
TECHNICAL MANUAL

SIGMA 5 COMPUTER

September 1968 .

SOS 901172A
$29.50

Xerox Data Systems 701 South Aviation Blvd., EI Segundo, California 90245 (213) 772-4511,679-4511

© 1968, 1969, Xerox Data Systems, Inc.

Effective Pages SDS 901172

LIST OF EFFECTIVE PAGES

Total number of pages is 860, as follows:

A

Page No. Issue

Title ••••••..•.•••.••••.•.• Original
A ••••......••••••••.••••• Original
i thru xiv ••..•..•.•...•.••• Original
1-1 thru 1-12 ••...•••..•••..• Original
2-1 thru 2-20 •..•.••.••...•.• Original
3-1 thru 3-758 •....••••••.••• Original
4-1 thru 4-54••••••.••.•• Original

Page No. Issue

Section

II

SDS 901172 Contents

TABLE OF CONTENTS

Title Page

GENERAL DESCRIPTION. • . • . . • . • . . • . . • • • . • • • • • . • 1-1

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
i-i9
1-20
1-21
1-22
1-23

Introduction •.................•...............................•
Physical Description•••.....•......•.......... : ...•.........

Basic Computer•.................•.............
Equipment Breakdown•.................•...................
Computer Configuration .•..••..................................
Optional Features

Functiona I Description•.......•.•.....................•.
Basic Computer Description•....................
Computer Optiona I .. .

Two Additional Real-Time Clocks
Power Fai I-Safe Feature
Memory Protection•....••...•......•...................
Private Memory Register Extension
Floating Point••.•.•••......................•....
External Interrupts ...•..•.•..•........•...•..••.•..........
Memory Expansion•.•.•..•••......•......•...........
Port Expansion•...........•.•.....•..•••••••........
Multiplexing Input/Output Processor .•.......•.....••.......•....
Addi tiona I Eight Subchannels (lOP) ..••......•••...••.•.•....•...
Selector Input/Output Processor •...•........••.•...••••....•.•.
Six Internal Interrupt Levels .••.••••••..•.•..•.•.............••

Maximum Computer System .••.....•.•••••.•.••••.••••••..••....•
Specifications and Leading Particulars .••......•....•...••..•...•.•..•..

OPERATION AND PROGRAMMING•••••.•••..•..•..•.•.•..•••.•.•••••.

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23

General .•••.••••...••.••.•••..•••.••••..••••...••••.....•.••
Operation .••..•.••.•............•..•.•.•..••.••••..••••.•.•••

Controls and Indicators ..•..•••.•.••.•••.....••.....•..•••.....•
Operating Procedures •.•••...•••..••....•.....•.•..•....•..•.•.

Applying Power•.••.•.••.•.••.•.••••.•••.•.•••...•..•
Displaying Contents of Memory Location .•••.•.....•.•...•.••...•..
Storing Into Memory ..•..•.......•.•••...•..••.......•......
Cleari ng the Program Status Words ...•.....•........•..•..•......
Altering the Current Program Status Doubleword
Branching From the PCP ..•.•.............•...•.•.•......•....
Stepping Through a Program .•..•.•.....••.•...•...............
Single Clocking an Instruction•.•.••...•...••••.........
Single Instruction Repetition••........•.•••••••...•.......
Loading a Program•...........••...•.•..•.•........

Programming•....•............•..•..........•...
Word Formats•..•.........•....

Data Word Formats•...............
I ns true ti on Fo rma ts. • • • •

Memory Addressi ng .. .
Reference Address•.••.•..•.•....•.•.
Effective Address•....••.......•.•••.•.........••.••.
Indirect Address•••.••.•..•...•.
Indexed Addressi ng•.........•.......•.•••...•.•......

1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-8
1-8
1-8
1-8
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-9
1-9
1-9
1-9

2-1

2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-9
2-9
2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-13
2-14
2-14
2-14
2-14
2-14

Contents

Section

III

ii

2-24
2-25
2-26
2-27
2-28
2-29

SDS 901172

TABLE OF CONTENTS (Cont.)

Title

Indi rect Indexed Addressi ng •.•.•.•..•.•••......•...••..•.•...•.
Doubleword Addressing .•••••.•••••••••..•...•.•....•.•.......
Indexed Doubleword Instructions .•.••••...••.•.•..••••..•...••...
Halfword Addressing ••.••••••.•...••.....••....••••.••.....•
Byte Addressing ••.•••••••••.••••.•••••.•.•..••...•........

Basic Instructions ••••••••••••••••••••.••...•..••••••••••••••.•

PRINCIPLES OF OPERATION ••••••.••••••••••••••••••.•••••••••••.•.•••.•••

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33,
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47

Introduction ••.••••••••••••••••••••••••••.•••••••••••••.•.•..•.•
General Principles of Operation .••••••.••••••••••••.••••.••••••.•.•••

Centra I Processor Uni t .••••••••.•.••.•.....•.••....••.....•..•••
Arithmetic, Control, and Address Functions •••••••••...•.•....•••.•.
CPU Timing •••••••••••••••••••••••••••••••••••••••.•.•.••
Interrupt/Trap Functions •••••.•••••••..•••.•.•••.••••.•.......
Private Memory Organization ••••••••••••••..••.••••.•..•..•...
Processor Control Panel •••••••••••••••••••••••..••••••.•••...
Floating Point Unit •••.•••••••••....•.••••••••.•....•....•.•
Memory Protection .•..••.......•....•.•••••...•....•.......

Core Memory. • • . . . • • • . . • • • • . •
Port Expansion ..•...............•.•.......•...............
Three-Wire Core Selection .•...•..............................
Memory Input-Output ..••........•..........................

Input-Output Channel ..•..••.....•.............................
Multiplexing lOP ..••..•......•••.•.•.......................
Selector lOP •.•••••..••••.....•.•...•.....•.•............
Integra I lOP .••.•••..•...••.............•.•..............
Chaining .•••.•..•.•....................................
lOP Priority •.•.•••.•.•..•..........•....................

Detai led Principles of Operation•.•...........•..•............
Central Processing Unit .••.•...•.....•..........................

Arithmetic and Control Ci rcuits ••••.•...••.•.•..................
Clock Logic .•••••••..••.•.••.•.........•....•............
CPU Phases and Timing ••..•••••••...•...•....•............•.
Rea 1-Time Clock ••...••.•••.•••••••.•.•....••........•.....
Watchdog Timer .•••.•.••••..••••.•••••••••...•....•..•....
Memory Protection .••••...•.•••.••.••.•.•••••..•..•.•..•...
Traps •••.••••.•.••••..••.•••••.••.••.•.••.••.•.......•.
Interrupts ••••••••••••••••••••••...•.••.•.•••..•.•••....•

Memory .••.•••...•.••....•...•••.•...•.................•...
Introduction ••••••••••.••••.•.•••..•..•..••.....•.•.•.....
Memory Bank ..••••.••.•••.•••.•.•.•..••••.••.......•..•..
interieaving •••..•.•.•.•.••.••...•.........•..•.....•••...
Memory Elements •.•••..•..•.•..•..•••......•......•.•......
Memory Switches •.•••••..•....•...•.....•.•..•.•...........
Memory Configuration•••.•.........••.•..•.....•......
Interleave Transformation•..................
Memory Access Request ..•...•......•.........................
Port Priority .•.•.....•...•....•.............•..••.........
Address Release•....................................
Memory Cyc les ...•.•..••..................................
Memory Delay Lines .. .
Abort .••..•.•.••..•....................................
Memory Reset•.......•.....•.. '
Memory Fault••.......................................
Data Register •••.•...••..•................................

Page

2-14
2-15
2-15
2-15
2-16
2-17

3-1

3-1
3-1
3-1
3-1
3-5
3-7
3-8
3-8
3-8
3-8
3-9
3-10
3-10
3-11
3-11
3-13
3-14
3-16
3-16
3-16
3-16
3-21
3-21
3-50
3-61
3-61
3-62
3-65
3-71
3-79
3-95
3-95
3-95
3-99
3-99
3-101
3-101
3-101
3-109
3-109
3-109
3-109
3-113
3-118
3-119
3-119
3-121

Section

3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61
3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-72
3-73
3-74
3-75
3-76
3-77
3-78
3-79
3-80
3-81
3-82
3-83
3-84
3-85
3-86
3-87
3-88
3-89
3-90
3-91
3-92
3-93
3-94
3-95
3-96
3-97
3-98
3-99
3-100
3-101
3-102

SDS 901172

TABLE OF CONTENTS (Cont.)

Title

Read Timing and Data Flow
Full Write Timing and Data Flow
Partial Write Timing and Data Flow
Parity Checking and Parity Generation
Sigma 5 Core Se lection
Core Characteristics •.......................................
Basic Core Switch ing•..........................
Reading From Memory•...................
Writing Into Memory•...................................
Core Diode Module•...............................

Operation Code Implementation
Preparation Phases•.................................
Fami Iy of Load Instructions (FA LOAD)
Fami Iy of Load Absolute Tmtn)r.tior'!S (F.A. LOA D/A.)••.••........
Fami Iy of Store Instructions (FASTORE)
Fami Iy of Selective Instructions (FASEL) LOAD SELECTIVE (LSi 4A, CA)
Fami Iy of Analyze Instructions , , , ,
Interpret (INT; 6B, EB~ ••......•.•.•........................
Fami Iy of Arithmetic Instructions (FAARITH)
Fami Iy of Multiply Instructions (FAMUL)•..............
Fami Iy of Divide Instructions (FADIV)
Fami Iy of Modify and Test Instructions
Fami Iy of Compare Instructions
Fami Iy of Compare With Limits Instructions (FACOMP/L)
Fomi Iy of Logical Instructions (FALOGIC)
Fami Iy of Shift Instructions (FASH)
Fami Iy of Floating Point Instructions
Fami Iy of Stack and Mu Itiple Instructions (FAST)
Fomi Iy of Branch Instructions (FABRANCH)
Fami Iy of Ca" Instructions (FACA L)
Fami Iy of Program Status Doubleword Instructions (FAPSD)
t'vA,OVe to Memory Conhol (tvVvK; 6F, EF)
Wait (WAIT; 2E, AE)
Fami Iy of Direct Instructions (FARWD)
Fami Iy of Input/Output Instructions (FAIO)•....

Glossary of Terms
Power Fai I-Safe•.......................................

General .. ,
Interrupts••...................................
Power Monitor Assembly•.................

Floating Point Unit••..........•.....................
A-Register•.....................•.............
B-Register•.•.......•.................
D-Register ..•...........••....•..••.•....•..............
F-Register ..••......•.•.•.....•.•.••••••.•..•.•.........
E-Register•...•..•..•........•.•••••....•.........
Adder•.......•..............•....................
Floating Point Display•.•.....................

Processor Control Panel (PCP) .•........•....••.•...•.............
Control Switches•.................... ~
Indicators•...............................
PCP Phase Sequenci ng•.............
CLOCK MODE Swi tch
CONTROL MODE Switch
WATCHDOG TIMER Switch

Contents

Page

3-121
3-121
3-121
3-125
3-127
3-127
3-127
3-127
3-130
3-130
3-174
3-174
3-204

3-235
3-249
3-261
3-270
3-274
3-286
3-301
3-317
3-330
3-340
3-349
3-353
3-378
3-438
3-508
3-522
3-524
3-538
3-551
3-553
3-564
3-600
3-624
3-624
3-624
3-624
3-638
3-638
3-638
3-638
3-644
3-644
3-644
3-644
3-648
3-648
3-648
3-648
3-648
3-648
3-655

iii

Contents

Section

IV

iv

3-103
3-104
3-105
3-106
3-107
3-108
3-109
3-110
3-111
3-112
3-113
3-114
3-115
3-116
3-117
3-118
3-119
3-120
3-121
3-122
3-123
3-124
3-125
3-126
3-127
3-128
3-129
3-130
3-131
3-132
3-133
3-134
3-135
3-136
3-137
3-138
3-139
3-140
3-141

SDS 901172

TABLE OF CONTENTS (Cont.)

Title

INTERLEAVE SELECT Switch .••••••...••....•••••.......•.....
AUDIO Switch .••.•...•••.•..••.•.......•...•............
SENSE Switches•••.•.••......•.........•.............
REGISTER DISPLAY Switch ..••.•.....•..•.......•............
REGISTER SELECT Switch .•.•...•.•....•.•.......•...........
I/O RESET Switch ••••...•••....••..••....•...............
UNIT ADDRESS Switches •.••..•........•....................
INTERRUPT Switch .••...•.••....•.........................
SELECT ADDRESS Switches••........................
DATA Switches
Entering PCP Phases
Reset Function•......•......•..•.............
Clear PSW1, PSW2 Function .•................................
STEP or RUN from Idle Operation
INSERT Function.
DATA ENTER/CLEAR Function•.............
STORE INSTR ADDR/SELECT ADDR Function
DISPLA Y INSTR ADDR/SELECT ADDR Function
INSTR ADDR HOLD/INCREMENT Function
Clear Memory Function
LOAD Function
PARITY ERROR MODE Function
Indicator Lamp Drive Operation

Integra I Input/Output Processor .•..................•..............
General•.................................
Address and Priority Assignment
Capabi lities •.•.•.•••..••.•.•.•..•..••...•..••.•••...•.•.
I/O Fast Memory IOFM•..........
I/o Address Register IOFR•.............•.......
I/o Data Register 10DA•......................
Address Conversion Circuits•...........•............
Instructions, Commands, Orders•...........•.............
Integral lOP/Device Controller Interface•.
Service Cycles .•........•..........•...•.................
I/O Phase Sequencing•........................

Power Distribution•..........................
Main Power Distribution Box•................
Power Junction Box
Power Supplies .. .

MAINTENA NCE AND PARTS LIST .. .

4-1 Mai ntenance
4-2 Special Tools and Test Equipment
4-3 Preventive Maintenance '
4-4 Diagnosti c T esti ng
4-5 Electronic Testing
4-6 Switch Settings•...........................
4-7 Corrective Maintenance
4-8 Wirewrap Techniques
4-9 POWei Supplies ;- : : : : !' !' !' !' !' ••••••••••

4- 1 0 Parts Lists
4-11 Tabular Listings .. .
4-12 Illustrations

Page

3-655
3-655
3-655
3-655
3-655
3-656
3-656
3-656
3-656
3-656
3-656
3-658
3-658
3-658
3-662
3-662
3-666
3-666
3-666
3-666
3-672
3-672
3-672
3-680
3-680
3-680
3-680
3-680
3-685
3-685
3-686
3-686
3-686
3-686
3-686
3-748
3-748
3-749
3-749

4-1

4-1
4-1
4-1
4-1
4-1
4-2
4-8
4-8
4-8
4-8
4-8
4-8

Section

Figure

1-1
1-2
1-3
]-4
1-5
1-6
1-7
1-8
2-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34

SDS 901172 Contents-Illustrations

4-13
4-14

TABLE OF CONTENTS (Cont.)

Title

Parts List Tables•.................•.
Manufacturer Code Index•........•...........

LIST OF ILlUSTRA nONS

Title

Sigma 5 Computer (Typical Configuration) ••.•......•.•••.•..••••••••••.•.•.••••
Equipment Breakdown .•..•..••.•.•.•.•.•...•..•••.••..•..••.•.•.•.•.•.•••
CPU Cabinet .•.•.•.•...•.•...•...•.•..•••......... , , , , , _••.
Memory Cabinet (Typical)•...•...•.••...••.••...••.•..••..•••.•
Accessory Cabinet No. 1 (Typical) •...•..........••.••....••....•.•.•...•.•••
Sigma 5 Minimum System With Integral lOP ••.••..••.......•••.•.•.•.••......•••
Sigma 5 Minimum System Without Integral lOP •.....•••.•••......•..•••....•••..•
Sigma 5 Maximum System (Typical). ...••.•.••.•...••..•.•.•...•.....•.•...•••
Sigma 5 Processor Control Panel (PCP) .•••.•..•...•.•.•.•.•.•.••.•....•.•..•.••
Sigma 5 Major Elements •••••......•...•.••....•.......•.•......•••...••••
Central Processing Unit, Functional Block Diagram •..•••..•.•.•.•••.•••.•...•••.••
Arithmetic, Control, and Address Functions, Block Diagram •.••.••.•.•••.•.•.•.•.•...•
CPU Clock Generator, Simplified Block Diagram ••••••.•..•.•.•..•••.•••.•....••••
Oscillator Clock Generator, Simplified Block Diagram ••.•.•.•.•.•.•....•.....•....•
Core Memory Organization .•....•••...••.•..•••.••..•.•..••••..•.•.••••.••
Memory Connections and Port Expansion ••..•.•.•.•.•..•.•.•.••..••..•..•..•..•.
Typical X and Y Core Wiring •......•...•.•.•.•.•...•..•••.••.••.•....••••••
Example of Interfeaving in Read-Restore .t.Aode ••.•••••......•.•••.....•.•.•.•..•••
Multiplexing lOP, Simplified Block Diagram •••..••.•.•.•.••••...••.•.•.•.•..•.•
Selector lOP, Simplified Block Diagram •..••.•.•.•.•.•.•.•.•••.•.•.•••.•.••••••
Typical lOP Priority Arrangement = , ••

Basic Logic Symbols Chart •...•.•...•.•••.•.•..••.•.••.•.•.•••.•••...•.••••
.6.rithmetic and Control Circuits •••.••...•.•..•....••..•.•.•.••....••.•.•••••
C-Register Inputs and Enabling Signals •...•••.••.•••••..••.••••..•••.•.•..•.•.
C-Register Bit 1 Logic Diagram •.•.•••.•.•.•..•••.•.••..••......•...•.•.•.•.
A-Register Inputs and Enabling Signals ••..•....•.•.......•••....•....••..•.•.••
a-Register Inputs and Enabl ing Signals ••.•...•.•.•..••..•.•.....••.•.....•••.•
RP-Register and R-Register Inputs and Enabling Signals •......•...•.....•....•......•
D-Register Inputs and Enabling Signals ...••....•..••.....•..•..•..•...•...•••.•
B-Register Inputs and Enabling Signals •..•...•....•.•...........•..•••.••.•••••
P-Register Inputs and Enabling Signals ...•.••..•••..•••.•.•.•.•••••.••..•.••...
DIO-Register Inputs and Enabling Signals •••.••.••••..•..••.••..•.•••••.•••..•••
Macro-Counter Inputs and Enabling Signals .•.•..•••...•.•••.•••.•••.•••.•••.•••
Condition Code Flip-Flop Register Inputs and Enabling Signals •••.•.•.•.••.••...•.•.•••
A Plus D Adder Logic ••..•••.••..•.•••....••.•••••.•••••••..•••••.••••.••
Sum Bus Inputs and Enabling Signals ••.•.•.•.•.••..•••.•.••••••.•.•.•.•.•..•••
Private Memory Register Block •..••..•••••.•.•...••.•••••••••..•••.•..••••••
Word Distribution in Private Memory Block •...••.•...••...••••••..•.•.•.•.•••••.
SDS 304 Memory Element, Simplified Diagram •..•.•..........••.•.•.••.....••...•
FT25 Module, Page 0, Byte 0, Simplified Program •.....•.•.••..•••...••......•••..
Private Memory Data Organization•.•.•.••.•.••.•••.••.•••.•.•...•••••••
Bit Addressing on FT25 Module .•.••..•.••.•..••.•••.•.•.•..••.•...•.••••••••
Register Extension Chassis, Simplified Logic Diagram••.••...••..•.••...•.....••

Page

4-8
4-8

Page

1-1
1-3
1-4
1-5
1-6
1-8
1-8
1-10
2-2
3-1
3-2
3-3
3-6
3-7
3-9
3-10
3-11
3-12
3-13
3-15
3- i7
3-18
3-23
3-25
3-25
3-26
3-28
3-28
3-29
3-30
3-31
3-32
3-33
3-33
3-34
3-38
3-43
3-44
3-44
3-45
3-47
3-48
3-49

v

Illustrations

Figure

3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61
3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-72
3-73
3-74
3-75
3-76
3-77
3-78
3-79
3-80
3-81
3-82
3-83
3-84

3-86
3-87
3-88
3-89

vi

SDS 901172

LIST OF ILLUSTRA nONS (Cont.)

Title

Register Extension FT25 Module, Page 0, Byte 0, Simplified Diagram•...........
Clock Generator, Simplified Block Diagram .•.........•........••............••.
Delay Line 1, Logic Diagram .•.•...•..••..••...•.•.•.•.......•.............
Delay Line 2, Logic Diagram •.........•.••....•.•.......•..................
Delay Line 3, Logic Diagram •..•.•.••.•..•.......•......•...•..............
Clock Enabling Gates ••.••.••.•....•••.••.•..•••...•.•...................
Store Operation Timing Diagram•...••..•....•.•....•...................
Data Release Latch, Logic Diagram ...•...............•.....................•.
Single Clock Generation•.•...•....•..•..........•...•................
Osci lIator Clock Generator, Block Diagram•...............................
Real-Time Clock, Simplified Diagram ••..••..•................................
Watchdog Timer Control Circuits, Logic Diagram•..
Watchdog Timer Runout, Timing Diagram ...••........•......•..................
Write Lock Registers .•...•••.•...•..••.•.....•.•.•..•.....•........•....
Organization of Write Lock Bits on SDS 304 Integrated Circuit•..........•......
Write Lock Addressing •..•.•.•..•........................•.....•.........
T rap Sequence, Flow Diagram ••...•.•....••.•..•....•.•......•...•.•.......
Operation Codes Resulting in Trap ••.•••.......•.•....•.••......•...•..•......
Interrupt Phases ••.•.•••.•.•...•...••.•.....•...•.•.•.•.....•.•.•..•....
Interrupt Sequence, Flow Diagram •....•.•..•..••.••••..•..••...•.............
Power-On and Power-Off Interrupt Circuits, Cycle of Operation •.........••......•.....
Service Routine, Timing Diagram ••.•.•.•..•..••..•..•.•.....•.....•.......•.
Write Direct Sequence, Timing Diagram •..•••..••.••••.•.............•.•.......
Memory System Interconnection for Eight Memory Modules, One CPU, and Three IOP's•.
Sigma 5 Memory Bank, Functional Diagram •..••....•••....•.•••••.•.•...••....••
Port Expanders Fond 5 {First and Second} ...••..•••...••.•••..••.........••.....
Toggle Switch Modules (ST14) .•..•.•..••••••••..•..•.••..•.•...•..••.••..•.
32K Interleaved Memory, Example 1 •••••••.•.•.•••••••••.•••••••••.••••••••••
32K Interleaved Memory, Example 2 •.••.•.•.•.•...••.•...•.•...•.•.•.••.••...
32K Interleaved Memory, Example 3•....•.•..•.•....•..•.•..•..•.••.•.••.
Bank Size, Interleave Size, and Bank Number Switches •...•••.•.••...•.••..••.•.•.•.
Address Transformation for Interleaving (Port C), Simplified Diagram•....•.•.•...•.••
Memory Address Register and Interleave Transformation Logic •....•••..•...••.•.••••..•
Address Here Logic, Ports A, B, and C .•..••.•.•...•.•.•...•.•.•.•...•.•.•...••
Memory Request and Port Override Logic ...•••.•.•.•.•••.•.•.•.•.•.•...•.•.•.•.
Port Priority and Address Release Logic ••.•••.•...•.•.•...•.•.•..•••.•....•.••••
Read, Full Write, and Partial Write Logic Diagram ...•••.•.•.•...•.........•.•..•..
Read and Write Delay Lines •••...•..•••••••...•.••.......•..••.•.•••..••..•
Read-Restore and Full Write Delay line Timing for Port C.••..••..•••.•.••....••
Partial Write Delay line Timing for Port C ...•.••.•.•.•.•.•.•.•...•.•.•.........
Read-Restore De lay line Tim ing for Ports A or B .•.•...•...•...•.......•...........
Ports A and B Deldy Line ...•.•...•.•..•.•..•.....•.•..•.•.....•.•.•..••...
Memory Busy (MB), Logic Diagram ...•.........•.•....••....•........•.....••
Power Fai I-Safe, Reset, and Memory Fault, Logic Diagram •.....•.•.••.••...•••.....•.
M-Register (MOO, Typical of MOO-M3l)•....•...•.....••.•.•.•.•.•••....•..
Read Timing Diagram•...•.••....•.•.•....•...•...•.•.•.•.••...•
Full Write Tim ing Diagram ...•.•...•...........•.•.........•..••........•..
Partial Write Timing Diagram •..•...•.••••....•...••......••.•.•..........•.
Parity Determ ination Logic Scheme••••..........•.•.••..
Basic Core Switching ...•.•...........••....•....•.•.•.....•.....•.•.•...
Simplified ~.~emorYI Read-Restore Operation•................•.........
Simplified Memory, Clear Write Operation•....•.......•..•..........•
Bit Plane Layout in a Core Diode Module •..•...........•.......••.•.....•.•....
Core Diode Module, Open to Expose Bit Planes•..•..•.•....••.•.......••..•.
Core Diode Module, Closed, as Inserted•....•.......•....•............

Page

3-51
3-54
3-55
3-56
3-58
3-59
3-59
3-60
3-61
3-62
3-63
3-64
3-65
3-66
3-67
3-70
3-74
3-76
3-83
3-84
3-85
3-90
3-93
3-96
3-97
3-100
3-102
3-103
3-103
3-104
3-105
3-106
3-107
3-110
3-111
3-112
3-114
3-115
3-116
3-117
3-117
3-118
3-119
3-120
3-122
3-123
3-124
3-125
3-126
3-128
3-129
3-131
3-132
3-133
3-134

Figure

3-90
3-91
3-92
3-93
3-94
3-95
3-96
3-97
3-98
3-99
3-100
3-101
3-102
3-103
3-104
3-105
3-106
3-107
3-108
3-109
3-110
3-111
3-112
3-113
3-114
3-115
3-116
3-117
3-118
3-119
3-120
3-121
3-122
3-123
3-124
3-125
3-126
3-127
3-128
3-129
3-130
3-131
3-132
3-133
3-134
3-135
3-136
3-137
3-138
3-139
3-140
3-141
3-142
3-143
3-144

SDS 901172

LIST OF ILLUSTRATIONS (Cont.)

Title

Core Diode Module, Bit Planes, X Wire Crossover •.•••••••.•.•••••••....••••.•.•••
Core Diode Module, Jack Pins and Signals ••.••.•••..•..•.•.••••••••••...••.••••
Core Diode Module, Left Half Wiring Details •..•••.••..•.••••••••.•.•..•.••.••••
Core Diode Module, Right Half Wiring Details •••..•••••.•.•...•.....•••.•••.••••
Sense Line Wiring in a 4K Core Diode Module ••.•.•.••.•.•••.•..••.•.••.••.•.••.
Memory Core Drive System, Simplified Schematic •.•••••..•••.•••.•••••.•..•••.•••
X Current and Voltage Switch Matrix for 16K Memory •.•.•••••••.•.•....•.••...•.•••
X Current and Voltage Switch Matrix, Byte 0, 4K Stack ••.••..•••••...•.••.•.••••••.
Y Current and Voltage Switch Matrix for 16K Memory ••..••.•.•••.•.•.•.•.•.....••••
Y Current and Voltage Switch Matrix for Bit O •••••••.•••.•••••••••••••••.••••••••
Y Positive Current Predrive/Drive Coupling, Simplified Schematic •.••.•.••.•.••....•..•
X Positive Current Predrive Matrix, Simplified Schematic ••.••..••.••••.••.••.•.•..••
X and Y Predrive Selection Relative to Memory Address ••.•.•.•••.•••.••••....••...••
X Positive Current Predrive Matrix ..• _ : : : , _ . _••.•.•.•••••.•..••.••••
X Negative Current Predrive Matrix ••.•..•••••......•.•..•.•..••.•...•••.•.•.
X Positive Voltage Predrive Matrix •••.••.•.•......•......•.•.••.•.•.•....••••
X Negative Voltage Predrive Matrix •..••..•.•.•.•...•.•...•. , . , , •.•........•.
Y Positive Current Predrive/Drive Coupling System ••.••••••....••.•.•.....•...•••••
Y Negative Current Predrive/Drive Coupling System •..••............•.......•..••..
Y Positive/Negative Predrive/Drive Coupling System •.•.•.••..••..•..•..••..•.•.•••
Magnetics Timing Diagram•.•.•••••••.••••.••..•••..•.•.•.•.•.••.••••.
Sense Preamplifier (HT26) Simplified Schematic, Bit 0, Stack 0 ••.•..••••.•....•••....•
Sensing System for Bit 0 (Typical) ••..•..•••....•...•.•...•..............•..•.
Sense Line/Preamp/Sense Amplifier System (Bytes 0 and 1) ...•...•.•.•.•...•.•........
Basic Sense Amplifier, Logic Diagram ..•••••.•...•.•.•.•••...•.•.....•.•.•..•.
Sense Waveforms •..••.•.•••.•••••••••...•.•.•.•.••.•.•.•••..•••.••.•..•
Sense Amplifier, Simplified Schematic ••..•.•.•••..•..•.•..•.•••.•.•••.•..••.•.
Y Current Inhibit Circuits, Simplified Diagram •••••••.•.•..•..•..••...•.....••.••
Positive and Negative Y Current Inhibit, Bit 0 •.••••.••••..••.•••••.••••••..•••••
Read-Restore, Timing Diagram ••.••......•...••..••..•..•.•.••.••••...•..•••
Full Clear Write, Timing Diagram ••••.•.•...•.•.•.•••...•.•••...•.•.•.•..••••
Partial Write, Timing Diagram.- ..•.....•.•.•..••...•.....•...••..•..••.•...•
Memory Module Location Chart ••••.•.•.•.•.•.•..••.•.•.•.•.•.•.•••.••••..••
Preparation Phases General Functions, Block Diagram •..•••.••.••.••••••.•••••••.•••
Immediate Instruction Preparation Phases, Flow Diagram •.••..••••••••.•.•.•..•.••.••
Preparation Phase PRE1, Flow Diagram .•.••••••••••.••••.••••••••.•.•••.•.•••••
Preparation Phase PRE2 (Not PRE/12), Flow Diagram .•.••..•••...••.•..•.••••.•••.••
Preparation Phase PRE2 (PRE/12 Time), Flow Diagram •.••.•••••••••.•.•.•.•.•.••••••
Preparation Phase PRE3, Flow Diagram •••.•••••••••••••.•.••.•••••••••.•...••••
Preparation Phase PRE4, Flow Diagram ••.•.•..•••••••••..••••••••.•••••.•••••••
Index Register Contents for Byte, Halfword, Word, Doubleword, and Shift Operations •••.••••••
Index Register Alignment for Effective Address Computation •.•.••.•••••••••••••.••••••
Load Absolute Halfword Phases•.•••.••..•••.••••..•••••••.••.•.••.••••
Load Absolute Word Phases •..•.•..••.•...•.....•••.••••.•••.•..•.•••••••.•
Load Absolute Doubleword Phases .•.••••.....•••.•.•.•••.•.•.•.•.•.•••••.••••
Store Doubleword Phases .•.•.....•.••..•.•.•••...•••..•••.•.•••.•.•.•..•••
Load Se lective Phases ••.•.•.•..••.•.•.•.••..•..•.•.•.••....••••.••.•••••
Store Selective Phases ••...•.••....•••.•.••••••••.•••.•.•••.•.•••.•.•.•••
Compare Se lective Phases••.•.•.•.••....••..••..••••.••••.•••.••.•••••
Analyze Instruction, Phase Sequence Diagram .•.....•..•...•••..••.•..•.•..••.••.
Analyze Instruction, Preparation Phases Flow Diagram •..•.•.••.•••••.•..•.••..•..•.•
Interpret Examples •....••....•.....••.•..••••.••.••••••.•.•••.••••.•••••
Interpret Phases •..•..••.....•...•.... ~ •.••.•......••••••••••.•.•••••••
Add Doubleword and Subtract Doubleword Instruction, Phase Diagram •••.••.•..••••••.••••
Bit-Pair Multiplication ••...•.....•.•••••••.••.•..•......••.•.••••.••.•.••

I"ustrations

Page

3-135
3-136
3-137
3-138
3-139
3-142
3-145
3-147
3-148
3-149
3-150
3-151
3-152
3- 154
3-155
3-156
3-156
3-157
3-158
3-159
3-160
3-161
3-162
3-163
3-166
3-167
3-167
3-168
3-169
3-170
3-171
3-172
3-173
3-177
3-194
3-195
3-196
3-197
3-198
3-199
3-201
3-202
3-224
3-227
3-230
3-240
3-250
3-254
3-258
3-262
3-263
3-270
3-271
3-280
3-287

vii

Illustrations

Figure

3-145
3-146
3-147
3-148
3-149
3-150
3-151
3-152
3-153
3-154

3-155
3-156
3-157
3-158
3-159
3-160
3-161
3-162
3-163
3-164
3-165
3-166
3-167
3-168
3-169
3-170
3-171
3-172
3-173
3-174
3-175
3-176
3-177
3-178
3-179
3-180
3-181
3-182
3-183
3-184
3-185
3-186
3-187
3-188
3-189
3-190
3-191
3-192
3-193
3-194
3-195
3-196
3-197
3-198

viii

SDS 901172

LIST OF ILLUSTRATIONS (Cont.)

Title

Multiply Immediate and Multiply Word Instructions, Phase Sequence Diagram •••••••••••••••.
Multiply Halfword Instruction, Phase Sequence Diagram ••.•••••.•.•••••.•...•.•.•••••
Nonrestoring Division ••••..•.•...•.•..••••••.•••••..••••••••.••...•.•••••
Nonrestoring Division, Graphic Representation •.•.••.••.•....•.•••.•.•.•.••..•••.
Nonrestoring Division With Two's Complement Addition •..••.....•.••.•.•.•....•.••••
Divide Halfword Instruction, Phase Sequence Diagram •...•.••.•.•••.•.••••..•••..•••
Divide Word Instruction, Phase Sequence Diagram•••.••••••.••••..•••••.•.••••
Modify and Test Byte and Modify and Test Ha If word Instructions, Phase Sequence Diagram •....•••
Modify and Test Word Instruction, Phase Sequence Diagram •.•••••.••.•.•.•••...•••.•.
Compare Immediate, Compare Byte, Compare Ha If word, and Compare Word Instructions,
Phase Diagram •..•.•.•.•.......•..••••.•.•.•.••••••.•.•...•.•...••••••
Compare Doubleword Instruction, Phase Diagram •.••.••...•.•.••.••.•••••.•••••.••
Compare With Limits in Register, Phase Diagram •••••....••.•••.••.•.••••.••.••..••
Compare With limits in Memory, Phase Diagram •..••....•.••.•.•••••••.•.••.••••.•
AND Instruction Phase Sequence ••.•.•...•••.••••.•••.••...•..••••..•..••••••
Shift Examples ••..••.•.•..••.•••..••••••.••••••••••••.•.•••.•.•.••••••
Imp lementation of Left Sh i ft ••.•.••....•••.••..•••..•••••.•••••••••.•••••••
Implementation of Right Shift ••..•••.•...•.•.•.•..•.•.•.•.•••.•.•.•.••••••••
Shift Floating Examples ••••••.•...••.••••...••.•.•...•.•.•.•.••••••••••••.
Implementation of Left Shift Floating •.•••••••••.•••.••...•......••••...••..••.
Implementation of Right Shift Floating •••.•..•••...••..••••••.•.•.••••••••.••••
Floating Point Number Formats ••••••••••••••••..•.••••.•••••••••....••••..••
Floating Point Number Example ••.•••.•••••••••••••.••••••.•.•••••••.••.•••.
Normal ization of Floating Point Numbers ••••••••••...•••••.•••••••••.••••••.•••
Floating Add and Subtract Implementation •••••••••.••••.••••••••••••••••.••••.•
Floating Multiply Implementation •.••••.••••••.•.•.•.•••..••••••..••••.•.••••
Floating Divide Implementation ••.•.•••.•.•.••..•••.•.••••..•••.•.•••.••••••
Push Word Instruction; Phase Sequence Diagram •.•..•.•••.•.•••••.•.•••.•.•.•.••••
Pull Word Instruction, Phase Sequence Diagram ••••••••.•••.•.•••..••.•••..•••.•••
Push Multiple Instruction, Phase Sequence Diagram ••.••••••.••.•.•••.•••....•••.•••
Pull Multiple Instruction, Phase Sequence Diagram ••.••.•..•....•.•..•.••••.•.•••••
Modi fy Stack Pointer Instruction, Phase Sequence Diagram •.•.•.....•••••.•.•.••••••••
Load Multip Ie Instruction, Phase Sequence Diagram ••.••••...•..••.•.•••.•••.•••••.
Store Mu Itip Ie Instruction, Phase Sequence Diagram •••.•••••••.•.•••...•.•.••••••••
BCS Instruction, Phase Sequence Diagram •••.••.••...•..•.••..•.•.••..••••••••..
BCR Instruction, Phase Sequence Diagram .••••.••.•••.•..•.••.•.•.•.........•.•.
BAL Instruction, Phase Sequence Diagram •.•.•..•.••..•..••....•...•..•..•.••..•
BDR Instruction, Phase Sequence Diagram •.•....••.••.•...•..•••..•••••.••...•••
BIR Instruction, Phase Sequence Diagram ••••.•.......•...•.•.•.•.......•.....•.
EXU Instruction, Phase Sequence Diagram ••....•••.•.....•...•.•••..••....•.••••
Load Program Status Doubleword Instruction, Phase Sequence Diagram •••.•.•.•....•.•....
Exchange Program Status Doubieword instruction, Flow Diagram ••.....•.....•...........
Exchange Program Status Doubleword Instruction, Phase Sequence Diagram ••....•...•.••••.
Write-Lock Configuration .••••...........•.•.•...•.•.....•..••....•..••.•.
Contents of Private Memory Registers Rand Ru 1 ••••••••...•....••.•..•.•..•...•••.
Move to Memory Control Example •••••••••••••.•••.•.•.•••........•..•.•....•
Move to Memory Control, Flow Diagram •••••••••.•..••••••.••••...•.••..••.••.
Read Direct Instruction, Phase Sequence Diagram ••..•.•••.•...•.•...•••••••••••••.
DIO Timing Flip-Flops, Simplified Logic Diagram ••.•.....••••..•.••.••.•••.•.•.•.
Write Direct Instruction, Phase Sequence Diagram .•.••..••••.•.••••..••.•••••.•••.
Start Input/Output Instruction Format .•.•..•....•..••.•.•..••....••.••.•..••.•.
Acknowledge Input/Output Interrupt Instruction Format•..•..••.......•••.•.•.
510, HIO, TIO, TDV, Flow Diagram for MIOP•..•••.•..•.•......•.•...•..•.
510, HIO, no, TDV Flow Diagram for Integral lOP •...•.•....•.•..•...•...•.••...
AIO Instruction F low Diagram for MIOP •..........•......•.•.•.•..•••....••••••

Page

3-289
3-295
3-301
3-302
3-303
3-304
3-310
3-317
3-326

3-335
3-336
3-341
3-345
3-350
3-354
3-355
3-356
3-365
3-366
3-367
3-378
3-379
3-380
3-382
3-401
3-420
3-440
3-452
3-464
3-478
3-492
3-501
3-505
3-508
3-511
3-513
3-515
3-518
3-520
3-525
3-530
3-531
3-538
3-539
3-540
3-541
3-554
3-557
3-559
3-565
3-566
3-567
3-575
3-588

Figure

3-199
3-200
3-201
3-202
3-203
3-204
3-205
3-206
3-207
3-208
3-209
3-210
3-211
3-212
" ",,,
..J-LI..J

3-214
3-215
3-216
3-217
3-218
3-219
3-220
3-221
3-222
3-223
3-224
3-225
3-226
3-227
3-228
3-229
3-230
3-231
3-232
3-233
3-234
3-235
3-236

3-237
3-238
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14

SDS 901172 Illustrations

LIST OF ILLUSTRA nONS (Cont.)

Title

AIO Instruction Flow Diagram for Integral lOP ••..•......•.......••. 0 ••••••••••••••

Power Monitor Assembly, Simplified Block Diagram ••....••••.•••.• 0 • 0 ••••••••••••••

Power Monitor, Functional Schematic Diagram •.... 0 ••••• 0 ••••••• 0 • 0 ••• 0 • 0 • 0 ••••••

WT21 Regulator, Schematic Diagram .•.•.•• 0 • 0 ••••••••• 0 •••••••• , , ••••• , •••••••

WT22 Line Detector, Block Diagram •.• 0 • 0 •• 0 ••••••••••••••••••••••••••••••••••

WT22 Line Detector, Schematic Diagram ••...• 0 ••••••••••••••••••••••••••••• 0 •••

Power Fai I-Safe Waveforms •....... 0 •••••••••••••••••• 0 •••••••••••••• 0 ••••••

Single-Phase Detection .••.........••.•..•....•..•........••..•......•.•••.
Three-Phase Detection•.•.•.•.•. 0 • 0 0 •••••••••••••••••••••••••••••••••

ION One-Shot Operation ••...•.. 0 •••••••••••••••••••• 0 ••••••••••••••••••••

Real-Time Clock Operation •.•...••....... 0 ••••••••••••• 0 •••••••••••• 0 ••••••

Floating Point Unit, Block Diagram .•.•...•.... 0 ••••••• 0 •••• 0 •••• 0 •••••••••••••

Floating Point A-Register Inputs and Enabling Signals •...••. 0 •••••••••••••••••••••• 0 •

Floating Point B-Register Inputs and Enabling Signals •....• 0 ••••••••• 0 ••••••• 0 •••••••

Floating Point D-Register inputs and Enabiing Signais•••. 0 ••••••• 0 •••••••••••••• ,

Floating Point F-Register Inputs and Enabling Signals •. 0 •••••••• 0 •• 0 •••••• 0 •••••••••••

Floating Point E-Register Inputs and Enabling Signals ••..• 0 •• 0 •• 0 ••••• 0 ••••••••• 0 '.' •••

Data on Floating Point Lines and Gating Terms ..•.••.....•..••.. 0 ••••• 0 ••••• 0 • 0 ••••

Floating Point Display Switches, Logic Diagram•.•. 0 ••• 0 • 0 • 0 ••••••••• 0 ••••••••

Floating Point Bit 12, Logic Diagram ••... 0 •••••••••••• 0 ••• 0 0 •••• 0 ••••••• 0 0 •••••

Entering PCP Phases .••• 0 • 0 •••• 0 ••••••••• 0 ••••••••• 0 •• 0 •••••••••••••••••••

PCP Sequencing Beyond Wait State ..•....••..•........... 0 • 0 ••••••••••••• 0 ••••

CPU RESET/CLEAR and SYSTEM RESET/CLEAR, Flow Diagram ... 0 •• 0 •• 0 ••••• 0 ••••• 0 • 0 •••

Insert PSW1/lnsert PSW2, Flow Diagram .••... 0 •••••• o ••••••••• 0 ••••• 0 •••••••••••

DATA ENTER/DATA CLEAR, Flow Diagram ..••....•• 0 • 0 ••••••• 0 ••••• o •••• 0 •••••••

STORE INSTR ADDR/STORE SELECT AD DR, Flow Diagram ... 0 •••••••• 0 •••••••••• 0 • 0 •••

DISPLAY SELECT ADDR/DISPLAY INSTR ADDR, Flow Diagram. 0 ••• 0 ••••••• 0 0 0 • 0 • 0 ••••••

INSTR ADDR INCREMENT, Flow Diagram ••.•..•..... 0 ••••• 0 ••• 0 ••• 0 •••••••• 0 ••••

Clear Memory, Flow Diagram•.••.......•.... 0 o •• 0 •••••••••••••••••• ,

Load, Flow Diagram •... 0 •••••••••• 0 ••••••••••• 0 •••••••••••••••••• 0 •• 0 • 0 ••

Integral lOP, Functional Block Diagram ••.•• 0 •• 0 ••••••••••••••••••••••••••••••••

Integral lOP, Device Controller/Devi ce Configuration •.•.•..•.•.••...••....•.•.•..••
I/O Fast Memory, Group Organization •.•••..•.••. 0 ••••• 0 ••••••••••••••• 0 ••••••

Fast Memory Module FT25, Logic Diagram •••.••....•..••.••..••••.••••.•.•••.•••
Service Call Connect Phases, Typical Timing Sequence •...••....•..• 0 ••••••••••••••••

Main Power Distribution Box, Schematic Diagram •..••••.•••••••.•.•.•.•.•.•.•••••••
Physical Details of Sigma 5 PT16 and PT17 Power Supplies ••.•..••••.•.•..•••.••.•.••••
Physical Details of PT14 and PT15 Power Supplies, Main Power Distribution Box, and
Power Junction Box ...••.•... 0 •••••••••••••••••• 0 ••••••••••••••••••••••••

Voltage Terminals on Backwiring Boards and PT16 and PT17 Power Supplies •••.•••.••.•.•..••
Typical Power Distribution Diagram •. 0 •••• 0 •••••••••••••••••••••••••••• 0 • 0 • 0 •••

Address Selector Module ST14 .•.. 0 • '0 •••••••••••••• '0' ••••••••••••••••••••••

Switch Comparator L T26 •••...... 0 • 0 ••••••• 0 ••••••••••••••••••••••• 0 • 0 •••••

Sigma 5 Computer Group•..•..•.•.•.. 0 • 0 • 0 •••••••••••••••••••••••••••

Frame Assembly With Fan Arrangement ..•• 0 •••••• 0 0 •••••••••••••••••••••••••••••

Power Distribution Assembly ...•...•...•.. 0 • 0 •••••••••••••••••••••••••••••••

Power Monitor Assembly ...• 0 • 0 • 0 ••• 0 ••••••••••••••••••••• 0 •••••• 0 • 0 •••••••

Power Distribution Box Assembly ..•... 0 ••••• 0 ••••• 0 •••••••••• 0 ••• 0 •• 0 •••••••••

Module Assembly, CPU Cabinet No.1, Frame 1 .• 0 •••••• 0 ••••••••• 0 •••••• 0 ••••••••

Processor Control Pane I Assembly •. 0 • 0 •••••• 0 ••••••• 0 •••••••••••••••••••••••••

Module Assembly, Memory Cabinet, Frames 1 and 2 .. 0 •••••••••• 0 ••••••••••••• 0 •••••

Module Assembly, Register Extension Unit, Register Interface, High-Speed Register Page •.•.•.••.
Module Assemblies, Accessory Cabinet No.1, Frame 1, Floating Point .• , •..••••.•.•.••.•••
Module Assembly, Interrupt Control Chassis •.•........•• 0 ••••••••••••• 0 ••• 0 •••••••

Assemblies, Memory Port Expanders, Frame 3 0 ••••••••••••••• 0 ••••••••••••••••

Page

3-592
3-625
3-626
3-627
3-629
3-631
3-633
3-634
3-635
3-636
3-637
3-639
3-640
3-642
3-643
3-644
3-644
3-645
3-646
3-647
3-657
3-661
3-662
3-662
3-666
3-668
3-668
3-671
3-679
3-679
3-681
3-682
3-683
3-684
3-688
3-748
3-751

3-753
3-755
3-757
4-3
4-4
4-9
4-13
4-16
4-18
4-19
4-23
4-29
4-35
4-39
4-42
4-43
4-51

ix

Tables

Table

1-1
1-2
1-3
1-4
1-5
1-6
2-1
2-2
2-3
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46

x

SDS 901172

LIST OF TABLES

Title

Main Units ••••.•••••.•.•••••••••••.••.•••••••.••.•.••••.••.•••.•••••
Optional Features ••••••.•••••.•••••••••.••••.••••••••••••.•.••••.••••.•
Maximum Computer System lOP Combinations ••••••.••••..•••••.•.•••••.••••.•••.
General Specifications ••••••••.•••.•••.•.•••••••.•••••••.••.•••.•.•.••...
Power Supply Input Power Specifications ••••••••••.•.•.•.•••••.•.•.•••.•••••.••
Computer Power Requirements ••.•.•.•••••••.•.•.•.•.••••••..••.••••.•••..••
Controls and Indicators, PCP Programmer1s Section .•••.•.•.••••••.•••.•••••.••.••••
Controls and Indicators, PCP Maintenance Section •••••••.••.••..••.••••••••••.•.••
Basic Instructions ••••••••••.•••••••••.••••••.•••.•.••••••••••••••••••••
Adder Operations •••••••••.•.•.••••••••••••••••••••••.•••••••••••••••••
A Plus D Truth Table •.••••••••••••••••••••••.••.••••••••••.•••••••••••••
A Minus D Truth Table ••••••••••.•.•••.•••.••••.•••••••••••••••••..•••.••
D Minus A Truth Table ••.•••••••.•••••••.•••.•.•.•••••.•••.••••••••••••••
A Minus 1 Truth Table ••••.•••••••.•••.•••.•.•.••••••••..••••••.•••.•••••
D Minus 1 Truth Table ••••••••.•••••••••.•••••••••.••••••••.•••.••••.••••
REU Interface Signals ••••••••.••••••••••••••••.••••••••••••••.••.•••.••••
Memory Protection Functions ••••••••••••••.•.•••..••••.•.••.••.••...•••..••
T rap Sequence • • • • . •••.•••••.•••••••.•.•••••...•.••••••••..••••.•••.••
Trap Codes and Address Digits ••••••••.•.•••••••••••.•.•••.••••••••..•••••••
Interrupt Sequence ••••••.•••.•.•••••••••.•••••••••••••.••..••.••..•••••
Significant States of Interrupt Circuit •••••••••••.•.•.•••••••••.•.•.•••••.•.•••
Function of Codes for WD Interrupt Control Mode •.••••••.•••••.•••••••••.....•••••
Signals Enabled by Codes for WD Interrupt Control Mode, and Resu Iting Changes of State ••.•••••
Sigma 5 Memory Models and Options •••••••••.•.•..••••••••••.•••••.••.•••..••
Interleaving Address Bit Exchange •••••.••••.•••.••.••.•••••••••••.••••••..•••
Core Characteristics •••••..•.•••••••••.••..••••..•.•.•.••••..•.•••.•••••
Phase 10 (ENDE) Sequence •••••..•••••••.•••••••••.•.•••••.••••••..•.••.••
Preparation Phases Sequence ..••.•• , .. , .•.•.•.•.•••.•••.••.•••.•••••••.••••
Load Immediate Sequence ••..••.•.•••.•.•.•.•.•••••.•••••••••..•••••...••.
Load Byte Sequence ••.•••.•.•.•••••••.•••.•••.•.•.•.•••.••..•.••..••.••
Load Word and Load Halfword Sequence ••.••••••••••••••.•••.••.••.•••••.•...•
Load Doubleword Sequence •.••••••.••.•.••••.•..•..••••••.•....••...•.•.•.
Load Comp lement Ha I fword Sequence •.•.••.•.•.••..•.••..•••••.•...••.•..••.•
Load Comp lement Word Sequence ••.••••.•.•••.••..•.•.•..•..••...•...•.•••••
Load Complement Doubleword Sequence •••••••.•••.••..•••..••.....•.•.••...••
Load Conditions and Floating Control Sequence ..•••••..•.••••••..•••.....•.•.•••.
Load Conditions and Floating Control Immediate Sequence •..•.••....•.•.••.••.•••••••
Load Register Pointer Sequence •.•..•••••••••••••••••••••.••••.•.••••••.•.•.
Load Absolute Halfword Sequence •...••••.••.••••••.•••••••.••.••••.••••••••
Load Absolute Word Sequence ••••••••••.•••.•.•••••••••••••••••••.•••••..••.
Load Absolute Doubleword Sequence ••••••••.••••••••••••.•..•.•.•••.•.•.•••••
Store Byte Sequence .••••••.•••••.•.•.•.•••.•••••...•••••••.•••••••.•.••
Store Halfword Sequence •.••••.••.•.•••.•.••••.•.•••••••..•.•••...•••.•••
Store Word Sequence ••.•••••.•••••.•.••.••.•.•.•...•.•.•••...••.•.••••••
Store Doubleword Sequence •.••••.•.••••••••••.•.•••.•.••..•.•••.••.••••••
Store Conditions and Floating Control ••••.•.•.•.•.•.•...•.•.•••.•••.•.•..•.•••
Add Word to Memory Sequence ••••••.•.•••.•.•.•••.••••..•.•.•.•.•..•.••.••
Exchange Word Sequence .•••..•••.••.•••••.•.•.•..•.•.••...•••...•...•.••
Load Selective Sequence ••••••••••••••.•.•••.•••.•.••••••.••.•.•.•.•.••••
Store Selective Sequence ••••••.•.•.•••.•.•.•.•••...•.•.••••..•...•..•••••
Compare Selective Sequence ••••••••.•••.•••••••.•.••..••..••...•.••.....•.
Analyze Sequence •••••.•.•••.•••••••.•..•..••••.•••.•...•••..••••.•.•.
Interpret Sequence ••••••.••.•••••••••••.••••..•••••..••••••.......•••.•
Add Immediate Sequence ••..•.•••••••••.•.•••.••••..•••••••••.••...•...••
AH and SH Sequence ••••.•.•••••••.•••.•.•••..••••.••••••.••.••..•••••.•

Page

1-7
1-7
1-9
1-11
1-11
1-11
2-3
2-7
2-17
3-34
3-35
3-35
3-36
3-36
3-37
3-50
3-65
3-71
3-73
3-80
3-86
3-93
3-94
3-95
3-101
3-127
3-174
3-178
3-204
3-206
3-208
3-210
3-213
3-215
3-217
3-220
3-221
3-223
3-225
3-227
3-230

3-237
3-239
3-241
3-243
3-244
3-247
3-250
3-254
3-258
3-264
3-271
3-274
3-276

Table

3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60

3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-72
3-73
3-74
3-75
3-76
3-77
3-78
3-79
3-80
3-81
3-82
3-83
3-84
3-85
3-86
3-87
3-88
3-89
3-90
3-91
3-92
3-93
3-94
3-95
3-96
3-97
3-98
3-99
3-100
3-101

SDS 901172

LIST OF TABLES (Cont.)

Title

AW and SW Sequence ..•......•.•••.....•.•.••..••..•••.••..•.••••••.•.•
Add Doubleword and Subtract Doubleword Sequence •••....••...••••.•.•..•.••..•••.
Bit Weights and Operations for Bit-Pair Multiplication •..•.••.....•..••.•.•.•••...••
Multiply Immediate and Multiply Word Sequence •.•.•..••...•....•....•.......•...
Multiply Halfword Sequence•.•...•.....•..•..•••......••.•.••...•.
Divide Halfword and Divide Word With Odd R Field Sequence .•..•••••..••.••..•...•.•
Divide Word Sequence (Even R Field) .•••...•...•.....•.....•..•..•...••....•.
Modify and Test Byte Sequence •....•..•.•..••...•...•...•.••..•...•.•.•.•••
Modify and Test Halfword Sequence .•...•••.•.•...••..••....••..•...•...•.•••
Modify and Test Word Sequence •.•...•..••.•.•••.••..•.•.•.••....•.•..••.•••
Compare Sequence (CI, CB, CH, CW) •..•••...•.•...•.•..•..•.....•......••••
Compare Doubleword Sequence ...•..•.•...•.•.•.••..•••...........•.•••..••
Compare With Limits in Register Sequence•...•.••••••..•...........•..•••.
Compare With Limits in Memory Sequence •...•..•.......••.••.•........•...•.••
OR, EOR, At-..lD Sequence .•...•.•.•...•.•.•...••......••.•..•.•...•••.•••
Shi ft Sequence ••.•.•••.....•......•.•••....•••.••••.•••..••••..••.••..
Shift Floating Sequence•.•.•...•.•.•.•...•.•...•...•.•.....•.•.••
Floating Point Condition Code Setting ••.•.••••..•••.•.•.•.•.•...•.•.•.•.••••.
FAS, FSS, FAL, FSL Sequence .••....•..•..•..•.•.•••.•••••....•..••.•••.•••
FMS, FML Sequence•...•...•.•...•.•.•.•.•.•..••.•.....•.•.•.....•
FDS, FDL Sequence •......•.•...•...•••.....•.•.•.••..•.....•.•......•.
Push Word Sequence •....•.......•....••.•.•.•.....•.....•...•.•......••
Pull Word Sequence•.....•...•..•..•.•..•.••...•...•...••....•...•.•
Push Multiple Sequence •............•.•.••....•.•...•...........•.•...•.•
Pull Multiple Sequence •.....•..•...••.••.•.•.•...•...•.••..•.....•...•..
Modify Stack Pointer Sequence ...•..•..•.•.•...•....•.•.•...•.•............
Load Multiple Sequence•......•....•.•...•...............•.•.•.•..
Store Multiple Sequence .•..•......•.•.••....•.....•.........•...........
Branch on Conditions Set Sequence•.•.....•.................• , . , , ,
Branch on Conditions Reset Sequence ..••••..•.....•.•.•....•..........•....•..
Branch and Link Sequence •....•........••.••.•.•....•..•...••..•.•.•.••••.
Branch on Decrementing Register Sequence .••.•.•.•.•.•.•.•.•....••••.•.•..•...•
Branch on Incrementing Register Sequence ...••..•.•...•.•••.....••......•.•...•
Execute Sequence ..•..•....•.••..•••..•..••.••.••.••.•••••.••.•..•.•...
CAL 1 Th rough CAL4 Sequence ...•..••.•.••.••...•.••.•..•..•....•...•.•.•.•
Program Status Doubleword Storage •....•.•.•.•.•.•.•.•••...•.....•.•.•.•.•..•
Load Program Status Doubleword Sequence ...•...•.•.••....•.•.•.•••...•••...••.
Exchange Program Status Doubleword Sequence .•••.•...•...••..•.••...•.......•••
fvA.cJve to Memory Control Sequence ..•.•••••.•.••.••.•.•...•••.•.•....•...••••
Wait Sequence .•••.•.•.•.•.•...•.••....•.........•••.•.•.•••.•.•.•••••
Read Direct Sequence .•..•.•...•.•...•..•..••...••••..•••.•.•....••••...
Write Direct Sequence•...•...•..•.••.•••.•.•..••.•.......•...•....•.
510, no, TDV, HIO Sequence for MIOP ...•.•.•.•...•.•..•...•.. "•....
510, no, TDV, HIO Sequence for Integral lOP ...•.•.•...••..•••.•.......•.••.••
AIO Sequence, MIOP ••.......•.•...•.•.•.•....•..•••..••.•.•.•.•...•.••
AIO Sequence for Integral lOP ...•.......•.•.•.•.•.••..•......•.....•.•...•
Glossary of CPU and Integral lOP Signals •... " ...•.........••••..•.•.•.•...••••.
Glossary of Floating Point Signals .•.••....•..•...•..•.•..•.••.••.•.•....••••
Glossary of Memory Signals•.•...••..•..•.••.•.•..•.•....••..••
Switch Positions for Floating Point Information Display••...•••....•...•......••
PCP Control Switches•..............................
PCP Indicators ...•........•.•.•...•.•.•.•.•••...•.•••...•••.........••
Control Mode Lock Switch Status .•...........•..•..•......•••........•..••..
Reset Sequence Chart•...•.•....•..•......•..•.•.•.•••..•....••.••••
Insert PSW1/Insert PSW2 Sequence•.•...••...•...•..•.•.....•.••••••

Tables

Page

3-278
3-281
3-288
3-290
3-296
3-305
3-311
3-318
3-322
3-327
3-332
3-337
3-341
3-345
3-350
3-357
3-368
3-381
3-383
3-402
3-421
3-442
3-454
3-467
3-480
3-494
3-502
3-505
3-509
3-511
3-514
3-516
3-518
3-521
3-522
3-524
3-526
3-532
3-544
3-551
3-554
3-559
3-568
3-577
3-589
3-593
3-600
3-612
3-616
3-645
3-649
3-653
3-655
3-658
3-663

xi

Tables

Table

3-102
3-103
3-104
3-105
3-106
3-107
3-108
3-109
3-110
3-111
3-112
3-113
3-114
3-115
3-116
3-117
3-118
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14

4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37

xii

SDS 901172

LIST OF TABLES (Cont.)

Title

DATA ENTER/CLEAR Sequence •..•.•.•.•.•.••..•••.•.•.•.•.••••••••••••••••
Store INSTR ADDR/STORE SELECT ADDR Sequence ••••..••.••..•••.••••••.•.••••••
DISPLAY INSTR ADDR/DISPLAY SELECT ADDR Sequence••.•..•••..•.•.••..•...•
INSTR AD DR INCREMENT Sequence ••.•....•..•.........••.•••••.•..••.••••••
C lear Memory Sequence ••.•.•...••.•..•.•••....•.......••••.•••...•.•••••
Load Sequence .•...••••.••.••.••••.••..•...••..••.•••••.•.••••..••....
Service Call Connect Phase Sequence •••.•••••..••.•..•••.••.•••.•••.•.....•••
I/O Setup Phase Sequence ••.•.•••.••..•..••.•.•.•.•••••••••••••..••.••.••
Order-Out Phase Sequence •••••..•••.•••.•.•••...•.•••.•.••••..••••..•.•.•
Data Chaining Phase Sequence ••...•••.•••.•.•.•...•••.•.•.•.•••••••.•.•.•.•
Data-Out Phase Sequence •.•.•.•.•.•••.•••..•.••••••.••••..••••.•...•.•.•.
Data-In Phase Sequence •.••••.•.•..••••••.•.••.•••..•••.•••.•••••••.••••.
Order-In Phase Sequence •.•.•.•.••..•.•••.•.•••••••••••.•.•••.•.•••...•••
I/O Restoration Phase Sequence ••••••.•.•.•••••••.•.•.•.•.•..••.•••...•....•
I/O Abort Phase Sequence •.••.•••••••••.•.••.••.•.•••.••.•••••••••.•••••.
Summary of I/O Phase Sequences ••••••••••.••••••.••.•.•••••••••••.•.••.••••
Voltages on Pins and Jacks in Backwiring •.•.•••••.•...•.•.•.•.••••..•.•••.•.•••
Special Tools and Test Equipment ••••••.•.•.•.•.•.•.•.•.•..••••••.••.••••••••
Diagnostic Programming Manuals ••••••..•••••.•.•••••.•••.•..••.•••.•••.••••
Diagnostic Programming Schedule ••••••.•.•.•.•.•.••..•.•.•.•.••..•.•.•...•••
Switch Setting Data •.•••••.•.•.•.•.•.•••.•.•.•••••.••••••.••••.••.••••••
Memory Setup Switches in STl4 Modules •.•••••.•.••..•••.••.•••••.••••.•.•••••
Address Selector Module STl4 Switch Settings for Counters (Location 3K) ••••..••••.•••••••
Switch Settings for STl4 Modules in Port Expansion (Location 20C) •.•.••.•••••••.••••.•••
Switch Settings for STl4 Modules in Memory Interleave (Location 21C) ••••.•.••••.••.•.•••
Switch Settings for STl4 Modules Which Determine Memory Fault Number (Location 21C) ••••••••
Switch Settings for STl4 Modules Which Indicate Memory Size (Location 21C) •••••••••.•••••
Starting Address in ST14 Modules •..•••.•.•••.••..••.••••.•.•••••••.•.•.•••••
Switch Settings for LT26 Modules in Priority Interrupt (Least Significant Address Digit) ••••••••••
Switch Settings for L T26 Modules in Register Extension Units (Location 32A) •••.•.•••••••••••
Switch Settings for LT26 Module in Location 30J of Priority Interrupt (Most
Significant Address Digit) .•.•...••••••.••••.•.•.•••.••..••.•••..•...•••••
Switch Settings for L T26 Module in SlOP Unit (Location 8F) •.•••.••••..•••••.•...•..••
Switch Settings for L T26 Modu Ie Using Optional Bus Share with SlOP (Location 8F) •.•••.•.•••.
Switch Settings for LT26 Module in MIOP Unit (Location 13C)•.•.••.••.••.•••.••••
Switch Settings for Display of Floating Point Register Information* (Location 6A) ••••••••••..•
Reference Documents for Sigma 5 Power Supplies •.•••..•.•.••••.•••••••..••••••.••
Sigma 5 Computer Group, Replaceable Parts .•.••.••••.••••••.••.••.••••....•••••
Central Processing Unit With Integral lOP, Replaceable Parts •.•.••.•••.•..••.••.•.••••
Frame Assembly, Replaceable Parts •....••••.•.•..••.••••••••••••.•••••.••••••
Fan, Top, Assembly, Rep laceable Parts •.•••••.••.•••••••.•.•.•.•.•.••..•.••.•.
Fan, Bottom, Assembiy, Replaceable Parts ..••••..••...••....•••.•••..•..•.• , •••
Power Distribution Assembly, Replaceable Parts •.••.•.•.•.•.•.•..•.•..•....•.•••••
Power Monitor Assembly, Replaceable Parts •.•••••••••..••.•.••..•.•.•.•.•••••••
Power Distribution Box Assembly, Replaceable Parts ••.••.•••.•••.•.•••.•.•.•.•.••••
Module Assembly, Replaceable Parts •....•.•.••••.•.••.•..••••••••.••..•.•..••
Processor Control Panel Assembly, Replaceable Parts •••....•.••••••••..••••..••.•••
Memory Modu Ie, Basic 4K, Replaceable Parts ••••••.••••.•••••••••••••••••.••••••
Module Assembly, Replaceable Parts•.••..•.•.•.•••.•••••.•..••.•••••.•••
Real-Time Clock, Replaceable Parts•.•••••.•.•.•..••••••••••.•.•.•.••••••
Power Fail-Safe, Replaceable Parts ••..•.•.•••.•.•.•..••.•••••.••..•..••••••••
Memory Protection Feature, Replaceable Parts •••..•...••..••••..•••.•.•••••.•.•••
Additional Register Block, Replaceable Parts •••.•••...••••••.•.•••••••..•.••.••••
High-Speed Register Page, Replaceable Parts •••••..•.•.••••••.•••••••••.••••••••
Register Extension Unit, Replaceable Parts ••.••.•.•...•.•..•..••••••.•••.•••••••

Page

3-667
3-669
3-670
3-671
3-673
3-675
3-689
3-691
3-699
3-709
3-711
3-719
3-728
3-732
3-738
3-739
3-758
4-1
4-2
4-3
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-5
4-6
4-6

4-7
4-7
4-7
4-7
4-8
4-8
4-10
4-12
4-13
4-14
4-14
4-15
4-17
4-19
4-20
4-27
4-31
4-32
4-37
4-37
4~37

4-38
4-38
4-39

Table

4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52

SDS 901172

LIST OF TABLES (Cont.)

Title

Register Extension Unit Interface, Replaceable Parts •••..•••.••••••••••••.••••••••••
Floating Point Arithmetic, Replaceable Parts ••.••••••••••••••••••••••••••••••••••
Interrupt, 2 Level Assembly, Replaceable Parts •.•••••.••••.••••••••.•••••••.•••••
Interrupt Control Chassis, Replaceable Parts ••.....•.••••.••.••••••••••••••.•.•••
Additional Groups of Eight Multip lexer Channels for Integral lOP, Replaceable Parts .•••••••••
Memory Expansion Kit, 4K to 8K, Replaceable Parts ••••.•.•.•.•••.•.•••.•.•.•.•••••
Memory Expansion Kit, 8K to 12K, Replaceable Parts .•..••••.••.•••.•••.•••.•.•••••
Memory Expansion Kit, 12K to 16K, Replaceable Parts ..•••..•.•••..••••••.•.••.••.•
Two-Way Access, Replaceable Parts .••..•.•.•••••...•.•.••••••••..••..•••••••
Three-Way Access, Replaceable Parts •.•••••••.••.•••••••••••.•••.••••.•.•••••
Port Expander F Assembly, Replaceable Parts •.•.••....•....•.••.••.••••••.•••••••
Port Expander S Assembly, Replaceable Parts ..•.••..•.••.•..•.•.•...•.•.•.•.•.•••
External Interface Feature, Replaceable Parts .•••....••.•••.•.•••.•.•.•.•••.•••••
External lOP Interface Feature, Replaceable Parts ••..•...••..••.••••.•..•.•••••.••
Manufacturer Code index .•.••.•.•••...•.•.•..•..•.•.•.••••..••.•••..••..•

Tables

Page

4-40
4-41
4-43
4-44
4-45
4-45
4-46
4-46
4-47
4-47
4-48
4-49
4-50
4-51
4-52

xiii

Related Publications SDS 901172

xiv

RELATED PUBLICA nONS

The following publications contain information not included in this manual, but necessary for a
complete understanding of the Sigma 5 computer.

Publ ication Title

Sigma 5/7 Memory (~8K) Test (Medic 75) Diagnostic Program Manual

Sigma Fortran IV Reference Manual for Sigma 5/7 Computers

Fortran IV-H Reference Manua I for SDS Sigma 5/7 Computers

Sigma 5/7 Re locatable Diagnostic Program Loader Diagnostic Program
Manual

Sigma Computer Systems Interface Design Manual

Sigma 5/7 Memory Interleaving Test (MIT) Diagnostic Program Manual

Sigma 5/7 Systems Test Monitor Diagnostic Program Manual

Sigma 5/7 Interrupt Test Diagnostic Program Manual

Sigma 5/7 Power Fai I-Safe Test Diagnostic Program Manual

Sigma 5/7 Real-Time Clock Test Diagnostic Program Manua!

Fortran IV-H Library/Run Time Technical Manual

Fortran IV-H Operations Manual for Sigma 5/7 Computers

Sigma 5/7 Selector lOP Channel Test Diagnostic Program Manual

Sigma 5 Integral lOP Channel Test Diagnostic Program Manual

Sigma 5/7 Computer Numerical Subroutine Package Technical Manual

Sigma 5/7 CPU Diagnostic Program (Memory Protect) Diagnostic
Program Manual

Sigma 5 CPU (Suffix) Diagnostic Program Manual

Sigma 5 CPU Program Test (AUTO) Diagnosti c Program Manual

Sigma 5 Computer Reference lv'tanua I

Publication No.

900825

900956

900966

900972

900973

901071

901076

901134

901135

901136

901138

901144

901158

901161

901505

901516

901519

901523

900959

SDS 901172 Paragraphs 1- 1 to 1- 3

SECTION I

GENERAL DESCRIPTION

1-1 INTRODUCTION

This manual contains information necessary to operate and
maintain the Sigma 5 computer, manufactured by Scientific
Data Systems, Santa Monica, California. Following the
general physical and functional description in this section,
the material presented includes a section on operation and
programming, basic and detailed principles of operation,
maintenance instructions, performance testing, and a
tabular I:st of replaceable parts.

Technical manuals describing equipment associated with the
Sigma 5 computer and programming manuals are referred to
in the list of Related Publications in the front matter of
this manua I.

The Sigma 5 computer is a high-speed, multipurpose, digital
computer for use in business, scientific, process control,
hybrid, and systems applications. The computer, which is
organized around one or more high-speed central processing
units with on integral input/output processor and fast mag­
netic core memory, functions efficiently in real-time,

ACCESSORY CABINET
NO.2

\

PROCESSOR CONTROL
PANEL

/~-7-" / --l- --.-1
~/ -,-/-,/ /

/ ;/'----;-- / j---+-

/ -1---1----­
/

-J----.~-

time-sharing, and multiusage computing environments.
Figure 1-1 shows a typical Sigma 5 computer configuration.

1-2 PHYSICA l DESCRIPTION

1-3 BASIC COMPUTER

The basic Sigma 5 computer contains a central processing
unit (CPU) and integral input/output processor contained
in a single cabinet, an expandable memory contained in
one to four cabinets, and at least one I/O device controller
and a processor control panel, contained in an accessory
cabinet. The CPU and memory are composed of printed cir­
cuit modules inserted into slots in chassis. Each chassis may
contain up to 32 modules. Pins at the rear of the modules
are plugged into sockets mounted on a rear wiring board
that contains all wire connections. Module sizes are all
identical except for the core diode modures in the memory
units. These modules occupy the vertical space normally
filled by two standard modules, and therefore require a
double-sized chassis.

MEMORY CABINET
NO.1

MEMORY CABINET
NO.2

901l72A. 1001

Figure 1-1. Sigma 5 Computer (Typical Configuration)

1-1

Paragraphs 1-4 to 1-8 SDS 901172

1-4 EQUIPMENT BREAKDOWN

Within each Sigma 5 system cabinet are two or three racks,
either hinged or stationary, identified as frames. One
frame may contain a maximum of nine module chassis. A
module is a printed circuit board that fits into a slot in a
chassis. Figure 1-2 shows the location of a modu Ie,
chassis, and frame in a computer cabinet.

Table 1-1 lists the models in a basic Sigma 5 system, but
does not include any of the several available input/output
controllers which are normally housed in accessory cabinets.

1-5 COMPUTER CONFIGURATION

The Sigma 5 computer consists of one CPU cabinet, one to
four memory cabinets, and at least one accessory cabinet.

The CPU cabinet contains two swinging frames that hold
the active circuit boards and logic wiring and one stationary
frame that mounts the PT14 and PT15 ac/dc and dc/ac power
converters and the power distribution box. The logic power
supply, PT16, is mounted on the sides of the swinging
frames. See figure 1-3.

Each memory cabinet contains one or two swinging frames
that hold from 4K to 16K of memory each. One stationary
frame holds one or two memory port expanders if this option
is present. For example, a memory cabinet containing only
8K of memory and no port expander will contain only a
single frame. The PT17 memory power supplies are mounted
on the sides of the memory frame. See figure 1-4.

The first accessory cabinet (accessory cabinet No. 1) con­
tai ns the processor control panel (PCP) and at least one
I/O device controller. This cabinet may also contain the
optional floating point feature and an external multiplexing
I/O processor. See figure 1-5. The frame-mounted PT18
power supply is required for input/output device controllers
in the accessory cabinets. Power supplies PT14 and PT15
may be mounted in frame 3 of the accessory cabinets to
meet power-loading requirements.

Additional accessory cabinets may be required to house
additiona I priority interrupts and I/O equ ipment such as
magnetic tape and disc file controllers, A/D and D/A
converters, and so forth.

1-6 OPTIONAL FEATURES

Optional features that may be added to the basic computer
are listed in table 1-2. Many of these features are made
up of additional modu les to be plugged into the CPU; others
are added to accessory cabinets or to memory cabinets.

The following optional equipment is added by plugging
additional modules into the chassis in the C:PU cabinet:
power fai I-safe, floating point arithmetic, two additiona I
real-time clocks (two real-time clocks are part of the basic
computer), and memory protection. Three private memory

1-2

register blocks, in addition to the one block contained in
the basic computer, may be included in the CPU logic
modu les in the CPU cabinet. The remaining additional
register blocks are obtained by adding separate chassis to
accessory cabinets. Each register extension chassis may
contain four private memory register blocks. The first three
external interrupt chassis have a specific location in the
CPU cabinet; others are added to the accessory cabinets.
Each external interrupt chassis provides control and mount­
ing space for up to eight interrupt modules, with two
interrupt levels per module. In the memory cabinets, the
first memory is always in frame 2, and the second is always
in frame 1. Port expansion logic for both memories is
located in frame 3. The first multiplexing lOP is always
placed in accessory cabinet No.1, frame 1; additional
external 10PIs are located in other accessory cabinets.

1-7 FUNCTIONAL DESCRIPTION

1-8 BASIC COMPUTER DESCRIPTION

For purposes of description, a minimum system is defined
as one comprising a CPU, a 4K memory, a device con­
troller, and a device, as shown in figures 1-6 and 1-7.
The computer may comprise a CPU with an integral lOP

,(Model 8201) or a CPU without an integral lOP (Model
8202) and a 4K memory.

Although the CPU consists, physically, of rows of modules,
certain basic functional elements can be identified. These
are two real-time clocks, a watchdog timer, seven internal
interrupt levels, arithmetic and control logic and associ­
ated register, a clock generator, a 1. 024-mhz clock
osci Ilator, and a 16-register block of private memory.
The functions of the CPU are to address core memory, fetch
and store information, perform arithmetic and logical
operations, sequence and control instruction execution,
and control the exchange of information between core
memory and other elements of the system.

The memory contai ns magnetic core storage, addressing
logic, port priority logic, control logic, a timing signal
generator; also drive, predrive, inhibit, and sensing
circuits. All memory is directly addressable by both the
CPU and the lOP. Partial words may be stored in the form
of 8-bit bytes and 16-bit halfwords.

The integrai lOP contains input and output data storage
registers and buffers, fast-access memory register for com­
mand manipu lation, a timi ng signal generator, and control
logic. The function of the integral lOP is to control and
sequence input and output operations for eight (expandable
to 32) peripheral devices simultaneously, allowing the CPU
to concentrate on program execution. The active devices
time-share the hardware in the integral lOP. For each
device connected to the integral lOP, a storage unit called
a subchannel is included in the lOP. All input/output
events that require CPU intervention are brought to the
attention of the CPU by means of the interrupt system. The
device controllers and devices are described in other
technical manuals.

SDS 901172

/
CHASSIS

/
/V ---~ --__ i--

l.---

MODULE

~

PART
H t-

I I -- FRAME

-- UNIT

--

~--
--

901 172A. 1002

Figure 1-2. Equipment Breakdown

1-3

1-4

POWER
DISTRIBUTI ON
PANEL

FRAME 2 ~?~.IC
ROWS K THRu T

SDS 901172

3 CPU Cabinet Figure 1- .

POWER S UPPL Y

ROWS G, H, J

AVAIRLAN!iE ~~~RITY EXTE
INTERRUPTS

MEMORY

FRAME 1

SDS 901172

POWER SUPPLY
PT16

FRAME 2

Figure 1-4. Memory Cabinet (Typical)

ONE OR
..... TWO PORT

EXPANDERS

901 172A. 1004

1-5

1-6

POWER
SUPPLY-~"""
PT15
(OPTIONAL)

I
POWER I
SUPPLY::!'
PT14
(OPTIONAL)

POWER
DISTRIBUTION
PANEL
(OPTIONAL)

KEYBOARD
PRINTER
CONTROLLER

LINE PRINTER
CONTROLLER

I
I

LINE PRINTER
CONTROLLER

SDS 901172

NOTES: 1. FRAME 1 IS USED ONLY WHEN REQUIRED FOR ADDITIONAL CHASSIS.

2. PCP IS LOCATED ON ACCESSORY CABINET NO.1.

Figure 1-5. Accessory Cabinet No. 1 (Typical)

FLOATING
POINT
(OPTIONAL)

MIOP

9011 nA. 1005

SDS 901172

Table 1-1. Main Units

Model Nameplate Nomenc lature Assembly
No. or Assembly Drawing Title Common Name Drawing No. location

8201 SDS Sigma 5 Central processing unit (CPU) 117282 CPU cabinet and accessory I with integral lOP cabi net No. 1

8202 SDS Sigma 5 Central processing unit (CPU) CPU cabinet and accessory
without integral lOP cabi net No. 1

8203 Integral lOP Integral lOP 137086 CPU cabinet

8251 Basic 4K x 33 bit 4K memory 132546 Memory cabinet

Table 1-2. Optional Features

Model Namep late Nomenc lature Assembly
No. or Assembly Drawi n9 Title Common Name I\ .. ,.,.,,:~~ "-I- I "

....... "'YYIII~ v. LOl,;OTIOn

8211 Real-time clock Two additional real-time clocks 117616 CPU cabinet

8213 Power fai I-safe Power fai I-safe 117612 CPU cabinet

8214 Memory protection feature Memory protection 117617 CPU cabinet

8216 Additional register block Pri vote memory

8218 High speed register page 117621 CPU or Accessory cabinet

8221 Register extension unit 130071 Accessory cabinet

8222 REU Interface 132208 Accessory cabinet

8218 Floating point feature Floating point 134099 Accessory cabinet
...

8221 Priority interrupt External interrupt chassis 117330 CPU cabinet or accessory cabinet

8222 Interrupt 2 level Interrupt, two levels 132206 CPU cabinet or accessory cabinet

8252 Memory expansion kit 4K Memory expansion to 8 K 117638 Memory cabi nets 1, ? 1 or 4 -, -,
to 8K

Memory expansion kit 8K Memory expansion to 12K 117639 Memory cabinets 1, 2, 3, or 4
to 12K

Memory expansion kit 12K Memory expansion to 16K 117640 Memory cabinets 1, 2, 3, or 4
to 16K

8255 Two-way access One- to two-port expander 129463 Memory cab i nets 1, 2, 3, or 4

8256 Three-way access Two- to three-port expander 128125 Memory cabinets 1, 2, 3, or 4

8257 Memory port expander F Three- to six-port expander 130625 Memory cabinets 1, 2, 3, or 4
(fj rst) (one memory)

Memory port expander S Three- to six-port expander 130626
(second) (two

memories)

8270 Externa I interface feature Externa I interface 137086 Accessory cabi net

8271 Input/output processor Multiplexing input/output 117610 Accessory cabinet

8272 lOP/DC expansion Additional eight subchannels 117618 Accessory cabi net

8281 Selector I/O processor A Selector lOP 117620 Accessory cabinet

8284 Selector I/O processor B Selector lOP chassis mod kit 117620 Accessory cabinet

1-7

Paragraphs 1-9 to 1-14 SDS 901172

MEMORY (4K)
PERIPHERAL DEVICE

CONTROLLER

CPU
PERIPHERAL DEVICE

(WITH INTEGRAL lOP)

90l172A. lOCX>

Figure 1-6. Sigma 5 Minimum System With Integra I lOP

MEMORY (4K) EXTERNAL lOP PERIPHERAL DEVICE
CONTROLLER

CPU
(WITHOUT INTEGRAL 1----------'

lOP)

PERIPHERAL DEVICE

901172A.l007

Figure 1-7. Sigma 5 Minimum System Without Integral lOP

1-9 COMPUTER OPTIONA L FEATURES

1-10 Two Additional Rea 1-Time Clocks

This feature adds interrupt capability for two additional
real-time clocks in addition to the two already in the CPU.
With this feature installed, the CPU has four independent
rea I-time clocks, each separately controlled by program­
ming. The clocks can be used either as elapsed time
cou nters or as rea I-pu Ise accumu lators.

1-11 Power Fai I-Safe Feature

The power fai I-safe feature detects an imminent failure of
primary power and, with the help of programming, brings
the system to an orderly halt while power is still at a
sufficient level to permit reliable operation. After shut­
down, th:s feature automaticallv senses that power has
returned to a normal level, and' causes the m~chine to
resume computation under program control at the point of
prior interruption. The contents of all volatile registers
are saved in nonvolati Ie magnetic core memory before

1-8

shutdown occurs. The reg ister contents are restored as part
of the startup routine.

1-12 Memory Protection

The memory protection feature a Ilows both rea I-time (fore­
ground) programs and background programs to be run con­
currently. A foreground program is protected against de­
struction by an unchecked background program. The memory
protection feature a Ilows protected areas of memory to be
written into only under specified conditions.

1-13 Private Memory Register Extension

The private memory register extension provides additional
private memory registers in blocks of 16 registers each. Up
to 15 additional private memory register blocks may be
added, making a total of 16 blocks in the computer.

The floating point feature enables floating point arithmetic
to be performed, using both 32- and 64-bit precision.

SDS 901172 Paragraphs 1-15 to 1-23

Normalized or unnormalized modes of addition and sub­
traction may be selected by the program.

1-15 Externa I Interrupts

The maximum external interrupt system provides 224 inter­
rupt levels in addition to those already existing internally
in the CPU. Each level can be individually armed or
enabled under program control. External interrupts are
added to the computer in groups of 16, and priorities are
established at the time of installation.

1-16 Memory Expansion

Memory size can be expanded in increments of 4096 words
up to a maximum of 131,072 words.

1-17 Port Expansion

Each memory block may have from one to six entry ports,
each of which may be connected to a memory bus contain­
ing data and address lines and control signal lines. Each
memory bus provides access to memory for one CPU or lOP.
The basic computer inc ludes one port for each memory
block; an optional second or third port may be added for
two- or three-way access. An optional expander to four
ports may be added to either the second or third ports to
provide six-way memory access. Since each CPU or lOP
has its own bus to any memory block, a computer with more
than one memory block can have more than one memory
access occurring simu Itaneously.

1-18 Mu Itiplexing Input/Output Processor

The multiplexing input/output processor controls and
sequences input/output operations for eight to thirty-two
peripheral devices simultaneously to provide input/output
~ap~bi I ities in addition to those 'prov'ided by th~ ;ptio~a I
Sigma 5 integral lOP. The MIOP incorporates up to 32
input/output channels in eight channel increments. The
device controllers attached to the first eight channels of
the MIOP can handle up to 16 devices each; the remaining
channels can handle one device each.

1-19 Additional Eight Subchannels (lOP)

To increase the number of devices connected to one lOP,
additional subchannels may be added in increments of eight
up to a maximum of 32 subchannels for 32 devices.

1-20 Selector Input/Output Processor

The selector lOP provides control, sequencing, and data
transmission for up to 32 high-speed peripheral devices
operating one at a time. These devices may have data
rates that would exceed the bandwidth of the multiplexing
lOP or wou Id use up so large a percentage of that band­
width as to make it impractical to r.un any other device
concurrently. In case a second high-speed data path is
required, an optional additional selector channel may be

added, identical to the first selector lOP. This optional
additional selector channel may share the same memory bus
as the first.

1-21 Six InterrlOl Interrupt Levels

In addition to the seven internal interrupt levels included
in the standard computer, six more internal interrupts are
optional.

1-22 MAXIMUM COMPUTER SYSTEM

A maximum Sigma 5 computer system may consist of up to
eight 16K memories, eight three- to six-port expansion
units, three register extension units, and 14 external inter­
rupt chassis, in addition to the standard features in the
CPU. For maximum I/O capobi lities, input/output
processors may be connected in any of the combinations
listed in tabl e 1-3.

Table 1-3. Maximum Computer System lOP Combinations

Mu Itiplexing Selector Additional Selector Total
10P's* lOP's Channels lOP's

5 0 0 5
4 2 2 8
3 3 2 8
2 3 3 8
1 4 3 8
0 4 4 8

*Includes integral lOP

A block diagram of a typical maximum computer system is
shown in figure 1-8.

1-23 SPECIFICATIONS AND LEADING PARTICULARS

The general specifications for the Sigma 5 are given in
table 1-4.

The input power specifications for the power supplies used
in the computer are given in table 1-5. Power supply PTl4
receives 6O-hz power from the main power source and
supplies 60 vdc to the PTl5 power supply. The 120-vac,
2000-hz output of the PTl5 power supply is used as an
input to the PTl6, PTl7, and PTl8 power supplies. Since
the PTl4 and PTl5 power supplies are always in series, the
input and output power specifications are given as if the
two were one power supply. The power output from the
PTl6, PTl7, and PTl8 power supplies, in watts, is deter­
mined by the power requirements of the computer as indi­
cated in table 1-6. This table represents an arbitrary
computer containing all possible optional features in the
CPU. The total power requirements from table 1-6 may be
used to calculate the necessary power supply input in table
1-5. Power requirements for peripheral devices are given
in the technical manuals for those devices.

1-9

o

-n
(Q
c
;:0

I
(X)

V)

(Q

3
Q

U1

3:
Q
X

3
c
3

-=i
'<
~.
n
Q

r-=- --CPU - - -I

I POWER] I FAIL-SAFE FOUR REGISTER ~
I FEATURI BLOCKS I

I I
I MEMOR';j

PROTECTION

I
I

T\VO ADDITiONAL
REAL -TIME
CLOCKS I

I

PRIVA TE MEMORY REGISTER EXTENSION UNITS (3) ----

FLOA1~ING
POI hiT

FEA TURE

I
r INTEGRAL

l MUL.liPLEXII~G I--- EXTERNAL INTERRUPT CHAS~._>IS--r-(1_4_1 ----r----.------,---'-...----,---.,

L_
I 0 PROCESSOR Ir-_"--_

---1-~
[

6 PRIORITY
iNTERRUPT

LEVELS

I-
I
I

I

16K
MEMORY

16K
MEMORY

16K
MEMORY

161\
MEMORY

~-__ ~-----'--t---

DEVICE CONTROLLERS (TYPICAL FOR 1 MIOP)

I " II I " II II II I I II 1/1 /I I I 1/ 1/ III I
~ ~2r~ ________ ~

16 DEVICES
EACH

1 DEVICE EACH

DEVICE CONTROLLERS (TYPICAL FOR 1 SlOP OR ADDlTlONAL CHANNEll

rTTTTll 1/ 1/ " 1111 " I " II II/ " I III 32

1 DEVICE EACH

,:j 'THREE-TO SIX-PORT EXPl,NDER
t>

o
:~

16K
MEMORY

16K
MEMORY

16K
MEMORY

Characteristic

Temperature (electronics)

No noperat i ng

Operating

Relative Humidity (operating)

Aititude

No nope rat i ng

Operating

Memory c yc Ie

Without interleaving

With interleaving

Logic signal levels

Word length

Data format

Coding

Power Supply

PT14, PT15

PT16 (2400-Hz input)

PT17 (2400-Hz input)

PT18 (2400-Hz input)

UNIT

CPU, frame 1

CPU, frame 2

16K memory

SDS 901172

Table 1-4. General Specifications

Specification

-40°C to +60oC (-40°F to +140o F)

5°C to 50°C (41°F to 122°F)

10% to 95%

20,000 feet maximum

10,000 feet maximum

635 nanoseconds, effective

ONE: +4Vi ZERO: Ov

32-bits plus parity bit

8-bit byte, 16-bit halfword, fixed point and floating point word, fixed point and
floati ng poi nt doubleword

Binary, Hexadecimal, EBCDIC

Table 1-5. Power Supply Input Power Speci fications

Power Input (volt-amperes)

1.66 times volt-amperes output (2000 Hz)

150 + 1. 36 times dc output in watts (table 1-6)

I

150 + 1.36 times dc output in watts (table 1-6)

150 + 1. 36 times de output in watts (table 1-6)

Table 1-6. Computer Power Requirements

POWER REQUIREMENTS POWER REQUIREMENTS TOTAL DC POWER
OF PT16 (AMPS) OF PT17 (AMPS) (WATTS)

Drive Voltage
+8v -8v +4v +24v (25v max)

18.5 2.6 19.0 245

20.0 1.3 35.0 310

11.0 5.1 14.0 2.0 20.0 484

1-11

SDS 901172

Table 1-6. Computer Power Requirements (Cont.)

POWER REQUIREMENTS POWER REQUIREMENTS TOTAL DC POWER
UNIT OF PT16 (AMPS) OF PT17 (AMPS) (WATTS)

Drive Voltage
+8v -8v +4v +24v (25v max)

Port expander (1) 1.0 0.4 4.0 27

Multiplexing lOP 9.0 2.4 20.0 171

Register extension unit, 4.0 0.4 13.0 87
including 4 register blocks

Processor control panel 3.5 2.5 0 48

1-12

SDS 901172 Paragraphs 2- 1 to 2-7

SECTION II

OPERATION AND PROGRAMMING

2-1 GENERAL

This section is divided into two main categories: operating
instructions and programming description. Sigma 5 operat­
ing instructions describe the purpose and function of the
processor control panel (PCP), its control switches and dis­
plays. The paragraphs describing programming inc lude in­
struction and data formats, memory addressing, indexing,
and indirect addressing. Descriptions of individual instruc­
tions can be found in the Sigma 5 Computer Reference
Manual (SDS 900959), or in the operation code descrip-
tiOr1S in section II! of this manua!.

2-2 OPERATION

The following paragraphs describe the operating procedures
required during maintenance of the computer. All opera­
tions are carried out from the PCP.

2-3 CONTROLS AND INDICATORS

The PCP is divided into two parts: a maintenance section
on the upper halfofthe panel, and an operator IS or pro­
grammer's section on the lower half. The various control
switches, indicators, and displays on the PCP are shown in
figure 2-1. Table 2-1 lists the switches and indicators
found on the programmer IS section of the PCP with their
reference designators and a brief description of their func­
tions. A similar list for the switches and indicators on the
maintenance section of the PCP is given in table 2-2.

2-4 OPERATING PROCEDURES

The following paragraphs describe step by step manual
procedures for the various operations from the processor
contro I pane I.

2-5 Applying Power

When the POWER switch is pressed both ac and de power
are applied to the CPU and to all units connected to it.
When ac power is applied to the system, the POWER switch
is lit. Application of power sets the CPU to initial con­
ditions as described in table 2-1.

2-6 Displaying Contents of Memory Location

To display the contents of any memory location or the
contents of any current private memory register perform
the following steps:

a. Set the COMPUTE switch to ID LE. The PHASE
display wi II indicate that the CPU is in phase PCP2.

b. Place the address of the memory location (or of
the register of the current register block) into the SELECT
ADDRESS switches by moving the DISPLA Y switch to the
SELECT ADDR position.

"'. Move the DISPLA Y switch to the momentary
SELECT ADDR position and return to center.

d. Observe the binary contents of the selected
address in the DISPLAY indicators. Memory protection,
if included, is inhibited in this PCP operation.

To observe the contents of a private memory register in a
register block other than the one currently displayed by the
POINTER field of PSW2, the contents of the POINTER field
must first be changed to point to the desired register block.
This operation is described in paragraph 2-9.

The contents of the memory location pointed to by the instruc­
tion address indicators (address currently in the P-register)
may be displayed by performing the following steps:

a. Move the DISPLAY switch to the momentary INSTR
ADDR position and return to center.

b. The display indicators wi II now contain the con-
tents of the location pointed to by the instruction address
i ndi cators.

If successive memory locations are to be displayed, move
the INSTR ADDR switch to INCREMENT position momen­
tari Iy and repeat steps a and b.

2-7 Storing Into Memory

Storing data or instructions into memory locations, either
in core memory or in private memory, is accomplished by
the following steps:

a. Set the COMPUTE switch to IDLE. The PHASE
display wi II indicate that the CPU is in phase PCP2.

b. Place the address of the memory location into
which the data is to be stored into the SELECT ADDRESS
switches.

c. Set the single DATA switch to CLEAR. This resets
the DISPLA Y indicators (D-register).

d. Place the binary information to be stored into the
DATA switches. In the DATA switches binary ones are
indicated when a switch is in the upper position. The cen­
ter position of a DATA switch cannot change the current
state of the corresponding bit in the D-register.

e. Set the single DATA switch to ENTER and then
release. The DISPLA Y indicators (contents of D-register)
will now assume the same information asthe DATA switches.

f. Set the STORE switch to the SELECT ADDR
position momentari Iy and release. The data wi II be stored
in the selected memory location.

2-1

::!1
co
c
ro
N
I

Vl

CO
3
o
111

-0

o
()

~ g
n
o
~ o
d'
:::s
CD

SCIENTIFIC DRTR SYSTEMS
MAINTENANCE SECTION-----------------------------

CONTROL MODE

LOCAL

@-Loe,
cAJ e OVERRIDE

"d eNORMAL

WATCHDOG
TIMER

---MEMORY FAULT ---

~oooooool

CAJ eDIAGNOSTIC

"d eNORMAL

INTERLEAVE
SELECT

cAJ e HALT

"d e CONT

PARITY ERROR
MODE

- ALARM-
________ PHASES

-PREPARATION- - PCP- -EXECUTION- INT/TRAP-

1000110001 100001 1001
AUDIO

~.,
eO

----SENSE ----

UNIT ADDRESS

REGISTER SELECT

C 0

REGISTER
DISPLAY

EXT

\Vol
~ [;] [;]

-WRITE KEY-INTRPT INHIBIT- --POINTE~--

1 00 ooe5] r--I ------,11--1 _. ______ IL..-IO_O_O_O ___ '----_
PSW2

CTR I/O EXT

-CONDITION CODE--FLOAT MODE- -MODE- -TRAP- INSTRUCTION ADDRESS---------

'-:-lo-:-o-:-o--:-O~O~o_:_(5]_=L::lo~_o~-O~IIOOOOOOOOllooooooO01
SIG I NRMZ SLAVE ARITH

ZERO

--CLEAR --­

PSWI. fj PSW2. rg ADDR STOP

ONe fj
---------SELECT ADDRESS---------

I©J~~::
-----------------------DISPLAY

10000000'51100000000110000000011000000001
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

----------------------DATA

PSWI

INSTR ADDR

SELECT AD DR

CLEAR

ENTER

INSERT INSTR ADDR

:(1
HOLD

:(1 INCREMENT

STORE DISPLAY

:(1
INSTil ADDR

:(1 SELECT ADDR

DATA COMPUTE

:(1
RUN

=(1 IDLE

STEP

Vl
CJ
Vl

-0
0

'-J
N

Control or Indicator

POWER

CPU RESET/C LEAR

I/O RESET

LOA.D

UNIT ADDRESS

SYSTEM RESET/
CLEAR

NORMAL MODE

SDS 901172

Table 2-1. Controls and Indicators, PCP Programmer's Section

Reference Designator

Switch S19
Indicator DS28

Switch S18
Indicator DS100

Switch S17
Indicator D599

S'Nitch 516
Indicator DS27

Switches S15A,
S15B, S15C

Switch S18
Indicator OS100

Indicator DS25

Function

Push-on, push-off switch that supplies ac power to CPU and all units
under its control. When power is first applied, indicator OS28
lights, and a signal is generated in memory power supply to initialize
system. All reset functions normally performed by CPU RESET and
SYSTEM RESET switches are performed by the POWER switch. When
power is applied to the system (indicator DS28 lit), pressing the
POWER switch will remove power from the system.

Pressing switch establishes following initial conditions within CPU:

a. All interrupts are disarmed and disabled

b. WRITE KEY, INTRPT INHIBIT, POINTER, CONDITION
CODE, FLOAT MODE, MODE and TRAP indicators are reset

c. INSTRUCTION ADDRESS indicators are set to X'25'

d. DISPLAY indicators are set to X'02000000', which is load
conditions and floating control immediate instruction with R
field of zero, to produce "no operation" instruction

e. Resets MEMORY FAULT indicators

Setting the CPU to initial conditions by pressing CPU RESET switch
does not affect any current input-output operation that may be in
progress

This switch is used to initialize the standard input-output system by
halting all peripheral devices under control of the CPU and resetting
all status and control indicators in the input-output system. The I/O
RESET switch does not affect any current CPU operation

Pressing the LOAD switch sets memory to initiai conditions to accept
an input operation using peripheral input device selected by UNIT
ADDRESS switch

The three UNIT ADDRESS switches select the peripheral unit to be
used in loading process. Unit addresses are hexadecimally notated
and provide for up to 2048 di fferent addressing combinations.
Addresses of peripheral devices may vary from system to system

Pressing SYSTEM RESET/CLEAR causes all controls and indicators in
the Sigma 5 system to reset. Pressing this switch initializes the
memory control logic, resets the MEMORY FAULT indicators, and
causes the CPU to perform all the operations described for both the
CPU RESET/CLEAR and I/O RESET/CLEAR switches. The SYSTEM
RESET/C LEAR and the CPU RESET/C LEAR switches are interlocked
so that pressing both switches simultaneously clears core memory to
zeros

Indicator lights when all the following conditions are satisfied:

a. WATCHDOG TIMER switch is set to NORMAL

b. INTERLEAVE SELECT switch is set to NORMAL

c. PARITY ERROR MODE switch is set to CONT (continue)

d. CLOCK MODE switch is set to CO NT (continuous)

e. All voltage margins are normal

(Continued)

2-3

Contro I or Indi cator

RUN

WAlT

INTERRUPT

WRITE KEY

INTRPT INHIBIT

POINTER

CONDITION CODE

FLOAT MODE
SIG
ZERO
NRMZ

MODE SLAVE

TRAP ARITH

INSTRUCTION
ADDRESS

CLEAR PSW1

2-4

5DS 901172

Table 2-1. Controls and Indicators, PCP Programmer's Section (Cont.)

Reference Designator

Indi cator DS24

Indicator OS23

Switch S13
Indi cator 0522

Indi cators OS37- 0538

Indi cators OS34,
0535, 0536

Indicators 0529-0532

Indicators 0563- 0566

Indicators 0560,
0561, 0562

Indicator 0559

Indicator 0556

Indicators 0539-0555

Switch 577

Function

Indicator lights when COMPUTE switch is set to RUN, and no halt
condition exists

Indicator lights when any of following conditions exist:

a. CPU is executing wait instruction

b. Program is stopped because of AOOR STOP switch

c. CPU has attempted to execute instruction in interrupt
location other than load or exchange program status
doubleword or modify and test instruction

Switch is used by operator to activate control panel interrupt. If
PCP interrupt level is armed, a single pulse is transmitted to interrupt
level, advancing it to waiting state. INTERRUPT switch lights when
this interrupt level is in waiting state and remains lit until interrupt
level advances to active state

Two indicators, part of program status word 2 (P5W2), used to control
write access in areas of memory when memory protection option is used

Three indicators, part of P5W2, used to designate which groups of
interrupts are allowed or inhibited

Four indicators, part of P5W2, used to represent current status of
register pointer in CPU

Four condition code indicators, part of program status word 1 (PSWl),
used to indicate nature of results of instruction after instruction has
been executed

These three indicators, part of P5W1, represent current control modes
for floating point operations: significance, zero, and normalize

This indicator, part of P5W1, represents current mode of operation of
CPU. Indicator lights when CPU is in slave mode

Indicator ARITH, when I it, designates that trap conditions can occur
with certain fixed point arithmetic operations. This indicator is part
of P5W1

These indicators normally represent the current contents of the P­
register in the CPU and are part of P5Wl. Address displayed in this
field is address of next instruction when REGISTER SELECT switch is
at EXT, the indicators normally displaying bits 16 through 25 of the
P-register display the I/o address and the indicator normally dis­
playing bit 26 of the P-register displays an internal I/o fast memory
signal
This switch is used to clear the contents of the first program status word
to zeros. Resets the condition code bits, the floating arithmetic code
bits, the master mode flip-flop, and resets the contents of the P-register
to zeros

(Cont i nued)

Contro I or Indicator

PSW2

I
ADDR STOP

SELECT ADDRESS

DIsPLA Y

DATA

INSERT

STORE

DATA

SDS 901172.

Table 2-1. Controls and Indicators, PCP Programmer's Section (Cont.)

Reference Designator

Switch S76

Switch 541

Switches 524-540

Indicators
Ds67-Ds98

Switches 544-575

Switch 521

Switch S23

Switch 543

I

Function

This switch is used to clear the contents of the second program status
word to zeros. Resets the write key code bits, the interrupt inhibit
flip-flops, and resets the register pointer to zeros

ADDR STOP (address stop) switch causes CPU to halt whenever value
of INSTRUCTION ADDRESS indicators and value set in SELECT AD­
DRESS switches or the value of the operand address are equal. When
halt occurs, WAIT indicator lights, and instruction in location dis­
played by INSTRUCTION ADDRESS indicators appears in DISPLAY in­
dicators. Instruction displayed is one that would have been executed
next had halt not occurred. Address stop halt is reset when COMPUTE
switch is moved from RUN to IDLE. If COMPUTE switch is then moved
back to RUN (or to STEP), instruction shown in DISPLAY indicators is
next instruction executed. ADDR STOP switch is not effective when

I se lected address is that of pri vate memory regi sters 00 through OF

Used with ADDR STOP switch to select virtual address at which pro­
gram is to be halted. They are used to select virtual address of
location to·be altered when used with STORE switch, and are used
to select virtual address of word to be displayed when used with
DISPLAY switch

Indicators display contents of memory word when used with INsTR
ADDR, STORE, DISPLAY, and DATA switches. DISPLAY indicators
show current contents of internal CPU sum bus and represent the next
instruction to be executed when the CPU is placed in the RUN mode

Thirty-two DATA switches are used to change contents of program
status doubleword when used with INSERT switch and to alter value
of DISPLAY indicators when used with single DATA CLEAR/ENTER
switch. Each DATA switch is inactive in center position and is
Ictching in center and upper (1) positions. In Centei position,
DATA switch represents no change. In upper position each switch
represents 1

Used to make changes in program status doubleword by manual manip­
ulation. Switch is inactive in center position and is momentary in
upper (PSW2) and lower (PSW1) positions. When switch is moved to
either PsW1 or PSW2, corresponding portion of program status double­
word is altered according to current state of DATA switches

Used to change contents of either general register or memory location.
Switch is inactive in center position and is momentary in INsTR AD DR
and SELECT ADDR positions. When switch is moved to INSTR ADDR,
current value of DISPLA Y indicators is stored in location shown by
INSTRUCTION ADDRESS indicators. When switch is moved to
SELECT ADDR, current value of DIsPLA Y indicators is stored in
location shown by SELECT ADDRESS switches

si ngle DATA switch is used to change state of DIsPLA Y indicators.
Switch is not active in center position and is momentary in CLEAR and
ENTER positions. When switch is moved to CLEAR, all DISPLAY indi­
cators are reset (turned off). When switch is moved to ENTER, display
i ndi cators are altered accordi ng to state of 32 DATA sw itches

(C ont i nu ed)

2-5

Control or Indicator

INSTR ADDR

DISPLA Y

COMPUTE

2-6

SDS 901172

Table 2-1. Controls and Indicators, PCP Programmer's Section (Cont.)

Reference Designator

Sw itch S20

Switch S22

Switch S42

Function

INSTR ADDR (instruction address) switch is inactive in center position.
Upper position (HOLD) is latching, and lower position (INCREMENT)
is momentary. When switch is placed in HOLD, the normal process of
modifying instruction address portion of program doubleword with each
instruction is inhibited. If COMPUTE switch is placed in RUN while
INSTR ADDR switch is at HOLD, instruction in location displayed by
INSTRUCTION ADDRESS indicators remaining unchanged unless the
instruction contains a branch or is a load or exchange doubleword in­
struction. If COMPUTE switch is moved to STEP while INSTR ADDR
switch is at HOLD, instruction is executed once each time COMPUTE
switch is moved to STEP, and INSTRUCTION ADDRESS indicators re­
main unchanged. Each time INSTR ADDR switch is moved from center
position to INCREME NT, the followi ng operations are performed:

a. Current value of INSTRUCTION ADDRESS indicators is
counted up by one

b. Contents of virtual address displayed by INSTRUCTION
ADDRESS indicators are shown in DISPLAY indicators

Displays contents of either general register or memory location.
Switch is inactive in center position and is momentary in both INSTR
ADDR and SELECT ADDR positions. When switch is moved to INSTR
ADDR or SELECT ADDR, contents of location shown by indicators or
switches, respectively, appear in DISPLAY indicators

Controls execution of instructions. Center position (IDLE) and upper
position (RUN) are both latching. Lower position (STEP) is momen­
tary. When COMPUTE switch is at IDLE, all other control panel
switches are operative. When COMPUTE switch is moved from IDLE
to RUN, RUN indicator lights and CPU begins to execute instructions
as follows:

a. Current setting of DISPLAY indicators is taken as next
instruction to be executed regardless of contents of location
shown by current value of INSTRUCTION ADDRESS indicators

b. Value in INSTRUCTION ADDRESS indicators is counted up
by one

c. Instruction execution continues with instruction in location
shown by new value of It~STRUCTIO~~ ADDRESS indicators

d. Steps band c are repeated unless program branches out of
sequence

When COMPUTE switch is in RUN, the only switches operative are
POWER, INTERRUPT, ADDR STOP, INSTR ADDR (in HOLD position),
and switches in the mai ntenance section of control panel. Each time
COMPUTE is moved from IDLE to STEP, the following operations
occur:

a. Current setting of DISPLAY indicators is taken as an instruc-
tion, and instruction is executed.

(Cant i iiU cd)

Control or Indicator

COMPUTE (Cont.)

Control or Indicator

CONTROL MODE

MEMORY FAULT

ALARM
AUDIO

SDS 901172

Table 2-1. Controls and Indicators, PCP Programmer's Section (Cont.)

Reference Des ig nator Fu nct ion

b. Current va lue of INSTRUCTION ADDRESS indicators is
counted up by one. If stepped instruction was a branch i nstruc­
tion and branch should occur, INSTRUCTION ADDRESS
indicators are set to the value of the effective address of branch
instruction

c. Instruction in location shown by new value of INSTRUCTION
ADDRESS indicators is displayed in DISPLAY indicators

If instruction is being stepped (executed by moving COMPUTE switch
from IDLE to STEP), all controllable interrupt levels are temporari Iy
inhibited while instruction is being executed; however, traps can
occur. In this ca~e, the XPSD instruction in the appropriate trap
location is executed as if the COMPUTE switch were in RUN. Thus,
if trap occurs during stepped instruction, program status doubieword
display (PSW1 and PSW2) automatically reflects effects of XPSD
instruction, and DISPLAY indicators then contain first instruction of
trap routine

Table 2-2. Controls and Indicators, PCP Maintenance Section

Reference Des ignator

Switch S3

Indicators
DS14-DS21

Indicator DS 13
Switch S2

I

Function

CONTROL MODE switch is a two-position key lock. When switch
is in LOCAL, all controls and indicators on the PCP are operative.
In LOCK, the following switches on the PCP are operative: POWER,
INTERRUPT, all SENSE switches, and AUDIO. When the CONTROL
MODE switch is in LOCK the following switches are interlocked to
the following states regardless of their actual settings

a. COMPUTE switch to RUN

b. WATCHDOG TIMER switch to NORMAL

c. INTERLEAVE SELECT switch to NORMAL

d. PARITY ERROR MODE switch to CONT

e. CLOCK MODE switch to CONT

Since the system is limited to no more than eight memory blocks, each
MEMORY FAULT indicator corresponds to a specific memory block.
Whenever a memory parity error occurs or an overtemperature con­
dition exists in a memory block, the appropriate indicator lights and
remains lit until indicator is reset. The MEMORY FAULT indicators
can be reset by pressing CPU RESET or SYSTEM RESET switch or by read
direct instruction coded to read MEMORY FAUL T indicators. If
MEMORY FAULT indicator is lit because corresponding memory block
is beyond its maximum temperature range, and condition still exists
when indicator is reset, it wi II immediately be turned on again

Indicator is used to attract operator's attention to some urgent opera­
ting condition, and is turned on and off under program control by
execution of properly coded write direct instruction. When ALARM

(Continued)

2-7

Control or Indicator

ALARM (Cont.)

PREPARATION
PHASES

PCP PHASES

EXECUTION
PHASES

I NT/TRAP
PHASES

REGISTER SELECT

WATCHDOG TIMER

2-8

SDS 901172

Table 2-2. Controls and Indicators, PCP Maintenance Section (Cont.)

Re fere nce De si gnator

Indicators OSlO,
DS11, DS12

Indicators DS7,
DS8, DS9

Indicators
DS3-DS6

Indicators DS1,
DS2

Switch Sl

Switch S12

Function

indicator is lighted and AUDIO switch is ON, a 1-kHz signal is set to
PCP speaker. ALARM indicator is reset by CPU RESET or SYS RESET
switch

Display one of four CPU phases during instruction preparation, or lOP
subphases with REGISTER SELECT switch at EXT

Display CPU phases (PCP1 through PCP7 in binary notation) during
PCP operation, or I/O service call in indicator 4 (DS9) when REGISTER
SELECT switch is at EXT

Display CPU phases (PH1 through PH10 in binary notation) during
instruction execution, or internal lOP execution phases with REGISTER
SELECT switch at EXT

Indicators are lighted when either an interrupt or a trap condition
occurs to display the interrupt/trap phases of operation

Used to display contents of selected internal registers. With COMPUTE
switch at IDLE, register selected by REGISTER SELECT switch may be
shown in DISPLAY indicators by moving REGISTER DISPLAY switch to
ON. When REGISTER DISPLAY switch is returned to inactive position,
DISPLAY indicators display contents of sum bus. With REGISTER
SELECT switch at EXT and CLOCK MODE switch in center position;

a. I/O phases are displayed in EXECUTION PHASE indicators
DS3-DS6, I/o subphases are displayed in PREPARATION PHASE
indicators D510-D512, I/o service call is displayed in PCP phase
indicator 4 (DS9), I/O address is displayed in the INSTRUCTION
ADDRESS indicators that normally display bits 16 through 25 of the
P-register (DS45-DS54), and internal I/o fast memory signal is
di splayed in the INSTRUCTIO N ADDRESS indicator that normally
displays P-register bit 26 (DS44)

b. Floating point data (if option present) is displayed in DISPLAY
indicators DS67-DS98 according to switch settings on ST14 module
in location 06A of floating point unit. Switches permit display of
contents of floating point sum bus and A-, B-, and D-registers
(upper and lower), as well as miscellaneous floating point control
signals

CPU can be interrupted at end of each instruction and at certai n points
during execution of some instructions. An interval of not more than 40
l-lsec may occur between any two interruptible points. Watchdog timer
is reset at each interrupti ble poi nt and counts at a rate of 1-mhz
between interruptible points. If count in watchdog timer reaches 40,
CPU traps to location X'461

• When WATCHDOG TIMER switch is in
OVERRIDE, watchdog timer is inoperative. When switch is in NORMAL,
watchdog timer is operative

(Conti nued)

SDS 901172 Paragraphs 2-8 to 2-9

Table 2-2. Controls and Indicators, PCP Maintenance Section (Cont.)

Control or Indicator

INTERLEAVE
SELECT

I
PARITY ERROR
MODE

SENSE

CLOCK MODE

REGISTER DISPLA Y

Reference Designator

Switch Sll

I
Switch S10

Switches S6-S9

Switch S5

Switch S4

Function

With this switch in NORM.A L, interleaving between memory blocks
is in effect. When switch is at DIAGNOSTIC, memory addresses
are not interleaved between memory blocks

Controls action of CPU when a memory error occurs. If switch is
at CONT (continue) when parity error occurs, appropriate MEMORY
FAULT indicator lights, and an interrupt signal is transmitted to
memory parity interrupt level. If switch is at HALT when a parity
error occurs, appropriate MEMORY FAULT indicator lights, and CPU
halts operation. Memory block in which error has occurred will not
be avai lable unti I its MEMORY FAULT indicator is reset

Switches are used under program control to set condition code portion
of program status doubleword. When write direct instruction is exe­
cuted in interna; contro; mode, condition code is set according to
state of the four SENSE switches, which are always operative.
Normally, SENSE switches are used in this manner during diagnostic
or other test routines

Controls internal CPU clock. When switch is at CONT (continuous),
clock operates at normal speed. When switch is in inactive (center)
position, however, CPU clock pulses are inhibited. Under these
circumstances a single clock will be generated each time CLOCK

MODE switch is moved to SINGLE STEP position. As clock is stepped
manually in this manner, PHASE indicators reflect CPU phase during
each pu Ise of the clock

When switch is at ON, contents of register selected by REGISTER
SELECT switch will be displayed in DISPLAY indicators. Switch is
active only when CLOCK MODE switch is in center position

Memory protection, if included, is inhibited in this PCP
operation. To store data into a private memory register

2-9 Altering the Current Program Status Doubleword

b lock other than the one current Iy displayed by the
POINTER field of PSW2, the contents of the POINTER field
must be changed to point to the desired register block.
This operation is described in the next paragraph.

Storing dota into the memory location pointed to by the
instruction address register (current address in the P­
register) can also be accomplished by performing steps a,
c, and d, and substituting step fl, following, for step f.

f1. Set the STORE switch to the INSTR ADDR posi-
tion momentarily and release. The data will be stored in
the memory location addressed by the instruction address
indicators (current address in the P-register).

2-8 Clearing the Program Status Words

The contents of PSW1 may be reset to zeros by moving the
CLEAR PSW1 switch to the momentary PSW1 position. The
contents of PSW2 may be reset to zeros by moving the CLEAR
PSW2 switch to the momentary PSW2 position.

Changing any of the data in the current PSD requires that
PSW1 and PSW2 be treated separately. Changing any field
of the PSD is accompl ished by the following steps:

a. Set the COMPUTE switch to idle.

b. Enter the desired information into the 32 DATA
switches only in those bit positions of PSWl or PSW2 to be
changed. In those bit positions in the fields where no
change is to be made, the corresponding DATA switches
must be in the center (no change) position. If any bit posi­
tions are to be changed from ONES to ZEROS, the PSW1
or PSW2 must be cleared with the CLEAR PSW1 or PSW2
switch.

c. Set the INSERT switch to PSW1 if the change is
to be made in that portion of the PSD, or to PSW2 if the
change is to be made in that portion of the PSD.

d. Release the INSERT switch. The new information
wi II be entered into the program status doubleword.

2-9

Paragraphs 2- 1 0 to 2- 14 SDS 901172

2-10 Branching From the PCP

To cause the CPU to branch to any instruction in memory,
regardless of what instruction is currently being executed,
the following steps should be carried out:

a. Set the COMPUTE switch to IDLE.

b. Enter the address of the instruction to which it is
desired to branch in the 17 least significant bits of the
INSTRUCTION ADDRESS field of PSW1. (See paragraph
2-9.)

c. Move the DISPLAY switch momentari Iy to INSTR
ADDR.

d. The instruction has been read from memory and
will be the next instruction performed by the CPU.

e. Set the COMPUTE switch to either RUN or STEP.

2-11 Stepping Through a Program

It is often necessary when debugging programs or when
maintaining the equipment to sequence slowly through the
program one instruction at a time, observing the results of
each instruction after it has been executed. This is accom­
plished by performing the following steps:

a. Set the COMPUTE switch to IDLE, and branch to
that part of the program from where it is desired to step.
See paragraph 2-10.

b. Set the COMPUTE switch to STEP. In the DIS-
PLAY indicators the contents of the next instruction will
be displayed.

c. The results of the instruction just executed can be
seen by displaying the contents of the memory location or
private memory register affected by the instruction. See
paragraph 2-6, steps b, c, d, and e.

d. Repeat steps b, c, and d above to continue the
program sequence step by step.

2-12 Singie (iocking an instruction

During maintenance operations it is often necessary to
sequence through individual instructions from one clock
period to the next, observing the resu Its of the CPU
internal registers after each clock pulse. To single clock
instructions in this manner, the following steps are
performed:

a. Branch to the malfunctioning instruction (see
paragraph 2-10), or enter an identica I instruction into the
display (see paragraph 2-7).

2-10

b. Set the CLOC K MODE switch to its center posi­
tion. This inhibits all clock pulses. The COMPUTE switch
may be set to RUN at this point.

c. Set the CLOCK MODE switch to SINGLE STEP.
This causes the instruction to sequence to its next phase.

d. Observe the contents of the affected interna I
registers by setting the REGISTER SELECT switch to the
proper register position and by setting the REGISTER DIS­
PLAY switch to ON.

e. After all affected internal registers have been
observed and if no malfunction is seen, repeat steps c, d,
and e.

In most sing Ie c lock operations as just described, the INSTR
ADDR switch can be placed in the HOLD position if it is
desired to repeat the single clock operation through the
instruction more than once.

2-13 Sing Ie Instruction Repetition

Single clocking a malfunctioning instruction as described
in paragraph 2-12 may pinpoint the area of the malfunction
without actually allowing the observer to determine what is
causi ng the fau Ity condition. In some cases, an error may
consistently occur while the CLOCK MODE switch is in
the CONT (continuous) position, but may never occur when
the switch is in the SING LE STEP position. This cou Id be
caused by a slow gate or active circuit element. In such
case, the operator should run the single malfunctioning
instruction repeatedly using the oscilloscope to observe all
signals that cou Id be the cause of the error condition.

To run a single instruction repeatedly, the following steps
shou Id be followed:

a. Branch to the malfunctioning instruction. (See
paragraph 2- 1 O.)

b. Set the INSTR ADDR switch to HOLD. This pre-
vents the instruction address field of PSW1 from changing
after each execution of the instruction.

c. Set the COMPUTE switch to RUN, and observe
all pertinent signals on the oscilloscope as the instruction
is executed iepeated!y.

Certain instructions (those, for example, in which an
operand is changed each time the instruction is executed)
cannot be repeated in this manner without destroying data
meaningful to the observer. The mu Itiply and divide in­
structions are examples of this. For this type of instruction
it may be necessary to enter a small four- or five-word
instruction program loop to establish initial conditions each
time the instruction is observed.

2- 14 Loadi ng a Program

After the input device has been loaded with the program
tape or cards and has been properly prepared to read,

SDS 901172 Paragraphs 2-15 to 2- 17

the following steps should be followed to load the program
into memory:

a. Set the COMPUTE switch to IDLE.

b. Press the SYSTEM RESET switch.

c. Set the UNIT ADDRESS switches to the address of
the desired input peripheral device.

d. Press the LOAD switch.

e. Set the COMPUTE switch to RUN. The CPU will
now read the program from the input device and store it in
memory.

2-15 PROGRAMMING

The following discussion of programming is intended to
c..;larify some of the functions and requirements of the Sigma
5 computer. It includes data and instruction formats,
addressing requirements, modes of operation, and the
instruction repertoire in tabular form. For more detailed
operation of individual instructions, see the Sigma 5
Reference Manual (SDS 900959), or refer to section III of
this manual.

2-16 WORD FORMATS

2-17 Data Word Formats

Data words consist of 32 binary digits or bits. The CPU is
capable of addressing words, doublewords, halfwords, or
bytes (quarterwords) for many of its operations.

Word. A single word contains 32 bits numbered 0 through
~rom the most significant bit to the least significant
bit.

5

10, , ' , ' ,',' , ' " ,',' ,'10',,' ,,' ,,' ,,',,' ,,' "',,',,',J,, ',,'," "',,',,',),, '29'30',,1
901060A.201

If the binary configuration of ones and zeros in the 32 bit
positions of a word represent a numeric value, the binary
content of bit 0 is the sign of the value, and the binary
configuration in bits 1 through 31 represents the magnitude
of the value. Negative numbers in the computer are always
held in two's complement form. If the sign bit is a zero,
the magnitude of the number is positive; if the sign bit is a
one, the magnitude of the number is negative and is repre­
sented as the two's complement of its positive form. For
example, the decimal number +29 would appear in its
hexadecimal form in a word as 0000001D, and the decimal
number -29 would appear in its hexadecimal form in a word
as FFFFFFE3.

Doubleword. A doubleword in the computer consists of two
consecutive 32-bit words, and contains 64 bits numbered 0
through 63.

5

L ,,1,,',,',.' ,,' "',) .. ',, ',}" '"',, ',,' "',, '.) .. '" ',,'" '" '" '56',)"',,'.},,',, ,.,I
901 060A. 202

In doublewords which represent a numeric value, bit 0 rep­
resents the sign of the magnitude, and bits 1 through 63
represent the magnitude of the value. A doubleword always
consists of two consecutive single words whose addresses
are nand n + 1, where n is an even-numbered address.

Halfword. Sigma 5 is capable of addressing halfwords.
Two halfwords are contained in one single word where half­
word HWO consists of bits 0 through 15, and halfword H'vVl
consists of bits 16 through 31.

/-- HALFWORD 0 .1.. HALFWORD 1----1

I:, , ' , ' , ' , ' , ' , ' , ' , ' , '10' ,,' ,,1,,',,' ",~" ,,' "',, '",,,',,' ,,'" '"',,',),, '", ",,,I
901 060A. 203

Each halfword is treated by the CPU as though it contains a
signed value. Bit 0 of halfword HWO is the sign of the
magnitude contained in bits 1 through 15; bit 16 of half­
word HW1 is the sign of the magnitude contained in bits 17
through 31. During halfword operations the integrity of
the number contained within the addressed halfword is
maintained by extending the sign of the halfword magnitude
16 bit positions to the left. For example, if a halfword is
loaded into one of the private memory registers, it wi II
consist of 32 bits with its sign bit extended from bit 16 of
the register to bit O. Halfwcrds used in all arithmetic
operations have their signs extended in the CPU internal
registers in this same manner.

~. Four bytes of eight bits each can be contained in
one single word where byte 0 consists of bits 0 through 7,
byte 1 consists of bits 8 through 15, byte 2 consists of bits
16 through 23, and byte 3 consists of bits 24 through 31.

~BYTE0--1---BYTE I~BYTE2~BYTE3~

L , ' , ' , ' , ' , ' , ' , ' , ' , '10' ,,' ,,' "',, ',,' ,,' ,,' ,,' "I"',, ,,,, ,,'" '",,,'''''' ''''30',,1
901 060A. 204

2-11

SDS 901172

Bytes are addressable singly. Bytes normally contain ab­
solute magnitudes in binary-coded decimal (BCD) form,
extended binary-coded decima I interchange code (EBCDIC)
characters, or simi lar types of data.

Floating Point Formats. The computer provides two formats
for representing floating point numbers: a short format of
32 bits, and for extra precision, a longer format of 64 bits.
The short floating point format consists ofa 24-bit frac­
tional magnitude, a 1-bit sign that establishes whether the
fraction is positive or negative, and a 7-bit biased expon­
ent. The short format for floating point numbers is shown
below.

901060A.207

The long floating point format is simi lar to the short format
except that the fraction field is increased from 24 to 56
bits.

rl EXPONENT I FRACTION I
: 112 13 14 J 5 16 1 7 81911011111211311411511611711811912012112212312.125126127128129130131

90i060A.206

Each incremental value of the exponent multiplies the
binary value of the fraction by a power of 16; thus,
floating point numbers are hexadecimally oriented. For
example:

901060A. 205

In this illustration the magnitude of the floating point num­
ber is the magnitude of the fraction (3/4) mu!tiplied by
1 (}5, or O. 75 x 64,536 = 46,402.

The floating point fraction is determined by the placement
of its binary point, which is fixed at the left of the fraction
between bit positions 7 and 8.

The fractional values of any floating point number, n, can
be either positive or negative and its exponent can be
either positive or negative. Thus, the four different com­
binations can be grouped in the following manner: +(16e)

-e e -e
ni +(16) ni -(16) n; and -(16) n. Since the
most significant bit of the exponent is the complement of
its state, the exponent is a Iways biased by a va lue

2-12

of 64. For positive fractional values the positive exponents
are not two's complemented; for positive fractional values the
negative exponents are two's complemented. The following
two positive fractions, one with a positive exponent of 164

and the other with a negative exponent of 16-4, illustrate
this rule.

+ (164) n 0 1 0 0 0 1 0 0 .

+ (16-4) n = 0 0 1 1 1 1 0 0 •

fraction n .

fraction n •

For negative fractional values, positive and negative expo­
nents are the one's complements of the corresponding expo­
nents of the positive fractional values.

101 1 101

1 10000 1

fraction n .

fraction n .

A simple method of determining the actual value of any
floati ng poi nt number, whether an integer, a fraction, or
a mixed number, is to move the fixed binary poi nt to the
right or to the left the number of bit positions equal to four
times the value in the exponent field. For example, to
determine the value of the following floating point number,
move the fixed point from its position between bit positions
7 and 8 to the right a number of bit positions determined by
mu ltiplying the exponent value by 4.

01000011000010011000011000000000

I MOVE 12 BITS TO
~ __ ~IQ.H.! ___ J

901060A.208

The value of this mixed number (i nteger and fraction) is the
decimal equivalent 152.375. This method of determining
the actual value of a floating point number may be simpler
than the method of determining the fractional value and
then multiplying this value by the third power of 16; for
example, 1219/32,768 x 4096 = 152.375.

The following examples of floating point numbers are shown
in hexadecimal notation with their corresponding decimal
values.

Hexadecimai Decimal

435F5000 +1525

425F5000 +95.625

415F5000 +5.95703125

4105F500 +0.372314453

405F5000 +0.372314453

n n A "0""" DL.JMVDVVV
_It:;,)t:;
-I..,JL..,J

BEAOBOOO -95.625

BFAOBOOO -5.95703125

SDS 901172 Paragraph 2-18

A normalized floating point number is one in which the
fractiona I va lue is equa I to or greater than 1/16. For
example, the floating point number X '431 00000' is nor­
ma lized, but the floating point number X '4401 000' is not,
although both numbers are equal.

2-18 Instruction Formats

Instructions in the CPU fall into two general classes: those
that require a reference address field and those that con­
tain an operand within the instruction word.

Reference Address Instructions. The norma i reference
address instruction has the following format:

~ ~~~~p:~~ 1.1 , ~ollll'21 :11.1,,1,,11,1 :~:I~~I:~3~2~~:r:'~2::~r~r 311
901060,4.211

The basic operation code of the instruction is contained in
bits 1 through 7 of the instruction word.

The R-field, bits 8 through 11, addresses one of 16 private
memory registers (RO through RF). The reference address
field, bits 15 through 31, represents the address of a loca­
tion in memory from which the operand is to be taken or
into which data is to be stored.

The X-field, bits 12 through 14, addresses one of seven
private memory registers (Rl through R7), which indexes the
address contained in the reference address field. If the
X-field contains all zeros, the instruction is not indexed;
if the X-field does not contain all zeros, then the address
contained within the reference address field wi II be modi­
fied by the addition of the contents of the register specified
in the X-field.

Bit a of the instruction (IA) is an indirect addressing bit. If
this bit is a zero, the reference address is the address of the
operand. If bit a is a one, the reference address is the
virtual address of a word in memory which, in turn, con­
tains the virtual address of the operand. Indirect addressing
is limited to a single level.

Operation codes are described by two hexadec ima I charac­
ters and include bits a through 7. The most significant of
the two hexadecimal digits of a normally addressed instruc­
tion wi II a Iways be a number less than X '8'. Any operation
code with its most significant hexadecimal digit 8 or greater
means that the instruction is indirectly addressed. For
example, a norma I add word instruction has the norma I
operation code X 1301. If the add word instruction is in­
directly addressed, the operation code wou Id be X IBO'.

Some instructions with reference address fields do not
address memory. In these instructions the contents of the
reference address field contain types of information other
than memory addresses - usually control or conditional

information re lating to the operation of the instruction.
Instructions that fall into this category are shifts, input­
output, read direct, and write direct.

Immediate Operand Instructions. The format for immediate
operand instructions follows.

1:1 ~~r~~:~~ 1.1 , ~ollll'211311.1"1 "I "I,.I~r::~2~~.12,r"r2/"I~r~13' I
901060A.212

The operation code of an immediate operand instruction
specifies that the operand is contained within the instruc­
tion itself, that no access to memory is necessary, and that
indexing is not possible. Immediate operand instructions
cannot be indirectiy addressed. If bit a of any immediate
operand instruction contains a one, the instruction is
aborted, and the CPU traps to location X 140'.

In an immediate operand instruction the contents of the
R-field specify one of the private memory registers in the
CPU. The number conta ined with in the operand fie Id is
made up of a sign (bit 12) and a magnitude (bits 13 through
31). During the execution of an immediate operand in­
struction, the integrity of the value in the operand field is
maintained by extending the sign bit 12 places to the left.
Thus, the 20-bit immediate operand in bits 12 through 31
may be X'FFF2E' (-210 decimal), but in the course of
executinq the instruction the va lue becomes X IFFFFFF2E'
(-210 de~imal).

Throughout the following paragraphs, several examples of
instructions are given. The instructions in these examples
use the format indicated in example 1 which, in this case,
is an indexed load word (LW) instruction.

Example 1. Instruction Format for Instruction Examples

VA Opcode R X=3 Reference Address
~ ...--"-

a all 0010 1011 all a 0000 0000 1010 0011
I "--' ----.....--
a LW - B - 3 A3

''---v--' ~ '----..r--' '-.,,-' ~ ~~

3 2 B 6 a a A 3

In a II examples wherever the instruction format is shown,
its hexadecimal equivalent will also be indicated; for
example:

Instruction 0- LW-B-3-A3 X '32 B600A3 I

Leading hexadecimal zeros of the reference address are
omitted.

2-13

Paragraphs 2-19 to 2-24 SDS 901172

2-19 MEMORY ADDRESSING

Reference address instructions that require access to memory
contain an address location in the reference address field.
This reference address is subject to modification by indirect
addressing or by indexing, and is referred to as the virtual
address.

2 -20 Reference Address

The address contained in the reference address field is the
reference address. A reference address mayor may not be
the address of the memory location from wh i ch the operand
is fina Ily taken since this address is subject to change. If
the reference address is not modified in any way during the
execution of the instruction, the reference address is a Iso
the effective address.

2-21 Effective Address

The effective address is the fina I address seen by memory
and is the address location from wh ich the effective word
(or actual operand) is taken or into which it is stored. A
reference address may undergo one or two transformations
before the address of the effective word is fina Ily defined.

2-22 Indirect Addressing

The address in the reference address field of an indirectly
addressed instruction (bit 0 = 1) does not refer to the loca­
tion of the effective word or actual operand. Rather, it
points to a location in memory where the effective operand
is to be found. The memory access operation of an indirectly
addressed load word (LW) instruction is shown in example 2.

Example 2. Indirect Addressing

Instruc t ion 1- LW- B-0-1 03A X ' B2B01 03A I

The instruction addresses the operand indirectly
through the contents of location X ' 103N.

103A I 00000B42 I

B42 1000001131

The address in X 11 03A 1
is the effective address
of the operand.

The effective operand
in X' B42 1 is X'113 1.
This number is loaded
into private memory
register B.

The reference address (X ' 103A') of the instruction is in­
directly addressed (bit 0 = 1); therefore, the contents of
this location (X ' 103A') contain the actual address (XIB421)
of the operand or effective word. The operand finally
loaded into register B is X'1131.

2-14

2-23 Indexed Addressi ng

If the X -fi e Id (bits 12 through 14) of an instruction does not
contain all zeros, the instruction is indexed. The contents
of the X-field determine which index register (R1 through
R7) is to be used in the indexing operation.

When an indexed instruction is executed, the contents of
the register specified by the X-field are added to the
virtual address of the instruction and the resultant sum
becomes the effective address of the operand or storage
location. The following example of an indexed subtract
word instruct ion illustrates the operat ion of an indexed
instruct ion.

Example 3. Indexed Addressing

Instruction 0-SW-C-5-407 X' 38CA04071

R5 1000044E6

RC 10000ABCD (before execution)

RC [00009ABC (after execution)

407 Ixxxxxxxxi (contents undefined)

48ED 100001111

In this example memory location X 14071 is not actually
addressed and its contents are not affected in any way.
The contents of reg ister R5 added to the virtua I address of
the instruction resu It in an effective address of X'48ED'.
The contents of memory iocation X!48ED! are subtracted
from the contents of register RC and the difference is stored
in register RC.

2-24 Indirect Indexed Addressi ng

An instruction may be both indexed and indirectly ad­
dressed. When this is the case, i ndexi ng occurs after
indirect addressing takes place rather than before. This is
called post-indexing. The following example of a store
word (STW) instruction that is both indexed and indirectly
addressed shows the addressing relationships. The operand
in this instance is located in register R9. The location into
which the operand is to be stored is the location resulting
from the indirect and indexed addressing.

Example 4. Indirect and Indexed Addressing

Instruction 1-STW-9-3-5B6 IB59605B6 1

R3 100000213 I
R9 1005BOOOO I

5B6 100000AAB]
CBE Ixxxxxxxxi (before execution)

CBE 10005BOOO I (after execution)

SDS 901172 Paragraphs 2-25 to 2-27

The virtual address X'5B6 1 in the instruction word is trans­
lated into a second virtual address X'AAB'. The contents
of register R3 are added to this second virtual address and
the sum (CBE) becomes the effective address of the memory
location into which the operand in register R9 is stored.

2-25 Doubleword Addressing

A doubleword consists of one even-numbered word and the
next consecutive odd-numbered word. This convention
applies to doublewords that exist either in core memory or
in private memory. An attempt to address an odd-even
doubleword combination wili result in the CPU forcing an
even-odd doubleword address where the first even numbered
word is the addressed odd word minus one. For example,
the load doubleword instruction 0-LD-2-0-537 will address
the memory doubleword located in addresses X'536 1 and
X'537', and not X'5371 and X'538 1

•

The doubleVvOld IUL;utiulI i II th~ private memory registers is
addressed by the R-field of the instruction. To address the
register doubleword, the address in the R-field must be an
even-numbered address. Unlike the doubleword address for
memory, however, an odd address in the R-field addresses
only the odd word of the register doubleword.

The following examples of a load doubleword instruction
(LD) illustrate the effect of the instruction when both even­
and odd-numbered doubleword addresses are used.

Example 5. Even Doubleword Addresses

RA

RB

Instruction 0- LD-A-0-400

REGISTERS

(or 0- LD-A-0-401)

MEMORY

~ ______ ~- 400 ""', _______

'---___ -......Jr - 401 ,--I ____ ---J

901060A.213

Where even doubleword addresses are specified, the data
transfer is from memory even word to register even word,
and memory odd word to register odd word.

Example 6. Odd Doubleword Addresses

R8

R9

Instruction 0-LD-9-0-600 (or 0- LD-9-0-601)

MEMORY REGISTERS

/600 I / L-______________

/

~ _________ ~/ 601 ~ ___________ ~
901060A.214

When an odd-numbered register address is placed in the
R-field, both words of the effective doubleword are loaded
into the same private memory register. As the most signif­
icant word of the doub leword is the iast to be loaded,
private memory register R contains the most significant word
at the end of the instruction.

Using an odd-numbered register address in a doubleword
instruction is a legitimate programming strategem and is
not forbidden.

2-26 Indexed Doubleword Instructions

The least significant binary digit of a memory doubleword
address in an instruction is always considered by the CPU
to be a zero even though it may actua IIy be a one. Thus,
doubleword address boundaries start with even-numbered
word locations. For example, a doubleword could consist
of word X'406 1 and X'4071

, but not of words X'4071 and
X'408'. If the programmer were to address a memory
doubleword as X'4071

, the CPU would address the double­
word contained in memory locations X'406 1 and X'407 1

•

When a doubleword address instruction is indexed, the
index register is shifted to the left one bit position before
the addition takes place, and therefore, any number in the
index register is, in effect, twice its normal value when
used for indexing. For example, an instruction addressing
the doubleword X' 713 1 will address words X'7121 and
X'713 1. If the contents of the index register are equal to 5,
the actual doubleword addressed in memory wili be the
doubleword located in X' 71C' and X'71D'.

Reference address

Index register

Effective address

2-27 Halfword Addressing

00000011100010011 713

00000000000000101 , 5

000000011100011100-\ 71 C

~
forced to
aO

Two halfwords, HWO and HWl, can be placed within one
32-bit register or memory location. Halfword HWO consists
of bits 0 through 15, and halfword HWI consists of bits 16

. through 31. (See paragraph 2- 1 7.)

A halfword instruction addressing the left-hand halfword
HWO uses the same address as though it were addressing the
full word. The halfword instruction addressing the right­
hand ha I fword HWI a Iso uses the fu II word address, but the
instruction X-field must refer to one of the index registers
in private memory, and this index register must contain a
one in its low order bit. The next two examples show the
operation and addressing scheme for loading halfwords
HWO and HWI into register RF.

2-15

Paragraph 2-28 SDS 901172

Example 7. Load Halfword HWO

RF

Instruction 0-LH-F-0-63B

REGISTER

r-­
I

Example 8. Load Halfword HW1

Instruction 0-LH-F-5-63B

REGISTER

c-
RF 638

R51000000011

X'52F0063B '

MEMORY

J
HWO HW1

901060A.215

X'52FA063B '

MEMORY

J
HWO HW1

901060A.216

In each of the load halfword instructions shown in examples
7 and 8, the sign of the ha Ifword is extended 16 places to
the left before it is loaded into register RF. Thus, if the
contents of instruction HWO in example 7 were X'FFOA',
register RF would be loaded with X'FFFFFFOA' i if the con­
tents of instruction HWl in example 8 were X '00041,
register RF would be loaded with X '000000041.

Use of the index register in example 8 to designate that
HW1 was addressed does not imply that the instruction was
an indexed instruction or that the contents of the reference
address was modi fied in any manner. Neither shou Id it be
inferred that halfword instructions cannot be indexed.
Example 9 shows how the halfword instruction in example 8
cou Id have been indexed.

Example 9. Indexing Halfword Instructions

Instruction 0- LH- F-5- 33A X'52FA033A'

REGISTER MEMORY

RF

c----~
L..-___ --..JI 63B I HWO I HW1

R51000006031

901060A.217

2-16

In halfword instructions that are indexed, the index register
is shifted to the right by one bit position so that bit 30 of
the index register is aligned with bit 31 of the reference
address. Bit 31 of the index register does not modify the
actual operand address, but is used by the i nterna I logic
of the CPU to distinguish which halfword is addressed.
The binary addition of index register R5 to the reference
address of the instruction in halfword operations is shown
below.

Reference address

+ Index register

Sum (actua I address)

o 0000 0011 0011 1010

0000 0011 0000 0001

o 0000 0110 0011 1011

If no indexing is desired when addressing halfword HW1,
the referenced index register must contain a one in bit
position 31 and zeros in bit positions 14 through 30. (See
example 8.)

2-28 Byte Addressing

Four 8-bit bytes can be contained within one 32-bit register
or memory location. Byte 0 consists of bits 0 through 7,
byte 1 consists of bits 8 through 15, byte 2 consists of bits
16 through 23, and byte 3 consists of bits 24 through 31.

An instruction that addresses bytes operates in a manner
similar to one addressing halfwords in that no indexing is
required for the left-hand byte, but the index register must
be specified and contain the proper information for the
other bytes. The index register is displaced by two bits
(instead of one as for halfword addressing) for byte opera­
tions affecting bytes 1, 2, and 3. The two least significant
bits of the index register (bits 30 and 31) determine which
of the three right-hand bytes is addressed.

The following four examples show how each of the four
bytes are addressed in a load byte (LB) instruction. In each
of the examples of the LB instructions that follow, the
addressed byte is loaded into bit positions 24 through 31 of
the addressed register, and bits 0 through 23 are cleared to
zeros.

Examp Ie 10. Load Byte 0

Instruction O-LB-O-O-4037 X'720040371

REGISTER MEMORY

RO

90i060A.2i8

SDS 901172 Paragraph 2-29

Example 11. Load Byte 1

Instruction 0-LB-0-3-4037

REGISTERS

RO

R3 I 0 0 0 0 0 0 0 1 I

Example 12. Load Byte 2

Instruction 0- LB-0-4-4037

REGISiERS

RO

R4 I 0 0 0 0 0 0 0 2\

Exampie i 3. Load Byte 3

Instruction 0-LB-A-5-0

REGISTERS

I­
I

RA L--__ -----'-----'I RO

R5 10 0 0 0 0 0 0 31

X 1720640371

MEMORY

901060A.219

X 1720840371

MEMORY

901060A.220

XI 72A40000 1

MEMORY

901060A.221

Core memory is not involved during the execution of the
instruction in example 13 since reference address 0 refers
to a pri vate memory reg ister rather than to a core address.

None of the operand addresses in the load byte instructions
in examples 11, 12, and 13 are indexed since all of the
indexed registers contain zeros in bit positions 0 through 29.
During the execution of these load byte instructions the
index register is shifted right two places in respect to the
reference address. Thus, only bits 13 through 29 can be
added to the virtual address. If these index bits are all
zeros, the virtual address remains unchanged.

The following example shows how the load byte instruction
may be indexed.

Example 14. Indexing a Byte Address Instruction

Instruction 0- LB- F-4-1 00 X' 72F80100 '

REGISTERS MEMORY

-]
RF

R4 I 0 0 0 0 0 0 1 61
901060A.222

The binary addition of the contents of index register R4 to
the virtuai operand address of the instruction is performed
in the following manner:

Vi rtua I address

+ Index reg ister

00000000100000000

00000000000010110

Sum (actua I address) 00000000100000101

The two least significant bits of the index register are used
to designate which byte (byte 2 in this instance) is to be
loaded. These bits are not added to the virtua I address.
Bits 13 and 14 of the index register are added to bits 15
and 16 of the virtual address.

2-29 BA.SIC INSTRUCTIONS

Table 2-3 lists all the basic operation codes, including
those instructions that are optional or privi leged, For
detai led operation of each instruction see Sigma 5 Refer­
ence Manua I (SDS 900959), or refer to the operation code
descriptions in section III of this technical manual.

Table 2-3. Basic Instructions

Mnemonic Code Instruction Name

Load-Store

LI 22 Load Immediate
LB 72 Load Byte
LH 52 Load Ha Ifword
LW 32 Load Word
LD 12 Load Doubleword
LCH 5A Load Complement

Halfword
LAH 5B Load Absolute

Holfword

(Continued)

2-17

SDS 901172

Table 2-3. Basic Instructions (Cont.) Table 2-3. Basic Instructions (Cont.)

Mnemonic Code Instruction Name Mnemonic Code Instruction Name

Load -Store (Cont.) Fixed Point Arithmetic

LCW 3A Load Complement AI 20 Add Immediate
Word AH 50 Add Ha Ifword

LAW 3B Load Absolute Word A'll 30 Add Word
LCD 1A Load Complement AD 10 Add Doubleword

Doubleword SH 58 Subtract Ha Ifword
LAD 1B Load Abso lute SW 38 Subtract Word

Doubleword SD 18 Subtract Double-
LS 4A Load Se lective word
LM 2A Load Multiple MI 23 Multiply Immediate
LCFI 02 Load Conditions and MH 57 Multiply Halfword

Floating Control MW 37 Multiply Word
Immediate DH 56 Divide Halfword

LCF 70 Load Conditions and DW 36 Divide Word
Floating Control AWM 66 Add Word to

XW 46 Exchange Word Memory
STB 75 Store Byte MTB 73 Modify and Test
STH 55 Store Ha I fword Byte
STW 35 Store Word MTH 53 Modify and Test
STD 15 Store Doubleword Halfword
STS 47 Store Se lective MTW 33 Modify and Test
STM 2B Store Multiple Word
STCF 74 Store Conditions and

Floating Control
Comparison

Ana Iyze -Interpret
CI 21 Compare Immediate

ANLZ 44 Analyze CB 71 Compare Byte
INT 6B Interpret CH 51 Compare Ha Ifword

CW 31 Compare Word
Logica I CD 11 Compare Double-

OR 49 OR Word
EOR 48 Exclusive OR Word
AND 4B AND Word

word
CS 45 Compare Selective
CLR 39 Compare With

Limits in Register

Floating Point Arithmetic
(Optiona I Instructions)

elM 19 Compare With
Limits in Memory

FAS 3D Floating Add Short
FAL 1D Floating Add Long Shift --FSS 3C Floating Subtract

Short
FSL 1C Floating Subtract

S 25 Shift
SF I 24 Shift Floating

Long
FMS 3F Floating Multiply

Short
Push-Down

FML 1 F Floating Mu Itiply PSW 09 Push Word
Long PLW 60 Pu \I Word

FDS 3E Floating Divide PSM OB Push Mu Itiple
Short PLM OA Pu \I Mu Itiple

FDL 1 E Floating Divide MSP 13 Modify Stack

I long Pointer

(Continued) (Continued)

2-18

SDS 901172

Table 2-3. Basic Instructions (Cont.) Table 2-3. Basic Instructions (Cont.)

Mnemonic Code Instruction Name Mnemonic Code Instruction Name

Execute -Branch Control

EXU 67
I

Execute
BCS 69 Branch on

Conditions Set
BCR 68 Branch on

Cond i ti ons Reset
BIR 65 Branch on Incre-

menting Reg ister
BDR 64 Branch on Decre-

menting Reg ister
BAL 6A Branch and Link

(Privi leged Instructions)

LPSD OE Load Program Status
Doubleword

XPSD OF Exchange Program
Status Doubleword

LRP 2F Load Reg ister
Pointer

MMC 6F Move to Memory
Control

WAIT 2E Wait
RD 6C Read Direct
WD 6D Write Direct

Caii I --

I CAll 04 Cal11
CAL2 05 Cal12

Input-Output
I I

I I
(Privi leged Instructions)

SIO 4C Start Input-Output
CAL3 06 Cal13 HIO 4F Ha It Input-Output
CAL4 07 Cal14 TIO 4D T est Input-Output

TDV 4E T est Device
AIO 6E Acknowledge

Input-Output
(Continued)

2-19/2-20

SDS 901172 Paragraphs 3-1 to 3-4

SECTION III

PRINCIPLES OF OPERATION

3-1 INTRODUCTION

This section provides general and detai led pri nciples of
operation of the Sigma 5 computer. The general principles
are presented on a block diagram level and stress the over­
all functions of the equipment. The detailed principles are
presented on a logic and circuit diagram level and empha­
size the operation of logical functions within the major
elements of the equipment.

3-2 GENERAL PRINCIPLES OF OPERATION

The Sigma 5 is organized around one or more central
processor units (CPU), magnetic core memories, input­
output processors (lOP), device controllers, and peripheral
devices. One of each major element is shown in figure 3-1.
These elements operate asynchronously in relati on to each
other. The lOP shown in the figure may be a multiplexing
type or a selector type. A multiplexing lOP allows up to
32 devices to operate simultaneously. A selector lOP
allows only one device to operate at a time, but at a high
transfer rate. The CPU may also be equipped internally
with an integral lOP which allows the CPU to perform
input-output operations with no external lOP. In that
case, some CPU registers and control circuits are combined
with lOP registers to perform input-output operations. The
peripheral device in figure 3-1 is shown with a dashed
block to indicate that it is not strictly a part of the basic
computer, but nevertheless is a major element, its uSe being
implied by the device controller.

3-3 CENTRAL PROCESSOR UNIT

The CPU sequences and controls program execution. In
executing operations, the CPU performs arithmetic and
logic functions, addresses private memory and core memory,
fetches and stores instructions and data, controls informa­
tion transfer between core memory and other elements
connected to the CPU, and performs other subfuncti ons.
The CPU also controls internal and external interrupts and
provi des manua I program control through the processor
control panel (PCP). A fu"dio,,/:!! block diagram of the
CPU is shown in fi gure 3-2.

