this mode, the condition code is unconditional,ly set 
according to the states of the four SENSE switches on the 
processor control ponel. If a portic;ular SENSE switch is 
se~, the corresponding bit of the condition code is set to 1; 
if a SENSE switch is reset, the co,rresponding bit of the 
condition code is reset to 0 (see "SENSE" in Chapter 5). 

Set Interrupt Inhibits 

The following configuration of WD ,can be used to set the 
interrupt inhibits (bit' positions 37-:l9 of the PSD). 

A logical inclusive OR is performed between bits 29-31 of 
the effective virtual address and bits 37-39 of the PSD. If 
any (or all) of bits 29-31 of the eHecti ve vi rtuol address are 
lis., the corresponding inhibit bits in the PSD are set to l's; 
the curre'nt state of oln inhibit bit h not affected if the cor
responding bit position of the effective virtua,l address con
tains a O. 

Reset Interrupt Inhibits 

The following configuration of WD can be used to reset the 
inl'errupt inhibits: 

If any (or all) of bits 29-31 of the t~ffective virtual address 
are l's the corresponding inhibit bits in the PSI!) are reset to 
O's; the current state of an inhibit bit is not affected if a 
corresponding bit position of the effective virtual address 
contains a o. 
Set ALARM Indicator 

The following configuration of WD is used to set the ALARM 
indicator on the maintenance sectic)n of the processor con
trol ponel: 

If the COMPUTE switch on the prOCE~ssor control panel is in the 
RUN position and the AUDIO switch on the maintenance sec
tion of the processor control panel is in the ON position, a 
1000-Hz signal is transmitted to tht~ computer speaker. The 
signal may be interrupted by moving the COMPUTE switch 
to the IDLE position, by moving thc~ AUDIO switch to the 
OfF position, or by resetting the ALARM indicator. 

Reset ALARM Indicator 

The following configuration of W[) is used to reset the 
ALARM indicator: 

f[ 60 
01231456 

The ALARM indicato,r is also reset b)' means of either the CPU 
RESET/CLEAR switch or the SYS RESET/CLEAR switch on the 
processor control ponel (or on the flreestanding console). 

Toggle Program-Controlled-Frequency Flip-flop 

The following configuration of WD is used to "toggle" the 
CPU program-control led-frequency (PCF) flip-flop: 

The output of the PCF flip-flop is transmitted to the com
puter spt,ker through the AUDIO switch on the maintenance 
section of the processor control panel. If the PCF flip-flop 
is reset ',hen the above configuration of WD is executed, 
the WD instruction sets the PCF flip-flop; if the PCF flip
flop was previously set, the WD instruction resets it. A pro- , 
gram can thus generate a desired frequency by togg ling (set
ting and resetting) the PCF flip-flop at the appropriate rate. 
Execution of the above configuration of WD also resets the 
ALARM indicator. 

WRITE DI RECT, INTERRUPT CONTROL (MODE 1) 

The following configuration of WD is used to set and reset 
the various states of the individual interrupt levels within 
the CPU interrupt system: 

Bits 28 through 31 of the effective address specify the iden
tification number (see Table 2) of the group of interrupt 
levels to be controlled by the WD instruction. 

The R field of the WD instruction specifies a general register 
that contains the selection bits for the individual interrupt 
levels, excluding Power on/poweroff, within the :specified 
group (see Table 2). Bit position 160f register Rcontain$ the 
selection bit for the highest-priority Oowest-numbered) in
terrupt level within the group, and bit position 31 of register R 
contains the selection bit for the lowest-priority (highest
numbered) interrupt level within the group. Each interrupt 
level in the designated group is operated on according to the 
function code specified bybits 21 through 23 of the effective 
address of WD. The codes and their associated functions are as 
follows: 

Code Function 

000 Undefined 

OOlt Disarm all levels selected by a 1; all levels selected 
by a 0 are not affected. 

OlOt Arm and enable all levels selected by a 1; all levels 
selected by a 0 are not affected. 

Ollt Arm and disable all levels selected by a 1; all levels 
selected by a 0 are not affected. 

100 ,Enable all levels selected by a 1; all levels selected 
by a 0 are not affected. 

101 Disable all levels selected by a 1; all levels selected 
by a 0 are not affected. 

tThese codes clear the current interrupt, i. e., remove from 
the active or waiting state all levels selected by a 1 (see 
Figure 7). 

Control Instructions 79 



Code Function 

110 Enable all levels selected by a 1 and disable all 
levels selected by a O. 

111 Trigger all levels selected by a 1. All such levels 
that are currently armed advance to the waiting state. 

INPUT/OUTPUT INSTRUCTIONS 
"Standard" SIGMA 7 I/O refers to the normal I/O system 
consisting of input/output processors, device controllers, 
and devices. This system handle~ normal communications 
with standard peripherals ·such as printers, discs, tapes, 
and so forth. When dealing with standard I/O operations, 
the CPU uses the following five instructions: 

Instruction Name 

Start Input/Output 
Halt Input/Output 
Test Input/Output 
Test Device 
Acknowledge Input/Output Interrupt 

Mnemonic 

SIO 
HIO 
TIO 
TDV 
AIO 

If execution of any input/output instruction is attempted while 
the computer is in the slave mode (i. e. , while bit a of the 
currentprogramstatusdoubleword is a 1), the computer un
conditionallyaborts execution of the instruction (at the time 
of operation code decoding) and traps to location X '40'. 

I/O ADDRESSES 

Thedeviceto be operated onbyan I/O instruction is selected 
by the effective virtual address of the I/O instruction itself. 
Indirect addressing and/or indexing are performed, as for 
other word-addressing instructions, to compute the effective 
virtual address of the I/O i~struction. However, the effec
tive address is not used as a memory reference 0. e., not 
subject to memory mapping). For the SIO, HIO, TIO, and 
TDV instructions, the 11 low-order bits of the effective vir
tual address constitute an I/O address. For the AIO instruc
tion, the device causing the interrupt returns its 11-bit I/O 
address as part of the response to the AIO instruction. 

An I/o address occupies bit positions 21 through 3i of the 
effective virtual address, with bits 21, 22, and 230fthe I/O 
address specifying one of eight possible lOPs that can be con
trolled by a CPU. The remainder of the I/O address is factored 
into one of two forms, depending on bit 24, as follows: 

Case I: Single-unit device controllers (bit 24 is 0) 

Bits 25 through 31 of the I/O address (DC/Device) consti
tute a single code specifying a particular combination of 
devi ce controller and device. Normally these codes refer 
to device controllers that drive only a single device, such 
as card readers, card punches, line printers, etc. 

Case II: Multiunit device controllers (bit 24 is 1) 

ao Input/Output Instructions 

Bit positions 25 through 31 of the I/O address contoin a 
3-bit device controller code (DC) in bit positions 25-27 
and a 4-bit device code (Device) in bit positions 28-31. 
This form of I/O address is used for device controllers (such 
as magnetic tape and rapid access data file controllers) that 
control information exchangewfthonlyonedevice ot a time 
(out of a sel· of as many as 16 devices). 

I/O UNIT ADDRESS ASSIGNMENT 

Device controller numbers are normally assigned to a multi
plexor lOP in numerical sequence, beginning with zero and 
continuing through the highest number recognized by the lOP 
(i.e., X'7', X'F', X'17', or X'lF'). In the case of multiunit 
device controllers, the device controller number mustbe in the 
range X '0' through X '7' because the I/O address field structure 
allows fora 3-bitmultiunitdevice controller number. In the 
case ofsi ngle-unit device controllers, any of the available 
numbers in the range X'O' through X'lF' may be assigned to 
the device controller, providing that the same number has not 
already been assigned to a multiunit device controller. For 
example, if device controller number X '0' is assigned to a 
magnetic tape unit controller, the number X '0' cannot also 
be used for a card reader (although the coding of the I/O 
address field would be different in bit position 24). The I/O 
address codes ~sed by standard XDS software are 

I/O address Peripheral device designation 

x'oao' lOP 0, device controller 0, magnetic tape 
unit 0 

X'Oal' lOP 0, device controller 0, magneti c tape 
unit 1 

X'OS7' lOP 0, device controller 0, magnetic tape 
unit 7 

X'OOl' lOP 0, device controll er 1, keyboard/printer 

X'OO2' lOP 0, device controller 2, line pri nter 

X'003' lOP 0, device controller 3, card reader 

X '004' lOP 0, device controller 4, card punch 

X '005' lOP 0, device controller 5, paper tape 
reader/punch 

110 ST A TUS RESPONSE 

All I/O instructions result in the setting of condition code 
CCl and CC2 to denote the nature of the I/O response. 
The R field of the I/O instruction specifies one of the gen
eral registers that is to accept additional I/O response in
formation during the execution of an I/o instruction. In 
some situations, the programmer may want two sets of re
sponse information loaded into the general registers, while 
in other situations he may want only one set, or even no 
information loaded into a general register. This control is 
achieved by coding the R field of the I/O instruction. One 
set of response information is loaded into register R and an
other set may be loaded into register Ru 1. If the R field is 
an even, nonzero number, registers Rand R + 1 are each 
loaded with response information. If the R field specifies 



an odd-numbered general register" then only register R is 
loaded with response information. However, if the R field 

, is 0, Rand Rul are not loaded wuh response information. 
! Also, if RIO and CC 1 is set to 1 as a result of the opera
I tion, no status information is retumed to Rand Ru1. The 
I/O response information loaded into the general register 
for 510, HIO, TlO, and TDV insltructions is in the following 
format: 

Word into register Ru 1 

( , , ,I. • • s~~~~ ~"I"".. .1 " .. wi. ~:':,~,,::n~ "I .. " " ,.I 
Current Command Doubleword Address. After the addressed . 
d~vice has received an order, this field contains the 16 
high-order bits of the core memory' address for the command 
doubleword (see page 88) currentl), being processed for the 
addressed devi ceo 

Status. The meanin\9 of this field depends on the particular 
I/O instruction being executed and upon the selected I/O 
device (see Table 8). 

Byte Count. After the addressed device has received an 
order, this field contains a count (If the number of bytes yet 
to be transmitted to or from memor:~ by the operation called 
for by the order. 

The format of I/O rE~sponse informcltion loaded into register 
R for the instruction AIO is described on page 86. 

SIO START INPUT/OUTPUT 
N'/ord inde.x alignment, p'rivileged) 

START INPUT/OUTPUT is used to Initiate an input or out
put operation with the device selec:ted by the I/O address 
(bits 21-31 of the eff4E!ctive vi rtua I address of the instruction). 

510 utilizes data in general regist4~r 0, which is assumed 
to have the following content when 510 is executed. . 

First command 

General register 0 is temporarily d,edicated during the exe
cution of an 510 instruction to specify the starting double
word address for the' lOP command list. The doubleword 
address in register 0 is the 16 high··order bits of a memory 
address; thus, the address in registE~r 0 always specifies an 
even-numbered word location. (The lOP command list is 
described in "lOP Command DoubIIElwords", Chapter 4.) 

If I/O address recognition exists in the I/O system, and the 
dElvice controller and device are in the "ready" condition 
and no interrupt condition is pending, the 510 is accepted 

and the device is started (i. e., advanced to the "busy" 
condition). If the 510 is accepted, the first command 
doubleword address is loaded into the lOP command address 
counter associated with the device controller specified by 
the I/O address of the 510 instruction. Then, if the device 
is in the "automatic" mode, it requests an order from the 
lOP. The lOP loads the first command doubleword of the 
I/O command list into its appropriate registers and transmits 
the order to the devi ce. 

The CPU condition code provides an indication of whether 
the I/O address specified by the 510 instruction was or was 
not recognized by the I/O system and whether the 510 in
struction was or was not accepted by the device (i. e. , whether' 
the device did or did not advance to the "busy" condition). 

The condition code settings for 510 are: 

2 3 4 Result -------
o 0 I/O address recognized and 510 accepted 

o I/O address recognized but 510 not 
accepted 

o lOP address recognized but device con
troller either is attached to a "busy" 
selector lOP that cannot return status at 
this time or, for specific device con
trollers, is currently "busy" with another 
device. No status information is returned 
to general registers. 

I/O address not recognized and 510 not 
<;accepted; no status information is returned 
to general registers. 

ST ATUS INFORMATION FOR SIO 

In the event that the 510 instruction was not accepted 
. (i. e., CC 1 = 0 and CC2 = I), the status information returned 
as a part of the I/O response provides indications of why 
the 510 instruction was not accepted. If the SIO instruction 
has been coded with an R field value of 0, or if CCl (as a 
result of the execution of this instruction) is a 1, only the 
condition code settings are available. If the R field value 
is odd, register R contains the following information: 

I. I • • Ii , ~ t~t.u: 16 III" " " J. " " wi., :>::e,,~:~n~ "',, ,. .J 
Bit 
Position Function 

o Device interrupt pending: if this bit is 1, the ad
dressed device has requested an interrupt and the 
interrupt has not been acknowledged by an AIO 
instruction. Device interrupts can be achieved by 
coding of the flag portion of the I/o command 
doubleword. Device interrupts can alsobe achieved 
by using M modifiers in the basic order to the 
device (M bits in the Order portion ofthe command 
doubleword). In either case, the device wi" not 
accept a new SIO instruction until the interrupt
pending condition is cleared (i.e., the condition 
code settings for the SIO instruction will indicate 
"SIO not accepted" if the interrupt-pending con
dition is present in the addressed device. 

Input/Output Instructions 81 



Position and State in Register Ru 1 

Device Status Byte 

o 2 3 

- 0 0 -
- 0 1 

10-
1 1 

- 0 
- - - 1 

.. 5 6 7 

- 00-
- 0 1 

10-
1 1 

- 0 

Position and State in Register R 

Device Status Byte 

o 2 3 .. S 6 7 

82 Input/Output Instructions 

Table 8. Status Bits for I/O InstNctions 

Operational Status Byte 

8 9 10 11 . 12 13 14 lS 

Operational Status Byte 

8 9 10 11 12 13 14 lS 

Significance for 
SIO, HIO, and TlO 

interrupt pendi ng 
device ready 
device not operational 
device unavailable 
device busy 
devi ce manua I 
device automatic 

device unusual end 
device controller ready 
device controller not operational 
device controller unavailable 
device controller busy 
unassigned 

incorrect length 
transmission data error 
transmission memory error 
memory address error 

lOP memory error 
lOP control error 
lOP halt 
Sele«:tor lOP busy 

Significance for AIO 

~ unique to the device and 
the device controller 

incorrect length 
transmission data error 
zero byte count interNpt 
channel end interrupt 

unusua I end i nterNpt 

unassigned 
- 0 - - ) 
- - 0 -
- - - 0 

Sign i fi cance . 
for TOV 

unique to the 
device and the 
devi ce controller 

I 
t 

same as for 
SIO, HIO, and 
TlO 

! 



Bit 
Position Function 

1,2 

4 

Device condition: if biits 1 and 2 ore 00 (device 
"ready"), all device c(llnditions required for proper 
operationl are satisfied. If bits 1 and 2 ore 01 
(device "not operationcll"), the addressed device 
has developed some condition that will not allow 
it to proceed; in either Icase, operator intervention 
is usually required. If loits 1 and 2 ore 10 (device 
"Unavailable"), the dC!tvice has more than one 
channel of communication available and it is en
gaged in an operation co~trolled by an lOP other 
than the one specified by the I/O address. If bits 
1 and 2 are 11 (device "'busy"), the device has 
accepted a previous SIO instruction and is already 
engaged in on I/O oper.ation. 

Device mode: if this bH is 1, the device is in the 
"automatic" mode; if this bit is 0, the device is 
in the "m,anual" mode and requires operator inter
vention. This bit can b,e used in conjunction with 
bits 1 and 2 to determin,e the type of action re
quired. For example, cssume that a card reader 
is able to operate, but no cards are in the hopper. 
The card reader would be in state 000 (device 
"reody", but manual int,ervention required), where 
the state iis indicated by bits 1, 2, and 3 of the 
I/o status response. If the operator subsequently 
loads the card hopper and presses the card reader 
START switch, the readE~r would advance to state 
001 (device "ready" and in automatic operation). 
If the card reader is instate 000 when an SIO i n
struction Is executed, the SIO would be accepted' 
by the reader and the reader would advance to 
state 110 (device "busy", but operator intervention 
required). Should the operator t'hen place cards 
in the hopper and press "he START switch, the card 
reader state would advance to 111 (device "busy" 
and in automatic operation), and the input opera
tion would proceed. Sh,ould the card reader sub
sequently become empty (or the operator press the 
STOP swHch) and commcmd chaining is being used 
to read a number of cards, the card reader would 
return to state 110. If tine card reader is in state 
001 when an SIO instruction is executed, the 
reader advances to state 111, and the input opera
tion continues as normal.. Should the hopper sub
sequently become empty (or should the operator 
press the card reader STOP switch) and command 
chaining is being used tCI read a number of cards, 
the reader would go to sltate 110 until the opera
tor corrected the situaticln. 

Device unusual end occurred during last operation: 
if this bit is 1, the reason for the indication may 
be a normal end (such as an end of file) or a fault 
condition. For a fault condition, the device has 
halted at c)ther than its r1lormal stopping point. In 
either case, the device will not automatically re
quest further action from its device controller. 
The specific details of this indication are a function 
of the parl'icular device. 

Bit 
Position Function 

5,6 

7 

8 

9 

10 

11 

Device controller condition: if bits5 and6 are 00 
(device controller "ready"), all device controller 
conditions required for its proper operation are 
satisfied. If bits 5 and 6 are 01 (device controller 
"not operational"), some condition has developed 
that does not allow it to operate properly. In 
either case, operator intervention is usually re
quired. If bits 5 and 6 are 10 (device controller 
"unavailable"), the device controller is currently 
engaged in an operation controlled by an lOP 
other thon the one addressed by the I/O instruction.' 
If bits 5 and 6 are 11 (device controller "busy"), 
the device controller has accepted a previous 
SIO instruction and is currently engaged in per
forming an operation for the addressed lOP. 

Unassigned 

Incorrect length: if this bit is 1, an incorrect 
length condition has been detected during the 
previous operation. Incorrect length is caused 
by a channel end (or end of record) condition 
occurring before the device controller has re
ceived a "count done" signal from the lOP, or is 
caused by the device controller receiving a count 
done signal before channel end (or end of record); 
e. g., count done before 80 columns have been 
read from a card. NOr1mally, a count done signal 
is sent to the device controller by the lOP to in
dicate that the byte count associated with the 
current operati on has been reduced to zero. The 
lOP is capable of suppressing an error condition on 
incorrect length, since there are many situations 
in which incorrect length is a legitimate situation 
and not a true error condition. Incorrect length is 
suppressed as an error by coding the S IL flag (a 1 
in bit 38) of the lOP command doubleword (see 
page 90). At the end of the execution of an I/O 
command list, this status bit is 1 if an incorrect 
length condition occurred anywhere in the command 
I ist, regardless of the coding of the SIL flag. 

Transmission data error: this bit is set to 1 if the 
lOP or device controller has detected a parity 
error or data overrun in the transmitted informa
tion. At the end of an execution of an I/O com
mand list, this status bit is 1 if a transmission data 
error occurred anywhere in the command list. 

Transmission memory error: this bit is set to 1 if 
a memory parity error has occurred during a data 
input/output operation. A parity error is detected 
on any output operation and on partial-word input 
operations. At the end of an execution of an I/O 
command list, this status bit is 1 if a transmission 
memory error occurred anywhere in the command 
list. A device halt does not occur unless the 
HTE flag in the lOP command doubleword is set 
to 1 (see page 90). 

Memory address. error: a nonexistent memory 
address has been encountered on either data or 
commands. Core memory locations 0 through 15 

Input/Output Instructions 83 



Bit 
Position Function 

11 are not considered nonexistent because the lOP can 
(cont.) work wi th thes~ addresses as norma I memory addresses. 

12 lOP memory error: if a memory pori ty error has 
occurred while the lOP was fetching a command, 
this bit is set to 1. 

13 lOP control error: this bit is set to 1 if the lOP 
has encountered two successive TRANSFER IN 
CHANNEL commands. 

14 lOP halt: this bit is set to I if the lOP has issued 
a halt order to the addressed I/O device because 
of an error condition. 

15 Selector lOP busy: this bit is set to 1 if a selector 
lOP is addressed by the I/O instruction and the 
selector lOP is currently in use by some I/O de
vice. The selector lOP is considered to be in use 
.from the time that a device accepts an SIO in
struction until the operation is completed. 

16-31 Byte count: a count of the number of bytes yet to 
be transmitted to or from memory in the operation 
called for by the current command doubleword. 

If the R field value of the SIO instruction is even and not 
0, the condition code and register R+ 1 contain the informa
tion described above and register R contains the following 
information: 

Bit 
Position Function 

16-31 

HIO 

Current command doubteword address: the 16 
high-order bits of the core memory address from 
which the command doubleword for the I/O opera
tion currently being processed by the addressed 
device controller was fetched. 

HALT INPUT/OUTPUT 
(Word index alignment, privileged) 

HALT INPUT/OUTPUT causes the addressed device to im
mediately halt its current operation (perhaps improperly, in 
the case of magnetic tape units, when the device is forced to 
stop at other than interrecord gap). If the device is in an 
interrupt-pending condition, the condition is cleared. 

If the R field of the HIO instruction is 0 or if no VO ad
dress recognition exists, no general registers are affected, 
but the condition code is set. If the R field is an odd 
value, the condition code is set and the following informa
tion is loaded into register R. 

84 Input/Output Instructions 

The status information returned for HIO ha~ the same inter
pretation as that returned for the instrucl ~on SIO (see 
page81), ard shows the I/O status atthe time ofthe holt. The 
count information shows the number of bytes remaining to 
be transmitted at the time of the halt. If the R field of HIO 
is an even value and not 0, the condition code is set, reg
ister R+l is loaded as shown above, and register R contains 
the following information: 

The current command doubleword address has the same in
terpretation as that for the instruction SIO. 

Affected: (R), (Rul), CC1,CC2 

Condition code settings: 

2 3 4 Result of HIO -------
o 0 

o 

TlO 

VO address recognized and device con
troller is not "busy". 

VO address recognized but device con
trollerwas "busy"at the time of the halt. 

v 0 address not recogn i zed. 

TEST INPUT/OUTPUT 
~ord index alignment, privileged) 

TEST INPUT/OUTPUT is used to make an inquiry on the 
status of data transmission. The operation of the selected 
lOP, device controller, and device are not affected, and 
no operations are initiated or terminated by this instruction. 
The responses to TIO provide the program with the informa
tion necessary to determine the current status of the device, 
device controller, and lOP, the number of bytes remaining 
to be transmitted to or from memory in the operation, and 
the present point at which the lOP is operating in the com
mand list. If the R field of the TIO instruction is 0, or if 
CC 1 (as a result of the execution of this instruction) is a I, 
no general registers are affected, but the condition code is 
set. If the R field of TlO is an odd value, the condition 
code is set and the I/O status and byte count are loaded 
into register R as follows: 

The status. information has the same interpretation as the 
status information returned for the instruction SIO (see 
p'oge 81), and shows the I/O status at the time of sampling. 

The count information shows the number of bytes remaining 
to be transmitted at the time of sampling. If the R field of 
the TIO instruction is an even value and not 0, the 



condition code is set, register R + 1 is loaded as shown 
(Jbove, and registelr R is loaded a:i follows: 

[0000 0000 0000 0000 Current command address 
OT 2 3 14 5 6 7 I. 9 10' II 12 13 14 15 16 17 I \9 20 21 22 23 Jot 25 26 21 

The current command doubleword address has the same in
terpretation as for the instruction SIO. 

Affected: (R), (Ru'I), CC 1, CC2 

Condition code settings: 

2 3 4 Itesult of TIO 

()J 0 

o 

o 

TOV 

1/0 address rec:ognized and acceptable 
SIO is currentl:r possible. 

I/O address rec:ognized but acceptable 
SIO is not curr1antly possible. 

lOP address rec:ognized but device con
troller either is attached to a "busy" 
selector lOP that cannot return status at 
this time or, for specific device con
trollers, is currently "busy" with another 
device. No stcJtus information is returned 
to general regi!lters. 

I/O address nol- recognized; no status in
formation is returned togeneral registers. 

TEST OEVII~E 
rNord index alignment, Il>rivileged) 

TEST DEVICE is used to provide information about a device 
other than that obta,inable by means of the TlO instruction. 
The operation of thE! selected lOP" device controller, and 
device are not affected, and no operations are initiated or 
terminated. The responses to TOV provide the program with 
information giving details on the c:ondition of the selected 
device, the number of bytes remaining to be transmitted to 
or from memory in tlhe current operation, and the present 
point at which the lOP is operating in the command list. 
If the R field of the TOV instruction is 0, or if CC 1 (as a 
result of the executiion of this instl"Uction) is a 1, the con
dition code is set, but no general registers are affected. 
If the R field of TOV is an odd value, the condition code 
is set and the device status and byte count are loaded into 
register R as follows: 

~ Status 
o I 2 314 5 6 71. , 

BU 
PI)5ition Function 

0--7 

8·-15 

Unique to the device andl device controller. 

Same as for bits 8-15 of t-he status information for 
instruction SIO. 

The count information shows the number of bytes remaining 
to be transmitted in the current operation at the time of the 
TOV instruction. If the value of the R field of TOV is an 
even value and not 0, the condition code is set,. register 
R + 1 is loaded as shown above, and register R is loaded as 
follows: 

The current command doubleword address has the same in
terpretation as for the instructiOn SIO. 

Affected: (R), (Ru 1), CC 1 

Condition code settings: 

2 3 4 Result of TOV 

o 0 

o 1 

o 

VO address recognized. 

I/O address recognized and device
dependent condi ti on is present. 

lOP address recognized but device con
troller either is attached to a "busy" 
selector lOP that cannot return status at 
this time or, for specific device con
trollers, is currently "busy" with another 
device. No status information is returned 
to general registers. 

I/O address not recognized; no status in
formation is returned togeneral registers. 

AIO ACKNOWLEDGE INPUT/OUTPUT INTERRUPT 
rNord index alignment, privileged) 

AIO is used to acknowledge an input/output interrupt and to 
identify what I/O unit is causing the interrupt and why. Bits 
21,22, and 230fthe effective virtual address of the AIO in
struction (the 10Pportionofthe I/O selection code field) 
specify the type of interrupt being acknowledged. These bits 
should be coded 000 to specify the standard I/O system interrupt 
acknowl edgement (other codi ngs of these bits are reserved for 
use with special I/O systems). The remainder of the I/o se
lection code field (bit positions 24-31) has no other use in the 
standard I/o interrupt acknowl edgement because the identi-
fi cation of the interrupt source is one of the responses of the 
standard I/O system to the AIO instruction. 

Standard I/O system interrupts can be initiated for the fol
lowing conditions: 

Condition 

Zero byte count 

Channel end 

I .. t nterrupt prerequIsIte 

IZC = 1 

ICE = 1 

Status 
bit set 

10 

11 

t IZC, ICE, IUE, HTE, and SIL refer to flag bits in the lOP 
command doublewords (see Chapter 4). 

Input/Output Instructions 85 



Condition 

Transmission memory 
error 

Incorrect length 

Memory address error 
(lOP memory error or 
lOP control error) 

Transmission data error 

t 
Interrupt prerequisite 

IUE = 1, HTE = 1 

IUE = I, HTE = 1 and 
SIL = 0 

IUE = 1 

IUE = I, HTE = 1 

Status 
bit set 

12 

8, 12 

12 

9, 12 

When a device interrupt condition occurs, the lOP forwards 
the request to the CPU interrupt system VA interrupt level. 
If this interrupt level is armed, enabled, and not inhibited 
(see page 20, "Control of the Interrupt System "), the CPU 
eventually acknowledges the interrupt request and executes 
the XPSD instruction in core memory location X'SC', which 
leads to the execution of an Ala instruction. 

For the purpose of acknowledging standard VA inter
rupts, the lOPs, device controllers. and devices are 
connected in a preestabl ished priority sequence that is 
customer-assigned and is independent of the physical 
locations of the portions of the VA system in a particu
lar installation. 

If the R field of the Ala instruction is 0 or if no device in
terrupt request is present, the condition code is set but the 
general register is not affected. If the R field of Ala is 
not 0, the condition code is set and register R is loaded 
with the following information: 

Bit 
Position Function 

0-7 Unique to the device and the device controller. 

8 Incorrect length: if this bit is I, an incorrect 
I ength condition has been signaled to the lOP 
by the device controller during the previous 
operation. 

t 
IZC, ICE, IUE, HTE, and SIL refer to flog bits in the lOP 

command doublewords (see Chapter 4). 

86 Input/Output Instructions 

Bit 
Position Function 

8 
(cont.) 

9 

Incorrect length is suppressed as an error by 
coding the SIL flag (olin bit 38) of the command 
doubleword. At the end of the execution of on 
I/O command list, this status bit is 1 if on incor
rect length condition occurred anywhere in the 
command list, regardless ofthe coding ofthe SIL flog. 