3-4 8rith~~s_ Control, and Address Functi ons

Arithmetic, control, and address functions are performed
by the adder, sum bus, CPU registers, and associated
control logic (see figure 3-3). In general, registers A
and 0 combi ned wi th the adder and sum bus perform the
arithmetic operations and other control functions. Register
C is used for CPU input; register 0 holds the opcodes; and
regi sters-R, Rp, and P are used for addressi ng. Regi ster B
is-used for temporary storage of the program address and
as an extended accumuiator with the A-register. Registers
IOFR, IODA, and 10FM are components of the integral
lOP, and the 010 registers are used for read direct and
wilte direct operations. Register Me (macro-counter) is
used for iterati on counting.

r-­
INPUT-OUTPUT CHANNELS

I
CORE ... I . INPUT -OUTPUT .. DEVICE

--,
I
I
f

I

DIRECT LINES
TO EXTERNAL
EQUIPMENT

---

MEMORY
~

PROCESSOR - ...
CONTROLLER I

~~ I ~ ~

L - - - ---- - - - _J

"
,

CENTRAL
r ----I

PROCESSOR ..- I PERIPHERAL I - DEVICE UNIT L ___ J

9011nA.30

Figure 3-1. Sigma 5 Major Elements

3-1

SOS 901172

- - -- - - -- - - -- - - -- - - -- --,

~--L-"""'~ TO ALL
FUNCTIONS

TO lOP T I-MHZ CLOCK

~~~[~ 
INTERRUPT/TRAP 

FUNCTIONS 

I 

I 

J 

l 
TRAPS ~ I 

L..-.-------I I 

INTERNAL 
INTERRUPT 
CONTROL 

I 
I 

WATCHDOG f+--­
TIMER 

PROCESSOR 
CONTROL 

PANEL 

PRIVATE 
MEMORY 

r------, 
I PRIVATE MEMORY I 

t.--------I~ EXTENSION I 
~ _ ~P~IO~ _ J 

ARITHMETIC, CONTROL, AND ADDRESS FUNCTIONS I+-
OPTIONS 

r-----, 
POWER 

~_F~I~S~~j 
r------, 

EXTRA REAL- I 

I 
I 
I 
I 

r--1-. r--l--l TO TRAPS 

r-- i --, 
I MEMORY WRITE I 

~T~M~ C~O~K~ J 
I INTEGRAL lOP I I FLOATING POINT I 
I (OPTION) I I ARITHMETIC I 

(OPTION) 
~I PROTECTION I 

~ _ ~P~O~) _ ..J r------, 
EXTERNAL 

~ ~N~E~U!T2 ~ ! 
L ___ --1 TO EXTERNAL EQUIPMENT TO CORE MEMORY 

L-- _ __ -.J 
901172A.31 

Figure 3-2. Central Processing Unit, Functional Block Diagram 

Instructions or data from core memory enter the CPU through 
the C-register. From the C-register, operation codes are 
transferred to the O-register, private memory addresses are 
transferred to the R-register, and the entire word, including 
reference and index addresses, is transferred to the 0-
register. Operation codes in the O-register are decoded 
and activate the signal families peculiar to the operation. 
Instructions and data from private memory and from I/O fast 
memory enter the CPU through the C-register or the A­
register. The A-register is used during many operations, 
examples of which include arithmetic functions, left and 
right shifts,and indexing. 

PRIVATE MEMORY ADDRESSING. The address in the R­
register is placed on the private memory address lines to 
address pri vate memory. If pri vate memory is extended to 

3-2 

more than one block (page) of 16 registers by a private 
memory extension unit, the block in which the addressed 
register is iocated (current register biock) is specified by 
the contents of the Rp-register. This register is part of the 
program status doubleword and is loaded by program control. 
Registers 1 through 7 of the current register block in private 
memory may be used as index regi sters. The index regi sters 
are addressed by the X fi el din the i nstructi on at the ti me 
the instruction is in the O-register. 

Private memory may also be addressed by the P-register. If 
an instruction produces an effective address in the range of 
'X'Q through 'X'F, the four low order bits of the reference 
address are used to address the regi ster in the current 
register block of private memory which corresponds to the 
address. The private memory register may be used as the 



y ±2FP 

ADDER 

RIGHT ALIGN 

~ 

...... ...... 

K31 

D 
flOATING -[:>---. 
POINT 
(OPTION) 

r 0-31 

PRIVATE 

J MEMOR Y 
AND II 0 INDEXING 
FAST ..... INDIRECT 
MEMOR Y ADDRESSING 
IN CONTROL 

I/O -.. 
STATUS 

. C 

CORE FAMILIES 
..... 0 r--+-OF MEMOR Y 

0-31 OPCODES IN 
1-7 

~ 
R . 

28-31 

±1 

B 

0-31 

RD;WD 
(DATA) 

MC 

I~ 
0-(-7) 

-I 

f-- L...-. 

r---

~ 

I----

I 

TO PCP 
.-----.- DISPLAY 

LIGHTS 

~FLOATING 
~POINT 

>-------;-NTERRU PT -[:>--. 
-- WRITE 

LOCKS PCP KEYS (ADDRESS)____. P 

I--

TR 
28-31 

4 010 

I 
15-31 

~ 
32-33 

~ ::1:1,1/4 

~RD/WD 
~(ADDRESSING) 

TRAP 

32/1-47/1 __ 

RP 

24-27 

INDEX REGISTER ADDRESS __ 

PRIVATE MEMORY REGISTER ADDRESS ---'" 

REGISTER PAGE ADDRESS 

CORE 
MEMORY 
ADDRESSING 

PRIVATE 
~MEMORY 

ADDRESSING 

SDS 901172 

CONTROL 

I CLOCKS ~ ~~ T5, T8, T11 

PHASES 
CPU 

PCP PRE PH 

111-H /ll-H H -H 
I/O GENERAL 

[OPH SW 

/oI--H H ·H 
INTERRUPT/TRAP 

INTRAP 

I !f'.JTRAP I r7T:l 

I I 
I I L:...L:..I 

FLAGS FL~ 
WA TCHDOG TIMER 

WClll-H I WDTR I 1 WDTRAC I 
TIMING PULSES 

OSC COUNTER FF 

12 MHZ H 1 MHZ I-1500HZ I 
BASIC INTERRUPTS BYTE COUNT 

IN 0 • 5 BC 

IP 0 • 15 0D 
IS 0 • 5 

Fi gure 3-3. Arithmetic, Control, and Address 
Functi ons, Block Diagram 

901172A. 32 

3-3/3-4 



SDS 901172 Paragraph 3-5 

source of an operand, the location of a direct address, or 
the destination of a result. In this case core memory is not 
affected. 

CORE MEMORY ADDRESSING. Core memory is addressed 
by the effective address in the P-register. The effective 
address is the fino! address produced for an instruction. 
With direct addressing the reference address of the instruc­
tion is the effective address. With indirect addressing, 
the initial reference address in the instruction corresponds 
to a location in core memory or private memory whi ch 
contains an address value. This address value is accessed 
and transferred to the P-register where it becomes the 
effective address. When this occurs, the initial reference 
address is not lost but is temporari Iy stored in the B­
register to be later updated and used in addressing the next 
instruction in the program sequence. 

When an instruction specifies indexinq with direct address­
ing, the effective address is produced- by adding the con­
tents of the index register to the reference address in the 
instruction. This function is performed by the adder, the 
A-register (containing the index value), and the D-register 
(containing the reference address). Index alignment is 
performed for byte, hal fword, word, doubleword, and 
shift operations, and is a function which varies the effec­
tive length of the P-register to change the effective 
address displacement value. Index al ignment is described 
in the Sigma 5 Reference Manual under Address Modifica­
tion. 

An instruction may specify both indexing and indirect 
addressing. In this case, the effective address is produced 
by adding the contents of the index register to the contents 
of the memory location corresponding to the initial refer­
ence address. Indexing occurs after the indirect location 
is accessed. Therefore, the initial reference address is 
not modified. 

3-5 CPU Timing 

Basic CPU timing for instruction execution is controlled by 
ac clock pulses having variable time intervals. The clock 
pulses are generated by the CPU clock generator. Phase 
control flip-flops toggled by the variable clock pulses 
determine the phase of the instruction being performed. 
Only one phase control flip-flop is set at any time. There 
are four preparation phases (PRE 1 through PRE4) and ten 
execution phases (PH 1 through PH 10). In the preparation 
phases the functions common to most instructions are per­
formed. In the execution phases the functions to complete 
the instruction are performed. In general, phases progress 
in numerical sequence, but a phase can be repeated or 
skipped depending on the instruction requirements. Most 
instructions require only a few phases. All instructions 
requi re at least two preparation phases (PRE 1, and PRE 3 
or PRE4) and two execution phases (PH 1 and PH 1 0). 

In a typical instruction, conditions are set during phase 
PH 10 of the present instruction to read the next instruction 
into the C-register, and from there to transfer the instruc­
tion to the D-register, and the operation code and R field 
to the 0- and R-registers, respectively, and to update the 
program address in the P-register. These functions are 
executed at the trailing edge of the next clock when phase 
PH10 ends and PRE1 begins. The phase which follows PRE1 
may be anyone of the other preparation phases depending 
on the instruction format. Typically, during preparation 
phase PRE 1 the operation code is decoded and conditions 
are set to transfer the reference address from the D-register 
to the P-register. Phase PRE2 is used to compute the effec­
tive address and may require two clock times. Phase PRE3 
is used to fetch the operand from core memory or private 
memory, and PRE4 is used for halfword or byte alignment 
and sign extension. PRE4 may require four clock times. At 
the end of the last preparation phase (PRE3 or PRE4) on the 
trai ling edge of the clock, execution phase PH 1 begins. 
When the instruction is nearly completed the phase $equence 
branches to PH10 to accomplish the final operations of the 
instruction and the normal end functions common to most 
instructions. The conditions are set to read the next instruc­
tion into the C-register. The process is then repeated for 
that instruction. 

For operations other than those involved in preparation and 
execution of instructions, the CPU also has six phase con­
trol flip-flops (PCPl through PCP6) for operating in the 
processor control panel mode, two flip-flops (INTRAPl 
and 2) for interrupt trap mode, and four fl ip-f1ops (IOPH 1 
through IOPH4) for the input-output mode. The IOPH 
flip-flops operate in conjunction with sixteen general­
purpose switch phase flip-flops (SWO through SW15). 
Phases PCP, INTRAP, and IOPH operate in their respective 
modes in a way simi lar to the PRE and PH phases. 

CPU CLOC K GENERATOR. Three tapped delay lines 
make up the CPU clock generator (see figure 3-4). 
The generator produces ac clocks for triggering ac f1ip­
flops in the CPU and the floating-point option, ac clocks 
for triggering private memory, and dc clocks to trigger 
the C-register buffer flip-flops. A clock pulse is initiated 
each time delay line 1 is enabled. The pulse is tapped 
off at fixed intervals to form the required clock pulses. 
One of the tapped pulses is applied to the ac clock gates 
which generate an ac clock unless inhibited by a disabling 
function. The disable function shown in the simplified 
block diagram can be either a high disabling signal or 
the lack of a high enabling signal. In general, the ac 
clock gates provide a means of inhibiting a clock pulse 
until a certain time. An example is when a memory re­
quest has been generated but the data has not been released 
from core memory. Unti I the data is re leased, a II clocks 
are inhibited. When data is released from memory, a 
data release function again enables the clock. 

3-5 



3-6 

DATA REQUEST FF 

DATA RELEASE 
LATCH 

REQUEST STROBE 
AC KNOWLEDGE 

INTERRUPT AND 
WATCHDOG 
TIMER RUNOUT 

IDLE AND SINGLE 
STEP MODES 

RESET PULSE 

CROSSOVER 

CLOCK 
ENABLE/DISABLE 

LOGIC 

SDS 901172 

DISABLE 

l 

ADDRESS NOT HERE CLOCK (ADNH) 

180 NS 

210 NS 

L..-_~ MEMORY REQUEST 
CLOCK (MRCL) 

DC CLOCK (DCCL/l) 
~-----~ (SUM BUS TO 

C-REGISTER) 

AC CLOCK 
GATES AND 

DRIVERS 

'--~ 

CPU (CL) } 
AC 

FLOATING CLOCKS 
POINT 
CLOC KS (CLFP) 

T5 

T8 

T1l 

DC CLOCK (DCCL/2) 
(C-REGISTER) 

[-(IIDELAY LINE 0'------
'----______ 1 I 

AC CLOCK GENERATE (ACCLG) 

AC 
CLOCK GATES 
AND DRIVERS 

AC CLOCKS (CK) 
~--..TO PRIVATE MEMORY 

• AND I/O FAST 
MEMORY 

901172A.37 

Figure 3-4. CPU Clock Generator, Simplified Block Diagram 



SDS 901172 Paragraph 3-6 

Clock pulses CL and CK are outputs of the AC clock drivers. 
These clocks are 40 nsec and 50 nsec pulses. respectively, 
and recur at variable time intervals. The time intervals, 
designated T5. T8, and Tll, are established by enabling or 
disabling delay line sensors associated with delay line 2. 
Nominal intervals for T5, T8, and Tll are 280. 380. and 
500 nsec, respectively. Another variable interval occurs 
with the clock that initiates delay line 2. This clock is 
selected from either the 180 nsec or the 210 nsec tap of 
delay line 1. The tap selected depends on the status of the 
data request flip-flop. The 180 nsec tap is selected if the 
flip-flop is reset and the 210 nsec tap is selected with the 
fl i p-fl op set. 

If not inhibited by the clock enable/disable logic; delay 
line 1 is reinitiated by clock ACCLG (AC Clock Gate) from 
delay line 3 each time the clock reaches that point in the 
cycle. One of the conditions which inhibits an ac clock to 
the CPU is crossover. Crossover exists when private memory 
is addressed by the P-register, that is, when the effective 
address is in the range ot 'X'U through 'X'F. When this 
occurs, the private memory clock is generated as usual but 
the CPU ac clock is inhibited. The other functions which 
affect the clock enable/disable logic shown in figure 3-4 
are described in the detailed principles of operation. Also 
shown in figure 3-4 is the address-not-here clock (ADNH) 
taken from delay line 3. This clock ensures that delay line 
1 is enabled again in case a nonexistent location is ad­
dressed in core memory. If such a location is addressed, the 
memory request inhibits delay line 1 and the lack of a data 
release keeps the delay line inhibited. In that case, the 
address-not-here clock enables delay line 1 and sets the 
trap condi ti on. 

OSCILLATOR CLOCK GE NERA TOR. The osci Ilator clock 
generator consists of a 2-MHz sine wave osciiiator foiiowed 
by a frequency divider with seven flip-flops (see figure 3-5). 
Clocks of 1 MHz and 16 kHz are taken from the frequency 
divider. The 1 MHz clock steps the watchdog tirner; is sup­
plied to the input-output processors where it is routed to the 
device controllers; is fed to the CLOCK MODE switch on 
the PCP for single step operations,' and is the source for the 
interrupt gate clocks which trigger the interrupt control 
flip-flops. The 16-kHz clock from the frequency divider 
supplies the time base selector which produces clock pulses 
for the rea I-time counter interrupts. 

WATCHDOG TIMER. The watchdog timer ensures that the 
program periodically reaches interruptible points during in­
struction execution. The timer is a 6-bit counter triggered 
by the 1-MHz clock from the oscillator clock generator (see 
figure 3-5). The counter starts at the end of every instruc­
tion and at interruptible points in long instructions. The 
watchdog timer initiates the trap circuits if the count 
reaches 42 ms before another interruptible point or the end 
of an instruction occurs in the program sequence. 

REAL-TIME CLOCK. The real-time clock, of which there 
are two standard levels and two optional levels, consists of 
a fixed interrupt routine preset to trigger at a frequency 
determined by the time base selector. Frequencies of 8 
kHz, 4kHz, 2 kHz, and 500 Hz are avai lable from the time 

base selector. External frequencies and a 60-Hz line fre­
quency may also be connected to control a real-time clock. 
In a typical application, when a real-time clock interrupt 
level is triggered, a fixed location in memory is accessed 
and the value contained in the location is decremented and 
restored to the fixed location. When the value becomes 
zero, the correspondi n9 counter-equal s-zero interrupt leve i 
is triggered. The counter-equals-zero interrupt level is 
associated with another interrupt routine at the discretion 
of the programmer. 

3-6 Interrupt/Trap Functions 

Interrupts and traps cause the norma I program sequence to 
be interrupted. In general, interrupts allow the current 
instruction to be completed before entering the interrupt 
sequence and provide for returning to the interrupted point 
in the program to resume normal program op~ration after the 
interrupt is cleared. Traps cause the immediate execution 
of an instruction in a unique location in memory without 
necessarily allowing the current instruction to be completed. 
Traps are usua lIy caused by program errors. A summary of 
the interrupts and traps is described in the SDS Sigma 5 
Computer Reference Manual under Interrupt System and 
Trap System, respectively. 

2-MHZ 
OSCILLATOR 

n 

FREQUENCY DIVIDER 
FLIP-FLOPS 

1 MHZ TO 16 KHZ 

1 MHZ 16 KHZ 

.r 

TIME BASE 

SELECTOR ., 
TO WATCHDOG TIMER, 

PROCESSOR CONTROL PANEL, 
INPUT-OUTPUT PROCESSORS, 

AND INTERRUPT GATE CLOC KS 

• 

8 KHZ TO 
500 HZ 

TO REAL- TIME 
CLOC K INTERRUPTS 

901172A.41 

Figure 3-5. Oscillator Clock Generator, Simplified 
Block Diagram 

3-7 



Paragraphs 3-7 to 3-10 SDS 901172 

INTERRUPTS. Each interrupt has an assigned priority 
determined by its position in a priority chain. In general, 
external interrupts have lower priority than internal levels. 
A level may be in one of six states depending on the con­
dition of three control flip-flops assigned to each level. 
These states i ncl ude armed, enabl ed, di sarmed, di sabled, 
waiting or active. When a level advances to the active 
state, the program branches to a memory address assigned 
to the interrupt and the instruction in that address is 
executed. The interrupt location may contain a single 
instruction (as in the real-time clocks) or the instruction 
may take the program to an interrupt subroutine. Interrupt 
operations are controlled by phase flip-flops INTRAP1 and 
INTRAP2. The phase flip-flops are clocked by the CPU ac 
clocks. 

TRAPS. A trap is indicated by such conditions as non­
existent instructions, addressing a nonexistent memory 
location, watchdog timer runout, or an instruction calling 
for operation of an option when the option is not included 
in the equipment. As in the interrupts, each trap is asso­
ciated with an instruction stored in a location assigned to 
the trap. When a trap condition is detected, the trap state 
is set, causing phases INTRAP1 and INTRAP2 to be entered. 
The current instruction mayor may not be carried to com­
pletion, but in either case the instruction is terminated by 
the trap sequence. Duri ng the trap sequence, the i nstruc­
ti on address of the current program status doubleword 
(whi ch had 01 ready been incremented) is decremented and 
the instruction in the location associated with the trap is 
executed. The instruction in the trap location is an 
exchange proaram status doubleword (XPSD). 

POWER FAI_L=SAFE. The power fail-safe option includes 
~owe; monitor and two levels of interrupts. The power­
on level (00) and the power-off level (01) have the highest 
priority in the interrupt chain. They are always armed and 
enabled while power is operating in the normal range. If 
the power monitor detects a power loss below a preset 
threshold, the monitor generates a power-off request signal 
which activates the power-off interrupt. The interrupt 
waits until the current instruction is completed. If the 
power-off request occurs during a service call and the 
service call had interrupted an instruction, then both the 
service call and the interrupted instruction are compieted 
before the CPU services the power-off routine. The CPU 
has approximately 5 mill iseconds after the power-off 
request goes true to complete the current operations, to 
store all the volatile information into core memory, and 
to shut down the computer. When power is restored to a 
level above the threshold, the CPU is initiated and a 
recovery subroutine associated with the power-on interrupt 
is executed. The CPU is returned to the state it was in 
before power fai lure. 

3-7 Private Memory Organization 

The standard private memory (CPU fast memory) in the 
Sigma 5 contains one block of 16 general registers. Each 

3-8 

register has 32 bits. The term private implies that the 
registers may only be accessed by the CPU and by no other 
equipment. Optional register extension units may be added 
to the standard block to enlarge private memory. Each 
register extension unit contains a block of 16 registers. A 
total of 16 blocks, including the standard block, may be 
contained in a Sigma 5. 

Registers in any block are addressed X'O' through X'F'. 
The block of registers currently available to a program is 
called the current register block. Register 0 in the current 
register block is used for special applications by the CPU. 
For example, during input-output operations the address of 
the first command doubleword in a sequence is obtained 
from regi ster X' 0'. Regi sters X'l' through X' 7' are used in 
indexing operations and 0\1 the registers in a block may be 
used as accumulators (fixed point and floating point) and to 
hold control i nformati on. 

3-8 Processor Control Panel 

The PCP displays the states of selected registers in the 
central processor and provides switch-controlled signals 
for manual computer operation. The upper section of the 
panel is reserved for mai ntenance personnel, the lower 
section for the computer operator. 

Most switches on the PCP are inhibited while in the run 
mode. When any control switch is operated while in the 
idle mode a phase sequence (PCP phases) similar to the CPU 
phases is entered. The PCP phases are controlled by six 
flip-flops, PCPl through PCP6. The phases have uniform 
length. Placing the COMPUTE switch to IDLE places the 
PCP logic in phase PCP2. Placing the COMPUTE switch to 
RUN or STEP takes the PCP from the idle phase to PCP3, 
from whi ch the CPU branches to PH 10 of the current i nstruc­
tion. The preparation phases follow PH10 to execute the 
i nstructi on. 

3-9 Floating Point Unit 

The floating point optional unit provides the CPU with 
floating point arithmetic capability. The unit is controlled 
by the floating point clocks generated by the CPU delay 
line clock generator. During floating point operations the 
unit is loaded from the CPU sum bus and the operation is 
performed by the regi sters and adder in the uni t. The 
registers are expanded to accommodate both long and short 
number formats. After the operation is completed. the num­
ber is returned through the CPU B-register. The internal 
functions of the floating point unit are described in the 
detailed principles of operation. 

3-10 Memory Protection 

The memory protection option in the CPU consists of one 
2 -bi t write-lock regi ster for each 512 -word block of core 
memory and one 2-bit write key. The write key is con­
tained in bits 34 and 35 of the program status doubleword. 
The write locks and write keys allow access to core memory 
locati ons to be program controlled. The wri te lock codes 



SDS 901172 Paragraph 3-11 

are first written into memory as a lock control image, 16 
codes to a memory word. The lock control image is trans­
ferred to the write lock regi sters by a move-to-memory­
control instruction. During memory access, the write lock 
codes are compared with the two write key bits in the 
program status doubl eword to determi ne if the addressed 
block of memory can be accessed. Access contra! bit con­
fi gurati ons are described in secti on II of this manua I. 

The maximum core memory storage is 128K, comprising 
eight memory blocks, each containing 16K. A memory 

block may contain 4K, 8K, 12K, or 16K by adding optional 
4K memory expansion kits. A minimum 4K block is standard 
with each computer. Each memory block is organized in 
stacks, core diode modules, bytes, and bit planes (see fig­
ure 3-6). 

A 4K memory is called a stack; it comprises four core diode 
modul es. Each stack has a capaci ty of 4096 words of 32 bi ts 
plus a parity bit. One byte in each of the 4096 words is 
held in a core diode module, hence, each word embraces all 
four modules in the stack. The cores on a module are 
arranged in matri ces, 32 by 128 cores, ca \I ed memory bi t 

MEMORY BLOCKS (1 TO 4 STACKS EACH) 

I 

1 ______________ , 

r MEMORY CABINET T MEMORY CABINET I 

IBRiRG! L _______ ~ _______ L 

MEMORY STACKS 
I 

I 12-16K I 0-4K 4-SK S-12K 

I 4096 I I 4096 ~ I 
WORDS 

I I 
WORDS WORDS 

MEMORY CORE DIODE MODULES (FOUR) 
I 

BYTE 0 BYTE I BYTE 2 

BIT 0 BIT S 

BIT I BIT 9 

BIT 2 BIT 10 

BIT 3 BIT II 

BIT 7 BIT 15 

BIT 6 BIT 14 

BIT 5 BIT 13 

BIT 4 BIT 12 

MEMORY BIT PLANE 
I 

BIT 20 I 
y DRIVE WIR~~I'---------'1 

XO-------XI27 
X DRIVE WIRES 

Figure 3-6. Core Memory Organization 

BYTE 3 

BIT 24 

BIT 25 

BIT 26 

BIT 27 

BIT 32 

BIT 31 

BIT 3(, 

BIT 29 

BIT 28 

(PARITY) 

90J060A.302 

3-9 



Paragraphs 3-12 to 3-13 SDS 901172 

planes. Each core in a bit plane corresponds to one bit in 
each of the 4096 words in the stack. Modules for bytes 0, 
1, and 2 contai n eight bit planes. The module for byte 3 
contains nine bit planes to include the parity bit. 

3-12 Port Expansi on 

Memory blocks are connected in parallel to the CPU (see 
fi gure 3-7). Each memory block has a standard port desig­
nated as port C. 

A port is a section of memory logic that controls entry 
priority during memory access. Port C is always connected 
to the controlling CPU and is sufficient in systems where 
the only input-output processor is an integral lOP in the 
CPU. For each external lOP or CPU connected to a mem­
ory block an optional port is added. The first additional 
port is port B. It is commonly called a one-to-two port 
expander and provides a second access path. The next port 
added is port A and is commonly called a two-to-three port 
expander. Port A provides a third access path and has the 
highest priority. Port C has the lowest priority. For maxi­
mum port expansion on any memory block, a three-to-six 
port expander may be added to either port A or port B. The 
three-to-six port expander has four additional ports provid­
ing a total of six access paths when connected. The addi­
ti onal ports are numbered 1 through 4. Port 1 of the 
expander has the hi ghest pri ori ty and port 4 the lowest. 

INPUT-OUTPUT 
PROCESSOR 

OR CPU 

+ 
I 
I ... I .. ... ... 

PORT A 
MEMORY THREE-WAY 
BLOCK ACCESS 

(4K, 8K, 12K, 
OR 16K) 

... .... ..... ... 
PORT B 

CENTRAL PORT cj TWO-WAY 
ACCESS 

PROCESSiNG ~ I 
UNIT I 

I 

r - _"f __ , 
I I 
I UP TO 7 

I ADDITIONAL 
I MEMORY I 
I BLOCKS I 
I I 
L - --- .J 

3-13 Three-Wire Core Selecti on 

The Sigma 5 combines the three-dimensional coincident 
current core selection method with the two-dimensional 
I inear core selecti on method. This combination is commonly 
known as the 2-1/2 D system. The 2-1/2 D system has a 
coincident current read cycle and a linear select write 
cycle. Three wi res are threaded through each core: an X 
wire (word wire), a Y wire, and a sense wire. No inhibit 
winding is present. 

On each bit plane there are 128 X wires. Each X wire also 
threads all other bit planes on a core module. A bit plane 
contains 16 Y wires which are separate for each bit plane. 
Each Y wire doubles back through a second row of cores to 
provide 32 Y wires in all. Typical X and Y wiring for two 
cores in each of two bit planes on a memory module is 
shown in figure 3-8. A sense wire threads through all of 
the cores in one bit plane. Since each Y wire passes through 
rNO rows of cores there are two core i ntersecti ons for each 
combination of X and Y wires. For a given direction, cur­
rents add in the core at one intersection and cancel in the 
other. Hence, core selection is determined by current 
direction as well as wire location. 

To write ones, half current is passed through one word wire; 
half current is also passed through the selected Y wire to 
affect one core out of 4,096. The two half currents add at 

PORT ... 
~} ONE TO FOUR ~ EXPANSION ::. = INPUT-OUTPUT 

FOR 6-WAY ~ :: PROCESSORS 
ACCESS - ... 

INPUT-OUTPUT 
PROCESSOR 
OR CPU 

901172A. 33 

Figure 3-7. Memory Connections and Port Expansion 

3-10 



SDS 901172 Paragraphs 3-14 to 3-15 

BIT 
PLANES r---v\i---l I ,,--... , , 

I I I I 
I , 

i I 
I I 

I I MAGNETIC 
I I 

Xl I , 
I I '/CORE 

(THRU ALL \ I I \ ,,,f 

BIT PLANES) I I' I I I' I' I 
L ~-- ..J L """-- J 

YO Y2 YO Y2 

Y LINES (TYPICAL 
FOR ALL BIT PLANES) 

901060A.303 

Figure 3-8. Typical X and Y Core Wiring 

the intersection Qnd force the core to the Olle srare. To 
write zeros, the Y current is inhibited on the bit planes 
where zero bits are to be written. This method is similar to 
the linear select method in that the digit current is added 
to, rather than subtracted from, the word current. 

To read, half current is passed through the appropriate X 
wire, half current is also passed through the same Y wire on 
all bit planes. All cores in the selected location are forced 
to zero, and the sense wires detect current from the bit 
planes that contained ones in the selected location. 

3-14 Memory Input-Output 

Data is interchanged between core memory and the CPU or 
lOP on a 32-bit bidirectional memory bus. Each memory 
block contains control logic, port priority logic, and co~e 
selection logic to control information flow within the block. 
Two latch registers are provided~ one to hold location ad­
dresses (L-register) and the other to handle data entering 
and leaving memory (M-register). Data entering memory is 
gated from the CPU sum bus or lOP memory bus onto the 
core memory bus and loaded into the M-register. Data 
leaving memory is loaded into the M-register from sense 
amplifiers and is transmitted on the memory bus to the CPU 
C-register or lOP M-register. Addresses entering a core 
memory block may be modified by interleave logic before 
loading the L-register to address the cores. 

MEMORY TIMING. Two delay lines in each memory block 
control timing: one controls the read cycles, the other con­
trols the write cycles. The delay lines provide pulses at 20 
nsec intervals. Memory access occurs in three modes: read­
restore, full clear write, and partial clear write. Regardless 
of the mode, a read and a write cycle are required for each 
memory access. Every read cycle must be followed by a 
write cycle to replace the information in the same memory 
location. A write operation must be preceded by a read 
cycle to clear the location for storage. 

In the read-restore mode a memory request si gnal sends a 
pulse down the read delay line. Outputs from the delay line 

taps provide timing signals to energize the X and Y drive 
lines, enable the register latches and strobe data into the 
M-register. Parity is checked in this mode. In the full 
clear write mode, a read cycle is executed to clear the lo­
cation, but the read data is not gated into the M-register 
and is lost. During the partial clear write mode: the data 
from the read cycle is gated into the M-register and parity 
is checked. One, two, or three new bytes are inserted into 
the word and new parity is generated before the word is 
written into memory. 

To execute a write cycle for the read-restore and full clear 
write modes, an output from the read delay line starts a 
pulse down the write delay line. Outputs from the write 
delay line energize the X and Y drive lines in the opposite 
direction from that in the read cycle, and inhibit the Y lines 
in bit planes where zeros are to be stored. Zeros are present 
in all bit positions of a word following a destructive read 
operation and remain in bit positions where writing a one is 
illhibifed. Odd parity is checked in the fuii ciear write 
mode, setting the parity error flip-flop if the M-register 
contains an even amount of ones. Timing for the write cycle 
in the partial clear write mode is the same as that for the 
read-restore and full clear write modes except that ener­
gizing the drive lines is delayed long enough to set byte 
indicators and route the information into the addressed byte 
locations. 

INTERLEAVING. Memory access speed can be increased 
by overlapping the second cycle of one access with the 
first cycle of the next access. An example of interleave 
timing in a read-restore mode is shown in figure 3-9. The 
interleave method requires that successive words be stored 
in different memory blocks because in addressing the same 
memory block successively both the read and write cycles 
must be completed before another access is started. As an 
example of interleaving, consider two 4K memory blocks 
and a program that calls for storing data in sequential mem­
ory locations. The first word is stored in one of the block~. 
the second word is stored in the other block in the same 
numbered location as the first, and the third word is again 
stored in the first block. In larger memories and different 
clock sizes, interleaving becomes more complex. but two 
success! ve words are never stored in the same block. Inter­
leaving is performed by transforming certain bits in the 
address before entering the recognition logic of the port. 
Four switches on switch modules, and starting-address 
switches on the ports; are provided for interleave setup. 

3-15 INPUT-OUTPUT CHAN NEL 

An input-output channel consists of an input-output proc­
essor (lOP) connected to one or more device controllers, 
each controlling one or more peripheral devices. The lOP 
control s data exchange between core memory and the devi ce 
controllers. This discussion describes the three types of 
IOP's which a Sigma 5 system may contain: multiplexing 
(MIOP), selector (SlOP), and internal (integral) lOP. De­
vice controllers and devices are not included in this dis­
cussion since their arrangements are unique to each system. 

3-11 



SDS 901172 

MEMORY 
BLOCK 1 

CYCLE 1 CYCLE 2 WITHOUT INTERLEAVING 

CYCLE 2 WITH INTERLEAVING 

MEMORY 
BLOCK 2 

90 1060A. 304 

Figure 3-9. Example of Interleaving in Read-Restore Mode 

Multiplexing and selector IOP's are external to the CPU 
and each is connected to one port in core memory by a 
single memory bus. This allows the I/o channels to 
communicate with core memory simultaneously with the 
CPU. The integral lOP is internal to the CPU and shares 
the CPU memory bus. Therefore, either the CPU or the 
integral lOP, but not both, may communicate with core 
memory at any time. 

Once started by the CPU, the external IOP's operate 
independently in transferring data between device con­
trollers and core memory. Data is transferred in words 
(four bytes at a time) between the lOP and core memory. 
Between MIOP's and device controllers, transfers are made 
a byte at a time up to four bytes per service cycle. Then 
a new order is executed. Between SIOP's and the device 
controll ers transfers are made in bytes, ha I fwords, and 
words continuously until the specified number of bytes has 
been transferred without disconnecting and reconnecting 
the device for each byte or word. 

Command doublewords stored in memory by the CPU before 
an I/O operation are used as instructions by the lOP. The 
doublewords contain an lOP order, byte address, flags, and 
byte count. An lOP order designates the operation to be 
performed such as read, wri te, and read backward; the byte 
address is the address of the next byte location in core 
memory where data is to be read or stored; the flags desig­
nate how the operation is to be handled (e.g., data chaining, 
command chaining); and the byte count is the number of 
bytes remaining to be transferred. The IOP's have four 
operating states: order out, data out, data in, and order in. 
These are defi ned as follows: 

3-12 

Order Out. During order out, the lOP accesses a com­
mand doubleword from memory, stores the doubleword in fast 
access memory except for the order, sends the order to the 
device controller, and terminates the operation. 

Data Out. During data out, the lOP accesses the 
memory location determined by the current byte address and 
transmits the data from that location to the device con­
troll er. The lOP decrements the byte count to refl ect the 
number of bytes remaining to be transferred and adjusts the 
byte address to access the next byte location. When the 
byte count is reduced to zero the lOP accesses another 
command doubleword and, if data chaining or command 
chaining is specified by either chaining flag, continues to 
transfer data. Otherwise, the data transfer is terminated. 

Data In. During data in, the lOP transmits data from 
the device controller to core memory by accessing the mem­
ory locations where the data is to be stored. The byte count 
and byte address are decremented wi th each byte. \Nhen 
the byte count is reduced to zero, the lOP accesses the next 
command doubleword only if data chaining or command 
chaining is specified by either of the chaining flags. 
Otherwise the data transfer is terminated. 

Order In. During order in, the device controller 
transmits the operational status of the device to the lOP 
and then terminates the operation. An order in is always 
followed by a terminal order. Terminal orders are sent 
from the lOP to the device controller to transfer control 
information when anyone of four conditions occur: count 
done, command chaining, lOP halt, and interrupt-on­
channel-end. 



SDS 901172 Paragraph 3-16 

3-16 Multiplexing lOP 

The pri ncipal elements contained in the MIOP include a 
data regi ster, address regi sters, fast access memory, adder, 
input and output registers, timing delay lines, and a func­
tion register (see figure 3-10). Timing and some control 
functions are not shown. The CPU communicates with the 
MIOP on three lOP address lines, three function code lines, 
and two condition code lines. The lOP address code desig­
nates one of eight possible MIOP's, the function code 
designates the operation to be performed (510, HIO, TIO, 
TDV, or AIO), and the condition code informs the CPU 
whether the lOP address or interrupt has been recognized. 
All other communication between the CPU and the MIOP 
is through locations X'20' and X'21' in core memory. For 
example, during an 510 instruction the CPU supplies 

MEMORY BUS TO/FROM CORE MEMORY 

~ ~ 

the lOP with the address of the fi rst command doubleword, 
the address of the device controller, and the device number 
through locations X'20' and X'21'. These locations are 
also used to transmit response information and devi ce status 
to the CPU. 

The fast access memory in the MIOP contains 32 sub­
channels, one for each possible device controller. Stored 
in each subchannel is the device controller number to 
which the subchannel is assigned. Each subchannel has an 
aO-bit capacity contained in six registers. Multiplexing 
occurs on a subchannel level and therefore on a device 
controller level. Devices connected to the same device 
controller are not multiplexed. A new start instruction is 
required to access two devices consecutively on the same 
device controller. 

a-BIT DATA PATH INTERFACE 
TO/FROM DEVICE CONTROLLER 

ADDRESS LINES (17) DATA LINES (32) 

S-REGISTER 

~ 

BYTE ADDRESSES AND COM-

M-REGISTER 
(4 BYTES) 

j~ 

,. 
ADDER 

FAST ACCESS 
MEMORY 

--
f+-

--

. .. INPUT 
REGISTER 

, I 

OUTPUT 
REGISTER 

------_FUNCTION RESPONSE 
LINES 

A-REGISTER ---
.... 

MAND DOUBLEWORD ADDRESSESL.-_____ ~ (DEVICE CONTROLLER AND 
'-------- SUBCHANNEL ADDRESSES) 

CPU 
INTERFACE 

LEGEND 

FUNCTION CODE -.. 
lOP ADDRESS 

CONDITION CODE 
~ 

~ N = NUMBER OF LINES 

FUNCTION 
REGISTER 

6/ FUNCTION INDICATOR L1NES ___ } TO/FROM DEVICE 

, SERVICE CALLS CONTROLLER -

901172A. 38 

Figure 3-10. Multiplexing lOP, Simplified Block Diagram 

3-13 



Paragraph 3-17 SDS 901172 

The CPU starts an input-output operation by executing an 
SIO instruction. In a typical operation during an 510, the 
address of the first command doubleword in core memory, 
the device controller address, and the device number are 
sent to locations X' 20' and X' 21 I where they are accessed 
by the addressed MIOP. At the same time, the MIOP is 
addressed by the CPU and the function code is sent to the 
device controller. The condition codes respond to the CPU 
and indicate whether the device controller address is recog­
nized, busy, or not recognized. If recognized, the device 
control I er responds with devi ce status on the functi on 
response lines. The status is stored in either location X'20' 
or X'21' or both so that it is available to the CPU. If 
ready, the device controller directs a service call to the 
MIOP and if no higher priority service call is pending, an 
order out service cycle is entered. 

During an order out, the MIOP accesses the first command 
doubieword which is loaded into the M-register. The order 
is senT to the device controller while the remaining portion, 
containing the byte address, byte count, and flags, is loaded 
into the assigned subchannel in fast access memory. The 
order out is followed by either a data out or data in service 
cycle as specified by the order. From one to four bytes are 
transferred during each succeeding service cycle depending 
on the capabilities of the device and the conditions speci­
fied by the command. The byte count and byte address are 
decremented by the adder for each byte transferred. A 
service call is generated for each service cycle (after a 
maximum of four bytes are transferred). This allows a higher 
priority device controller to interrupt for service. Logi­
cally, the device controller is disconnected at the end of 
each service cycle and is reconnected after the MIOP 
acknowledges the new service call. 

When the byte count has reached zero, the operation is 
terminated by an order in service cycle and a terminal 
order if neither command chaining nor data chaining flags 
specify chaining. If chaining is specified, the MIOP 
accesses the next command doubleword in sequence and 
conti nues the operati on. When a II data has been transferred, 
the I/O operation is ended with the order in and terminal 
order. 

3-17 Selector lOP 

The pri neipal elements contained in the SlOP include a data 
reg; ster, memory address regi ster (S), data buffer, regi ster 
for counters and flags, input-output regi ster, function 
regi ster, and ti mi ng del ay lines (see fj gure 3-11). The 
timing delay lines and some control functions are not shown. 
Since the SlOP is designed for high speed input-output 
devices such as RAD files and high speed tape stations, it 
only services one channel at a time and continues the data 
transfer without connecting and disconnecting the device 
contro!ler as in multiplexing operations. The equivalent of 
one fast access memory subchannel is provided to store the 
byte count, byte address, and flags. The data buffer a II ows 
for memory port interference, provides delays in the lOP 
data path, assembles and disassembles data, decrements the 

3-14 

byte count and byte address counter, and recei ves functi on 
response and status from the device controller. 

CPU interface and core memory interface to the SlOP are 
the same as those for the MIOP. The SlOP is similarly 
addressed by the CPU, and communication between the CPU, 
core memory locations X' 20' and X' 21 I, and the SlOP are 
also similar. The SlOP may be equipped with an optional 
bus-sharing feature which allows the SlOP to time-share a 
core memory bus with another SlOP equipped with a similar 
bus-shari ng feature. 

Interface between the device controller and the SlOP may 
consi st of 8, 16, or 32 bi t data paths to transfer bytes, 
halfwords, or words, respectively. The SlOP responds to 
device controller service calls and performs order out, data 
out, data in, and order in functi ons. Once started, a data 
exchange continues until the entire record is transmitted, 
as i ndi cated by a zero byte count or unti I the exchange is 
terminated by the device controller. 

During the order out operation, the lOP accesses the com­
mand doubleword from core memory, sends the order to the 
device controller, stores the byte address, byte count and 
flags, and then terminates the order out. During the data 
out operation, the SlOP accesses core memory as determined 
by the byte address and loads the data into the data buffer. 
In response to device controller request strobes, the SlOP 
accesses the data buffer, aligns the data as required by the 
state of the byte address and byte count regi sters, generates 
odd parity for a one byte data path, and transmits the data 
to the device controller. When the byte count is reduced 
to zero, data chaining is performed if specified by the data 
chaining flag; otherwise the order out is terminated. 

During a data in operation the SlOP responds to device 
controller requests and loads the data buffer. One byte odd 
parity checks are made if specified. The data buffer aligns 
the data accordi ng to the state of the byte count and byte 
address regi sters, accesses the core memory I ocati on desi g­
nated by the current byte address, and controls partial or 
full write operations to core memory. The byte address is 
incremented if it is a forward operation and decremented if 
a backward operation. The byte count is decremented each 
time core memory is accessed. When the byte count is 
reduced to zero, the SlOP performs data chaining if speci­
fied by the data chaining flag; otherwise the order is 
terminated. 

During order in, the SlOP accepts the operational status 
byte from the device controller in which any of the follow­
ing conditions are reported: transmission error, incorrect 
length, chaining modifier, channel end, or unusual end. 
The SlOP responds to the conditions reported and then ter­
minates the operation. The service sequence is terminated 
with a terminal order sent to the device controller. The 
terminal order may report any of the following: interrupt, 
count done, command chain, or lOP halt. 



SDS 901172 

MEMORY BUS TO/FROM CORE MEMORY 

8, 16 OR,32-BIT DATA 
PATH INTERFACE 

TO/FROM DEVICE CONTROLLER 
~ 

, 

~ 

ADDRESS LINES (17) 

S-REGISTER .---

i 
I I 

j~ 

DATA LINES (32) 

M-REGISTER 
(4 BYTES) 

t DATA 

I 

DATA BUFFER --

.----4--~ INPUT/OUTPUT 
REGISTER 

I I 

DATA 

... FUNCTION RESPONSE LINES (STATUS) 

• COMMAND DOUBLEWORDS 

COUNTERS AND 
BYTE ADDRESSES FLAGS 
AND COMMAND 

DOUBLEWORD ADDRESSES 

FUNCTION 
I 6 / FUNCTION INDICA TOR LINES l TO/FROM 

REGISTER 
CPU 

, SERVICE CALLS "" r DEVICE 
~ J CONTROLLER 

-
INTERFACE lOP ADDRESS 

LEGEND 

.. 
CONDITION 

CODE 

~ N = NUMBER OF LINES 

Figure 3-11. Selector lOP, Simplified Block Diagram 

901172A. 39 

3-15 



Paragraphs 3-18 to 3-21 SOS 901172 

3-18 Integral lOP 

The integral lOP is a multiplexing lOP which uses most of 
the CPU registers to perform Va operations. A CPU 
equipped with an optional integral lOP contains additional 
registers IOOA, IOFR, and IOFM, and a 32-channel fast 
access memory. The registers and their functions are shown 
on the CPU arithmetic, control, and address functions block 
diagram, figure 3-3. The fast access memory is not shown. 
The integral lOP responds to service calls from the device 
controllers and performs order out, data out, data in and 
order in operations in a manner similar to the MIOP. 
Timing is accomplished by the CPU clocks which control 
four input-output phase flip-flops and sixteen switch phase 
flip-flops. Data chaining and command chaining may also 
be performed. 

3-19 Chaining 

Chaining permits an lOP to execute two or more commands 
from memory for a single start i nstructi on executed by the 
CPU. Command chaining is specified by setting the com­
mand chain flag in the command doubleword. Instead of 
terminating service when a command has been executed, 
the next command doubleword in sequence is read by the 
lOP. If the command chaining flag is also set in the new 
command doubleword, another command doubleword is 
read after the present one has been executed. Fi na lIy, 
when a command doubleword is accessed in which the 
command chaining flag is not set, the operation is ter­
minated at the end of the current command doubleword. 

Data chaining is specified by a data chaining flag in the 
command doubleword. Data chaining permits scatter 
reading and gather writing. Scatter reading is placing 

3-16 

information from one physical record in a device into one 
or more noncontiguous memory locations. Gather writing 
takes i nformati on from one or more nonconti guous memory 
locations and writes it into one physical record ina device. 
When a data chain flag is detected, the lOP needs a com­
mand doubleword from the next successive memory location 
as in command chaining. but the order bits in the double­
word are not transmitted to the device controller. Thus, 
the operation called for in the previous order is continued 
without starting a new record. Data chaining stops when a 
zero is detected in the data chaining flag bit of the current 
command doubleword. 

3-20 lOP Priority 

lOP priority for external IOP's is established in relation to 
the CPU and in relation to core memory (see figure 3-12). 
In relation to the CPU, IOP's are connected in trunktail 
fashion. The lOP closest to the CPU has the highest priorit» 
the one farthest from the CPU has the lowest. All of the 
IOP's share a single interrupt request line to the CPU. In 
relation to core memory, priority is determined by the mem­
ory port to which the lOP is connected. Port A has a higher 
priority than port B, and of the four port expander outputs, 
port 1 has the hi ghest and port 4 the lowest pri ori ty. 

3-21 DETAILED PRINCIPLES OF OPERATION 

The detailed principles of operation describe the logical 
and nonlogical functions performed by each major equip­
ment element. Detai led logical and circuit diagrams are 
used to develop the explanations of the logical functions. 
When a detail needs further clarification, a simplified 
diagram is included. Basic logic symbols used in the equip­
ment documentation are defined in figure 3-13. 



CPU 

SDS 901172 

MEMORY ACCESS PRIORITY r- -- - --, 

PORT B 

PORT C (LOWEST PRIORITY) 

MEMORY BLOC K 

PORT A 
(HIGHEST PRIORI TY) 

PORT EXPANDER 

PORT 4 PORT 3 PORT 2 

(LOWEST 
PRIOR-

P ORT 1 
IGHEST 
IORITY) 

(H 
PR 

L __ ITY) - _. f- - - r- - - ~ - --
,-- -- ---r- -- --. 
I I , ! ! ! 

~~C!J~~ 
{HIGH EST (LOWEST 
PRIORITY) PRIORITY) 

INTERRUPT PRIORITY L __ _ 

Figure 3-12. Typical lOP Priority Arrangement 

-, 
i 
I 
I 
I 
I 

_-1 

901060.6..314 

3-17 



SDS 901172 

LOGIC FUNCTION SYMBOL DESCRIPTION 

INPUT OUTPUT 

:=0--' 
A B F 

AND L L L 
L H L 
H L L 
H H H 

INPUT OUTPUT 

:=D--' 
A B F 

OR L L L 
L H H 
H L H 
H H H 

INPUT CONDITION: A SMALL CIRCLE AT AN INPUT TO ANY ELEMENT (LOGICAL 
OR NONLOGICAL) INDICATES THAT THE RELATIVELY LOW (L) SIGNAL ACTIVATES 
THE FUNCTION. CONVERSELY, THE ABSENCE OF A SMALL CIRC LE INDICATES THAT 

STATE INDICATOR 0 THE RELA T1VEL Y HIGH (H) SIGNAL ACTIVATES THE FUNCTION. 

OUTPUT CONDITION: A SMALL CIRCLE AT THE SYMBOL OUTPUT INDICATES THAT 
THE OUTPUT TERMINAL IS RELATIVELY LOW WHEN THE FUNCTION IS ACTIVATED. 

INPUT OUTPUT 

A B F 

:=0--' 
L L H 

NAND L H H 
H L H 
H H L 

OUTPUT LOW IF 80TH INPUTS HIGH 

INPUT OUTPUT 

A B F 

::=[>--, L L H 

NOR 
L H L 
H L L 
H H L 

OUTPUT LOW IF ONE OR MORE INPUTS ARE HIGH 

:jD-' 
INPUT OUTPUT 

OR A B F 
A 

9' 
EXCLUSIVE OR L L L 

8 L H H 
H L H 
H H L 

I THE FLIP-FLOP ASSUMES THE 1 STATE WITH: 
M A. INPUT S HIGH AND INPUT C CLOCKED OR 

-5 1- B. It'.JPUT tv~ HIGH 

GATED THE FLIP-FLOP ASSUMES THE 0 STATE WITH: 

FLIP-FLOP -C FF A. INPUT R HIGH AND INPUT C CLOCKED OR 
B. INPUT E HIGH 

- R 0- THE FLIP-FLOP ASSUMES THE 1 STATE IF BOTH INPUTS SAND R ARE HIGH AND 
E INPUT C IS CLOCKED. THE FLIP-FLOP TOGGLES AT TRAILING EDGE OF CLOCK 

I PULSE AND LEADING EDGE OF PULSE AT DIRECT INPUTS M AND E. 

M REPEt..TER THIS FLIP-FLOP ASSUMES THE 0 STATE WHEN THE S INPUT IS LOW AND THE 
FF C INPUT IS CLOCKED. THE FLIP-FLOP TOGGLES AT THE TRAILING EDGE FLIP-FLOP 

OF THE CLOCK PULSE. u 

Figure 3-13. Basic logic Symbols Chart (Sheet 1 of 3) 
9011 72A. 34/1 

3-18 



SDS 901172 

LOGIC FUNCTION SYMBOL DESCRIPTlOf-,J 

f ~-t 
S R 

RG(N) 

1 0 

N.f Nt 
THE BINARY REGISTER SYMBOL REPRESENTS A GROUP OF FLIP-FLOPS USED AS A 
SINGLE REGISTER. THE LETTER N INDICATES THE NUMBER OF FLIP-FLOPS OR 

BINARY REGISTER 

I I 
BITS IN THE REGISTER. IN SOME APPlICA TlONS THE SYMBOL MA Y BE SHOWN 

I I I I I I AS IN THE LOWER CONFIGURATION BUT IS USUALLY INDICATED AS IN THE 

S C R S C R UPPER DRAWING. 

RG(N) 

1 0 1 0 

I I I I 

RIGHT PARALLEL INPUT LEFT 
SHIFT 

N+ ~ 
SHIFT 

INPUT INPUT 
5 R 

-1 If--
SERIA L INPUT SR(N) SERIAL OUTPUT 

-0 Of--
1 0 

N{ N{ THE SHIFT REGISTER SYMBOL REPRESENTS A BINARY REGISTER WITH PROVISIONS 
FOR DISPLACI NG OR SHIFTING THF CnNTFNT, OF TH~ R~G!STER 0~!E STACE 

~.A.P.;A.LLE L OUTPUT AT A TIME TO THE RIGHT OR LEFT BY THE SHIFT INPUT. THE LETTER N I~~DICATES 
SHIFT REGISTER OR THE NUMBER OF FLIP-FLOPS OR BITS IN THE REGISTER. IN THE lOWER SYMBOL 

RIGHT PARALLEL INPUT LEFT AT THE LEFT, THE NUMBER OF INPUTS AND OUTPUTS AGREE WITH THE NUMBER OF 
SHIFT I /------/ I SHIFT BITS (N). UNUSED INPUTS AND OUTPUTS ARE NOT SHOWN. 
INPUT INPUT 

S R S R 

SERIAL INPUT- SR(N) f--SERIAL OUTPUT 

1 0 1 0 

I 1-- - - --/ / 
PARALLEL OUTPUT 

~ 

THE UNACTUATED STATE OF THE SINGLE SHOT IS EITHER ZERO OR ONE. WHEN -g- SS ACTUATED, IT CHANGES TO THE OPPOSITE STATE AND REMAINS IN THAT STATE 
1- FOR THE DURA TION OF THE ACTIVE TIME OF THE DEVICE. THE DURATION, 

SINGLE SHOT OR - AMPLITUDE, POLARITY AND SHAPE OF THE OUTPUT SIGNAL ARE DETERMINED 

F5;sl 
0 - BY THE CHARACTERISTICS OF THE SS AND NOT BY THE INPUT SIGNAl. A 
~ STYLIZED W.~.VEFOR".~ ~ .. AA Y BE SHOV/t'~ 1~.JSIDE OR OUiSiDE OF THE SYMBOL 

I I 

ONE OUTPUT TWO OUTPUT TO INDICATE OUTPUT CHARACTERISTICS. 

-{II 5MS}--

THE TIME DELAY DURATION IS SHOWN INSIDE OR OUTSIDE THE SYMBOL 

TIME DELAY -{II ~ ADJACENT TO THE OUTPUT. TWO VERTICAL LINES IN THE SYMBOL INDICA TE 

I 

THE INPUT SIDE. IF THE DELAY DEVICE IS TAPPED, THE DELAY TIME RELATIVE 
1.5 MS TO THE INPUT IS SHOWN ADJACENT TO THE TAP OUTPUT. 

I 
-{II ~ 3 MS 

GENERAL D THE SYMBOL APPLIES TO FUNCTIONS NOT SPECIFIED ELSEWHERE. IT IS 

LOGIC FUNCTION ADEQUATELY LABELED TO IDENTIFY THE FUNCTION PERFORMED 

=r- R WHERE A CIRCUIT IS USED TO ADD INPUTS TO ANOTHER AND OR ANOTHER OR 
CIRCUIT, AND THE CONNECTION FROM THE SECOND CIRCUIT TO THE FIRST 

E IS MADE AT OTHER THAN A NORMAL INPUT OR OUTPUT OF THE FIRST CIRCUIT, 
(N) THE CONNECTION IS INDICA TED AS SHOWN IN THE SYMBOL. THE LETTER E 

EXTENDED INPUTS INDICATES EXTENSION AND THE LETTER R, WHEN SHOWN ADJACENT TO THE 
SYMBOL, INDICATES THAT THE OUTPUT REGISTER IS ADJACENT TO, OR IN 
THE VICINITY OF, THE HARDWARE PHYSICAL LOCATION AS DESCRIBED BY 

=L THE INTERNAL LABEL OF THE SYMBOL. LETTER N INDICATES PIN NUMBER 
OF EXTENSION POINT. 

90 11 72A. 34/2 

Figure 3-13. Basic Logic Symbols Chart (Sheet 2 of 3) 

3-19 



LOGIC FUNCTION 

SCHMITT TRIGGER 

AMPLIFIER 

DOT AND 

DOT OR 

SIGNAL PATHS 

SYMBOL 
DESIGNATIONS 

3-20 

SDS 901172 

SYMBOL 

~OR 
~ 
ONE OUTPUT 

~ 
~ 
TWO OUTPUT 

H ~ H OR H--[::>o----. L 

: =lFUN~TlON ~[t-~-+--. F 

A V 
FUNCTION 

V 

• 
1/ 
II 

~/I Fl 
N/ 

} 

10, ,6 
I r } 

I 

B 

C 

CD 

CR 

E 

EF 

FF 

LD 

LS 

M 

(N) 

R 

RD 

RG(N) 

S 

SA 

SR 

55 

sT I 

DESCRIPTION 

THE SCHMITT TRIGGER ACTUATES WHEN THE INPUT SIGNAL EXCEEDS A THRESHOLD 
VOLTAGE. THE UNACTUATED STATE OF ST IS EITHER ZERO OR ONE. WHEN 
ACTUATED, IT CHANGES TO THE OPPOSITE STATE AND REMAINS IN THAT STATE 
UNTIL THE INPUT SIGNAL NO LONGER EXCEEDS THE THRESHOLD VALUE. THE 
OUTPUT SIGNAL AMPLITUDE AND POLARITY ARE DETERMINED BY THE DEVICE 
CHARACTERISTICS ANDNOT BY THE INPUT SIGNAL. A STYLIZED WAVEFORM MAY BE 
SHOWN INSIDE OR OUTSIDE THE SYMBOL TO INDICATE AMPLITUDE, 
POLARITY, THflESHOLD VOLTAGE AND DURATION. 

THE SYMBOL REPRESENTS A LINEAR OR NONLINEAR CURRENT OR VOLTAGE 
AMPLIFIER. THE AMPLIFIER MAY HAVE ONE OR MORE STAGES AND MAY OR MAY 
NOT PRODUCE GAIN OR INVERSION. LEVEL CHANGERS AND INVERTERS, 
CABLE DRIVERS AND RECEIVERS, EMITTER FOLLOWERS, RELAY DRIVERS, 
LAMP DRIVERS AND SENSE AMPLIFIERS ARE EXAMPLES OF DEVICES FOR WHICH 
THIS SYMBOL APPLIES. THE AMPLIFIER FUNCTION IS IDENTIFIED BY A 
LETTER DESIGNATION INSIDE THE SYMBOL. LETTER DESIGNATIONS FOR 
THE LOGIC SYMBOLS ARE LISTED AT THE END OF THIS CHART. 

WHERE FUNCTIONS HAVE THE CAPABILITY OF BEING COMBINED ACCORDING TO 
THE AND OR THE OR FUNCTION SIMPLY BY CONNECTING THE OUTPUTS THAT 
CAPABILITY IS SHOWN BY ENVELOPING THE BRANCHED CONNECTION WITH 
AN AND OR AN OR SYMBOL OF SMALLER SIZE 

SINGLE CHANNEL 

SIGNAL FLOW 

2 CHANNEL 1 
3 CHANNEL J MULTIPLE CHA~NEL 
N = NUMBER OF CHANNELS 

MULTIPLE CHANNEL WITH TAKEOFF 

SIGNAL PATHS CROSSING WITH NO CONNECTION 
(NOT NECESSARILY PERPENDICULAR) 

BUFFER AMPLIFIER 

CLOCK 

CABLE DRIVER 

CABLE RECEIVER 

ERASE (DIRECT RESET INPUT) 

EMITTER FOLLOWER 

FLIP-FLOP 

LAMP DRiVER 

LEVel SETTER 

MARK (DIRECT SET INPUT) 

NUMBER OF STAGES 

RESET 

RELAY DRIVER 

REGISTER, N STAGES 

SET 

SENSE AMPLIFIER 

SHIFT REGISTER 

SH ..... GLE SHOT 

SCHMITT TRIGGER 

90 11 72A. 34/3 

Figure 3-13. Basic Logic Symbols Chart (Sheet 3 of 3) 



SDS 901172 Paragraphs 3-22 to 3-23 

3-22 CENTRAL PROCESSING UNIT 

The following is the detailed theory of the logic circuits 
contained in the central processing unit. The arithmetic 
and control circuits are discussed in terms of registers and 
control signals. The generation of clock pulses and the use 
of these clock pulses to establish variable time intervals, 
or phases, during instruction execution are also described. 
The operation of the real-time clock, the watchdog timer, 
and the power fail-safe option are discussed individually, 
and the interrupts or traps caused by outputs from these 
circuits are described under interrupt and trap operation. 
The logic theory of the processor control panel is included. 

3-23 Arithmetic and Control Circuits 

The arithmetic and control circuits in the CPU consist of 
registers, an adder, control flip-flops, and 32 multifunction 
lines co lied the sum bus. The regi sters are desi gnated A, 
B, C, CC, 0, DIO, MC, 0, P, R, RP, 10DA, and 10FR. 
The last two registers are part of the integral lOP, and are 
described in that section of the manual. A block diagram of 
the arithmetic and control circuits is shown in fi gure 3-14. 

C-REGISTER (CO-C31 ). The C-register serves as an instruc­
tion register and is used in arithmetic calculations with the 
A- and D-registers. All core memory information enters the 
CPU by means of the C-register, and this register is one of 
two entrance paths for private memory information. During 
some calculation processes, the C-register receives sum bus 
outputs for shifting operands and is also used as a temporary 
storage register for numerical values to be later transferred 
to the D-regi ster. Data may be transferred to other regi sters 
or stored in private memory from the C-register by means 
of the sum bus. A diagram of C-register inputs and their 
respective enabling signals is shown in figure 3-15. 

The C-register is unique among the CPU registers in that 
its storage circuits are made up of buffered latches instead 
of flip-flops. In the logic equations, these buffered latches 
are referred to as buffer flip-flops, identified by the symbol 
FB. 

The operation of a buffered latch is shown in figure3-16, 
using bit 1 of the C-register as an example. When the 
C-register is to be loaded from private memory, core mem­
ory, or the sum bus, one of the three lower inputs to the 
OR gate goes true, and buffer output C1 is driven true. 
The C1 output is fed back to the input of an AND gate 
containing holding term HOLDC. As long as HOLDC is 
true, C1 wi II contain a logical one, even after the qual i­
fying signal has dropped. A zero is placed in C1 when 
either early data release signal EDR from memory, DCCL/1, 
or DCCL/2 goes true, causing HOLDC to drop. Signals 
DCCL/1 and DCCL/2 are timing outputs from the CPU 
delay lines. 

When an instruction is in the C-register, outputs are taken 
to control flip-flops for indexing and indirect addressing, 

to the R-regi ster for private memory addressi ng, and to the 
O:-regi ster for opcode decodi ng. 

A-REGISTER (AO-A31). The A-register is one of two inputs 
to the adder and is one of two entrance paths to the CPU 
from private memory. This register is used for arithmetic 
calculations, alignment, shifting, checking arithmetic 
results, masking certain bits during comparison operations, 
and as an intermediate register for transfer of information 
through the adder to other regi sters and to core and private 
memory. 

The arithmetic function of the A-register is used for index­
ing, incrementing and decrementing count figures, modifying 
numerical values, and for addition, subtraction, multipl i­
cation, and division. The alignment function {left and 
right shifting from the A-register or the sum bus} is used for 
aligning such information as bytes, halfwords, count values, 
I/O addresses. and I/o status. When comparison operatiom 
are taking place, the A-register contains one of the num­
bers to be compared in the adder. 

When arithmetic results are to be checked, the information 
is gated into the adder from the A-register, and the adder 
output on the sum bus is tested. 

The inputs to the A-register and their enabling signals are 
shown in figure 3-17. 

a-REGISTER (01-07). The a-register, or opcode register, 
receives the 7-bit operation code from the C-register. The 
a-register outputs are decoded to provide logic signals 
appropriate to the instruction being executed. 

The inputs to the a-register and their enabling signals are 
shown in figure 3-18. 

RP-REGISTER (RP24-RP27). The RP-register, or register 
block pointer, provides the address of one 16-register block 
out of 16 blocks in private memory. The private memory 
block selected by the register block poi nter is referred to as 
the current regi ster block. Thi s regi ster is part of the pro­
gram status doubleword, occupying bits 56 through 59 of 
PSW2. The register block number is placed in the RP­
register by way of the sum bus during a load register pointer, 
load program status doubleword, or exchange program status 
doubl eword i nstruc ti on. The RP-regi ster outputs are used to 
set the four most significant bits of the private memory 
address lines, LR24 through LR27. . 

The inputs to the RP-register and their enabling signals are 
shown in figure 3-19. 

R-REGISTER (R28-R31). The R-register holds the four-bit 
private memory address which specifies or.e of a block of 16 
fast memory registers. The number is taken from the instruc­
tion word in the C-register, and the outputs of the R-register 
are used to set the four least significant bits of the private 
memory address lines, LR28 through LR31. 

3-21/3-22 



50-531 

IYTE ALIGN 

I--..:::L::.:.EF...:..T...::S.:..;.HI:.;,.F~T.::.8 _-+1-J 
RIGHT SHIFT 8 

RIGHT SHIFT 16 

RIGHT SHIFT 24 

DIOO-DI031 

BOOTSTRAP LOGIC------1~ 

PROCESSOR CONTROL KSO- KS31 
PANEL DATA SWITCHES 

MCO-MCl 

SUM~ _______________ ~R~IG~H~T~S~H~IF~T~I _____________________ ~ 

BUSI--____________________ ~Rl~G~H~T~S~H~IF...:..T..:::2 _____________________ ~ 

LEFT SHIFT 1 

I/O FUNCTION RESPONSE _:....:.FRO:::.-....:.F~R7:....__+I 
MEMORY FAULT INDICATORS MFLO-MFL7 

If---__ ~.@]~_-TR.-.-. P_AD_D_RES_S '_"~O_D!_m_R~T=:R2_:=I-T:R31=::1 :31 
PROGRAM STATUS DOUBLEWORD--f-~-+I 

PRIVATE 
MEMORY 

50-531 

MEMORY 
C 

0-31 

FLOATING CONTROL FLlP-FLOPS-----'----+i 

RRO-RR31 

NR28-NR31 I AO~A31 r----l 

1R28-R31 II I 

SOS 901172 

DIRECT INPUT/ D100-D1031 
OUTPUT LINES 

50-531 

010 
0-31 

-

DIRECT 
-INPUT/OUTPUT 

DATA LINES 

DIRECT 
ADD~ 32-47 -INPUT/OUTPUT 

ADDRESS LINES -

r---

CONDITION CODE CCI-CC4 f--
NP26-NP31 

P26-P31 MC 

~ 
0- 7 

r~ 
I DQWNCOUNT I 

PROCESSOR 
_CONTROL PANEL 

DISPLAY 
INDICATORS 

FLOATING-

-~';1I~T 
FPO-FP31 

_ CORE MEMORY 

/MBO-MB31/ 

LPRIVATE MEMORY 
AND I/O 
FAST MEMORY 
RWO-RW31 CORE MOl_MB3"1 I S2~S311 A 2~3I M I r~ 

UPCOUNT, I D~~~U;0NT I 
I I DOWNCOuNT 1 (InE 0) ADDER SUM BUS (50-531\ 

1/0DATA~ 

I 50-531 r---J I 515-531 

"~A,E."'A.ORY L PROTECTION 
WRITE LOCK DATA 
W/LK/0-W/LK/31 

I 

lEFT SHIFT l' --
-f-

50-531 

o 
1-7 

r---

D 
0-31 

DO-D31 

D12-D14 

R28-R31 

INDEX REGISTER ADDRESS 

CO-C31 

RP 
24-27 

FLOATING POINT FPO-FP31 

I/O 5TATU5------t~ 

PlS-P31 

BO-BI5 

LEFT SHIFT 1 

RIGHT SHIFT 1 

RIGHT SHIFT 2 

-l 

-
PROCESSOR ....ill.:..m. 
CONTROL PANEL KSPI5-K5P31 
ADDRESS SWITCHES 

___ PROCIS50R CONTROL 
~ PANH INDICA TORS 

MEMORY 
PROTECTION 
WRITE LOCK 
ADDRESS 
L/LKO-L!LKS 

INTERRUPT ADDRESS INTO-INTS 

TRAP ADDRESS TR2S-TR31 
MODIFIER 

P PI5-P20 
15-31 -

-
AS,A9,A30, A31-----r~ 

>----

32,33 
"--­

UPCOUNT, 
DOWNCOUNT 

PIS-~I CORE MEMORY 
10'-":...:..."-'-------+ ADDRESS 

CROSWVER 
P28-P$1 

/LBI5/-/LB31/ 

PRIVATE MEMORY 
'--------------------------------------------------.:1----------. REGISTER ADDRESS 

PRIVA TE MEMORY REGISlER PAGE ADDRESS LR24-LR31 

Figure 3-14. Arithmetic and Control Circuits 

, 901 1 72 A. 60 

3-23/3-2 



50-515 (SUM BUS) 
I 

CXS N(FAST PH1/A) 

SDS 901172 

RRO-RR31 (PRIVATE MEMORy) 
1 

CXRR 

MBO-MB31 (MEMORY BUS) 
I 

CXMB 

II 
S16-S31 (SUM BUS) 

I 

CXS 

BYTE 0 BYTE 1 C-REGISTER BYTE 2 BYTE 3 I 
o J 1 J 2 1 3 I 4 I 5 I 6 I 7 8 I 9 110 111112113114115!t 6 1171181191 20121122123 24125! 26 ! 27! 28! 29! 30! 3 J , 

90ii72A.6i 

Figure 3-15,. C-Register Inputs and Enabling Signals 

901172A. 62 

Figure 3-16. C-Register Bit 1 logic Diagram 

3-25 



SDS 901172 

A8-A31 (A- REGISTER) LEFT SHIFT 8 
1 

AXAL8 

AO-A7 RIGHT SHIFT 8 
1 

AXAR8 

(S/ A8), (S/ A9), A2-A4 
I 

IOAXST 

PROGRAM STATUS DOUBLEWORD 1 , 
AXPSWl 

R28-R31 (PRIVATE MEMORY ADDRESS) ~ 

, AXR 

CCZ, CC 1-CC4 
CONDITION CODE = 

NO. OF WORDS 
I 

AXCC 

MFLO-MFL7 
(MEMORY FAULT INDICATORS) 

1 
AXPARlTY 

AO-A7 RIGHT SHIFT 24 
I 

AXAR24 

(CONDITIONS AND 
FLOATING CONTROL) 

I 

AXFC 

AOL-A7L, P28, P28 (BOOTSTRAP LOGIC) 
I 

A21 L-A31 L 
I 

3-26 

AXLOAD 

FRO-FR7 
(I/O FUNCTION RESPONSE) 

I 

AXFR 

MCO-MC7 (MACRO-COUNTER) , 
AXMC 

UPCOUNT, DOWNCOUNT 
SET INPUTS 

1 ,..-----1.1_-----. 
'AUC3, ADC3"AUC7, ADC7

' AXAL8 SW5 FAST PH1/E 

RESET BY FUSF/1 

,AUC3, ADC3"AUC7, ADC7, 
I I 

UPCOUNT, DOWNCOUNT 
RESET INPUTS 

AO-A7 RIGHT SHIFT 16 
1 

AXAR16 

RR16 FUMSP PH1/F 

AXAL8 SW6 FAST PH1/E 

BYTE 1 A-REGISTER BYTE 2 

AX,AZ 
I 

ZEROS 

AXLOAD 

Figure 3-17. A-Register Inputs and Enabling Signals (Sheet 1 of 2) 

901172A.63/1 



SDS 901172 

KSO-KS31 (PCP DATA KEYS) 

I 
I 

AXK I 

DIOO/1-DI031/1 (DIRECT INPUT/OUTPUT REGISTER) 

I 
I 

AXDIO I 

RRO-RR31 (PRIVATE MEMORy) 

I I 
AXRR I 

SOOO, SOO, SO-S29 (SUM BUS) RIGHT SHIFT 2 

I I 
AXSR2 I 

SOO, SO-S3O (SUM BUS) RIGHT SHIFT 1 

I 
I 

AXSR1 I 

Sl-S31 (SUM BUS), A31 EN/1 LEFT SHIFT 1 
I 

I AXSLI ! 

SO-S31 (SUM BUS) 
I 

I AXS 
, 

PROGRAM STATUS DOUBLEWORD 2 
I , 

AXPSW2 I 

NR28-NR31 (COMPLEMENT OF PRIVATE MEMORY ADDRESS)~ 

I AXNR 1 

TR28- TR31 (TRAP ADDRESS MODIFIER) ~ 

1 I AXTR 

A-REGISTER 

o I 1 1 2 I 3 I .. I 5 I 6 I 7 1 8 I 9 110 I 11112113 I 14115 116117 118 119120 I 211221 23124125 126127128129 130131 

901172A.63/2 

Figure 3-17. A-Register Inputs and Enabling Signals (Sheet 2 of 2) 

3-27 



SDS 901172 

C 1-C7 (C-REGISTER) 
I 

OXC 

a-REGISTER 

011121314151617 

ox 
I 

ZEROS 

901 1 72 A. 64 

Figure 3-18. a-Register Inputs and Enabling Signals 

S24-S27 (SUM BUS) 
1 

RPXS 

RP-REGISTER 

24125126127 

RPXS 
I 

ZEROS 

S28-S31 
I 

RXS 

UPCOUNT SET LOGIC 
I 

RUC 31 

DOWNCOUNT SET LOGIC 
1 

RDC 31 

C8-Cll (C-REGISTER) 
I 

RXC 

R- REGISTER 

28129130131 

RX 
I 

ZEROS 

RUC 31 
I 

UPCOUNT RESET LOGIC 

RDC 31 
I 

DOWNCOUNT RESET LOGIC 

901 1 72 A. 65 

Fi gure 3··19. RP-Regi ster and R-Register Inputs and 
Enabling Signals 

The R -regi ster contents may be increased or decreased by 
one to obtain the most or least significant half of a 
doubleword. 

3-28 

The inputs to the R-register and their enabling signals are 
shown in fiaure 3-19. 

D-REGISTER (DO-D31). The D-register is one of two inputs 
to the adder. This register is used for arithmetic calcula­
tions and logic operations, sign extension, alignment, 
comparison, storing in core and private memory, and holding 
flags and status i nformati on for I/O operati on. 

The ari thmeti c functi ons of the D-regi ster are used for 
indexing, incrementing and decrementing count figures, 
modifying, and for addition, subtraction, multiplication, 
and division. 

The shift logic into the D-register from its own outputs and 
from the sum bus is used fOi alignment of bytes and ha!f­
words before arithmetic operations and of addresses for 
I/o operati on. 

A portion of the D-register output is used to develop a 
private memory index register address from the index field 
of an instruction received from the C-register. 

The inputs to the D-register and their enabling signals are 
shown in figure 3-20. 

B-REGISTER (BO-B31). The B-register is used for temporary 
storage of the program address while the P-register is being 
used for other functions. An address in the B-register may 
be loaded into private memory by means of the sum bus. 

During arithmetic calculations, the B-register is used to 
hold the mul tipl i er, the partial product, the numerator, or 
the quotient. This register is also used for shifting these 
values when required. During direct input and output, the 
B-register holds the DIO effective address. During floating 
point operation, the B-register is used to transfer informa­
tion from the floating point unit to private memory. The 
B-register also holds status information during I/o operation. 

The B-register inputs and their enabling signals are shown 
in figure 3-21. 

P-REGISTER (P15-P33). The P-register is primari Iy an 
address regi ster and is used to develop core memory, private 
memory, and memory protecti on write lock addresses. The 
register may be incremented or decremented to obtain the 
next instruction in sequence, to return to an instruction 
a fter ani nterrupt, or to obta in the upper or lower address 
of a doubieword. Processor control panel addresses are 
transferred directly to the P-register from the PCP switches, 
and PCP address indicators are connected to the P-register 
outputs. Bits 15 through 31 of the P-register are used for 
addressing, and bits 32 and 33 are used for control during 

·byte and halfword operation and for some I/O control 
functions. 

The P-register inputs and their enabling signals are shown 
in fi gure 3-22. 



024-030 
I 

OXOR8 

SO-S15 (SUM BUS) 
I 

SOS 901172 

C1-C31 (C-REGISTER) LEFT SHIFT 1 
I 

OXCLl 

CO-C31 (C-REGISTER) 
I 

OXC 

516-S31 (SUM BUS) 
I 

OXS \I OXS + IOPHO SW13 NSWl 

031 

r~OXOR8 

00-07 
I 

OXOR8 Ii 

08-015 
I 

OXOR8 NFUMH II 

016-031 
I 

OXOR8 

~(S/D6) = RESET/C + D30 DXDR8 

I BYTE 0 BYTE 1 O-REqiSTER BYTE 2 I BYTE 3 I 
I 0 \ 1 I 2 \ 3 I 4 \ 5 I 6\ 7 1 8 1 9 \1 0 111112113114115 h 6117\18119\20121122123\241251261271281291301311 

~ __ 0~X __ ~I,I~ ____ 0_X __ +_0~08_1_5X_Z __ ~I!~ ________ 0_X __ +_FU_M_H-TP_H4 __ +_0_X~S/_4 ________ ~ 
J I I 

ZEROS ZEROS ZEROS 

L..-----,r----..---J. OX + 00003XZ 
I 

ZEROS 

901 1 72 A. 66 

Figure 3-20. O-Register Inputs and Enabling Signals 

3-29 



SDS 901172 

FPO- FP31 (FLOA liNG POINT) 
I 

BXFP 

530/1,531/1, BO-B29 (B-REGI5TER) RIGHT SHIFT 2 
I 

BXBR2 

531/1, BO-B30 (B-REGiSTER) RIGHT SHIFT 1 
I 

01-031, 

BXBR1 

n"' ....... I 11 In DCr-TC'TCO\ 1 t:t:T CI-lT~T 1 
°"1[:1'111 \O-"LU1..JIL"1 LLI I .... " •••• 

I 
BXBLI 

50-514,515/1,516-S31 (5UM BUS) 
I 

BX5 

BO-B14 P16-P31 rB15/1 = B15 NBXP + P15 BXP 

I I 
----------------B~X-B----------------~I! BXP 

(5/BO)- (5/B3) 1/0 LOGIC 
I 

IOPOP 

(5/B8)-(5/BI4) 1/0 LOGIC 
I 

IOPOP 

RE5ET BY BX + IOPHI SW8 ORDER OUT 

RESET BY BX + IOPH3 5WI0 

5(B3031) = MIT (Me = 1) B30J, 

(5/B4) 1/0 LOGIC (5/BI5) = INTRAPI B15 NBRP 

o 

BX+INTRAP1 'L' ______________ ~B~X~ ____________ ~I~I ____ ~~~~--~ 
I I 

ZEROS ZER05 

901172A. 67 

Figure 3-21. B-Register Inputs and Enabling Signals 

3-30 



SOS 901172 

. S15-S31 (SUM BUS), P32HOLO, P33HOLD 
I 

PXS 

UPCOUNT SET INPUTS 
I I I I r---~I_----, 

PUC lS II PUC 1922 II PUC25 II PUC29 II PUC3033 

DOWNCOUNT SET INPUTS 
I I I I r---~I_--., 

PDC lS Ii PDC22 II PDC25 II PDC29 II PDC3033 

KSP15-KSP31 (PCP ADDRESS KEYS) 
I 

PXK 

INTO-INTS (INTERRUPT ADDRESS) 
I 

PXINT 

TR2S- TR31 (TRAP ADDRESS MODIFIER) 
I 

(S/P26) = (FAIO PHI + RESET/C) 
+ PCP4 KFILL/B 

PXTR 

PXTR 

(S/P31/l) 

RESET/C i
A30AXSR2 
+ AS IOPHO SW12 
+ A31 IXAL 
+ AXSRl 

A31 AXSR2 

PDC 1S II POC22 II PDC25 II PDC29 II PDC3033 
I I I I I 

DOWNCOUNT RESET INPUTS 

PUC1S II PUC1922 II PUC25 II PUC29 II PUC3033 
I I I I 

UPCOUNT RESET INPUTS 

PX 
I 

ZEROS 

+ A9 IOPHO SW12 

RESET BY CLEAR 

Figure 3-22. P-Register Inputs and Enabling Signals 

901 1 72 A. 68 

3-31 



SDS 901172 

DIO-REGISTER (DIOO/1-DI047/1). The DIO-register 
holds di rect input or output data and addresses duri ng read 
direct and write direct instruction execution. Flip-fiops 
DlOO/l through DI031/1 contai n the data, and are loaded 
from the direct input/output lines during read direct opera­
ti on and from the sum bus during write direct operation. 
Flip-flops DI032/1 through DI047/1 contain the address 
and are loaded from the B-register. The data outputs of 
the DIO-register are gated onto the sum bus during read 
direct operation and onto the direct input/output lines 
duri ng wri te di rect operati on. 

The inputs to the DIO-register and their enabling signals 
are shown in figure 3-23. 

Me-REGISTER (MCa-MC7). The Me-register, or macro­
counter, is used to keep track of the number of words for 
multiple-word instructions, the number of shifts for shift 
instructions, and the number of iterations for multiplication 
and division instructions. The counter is decremented by 
one each time the count is to be changed. 

The macro-counter is loaded from the P-regi ster during shi ft 
instructions, from the condition code register during stack 
and multiple instructions, and from the sum bus during the 

move to memory control i nstructi on. The outputs of the 
counter are transferred to the A-register or are applied 
directiy in control equotium. 

The inputs to the macro-counter and their enabling signals 
are shown in fi gure 3 -24 • 

CONDITION CODE FLIP-FLOPS (CC1-CC4). The con­
dition code flip-flops are part of the program status 
doubleword, occupyi ng bi t posi tions 0 through 3 of PSW1. 
These flip-flops are used as a 4-bit register in some opera­
tions. In other operations the flip-flops store bits repre­
senting the results of certain calculations. Only the register 
function will be discussed in this section. 

During read and write direct internal mode operati on, the 
condition code flip-flops are used to store the states of the 
four processor control panel sense switches, KSSl through 
KSS4. When a trap occurs during program status double­
word operati on, the CC fI ip-f1ops store the contents of the 
trap accumulator register, TRACCi through iRACC4. Dur­
ing interpret and program status doubleword operation, bits 
a through 3 of the sum bus are loaded into the condition 
code flip-flops, and during the load conditions and floating 
control instruction, 524 through 527 are loaded into CCl 
through CC4. 

50-531 (SUM BUS) 
I 

3-32 

DIOXS 

DIOO-DI031 (DIRECT I/O LINES) 
I 

DIOXDlO 

DIO-REGISTER (DATA) 

DIOX 
I 

ZEROS 

B 18- B31 (B- REGISTER) 
I 

DIOXB 

DlO-REGISTER (ADDRESS) 

DlOXB 
I 

ZEROS 

Figure 3-23. DIO-Register Inputs and Enabling Signals 

901172A.69 



SDS 901172 

SO-57 (SUM BUS) 
I 

MCXS 

DOWNCOUNT SET INPUTS 
I , 

jr--M-C ..... D-C-3---,' jr---M-C"-D-C-7---" 

CCZ, CC1-CC4 (CONDITION CODE) 
I 

AXCC 

NP26-NP30 (P-REGISTER), FUSF NP31, FUSF 
I 

MCXNPL1 

P26-P31 {P-REGISTER} , 

r-\---FADIV PRE3 

r--FAMULNH PRE3 

-FUMH PRE3 

(SjMC7) = 

MACRO-COUNTER 

011121314151617 

MCX 
I 

ZEROS 

I MCDC3 II MCDC7 I 

I I 
DOWNCOUNT RESET INPUTS 

FAST PRE3 N06 

901172A.70 

Figure 3-24. Macro-Counter Inputs and Enabling Signals 

The inputs to the condition code flip-flops when used as a 
register are shown with their enabling signals in figure 
3-25. 

ADDER. The adder performs the basic arithmetic and logic 
operati ons of the computer. All adder inputs are taken 
from the A- and D-registers, and the sum bus, SO through 
S31, is the common output for all of the results obtained 
in the adder. 

The operations performed in the adder are listed in table 
3-1. The gati ng terms at the top of the table are used to 
develop the generate and propagate signals used for 
parallel addition and subtraction. The enabling signals 
are the results of instruction decoding and are used to form 
the gating terms. 

In parallel addition, all the bits of both arguments enter 
the adder at once, and all the bits of the sum or difference 
are formed at once. Typical addition logic is shown in 
figure 3-26:, usi ng bits 27 through 31 as an example. The 
generate terms, G rt the propagate terms, PRn' and the sum 
bits, Sn' are formed as follows: 

A f.j:\ D 
n\..!.l n 

The outputs to the sum bus are gated by enabling term 
SXADD. The carry terms, Kn, are generated as shown in 
the figure. 

The arrowheads pointing to each K term block represent an 
OR gate whose output is the appropriate carry term. Each 
continuous line, touching the K and PR term biocks, repre­
sents an AND gate containing the terms touched by the 
line and with its output at the arrowhead. From each group 
of four adder stages a hi gher order carry, represented in the 
figure by K27, is developed, and this term is used as the 
carry into the next group of four stages. The truth table 
for the A plus D operation is shown in table 3-2. 

In the A minus D operation, the generate and propagate 
terms are developed as follows: 

G 
n 

PR 
n 

A ND 

A D + NA ND 

KSS1-KSS4 
I 

CCXRWD I 

TRACC 1- TRACC4 
I 

S24-S27 
I 

CCXSj3 

SO-S3 
I 

CCXSjO 

CC 
FLIP-FLOPS 
1 J 2 1314 

R/CC 
I 

ZEROS 901172A. 71 

Figure 3-25. Condition Code Flip-Flop Register Inputs 
and Enabling Signals 

3-33 



LI 23 
A-REGISTER 0 
D-REGISTER 1 

~ G28 

I::lI G28-G31 I 
I P~7 I I K27 1 I P~8 
I I I 1 I II 

~\v'---.~....--J 
I 

PR28-PR31 

SUM o 
I 

SOS 901172 

29 'm 

0 0 
0 1 

G29 G30 

0 0 

K30 

o o 

Figure 3-26. A Plus D Adder Logic 

Table 3-1. Adder Operations 

GATING TERM 

OPERA TION ENABLING SIGNAL PRXAD PRXAND PRXNAD PRXNAND GXAD 
AD A ND NA D NA ND AD 

A+D S/SXAPD X X X 

A+D+l * X X X 

A-D S/SXAMD X X 

A-D-l t X X 

D-A S/SXDMA X X 

D-A-l S/SXDMAMl X X 

AnD S/PRXAD X 

NAnD S/PRXNAD X 

AnND S/PRXAND X 

AnD S/SXAORD X X X 

AGD S/SXAEORD X X 

A S/SXA X X 

D S/SXD X X 

I I 
NA S/SXNA X X 

(Conti nued) 

3-34 

31 

G31 

flfl 
I I I I 1\ /\;\/\/\ )) ) } 

o 

901172A. n 

GXAND GXNAD K31 
AND NA D 

X 

X X 

X 

X X 

V r, 

I 



SDS 901172 

Table 3-1. Adder Operations (Cont.) 

f-------. 

OPERATION ENABLING SIGNAL PRXAD PRXAND 
AD A ND 

ND S/SXND X 
I 

-A S/SXMA 

I -D S/SXMD X 

A+1 S/SXAPl X X 

D+1 S/SXDP1 X 

A-I S/SXAM1 

D-J S/SXDM1 X 

*Uses S/SXAPD with K31 set 

tUses S/SXAMD with S/K31 inhibited by raising N(S/K31) 

Table 3-2. A Plus D Truth Table 

A D G PR K S n n n n n n 

No Carry 

0 0 0 I 0 0 I 0 

0 1 0 
I 

1 0 1 

1 0 0 1 0 1 

1 1 1 0 0 0 

Carry 

0 0 0 0 1 1 

0 1 0 1 1 0 

1 0 0 1 1 0 

1 1 1 0 1 1 

GATING TERMS 

PRXNAD PRXNAND GXAD GXAND GXNAD K31 
NA D NA ND AD AND NA D 

X 

X X X 

X X 

X 

X X 

X X X X 

X X X 

I I 

The carry and sum bits are generated in the same manner as 
in the A plus D operation. The truth table for A minus D is 
shown in table 3-16. 

Table 3-3. A Minus D Truth Table 

A D G PR K S 
n n n n n n 

i i 1 i 

No Carry 

0 0 0 1 0 1 

0 1 0 0 0 0 

1 0 1 0 0 0 

1 1 0 1 0 1 

Carry 

0 0 0 1 1 0 

0 1 0 0 1 1 

1 0 1 0 1 1 

1 1 0 1 1 0 

3-35 



505 901172 

In the 0 minus A operation, the generate and propagate 
termc; are rlevelooed as follows: 

G NA 0 
n 

PR A 0 ~ NA NO 
n 

The carry and sum bits are generated in the same manner 
as in the A plus 0 operation, with flip-flop K31 initially 
set. The truth table for the 0 minus A operation is shown 
in table 3-17. 

Table 3-4. 0 N\inus A Truth Table 

A 1""\ r_ PR K S l..I U 
n n n n n n 

No Carry 

0 I 0 0 1 v 1 

0 1 1 0 0 0 

1 0 0 0 0 0 

1 
i 

1 0 1 0 1 

Carry 

0 I 0 0 1 1 0 

0 1 1 0 1 1 

1 0 0 0 1 1 

1 1 0 1 1 0 

The logic for the 0 minus A minus 1 operation is the same 
as for 0 minus A except that flip-flop K31 is not set. 

In the AND, OR, and exclusive OR logic operations, no 
generates or carries are formed, and the logic is developed 
in the PR term. This PR term becomes the result, since the 
sum is the exc I usi ve OR of the PR term and a nonexi stent 
carry. The following equation for the A AND 0 operation 
is typical of the logic operation in the adder: 

PR 
n 

A 0 PRXAO 
n n 

where PRXAO is the gating term for 
AANO D 

The adder is used to gate the outputs of the A- or 0-
register, or the one's complement of these outputs, onto the 
sum bus. The enabling signals are 5/5XA, S/SXO, S/SXNA, 
and S/SX N O. In these cases, no genera tes or carri es are 
formed, and the logic is developed in the PR term as in the 
logic operations. The followinq equation for A---S, 
enabled by signal S/SXA, is typic~1 of this operation: 

3-36 

PR 
n 

A 0 PRXAO 
n n 

-"- A NO PRXANO 
n n 

where PRXAO and PRXANO are the 
gating terms for A-----S 

The two's complement of the A- or O-register output is 
placed on the sum bus by enabling signal S/5XMA or 
S/SXMO. The gating signals used for S/SXNA and S/SXND 
are used in these cases, and flip-flop K31 is set. This is 
equivalent to adding one to the one's complement of the 
number in the register. Carries are generated in the same 
manner as in the A pi us 0 operati on. The same propagates 
Oie generated as in S/SXN;\ and s/sxI'-m. 

The A plus 1 and D plus 1 operations, enabled by S/SXAPl 
and S/SXOP1, are performed by using the same gating terms 
as S/SXA and S/SXD Q(,d setting K31. This is equivalent 
to adding one to the number in the register. Carries are 
generated in the same manner as in the A pi us 0 operati on. 
The same propagates are generated as in S/SXA and S/SXO. 

The A minus 1 and 0 minus 1 operations are performed by 
using the same gating terms as S/SXNA and S/SXNO and 
developing generate terms. In the A minus 1 operation, the 
generate and propagate terms are as follows: 

G A 0 + A NO 
n n n n n 

PR NA 0 + NA NO 
n n n n n 

Since the O-register is not used in this operation, the terms 
containing 0 are insignificant; therefore, a generate term 
is developed '0hen the A-register bit is true, and a PR term 
is developed when the A-register bit is false. 

Carries are generated as in the A plus 0 operation. The 
truth table for A minus 1 is shown in table 3-18. 

Table 3-5. A Minus 1 Truth Table 

A G PR K S 
n n n n n 

No Carry 

0 0 1 0 1 

1 1 0 0 0 

Carry 

0 0 1 1 0 

1 1 0 1 1 



SDS 901172 

In the D minus 1 operation, the generate and propagate 
terms are as follows: 

GAD + NA D 
n n n n n 

PR A ND + NA ND 
n n n n n 

Since the A-register is not used in this operation, the terms 
containing An are insignificant; therefore, a generate term 
is developed when the D-register bit is true, and a PR term 
is developed when the D-register is false. Carries are gen­
erated as in the A plus D operation. The truth table for D 
minus 1 is shown in table 3-6. 

SUM BUS. The sum bus is made up of 32 lines, SO through 
S31. These lines receive inputs from several sources and 
have several destinations. The use of the sum bus in the 
arithmetic and control circuits is shown in the block 
diagram in figure 3-14. 

All the adder outputs are carried by the sum bus. Other 
sources that feed the sum bus are the B-register, the P­
register, the C-register, and the I/o data lines. Certain 
individual bits of the sum bus are set by single setting 
terms. All of the sum bus inputs and their enabling signals 
are shown in figure 3-27. 

CONTROL SIGNALS. Control si gnals used in the CPU fall 
into three categories: timing signals, enabling or gating 
terms, and control fI ip-flop outputs. 

Timing signals are generated by oscillators of various fre­
quencies and from three CPU delay I ines. The timing 
signals are discussed in the section on CPU timing. 

Enabling signals are generated from instruction decoding 
and phase flip-flop outputs and are used to control the 
basic adder operation. The enabling signals are described 
in the adder discussion. Gating terms are derived from 
enabling signals, instruction decoding, and phase logic, 
and are used to transfer groups of information bits in parallel 
from one register or set of lines to another. The primary 
gating terms in the CPU are shown in the diagrams of the 
regi sters, the adder, and the sum bus. 

Table 3-6. D Minus 1 Truth Table 

D G PR K S 
n n n n n 

No Carry 

0 0 1 0 1 

1 1 0 0 0 

Carry 

0 0 1 1 0 

1 1 0 1 1 

Control flip-flops are used extensively in the CPU control 
circuits. Phase flip-flops and interrupt and trap flip-flops 
are discussed elsewhere in the detailed theory. Other 
important control flip-flops are described below. The 
detailed logic of the control functions of these flip-flops is 
described in the sequence charts for the instructions in 
which they are used. 

Flip-Flop AM. Flip-flop AM is the arithmetic mask flip-
flop in the program status doubleword. The fixed point arith­
metic overflow trap is in effect when this flip-flop is set 
(bit 11 of the current PSW1 is a one). The trap is not in 
effect when the flip-flop is reset (bit 11 of the current PSW1 
is a zero). Flip-flop AM is set by bit 11 of PSW1 during a 
load or exchange program status doubleword instruction 
(XPSD) or by inserting a one into bit 11 of PSW1 from the 
PCP with the equation: 

S/AM Sl1 PSW1 XS 

PSW1XS 

PSW1XS = FAPSD PH4 + PCP5 KPSW1/B 

Flip-Fiops seo, Be i. Fi ip-fiops BCQ and Be 1 are the byte 
counter. The four states of the counter, 00, 01, 10, and 11, 
are used in the alignment of bytes or halfwords in the A­
register or D-register before loading or storing takes place. 
The counter sta tes represent byte numbers as follows: 

BCO BC1 

Byte 0 (I/O, 0-0) 

Byte 1 0 (I/O, 0-1) 

Byte 2 0 (I/O, 1-0) 

Byte 3 0 0 (I/O, 1-1) 

Halfword 0 0 

Halfword 1 0 0 

During input/output operation, the counter is set in the 
reverse order from the CPU setting. 

The byte counter contents are decreased by increments of 
one to control shifting of the appropriate register ri ght or 
left eight bits at a time unti I the addressed byte or halfword 
is aligned in the right or left end of the register. 

The byte counter is set during halfword addressing instruc­
tions according to the state of flip-flop P32, which contains 
the ha I fword number after index 01 i gnment has taken place. 
The counter is set during byte addressing instructions 
according to the states of P32 and P33, which contain the 
byte number in binary form after index alignment. In I/O 
operation, P32 and P33 also reflect the byte count, but 
receive the count from the byte count field in a private 
memory register rather than from the effective address. 

The counter is set in IOPH2 during I/O instruction and 
during PH2 during modify and test instructions. The byte 

3-37 



SDS 901172 

count is decreased by one with control signals BCDC1 and 
BC DCO. The equati ons for the byte counter are as follows: 

S/BC1 PRE3 OU7 NPRE/34 NP33 

-l.- F6..~!IT PH? ~IRZ OU7 NP33 

S/BCO = PRE3 NP32 01 NPRE/34 + IOPH2 SW13 P33 NPRE/34 

+ NBC1 BCDC1 + FAMT PH2 NRZ 01 NP32 

, IOPH2 SW13 P32 NPRE/34 

+ NBCO NBC1 BCDC1 
R/BC] = N(NBCX NCLEAR NBCDC1) 

R/BCO = N(NBCX NCLEAR NBCDCO) ~)JE:£l~s CC1 through CC4. Flip-flops CC1 through CC4 
are condition code flip-flops which occupy bits 0 through 3 
of the program status doubleword. They are set during load 
or exchange program status doubleword instructions or 
during load conditions and floating control instructions, or 
fiom the PCP. During certain other instructions they are 

3-38 

NBCDCO N(BCDC1 NBCl BCO) 

BCDCl FUMMC PH6 

+ IOPH2 SW15 

+ NBCZ PRE4 

+ IOPH2 SW14 

DAO-DA7 (10 DATA) 
I 

SXDA 

set to indicate the nature of the results of the instruction. 
Loading the condition code flip-flops in parallel as a 
regi ster is desc ri bed in the paragraphs on regi sters. 

ADDER INPUTS 
I 

BO- B31 (B- REGISTER) 
I 

SXB 

CO-C31 (C-REGISTER) 
I 

SXC 

P15-P31 (P-REGISTER) 
I 

SXP 

N (FAST ABORT E NDE) r---P32 S0809XP NS16INH 

P33 S0809XP 

SUM BUS 

N(FASTABORT ENDE) 

NCC1XK23 

Figure 3-27. Sum Bus Inputs and Enabling Signals 

NS31INH 

31 

901172A. 73 



SDS 901172 

Flip-Flop DM. Flip-flop DM is the decimal mask flip-flop, 
which occupies bit position 10 in the program status double­
word. The flip-flop is set by bit 10 of the sum bus during a 
program status doubleword instruction or from the PCP as 
follows: 

S/DM 

R/DM 

PSWIXS S10 

PSWIXS 

The decimal mask bit does not affect the operation of the 
Sigma 5 computer. The bit position is used only to preserve 
the status of the Sigma 7 decimal arithmetic fault trap mask 
when a Sigma 7 program is being executed. 

Flag Flip-Flops FL 1 Through FL3. These flip-flops are used 
to store conditions during multiply, floating shift, divide, 
a nd modify and test i nstructi ons. 

Flip-flop FLl stores the sign in floating shift and divide 
instructions and serves with FL2 as part of a 2-bit extension 
of the A-register during multiply instructions in case of 
I/O intervention. The equations for FLl are as follows: 

S/FL 1 RRO PRE3 + S30 MIT 

R/FL 1 MIT + CLEAR 

Flip-flop FL2 serves, with FLl, as part of a 2-bit extension 
of the A-register during multiply instructions in case of 
I/O intervention. This flip-flop also stores the sign of the 
shift count in a shift instruction. If FL2 is set, a right shift 
is i ndi cated. The equati ons for F L2 are as follows: 

S/FL2 

R/FL2 

P25 PRE3 + S31 MIT 

MIT + CLEAR 

F!ag flip-f!op FL3 has four functions and is set and reset 
according to the following equations: 

S/FL3 = P3l PRE3 + FUSF/l S08l5Z S1631 Z 

B0031Z + KOO KOOHOLD + CClXK23 

R/FL3 = N [(FUSF PH8) + (FUS PH5)] 

The four functions are: 

a. Stores the state of P3l, which contains the shift 
count ina shi ft i nstructi on. If FL3 is set, i ndi cati ng an odd 
shift count, a fixed point shift instruction starts out with a 
l-bit right shift, then shifts right by twos. 

b. Indicates that the mantissa equals zero in a 
floating shift instruction (FUSF/l). Setting FL3 in this 
instruction causes CCl to be set (fraction normalized) and 
CC2 to be reset (no characteri stic underflow). FI ip-flop 
FL3 also generates FSHEX in a floating shift instruction 
so that the instruction will exit from the shift operation 
when the mantissa equals zero. 

c. During doubleword arithmetic instructions and load 
absQI ute instructions, stores a carry bi t unti I the next phase 
of the instruction. Flip-flop KOO contains the carry, and 
KOOHOLD is driven true by FADW/l PHl or FALOAD/A 
PH2. 

d. Indicates a byte instruction in the family of modify 
and test instructions. The equation for CCl XK23, the set­
ting term in this case, is as follows: 

CCl XK23 = FAMT PH2 NINTRAP OU7 

where OU7 defines byte addressing in modify and test 
i nstructi ons. 

Floating Mode Control Flip-Flops FS, FZ, and FNF. Flip­
flops FS, FZ, and FNF are floating significance, floating 
zero, and floating normalize flip-flops and occupy bits 5 
through 7, respectively, in the program status doubleword. 
The outputs of these fi i p-fi ops are transm i tted to the fl oati ng 
poi nt unit to be used for control purposes. The fI i p-fl ops 
are set and reset by program status doubleword or from the 
PCP (PS\Vl XS) and load conditions and floating controi 
i nstructi ons (FCX5). 

Flip-flop F5 controls the floating point unit with respect to 
floating point significance checking. The flip-flop is set 
and reset as follows: 

S/F5 55 P5Wl X5 + 529 FCX5 

R/FS FCX5 + P5Wl XS 

Flip-flop FZ controls the floating point unit with respect to 
the generation of zero results. The flip-flop is set and 
reset as follows: 

S/FZ S6 PSWl X5 + 530 FCXS 

R/FZ FCX5 + P5WlXS 

Flip-flop FNF controls the floating point unit with respect 
to the normalization of the results of floating point additions 
and subtractions. The flip-flop is set and reset as follows: 

5/FNF 

R/FNF 

57 PSWl X5 + S31 FCX5 

FCX5 + P5Wl XS 

Flip-Flop IA. Flip-flop IA is the indirect address flip-flop, 
used to control indirect addressing during instruction prepa­
ration phases. The flip-flop is set during phase PREl if bit 
posi ti on zero of the i nstructi on word contai ns a one as 
follows: 

S/IA CO PREl 

R/IA 

3-39 



SDS 901172 

If flip-flop IA is set during an immediate instruction, signal 
FAILL is generated from IA and FAIM (immediate family) 
to start a trap sequence for the nonexi stent i nstructi on 
category. In this case, the trap routine is entered because 
an immediate instruction may not be indirectly addressed. 

The IA outputs are used to control memory access duri ng 
the preparation phases to read the indirect address from 
core memory. Signal BRPRE2, which causes preparation 
phase PRE2 to repeat, is qualified by a one in IA. Signal 
IA also helps to control the timing of the adder during 
addition of the contents of the A- and D-registers for 
indexing if the instruction is indirectly addressed. During 
an analyze instruction, signal IA is used to set condition 
code flip-flop CC3 to indicate indirect addressing. 

Interrupt Group Inhibit FI ip-Flops CI, II, and EI. FI ip-flops 
CI, II, and EI are interrupt inhibit flip-flops and occupy 
bit positions 37 through 39 in the program status doubie­
word. If any of these flip-flops contain a one, the associ­
ated interrupt is inhibited. Zeros in these flip-flops permit 
the associated interrupts to occur. 

The fI i p -flops are set with the PC P sw itches or a load or 
exchange program status doubleword instruction (PSW2XS) 
or a write direct instruction (INHXWD). A write direct 
instruction sets the interrupt inhibits in the internal mode 
when bit positions 26, 27, and 29 through 31 contain ones. 
A one in bit 29 sets flip-flop CIF; a one in bit 30 sets flip­
flop II, anda one in bit 31 sets flip-flop EI. A write direct 
internal mode instruction resets the interrupt inhibit flip­
flops with a zero in bit 27, a one in bit 26, and ones in 
the desired interrupt bit positions (29 through 31). 

Flip-flop CIF, bit position 37 in the program status double­
word, is the counter interrupt group inhibit flip-flop and 
a II ows or prevents the four counter-equa I s-zero groups of 
interrupts. The equati ons are as follows: 

S/CIF S5 PSW2XS + INHXWD B27 B29 

INHXWD CCXRWD B26 + OLD 

CCXRWD FARWD B1619Z PH1 

R/CIF = INHXWD B29 + PSW2XS 

where FARWD is the read/write direct family and B1619Z 
indicates that bit positions 16 through 19 of the instruction 
word contain zeros (internal mode). 

The fal se output of the CIF fI i p-fl op is used to keep si gna I 
ENCNTR from enabling the counter-equals-zero interrupt 
levels as follows: 

E NCNTR = NCIF NHRQBZC (R89 + R 1011) 

Flip-flop II, bit position 38 in the program status double­
word, is the input/output group inhibit flip-flop and allows 
or prevents the input/output and the control panel interrupts. 
The equati ons are as follows: 

3-40 

S/II 56 P5W2X5 + INHXWD B27 B30 

"In 0"" T"'UVH',", ! O~H'')V~ I\'/!! U"",,V .1l'4I'I\W1V . I..)"L/\..,) 

The false output of flip-flop II is used to keep signal ENIO 
from enabling the input/output and control panel interrupts 
as follows: 

ENIO NIl NHRQBZI (R1213 + R1415) 

Flip-flop EI, bit position 29 of the program status double­
word, is the external interrupt group inhibit flip-flop and 
allows or prevents the 14 groups of external interrupts. The 
equations are as follows: 

5/EI S7 P5W2X5 + INHXWD B27 B31 

R/EI B31 INHXWD + P5W2X5 

The faise output of fiip-fiop Ei is used to keep signal DAT29 
from enabling the external interrupt levels as follows: 

DAT29 = NEI NEWDM + ••• 

Flip-Flop IX. Index flip-flop IX is used to control indexing 
in the instruction preparation phases. The flip-flop is set 
in phase PREl if the index field of the instruction word is 
nonzero. The equations are as follows: 

S/IX = INDX PREl 

INDX (C12 + C13 + C14) (C3 + C4 + C5) 

R/IX = PRE/12 + CLEAR 

The second AND gate on the INDX term is used to prevent 
indexing in instructions that may not be indexed. 

The IX outputs are used to control the adder logic during 
the preparati on phases when the contents of the A- and 
D-registers are being added. 

Flip-Flop IXAL. Index alignment flip-flop IXAL is used to 
control register alignment according to byte, halfword, and 
doubleword addressing during indexing operation. The flip­
flop is always set in PREl when the instruction is indexed 
unless word addressing is being used. The equations are as 
follows: 

5/IXAL 

R/IXAL = 

PRE1 INDX (FAHW + FABYTE + FADW) 
NCLEAR 

The IXAL outputs are used to control the right or left shifting 
of the A-regi ster in preparati on phase PRE2 so that the index 
displacement value is correctly lined up with the word in 
the instruction register. (See the indexing discussion in the 
section on preparation phases.) Signal IXAL is also used to 
enable setting P32 in PRE2 during halfword operation. 

FI ip-FI op NMASTER. Master/slave mode control fI i p-fl op 
NMASTER occupies bit position 8 in the program status 



SDS 901172 

doubleword. The computer is in the master mode when this 
bit contains a zero and in the slave mode when the bit 
contains a one. 

The flip-flop is set either from the PCP or with a load or 
exchange program status doubleword instruction as follows: 

S/NMASTER 

R/NMASTER 

S8 PSW1XS 

PSW1XS 

The outputs of the NMASTER flip-flop are used with signal 
FAPRIV (family of privileged instructions) to set trap flip­
flop TRAP and trap accumulator flip-flop TRACC3. Setting 
TRAP causes the program to trap to location X'40' because 
of a nonallowed operation. Signal TRACC3 causes con­
dition code flip-flop CC3 to be set when an exchange 
program status doubleword instruction is executed as the 
result of the nonallowed operati on trap. 

Switch Fiip-Fiops SwO Through SW15. Switch flip-flops 
SWO through SW15 are used to define certain states in the 
CPU and to define subphases during CPU instruction execu­
tion and integral lOP service. The functions of switches 
SWO through SW7 are listed below: 

a. SWO 

1. Indicates that S is not equal to zero in float­
ing point, load absolute, and some doubleword instructions. 

2. Indicates that proceed signal PR was not 
received in I/o instruction execution. 

3. Indicates zero byte count in the integral lOP 
service operation. 

b. SW1 

1. Indicates space count overflow or underflow 
in stack instructions. 

2. Indicates order in or order out during integral 
lOP service operation. 

c. SW2 

1. Indi cates nonzero val ue in the R-regi ster 
during modify and test instructions. 

2. Indi cates space count equal s zero in stack 
instructi ons. 

3. Sustai ns PH4 unti I control strobe si gna lis 
received during I/o instruction execution. 

4. Indicates order out or data out during integral 
lOP service operation. 

d. SW3 

1. Indicates word count overflow or underflow in 
stack i nstruc ti ons. 

2. Stores the state of P23 for lOP address purposes 
in I/o instruction execution. 

3. Stores terminal order condition during integral 
lOP service operation. 

e. SW4 

1. Indicates word count equals zero in stack 
i nstructi ons. 

2. Indicates data chaining during integral lOP 
service operation. 

f. SW5 

1. Stores the trap-on-space inhibit bit in stack 
pointer doubleword during stacK instructions. 

2. Indicates indirect addressing in analyze 
instruction. 

3. Stores the state of P21 for lOP address purposes 
in I/o instruction execution. 

4. Indicates transfer in channel condition during 
integral lOP service operation. 

g. SW6 

1. Stores the trap-on-word inhibit bit in the stack 
pointer doubleword during stack instructions. 

2. Stores the state of P22 for lOP address purposes 
in I/O instruction execution. 

3. Controls interface end data signal ED during 
integral lOP service operation. 

h. SW7 

1. Distinguishes between modify stack pointer and 
other instructions in stack family. 

2. Indicates positive sign in load absolute word 
or doubleword instructions. 

3. Stores function strobe leading acknowledge 
signal FSl or available output priority signal AVO during 
I/O instruction execution. 

4. Controls end service signal ES during integral 
lOP service operation. 

3-41 



SDS 901172 

Switch flip-flops SW8 through SW15 define subphases in 
instruction execution and integral lOP service operation. 
The flip-flops are set sequentially by step signal STEPal;). 
They may also be set as specified in the individual instruc­
tions or I/O operations by branch signa Is such as BRSW8. 
The following is a typical equation for these flip-flops: 

S/SWl1 NRESET BRSWl1 + SWI0 STEPB15 

Flip-Flops WKO, WKl. Write key flip-flops WKO and WKI 
occupy bit positions 34 and 35 in the program status double­
word. These flip-flops contain the 2-bit write key used 
with the 2-bit write locks stored in the memory protection 
reg isters for each page of memory addresses. In order to 
read from the addressed memory location, the write key in 
the program status doubleword must match the write lock 
stored for the page containing the addressed memory loca­
tian. The write key flip-flops are set from the PCP or by a 
program status doubleword instruction as follows: 

S/VV KO 

R/VV KO 

S/VV Kl 

R/WKI 

S2 PSW2XS 

PSW2XS 

S3 PSW2XS 

PSW2XS 

The write key outputs are compared with the memory pro­
tection register outputs LC KO and LC Kl, and if a mismatch 
is detected where both are non -zero, a trap sequence is en­
tered. The detailed logic of the write keys and write locks 
is given in the paragraphs on memory protection. 

PRIVATE MEMORY REGISTERS. The private memory 
registers are located on a set of FT25 fast access memory 
modules. The registers are installed in blocks of 16, 
numbered register 0 through F in hexadecimal notation, as 
shown in figure 3-28. Each register contains a 32-bit word. 

A maximum of 16 private memory blocks may be installed 
in the computer. Each block is assigned a page number, O· 
through 16, and is addressed by the RP-register with codes 
from 0000 to 1111. Page 0 is inc luded in the standard 
computer; pages 1 through 15 are optiona I. 

Each private memory block consists of four FT25 fast access 
memory modules. The distribution of the words among the 
four modules is shown in block diagram form in figure 3-29. 
Each module contains one byte of any given word. 

One FT25 modu Ie conta ins 16 SDS 304 8-bit integrated 
circuit memory elements. A simplified diagram of a single 
memory element is shown in figure 3-30. Although not 
shown in the diagram, the control, address, and VCC inputs 
are applied to all flip-flops in the element. 

Each bit of the element is addressed individually by the 
address lines on pins 2, 3, and 4. The 3-bit address code 
se lects one of the eight fl i p-flops. The contro I I ine, a Iso, 
contains address information. When the control line is false, 
the states of all bits in the memory element remain un­
changed, regardless of the state of the read-write clock. 
When the control line is true, bits of the element may 
change state if the read-write c lock is true. When a con­
trol line is false, the data output lines from all flip-flops 

3-42 

under the control of that line are high. All the data output 
lines in one memory element are connected in parallel. The 
OUTpUT jines flUli1 i:,t: iwu 1I1t:lllviy <:; ki1ICi-I~:; ,c.p,c.:;c;--,t:;,g 2;,C; 

bit on a module are also connected in parallel. Using this 
arrangement, it is possible to combine address and control 
lines to select the memory element and the flip-flop within 
the memory element that controls anyone data output line. 

The arrangement of bits in the memory elements on one FT25 
fast access memory modu Ie is shown in figure 3-31. The 
module shown contains byte 0 of the standard private mem­
ory block, designated page O. Each of the 16 memory 
elements contains eight corresponding bits in eight registers. 
The data, address, and write c lock signa Is are interpreted 
as follows: 

W/RFOBO/O 

/ TY",~ 
WRiTE PAGE 0 BYTE 0 BIT 0 

L/RPOBO/X 

/ \""~ 
ADDRESS PAGE 0 BYTE 0 /1 through /5 

(bit selection) 

K/RPOBO 

/ TY

", 
CLOC K PAGE 0 BYTE 0 

Input and output data signals for the four modules in a 
memory block are shown in figure 3-32. Address lines in 
the four modu les are identica I. 

Individual bits in each memory element on the FT25 mod­
ules are selected by address lines LR28 through LR31. As 
indicated in figure 3-31, a memory element contains a 
corresponding bit for each of eight registers. Dividing the 
memory elements into two sets of eight, as shown in figure 
3-31, the three least significant bits (LR29, LR30, and 
LR31) select one of eight registers in each set (see figure 
3 -33). Address line N LR28 gates information into the 
memory elements containing registers 0 through 7, and 
LR28 gates information into the elements containing 
reg isters 8 through F. Signa I N IOFM, indicati ng that I/O 
fast memory is not being addressed, is connected to both 
control line gates. The gating signal is connected to the 
control line input of every memory element. The total 
effect of the LR28 through LR31 address lines is to select 
one of 16 reg isters for input or output of data. Gati ng 
signals RP24 through RP27, which designate the private 
memory page, are taken from the RP-register. Since each 
memory block is equivalent to one page, all four FT25 
modules in one block receive the same code from the RP­
reg ister and are enabled at one time. The RP I ines for the 
module in figure 3-31 contain NRP24 through NRP27, 
which select page 0000. 



SDS 901172 

0 
1
0 31 I 

1 
1
0 31 I 

2 
1
0 31 I 

3 
1
0 31 I 

4 
1
0 31 I 

i 

31 I 5 
1° 

6 
1
0 31 

7 
1
0 31 

REGISTER 
NUMBER 

1
0 8 31 

9 
1
0 31 

A 10 31 I I 

B 
1
0 31 I 

C 
1
0 31 I 

D 10 31 I 

E 
1
0 31 I 

F 
1
0 31 

901060A. 3350 

Figure 3-28. Private Memory Register Block 

3-43 



DATA 
INPUT 

3-44 

READ 
WRITE 
CLOC 

po 

r-­
I 
1 

7 I 
po 

I • 
1 

I 
S 

I .--C 

I R 

- 8 1 . .. 
K 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
L_ 

S 

-C 

R 

REGISTER 0 

REGISTERS 
1 THRU E 

FT25 

1
0 

SDS 901172 

FT25 FT25 FT25 

23
1

24 

REGISTER F 

I 

J 
IrO--------7~1~8--------15~1-1-6------2-3~1-2-4------3-,11 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

Figure 3-29. Word Di stribution in Private Memory Block 

CONTROL 

_ll _ 

1 t-- Ls 
FF FF 

r--- C 

0 R 

1 r--- L I-- S 
FF FF 

'--C 

a R 

ADDRESS 
I 

MEMORY ELEMENT 

1 f-- Ls 
r--- C 

0 R 

11-- L to-- S 

"""--C 

0 R 

~-

11-- Ls 
FF 

~C 

0 R 

11-- L f-- S 
FF 

---C 

0 R 

Figure3-30. SDS 304 Memory Element, Simplified Diagram 

FF 

FF 

11--

0 

I-

0 

-, 
I 
1 
I 

,~ 

I 
I 

_-1 

6 

901060A. 3351 

. DATA 
OUTPUT 

901 060A. 3352 



ADDRESS LINES TO ALL ELEMENTS 
SELECT ONE OF EIGHT BITS 

L/RPOBO/3 L!RPOBO/4 L/RPOBO/5 
(LR29) (LR30) (LR31 ) 

r- l l ~ 
W/RPOBO/O 

I (RWO) . RRO 

1 1 
... 

~ " 
BIT 0 

r---+ 
BIT 0 

REGISTERS REGISTERS 
+I 0-7 .. 8-F ..... 

~~ 
.. 

SDS 304 SDS 304 

I L 

W/RPOBO/l 
(RWl) 

RRI 

BIT 1 BIT 1 
REGISTERS REGISTERS 

+I 0-7 

I 
8-F 

SDS 304 SDS 304 

W/RPO BO/2 
(RW2) RR2 

• 
BIT 2 BIT 2 

REGISTERS REGISTERS 

r---+I 0-7 8-F 

SDS 304 I SDS 304 

W/RPOBO/3 
(RW3) RR3 

BIT 3 BIT 3 
REGISTERS REGISTERS 

INPUT1 

r 
0-7 8-F 

,OUTPUT 
DATA DATA 

SDS 304 SDS 304 

W/RPOBO/4 
(RW4) RR4 

• 
BIT 4 BIT 4 

REGISTERS REGISTERS 

r---+I 0-7 8-F 

SDS 304 SDS 304 

W/RPOBO/5-
(RW5) 

~ 
RR5 

BIT 5 BIT 5 
REGISTERS REGISTERS 

r---+I 0-7 8-F 

SOS 304 SDS 304 

W/RPOBO/6 
(RW6) RR6 

• 
BIT 6 BIT 6 

REGISTERS REGISTERS 

r---+I 0-7 8-F 

SOS 304 I SOS 304 
I 

~ 

W/RPOBO/7 

RR7 J V) (RW7) -- 0 
~ 1 I 

r 
V) 

(Q NIOFM , , 
8 c I ., 

NRP24 BIT 7 BIT 7 ~ f----+ w NRP25 REGISTERS REGISTERS I ""-J 
I .. 0-7 ... .. 8-F t-.J 
w NRP26 L/RPOBO/l 

.. 

f -.. I • (CONTROL LINE) 
V) NRP27 . SDS.304 I I SDS 304 
-. "'T1 

NLR28 3 -I 
"'C t-.J 

L 
K/RPOBO =:01 

~~ (REGISTER WRITE 
~ 0 SIGNAL RWBO AND 
0...0... 

PRIVATE MEMORY OC -. m CLOCK 
~ --., -0 
Q Q 

3'i 
..;-- L/RPOBO/2 

__ 0 
~ (CONTROL LINE) 

-0 
I'J:J W 0 

LR28--' '< 1.- -' -to 

01 ;:j (1) 

~ 'J> __ 0 

1.- ~ 

0. 



INPUT 
DATA 
LINES -

SDS 901172 

REGISTER-WRITE 
ENABLING 

SIGNAL 

RWBO -------.,. 

___ u ___ ••• _ ___ ~ FT25 I ... nnl'\ "''''-. l 
Kt~l:>ltK-WKlltr BYTE I ;..... ---1 .... ~I\I\U-1\1\1 

E NA BLI NG .1....-_0 __ . 

SIGNAL 

RWB 1--+-----._+ 

RW8-RW15 -------+-........ ~ 
REGISTER-WRITE ... 

ENABLING r--. 
FT25 
BYTE 

1 
t---~=. RR8-RR15 

SIGNAL ----
OUTPUT 
DATA 

(8 PER 
MODULE) RWB2 --+-------,+ - LINES 

RW16-RW23 ~ FT25 
BYTE ~--:. RR 16-RR23 

REGISTER-WRITE -. 2 
ENABLING '-------I 

SIGNAL 

RWB3 --+-------,. 
lRW24-RW31 -----+---.. ~ 

CK 

FT25 
BYTE 

3 

(PRIVATE MEMORY CLOCK) 

t---~=-. RR24-RR31 J 

Figure 3-32. Private Memory Data Organization 

(8 PER 
MODULE) 

90 J 060A. 3354 

3-47 



SDS 901172 

SE LECTS 

REGISTER 

SET 0-7 

SELECTS 

REGISTER 

SET 8- F 

LR28 LR29 LR30 LR31 

o 

o 

o o 
THROUGH 

o 8 BITS IN 

REGISTERS 

0-7 

o 0 0 8 BITS IN 

THROUGH REGISTERS 

8-F 

901172A.75 

Figure 3-33. Bit Addressing on FT25 Module 

Address signals LR28 through LR31 are generated, in general, 
from either the R-register or the D-register. The R-register 
contains the number of the private memory register to be 
addressed and is used whenever no crossover occ urs. The 
equation is as follows: 

LR28-LR31 R28-R31 (LRXR) + ••• 

Crossover takes place when a core memory locati on with 
an address of less than 1610 is addressed. During crossover, 
LR28 through LR30 are taken from the P-regi ster wi th the 
equation 

LR28-LR31 (P28-P31) CROSSEN + ••• 

In cases of doubleword or multiple word operation, LR31 
is generated from other sources ei ther to select an odd­
numbered register or to implement the function Ru1, as 
explained in the discussi ons on individual instructi ons. 
Duri ng the i ndexi ng operati on, the pri vate memory address 
is taken from bits 12 through 14 (the index field) of the 

D-register: 

LR29-LR31 D12-D14 LRXD + ••• 

The equati on for the regi ster-wri te byte si gna lis as 

follows: 

RWBO-RWB3 RW + (MBOCRO-MB3CRO) 

where RW is a register-write enabling signal and MBOCRO­
MB3CRO are signals indicating crossover from core memory. 
The CK clock signal, gated with the write byte signals, is 

3-48 

the private memory clock which comes true later than the 

ac clock signal. 

Data signals are gated from the sum bus into the private 
memory as follows: 

RWO-RW31 SO-S31 RWXS 

Regi ster Extensi on Chassi s (REU). A regi ster extension 
chassi 5 may contai n up to 16 FT25 fast access memory 
modules and adds from one to four blocks of additional 
private memory to the central processor. Since one block 
of private memory requires four FT25's; these modules in 
the register extension chassis must be added in multiples 
of four. Up to three regi ster extensi on chassi s may be 
added to the computer, maki ng a maximum of 16 private 
rnemOiy blocks, including the four blocks in the CPU. 

Additional modules in the REU provide cable drivers and 
receivers, terminators, chassis-selection switches and 
switch comparators, and logic circuits for selection and 
conversion of addresses and data signals. A simplified 
logic diagram is shown in figure 3-34. 

Address, data, and control si gna I s are transm i tted from the 
CPU on cables and applied to cable receivers in the 
register extension unit. The data cables, being bidirec­
tional, also have cable driver inputs from the REU. Clock 
signals are taken from the private memory clock circuit, 
C K/6, in the CPU. The nomenc lature, functions, and de­
coding of the interface signals between the CPU and the 
REU are given in table 3-7. 

Each register extension chassis is assigned an address 
from 01 through 11 by manually setting switches S3-1 
and S2-2 on the L T26 switch comparator module in the 
desired configuration, with S2-2 as the least significant 
bit. The outputs of the switches are designated SWIl for 
S3-1 and SWI2 for S2-2. A MATCH signal is generated 
in the selected REU by comparing the switch signals with 
the chassi s-selecti on bits in the address as foil ows: 

MATCH N(SWIl NREU1 + NSWIl REU1 

+ SWI2 NREU2 + NSWI2 REU2) 

This MATCH signal is applied to an AND gate containing 
another input, NREUZ, indicating that page 0 is not being 
addressed, and the AND gate output, REUSEL (register 
extension unit select) is connected to all of the FT25 
modules in the selected register extension unit. 



/LR24/ 

/LR25/ 

IRWBOI-/RWB3 1 

'(w RITE BYTE) I 

/LR26/ 

/LR27/ 

/LR28/-/LR31/ 

/RRWO/-/RRW31/ 
(DATA) 

NSWil 

SWI2 
(SWITCHES IN POSITION 01) 

REUi 

REU2 

PAGO 

BLOCK ADDRESS 

PAGI 

WDAO-WDA3 

WRO-WR31 

SDS 901172 

MATCH 

SWITCH 
COMPARATOR 

I - REUSEl .1_; __ _ 

~ 
WRBO-WRB3 

4-16 FT25 
MODULES 
i-4 BLOCKS 

Figure 3-34. Register Extension Chassis, Simplified Logic Diagram 

RDBO-RDB3 

901 1 72 A. 76 

3-49 



Paragraph 3-24 SDS 901172 

Table 3-7. REU Interface Signals 

Input Cable Function Cable Receiver Output Address Decodi ng 

/LR24/ Address REU1 Three chassi s (i n addi ti on to one 4-

/LR25/ Address REU2 module set in CPU) 

/LR26/ Address PAGO Four 16-register blocks in a chassis 

/LR27/ Address PAG1 

/LR28/ Address 

I 
WOAO or WOBO I Two sets of 8 memory eiements on an 

I I FT25 

/LR29/ I Address 

I 
WDAl or WDB1 

I /LR30/ I Address WDA2 or WDB2 Eight flip-flops in a memory element 

/LR31/ Address WDA3 or WDB3 

/RRWO- Data Cable receiver output: 
RRW31/ WRO-WR31 

Cable driver input: 
FDO-FD31 
RDBO-RDB3 

/RWBO- Write byte WRBO-WRB3 
RWB3/ 

Address lines LR26 and LR27, designated PAGO and PAG 1 
in the REU, are decoded to select one of four blocks 
in the selected REU. A simplified logic diagram of 
page 0 of the selected REU, a typical connection, is shown 
in figure 3-35. The data, address, and clock signals are 
interpreted as follows: 

W/POBO/O~ 
/ 

yy 

\ ---WRITE BLOC K 0 BYTE 0 BIT 0 

/

L/POBO/X 
Yt-r-J 

, ----ADDRESS BLOCK 0 BYTE 0 /1 through /5 
(bit selecti on) 

K/PO BO 

/ 
~..,... 

\ ~ 
CLOCK BLOCK 0 BYTE 0 

Within each register extension unit, the blocks are indivi­
dua I I y numbered 0 through 3. 

Read byte signals RDBO through RDB3 are generated when 
the switch settings match the chassis-selecting address lines 
and when the write byte signals are low, as shown in 

3-50 

fi gure 3-35. The SWO 1 term is added to save power by 
turni ng off circui ts in the unselected REU· s. 

Data is gated from the sum bus into the pri vate memori es 
in the CPU and in the REU as fol lows: 

RWO-RW31 50-531 RWX5/0 through RWX5/3 

(CPU private memory) 

/RRWO/-/RRW31/ 50-531 RRWX5/0 through 
RRWXS/3 

(cables to REU) 

3-24 Clock Logic 

CLOCK GENERATOR. The clock generator in the CPU 
consists of three delay lines with associated gates and sense 
amplifiers to tap off pulses at the desired time intervals. 
Four basic types of clock signals are produced: a 40 nsec 
ac clock signal for trailing edge triggering of flip-flops 
throughout the CPU, a 40 nsec ac clock signal for use in 
the floating point unit, a 50 nsec private memory clock 
signal to gate information into the private memory registers, 
and a 50 nsec dc holding signal to clock data into the C­
register buffer flip-flops. The C-register flip-flops are 
latching circuits and do not use an ac clock signal. 



w 
~ --~ 
~ 
N 

-n 
cO· 
c: ., 

-em 
a w 
~I 
o~ 

... . 
o::J:;::o 

'< m -co m _. 
o~ ... m ., 
~m 
3 x 

"'0 --m -. :J 
~ ~. 
m 0 
D..:J 

O-n 
-. --t a N 

co 01 ., 
~ a ~ 
::: 3 0 
~ Q.. 
~ ~ • m 
00 .. 
-0 

INPUT .. 
DATA 

r-

~ 

W!POBO/O 
(WROO) 

W!POBO/l 
(WR01) 

W/POBO/2 
(WR02) 

W/POBO!3 
(WR03) 

~ 

~ 

1---+ 

~ 

• 

ADDRESS LINES TO ALL ELEMENTS 
SELECT ONE OF EIGHT BITS 

VPOBO/3 
(WDA1) 

! 
VPOBO/4 
(WDA2) 

! 
VPOBO/5 
(WDA3) 

~ 
t ~ FOOO 

BIT 0 I -R BIT 0 REGISTERS. REGISTERS 
0-7. 8-F 

~ ! I j I • FOOl 

BIT 1 t---+ 
REGISTERS 14 ~I 

0-7 • 

BIT 1 
REGISTERS 

8-F 

• 1 I _ t_ I ~ F 002 

BIT 2 r---+ 
REGISTERS 14 ~I 

0-7 .. 

BIT 2 
REGISTERS 

8-F 

• I 1 I ~ F003 

BIT 3 ~ ----H BIT 3 
REGISTERS REGISTERS 

0-7 + 8-F 

W/POBO/4----------;-----.-..----r------.-..-.-..----------4--.-..---4-.-..-.-.. __ 
(WR04) 

W!PO BO/5 
(WR05) 

W/POBO/6 
(WR06) 

W/POBO/7 
(WR07) 

NPAGO I 
:E~ ,I: : 

• I I 1 J ~ F004 

1---+ 
BIT 4 I ----H BIT 4 

REGISTERS.. REGISTERS 
0-7 + 8-F 

Ir 
I 1 _L ~ F005 

1---+ 
BIT 5 I ---H BIT 5 

REGISTERS 4 REGISTERS 
0-7 + 8-F 

Ir 
I I 1 I ~ FOO6 

~ 
BIT 6 h ---H BIT 6 REGISTERS REGISTERS 
0-7 8-F 

+ I tm I ~ F007 

BIT 7 r---. 
VPOBO/2 0-7 t I- '. 10' REGISTERS ,.. 10 1 

(CONTROL LINE) K/POBO (WRBO AND 

BIT 7 
REGISTERS 

8-F 

AND CLOCK) 

L!POBO/l (CONTROL LINE) 

t-0UTPUT 
DATA 

Vl 
o 
Vl 

~ 

;j 



SDS 901172 

A simplified block diagram of the clock generator is shown 
in figure 3-36. Only the basic timing functions are shown. 
Gating, latching, pulse shaping, enabling, and other tim­
ing control functions are shown in detai I loter in this section. 
All clock signals except the first one originate with a re­
circulated clock input to delay line 1. A 40 nsec clock 
pu Ise is tapped off at the zero point on the delay I ine and 
is gated to clock drivers, from which the c lock signals are 
distributed to the CPU and floating point unit flip-flops. At 
the 160 nsec tap, a signal is sensed and applied to the gate 
that produces a dc holding c lock for the C -register during 
transfer of the sum outputs to the C -reg ister. 

From delay line 1, outputs are taken from the lS0 nsec 
or the 210 nsec tap, depending on the state of data request 
flip-flop DRQ, to the input of delay line 2. Taps are 
taken from this delay line according to the time interval 
needed between one clock pu Ise and the next. These taps 
are indirectly controlled by flip-flops TSL, Tll L, and 
signa I T5EN, which is true when TSL and Tll L are fa Ise. 
The control signa I used is selected according to the number 
of logic operations to be performed before another clock 
signal is needed. 

The T5, TS, and Tll outputs from delay line 2 are fed to 
delay line 3, from which the private memory clock signals 
are tapped at the zero point. A pulse tapped at 40 nsec is 
fed back to the input to delay line 1, and the clock cycle 
is started again if an enable signal is true. If the enable 
signa I is fa Ise, the pulse is held in a latching circuit unti I 
the c lock enable signa I rises. 

The ultimate clock intervals are affected by circuit and 
cable delays following the delay line taps. Each clock 
signa I is transmitted through an lS-foot, 14-conductor co­
axial cable and a 3-foot single-conductor cable. These 
cables introduce delays in addition to those encountered in 
th eel oc k log icc i rc u i ts. 

Timing signals other than ciock signais taken from the 
delay lines are applied to gates in the CPU and are dis­
cussed in the following detailed descriptions of each 
delay line. 

Delay Line 1. A detailed logic diagram of the circuits 
associated with delay line 1 is shown in figure 3-37. 

The first pulse is started down the delay line by force clock 
signal FORCl if force clock enable signal FORClEN is 
true. Signal FORCl goes true as a result of pressing the 
CPU RESET button on the processor control panel. Enable 
signal FORClEN is true until the pulse reaches the 60 nsec 
point. The equation for buffer flip-flop FORClEN is as 
follows: 

NFORClEN FORCl NFORClEN 

+ Dll/060S FORCl 

Subsequent inputs to delay line 1 are provided by recircu­
lation feedback signal ACClG/l, from delay line 3, or by 
ACClG, the output of a latching circuit set by ACClG/l. 

Clock enable signal CLEN must be true for either input to 
start the delay line. Since clock pulse ACClG/l is lost 
when ClEN is false, ACClG reserves the signal for use 
when ClE N goes true. 

The CPU and floating point clock tap is ACCl/l, which 
rises as the delay line is triggered and is cut off by an 
inverting delay line sensor at 40 nsec. This shapes the ac 
clock pulse to a 40 nsec width. The CPU clock signals, 
Cl/l through Cl/12, and floating point clock signals, 
ClFP/l through ClFP/12, are gated by NCROSCl, which 
indicates that crossover from core to private memory is not 
taking place. The floating point clock signals are also 
gated by floating point clock enable signals FPClEN/l 
and FPClEN/2, whose equations are: 

FPClEN/l 

FPClEN/2 

NIOEN NIOIN + NFPRR 

NT5EN 

At the 50 nsec point on delay line 1, a signal is tapped 
and inverted to form R/ ACCLG, which when low resets 
clock-storing latch ACClG. Signal DLl/060S, taken from 
the 60 nsec tap, is used to set the force clock buffer latch. 
The inverted tap at SO nsec shapes the delay line pulse to 
an SO nsec width. The 160 nsec tap provides dc holding 
signal DCCl/2, an input to the HOlDC gate which controls 
the latching of information into the C-register buffer flip­
flops. Signal DCCl/2 is true only when CXS is true, 
indicating that sum bus information is being transferred to 
the C-register. This signal is shaped to a 50 nsec width by 
the inverted 210 nsec tap. Signal R/DPl, at the 170 nsec 
tap, is used to reset dead pulse latches T5DP, NT5DP/l; 
and TSDP, explained later under delay line 2. Signal 
CROSSDCl, also from the 170 nsec tap, is part of the set­
ting logic for the CROSSD latching circuit, which disables 
the ac c lock during memory crossover operation. 

A si gna I from the lS0 nsec poi nt a nd one from the 210 nsec 
point are applied to the input of delay line 2 to provide a 
30 nsec variation in clock time, depending on whether data 
request flip-flop DRQ is set. Signal MRCl, at the 240 nsec 
poi nt, is used to gate the memory request si gna I to core 
memory. 

Delay Line 2. A detailed logic diagram of delay line 2 is 
shown in figure 3-3S. As explained above, Dl2 is set at 
lS0 or 210 nsec according to the state of flip-flop DRQ. 
Timing signal T5 is tapped off at the zero point if T5 enable 
signal T5EN is true and crossover is not taking place as the 
result of a memory request. Signal T5 is fed to delay line 3 
so that the clock i nterva I duri ng an i nstructi on phase when 
T5EN is true is nominally 2S0 nsec. The T5 enable signal 
is true when flip-flops TSl and Tll l are reset and instruc­
tion logic indicates that this clock interval is needed. 
Dead pulse latch T5DP prevents the TS, T11, and DCCl/l 
outputs from the delay line from going true after a T5 pulse 
has been tapped. 

3-53 



3-.54 

\ (, ) '54 
FO RCE 
(LO CK ( 

I 

ACCLG/l 

SDS 901172 

TIMING SIGNALS 
I 

j~ j~ ~ 

5060 170 

DELAY LINE 1 

0 

I I 

+ AC CLOCK 
SIGNALS 

~ 

FLOATING 
POINT 

CLOCK SIGNALS 

160 180 

I I 
+ l 

DC HOLD 
CLOCK 
SIGNAL 

j~ 

240 

210 

IDRO 
NDRQ ( 

0 

I - ( DELAY LINE 3 

~-.~0 ___ 4~0~ ______ ~1~5~0 ____________ ~3~0~0 

• 
PRIVATE 

MEMORY 
CLOCK 

SIGNALS 

I 

TIMING SIGNALS 

TIMING SIGNAL 

1 
I 

110 

DELAY LINE 2 

70 180 200 

~ 

DC HOLD 
CLOCK 
SIGNAL 

901172A.77 

Figure 3-36. Clock Generator, Simplified Block Diagram 



DLl/OOOS 

50~-~:"J 

60~Dll/06OS 

~ SA DlI/080S 

DELAY 
LINE 1 CXS 

SDS 901172 

FPCLEN/I 

FPCLEN/2 

NCROSCL 

160 DCCl/2 

(R/DPL) 

CROSSDCL 

DLl/180S 

MRCL 

TO DELAY 
LINE 2 

Figure 3-37. Delay line 1, Logic Diagram 

CLFP/I-CLFP/12 
FlOA TlNG POINT 
CLOCK SJGNALS 

CL/l-CL/12 
AC CLOCK 
SIGNALS 

901172A.78 

3-55 



3-56 

FROM {DL 1/1805 
DELAY 
LINE 1 DL ]/2105 

DRO 

s/DL2 

0~-----1 

T5EN 

70'-------1 

1l0~--------r---I 

DELAY 
LINE 2 

1801-------1 

200 

230~---------~ 

SDS 901172 

1 
L TO DELAY 
I LINE 3 

~T8~----__ ----------------~_.,_+J 

NT5DP 

ABOl 

DL2/1105 

NT8DP 

TO DELAY LINE 3 

"Y"\---JL---_____________ --. DCCL/1 

DC HOLD CLOCK SIGNAL 

901172A.79 

Figure 3-38. Delay line 2, Logic Diagram 



SDS 901172 

A T8 timing signal is tapped from delay line 2 at 70 nsec 
and fed to delay line 3 to provide a nominal 380 nsec in­
terval between ac clock signals when crossover is not taking 
place. When flip-flop T8l is set at the end of an instruc­
tion phase, T5EN is driven fa Ise, and this drives T8EN true 
if T11 l is reset and other instruction logic requests this par­
ticular clock interval. Dead pulse latch T8DP prevents the 
T11 and DCCl/1 outputs from the de lay I ine from going true 
after a T8 pu Ise has been tapped. An ABOT signa I from the 
110 nsec tap c locks buffer fii p-fiop ABO/1, used when a 
memory access has been aborted. 

At 180 nsec, dc hold signa I DCCl/l goes true and is shaped 
to 50 nsec by the inverting delay line sensor at the 230 
nsec tap. This c lock signa I gates information into the C­
register during crossover operation, when crossover read 
signa I C ROSSENR is true. 

A T11 timing pulse is tapped from delay line 2 at 200 nsec 
and fed to delay line 3 to provide a nominal 500 nsec in­
tt:>rVl:d between ac clock signals. This pulse is c!!o ... .;ed if 
no T5 or T8 pu Ise has been enabled. FI ip-flop T11 l, set 
during instruction phases when the following phase shou Id 
be nominally 500 nsec long, is used to disable the T5 and 
T8 enable signa Is. 

Delay line 3. A detailed logic diagram of delay line 3 is 
shown in fi gure 3-39. A T5, T8, or T11 timing pulse starts 
a pulse down delay line 3. This pulse is shaped to 80 nsec 
by an inverting delay line sensor at 80 nsec. At the zero 
point on the delay line, FMCl/l is tapped off and is shaped 
to 50 nsec by ani nverti ng de I ay line sensor at 50 nsec. 
Signal FMCL/1 is applied to clock drivers to produce 
private memory clock signals CK/1 through CK/12, used 
to clock information into the private memory registers. At 
40 nsec, clock generation signal ACClG/1 is tapped off 
and fed back to the input of delay line 1 to start another 
clock pulse cycle if clock enable signal ClEN is true. The 
pulse from delay line 3 is shaped to 40 nsec by an inverting. 
delay I ine sensor at the 80 nsec tap. Si gnal ACClG/1 is 
applied toa buffer latch, where the pulse is stored as 
ACClG in case ClEN is false. Signal ACClG is gated 
into delay line 1 by signal ClEN. The ACClG latch is 
reset by signal (R/ACClG) from delay line 1. A signal 
identified qs (NAH AHCL) is tapped at 150 nsec if there 
is no address here signal from core memory. Memoryad­
dress not here clock ADNHC is tapped at 300 nsec from 
delay line 3. 

Clock Enable Signal. As explained above, recirculated 
clock pulse ACCLG/l sets delay line 1 only if clock enable 
signal CLEN is true. This signal is the output of a six-input 
AND gate, and all of the inputs must be true in order to 
generate signal CLEN. 

To illustrate the functions of the clock-enabling gates, the 
equation for CLEN is divided into sections in figure 3-40. 
The function of each section is described separately. 

Gate 1 disables the ac clock signal if none of the following 
conditions exist: 

a. Data request flip-flop DRQ reset 

b. DRQ set and data release signal DR received 

c. DRQ set and data release latch DR/1 set 

d. DRQ set, no memory request sent to memory, and 
CPU RESET switch not pressed 

An example of the ac clock inhibiting logic during a mem­
ory cycle is shown in figure 3-41., using a full write store 
operati on as an example. On the trai I ing edge of the clock 
signal, flip-flops MBXS, MRQ, MRC, and DRQ are set. As 
soon as DRQ is set, clock enable signal ClEN is driven low 
by gate 1. Memory request clock signal MRCl is tapped 
from delay line 1 240 nsec later, and /MQC/ is sent to 
memory. The ac clock generate latch, ACCLG, is set at 
50 nsec on delay line 3 to store the clock pulse whi Ie 
CLEN is low. Data release signal DR is received from 
rn~rnory after !MQC/ is sent. ihis re-enabies (LEN at 
gate 1, and ClEN plus ACClG at the input to delay line 1 
starts another pulse down the delay line. 

A logic diagram of data release latch DR/1 is shown in 
figure 3-42. The latch is set by one of the following 
conditi ons: 

a. Address here signal not received from core memory 
at 150 nsec on delay line 3 

b. Effective address less than 16 (crossover), memory 
request and data request made, and T11 clock signal 

c. Memory request made and data release si gna I 
received from memory 

The latch is held by feedback to the AND gate containing 
DRQAC and NRESET/F. Signal NRESET/F is dropped by 
pressi ng the CPU RESET swi tch, thereby resetti ng the data 
release latch. The latch is also reset at the first clock 
signal following the setting of data request flip-flop DRQ. 

Outputs from the DR/1 latch are also used in the circuits 
that enable or disable the ac clock and flooring point ciock 
outputs from delay line 1 during crossover operation. 

Gates 2 and 3 disable the CPU clock signal during parts of 
the I/O operati on. If no input or output is taking place, 
request service clock enable signal RSCLEN is false, holding 
the output of gate 2 true. During an I/O instruction, 
RSCLEN goes true, disabling the NRSCLEN gate. In this 
case, since request strobe acknowledge signal RSA has not 
been generated, (RSCLEN NRSA) is true and the ac clock 
signal is disabled until request strobe signal RS is received 
from the device controller. When RS is received, clock 
enable signal CLEN is again generated, and the resulting 
clock signal resets flip-flop RSCLEN. 

At the end of an I/O operation, when the last byte is being 
transferred, flip-flop RSACLEN is set as the result of a 

3-57 



3-58 

40 

50 

DELAY 
LINE 3 

80 

150 

SDS 901172 

I 
I I 

I I 
I I 

ACCLG/l 

(R/ACCLG) 

C K l-C K'12 
PRIVA IE MEMORY 
CLOCKS SIGNALS 

ACCLG /11 

ACCLG 
j

RECIRCULA liON 
Ir;-.JPUTS TO 
DELAY LINE 1 

I-----------,~ (NAH A HC L) 

>-----.ADNHC 

901 172A. 80 

Figure 3-39. Delay Line 3, Logic Diagram 



GATE 1 

NDRQ 
+ 

DR/1 
DRQ 

+ 
DRQ 
DR 

50S 901172 

I GATE 2 I I GATE 3 I 

I I I I 
I 

NRSCLEN I I I 
I 

+ NRSACLEN I 
. RSCLEN I I + 

I I NRSA I RSACLEN I I' 

GATE 4 

I 

I 
I 

IANDI 

GATE 5 

CEINT 
+ 

I 

I 

I I 

I ANDI I AND I RS I AND! NRSA I AND 

D:Q Ii: I I 

I NMRC I I I I I 

NCEINT 
+ 

CEINT 
ARE I I 

NKSC 
+ I I 

I I SC2 I I 
I I I I NRESET/F 

I I I I I I I 
I I ! 

Figure 3-40. Clock Enabling Gates 

CL ~~ ________________________ ~Il~ ___ 

MBXS ~ 

MRQ ~ 

MRC ~ 

DRQ ~ 
I i-240NS ~I 

MRCL _____________ 11'--_____________ _ 

/MQC/ __________ n'-----____ _ 
ACCLG 

CLEN IL.... _______________ --' 

DR ________________ ----~Il-___ 

Fi gure 3-41. Store Operati on Tim i ng Diagram 

GATE 6 

CEINT 
+ 

NKSC 
+ 

NSCL 

I 
I 

901 1 72 A. 81 

901172A. 82 

3-59 



SDS 901172 

ADNHL 

ADNHCL 

CROSS 

)---"-41_-- D R/l 

Tll 

9011 72 A. 83 

Figure 3-42. Data Release Latch, Logic Diagram 

terminal order. This disables the NRSACLEN gate, and the 
clock signal is inhibited. Since RSA is set at this time, the 
clock signal is inhibited until the fall of signal RS dc resets 
flip-flop RSACLEN. At this time, CLEN is developed, and 
a clock is generated. 

Gate 4 inhibits the clock signal during interrupts and 
watchdog timer runout. During watchdog timer runout, 
CEINT ensures that a clock has not just been sent down 
the delay line. During interrupt processing, CEINT inhibits 
the clock signal until action response signal ARE is received 
from the interrupt logic. 

Gates 5 and 6 are used to disable the clock signal when the 
CPU CLOCK MODE switch goes into the center posi tion. 
They also provide a temporary clock enabling signal when 
the CLOCK MODE switch is set to SINGLE STEP. A timing 
diagram of thi s si ngle c lock type of operation is shown in 
figure 3-43. 

When the CLOCK MODE switch is set to the center position, 
signal KSC goes true and the output of gate 5 drops, driving 
clock enable signal CLEN low. Setting the CLOCK MODE 
switch to SINGLE STEP drives KC true and KSC remains 
true. Because flip-flop SCI is clocked by the I-MHz clock 
signal rather than by the continuous delay line clock signal 
enabled by CLEN, SCl is set on the trailing edge of the 
following clock signal from the I-MHz oscillator. The 
equations for fI ip-flop SC I are as follows: 

S/SCI 

R/SCl 

3-60 

KSC KC 

NKC/B SCL + NKSC 

where NKC/B is true when the CLOCK MODE switch is in 
the CaNT or center position and false in the single step 
mode. Signa I SCL is the output of a buffer latch used to 
disable CLEN after a single step clock signal has occurred. 

Flip-flop SC2 sets on the trail i ng edge of the next I-MHz 
clock signal, and the output of gate 5 goes true, generating 
an ac clock signal. Th~ equations for SC2 are as follows: 

S/SC2 SCI 

R/SC2 NSCI 

Setting SC2 sets single clock buffer latch SCL when the 
clock enabled by CLEN is generated, according to the 
equati on: 

SCL = SCL SC2 + (SC2 NCEINT) CL32Pl4 

where CL32P14 is the result of a clock output from the 
delay lines. Signal SCL is latched by feedback as long as 
the switch is kept in the SINGLE STEP position, and signa! 
CLEN is disabled by gate 6. Releasing the switch resets 
SCI with NKC/B and SCL, and SC2 is reset on the follow­
ing I-MHz clock signal. Signal CLEN is now disabled by 
gate 5 until the switch is set in SINGLE STEP again. 
Resetting SC2 drops the latch holding SCL true. 

Crossover Clocks. When an effective address less than 16 
generates a CROSSADD signal, the ac clock si gnal from 
delay line I is disabled by gating ac clock output ACCL/l 
with a crossover signal, NCROSCL. When NCROSCL is 
low, ACCL/I does not produce any clock signals, and the 



SDS 901172 Paragraphs 3-25 to 3-26 

fast memory c lock signa Is from delay line 3 are used to clock 
the private memory registers. The equation for NCROSCL is 
as follows: 

NCROSCL 

CROSSEN 

CROSSD 

N(DR/l CROSSEN) 

CROSSADD MRC DRQ NCROSSD 

C ROSSD (R/ ACC LG) 

+ CROSS CROSSDCL DR/1 

OSCILLATOR CLOCK GENERATOR. A 1-MHz signal used 
to clock flip-flops in certain CPU circuits such as the inter­
rupt circuits, the watchdog timer, and the single clock gen­
erator, is taken from a CTl6 medium frequency osci lIator 
module as shown in figure 3-44. A sine wave from a 2-MHz 
osci Ilator goes through a frequency divider consisting of 
seven flip-flops, each of which divides the frequency by 
two. Outputs from the 1-MHz flip-flop are distributed to 
the points where this frequency is needed, and the output 
of the 16-KHz flip-flop is connected to the ST29 time base 
se iector to be used in the generation of rea I-time clock 
signa Is. 

3-25 CPU Phases and Timing 

PHASES. The CPU phases are variable time intervals sepa­
rated by ac clock pulses from the CPU delay lines. The 
phases are identified as preparation phases 1 through 4 and 
execution phases 1 through 10. Each phase is entered by 
setting one of the phase flip-flops; PRE1 through PRE4 and 

PH1 through PH10. The setting logic for the phase flip-flops 
is determined by the type of instruction being executed, the 
previous phase in the phase sequence, and certain conditions 
peculiar to the individual instruction. 

The length of a phase is determined by the time that a clock 
signal is sensed and gated from one of the CPU delay lines. 
During each phase, the length of the following phase is es­
tablished by resetting flip-flops NT8L or NTll L, or by allow­
ing both of these flip-flops to remain set. If neither NT8L 
nor NTll L is reset, the clock interva I is set by T5EN, an 
enable signa I that can be true only when NT8L and NTll L 
are true. Another time element is introduced by,the presence 
of a memory request with data request flip-flop DRQ set. In 
this case, the clock signal is delayed until a data release 
signa I is received from core memory. 

Ac clock signal generation is described in the section on 
c lock logic. The phase fl ip-flop setting logic for each 
phase is explained in the phase sequence charts included 
with the instruction descriptions. 

3-26 Real-Time Clock 

The rea I-time c lock signa Is are generated in a frequency 
divider circuit on an ST29 time base selector modu Ie. 
Outputs from the frequency divider are switched on a STl4 
toggle switch module to four clock pulse flip-flops on the 
time base ~elector. Outputs from these flip-flops are 
applied to the interrupt circuits on the appropriate LTl6 

NCEINT---11 II 
~ LJLJLJ ~::z ~11 1"-1 -----

CLEN ----ull--------In I~ __ ___ _ ~I n~---~i,,,---__ _ 
-----II~ I~---

~C~C/B ~I It---------t~ 
SC2 II L 

III II L 
901172A.84 

CL 

KC 

SCL 

Figure 3-43. Single Clock Generation 

3-61 



Paragraph 3-27 SDS 901172 

I -- -- --- - -- - - -- -- -- ---- ------, 
CT16 MEDIUM FREQUENCY OSCILLATOR 

I r------ FREQUENCY DIVIDER 

I 
I 
I 

I 
[ 2-Me H-

OSCILLATOR 
FF 

f--
1 MC 

FF FF FF f-- r--
512 KC 256 KC 128 KC 

I I 
FF f-- FF ~ FF I I r-- T I 64 KC 32 KC 16 KC 

N16KC 

I I 
I I 

L ________________ ~I 
L __ ____________________ --1 

901 1 72A. 85 

Fi gure 3-44. Osci Ilator Clock Generator, Block Diagram 

priority interrupt modules. A simplified diagram of the 
real-time clock circuits is shown in figure 3-45. 

A 16-kHz signa I from the Cll6 medium frequency asci Hator 
described under Oscillator Clock Generator is applied to 
the input of the first of five frequency divider flip-flops 
on the time base selector. The frequency is divided by 
two each time it goes through a frequency divider flip-flop, 
so that the five frequencies are 8 kHz, 4 kHz, 2 kHz, 1 kHz, 
and 500 Hz. The outputs of the 8 kHz, 2 kHz, and 500 Hz 
flip-flops are connected through switches to fl ip-flops CPU L1, 
C PUL2, and C PUL3, respectively, as shown in the figure. 
FI ip-flop C PUL4 is c locked by the 500 Hz signal, unswitched. 

Each clock pulse flip-flop is connected to a group of four 
switches in series. These switch groups are switches 15-14-
13-12 for flip-flop CPULl, switches 10-9-8-7 for flip-flop 
CPUL2, and switches 5-4-3-2 for flip-flop CPUL3. When 
one switch in a group is in the up position and the other 
three switches are in the down position, the frequency 
connected to the up switch clocks its corresponding clock 
pu Ise fI ip-flop. The inputs designated RTC are optiona I 
frequenc ies from sources externa I to the CPU. The line 
frequency of 50 or 60 Hz may be used at any of these inputs. 

The outputs of flip-flops CPUL3 and CPUL4 are taken to 
the priority interrupt modules used to process the standard 
counter 3 count pu Ise and counter 4 count pu Ise interrupts. 
The outputs of flip-flops CPULl and CPUL2 are used only 
if the optiona I counter 1 count pu Ise and counter 2 count 
pulse interrupt levels are included in the CPU. The events 
that occur after a count pu Ise signa I enters the interrupt 
circuits are described in the section on interrupts. 

3-27 Watchdog Timer 

The watchdog timer is a 6-bit flip-flop binary counter 
clocked by the l-MHz clock signal. The counter is set at 
interruptible points in the program and counts up by ones 
to 42, thereby allowing 42 fJsec before runout. If the timer 
runs out before another interruptible point is reached, a 
trap sequence is entered. 

3-62 

A logi c diagram of the wotchdog timer control circuits is 
shown in figure 3-46. The counter is started by loading it 
with ones at one of the following interruptible points: 

a. At the first ac clock pu Ise after interrupt enable 
signal lEN goes true. 

b. When flip-flop PH10 is set to start the final 
execution phase of an instruction. 

c. At the start of phase 8 (PH8) of a move to memory 
control instruction if the last control image word has not 
been loaded. 

d. During I/O phase 1 (PHl) of an I/O operation if 
swi tch 13 is set. 

Anyone of these conditions sets flip-flop WDTRAC, and 
WDTRAC sets a II of the watchdog timer fl ip-flops, WCll 
through WCT6. 

When the counter has counted from 111111 to 000000 and 
then to 42 without being restarted, timer runout has occurred, 
indicating that 42 microseconds have elapsed since the last 
interruptible point was reached. A timing diagram of watch­
dog timer runout is shown in figure 3-47. Flip-flop WDTA is 
set by WCll, NWCT2, WCT3, and WCT5. A one at the set 
output of WDTA causes fl ip-flop WDTRAC to be set, restart­
ing the counter. At the same time, clock inhibit flip-flop 
CEINT is dc set, and signal STRAP is generated from CEINT, 
WDTA, and WDTRAC. Signa I (S/TRAP) sets fl ip-flop INTRAP 
to start a trap sequence, which takes the CPU to locationX '46 I

• 

When flip-flop CEINT is set, clock enable signal CLEN is 
driven low and the CPU clock is disabled. Since CEINT 
must be reset by a c lock signa I, the CPU c lock must be 
started by another signal. In this case the signal is force 
clock signal FORCL: 

FORCL = STRAP 1 MC 2MC 

Signal FORCL is one of the setting inputs to delay line 1; 
therefore, an ac clock signal is immediately generated. 
Flip-flop CEINT is reset by this clock. 



SDS 901172 

--------------, 
ST14 TOGGLE SWITCH MODULE 

I 

I 
I 
I 
I 
I 
I 
I 

0 
SWITCH 15 

~ 

SWITCH 10,... 

~ 
,... 

SWITCH 5 

( 

I--

'" 
SWITCH 13 

SWITCH 14 
0.... 

'" 
SWITCH 8 

SWITCH 9 

~ 
SWITCH 3 

SWITCH 4 ~ , 
f--

C>--ECPUl1 

O _______ SW_IT_C_H_I ____ ' ~ECPU12 I 
I 
I 

SWITCH 7 

SWITCH 2 
C>-f-ECPUL3 I 
~I 

I 
I 

L_ -- -- -- -- - -- -- -- -- -- I-- - - - -- -f- -- -- -- -- - r-~ 

~t----t------ ~--------- _~C_l 
r - -- -I- -- -- - - - - - - - - -,.- -, 

I I 
I 

16 KHZ FROM I I 
CTI6 MEDIUM 
FREQUENCY -+-·+-t--t----'I;----I 
OSCILLATOR I 

I I 

FF FF FF 
8 KHZ -~ 4 KHZ - 2 KHZ 

FF FF 
1 KHZ r--- 500 HZ f-

I 
I 
I 
I 

I L 
FREQUENCY DIVIDER -=-t J 

II III I I II 
FF L FF FF r-- FF 

CPUL 1 
~ 

CPUL 2 I--
'--

CPUL 3 
~ 

CPUL 4 
r---

I 
I INPUTS IS3-"'T""""-----------+------' 

FROM I 

ST29 TIME BASE SELECTOR 

DC RESET {S2 : 

INTERRUPT 154-""--------------+--------+-----' 
CIKUIB ~-~l----------~------+------~~---~ I L _______ .~ _____ ~ ____ ~ _____________ ---.J 

I 
TO COUNTER 1 AND 
COUNTER 2 COUNT­

PULSE INTERRUPT 
CIRCUITS (OPTIONAL 
REAL- TIME CLOCKS) 

) 

I 
TO COUNTER 3 AND 
COUNTER 4 COUNT­

PULSE INTERRUPT 
CIRCUITS (STANDARD 
REAL- TIME CLOC KS) 

Figure 3-45. Real-Time Clock, Simplified Diagram 

901172A.86 

3-63 



W 
I 

~ 

." 

LQ 
C 

m 
w 
~ 
0-

:f 
c 
n 
:::r 
c... 
o 

LQ 

-I 

3 
(1) .., 
n 
o 
::'I .... 
(3 

n 
n 
c 

b 
to 
() 

IOPHI 

SW1:l 

FUMMC 

PHB 

BRPH2 

N(lMC 
2MC) 

CL 

FF 
CEINT 

C 

o 

~---------------------------'------------------------'---------------. 

WCll 

NWCT2 
WCT3--L-__ 

WCT5 lMC 

S FF l~~----~; 

WDTA 
c: 

o 

(SjNDTR) 
~----~S FF lr-~------~ 

WDTR 
CL C 

o 

.--____ ~~ SET INTRAP TO START 
KSCV 

RESET 

FAPSD PH5 

TRAP SEQUENCE 

CL 

FF 
TRAP 

C 

o 

NKRUNV 

KWDTRV 

PC PACT V 

KRUNQ-[>r 
PCP2 

NIOACT 

TO WATCH­
DOG TIMER 

FF 1 t--~r--1~ COUNTER 
WDTRAC WCTl-WCT6 

lMC C 

o 

WDTR/K 

VI 
o 
VI 

-.0 
o 



SDS 901172 Paragraph 3-28 

901172A.91 

Figure 3-47. Watchdog Timer Runout, Timing Diagram 

The watchdog timer is inhibited under the following condi­
tions: (See figure 3-47.) 

a. The continuous clock is disabled by placing the 
CLOC K MODE switch in the center position (KSC true). 

b. The COMPUTE switch is set to ID LE (N KRUN true). 

c. The WATCHDOG TIMER switch is placed in the 
OVERRIDE position (KWDTR true). 

d. The CPU is in PCP phase PCP1, PCP3, PCP4, PCP5, 
or PCP6 (PCPACT true). 

e. The COMPUTE switch is placed in RUN in PCP2 
(KRUN and PCP2 true). 

3-28 .Memory Protection 

The memory protection feature prevents alteration of 
specified areas of address in memory. The program is 
subjected to memory protection in both master and slave 
modes. Memory locations are protected in groups of 
addresses referred to as pages. Each page contains 512 
memory locations. 

A 2-bit write lock code for each page of core memory is 
stored on a set of four FT25 fast access memory modules. 
There are 256 of these write locks. The association of 
the write locks with the pages of memory addresses may 
be represented as shown in figure 3-48. During memory 
access, two flip-flops designated the write key, bits 3 and 
4 of program status doubleword 2, are compared with the 
write lock bits for the memory page being addressed. The 
write locks and write key are interpreted as shown in 
table 3-8. 

Table 3-8. Memory Protection Functions 

Write Lock Write Key Protection 

00 XX Write access permitted in-
dependent of key value 

XX 00 Write access permitted in-
dependent of lock value 

o 1 o 1 Write access permitted 
through through only if lock value matches 

1 1 1 1 key value 

3-65 



SDS 901172 

PAGE 0 PAGE 1 PAGE 2 PAGE 3 
I j ~ I 

PAGE 4 PAGE 5 PAGE 6 PAGE 7 
I I I I 

PAGE· 8 PAGE 9 PAGE A PAGE B 
J I I I 

I 
I 
I 
I 
I I 

1 PAGE FC PAGE FD PAGE FE PAGE FF t 
0 2 3 4 5 6 7 

901060A. 31303 

Figure 3-48. Write Lock Registers 

If an instruction attempts to write into a protected memory 
page, the trap flip-flop is set and a trap sequence is 
entered. 

The actual organization of the write lock bits in the SDS 
304 integrated circuit memory elements on an FT25 module 
is shown in figure 3-49, using the first FT25 as an example. 
The memory elements on the left half of the diagram con­
tain the write locks for pages 0 through 1F; those on the 
right half contain the write locks for pages 20 through 3F, 
for a total of 128 bi ts, or 64 wri te locks, on one module. 
Only the first, second, and last bits in each memory ele­
ment are shown in the diagram. 

LOADING THE WRITE LOCKS. A move to memory control 
instruction with a one in bit 14 transfers the write locks 
in core memory, referred to in the reference manual as the 
memory lock control image, from core memory to the 
memory protection registers. The instruction sequence is 
descri bed in the move to memory control opcode descri p­
tion. The data is first placed in the C-register, then 
transferred to the A-register. From the A-register the 
memory lock control image is transferred a byte at a time 
by means of the sum bus onto the write lock data lines. 
The equations are: 

W/LKO/1-W/LKO/7 SO-57 

W/LK3/1-W/LK3/7 50-57 

3-66 

The data is shifted left in the A-register eight bits at a 
time to align it with sum bus bits 0 through 7. 

The individual bits in the memory elements are selected 
by address si gna I s genera ted from the P-regi ster with the 
equations 

L/LKO/3 P18 

L/LKO/4 P19 

L/LKO/5 P20 

for the fi rst FT25 module. The modules are sel ected by 
decoding P-register bits P15 and P16, inputs to the AND 
gates in figure 3-49. The two halves of the module are 
selected by P-register bit 17as shown in the figure. 

The write lock clock signal is generated from a write lock 
signal LOCKW and a private memory clock signal with the 
equation 

K/LKO-K/LK3 LOCKW CK 

5/LOCKW FUMMC [PH3 + PH6 N(BC =- l)J 

where FUMMC is the move to memory control functi on. 



ADDRESS LINES TO ALL ELEMENTS 
(SELECT 1 OF 8 BITS IN EACH ELEMENT) 

L./LKO/3 L/LKO/4 L/LKO/5 

~ ! ! ! 
W/LKO/O 

J I 
I + I 

.. LOCK 0 

BIT 0 BIT 0 
PAGE 0 PAGE 20 

BIT 0 BIT 0 
PAGE 4 PAGE 24 

r--4.J I ---, 
I I 

L- ----.. --.i 
BIT 0 BIT 0 

PAGE IC PAGE 3C 

W/LKO/l I 
! I 

I + I 
• LOCK I 

BIT I BIT 1 
PAGE 0 PAGE 2(!-

BIT I BIT 1 
PAGE 4 PAGE 24 

I 
'; ---,-

f---1~ I I 

L- f---+ ---1.. 
BIT 'I BIT 1 

, PAGE IC PAGE 3C 

W/LKO/2 

! I 
I + I 

.. LOCK 2 

BIT 0 BIT 0 
PAGE I PAGE 21 

BIT 0 BIT 0 
PAGE 5 PAGE 25 

~ .. I ---, 
I • I 

L- r----+ ---.t 
BIT 0 BIT 0 

PAGE 10 PAGE 3D 

W/LKO/3 I 
! I 

1 + 1 
• LOCK:l 

BIT 1 BIT I 
PAGE I PAGE 21 

INPUT ., LJ 
BIT I BIT 1 I r- OUTPUT 

DATA PAGE 5 PAGE 25 DATA 
i i 
i I 

L- ----.. -.i 
BIT 1 BIT 1 

PAGE 10 PAGE 3D -
W/LKO/4 

! 1 
I • I 

.. LOCK 4 

BIT 0 BIT 0 
PAGE 2 PAGE 22 

BIT 0 BIT 0 
PAGE 6 PAGE 26 

~~I I I -
I I 

L-
~ ----+ ---1 

BIT I) BIT 0 
PAGE IE PAGE 31: -

W/LKO/5 

! ---, 
I • I 

• LOCK 5 

BIT 1 BIT I 
PAGE 2 PAGE 22 

BIT I BIT 1 
PAGE 6 PAGE 26 

r---+I I ----, 
I ~ I 

L- ----.. -.i 
BIT 1 BIT I 

PAGE IE PAGE 31: -
W/LKO/6 ---, ! I • I 

• LOCK 6 

BIT 0 BIT 0 
PAGE 3 PAGE 2:3 

BIT 0 BIT 0 
PAGE 7 PAGE 27 V) 

"T1 r---~ i I 0 
I I V) 

CO t ~ t ~ c .., 
BIT 0 BIT 0 CD -PA3E IF PAGE 3F -o w ;j 

:J ~ 
Vl-oO W/LKO/7 

! 1 o· • LOCK 7 
VlO I • r 
w., BIT I BIT I 
~cg PAGE 3 PAGE 23 
- ~o --
:J N BIT I BIT 1 
-0 PAGE 7 ,f 

~ 

PAGE 2? 
CD _ 

CO -0 I ----, 
.., 0 i K/LKO I S. :J NPI5 t (WRITE CLOCK ---1 CD 0 BIT I SIGNAL) BIT 1 a. ...... NPI6 ----. 
O::f J L/LKO/l PAGE 1 F PAGE 3= 

NPI7 
... ::!. J (CONTROL. LINE) o _ 
c CD 

-0:::;, 
W o 0 
I 0 ~ L/LKO/2 0- ~ 7\ 

Pl7 (CONTROL L1t-JE) ~ 1> ~ w 00 -I 00 VI 

&; 



SDS 901172 

USING THE WRITE LaC KS. To read the memory protection 
register outputs, a modu Ie of write lock registers, a control 
I ine for ha If the modu Ie, and one bit in each of the eight 
memory elements are addressed by P-reg ister outputs P15 
through P20, as shown in figure 3-49. A one on the con­
trol line allows outputs LaCKO through LOCK7 to be 
sensed. P-register bits P21 and P22 are decoded to select 
one of four 2-bit codes in the half module of write locks, 
as shown in figure 3-50. The outputs of the decoding cir­
cuit, LC KO and LC Kl, contain the write lock stored with 
the se lected page address. 

A mismatch of a write lock and the write key generates an 
ABO signal, as shown below: 

Write Lock Write Key 

01 lX 

10 Xl 

lX OX 

Xl XO 

The logic equation for the ABO signa I is as follows: 

ABO 

ABO/2 

ABO/l 

ABO/l ABO/2 

(LCKO WKl + LCKl WKO) 
N(LCKO LCKl WKO WK1} 

[ABO/l (R/DPL) + ABOT MBXS 
NPCPACT NIOACT NINTR.~P 
N(FAIO PH3} ] NCROSSADD 

Signal ABO sets flip-flop TRAP, and a trap sequence is 
entered to take the program to trap location X'40'. An 
IABOCI signa I is sent to core memory to prevent writing 
into the addressed location. 

INHIBITING MEMORY PROTECTION. Memory protection 
is inhibited by disabling the signal ABO under the following 
conditions: 

a. The CPU is in phase PC Pl, PC P3, PC P4, PC P5, or 
PCP6 (PCPACT true). 

b. Integra I I/O operation in process (IOACT true). 

c. Trap or interrupt in effect (INTRAP true). 

d. Writing into memory location 20 during I/O 
operation (FAIO PH3 true). 

e. Crossover in effect (CROSSADD true). 

3-69 



3-70 

WRITE 
LOCK1 

WRITE 
LOCK2 

WRITE 
LOCK3 

WRITE 
LOCK4 

P21 

P22 

,--

BIT 
0 --
~ 

BIT 

L~ 

,BiT 

1Y 
-r--

BIT 
0 

"'""--

-
r--

BIT 
1 

-'--

-r--

BIT 
0 

'--

-
~ 

BIT 
1 -----

SDS 901172 

LOCKO 

J 
I-

.---- \ 
LOCK1 J 

)- J r-
\ 

f---

LCKO 

LOCK2 

LOCK3 I 
~ 

\ 

J LCKl 

LOCK4 k 
~ 

LOCK5 

~ 

LOCK6 

LOCK7 

NP21 

NP22 

901172A.90 

Figure 3-50. Write Lock Addressing 



SDS 901172 Paragraph 3-29 

3-29 Traps 

GENERAL. The primary use of the trap system is detection 
of program errors. A trap i ndi cati on resul ts from a con­
dition such as nonexistent instruction, addressing a non­
existent memory location, watchdog timer runout, or an 
instruction calling for floating point operation when the 
option is not included in the system. Unless a power-on 
or power-off interrupt has been detected, a trap operation 
has priority over any interrupt. The detection of a trap 
conditi on causes the executi on of a trap i nstructi on ina 
specified location in memory. The trap instruction is exe­
cuted in place of the next instruction in normal sequence. 

Trap operations are also used to simulate instructions not 
included in the system logic. In such cases, a call instruc­
tion (CAll, CAL2, CAL3, or CAL4) causes the program to 

trap to a specified location, from which a branch is made 
to a subroutine to carry out the desired operation. 

Trap operations are controlled by interrupt/trap flip-flops 
INTRAP, INTRAP1, and INTRAP2, and are di sti ngui shed from 
interrupt operations by flip-flop TRAP, which is set during 
trap operati ons. A trap sequence may be entered in the fi rst 
clock cycle following the end phase of the instruction in 
process, but most frequently takes place before the instruc­
tion is completed. During the trap sequence, the address of 
the next instruction in sequence is stored, and the trap address 
associated with the trap si gnal received is presented to memory 
for access. The program then branches to the memory address 
stored in the trap location. The conditions that result in trap 
operations are listed in the Sigma 5 Computer Reference 
Manual, alongwith the corresponding assigned trap locations 
in core memory, the time of occurrence, and special actions. 
An outline of the trap sequence is presented in table 3-9. 

Table 3-9. Trap Sequence 

Phase Functi on Performed Signals Involved Comments 

Pre- Set four flip-flops (TRAP, INTRAP, S/TRAP = (S/TRAP) NRESET True (S/TRAP) signal 
limin- INTRAP1, and INTRAP2) to establish 

(S/TRAP) Indication of trap condition 
distinguishes trap con-= ary trap conditi on dition from interrupt 

R/TRAP = (R/TRAP) condition and is gener-

(R/TRAP) = RESET + FAPSD PH5 
ated duri ng preparati on 
phases or execution 

S/INTRAP = (S/INTRAP) NRESET phases of i nstructi ons 

(S/INTRAP) = (S/TRAP) NINTRAP ••. + ••• 

R/INTRAP = (R/INTRAP) = (R/TRAP) + ••• 

S/INTRAP1 = (S/INTRAP) NRESET 

R/INTRAPI = (R/INTRAP1 ) 

(R/INTRAP1 ) = RESET + NINTRAP2 

S/INTRAP2 ::: (S/INTRAP2) NRESET 

(S/INTRAP2) = (S/INTRAP) + INTRAP1 

NINTRAP2 

R/INTRAP2 = ... 
Inhibit reset of flip-flop NPRE 1 S/NPRE1 = N(SPRE1 ) Entry into PREP phase of 

(S/PRE1 ) = PRE1EN PH10 + 
subsequent i nstructi on ... 
inhibited by true 

NPRE1EN = (S/TRAP) + ••• (S/TRAP) signal 

R/NPRE1 = ... 
Enable CLEAR signal CLEAR = (S/INTRAP) + ••• Clear selected flip-flops 

If watchdog timer runout trap, F/CEINT = (F/CEINT) = WDTA CPU clock inhibited 
direct set CEINT N(l MC 2MC) NTRAP whi Ie CEINT set 

R/CEINT = ... 

(Continued) 

3-71 



SDS 901172 

Table 3-9. Trap Sequence (Cont.) 

Phase Functi on Performed Si gna I s Invol ved Comments 

I Clock enable for reset of CEINT S/DLl == FORCL FORCLEN + ••• Clock pulse to delayline 
N (required only for watchdog timer 

FORCL == STRAP 1 MC 2MC + ••• 
generated by STRAP si g-

T runout trap) nal and timing signals 
R STRAP - WDTA WDTRAC CEINT + ••• 
A 

NFORCLEN == NFORCLEN FORCL P 
+ DL 1/060S FORCL 1 

R/CEINT - ... 
I 
N I (P15-P3l)---(B15-B31) 

I 
Bn == Pn BXP + ••• == BXP/i + ••• Address of next i nstruc-

T 
BXP/l == INTRAP BRP + ••• 

ti on in normal sequence 
R 

I Reset flip-flop BRP I 
of program 

A 
R/BRP -:c INTRp,Pl + ••• Indicates that address P I 

2 of next instruction in 
sequence is in the B-

Reset flip-flop INTRAP2 R/INTRAP2 == 
register ... 

Set fI ip-fl op DRQ S/DRQ == (S/DRQ) NCLEAR Enable complete cycle 

(S/DRQ) == (S/DRQj2) + ••• 
of data release if MRQ 
set before trap 

(S/DRQj2) == INTRAPl TRAP + ••• 

R/DRQ == ... 

I Enable clock if NMRC CLEN == DRQ NMRC NRESET/F + ••• MRC set if MRQ set 
N 
T SustainB15 S/B15 == (S/B 15) + ••• Prevent reset of B 15 if 
R 

(S/B 15) B 15 NBRP INTRAPl + ••• 
set 

== A 
P R/B15 == INTRAPl + ••• 
1 

Set P25 S/P25 == PXTR + ••• Store address of trap 
instruction (40 through 

Transfer (TR28-TR31 )---(P28-P31) PXTR == INTRAPl NINTRAP2 TRAP 44, 46, 48 through 4B) 

R/P25 == PX + ••• == INTRAPl 
NINTRAP2 + ••• 

Set flip-flop MRQ S/MRQ == (S/MRQ/2) + ••• Request for core memory 

(S/MRQ/2) == INTRAPl NINTRAP2 + ••• 
cycle 

R/MRQ == , .. 
Set flip-flop DRQ S/DRQ == (S/DRQ) NCLEAR Inhibit transmission of 

(S/DRQ) == (S/MRQ/2) + ••• 
CPU clock unti I data 
release from core memory 

R/DRQ == ... 
Reset flip-flop INTRAPl R/INTRAPl == NINTRAP2 

Set flip-flop INTRAP2 S/INTRAP2 == INTRAPl NINTRAP2 + ••• 

I 
(Continued) 

3-72 



SDS 901172 

Table 3-9. Trap Sequence (Cont.) 

Phase Functi on Performed 

I (M BO-MB31 ) --( CO-C31 ) CXMB 
N (CO-C31 )---(DO-D31) (S/SXD) 
T 
R (CO-C31)---(00-07) OXC 
A 
P (C8-C11)---(R28-R31) RXC 
2 

Reset flip-flop NPRE1 S/NPRE1 

(S/PRE1 ) 

R/NPRE1 

Reset flip-flop INTRAP2 R/INTRAP2 

n ___ L ('I- rJ Tn A. n "" /_"" A _ 

r..t::)t::1 IIIP-TiOP I/V'\r I K/IKAt' 

I 
(R/TRAP) 

Reset flip-flop INTRAP R/INTRAP 

(R/INTRAP) 

Trap sequence ended 

TRAP SEQUENCE. The trap sequence is illustrated in fig­
ure 3-51. When signal (S/TRAP) is true, flip-flops TRAP, 
INTRAP, INTRAP1, and INTRAP2 are set. At the same time, 
one of the codes tisted in table 3-10 is stored in the trap 
accumulator register (TRACC1 through TRACC4), and the 
least significant hexadecimal digit of the trap address is 
stored in the trap address register (TR28 through TR31). The 
controll i ng equati ons are listed in the paragraphs descri bi ng 
trap condi ti ons. 

After the address of the next instruction in normal sequence 
is transferred from the P-regi ster to the B-regi ster, and BRP 
is reset, the trap circuits enter the INTRAP1 phase. The 
least significant hexadecimal digit of the trap address is 
transferred from the trap address regi ster to the least si g­
nificant flip-flops of the P-register. 

S/P28 TR28 PXTR + ••• 

PXTR INTRAP1 NINTRAP2 TRAP + ••• 

(R/P28-R/P31) = PX + ••• = INTRAP1 NINTRAP2 

S/P29 

S/P30 

S/P31 

+ ••• 

TR29 PXTR + ••• 

TR30 PXTR + ••• 

TR31 PXTR + ••• 

Signals Involved Comments 

= /DG/ Extract addressed word 

NINTRAP1 INTRAP2 + ••• 
and store for execution = of instruction (XPSD) 

= NINTRAP1 INTRAP2 + ••• 

= NINTRAP1 INTRAP2 + ••• 

= N(S/PRE 1) + ••• Enable entry into PREP 

= NINTRAP1 INTRAP2 
phase 

= ... 
= ... 

= (R,/TRAP) Exit from TRAP at PH5 of 

= FAPSD PH5 + ••• 
XPSD instruction 

= (R/INTRAP) 

= (R/TRAP) + ••• 

Table 3-10. Trap Codes and Address Digits 

Trap Accumulator Trap Address* 
Register Register 

Cause of Trap (TRACC1-TRACC4) (TR28-TR31 ) 

Abort 0001 0000 

Watchdog ti mer 0000 0110 
run out 

Floating point fault 0000 0100 
Fixed point overflow 0000 0011 

Privileged instruction 0010 0000 

Nonexi stent memory 0100 0000 
address 

Not implemented 0000 0001 

Illegal 1000 0000 
Stack fault 0000 0010 

CAll instruction 

} { 
1000 

CAL2 i nstruc ti on (R28-R31 )t 1001 
CAL3 instruction 1010 
CAL4 instruction 1011 

*Stores least significant hexadecimal digit of trap 
location 

t Contents of (R28-R31) transferred to (TRACC1-TRACC4) 

3-73 



I 

I 

3-74 

SDS 901172 

r---------------, 
START 

--
~ 

NT RAP, NINTRAP, 
NINTRAP1, NINTRAP2 

(S/TRAP) 
LOAD (TRAC C 1-TRACC4) 

- TR3l) LOAD (TR28 

, 

TRAP, INTRAP, 
INTRAP1, INTRAP2 

(P15-P31) --- (B15-B31) 
R/BRP 

, 
TRAP, INTRAP, 

INTRA~l, NINTRAP2 

S/P25 
(TR28- TR3l) } 

TRAP 
--- (P28-P31) LOCATION 

S/MRQ 
S/DRQ 

, 
TRAP, INTRAP, 

NINTRAP1, INTRAP2 

(MBO-MB31) 
(CO-
(CO-
(C8-

--- (CO-C31) } 
C31) -- (00-D31) XPSO 
C7) __ (00-07) INSTRUCTION 
C11)-- (R28-R31) 

CLEAR (TR28 - TR31) 
,r 

TRAP, INTRAP, 
NINTRAP1, NINTRAP2 

EXECUTE XPS D 
(AO-A31 
{TRACC1 

) - 1 --- (50-531) -- (MBO-MB31) 
- TRACC4) -- (TR28-TR31) 

(TR28-TR 31) --- (A28-A31) (IF R29 = 1) 
(AO-A31 ) + (DO-031) --- (50-531) --- (P15-P3l) 

531) OR (TRACC1-TRACC4) -- (CC1-CC4) 
C 1-TRACC4) 

(S28-
CLEAR (TRAC 
CLEAR (TR28-TR3l) 

9011 72A.3506 

Figure 3-51. Trap Sequence, Flow Diagram 



SDS 901172 

The most significant hexadecimal digit (4) is established by 
setting P25. Flip-flops MRQ and DRQ are set to permit 
access to memory during the INTRAP2 phase. The XPSD 
instruction stored in memory is placed in the D-, 0-, and 
R-registers, and the trap address register is cleared. 

(R/TR28-R/TR31) = (R/TR) = NINTRAP1 INTRAP2 + ••• 

During execution of the XPSD instruction, the 17-bit 
i nstructi on address is decremented by one before storage in 
memory. This operation is required to reduce the address, 
which was previously incremented by one. The code stored 
in the trap accumulator register is transferred to the trap 
address regi ster. 

S/TR28 

(S/TR28) 

S/TR29 

(S/TR29) 

S/TR30 

(S/TR30) 

S/TR31 

(S/TR31 ) 

NSTRAP (S/TR28) + ••• 

TRACC1 FAPSD PHI 

NSTRAP (S/TR29) + ••• 

TRACC2 FAPSD PH1 

NSTRAP (S/TR30) 

TRACC3 FAPSD PH1 + ••• 

NSTRAP (S/TR31) 

TRACC4 FAPSD PH1 + ••• 

Signal NSTRAP is true unless a watchdog timer runout has 
occurred. 

If bit 9 of the XPSD instruction (now in R29) is a one, the 
code is transferred from the trap address regi ster to the 
least significant bits of the A-register. 

S/A28 

AXTR 

S/A29 

R/A30 

S/A31 

TR28 AXTR + ••• 

FAPSD 07 PH3 TRAP R29 

TR29 AXTR + ••• 

TR30 AXTR + ••• 

TR31 AXTR + ••• 

This number is added to the contents of the D-register and 
stored in the P-register during PH4. The number is also 
retained in the trap accumulator register so that during 
PH4 it is merged with the existing condition code (SO 
through S3) to form a new condi ti on code. 

S/CC1 

(S/CC1/3) 

CCXTRACC 

CCXS/O 

S/CC2 

S/CC3 

(S/CC1/3) + SO CCXS/O + ••• 

(S/CC1/1) + = CCXTRACC TRACC1 
+ ••• 

FAPSD 07 PH4 TRAP 

PSW1 XS + ••• = FAPSD PH4 + ••• 

CCXTRACC TRACC2 + S1 CCXS/O 
+ ••• 

CCXTRACC TRACC3 + S1 CCXS/O 
+ ••• 

S/CC4 CCXTRACC TRACC4 + S3 CCXS/O 
+ 

(R/CC1-R/CC4) CCXS/O + ••• 

During phase 5 of the XPSD instruction, the trap accumu­
lator register and the trap address register are cleared. 

(R/TRACC 1-R/TRACC4) = (R/TRACC) == FAPSD 
PH5 + ••• 

(R/TR28-R/TR31) = (R/TR) == (R/TRACC/1) + 
== FAPSD PH5 

The trap sequence is terminated at the same time. 

TRAP CONDITIONS. The conditions for entering the trap 
sequence are represented by the inputs to si gnal (S/TRAP). 

(S/TRAP) ABO (Abort) 

+ STRAP (Watchdog timer runout) 

+ FAFL NRW ENDE NINTRAP 
(Floating point) 

+ FACAL PH1 (Call) 

+ ENDE AM CC2 OVERIND 
(Fixed point overflow) 

+ FAPRIV NMASTER PRETR NINTRAP 
(Privileged) 

+ ADNH NIOACT (Address not here) 

+ FANIMP PRETR (Not implemented) 

+ FAILL PRETR (Illegal) 

+ FAST PH2 SW1 NSW5 (Stack) 

+ FAST PH2 SW3 NSW6 (Stack) 

Figure 3-52 indicates all opcodes that might generate a true 
(S/TRAP) signal. Opcodes for which no operation is defined 
unconditionally generate a true (S/TRAP) signal. Some op­
codes generate a true (S/TRAP) signal only for selected 
conditions. For example, an immediate instruction (FAIM) 
with an indirect address bit (IA) equal to one will cause a 
trap sequence. Conditions such as watchdog timer runout 
or addressing nonexistent locations are not associated with 
particular opcodes. 

Call Instructions. The four call instructions (CAll, CAL2, 
CAL3, and CAL4) cause the computer to trap to location 
X'481

, X'491
, X'4A', and X'4B', respectively. 

For the CAll instruction (opcode 04), only TR28 is set. 

S/TR28 FACAL PH1 NTRAP NSTRAP + ••• 

(R/TR28-R/TR31) = (R/TR) = (S/TRAP) + ••• 

For the CAL2 instruction (opcode 05), TR28 and TR31 
are set. 

NSTRAP (S/TR31) S/TR31 

(S/TR31 ) FACAL PH1 NTRAP NSTRAP 07 + ••• 

For the CAL3 instruction (opcode 06), TR28 and TR30 
are set. 

S/TR30 

(S/TR30) 

N STRAP (S/TR30) + 

FACAL PH1 NTRAP NSTRAP 06 

For the CAL4 i nstructi on (opcode 07), TR28, TR30, and 
TR31 are set, since inputs to all three flip-flops are true. 

3-75 



SDS 901172 

MOST 
SIGNIFICANT 
HEXADECIMAL 
DIGIT 

o 

2 

3 

4 

S 

6 

7 

o 234S6789A~CDE F 

LEAST SIGNIFICANT HEXADECIMAL DIGIT 

II FAILL (ILLEGAL) 

•••.•... m······ :~*::: FAIM (IMMEDIATE) 

~ FAPRIV (PRIVILEGED) 

90 II nA. 3500 

Figure 3-S2. Operation Codes Resulting in Trap 

The contents of R28 through R31 are stored in the trap 
accumulator regi ster as the address code is stored in the 
trap address regi ster. 

S/TRACC1 FACAL PH1 NTRAP NSTRAP R28 
+ ••• 

(R/TRACC1-R/TRACC4) = (R/TRACC) = (S/TRAP) 
+ ••• 

S/TRACC2 FACAL PH1 NTRAP NSTRAP R29 
+ ••• 

S/TRACC3 FACAL PH1 NTRAP NSTRAP R30 
+ ••• 

S/TRACC4 FACAL PH1 NTRAP NSTRAP R31 
+ ••• 

Th i s code is transferred to the trap address regi ster duri ng 
the XPSD instruction. If bit 9 of the XPSD instruction is 
a one, it is added to the contents of the D-regi ster and 
merged with the contents of the trap accumulator register 
to set condition code flip-flops CC1 through CC4. 

Push-Down Stack limit Instructions. During the execution 
of any stack-manipulating instruction, words are either 
added to or removed from the stack. In either case, the 
space count fields of the stack pointer doubleword are tested 
before movi ng any words. If the executi on of the i nstruc­
tion would cause the space count to become less than zero 
or greater than (2 1S-1), the instruction is aborted with 
memory and regi ster unchanged; then, if bi t 32 (TS) of the 
stack pointer doubleword is zero, the CPU traps to location 
X'421. 

3-76 

(S/TRAP) FAST PH2 SW1 NSWS + ••• 

If execution of the instruction would cause the word count 
to become less than zero or greater than (2 15_1), the 
instruction is aborted with memory and registers unchanged; 
then, if bit 48 (TW) of the stack pointer doubleword is a 
zero, the CPU traps to location X'421. 

(S/TRAP) 

FAST 

FAST/A 

FUMSP 

FAST PH2 SW3 NSW6 + ••• 

FAST/A + FUMSP 

OUO 04 NOS (PLW, PSW, PLM, PSM) 

OU 1 OL3 (MSP) 

When a trap is caused by a stack fault, the trap accumulator 
register is cleared. 

(R/TRACC1-R/TRACC4) = (R/TRACC) = (S/TRAP) 
+ ••• 

The least significant hexadecimal digit is set to 2 by setting 
TR30. 

S/TR30 

(S/TR30) 

NSTRAP (S/TR30) + ••• 

FAST PH2 SW1 NSWS 
+ FAST PH2 SW3 NSW6 + ••• 

(R/TR28-R/TR31) = (R/TR) = (S/TRAP) + ••• 

Therefore, a stack fault causes a trap to location X'421 

with a code of 0000. 



SDS 901172 

Floating Point Fault. A floating point fault is detected 
after the operation called for by the instruction code is 
performed, but before any results are actually loaded in to 
the general regi sters. If no error is detected, signal 
(S/RW/FP) from logic in the floating-point box sets flip­
flop RW. 

S/RW (S/RW /1) 

(S/RW/l) 

R/RW 

(S/RW IF P) + ••• 

This signal may be generated during floating point opera­
tions, as described elsewhere in this manual: 

Opcodes Phase Reference 

FAS, FSS, FAL, FSL CPU PH7, box PH9 Table 3-65 

FAS, FSS, FAL, FSL CPU PH8, box PH10 Table 3-65 

~ A A~ rAAI rnll nll"""7 I 1'\,111"\ 

iabie 3-66 I~ IVI.J, r-/VIL. '- r urn I, oox r n 7 

FMS, FML CPU PH8, box PH 10 Table 3-66 

1=r1C:; 1=r11 CPU PH7, box PH9 Table 3 ~67 • __ , 1 __ 

FDS, FDL CPU PH8, box PH 10 Table 3-67 

If RW is not set during floating point operations, a trap 
occurs during the end phase of the CPU, and the trap 
accumulator register is cleared: 

(S/TRAP) FAFL NRW ENDE NINTRAP + ... 

FAFL N01 03 04 05 

(R/TRACC1-R/TRACC4) = (R/TRACC) = (S/TRAP) 
+ ••• 

The least significant hexadecimal digit is set to 4 by setting 
TR29 and resetting TR28, TR30, and TR31. 

S/TR29 FAFL NRW PH 10 + ... 

(R/TR28-R/TR31) (R/TR) = (S/TRAP) + ... 

Therefore, a floating point fault causes a trap to location 
X'441 with a code of 0000. 

When a trap is caused by a floating point fault, the trap 
accumulator register is cleared. 

(R/TRACC 1-R/TRACC4) = (R/TRACC) = (S/TRAP) + ... 

The least significant hexadecimal digit is set to 4 by set­
ting P29. 

S/TR29 FAFL NRW PH10 

Therefore, a floating point fault causes a trap to location 
X'44' with a code of 0000. 

(R/TR28-R/TR31) = (R/TR) = (S/TRAP) + ..• 

Nonexistent Memory Address. Any attempt to access a 
nonexistent memory address causes a trap to location X'40' 
at the time of the request for memory service. 

(S/TRAP) 

F/ADNH 

ADNHL 

R/ADNH 

(R/ADNH) 

ADNH NIOACT + ••• 

ADNHL (Direct set) 

ADNHL NACCL/l + DRQ/l (NAH AHCL) 

(R/ADNH) 

= NIOACT + 10PH 1 SWll 

Flip-flop ADNH is direct set after the memory has had suf­
ficient time to recognize the address. If the internal I/O 
is not active, (NIOACT) the trap sequence is initiated. 

When a trap is caused by addressing a nonexistent memory 
location, the trap accumulator register is set to 0100 by 
setting TRACC2. 

S/TRACC2 = NTRAP NSTRAP ADNH TRACC2 INH + ••• 

TRACC2 INH= N(FAILL PRETR) N(FANIMP PRETR) 

(R/TRACC1-R/TRACC4) = (R/TRACC) = (S/TRAP) + 

The least significant hexadecimal digit is set to O. 

(R/TR28-R/TR31) = (R/TR) = (S/TRAP) + ••• 

Therefore, a nonexistent memory trap causes a trap to loca­
tion X'40' with a code of 0100. 

Nonexistent Instructions. Any instruction on Sigma 5 that 
is neither standard nor optional is defined as nonexistent. 
This classification includes immediate addressing instruc­
tions that are indirectly addressed. If the execution of a 
nonexistent instruction is attempted, the CPU traps to 
location X'40' at the time the instruction is decoded. 

(S/TRAP) 

S/PRETR 

R/PRETR 

FAILL 

FAILL/1 

FAILL PRETR + ••• 

NANLZ PRE1 

IA FAIM (Immediate instiuction with 
indirect hit) 

+ FUMMC N(ND12 ND13 D14) (Move to 
memory control with invalid X code) 

+ OU2 04 N05 N06 (28, 29) 

+ OUl N04 05 06 (16, 17) 

+ OU7 N04 05 06 (76, 77) 

+ OU2 N04 05 06 (26, 27) 

+ OU7 04 (78 through 7F) 

+ 01 N03 N04 N05 (40 through 43, 
60 through 63) 

+ OUO N04 N05 (00, 01, 03) 
NFALCF 

+ OU5 OL9 (59) 

+ OL4 03 NFABYTE (14, 34, 54) 

+ FAILL/l 

0405 01 03 (5C through 5F, 
7C through 7F) 

+ 04 05 N03 N06 (OC, OD, 2C, 
N01 2D) 

3-77 



SDS 901172 

When a trap is caused by attempted exec uti on of an illegal 
:"structior' l the trap ccc~~:.;!::tor rcg:~ter !~ set t~ 1000 bl' 
setting TRACC1. 

S/TRACC1 == FAILL PRETR NTRAP NSTRAP + ••• 

(R/TRACC 1-R/TRACC4) == (R/TR) == (S/TRAP) + .•• 

The least significant hexadecimal digit is set to O. 

(R/TR28-R/TR31) == (R/TRACC) == (S/TRAP) + ••• 

Therefore, attempted execution of an illegal instruction 
causes a trap to location X'40' with a code of 1000. 

Privileged Instructions. Privileged instructions can be im­
plemented only by a CPU operating in the master mode, as 
indicated by flip-flop NMASTER. If this flip-flop, which is 
part of the program status doubleword (PSD), is set, privi-
1eged instructions cannot be implemented, but cause a trap 
to location X'40' at the time of instruction decoding. 

(S/TRAP) 

FAPRIV 

S/PRETR 

R/PRETR 

S/NMASTER 

R/NMASTER 

FAPRIV NMASTER PRETR NINTRAP + ••. 

04 05 N03 

NANLZ PRE1 

S8 PSW1 XS (Load bit 8 of PSD) 

PSW1XS 

The privi leged instructions are LPSD, XPSD, WAIT, LRP, 
SIO, TIO, TDV, HIO, RD, WD, AIO, and MMC. 

When a trap is caused by attempted execution of a privi­
leged instruction by a CPU operating in the slave mode, 
the trap accumulator register is set to 0100 by setting 
TRACC3. 

S/TRACC3 = FAPRIV NMASTER PRETR NTRAP 
NSTRAP + ••• 

(R/TRACC1-R/TRACC4) == (R/TRACC) = (S/TRAP) + ••• 

The least significant hexadecimal digit is set to O. 

(R/TR28-R/TR31) == (R/TR) == (S/TRAP) + •.. 

Therefore, a privileged instructi on trap causes a trap to 
location X'40' with a code of 0100. 

Unimplemented Instructi ons. Unimplemented i nstructi ons 
consist of all floating point instructions. If the floating 
point option is not included in the CPU, any floating point 
opcode generates an (S/TRAP) signal and causes a trap to 
location X'41' at the time of instruction decode. 

(S/TRAP) 

FANIMP 

FANIMP PRETR 

NOl 03 04 05 NFPOPTION 

NFPOPTION == Floating-point option not installed 

The floating point opcodes are FSL, FAL, FDL, FML, FSS, 
FAS, FDS, and FMS. 

When a trap is caused by an unimplemented instruction, the 
trap accumulator regi ster is cleared. 

(R/TRACC1-R/TRACC4) == (R/TRACC) == (S/TRAP) + ••. 

3-78 

The least significant hexadecimal digit is set to 0001 by 
setting TR31. 

S/TR31 = NSTRAP (S/TR31) 

(S/TR31) == FANIMP + ... 

(R/TR28-R/TR3l)== (R/TR) == (S/TRAP) + ... 

Therefore, an unimplemented instruction trap causes a trap 
to location X'41' with a code of 0000. 

Fixed Point Overflow Instructions. Fixed point overflow can 
occur for the LCW, LAW, LCD, LAD, AI, AH, AW, AD, SH, 
SW, SD, DH, DW, AWM, MTH, and MTW instructions. Ex­
cept for the DH and DW instructions, execution is allowed 
to proceed to completion. For DH and DW, the instruction 
execution is aborted without changing any register. If the 
trap mask (AM) is a one, the CPU traps to location X'43' 
instead of executing the next instruction in sequence. 

(S/TRAP) 

S/AM 

R/AM 
S/CC2 

ENDE AM CC2 OVERIND + ..• 

S 11 PSW1 XS (Set when PSD stored) 

PSW1XS 

(S15 + S16) PROBOVER/H 

+ (SOO + SO) PROBOVER 

+ FADIV PH4 + ... 

R/CC2 == (After exit from trap) 

OVERIND == FADIV + OVERIND/1 

FADIV == FUDW NR31 + FADIVH (DW, DH) 

S/OVERIND/1 PROBOVER + PROBOVER/H 

R/OVERIND/1 CLEAR 

PROBOVER/H FAMT PH2 NINTRAP OU5 
(MTW, MTH) 

PROBOVER FUAWM (PH1 + PH3) (AWM) 
+ FALOAD/C (PH1 + PH3) N01 

(LCD, LCW) 

+ FALOAD/A PH4 (LAD, LAW) 

+ FALOAD/A PH2 NOl 

+ FAARITH (PH 1 + PH3) (AD, AI, AW, 
AH, SD, SW, SH) 

+ FAMT PH2 NINTRAP (MTW, MTH, 
MTB) 

An overflow resulting from a division instruction is detected 
before the instruction is executed; therefore, the divide in­
struction which would cause an overflow is aborted. An 
addition with the addend and augend having I ike signs, or a 
subtraction with a minuend and subtrahend having unlike 
si gns, can cause an overflow. 

When a trap is caused by a fixed point overflow fault, the 
trap accumulator register is cleared. 

(R/TRACC1-R/TRACC4) == (R/TRACC) = (S/TRAP) + ... 

The least significant hexadecimal digit is set to 3 by setting 
TR30 and TR31. 



SDS 901172 Paragraph 3-30 

S/TR30 NSTRAP (S/TR30) + .•• 

(S/TR30) OVERIND PHI0 AM CC2 + ••• 

S/TR31 NSTRAP (S/TR31) + ••• 

(S/TR31) OVERIND PHI0 AM CC2 + ••• 

(R/TR28-R/TR31) = (R/TR) = (S/TRAP) + .•• 

Therefore, a fixed point overflow fault causes a trap to 
location Xi 43 i with a code of 0000. 

Memory Write-Protection Violation. A memory protection 
violation occurs when any instruction attempts to alter 
write-protected memory and the correct write key is non­
zero and does not match the write lock for the memory 
page. When a memory protection violation occurs, the 
CPU aborts executi on of the current i nstructi on (wi thout 
changing protected memory) and traps to location X'40'. 
The trap occurs before memory access. 

(S/TRAP) ABO + ••• 

ABO ABO/I ABO/2 

ABO/l [(S/ABO/l) ABOT + ••• J NCROSSADD 

(S/ABO/l) = MBXS NPCPACT NIOACT NINTRAP 

ABOT 

ABO/2 

N(FAIO PH3) 

DL2/11O 

(LC KO W Kl + LC K 1 W KO) 
N(LCKO LCKi WKO WKl) 

When a trap is caused by a memory write-protection 
violation, the trap accumulator register is set to 0001 by 
setting TRACC4. . 

S/fRACC4 = NTRAP NSTRAP ABO + ••• 

(R/TRACCI-R/TRACC4) = (R/TRACC) = (S/TRAP) 
+ ••• 

The least significant hexadecimal digit is set to O. 

(R/TR28-R/TR31) = (R/TR) = (S/TRAP) + ••• 

Therefore, a memory write-protection violation causes a 
trap to location X'40' with a code of 0001. 

WATCHDOG TIMER. The watchdog timer (WDT) ensures 
that the CPU must periodically reach interruptible points 
of operation in the execution of instructions. An i nter­
ruptible point is a time during the execution of a program 
when an interrupt request (if present) would be acknow­
ledged. Interruptible poi nts occur at the end of every 
instruction and during the execution of some instructions. 
The WDT measures elapsed time from the last interruptible 
point. If the maximum allowable time has been reached 
before the next time that an interrupt could be recognized, 
the current i nstructi on is aborted and the WDT runout trap 
is activated. Except for a nonexistent address used with 

RD or WD, programs trapped by the WDT cannot (in general) 
be continued. After a WDT runout, the CPU traps to 
location X'46'. 

WDT signal STRAP is controlled by a binary counter and 
control fl ip-flops. 

STRAP = WDTA WDTRAC CEINT + ••• 

In the 6-bit binary counter, WCTl represents the most sig­
nificant bit, and WCT6 represents the least significant bit. 
The counter is advanced by the I-MHz clock signal (tMC). 

When a trap is caused by watchdog timer runout, all fl ip­
flops of the trap accumulator register are reset. 

(R/TRACCI-R/TRACC4) = (R/TRACC) (S/TRAP) 
+ .•• 

The least significant hexadecimal digit is set to 6 by setting 
TR29 and TR30. 

S/TR29 STRAP + ..• 

S/TR30 STRAP + .•. 

(R/TR28 -R/TR31) = (S/TRAP) + ••. 

Therefore, a watchdog timer run out trap causes a trap to 
location X'46' with a code of 0000. 

3-30 Interrupts 

GENERAL. The interrupt system provides for a maximum of 
237 interrupt levels, of which 13 are internal and 224 are 
external. The 13 internal interrupt levels include seven 
standard features (two count-pulse interrupts, a memory 
parity interrupt, two counter-equals-zero interrupts, an 
input/output interrupt, and a control panel interrupt) and 
six optional features (the power-on interrupt, the power-off 

. interrupt, two additional count-pulse interrupts, and two 
additional counter-equal s-zero interrupts). The 224 ex­
ternal interrupts are divided into 14 groups of 16 interrupt 
levels each. Chassis writing in the CPU divides the internal 
interrupts into the override group, the counter-equals-zero 
group, and the input/output group. The override group has 
priority over all interrupt groups. The priority sequence of 
all other groups is optional, as described in the Sigma 5 
Computer Reference Manual under the Interrupt System 
heading. 

Interrupt Control. Interrupt operations are controlled by 
logic and by programming. Each of the 237 interrupt levels 
is assigned a unique memory location to which the CPU 
branches when the interrupt level is acknowledged. The 
contents of the memory locati on are transferred to the CPU. 
The interrupt location must contain one of the following 
i nstructi ons: modify and test byte (MTB), modi fy and test 
halfword (MTH), modify and test word (MTW), or exchange 
program status doubleword (XPSD). The MTB, MTH, and 
MTW instructions are single instruction interrupts. The 

3-79 



SDS 901172 

XPSD instruction transfers control of the CPU to a service 
luutillt; ~tured ;r, ffi€iTtori. The ~cr'.':ce ro;.:f::;e ~IJst e~d 
with a load program status doubleword instruction (LPSD). 

Operation of groups of interrupt levels is controlled by the 
program status doubleword. If bit 37 is a one, CIF is set, 
and the count-equals-zero interrupts are inhibited. If bit 
38 is a one, II is set, and the i nput/ output interrupts are 
inhibited. If bit 39 is a one, EI is set, and all external 
interrupt groups are inhibited. The power-on and power-off 
interrupts, if installed, are always enabled and armed, and 
cannot be inhibited. The override interrupts also cannot be 
inhibited. 

The address of the memory location associated with each 
interrupt level is controlled by signals which indicate that 
an interrupt level is waiting, enabled, and has priority over 
other interrupt level s. 

Interrupt Levels. Each of the 237 interrupt levels includes 
an interrupt circuit consisting of three flip-flops. The state 
of the interrupt circuit indicates the status of the interrupt 
level. A circuit which is disarmed is effectively removed 
from the interrupt system. A circuit which is armed is 

transferred to the waiting state when an event or conditi on 
~ss0'=:':!t<>d 'Nith thp rirr"it it; d~t~cted. (The event or con­
diti on may be a powerfai I ure, a programmed count sequence, 
or a control panel operati on, as typical examples.) If a 
circuit in the waiting state is enabled, it causes an interrupt 
operation to begin when that interrupt level has priority. 
Priority is established by a combination of signals generated 
by interrupt circuits and by system cabling. Priority is also 
controlled by bits 37, 38, and 39 of a program status double­
word (PSD), which in turn are controlled by write direct 
instructions. An interrupt circuit may be enabled only by a 
write direct instruction, or by an XPSD or LPSD instruction. 
When an enabled circuit in the waiting state is acknow­
ledged, it is transferred to the active state. Any number of 
interrupt circuits may be in the waiting and enabled state, 
hut only one may be in the active state at anyone time. 

Interrupt Sequence. The interrupt system permits the inter­
ruption. Interrupt operati ons are controlled by i nterrupt/trap 
phase flip-flops INTRAP, INTRAP1, and INTRAP2, as sum­
operation is usually later resumed from the point of inter­
ruption. Interrupt operations are controlled by interrupti 
trap phase flip-flops INTRAP, INTRAP1, and INTRAP2, as 
summarized in table 3-11 and illustrated in figure 3-53. 

Table 3-11. Interrupt Sequence 

Phase Functi on Performed Signals Involved Comments 

Pre- Set flip-flop INT S/INT = INT9 Flip-flop INT set when 
limin-

R/INT 
an interrupt circuit is = ary 

... 
waiting, enabled, and 
has pri ori ty 

Enable signal lEN lEN = KRUN PH 10 NIOSC lEN can be true only at 
NDCSTOP end of executi on (PH10) 

Set flip-flops INTRAP, INTRAP1, S/INTRAP = (S/INTRAP) NRESET True (S/INTRAP) si gnal 
and INTRAP2 to establish interrupt 

(S/INTRAP) = INT lEN NINTRAP + sets three fl i p-fl ops when 
condition ... 

interrupt enabled (INT 
R/INTRAP = (R/TRAP) + FAM T PH9 lEN). FI ip-.flop TRAP 

(R/TRAP) = FAPSD PH5 + RESET 
remains in reset state to 
distinguish interrupt and 

S/INTRAP1 = (S/INTRAP) NRESET trap 

R/INTRAP1 = RESET + NINTRAP2 

S/INTRAP2 = (S/INTRAP2) NRESET 

(5/1 NTRAP2) = (S/INTRAP) 
+ INTRAP1 NINTRAP2 

I R/INTRAP2 = ... 
Inhibit reset of flip-flop NPRE1 S/NPRE1 = N(S/PRE1) Entry into PREP phase of 

I 
(S/PRE 1) = PRE1EN PH10 + •• 0 

subsequen t i nstructi on 
i nhi bi ted by true 

NPREl E N = (S/INTRAP) + ••• (S/INTRAP) signal 

R/NPREl = 000 

(Conti nued) 

3-80 



SDS 901172 

Table 3-11. Interrupt Sequence (Cont.) 

Phase Functi on Performed Signals Involved Comments 

Pre- Enable CLEAR signal CLEAR = (S/INTRAP) + ••• Clear selected flip-flops 
limin-
ary 
(ContJ 

I Set flip-flop CEINT S/CEINT = INTRAP1 INTRAP2 NTRAP Inhibits CPU clock during 
N + ••• next phase, until action 
T R/CEINT = response from interrupt 
R · .. circuits 
A (P 15-P31) ---(B 15-B31) Bn = Pn BXP + ••• Next i nstructi on in 
P 
1 BXP = BXPI + ••• 

program sequence 

I BXP/1 = INTRAP1 BRP + ••• 
N 
T Reset flip-flop BRP R/BRP = INTRAP1 + ••• Indicate next instruction 
R in sequence is in B-
A register 
P Reset flip-flop INTRAP2 R/INTRAP2 = 2 · .. 
I Sustain B 15 S/B15 = (S/B 15) + ••• Preven t reset of B 15 if set 
N (SiB 15) = B15 NBRP INTRAP1 + ••• 
T 
R R/B15 = INTRAP1 + ••• 
A Inhibit CPU clock unti I ARE CLEN NCEINT + CEINT ARE ARE controlled by i nter-= P 
I 

+ ••• rupt sequence 

ARE = AIEl 1 MC + ••• 

(I NTO-I NT8)-- (P23-P31) PXINT = INTRAP1 NINTRAP2 NTRAP Clear P-register and store 
+ ••• interrupt address 

PX = INTRAP1 NINTRAP2 + ••• 

Set flip-flop MRQ S/MRQ = (S/MRQj2) + ••• Request for core memory 

(S/MRQj2) = INTRAP1 NINTRAP2 + ••• 
cycle 

R/MRQ = · .. 
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibiting 

(S/DRQ) (S/MRQj2) + ••• 
transmission of another = clock until data release 

R/DRQ = · .. 
Reset flip-flop CEINT R/CEINT = · .. Enable CPU clock 

Reset flip-flop INTRAP1 R/INTRAP1 = NINTRAP2 

Set flip-flop INTRAP2 . S/INTRAP2 = INTRAP1 NINTRAP2 + ••• 

I (MBO-MB31 )---{CO-C31) CXMB = DG Extract addressed word 
N (CO-C31 )---{DO-D31) (S/SXD) NINTRAPI INTRAP2 

and store for execution = of instruction (MTB, MTH, T 
R (CO-C7} ---{ 00-07) DXC = INTRAP2 + ••• M TVV, or XPSD) 
A CI0---R30 OXC = NINTRAP1 INTRAP2 + .... 
P 
2 CII---R31 RXC = NINTRAP1 INTRAP2 + ••• 

(Continued) 

3-81 



SDS 901172 

Table 3-11. Interrupt Sequence (Cont.) 

Phase Function Performed 

I Reset flip-flop NPREl S/NPREl 
N 
T (S/PRE1) 
R 
A R/NPRE1 
P 
2 

Reset flip-flop INTRAP2 R/INTRAP2 
(Cont~ 

If instruction is modify and test, 
..... /Y" I"'PI"'\ A 1"'\ I K/lI"t I KAt' 

reset INTRAP during phase 9 

If count reduced to zero, CNTZREQ I CNTZREQ 
duri ng phase 2 

If instruction is XPSD, execute R/INTRAP 
service routine, terminate with LPSD 
unless service routine interrupted 

T rap sequence ended 

The interrupt/trap phase flip-flops are clocked by CPU ac 
signals; however, actual control of the phases is in the 
interrupt circuits, which are clocked by a l-MHz clock from 
the CPU. Synchronization of the clocks is done by dis­
abling the CPU clock until a l-MHz clock is received from 
the interrupt chassis. During the interrupt phases, the next 
instruction address is stored and the interrupt address asso­
ciated with the interrupt in progress is received by the CPU 
for memory access. The general sequence of operations for 
an interrupt is illustrated in figure 3-54. 

The program is executed in normal sequence until an inter­
rupt is detected. A signal generated by the interrupt 
circuits is sampled at the end of each instruction, during 
iterated sequences, and during execution of a move to 
memory control instruction. If any interrupt circuit is 

3-S2 

Si gnals Involved Comments 

=-

= 

= 

= 

= 

= 

= 

N(S/PRE1) + ... Enable entry into PREP 
phase 

NINTRAPl INTRAP2 + ••• 

... 

... 

FAMT PH9 + ... I 
I 

S0031 Z FAMT PH2 INTRAP I Enable interrupt level 

I 

FAPSD PHS + ••• 

waiting and enabled, is not inhibited, and has priority an 
interrupt sequence begi ns. 

The contents of the P-register, which contains the address 
of the next program instruction in normat sequence, are 
stored in the B-register. The code from interrupt signals 
INTO through INTS, which is the address of the memory 
location associated with the interrupt, are stored in the 
P-register. The CPU then accesses that location in memory, 
transfers the contents to the C-register, and stores the data 
in the D-, 0-, and R -regi sters. If the contents of the mem-
0ry location are not an XPSD, MTB, MTH, or MTW instruc-
ti on, a program error has occurred, and subsequent operati ons 
are meaningless. 



SOS 901172 

NTRAP NTRAP NTRAP NTRAP NTRAP I NTRAP 
NINTRAP INTRAP INTRAP INTRAP INTRAP I NINTRAP 
NINTRAP1 INTRAPl INTRAPl NINTRAPl NINTRAP1 NINTRAP1 
NINTRAP2 INTRAP2 NINTRAP2 INTRAP2 I NINTRAP2 I NINTRAP2 

I r EXECUTE 1: S/INT I ROUTINE 
OR MT lEN I 

Il!NSTRUCTIONj I (S/INTRAP) I BXP PXINT 
NPRE1 EN I (INTO-INT8) -f-- (P23- P3l) I I 

I I 

I I I I I 
1-+- INTRAP I I I O~INTRAP 

I I 11 1NTRAP1 I 0-1-- INTRAP1 
I I 

l-r-- INTRAP2 0-1--1 NTRAP2 1-,'-- INTRAP2 O---,t.... INTRAP2 ! I I 

I I P-f---B 
I lEVACT I '-I l-f--CEINT 0--1-- CEINT I lEVARM 

I I 18x 

I ARMx 
I I 
I l--f-- MRQ AlB 

I I AIE2 
1--1-- ORQ 

I 
ARE 

I 

I I I 

I I I 
IMB~ C 

I 
I -+- 0 

AlB I C-+-O 

I 
AIEl 

ClO -J-- R30 ARE I I 

I 
lEx 

I 
Cll --l-- R3l 

I 

901172A.3501 

Fi gure 3-53. Interrupt Phases 

3-83 



3-84 

START 

EXECUTE PROGRAM 
INSTRUCTION 

P--f--..B 
INT-r-- P 

0-8 23-31 
MB---C 

C-f--D 
C~O 
C R 

PROGRAM ERROR 

SDS 901172 

EXECUTE MT 
INSTRUCTION 

PLACE NEW CIRCUIT 
IN WAITING STATE 

TRANSFER INITIAL 
CIRCUIT FROM 

ACTIVE STATE TO 
ARMED STATE 

NO 

NO 

NO 

NO 

Figure 3-54. Interrupt Sequence, Flow Diagram 

EXECUTE SERVICE 
ROUTINE 

INSTRUCTION 

LPSD 

REMOVE CIRCUIT 
FROM ACTIVE STATE 

AND ARM OR DISARM 
CIRCUIT 

9011 72A. 3502 



SDS 901172 

ISO IPO INO IS 1 IPI INI 

r-+I 011 o 1 1 I 
r 

S/ISO = IPO paN S/ISI =1 PIlaFF 

, r 

I 1 1 1 o 1 1 I I o 1 1 1 1 1 I 

P/IPO =- RO U:f'"'\ D ITnl _n 
AL. "" '''1 1 '- • -1\ ElPJ lEO 

, , ~ 

I 101 011 1 I o 1 1 1 0 1 t 

R/ISO = NIPO IBO RjISl = NISNIPO NIPl IBO 
S/IPO = ISO IBO SlIP 1 = I Sl NISNlPO IBO 

I. I. 
~ RESET 

STATE NISNlPO NISINO NISNIPl NISIN1 REIPl RO 

o 1 1 OIl 1 1 1 1 0 0 
~ 

1 1 1 " 1 1 
, 

0 i 0 0 1 v I I I 
~ 

1 0 1 OIl 0 0 0 0 0 0 
~ 

o 1 1 1 1 1 1 1 1 0 1 0 

o 1 1 1 0 1 1 1 0 0 0 0 

90 11 nA. 3503 

Figure 3-SS. Power-On and Power-Off Interrupt Circuits, Cycle of Operation 

After the XPSD instruction in the interrupt location has 
been executed, the associated service routine is followed, 
and the interrupt circuit returns to the armed state. 

R/IS1 

IBO 

LEVACT 

S/IP1 

NISNIPO NIPl IBO 

AlB LEVACT 

FAPSD PHS N07 R30 

151 NISNIPO IBO 

Signal AlB is a timing signal generated during the interrupt 
sequence. Signal LEVACT is generated by an LPSD signal 
in the service routine. 

When power is applied, signal paN is true, and interrupt 
circuit 0 goes through a simi lor sequence of operations. 

S/IPO 

R/IPO 

RO 

5/1 SO 

R/ISO 

ISO IBO + RESET 

RO lEO 

INO IPO ISO 

IPO paN 

NIPO IBO + RESET 

3-85 



SDS 901172 

If a modify and test instruction is accessed, the instruction 
j:) executed, and the rnod;f;ed C0iite;.t" 0f the ,"dd~c::cd 
location are sampled. If the count is not zero, the CPU 
returns to the program. If the count is zero, an additional 
interrupt circuit may be placed in the waiting state (not 
the circuit which caused the interrupt sequence to start). 
If the circuit now placed in the waiting state is enabled 
and has priority, the CPU will begin a new interrupt cycle. 
If the interrupt circuit is not enabled or does not have 
priority, the CPU returns to the program. 

If an XPSD instruction is accessed, the instruction is exe­
cuted and the CPU is controlled by a service routine stored 
in memory. This service routine may itself be interrupted 
at the end of any instruction in the routine. If the service 
routine is not interrupted, it is terminated by an lPSD 
instrLlction. When the lPSD instruction is executed, the 
interrupt ci rcui t which caused the interrupt sequence to 
start is transferred from the active state to either the armed 
or the disarmed state. If a new interrupt circuit is waiting 
and enabled and has priority, a new interrupt sequence is 
begun; otherwise, the CPU returns to the program. 

INTERRUPT CIRCUITS. Each interrupt level is controlled 
by an interrupt circuit which establishes the state of inter­
rupt level and generates signals which control priority of 
each level. Each interrupt circuit consists of three flip­
flops - ISn, lPn, INn (n = 0, 1, 2, ••• 15). The five sig­
ni ficant states of an interrupt circuit and the conditions 
established for the level are summarized in table 3-12. 

Power Fail-Safe Interrupts. Interrupt levels 0 and 1 are the 
power-on and power-off interrupts, which are controlled by 
optional equipment. These circuits have the highest priority 
level, and are always enabled. The cycle of operation for 
the power fail-safe interrupts is illustrated in figure 3-55. 

These interrupt level s are always enabl ed because the inputs 
to INn fI ip-flops are hardwired. 

S/INO 

R/INO 

S/IN1 

R/IN1 

GND 

GND 

They are placed in the armed state by a reset signal, and 
are normally in the armed and enabled state. 

S/IPO 

R/ISO 

RESET + 

RESET + 

S/IPl RESET + 

R/IS 1 RESET + 

When power fails, signal IOFF is true, and interrupt level 
is placed in the waiting and enabled state. 

S/IS 1 IPl IOFF 

3-86 

Table 3-12. Significant States of Interrupt Circuit 

FLIP-FLOPS STATE 

ISn IPn INn* 

(n=O, 1,2, ••• 15) 

0 0 X Disarmed. Circuit effectively removed 
from interrupt system. Interrupt si gnal 
neither accepted nor remembered. 
Change of state only by program 
intervention 

0 

I 
1 X Armed. Can accept and remember inter'" 

rupt si gnal. Advances to wai ti ng state 

I 
when interrupt signal is recognized 

1 1 0 Waiting and disabled. Cannot advance 
to active state. Requires program 
intervention to be enabled 

1 1 1 Waiting and enabled. Can advance to 
active state if interrupt circuit has 
highest priority 

1 0 1 Active orwaiting. The highest priority 
circuit in this state will become active 
when accepted as an interrupt by the 
CPU. Other circuits in this state wait 
for acceptance in priority sequence 

*Power fail-safe interrupt circuits (O and 1) are always 
enabled, so that state of flip-flops is XX1 at all times 

. (INn set). 

An interrupt sequence takes place, during which the inter­
rupt level is placed in the active state. 

R/IPl REIP1 lEO 

REIP1 INl IP1 IS1 NISINO NISNIPO 

NISINO NISO + NINO 

NISNIPO = N(ISO NIPO) = NISO + IPO 

lEO AIEl ENOVRD 

ENOVRD = R01 + ••• 

R01 REIP1 + ••• 

Signals NISINO and NISNIPO are priority signals that pre­
vent a change of state if the higher priority 0 level is 
waiting and enabled, or active. Signal ENOVRD initiates 
the interrupt sequence. Signal AIEl is a timing signal 
generated during an interrupt sequence. All interrupt cir­
cuits are clocked by the l-MHz signal (lMCS). 



SDS 901172 

Because interrupt level 0 has the highest priority of all 
interrupts, no priority signals such as NISNIPO or NISINO 
are required. Signal ENOVRD is enabled by signal RO. 

ENOVRD 

R01 

ROI + ••• 

RO + ••• 

Count-Pulse Interrupts. Interrupt levels 2 through 5 are 
count-pulse interrupts, t .... :o of which are standard and two 
of which are optional. The feature of an interrupt circuit 
that distinguishes its function is the input that enables the 
change of state from armed to waiting (01 X to 11 X). For 
the count-pulse interrupts, the signals are CPULl through 
CPUL4. 

S/IS2 IP2 CPULl + ••• 

S/IS3 IP3 CPUL2 + ••• 

S/IS4 IP4 CPUL3 + ••• 

S/IS5 IP5 CPUL4 + ••• 

These signals are generated by flip-flops of the rea!~time 
counters, which are direct reset after the transfer from the 
armed state (01 X) to the waiting state (11 X). 

E/CPUL 1 IS2 

E/CPUL2 IS3 

E/CPUL3 IS4 

E/CPUL4 IS5 

The inputs to interrupt circuit 2 are typical of interrupt 
ci rcuits 2 through 15. 

S/IN2 DAT16 AEENLE 

R/IN2 DAT16 ADBDB + REN 

S/IP2 IS2 NISNIPI ARMOVD 
+ DAT16 AEADB 

NISNIP1 NIS 1 NISNIPO + IP1 NISNIPO 

ARMOVD = IBO LEVARM 

LEVARM LEVACT N(FAPSD PH5 NR31) 

R/IP2 R2 lEO + DA T16 DARM 

R2 IS2 IP2 IN2 NISIN1 

NISIN1 NISI NISINO NISNIPO 
+ NIN1 NISINO NISNIPO 

S/IS2 IP2 CPULl + DAT16 IP2 TRIG 

R/IS2 NIP2 NISNIP1 IBO + DA T16 DARM 

Signals associated with DAT16 are controlled by a write 
direct instruction. Therefore, the circuit can be enabled 
(placed in state XXl) only during a WD instruction. The 
circuit is also initially placed in the armed state (010 or 
011) by a WD instruction. 

Signals NISNIP1, NISNIPO, NISINO, and NISINI are pri­
ority signals that prevent changes of state when higher 
priority circuits are active, or waiting and enabled. Signals 
such as this are generated at all levels, making it possible 
for only one interrupt circuit to transfer to the active state 
(101) at any time. More than one interrupt circuit can be 
in the active state, if a higher priority interrupt circuit goes 
active during a subroutine for a lower priority interrupt cir­
cuit. Several interrupt circuits may be in the waiting and 
enabled state (111) at one time. However, only the circuit 
having the highest priority can be transferred to the active 
state (111 to 10 1). 

Signals lEO, lBO, and ARMOVD are generated during the 
interrupt sequence for the override interrupts. Correspond­
ing signals for the counter-equals-zero interrupts are IEC, 
IBC, and ARMC NTR. Correspondi ng si gnal s for the i nput/ 
output interrupts are lEI, IBI, and ARMIO. 

The normal sequence of operations for an interrupt circuit 
begins when the circuit is armed (placed in state 01X). 
When the triggering signal is true, the circuit is placed in 
the waiting state (11 X). 

S/IS2 IP2 CPUL 1 + ••• 

When the circuit is enabled and waiting, and has highest 
priority, it initiates an interrupt sequence and is transferred 
to the active state (101). 

R/IP2 R2 lEO + ... 

While the interrupt circuit is in the active state, the in­
struction stored in the associated memory location is exe­
cuted. After all operations associated with the interrupt 
have been completed, the interrup,t circuit leaves the active 
state (101 to Otl or 001). (The circuit cannot be disabled 
by an interrupt sequence.) 

S/IP2 IS2 NISNIPt ARMOVD + ••• 

R/IS2 NIP2 NISNIP1 IBO + ••• 

ARMOVD = IBO LEVARM 

Signal IBO will always be true at the end of the interrupt 
sequence, causing a transfer from state 101 to state OX1. 
If signal LEVARM is also true at the end of the active state, 
the transfer is from state 101 to 011; if LEVARM is false, 
the transfer is from state 101 to 001. 

Memory Parity Interrupt. Interrupt circuit 6 is transferred 
from the armed state to the waiting state (OlX to l1X) if 
flip-flop PEINT is set, indicating parity error. 

S/IS6 IP6 PEINT + ••• 

Flip-flop PEINT is reset after the interrupt circuit exits 
from the active state. 

R/PEINT 

(R/PEINT/2) 

(R/PEINT/2) + ••• 

IN6 NIS6 

3-87 



SDS 901172 

Counter-Equals-Zero Interrupts. Interrupt circuits 8, 9, 10, 
a~d 11 are controlled by interrupt eire"itc; 2, 3, 4, and 5; 
respecti ve I y. 

S/IS8 IPS SR8 

SR8 CNTZREQ ISNIP2 

CNTZREQ FAMT PH2 INTRAP S0031 Z 

ISNIP2 IS2 NIP2 

S/IS9 IP9 SR9 

SR9 CNTZREQ IS3 NIP3 

S/IS10 IPlO SR 10 

SR10 CNTZREQ ISNIP4 

ISNIP4 1S4 NIP4 

S/IS11 IPll SR 11 

SRll CNTZREQ IS5 NIP5 

Whenever one of the count-pulse interrupt circuits is in the 
active state (101) and the count has been reduced to zero 
(S0031 Z) one of the counter-equals-zero interrupt circui ts 
is placed in the waiting state (01 X to 11 X). 

Input-Output Interrupt. Interrupt circuit 12 is placed in 
the waiting state (11X) by an lOP interrupt request signal. 

S/IS12 IP12 IR 

Control Panel Interrupt. Interrupt circuit 13 is placed in 
the waiting state (11X) by a control panel switch inter­
locked with a flip-flop. 

5/1513 

SR13 

S/CNLK 

R/CNLK 

C/CNLK 

IP13 SR13 

KINTRP NCNLK 

1513 

NKINTRP/B 

N1MCS 

PRIORITY SIGNALS. Signalsgenerated by interrupt circuits 
are interconnected in order tocontrol priority of interrupt 
levels. Interrupt levels 0 through 7 have the highest prior-
i ty. Counter-equal s-zero interrupts, i nput/ output interrupts, 
and external interrupts in ,groups of 16 may be connected in 
any priority sequence at the option of'the user. Signals 
external to the CPU control all priority assignments after 
interrupt level 7. 

The priority signals permit only one interrupt circuit in the 
waiting and enabled state (111) to be transferred to the 
active or waiting state (101) on a particular interrupt clock. 
More than one interrupt circuit may be in the active or 
waiting state at a given time. For example, if a high­
priority interrupt circuit is transferred to the active or wait­
ing state while a low-priority interrupt circuit is active, 
the high-priority circuit will override the low-priority cir­
cuit. While the high-priority circuit is active, the low­
priority circuit previously active will be dormant until the 
high-priority circuit has completed its operation. The 

3-88 

low-priority circuit, having remained in the active or 
'Na~~!~g state ~101), th€'n I"p~'Jme~ opprntion. 

Interrupt Circuit Priority Signals. Associated with each 
interrupt circuit are priority signals. Typical signals for 
even-numbered circuits are: 

R10 

NISIN10 

NISNIP10 

IN10 IP10 1510 NISIN9 

N(IS10 INlO) 

N (IS 10 NIPlO) 

Thus, R10 can be true only if interrupt circuit 10 is waiting 
and enabledand ifno high priority interrupt inthat group is 
waiting or active. Signal NISIN10 istrue onlyif circuit 10 
is not active, and not waiting and enabled, and NISNIP10 
is true only if circuit 10 is not active. 

Typical signals for odd-numbered circuits are: 

REIP11 INII IPll 1511 NISIN10 NISNIP10 
NISIN9 

NISIN11 NIS11 NISIN10 NISNIPI0 NISIN9 
+ NINl1 NISIN 10 NISNIPI0 NISIN9 

NISNIPll = NIS11 NISNIPIO NISNIP9 
+ IPll NISNIP10 NISNIP9 

Thus, REIP11 can be true only if interrupt circuit 11 is wait­
ing and enabled and no higher priority interrupt in that group 
is waiting oractive. Signal NISIN11 can be true only if 
interrupt circuit 11 isnot active, and not waiting and en­
abled and no higher priority interrupt in that group is waiting 
or active. In addition, signals NISIN10 NISNIP10 prevent 
REIP11 or NISIN11 from beingtrue unless interrupt circuit 10 
is not active, and not waiting and enabled. Signal NISNIP11 
can be true only if interrupt circuit 11 is not active and 
interrupt circuit 10 is not active. 

Signals NISIN9 and NISNIP9 are controlled by all interrupt 
circuits from 0 through 9. Similar signals are generated at 
all levels of interrupts. 

Signals generated by odd-numbered circuits and even­
numbered circuits are combined into such signals as: 

R1011 RlO + REIPll 

Signal R1011 will be true if either circuit 10 or circuit 11 
is waiting and enabled, and no higher priority circuit is 
waiting and enabled. 

Priority Chain Signals. An interrupt sequence is initiated 
after signal INT9 is true, enabling flip-flop INT to be set. 
Signal INT9 is controlled by inputs from all interrupt cir­
cuits, including external interrupts. 

INT9 ENOVRD + ENCNTR + ENIO + ... 

Signal ENOVRD is true if any of the first eight interrupt 
circuits is waiting and enabled. 

ENOVRD 

R01 

R01 + R23 + R45 + R67 

RO + REIP1 (typical) 



SDS 901172 

More than one interrupt circuit may be waiting and enabled; 
however, only one can generate a true Rx signal or REIPy 
signal. 

Signal ENCNTR is true if any of interrupt circuits 8 through 
11 iswaiting and enabled (R89 + R 1011), provided the group 
is not inhibited by the program status doubleword (NCIF), 
and no higher priority group is waiting and enabled. 

ENCNTR 

HRQ8ZC 

NRQBZO 

NCIF NHRQBZC (R89 + R 1 011) 

/HRQBZC/ = RQBZO 

NENOVRD NISNIP7 NIEO 

Signal HRQBZC goes outside the CPU to provide for the 
option of external interrupts with higher priority than the 
counter-equals-zero interrupt group or the input/output 
interrupt group. Si gnal NISNIP7 is generated by interrupt 
circuit 7. Signal NIEO is generated during an operation 
sequence. 

5ignai ENIO is true if any of interrupt circuits 12 through 
15 is waiting and enabled (R1213 + R1415), provided the 
group is not inhibited by the program status doubleword 
(NIl), and nohigher priority group is waiting and enabled. 

ENIO 

HRQBZI 

NRQBZC 

NIl NHRQBZI (R1213 + R1415) 

/HRQBZI/ = RQBZC 

NENCNTR NHRQBZC NISNIPll NIEC 

Signal LINREQ is generated in external equipment when an 
external interrupt iswaiting and enabled, and starts an inter­
rupt sequence if no write direct instruction in the interrupt 
mode (0001) is active. The NEWDM term is required be­
cause /DATm/ lines are shared between trigger arm, 
enable data on output during a write direct instruction, and 
memory address data on input during interrupt operations. 

INT9 

LINREQ 

EWDM 

LINREQ NEWDM + ••• 

/DAT25/ 

NB16 NB17 NB18 B19 DIOWD 

Group Control. Priority signals generated by the interrupt 
circuitsalso control signals which cause changes of state in 
the interrupt circuitsduring an interrupt sequence. These 
signals permit only one group of interrupts to be controlled 
at any time. The family of lEx signals cause a change of 
state from waiting and enabled (111) to active (101). 

lEO AIEl ENOVRD 

IEC AIEl ENCNTR 

lEI AlE 1 ENIO 

The family of IBx signals remove an interrupt circuit from 
the active state. 

IBO AlB LEVACT 

IBC AlB LEVACT NHBZC 

HBZC /HBZC/ = BZO 

BZO ISNIP7 

IBI AlB LEVACT NHBZI 

HBZI /HBZI! = BZC 

BZC N(NHBZC NISNIPll) 

BZI N(NHBZI NISNIP15) 

The family of ARMx signals cause a change of state from 
active to armed (011). 

ARMOVD 

ARMCTR 

ARMIO 

IBO LEVARM 

IBC LEVARM 

IBI LEVARM 

Signals AIEl, AlB, LEVACT, and LEVARM are generated 
during an interrupt sequence. If the LEVARM signal is false, 
the interrupt circuit will be left in the disarmed state (001) 
after transfer from the active state. Si~mal BZI enables 
external interrupts to be controlled. -

Memory Address Control. Si gna I s I NTO through It-.J T8 
retain a code addressing the memory location associated 
with an interrupt level. This code, which is transferred to 
the P-register during the interrupt sequence, is established 
by pri ori ty si gna Is generated in the interrupt ci rcuits. 

Signals INTO, INT1, and INT3 are false for any internal 
~nterrupt level. Signals INT2 and INT4 are true for any 
internal interrupt level. 

INT2 

INT4 

ENOVRD + ENCNTR + ENIO + ••• 

ENOVRD + ENCNTR + ENIO + ••• \ 
i: ..... ! 

Thus signals INTO through INT8 hold the code 0 0101 ·Xx\x~ 
for any internal interrupt leve!. .. ~--:. i'l t 

Signals INT5 through INT8 hold a code dependent upon ;he 
internal interrupt level enabled. 

INT5 ENCNTR + ENIO + ••• 

INT6 OVLN6 ENOVRD + ENIO + ••• 

OVLN6 - R45 + R67 

INT7 OVLN7 ENOVRD + CNLN7 ENCNTR 
+ IOLN7 ENIO + ••• 

OVLN7 R23 + R67 

CNLN7 RlOll 

IOLN7 R1415 

INT8 OVLN8 ENOVRD + CNLN8 ENCNTR 
+ IOLN8 ENIO + ••• 

OVLN8 REIPI + REIP3 + REIP5 + REIP7 

CNLN8 R911 

IOLN8 REIP13 + REIP15 

3-89 



SDS 901172 

Although more than one circuit may be waiting and enabled 
ut Q t;rne, on!y oile of the Rx 8r RE!Py signals assorinted 

with the internal interrupt circuits can be true at any 
time. The last four bits of the code held by signals INTO 
through INT8 will be any of 0000 through 1111, depending 
upon the interrupt circuit which controls the interrupt. 
Therefore, the address code for an internal interrupt will 
be any value between 0 0101 0000 and 0 0101 1111 
(hexadecimal 050 through 05F). 

SERVICE ROUTINE SEQUENCE. A timing diagram for an 
interrupt operati on whi ch transfers control to a stored 
service routine is illustrated in figure 3-56. 

When an interrupt circuit is waiting and enabled, INT is 
set. 

S/INT INT9 = ENOVRD + ENCNTR + ENIO 
+ LINREQ NEWDM 

The three interrupt flip-flops are then set at the end of 
phase 10 of a program i nstructi on. 

S/INTRAP 

(S/INTRAP) 

lEN 

(S/INTRAP) NRESET 

INT lEN NINTRAP 

KRUN PH10 NIOSC NDCSTOP 

S/INTRAPl 

S/INTRAP2 

(S/INTRAP2) 

(S/INTRAP) NRESET 

(S/It>iTRAP2) ~~RE:;[T 

(S/INTRAP) + ••• 

At the following CPU clock, CEINT is set and INTRAP2 is 
reset. 

S/CEINT 

R/INTRAP2 

INTRAPl INTRAP2 NTR.AP + ••• 

The CPU clock is inhibited until signal ARE is true, and 
signal PXINT is true to enable transfer of address data to 
the P-regi ster. 

CLEN NCEINT + (EINT ARE + 

ARE AIEl iMC 

PXINT INTRAPl NINTRAP2 NTRAP 

Signal ARE is controlled by the l-MHz clock and prevents 
changes of state in the interrupt circuit by inhibiting gated 
clock signal GCLK. 

N1MCS L-~~~ ____ ~r-l~ ____ ~r-l~ ______ ~ 
GCLK ----,L-________ ----' ~----Jr 
lNT .J 

01 

lNTRAP ---.l II---------------------------~ L-..f, 

lNTRAPI---.l 
lJ 

lNTRAP2-----.l1L.....-_______ --InL.. ______ -..,;"/~-----------------------....1 
CEINT 

PXINT --.-.J 
II 

ARE 
!J 

AlB 
1/ 

AIEl ~~:----------------------------~ 
AIE2 

l! 

LEVACT ___________________ ----....10_-..-J 
,-- - -- ----, LEVARM ____________________ .nlt ______ ...J
1 

I~ _____ --I 

lEx ~.~, ----------------------------~ 
lBx 

l/ 

ARMx 
,-------, 

------------------------~III-----~' ,~------~ 
901172A.3504 

Figure 3-56. Service Routine, Timing Diagram 

3-90 



505 901172 

5/AIB (5/ AlB) NAIB 

(5/ AlB) PXINT NAIEl + ••. 

R/AIB 

C/AIB N1MC5 

5/AIE1 AlB PXINT 

R/AIE1 

C/AIE1 NIMC5 

GCLK IMC (NAIB + NPXINT) 

While signal AIEl is true, a true lEO, IEC, or lEI signal 
causes the interrupt circuit to transfer from waiting and 
enabled (111) to acti ve (101). 

R/IPn Rn lEx + ••• (typical) 

lEO AIEl ENOVRD 

IEC AIEl ENCNTR 

lEI AIEl ENIO 

If the interrupt logic is servicing an external interrupt, 
signal DAT26 is generated to enable the change of state 
in the external circuit. 

DAT26 = AIEl + ••• 

After signal ARE is true, a CPU clock is generated, resetting 
INTRAP1, setting INTRAP2, and resetting CEINT. 

R/INTRAP1 

5/INTRAP2 

R/CEINT 

NINTRAP2 

INTRAPl NINTRAP2 + 

At this time, the XP5D instruction in the assigned memory 
location is extracted from memory and executed. The 
service routine addressed by the XPSD instruction may 
itself be interrupted. A service routine which is not inter­
rupted is terminated by an LP5D instruction which sets 
CEINT at exit from phase 4 and causes LEV ACT to be true 
during phase 5. 

S/CEINT 

LEVACT 

FAPSD PH4 N07 R30 + ••• 

FAPSD PH5 N07 R30 + ••• 

The CPU clock is inhibited until signal ARE is true. 

CLEN 

ARE 
S/AIB 

(S/AIB) = 
R/AIB 

C/AIB 

5/AIE2 

R/AIE2 
C/AIE2 

NCEINT + CEINT ARE + ••• 

AIE2 1MC + •• : 
(S/ AlB) NAIB 

LEVACT NAIE2 + ••• 

N1MCS 

AlB LEVACT 

NIMCS 

As the interrupt service routine ends, the interrupt circuit 
which initiated the operation is transferred from the active 
state (101) to either the disarmed state (001) or the armed 
state (011). For any change of state, bit position 10 of the 
LPSD instruction must contain a one, causing R30 to be set, 
and enabl ing LEVACT to be true. 

R/ISn NIPn NISNIPy IBO + ••• (typical) 

IBO AlB LEVACT 

If bit position 11 of the LP5D instruction contains a one, 
R31 will be set, LEVARM will be true, and the change of 
state will be from active to armed (101 to 011). 

S/LPn ISn NISNIPy ARMOVD + (typical) 

ARMOVD IBO LEVARM 

LEVARM LEVACT N(FAPSD PH5 NR31) 

If bit position 11 of the LPSD instruction contains a zero, 
R31 wi II not be set, and the change of state wi II be from 
active to disarmed (101 to 001). 

If the interrupt logic is servicing an external interrupt, 
signals DAT27 and DAT28 are generated to enable changes 
of state in the external circuit. 

DAT27 

DAT28 

AlB LEVACT 

LEVARM 

After signal ARE is true, CEINT is reset to return all signals 
to the state existing before start of the interrupt operation. 

R/CEINT 

MODIFY AND TEST SEQUENCE. The sequence of opera­
tions for an interrupt that transfers control to a modify and 
test instructi on is simi lar to the sequence that transfers 
control to an XPSD instruction and the associated service 
r'outine. When the interrupt circuit is waiting and enabled 
and has priority, INT is set, and the interrupt operations 
follow phase 10 of the program instruction. After INTRAP, 
INTRAP1, and INTRAP2 are set, the CPU clock is inhibited, 
the interrupt circuit is placed in the active state, and the 
contents of the memory location are extracted and exe­
cuted, as described for the service routine sequence. 

During a modify and test sequence of a counter interrupt, 
count-equals-zero signal S0031Z is sampled, and a count­
equals-zero interrupt circuit may be placed in the waiting 
state (llX) if the register contains all zeros. 

S/IS8 

SR8 

CNTZREQ 

ISNIP2 

IP8 SR8 (typical) 

CNTZREQ ISNIP2 

FAMT PH2 INTRAP S0031 Z 

152 NIP2 

3-91 



SDS 901172 

The interrupt circuit is always transferred from the active 
:.late (101) to the arrned ~tate (011), beca~se LE'l,A.R~,~ :~ 

always true. 

R/ISn 

IBO 

LEVACT 

S/IPn 

ARMOVD 

LEVARM 

NIPn NISNIPy IBO + ••• (typical) 

AlB LEVACT 

FAMT PH2 INTRAP + ••• 

ISn NISNIPy ARMOVD + 

IBO LEVARM 

LEVACT N(FAPSD PH5 NR3l) 

After the modify and test instruction has been extracted 
from memory, it inhibits the CPU clock by setting CEINTI' 

S/CEINT = FAMT PHl INTRAP + ••• 

enables the CPU clock by controll ing AlB and AIE2, 

(S/AIB) 

S/AIE2 

LEVACT 

LEVACT NAIE2 + 

AlB LEVACT 

FAMT PH2 INTRAP 

and terminates the sequence by resetting INTRAP. 

R/INTRAP = FAMT PH9 

The modify and test sequence is controlled by the modify and 
test word instruction described in paragraph 3-69. The ad­
dress of the next i nstructi on in sequence is stored duri ng PRE P 
phases. Therefore, a modify and test sequence is a single­
instruction interrupt. 

EXTERNAL INTERRUPTS. External interrupts also control an 
interrupt circuit containing three flip-flops. The priority of 
an external interrupt depends upon cable connections with 
the CPU and the position of the external interrupt in the set 
of 16. 

When an external interrupt is waiting and enabled and has 
priority, it wi II generate a true INT9 signal, and cause INT 
to be set, as for an internal interrupt. The true INT9 signal 
is generated by a DAT25 signal when no WD instruction in 
the interrupt mode is active. 

INT9 

LINREQ 

EWDM 

LINREQ NEWDM + 

/DAT25/ 

NB16 NB17 NB18 B19 DIOWD 

The address of the interrupt is transmitted over lines DA Tl6 
through DA T24. 

INTO LINOO NEWDM + ••• 

INT8 

LINOO 

LIN08 

3-92 

LIN08 NEWDM 

/DATl6/ 

/DAT24/ 

Change of state of the external interrupt circuit from 
wc:t:"'g ar'\d e"ab1e~ fl11) t,., nrtivp (01) is controlled by 
line DAT26. 

DAT26 = AIEl + ••• 

Change of state from active to armed (011) or disarmed 
(001) is controlled by lines DAT27 and DAT28. 

DAT27 

DAT28 

AlB LEVACT + 

LEVARM + ••• 

All external interrupts are inhibited if EI of the program 
status doubleword is set. 

DAT29 = NEI NEWDM + 

WRITE DIRECTION OPERATION. A write direction (WD) 
instruction can control the interrupt operation in two ways. 
When operating in the internal mode, it may control the 
states of flip-flops CIF, EI, and II, which may inhibit the 

priority chain signals. When operating in the interrupt mode, 
it enables signals DATl6 through DAT31, which are inputs 

to interrupt circuits 2 through 15. These inputs have the 
following general form, in which y = x + 14 for x = 2,3, ••• 15. 

S/INx DATy AEENLE 

DATy Sy EWDM 

R/INx DATy ADBD,B + REN 

S/IPx DATy AEADB + ••• 

R/IPx DATy DARM + ••• 

S/ISx DATy IPx TRIG + ••• 

R/ISx DATy DARM + ••• 

These signals change the state of interrupt circuits when a 
WD instruction in the interrupt control mode (bits 16 
through 19) presents a code (bits 21 through 23) addressed 
to any group (bits 28 through 31). The details of this opera­
tion are explained in the following paragraphs. 

When a WD instruction in the interrupt control mode is 
executed, NDIOWD is reset and signal EWDM is true. 

R/NDIOWD 

EWDM 

FARWD PHl OLD (WD instruction) 

NB16 NB17 NB18 B19 DIOWD 
(Interrupt control mode 0001) 

These signals initiate the sequence of operations illustrated 
in the timi ng diagram of figure 3-57. 

During phase 3 of the WD instruction, NDIOFS is reset and 
CNA is set. 

R/NDIOFS 

S/CNA 

FARWD PH3 

DIOFS EWDM NCNB 



SDS 901172 

) \~ 
N1MCS ____ ~r-l~ ______ ~r_l~ ____ ~r_l~ ____ ~r_l~ ______ ~~ 

DIOWD -.J 
DIOFS 

EWDM ~ 
CNA 

CNS 

FSA 

DIOTl 

DIOT2 

CPu 
CLOCK 

n n n n n 
~ LJ LJ L-..J U L...., 

DIOT3 ----------------------------------~I I~ ____________________ _ 
DIOIND ____________________________________ ~r_l~ ________________________ _ 

DlOEXIT 

IOACT 

GRPO 

90 1172A. 3505 

Figure 3-57. Write Direct Sequence, Timing Diagram 

If the WD instruction is addressed to group 0, signals 
DAT16 through DAT29 control the interrupt circuits while 
CNA remains in the set state. 

GRPO NB28 NB29 NB30 NB31 CNA 
(Group 0000) 

AEENLE NB23 GRPO (Code XXO) 

ADBDB B21 NB22 GRPO + NB21 B22 GRPO 
(Code lOX + 01X) 

AEADB NB21 B22 GRPO (Code 01 X) 

DARM NB21 GRPO (Code O>.<X) 

REN B21 B22 NB23 GRPO + RESET 
(Code 110) 

TRIG B21 B22 B23 GRPO (Code 111) 

The code stored in bits B21, B22, and B23 cause changes 
of state in the interrupt circuits as summarized in tables 
3-13 and 3-14. 

While signals DIOFSand EWDMare true, flip-flopsCNA and 
CNB cycle through states (00, 10, 11,01). at the I-MHz clock 
rate. RetumtostateOOcannotoccuruntil signal NDIOFS is 
true. 

B21 

0 

0 

s/CNA DIOFS EWDM NCNB 

R/CNA 

C/CNA NIMCS 

s/CNB CNA 

R/CNB NDIOFS 

C/cNB N1MCS 

Table 3-13. Function of Codes for WD Interrupt 
Control Mode 

CODE OPERATION 

B22 B23 

0 0 Undefined 

0 1 Disarm all levels selected by a 1; all 
levels selected by a 0 are not affected 

(Conti nued) 

3-93 



SDS 901172 

Table 3-13. Function of Codes for WD Interrupt 
Control Mode (Cont.) 

CODE OPERATION 

B21 B22 B23 

0 1 0 Arm and enable all levels selected by 
a 1; all levels selected by a 0 are not 
affected 

0 1 1 Arm and disable all levels selected by 
a 1; all levels selected by a 0 are not 
affected 

1 0 0 Enable all levels selected by a 1; all 
levels selected by a 0 are not affected 

1 0 1 Disable all levels selected by a 1; all 
levels selected by a 0 are not affected 

1 1 0 Enable all levels selected by a 1 and 
disable all levels selected by a 0 

1 1 1 Trigger all levels selected by a 1. 
All such levels that are currently 
armed advance to the waiting state. 
Those levels currently disarmed are 
not altered, and all levels selected by 
a 0 are not affected 

Table 3-14. Signals Enabled by Codes for WD Interrupt 
Control Mode, and Resulting Changes of State 

TRUE CONTROL CHANGE OF STATE 
CODE SIGNALS (ISn, lPn, INn) 

DATy = 1 DATy = 0 

001 DARM XXX---OOX No change 

010 AEENLE,ADBDB, XXX---011 No change 
AEADB,DARM 

011 ADBDB, AEADB, XXX---OlO No change 
DARM 

100 AEENLE, ADBDB XXX---XXl No change 

101 ADBDB XXX---XXO No change 

3-94 

Table 3-14. Signals Enabled by Codes for WD Interrupt 
Contra! ,\A,odc, and Rc~;.;!ting Changes of State (Cent.) 

TRUE CONTROL CHANGE OF STATE 
CODE SIGNALS (ISn, lPn, INn) 

DATy = 1 DATy = 0 

110 AEENLE, REN XXX---XXl XXX-XXO 

111 TRIG (if IPn) XIX-l1X No change 

(if NIPn) XOX-XOX 

When CNA and CNB reach the 01 state, they generate a 
true FSA signal (function strobe acknowledge) which sets 
DIOT3. 

FSA 

S/DIOT3 

NCNA CNB + ••• 

FSA + ••• 

Flip-flops DIOTl, DIOT2, and DIOT3 cycle through a 
sequence (000, 001, 111, 110, 010) and wait for a false 
IOACT {input/output active} signal. 

S/DIOTl DIOIND 

DIOIND NDIOT2 DIOT3 

S/NDIOFS DIOIND + ••• 

R/DIOTl NDIOT3 

S/DIOT2 DIOTl + DIOIND 

R/DIOT2 NIOACT 

S/DIOT3 DIOIND + ••• 

R/DIOT3 

C/DIOTl C/DIOT2 = C/DIOT3 CL 
(CPU clock rate) 

When these fI ip-fl ops reach state 010, they generate a true 
DIOEXIT signal and set NDIOWD. 

DIOEXIT 

S/NDIOWD 

NDIOTl DIOT2 

DIOEXIT + ••• 



SDS 901172 Paragraphs 3-31 to 3-33 

3-31 MEMORY 

3-32 Introduction 

The Sigma 5 memory has a maximum storage capability of 
131,072 33-bit words. Physically, a memory of this size 
occupies ei ght separate frames mounted in four memory 
cabi nets. The total memory si ze of any 5 i gma 5 computer 
can range from 4K to 128K words in increments of 4K. The 
abbreviations for memory sizes (4K, 8K, 16K, 32K, 64K, 
etc.) are used for convenience throughout this manual. The 
factor K is equal to 1024; thus, for example, a 128K mem­
ory contains 131,072 words. 

The various standard and optional units that make up the 
total Sigma 5 memory are listed in table 3-15. 

Figure 3-58 shows the interconnection for eight memory 
banks and three ports that make up the total Sigma 5 
memory system consisting of one CPU and two inputl 
output processors. 

3-33 Memory Bank 

Figure 3-59 shows a functional block diagram of a memory 
bank. A sigma 5 computer system can have up to eight of 
these memory banks, each bank containing from 4K to 16K 
words in increments of 4K. This diagram also shows the 
ports (A, B, and C) through which data, address, and con­
trol si gnal s flow. 

The magnetics section contains the following: 

a. Ferrite cores 

b. Decoding logic 

c. Current and vol tage swi tches 

d. Current and voltage predrivers 

e. Sense ampl ifiers 

Data is stored in the ferrite cores. The decoding logic, 
electronic switches, drivers, and sense amplifiers are used 
to put data into the cores and to read the data out of the 
cores. 

MEMORY PORTS. The memory ports provide a means of 
accessing memory from different sources. The standard 
Sigma 5 computer is provided with one port (port C) through 
which the CPU (and the integral lOP) accesses memory. A 
second port (port B) and a thi rd port (port A) may be added 
as options to provide memory access by input/output device 
controllers and input/output devices via multiplexing or 
selector IOP's. 

The L-register holds address information fed through the 
port address paths. Addresses are fed through the ports as 
follows: 

a. LA 15 through LA31 are fed through the port A 
address pa th to the L -regi ster • 

b. LB 15 through LB31 are fed through the port B 
address path to the L -regi ster. 

c. Le15 through LC31 are fed through the port C 
address path to the L -regi ster. 

Table 3-15. Sigma 5 Memory Models and Options 

Maximum Number 
Model Description Prerequi si te Required 

8251 4K Memory, Single Access (Port C) 8201 8 

8252 4K-8K Memory Expansion 8251 8 

8252 8K-12K Memory Expansion 8252 8 

8252 12 K -16 K Memory Expansi on 8252 8 

8255 Two-Way Access (Port B) 8251 8 

8256 Three-Way Access (Port A) 8255 8 

8257 Port Expander F (Fi rst) (Six-Way Access, One Memory) 8256 4 

8257 Port Expander 5 (Second) (One Memory- Two Memory 8257 (F) 4 
Six-Way Access Expander) 

3-95 



3-96 

CPU 

lOP 
NO.1 

lOP 
NO.2 

NOTES: 

5 

* SYMBOL T DENOTES CABLE TERMINATORS 
REQUIRED AT THE TWO ENDS OF TRUNK-TAll 
CABLE BUSSES. 

SDS 901172 

90 1172A. 3300 

Fi gure 3-58. Memory System Interconnection for Ei ght Memory Modules, One CPU, and Three laPis 



- - -- -- -- - - --- --- - ---- - --- --- ----- --- ------ -- - ---
/SRAA! +-+----1 

,-----
ADACO ... ----r--- TR200 

MEMORY CONTROL TIMING MODE CONTROL 

TP200 ADA S/WRITEOL 

AD8CO 
/SRAB/+-~-~ 

SOS 901172 

ABORT 

MWO 

MWI 

-----, 
{ 

--L;:. A BOA!. 
-+-/ABOB/ 

3:/A80C / 

/MQA/ 
/MQB/ 

-r/MaC/ 

o AOCCO 
/SRAC/ ..... ~---4~ ..... _----J 

ADB 
TP200 S/READDl I 

~-+ __ ~T_R_O~~ ________________________________________ ~~~~~~/MWOA/-

/MW3A/ 

/ AHA/+--L.-----4 

!LX15/--~-..... 

LAI6-LAI9 

PORT A 

/LX31/ __ .!.---=---t."UI-__ i.A~~~:~~_=::.....· 2.:..:3~ ____ -I 

/ AH8/_-f------4 LXl 

/LX 15! --..:..---:-..... 

LB1Sl, 19L 
AD8S 

/LX31/ -":'--!...-..j 
L830l,31l 

ADC 

R· /AHC! ..... I-r--.... SWITCH LOGIC 

/LX 15/ -+---:--..j 
lCIS 

LCI6-LC19 lCI8l,19L 

PORT C 

lC20-LC29 

/LX31/ --+--!...-.l 
lC30-LC31 LC30l,31l 

ADACO 
/ARA/ +-+----1 TR060 

/AR8/ +-~-~ 
ADBCO 

/ARC/+-+--~ 
ADCCO 

~ 
L r:;l- I 
~3 

TROOO - - - - -TR~ TWOOO· - - - - TW~ 

18-31 

r-- -- -- -- -- -- -- --C-O-R-ESE-~-C-TIO-N- -- ---

I ~I ~*--~~~~+ 

: ¥Nyr-: -'---, TP~ 9 
I x-V 

CIV 
PREDRIVE 
MATRICES 

TWI40 

TNYC 

TPYC 

TNYV 

I~------~~--~-----------__JTPYV 
TPYI TNYI 

CURRENT DIRECTION 

PORT PRIORITY CONTROL/TIMING 

NADA NADSTI 

NMI ~--~N:.....T~P~~~O--~ 

AHA MQA --'-----------.1 

NAPA 
AHB MQ8 ---.---------t APB 

NMI 

NCFA TWI40 

Trooo - - - - -TPIOO 

PAS LO-l 

SPAOO-32 

INHIBIT 

TW200-, 

----, 

MDOO-
SA MD31 
MD 

0-32 MD32 

8j~ 

MXD3B 

MXD 

AP PS27 _...:M3=2.:..:X.:....P ...L-.:..:..MX:.::..:.M:::32=--~ 

NAP NPS27 

TPlOO- - - - -TP200 

MW2 

MW3 

M 

0-31 

MC2 

L..:...:=':"=':"'-1-4-/MINOB!­
/MW38/ 

ADACO 

L-.----1-4- /MWOC/­
/MW3C/ 

RD TR360 RD TR240 1------...... /EDRA/ 

'WF TR240 1-----4-. /EDR8/ 

WP TR600 I-------+-. /EDRC/ 

L..-______________ --.:...-: ~:; 
L-.-________________ -J. ...... : IORC/ 

~-MX--M-O--MX--MC~----~~MX~A~0--~MX~A~3------,_--------------------~~--~~~~/~~j 
~-=MX~~~-.:..:MX~~~--_r4_------------------------------~~/M~~ 

MOO-M31 

MXCO _ MXC3 /M831/ 
'-~~~~-r4_+---------------_4~/MCOO~ 

DGCO-7 /MC31/ .-LJ /ORA8, 
DGBO-l ~IL ORAC 

DGAO-7 --W~~~:A' 

PARITY 

A4JO - M31 

ORIL8, 
I ORILC/ 

-t-{ /HOFA' 
HOFB, 
HOFC/ 

-4/MFRA' 
MFR8, 