Transmission data error: this bit is set to 1 if the 
lOP or device controller has "detected a parity er
ror or data overrun in the transmitted information. 

10 Zero byte count interrupt: if this bit is I, the byte 
count for the operation being performed by the in
terrupting device has been reduced to 0, and the 
interrupt at zero byte count (IZC) flog in the com
mand doubleword for the operation was coded with 
01. 

11 Channel end interrupt: if this bit is 1, the device 
controller has signaled channel end to the lOP, 
and the interrupt at channel end (ICE) flog in the 
command doubleword for the operation was coded 
with a 1. 

12 lOP unusual end interrupt: if this bit is I, the lOP 
has originated the interrupt as a result of a fault or 
unusual condition reported by the device. 

13-20 Unassigned 

21-31 I/O address: this field identifies the highest-. 
priority device requesting an interrupt. Bit posi
tions 21-23 identify the lOP. If bit 24 is 0, bits 
25-31 constitute a common device controller and 
device code; if bit 24 is I, bits 25-27 constitute 
a device controller code and bits 28-31 identify a 
device attached to that device controller. 

The Ala instruction resets the interrupt request signal from 
the highest priority I/O device requesting interrupt service 
(i. e., the device identified above in bits 21-31). 

Affected: (R), CC1, CC2 

Condition code settings: 

1 2 3 4 Result of Ala 

o 0 normal interrupt recognition. 

o unusual interrupt recognition. 

no interrupt recognition. 



4. INPUT/OUTPUT OPERATIONS' 

In a SIGMA 7 system, input/output operations are prima
rily under control of one or mon~ input/output processors 
(lOPs). This allows the CPU to concentrate on program 
execution, free from the time-cons,uming details of 1/0 opera
tions. Any I/O events that require CPU intervention are 
brought to its attention by means of the interrupt system. 

In the following discussion, the terminology conventions 
lISed are that the CPU execotes instructions, the lOP exe
cutes commands, and the device controllers and/or I/O 
devices execute orders. To illustrate, the CPU will exe
cute the START INPUT/OUTPUT I[SIO) instruction to initi
Cite an I/O operation. During th~e course of an I/O opera
tion, the lOP might issue a command called Control, to 
transmit a byte to a device contw"er or I/O device that 
interprets the byte as an order, such as Rewind. 

SIGMA 7 lOPs operate independE~ntly after they have been 
started by the central processor. They automatically pick 
up a chai n of one elr more commands from core memory and 
then execute these commands until the chain is completed. 

The multiplexor lOP can simultaneously operate up to 32 
device controllers. Each device controller is assigned 
its own channel and chain of I/O commands. The selector 
lOP can handle any of up to 32 high-speed device con
troll ers at rates up to the full speed of the core memory 
(one 32-bit word/cycle). A pair of selector lOPs can 
share a common mem,ory bus if desired. 

The flexible SIGMA 7 I/O structure permits both command 
chaining (making possible multiple-record operations) and 
data chaining (making possible scatter-read and gather
write operations) without interverling CPU control. Com
mand chaining refers to the execution of a sequence of I/O 
commands, under control of an rop, on more than one 
physical record. Thus, a new command must be issued for 
each physical record even if the operation tobe performed 
for a record is the r.ame as that p4~rformed for the previous 
record. Data chaining refers to thE~ execution of a sequence 
of I/O commands, under control elf an lOP, that gather (or 
scatter) information within one physical record from (or to) 
more than one region of memory. Thus, a new command 
must be issued for each portion of a physical record when 
the data associated with that phY~iical record appears (or is 
to Clppear) in noncontiguous locations in memory. For 
example, if information in specific columns of two cards in 
(I file are to be stored in specific: regions of memary, the 
I/O command list might appear a!i follows: 

L Read card, store columns 1-10, data chain 

2. Store columns 11-60, data chain 

:1. Store columns 61-80, command chain (end of data 
chain) 

it Read card, store columns 1-~~, data chain 

5. Store columns 41-80 (end of command chain, end of 
data chain) 

The SIGMA 7CPU itself plays a minor role in the execution 
of an I/O operation. The CPU-executed program is respon
sible fer creating and storing the command list (prepared 
prior tc the initiation of any I/O operation) and for suppl y
ing the lOP with a pointer to the first command in the I/O 
commend list. Most of the communication between the CPU 
and the I/O system is carried out through memory. 

The following is an example of the sequence of events that' 
occurs during an I/O operation: 

,. A CPU-executed program writes a sequence of I/O 
commands in core memory. 

2. The CPU executes the instruction START INPUT/OUTPUT 
and furni shes the lOP wi th an "-bi t I/O address (des
signating the device to be started) and a 16-bit first 
command address (designating the actual core memory 
doubleword location where the first command for this 
device is located). At this point, either the device is 
started (if in the IIreadyli condition with no device in
terrupt pending) or an instruction reject occurs. The 
CPU is informed by condition code settings as to which 
of the two alternatives has occurred. If the START I/O 
instruction is accepted, the command counter portion 
of the lOP register associated with the designated de
vice controller is loaded with the first command address. 
Assuming that the SIO instruction is accepted, from this 
time until the full sequence of I/O commands has been 
executed, the main program of the CPU need play no 
role in the I/O operation. At any time, however, it 
may obtain status information on the progress of the I/O 
operation without interfering with the operation. 

3. The device is now in the IIbusyli condition. When the 
device determines that it has the highest priority for 
access to the lOP, it requests service from the lOP 
with a service call. The lOP obtains the address of 
the first command doubleword of the I/O sequence 
(from the command counter asssociated with this de
vice). The lOP then fetches the I/O command 
doubleword from core memory, loads the doubleword 
into another register associated with the device, and 
transmits the first order (extracted from the command 
doubleword) to the device. 

4. Each command counter contains the memory address of 
the current I/O command in the sequence for its de
vice. When the device requires further servicing, it 
makes a request to the lOP, which then repeats a pro
cess similar to that of step 3. 

5. (fa data transmission order has been sent toa device, con
trol of the transmission resides in thedevice. As each char
acter is obtained by the I/O device, the lOP is signaled 
that data is available. The lOP uses the information 
stored in its own registers to control the information 
interchange between the I/O device and the memory, on 
either a word-by-word or character-by-character 
basis, depending on the nature of the device. 

Input/Output Operations 87 



6. When all information exchanges called for by a single 
I/O command doubl eword have been compl eted, the 
lOP uses the command counter to obtain the next com
mand doubl eword for executi on. Thi s process conti nues 
until all such command doublewords associated with the 
I/O sequence ha~e been executed. 

lOP COMMAND DOUBLEWORDS 
All lOP command doublewords (except Transfer in Channel 
and Stop) are assumed to be in the ,following format: 

ORDER 

Bit positions 0 through 7 of the command doubleword con
tain the I/O order for the device controller or device. The 
I/O orders are shown below. Bits represented by the letter 
"M" specify orders or special conditions to the device and 
are unique for each type of device. 

Bit positions 
0 1 2 3 4 5 6 7 Order 

M M M M MM 0 1 Write 
M M M M MM 1 0 Read 
M M M M MM 1 1 Control 
M M M M 0 1 0 0 Sense 
M M M M 1 1 0 0 Read Backward 

Write. The Write order causes the device controller to in
itiate an output operation. Bytes are read in an ascending 
sequence from the memory location specified by the memory 
byte address field of the command doubleword. The output 
operation continues until thedevice signals "channel end", 
or until the byte count is reduced to 0 and no furt~'er data 
chaining is specified. Channel end occurs when the device 
has received all information associated with the output op
eration, has completed all checks, and no longer requires 
the use ofIOPfacilities for the operation. Data chaining 
is described on the following page. 

Read. The Read order causes the device controller to initi
ate an input operation. Bytes are stored in core memory in 
an ascending sequence, beginning at the location specified 
by the memory byte address field of the command double
word. The input operation continues until the device signals 
channel end, or until the byte count is reduced to 0 and no 
further data chaining is specified. Channel end occurs when 
the device has transmitted all information associated with 
the input operation and no longer requires the use of lOP 
faci Ii ti es for the operation. 

Control. The Control order is used to initiate special oper
ations by the device. For magnetic tape, it is used to issue 
orders such as rewind, backspace record, backspace file 
etc. Most orders can be specified by the M bits of the 

88 lOP Command Doublewords 

Control order; however, : f additional inf", ,'lation is re
quired for a particular operation (e.g., t : starting ad
dress of a d!sc-seek), thE" memor}. byte address field of the 
command dC'ubleworr. spedfies the starting address of the 
bytes that are to be tranuni tted to the de v; ce controller for 
the additioral information. When all bytes necessary for 
the operation have been transmitted, the device controrter 
signal s channel end. 

Sense. The Sense order causes the de vi ce to transmi t one or 
more bytes of information, describing its current state. The 
bytes are stored in core memory in an ascending sequence, 
beginning with the address specified by the memory byte ad
dress field ofthe command doubl eword. The number of bytes 
transmitted isa function of the device and the condition it 
describes. The Sense order can be used to obtain the cur
rent sector address from a disc or drum unit. 

Read Backward. The Read Backward order (for devices that 
can execute it) causes the device to be started in reverse, 
and bytes to be transmitted to the lOP for storage into core 
memory in a descending sequence, beginning at the location 
specified by the memory byte address field ofthe command 
doubleword. In all other respects, Read Backward is iden
tical to Read, including reducing the byte count with each 
byte transmitted. 

The Transfer in Channel command doubl eword is assumed to 
be in the following format: 

Transfer in Channel. The Transfer in Channel command is exe
cuted within the lOP, and it has no direct effect on any of 
the I/O system el ements external to the addressed lOP. The 
primary purpose of Transfer in Channel is to permit branch
ing within the command list so that thelOPcan, for exam
ple, repeatedly transmitthe same set of information a num
ber of times. When the lOP executes Transfer in Channel, 
it loads the command counter for the device controller it is 
currently servicing with the command doubleword address 
field of the Transfer in Channel command, loads the new 
command doubleword specified by this address into the lOP 
registers associated with the device controller, and then 
executes the new command. (Bit positions 0-3, and 32-63 
ofthe commanddoubleword for Transfer in Channel are ig
nored.) Transfer in Channel thus allows a command list to 
be broken into noncontiguous groups of commands. When 
used in conjunction with command chaining, Transfer in 
Channel facilitatesthecontrol of devices suchas unbuffered 
card punches or unbuffered I ine printers. The current flags 
(see "Flags" below) are not altered during this commond; 
thus, the type of chaining called for in the previous com
mand doubleword is retained until changed by a command 
doubleword following Transfer in Channel. 

For exampl e, assume that it is desi red to present the same 
card image twelve times to an unbuffered card punch. The 
punch counts the number of times that a record is presented 



to it and, when twel ve rows hav.~ been punched, it causes 
the lOP to skip the command it would be executing next. 
Thus, a command list for punchinlg two cards might look 
Hke the foflowing example. 

location 

A 

B 

Command 

Punch row for card 1, command chain 

Transfer in Channel to A 

Punch row f~r card 2, command chain 

Trans fer in Channel to B 

Stop 

The Transfer in Chclnnel command! also can be used in con
junction with data chaining. As ane example, consider a 
situation often encountered in data acquisition applications, 
where data is transmitted in ext'remely long, continuous 
streams. In this COlse, the dota can be stored alternately in 
two or more buffer storage areos 5.0 that computer processing 
can be carried out on the data in one buffer while additional 
data is being input into the other buffer. The command list 
for such an appl ication might look like the following example. 

Location 

A 

Command 

ReOid data, store into buffer 1, data chain 

Store into buffer ~~, data chain 

Transfer in Chann,el to A 

If the lOP encount,ers two successive Transfer in Channel 
commands, this is c;onsidered an rop control error, result
ing in the lOP setting the lOP co·ntrol error status bit and 
issuing an "lOP halt" signal to the device controller. The 
lOP then halts further servicing o·f this command list. 

The Stop command doubleword is assumed to be in the fol
lowing format: 

Stop. The Stop command causes Icertain devices to stop, 
generate a channel end condition, and also request an in
terrupt at location XI 5C I if bit 0 in the Stop command is a 
L An AIO instruction executed after the interrupt is ac
knowledged results in a 1 in bit p:>sition 7 of register R, to 
indicate the reason for the interrupt. (Bit positions 32-39 
of the command doubleword for Strop must be zero; bit posi
Hons 8-31 and 40-63 are ignored). The Stop command is 
primarily used to terminate a commlClnd chain for an unbuffered 

device, as illustrated in the example given for Transfer 
in Channel. 

MEMORY BYTE ADDRESS 

For all I/O commands (except Transfer in Channel and 
Stop), bit positions 13-31 of the command doubleword 
provide for a 19-bit core memory byte address, desig
nating the memory location for the next byte of data. 
For the Write, Read, and Control orders, this field (as 
stored in .:In lOP register) is incremented by 1 as each 
byte is transmitted to the I/O operation; for the Read 
Backward order, the field is decremented by 1 as each 
byte is transmitted. 

FLAGS 

For all I/O commands (except Transfer in Channel and 
Stop) bit positions 32-39 of the command doubleword 
provide the lOP with eight flags that specify how to 
handle chaining, error, and interrupt situations. The 
functions of these fI ags are: 

Bit 
Position Function 

32 (DC) Data chain. If this flag is 1, data chaining is 
call ed for when the current byte count is reduced 
to O. The next command doubleword is fetched 
and loaded into the lOP register associated with 
the device controller, but the new order code is 
not passed out to the device controller; thus, the 
operation called for by the previous order is con
tinued. (Except for Transfer in Channel, -the 
new command doubleword i~ used only to supply 
a new memory address, a new count, and new 
flags.) If the data chain flag is 0, no further 
data chaining is called for. Channel end is init
iated either by the device running out of infor
mation, or by the byte count bei ng reduced to 
O. At channel end, th~ device may accept a 
new SIO instruction, providing that a device 
interrupt is not pending as a result of coding the 
IZC (bit 33), ICE (bit 35), or IUE (bit 37) flags, 
and no fault condition exists. 

33 (IZC) Interrupt at zero byte count. If this flag is 1, 
the lOP requests an interrupt at location XI5CI 
when the byte count of this command double
word (as stored in the lOP register) is reduced 
to O. An AIO instruction executed after the 
interrupt is acknowledged results in a 1 in bit 
position 10 of register R, to indicate the reason 
for the interrupt. 

34 (CC) Command chain. If this flag is 1, command 
chaining is called for when channel end occurs. 
The next command doubleword is fetched and 
loaded into the lOP register associated with the 
device controller, and the new order code is 
passed out to the device controller. If the CC 
flag is 0, no further command chaining is called 

lOP Command Doublewords 89 



Bit 
Position Function 

for. If both data chaining and command chain
ing are called for in the same command double
word, data ·chaining occurs if the byte count is 
reduced to 0 before channel end, and command 
chaining occurs if the channel end occun be
fore the byte count is reduced to 0. 

35 (ICE) Interrupt at channel end., If this flag is 1, the 
lOP requests an interrupt ot location X'5C' when 
channel end occurs for the operation being con
trolled by this command doubleword. An AIO 
instruction executed after the interrupt is acknow
ledged results in a 1 in bit position 11 of the 
status information, to indicate the reason for the 
interrupt. If the ICE flag is 0, no interrupt is 
requested. 

36 (HTE). Halt on transmission error. If this flag is 1, any 
error condition (transmission data error, trans
mission memory error, incorrect length error) 
detected in the device controller or lOP results 
in halting the VO operation being controlled by 
this command doubleword. If the HTE flag is 0, 
an error condition does not cause the VO oper
ation to halt, although the error conditions are 
recorded in the lOP register and returned as 
part of the status information for the instructions 
510, HIO, and TIO. 

The HTE flag must be coded identically in every 
command doubleword associated with the same 
physical record. This means that when data 
chaining occurs, the HTE flag in the new lOP 
command doubl eword must be the same as the 
HTE flag in the previous lOP command double
word. This restriction appl ies to data chaining 
only, and not to command chaining. 

37 (lUE) Interrupt on unusual end. If this flag is i, the 
device controller requests an interrupt at loca
tion X'5C' when a fault condition or unusual 
termination is encountered. A fault is a condi
tion requiring the device to halt, irrespective 
of the coding of theHTEflag. Examples of faults 
are torn magnetic tape and jammed cards. When 
unusual termination is signaled to the lOP, fur
ther servicing of the commands for that device 
is suspended. An AIO instruction executed after 
the interrupt is acknowledged results in a 1 in 
bit position 12 of register R, to indicate the rea
son for the interrupt. If the lUE flag is 0, no in
terrupt is requested. 

38 (S IL) Suppress incorrect length. If this flag is 1, an 
incorrect length indication is not to be classified 
as an error by the lOP, although the lOP retains 
the incorrect length indication and provides an 
indicator (bit 8 of the status response for SIO, 
HIO, and T10) to the program. If the SIL flag 
is 0, an incorrect length is considered an error 

90 lOP Command Doublewords 

Bit 
Position Function 

39 (5) 

and the lOP performs as specified by the HTE and 
IUE flags. Incorrect length is caused by a channel 
end condition occurring before the device control
ler has received a count-done signal from the lOP, 
or is caused by the device controller receiving a 
count-done signal before end of record; e. g., 
count-done before 80 columns have been read 
from a card. Normally, a count-done signal is 
sent to the device controller by the lOP to indi
cate that all data transfer associated with the cur
rent operation has been completed. The lOP is 
capable of suppressing an error condition on in
correct length, since there are many situations in 
which incorrect length is a legitimate condition 
and not a true error. 

The SIL flag must be coded identically in every 
command doubleword associated wi th the same 
physical record. This means that when data 
chaining occurs, the SIL flag in the new lOP 
commanddoubleword must be the same as the SIL 
flag in the previous lOP command doubleword. 
This restriction applies to data chaining only, 
and not to command chaining. 

(kip. If this flag is 1, the inF"" operation 
Read or Read Backward) controlled by this com

mand doubleword conti nues norma II y, except 
that no information is stored in memory. When 
used in conjunction with data chaining, the skip 
operation provides the capabi lity for selective 
reading of portions of a record. 

If the S flag is 1 for an output (Write) operation, 
the lOP does not access memory, but transmits 
zeros as data instead (i. e., the lOP transmits 
the number of X'OO' bytes specified in the byte 
count of the command doubleword). This allows 
a program to punch a blank card (by using the S 
bit and a Punch Binary order with a byte count 
of 120) without requiring memory access for data. 
If the S flag is 0, the I/O operation proceeds 
normally. 

BYTE COUNT 

For all commands (except Transfer in Channel and Stop) 
bit positions 48-63 of the command doubleword provide 
for a 16-bi t count of the number of bytes to be trans
mitted in the I/O operation; thus, 1 to 65,536 bytes 
(16,384 words) can be specified for transfer before com
mand chaining or data chaining is required. This field 
(as stored in an lOP register) is decremented for each 
byte transmitted in the I/O operation; thus, it always 
contains a count of the number of bytes to be transmitted 
to and from memory, and this count is returned as part of 
the response information for the instructions, SIO, HIO, 
T10, and TOV. An initial byte count of 0 is interpreted 
as 65,536 bytes. 



5. OPERATOR _CONTROLS 

There are two operator control centers for a SIGMA 7 com
puter. The standard SIGMA 7 has a processor control pane I 
mounted on one of the central pl"ocessor cabinets. A sec
ond, optional control center is available with the free
standing console. 

PROCESSOR CON1'ROL PANEL 

The processor control panel- (see Figure 8) has two distinct 
functional sections. The upper section (labeled MAINTE
NANCE SECTION) is reserved fl>r maintenance controls and 
indicators, and the lower sectiol'1l contains the controls and 
indicators for the computer opemtor. In addition to the 
SENSE switches, all controls andl indicators appearing in 
the lower section of the processOir control panel are func
tionally duplicated in the free-sf'anding console. 

POWER 

The POWER switch controls all AC power to the central pro
cessor and to all units under its direct control. The POWER 
~iwitch is unlighted when the AC power is off, and is lighted 

when AC pove r is on. The POWER switch is always oper
ative, both on the processor control panel and on the free
standi ng consol e. 

CPU RESET/CLEAR 

The CPU RESET/CLEAR switch is used to initialize the cen
tral processor. When this switc;h is pressed, the following 
operations are performed: 

1. All interrupt levels are reset to the disarmed and dis
abl ed state. 

2. The ALARM, WRITE KEY, INTRPT INHIBIT, POINTER, 
CONDITION CODE, FLOAT MODE, MODE, and 
TRAP indicators are all reset to O's (turned off). 

3. The INSTRUCTION ADDRESS indicators are set to X '25'. 

4. The DISPLAY indicators are set to X'02000000', which 
is a LOAD CONDITIONS AND FLOATING CON
TROLS IMMEDIATE (LCFI) with an R field of 0 to pro
duce a "no operation" instruction. 

----------------------II~INf[NANC( SECTION --------------------

COII'.OL 11001 --ItfIll.Y'AUL1--

I , • , , • 1 • -,..,., .... ,I.I.t."'- -ldCvl.0 .. -

[XI'XI") v I ··· ~ ~ '.*.*,*,> tIl •. - •. - .- ... , 
NltI1VllltlIO' --

1iiJ-; 1(' !!JII!: I 
- __ : __ 1_-

---5lf'$I--

• 
--,"I1[flf't'---INTltPll'''''I,T- --PI'INIPI--

Ic .. " 

lECic.J"J}---~[ j i ,,_------------- .. "--" 
_ COMDII,OW <0.'-- --HOAf MOOI _ --DO' _ .- ' ... - "".uC',o. '00'''' - _ 

(i i I ,el i 1ll11J.-J( X II" I xllex li]( X II)'· 
t I ) t '" tlltO ..... ' " .... .., DI( oIIII1M 

AODII $TOf' 

~ .. 11_- • • • • 

•••• ••• •• ••••• ...... ~ . •••••••• 
Oil J • !J , J • t 10 II V tJ .. I:t " It ,t It to Jl z;t II " • Jt, '11 n 14 It II . . .. . 

I • • • • 

• • « • 

". ··0'"" fl.. . P 

~. • 51 

A, I .. 

• 
II'f~'~Tl. 

",SPlA.Y 

,.,.,,~. 

,
,,_-r 

•. " 
t' •• 

Operator Controls 91 



The CPU RESET /C LEAR switch does not affect any operati ons 
that may be in p-ocess in the standard input/output system. 

The CPU RESET/CLEAR switch is also used in coniucntton 
with the SYS RESET/CLEAR switch to clear core memory 
(i. e., reset memory to aU OIS). The two switches are inter
locked so that both must be pressed simultaneously for the 
memory clear operation to occur. The memory clear oper
ation does not affect any general register - core memory 
locations 0 through 15 are cleared instead. Also the clear 
operation does not affect the memory control storage {write 
locks}. Note that pressing the SYS 'RESET/CLEAR switch 
affects the I/O system and the MEMORY FAULT indicators. 

I/O RESET 

The I/o RESET switch is used to initialize the standard 
input/output system. When the switch is pressed, all peri
pheral devices under control of the central processor are 
reset to the "ready" condition, and all status, interrupt, and 
control indicators in the input/output system are reset. The 
I/o RESET switch does not affect any operations that may 

j be processed in the central processor. 

LOAD 

The LOAD switch initializes memory for an input operation 
that uses the peripheral unit selected by the UNIT ADDRESS 
switches. The detailed operation of the loading process is 
described in the section "Loading Operation". 

UNIT ADDRESS 

The three UNIT ADDRESS switches are used to select the 
peripheral unit to be used in the loading process. The left 
switch has eight positions, numbered 0 through 7, desig
nating an input/output processor. The center and right 
switches each have 16 positions, numbered 0 through F 
(hexadecimal) that designate a device controller/device 
under the control of the selected input/output processor. 

SYSTEM RESET/CLEAR 

The SYS RESET/CLEAR switch is used to reset all controls 
and indicators in the SIGMA 7 system. Pressing this switch 
causes the computer to perform all operations described for 
the CPU RESET/CLEAR switch, perform all operations de
scribed for the I/o RESET switch, initialize the memory 
control logic, and reset the MEMORY FAULT indicator. 

The SYS RESET/CLEAR switch is also used in conjunction 
with the CPU RESET/CLEAR switch to reset core memory 
to OIS. 

NORMAL MODE 

The NORMAL MODE indicator is lighted when all the fol
lowing conditions are satisfied: 

1. The WATCHDOG TIMER switch is in the NORMAL 
position 

2. The INTERLEAVE SELECT switch is in the NORMAL 
position 

92 Processor Control Panel 

3. The PARITY ERROR MODE switch is in the CONT 
(continue) position 

4. The CLOCK MODE switch is in the CONT (continuous) 
position 

5. All logic power margins are "normal" 

If any of the above conditions is not satisfied, the NORMAL 
MODE indicator is unlighted. 

RUN 

The RUN indicotor is lighted when the COMPUTE switch is 
in the RUN position and no holt condition exists. 

WAIT 

The WAIT indicator is lighted when any of the following 
halt conditions exist: 

1. The computer is executing a WAIT instruction 

2. The p-ogram is stopped because of the ADDRESS STOP 
switch 

3. The computer is halted because of the PARITY ERROR 
MO DE swi'tch 

INTERRUPT 

The INTERRUPT switch is used by the operator to activate 
the control panel interrupt. If the control panel interrupt 
(level XI 5DI) is armed' when the INTERRUPT switch is 
pressed, a single pulse is transmitted to the interrupt level, 
advancing it to the waiting state. The INTERRUPT switch is 
lighted when the control panel interrupt level is in the ' 
waitrng state, and remains lighted until the interrupt level 
advances to the active state (at which time the INTERRUPT 
switch is turned off). If the control panel interrupt level 
is disarmed (or already in the active state) when the INTER
RUPT switch is pressed, no computer or control panel action 
occurs. If the control panel interrupt level advances to the 
waiting state and the level is disabled, the INTERRUPT 
switch remains lighted until the level is either enabled and 
allowed to advance to the active state or is returned to the 
armed or disarmed state. The INTERRUPT switch is always 
operative, both on the processor control panel and on the 
free-standi ng consol e. 

PROGRAM STATUS DOUBLEWORD 

Two rows of binary indicators ore used to display the cur
rent program status doubleword (PSD). For the convenience 
of use and display, the second portion of the PSD, labeled 
PSW2, is arranged above the first portion, labeled PSW1. 
The PSD display consists of the indicators shown in Table 9. 

INSERT 

The INSERT switch is used to make changes in the program 
status doubleword. The switch is inactive in the center 
position and is momentary in the upper (PSW2) and lower 
(PSW1) positions. When the INSERT switch is moved to the 



Table 9. Program Status Doubleword Display 

PSO Bit PSO 
Indicator Function Posiiton Oesignat ion 

PSW2 WRITIE KEY Write, key 34-35 WK 

INTRPT INHIBIT Interrupt inhibit!; 37-39 CI, II, EI 
CTR Counter interrupt group inhibit 37 CI 
I/O Input/output interrupt group inhibit 38 II 
EX.T External inter'rupts inhibit 39 EI 

POINTER Register block pc)inter 55-59 RP 

PSW1 CONDITION COOl: Condition code 0-3 CC 

FLOAT MODE Floating-point mode controls 5-7 FS, FZ, FN 
SIG Significance trap mask 5 FS 
ZERO Zero trap mask 6 FZ 
NRMZ Norma Ii ze mcJlSk 7 FN 

MODE Machine state/m1emory map controls 8-9 MS,MM 
SLAVE Moster/slave mode control 8 MS 
MAP Memory map (;ontrol 9 MM 

TRAP Arithmetic trap masks 10, 11 OM, AM 
DEC Decimal arithmetic fault trap mask 10 OM 
ARITH Fixed-point arithmetic overflow trap mask 11 AM 

INSTRUCTION ADDRESS Address of next instruction to be executed 15-31 IA 

PSW1 or PSW2 posif'ion, the corresponding indicators in the 
program status doubleword are alt4~red (or unchanged, ac
cording to current st~te of the 32 DATA switches below the 
DISPLAY indicators). 

INSTR AD[lIR 

The INSTR ADDR (instruction address) switch is inactive in 
the center position; the upper position (HOLD) is latching 
and the lower position (INCREMENT) is momentary. When 
the switch is placed in the HOLD position, the normal pro
cess of incrementing the instructioln oddress portion of the 
program status doubleword with each instruction execution 
in inhibited. If the COMPUTE swiitch is placed in the RUN 
position while the INSTRADDR switch is at HOLD, the in
struction in the location pointed h) by the value of the IN
STRUCTION ADDRESS indicators iis executed, repeatedly, 
with the INSTRUCTION ADDRESS indicators remaining un
changed. If the COMPUTE switch is moved to the STEP 
position while the INSTR ADDR switch is at HOLD, the in
struction is executed once each time the COMPUTE switch 
is moved to STEP; the INSTRUCTION ADDRESS indicators 
remain unchanged unless the instrlJlction is LPSD, XPSD, or 
a bronch instruction with the branc:h condition satisfied. 