~~~:;/ 
.-lJ /MRA, - 11 MRB,

nr- 11 I ~~:.
ADADG~/U~AI

DG ADBDGB7/DGBI

I
DG ADCDGB+/DGC/

I------------r---------~_ /MFlO/­
/MF17/

ADACO
I-A.:..:D:.....C-=C:.....O-------------------------4 /~A/

~A~D~BC~O------------------------~ /~c/
ADACO L..-.;.;:...;;-=..::.------__________________ --L /~ B/

I-A=D:.....C=CO=---~/roKA/

~A=D=BC=O=---~/roKC/
~~~------------------------~./roK8/ ---- - -- - - -- -- -- - ---- - -- -- -- - ----- --- ---- --- -- -- -------- -- _._- - -------- ---

Fi gure 3-59. Si gma 5 Memory Bank, 
Functional Diagram 

901172A. 3301 

3-97/3-98 



SDS 901172 Paragraphs 3-34 to 3-35 

Before data is processed and stored in the magnetics section, 
the data is transferred to the M-register. For example, for 
data to be stored, the sequence occurs as follows: 

a. MAOO through MA31 are fed through the port A 
data path to the M-regi ster. The data then goes from the 
M-register to the magnetics section. 

b. MBOO through MB31 are fed through the port B 
data ~ath to the M-regi ster. The data then goes from the 
M-register to the magnetics section. 

c. MCOO through MC31 are fed through the port C 
data path to the M-register. The data then goes from the 
M-register to the magnetics section. 

Similarly, data read out of the magnetics section goes 
through the ports via the M-register. Pari ty is generated 
in the section labeled Parity. 

Control logic is contained in the central control section 
and individual port controls (port A control, port B control, 
and port C control). The logic controls pod priority. In 
case of memory access conflict, port A has the highest 
priority, port B second highest, and port C the lowest. 

Si gnals fed into the memory via the ports are shown in the 
functional block diagram, figure 3-59. Note that the last 
letter of a signal in the block diagram usually indicates in 
which port the signal originates. For example, signal AHA 
comes from port A I ogi c, AH B comes from port B I ogi c, and 
AHC comes from port C logic. Exceptions are signals ORBC, 
ORAC, and ORAB, which are port override si gnal s. Si gnal 
ORBC, for example, is fed to port A to override ports B 
and C. 

PORT EXPANDERS. A port expander unit accepts up to 
four input b~~ses and connects to a memory port 'to e~pand 
that port from one, to four inputs specified as 0, 1, 2, and 3. 
A port expander can be connected to either port A or port 
S, but not both, in a Si gma 5 memory. The port expander 
must provi de address modification for each of its four inputs 
so that the memory may be assigned independent addresses 
for each input bus. The four inputs to the expander have a 
fixed priority relationship for the resolution of access 
request conflicts in decreasing numerical order. 

Figure 3-60 shows a port expander connected to port A of 
memory banks ° and 1. Port expander F is connected to 
bank 0, and port expander Sis connected to bank 1. 

3-34 Interleaving 

Address i nterl eavi ng between any two or more memory 

banks in a Sigma 5 system exists whenever the INTER­
LEAVE SELECT switch on the PCP is in NORMAL position 
and certain addressing constraints have been met. The 
objective of interleaving is to obtain a faster average 
access time for a sequence of addresses. With interleaving 
in effect, no two consecutive addresses will reside in the 

same memory bank. Since each memory bank is inde­
pendent of the others, memory access to two or more 
modules simultaneously is possible. This simultaneous 
access to memory is common between the CPU and the I/O 
channels. Whenever addressing conflict occurs, as when 
two separate sources attempt to access the same bank at 
the same time, access is granted on a port priority basis 
with port A having the highest priority, port B the next 
highest priority, and port C the lowest priority. 

Each memory bank is assigned a set of addresses to which 
it responds. As viewed from any of the memory ports, each 
memory bank may have a different set of addresses. In 
general, however, each bank is assigned the same addresses 
for each port to which it is attached. 

The basic interleaving constraints are: 

a. The starting address of a memory bank must be a 
multiple of the bank size. 

b. The total interleaved memory must be on its own 
boundary. 

c. The starti ng addresses for each bank must be 
assi gned so that no gaps or overlaps exist in the address 
field for the noninterleaved mode. 

d. The total interleaved memory size must be 8K, 
16K, 32K, or 64K. Interleaving cannot extend from the 
first 64K memory into the second 64K memory. 

e. No more than four banks can be interleaved. 

f. 12K banks cannot be interleaved, and their 
starting addresses must begin on an integral boundary of 
16K. 

Any combination of memory banks that satisfies the above 
constraints can be interleaved. The interleaved address 
field will cover the same range as the noninterleaved field. 
All interleaving capabilities are nullified when the INTER­
LEAVE SELECT switch on the PCP is placed in the DIAG­
NOSTIC position. 

3-35 Memory Elements 

The elements making up the total memory are defined as 
follows: 

MEMORY. A memory consi~ts of the total number of 
memory words in a Sigma 5 system. The minimum memory 
consists of 4K words, the maximum memory consists of 
128K words. 

3-99 



FROM OTHER{ 
SOURCES -
CPU'S, lOP'S 

3-100 

SDS 901172 

.------------, 
I FIRST MEMORY CABINET I 

I 
I 
I 
I 

I ""-- '-- ~ 

I 1 2 3 4 

I 
I 
I 
I I PORT PORT 

EXPANDER F ENPANDER S 

I I J 

I 
I 
I 

¥. ¥. I 9c 9c I A A 

I I MEMORY BANK 0 MEMORY BANK 1 

L __________ J 

~T 9
T 

CPU lOP 

I I 

Fi gure 3-60. Port Expanders F and S (Fi rst and Second) 

1 

TO SECOND 
MEMORY 
CABINET 

901172A. 3302 



SDS 901172 Paragraphs 3-36 to 3-38 

BANK. A memory bank is a complete and independent 
memory unit and consists of from one to four memory stacks 
located in a single memory frame. The memory bank is 
made up of 4 to 16 core diode modules pi us other control 
and timing electronics. A memory bank is mounted on four 
wired backboards together with a PT16 logic supply and a 
PT17 memory supply side-mounted to the frame. All mem­
ory banks are wired in exactly the same way and differ 
only in the complement of core diode modules (or stacks) 
which are mounted on the frame. 

STACK. A memory stack is the smallest memory increment. 
It consists of 4096 (4K) words of core memory mounted on 
four core diode modules. 

3-36 Memory Switches 

Several toggle switches are associated with each memory 
bank. These switches, mounted on STl4 switch modules, 
are set to designate the bank number: the total interleave 
memory si ze, the memory bank si ze, and ports A, B, and C 
starti ng addresses for each memory bank. (See fi gure 3-61.) 

BANK NUMBER SWITCHES. Thiee bank number switches, 
NO, N1, and N2, are provided on each frame. These 
switches are set to a binary configuration representing the 
number assigned to that bank and are associated with the 
number of the memory fault light appearing on the PCP. 
A maximum of eight memory banks can be incorporated in 
a Si gma system. These banks are assi gned numbers 0 through 
7, representing all the combinations of the three toggle 
switches. In general, memory banks in the left-most mem­
ory cabi net are assi gned numbers 0 and 1; the next memory 
cabi net to the ri ght contai ns banks 2 and 3, and so on 
until all banks have been assi gned numbers. 

BANK SIZE SWITCHES. Bank sizes are available in 4K, 
8K, 12K, and 16K words. Two toggle switches, SO and Sl, 
are provided on the switch module in each bank for identi­
fying memory size. These switches must be set to the 
number corresponding to the bank size. The binary confi g­
urati on 00 represents 4K, 01 represents 8K, 10 represents 
12 K, and 11 represents 16K. 

STARTING ADDRESS SWITCHES. Five toggle switches, 
S15 through S19, are provided in each memory bank for 
each port that the bank contai ns. These five switches are 
set to represent the five most significant bits of the starting 
address contained in that bank. The five most significant 
bits of the bank address are address lines L 15 through L 19. 

INTERLEAVE SIZE SWITCHES. Each memory bank has 
four toggle switches to designate the total interleaved mem­
ory si ze. These swi tches, S64, S32, S 16, S8, are used to 
indicate the total size of the memory to be interleaved. 
Only one of these switches can be true at the same time 
since only 8K, 16K, 32K, or 64K size memories can be 
interleaved. 

PORT EXPANDER SWITCHES. Each bank has a port ex­
pander switch for port A and another port expander switch 
for port B. If a port expander is connected to either one of 
these ports, its port expander switch must be set to a one; 
otherwise, the port expander switches must be set to zero. 

3-37 Memory Configuration 

Many Sigma memory configurations are possible. Figures 
3-62 through 3-64 show these examples of several possible 
combinations of an interleaved memory, their physical place­
ments in frames and cabinets, their interleaving capabilities, 
and their corresponding switch settings. Note that there is 
no fixed and arbitrary relationship between the memory 
addresses and thei r physi cal pi acement. However, it is 
generai practice to designate the banks in the left-most 
cabi net (cabi net 1) as banks 0 and 1 i the banks in the 
cabinet to the right (cabinet 2) has modules 2 and 3, and so 
on unti I a II memory banks have been assi gned numbers. 
Note that the example shown in figure 3-64 does not follow 
this convention. It would be preferable to locate the two 
8K banks in cabinet 1 and the 12K bank in cabinet 2. 
It is not possible, in this example, to assign the 12K bank 
any number other than bank 2. 

3-38 Interl eave T ransformati on 

Wi th i nterleavi ng of memory addresses in effect, the port 
address I ines are transformed by exchanging two of address 
bits 16, 17; 18, and 19 with address bits 30 and 31, de­
pending upon the configurations of the bank size switches, 
the interleave size switches, and the bank number switches. 
(See figure 3-65.) The discussion of interleaving in the 
foil ow i ng paragraph sis lim i ted to port C, a I though a II 
statements apply to ports A and B as well. 

Interleavi ng occurs only when the INTERLEAVE SELECT 
switch on the PCP is in the NORMAL position. When this 
switch is in DIAGNOSTIC, interleaving is inhibited. The 
override interleave signal, ORIL, is derived from the 
INTERLEAVE SELECT switch, and is true with the switch in 
the DIAGNOSTIC position. 

Figure 3-66 shows a simplified diagram of how the address 
lines of port C, LC15 through LC31, are transformed to the 
interieaved address that seiects the memory bank and the 
X and Y predrive selection circuits of core memory. The 
address bit exchanges that perform the interleave address 
transformation are indicated in table 3-16. Detailed inter­
leave transformation logic for port C is shown in figure 3-67. 

Table 3-16. Interleaving Address Bit Exchange 

Memory Interl eave Address Bit 
Size Bank Size Exchange 

8K 4K (NSO NS 1) 19--31 

16K 4K (NSO NS1) 19~30, 18---31 
8K (NSO S1) , 18---31 

32K 4K (NSO NS1) 17-31,18--30 
8K(NSOS1) 17---31, 18-30 

64K 16K(SOSl) 17--31 

16K(SOS1) 17 ___ 30, 16---31 

3-101 



SDS 901172 

PORT B 
STARTING ADDRESS 

1 MQC r--- I r-----, 

t=l{] ~ ~: \ 10 15 I 
MQB I 

9IQ ~ =-EJ:-+-14 I PORT A 
MQC I STARTING 

LOCATION =(J ~ ~ I ADDRESS 
20C 13 I 

AHAEXP I 

=ill{] ~ ~ I 12 I 

AHBEXP I 20CKll 

=i(J ~ 
I 
I 

11 I L ____ -.J L ____ J 

INTERLEAVE SIZE 

,---- r- --;-t ,-----, 
I~I I~I ~I 
t 5 I I 10 I 15 I 

I 
I~I '~l ~ I PORT C I 4 I I 9 I 14 I STARTING 
I I 

~I 
I ADDRESS 

LOCATION 1=tt]1 ~ I 21C I 3 I 8 I 13 I 

t----~ ----~ I 

1=mmCJ1 ~ ~ I : 2 I 12 I 
I 21CKll 

~I ~ MODULE I 1 I 
SIZE 11 

L ___ ~ L ___ ~ 

901 1 72 A. 3303 

Figure 3-61. Toggle Switch Modules (STl4) 

3-102 



BANK 
NO. 

NO Nl N2 

a a a 
a a 1 

BANK 
NO. 

NO Nl N2 

a a a 
a a 1 
a 1 a 

SOS 901172 

iCABINETlI 

I I I 4K 4K ~ 

I 4K 4K· : "" 
I I BANKO 

I I Y 4K 4K : 

/! 4K 4K I 
BANK 1 I I 

L ____ J 
BANK SWITCH SETTINGS 

BANK STARTING INTERLEAVE 
SIZE ADDRESS SIZE 

SO .il ill S16 ill S18 S19 S8 S16 S32 S64 

1 1 a a a a a a a 1 a BANKO 
1 1 a a 1 a a a a 1 a BANK 1 

Figure 3-62. 32K Interleaved Memory, Example 1 

BANK 
SIZE 

SO .il 
1 1 
a 1 
a 1 

BANK SWITCH SETTINGS 

STARTING 
ADDRESS 

illllillillilli 
a a a a a 
a a 1 a a 
a a 1 1 a 

INTERLEAVE 
SIZE 

S8 516 S32 564 

a a a BANK 0 
a a a BANK 1 
a a a BANK 2 

Fi gure 3-63. 32K Interleaved Memory, Example 2 

901 1 72 A. 3304 

9011 72A. 3305 

3-103 



SDS 901172 

I CABINET 2--' 

I I 
I 4K I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
L ____ -.-1 

BANK SWITCH SETTINGS 

BANK BANK STARTING INTERLEAVE 
NO. SIZE ADDRE55 5IZE 

NO N1 N2 50 51 515 lli 517 518 519 58 516 532 S64 --
0 0 0 0 1 0 0 0 0 0 0 1 0 0 BANK 0 
0 0 1 0 1 0 0 0 1 0 0 1 0 0 BANK 1 
0 1 0 1 0 0 0 1 0 0 0 0 0 0 BANK 2 

901172A.3306 

Figure 3-64. 32K Interleaved Memory, Example 3 

3-104 



SO~ 

NSO } BANK 
Sl~ SIZE 

NS1 

S8 

NO~ 

NNO 

NNI 

N2~ 

NN2 

MEMORY 
BANK 
NUMBER 

SOS 901172 

.NR 
o 0 4K 
o 1 8K 
1 0 12K 
1 1 16K 

NX641 

Figure 3-65. Bank Size, Interleave Size, and Bank Number Switches 

NIL 

1--~.NX322 

xlo-... NX642 

9011 72A. 3307 

3-105 



3-106 

PORT C 
ADDRESS 
LINES 

SDS 901172 

MODULE SIZE INTERLEAVE 

SWITCHES SIZE 
SWITCHES 

LC15 --. ... 
1 

,. 
LC16 LC16S--. 

-.. 

LC17 ADDRESS LC17S - .. 
LC18 TRANSFORMATION LC18S .. LOGIC 
LC19 a LC19S . ... 

j~ ~ 

LC18L .. 
... 

LC19L ... 
LC20 

LC21 -LC22 .. -LC23 .. 
LC24 -
LC25 --
LC26 ... 
LC27 .. 
LC28 ... 
LC29 .. ... 
LC30 LC30L .. ... 
LC31 LC31L ... 

STARTING 
ADDRESS 

SWITCHES 

L18 

119 

L20 

L21 

L22 

L23 

L24 
LATCHES L25 

L26 

L27 

L28 

L29 

L30 

L31 

-
-... 
-. 

--. 

-
--. 

--.. 
-. 

--. 

-... 
-.. 

---. 

-
-. 

ADDRESS HERE 

TO X AND Y 
PREDRIVE 
SELECTION 
MATRIX TO 
ADDRESS 
CORE MEMORY 

901 1 72 A. 3308 

Figure 3-66. Address Transformation for Interleaving (Port C), Simplified Diagram 



/LC16/ 

/LCI9/ 

NX161 

NX321 

LC30 

X32 
NSO-,--_-, 

LC31 

X161 

NLC15 

SOS 901172 

LC15L 

LC16S 

NLC16S 

lXl1'~ 

{

LAI8S 

PORT A 
LXAOB-~--. __ _ 

{ 

LB18S 
PORT B 

LXBOB 

LXLOB 

/LCI7/ 

rLAI8L~ 
PORT A-j L LXAOI--'L--__ 

{

LBI8L 

PORT B 
LX801 

LC17S 

NLC17S 

NL18SEN 

NU8 

>-""T'""-------'--------.U8 

NL19SEN 

{

LAI9L 
~-------------~PORTA 

U4l&.01----.'--_" 

{ 

LBI9S 
PORT B 

LX 8OB------,'--__ 

NL19 
{

LBI9L 

PORT B 
LX 801--,L __ ------'--_ 

{

LCI9L 

PORT C 
LXCOI 

>--r-----L--------. L19 

9011 72A. 3309 /1 

Figure 3-67. Memory Address Register and Interleave Transformation Logic (Sheet 1 of 2) 

3-107 



"'-
/lC20! CR 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

/lC30! 

/LC31/ 

3-108 

LXCOB 

{ ""0 PORT A 
LXAOB 

{"W PORT 8 
LX BOB 

LCl7 

X642 

LeIS 
X32 
NSO 

LCl9 
Xl62 

NSI 

lCl6 

X642 

lCl7 

X32 

lCla 

Xl62 

LCl9 

xa 

SDS 901172 

{ ",,0 
PORT A 

LXAOI 

r~o PORT B 
LXBOI 

rW 
PORT C 

~ LXCOI 

{"* PORT A 
LXAII 

r~ PORT B 
LXBll 

rOl 

PORT C 
LXClI 

{

LC3IL 
PORT C 

LXCll-L.-_"" 

Fi gure 3-67. Memory Address Register and Interleave Transformation Logic (Sheet 2 of 2) 

L20 

NL20 

L30 

NL30 

L31 

NL31 

901172A.3309/2 



SDS 901172 Paragraphs 3-39 to 3-42 

ADDRESS HEREo After address transformation takes place, 
the five most significant address bits are compared with the 
configuration set into the starting address switches for each 
port. These five address bits make a valid comparison with 
the starting address switches in only one bank.; (See 
figure 3-68.) 

Signal AHC is returned to the source requesting memory 
access to indicate that the address exists. Note that if 
address Ii nes L18 and L19 are true ina 12 K memory bank, 
the address here signal will be inhibited. 

3-39 Memory Access Request 

The memory request interface signals, /MQA/, /MQB/, 
and /MQC;: are initiated by the source through either ports 
A, B, or C. After these signals are received by the memory 
bank, they are subjected to port override logic gating. 
(See figure 3-69.) The port override signals are available 
for SPecial system uSeS to allow any designated port access 
to memory at the exclusion of the other two ports. 

The port override signal, DRAB, when true, allows a 
request from port C to be initiated, but denies all access 
to ports A and B. Signal ORAC, when true, allows a 
request from port B to be initiated, but denies all access 
to ports A and C. Signal ORBC, when true, allows a 
request for port A to be initiated, but denies all access 
to ports Band C. 

3-40 Port Priority 

The three ports - A, B, and C - are assigned priority in 
alphabetic sequence. Port A has the highest priority, port 
B has the next hi ghest, and port C has the lowest. Ports A 
and B are called the slow ports because of delays involved 
in assigning priority before the memory cycle. Port C is 
called the fast port because the logic is designed to favor 
it. In the absence of requests from ei ther port A or port B, 
the logic is already set up to handle a request from port C; 
that is, signal ADC is normally true when no requests are 
present from ports A or B. 

Ports A and B have two separate logic paths by which 
priority is assigned. One logic path is used when the 
memory is idle or not busy (NMB). The other logic path 
is used when requests arrive while the memory is busy 
processing a previous request (MB). 

Port priority logic is shown in figure 3-70. Signals ADA, 
ADB, and ADC establish priority for ports A, B, and C, 
respectively. If neither port A nor port B is requesting 
access to memory, signals ADA and ADB are false, forcing 
signal ADC true. (See figure 3-70.) 

ADC NADA NADB 

The two separate logic paths previously mentioned by which 
priority between ports A and B is established are shown in 
figure 3-70 A and B. The first path (logic for APA and APB) 

is used when a request from port A or port B is made and 
the memory is not busy processing a previous request (NMB). 

APA AHAEXP MQAT NMB NCFA NCFB 

APB AHBEXP MQBT NMB NCFA NCFB NAPA 

Note that if APA is true, APB is forced false, thus estab­
lishing port A priority over port B. 

The second path (logic for CFA and CFB) is used when a 
request from port A or port B is made while the memory is 
busy processing a previous request (MB). 

CFA AHAEXP MQAT TW320 NTW360 

CFB AHBEXP MQBT TW320 NTW360 NCFA 

Note that if CFA is true, CFB is forced false, thus estab­
lishing port A priority over port B. 

3-41 Address Release 

After a memory request has been made and port priority 
established, the memory cycle is initiated. 

MI AHC MQC NMB NAB 

+ TP200 (ADA + ADB) 

+ NMB (CFA + CFB) 

At this point, the source making a request has not been 
informed whether its request has been accepted or not. 
Sixty nanoseconds after the memory cycle has been initi­
ated' the address release signal for the active port is 
raised. (See figure 3-70.) 

/ARA/ 

/ARB/ 

/ARC/ 

AROA 

AROB 

AROC 

ADACO TR060 

ADBCO TR060 

ADCCO TR060 

It is this signal that informs the source requesting memory 
access that its request has been honored and that it may 
now release its address. 

3-42 Memory Cycles 

Information is transmitted to or accepted from memory in 
the form of words accompanied by byte presence indi­
cators. Parity checking and generation is provided for all 
memory operations on a word basis. Thus, the Sigma 5 has 
three modes of operation: 

a. Read-restore 

b. Full clear-write 

c. Partial clear-write 

3-109 



LAIS 

NLAIS 

LA16S 

NLAI6S 

LAI7S 

NLAI7S 

LAI8S 

t"JL,A18S 

LA19S 

NLAI9S 

LBIS 

NLBIS 

LBl6S 

NLBl6S 

LBI7S 

NLBl7S 

LBl8S 

NLBl8S 

LBl9S 

NLBl9S 

LCIS 

NLCIS 

LCl6S 

NLCl6S 

LCI7S 

NLCI7S 

LCISS 

NLC18S 

LC19S 

NLC19S 

3-110 

o 

------------------0 

-------------------0 

-~ 
-------------------0 

-------------------0 

-------------------0 

-------------------0 

o 

o 

-------------------0 

----------------~o 

o 

------------------0 

-------------------0 
LCIS 
LC19 
(12K) 

SDS 901172 

PORT EXPANDER 
SWITCH A 

,"A;,;)33: I 

PORT EXPANDER 
SWITCH B 

.H:.,,33: I 
LBl9 
(12K) 

,.------------------+ AHC 

/AHC/ 

~AHAEXP 

B AHOA CD /AHA/ 

~AH~XP 

B AHOB CD - /AHB/ 

Figure 3-68. Address Here Logic, Ports A, B, and C 

901172A.3310 



/ORAB/ 

(PORT C) 

/ORAC/ 
(PORT B) 

/ORBC/ CR 
(PORT A) V 

r--l 
/MQA/~ 

I 
I 
I 
I 
I 
I 

/MQB/~ 
v I 

I 
I 
I 
I 
I 
I 

SDS 901172 

aRAB 

ORAC 

NAB 
AHAEXP 

APB{>1 

AHBEXP 

/MQC/~ 
I 

~----------------------------~------------~MQCT 

L - - ~SWITCHES TO SIMULATE REQUESTS 
ON EACH PORT FOR MAINTENANCE 

Figure 3-69. Memory Request and Port Override Logic 

901172A. 3311 

3-111 



NMI 

MOAT 

AHAEXP 

(TW320 
NTW3~O) 

AHSEXP 

MOBT 

NMI 

3-112 

SDS 901172 

o 
~--------------~------~--------------~CFA ~-------------------------r------------~APA 

NTW340 

APA 
NMI 

TP060 

CFA 

TW400 

CFB 

TW400 

APB 
NMI 

TPO~O 

NTW340 

ADA 

ADB 

ADC 

NMI 

MOAT 
AHAEXP 

(NAPA NAPB) 

AHBEXP 

MOBT 

NMI 

CFB ~------------------------~--------~~-+APB 

ADAMW 

ADAM 

L....---~ADAS 

r-------------------------,---------~--------------_.ADA 

ADCMW 

ADCM) 

I...---_ADCMB 

I---------------~ ADC 

AD BMW 

ADBM 

L....---_ADBS 

~------------------------~--------~--------------~ADB 

IARA/ 

IARBI 

JARC/ 

Figure 3-70. Port Priority and Address Release Logic 

9011 nA. 3312 



SDS 901172 Paragraph 3-43 

READ-RES TORE. The read-restore operation consists of: 

a. Reading a word from a specified address in memory. 

b. Gating the word into the M-register. 

c. Checking parity. 

d. Writing (restoring) the word that has just been 
read and gated into the M-register back into memory. The 
word is written back into the same address from which it 
was extracted. 

FULL CLEAR-WRITE. A full clear-write operation consists 
of: 

a. Clearing the memory location. This is done by 
reading the word but not gating it into the M-register. 

b. Placing a new word into the M-register. 

c. Writing the new word into memory. 

PARTIAL CLEAR-WRITE. A partial clear-write operation 
consists of: 

a. Reading a word from a specified address in 
memory. 

b. Gating the word into the M-register. 

c. Checking parity. 

d. Inserting the new byte or bytes into the M-register 
under control of the byte presence indicators without dis­
turbing the remaining bytes. 

e. Generating new parity. 

f. Writing the contents of the M-register into 
memory. 

The mode of memory operation is determined by either the 
CPU or the lOP by setting the byte presence indicators, 
MWO, MW1, MW2, and MW3 in the memory via ports A, 
B, or C. The basic logic for read-restore, full write, and 
partial write is: 

RD NMWO NMW1 NMW2 NMW3 

WF MWO MW1 MW2 MW3 

WP NRD NWF 

Figure 3-71 shows detailed logic for the memory mode 
determination. 

3-43 Memory Delay Lines 

Memory timing is controlled by two 600 nsec delay lines. 
Each delay line has taps at every 20 nsec interval. Buffer 

or inverter delay sensors pick off the delay line pulse at 
strategic intervals. The outputs of these buffers and inverters 
are distributed to the memory control logic to provide the 
basic memory timing. 

One memory delay line is associated with the first half­
cycle of a memory operation and is initiated by signal 
S/READDL. The other delay Ii ne is associated with the 
second half-cycle of a memory operation and is initiated 
by the signal S/WRITEDL. Two separate delay lines are 
required for the partial write mode in order to split the first 
and second half-cycles because of the time involved in 
checking parity after the read hal f-cycle, and regenerating 
a new parity before the write half-cycle is initiated. For 
this mode of operation the two hal f-cycles must be separated 
by more than the normal amount of time. 

Figure 3-72 shows all the major input logic and output 
timing signals associated with these two delay lines. 

Communication between the memory and units connected to 
memory through the ports is asynchronous. For this reason 
the timing of many signals is referenced to an interval time 
desi gnated as to. Time to corresponds to the actua I start of 
a cycle for any given port. 

The time interval between the receipt of a memory request 
at the port and the occurrence of to is called the selection 
interval. The time interval between to and the end of the 
memory cycle (when the memory is no longer busy) is called 
the active interval and is dependent upon the mode of oper­
ation. The active interval satisfies the following 
requi rements: 

Minimum Maximum 
Mode Nanoseconds Nanoseconds 

Read -restore 755 830 

Full clear-wri te 755 830 

Partial clear-write 1155 1230 

The active interval and the basic cycle time are not the 
same. The basic cycle time is the inverse of the maximum 
cycle rate in nanoseconds and can vary as follows: 

Minimum Maximum 
Mode Nanoseconds Nanoseconds 

Read-restore 770 870 

Full clear-write 770 870 

Partial clear-write 1170 1270 

3-113 



SDS 901172 

")(]~....,..-----+ RD (READ) 

NRD 

/MWOA/ 

/MWOB/ NWP 
MWO 

/MWOC! 

WFS 

A BOA 

ADAM 

ABOB 

ADBM 

MWI ABOC 

WP 
NWF (WRITE 

PARTIAL) 

ABOA 

/MW2A/ ADAM 

ABOB 

/MW2B/ ADCMB MW2 

ABOC 

/MW2C/ ADBM 

MWO MWI MW2 MW3 

0 0 0 0 READ 

0 0 

l} WRiTEPMTlAl 

0 0 

0 /MW3A/ 
1 

0 

/MW38/ 
MW3 WRITE FULL 

/MW3C/ 

901172A.3313 

Figure 3-71. Read, Full Write, and Partial Write Logic Diagram 

3-114 



TR5"ODL I 

TR460DL 

WFS 

READ 
DELAY 
LINE 

TR300DL 

TR240DL 

TRl60DL 

TROODl 

NPFSDLDCl 

NTR100 

CFA 

CFB 

TR560 

PG 

EDR 

TRl60 

>--L....,~TMW 

WP 

NWP 

XJ---~NTR060 

>----. TROOO 

SOS 901172 

S/READDL 

NTW560 

TW500DL 

TW480DL 

TW460Dl 

TW.4QODl TW.4QO 

WRITE 
DELAY 
LINE 

T'~340DL 

TW240 

TW200Dl TW200 

TW100 

S/WRITEOL 901172A. 3314 

Fi gure 3-72. Read and Write Delay Lines 

3-115 



SDS 901172 

In contrast to the precision of the active interval, the 
~f!'ler:tj()n interval is widely variable. The selection 
interval is dependent upon the following: 

a. The port requesting service. 

b. The current state of the memory. 

c. The mode of operation. 

d. Current and subsequent requests presented to 
other ports. 

With respect to the start-up condition (that is, with mem­
ory not initially busy and no request on other ports), the 
following conditions exist: 

Port Minimum Nanoseconds Maximum Nanoseconds 

A 235 330 

B 235 330 

C 25 80 

The start-up condition corresponds to the minimum selection 
interval that would be observed for a given port of a given 
memory. The sum of an access interval and a selection 
interval is not necessarily related to the cycle time of the 
memory. This is so because the selection interval of a 
request may be overlapped with the active interval of the 
previous request. 

An example of basic memory cycle timing f'ar both a read­
restore and a full-wri te operati on for a memory request 
from port Cis shown in fi gure 3-73. An exampl e of a 

memory cycle timing for a partial-write operation for a 
request from port C is shown in figure 3-74. In this latter 
case, the clear half-cycle and the write half-cycle are 
separated in time by 260 nsec to allow for parity checking 
and regeneration. 

The selection interval time required when either 
port A or port B initiates a memory request is shown in 
figure 3-75. 

With the memory not busy (NMB) the selection interval is 
provided by the port delay line. (See figure 3-76.) The 
port delay line is initiated only when a request is made 
from port A or port B and the memory is not busy. 

S/POR TDL IPD 

IPD 

APA 

APB 

NMB (APA + APB) 

MQAT AHAEXP NMB NCFA 

NAPA NAPB + APA NMI 

MQB T AHBEXP NMB NCFB 

NCFB NCFC NAPA + APB NMI 

After 200 nanoseconds, the memory cycle is initiated by 
setting a timing pulse into the read delay line. 

S/READl 

MI 

ADA 

ADB 

MI 

TP200 (ADA + ADB) 

APA TP060 NMI + ADA NTW340 

+ .•• 

APB TP060 MI + ADB NTW340 

+ ••• 

MQC~ ______________________________ _____ 

3-116 

MI ~~ __________________________ _____ 

to 100 160200 300 400 500 600 

TR --.J I I I I I I I~ __ _ 

TW 
000 100 

__ -----'I I 
--I READ/CLEAR 

HALF CYCLE 

200 

I 
l--

300 400 500 

I I I 
I--RESTORE,iWRITE _I 

HALF CYCLE --, 

600 

I 

Figure 3-73. Read-Restore and Full Write Delay Line Timing for Port C 

901172A, 3315 



SDS 901172 

MQC~~ ____________________________________ _ 

MI ~ ____________________________________ __ 

to 100 200 300 400 500 560600 

TR ----1 I I I I I II~ _______________ _ 
000 100 200 300 400 500 600 

TW ________________ ~I I I I I IL 

-1 READ/CLEAR I. TIME REQUIRED FOR PA4-ITY WRITE-1 
HALF CYCLE CHECKING AND HALF CYCLE 

REGENERATION 

t-100 NS MAX 

ABORT n 
----~ ~--------------------------------------

TW 

NOTE: IF PARTIAL WRITE OPERATION IS ABORTED, 
WRITE DELAY LINE STARTS AT TR160. 
S/'vVRITE D L = IWD 
IWD =ABO TR160 

Figure 3-74. Partial Write Delay line Timing for Port C 

9011 nA. 3316 

~ ____________________ ~r--l~ ______________________________________ __ 
to 100 200 300 400 500 600 

-----'I I I I I I _1 __ 
500 600 00 

I 1,----,,1 

U 

NORMAL OVERLAPPED 

INTERVAL INTERVAL 

100 200 300 400 

I I I 
500 600 

I L 
L 

---I SELECTION L --l SElECTION L 
. FIRST MEMORY CYCLE .1 SECOND MEMORY CYCLE ---t·1 

(ACTIVE INTERVAL) (ACTIVE INTERVAL) 9011 nA. 3317 

Figure 3-75. Read-Restore Delay Line Timing for Ports A or B 

3-117 



Paragraph 3-44 SDS 901172 

NTP060 

NPFSRDLDCl 
S/PORTDL2 

S/PORTDL 

APA OLOO 

NMB 
OL20 DL120 

DL40 DL140 

APB 

DL60 DL160 

DL80 DL180 

Dl100 DL200 TP200 

901172A. 3318 

Figure 3-76. Ports A and B Delay Line 

If a memory request is made from either port A or port B 
while the memory is busy with a previous request, but has 
not yet reached 1W320 time of the current memory cycle, 
signals CFA or CFB anticipate the required selection 
interval delay by latching at 1W320 time. Thus, at the end 
of the current memory cycle, the read delay I ine wi II be 
initiated. This condition is also shown in figure 3-75. 

MI NMB (CFA + CFB) 

CFA MQAT AHAEXP 1W320 N1W360 

+ CFA NMI 

CFB MQBT AHBEXP T'N320 N1W360 

+ CFB NMI 

ADA CFA 1W400 + ADA NT'N340 + 

ADB CFB 1W400 + ADB NT'N340 

S/READDL MI 

The memory busy signal MB, when true, indicates that the 
memory is engaged in a read or write operation. This sig­
nal is also held true during a memory halt condition to 

3-118 

prevent any new memory requests from being honored. 
(See logic diagram 3-77.) 

MB MI + IPD + HALT + NT'N560 
NMBDLD 

HALT MR Memory reset 

+ HOF MF Halt on memory fault 

MF PE Pari ty error 

+ MF NMFR 

3-44 Abort 

If an instruction attempts to write into a protected area of 
memory, the CPU will raise the abort signal ABOC. This 
signal must be seen in the memory within 100 nsec after the 
read delay line has been initiated. With ABOC true, the 
byte presence indicators, MWO through MW3, wi II unlatch 
and be set to zeros. 

MWO/3 NABO NT'N460 + ••• Latch 

Wi th the byte presence i ndi cators set to zeros, the memory 
cycle is changed from write mode to read mode, thus pre­
serving the integrity of the protected memory location. 



SDS 901172 Paragraphs 3-45 to 3-46 

If a partial write operation is aborted, a special gate exists 
to initiate the write delay line earlier than it would have 
been if the instruction had not been aborted. 

S/WRITE DL IWD 

IWD ABO TRl60 

This timing is shown in figure 3-74. 

3-45 Memory Reset 

Memory is reset when power is appl i ed to the Si gma 5 
computer (ST) or when the SYSTEM RESET button on the 
PCP is pushed (MR). When MR goes true, signal HALT 
goes high and inhibits any more memory cycles from start­
ing. After a 1 to 3 IJS delay to allow the current cycle to 
be completed! MRD goes true. Signal PFSRDLD; whit:h 15 
normally false during memory operation, goes true and sets 
signal NTSSTB to inhibit the memory strobe. Signal 
PFSRDLD also causes the memory fault indicators to drop. 

Signals NPFSRDLDTl, NPFSDLDT2, NPFSRDLDM and 
NPFSRDLDC1 go false to drop other latches. In this way 
the system is returned to its initial state. The data latches 
are not reset. 

3-46 Memory Fault 

Each memory module contains eight memory fault gates. 
(See figure 3-78.) Only one gate in each module can go 
true, however, when a parity error occurs, depending upon 
the setting of the module number switches NO, N1, and 
N2, which is different in each module. 

When a pari ty error occurs, the memory fault lamp associ-
0ted with the memory module in which the error occurred 
will light. Memory fault lights will be turned off when 
either the I/O RESET Oi the SYSTEM RESET button is 
pressed, when power is first applied to the system, or when 
the proper read direct instruction is executed in the internal· 
control mode. 

~-------'----------------------------~------~MB 

POSITIVE DELAY ELEMENT 

MR 

MFR 

PE---------L __ ~ 

NMBOLD 

NTW560 

HOF 

MF 

HALT 

MI 

IPD 

Figure 3-77. Memory Busy (MB), Logic Diagram 

NMB 

901172A.3319 

3-119 



/MRA/ 

/MRB/ 

/ST! 

3-120 

CR~~ST~ ________________________ ~ 

(POWER ON-TRUE AT LEAST 300 MS) 

MFR 

SDS 901172 

NPFSRDLDTI LATCHES X-CURRENT/ 
X>~...;....:.;.=...:.~-. VOLTAGE I'REDRIVERS 

NPFSRDLDT2 LATCHES Y-CURRENT! 
~-:...;.~..::....:.:....:..:-. VOLTAGE PRE DRIVERS, 

NNO 

NNI 

N2 

ADACO,ADBCO, LXL 

NPFSRDLDM LATCHES MXD RESMW, 
PE, POK 

NPFSRDLDCl LATCHES AP, ADA, ADB, 
CFA, CFB, IPD, MI 

MF 

Fi gure 3-78. Power Fai I-Safe, Reset, and Memory Faul t, Logi c Diagram 

/MFLOO/ 

/MFL01/ 

/MFL07/ 

901 1 72A. 3320 



SDS 901172 Paragraphs 3-47 to 3-50 

3-47 Data Register 

The M-register, wh ich is made up of the 32 buffer latches, 
MOO through M31, accepts data from the memory core 
sense amplifiers (MDOO-MD31) during read and partial 
write operations. During full write and partial write oper­
ations the M-register accepts the port data and holds this 
data unti I it is written into the core memory by means of 
Y inhibit circuits. 

Figure 3-79 shows all input and output gating for the most 
significant bit of the M-register, MOO. Gating for MOO is 
typical of all M-register bits, MOO through M31. The 
parity bit, M32, is discussed separately in paragraph 3-51. 

3-48 Read Timing and Data Flow 

Fi gure 3-80 describes the basic timing requirements of 
rnernory read operati ons. Duri ng the read operation the 
M-register is cleared at TR020 time, and the core data is 
gated into the register at TR220 time, latched by signal 
f'.AXMO/3. 

MOO 

M31 

MXDOB/3B 

MXMO/3 

MDoo MXDOB + MOO MXMO 

MD31 MXD3B + M31 MXM3 

MWF TR220 + MXDOB/3B NTR420 

NTR020 (NMWO/3 + NTR380 
+ NWP) 

Actually, the core data MDOO-MD31 is placed onto the 
data·bus lines, MCOO-MC31, before the M-register can 
latch, by the following speedup gates. 

MCOO DGCO MDOO + DGCO MOO 

MC31 DGC3 MD31 + DGC3 M31 

The core data is also gated to the inverse M-register bits, 
NMOO-NM31, by speedup gates. 

NMOO N(MDOO MXDOI) 

NM31 N(MD31 MXD3I 

MXDOI/3I TR220 NWF + MXDOI/3I N TR420 

The data remains on the memory bus only as long as the 
data gate signal, DGC, is true - that is, from TR240 to 
TR420 time. 

DGCO/3 

DG 

DG 

RD TR240 + DG N TR420 

The data in the M-register, however, remains latched unti I 
TR020 time of the next memory operation. 

3-49 Full Write Timing and Data Flow 

During a full write operation, the M-register is cleared at 
TR020 time. (See figure 3-81,.) The data is read from the 
addressed core location as in the read operation; however, 
the core data is not gated to the M-register since the 
transfer terms MXDOB/3B cannot come true. At TR 160 time 
the data to be written into memory is gated into the M­
register by signals MXCOB/3B. 

MOO MXCOB MCoo + MOO MXMO 

M31 MXC3B MC31 + M31 MXM3 

MXMO/3 NTR020 (NMWO + NTR480 + NWP) 

3-50 Partial Write Timing and Data Flow 

A partial write operation is distinguished by the configura­
tion of the byte presence indicators, MWO through MW3. 
(See figure 3-81.) If these indicators are neither all zeros 
(read) nor all ones (full write), the operation to be per­
formed is a partial write. 

RD 

WF 

WP 

(NMWO NMW1 NMW2 NMW3) 

(MWO MW1 MW2 MW3) 

N(RD + WF) 

A partial write operation reads a word from the addressed 
memory location, retains those bytes of the word for which 
the corresponding byte presence indicator is false, inserts 
into the word new data into those bytes for which the 
corresponding byte presence indicator is true, and writes 
the result back into the same memory location. Parity is 
checked on the contents of the ori gina I memory word, and 
new parity is generated before the modified word is written 
back into memory. 

Timing and data flow for this operation is indicated in fig­
ure 3-82. 

The M-register is cleared of its previous contents at TR020 
time, and the memory word is read into the M-register at 
TR220, gated by the signals MXDOB-MXD3B. 

MXDOB/3B NWF TR220 

The contents of the M-register are then checked for parity. 
At TR480 ti me those bytes of the ori gi na I memory word. now 
in the M-register are cleared to zeros. This is accomplished 
by dropping the latches of those bytes for which the corre­
sponding byte presence indicator is true. 

MOO 

M31 

MXMO 

MXM3 

MOO MXMO + 

M31 MXM3 + 

N(MWO TR480 WP) NTR020 

N(MW3 TR480 WP) NTR020 

3-121 



MWO 
TR480 

WP 

NTR420 

NPFSRDLDM 

NWF 

WF 
TRl60 

ADAM 

WP 
MWO 

TR560 

WF 
TRl60 

ADaM 

WP 

WF 
TRl60 

ADCMB 

WP 
MWO 

TR560 

WF 
TRl60 

ADCMI 

MWO 

WP 
TR560 

SDS 901172 

MOO 

DGAO 

MDOO 

DGBO 

MDOO 

DGCO 

T::~ B 
NTR420 

NPFSRDLDM 

Figure 3-79. M-Register (MOO, Typical of MOO-M31) 

3-122 

/MAOO/ 

MAOO 

/MBOO/ 

MBOO 

~~------./MCOO/ 

MCOO 

TO Y CURRENT 
NMOO INHIBIT 

CIRCUITS 

901172A.3321 



SDS 901172 

to 100 200 300 400 500 600 
READD~ 

00 100 200 300 400 500 
WRIT E D_L ______ ...II 

MB ~ I 
~1·.--------------------MEMORyBUSy-------------------~·~1 

LXL ~ I 
1-oI1----------------ADDRESS LA TCH-------------'.~I 

I ADDRESS RtLEASE AROC 
-----' 

SRA t SECOND REQUEST ALLOWED 

EDR I EARLY DATA RE LEASE 

DROC 
-----------------------~ 

I DATA RELEASE 

C'Tn"n~ 
,,)1 "VDI: 

MXMo/31L-__ ---I1 
~---..... 

600 

L 

.... I----------------LA TCH M-REGISTER ----------------1 .... 

MXD DATA TO M-REGISTERI L-____________________ _ 

DGC __________ -----'1 DATA ON PORT BUS L-I _______________ _ 

90 II 72A. 3322 

Figure 3-80. Read Timing Diagram 

3-123 



SDS 901172 

to 100 200 300 400 500 600 
READD~ I I I I I I 

00 100 200 300 400 500 600 
WRITEDL I I I I I I L 
MB ~ I 

1-- MEMORY BUSY "I 
LXL ~ 

14 ADDRESS LATCH "I 

AROC IADDRESS RELEASE 

SRA I SECOND REQUEST ALLOWED 

EDR I EARLY DATA RE LEASE 

DROC I DATA RELEASE 

STROBE ~ 

MXMO!3l 
CLEAR 

I M-REG 

I- LATCH M-REGISTER • 

MXC I PORT DATA I 
TO M-REG 

9011 72A. 3323 

Figure 3-81. Full Write Timing Diagram 

3-124 



SDS 901172 Paragraph 3-51 

to 100 200 300 400 500 
READDl .-J 

00 
WRlTEDl:....-______________________ --'1 

MB -.J 

600 

100 200 300 400 600 

L 
L--

I-~--------------------------------MEMORYBUSy------------------------------~al 

LXl -1 
t-------------------------ADDRESS LATCH-------------------------a-il I-

SRA 

EDR 
______________ ~r__lL __________________________________________________ ___ 

DROC 

STROBE 

MXD _______ ----'1 CORE DATA TO M-REG L.I _________________________________ _ 

CLEAR 
MXMO/31 M-REG 

MXC 

L.I 
CLEAR THOSE BYTES WHERE MWO/3 IS TRUEI 

I 
TRANSFER PORT DATA TO THOSE 
BYTES WHERE MWO/3 IS TRUE 

PARITY OK ==> 1-POK 
PE/POK =+:::: PARITY ERROR ==> 1-PE 

901172A.3324 

Figure 3-82. Partial Write Timing Diagram 

At TR560 time the new data bytes on the port bus are in­
serted into the previously cleared byte positions of the 
M-register by signals MXCOB-MXC3B. 

MXCOB MWO WP TR560 

MXC3B MW3 WP TR560 

and the write delay I ine is initiated. 

S/WRITEDL 

IWD 

IWD 

WP TR560 

3-51 Parity Checking and Parity Generation 

The Sigma 5 memory employs odd parity; that is, if any 
memory word contains an even number of one-bits, its 
accompanying parity bit will contain a one, or if any 
memory word contains an odd number of one-bits, its 
accompanying parity bit will contain a zero. Thus, each 
word in memory is made up of 33 bits, 32 data bits plus 
one parity bit, and the total number of one-bits in each 
33-bit word must always be an odd number. 

Whenever a word is read from memory, its parity bit is also 
read into the buffer latch; M32. 

M32 MD32 MXD3B + M32 MXM32 

MXM32 NTR020 (NWP + NTR560) Latch 

Parity determination for both reading (parity checking) and 
for writing (parity generation) is similar and shares much of 
the same logic. Parity checking consists of checking bits 
MOO through M32 for an odd number of one-bits. If these 
33 bits contain an odd number of ones, signal POK is 
raised. If these 33 bits contain an even number of ones, 
the parity error signal, PE, is raised. Parity generation 
consists of checking bits MOO through M31 for an odd 
number of one-bits. If these 32 bits contain an odd number 
of ones, M32 is allowed to remain in its reset state. If 
these 32 bits contain an even number of ones, M32 is set to 
a one. 

Figure 3-83 shows the scheme for determining the odd/ 
even one-bit contents of the M-register. Four logic levels 
consisting of parity generator circuits are required for 
parity generation and parity checking. The first level 

3-125 



50S 901172 

consisting of PFOO through PF27 determines odd/even con­
f:g~ra~ior.s of ~!'e .~/~.-register :r, gro'_'ps d three bits. Pf30 
performs the same function except on only the two bits, 
M30 and M31 and is true only if these two bits do not 
contain an odd number of ones. The following logic is 
typical of the first level. 

PFOO NMOO NM01 NM02 

+ NMOO MOl NM02 

+ MOO NM01 NM02 

+ MOO MOl M02 

Logi c for PF30, however, is 

PF30 NM30 NM31 

+ M30 M31 

The second level parity determination gates, PSOO, PS09, 
PS18, and PS27, use first level parity determination for 
their inputs. The logic for PSOO is typical of PS09 and 
PS18. PS27 compares first level terms PF27 and PF30 only. 

PSOO 

PS27 

NPFOO NPF03 PF06 

+ NPFOO PF03 NPF06 

+ PFOO N PF03 N PF06 

+ PFOO PF03 PF06 

PF27 PF30 

+ NPF27 NPF30 

Third level parity determination signal AP uses the second 
level signals PSOO, PS09, and PS18 as inputs while the 
fourth level priority determination signal APE uses the 

third level term AP together with PS27 and M32 as its 

AP 

APE 

NPSOO NPS09 PS 18 

+ NPSOO PS09 NP 5 18 

+ PSOO NPS09 NPS18 

+ PSOO PS09 PS18 

NAP PS27 M32 

+ AP NPS27 M32 

+ AP PS27 NM32 

+ NAP NPS27 NM32 

PARITY CHEC KING. Checking for parity occurs as soon 
as a word has been read from the memory cores and is 
transferred to the M-register. If all 33 bits of the word 
(including the parity bit) contain on odd number of one­
bits, signal PO K will go true at TR460 time. 

POK 

PG 

AP PS27 M32 PG 

+ NAPE PG 

+ POK TR460 

NWFS TR460 NTR500 

If all 33 bits of the word (including the parity bit) contain 
a n even number of ones, signa I PE will go true at TR460 
time. 

PE 

PG 

NAP NPS27 NM32 PG + APE PG 
+ PE TR460 

NWFS TR460 NTR500 

I 0 11 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 110 III 11 211 3114115116117118119120 121122123124125126127128129130 131 I @] 
I 
I , " I 

II , II , " I " i " i 
,I 

I 
II 

I 
,I 

I I~ 

I 
I 

PFOO PF03 PF06 PF09 PF12 PFI5 PFI8 PF2I PF24 PF27 PF30 
(ODD) (ODD) (ODD) (ODD) (ODD) (ODD) (ODD) (ODD) (ODD) (ODD) (EVEN) 

I I 
II II 

I 
II 

I I 

I 
I 
I 

PSOO PS09 PSI8 PS27 
(ODD) (ODD) (ODD) (ODD) 

I I I I AP 

I (ODD) 
I 

I 
APE 

(EVEN) 

NOTE: (ODD) OR (EVEN) IF TERM IS TRUE 
901 1 72 A. 3325 

Figure 3-83. Parity Determination Logic Scheme 

3-126 



SDS 901172 Paragraphs 3-52 to 3-55 

PARITY GENERATION. Parity generation is required when­
ever new data in the M-register is to be stored into the 
memory cores. This is accomplished by setting the parity 
bi t of the M -regi ster, M32, to correspond to the 32 data 
bits of the M-register so that all 33 bits contain an odd 
number of ones. 

M32 

MX32P 

AP PS27 M32XP 

+ NAP NPS27 M32XP 

+ M32 MXM32 

WFS TR300 + WP 1WI00 

3-52 Sigma 5 Core Selection 

Current technical I iterature explaining the basics of mag­
netic core operation is readily available; therefore, the 
following discussion on the operation of Signa 5 memory 
omits these fundamentals, It i5 msumed that the reeder is 
fami I iar with such subjects pertaining to core swi tching as 
magnetomotive force, hysteresis effect, flux density, 
permeability, retentivity, etc. Emphasis is placed on core 
selection, control, and timing as they apply to the Sigma 5 
memory. 

3-53 Core Characteristics 

Table 3-17 gives the characteristics of cores used in Signa 
5 memory. 

3-54 Basic Core Switching 

Sigma 5 memory employs a three-wire memory system, 
sometimes referred to as the common V-digit or 2-1/2 D 
system in which three wires are strung through each core. 
These wires are: 

a. X wire 

b. Y wire 

c. Sense wire 

Table 3-17. Core Characteristics 

Outer diameter of core 0.022 in. 

Switching time 240 nsec approx 

Nominal full drive current at 25°C 700 ma 

Current compensation for temperature 4 ma;oC 

Core output -25 mv approx 

This system does not use an inhibit winding. The X and Y 
wires that are activated to address a specific memory core 
are selected by an X-V matrix composed of positive and 
negative X current and voltage switches in one direction, 
and positive and negative Y current and vol tage switches 
in the other direction. The current through both the X and 
Y windings is approximately 350 ma, or half the total cur­
rent required to switch the core from one state to the other. 
When the two half-currents through the X and Y windings 
at the junction of any core are in such a direction as to be 
additive, the core senses sufficient current to cause it to 
switch its state. When the two half-currents through the X 
and Y windings at the junction of any core are in such a 
direction as to be subtractive, the two currents cancel, and 
the core senses no switching current. In this case, the state 
of the core is not affected. 

Each core senses one of four di fferent current conditi ons. 
These conditions are: 

a. X and Y half-currents are additive in a direction 
to cause the core to switch from a one to a zero. 

b. X and Y half-currents are additive in a direction 
to cause the core to swi tch from a zero to a one. 

c. X and Y half-currents flow in a direction so as to 
be subtractive - each half-current canceling the effects of 
the other. In this case the core is not affected. 

d. Current does not flow in one or the other, or 
neither, of the X and Y windings. In this case the core 
is not affected. 

Figure 3-84 is a sequence of drawings that show the prin­
ciples of core switching in Signa 5 memory. Note that the 
Y winding is folded back in such a mannei uS to fomi a 
junction with the X winding at two cores - core 1 and core 
3. The X and Y half-currents flow either from the positive 
current switch to the negative voltage switch or from the 
positive vol tage switch to the negative current switch. The 
direction of the X and Y current flow depends ultimately 
on the anticoincident bits of the core address in the L­
register - bits L22, L23, and L25. 

3-55 Reading From Memory 

Figure 3-85 shows a memory of 16 three-bit words, 
including an address register (L-register), a data register 
(M-register), X and Y address selection circuits, and bit 
plane sense ampl ifiers. 

Assume that the data word stored in location XI 71 is equal 
to 101 2 , Note that each bit plane has one sense wire. The 
sense wire in each bit plane is strung through each core in 
its plane and is returned to a sense amplifier. To read the 
data word from memory, the X address selection circuits 
feed a positive half-current on line X3. The Y selection 
circuits feed a positive half-current on line YI. 

3-127 



3-128 

® 
x A NO Y CURRE NTS ARE 
ADDITIVE IN CORE 1 - CANCEL 
IN CORE 3. CORE 1 SWITCHES 
FROM ONE TO ZERO 

© 
X AND Y CURRE NTS ARE 
ADDITIVE IN CORE 3 - CANCEL 
IN CORE 1. CORE 3 SWITCHES 
FROM ZERO TO ONE 

NOTE: IN ALL EXAMPLES HALF CURRENTS IN 
CORES 2, 4,AND 6, AND NO CURRENT IN 
CORE 5 HAVE NO SWITCHING EFFECT 

SDS 901172 

o 
X AND Y CURRENTS ARE 
ADDITIVE IN CORE 3 - CANCEL 
IN CORE 1. CORE 3 SWITCHES 
FROM ONE TO ZERO 

® 
X AND Y CURRENTS ARE 
ADDITIVE IN CORE 1 - CANCE L 
It'J CORE 3. CORE 1 SWITCHES 
FROM ZERO TO ONE 

Figure 3-84. Basic Core Switching 

901172A.3326 



Y-ADDRESS 
SELECTION 
CIRCUITS 

SDS 901172 

L-REGISTER 

POSITIVE PULSES 
FED ON LINES 
Yl AND X3 
SIMULTANEOUSLY 

X-ADDRESS 
SELECTION 
CIRCUITS 

d ~~..-----.' 

BIT PLANE 0 
SENSE 

M/~PLIFrER 

BIT PLANE 1 
SENSE 

AMPLIFIER 

BIT PLANE 2 
SENSE 

AMPLIFIER 

TO INHIBIT CIRCUITS 
L--____ (NOT SHOWN) FOR 

BIT 
PLANE 

0 

BIT 
PLANE 

1 

BIT 
PLANE 

2 

Yl 

Y'l 

Y3 

Y1 

Y2 

Y3 

Y1 

Y2 

Y3 

LETTERED STEPS SHOW READING SEQUENCE 
(STEPS DO NOT NECESSARILY INDICATE A 

o WORD STORED: 101 

o ADDRESS: 7 

® 

CORE CHANGES FROM 
1 STATE TOO STATE. 
PULSE INDUCED IN 
SENSE WIRE 

CORE REMAINS UN­
CHANGED BECAUSE 
IT WAS IN 0 STATE. 
NO PULSE INDUCED 
IN SENSE WIRE 

CORE CHANGES FROM 
1 STATE TO 0 STATE. 
PULSE INDUCED IN 
SENSE WIRE 

SENSE AMPLIFIER 
OUTPUT STORED 
IN M-REGISTER 

WRITING WORD BACK 
INTO ADDRESS 7 

TIME SEQUENCE). SEE FIGURE 3-94 FOR MORE 
DETAILED REPRESENTA nON OF SENSE WINDINGS 901172A.3327 

Fi gure 3-85. Simpl i fied Memory, Read-Restore Operation 

3-129 



Paragraphs 3-56 to 3-57 SDS 901172 

When additive coincident half-currents are simultaneously 
fed through a core, a core in the one stcte '.'Inl be SV'fj tched 
to the zero state. This causes a pulse to be induced in the 
sense wire. At the output of the sense amplifier this pulse 
is interpreted as a one. If the addressed core is already in 
the zero state, it rema i ns a zero, and no pu I se is induced in 
the sense wire. The absence of a pulse is interpreted as a 
zero at the output of the sense amplifier. Thus, with respect 
to a word stored in a particular memory location, either 
ones or zeros are read out of each bi t plane. The outputs 
of the sense amplifiers are gated into the M-register. 

A memory read operation consists of two half-cycles - a 
read half-cycle and a .. vrlte half-cycle. Because the cores 
that stored ones are switched to zeros during the read half­
cycle, the readout is called destructive. For this reason, 
the information that was read out must be restored by 
writing the data word back into memory again in the sec­
ond half-cycle. Therefore, during the restore phase of the 
read-restore cycle, the word that was read out is taken 
from the M-register and written back into memory. 

3-56 Writing Into Memory 

Assume that a data word containing the number 101 2 is to 
be written into memory location {address} X171. (See fi g­
ure 3-86.) First, the memory location is cleared by 
reading out the data in location X171. The data, however, 
is not gated to the M-register as it is during read opera­
tions. Because the cores must be cleared to zeros before a 
new word can be written into the cores, the write operation 
consists of a clear half-cycle followed by a write half­
cycle. During the write half-cycle the new data to be 
written is in the M-register. 

One of four X lines is selected by the X address selection 
circuits. In the example shown in figure 3-86, a negative 
pulse is fed through the X3 wire causing that half-current 
to travel through cores 3, 7, 11, and 15 in each bit plane. 

During write half-cycles, an inhibit circuit controls each 
Y current. An inhibit circuit will either allow current to 
pass through or will block (inhibit) it. If the inhibit 
circuit receives a one from the M-register, the inhibit 
circuit allows current to pass through. If the inhibit 
circuit receives a zero from the M-register, the inhibit 
circuit blocks the flow of current through the Y wire. 

In the example shown in figure 3-86, only the Y1 line of 
bit plane 1 is inhibited. Current does not flow through Y1 
of bit plane 1. A negative half-current is fed through the 
noninhibited Y wires on which cores 4, 5, 6, and 7 are 
strung. This occurs in bit planes 0 and 2. The cores that 
receive coincident additive current switch to the one state. 
This occurs in bit planes 0 and 2. Therefore, the following 
occurs: 

3-130 

a. A one is written into bit plane O. 

b. A zero remains in bit plane 1. 

c. A one is written into bit plane 2. 

3-57 Core Diode Module 

The core diode module contains 4096 bytes of either eight 
or nine bits. Figure 3-87 shows a nine-bit module with 
each bit place labeled. The ninth bit (used for parity) is 
designated bit 8A, and is shared by both halves of the core 
diode module. Figure 3-88 . shows a photograph of a core 
diode module lying open to expose the bit planes. Also 
shown in the open view is the printed circuit wiring for the 
diodes. The diodes are mounted on the reverse side of the 
board shown in the photographs. The individual cores, 
which form the bit planes, are too small to be seen in the 
photograph. 

The core diode module consists of two halves that are 
hinged together. In the photograph, fi gure 3-89, the X 
wires can be seen jumpered across the hinge. When the 
core diode module is put into use by being inserted into its 
socket, both halves are folded together and look like the 
one shown in fi gure 3-89. 

The core diode module is completely symmetrical, both 
physically and electrically. This means that the module 
wi II operate whichever way it is inserted into the chassis. 

In addition to the diodes required in the decode system, 
two extra diodes used in a temperature sensing network are 
also included. This network controls the output of the 
memory power supply for drive current compensation to 
automatically raise or lower drive current to the core 
diode modules inversely as the temperature varies. Because 
less current is required to switch a core at higher tempera­
tures, it is necessary that the drive current tracks inversely 
with temperature. The temperature compensation network 
reduces core current at hi gher temperatures by I oweri ng 
the supply voltage. The reverse occurs if core diode 
module temperature is reduced. 

Figures 3-90 through 3-94 are relatively detailed core 
diode module drawings. Certain symbols used in the 
dicvvings are defined os follov/5: 

a. Symbol 8YC3- means bit 8, Y current bus number 
3, negative. 

b. Symbol XV15 means X vol tage bus number 15. 

c. 5S0+ means bi t 5, sense wi re 0, posi ti ve si de. 



Y-ADDRESS 
SELECTION 

CIRCUITS 

SDS 901172 

L-REGISTER 

U @NEGATIVE PULSES 
r----------------l FED ON EACH LINE 

SIMULTANEOUSL Y 

BIT 
PLANE 

o _Y~O __ ~'~ __ ~~r--7 

X-ADDRESS 
SELECTION 
CIRCUITS 

u 
@WORD TO WRITE: 101 

o ADDRESS: 7 

© ADDRESS 7 IS CLEARED. 
I I ALL BITS TURNED TO 0 

~---~~INHIBIT CIRCUIT --+ YI STATES (PROCESS NOT 
BYPASSES ~----~~-", ) ... -~-.. ~- SHOWN IN THIS DIAGRAM) 
CURRENT , 

Y2 -r-- '0 CORE CHANGED TO I STATE 

INHIBIT 

BIT 
PLANE 

Y3 

t _Y~O~-T~_'~ __ ~~ __ ~ 

CIRCUIT Y1 
BLOCKS 

CURRENT 

BIT 
PLANE 

Y2 

Y3 

2 _Y~O~ __ ~~_~~~~~~_~ 

L...--+---If---..... INHIBIT CIRCUIT -. Y1 

BYPASSES t-----~~ ..... ~-""~!I_ .... ~­
CURRENT 

M-REGISTER 

LETTERED STEPS SHOW READING SEQUENCE 
(STEPS DO NOT NECESSARILY INDICATE A 
TIME SEQUENCE) 

Y2 

Y3 

BECAUSE Y-SIGNAL IS NOT 
INHIBITED 

CORE REMAINS IN 0 STATE. 
INHIBIT CIRCUIT BLOCKS 
Y-SIGNAL CURRENT FLOW 

G CORE CHANGED TO 1 STATE 
BECAUSE Y-SIGNAL IS NOT 
INHIBITED 

90 11 72A. 3328 

Figure 3-86. Simplified Memory, Clear Write Operation 

3-131 



SDS 901172 

128 CORES--

901060A.3112 

Fi gure 3-87. Bit Plane Layout in a Core Diode Modul e 

3-132 



PRINTED WIRING 
SIDE OF Y-DECODING 

DIODES 

CORE PLANES 

SDS 901172 

PRINTED WIRING 
SIDE OF X-DECODING 

DI S 

PRINTED WIRING 
SIDE OF Y-DECODING 

DIODES 

Figure 3-88. Core Diode Module, Open to Expose Bit Planes 

CORE PLANES 

901060A.3114 

3-133 



3-134 

NYLON 
SPACER SCREW 

SDS 901172 

X-DECODING 
DIODES 

Y-DECODING 
DIODES NYLON 

SPACER SCREW 

PRINTED 
it:""'!!:::;;"';;;;~--WIRING 

Figure 3-89. Core Diode Module, Closed, as Inserted 

901060A.3113 



J1G 

(XO) 

J1H 

r -'r II - Ir ~ - If" -1 
I II " II " " I 
I II " " I, " I I I, ,I ,I II If 

I 1,.28 I~-~I~DE,~ : 
II 'I " ,I II , 

I ,I II I' " II I 
L _'L JI_ U. ...JL JI _ J 

BIT BIT BIT BIT BIT 
o 1 2 3 8A 

r -.,- iT -,r T-"-, 
, II I I, I: II I 
I 'I II II " II , 
I I II " " II 
I 144 Y-DIODES : 
I " " " " I' 
, " " II :' I' i 
I II " ,I I' ,I I 
L- ~ _IL JI.. -1,_JJ._J 

-,~---------------------

SDS 901172 

r -,r il-,r ,'- n -1 
I II II ,I " 'I' I 
, I " " II , 
I : , II " " ~ I I 
: 144 Y-DIODES I 
, " ,~ I, 1/ I: I 
• . " " " " I 
I II II I' II " I 
L _/L -11_ Ll -1/_1'_ J 

BIT BIT BIT BIT BIT 
8B 7 6 5 4 

r -,r .,. - ,- IT - ,- , 
,I I 'I ,I , 

I :: " 1/ II ,,' I 
, . I, " .. I I 
! 128 X-DIODES I 
I " " " Ii I' I 
I II 'I " " II , 
I I, I, II " II , 
L .JL .ll. _IL 11 _'L ..J 

~------------------------------~~ 

NOTE: THIS DRAWING WAS PREPARED FROM THE 
FOLLOWING ENGINEERING DRAWING: 111526-1C 

Figure 3-90. Core Diode Module, Bit Planes, X Wire Crossover 

X-LINE 
(X127) FINISH 

/POINT 

J2G 

(XO) 

J2H 

90Jl72A.3332 

3-135 



3-136 

SDS 901172 

JIG 

PIN NO. 1 SIGNAL I PIN NO. I SIGNAL 

0-- XCO-
2--- XC1-
4--- XC2-
6-- XC3-
8--- XC4-
10--- XCS-
12 -- XC6-
14--- XC7-
16--- 8YVI 
18---3YVI 
20 -- 3YV3 
22 --- 2YVI 
24 --- 2YV3 
26--1YVI 
28 --- lYV3 
3O--0YVI 
32 --- XV13 
34 --- XV9 
36--XV5 
38 ---XVI 
40 ---8YV3 
42 ---8AS1-
44 --3S1-
46 --- 2S1-
48 --151-
50 --OSI-

JIH 

1--- XCO+ 
3-- XC1+ 
5--- XC2+ 
7--- XC3+ 
9--- XC4+ 

11 --- XC5+ 
13--- XC6+ 
15--- XC7+ 
17--- 8YVU 
19--- 3YVU 
21-- 3YV2 
23-- 2YVU 
25 -- 2YV2 
27--IYVU 
29---IYV2 
31---XVI5 
33 ---XVII 
35 ---XV7 
37--XV3 
39 --8YV2 
41 -- SPARE 
43 ---8ASI+ 
45 ---351+ 
47 --- 251+ 
49 ---151+ 
51 ---OSI+ 

PIN NO. J SIGNAL I PIN NO. I SIGNAL 

o --OSO-
2 -- lSO-
4 --2SO-
6 --3SO-
8 -- 8ASO-

10 --- TEMP SENSE DIODE + 
12 -- TEMP SENSE DIODE -
14--0YV3 
16 ---OYC2+ 
18 --OYCI+ 
20 ---OYCO+ 
22 --OYC3+ 
24 ---IYCO+ 
26 ---IYCI+ 
28 ---IYC2+ 
30 ---IYC3+ 
32 --2YCO+ 
34 ---2YCI+ 
36 ---2YC2+ 
38 ---2YC3+ 
40 ---3YCO+ 
42 ---3YCI+ 
« ---3YC2+ 
46 ---3YC3+ 
48 ---8YCO+ 
50 ---8YCI+ 

1 ---050+ 
3 ---150+ 
5 ---2SO+ 
7 --3SO+ 
9 --8ASO+ 

II -- TEMP SENSE DIODE + 
13 --OYVU 
15 --OYV2 
17 --OYC2-
19 --OYCI-
21 --OYCO-
23 --OYC3-
25 --IYCO-
27--1YCI-
29 --IYC2 
31 --IYC3-
33 --2YCO-
35 --2YCI-
37 --2YC2-
39 --2YC3-
41 --3YCO-
43 --3YCI-
45 --3YC2-
47 --3YC3-
49 --8YCO-
51 --8YCI-

J2G 

PIN NO. J SIGNAL I PIN NO. I SIGNAL 

0--- 8YC3-
2 --- 8YC2-
4--- 7YC3-
6 --- 7YC2-
8--- 7YCI-

10 ---7YCO-
12 --- 6YC3-
14---6YC2-
16--- 6YCI-
18---6YCO-
20-- 5YC3-
22--5YC2-
24---5YC1-
26---5YCO-
29 --- 4YC3-
3O---4YCO-
32 ---4YCI-
34 --- 4YC2-
36 ---4YV2 
39 ---4YVU 
40 --- TEMP SENSE DIODE + 
42 ---88SO-
44 ---750-
46 ---650-
49---550-
50---450-

J2H 

I --8YC3+ 
3--8YC2+ 
5--7YC3+ 
7--7YC2+ 
9--7YC1+ 

11 ~7YCO+ 
13 --6YC3+ 
15 -- 6YC2 ... 
17-- 6YCI+ 
19--6YCO+ 
21 -- 5YC3+ 
23 -- 5YC2" 
25 -- 5YC1+ 
27-- 5YCO+ 
29-- 4YC3+ 
31 -- 4YCO .. 
33 -- 4YC1+ 
35 -- 4YC2+ 
37 -- 4YV3 
39 -- TEMP SENSE DIODE -
41 -- TEMP SENSE DIODE + 
43 -- 8850 .. 
45 -- 750+ 
47 -- 650+ 
49 -- 550+ 
51-- 4SO+ 

PIN NO. I SIGNAL I PIN NO. I SIGNAL 

0---451-
2 ---551-
4 ---651-
6 ---751-
8 --- 8851-

10 ---SPARE 
12 --8YV2 
14 ---XVI2 
16 ---XV8 
18 --- XV4 
20 --- XVO 
22 ---5YV2 
24 ---5YVO 
26 --- 6YV2 
28 --6YVO 
JO---7YV2 
32 --7YVO 
34 --- 8YVO 
36 --- XCO+ 
38 --- XCI .. 
40 --- XC2+ 
42 --- XC3+ 
«--- XC4+ 
46--- XC5+ 
48---XC6+ 
50 --- XC7" 

1 -- 451+ 
3 -- 551+ 
5 -- 651+ 
7 -- 751+ 
9 -- 8851+ 

II --8YX3 
13 -- XV14 
15 -- XV10 
17 -- XV6 
19 --- XV2 
21 -- 4YVI 
23 -- 5YV3 
25 -- 5YVI 
27 -- 6YV3 
29 -- 6YVI 
31 -- 7YV3 
33 -- 7YVI 
35 --8YVI 
37 --- XCO-
39 -- XCI-
41 -- XC2-
43 -- XC3-
45 -- XC4-
47 --- XC5-
49 --- XC6-
51 -- XC7-

901060A. 3151 

Figure 3-91. Core Diode Module, Jack Pins and Signals 



CHART I IBIT I) CHART 2 :m 2) CHART 3 (BIT 3) CHART 4 (BIT 8A) 

SIGNAL PIN CONNECTS SIGNAL PIN 
CONNECTS 
TO Y-L1NE 

SIGNAL PIN CONNECTS CONNECTS 
SIGNAL PIN TO Y-L1NE TO Y-L1NE TO Y-L1NE 

IYCO+ 
IYCO­
IYCI+ 
IYCI­
IYC2+ 
IYC2-

JI H-24 
J1H-25 
JI H-26 
JIH-27 
JIH-28 
JIH-29 
JI H-JO 
JIH-31 
JIG-27 
JIG-26 
JIG-29 
JIG-28 

I 
~O, 3, 4,7 

2YCO+ 
2YCO-
2YCI+ 
2YCI-
2YC2+ 
2YC2-
2YC3+ 
2YC3-
2YVO 
2YVI 
2YV2 
2YV3 

JIH-32 } 
JIH-33 0,3,4,7 

3YCO+ 
3YCO-

JIH-40 
1)0,3,4,7 

SYCO+ JIH-48 
}0,3,4,7 JIH-41 SYCO- JIH-49 

}8,1l, 12, 15 

}16,19,2q23 

}24,27,28,31 

JIH-34 h 
JI H-35 118,11,12,15 

3YCI+ JIH-42 
3YCI- JIH-43 

IU, 11, 12,15 8YCI+ JIH-SO }s, II, 12, 15 8YCI- JIH-51 

JIG-31 XVt5 TO X-LINES 15,31,47,63,79,95, III, 127 IYC3+ 
XVI3 IYC3-

j1G-32 ---TO X-LINES 13,29,45,61,77,93,109, 125 tYVO 

JIG-33 ~ TO X-LINES 11,27,43,59,75,91, 107, 123 I YVI 

JIG-34 ~ TO X-LINES 9,25,41,57,73,89,105,121 IYV2 
JIG-35 ~ TO X-LINES 7,23,39,55,71,87, 103, 119 1 YV3 

2,10,18,26 
1,9,17,25 
6,14,22,30 
5,13,21,29 

JIG-36 ~ TO X-LINES 5,21,37,53,69,85,101, 117 ~--.l.---.l.------' 

JIH-36 It 
JIH-37 If 16,19,20,23 

JIH-38 h 
JIH-39 1}24,27,28,31 

JIG-23 2,10,18,26 
JIG-22 1,9,17,25 
JIG-25 6,14,22,30 
JIG-24 5,13,21,29 

JIG-37~TO X-LINES 3,19,35,51,67,83,99,115 r- ------ - -- -8ITO--- -- -- - --l 
JIG-38~TOX-LINES 1,17,33,49,65,81,97,113 : ~ ~ rx:---

3YC2+ 
3YC2-
3YC3+ 
3YC3-
3YVO 
3YVI 
3YV2 
3YV3 

JIH-44 
}16,19,20,23 SYVO JIG-17 2,10 

JI H-45 8YVI JIG-16 1,9 
JIH-46 }24,27,28,JI 8YV2 JIG-39 6,14, 
JIH-47 SYV3 JIG-40 5,13 
JIG-19 2,10,18,26 
JIG-18 1,9,17,25 
JIG-21 6,14,22,30 
JIG-20 5,13,21,29 

XC7+ r-----.., 127-+1-+~~-+~~~-------------~~+-7-~----~;-~----~~~~--~~~--~~~-

1 : 

JIG-15 ----'--1 SAME AS I TO X-LINES 

XC7 I XCO 1--112, 114, 116, 118, 
JIG-14~ ____ J 120,122,124,126 

JIG-13~----' TO X-LINES 
I SAME AS I _. _____ . __ 

XC6 i xco r-YO, 'ItS, 100, IUL, 
JIG-12~ ____ J 104,106, HXI, 110 

~----, 
JIG-TJ -. SAME AS I TO X-LINES 

. ~I XCO I-- SC, 82, 84, 86 
JIG-IO - I 88,90,92,94 ____ .J 

~----, 
JIG-9 I SAME AS I TO X-LINES 

XC4 I XCO 1--64,66,68,70, 
JIG-8 ~ ____ J 72,74,76,i8 

- ~----, 
JIG-/ I SAME AS I TO X-LINES 

XC3- I XCO r- 48, 50, 52, 54, 
JI G-6 --===--t.. ____ ..J 56,58,60, 62 

JIG-5 ~----, TO X-LINES 
I SAME AS I 

XC2- I XCO 1--32,34,36,38, 
JIG-4 ~ ____ J 40,42,44,46 

jIG-J ~s~~;~l TO X-liNES 
XCI- I XCO :--16,18,20,22, 

JIG-2 ~ ____ J 24,26,28,30 j 

I 
I 
I 

15~~~~~~~~----------------------~~4-~~------~~~----~--~----~-~--~-
~;~~~r-------- 14~~-+~~-+4-+---------------------+-~~~~~--~-~---r-t----r-+---~-

~-l~~ __________ 13-+~+4~~~------------------~~~-r~-----4--~--~r-+-----T-~----+-I I I 
I ~ ~ 12~-+~~-+4-~-----------__ ~~~_1r-~_--~--4-----+--+-----~~~--~ 
~-1~ ____________ "-+~~+4~~------------------~~~--~--~~~--~~+-----~+-----r-

I I -I 1 I 
I I I 

I 10-2-4~4-~~4-~---------------~~1-~~----~~~--~~~--~-~---r-
~14-' Q 

I I I I I I 
I I I 

~~~~------------8 ~ 7 
1~:~~--------6
~t-' 5

~-t~----------4 ~t-' 3

t-i~·~-----------2
XCO, ~~ I

JI G-I -:1x~c~o~-~Lj"'~}-------- 0
JIG-Q -

JIH-IO~
JI H-II ____ .L.----.:l+4~~1.::..- JI H-12

TEMP SENSING
DIODE

NOTE: THIS DRAWING WAS PREPARED FROM THE
FOLLOWING ENGINEERING DRAWING: 111526-3C

1
I

I I L ________________________ 1_ - ..J

I
I
I 1
T
I
I
I
I
I 1

~---r
O~M

I ,
I

Z
",Q

;::<u
<~z :r-Z
u"'O

~2~

I I 1 I I
1 I I I I
1 I I I I
I I 1 I I
I 1 I I I
I I I I I I -, I I I I
I I I I I I
I I I I I I

T---r ~---,-J l----r
O~M O~M O~~

I I I I I I I i
I

Z Z Z
",Q V'lQ ",Q

"'...J M...J 't...J
o--«u ~~~ ~~~ ",ZZ
~Qz «e>Z «e>Z

:r-Z :r-Z u"'O uV'>O u"'O

~2~ ~2~ ~2~

-

SOS 901172

Fi gure 3-92. Core Diode Module, Left Half
Wiring Detai Is

901060A. 3152

3-137

CHART 1 (BIT 5) CHART 2 (BIT 6)

I ~,r.NlIl I PIN ICONNECTSI
iU y-uNt

5YCO+
5YCO-
5YCH
5YC1-

J2G-27 } 6YCO" J2G-19
J2G-26 0,3,4, i 6YCO- J2G-18 0,3,4,7

J2G-25 } 6YCI+ J2G-17
J2G-24 8,11,12,15 6YCI- J2G-I6 B,11,12,15

5YC2+ J2G-23} 6YC2-.- J2G-I5
5YC2- J2G-22 16,19,20,23 6YC2- J2G-14 16,19,20,23

XVI4 5YC3+ J2G-21 } 6YC3.. J2G-13 _
J2H-I3 ~ TO X-LINES 14,30,46,62,78,94, 110,126 5YC3- J2G-20 24,27,28,31 6YC3- J2G-12 I 24,21,28,31

J2H-14 -E-TO X-LINES 12,28,44,60,76,92,108,124 SYVO J2H-24 2,10,18,26 6YVO J2H-28. 2. 10. 18.26

J2H-15 ~ TO X-LINES 10,26,42,58,74,90,106,122 5YVI J2H-25 1,9,17,25 6YVI J2H-29 1.9,17,25

J2H-16 2.':':L TO X-LINES 8, 24, 40, 56, 72, 88,104,120 5YV2 J2H-22 6,14,22,30 6YV2 J2H-26 I·' 6,14,22,30
J2H-17~TOX-lINES6,22,38,54,70,86,102,118 5YV3 J2H-23 5,13,21,29 6YV3 J2H-27 5,13,21,29

CHART 3 (BIT 7)

I SIGNAL I PIN I ~~~Nc~~'~S I
7YCO+ J2G-l1

} 0, 3, 4, 7 7YCO- J2G-IO
7YCI .. J2G-9

} B, 11,12, IS 7YCI- J2G-8
7YC2+ J2G-7

} 16,19,20,23
7YC2- J2G-6
7YC3+ J2G-5

} 24,27,28,31 7YC3- J2G-4
7YVO J2H-32 2,10,18,26
7YVI J2H-33 1,9,17,25
7YV2 J2H-30 6,14,22,30
7YV3 J2H-31 5, 13,21,29

CHART 4 (BIT 8B)

I SIGNAL I PIN I CONNECTS I
Tn V_I ''''Jf

8YC2- J2G-3
} 16, 19,20,23 8YC2- J2G-2

BYC3"' J2G-1
} 24,2],28, 31

8YC3- J2G-O
BYVO J2H-J.4 18,26
8YVI J2H-35 ;/,25
8YV2 J2H-12 22,30
8YV3 J2H-ll 21,29

J2H-I8 ~TO X-LINES 4, 20, 36, 52, 68, 84,100,116 I
J2H-I9 ~TO X-LINES 2, IB, 34,50,66,82, 98,114 r - - - - - - -- -- - - BIT4- -- -- -1- - --l IBiTSBl
J2H-20 ~ TO X-LINES 0, 16,32,48,64,80,96, 1 12 II K'"'I ~ ; t'f'<\"', (SAME AS

fsiTsl rBIT6l r-BlT7 l
(SAME AS 1 I (SAME AS I (SAME AS I

BIT 4)
~----, 0 -T-+~~~~~-------------------------~~+-+--7------~~------~-'------~~------~

J2H-36 , SAME AS I TO X-LINES

81T 4) I I BIT 4) 1 BIT 4) I

I I I I I
xCO- 1 XC7 r- 1,3,5,7,

J2H-37 ----t, ____ .J 9, II, 13, 15

J2H-38 ~ - - --1 TO X-LINES
~ SAME AS 1--17 19 21 23

XCI- I XC7 I "" J2H-39 --'-='-1... ____ .J 25,27,29,31

~----,
J2H-40 -1 SAME AS 1 TO X-LINES

I 1--33,35,37,39,
J2H-41 ~_X~~_J 41,43,45,47

29..!..r----,
J2H-42 1 SAME AS 1 TO X-LINES

XC3- 1 XC7 r-49, 51, 53, 55,
J2H-43 ---'----t-____ J 57,59,61,63

~----,
J2H-44 -. SAME AS 1 TO X-LINES

XC4- I XC7 r-65,67,69,71,
J2H-45 ~ ____ -.J 73, 75, n, 79

I
I I I I

I I I
I

I I
I I ,

I

I. I 1
I I I I I

I , I
I I I
I I
I 1

I I
I I
I I
I I
I I

I I
I I I I

I
I
I
1
I ,
I
I
I
I

,
1

1 i I
I
I i
I
I
I
1
I
I

1

SDS 901172

I 1 2Q!.r----,
J2H-46 I SAME AS 1 TO X-LINES I I

I
I
I

,
I

TO BITS 0 THRU 3
r-AND9A

XCS-I XC7 r 81 ,83,B5,S7,
J2H-47 ~ ____ -.J 89,91,93,95

~-----,
J2H-48 SAME AS I TO X-LINES I ~97, 99,101,103,
J2H-49 ~_~~_J 105,107,109, 111

J2H-50
XC7+

J2H-Sl
XC7-

J2G-41----,

J2G-40 I

..
c-~ f-'
---1 <!If-'

~~

~

'--J<III~

r-- J<III~

r--~,....J

r.
~

+ "1- J2G-39

TEMP SENSING
DIODE

112
113
114
115
116
117
119
119
120
121
122
123
124
125
126
127

NOTE: THIS DRAWING WAS PREPARED FROM THE
FO,-LOWING ENGINEERING DRAWING, 111526-4C

I
I
I
1

I
I

I

J
1

1 !

i I

L ----------------------f--I-- ~
o .- N n .. Ln ..0 '" ,. .r-~ ~ g M

+ ,I--~--'-----'
00
uu
>->-..,...,.

i

1
I
I
I
I
I
I
1
I
I
I
I
1
I
I
I
I
I
I
I
I

I 1
I

~---r
0...-....(:;
; I

i

Z
Vl O

_-Jt=

:;~~
«oz
I-Z
u"'o
~ou
VlLL""

3-138

I
I I
I I
I I
I I , 1
1 I
I ,
1 1 -I I
1 1
I I 1 I
1 1 I
I I
1 1
I I I I I
1 , 1
I I 1 I
1 1 I I
I 1 1 I
I I , I
I 1 I I
I I I I L
1 1 I I 1----r 1---[

o (:j 0_""
-

I , ,
i I

Z Z
Vl2 Vl2

N-'>- <::"')J t-

:;::~~ ~~~
«(JL «OL
I-Z I-Z
uVlo u"'o
w""u ~ou wO
Vl ... "" "' ... ""

Fi gure 3-93 • Core Diode Module, Right Half
Wiring Details

901060A. 3153

__ -..;;.05-.1_+ J1 G-51
OG

OSI- JIG-50

BIT PLANE 0

j----------------------------------l
I
I
I
I
I
I
I
I
I
I
I
I
I ,

L_ -- __________________________________ --...J

OH
OSO- J1H-0

OSO+ J1H-l

~JIG-49

,,/lG-48
IG IS1-

BIT
PLANE

1

IH ~SO-
J1H-2

~J1H-3

......!ll!.Jl G-47

~/lG-46
2G 2SI-

BIT
PLANE

2

2H ~SO-
JIH-4

~J1H-5

~JIG-45

r:J1G-«
3G 3SI-

BIT
PLANE

3

3H ~SO-
JIH-6

~JIH-7

(EO)

~J1G-43

,VeJI G-42
8GA (EI)8AS1-

BIT
PLANE

8A

8 HA ~E2) 8ASO-
JIH-8

(E3)

~JIH-9

(E3)

~J2G-42

~VeJ2G-43
8GB (E2)8BSO+

Blf
PLANE

8B

8HB ~l) 8BS1 +
J2H-9

(EO)

~J2H-8

SOS 901172

~J2G-44

~/2G-45
7G 7S0+

BIT
PLANE

7

7H ~Sl+
J2H-7

~J2H-6

~J2G-46

~:2G-47
6G 6S0+

BIT
PLANE

6

6H ~Sl+
J2H-5

~J2H-4

~J2G-48

Is:J2G-49
5G 5S0+

BIT
PLANE

5

5H ~Sl+
J2H-3

~J2H-2

~J2G-50

~!J2G-51
4G 4S0+

BIT
PLANE

4

4H ~Sl+
J2H-1

~J2H-0

Figure 3-94. Sense Line Wiring in a 4K Core
Diode Module

901060A. 3110

3-139/3-140

SDS 901172

Figure 3-90 shows a nine-bit core diode module, lying
open, as seen from the core side. The presence of diodes
on the reverse side of the core diode module is indicated
by the dotted lines. The X lines, which are connected
across the hinge, are indicated by the two X lines shown
in the diagram. In an actual core diode module, there are
a total of 128 X wires jumpered across the hinge connec­
ting the left half of the core diode module with the right
half.

The designations J1 G, J1 H, J2G, and J2H indicate the
jacks that receive one core diode module. Jacks J1 G,
J1 H, J2G, and J2H are shown as typical. The signals to
be found on the pins on the wiring side of the jacks are
shown in figure 3-91.

Considerable detail concerning the wiring of one half of a
nine-bit core diode module is shown in figure 3-87. Not
all wires are shown, however. Instead, their presence is im­
piied. For exampie, there are 128 X wires. Figure 3-92
shows X wires 0 through 15. The gap indicates that X wires
continue from 16 to 127. The diagram also contains the
imp\ ication that the X wires continue through bit planes 0,
1, 2, 3, 8A and to the second half of the core diode module
shown in figure 3-93. In the latter drawing, the bit planes
are shown in reverse order if the core side of the module is
being viewed. In both drawings (of both halves of a nine­
bit core diode module), a portion of the diode decode
matrix is shown, with pin and signal numbers given. In
studying both drawings, note the way the Y wire is folded
back. The foldback is concerned with the anticoincidence
principle discussed in the following paragraphs. The tem­
perature sensing diode, explained in paragraph 3-57, is
shown in both diagrams; with pin numbers included.

Figure 3-94 shows a nine-bit core diode module with
emphasis placed on the sense windings. The bit planes are
shown as they appear on both halves of an open core diode
module. Details are shown for bit plane O. The remaining
bit planes are shown as blocks with pin and signal numbers
shown at sense winding terminations. In figure 3-94,
although considerable detail is shown for bit plane 0, all
detail is not shown because of the repetitive and greatly
detailed nature of this type of unit. A complete bit plane
has 4,096 cores. A lesser number of cores is shown in the
diagram, with the remainder implied.

Each core, shown schematically in figure 3-94 as a
straight line, represents a core standing on end, as the
rim of the core is seen when viewed from above. The
sense wire goes through the hole in the core. Sense wires
terminate with the pin and signal number shown.

DRIVE SYSTEM MODULES STlO AND STll. Figure 3-95
shows a simplified diagram of the Sigma 5 memory drive
system. In this discussion of the drive system, references
to letters refer to lettered points shown in the diagram.
The term IIswitch ll means lIelectronic switch. 1I

In the Sigma 5 memory drive system diagram, only one
drive wire is shown with its pair of decode diodes. The
number of drive wires used varies with the ~ize of the
memory. For example, with a 16K memory, the X drive
system would have 32 additional diodes connected to point
A and 32 additional diodes connected to poi nt B. Each
diode connects, through a drive I ine, to one of the 32
voltage switches in the X drive matrix. In the same 16K
memory (X drive system), there would be a total of 16 drive
wires connected to point C. Each drive wire is connected
to one of the 16 current switches in the X drive matrix.

The mode of operation is as follows: To pass a positive
current through the drive wire, the positive current swi tch
and negative voltage switch are turned on. The flow of
current takes the following path: From the +VD supply
(point D in figure 3-95), through the 53-ohm resistor,
through the positive current switch, through the drive wire
(end cores), through the nSgGtive voltage switch, to ground.

To pass a negative current, the positive voltage switch and
negative current switch are turned on. The flow of current
takes the following path: From the +VD supply (point E in
figure 3-95), through the positive voltage switch, through
the drive wire (and cores), through the negative current
switch, through the 53-ohm resistors, to ground.

The supply Vm is not externally generated in the power sup­
ply system. Instead, Vm is the product of 37 (4X and 33Y)
53-ohm divider chains passing current continuously through
the Vm clamp di odes. On each swi tch modul e there are
decoupl i ng capac i tors for Vm, as shown in fi gure 3-95.

The 1 K resistors connected to the voltage switches bias all
drive wires quiescently to Vm. The 1 K resistors connected
to the current switches reverse-bias all the diodes, so that
drive current is not lost into other lines as charging current.
The Vm diodes prevent the voltage at the current switches
(developed across the inductance of the drive line during
the rise of the current) from exceeding Vm. Thus, forward­
biasing the decode diodes is prevented.

The current and voltage switches are all SDS 226 transistors.
Their bases are driven by transformers whose primaries
consi st of one turn and secondari es consist of four turns.
The magnetizing current built up in the transformer during
the time the transistor is on serves to turn the transistor off
when base drive is removed.

The drive circuit described is used for all four X drive
matrices and all 33 Y drive matrices. The 53-ohm resistors
are located in the uppermost chassis underneath the fans to
provide heat dissipation. Connecti on is made to the resis­
tors by means of twisted pairs to minimize the inductance
of the drive loop.

3-141

SDS 901172

4Vd (22V) ~

53
+Vd (22V) ®

~
Vm

FROM POSITVE

POSITIVE] CURRENT FROM
X- CURRENT II SWITCH POSITIVE

POSITIVE
PREDRIVE VOLTAGE II[X- VOLTAGE
MATRIX (0 SWITCH PRE DRIVE

lK MATRIX

- @lK -
+Vd

lK
Vm

CORES

FROM CD
NEGATIVE NEGATIVE
X-CURRENT]II CURRENT
PREDRIVE SWITCH NEGATIVE FROM
MATRIX VOLTAGE NEGA TlVE

SWITCH II[X- VOLTAGE

Vm PREDRIVE
MATRIX

Vm
CLAMP 53 -DIODE -

+Vd

- DECOUPLING t 56 pf
CAPACITORS Vm

FOR Vm, ..I. 56 fJF ON EACH
SWITCH -MODULE

901060A.3118

Fi gure 3-95. Memory Core Drive System, S impl ifi ed Schemati c

3-142

50S 901172

X Core Matrix. The X matrix for each 4K core memory
increment consists of 32 positive and negative current
switches and 16 positive and negative voltage switches.
As the size of the core memory is increased, current and
voltage switches must be added. Current and voltage
switches for each 4K increment are shared in matrix form,
as shown in figure 3-96, so that a 16K memory requires
64 positive and negative X current switches and 32 positive
and negative voltage switches. Note that the same number
of X current and voltage switches is required for a 12K
memory as for a 16K memory.

The relationship of positive and negative X current switches
to positive and negative voltage switches is shown in fig­
ure 3-97. Each X current switch connects to 16X buses.
The corresponding X bus wires (first, second ••• through
sixteenth) of each current switch are connected and tied to
a corresponding X voltage switch.

Y COie Matiix. nic Y marrit;85, whit;h are bit oriented,
consist of four positive and negative current switches and
four positive and negative voltage switches for each bit.
Current and voltage switches for each 4K increment of
core memory are shared in a matrix arrangement as indi­
cated in figure 3-98. One set of current switches selects
the 0 through 4 K and 8 K through 12 K memory stacks, and
another set selects the 4K through 8K and 12K through 16K
memory stacks. One set of voltage switches selects the 0
through 4K and 4K through 8K stacks, and another set
selects the 8K through 12K and 12K through 16K stacks.

The Y current and voltage switches for a single bit are
shown in figure 3-99. This matrix arrangement is typical
of all bits. Note that each of the 16 Y wires is folded
back on itsel f through the cores and that in the bit plane
the X and Y wires intersect at two cores. For given direc­
tions of current flow, the currents add in the core at one
intersection and cancel at the other. A reversal of one of
the currents enables the other core to be accessed. This
technique is called anticoincidence. Current direction
flow in the Y windings is dependent on the status of the
address bits L22, L23, and L25.

Predrive System, Model S 122. In this discussion of the
predrive system, the term "switch" means "electronic
switch." As indicated in the previous discussion of the
drive system, to read a word of memory it is necessary to
do the following: Turn on, simultaneously, four X positive
current switches, four X negative voltage switches, 33 Y
positive current switches, and 33 Y negative voltage
switches, or a similar combination. To restore the word on
the second half-cycle, the complementary (interchange
positive and negative) set of switches is operated.

To operate 33 Y positive current switches, the primaries of
the transformers belonging to this group of switches are
connected in series. Other groups of switches are operated
similarly. Because the primaries consist of one turn,
switches are arranged in groups of four on S T10 and 5 T11

modules. One wire passes through each set of four trans­
formers. In the case of the Y switches, nine of the trans­
former groups are in series. Therefore, 36 electronic
switches (three of which are not used) are operated by one
predrive current. Because of the 4: 1 step-down in current
through the transformer, the predrive current is approxi­
mate�y 300 mao Therefore, a power transistor is used in the
predrive circuit.

Figure 3-100 shows a typical Y predrive circuit. The three
address lines and a timing signal, TPYC (time for positive
Y current), are ANOed into an integrated inverter. The
output of the AND gate drives the primary of a 6:4 trans­
former on the base of the power transistor (SOS 226). The
output of the SOS 226 transistor drives approximately 300
ma into the string of 36 (of which 33 are used) voltage or
current switch primaries.

The Y decode for each bit has the following:

a. Eight positive current switches

b. Eight negative current switches

c. Eight positive voltage switches

d. Eight negative voltage switches

Because of the number of electronic switches mentioned
above, there are eight circuits like the one shown in fig­
ure 3-100. Therefore, there are a total of 32 such Y
predrive circuits.

The X predrive system uses predrive circuits identical to
the Y predrive circuits (S 122), but the outputs of the
circuits are arranged in the form of a matrix. This is done
because a larger number of electronic switches are used
in the X drive switch matrices. For example, 16 x 32
electronic switches are used in the X drive system. The
number of electronic switches used in the Y drive system
is 8 x 8, as explained earlier.

The X positive current predrive matrix is shown in figure
3-101,. Note that there are only four transformer primaries
in series because there are only four X drive switch
matrices. Matrices of the type shown in the diagram are
used for the following:

a. Positive X current

b. Negative X current

c. Positive X voltage

d. Negative X voltage

The relationship of the X and Y matrix predrive circuits
to the transformed address bits in the L-register is shown
in figure 3-102.

3-143/3-1404

BYTE 0 BYTE 1 BYTE 2 BYTE 3

OXVO 1 XVO 2XVO 3XVO

0-4K

j j j j
OXV15 lXV15 2XV15 3XV15

OXVl6 lXV16 2XV16 3XV16

8-12K

OXV31 lXV31 2XV31 3XV31

4-8K

12-16K

BYTE 0

OX COP-OX CON

OXCIP-OXCIN

OX C2P-OX C2N

OXC3P-OXC3N

OXC4P-OXC4N

OXC5P-OXC5N

OX C6P-OXC6N

OXOP-OXC7N

-

OXC8P-OXC8N

~-+---,.--------- OXC9P-OXC9N

~-+-+-r--------- OXC1OP-OXC10N

t--+-+-+-,-------- oxe ii p-oxen N

OXCI2P-OXC12N

OXCI3P-OXC13N

OXC 14P-OXC 14N

OXCI5P-OXC15N

SOS 901172

BYTE I BYTE 2 BYTE 3

IXCOP-1XCON 2XCOP-2XCON 3XCOP-3XCON

lXC1P-IXCIN 2XCIP-2XCIN 3XCIP-3XCIN

IXC2P-1XC2N 2XC2P-2XC2N 3XC2P-3XC2N

IXC3P-1XC3N 2XC3P-2XC3N 3XC3P-3XC3N

IXC4P-IXC4N 2XC4P-2XC4N 3XC4P-3XC4N

IXCSP-IXC5N 2XC5P-2XC5N 3XC5P-3XC5N

lXC6P-IXC6N 2XC6P-2XC6N 3XC6P-3XC6N

IXC7P-IXON 2XC7P-2XC7N 3XC7P-3XC7N

lXC8P-IXC8N 2XC8P-2XC8N 3XC8P-3XC8N

IXC9P-IXC9N 2XC9P-2XC9N 3XC9P-3XC9N

lXCIOP-1XCJON 2XC JOP-2XC JON 3XCJOP-3XC10N

lXCliP-IXC J IN 2XCIIP-2XCllN 3XC11P-3XC1IN

lXCI2P-1XC12N 2XCI2P-2XC12N 3XC I 2P-3X C I 2N

lXCI3P-1XC13N 2XC13P-2XC13N 3XC13P-3XC13N

IXC 14P-1XC 14N 2XC14P-2XC14N 3XC14P-3XC14N

lXC15P-)XCI5N 2XC 15P-2XC 15N 3XC 15P-3XC 15N

Figure 3-96. X Current and Voltage Switch
Matrix for 16K Memory

9011 nA. 3338

3-145/3-146

SDS 901172

J ~ J J ~ ; , , ,
,

J ~ J

J '

, ,
J J \ J ' ,

J '
~7

J I J ,
J '

I

,
"'

I

I

, ,
,

J

r---

r-r
8 BUSES CONNECT I

I TO CORRESPONDING
I
I 8 BUSES OF 4-8K STAC

,..L
}

I OXCOP

·L OXCON

I I

K

r--------r------t--f---l~: ~~rl ~C7P I
~ :) ~ < Lj OXC7N

OXYO

J \ J , ,

I

OXYI --- - OXY15

~ ,

I
I

I
I
I

}

16 BUSES CONNECT
TO CORRESPONDING
16 BUSES OF 8-12K STACK

Figure 3-97. X Current and Voltage Switch Matrix, Byte 0, 4K Stack

9011nA.3339

3-147

3-148

CURRENT GATES

~C-BYTE 0, OOYCOP-07YC3P, 00YCON-07YC3N
lC-BYTE I, 08YCOP-15YC3P, OSYCON-15YC3N
2C-BYTE 2, 16YCOP-23YC3P, 16YCON-23YC3N
3C-BYTE 3, 24YCOP-32YC3P, 24YCON-32YC3P
4C-BYTE 0, OOYC4P-07YC7P, OOYC4N-07YC7N
5C-BYTE I, OSYC4P-15YC7P, OSYC4N-15YC7N
6C-BYTE 2, 16YC4P-23YC7P, 16YC4N-23YC7N
7C-BYTE 3, 24YC4P-32YC7P, 24YC4N-32YC7N

}

- 0-4K

SK-12K

}

4K-SK
12K-16K

SDS 901172

7C---.--.

:===-=-===-=--====---=----=:==:=-'-----+--1=-+--1 =-==--=--==----.--==----'-------'
2C

IC

OC

OV

IV

2V

3V

I
-

BYTE 0

I

I
I

r---- 0_14K - r--

BYTE I I BYTE 2 BYTE 3

I
(9 BITS)

I
I

IV-BYTE 1~ 08YVO-I5YV3 0-4K
OV-BYTE 0, OOYVO-07YV3 }

2V-BYTE 2, 16YV0-23YV3 4K-SK
3V-BYTE 3, 24YV0-32YV3

- f-- 4K~8K-

BYTE 0 BYTE I I BYTE 2

I

VOLTAGE GATES

I I
r---- - r-- SK~12K --- -

BYTE 3 BYTE 0 BYTE I I BYTE 2
BYTE 3

BYTE 0
(9 BITS)

I
(9 BITS)

4V
I I

I
5V

6V

7V

4V-BYTE 0, OOYV4-07YV7 }
5V-BYTE I, 08YV4-15YV7 8K-12K
6V-BYTE 2, 16YV4-23YV7 12K-16K
7V-BYTE 3, 24YV4-32YV7

Figure 3-98. Y Current and Voltage Switch Matrix for 16K Memory

I
r-12K~16K - r-

BYTE I I BYTE 2
BYTE 3

I
(9 BITS)

9011 72A. 3340

/" " /'"

" " , 'r-.' "
, "...."~ "

nH
"

,

"

~ /", /"

BIT 0
0-4K STACK

~ ~, ~
,

50S 901172

('"\

/"r'\ /"
'""" I~ "

1 "I- , " " ~ , r'

~, " ~
....... It

/'11 ") ... I" ' ..

I ~x WIRES

I

J
"

, ..-
,

" ,

I
I I

twhd'n ~ ~ ~··n ~. ~ ~. ~ ~ ·n ~
!

~~ I OOJV3 I OOYV2

Y VOLTAGE SWITCHES

i

I
I

JCJP I ,ooL I I 001" I OOYC3N

I

'ooyL COP OOYC3P

Y CURRENT SWITCHES

Figure 3-99. Y Current and Voltage Switch Matrix for Bit 0

l

9011nA.33"1

3-149

SDS 901172

,-- - 4BVDC-
-- --,

ST22 I
lIon SDS 226 I

NL19 I NC20

NC21 I TPYC -=-
L- _______

YPCKO

lid 24YCOP 16yeOp I ~lId OBYCOP I OOYCOP

L .. ~ I ~ .. ~ I I
Ily 25yeOp 17yeOp I ~IIW

09YCOP I
OIYCOP

IIq 26YCOP lid !BYCOP I
I

lid 10YCOP I lid 02YCOP

Ilq 27YCOP IIq 19yeOp I IIq !!yeop I Ilq 03yeOp

P YPCO

2YPCOP !

lid 2ByeOp Ilq 20YCOP lid 12YCOP lid 04YCOP

IIq 29YCOP lid 21YCOP lid 13YCOP IIq 05YCOP

lSlld lid 3OYCOP 22YCOP lid 14YCOP lid 06YCOP

IIq 31YCOP Ilq 23YCOP lid 15YCOP IIq 07YCOP

lid 32YCOP

lie NOT USED

LEGE~D

IlC NOT USED

• P TWISTED PAIRS

t
lie NOT USED

THIS DRAWING IS REPRESENTATIVE OF B POSITIVE CURRENT DRIVERS YPCKO-YPCK7
B NEGATIVE CURRENT DRIVERS YNCKO-YNCK7

l-24 vee B POSITIVE VOLTAGE DRIVERS YPVKO-YPVK7
B NEGATIVE VOLTAGE DRIVERS YNVKO-YNVK7

-- --,
XT14

YPCR
39n ,BW

L ___ --.J
90 1172A. 3342

Fi gure 3-100. Y Positive Current Predrive/Drive Coup\ ing, S imp\ ified Schematic

3-150

W
I

~

" <0
C

CD
W
I

o

x

<
CD

n
~
CD
::J

......
CD
a..
VI
o
::r
CD
3
o
::!".
o

XPCSO
TRA NSFORMERS

XPCSI
TRANSFORMERS

XPCS2
TRANSFORMERS

XPCS3
TRANSFORMERS

o PART OF AN X-PREDRIVE CIRCUIT

3 0 PART OF ANOTHER X-PREDRIVE CIRCUIT

rxPCDI- fo'\ l
1 L.v..J 0,
1= 1
I I
, I
I I
L ____ J

;j 0) THROUGH CD PARTS OF OTHER X-PREDRIVE CIRCUITS

'!>
w
w
t,

XPCS4
TRANSFORMERS

XPCS5
TRANSFORMERS

XPCS6
TRANSrORMERS

XP(S7
TRANSFORMERS

r.;1 XPCD2- - ;:;\ 1
L.v..J 01 ,= I

I I
I ,
I ,
L ____ J

XPCS: POSITIVE X-CURRENT SWITCH

BYTES REFER TO All TRANSFORMERS IN LINE,
HORIZONTAllY, IN THIS IllUSTRATION.

XPCS8
TRANSFORMERS

XPCS9
TRANSFORMERS

XPCS10
TRANSFORMERS

XPCSII
TRANSFORMERS

rxPCo3-0'
1 ~ 41
1= ,
1 ,

I I
I ,

I
IL.. ___ -J

XPCS12
TRANSFORMERS

XPCS13
TRANSFORMERS

XPCS14
TRANSFORMERS

XPCSI5
TRANSFORMERS

',24V

RESISTOR ""-
LOCATED ~
ON XTl4 73'

OHMS

r CD -XPcKCil
I Lu..J I
1 =1
I I

L ____J

10XPCK21
I Lu..J 1
1=1
1 I

L ____ ...J

r~-XPCK31
1 \!J I
, Lu..J I
I-
I I

=

3-152

SDS 901172

ADDRESS REGISTER (L)

118119120121122123124125126127128129130131 I
I I I I I 0 I 0 I I 0 I X yl I I
I \ I I \ 0 I 0 I I 1 I NX NY I I \
I I I \ I 0 \ 1 \ I 0 I X NY \ I \
I I \ \ 0 \1 \ 1 \ NX yl I \

I 1 0 I I 0 NX NY I I
I I I \ 11 10 1 11 \ X yi i I
I \ I \ \1 \1 I \ 0 I NX YI \ I
\ I I I 11 \1 I \1 I X NYI I I
I 0 I I I I 0 I I 0 I I YPC KO - YNC KO

I 0 I I I I 0 I \1 I YPCK1 - Yt'-~CKl
I 0 I I I ! iii 0 I YPCK2 - YNCK2

I 0 I I I I 1 I I 1 I YPC K3 - YNC K3
I 1 I I I 0 I 0 YPC K4 - YNC K4
11' I 0 \1 I YPCK5 - YNCK5
\1 I \ \ I 1 I I 0 I YPC K6 - YNC K6

I 1 I I I 11 I I 1 I YPC K7 - YNC K7

I 0 I 0 I 0 I YPVKO - YNVKO

I 0 I 0 11 \ YPVKl - YNVKl

i 0 I 1 \ 0 I YPVK2 - YNVK2
I O. 1 I 1 I YPVK3 - YNVK3
I I I I

\
1 0 \ 0 I
1 \ 0 1

11 \1 101

YPVK4 - YNVK4

YPVK5 - YNVK5

YPVK6 - YNVK6

\ 1 11 11 I YPVK7 - YNVK7

I I I 10\01 XPCKO-XNCKO

I I I I 0 11 I XPCKI - XNCKI

I I \ I 1 I 0 I X PC K2 - X NC K2

I I I I 1 \1 I XPCK3 - XNCK3

I 0 I I 0 \ XPCDO - XNCDO

I 0 I 11 I XPCDI - XNCDI

11 I 10 I XPCD2 - XNCD2

I 11 I 11 I XPCD3 - XNCD3

10 1 I 0 10 1\ I XPVDO - XNVDO

I 0 I I 0 \1 I XPVDl - XNVDl

l

l

X AND Y CURRENT DIRECTION
DETERMINA TION

Y POSITIVE AND NEGATIVE
CURRENT DRIVERS

I ~ Y POSITIVE AND NEGATIVE r VOLTAGE DRIVERS

J
}

X POSITIVE AND NEGATIVE
CURRENT SINKS

}

X POSITIVE AND NEGATIVE
CURRENT DRIVERS

I 0 I \ 1 I 0 I I XPVD2 - XNVD2

I
01 I I 1 I 1 I I XPVD3 - XNVD3 X POSITIVE AND NEGATIVE

001 I XPVD4-XNVD4 VOLTAGE DRIVERS

I 1 I I 0 \ 1 I I X PVD5 - X NVD5

\ 1 I \ 1 \ 0 I i XPVD6 - XNVD6

I 1 I \ 1 I 1 I I X PVD7 - X NVD7
~--------------~~~.~.~, . I

I 0 I 0 ! XPVKO - XNYKO J
I 0 I 1 I XPVKl - XNVKl X POSITIVE AND NEGATIVE
11 I 0 I XPVK2 - XNYK2 VOLTAGE SINKS

\111 \XPYK3 - XNYK3
----------------------~~-

Figure 3-102. X and Y Predrive Selection Relative to Memory Address

901172A.3344

SDS 901172

Figures 3-103 through 3-106 show the X predrive matrices
for positive and negative X current and X voltage switches,
module locations, and output pin numbers.

Figures 3-107 throllgh 3-109 show the Y predrive matrices
for positive and negative Y current and Y voltage switches,
module locations, and output pin numbers.

Current Direction Control. The effects of X and Y half-
~ --~-- - ----------
current direction through the memory cores was shown in
figure 3-84. Current polarity is determined ultimately
by the transformed address bits L22, L23, and L25. X cur­
rent polarity is determined by the status of the address bits
L22 and L25. If these bits are equal to each other, signal
X will be true. If these bits are not equal to each other,
signal NX will be true.

X N L22 N L25 + L22 L25

t'"~ X = ~~ L22 L25 + L22 t~ L25

Y current polarity is determined by the status of the address
bits L22, L23, and L25. If these three bits contain an even
number of ones (or all zeros), signal Y will be true. If
these bits contain an odd number of ones, signal NX wi 11
be true.

Y NL22 NL23 NL25 + L22 L23 NL25

+ L22 N L23 L25 + N L22 L23 L25

NY = L22 L23 L25 + NL22 NL23 L25

+ NL22 L23 NL25 + L22 NL23 NL25

The input logic to the positive or negative X and Y positive
or negative current and voltage drivers includes not only
the polarity determination logic (X or NX and Y or NY),
but the proper timing signals as well. With the system of
current reversals used in the Sigma 5 memory, a timing
signal can occur either in the read or the write half-cycle.
TIming signal TPXC (time for positive X current) is an
example of a signal that can occur either in the read or the
write half-cycle, depending upon the address selected.

The timing diagram, figure 3-110, shows the principal
memory timing signals relating to the memory cores. Note
that during the read half-cycle, the X-current lags the
V-current in time by 80 nsec. This is done purposely
during the read half-cycle to minimize the effects of
delta noise. Delta noise is the result of the nonsquareness
of the BH curve, and causes a small flux change to be
generated in the read winding when a half-current is
passed through either the X or Y winding of a nonselected
core.

The following buffer latch logic describes how the positive
and negative current and vol tage predrivers are controlled
according to the read and write half-cycle timing and the
status of the X, NX, Y, and NY signals.

TPXC

TNXC

TNXV

TPXV

TPYC

TNYC

TPYV

TNYV

TPXC N TR320 N lW480 + X TR080

+ NX TW240

TNXC NTR320 NlW480 + NX TR080

+ X lW240

TNXV NTR320 NlW480 + X TROOO

+ NX TW240

TPXV NTR320 NlW480 + NX TROOO

+ X TW240

TPYC NTR320 NTW480 + Y TRODO

+ NY TW240

TNYC NTR320 N 1W480 + NY TROOO

+ Y TW240

TPYV NTR320 N1W480 + NY TROOO

+ Y lW240

TNYV NTR320 NTW480 + Y TROOO

+ NY TW240

Sense Preamplifier, Module ~T26. The sense preamplifier is
a differential pair transistor, Ql, shown in figure 3-111.
Input to the sense preampl i fi er is buffered from severe
common mode excursions by transformer Tl, called the com­
mon mode transformer or balun. The gain of the differential
pair is controlled by the internal emitter resistance of each
transistor. The emitter resistance serves as a feedback
resistor. The emitter current is derived from a current source,
Q2, and the precision 1,000-ohm resistor. Voltoge Ve
controls the gain of the preamplifier by changjng the emitter
current and thus the emitter resistance of Ql. Module ST17
suppl ies the voltage Ve, which is temperature controlled.
This is done to provide gain compensation of preamplifier
with temperature.

Transistors Ql and Q2 are physically located in one hous­
ing and are pairs with matched Vbe characteristics. Using
matched pairs eliminates Vbe offset error. The preamplifier
is made operative or inoperative by switching the emitter
current of Q1 on or off. This is done by means of the
selector circuit, module STl5, which ANDs address and
timing signals and produces an output. The output voltage
varies between ground and -8v to activate the preampli­
fier. The outputs of two preamplifiers are connected on
a module. Four module outputs - one for each 4K stack -
are connected to a sense amplifier, making a total of eight
preamplifiers feeding one sense amplifier. This arrange­
ment is shown in fi gure 3-112 for bit 0 of four 4 K memory
stacks, which is typical for all bits 0 through 32. Figure
3-113 lists the sense lines, preamplifiers, preamplifier
select circuits, and sense amplifiers for a maximum of 16K
memory.

3-153

NL19 NL25

NL19 L25

L19 NL25

L19 L25

3-154

I XPCDO I
09E12

XPCD1

09E13

I XPCD2 I
09Ell

I XPCD3 I
09EOl

I

NL26 NL21

XPCKO

09E50

OXCOP
lXCOP
2XCOP
3XCOP

22
19
12
24

MODULE l1E

OXC4P 22
lXC4P 19
2XC4P 12
3XC4P 24

MODULE 13E

OXC8P 22
1XC8P 19
2XC8P 12
3XC8P 24

MODULE 15E

OXC12P 22
1XC12P 19
2XC 12P 12
3XC12P 24

MODULE 17E

SDS 901172

NUb LLI

I XPCK1

09E46

OXCl P 01
1XC1P 34
2XC1 P 31
3XC1P 28

MODULE llE

OXC5P 101
lXC5P 134
2XC5P

1

31
3XC5P 28

MODULE 13E

OXC9P 01
lXC9P 34
2XC9P 31
3XC9P 28

MODULE 15E

OXC13P 01
1XC13P 34
2XC13P 31
3XC13P 28

MODULE 17E

x C
'i'

a
BYTE X CURRENT

SWITCH

L2b hiLL!

I XPCK2 I
09E37

OXC2P
lXC2P
2XC2P
3XC2P

22
19
12
24

MODULE 12E

OXC6P 22
1XC6P 19
2XC6P 12
3XC6P 24

MODULE 14E

OXCIOP 22
lXClOP 19
2XCIOP 12
3XC10P 24

MODULE 16E

OXC14P 22
1XC14P 19
2XC14P 12
3XC14P 24

MODULE 18E

a
BUS

L26 L27

I XPCK3 I
09E36

OXC3P 01
lXC3P 34
2XC3P 31
3XC3P 28

MODULE 12E

. OXC7P 01
1XC7P 34
2XC7P 31
3XC7P 28

MODULE 14E

OXCll P 01
lXCll P 34
2XCll P 31
3XCll P 28

MODULE 16E

OXC15P 01
1XC15P 34
2XC15P 31
3XC15P 28

MODULE 18E

P

POSITIVE

CURRENT DIRECTION

READ WRITE

L22 L25 L22 L25

a a a 1

1 1 1 a

I" '1
x x

I I
x 1,,,·1 x

I pcs NVS pvs NCS
; \; r "

L22 = L25 L22j L25

Figure 3-103. X Positive Current Predrive Matrix

4K-12K

J

8K-16K

9011 72A. 3345

NL19 NL25

NLl9 L25

I It''1 "II""~
L.17 I~LL;)

L 19 L25

I XNCDO I
10EI2

I XNCDl

IOEI3

I XNCD2 I , ,
IOEll

I XNCD3

10EOI

I

NL26 NL27

I XNCKO I
09E34

OXCON 10
lXCON II
2XCON 09
3XCON 08

MODULE 11 E

OXC4N 10
lXC4N 11
2XC4N 09
3XC4N 08

MODULE 13E

OXC8N r lXC8N 11
2XC8N 09
3XC8N

1
08

MODULE 15E

OXC12N 10
1XC12N 11
2XC12N 09
3XC12N 08

MODULE 17E

0 X
I

SDS 901172

NL26 L27

I XNCKI I
09E28

OXCIN 00
lXC1N 02
2XCIN 04
3XC1N 06

MODULE 11 E

OXC5N 00
lXC5N 02
2XC5N 04
3XC5N 06

MODULE 13E

OXC9N 00
lXC9N 02
2XC9N 04
3XC9N 06

MODULE 15E

OXC13N 00
lXC13N 02
2XC13N 04
3XC13N 06

MODULE 17E

C
i

BYTE X CURRENT
SWITCH

L26 NL27

I XNCK2 I
09EI4

OXC2N 10
lXC2N 11
2XC2N 09
3XC2N 08

MODULE 12E

OXC6N 10
lXC6N 11
2XC6N 09
3XC6N 08

MODULE 14E

OXC10N 10
lXCION 11
2XC10N 09
3XC1ON 08

MODULE 16E

OXC14N 10
lXC14N 11
2XC14N 09
3XC14N 08

MODULE 18E

0

L26 L27

I XNCK3 I
09E18

OXC3N 00
1XC3N 02
2XC3N 04
3XC3N 06

MODULE 12E

OXC7N 00
lXC7N 02
2XC7N 04
3XC7N 06

MODULE 14E

OXC11N 00
lXC11N 02
2XCllN 04
3XC11N 06

MODULE 16E

OXC15N 00
lXC15N 02
2XC15N 04
3XC15N 06

MODULE 18E

N

BUS "I~~ A TT\lC
I~L'-JMI1VL.

CURRENT DIRECTION

READ WRITE

L22 L25 L22 L25

0 1 0 0

1 0 1 1

1,,,·1 I
X

It ,,·1
X

I I
X X

PVS NCS pes NVS
; \} } ,;

L22 ~ L25 L22 = L25

Figure 3-104. X Negative Current Predrive Matrix

- 4K-12K

-

l
f- 8K-16K

J

901172A. 3346

3-155

NL30 NL31
I XPVKO

10E50

NL30 L31
I XPVK1

10E46

l30 Nl31
I XPVK2

10E37

l30 L31
I XPVK3 I

10E36

NL30 NL31 I XNVKO I
10E34

NL30 L31 I XNVKI I
10E28

L30 NL31 I XNVK21

IOE14

L30 L31 XNVK31

IOEI8

3-156

Nt lR

Nl28
NL29

I XPVDO I
07EI2

OXVO 48
IXVO 50
2XVO 47
3XVO 49

MODULE lIE

OXVI 46
1XVI 45
2XVI 40
3XVI 39

MODULE iiE

OXV2 48
IXV2 50
2XV2 47
3XV2 49

MODULE 12E

OXV3 46
1XV3 45
2XV3 40
3XV3 39

MODULE 12E

SDS 901172

NllA Nll8
Nl28 l28

L29 NL29

I XPVDll I XPVD2 I
07EI3 07E 11

OXV4 48 OXV8 48
IXV4 50 IXV8 50
2XV4 47 2XV8 47
3XV4 49 3XV8 49

MODULE 13E MODULE 15E

OXV5 46 OXV9 46
IXV5 45 IXV9 45
2XV5 40 2XV9 40
3XV5 39 3XV9 39

MODULE i3E MODULE i5E

OXV6 48 OXViO 48
IXV6 50 IXVIO 50
2XV6 47 2XVIO 47
3XV6 49 3XVIO 49

MODULE 14E MODULE 16E

OXV7 46 OXV11 46
1XV7 45 IXV11 45
2XV7 40 2XVll 40
3XV7 39 3XVll 39

MODULE 14E MODULE 16E

I
4K-8K

Nl18
l28
L29

I XPVD3 I
07EOI

OXVl2 48
lXV12 50
2XVI2 47
3XV12 49

MODULE 17E

OXV13 46
IXVI3 45
2XVI3 40
3XV13 39

MODULE 17E

OXVi4 48
IXVI4 50
2XVI4 47
3XVI4 49

MODULE 18E

OXV15 46
1XVI5 45
2XVI5 40
3XV15 39

MODULE 18E

lI8
Nl28
NL29

I XPVD41

05EI2

OXVl6 48
lXVl6 50
2XVl6 47
3XVl6 49

MODULE 19E

OXVI7 46
lXV17 45
2XVl7 40
3XVI7 39

MODULE 19E

OXV18 48
IXVI8 50
2XVI8 47
3XV18 49

MODULE 20E

OXVI9 46
IXV19 45
2XV19 40
3XV19 39

MODULE 20E

lI8 U8
NL28 L28

L29 NL29

I XPVD5 I I XPVD61

05E 13 05EIl

OXV20 48 OXV24

1" lXV20 50 IXV24 50
2XV20 47 2XV24 47
3XV20 49 3XV24 i 49

MODULE 21E MODULE 23E

OXV21 46 OXV25 46
lXV21 45 lXv25 45
2XV21 40 2XV25 40
3XV21 39 3XV25 39

tv\ODULE 21E tY~ODULE 23E

OXV22 48 0XV26 48
lXV22 50 lXV26 50
2XV22 47 2XV26 47
3XV22 49 3XV26 49

MODULE 22E MODULE 24E

OXV23 46 OXV27 46
IXV23 45 lXV27 45
2XV23 40 2XV27 40
3XV23 39 3XV27 39

MODULE 22E MODULE 24E

I
12K-16K

Figure 3-105. X Positive Voltage Predrive Matrix

t-.lU8
NL28
NL29

I XNVDO I
08E12

OXVO 48
IXVO 50
2XVO 47
3XVO 49

MODULE lIE

OX VI 46
IXVI 45
2XVI 40
3XVI 39

MODULE lIE

OXV2 48
IXV2 50
2XV2 47
3XV2 49

MODULE 12E

OXV3 46
lXV3 45
2XV3 40
3XV3 39

MODULE 12E

NUS NUS
NL28 L28

L29 NL29

I XNVDll I XNVD21

08EI3 08Ell

OXV4 48 OXV8 48
lXV4 50 lXV8 50
2XV4 47 2XV8 47
3XV4 49 3XV8 49

MODULE 13E MODULE 15E

OXV5 46 OXV9 46
lXV5 45 lXV9 45
2XV5 40 2XV9 40
3XV5 39 3XV9 39

MODULE 13E MODULE 15E

OXV6 48 OXV10 48
IXV6 50 IXVIO 50
2XV6 47 2XVIO 47
3XV6 49 3XVIO 49

MODULE 14E MODULE 16E

OXV7 46 OXV11 46
lXV7 45 IXV11 45
2XV7 40 2XVll 40
3XV7 39 3XVll 39

MODULE 14E MODULE 16E

I
4K-8K

f'~Ll8

L28
L29

I XNVD31

08EDI

OXV12 48
lXV12 50
2XV12 47
3XV12 49

MODULE 17E

OXVI3 46
IXV13 45
2XV13 40
3XVI3 39

MODULE 17E

OXVI4 48
lXV14 50
2XVI4 47
3XV14 49

MODULE 18E

OXV15 46
lXV15 45
2XV15 40
3XVI5 39

MODULE 18E

L18
NL28
NL29

I XNVD41

06E12

OXV16 48
lXV16 50
2XV16 47
3XV16 49

MODULE 19E

OXVI7 46
IXV17 45
2XV17 40
3XV17 39

MODULE 19E

OXV18 48
lXV18 50
2XV18 47
3XV18 49

MODULE 20E

OXVI9 46
lXV19 45
2XV19 40
3XV19 39

MODULE 20E

II

L18 U8
NL28 L28

L29 NL29

I XNVD51 I XNVD61

06E13 06Ell

OXV20 48 OXV24 48
lXV20 50 lXV24 50
2XV20 47 2XV24 47
3XV20 49 3XV24 49

MODULE 21E MODULE 23E

OXV21 46 OXV25 46
IXV21 45 IXV25 45
2XV21 40 2XV25 40
3XV21 39 3XV25 39

MODULE 21E MODULE 23E

OXV22 48 OXV26 48
lXV22 50 IXV26 50
2XV22 47 2XV26 47
3XV22 49 3XV26 49

MODULE 22E MODULE 24E

OXV23 46 OXV27 46
lXV23 45 lXV27 45
2XV23 40 2XV27 40
3XV23 39 3XV27 39

MODULE 22E MODULE 24E

I
12K-16K

Figure 3-106. X Negative Voltage Predrive Matrix

U8
L28
L29

I XPVD7 I
05E(;1

OXV2B I" IXV28 50
2XV28 47
3XV28 149

MODULE 25E

OXV29 46
IXV29 45
2XV29 40
3XV29 39

I~ ... ~ODULE 25E

OXV30 A8
lXV30 50
2XV30 47
3XV30 49

MODULE 26E

OXV31 46
lXV31 45
2XV31 40
3XV31 39

MODULE 26E

9011 72 A. 3347

L18
L28
L29

I XNVD71

06EOI

OXV28 48
lXV28 50
2XV28 47
3XV28 49

MODULE 25E

OXV29 46
lXV29 45
2XV29 40
3XV29 39

MODULE 25E

OXV30 48
lXV30 50
2XV30 47
3XV30 49

MODULE 26E

OXV31 46
IXV31 45
2XV31 40
3XV31 39

MODULE 26E

901172A. 3348

N119
NL20
NL21

NL19
NL20

L21

~

NL19
L20

NL21

I YPCK2 I

NL19
L20
L21

I YPCK3 I

L 19
NL20
NL21

I YPCK4 J

L 19
NL20

L21

I YPCK5 I

L19
L20

NL21

I YPCK6 I

L19
L20
L21

I YPCK7 I

OOYCOP 22
OiYCOP 19
02YCOP 12
03YCOP 24

MODULE 32F

OOYCI P 01
01YC1P 34
02YCl P 31
03YCl P 28

MODULE 32F

00YC2P 22
01YC2P 19
02YC2P 12
03YC2P 24

MODULE 30F

00YC3P 01
01YC3P 34
02YC3P 31
OWC3P 28

MODULE 30F

00YC4P 22
01YC4P 19
02YC4P 12
03YC4P 24

MODULE 28F

00YC5P 01
01YC5P 34
02YC5P 31
03YC5P 28

MODULE 28F

00YC6P 22
01YC6P 19
02YC6P 12
03YC6P 24

MODULE 26F

00YC7P 01
01YC7P 34
02YC7P 31
03YC7P 28

MODULE 26F

SDS 901172

04YCOP 22 08YCOP 22 12YCOP 22
05YCOP 19 09YCOP 19 13YCOP 19
06YCOP 12 10YCOP 12 14YCOP 12
07YCOP 24 llYCOP 24 15YCOP 24

MODULE31F MODULE 24F MODULE 23F

04YCl P 01 08Vel p 01 12YCl P 101
05YCl P 34 09YCl P 34 13YC1P 134
06YC1P 31 10YCl P 31 14YC1P 31
07YCl P 28 llYCl P 28 15YCl P 28

MODULE 31F MODULE 24F MODULE 23F

04YC2P 22 08YC2P 22 12YC2P 22
05YC2P 19 09YC2P 19 13YC2P 19
06YC2P 12 10YC2P 12 14YC2P 12
07YC2P 24 llYC2P 24 15YC2P 24

MODULE 29F MODULE 22F MODULE 21F

04YC3P 01 08YC3P 01 12YC3P 01
05YC3P 34 09YC3P 34 13YC3P 34
06YC3P 31 10YC3P 31 14YC3P 31
07YC3P 28 llYC3P 28 15YC3P ")0

MODULE 29F MODULE 22F MODULE 21F

04YC4P 22 08YC4P 22 12YC4P 22
05YC4P 19 09YC4P 19 13YC4P 19
06YC4P 12 10YC4P 12 14YC4P 12
07YC4P 24 llYC4P 24 15YC4P 24

MODULE 27F MODULE 20F MODULE 19F

04YC5P 01 08YC5P 01 12YC5P 01
05YC5P 34 09YC5P 34 13YC5P 34
06YC5P 31 10YC5P 31 14YC5P 31
07YC5P 28 l1YC5P 28 15YC5P 28

MODULE 27F MODULE 20F MODULE 19F

04YC6P 22 08YC6P 22 12YC6P 22
05YC6P 19 09YC6P 19 13YC6P 19
06YC6P 12 10YC6P 12 14YC6P 12
07YC6P 24 llYC6P 24 15YC6P 24

MODULE 25F ~~ODULE 18F MODULE 17F

04YC7P 01 08YClP 01 12YC7P 01
05YC7P 34 09YClP 34 13YC7P 34
06YC7P 31 lOYClP 31 14YC7P 31
07YC7P 28 l1YClP 28 15YC7P 28

MODULE 25F MODULE 18F MODULE 17F

WRITE

r-;-l \ / \ / \ _Ivl
~

SUM OF L22, L23, L25 = ODD

~
~

SUM OF L22, L23, L25 = EVE N

16YCOP 22
17YCOP 19
18YCOP 12
19YCOP 24

MODULE 16F

16YCl P 01
17YC1P 34
18YC1P 31
19YC1P 28

MODULE 16F

16YC2P 22
17YC2P 19
18YC2P 12
19YC2P 24

MODULE 14F

16YC3P 01
17YC3P 34
18YC3P 31
1 ()vr",o
ITI\."..,Jr 28

MODULE 14F

16YC4P 22
17YC4P 19
18YC4P 12
19YC4P 24

MODULE 12F

16YC5P 01
17YC5P 34
18YC5P 31
19YC5P 28

MODULE 12F

16YC6P 22
17YC6P 19
18YC6P 12
19YC6P 24

MODULE 10F

16YC7P 01
17YC7P 34
18YC7P 31
19YC 7P 28

MODULE 10F

20YCOP 22 24YCOP 22 28YCOP 22 32YCOP 22
21YCOP 19 25YCOP 19 29YCOP 19 NOT USED
22YCOP 12 26YCOP 12 30YCOP 12 NOT USED
23YCOP 24 27YCOP 24 31YCOP 24 NOT USED

MODULE 15F MODULE 08F MODULE 07F MODULE 04E

20YCl P 01 24YCI P 01 28YCi P Oi 32YCi P 0i
21YC1P 34 25YCl P 34 29YCl P 34 NOT USED
22YCl P 31 26YCl P 31 30YCl P 31 NOT USED
23YCl P 28 27YCl P 28 31YCl P 28 NOT USED

MODULE 15F MODULE 08F MODULE 07F MODULE 04E

20YC2P 22 24YC2P 22 28YC2P 22 32YC2P 22
21YC2P 19 25YC2P 19 29YC2P 19 NOT USED
22YC2P 12 26YC2P 12 30YC2P 12 NOT USED
23YC2P 24 27YC2P 24 31YC2P 24 NOT USED

MODULE 13F MODULE 06F MODULE 05F MODULE 03E

20YC3P 01 24YC3P 01 28YC3P 01 32YC3P 01
21YC3P 34 25YC3P 34 29YC3P 34 NOT USED
22YC3P 31 26YC3P 31 30YC3P 31 NOT USED
~~ T \.,....,lr 2a 27YC3P 28 3iYC3P 28 NOT USED

MODULE 13F MODULE 06F MODULE 05F MODULE 03E

20YC4P 22 24YC4P 22 28YC4P 22 32YC4P 22
21YC4P 19 25YC4P 19 29YC4P 19 NOT USED
22YC4P 12 26YC4P 12 30YC4P 12 NOT USED
23YC4P 24 27YC4P 24 31YC4P 24

MODULE 11 F MODULE 04F MODULE 03F

20YC5P 01 24YC5P 01 28YC5P 01
21YC5P 34 25YC5P 34 29YC5P 34
22YC5P 31 26YC5P 31 30YC5P 31
23YC5P 28 27YC5P 28 31YC5P 28

MODULE llF MODULE 04F MODULE 03F

20YC6P 22 24YC6P 22 28YC6P 22
21YC6P 19 25YC6P 19 29YC6P 19
22YC6P 12 26YC6P 12 30YC6P 12
23YC6P 24 27YC6P 24 31YC6P 24

MODULE 09F MODULE 02F MODULE 01F

2OYC7P 01 24YC7P 01 28YC7P 01
21YC7P 34 25YC7P 34 29YC7P 34
22YC7P 31 26YC7P 31 30YC7P 31
23YC7P 28 27YC7P 28 31YClP 28

MODULE 09F MODULE 02F MODULE 01F

READ

SUM OF L22, L23, L25 = EVEN

~
~

SUM OF l22, L23, L25 = ODD

NOT USED

MODULE 02E

32YC5P 01
NOT USED
NOT USED
NOT USED

MODULE 02E

32YC6P 22
NOT USED
NOT USED
NOT USED

MODULE OlE

32YC7P 01
NOT USED
NOT USED
NOT USED

MODULE OlE

901172A.3349

Figure 3-107. Y Positive Current Predrive/Drive Coupling System

3-157

SDS 901172

10YNCONI 10YNCOP I !lYNCONI !1 YNCOP I 12YNCONI !2YNCOP I !3'f_t-lCQI'!! 13YN~OP] c==J I
I"", Y

NL20 OOYCON 10 04YCON 10 08YCON 10 12YCON 10 16YCON 10 20YCON 10 24YCON 10 28YCON 10 32YCON 10
NL21 01 YCON 11 05YCON 11 09YCON 11 13YCON 11 17YCON 11 21YCON 11 25YCON 11 29YCON 11 NOT USED

I YNCKO I 02YCON 09 06YCON 09 10YCON 09 14YCON 09 18YCON 09 22YCON 09 26YCON 09 3OYCON 09 NOT USED
03YCON 08 07YCON 08 llYCON 08 15YCON 08 19YCON 08 23YCOt'~ 08 27YCON 08 31 YCO~~ 08 NOT USED

MODULE 32F MODULE 31 F MODULE 24F MODULE 23F MODULE 16F MODULE 15F MODULE 08F MODULE 07F MODULE 04E

NL19
!OYNCINI IOYNC1P I 11YNCINI 11YNClpi !2YNC1NI I2YNClpl !3YNC1NI 13YNC 1p l c:=J

NL20 OOYCI N 00 04YCI N 00 08YCI N 00 12YCIN 00 l6YClN 00 20YCI N 00 24YCI ~4 00 28YCl N 00 32YCI N 00
L21 01YCIN 02 05YCI N 02 09YCI N 02 13YCIN 02 17YCIN 02 21YCIN 02 25YCI N 02 29YCI N 02 NOT USED

I YNCKI I
02YCIN 04 06YCI N 04 10YCIN 04 14YCIN 04 18YCIN 04 22YCI N 04 26YCI N 04 JOYCI N 04 NOT USED
03YCIN 06 07YCIN 06 llYC1N 06 15YCIN 06 19YCIN 06 23YCI N 06 27YCI N 06 31 YCI N 06 NOT USED

MODULE 32F MODULE 31F MODULE 24F MODULE 23F MODULE 16F MODULE 15F MODULE 08F MODULE 07F MODULE 04E

IOYNC2NI IOYNC2P I 11YNC2NI IIYNC2P I 12YNC2NI 12YNC2P I !3YNC2NI 13YNC2PI c=J
NL19

L20 IOOYON I iOI 04YON I iO I 08YON I iO :;~g~ I ::1 :~~;~ I :~I ;:~;~ I:: ;~~g~ I :~ I ;~~g~ I;~ ti6~2:SEDI i 0 I NL21 01 YC2N 11 05YC2N II 09YC2N 11

I YNCK2 I I 02YC2N J 09 1 06YC2N I 09ll0YC2N J 09 14YC2N 09 18YC2N 09 22YC2N 09 26YC2NI0~I30YC2NI09 NOT USE~I
03YC2N 08 07YC2N 08 11 YC2N 08 15YC2N 08 19YC2N 08 23YC2N 08 27YC2N 08 31 YC2N 08 NOT USED

MODULE 30F MODULE 29F MODULE 22F MODULE 21 F MODULE 14F MODULE 13F MODULE 06F MODULE 05F MODULE 03E

IOYNC3NI !OYNC3P I !lYNC3NI 11YNC3P I 12YNC3NI 12YNC3P I 13YNC3NI 13YNC3PI c=:J
NL19

L20 OOYC3N 00 04YC3N 00 08YC3N 00 12YC3N 00 16YC3N 00 20YC3N 00 24YC3N 00 28YC3N 00 32YC3N 00
L21 01YC3N 02 05YC3N 02 09YC3N 02 13YC3N 02 17YC3N 02 21YC3N 02 25YC3N 02 29YC3N 02 NOT USED

I YNCK31 02YC3N 04 06YC3N 04 10YC3N 04 14YC3N 04 18YC3N 04 22YC3N 04 26YC3N 04 JOYC3N 04 NOT USED
03YC3N 06 07YC3N 06 l1YC3N 06 15YC3N 06 19YC3N 06 23YC3N 06 27YC3N 06 31YC3N 06 NOT USED

MODULE 30F MODULE 29F MODULE 22F MODULE 21F MODULE 14F MODULE 13F MODULE 06F MODULE 05F MODULE 03E

IOYNC4NI IOYNC4P I
L19

11YNC4Nl 11YNC4P I 12YNC4NI 12YNC4P I j3YNC4NI 13YNC4Pl c=:J
NL20 00YC4N 10 04YC4N 110 08YC4N 10 12YC4N 110 16YC4N 110 20YC4N 10 24YC4N 10 28YC4N 110 32YC4N .110
t-~L21 01YC4N 11 05YC4N 111 09YC4N 11 13YC4N r1 17YC4N 111 21 YC4N 11 25YC4N 11 29YC4N 111 NOT USEDI

IYNCK4 I 02YC4N 09 06YC4N 09 10YC4N 09 14YC4N 09 18YC4N 09 22YC4N 09 26YC4N 09 JOYC4N 09 NOT USED
03YC4N 08 07YC4N 08 llYC4N 08 15YC4N 08 19YC4N 08 23YC4N 08 27YC4N 08 31YC4N 08 NOT USED

MODULE 28F MODULE 27F MODULE 20F MODULE 19F MODULE 12F MODULE llF MODULE 04F MODULE 03F MODULE 02E

IOYNCSNI 10YNCSP I PYNCSNI 11YNC5P I !2YNCSN! 12YNCSP I 13YNCSNI 13YNC5P I c:=J
L19

NL20 OOYCSN 00 04YC5N 00 08YC5N 00 12YC5N 00 16YC5N 00 20YC5N 00 24YC5N 00 28YC5N 00 32YC5N 00
L21 OlYCSN 02 05YC5N 02 09YC5N 02 13YC5N 02 17YC5N 02 21YC5N 02 25YC5N 02 29YC5N 02 NOT USED

IYNCKS I
02YC5N 04 06YC5N 04 10YC5N 04 14YC5N 04 18YC5N 04 22YC5N 04 26YC5N 04 30YC5N 04 NOT USED
03YC5N 06 07YC5N 06 l1YC5N 06 15YC5N 06 19YC5N 06 23YC5N 06 27YC5N 06 31 YC5N 06 NOT USED

MODULE 28F MODULE 27F MODULE 20F MODULE 19F MODULE 12F MODULE llF MODULE 04F MODULE 03F MODULE 02E

IOYNC6NI ! OYNC6P I !IYNC6NI !lYNC6P I !2YNC6NI 12YNC6P I 13YNC6NI 13YNC6P I c=J
L19
L20 00YC6N 10 04YC6N 10 08YC6N 10 12YC6N 10 16YC6N 10 20YC6N 10 24YC6N 10 28YC6N 10 32YC6N 10

NL21 01 YC6N 11 05YC6N 11 09YC6N 11 13YC6N 11 17YC6N 11 21YC6N 11 25YC6N 11 29YC6N 11 NOT USED

IYNCK6 I 02YC6N 09 06YC6N 09 10YC6N 09 14YC6N 09 18YC6N 09 22YC6N 09 26YC6N 09 JOYC6N 09 NOT USED
03YC6N 08 07YC6N 08 l1YC6N 08 15YC6N 08 19YC6N 08 23YC6N 08 27YC6N 08 31YC6N 08 NOT USED

MODULE 26F MODULE 25F MODULE 18F MODULE 17F MODULE 10F MODULE 09F MODULE 02F MODULE 01 F MODULE OlE

!OYNC7NI !OYNC7P I !lYNC7N1 11YNC7P I 12YNC7N1 !2YNC7P I PY NC7NI 13YNC7P I c=J
L19
L20 OOYON 00 04YC7N 00 08YC7N 00 12YC7N 00 16YC7N 00 20YC7N 00 24YC7N 00 28YC7N 00 32YC7N 00
L21 01YC7N 02 05YC7N 02 09YC7N 02 13YC7N 02 17YC7N 02 21 YC7N 02 25YC7N 02 29YC7N 02 NOT USED

IYNCK7 I 02YC7N 04 06YC7N 04 10YC7N 04 14YC7N 04 18YC7N 04 22YC7N 04 26YC7N 04 JOYC7N 04 NOT USED
03YC7N 06 07YC7N 06 l1YC7N 06 15YC7N 06 19YC7N 06 23YC7N 06 27YC7N 06 31YC7N 06 NOT USED

MODULE 26F MODULE 25F MODULE 18F MODULE 17F MODULE 10F MODULE 09F MODULE 02F MODULE 01F MODULE OlE

WRITE READ

~ ! pes I . " " NVS 1 ~S 1 ,I >, ,I >, ,I ·1 N~S 1

SUM OF L22, L23, L25 = ODD SUM OF L22, L23, L25 = EVEN

~ PVS NCS ~ PVS NCS

SUM OF L22, L23, L25 = EVEN SUM OF L22, L23, L25 = ODD

901172A. 3350

Figure 3-108. Y Negative Current Predrive/Drive Coupling System

3-158

NL18
NL22
NL24

NL18
Nl22

L24

NL18
l22

Nl24

NL18
L22
L24

L18
NL22
NL24

L18
NL22

L24

L18
L22

NL24

L18
L22
L24

OOYVO 48
OIYVO 50
02YVO 47
03YVO 49

MODULE 32F

OOYVI 46
OIYVI 45
02YVI 40
03YVI 39

MODULE 32F

00YV2 48
0lYV2 50
02YV2 47
03YV2 49

MODULE 30F

00YV3 46
0lYV3 45
02YV3 40
03YV3 39

MODULE 30F

00YV4 48
01YV4 50
02YV4 47
03YV4 49

MODULE 28F

00YV5 46
0lYV5 45
02YV5 40
03YV5 39

MODULE 28F

00YV6 48
01YV6 50
02YV6 47
03YV6 49

MODULE 26F

00YV7 46
01YV7 45
02YV7 40
03YV7 39

MODULE 26F

SDS 901172

04YVO 48 08YVO 48 12YVO 48 16YVO 48 20YVO 48 24YVO 48 28YVO 48 32YVO 48
05YVO 50 09YVO 50 13YVO 50 17YVO 50 2lYVO 50 25YVO 50 29YVO 50 NOT USED
06YVO 47 10YVO 47 14YVO 47 18YVO 47 22YVO 47 26YVO 47 30YVO 47 NOT USED
07YVO 49 IIYVO 49 15YVO 49 19YVO 49 23YVO 49 27YVO 49 3lYVO 49 NOT USED

MODULE 3lF MODULE 24F MODULE 23F MODULE 16F MODULE 15F MODULE 08F MODULE 07F MODULE 04E

04YVI 46 08YVI 46 12YVI 46 16YVI 46 20YVI 46 24YVI 46 28YVI 46 32YVI 46
05YVI 45 09YVI 45 13YVI 45 IlYVI 45 2lYVl 45 25YVI 45 29YVI 45 NOT USED
06YVI 40 10YVl 40 14YVI 40 18YVI 40 22YVI 40 26YVI 40 30YVI 40 NOT USED
07YVI 39 llYVI 39 15YVI 39 19YVI 39 23YVI 39 27YVI 39 3lYVT 39 NOT USED

MODULE 3lF MODULE 24F MODULE 23F MODULE 16F MODULE 15F MODULE 08F MODULE 07F MODULE 04E

04YV2 48 08YV2 48 12YV2 48 16YV2 48 20YV2 48 24YV2 48 28YV2 48 32YV2 48
05YV2 50 09YV2 50 13YV2 50 17YV2 50 2lYV2 50 25YV2 50 29YV2 50 NOT USED
06YV2 47 IOYV2 47 14YV2 47 18YV2 47 22YV2 47 26YV2 47 30YV2 47 NOT USED
07YV2 49 IlYV2 49 15YV2 49 19YV2 49 23YV2 49 27YV2 49 3lYV2 49 NOT USED

MODULE 29F MODULE 22F MODULE 2lF MODULE 14F MODULE 13F MODULE 06F MODULE 05F MODULE 03E

04YV3 46 08YV3 46 12YV3 46 16YV3 46 20YV3 46 24YV3 46 28YV3 46 32YV3 46
05YV3 45 09YV3 45 13YV3 45 IlYV3 45 2lYV3 45 25YV3 45 29YV3 45 NOT USED
06YV3 40 IOYV3 40 14YV3 40 18YV3 40 'l2YV3 40 26YV3 40 30YV3 40 NOT USED
OlYV3 39 IlYV3 39 15YV3 39 19YV3 39 23YV3 39 27YV3 39 3lYV3 39 NOT USED

MODULE 29F MODULE 22F MODULE 2lF MODULE 14F MODULE 13F MODULE 06F MODULE 05F MODULE 03E

04YV4 48 08YV4 48 12YV4 48 16YV4 48 20YV4 48 24YV4 48 28YV4 48 ~2YV4 48
05YV4 50 09YV4 50 13YV4 50 IlYV4 50 21YV4 50 25YV4 50 29YV4 50 NOT USED
06YV4 47 10YV4 47 14YV4 47 18YV4 47 22YV4 47 26YV4 47 30YV4 47 NOT USED
07YV4 49 l1YV4 49 15YV4 49 19YV4 49 23YV4 49 27YV4 49 31YV4 49 NOT USED

MODULE 27F MODULE 20F MODULE 19F MODULE 12F MODULE IIF MODULE 04F MODULE 03F MODULE 02E

04YV5 46 08YV5 46 12YV5 46 16YV5 46 2OYV5 46 24YV5 46 28YV5 46 ~2YV5 46
05YV5 45 09YV5 45 13YV5 45 IlYV5 45 2lYV5 45 25YV5 45 29YV5 45 NOT USED
06YV5 40 10YV5 40 14YV5 40 18YV5 40 22YV5 40 26YV5 40 30YV5 40 NOT USED
07YV5 39 llYV5 39 15YV5 39 19YV5 39 23YV5 39 27YV5 39 3lYV5 39 NOT USED

MODULE 27F MODULE 20F MODULE 19F MODULE 12F MODULE llF MODULE 04F MODULE 03F MODULE 02E

04YV6 48 08YV6 48 12YV6 48 16YV6 48 20YV6 48 24YV6 48 28YV6 48 !J2YV6 48
05YV6 50 09YV6 50 13YV6 50 17YV6 50 21YV6 50 25YV6 50 29YV6 50 NOT USED
06YV6 47 10YV6 47 14YV6 47 18YV6 47 22YV6 47 26YV6 47 30YV6 47 NOT USED
OlYV6 49 llYV6 49 15YV6 49 19YV6 49 23YV6 49 27YV6 49 3lYV6 49 NOT USED

MODULE 25F MODULE 18F MODULE 17F MODULE 10F MODULE 09F MODULE 02F MODULE 01F MODULE OlE

04YV7 46 08YV7 46 12YV7 46 16YV7 46 2OYV7 46 24YV7 46 28YVl 46 32YVl 46
05YV7 45 09YV7 45 13YV7 45 17YV7 45 21YV7 45 25YVl 45 29YVl 45 NOT USED
06YV7 40 IOYV7 40 14YVl 40 18YVl 40 22YV7 40 26YV7 40 30YVl 40 NOT USED
OlYV7 39 l1YV7 39 15YV7 39 19YVl 39 23YV7 39 27YV7 39 3lYV7 39 NOT USED

MODULE 25F MODULE 18F MODULE 17F MODULE 10F MODULE 09F MODULE 02F MODULE 01 F MODULE OlE

901172A. 3351

Figure 3-109. Y Positive/Negative Predrive/Drive Coupling System

3-159

3-160

SDS 901172

TPXV
0 120 240 360 460 600 720

TNXV TPYC .J U I TPYV TNYC
40 360 480 700

TPXC U TNXC ---.J I
120 360 480 700

Y-CURRENT ~ ~
440

X-CURRENT 170(~
240

STROBE U
280 380

DISCRIMINATOR n OUTPUT
320 400

NOTE: ALL TIMES ARE IN NANOSECONDS AND
ARE WITH REFERENCE TO TAP 0 ON THE
THE READ DELAY LINE

Figure 3-110. Magnetics Timing Diagram

840

}-
800

}-
800

901172A.3352

INPUT FROM{
SENSE LINE
OS lOOP
OSlOON

INPUT FROM

-4V

-4V

SDS 901172

~----------------------------------~SPAOOP

L..-----J---------------------J---_ SPAOON
10K

PREAMPLI F IE R ---HI----......-----I~-~
SELECTION

INPUT FROM-r
SENSE LINE
lelf'lf'lD L '.JL.vvr

1Sl00N

INPUT FROM

-8V

-4V

-4V

PREAMPLIFIE R ---+4 __ -_---tM-------f

SELECTION

-8V

10K

i

FROM BIT 0
PREAMPLIFIERS OF

STACKS 1,2 AND 3

9011 72A. 3353

Figure 3-111. Sense Preamplifier (HT26) Simplified Schematic, Bit 0, Stack °
3-161

3-1'62

SOS 901172

STACK 0 BIT 0 r,--------.- - -
I
I

,.--- "r------,
L __ --' ____ -, I

I r --

I : r--
- /"""­

X
-' '-- -

I I
I I

...J I
_.-1

I I ,..------.,..

I : ~ - - - -.'"',------'- - -
L ~ =-= ~ ~-~-~-

STACK 1 BIT 0 r------
I
I

r----,-----...,
)(

'----" '-----..., :

t r - - - - -x'-I: r-----''-

I I
I I
I

....J I
_.-1

I I

I: ~ __ ,------
x

L ~ =-= ~ ~-~-~-
STACK 2 BIT 0

OS LOOP

os LOON

lSLOOP

lSLOON

2SLOOP

2SLOON

3SLOOP

3$ LOON

I.~ __ -_~~:_-: ,-_-_-_===_ -_-_-_,t-4_S_LOO,;....;..;..P_--.

I
I

r - - """' 1('- - - - - -,
L __ -" ___ -, I

I r-----'""' --­
l(II r-----' '--

I

I
I I

...J I
_.J

4SLOON

I L _ _ _ _ r- _ _ _ _ _ SSLOOP

L L - - - - -,x_ - ____L;S..;,.S_LOO-,--,-N_-J

------~
STACK 3 BIT 0 r------I 6SLOOP

6SLOON

I r - - """"xr- - - - - -, I I '----''-----':
I I I I r - - - - '""'x - ...J I

I r----''--- _...J I
II ~I: I

l ~ ~ -_-_= X_=_=_-_-_:: :: :: ~
SENSE WINDINGS

MEMORY
PREAMPLIFIERS

PREAMP
SELECT

PASLO

PASl1

PASL2

PASL3

PASL4

PASLS

PASL6

t~ __ ~

Figure 3-112. Sensing System for Bit 0 (Typical)

MEMORY STROBE

SENSE AMPLIFIER
AND DISCRIMINATOR

901172A.3354

NL 18 NL 19 NL23
NL18 NL 19 L23

NL18 L 19 NL23

NL i8 Li9 L23

L 18 NL 19 NL23

L18NL19 L23

L18 L19NL23

L18 L19 L23

PASL6

PASLI

SDS 901172

SENSE LINE/PREAMP/SENSE AMPLIFIER SYSTEM (BYTE 0)

MEMORY STROBE = SASTO

SENSE LINE/PREAMP/SENSE AMPLIFIER SYSTEM (BYTE 1)

MEMORY STROBE = SASTl

Figure 3-113. Sense Line/Preamp/Sense Amplifier System (Bytes 0 and 1) (Sheet 1 of 3)

(4K)

(8K)

(I2K)

(16K)

(4K)

(8K)

(l2K)

(16K)

901172A. 3355/1

3-163

3-164

SDS 901172

SENSE LINE/PREAMP/SENSE AMPLIFIER SYSTEM (BYTE 1)

MEMORY STROBE = SASTl (CONT.)

SENSE LINE/PREAMP/SENSE AMPLIFIER SYSTEM (BYTE2)

MEMORY STROBE = SAST2

(4K)

(8K)

(12K)

(16K)

(4K)

(8K)

(12K)

(l6K)

(4K)

(8K)

(l2K)

(16K)

Figure 3-113. Sense Line/Preamp/Sense Amplifier System (Bytes 1 and 2) (Sheet 2 of 3)

901172A.3355/2

PASL6 I
PASL7 I

SDS 901172

SENSE LINE/PREAMP/SENSE AMPLIFIER SYSTEM (BYTE 3)

MEMORY STROBE = SAST3

SENSE LINE/PREAMP/SENSE AMPLIFIER FOR PARITY BIT (BYTE 3)

MEMORY STROBE = SAST3

(4K)

(8K)

(12K)

(16K)

Figure 3-113. Sense Line/Preamp/Sense Amplifier System (Bytes 2 and 3) (Sheet 3 of 3)

(4K)

(SKj

(12K)

(16K)

(4K)

(8K)

(12K)

"L v\
\'Q"I

901172A.3355/3

3-165

SDS 901172

The preamplifier select terms PASLO through PASL7 drop at
i KOOa time ana remai n fo l~e [or 60 '1;,t:1.. Jvr: i.~ t!-.c ;:,:~: ;:~~
delta noise time. Timing for these select circuits is con­
trolled by signal SDECEN. Two preamplifier select buffers
are required for each 4K memory stack. (See figure 3-129.)

PASLO

PASL1

PASL7

NLl8 NL 19 NL23 SDECEN

NL18 NL 19 L23 SDECEN

L18 Ll9 L23 SDECEN

Sense Amplifier, Module HT11. The sense amplifier can be
understood by regarding it as a differential amplifier with
feedback co~nections, as shown in figure 3-114. Idealized
waveforms are shown in figure 3-115. Assuming that there
is no differential input present, the circuit acts as a unity
gain amplifier to the strobe signal. The strobe signal swings
over a range of 3v to approximately 0.7v.

In operati on, the core output, of about 26 m V, causes the
output to go negative by about 1v from its quiescent 3v
level. The application of the strobe causes the output to
swing down through 0 to about -O.sv. The discriminator
discriminates about ground, and therefore responds to such
a signal. In the absence of either a strobe signal or a core
output si gna I, the output of the sense amp Ii fi er does not
fall to ground and therefore no discriminator output is
produced.

Figure 3-116 shows a schematic diagram of the sense ampl i­
fier. Transistors Q1 and Q2 are grounded base buffer
ampl ifiers and provide a low impedance into which the
preamplifier outputs are fed. The outputs of Q1 and Q2
provide a high impedance to drive the sense ampl ifier in a
differential fashion. Transistors Q3, Q4, and Qs form the
sense ampl ifier, whi Ie transistors Q6, Q7, and Q8 make
up the discriminator. The strobe signal is generated on
module ST34, which also has the Vs and Vt regulators
which set the voltage levels between which the strobe out­
put varies.

STROBE FROM
STROBE GENERATOR

2200.0. NI AAA

I

I
DIFFERENTIAL
INPUT FROM

PREAMPLIFIER
(CURRENT SOURCE)

The application of the strobe signals to the memory ampli­
fiers is byte-oriented/as indicated in figure 3-113.

SASTO

SASTl

SAST2

SAST3

NTSSTB

NTSSTB

NTSSTB

NTSSTB

NTSSTB

NTSSTB NTR140 + TR360 + •••

Inhibit System. The operation of addressing the cores during
the read (or clear) half-cycle sets all the selected cores to
the zero state. Therefore, during write or restore half-cycle
operations, ones are written only into those cores that corre­
spond to M-register bits containing ones. It is not necessary
to write zeros into those cores that already contain zeros.

To avoid writing a one in a particular location, it is neces­
sary to inhibit the Y current for that bit. It is not possible
to inhibit Y current by turning on Y switches in bit planes
where a zero is to be written because all 33 Y switches share
the same primary wire. The method used for writing zeros
{or rather, for not writing ones} is shown in figure 3-117.
The drive switch matrix is short-circuited by the inhibit
drivers. The circuit used, ST21, is internally identical to the
predrive circuit, ST22. The data register signal output is
inverted and this output is ANDed with a timing signal TPYI
(time for positive Y inhibit) or TNYI (time for negative Y
inhibit).