The following operations are perfonned each time the 
INSTR ADDR switch is moved from the center position to 
the INCREMENT position: 

1 ~ The current value of the INSTRUCTION ADDRESS 
indicators is incremented by 1 .. 

2. Using the ne'w value of the INSTRUCTION ADDRESS 
indicators, the contents of the location pointed to by 
the INSTRUCTION ADDRESS is displayed in the DIS
PLAY indicators. 

ADDR STOP 

The ADDR STOP (address stop) switch is used (with the 
COMPUTE switch inthe RUN position) to cause the central 
processor to establ ish a halt condition and turn on the WAIT 
indicator whenever the CPU accesses the memory location 
whose address is equal to the SELECT ADDRESS value. 

When the halt condition occurs, the instruction in the lo
cation pointed to by the INSTRUCTION ADDRESS indicators 
appears in the DISPLAY indicators. The displayed instruc
tion is the one that would have been executed next, had 
the halt condition not occurred. If the halt condition is 
caused by an instruction access, the value of the IN
STRUCTION ADDRESS indicators (at the time of the halt) 
is equal to the 'SELECT ADDRESS value. If the halt condi
tion is caused by execution of an instruction with an in
direct reference address equal to the SELECT ADDRESS 
value (i.e., by a direct address fetch), is caused by an in
struction operand fetch, or is caused by an unsatisfied 
conditional branch instruction whose effective address is 
equal to the SELECT ADDRESS value, the value of the 
INSTRUCTION ADDRESS indicators (at the time of the 
halt) is 1 greater than the address of the instruction that 
referenced the SELECT ADDRESS value. 

Processor Control Panel 93 



If an interrupt or trap condition is detected after the AD
DRESS STOP halt condition is d.:!tected and before the CPU 
reaches the normal ADDRESS STOP halt phase, the CPU 
executes the instruction in the appropriate interrupt or trap 
location and then enters the ADDRESS STOP halt phase. In 
this case; the value of the INSTRUCTION ADDRESS indica
tors (at the time of the halt) is equal to the address of the 
next instruction in logical sequence after the instruction in 
the interrupt or trap location. 

The ADDRESS STOP halt condition is reset when the COM
PUTE switch is moved from RUN to IDLE; if the COMPUTE 
switch is then moved back to RUN (or to STEP), the instruc
tion shown in the DISPLAY. indicafors is the next instruction 
executed. 

SELECT ADDRESS 

The SELECT ADDRESS switdes :.elect the address at which 
a program is to be halted (when used in conjunction with 
the ADDR STOP switch), select the address of a location 
to be altered (when used in conjunction with the STORE 
switch), and select the address of a word to be displayed 
(when used in conjunction with the DISPLAY switch). Each 
SELECT ADDRESS switch represents a 1 when it is in the 
upper position, and represents a 0 in the lower position. 

STORE 

The STORE switch is used to alter the contents of a general 
register or a memory location. The switch is inactive in the 
center position and is momentary in the INSTR ADDR and 
SELECT ADDR positions. When the switch is moved to the 
INSTR ADDR position, the current value of the DISPLAY in
dicators is stored in the loe,ation pointed toby the INSTRUC
TION ADDRESS indicators; when the switch is moved tothe 
SELECT ADDR position, the current value of the DISPLAY 
indicatars is stored in the location pointed to by the SE
LECT ADDRESS switches. 

DISPLAY 

The DISPLAY switch is used to display the contents of a 
general register or memory location. The switch is inactive 
in the center position and is momentary in the INSTR ADDR 
and SELECT ADDR positions. When the switch is moved to 
the INSTR ADDR or SELECT ADDR position, the word in the 
location pointed to by the indicators or switches, respec
tively, is loaded into the instruction register and displayed 
with the DISPLAY indicators. 

The 32 DISPLAY indicators are used to display a computer 
word, when used together with the INSTR ADDR, STORE, 
DISPLAY, and DATA switches. The DISPLAY indicators 
represent the current contents of the internal CPU instruc
tion register. 

DATA 

The 32 DATA switches beneath the DISPLAY indicators are 
used to alter the contents of the program status doubleword 
(when used in conjunction WIth the INSERT switch) and to 
alter the value of theDISPLAY indicators (when used in 
conjunction with the single DATA switch). Each of the 
32 DATA switches is inactive in the center position and 

94 Processor Control Panel 

is latching in both the up,:>er (1) and lowe," (0) positions. In 
the center position, a DATA switch represents no change, in 
the upper or lower position it represents a 1 or 0, respectively. 

The single DATA switch is used to change the state of the 
DISPLAY indicators. The switch is inactive in the center 
position and is momentary in the CLEAR and ENTER posi
tions. When the switch is moved to the CLEAR position, all 
the DISPLAY indicators are reset (turned off). When the 
switch is moved to the ENTER position, the display indica
tors are not affected in those positions corresponding to 
DATA switches that are in the center position, but if a 
DATA switch is in the 1 or 0 position, that value is in
serted into the corresponding indicator. 

COMPUTE 

The COMPUTE switch is used to control the execution of 
instructions. The center position (IDLE) and the upper po
sition (RUN) are both latching, and the lower position 
(STEP) is momentary. When the COMPUTE switch is in the 
IDLE position, all other control panel switches are operative 
and the ADDRESS STOP halt and the WAIT instruction holt 
conditions are reset (cleared). If the computer is in a halt 
condition as a result of a memory parity error, moving the 
COMPUTE switch to IDLE does not clear the memory parity 
holt condition. This condition can be cleared only by press
ing the SYS RESET/CLEAR switch. 

When the COMPUTE switch is moved from IDLE to RUN, 
the RUN indicator is lighted and the computer begins to 
execute i nstructi ons (at mach i ne speed) as follows 

1. The current setting of the DISPLAY indicators is token 
as the next instruction to be executed, regardless <;If 
the contents of the location pointed to by the current 
value of the INSTRUCTION ADDRESS indicators. 

2. The value of the INSTRUCTION ADDRESS indicators 
is incremented by 1 unless the instruction in the DIS
PLAY indicators was LPSD, XPSD, or a branch instruc
tion and the branch should occur (in which case the 
INSTRUCTION ADDRESS indicators are set to the value 
established by the LPSD, XPS'D, or branch instruction). 

3. Instruction execution continues with the instruction in 
the location pointed to by the new value of the IN
STRUCTION ADDRESS indicators. 

When the COMPUTE switch is in the RUN position, the 
only switches that are operative are the POWER switch, the 
INTERRUPT switch, the ADDR STOP switch, the INSTR 
ADDR switch (in the HOLD position), and the switches in 
the maintenance section. 

Each time the COMPUTE switch is moved from the IDLE to 
the STEP position, the following operations occur: 

1. The current setting of the DISPLAY indicators is token 
as on instruction, and thesingle instruction isexecuted. 

2. The current value of the INSTRUCTION ADDRESS in
dicators is incremented by 1 unless the "stepped" instruc
tion was LPSD, XPSD, or branch instruction and the 
branch should occur (in which case the INSTRUCTION 
ADDRESS indicators are set to the volue established by 
the LPSD, XPSD, or branch instruction). 



3. The instruction in the location pointed to by the new 
value of the INSTRUCTION ADDRESS indicator is 
displayed in th~~ DISPLAY indicators. 

If an instruction is being stepped (executed by moving the 
COMPUTE switch fr,om IDLE to STEP), all interrupt levels 
are temporarily inhilbited while tht~ instruction is being 
executed; however, a trap conditilon can occur wh,i Ie the 
instruction is being ,executed. In 'this case, the XPSD in
struction in the appropriate trap 10leation is executed as if 
the COMPUTE switch were in the IRUN position. Thus, if 
a trap condition occurs during a stlepped instruction, the 
program status doubleword display aytomatically reflects 
the effects of the XPSD instruction and the DISPLAY indi
cators then contain ~he first instru<:tionof the trap routine. 

CONTROL MODe 

The CONTROL MODE switch is a three-position, key
operated locking switch. When tht:= switch is in the REMOTE 
position, all controls on the free-standing console are 
operative. In addition, all controls and indicators in the 
maintenance section of the PCP are operative (except for 
the SENSE and CLOCK MODE switches) and all indicators 
in the lower portion of the PCP continue to display the same 
information as the equivalent indjc.ators on the free-standing 
console. However, all of the contrc>ls in the lower portion of 
the PCP (except for tlhe POWER switch) are inoperative. The 
POWER switch is always operative (on both the PCP and the 
free-standing console); in order foJ' the system to be opera
tive, both switches must indicate that power is on. 

When the CONTROL MODE switch is in the LOCAL posi
tion, all controls on the PCP are operative. In addition, . 
all indicators on the free-standing console continue to dis
play the some information as the equivalent indicators on 
the PCP. However, all of the conh·ols on the free-standing 
console (except for the POWER swiitch) are inoperative. 
The COMPUTE switc:hes on both I·he PCP and the free
standing console must be in their IDLE positions whenever 
the CONTROL MODE switch is moved either from the 
REMOTE to the LOCAL position or from the LOCAL to the 
REMOTE position; ot'herwise, an undefined operation occurs. 

When the CONTROL MODE switch is in the LOCK position, 
all controls on the fme-standing console (except for POWER, 
INTERRUPT, and SENSE) are inopE!rative and all controls 
on the PCP (except for POWER, INTERRUPT, SENSE, and 
AUDIO) are inoperative. Howevelr, all indicators on both 
the free-standing console and the KP continue to indicate 
the various computer states. The A.UDIO switch is not af
fected by the positioln of the CONTROL MODE switch. In 
addition, the following switches (both on the PCP and on 
the free-standing console) are opefOltive when the CONTROL 
MODE switch is in tlhe LOCK posit'ion: 

1. The POWER switch remains opelrOtive to allow for situa
tions in which power must be removed from the system. 
System power is present only if both POWER switches 
indicate that potwer is on. 

2. The INTERRUPT switch remain:§ operative to allow the 
operator to interrupt the progr'CJm being executed. If 
either INTERRUPT switch is priess ed, the control ponel 
interrupt level is triggered. 

3. The SENSE switches remain operative to allow the op
erator to provide information to the program being 
executed. If a RD or WD instruction is executed in 
the internal control mode while the switch is. in the 
LOCK position, the resulting condition code value is 
the logical sum (inclusive OR) of the PCP and free
standing console SENSE switches. 

Certain switches on the PCP are locked to specific states 
when the CONTROL MODE switch is in the LOCK position. 
The affected switches and their locked states ore: 

Switch 

COMPUTE 
WATCHDOG TIMER 
INTERLEAVE SELECT 
PARITY ERROR MODE 
CLOCK MODE 

Locked State 

RUN 
NORMAL 
NORMAL 
CONT 
CONT 

The COMPUTE switch on the PCP must be in the RUN posi
tion whenever the CONTROL MODE switch is moved either 
from the LOCAL to the LOCK position or from the LOCK 
to the LOCAL position; otherwise, on undefined operation 
may occur. 

MEMORY FAULT 

The MEMORY FAULT indicators each correspond to a 
specific memory module. Whenever a memory parity error 
occurs in a memory module, the appropriate indicator is 
I ighted and remains lighted unti I the indicators are reset. 
When a memory parity error occurs, an interrupt pulse is 
also transmitted to the memory parity interrupt level. 

The MEMORY FAULT indicators are reset whenever the 
SYS RESET/CLEAR switch is pressed or whenever the com
puter executes a READ DIRECT instruction coded to read the 
MEMORY FAULT indicators. If the reason for a MEMORY 
FAULT indicC'tor being on is overtemperature, and the con
dition still exists when the indicators are reset, the indica
tor is immediately turned on again. 

ALARM 

The ALARM indicator is used to attract the computer opera
tor's attention, and is turned on and off (under program con
trol) by executing a properly coded WRITE DIRECT instruc
tion. When the ALARM indicator is lighted and the AUDIO 
switch is ON, a looD-Hz signal is sent to the computer 
speaker; when the AUDIO switch is not in the ON position, 
the speaker is disconnected. (The AUDIO switch does not 
affect the state of the ALARM indicator.) The ALARM in
dicator is reset (turned off) whenever either the CPU RESET/ 
CLEAR or the SYS RESET/CLEAR switch is pressed. 

AUDIO 

The AUDIO switch controls all signals to the computer 
speaker, whether from the ALARM indicator or from the 
program-controlled frequency flip-flop. 

Processor Control Panel 95 



WATCHDOG nMIR 

The WATCHDOG TIMER switch is used to override the in
struction watchdog timer. When this switch is at NORMAL, 
the watchdog timer is operative; when the switch is in the 
OVERRIDE position, the watchdog timer is inactive. 

INTERLEAVE SELECT 

The INTERLEAVE SELECT switch is used to override the nor
mal operation of interleaved memory modules. When this 
switch is in the NORMAL position,. memory address inter
leaving occurs normally; however, when the switch is in 
the DIAGNOSTIC position, memory addresses are not inter
leaved between core memory modules. 

PARITY ERROR MODE 

The PARITY ERROR MODE switch controls the action of the 
computer when a memory parity error occurs. If the PARITY 
ERROR MODE switch is in the CONT (continue) position 
when a parity error occurs, the appropriate MEMORY 
FAULT indicator is turned on and an interrupt pulse is trans
mitted to the memory parity interrupt level. If the switch 
is in the HALT position when a parity error occurs, the ap
priate MEMORY FAULT indicator is turned on and the 
computer enters a "halt" state; the memory module in which 
the parity error occurred is unavailable to any access until 
the MEMORY FAULT indicators are reset. If the COM
PUTE switch is in the RUN position during a halt, the 
WAIT indicator is I ighted; however, the COMPUTE switch 
cannot be used alone to proceed from a halt caused by a 
parity error. In order to proceed, the SYS RESET/CLEAR 
swi tch must first be pressed. 

PHASES 

The PHASES indicators, used for maintenance functions, 
display certain internal operating phases of the computer. 
The PREPARATION indicators display computer phases dur
ing the preparation portion of an instruction cycle. The 
PCP (processor control panel) indicators display computer 
phases during processor control panel operations. The EX
ECUTION indicators display computer phases during the 
execution portion of an instruction cycle. The INT/TRAP 
(interrupt/trap) indicators are individually lighted when an 
interrupt, or trap condition occurs. When the COMPUTE 
switch is in the IDLE position, all of the PHASES indicators 
are normally off except for the center PCP indicator (phase 
2 is the "idle" phase for processor control pone I functions). 

REGISTER SELECT 

The REGISTER SELECT switch is used to display the contents 
of selected internal registers. When the REGISTER DISPLA Y 
switch is in the inactive position, the DISPLAY indicators 
display the current contents of the internal instruction reg
ister. When the COMPUTE switch is in the IDLE position, 
the register selected by the REGISTER SELECT swi tch may 
be shown in the DISPLAY indicators by moving the REGIS
TER DISPLAY switch to the ON position. 

96 Loading Operation 

SENSE 

The four SEI,,",SE switches are used, under program control, 
to set the conditio" code portion of the program status 
doubleword. When a READ DIRECT or WRITE DIRECT in
struction is executed in the internal control mode, the con
di tion code is set according to the state of the four SENSE 
switches. If a SENSE switch is in the set (1) position, the 
corresponding bit of the condition code is set to 1; if a 
SENSE switch is in the reset (0) position, the corresponding 
bit of the condition code is reset to O. The SENSE switches on 
the PCP are operative only if the CONTROL MODE switch 
is in either the LOCAL position or the LOCK position. 

CLOCK MODE 

The CLOCK MODE switch controls the internal computer 
clock. When the switch is in the CONT (continuous) po
sition, the clock operates at normal speed. However, when 
the CLOCK MODE is in the inactive {center} position, the 
clock enters an idle state and can be made to generate one 
clock pulse each time the switch is moved to the SINGLE 
STEP position. When the clock is pulsed by the CLOCK 
MODE switch, the PHASE indicators reflect the computer 
phase during each pulse of the clock. 

LOADING OPERA liON 
This section describes the procedure for initially loading pro
grams into core memory from certain peripheral units attached 
to an input/output processor in the SIGMA 7 system. The com
puter operator may initiate a loading operation from the pro
cessor control panel (with the CONTROL MODE switch in the 
LOCAL position) or from the free-standing console (with the 
CONTROL MODE switch in the REMOTE position). 

The LOAD switch and the UNIT ADDRESS switches are used 
to prepare a SIGMA 7 computer for a load operation. When 
the LOAD switch is pressed, the following bootstrap pro
gram is stored in core memory I ocat ions X '20' through X '29' : 

Location 
(Hex.) (Dec.) 

20 32 
21 33 
22 34 
23 35 
24 36 
25 37 
26 38 
27 39 
28 40 
29 41 

Contents 
(Hexadecimal) 

00000000 
00000000 
02ooooA8 
OEOOOO58 
00000011 
OOOOOxxxt 

32000024 
CCOOO025 
CDOOO025 
69COOO28 

Symbol i c form 
of Instructi on 

LW,O 36 
SIO,O *37 
TIO,O *37 
BCS, 12 40 

When the LOAD switch is pressed, the selected peripheral 
device is not activated, and no other indicators or controls 
are affected; only core memory is altered. 

tThe XiS in location X'25' represent the value of the UNIT 
ADDRESS switches at the time the LOAD switch is pressed. 



To assure correct operation of the loading process, the fol
lowing sequence should always be used when initiating a 
load operation: 

1. Place the COMPUTE switch in the IDLE position. 

2. Press the SYS RESET/CLEAR switch. 

3. Set the UNIT ADDRESS switches to the address of the 
desired peripheral unit. 

4. Press the LOAD switch. 

5. Place the COMIPUTE switch in the RUN position. 

After the COMPUTE switch is plact~d in the RUN position, 
in step 5, the following actions occur: 

1. The first record on the selected peripheral device is 
read into memor:y locations X':?A ' through X'3F'. (The 
previous contents of general re~gister 0 are destroyed as 
a result of executing the bootstrap program in locations 
X' 26' through X"29'.) 

2. After the record has been read" the next instruction is 
taken from location X'2A' (prolvided that no error con
dition has been detected by thlE! device or the lOP). 

3. When the instruc:tion in location X'2A ' is executed, 
the unit device and device controller selected for 
loading are capable of accepting a new SIO instruction. 

4. Further I/o operations from tht~ load unit may be ac
complished by c()ding subsequent I/O instructions to 
indirectly address location X'25 1

• 

LOAD OPERATION DETAILS 

Thc~ first executed instruction of the~ bootstrap program (in 
location X'261

) loads general register 0 with thedoubleword 
addre:ss of the first I/O command d<llUbleword. The I/O ad-

dress for the SIO instruction in location X' 27 1 is the 11 
low-order bits of location X'25 1 (which have been set equal 
to the load unit address as a result of pressing the LOAD 
switch). During the SIO instruction, general register 0 
points to locations X'22 1 and X'23' as the first I/O com
mand doubleword for the selected device. This command 
doubleword contains an order that instructs the selected pe
ripheral device to read 88 (X'58 I

) bytes into consecutive 
memory locations starting at word location X'2A ' (byte lo
cation X'A8 1

). At the completion of the read operation, 
neither data chaining nor command chaining is called for 
in the I/O command doubleword. Also, the suppress in
correct length flag is set to 1 so that an incorrect length 
indication will not be considered an error. (This means 
that no transmission error halt wi II result if the first record 
is either less than or greater than 88 bytes. If the record 
is greater than 88 bytes, onl y the first 88 bytes wi II be 
stored in memory.) After the SIO instruction, the com
puter executes a TlO instruction with the same effective 
address the SIO instruction. The TlO instruction is coded 
to accept only condition code data from the lOP. The BCS 
instruction in location X' 29 1 will cause a branch back to 
the TlO instruction as long as either CC 1 or CC2 (or both) 
is set to 1. In normal operation, CC 1 is reset to 0 and CC2 
remains set to 1 until the device can accept another SIO 
instruction, at which time the next instruction wi II be taken 
from location X'2A ' . 

If a transmission error or equipment malfunction is detected 
by either the device or the lOP, the lOP instructs the device 
to halt and initiate an unusual end interrupt signal (as speci
fied by the appropriate flags in the I/O command double
word). The unusual end interrupt will be ignored, however, 
since all interrupt levels have been disarmed by pres~ing 
the SYS RESET/CLEAR switch prior to loading. The device 
will not accept another SIO while the device interrupt is 
pending and, therefore, the BCS instruction in location X'29 1 

will continue to branch to location X'28'. The correct op
erator action at this point is to repeat the load procedure. 
If there is no I/O address recognition of the load unit, the 
SIO instruction will not cause any I/O action and CCl will 
continue to be set to 1 by the SIO and TlO instructions; 
thus causing the BCS instruction to branch. 

Loading Operation 97 



APPENDIX A. REFERENCE, TABLES 

This appendix contains the following reference material: 

Title 

Standard Symbols and Codes 

Standard 8-Bit Computer Codes (EBCDIC) 

Standard 7 -Bit Communication Codes (ANSCII) 

Standard Symbo I-Code Correspondences 

Hexadecimal Arithmetic 

Addition Table 
Multiplication Table 
T ob I ~ of Powers of Si xteen 10 
Table of Powers of Ten16 

Hexadecimal-Decimal Integer Conversion Table 

Hexadecimal-Decimal Fraction Conversion Table 

Table of Powers of Two 

Mathematical Constants 

STANDARD SYMBOLS AND CODES 
The symbol and code standards described in this publication 
are appl icable to all Xerox computer products, both hard
ware and software. They may be expanded or altered from 
time to time to meet changing requirements. 

The symbols listed here include two types: graphic symbols 
and control characters. Graphic symbols are displayable 
and printable; control characters are not. Hybrids are SP, 
the symbol for a blank space; and DEL, the delete code, 
which is not considered a control command. 

Three types of code are shown: (1) the 8-bit Xerox Standard 
Computer Code, i.e., the Extended Binary-Coded-Decimal 
Interchange Code (EBCDIC); (2) the 7-bit American National 
Standard Code for Information Interchange (ANSCII); and 
(3) the Xerox standard card code. 

98 Appendix A 

STANDARD CHARACTER SETS 

1. EBCDIC 

57-character set: uppercase letters, numerals, space, 
and & / < > ( ) + IS" 

% , (li) 

63-choracter set: some as above plus I 
II ...., 
89-character set: same as 63-character set plus 
lowercase I etters 

2. ANSCII 

? 

64-choracter set: uppercase letters, numerals, space, 
and 'I S % & ().. + , 

/ \ < >? @ II 
A , 

95-character set: same as above plus lowercase letters 
and f J 

CONTROL CODES 

In addition to the standard character sets I isted above, the 
symbol repertoire includes 37 control codes and the hybr,id 
code DEL (hybrid code SP is considered part of all charac
ter sets). These are listed in the table titled Standard 
Symbo I-Code Correspondences. 

SPECIAL CODE PROPERTIES 
The following two properties of all standard codes will be 
retained for future standard code extensions: 

1. All control codes, and only the control codes, hove 
their two high-order bits equal to "00". DEL is not 
considered a control code. 

2. No two graphic EBCDIC codes have their seven low
order bi ts equa I. 



Hexadecimal 

Binary 

0 0000 

0001 

2 0010 

J 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

B lOll 

C 1100 

D 1101 

1110 

I" I 

Decimal 
rows) (col's,)-

1 Binary 
t 

0 0000 

I 0001 

2 0010 

3 0011 

4 0100 

5 0101 

'0. 
0 6 0110 

C 
0 7 0111 
~ 
'c 8 1000 Q) 

;n 

a 9 1001 
~ 

10 1010 

II 1011 

12 1100 

13 1101 

14 1110 

IS 1111 

NUL OLE 

SOH DCI 

STX DO 

ETX DC3 

FF 

CR GS 

SO RS 

51 US 

0 I 

",000 xOOI 

NUL OLE 

SOH DCI 

~;rx DC2 

ETX De3 

£:OT DC4 

ENG NAK 

ACK SYN 

IlEL ETB 

ISS CAN 

IHT EM 

IlF SUI 
NL 

'IT ESC 

I:F FS 

C:R GS 

SO RS 

51 US 

STANDARD a-BIT COMPUTER CODES (EBCDIC) 

. NOTES: 

3 4 5 A B C 0 
The characters - \ t J [ ]. are ANSCII 

1011 1100 1101 1110 1111 characters that do nat appear in ony of the 
EBCDIC-bosed character lets, though they 

ds 0 
are shown in the EBCDIC toble. 

IS I 
The characters II..., appear in the 63- and 
89-chorocter EBCDIC sets but not in either 

fs S 2 of the ANSCII-beued seh. However, Xerox 
IOftwore translates the choracters c 

si T 3 into ANSCII characters as follows: 

0 M U 4 
EBCDIC ANSCII 

n v N V 5 
I 

, 
(6-0) 

a w 0 W 6 I (7-12) 

P x G P X 7 .., (7-14) 

q Y H a Y 8 The EBCDIC control codes in columns 0 
and land their binary representation are 

z R Z 9 exactly the same as those in the ANSC II 
tobie, except for two interchanges: IF/Nl 
with NAK, and HT with ENO. 

Choracters enclosed in heavy lines are 
included only in the Itandord 63- and 

% @ 89-character EBCDIC sets. 

These characters are included onl)l in the 
standard 89-choracter EBCDIC set. 

STANDARD 7-BIT COMMUINICATION CODES (ANSCII) 1 

Most SiSJnificont Digits 

2 :) 4 5 

xOlO xOIl xlOO xlOI 

SP (I @ P 

I 5 11 A a 
II -, 

~. • R 

, :11 C S 

S <41 0 T 

% ~i E U 

& 6, F V 

I ,. G W 

( III H X 

) 9' I Y . : J Z 

+ ; K [ I 

, < l \ 

- = M ] I 

) N 
..... I 

/ ? 0 • -

6 7 

x110 xIII 

, 
P 

a q 

b r 

c s 

d t 

e u 

f v 

g w 

h x 

i Y 

j z 

k I 
I I 

I 

m I 
• n -

'0 Del 

Most significont bit, added for 8-bit format, is either 0 or even parity. 

CI)lumns 0-1 are control codes. 

ColumM 2-5 correspond to the 64-choroct.r ANSCII set. 
ColumM 2-7 correspond to the 95-choracter ANSCII set. 

On many current teletypes, the symbol 

is (5-14) 

is (5-15) 

is ESC or AlTMOOE contra I (7-14) 

and none of the symbols appearing in columns 6-7 are provided, Except for the three 
symbol differences nated above, therefore, such teletypes provide all the characters in 
th4t 64-chorocter ANSCII set. (The Xerox 7015 Remote Keyboard Printer provides the 
64-choracter ANSCII set 0110, but prints A 01 II.) 

0., the Xerox 7670 Remote Botch Terminal, the symbol 

is (2-1) 

[ is I (5-11) 

] is (5-13) 

is .., (5-14) 

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol 
differences noted above, therefore, this terminal provides all the characters in the 64-
character ANSCII .. t • 

----''--- WI 
, 

Appendix A 99 



STANDARD SYMBOL-CODE COARESPONDEJICES 

EBCDICt 
ANscntt 

Hex. Dec. Symbol Cord Code Meaning Remarks 

00 0 NUL 12-0-9-8-1 0-0 null 00 thl"OU8h 23 and 2F are control codes. 
01 1 SOH 12-9-1 0-1 start of header 
02 2 STX 12-9-2 0-2 start of text 
03 3 ETX 12-9-3 0-3 end of text 
04 .. EOT 12-9-" 0-4 end of transmission 
05 5 HT 12-9-5 0-9 horizontal tob 
06 6 ACK 12-9-6 0-6 acknowledge (positive) 
07 7 Bel 12-9-7 0-7 bell 
08 8 BSorEOM 12-9-8 0-8 backspace or end of message 
09 9 ENQ 12-9-8-1 0-5 enquiry 
OA 10 NAK 12-9-&-2 1-5 negative acknowledge 
08 11 VT 12-9-8-3 0-11 vertical tob 
OC 12 FF 12-9-8-" 0-12 form feed 
00 13 CR 12-9-8-5 0-13 carriage retum 
OE , .. SO 12-9-8-6 0-1" shift out 
OF 15 SI 12-9-8-7 0-15 shift in 

10 16 OLE 12-11-9-8-1 1-0 data link escape 
11 17 DCI 11-9-1 1-1 device control 1 
12 18 OC2 11-9-2 1-2 device control 2 
13 19 OC3 11-9-3 1-3 device control 3 
1 .. 20 DC .. 11-9-" 1-" device control" 
15 21 lF or Nl 11-9-5 0-10 line feed or new line 
16 22 SYN 11-9-6 1-6 sync 
17 23 ETB 11-9-7 1-7 end of transmission block 
18 2 .. CAN 11-9-8 1-8 cancel 
19 25 EM 11-9-8-1 1-9 end of medi urn 
IA 26 SUB 11-9-8-2 1-10 substitute Replaces chorocten with parity error. 
18 27 ESC 11-9-8-3 1-11 escape 
lC 28 FS 11-9-8-" 1-12 fi Ie separator 
10 29 GS 11-9-8-5 1-13 group separator 
IE 30 RS 11-9-8-6 1-1" record separator 
IF 31 US 11-9-8-7 1-15 unit separator 

20 32 ds 11-0-9-8-1 digit selector 20 through 23 are used with 
21 33 55 0-9-1 significance start Sigma EDIT BYTE STRING (E8S) 
22 3 .. fs 0-9-2 field separation instruction - not input/output con-
23 35 5i 0-9-3 immediate significance start trol codes. 
2 .. 36 0-9-4 2" through 2E are unassigned. 
25 37 0-9-5 
26 38 0-9-6 
27 39 0-9-7 
28 40 0-9-8 
29 .. I 0-9-8-1 
2A 42 0-9-8-2 
28 "3 0-9-8-3 
2C .... 0-9-8-4 
20 "5 0-9-8-5 
2E "6 0-9-8-6 
2F .. 7 0-9-8-7 

30 "8 12-11-0-9-8-1 30 through 3F are unassigned. 
31 .. 9 9-1 
32 50 9-2 
33 51 9-3 
3" 52 9-4 
35 53 9-5 
36 5 .. 9-6 
37 55 9-7 
38 56 9-8 
39 57 9-8-1 
3A 58 9-8-2 
31 59 9-8-3 
3C 60 9-8-" 
3D 61 9-8-5 
3E 62 9-8-6 
3F 63 9-8-7 

tHexodecimal and decimal notation. 

ttOecimal notation (column-raw). 

100 Appendix A 



STANDARD SYMBOL-COI)E CORRESPONDENCES (cont.) 

EBCOICt 
Symbol C:ord Code ANscntt 

Meaning Remarks 
Hex. Dec. . 
40 64 . Sp blank 2-0 blank 
41 6S 12-0-9-1 41 through 49 will nat be assigned. 
42 66 12-0-9-2 
43 67 12-0-9-3 
44 68 12-0-9-4 
45 69 1:2-0-9-5 
46 70 1:2-0-9-6 
47 71 1:2-0-9-7 
48 n I:Z-0-9-8 
49 73 J:l-8-1 
4A 74 'or • I:Z-8-2 6-0 cent or accent grave Accent grave used for left single 
48 75 l:l-8-3 2-14 period quote. On model 7670, • not 
4C 76 < I:Z-8-4 3-12 less tl)on available, and' "'" ANSCII 5-11. 
40 77 ( I:Z-8-5 2-8 'eft parenthesis 
4E 78 + I:Z-8-6 2-11 p'us 
4F 79 lor I I:Z-8-7 7-12 v4!lrtical bar or broken bar On Model 7670,: not available, 

I 
and I = ANSCII 2-1. --

SO 80 & I:! 2-6 ampersand 
51 81 1:!-11-9-1 51 through 59 will not be assigned. 
52 82 1:!-11-9-2 
53 83 1:1-11-9-3 
54 84 1~1-11-9-4 

55 as 1~!-11-9-5 

56 86 14!-11-9-6 
57 87 1~!-11-9-7 

58 88 IA!-1l-9-8 
59 89 111-8-1 
5A 90 I 111-8-2 2-1 e)(clamotion paint On Model 7670, ! is I. 
58 91 S 111-8-3 2-4 dollars 
SC 92 . l1i-8-4 2-10 as.terisk 
50 93 ) 11'-8-5 2-9 right parenthesis 
5E 94 ; 11-8-6 3-11 semicolon 
SF 95 - or ..., 11-8-7 ~ 7-14 ti~de or logical not On Model 7670, - is not available, 

and ...., = ANSCII 5-14. --
60 96 - II 2-13 ~iinus, dash, hyphen 
61 97 / 0··1 2-15 slash 
62 98 11-0-9-2 62 through 69 wi II nat be assigned. 
63 99 11-0-9-3 
64 100 11-0-9-4 
6S 101 11-0-9-5 
66 102 11-0-9-6 
67 103 11-0-9-7 
68 104 11-0-9-8 
69 105 0-8-1 
6A 106 

,.. 
12-11 5-14 circumflex On Model 7670'" is -'. On Model 

68 107 , 0-8-3 2-12 comma 7015 "'" is A (caret). 
iJC. 108 % 0-8-4 2-5 percent 
60 109 - 0-8-5 5-15 underline Underline is sometimes called "break 
6E 110 > 0-8-6 3-14 gNater thon character"; may be printed along 
6F 111 ? 0-8-7 3-15 question mark bottom of character line. 

70 112 12-11-0 70 through 79 wi II nat be assigned. 
71 113 12-11-0-9-1 
72 114 12-11-0-9-2 
73 115 12-11-0-9-3 
74 116 12-11-0-9-4 
75 117 12-11-0-9-5 
76 118 12-11-0-9-6 
n 119 12-11-0-9-7 
78 120 12-11-0-9-8 
79 121 8-1 
7A 122 8-:2 3-10 colon 
78 123 

, 
8-:1 2-3 nUlmber 

7C 124 @ 8-' 4-0 at 
70 125 I 8-:5 2-7 apostrophe (right single quote) 
7E 126 = 8~~ 3-13 equals 
7F 127 II 8":':7 2-2 q~tation mark 

tHexadecima' and decimal not4:11tion. 

tto.cimal notation (column-FOIN). 

Appendix A 101 



STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

EBCDIC t 
ANSCII" Hex. Dec. Symbol Card Code Meaning Remarks 

80 128 12-0-8-1 80 is u\signed. 
81 129 a 12-0-1 6-1 81-89, 1-99, A2-A9 comprise the 
82 130 b 12-0-2 6-2 lowercase alphabet. Ayailable 
83 131 c 12-0-3 6-3 only in standard 89- and 95-
84 132 d 12-0-4 6-4 character sets. 
85 133 e 12-0-5 6-5 
86 134 f 12-0-6 6-6 
87 135 

I 
g 12-0-7 6-7 

88 136 h 12-0-8 6-8 
89 137 i 12-0-9 6-9 
8A 138 12-0-8-2 SA through 90 are unassigned. 
88 139 12-0-8-3 
8C 140 12-0-8-4 
80 141 12-0-8-5 
8E 142 12-0-8-6 
8F 143 12-0-8-7 

90 1 .... 12-11-8-1 
91 145 j 12-11-1 6-10 
92 146 Ie 12-11-2 6-11 
93 147 I 12-11-3 6-12 
94 148 "II 12-11-4 6-13 
95 149 n 12-I1-S 6-14 
96 150 0 12-11-6 6-1S 
97 151 p 12-11-7 7-0 
98 152 q 12-11-8 7-1 
99 IS3 r 12-11-9 7-2 
9A 154 12-11-8-2 9A through AI are unassigned. 
98 ISS 12-11-8-3 
9C 156 12-11-8-4 
90 IS7 12-11-8-S 
9E 158 12-11-8-6 
9F IS9 12-11-8-7 

AO 160 11-0-8-1 
Al 161 11-0-1 
A2 162 s 11-0-2 7-3 
A3 163 t 11-0-3 7-4 
A4 164 u 11-0-4 7-S 
AS 165 y 11-o-S 7-6 
A6 166 w 11-0-6 7-7 
A7 167 x 11-0-7 7-8 
A8 168 Y 11-0-8 7-9 
A9 169 z 11-0-9 7-10 
AA 170 11-0-8-2 AA through ao are unassigned. 
AB 171 11-0-8-3 
AC 172 11-0-8-4 
AD 173 11-0-8-5 
AE 174 11-0-8-6 
Af- 175 11-0-8-7 

80 176 12-11-0-8-1 
Bl 177 \ 12-11-0-1 S-12 backslash 
82 178 I 12-11-0-2 7-11 left brace 
83 179 J 12-11-0-3 7-13 right brace 
84 180 

~ 
12-11-0-4 S-11 left bracket On Model 7670, ~ is I. 

85 181 12-11-0-5 5-13 right bracket On Madel 7670, is'. 
B6 182 12-11-0-6 86 through 8F are unassigned. 
B7 183 12-11-0-7 
88 184 12-11-0-8 
B9 185 12-11-0-9 
BA 186 12-11-0-8-2 
88 187 12-11-0-8-3 
8e 188 12-11-0-8-" 
BD 189 12-11-0-8-5 
8E 190 12-11-0-8-6 
SF 191 12-11-0-8-7 

tHexadecimal and decimal natation. 

ttDecimal notation (column-row). 

102 Appendix A 



STANDARD SYMBOl-CODE CORRESP.ONDENCES (cont.) 

EBCDICt Syr"'bol Card Code ANSCII" Meaning Remarks 
Hex. Dec. 

CO 192 12-0 CO is unassigned. 
Cl 193 A 12-1 "-1 Cl-C9, 01-09, E2-E9 comprise the 
C2 19 .. a 12-2 "-2 uppercase alphabet. 
C3 195 C 12-3 "-3 
C .. 196 0 12 .... ...... 
C5 197 f 12-5 "-5 
C6 198 F 12-6 "-6 
C7 199 G 12-7 "-7 
C8 200 H 12-8 "-8 
C9 201 1 12-9' "-9 
CA 202 12-0-9-8-2 CA thraugh CF will nat be assigned. 

ca 203 12-0-9-8-3 
CC 204 12-0-9-8 .... 
CD 205 12-0-9-8-5 
CE 206 12-0-9-8-6 
CF 207 12-0-9-8-7 

DO 208 11-0 DO is unassigned. 
Dl 209 J '11-1 "-10 
D2 210 K '11-2 "-11 
D3 211 l 111-3 "-12 
04 212 M 111 .... "-13 
D5 213 N 111-5 "-1" 
D6 21 .. 0 111-6 "-15 
D7 215 P 111-7 5-0 
D8 216 Q 111-8 5-1 
D9 217 R 111-9 5-2 
DA 218 112-11-9-8-2 DA thraugh OF will nat be assigned. 
DB 219 112-11-9-8-3 
DC 220 112-11-9-8 .... 
DO 221 112-11-9-8-5 
Df 222 112-11-9-8-6 
OF 223 112-11-9-8-7 

fO 22 .. (1-8-2 EO, El are unassigned. 
E1 225 111-0-9-1 
f2 226 S (1-2 5-3 
f3 227 T (1-3 5 .... 
f .. 228 U (I .... 5-5 
E5 229 V (1-5 5-6 
E6 230 W (1-6 5-7 
f7 231 X (1-7 5-8 
E8 232 y (1-8 5-9 
f9 233 Z (1-9 5-10 
fA 23.- 11-0-9-8-2 EA through EF will nat be assigned. 

fa 235 11-0-9-8-3 
EC 236 11-0-9-8 .... 
ED 237 11-0-9-8-5 
EE 238 11-0-9-8-6 
fF 239 11-0-9-8-7 

FO 240 0 (lJ 3-0 
Fl 2 ... 1 1 3-1 
F2 2 .. 2 2 2~ 3-2 
F3 243 3 3: 3-3 
F .. 2 .... .. .. 3 .... 
F5 2 .. 5 5 S 3-5 
F6 246 6 6 3-6 
F7 2 .. 7 7 " 3-7 
F8 2 .. 8 8 8 3-8 
F9 2 .. 9 9 9 3-9 
FA 250 12-11-0-9-8-2 FA through FE will nat be assigned. 

F8 251 12-11-0-9-8-3 
FC 252 12-11-0-9-8-4 
FO 253 12-11-0-9-8-5 
FE 254 12-11-0-9-8-6 
FF 255 DEL 12-1.1-0-9-8-7 delete Special - neither graphic nar con-

trol symbol. 

tHexadecimal and decimal nCltation. 

tto.cimal notation (column-r'Dw). 

Append ix A 103 



ADDITION TABLE 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

1 02 03 04 OS 06 07 08 09 OA 00 OC 00 OE OF 10 

2 03 04 OS 06 07 08 09 OA OB OC 00 OE OF 10 11 

3 04 05 06 07 08 09 OA 06 OC 00 OE OF 10 11 12 

4 05 06 ·07 08 09 OA OB OC 00 Of OF 10 11 12 13 

5 06 07 08 09 OA OB OC 00 OE OF 10 11 12 13 14 

6 07 08 09 OA OB OC 00 OE OF 10 11 12 13 14 15 

7 08 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 

8 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 

9 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 18 

A 08 OC 00 DE OF 10 11 12 13 14 15 16 17 18 19 

8 OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA 

C 00 DE OF 10 11 12 13 14 15 16 17 18 19 lA lB 

0 OE OF 10 11 12 13 14 15 16 17 18 19 lA lB lC 

E OF 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10 

F 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10 IE 

MULTIPLICATION TABLE 

1 2 3 -4 5 6 7 8 9 A B C 0 E F 

2 04 06 08 OA OC OE 10 12 14 16 18 lA lC IE 

3 06 09 OC OF 12 15 18 18 IE 21 24 27 2A 20 

4 08 OC 10 14 18 lC 20 24 28 2C 30 34 38 3C 

5 OA OF 14 19 IE 23 28 20 32 37 3C 41 46 4B 

6 OC 12 18 IE 24 2A 30 36 3C 42 48 4E 54 SA 

7 OE 15 lC 23 2A 31 38 3F 46 40 54 58 62 69 

8 10 18 20 28 30 38 40 48 SO 58 60 68 70 78 

9 12 18 24 20 36 3F 48 51 5A 63 6C 75 7E 87 

A 14 IE 28 32 3C 46 50 SA 64 6E 78 82 8C 96 

8 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A AS 

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 

0 lA 27 34 41 4E sa 68 75 82 SF 9C A9 86 C3 

E lC 2A 38 46 54 62 70 7E 8C 9A A8 86 C4 02 

F IE 20 3C 48 SA 69 78 87 96 A5 B4 C3 02 El 

104 Appendix A 



TABLE OF POWERS OF SIXTEEN 
10 

16n I' 16-n 
--

10 0.10000 00000 00000 00000 x 10 

16 1 0.62500 00000 00000 00000 x 10- 1 

256 :2 0.39062 50000 00000 00000 x 10-2 

4 096 3 0.24414 06250 00000 00000 x 10-3 

65 536 '. 0.15258 78906 25000 00000 x 10-4 

048 576 .5 0.95367 43164 06250 00000 x 10-6 

. 16 m 216 j~ 0.59604 644n 53906 25000 x 10-7 

268 435 456 7 0.37252 90298 46191 40625 x 10-8 

4 294 967 296 8 0.23283 06436 53869 62891 x 10-9 

68 719 476 736 ~~ 0.14551 91522 83668 51807 x 10- 10 

1 (x~9 511 627 n6 1() 0.90949 47017 72928 23792 x 10- 12 

17 5~~2 186 044 416 111 0.56843 41886 08080 14870 x 10- 13 

281 4j'4 976 710 656 12 0.35527 13678 80050 09294 x 10- 14 

4 503 5~'9 627 370 496 1 :1 0.22204 46049 25031 30808 x 10- 15 

72 057 5~~4 037 927 936 14 0.138n 78780 78144 56755 x 10- 16 

1 152 921 504 606 846 976 po 
~. 0.86736 17379 88403 54721 x 10-18 

TABLE OF POWERS OF TEN 
16 

IOn .!l 10-n 

0 1.0000 0000 0000 0000 

A 0.1999 9999 9999 999A 

64 2 0.28F5 C28F 5C28 F5C3 x 16-1 

3E8 3 004 189 3748 C6A7 EF9E x 16-2 

2710 4 0.6808 88AC 710C 8296 x 16-3 

86AO 5 0.A7C5 AC47 1847 8423 x 16-4 

F 4240 6 0.10C6 F7AO 85EO 8037 x 16-4 

98 9680 7 0.1 A07 F29A 8CAF 4858 x 16-5 

!iF5 El00 8 0.2AF3 1 DC4 6118 738F x 16-6 

3EI9A CAOO 9 004488 2FAO 985A 52CC x 16-7 

2 5~~08 E400 10 0.60F3 7F67 5EF6 EADF x 16-8 

17 4876 E800 11 O.AFE 8 FF08 C824 AAFF x 16-9 

E8 0~~A5 1000 12 0.1197 9981 2DEA 1 119 x 16-9 

918 4E.72 AOOO 13 0.1 C25 C268 4976 81C2 x 16- 10 

5AF3 1 (lI7A 4000 14 0.2009 3700 4257 3604 x 16- 11 

3 807E A4~C6 8000 15 Oo480E 8E78 9058 5660 x 16- 12 

23 86F2 6F'CI 0000 16 0.734A CASF 6226 FOAE x 16- 13 

163 4578 5 [.8 A 0000 17 0.8877 AA32 36A4 8449 x 16- 14 

OEO 8683 A7'64 0000 18 0.1272 5001 0243 A8Al x 16- 14 

8AC7 2304 89E8 0000 19 0.1083 C94F 8602 AC35 x 16- 15 

Appendix A 105 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TA8LE 

The table below provides for dired conversions between hexa
decimal integers in the range O-FFF and decimal integers in 
the range 0-4095. For conversion of larger integers, the 
table values may be added to the following figures: 

Hexadecimal 

01000 
02000 
03000 
04 000 
05000 
06 000 
07000 
08000 
09000 
OA 000 
08000 
OC 000 
00000 
OE 000 
OF 000 
10 000 
11000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 
lA 000 
18000 
lC 000 
10000 
IE 000 
IF 000 

000 
010 
020 
030 

040 
050 
060 
070 

080 
090 
OAO 
080 

OCO 
000 
OEO 
OFO 

0 

0000 
0016 
0032 
0048 

0064 
0080 
0096 
0112 

0128 
0144 
0160 
0176 

0192 
0208 
0224 
0240 

Decimal 

4096 
8 192 

12288 
16384 
20480 
24576 
28672 
32768 
36 864 
40960 
45056 
49152 
53248 
57344 
61440 
65536 
69632 
73728 
77824 
81920 
86 016 
90 112 
94208 
98304 

102400 
106 496 
110592 
114688 
118784 
122880 
126 976 

1 2 

0001 0002 
0017 0018 
0033 0034 
0049 0050 

0065 0066 
0081 0082 
0097 0098 
0113 0114 

0129 0130 
0145 0146 
0161 0162 
0177 0178 

0193 0194 
0209 0210 
0225 0226 
0241 0242 

106 Appendix A 

Hexadecimal 

20000 
30000 

,40000 
50000 
60000 
70000 
80 000 
90 000 
AOOOO 
80 000 
CO 000 
00000 
EO 000 
FO 000 

100 000 
200000 
300000 
400 000 
500000 
600 000 
700 000 
800 000 
900000 
AOO 000 
BOO 000 
COO 000 
DOO 000 
EOO 000 
FOO 000 

1 000000 
2000 000 

3 4 

0003 0004 
0019 0020 
0035 0036 
0051 0052 

0067 0068 
0083 0084 
0099 0100 
0115 0116 

0131 0132 
0147 0148 
0163 0164 
0179 0180 

0195 0196 
0211 0212 
0227 0228 
0243 0244 

Decimal 

131 072 
196608 
262 144 
327680 
393 216 
458752 
524288 
589824 
655 360 
720896 
786 432 
851 968 
917 504 
983040 

1 048576 
2097 152 
3 145 728 
4 194 304 
5 242 880 
6 291 456 
7 340032 
8388608 
9437 184 

10485 760 
11 534 336 
12582 912 
13631 488 
14680 064 
15 728640 
16 777 216 
33554432 

5 6 

0005 0006 
0021 0022 
0037 0038 
0053 0054 

0069 0070 
0085 0086 
0101 0102 
0117 0118 

0133 0134 
0149 0150 
0165 0166 
0181 0182 

0197 0198 
0213 0214 
0229 0230 
0245 0246 

7 

0007 
0023 
0039 
0055 

0071 
0087 
0103 
0119 

0135 
0151 
0167 
0183 

0199 
0215 
0231 
0247 

Hexadecimal fractions may be converted to decimal fractions 
as follows: 

1. Express the hexadecimal fraction as an integer times 
16-n, where n is the number of significant hexadecimal 
places to the right of the hexadecimal point. 

O. CA9BF316 = CA9 BF316 x 16-6 

2. Find the decimal equivalent of the hexadecimal integer 

CA9 BF3
16 

= 13 278 19510 

3. Multiply the decimal equivalent by 16-n 

13 278 195 
x 596 046 448 x 10-16 

0.791 44209610 

Decimal fractions may be converted to hexadecimal fractions 
by successively multiplying the decimal fraction by 16 10" 
After each multiplication, the integer portion is removeO to 
fonn a hexadecimal fraction by building to the right of the 
hexadecimal point. However, since decimal arithmetic is 
used in this conversion, the integer portion of each product 
must be converted to hexadecima I numbers. 

Example: Convert 0.89510 to its hexadecimal equivalent 

0.895 

------@.3~g 
,..----- G5.11~ 

~ ~ 
0.E51 E16··----Q).7~~ 
8 9 A B C 

0008 0009 0010 0011 0012 
0024 0025 0026 0027 0028 
0040 0041 0042 0043 0044 
0056 0057 0058 0059 0060 

0072 0073 0074 0075 0076 
0088 0089 0090 0091 0092 
0104 0105 0106 0107 0108 
0120 0121 0122 0123 0124 

0136 0137 0138 0139 0140 
0152 0153 0154 0155 0156 
0168 0169 0170 0171 0172 
0184 0185 0186 0187 0188 

0200 0201 0202 0203 0204 
0216 0217 0218 0219 0220 
0232 0233 0234 0235 0236 
0248 0249 0250 0251 0252 

D E F 

0013 0014 0015 
0029 0030 0031 
0045 0046 0047 
0061 0062 0063 

0077 0078 0079 
0093 0094 0095 
0109 0110 0111 
0125 0126 0127 

0141 0142 0143 
0157 0158 0159 
0173 0174 0175 
0189 0190 0191 

0205 0206 0207 
0221 0222 0223 
0237 0238 0239 
0253 0254 0255 



HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F 

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
110 0272 0273 0274 01275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
120 0288 0289 0290 0291 0292 0293 . 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 

140 0320 0321 0322 0'323 0324 0325 0326 10327 0328 0329 0330 0331 0332 0333 0334 0335 
150 0336 0337 0338 0339 0340 0341 0342 10343 0344 0345 0346 0347 0348 0349 0350 0351 
160 0352 0353 0354' 0355 0356 0357 0358 10359 0360 0361 0362 0363 0364 0365 0366 0367 
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
180 0432 0433 0434 0.435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

ICO 0448 0449 0450 0.451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
IDO 0464 0465 0466 0.467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
lEO 0480 10481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
IFO 0496 10497 0498 0·499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

200. 0512 0513 0514 0:515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
210 0528 0529 0530 0:531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
220 0544 0545 0546 0:547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
230 0560 0561 0562 0:563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 . 0587 0588 0589 0590 0591 
250 0592 0593 0594 0:595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
260 0608 0609 0610 ~~11 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
270 0624 0625 0626 ()()27 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

280 0640 0641 0642 ()(>43 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2AO 0672 0673 0674 ()(,75 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
280 0688 0689 0690 ()(,91 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2FO 0752 0753 0754 0;'55 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

300 0768 0769 0770 OJ'71 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
320 0800 0801 0802 on03 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
330 0816 0817 0818 0019 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

340 0832 0833 0834 0035 0836 0837 0838 0.839 0840 0841 0842 0843 0844 0845 0846 0847 
350 0848 0849 0850 0051 0852 0853 0854 0.855 0856 0857 0858 0859 0860 0861 0862 0863 
360 0864 0865 0866 0067 0868 0869 0870 0.871 0872 0873 0874 0875 0876 0877 0.878 0879 
370 0880 0881 0882 OU83 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

380 0896 0.897 0898 OU99 0900 0901 0902 0903 0904 0.905 0906 0907 0908 0909 0910 0911 
390 0912 0.913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3FO 1008 110.09 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

Appendix A 107 



HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
430 1072 1073 1074 1075 1076 1077 1078 1079 10ao 1081 1082 1083 1084 1085 1086 1087 

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
450 1104 1105 1106 1107- 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4(0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5(0 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 ISS I 
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 1636 1637' 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 171 i 
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6(0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

108 Appendix A 



HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

740 1856 1857 1858 '1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 '1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
770 1904 1905 1906 '1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

780 1920 1921 1922 11923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 11939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 11955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
780 1968 1969 1970 11971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7eo 1984 1985 1986 11987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
830 2096 2097 2098 ~~099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

840 2112 2113 2114 ~~115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
870 2160 2161 2162 2163 2164 2165 2166 2'167 2168 2169 2170 2171 2172 2173 2174 2175 

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

-
900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
910 2320 2321 2322 ~!323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

Appendix A 109 



HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 I 2 3 4 5 6 7 8 9 A B C D E F 

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
AlO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
ADO 2768 2769 2770 2771 2772 2773 2774 2n5 2776 2777 2778 2779 2780 2781 2782 2783 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
Bl0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
CIO 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 -3240 3241 3242 3243 3244 3245 3246 3247 
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

110 Appendix A 



HI:XADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A 8 C 0 f F 

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
020 3360 3361 3362 3363 3364 3365" 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386" 3387 3388 3389 3390 3391 

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
050 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
090 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
OAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
080 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

OCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
ODO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
OEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
EI0 3600 3601 3602 3603 "3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E40 3648 3649 3650 .3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E50 3664 3665 3666 ,3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E60 3680 3681 3682 :3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
f70 3696 3697 3698 :3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

f80 3712 3713 3714 :3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
f90 3728 3729 3730 :3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAO 3744 3745 3746 :3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
f80 3760 3761 3762 :3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

fCO 3776 3777 3778 :3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
fDO 3792 3793 3794 :3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEO 3808 3809 3810 :3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
fFO 3824 3825 3826 :3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FOO 3840 3841 3842 :3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
FlO 3856 3857 3858 :3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F20 3872 3873 3874 :3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F30 3888 3889 3890 :3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F40 3904 3905 3906 :3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F50 3920 3921 3922 :3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F60 3936 3937 3938 :3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F70 3952 3953 3954 :3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F80 3968 3969 3970 :3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F90 3984 3985 3986 :3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAO 4000 4001 4002 ·4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
F80 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FOO 4048 4049 4050 ~~051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFO 4080 4081 4082 4083 4084 4085" 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

Appendix AlII 



HEXADEC.AL-DEC.AL FRACTION CONVERSION TABLE 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 000000 .00000 00000 .40 00 00 00 .25000 00000 .80 00 00 00 .50000 00000 .co 00 00 00 .75000 00000 

.01 000000 .00390 62500 .41 000000 .25390 62500 .81 00 00 00 .50390 62500 .CI 00 00 00 .75390 62500 

.02 000000 .00781 25000 .42 00 00 00 .25781 25000 .82 00 00 00 .50781 25000 .C2 00 00 00 .75781 25000 

.03 000000 .01171 87500 .43 00 00 00 .26171 87500 .83 00 00 00 .51171 87500 .C3 00 00 00 .76171 87500 

.04 000000 .0156250000 .44 00 00 00 .2656250000 .84 00 00 00 .5156250000 .C4 00 00 00 .76562 50000 

.05 00 00 00 .01953 12500 .45 00 00 00 .26953 12500 .85 00 00 00 .51 953 12500 .C5 00 0000 .76953 12500 

. 06 00 00 00 .02343 75000 . .46 00 00 00 .27343 75000 .86 00 00 00 .5234375000 .C6 000000 .77343 75000 

.07 000000 .02734 37500 .47 000000 .27734 37500 .87 00 00 00 .5273437500 .C7 00 0000 .77734 37500 

.08 000000 .0312500000 .48 000000 .281 25 00000 .88 00 00 00 .53125 00000 .C8 00 00 00 .781 25 00000 

.09 000000 .0351562500 .49 000000 .2851562500 .89 00 00 00 .53515 62500 .C9 00 00 00 .785 15 62500 

.OA 000000 .03906 25000 .4A 000000 .28906 25000 .8A 00 00 00 .53906 25000 .CA 00 00 00 .78906 25000 

.08 000000 .04296 87500 .4B 0000 CO .29296 87500 .8B 00 00 00 .5429687500 .CB 00 0000 .79296 87500 

.OC 000000 .04687 50000 .4C 000000 .29687 50000 .8C 00 00 00 .54687 50000 .CC 000000 .79687 50000 

.00 000000 .05078 12500 .40 00 00 00 .30078 1 2500 .80 00 00 00 .55078 12500 .CO 00 00 00 .80078 12500 

.OE 000000 .05468 75000 .4E 000000 .30468 75000 .8E 00 00 00 .55~ 75000 .CE 000000 .80468 75000 

.OF 000000 .05859 37500 .4F 000000 .30859 37500 .8F 000000 .55859 37500 .CF 00 00 00 .80859 37500 

.10 0000 00 .0625000000 .50 000000 .3125000000 .90 000000 .56250 00000 .00 000000 .81250 00000 