OOYPIP
OOYNIN
OlYPIP
01YNIN

31YPIP
31YNIN
32YPIP
32YNIN
TPYI
TNYI

DIFFERENTIAL
AMPUFIER

2200.0.
A It. A

NMOO TPYI
NMOO TNYI
NM01 TPYI
NM01 TNYI

NM31 TPYI
NM31 TNYI
NM32 TPYI
NM32 TNYI
TPYI NTWs60 + NY TW200
TNYI NTWs60
+ Y TW200

.. OUTPUT TO
DISCRIMINATOR

901172A.3356

Figure 3-114. Basic Sense Amplifier, Logic Diagram

3-166

SDS 901172

C
STROBE

CORE OUTPUT
(ACTUALLY IN­
VERTED IF VIEWED
AT SENSE AMPLI­

~~~IJt---~-- FIER OUTPUT) 

901 I 72A. 3357 

Figure 3-1 IS. Sense Waveforms 

STROBE 
FROM 
STROBE 
GENERATOR 

01 

+24V 

+4V 

-8V 

I 
FROM 

PREAMPLIFfERS 

02 

Distribution of the Y inhibit circuit outputs for bit 0 to the 
positive and negative current switches of each 4K memory 
stack is shown in figure 3-11S. This drawing is typical of 
the distribution of Y inhibits for all bits, 0 through 32. 

Timing for the three modes of memory operations - read­
restore, clear-write, and partial-write - is shown in figures 
3-119 through 3-121. 

Figure 3-122 is a module location chart showing the loca­
tion of 011 modules required for a 4K, SK, 12K, or 16K 
memory. 

+4V +8V +8V 

t 
-8V 

+4V 

DISCRIMINATOR 
OUTPUT TO 
MEMORY 
REGISTER 

90 II 72A. 3358 

Figure 3-116. Sense Amplifier, Simplified Schematic 

3-167 



NMO 

TPYI 

NMO 

TNYI 

3-168 

SDS 901172 

+8V 

+Vd 

Vm 
53 CLAMP 

DIODE 
........-t~.Vm +Vd 

OOYNIP 

+8V 

FROM 

POSITIVE ]11 Y CURRENT 
PREDRIVE ---t 
CIRCUITS 1 K 

POSITIVE 
VOLTAGE 
SWITCH 

POSITIVE 
CURRENT 
SWITCH 

......... --Vm 

OOYNIN 

Vm 
CLAMP 
DIODE 

NEGATIVE 
VOLTAGE 
SWITCH 

Figure 3-117. Y Current Inhibit Circuits, Simplified Diagram 

FROM 

I[
POSITIVE 
Y VOLTAGE 

1---'" PREDRIVE 
CIRCUITS 

1K 
--~,-Vm 

FROM 

Ilf
NEGA TIVE 
Y VOLTAGE 

t---- PRE DRIVE 
CIRCUITS 

901172A. 3359 



POSITIVE 
INHIBIT 

NEGATIVE 
INHIBIT 

OOYPIP 

OOYPIN 

+Vd 

OOYNIP 

OOYNIN 

SDS 901172 

Y POSITIVE AND 
NEGATIVE CURRENT SWITCHES 

Figure 3-118. Positive and Negative Y Current Inhibit, Bit a 

1 

0-4K 
8K-T2K 

4K-8K 
12K-16K 

901172A.3360 

3-169 



SDS 901172 

AHC ~
. 

J 

--t 
I 

MQC r--II....--______________ _ 
----1 r----f : 
----~I I~I _______________________ ___ 

I Ii 
MI 

LXL ----~! II ~I -----------
----~IIIIIIIIIIIIIIIIIIIIIIIIIIIIII ~II _______ _ TRXXX 

TWXXX I II 11111111""1""111'"' " II II '--__ _ 
I I I I 

TNXV II ! I 

TPVC 

\I I 
TNYV II I 
TPXC 

I I I 
I I 1 I I I I I ----:--I--'! III L...I --.--:------~-----

MXM 

AROC 

NTSSTI 1IIIIli 

SDECEN ~ I I \I I I 

IIIIIIII~, ~~I __ 
II 111111 I '---1 -~_--...:I...:...-I ___ _ 

STROBE 

MXD 

DGXX 

II111I11 II Ii L.....I ~~_-----:.....:... ___ _ 

II I11I11 I riL.....l -~-----7-----
I I I I I I I I I I I I i ~~ ________ _ 

--~II_I_II_II_I_II~I _I~~--~I~-I -----
II 1I1111 III I I I 

--~II_I_II~II_I ~II_I _I~~--~I~~I ____ _ 

-----~~::~::~::~:~:~: ~I~~~~~I~~:~~~ 

SRAOC 

EDR 

TNYI 

TNXC 

TPXV 

TNYC 

TPYV 

MWX 

I I I I II I I I I I I I I 

=====fFlIIIII III I11II L-__ 1:....:-11 -----:1 ___ _ 
I I ! I I I ! I ! I I I I I I ! I I 

RD 

DROC 

PE - ___ J..~.L!-L~L _UJ..._ .L1_1_l...! _u ____ ~ _ ~ ~ - _~ __ 
\ \ ~ \ \ \ \ \ \ \ \ ~ ~ \ \ \ \ \ \\ ~ ... ... ... ...... ,.. ,..... ,........ ............ ... ~,.. 1.'t ~ 
~ \~~~~~ ~~~ ~~ ~ 1'p! ~ '6:~ po V' 
't>'b 0 o'6~~oq <t1.q 'q ~;q ~ ~'q qJ 'b~ <0 

~ ~1. 1.1. 1. ~:t ~ 
% %% ~~ ~ %~ 'ft, 

901172A.3361 

Figure 3-119. Read-Restore, Timing Diagram 

3-170 



SDS 901172 

LCXX Sf 
~: 

AHC --I~ , 
MaC r-I~ ______________________________ _ 
~~ r 

MI 

LXL 

TRXXX 

I~' ----------------------------­
II ~ ----------

___ ---' 111111111111111111111111111111 L-I _____ _ 

I 
TWXXX ___ --.:.-__ :.....-1 ----II I I I I I 1 I 1 I I I /I I I J I 1/ 1 I I I 1 1 I I I I I L..-I ___ _ 

, I 
TNXV 

TPYC 

TNYV 

TPXC 

MXM 

II 1 I 
I I II I i AROC 

/I I I'~II --I I 
SOECEN ----.H-J I I, r-! __________ _ 

STROBE I I I I I~ ......... ----'· 
II I II ~i -----.L......--:....1----.:1 ________ _ 

NTSSTB 

MXC 

1/ I I1I1 r'-L---------------
------:....~-----', I I 

I i I I i I I 

II I I: II L....:....I-.:....-I -: -------

M32 

SRAOC 

EOROC 

TNYI II I III II 
TNXC 1/ I III II 
TPXV II I ! II II 
TNYC II III II 
TPYV II I III II i--I --~ __ _ 

I' , I" , I I I 

OROC 

------'I! I III II I I 
I1II111 ~!I l...!..-...;.II----
\\ \ \\\ \\,. \ \ 
~~ ~ ~~~ -pop, ~ 1: 1:li'.: 
%% % ~b~~ ~c:o ~ '60 tt> 

MWX 

WF 

-1. -'i -1.-1.-1. 
% % ~~'%, 

Figure 3-120. Full Clear Write, Timing Diagram 

9011 72A. 3362 

3-171 



SDS 901172 

AHC __ ff_~-O 
I 

MaC r---l --tJ----j ;------------------
MI -~\ 1

11-------------------
LXL 

---'\ I 
TRXXX i--rl """"rT-I-r-r,,-'-1 T"""TII"""T'""I r"T"" ""T""'11 1r"""T'"1-r-r,,-'-1 -r-TI I"""T'""/ r-rll ~"r"""T'"I-r-r,,-"""/ L.-I ________ _ 

TWXXX I 11111111111111111111111111111111 
TNXV I I 

I I 

TPYC 

TNYV 

TPXC 

MXM I I,~-~---------
AROC --~I I ~I --~--~~I __ ~ ________ _ 
NTSSTB i I I IL.-l ! --~ i 
SOECEN ~ I III I I 

IIIII11 I I I 
STROBE 

MXO 

MXC __ ~II~I~I_II_l_I ___ 1 _I ~~I ~I I~ ________ ___ 
~OC II II III 'III ~I~I ~~I~I~I~~~~~ 
OROC _~II--,-II~I~II_I-_II _I _..,.....------111 II 11.1 '---I' -----
TNYI II II III II II I L 
TNXC 1\ II III II II I I I I I 
TPXV II II III II III I I I I 
TNYC II II III II II I I I I I 
TPYV II II III II 1\ I I I I I 

90 11 72A. 3363 

Figure 3-121. Partial Write, Timing Diagram 

3-172 



W 
I -(j 

" co 
c 
ib 
w 
I 

'" !" 

S 
CD 
3 
0 

--< 
S 
0 
Q.. 
c 
CD 

.-
0 
0 

§.. 
0 
::J 

() 
::r 

~ 

A 

C 

D 

G 

H 

25 24 23 22 21 20 19 

® CD @ 

~T~ 111549 111549 111549 111549 111549 111~i49 111549 

BYTE 0 BYTE 1 

CD @ 
HT26 HT26 HT26 HT26 HT11 HT11 ST34 HT11 HT26 HT26 HT26 

j 
ADD FOR 4-SK 

2 ADD FOR S-12K 
ADD FOR 12-16K 

6 ADD FOR PORT A 
7 ADD FOR PORT B 

18 17 16 15 14 10 9 6 4 

@ ®j.: @ ® CD G) 

111549 111549 111549, 111541' 111549 111550 111550 111550 111550 

BYTE 2 BYTE 3 ---
Q) G) 

HT11 HT11 ST34 HT11 HT26 HT26 HT26 HT26 ST17 



Paragraphs 3-58 to 3-59 SDS 901172 

3-58 OPERA nON CODE IMPLEMENTA nON 

3-59 Preparation Phases 

Every instruction performs certain preliminary operations 
that are common to many other instructions. The clock 
phases during which these operations are performed are 
identified as preparation phases PRE1 through PRE4. Each 
instruction goes through two or more of these preparation 
phases before entering its individual execution phases. 

Preparation for instruction execution is actually started 
during the last phase of the previous instruction. This phase 
is identified as PH10, and signal ENDE is true. In phase 10 
the next instruction is read from core memory and placed in 
the C-register and the D-register. The operation code is 
stored in the O-register and the private memory address in 
the R field is transferred to the R-register. The contents of 
the P-register are increased by one to update the current 
instruction address. If indexing is specified, preset signals 
are generated to load the index displacement value into the 
A-register in preparation for phase PRE 1. A sequence chart 
of the operations performed in phase 10 is shown in table 
3-18. 

Every instruction enters preparation phase PRE1. At the end 
of this phase the program moves to PRE2, PRE3, or PRE4, 
depending on whether the instruction is indexed, indirectly 
addressed, or is an immediate instruction . 

. ~ it..,.j,1(,'C.-\ 

~ i-V<:;'i-(f/.-t..- ~-

A block diagram of the general functions of the preparation 
PIlO!lt::!1 UIIJ ILt::jr ;,t;;4Uci,':"c ;.) :;:,0.,,-, 1:. ~;8urc 3 123. 

During PRE1 or PRE2, signal PRE/12 is true if the phase is 
the last one in which effective address computation takes 
place. This computation includes reading the indirect 
address from memory if required and, if indexing is speci­
fied, adding the index displacement value to the reference 
address or the i ndi rect address. Indi rect addressi ng always 
precedes indexing. If the instruction is indirectly addressed 
or if it is an indexed byte, halfword, or doubleword instruc­
tion, phase PRE2 is repeated and PRE/12 is true during the 
second pass. 

During PRE3 or PRE4, signa I PRE/34 is true if the phase is 
the last preparation phase. Signal PRE/34 is true during 
PRE3 except during byte, halfword (except multiply half­
word), or absolute instructions, when the program goes to 
PRE4. During PRE4, when a zero value in the byte counter 
indicates that byte or halfword alignment in the D-register 
is complete, PRE/34 is true and the program goes to PH 1. 

A sequence chart of all the preparation phases is shown in 
table 3-19. A flow chart of the preparation phase sequence 
for immediate instructions is shown in figure 3-124. A de­
tailed flow chart of each phase for nonimmediate instruc­
tions is shown in figures 3-125 through 3-129. 

---r7 c (" c_ '< J~/~'-I-- ~ ~- Table 3-18. Phase 10 (ENDE) Sequence 

Phase Function Performed Signals Involved Comments 

PH10 One c lock long 

DR Enable signal ENDE ENDE = PH10 EXC Signal ENDE signifies 
end of i nstructi on exe-

S/EXC = PRE1 NCLEAR cution. Flip-flop EXC 
was set at previous PRE 1 

(MBO-MB31 )----.-(CO-C31) CXMB = DG = /DG/ Next instruction-C-
register if MRQ set at 

... previous clock. P-
register was incremented 
during previous ENDE 

(CO-C31 )--f-(DO-D31) DXC = PH10 + ... Next instruction--f--
D-register 

(C1-C7)-+-(01-07) OXC = PH10 + ... Opcode of next i nstruc-
tion -+---O-register 

(C8- C 11 )--r---(R28- R31) RXC = PH10 + ... R field of next instruc-
tion -f--R-register 

Mnemonic: ENDE 

(Conti nued) 

3-174 



SDS 901172 

Table 3--'8. Phase 10 (H-JDE) Sequence (Cont.) 

Phase Function Performed 

PH 10 Change address i!", P-register 
as follows: 

DR 
(Cont.) I Increment program address un less 

one of the following conditions 
I is present: 

I 

EXU instruction 

I/o service call 

Interrupt 

Ha It condition 

PCP INSTR ADDR switch in 
HOLD position 

Decrement program address 
if instruction is to be repeated 

Enable signal (S/SXD) 

Set flip-flop LRXD 

Reset flip-flop NAXRR 

I 
Branch to PRE1 unless one of the 
following conditions is present: 

T rap. If tra P, bra nch to 
I NTRAP phases 

PUC31 

PDC31 

(S/SXD) 

S/LRXD 

R!LRXD 

S/NAXRR 

Signa Is Involved 

= N(FUEXU ENDE) PHlO 

= 

= 

= 

= 

= 

NHAL T NIOSC N(INT KRON) 

NKAHOLD + ... 

FUEXU (INT + 10SC) ENDE 

+ FUMMC PH 10 NMCZ 

ENDE (INT + 10SC) + ... 

PH10 + ... 

OXC + ... 

... 

N(S/AXRR) 

(S/AXRR) = PH10 + ... 

R/NAXRR = ... 

PRE1 EN = N(S/TRAP) N(S/INTRAP) 
NIOSC NHALT 

S/NPRE1 = N(S/PREl) 

(S/PRE 1 = PRE1EN PH10 + ... -
R/NPREl = ... 

(S/INTRAP) = (S/TRAP) + ... 

(S/TRAP) = FAFL NRW ENDE NTRAP 

+ ENDE AM CC2 OVERIND 

+ ... 

(Conti nued) 

I 

Comments 

Poi nt to new i nstructi on 
in sequence. P-register 
holds address of instruc­
ti on just executed + 1 
before i ncrementi ng 

Repeat i nstructi on if 
EXU or MMC was just 
executed and interrupt 
or I/o service call is 
present 

Preset adder for 
D--S in PRE1 

For index operations 
in PREP phases 

For index operati ons 
in PREP phases 

Flooti ng-poi nt trap 
condition 
Fixed-point arithmetic 
overflow 

Mnemonic: ENDE 

3-175 



SDS 901172 

Table 3-18. Phase 10(ENDE) Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

If interrupt pendi ng, (S/INTRAP) INT lEN + •.• -PH10 Interrupt. = 

~Cont .) branch to INTRAP phases 
lEN KRUN PH10 NIOS~~~_ ~ = 

Interruptible point in 

If I/o service (S/IOSC) 
instruction specified by 

I/o service call. = SC NSCINH Sign~~ 
call pending, branch to I/O 
phases (S/IOEN) = 10SC PH 1 0 NIOINH (S/IOSC) indicates that 

+ .•• I/o service call is 
pending. (S/IOEN) 
enables branch to I/o 

I Hait condition. If HALT flip- I S/HALT = (S/HAL T) I 
I pnases 

flop is set, branch to PCP phases 
(S/HAL T) = FUWAIT PHl HALT flip-flop is set 

+ INTRAP PRETR previous to PH 1 0 

N(FAMT + XPSD) 

+ NKRUN PRE1 NFUEXU 

BRPCPl = NFUEXU PH10 NIOSC 
HALT 

I General reset terms 
Clear and reset functions CLEAR = PHlO + ••• for various CPU flip-

flops 

RESET/A = CLEAR + ••• 

Mnemonic: ENDE 

3-176 



WORD 
ADDRESSING 
NOT INDEXED 

SDS 901172 

ENDE 

READ INSTRUCTION FROM CORE MEMORY 
LOAD D-, 0-, AND R-REGISTERS 
UPDATE INSTRUCTION ADDRESS IN P-REGISTER 

PRE1 

DECODE OPERATION CODE 
STORE PROGRAM ADDRESS IN B-REGISTER 
SET INDEX AND INDIRECT ADDRESS FLIP-FLOPS ~-------~ 

INDIRECT ADDRESSING OR BYTE, 
HALFWORD, DOUBLEWORD 
INDEXING 

" 
PRE2 

FETCH INDIRECT ADDRESS 
ALIGN A-REGISTER FOR INDEXING 

I 

PRE2 

ADD INDEX VALUE TO REFERENCE 
ADDRESS OR INDIRECT ADDRESS 

INDIRECT ADDRESSING OR BYTE, 
HALFWORD, DOUBLEWORD INDEXING 

WORD ADDRESSING, 
INDEXED, NOT 

_ INDIRECTLY ADDRESSED 

TRANSFER INDIRECT ADDRESS TO P-REGISTER 

, 
PRE3 

FETCH OPERAND FROM CORE MEMORY, 
.-------1 PLACE IN C- AND D-REGISTERS 

NOT INDEXED, NOT 
_ INDIRECTLY ADDRESSED 

" 

MOVE PRIVATE MEMORY REGISTER CONTENTS 
TO A-REGISTER 

BYTE, HALFWORD ADDRESSING 
• ' (EXCEPT MH), ABSOLUTE INSTRUCTIONS 

,..-----'-----------'------, LOAD IMMEDIATE, LOAD 
PRE4 

ALIGN OPERAND FOR BYTE OR HALFWORD 
OPERA nON 

EXTEND SIGN 

BYTE COUNT "101 

-
CONDITIONS AND FLOATING 
CONTROL IMMEDIATE 

INSTRUCTION _ BYTE COUNT = 0 
EXECUTION ..... ___ ..:.....;..;.;~~--.;...--...:... __ -.J 

92JJ72A.3008 

Figure 3-123. Preparation Phases General Functions, Block Diagram 

3-177 



Phase Functi on Performed 

PRE lOne c lock long 

T5L 

3-178 

NANLZ ~ (P15-P31)-+-­
(815-831) 

(DO-D31) -- (SO-531) 

NFAIM =9 (S15-S31)-+-­
(P15-P31) 

Indexed instruction ~ 
gating signal INDX 

(D12-D14)~/LR29/-/LR31/ 

(RRO-RR31 )-f--(AO-A31) 

INDX ==9 set flip-flop IX 

INDX NFAW ==* set index 
alignment flip-flop IXAL 

CO ~ set flip-flop IA 

CO ~ set flip-flops MRQ 
and DRO 

SDS 901172 

Table 3-19. Preparation Phases Sequence 
,----," ---------------

Signals Involved 

BXP/1 = BRP PREl + ... 

5XD preset during PH10 of previous instruction 

PXS 

INDX 

(LR29- LR31 ) 

S/LRXD 

R/LRXD 

= NFAIM PREl + ••. 

= (C3 + C4 + C5) 

(C12 + C13 + C14) 

= D12-D14 LRXD + ... 

= OXC 

NAXRR reset during PH10 of previous instruction 

S/IX = INDX PRE1 

R/IX = (R/IX) 

(R/IX) = PRE/12 + CLEAR 

S/IXAL = (S/IXAL) NCLEAR 

(S/IXAL) -- INDX PRE1 NFAW + ... 
5/IA = CO PRE1 

R/IA = ... 

S/MRQ = (S/MRQ/2) + .•• 
(S/MRQ/2) = CO PRE1 NFAIt·A + ••• 

R/MRQ = ... 
S/DRQ = (S/DRQ) NCLEAR 

(S/DRQ) = (S/MRQ/2) + ••• 
R/DRQ = ... 

(Conti nued) 

Comments 

Move progra m address 
from P- to B-register. 
BRP set duri ng previous 
instruction execution 
when B-register con­
tents transferred to 
P-register 

D-register contai ns 
current i nstructi on 

Move operand reference 
address to P-register if 
not immediate i nstruc­
tion 

C-regi ster contai ns 
instruction word. 
Indexing specified by 
instruction bits 12 
through 14 

If indexing specified, 
place index register 
address on private 
memory address lines 

Move displacement 
va lue in index regis­
ter to A-register 

Index value must be 
aligned if byte, half­
word, or doubleword 
operation 

Bit 0 of instruction 
word specifies indirect 
addressing 

Request for core memory 
cycle 

Inhibits transmission of 
another clock unti I 
data release is received 
from memory 

Mnemonic: PREP 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Phase 

PRE1 
T5L 

(Cont. ) 

I 

I 

Functi on Performed 

Word operation, indexed, without 
indirect addressing ~ enable 
signal (S/SXAPD) 

Indexing with byte, halfword, or 
doubleword operation ~ enable 
signa I (S/SXA) 

LI, LCFI ~ enable signal 
(S/SXD), sign extension, and 
branch to PRE4 

Indexing or indirect addressing 
~ branch to PRE2 

Enable trap 

Set HALT flip-flop if compute 
switch is moved out of RUN 
position 

I 

I 

(S/SXAPD) 

(S/SXA) 

(S/SXD) 

SPIM 

S/SPW 

R/SPW 

S/SPZ 

R/SPZ 

BRPRE4 

BRPRE2 

S/PRETR 

R/PRETR 

S/HALT 
(S/HAL T) 

R/HALT 
(R/HAL T) 

Si gna Is Involved Comments 

= FAW PRE1 NCO INDX + .•• Preset adder for A plus 
D -- S in PRE/12 if 
unaligned indexing 

= (S/IXA L) + ... 

= (FUll + FULCFI) PRE1 + .•. 

= (FUll ' FULCFI) PRE 1 + ... 

= SPIM D12 

= SPIM ND12 

= (FUll + FULCFI) PRE 1 NCO 
NANLZ + ... 

= INDX PRE1 + CO PRE1 
+ ... 

= PREl NANLZ 

= ... 

= (S/HAL T) + ... 
= NKRUN PRE 1 NFUEXU + ••• 
= (R/HAL T) 
= INTRAP1 + NKAS/B PCP2 

I only 

Preset adder for 
A --- S in PRE2 

Preset adder for 
D--- S in PRE/12 

Sign-pad immediate 
signal 

Sign-pad ones if D 12 
in LI instruction is l. 
Bit i in ioad immediate 
is sign bit 

Sign-pad zeros if D12 
in load immediate 
instruction is 0 

PRE2 and PRE3 not 

I 
entered if no indexing, 
indirect addressinq, or 

I memory access 

I 

Go to PRE2 to fetch 
i ndi rect address or 
alian word for indexinn v . - - - ~_._;;;} 

Permit trap operation in 
case of nonexistent 
operation code, uni m­
plemented instruction, 
or privi leged i nstructi on 
ins lave mode 

Halts preparation phases 

. ____ . __ ._. ___ . _____________ -+-_________________ ._ ----+--.-.-------------i 

PRE2 One clock long or sustained unti I 
data release 

1 st 
Pass 

DR 
or 
T5L 

IXA L ===9 (AO-A31) --­
(SO-S31 ) 

Adder preset in PREl 

(Conti nued) 

Place index register 
value in A-register 
on sum bus 

Mnemonic: PREP 

3-179 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PRE2 Byte alignment ===* 1/4S-+-A AXSR2 = IXAL PRE2 FABYTE + ... Move index displace-

1st ment value two bit 

Pass positions right if byte 
addressing 

DR 
or Halfword alignment~ AXSR1 = lXAL PRE2 FAHW + ... Move index displace-

T5L 1/2S-+--A ment value one bit 

(Cont.) position right if half-
word address i ng 

I Doubleword alignment ~ I Avell = lXAL PRE2 J:A r"\\A/ + I Move index displace= r"\"JL I I r"'\.I..,..fYY ... 
2S-+--A ment value one bit 

position left if double-
word addressing 

Set flip-flop P32 according to S/P32 = A30 AXSR2 A31 contai ns least sig-
byte count in two least signif- nificant bit of byte 
icant bits or halfword count + A31 IXAL AXSRl count; A30 contains 
in least significant bit of index most significant bit. 
displacement value in A-register 

I 
+ ... 

I 
A30 contains halfword 
count 

Set flip-flop P33 according to S/P33 = A31 AXSR2 
byte count 

(MBO-MB31)---(CO-C31 ) CXMB = DG Read i ndi rect address 
from memory into C-
register 

(CO-C31) --+-- (DO-D31) DXC = IA PRE2 + ... Move indirect address 
from C-register into 
D-register 

IA and not IX ~ enable (S/SXD) = IA NIX PRE2 Preset adder for D---S 
signal (S/SXD) in second PRE2 

IA and IX or reference address (S/SXAPD) = IA IX PRE2 + IXA L PRE2 + ..• Preset adder for A plus 
and IX with alignment ~ D---S in second PRE2 
enable signal (S/SXAPD) 

Sustain PRE2 if indirect address- BRPRE2 = IXAL PRE2 + IA PRE2 + ... 
ing or index alignment 

Mnemonic: PREP 

(Continued) 

3-180 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 
.• --. 

I 
Phase Function Performed Signals Involved I Comments 

I 
PRE2 One clock long 

IA ==9(DO-D31 )--(SO-S31) Adder logic preset in first PRE2 Place indirect address on 
2nd sum bus 
Pass 

IA and IX or index alignment~ Adder logic preset in first PRE2 Place indirect address 

T5L 
I plus index di splacement (AO-A31) + (DO-D31)--

(SO-S31 ) or reference address pi us 
index displacement on 
sum bus 

(S15-S31 )-f--(P15-P31) PXS = PRE2 + ... Transfer effective address 
from sum bus into P-
regi ster 

PRE/12 PRE/12 is not a phase flip-flop; 
it is the output of a gate whose 
simplified equation is 05 follows: I 

(PRE 1 PRE/12 = PRE1 NINDX NCO 

I or + PRE2 NIA NIXAL 
PRE2) 

The signal PRE/12 is therefore true 
during either PRE1 or PRE2 when the 
phase represents the end of address 
modification. When either PRE 1 or 
PRE2 is equivalent to PRE/12, the 
next phase entered is PRE3 

The following operations take placel I 
during either PRE 1 or PRE2 if 

I 

PRE/12 is true during the phase: 

Reset fI ip-flop IX I R/IX = (R/IX) Reset index fl ip-flop 
I (R/IX) = PRE/12 + CLEAR I 

I 
Set flip-flop MRQ I S/MRQ = (S/MRQ/2) + (S/MRQ/1) Request for core memory 

I 4- cycle. PREOPER is true I 
... 

I I (S/MRQ/2) = PREOPER PRE/12 + ••• for instructions that re-I 
I 

I I 
quire reading contents of 
effecti ve address 

! 
! (S/MRQ/1) -- FABRANCH PRE/12 NANlZ No data release requested 

R/MRQ = 
by thi s memory request ... 
during a branch instruc-

I tion 
I 

I I Set fI ip-flop DRQ S/DRQ = (S/DRQ) Inhibits transmission of 

(S/DRQ) (S/MRQ/2) + (S/DRQ/2) 
another clock unti I data 

= release is received from 
+ ..• 

memory. Execute in-
(S/DRQ/2) = OU6 Ol7 PRE/12 + •.. struction is in FABRANCH 

R/DRQ = 
and therefore requires ... 
special setting equation 
for data request. DRQ is 
set in PH 1 after (S/MRQ 
(S/MRQ/1) 

Mnemonic: PREP 

(Conti nued) 

3-181 



SOS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Phase 

PRE! 
12 

(PRE1 
or 

PRE2) 

Function Performed 

Reset fli p-flop NAXRR 

(Cont.) Merge one---- LR lines 

3-182 

FAOW and not LAD or floating­
poi nt ==} merge one into LB 
lines 

No indexing ~ (00-031)-­
(50-531) 

Indexing ) (AO-A31) 
+ (00-031)-(50-531) 

(50-531 )-f---(PO-P31) 

FAIO ~ (SO-531)-+-­
(00-031) 

FAOW ~ force zero into 531 

Reset flip-flop NT8L 

I 

Signals Involved 

S/NAXRR = N(S/AXRR) 

(S/AXRR) = PRE/12 + ... 

R/NAXRR = ... 
S/NLR31F = N(S/LR31) 

(5/LR31 ) = PRE/12 (S/LR31/12) + ..• 

(S/LR31/12) = (S/lR31/1 ) 
+ FAMULNH 
+ FASEl + ... 

(5/LR31/1) - OUl OlO + OU1 all 
+ OU1 OL5 + OU1 OL8 
+ OU3 OL9 + OU2 Ol5 

R/NLR31F = ... 
/LR31/ = P31 

(S/P31/1 ) = FAOW PRE/12 N(04 OS) 
(NOU1 OlB) + ••• 

(S/SXO) preset in PRE2 first pass or PH 10 
of previ ous i nstructi on 

(5/5XAPO) preset in PRE1 or first PRE2 

I 

Comments 

Preset for transfer of 
private memory R con­
tents into A-register 
in PRE3 

Set odd-numbered 
address in private mem­
oryaddress lines 

5et odd-numbered 
address in core memory 
address lines 

Place indirect address 
or reference address 
en sum bus 

Place reference address 
plus index displacement 
on sum bus 

PX5 = NFAIM PRE1 + PRE2 + ... Place effective address 
in P-register if PRE2 or 
if PRE 1 and not imme­
diate instruction 

OXS 

5311NH 

5/NT8L 

(S/T8l) 

R/NT8l 

= FAIO PRE/12 + ... 

= FADW PRE/12 

= N(5/T8L} 

= PRE/12 + ... 

= + ... 

(Conti nued) 

Effective I/o address 
----D-register 

Inhibit least significant 
bit of address to place 
even-numbered double­
word address in P­
register. This addresses 
most significant half of 
doubleword 

5et T8l clock for PRE3 

Mnemonic: PREP 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Phase Functi on Performed Signa Is Involved Comments 

PRE/ Enable signal (S/SXB) if not (S/SXB) == PRE/12 NFAIM + ... Preset adder for 
12 immediate instruction B--S in PRE3 

(PRE1 Reset fli p-flop NPRE3 S/NPRE3 = N(S/PRE3) Go to preparation 
or phase PRE3 

PRE2) 
(Cont.) (S/PRE3) == PRE/12 NBR 

R/NPRE3 == ... 

PRE3 (BO-B31 )-(50-531) (S/SXB) preset in PRE/12 Return program address 
to P-register from 

T8l B-register 
or 

DR (515-531 )-f---(P 15-P31 ) PXS = FAS iO NFAIM PRE3 
NANlZ 

+ FUWAIT PRE3 NANlZ 

+ FASEL PRE3 NOL7 
NANLZ 

+ FUEXU PRE3 NANlZ 

+ FARWD PRE3 NANlZ 

+ FAMDS NFAIM PRE3 
NANLZ 

+ ... 

Not word operati on ===9 s/BCO == NP32 PRE3 NPRE/34 01 Byte counter BCO and 
load byte counter + ... BC 1 are interpreted as 

follows: 
S/BCl = NP33 PRE3 NPRE/340U7 

+ ... BCO BCl 

Byte 0 0 0 

Byte 1 0 1 

Byte 2 1 0 

Byte 3 1 1 

Halfword 0 0 
0 

Halfword 1 0 
1 

Mnemonic: PREP 

(Conti nued) 

3-183 



Phase 

PRE3 

T8l 
or 

DR 
(Cont.) 

3-184 

SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Func ti on Performed 

Not word operation ====? set 
sign extention 

Set flip-flop SPW 

Set flip-flop SPZ 

Enable signal (S/SXD) 

Set flip-flop PRE4 

FUMI and FADIYH =====> reset 
flip-flop NCXS 

PREOPER =====? (MBO-MB31) 
---(CO-C31 ) 

(CO-C31 )-f-(DO-D31) 

(RRO-RR31 )-+--(AO-A31) 

S/SPW 

SPIM 

R/spw 

S/SPZ 

R/spz 

(S/SXD) 

S/PRE4 
R/PRE4 

BRPRE4 

S/NCXS 

(S/CXS) 

R/NCSX 

CXMB 

DXC 

Signals Involved 

= SPIM D12 

+ FAHW C16 P32 PRE3 

+ FAIM PRE3 + ... 

== ... 

= SPIM ND12 

+ FAHW NC16 P32 PRE3 

+ FABYTE P32 P33 PRE3 

+ 

= PRE3 BRPRE4 + ... 

BRPRE4 NClEAR 

PRE3 NPRE/34 NANlZ 

N(S/CXS) 

FUMI PRE3 

+ FADIYH BREPRE4 

DG /DG/ 

PREOPER PRE3 + ... 

AXRR set at PRE/12 clock 

~ I. 
':)/A 

n 
- RR AXRR ~-JAXRRINH 

n 
+ .•. 

(Conti nued) 

Comments 

Sign pad ones if sign 
is 1. In an immediate 
instruction (SPIM) bit 
12 contai ns the si gn. 
In a halfword instruc-
tion (FAHW) bit 16 
- 'l? ~ontalns the sign. Pv .... 
indicates halfword 1 

Sign-pad zeros if sign 
is O. In byte operation 
this refers only to byte 
3 (P32 and P33), when 
bits 0 through 23 of the 
contents of register R 
are to be cleared 

Preset adder for 
D---S in PRE4 

Branch to PRE4. PRE/.34 
is true if multiply half­
word or word or double­
word operation 

Preset for transfer of 
S---C in PRE4 

Read contents of effec­
tive address, or effec­
tive address u 1 if 
doubleword operation, 
from core memory into 
D-register via C­
register 

Read contents of pri­
vate memory register 
R into A-register. 
Inhibit AXRR for 
given instructions 

Mnemoni c: PREP 

, 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PRE3 AXRRINH = FASTORE PRE3 Ol4 

T8l 
+ FAPSD PRE3 

or + FAST/M PRE3 
DR 

+ FARWD OlC PRE3 (Cont.) 
+ ... 

STCF ~ CF-f---(A24-A31) AXFC = FASTORE PRE3 Ol4 Move contents of con-
dition code and float-
ing control flip-flops to 
A-register if store con-
di ti ons and floa ti ng 

I 
COiitiO! iiiSfiUctlOii 

XPSD ~ PSW1--f---(AO-A3l) 
I 

AXPSW1 = FAPSD PRE3 + ... Move contents of pro-
gram status doubleword 
1 into A-register for 
exchange program 
status doubleword i n-
struction 

PSM, PlM, lM, STM~ AXCC = FAST/M 06 (PRE3 + .•. ) AXCC places condition 
CC -+--(A28-A31) code in A-register and 
CC-I- (MC4-MC7) macro-counter during 

specified instructions. 
Conditi on code con-
tai ns number of words 

PSW, PlW~l-+--MC S/MC7 = FAST/M PRE3 N06 Set one into macro-
counter for push word 

I I 
and pu i i word i nstruc-
tions 

FAIO ~ O---lR lines I lRXZ = FUSIO PRE3 I Address private memory 
register 0 to get com-
mand doubleword 
address 

P-l--f-- P PDC31 = FADW/I PRE3 Increment P-register to 
+ FAST PRE3 get address of most sig-
+ FACOMP PRE3 OU1 nificant word of double-

word 

FULAD ~ set fli p-flop MRQ S/MRQ = (S/MRQ/2) + ••• Core memory request 

(S/MRQ/2) = FAlOAD/A OUI PRE3 + ••• if load absolute double-
word instruction 

R/MRQ = ... 
Set flip-flop DRQ (S/DRQ) -. (S/MRQ/2) + ... Inhibits transmission of 

R/DRQ 
another clock unti I 

=- ... data release is received 
from memory 

Mnemonic: PREP 

(Conti nued) 

3-185 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 
____ ·~ ___ ._r." ___ 

Phase Function Performed Signals Involved Comments 

PRE3 P + l-+-'P PUC31 = FUlAD PRE3 + ... Increment P-register to 
get address of least sig-

T8l nificant word 
or 

DR Branch to execution phase if See PRE/34 
(Cont.) PRE/34 

Go to PRE4 if not PRE/34 BRPRE4 = PRE3 NPRE/34 NANlZ 

I I I I 
PRE4 One clock long 

T5l Set sign extension 

Enable signal (S/SXD) (S/SXD) = PRE4 (BC=1) + ... Preset adder for 
D---S in next PRE4 

Set flip-flop SPW S/SPW = (S/SPW) + ••• Sign-pad ones if sign 

I I 
(S/SPW) FAHW D8 (BC=l) PRE4 + ••• 

is 1. Flip-flop D8 
= contains sign when 

R/spw = ... halfword 0 has been 

I moved right eight 
positions (BC = 1) 

Set flip-flop SPZ S/SPZ = (S/SPZ) + ••• Sign-pad zeros if sign 

(S/SPZ) = FAHW ND8 (BC = 1) PRE4 
is 0 for halfword oper-
ation. Clears bits 0 

+ FABYTE (BC = 1) PRE4 through 23 for load 
+ ••• byte instruction R/spz = ... 

(DO-D31 )---(SO-S31) (S/SXD) set in PRE3 or previous PRE4 Propagates are inhib-
ited (SPZ) or enabled 

(SO-S31 )-4-f--(DO-D31) DXS = BCZ PRE4 NFULAD (SPZ) or enabled (SPW) 
+ .•. upward from sign posi-

tion. Sign extended 
(50-531) --- (CO-C31) NCXS reset in PRE3 va lue placed in C-

register as well as D-
register for multiply 
immediate and divide 
ha If word, and for 
divide word with even 
R field 

FULAD ~ (MBO-MB31) CXMB = DG I Read least significant 
--- (CO-C31) I word of doubleword 

from memory into (-
register 

Mnemonic: PREP 

(Conti nued) 

3-186 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Phase Fu ncti on Pe rformed Signals Involved Comments 

i 

PRE4 (CO-C31 )-+---(DO-D31) DXC == FULAD PRE4 + ... Load least significant 
word into D-register 

T5L 
( Cont.) P-l-+--P PDC31 == FULAD PRE4 + ... Decrement P-register 

I to get address of most I 
I 
I significant word 
I 
I 

Load ~ down align D-register DXDR8 NBCZ PRE4 For load operation, 
I 

== + ... 
a lign byte or ha If word 

I 

to right end of D-
register by shifting 
D-register right one 
byte at a time unti I 
byte counter == 0 

I 
Store =9 left align A-register AXAL8 == FASTORE NBCZ PRE4 

I 
For store operation or 

+ FAMT SW2 NBCZ 
for modify and test 

PRE4 
i nstructi ons when R 
field is nonzero, align 

+ ... A-register left one byte 
at a time unti I i nforma-
tion is in proper position 
for effective location 
(byte count == 0) 

BC f= o ~ decrement byte BCDCl NBCZ PRE4 
I 

Subtract one from byte == + ... 
counter count during each PRE4 

unti I BC ==0, NBCZ false 

Compare byte ===? O-+-- AXZ/012 == FACOMP/l OU7 PRE4 Clear lower bit posi-
(AO-A23) tions of aligned effec-

tive byte for comparison 

I 
wi th contents of register 

I 
R 

BC f= o =====> sustain PRE4 BRPRE4 == PRE4 NBCZ + ... 

I 

Repeat PRE4 unti I byte 
count == 0 i ndi cates 
that a lignment is com-
plete 

Mnemonic: PREP 

(Continued) 

3-187 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 
c--~~----~- i 

Phose Function Performed Signa Is Involved Comments 

PRE/ PRE/34 is not a phose fli p-floPi 
34 it is the output of a gate whose 

simplified equation is as follows: 

PRE/34 = PRE3 FAWORDW 
NFALOAD/A 

+ PRE3 FUMH 

+ PRE4 NBC1 NBCO 

I NANLZ I 1 I 
The signal PRE/34 is true during the 
lost preparation phase when register 
alignment is taking place. Signal 
PRE/34 is true during PRE3 when a 
branch to an execution phase is to 
be made, and duri ng PRE4 when the 
byte count is zero 

The following operations take place 
during either PRE3 or PRE4 if 
PRE/34 is true during the phase: 

Enable signal (S/AXAPD) (S/SXAPD) = FAADD (PRE/34 + ... ) Preset adder for A plus 
D-S to odd two 
operands 

Enable signal (S/SXAMD) (S/SXAMD) = FAS UB (PRE/34 + ... ) Preset adder for A 
minus D-S to sub-
tract one operand from 
another 

Enable signal (SXDMA) (S/SXDMA) = FUPLM (PRE3 + ... ) Preset adder for D mi nus 
A---S to check for 
word count underflow 
in stack pointer double-
word during pull mul-
tiple instruction 

Enable signal (S/SXA) (S/SXA) = FASTORE PRE/34 Preset adder for 

+ FAMT (PRE/34 + ... ) A----S in first exe-
cution phase 

+ FUMMC PRE3 

+ FUS PRE3 

+ FAMUL (PRE/34 + ... ) 

+ FARWD NRZ (PRE/34 
+ ... ) 

+ ... 

Mnemonic: PREP 

(Conti nued) 

3-188 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Phase Function Performed Si gna Is Involved Comments 

PRE/ Enable signal (S/SXD) (S/SXD) = FUINT PRE3 Preset adder for 
34 

+ FAlCFP PRE/34 D --- S in first 
(Cont.) execution phase 

I + FAlOAD (PRE/34 + ... ) 
I 

+ FUXW PRE3 

+ ... 

Enable signal (S/SXDMl) (S/SXDMl) = FUPlW (PRE3 + ... ) Preset adder for D 
minus l-S to 
check for word count 
underflow in stack 
poi nter doub leword 
durlng pull word In-
structi on 

Enable signal (S/SXDPl) (S/SXDP 1) = FUPSW (PRE3 + ... ) Preset adder for D 
plus l-S to 
check for word count 
overflow duri ng push 
word instruction 

Enable signal (S/SXAPl) (S/SXAP1 ) = FUBI R PRE3 + ... Preset adder for A 
plus l--S to incre-
ment contents of 
register duri ng branch 
on incrementing regis-
ter instruction 

I 

I 
Enable signal (S/SXAM 1) (S/SXAM1) = FUBDR PRE3 + ... Preset adder for A 

minus l-S to 
decrement register 

I contents duri ng branch 

I 
on decrementi ng regis-
ter instruction 

I 
Enable signal (S/SXMD) (S/SXMD) = FAlOAD/C (PRE/34 + ••. ) Preset adder for mi nus 

D--S to load two's 
complement of effec-
tive word into private 
memory duri ng load 
complement instructions 

Set flip-flop NPRXAD S/NPRXAD = N(S/PRXAD) Preset for A AND D 
N(S/SXAMD/1 ) -S during AND 

word and compare and 
(S/PRXAD) = FASEl PRE3 NOl7 load selective instruc-

+ OU4 OlB PRE3 + ... 
tions 

R!NPRXAD = ... 

Mnemonic: PREP 

(Continued) 

3-189 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

.-----r--------~~~~-~-"----,___-------------------------___, 

Phase Functi on Performed 

PRE! Reset flip-flop NPRXNAD 
34 
(ContJ 

3-190 

Enable signal (S/SXAEORD) 

Enable signal (S/SXAORD) 

Set flip-flop MRQ 

Set memory request 

Set data re lease memory 
request 

Set flip-flop DRQ 

Set delayed data release 
memory request 

Signa Is Involved 

S/NPRXNAD = N(S/PRXNAD) 
N(S/SXAPD/l) 

(S/PRXNAD) = FASEl PRE3 Ol7 + .•. 

R/NPRXNAD = ... 

(S/SXAEORD) = OU4 OlB PRE3 

(S/SXAORD) = OU4 OL9 PRE3 + ... 

Comments 

Preset adder for NA 
AND D--S to AND 
complemented mask 
with effective word 
during store selective 
instruction 

Preset adder for A ED D 
for exclusive OR oper­

I ation in exclusive OR 
word instruction 

Preset adder for A OR 
D--S for OR oper­
ation during OR word 
instruction 

SIMRQ = (S/MRQj1) + (S/MRQj2) Core memory request, 

(S/MRQjl) 

(S/MRQj2) 

R/MRQ 

S/DRQ 

(S/DRQ) 

R/DRQ 

(S/MRQ/3) 

(Conti nued) 

+ (S/MRQj3) + ••• inhibited in PRE3 if 

= FUINT PRE3 

+ FlNv'AIT PRE3 

+ FAS 10 PRE/34 

+ •.. 

= FAPSD (PRE/34 + ... ) 

+ FAST/M PRE3 
NOUO OLA 

= ... 

= (S/DRQ) + NClEAR 

= (S/MRQj2) + ••• 

= ... 

= ~FADW/1 (PRE/34 + ••• ) + FACOMP/l OU1 PRE3)] 
NANlZ + ••• 

I analyze instruction 

No data release re­
quested. Fetches next 
instruction during short 
instructions that do not 
requi re use of C­
register 

Fetches next PSW1 in 
program status double­
word instructions and 
first word to be loaded 
in load multi pie in­
struction 

Inhibits transmission of 
another clock unti I 
data release is received 
from memory 

Fetches effective word 

for some doubleword 
instructions (FADW/l) 
and compare with 
limits in memory in­
struction 

Mnemoni c: PREP 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Phase Function Performed I Signals Involved Comments I 
-.-

PRE/34 Reset flip-flop NMRQP1 S/NMRQP1 = N(S/MRQ/3) Delays setting data request 
(Cont.) 

R/NMRQPl = flip-flop unti I next phase ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request 

(S/DRQ) = MRQP1 + ••• 

R/DRQ = ... 
Set fl ip-flop MBXS S/MBXS = (S/MBXS) Presets for S~MB in _ 

(S/MBXS) = FASTORE PRE/34 first execution phase to 

+ FAMT SW2 PRE/34 
place on memory bus 

+ FAPSD PRE3 07 + 
information to be stored ... 
in core memory 

R/MBXS = ... 
Set flip-fiop DRQ 

,.. 11"'It.."""'" = 
1- 1 ___ .. 

NCLEAR Data request ;)/U~~ t:>/UK~) 

(S/DRQ) = (S/MBXS) + ••• 

Enable signal (S/SXB) 

I 

(S/SXB) = FUBAL PRE3 + FALOAD/A Preset adder for B--S 
(P RE/34 + ••• ) + ••• in first execution phase to 

place program address in 
pri vate memory duri ng 
branch and link ~nstruc-
tion and to place program 
address in P-register dur-
ing load absolute halfword 

I and word instructions 

Reset flip-flop NCXS S/NCXS = N(S/CXS) Preset adder for S---C 

(S/CXS) = FAST PRE3 + FASEL 
in first execution phase 

PRE3 + ••• 

R/NCXS = ... 
I Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset logic for transfer of 
I contents of private memory 

I 
(S/AXRR) = PRE3 (FUDW NR31) + ••• 

+ FASTORE PRE/34 N02 
register contents into A-

+ (FAST/M PRE3 NOUO) 
register 

NOLA + FUMMC PRE3 
+ ••• 

R/NAXRR = ... 

I 
Merge 1---LR31 (S/LR31 ) = FADW/1 PRE3 NANLZ Address odd-numbered 

I private memory register 
I + FUMMC PRE3 NANLZ 

i 

I 

I I 
! 

I 

------~,---------~--

Mnemonic: PREP 

I 

(Continued) 

3-191 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 
-----r------~-~~-'~-~-~~-~-~~-~~F"-~~-~-~~~~~~~~-~~~~~~--~-- ~- --~~~ ~-- -~-- -'-----~-~--'------'~~--

Phase Function Performed Signals Involved 

PRE! Set fli p-flop RW 
34 
(Cont.) 

I 
FAST ~ set flip-flop SW8 

FUMSP ~ set flip-flop SW7 

I 

STM~ P - l-+--P 

LM ~ R - 1-1-- R 

Reset flip-flop NTl1 L 

3-192 

S/RW 

S/SW8 

BRSW8 

S/SW7 

(S/SW7) 

PDC31 

RDC31 

S/NTl1 L 

(S/Tll L) 

(Continued) 

= FUXW PRE3 NANLZ 

+ FASll NOll 
(PRE/34 + ... ) 

+ FUBAL PRE3 NANLZ 

+ FUBDR PRE3 NANLZ 

+ FUBIR PRE3 NANLZ 

+ ... 

= BRSW8 NRESET/A + ... 

= FAST PRE3 + ... 

= (S/SW7) 

= FAST PRE3 N04 
+ FULAWORDW NDO 
PRE/34 + FALOAD/ A 
OUS ND16 PRE/34 
+ ••• 

= (FAST/M PRE3 NOUO) 
NOLA + ••• 

= (FAST/M PRE3 NOUO) 
OLA + ... 

= N(S/Tl1 L) 

= FACOMP/l 
(PRE/34 + ... ) 

+ F.~ST PRE3 

+ (AN LZ PRE3) 

+ FACOMP/l 
(PRE/34 + ... ) 

Comments 

Prepare to write into 
private memory 

SW8 identifies PH1 as 
PH 1/ A in stack and 
multiple instructions 

SW7 indicates first 
pass through phases in 
stack and multiple 
instructions and sign 
in load absolute in­
struction 

Obtain address of first 
core memory location 
in sequential set during 
store multiple instruc­
tion 

Obtai n address of fi rst 
private memory register 
in sequentia I set for 
load multiple instruc­
tion 

Set clock TllL for PHl 

Mnemoni c: PREP 



SDS 901172 

Table 3-19. Preparation Phases Sequence (Cont.) 

Phase Function Performed 

PRE/ Set fli p-flop PH3 S/PH3 
34 
(Cont .) BRPH3 

R/PH3 

Set flip-flop PH5 S/PH5 

BRPH5 

R/PH5 

Set flip-flop PH6 S/PH6 

BRPH6 

R/PH6 

Set flip-flop PH8 S/PH8 

BRPH8 

R/PH8 
Set fli p-flop PH 1 0 S/PH10 

I 

I 

BRPH 10 

I 

R/PHIO 

INDIRECT ADDRESSING. When bit position 0 of the in­
struction word contains a one, indirect addressing is to be 
performed during the preparation phases. Indirect address 
flip-flop IA is set during PRE1, the indirect address is read 
from the contents of the reference location in the first PRE2 
and placed in the C- and D-registers. If no indexing is 
required, this address is the effective address and is trans­
ferred to the P-register in the second pass through PRE2. 
If indexing is specified, the index displacement value is 
added to the indirect address in the second PRE2, and the 
resulting effective address is transferred to the P-register. 
The effective address in the P-register is used to read the 
operand from memory in PRE3. 

Signals Involved Comments 

= BRPH3 NCLEAR + ... Branch to phase 3 for 
multiply and divide 

= FAMDS PRE/34 i nstructi ons 
NBRPH5 NANLZ 
+ FAPSD PRE3 NANLZ 
NANLZ N07 

= ... 
= BRPH5 NCLEAR + ... Branch to phase 5 for 

ana Iyze and shi ft 
= ANLZ PRE3 i nstruc ti ons 

+ FUS PRE3 

+ FUSF PRE3 ND23 

+ ... 
= ... 
= (BRPH6 NIOEN) Bra nch to phase 6 for 

NCLEAR if store multiple or 

= FAST/M PRE3 NOUO 
modi fy stack counter 

NANLZ 
instruction 

= ... 
= BRPH8 NCLEAR + ... Branch to phase 8 if 

modify and test instruc-
= FAMT SW2 PRE/34 tion 

+ ... 
= ... 
- BRPH 1 0 NCLEAR + ... Branch to phase 10 

if execute instruction 
= FUEXU PRE3 NANLZ 

+ ... 
= ... 

Mnemonic: PREP 

The logic used to implement the indirect addressing feature 
is shown in table 3-19. 

INDEXING. Indexing is done in the Sigma 5 computer by 
adding a displacement value in one of seven index registers 
to the reference address in the instruction word, or to the 
indirect address from core memory if indirect addressing is 
specified. Registers 1 through 7 in the first private memory 
block are used as index registers. Register 0 is not used for 
indexing. A nonzero value in the X field causes the contents 
of the specified index register to be transferred to the A­
register for addition to the reference or indirect address in 
the D-register. 

3-193 



3-194 

SDS 901172 

PH10 ENDE 

MB--C+--D (INSTRUCTION WORD) 
C1-C7+--0 
C8-C11-+--R 

P + 1-+--P (PROGRAM ADDRESS) 
S/SXD 
S/IOEN 
lEN 
S/TRAP 
S/PRE1 
CLEAR, RESET/A 

PRE1 T5l 

P +--8 (NOT USED) 
D-S (NOT USED) 
S/PRETR 
PRE/12 
S/AXRR 

S/SXD 

S/SXD 
RR +--A (FETCH R OPERAND FOR 

AI, MI, CI) 
S/SPW IF D12 = 1 } SIGN 
S/SPZ IF D12 = 0 EXTENSION 
BRPRE4 

PRE4 T5l 

NO 

D-- S-+--D (SIGN EXTENDED 
VALUE FIELD) 

S+--C.IF MI 
PRE/34 

YES 
S/SXAPD 
S/MRQ/1 
S/MRQ 
S/PH1 

AI PHl T1ll 
S/T8l 

S/SPW IF D12 = 1} SIGN 
S/SPZ IF D12 = 0 EXTENSION 

PRE3 T8l 

BRPRE4 
(PRE4) 

S/HAlT 

S/CXS 

NO 

MI PH3 T5l 

I 
t 

( PH3 EXC ) 

YES 

YES 

Figure 3-124. Immediate Instruction Preparation Phases, Flow Diagram 

I 

t 
( PH1 EXC ) 

S/SXD 
S/PH1 

LI OR lCFI 
PH1 T5l 

S/PH1 
S/MRQ/1 
S/MRQ 
S/SXAMD 
S/T11 L 

CI PH1 Tl1 l 

! 

901172A.3000 



INDEXING 
AND INDIRECT 
ADDRESSING 

SET IA 
SET MRQ 

SDS 901172 

SET PREl 

P -+--B (PROGRAM ADDRESS) 
D --S-+--P (REFERENCE ADDRFSS) 

iSET PRETR IF NOT ANALYZE ._, 
BRPRE2 

INDEXING 
ONLY 

INDIRECT 
ADDRESSING 

ONLY 

~S_ET __ D_RQ ____________________ ~INDX 

NO 

D12-D14 --/LR/ 
RR+--A(INDEX DISPLACEMENT VALUE) 
SET IX 

YES 

(S/SXAPD' 

SET IXAL 
(S/SXA) 

Figure 3-125. Preparation Phase PRE1, Flow Diagram 

SET IA 
SET MRQ 
SET DRQ 

901172A.3001 

3-195 



3-196 

INDEXING AND 
INDIRECT 

ADDRESSING 

RESET IA 

SDS 901172 

SET PRE2 

INDEXING ONLY 

A--S RIGHT SHIFT~, • A 

INDIRECT 
ADDRESSING 

ONLY 

'A N0I4-__ ...:;.S.=...ET:.-P...:;.3..;;..J3 

INDEXING ONLY 
(WORD 

ADDRESSING) 

NO 

YES A--S LEFT SHIFT \" A RESET IXAl 
>.!~--~~~======~~--....I (S/SXAPD) 

BRPRE2 

INDEXING AND 
INDIRECT 

ADDRESSING 

A+D--S--f-- P (E FFECTIVE ADDRESS) 

MB--C-f--D 
(INDIRECT ADDRESS) 

INDEXING ONLY 
(BYTE, HALFWORD, 

DOUBLEWORD 
ADDRESSING) 

RESET IA 
MS-C~D 
(INDIRECT ADDRESS) 
(S/SXD) 
BRPRE2 

901172A.3002 

Figure 3-126. Preparation Phase PRE2 (Not PRE/12), Flow Diagram 



INDEXING ONLY 
(WORD ADDRESSING) 

(S/SXB) 

A + D-f---S 
--I--P 

(EFFECTIVE 
ADDRESS) 

SET AXRR 
RESET IX 

NO 

SET TaL 

SDS 901172 

INDIRECT ADDRESSING ONLY, 
INDEXING AND INDIRECT ADDRESSING, 

INDEXING ONLY 
(BYTE, HALFWORD, DOUBLEWORD ADDRESSING) 

INDIRECT 
ADDRESSING AND 
BYTE, HALFWORD, 

DOUBLEWORD 
INDEXING 

MERGE 1 
-/LR/ 

SUSTAIN PRE2 
(PRE/12) 

(S/SXB) 

INDIRECT 
ADDRESSING 

ONLY 

SET MRQ 
SET DRQ 

NO 

MERGE 1 
-/LR/ 

D ---S-I----P 
(EFFECTIVE ADDRESS) 

Figure 3-127. Preparation Phase PRE2 (PRE/12 Time), Flow Diagram 

901172A.3003 

3-197 



3-198 

SDS 901172 

SET PRE3 

MB--C-,L-D IF PREOPER TRUE (OPERAND) 
B --S-+--P IF CS, LS, MW, MH, DH, 5, SF, 

DW WITH EVEN R FIELD, 
WAIT, EXECUTE, READj'WRITE 
DIRECT, FAS10, NANLZ 

RR-f--A IF NOT INHIBITED BY FASTORE OL4 
+ FAPSD + FAST/M + FARWD OlC 

OPERATIONS 
PECULIAR TO 

SPECIFIC 
INSTRUCTIONS 

EXECUTION PHASES 

YES 

YES 

SET MRQ 
SET DRQ 
P+1-+-P 

(S/SXD) 
(S/CXS) IF DH 
LOAD BYTE COUNTER 
SET SPW (SIGN PAD ONES) IF 

HAlFWORD 1 AND C16 = 1 
SET SPZ (SIGN PAD ZEROS) IF 

HAlFWORD 1 AND C16 = 0, 
OR BYTE 3 

Figure 3-128. Preparation Phase PRE3, Flow Diagram 

901172A.3004 



YES 

SDS 901172 

(S/SXD) 
SET SPI/V (SIGN PAD ONES) 

IF HALFWORD AND D8 = 1 

SET SPZ (SIGN PAD ZEROS) 
IF HALFWORD AND D8 = 0, 
OR BYTE INSTRUCTION 

NO 
SET PRE4 

0---AO-A23 IF COMPARE BYTE 

NO 

RIGHT SHIFT 8 
D / • D 

LEFT SHIFT 8 
A / • A 
(IF MODIFY AND TEST WITH 
NONZERO R FIELD, OR STORE) 
DECREASE BYTE COUNT BY 1 
BRPRE4 

OAD 
ABSOLUTE 

DOUBLEWORD 
INSTRUCTION 

YES D -S-+--D 
(SIGN PAD) 

S---C IF DH 

EXECUTION PHASES 

Figure 3-129. Preparation Phase PRE4, Flow Diagram 

MB---C-+-D 
P-l-+--P 

901172A.3005 

3-199 



SDS 901172 

The index registers are used for byte and ha I fword addressi ng 
as well as for memorv address disolacement. Bvte 0 or half­
word 0 of any word may be selected simply by using a byte 
or halfword instruction. If byte 1, 2, or 3 or halfword 1 is 
desired, indexing must be performed. To address halfword 
1 of any word, the X field of the instruction must designate 
a register that contai ns a one in its low-order bit posi tion. 
To address bytes 1, 2, or 3 of a word, the X fi e Id of the 
instruction must designate a register that contains 01, 10, 
or 11, respectively, in its two low-order bit positions. The 
significance of the index register contents for various types 
of addressing is shown in figure 3-130. 

Before the contents of the A-register and D-register are 
added to obtai n the effective address, the A-register must 
be aligned so that the memory address displacement bits 
match the effective address bits in the D-register. This 
alignment operation is shown in figure 3-131. In the case 
of word operation, the index value is properly placed in 
the A-register as the va lue comes from privqte memory. 

For byte operation, bit positions 30 and 31 of the index 
value contain the byte number and should not be added to 
the core memory address. In PRE2 the A-register contents 
are shifted right two bit positions so that the least signif­
icant bi ts of the reference address and the address displace­
ment value are aligned. At the time the shift is made, the 
byte number is transferred to fli p-flops P32 and P33. The 
outputs of these fli p-flops are used to set byte counter BCa 
and BCl in PRE3, and the outputs of the counter flip-flops 
are used in PRE4 to shift the operand in the D-register or 
the A-register unti I the specified byte is in the proper 
position for instruction execution. The logic used to per­
form byte indexing is describedin table 3-19. 

For halfword operation, bit position 31 of the index value 
contains a one if halfword 1 is to be addressed. In PRE2, 
the A-register contents are shifted right one bit position to 
a lign the address displacement va lue with the reference 
address or indirect address. At the time the shift is made, 
if halfword 1 is designated the one in A31 is transferred to 
flip-flop P32. The output of this flip-flop is used to set 
the byte counter in PRE3, and the counter outputs are used 
in PRE4 to shift the operand right in the D-register for load 
operation, or left in the A-register for store operation, 
until the specified halfword is in the proper position for 
instruction execution. The logic used to perform halfword 
indexing is described in table 3-19. 

In doubleword operation, the memory address displacement 
value is treated as an even number by shifting the A-register 
left one bit position and clearing A31. Bit 31 of the in­
struction reference address is ignored. The instruction plus 
the index va lue, therefore, a Iways addresses the even­
numbered location of the specified doubleword. The odd­
numbered location is addressed when requi red by setti ng 
flip-flop P31 during PRE/12. Bit 31 of the effective address 
is inhibited by S31INH when the effective address is placed 
on the sum bus in PRE/12. At the same time flip-flop P31 
is set forall doubleword instructions except floating-point 
and load absolute doubleword. 

3-200 

In shift operation, the index value alters the shift count 
and direction and has nothina to do with addressina. - -

The detai led logic used to implement the indexing feature 
is explained in table 3-19. 

BYTE COUNTER. The byte counter, BCO and BC 1, is used 
in preparation phase PRE4 to control the shifting of bytes 
and halfwords in the A- and D-registers before instruction 
execution. 

For load operation, the effective byte is read into the D­
register and moved to the least significant end of the 
register in PRE4. Byte 0 is shifted eight bit positions to 
the right three times, byte 1 is shifted right twice, and 
byte 2 is shifted right once. If the effective byte is byte 0, 
the counter is loaded with 11; if the effective byte is byte 
1, the counter is loaded with 10; if the effective byte is 
byte 2, the counter is loaded wi th 01. The counter con­
tents are decreased by one with each pass through PRE4 so 
that shifting is complete. Byte 3 requires no shifting; 
therefore, the counter remai ns in the zero state when byte 
3 is addressed. 

For halfword load operation, the byte counter remains clear 
for ha I fword 1 and is set to 10 for ha I fword O. Th i s causes 
the halfword to be shifted right twice in PRE4 to place it 
in the least significant half of the register. 

For store operati on or a modi fy a nd test i nstructi on, the 
effective byte or halfword or the byte or halfword from 
private memory loaded into the A-register must be shifted 
left for computation or for storage in the effective memory 
byte or halfword location. The byte counter is set in the 
same manner as for load operation. If the effective byte is 
0, the byte in A24 through A31 must be shifted left three 
times; therefore, the byte counter is set to 11. The byte 
must be shifted twice to reach effective byte location 1 
and once to reach byte location 2; therefore, the counter 
is set to 10 and 01, respectively. Similarly, the byte 
counter is set to 10 for halfword 0 store or modify and test 
operation, because two 8-bit shifts are required to move 
the halfword from the least significant end of the register 
to the halfword 0 location. During a modify and test in­
struction, the phase sequence returns to PRE4 for register 
shifting after some of the execution phases have taken 
place. 

SIGN EXTENSION. Sign extension is required for most 
immediate and halfword instructions, and the load byte 
instruction requires clearing the most significant bits of 
the effective memory location. Preparation for sign exten­
sion is done in PRE3 or PRE4 by setting flip-flop SPW for 
sign-padding ones and flip-flop SPZ for sign-padding zeros. 
The equations for setting these flip-flops are given in 
table 3-19 under phases PRE3 and PRE4. The outputs of 
flip-flops SPW and SPZ are used in the adder propagate 
logic to generate ones or zeros where needed. 



SDS 901172 

DOUBLEWORD ADDRESSING 

~ 
MEMORY ADDRESS I 

DIS PLACEME NT . 

WORD ADDRESSING 

HALFWORD ADDRESSING 

"",.""",:;~~~~H~!,:,,,,~,j,,1 
BYTE ADDRESSING 

HALFWORD~ 
NUMBER 

""""."":,~~~~~!t~~!r2:,,,,,,,j~I,,1 
y 

BYTE NUMBER 

SHIFT OPERATION 

_",,,,,,,,,,,,,,,,,,,1 
I I I 

SHIFT COUNT AND 
DIRECTION MODIFICATION 

901172A.3006 

Figure 3-130. Index Register Contents for Byte, Halfword, Word, Doubleword, and Shift Operations 

3-201 



3-202 

A-REGISTER SHIFTED 
RIGHT 2 FOR BYTE 
INDEXING 

A-REGISTER SHIFTED 
RIGHT 1 FOR 
HALFWORD INDEXING 

A-REGISTER 
STATIONARY FOR 
WORD INDEXING 

A-REGISTER 
STATIONARY FOR 
SHIFT INDEXING 

A-REGISTER SHIFTED 
LEFT 1 FOR 
DOUBLEWORD 
INDEXING 

SDS 901172 

INSTRUCTION IN D-REGISTER P-REGISTER 
~ 

IIOP~~~I~NI R I X I REFERENCE ADDRESS III 
I I Ii I I I I I I I I I I I I I , I I I I I I I I I 

01234.5 6 7 89 !011'2'3'.,'5'6'71819.021222324252627182930113733 

LIA I HALFWORD ~ 
: NUMBER itt 

I ADDRESS DISPLACEMENT I 
121/.151617' ! I I j , I j j I I I I I I I I! I I I ! I I I I I 

8 910111213 U 1516171819202122 23U25 26 2728 29 3031y 

I 

I 

BYTE NUMBER 
I 
I 

I I 

I, ',',',','.',',' 9"J"""""J,J16~~~'~:;:"'~:~:~~:'~~'~:"~ 
: HALFWORD J 
I NUMBER I 

1 I 

8 91011121314,15161 

I 
I 

I 
I 
I 1 

I 0 ' , ' ,I , ' , ' , ' • ' " , ' 9 ',J ,,',,' ,,', L'16' ,I,,', J20' ,,' ,,',l JJ26"}2ll',J30'.J 

SUM OF A PLUS D 
IN P-REGISTER 

I 'I ' 

I SHIFT COUNT AND 
I DIRECTION MODIFICA nON 

I 

I 

I ADDRESS DISPLACEMENT 0: 

I 

BYTE NUMBER 
~ 

Figure 3-131. Index Register Alignment for Effective Address Computation 

901172A.3007 



50S 901172 

The following equations illustrate the generation of propa­
gate terms in the adder and their use in sign extension. 
Bi ts 0 through 7 of the sum bus are used as an example. 

SO-57 PRO-PR7 

PRO-PR7 (AO 00)-(A7 07) PRXAO/O 

+ (AO NOO)-(A7 N07) 
PRXANO/O 

+ (NAO 00)-(NA7 07) 
PRXNAO/O 

+ (NAO NOO)-(NA7 N07) 
PRXNANO/O 

PRXAO/O PRXAO/1 B N(SPZ NOIS) 

PRXAO/1 B N(NFAIM (PZ NOIS) 

PRXANO/O PRXANO/1A 

PRXANO/1A N(NPRXAND ND!S NSP\V) 

PRXNAO/O 

PRXNAO/1B 

PRXNAO/1 B N(SPZ NOIS) 

N(NFAIM SPZ NOIS) 

PRXNAND/O"" (PRXt-JANO + SPW) NDIS 

Therefore: 

SPZ ~ NPRXAO/O NPRXANO/O 
NPRXNAO/O NPRXNANO/O 

SPW ==> PRXAO/O PRXANO/O 
PRXNAO/O PRXNANO/O 

If SPZ is true, the propagates for bits 0 through 7 of the 
sum bus are disabled regardless of the states of A- and 
O-register flip-flops 0 through 7, and the propagates are 
unconditionally enabled if SPW is true. This causes zeros 
to be placed on sum bus bits 0 through 7 if SPZ is true and 
ones to be piaced in the same bits if SPW is true. This 
type of logic operates for bits 8 through 15, except -that 
the logic differs for immediate instructions, since only bits 
8 through 11 are affected. 

3-203 



Paragraph 3-60 SDS 901172 

3-60 Fami Iy of Load Instructions (FA LOAD) 

LOAD IMMEDIATE (lli 22). The II instruction extends 
the sign (bit 12) of the value field of the instruction word 
(bits 12 through 31) 12 bit positions to the left and loads 
the 32-bit result into private memory register R. 

General. This instruction is of the immediate addressing 
type. Therefore, the value field in the instruction word 
contains an operand which is used as part of the instruction 
execution. Sign extension is executed in the preparation 
phases to produce a 32-bit effective word. 

Condition Codes. If the effective word is positive and not 
zero, condition code fl ip-flop CC3 is set. If the effective 
word is negative, condition code flip-flop CC4 is set. 
Both flip-flops CC3 and CC4 are reset if the effective word 
is zero. 

Load Immediate Phase Seguences. Preparation phases for 
the II instruction are the same as the general PREP phases 
for immediate instructions, paragraph 3-59. Table 3-20 
lists the detailed logic sequence during the II execution 
phases. 

Table 3-20. Load Immediate Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: 

(C) : Value field
SE 

Sign-extended value field 
of instruction word 

(D) : Value field
SE 

(P) : Program address Address of next instruc-
tion in sequence 

Enable signa I (S/SXD) (S/SXD) = FA LOAD (PRE/34 + PH2) Preset adder for D-S 

+ ..• in PHl 

FALOAD = NOUO Ol2 

Set flip-flop MRQ S/MRQ = (S/MRQ/1) + •.. Core memory request for 

(S/MRQ/l) FAS10 PRE/34 + ... 
next instruction in 

= sequence 

FAS10 = FAS11/1 NOUl 

FASl1/1 = FALOAD + .•. 

R/MRQ = ... 
Set flip-flop RW S/fNV = (S/RW/1) + ••• Preset to write value field 

(S/RW/1) = FAS11 (PRE/34 + PH2) 
into private memory 

NOll + •.. 
register R in PHl 

R/RW = ... 
PHl One c lock long 

T8EN (DO-D31)---(SO-S31) Adder logic set at last PREP clock 
(OR --(RRO-RR31) 

RWXS/O- RWXS/3 = RW + ... Transfer value field into 
TllL) 

private memory register R 
RW = Set at last PREP clock 

Set flip-flop CC3 if (SO-S31) S/CC3 = SGTZ TESTS + ... Set condition codes if 
is positive and nonzerOi SGTZ = (SO + Sl + ... + S31) NSO appl icable 
otherwise reset CC3 

TESTS = FAS11 (PH1 + PH3) + ••. 

R/CC3 = TESTS + ... 

Mnemonic: II (22) 

(Continued) 

3-204 



SDS 901172 

Table 3-20. Load Immediate Sequence (Cont.) 

Phase Function Performed 

PHl Set flip-flop CC4 if (SO-S31) S/CC4 = 

TBEN 
is negative; otherwise reset 

(OR 
CC4 R/CC4 = 

T11 L) 
(Cont. ) Enable clock TB if R is in TBEN = 

register blocks 0-3; disable clock TB, 
allowing T11L, if R is in register 
extension unit, blocks 4-15 

Branch to PHI0 BRPHI0 = 

S/PiiiO = 

R/PH10 = 

S/DRQ = 

(S/DRQ) = 

R/DRQ = 

PHI0 ENDE functions See table 3-1B 

DR 

LOAD BYTE (LB; 72, F2). The LB instruction loads the 
~ffective byte into bit positions 24 through 31 of private 
memory register R and clears bit positions 0 through 23 
of the register. 

General. The effective byte is transferred to the D­
register during the load byte PREP phases. If the effective 
byte is not located in bits 24 through 31 (byte position 3) 
of the word, the byte is shifted one, two, or three bytes 
to the right to place the byte in byte position 3. Zeros 
are then placed in bit positions 0 through 23. The 32-bit 

Signals Involved Comments 

SO TESTS + ... 

TESTS + ... 

NT5EN NTll L T5EN is disabled by 

N(SXADD/1 RW) 
signal RW 

N(RW REU) 

N(REU AXRR) 
T11 L is enabled if TBEN 
is disabled by REU and RW 

FAS10 PHl + ..• 

BRPH10 NC LEAR-l + ... 

... 

(S/DRQ) NC LEAR-2 Inhibits transmission of 
another clock unti I data 

BRPHI0 + ... release received from 
core memory 

... 

Mnemonic: LI (22) 

resu It is transferred to private memory register R during 
execution phase PH1. 

Condition Codes. If the resu It in the R-register is zero, 
the condition codes are set to XXOO. If the resu It is 
nonzero, the condition codes are set to XXIO. 

Load Byte Phase Sequences. Preparation phases for the LB 
instruction are the same as the general PREP phases for 
byte instructions, paragraph 3-59. Table 3-21 lists the 
detai led logic sequence during the LB execution phases. 

3-205 



Phase Function Performed 

PREP At end of PREP: 

(C) : EB 

(0) : EB 

(P) : Program address 

Enable signal ~S/SXD) 

Set flip-flop MRQ 

Set flip-flop fN.I 

PH1 One clock long 

T8EN (OO-031)~(SO-S31) 
(OR 
T1Il) -(RRO-RR31) 

3-206 

Set flip-flop CC3 if at least 
one bit in EB is a one; 
otherwise reset CC3 

50S 901172 

Table 3-21. Load Byte Sequence 

Signals Involved 

(S/SXD) = FALOAD ,PRE34/ + PH2} 
+ .•. 

FALOAO = NOUO Ol2 

S/MRQ = (S/MRQ/l) + ••• 

(S/MRQ/1) = FAS10 PRE/34 + ... 

FAS10 = FASl1/l + ... 

FAS11/1 = FAlOAO + .•• 

R/MRQ = ... 
S/RW = (S/RW/1) + ••• 

(S/RW/l) = FASl1 (PRE/34 + PH2) 
NOll + ••• 

R/RW = ... 

Adder logic set at last PREP clock 

RWXS/O- RWXS/3 = RW + ... 

RW = Set at last PREP clock 

S/CC3 = - SGTZ TESTS + •.. 

SGTZ = (SO + S1 + ... + 531) NSO 

TESTS = FASII (PHI + PH3) + ... 

R/CC3 = TESTS + ... 

{Continued} 

Comments 

Effective byte 

Address of next i nstruc-
tion in sequence 

Preset to place EB on 
sum bus 

Core memory request far 
next instruction in 
sequence 

Prepare to write fB into 
private memory register R 

Transfer effective word to 
private memory register R 

Mnemonic: lB (72, F2) 



SDS 901172 

Table 3-21. Load Byte Sequence (Cont.) 

Phase Function Performed 

PH1 Reset flip-flop CC4 S/CC4 = 

TSEN 
(OR 

R/CC4 = 

T11L) 
(Cont. ) Enable clock TS if R is in register TSEN = 

blocks 0-3; disable clock TS, 
allowing T11L, if R is in register 
extension unit, blocks 4-15 

Branch to PH 1 0 BRPH10 = 

S/PH10 = 

R/PH1O = 

SIDRQ = 

(SIDRQ) = 

R/DRQ = 

PH10 ENDE functions See table 3-1S 

DR 

b9AD HALFWORD (LH; 52, D2). The LH instruction 
loads the sign-extended effective halfword into private 
memory register R. 

General. The effective halfword is transferred to bit 
positions 16 through 31 of the D-register during the 
LH PREP phases. The sign of the effective halfword 
is extended to occupy bit positions 0 through 15 of the 
D-register. The 32-bit resu It is transferred to private 
memory register R during execution phase PH1. 

Condition Codes. If the resu It in the R-register is zero, 
the condition codes are set to XXOO. If the result is 
nonzero and positive, the condition codes are set to 
XX10. A negative result produces condition code settings 
of XXOl. 

Signals Involved Comments 

SO TESTS + ... CC4 does not set because 
SO =0 

TESTS + ••• 

NT5EN NT11 L T5EN is disabled by 

N(SXADD/1 RW) 
signal RW 

N(RW REU) 
T11L is enabled if T8EN is 

N(REU AXRR) disabled by REU and RW 

FAS10 PH1 + ••• 

BRPH10 NCLEAR-1 + ••. 

... 

(SIDRQ) NCLEAR-2 Inhibits transmission of 
another clock unti I data 

BRPH10 + •.• release received from 
core memory 

... 

Mnemonic: LB (72, F2) 

Load Halfword Phase Sequences. Preparation phases 
for the LH instruction are the same as the general PREP 
phases for halfword instructions, paragraph 3-59. 
Table 3-22 lists the detai led logic sequence during all 
LH execuTion phases. 

LOAD WORD (LWi 32, B2). The LW instruction loads the 
effective word into private memory register R. Condition 
codes are set as in the LH instruction. 

Load Word Phase Sequences. Preparation phases for 
the LW instruction are the same as the general PREP phases 
for word instructions, paragraph 3-59. Table 3-22 
lists the detai led logic sequence during all LW execution 
phases. 

3-207 



SDS 901172 

Table 3-22. Load Word and Load Halfword Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: 
- ~-

(C) : EW Effective word (i n half-

(D) : EW word instructions, D 
contains sign-extended 
effective ha Ifword) 

(P) : Program address Address of next i nstruc-

I I I 
tion in sequence 

Enable signal (S/SXD) (S/SXD) = FALOAD (PRE/34 + PH2) Preset adder for D--S 
+ ... in PH1 

FALOAD = NOUO Ol2 

Set flip-flop MRQ S/MRQ = (S/MRQ/1) + ... Core memory request for 
next instruction in 

(S/MRQ/1) = FAS10 PRE/34 + ... sequence 

I I FAS10 = FAS11/1 + ..• I 
FAS11/1 = FALOAD + ... 

R/MRQ = ... 

Set fl ip-flop RW S/RW = (S/RW/l) t ••• Prepare to write EW into 
private memory register 

(s/RW/1) = FAs 11 (PRE/34 + PH2) R 
NOll + ... 

R/RW = ... 

PH1 One clock long Adder logic set at last PREP clock 

T8EN (DO-D31)-(SO-s31) RWXS/O- RWXs/3 = RW + ... Transfer effective word 
(OR 

--(RRO-RR3l) RW = Set at last PREP clock 
to private memory 

TllL) register R 

Set flip-flop CC3 if (50-531) S/CC3 = sGTZ TESTS + ••• Set condition codes if 
is positive and nonzero; appl icable 
otherwise reset CC3 sGTZ = (SO + 51 + ... + 531) 

NSO 

TESTS = FAS11 PHl + ... 

R/CC3 = TESTS -t ••• 

Mnemonic: LW (32, B2) 
LH (52, D2) 

(Cont i nued) 

3-208 



SDS 901172 

Table 3-22. Load Word and Load Halfword Sequence (Cont.) 

Phase Function Performed 

PH1 Set flip-flop CC4 if (SO-S31) S/CC4 = 
T8EN 

is negative; otherwise reset 

(OR CC4 R/CC4 = 
TJ lL) 
(Cont. ) 

Enable clock T8 if R is in register T8EN = 
blocks 0-3; disable clock T8, 
allowing TJ 1 L, if R is in register 
extension unit, blocks 4-15. 

Branch to PH10 BRPH10 = 

S/PH10 = 

R/PH10 = 

S/DRQ = 

(S/DRQ) = 

R/DRQ = 

PH10 ENDE functions See table 3-18 

DR 

LOAD DOUBLEWORD (LD; 12, 92). The LD instruction 
loads the least significant word (bits 32 through 63) of 
the effective doubleword into private memory register 
Ru 1 and the most significant word (bits 0 through 31) of 
the effective doubleword is loaded into private memory 
register R. 

If the R field is odd, both words of the effective double­
word are loaded into the same private memory register. 
At the end of the instruction, private memory register R 
contains the most significant word of the doubleword 
(since it is the last to be loaded). 

Signals Involved Comments 

SO TESTS + ... 

TESTS + •.. 

NT5EN NTl1 L T5EN is disabled by 

N(SXADD/1 RW) 
signal RW 

N(RW REU) TJ 1 L is enabled if T8EN is 
N(REU AXRR) disabled by REU and RW 

FAS10 PH1 + ..• 

BRPH10 NCLEAR-1 + ..• 

... 

(S/DRQ) NCLEAR-2 Inhibits transmission of 
another clock unti I data 

BRPH10 + ••. release received from 
core memory 

... 

Mnemonic: LW (32, B2) 
LH (52, D2) 

Condition Codes. If the effective doubleword is zero, 
the condition codes are set to XXOO. If the resu It is 
nonzero and positive, the condition codes are set to 
XX10. A negative result produces condition code 
settings of XX01. 

Load Doubleword Phase Sequences. Preparation 
Fhases for the LD instruction are the same as the 
general PREP phases for doubleword instructions, 
described in paragraph 3-59. Table 3-23 lists 
the detai led logic sequence during all LD execu­
tion phases. 

3-209 



SDS 901172 

Table 3-23. Load Doubleword Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: --_._---

(D) : ED
LSW 

Least significant word of 
effective doubleword 

(C) : ED
LSW 

(P) : ED MSW address Address of most significant 
word of effective double-
v,,- .. d 

(B) : Program address Address of next i nstruc-
tion in sequence 

I Enable signal (S/SXD) (S/SXD) - FALOAD (PRE/34 I PH2) Preset adder for D-S 
+ ... in PH1 

FALOAD = NOUO OL2 

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + ... Preset to fetc h mas t s i g-

I I 
(S/MRQ/3) FADW/1 PRE/34 

I 

nificant word of doub!e-= + ... 
word from memory 

I I 
F,ADW/l = OUl FASll 

FAS11 = FAS11/1 + ... 

FAS11/1 = FALOAD + ... 

R/MRQ = ... 

Reset fl ip-flop NMRQP1 S/NMRQP1 = N(S/MRQ/3) Used to de lay sett i ng 

R/NMRQP1 = flip-flop DRQ ... 
Set fl ip-flop RW S/RW = (S/RW/1) + ... Prepare to write least 

(S/RW/1) = FAS11 PRE/34 NOll 
significant word of effec-
tive doubleword into 

+ ... private memory register 
R/RW = ... Ru1 

Reset fl ip-flop N LR31 F S/NLR31F = N(S/LR31 ) Force a one on pri vate 

(S/LR31 ) = FA DW/1 (NA N LZ PRE3) 
memory address line LR31 
during PH1 to select 

+ ... private memory register 
R/NLR31 F = ... Ru1 

PH1 One c lock long Adder logic set at last PREP clock 

T8EN (DO- D31 )--(SO-S31) RWXS/O- RWXS/3 = RW + ... Transfer least significant 
(OR ---(RWO- RW31) RW = Set at last PREP clock 

word of effective double-
T11L) word to private memory 

reg ister Ru 1 

Mnemonic: LD (12, 92) 

(Conti nued) 

3-210 



SDS 901172 

Table 3-23. load Doubleword Sequence (Cont.) 

Phase Function Performed 

PHI Set condition codes 

T8EN 
(OR 
TlIl) I 

(Cont. )' 

I 

Reset flip-flop NSXBF 

Reset filp-fiop NAXRR 

S/CC3 

SGTZ 

TESTS 

R/CC3 

S/CC4 

R/CC4 

S/NSXBF 

(S/SXB) 

R/NSXBF 

Signals Involved 

SGTZ TESTS + • .. (See PH3) 

(SO + S1 + ••• + S31) NSO 

FASll PHl + ... 

TESTS 

SO TESTS + ... 

TESTS + ... 

= N(S/SXB) 

= FADW/l PHl + ... 

S/NAXRR = N(S/AXRR) 

(S/AXRR) = FADW/1 PHI + ... 

R/NAXRR= = 

Enable clock T8 if Rand Rul are in T8EN = NT5EN NTll 
register blocks 0-3; disable clock 
T8, allowing Tlll, if Rand Rul 
are in register extension unit, 
blocks 8-15 

Set flip-flop DRO 

PH2 One c lock long 

DR (MBO-MB3I )---(CO-C31) 

---(DO-D31) 

(BO-B31)---(SO-S31 ) 

-t--(PI5-P31) 

Enable signal (S/SXD) 

Set flip-flop MRQ 

I 

N (SXADD/l RW) 
N(RW REU) N(REU AXRR) 

S/DRQ = (S/DRQ) I'JClEAR-2 

(S/DRQ) = MRQP1 + ... 

R/DRO 

CXMB 

DXC 

SXB 
SXBF 

PXS 

(S/SXD) 

= DG = /DG/ 

= FADW/l PH2 + ... 

= NDIS SXBF + ... 
= Set at PH1 clock 
= FA DW/l PH2 + ... 

= FALOAO PH2 + ... 

S/RW = (S/RW /1) + ••• 

(S/RW/l) = FAS11 PH2 NOll 

R/RW 

S/MRQ = (S/MRQ/3) + ... 

(S/MRQ/3) = FA DW/1 PH2 

R/MRQ 

(Continued) 

Comments 

Condition codes set at 
this time but have no 
significance. They are 
set again during PH3 

Preset log ic for B---S 
in PH2 

No significance during 
lD 

T5EN is disabled by 
signal RW. Tl1l is 
enabled by REU and RW 

Inh ibits transmission of 
another clock until data 
release received from 
core memory 

Read most significant 
word of doubleword into 
C-register and transfer 
to D-register 

Transfer program address 
to P-register 

Preset adder for D---S 
in PH3 

Prepare to write most sig­
nificant word of effective 
doubleword into regi~ter R 

Core memory request for 
next instruction 

Mnemonic: lD (12, 92) 

3-211 



SDS 901172 

Table 3-23. Load Doubleword Sequence (Cont. ) 

... 

Phase Function Performed Signals Involved Comments 

PH2 Reset flip-flop NMRQP1 S/NMRQP1 = N(S/MRQ/3) Prepare to set D RQ at 
I end of PH3 

DR R/NMRQP1 = ... I 
I,Cont .) I 

I 

PH3 One c lock long SXD = Set at PH2 clock 

T8EN (DO-D31)---(SO-S31 ) Adder logic set at PH2 clock Write most significant 
(OR 

--I---(RWO- RW31) RWXS/O- RWXS/3 
T11l), , 

RW = 

Set flip-flop CC3 if (50-531) S/CC3 = 
is positive and nonzero; 

SGTZ = otherwise reset CC3 
I 

TESTS = 

R/CC3 = 

I 
Set flip-flop CC4 if (50-531) is I S/CC4 = 
negative; otherwise reset CC4 

R/CC4 = 

Enable clock T8 if Rand Ru 1 are in I T8EN = 
register blocks 0-3; disable clock 
T8, allowing Tl1L, if Rand Ru1 
are in register extension unit, 
blocks 4-15 

Branch to PH 10 BRPH10 = 
S/PH10 = 

R/PH10 = 

S/DRQ = 

(S/DRQ) = 

R/DRQ --

PH10 ENDE functions See table 3-18 

DR 

LOAD COMPLEMENT HALFWORD (LCH; SA, DA). The 
LCH instruct ion f;;dsth~-;-ig~-':'-extend~~(~ffe~tive -ha If word 
into private memory register R. 

General. The effective halfword is transferred to bit posi­
ti~~T6 through 31 of the D-register during the LCH PREP 
phases. The sign of the effective ha If word is extended to 
occupy bit positions 0 through 15 of the D-register. The 
twols complement of the 32-bit result is transferred to 
private memory register R during execution phase PH1. 

3-212 

RW + 
word of effective doub le-

= ... 
word into pri vate memory 

Set at PH2 clock register R 

SGTZ TESTS + ... Set condition codes if 

(SO + 51 + ... + 531) 
applicable 

NSO 

FAS11 PH3 + ... 
TESTS + ... 

50 TESTS + ... 

I TESTS + ... 

NT5EN NTl1 
I 

T5EN is disabled by 
N(SXADD/1 RW) signal RW. Tl1L is 
N(RW REU) N(REU AXRR) enabled if T8EN is 

disabled by REU and RW 

FADW/1 PH3 + .•. 

BRPH 10 NCLEAR-1 

... 
(S/DRQ) NClEAR-2 Inhibits transmission of 

BRPH10 + MRQP1 + ..• another clock unti I data 
re I ease re ce i ved from 

... core memory 

Mnemonic: LD (12, 92) 

Condition Codes. If the result in the R-register is zero, 
the condition codes are set to XXOO. If the resu It is non­
zero and positive, the condition codes are set to XX10. A 
negative result produces condition code settings of XX01. 

Load C_omplem~nt_Ha!f',"lo!d_th,!~~ '?e:9~~nc~~. Preparation 
phases for the LCH instruction are the same as the general 
PREP phases for halfword instructions, paragraph 3-59. 
Table 3-24 lists the detailed logic sequence during all LCH 
execut i 011 phases. 



SOS 901172 

Table 3-24. Load Complement Halfword Sequence 

Phase Function Performed 

PREP At end of PREP: 

(C) : EHSE 

(0) : EHSE 

(P) : Program address 

Enable signa I (S/SXMO) 

Set flip-flop MRQ 

Set flip-flop RW 

PH lOne c lock long 

T8EN -(DO-D3l)~(SO-S31)--­

(OR 
T11L) (RWO-RW3l) 

Set flip-flop CC3 if (SO-S31) 
is positive and nonzero; 
otherwise reset CC3 

(S/SXMO) = 

FALOAO/C = 

S/MRQ = 

(S/MRQ/1) = 

FAS10 

FAS11/1 

R/MRQ 

S/RW = 

(S/RW/1) = 

FASll = 

R/RW = 

Signals Involved 

FALOAO/C PRE/34 + ••• 

OLA 03 

(S/MRQ/1) + •.. 

FAS10 PRE/34 + ... 

FAS11/1 + ... 

FALOAO/C + ... 

(S/RW/1) + ••. 

FAS11 (PRE/34 + PH2) 

NOll + .. . 

FASll/l + .. . 

Adder logic set at last PREP c iock 

RWXS/O- RWXS/3 := RW + ••• 

RW = Set at last PREP clock 

S/CC3 

SGTZ 

TESTS 

R/CC3 

= SGTZ TESTS + ... 

= (SO + Sl + ... + S31) 
NSO 

= FAS11 (PHl + PH3) + ... 

= TESTS + ... 

(C ont i nu ed) 

Comments 

Sign-extended effective 
halfvlord 

Address of next i nstruc­
tion in sequence 

Preset adder for -O---S 
in PH1 

Prepare to read next 
I i n,truction 

Preset to transfer two's 
complemented effective 
halfword into private 
memory register R during 
PHl 

Transfer two's comple­
mented effective ha If­
word into private memory 
register R 

Set condition codes if 
applicable 

Mnemonic: LCH (5A, OA) 

3-213 



SDS 901172 

Table 3-24. Load Complement Halfword Sequence (Cont.) 

I 

Phase I Funct ion Performed 

PH1 Set flip-flop CC4 if (SO-S31) is SjCC4 = 
TSEN 

negative; othervvise reset CC4 
R/CC4 = (OR 

TllL) 
(Cont. ) Enable clock TS if R is in register TSEN = 

blocks 0-3; disable clock TS, 
allowing Tl1L, if R is in register 
extension unit, blocks 4-15 

Branch to PH10 BRPH10 = 

S/PH10 = 

R/PH10 = 

Set flip-flop DRQ 

I 
S/DRQ = 

I 
(S/DRQ) = 

R/DRQ = 

PH10 ENDE functions See table 3-1S 

DR 

LOAD COMPLEMENT WORD (LCW; 3A, BA). The LCW 
instruction loads the two's complemented effective word 
into private memory register R. 

Condition Codes. If the result in the R-register is zero, 
the c;ndl ti;;';-c-~des are set to XOOO. If the resu It is 
negative, the condition code fl ip-flops are set to XX01. 
A positive result produces condition code flip-flop settings 
of X010. Overflow can only occur if the effective word 
is _2 31 (X'SOOOOOOO'). Overflow is indicated by setting 
flip-flop CCl to produce condition code settings of X101. 

3-214 

Signals Involved Comments 

TESTS NFACOMP SO + ... 

TESTS 

NT5EN NTl1 T5EN is disab led by 

N(SXADD/l RW) 
signal RW 

N(RW REU) T11L is enabled if TSEN is 

N(REU AXRR) 
disabled by REU and RW 

FAS10 PHl + ... 
BRPH10 NCLEAR-l + •.• 

... 

(SjDRQ) NCLEAR-2 

I 
Inhibits transmission of 
another clock unti I data 

BRPH10 + .•• 

I 
release received from 
core memory 

... 

Mnemonic: LCH (5A, DA) 

Trap Conditions. A trap to memory location X'43' occurs 
if there is arithmetic overflow and the fixed-poi nt 
arithmetic mask bit is a one. The result in private memory 
register R remains unchanged. If overflow occurs and 
the mask bit is a zero, the next instruction in sequence 
is executed. 

Loa_d_<;~~p~~~e,:t ~or~Ph~se~equ~_r1~~s_. Preparation 
phases for the PCW instruction are the same as the general 
PREP phases for word instructions, paragraph 3-59. 
Table 3-3S lists the detailed logic sequence during all 
LCW execution phases. 



Phase Function Performed 

PREP At end of PREP: 

(0) : EW 

(P) : Program address 

Enable signal (S/SXMO) 

Set flip-flop MRQ 

Set flip-flop RW 

PH 1 One c lock long 

T8EN 
(OR 
Tl1L) 

- (00- 031) ___ (SO-S31) 

-+-- (RWO- RW31) 

Set fl ip-flop CC2 if overflow 
occurs; otherwise reset CC2 

SOS 901172 

Table 3-25. load Complement Word Sequence 

Signals Involved 

(S/SXMO) = FAlOAO/C PRE/34 + ••• 

FAlOAO/C = OLA 03 

S/MRQ = (S/MRQ/1) + •.. 

(S/MRQ/1) = FAS10 PRE/34 + ..• 

FAS10 = FASl1/1 + ... 

FAS1l/l = FAlOAO/C + ..• 

R/MRQ = ... 
S/RW = (S/RW/1) + ... 

(S/RW/l) = FAS11 (PRE/34 + PH2) 
NOll + •.. 

FAS11 = FAS11/1 + ..• 

R/RW = ... 

Adder logic set at last PREP clock 

RWXS/O- RWXS/3 = RW + ••• 

RW = Set at last PREP clock 

S/CC2 = (500 ® SO) PROBOVER 
+ ••• 

PROBOVER = FAlOAO/C PH1 N01-1 
+ .•. 

R/CC2 = PROBOVER + ••• 

(Continued) 

Comments 

Effective word 

Next instruction in 
sequence 

Preset adder for -0----5 
in PHI 

Prepare to read next 
: __ .L_ •• _a.!_._ 
1I1~IIUI..IIUII 

Preset to transfer two1s 
complemented effective 
word into private memory 
register R during PH1 

Transfer two's comple­
mented effective word 
into private memory 
register R 

Set condition codes if 
applicable. Fixed-point 
overflow only occurs in 
th is operation when the 
effective word to be 
comf'emented is 
-23 (X 1800000001) 

Mnemonic: lCW (3A, BA) 

3-215 



5D5901172 

Table 3-25. Load Complement Word Sequence (Cont.) 

Phase Function Performed 

PH1 Set flip-flop CC3 if (50-531) is 5/CC3 = 

TSEN 
positive and nonzero; otherwise 
reset CC3 5GTZ = 

(OR 
Tl1L) 

(Cont. ) 
TESTS = 

R/CC3 = 

I Set flip-flop CC4 if (50-531) is I S/CC4 --

negative; otherwise reset CC4 
R/CC4 = 

Enable clock TS if R is in register TSEN = 

blocks 0-3; disable clock TS, 
allowing Tl1 L, if R is in register 
extension unit, blocks 4-15 

Branch to PH10 
I 

BRPH10 = 

I S/PH10 = 

R/PH10 = 

Set fl ip-flop DRQ S/DRQ = 

(S/DRQ) = 

R/DRQ = 

PH10 ENDE functions See table 3-1S 

DR 

LOAD COMPLEMENT DOUBLEWORD (LCDj 1 A, 9A). The 
LCDinstr~cti~n loads the two's complement of the effective 
doubleword into private memory registers Rand Ru 1. If the 
R field is odd, both words of the effective doubleword are 
loaded into the same private memory register. At the end 
of the instruction, private memory register R contains the 
most significant word of the doubleword (since it is the last 
to be loaded). 

Condition Codes. If the two's complemented resu It is zero, 
the condition code flip-flops are set to XOOO. If the result 
is nonzero and positive, the condition code flip-flops are 
set to XOlO. A negative result produces condition code 
flip-flop settings of XX01. Overflow can only occur if 
the effective doubleword is _263 (X'SOOOOOOOOOOOOOOO'). 

3-216 

Signa Is Involved Comments 

5GTZ TESTS + ... 

(SO + 51 + ... + 531) NSO 

FAS11 PH1 + ... 

TESTS + •.• 

SO TESTS NFACOMP + ... I 

... 

NT5EN NTl1 T5EN is disabled by 
N(SXADD/1 RW) signal RW 
N(RW REU) Tl1 L is enabled if TSEN is 
N(REU AXRR) disabled by REU and RW 

FAS10 PH1 + ... 
I 

BRPH10 NCLEAR-l + •.. I 
... 

(S/DRQ) NCLEAR-2 Inhibits transmission of 
another clock unti I data 

BRPH10 + ... release received from 
core memory 

... 

Mnemonic: LCW (3A, BA) 

Overflow is indicated by setting flip-flop CC1, to produce 
condition code settings of X101. 

Trap Conditions. A trap to memory location X'43' occurs 
if there is arithmetic overflow and the fixed-point 
arithmetic mask bit is a one. The result in private memory 
register remains unchanged. If overflow occurs and the 
mask bit is a zero, the next instruction in sequence is 
executed. 

Load Complement Doubleword Phase Sequences. Prepara­
tion phases for the LCD instruction are the same as the 
general PREP phases for doubleword instructions, paragraph 
3-59. Table 3-26 lists the detai led logic sequence 
during all LCD execution phases. 



SDS 901172 

Table 3-26. Load Complement Doubleword Sequence 

Phase Function Performed 

PREP At end of PREP: 

(C) : ED
LSW 

(D) : ED
LSW 

(P) : ED MSW address 

(B) : Program address 

~""""hlo .. :,.. .... ,.1 It:. jt:.vUr\\ _ •• _..., ..... ~.~.,""'. \""/ .,J",,,,,""" 

Set filp-fiop MRQ 

Reset flip-flop NMRQPl 

Set flip-flop RW 

Reset flip-flop NLR3l F 

PH lOne c lock ~ong 

T8 -(DO-D3l)--(SO-S3l)~ 
(OR 
TllL) (RWO-RW3l) 

Reset flip-flop NSXBF 

Ie: /e:vu~\ 
\ .... / .... "'VIIJ/ 

FALOAD/C = 

S/MRQ = 

(S/MRQ) = 
(S/MRQ/3) = 

Signals Involved 

I: A • ,.... A ~ lro nnl: II") A • 
• r\ L.Vr\Vj '"' r f\L.j.J~ T ••• 

OLA 03 

(S/MRQ) + .•. 

(S/MRQ/3) 

FADWl (PRE/34 + PH2) + •.. 

FADWl 

FASll 

FASll/l 

= OUl FASll 

= FASll/1 + ... 

= FALOAD + ... 

S/NMRQPl = 

R/NMRQPl :-:-

S/RW = 

(S/RW/l) = 
R/RW = 

S/NLR3l F 

(S/LR3l) 

R/NLR3l F 

N(S/MRQ/3) 

(S/RW/l) + •.• 

FAS11 PH2 NOll + ••• 

N(S/LR3l) 

FA DW/l (NANLZ PRE3) + .•• 

Adder logic set at last PREP clock 

RWXS/O- RWXS/3 = RW + ••. 

RW 

S/NSXBF 
(S/SXB) 

R/NSXBF 

= Set at last PREP clock 

= N(S/SXB) 
= FA DW/l PHl + ... 

(Continued) 

Comments 

Least significant word of 
effective doubleword 

Least significant word of 
effective doubleword 

Address of most significant 
word of effective double­
word 

Address of next i nstruc­
tion in sequence 

Freset adder for -D--5 
in PHI 

Memory request for most 
significant word of 
effective doubleword 

Used to delay setting 
flip-flop DRQ 

Prepare to write least 

complemented double­
word into private memory 
reg ister Ru 1 

Force a one on private 
memory address line LR31 
during PH1 to select 
private memory register 
Ru1 

Transfer two's comple­
mented least significant 
word of effective double­
word to private memory 
reg ister Ru 1 

Preset logic for B--S 
in PH2 

Mnemonic: LCD (1 A, 9A) 

3-217 



SDS 901172 

Table 3-26. Load Complement Doubleword Sequence (Cant.) 

Phase Function Performed Signals Involved Comments 

PH1 Set flip-flop SWO if result is not S/SWO = NS0031Z (S/SWO/NZ) + •.. SWO is used in PH3 to set 

T8 
equal to zero NS0031Z = (50+51 + ••. +531) CC3. CC2 through CC4 

(OR (S/SWO/NZ) = KOOHOLD + ... 
maybesetinthisphase, but 

TllL) R/sWO REsET/A + ... 
action is meaningless since 

= they are also set in PH3 (Cant. ) 
Set fl ip-flop FL3 if end carry s/FL3 = KOO KOOHOLD KOO is end carry from 

R/FL3 = N(FUsF PHS + FUS PH5) 
complementing the least 

I 
significant word of the 
effective doubleword. 
Flip-flop NK31 will be 
reset in PH2 if end carry 
exists 

Enable clock T8 if Rand Ru1 are in TSEN = NT5EN NT11 T5EN is disabled by signal 
register blocks 0-3; disable clock N (sXADD/l RW) RW. T11L is enabled if 
T8, allowing Tl1L, if Rand Rul N(RW REU) N(REU AXRR) TSEN is disabled by REU 
are in register extension unit, and RW 
blocks 4-15 

Set fl ip-flop DRQ s/DRQ = (s/DRQ) NCLEAR-2 Inhibits transmission of 

I 
(s/DRQ) MRQPl + •.. 

another clock until data 
= release received from 

R/DRQ = ... core memory 
~ 

PH2 One c lock long 

DR 
(MBO-MB31 )---(CO-C31} CXMB DG = /DG/ Read most significant word = 
-f--(DO-D31} DXC = FA DW/1 PH2 + ... of daub leword into C-

reg ister and clock into 
D-register 

(BO-B31 }---(SO-S31) SXB = SXBF NDIS + ... Transfer program address 

(S 15-S31 )-+--(P15- P31) SXBF = Set at PH 1 clock to P-reg i ster 

PXS = FADW/1 PH2 + ... 

Set fl ip-flop BRP S/BRP = FADW/1 PH2 + ... Signifies that program 

R/BRP = PRE1 NFAIM + •.. address is in P-register 

Enable signal (SXMD) (S/SXMD) = FALOAD/C PH2 + ... Preset adder for - D ---S 
in PH3 

Reset fl ip-flop N K31 if there was S/NK31 = N(S/K3l) N(s/sXAMD/l) Provides carry to comple-
end carry in PH 1; if no end carry I + N(s/K31/l) menting of most signifi-
set fl ip-flop N K31 wi th (S/K3l) = FADW/1 PH2 + ... cant word of effective 
N(S/K31/l) 

(S/K31/1 ) = KOO (S/K31/3) + ... doubleword 

I (S/K31/3) = N(FADW/l PH2 NFL3) + ... I 

Set fl ip-flop RW S/RW - (S/RW/1) + ... Prepare to write two's 

(S/RW/1) = FAS11 PH2 NOll + ... 
complemented most sig-
nificant word of effective 

R/RW = ... doubleword into private 
memory register R 

Mnemonic : LCD (1 A, 9A) 

(Continued) 

3-21S 



SDS 901172 

Table 3-26. load Complement Doubleword Sequence (Cont.) 

Phase Function Performed 

PH2 Set flip-flop MRQ 

DR 
(Cont.) 

Reset flip-flop NMRQP1 

PH3 One c lock long 

~~~N -(DO-D31 )---(SO-S31) 

Tl1l) --f--(RWO-RW31)

S/MRQ =

(S/MRQ/3) =

R/MRQ =

S/NMRQP1 =

R/NMRQP1 =

Signals Involved

(S/MRQ/3) + ...

FA DW/1 (PRE/34 + PH2)

N(S/MRQ/3)

RWXS/0-RWXS/3 = RW + ...

RW = Set at PH2 clock

Set fl ip-flop CC2 if overflow occurs; S/CC2 = (SOO (±) SO) PROBOVER + ...
otherwise reset CC2. Fixed poi nt
,..."o .. fl ,,, ,..,.." :f ~t..,.. ,..ffe-t: .. ,.. ... _-.../
;;b~'~~m~I;~;nl;ed'Ts ~'~63 IV'- VVUIU

('SOO ... 00 ')

Set flip-flop CC3 if (SO-S31) is
positive and nonzero; otherwise
reset CC3

PROBOVER = FAlOAD/C PH3 NOl-1

R/CC2 = PROBOVER + ...

S/CC3

5GTZ

TESTS

R/CC3

= SGTZ TESTS + ...

= (SO + 51 + . .. + 531
+ SWO + ...) NSO

= FAS11 PH3 + ...

= TESTS + ...

Set flip-flop CC4 if (50-531) is S/CC4 = SO TESTS + ...
negative; otherwise reset CC4 R/CC4 = TESTS + ...

Enable clock TS if Rand Ru1 are in TSEN = NT5EN NTl1
N(SXADD/i) N(RW REU)
N(REU AXRR)

register blocks 0-3; disable clock
TS, allowing Tl1l, if Rand Ru1
are in register extension unit,
blocks 4-15

Branch to PH 10

Set fl ip-flop DRQ

BRPHIO

5/PHlO

R/PHIO

= FAS10 PHl + ...

= BRPH 10 NClEAR-l

5/0RQ = (5/DRQ) NClEAR-2

(S/ORQ) = BRPH 10 + MRQPl + ...

R/DRQ

PHIO ENDE functions See table 3-1S

DR

Comments

Core memory request for
next instruction in
sequence

Used to delay setting
DRQ

Write two's complemented
most significant word of
doubleword into private

Set condition codes if
applicable

SWO was set in PH1 if
two's complement of least
significant word of effec­
tive doubleword was
nonzero

T5EN is disabled by
signai RW. T1Il is
enabled if TSEN is
disabled by REU and RW

Inhibits transmission of
another clock unti I data
release received from
core memory

Mnemonic: lCO (1 A, 9A)

3-219

50S 901172

LOAD CONDITIONS AND FLOATING CONTROL (LCF;
70, FO). If bit position 10 of tLt:: irlsirudioll ."UIU ;s a
one, LCF loads bit positions 0 through 3 of the effective
byte into condition code flip-flops CC 1 through CC4. If
bit position 11 of the instruction word is a one, LCF loads
bits 5 through 7 of the effective byte into floating-point
mode control flip-flops FS, FZ, and FNF. If bit position
10 or 11 is a zero, the correspondi ng transfer is not made.

Load Conditions and Floating Control Phase Sequences.
Preparation phases for the LCF instruction are the same as
the general PREP phases for byte instructions, paragraph
3-59. Table 3-27 lists the detai led logic sequence dur­
ing all LCF execution phases.

LOAD CONDITIONS AND FLOATING CONTROL
Il/~/\\[DIATE (L.CrI, (2). If ~r~ F--:':l!!Iv;~ 1(; ~f ~~~,c :~::;~~;..;:

tion word is a one, LCFI loads bit positions 24 through 27
of the instruction word into condition code flip-flops CC1
through CC4. If bit position 11 of the instruction word
is a one, LCFI loads bit positions 29 through 31 of the
instruction word into floating-point mode control flip-flops
FS, FZ, and FNF. If bit position 10 or 11 is a zero, the
corresponding transfer is not made.

Load Conditions and Floating Control Immediate Phase
Sequences. Preparation phases for the LCFI instruction
are the same as the genera I PREP phases for immediate
instructions, paragraph 3-59. Table 3-28 lists the
detai led logic sequence during a II LCFI execution phases.

Table 3-27. Load Conditions and Floating Control Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : EB

I
I Effective byte (C24-C31)

(D) : EB Effective byte (024-031)

(R) : R field of instruction word The R field of the instruc-
tion word contains the two
control bits, 10 and 11

(P) : Program address Address of next instruc-
tion in sequence

Enable signal (S/SXD) (S/SXD) :::: FALCFP PRE/34 + •.• Preset adder for 0---5

FALCFP FALCF + ...
in PHl

::::

FALCF :::: OU7 OLO + •••

Set flip-flop MRQ S/MRQ :::: (S/MRQ/l) + ... Core memory request for

(S/MRQ/l) FA510 PRE/34 +
next instruction in

:::: ...
sequence

FA510 :::: FA511/1 NOU1

FASll/1 :::: FALCF + ...

R/MRQ :::: ...
PH1 One clock long

T5L (00-031) ---(50-531) Adder logic set at last PREP clock

(524-527)-+--(CC 1-CC4) 5/CC1 :::: 524 CCX5/3 + ... Load condition code bits
from effective byte into

5/CC4 :::: 527 CCX5/3 +
CC 1 through CC4, pro-.. .
viding bit lOis a one •

R/CC1-R/CC4 :::: (R/CC) + .•• (R30 holds bit 10 of

(R/CC) :::: CCX5/3 + ...
instruction word)

CCX5/3 :::: FALCF PH1 R30

Mnemonic: LCF (70, FO)

(Continued)

3-220

SDS 901172

Table 3-27. Load Conditions and Floating Control Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH1 S29-+--FS S/FS = S29 FCXS + ... Load floating-point mode

T5L R/FS = FCXS + ... contro; bits from effective

(Cont.) byte into FS, FZ, and
FCXS = FALCF PHl R31 FNF, providing bit 11 is

a one. (R31 holds bit 11
of instruction word)

S30-+--FZ S/FZ - S30 FCXS + ...

R/FZ = FCXS + ...

S31-f--FNF S/FNF = S31 FCXS + •..

R/FNF = FCXS + ...

Branch to PHlO BRPH10 = FAS10 PH1 + •..

S/PH10 = BRPH10 NCLEAR-1 + ...

R/PH10 = ...
Set flip-flop DRQ S/DRQ = (SIDRQ) NCLEAR-2 Inh ibits transmission of

(S/DRQ) BRPH10 + .••
another clock unti I data = release received from

R/DRQ = ... core memory

PH10 ENDE functions See table 3-18

DR

Mnemonic: LCF (70, FO)

Table 3-28. Load Conditions and Floating Control Immediate Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : Value field
SE

Sign-extended value field
of instruction word

(O) : Value field
SE

Sign-extended value field
of instruction word

(R) : R field of instruction The R field of instruction
word conta i ns the two
control bits, bits 10 and
11

(P) : Program address Address of next i nstruc-
tion in sequence

Mnemonic: LCFI (02)

(Continued)

3-221

SDS 901172

Table 3-28. Load Conditions and Floating Control Immediate Sequence (Cont.)

Phose Function Performed Signals Involved Comments

PREP Enable signal (S/SXD) (S/SXD) = FALCFP PRE/34 + ...
!

Preset odder for D---S
(Cont.) FALCFP FALCF + .•. I in PH1

=

FALCF = FULCFI + •••

Set fl ip-flop MRQ S/MRQ = (S/MRQ/1) + ... Core memory request for

(S/MRQ/1) FAS10 PRE/34 + ...
next instruction in

=
sequence

FAS10 = FAS11/1 NOU1
I I I FASll/1 = FALCF + ...

R/MRQ = ...
PHl One c lock long I

T5L (DO- D31)--(50-S31) Adder logic set at lost PREP clock

(524-S27) -(CC 1-CC4) S/CC1 = S24 CCXS/3 + •.. Load condition code bits
from value field into CC1

S/CC4 = S27 CCX5/3 + •.•
through CC4, providing

I I
bit 10 is a one. (R30

R/CC 1- R/CC4 = (R/CC) + ••. holds bit 10 of instruc-

I (R/CC) = CCXS/3 + ...
I

tion word)

CCX5/3 = FALCF PHI R30

529 -f--FS S/FS = S29 FCX5 + ... Load floating-point mode

R/F5 = FCXS + ..•
control bits from value
field into FS, FZ, and

FCX5 = FALCF PH1 R31 FNF, providing bit 11 is

S30 -I---FZ S/FZ = 530 FCX5 + ...
a one. (R31 holds bit 11
of instruction word)

R/FZ = FCX5 + ..•

531-1--FNF S/FNF = S31 FCXS + •..

R/FNF = FCXS + •..

Branch to PH10 BRPHIO = FA5I0 PH1 + .••

S/PHIO = BRPH10 NCLEAR-1 + •.•

R/PHIO = ...
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR-2 Inhibits transmission of

(S/DRQ) = BRPH10 + ...
another clock unti I data
release received from

R/DRQ = ... core memory

PHIO ENDE functions See table 3-18

DR

Mnemonic: LCFI (02)

3-222

SDS 901172

LOAD REGISTER POINTER (LRP; 2F, AF). The LRP instruc­
tion loads bits 24 through 27 of the effective word into
flip-flops RP24 through RP27, respectively. These flip­
flops correspond to bits 56 through 59 of the program status
doubleword. If the computer contains less than the maxi­
mum number of 16 blocks of general registers, it is possible
to load the pointer with a value that points to a nonexistent
register block. If the pointer is loaded with such a value,

a,1 ones are generated when a register of the nonexistent
block is addressed by the R field of a subsequent instruction.

Load Reg ister Poi nter Phase Sequences. Preparation phases
for the LRP instruction are the same as the general PREP
phases for word instructions, paragraph 3-59. Table 3-29
lists the detai led logic sequence during all LRP execution
phases.

Table 3-29. Load Register Pointer Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : EW Effective word

(D) : EW Effective word (bit posi-
tions 24 through 27 con-
tain the number of the
current register block to
be loaded into register RP)

(P) : Program address Address of next instruc-
tion in sequence

Enable signal (S/SXD) (S/SXD) = FALCFP PRE/34-A + .•. Preset adder for D--S
FALCFP = FULRP + ... in PH1

Set flip-flop MRQ S/MRQ = (S/MRQj1) + •.. Core memory request for
(S/MRQj1) = FAS 10 PRE/34 next instruction in
FA.SlO = FAS11/1 NOUl sequence
FASll/1 = FULRP + .•.
FULRP = OU2 OLF

R/MRQ = ...
PHl One c lock long

T5L (DO-D31)---(SO-S31) Adder logic set at last PREP clock

(S24-S27)--- (RP24- RP27) I S/RP24 = S24 RPXS + •.. Transfer bits 24 through

I
27 of effective word to

S/RP27 = S27 RPXS + ...
register RP

R/RP24- R/RP27 = RPXS

RPXS = FULRP PH1-F + •..

Branch to PH 1 0 BRPHlO = FASlO PH1 + .•.

S/PH10 = BRPH10 NCLEAR-l

R/PHlO = ...
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR-2 Inhibits transmission of

(S/DRQ) BRPHlO
another clock unti I data = + ... release received from

R/DRQ = ... core memory

PH10 ENDE functions See table 3-18

DR

Mnemonic: LRP (2F, AF)

3-223

Paragraph 3-61 SDS 901172

3-61 Fami Iy of Load Absolute Instructions (FALOAD/A)

LOAD ABSOLUTE HALFWORD (LAH, 5B, DB). The LAH
instruction extends the sign of the effective hal fword 16 bit
positions to the left and takes the absolute value of the re­
sulting 32-bit number. The absolute value equals the num­
ber when the sign is positive or the two's complement when
the sign is negative. The absolute value is then loaded into
private memory register R. Examples of an LAH are:

EH 1111111111101110
(-18

10
)

Sign-extended EH 11111111111111111111111111101110
(- 18, ,,)

IV

Abso lute va I u e 00000000000000000000000000010010
(18

10
)

R 00000000000000000000000000010010
(18

10
)

Condition Codes. If the result in the R-register is zero,
the condition codes are set to XXOO. If the result is non­
zero, the condition codes are set to XX10. A nonzero
result is always positive.

LAH Phase Sequence. LAH preparation phases are the same
as the general PREP phases for halfword instructions as
described in paragraph 3-59. Figure 3-132 shows the
simplified phase sequence for the instruction during

PREP PHl

(C): EH, SIGN EXTENDED

(D): EH, SIGN EXTENDED
(S/SXD) IF SW7

(A): RR (NOT USED) (S/SXMD) IF NSW7

(P): EH ADDRESS

I

execution and table 3-31 lists the detailed logic sequence
c.iurillg 1:1t:: LAn t::Jl.t::L.uliOIJ fJ:JU;'<;;:>.

LOAD ABSOLUTE WORD (LAW, 3B, BB). The LAW in­
struction loads the absolute value of the effective word
into private memory register R. The absolute value equals
the effective word if the sign of the effective word is
positive. If the effective word is negative, the absolute
value equals the two's complement of the effective word.

Overflow. Fixed-point arithmetic overflow occurs if the
effective word is _2 31 (1000 000) since recomple­
menting produces a positive number too large to be held
in a 32-bit register. Overflow causes a trap to memory
location X'43' after execution of LAW if the adthmetic
mask is a one. If the arithmetic mask is a zero, the next
instruction in sequence is executed.

Condition Codes. If the R-register result is zero, the
condition codes are set to XXOO. If the resu It is nonzero,
the condition codes are set to XX10. Flip-flop CC2 of
the condition codes is set if fixed-point arithmetic over­
flow occurs.

Load Absolute Word Phase Sequence. LAW preparation
phases are the same as the genera I PREP phases for word
instructions as described in paragraph 3-59. Figure 3-133
shows the simplified phase sequence for the instruction
during execution. Table 3-31 lists the detailed logic
sequence during all LAW execution phases.

PH2 PH10

MB---C

D---S IF SW7

-D --- S IF NSW7

S--f--RR

I
(B): PROGRAM ADDRESS B---S -f--P I

IF EH POSITIVE,

3-224

l-+-- S'vV7

O-+-- NSXBF

(S/MRO/3)

I
1 --+-- BRP

I
l-f---MRO

1--f---RW

BRPH 10

Figure 3-132. Load Absolute Ha Ifword Phases

I

1 -f---- DRO

I ENDE

I CONDITION CODES

901172A.3022

SDS 901172

Table 3 -30. Load Absolute Halfword Sequence

Phase Function Performed

PREP At end of PREP:

(C) : EH, sign-extended

(D) : EH, sign-extended

(A) : RR (not used)

(P) : EH address

(B) : Program address

Set flip-flop SW7 if EH positive

Reset flip-flop NSXBF

PHl One clock long

T5L (BO-B31)---(SO-S31)

(S15-S31)+--(P15- P31)

If sign-extended EH positive,
enable signal (S/SXD)

If sign-extended EH negative,
enable signal (S/SXMD)

Set flip-flop MRQ

Set flip-flop RW

Set flip-flop BRP

S/SW7

R/SW7

S/NSXBF

(S/SXB)

R/NSXBF

SXB

SXBF

PXS

(S/SXD)

=

=

=

=
=

Signals Involved

FALOAD/A ND16 OU5
PRE/34 + .••

RESET/A + .•.

N(S/SXB)

FALOAD/A PRE/34 + •••

NDIS SXBF + •••

Set at last PREP clock

FALOAD/A PHl NOU1 + .••

FALOAD/A PHl SW7 + ••.

Comments

Effective halfword, with
sign-extended 16 bit
positions to the left. In
two's complement form
if negative

Contents of private mem­
ory reg ister R. Not used
during this instruction

Effective halfword address

Address of next instruc­
tinn in C:PI"IIIPnf"P - --- -----,--_._-
Flip-flop SW7 stores
polarity of EH for
computing absolute va iue
in PH2

Preset logic for B---S
in PH1

Transfer program address
to P-register

Preset adder for D---S
in PH2. Sign-extended
effective halfword equals
absolute value

(S/SXMD) = FALOAD/A PHl NSW7 +... Preset adder for -D--5

S/MRQ = (S/MRQ/3) + •..

(S/MRQ/3) = FALOAD/A PHl + .••

= FA lOAD/A PHl + ...

in PH2. Sign-extended
effective halfword two's
complemented to find
absolute value

Core memory request for
next instruction in
sequence

Prepare to write result
into private memory

R/MRQ

S/RW

R/RW

S/BRP

R/BRP

FALOAD/A PH1 NOUl + ... Signifies that program

PRE1 NFAIM + INTRAP1 + •.• address is in P-register

Mnemonic: LAH (5B, DB)

(Continued)

3-225

SDS 901172

Table 3-30. load Absolute Halfword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH2 One c lock long

T8l If sign-extended EH positive Adder logic set at PH1 clock Transfer absolute value to
private memory register R

(DO- D31)---(SO-S31) ----

(RWO-RW31) RWXS/0-RWXS/3 = RW + ...

RW = Set at PH 1 clock

I If sign-extended EH negative I Adder logic set at PH 1 clock I Transfer absolute value to I
private memory register R

-(DO-D31)-(SO-S31) -- RWXS/O- RWXS/3 = RW + .•.

I (RWO- RW3l)

I Set flip-flop CC3 if (SO-S31) S/CC3 = SGTZ TESTS + •.. Absolute value nonzero
is nonzero; otherwise reset CC3

SGTZ = (SO+Sl + ... +S31)

I I
= N(SO NFACOMP) + ...

I SO must be a zero; TESTS FALOAD/A PH2 + '"

I I I absol~te value ne~er
R/CC3 = TESTS + ... negative

Reset flip-flop CC4 R/CC4 = ... CC4 is always zero

Enable clock T8l T8EN = NT5EN NTi i l T5EN disabled by signal
N(SXADD/1 RW) RW
N(RW REU) N(REU AXRR)

NT5EN = RW+ ••.

Branch to PH10 BRPH10 = FA lOAD/A PH2 NOU1 + ...

S/PH10 = BRPH10 NClEAR + •.•

R/PH10 = ...
Set flip-flop DRQ S/DRQ = BRPH10 NClEAR + ... Inhibits transmission of

another clock unti I data
R/DRQ = ... re I ease s i g na I from core

memory

PH10 ENDE functions See table 3-18

DR

Mnemonic: lAH (5B, DB)

3-226

PREP

(C): 8N

(D): EW

(A): RR (NOT USED)

(P): EW ADDRESS

PROGRAM ADDRESS i (B):

SDS 901172

PH1 PH2

D-S IF SW7 (S/SXD) IF SW7

(S/SXMD) IF NSN7 -D--S IF NSW7 I
S-I---RR

I
B--S-+--P

1-t-- BRP
IF 8N POSITIVE, 1 -+-- SW7

I
I

PH10

I CONDITION CODES 0-1-- NSXBF

I (S/MRQ/3) 1-1--MRQ

I
1-1-RW

I
i

1--1-- DRQ

BRPH10

Figure 3-133. Load Absolute Word Phases

Phase Function Performed

PREP At end of PREP,

(C): EW

(D): EW

(A): RR (not used)

(P): EW address

(B): Program address

Set flip-flop SW7 if EW positive

Reset flip-flop NSXBF

Table 3-31. Load Absolute Word Sequence

Signa Is Involved

S/SW7 = FULAWORDW NDO PRE/34 + ••.

FULAWORDW = FALOAD/A N01

R/SW7 = RESET/A + ...

S/NXSBF = N(S/SXB)

(S/SXB) = FALOAD/A PRE/34 + •.•

R/NSXBF = ...

(Cont i nu ed)

ENDE

901172A.3023

Comments

Effective word. May be
positive or negative

Effective word

Contents of private mem­
ory register R. Not used
during this instruction

Effective word address

Address of next i nstruc­
tion in sequence

Flip-flop SW7 stores
polarity of effective word
for computing absolute
value in PH2

Preset logic for B---S
in PHl

Mnemonic: LAW (3B, BB)

3-227

SOS 901172

Table 3-31. Load Absolute Word Sequence (Cont.)

Phase Function Performed

PH1 One clock long

T5L (BO- B31)---(50-531)

(515-531)--I---(P15- P31)

Set fI ip-flop BRP

If EW positive, enable signal
I (s/SXD)

If EW negative, enable signal
(S/SXMD)

Set flip-flop MRQ

Set flip-flop RW

PH2 One c lock long

T8L

3-228

If EW positive (00-031) ---_

(50- 531) ---(RWO- RW31)

If EW negative

- (00- D31) ---(50-531)--­

(RWO-RW31)

Set flip-flop CC2 if arithmetic
overflow; otherwise reset CC2

Set flip-flop CC3 if (50-531)
is nonzero; otherwise reset CC3

Reset flip-flop CC4

Enable clock T8L

Signals Involved

SXB = NDIS SXBF + ...

= Set at last PREP clock

= FALOAD/A PHl NOUl + ...

Comments

Transfer program address
to P-register

SXBF

PXS

S/BRP
R/BRP

FALOAD/A PHl NOUl +... Signifies that program
PREl NFAIM + INTRAPl + ... address is in P-register

(s/SXO) FALOAD/A PHl SW7 + .•. Preset adder for D--s
in PH2. Effective word

I equals absolute value

(S/SXMD) = FALOAD/A PHl NSW7 + •• • Preset adder for -D---S
in PH2. Effective word

S/MRQ = (S/MRQ/3) + ...

(S/MRQ/3) = FALOAD/A PH1 + ...

R/MRQ

S/RW

R/RW

= FALOAD/A PHl + ...

Adder logic set at PH1 clock

RWXS/O- RWXS/3 = RW + ...

RW = Set at PH1 clock

Adder logic set at PHl clock

RWXS/O- RWXS/3 = RW + •..

S/CC2 =

PROBOVER =

R/CC2 =

S/CC3
SGTZ

TESTS
R/CC3

R/CC4

T8EN

NT5EN

(500 9 SO) PROBOVER + ..•

FALOAD/A PH2 NOl + ...

PROBOVER + ...

SGTZ TESTS + ...
(SO + 51 + ... + 531)
N(50 NFACOMP) + .. .
FALOAD/A PH2 + .. .
TESTS + ...

NT5EN NT11 L
N(SXAOD/l RW)
N(RW REU) N(REU AXRR)
RW + ...

Continued

two's complemented to
find absolute value

Core memory request for
next instruct ion in
sequence

I Pr~pare to write result in
private memory

Transfer absolute value to
private memory register R

Transfer absolute value to
private memory register R

Arithmetic overflow occurs
during LAW only for
effective word 100 .•. 00
(_2 31). Two's comple­
menting produces +231 and
overflow into sign bit
position. TRAP flip-flop
is set during ENOE ifover­
flow exists and arithmetic
mask is a one

CC3 indicates absolute
value is nonzero

CC4 is always zero

T5EN is disabled by
signal RW

Mnemonic: LAW (3B, BB)

SDS 901172

Table 3-31. Load Absolute Word Sequence (Cont.)

Phase Function Performed Signais Invoived Comments

PH2 Branch to PHlO BRPH10 = FA LOAD/A PH2 NOUl + ...
T8L

(Cont.) S/PH10 = BRPH10 NCLEAR + ...

R/PH10 = ...

Set flip-flop DRQ S/DRQ = BRPH10 NCLEAR + ... Inhibits transmission of
another clock until data

R/DRQ = ... release signal from core
memory

PHlO ENDE functions See table 3-18
DR

LOAD ABSOLUTE DOUBLEWORD (LAD, 1 B, 9B). The
LAD instruction loads the absolute value of the effective
doubleword into private memory. The absolute value
equals the effective doubleword if the sign of the effective
doubleword is positive. If the effective doubleword is
negative, the absolute value equals the two's complement
of the effective doubleword. If the R field of the instruc­
tion is even, the most significant half of the absolute value
is transferred to private memory register R and the least
significant half to private memory register Rul. If the R
field of the instruction word is odd, only the most signifi­
cant half of the absolute va lue is transferred to private
memory register R. Examples of an LAD with both an even
and odd R field are:

Even R Field

ED 1011011. .• 1011 1000110 ..• 1100 Before
execution

0100lO0 ... 0100 0111001 ... 0100 After

Register R Register Ru 1

Odd R Field

ED 0101111 ... 1000 0101010 ... 1011

0101111 ... 1000

Register R

execution

Before
execution

After
execution

Mnemonic: LAW (38, 88) I

Overflow. Fixed-point arithmetic overflow occurs if
the effective doubleword is _263 (100000 ••. 000) since
recomplementing produces a positive number too large
to be held in two 32-bit registers. Overflow causes a
trap to memory location X'43' after execution of LAD
if the arithmetic mask is a one. If the arithmetic mask
is a zero, the next instruction sequence is executed.

Condition Codes. LAD condition code settings are:

CC1 CC2 CC3 CC4 Absolute Value of ED

x o o o Zero - no overflow

x o o Nonzero - no overflow

x o o Overflow

LAD Phase Seguence. LAD preparation phases are the
same as the general PREP phases for doubleword instruc­
tions as described in paragraph 3-59. Figure 3-134
shows the simplified phase sequence for the instruction
during execution and table 3-32 lists the detai led logic
sequence during all LAD execution phases.

3-229

SDS 901172

PREP PHI PH2 PH3 PH4 I PH 10

(C): ED LSH I MB--C -+--D I

(D), EDLSH I I I I, I
MB---C

(S/SXD) IF SW7 I D - S IF SW7 , (S/SXD) IF SW7 D --- S IF SW7
(A): RR (NOT USED) I (S/SXMD) IF NSW7 -D - S IF NSW7 (S/SXMD) IF NSW7 ,-D --- S IF NSW7 I

I S -+--RRul S -f- RR

(P): EDMSH I IF S = 0, l--f--SWO I I
ADDRESS IIF END CARRY, I-+-- FL31' I

I IFFL3, 0--f--NK31
I I B---S~P

I l-1--BRP
(B): PROGRAM

ADDRESS I
IF ED POSITIVE, I-+-- S'N7

O-/--NSXBF

1 (S/MRQ/3)

I ' I
I OlNSXBF I

o -+-- NMRQPl

l-f--MRQ

l-f--DRQ O-t---MRQPl

I (S/MRQ/3) l--f-MRQ

: CONDITION CODES

l-f-- DRQ

I
I

l-f-RW

a -f-- NLR31F

I

I
I

I~RW

I

I

Figure 3-134. Load Absolute Doubleword Phases

Table 3-32. Load Absolute Doubleword Sequence

IENDE

901172A.3025

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : ED
LSH

Least significant half of
effective doubleword

(D) : ED
LSH Least significant half of

effective doubleword

(A): RR (not used) Contents of private mem-
ory register R. Not used
during this instruction

(P) : ED
MSH

address Address of most significant
half of effective double-
word

(B) : Program address Address of next instruc-
tion in sequence

Set flip-flop SW7 if ED positive S/SW7 = FULAWORDW NDO PRE/34 + ... Flip-flop SW7 stores
sign of effective double-

FULAWORDW = FA LOAD/A N01 word for computing
absolute value in PH2.

R/SW7 = RESET/A + ... When SW7 is set, DO is
sign bit of most significant
half of doubleword

Mnemonic: LAD (1 S, 9S)

(Continued)

3-230

SDS 901172

Table 3-32. Load Absolute Doubleword Sequence (Cont.)

Phase Function Performed

PREP Reset flip-flop NSXBF
(Cont.)

PH lOne clock long

T5L

I

(BO-B31)---(SO-S31)

If ED is positive, enable signal
(S/SXD)

If ED is negative, enable signal
(S/SXMD)

Set flip-flop MRQ

Reset flip-flop NMRQP1

Set flip-flop RW

I Reset flip-flop NLR31 F

PH2 One c lock long

T8L If ED is positive, (DO-D31)--­
(SO- S31) ---(RWO-RW31)

If ED is negative, -(DO-D31)
(50- S31) -(RWO-RW31)

Reset fI ip-flop N5XBF

Signals Involved

S/NXSBF = N(S/SXB)

(S/SXB) = FALOAD/A PRE/34 + ...

R/NSXBF = •••

SXB = NDIS SXBF + •..

SXBF = Set at last clock

(S/SXD) = FALOAD/A PH1 SW7 + ...

(S/SXMD) = FALOAD/A PH1 NSW7 + ...

S/MRQ = (S/MRQ/3) + ...

(S/MRQ/3) = FALOAD/A PH1 + ...

R/MRQ = ...

S/NMRQP1 = N(S/MRQ/3)

R/NMRQP1 = ...
S/RW = FALOAD/A PHl + ...

R/RW = ...

S/NLR31 F = N(S/LR31)

(S/LR31) = FULAD PH1 + ...

R/NLR31 F = ...

Adder logic set at PH1 clock

RWXS/0-RWXS/3 = RW + ..•

RW = Set at PH1 clock

Adder logic set at PH1 clock

RWXS/0-RWXS/3 = RW + •••

S/NSXBF = N(S/SXB)

(S/SXB) = FALOAD/A PH2 + .•.

R/NSXBF = ...

(Continued)

Comments

Preset logic for B---S
in PH1

Meaningless for this
instruction

Preset adder for trans­
ferring least significant
half of effective double­
word to sum bus in PH2.
Effective doubieword
equals absolute value

Preset adder for -D---S
in PH2. Effective double­
word two's complemented
for absolute value

Core memory request for
most signi ficant half of
effective doubleword.
Flip-flop DRQ set on next
clock

Delays setting flip-flop
DRQ

Prepare to write least sig­
nificant half of resu It in
private memoiY iegistei
Ru1

Force a one on private
memory address line LR31
during PH2 to select
private memory register
Ru1

Transfer absolute value of
least significant half of
doubleword to private
memory register Ru 1

Transfer absolute value of
least significant half of
doubleword to private
memory register Ru 1

Preset logic for B--5
in PH3

Mnemonic: LAD (1 B, 9B)

3-231

SDS 901172

Table 3-32. load Absolute Doubleword Sequence (Cont.)

Phase Function Performed

PH2 Set flip-flop SWO if (SO-S31)
T8l nonzero

(Cont.)

Set flip-flop Fl3 if end carry

Enable clock T8l

Set flip-flop DRQ

PH3 One c lock long

DR

3-232

(BO-B31) --(SO-S31)

(S 15-S31) -+--(P15-P31)

Set fl ip-flop BRP

(MBO-MB31) ---(CO-C31)-,t-­

(DO-D31)

Set flip-flop MRQ

Reset flip-flop NMRQPl

Set flip-flop RW

Signals Involved

S/SWO = NS0031 Z (S/SWO/NZ) + .••

N S0031 Z = (SO + S 1 + • •. + S31)

(S/SWO/NZ) = KOOHOlD + •••

KOOHOlD = FAlOAD/A PH2 + ...

R/SWO = .•.

S/Fl3 = KOO KOOHOlD + •..
I ~'/F'''' _

K; L.5 - •••

T8EN = NT5EN NT11l N (5XADD/1 RW)

N(RW REU) N(REU AXRR)

NT5EN = RW + .• ,

S/DRQ = MRQP1 + •. ,

R/DRQ = ...

SXB = NDIS SXBF + •••

SXBF = Set at PH2 clock

PXS = FA lOAD/ A PH3 + •..

S/BRP = FADW/1 PH2 +."

R/BRP = PREl NFAIM + INTRAPl + •.•

CXMB = DG = /DG/

DXC = FAlOAD/ A PH3 + ..•

S/MRQ = (S/MRQ/3) + ...

(S/MRQ/3) = FAlOAD/A PH3 + ...

R/MRQ = ...

S/MRQP1 = N(S/MRQ/3)

R/MRQPl = .••

S/RW == FAlOAD/ A PH3 + ...

R/RW == •••

(Continued)

Comments

Sets CC3 in PH4. CC2,
CC3, CC4 if set are
mean i ng less

KOO is end carry; resu Its
I when effective doubleword

is negative and least sig­
nificant half is 000 ... 000

T5 is disabled by signal
RW

MRQP1 set on previous

I

~r;~s~isS~:~~n;~:!~ser
clock until data release
signal received from core
memory

Transfer program address
to P-register

Signifies that program
address is in P-register

Transfer most signi ficant
half of effective double­
word to D-register

Core memory request for
next instruction in
sequence

Delays setting flip-flop

DRQ. DRQ set on next
clock

Prepare to write most sig­
nificant half of result into
pri vate memory reg i ster R

Mnemonic: LAD (1 B, 9B)

Phase

PH3
DR

(Cont .)

PH4

T8l

SDS 901172

Table 3-32. load Absolute Doubleword Sequence (Cont.)

Function Performed

If ED positive, enable signal
(S/SXD)

If ED negative, enable signal
(S/SXMD)

Reset flip-flop NK31 if end
carry occurred in PH2i if no end
carry, set flip-flop NK31 with
N(S/K31/l)

One c lock long

If ED positive (DO-D31)-­

(SO-S31)---(RWO-RW31)

If ED negative - (DO-D31)--­

(SO-S31) --(RWO-RW31)

Set flip-flop CC2 if arithmetic
overfiow; otherwise reset CC2

Set flip-flop CC3 if (SO-S31)
nonzero; otherwise reset CC3

Reset flip-flop CC4

Signals Involved

(S/SXD) = FAlOAD/ A PH3 SW7 + .••

(S/SXMD) - FAlOAD/A PH3 NSW7 + ••.

SIN K31 = N(S/K31) N(S/SXAMD/l)
+ N(S/K31/1)

(S/K31/1) = KOO (S/K31/3) + ...

(S/K31/3) = N(FAlOAD/A PH3 NFl3)

+ •••
R/NK31 = ...

Adder logic set at PH3 cloc~

RWXS/0-RWXS/3 = RW + ...

RW = Set at PH3 clock

Adder logic set at PH1 clock

RWXS/0-RWXS/3 = RW + ..•

S/CC2 = (SOO (£) SO) PROBOVER + .•.

I PROBOVER = FAlOAD/A PH2 N01 + ...

I R/CC2 = PROBOVER + •••

S/CC3 = SGTZ TESTS + •••

SGTZ = (NS3263Z + SO + Sl

+ ••• + S31) NSO + •••

TESTS = FAlOAD/A PH4 + •..

NS3263Z= SWO + .••

R/CC3 = TESTS + ...

R/CC4 = ...

(Conti nued)

Comments

Preset adder for transfer­
ring most significant half
of effective doubleword to
sum bus in PH4. Effec­
tive doubleword equals
absolute value

Preset adder for - D-.S
in PH4. Most significant
ha If of effective double­
word two's complemented
to find absolute value

Occurs if effective
doubleword negative,
Setting K31 provides a
carry to most signi ficant
half of effective double­
word complemented in
PH4

Transfer absolute va lue of
most significant half of
doubleword to private

I memory register R

I
Transfer absolute value of
most significant half of
doubleword to private
memory register R

Arithmetic overflow dur-
i ng LAD when effective
doubleword 100 ... 00
(_263). Two's comple­
menting produces +263
and overflow into sign
bit position. TRAP flip­
flop is set during ENDE if
overflow exists and ari th­
metic mask is a one

CC3 indicates absolute
va lue is nonzero

CC4 a lways zero for LAD

Mnemonic: LAD (1 B, 9B)

3-233

SOS 901172

Table 3-32. load Absolute Ooubleword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH4 Enable clock T8l T8EN = NT5EN NTll l N(SXAOO/l RW) T5EN is disabled by signal
T8l RW

(Cont.) N(RW REU) N(REU AXRR)

NT5EN = RW + ...

Branch to PH10 BRPH10 = FAlOAO/A PH2 NOUl + ...

I I S/PH10 = BRPH10 NClEAR + ... I
R/PH1O = ...

Set flip-flop ORQ S/ORQ = BRPH10 NClEAR + MRQPl + .•• Inhibits transmission of
another clock unti I data

R/ORQ = ... release signa I received
from core memory

PH10 ENDE functions See table 3-18

I DR

Mnemonic: lAD (1 B, 98)

3-234

SOS 901172 Paragraph 3-62

3-62. Fomi Iy of Store Instructions (FASTORE)

STORE BYTE (STB; 75, F5). The STB instruction stores the
least significant byte (bit positions 24 through 31) of
private memory register R into the effective byte location.

Store Byte Phase Sequences. Preparation phases for the
STB instruction are the same as the general PREP phases
for byte instructions, paragraph 3 -59. Table 3-33
lists the detailed logic sequence during aI/ STB execution
phases.

Table 3-33. Store Byte Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(A) : RR, byte aligned Contents of private mem-
ory register R, with least
significant byte shifted to
byte position of the
effective byte

(B) : Program address Address of next ; nstruc-
tion in sequence

(P) : Effective byte address

Set flip-flop MRQ and flip-flop S/MRQ = (S/MBXS) + ••. Prepare to store byte in
MBXS (S/MBXS) = FASTORE PRE/34 + 000

effective byte location

FASTORE = FASTORE/3 + FUXW/1

FASTORE/3 = N0605 N0403

R/MRQ = 0.0

S/MBXS = (S/MBXS) Prepare to gate byte from

R/MBXS = 000

sum bus to memory bus

Enable signal (S/SXA) (S/SXA) = FASTORE PRE/34 + 000 Preset adder far A-- S
in PH1

Set flip-flop ORQ S/ORQ = (S/MBXS) + 000 Inh ibits transmission of

R/ORQ = another clock unti I data
000

release signal received
from core memory

PH1 Sustai ned unti I data release

DR (AO-A31) ---(SO-S31) Adder logic set at last PREP clock

(SO-S7)-(MBO-MB7) S/MBXS/O = NP32 NP33 FABYTE EXC + 00. Byte from bit positions 24

OR R/MBXS/O = ORQ through 31 of private
memory register R trans-

FABYTE = 01 02 03 ferred to effective byte

(S8-S15)---(MB8-MB15) S/MBXS/1 = NP32 P33 FABYTE EXC+ 0 ••

location

OR R/MBXS/1 = ORQ

(S16-S23)-(MB16-MB23) S/MBXS/2 = P32 NP33 FABYTE EXC + 000

OR R/MBXS/2 = DRQ

(S24-S31)-(MB24-MB31) S/MBXS/3 ;::: P32 P33 FABYTE EXC + 0 ••

R/MBXS/3 = DRQ

Mnemonic: STB (75, F5)

(Continued)

3-235

SDS 901172

Table 3-33. Store Byte Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH1 Branch to PH9 BRPH9 = FASTORE NFASTORE/1

DR
PH1 + ...

(Cont .)
FASTORE/1 = FUSTD + FUXW/l

S/PH9 = BRPH9 NCLEAR + ...

R/PH9 = ...

PH9 One c lock long I I
T5L

(BO-B31)----(SO-S31) SXB PXSXB NDIS + .•. Transfer program address =
to P-register

(S 15-S31)-+--(P15- P31) PXSXB = PH9 NFAFL NFAMDS

PXS = PXSXB + .•.

Set flip-flop BRP S/BRP = PXSXB + •.. Signifies that program ad-

I
R/BRP = PRE1 NFAIM + •.•

I
dress is in the P-register

I Set flip-flop MRQ

I
S/MRQ = (S/MRQ/3) + ...

I
Core memory request for

(S/MRQj3) = NINTAAP2 PXSXB + ... next instruction in

R/MRQ = ... I sequence

Set flip-flop DRQ S/DRQ = BRPH10 + ••• Inhibits transmission of

R/DRQ
another clock unti I data = ...
release signal received
from core memory

Enable signal (S/SXA) (S/SXA) = FASTORE PH9 + •.. Preset adder for A-S
in PH10

PHlO Sustained unti I data release

DR (AO-A31)----(SO-S31) Adder logic set at PH9 clock Not used for STB

ENDE functions

STORE HAlFWORD (5TH; 55 , D5). The STH instruction
stores the contents of bit positions 16 through 31 of the
private memory register specified in the R field of the in­
struction in the effective halfword location. If the infor­
mation in register R exceeds halfword data I imits, condition
code flip-flop CC2 is set to one; otherwise, CC2 is reset to
zero.

~!.?--'.:e Halfword Phase Sequences. Preparation phases for the
STH instruction are the same as the general PREP phases for
halfword instructions, paragraph 3-59. Table 3-34 lists
thedetailed logicsequence duringall STH execution phases.

3-236

Mnemonic: STB (75, F5)

STORE WORD (STWi 35, B5). The 5TW instruction stores
the contents of the private memory register specified in
the R field of the instruction into the effective word
location.

Store Word Phase Sequences. Preparation phases for the
STW instruction are the same as the general PREP phases
for word instructions, paragraph 3 -59. Table 3-35 lists
the detai led logic sequence during all STW execution
phases.

SOS 901172

Table 3-34. Store Halfword Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(A) : RR, ha If word a I igned Contents of pri vate mem-
ory register R, with bits
16 thru 31 shifted to half-
word position of the
effective halfword

(B) : Program address Address of next instruc-
tion in sequence

(P) : Effective halfword address

Set flip-flop MRQ S/MRQ = (S/MBXS) + ••• Prepare to store ha Ifword
in effective halfword
location

Enable signal (S/MBXS) (S/MBXS) = FASTORE PRE/34 + ••. Prepare to gate halfword

FASTORE = N0605 N0403 from sum bus to memory
bus

R/MRQ = ...
S/MBXS = (S/MBXS)

R/MBXS = ...
Set flip-flop ORQ S/ORQ = (S/MBXS) + ••• Data request, inhibiting

R/ORQ = transmission of another ... clock until data release
received from memory

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Prepare to read from

(S/AXRR) = FASTORE PRE/34 N02 + ...
private memory register R

R/NAXRR = ...
Enable signal (S/SXA) (S/SXA) = FASTORE PRE/34 + Preset odder for A-S

in PHl

PH1 Sustained unti I data release

DR (AO-A31)--(SO-S31) Adder preset at last PREP clock Store halfword in effec-
tive halfword location in

(SO-S31)-(MBO-MB31) MBXS set at last PREP clock core memory

(RRO-RR31)--f--(AO-A31) AXRR set at last PREP clock Read private memory
register R into A-register

Branch to PH9 BRPH9 = FASTORE NFASTORE/1

PHl + •••

S/PH9 = BRPH9 NCLEAR + •••

R/PH9 = ...

Mnemonic: STH (55, D5)

(Continued)

3-237

SDS 9011 n

Table 3-34. Store Halfword Sequence (Cont.)

Phose Function Performed Signals Involved Comments

PH9 One c lock long

T5L (BO-B31)-(SO-531) SXB = PXSXB NDIS + •.. Transfer program address

PXSXB = PH9 NFAFL NFAMDS
from B-register to P-
reg ister for access of next

(515-531)--f--(P15- P31) PXS = PXSXB + ... instruction

5et flip-flop BRP S/BRP = PXSXB + ... Signifies that program ad-

R/BRP = PRE1 NFAIM + ..•
dress is in P-register

IS'" •. MRQ et t IIp-t lop I 5/MRQ = (S/MRQ/2) + ... I Request for next instruc- I
(S/MRQ/2) = NINTRAP2 PXSXB

tion in sequence

R/MRQ = ...
Set flip-flop DRQ 5/DRQ = (S/MRQ/2) + ••. Data request, inhibiting

transmission of another
R/DRQ = ... clock until data release

received from core

I Enable signal (S/SXA)

I memory

(5/SXA) = FASTORE PH9 + ... I Preset adder for A-S
in PH10

PH10 Sustained unti I data release

DR (AO-A31) --(50-S31) Adder preset in PH9 Place contents of private
memory register R on sum
bus for data limit check

Set condition code flip-flop CC2 S/CC2 = N(50016Z + S0016W) If most significant half-
if 50-516 f 0 or all l's (FUSTH ENDE) + •.• word in private memory

word does not contain all
zeros or a II ones, the
halfword data limits are
exceeded and CC2 must
be set. All zeros or all
ones represent the sign
extension of number in
bit positions 16 through
31

Reset flip-flop CC2 if set R/CC2 = (R/CC2/1) + ... Reset CC2 if data limits
conditions are not met

(R/CC2/1) FUSTH ENDE + •.. are not exceeded =

E NDE functions

Mnemonic : STH (55, D5)

3-238

SDS 901172

Table 3-35. Store Word Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(A) : RR Contents of private mem-
ory register R

(B) : Program address Address of next i nstruc-
tion in sequence

(P) : Effective address

Set flip-flop MRQ S/MRQ = (S/MBXS) + ••• Prepare to store word in

Enable signal (S/MBXS) (S/MBXS) = FASTORE PRE/34 + .•• effective word location

FASTORE = N0605 N04 03

R/MRQ = ...
Set flip-flop DRQ S/DRQ = (S/MBXS) + .•. Data request, inhibiting

R/DRQ transmission of another = ...
ciock untii data reiease
received from core
memory

Enable signal (S/SXA) (S/SXA) = FASTORE PRE/34 + .•• Preset adder for A--S
in PH1

PH1 Sustained until data release

DR (AO-A31)---(SO-S31) Adder logic set at last PREP clock Store word in core memory
at effective location

(SO-S31)---(MBO-MB31) MBXS = Set at last PREP clock

Branch to PH9 BRPH9 = FASTORE NFASTORE/l
PH1 + .••

S/PH9 = BRPH9 NCLEAR + ...

I I R/PH9 = ...
PH9 lOne c lock long

T5L I (80-831)-(50-531) SXB = PXSXB + •.. Transfer program address

PXSXB = PH9 NFAF L NFAMDS to P-register for access of
next instruction

(S 15-S31)-r--(P15- P31) PXS = PXSXB + •..

Set flip-flop BRP S/BRP = PXSXB + ••. Signifies that program ad-

R/BRP = PRE1 NFAIM + ••. dress is in P-register

Set flip-flop MRQ S/MRQ = (S/MRQ/2) + •.. Request for next instruc-

(S/MRQ/2) = NINTRAP2 PXSXB + ... tion in sequence

R/MRQ = ...
Set flip-flop DRQ S/DRQ = (S/DRQ) + ... Data request, inhibiting

(S/DRQ) (S/MRQ/2)
transmission of another = + ..•
clock u nt i I data re I ease

R/DRQ = ... received from core memory

Mnemonic: STW (35, 85)

(Continued)

3-239

SDS 901172

Table 3-35. Store Word Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH10 Sustained until data release See table 3-18

DR
ENDE functions

Mnemonic: STW (35, B5)

STORE DOUBLEWORD (STD; 15, 95). The STD instruction
~tores the~o-n~-nts-a privat-;-~~mo;:Y register R into the

Store Doub leword Phase Sequences. Preparation phases for
STb are-thesame as the-ge~rarPREP ph~ses for doubleword
instructions, paragraph 3 -59. Figure 3-135 shows the
simplified phase sequence for the STD instruction during
execution. Table 3-36 lists the detailed logic sequence
during all STD execution phases.

32 high-order bit positions of the effective doubleword
location. The contents of private memory register Ru 1 are
stored in the 32 iow-order bit positions of the effective
doubleword location.

I PREP
I I I PHl PH2 -- -- -

I I I

I (A) : RRu 1 1 A--S--MB I
I

(B) : PROGRAM I DOUBLEWORD LSW
ADDRESS I I I

I (P) : EFFECTIVE I RR---f--A-S-- MB
ADDRESS ul DOUBLEWORD MSW

I
I . I
I

I I· l-f--MRQ

I
l--/--MBXS

1
l-f--DRQ

I O-+--NAXRR
I I I
I

(S/SXA) (S/SXA)
I I

I
l--!---MBXS

I l-f--MRQ

I l-+-DRQ
I I

I I
O-+--pjl

I

I
I ,

I I BRPH9

I I I
I I I '

I I I
I I I

I I
PH10 I PH9 I -- --

I I
I I

1 I
I I ENDE

1
I I

I
B-S-f--P

I

PROGRAM ADDRESS
I I

I
I

l-r--MRQ
l---f--- D RQ

I l-+--BRP

I 1

I
I MB~C

I
I I
I I

I I
I I
I

I I

I I

Figure 3-135. Store Doub leword Phases

3-240

I
I

I I
I

I
I
I

I
,

I
I
I

I
I
,

I
I
I
I

I

I

I

901172A.3031

SDS 901172

Table 3-36. Store Doubleword Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(A) : RRu1 Contents of private mem-
ory register Ru 1

(B) : Program address Address of next instruction
in sequence

(P) : Effective address Least significant word
location of effective
doubleword location

Set flip-flop MRQ S/MRQ = (S/MBXS) + ••• Prepare to store least sig-
Enable signal (S/MBXS) (S/MBXS) = FASTORE PRE/34 + ••• nificant word in least

FAST ORE = FASTORE/3 + FUXW/1 significant word location

FASTORE/1 = FUSTD + FUXW/1
FUSTD = aUl FASTORE/3

I
FASTORE/3 = N0605 N0403

I
R/MRQ = ...

Set fiip-flop DRQ S/DRQ = (S/MBXS) + ••• Inhibits transmission of

R/DRQ another clock unti I data = ... release received from
core memory

Enable signal (S/SXA) (S/SXA) = FASTORE PRE/34 + ••• Preset adder for A--S
in PH1

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset for private memory

(S/AXRR) = FASTORE PRE/34 N02 + ••• register R~A-register

R/NAXRR
in PH1 = ...

PHl I Sustained until data release I

DR

I
(AO-A31)---(SO-S31) Adder logic set at last PREP clock

I
Store contents of private
memory register Ru 1 in 32

I
(SO-S31)--f--(MBO-MB31) I MBXS = Set at last PREP clock I low-order bits of effective

I
doubleword location

I (RRO-RR31)--f--(AO-A31) I AXRR = Set at last PREP clock Transfer contents of pri-
I I I vate memory reg ister R

to A-register

Enable signal (S/SXA) (S/SXA) = FASTORE/l PHl + ... Preset adder for A---S

FASTORE/1 = FUSTD + ••• in PH2

FUSTD = OU1 FASTORE/3

FASTORE/3 = 03 N04 05 N06

Set flip-flop MRQ S/MRQ = (S/MBXS) + •..

Enable signal (S/MBXS) (S/MBXS) = FASTORE/1 PHl + •.• Request for core memory

R/MRQ = cycle ...
Set flip-flop DRQ S/DRQ = (S/MBXS) Data request, inhibiting

R/DRQ transmission of another = ...
clock until data release
received from memory

Mnemonic: STD (15, 95)

(Continued)

3-241

SDS 901172

Table 3-36. Store Doubleword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH1 Reset fl ip-flop P31 PDC31 = FASTORE PHl OUl Decrement P-register by 1

DR
to obtain most significant

(Cont .)
word location

PH2 Sustained until data release

DR (AO-A31)---(50-531) Adder logic set at PHl clock Store contents of private

(50-531)-f-(MBO-MB31) I MBXS =

I Branch to PH9
!
I BRPH9 =
\

PH9 One c lock long I

T5L I (BO- B31)--(SO-S31) I SXB =

PXSXB =
(S15-S31)-f--(P15- P31) PXS =

I Set fl i p-flop BRP S/BRP =
R/BRP =

1- . ". f' W R~ S/,V,RQ = :::>eT TIlP- lOp \ \...>i

(S/MRQj2) =

R/MRQ =

Set flip-flop DRQ S/DRQ =

R/DRQ =

PH10 Susta i ned unt i I data re I ease See table 3-18

DR ENDE functions

STORE CONDITIONS AND FLOATING CONTROL (STCF;
74, F4). The STCF instruction stores the current condition
code and the current values of the floating significance
(FS), floating zero (FZ), and floating normalize (FN) bits
of the program status doubleword in the effective byte
location. CC1 through CC4 are stored in bit positions 0
through 3 of the effective byte location. FS, FZ, and FN
are stored in bit positions 5, 6, and 7, respectively. Bit
position 4 is a zero.

Store Conditions and Floating Control Phase Sequences.
Preparation phases -for the STCF instruction are the same as
the genera I PREP phases for byte instructions, paragraph
3-59. Table 3-37 lists the detai led logic sequence during
all execution phases of the instruction.

ADD WORD TO MEMORY (AWMi 66, E6). The AWM
instruction adds the contents of register R to the effective
word and stores the sum in the effective word location.

3-242

I
memory register R in 32

Set at PH1 clock high-order bits of effec-
tive doubleword location I

FASTORE PH2 + ...

PXSXB + ••• Transfer program address

PH9 NFAFL NFAMDS
to P-register for access of
next instruction

PXSXB + •••

PXSXB + ••• Signifies that program

I PREl NFA!M + ...
address is in P-register

I Ie: /~ADf""\ /')\ -'- Request for next instruc-\..J/ IVII,\'->(/ L/ I ...
NINTRAP2 PXSXB

tion in sequence

...
(S/MRQ/2) + ••. Data request, inhibiting

transmission of another ... clock until data release
received from memory

Mnemonic: STD (15, 95)

Condition Codes. If the resu It in the effective word loca­
tion is zero, the condition codes are set to XXOO. If the
result is nonzero and positive, the condition codes are set
to XX10. A negative result produces condition code set­
tings of XXOi. Fiip-fiop CC2 is set if fixed-point overflow
occurs duri ng the addition. Flip-flop CC1 is set if there is
a carry from bit position O.

Trap Conditions. A trap to memory location X'43 1 occurs if
there is fixed-point overflow and the fixed-point arithmetic
mask bit is a one. The resu It in the effective memory loca­
tion remains unchanged. If overflow occurs and the mask
bit is a zero, the next instruction in sequence is executed.

Add Word to Memory Phase Sequences. Preparation phases
for the AWM instruction are the same as the general PREP
phases for word instructions, paragraph 3 -59. Table 3-38
lists the detailed logic sequence during all AWM execution
phases.

SDS 901172

Table 3-37. Store Conditions and Floating Control

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(A) : Byte-aligned CC, FS, FZ,
and FN bits of program
status doubleword

(B) : Program address Address of next instruc-
tion in sequence

(P) : Effective byte address

Disable signal AXRRINH AXRRINH = FASTORE PRE3 OL4 + ... Transfer of R-+--A is an

FASTORE = N0605 N04 03 automatic function in
PRE3

Enable signal AXFC AXFC = FASTORE PRE4 NBCZ Enable transfer of con-
dition code and floating
control bits to A-register

(CCl ~CC4)-+---(A24-A27) S/A24 = CCl AXFC + ••• Transfer CC and FC
S/A25 = CC2 AXFC + •..
S/A26 = CC3 AXFC + ...
S/A27 = CC4 AXFC + •••

FS-+--A29 S/A29 = FS AXFC + .••
F Z-+--A 30 S/A30 = FZ AXFC + •..
FNF--f---A31 S/A31 = FNF AXFC + ...

Left al ign A-register AXAL8 = FASTORE PRE4 NBCZ + ... Move condition code and
floating control bits left
the number of bytes speci-
fied by index register.
Byte count in BCO and
BCl is decremented with
each shift

I
Set flip-flop MRQ S/MRQ = (S/MBXS) + ...

I

I
Enable signal (S/MBXS) (S/MBXS) = FASTORE PRE/34 + .•.

I
Request for core memory

R/MRQ = cycle
.. Ii.

Set flip-flop DRQ S/DRQ = (S/MBXS) + •.. Data request, inhibiting

R/DRQ transmission of another = ...
clock until data release
received from core memory

Enable signal (S/SXA) (S/SXA) = FASTORE PRE/34 + .•. Preset adder for A----S
in PHl

PHl Sustained until data release

DR (AO-A31) --(SO-S31) Adder logic set at last PREP clock Store condition code and

(SO-S3l)-+--(MBO-MB3l) MBXS = Set at last PREP clock FS, FZ, and FN in core
memory at effective byte
location

Branch to PH9 BRPH9 = FASTORE NFASTORE/l
PHl + ...

S/PH9 = BRPH9 NC LEAR + ...
R/PH9 = ...

Mnemonic: STCF (74, F4)

(Continued)

3-243

SDS 901172

Table 3-37. Store Conditions and Floating Control (Cont.)

Phase Function Performed Signals Involved Comments

PH9 One c lock long

T5l (BO-B31)--(SO-S31) SXB = PXSXB + ... Transfer program address

PXSXB = PH9 NFAF l NFAMDS
from B-register to P-
reg ister for access of next

(515-531 }-f-(P15-P31) PXS = PXSXB + ... instruction

Set flip-flop BRP S/BRP = PXSXB + ... Signifies that program

R/BRP = PRE1 NFAIM + ...
address is in P-register

I Set flip-flop MRQ I S/MRQ (S/MRQ/2) + •.. I Request for next instruc- I
(S/MRQ/2) = NINTRAP2 PXSXB

tion in sequence

R/MRQ = ...

Set flip-flop DRQ S/DRQ = (S/MRQ/2) + ... Data request, inhibiting

R/DRQ
transmission of another

= ... clock unti I data release
received from core memory

PH10 Sustained unti I data release See table 3- 18

DR ENDE functions

Mnemonic: STCF (74, F4)

Table 3-38. Add Word to Memory Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(A) : RR Contents of private
memory register R

(C) : EW Effective word

(D) : EW Effective word

(B) : Program address Address of next i nstruc-
tion in sequence

(P) : Effective address Address of effective word

Enable signal (S/SXAPD) (S/SXAPD) = FAADD PRE/34 + ... Preset adder for A + D

FAADD FUAWM PRE3 + ...
--S in PH1

=
FUAWM = OU6 Ol6

PH1 One c lock long

T8l (AO-A3l) + (DO-D31)--(SO-S3l) Adder logic set at last PREP clock Add the contents of pri vote

-f--(AO-A31) AXS = FUAWM PHl + ...
memory register Rand
effective word and transfer
result to the A-register

Mnemonic: AWM (66, E6)

(Continued)

3-244

SDS 901172

Table 3-38. Add Word to Memory Sequence (Cant.)

Phase Function Performed Signals Involved Comments

PH1 Enable signal (S/SXA) (S/SXA) = FASTORE/1 PH1 + ..• Preset adder for A--S

T8l FASTORE/1 = FUXW/1 + .••
in PH2

(Cont.) FUXW/l = NPREP FUAWM + •••

Set flip-flop MRQ S/MRQ = (S/MBXS) + ••• Prepare to write result

(S/MBXS) = FASTORE/l PHl + ..•
into effective memory
location

R/MRQ = ...
Set flip-flop DRQ S/DRQ = (S/DRQ) NClEAR + ••• Inhibits transmission of

(S/DRQ) = (S/MBXS) + •..
another clock until data
release signal received

R/DRQ = ... from core memory
I

Set flip-flop CC3 if resu It in S/CC3 = SGTZ TESTS + ..•

I effective memory location wi"
SGTZ = (SO + Sl + ... + S31)

be positive and nonzero;
otherwise reset CC3

NSO NFACOMP + ..•

TESTS = FUAWM PHl + .•.

R/CC3 = TESTS + ...

Set flip-flop CC4 if result in S/CC4 = (S/CC4/2) TESTS + •..
effective memory location wi"

(S/CC4/2) = SO NFACOMP + .•. be negative; otherwise reset CC4
R/CC4 = TESTS + •••

Set flip-flop CC2 if overflow S/CC2 = (SOO G) SO) PROBOVER + ••• Arithmetic overflow occurs
resulted from the addition;

PROBOVER = FUAWM PHl + ••.
when two numbers of like

otherwise reset CC2 signs are added and their
R/CC2 = PROBOVER + ••. sum cannot be held in 32

bits

Set flip-flop OVERIND/l S/OVERIND/l = PROBOVER + ••. Setting OVERIND/l

R/OVERIND/l = CLEAR
enables trap if overflow
occurs and mask bit is
equa I to a one. Trap is
set during ENDE

Set flip-flop CCl if end carry S/CCl = KOO CC1XKOO + ... KOO is end carry from the
from result; otherwise reset CCl

CC1XKOO FUAWM PHl + .•.
addition

=
R/CCl = CC1XKOO + ••.

Enable clock T8 T8EN = NT5EN NTll EN
N(SXADD/l RW)
N(RW REU) N(REU AXRR)

NT5EN = RW+ ••.

PH2 Sustained unti I data release Write resu Its of addition

DR (AO-A3l)---(SO-S31) Adder logic set at PHl clock
into effective memory
location

---(MBO-MB31) MBXS = Set at PH 1 clock

Mnemonic: AWM (66, E6)

(Continued)

3-245

SDS 901172

Table 3-38. Add Word to Memory Sequence (Cont.)

Phase Function Performed

PH2 Branch to PH9 BRPH9 =
DR FASTORE = (Cont .)

FUXW/1 =

S/PH9 =

RjPH9 =

PH9 One c lock long

T5L (BO-B31)---(SO-S31) SXB =

(S15-S31)-+--(P15- P31) I PXSXB =

PXS =

Set flip-flop BRP S/BRP =

I I R/BRP =

I Enable signa I (S/SXA) I (S/SXA) =

Set fl i p-flop MRQ S/MRQ =
(S/MRQ/3) =

R/MRQ =

Set flip-flop DRQ S/DRQ =

R/DRQ =

PH10 Sustained until data release See table 3-18

DR ENDE functions

EXCHANGE WORD (XWi 46, C6). The XW instruction
exchanges the contents of private memory register R with
the contents of the effective word location.

Condition Codes. If the result in private memory register
R is zero, the condition codes are set to XXOO. If the
resu It is nonzero and positive, the condition codes are

3-246

Signals Involved Comments

FASTORE PH2 + ...

FUXW/1 + ...

NPREP FUAWM + ...

BRPH9 NC LEAR + .•.

...

PXSXB NDIS + ... Transfer program address
to P-register

PH9 NFAFL NFAMDS

PXSXB + ...

PXSXB + ... Signifies that program

I
address is in the P-register

PRE1 NFAIM + ...

FASTORE PH9 + ... I Preset adder for A--S
in PH10. (Not used for
AWM instruction.)

(S/MRQ/3) + '" Core memory request for

NINTRAP2 PXSXB + ...
next instruction in
sequence

...
BRPH10 + ... Inhibits transmission of

another clock unti I data ... release signal received
from core memory

Mnemonic: AWM (66, E6)

set to XX10. A negative resu It produces condition code
settings of XXOl.

Exchange Word Phase Seguences. Preparation phases for
the XW instruction are the same as the general PREP phases
for word instructions, paragraph 3-59. Table 3-39 lists the
detailed logic sequence during all XW execution phases.

Phase Function Performed

PREP At end of PREP:

(A) : RR

(C) : EW

(D) : EW

(8) : Program address

(P) : Effective address

Enable signal (S/SXD)

Set flip-flop RW

PH1 One clock long

T8l (DO- D31) ---(50-531)--­

(RWO-RW31)

Enable signal (S/SXA)

Set flip-flop MRQ

I Set flip-flop DRQ

Set flip-flap CC3 if result in
private memory register R wi II
be positive and nonzero;
otherw ise reset CC3

Set flip-flop CC4 if result in
private memory register R wi II
be negative; otherwise reset CC4

Enable clock T8

SDS 901172

Table 3-39. Exchange Word Sequence

(S/SXD)

FUXW

S/RW

R/RW

Signals Involved

= FUXW PRE3 + ...

= OU4 Ol6

= FUXW NANlZ PRE3 + ••.

Adder log i c set at last PRE P clock

RWXS/O- RWXS/3 = RW + •••

RW = Set at last PREP clock

(S/SXA) = FASTORE/l PHl + •••

FUSTD FUXW/1 FASTORE/1 =

FUXW/1

S/MRQ

(S/M8XS)

I R/MRQ

I
S/DRQ

(SiDRQ)

R/DRQ

S/CC3

SGTZ

NPREP FUXW + •••

(S/M8XS) + .•.

FASTORE/1 PH1 + •••

(S/DRQ) NClEAR + •••

(S/M8XS) + •..

= SGTZ TESTS + ...

= (SO + S 1 + ••• + S31)
NSO NFACOMP + •.•

TESTS = FUXW PH1 + •..

TESTS + ••• R/CC3 =

S/CC4 = (S/CC4/2) TESTS + •..

SO NFACOMP + •.. (S/CC4/2) =

R/CC4

T8EN

NT5EN

= TESTS + ...

= NT5EN NTl1 EN
N(SXADD/1 RW)
N(RW REU) N(REU AXRR)

= RW + ...

(Continued)

Comments

Contents of pri vate mem­
ory reg ister R

Effective word

Effective word

Address of next instruction
in sequence

Address of effective word

Preset adder for D-5
in PHl

Prepare to write effective
word into private memory
register R

Write effective word into
private memory register R

Preset adder for A--S
in PH2

Prepare to write contents
of private memory register
R into effective memory
location

Inhibits transmission of
another clock unti I data
release signal received
from core memory

Mnemonic: XW (46, C6)

3-247

SDS 901172

Table 3-39. Exchange Word Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH2 Sustained until data release

DR (AO-A31)---(SO-S31) - Adder logic set at PHl clock Write contents of private
memory register R into

(MBO-MB31) MBXS = Set at PHl clock effective memory location

Branch to PH9 BRPH9 = FASTORE PH2 + ...

I FASTORE = FuxW/l + ...

I I I
FUXW/l I = t",PREP FUXW + ...

S/PH9 = BRPH9 NC LEAR + .•.

I R/PH9 = ...

PH9 One c lock long

T5L (BO-B31)~SO-S31) SXB = PXSXB NDIS + •.. Transfer program address

I
(S 15-S31)---f-- (P15- P31) I PXSXB = PH9 NFAF L NFAMDS

I
to P-register

I
~S = PXSXB + ...

I S/BRP I Set fl ip-flop BRP Signifies that program = PXSXB + ...

R/BRP PRE1 NFAIM + ...
address is in the P-= register

Enable signal (S/SXA) (S/SXA) := FASTORE PH9 + ... Preset adder for A--S
in PH10. (Not used for
XW instruction.)

Set fl i p-flop MRQ S/MRQ = (S/MRQ/3) + ... Core memory request for

(S/MRQ/3) PH9 NFAF L NFAMDS
next instruction in = sequence

R/MRQ = ...

Set flip-flop DRQ S/DRQ = BRPHIO + ••. Inhibits transmission of

R/DRQ
another clock unti I data = ... release signal received
from core memory

PH10 Sustained until data release See table 3-18

DR ENDE functions

Mnemonic: XW (46, (6)

3-248

SDS 901172 Paragraph 3-63

3-63 Fami Iy of Selective Instructions (FASEL)

LOAD SELECTIVE (LSi 4A, CAl. The LS instruc-
tion loads the effective word into private memory register
R using private memory register Ru 1 as a mask.

General. If the R field of the instruction word is even,
the instruction operates as follows: If a bit in private
memory register Ru 1 is a one, the corresponding bit in the
effective word is loaded into the same bit position in pri­
vate memory register R. If the bit is a zero, the corre­
sponding bit in R remains unchanged. logically, the
operation is as follows, where n is any bit position:

R = EW Ru 1 + R N Ru 1
n n n n n

Result in'
hi+- I"\l'\d_ _ .. .-_w.
tion n of
R register

Mask
bit =

Mask
L!~ _ f'\
UII - V

If the R field of the instruction word is odd, the instruc­
tion AND's the effective word and the contents of private
memory register R and loads the result back into R. Logi­
cally, for every n bit position:

R = EW R
n n n

Result in
bit posi­
tion n of
R-register

Examples. Examples of LS with both an even and odd R
field are:

Even R Field

EW 00001111 XXXXXXXXXXXXXXXXXXXXXXXX

Ru 1 00110011 XXXXXXXXXXXXXXXXXXXXXXXX
Before

R 01010101XXXXXXXXXXXXXXXXXXXXXXXX execution

R 01000111XXXXXXXXXXXXXXXXXXXXXXXX After
execution

Odd R Field

EW 001101011 XXXXXXXXXXXXXXXXXXXXXXXX

R 010101101XXXXXXXXXXXXXXXXXXXXXXXX Before
execution

R 000 101001 XXXXXXXXXXXXXXXXXXXXXXXX After
execution

Load Selective Examples

Condition Codes. If the result in the R-register is zero,
the condition codes are set to XXOO. If the result is nega­
tive, the condition codes are set to XX01. A positive
result produces condition code settings of XX 10.

Load Selective Phase Sequence. Preparation phases for the
LS instruction are the same as the general PREP phases for
word instructions, paragraph 3-59. Figure 3-136 shows
the simplified phase sequence for the LS instruction
during execution. Table 3 -40 lists the detai led
logic sequence during all LS execution phases.

3-249

SDS 901172

PHI PH2 I

I(C): fW IA AND D-s-ci I

I (D): EW I 1 A--S TO
(A): Ru1 RR-+---A I

1 (P): PROGRAM I I I I ADDRESS I I (_AND ND-SiA

I
C-f.--D

I

PREP PH3 PH4 PHIO

IMB-C
A OR D-I
S---RR

I

I (S/PRXAD) I (S/PRXAND) I I
II (S,/CXS) ~ 1 -+-- AXRR I (S/MRQ/l) l-f- MRQ

I I I I 1 -+-- DRQ

I 1 1 IJ-RW I
I I I I CONDITlON CODES I

I (S/SXA) I I (S/SXAORD) I BRPHIO 1 ENDE

901172A.3041

Figure 3-136. Load Selective Phases

Table 3-40. Load Selective Sequence

Phase Function Performed Stgnals Involved Comments

PREP At end of PREP:

(C) : EW Effective word

(D) : EW Effective word

(A) : RRul Private memory register
Ru 1 holds mask

(P) : Program address Next instruction in
sequence

Enable signal (S/PRXAD) (S/PRXAD) = FASEL PRE3 NOL7 + ••• Preset adder for A AND
D---S in PHl

Enable signal (S/CXS) (S/CXS) = FAS EL PRE3 + ... Preset adder for 5 --C
in PHl

Mnemonic: LS (4A, CA)

(Cont i nued)

3-250

Phase I Function Performed

PH1 One c lock long

TSl (AO-A31) ANO (00-031)
--- (50-531) ---
(CO-C31)

Enable signal (5/5XA)

5et flip-flop AXRR

I PH2 lone clock long

TSl (AO-A31)~ (50-S31)
-+--(00-031)

(RRO-RR31)-+--(AO-A31)

Enable signal (S/PRXANO)

PH3 One clock long

TSL (AO-A3i) AND
(NOO-N03l) ---­
(SO-531) -f-- (AO-A31)

(CO-C31) -+-(00-031)

Enable signal (S/SXAORO)

SOS 901172

Table 3-40. load Selective Sequence (Cont.)

Signal Involved

Adder logic set at last PREP clock

CX5 = Set at last PREP clock

(S/5XA) = FA5EL PH1 + ••.

5/AXRR = FASEl PH1 + ...

R!AXRR = ...
I

Adder logic set at PH 1 clock

OXS = FASEl PH2 + •••

AXRR = Set at PH 1 clock

(S/PRXANO) = FASEl PH2 OLA + ..•

Adder logic set at PH2 clock

AXS = FASEL PH3 + .••

OXC = FASEL PH3 + ...

(S/SXAORO) = FASEl PH3 NOlS + .•.

(Continued)

Comments

Effective word ANOed
with mask and tempo-
rarily stored in
C-register

Preset adder logic
for A---5 in PH2

Preset for transfer of
private memory register
R-f---A in PH2

Store private memory
register Ru 1 contents
in O-register

Store private memory
register R contents
in A-register

Preset for A ANO
NO--S in PH3

ANO contents of private
memory register Rand
one's complement of
private memory register
Rul. If R = RuT,
A NO = 0 and
R = EW R. Other-n n n
wise, R = EW Ru1 +

n n
R NRu1
n n

EW Ru 1--+--0-register
in preparation for PH4

Preset adder for OR
operation in PH4

Mnemonic: lS (4A, CA)

3-251

SOS 901172

Table 3-40. Load Selective Sequence (Cont.)

Phose Functi on Performed Signal Involved Comments

PH3 Set flip-flop MRQ S/MRQ = (S/MRQ/l) + ... Core memory request
T5L for next instruction

(Cont) (S/MRQ/1) = FAS EL PH3 NOL7 + ... in sequence

R/MRQ = ...
Set flip-flop RW S/RW = FASEL PH3 OLA Prepare to write result

I
into private memory

R/RW = ...
I

PH4 One clock long

T8L (AO-A31) OR (00-031)

I
Adder logic set at PH3 clock R = EW Rul

---(So-S31) --- n n n

RRO-RR31 RWXS/0-RWXS/3 = RW + ••• + R NRu1 n n

RW = Set at PH3 clock

I
Set flip-flop CC3 If

I
S/CC3 = SGTZ TESTS + ... I Result is positive

50-531 is nonzero and nonzero
and positive

I TESTS = FASEL PH4 NOL7 + .••

SGTZ = (SO + S 1 + •.• + S31)
N(SO NFACOMP) + ..•

R/CC3 = TESTS + ...

Set flip-flop CC4 if S/CC4 = NFACOMP SO TESTS Result is negative
SO-S31 is negative

R/CC4 = TESTS + ...

Branch to PH 10 BRPH10 = FASEL PH4 NOL7 + ...

S/PH10 = BRPH 10 NCLEAR + ...

R/PH10 = ...
Set fli p-flop ORQ S/ORQ = BRPH 10 NCLEAR + ... Inhibits transmission

of another clock unti I
R/ORQ = ... data release from core

memory

Enable clock T8 T8EN = NT5EN NT11 L N(SXAOO/1 RW) T5EN is disabled by
N(RW REU) N(REU AXRR) signal RW

NT5EN = RW + ...

PH10 ENOE functions See table 3-18
OR

Mnemonic: LS (4A, CA)

3-252

SDS 901172

STORE SELECTIVE (STS; 47, C7). The STS instruction
stores the contents of private memory register R into
the effective word location, using private memory

register Ru 1 as a mask.

General. If the R field of the instruction word is even, the
instruction operates as follows: If a bit in private memory
register Rul is a one, the corresponding bit in private mem­
ory register R is loaded into the same bit position in the effec­
tive word location. If the bit is a zero, the corresponding
bit in the effective word location remains unchanged. Log­
ically, the operation is as follows, where n is any bit
position:

EWL = R Rul + EW NRul

,. 1n
n,~nr-tn

Result in bit position Mask Mask
n of effective word bit = bit = 0
Incation

If the R field of the instruction word is odd, the instruction
ORs the contents of private memory register R and the effec­
tive word location and stores the resuit back into the effec­
tive word location. Logically, for every n bit position:

EWL = EW t n n

'Result in bit
position n of
effective word
location

+ R
n

Examples. Examples of STS with both an even and odd R
field are:

Even R Field

R 00001111 XXXXXXXXXXXXXXXXXXXXXXXX

Ru 1 00110011 XXXXXXXXXXXXXXXXXXXXXXXX

EW 01010101 XXXXXXXXXXXXXXXXXXXXXXXX Before
___ :~~~!ion

EWL 01000111XXXXXXXXXXXXXXXXXXXXXXXX After
execution

Odd R Field

R 001101011 XXXXXXXXXXXXXXXXXXXXXXX

EW 010101101 XXXXXXXXXXXXXXXXXXXXXXX Before
execution

EW L 011101111 XXXXXXXXXXXXXXXXXXXXXXX

Store Selective Examples

Store Selective Phase Sequence. Preparation phases for the
STS instruction are the same as the general PREP phases for
word instructions, paragraph 3 -59. Figure 3-137 shows
the simplified phase sequence for the STS instruction during
execution. Table 3 -41 lists the detai led logic sequence
during all STS execution phases.

3-253

PREP I PH1

I
(C): EW

(D): EW I
NA AND D~I

S--C

I (A): Ru 1 I

I
(P): EFFECTI VE I

WORD
ADDRESS

I (B): PROGRAM I
I ADDRESS I

I (S/PRXNAD) .
I

SDS 901172

PH2 PH3

I
PH4

I
C-f--D

A--S --f-- D I
I

RR -f---A I A OR D

I -5
A AND D-

1

-MB

I S-f--A

; I
I ;

(S/PRXAD) I Il.-MBXS
I I Ii-- CXS l-+--AXRR

I
l--1-MRQ

I
I I I I (S/SXA)

Phase Function Performed

PREP At end of PREP:

(C) : EW

(D) : EW

(A) : RRul

(P) : Effective word address

(B) : Program address

Enable signal (S/PRXNAD)

Reset flip-flop NCXS

3-254

I
I

l'j"DRQ

(S/SXAORD) I BRPH9

Figure 3 -137. Store Selecti ve Phases

Table 3-41. Store Selective Sequence

Signa Is Involved

(S/PRXNAD) = FASEL PRE3 OL7 + '"

S/NCXS = N(S/CXS)

(S/CXS) = FASEL PRE3 + ...

R!NCXS = ...

(Continued)

I

I

I

I

I

I

I

PH9 PH10

B--S -/-P

I
l-f--- BRP

I liDRQ I
I (5/ MRQ/2) II MRQ I
I PXSXB I ENDE I

901172A.3042

Comments

Effective word

Effective word

Private memory register
Ru 1 holds mask program
address -f-- in PH9

Temporary storage

Preset adder for NA
I AND D--S in PH1

Preset for S--C in
PH1

Mnemonic: STS (47, C7)

SDS 901172

Table 3-41. Store Selective Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH1 One clock long

T5L (NAO-NA31) AND Adder logic set at last PREP clock Complemented mask and
(DO-D31)---(50-531) - effective word ANDed
(CO-C31) CXS = Set in PREP and tem pora ri I y stored

in C-register

Enable signal (S/SXA) (S/SXA) = FASEL PH1 + ... Preset adder logic for
A---S in PH2

Set flip-flop AXRR S/AXRR = FASEL PH1 + •.. Preset for transfer of
private memory register

R/AXRR = ... R-f--A in PH2

I PH2 lone c lock long

I

T5L (AO-A31) --- (50-531) Adder logic set at PH 1 clock Store private memory
-f--(DO-D31) register Ru 1 contents

DXS = FASEL PH2 + ... in D-register

(RRO- RR31) --r-- (AO-A31) AXRR = Set in PH1 Preset adder for A AND
D-+-S in PH3

Enable signal (S/PRXAD) (S/PRXAD) = FASEL PH2 NOLA

PH3 One clock long

T5L (AO-A3l) AND Adder iogic set at PH2 ciock AND contents of private
(DO-D31)-(SO-S31) memory register Rand
--f-(AO-A31) contents of private

, ,
I

memory register Ru 1.
This is significant only

I I I
when R field is even

I

I I
(CO- C31) +--(D 0- D31) DXC = FASEL PH3 + ... NRu1 EW--!---D-

register in preparation
for PH4

Enable signal (S/SXAORD) (S/SXAORD) = FASEL PH3 NOL5 + ... Preset adder for OR
operation in PH4

Set fl i p-flop MBXS S/MBXS = FASEL PH3 OL7 + ... Preset for transfer of
result to core memory

R/MBXS = ... in PH4

Set flip-flop MRQ S/MRQ = (S/MBXS) + ... Memory request for
transferring result

R/MRQ = ...
Mnemonic: STS (47, C7)

(Continued)

3-255

SDS 901172

Table 3-41. Store Selective Sequence (Cont.)

Phase Function Performed

PH3 Set flip-flop DRQ
T5l
(Cont.)