.11 000000 .06640 62500 .51 00 0000 .31640 62500 .91 000000 .56640 62500 .01 000000 .8164062500 

.12 000000 .07031 25000 .52 000000 .32031 25000 .92 00 00 00 .57031 25000 .02 00 00 00 .82031 25000 

.13 000000 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .03 000000 .82421 87500 

.14 000000 .07812 50000 .54 000000 .32812 50000 .94 00 00 00 .57812 50000 .04 00 0000 .8281250000 

.15 0000 00 .08203 12500 .55 00 00 00 .33203 12500 .95 000000 .58203 12500 .05 000000 .83203 12500 

.16 000000 .08593 75000 .56 00 00 00 .33593 75000 .96 00 00 00 .58593 75000 .D6 00 00 00 .83593 75000 

.17 000000 .08984 37500 .57 000000 .33984 37500 .97 00 00 00 .58984 37500 .07 000000 .83984 37500 

.18 000000 .09375 00000 .58 000000 .34375 00000 .98 00 00 00 .59375 00000 .08 00 00 00 .84375 00000 

.19000000 .09765 62500 .59 000000 .34765 62500 .99 00 00 00 .59765 62500 .09 00 0000 .84765 62500 

.IA 000000 .10156 25000 .5A 00 00 00 .35 156 25000 .9A 000000 .60156 25000 .OA 00 00 00 .85156 25000 
.1 B 000000 .10546 87500 .5B 000000 .35546 87500 .9B 000000 .60546 87500 .DB 000000 .85546 87500 
.IC 000000 · I 0937 50000 .5C 000000 .35937 50000 .9C 000000 .60937 50000 .DC 000000 .85937 50000 
.1 D 000000 .11328 12500 .50 000000 .36328 12500 .90 00 00 00 .61328 12500 .00000000 .86328 12500 
.1 E 000000 .1171875000 .5E 000000 .3671875000 .9E 000000 .61718 75000 .DE 000000 .8671875000 
.1 F 000000 .1210937500 .5F 000000 .3710937500 .9F 000000 .6210937500 .DF 000000 .8710937500 

.20 000000 · I 2500 00000 .60 000000 .37500 00000 .AO 00 00 00 .62500 00000 .EO 000000 .87500 00000 

.21 000000 .1 2890 62500 .61 000000 .37890 62500 .Al 00 00 00 .62890 62500 .El 000000 .87890 62500 

.22 000000 .13281 25000 .62 000000 .38281 25000 .A2 000000 .63281 25000 .E2 000000 .88281 25000 

.23 000000 .13671 87500 .63 000000 .38671 87500 .A3 00 00 00 .63671 87500 .E3 000000 .88671 87500 
.24 000000 .14062 50000 .64 000000 .39062 50000 .A4 00 00 00 .64062 50000 .E4 000000 .89062 50000 
.25 000000 · 14453 I 2500 .65 000000 .39453 12500 .A5 00 00 00 .64453 12500 .E5 000000 .89453 12500 
.26 000000 .14843 75000 .66 000000 .39843 75000 .A6 00 00 00 .64843 75000 .E6 000000 .89843 75000 
.27 000000 .1523437500 .67 000000 .40234 37500 .A7 000000 .65234 37500 .E7 000000 .90234 37500 
.28 000000 .15625 00000 .68 000000 .406 25 00000 .A8 000000 .65625 00000 .E8 000000 .90625 00000 
.29 000000 .16015 62500 .69 000000 .41 '115 62500 .A9 000000 .66015 62500 .E9 000000 .9101562500 
.2A 000000 · 16406 25000 .6A 000000 .41/.06 25000 .AA 00 00 00 .66406 25000 .EA 000000 .91406 25000 
.2B 000000 . 167Y6 87500 .6B 000000 .41796 87500 .AB 00 00 00 .66796 87500 .E8 000000 .91796 87500 
.2C 00 00 00 .17187 50000 .6C 000000 .42187 50000 .AC 00 00 00 .67187 50000 .EC 000000 .92187 50000 
.2D 000000 .17578 12500 .60 000000 .42578 12500 .AD 00 00 00 .67578 12500 .ED 000000 .92578 I 2500 
.2E 000000 .1196875000 .6E 000000 .4 2 968 75000 .AE 000000 .67968 75000 .EE 000000 .9296875000 
.2F 000000 .1835937500 .6F 000000 .43359 37500 .AF 000000 .68359 37500 .EF 000000 .93359 37500 

.30 000000 .18750 00000 .70 000000 .43750 00000 .BO 000000 .68750 00000 .FO 000000 .93750 00000 

.31 000000 .1914062500 .71 000000 .4414062500 .BI 00 00 00 .69140 62500 .F 1 000000 .9414062500 

.32 000000 · I 9531 25000 .72 000000 .44531 25000 .B2 000000 .69531 25000 .F2 00 00 00 .94531 25000 

.33 000000 .19921 87500 .73 00 00 00 .44921 87500 .B3 000000 .69921 87500 .F3 000000 .94921 87500 

.34 000000 .2031 2 50000 .74 000000 .45312 50000 .84 000000 .7031 2 50000 .F4 000000 .95312 50000 

.35 000000 .20703 I 2500 .75 000000 .45703 12500 .B5 000000 .70703 1 2500 .F5 00 00 00 .95703 12500 

.36 000000 .21093 75000 .76 000000 .46093 75000 .86 00 00 00 .71093 75000 .F6 00 00 00 .96093 75000 

.37 000000 .21484 37500 .77 00 00 00 .46484 37500 .B7 000000 .71484 37500 .F7 00 00 00 .96484 37500 

.38 000000 .21875 00000 .78 000000 .46875 00000 .B8 00 00 00 .71875 00000 .F8 00 00 00 .96875 00000 

.39 000000 .22265 62500 .79 00 00 00 .47265 62500 .B9 00 00 00 .72265 62500 .F9 000000 .9726562500 

.3A 000000 .22656 25000 .7A 00 00 00 .47656 25000 .BA 00 00 00 .72656 25000 .FA 00 00 00 .97656 25000 

.38 000000 .23046 87500 .7B 000000 .48046 87500 .BB 000000 .73046 87500 .FB 000000 .98046 87500 

.3e 000000 .23437 50000 .7C 00 00 00 .48437 50000 .BC 00 00 00 .73437 50000 .Fe 000000 .98437 50000 

.30 000000 .23828 12500 .70 000000 .48828 12500 .BD 00 00 00 .73828 12500 .FD 000000 .98828 12500 

.3E 000000 .24218 75000 .7E 000000 .49218 75000 .BE 000000 .74218 75000 .FE 000000 .99218 75000 

.3F 000000 .2460937500 .7F 00 00 00 .49609 37500 , .BF 00 00 00 .74609 37500 .FF 000000 .99609 37500 

112 Appendix A 



HEXADECIMAL - DECIMAL fRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.0000 00 00 .00000 00000 .00 40 00 00 .00097 65625 .00 80 00 00 .00195 31250 .00 CO 00 00 .00292 96875 

.00 01 00 00 .00001 52587 .00 41 00 00 .00099 18212 .00 81 0000 .0019683837 .00 Cl 0000 .00294 49462 

.00 02 00 00 .0000305175 .00 42 00 00 .00100 70800 .00 82 0000 .00198 36425 .00 C2 0000 .00296 02050 

.00 03 00 00 .00004 57763 .00 43 00 00 .00102 23388 .0083 0000 .00199 89013 .00 C3 00 00 .00297 54638 

.00 04 00 00 .00006 10351 .00 44 00 00 .0010375976 .0084 0000 .00201 41601 .00 C4 00 00 .00299 07226 

.00 05 00 00 .0000762939 .00 45 00 00 .00105 28564 .00 85 00 0·.) .0020294189 .00 C5 0000 .00300 59814 

.00 06 00 00 .00009 15527 .00 46 00 00 .00106 81152 .0086 0000 .00204 46777 .00 C6 0000 .00302 12402 

.00 07 00 00 .0001068115 .00 47 00 00 .00108 33740 .00 87 0000 .00205 99365 .00 C7 0000 .0030364990 

.00 08 00 00 .00012 20703 .00 48 00 00 .0010986328 .00 88 0000 .00207 51953 .00 C8 0000 .00305 17578 

.0009 00 00 .0001373291 .00 49 00 00 .00 111 38916 .00 89 0000 .0020904541 .00 C9 0000 .00306 70166 

.. 00 OA 00 00 .00015 25878 .00 4A 00 00 .00112 91503 .00 8A 0000 .0021057128 .00 CA 00 00 .00308 22753 
.. 00 OB 00 00 .0001678466 .00 4B 00 00 .0011444091 .008B 0000 .0021209716 .00 CB 0000 .00309 75341 
.. 00 OC 0000 .0001831054 .00 4C 00 00 .00115 96679 .00 8C 0000 .00213 62304 .00 CC 0000 .00311 27929 
.00 00 00 00 .0001983642 .00 40 00 00 .0011749267 .0080 0000 .00215 14892 .00 CD 00 00 .0031 2 805 I 7 
.00 OE 00 00 .00021 36230 ,00 4E 00 00 .0011901855 .00 8E 0000 .0021667480 .00 CE 0000 .00314 33105 
.00 OF 00 00 .0002288818 ,00 4F 00 00 .00120 54443 .008F 0000 .00218 20068 .00 CF 0000 .00315 85693 

.00 10 0000 .0002441406 ,0050 0000 .00 1 22 07031 .0090 00 00 .0021972656 .00 DO 0000 .00317 38281 

.0011 0000 .00025 93994 ,0051 0000 .0012359619 .0091 0000 .00221 25244 .0001 0000 .00318 90869 

.00 12 0000 .00027 46582 .,00 52 0000 .00125 12207 .00 92 0000 .00222 77832 .00 02 0000 .00320 43457 

.00 13 0000 .00028 99169 .,0053 0000 .00 1 26 64794 .0093 0000 .00224 30419 .00 D3 0000 .00321 96044 

.00 14 0000 .00030 51757 .,00 54 0000 .00128 17382 .0094 0000 .00225 83007 .00 D4 0000 .00323 48632 

.00 15 0000 .00032 04345 ,0055 0000 .0012969970 .0095 0000 .00227 35595 .0005 0000 .00325 01220 

.0016 0000 .00033 56933 ,.0056 0000 .00131 22558 .0096 00 00 .00228 88183 .00 06 0000 .00326 53808 

.0017 0000 .00035 09521 .0057 0000 .0013275146 .0097 0000 .0023040771 .00 D7 0000 .00328 06396 
.00 18 0000 .0003662109 .0058 0000 .00134 27734 .0098 0000 .00231 93359 .00 D8 0000 .0032958984 
.00 19 00 00 .00038 14697 .0059 0000 .00135 80322 .0099 0000 .00233 45947 .00 D9 0000 .00331 11572 
.00 IA 0000 .00039 67285 .005A 0000 .00137 32910 .009A 0000 .00234 98535 .00 DA 0000 .00332 64160 
.00 18 0000 .000141 19873 .0058 0000 .0013885498 .009B 0000 .00236 51123 .00 DB 0000 .00334 16748 
.00 lC 0000 .000142 72460 .00 5C 0000 .00140 38085 .009C 0000 .00238 03710 .00 DC 0000 .00335 69335 
.00 1 D 0000 .00044 25048 .0050 0000 .00141 90673 .0090 0000 .00239 56298 .00 DD 0000 .00337 21923 
.00 IE 0000 .00045 77636 .005E 0000 .0014343261 .009E 0000 .00241 08886 .00 DE 0000 .00338 74511 
.00 IF 0000 .00047 30224 .005F 0000 .00144 95849 .009F 00 00 .0024261474 .00 DF 0000 .00340 27099 

.0020 0000 .000148 82812 .0060 0000 .00 146 48437 .00 AO 0000 .00244 14062 .00 EO 0000 .00341 79687 

.00 21 00 00 .000150 35400 .0061 0000 .00148 01025 .00 Al 0000 .00245 66650 .00 El 0000 .00343 32275 

.0022 0000 .000151 87988 .00 62 0000 .0014953613 .00 A2 0000 .00247 19238 .00 E2 0000 .00344 84863 

.0023 0000 .000153 40576 .0063 0000 .00151 06201 .00 A3 0000 .00248 71826 .00 E3 0000 .00346 3745 I 

.00 24 0000 .000154 93164 .0064 0000 .0015258789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039 

.0025 0000 .000156 45751 .0065 0000 .00 154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626 

.0026 0000 .000157 98339 .0066 0000 .0015563964 .00 A6 0000 .00253 29589 .00 E6 0000 .00350 95214 

.0027 0000 .00015950927 .0067 0000 .00157 16552 .00 A7 0000 .0025482177 .00 E7 0000 .00352 47802 

.0028 00 00 .00061 03515 .0068 0000 .0015869140 .00 A8 0000 .00256 34765 .00 E8 0000 .00354 00390 

.00 29 00 00 .00062 56103 .0069 0000 .00160 21728 .00 A9 0000 .00257 87353 .00 E9 0000 .00355 52978 

.002A 0000 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 0000 .00357 05566 

.00 28 0000 .00065 61279 .0068 0000 .00163 26904 .00 AB 0000 .00260 92529 .00 EB 0000 .00358 58154 

.002C 0000 .000167 13867 .006C 0000 .0016479492 .00 AC 0000 .00262 45117 .00 EC 0000 .00360 10742 

.00 2D 0000 .00016866455 .006D 0000 .00 166 32080 .00 AD 0000 .00263 97705 .00 ED 0000 .00361 63330 

.002E 0000 .00070 19042 .006E 0000 .00167 84667 .00 AE 0000 .00265 50292 .00 EE 0000 .00363 15917 

.002F 0000 .00071 71630 .006F 0000 .0016937255 .00 AF 0000 .00267 02880 .00 EF 0000 .00364 68505 

.0030 0000 .00073 24218 .0070 0000 .0017089843 .00 BO 0000 .00268 55468 .00 FO 0000 .00366 21093 

.0031 0000 .00074 76806 .0071 0000 .00 172 42431 .00 BI 0000 .00270 08056 .00 Fl 0000 .00367 73681 

.0032 0000 .00076 29394 .0072 0000 .0017395019 .00 B2 0000 .00271 60644 .00 F2 00 00 .00369 26269 

.0033 0000 .00077 81982 .0073 0000 .0017547607 .00 B3 0000 .00273 13232 .00 F3 0000 .00370 78857 

.0034 0000 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .00274 65820 .00 F4 0000 .00372 31445 

.0035 0000 .00080 87158 .0075 0000 .00178 52783 .00 B5 0000 .00276 18408 .00 F5 0000 .00373 84033 

.0036 0000 .00082 39746 .0076 0000 .00180 05371 .00 B6 0000 .00277 70996 .00 F6 0000 .00375 36621 

.0037 0000 .00083 92333 .0077 0000 .00181 57958 .00 B7 0000 .00279 23583 .00 F7 0000 .00376 89208 

.0038 0000 .00085 44921 .0078 0000 .00183 10546 .00 B8 0000 .00280 76171 .00 F8 0000 .00378 41796 

.0039 0000 .00086 97509 .0079 0000 .0018463134 .00 B9 0000 .0028L 28759 .00 F9 0000 .00379 94384 

.003A 0000 .00088 50097 .007A 0000 .00186 15722 .00 BA 0000 .00283 81347 .00 FA 0000 .00381 46972 

.003B 0000 .00090 02685 .007B 0000 .0018768310 .00 B8 0000 .00285 33935 .00 FB 0000 .00382 99560 

.003C 0000 .00091 55273 .007C 0000 .00189 20898 .00 BC 0000 .00286 86523 .00 FC 0000 .00384 52148 

.00 3D 0000 .00093 0786 I .00 7D 0000 .00190 73486 .00 BD 0000 .00288 39111 .00 FD 0000 .00386 04736 

.003E 0000 .00094 60449 .00 7E 00 00 .00192 26074 .00 BE 0000 .00289 91699 .00 FE 00 00 .00387 57324 

.003F 0000 .00096 13037 .007F 0000 .00193 78662 .00 BF 0000 .00291 44287 .00 FF 0000 .00389 0991 ! _. 
Appendix A 113 



HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.000000 00 .00000 00000 .00 00 40 00 .00000 38146 .00 00 80 00 .00000 76293 .00 00 CO 00 .0000 1 14440 

.000001 00 .00000 00596 .00 00 41 00 .00000 38743 .00 00 81 00 .00000 76889 .00 00 Cl 00 .0000 1 15036 

.000002 00 .00000 01192 .00 00 42 00 .00000 39339 .00 00 82 00 .00000 77486 .00 00 C2 00 .00001 15633 

.000003 00 .00000 01788 .000043 00 .00000 39935 .000083 00 .00000 78082 .00 00 C3 00 .00001 16229 

.000004 00 .00000 02384 .000044 00 .00000 40531 .00 00 84 00 .00000 78678 .0000 C4 00 .00001 16825 

.000005 00 .00000 02980 .000045 00 .00000 41127 .00 00 85 00 .00000 79274 .00 00 C5 00 .00001 17421 

.000006 00 .00000 03576 .00 00 46 00 .00000 41723 .000086 00 .00000 79870 .00 00 C6 00 .00001 18017 

.000007 00 .00000 04172 .000047 00 .00000 42319 .00 00 87 00 .00000 80466 .00 00 C7 00 .00001 18613 

.000008 00 .00000 04 768 .00 00 48 00 .00000 42915 .000088 00 .00000 131 062 .00 00 C8 00 .00001 19209 

.000009 00 .00000 05364 .000049 00 .00000 43511 .000089 00 .00000 81658 .00 00 C9 00 .00001 19805 

.00 00 OA 00 .00000 05960 .00004A 00 .00000 44107 .0000 8A 00 .00000 82254 .00 00 CA 00 .0000 1 2040 1 

.00 00 OB 00 .00000 06556 .00 00 4B 00 .00000 44703 .00 00 8B 00 .00000 82850 .0000 CB 00 .0000 1 20997 

.00 00 OC 00 .00000 07152 .00 00 4C 00 .00000 45299 .00 00 8C 00 .00000 83446 .00 00 CC 00 .00001 21593 

.00 00 00 00 .00000 07748 .000040 00 .00000 45895 .00 00 80 00 .00000 84042 .0000 CO 00 .00001 22189 

.00 00 OE 00 .00000 08344 .00 00 4E 00 .00000 46491 .00 00 8E 00 .00000 84638 .0000 CE 00 .00001 22785 

.00 00 OF 00 .00000 08940 .0000 4F 00 .00000 47087 .00 00 8F 00 .00000 85234 .00 00 CF 00 .00001 23381 

.0000 10 00 .00000 09536 .000050 00 .00000 47683 .00 0090 00 .00000 85830 .0000 DO 00 .00001 23977 

.00 00 II 00 .00000 I 0 1 32 .00 00 51 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 01 00 .00001 24573 

.0000 12 00 .00000 10728 .000052 00 .0000048875 .00 00 92 00 .00000 87022 .0000 02 00 .0000 I 25169 

.00 00 13 00 .00000 11324 .000053 00 .00000 49471 .00 00 93 00 .00000 87618 .000003 00 .00001 25765 

.0000 14 00 .00000 II 920 .000054 00 .00000 5006 7 .000094 00 .00000 88214 .0000 04 00 .00001 26361 

.0000 15 00 .00000 12516 .000055 00 .00000 50663 .00 00 95 00 .00000 88810 .0000 05 00 .00001 26957 

.0000 16 00 .00000 13113 .000056 00 .00000 51259 .00 00 96 00 .00000 89406 .0000 06 00 .00001 27553 

.0000 17 00 .00000 13709 .000057 00 .00000 51856 .00 00 97 00 .00000 90003 .0000 07 00 .00001 28149 

.0000 18 00 .00000 14305 .000058 00 .0000052452 .00 0098 00 .00000 90599 .0000 08 00 .00001 28746 

.0000 19 00 .00000 14901 .000059 00 .00000 53048 .000099 00 .00000 91195 .0000 09 00 .00001 29342 

.0000 IA 00 .00000 15497 .00 00 5A 00 .00000 53644 .0000 9A 00 .00000 91791 .0000 OA 00 .00001 29938 

.0000 I B 00 .00000 16093 .0000 5B 00 .00000 54240 .00 00 9B 00 .00000 92387 .0000 DB 00 .00001 30534 

.0000 IC 00 .00000 16689 .00005C 00 .00000 54836 .00 00 9C 00 .00000 92983 .0000 DC 00 .00001 31130 

.0000 10 00 .00000 I 7285 .000050 00 .00000 55432 .00 00 90 00 .00000 93579 .0000 DO 00 .00001 31726 

.0000 IE 00 .00000 17881 .00005E 00 .00000 56028 .0000 9E 00 .00000 94175 .0000 DE 00 .00001 32322 

.0000 IF 00 .00000 18477 .00 00 5F 00 .00000 56624 .0000 9F 00 .00000 94771 .0000 OF 00 .00001 32918 

.00 00 20 00 .00000 19073 .0000 60 00 .00000 57220 .0000 AO 00 .00000 95367 .0000 EO 00 .00001 33514 

.00 00 21 00 .00000 19669 .000061 00 .00000 57816 .00 00 Al 00 .00000 95963 .0000 E I 00 .00001 34110 

.00 00 22 00 .00000 20265 .000062 00 .00000 5841 2 .0000 A2 00 .00000 96559 .0000 E2 00 .00001 34706 

.00 00 23 00 .00000 2086 1 .000063 00 .00000 59008 .0000 A3 00 .00000 97155 .0000 E3 00 .00001 35302 

.00 00 24 00 .00000 21457 .000064 00 .00000 59604 .0000 A4 00 .00000 97751 .0000 E4 00 .00001 35898 

.00 00 25 00 .00000 22053 .000065 00 .00000 60200 .00 00 A5 00 .00000 98347 .0000 E5 00 .0000 1 36494 

.00 00 26 00 .00000 22649 .000066 00 .00000 60796 .0000 A6 00 .00000 98 943 .0000 E6 00 .00001 37090 

.00 00 27 00 .00000 23245 .00 00 67 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .00001 37686 

.00 00 28 00 .00000 23841 .000068 00 .00000 61 988 .00 00 A8 00 .00001 00135 .0000 E8 00 .00001 38282 

.00 00 29 00 .00000 24437 .000069 00 .00000 62584 .0000 A9 00 .00001 00731 .0000 E9 00 .00001 38878 

.00 00 2A 00 .00000 25033 .00 00 6A 00 .OOCJO 63180 .0000 AA 00 .00001 01327 .0000 EA 00 .00001 39474 

.00 00 2B 00 .00000 25629 .00 00 6B 00 .00flJQ 63776 .0000 AB 00 .0000101923 .0000 EB 00 .00001 40070 

.00 00 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .0000 AC 00 .0000 I 02519 .0000 EC 00 .00001 40666 

.00 00 20 00 .00000 26822 .000060 00 .00000 64969 .0000 AD 00 .00001 03116 .0000 ED 00 .00001 41263 

.00 00 2E 00 .00000 27418 .00006E 00 .00000 65565 .0000 AE 00 .00001 03712 .0000 EE 00 .00001 41859 

.00002F 00 .00000 28014 .00006F 00 .0000066161 .0000 AF 00 .00001 04308 .00 00 EF 00 .00001 42455 

.0000 30 00 .00000 2861 0 .000070 00 .00000 66757 .000080 00 .00001 04904 .0000 FO 00 .00001 4305 I 

.000031 00 .00000 29206 .00 00 71 00 .00000 67353 .000081 00 .00001 05500 .0000 Fl 00 .0000 1 4364 7 

.000032 00 .00000 29802 .000072 00 .00000 67949 .0000 B2 00 .00001 06096 .0000 F2 00 .00001 44243 

.000033 00 .00000 30398 .000073 00 .00000 68545 .0000 B3 00 .00001 06692 .0000 F3 00 .00001 44839 

.00 00 34 00 .0000030994 .0000 74 00 .00000 69141 .00 00 B4 00 .00001 07288 .0000 F4 00 .00001 45435 

.000035 00 .00000 31590 .000075 00 .00000 69737 .00 00 85 00 .00001 07884 .0000 F5 00 .00001 46031 

.0000 36 00 .0000032186 .00 00 76 00 .00000 70333 .00 00 B6 00 .0000 1 08480 .00 00 F6 00 .00001 46627 

.00 00 37 00 .00000 32782 .000077 00 .00000 70929 .0000 B7 00 .00001 09076 .00 00 F7 00 .00001 47223 

.000038 00 .00000 33378 .000078 00 .00000 71525 .00 00 B8 00 .00001 09672 .0000 F8 00 .00001 47819 

.00 00 39 00 .00000 33974 .000079 00 .00000 72121 .00 00 B9 00 .00001 10268 .0000 F9 00 .00001 48415 

.00 00 3A 00 .00000 34570 .00007A 00 .00000 72717 .00 00 BA 00 .0000 1 10864 .0000 FA 00 .00001 49011 

.00 00 38 00 .00000 35166 .00007B 00 .00000 73313 .0000 BB 00 .00001 11460 .0000 FB 00 .00001 49607 

.00003C 00 .00000 35762 .00007C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .00001 50203 

.000030 00 .00000 36358 .000070 00 .00000 74505 .00 00 BO 00 .00001 12652 .00 00 FO 00 .00001 50799 

.00003E 00 .00000 36 954 .00007E 00 .00000 75101 .00 00 BE 00 .0000 1 13248 .00 00 FE 00 .0000151395 

.00003F 00 .00000 37550 .00007F 00 .00000 75697 .0000 BF 00 .00001 13844 .00 00 FF 00 .00001 51991 

114 Appendix A 



HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cent.) 

Hexadecimal Decimal Hlexadecimal Decimal Hexadecimal Decimal Hexadecimal Deci;"ol 

.0000 00 00 .00000 00000 .00000040 .00000 00149 .00 00 00 80 .00000 00298 .00 00 00 CO .00000 0044 7 

.000000 01 .00000 00002 .00000041 .00000 00151 .00000081 .00000 00300 .00 00 00 Cl .00000 0044 9 

.0000 00 02 .00000 00004 .0000 00 42 .00000 00153 .00 00 00 82 .00000 00302 .00 00 00 C2 .00000 0045 I 

.00 00 00 03 .00000 00006 .00000043 .00000 00155 .0000 00 83 .00000 00305 .000000 C3 .00000 00454 

.00000004 .00000 00009 .00000044 .00000 00158 .00 00 00 84 .00000 00307 .00 00 00 C4 .00000 00456 

.00000005 .00000 000 11 .00000045 .00000 00 160 .0000 00 85 .00000 00309 .00 00 00 C5 .00000 00458 

.00 00 00 06 .00000 00013 .0000 0046 .00000 00162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 00461 

.0000 00 07 .00000 00016 .00'000047 .00000 00165 .00 00 00 87 .00000 00314 .000000 C7 .00000 00463 

.00 00 00 08 .OOO()O 00018 .0000 00 48 .00000 00167 .00000088 .00000 00316 .00 00 00 C8 .00000 00465 

.00000009 .00000 00020 .0000 00 49 .00000 00169 .00000089 .00000 00318 .00 00 00 C9 .00000 0046 7 

.00 00 00 OA .00000 00023 .OOOOO04A .00000 00 172 .00 00 008A .00000 00321 .00 00 00 CA .00000 00470 

.00 0000 OB .00000 00025 .00 00 00 4B .00000 00174 .00 00 00 8B .00000 00323 .0000 00 CB .00000 00472 

.000000 OC .00000 00027 .00 00 00 4C .00000 00176 .0000 00 8C .00000 00325 .00 00 00 CC .00000 00474 

.00 00 00 OD .00000 00030 .0000004D .00000 00 179 .00 00 00 8D .00000 00328 .00 00 00 CD .00000 00477 

.00 00 00 OE .0000000032 .00 0000 4E .0000000181 .000000 8E .00000 00330 .00 00 00 CE .00000 00479 

.00 00 00 OF .00000 00034 .00 00 00 4F .00000 00183 .0000008F .00000 00332 .00 00 00 CF .00000 00481 

.00 00 00 10 .00000 00037 .00000050 .00000 00186 .0000 UO 90 .00000 00335 .000000 DO .00000 00484 

.00 00 00 II .0000000039 .00000051 .00000 00 188 .00000091 .00000 00337 .00 00 00 01 .00000 00486 

.00 00 00 12 ,00000 0004 I .00000052 .00000 00 1 90 .00000092 .00000 00339 .00 00 00 D2 .0000000488 
,0000 00 13 .00000 00044 .00000053 .00000 00193 .00000093 .00000 00342 .000000 03 .00000 00491 
.00 00 00 14 .00000 00046 .00000054 .00000 00 195 .00000094 .00000 00344 .00 00 00 D4 .00000 00493 
.00 00 00 15 .00000 00048 .00000055 .00000 00197 .00000095 .00000 00346 .00 00 00 D5 .00000 00495 
.00 00 00 16 · 00000 0005 1 .00000056 .00000 00200 .00000096 .00000 00349 .000000 D6 .00000 00498 
.000000 17 · 00000 00053 .00000057 .00000 0020 2 .00000097 .0000000351 .000000 D7 .00000 00500 
.00 00 00 18 .00000 00055 .00000058 .00000 00204 .00000098 .00000 00353 .000000 08 .0000000502 
.00 00 00 19 .0000000058 .00000059 .00000 00207 .00 00 00 99 .00000 00356 .00 00 00 D9 ,0000000505 
.00 00 00 IA .00000 00060 .00 00 00 5A .00000 00209 .0000009A .0000000358 .000000 DA ,00000 00507 
,0000 00 IB .00000 0006 2 .0000005B .0000000211 .000000 9B .0000000360 .000000 DB .00000 00509 
,00 0000 lC .00000 00065 .0000 00 5C .00000 00214 .0000009C .00000 00363 .000000 DC .00000 005 I 2 
.00 00 00 I D · OOO(X) 00067 .OOOOO05D .00000 00216 .0000009D .00000 00365 .00 0000 DD .00000 00514 
.000000 IE .00000 0006 9 .00 0000 5E .00000 00218 .0000009E .00000 00367 .00 00 00 DE .00000 00516 
.000000 If .00000 00072 .0000 00 5F .0000000221 .0000009F .00000 00370 .000000 DF .00000 00519 

,000000 20 .00000 00074 .00000060 .00000 00223 .000000 AO .00000 00372 .000000 EO .00000 00521 
.000000 21 .00000 00076 .00000061 .00000 00225 .000000 Al .0000000374 .00 00 00 El .00000 00523 
.000000 22 .OOO(X) 00079 .00000062 .00000 00228 .000000 A2 .00000 00377 .000000 E2 .00000 00526 
.000000 23 .00000 00081 .00000063 .00000 00230 .000000 A3 .00000 00379 .00 00 00 E3 .00000 00528 
.000000 24 .OOO()O 00083 .00000064 .00000 00232 .000000 A4 .00000 00381 .000000 E4 .00000 00530 
.000000 25 .00000 00086 .00000065 .00000 00235 i .000000 A5 .00000 00384 .000000 E5 .00000 00533 
,DO 00 00 26 .00000 00088 .00000066 .00000 00237 

I 

.000000 A6 .00000 00386 .000000 E6 .00000 00535 
.0000 0027 .00000 00090 .00000067 .00000 00239 .00 00 00 A7 .00000 00388 .000000 E7 .00000 00537 
,000000 28 .00000 00093 .00000068 .00()00 00242 .000000 A8 .00000 00391 .00 00 00 E8 .00000 00540 
.00000029 .00000 00095 .00000069 ·.00000 00244 .00 00 00 A9 .00000 00393 .000000 E9 .00000 00542 
.. 0000002A .00000 00097 .OOOOO06A .00000 00246 .000000 AA .00000 00395 .00 00 00 EA .00000 00544 
.. 00 00 00 2B .00000 00 100 .00 0000 6B .00000 00249 .00 00 00 AB .00000 00398 .000000 EB .00000 00547 
.. 0000 00 2C .00000 00 102 .00 00 00 6C .00000 00251 .000000 AC .00000 00400 .00 00 00 EC .00000 00549 
.00 00 00 2D .00000 00 I 04 .0000006D .00000 00253 .000000 AD .00000 00402 .000000 ED .0000000551 
.0000002E .0000000107 .0000006E .00000 00256 .000000 AE .00000 00405 .000000 EE .00000 00554 
.,OOOOO02F .00000 00 1 09 .0000006F .00000 00258 .000000 AF .00000 00407 .000000 EF .00000 00556 

.00000030 .0000000111 .00000070 .00000 00260 .000000 BO .00000 00409 .000000 FO .00000 00558 

.000000 31 .00000 00114 .00000071 .00000 00263 .00 00 00 Bl .00000 0041 2 .000000 Fl .00000 00561 

.00000032 .0000000116 .00000072 .00000 00265 .00 00 00 B2 .00000 00414 .000000 F2 .00000 00563 

.00 00 0033 .0000000118 .00000073 .00000 00267 .000000 B3 .00000 00416 .000000 F3 .00000 00565 

.000000 34 .00000 00121 .00000074 .0000000270 .0000 00 B4 .00000 00419 .000000 F4 .00000 00568 
,00 00 00 35 .00000 00123 .00000075 .00000 00272 .00 00 00 B5 .00000 00421 .000000 F5 .00000 00570 
.00 00 00 36 .00000 001 25 .00000076 .0000000274 

i 
.000000 B6 .00000 00423 .000000 F6 .0000000572 

.00 00 00 37 .00000 00 1 28 .00000077 .00000 00277 .000000 B7 .00000 00426 .000000 F7 .00000 00575 

.00000038 .00000 00130 .00000078 .00000 00279 .000000 B8 .00000 00428 .0000 00 F8 ,00000 00577 

.00 00 0039 .00000 00132 .00 00 00 79 .00000 00281 .000000 B9 .00000 00430 .000000 F9 .00000 00579 

.0000003A .00000 00 135 .0000007A .00000 00284 .0000 00 BA .00000 00433 ,000000 FA ,0000000582 

.00 00 00 3B .000100 00137 .0000007B .00000 00286 .00 0000 BB .00000 00435 .00 00 00 FB .00000 00584 

.00 00 00 3C .00000 00139 .0000007C .00000 00288 .0000 00 BC .00000 00437 .000000 Fe .00000 00586 

.000000 3D .00000 00142 .00 00 00 7D .0000000291 .00 00 00 BD .00000 00440 .000000 fD .00000 00589 

.0000003E .00000 00144 .0000007E .00000 00293 .000000 BE .00000 0044 2 .000000 FE .00000 00591 

.0000003F .00000 00 146 .0000 00 7F .00000 00295 .00 00 00 BF .00000 00444 .000000 FF .00000 005 0 3 

Appendix A 115 



TABLE OF POWERS OF TWO MATHEMATICAL CONSTANTS 

.t:..:.L: 
1 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

156 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

4096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 2':; 

134 217 728 1.7 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 
1 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

I 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
4 398 046 51 I 104 42 0.000 000 000 000 227 373 675 44,; 232 059 478 759 765 625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 4j 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 60\ 001 858 711 242 675 781 25 

28 I 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0.000 000 000 000 001776 356 839 400 250 464 677 810 668 945 312 5 

I 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
2 251 799813685248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667236 328 125 

Constont 

. 
",.1 

r-,'II 
In. 

e 
-1 

• 
,'e 

I0910 e 

log2 e 

Y 

InY 

.[l 

In 2 

IO~102 

,10 
In 10 

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 03 I 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0.000 000 000 000 000 I I I 022 302 462 SIS 654 042 363 166 809 082 031 25 

18014 398 509 481984 54 0.000 000 000 000 000 055 511 151 231 257827021 181 583404 541015625 
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 j 

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 

Decimol Volue 

3.14159 26535 89793 

0.31830 98861 83790 

1.77245 38509 05516 

1.14472 98858 49400 

2.71828 18284 59045 

0.36787 94411 71442 

1.64872 12707 00128 

0.43429 44819 03252 

1 .44269 50408 88963 

0.57721 56649 01533 

-0.54953 93129 81645 

1.41421 35623 73095 

0.69314 71805 59945 

0.30102 99956 63981 

3.16227 76601 68379 

2.30258 40929 94046 

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 
288230 376 151 711 744 58 0.000 000 000 000 000 003469446951953614 188823848962 783813476 562 5 
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 

I 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773602 981 120 347 976 684 570 312 5 
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 116 840 434 497 100 886 801 490 560 173 988 342 285 156 2S 
9 223 372 036854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 

116 Appendix A 

Hexadecimol Volue 

3.243F 6A89 

0.517C C117 

l.OBF 89\C 

1.2500 048F 

2.87EI :>163 

0.5E20 5809 

\.A612 98E2 

0.6f20 EC55 

\.7154 7653 

0.93C4 67E4 

-0.8CAE 98CI 

1.6/>.09 E668 

0.8172 17F8 

0.4010 4042 

3.2988 075e 

~.4u7.) J717 



APPENDIX B.I'REFERENCE DIAGRAMS 

This appendix contains flow diagrams that are intended to 
j Ilustrate the major operations involved during the execu
tion of instructions by the SIGMJ~ 7 computer. The flow 
diagrams are not intended to depict actual computer oper
ations and sequences, but the operations and sequences 
shown are valid representations olf the internol computer 
operations. The symbolic notatioln used in the flow dia
grams is consistent with that used in other portions of this 
reference manual. The symbolic terms used are: 

Term Meaning 

A An internal CPU register used to hold an operand 
obtained from the general register that is speci
fied by the R field valuie in the instruction word. 

AC Access control code - tlile code used to determine 
whether or not a slave program operating with 
the memory map may re(Jd from, access instruc
tion from l or write into a specific page ofvirtuol 
addresses .. 

ADDR Address _. any vi rtua I address. 

c 

ID 

EB 

EBl 

lED 

IEDl 

IEH 

IEHL 

lEW 

EWL 

An internal CPU register used to hold an operand 
obtained from the general register that is speci
fied by the value produced by performing a logi
calOR between the R field of the instruction and 
the value 1. 

An internal CPU register used tohold an immediate 
operand obtained from the instruction, or a byte, 
halfword, or word opercmd obtained from the me
mory (or general register) location specified by 
the effective address of the instrucf'ion. For 
doubleword operations, this register holds the 32 
high-order bits of the elffective dOlJibleword. 

An internal CPU register used to hold the32 low
order bits of the effectivie doubleword in a double
word opelrOtion. 

E ffec ti ve byte. 

Effective byte location. 

Effective doubleword 

Effective doubleword IOlcation. 

Effective halfword. 

Effective halfword- localtion. 

E ffec ti ve word. 

Effective word location. 

IA 

IRA 

MA 

OP 

R 

TCC 

TYPE 

WK 

Wl 

X 

Instruction register. 

Instruction address. 

Indirect reference address. 

Memory Address - an actual core memory address. 

Operation code - bits 1-7 of an instruction word. 

Genera I register address value. 

Trap condition code - the code that is used during 
the EXCHANGE PROGRAM STATUS DOUBLE
WORD (XPSD) instruction. 

Memory access type - the following values are 
used to indicate the reason for accessing memory: 

0= write 
1 = instruction read 
2 = operand read 

Write key 

Write lock 

Index register designator. 

BASIC SIGMA 7 INSTRUCTION EXECUTION CYCLE 

The hexagonal elements in the flow diagram labeled 
"Memory Control" refer to the memory request process 
shown at the right of the basic flow diagram. The memory 
request process is represented as a subroutine with two inputs: 
an address value (ADDR) and a memory access TYPE, sepa
rated by a slash, that correspond to the values shown in the 
"Memory Control" elements of the basic flow diagram. 

The circular entry point labeled "TRAP" is a continuation 
of the circular exit points labeled "Trap X'n''', where n is 
the appropriate trap location. 

The triangular entry point labeled "EXU" indicates the 
point in the basic flow diagram at which an instruction 
(being executed as an operand of the EXECUTE instruction) 
is started. 

The triangular entry point labeled "ANLZ" indicates the 
point in the basic flow diagram at which the effective ad
dress computation for the instruction being analyzed is 
started; the triangular exit points indicate the completion 
of the effective address calculation. 

Appendix B J J 7 



BASE SIGMA 7 INSTRUCnON EXECUTION CYCLE 

118 Appendix 8 

E8 - C24-31 
0- C0-23 
0- 0 

EW-C 
0-0 



BASIC SIGMA 7 INSTRUCTION EXECUTION CYCLE (cont.) 

o 

o 

I ____ ~-{ .. (A,I)-EDL 

Appendix B 119 



120 Appendix 8 

FLOAnNG- POINT INSTRUCTION EXECUTION 

FLOATING-POINT MULTIPUCATION AND DIVISION 

no 
no 



.. 
,.. 

FUIA TI"POINT ADDITION AND SUBTRACTION 

........ ft .... , .... 

...... c"-MlItfIc ... ----.... _ .... 
htIc .., I .. -' .... ................ 

o •• IIIIa" .. _ ... -.... 

-
,.. 

Appendix 8 121 



122 Appendix 8 

no 

lEFT SHifT 

Shift fRICtion 'eft 1 .... place, 
fill..-ated bit poIltlon on the 
right with 0'1, dec..-t cher
acterhtlc fJeW by I, .... dec· 
-..t ... lft COUftt by 1. 

O-CC3 
t-CC4 

FLOA nNG-POINT SHIFT 

,. 

,. 

,.. 
lIGHT SHIFT 

Shift fRICtion right I he. place, 
flit .. acated bit pGlltl_ on the 
left with 0'1, Inc_lcho,
acterhtlc fJeId by 1, .... inc,.
..nr ... Ift count by _. 



EDIT BYTE STRINGIINSTRUCTIOI :mCUTION 

Fill • (R)0-7 

SA" (R)1:"31 

D· (1)12-31 

C = (RuI)0-7 

DA .. (Ru1)1:"31 

a·b .... bu ..... 
II = by .. bu' .... 
I = digit bu,.... 
ch= X'2O' 
N= X'21' 
ft = X'22' 
... X'23' 

Appendix B 123 



APPENDIX C. SIGMA 7 INSTRUCTIONS (MNEMONICS) 

Mnemonic Code Instruction Name Addre.ing Type Page 

AD 10 Add Doubleword Doub I eword 38 
AH 50 Add Halfword Halfword 37 
AI 20 Add Immediate Immediate, word 37 
AIO 6E Acknowledge I/O Interrupt (privileged) Word as 
AND 4B AND Word Word « 
ANLZ 44- Analyze Word 35 
AW 30 Add Word Word 38 
AWM 66 Add Word to Memory Word 41 
BAL 6A Branch and Link Word 71. 
8CR 68 Branch on Conditions Reset Word 71 
8CS 69 Branch on Conditions Set Word 71 
8DR 64 Branch on Decrementing Register Word 71. 
81R 65 Branch on Incrementing Register Word 71 
CALI 04 Call 1 Word 71. 
CAL2 05 Call 2 Word 71. 
CAL3 06 Call 3 Word 71. 
CAL4 07 Call 4 Word n 
C8 71 Compare 8yte Byte 42 
C8S 60 Compare Byte String Immediate, byte 60 
CD 11 Compare Doubleword Doubleword 43 
CH 51 Compare Halfword Halfword 43 
CI 21 Compare Immediate Immediate, word 42 
ClM 19 Compare with Limits in Memory Doubleword 44-
ClR 39 Compare with Limits in Register Word .... 
CS 45 Compare Selective Word 43 
CVA 29 Convert by Addition Word 47 
CVS 28 Convert by Subtraction Word • CW 31 Compa re Word Word 43 
DA '79 Decimal Add Byte 55 
DC 70 Decima I Compare 

} optional 
Byte 56 

DO 7A Decimal Divide Byte 56 
DH 56 Divide Halfword Halfword oW 
Dl 7E Decima I Load 

} optlooal 

Byte 54 
OM 78 Decimal Multiply Byte 55 
OS 78 Decimal Subtract Byte 55 
DSA 7C Decimal Shift Arithmetic Byte 56 
OST 7F Decimal Store Byte 54 
OW 36 Divide Word Word 40 
E8S 63 Edit Byte String (optional) Immediate, byte 62 
EOR 48 Exclusive OR Word Word 44 
EXU 67 Execute Word 71 
FAl 10 Floating Add Long Doubleword 51 
FAS 3D F loati ng Add Short Word 51 
FOl IE Floating Divide Long Doubleword 52 
FOS 3E Floating Divide Short 

optional Word 52 
FML IF Floating Multiply Long Doubleword 52 
FMS 3F Floating Multiply Short Word 52 
FSl IC Floating Subtract Long Doubleword 52 
FSS 3C Floating Subtract Short Word 51 
HIO 4F Halt Input/Output (privileged) Word 84 
INT 6B Interpret Word 36 
LAD 18 Load Absolute Doubleword Doubleword 32 
LAH 58 Load Absolute Halfword Halfword 31 
lAW 38 LCIOd Absolute Word Word 31 
L8 72 Load 8yte Byte 30 
LCD lA Load Complement Doubleword Doubleword 31 
LCF 70 Load Conditions and Floating Control Byte 33 

124 Appendix C 



SIGMA 7 INSTRUCTIONS (MNEMONICS) (cont.) 

Mnemonic Code Instruction Name Addressing Type Page 

LCFI 02 Load Conditions and Floating 
Control Immediate Immediate, word 33 

LCH 5A Load Complement Halfword Halfword 31 
LCW 3A Load Complement Word Word 31 
LD 12 Load Ooubleword Daub I eword 30 
LH 52 Load Halfword Halfword 30 
1I 22 Load Immediate Immediate, word 30 
LM 2A Load Multiple Word 33 
LPSD OE Load Program Status Doubleword } 

privileged 
Doubleword 73 

LRP 2F Load Register Pointer Word 75 
LS 4A Load Selective Word 32 
LW 32 Load Word Word 30 
MBS 61 Move Byte String Immediate, byte 59 
MH 57 Multiply Halfword Halfword 39 
MI 23 Multiply Immediate Immediate, word 39 
MMC 6F Move to Memory Control (privileged) Word 75 
MSP 13 Modify Stock Pointer Daub I eword 69 
MTB 73 Modify and Test Byte Byte 41 
MTH 53 Modify and Test Halfword Halfword 41 
MTW 33 Modify and Test Word Word 42 
MW 37 Multiply Word Word 40 
OR 49 OR Word Word 44 
PACK 76 Pock Decimal Digits (optional) Byte 57 
PLM OA Pull Multiple Word 68 
PLW 08 Pull Word Word 67 
PSM OB Push Multiple Word 68 
PSW 09 Push Word Word 67 
RD 6C Read Direct (privileged) Word 78 
S 25 Shift Word 45 
SO 18 Subtract Doubleword Doubteword 39 
SF 24 Shift Floating Word 46 
SH 58 Subtract Halfword Halfword 38 
SIO 4C Start Input/Output (privileged) Word 81 
STB 75 Store Byte Byte 34 
STCF 74 Store Conditions and Floating Control Byte 35 
STD 15 Store Doubleword Doubleword 34 
STH 55 Store Halfword Halfword 34 
STM 2B Store Multiple Word 35 
STS 47 Store Selective Word 34 
STW 35 Store Word Word 34 
SW 38 Subtract Word Word 38 
TBS 41 Translate Byte String Immediate, byte 61 
TOV 4E Test Device } privileged Word 85 
no 40 Test Input/Output Word 84 
TTBS 40 Translate and Test Byte String Immediate, byte 61 
UNPK 77 Unpack Decimal Digi,ts (optional) Byte 57 
WAIT 2E Wail . 1 Word n 
WD 60 Write Direct privileged Word 78 
XPSD OF Exchange Program Status Doubleword Daub I eword 73 
XW 46 Exchange Word Word 34 

Appendix C 125 



APPENDIX D. INSTRUCTION TIMING 

This appendix shows the timing (in microseconds) for 
executing individual SIGMA 7 computer instructions under 
a variety of circumstances. .All of the times are based on 
the assumption that whenever the CPU requests a service 
cycle from a particular memory bonk, it never has to wait 
for such service due to other devices (such as lOPs) that 
ore connected to that memory bonk. 

Execution times depend not only on the nature of the spe
c ific instructions, but also on the configuration of memory 
bonks in the system, and the placement of instructions and 
operands. The following table provides a means of 

estimating instruction execution times for some of the pos
sible combinations of memory bank configuration, data 
placement, and instruction type, where 

MAX = Time with no memory overlap (i.e., all se
quential memory accesses come from the some 
bonk). 

MIN Time with complete memory overlap (i.e., all 
sequential memory accesses come from a bonk 
not currently busy, that is, the bonk being 
accessed is not be ing used by the CPU or any 
external lOP). 

Average Instruction Execution Time 

Instructions tho t uti I i ze byte, Instructions that uti! ize 
Memory Bank Configuration halfword, and word addressing doubleword addressing 

All instructions and operands are in the same 
memory bank. 

All instructions are in one memory bonk and all 
operands are in a different memory bonk. 

All instruc tions ond operands are in two inter-
leaved memory bonks. 

All instructions and operands are in four inter-
leaved memory bonks. 

All instruc tions are in one memory bonk and all 
operands are in two i nterl eaved memory bonks. 
(Both operand memory bonks are different from 
instruction memory bonk.) 

Basic timing information is summarized in the following two 
tables. A dash entry for any item indicates a nonarplicable 
or impossible condition for the instruction. Specia! notes 
(identified by numbers in the "Notes" column are given at 
the end of the table to which they apply. Table 0-1 shows 
the execution times for instructions under the most common 
conditions that the user can expect to encounter in his pro
gram. Table 0-2 shows the additional times that must be 
added to the basic times if (1) the instruction performs a 
register-to-register operation (i.e., accesses one or more 
of the general reg isters for an operand(s) or a direct ad
dress) or (2) the register pointer in the current program status 
doubleword selects one of the register blocks in the range 
from X'4' through X'IF' (4 through 31 decimal). 

The times given in Table 0-2, where the instruction per
forms a register-to-register operation, assume the following 
conditions: 

1. The CPU is operating in the mapping mode with one 
memory bank 50 that no memory overlap occurs. 

126 Appendi x 0 

MAX MAX 

MIN 1/2 MAX + 1/2 MIN 

1/2 MAX + 1/2 MIN 1/4 MAX + 3/4 MIN 

1/4 MAX + 3/4 MIN 1/8 MAX + 7/8 MIN 

MIN MIN 

2. All instructions are in core memory. 

3. In the case of an instruction with a direct address, its 
operand is in one or more of the general registers. For 
a push-down instruction with a direct address, however, 
its stack pointer doubleword is in the general registers 
and the stack is in core memory. 

4. In the case of on instruction with on indirect address, 
the indirect reference is to one of the general registers, 
which contains the direct address of the operand. 'The 
resultant virtual address is assumed to be a core memory 
address. For a push-down instruction with an indirect 
address, therefore, both the stock pointer doubleword 
and the stack are assumed to be in core memory. 

The timing data given below are for a typical system. A 
specific CPU may vary by up to ± 10% of the times shown. 

For large core memory configurations, an additional .1 tJsec 
per memory access may be encountered due to added cable 
lengths. 



Table 0-1. Basic: Instruction Timing 

-------~~I.--------.---f_----- ._~ __ . _____ ._ ._. ________ ~~_. ___ ._. ____________ . Map _____ _ 

~ic. 

:::=--=
AD 

~-

AM 

AI 

:-co: _:::':II'K~, _ ~':i~~._ ::;.~-~ c:E~~:'~~ e-.i.~"-"';~- ~-~:= _-.:~:~~_-~~c~~ 
2.9 3.6 31.9 4.2 2.9 3.7 3.9 4.3 2.4 3.0 3.3 3.6 2. S 3. 2 3. 4 3.8 

-----
2.0 2.6 ~'.9 3.2 2.0 2.7 2.9 3.3 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9 

1.3 I 1.4 1.3 1.4 

AlO I/O 

AlO I 0 

AND 

ANl! 

AW 

AWM 

tAL 

eel branch 

eel no branch 

ees branch 

ICS no branch 

IOl branch 

lOt no branch 
----

III branch 

.. I no branch 
-----

CAL 1-4 

CI 

CIIS 

~---

CD 

CH 

CI 

eLM 

2 
. - .... - -----

--- -

~9 ~9 ~S ~S ~9 ~9 ~S ~S 6.6 ~6 ~2 ~2 ~7 ~7 ~3 ~3 

6. I 6. I 410. 7 6. 7 6. I 6. I 6. 7 6. 7 6 .. I 6. I 6. 7 t 6 7 6. I 6. I 6. 7 6. 7 

2.0 ! 2.6 :1'.9 3.2 2.0 2.7 2.9 3.3 1.4 '1'2.-0' 2.3 - -2~-6 -1:;·---2~2·----2.4 2".-9-'-

3.3 I' 3. 9 ~I. 3 4.6 3. 3 4. I 4. 3 4. 7 3. 2 3.8 4. 1 I 4.4 3. 2 3.9 4. I 4. S 

2.0 2.6 :1'.9 3.2 2.0 2.7 2.9 3.3 1.4 2.0 2.3 2.6 I.S 2.2 2.4 2.9 

3.0 I 3.6 
t 

2.3 1 2.3 
i 

1.0 I 1.6 

2.0 

1.0 

2.0 

1.4 

2.4 

1.4 

2.4 

3.3 

2.0 

4. I 
.3.91'1 

2.9 

2.6 

1.6 

_! 2.6 

i 1.7 

: 27 
-t- '-
I 1.!_ 

I 
2.7 

3.3 

2.6 

3.6 

3'.9 4.2 3.1 3.8 4.0 4.4 2.6 3.3 3.6 3.9 2.9 3.6 3.8 4.2 

:1'.9 2.9 2.4 2.4 3.0 3.0 2.2 2.2 2.8 2.8 2.3 2.3 2.9 2.9 

:1'.0 

3:.0 

2.2 1.6 1.8 2.3 0.9 2.3 2.4 0.9 1.8 t- ~:S 
1 2. S 2.8 3. 1 2.0 2.7 2.9 3.3 

1.0 1.7 2.0 

3.1 3.S 1.9 3.3 2.1 2.8 

3:.0 

:1'.0 

:1'.4 

:1'.4 

0.9 t 1.5 1.8 2.2 0.9 -·_~·I.-~-----I.~-__;-;~-
i 

~::--i~+---~:--- ::: ·~:;----I ~:: -- ::: -+.~::--
-t --. --.--.- ---- ,------- .-~-----

2.3 : 2.6 3.2 3.2 2.4 12.8 3.4 3.4 
-.-- .. '---1' ---------.-----.-.--.-.-- -··-·--G-----··- -.---- -----
_..!~ __ ~~-:~---2.~--2~_-~~----t-~.:.~-- _3~ ____ ~ __ :.~ 

2.3 2.0 2.4 1.0 1.7 

3.3 3.1 3.S 2.1 2.8 

2.4 2.4 2.S 1.4 1.8 
._---_.-._-------- - -_. -

~4 ~S ~9 ~S ~6 
-- .. -- -_._._--- ._------- -- ... _----_._----_. 
2.4 1.4 1. 8 2.4 2. S 

--- -_.- -.---- . __ ._-- .. _-
31.4 3.4 2. S 2.9 3.S 3.6 2.3 I 2.6 3.2 3.2 2.4 : 2.8 3.4 . 3.4 

._ .. - . __ .... 
31.3 3.3 

31.9 

.. _- -_._----
3.2 -:::- ·~~;-:-:]:E =~F~ ::-FIT::- ..... ;: -= ::: I~= -~:}~~{~H~ 

'::~N . ________ . ___ . __ ~ _____ .~~:h.~~-.---~-~--~~--- r-.~)"'--~---~--- --~-~-- 1----~--
2.9 3. 7 3.9 4.3 2.4 I 3.0 3. 3 3.6 2. S ! 3. 2 3_ 4 -1 3.8 

2.0 2.6 .t.9 

4.2 

3.2 2.0 2.7 2.9 3.3 ·1·:~~~~·~-=- :. ~~ =;~ -: ~-_t~;-=-~~~~:~= --.- --- --_._----- -._---_. - ---. 
1.9 2.0 

2.9 3.6 31.9 4.2 2.9 3.7 3.9 4.3 2.4 3.0 3.3 3.6 t- 1----
~: -t~;---:~ --,::-r.------- - r-- -.- ... -- '- --- ------- ----l~--_I__--------.- ~---- _ .. _-- --_._--_ .. -

ell 2.0 2.6 .t.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.8 3.1 
~------ ---_._---- .----.--~----.----.---- .. 

es 
~--

CVA 

evs 

cw 

OA 

DC 

DO 

DH 

Ol 

OM 

os 

OSA 

OST 

4 

4 

6 

4 

3.0 

17. I 
.0.6N 

- .. _--
34.7 

2.0 

19.2 
.0.30 

11.8 
.0.30 

29.7 
.O.8K 

12.4 

3.6 

17.1 
+O.6N 

34.7 

2.6 

19.2 
+0.30 

11.8 
-0.30 

29.7 
'0.8K 

13.0 

~I.O 

----
Ii'.6 
.(I.6N 

3!i.2 

2(1.0 
'(1.30 

1l!.3 
141.30 

3(1.3 
.CI.8K 

I~I. 4 

4.3 

17.6 
+0.6N 

3S.2 

3.2 

20.0 
'0.30 

12.3 
.0.30 

30.3 
to.8K 

13.7 

11.8 11.8 I:!. 4 12.4 
.0.30 .0.30 +(1.30 +0.30 

----- _._-- ~----- . 

61.2 61.2 611.8 61.8 
to.40N .0.40N +(1.40N +0.40N 

19.2 
to. 3D 

20.3 

11.3 
+0.70 

19.2 
+0.30 

20.3 

11.3 
+0.70 

W.7 19.7 
+(1.30 +0.30 _. --_ .. __ . 