PH4 Sustained unti I DR

PH9

T5l

(AO-A3l) OR (DO-D31)
--- (50-531) -
(MBO-MB3l)

Branch to PH9

I, One clock long

(BO-B31) - (SO-S31)
(S 15-S3l)-+--(P15-P31)

Set fl i p-flop BRP

Set fli p-flop MRQ

Set flip-flop DRQ

PH10 ENDEfunctions

DR

3-256

Signa Is Involved

S/DRQ = (S/MBXS) + ...

R/DRQ = ...

I Adder logic set ot PH3 clock

I MBXS ~ Set ot PH3 clock

I BRPH9 = FAS El PH4 Ol7 + .. .

I S/PH9 = BRPH9 NClEAR + .. .

R/PH9 = ...

I
I SXB = PXSXB NDIS + ...

PXSXB = NFAFl NFAMDS PH9

PXS = PXSXB + ...

S/BRP = PXSXB + ...

R/BRP = PRE1 NFAIM + INTRAP1 + ...

S/MRQ = (S/MRQ/2) + ...

(S/MRQ/2) = PXSXB NINTRAP2 + ...

R/MRQ = •••

S/DRQ = (S/MRQ/2) NClEAR + ...

R/DRQ = ...

See table 3-18

Comments

Inhibits transmission of

I
another clock unti I data
release received from
core memory

EWl = R Ru1
n

+n EW n i'-lRul I
n n

Transfer program address
to the P-register

Si gnifi es that program
address is in P-register

Core memory request
for next instruction
in sequence

Inhibits transmission of
another clock unti I data
release received from
core memory

Mnemonic: STS (47, C7)

SDS 901172

COMPARE SELECTIVE (CS; 45, C5). The CS instruction
compares the contents of private memory register R with
the contents of the effective word. Only those bit positions
of the two operands are compared wh ich are se lected by a
one in corresponding bit positions of private memory register
Ru 1. The se lected portions of the operands are treated as
positive integer quantities.

General. Bit positions containing a one are selected by
ANDing the contents of register Ru 1 with the contents of
register R and with the effective word. If the R field of
the instruction word is odd, registers Rand Ru 1 are ident­
ical. Therefore, ANDing the contents of register Rand
Rul is insignificant. The effective word is subtracted from
register R to compare the two operands and conditions
codes 3 and 4 are set according to the result.

Condition Codes. If the result of the subtraction is zero,
the quantities are equal and the condition codes are set to
XXOO, If the result is negQt!ve, the effective 'Nord quan­
tity is larger than R-register quantity, and the condition
codes are set to XX01. If the result is nonzero and positive,
the R-register quantity is larger than the effective word
quantity, and the condition codes are set to XX 10.

Exampl~~. Examples of CS with R greater than EW and EW
greater than Rare:

R Greater than EW

/Comparison Field

----.
I I

Ru 1 00001111XXXXXXXXXXXXXXXXXXXXXXXX
I I

R 00001111XXXXXXXXXXXXXXXXXXXXXXXX
I I

EW OlOlOlOlXXXXXXXXXXXXXXXXXXXXXXXX
L_ ...J

R 00001111 XXXXXXXXXXXXXXXXXXXXXXXX
quantity

EW 00000101 XXXXXXXXXXXXXXXXXXXXXXXX
quantity

Resul t 00000101 OXXXXXXXXXXXXXXXXXXXXXXX

~& , ,
No end carry, therefore
condition codes are set
to XX10

Ru1

R

EW

R
quantity

EW
quantity

Result

EW Greater than R

/compO'i,on Field

,-..
I I

00001111XXXXXXXXXXXXXXXXXXXXXXXX
I I

00001011 XXXXXXXXXXXXXXXXXXXXXXXX
I I

01011101XXXXXXXXXXXXXXXXXXXXXXXX
L_.J

00001011XXXXXXXXXXXXXXXXXXXXXXXX

00001101XXXXXXXXXXXXXXXXXXXXXXXX

l~OXXXXXXXXXXXXXXXXXXXXXXX

" r ,
End carry developed,
therefore condition
codes are set to XXO 1

Compare Selective Phase Sequence. Preparation phases
for the CS instruction are the same as the general PREP
phases for word instructions, paragraph 3-59. Figure 3-138
shows the simplified phase sequence for the CS instruction,
and table 3-42 lists the detailed logic sequence during
all execution phases of the instruction.

3-257

SDS 901172

PREP PH1 PH2 I
PH3 PH4 PH 10

I (C): EW

I
I A AND D--S--C I C+-D

A-S -+-- D I
I

(D): EW I
. (A): Ru 1 I

I (P): PROGRAM I
ADDRESS

I I

Phase

PREP

3-258

(S/PRXAD)

I
l-!--CXS

I

I

I
I

(S/SXA)

Functi on Performed

At end of PREP:

(C) : 8N

(D) : EW

(A) : Ru1

(P) : Program address

Enable signal (S/PRXAD)

Reset fl ip-flop NCXS

I A-D---S
RRTA I '

A AND D- S -+--A I

I (S/PRXAD)

I
l+.-AXRR

I

I I CONDlTlON CODES I
I I I , I I
I I

I I (S/MRQ/l) IT MRQ

11Tl1L

(S/SXAMD) I BRPHIO

i
l-f--DRQ

I

I

I ENDE

I
901 1 72 A. 3043

Figure 3 -138. Compare Selective Phases

Table 3-42. Compare Selective Sequence

Signa Is Involved Comments

Effective word

Effective word

Private memory register
Ru 1 holds mask

Next instruction in
sequence

(S/PRXAD) = FASEL PRE3 NOLl + ••. Preset adder for A AND
FASEL = FUCS + .•• D -- 5 in PH1

IFACOMP = FUCS + •••

FUCS = OU4 OL5

S/NCXS = N(S/CXS) Preset for 5 ---C

(S/CXS) = FASEL PRE3 + •.• in PH1

R/NCXS = ...

Mnemonic: CS (45, C5)

(Continued)

SOS 901172

Table 3-42. Compare Selective Sequence (Cont.)

Phase Function Performed Signa Is Involved Comments

PH1 One c lock long

T5L (AO-A31) AND (00-031) Adder logic set at last PREP clock Effective word ANOed
I ---(50-531) =---

I

with mask and tempo-
(CO-C31) CXS = Set at last PREP clock reri Iy stored in C-

register
I

Enable signal (S/SXA) (S/SXA) = FASEL PH1 + ... Preset adder logic for
A-S in PH2

Set flip-flop AXRR S/AXRR = FASEL PH1 + ... Preset for transfer of
private memory register

R!AXRR = ... R-f--A in PH2

I PH21 One clock long

T5L (AO-A31) -(SO-S31) Adder logic set at PH 1 clock Store private memory
-+--(00-031) register Ru 1 contents

OXS = FASEL PH2 + ... in O-register

(RRO-RR31)-f---(AO-A31) AXRR = Set at PH 1 clock Store private memory
register R contents in
A-register

I
Enable signal (PRXAO) (S/PRXAO) = FASEL PH2 NOLA Preset adder for A AND

o in PH3

PH3 One c lock long

T5L {AfLA,)l\ A II"\

I
Adder logic set at PH2 ciock I AND contents of pri-

I
\r'\V-r'\vl/l""\l'IV

(00-031)---(SO-S31)----t-- vate memory register

I
(AO-A31)

I
I R and contents of

private memory register
I Rul. This is signif-

icant only when R field
is even

(CO-C31)-+- (00-031) OXC = FASEL PH3 + ... (EW Ru1)-+-
O-register in prepara-
tion for PH4

Enable signal (S/SXAMO) (S/SXAMO) = FASEL PH3 OL5 + ... Preset adder for
(A-O)- 5 in PH4

Set fli p-flop MRQ S/MRQ = (S/MRQ/1) + ... Core memory request
for next instruction

(S/MRQ/l) = FASEL PH3 NOL7 + ... in sequence

R/MRQ = ...

Mnemonic: CS (45, C5)

(Continued)

3-259

SDS 901172

Table 3-42. Compare Se lective Sequence (Cont.)
-----~---- - "'"'" i

Phase Function Performed Signals Involved Comments

PH3 Reset flip-flop NTl1l S/NTlll = N(S/Tlll) + ... Set clock Tl1l for
T5l S/Tl1l = FASEl PH3 Ol5 + ••• PH4

(Cont.)
R/NTlll = ...

PH4 One c lock long

Tlll (AO-A3l) - (DO-D31) Adder logic set at PH3 clock (Ru 1 R) - (Ru1 EW)
---(50-531) ---5

For every bit position
n on the sum bus,

I I I Sn = Rul n (Rn - EWn). I
I

For odd R fie id,

I
Sn = Rn (1 -EWn)
Result on sum bus is an

I
unsigned quantity

Hold AOO false AOO NFUCS + .•• ADO and DOO preve'nted =

Hold flip-flop DOO disabled DOO = CO (DXC + DXCll) + 0"

from affecting possible
end carry in 500

(DXC + DXCll) = NFUCS + .••

I Set flip-flop CC3 if result I S/CC3 = SGTZ TESTS + •.• I R-register quantity is
I is positive and nonzero; other-

I
SGTZ = (SO + 51 + 00' + 531)

I
larger than EW quan-

wise reset CC3
N (500 FACOMP) + 0"

tity

TESTS = FASEl PH4 NOl7 + 00'

500 is deve loped from
end carry and indicates

R/CC3 = TESTS + 0" that EW quantity in D-
register was larger than
R quantity in A-register

Set flip-flop CC4 if result is S/CC4 = FACOMP 500 + 0"

negative; otherwise reset CC4
Branch to PH 10 R/CC4 = TESTS + ...

BRPHlO = FASEl PH4 NOl7 + 000

S/PH10 = BRPH20 NCLEAR + • 0 0

R/PH10 = o ••

Set flip-flop DRQ S/DRQ = BRPH10 NCLEAR + .• 0 Inhibits transmission
of another clock unti I

R/DRQ = o. 0 data release received
from core memory

Enable clock Tl1 NT5EN = Tl1l + 00. Clock T 11 is enabled
by disabling clocks T5

NT8EN = Tlll + ... and T8

PH10 ENDE functions See table 3-18

DR

Mnemonic: CS (45, C5)

3-260

SDS 901172 Paragraph 3-64

3-64 Fami Iy of Analyze Instructions

ANAL YlE (ANLZj 44, C4). The ANLZ instruction treats
the effective word as a Sigma 5 instruction and determines
its addressing type (immediate, byte, halfword, word,
doubleword). If the instruction to be analyzed is not an
immediate address instruction, the ANLZ instruction
calculates the effective address that would be produced
by the instruction to be anaiyzed and loads this effective
address into private memory register R. The condition
codes are set to indicate the addressing type. If the
instruction analyzed is an Immediate Address instruction,
the condition code is set to indicate the addressing type,
and the original contents of private memory register Rare
not changed.

Trap Conditions. During preparation phases of an ANLZ
instruction, the contents of the location pointed to by the
effective ':!ddress of the instruction ere obtained. Th~

nonexistent memory address trap can occur as a result of
this memory access. The nonexistent instruction trap, the
privileged instruction trap: and the unimplemented instruc­
tion trap conditions can never occur during execution of
an AN LZ instruction. However, the nonexistent memory
address trap can occur as a resu It of any memory access
initiated by ANLZ. If this trap condition occurs, the
instruction address stored by the XPSD in trap location
X'40' is the address of the ANLZ instruction.

Condition Codes. The following condition codes may be
stored during execution of an ANLZ instruction:

CCl CC2 CC3 CC4 Instruction Addressina T z:pe

0 0 0 0 Direct byte addressing

0 0 0 1 Immediate byte addressing

0 0 0 Indirect byte addressing

0 0 0 Direct halfword addressing

0 0 Indirect halfword addressing

0 0 0 Direct word addressing

0 0 Indirect word addressing

0 0 1 Immediate addressing

0 0 Direct doubleword addressing

0 Indirect doubleword addressing

Analz:ze Execution Sequence. If the operation code
portion of the effective word specifies a nonimmediate
addressing type, the condition code is set to indicate the
addressing type of the analyzed instruction. The effective
address of the analyzed instruction is computed, using all
the normal address computation ru les. If bit 0 of the
effective word is a one, the contents of the memory loca­
tion specified by bits 15 through 31 of the effective word
are obtained and used as a direct address. If bits 12
through 14 of the analyzed instruction are nonzero,
indexing is performed, using the index register in the
current register block. {The R field of the instruction in
the effective word location is ignored.}

The effective address of the analyzed instruction is aligned
as an integer displacement value and loaded into private
memory register R according to the instruction addressing
type, as fo I lows :

Addressing Tz:pe

Byte

Halfword

Word

Doubleword

Location of Address

Zeros in bits 0 through 12, 19-bit
byte displacement in bits 13
through 31

Zeros in bits 0 through 13, 18-
bit halfword displacement in bits
14 through 31

Zeros in bits 0 through 14, 17-
bit word displacement in bits
15 through 31

Zeros in bits 0 through 15, 16-
bit doubleword displacement in
bits 16 through 31

Analz:ze Phase Sequence. Preparation phases for the
ANLZ instruction are the same as the general PREP phases
for word instructions, paragraph 3 -59. Figure 3-139
shows the simplified phase sequence for the Analyze
execution phases, and table 3-43 I ists the detai led logic
sequence during the ANLZ instruction execution phases.
The second cycle of preparation phases entered to analyze
the instruction is illustrated in figure 3-140.

3-261

-n
co
c
en
w
I

W
;0

o
::l

" ::r a
c'll

I./)

fl>
..D
C
t"D
::l
()

c'll

o

PREP I
I I
I (C):~ INSTRUCTION I

TO 8E
I (OI): ANAL YZED I
I (P): EFFECTIVE I

ADDRESS

I
(B): PROGRAM I

ADDRESS I
I

i (C8-C11)--(R28-R31) I
I I
I I
I I
I I

: I
I I
I I
I I
I I
1 I
I I
I I
I I

PH! I

(S/SXD)

(S/LRXD)

PRE 1 I
I
I

D-S-+--P

I
I-f-lRXD I

(S/ AXRR) I I I
O-+--NAXRR RR-I-- A -S-f--A

(S/ANLZ) I I I
I-+--ANLZ M8 -C-f--D

I I I
(012 - DI4)~/LR/ I DXC I

(Cl - 0)+-(01 - 07) I I
I CO I I
I S/IA I-+--IA I
I S/MRQ I+-MRQ I PRf/12

I S/DRQ I +--oRQ PXS

I I

SET I
CONDITION

CODES I
OXZ I

O'S-O
I

I DEAD PHASE
(S/TllL) I TO ALLOW

FAMILY
BRPHS I SIGNALS

I
I
I
I

TO DIE OUT

I IF (S/IXAL) I IF IX I
I (S/SXA) I (S/SXAPD) I (A + D)--SiP

I I IF NIX I I
I
I
I I I (S/SXD) I D-S -f-- P

I" NCO NINDX I IF NIA NlXAL I I
I PRf/12 : PRf/12 i

I (S/T8L) I (S/T8L) I I
I

(S/PRE3) I (S/PRE3) I
I PRE2 NIA NlXA~t t

I I PREI NCO NINDX ~

I
I
I
I
I
I

PH6 I PH7 I PHS

I I
PXS I I

P--S I I
IFCCI I I A-S

Sn-f-An I
, S---RW

IF NCCI I I
Sn-f--An-I I

P32+-A31 I
!

A-S I
I I
IIF NCCI NCO I

Sn-+--An-l
I I

P33+-A31

I
I

IF CCI CC2 I
I

5n-+-Sn-+l

I
S/RW I

I
I
I
I
I
I

Pm I PHl0
I-
I ENDE

I
I
I
I
I
I

8-5+-P
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Vl
C1
Vl

-.0
o

NO

S/IA
S/IX YES
S/IXAL
(S/SXA)
S/MRQ
S/DRQ
s-f-p
RR-f-A
BRPRE2

R/IA
R/IXAL
R/MRQ
R/DRQ
DXC
PXS
A-S-+--A
MB-C-i---D
(S/SXAPD)
BRPRE2 (T8l)

PRf/12
R/IX
PXS
(A+D)-- S-f-P
(S!T8l)
(S/PRE3)

SDS 901172

(T5L)

PRE 1

S/IA NO

S/IX S/IA
S/MRQ S/MRQ
S/DRQ S/DRQ
S-+--P S-f--P
RR -f--A BRPRE2
BRPREL

F±i PRE 2

R/IA R/IA
R/MRQ R/MRQ
R/DRQ R/DRQ
DXC DXC
MB-C -+---0 MB-- C-+--D
(S/SXAPD) (S/SXD)
BRPRE2 BRPRE2

PRE/12
PRE/12 R;1X
PXS PXS
D--S-f--P (A+D)-S --f--P
(S/T8L) (S/T8L)

(S/PRE3) (S/PRE3j

NO

NO YES

PRE/12 S/IX
(S/T8L) S-f--P
(S/PRE3) BRPRE2

PRE/12
R;1X
(S/T8L)
(S/PRE3

SET CONDITION CODES
CLEAR O-REGISTER
(S/T11L)
BRPH5

Figure 3-140. Analyze Instruction, Preparation Phases Flow Diagram

S/IX
S/IXAL
(S/SXA)
S-f--P
RR -I--A
BRPRE2

R/lXAL
A--S-I-A
(S/SXAPD)
BRPRE2

PRE/12
R/IX
PXS
(A+D)--S -f--p
(S/T8L)
(S/PRE3)

901172A.3052

3-263

SDS 901172

Table 3-43, Ana Iyze Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : Instruction to be analyzed

(D) : Instruction to be ana Iyzed

(P) : Effective address of ANLZ
instruction

(B) : Program address

(C8-C11)-+--(R28-R31) RXC = PH10 + ... R field of ANLZ instruc-
tion stored for future use

PH1 One clock long

T5L (C1-C7)~(Ol-07) OXC = FUANLZ PH1 Operation code of in-

FUANLZ = OU4 OL4
struction to be analyzed

Enable signal (S/SXD) (S/SXD) = FUANLZ PH1 + ... Preset for D---S
transfer in PRE1

Set flip-flop LRXD S/LRXD = (S/LRXD) Preset for (D12-D14)
I

---/LR/ in PRE1
(S/LRXD) = OXC

R/LRXD = ...
Set flip-flop ANLZ S/ANLZ = FUANLZ PH1 Maintains ANLZ

R/ANLZ = CLEAR = PH10 + ...
sequence until PH10

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset for RR--/--A

(S/AXRR) FUANLZ PH1 + ... in PRE1 =
R/NAXRR = ...

Reset flip-flop NPRE1 S/NPRE1 = N(S/PRE1) Branch to phase PREl

(S/PREl) = NCLEAR FUANLZ PH1 + ...

R/NPRE1 = ...
PRE1 One c lock long

T5L (DO-D31) ___ (SO-S31) Adder logic set at PHl clock Instruction to be
analyzed

(S 15-S31)-+-- (P15- P31) PXS = NFAIM PREl Address to program

FAIM = N03 N04 NOS
register. Significant
except when NCO
NINDX (immediate)

(RRO- RR31) -+--(AO-A31) AXRR = Set at PHl clock Significant only for in-
structions in which R
va lue is not zero

Mnemonic: ANLZ (44,
C4)

(Continued)

3-264

SDS 901172

Table 3-43. Analyze Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PRE1 (D12-D14)-VLR29/-/LR31/) LRXD = Set at PH1 clock R value stored

T5L
If CO or INDX: (Cont.)

Set flip-flop IA S/IA = PRE1 CO Indirect addressing of

R/IA = instruction to be ... analyzed

Set flip-flop IX S/IX = PRE1 INDX

INDX = (C3+C4+C5) (C12 Not immediate address-
+ C13 + C14) ing or R value not zero.

R/IX = PRE/12 + ...
Remains in set state unti I
last eye Ie of phase PRE2

PRE/i2 = NIA NIxAL PRE2

Set flip-flop IXAL S/IXAL = (S/IXA L) NC LEAR Not word addressing

(S/IXAL) = PRE1 INDX

(FAHW + FABYTE + FADW)

FAHW = 01 N02 03 Halfword addressing

FABYTE = 01 02 03 Byte add ress i ng

FADW = N01 N02 04 + NOl Doubleword addressing
N0203

Set flip-flop MRQ S/MRQ = (S/MRQ/2) + .•. Core memory request for

(S/MRQ/2) PRE1 CO NFAIM + ... address =
R/MRQ = ...

Set flip-flop DRQ t'" /,-."" ==
,,.. /,....,,,,...,..\ .. 1,-.. ro .& ft inhibits transmission of ~/Ul\~ \.)/ UI\~} I"'\"L~AK

(S/DRQ) (S/MRQ/2) + •••
another clock unti I data = release signal received

R/DRQ = ... from core memory

Enable signal (S/SXA) (S/SXA) = (S/IXAL) + ••• Preset for A-S in
PRE2

If NCO NINDX:

End phase PRE1 PRE/12 = PRE1 NCO NINDX Immediate addressing

Branch to phase PRE3 S/NRPE3 = N(S/PRE3) N BR true because no

(S/PRE3) = PRE/12 NBR
branch signal true

R/NRPE3 = ...
Reset flip-flop NT8L S/NT8L = N(S/T8L) Set clock T8L for PRE3

(S/T8L) = PRE/12 + ...

R/NT8L = ...
Mnemonic: ANLZ (44,

C4)

(Continued)

3-265

SDS 901172

Table 3-43. Analyze Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PRE2 Timing:

If IA IX, DR followed by T8L PRE2 phase is maintained

If IA NIX, DR followed by T5L if BRPRE2 is true at clock
time

If NIA NIX, T5L followed by T8L

If NIA IX, T5L only

If lXAL, AXSR2 = IXAL PRE2 FABYTE Ri ght sh ift 2 if byte

An ____ Sn--,£-Sm, with shifts addressing

AXSR1 = IXAL PRE2 FAHW Right shift 1 if ha Ifword
addressing

AXSLl = IXAL PRE2 FADW Left shift 1 if double-
word addressing

If lA, (MBO-MB31)---(CO-C31) CXMB = DG = /DG/ Transfer address to
C-register

(CO-C31) -I-- (DO-D31) DXC = IA PRE2 + ..• Address to D-register

Set flip-flop SW5 if IA S/SW5 = ANLZ IA + •.. Store information that

R/SW5 = (R/SW5) IA set for PRE3 operation

Enable signal (S/SXAPD) (S/SXAPD) = PRE2 IA IX + PRE2 Preset for (A + D)---S
IXAL + ... in next PRE2 phase

Enable signa I (S/SXD) (S/SXD) = PRE2 IA NIX + ... Preset for D---S in
next PRE2 phase

Branch to PRE2 BRPRE2 = IA PRE2 + IXA L PRE2 + .•. Remain in phase PRE2
unti I IA and IXA L reset

Enable clock T8 for PRE2 if T8EN = NT5EN NT11 L T5EN is disabled by sig-
addition is to be performed N(SXADD/1 RW) nal SXADD/1 when

N(RW REU) N(REU AXRR) (S/SXAPD) is true
NT5EN = SXADD/1 + •.•

(AO-A31) + (DO-D31)---(SO-S31) Adder logic set at PRE2 c lock by (S/SXAPD) When IA IX or IX IXA L

(DO-D31)---(SO-S31) Adder logic set at PRE2 clock by (5/5XD)

I
When IA NIX

(S15-531) -+-- (P15- P31) PX5 = PRE2

Term i nate PRE2 phase PRE/12 = NIA NIXAL PRE2 + ... Rema i n in PRE2 phase
until NIA NIXAL

Reset fl ip-flop NPRE3 5/NPRE3 = N(S/PRE3) NBR Branch to PRE3 phase

(S/PRE3) = PRE/12

R/NPRE3 = ...

Mnemonic: ANLZ (44,
C4)

(Continued)

3-266

SDS 901172

Table 3-43. Ana Iyze Sequence (Cant.)

Phase Function Performed Signals Involved Comments

PRE2 Reset flip-flop NT8L S/NT8L = N(S/T8L) Set clock T8L for phase
(Cant.)

(S/T8L) = PRE/12 + ••.
PRE3

R/NT8L = ...

PRE3 One c lock long

T8L Set flip-flop CCl if instruction to S/CCl = (S/CC1/3) + ... Word or doubleword
be analyzed is word or doubleword

(S/CC1/3) = (S/CC1/1) + •.. addressing identified by
addressing signars NFAIM N03 or

(S/CC1/1) = ANLZ PRE3 NFAIM N03 N01

+ ANLZ PRE3 N01 + ••.

R/CC1 = (R/CC 1) = (R/CC) + .•.

(R/CC) = ANLZ PRE3 + •.•

Set flip-flop CC2 if instruction to S/CC2 = (S/CC2/3) + •..
be analyzed is halfword or double-

(S/C C 2/3) = (S/CC2/1) + .. : word addressing
(S/CC2/1) = FADW AN LZ PRE3

+ FAHW AN LZ PRE3

R/CC2 = (R/CC) + ..•

Set flip-flop CC3 if instruction to S/CC3 = (S/CC3/1) + ••. Flip-flop SW5 set during
be analyzed is indirect addressing

(S/CC3/1) = ANLZ PRE3 SW5 + •..
PRE2 phase if IA set at

(CO = 1) PRE1 clock
R/CC3 = (R/CC) + ...

Set flip-flop CC4 if instruction to S/CC4 = (S/CC4/1) + ••.
be ana Iyzed is immediate addressing

(S/CC4/1) = ANLZ PRE3 FAIM + ...

R/CC4 = (R/CC) + •..

Reset flip-flop NTll L S/NTll L = N(S/Tl1 L} + ... Set clock Tl1 L for PH5

(S/Tll L) = PRE3 ANLZ + ..•

R/NTll L = ...
Clear O-register OXZ = ANLZ PRE3 + .•. Store zeros in O-register

Branch to PH5 BRPH5 = ANLZ PRE3 + ...

PH5 One clock long

Tll L Dead phase to allow family signals
to die out

PH6 One c lock long

T5L Enable signal (S/SXA) (S/SXA) = ANLZ PH6 + ... Preset for A--S in
PH7

Mnemonic: ANLZ (44,
C4)

(Continued)

3-267

SDS 901172

Table 3-43. Analyze Sequence (Cont.)

Phase Function Performed Signa Is Involved Comments

PH6 (P15-P31)---(515-531) SXP = ANLZ PH6 NDI5 + ...

T5l If CCl set in PRE3:
(Cont.)

(515-531)--f--(A 15-A31) AX5 = ANlZ PH6 CCl + •.• Word or doubleword
addressing

If CCl reset in PRE3:

(515-531)-f---(A 14-A30) AX511 = ANLZ PH6 NCCl + ... Byte or halfword

P32-1--A31 A31XP32 = ANlZ PH6 NCCl
addressing

PH7 One clock long

T5l (AO-A31)-(50-531) Adder logic set at PH6 clock

If Neel Nee2 in PRE3:

(515-531)-f--(A 14-A30) AX511 = NeCl NCC2 ANlZ PH7 + ... Byte addressing

P32 --f--A31 A31XP33 = NeCl NeC2 AN lZ PH7
+ ...

If eel ee2 in PRE3:

(514-530)-f--(A 15-A31) AX5Rl = eCl Ce2 ANlZ PH7 + .00 Doubleword addressing.
If CCl NCC2 or NCel
CC2, no additional
transfers

5et flip-flop RW 5/RW = (5/RW/l) Prepare to write resu It

(5/RW/l) = (5/RW) + 0.0
in private memory if
analyzed instruction was

(5/RW) = PH7 ANlZ NOll NCC4 not immediate addressing
+ • o.

R/RW = ,.0

Enable signal (5/5XA) (5/5XA) = ANLZ PH7 + 0" Preset for A-5 in
PH8

PH8 One c lock long

T8 Enable ciock T8 for PRE2 if T8EN - NT5EN NT11 L T5EN is disabled by
addition is to be performed N(RW REU) signal RW

N(5XADD/l RW)
N(REU AXRR)

NT5EN = RW +"0

(AO-A31)--(50-531) Adder logic set at PH7 clock

Mnemonic: ANlZ (44,
C4)

(Continued)

3-268

SOS 9011n

Table 3-43. Ana Iyze Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH8 If NFAIM:

T8 (SO- S31) --(RWO- RW31) RWXS/O- RWXS/3 RW + ... Transfer address to (Cont .)
=

~ = Set at PH7 c lock if NFAIM private memory register
R if not immediate
address

PH9 One c lock long

T5l (BO- B31) ---(SO- S31) SXB = PXSXB NOIS + ••• Transfer program address

PXSXB = NFAFl NFAMOS PH9 to P-register from tem-
porary storage in B-

(S15-S31)-(P15-P31) PXS = PXSXB + ..• register

Set flip-flop BRP S/BRP = PXSXB + ... Indicates that program

R/BRP = PREl NFAIM + •••
address is in P-register

Set flip-flop MRQ S/MRQ = (S/MRQ/2) + ... Core memory request for

(S/MRQ/2) PXSXB NINTRAP2
next instruction in

=
sequence

R/MRQ = ...

Set flip-flop ORQ S/ORQ = (S/MRQ/2) + ... Inhibits transmission of
another clock unti I data

R/ORQ = ... release from core
memory

PH10 Sustained until data release See table 3-18

DR
ENOE functions

Mnemonic: ANlZ (44,
C4)

3-269

Paragraph 3-65 SDS 901172

3-65 Interpret (II'-J!i __ 6~i EB)

GENERAL. The INT instruction operates w'ith on even
R field in the instruction word as follows:

a. Bits 0 through 3 of the effective word are loaded
into condition code flip-flops CCl through CC4.

b. Bits 4 through 15 of the effective word are loaded
into bit positions 20 through 31 of private memory register
R. The remainder of the register is cleared.

c. Bits 16 through 31 of the effective word are
loaded into bit positions 16 through 31 of private memory
register Rul. The remainder of the register is cleared.

If the R field of the instruction word is odd:

a. Bits 0 through 3 of the effective word are loaded
into the condition code flip-flops.

EVEN R FIELD

b. Bits 16 through 31 of the effective word are
loaded into bit positions 16 through 31 of private memory
register R. The remainder of the R-register is cleared.

c. Bits 4 through 15 of the effective word are
ignored.

Examples. Examples of INT with both on even and odd
R field are shown in figure 3-141.

Interpret Phose Seguence. Preparation phases for the INT
instruction are the some as the general PREP phases for
word instructions, paragraph 3-59. Figure 3-142 shows
the simplified phose sequence for INT execution phases,
and table 3-44 lists the detai led logic sequence during
the instruction execution phases.

10100000111100000101010101010101 EFFECTIVE WORD

ODD R FIELD

10100000111100000101010101010101

Figure 3-141. Interpret Examples

3-270

PRIVATE MEMORY
REGISTER R

PRIVA TE MEMORY
REGISTER Ru 1

EFFECTIVE WORD

PRIVA TE MEMORY
REGISTER R

901172A,3061

SDS 901172

PREP PHI PH2 PH3 PH4

(C) : EW
(D) : EW

D-S I
(P) : PROGRAM

ADDRESS

I
(S/MRQjt) I-+-MRQ

I

(SO-S3) --t- (CC1-CC4)
o ~(DO-D3)

I O-S I I
(S16- S31)--RRI6- I
I RR31 I

I
0'S~RRO-RRI5 I I

CIRCULAR CIRCULAR

I ~IGHT SHIFT S t .RI~H_T_S_H_IF_T_S---I!'---" 0 ~ S

I I I (c;ll._c;11_RR11._'
I I I \ - . - - - . I RR31 I

(S/SXD) (S/SXD)
I-f--LR31 I I
I I (S/SXD) I 0'S-RRO-RR15

PH10

I
I--f-- RW I

I l~DRQ

(DXDRS) I I ENDE

l+--RW

I (DXDRS)

I
I

TSEN I 8RPHI0

I I T8EN I

8RPHI0 IF ODD R FIELD

Fi gure 3 -142. Interpret Phases

Table 3-44. Interpret Sequence

1
901172A.3062

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : EW Effective word. C-
register not used during
INT

(D) : EW Effective word

(P) : Program address Next instruction in
sequence

Set flip-flop MRQ S/MRQ = (S/MRQ/l) + ... Core memory request for

(S/MRQ/l) FUI NT PRE3 + ...
next instruction in = sequence

R/MRQ = ...
Enable signal (S/SXD) (S/SXD) = FUINT PRE3 + ... Preset adder logic for

o ---S in PHI

Mnemonic: INT (68, E8)

(Continued)

. 3-271

5D5901172

Table 3-44. Interpret 5equence (Cont.)

Phase Funct ion Performed 5ignals Involved Comments

PH1 One clock long

T5l (DO-D31) --- (50-531) Adder log ic set at last PREP clock Effective word ---- 5

(50-53) -f-- (CC1-CC4) 5/CC1 = 50 CCX5/0 -t ••• First four bits of effective
word --f-- condition

I S/CC4 = 53 CCX5/0 + ...
code flip-flops

I
CCX5/0 = FUINT PH1 + ...

R/CC 1- RIC C4 = CCX5/0 + •..

Clear (DO-D3) at clock DX/OA = D0003XZ + ...

DOO03XZ = FUINT PH1 + ...

Force a one onto lR31 address (5/lR31) = FUINT PH1 + ••• 5elects private memory
line register Ru 1 for transfer

of bits 16 through 31 of
effective word in PH2

Enable signal (5/5XD) (5/5XD) = FUINT PH1 + ... Preset adder logic for
D---5 in PH2

5et flip-flop RW 5/RW = FUINT PH1 + .•. Prepare to write bits 16

R/~W = through 31 into register ...
Ru1

PH2 One clock long

T8l (DO-D31) ---- (50-531) Adder logic set at PH1 clock

(516-531) --- (RW16-RW31) RWX5/2- RWX5/3 = RW Write bits 16 through 31
of effective word into
pri vate memory reg i ster
Ru1

O's --- (RWO-RW15) RWX5/0- RWX5/1 = RW NRWXZ/01 No gating term enabled

RWXZ/01 = FUINT PH2 + .•. Effectively clears least

RW = 5et at PH 1 clock
significant half of Ru1
register

Circular right shift DXDR8 = FUINT PH2 + ... Bring bits 4 through 15 of
D-register eight bit positions effective word into posi-

I

ticn. One more shi ft is
done in PH3

Enable clock T8 T8E~~ = NT5EN I'Hll L T5EI'~ is disabled by
N(5XADD/1 RW) signal RW
N(RW REU) N(REU AXRR)

NT5EN = RW + ...

Branch to PH10 if R field of BRPH10 = FUINT PH2 R31 + ... Bits 4 through 15 of
instruction word is odd

5/PH10 BRPH10 NClEAR +
effective word not trans-= ...
ferred if R field is odd

- - I I R/PH1U

Mnemonic: INT (6B,

(Continued)

3-272

SDS 901172

Table 3-44. Interpret Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH3 One c lock long

T5L Circular right shift D-register DXDRS = FUINT PH3 + ••• Bits 0 through 15 of
eight bit positions effective word are now

in bit positions 16 through
31 of D-register (bits 0
through 3 are zeros)

Enable signal (S/SXD) (S/SXD) = FUINT PH3 + ••• Preset adder logic for
D-S in PH4

Set flip-flop RW S/RW = FUINT PH3 + ••• Prepare to write bits 4

R/RW = through 15 of effect ive ...
word into private memory

I PH4 lone clock long

I regoster R

Tal (DO-D3i) ---(SO-S31) Adder logic set at PH3 clock

(S 16-S31) ---(RW16- RW31) RWXS/2- RWXS/3 = RW Write bits 4 through 15
of effective word into
private memory register
R (SO through S3 are zeros)

O's - (RWO- RW15) RWXS/O- RWXS/1 = RW NRWXZ/01 No gating term enabled

RWXZ/01 = FUINT PH2 + ••• Effectively clears least

RW = Set at PH3 clock
significant half of
R-register

Enable clock TS TSEN = NT5EN NT11 L T5EN is disabled by
N(SXADD/1 RW) signal RW

I I
N(RW REU) N(REU AXRR)

NT5EN == RW+ •••

I Branch to PH10 I BRPHlO = FUINT PH4 + •.• I I
S/PH10 = BRPH10 NCLEAR + •••

".

R/PHI0 == ...
Set flip-flop DRQ S/DRQ = BRPHI0 NCLEAR + .•. Inhibits transmission of

R/DRQ another clock until data = ...
release received from
core memory

PHI0 Entered from PH2 if R fi e Id See table 3-1S

DR is odd or from PH4 if R field
is even

ENDE functions

Mnemonic: INT (6B, EB)

3-273

Paragraph 3-66 SDS 901172

3-66 tami Iy of Arithmetic Instructions (FAARlTH)

ADD IMMEDIATE (AI; 20, AO). The Al instruction adds
the sign-extended value field of the instruction word to
the contents of private memory register R and loads the
sum back into private memory register R.

General. The sign of the value field, bit position 12, is
extended 12 bit positions to the left during the PREP phases
for this instruction. The actual addition of the 32-bit sign­
extended va lue is performed during Al execution phases.

Condition Codes. If the result in the R-register is zero,
the condition codes are set to XXOO. If the resu It is non­
zero and positive, the condition codes are set to XX10. A
negative result produces condition code settings of XX01.

Flip-flop CC2 is set if fixed-point overflow occurs during
the addition. flip-flop eel i:. !)t:1 if ,Lelt; i:; a (.orry frViTl

bit position zero.

Trap Conditions. A trap to memory location X'43' occurs
if there is fixed-point overflow and the fixed-point arith­
metic mask bit is a one. The result in private memory
register R remains unchanged. If overflow occurs and the
mask bit is a zero, the next instruction in sequence is
executed.

Add Immediate Phase Sequence. Preparation phases for the
Al instruction are the same as the general PREP phases for
immediate instructions described in paragraph 3 -59.
Table 3-45 lists the detailed lagic sequence during all AI
execution phases.

Table 3-45. Add Immediate Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : Value Fieid
SE

Sign-extended value field
of instruction word

(D) : Value Fieid
SE

Sign-extended value field
of instruction word

(A) : RR Contents of private mem-
ory register R. Value
field wi II be added to
this quantity

(P) : Program address Next instruction in
sequence

Enable signal (S/SXAPD) (S/SXAPD) = FAADD PRE/34 + ... Preset adder for A + D
--S in PH1

Set flip-flop MRQ S/MRQ = (S/MRQ/1) + ... Core memory request for

(S/MRQ/1) = FAS 10 PRE/34 + ...
next instruction in
sequence

FAS10 = FAARlTH + ...

R/MRQ = ...
Set flip-flop RW I 5/RW = FAS11 PRE/34 NOll + ... Prepare to write result in-

I FA511 = FAARlTH + ...
to private memory register
R

R/RW = ...

PHl One c loc k long

T5L (AO-A3l) + (DO-D31) __ Adder logic set at last PREP clock Store resu I t (sum) in
private memory register R

(50- S31) --- (RWO- RW31) RWXS/0-RWXS/3 = RW + ...

R'N = Set at last PRE P clock

Mnemonic: Al (20, AO)

(Continued)

3-274

SDS 9011n

Table 3-45. Add Immediate Sequence (Cont.)

Phase Function Performed

PH1 Set flip-flop CC1 if end carry S/CC1 =
T5L from result

CC1XKOO
(Cont .)

=

R/CCl =

Set flip-flop CC2 if arithmetic S/CC2 =
overflow

PROBOVER=

R/CC2 =

Set flip-flop OVERIND S/OVERIND =

R/OVERIND =

Set flip-flop CC3 if result of S/CC3 =
addition is positive and nonzero;

SGTZ = otherwise reset CC3

TESTS =

R/CC3 =

Set flip-flop CC4 if result of S/CC4 =
addition is negative; otherwise

R/CC4 = reset CC4

Enable clock T11 NT5EN =

RW =

NT8EN =

SX,A.DD/l ~

GXAD =

Branch to PH10 BRPHlO =

Set flip-flop DRQ S/DRQ =

R/DRQ =

PHlO ENDE functions See table 3-18
DR

ADD HALFWORD (AH; 50, DO) AND SUBTRACT HALF­
WORD (SH; 58, 08). The AH and SH instructions add or
subtract the sign-extended effective halfword from the
contents of private memory register R and load the result
back into private memory register R.

Signals Involved Comments

KOO CC1XKOO + ••. KOO is end carry from the

FAARITH PH1 + .•.
addition

CC1XKOO + •.•

(SOO (±) SO) PROBOVER + ... Arithmetic overflow

FAARITH PH1 + ...
occurs when two numbers
of like sign are added and

PROBOVER + •.• their sum cannot be held
in 32 bits

PROBOVER + ..• Setting OVERIND enables

CLEAR
trap if overflow, and
mask bit is equal to a
one. Trap is set during
ENDE

SGTZ TESTS + •..

(SO + Sl + ..• + S31) NSO
+ ••.

FAS11 PH1 + •.•

TESTS + ...

SO TESTS + ...

TESTS + ...

RW+ .•• Clock T11 is enabled by

Set at last PRE P clock
disabling clocks T5 and
T8

SXADD/1 RW + ...

r...VAn ..J...
.....",,,..., I •••

Set at last PREP clock Flip-flop GXAD is part
of the adder logic

FAS10 PHl + ..•

BRPH10 + ..• Inhibits transmission of
another clock unti I data

... release signal is received
from core memory

Mnemonic: AI (20, AO)

General. The sign of the effective halfword is extended
16 bit positions to the left to produce a 32-bit quantity.
Sign extension occurs during the PREP phases. The actual
addition or subtraction of the sign-extended halfword is per­
formed during AH or SH execution phases. Implementation

3-275

SDS 901172

of the two instructions is identical except for the arith­
metic operation involved.

Condition Codes. If the result in the R-register is zero,
. the condition codes are set to XXOO. If the result is

nonzero and positive, the condition codes are set to
XX10. A negative resu It produces condition code set­
tings of XXOl. Flip-flop CC2 is set if fixed-point
overflow occurs during addition or subtraction. Flip­
flop CCl is set if there is a carry from bit position zero.

Trap Conditions. A trap to memory location X'43' occurs
ii there is fixed-poirlf overflow OIIU fill;; r;AI;;J-pv;"i Qi;th­
metic mask bit is a one. The result in private memory reg­
ister R remains unchanged. If overflow occurs and the mask
bit is a zero, the next instruction in sequence is executed.

Add Ha I fword and Subtract Ha Ifword Phase Sequences.
Preparation phases for the two instructions are the same as
the general PREP phases for halfword instructions, para-
graph 3-59. Table 3-46 lists the detai led logic sequence
during all AH and SH execution phases.

Table 3-46. AH and SH Sequence

phase Function Performed Signals Involved I Comments

PREP At end of PREP:

{C} : EH, sign-extended Effective halfword with

{D} EH, sign-extended
sign-extended 16 bit

: positions to the left

{A} : RR Contents of private mem-
ory reg ister R. Sign-
extended effective half-
word will be added to
this quantity

{P} : Program address Next instruction in
sequence

If AH, enable signal (S/SXAPD) (S/SXAPD) = FAADD PRE/34 + ... Preset adder for A + D
----5 in PHl

If SH, enable signa I (S/SXAMD) (S/SXAMD) = FASUB PRE/34 + ... Preset adder for A - D
---S in PHl

Set flip-flop MRQ S/MRQ = (S/MRQ/l) + ... Core memory request for

(S/MRQ/l) = FAS10 PRE/34 + ...
next instruction in
sequence

FAS10 = FAARITH + •..

R/MRQ = ...

Set flip-flop RW S/RW = FASll PRE/34 NOll + ... Prepare to write result

FASll = FAARITH + ...
into private memory
register R

R/RW = ...

PHl One c lock long I
If AH, (AO-A31) + (DO-D31) Adder logic set at last PREP clock Add sign-extended effec-
___ (50-531) tive halfword and

contents of register Rand
gate resu It to sum bus

If SH, (AO-A3l) - (DO-D31) Adder logic set at last PREP clock Subtract sign-extended
--(50-531) effective halfword from

contents of register Rand
gate resu It to sum bus

Mnemonic: AH (50, DO)
SH (58, D8)

(Continued)

3-276

Phase Function Performed

PH1 (SO-S31) --(RWO-RW31)
(Cont.)

Set flip-flop CC1 if end carry
from result

Set flip-flop CC2 if arithmetic
overflow

Set flip-flop OVERINO

Set flip-flop CC3 if result is
positive and nonzero; otherwise
reset CC3

Set fl ip-flop CC4 if resu It is
negative; otherwise reset CC4

Enable clock Tl1

Branch to PH10

Set flip-flop ORQ

PH10 ENDE functions
DR

SOS 9011n

Table 3-46. AH and SH Sequence (Cont.)

Signals Involved

RWXS/O- RWXS/3 = RW + ...

RW = Set at last PREP clock

S/CC1 = KOO CC1 XKOO + •••

CC1XKOO = FAARITH PH1 + •••

R/CC1 = CC1XKOO + •.•

S/CC2 = (SOO 0 SO) PROBOVER + •.•

PROBOVER= FAARITH PH1 + •..

R/CC2 = PROBOVER + •.•

S/OVERINO/1 = PROBOVER + ••.

R/OVERIND/l = CLEAR

S/CC3 = SGTZ TESTS + •..

SGTZ = (SO + Sl + ••. + S31) NSO
+ .••

TESTS = FAS11 PH1 + •..

R/CC3 = TESTS + •..

S/CC4 = SO TESTS + •..

R/CC4 = TESTS + •••

NT5EN = RW + .••

RW = Set at last PRE P clock

I NT8EN = SXAOO/1 RW + •••

SXAOO/1 = GXAO + GXNAO + •••

GXAO = Set at last PREP clock if AH

GXANO = Set at last PRE P c lock if S H

BRPH10 = FAS10 PH1 + •..

S/ORQ = BRPH10 + •..

R/ORQ = ...

See table 3 -18

I

Comments

Store result in private
memory register R

KOO is end carry from
addition or end borrow
from subtraction

Arithmetic overflow occurs
when two numbers of like
signs are added and their
sum cannot be held in 32
bits

Setting OVERINO/1
enables trap if overflow,
and mask bit is equai to
a one. Trap is set during
ENOE

Clock Ttl is enabled by
disabling clocks T5 and
T8

Flip-flop GXAO is part
of adder logic

Flip-flop GXNAO is
part of adder logic

Inhibits transmission of
another clock until data
release signa I received
from core memory

Mnemonic: AH (50, ~O)
SH (58, 08)

3-277

SDS 901172

ADD WQR[) JAv(Ll~_~i ~~~UBTRACT_\Af_ORD (SWi
38, B8). The AW and SW instructions add or subtract the
effective word from the contents of private memory register
R and load the result back into private memory register R.

General. The implementation of AW ond SW is identical
except for the arithmetic operation i nvo Ived.

Condition Codes. If the result in the R-register is zero,
the condition codes are set to XXOO. If the result is non­
zero and positive, the condition codes are set to XX10.
A negative result produces condition code settings of XX01.
Flip-flop CC2 is set if fixed-point overflow occurs during

addition or subtraction. Flip-flop CCl is set if there is a
carry from bit position zero.

Trap Conditions. A trap to memory location X'43 1 occurs
if there is fixed-point overflow and the fixed-point arith­
metic mask bit is a one. The result in private memory reg­
ister R remains unchanged. If overflow occurs and the mask
bit is a zero, the next instruction in sequence is executed.

Add Word and Subtract Word Phase Sequences. Preparation
phases for the two instructions are the same as the Qeneral
PREP phases for word instructions, paragraph 3 -59.
Table 3-47 lists the detailed logic sequence during all
AW and SW execution phases.

Table 3-47. AW and SW Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : 8N Effective word

(D) : EW Effect i ve word

(A) : RR Contents of private mem-
ory reg ister R. Effective
word will be added to
this quantity

(P) : Program address Next instruction in
sequence

If AW, enable signal (S/SXAPD) (S/SXAPD) = FAADD PRE/34 + .•• Preset adder for A + D
-- Sin PHl

If SW, enable signal (S/SXAMD) (S/SXAMD) = FASUB PRE/34 + ... Preset adder for A - D
---S in PHl

Set flip-flop MRQ S/MRQ = (S/MRQ/l) + .•. Core memory request for

(S/MRQ/l) = FAS10 PRE/34 + •.. next instruction in
sequence

FAS10 = FAARITH + •••

R/MRQ = ...
Set flip-flop RW S/RW = FAS11 PRE/34 NOll + ••• Prepare to write result

FASll = FAARITH + ... into pri vate memory
register R

R/RW = ...

PHl One c lock long

If AW, (AO-A31) + (DO-D31) Adder logic set at last PREP clock Add effective word to

--- (SO-S31)
contents of register R
and gate resu Its to sum
bus

Mnemonic : AW (30, BO)
SW (38, B8)

(Continued)

3-278

Phase Funct ion Performed

PH1 If SW, (AO-A31) - (DO-D31)
(Cont.) ___ (SO-S31)

(SO- S31) --- (RWO- RW31)

Set flip-flop CC1 if end carry
from result

Set flip-flop CC2 if arithmetic
overflow

Set flip-flop OVERIND

Set fl i p-flop CC3 if resu It is
positive and nonzero; otherwise
reset CC3

Set flip-flop CC4 if result is
negative; otherwise reset CC4

Enable clock Tll

Branch to PH10

Set fl ip-flop DRQ

PH 1 0 ENDE functions
DR

SDS 901172

Table 3-47. AW and SW Sequence (Cont.)

Signals Involved

Adder logic set at last PREP clock

RWXS/O- RWXS/3 = RW + •.•

S/CC1 = KOO CC1XKOO + •••

CCl XKOO = FAARITH PH1 + •••

R/CCl = CC1XKOO + .••

S/CC2 = (SOO (±) SO) PROBOVER + ...

FAARITH PHl + ... PROBOVER =

R/CC2 = PROBOVER + •••

S/OVERIND/l

R/OVERI ND/l

= PROBOVER + ...

= CLEAR

S/CC3

SGTZ

TESTS

R/CC3

S/CC4

R/CC4

NT5EN

RW

= SGTZ TESTS + ...

= (SO + 51 + ... + 531) NSO
+ ...

= FASll PHl + ...

= TESTS + ••.

= SO TESTS + •••

= TESTS + ...

= RW + ...

= Set at last PREP clock

NT8EN = SXADD/l RW + .'.

SXADD/l = GXAD + GXNAD + ..•

Comments

Subtract effective word
from contents of register
R and gate results to sum
bus

Store result in private
memory reg ister R

KOO is end carry from
addition or end borrow
from subtraction

Arithmetic overflow
occurs when two numbers
of like signs are added
and their sum cannot be
held in 32 bits

Setting OVERIND/l
enables trap if overflow,
and mask bit is equal to
a one. Trap is set during
ENDE

I Clock Tll is enabled by
disabling clocks T5 and
T8

GXAD = Set at last PREP clock if AW Flip-flop GXAD is port
of odder logic

GXNAD = Set at last PREP clock if SW

BRPH10

SIDRQ

R/DRQ

= FAS10 PHl + ...

= BRPH10 + ...

See table 3-18

Flip-flop GXNAD is part
of odder logic

Inhibits transmission of
another clock until data
release signal received
from core memory

Mnemonic: AW (30, SO)
SW (38, 88)

·3-279

SDS 901172

ADD DOUBLEWORD (AD; 10, 90) AND SUBTRACT
DOUBLtWORO (SO;)8, 98). The AO and SO instructions
add or subtract the effective doubleword from the contents
of private memory registers Rand Ru1, treated as a double­
word value, and load the result bock into private memory
registers Rand Ru1. The R field of the instruction word
must spec i fy an even private memory reg ister for a correct
resu It.

General. The implementation of AD and SO is identical
except for the arithmetic operation involved.

Condition Codes. If the result in the private memory
registers is zero, the condition codes are set to XXOO. If
the res;;lt is nonzero and positive, the condition codes are
set to XX10. A negative result produces condition code

PREP

(C): ED LSH

(D): ED LSH

(A): RRu 1

(P): ED MSH

ADDRESS

(B): PROGRAM
ADDRESS

PH1

settings of XXOl. Flip-flop CC2 is set if there is fixed­
point overflow during the addition or subtraction. Flip-flop
CC1 is set if there is a carry from bit position zero.

Trap Conditions. A trap to memory location X'43 1 occurs
if there is a fixed-point overflow and the fixed-point
arithmetic mask bit is a one. The result in private memory
remains unchanged. If overflow occurs and the mask bit is
a zero, the next instruction in sequence is executed.

Add Doubleword and Subtract Doubleword Phase Seguences.
Preparation phases for the two instructions are the same as
the general PREP phases for doubleword instructions, para­
graph 3-59. Figure 3-143 shows the simplified phase
sequence for the two instructions during execution, and
table 3-48 lists the detai led logic sequence during all
AD and SO execution phases.

PH2

RR-i:-- A

I
MB-C--f--D

I
I a-5TD

PH3 PHlO

MB-C

IF AD, (S/SXAPD)

IF SO, (S/SXAMD) I
A + D---S IF AD, (S/SXAPD) A + D---si

D- 5
1

(S/MRQ/3)

3-280

I
I
I

A - D---S

IF S;' 0,

IF END CARRY,

1 -+--'MRQ
I o -t-- NMRQ Pl

I
I ITRW
I

o -r-- NLR31 F

I

IF SO, (S/SXAMD) A -

S -i-- RRul
I

17--SWO

I
1 -+-FL3

I
IF FL3,

I (S/MRQ/3)

l-f--'DRQ

I
0-1-- NSXBF

I
I

o -+- NAXRR

I

I

0~NK31
I

11MRQ

0-1-- NMRQ PI
I

I
lTRW

I
I

S-+-- RR
I

I

I
I

l-+-DRQ
I

I
I I ENDE

1 --+-- OVERIND/l
I
ICONDITION CODES

I
901172A.3151

Figure 3-143. Add Doubleword and Subtract Doubleword Instruction, Phase Diagram

SOS 901172

Table 3-48. Add Ooubleword and Subtract Ooubleword Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : EO
LSH

Least significant half of
effective doub!eword

(D) : EO
LSH

Least significant half of
effective doubleword

(A) : RRu1 Contents of private mem-
ory register Ru 1. This is
the least significant word
of operand stored in
private memory

, ... \
ED MSH address Address of most significant ~f") :

word of effective doub le-
word

(8) : Program address Address of next i nstruc-
tion in sequence

If AD, enable signal (S/SXAPO) (S/SXAPO) = FAAOO PRE/34 + ••• Preset adder for A + 0
---S in PHl

If SO, enable signal (S/SXAMO) (S/SXAMO) = FASU8 PRE/34 + ••• Preset adder for A - 0
--- Sin PHl

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + •.. Core memory request for
most signi ficant word of

(S/MRQ/3) = FA DW/l PRE/34 + •.. doubleword. Flip-flop
ORQ set on next clock

FAOW/l = OUl FASll

FASll = FAARITH + •.•

R/MRQ = ...
I I

Reset flip-flop NMRQPl S/NMRQP1 = N(S/MRQ/3) + .•• Used to delay setting

R/NMRQPl =
flip-flop ORQ ...

Set flip-flop RW S/RW = FASll PRE/34 NOll + ••• Prepare to write least
significant word of result

R/RW = ... into private memory
reg ister Ru 1

Reset flip-flop NLR31 F S/NLR31 F = N(S/LR31) Force a one on private
memory address line LR31

(S/LR31) = FAOW/1 NANLZ PRE3 + ••. during PHl to select
private memory register

R/NLR31 F = ... Rul

Mnemonic: AD (10, 90)
SO (18, 98)

(Cont i nued)

3-281

SOS 901ln

Table 3-48. Add Ooubleword and Subtract Ooubleword Sequence (Cont.)

Phase Function Perfonned Signals Involved Comments

PH1 One c lock long

Tl1 L If AO, (AO-A31) + (00-031) Adder logic set at last PREP clock Add least signi ficant word

--- (SO- S31) of effective doubleword
to least significant word
of private memory double-
word, and gate resu It to
sum bus

If SO, (AO-A31) - (00-031) Adder logic set at last PREP clock Subtract least signi ficant

--- (SO-S31) word of effective double-
word from least signifi-
cant word of private
memory doubleword, and
gate resu It to sum bus

(SO-S31) --- (RWO-RW31) RWXS/O- RWXS/3 = RW + •.•

RW = Set at last PREP clock Store least signi ficant
word of result in private
memory reg ister Ru 1

Reset flip-flop NSXBF S/NSXBF = N(S/SXB) Preset logic for B --- S

(S/SXB) FAOW/l PHl + ...
in PH2 =

R/NSXBF = ...
Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset log i c for transfer-

(S/AXRR) = FAOW/l PHl + ..•
ring most significant word
of private memory double-

R/NAXRR = ... word to A-register in PH2

Set flip-flop SWO if (SO-S31) S/SWO = NS0031 Z (S/SWO/NZ) + •.. Used in setting CC3 in
is nonzero

NS0031Z (SO + Sl + ... + S31)
PH4. CC 1 through CC4 = may be set in this phase,

(S/SWO/NZ) = KOOHOLO + ... but action is meaningless

KOOHOLO = FAOW/l PHl + .••
since they are also set in
PH4

R/SWO = ...

Set flip-flop FL3 if end carry S/FL3 = KOO KOOHOLO + ••• KOO is end carry or end

I
R/FL3 = borrow from adding or ...

subtracting the least sig-
nificant words of the two
operands. FI ip-flop N K31
wi II be reset in PH2 if
end carry exists

Enable clock Tll NT5EN = RW + ... Clock Tll is enabled by
disabling clocks T5 and

RW = Set at last PREP clock T8

Mnemonic: AO (10, 90)
SO (18, 98)

(Continued)

3-282

SDS 901172

Table 3-48. .Add Doubleword and Subtract Doubleword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH1 NTSEN = SXADD/l RW + ...

Tll L SXADD/l = GXAD + GXNAD + ...
(Cont.)

GXAD = Set at last PREP clock if AD Flip-flop GXAD is part
of adder logic

GXNAD = Set at last PREP clock if SO Flip-flop GXNAD is part
of adder logic

Set flip-flop DRQ S/DRQ = MRQPl + ... MRQPl was set on previ-

R/DRQ ous clock. DRQ inhibits
= ...

transmission of another
clock unti I data release
signal received from core

I PH2 lone clock long

memer" ,

DR (80-B31) -- (SO-S31) SXB = NDIS SXBF + ... Transfer program address

(S15-S31)-+--(P15-P31) SXBF = Set at PHl clock
to P-register

(MBO-MB31)--(CO-C31) ~ CXMB = DG =/DG/ Transfer most significant

(DO-D31) DXC FA DW/l PH2 + ...
word of effective double-

=
word to D-register

(RRO-RR31) -f-- (AO-A3l) AXRR = Set at PH 1 clock Transfer most signi ficant
word of private memory
doubleword to A-register

If AD, enable signal (S/SXAPD) (S/SXAPD) = FAADD PH2 + ... Preset adder for A. + D
--- S in PH3

If SD, enable signal (S/SXAMD) (S/SXAMD) = FASUB PH2 + .•. Preset adder for A - D
---5 in PH3

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + ... Core memory request for

(S/MRQ/3) = FA DW/l PH2 + ... next instruction in
sequence

R/MRQ = ...
Reset flip-flop NMRQPl S/NMRQP1 = N(S/MRQ/3) + ..• Used to delay setting

R/NMRQPl = flip-flop DRQ ...
Set flip-flop RW S/RW = FAS11 PH2 NOll + ... Prepare to write most sig-

nificant word of result
R/RW = ... into pri vote memory

register R

Reset flip-flop NK31 if there S/NK31 = N(S/K31) N(S/SXAMD/l) Provides carry to most
was end carry in PH2 + N(S/K31/1) significant word addition

in PH3

Mnemonic: AD (10, 90)
SD (lS, 9S)

(Continued)

3-2S3

SDS 901172

Table 3-48. Add Doubleword and Subtract Doubleword Sequence (Cont.)
"" ___ "_-'F_~~

'1 Phase Function Performed

PH2

DR
(Cont .)

PH3 One c lock long

Tll L I If AD, (AO-A3l) + (DO-D3l)

I --(SO-S31)

3-284

If SD, (AO-A31) - (DO-D31)

--(SO-S31)

(SO- S31) --(RWO- RW31)

Set flip-flop CC1 if end carry
from resu It

Set flip-flop CC2 if arithmetic
ove:flow

Set flip-flop OVERIND/l

Signals Involved

(S/K31) = FADW/l PH2 + •••

(S/K31/l) = KOO (S/K31/3) + •••
+ •••

(S/K31/3) = N(FADW/l PH2 NFL3)

R/NK31 = ...

Adder log i c set at PH 1 clock

Adder logic set at PHl clock

RWXS/O- RWXS/3 = RW + ...

RW = Set at PH2 clock

S/CCl = KOO CC1XKOO + ...

CCl XKOO = FAARlTH PH3 + ...

R/CCl = CC1XKOO + ...

S/CC2 =

PROBOVER =

R/CC2 =

S/OVERIND/l

R/OVERIND/l

(SOO + SO) PROBOVER + •••

FAARlTH PH3 + ...

PROBOVER + .•.

= PROBOVER + ...

= CLEAR

(Continued)

Comments

Add most significant word
of effective doubleword
to most significant word
of private memory double­
word, and gate resu It to
sum bus. Carry to least
significant bit is present
if flip-flop N K31 was
reset in PH2

Subtract most signi ficant
word of effective double­
word from most signifi­
cant word of private
memory doubleword, and
gate resu It to sum bus.
Borrow from least signifi­
cant bit is present if
flip-flop NK31 was reset
in PH2

Store most significant
word of resu It in private
memory register R

KOO is end carry from
addition

Arithmetic overflow
occurs when two numbers
of iike signs are added
and their sum cannot be
held in 32 bits

Setting OVERIND/1
enables trap if overflow,
and mask bit is equal to
a one. Trap is set dur­
ing ENDE

Mnemonic: AD (10, 90)
SD (18, 98)

SDS 9011n

Table 3-48. Add Doubleword and Subtract Doubleword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH3 Set flip-flop CC3 if resu It is positive S/CC3 = SGTZ TESTS + ...

T11 L
and nonzero; otherwise reset CC3

SGTZ = (SO + Sl + .•. + S31) NSO
(Cont.) + .•.

TESTS = FAS11 PH3 + ...

R/CC3 = TESTS + ..•

Set flip-flop CC4 is result is S/CC4 = SO TESTS + .•.
negative; otherwise reset CC4

R/CC4 = TESTS + ...

Enable clock T11 NT5EN = RW+ ••• Clock T11 is enabled by
disabling clocks T5 and

RW = Set ct PH2 clcck TS

NT8EN = SXADD/l RW + .•.

SXADD/l = GXAD + GXNAD + .•.

GXAD = Set at PH2 clock if AD Flip-flop GXAD is part
of adder logic

GXNAD = Set at PH2 clock if SO Flip-flop GXNAD is part
of adder logic

Branch to PH10 BRPH10 = FA DW/l PH3 + ...

Set fl ip-flop DRQ S/DRQ = BRPH10 + MRQPl + ... Inhibits transmission of
I another clock unti I data

I
R/ORQ = ... release signal received

from core memory

PH10 ENDE functions See table 3-18

OR
I

Mnemonic: AD (10, 90)
SO (18, 98)

3-285

Paragraph 3-67 SOS 901172

3-67 Fomi Iy of Multiply Instructions (FAMUL)

GENERAL. Multiplication in the Sigma 5 computer is
done with the Multiply Immediate, Multiply Halfword,
and Mu Itiply Word instructions. The mu Itiplicand is
located either in a specified memory location or, in the
case of the Multiply Immediate instruction, in bits 12
through 31 of the instruction word. The multiplier is
located in a specified private memory register. The product
is stored in private memory.

The Sigma 5 computer uses the bit-pa ir method of mu Iti­
plication, in which the multiplier is examined two bits
at a time and one addition or one subtraction is performed
for that bit pair. With each addition or subtraction the
partial product is shifted two bit positions to the right.
An example of bit-pair multiplication is shown in figure
3-144.

There are four possible states for one bit pair: 00, 01, 10,
and 11. Multiplying by the first three types of bit pairs
is done by norma I shift and add operations. Mu Itiplying
by bit pair 00 is done by adding zeros to the partial
product; multiplying by bit pairs 01 and lOis done by
adding the multiplicand or two times the multiplicand,
respectively, to the partia I product. Mu Itiplying by bit
pair 11 is a special case. Multiplication by 3 cannot be
represented by a mu Itiple of 2; therefore, simply shifting
the multiplicand and adding is not possible in this case.
To multiply by this bit pair, 1 times the multiplic.and is
subtracted from the partia I product during one iteration,
and 4 times the multiplicand is added to the partial product
during the next iteration. Adding 4 times the multiplicand
is accomplished by adding 1 to the next higher bit pair at
the time that bit pair is under examination. The next bit
pair becomes 01 if it was 00, 10 if it was 01, 11 if it was
10, or 00 with a 1 to be added to the next bit pair if it
was 11. The two multiplier bits to be examined are in bits
30 and 31 of the B-register, and a 1, or carry, to the next
higher bit pair is saved in flip-flop BC31 until that bit pair
comes under examination.

Table 3-49 shows all possible combinations of bit pairs
and carries, the weight of each bit pair with its carry,
and the manner in which each weight is implemented.
During the multiplication iterations, the multiplicand is
in the C- and D-registers, and the partia I product is in
the A- and B-registers, with the most significant half in
the A-register. When zeros are to be added to the partia I
product, the contents of the A-register are simply placed

3-286

on the sum bus and shifted right two bit positions into the
A- and B-registers. When 1 times the multiplicand is to
be added to the partia I product, the contents of the A­
and D-registers are added together. When 2 times the
multiplicand is to be added, the multiplicand is shifted
left one bit position in the C-register and placed in the
D-register before adding to the partial product. When-1
times the multiplicand is to be added, the two's comple­
ment of the multiplicand in the D-register is added to
the partial product in the A-register. The shift and add
operations take place 16 times in the case of immediate
and word operation (32-bit multiplier) and 8 times in the
case of ha Ifword operation (16-bit multiplier). These
iterations are brought about by 16 or 8 repetitions of
phase 6 of the instruction. The number of iterations is
controlled by counting the macro-counter down from 16
or 8 to zero.

A mu Itiply instruction may be interrupted for input/output
operation during anyone of the iteration phases up to
the last four iterations. If such an interrupt takes place,
the adder output is shifted right two bit positions into the
A-register, but the B-register remains stationary. In
order to save the two least significant bits from the adder,
which would normally be shifted into the B-register, these
bits are clocked into flip-flops FLl and FL2. When the
I/o operation is complete, the outputs of FLl and FL2
are c locked into BO and B1, where these bits wou Id have
been if the interrupt had not occurred.

MULTIPLY IMMEDIATE (MI; 23) AND MULTIPLY WORD
(MW; 37, 77). The MI and MW instructions are identica I
except for the preparation phases, and will therefore be
discussed as one instruction. The MI instruction uses as
the multiplicand the va lue in bits 12 through 31 of the
instruction word, treated as a 20-bit integer with the
sign extended left to bit O. The MW instruction takes
the multiplicand from the core memory location specified
by the reference address field of the instruction word.
In both cases the mu Itipl ier is taken from the private
memory register specified by the R field of the instruction
word plus 1 if the R field is even, or from the register
specified by the R field if the R field contains an odd
number. If the R field contains an even number, the 32
high-order bits of the product are loaded into register R
and the 32 low-order bits are loaded into register R plus 1.
If the R field contains an odd number, the 32 low-order
bits of the product are loaded into register R, and a 64-
bit product cannot be generated. Condition code bit 4
is set if the product is negative, CC3 is set if the product
is positive, and CC2 is set if the product is not correctly
representable in register Ru 1 a lone.

SDS 901172

25 24 23 22 21 20

~~W:i~CAND 11 I 0 11 11 I 0 11 1

MULTIPLIER
REGISTER

25 24 23 22 21 20 I
1011111110111
I " ." , I I f

t t +---------- EXAMINE MULTIPLIER BIT

I I PAIR 21, 2°.
. ADD 1 x MULTIPLICAND

PRODUCT
REGISTER

ADD 1 o o

STORE
CARRY

~

101010101010111011111011

40101010101011011
ADD 1
(TWO'S
COMPLEMENT)

o o 0

11 11 11 11 1 0 11 [11111] 0 I 0 11 I
I

SH1F~ 11 11 11 11 I 0 11 11 11 11 I 0 I 0 11 I
I

FIRST PARTIAL PRODUCT

SHIFT RIGHT TWO.

- EXAMINE MULTIPLIER BIT
PAIR 23,22. ADD (-1) x
MULTIPLICAND. STORE
CARRY TO NEXT BIT PAIR

SECOND PARTIAL PRODUCT

SHIFT RIGHT TWO

'---... :-----------------------....... ~- ADD CARRY TO BIT PAIR

1 0 1 1 0 1 0 2
0

Figure 3-144. Bit-Pair Multiplication

25,24. ADD 2 x MUL TI­
PLICAND

FINAL PRODUCT (DISCARD
TWO'S COMPLEMENT END
CARRY)

901060A.3656

3-287

SOS 901172

Table 3-49. Bit Weights and Operations for Bit-Pair Multiplication

B30 B31 BC31 Weight
1m pi emen to ti on

of Weight

0 0 0 0 0

0 0 1 1 1 C~O

0 1 0 1 1 C-+--O

0 1 1 2 2

1 0 0 2 2

1 0 1 3 -1 +4 C-,£-O

1 1 0 3 -1 +4 C-f---O

1 1 1 4 0 +4

Preparation phases for the MI instruction are the same as
the general PREP phases for immediate instructions, para­
graph 3-59; preparation phases for the MW instruction
are the same as the general PREP phases for word instruc­
tions. Figure 3-145 shows the simplified phase sequence
for the MI and MW instructions. Table 3-50 lists the
logic sequence during all the execution phases of these
instructions.

MULTIPLY HALFWORO (MH; 57, D7). The MH instruc­
tion multiplies the effective halfword by bits 16 through
31 of the contents of the private memory reg ister spec ifi ed

3-288

Operation

2C-+--0 S/A---S BX1/4
---f--B

S/A+O BXl/4
---5 ---I---B

5/A+D BX1/4
---5 -+--B

2C-I--0 5/A+0 BXl/4
---5 -+-B

2C-f--0 5/A+0 BXl/4
---5 -+--B

5/A-0 1-f-- BX1/4
---5 BC31 -f--B

S/A-O 1~ BX1/4
----5 BC31 -+-B

2C-I--0 5/A---5 1-f--- BX1/4
BC31 -+--B

in the R field of the instruction. The product is stored in
the private memory register spec ified by the R field plus
1 if the R field is even or in the register specified by the
R field if the R field is odd. Condition code flip-flop
CC4 is set if the result is negative; flip-flop CC3 is set
if the result is positive.

Preparation phases for the MH instruction are the same
as the genera I PREP phases for ha If word instructions, para­
graph 3 -59. Figure 3-146 shows the simplified phase
sequence for the MH instructions. Table 3-51 lists the
logi c sequence duri ng a II the execution phases of the
instruct ion.

PREP

I (C): MULTIPLICAND

I (D): MULTIPLICAND

I (P): PROGRAM
ADDRESS

I

I (A): MULTIPLIER

(Me): 16

(CC2): 0

(S/SXA)

BRPH3

SDS 901172

PH3 PH6 PH7 PH9

ITERATION PHASE

I
A-S-+--8

MULTIPLIER I
I

BRPH6 I

MIT
MIT/I

A -: S I d~A:NT
PRODUCT BITS

A-D-S -+-A

I

lox 1 (S/SXA)IF BO = 0 I
(S/SXNA)IF BO = 1 I IDXC

I DXCL 1 ~~~. _

3-151 I (S/SXAPD) r IA~Lt TESTS

I (S/SXAMD/1)

(S/SX.A/l) ..

I BXBR2

AXSR2
1-+--8C31
IF(SXAMD/1)

I
1--1-- BO

IF S30 OR FLl = 1
I

1--+- 81
IF S31 OR FL2 = 1

I
BO - 829 -+-- 82 - 831

I
SOOO-t--AO

I
SOO -f--A1

i
SO - S29 -f-- A2 - A31

I
S30 -I--FL1

I
S31-f--FL2

I
MC -1-+--MC

I
B30 -+- 83031

IF MC = 1
l-l---RW

IF MC = 0
1-1--- MRQ ,

IF NBRPH6

8RPH61F NMCZ

~MC # 0 I

I

BRPH9

I
I

(S/SXB)

I-f--CC3
IF so =0
1-+,-CC4
IF SO = 1

I
I-+-- TaL

I
I
I
I
I
I
I
I
I
I

I
I
I
I

PHI0

i

I-+-CC2
I

IF S, # 0

I
1-+-RW

I
l-r--LR31

I

I
I-f--DRQ

I ENDE

i
B--S-RW

LEAST
SIGNIFICANT
PRODUCT BITS

I

I
I

901172A,3081

Figure 3-145. Multiply Immediate and Multiply Word Instructions, Phase Sequence Diagram

3-289

50S 901172

Table 3-50. Multiply Immediate and Multiply Word Sequence

Phase Function Performed

PREP At end of PREP:

PH3(

T5L

PH6

T5L

3-290

(C): Multiplicand (sign padded
if MI)

(0): Multiplicand (sign padded
if MI)

(P): Program address

(B): Program address

(A): Multiplier (RRu1)

(MC): 16

(CC2): 0

Enable signal (S/SXA)

Branch to PH3

One clock long

(AO-A31)--- (50-531)

(SO-S31)+-- (BO-B31)

Branch to PH6

One c lock long

Iterati on phase - repeated unti I
MC = 0

Enable signal MIT

Enable signal MIT/1

Signals Involved

(5/5XA) = FAMUL PRE/34 + .••

FAMUL = OU3 OL7 + OU2 OL3

BRPH3 = FAMOS NBRPH5 NANLZ
PRE/34 + .••

FAMOS = FAMULNH + •••

FAMULNH = OU3 OL7 + OU2 OL3

Adder preset at last PREP clock

BXS = FAMUL PH3 + ..•

BRPH6 = FAMULNH PH3 + ••.

MIT = FAMUL PH6

MIT/1 = FAMUL NIOEN
(PH6 + S/PH6/IO)

(Conti nued)

Comments

Transfer multiplier to
B-register

Control signal to handle
direct logic

Control signal to handle
preset logic. S/PH6/IO
is true when returning
from I/o operation

Mnemonic: MI(23),
MW (37, 77)

50S 901172

Table 3-50. Multiply Immediate and Multiply Word Sequence (Cont.)

Phase Function Performed

PH6 Preset logic for register control:
T5L

(Cont) Reset input for O-register

flip-flops

(CO-C31) -f-- (00-031)

2(CO-C31) -I-- (00-031)

(AO-A31) + (00-031)
-- (50-531)

(AO-A3l) - (00-031)
-- (SO-S31)

(AO-A31) --(50-S31)

Set flip-flop BC31

r J. rl· rl 1'\1'\
.)er TlIP-TiOP DV

Set flip-flop Bl

(BOO-B29) +-(B02-B31)

Direct logic for register control:

5000 -+---AO

500-f--Al

(500-529) -+-- (A02-A31)

530-1- FLl

}

Signals Involved

See table 3-150

OX = MITll + DXC + ...

Comments

To place zeros in 0-
register when trans­
ferring data into register
and previous bit content
was 1

OXC = MIT/1 (B31 m BC31) + ••• Multiplicand into
O-register

OXCLl = MIT/l NOXC

(5/SXAPO) = MlTll N(S/AXAMO/l)
N{S/SXA/1) + ...

(5/SXAMO/1) = MIT/l B30
(B31 <;9 BC31) + •••

(5/5XA/l) = MIT/l (NB30 NB31
NBC31 + B30 B31 BC31)

(5/BC31) = (5/5XAMO/l)

(R/BC31) = MIT/1 NB30 + CLEAR

5/80 = BXBR2 S30/i + ••.

530/1 = BOOOl EN/1 530
+ (5/PH6/IO) FLl

5/Bl = BXBR2 531/1 + ...
531/1 = B0001EN/l 531

+ (S/PH6/10) FL2

BXBR2 = MIT/l + ...

AX5R2 = MIT + "".

5/FLl = 530 MIT + "" ~

R/FL 1 = MIT + CLEAR

(Continued)

Prepare to add 2 times
the multiplicand to
partial product (insig­
nificant wheii (S/SXA/l)
is true)

Add adjusted multipli­
cand to partial product

Add two's complement
of multiplicand to
partial product

Add zeros to partial
product

Carry 1 to next higher
bit pair

Shift partial product
right two bit positions
into B-register. Bits
are in FLl and FL2 if
returning from I/O
operation

5hift partial product right
two bit positions into A­
register

Two-bit extension of A­
register for I/o operation

Mnemonic: MI(23),
MW(37, 77)

3-291

SDS 901172

Table 3-50. Multiply Immediate and Multiply Word Sequence (Cont.)

Phase Functi on Performed

PH6 S31-f--FL2
T5L
(ContJ

3-292

General control functions:

MC - 1-f--MC

Sustain PH6 until MC = 0

On the next to last clock:

B30--f--B3031 if MC = 1

Fina I clock:

Enable signa I (S/SXAMD/1)
if negative multiplier and
BC31 = 0

Enable signal (S/SXA/1) if
positive multiplier and
BC31 = 0 or negative multiplier
and BC31 = 1

Set fI ip-flop RW

Set flip-flop MRQ

I/O service co":

Enable signal IOEN6

Inhibit PH6

S/FL2

RiFL2

MCDC7

BRPH6

S/B3031

Signals Involved

= 531 MIT + ...

= MIT + CLEAR

= MIT/l + ..•

= FAMDS PH6 NMCZ
NBRPH10 NFSHEX + •••

= B30 MIT (MC = 1)

(S/SXAMD/1) = MIT/1 B30

(S/SXA/1)

S/RW

(S/RW)

R/RW

(B31 G) BC31) + •••

= MIT/1 (NB30 NB31 NBC31
+ B30 B31 BC31)

= (S/RW)

= MIT MCZ + •••

S/MRQ = (S/MRQ/1) + •••

(S/MRQ/1) = FAMDS PH6 NBRPH6
NIOEN

R/MRQ

IOEN6

IOEN6/1

S/PH6

R/PH6

= FAMDS PH6 NFPRR
NFSHEX IOEN6/1 + •••

= MC0005Z + •..

= BRPH6 NCLEAR NIOEN

(Conti nued)

Comments

Decrement macro-counter
16 times to provide
requi red number of iter­
ations

Extend mu I ti pi i er si gn bi t
two bit positions to the
left on next to final clock.
Bit 28 and 29 are 0 at
this time and wi II not
interfere

Sets up sign iteration
logic. If positive multi­
plier, BC31 cannot be 1
because there can be no
carry from the previous
bit pair, containing the
sign bit, if the sign bit
is 0

Prepare to write into
private memory

Request for core memory
eye Ie to read next
instruction

Enable I/O service call
if MC > 0

Proceed to I/O phases

Mnemonic: MI(23),
MW(37, 77)

SOS 901172

Table 3-50. Multiply Immediate and Multiply Word Sequence (Cont.)

Phase Function Performed

PH6 Inhibit I/o from performing
T5L C ~ 0 so that MUL i nstruc-

(Cont.) ti on can perform C -+-- 0
or 2C-t-- 0

FLl--f-- BO

FL2-f--Bl

PH7 One clock long

T5L (AO-A3 i)--(50-531) or
(AO-A31) - (00-031)-­
(SO-S31)

(SO-S31) -f--(RWO-RW31)

(SO-S31) -+-(AO-A31)

Enable signal (S/SXA) if
BO = 0

Enable signal (S/SXNA) if
BO = 1

Enable signal TESTS

Set flip-flop CC3 if SO =

Set flip-flop CC4 if SO =

0

0

Signals Involved

DXC = IOPHl SW13 NBXBR2 + •.•

S/BO = BXBR2 S30/1 + •••

S30/1 = (S/PH6/IO) FLl + .••

S/Bl = BXBR2 S31/1 + •••

S31/1 = (S/PH6/10) FL2 + •••

logic preset in PH6

RWXS = RW

AXS = FAMULNH PH? + ...

(S/SXA) = FAMULNH PH7 NBO + ..•

(S/SXNA) = FAMULNH PH7 BO + ••.

TESTS = FAMULNH PH7

S/CC3 = SGTZ TESTS + ...
SGTZ = N(SO NFACOMP)

(NS0007Z + NS0815Z
+ NS 1631 Z + NS3263Z)

S/CC4 = (S/CC4/2) TESTS

(S/CC4/2) = SO NFACOMP

(Conti nued)

Comments

This input to OXC is low
at this time

Last two partial product
bits stored in FL 1 and
FL2 during I/O operation

Store 32 high-order bits
of product in private
memory register R

Place final product in
A-register for magnitude
test

Preset for A-register
contents on sum bus for
magnitude test in PH9

Preset for one's comple­
ment of A-register con­
tents on sum bus for
magnitude test in PH9

Enable S-register test
to set condition code

SO = 0 i ndi cates
positive product

SO = 1 indicates nega­
tive product

Mnemonic: MI(23),
MW(37, 77)

3-293

SDS 901172

Table 3-50. Multiply Immediate and Multiply Word Sequence (Cant.)

Phase

PH7
T5L
(Cant.)

Functi on Performed

Reset flip-flop NT8L

Branch to PH9

PH9 One clock long

T8L Set flip-flop CC2 if 5 ~ 0

Set flip-flop RW

Set flip-flop LR31

Enable signal (S/SXB)

Set fl ip-flop DRQ

PH 10 One c lock long

T5L (BO-B31) ---(SO-S31)

(50-531) --f---(RWO-RW31)

ENDE functions

3-294

Signals Involved

S/NT8L = N(S/T8L)

(S/T8L) = FAMULNH PH7

R/NT8L = ...

BRPH9 = FAMULNH PH7 + •.•

S/CC2 = NS0031Z (S/CC2/NZ)

S/CC2/NZ = FAMULNH PH9

S/RW = (S/RW)

(S/RW) = FAMDS PH9 + •••
R/RW = ...
(S/LR31) = FAMULNH PH9 + •••

(S/SXB) = FAMULNH PH9 + •••

S/DRQ = (S/DRQ)

(S/DRQ/2) = PH9 + •••

R/DRQ

Logic preset in PH9

RVv'XS = RW

+ ...

Comments

Set clock T8L for PH9

S = 0 i ndi cates top 33
product bits are not the
same, therefore result is
not correctly represent­
able in register Rul alone

Prepare to write into
private memory

Set least significant bit
of private memory address
lines to access register
Rul

Preset for B--- 5
in PH10

Data request, inh ibiting
transmission of another
clock until data release
received from memory

Place least significant 32
product bits on sum bus

Write least significant 32
product bits in register Rul

Mnemonic: MI(23),
MW(37, 77)

I PREP I
I -
I (C): MULTlPLlCANDi

I (D) : MULTIPLICAND I
(P) : PROGRAM
I ADDRESS

I
(B) : PROGRAM

ADDRESS

I (A) : MULTIPLIER
(RR)

I (Me) : a
I (R) : Ru1

(S/SXA)
BRPH3

SDS 901172

PH3 I PH4 I PH5 I PH6 PH10 I
I I I ITERATION I I

A-S-+--B PHASE
MULTIPLIER I I I I

D RIGHT 8~ RIGHT 8~D -I-- S~C I A OR1_ S.J-.RWu 1
IF P32 = 1 IF P32 = 1 I MIT I A - oJ I

0-+--016-23 0~D16-D23 I MIT/1 TESTS I
I I ~~,- l I 1J-CC3

o-J-D16-D31 I ~~~L1 ~SEE I IF SO = 0
IF P32 = 0 I (S/SXAPD) TABLE I 1-+-:- CC4

I . (S/SXAMD/1) 3-152 IF SO - 1

(S/SXD) I I(S/5XA/1) J I ENDE

l-;-CXS I I I 1+-BC31 I IF (S/SXAMD/l)

1 I 1+-80 I IF S30 OR FL1

I I 1 ---J.- 81
I IF 5

1

31 OR FL2

I BXBR2

I AXSR2 I
Sooo-f--AO I SOO--+--A 1

50 - 529rL--A2 - A31
S3O-+--FL1
S31-+--FL2

MC-1--1--MC
830-+--83031
IF MC = 1

1-1--RW
IF Me =0
1-1--MRQ
1-f--DRQ

BRPHlO IF MCZ I
BRPH6 IF NMCZ I
t MCIO I

901 I72A. 3082

Figure 3-146. Multiply Halfword Instruction, Phase Sequence Diagram

3-295

5D5 901172

Table 3-51. Multiply Halfword Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : Multi pi icand

(D) : Multiplicand

(P) : Program address

(B) : Program address

(A) : Multiplier (RR)

(MC) : 8

(R) : Rul

Enable signal (5/5XA) (5/5XA) = FAMUl PRE/34 + ...

Branch to PH3 BRPH3 = FAMD5 NBRPH5 NANlZ
PRE/34 + ...

PH3 One clock long

T5l (AO-A31)--- (50-531) Adder preset at last PREP clock Transfer multiplier to
B-register

(50-531) ---f--(BO-B31) BX5 = FAMUl PH3 + ...

Right cycle D-register 1 byte DXDR8 = FUMH PH3 P32 + ... First half of up alignment
if P32 = 1 of halfword to bits 0

FUMH = OU5 Ol7 through 15. P32 = 1 indi-
cates that the least signif-

o --f---(D 16-D23) DXDR8/2 = DXDR8 NFUMH (lOW) icant halfword will be
used as the multiplicand

PH4 One c lock long

T5L Right cycle D-register 1 byte DXDR8 = FUMH P32 (PH4 + ...) + ... Multiplicand is now in
if P32 = 1 most significant 32 bits

I of D-register

o -+--(D 16-D23) DXDR8/2 = DXDR8 NFUMH NFUMH is false at this
time. DXDR8/2 shifts
data into bits 16 through
23 of D-register

Mnemonic: MH(57, D7}

(Continued)

3-296

SOS 901172

Table 3-S1. Multiply Halfword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH4 0-+--(016-031) if P32 = 0 0X/2 = FUMH PH4 + ... 0X/2 clears bits 16 through
TSL 23 of O-register. 0X/3
(Cont.) 0X/3 = FUMH PH4 + ... clears bits 17 through 31

of O-register. If P32 = 0,
halfword to be multiplied
is in most significant half
of original multiplicand

o -+--(B8-B1S) BX/l = BX/4 + .•. BX/l clears bits 8 through
lS of B-register so that

BX/4 = FUMH PH4 + ... when MC = 1 in PH6, B28
and B29 wi II be clear for
sign extension

Enable signal (S/SXD) (,/,'l(I')\ = FUf'/~H PH4 + ... Presei' udder for D~ S ,-I -"-,
in PHS

Reset flip-flop NCXS S/NCXS = N(S/CXS) Preset for S -f-- C in
PHS

(S/CXS) = FUMH PH4 + ..•

R/NCXS = ...

PHS One clock long

TSL (00-031)- (SO-S31) Logic preset in PH4 Transfer aligned multipli-
cand to C-register

(SO-S31) - (CO-C31) Logic preset in PH4

PH6 One clock long

TSL Iteration phase - repeated
until MC = 0

I Enable signal MIT MIT = FAMUL PH6 Control signal to handle
direct logic

Enable signal MIT/l MITll = FAMUL NIOEN Control signal to handle
(PH6 + S/PH6/IO) preset logic. S/PH6/IO

is true when returning
from I/o operation

Preset logic for reqister See table 3-49
control:

Reset input for O-register OX = MITll + OXC + ..• To place zeros in 0-
flip-flops register when transferring

data into register and
previous bit content was 1

Mnemonic: MH(S7, 07)

(Conti nued)

3-297

Phase

PH6
T5L
(Cont.)

3-298

50S 901172

Table 3-51. Multiply Halfword Sequence (Cont.)

Function Performed

(CO-C31) --f--(00-031)

2(CO-C31)--f--- (00-031)

(AO-A31) + (00-031)
--- (50-531)

(AO-A31) - (00-031)
---{50-531

(AO-A31) ---- (50-531)

Set flip-flop 8C31

5et flip-flop 80

Set flip-flop 81

(800-829) ~ (802-831)

Register control - direct logic:

5000 -+--AO

500 -f--- A 1

(SOO-S29) --I--­
(A02-A31)

530 -+-- FL1

531 -f--- FL2

Signals Involved Comments

OXC = MIT/1 (031 ED BC31) + ... Multiplicand into

OXCL1

(S/SXAPO)

= MIT/1 NOXC

= MIT/l N(S/AXAMO/1)
N{S/5XA/1) + ...

(S/SXAMO/1) = MIT/1 B30 (B31 e BC31)

(S/5XA/1)

S/8C31

(5/BC31)

(R/BC31)

5/BO

530/1

S/Bl

+ ..•

= MIT/1 (NB30 NB31 NBC31
+ B30 B31 BC31)

= (5/BC31)

= (5/SXAMO/1)

= MIT/1 NB30 + CLEAR

= BXBR2 530/1 + ...

= B0001 EN/l 530
+ (S/PH6/IO) FL 1

= BXBR2 531/1 + ...

531/1 = B0001 EN/1 531

BXBR2

AXSR2

S/FL1

R/FL1

S/FL2

+ (S/PH6/IO) FL2

= MIT/1 + ...

= MIT + ...

= 530 MIT + ...

= MIT + CLEAR

= 531 MIT + ...

R/FL2 = MIT + CLEAR

(Continued)

O-register

Prepare to add 2 times the
multiplicand to partial
product (insignificant
when (S/SXA/1) is true)

Add adjusted multiplicand
to partial product

Add two's complement of
multiplicand to partial
product

Add zeros to partial
product

Carry 1 to next higher
bit pair

Shift partial product right
two bit positions into 8-
register. Bits are in FL 1
and FL2 if returning from
I/O operation

Shi ft partial product
right two bit positions
into A-register

Two-bit extension of
A-register for I/o
operation

Mnemonic: MH(57, D7)

Phase

PH6
TSL
(Cont)

SDS 901172

Table 3-51. Multiply Halfword Sequence (Cont.)

Function Performed

General control functions:

MC - 1 --;---MC

Sustain PH6 unti I MC = 0

On the next to last clock:

830-+--83031 if MC = 1

Final clock:

Enable signal
(S/SXAMD/1)
if negative multi­
plier and 8C31 = 0

Enable signal (S/SXA/l)
if positive multiplier
and BC31 = 0 or negative
multiplier and BC31 = 1

Set flip-flop RW

Set flip-flop MRQ

Set flip-flop DRQ

Branch to PH 10

MCDC7

BRPH6

S/83031

(S/SXAMD/1)

(S/SXA/1)

S/RW

(S/RW)

R/RW

S/MRQ

(S/MRQ/1)

R/MRQ

S/DRQ

(S/DRQ)

R/DRQ

BRPH10

Signals Involved

= MITll + ...

= FAMDS PH6 NMCZ
NBRPH10 NFSHEX + •..

= B30 MIT (MC = 1)

= MIT/1 830 (831 (f) 8C31)
+ •.•

= MIT/1 (NB30 NB31 NBC31
+ 830 831 BC31)

= (S/RW)

= MIT MCZ + •••

= ...
= (S/MRQ/1) + •••

= FAMDS PH6 NBRPH6
NIOEN

= ...
= (S/DRQ)

= 8RPH10 + ...
= ...
= FUMH PH6 MCZ + •••

(Conti nued)

Comments

Decrement macro-counter
8 times to provide :
required number of iter­
ations

Extend multiplier sign
bit two bit positions to
the left on next to final
clock. Bit 28 and 29 are
are 0 at this time and
wi 1/ not interfere

Sets up sign iteration
logic. If positive multi-
plier, 8C31 cannot be 1
because there can be no
carry from the previ ous
bit pair, containing the
sign bit, if the sign bit
is 0

Prepare to write into
private memory

Request for core memory
cyc Ie to read next
ins truct ion

Data request inhibiting
transmission of another
clock unti I data release
rece ived from memory

Mnemonic: MH(S7, 07)

3-299

SDS 901172

Table 3-51. Multiply Halfword Sequence (Cont.)

Phase

PH6
T5L
(Cont.)

Function Performed

I/o service call:

Enable signal IOEN6

Inhibit PH6

Inhibit I/O from perform-
i ng C -+-- D so that MUL
instruction can perform
C--+--D or 2C-f- D

F II -I---- BO

FL2-1-- B1

PH 1 0 Sustained unti I data release

DR

3-300

(AO-A31) --- (SO-S31)

or

(AO-A31) - (DO-D31)--­
(SO-S31)

(SO-S31) ---(RWO-RW31)

Enable signal TESTS

Set flip-flop CC3 if SO = 0

Set flip-flop CC4 if SO = 1

ENDE functions

Signals Involved

IOEN6 = FAMDS PH6 NFPRR NFSHEX
IOEN6/1 + ...

IOEN6/1 = MCOO05Z + ...

S/PH6 = BRPH6 NCLEAR NIOEN

R/PH6 = ...
DXC = IOPH1 SW13 NBXBR2 + ...

S/BO = BXBR2 S30/1 + .••

S30/1 = (S/PH6/IO) FL 1 + .•.

S/B1 = BXBR2 S31/1 + •.•

S31/1 = (S/PH6/IO) FL2 + .••

(S/SXA) or (S/SXAMD) preset in PH6

RWXS = RW

TESTS = FUMH ENDE + .•.

S/CC3 = SGTZ TESTS + ...

SGTZ = N(SO NFACOMP)
(NS0007Z +' NS0815Z
+ NS1631Z + NS3263Z)

S/CC4 = (S/CC4/2) TESTS

(S/CC4/2) = SO NFACOMP

I

Comments

Enable I/O service call
if MC > 0 -

Proceed to I/O phases

This input to DXC is
low at this time

Last two partia I product
bits stored in FL 1 and
FL2 during I/O operation

Transfer product to private
memory register Ru 1. R31
set in PRE3. Product bits
shifted into B-register are
insignificant

Enable S-register test to
set condi ti on code

SO = 0 indicates positive
product

SO = 1 indicates negative
product

Mnemonic: MH(57, D7)

SDS 901172 Paragraph 3-68

3-68 Fami Iy of Divide Instructions (FADIV)

GENERAL. Two division instructions are avai lable for the
Sigma 5 computer: Divide Halfword (OH) and Divide Word
(DW). In both cases the numerator is in private memory
and the denominator is in core memory. The quotient is
stored in private memory.

Since the logic sequence for the DW instruction with an
odd number in the R field is identical to the DH instruc­
tion, these two operations are discussed together. The
Divide Word instruction with an even R field is discussed
separately.

Nonrestoring Division. The Sigma 5 computer uses the
nonrestoring division method for the DH and DW instruc­
tions. Mu itipies of the denominator are repeatedly

DENOMINATOR 1 0 1 1 11

subtracted from the numerator. The method differs from
restoring division in that each subtraction is allowed
regardless of whether the residue is positive or negative.
If the residue is negative, a zero is placed in the quotient
for that order and the next multiple of the denominator
is added to, rather than subtracted from, the residue.
Every time the residue is positive, a one is added to the
appropriate order of the quotient and the next denominator
multiple is subtracted. The result is the same as in
restoring division. The total of all mu Itiples subtracted
minus the total of all multiples added plus the remainder
equals the numerator. The zero point (residue = 0) is
approached from both sides.

An example of the additions and subtractions used in
nonrestoring division is shown in figure 3-147. A
graphic representation of the process, showing the move­
ment of the residue on both sides of zero, is shown in
figure 3-148.

100111
QUOTIENT

10110010 NUMERATOR

- 101 1 000 0 0

RESIDUE +001010010 = 1 x 25

1 101 1 0 0 0 0

RESIDUE -001011110 = 0 x 24

J + 1011000

RESIDUE -000000110 = 0 x 23

+ 101100

RESIDUE +000100110 = 1 x 22

1 0 1 1 0

RESIDUE +000010000 = 1 x 21

1 0 1 1

RESIDUE +000000101 =1x2
0

(REMAINDER)

901172A.3670

Figure 3-147. Nonrestoring Division

3-301

SDS 901172

(ADD 0 TO

QUOTIENT)

(ADD 1 TO

QUOTIENT)

-/ REMAINDER = 1012 = 510

Ii / 1011 2 x 2° = 11 FOURTH SUBTRACTION
SECOND ~

R = 101

1 x 2
0

ADDITION I 1
2 _ 1 ;.10112 x 2 = 2210 THIRD SUBTRACTION

1011 2 x 2 - 4410 1--,
'\ I 1

I

FIRST AD~lT10N :~
10 11 x 2 = 88 10 1

1\ _\
I 4
11011 2 x 2 = 17610

3
Ox2

~ QUOTIENT = 100111 2
REMAINDER = 101

2

r
SECOND
SUBTRACTION

FIRST
RESIDUE

I
I FIRST SUBTRACTION = 1011 x 2

5
= 35210 I

I... _I
I I

NUMERATOR = 110110010
2

= 434
10

I
I

"- DENOMINATOR = 1011 2 = 11 10

(-) (+)

1

I

901172A.3671

Figure 3-148. Nonrestoring Division, Graphic Representation

When the denominator is to be subtracted from the numer­
ator, the two's complement of the denominator is added
to the residue. This technique, with sign bits, is shown
in figure 3-149. Each time a one appears in the sign bit
of the res idue, a zero is added to the appropriate order
of the quotient and the next denominator multiple is added
(remaining in the uncomplemented form). Each time a
zero appears in the sign bit of the residue, a one is added
to the appropriate order of the quotient and the next
denominator mu Itiple is subtracted (two's complement
form is added). E~ch time a positive residue is reached,
the end carry bit is a one. Normally, in two's complement
additions, this end carry is discarded. In Sigma 5 division,
the end carry, designated KOO, is used to signify that a
positive partial dividend has been obtained.

As the numerator is transferred to the B-register, in the
case of DH; and the A- and B-registers, in the case of
DW, the absolute value of the numerator is obtained.
This is done by looking at the sign of the numerator, in
flip-flop FLl, and taking the two's complement if the
numerator is negative.

3-302

During each iteration, the residue from the addition is
shifted left one bit position in the A- and B-registers so
that the next addition will produce the quotient bit for
the next lower order. Each quotient bit is transferred to
the least significant bit of the B-register. The sign of
the denominator is tested during every iteration and
compared with the carry bit to determine whether the
denominator is to be added or subtracted at the next
iteration. At the time the quotient is transferred to
private memory, the final sign adjustment is made by
taking the two's complement of the quotient if the numer­
ator and denominator signs are unlike.

DIVIDE HALFWORD (DH; 56, D6) AND DIVIDE WORD
WITH ODD R FIELD. The DH instruction divides the con­
tents of the private memory register specified by the R field
of the instruction (treated as a 32-bit fixed-point integer)
by the halfword specified in the reference address field and
the contents of the private memory register specified by the
X field. The quotient is loaded into the private memory
register specified by the R field. If the absolute value of
the quotient cannot be correct Iy represented in 32 bits,

SDS 901172

fixed-poi nt overflow occurs, CC2 is set to one, and the
contents of register R, CC1, CC3, and CC4 are unchanged.
If overflow does not occur, CC4 is set to indicate a nega­
tive quotient, and CC3 is set to indicate a positive
quotient.

In the case of the divide word instruction with an odd R
field, the numerator is in register R as in the divide half­
word, and the quotient is loaded into register R. The
remainder is lost.

If CC2 is set to one and the fixed-point arithmetic trap
mask, flip-flop AM in the program status doubleword is
set to one, the program traps to location X'43' with the
contents of register R, CC 1, CC3, and CC4 unchanged;
otherwise the computer executes the next instruction in
sequence.

Preparation phases for Divide Halfword are the same as
the general PREP phases for halfword instructions, described
in paragraph 3 -59. Figure 3-150 shows the simpiified
phase sequence for the DH instruction. Table 3-52 lists
the logic sequence during all the execution phases of the
instruction.

SIGN BIT. ?O

1+11HI1Holll~1 NUMERATOR (+43410)

~ DIVISOR (+ 11 10)

SIGNBIT~
SIGN

BIT

t 01001 1 l ___ Q~U~O~T~I_EN_T __

DENOMINATOR 0 1 0 1 1 10 1 101 100 1 0 NUMERATOR

1 0 1 0 1 000 0 0

RESIDUE 1~0001010010 = 1 x 25 l
1 101 0 1 0 0 0 0

RESIDUE 1 1 101 000 1 0 = 0 x 24

01011000

RESIDUE 1111111010 = 0 x 23

0101100

RESIDUE 1~0000100110 = 1 x 22

1 1 1 1 1 0 1 010

RESIDUE 1-0000010000 = 1 x 21

1111110101

RESIDUE 1-0000000101 = 1 x 20

(REMAINDER)

END CARRY J LSIGN BIT
BIT, KOO

Figure 3-149. Nonrestoring Division With Two's Complement Addition

901172A.3672

"3-303

SDS 901172

PREP PH3 i PH4 I PH6 1

I I I O--S--f-A
DH I (P) : EFFECTIVE (S/SXA) IIAI- 5 -+- B (FIRST CLOCK)
AND ADDRESS \IF FLl = 0 I I
OW I WITH (A) : NUMERATOR (S/SXMA) I 1 -f---- CC2

EVEN (RR) \IF FLl = 1 I DlT/1 I
RFIELD\(C):DENOMINATOR

1
I BRPH6 I (S/SXAPD/l) I

I
(D) : DENOMINATOR I I IF CO = KOO

(MC): 32 I (S/SXAMD/l) I
I (CC2): 0 IF CO i KOO I
I (FLl), NUMERATOR I A. IDI -S-+-II

SIGN I EXCEPT LAST LEFT 1
CLOCK I

BRPH3 BO-f-A31
IF MC! 0

I
B -+--8
LEFT 1

I
MC-l-l--MC

I
KOO -+--831

\l-KOO (FIRST CLrK)

I
OVERFLOW: I
(MC = 30, B31=1)

\
DIVOVER I

1-f--MRQ
1--f--DRQ

I BRPH10 :

I NO OVERFLOW: I
0---CC2

IF MC=30, B31 = U

AXS IF MC=O I
BRPH6 IF MC ! 0 I
BRPH9IF MC =0 I

t MC!O

\ Vo SERVICE CALL, i
IOEN6 IF MC ~ 4

/INHIBIT PH6 I
INHIBIT DlT/1

IB31-KOO I
IF S/PH6/IO

I I
PH9 I PH10 I

I I I B---S-+--A I
(S/SXA) I, ± A-S -+- RW

IIF FLl = DO I

I 1-1--CC4 I IF SO = 1
(S/SXMA) I 1 -J-- CC3

IIF FL 1 ! DO I IF SO = 0

I 1-f-RW I
1-f--ORQ I

II I S/TRAP I
I IF CC2 = 1

I (OVERFLOW) I I ANDAM= 1

I I ENDE I

I
I I
I I

j I I

I I I
I I I
I I.. I
I I I

: : I
I I I
I I I
I I I
I I I
I I I

901172A.3091

Figure 3-150. Divide Halfword Instruction, Phase Sequence Diagram

3-304

SDS 901172

Table 3-52. Divide Halfword and Divide Word With Odd R Field Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(P) : Program address

(A) : Numerator (RR)

(C) : Denominator (sign padded,
and down aligned if half-
word 0 of DH)

(D) : Denominator (sign padded,
and down aligned if half-
word 0 of DH)

(MC) : 32 S/MC2 = FADIV PRE3

c: A I"\T\' = 1""\1 II:: 1""\1 L • r"\"" V ~u..J ~LU

(CC2) : 0 R/CC2/1) = FAMDS NFUMNH PRE3 + ..•

(FLl) : Numerator sign S/FLl = PRE3 RRO + ...

Branch to PH3 BRPH3 = FAMDS NBRPH5 NANLZ
PRE/34 + •••

FAMDS = OU5 OL6 + •••

PH3 One c lock long

T5L Enable signal (S/SXA) if Fll = 0 (S/SXA) = NFL1 (S/SX/FLl) + ... Preset adder for A---S

(S/SX!F Ll) = FADIV PH3 + ..• in PH4 if positive
numerator

Enable signal (S/SXMA) if FLl = 1 (S/SXMA) = F Ll (S/SX/FL1) + ..• Preset adder for two's
complement of A---S
if negative numerator

PH4 One c lock long I
T5L IAI ---S I Logic preset in PH3 Absolute value of numer-

ator into B-register via
I (50-531)-+--(BO- B31) IBXS = FADIV PH4 + ... sum bus

Set flip-flop CC2 S/CC2 = (S/CC2/1) + •.• For overflow test

(5/CC2/1) = FADIV PH4 + ...
Branch to PH6 BRPH6 = FADIV PH4 + ...

PH6 33 c locks long

Iteration phase - repeated unti I
MC =0

Enable signal DIT/1 DIT/1 = FADIV NIOEN Iteration phase enable

(PH6 + 5/PH6/IO)
signal

N(FADIVH MCZ)

Mnemonic: DH (56, D6)

(Conti nued)

3-305

SDS 901172

Table 3-52. Divide Halfword and Divide Word With Odd R Field Sequence (Cont.)

Phase Function Performed

PH6 Preset logic for register control:

(Cont.) Enable signal (S/SXAPD/1) if
CO = KOO

3-306

Enable signal (S/SXAMD/l) if
CO -I KOO

Direct logic for register control:

(S 1-S31)-f--(AO-A30) except
on final clock

BO-f--A31 except on final clock

(B1- B31)-f-(BO- B30)

KOO-+--B31

Genera I control functions:

MC -l-+--MC

Sustain PH6 until MC =0 or
overflow detected

On the fi rst clock:

1--KOO

O-+- S-f---A

Signa Is Involved Comments

(S/SXAPD/1) = DIT/1 N(CO eJ KOO) + ... Subtract denominator in
D-register from numerator
in A-register if the sign

(S/SXAMD/l)= DIT/1 (CO <±) KOO) of the residue (KOO)
equals the sign of the
denominator (CO). Add
denominator to numerator
if sign of residue does not
equal sign of denominator.

AXSLl = FADIV PH6 NMCZ

S/A31 = AXSLl A31 EN/1 + .•.

A31 EN/l = BO FAMDS PH6 + ...

BXBLl = FADIV PH6 + •..

S/B31 = BXBLl B31 EN/1 + •.•

B31 EN/1 = KOO FADIV + ...

MCDC7

BRPH6

BRPH10

KOO

G0003

KOO/l

= DIT/1 + ...

= FAMDS PH6 NFSHEX
NMCZ NBRPH10 + .•.

= DIVOVER + ...

= G0003 + ...

= FADIV KOO/l + ...

= CC2 MC2 + ...

(Continued)

I KOO = 1 means positive
residue

Shift adder output left
one bit position with each
iteration (equivalent to
shifting denominator
right)

Shift numerator and
quotient in B-register left
into A-register with each
iteration

Shift numerator one bit
position left in B-register.
Equivalent to shifting
denominator right

Shift quotient bits into
B-register via B31

Decrement macro-counter
32 times to provide
requ ired number of
iterations

Forces A - IDI --..S to
subtract denominator from
numerator on fi rst
iteration

On first clock nothing is
preset in the adder; there­
fore, the A-register is
cleared on AXS L 1

Mnemonic: DH (56, D6)

SDS 9011n

Table 3-52. Divide Halfword and Divide Word With Odd R Field Sequence (Cont.)

Phase Function Performed

PH6 1 +-- B31
(Cont .)

On the second clock:

A - IDI---- S unconditionally

On the third clock:

Raise overflow indicator DIVOVER
if B31 = 1

Set flip-flop PHlO if B31 = 1

Set flip-flop MRQ if B31 = 1

Set flip-flop DRQ if B31 = 1
Set flip-flop DRQ if B31 = 1

Reset flip-flop CC2 if B31 = 0

I On the last clock (MC = 0):

I

Inhibit AXSl1

Enable signal AXS

Inhibit A ± D-- S

B-register shifts left as before

Branch to PH9

I/O service call:

Enable signal IOEN6 if MC ~ 4

Signals Involved

DIVOVER = B31 (DIT MC = 30)

(DIT MC = 30) = FADIV CC2 MC6 NMC7

S/PH10

BRPHI0

= BRPHI0 NCLEAR + •••

= DIVOVER + ...

S/MRQ = (S/MRQ/1) + ••.
FAMDS PH6 NIOEN
NBRPH6 + •••

(S/MRQ/l) =

R/MRQ

S/DRQ

(S/DRQ)

R/DRQ

R/CC2

= (S/DRQ) NCLEAR

= BRPH10 + ...

-'- (R/CC2)

(R/C C 2/2) = NB31 (DIT MC = 30) + •..

I AXSll

AXS

= FADIV PH6 NMCO + ..•

= FADIV PH6 MCZ + ...

(S/SXAPD/l) and (S/SXAMD/l) are qualified
by DIT/l, which is qualified by
N (FADIVH MCZ)

BXBLl = FADIV PH6 + ...

BRPH9 = FADIVH Mez + ...

IOEN6 = IOEN6/1 PH6 NFPRR
NFSHEX + ••.

IOEN6/1 = N(MC0005Z + ...) + .••

(Continued)

Comments

Because KOO is forced
high. The 1 in B31 is
insignificant

Subtraction of denomi­
nator from numerator
forced by KOO = 1 on
first iteration

B31 contains 231 quotient
bit. A 1 indicates over­
flow

Branc h to PH 10 to set
condition code and ter­
minate instruction
execution

Request for core memory
cycle for next instruction

Data request, inhibiting
transmission of another
clock until data release
received from core memory

Condition code bit 2 = 0
at end of instruction
means no overflow

Residue into A-register

Discard remainder

Places 2
0

quotient bit in
BO and 231 quotient bit
in B31 (KOO)

NMC0005Z indicates that
MC is greater than 4

Mnemonic: DH (56, D6)

3-307

50S 901172

Table 3-52. Divide Halfword and Divide Word With Odd R Field Sequence (Cont.)

Phase Function Performed

PH6 Inhibit PH6
(Cont.)

Inhibit DIT/1

B31---- KOO if (S/PH6/IO)

PH9 One c lock long

T5L (BO-B31) ---(S0-S31)

(SO-S31) -+-- (AO-A31)

Enable signal (S/SXA) if FL 1 = DO

Enable signal (S/SXMA) if F1 "I DO

Set flip-flop RW

Set flip-flop DRQ

PHlO Sustained until data release

DR No overflow (CC2 := 0):

±(AO-A31)-(50-531)

(SO- S31) ~(RWO-RW31)

Set flip-flop CC4 if SO = 1

3-308

Signals Involved Comments

S/PH6

S/IOEN

R/PH6

= BRPH6 NCLEAR NIOEN + • •. IOEN is set when an I/O

= 10SC IOEN6 NIOINH

DIT/1 is qualified by NIOEN on exit and
enabled by (S/PH6/10) on reentry

KOO

G0003

KOO/1

SXB

AXS

(S/SXA)

(S/SXMA)

S/RW

(S/RW)

R/RW

S/DRQ

(S/DRQ/2)

R/DRQ

= G0003 + ...

= FADIV KOO/l + ...

= B31 (S/PH6/IO) + •••

= (FADIV PH9) NDIS + •.•

= (FADIV PH9) + •.•

= FADIV PH9 N(FLl tr> DO) + ...

= FADIV PH9 N(S/SXA)

+ •..

= (S/RW)

= FAMDS PH9 + ...
= ...
= (S/DRQ/2) + ...
= PH9 + ...

= ...

Adder logic preset in PH9

RWXS = RW

S/CC4 = (S/CC4/2) TESTS

(S/CC4/2) = NFACOMP SO + ...

TESTS = FADIV ENDE NCC2 + ...

(Continued)

service call is received

DIT 11 is used for preset
logic, and is one clock
ahead of PH6 when inter­
rupt occurs

Quotient bit returned to
KOO after I/O interrupt to
enable A ± D--- 5

Quotient from B-register
into A-register

Preset for A --- S if
numerator and denomi-
nator have like signs
(FL 1 contains numerator
sign; DO contains denom-
inator sign)

Preset for two's comple-
ment of A -S if
numerator and denominator
have unlike signs

Prepare to write into
private memory

Data request, inhibiting
transmission of another
clock unti I data re lease
rece ived from core memor)

Quotient loaded into
private memory register
R. (Remainder lost if
divide word with even
R field)

SO =9 negative quotient

Mnemonic: DH (56, D6)

SDS 9011n

Table 3-52. Divide Halfword and Divide Word With Odd R Field Sequence (Cont.)

Phase Function Performed

PH10 Set flip-flop CC3 if SO = 0 S/CC3
DR

(Cont.) SGTZ

Overflow (CC2 = 1):

Trap to X'43' if AM = 1 (S/TRAP)

OVERIND

ENDE functions

I I I

DIVIDE WORD (OW; 36, B6) WITH EVEN R FIELD. The
OW instruction divides the contents of the private memory
registers specified by the R field and Rul (treated as a
64-bit fixed-point integer) by the contents of the core
memory location specified in the reference address field.
The remainder is loaded into register R and the quotient
into register Rul. Ifa nonzero remainder occurs, the
iemaindei has the same sign as the dividend. Fixed-point
overflow occurs if the absolute value of the quotient
cannot be correctly represented in 32 bits. In this case,
flip-flop CC2 is set to one, and the contents of registers R
and Rul, flip-flops CC1, CC3, and CC4 remain unchanged;
otherwise flip-flop CC2 is set to zero, flip-flop CC3 is set
to reflect a positive quotient, and flip-flop CC4 is set to
reflect a negative quotient. FI ip-flop CC1 is unchanged.

=

=

=

::.

Signals Involved Comments

SGTZ TESTS NSO and nonzero quotient
~ positive quotient

I\I(SO I\IFACOMP)

(NSOOO7Z + NS0815Z

+ NS1631Z + NS3263Z)

ENDE AM CC2 OVERIND AM is fixed-point arith-
metic trap mask bit in

FADIV + •.. program status double-
word

Mnemonic: DH (56, 06)

If fl ip-flop CC2 is set to one and the fixed-point arith­
metic trap mask, flip-flop AM in the program status
doubleword, contains a one, the computer traps to
location X'43' with the original contents of registers R
and Rul, and flip-flops CC1, CC3, and CC4 unchanged;
otherwise the computer executes the next instruction in
sequence.

Preparation phases for Divide Word are the same as
the general PREP phases for word instructions, described
in paragraph 3-59. Figure 3-151 shows the simplified
phase sequence for the OW instruction. Table 3,-53
I ists the logic sequence during a II the execution phases
of the instruction.

3-309

SDS 901172

PREP PH3 I PH.o4 PH6

I (P) : PROGRAM RR-LA IAI--SJ.- B I
1 ADDRESS I LEAST SIGNIFICANT WORD

I
(A) : NUMERA TOR I I-+-AXRR I -J.- CC2 I

OW M. S. w. I I DIT/I

I (
C)· DENOMINATOR I (S/SXA) 1 (S/SXA) I (S/SXAPD/I)

. IF Fll = 0 IF Fll =0 IF CO = KOO

I (D): DENOMINATOR I (S/SXMA) I (S/SXMA) I (S/SXAMD/I)

I IF Fll = I IF Fll = I IF CO I KOO
(MC) : 32 I I
I

I -f-- K31
(CC2) : 0 I I IF KOO = I

I I I I I--KOO
(Fll) : NUMERATOR I (FIRST ClOCK) I

SIGN

I I RR --I---A IAI-S-f--A

BRPH3

MOST SIGNIFICANT WORD (FIRST CLOCK)

I 1 , I

I I BRPH6 I
A± IDI-s+--A

I1 LR31 I LEFTII

I-f---AXRR BO-f--A31

I I B-J-B

I
LEFT,l

I MC-I-+--MC

I I
I I
I I
I I
I I
I I
I I

I

I

KOO-+-B31

OVERFLOW: I
(MC = 30, B31= I)

DIVOVER I
I-+-MRQ
I-f---DRQ

BRPHIO I

NO OVERFLOW: I
O-+-CC2

IF MC = 30, B31 = 0

AXS IF MC =0 I
BRPH6 IF MC I 0 I

+ MCIO
VO SERVICE CALL: I

IIOEN6 IF MC > 4 I
INHIBIT PH6 AND DIT/I

I
B31 -1<OO I
IF S/PH6IIO '

PH7 I PHS PH9 PH 10

I
A± D-S-f--A
IF A NEGATIVE I I I

I ±A-S-f--RW I ±A-S-f---RWul

(S/SXA) I I B--S-f--A I J...- CC4
IF Fll =0 I IF SO = I

(S/SXMA) I I (S/SXA) I I J.- CC3
IF Fll=1 I IIFFll=OOI IFSO=O

I-f--RW I
, I (S/SXMA) I I I IF Fll 100

I I I I

I
I I I
I I I

I I I I
I I I I
I I I I
I 1 I I

I I : I
I I I I
! I ,-LRW:

IF OVERFLOW I I-f-- DRQ I _ I
I IOVERFLOW:1

I I-TRAP
I I IFAM,= I

I I I
I I
I I
I I

901172A.3092

Figure 3-151. Divide Word Instruction, Phase Sequence Diagram

3-310

SDS 901172

Table 3-53. Divide Word Sequence (Even R Field)

Phase

PREP

Function Performed

At end of PREP:

(P) : Program address

(A) : Most significant word
of numerator

(C) : Denom i nator

(D) : Denom i nator

(MC) : 32

(CC2) : 0

(FLl) : Numerator sign

Reset fl ip-flop N LR31 F

Reset flip-flop NAXRR if R
is even

Branch to PH3

PH3 One c lock long

TS L Enable signal (S/SXA) is FLl = 0
I

Enable signal (S/SXMA) if FLl = 1

(RR1-RR31)-f--(AO-A31)

Reset flip-flop NAXRR

S/MC2 =
FADIV =

(R/CC2/1) =
FAMDS =

S/FLl =

S/NLR31 F =
(S/LR31) =
(FUDW NR31)

R/NLR31 F =

S/NAXRR =

(S/AXRR) =

R/NAXRR =

BRPH3 =

I (S/SXA) =
(S/SX/FLl) =

Signals Involved

FADIV PRE3

OU3 OL6
R31 + FUDW NR31

FAMDS NFUMH PRE3 + ".

(FUDW NR31) + ...

PRE3 RRO + .••

N(S/LR3l)

(FUDW NR31) PRE3

= OU3 OL6 NR31

...
N(S/AXRR}

PRE3 (FUDW NR31 + ...) + ...

...
FAMDS NBRPH5
NANLZ PRE/34 + ...

NFLl (S/SX/FLl) + ••.

FADIV PH3 + ...

(S/SXMA) = F Ll (S/SX/F Ll) + ...

Logic preset in PRE3

See PREP phase

(Continued)

Comments

Place address of odd-
numbered private memory
register on address lines
by setting least significant
bit of address

Preset for transfer of con-
tents of private memory
register Ru 1 to A-register
in PH3

Preset adder for A---S
in PH4 if positive
numerator

Preset adder for two's
complement of A---S
if negative numerator

Transfer least significant
word of numerator to
A-register

Preset for transfer of
contents of private mem­
ory reg ister R to A­
register in PH4

Mnemonic: OW (36, B6)

3-311

SDS 901172

Table 3-53. Divide Word Sequence (Even R Field) (Cont.)

Phase Function Performed

PH4 One c lock long

T5L IAI--S

(SO-S31)-+--(BO-B31)

Reset flip-flop NK31 if KOO = 1

Set flip-flop CC2

Enable signal (S/SXA) if FL 1 = 0

Enable signal (S/SXMA) if FLl = 1

(RRO-RR31)-+--(AO-A31)

Branch to PH6

PH6 33 c locks long

3-312

Iteration phase - repeated unti I
MC =0

Enable signal DIl/1

I Preset logic for register control:

I

Enable signa I (S/SXAPD/l) if
CO = KOO

Enable signa I (S/SXAMD/1) if
CO.l KOO

Signals Involved

Logic set in PH3

BXS =

S/NK31 =

(S/K31/1) =

(S/K31/2) =

S/CC2 =
(S/CC2/1) =

(S/SXA) =

(S/SX/FL 1) =

(S/SXMA) =

FADIV PH4 + •••

N(S/K31/l) + ..•

[KOO (S/K31/3)

+ (S/K31/2) (S/K31/3)]

N(FAMDS PH4) + •••

(S/CC2/1) + •.•
FADIV PH4 + •••

NFL 1 (S/SX/FL 1) + •..

(FUDW NR31 + •••)
(PH4 + ••.) + •.•

F Ll S/SX/F Ll

A
n = RR AXRR (preset in PH3)

n

BRPH6

DIl/1

= FADIV PH4 + ...

= FADIV NIOEN
(PH6 + S/P H6/1 0)
N(FADIVH MCZ)

(S/SXAPD/1) = DIl/1 N(CO ® KOO) + ...

(S/SXAMD/1)= DIl/1 (CO 0 KOO)

(Continued)

Comments

Absolute value of least
significant word of numer­
ator into B-register via
sum bus

Since (S/K31/2) is low,
resetting of carry flip­
flop N K31 is determined
by state of KOO. Flip­
flop K31 propagates carry
from least significant bit
to most significant bit of
numerator when forming
two's complement

For overflow test

Preset adder for A --- S
in PH6 if positive
numberator

Preset adder for two's
complement of A plus
carry--S if negative
numerator

Most significant word of
numerator into A-register

Iteration phase enable
signal

Subtract denominator in
D-register from numerator
in A-register if the sign of
the residue (KOO) equals
the sign of the denom i nator
(CO). Add denominator
to numerator if sign of
residue does not equal sign
of denom i nator. KOO = 1
means positive residue

Mnemonic: DW (36, B6)

SDS 901172

Table 3-53. Divide Word Sequence (Even R Field) (Cont.)

Phase Function Performed

PH6 Direct logic for register control:
(Cont .)

(S1-S31)-+--(AO-A30) except
on final clock

BO-+--A31 except on final clock

(B1-B31)-f--(BO-B30)

KOO-f--B3i

General control functions:

MC -1--f--MC

Sustain PH6 unti I MC = 0 or
overflow detected

On the fi rst clock:

,1--KOO

I

I
(NAO-NA3l) plus carry ___
(SO-S31) if FLl = 1

(AO-A31)-(SO-S3l) if FLl = 0

1-+--B31

On the second clock:

A - 101 ~S unconditionally

Signals Involved

AXS Ll = FADIV PH6 NMCZ

S/A31 = AXSLl A31 EN/1 + •••

A31 EN/1 = BO FAMDS PH6 + ••.

BXBLl = FADIV PH6 + •••

S/831 = BXBLl B31 EN/1 + •••

B31 EN/1 = KOO FADIV + ...

MCDC7 = DIT/1 + .' ..

BRPH6 = FAMDS PH6 NFSHEX
NMCZ BRPH10 + •.•

BRPH10 = DIVOVER + •.•

G0003 + ..•

I
' K:0003

KOO/1

FADIV KOO/1 + ..•

CC2 MC2 + ...

I
Adder preset in PH4. Carry set in K31

I in PH4

(Continued)

Comments

Shift adder output left
one bit position with each
iteration (equivalent to
shifting denominator right)

Shift numerator and quo­
tient in B-register left
into A-register with each
iteration

Shift numerator one bit
position left in B-register.
Equivalent to shifting
denominator right

Shift quotient bits into
B-register via B31

Decrement macro-counter
32 times to provide re­
quired number of iterations

'

Forces A - IDI---S

I
to s. ubtra. ct denominator
from numerator on first

I
iteration

Absolute value of most
significant word of numer­
ator into A-register

Because KOO is forced
high. The 1 in B31 is
insignificant

Subtraction of denom­
i nator from numerator
forced by KOO = 1 on
fj rst i terat ion

Mnemonic: OW (36, B6)

3-313

SDS 901172

Table 3-53. Divide Word Sequence (Even R Fie Id) (Cont.)

Phase Function Performed

PH6 On the third clock:
(Cont.)

3-314

Raise overflow indicator
DIVOVER if B31 = 1

Set flip-flop PH10 if B31 = 1

Set flip-flop MRQ if B31 = 1

Set fl ip-flop DRQ if B31 = 1

Reset flip-flop CC2 if 831 = 0

On the last clock (MC = 0):

Inh ibit AXSll

Enable signal AXS

Enable signal A ± D--S

B-register shifts left as before

I/O service call:

Enable signal IOEN6 if MC 24

Inhibit PH6

Inhibit DIl/1

I

Signals Involved

DIVOVER = B31 (OIl MC = 30)

(OIl MC = 30) = FADIV CC2 MC6 NMC7

S/PH10

BRPH10

= BRPH10 NCLEAR + •••

= DIVOVER + ...

S/MRQ = (S/MRQ/1) + •.•

FAMDS PH6 NIOEN
NBRPH6 + •••

(S/MRQ/1) =

R/MRQ

S/DRQ

(S/DRQ)

R/DRQ

= (S/DRQ) NCLEAR

= BRPH10 + ...

R/CC2 = (R/CC2/2) + ...

(R/CC2/2) = NB31 (Oil MC = 30) + ••.

AXSL1 = FADIV PH6 NMCO + •.•

AXS = FADIV PH6 MCl + •••

Comments

B31 contains 2
31

quotient
bit. A 1 indicates over­
flow

Branch to PH10 to set
condition code and ter­
minate instruction
execution

Request for core memory
cycle for next instruction

Data request, inhibiting
transmission of another
clock until data release
rece ived from core memory

Condition code bit 2 = 0
at end of instruction
means no overflow

Residue into A-register

(S/SXAPD/1) and (S/SXAMD/1) are qualified Save remainder in
by DIl/1, which is qualified by N(FADIVH MCl) A-register

BXBL 1

IOEN6

IOEN6/1

S/PH6

S/IOEN

= FADIV PH6 + ...

= IOEN6/1 PH6 NFPRR
NFSHEX + ...

= N(MC0005Z + ...) + ...

BRPH6 NC LEAR NIOEN + •.•

10SC IOEN6 NIOINH

DIl/1 is qualified by NIOEN on exit and
enabled by (S/PH6/IO) on reentry

(Continued)

I

Places 20 quotient bit in
BO and 231 quotient bit
in B31 (KOO)

I
NMC0005l indicates that
MC is greater than 4

10EN is set when an I/O
service call is received

DIl/1 is used for preset
logic, and is one clock
ahead of PH6 when inter­
rupt occurs

Mnemonic: OW (36, B6)

sos 9011n

Table 3-53. Divide Word Sequence (Even R Field) (Cont.)

Phase Function Performed Signals Involved

PH6 831 --KOO if (S/PH6/IO) KOO

G0003

= G0003 + ...
(Cont .) = FADIV KOO/l + ...

KOO!l = 831 (S/PH6/IO) + ...

PH7 One c lock long

T5l (AO-A31) + (00-031) --(SO-S31) Adder preset at last PH6 clock
or

(AO-A31) - (00-031)---(SO-S31)

(SO-S31) -f--(AO-A31) if A is
negative

Enable signal (S!SXA) if FLl :::: 0

Enable signal (S/SXMA) if FL1 = 1

Set flip-flop RW

(AXS) = (FUDW NR31) PH7 N831

't'" /"''\.I A. \
\.J/.JAI-\,

.... ,..... ,,.. /,..,~ ,_ .. \.

l'''ItLI ~;)/;)A./tLI} + •••

(S/SX/FL1) = FAOIV PH7 + ••.

(S/SXMA) = F L1 (S/SX/Fll) + •••

S/RW = (S/RW)

(S/RW) = (FUDW NR3l) PH7 + •..

PHS One c lock long

T5l

PH9

T5l

(AO-A31) ---(SO-S31)
or

N(AO-A31} -(SO-S31)

(SO-S31) ---(RWO-RW31)

One c lock long

(80-831) --(SO-S31)

(SO-S31) -f-(AO-A31)

Enable signal (S/SXA) if FL1 = DO

I
I

Adder preset at PH7 clock

RWXS

SX8

AXS

(S/SXA)

= RW

= (FADIV PH9) NDIS + •..

= (FADIV PH9) + ...

= FADIV PH9 N(Fll e DO)
+ .•.

Enable signal (S/SXMA) if FL1 f DO (S/SXMA) = FADIV PH9 N(S/SXA) + •..

(Continued)

Comments

Quotient bit returned to
KOO after I/O interrupt to
enable A ± O--S

Restore residue to positive
state if negative to pro­
vide positive remainder

Preset adder for A--S
if positive numerator

Preset adder for two's
complement of A --S
if negative numerator

Prepare to write into
private memory

Transfer remainder into
private memory register R.
Take two's complement if
numerator is negative

Quotient from 8-register
into A-register

Preset for A -f--S if
numerator and denom­
inator have like signs.
(Fll contains numerator
sign; DO contains denom­
i nator sign)

Preset for two's comple­
ment of A--S if
numerator and denomi natol
have unlike signs

Mnemonic: OW (36, 86)

3-315

SDS 9011n

Table 3-53. Divide Word Sequence (Even R Field) (Cont.)

Phase Function Performed Signals Involved Comments

PH9 Reset flip-flop NLR31 F S/NLR31 F = N(S/LR31} Place address of odd-

T5L (S/LR31) = (FUDW NR31) PH9 + ... numbered private memory
register on address lines (Cont.)

R/NLR31 F = setting least significant ...
bit of address

Set flip-flop RW (S/RW) = FAMDS PH9 + ... Prepare to write into
pri vate memory

Set flip-flop DRQ (S/DRQ/2) = PH9 + ... Data request, inhibiting
transmission of another
clock unti I data re lease
received from core memory

PH10 Sustained until data release

DR No overflow (CC2 = O):

± (AO-A31}--(SO-S31) Adder logic preset in PH9 Quotient loaded into
private memory register

(SO-S31) -+--(RWO-RW31} RWXS = RW Ru1

Set flip-flop CC4 if SO = 1 S/CC4 = (5/CC4/2) TESTS SO :::=::=>negative quotient

(S/CC4/2) = NFACOMP SO + ..•

TESTS = FADIV ENDE NCC2 + ..•

Set flip-flop CC3 if SO = 0 S/CC3 = SGTZ TESTS NSO and nonzero quotient

SGTZ = N(SO NFACOMP} =* positive quotient

-
(NS0007Z + NS0815Z +

NS1631 Z + NS3263Z)

Overflow (CC2 = 1):

Trap to X'43 1 if AM = 1 (S/TRAP) = ENDE AM CC2 OVERIND AM is fixed-point arith-

OVERIND = FADIV + ••• metic trap mask bit in
program status double-
word

ENDE functions

Mnemonic: DW (36, D6)

3-316

SDS 901172 Paragraph 3-69

3-69 Family of Modify and Test Instructions

MODIFY AND TEST BYTE (MTB; 73, F3). The MTB in­
struction performs one of two operations, depending upon
the value in the R field of the instruction word (bits 8
through 11). If the value is zero, the effective byte is
tested to determine if it is zero or nonzero, and the con­
dition code flip-flops are set accordingly. If the value
is not zero. the four bits are treated as a sianal auantitv
of (-8 to +7), the sign (bit 8) is extended t; form' a byt~,
and this byte is effectively added to the effective byte.
The resulting value is loaded into the effective byte lo­
cation, and the condition codes are set according to the
result. The effective byte is thereby modified by a value of
-8 to +7 and tested. If the MTB instruction is executed in
an interrupt location, the condition code is not affected.

Condition Codes. Condition codes for the MTB instruction
are:

CCi CC2 CC3 CC4 Resuit in EW Location

0 0
0

0
1

PREP

(A): RR

(C): EB OR EH

(D): EB OR EH

(B): PROGRAM
ADDRESS

(P): EB OR EH
ADDRESS

(R): R FIELD

(S/SXA)

(NOT USED)

1
0 Zero
0 Nonzero

No carry from byte
Carry from byte

PHl PH2

IF R > 0:

I
I (S/SXAPD)

AXR

(A+D)-S 1

I
IF R = 0:

I (S/SXD) D--S

I IF R < 0: I
I

Examples. Examples of the MTB instruction are:

Instruction

0011 0011 1011 XXXX XXXX XXXX XXXX XXXX

Effective byte 001 1 1 0 01

(EB + R) 00110100

Condition code: 0010

Instruction

0011 0011 0110 XXXX XXXX XXXX XXXX XXXX

Effective byte 0 000 01 1 0

(EB + R) 00001100

Condition code: 0010

Modify ~nd Test Byte Phase Sequence. PreparaHon phases
for the Modify and Test Byte instruction are the same as the
general PREP phases for byte instructions, paragraph 3-59.
Figure 3-152 shows the simplified phase sequence for the
MTB instruction. Table 3-54, lists the detailed logic se­
quence during all MTB execution phases.

PH3 PRE4 PH8

I (S/SXA)

PH9

BRPH10

PXSXB

SXB
I I ,

I (S/MBXS) I PXS

PH10

ENDE

I 1-+-- MBXS I B~S -f-- P

(S/DRQ) ! I I
I l-f--DRQ

I I A-S -J....-. MB

I AJ-A I
(S/SXDMAM1)! (D-A-l}--S

I AXNR I
I I CIRCULAR' I

S-+-- A LEFT I
I I SHIFTS I I

I I

I I
I

I

I

(AXS)

(S/SXA)

IF R = 0

(S/MBXS)

(S/DRQ)

I I I I

I I I I I I
I I II I(S/MRQ) 1 -t-- MRQ

BRPH8 I I I I
L--I ______ , __ +---I~ I (SIDRQ) 1 t- DRQ I

901172A.3101

Figure 3-152. Modify and Test Byte and Modify and Test Halfword, Instructions, Phase Sequence Diagram

3-317

SOS 901172

Table 3-54. Modify and Test Byte Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C): EB Effective byte
(O): EB Effective byte
(B): Program address Temporary storage for

address of next
I instruction

(P): EWaddress Address of effective
word

I I (R): R field of instruction word Bits 28-31 of instruc-
tion word

Enable signal (S/SXA) (S/SXA) = FAMT (PRE/34 + PH2) Not used

FAMT = NOUl OL3 03

PHl One clock long

T5L If R is equal to zero:

Enable signal (S/SXO) (S/SXO) = FAMT PHl RZ + •.. Preset adder for
D---S transfer in
PH2

RZ = NR28 NR29 NR30 NR31 R fie Id is zero

If R is less than zero:

Set flip-flop SW2 S/SW2 = FAMT PHl NRZ + ••• Control alignment in
PRE4

R/SW2 = RESET/A + •..

(R28- R31) --(A28-A31) AXNR = FAMT PHl R28 N (R fie Id) -f-- A-
zeros -- (AO-A27) register

Enable signal (S/SXOMAM 1) (S/SXOMAM 1) = FAMT PHl R28 Preset adder for
(0 - A - 1) --- S
transfer in PH2

If R is greater than zero:

Set flip-flop SW2 S/SW2 = FAMT PHl NRZ + ••. Control alignment in
PRE4

R/SW2 = RESET/A + •••
(R28-R31) -+- (A28-A31) AXR = FAMT PH 1 NR28 + ••• R field -+--A-register
zeros -+-- (AO-A27)

Enable signal (S/SXAPO) (S/SXAPO) = FAMT PH 1 NR28 NRZ Preset adde r for (A + 0)
--- S transfer in PH2

If INTRAP, set flip-flop CEINT S/CEINT = FAMT PH 1 INTRAP Enable interrupt clock

R/CEINT = ...

Mnemonic: MTB (73, F3)

(Continued)

3-318

SOS 901172

Table 3-54. Modify and Test Byte Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH2 One c lock long
TSl

(00-031) ~ (SO-S31) Adder logic set at PH1 clock If Requa Is zero
or

T8l (00-031) - (AO-A31) -1 Adder logic set at PH 1 clock If R less than zero
--- (SO-S31)

(AO-A31) + (00-031) Adder logic set at PH 1 clock If R greater than zero
--(50-531)

(50-531) -+- (AO-A31) AX5 = FAMT PH2 Transfer result of
operation to A-register

Enable clock T8 if arithmetic T8EN = NTSEN NT11l TSEN is disabled by
operation required N(5XAOO/1 RW) 5XAOO/1 if addition

... lin,.' I'\rl 1\ or subtraction required ''l\I\YV I\CUI

N(REU AXRR)

If NINTRAP

5et CC3 if result is nonzero S/CC3 = 5GTZ TE5TS + ••• 50 will always be a

SGTZ = (50+51 + ••• + 531) zero for MTB

NSO NFACOMP

TESTS = FAMT PH2 NINTRAP
+ ••.

R/CC3 = TESTS + •••

Reset CC4 S/CC4 = (S/CC4/2) TESTS + •••

(S/CC4/2) = NFACOMP SO + ••.

R/CC4 = TESTS + •••

Set CCl if end carry from byte S/CC1 = K23 CCIXK23 + •••

CCIXK23 = FAMT PH2 NINTRAP
I OU7

R/CCl = (R/CC1/1)

I (R/CCI/]) = CCIXK23 + •••

Reset CC2 S/CC2 = (SOO E9 SO) PROBOVER No overflow is possible
+ ••• for MTB

PROBOVER = FAMT PH2 NINTRAP
+ •••

R/CC2 = CCIXKOO + •••

CCIXKOO = FAMT PH2 NINTRAP

S/Fl3 = CC1XK23 + ••• Set flag for PH3

R/Fl3 = ...
NS23 = CCIXK23 + .•• Inhibit set of 523

If INTRAP

Activate highest priority lEVACT = FAMT PH2 INTRAP

Arm highest priority lEVARM = FAMT PH2 INTRAP

Mnemonic: MTB (73, F3)

(Conti nued)

3-319

SOS 901172

Table 3-54. fyA.odify and Test Byte Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH2 T rigger count zero CNTZERO = FAMT PH2 INTRAP S-register contai ns
T5l S0031Z zero
or

INTRAP or NINTRAP
T8l
(Cont.) Enable signal (S/SXA) (S/SXA) = FAMT (PRE/34 + PH2) Preset adder for

A --- S transfer in
PH3 or PH8

If R equals zero!

Branch to PH8 BRPH8 = FAMT PH2 (RZ + NOn If R equals zero, no
shifting required

S/PH8 = BRPH8 NClEAR

R/PH8 = o. 0

If R not zero:

load byte counter S/BCO = FAMT PH2 NRZ NP32 Stores number of left
01 + ... shifts required in PRE4

R/BCO = BCX + ...

S/BC1 = FAMT PH2 NRZ NP33
OU7 +'00

R/BCl = BCX + •••

BCX = FAMT PH2 NRZ 01

PH3 Adjust sign FUMTSIGN = FAMT PH3 NINTRAP Always enabled by

T5L (CC2 + NOU5) NOU5

Test for byte equal to zero S/CC3 = FUMTSIGN FL3 Set CC3 if S-register
NS1631Z + ... does not contain all

R/CC3 = FUMTSIGN + ...
zeros

Branch to PRE4 BRPRE4 = FAMT PH3

PRE4 Sustained unti I byte counter
T5L zero (BCZ)

Circular left shift of A-register AXAL8 = FAMT PRE4 SW2 N BCZ Repeated wh i Ie BCZ

I one byte for each clock
BCZ NBCO NBC1 false =

Branch to PRE4 BRPRE4 = PRE4 NBCZ Remain in PRE4 whi Ie
BCZ false

Enable signa I PRE/34 PRE/34 = PRE4 NBC1 NBCO Terminate PRE4 after
NANlZ BCZ true

Enable signal (S/SXA) (S/SXA) = FAMT (PRE/34 + PH2) Preset adder for
A --- S transfer in
PH8

Enable signal (S/MBXS) (S/MBXS) = FAMT PRE/34 SW2 Preset for S -f-- MB
n I transfer In PHo I

(Conti nued)

3-320

50S 901172

Table 3-54. Modify and Test Byte Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PRE4 Bran ch to PH 8 BRPH8 = FAMT PRE/34 SW2
T5L

Set flip-flop DRQ SiDRQ (S/MBXS) + ••• Inhibits transmission of
(Cont.)

=
R/DRQ = ... another dock unti I

data release from core
memory

PHS Sustained unti I DR
DR

(AO-A31) --- (50-531) Adder logic set at PRE4 clock Modi fled byte trans-

(SO-S31)--f-- (MBO-MB31) MBXS

PH9 One clock long
T5L Inn. ftl"lto'l\ ,,.,, ,.._.\ SXB \DU-D.J I) -- \~U-~.j I)

(5 15-S31)+- (P15-P3l) PXS

PXSXB

S/MRQ

(S/MRQ/2)

R/MRQ

SiDRQ
R/DRQ

R/INTRAP

PH10 E NDE functions
DR

MODIFY AND TEST HALFWORO (MTH, 53, 03). The
MTH instruction performs one of two operations, depend­
ing upon the value in the R field of the instruction word
(bits S through 11). If the value is zero, the effective
halfword is tested to determine if it is zero, negative, or
positive, and the condition code flip-flops are set accord­
ingly. If the value is not zero, the four bits are treated
as a signal quantity of -8 to +7, the sign bit (bit 8) is
extended to form a halfword, and this halfword is effec­
tively added to the effective halfword. The resulting
value is loaded into the effective byte location, and the

= Set at PRE4 clock
ferred to effective byte
location

= PXSXB + ••• Program address

= PXSXB + ••• Program address bits
only

= NFAFL NFAMDS PH9

= (S/MRQ/2) + ••• Core memory request

= PXSXB NINTRAP + ••.
for effective word

= ...
= (S/MRQ/2) NCLEAR Inhibits transmission

= ... of another clock unti f
data release from core
memory

= FAMT PH9 + ••• Reset if INTRAP

Mnemonic: MTB (73, F3)

condition codes are set according to the result. The ef­
fective halfword is thereby modified by a value of -8 to
+7 and tested.

If fixed-point overflow occurs, flip-flop CC2 is set to 1,
and the computer traps to location X 1431 if the fixed­
point arithmetic mask (AM) is 1. The trap occurs after
the result is stored in the effective halfword location. If
the MTH instruction is executed in an interrupt location,
the condition code is not affected, and no fixed-point
overflow trap can occur.

3-321

SDS 901172

Condition Code~. Condition codes for the MTH instruction
are:

CC1 CC2 CC3 CC4 Result in EW Location

o Positive

o o Zero

o Negative

o No fixed-point overflow

Fixed-point overflow

o No carry from word

Carry from word

Examples. Exc!r.ples or the MTH in~trlJ("ti.,n l"'!re~

Instruction
0011 0011 1011 XXXX XXXX XXXX XXXX XXXX

Effective halfword 0000 0001 0011 1001
(E HW + R) 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0

Condition code: 0010
Instruction

0011 0011 0110 XXXX XXXX XXXX XXXX XXXX
Effective halfword 1 1 1 1 1 1 1 1 1 1 1 1 1010
(E HW + R) 00 0 0 00 0 0 0000 00 0 0

Condition code: 0000

Modify and Test Halfword Phase Sequence. Preparation
phases for the MTH instruction are the same as the general
PREP phases for halfword instructions, paragraph 3-59.
Figure 3-152 shows the simplified phase sequence for the
MTH halfword instruction. Table ,3-55 lists the detai led
logic sequence during all MTH execution phases.

Table 3-55., Modify and Test Halfword Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(A): RR Private memory
register R (not used)

(D): EW Effective word

(B): Program address Temporary storage for
address of next
instruction

(P): EWaddress Address of effective
word

(R): R field of instruction Bits 28-31

Enable signal (S/SXA) (S/SXA) = FAMT (PRE/34 + PH2) Not used
FAMT = N041 OL3 03

PHl One clock long
T5L

If R is equal to 0: I
Enable signal (S/SXD)

I
(S/SXD) = FAMT PHl RZ Preset adder for

D --- S transfer in
PH2

RZ = NR28 NR29 NR30 R fie Id is zero
NR3l

If R is less than 0:

Set flip-flop SW2 S/SW2 = FAMT PHl NRZ + ••• Control alignment in

I
PRE4

I R/SW2 = RESET/A + •••

Mnemonic: MTH (53,
D3)

(Continued)

3-322

SOS 901172

Table 3-55. Modify and Test Halfword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH1 Enable signal AXNR AXNR = FAMT PH1 R28 N(R field)
T5l -+-- A-register
(Cont.)

Enable signal (S/SXOMAM i) (S/SXOMAM i) = FAMT PHi R28 Preset adder for
(O-A-1)---S
transfer in PH2

If R is greater than 0:

5et flip-flop SW2 S/SW2 = FAMT PH1 NRZ + ••• Control alignment in

R/5W2 = RESET/A + ••• PRE4

Enable signal AXR AXR = FAMT PH 1 NR28 + ••• R field-+-
A._rA,..iC!+~r

I
... _~.w._.

I Enable signal (S/SXAPD) (S/SXAPO) = FAMT PH 1 NR28 NRZ Preset adder for
+ ••• (A+O)--S

transfer in PH2

If INTRAP, set flip-flop CEINT 5/CEINT = FAMT PH 1 INTRAP Enable interrupt clock
+ •••

R/CEINT = ...
(If NINTRAP, T5l or T8l)

PH2 One c lock long
T5l

(00- 031) ---(50- 531) Adder logi c set at PH 1 clock If R equals zero or
T8l (00 - 031) - (AO - A31) -1 Adder logic set at PH1 clock If R less than zero

---(SO-531)

(00 - 031) + (AO - A31) Adder logic set at PH 1 clock If R greater than zero
--- (SO-S31)

I (SO - 531) -f-- (AO - A31) AX5 = FAMT PH2 Transfer result of

I
operation to A-
registe r

I Enable clock T8 if arithmetic T8EN = NT5EN NTl1L T5EN is disabled by
operation required N(SXAOO/1 RW) SXAOO/l if addition

N(RW REU) or subtraction is
N(REU AXRR) performed

SXAOO/1 = true when addi tion or
subtraction is performed

If NINTRAP

5et condi ti on code fl i p-flops S/CC3 = SGTZ TESTS + ...

SGTZ = (50 + 5 1 + ... + 531)
50 NFACOMP

TESTS = FAMT PH2 NI NTRAP + ..
R/CC3 = TE5TS + ••• 5tate of CC3 and CC4

S/CC4 = (S/CC4/2) TE5T5 + ••• indicates polarity of
data in A-register

(S/CC4/2) = NFACOMP SO + ••• after operation

R/CC4 = TESTS + •••

Mnemonic: MTH (53,03)

(Continued)

3-323

SDS 901172

Table 3-55. Modify and Test HalfvVord Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH2 S/CC1 = KOO CC1XKOO + ••• Set CCl if end carry
T5l

CC1XKOO = FAMT PH2 NINTRAP or
Tal R/CCl = CC1XKOO + •••
(Cont.)

S/CC2 = (SOO E9 SO) PROBOVER Set CC2 if overflow
+ (S 15 E9 S 16)

PROBOVER/H + •••

PROBOVER = FAMT PH2 NINTRAP
+ •••

I I I

I PROBOVER/H = FAMT PH2 NINTRAP
OU5 + •••

R/CC2 = CC1XKOO

If INTRAP

Activate highest priority lEVACT = FAMT PH2 INTRAP

Arm highest priority lEVARM = FAMT PH2 INTRAP

T rigger count zero CNTZERO = FAMT PH2 INTRAP S-register contains zero
S0031Z

I INTRAP or NINTRAP

Enable signal (S/SXA) (S/SXA) = FAMT (PRE/34 + PH2) Preset adder for
A -----S transfer in
PH3 or PH8

If R equals zero;

Branch to PH8 BRPH8 = FAMT PH2 (RZ If R equals zero, no
+ N01) shifting required

If R not zero:

Load byte counter S/BCO = FAMT PH2 NRZ Stores number of left
NP32 01 + ••• shifts required in PRE4

R/BCO = BCX + •••

BCX = FAMT PH2 NRZ 01

PH3 One clock long
T5l

Adjust sign if overflow FUMTSIGN FAMT PH3 NINTRAP CC2 set during PH2 if =
(CC2 + NOU5) + ••• overflow detected

FUMTOVER = FUMTSIGN NFl3 Flip-flop Fl3 not set
during MTH sequence

Exchange CC3 and CC4 S/CC3 = FUMTOVER CC4 + •••

R/CC3 = FUMTSIGN + •••

S/CC4 = FUMTOVER CC3 + •••

R/CC4 = FUMTSIGN + •••

Brunch to PRE4 BRPRE4 = FAMT PH3

Mnemonic: MTH (53, D3)

(Conti nued)

3-324

SOS 901172

Table 3-55. Modify and Test Halfword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PRE4 Sustained unti I byte counter zero
T5l

Circular left shift of A-register AXAl8 FAMT PRE4 SW2 NBCZ Repeated wh i Ie BCZ =
one byte for each clock

BCZ = NBCO NBC1 false

Branch to PRE4 BRPRE4 = PRE4 NBCZ Remain in PRE4 while
BeZ false

Enable signal PRE/34 PRE/34 = PRE4 NBC1 NBCO Terminate PRE4 after
NANlZ BeZ true

Enable signal (S/SXA) (S/SXA) = FAMT (PRE/34 + PH2) Preset adder for A
~ S transfer in PH8

Enable signal (S/MBXS) (S/MBXS) = FAMT PRE/34 SW2 Preset for S --f-- MB
transfer in PHS

Set flip-flop ORQ S/ORQ = (S/MBXS) + ••• Inhibits transmission of

R/DRQ = another clock unti I data ...
re lease from core memory

Bran ch to PH 8 BRPH8 = FAMT PRE/34 SW2

PH8 Sustained unti I DR
DR

(AO - A31) --- (SO - S31) Adder logic set at PRE4 clock

(50- 531) -+-- (MBO - MB31) MBX5

PH9 One clock long
T5l

(BO- B31) --(SO-S31) 5n

(S 15 - S31)"-f-- (P15-P31) 5/Pn

SXB

PX5

I PXSXB

I
R/PM

Set flip-flop MRQ I S/ MRQ
I

(S/MRQ/2)

R/MRQ

Set flip-flop DRQ S/DRQ

R/DRQ

R/INTRAP

PHlO ENDE functions
DR

MODIFY AND TEST WORD (MTW; 33, B3). The MTW in­
struction performs one of two operations, dependi ng upon the
value in the R field of the instruction word (bits 8 through 11).
If the value is zero, the effective word is tested to determine
if it is zero, negative, or positive, and the condition code
flip-flops are setaccordingly. If the value is not zero, the

= Set at PRE4 clock

= Bn SXB Program address

-" Sn PXS Program address bits only
= PX5XB

= PXSXB

= NFAFl NFAMDS PH9
= PX + .••

= (S/MRQ/2) + ••• I Core memory request for
effective word = PXSX B NINTRAP + •••

= ...
= (S/MRQ/2) NClEAR Inhibits transmission of

= another clock unti I data ... re lease from core memory
= FAMT PH4 + ••• Reset if INTRAP

Mnemonic: MTH (53, D3)

four bits are treated as a signal quantity, the sign (bit 8) is
extended to form a word, and this word is effectively added
to the effective word. The resulting value is loaded into
the effective byte location, and the condition codes are set
according to the result. The effective word is thereby modi­
fied by a value of -8 to +7 and tested.