2(1.9 20.9 

Ilt.O 
+(1.70 

12.0 
.0.70 

3.1 3.8 4.1 4.S 2.9 3.S 3.8 4. I 3.0 I 3.7 3.9 4.3 

17.1 17.1 17.8 17.8 17.1 17.1 17.3 17.3 17.21'17.2 17.3 17.3 
.0.7N .0.7N .0.7N .0.7N .0. SN .0. SN to.6N .0.6N .0.6N +O.6N .0. 7N . O. 7N 

- --

~:~:;----~:~--"::~-- :.:---;:~-~: ~: ~:~ -~~: -~:J~~= 
19.4 19.4 20.6 20.6 19.2 19.2 20.0 20.0 19.4 19.4 20.6120.6 
to. 3D .0.30 +0.30 .0.30 .0_ 3D .0.30 +0.30 '0.30 .0.30 I .0.30 .0.30 ·0.30 

12. I 
+0.30 

30.8 
.0.8K 

12.1 
'0.30 

30.8 
.0.8K 

12.4 13.2 

11.8 11.8 
to. 3D to. 3D 

62.3 62.3 
+O.40N to.40N 

19.3 19.3 
+0.30 to. 3D 

20.3 20.3 

11.3 
+0.70 

11.3 
to. 70 

12.8 
.0.30 

31.4 
-0.8K 

13.4 

12.S 
.0.30 

.. 

62.9 
.0.4I>N 

19.7 
.0.310 

21.0 

12.8 
.0.30 

31.4 
·0.8K 

11.8 
.0.30 

29.7 
+0.8K 

13.8 12 .. 4 

12.S 11.8 
'0.30 .0.30 

62.9 61.2 
+0.40N to.40N 

19.7 19.2 
+0.30 to. 3D 

._-_. __ ... -
21.0 20.2 

12. I 12. I 11.3 
.0.70 +0. 710 .0. 70 

11.8 
.0.30 

29.7 
·0.8K 

13.0 

11.8 
.0.30 

12.3 
-0.30 

30.3 
.0.8K 

13.3 

12.4 
'0.30 

12.3 
.0.30 

30.3 
.0.8K 

13.6 

12.4 
+(l.30 

61.2 61.8 61.8 
.0.40N .0. 40N +O.40N 

19.2 
+0.30 

20.2 

11.3 
+0.70 

19.7 
+0.30 

20.6 

12.0 
.0.70 

19.7 
.0.30 

20.6 

12.0 
+0.70 

1- .. 
12. I 112. I 
.0.30 '0.30 

12.8 
-0.30 

..... ---
12.8 
.0.30 

i-'- . . -- --- .. -
30.8.30.8 31.4 
'0.8K .0.8K ·0.8K 

t 
12'''_113. I 

~'~D ! ~~:~O 
-6;.3 !62.3 
-0. 40N _1'0 40N 

19. J I 19 3 
.0.30 I .0.30 

20.2 120.2 
i 

II. J Ii 11.3 
-0.70 .0.70 

13.J 

12. S 
'0.30 

62.9 
+O.40N 

19.7 
.0.30 

20.9 

12. I 
.0.70 

31. 4 
-0.8K 

._-
13.7 

12.5 
.0.30 

62.9 
.O."ON 

19. ; 
·0.30 

20.9 

12. I 
-0.70 

Appendix 0 127 



Table D-1. Basic Instruction Timing (cont.) 

No Map Map No Map Mop 

~ic. Not •• Direct Indirect DIrect indirect DlrftC' Indi .. ct Dir.ct lncIIrect -
No 

--- r--~ r----t--:-No-~-----4--No---,r----+-No---..--
No No No 

Inde. Ind.. Inde. Inde. Inde. Inde. Inde. Inde. I .. de. Inde. Inde. Inde. Index Index Index .... x 

~ :.:.--- - -- .--- t- - --. -:-=:-:--~-----:---tt---:-:--:---=--=----t--:'-:-::-=--.~+t--'---:-----:::'::'-+=.':"::'~+--=---I----+-----+--::--__t---:-::'--:'--+:7'-;:---t-:-::-:---t--: 
OW 12.6 13.2 13.5 13.' 12.5 13.2 13.6 13.9 12.5 13.1 13.4 13.6 12.5 13.2 13.5 13.8 

t------ - --.-- - -

US 8 I~:~ 
-------- ------~--

EOR -.-
EXU 

FAl min 10 --_ .... 
FAl mo. 11 - .. 

FAltypicol 12 

FAS min 10 
--

FAS moK 11 
--

FAS typical 12 
_._--_._.- -

FDl min 13, 14 
1------

FDl mox II 

FDS min 13, 14 

FDS mox II 
f--- --.---

FMl min 13, 14 
t----- ... ----

FMl mox 11 
t--

FMS min 13, 14 
1---

FMS mo. II 
1------- . 

FSl min 10 
1---- --

FSl mo. II 
1----------.--

FSl typical 12 
1-------

1.8 

1.3 

4. I 

13.7 

S.O 

3.3 

8.2 

".0 

25 ... 

34.7 

12 ... 

16.6 

9. I 

14.7 

6.0 

8.8 

".1 

13.7 

5.0 

FSS min 10 3.3 
>---.._----

FSS mox 11 8. 2 
1"----------.--

FSS typical 12 4.0 
r__- -

HIO a : even,.AI 9.7 

. - .-.- ----- I-.----t-----,I-----+----+----_+_---_+---_t__---+---- ~- - -1---.. -t__---_+---i 
4.2 4. I 4.2 

+7. IN +6.8N _7. IN 
-.- --1------.. ,..--- -------t-----+_--~ --- ----- --.--- -------- f--o---

2." 2.7 3.0 1 .. 8 2.5 2.7 3.1 I." 2.0 2.3 2.6 1.5 2.2 2." 

2.2 

2.9 

1.6 2.2 2.2 

4.7 5.0 5.3 

14.2 14.6 1".8 

5.5 5.9 6.1 

3.9 ".2 ".6 

8.9 9. I 9.5 

4.6 ".9 5.3 

26.1 26." 26.7 

35.4 35.7 36.0 

13.3 13.4 13. 7 

17.5 17.6 17.9 
... 

9.8 10.0 10.4 
.- --

1S.4 15.6 16.0 

1.3 

4.2 

13.8 

5.1 

I.. 

4.9 

I ..... 

5.7 

2.2 

5.1 

1".7 

6.0 

2.4 1.2 1.6 2. I 2.2 1.3 1.8 2.4 
-- -- ---jr__----t----i 

5.5 4.1 ".7 5.0 5.3 ".2 4.9 5.1 5.5 

15.1 13.7 14.2 14.6 14.8 13.8 1".4 14.7 15.1 
- --------------t-----+----- I---.-f-----I-----f 

6.4 5.0 5.5 5.9 6. I S. I S. 7 6.0 6.4 
t- ----t---- -_+_-_ .. -+-- --+---.-----t----i----t-----_I_----- ----+----i 

3.3 ".0 

8.2 9.0 

".0 ".7 

25.5 26.1 

3".8 35." 

12 ... 13." 

16.6 17.6 
--
9.2 10.0 

4.2 ".7 3.3 
.- ----1---- ---

9. I 9.6 8.2 
--.- -----.- 1-'_-

".9 5." ".0 

27.0 26.8 25 ... 

36.3 36.1 34.7 

13 ... 13.8 12 ... 

3.9 ".2 
'--_._- --- ----

8.9 9. I 
'-----

4.6 4.9 

26.1 26." 

35." 35.7 

13.3 13.4 

".6 

9.5 

5.3 

26.7 

36.0 

13.7 

17.6 18.0 16.6 17.5 17.6 17.9 
---'- ------ - ---:- --
10.2 10.6 9. I 9.8 10.0 10.4 

3.3 ".0 ".2 4.7 
.------

8.2 9.0 9. I 9.6 
-.--.-- _._. ---+----+---~ 
".0 ".7 ".9 5." 

. t-----.--
25.5 26. I 27.0 26.8 

-
3".8 35.4 36.3 36.1 

- .. -
12.4 13." 13." 13.8 

16.6 17.6 17.6 - 11 .. 0-
9.2 10.0 10.2 ! 10.6 

----- --_._------_._--1---1---_ ... -- --------. ~ ... - I-------~-

1".8 15.6 15.8 16.2 1".7 IS." 15.6 16.0 1".8 15.6 15.8 16.2 
---+---_+_---...,1-----_1_-. ---+--.- ~----+-----I------1---.-- -- -. ----t---.-+-----i 

~6 ~9 ~2 ~O ~8 ~9 ~4 ~O ~6 ~9 ~2 6.0 6.8 6.9 7.4 
---t--.----.+-----t----t-- -.-- 1---':'--.-- .------- ---~---+ ... ------

9.4 9.7 10.0 8.8 9.6 9.7 10.2 8.8 9.4 9.7 10.0 8.8 9.6 9.7 10.2 
--+--_if-.--_+_--_f----I-----+------t.---I--- .-.- 1-.------ - - .---

4.7 5.0 5.3 4.2 4.9 S. I 5.5 4. I ... 7 5.0 5. 3 ... 2 4.9 5. I 5.5 
----_._- ------.-.--.----~----+----+---.-+-----+-.-- ---.--- ------ ------ ---.-- ------

S. I 

14.2 1".6 1".8 13.8 I..... 1".7 IS. I 
.--.--r--.--.I----+--_ir__--+---+---+---.-

5.5 5.9 6.1 5.0 

13.7 1".2 
--

5.5 

14.6 14. ~ __ ~.~-+~~~ 1".7 15. I 

5.9 6. I 5. I I 5.7 6.0 6.4 5.7 6.0 6.4 

3.9 4.2 ".6 3.3 ".0 ".2 ".7 3.3 3.9 4.2 ".6 3.3 ".0 ".2 4.7 
---~t__--+_--_+---+_.----t----~---+_--+--_f---4_---I_--4_--_f----4_----4 

8.9 9.1 9.5 8.2 9.0 9. I 9.6 8.2 8.9 9.1 9.5 8.2 9.0 9.1 9.6 

".6 4.9 5.3 4.0 4.7 4.9 5.4 4.0 ".6 4.9 5.3 ".0 ".7 ".9 5.4 

9.7 10.3 10.3 9.7 9.7 10.3 10.3 9 ... 9.4 10.0 10.0 9.5 9.5 10. I 10.1 
----- - - --+--._1-----_+- -.-+_---+-.--~---- ------------ --'- - - 1---'.' -.-.-t---~--~ 

HIO a odd 8.3 8.3 8.9 ~9 ~3 ~3 ~9 L9 ~3 ~3 ~9 ~9 ~3 ~3 ~9 8.9 
'------ ---.- ------_._- - - .. ---- - t--------+---+-----+---+---+---_+_--~r__--_+_---+----_+_--~I----_+_--_f 

HIO R 0 7.1 7. I 7.7 7.7 7. I 7.1 7.7 7.7 7. I 7. I 7.7 7.7 7. I 7. I 7.7 7.7 
-----------

INT 2." 3.0 3.4 3.6 2.5 3.2 3." 3.8 2.3 2.9 3.2 3.5 2." 3. I 3.3 3.7 
---.- .-- .. 

LAD 3. .. ".0 ".3 4.6 3. .. 4.2 4.4 4.8 3. I 3.7 4.0 4.3 3. 2 3.9 ".2 ".6 
-- -. ----t--.. ----f----+---_f---f----f-- --+---+---+--__1f---+----~---t__---_f---- :----t--.---_I_---f 

LAH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2." 2.7 3.0 1.8 2.5 2.7 
1--

lAW i 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 I. 8 2." 2.7 3.0 I. 8 2.5 2.7 

3. I 

3.1 
1-------- r------t----+-----+----~'----I_--_+_----I_--~---_f---t__--_+_--_ir__--_+--_ir__--1-----If-----4 

lB 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 I. 8 2.4 2.7 3.0 I. 8 2.5 2.7 3. I 
-.-- --- -. t--.-------. --- -----t__--4_--_f---+----_f---f---~--_f----+_---__t---_+_-- --_I_--_il---_I_---I 

LCD 2.9 3.6 3.9 ".2 2.9 3.7 3.9 ".3 2. .. 3.0 3.3 3.6 2.5 3.2 3." 3.8 
----------t----r----1--.--~---_1r----+_----4_---~-----4---__1~--+_----~-----~------ ---------1----__i 

lCF 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2." 2.7 3.0 1.8 2.5 2.7 3. I 
---- -- --- ----- --,'--.--1---_+_-----+---_J_--->----.---- -.---+---t-- ----f.---r---.-+.---1--'-.. -- .-----+-----1 

lCFI l. 3 I. .. I. 3 I. 4 
1--------I--------t-----------1---~----t__---_t_---~---_t__-----i---+_---_t_--~t__--_+--~t-------

lCH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 
t__~----- -.~----- "- ---~-- ------+----+-.---t__----t------t----t-----~-----~--_t 

lCW 2.0 2.6 2.9 3.2 2.0 ~.7 2.9 3.3 1.8 2." 2.7 3.0 1.8 2.5 2.7 3.1 
1--- -.----~---- -----.--.----t--_i'-----_+_--_f----_f__----- --.---t__--1-----t-----If----_+---_i-----_I_--_if-----4 

LD 2.9 3.6 3.9 ".2 2.9 3.7 3.9 ".3 2." 3.0 3.3 3.6 2.5 3.2 3.4 3.8 
f--- - - --- :-----1---- --I------~c---+_--_+-----jt__---r_---__f_----t---_+---+---_+--__i 

LH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3. I 
---~----I------+---+-.----t---_i~---_+_---_4-----_f__--_+------_J_--_I_----_4----t---__1I-----+------

II 1.3 1.4 1.3 I." 

LM IS 2.3 2.3 3.0 3.0 2." 2.4 3.0 3.0 2.2 2.2 2.8 2.8 2.3 2.3 2.8 2.8 
-I.ON '1.0N .1.0N +I.ON _I.IN +I.IN -l.IN -I. IN .l.ON +l.ON -I.ON -l.ON -LIN -I.IN ".IN 'I.IN 

---- --- --- t___---+-----+------t-----+---__f_---__i 
LPSD .......... 5.0 5.0 ".7 4.7 5.2 5.2 ".4 4." 5.0 5.0 ... 7 ".7 5.2 5.2 

f----------+--------t~-~t___---._+_--__+---~---__+----_t__---_+------ f-- - -.- .. --
lap 2.2 2.8 3.1 3.4 2.3 3.0 3.2 3.6 2.2 2.8 3.1 3.4 2.3 3.0 3.2 3.6 

128 Appendix 0 



Table 0-1. Basic Instruction Timing (cont.) 

No ~y Overlap Mo.'mum M-,. Overlap 

Not •• 
NO~P __ ~~--~-~=_---~_r-----------~------N-O~~~~~-----i_-~~~-Mop_,--~~_~ 

Indirect Direct Indi,ect Direct Indirect Di,ect Indir.c. 
~-N-O---'---- -' No-- No No No"- - -No-- ----- r-~ .---- r-N., -T-'-
.... Inde. ilnde. Inde. .... Inde. I.... Inde. Inde. Ind.. Inde. Ind.. Inde. Inde. Inde. Ind •• 

:=-- _-_~-.--~ --- . -'- .-.. - -.-_. r------t-----t--::=t:=====t:=====i====::i 
LS 2.5 3.1 :1." 3.7 2.6 3.3 3.!i 3.9 2.5 3.1 3." 3.7 2.6 3.3 3.5 3.9 

----
LW I.' 2." :l.7 3.0 I.' 2.5 2.;' 3.2 I." 2.0 2.3 2.6 1.5 2.2 2." 3.0 

MIS ward 

MIS byte 

MH 
------1-.----

MI 
---.- .. -f----.-

MMC IS 

---.---- _._----
MSP 

. -------f----.---.. -
Mil R/O 

Mrl R' 0 

MTH I/O 

MTH I· 0 
------ ------

MTW R/O 
._-1--._--

MTW I 0 
------f-----

MW 

01 

PACK 16 

PLM 15 

PlW 
. _----

PSM 15 

------+-----

, ".2 
.0. IN 

".2 
.3.4N 

3.8 

5.0 

3.0 
.3.ON 

7.6 

3.6 

2.6 

..... ~1.8 . 

8.2 fl. 5 

".2 ~1.6 

3.2 3'.6 

3.6 ... 2 ~,.6 

2.6 3.2 3.6 

2.8 3." 3.7 

2.3 2.9 3.2 

05.0 5.6 S.9 

1. 8 2." 2.7 

12.0 12.0 12.6 
'0.6N .0.6N -0.6N 

10.0 10.0 10.8 
• LON .1.0N .1.0N 

-. --- - .. -- - --t-------
'10.8 10.8 11 ... 

8.7 8.7 9." 
• 1. QN • I. ON • I. ON 

5.1 

8.8 

".9 

3.9 

".9 

3.9 

".0 

3.6 

6.2 

3.0 

12.6 
.0.6N 

10.8 
.1.0N 

II ... 

9." 
.I,ON 

..... 
·.0. IN 

".2 
to.8N 

..... 
to. IN 

- -.------ f-'---.+---I 

. ---... f--.---~-- -+------I-----~------1t------t------1-----+-----4 

".3 
.3.4N 

3.9 

5.1 

3.1 
.3. IN 

8.0 

3.7 

2.7 

3.7 

2.7 

3.9 

".7 

8.7 

..... 
3.05 

..... 
3.05 

3.6 

".Y 5.3 

8. ~, 9.3 

... " 5.1 

3.1' ".1 

5.1 

3.7 ".1 

3.8 ".2 

".2 
_3 ... N 

3.8 

05.0 

3.0 
'2.9N 

7." 

..... ".8 

8.0 8.3 

".3 

+3.4N f= 
: _:_-+-_",_7_ :~ ~: 

<3. ON 
--

05.1 

8.6 8.0 8.7 8.9 9.3 

3.6 ".2 ".6 ".9 3.7 ..... ".7 5.1 
-- .----.- -----+-----11----~--_4----- r---

2.6 3.2 3.6 3.9 2. 7 3.05 3. 7 .. 1 

".1 

".6 ".9 3.7 i ..... 
-.-----f-----I-----l----+---+----~ 

3.6 3.9 2. 7 I 3.5 

".7 5. I 3.6 ".2 

3.7 2.6 3.2 

2.6 3.3 3.6 3.9 

2." 

~:_9 __ !- 3.6 _l_3:~_~ .. _._2~ 
3. .. 3.8 2.3 2.9 3.2 3.6 2. .. : 3. I i 3." 3.8 

-~----+---------.-~- :t:~----~--~ 
3. I 

5.1 5.8 6.0 6.05 5.0 05.6 5.9 6.2 5. I 05.8 I 6.0 6.5 

1.8 
i-'-

2.7 3.2 1. .. 2.0 __ ~. 3 2.6 1. 5 i 2. 2 2. .. 2.8 

12.0 12.0 12.6 12.6 12.0 1,12.0 i 12.8 

2.5 

12.0 
.0.6N 

12.0 
'0.6N 

12.8 
to.6N 

12.8 
-0.6N 

10.5 10.5 11.1 ILl 
.I.IN .I.IN 'I.IN .I.IN 
----- -.-.. ---f----.---I-----. 
11.2 11.2 11.8 11.8 

.- - .. 

~O ~O ~7 ~7 
.1.0N -LON -1.0N .1.0N 

'0.6N .0.6N .0.6N .0.6N .0.6N '0.6N ·0.6N 
.------ t::--+ 

9.5 9.05 10.0 10.0 10.2 110.2 10. 7 
.1.0N '1.0N .1.0N d.ON .1.0N : .1.0N .I.IN 

f----t---- -

12.8 
·0.6N 

10.7 
·I,IN 

10.8 10.8 10.8 _._+-i· _10_._8_~_1_._"_+_"_._"~ 

9.0 9.0 8.6 I 8.6 

10.2 10.2 

8.3 
.0.8N 

8.3 
.0.8N 

9.6 
.0.8N .0.8N .1.0N .1.0N .1.0N 

9.6 
·1.0N 

PSW 9.8 I 9.8 10.5 10.5 10.2 10.2 10 9 10 9 9 3 9 3 9 8 9 8 9.8 9.9 10.05 10.5 

_ =_ -_=~;~::;-~_ .; ~.~ ~;-L~'~~-;:C-~F I-;·~----~I---'--.;-:-;N-·----4-~-;-.·-~~- ~;~ 1f~;tNl; ~~-;--;--N--·--+-.-;-;-N-+-~-;-;-~----+~-.-;;-;-N---+---~-;-~-.~-. __ -I 

SO.I, 18 2.> •.• '.7 '-' •.• •.• •.• •.• •.• • .• :·1'-' . .1 •.• • •.• '.7 •. , 
,O.IN .O.IN .O.IN .O.IN .0. IN to. IN to. lIN to. IN to. IN .0. IN .0. IN to. IN +O.IN .j.'~ .. __ I_~ . .l-'~I~ __ ~~.~ 

----- --.----
S right 18 

-------_._---

2. I 
'·0.2N 

2. I 
.0.2N 

2.8 
to.2N 

2.8 
.0.2N 

2.2 2.2 2.9 
to. 2N to. 2N to. 21\1 

--. -_. - .--

2.9 
to.2N 

2. I 
to.2N 

2.1 2.8 2.8 
to. 2N +0. 2N .0. 2N 
.. _-- --- . -- ---- -

2.2 
to.2N I 2.2 i 2.9 2.9 

.0.2N I .0.2N .0.2N 

SO 2.9 
------_.-

".2 3.6 
1------+-----+----+------

3.9 2.9 3.7 3.9 ".3 2." 3.0 3.3 3.6 2.5 3.2 3 ... 3.8 
_._. - .- ---.----

2.6 2.6 3. 2 3. 2 2. 7 , 2. 7 ! 3. 3 
SF Ie" 

single 
19 

f--------~~-----4 

2.6 
.0.2N 

SF ,igh' 
single 2." 
19 .0.6N 

f-------f----

SF I"ft 

SF right 

SH 

double 
19 

double 
19 

f----- ------ f----.-

".0 
.0.2N 

3.8 
.0.6N 

2.0 

SIO I ~ even,1O 10.6 
f---------~---~ 

SIO I ~ odd 9.5 
f-.-------~---~ 

SIO 
~.-------~---~ 

7. I 

STI 3.0 
---------~------ . 

STCF 3.0 
f-----.~~---~ 

STO 3.6 

2.6 
.0.2N 

2 ... 
.0.6N 

".0 
to.2N 

3.8 
to.6N 

2.6 

10.6 

9.5 

7.1 

3.0 

3.2 
.0 .. 2N 

3.0 
to.6N 

".6 
to.2N 

..... 
to.6N 

2.9 

11. 2 

10.1 

7.7 

3.6 

3.2 
.0.2N 

3.0 
to.6N 

".6 
to.2N 

..... 
to.6N 

3.2 

11.2 

10.1 

7.7 

3.6 

2.7 
.0.2N 

2.6 
to.6N 

".1 
.0.2N 

3.9 
.0.6N 

2.0 

10.6 

9.5 

7.1 

2.7 3.3 
to.2N -0.2'" 

2.6 
.0.6N 

".1 
.0.2N 

3.9 
to.6N 

3.2 
.0.6'" 

".7 
-0.2N 

".6 
to. 61'01 

--- f--.-----
2.7 2.9 

10.6 II. 2 

9.5 10.1 

7.1 7.7 
--- .--.-f---

3.1 3.1 3.7 
-- _ .... - - -- ---_._ .. 

3.3 
.0.2N to.2N .0.2N .0.2N '0.2N '0.2N i .0. 2N : ·0. 2N 

3.3 
·0.2N 

3.2 -;.-;--- --2.-;--- 3.0 3.0 2.6 I 2.6 r 3.2 

to.6N to.6N to.6N +0.6N .0.6N '0.6N .0.6N 1·0.6N 
3.2 

'0.6N 
-.-.- - - --.-----1-.-- --- - --.. ---. -.---- ---.--- -.-- --r-.. -·--.....;...----I 

... 7 ".0 ".0 ".6 ".6 ... I 4. I ... 7 ... 7 
+0.2N to.2N to.2N to.2N .0.2N .0.2N .0.2N .0.2N: .0.2N 

".6 
_0.6N 

3.3 

II. 2 

10.1 

7.7 

3.7 

---r---'-- f------+--
3.8 3.8 ..... ..... 3.9 3.9 ".6 j' 4.6 

to.:.~~_ :~~~~:~~ 6N to.6N ·0.6N to.6N -0.6N .0.6N 

1.! ___ ~.~ ____ ~.3 __ ~:~ ____ 1.5 2.2 ~'-"--.l~ 
10.3 10.3 10.9 10.9 10. .. 10." II. 0 ! 11.0 
- - - - - - --- - -1-- ---.--f-------l----+--~ 
~5 ~5 IQl IQI ~5 ~5 IQI IQI 

7.1 7. I 7.7 7.7 7. I 7. I 7.7 7.7 

2.9 2.9 3. 5 3.5 3. 0 3. I 3.6 3.7 
~-----~----_4------~-----~~----_Ir----_4------+_----~ 

3.0 3.6 3.6 3. I 3. I 3. 7 3.7 2.9 2.9 3.5 3.5 3.0 3.1 3.6 3.7 
1-----_ .. - -. '--'- --.-- -- .-_.--- 1--.--.-.- - ---. - --- - -.~f_---_I_---

~6 ~2 ~2 ~7 ~7 ~3 ~3 3.2 3.2 3.3 3.7 3.5 3.5 3.3 3.9 
~. _______ ~~ ____ ~L ___ ~ ____ ~ __ . __ ~ ____ ~~ ___ ~~ __ ~~ __ . __ ~ ____ L_ ____ ~ ____ ~ ____ _L ____ ~ ____ -L ____ -L ____ -L ____ ~ 

Appendix 0 129 



Table D-l. Basic Instruction Timing (cont.) 

No ~y Overlap Mo.'_ Memory Overlap 

~ _____ N_O..-Map.......:.. ____ ~ ______ M_op..:-_____ + _______ ~_~3_i> _____ . _______ ~ ____ _ 

Direct Indirect Direct Indirect' Mnemonics Not.s Direct Indirect Direct Indirect 
~-N-o-"'-----+--No-'---r---lt---::-No--r----+-No--'-----1t--:-Noc--,-' - ~-. t~;- -----~-- ---. No 

Inde. Index Index Index Inde. Index Index Index Inde.. Ind... Index Ind.. Inde. Inde. Inde>< Inde. 

~===·-~F=======t=====~====t=====F=====~=====F=====t=====F======~====t=·-==----== ~~-=====t====~ 
STH 3.0 3.0 3.6 3.6 3.1 3~1 3.7 3.7 Z.I Z.I 3.5 3.9 3.0 3.0 3.6 4.0 

1---.-----f---- --- Z. I Z. I 2.8--+-2.-8---+-·-2-.2--+--2-.·2---- -2 .• '-+-2.-I--+--Z-.-' .-- 2-:-1~8 -~i'- f-i.-2---U-· -~1-2-.-'2·-+-2.-2--f 
5TM 15 tl.ON '1.0N '1.ON .1.ON 'I.ON ".ON .1.0N .1.0N 'O.8N 'O.IN '0. IN .O.IN '0.9N .0.9N to.9N ,to.9N 

1----- --.- ------+----1-- -~.--+--___If----- .---- - -- - -t-.---+--:-:-
SIS 3. 7 4.3 4. 7 5.0 3.8 4.5 4.8 5. 2 3.5 4.0 4.4 4.6 3.6 4.3 4.5 I 4.9 

f-------- - -.-----f__--+--.-~---.- --.-,..-.- -- --- -. ----f------ - --.- ---. - .. - -f-----
2.7 STW 2.6 2.6 3.2 3.2 2.7 2.7 3.3 3.3 2.3 2.3 2.9 2.9 2.6 3.2 : 3.3 

1----
SW 2.0 2.6 

f---

2.9. 3.2 
1------

2.0 
.----f---.-.-.. - -+----+----t-

2.3 2.6 1. 5 2.2 2.4 3.0 2.0 
--.---.-- ._---

2.9 3.3 2.7 1.4 
I-- ,,----.-- f-------I----f-----i---- -~-t_----f__--- -- -------I---~ ---+---+- --- -----~. --~-------~ I _ _ 3.2 

ISS 

f------.-

TOV 

3.0 
.4.2N 

~. 

9.7 

3.2 
t4.4N 
t--t-----. 

10.3 10.3 9.7 9.7 

3.0 
.4.2N I '4.4N 

.. -t--.----+---+---t---t---+----+---+-.--~--__t 
10.3 10.3 9.4 9.4 10.0 10.0 9.5 9.5 10.1 10.1 

~---4----+_-.~f__-----~.- ~·-I---~--+---~--~--~--_+---~---+----+--~-----~----f 
TOV I odd 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 8.3 8.3 8. ? 8.9 8.3 8.3 8.9 8.9 

1----- -- - --1------+---.-+----- f------ I---.-+---+----+----t----+---j-----I---- f-.---..... --..;.... .---+----1 
TOV I . 0 7. I 7. I 7.7 7.7 7. I 7.1 7.7 7.7 7.1 7.1 7.7. 7.7 7. 1 I 7.1 7.7 7.7 

I.----- - .- -- -"-- - f--- -. --- ._+-____ 1------- -+----t-- . - ---+-- ~--->---.--_--__+_--_I 

TlO I - .yen,1O 9.7 9.7 10.3 10.3 9.7 9.7 10.3 10.3 9.4 9.4 10.0 10.0 9.5: 9.5 10.1 10.1 
~--f_-.--.. -- .-----.1----- ----t---- f---.---+-.---+-. ---.-1----- ~---_+_--,,--~---_+__-

TlO I odd I. 3 1.3 I. 9 I. 9 8. 3 1.3 8. 9 8.9 8. 3 1.3 8. 9 8.9 8. 3 I 8. 3 8. 9 8. 9 
1------ -- -.-- ---.--- f- . " -- - -f-----t-- '-'-1---' ~--t----f--'--- - - -. --+ 

TlO I 0 7. 1 7. I 7 7 7. 7 7. 1 7. 1 7. 7 7. 7 7. 1 7. 1 7. 7 7. 7 7. I ,7. I 7. 7 7. 7 
1-------. .- -' --.- ------ .--.-1----.. - t----.---i---+ ---f---.--- 1-----41----·-------1 

3.2 3.2 3.2 
.4.3N .4.6N 

HIS 3.2 
.4.3N '4.6N 

~-----.~-.---,,----- -_.- .-.---I-------I-----If----+---.-~--+--_J--_t----t_--+---+---t----_r_---.---_1 

11.6 11.6 12.1 12.1 11.9 11.9 12.3 12.3 11.4 11.4 12.0 12.0 11.8 11.8 12.2 12.2 
t1.3N .1.4N .1.4N '1.3N .1.3N +1.3N tl.3N .1.3N tl.3N -1.3N .1.3N .1.3N ".3N .1.3N tl.3N 

UNPK 20,21 
.1.3N 

f------- ----+---+---f- --.+----+--- - .---- -- --....i---+---------l 
WAIT 21 1.9 1.9 2.6 2.6 1.9 1.9 2.7 2.7 1.8 1.8 2.4 2.4 1.9: 1.9 2.5 2.5 

f..---------
WD internal 2.5 2.5 3. I 

-+---f__--+----+----t-.----lf---lf----+----- 1---- --------t--:---f--. 
3. I 2.5 2.5 3.1 3. I 2.5 2.5 3. I 3. I 2.5 2.5 3. I 3. I 

--l-·- .-- 1------+----+------1----+-- --1-----1----

WD ext.rnol 
17 

2.8 2.8 3.4 3.4 2.8 2.8 3.4 3.4 2.8 2.8 3.4 3.4 2.8 2.8 3.4 : 3.4 
·0.4N ~.4N .0.4N '0.4N .0.4N .0.4N -+O.4N to.4N to.4N .0. 4N ~. 4N .0.4N .0.4N .0.4N .0.4N .0.4N 

-- --.- .. ---...... -.--+----- ------ -----I----+---f---+---.. - ~.-- -----.---+--~ 

XPSD 110 0 6.5 6.5 7.1 7.1 6.5 6.5 7.1 7.1 6.1 6.1 6.6 6.6 6.1 6.1 6.7 6.7 
---

XPSD 110 1 6.5 6.5 

3.6 

7.1 7.1 ~7 ~7 ~3 ~3 ~I ~I ~6 ~6 ~5 ~5 
------ -- - . -- .-- r----- ---,,~f__--f__--.-+---- 1------- - - f---. ---

'IN'J 3.0 3.9 4.2 11 18 ~O ~4 ~6 13 16 19 ~9 16 

Notes: 1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
ll. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

Add 0.6 if analyzed instruction is indirect. Subtract 0.3 if it is leFI, AI, 1I, CBS, MBS, or EBS. 
N = number of destination bytes processed. 
N = number of l's in the word converted. 
D = number of digits (including the sign) in the effective decimal operand. 
K = (D + 6) {16 - a)i D = same os note 4i a = number of leading zeros in the quotient. 
D = same as note 4i N = number of nO'1zero decimal digits in the decimal accumulator. 
D = number of digits (including the sig:l) to be stored. 
N = number of bytes in the editing pattern. 
Add execution time for subject instruction. 
No pre-alignment or post-normalization required. 
Un-normalized operands. 
One hexadecimol pre-a I ignment and one hexadecimal post-normal ization. 
Nonzero, normalized operands. 
Minimum time is also typical time. 
N = number of words moved. 
N = number of bytes in zoned number in memory. 
N = integer (O, 1, 2, ..• ), dependent on delay in external device. 
N = number of bit positions shifted. 
N = number of hexadecimal positions shifted. 
N = number of bytes to be stored in memory. 
Minimum time. 

130 Appendix D 

7.1 7. I 

3.8 4.2 



Register-ta-register Operations 

Table 0-2. Additional Instruction Timing 
(Add to times in Table 0-1) 

Register pointer selects 
Register-ta-register Operations 

Register pointer selech 
register bloclc X'-4' - X1F' register bloclc X· .. • - X'IF' 

Mnemonic ~-----'----D-ir-t·!C-t---r---lnd-ir-ec-t--·t------T--D-ire-c-t--Y---ln-d-ir-ec-t--ll ~e~ict----r--D-i-re-c-t--~--I-nd-i-rec--t~~-----r--~D-ir-ec-I-----I-n-di-re-c-t~ 

Notrs No 
Index 

No 
Index Index 

Notes 
Index 

No 
Index Index 

No 
Index 

Index 

~:=-:====t=====~==~==~F====F===I====~F===~==~====~===I 
AD 2.2 1.2 1.2 22 0.5 0.3 0.9 0.6 

23 0.5 0." 1.0 0.7 AD 
~·----~~----~----l----~----+----.----r---~----~----+----I 

1.2 0.5 1.2 1.3 0.8 0." 0.3 0.6 J'H 
~·-----~-----~----4---~----~--·t------r--~r---4---~r-~ 

0.1 
~.-----~~-----~----.---+---~~---~~--~----.~----~--~~--~ 

AIO o o 1.5 1.5 0.6 0.6 0.9 0.9 
r-------

AND 1.2 0.5 1.2 1.3 0." 0.3 0.8 0.6 
r--------~~---~--~.----+_--~~---t_----~----·~----~--~~--41 

ANlZ 1.-4 0.6 1.3 1.3 0.9 0.7 1.6 1.3 
~'----~~----1-----t----+_--_1~---~-----;-----r----r_---~r_~1 

AW 1.2 0.5 1.2 1.3 0.-4 0.3 0.8 0.6 
r---.-----~------+_--~.- -_+----~----~~-----~----~--_+----~--~ 

AWM 2.2 1.6 1.3 1.3 0.04 0.3 0.8 0.6 
-·-------~·----_1----~----_+----~---ir_----1_---~~--_r----~--_11 

SAL 0.7 0.7 1." 1." 0.04 0.04 0.7 0.7 -_._-
8CR bfOnch 1.3 0.7 1.3 I." 0.3 0.3 0.7 0.6 

-------- ---·---t--_t----~----+_---t_-----~--_+----1_----+_--_11 

BCR no branch 2.1 1.9 1.3 1.3 
f---------

8CS branch 1.3 0.7 1.3 1.04 0.3 0.3 0.7 0.6 
~-----~----~----4----+----~----ir----~---r----~--~r---~1 

BCS no branch 2.5 1.9 1.3 1.3 
~.---- .--.--... -.-1--- ----+_--~r_---_t_----~----~----~--~r_--_11 

BDR branch 1.4 0.9 1.4 1.04 0.3 0.3 0.7 0.6 

BDR nO branch 2.-4 2.1 1.2 1.3 
~---~------;----1-----+-----r---i~----1_----~--_r----~--~ 

B1R branch 1.4 0.9 1.-4 1.-4 0.3 0.3 0.7 0.6 
~--- r---- r---- ----+_-~~---t_----___I----.~----~--_1r____1I 

B1R noboonch 2.-4 2.1 1.2 1.3 
r---,----- .. -- --- ---- ---- -----+----.. -----+-----I----~----+------\I 

CAl 0 0 1.4 
1,2,3,4 

~---- ~---- ----
1.-4 0.04 0.04 0.7 0.7 

(8 1.3 0,6 1.3 1.3 0.4 0.3 0.8 0.6 
~. ----+_--~~--·+-----;---_r--r_--_1r_~1 

C8S 24 O.7N 0.6 
~·-----~------+--~i--- -r---~----+------~---~---+_----.+_--~ 

2.2 1.4 1.2 1.2 0.4 0.3 0.8 0.6 CD 
f--------+-----__t----I--·-r-----+----t_-----~---4----1_-----+_--~ 

1.3 0.6 1.3 1.3 0.4 0.3 0.8 0.6 CH 
~·------~----+--~I----r-----t----+------+---+----1----+-~ 

0.4 CI 
f---·--·--~-------+_--_1·----+_--_1~---+-----_;----~--~r_--___I-----1 

1.5 1.2 1.2 1.2 0.4 0.3 0.8 0.6 CLM 
~-----~------+---~----~r----+----+------+----+---~-----+--~ 

ClR 1.3 0.7 1.04 1.-4 0.4 0.3 0.8 0.6 
~-------Ir-----~----i---~----~ -----.*-----_+---~--~r_--~--~ 

1.-4 0.7 1.3 1.3 0.4 0.3 0.8 0.6 CS 
f-------~~----_r----i---_r----~--+-----~----Ir---~-----+---~ 

CVA JO 1.4 1.-4 0.4 0.4 0.7 0.7 
~------ ------+---1----_r----~----*------+---~----~----+----1 

CVS 30 1.-4 I." 0.04 0.04 OJ 0.7 
~·----~~-----r----i-----r----+----+------~----r--~r----+--~ 

CW 1.3 0.6 1.3 1.3 0.4 0.3 0.8 0.6 
r------- ----- r-'-'- ---.-+_---.---+ ... ---+---.1---~~-_;--__IJ 

DA 0.10 0.10 1.5 1.5 0.4 0.4 0.7 0.7 
~.----__Ir_----~--- r----~----_t- ----t------~r_----r--__l~--_+--~ 

DC 0.10 0.10 1.5 1 .5 0.4 0.4 0.7 0.7 
r-- --_.--- ----~-----~~---r--__l~--_+--~ 

DO 3.5 3.5 1.5 1.5 0.4 0.4 0.7 0.7 
~. I 

DH 1.5 0.7 1.4 1.4 0.4 0.3 0.8 0.6 
f-------~f__-----_+----I~---_r----1_---t-----+_----I------~---..,r---~1 

0.10 ,0.10 1.5 1.5 0.04 0.04 0.7 DL 
----.---+----+_--~I----+_--~~-.f_----_;----.t------+----~--~ 

0.7 

DM 3.5 3.5 1.5 1.5 0.4 0.4 0.7 0.7 
-------~f__-----_r---_1I,~---1_----~---~----__1~-- t___--_+---~--__11 

DS 0.10 0.10 1.5 1.5 0.4 0.4 0.7 0.7 
--- -~--~~---+--~ 

o 0 1.-4 1.-4 0.7 0.4 0.4 OSA 
------~------~--~~--_+----+_---+_----_r----Ir_--1_---~r___i 

0.7 

OST 0.30 0.30 1.5 1.5 0.4 0.4 0.7 0.7 
-------~------+_--_4---+--~~--.f----_;---- r--_+---1--~ 

OW 1.5 0.8 1.-4 1.-4 0.4 0.3 0.8 0.6 
----

E8S 25 O.-4N 0.3 
--·----~f__-----_r----i~--_+---1_----t-----+_---~----+-----f-----~ 

EOR 1.4 0.7 1.4 1.5 0.4 0.3 0.8 0.6 
r--------+------+_---4----+_--~~--.f-----_;----~--+----~-~ 

[XU 26 1.5 0.7 1.5 1.5 26 0.4 0.3 0.8 0.6 

Noles 

FAl 

FAS 

FDl 

FDS 

FMl 

FMS 

FSl 

FSS 

HIO 

INT 

LAD 

LAH 

LAW 

LB 

LCD 

LCF 

LCFI 

LCH 

LCW 

lO 

LH 

1I 

lM 

LPSO 

lRP 

LS 

LW 

M8S 27 

M8S 28 

MH 

MI 

MMC 

MSP 

MT8 RIO 

MT8 

MTH RiO 

MTH 

MTW RIO 

MTW R·=O 

MW 

OR 

PACK 

PLM 

Index 

2.3 1.6 

1.5 0.8 

2.3 1.6 

1.5 0.8 

2.3 1.6 

1.5 0.8 

2.3 1.6 

1.5 0.8 

o o 

1.-4 0.7 

2.3 1.5 

1.2 0.5 

1.2 0.5 

1.2 0.5 

2.2 1.4 

1.2 0.5 

1.2 0.5 

1.2 0.5 

2.2 1.-4 

1.2 0.5 

0.8N O.BN 

1.8 1.8 

1.5 0.7 

1.5 0.8 

1.04 0.7 

0.2N 

0.3N 

1.5 0.8 

0.8N 

3.5 3.5 

2.1 1.4 

1.5 O.B 

2.1 1 4 

1.5 0.8 

2.4 1.7 

1.5 0.8 

1.5 0.8 

1.4 0.7 

No 
Index 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.-4 

1.3 

1.3 

1.3 

1.3 

1.2 

1.3 

1.3 

1.3 

1.2 

1.3 

1.3 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

0.2N 0.2N 1.5 

3_2 3.2 1.1 

Notes 
Index 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.-4 

1.3 

1.-4 

1.-4 

1.-4 

1.2 

1.-4 

1.-4 

1.-4 

1.2 

1.4 

1.3 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.1 

No 
Index 

0.-4 

0.-4 

0.-4 

0.-4 

0.04 

0.04 

0.4 

0.4 

0.6 

0.04 

0.04 

0.4 

0.4 

0.4 

0.04 

0.4 

0.1 

0.4 

C.4 

0.04 

0.04 

0.1 

0.04 

0.4 

0.04 

0.5 

0.4 

0.6 

0.04 

0.04 

0.6 

0.-4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.-4 

0.4 

Index 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.6 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.4 

0.3 

0.4 

0.04 

0.3 

0.3 

0.6 

0.4 

0.3 

0.3 

0.3 

0.3 

0.3 

0.4 

0.4 

No 
Index 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.9 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.7 

0.8 

0.7 

1.0 

0.8 

0.8 

0.9 

0.7 

0.8 

0.8 

0.8 

0.8 

0.8 

0.7 

0.7 

Index 

0.6 

0.6 

0.6 

0.6 

0.6 

0.'> 

0.6 

0.6 

0.9 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.7 

0.6 

0.7 

0.7 

OJ 

0.6 

0.9 

0.7 

0.6 

0.6 

0.6 

0.6 

0.6 

0.7 

0.7 

Appendix 0 131 



Register-to-register Operations 

Table 0-2. Additional Instruction Timing (cont.) 
(Add to times in Table 0-1) 

Regilt. pointer selects 
register block X'4' - X'IF' Register-to-register O~rations 

Register pointer ,elecls 
rel:lister block X'4' - Xl F' 

Mnemonic Direct Indirect Direct Indirect Mnemonic Direct Indirect Direct Indirect 
Notes 

No 
Notes 

No No Indell Indell Index No 
Index Index Indell Index . Index 

Natf's Notes 
No No Index 

No 
Index 

Index Index Index 

PlW 3.5 3.5 1.5 I.S 0.4 0.4 0.7 0.7 STM O.BN O.BN 0.9 0.9 0.4 

PSM 3.1 3.1 1.4 1.4 0.4 0.4 0.7 0.7 STS 2.3 1.5 1.3 1.2 0.6 

PSW 3.1 3.2 1.1 1.1 0.4 0.4 OJ 0.7 STW O.B 0.9 1.4 1.5 0.3 

RD 0 0 1.5 I.S 0.4 0.4 0.7 0.7 SW 1.2 0.5 1.3 1.4 0.4 

----
S 0 0 1.5 1.5 0.4 0.4 0.7 0.7 TBS 29 I.BN - - - - - - 0.6 

SO 2.2 1.4 1.2 1.2 0.4 0.3 O.B 0.6 TOV 0 0 1.5 1.5 0.6 

Sf 0 0 1.5 1.5 0.4 0.4 0.7 0.7 TID 0 0 1.5 1.5 0.6 

SH 1.2 0.5 1.3 1.4 0.4 0.3 O.B 0.6 HBS 29 0.8N 
0.6 - - - - - - +{).2N - -

SIO 0 0 1.5 1.5 0.6 0.6 0.9 0.9 UNPK O.SN O.SN 1.1 1.1 0.4 
- t---

STB 0.5 0.6 1.4 I.S 0.3 0.3 0.6 0.6 WAIT 0 0 1.3 1.3 0.4 

STCF 0.5 0.6 1.4 I.S 0.3 0.3 0.6 0.6 WO 0 0 1.5 1.5 0.4 

STD 1.7 1.7 0.5 1.1 0.3 0.3 0.6 0.6 XPSO 3.5 3.5 1.3 1.3 0.4 

STH 0.5 0.5 1.4 1.4 0.3 0.3 0.6 0.6 XW 2.2 1.5 1.3 1.3 0.4 

Notes: 22. No memory overlap. 
23. Maximum memory overlap. 
24. One byte string is in reg isters. 
25. Decimal number is in registers. 
26. Add factor for object instruction. 
27. Word mode - one byte string in reg isters. 
28. Byte mode - one byte string in registers. 
29. Byte string ·to be translated in registers. 
30. eVA and evs instructions require a 32-word table and should not be used in register-to-register 

operations. The indirect word, however, may be located in a register. 

132 Appendix 0 

No Index Index 
Index 

0.4 0.7 0.7 

0.4 1.0 0.7 

0.3 0.6 0.6 

0.3 O.B 0.6 

- - - - - -

0.6 0.9 0.9 

0.6 0.9 0.9 

- - - - - -

0.4 0.7 0.7 

0.4 0.7 0.7 

0.4 0.7 0.7 

0.4 0.7 0.7 

0.3 0.8 0.6 



c]ccess codes, 13, 14,76 
ClCCess protection, 10, 13, 14,76 

control image, 76 
loading process, 76 

cJCcumulator, decimal, 53 
(Jddress 

actual, 12 
control, 13, 14 
direct reference, 11 
effective, 12,28 
indexed reference, 12 
indirect reference, 11 
input/output, 80,86 
instruction, 16, 29 
memory, 7 
modification, 1 :2,26 
nonexistent, 21,22,75 
reference, 11,27,28 
register, 12,27,28 
updated instrucf'ion, 69 
virtual, 10, 13, 14,45,80 

Analyze/lnterpret 'instructions, 3.5,36 
cJrithmetic shift, 46 
armed interrupt, 19,79 

B 
block pointer, register, 10, 17,75 
Branch instructions" 70-72 
byte fonnat, 7 
byte-string instructions, 58-65 

c 
Call instructions, 5,25,72,74 
Call instruction trolps, 25,72,74 
central processing unit, 9-25 
c:hannel end, 86,90 
c:ircular shift, 46 
c .:ks, real-time, 4, 17, 18 
c:ommand chaining, 87,89 
c:omparison instruct'ions, 42-44-
c:omputer modes, 8 
condition code, 5, 16,22,27,28,33,35,49,51 
condition code sett'ing for 

decimal instruct'ions, 25,54 
fixed-point arithmetic instruct'ions, 24,37 
floating-point arithmetic instrlLJCtions, 25,51, 120, 121 
load/store instructions, 29 
push-down instructions, 24,66. 
Shift instructions, 45-47 

control i nstructi om" 73-80 
Control order, 88 
conversion instructions, 5,47,48 

INDEX 

core memory, 7 
dedicated addresses, 7, 18,22 

counter interrupts, 18 

o 
data chaining, 87,89 
decimal 

accumulator, 9,53 
arithmetic fault trap, 16,22,25,53 
arithmetic hardware, 4 
illegal digit, 25,53 
instructions, 23, 52-58 
overflow, 25, 53 
packed format, 53 
zoned format, 53 

device interrupt, 81 
disabled interrupt, 19,79 
disarmed interrupt, 19,79 
displacement indexing, 5 
doubleword 

E 

format, 7 
I/O command, 81, 88 
program status, 16,20,21,73,74,93 
stack poi nter, 66-70 

effective address, 12,28 
effective location, 12,28 
effective operand, 12,27 
enabled interrupt, 19, 79 
Execute/Branch instructions, 70-72 
external interrupt, 19 

F 
fault, interrupt system, 22,23 
fixed-point arithmetic 

instructions, 37-42 
overflow trap, 16, 22, 24 

floati ng-poi nt 
addition and subtraction, 50-52, 121 
arithmetic fault trap, 22,24,28,29 
condition code settings, 25,51 
hardware, 4 
instructions, 23,48-52,120-122 
multiplication and division, 50,52, 120 
normalize control, 16,33,35,48-51 
numbers, 48,49 
shift, 46,47, 122 
significance control, 16,24,33,35,50 
zero control, 16,24,33,35,50 

Index 133 



G 
general characteristics, 2 
general registers, 10 
general-purpose features, 4 

H 
halfword, format, 7 

immediate addressing, 11 
immediate operand, 11 
indexed reference address, 12 
i ndexi ng, 12 
index registers, 9,12 
i ndi rect addressi ng, 11, 12 
information organization, 7 
inhibits, interrupt, 17, 18, 19,79 
inhibits, push-down trap, 66 
i nput/ output 

commands, 87-90 
instructions, 80-90 
interrupt, 18 
operations, 87-90 
status information, 80-84 

instruction format, 10 
instructions, 26-86 

Analyze/lnterpret, 35,36 
Branch, 7O-n 
byte string, 58-65, 123 
Call, 72 
com?arison, 42-44 
control, 73-80 
conversion, 47,48 
decimal, 52-58 
Execute/Branch, 70-n 
fixed-point orithmetic, 37-42 
floating-point orithmetic, 48-52, 120, 121 
format, 10 
input/output, 80-90 
load/store, 29-35 
logical, 44,45 
nonexistent, 21,74 
privileged, 73-90 
push-down, 66-70 
Shift, 45-47, 122 
unimplemented, 23, SO, 53 

interrupt 
active, 20 
anned, 19,79 
channel end, 86,90 
control panel, 18,92 
counter-equals-zero, 18,20 
count-pulse, 17, 18,20 
device, 81 
di sablecl, 19, 79 
disanned, 19,79 
enabled, 19,79 
external, 18, 19 

134 Index 

fault trap, 22,23 
inhibits, 17, 18, 19 
input/output, 18,85,89 
locations, 18 
operatiC'n, 19 
override, 17, 18 
priority chain, 17 
single-instruction, 20 
states, 19 
system, control of, 18, 20, 79 
time of occurrence, 20 
trigger, 80 
unusual end, 86,90 
zero byte count, 86, 89 

interleave/overlap, 4,96 
Interpret instruction,S, 36 

L 
loodi ng process 

access protection, 76 
core memory, 96 
memory map, 76 
wri te protec ti on, n 

lood/store instructions, 29-35 
logical instructions, 44,45 
logical shift, 45 

M 
moster mode, 8, 16 
memory 

access protection, 10, 13,76 
addresses, 7 
control, 10, 13 
fault indicators, 78,95 
map, 10,13,76 
nonexistent addresses, 21, 22 
nonexistent address trap, 21,22 
parity error, 83,86,95,96 
protection violation trap, 22,23 
write locks, 10, 14, n 
write protection, 10, 13, 14, n 

memory map, 13, 16,76 
control image, 76 
loading process, 76 

multiplexor lOP, 1,87 
mu I ti usage features, 6 

N 
nonexistent instructions, 21,74 
nonexistent memory addresses, 21, 79 
nonallowecl operations, 21,74 
normalize control, floating-point, 48-51 
numbers 

decimal, 53 
flooting"l'point, 48,49 



o 
operator controls, 91-97 
overflow 

decimal, 22,25,53 
fi xed-poi nt, 22, 24 
floating-point characteristic, 22,24,49, SO 

override interrupt group, 17, 18 

p 

packed decimal fonnat, 53 
pari ty error, memory, 83, 86 
peripheral equipment, 3 
priority interrupt Ichain, 17 
privileged instructions, 73-90 

violation trap, 22,23,74 
program status doubleword, 16,20,21,73,74,92,93 
processor control panel, 18,91-96 
push-down 

instructions, 23,66-70 
stock limit trap, 22,23,24,66 

R 
Read Direct, 78 
Read order, 88 
real-time clocks, 4, 17, 18 
real-time features., 3 
reference address, 11, 27, 28 
register address, 12, 27, 28 
register block pointer, 10, 17,75 

s 
\Selector lOP, 1,84-
Sense order, 88 
!Sense switches, 78,96 
Shift instructions, 45 
significance control, floating-point, 16,24,33,35,50 
single-instruction iinterrupt, 20 
slave mode, 8, 16 
stack pointer doubfeword, 66-70 
Stop order, 89 
states of on interrupt leve I, 19 
system 

i nput/ output, 80-90 
interrupt, 17-21 
organization, SIGMA 7, 7-25 
trap, 21-25 
SIGMA 7, 1-6 

, 
time-sharing features, 5 
times of interrupt occurrence, 20 
Transfer in Channel, 88 
trap, 21-25 

Call instruction, 22,25,72,74 
decimal arithmetic fault, 22,25,53 
fixed-J-Ioint overflow, 22,24 
floatil"'g-point arithmetic fault, 22,24, SO 
intern,pt system fault, 22,23 
masks, 16,24,25,28 
memory protection violation, 22,23,74 
nonallowed operations, 21,22,23,74 
nonexistent memory address, 21,22,74 
nonexistent instruction, 21,74 
privileged instruction violation, 22,23,74 
push-down stock limit, 22,23,24,66 
unimplemented instruction, 22,23,50,53 
watchdog timer runout, 22,25 

translate instruction, 5,58,61 

u 
unimplemented instructions, 23, SO, 53 
unusuo I end, 86, 90 
updated instruction address, 69 

v 
virtual address, 10, 13, 14,45,80 

w 
wotchdog timer runout trap, 22,25 
word fonnat, 7 
write 

z 

direct, 78 
key, 10, 14, 16 
lock, 10, 14 
lock control image, n 
lock loading process, n 
order, 88 

zero control, floating-point, 49,50 
zero byte count interrupt, 86, 89 
zoned decimal format, 53 

Index 135 



XEROX 

Reader Comment Fonn 
W. wOIUlld .ppreci.t. your comments .rld .u ...... tion. for improving this public.tlon 

Publ ic.tion No. I Roy. LO'''rldO I Curr.nt O.t. 

How did you use thil publication? I. the m.t.ri.1 pr ••• nt • ..: .. ffec:tiv.ly? 

o L.arning o Inlt.lling D Sal .. o Fully Cov.r.d o W.II IIlu.tr.t.d o Well organized OCI.ar o R.ference o Maint.inin-, D Op.r.ting 

What is your overall r.ting of this public:atlon1 Wh.t il your occup.tion? 

o Very Good OF.ir o V.ry Poor 

o Good o Poor 

Your om.,r comm.nts m.,' b •• nt.r.d her •. Pl .... be IPecific .nd give p.ge. column, .nd lin. numb.r r.fer.nc .. wh.r • 
• pplicable. To report errors, pl .... UI. the X.rox Softw.re Improv.m.nt or Difficulty Report (1188) in.te.d of this form. 

f----

~-

~. 

_. 

L 
L 
.r--

~ Your n.m •• R.turn Addr ... 

I 
j 

L 
naank Vou For VOl. InI .. eat. (fold & fasten as shown on back, no POStage needed if nailed in U.S.A.) 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 59153 LOS ANGELES,CA 90045 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
5250 W. CENTURY BOULEVARD 
LOS ANGELES, CA 90045 

ATTN: PROGRAMMING PUBLICATIONS 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 
I 
I 
I 
I 
I 

~\I 

~ 

'" z 
::; 

" ~ .., 
C 
to=» 
u 

----~-

w 
Z 
::; 
Co:) 
z 

-.cO 
-J 
or( 

o 
-J 
o 
l.L 

" 



HonevweUlnforlMtlon Byatem. 
In the U.S.A.: 200 SmiIfi Street. US 486, Waltham, Musachuaetts02154 

In Canada: 155 Gordon Baker Road, WiIIowdale, Ontario M2H 3N7 
In the U.K.: Great West Road, Brentford, Middlesex TWa DOH 
In Austral.: 124 Walker Street, North Sydney, N.S.W. 2060 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. 
35325,3.5C882, PrInted In U.S.A. XG46-00 


	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	replyA
	replyB
	xBack