3-325

SDS 901172

If fixed-point overflow occurs, CC2 is set to 1, and the com­
puter traps to location X'43' if the fixed-pointarithmetic
mask (AM) is 1. The trap occurs after the resu It is stored in
the effective word location. If the MTW instruction is exe­
cuted in an interrupt location, the condition code is not
affected, and no fixed-point overflow trap can occur.

Condition Codes. Condition codes for the MTW instruction
are:

CC1 CC2 CC3 CC4 Result in EW Location

o

o Positive

o o Zero

o Negative

o No fixed-point overflow

Fixed-point overflow

No carry from word

Carry from word

PREP PHl

I (A): RR (NOT USED) I
I
I

(D): EW

(B): PROGRAM
ADDRESS

I IF R > 0:

I
(S/SXAPD)

AXR

r

I

PH2

~xa!"lf>le_s. Examples of the MTW instruction are:

Instruction
0011 0011 1011 XXXX XXXX XXXX XXXX XXXX

Effective word
0000 0000 0000 00 00 0 0 00 00 0 1 0 0 1 1 1 0 0 1

(EW + R)
0000 0000 0000 0 0 0 0 0000 0 0 0 1 00 1 1 0 1 0 0

Condition code: 0010

Instruction
0011 0011 0110 XXXX XXXX XXXX XXX X XXXX

Effective word
1111 1111 1111 11111111111111111010

(EW + R)
0000 0000 0000 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0000

Condition code: 0000

Modify and Test Word Phase Sequence. Preparation phases
for the Modify and Test Word instruction are the same as
the general PREP phases for word instructions, paragraph
3-59. Figure 3-153 shows the simplified phase sequence
for the MTW instruction. Table 3-56 lists the detai led
logic sequence during all MTW execution phases.

PH8 PH9 PH 10

ENDE
BRPH10

I (A+D)-S } I
D--S 1 OF 3

I(O-A-1)-S I

(P): EW ADDRESS I IF R = 0:

I (S/SXD) (R): R FIELD

PXSXB

SXB

PXS

I

B-Si P

3-326

S/SXA

(NOT USED)
I IFR<O: I S-J--A

I
I

(S/SXDMAM1) I
AXNR

I
(AXS)

(S/SXA)

(S/MBXS)

BRPH8

S/DRQ

I I I A-S-+-MB

l---MBXS I
I I
I

1-+-- DRQ I
I (S/MRQ)

i (S/DRQ)

Figure 3-153. Modify and Test Word Instruction, Phase Sequence Diagram

I

I
I
I
I

l-+-MRQ
I

l-i-- DRQ

I
90 1172A. 3102

505901172

Table 3-65 •. Modify and Test Word Sequence

Phase Function Performed Signals Involved

PREP At end of PREP:

(A): RR

PH1
T5l

PH2
T5L
or

T8l

(D): EW

(B): Program address

(P): EW address

(R): R field of instruction
... I I • "" I,. " • \ cnaole Signal PI :lAA)

One clock long

If R is equal to 0:

Enable signal (S/SXD)

If R is less than 0:

Set flip-flop SW2

Enable signal AXNR

Enable signal (S/SXDMAM 1)

If R is greater than 0:

Set flip-flop SW2

(S/SXA) = FAMT (PRE/34 + PH2)

FAMT = NOUJ Ol3 03

(S/5XD)

RZ

S/SW2

R/SW2

AXNR

(S/SXDMAM 1)

S/SW2

R/SW2

=

=

=

=

=

=

=

=

FAMT PHI RZ

NR28 NR29 NR30 NR31

FAMT PHI NRZ + •••

RE5ET/A + •••

FAMT PHI R28

FAMT PH 1 R28

FAMT PH 1 NRZ + •••

RESET/A + •••

Enable signal AXR AXR = FAMT PH 1 NR28

Enable signal (S/SXAPD) (S/SXAPD) = FAMT PH J NR28 NRZ
+ •••

If INTRAP, set flip-flop CEINT S/CEINT = FAMT PH 1 INTRAP + •••

= ... R/CEINT

(If NINTRAP, T5l or T8l)

One clock long

(DO - 031) ---- (SO - 531)

(0 0- 031) - (AO - A31) - 1
--- (SO- 531)

Adder logic set at PH 1 clock

Adder logic set at PH 1 clock

(Continued)

Comments

Private memory register
R (not used)

Effective word

Temporary storage for
address of next
instruction

Address of effective
word

Bits 28 - 31

Not used

Preset adder for
D---S in PH2

R field zero

Not used for M TW

N(R field} -+--
A-register

Preset adder for
(D-A-1)--5 in
PH2

Not used for M TW

R field-f-- A-register

Preset adder for (A + D)
---S in PH2

Enable interrupt clock

If R = a
If R less than a

Mnemonic: MTW (33,83)

3-327

SDS 901172

Table 3-56. Modify and Test Word Sequence (Cant.)

Phase Function Performed Signa Is Invo Ived Comments

PH2 (AO-A31) + (00- 031)--- Adder logic set at PHl clock If R greater than 0
T5l (SO - S31)
or

(SO- S31) -f-- (AO- A31) AXS FAMT PH2 Transfer result of opera-TBl =
tion to A-register

Enable clock TB if arithmetic TBEN = NTSEN NT11 l TSEN is disabled by
operation required N(SXAOO/l RW) SXADD/l if addition or

N(RW REU) subtraction required

If NINTRAP N(REU AXRR)
I

Set condition code flip-flops
I

S/CC3 SGTZ TESTS + ••• =
TESTS = FAMT PH2 NINTRAP

+ •••

SGTZ = (SO + S 1 + ••• + S31)
SO NFACOMP

R/CC3 = TESTS + ••• State of CC3 and CC4

S/CC4 = (S/CC4/2) TESTS + ••• indi cates polarity of
data in A-register after

(S/CC4/2) = NFACOMP SO + ••• arithmeti c operation

R/CC4 = TESTS + •••

S/CCl = KOO CC1XKOO + ••• Set CCl if end carry

CC1XKOO = FAMT PH2 NINTRAP

R/CCl = (R/CC) (R/CC 1/1)
(R/CC1/2) CC1XKOO

S/CC2 = (SOO ED SO) PROBOVER Set CC2 if overflow

PROBOVER = FAMT PH2 NINTRAP

R/CC2 = (R/CC) (R/CC2/1)
(R/CC2/2) CC1XKOO

If INTRAP

Activate highest priority lEVACT = FAMT PH2 INTRAP

Arm highest priority LEVARM = FAMT PH2 INTRAP

T rigger count zero CNTZERO = FAMT PH2 INTRAP
S0031Z

INTRAP or NINTRAP

I Enable signal (S/SXA) (S/SXA) = F AM T (PRE/34 + PH 2) Preset adder for

I A---S in PH8

Enable signal (S/MBXS) if (S/MBXS) = FAMT PH2 NOl NRZ Preset for S -+--MB
RIo transfer in PH8

Branch to PH 8 BRPH8 = FAMT PH2 (NOl + RZ) Inhibits transm ission of

Set flip-flop DRQ S/DRQ = (S/MBXS) + .•• another clock unti I data
re lease from core

I I R/DRQ = ... memory

Mnemonic: MT'N (33, B3)

(Continued)

3-32B

SDS 901172

Table 3-56. Modify and Test Word Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PHS Sustained unti I DR
DR

(AO-A31) --- (SO-S31) Adder logi c set at PH 2 clock

(SO - S31) -f-- (MBO - MB31) MBXS = Set at PH 2 clock

PH9 One clock long
T5L

(BO- B31)- (SO- S31) SXB PXSXB + ••• Program address =
(S 15 - S31)-+-- (P15 - P31) PXS = PXSXB + ••• Program address bits

PXSXB = NFAFL NFAMDS PH9 only

S/MRQ = (S/MRQ/2) + ••• Core memory request

(S/MRQ/2) PXSXB NINTRAP +
for effective word = ...

R/MRQ = ...
S/DRQ = (S/MRQ/2) NCLEAR Inhibits transmission of
R/DRQ = another clock unti I data ...

re lease from core
memory

R/INTRAP = FAMT PH9 Reset if INTRAP

PH10 ENDE functions
DR

Mnemonic: MTW (33, B3)

3-329

Paragraph 3-70 SDS 901172

3-70 Farni Iy of Compare Instructions

COMPARE IMMEDIATE (CIi 21). The Compare Immediate
instruct ion compares the contents of private memory
register R with the sign-extended value field of the instruc­
tion word, and sets the condition code according to the
resu Its of the comparison.

Genera I. Both operands are treated as signed fixed poi nt
quantities. The value field (sign extended) is subtracted
from the contents of register R, and condition code flip­
flops CC3 and CC4 are set to indicate the results of the
comparison. An AND operation is performed on the two
operands. Flip-flop CC2 is set if the result of the AND
operation is nonzero and reset if the resu It is zero.

Condition Codes. Condition codes for the CI instruction
are:

o

o
o

o

o

Resu It of Comparison

Operands are equal

Register word less than immediate
value

Register word greater than immediate
value

Logical product (AND) of operands
is zero

Logical product of operands is
nonzero

Examples. Examples of the CI instruction are:

RR 1111 1111 1111 1011 00100101 1100 0011

EW 1111 1111 1111 1 001 1 00 1 1 011 0001 011 0

RR - EW 0000 0000 0000 0001 1000 1010 1010 11 01

EW AND RR 1111 1111 1111 1001 0000 0001 0000 0010

Condition code: X101

RR

EW

111111111111 11111101011000100101

1111 1 1 11 1111 1111 11 11 1 001 01 00 1001

RR - EW 1 111 1111 1111 111 1 1101 1 100 11 01 1100

EWANDRR 11111111111111111101000000000001

Condition code: Xl10

Compare Immediate Phase Sequence. Preparation phases
for the Compare Immediate instruction are the same as the
general PREP phases for immediate instructions, paragraph
3-59. Figure 3-154 shows the simpl i fled phase sequence
for the Compare Immediate instruction. Table 3-57 lists
the detailed logic sequence during all Compare Immediate
execution phases.

3-330

COMPARE BYTE (CB; 71! F1), The Compare Byte instruc­
tion compares the contents of bit positions 24 through 31 of
private memory register R with the effective byte and sets
the condition code according to the resu Its of the
comparison.

General. Both bytes are treated as positive integer mag­
nitudes. The effective byte is subtracted from the contents
of register R, and condition code flip-flops CC3 and CC4
are set to indicate the resu Its of the operation. An AND
operation is performed on the two bytes. Flip-flop CC2 is
set if the resu It of the A ND operation is nonzero and reset
if the resu It is zero.

Condition Codes. Condition codes for the CB instruction
are:

CC2 CC3 CC4

o

o
o

o

o

Resu It of Comparison

Operands are equal

Register byte less than effective
byte

Register byte greater than effective
byte

Logical product (AND) of operands
is zero

Logical product of operands is
nonzero

Examples. Examples of the CB instruction are:

RR 0000 0000 0000 0000 0000 0000 0100 1001

EW 0000 0000 0000 0000 0000 0000 0101 01 01

(RR - EW) 1111 1111 1111 1111 1111 1111 1111 0100

RR AND EW 0000000000000000 0000 0000 0100 0001

Condition code: X101

RR

E\V

(RR- EW)

0000 0000 0000 0000 0000 0000 0010 0110

0000 0000 0000 0000 0000 0000 0010 0110

0000 0000 0000 0000 0000 0000 0000 0000

R RAN D PN 0000 0000 0000 0000 0000 0000 0010 0110

Condition code: Xl 00

Compare Byte Phase Sequence. Preparation phases for the
Compare Byte instruction are tbe same as the general PREP
phases for byte instructions, paragraph 3-59. Figure 3-154
shows the simplified phase sequence for the Compare Byte
instruction. Table 3-57, lists the detailed logic sequence
during all Compare Byte execution phases.

COMPARE HALFWORD (CHi 51, D1). The Compare Half­
word instruction compares the contents of private memory

SDS 9011n

register R with the effective halfword and sets the condition
code according to the results of the comparison.

General. Both operands are treated as signed fixed-point
quantities. The effective halfword (sign extended) is sub­
tracted from the contents of register R, and condition code
flip-flops CC3 and CC4 are set to indicate the results of
the comparison. An AND operation is performed on the
two operands. Flip-flop CC2 is set if the result of the AND
operation is nonzero and reset if the result is zero.

Condition Codes. Condition codes for the CH instruction
are:

o

o
o

o

o

Resu It of Comparison

Operands are equal

Register word less than effective
halfword

Register word greater than effective
ha!fword

logical product (AND) of operands
is zero

logical product of operands is
nonzero

Examples. Examples of the CH instruction are:

RR 0000 0000 0000 0000 001 0 1001 0101 0100

EW 0000 0000 0000 0000 0110 1011 1000 0011

(RR - EW) 111 1 1 111 1111 1111 1 01 1 11 01 11 01 0001

RR AND EW 0000 0000 0000 0000 001 0 1001 0000 0000

Condition code: X101

RR

EW

(RR - EW)

1111 11 11 1111 111 1 11 00 1 001 011 0 11 01

1 11 1 1111 1111 11 11 1000 01 11 11 01 001 0

00000000 0000 0000 0100 0001 1001 1011

RR AND EW 1111 1111 1111 1111 0000 0001 0100 0000

Condition code: Xll0

Compare Halfword Phase Sequence. Preparation phases for
the Compare Halfword instruction are the same as the
general PREP phases for halfword instructions, paragraph
3-59. Figure 3-154 shows the simplified phase sequence
for the Compare Halfword instruction. Table 3-57' lists
the detailed logic sequence during all compare halfword
execution phases.

COMPARE WORD (CWj 31, Bl). The Compare Word
instruction compares the contents of private memory
register R with the effective word and sets the condition
code according to the resu Its of the comparison.

General. Both operands are treated as signed fixed-point
quantities. The contents of register R are subtracted from
the effective word, and condition code flip-flops CC3 and
CC4 are set to indicate the results of the comparison. An
AND operation is performed on the two operands. Flip­
flop CC2 is set if the result of the AND operation is non­
zero and reset if the result is zero.

Condition Codes. Condition codes for the CW instruction
are:

o o

o

o

o

Resu It of Comparison

Operands are equa I

Register word less than effective
word

Register word greater than effective
word

logical product (AND) of operands
is zero

logical product of operands is
nonzero

Examples. Examples of the CW instruction are:

RR 0000 0000 001 0 10 11 01 10 01 01 1 10 1 1 001

EW 0000 0000 1000 0100 0001 1000 0000 0010

(RR - EW) 1111 1111 1010 0111 0100 1101 1101 0111

RR AND EW 0000 0000 0000 0000 0000 0000 0000 0000

Condition code: XOOI

RR 1111 1111 1 00 1 0010 0111 1 011 Ol 00 11 00

EW 1111 1111 11000111 0100 1110 11100110

(RR - EW) 0000 0000 0011 0100 1101 0011 1001 1010

EW AND RR 1111 1111 10000010 0100 101001000)00

Condition code: Xl) 0

Compare Word Phase Sequence. Preparation phases for the
Compare Word instruction are the same as the general
PREP phases for word instructions, paragraph 3-59. ,
Figure 3-154 shows the simplified phase sequence for the
Compare Word instruction. Table 3-57, lists the detai led
logic sequence during all Compare Word execution
phases.

3-331

SDS 9011 n

Table 3-57. Compere Sequence (CI, CB, CH, CW)

Phase Function Performed Signals Involved Comments

PREP At end of PREP: Sign-extended value field
or contents of effective

(C): EW or value field address (word, halfword,
or byte) properly aligned

(D): EW or value field

(A): RR Contents of private
memory register R

(P): Program address Address of next instruc-
tion in sequence

For al I instructions:

Enable signal (S/SXAMD) (S/SXAMD) = FASUB PRE/34 + ... Preset adder for (A - D)

FASUB = OLl + ... ---S in PH1

Set flip-flop MRQ S/MRQ = (S/MRQ/1) + ... Core memory request for

(S/MRQ/1) = FAS 1 0 PRE/34 +
next instruction in ... sequence

FAS10 = FAS 11/1 NOU1 + ...

FAS 11/1 = OLl + ...

R/MRQ = ...

Reset flip-flop S/NTl1 L S/NTl1 L = N{S/T11 L) Signals T5EN and T8EN
disabled when NTl1 L

(S/Tl1 L) = FACOMP/1 (PRE/34 + PH2) reset, permitting Tl1
+ ... clock

FACOMP/1 = OLl

R/NTl1 L = ...
For CB only:

Enable signal AXZ/012 AXZ/012 = FACOMP/1 OU7 PRE4 Stores zeros in AO through
A23

PH1 One c lock long
Tl1 L

(AO-A31) -(DO-D31)--(SO-S31) Adder logic set at PH1 clock (RR- EW) on sum bus
output

I

Set condition code flip-flop S/CC3 = SGTZ TESTS + ... Set if sum bus output
CC3 or CC4

R/CC3 TESTS + •..
greater than zero

=

Mnemonic: CI(21), CB
(71,Fl), CH(51,D1),CW
(31, B1)

(Continued)

3-332

SDS 901172

Table 3-57., Compare Sequence (CI, CB, CH, CW) (Cont.)

Phase

PH1
T11 L

(Cont .)

Function Performed

Enable signal (S/PRXAO)

Set flip-flop DRQ

Branch to PH 1 0

PH10 (AO-A31) AND (DO-D31)
--(SO-S31)

Set fiip-fiop CC2 if
A AND 0 =0

ENDE functions

Signals Involved

S/CC4 = (S/CC4/2) TESTS + •••

(5/CC4/2) = FACOMP sao + ...

R/CC4 = TEST5 + •••

TESTS = FA511 PH1 + PH3) + •••

FAS11 = FASll/1 NFALCFP

5GTZ = (50+S1 + ••• +531)

N(SOO FACOMP)

(S/PRXAD) = FACOMP/1 PH1 NOU1

S/DRQ = BRPH10 NCLEAR + •.•

R/DRQ = ...
BRPH10 = FAS10 PH10 + ...

S/PH10 = NCLEAR BRPH10 + •••

R/PH10 = ...

Adder logic set at PH1 clock

S/CC2 = NS003i Z (S/CC2/NZ) + •••

(S/CC2/NZ) = (FACOMP ENDE) NOU1

R/CC2 = (R/CC2/1) + •..

(R/CC2/1) = (S/CC2/NZ) + •••

Comments

Set if sum bus output less
than zero

(50-531) greater than zero

Preset adder for A AND 0
~S in PH10

Inhibit transmission of
a'nother clock unti I data
release from memory

A AND D-sum bus

Mnemonic: CI(21), CB
(71, F1), CH(51, 01), CW
(31, B1)

3-333

SDS 901172

COMPARE DOUBLEWORD (CD; 11, Ql). ThlO> Compare
Doubleword instruction compares the contents of private
memory registers Rand Ru 1 with the effective doubleword
and sets the condition code according to the results of
the comparison.

General. Both doublewords are treated as signed fixed­
point quantities. The least significant word of the
effective doubleword is subtracted from the contents of
register Ru 1; the most significant word of the effective
doubleword is subtracted from the contents of register R.
If the R field of the CD instruction is an odd value, the
CD instruction forms a 64-bit register operand by dupl i­
eating the contents of register R for both the 32 high­
order bits and the 32 low-order bits. Condition code
flip-flops CC3 and CC4 are set to indicate the results
of the 64-bit comparison.

Condition Codes. Condition codes for the CD instruction
are:

o o

o

o

3-334

Resu It of Comparison

Operands are equa I

Register doubleword less than effective
doubleword

Register doubleword greater than
effective doubleword

Examples. Examples of the CD instruction are:

Even R Field

Ru 1 0000 0101 11 01 1 011 001 0 011 0 1000 11 00

ED
LSW

00000011 10000101 1001 0111 11100000

0000 0010 0101 011 0 1000 111 0 1010 11 00

R 11 01 011 0 1 001 1 0 1 1 01 00 1000 0101 1010

ED
MSW

1101 0110 1001 1011 0100 10000101 1010

0000 0000 0000 0000 0000 0000 0000 0000

Condition code: XX10

Ru1

Odd R Field

11 01 011 0 1 01 0 011 0 0101 11 1 0 0000 0011

0000 0011 1000 0101 1001 0111 1110 0000
11 01 0011 0010 0000 11 00 011 0 0010 0011

Ru 1 11 01 011 0 1010 011 0 0101 111 0 0000 0011

ED
MSW

1101 0110 1001 1011 0100 10000101 1010

0000 0000 0000 1011 0001 0101 1010 1001

Condition code: XX10

Compare Doubleword Phase Sequence. Preparation phases
for the CD instruction are the same as the general PREP
phases for doubleword instructions. Figure 3-155
shows the simplified phase sequence for the. CD instruction.
'Table 3-58 lists the detailed logic sequence during
:all CD execution phases.

50S 901172

PREP
I

PHI PHl0

(C): EW t·
(0): EW

I
ENDE I

fA \. ~~ I ,- 'I· .,., I

I (A-D)---S (A AND D)-S

(P): PROGRAM ADDRESS I (CC3 AND CC4) (CC2)

.I I

(S/SXAMD)

I
(S/PRXAD)

(S/MRQj1) 1 -+-- MRQ

11- DRQ o -t- NTlIL I
I I

CB ONLY: I I AXZ!012

I I
D'S T (AO-A23)

I

Figure 3-154. Compare Immediate, Compare Byte, Compare Halfword, and
Compare Word Instructions, Phase Diagram

901172A.3111

3-335

505·901172

PREP
I

PHl

I
PH2 PH3 I PH10

(C): ED lSW I
I a-sip I

(D): ED lSW I I ENDE

I I I
(A): RRu 1

MB-C-LD I (A-D)-5
I I

(P): EW ADDRESS

I I
I (A-D}-S I

(SWO) RR-f--A

I I
I CONDITION CODES I

(B): PROGRAM (Fl3) (NK31)

I
(CC3, CC4)

ADDRESS

I 1

l-f-- DRQ

I (5/MRQ/3) l-+-MRQ

I
(5/MRQ/3) l-+-MRQ

I I I O-f--NSXBF

I I I I
o -+-- NMRQPl o-+-- NAXRR o -+-- NMRQPl

I
I I

OJ-NTllL
I o -.f--- NT11l llDRQ

I I I (S/SXAMD)
I

(5/5XAMD)

I I
BRPHlO I

I I o +-- NlR31F
I I I I I

901172A.3112

Figure 3-155. Compare Doubleword Instruction, Phase Diagram

3-336

SOS 901172

Table 3-58. Compare Ooubleword Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C): EO
LSW Least significant word of

effective doubleword
(D): EO

LSW

(A): RRu1 Contents of private mem-
ory reg ister Ru 1

(P): EW MSW address Address of most significant
word of effective double-
word

(B): Program address Temporary storage for
address of next instruction

Set flip-flop MRQ S/MRQ = (S/MRQj3) + 0 0 0 Core memory request for

(S/MRQj3) = FAOW/1 PRE/34 + 000
most significant word of
effective doubleword

FAOW/1 = OU1 FASll + 000

FASll = FAS11/1 NFALCFP

FASll/1 = OLl + 000

R/MRQ = 000

Reset flip-flop NMRQP1 S/NMRQP1 = (S/MRQj3) MRQP1 sets flip-f,lop ORQ

R/NMRQP1 = at PH1 clock
000

Reset flip-flop NTl1 L S/NTl1 L = N(S/Tl1 L) + 000 Set clock Tl1 L for PHl

(S/Tl1 L) = FACOMP/l PRE/34 + 0"

FACOMP/1 = OLl + •••

R/NTll L = ~ a a

Enable signal (S/5XAMO) (S/5XAMO) = FA5UB PRE/34 + 0" Preset adder for (A- D)

FA5UB OLl +.0.
--"5 in PH1 =

Reset flip-flop N LR31 F 5/NLR31 F = N(S/LR31) Force a one on private

(5/LR31 F) = FAOW/1 NANLZ PRE3 + .00
memory address line LR31
during PH1 to select

R/NLR31 F = 00. private memory reg ister
Ru1

PH1 One c lock long
Tl1 L

(AO-A31) -(00-031)-(50-531) Adder logic set at last PREP clock Adder output is
(RRu 1- ED L5W)

Mnemonic: CD (11, 91)

(Continued)

3-337

SDS 901172

Table 3-58. Compare Doubleword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH1 Reset fl ip-flop NSXBF S/NSXBF = N(S/SXB) Preset log i c for B -- S
Tl1 L

(S/SXB) FA DW/1 PH1 + ••.
in PH2

(Cont.)
=

R/NSXBF = ...

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset for R ---f--- A

(S/AXRR) FA DW/1 PH1 + ...
transfer in PH2 =

R/NAXRR = ...
Set flip-flop SWO if (SO-S31) S/SWO = NS0031Z (S/SWO/NZ) + .•• Retain information that S
not zero

. (S/SWO/NZ) KOOHOLD + ...
not zero. Condition codes

= CC3 and CC4 maya Iso be
KOOHOLD = FA DW/1 PH1 + ••. set during this phase, but

R/SWO = RESET/A = CLEAR = PH10
action is meaningless
since they are again set
in PH3

Set flip-flop FL3 if end carry S/FL3 = KOO KOOHOLD + .•• Reta i n end carry

R/FL3 = ...
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Inhibits transmission of

(S/DRQ) MRQP1 another clock unti I data
= + •..

release received from core
R/DRQ = ... memory

PH2 Sustained until DR
DR (BO-B31) -- (SO-S31) SXB = NDIS SXBF Transfer program address

SXBF = set at PH1 clock
to P-register

(S15-S31) -I--- (P15-P3l) PXS = FA DW/1 PH2 + ...

(MBO-MB31) -- (CO-C31) CXMB = DG = /DG/ Transfer most signi ficant
word of effective double-

(CO-C31) -+- (DO-D31) DXC = FA DW/l PH2 + .•. word to C- and D-registers

(RRO- RR31) --f-- (AO-A31) AXRR = set at PH1 clock Private memory register
Rul-+-- A-register

Enable signal (S/SXAMD) (S/SXAMD) = FASUB PH2 + ... Preset adder for (A- D)

FASUB OLl + ... --- S in PH3 =

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + •.. Core memory request for

(S/MRQ/3) FA DW/1 PH2 + ...
next instruction in = sequence

R/MRQ = ...
Reset flip-flop NMRQP1 S/NMRQP1 = (S/MRQ/3) MRQPl sets flip-flop DRQ

R/NMRQPl = at PH3 clock ...

Mnemonic: CD(11, 91)

(Continued)

3-338

SOS 901172

Table 3-58. Compare Ooubleword Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH2 Reset flip-flop NK31 if there was an S/NK31 = N(S/K31) N(S/SXAMO/2) Setting K31 effectively
DR end carry in PHl

+ N(S/K31/1)
provides a carry (or

(Cont.) borrow) to the most sig-
(S/K31/1) = KOO (S/K31/3) + ••. nificant half of the

(S/K31/3) = FAOW/l PH2 FL3 + •••
effective doubleword

(S/K3l) = FA DW/1 PH2 + ••.

R/NK31 = ...
Reset flip-flop NTll L S/NTll L = N(S/Tll L) + ... Set clock Tll L for PH3

(S/Tll L) = FACOMP/l PH2 + ••.

R/NTl1l = ...

I PH3 lone clock long
Tll L

(AO-A3l) -(00-031) Adder logic set at PH2 clock Adder output is
---(SO-S31) (RRu 1- ED MSW)

Set flip-flop CC3 if (SO-S63) S/CC3 = SG TZ TESTS + .•. Resu It is nonzero and
nonzero and positive

SGTZ = (SO + S 1 + ... + S31)
positive

N(SOO FACOMP) S3263Z

S3263Z = NSWO NTESTS/l + ..• TESTS/l signal enables
SWO to control SGTZ

TESTS/l = FUSF ENDE + FAMULNH signal
PH7

TESTS = FASll (PHl + PH3)

I
R/CC3 = TESTS + ...

Set flip-flop CC4 if (SO-S63) S/CC4 = (S/CC4/2) TESTS + .•• Resu It is negative
negative

(S/CC4/2) = FACOMP SOO

R/CC4 = TESTS + ...

Set flip-flop DRQ S/ORQ = (S/DRQ) NCLEAR Inhibits transmission of

(S/ORQ) MRQPl + •.. another clock unti I data = release received from
R/ORQ = ... core memory

Branch to PHI0 BRPHI0 = FAOW/l PH3 + •..

S/PHI0 = BRPHI0 NCLEAR + ...

R/PHI0 = ...
PHI0 ENOE functions
DR

Mnemonic: CD (11, 91)

3-339

Paragraph 3-71 SOS 901172

3-71' Fami Iy of Compare With Limits Instructions
(FACOMP/L)

COMPARE WITH LIMITS IN REGISTER (CLR; 39, 69). The
Compare With Limits in Register instruction simultaneously
compares the effective word with the contents of private
memory register R and with the contents of private memory
register Ru1 and sets the condition codes according to the
results. For these comparisons, all three words are treated
as signed fixed point numbers.

General. Condition code flip-flops CC3 and CC4 indicate
whether the contents of R are greater than (10), equal to
(00), or less than (01), the effective word. Condition code
flip-flops Cel and CC2 indicate whether the contents of
Ru 1 are greater than, less than, or equal to the effective
word. If the R field of the instruction word contains an odd
value, both pairs of flip-flops will be in identical states.

Examples. Examples of the Compare with Limits in Register
operation are:

EW 0000 0100 1100 0101 1010 0110 1111 1101

R 0000 0001 1101 1111 0101 1010 0110 0011

Rul 0000 0100 1100 0101 1010 0110 1111 1101

Condition code: 0001

'eN 0000 0100 1100 0101 1010 0110 1111 1101

R 0000 1001 0101 0110 0011 0111 1011 0100

Rul 0000 1001 0101 0110 0011 0111 1011 0100

Condition code: 1010

3-340

Condition Codes. Condition code settings for the Compare
With Limits in Register operation are:

CCl CC2 CC3 CC4 Results of Comparison

a a Contents of R equal to effective
word

a Contents of R less than effective
word

0 Contents of R greater than effec-
tive word

a 0 Contents of Rul equal to effective
word

a Contents of Ru 1 less than effec-
tive word

a Contents of Ru 1 greater than
effec ti ve word

CLR Phase Sequence. The preparation phases for the CLR
instruction are the same as the general PREP phases for word
instructions, paragraph 3-59. Figure 3-156' shows the
simplified phase sequence for the execution of CLR instruc­
tion. Table 3-59' lists the detai led logic sequence during
all CLR execution phases.

SDS 901172

I PREP I PH1
I

PH2

I
PH3 I PHI0

I - - - - --

I
(C) : EW

I I I I I (D) : EW

I
(A) : RRul

I I I I ENDE
(D\ : EW ADDRESS \ I I I I

I (8) : PROGRAM I I
I

I ADDRESS

I I
I

I I (S/MRQjl) l-+--MRQ

I I I I I
I

(S/SXAMD) I (A - D)-S

I
(S/SXAMD)

I (A - D)--S

I CONDITION CODES CC3 -f--CCI
I I Irr? rr ... \ I rrA ',_ rr", I

I I \""""oJ, """""'1 I """"-r --r- '-'-~

I I CONDITION CODES

I I I I I (CC3. CC4)
I I I ' . . I

I I
(S/SX8)

I
8-S~P

I l~BRP
I

I I
l-+--AXRR RR-f-- A

I I I I I
BRPHlO

I I
I-f-DRQ

I I I
901172A.3 21

Figure 3-156. Compare With Limits in Register, Phase Diagram

Table 3-59. Compare With Limits in Register Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(C) : EW Effecti ve word

(D) : EW Effective word

(A) : RRu 1 Contents of pri vate
memory register R

(P) : fVV address Address of effective
word

(8) : Program address Temporary storage for
address of next instruc-
tion

I Mnemonic: CLR (39, 89)

(Conti nued)

3-341

50S 901172

Tobl", 3-59. Comporp Wfth limit! i,., Regi~ter Sequence (C-:-nt.)

Phase Functi on Performed SIgnals Involved Comments

PREP Reset fUp-flop NTll L S/NT11 L = N(S/T 11 L) + ••• Set clock Tl1 L for PH 1

(S/Tl1 L) = FACOMP/L
(PRE/34 + PH2) + •••

FACOMP/L = OL9 N01 03

R/NTll L = ...
Enable signal (S/SXAMO) (S/SXAMO) = FASUB (PRE/34 + PH2) + .•. Preset adder for (A-O)

I I

I FASUB = FACOMP/L + ... ----SinPH1

PH1 One clock long

Tl1 L (AO-A31) - (00-031)-- Adder logic set at last PREP clock Adder output is
(SO-S31) (RRul-EW)

Set flip-flop CC3 if (SO-S31) S/CC3 = SGTZ TESTS + ... Result is nonzero and
is nonzero and positive positive

SGTZ = (SO + S 1 + ... + S31)
N(SOO FACOMP) + .•.

TESTS, = FACOMP/L PH 1 + .••

R/CC3 = TESTS + .•.

Set flip-flop CC4 if (50-531) S/CC4 = (S/CC4/2) TESTS + ... Result is negative
is negative

(S/CC4/2) = FACOMP SOO + ...

R/CC4 = TESTS + ••.

Reset flip-flop NSXBF S/NXBF = N(S/SXB) Preset for B----S
transfer in PH2

(S/SXB) = FACOMP/L PH1 + •.•

R/NSXBF = ...
Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset for R-f--A

transfer in PH2
(S/AXRR) = FACOMP/L PH1 OU3 + ••.

R/NAXRR = ...

I Mnemonic: CLR (39, B9)

(Continued)

3-342

SOS 901172

Table 3-59. Compare With Limits in Register Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH2 One c lock long

T5L (RRO- RR31)-+--(AO-A31) AXRR = Set at PH1 clock Pri vote memory regis-
ter R -I--A-register

(BO-B31)----(SO-S31) SXB = NOIS SXBF + .•• Transfer program address
to P-register

SXBF = Set at PHl clock

(S 15-S3l)-f---(P15-P31) PXS = FACOMP/L PH2 + ••.

Set flip-flop BRP S/SRP = FACOMP/L PH2 + ••. Signifies that program
address is in P-register

n IDnn = nnr, ... I r- A ya. " I,.'" A 1"\'1 + IV 1,H\r rl\1:1 l"IrI'\UVI T 11 11\1'\1"'1 ...
Transfer CC3-f--CC 1 S/CC1 = CC3 FACOMP/L PH2 + ... Pre pare for new code

bits in PH3
RlCC1 = (RlCC) + .•.

(RlCC) = FACOMP/L PH2 + •..

Transfer CC4-+--CC2 S/CC2 = CC4 FACOMP/L PH2 + ...
RlCC2 = (RlCC) + ...

Enable signal (S/SXAMO) (S/SXAMO) = FASUB (PRE/34 + PH2) + ... Preset adder for (A-D)
--S in PH3

FASUB = FACOMP/L + .•.

Set flip-flop MRQ S/MRQ = (S/MRQ/1) + ••• Core memory request
for next instruction in

(S/MRQ/l) = FACOMP/L PH2 + ••• sequence

RlMRQ = ...

Reset flip-flop NTl1 L S/NTl1 L = N (S/Tl1 L) + ... Set clock Tl1 L for PH3

(SiT 11 L) = FACOMP/L
(PRE/34 + PH2) + •.•

RlNTl1 L = ...

PH3 One clock long
Tl1 L

(AO-A31) - (00-031) Adder logic set at PH2 clock Adder output is (RR- EW)
---(SO-S31)

Set condition codes as described in Same as PH 1 Same as PH1
PH 1 with new adder output on sum bus

I Mnemonic: CLR (39, B9)

(Continued)

·3-343

SDS 901172

Table 3-59. Compare With Limits in Register Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

PH3 Set fit p-flop DRQ S/DRQ = BRPH 10 NClEAR + ••• Inhibits transmission of
Tll l another clock until data

(Cont.) BRPH 10 = FACOMP/l PH3 + ... release from memory

R/DRQ =

Branch to PH 1 0 S/PH10 =

R/PH10 =

PH10 ENDE functions
DR

COMPARE WITH LIMITS IN MEMORY (ClM; 19, 99).
The Compare With Limits in Memory instruction simul­
taneously compares the contents of private memory register
R with the 32 high-order bits of the effective doubleword
and with the 32 low-order bits of the effective doubleword
and sets the condition codes according to the results. For
these comparisons all 32-bit words are treated as signed,
fixed point numbers.

...
BRPH10

...

General. The state of flip-flops CCl and CC2 indicates
whether the contents of R are greater than (1 a), equa I to
(OO), or less than (01), the least significant word (bits 32
through 63). Similarly, the state of CC3 and CC4 indicates
the relation between the contents of R and the most signif­
icant word (bits a through 31).

Examples. Examples of the Compare With Limits in Memory
instruction are:

ED0-31 0101 10000110 1101 10000001 0111 1011

ED
32

_
63

0101 1100 0011 0100 0010 1100 1001 0101

R 0101 1000 0111 1000 11 01 1000 0010 all a

Condition code: 0110

ED
O

_
31

0000 0110 1101 0111 1011 0101 1111 0011

ED
32

_
63

00000101 0110 1110 0010 0100 1001 0110

R 0000 0101 0110 1110 00 10 0100 1001 a 11 a

Condition code: 0100

3-344

NClEAR + ..•

I Mnemonic: ClR (39, B9)

Condition Codes. Condition code settings for the Compare
With Limits in Memory operation are:

CCl CC2 CC3 CC4

a 0

o

o

o a

o

o

Results of Comparison

Contents of R equal to most
significant word (bits 0 through
31 of doubleword)

Contents of R less than most
signiflcant word (bits 0 through
31 of doub I eword)

Contents of R greater than most
significant word (bits 0 through
31 of doubleword)

Contents of R equal to least
significant word (bits 32 through
63 of doubleword)

Contents of R less than least
signiflcant word (bits 32 through
63 of doub leword)

Contents of R greater than least
significant word (bits 32 through
63 of doubleword)

ClM Phase Sequence. The preparation phases for the ClM
instruction are the same as the general PREP phases for word
instructions, paragraph 3-59. Figure 3-157 shows the
simplifled phase sequence for the ClM instruction execu­
tion. Table 3-60 lists the detailed logic sequence during
all ClM execution phases.

SDS 901172

I
PREP

I PH1 I PH2 I PH3 I PHlO I - - - - --

I
(C) : EWu 1

I I I I I (D) : EWu1

I
(A) : RR

I I I I I (P) : EW ADDRESS

I
I I

I
ENDE

I (B) : PROGRAM

I I I ADDRESS

I I I I (5/MRQ/3)

~ }: :~QP1 (S/MRQ/1) 1--1-- MRQ

I
l-f- DRQ I I I I I

I
(S/SXAMD) (A - D}--S (S/SXAMD) I (A - 0)-5

I I I I CONDITION CODES CC3 r CCl
I (CC3. CC4) I I
I I . . ,

I
CC4 -+-- CC2 I I

I I CONDITION CODES I I I I (CC3, CC4)

I I I I I

I (S/SXB)
I

B-S-+--P I I I 1~BRP

I I
I

I I I
MB--C --I--- 0

I I I I
l-+--DRQ

I I I BRPHIO

I I I I I I
901172A.3122

Figure 3-157. Compare With Limits in Memory, Phase Diagram

Table 3-60. Compare With Limits in Memory Sequence

Phase Fundi on Performed Signals Involved Comments

PREP At end of PREP:

(C) : ED
LSW Least significant word of

effective doubleword

(D) : ED
LSW least significant word of

effective doubleword

(A) : RR Contents of private
memory register R

I Mnemonic: ClM (19, 99)

(Continued)

3-345

SDS 901172

Table 3-60. Compare With Limits In Memory, Phase Diagram (Cont.)

Phase Function Performed

PREP (P) : EW address
(Cont.)

(B) : Program address

Set flip-flop MRQ

Reset flip-flop NMRQP1

Reset flip-flop NTl1 L

Enable signal (S/SXAMD)

PH lOne clock long
Tl1 L

3-346

(AO-A31) - (DO-D31)
---(SO-S31)

Set flip-flop DRQ

I

SIgnals Involved

S/MRQ = (S/MRQ/3) + .••

(S/MRQ/3) = FACOMP/L PRE3
OU1 NANLZ + •••

FACOMP/L = OL9 N01 03

R/MRQ = ...

S/NMRQP1 = (S/MRQ/3)

R/NMRQP1 = ...

S/NTl1 L = N(S/Tl1 L) + ••.

(S/Tl1 L) = FACOMP/L (PRE/34 + PH2)
+ .•.

R/NTllL

(S/SXAMD) = FASUB (PRE/34 + PH2) + .•.

FASUB = FACOMP/L + ••.

Adder logic set at last PREP clock

S/DRQ = (S/DRQ) NCLEAR

(S/DRQ) = MRQP1 + ••.

R/DRQ

Comments

Address of most signif­
icant word of effective
doubleword

Temporary storage for
address of next instruc­
tion

Core memory request for
most significant word of
effective doubleword

MRQP1 sets flip-flop
DRQ at PH 1 clock

Set clock TllL for PH1

Preset adder for (A-D)
---S in PH1

Adder output is
(RR-EWul)

Inhibits transmission of
another clock unti I data
release received from
core memory

Mnemonic: CLM (19, 99)

(Continued)

SOS 901172

Table 3-60. Compare With Limits in Memory Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

PH1 Set flip-flop CC3 If (SO-S31) is S/CC3 = SGTZ TESTS + .•• Result is nonzero and
Tlll nonzero and positive positive

TESTS = FACOMP/L PHl + ...
SGTZ = (SO + S 1 + .•• + S31)

N(SOO FACOMP)

RlCC3 = TESTS + •••

Set flip-flop CC4 is (SO-S31) S/CC4 = (S/CC4/2) TESTS + •.. Result is negative
is negative

(S/CC4/2) = FACOMP SOO + .••

RlCC4 = TESTS + .••

Reset fl i p-flop NSXBF S/NXBF = N(S/SXB) Preset for B---S

I
transfer in PH2

(S/SXB) = FACOMP/l PH1 + .••

RlNXBF = ...

PH2 Sustained unti I DR
DR

(MBO-MB31) -+- (CO-C31) CXMB = OG = /OG/ Transfer most significant
word of effective

(CO-C31) +-- (00-031) OXC = FACOMP/l PH2 OU1 doubleword to C- and
I O-registers

(BO-B31)-- (SO-S31)
I

SXB = NOIS SXBF + ... Transfer program address
to P-register

I SXBF = Set at PH 1 clock

(S 15-S31) -+--(P15-P31) I PXS = FACOMP/l PH2 + ...
Set flip-flop BRP S/BRP = FACOMP/l PH2 + ... Signifies that program

address Is in P-reglster
RlBRP = PRE1 NFAIM + INTRAP1 + •••

Transfer CC3-+--CC1 S/CC1 = CC3 FACOMP/l PH2 + .•• Prepare for new code
bits in PH3

RlCC1 = (RlCC) + •••

(RlCC) = FACOMP/l PH2 + •••

Transfer CC4-+-CC2 S/CC2 = CC4 FACOMP/l PH2 + ...
RlCC2 = (RlCC) + •.•

Mnemonic: ClM (19, 99)

(Continued)

3-347

SDS 901172

Table 3-60. Compare With Limits in Memory Sequence (Cont.)

Phase Functi on Performed

PH2 Enable signal (S/SXAMO)
DR
(Cont.)

Set flip-flop MRQ

Reset flip-flop NTll L

PH3 One clock long
Tll L

(AO-A31) - (00-031)-­
(50-531)

Set condition code flip-flops CCl
and CC2 as described in PH1,
with new output on sum bus

Branch to PH 1 0

PH10 ENOEfunctions
DR

3-348

Signals Involved

(S/SXAMO) = FASUB (PRE/34 + PH2) + .••

FASUB = FACOMP/L + •••

S/MRQ = (S/MRQ/l) + ..•

(S/MRQ/l) = FACOMP/L PH2 + ..•

R/MRQ = ••.

S/NTll L = N(S/Tll L) + •.•

(S/T11 L) = FACOMP/L
(PRE/34 + PH2) + •.•

R/NTllL = .•.

Adder logic set at last PH2 clock

Same as PHl

BRPH10

S/PH10

R/PH10

= FACOMP/L PH3 + .•.

= BRPH10 NCLEAR + ...

Comments

Preset adder for (A-D)
---5 in PH3

Core memory request
for next instruction in
sequence

Set Tll L clock for PH3

Adder output is (RR-EW)

Same as PH 1

Mnemonic: elM (19, 99)

SDS 901172 Paragraph 3-72

3-72 Family of Logical Instructions (FALOGIC)

OR WORD (OR; 49, C9). The OR word instruction performs
a logical OR operation on the contents of the effective word
and private memory register R, and stores the result in
register R.

General. If the corresponding bits of private memory
register R and the effective word are both zero, a zero
remains in R; otherwise, a one is placed in the corresponding
bit position of register R. No change is made in the effec­
tive word. The operation is defined by the following
equation, in which n denotes any bit position:

R = R + EW
n n n

Examples. Examples of the logical OR operation are:

EW 0000 1111 0101 11 01 all a 0010 1010 1001

R 0011 0011 all a 1001 0000 1111 OlDl 0100

Before Execution

R 00 11 111 1 all 1 11 a 1 a 11 a 1111 11 1 1 11 01

After Execution

Condition Codes. If the resu It in private memory register R
is zero, the condition codes are XXOO. If bit a of register
R is a one, the condition codes are set to XX01. If bit a is
a zero and bits 1 through 31 contain at least one 1, the
condition codes are set to XX 10.

OR Word Phase Seguence. Preparation phases for the OR
instruction are the same as the general PREP phases for
word instructions, paragraph 3-59. Figure 3-157 shows
the simplified phase sequence for the OR word instruction.
Table 3-61 lists the detailed logic sequence during OR
word execution phases.

EOR WORD (EOR; 48, C8). The EOR word instruction
performs a logical exclusive OR operation on the contents
of the effective word and private memory register Rand
stores the result in register R.

General. If corresponding bits of register R and the effec­
tive word are different, a one is placed in the corresponding
bit position of R. No change is made in the effective word.
The operation is defined by the following equation, in
which n denotes any bit position:

R R NEW + NR EW
n n n n n

Examples: Examples of the exclusive OR operation are:

EW 0000 1111 010111010110 0010 1010 1001

R 0011 0011 1001 1001 0000 1111 0101 0100

Before Execution

R 0011 1100 1100 0100 0110 1101 1111 1101

•
After Execution

Condition Codes. If the resu It in private memory register R
is zero, the condition codes are XXOO. If bit a of register
R is a one, the condition codes are set to XX01. If bit a
is a zero, and bits 1 through ,31 contain at least one 1, the
condition cooe5 are 5et to XX 10.

EOR Word Phase Seguence. Preparation phases for the
EOR instruction are the same as the genera! PRE P phases
for word instructions, paragraph 3-59. Figure 3-158
shows the simplified phase sequence for the EaR word
instruction. Table 3-61 lists the detailed logic sequence
during all EOR word execution phases.

AND WORD (AND; 4B, CB). The AND word instruction
performs a logical AND operation on the contents of the
effective word and private memory register R and stores the
result in register R.

Genera I. If the corresponding bits of register R and the
effective word are both one, a one remains in R; otherwise,
a zero is placed in the corresponding bit position of R. No
change is made in the effective word. The operation is
defined by the following equation, in which n denotes any
bit position:

R == R EW
n n n

Examples: Examples of the logical AND operation are:

EW 0000 1111010111010110 0010 1010 1001

R 0011 0011 all a 1001 0000 1111 0101 0100
¥

Before Execution

R 0000 0011 0100 1001 0000 0010 0000 0000
¥

After Execution

Condition Codes. If the resu It in register R is zero, the
condition codes are set to XXOO. If bit a of register R is
a one, the condition codes are set to XX01. If bit a is a

3-349

(C): EW

PREP I
I

SDS 901172

PHI PHIO

(A): RR

(P): PROGRAM ADDRESS I
ENDE

(S/MRQ/l)

(S/RW)

(S/SXAORD) IF OR

(S/SXAEORD) IF EaR

(S/PRXAD) IF AND

I
11MRQ

I-+--RW

I (A OR D)- S IF OR

I (A EaR D) - 5 IF EaR

I (A AND 0)-5 IF AND

I
I

5--RR

CONDITION CODES I
BRPHI0

1 --+-- DRQ
I

Figure 3-1581• AND Instruction Phase Sequence

901172A.3131

zero, and bits 1 through 31 contain at least one 1, the
condition codes are set to XX10.

phases for word instructions, paragraph 3-59. Fig-
ure 3-158 shows the simplified phase sequence for the
AND word instruction. Table 3-61 lists the detailed
logic sequence during all AND word execution
phases.

AND Word Phase Sequence. Preparation phases for the
AND instruction are the same as the general PREP

Table 3-61.

Phase Function Performed

PREP At the end of PREP:

(C) : EW

(A) : RR

(P) : Program address

3-350

OR, EaR, AND Sequence

Signals Involved Comments

Effective word

Contents of private
memory register R

Address of next instruc-
tion in sequence

Mnemonic: AND (4B, CB) OR (49, C9) EOR (48, C8)

(Continued)

SDS 901172

Table 3-61. OR, EOR, AND Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PREP Set fl ip-flop MRQ S/MRQ = (S/MRQ/l) + ... Core memory request for
(Cont.)

(S/MRQ/l) = FAS 10 PRE/34
next instruction in
sequence

FASI0 = FASll/l + .••

FASll/l = FAlOGIC + •••

R/MRQ = ...
Set flip-flop RW S/RW = FAS 11 (PRE/34 + PH2) Prepare to write result in

NOll private memory

FASll = FASll/l + .••

R/RW = ...
Enable signal (S/SXAORO) (S/SXAORO) = OU4 Ol9 PRE3 + ... Preset adder for
if OR

(A OR D) ---S in
PHi

Enable signal (S/SXAEORO) (S/5XAEORO) = OU4 Ol8 PRE3 + .•. Preset adder for
ifEOR

(A EOR O)---S in
PHI

Enable signal (5/PRXAO) (S/PRXAO) = OU4 OlB PRE3 + .•. Preset adder for
if ANO (A ANO 0)---5 in

PHI

PHI One clock long

T8l (AO-A31) AND (DO-D31)

1 Adder logic set at last PREP clock

Transfer result to private
---(50-531) if ANO memory register R

(AO-A31) 0 R (00-031)
---(AO-S3i) if OR

J (AO-A31) EOR (00-031)
--(50-531) if EOR

(50-531) -I--(RWO-RW31) RWXS/O = RWXS/3 = RW + .•• I

RW = Set at last PREP clock

Enable clock T8 T8EN = NT5EN NTll l N (SXAOO/1 T5EN is disabled by
RW) N(RW REU) N(REU signal RW
AXRR)

NT5EN = RW + .••

Set fl ip-flop CC3 if resu It is S/CC3 = SGTZ TESTS + .•• State of fl ip-flops CC3
positive quantity and nonzero TESTS FA511 (PHI + PH3) + •••

and CC4 indicates = polarity of data in
Set fl ip-flop CC4 if resu It is SGTZ = (SO + 51 + ..• + 31) private memory register
negative quantity SO NFACOMP R after operation

R/CC3 = TESTS + •..

S/CC4 = (5/CC4/2) TESTS + ••.

(5/CC4/2) = NFACOMP SO + ..•

R/CC4 = TESTS + ••.

l Mnemonic: ANO (4B, CB) OR (49, C9) EOR (48, C8)

(Continued)

·3-351

50S 901172

Table 3-61. OR, EOR, AND Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PHl Branch to PH 1 0 BRPH10 = FAS10 PHl + •••
T8l

S/PH10 = BRPH10 NClEAR + .•• (Cont.)
R/PH10 = ...

Set flip-flop ORQ S/DRQ = BRPH10 NClEAR + ... Inhibits transmission of

R/DRQ = another clock unti I data ...
re lease from core
memory

PH10 E NOE functions

l Mnemonic: AND (4B, CB) OR (49, C9) EOR (48, C8)

3-352

3-73 Fami Iy of Sh ift Instructions (FASH)

SHIFT (S; 25, A5). The S instruction shifts the contents
of private memory register R or the contents of private
memory registers Rand Ru1 (treated as a single 64-bit
register) in a specified manner, amount, and direction.

Types of Shifts. The S instruction may be a logical shift,
in which bits shifted off the end bit positions are lost; a
circular shift, in which bits shifted off the end enter the
opposite end in circular fashion; or an arithmetic shift, in
which the sign of the number is extended to the right to fi II
the vacated bit positions as the right shift is performed.
When an arithmetic shift is performed to the left, it is
identical to the left logical shift. All three types of shifts
may be performed on either the contents of private memory
register R (single register shift) or the contents of private
memory register R and private memory register Ru1 (double
register shift). If a double register shift is performed, the
R field of the instruction word must be an even quantity
for correct resu Its.

The type of sh i ft to be performed is speci fied by three bits
in the instruction word or indirectly addressed word, bit
positions 21 through 23. (Performing an indexing opera­
tion does not change these bits.) A bit configuration of
OOX in bit positions 21 through 23 specifies a logical shift;
a configuration of 01X specifies a circular shift; lOX
specifies an arithmetic shift. A one in bit position 23
denotes a single-register shift, whi Ie a zero denotes a
double register shift.

Amount and Direction of Shift. The amount and direction
of the shift are determined by bit positions 25 through 31
of the effective address. These bits are regarded as a
signed quantity, with bit position 25 the sign bit position.
If bit position 25 is a zero, bits 25 through 31 are a
positive quantity, and a left shift is required. If bit
position 25 is a one, bits 25 through 31 are a negative
quantity (in two's complement form), and a right shift is
required. The amount of the shift is determined by the
absolute value of the shift count and may range from zero
through 64.

Examples. Examples of the three types of shifts are shown
in figure 3-159.

Condition Codes. At the completion of a logical right,
circular right, or arithmetic right shift, the condition
codes are set to OOXX. At the completion of a logical
left, circular left, or arithmetic left shift, condition code
flip-flop CCl is set if there have been an odd number of
one bits shifted off the left end of the register, or reset if
there have been an even number shifted off; condition
code flip-flop CC2 is set if there has been overflow into
the sign bit position.

901172 Paragraph 3-73

Implementation of Shi ft Instructions. Implementation of
the various shifts is dependent primari lyon the direction
of the shift.

Figure 3-160 shows the basic implementation of a left
shift. The shift count is transferred from the P-register to
bit positions 0 through 5 of the macro-counter. If a single
register shift is to be performed, the contents of private
memory register R are transferred to the A-register, and
zeros are transferred to the B-register. If a double register
shift is to be performed, both private memory registers
are transferred to the A- and B-register combination. The
A- and B-registers act as a single 64-bit register during
shifting operations. The A- and B-registers are shifted
one bit at a time to the left, and the shift count is decre­
mented by one with each shift. The most signif)cant bit
of the A-register is either discarded, in the case of a
logical or arithmetic shift; routed to A31, in the case of
a single register circular shift; or routed to 831, in the
case of a double register circula'r shift. When the count
is reduced to zero, shifting stops and the result is trans­
ferred back to the private memory registers. Flip-flop
CCl indicates whether an odd or even number of one bits
have been shifted out of the A-register. Flip-flop CC2
is set if overflow has occurred.

Figure 3-161 shows the basic implementation of a right
shift. The private memory registers are transferred to the
A- and B-registers as before. The shift count is in the
P-register in two's complement form. The shift count is
transferred to the macro-counter and flip-flop FL3 as
follows: bits 26 through 30 are inverted and transferred
to MC1 through MCS.1f P31 is a one, flip-flop FL3 is
set. If the shift count is even, MCl through MC6 now
hold (shift count -2), and flip-flop FL3 is reset; if the
shift count is odd, MCl through MC6 hold (shift count -1),
and FL3 is set.

If an odd shift is being performed (FL3 set), the A- and
8-registers are shifted right one bit position for the first
shift and right two bit positions for every other shift. The
count in MCl through MC6 is decremented by two for
each shift. If an even shift is being performed, the A­
and B-registers are shifted right two bit positions for each
shift, and the count in MCI through MC6 is decremented
by two for each shift. The least significant bit position
during the shift (A31 for a single register shift, 831 for a
double register shift) is either discarded, in the case of a
logical shift or arithmetic shift, or routed to the most sig­
nificant end of the register, in the case of a circular shift.
AO is extended to vacant bit positions for the arithmetic
shift. Shifting continueS until the shift count equals zero.
The condition codes are set to OOXX.

Shift Phase Sequence. Preparation phases for the S
instruction are the same as the general PREP phases for
word instructions, described in paragraph 3-59. Table
3-62 I lists the detailed logic sequence during all shift
execution phases.

·3-353

3-354

901172

LOGICAL SHIFT, SINGLE REGISTER, LEFT 7 BIT POSITIONS

CIRCULAR SHIFT, DOUBLE REGISTER, LEFT 34 BIT POSITIONS

SHIFT 34 BIT POSITIONS

INSTRUCTION WORD

PRIVA TE MEMORY
REGISTER 10
BEFORE EXECUTION

PRIVA TE MEMORY
REGISTER 10
AFTER EXECUTION

PRIVA TE MEMORY
REGISTERS 10, 11
BEFORE EXECUTION

PRIVA TE MEMORY
REGISTERS 10, 11
AFTER EXECUTION

ARITHMETIC SHIFT, SINGLE REGISTER, RIGHT 7 BIT POSITIONS

1~1'121: ;~;:,., ,I: I ~, ~ ~ I,~, :1~.~I~I~J~2:1:'I:):'I~I~':.1 INSTRUCTION WORD

PRIVA TE MEMORY
REGISTER 10
BEFORE EXECUTION

PRIVA TE MEMORY
REGISTER 10
AFTER EXECUTION

SEVEN LOWER ORDER
BITS LOST

901172A.3141

Figure 3-159. Shift Examples

w
I

W
U'I
U'I

:!1
co
c ..,
C\)

W
I

~ o

"0
~
:::::;
N

1>
~
N

TOGGLE

SINGLE
REGISTER,
CIRCULAR

TO B31 TO A31

PRIVATE MEMORY REGISTER R

(RRO-RR31)

PHS

PRIVATE MEMORY REGISTER Rul
(IF DOUBLE REGISTER SHIFT)

DOUBLE REGISTER SHIFT

ZERO'S

SINGLE REGISTER SHIFT

(AO-A31)

PH?

PRIVATE MEMORY REGISTER R

DOUBLE
REGISTER
SHIFT

(8O-B31)

PRIVATE MEMORY REGISTER Rul

t
AO

(IF DOUBLE
REGISTER,
CIRCULAR) SUSTAIN

SHIFTING
AND PH6

(MCO-MCS) -I-+­
(MCO-MCS)
SHIFT COUNT IS IN
MCO-MCS AND IS
DECREMENTED ONE
WITH EACH SHIFT

8 -

SOO

NFL3

SOO
"'T1

cO·
FL3 c ..,

(1)

W SOOO
I -0- NFL3 -
3"

"'0
(1)

3
(1)
::J
-+ a o·
::J

0
~

co
:?;
Vl
::r

=+'

~
~
N .,.
W • W

SIAl

A31

CIRCULAR SINGLE REGISTER

831

CIRCULAR DOUBLE REGISTER

AO

ARITHMETIC

PRIVATE MEMORY REGISTER R

(RRO-RR31)

PH5

PRIVATE MEMORY REGISTER Rul
(IF DOUBLE REGISTER SHIFT)

DOUBLE REGISTER SHIFT

SINGLE REGISTER SHIFT

(AO-A31)
DOUBLE REGISTER SHIFT

PH7

PRIVATE MEMORY REGISTER R PRIVATE MEMORY REGISTER Rul

A30

CIRCULAR SINGLE REGISTER-"------"-_-'

830

SOO
CIRCULAR DOUBLE REGISTER-'--__

ARITHMETlC-L--_-'

SOOO

EXAMPLE 1:

PHASE-CLOCK

PH6 - 1
PH6 - 2
PH6-3
PH6 - 4

PH7

EXAMPLE 2:

PH6 - 1
PH6 - 2
PH6 - 3
PH7

SUSTAIN
SHIFTING AND PH6

SHIFT EXAMPLES

[SHIFT COUNT = -7

~~~~~~~~11~11-1-0-0~11 
15 20 23 25 31 

MC TOTAL NUMBER OF BIT 
01234567 FL3 MCZ POSITIONS SHIFTED 

00001100 1 0 0 
00001000 0 0 1 
00000100 0 0 3 
(10000000 0 1 5 

7 

[SHIFT COUNT = -6 

rnw."","'1'7TTJ~---r.~""""'IIr'1 -1 -1 0-1--'0 I 
15 20 23 25 31 

00001000 00

0 

I 
0
0

1 

1 
00000100 
00000000 

I I 

o 
2 
4 



Phase 

PREP 

Function Performed 

At end of PREP: 

(A) : RRul 

(C) : Effective address (shift 
type and shift count) 

(D) : Effective address (shift 
type and shift count) 

(P) : Program address 

If right shift is specified (shift 
count is negative) perform the 
following functions: 

Set flip-flop FL2 

(N P26- NP30)+--{MC1-MC5) 

P31-f--FL3 

If left shift is specified perform 
following function: 

(P26-P31 )-+--{MCO-MC5) 

Reset flip-flops CCl and CC2 

Clear B-register 

901172 

Table 3-62.. Shift Sequence 

S/FL2 

R/FL2 

MCXNPLl 

FASH 

S/FL3 

R/FL3 

MCXPL2 

R/CCl 

R/CC2 

BX 

FAMDS 

Signals Involved 

= P25 PRE3 + ••• 

= CLEAR + ••. 

= P25 PRE3 FASH 

= OU2 OL5 + •.. 

= PRE3 P31 + •.. 

= N(FUS PH5) N(FUSF PH8) 

= FASH PRE3 NP25 

= FASH NFUMH PRE3 + ••. 

= FAMDS NFUMH PRE3 + ••• 

= FAMDS PRE3 + ... 

= OU2 OL5 + ... 

(Conti nued) 

Comments 

Contents of private mem­
ory register Ru 1. If 
double register shift is 
being performed, this is 
least signi ficant ha If of 
number to be shifted. If 
single register shift is 
being performed, this 
number will be destroyed 

P-register hold reference 
address during PRE3, but 
program address is clocked 
into P-register at PRE3 
clock 

Flip-flop FL2 signifies that 
right shift is being per-
formed. P25 is a one if 
shift count is negative 

If shift count is even, 
MC1-MC6 hold (SC-2), 
and FL3 is reset; if shift 
count is odd, MC1-MC6 
hold (SC-O,and FL3 is set 

MCO-MC5 now hold shift 
count 

Reset for PH6 use. CC 1 
and CC2 remain reset for 
right shift 

Zeros are clocked into B­
register to clear the 
register in the event of a 
single register left shift. 
BO is transferred to A31 in 
this case, and the B-regis­
ter must therefore contai n 
zeros 

Mnemonic: S (25, AS) 

3-357 



901172 

Table 3-62., Shift Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PREP Enable signal (S/SXA) (S/SXA) = FUS PRE3 + ••• Preset adder for A --S 

Cont.) FUS PU2 OL5 + ••• 
in PHS 

= 

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset for transfer of 

(S/AXRR) = FUS PRE3 + 
private memory register ... R to A-register in PHS 

R/NAXRR = ... 
Branch to PHS BRPHS = FUS PRE3 + ••• 

S/PHS = BRPHS NC LEAR + ••• 

R/PHS = ... 
PHS One clock long 
TSL 

(AO-A31 ) --- (SO-S31) Adder logic set at last PREP clock If a double, ,register shift 
is being performed, the 

If double register shift is being contents of private 

performed, (SO-531) -+--(BO-831) BX5 = FUS PHS D23 + ... memory registers Rand 
Rul are in the A- and B-

(RRO-RR31) -f-- (AO-A31) AXRR = set at last PREP clock registers, respectively. 
If a single register shift 
is being performed, the 
contents of private 
memory register R are now 
in the A-register, and the 
B-register contains all 
zeros. 

Sustain contents of flip-flop FL3 R/FL3 = N(FU5 PHS) Flip-flop FL3 is set if 
the shift count is odd. 
This data must be saved 
until PH6 

Enable signal (S/SXA) S/SXA) = FASH PHS + ••• Preset adder logic for 
A---S in PH6 

If left shift is in effect, perform the 
following functions: 

Decrement shift count in MCO-MCS MCDC7 = FASH PHS NFL2 + ••• MC6 and MC7 are held 

by one to zero and inhibited 
from counting down by 
signal FUS. Down-
counting starts with MCS. 
At the PHS clock MCO-
MCS hold (SC-1) 

If sh ift count equa Is zero, branch BRPH7 = FASH PHS NFL2 MCZ Shifting is not called for 

to PH7, and request next instruction MCZ = NMCO NMC1 ••• NMC7 
by instruction 

Mnemonic: S (2S, AS) 

(Continued) 

3-358 



901172 

Table 3-62. Shift Sequence (Cont.) 

Phase 

PH5 
T5l 

(Cont.) 

Function Performed 

PH6 PH6 lasts from one to 63 c loc ks 

T5l If a left shift is being performed, 
the fo Ilowing functions occur during 
each clock period: 

Enable signal SFT 

Enable signal (S/SXA) 

(AO-A31) --- (SO-S31) 

(Sl-S31) -f--(AO-A30) 

If a single register circular shift is 
being performed, AO-f--A31; 
otherwise, BO --+--A31 

(B 1 -831 ) --f-- (BO-B30) 

If a double register circular sHft is 
being performed AO -f-- B31 

Decrement the sh ift count in 
MCO-WC5 by one 

Signals Involved 

S/PH7 = BRPH7 NClEAR + .•. 

R/PH7 = ... 
S/MRQ = (S/MRQ/1) + ••• 

(S/MRQ/l) = FASH PH5 NFl2 WCZ 
+ .•• 

R/MRQ = ... 

SFT = FASH NIOEN PH6 

(S/SXA) = SFT + FASH (S/PH6/l0) 
+ ••• 

(S/PH6/10) = IOPH1 SW13 NIPH10. 
NPCP2 (NIOEN + lOBO) 

Adder logic set at previous clock by (S/SXA) 

AXSll 

S/A31 

A31EN/1 

R/A31 

BXBll 

S/B31 

B31EN/1 

FUS 

R/B31 

MCDC7 

(Continued) 

SFT NFl2 NFSHEX + •.. 

AXSll A31EN/1 + ... 

AO FUS D22 ND23 PH6 

+ BO FAMDS PH6 + .•. 

AXSLl + ••• 

SFT NFL2 NFSHEX + .•. 

BXBll B31 EN/1 + .•• 

AO FUS D22 D23 + •.• 

OU2 OL5 

BXBll + ••• 

FASH PH5 NFl2 + ... 

Comments 

Core memory request for 
next instruction in 
sequence 

Signal SFT signifies that 
shifting iterations are 
occurring 

Preset adder for 
A --S during next 
c lock period. Signal 
(S/PH6/l0) is a return 
to sh ift iterations from 
I/O service 

Output of adder shifted 
left one bit position 

B-register contains least 
significant half of 
nu mber to be sh i fted if 
double register shift or 
zeros if single register 
shift 

B-register shifted left 
one bit position 

Most significant bit of 
A-register brought 
around in circu lar 
fashion 

MC6 and MC7 are held 
to zero and inhibited 
from counting down by 
signal FUS. Down­
counting starts with MC5 

Mnemonic: S (25, A5) 

3-359 



901172 

Table 3-62. Shift Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH6 Toggle flip-flop CC 1 as one bits S/CCl = AO NCC 1 FUS/l + ••• CCl provides an indica-
T5L shift through AO tion of whether an odd 

(Cont. ) FUS/i = FUS SFT NFL2 or even number of one 

R/CCl = AO FUS/l + ••• bits have been shifted 
out of the A-register 

Set flip-flop CC 2 if overflow into S/CC2 = FUS/l (AO + Al) + •.• 
sign bit position 

R/CC2 = FAMDS NFUMH PRE3 + ••• 

If an even right shift is bei ng performed, 
following functions occur during each 
clock period: 

Enable signa I SFT SFT = FASH NIOEN PH6 Shifting iterations 

Enable signa I (S/SXA) (S/SXA) = SFT + FASH (S/PH6/IO) Preset adder for 
+ ..• A --- S during next 

clock period 

(AO-A3l) ---- (SO-S31 ) Adder logic set at previous clock by (S/SXA) 

(SO-S29) ---- (A2-A31) AXSR2 = SFT FL2 NFL3 NFSHEX Output of adder shifted 
+ ..• right two bit positions 

Set AO and A 1 according to type S/AO = SOOO AXSR2 + .•. 
and length of shift 

R/AO = AXSR2 + .•• 

SIAl = SOO AXSR2 + ... 
R/Al = AXSR2 + .•• 

SOOO = A30 FUS 022 N023 + •• } Single register, circu lor 
shift 
A30, A3l -+- AO, Al, 

SOO = A31 FUS D22 ND23 + •.. respectively 

SOOO = B30 FUS D22 D23 + •.. 

} 
Double register circu lor 
shift 
B30, 831 -+-- AO, Al, 

SOO = B31 FUS D22 D23 + •.. respectively 

SOOO = AOO + ... 

} 
Arithmetic shift. 

AOO = AO D21 + .•. 
original contents of AO 
extended to right as shift 

SOO = AOO + ... is made 

If a double register shift is being S/BO = BXBR2 S30/1 + ..• 
performed, S30 and S31 are clocked 

BXBR2 = FL2 NFL3 NFSHEX SFT into BO and Bl, respectively 
+ ... 

S/30/1 = BOOOl EN/l FLl + .•• 

. BOOOl EN/l = FASH D23 + •.• 

Mnemonic: S (25, AS) 

(Continued) 

3-360 



Phase 

PH6 
T5L 

(Cont.) 

901172 

Table 3-62. Shift Sequence (Cont.) 

Function Performed 

(BO- B29) -+-- (B2- B31) 

Decrement shift count in 
MC1-MC6 by two 

If an odd right sh ift is bei ng per­
formed, the following functions 
occur during the first c lock period: 

Enable signal SFT 

Enable signal (5/5XA) 

(AO-A31 )-(50-531) 

(50-530)-!--(A 1-A31) 

5et AO accordi ng to type and 
length of shift 

If a double register shift is being 
performed, 531 is clocked into SO 

(BO- B30)-+--(B 1- B31) 

Decrement the shift count in 
MC1-MC6 by two 

R/BO 
5/Bl 

531/1 

R/B1 

BXBR2 

MCDC7 

SFT 

(5/5XA) 

Signals Involved 

= BXBR2 + ... 
= S31/1 BXBR2 + ... 

= BOOOl EN/l 531 + ... 

= BXBR2 + ... 

= FL2 NFL3 NFSHEX SFT + ••• 

= SFT BRP + ... 

= FASH NIOEN PH6 

= SFT + FA5H (5/PH6/1O) 
+ ••• 

Adder logic set at previous clock by (S/SXA) 

AXSR1 = S FT F L2 F L3 + ... 

5/AO 

500 

= sao AXSRl + ... 

= A31 FUS D22 ND23 + ... 

SOO = 831 FUS D22 D23 + ... 

500 = 
AOO = 

R/AO = 

5/BO = 
S31/1 = 

B0001 EN/1 = 
BXBR1 = 

R/BO = 

BXBR1 = 

AOO + ... 
AO D21 + .. . 
AX5Rl + .. . 

S31/1 BXBR1 + •.. 

BOOOl EN/l 531 + ... 
FASH D23 + ... 
FL2 FL3 SFT 
BXBR1 + ... 
FL2 FL3 SFT 

MCDC7 = SFT BRP + ... 

(Continued) 

Comments 

MC6 and MC7 are held 
to zero and inhibited 
from counting down by 
signal FUS. Down­
counting starts with MCS, 
thereby decrementi ng 
sh i ft count by two 

Shifting iterations 

Preset adder for A---5 
during next clock period 

Output of adder shifted 
right one bit position 

Single register circular 
shift. A31~AO 

Double register circu lor 
shift. B31-+--AO 

Arithmetic shift. AO 
extended to right 

MC6 and MC7 are held 
to zero and inhibited 
from counting down by 
signal FUS. Down­
counting starts with MCS, 
thereby decrementing 
shift count by two 

Mnemon i c: 5 (25, A5) 

3-361 



Phase 

PH6 
T5L 

I\Cont.) 

3-362 

901172 

Table 3-62., Shift Sequence (Cont.) 

Function Performed 

Reset flip-flop FL3 

During each succeeding clock 
period, the functions described 
under the even right sh i ft are 
performed, with the shift count 
decremented by two and the 
number shifted right two bit 
positions for each clock period 

Sustain PH6 if the shift count does 
not equal zero, and an I/O service 
call is not pending 

If an I/O service call is in effect 
and the shift count is four or 
above (at least two more shifts to 
be performed), inhibit setting 
PH6, complete the I/O opera­
tion, and set PH6 to complete 
. the shifting 

If the shift count is zero, perform 
the following functions: 

Disable signal BRPH6 

Branch to PH7 

Set flip-flop MRQ 

Set flip-flop RW 

R/FL3 

BRPH6 

MCZ 

S/PH6 

10EN 

S/IOSC 

IOEN6 

Signals Involved 

= N(FUS PH5 + FUSF PH8) 

FAMDS NFSHEX PH6 
NBRPH10 NMCZ + ••• 

(MCO MCl ••• MCl) 

BRPH6 NIOEN NCLEAR + ••• 

10SC IOEN6 NIOINH + ... 

SC NSCINH IOPOP 

FAMDS NFPRR NFSHEX 
IOEN6/l PH6 NDIOEXIT 

NMC0005Z = NMC0005Z N FADIV CC2 
NEWDM 

= MCO + MCl + .•• + MC5 

Comments 

Resetting FL3 indicates 
that the one odd sh i ft has 
been performed. Shifting 
henceforth wi" be by 
two's 

Signal MCZ is true when 
shift count reaches zero 

I/O enable 

Set at previous clock 

I/O enable, phase 6 

NIOINH = N(ADNH PH6 + ABO PH6 Not I/O inhibit 
+ INTRAP NPCP2) 

R/PH6 = ... 

NBRPH6 = MCZ + ••. 

S/PH7 = PH6 NBR NIOEN + ••• 

NBR = NBRPH6 ••• 

R/PH7 = ... 
S/MRQ = (S/MRQ/l) + ••• 

(S/MRQ/l) = FAMDS PH6 N BRPH6 
NIOEN + •.• 

R/MRQ = ... 
S/RW = SFT FUS MCZ + •.• 

R/RW = ... 

(Continued) 

Memory request for next 
instruction in sequence 

Set to transfer the resu It 
of the shift to private 
memory register R 

Mnemonic: S (25, A5) 



Phase Function Performed 

PH7 One c lock long 

T8l (AO-A31 )---(SO-S31)--­

(RWO-RW31) 

Reset flip-flop NlR31 F 

Reset flip-flop NSXBF 

If double register shift is being 
performed, set fl ip- flop RW 

Set flip-flop DRQ 

Branch to PH10 

Enable clock T8l 

PH10 (BO-B31)--(SO-S31)--

DR (RWO- RW31) 

ENDE functions 

901172 

Table 3-62. Shift Sequence (Cont.) 

Signals Involved 

Adder logic set at last PH6 clock 

RWXS/0-RWXS/3 = RW + •.• 

RW = set at last PH6 clock 

S/NlR31 F 

(S/lR31) 

R/NlR31 F 

S/NSXBF 

(S/SXB) 

R/NSXBF 

S/RW 

R/RW 

S/DRQ 

R/DRQ 

BRPH10 

S/PH10 

R/PH10 

T8EN 

NT5EN 

= N(S/lR31) 

= FUS PH7 + ... 

= N(S/SXB) 

= FASH PH7 + ... 

= FUS PH7 D23 NR31 + ... 

= BRPH10 NCLEAR + ... 

= FUS PH7 + ... 

= BRPH10 NClEAR + ... 

= NT5EN NTl1 l 
N(SXADD/1 RW) 
N(RW REU) N(REU AXRR) 

= RW + ... 

SXB = NDIS SXBF + •.. 

SXBF = Set at PH7 clock 

RWXS/O- RWXS/3 = RW + ... 

RW Set at PH7 clock 

Comments 

Transfer most significant 
word of resu It to private 
memory register R 

Force a one on private 
memory address line lR31 
during PHlO to select 
private memory register 
Ru1 

Preset logic for B--S 
in PH10 

If the R field of the 
instruction word is odd, 
R31 inhibits storing the 
least significant word of 
the result in private 
memory register R. The 
R-register contains the 
most significant word of 
the resu It at the end of 
the instruction in this 
case 

Inhibits transmission of 
another clock unti I data 
release signal is received 
from core memory 

T5 is disabled by signal 
RW 

Transfer least significant 
word of result to private 
memory register Ru 1. This 
transfer is not made if the 
R field of the instruction 
word was odd or if single 
register shift is in effect 

Mnemonic: S (25, A5) 

3-363 



SHIFT FLOATING (SF; 24, A4). The SF instruction per­
forms a right or left shi ft operation on a short-format 
floating point number in private memory register R, or on 
a long-format floating point number in private memory 
registers Rand Rul. The shifted result is loaded back into 
private memory. Both formats of floating point numbers 
are described in detai I in paragraph 3-74. 

Right Shift Operations. For a right shift of either a long­
or short-format floating point number the fraction of the 
floating point number is shifted one hexadecimal place to 
the right and the exponent of the number incremented by 
one. Shifting continues until the number of shifts specified 
by the instruction have been performed or unti I the expon­
ent field of the number overflows. The shifted result is 
loaded back into private memory registers Rand Ru 1; the 
exponent and fraction of the result is set to all zeros (lltrue ll 

zero) if the fraction of the floating point number was zero 
or became zero. 

The condition codes are set to OOXX if the number of hexa­
decimal shifts specified by the instruction have been per­
formed. If exponent overflow has occurred, the condition 
codes are set to 01 XX. Flip-flops CC3 and CC4 are set to 
00 if the result is zero, 01 if the result is negative, and 10 
if the result is positive. 

Left Shift Operations. For a left shift of either a long- or 
short-format floating point number the fraction of the 
floating point number is shifted one hexadecimal place to 
the left, and the exponent of the number is decremented by 
one. Shifting continues until the number of shifts specified 
by the instruction have been performed, unti I the number is 
normalized (significance in the most significant hexadecimal 
digit of the fraction), or unti I the exponent field under­
flows. The shifted result is then loaded back into private 
memory. The result is set equal to true zero if the fraction 
of the floating point number was zero. 

The condition codes are set to OOXX if the number of hexa­
decimal shifts specified by the instruction have been com­
pleted. If the fraction is normalized, the condition code 
settings are 1 XXX. Exponent underflow produces settings 
of Xl XX. Exponent underflow and normalization can 
appear simultaneously. Flip-flops CC3 and CC4 are set to 
00 if the'result is zero, 01 if the result is negative, or 10 
if the resu It is positive. 

Short and Long Formats. If bit position 23 in the instruction 
word or indirectly addressed word is a zero, the contents of 
private memory register R are treated as a short-format 
floating point number. If bit position 23 is a one, the 
contents of pri vate memory reg isters Rand Ru 1 are treated 
as a long-format floating point number. 

Amount and Direction of Shift. The amount and direction 
of shift are determined by bit positions 25 through 31 of 
the effective address. These bits are regarded as a signed 
quantity, with bit position 25 the sign position. If bit 
position 25 is a zero, bits 25 through 31 are a positive 

3-364 

901172 

quantity, and a left shift is required. If bit position 25 is 
a one, bits 25 through 31 are a negative quantity (in two's 
complement form), and a right shift is required. The amount 
of shift is determined by the absolute value of the shift 
count. The shift count specifies the number of hexadecimal 
shifts of the fraction to be performed. 

Examples. Examples of a short-format right shift and a 
short-format left shift are shown in figure 3-162. 

Implementation of the Shi ft Floating Instruction. Figure 
3-163, shows the basic implementation of a left shift. The 
shift count is transferred from the P-register to bit positions 
o through 5 of the macro-counter. MCO through MC7 now 
hold four times the shift count. If a short format shift is to 
be performed, the absolute value of the short-format 
floating point number in the R-register is transferred to the 
A-register and zeros are transferred to the 8-register. If a 
long-format floating point shift is to be performed, the 
absolute value of both the Rand Rul registers is transferred 
to the A- and B-registers. The A- and 8-registers are 
treated as a single register during shifting operations. 

The fraction of the floating point number is contained in A8 
through A31 for a short-format shift, or A8 through 831 for 
a long-format shi ft. The exponent of the number is in A 1 
through A7; these seven bits are isolated from the remainder 
of the A- and 8-registers. AO contains a zero. The fraction 
in the A- and 8-registers is shifted left one bit at a time, 
and the macro-counter is decremented one count with each 
shift (effectively decrementing the shift count by one­
quarter with each shift; the total number of shifts performed 
must be a mu Itiple of four). The exponent field in A 1 
through A7 is decremented by one count for every four shifts, 
since the fraction has been increased by a factor of 16 and 
the exponent must be reduced to restore the original magni­
tude of the floating point number. 

When the shift count has been reduced to zero, when the 
fraction of the floating point number has been normalized 
(a one bit in A8 through A 11), or when the exponent field 
underflows (ones in AO through A7), shifting stops. The 
shifted result is corrected to its original sign and transferred 
back into private memory. If the fraction of the floating 
point number was originally zero, the floating point number 
is changed to true zero before the transfer is made. 

Figure 3-164 shows the basic implementation of a right shift. 
The shift count is in the P-register in two's complement form. 
The shift count is transferred to the macro-counter as follows: 
bits 26 through 30 are inverted and transferred to MC1 
through MC6. A one is forced into MC7. The macro­
counter now holds twice the shift count minus one. The 
floating point number is transferred to the A- and 8-registers 
as in the left shift. The fraction in the A- and 8-registers 
is shifted right two bits at a time with each shift (effectively 
decrementing the shift count by one-half with each shift; 
the total number of shifts performed must be a multiple of 
two). The exponent is incremented by one count with every 
two shifts to compensate for shifting the fraction. The 



901172 

fraction of the number is reduced by a factor of 16 with 
each two shi fts effected. The two least significant bits 
of the fraction are lost with each shift. 

When the sh i ft cou nt is reduced to zero, when the exponent 
field overflows (a one in AO), or when the fraction of the 
number goes to zero, shifting stops. The shifted result is 
corrected to its original sign and transferred back into 

private memory. If the fraction of the floating point num­
ber was originally zero or became zero, the floating point 
number is changed to true zero before the transfer is made. 

Shift Floating Phase Seguences. Preparation phases for the 
SF instruction are the same as the general PREP phases for 
word instructions, paragraph 3-59. Table 3-63 lists the 
detai led logic sequence during all SF execution phases. 

SHORT-FORMAT RIGHT SHIFT, TWO HEXADECIMAL DIGIT POSITIONS 

I~I:,:,:,~,~,:,:I~,~,~~:~,~,~,~::,~,:,~:~~,~,:::,:,~,~~~,~,:,~I 
r EXPO~ENT" FRACTION 

SIGN OF 0010 
FRACTION 

INSTRUCTION WORD 

PRIVATE MEMORY 
REGISTER 10 
BEFORE EXECUTION 

PRIVATE MEMORY 
REGISTER 10 
AFTER EXECUTION 

CONDITION CODES 

SHORT-FORMAT LEFT SHIFT, TWO HEXADECIMAL DIGIT POSITIONS 

I~I : ': 1 ~, : 1 : I: I : I ~, : ":':, :~, ~, ~ I~: ~, ~, ~,~:~,~,~,~:~,~,~,~:~,~,~, ~I 
r EXPONEN;' FRACTION 

SIGN OF 
FRACTION 

1010 

Figure 3-162. Shift Floating Examples 

INSTRUCTION WORD 

PRIVATE MEMORY 
REGISTER 10 
BEFORE EXECUTION 

PRIVATE MEMORY 
REGISTER 10 
AFTER EXECUTION 

CONDITION CODES 

901172A.3144 

3-365 



'"TI 
cO' 
c ., 
CD 

W 
I 

(). 

!N 

3" 
""C 

CD 
3 
CD 
:s 
Q ..... o· 
:s 
o ....., 

:!! 
o 
Q ..... 
:s co 

EXPONENT- I 
-f--EXPONENT 

ON EVERY 4TH 
CLOCK OF PH6 

PRIVATE MEMORY REGISTER R 

SHORT-FORMAT - PRE3 I R I 
LONG-FORMA T - PH4 

CORRECTED 
RESULT 

A- REGISTER 

(A8-A3l) 

PRIVATE MEMORY REGISTER R 

PRIVATE MEMORY REGISTER Rul 
(IF LONG-FORMAT) 

LONG-FORMAT SHIFT 

ZERO'S _r---. 

SHORT­
FORMAT 
SHIFT 

B-REGISTER 

PHS 

D-REGISTER 

LONG-FORMAT SHIFT 

CORRECTED RESULT 

PRIVATE MEMORY REGISTER Rul 

PRE3 
MC-I-/--- MC 
SHIFT COUNT IS 
DECREMENTED 
1/4 WITH EACH 
SHIFT 

MC Z(SHIFT COUNT =0) 

NORMALIZA TION 
EXPONENT(OF+UF) 

FRACTION =O-L--_~ 

SUSTAIN 
SHIFTING 
AND PH6 



W 
I 

~ 
" 

:!1 
co 
c 
(b 
W 
I 

3" 
""C 

CD 
3 
CD 
::J a 
o 
::J 

o 
-+> 

-0 
~ 
'i 
N .,. 
w 

t 

EXPONENT -I 
-r--EXPONENT 
ON EVERY 2ND 
CLOCK OF PH6 

SHORT-FORMAT - PRE3 
LONG-FORMAT - PH4 

PRIVATE MEMORY REGISTER Rl.1 
(IF LONG-FORMAT) 

LONG-FORMAT SHIFT 

LONG-FORMA T SHIFT 

PRIVATE MEMORY REGISTER Rul 

EXPONENT(OF+ UF) 

FRACTION =0 

MC-l-f-MC 
SHIFT COUNT 
IS DECREMENTED 
1/2 WITH EACH 

''-----..... SHIFT 

SUSTAIN 
SHIFTING 
AND PH6 



Phase Function Performed 

PREP At end of PREP: 

(A) : RR 

(C) : Effective address (shift 
type and shift count) 

(D) : Effective address (shift 
type and shift count) 

(P) : Program address 

If right shift is specified (shift 
count is negative), perform the 
following functions: 

Set flip-flop FL2 

(NP26- NP31 )--f-(MC1-MC6) 

One-f--MC7 

If left shift is specified, perform 
the following functions: 

(P26- P3l )--f--(MCO-MC5) 

Set flip-flop FLl if floating point 
number to be shifted is negative 

Clear B-register 

Reset flip-flops CCl and CC2 

3-368 

901172 

Table 3-63., Shift Floating Sequence 

Signals Involved 

S/FL2 = P25 PRE3 + ••. 

R/FL2 = CLEAR + .•. 

MCXNPLl = P25 PRE3 FASH 

S/MC7 = FUSF MCXNPLl + .•. 

R/MC7 = MCDC7 NFUS + ... 

MCXPL2 = FASH PRE3 NP25 

S/FLl = PRE3 RRO + ... 

R/FLl = CLEAR + ... 

BX = FAMDS PRE3 + ... 

R/CCl = FASH NFUMH PRE3 + ..• 

R/CC2 = FAMDS NFUMH PRE3 + •.• 

(Continued) 

Comments 

Contents of private mem­
ory register R. If long­
format shift is being 
performed, this number 
wi II be destroyed in PH3. 
If short-format shift, this 
is entire floating point 
number 

P-register holds reference 
address during PRE3, but 
program address is clocked 
into P-register at PRE3 
clock 

Flip-flop FL2 specifies 
that right shift is being 
performed. P25 is a one 
if shift count is negative 

MC1-MC7 now contain 
(2 shift count - 1). 
Shifting in PH6 will be 
two bit positions at a time 

MCO-MC7 now contain 
(4 shift count) 

Store sign of floating 
point number to be shifted 

Zeros are clocked into B-
reg ister to c I ear the 
register in the event of a 
short-format left shift. BO 
is transferred to A31 in 
this case, and the B-
reg ister must therefore 
contain zeros 

Reset for PH6 use 

Mnemonic: SF (24, A4) 



901172 

Table 3-63., Shift Floating Sequence (Cont.) 

Phase Function Performed 

PREP If long-format floating point shift 
(Cont.) is being performed, perform the 

following functions: 

PH3 

T5L 

Reset flip-flop NAXRR 

Reset flip-flop NLR31 F 

Branch to PH3 

If short-format floating point 
shift is being performed, per­
form the following functions: 

Enable signal (S/SXMA) 

Branch to PH5 

One clock long. Entered only 
for long- format sh i ft 

(RRO-RR31 )-+--(AO-A31) 

If long-format floating point 
number is even, enable signal 
(S/SXA)i if odd, enable signal 
(S/SXMA) 

Reset flip-flop NAXRR 

Signals Involved 

S/NAXRR = N(S/AXRR) 

(S/ AXRR) = PRE3 FUSF ND23 + ... 

R/NAXRR 

S/NLR31 F = N(S/LR31) 

(S/LR31) = PRE3 FUSF ND23 + •.• 

R/NLR31 F 

BRPH3 

S/PH3 

R/PH3 

(S/SXMA) 

BRPH5 

S/PH5 

R/PH5 

AXRR 

= FAMDS PRE/34 NBRPH5 
NANLZ + ••• 

= BRPH3 NCLEAR + ... 

= FUSF PRE3 N023 + ... 

= FUSF PRE3 N023 + ••• 

= BRPH5 NCLEAR + ... 

Set at last PRE P clock 

(S/SXA) = NFLl (S/SX/FLl) + .•• 

(S/SX/FLl) = 

(S/SXMA) = 

S/NAXRR = 
(S/AXRR) = 

R/NAXRR = 

FUSF 023 PH3 + ••. 

FLl (S/SX/FL1) + ... 

N(S/AXRR) + ••• 

FUSF 023 PH3 + .•• 

(Continued) 

Comments 

Prepare to read least sig­
nificant half of floating 
point number 

Force a one on private 
memory address line lR31 
during next phase 

Preset adder for -A-S 
duri ng next phase. Used 
if floating point number 
is negative 

PH3 and PH4 operations 
involve obtaining the 
most significant word of 
the long-format floating 
point number 

Transfer least signi ficant 
word of long- format num­
ber to A-register 

Preset adder to gate 
absolute value of least 
significant word of 
floati ng poi nt number to 
sum bus 

Prepare to read most sig­
nificant half of floating 
point number from private 
memory register R 

Mnemonic: SF (24, A4) 

3-369 



901172 

Table 3-63., Shift Floating Sequence (Cont.) 

Phase 

PH4 

T5L 

Function Performed 

One clock long. Entered only for 
long-format shift 

Signals Involved 

If floating point number is positive, Adder logic set at PH3 clock 
(AO-A31) ---(SO- S31) 

If floating point number is negative, Adder logic set at PH3 clock 
- (AO-A31 )---(SO-S31) 

(SO- S31 )-+--(BO- B31 ) 

If long-format floating point number 
is even, enable signal (S/SXA)i if 
odd, enable signal (S/SXMA), and 
reset flip-flop NK31 if end carry 

(RRO-RR31 )---!--(AO-A31) 

PH5 One c lock long 

T5 L If short-format shift is being 
implemented, perform the 
following functions: 

3-370 

- (AO-A31 )---(SO-S31) 

If floating point number to be 
shifted is negative, 
(SO-S31 )-f--(AO-A31) 

BXS = FUSF D23 PH4 + ... 

(S/SXA) = NFL1 (S/SX/FL1) + •.• 

(S/SX/FL1) = FUSF D23 PH4 + .•• 

(S/SXMA) = FL1 (S/SX/FL1) + .•. 

S/NK31 = N(S/K31) N(S/SXAMD/1) 
+ N(S/K31/1) 

(S/K31) = (S/SXMA) + ••• 

(S/K31/1) = KOO (S/K31/3) + ... 

(S/K31/3) = High during SF 

R/NK31 = ... 
AXRR = Set at PH3 clock 

Adder logic set at last PREP clock 

AXS = FUSF PH5 FLl + ... 

(Continued) 

Comments 

Transfer absolute value of 
least significant half of 
floating point number to 
sum bus 

Transfer absolute va lue of 
least significant half of 
floating point number to 
sum bus 

Transfer absolute va lue of 
least significant half of 
floating point number to 
B-register 

Preset adder to gate abso­
lute value of most signifi­
cant word of floating 
poi nt number to sum bus 

Setting K31 effectively 
provides a carry to most 
significant word of the 
floating point number as 
it is complemented in 
PH5. If no end carry 
exists, K31 wi II be reset 
for PH5 

Transfer most significant 
half of floating point 
number to A-register 

If the short- format num­
ber is positive, the 
negated resu It will not be 
transferred back to A­
register. If the short­
format number is negative, 
the negated result 
replaces original number. 
A-register now contains 
absolute value of original 
floating point number 

Mnemonic: SF (24, A4) 



901172 

Table 3-63. Shift Floating Sequence (Cont.) 

Phase Function Performed 

PH5 If long-format shift is being 
T5 L implemented, perform the 
(Cont.) following functions: 

PH6 

T5L 

If long-format floating point 
number is positive, (AO-A31) 
---(SO-S31 ) 

If long-format floating point 
number is negative, (NAO-NA3l) 
+ K31~(SO-S31)-+-­
(AO-A31) 

Enable signal (S/SXA) 

If left shift is being implemented, 
decrement count i·n macro-counter 
by one 

If shift count equals zero, 
branch to PH7 and request next 
instruction 

Length of PH6 determined by shift 
count, exponent value, normali­
zation, etc. If left shift is being 
performed, the following functions 
occur during each clock period: 

Enable signals FUSF/1 and SFT 

Enable signa I (S/SXA) 

Zeros---(SO-S7) 

Signals Involved 

Adder logic set at PH4 clock 

Adder logic set at PH4 clock 

AXS = FUSF PH5 F Ll + ... 

(S/SXA) = FASH PH5 + ... 

MCDC7 = FASH PH5 NFL2 + ... 

BRPH7 = FASH PH5 NFL2 MCZ 

S/PH7 = BRPH7 NCLEAR + •.. 

R/PH7 = ... 
S/MRQ = (S/MRQ/1) + ..• 

(S/MRQ/1) = FASH PH5 NFL2 MCZ + ••• 

R/MRQ = ... 

FUSF/1 = FUSF NIOEN PH6 + ••• 

SFT = FASH NIOEN PH6 

(S/SXA) = SFT + FASH (S/PH6/10) 
+ .•• 

S/PH6/IO) = IOPH1 SW13 NIPH10 
NPCP2 (NIOEN + lOBO) 

NPRXAD/O = FUSF/1 NDIS + •.. 

NPRXAND/O = FUSF/1 NDIS + ••. 

(Continued) 

Comments 

Insignificant action. 
Original floating point 
number inA and B 
remains unchanged 

Absolute value of 
original long-format 
floati ng poi nt number is 
now in A- and B-registers 

Preset adder for A--S 
in PH6 

Precount shift count 
towards zero. MC6 and 
MC7 hold 11 at end of 
PH5 if left shift 

Shifting is not called for 
by instruction 

Core memory request for 
next instruction in 
sequence 

Signal SFT signifies that 
shifting iterations are 
occurring 

Preset adder for A--S 
during next clock period. 
Signal (S/PH6/IO) is a 
return to shi ft iterations 
from I/O service 

NPRXAD and NPRXAND 
effectively disable adder 
logic so that SO-S7 are 
a Iways zeros 

Mnemonic: SF (24, A4) 

3-371 



901172 

Table 3-63. Shift Floating Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH6 (A8-A31 )-(S8-S31) Adder logic set at previous clock by (S/SXA) 

T5l 
(S8-S31 )-f--(A7-A30) AXSll NFSHEX NFL2 SFT + •.• Output of adder sh i fted (Cont .) = 

left one bit position. S8 
wi II always be zero 
because shifting wi II stop 
with normalization of 
number; A7 is conse-
quently never set as a 
result of shift 

BO-i-A31 S/A31 = AXSll A31 EN/1 + ... B-register contai ns the 
least significant word of 

A31 EN/1 = BO FAMDS PH6 + •.. long-format floating point 
number, or zeros if a 

R/A31 = AXSll + .•. short-format shift is in 
effect 

(B1- B31 )-+--(BO-B30) BXBll = SFT NFl2 NFSHEX + ... B-register shifted left one 
bit position 

Zero---B31 

Decrement exponent by one on ADC7 = FUSF/1 NFL2 NMC6 NMC7 The exponent is decre-
fourth c lock of PH6 and every mented after every four 
fourth c lock thereafter shi fts to compensate for 

shifting (the size of the 
number has effectively 
been increased by a factor 
of 16 due to shifting) 

Decrement shift count in MCDC7 = SFT BRP + ..• The original shift count 
MCO-MC7 by one (speci fying the number of 

hexadecimal digit posi-
tions to be shifted) is 
decremented by one-
quarter at each clock 

If a right shift is being performed, 
the following functions occur 
during each clock period: 

Enable signals FUSF/1 and SFT FUSF/1 = FUSF NIOEN PH6 + ••• Signal SFT signifies that 

SFT = FASH NIOEN PH6 
shifting iterations are 
occurring 

Enable signal (S/SXA) (S/SXA) = SFT + FASH (S/PH6/IO) Preset adder for A---S 
+ ••. during next clock period. 

(S/PH6/IO) = IOPH1 SW13 NIPH10 Signal (S/PH6/10) is a 
return to shift iterations 

NPCP2 (NIOEN + lOBO) 
from I/O service 

Mnemonic: SF (24, A4) 

(Conti nued) 

3-372 



Phase 

PH6 

T5L 
(Cont .) 

901172 

Table 3-63.. 5hift Floating 5equence (Cont.) 

Function Performed 

Zeros---(50- 57) 

(A8-A31 )--(58-531) 

(58-531 )-f---(A 1 O-A31) 

If a long-format shift is being 
performed, 530, 531-1---BO, Bl 
Otherwise, zeros--f---BO, B1 

(BO- B29)-+--(B2- B31) 

Increment exponent by one on 
second c lock of PH6 and every 
second c lock thereafter 

Decrement shift count in 
MC1-MC7 by one 

5ustain PH6 unti I shift count reaches 
zero or until normalization occurs on 
left shift, providing none of follow-
ing conditions exist: 

a. Exponent overflow or 
underflow 

b. Fraction equa I to zero 

c. I/O service call pending 

5ignals Involved Comments 

NPRXAD/O = FU5F/1 NDI5 + ... NPRXAD and NPRXAND 
effectively disable adder 
logic so that 50-57 are NPRXAND/O = FU5F/l NDI5 + .•• 
a Iways zeros 

Adder logic set at previous clock by (5/5XA) 

AX5R2 

5/BO 

530/1 

= NF5HEX FL2 NFL3 5FT + ... Output of adder shifted 

= 531/1 BXBR2 + ... 

= 530 BOOOl EN/l + •.• 

right two bit positions. 
A8 and A9 will always be 
reset, since zeros are 
present on 56 and 57 

B0001 EN/1 = FA5H D23 + ••. 

R/BO = BXBR2 + •.• 

5/B1 = 531/1 BXBR2 + ••. 

531/1 = 531 BOOOl EN/l + •.. 

R/Bl = BXBR2 + •.. 

BXBR2 

AUC7 

MCDC7 

BRPH6 

MCZ 

F5HEX 

5/PH6 

R/PH6 

= FL2 NFL3 NF5HEX 5FT + ••• NFL3 applies to fixed 
point shift only 

= NCC2 FL2 FU5F/l NMC7 Exponent incremented 
after every two shifts to 
compensate for shifting 
(size of number has been 
effectively decreased by 
a factor of 16 due to 
shifting) 

= SFT BRP +... The original shift count 
(speci fyi ng number of 
hexadecimal digit posi­
tions to be shifted) is 
decremented by one-half 
at each clock 

= FAMD5 PH6 NMCZ 
NF5HEX NBRPH10 

= NMCO NMCl ••• NMC7 

= FU5F (FNORM + AO + FL3) 

= BRPH6 NIOEN NCLEAR + ••• 

= ... 

Mnemonic: 5F (24, A4) 

(Cont i nued) 

3-373 

. 



901172 

Table 3-63.. Shift Floating Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH6 If an I/O service call is in effect S/PH6 = BRPH6 NIOEN NCLEAR + •.. 

T5L 
and more shifts are to be performed 

10EN = 10SC IOEN6 NIOINH + •.. I/O enable 
(Cont.) 

(macro-counter holds a count of 
four or above, and signal FSHEX is S/IOSC = SC NSCINH 10POP Set at previous clock 
false), inhibit setting PH6, complete 

IOEN6 = FAMDS NFPRR NFSHEX I/O enable, phase 6 
I/O operation, and then set PH6 to 

IOEN6/1 PH6 NDIOEXIT complete shifting 

IOEN6/1 = NMC0005Z N(FADIV CC2) 
NEWDM 

NMCOO05Z = MCO + MCl + ••. +MC5 

NIONH = N(ADNH PH6 + ABO PH6 Not I/O inhibit 
+ INTRAP NPCP2) 

R/PH6 = ... 
If shift count equals zero or signal 
FSHEX is true, and no I/O service 
call is pending, perform the 
following operations: 

Set flip-flop MRQ S/MRQ = (S/MRQ/l) + ••• Core memory request for 

(S/MRQjl) = FAMDS PH6 NIOEN 
next instruction in 

NBRPH6 + •.• 
sequence 

R/MRQ = ... 
Set flip-flop CCl if fraction is S/CCl = FUSF/l FNORM + ••• 
normalized on left shift 

FNORM (A8 + A 9 + A 10 + All) = 
MC6 MC7 NFL2 

R/CCl = FASH NFUMH PRE3 + ••• 

Set fl ip-flop F L3 if fraction S/FL3 = FUSF/l N(SO +Sl+~ ..•. +531) 
equals zero N(BO + Bl + ... + B31) 

R/FL3 = N(FUSF PH8 + FUS PH5) 

Set flip-flop CC2 if exponent S/CC2 = FUSF/l AO + ••• Exponent overflow occurs 
underflow or overflow has 

R/CC2 FUSF PH8 FL3 NFUMH + ••• 
if value in exponent field 

occurred = 
is incremented over 127. 
Exponent underflow occurs 
if value is decremented 
below zero 

Disable signal BRPH6 and NBRPH6 = MCZ + FSHEX + ••• 
branch to PH7 

S/PH7 = PH6 NBR NIOEN + ••• Signal NBR is true when 

R/PH7 = BRPH6 is disabled ... 

Mnemonic: SF (24, A4) 

(Continued) 

3-374 



901172 

Table 3-63. Shift Floating Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH7 One c lock long 

T5L Reset flip-flop NSXBF S/NSXBF = N(S/SXB) Preset logic for B-S 

(S/SXB) = FASH PH7 + ... in PH7 

R/NSXBF = ... 
Reset AO to clear possible R/AO = FUSF/l + ••• 
exponent overflow or underflow FUSF/l = FUSF NIOEN PH7 + ... 

Set flip-flop FL3 if fraction S/FL3 = F US F /1 N (S 0 + S 1 + ... + S 31 ) Fraction may have' gone 
equals zero N(BO + Bl + ... + B31) to zero on last shift of 

R/FL3 = (R/FL3) PH6 

(R/FL3) = FUSF PH8 + ... 

Set flip-flop CCl if fraction is S/CCl = FUSF/l FNORM + ... Fraction may have been 
normalized on left shift FNORM = (A8 + A 9 + A 1 0 + A 11) normalized on last shift 

MC6 MC7 NFL2 of PH6 

R/CCl = FASH NFUMH PRE3 + ... 

Set flip-flop CC2 if exponent S/CC2 = FUSF/l AO + ... Overflow or underflow 
overflow or underflow has R/CC2 = FUSF PH8 FL3 NFUMH + ..• may have occurred on 
occurred last shift of PH6 

PH8 One c lock long 

T5L (BO-B31)- (SO-S3l}-I--- SXB = NDIS SXBF + ... Least significant word of 

(DO-D31) SXBF Set at PH7 clock 
shifted resu It transferred = to D-register. This quan-

DXS = FUSF PH8 + ... ti ty is a II zeros if a short-
format shift is in effect 

If original floating point number (S/SXD) = FUSF PH8 NFLl + ... Take correct value of the 
was positive, enable signal (S/SXD). 

(S/SXMD) FUSF PH8 FLl + ... 
shifted result in PH9 and 

If original floating point number = PHI0 
was negative, enable signal S/NK31 = N(S/K31) N(S/SXAMD/l) 
(S/SXMD), and reset flip-flop NK31 + N(S/K3l/1) 

(S/K31) = (S/SXMD) + ... 

(S/K31/1) = (S/K31/2) (S/K31/3) + ... 

(S/K31/2) = High during Sf 

(S/K31/3) = High during SF 

R/NK31 = ... 
Reset flip-flop NLR31F S/NLR31 F = N(S/LR31) Force a one on private 

(S/LR31) = FUSF PH8 + ... 
memory address line LR31 
during PH9 to select 

R/NLR31 F = ... private memory register 
Rul 

Mnemonic: SF (24, A4) 

(Continued) 

3-375 



901172 

Table 3-63., Shift Floating Sequence (Cont.) 

Phase 

PH8 

T5L 
(Cont .) 

Function Performed 

If long-format shift is being 
performed, set fl ip-flop RW 

I f fraction is zero, perform 
the following operations: 

Set flip-flop CCl if left shift 

Reset flip-flop CC2 

Sustain the state of flip-flop FL3 

PH9 One c lock long 

T8l 

3-376 

If original floating point number 
was positive, (DO-D31)--­
(50-531 ) 

If original floating point number 
was negative, (NDO-ND3l) + K3l 
----(50-531 ) 

If long-format shift, (50-531) 
- __ (RWO- RW3l) 

Set K31 if end carry resu Ited from 
(S/SXMD) operation 

Set flip-flop RW 

Set flip-flop DRQ 

S/RW 

R/RW 

S/CC1 

R/CC1 

R/CC2 

R/Fl3 

Signals Involved 

FUSF PHS D23 + •.• 

= . FUSF PHS NFL2 FL3 + ••• 

= FASH NFUMH PRE3 + ••• 

= FUSF PH8 FL3 + ... 

= N(FUSF PH8) + ... 

Adder logic set at PHS clock by (S/SXD) 

Adder logic set at PHS clock by (S/SXMD) 

RWXS/O- RWXS/3 = RW + ••• 

RW 

S/NK31 

(S/K31) 

(S/K31/1) 

(S/K31/3) 

R/NK31 

S/RW 

R/RW 

S/DRQ 

(S/DRQ) 

R/DRQ 

= Set at PHS clock 

= N(S/K31) N(S/SXAMD/1) 
+ N(S/K3l/1) 

= (S/SXMD) + ••• 

= KOO (S/K31/3) + ••• 

= High during SF 

= ... 
= FAMDS PH9 + ••• 

= ... 

= (S/DRQ) NCLEAR 

= PH9 + ... 

(Continued) 

Comments 

Prepare to write least sig­
nificant word of shi fted 
result into private memory 
register Ru 1 

A zero fraction is con­
sidered to be normalized 

Cancel a possible expo­
nent underflow or over­
flow indication. Resu It 
is true zero 

FL3 indicates a fraction 
of zero. This data is 
needed in PH9 

Transfer corrected shifted 
-result to private memory 
reg ister Ru 1 

Provide carry to most sig­
nificant word of result in 
PH10 

Prepare to write most sig­
nificant word of result 
into private memory regis­
ter R (complete result if 
short-format shi ft is being 
performed) 

Inhibits transmission of 
another clock unti I data 
release signal is received 
from core memory 

Mnemonic: SF (24, A4) 



901172 

Table 3-63. Shift Floating Sequence (Cont.) 

Phase 

PH9 

T8l 
(Cont.) 

Function Performed 

Enable clock T8 if short-format 
shift 

Enable clock Tl1 if long-format 
shift 

If fraction is not zero, perform 
the following operations: 

If original floating point number 
was positive, enable signal (S/SXA). 
If original floating point number was 
negative, enable signal (S/SXMD) 
and do not set K31 unless end carry 
is present 

PHlO Sustained unti I data release 

DR If original floating point number 
was positive (AO-A31)--­
(SO-S31 ) 

If original floating point number 
was negative (NAO-NA31) + K31 
--(SO-S31) 

(SO- 531) ---( RWO- RW31 ) 

Set flip-flop CC3 if the result of 
the shift was greater than zero. 
Otherwise, reset CC3 

Set flip-flop CC4 if shift result 
was less than zero. Otherwise, 
reset CC4 

ENDE functions 

T8EN 

NT5EN 

NT8EN 

(S/SXA) 

(S/SX/FLl) 

(S/SXMD) 

Signals Involved 

NT5EN NT11 l 
N(SXADD/1 RW) 
N(RW REU) N(REU AXRR) 

= . RW+ ... 

= SXADD/1 RW + ... 

= NFLl (S/SX/FLl) + •.. 

= FUSF PH9 NFl3 + ••• 

= Fll (S/SX/Fll) + ..• 

Adder logic set at PH9 clock by 
(S/SXA) 

Adder logic set at PH9 clock by 
(S/SXMD) 

RWXS/0-RWXS/3 = RW + ••• 

RW Set at PH9 clock 

S/CC3 = SGTZ TESTS + .•. 

SGTZ = (SO + Sl + . .. + S31) 
+ (80 + 81 + ... + 831) 

= (NSO NFACOMP) + ... 

TESTS FUSF ENDE + ... 

R/CC3 = TESTS + ... 

S/CC4 = (S/CC4/2) TESTS + ••. 

(S/CC4/2) = SO NFACOMP + •.. 

R/CC4 = TESTS + ... 

Comments 

T5 is disabled by signal 
SXADD/1 

Take correct va lue of 
most signi ficant word of 
shifted result in PH10. 
Fl3 is set, zeros wi" be 

If 

gated to sum bus in PH 10 

Transfer corrected shifted 
resu It to private memory 
register R. Zeros are 
transferred if fraction is 
zero (floating point num­
ber has been changed to 
true zero) 

8-register contains least 
significant word of 
shifted result 

Mnemonic: SF (24, A4) 

3-377 



Paragraph 3-74 

3-74 Fomi Iy of Floating Point Instructions 

GENERAL Implemented floating point instructions can be 
used to add, subtract, multiply, and divide floating point 
numbers. Floating point instructions are implemented by 
the addition of the floating point option to the Sigma 5 
computer system. If the floating poi nt option is not present 
in the system, and execution of a floating point instruction 
is attempted, the computer will-abort execution of the 
instruction. A trap to memory location X'41' (65 10), the 
unimplemented instruction trap location, wi II result. 

The following instructions are included in the floating 
point option: 

Instruction Mnemonic O~code 

Floating Add, Short FAS 3D, BD 

Floating Add, Long FAL 1 D, 9D 

Floating Subtract, Short FSS 3C, BC 

Floating Subtract, Long FSL 1C, 9C 

Floating Multiply, Short FMS 3F, BF 

Floating Multiply, Long FML 1 F, 9F 

Floating Divide, Short FDS 3E, BE 

Floating Divide, Long FDL 1 E, 9E 

FLOATING POINT HARDWARE. The floating point option 
of the Sigma 5 computer consists of additional modules that 

901172 

supplement the CPU logic. The assembly is called the 
floating point box since it is physically separate from the 
main CPU logic. Registers and logic in the floating point 
box are very similar to the main CPU logic. 

Note 

Actions that take place in the floating point box 
are underscored in the sequence charts for the 
floating point instructions. Main CPU functions 
are not underscored. 

FLOA lING POINT FORMATS. There are two floating 
point number formats for the Sigma 5 computer, short and 
long. Both are shown in figure 3-165. The short format is 
made up of a sign bit, bit 0; an excess-64 biased exponent, 
bits 1 through 7; and a 24-bit mantissa, bits 8 through 31. 
The long format adds 32 bits of lower significance to the 
mantissa. 

A floating point number in the Sigma 5 has the following 
form: 

Floating Point Number = S(M x 16
E
) 

S represents the sign bit of the number, bit O. If the sign 
bit is a zero, the number is positive and in true form. If 
the sign bit is a one, the entire number is in two's comple­
ment form. M is the mantissa of 24 or 56 bits. The mantissa 
is a fraction with the binary point immediately before bit 
position 8. E is the exponent, with the bias of 64 removed. 
The term II inverted" refers to the exponent in a negative 

SHORT -FORMAT 

LONG-FORMAT 
901172A.3151 

Figure 3-165. Floating Point Number Formats 

3-378 



901172 

~ 
FLOATING POINT NUMBER = S(M x 16E) = + (2- 16 x 16-2) = + 2-24 

S INVERT: S S 
rOl000101-010001012 - 64 = 00000101 2 = +510 

, ..... __ L--_--., 

It: , :' :,~, :,~ I:,:,:, :"':":":":":' ,:,:,,:,~:,:,:,,:,:,~,~)~,:,~,~I 
I I 

TWO·S ~OMPLEMENT: 
000000000000000100000000 

~ 
FLOATING POINT NUMBER = S(M x 16

E
) = - (2-

16 
x 16+5) = - 16 

Figure 3-166. Floating 

floating point number; the exponent must be uninverted 
before bias is removed. 

The largest positive mantissa has all ones in the mantissa 
field of the floating 5t.0int number, representing a quantity 
of (1_2-24) or (1-2- 6). The sma Ilest positive mantissa is 
a II zeros, representing a quantity of zero. The largest 
mantissa in a negative floating point number is all zeros 
with a one in the least significant bit, -(1-2-24) or 
-(1_2-56); the smallest bit is a mantissa of all ones, 
_(2-24) or _(2:-56). 

The sign bit and the exponent field of the floating point 
number, taken together, represent an excess-64, signed, 
exponent quantity. For example, if a positive floating 
point number has an exponent field of 11111112, the excess-

64, signed quantity represented is Bllllll1
2
, or + 127. If 

the bias is removed by subtracting 64, the resu It is 
S 
001111112 or + 63. In this manner the ~xponent of a 
floating point number may be treated as a separate entity 
in arithmetic operations with other exponents. As another 
example, consider an exponent of 01111012 in a positive 
number. The exponent 01111012 in this number represents 

9011nA.3152 

Point Number Example 

S S S 
00111101

2 
- 01000000

2 
= 11111101

2
, or -3. Exponents 

in negative floating point numbers are inverted form. The 
exponent 1000010

2 
in a negative number, when inverted, 

S 
becomes 00111101

2
• When bias is removed, the result is 

S S S 
00111101 2 - 01000000

2 
= 11111101

2
, or -3. 

EXAMPLES OF FLOATING POINT NUMBERS. Examples 
of a positive and a negative floating point number with an 
explanation of the fields and conversion are shown in fig­
ure 3-166. 

NORMALIZATION. A floating point number is said to 
be normalized if the absolute value of the mantissa is less 
than one but greater than 1/16. The mantissa of a positive 
floating point number must have a one somewhere in the 
four most significant bits (most significant hexadecima I 
digit must be nonzero) for the number to be normalized. A 
negative number is in two·s complement form; a negative 
floating point number, therefore, must have a zero in the 
four most significant bits or have all ones in the four most 
significant bits and zeros in the remaining digits. 

3-379 



The negative floating point number 1 XXXXXXXOO---O 
is illegal, as the absolute value of this number is equal to 
one. 

Norma lization of a floating point number takes place as 
follows: the mantissa is shifted one hexadecimal place to 
the left. The exponent is decremented by one to compen­
sate for the shift. Left shifting and decrementing of the 
fraction continues until the absolute value of the mantissa 
is greater than or equal to 1/16. Normalization is illus­
trated in figure 3-167. 

A floating point number is said to be simple-normalized if 
it is the range of + 1/16~N < lor -1 ~N < -1/16. 
Simple-normalized numbers are permissible only in the 
hardware whi Ie a floating point instruction is being imple­
mented, and are not lega I in memory. 

FLOATING POINT MODE CONTROL BITS. Three bits in 
PSW1 of the program status doubleword control performance 
of floating point instructions. 

901172 

Floating Point Addition and Subtraction. FN, floating 
normalize, is significant only during floating point addi­
tions and subtractions. If F N is a zero, the resu Its of 
additions and subtractions are to be postnormalized. If 
exponent underflow occurs, if the result is zero, or if more 
than two hexadecima I shifts are required for norma I ization, 
floating mode bits FS and FZ determine the resu Itant action. 
If FN is a one, postnorma I ization is inhibited and FS and FZ 
are ignored. 

FZ, floating zero, is signifjcant during additions or sub­
tractions if FN is a zero. If exponent underflow occurs 
during floating point addition or subtraction and the FZ bit 
is a zero, the resu It is set equa I to a II zeros, providi ng 
there is no trap by the FS hit. If exponent underflow occurs 
and the FZ bit is a one, the computer traps to location X'441 

with the contents of private memory unchanged. 

FS, floating significance, is significant during additions or 
subtractions if FN is a zero. If FS is a zero and the result 
is zero, the mantissa and exponent of the result are set 

NUMBER TO BE 
NORMALIZED 
(SHORT FORMAT) 1011 ° ° ° ° ° 110 ° ° 01 ° ° ° 010 ° ° 010 ° 1 010 ° ° 010 ° ° °1 

o , ' , ' , ' • ' 5 ' " 7 : ,'.',J 11 : "',,I,, ',. ,,',,' ,,',. ,J"'.,',, "',},,1,, ,,',.',.' " 

3-380 

FIRST SHIFT 

SECOND SHIFT 

THIRD SHIFT, 
NORMALIZED 
NUMBER 

1011 ,°,°,°,°,°,°1°,°,0,01
0
,0,0,°1°,°,1 ,°1°,°,°,°1°,°,°,°1°,°,°,°1 

+Cll)X 16° 

( 1) -1 + 27 x 16 

Figure 3-167. Normalization of floating Point Numbers 

901060A.31404 



901172 

equa I to a" zeros. If FS is a one a nd the resu I t is zero, or 
more than two hexadecimal shifts are required for normali­
zation of the result, the computer traps to location X'44 1 

with the contents of private memory unchanged. 

Exponent overflow unconditiona Ily causes a trap to location 
X'44 1 with private memory unchanged. 

Floating Point Multiplication and Division. If exponent 
overflow occurs during a floating multiply or divide or if 
division by zero is attempted, the computer uncondition­
a IIy traps to location X'441. Private memory remains 
unchanged. 

If the FZ bit is a zero and the exponent of the result of a 
multiplication or division has been reduced below zero 
(underflow) or if the mantissa of the result is zero, the 
exponent and mantissa of the result are set equa I to a" 
zeros. If FZ is a one and one of these conditions occurs, 
the computer traps to location X'441. Private memory 
remains unchanged. 

Condition Code Settings. Condition code settings for the 
eight floating point instructions are shown in table 3-64. 

FLOATING ADD, SHORT (FAS; 3D, BD). FAS adds the 
effective word and private memory register R. If no 
floating point arithmetic fault occurs, the sum is loaded 
into private memory register R. 

FLOATING ADD, LONG (FAL; 10, 90). FAL adds the 
effective doubleword and private memory registers Rand 
Rul. R must be an even value for correct results. If no 
floating point arithmetic fault occurs, the sum is loaded 
into private memory registers R"and Ru 1 

FLOATING SUBTRACT, SHORT (FSS; 3C, BC). FSS sub­
tracts the effective word from the contents of private mem­
ory register R. If no floating point arithmetic fau It occurs, 
the difference is loaded into private memory register R. 

FLOA TINGSUBTRACT, LONG (FSL; 1 C, 9C). FSL sub­
tracts the effective doubleword from the contents of private 
memory registers Rand Rul. R must be an even value for 
correct results. If no floating point arithmetic fault occurs, 
the sum is loaded into private memory registers Rand Rul. 

Table 3-64. Floating Point Condition Code Settings 

CONDITION 
CODE 

1 2 

0 0 
0 0 
0 0 

0 1 
0 1 
a 1 

Q)f: 
0 
0 
a 

1 1 
1 1 
1 1 

3 4 

0 0 
0 1 
1 0 

a 0 
0 1 
1 a 

a a 
0 1 
1 a 

a 0 
a 1 
1 0 

MEANING IF NO TRAP TO LOCATION X'44 1 

OCCURS 

A x 0, a/A, or -A +A CD with FN=l } Normal 
N < 0 results 
N >0 

* 
* 

-A + A CD 
N<O }>2 postnormal-) FS=O, FN=O, and 
N > 0 izing shifts no underflow 

Underflow with FZ =0 and no trap by FS = 1 CD 
* 
* 

CD Resu It set to true zero 

CV * indicates impossible configurations 

@ Applies to add and subtract only where FN =0 

MEANING IF TRAP TO LOCA nON X '441 

OCCURS 

* 
* 

Divide by zero J 
Overflow, N < 0 Always trapped 
Overflow, N > 0 

N < 0 >. 2 Postnorma \- FS = 1, FN =0, 
-A +A} 

N > 0 izing shifts } and no under-

* 
Underflow, N < 0 } FZ = 1 
Underflow, N > 0 

flow with FZ =1 

3-381 



901172 

FLOA TING ADD AN D SUB TRACT PHASE SEQUENCE. Prep­
aration phases for FAS and FSS are the same as the general 
PREP phases for word instructions, paragraph 3-59. Prepa­
ration phases for FAL and FSL are the same as the general 
PREP phases for doubleword instruction, paragraph 3-59. 

Figure 3-168 shows the general method of FAS, FAL, FSS, 
and FSL implementation. The example shown is one of a 
simplified floating addition. Table 3-65 lists the detailed 
logic for execution of floating add and floating subtract 

3-382 

A. TRANSFER OF OPERANDS: 

B. EXPONENT DIFFERENCING: 

C. EQUALIZATION OF 
EXPONENTS: 

EXAMINE EXPONENT DIFFERENCE: 

ADJUST I SMALLER FLOATING 
POINT NUMBER I : 

EXAMINE EXPONENT DIFFERENCE: 

D. ADDITION: 

UNBIAS EQUALIZED EXPONENT: 

E. OVERFLOW DETECTION AND 
POSTNORMAllZA TION: 

CHANGE TO ABSOLUTE VALUE 
AND EXAMINE: 

fIRST POSTNORMALIZATION 
TRY: 

F. POSTNORMALIZATlON: 

BIAS EXPONENT: 

G. STORAGE: 

CHANGE TO PROPER FORM 
AND STORE: 

i nstru ct ions. 

(FN =0) 

I I '· o 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 AUGEND 

I I 
I , (2- 10 x 16-7 , 

1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 ADDEND 

_(2-9 x 16.9 ) 

,SIGN BIT 

o 1 0 0 0 1 1 = 71 - 64 = +7 
1 0 1 1 0 1 0 = 73 - 64 = -(+9) 

1 
1 1 1 1 1 1 1 0 = -2 

1 1 1 1 1 1 1 0 F 0 

011 000 1 1 110 0 0 0'0 0 0 0'0 1 0 0 

+IO~~g:T~ ~~ 
r SIGN BIT 2 HEXES. ~ (LOST) (LOSn 

011 0 0 1 0 0 110 0 0 0 0 0 000 000 

01001001 
1 0 1 1 0 1 1 0 

1 
, 0 0 0 0 0 0 0 0 = 0 

o~o 0 0 0'0 0 0 0
1
0 0 0 0 

1~111111111000 

1~1111'111lI1000 

1 0 0 1 0 0 1 
-1 0 0 0 0 0 0 (-64) 

000 1 001 

01000 1 0 0 110 0 0 0'0 0 0 0'1 000 

I/IHIFT LEFT ONE 
HEX. DIGIT 

I 
•• 

o 0 0 0 1 0 0 010 0 0 0 1 0 000 0 0 0 

// -/-7/'~-I-FT-L-E-FT-O-N-E ---
/. /. HEX. DIGIT 

o I 0 0 0 0 1 ]- 1 11 0 0 0' 0 0 0 O· 0 0 0 0 
+1 0 0 0 0 0 0 

01100011111000'0000'0000 

110 1 1 1 0 0 011 0 00'0 0 0 0'0 0 0 0 

RESULT 

_(2- 1 x 16 +7) 

Figure 3-J68:. Floating Add and Subtract Implementation 

901172A. 3153 



901172 

Table 3-65. FAS, FSS, FAL, FSL Sequence 

Phase Function Performed 

PREP At end of PREP: 

CPU 
PH1 ; 
Box 
PH1 ; 
TSL 

(A): RR 

(C): Core memory operand MSW 

(D): Core memory operand MSW 

Enable signa I (S/SXNA) 

If long format instruction is in 
effect, perform the following 
functions: 

Force a one into P31 

Set flip-flop MRQ 

Enable clock TS 

FPCON--floating point box 

Set flip-flop PH1 

One c loc k long 

(NAO- NA31 )--(SO-S31) 

(NSO- NS31 )~(F PO-F P31) 

Signa Is Involved 

Note 

Actions that take place in the floating 
point box are underscored in the sequence 
charts for the floating point instructions. 
Main CPU functions are not underscored. 

(S/SXNA) = FAFL PRE/34 + ••• 

PUC31 = FAFL N02 PRE3 NANLZ 
+ ••• 

S/MRQ = (S/MRQ/1) + ••• 

(S/MRQ/1) = FAFL N02 NANLZ PRE3 
+ ••• 

R/MRQ = · .. 
S/NTSL = N(S/TSL) 

(S;lSL) = FAFL NIOACT NPH10 

R/NTSL = · .. 
FPCON = FAFL PRE3 + ••• 

S/PH1 = FPCON NPH1 

R/PH1 = · .. 

Adder logic set at PH1 clock 

FPXS = NPHS NDIS 

(Continued) 

Comments 

Contents of private mem­
ory register R. Most 
significant word (MSW) 
of augend 

MSW of addend 

MSW of addend 

Preset adder for -A--­
S in PH1 

Prepa re to obta in LSW of 
addend 

Memory request for LSW 
of addend. Inhibited if 
trap because floating 
point option not present 

C loc ks for rema i nder of 
floating point phases are 
TS unless I/O service 
call is in effect (PH6) 

Start functions in 
floating point box 

Sets Box PH1 

Gate MSW of augend to 
FP lines 

Mnemonic: FAS (3D, BD) 
FSS (3C, BC) 
FAL(l 0, 90) 
FSL (1 C, 9C) 

3-383 



901172 

Table 3-65. FA5, F55, FA~ F5L 5equence (Cont.) 

Phase Function Performed 5igna Is Involved Comments 

CPU FPO ---546, 547 5XFPiU = 54607XFP 5ign of augend ____ 

PH1; 
546, 547 

Box 
54607XFP = PH1 NFPDI5 + .•• 

PH1; 
T8L (FP8-FP31 )---(548-571) 5XFP/U = 54607XFP Mantissa of augend---
(Cont.) ~548-571 } 

(FPO-FP7) ---(50-57) 5XFP/4 = 54607XFP + .•• Exponent of augend 
--~SO-S" 

Zeros ---(58-531) No gating term enabled 

(546-571, 50-531)---'- AX5 = PH1 + •.• 

(A46-A71, AO-A31) ss 
(A): III AUG MANTISSA I 

4647 71 

I ~~~ I ZEROS I 
o 78 31 

9011nA.3154 

DO. ---FPCON --floating FPCON = FAFL PH1 DO' + .•. 
point box } Transfer sign of addend 

to MWN in floating 
FPCON-f--MWN 5/MWN = FPCON PH1 point box 

RiMWN = PH1 

Clear S-register SX = PH1 + ••. 

Clear E-register EX = PHl + ... 

Clear F-register FX = PH1 + .•. 

lf long format instruction is in 
effect, perform the following 
functions: 

Force a one on private memory (5/LR31) = FAFL N02 PH1 + ..• Prepare to obtain L5W 
address line LR31 of augend 

Reset fl ip-flop NAXRR 5/NAXRR = N(5/AXRR) Preset logic for RRul 

(5/AXRR) = FAFL N02 PH1 + •.• 
-+--A in PH2 

R/NAXRR = ... 
Enable signa I (5/5XND) (5/5XND) = FAFL PH1 + ... Preset adder for N D 

---5 in PH2 

5et flip-flop PH2 5/PH2 = PH1 Sox PH2 

R/PH2 = ... 

Mnemonic: FA5 (3D, SD) 
F55 (3C, BC) 
FAL(l D, 9D) 
F5L (1 C, 9C) 

(Continued) 

3-384 



Table 3-65. FA5, FSS" FAL, F5L 5equence (Cont.) 

Phase Function Performed 5igna Is Involved Comments 

CPU One c lock long 
PH2; 

(NDO-ND31) ---(50-531) Adder logic set at PHl clock MSW of addend--FP Box 
lines PH2; (N50-N531) ---(FPO-FP31) FPX5 = NPH8 NDI5 

T8L 
FPO--546, 547 5XFP/U = 54607XFP Sign of addend--

54607XFP = PH2 NFPDI5 + ••. 546, 547 

(FP8-FP31) ---(548-571) 5XFP/U = 54607XFP Mantissa of addend 

--(548-571) 

(FPO-FP7) ---(50-57) 5XFP/4 = 54607XFP Exponent of addend 

--(50-57) 

Zeros ___ (58-531) No gating term enabled 

(546-571, 50-531)--f-- DX5 = PH2 + ••• 

(D46-D71, DO-D31) SS 

(0):111 1 ADD MANTISSA 
4647 71 

I ~~~ I ZEROS 1 
o 78 31 

9011nA.3155 

(NAO- NA7) --f--(FO-F7) FXNA = PH2 N06 Auaend eXEonent-f--

F-register 

If augend is negative R/AO = AX/L Uninverted augend 

(NAO-NA7)--+-(AO-A7) AXIL = AXL + ••• expo nent-r--{AO-A7) 

AXL = PH2 AO 

5/Al = NAl PH2 AO 

. . 
5/A7 = NA7 PH2 AO 

R/Al-R/A7 = AX/L 

5et fliE-flop A8 5/A8 = PH2 NMUL + ••• For PH3 use 

RlA8 = AxiL 

5et fli~-flo~ D8 if addend is 5LD8 = PH2 MWN + ••• For PH3 use 

negative R/D8 = DX/L 

DXLL = DX + ••• 

DX = PH2 + ••• 

Mnemonic: FA5 (3D, BD) 
F55 (3C, BC) 
FAL(l D, 9D) 
F5L (lC, 9C) 

(Continued) 

3-385 



901172 

Table 3-65. FAS, FSS, FAL, FSl Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU Enable signal (S/SXAPD) if (S/SXAPD) = (S/SXAPD/1 ) + ... For exeonent arithmetic 
PH2; 

addend is negative (S/SXA PD /1 ) = PH2 NMUl MWN + •.. in PH3 
Box 
PH2; 

Enable signa I (S/SXAMD) if (S/SXAMD) = N(S/SXAPD) For exponent arithmetic Tal 
(Cont .) addend is positive (SLSXAMDL2) + •.• in PH3 

(S/SXAMD/2) = PH2 + .•• 

If long format instruction is in 

effect, eerform the following 

functions: 

(RRO-RR31)-f-- (AO-A31) AXRR = Set at PH1 clock lSW of augend --f--
A-register 

Enable signa I (S/SXNA) (S/SXNA) = FAFl PH2 + ••• Preset adder for -A 
---S in PH3 

Set flip-flop DRQ S/DRQ = (S/DRQ/2) + ..• Inhibits transmission of 

(S/DRQ/2) FAFl N02 PH2 + ••• 
another clock unti I data = 
release received from 

R/DRQ = .. . core memory • (Memory 
request made duri ng 
PREP) 

Set fl i p-flop PH3 S/PH3 = PH2 Box PH3 

R/PH3 = ... 

CPU One c lock long 
PH3; 

(A46-A71, AO-A31) ± Adder logic set at PH2 clock (AO-A?) contains unin-Box 
PH3; {D46-D71, DO-D31)--- verted augend exeonent. 
Tal 

(S46-S71, SO-S31) The adder is set to sub-if 
short , tract the uninverted 
DR if (SO-S7) -f---(EO-E7) SLEO = SO PH3 + ... 

addend exeonent from long . 
the uninverted augend 

S/E7 = S7 PH3 + ••. 
D8, set in exponent. 

PH2 if addend negative, 
R/EO = EX + ... 

effectivel}:': adds a one 

for two's comR'ement of 
R/E7 = EX + ... 

addend eXEonent 

(NAO-NA31) ---(SO-S31) Adder logic set at PH2 clock LSW of augend---FP 
lines if long format in-

(NSO- NS31) ---(FPO-FP31) FPXS = NPH8 NDIS struction. If short format, 
action is meaningless 

Mnemonic: FAS (3D, BD) 
FSS (3C, BC) 
FAl(1D,9D) 
FSl (1 C, 9C) 

(Continued) 

3-386 



901172 

Table 3-65. FAS, FSS, FAL, FSL Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU If lon9 format instruction AXFP = PH3 N02 LSW of augend-+--
PH3; 

(FPO-FP31)--f-- (AO-A31) A-register Box 
PH3; 

If short format instruction No gating term enabled T8Lif 
short, Zeros-f--(AO-A31) 
DR if 

(MBO-MB31) ---(CO-C31)-+-- DXC FAFL N02 PH3 + •.. LSW of addend ---C-long = 
(Cont.) (DO-D31) if long format instructions and D-registers 

Enable signa I (S/SXND) (S/SXND) = FAFL PH3 + •.. Preset adder for - D---
S in PH4 

Set flip-flop PH4 S/PH4 = PH3 Box PH4 

S/PH4 = ... 
CPU One clock long 
PH4; 

(NDO- ND31) ---(SO-S31) Adder logic set at PH3 clock LSW of addend if long Box 
PH4; 

format instruction. 
(NSO- NS31) ~(FPO-FP31) FPXS = NPH8 NDIS Meaningless if short T8L 

format 

If long format instruct ion SXFPL4 = S0031 XFP + ... 

(FPO-FP31 )-~50-531) 5XFPLA = S0031 XFP + •.. 

S0031XFP = PH4 N02 NFPDIS 

If short format instruction No gating term enabled 

Zeros-(SO-531) 

(50- 531) -I--(DO- 031 ) DX5/L = PH4 + ••• L5W of addend {if lona 

format) or zeros (if short 

format)-f--D-reaister 

Clear condition code flip-flops R!ce = FAFL PH4 + ••• 

Enable signa I (S/5XB) (5/5 X B) = FAFL PH4 + .•• Preset logic for B---S 
in PH5 

Branch to CPU PH5 S/PH5 = PH4 NBR CPU enters PH5. Float-

R/PH5 = 
ing point box may go to ... PH5 or PH6 

If ex~nent difference in E-register 

is egua I to zero, ~erform the 

following functions: 

Siana I A5PP is enabled A5PP = PH4 N06 EOO03Z Add/subtract prepara-

EQ407Z + III tion. Addition or sub-

traction ma~ be done! 

as exponents are egual 

Enable siana I {SL5XAPO} if (5L5XAPO} = (5i5XAPDLll + ••• Preset adder for A + 0 

add instruction (SLSXAPDi 1} = A5PP 07 NSW1 + ••• --S in PH5 

Mnemonic: FA5 (3~, BO) 
FSS (3C, BC) 
FAL(l D, 90) 

C ntinued ( 0 
FSL (1 c, 9C) 

3-387 



901172 

Table 3-65. FAS, FSS, FAL, FSL Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU Enable signa I (SLSXAMD} if Preset adder for A - D 
PH4; :iubtract instruction ----S in PH5 
Box ., 

PH4; (FO-F7) -64-+--(EO-E7) if EXFM64 = ASPP NFO The uninverted f unbiased 

T8l ex~onent in F-register is augend ex~onent is 
(Cont .) uninverted transferred to F-register. 

(NFO-NF7) -64--f--(EO-E7) if EXNFM64 = ASPP FO 
This also is the ex~onent 

of the addend in this 
exponent in F-register is inverted 

case 
~ 

Branch to Box PH6 SLNPH6 = N{SLPH6) Go to add/subtract phase 

(S/PH6) = ASPP + ..• 

F/NPH6 = ... 
If ex~onent difference in E-register Augend ex~onent is 

is greater than zero, ~erform the greater than addend 
following functions: exponent 

Signal ALM is enabled ALM = PH4 N06 NEO NASPP Right align ad~end 

+ •.• 

Enable signa I (S/SXD) if addend (S/SXD) = (S/SXAVD) ND46 + ••• 

} 
Prepare to take absolute 

~ositive 
(S/SXAVD) 

value of addend in PH5. 
= PH4 ALM + ••• 

Preset adder loaie 

Enable signa I (SLSXMD) if addend (S/SXMD) = (SLSXA VD) D46 + ••. 

negative, and set fI i~-flo~ SWl S/SWl = (S/SW1/l) + .•. SWl signifies that o~er-

(SiSW1 / 1) = ALM MWN + ••• and sign has been reversed 

RiSW1 = NPH9 

Set fli~-flo~ FPR if result of arith- S/FPR = ALM N(MWN G) 07) + ... Floating polarity reversed 

metic operation in PH6 wi" be R/FPR = PH7 N06 D46 + ••• 
o~~osite to correct result 

(EO-E7) -l-+--(EO-E7} EDC7 = ALM + ••• Downcount ex~onent 

difference toward zero. 

(Ex~onent difference is 

a positive number) 

Set flip-flop SW2 SLSW2 = PH4 ALM NPH7 + ••• Signifies that A ;' ., D 

R/SW2 = ... transfer wi" be made in 

PH5 

Branch to Box PH5 S/NPH5 = N(S/PH5) Go to a lignment ~hase 

{SiPH5) = PH4 N06 NASPP + ••• 

R/NPH5 = ... 
Mnemonic: FAS (3D, BD) 

FSS (3C, BC) 
FAL(lD,9D) 
FSL (1 C, 9C) 

(Continued) 

3-388 



901172 

Table 3-65. FAS, FSS, FAL, FSl Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU If exeonent difference in E- Addend ex~onent is 
PH4; register is less than zero, ~erform greater than augend 
Box the following functions: exponent 
PH4; 
Tal Signal AlR is enabled AlR = PH4 N06 EO NRTZ Right align augend 
(Cont .) 

} 
Enable signa I (S/SXA) if augend (S/SXA) = (S/SXAVA) NA47 + •.. Prepare to take absolute 

is eositive (S/SXAVA) = PH4 AlR + ••• va lue of augend in PHS 

Enable signa I (S/SXMA) if augend (S/SXMA) = (S/SXA VA) A47 Preset adder logic 

is negative, and set fli~-floe SW1 S/SW1 = {S/SW1/1) + •• ~ SW1 signifies that o~er-

(S/SW1/1) = AlR A47 + ••. and sign has been 

RLSW1 = NPH9 reversed 

Set fli~-flo~ FPR if result of SLFPR = AlR A47 + ••• Floating polarity 

arithmetic o~eration in PH6 wi II reversed 

be oeeosite to correct result RiFPR = PH7 N06 046 + •.. 

(EO-E7) -l--f--(EO-E7) EUC7 = AlR + •.. Uecount ex~nent differ-

ence toward zero. {Ex-

eonent difference is a 

negative number) 

(00- 07) -+--(FO- F7) FXO = PH4 ALR Larger {addend} ex~onent 

transferred to F-register 

Branch to Box PH5 SLNPH5 = N(SLPH5) Go to a I ignment ~hase 

(S/PH5) = PH4 N06 NASPP + ••• 

R/NPH5 = ... 

CPU This phase is entered onll if the 
PH5 exeonent difference in PH4 was 
or 
PH6; 

nonzero 

Box Perform the following functions 
PH5; 
Tal during the first clock ~eriod: 

If (EO-E7) > 0 in PH4: 

(A47-A71l AO-A31}-,l- OXA = PH5 SW2 + ••• Larger {augend) o~erand 

(046- 071, 00- 031) -f---O- reg ister 

Mnemonic: FAS (3~, BO) 
FSS (3C, BC) 
FAL(l 0, 90) 
FSl (1 C, 9C) 

(ContInued) 

3-389 



901172 

Table 3-6S. FAS, FSS, FAL, FSL Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU 1(046-071, 00-031)1--- Adder logic set at PH4 clock 
.. 

Absolute value of smaller 
PHS 

(S46-S71 , SO-S31) 
(addend) operand shifted 

or ri9ht one hexadec i rna I 
PH6; 

(S46-S71, SO-S31)----l/16-1-- AXSR4 AXSR4/1 
and clocked into A-= Box register 

T8L (ASO-A71, AO-A31) AXSR4/1 = PHS N06 + ... 
(Cont.) 

Zeros -r-- (A4-A7) if short format S/A4 = SO AXSR4 N02 + ..• Guard digit is retained 
in AO-A3 if short format. 

S/A7 S3 AXSR4 N02 + ... 
Zeros are in A4-A31 = 

~ 

R/A4 = AXIL 

R/A7 = AXIL 

AXIL = AX + ... 

AX = AXSR4/1 

AXSR4/1 = PHS N06 + ... 

If {EO-E7} < 0 in PH4: 

I{A46-A71, AO-A31~ 1 ___ Adder logic set at PH4 clock 

} 
Absolute value of smaller 

(S46-S71, SO-S31) {augend} o~erand shifted 
right one hexadecimal 

(546-571, 50-531) --1/16-f-- AX5R4 AX5R4/1 = a nd clocked into A-
(ASO-A71 I; AO-A31). register. 
Zeros -r-. (A4-Al) if short format 

Guard diSit is retained 
in AO-A3 if short format 

Count (EO-E7) towards zero EUC7 = ALR + ... E < 0 case 
EOC7 = ALM+ ••. E > 0 case 

Sustain the state of SW1 SL.SW1 = (SL.SW1L.l} 

(S/SW1/1) = ALM MWN + ALR SWl 

RL.SWl = NPH9 

Enable signal (S/SXA) (S/SXA) = PHS N06 NASPP + ••. Preset adder for A-S 

Set flip-flop RTZ if sum bus is zero S/RTZ = PHS SZU SZL NSXAOO 
in next clock period 

NASPP 

SZU = N(S47 + S48 + ... + 571) 

SZL = N(SO + S 1 + ••• + S31) 

NSXAOD = NGXAO NPRXNAND 

R/RTZ = PH1 + ASPP 

Sustain PHS if exponents have S/NPHS = N{S/PHS} PHS is sustained as lone 
not been equalized (E-register {S/PHS) = PHS N06 NASPP + ... as exponent difference 
contents not zero) and mantissa has not been counted to 

NASPP [NRTZ is not zero = PHS N06 zero or mantissa has not 
E0407Z}] N!EOO03Z been ~hifted to l;erQ 

Mnemonic: FAS (3D, BO) 
FSS (3C, BC) 

(Continued) 
FAL (10, 90) 
FS L (lC, 9C) 

3-390 



901172 

Table 3-65. FAS, FSS, FAL, FSl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU EOOO3Z = N(EO + El + E2 + E3} 
PH5 

E0407Z = N(E4 + E5 + E6 + En or 
PH6; R/NPHS = ... 
Box 

Perform the following functions 
PH5; 
TSl durina all clocks but the last: 

(Cont.) (A46-A71, AO-A31~---- Adder loaic set at ~revious clock Shift sma lIer o~rand 

(546-S71, SO-S31~1/16- AXSR4 = AXSR4/1 riaht one hexadec ima I 

(A50-A71, AO-A31) 

Zeros / .. (A4-AZ) if short format Guard di~it lo~ic 

Count (EO-EZ) toward. zero EUC7 = AlR + ••• E < 0 case 

EOC7 = ALM + ••• E > 0 case 

Sustain the state of SW1 S/SW1 = (S/SW1/l) 

RLSWl = NPH9 

Enable sianal (S/SXA) (S/SXA) = PH5 N06 NASP + ... 

Set fIi~-flop RTZ if sum bus is zero S/RTZ = PHS SZU SZl NSXADD 
NASPP 

R/RTZ = ASPP + ••• 

Sustain PHS if E t. 0 and mantissa (SLPHS} = PHS N06 NASPP + ••. 
is not zero 

Perform the following functions 

durina the last clock ~eriod: 

Signal ASPP is enabled ASPP = PH5 N06 (RTZ + EOOO3Z 

E0407Z) 

(A46-A71, AO-A31)- Adder loaie set at ~revious clock Last shift of one 

(S46-S711. SO-S31 )--lL16---- AXSR4 = AXSR4Ll hexadecima I 

CA50-A71, AO-A31) 

Zeros / • (A4-A7) if short format Guard digit logic 

Enable signa I (SLSXAPD} if add and (SLSXAPD} = (SLSXAPDL1} + ••• 
operand sign was not reversed or (SLSXAPDL1} = ASPP (07 + SW1) + .•• 
subtract and o~erand sign was 

reversed 

Enable signa I (S/SXAMD) if add and (SLSXAMD} = N{SLSXAPD) 

o~erand sign was reversed or subtract {SLSXAMDL2} + ••. 
and operand sign was reversed 

(S/SXAMD/2) = ASPP + •.. 

Mnemonic: FAS (3D, BD) 
FSS (3C, BC) 
FAl(l D, 90) 
FSl (1 C, 9C) 

(Continued) 

3-391 



901172 

Table 3-65. FAS, FSS, FAl, FSl Sequence (Cont.) 

Phase Function Performed Signals Involved 

CPU (FO-F7) -64-f--(EO-E7) if NFO EXFM64 = ASPP NFO 
PH5 
or (NFO- NFl) -64--f--(EO-E7) if FO EXNFM64 = ASPP FO 
PH6; 
Box 
PH5; 
T8L 
(Cont.) 

Reset fl ie-floe RTZ RLRTZ = ASPP + ••• 

Branch to Box PH6 S/NPH6 = N(S/PH6) 

(S/PH6) = ASPP + ••• 

RLNPH6 = ... 

CPU One clock long 
PH5 
or Resume of register contents: 
PH6; 
Box 
PH6; 
T8L* 

GUARD DIGIT~ O'S IF SHORT 
IF SHORT __ ~I ______ ~J~ ______ ~ 

A I I j' SHIFTED I MANTISSA I 
. . OF SMALLER OPERAND 
407 710 A 31 

Comments 

FO holds sian of larger 

operand and (Fl-F7) 
ho Id exeonent of laraer 

operand. (EO-E7) now 

hold the uninverted f 

unbiased ex~nent of 

the Jaraer oeerand 

D II I I MANTISSA OF LARGER 
~. ~ ________ ~ ____________ ~.OPERAND, INTACT 

406 A7 710 31 6
IGN BIT 

F BIASED EXPONENT 
OF LARGER OPERAND 

o 7 

3-392 

J J 
I 

O'S IF SHORT 

B I-.. ----ZEROS------I 
408 

(A46-A71, AO-A31) ± 

(D46-D71, DO-D31)----­

(S46-S71, SO-S31)--f-­

(D46-D71, DO-D31) 

Adder logic set at PH5 clock 

*If CPU accepts I/O service 
call, clocks to floating point 
box are rejected since they 
are T5L 

DXS 

FPCLEN/1 

FPCLEN/2 

N(S/T8L) 

= PH6 N06 + ... 

= NIOEN NIOIN + NFPRR 

= NT5EN 

= FAFL (IOACT + PH10) 

(Continued) 

UNINVERTED, UNBIASED 
EXPONENT OF LARGER 
EXPONENT OF SMALLER 
OPERAND AND RESULT) 

} 
9011 nA. 3156 

Add or subtract the 

mantissas of the two 

floating eoint oeerands 

Floating point box con­
tinues operation after 
I/O service 

Mnemonic: FAS (3D, BD) 
FSS (3C, BC) 
FAL(l D, 9D) 
FSL (1 C, 9C) 



901172; 

Table 3-65. FAS, FSS, FAl, FSL Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

, 
CPU If intermediate result is ~ositive, (SLSXAPD} = PH6 N06 Absolute value of inter-
PH5 

enable signa I (S/SXAPD) N(PR46(±) K46) + ••• mediate result wi II be or 
PH6; 

If intermediate result is neaative, (S/SXAMD) N(S/SXAPD) 
~ gated to sum bus in PH7 

Box 
;: 

PH6; enable sianal (SLSXAMO) (SLSXAMOL2~ + ••• 
TaL 

(SLSXAMOL2} PH6 N06 + ••• (Cont.) = ~ 

Clear A-register AX = PH6 N06 + ••• 

Branch to Box PH7 S/NPH7 = N(S/PH7) 

(S/PH7) = PH6 N06 + ••• 

R/NPH7 = ... 

CPU One c lock long 
PH6; 

\(046- 071, 00-031)~ Adder loaie set at PH6 clock Absolute value of inter-
Box 
PH7; (546-571, 50-531) mediate result 
TaL 

Reverse the state of fl i~flo~ SLFPR = PH7 N06 046 NFPR If FPR is now set, the 

FPR if intermediate result is .±....-.a.. guantity on the sum bus 

negative RiFPR = PH7 N06 046 + ••• 
represents the reverse 

polari~ of the actual 

result 

If 046 does not egual 047; 

perform the following functions: 

(546-571, 50-531) x 1/16 AXSR4 = AXSR4L1 Shift result right one 

~(A50-A71, AO-A31) AXSR4!1 = PH7 N06 (046@ 04z) + ... hexadecimal. Overflow 

has resulted from the 

addition or subtraction 

Increment ex~nent of result EUC7 = AXSR4Ll + ••• and mantissa must be 

by one 
sh i fted to correct. The 

ex~nent of the resu It 
in E-register is incre-

mented b~ one to com-

pensate for the shift 

Mnemonic: FAS (3~, BO) 
FSS (3C, BC) 
FAL (10,90) 
FSL (lC, 9C) 

(Continued) 

3-393 



901172 

Table 3-65. FAS, FSS, FAl, FSl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU If no overflow has occurred, if the 
PH6; intermediate result is not sim~le-
Box norma lized, and if norma I izat ion is 
PH7; 

called for, ~erform the followins T8l 
(Cont.) functions: 

(S46-S71l SO-S3]} x 16-+-- AXSl4 = AXSl4Ll Shift result left one 

(A47-A71 l AO-A27) AXSl4Ll PH7 N06 NAXSR4Ll 
hexadecima I for = 
normalization 

NOSN N(FNF N06) 

NOSN = 047 048 049 050 051 No sisnificance in most 

+ N047 04851Z significant hexadecima I 

of mantissa 

S/FNF = S7 PSW1XS + ... Floating normalize bit 

R/FNF = PSW1XS + ... in PSWl 

Decrement exponent of result EOC7 = AXSl4il N(PH5 OIV} + •.• The ex~onent of the 
by one result in E-register is 

decremented b~ one to 

comeensate for the shift 

(848-B71, BO-B31) x 2-1- BXBU = AXSl4/1 N06 + ... 

1 
For postnorma I ization 

(848- B71, BO- B30) counting 

Set flie-flop B67 S/B67 = N06 BXBLl + ••• 

If no overflow has occurred£ if 

the intermediate result is simele-

normalized, or if normalization 

is not called for, ~erform the 

following functions: 

(S46-S71, SO-S31)-+- AXS = PH7 N06 NAXSl4Ll Absolute va lue of inter-

{A47-A71), AO-A31) NAXSR4il + .•• mediate result-+--

A-register 

Enable sisna I (S/SXA) (S/SXA) = PH7 N(S/PH7)} + .•• Preset adder for A---S 

N(S/PH7) = N(PH7 DIV A47) N(MIT) ••• in PH8 .--

Branch to Box PH8 SLNPH8 = N(S/PH8) 

(S/PH8) = PH7 N (S/PH7) + ••• 

RLNPH8 = ... 
Mnemonic: FAS (3D, BO) 

FSS (3C, BC) 
FAl(l 0, 90) 
FSL (1 C, 9C) 

(Continued) 

3-394 



901172 

Table 3-65. FAS, FSS, FAL, FSL Sequence (Cont.) 

I 

Phase Funct ion Performed Signals Involved Comments 

CPU Number of c loc ks dependent upon 
PH6i norma lization requirements 
Box 
PH8; A-register contains the absolute 
T8L* value of the result in the range 

o < result < 1 

If the result is not sim~le- If the Iresu It I is not 
normalized and normalization is sim~le-normalized in this 
called for, eerform the following ~hase it is in the ranee 
functions: o ~ resu It < 1/16 

(A47-A71, AO-A31)- Adder logic set at PH7 clock 

(S47-S71, SO-S31) x 16--f--

(A47-A71, AO-A2Z) AXSL4 = AXSL4Ll 

AXSL4L1 = PH8 NDIV NASN + ••• 

NASN = A47 A48 A49 A50 A51 If FNF is a oneL the 

+ NA47 A4851Z N{FNF result is not to be 

N06) ~ostnorma I ized 

Decrement exponent of result EDC7 = AXSL4/1 N{PH5 DIV) + ••• The ex~onent of the 

by one result in the E-reaister is 

decremented b~ one to 

com~ensate for the shift 

(848- 871, 80-831) x 2-f-- 8X8L1 = AXSL4/1 N06 + ••• 

} 
For ~ostnorma lization 

(848-871, 80-830) counting 

Set flip-flop 867 SL867 = N06 8X8Ll 

Set fli~-flo~ RTZ if sum bus SLRTZ = PH8 SZU SZL NASPP 

quantity is zero NSXADD + PH8 SZU 02 Short format case where 

N06 + ••• significance exists in 

SZU = N{S47 S48 ••• S71) 
guard digit on Iy 

SZL = N{SO Sl ••• S31) 

*If CPU accepts VO service FPCLEN/l = NIOEN NIOIN + NFPRR Floating point box 
call, clocks to floating point 

FPCLEN/2 = NT5EN 
continues operation 

box are rejected since they after VO service 
are T5L N(S/T8L) = FAFL (IOACT + PH10) 

Mnemonic: FAS (3D, 8D) 
FSS (3C,8C) 
FAL(l 0, 90) 
FSL (lC, 9C) 

(Continued) 

3-395 



901172 

Table 3-65. FAS, FSS, FAl, FSl Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU Enable signal (S/SXA) if result will (S/SXA) = AXSl4/1 NFPRR + •.. 
PH6; 

not be ready at this clock FPRR = PH8 NDIV (ASN Result wi II not be 
Box 
PH8; + NA5255Z} + .•• simple-normalized at 

T8l this clock 
(Cont.) 

Sustain PH8 if result will not be S/NPH8 = N(S/PH8) More shifting must be 

ready at this clock (S/PH8) = PH8 NFPRR + •.. done to normalize result. 

R/NPH8 = Repeat the same func-... 
tions as above unti I 
resu It is ready 

If result will be normalized at FPRR = PH8 NDIV (ASN Result is nearl~ ready to 

next clock or if result is egual to 

zero, enable siana I NFPRR and 
+ NA5255Z) + RTZ + ••• be sent back to CPU 

perform functions listed at end 

of this phase 

If the result is simple-normalized I Resu It I is egua I to one 

and A47 is a one l ~erform the in this case, and must be 
followina functions: shifted right to represent 

a leaal floating point 

.number 

(A47-A71, AO-A31)---- Adder loaie set at PH7 clock 

(S47-S71, SO-S31) x 1/16-+--

(A51-A71, AO-A31) AXSR4 = AXSR4/1 

AXSR4/1 = PH8 NDIV A47 + ••• 

Increment exponent of result EUC7 = NPH5 AXSR4L1 + .•• 
by one 

Enable signa I FPRR and ~erform FPRR = PH8 NDIV ASN + ••• Prepare to send result 

functions I isted at end of this back to CPU 

phase 

. If the result is simple-normalized I Resuld is egual to 1/16 

and A47 is a zero, perform the .5... A < 1 in this easel or 
following functions: FNF is egual to a one 

(A47-A71, AO-A31}--- Adder logic set at PH7 clock 

(S47-S71, SO-S31) 

Mnemonic: FAS (3D, BD) 
FSS (3C, BC) 
FAl(lD,9D) 
FSl (lC, 9C) 

(Continued) 

3-396 



901172 

Table 3-65. FAS, FSS, FAL, FSL Sequence (Cont.) 

Phase Function Perf.ormed Signals Involved Comments . 
CPU Set flip-flop RTZ if sum bus S/RTZ = PHS SZU SZl NASPP This is the case in which 
PH6; 

quantity is zero NSXADD + PHS SZU 02 ASN is true because FNF Box 
PHS; N06 + ••. is egual to a one 
TSl 

R/RTZ ASPP + ..• (Cont.) = 
Enable signa I FPRR and ~erform FPRR = PHS NDIV ASN + ••. 

functions I isted at end of th is ehase ASN = NA47 A4851Z 

N(FNF N06) + ••. 

FPRR functions: 

Enable CPU PH7 S/PH7 = PH6 NBR NIOEN + ••. 

NBR = NBRPH6 ••• 

NBRPH6 = N(FAFl PH6 NFPRR) + ... 

R/PH7 = · .. 
Set fl i p-flop MRQ S/MRQ = (S/MRQ/1) + .•. Request for next i nstruc-

(S/MRQ/1) = FAFl PH6 NIOEN 
tion in sequence 

NBRPH6 + ... 

R/MRQ = · .. 
Enable signal (S/SXA) if NFPR (S/SXA) = FPRR NFPR + •.• } 

Preset adder 10Sic to 

Enable signa I {SLSXMA} if FPR {S/SXMA} FPRR FPR + •.• 
give result the proper 

= 
~olarit~ 

Set Box PH9 ; SLPH9 
i 

= FPRR I 

R!PH9 . = · .. 

CPU One clock long 
PH7; 

(A47-A71, AO-A31)--- Adder logic set at PHS clock Mantissa of result, in Box 
PH9; or proper polarity, trans-
TSl 

-(A47-A71, AO-A31)- ferred to sum bus 

(S47-S71, SO-S31) 

Transfer (SO-S31) to FPO-FP31 FPXSl = NFPDIS PH9 FPRD NRTZ lSW of floating point 

lines ~roviding none of the N(FEUF NFZ} + ••• result --
followins conditions are ~resent: 

Short format instruction in effect . FPRD = N02 + ..• 
~FAS, FSS) 

Mnemonic: FAS (30,80) 
FSS (3e, Be) , 
FAl (I 0,90) 

(Continued) FSl {le, ge) 

3-397 



901172 

Table 3-65. FAS, FSS, FAL, FSL Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU Resu It is egua I to zero RTZ \ 

-
PH7; 
Box Exponent underflow with FZ FEUF = EO NEI NRTZ Exponent was decre-

PH9; 
equa I to zero N(B65 N06 FS NFZ) mented below zero 

T8l 
(Cont.) 

If Qne of the above conditions No gating term enabled 

exists, transfer zeros to (FPO-FP31) 

(FPO-FP31 )--(BO- B31) BXFP = FAFL PH7 + ••• LSW of floating point 
result 

Reset flip-flop NSXBF S/NSXBF = N(S/SXB) Preset logic for B--S 

(S/SXB) FAFl PH7 + ••• 
in PH8 

= 
R/NSXBF = · .. 

Force a one on private memory S/NlR31 F = N(S/LR31) Select odd-numbered 

address Ii ne lR31 
(S/LR31) FAFL PH7 + ••• 

private memory address 
= during PHIO 

R/NlR31 F = · .. 
Set flip-flop RW if long format S/RW = (S/RW/FP) Prepare to send lSW of 

instruction and TRAP signal is 
(S/RW/FP) PH9 NTRAP FPRD + ••• 

result to CPU 
= not true 

R/RW = · .. 
Set flip-flop CCI if exponent S/CCI = (S/CC1/3) + ••• 
underflow or if FN = 0 and more (S/CC1/3) = (S/CCI/FP) + ..• 
than two postnormalizing shifts 

(S/CCI/FP) PH9 (FEUF + B65 N06) are required = 
RICCI = (RICCI) 

Set flip-flop CC2 if exponent S/CC2 = (S/ CC2/3) + ... 
underflow (S/CC2/3) = (S/ CC2/FP) + ... 

(S/CC2/FP) = PH9 {FEUF + ... ) 
R/CC2 = (RlCC2) 

Enable TRAP signal if exeonent TRAP = FEUF N(FEUF NFZ) TRAP ~revents RW from 

underflow has occurred and FZ + B65 N 06 FS + ••• being set in PH9 and 

is a one, or if a tra~ on sig- PH10 
nificance is called for (FS is a one} 

Enable sienal (SL:SXA) if NFPR (S/SXA) = PH9 NFPR + ••• 

} is true Preset adder logic to 

Enable signal (SLSXMA} if FPR (S/SXMA) = PH9 NFPR + ••• give result the ~ro~er 

is true polarity 

If FPR is true, transfer EXNE PH9 FPR NTRAP A negati.ve result reguires 

{NEO- NE7} / • {EO-EZ} N{FEUF NFZ) an inverted exponent 

Mnemonic: FAS (3D, BD) 
FSS (3C, BC) 
FAL(lD,9D) 
FSl{IC,9C) 

Continued 

3-398 



901172 

Table 3-65. FAS, FSS, FAl, FSl Sequence (Cont.) 

Phase 

CPU 
PH7; 
Box 
PH9 i 
T8l 
(Cont.) 

Function Performed 

Branch to Box PH10 

CPU One clock long 
PH8; 
Box 
PH10; 
T8l 

(80- B31) --(SO-S31)~ 

(RWO-RW31) 

If lSW of resu It is not equa I 
to zero, set flip-flop SWO 

Reset flip-flop NSXBF 

Set flip-flop RW if TRAP 
signa I is not true 

Set flip-flop ORQ 

(A47-A71, AO-A31)---

or 

-(A47-A71, AO-A31)--­

(S47-S71, SO-S31) 

Signals Involved 

S/PH10 = PH9 

R/PH10 

logic set at PH7 clock 

RWXS/O- RWXS/3 = RW ••• 

RW = Set at PH7 clock if no 
trap condition and long 
format 

S/SWO = NS0031 Z (S/SWO/NZ) + ... 

(S/SWO/NZ) = FAFl N02 PH8 + ••• 

R/SWO = RESET/A + •.• 

S/NSXBF = N(S/SXB) 

(S/SXB) = FAFl PH8 + ••• 

R/NSXBF = ... 
S/rNI = (S/RW/FP) 

(S/RW/FP) = PH10 NTRAP + .•• 

R/RW = ... 
S/ORQ = BRPH10 + ••. 

BRPH10 = FAFl PH8 + ••• 

R/ORQ = ... 

Adder logic set at PH9 clock 

(Continued) 

Comments 

Transfer lSW of result to 
private memory register 
Ru1 

Used in PH10 for con­
dition code settings 

Preset logic for B---S 
in PH10 

Prepare to send MSW of 
result to CPU 

Inhibits transmission of 
another clock unti I data 
release received from 
core memory. Request 
for next instruction made 
in PH6 

MSW of mantissa--­

sum bus 

Mnemonic: FAS (30, BO) 
FSS (3C, BC) 
FAl(10,90) 
FSL (1 C, 9C) 

3-399 



901172 

Table 3-65. FAS, FSS, FAL, FSL Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU S47-FPO FPO = 547 FPXSU + •.• 
PHS; 
Box FPXSU = NFPDIS PH10 NRTZ MSW of resu It transferred 
PH10; 

N(FEUF NFZ} to FP lines if result not 
TaL ~ 

equa I to zero or if under-
(Cont.) NE1---FP1 {+64 bias} FP1 = NE1 FPXSU + •.• 

flow with FZ = 0 does 
(E2- E7) --(F P2- F P7) FPXSU not exist 

(S4S-S71 )---(FPS-FP31) FPXSU 

(F PO- F P31 ) --f--(BO- B31 ) BXFP = FAFL PHS + ..• MSW of result--f---B-
register 

Reset Box PH10 R/PH10 = ... Float.ing ~oint box 

actions are finished 

Branch to CPU PH10 S/PH10 = BRPH10 NC LEAR + ••• 

R/PH10 -= ... 

CPU One c lock long 
PHlO; i 

• 
Box (BO-B31) ---{SO-S31)--- Adder logic set at PHS clock 
actions 

(RWO-RW31) RWXS/0-RWXS/3 RW ••• = over; 
TSL RW = Set at PHS clock if no trap condition 

Set flip-flop CC3 if floating S/CC3 
point result is positive 

SGTZ 

R/CC3 
TESTS 

Set flip-flop CC4 if floating S/CC4 
point result is negative 

{S/CC4/2} 

E NDE functions R/CC4 

FLOATING MULTIPLY, SHORT (FMS; 3F, BF). FMS 
multiplies the effective word by the contents of private 
memory register R. If no floating point arithmetic fault 
occurs, the product is loaded into private memory as 
follows: If R is an even value, the product is loaded into 
private memory registers Rand Ru 1 as a long format 
floating point number. If R is an odd value, the product 
is effectively truncated and loaded into private memory 
register R. The product is a Iways norma I ized. 

FLOATING MULTIPLY, LONG (FML; 1F, 9F). FML multi­
plies the effective doubleword by the contents of private 
memory registers Rand Ru 1. R must be an even va lue for 

3-400 

= 

= 

= 
= 
= 

= 
= 

SGTZ TESTS 

(SO + S1 + •.• S31 + SWO) SWO is set when there is 
NSO ••• significance in LSW 
TESTS + ... 
FAFL ENDE + ... 
(S/CC4/2) TESTS + ••• 

NFACOMP SO + .•. 

TESTS + ... 

Mnemonic: FAS (3D, BD) 
FSS {3C, BC} 
FAL{lD,9D} 
FSL {1 C, 9C} 

correct results. If no floating point arithmetic fault occurs, 
the product is truncated and loaded into private memory 
registers Rand Ru 1 as a long format floating point number. 
The product is always normalized. 

FLOA lING MUL lIPL Y PHASE SEQUENCE. Preparation 

phases for FMS are the same as the general PREP phases for 
word instructions, paragraph 3-59. FML preparation phases 
are described in paragraph 3-59. Figure 3-169 shows the 
general method of FMS and FML execution. Bit-pair multi­
plication (described in paragraph 3-67) is used during the 
actual multiply iterations. Table 3-66 lists the detailed 
logic for execution of the floating multiply instructions. 



A. TRANSFER OF OPERANDS: 

B. EXPONENT SUMMING: 

C. PRE NORMALIZATION 
OF OPERANDS: 

EXAMINE MULTIPLIER MANTISSA 
AND MULTIPLICAND MANTISSA: 

SIMPLE NORMALIZE IMULTIPLIERI 
AND RECORD NUMBER OF HEX­
ADECIMAL SHIFTS REQUIRED; 
ADJUST E>CPONENT PRODUCT: 

SIMPLE NORMALIZE MULTIPLICAND 
AND ADJUST EXPONENT PRODUCT: 

D. MULTIPLICATION OF MANTISSAS: 

CHANGE MULTIPLICAND TO SAME 
SIGN AS ORIGINAL MULTIPLIER: 

MUlTIPLY BY ORIGINAL MULTIPLIER. 
NOTE NUMBER OF SHIFTS IN STEP C 
AND MULTIPLY ONLY BY THE 
SIGNIFICANT DIGITS IN THE MULTIPLIER 
(MUlTIPLY ALGORITHM IS SIMILAR TO 
FIXED-POINT MUlTIPLY): 

E. OVERflOW DETECTION AND POST­
NORMALIZA TlON: 

EXAMINE IPRODUCTI: 

POSTNORMALlZEi 
ADJUST EXPONENT 
PRODUCT: 

BIAS EXPONENT: 

F. STORAGE: 

ASSIMILATE MANTISSA AND 
EXPONENT CHANGE TO PROPER 
FORM, AND STORE: 

901172 

011 0
1
00 1 0 110 0 0 0'0 0 0 0'0 0 0 1 MULTIPLIER 

(+2- 12 x 165 ) 

1 11 0 0 0 1 1 011 1 1 I' 1 1 1 1 'I 1 1 0 MULTIPLICAND 

(_2- 11 x 16-7) 

rEXPONENT SIGN BIT 

1 0 0 0 1 0 1 = 69 
0111001=+57 

1 0 0 0 0 0 0 0 = - 128 
1 1 1 1 1 1 1 0 2 

(TO UNBIAS SUM) 
(EXPONENT PRODUCT) 

O~OOOO'OOOOIOOO 1 

0~1111'1111'1110 

(MULTIPLIER NOT 
SIMPLE NORMALIZED) 

(MULTIPLICAND NOT 
SIMPLE NORMALIZED) 

O~OOOO'OOOO'OOO 1 

7 /. /sHIFT LEFT TWO RECORD_f21 
/,HEX. DIGITS ~ 

O~OOO 1'0000'0000 

1 1 1 1 1 1 1 0 EXPONENT PRODUCT 
- 10 

1 1 1 1 I 100 NEW EXPONENT PRODUCT 

1~llll'1111'1110 

7 /' ./ SHIFT LEFT 
/' . TWO HEX. DIGITS 

1~lll 0 0000'0000 

11111100 
- 10 

11111010 

EXPONENT PRODUCT 

NEW EXPONENT PRODUCT 

r EFFECTIVE 
BINARY POINT 

xO~OOOO'OOOO'~ (+2- 12) 

O~OOOO'OO 1 O'~"" 
ONLY SIGNIFICANT 

(I FRACTION PRODUCT I) 

O~oooo'oo 1 0'0000 

/ / / 
O~OO I 0'0000'0000 

MULTIPLIER HEX DIGIT 

SHIFT LEFT ONE 
HEX. DIGIT 

11111010 
- 01 

EXPONENT PRODUCT 

11111001 

+1000000 
01 1 1001 

NEW EXPONENT PRODUCT 

BIASED EXPONENT PRODUCT 

01011100110010'0000'0000 

• 11100011011110'0000'0000 

I PRODUCT I 
PRODUCT 

(_2- 3 x 16-7)= 

(_2-23 x 16-2) 

Figure 3-169. Floating Multiply Implementation 

901172A.3157 

3-401 



901172 

Table 3-66. FMS, fML Sequence 

Phase Function Performed Signa Is Involved Comments 

Note 

Actions that take place in the floating point 
box are underscored in the sequence charts 
for the floating point instructions. Main 
CPU functions are not underscored. 

PREP At end of PREP: 

(A): RR Contents of private mem-
ory register R. MSWof 
multiplier 

(C): Core memory operand MSW MSW of multiplicand 

(D): Core memory operand MSW MSW of multiplicand 

Enable signa I (S/SXNA) (S/SXNA) = FAFL PRE/34 + ••• Preset adder for -A--
S in PHl 

If long format instruction is in 
effect perform the following 
functions: 

Force a one into P31 PUC31 = FAFL N02 PRE3 NANLZ Prepare to obta in LSW 
+ ••• of multiplicand 

Set flip-flop MRQ S/MRQ = (S/MRQ/l) + ••. Memory request for LSW 

(S/MRQ/l) FAFL N02 NANLZ 
of multiplicand. In-= hibited if floating point 

PRE3 + ••. 
option trap is present 

R/MRQ = ... 
Enable clock T8 S/NT8L = N(S/T8L) Clocks for remainder of 

(S/T8L) = FAFL NIOACT NPH10 
floating point phases are 
T8 unless I/O service 

R/NT8L = ... call is in effect (PH6) 

FPCON---floating point box FPCON = FAFL PRE3 + ... Start functions in 
floating point box 

Set flip-flop PHl S/PHl = FPCON NPHl Sets Box PHl 

R/PHl = ... 

CPU One c lock long 
PH1; 
Box (NAO- NA31 )---(SO-S31) Adder logic set at PH1 clock Gate MSW of multiplier 
PH1; 

(NSO- NS31 )----(FPO-FP31) FPXS = NPH8 NDIS 
to FP lines 

T8L 

FPO---S46, S47 SXFP/U = S4607XFP Sign of multiplier __ 

S4607XFP = PHl NFPDIS + ••• S46, S47 

Mnemonic: FMS (3F, BF) 
FML(lF,9F) 

(Conti nued) 

3-402 



901172 

Table 3-66. FMS, FML Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU {FP8-FP31 )--{S48-S71) SXFP/U = S4607XFP Mantissa of multi~lier 
PH1; --(S48-S71 ) 
Box 

(F PO- F P7) --(SO- S 7) SXFP/4 S4607XFP Ex~onent of multi~lier PH1 ; = 
T8L ---(SO-S7) 

(Cont.) Zeros ---(S8-S31 ) No gating term enabled 

{S46-S71, SO-S31}--
ss 

AXS = PH1 + •.• 
(A): I!! MUl'IER MANTISSA I 

(A46-A71, AO-A31) 4647 71 

I ~~; I ZEROS I o 78 31 

{FP31-FP08)~B4871 BXFPLU = PH1 MUL MSW of multi~lier 

Zeros--(BO-B31) MUL = 0607 
mantissa /., B-registerl 

backwards 

(8) : 1 MUl'IER MANTISSA I 
(BACKWARDS) 

48 71 

I- 1 ZEROS-I 
0 31 

9011 nA. 3158 

DO--IFPCON ---floati ng FPCON = FAFL PH1 DO + ... J Transfer sign of multi-
point box plier to MWN in 

FPCON-f---MWN SLMWN = FPCON PH1 floating point box 

RLMWN = PH1 

Clear E-register EX = PH1 + •.. 

Set F-register to 5]Q S/F5 = BXFP/U + •.. 

S/F7 = BXFP/U + ... } F-r.egist~r and S#O used 

R/FS l F/57 = EX + ... as Iteration counter 

FX = PH1 + ... 

Reset flip-flop SWO R/swo = BX 

If FML is in effect, perform 
the following functions: 

Force a one on private memory (S/LR31) = FAFL N02 PHl + ... Prepa re to obta in LSW 
address line LR31 of mu Itiplier 

Reset fl ip-flop NAXRR S/NAXRR = N(S/AXRR) Preset logic for RRu1 

(S/AXRR) = FAFL N02 PHl + •.• 
-I---A in PH2 

I R/NAXRR = ... 

Mnemonic: FMS (3F, BF) 
FML (1 F, 9F) 

(Continued) 

3-403 



901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU Enable signa I (S/SXND) (S/SXND) = FAFl PH1 + •.. Preset adder for N D--
PH1; S in PH2 
Box 

Set flip-flop PH2 S/PH2 PH1 Box PH2 
PH1; = 
T8l R/PH2 = ... 

'Cont .) 

CPU One c lock long 
PH2; 
Box (NOO- N031 )----(50-531) Adder logic set at PH1 clock MSW of multiplicand 
PH2; ---FP lines 
T8l (N SO- N S31) ---(F PO- F P31 ) FPX5 = NPH8 NOl5 

FPO---S46, 547 5XFP/U = S4607XFP Sign of multi~licand 

S4607XFP = PH2 NFPDIS + ••• 
---546,547 

(FP8-FP31 )--(548-S71) 5XFP/U = 54607XFP Mantissa of multi~licand 
---{548-571 } 

(F PO- F P7) ---(50-57) 5XFP/U = 54607XFP Ex~onent of multi~ficand 
-(50-57) 

Zeros-(58-S31 ) No gating term enabled 

(546-571, 50-531)-+-- OX5 = PH2 + •.• 

(046-071, 00-031) 55 

(0) : III M'CANO MANTISSA I 
.01647 71 

IM~i~NiO ZEROS I 
o 78 31 

9011nA.3159 

If multi~lier is negative l 5!..AO = PH2 MUl + .•. Uninverted exponent 
(NAO- NA7) / • (AO-A7). SLA1 = NA1 PH2 AO + ••. -+--(AO-A7). The one 
Merge one into AO uncon- in AO effectivel~ re-
ditionally . moves the bias of 128 

5!.A7 = NA7 PH2 AO + •.• which wi II result when 

R/AO-R/A7 = AX,/l 
the ex~onents of the 
multi~lier and multi~li-

AXLl = AXl + .•• cand are added in PH3 

AXl = PH2 AO + .•• 

5et fli~-flop 08 if multi~licand 5/08 = PH2 MWN For PH3 use 
is negative 

R/D8 = o X!.. l 

OXLl = OX + ••• 

OX = PH2 + ••• 

Mnemonic: FM5 (3F, BF) 
FML (1 F, 9F) 

(Continued) 

3-404 



Phase Function Performed 

CPU Enable signal (S/SXAPD) if 
PH2; mu Itiplicand is positive 
Box 
PH2; 
T8l Enable signal (S/SXAMD) if 
(Cont.) multiplicand is negative 

CPU 
PH3; 
Box 
PH3; 
T8l 
if 
short; 
DR if 
long 

If FML is in effect, perform 
the following functions: 

(RRO-RR31) --f--(AO-A31) 

Enable signa I (S/SXNA) 

Set fl ip-flop DRQ 

Set fl ip-flop PH3 

One c lock long 

(AO-A7) ± (DO-D7) -128--

(SO-57) -f--(EO-E7) 

(NAO- NA31 )---(50-531) 

(NSO- NS31 )---(FPO-FP31) 

If FML is being performed: 

(FPO-FP31) --f--(AO-A31) 

If F MS is be i ng performed: 

Zeros-f--(AO-A31) 

901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

Signa Is Involved 

(S/SXAPD) = (S/SXAPD/1) + •.• 

(S/SXAPD/1) = PH2 MUl NMWN + ••• 

(SLSXAMD) = N(SLSXAPD) 
(S/SXAMD/2) + ••. 

(SXAMD/2) = PH2 + ••. 

AXRR = Set at PH1 clock 

(S/SXNA) = FAFl PH2 + ••• 

S/DRQ = (S/DRQ/2) + ••• 

(S/DRQ/2) = FAFl N02 PH2 + ••• 

R/DRQ = ... 

SLPH3 = PH2 

R/PH3 = ... 

Adder logic set at PH2 clock 

S/EO = SO PH3 + ••• 

S/E7 = S7 PH3 + ••• 

R/EO-R/E7 = PHl + ••• 

Adder logic set at PH2 clock 

FPXS = NPH8 NDIS 

AXFP = PH3 N02 

(Continued) 

Comments 

For exponent arithmetic 
in PH3 

For exponent arithmetic 
in PH3 

lSW of multiplier-+--
A-register 

Preset adder for -A-
S in PH3 

Inhibits transmission of 
another clock unti I data 
release received from 
core memory. (Memory 
request made during 
PREP) 

Box PH3 

Arithmetic operation is 
performed that adds the 
uninverted multiplicand 
exponent to the unin­
verted multipl ier 
exponent. This results 
in a bias of 128, which 
is effectively removed 
by merging a one into AO 
at the PH2 clock. The 
E-register now holds the 
unbiased sum of the 
exponents 

lSW of multiplier­
FP I ines if long format. 
If FMS, action is 
meaningless 

lSW of multiplier-+­
A-register 

No gating term enabled 

Mnemonic: FMS (3F, BF) 
FMl (1 F, 9F) 

3~05 



901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU If FMl is being ime'emented, Contents of B-register at 
PH3; perform the following functions: the end of PH3 if FMl: 
Box 
PH3; (B48-B71 )-f--(BB-B31) BXFP/l = PH3 MUl N02 
T8l 5 

if 
(F P7- FPO) --f--(BO- B7) BXFP/l II MUL'IER MANTISSA I 

(BACKWARDS) 
short; (FP31-FP8)--f--(B48-B71 ) BXFP/U = PH3 MUl N02 4748 71 

DR if 
r 

r MUL'IER MANTISSA II 
long (BACKWARDS) 

0 78 31 
(Cont.) 

MSB OF MULTIPLIER ~ 
901172A.316O 

Set fl ip-flop F4 of F-register S/F4 = BXFP/l + ••• Change the count in F-
register from 5]0 to 

R/F4 = FX + ... 1310, Count is now 5 
if FMS or 13 if FM~ 

(MBO-MB31)-(CO-C31)-f-- DXC = FAFl N02 PH3 + ..• lSW of multiplicand 

(DO-D31) if FMl 
--C- and D-registers 

Enable signa I (S/SXND) (S/SXND) = FAFl PH3 + .•• Preset adder for -D 
-S in PH4 

Set flip-flop PH4 S/PH4 = PH3 ( ... ) Box PH4 

R/PH4 = ... 

CPU One clock long 
PH4; 
Box (NDO- ND31) --(SO-S31) Adder logic set at PH3 clock lSW of multiplicand if 
PH4; FMl. Meaningless if 
T8l (NSO- NS31) ___ (FPO-FP31) FPXS = NPH8 NDIS FMS 

If FMl: SXFPL4 = S0031XFP + '.0 

(FPO-FP31) ---(SO-S31) SXFP/A = S0031XFP + .0. 

S0031 XFP = PH4 N02 NFPDIS 

If FMS: No gating term enabled --
Zeros ____ (SO-S31 ) 

(SO- S31 ) -+--(DO- D31 ) DXS/l = PH4 + o. 0 lSW of multi~licand 
(if FMl) or zeros (if 

Clear condition code flip-flops RlCC = 
FMS) --f--D-register 

FAFl PH4 + 00. 

Enable signa I (S/SX8) (S/SXB) = FAFl PH4 + 000 Preset logic for 8--S 
in PH5 

Branch to CPU PH5 S/PH5 = PH4 NBR CPU enters PH5. 

R/PH5 = Floating point box may 
000 

go to PH5 or PH6 

Mnemonic: FMS (3F, BF) 
FMl (1 F, 9F) 

(Continued) 

3-406 



901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU If the multi~licand (O-reaister) ASN = N(A47 A48 A49 A50 A51) 
PH4; and multi~lier (A-register} are 

N [NA47 A4851 Z Box both sim~le-normalized, ~erform 
PH4; the followina functions: N(FNF N06)] 
T8l 

OSN N(047 048 049 050 051) (Cont.) = 

N(N047 N04851Z) 

Branch to Box PH7 S/NPH7 = N(S/PH7) 

(S/PH7) = PH4 06 MUL ASN 
OSN + ••• 

R/NPH7 = ... 
Set SW2 if ~roduct wi II be S/SW2 = (S/PH7) NPH7 MUl FPR set in PH2 if o~er-
negative FPR + •.• and signs are not alike 

R/SW2 = ... 
If the multi~licand is sim~le- Prepare to normalize 
normalized and multi~lier is multielier in PH6 
not L eerform the fo I low i na 
functions: 

Enable siana I (SLSXA) if (S/SXA) = (S/SXA VA) NA47 + ••• Preset adder to gate 
multielier eositive 

(S/SXAVA) PH4 06 OSN N(S/PH7) 
absolute value of 

= 
multi~lier to sum bus 

+ ••• 

Enable signa I (S/SXMA) if (S/SXMA) = (S/SXA VA) A47 + ••. 
multielier negative 

Branch to Box PH6 S/NPH6 = N(S/PH6) 

(S/PH6) = PH4 06 OSN N(S/PH7) 
+ ••• 

R/NPH5 = · .. 
If the multielicand is not simele- Preeare to norma lize 
norma I izedt eerform the fo IIow- multielicand in PH5 
ina functions: 

Enable siana I (S/SXO) (S/SXO) = PH4 06 NDSN + ••• Preset adder for O---S 
in PH5 --

Set flie-flop SW2 SLSW2 = (SLSW2Ll} + .•. SW2 indicates that 

(S/SW2/J) = PH4 06 NDSN + .•• 
A---f--D will be ~er-
formed in PH5 

R!..SW2 = · .. 
Branch to Box PH5 S/NPH5 = N(S/PH5) 

(S/PH5) = PH4 06 NDSN + ... 

R/NPH5 = · .. 
Mnemonic: FMS (3F, BF) 

FML (IF,9F) 

(Continued) 

3-407 



901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments . 
CPU This ehase is entered onl~ if the 
PH5 or multielicand reguires ~renormali-
PH6; zation. Phase is sustained until 
Box multi~licand is sim~Ie-normalized 
PH5; or found to be zero 
T8l 

Perform the fol lowing functions 
during the first clock ~eriod: 

{A47-A71, AO-A31}-+-- DXA = PH5 5W2 + .•• Save multi~lier (at 
(D47-D71l DO-D31) clock) shift multi~licand 

(D47-D71, DO-D31)- Adder logic set at PH4 clock 
left one hexadecima I for 
first norma lization try 

{S47-S7], 50-531) x 16-1--- AXSL4 = AXSL4j1 

{A47-A7], AO-A27) AXSL4i1 = PH5 06 N(SLPH6) + I I I 

Decrement ex~onent of ~roduct EDC7 = AXSl4i1 N{PH5 DIy) + .•• Exponent decremented 
in E-register b~ one to compensate for sh i ft 

Set fli~-flo~ RTZ if sum bus S/RTZ = SZU SZ l NSXA DD If sum bus is zer0t: mu 1-
quantity is zero 

NASPP PH5 + •.. 
tielicand is zero, and 
therefore ~roduct is 

SZU = N{S47 + 548 + .•• + 571) zero. The mu Iti~1 ica-

SZl = N{SO + 5] + ..• + 531) 
tion in PH7 wi" be b~-
passed 

R/RTZ = PH1 + ASPP 

Enable signa I (SjSXA) {SjSXA) = AXSL4i1 NFPRR + •.. Preset adder for A-S 

FPRR = PH5 06 RTZ + ... 
in next clock period 

Perform the following functions 
~uring the second and followins 
clock ~eriods: 

If multielicand is zero {RTZ), FPRR = PH5 06 RTZ + ... 
enable signa I FPRR and branch 
to PH9 

SiPH9 = FPRR 

RjPH9 = ... 
If multi~licand is not zero and 
if it is not simele-normalized, 
shift the multielicand toward 
norma lization as follows: 

(A47-A71, AO-A31)-- Adder logic set at erevious clock Shift multi~licand left 
(547-57], SO-53]) x ] 6-+-- one hexadecima I for 
(A47-A7], AO-A27) AXSl4 = {AXSl4L]) a nother attem~t at 

(AXSl4/]) PH5 06 N(S/PH6) + ... 
norma lization 

= 
N(S/PH6) = PH5 06 NA5N + ... 

Mnemonic: FMS (3F, BF) 
FMl (1 F, 9F) 

(Continued) 

3-408 



901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU Decrement exponent of Eroduct EDC7 = AXSl4L1 N{PH5 DIV) + ... Ex~nent decremented to 
PH50r in E-register b~ one comEensate for the sh ift 
PH6; 
Box Sustain PH5 unti I multiElicand S/NPH5 = N(S/PH5) 
PH5; is simEle-norma I ized. When 

{S/PH5) PH5 06 N{SLPH6) Tal norma lization occurs (second = 
NRTZ + ... (Cont.) c lock of PH5 or later} ~rform 

the following functions: N(S/PH6) = PH5 06 NASN + •.• 

RiNPH5 = ... 
If multielier (in D-register) is {S/SXD) = {SLSXA VD) ND46 + •.. Preset adder to gate 
Eositive l enable signa I (SLSXD) 

(S/SXAVD) PH5 06 ASN NSW2 + ... 
absolute va lue of mu Iti-= elier to sum bus in PH6 

If multiElier is negative, enable {S/SXMD) = (S/SXA VD) D46 + •.. 
sisna I (S/SXMD) 

Set flie-f1oe SW2 S/SW2 = (S/SW2/1) + ..• SW2 indicates that 

(S/SW2/1) = PH5 06 ASN NSW2 + ..• A-f--D wi" be ~er-
formed in PH6 

RiSW2 = ... 
Branch to Box PH6 S/NPH6 = N(S/PH6) 

(S/PH6) = PH5 06 ASN NSW2 + ... 

R/NPH6 = ... 

CPU This ~hase is entered from PH5 
PH50r {multiElicand was not orisinalll 
PH6; normalized} or from PH4 {multi-
Box Elicand normalized, multi~lier 
PH6; not norma lized). Phase is sus-
Tal tained until multiElier is simEle-

norma I i zed or found to be zero 

Perform the following functions 
during the first clock eeriod: 

If entered from PH4l Adder logic set at PH4 clock I MultiElierl--- sum bus 
I{A47-A71l AO-A31}1-
{S47-S71, SO-S31} 

If entered from PH5, Adder loSic set at PH5 clock } I Multielierl--sum bus 
I{D47-D71, DO-D31)1---
(S47-S71 l SO-S31} and 
(A47-A71, AO-A31) -f-- DXA = PH6 SW2 + ... SimEle-normalized mul-
(D47-D71, DO-D31) tiElicand-f---D-register 

(S47-S71, SO-S31) x 16-+-- AXSl4 = AXSl4/1 Shift I multiElier I left one 

(A47-A71, AO-A27) AXSl4/1 = PH6 06 N(S/PH7) + ... 
hexadecima I for first trl 
at norma lization 

Mnemonic: FMS (3F, BF) 
FMl (1 F, 9F) 

(Continued) 

3-409 



901172 

Table 3-66. FMS, FML Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU Decrement exponent of ~roduct EDC7 = AXSL4/1 N(PH5 DIV) Exponent decremented to 
PH50r in E-register b;t one com~ensate for the sh ift 
PH6; 
Box Set flie-floe RTZ if sum bus SLRTZ = SZU SZL NSXADD If sum bus is zero, mul-
PH6; quantity is zero 

NASPP PH6 + •.. 
ti~lier is zero and there-

TaL fore ~roduct is zero. 
(Cont.) SZU = N{S47 + S48 + ..• + S71) The multielication in 

SZL = N(SO + Sl + ... + S31) 
PH7 wi II be bypasse~ 

R/RTZ = PHl + ASPP 

Enable signa I (S/SXA) (S/SXA) = AXSL4/1 NFPRR + ... Preset adder for A---S 

FPRR = PH6 NPH5 RTZ + ... 
in next clock ~eriod 

Decrement count in F-register FDC7 = PH6 MUL N{SLPH7) + ... F-register holds 5 {if 
.byone FMS) or 13 {if FML). 

These counts re~resent 
iterations. Two itera-
tions are deleted for 
everl hexadecima I shift 
reguired to normalize 
multielier 

Perform the following functions 
during the second and following 
clock periods: 

If multi~lier is zero {RTZ)l enable FPRR = PH6 NPH5 RTZ + ... 
signa I FPRR, branch to PH9 

SiPH9 = FPRR 

R/PH9 = ... 
If multiplier is not zero and if it 
is not simple-norma lizedl shift 
the multi~lier toward normaliza-
tion as follows: 

Enable signa I (S/SXA) (S/SXA) = AXSL4/1 NFPRR + ... Preset adder for A-S 

(A47-A71, AO-A31)- .Adder logic set at ~revious clock Shift multi~lier left one 

(S47-S71, SO-S31) x 16-+--
hexadecima I for another 
attempt at normalization 

(A47-A71, AO-A27) AXSL4 = AXSL4L1 

AXSL4/1 = PH6 06 N(S/PH7) + ... 

N(S/PH7) = PH6 06 NASN + ... 

Decrement exponent of ~roduct EDC7 = AXSL4/1 N{PH5 DIV) + ... Exponent decremented to 
in E-register bl one compensate for the sh ift 

Decrement iteration count in FDC7 = PH6 MUL N(S/PH7) + ... Delete number of itera-
F-register by one tions needed for multi-

~Iication bl one 

Mnemonic: FMS (3F, BF) 
FML (1 F, 9F) 

(Continued) 

3-410 



901172 

Table 3-66.. FMS, FML Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU ,?ustain PH6 until multi~lier is SiNPH6 = N(SiPH6} 
PH50r sim~le-norma lized. When simele-

(S/PH6) PH6 06 N(SjPH7) PH6; normalization occurs (second clock = 
Box of PH6 or later), perform the NRTZ + ... 
PH6; following functions: N(SjPH7) = PH6 06 NASN + ... T8L 
(Cont .) RjNPH6 = ... 

Set fl i~-flo~ 5'N2 if ~roduct wi II SjSW2 = {SiPH7} NPH7 MUL FPR set in PH2 if o~er-
be negative FPR + ... and signs are not alike 

RiSW2 = ... 

Branch to Box PH7 S/NPH7 = N{SiPH7) Multi~lication, itera-

(SjPH7) = PH6 06 ASN DSN + ... 
tions may proceed 

RiNPH7 = ... . 
CPU FMS: 14 clocks - two clocks for 
PH5 each multiplier norma lization shift 
or FML: 30 clocks - two clocks for 
PH6; each multiplier norma lization shift 
Box Resume of register contents: 
PH7; 
T8L* 

A, B WILL EVENTUALLY BIT -PAIR LOGIC 
HOLD MANTISSA PRODUCT I 

I I I 
I 

rn ~ ZEROS IF FMS 

i 
I 

I Mll~M2 SW2 

A I· ZEROS I 1 [f 
.47 710 :1·31 .49.48 

(CLEARED AT FIRST I 
I 

I 

PH7 CLOCK) ORIGINAL, UNSHIFTED MANTISSA 
OF MULTIPLIER OR I MULTIPLIER I 

D II 71 I ITERATION COUNT ORIGINALLY 5 IF .46.47 31 D I I F FMS OR 13 IF FML; NOW CONTAINS 
I THESE AMOUNTS MINUS ONE COUNT 

ZEROS IF FMS 0 7 

I I FOR EACH HEX SHIFT REQUIRED FOR 
J MULTIPLIER NORMALIZATION 

MANTISSA OF MULTIPLICAND 

E D TENTATIVE UNBIASED EXPONENT 
OF PRODUCT 

0 7 

901172A.3961 

*If CPU accepts I/O service co II, FPCLENj1 = NIOEN NIOIN + NFPRR Floating point box con-
clocks to floating point box are FPCLENj2 = NT5EN ti nues operation after 
rejected, as they are T5L N(S/T8L) = FAF L (IOACT + PH10) + ... I/O service 

Mnemonic: FMS (3F, BF) 
FML (1 F, 9F) 

(Continued) 

3-411 



901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU Perform the following functions 
PH5 during the first clock eeriod of PH7: 
or 
PH6; Enable signa I MIT MIT = PH7 MUl N(FO SWO} Sustain multi~l:t itera-
Box tions until final clock 
PH7; of PH7 
T8l 
(Cont .) (546-571, SO-S31)-f-- S/A47 = (5/ A47 /2) + •.. No gating term to sum 

(A47-A71, AO-A31), B31, B30 (S/A47/2) = (G46 + PR46 NK46) 
bus enabled during first 
c lock ~eriod of PH7, 

BXBL2 + ... therefore A-register and 

BXBL2 = MIT 
B31, B30 are cleared 

AXSR2 = MIT 

SiB30 = 531 BXBL2 + •.. 6~d~ RlB30 - BX 

SiB31 = S30 BXBL2 + ..• A B 

RlB3l BX 
BXBL2 

= U{ Iml' (B31- B50)-f-- (B29- 848) 8X8L2 = MIT 
2928 5150494 

901172A. 3962 

Enable M1 and M2 according to M1 = 849 NFPR NFl FPR is set if o~erand 
state of FPR fIi~-flo~ 

+ N849 FPR NFl 
signs are unlike. Ml 

+ ..• and M2 are enabled so 
M2 = 848 NFPR NFl that I ~roduct I is 

+ N848 FPR NFl + •.. 
produced 

Set flie-floe SWO sisWO = NSWO BXBL2 + ... SWO is true on a II even-

BXBL2 MIT 
numbered clocks = 

R/SWO = MIT + ..• 

Preset adder according to bit {SL:SXA) = MIT (NMl NM2 NSW2 Preset adder for A-S 
pair in 849, 848, and state + M1 M2 SW2} in next clock ~eriod 
of SW2 

(S/SXAMD) (S/SXAMD/1) + •.• Preset adder for A - D = 

(S/SXAMD/l )= MIT Ml (M2 c±) SW2) 
• S- in next clock 

period 
+ ..• 

Mnemonic: FMS (3F, BF) 
FML (1 F, 9F) 

(Continued) 

3-412 



901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

I 
Phase Function Performed Signa Is Involved Comments 

CPU Perform the following functions 
PH5 during the second and following 
or c lock ~eriods of PH7 (exce~t 
PH6; the last): 
Box 
PH7; Enable signa I MIT MIT = PH7 MUl N(FO WO) Sustain multi~l~ 
T8l iterations 
(Cont.) (A47-A71, AO-A31) ± {D46-D71, 

DO-D31 )---{S47-571, 50-531) 

or Adder logic set at previous clock Adder logic set b~ 

(A47-A71, AO-A31}---
~revious bit pair and 
5W2 

(547-571, 50-531) ... 

(S46-571, 50-S31}--f---
.... 

{A47-A71, AO-A31), B31, B30 Current portia I sum 
shifted right two bit 

(B31-B50)-+--(B29-B48) Eositions into A-register 
and B31, B30 

Enable M1 and M2 

Toggle flip-flop 5WO 

Preset adder accordins to bit pa ir 
logic same as first clock period of PH7 

Preset adder for next 
in B49 l B48 and state of 5W2 portia I sum 

5et fIi~-flo~ 5W2 if bit-pair Add one to next bit pair 
weisht of 3 or 4 

If bit-pair logic calls for 2 x multi- Preset pa rt ia I product for 
~Iicand or 1 x multi~licand, shift addition to portia I sum 
D-register accordingl~ durina next clock ~eriod 

Decrement iteration count in FDC7 = PH6 MUl N(5LPH7} + ... 
(FO-F7) b~ one at ever~ even-

(5/PH7) = MIT 
numbered clock 

MIT = PH7 MUl N(FO 5WO) 

Perform the followina functions 
during the last c lock period of PH7 

Disable MIT and MIT functions MIT = PH7 MUl N(FO 5WO) FO is a one because iter-
ation count has been 
decremented below zero. 
5WO is true durina even 
c lock ~eriods 

Mnemonic: FMS (3F, BF) 
FMl (1 F, 9F) 

(Continued) 

3-413 



901172 

Table 3-66. FMS, FML Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU (S/SXAPD) = (S/SXA PD/l) + ••. Preset adder for A + D 
PH5 

(S/SXA PD/l) = MIT N(SXAMD/l) 
---S in next clock 

or period 
PH6; N{SLSXA} + ••. 
Box 

Set flie-floe SW2 if bit-pair S/SW2 MIT Ml N{SLSXAPDL1) Effectivel~ adds one to 
PH7; = 
Tal weight of 3 or 4 MUL+ ••. next bit ~ir 

(Cont.) RLSW2 = ... 
If bit-E2ir logic calls for 2 x DXDLl = MIT N (M2 (-8 SW2) NSWl Find 2 x multi~licandL 
multi~licand or 1 x multielicand, eroviding 2 x mu ItiE' i-
shift D-register accordingly S/SWl = MIT N (M2 G) SW2) cand is not alread~ in 

RiSWl = NPH9 
D-register (SWl set) 

DXDRl = MIT (M2 B SW2) SWl Restore original multi-
~Iicand in D-register, 
eroviding it is not 
a I read~ eresent (SW 1 
reset) 

Sustain PH7 S/NPH7 = N(S/PH7) 

(S/PH7) = MIT + ••• 

R/NPH7 = ... 
Sumrna~ of control signa Is 
during PH7: 

, 
w 0 

0:- i 
~Z 0 t ~O 

~ t~ 0' ~ 
N 

~ -- ~ .... -I .... 
Z Z «~ 

V) 
~-

a.. 
<' :I: 

1 
« ~ 

± ! i 
C) :::> .... NV) -~ X X X !) 

~ 
.... z 

x Z xV) ~ ~ ~ co 

~~ o!:!: o!:!: e e e ~ 
Ml M2 SW2 .-L, - --
0 0 0 0 0 • • • • 
0 0 1 1 1 • • • 
0 1 0 1 1 • • • 
0 1 1 2 2 • • • • 
1 0 0 2 2 • • • • 
1 0 1 3 -1 +4 • • • • 
1 1 0 3 -1 +4 • • • • 
r 1 1 4 0 +4 • • • • • 

CLOCK (N)J L CLOCK (N + 1 ) 

.9011 nA. 3963 

Mnemonic: FMS (3F, SF) 
FMl (1 F, 9F) 

(Continued) 

3-414 



901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU (S46-S71, SO-S31)-f-- AXS = PH7 N(SiPH7) MUl + ... last ~rtia I sum is on the 
PH5 

(A47-A71, AO-A31) (S/PH7) MIT 
sum bus. Adder 10Sic = ~reset in ~revious clock or 

PH6; period 
Box 
PH7; Enable signa I (S/SXA) (S/SXA) = PH7 N(S/PH7) + •.• Preset adder for A--S 
T8l in PH8 
(Cont.) 

Branch to Box PH8 S/NPH8 = N(S/PH8) 

(S/PH8) = PH7 N(S/PH7) + •.. 

RLNPH8 = ... 

CPU One c lock Ions 
PH6; A-resister contains the absolute 
Box value of the result in the ranse 
PH8; lL256 ~r.esultl< lL16 
T8l 

If the resu It is not sim~le- Shift A-resister ~roduct 
norma I i zed! eerform the to normalize it. Product 
following functions: in remainder of B-

(A47 -A71, AO-A31) Adder logic set at PH7 clock 
register wi II be lost 

(S47-S71, SO-531) x 16 AX5l4 = AX5l4/1 
, 

(A47-A71, AO-A27) AXSl4/1 = PH8 NDIV NASN + ... 

(B31-B28) (A28-A31 ) S/A28 = B31 A2831XB + ..• 
-. 

S/A31 = B28 A2831XB + ... 
A2831XB = PH8 MUl NA5N 

R/A28-A31 = AXil + ... 

Decrement exponent of product EDC7 = AXSl4/1 N(PH5 DIV) + ... Compensate for the shift 
in E-register b;t: one 

Enable sisna I FPRR and ~erform FPRR = PH8 NDIV NA5255Z + ... Prepare to send result 
functions listed at end of this to CPU 
~hase. If the resu It is sim~le- I Resultl eguals 1 in this 
normalized and A47 is a one, case, and must be shifted 
perform the following functions: right to re~resent a lega I 

(A47-A71, AO-A31)-- Adder 109ic set at PH7 clock 
floating point number 

(S47-571, 50-531) x 1/16-+-- AX5R4 = AX5R4i1 

(A51-A71, AO-A31) AX5R4/1 = PH8 NDIV A47 + ... 

Mnemonic: FM5 (3F, BF) 
FMl (1 F, 9F) 

(Continued) 

3-415 



Phase 

CPU 
PH6i 
Box 

Function Performed 

Increment exponent of resu It 
by one 

PH8i Enable signa I FPRR and perform 
T8l functions listed at end of this 
(Cont.) phase 

CPU 
PH7i 
Box 
PH9i 
T8l 

3-416 

If the resu It is simple-norma I ized 
and A47 is a zero, enable signa I 
FPRR and perform functions listed 
at end of this phase 

FPRR functions: 

Enable (CPU) PH7 

Set flip-flop MRQ 

Enable signa I (S/SXA) if NFPR 

E~able signa I (S/SXMA) if FPR 

Set Box PH9 

One c lock long. Entered from 
PH5 if multiplicand is zero, 
from PH6 if multiplier is zero, 
or from PH8 

(A47-A71, AO-A31 )---

or 

-(A47-A71, AO-A31)--­

(S47-S71, SO-S31) 

Transfer (50-531) to (FPO-FP31) 
I ines providing none of the 
following conditions are present: 

FMS or FMl with odd R field 
in effect 

Resu It is egua I to zero 

901172 

Table 3-66. FMS, FML Sequence (Cont.) 

EUC7 

FPRR 

FPRR 

S/PH7 

NBR 

NBRPH6 

R/PH7 

Signa Is Involved 

= NPH5 "AXSR4/1 + •.• 

= PHS NDIV ASN + ... 

= PHS NDIV ASN + ... 

= PH6 NBR NIOEN + ..• 

= NBRPH6 ... 

= N(FAF L PH6 NFPRR) + .•. 

S/MRQ = (S/MRQj1) + ... 

FAFL PH6 NIOEN 
NBRPH6 + ..• 

(5/MRQj1) = 

R/MRQ 

(5/SXA) 

(S/SXMA) 

5/PH9 

R/PH9 

= FPRR NFPR + ... 

= FPRR FPR + ... 

= FPRR 

Adder logic set at PH5, PH6, or PH8 clock 

FPXSL = NF PDIS PH9 FPRD NRTZ 
N(FEUF NFZ) + ••• 

FPRD = N02 + MUL NR31 

RTZ 

(Continued) 

} 

Comments 

Compensate for the shift 

Prepare to send result to 
CPU 

Request for next instruc­
tion in sequence 

Preset adder logic to 
give result the proper 
polarity 
---

Mantissa of result, in 
proper polarity, trans­
ferred to sum bus 

LSW of floating point 
resu It 

Mnemonic: FMS (3F, BF) 
FML (1 F, 9F) 



Table 3-66. FMS, FMl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU Ex~onent underflow with FZ FEUF = EO NE1 NRTZ Ex~nent was decre-
PH7; egua I to zero N(B65 N06 FS NFZ) mented be low zero 
Box 
PH9; If one of the above conditions No eating term enabled 
Tal exists, transfer zeros to (FPO-FP31) 
(Cont.) 

(FPO-FP31 )-f--(BO- B31) BXFP = FAFl PH7 + ..• lSW of floating point 
result 

Reset flip-flop NSXBF S/NSXBF = N(S/SXB) Preset logic for B-S 

(S/SXB) = FAFl PH7 + .•. in PHS 

R/NSXBF = ... 
Force a one on private memory S/NlR31 F = N(S/lR31) Select odd-numbered 
address line LR31 

(S/LR31) FAFL PH7 + ..• private memory address = 
during PH10 

R/NlR31 F = ... 
Set flip-flop RW if long format S/RW = (S/RW/FP) Prepare to send lSW of 
instruction and TRAP signal is (S/RW/FP~ = PH9 NTRAP FPRD + II. result to CPU 
not true 

R/RW = ... 
Set flip-flop CC 1 if exponent S/CC1 = (S/CC1/3) + ••• 
underflow has occurred and FZ (S/CC1/3) -- = (S/CC1/FP) + ••• 
is a one 

(S/CC1/FP) = PH9 FEUF + ••• 

R/CC1 = (F/CCl) 

Set flip-flop CC2 if exponent S/CC2 = (S/CC2/3) + ••• 
underflow or overflow (S/CC2/3) = (S/CC2/FP) + ••• 

(S/CC2/FP) = PH9 (FEUF + FEOF) + ••. 
R/CC2 = (R/CC2) 

FEOF = NEO E1 NRTZ 

Enable TRAP signa I if exeonent TRAP = FEOF + FEUF FZ + ..• TRAP erevents RW from 
underflow has occurred and FZ beine set in PH9 and 
is a one, or if exponent over- PH10 --
flow has occurred 

Enable siena I (S/SXA) if NFPR (S/SXA) = PH9 NFPR + •.. } Preset adder to eive 
is true 

result the proper polarity 
Enable siena I {S/SXMA) if FPR (S/SXMA) = PH9 FPR + ... 
is true 

If FPR is true, transfer (NEO- NE7) EXNE = PH9 FPR NTRAP A negative result re-
---+-- (EO- E7) N(FEUF NFZ) guires an inverted 

exponent 

Branch to Box PH10 SiPH10 = PH9 

R/PH10 = ... 
Mnemonic: FMS (3F, BF) 

FMl (IF,9F) 

(Continued) 

3-417 



Phase 

CPU 
PH8; 
Box 
PH10; 
T8l 

3-418 

Function Performed 

One c lock long 

(80-831 )--(SO-S31)-­

(RWO-RW31) 

If lSW of result is not equal to 
zero, set flip-flop SWO 

Reset flip-flop NSXBF 

Set fl i p-flop fNV if TRA P signa I 
is not true 

Set flip-flop DRQ 

(A47-A71, AO-A31)--

or 

-(A47-A71, AO-A31)--­

(S47-S71, SO-S31) 

S47---FPO 

NE1---FP1 (+64 bias) 

(E2 - E7) ----(F P2- F P7) 

(S48-S71 )--(FP8-FP31) 

(FPO-FP31 )-r--(BO-B31) 

Reset Box PH 10 

901172 

Table 3-66. FMS, FMl Sequence (Cont.) 

Signa Is Involved 

logic set at PH7 clock 

RWXS/0-RWXS/3 = RW ... 

RW = Set at PH7 c lock, if no 
trap condition and long 
format 

S/SWO = 
(S/SWO/NZ) = 

NS0031 Z (S/SWO/NZ) + ... 

FAFl N02 PH8 

R/SWO 

S/NSXBF 

(S/SXB) 

R/NSXBF 

S/RW 

(S/RW/FP) 

R/RW 

S/DRQ 

SRPH10 

R/DRQ 

= 

= 
= 

= 

= 

= 

= 

= 
= 

= 

RESET/A + ... 

N(S/SXB) 

FAFl PH8 + ••. 

(S/RW/FP) 

PH10 NTRAP + ... 

BRPHlO + ... 

FAFl PH8 + •.. 

Adder logic set at PH9 clock 

FPO 

FPXSU 

FPl 

FPXSU 

FPXSU 

SXFP 

R/PH10 

= 547 FPXSU + ... 

= NFPDIS PH10 NRTZ 
N(FEUF NFZ) 

= NEl FPXSU + ... 

== FAFL PH8 + ... 

(Cont i nued) 

Comments 

Transfer lSW of resu It to 
private memory register 
Rul 

Used in PH10 for con­
dition code settings 

Preset logic for B--S 
in PH10 

Prepare to send MSW of 
result to CPU 

Inhibits transmission of 
another clock unti I data 
release received from 
core memory. Request 
for next instruction mode 
in PH6 

MSW of mantissa--­
sum bus 

MSW of resu It trans­
ferred to FP lines if 
resu I t not egua I to zero 
or if underflow with FZ 
= 0 does not exist 

MSW of result -r---­
B-register 

Floating point box 
actions are finished 

Mnemonic: FMS (3F, SF) 
FMl (1 F, 9F) 



901172 

Table 3-66. FMS, FML Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU Branch to CPU PHlO S/PH10 = BRPH10 NClEAR + ... 
PH8; 
Box R/PH10 = ... 
PH10; 
T8L 
(Cont .) 

CPU One c lock long 
PH10; 

{BO- B31 )--{SO-S31)--- Adder logic set at PH8 clock' 
Box 
actions 

(RWO-RW31) RWXS/0-RWXS/3 
over; 
T8l RW 

Set fl ip-flop CC3 if floating S/CC3 
point result is positive 

SGTZ 

TESTS 

R/CC3 

Set flip-flop CC4 if floating S/CC4 
point result is negative (S/CC4/2) 

ENDE functions R/CC4 

FLOA lING DIVIDE, SHORT (FDS; 3E, BE). FDS 
divides the contents of private memory register R by 
the effective word. If no floating point arithmetic 
occurs, the quotient is loaded into private memory 
register R. 

FLOA lING DIVIDE, LONG (FDL; 1 E, 9E). FDL 
divides the contents of private memory registers Rand 
Ru 1 by the effective doubleword. R must be an even 
va lue for correct resu Its. If no floating point arithmetic 

= 

= 
= 

= 
= 
= 
= 

= 

= RW ... 

Set at PH8 clock if no 
trap condition 

SGTZ TESTS + ... 

(SO + Sl + ... + S31 SWO is set when there is 

+ SWO) NSO 
significance in LSW of 
resu It 

FAFL ENDE + ... 

TESTS + ••• 

(S/CC4/2) TESTS + ••• 

NFACOMP SO + ••• 

TESTS + ••• 

Mnemonic: FMS (3F, BF) 
FML (1 F, 9F) 

fau It occurs, the quotient is loaded into pri vate memory 
registers Rand Ru1 as a long format floating point number. 

FLOA liNG DIVIDE PHASE SEQUENCE. Preparation phases 
for FDS are the same as the general PREP phases for word in­
structions, paragraph 3-59. FDL preparation phases are 
described in paragraph 3- 59. Figure 3-170 shows the 
general method of FDS and FDL execution. Nonrestoring 
division (described in paragraph 3-68) is used during the 
actua I divide iterations. Table 3-67 lists the deta i led. 
logic for execution of the floating multiply instructions. 

3-419 



3-420 

901172 

011 0 0 0 1 110 0 0 0 10 0 1 0 I 0 0 0 0 NUMERATOR 

A. TRANSFER OF OPERANDS: (2-
7 

x 16.
11 

) 

B. EXPONENT DIFFERENCING: 

C. PRENORMALIZA TION OF 
OPERANDS: 

EXAMINE NUMERATOR MANTISSA 
AND DENOMINATOR MANTISSA: 

SIMPLE NORMALIZE 
1 NUMERATOR I: 

ADJUST EXPONENT QUOTIENT: 

SIMPLE NORMALIZE 
DENOMINATOR: 

ADJUST EXPONENT QUOTIENT: 

D. DIVISION OF MANTISSAS: 

DIVIDE I NUMERATOR I 
BY I DENOMINATOR I 

E. STORAGE: 

BIAS EXPONENT: 

ASSIMILATE MANTISSA AND 
EXPONENT, CHANGE TO 
PROPER FORM AND STORE: 

110 1 1 1 0 0 011 1 1 111 1 1 111 0 0 0 DENOMINATOR 

(_2-9 x 16 7 ) 

EXPONENT SIGN BIT 

+ o 1 0 0 1 0 1 1 = +75 
1 0 1 1 1 0 0 0 = -(+71) 
~--::---::---::----::-~1 = (FO R TWO I S CO MPLEME NT) 
o 0 0 0 0 1 0 0 = +4 (EXPONENT QUOTIENT) 

o~o 0 0 0
1
0 010

1
0000 

1~1 1 1 111 1 1 IiI 000 

NUMERATOR j 0, NOT 
SIMPLE NORMALIZED 

0~00001001010000 

/// 
O~o 0 1 0

1
0 0 0 0'0 0 0 0 

DENOMINATOR j 0, 
NOT SIMPLE 
NORMALIZED 

SHIFT LEFT ONE 
HEX. DIGIT 

o 0 000 1 0 0 
- 1 

EXPONENT QUOTIENT 

o 0 0 000 1 1 NEW EXPONENT QUOTIENT 

o~o 0 0 0'0 0 0 011 000 

/~ 
0~1 0 0 0

1
0 0 0 0

1
0 000 

SHIFT LEFT TWO 
HEX. DIGITS 

00000011 EXPONENT QUOTIENT 
+ 1 0 

o 0 0 q 0 1 0 1 NEW EXPONENT QUOTIENT 

o~o 010'0000
1
0000 

0~1 000
1
0000

1
0000 

o~o 1 0 0'0 0 0 0
1
0 0 0 0 /

MANTISSAI 
PRODUCT 

00000 1 0 1 
+ 1 000 000 

EXPONENT QUOTIENT 

1 000 1 0 1 BIASED EXPONENT QUOTIENT 

0/1 0 0 0 1 0 11 0 1 0 0 10 0 0 0 I 0 0 0 0 I PRODUCT I 
J 

1 I 0 1 1 1 0 1 1/1 1 0 0 10 0 0 0' 0 0 0 0 PRODUCT 

(_2- 2 x 165 ) 

(_22 x 164 ) 
901172A.3964 

Figure 3-170. Floating Divide Implementation 



Phase Funct i on Performed 

PREP At end of PREP: 

(A) : RR 

CPU 
PH1; 
Box 
PH1 ; 
T8L 

(C) : Core memory operand MSW 

(0) : Core memory operand MSW 

Enable signa I (S/5XNA) 

If long-format instruction is in 
effect perform the following 
functions: 

Force a one into P31 

Set flip-flop MRQ 

Ena ble clock T8 

FPCON---floating point box 

5et flip-flop PH1 

One c lock long 

(NAO- NA31 )-(50-531) 

(N50- N531 )---(FPO-FP31) 

FPO-546, 547 

(FP8-FP31 )_(548-571) 

901172 

Table 3-67. FOS, FOL Sequence 

Signa Is Involved 

Note 

Actions that take place in the floating point 
box are underscored in the sequence charts 
for the floating point instructions. Main 
CPU functions are not underscored. 

(S/5XNA) = FAF L PRE/34 + ... 

PUC31 = FAFl N02 PRE3 NANLZ 
+ ... 

5/MRQ = (5/MRQ/1) + ... 

(5/MRQ/1) = FAFL N02 NANLZ 
PRE3 + ... 

R/MRQ = ... 
5/NT8L = N(5/T8L) 

(5/T8L) = FAFL NIOACT NPH10 

R/NT8L = ... 
FPCON = FAFL PRE3 + ... 

5/PH1 = FPCON NPH1 

R/PH1 = ... 

Adder logic set at PHl clock 

FPX5 = NPH8 NOIS 

5XFPiU = 54607XFP 

54607XFP = PH1 NFPOI5 + ... 

5XFP/U = 54607XFP 

(Continued) 

Comments 

Contents of private mem­
ory register R. MSW of 
numerator 

M5W of denominator 

M5W of denominator 

Preset adder for -A-
5 in PHl 

Prepare to obtain LSW 
of denominator 

Memory request for LSW 
of denominator. 
Inhibited if floating 
point option trap exists 

Clocks for remainder of 
floating point phases are 
T8 unless I/O service 
call is in effect (PH6) 

Start functions in 
floating point box 

Sets Box PHl 

Gate M5W of numerator 
to FP lines 

Sign of numerator-
546, 547 

Mantissa of numerator 
--(S48-571 ) 

Mnemonic: FOS (3E, BE) 
FOL (1 E, 9E) 

3-421 



901172 

Table 3-67. FDS, FDL Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU (FPO-FP7) ___ (SO-S7) 5XFP/4 = 54607XFP Ex~onent of numerator 
PHI; ---{SO-S7) 
Box 

Zeros---(58- S31 ) __ No gating term enabled 
PHI; 
T8L (546-S71, SO-531) __ AXS = PHI + •.. 

(Cont.) 
(A46-A71, AO-A31) 

ss 
(A): III NUM MANTISSA I 

4647 71 

I ~~~I ZEROS I 
o 78 31 

Clear B-register BX = PHI + ... 9011nA.3965 

Clear E-register EX = PHI + .!! 

Clear F-register FX = PHI + ..• 

DO--FPCON--floating- FPCON = FAFL PHI DO + ... } Transfer sign of denomi-
point box nator to MWN in 

FPCON-f--MWN S/MWN = FPCON PHI 
floating point box 

R/MWN = PHI 

If FDL is in effect, perform the 
following functions: 

Force a one on pri vate memory (S/LR31) = FAFL N02 PHI + ... Prepare to obtain L5W 
address line LR31 of numerator 

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset logic for RRu 1 

(S/AXRR) = FAFL N02 PHI + .•• 
-f--A in PH2 

R/NAXRR = ... 
Enable signa I (S/SXND) (S/SXND) = FAFL PHI + •.. Preset adder for N D_ 

S in PH2 

Set flip-flop PH2 S/PH2 = PHI Box PH2 
RiPH2 = ... 

CPU One c lock long 
PH2; 
Box (NDO- N D31)-(SO-S31) Adder logic set at PHI clock MSW of denominator 
PH2; 

(NSO-NS31)---(FPO-FP31) FPXS = NPH8 NDIS 
--FP lines 

T8L 

FPO---S46, S47 SXFPLU = S4607XFP Sign of denominator 

54607XFP = PH2 NFPDIS + ..• ---S46' S47 

(FP8-FP31 )---(548-S71) SXFP/U = S4607XFP Mantissa of denominator 
---(S48-S71} 

Mnemonic: FDS (3E, BE) 
FDL (1 E, 9E) 

(Continued) 

3-422 



901172 

Table 3-67. FDS, FDL Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU (FPO-FP7)-(SO-S7) SXFP/U = S4607XFP Ex~onent of denominator 
PH2; ---(SO-SZ) 
Box 

Zeros_(S8-S31 ) No gating term enabled PH2; 
T8L 

(S46-S71, SO-S31)~ DXS PH2 + ••• (Cont.) = 
ss 

(D46-D71, DO-D31) 
(0): III OENOM MANTISSA I 

4647 71 

10EE~~f ZEROS I 
o 78 31 

901172A.3966 

Set fli~-flo~ FPR if o~erand SLFPR = PH2 06 (MWN(t)A4Z2 + ... Signifies that inter-
signs are unlike 

R/FPR = PH1 + ••. 
mediate resu It wi II be 
opposite in polarity to 
fi na I resu It 

If numerator is negative, S(!..O = ... Uninverted exponent 
(NAO- NA7}-+--(AO-A7) SLA1 = NA1 PH2 AO + .•• ---(AO-A7) 

SLA7 = NA7 PH2 AO + ... 

R/AO-R/A7 = AX/L 

AXLL = AXL + ..• 

AXL = PH2 AO + ... 

Set flip-flop A8 S/A8 = PH2 NMUL + .•. For PH3 use 

R(!..8 = AX!L 

Set fli~-flo~ D8 if denominator SLD8 = PH2 MWN + ... For PH3 use (for KZ) 
is negative 

RLD8 = DX!L 

DX/L = DX + ... 

DX = PH2 + ... 

Enable si~na I (S!SXAPD) if {S/SXAPD) = {SiSXA PDL1) + ... For eXEonent arithmetic 
denominator is negative 

(S/SXA PD/1) = PH2 NMUL MWN + •.• 
in PH3 

Enable signa I (S/SXAMD) if (S/SXAMD) = N(S/SXAPD) For ex~onent arithmetic 
denominator is positive {SZSXAMDZ2} + ... in PH3 

(S/5XAMD/2) = PH2 + ••• 
If FML is in effect, ~erform 
the following functions: 

(RRO-RR31 )-f--(AO-A31) AXRR = Set at PHl clock LSW of numerator--r--
A-register 

Mnemonic: FDS (3E, BE) 
FDL (1 E, 9E) 

(Continued) 

3-423 



901172 

Table 3-67. FDS, FDl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU Enable signal (S/SXNA) (S/SXNA) = FAFl PH2 + ... Preset adder for -A 
PH2; ~S in PH3 
Box 
PH2; Set flip-flop DRQ S/DRQ = (S/DRQ/2) + ... Inhibits transmission of 
T8l 

(S/DRQ/2) FAFl N02 PH2 + .•• 
another clock unti I data 

(Cont .) 
= release received from 

R/DRQ = ... core memory (memory 
request made duri ng 
PREP) 

Set flip-flop PH3 SLPH3 = PH2 Box PH3 

R/PH3 = ... 

CPU One c lock long 
PH3; 
Box (AO-A7) ± (DO-D7)---(SO-S7) Adder logic set at PH2 clock Arithmetic operation is 
PH3; 

-f--(EO-E7) S/EO = SO PH3 + ... 
performed that subtracts 

T8l the uninverted denom-
if inator exponent from the 
short, S/E7 = S7 PH3 + ... unln'(erted numerator 
DR if 

R/EO-R/E7 PH1 + ... 
ex~nent. The E-

long = resister now holds the 
unbiased difference of 
the exponents 

(NAO- NA31 )---(SO-S31) Adder logic set at PH2 clock lSW of numerator_ 

(NSO- NS31 ) ___ (FPO-FP31) FPXS NPH8 NDIS 
FP lines if FDL. If FDS, 

= action is meaningless 

If FDl is being performed: AXFP = PH3 N02 lSW of numerator--f---

(FPO-FP31 )--f--(AO-A31) 
A-register 

If FDS is being performed: No satins term enabled 

Zeros I .. (AO-A31) 

(MBO-MB31 )---(CO-C31)-I- DXC = FAFl N02 PH3 + ... lSW of denominator 
(DO-D31) if FDl ---C- and D-registers 

Enable signa I (S/SXND) (S/SXND) = FAFl PH3 + ... Preset adder for - D---
S in PH4 

Set fl i p-flop PH4 S/PH4 = PH3 Box PH4 

R/PH4 = ... 

CPU One c lock long 
PH4; 

(NDO- ND31)--- (SO-S31) Adder logic set at PH3 clock lSW of denominator if 
Box 
PH4 i 

FDL. Meaning less if 

T8l 
(NSO- NS31 ) ___ (FPO-FP31) FPXS = NPH8 NDIS FDS 

Mnemonic: FDS (3E, BE) 
FDl(lE,9E) 

(Continued) 

3-424 



901172 ; 

Table 3-67. FOS, FOl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU If FOl: 
PH4; 

(FPO-FP31) ---(SO-S31) SXFP/4 S0031 XFP + ... 
Box 

= 

PH4; SXFP/A = S0031XFP + ... 
T8l S0031XFP PH4 N02 NFPOIS 
(Cont .) 

= 

If FMS: 

Zeros---(SO-S31 ) No gating term enabled 

(SO- S31 ) -+-- (00- 031 ) OXS/l = PH4 + •.. lSW of denominator {if 
FOl) or zeros {if FOS) 
--f--0- reg ister 

Clear condition code flip-flops R!CC = FAFl PH4 + ... 

Enable signa I (S/SXB) (S/SXB) = FAFl PH4 + ... Preset logic for B---S 
in PH5 

Branch to CPU PH5 S/PH5 = PH4 NBR CPU enters PH5. 

R/PH5 = 
Floating point box may ... go to PH5 or PH6 

If the denominator is sim~le- OSN = N(047 048 049 050 051) 
norma lizedt ~erform the N(ND47 ND4851Z) 
following functions: 

Enable signa I (SiSXA) if (S/SXA) = (S/SXA VA) NA47 + ... 

} denominator ~ositive (S/S XA VA) = PH4 06DSN N(S/PH7) Preset adder to gate 

~ absolute value of denom-

Enable signa I (S/SXMA) if (S/SXMA) (S/SXA VA) A47 + ... 
i nator to sum bus 

= 

denominator negative 

Branch to Box PH6 S/NPH6 = N(S/PH6) 

(S/PH6) = PH4 06 DSN N(S/PH7) 

~ 

R/NPH6 = ... 
If the denominator is not Prepa re to norma Ii ze 

sim~le-norma lized, ~erform denominator in PHS 

the following functions: 

Enable signa I (S/SXD) (S/SXD) = PH4 06 NDSN + ... Preset adder for D---S 
in PH5 

Set fli~-flo~ SW2 SiSW2 = (SLSW2L1) + ... SW2 indicates that 

(S/SW2/1) = PH4 06 NOSN + ... 
A-+--D will be per-
formed in PH5 

RLSW2 = ... 

Branch to Box PH5 S/NPH5 = N(S/PH5) 

(S/PH5) = PH4 06 NDSN + ... 

R/NPH5 = ... 
Mnemonic: FDS (3E, BE) 

FDl (1 E, 9E) 

(Continued) 

3-425 



901172 

Table 3-67. FDS, FDl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU This ~hase is entered only if the 
PH50r denominator reguires erenormali-
PH6; zation. Phase is sustained until 
Box denominator is sim~le-normalized 
PH5; or found to be zero 
Tal 

Perform the following functions 
during the first c lock ~eriod: 

(A47-A71, AO-A31)-f-- DXA = PH5 SW2 + ... Save numerator (at clock) 

(D47-D71, DO-D31) 

(D47-D71, DO-D31)-- Adder loaic set at PH4 clock Shift denominator left 

(547 ... 571, 50-531) x 16-1-- AXSl4 AXSl4i1 
one hexadecimal for first 

= 
norma lization try 

(A47-A71, AO-A27) AXSl4i1 = PH5 06 N(SipH6) + ... 

Increment exponent of guotient EUC7 = PH5 DIV N(S/PH6) + ... Exeonent incremented to 
in E-register b~ one compensate for shift 

Set flie-floe RTZ if sum bus S/RTZ = SZU SZl NSXADD If sum bus is zeroL 

guantity is zero 
NASPP PH5 + ... 

denominator is zeroL and 
division is not allowed. 

SZU = N(S47 + S48 + ... + S71) A tree will result 

SZl = N(SO + Sl + ... + S31) 

R/RTZ = PH1 + ASPP 

Enable signa I (S/SXA) (S/SXA) = AXSl4/1 NFPRR + ... Preset adder for A~S 

FPRR = PH5 06 RTZ + ... 
in next clock eeriod 

Perform the following functions 
during the second and following 
clock periods: 

If denominator is zero (RTZ), FPRR = PH5 06 RTZ + ... 
enable signa I FPRR, transfer 

SXB = FPRR DIV NSDIS + ... B-register {zeros)-f--B-register_ sum bus--
A-register A-resister, branch to PH9 AXS = FPRR DIV + ... 

SLPH9 = FPRR 

RLPH9 = ... 
If denominator is not zero and if 
it is not simele-norma I ized, shift 
the mu Itielicand towards norma li-
zation as follows: 

(A47-A71, AO-A31)--- Adder logic set at erevious clock Shift denominator left 

(S47-S71, SO-S31) x 16-1-- AXSL4 (AXSL4/1) 
one hexadecima I for 

= 
another attemet at 

(A47-A71, AO-A27) (AXSL4/1) = PH5 06 N(S/PH6) + ... norma lization 

Mnemonic: FDS (3E, BE) 
FDL (1 E, 9E) 

(Continued) 

3-426 



901172 

Table 3-67. FDS, FDl Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU N(S/PH6) = PH5 06 NASN + ... 
PH50r 
PH6; Increment exponent of product EUC7 = PH5 DIV N(S/PH6) + •.. Ex~onent incremented to 
Box in E-register b~ one com~ensate for shift 
PH5; 
Tal Sustain PH5 unti I denominator is S/NPH5 = N(S/PH5) 
(Cont .) simele-norma I ized. When nor-

(S/PH5) PH5 06 N(S/PH6) 
ma lization occurs (second clock = 

NRTZ + ... 
of PH5, or later), eerform the 
following functions: N(S/PH6) = PH5 06NASN + ... 

RLNPH5 = ... 
If numerator (in D-register} is (S/SXD) = (S/SXA VO) N046· + .• , } Preset adder to gate 
eositive, enable siena I (S/SXD) 

(S/SXA VD) PH5 06 ASN NSW2 + •.. 
absolute value of numer-= ator to sum bus in PH6 

If numerator is neeative, enable (S/SXMD) = (S/SXA VD) D46 + ... SW2 indicates that A 
siena I (S/SXMD) -+-D will be ~er-

formed in PH6 

Set flie-floe SW2 S/SW2 = (S/SW2/1) + ... 

(S/SW2/1) = PH5 06 ASN NSW2 + ... 

RLSW2 = ... 

Branch to Box PH6 S/NPH6 = N(S/PH6) 

(S/PH6) = PH5 06 ASN NSW2 + ..• 

RLNPH6 = ... 

CPU This ehase is entered from PH4 
PH5 (denominator was simele-
or norma I i zed) 0r from PH5 (denom-
PH6; inator was not origina II~ simele-
Box normalized, but has been). 
PH6; Phase is sustained unti I numerator 
Tal is simele-norma lized or found to 

be zero 

Perform the following functions 
durine the first clock eeriod: 

If entered from. PH4, Adder logic set at PH4 clock I Numeratorl----sum 

I{A47-A71, AO-A31ll---
bus 

(S47-S71, SO-S31) 

Mnemonic: FDS (3E, BE) 
FDl (1 E, 9E) 

(Continued) 

3-427 



901172 

Table 3-67. FDS, FDL Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU If entered from PH5l Adder logic set at PH5 clock INumeratorl--sum 
PH5 

I(D47-D71, DO-D31}1---
bus 

or 
PH6i (547-571, SO-S31) and 
Box 

(A47-A71, AO-A31) -+- DXA PH6 SW2 + ... Sim~le-norma lized = 
PH6i 

denominator-+--D-T8L (D47-D71, DO-D3l) 
register (Cont.) 

If numerator is not simele-
norma I ized: 

(547-571 I SO-S3l) x 16-f--- AXSL4 = AXSL4il 

(A47-A71 I AO-A27) AXSL4/1 = PH6 06 N{SLPH7} + ... 

N{SiPH7} = PH6 06 ASN DSN + ... 

Decrement exponent of EDC7 = AXSL4Ll N{PH5 DIV} + ..• Exponent decremented to 
quotient in E-register by one com~ensate for the sh i ft 

Set flie-floe RTZ if sum bus S/RTZ = SZU SZL NSXADD If sum bus is zeroL nu-
quantity is zero NASPP PH6 + ... merator is zero and there-

SZU = N(S47 + S48 + •.• + S71) 
fore guotient is zero. 
The division in PH8 wi II 

SZL = N(SO + Sl + .•. + S31) be bypassed 

RiRTZ = PHl + ASPP 

Enable signa I (S/SXA) (S/SXA) = AXSL4/1 NFPRR + ... Preset adder for A---S 

FPRR = PH6 NPH5 RTZ 
in next clock ~eriod 

If numerator is sim~le-
norma I i zed: 

{S47-S71 I SO-S31}-+- AXS = PH6 06 ASN DSN + .•. I Numeratorl / .. A-
{A47-A71l AO-A31) register 

Branch to Box PH7 S/NPH7 = N{S/PH7) Both numerator and 

(S/PH7) PH6 06 ASN DSN + ... denominator have now = 
been sim~le-norma lized 

RiNPH7 = ... 
Perform the following functions 

. during the second and following 
clock periods: 

If numerator is zero (RTZ), enable FPRR = PH6 NPH5 RTZ + ... B-register {zeros} /., 
signa I FPRR, {B47- B71, BO- B3l} 

SXB = FPRR DIV NSDIS + ••. 
A-register 

---{S47-S71, SO-S3l)-+--
(A47-A71 I AO-A31), branch to AXS = FPRR DIV + •.. 
PH9 

SiPH9 = FPRR 

RLPH9 = ... 

Mnemonic: FDS(3E, BE} 
FDL (lE, 9E) 

(Continued) 

3-428 



901172 

Table 3-67. FDS, FDL Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU If numerator is not zero and not 
PH5 simEle-norma I ized, shift the 
or numerator towards norma lization 
PH6; as follows: 
Box 
PH6; Enable signa I (S/SXA) (S/SXA) = AXSL4/1 NFPRR + ..• Preset adder for A ~S 
T8L 

(A47-A71, AO-A31)--- Adder logic set at ~revious clock Shift numerator left one (Cont.) 
hexadecimal for another 

(S47-S71, SO-S31) x 16--zL-. AXSL4 = AXSL4/1 
attemEt at normalization 

(A47-A71, AO-A27) AXSL4/1 = PH6 06 N(S/PH7) + •.. 

N(S/PH7) = PH6 06 NASN + ... 

Decrement exponent of guotient EDC7 = AXSL4/1 N{PH5 DIY) + .•• Exponent decremented 
in E-register b~ one b~ one to comeensate 

for the shift 

Sustain PH6 until numerator S/NPH6 = N(S/PH6) 
is simEle-norma lized. When 

(S/PH6) PH6 06 N(S/PH7) simEle-norma lization occurs = 
NRTZ + •.. 

(first clock of PH6, or later), 
~erform the following functions: N{SLPH7) = PH6 06 NASN + •.. 

R/NPH6 = ... 
(S47-S71, SO-S31) ,-+-- AXS = PH6 06 ASN DSN + •.. I Numeratorl---f--A-

(A47-A71, AO-A31) register 

Branch to Box PH7 S/NPH7 = N{SLPH7) Both numerator and 

(S/PH7) PH6 06 ASN DSN + ... 
denominator have now = 
been simEle-norma lized 

R/NPH7 = ... 

CPU One or two c locks long 
PH6; 
Box Perform the following functions Since A-register contains 
PH7; if A47 (numerator sign bit) is I numeratorl l A47 = 1 
T8L* ~: means that right-shift 

must be made. This case 
can onl~ occur if orig-
i no I numerator was - 1 or 
-lL16. A-reg ister now 
holds +1 

Set flil2-flol2 A51 SLA51 = PH7 DIY A47 + ... Effectivel~ shifts 

Clear A-register R/A51 = AX I numerator/right one 
hexadecimal 

AX = PH7 DIY A47 + ••• 

*Jf CPU accepts I/O service call, FPCLEN/l = NIOEN NIOIN + NFPRR Floating point box con-
c locks to floating point box are FPCLEN/2 = NT5EN tinues operation after 
rejected, as they are T5L N(S/T8L) = FAFL (IOACT + PH10) + ... I/O service 

Mnemonic: FDS (3E, BE) 
FDL (1 E, 9E) 

(Continued) 

3-429 



901172 

Table 3-67. FDS, FDl Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

CPU Increment ex~onent of guotient EUC7 = PH7 DIY A47 + .•• To com~ensate for right 
PH6; in E-register bl one shift 
Box 

Sustain PH7 for one more clock S/NPH7 N(S/PH7) = PH7; 
T8l (S/PH7) = PH7 DIY A47 + .•. 
(Cont.) 

R/NPH7 = ... 
Preset adder for A -IDI--- S (S/SXAPD) = (S/SXAPD/l) NDIT If denominator is nega-
in PH8 N(PH6 N06) + ••. tive, ~reset adder for 

(S/SXA PD/l) = MWN DIY (S/PH7) + •.. 
A + D--S in PH8 

(S/SXAMD) = (S/SXAMD/l) + •.. If denominator is eosi-

(S/SXAMD/1 )= NMWN DIY (S/PH7) + ••• 
tive, ~reset adder for 
A - D---S in PH8 

Perform the following functions If A47 is a zero, the 
if A47 is a zero (first or second numerator is less than +1 
c lock ~eriod of PH7): 

Enable signa I DPP DPP = PH7. DIY NA47 Divide preparation signa I 

If FDS is being performed, set S/F3 = DPP + ••. 

} 
F-register to 23] 0 

S/F5 = DPP + ..• 

S/F6 DPP + •.. 
For divide iteration = counting 

S/F7 = DPP + ... 

If FDl is being ~erformed, set SiF2 = DPP N02 + .•• 
F-register to 55]Q R/F2-F7 = FX + ••• 

Enable signa I (S/SXA) (S/SXA) = PH7 N (S/PH7) + ... 

N(S/PH7) = PH7 DIY NA47 + ... 

Set fli~-flo~ SW1 if Inumeratorl S/SWl = K46 DPP DIY + •.• K46 is true onl~ if this 
> Idenominator I R/SW1 = NPH9 condition exists 

Branch to Box PH8 S/PH8 = PH7 N(S/PH7) + ••• 
R/PH8 = ... 

Mnemonic: FDS (3E, BE) 
FDl (1 E, 9E) 

(Continued) 

3-430 



901172 

Table 3-67. FDS, FDl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU PH8 l SW1. This subehase is entered 
PH6i onl~ if the absolute va lue of numer-
Box ator is greater than or egua I to the 
PH8, absolute va lue of the denominator. 
SW1i One clock long if entered 
T8l· 

{A47-A71, AO-A31)-- Adder logic set at last PH7 clock Shiftlnumerator\so that it 

(S47-S71, SO-S31) x 1/16- AXSR4 = AXSR4/1 
is smaller than Ide nom-
inatorl in ~reparation for 

(A51-,S71,. AO-A31), (848-851) AXSR4/1 = PH8 SW1 DIV + .•. division o~eration 

S/848 = (S/848/1) + ..• 

S/851 = (S/851/1) + .•• 

(S/B48/1) = S28 PH8 DIY SW1 + ..• 
~ . 

(S/B51/1 ) = S31 PH8 DIV SW1 + .•. 

R/B48-B51 = BXFP + ••. 
Increment ex~onent of guotient EUC7 = AXSR4/1 NPH5 + ••. To compensate for right 
in E-register b~ one shift 

Reset flie-floe SW 1 R/SW1 = NPH9 

Enable sifi!nal (S/SXA) (S/SXA) = PH8 DIV SW1 + ••. Preset adder for A - S 
in PH8. NSW1 

Sustain Box PH8 S/NPH8 = N{SLPH8) 
{S/PH8) = PH8 NFPRR + .•• 

RLNPH8 = .1. 

I NORMALIZED NUMERA TORI I ~ POSSIBLY LSD OF I NORMAUZED NUMERATOR I 

i 
I 

P J, ~ I· I ZEROS DL?I B 
47 31 4851 71 0 31 

I 
I 

I t t 
ZEROS IF FDS K46-f--B71 IF FDS K46--B31 IF FDl 

D I ,1 I 
47 31 F D ITERATION COUNT - 23 IF FDS, 

I 
I 

I 
55 IF FDl 

ZEROS IF FDS 0 7 

I I 

D TENTATIVE UNBIASED I E 
NORMAUZED DENOMINATOR EXPONENT OF QUOTIENT 

0 7 

9011 nA. 3967 

Mnemonic: FDS (3E, BE) 
FDl (1 E, 9E) 

(Continued) 

3-431 



901172 

Table 3-67. FDS, FDl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU Perform the following functions 
PH6; during the first c lock ~eriod of 
Box PH8: 
PH8, 

Enable signa I DIT DIT = PH8 DIV NSW1 NFO High during all clocks SW1; 
except the fino I two T8l 

(Cont.) Enable signa I DITL1 DITL1 = PH8 DIV NSW1 NFPRR High during a II clocks 
except the fina I 

.... 

(A47-A71, AO-A31)--- Adder logic set at ~revious clock First iteration amounts to 

(S47-S71, SO-S31) shifting numerator right 
one bit position so that 

(S48-S71 , SO-S31) x 2 -f- AXSLl = DIT/1 
first ~uotient bit ~ro-
duced is 2-1 bit. A 20 

(A47-A71, AO-A30) ~ guotient bit is produced 
in this clock ~eriod but 

(B48--f-A31) S/A31 = AXSl1 B48 + ••• since the guotient is the 
R/A31 = PH6 N06 + ... absolute va lue of the 

(B49-B31)~(B48-B30) BXBLl = DIl/1 + ••• actual quotient it is a .. 
zero and does not need 
to be clocked into B (B 
contains all zeros) 

Set flip-flop SWO if FDl S/SWO = BXBLl N02 + ... 

R/SWO = DITLl + ... 

If denominator is negative, pre- (S/SXAPD) = (S/SXAPD/2) + ... First subtraction is 
set adder for A + D ---S in 

(S/SXAPD/2) = DIT MWN ••. I numeratorl-
second c lock ~eriod of PH6 Idenominatori 

If denominator is positive, preset (S/SXAMD) = N(S/SXAPD) 
adder for A - D--S in second {S/SXAMDL2) + ... 
c lock ~eriod of PH6 

(S/SXAMD/2)= DIT + ... ~ 

Decrement iteration count in FDC7 = DITL1 + ... 
F-register by one 

Sustain PH8 S/NPH8 = N(S/PH8) 

(S/PHB) = PH8 NFPRR + •.• 

RLNPH8 = ... 

Mnemonic: FDS (3E, BE) 
FDl (1 E, 9E) 

(Continued) 

3-432 



901172 

Table 3-67. FDS, FDl Sequence (Cont.) 

Phase Funct ion Performed Signa Is Involved Comments 

CPU Perform the following functions 
PH6; during the second and following 
Box clock eeriods of PH8, exce~t 

PH8, the last two 
SW1; 
T8l Enable signa I DIl ... 

(Cont.) 
Enable signa I DIlL1 {exce~t second 
to last and last clock Eeriods) 

(A47-A71, AO-A31)---

(S47-571, 50-531) Residue of origina I nu-

(S47-571, SO-S31) x 2 -f-- logic same as PH8, first clock period 
merator and quotient bits 
shift to the right as 

(A47-A71, AO-A31) iterations progress 

B48 --f----A 31 

(849-B31 )-+--(848- B30) 
~ 

Quotient bit-r--B31 if FDl 5/B31 = BXBLl K46 5WO } K46 is a one if residue 

or R/B31 = DIl/1 + ... 
in A-register goes posi-
tive, signifying that 

Quotient bit-+--B71 if FDS SLB71 = BXBLl K46 NSWO divisor (denominator) 

R/B71 = DIl/1 + .•. 
cou Id be successfu lIy 
subtracted from residue 
(remainder) 

Set flip-flop SWO if FDl S/SWO = BXBLl N02 + ... 

R/SWO = DIlL1 + .. 0 

... 

If {K46 G) SXADD(±)MWN), (S/SXAPD) = (S/SXAPD/2) + 000 

ereset adder for A +. D--S (5/SXAPD/2) = DIl (MWN@SXADD@K46) 
Next iteration wi II com-

in next clock ~eriod bine residue and divisor 
so that divisor has oEPO-

If N(K46 (jjSXADDG)MWN), (S/SXAMD) = N(5/SXAPD) {5/SXAMDL2) site Eolarity residue l 

~reset adder for A - D---S + .00 
bringing residue toward 

in next clock Eeriod (S/SXAMD/2)= DIl + 000 

zero 
~ 

Decrement iteration count in FDC7 = DIlL1 + 00. 

F-register b~ one 

Sustain PH8 SLNPH8 = N(S/PH8) 

(S/PH8) = PH8 NFPRR + 0 o. 
R/NPH8 = 00. 

I 

Mnemonic: FDS (3E, BE) 
FDl (1 E, 9E) 

(Continued) 

3-433 



Phase 

CPU 
PH6; 
Box 
PH8, 
SW1; 
T8l· 
(Cont .) 

Function Performed 

Perform the following functions 
during the second-to-Iast clock 
period of PH8: 

A II of the above functions execpt 
(S/SXAPD) or (S/SXAMD) 

Perform the following functions 
during the last clock period of 
PH8: 

Enable signa I FPRR 

Enable (CPU) PH7 

Set flip-flop MRQ 

(847-B71, BO-B31)-­

(S47-S71, SO-S31)-­

(A47-A71, AO-A31) 

Enable signa I (S/SXA) if NFPR 

Enable signal (S/SXMA) if FPR 

Set Box PH9 

CPU One clock long. Entered from 
PH7; PH5 if denominator is zero, from 
Box PH6 if numerator is zero, or from 
PH9; PH8 
T8L 

3-434 

901172 

Table 3-67. FDS, FDL Sequence (Cont.) 

DIT 

FPRR 

S/PH7 

NBR 

NBRPH6 

R/PH7 

Signa Is Involved 

PH8 DIV NSW1 NFO 

= PH8 DIV FO NF7 + ••. 

= PH6 NBR NIOEN + •.• 

= NBRPH6 ... 

= N(FAFl PH6 NFPRR) + ... 

S/MRQ = (S/MRQ/1) + ... 

FAFl PH6 NIOEN 
NBRPH6 + ... 

(S/MRQ/1) = 

R/MRQ 

SXB = FPRR DIV NSDIS + •.. 

AXS = FPRR DIV + ... 

(S/SXA) = FPRR NFPR + ... 

(S/SXMA) = FPRR FPR + ... 

S/PH9 = FPRR 

R/PH9 

(Continued) 

} 

Comments 

FO is equal to a one at 
this time, and disables 
signal DIT 

Floating point result 
ready. B-register now 
contains Iquotient I in 
range 1/16 < IQ 1<1 

Request for next instruc­
tion in sequence 

I Quotient I-+-- A­
register 

Preset adder logi c to 
give result the proper 
polarity 

Mnemonic: FDS (3E, BE) 
FDL (1 E, 9E) 



901172 

Table 3-67. FDS, FDL Sequence (Cont.) 

Phase Function Performed Signa Is Invo Ived Comments 

CPU (A47-A71, AO-A31)--- (S/SXA) = FPRR NFPR } Set ot pre- Mantissa of guotient, in 
PH7; or or vious clock eroeer Eolarit~L trans-
Box -(A47-A71, AO-A31)~ (S/SXMA) = FPRR FPR ferred to sum bus 
PH9; (S47-S71, SO-S31) 
T8L 
(Cont .) Transfer {SO-S31) to (FPO-FP31) FPXSL = PH9 NFPDIS FPRD NRTZ LSW of floating Eoint 

linesL Eroviding none of the N(FEUF NFZ) + ... resu It --
follow ing conditions are Eresent: 

FDS in effect NFPRD = 02 + ..• 

Numerator or denominator was RTZ (set in PH5 or PH6) 
equa I to zero 

Exponent underflow with FZ FEUF = EO NEl NRTZ EXEonent was decre-
egua I to zero N{B65 N06 FS NFZ) mented below zero 

If one of the above conditions No gating term enabled 
exists, transfer zeros to (FPO-FP31) 

(FPO-FP31) -+--(BO-B31) BXFP = FAFL PH7 + ... LSW of floating point 
result 

Reset flip-flop NSXBF S/NSXBF = N(S/SXB) Preset logic for B-S 

(S/SXB) FAFLPH7 + ••. 
in PH8 

= 

R/NSXBF = ... 
Force a one on private memory S/NLR31 F = N(S/LR31) Select private memory 
address line LR31 

(S/LR31) FAFL PH7 + •.. 
register Ru 1 address 

= during PH10 
R/NLR31 F = ... 

Set flip-flop RW if FDL and S/RW = (S/RW/FP) Prepare to send LSW of 
TRAP signal is not true 

(S/RW/FP) PH9 NTRAP FPRD + ... 
result fo CPU 

= 
R/RW = ... 

Set flip-flop CCl if exponent S/CCl = (S/CC1/3) + ... 
underflow has occurred and 

(S/CC1/3) (S/CC1/FP) + ... 
FZ is a one = 

(S/CC1/FP) = PH9 FEUF + ... 

R/CCl = (R/CC1 ) 

Set flip-flop CC2 if exponent S/CC2 = (S/CC2/3) + .•• 
underflow or overflow or divide (S/CC2/3) = (S/CC2/FP) + ••. 
by zero attempted 

(S/CC2/FP) = PH9 (FEUF + FE OF + SWl) 
+ ••• 

I R/CC2 = (R/CC2) 

FEOF = NEO El NRTZ 

Mnemonic: FDS (3E, BE) 
FDL (1 E, 9E) 

(Continued) 

3-435 



Phase 

CPU 
PH7i 
Box 
PH9i 
T8l 
(Cont.) 

CPU 
PH8i 
Box 
PHlOi 
T8l 

3-436 

Function Performed 

Enable TRAP sisna I if ex~onent 
underflow has occurred and FZ 
is a one, if exponent overflow 
has occurred, or if a divide by 
zero was attem~ted 

Enable signa I (S/SXA) if NFPR 
is true 

Enable signal (SLSXMA} if FPR 
is true 

If FPR is true, transfer 

(NEO- NE7) ~(EO-E7) 

Branch to Box PHI0 

One clock long 

(80- B31 )--(SO-S31)­

(RWO-RW31) 

If lSW of resu It is not equa I to 
zero, set flip-flop SWO 

Reset flip-flop NSXBF 

Set flip-flop PW if TRAP 
signa I is not true 

Set flip-flop DRQ 

(A47-A71, AO-A31 }-
or 

-(A47-A71, AO-A31)-­
(S47-S71 , SO-S31) 

901172 

Table 3-67. FDS, FDl Sequence (Cont.) 

Signa Is Involved 

TRAP = FEUF FZ + FEOF + SWl + ... 

(S/SXA) = PH9 NFPR + ... 

} (SiSXMA} = PH9 FPR + ... 

EXNE = PH9 FPR NTRAP 

N(FEUF NFZ) 

S/PHlO = PH9 

R/PHlO = ... 

logic set at PH7 clock 

RWXS/0-RWXS/3 = RW ... 
RW = Set at PH7 c lock if no trap 

condition and long format 

S/SWO = NS0031 Z (S/SWO NZ) 

(S/SWO/NZ) = FAFL N02 PH8 

R/SWO = RESET/A + ... 

S/NSXBF = N(S/SXB) 

(S/SXB) = FAFL PH8 + ... 

R/NSXBF = ... 
S/RW = (S/RW/FP) 

(S/RW/FP) = PH10 NTRAP + ... 

R/RW = ... 
S/DRQ = BRPH10 + ..• 

BRPH10 = FAFL PH8 + ••• 

R/DRQ = ... 

Adder logic set at PH9 clock 

(Continued) 

Comments 

TRA P ~revents RW from 
beins set in PH9 and 
PHI0 --

Preset adder to give 
result the proper polarity 

A ne9ative result re-
guires an inverted 
exponent 

Transfer LSW of result to 
private memory register 
Ru1 

Used in PH10 for con­
dition code settings 

Preset logic for B---S 
in PH10 

Prepare to send MSW of 
result to CPU 

Inhibits transmission of 
another clock unti I data 
release received from 
core memory. Request 
for next instruction made 
in PH6 

MSW of mantisso_ 
sum bus 

Mnemonic: FDS (3E, BE)' 
FDL (1 E, 9E) 



901172, 

Table 3-67. FDS, FDl Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

CPU S47-FPO FPO = S47 FPXSU + ... 

l 
MSW of resu It tro ns-

PH8; 
FPXSU NFPDIS PH10 NRTZ 

ferred to F P lines if = 
resu It not egua I to zero Box 

N(FEUF NFZ) PH10; or if underflow with FZ 
T8l NE1 --- FP1 (+64 bias) FP1 = NE1 FPXSU + ... = 0 does not exist 
(Cont .) 

(E2-E7}---(FP2-FP7) FPXSU 

(S48-S71 )--(FP8-FP31} FPXSU 

(FPO-FP31) -+--(BO- B31} BXFP = FAFl PH8 + ... MSW of result-f--B-
register 

Reset Box PH10 R/PH10 = ... Floatina ~oint box 
actions are finished 

Branch to CPU PH10 S/PH10 = BRPH10 NClEAR + ... 

R/PH10 = ... 

CPU One c lock long 
PHlO; 
Box (BO-B31)- (SO-S31)-- Adder logic set at PH8 clock 
actions 
over; (RWO-RW31) RWXS/0-RWXS/3 = RW + ... 
T8l 

RW Set at PH8 c lock if no = 
trap condition 

Set flip-flop CC3 if floating S/CC3 = SGTZ TESTS + ... 
point resu It is positive 

SGTZ = (SO + Sl + ... + S31 SWO is set when there is 

+ SWO) NSO .•• 
significance in lSW of 
result 

TESTS = FAFl ENDE + ... 

R/CC3 = TESTS + ... 

Set flip-flop CC4 if floating S/CC4 = (S/CC4/2) TESTS + .•. 
point result is negative (S/CC4/2) = NFACOMP SO + ..• 

R/CC4 = TESTS + ••• 

ENDE functions 

Mnemonic: FDS (3E, BE) 
FDl (1 E, 9E) 

3-437. 



Paragraph 3-75 

3-75 Fami Iy of Stack and Mu Itiple Instructions (FAST) 

GENERAl. Seven instructions are inc luded in the fami Iy 
of stack and multiple instructions: Push Word (PSW), Pull 
Word (PLW), Push Multiple (PSM), Pull Multiple (PLM), 
Modify Stack Pointer (MSP), Load Multiple (LM), and 
Store Multiple (STM). The family is divided into six 
instruction categories determined by the logic used to 
implement these instructions. Each instruction is included 
in more than one category. The categories are as follows: 

FAST PSM, PSW, PLM, PLW, MSP 

FAST/A PSM, PSW, PLM, PLW 

FAST/M PSM, PLM, PSW, PLW, LM, STM 

FAST/L PLM, PLW, LM 

FAST/S PSM, PSW, STM 

FAST/C PSM, MSP 

STACK POINTER DOUBLEWORD. All FAST instructions 
except LM and STM operate with a stack and a stack 
pointer doubleword. An area of consecutive memory loca­
tions reserved for a particu lar purpose is ca lied a stack. 
Operands are stored, or pushed into the stack and loaded, 
or pulled from the stack on a last-in, first-out basis. The 
push instructions are PSW and PSM; the pull instructions 
are PLW and PLM. The location of each stack is defined 
by a stack pointer doubJeword stored elsewhere in memory. 
The format of the stack pointer doubleword is shown below. 

Bits 0 through 31 of the doubleword comprise stack pointer 
doubleword 0 (SPWO). Bits o through 15 of SPWO are 
insignificant, and bits 15 through 31 indicate the address 
of the word currently at the top of the stack (TSA), that is, 
the highest numbered address in the stack as it exists at the 
time of the current instruction. In stack pointer doubleword 

3-438 

901172 

SPWO 

SPWl 

1 (SPWl), bit positions 33 through 47 contain the space 
count, that is, the number of word locations currently 
avai lable in the region of memory a /located to the stack. 
Bit positions 49 through 63 contain the word count, that is, 
the number of words current Iy in the stack. 

Bit 32 in SPW1 is the trap-on-space inhibit bit (TS), and 
is used to determine what the computer does if the current 
instruction would cause the space count to exceed 215_1 
or to be less than zero. If TS is zero and overflow or 
underflow occurs, the computer traps to location X'42' and 
the condition code remains unchanged. If TS is a one and 
overflow or underflow occurs, the computer sets condition 
code bit CC1 to a one and executes the next instruction 
in sequence. 

Bit 48 of SPW1 is the trap-on-word inhibit bit (TW), and 
is used to determine what the computer does if the current 
instruction would cause the word count to exceed 215_1 
or to be less than ·zero. If TW is zero and overflow or 
underflow occurs, the computer traps to X'42' and the 
condition code remains unchanged. If TW is a one and 
overflow or underflow occurs, the computer sets condition 
code bit CC3 to a one and executes the next instruction 
in sequence. 

If the push or pull instruction is successfully executed, 
condition code bits CC1 and CC3 are reset and condition 
code bits CC2 and CC4 are set to indicate the current 
status of the space and word counts. These bits both 
remai n zero if the space and word count are both greater 
than zero. If the word count is zero, indicating that the 
stack is now empty, condition code bit CC4 is set. If the 
space count is zero, indicating that the stack is now fu II, 
condition code bit CC2 is set. 

If the instruction is aborted, condition code bits CC2 
and CC4 are set if the space count or word count was 
zero before the instruction was started. 

901 172A. 3161 



Example. An example of a memory stack with the corre­
sponding stack pointer doubleword is shown below. 

SPWO 

STACK POINTER DOUBLEWORD 

TSA 

o 4 

SPACE COUNT WORD COUNT 

SPWI Ix 1 0 0 0 81 X 1 0 0 0 2 

MEMORY STACK 

X' 149 1 

x X X X X X X X 

X'l40' X X X X X X X X 

901172A.3162 

901172 

PUSH WORD (PSW; 09, 89). The PSW instruction stores 
the contents of the private memory register specified in 
the R field into the top of the core memory stack defined 
by the stack pointer doubleword. The stack pointer 
doubleword is located at the address specified in the 
reference address field of the PSW instruction. The loca­
tion in which the word is stored is the next higher core 
memory address than that specified by the top of stack 
address in the stack pointer doubleword. The current 
top of stack address in the stack pointer doubleword is 
incremented by one to point to the new top of stack loca­
tion. The space count inthe stack pointer doubleword 
is decremented by one and the word count is incremented 
by one. The condition code is set as described under 
Stack Pointer Doubleword (page 3-438) to reflect the new 
status of the space count and word count. 

If the space count or word count limits would be exceeded 
by the instruction, the instruction is aborted or a trap 
routine is entered if allowed by the TS or TW inhibit bits. 
The condition code is then set as described under Stack 
Pointer Doubleword (page 3-438). 

PUSH WORD PHASE SEQUENCE. Preparation phases for 
the PSW instruction are the same as the general PREP phases 
for word instructions, paragraph 3-59. Figure 3-171. 
shows the simplified phase sequence for the PSW instruction. 
Table 3-68 lists the detailed logic sequence during all 
PSW execution phases. During the fi rst pass through the 
phase 1 phases, word count overflow and space count 
underflow are checked in the adder and indicators are set, 
but the adder output is not used. The instruction branches 
from PHl Ie to PH2, obtains the top of stack address, and 
stores the push word in core memory during two passes 
through PH6. From PH8 the instruction branches back to 
PH 1 I A to update and store the new top of stack address, 
word count, and space count. After PH 1 IG, PH9 is 
entered to obtain the address of the next instruction in 
sequence, and PH10 enables the ENDE operation to take 
place. 

3-439 



3-440 

I 

I 

PREP 

(C): SPWI 

I (D): SPWI 

I (B): PROGRAM 
I ADDRESS 

(P): SPWO 
I ADDRESS 

(MC);I 
I (S/SXDPI) 

I -I--- SW8 

I --f-- TI Il 

901172 

PHI/A PHI/B PHI/C 

FIRST PASS FIRST PASS FIRST PASS 

(S/SXDMl) 
O+I-S O-I-S 

(CHECK WORD (CHECK SPACE 

I COUNT OVERFLOW) j I COUNT UNDERFLOW) I 
D RIGHT 8 --f-- D RIGHT 8 -+- D 

II-+-- SW3 I + SWIO I 
(IF WORD COUNT I -+- TIll I 

I OVERFI lOW) I I---f"- SWI 

1 --f-- SW5 (IF SPACE COUNT I 
I (IF T~ = I) I UNDERFLOW) 

I 

I I-+- SW6 I I -+-SW2 

I 
(IF TW, = J) I (IF NEW SPACE 

COUNT = 0) 

I I --+--/ SW9 I 1 
I-f--SWl 

I--t--MRQ , 

PHljD PHI/f 

I 
I -1---,' T8l I I 

I 
BRPHI/I I BRPHI/I I L-__ I-f----.:....I _M_R_Q_P_I:....I _---.:G:....O~TO~P..:.....H=_2..:..:IF_F...::.I_RS...:.T_P_A_SS __ ....:...._ __ • 

I I I FROM PH8 

I r I I I I I IT
MBXS 

+ I-f--MRQ 

I SECOND PASS I SECOND PASS I SECOND PASS / I I . I -+-- DRQ 

I 

~E~I~S~~, (S/SXDMI) I D-I-S It: A lEFT 8-~/'---' A lEFT 8 ---I--- A 
NEW SPACE COUNT 0 T - SW7 14--1 DRQ 1 

(0 -CO-CIS) I, , 

I 
D RIGHT 8 --+-- D RIGHT 8 ---+-- D I { • MRQ I +-1 SWI 2 I 

I I r MRQPI 

I 
I -I--SWl I -+--SWIO I I MB-C 

I I -+-- TIl l < • T8l I SPWO I 
I 

IT T8l I c
l 

II ',ll : OSWII (S/SXAO~D1I -+-- P 

I SPWI ADDRESS 

I 

I I NEW WORD C?UNT I--f--AO 

I 
(IF SW5) 

I I I I-f--AI6 
BRPHI/I BRPHI/I BRPHI/I BRPHI/I I (IF SW6) 

I I I BRPHI/I IjSWI3 

901 I72A. 3163/1 

Figure 3-171. Push Word Instruction, Phase Sequence Diagram (Sheet 1 of 3) 



.. I 

PH1/F PH1/G 

FROM PH1/C IF FIRST PASS 

901172 

PH2 PH3 PH4 PHS 

I 
1 -f--o-TRA P 

(S/SXD) D---S~P 

TSA ADDRESS I 

I (IF WORD COUNT OVERFLOW I 
AND TW = 0 OR SPACE COUNT 

UNDERFLO~ AND TS = 0) I 
MB---C-+-D I 

(IF ABORTED) I 
1-+-FASTABORT 

(IF SW1 o'R SW3 = 1) I 
ItDRQ ! 

MB-C-f--D 

I TSA ADDRESS II 

I (S/CXS) I 

P+ 1-f--P-S-CI I SPW1 A~DRESS 

(IF {l--+--MRQ I 
IABORTED) l+-DRQ 

I 

(S/AXRR) I 
, 

I 
I 
I 
I 
I 
I I BRPH9 

(IF ABORTED) I I 

TO PH1/A FROM PH9 

I I GO TO PH9 IF ABORTED _ 

I I I 
\
AORD--S--MBI 
NEW SPACE AND I I I 

WORD COUNT 1·1 I I I 
C---f-D + l--S-- MB 

SPWO NEW TSA I I I 
IlMBXS I I 
1-f--MRQ I I I 
l-+--DRQ I I 

P-1-f--P I 1 

SPWO ADDRESS I I 
l--f--SW14 I I 

(S/SXDP1) BRPH9 GO TO PH9 I I ~I ________ ~ ______________________________________________________________________ ~ ___ ~ 

BRPH1/1 I \ I I 
901172A.3163/2 

Figure 3-171. Push Word Instruction, Phase Sequence Diagram (Sheet 2 of 3) 

3-441 



901172 

I _PH6 I _PH6 I _PH7 I P_H8 I 
FIRST PASS I SECOND PASS I I I 

I RR-f---A--S---MB 

PH9 PH10 

I PUSH WORD I I I I 

I (S/SXC) C---S-+--P B-S-+--P 
I I SPW1 ADDRESS I I PROGRAM ADDRESS I I 1-f--MBXS 1-f--MRQ l--f--CC3 
I I I I (IF WORD COUNT OVERFLOW) 

I 1--r--MRQ 1-+---DRQ I I I 
1-f--DRQ I 1--+-CC1 I I I MB-;~7I"D I (IF SPACE COUr UNDtRFLOWi 

I P ~E1~P I 0-t-A I l-f--CC2 I 
I (S/SXDP1) I (IF NEW SPACE COUNT = 0) I 

MC-l--+-MC I l-1--SW8 I I 
I I I O--/--CC I 

I I 
l~CXS I BITS NOT SET BY THIS CLOCK I 

I 
(S/SXA) P-l-1--P I 
BRPH6 I SPW~~~~~ L I (S/SXD) ENDE I 

I I ! BRPHI I I IF ABORTED I I 
~1~~~~~~~~~~FR~0~M~P~H4~IF_A_B~0_R~T~~~~~I~~~I~~~~.~ I IFABORTED 

I I I I I D---S I GO TO PH1/A --'----cc • I 1----,- 2 
I I I (IF SPACE COUNT = 0) 

I I I-+-CC4 

I I I (IF WORD COUNT = 0) 

., I FORCE ZERO I 
I I I INTO SO I 

901172A.3163/3 

FROM PH1/G IF SECOND PASS 

Figure 3-171. Push Word Instruction, Phase Sequence Diagram (Sheet 3 of 3) 

Table 3-68. Push Word Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: 

(C) : SPW1 Stack pointer double-
word 1 

(D) : SPWl Stack pointer double-
word 1 

(B) : Program address Address of next i nstruc-
tion in sequence 

(P) : SPWO address location of bits 0 through 
31 of stack pointer 
doubleword 

(MC) : 1 Macro-counter set to 1 

Mnemonic: PSW (09, 89) 

(Continued) 

3-442 



SOS 901172 

Table 3-68. Push Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PREP Preset conditions with PRE3 
(Cont.) 

Enable signal (S/SXDP1) (S/SXDP1 ) = FUPSW (PRE3 + •.. ) + •.. Preset adder for D plus 1 

FUPSW = OUO (04 NOS) OL9 + ... in PHi/A 

Set flip-flop SW8 S/SW8 = BRSW8 NRESET/ A 

BRSW8 = (FAST PRE3) + ... 

(FAST PRE3) = OUO (04 N05) PRE3 

Reset flip-flop NT11 L S/NT11 L = N(S/T11 L) Set clock T11 L for 

(S/T11 L) = (FAST PRE3) + ... PH1/A 

n 1 ... IT1 1 I = "/1"1 I I I L ... 

PH1/A One c lock long PH1/A = PH1 SW8 

T11 L D+1-S Adder logic set at last PREP clock Add 1 to word count in 
SPW1 to check for 
overflow 

Set SW3 if word count overflows S/SW3 = (S/SW3) Word count overflows 
(S/SW3) = (A16 <E> K16) FAST PH1/A into adder bit 16 

+ ... 
Set SW5 if TS is 1 S/SW5 =- (S/SW5) Trap-on-space inh ibit 

(S/SW5) = FAST PH 1/A DO + ... bit is in DO 

Set SW6 if TW is 1 S/SW6 = (S/SW6) D16 contains trap-on-
I (S/SW6) FAST PH1/A D16 + ... I word inhibit bit TW I = 

Down align D-register I DXDR8 = FAST PH1/A + ... Shift D-register 8 bits 
I right as first half of 

Set flip-flop SW9 S/SW9 = SW8 STEP815 

I 16-bit down alignment 

I STEP8I5 ::= NBRSW8 NBRSW10 NBRSW11 I 
NBRSW12 NBRSW13 NBRSW15 

Reset flip-flop NT8L S/NT8L = N(S/T8L) Set clock T8L for PH1/B 

(S/T8L) = FAST PH1 

R/NT8L = ... 

Sustain PH1 BRPH1/I = FAST PHI N(NSW7 PH1/C) Hold PH1 for PH1/B 
+ •.. 

PHI/B One c lock long PH1/B = PH1 SW9 

T8L Down align D-register DXDR8 ::= FAST PH1/B + ... Shift D-register 8 bits 
right to complete 16-bit 
down alignment. Space 
count is now in D17 
through D31 

Mnemonic: PSW (09, 89) 
Continued 

3-443 



SOS 901172 

Table 3-68. Push Word Sequence (Cant.) 

Phase Function Performed Signals Involved Comments 

PH1/B Enable signal (S/SXOMl) (S/SXDM1) = FUPSW PH1/B + ..• Preset odder for 0 minus 1 

T8l 
Set flip-flop SW10 S/SW10 SW9 STEPS1S (Cant .) = 

Reset flip-flop NTlll S/NTlll = N(S/Tlll) Set clock Tll L for PH1/C 

I 
(S/Tlll) = FAST PH1/B 

! R/NTl1l - ... 
Sustain PH1 BRPH1/1 = FAST PHl Hold PHl for PH1/C 

N( ... ) 
I 

FH1/C One clock long PH1/C = PH1 SWlO 
I 

TllL D - l---S Adder logic set at PH l/B clock I Decremen t space count 
in D17 through D31 for 
underflow check only 

Force a zero into S16 S 16INH = FAST PH1/C Inhibit TS 

Set SW 1 if space count underflows S/SW1 = (S/SWl) Space count underflows 

(S/SWl) = (A16 ® K16) FAST PH1/C into odder bi t 16 

+ ••. 
Set SW2 if new space count = 0 S/SW2 = (S/SW2) New space count = 0 if 

(S/SW2) = N(A16 ® K16) S1631Z bits 16 through 31 of 

FAST PH1/C + •.• S-register = 0 

Set fl ip-flop SW7 S/SW7 = (S/SW7) 
(S/SW7) = FAST PH l/C NSW7 + ••• 

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + ••• Request for core memory 

(S/MRQ/3) = FAST PH1/C + •.• cycle 

R/MRQ = ... 
Reset flip-flop NMRQP1 S/NMRQP1 = N(S/MRQ/3) Delay flip-flop for data 

R/NMRQP1 = 
release signal ... 
Go to PH2 if abort or 

- first pass 

PH2 One c lock long 

TSL Trap conditions: 

Set flip-flop TRAP if word count S;iRAP = (S/TRAP) NRESET SW3 is word count over-
overflows and TW = 0 or if space 

(S/TRAP) = FAST PH2 SW3 NSW6 
flow, SW1 is space count I count underflows and TS = 0 I underflow, NSW6 ~ TW 

I Abort if SWI or SW3 is set I S/FASTABORT 

+ FAST PH2 SWl NSW5 = 0, NSW5 ~TS = 0 

= FAST PH2 SW1 Instruction uncondition-

+ FAST PH2 SW3 ally aborted on overflow 
or underflow. Note that 

S/FASTF1 = SW3 + SW1 FASTABORT is bu i It with 
two flip-flops, FASTFl 
and FASTF2 

Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 
I (S/DRQ) = MRQP1 + ... transmission of another 

I 
I 

I R/DRQ 

I clock untj I data release 

I 
= ... received from core memory 

' .. 

Mnemonic: PSW (09, 89) 

(Continued) 

3-444 



Phase Function Performed 

PH3 Sustained until data release 

DR (MBO-MB31 )---(CO-C31) 

(CO-C31 )--.,t...-(DO-D31) 

If not aborted, reset flip-flop 
NCXS 

P I 1 I _ n 
I -----r--- ,-

Set flip-flop MRQ if instruction 
I aborted 

Set flip-flop DRQ if instruction 
aborted 

PH4 One c lock long 

T5L (PO- P31 )---(50-S31) 

(DR if (50-531 )---(CO-C31) 
pbort) 

If instruction not aborted, 
enabie signal (S/SXD) 

Abort conditions: 

If SW1 or SW3 set, branch 
to PH9 

(MBO-MB31)---(CO-C31) 

(CO-C31 )-f--(DO-D31) 

IPH5 One c lock long 

~5L (DO-D31 )--(SO-S31) 

(SO-S31 )-f---(PO-P31) 

Reset flip-flop NAXRR 

SOS 901172 

Table 3-68. Push Word Sequence (Cont. ) 

Signals Involved 

CXMB = DG (data gate) 

DXC = FAST/A PH3 

S/NCXS = N(S/CXS) 

(S/CXS) = FAST/A PH3 NFASTF1 
+ ••• 

R/NCXS = ... 
PUC3i = FAST/A PH3 + ... 

S/MRQ = (S/MRQ/2) + •.. 

(S/MRQ/2) = FASTABORT PH3 + •.. 
R/MRQ = ... 
S/DRQ = (S/DRQ) NCLEAR 

(S/DRa) = (S/MRQ/2) + •.. 

R/DRQ = ... 

Adder logic set at PH4 clock 

PXS = FAST/A PH5 + ... 

S/NAXRR = N(S/AXRR) 

(S/AXRR) = FAST/S PH5 + ... 

R/NAXRR = ... 

(Continued) 

I 

I 

Comments 

Top of stack address 
(SPWO) from memory __ 
C-register 

Top of stack address 
-f--D-register 

Preset for S---C in 
PH4 

Add to S PWO address 
to obtain SPW1 address 

Request for core memory 
cycle. 

Data request, inhibits 
transmission of another 
clock unti I data re lease 
from core memory 

Top of stack address 
(SPWO)+--P-register 

Preset for transfer of 
pri vate memory R con­
tents -f--A-register 
in PH6 

Mnemonic: PSW (09, 89) 

3-445 



SDS 901172 

Table 3-68. Push Word Sequence (Cont. ) 
_--r--------------....,..-------------------r-~~~~ -----~--~---~--~~----

Phase Function Performed 

PH6 One clock long 

TSl (RRO-RR31) -+-- (AO-A31) 

Set flip-flop MBXS 

Set flip-flop MRQ 

Set flip~flop DRQ 

P + 1--f--P 

MC - 1-f--MC 

Enable signal (S/SXA) 

Sustain PH6 

PH6 Sustained until data release 

DR (AO-A31) --- (SO-S31) 

(SO-S31) --- (MBO-MB31) 

Enable signal (S/SXC) if MC = 0 

PH7 

TSl 

PH8 

DR 

3-446 

One clock long 

(CO-C31 )--(50-S31) 

(50-S31) -f-- (PO-P31) 

Set flip-flop MRQ 

Set flip-flop DRQ 

Sustained unti I data re lease 

(MBO-MB31) - (CO-C31 \ 

.---.~ 

Signals Involved 

AXRR set at PHS clock 

S/MBXS = (S/MBXS) 

(S/MBXS) = F AS T /5 PH6 NMCZ 

S/MRQ = (S/MRQ) 

(S/MRQ) = (S/MBXS) + ... 
R/MRQ = ... 
S/DRQ = (S/DRQ) 

(S/DRQ) - (S/MBXS) + ••. 

PUC31 = FAST/S PH6 + ... 

MCD7 = FAST/M PH6 NIOEN + ••• 

(S/SXA) = FAST/S PH6 NMCZ 

BRPH6 = FAST/M PH6 NMCZ 

A.dder logic set at first PH6 clock 

MBX5 set at first PH6 clock 

(S/SXC) FAST /S PH6 OUO MCZ + ... 

Adder logic set at first PH6 clock 

PXS = FAST/A PH? + ••. 

S/MRQ = (S/MRQ/2) + .. . 

(S/MRQ/2) = FAST/fA PH? + .. . 

R/MRQ = ... 
S/DRQ - (S/DRQ) NCLEAR 

(S/DRQ) = (S/MRQ/2) + ... 

R/DRQ = ... 

CXMB =- DG 

(Continued) 

Comments 

Store private memory 
register R contents in 
A-register 

Preset for transfer of A­
register contents to core 
memory in second PH6 

Request for core memory 
cycle 

Data request, inhibits 
transm ission of another 
clock unti I data re lease 
from core memory 

Upcount P-register to 
obtain new top of stack 
address 

Decrement macro­
counter by 1 

Preset adder logic for 
A ___ S in second PH6 

Repeat PH6 to store 
contents of A-register 
in memory 

Store A-register contents 
in memory at new top 
of stock address 

Preset adder for C -5 
in PH7 

I SPWl address- S 
I 

i 

SPWl address---+-- P 

Request for memory cyc IE 

Data request, i nh i bi ts 
transm ission of another 
clock unti I data re lease 
from memory 

S PW 1 from core memor y 

---- C-register 

I Mnemonic PSW (09, 891 



SDS 901172 

Table 3-68. Push Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH8 (CO-C31 )-f--(DO-D31) DXC = FAST/A PH8 + ... SPWI ~D-register 

DR 
Zeros-f--(AO-A31 ) AXZ = FAST (PH8 + ••. ) Clear A-register for (Cont.) 

word count and space 
count 

Enable signal (S/SXDPl) (S/SXDPl) = FUPSW (PH8 + •.. ) Preset adder for D plus 1 
in PHI/A 

Set flip-flop SW8 S/SW8 = NRESET BRSW8 

BRSW8 = FAST/A PH8 + ... 

Reset flip-flop NCXS S/NCXS = N(S/CXS) Preset for S-C in 

(S/CXS) = FAST/A PH8 + ••. PHI/A 

R/NCXS = ... 
P-l-f--P PDC31 = FAST/A PHS + ..• Decrement P=register to 

obtain SPWO address 

Reset flip-flop NT11 L S/NTll L = N(S/Tll L) Set clock Tll L for 

(S/Tll L) = FAST PH8 + •.. PHI/A 

R/NTll L = ... 
Branch to PHI/A BRPHI = FAST/A PH8 + ..• 

S/PHI = BRPHI NCLEAR 

PHI/A One clock long PHI/A "... PHI SW8 FAST 

Tll L D +1-S Adder logic for D plus 1 set at PH8 clock Update word count by 
adding 1 to SPWI in D-
register. Gate onto sum 
bus 

Force a zero into S16 S16 = (K16 B PR16) SXADD S16 (bit 48 of SPWl) is 
NS161NH trap-on-word bit TW 

S16INH FAST PHI/ A + .•• 
and not included in 

= 
word count 

(SI6-S31 )-(CI6-C31) CXS set at PHS clock New word count into C-
register bits 16 through 
31 

Zeros-(CO-CI5) CXS/O = CXS N(FAST PHI/A) SO-S15 not gated into 

CXS/l = CXS N(FAST PHI/A) 
CO-C 15 because CXS/O 
and CXS/l are low 

Down align D-register DXDR8 = FAST PHI/A + ••. Shift D-register 8 bits 
right as first half of 16-
bit down alignment 

Set flip-flop SW9 S/SW9 = SW8 STEP815 

Mnemon i c: PSW (09, 89) 

(Continued) 



SDS 901172 

Table 3-6S. Push Word Sequence (Cont. ) 

Phase Function Performed Signals Involved Comments 

PHI/A r Reset flip-flop NT8L S/NTSL = N(S/TSL) Set clock TSL for PH1/B 

TllL I (S/TSL) = FAST PHl + •.• 
(Cont. )1 R/NTSL = ... 

Sustain PH 1 BRPH1/1 = FAST PHl N( ... ) 

PH1/B One clock long PH1/B = PHl SW9 

TSL Down align D-register DXDRS = FAST PH l/B + ... Shift D-register S bits 
right to complete 16-bit 
down alignment. Space 
count is now in D17-D31 

Enable signal (S/SXDM 1) (S/SXDMl) = FUPSW PH1/B + •.• Preset adder for D minus 
1 in PH1/C 

Set flip-flop SW10 S/SW10 = SW9 STEPS15 

Reset fl ip-flop NT 11 L S/NTllL = N(S/TllL) Set clock Tll L for PH 1/< 
(S/TllL) = FAST PHl + ... 

R/NTllL = ... 
Sustain PH 1 BRPH1/l = FAST PHl N( ... ) 

PH1/C One clock long PH1/C = PH1 SW10 

TllL D ~ l--S Adder logic set for D minus 1 in PH1/B Update space coun t by 
subtracting 1 from D17-
D31 

Force a zero into S 16 S 16INH = FAST PH1/C S 16 is now trap-on-spacE 
inhibit bit TS and is not 
included in space count 

(SO-S31) --f-- (AO-A31) AXS = FAST PH l/C SW7 Store new word count 
in D-register 

(CO-C31 ) -f-- (DO-D31) DXC = FAST PH1/C + ... Store new word count 
in D-register 

Reset flip-flop SW7 R/SW7 = (R/SW7) 

(R/SW7) = FAST PH l/C SW7 

I Set flip-flop MRQ S/MRQ = (S/MRQ/3) + •.. Request for core 

(S/MRQ/3) = FAST PH1/C memory cycle 

I R/MRQ = ... 
I Reset flip-flop NMRQPl S/NMRQPl = N(S/MRQ/3) Delay flip-flop for data 

R/NMRQPl = ... re lease signal 

Reset fl ip-flop NTSL S/NT8L = N(S/TSl) + ••• Set clock T8l for PH l/D 

(S/T8l) = FAST PHl 

R/NTSL = ... 

Set flip-flop SW 11 S/SWll = SW10 STEP815 

Sustain PH i BRPH1/l = FAST PHl 
N [PH1C (NSW7 + SW3) 
+ ... J 

Mnemonic: PSW (O~ 89) 

(Continued) 

3-44S 



SDS 901172 

Table 3-68. Push Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PHI/D One clock long PHI/D = PHI SWll 

T8l Up align A-register AXAl8 = FAST PH l/D + ••• Shift A-register 8 bits 
left as first half of 16-
bit up alignment 

Set flip-flop DRQ S/DRQ = MRQPl + ••• Data request, inhibits 
transmission of another 
clock unt i I data re lease 
received from core 
memory 

Set flip-flop SW 12 S/SW12 = SWll STEP815 

PHI/E Sustained unti I data release PHI/E = PHI SW12 

DR (MBO-MB31) ---(CO-C31) CXMB = DG SPWO --C-register 

Up align A-register I AXAl8 = FAST PHI/E + ••• Shift A-register 8 bits 

I 

left as second half of 16-
bit up alignment. New 
space count is now in 
A 1 through A 15 

Enable signal (S/SXAORD) (S/SXAORD) = FAST PHI/E + ••• Preset adder for A OR D 
---S in PHI/F 

Set fl ip-flop AO if TS is 1 S/AO = FAST PHl!E SW5 AXAl8 Set trap-on-space 
(SW5) + •.• inhibit bit if set in 

original SPWI 

Set flip-flop A 16 if TW is 1 S/A16 = FAST PH l/E SW6 AXAl8 Set trap-on-word inhibit 
(SW6) + •.• bit if set in original 

SPWI 

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset for transfer of 

(S/MBXS) = FAST PH l/E + ••. A OR D to core memory 
:_ Di.Jl Ir: 

R/MBXS 
III , I I 1/ • = · .. 

Set flip-flop MRQ S/MRQ = (S/MRQ) Request for core memory 

(S/MRQ) = (S/MBXS) + •.. cycle 
I R/MRQ = · .. 

Set flip-flop DRQ S/DRQ = (S/DRQ NClEAR) Data request, inhibits 

(S/DRQ) (S/MBXS) + ••• transmission of another = 
clock until data release 

R/DRQ = · .. from memory 

P + 1 -r---P PUC31 = FAST PHI/E Increment P-register to 
obtain SPWI address 

Set fl ip-flop SW 13 S/SW13 = SW 12 S TE P815 

PHI/F Sustained unti I data release PHI/F = PHI SW13 

DR A D---S Adder logic set at PH l/E clock New word count in D-
v 

register and new space 
count in A-register-S 

Mnemonic: PSW (09,89) 

(Continued) 

3-449 



SDS 901172 

Table 3-68. Push Word Sequence (Cont.) 
~~--- ---

Phase Function Performed Signals Involved Comments 

PH1/F (SO-S31) --- (MBO-MB31) MBXS set by PH l/E clock Store new space count 
DR and word count in core 

(Cont. ) memory at SPW1 location 

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset memory wri te 

(S/MBXS) = FAST PH1/F + ..• 

R/MBXS = ... 
Set flip-flop MRQ S/MRQ = (S/MRQ) Request for core memory 

(S/MRQ) = (S/MBXS) + •.. 
cycle 

R/MRQ = ... 
Set fl ip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) (S/MBXS) + ••• 
another clock until data = release received from 

R/DRQ = ... core memory 

(CO-C31) -f-- (DO-D31) DXC = FAST PH l/F + ••• Top of stack address 
(SPWO) in C-register 
c locked into D-register 

Enable signal (5/SXDP1) (5/SXDP1 ) = FUPSW (PH1/F + •.. ) + ..• Preset adder for D plus 1 
in PH1/G 

P-1-f--P PDC31 = FAST PH1/F + .•. Decrement P-register to 
obtain SPWO address 

Set flip-flop SW14 S/SW14 = SW13 STEP815 

5ustain PH 1 BRPH1/1 = FAST PH1 N(NSW7 PH1/C) 
+ •.• 

PH1/G Sustained until data release PH1/G = SW14 PH1 

DR D + 1---S Adder logic set at PH1/F clock Add 1 to top of stack 
address in D-register to 
obtain new top of stack 
address 

(SO-531)--- (MBO-MB31) MBX5 set by PH 1/F clock Store new top of stack 
address in memory at 
SPWO location 

Branch to PH9 BRPH9 = FAST PH1/G 

S/PH9 = BRPH9 NCLEAR + ... 

R/PH9 = ... 

PH9 One clock long 

T5L (8O-B31) --- (50-531) SXB = PXSXB NDIS + ... Program address-l---
P-register via sum bus 

PXSXB = NFAFL NFAMD5 PH9 

Mnemonic: P5W (09, 89) 

(Continued) 

3-450 



Phase Function Performed 

PH9 (SO- 531 )-f--(PO- P31) 

T5L Set condition code: 
(Cont .) 

Set CC3 if word count overflow 
and rw = 1 (SW6) 

Set CCl if space count under­
flow and TS = 1 (SW5) 

Set CC2 if new space count = 0 

Enable signal (S/SXO) if 
instruction aborted 

PHlO Sustained until data release 

DR Normal ENDE 

If instruction aborted: 

Correct CC2 

Force zeros in SGTZ, S16, 
and SO 

Correct CC4 

SOS 901172 

Table 3-68. Push Word Sequence (Cont.) 

Signals Involved 

PXS = PXSXB + ... 

S/CC3 = 
(S/CC3/1) = 

S/CCl = 
(S/CC1/1) = 

S/CC2 = 
(S/CC2/1) = 

(S/CC3/1) + ••• 

FAST PH9 SW3 + •.• 

(S/CC 1/1) + ••. 

FAST PH9 SWl + ••• 

(5/CC2/1) + ••• 
(FASTNABORT PH9) 
SW2 + ••. 

R/CC = FAST PH9 + ... 

(S/SXD) = FASTABORT PH9 

S/CC2 = (S/CC2/4) + ••• 
SOOO7Z S0815Z 
(FASTABORT ENDE) 

(S/CC2/4) = 

SGTZ = N(FASTABORT ENDE) 

S16 = N(FASTABORT ENDE) 

so = N(FASTABORT ENDE) 

S/CC4 = (S/CC4/2) + ••• 

(FAST ABORT ENDE) 
S 1631Z 

(S/CC4/2) = 

Comments 

SW3 indicates word 
count overflow. If TW 
were 0, instruction 
would have trapped and 
not reached PH9 

SWl i ndi cates space 
count underflow. If TS 
were 0, instruction 
would have trapped and 
not reached PH9 

If instruction is success­
fully completed and 
stack is full, CC2 is set 

Inputs to reset sides of 
CC flip-flops to reset 
those not set by this 
instruction 

Preset adder for D---S 
in PHI0 

Set CC2 if original 
space count (i n D­
register) = 0 

To prevent setting CC3 

S16 is TW inhibit bit. 
SO is TS bit. Neither 
should be checked for 
zero 

Set CC4 if original word 
count (in D-register) = 0 

Mnemonic: PSW (09, 89) 

PULL WORD (PLW; 08, 88). The PLW instruction loads 
the private memory register specified in the R field of the 
instruction with the word currently at the top of the core 
memory stack. The top of stack word is at the location 
specified in the top of stack address field in the stack 
pointer doubleword. 

The current top of stack address in the stack pointer 
doubleword is decremented by one to point to the new 
top of stack location. The space count in the stack 
pointer doubleword is incremented by one and the word 
count is decremented by one. The condition code is set 
as described under Stack Pointer Doubleword (page 3-438) 

3-451 



SDS 901172 

to reflect the new status of the space count and word 
count. 

tion. Table 3-69 lists the detailed logic sequence during 
oil PlW execution phases. During the first pass through the 
phase 1 phases, word count underflow and space count over­
flow are checked in the adder and indicators are set, but If the space count or word count limits would be exceeded 

by the instruction, the instruction is aborted and a trap 
routine is entered if allowed by the TW or TS bit. The 
condition code is set as described under Stack Pointer 
Doubleword (page 3-43S). 

the adder output is not used. The instruction branches from 
PH1/C to PH2, obtains the top of stack address, reads the 
pull word from core memory, and stores the word in private 
memory during two passes through PH6. From PHS the in­
struction branches back to PH1/A to update and store the 
new top of stack address, word count, and space count. 
After PH1/G, PH9 is entered to obtain the address of the 
next instruction in sequence, and PH10 enables the ENDE 
operation to take place. 

PULL WORD PHASE SEQUENCE. Preparation phases for 
the PLW instruction are the same as the general PREP phases 
for word instructions, paragraph 3 -59. Figure 3-172 
shows the simplified phase sequence for the PLW instruc-

3-452 

PREP 

I 
(C): SPWI 

I (D): SPWI 

I (8): PROGRAM I ADDRESS 

(P): SPWO 

I ADDRESS 
(S/SXDMI) 

(MC):I 

I 

I (MC):I 

I 

I 
I 

I 

I 

I 

I 

I 

I 
I 

I 
I 

PHI/A PHI/B PHI/C PHI/t) PHI/E 

FIRST PASS FIRST PASS FIRST PASS 

(S/SXDPI) 
D-I-S 0+1-5 

(CHECK WORD (CHECK SPACE 

I COUNT UNDERFlOW)l I COUNT OVERFLOW) I 
o RIGHT 8 -+-- 0 RIGHT 8 --f-- 0 

I I -+- SW3 I + SWIO I 
(IF WORD COUNT 1 --+-- Tlll I 

I UNDERtlOW) 1 1 ~ SWI 

1 -+- SW5 (IF SPACE COUNT I 
I (IF T~ = I) I OVERFLOW) 

I 

1 11- SW6 I I 
I (IF Tf = 1) I I 

I --f--- SW8 I -r SW9 I I 
I --I-- T8l 1 -I-- SW7 

I--+-- TIll 1 -f-. SW4 I I 
I 

I 
1 

I 
I 

I 
I 

I 

I 
I 

I 

(IF WORD COUNT = 0) 1 -+- MRQ 

BRPHI II 'I SRPH I /1 I L...-__ 
1
_

/
:..-: _" _M_R_Q_PI_I ___ G_O_T_O_PH_2_I_F _Fl_R_S T_P_A_S_S __ :----.. .. _ 

, I I FROM PH8 

r I I I I IT
MBXS 

, 1--1-- MRQ 

SECOND PASS I SECOND PASS I SECOND PASS I I I -+-- DRQ 

o -I-S-C I (S/SXDPI) 0+1-5 I I~ : A lEFT 8---1-/-' A lEFT 8 -+-- A 
NEW WORD COUNT ~EW SPACE COUNT 0 ~ I 1 

(0-CO-CI5) I I ~ SW7 l-r-- DRQ 

o RIGHT 8 -+- 0 RIGHT 8 --f- 0 I 1 MRQ 1-1-1 SWI2 I 
. I I " • MRQPI 

I-I---SW9 I --I-- SWIO ' MB-C 

I I -+-- TIll { .. Tal I SPWO I 
J -+-1 T8l I I I' .. SWII I (S/SXAORD) . 

I 'I P + I -+-- P 
C I { .. 0 I SPVVI ADDRESS I I NEW WORD C?UNT I +-AO 

I 
(IF SW5) 

I I I-T-- AI6 
BRPHl/l BRPHI/I BRPHI/I I (IF SW6) 

I I BRPHI/I lisWI3 
BRPHI/I 

901172A.3164/1 

Figure 3-172. Pu II Word Instruction, Phase Sequence Diagram (Sheet 1 of 3) 



.. 

PH1/F PH1/G 

FROM PH1/C IF FIRST PASS 

SOS 901172 

PH2 PH3 

l-+--TRAP 

PH4 

(S/SXD) I 

I 

PH5 

D---S-+--P 
TSA ADDRESS I 

I 
(IF WORD COUNT UNDERFLOW I 
AND TW = 0 OR SPACE COUNT MB---C-I--D I 

OVERFLOW tND IS = 0) I (IF ABORTED) I 
1-+-- FASTABORT 

(IF SW1 o'R SW3 :::: 1) I 
l-+--DRQ 

I I 

MB---C--f--D 
I TSA ADDRESS i I 

I I I 

t 

P + 1-f--P -S ( • A 

I SPWI A~DRESS 'I 
(IF {l-+--MRQ I 

I ABORTED) l+DRQ 

I 
I 

l-1--MRQ lTDRQ 

I 

I 
BRPH9 I 

(IF ABORTED) I I 
GO TO PH9 IF ABORTED 

• 
TO PH1/A FROM PH9 

IAORD--S--MBI 
NEW SPACE AND 

I WORD COUNT I I I C-f--D - 1--$-- MB I 
SPWO-NEW ISA 

I 
I 

I I I 

1---f--MBXS 
I 

I I l-+-MRQ 

1-f--DRQ 
I 

I I P-1-f--P 
SPWO ADDRESS 

1-+--SW14 

I 
I (S/SXDM1) BRPH9 GO TO PH9 I ... 

BRPH1/1 I I 

901172A.3164/2 

Figure 3-172. Pull Word Instruction, Phase Sequence Diagram (Sheet 2 of 3) 

3-453 



Phase 

PREP 

3-454 

PH6 PH6 I 
FIRST PASS I SECOND PASS I 

MB---C -+--D---S-RW 

PULL WORD I I 
S/SXA) 

I1 RW I 
1 

I 
I 
I 

P-l-+--P 
NEW TSA 

I 
MC-l-1--MC 

I 

(S/SXD) 

BRPH6 

RRWXS 

SDS 901172 

PH7 PHS 

A ----S --f---P 
SPWI ADDRESS 

l--f--MRQ 
I 

I--f---DRQ 
I 

I 

MB-C--I--D 
SPINI I 

O---f--A 

(S/SXDMI) 
I 

1--!--SW8 
I 

l--f-CXS 

I PH9 PHIO 

I 

I B--S--f--P 
PROGRAM ADDRESS 

I I-f--CC3 

I 
(IF WORD COUNT UNDERFLOW) 

l-J-.CCI I 
I (IF SPACE COU1NT OVERFlOW)1 

I I-+--CC4 I 
I (IF NEW WiRD COUNT = 0) i 
I O-+-CC I 

I 
BITS NOT SET BY THIS CLOCK, 

P-I-f--P 
SPINO ADDRESS 

1,1--T1 Jl I (S/SXD) ENDE I 
I BRPHI I I (IF ABORTED) I 

~1 __________________ F_R_O_M_P_H_4~,I_F_A_BO_R_T ____ ~ __ ~I~ __ ~I'~ ____ ~ __ • IFABORTED I 

.. I GO TO PHI/A. I--+-CC4 

I 
I I (IF NEW WORD 

FROM PHI/G IF SECOND PASS I 1 COUNT = 0) 
~I~~~~~~~~~~~~~~~I~~~~~~~~I~- FORCEZ~OII 

INTO S16 

901172A. 316~/3 

Figure 3-172. Pull Word Instruction, Phase Sequence Diagram (Sheet 3 of 3) 

Table 3-69. Pull Word Sequence 

Function Performed Signals Involved Comments 

At end of PREP: 

(C) : SPW1 Stack pointer double-
word 1 

(D) : SPW1 Stack pointer double-
word 1 

(8) : Program address Address of next i nstruc-
tion in sequence 

(P) : S PVVO address Location of bitsOthrough 
31 of stack pointer 
doubleword 

(MC) 1 f'.~~ccro-counter set to 1 I 

Mnemonic: PLW (08, 88 

(Conti nued) 



SDS 901172 

Table 3-69. Pull Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PREP Preset conditions with PRE3: 
(Cont.) 

Enable signal (S/SXDM1) (S/SXDM1) = FUPlW (PRE3 + •.. ) + ... Preset adder for 0 mi nus 

FUPlW - OUO (04 NOS) OLB 1 in PHI/A 

Set flip-flop SW8 S/SW8 = BRSW8 NRESET/ A 

BRSwa = FAST PRE3 + •.. 

Reset flip-flop NTlll S/NT11l = N(S/Tl1l) Set clock T11l for 

(S/T11 L) = FAST PRE3 + .•• PHI/A 

PHI/A One c lock long PHI/A = PH1 SW8 I Til L 
D-l~S Adder logic set at last PREP clock Subtract 1 from word 

count in SPWI to check 
for underflow 

Force a zero Into S16 S 161NH = FAST PHIIA InhIbIt TW 

Set SW3 if word count S!SW3 = (S/SW3) Word count underflows 
underflows (S/SW3) = (A 16 <t> K 16) FAST PH I/A into adder bit 16 

Set SW5 if TS is 1 S!SW5 = (S/SW5) Trap-on~pace inhibit 

(S/SW5) = FAST PHI/A DO + •.• bit is in DO 

Set SW6 if TW is 1 S!SW6 = (S/SW6) 016 contains trap-on-

(S/SW6) = FAST PHI/A 016 + ... word inhibit bit TW 

Down align D-register DXDR8 = FAST PHI/A + ••• Shift D-register 8 bits 
right as first half of 16-
bit down aligrvnent 

Set SW4 if word count = 0 S!SW4 = (S/SW4) New word count = 0 if 

(S/SW4) = N(A 16 (!) K 16) S 1631Z S 16-S31 = 0 

FAST PHI/A + ... 

Set flip-flop SW9 S/SW9 = SW8 STEP815 + ••• 
STEP815 = NBRSW8 NBRSWlO NBRSW11 

NBRSW12 NBRSW13 NBRSW15 

Reset flip-flop NT8l S/NT8l = N(S/T8l) Set clock T8l for PH 1/8 

(S/TSl) = FAST PHI 

R/NT8l = ... 
Sustain PH 1 BRPHI/l = FAST PH 1 N(NSW7 PHI/C) Hold PHI for PHI/B 

+ ••• 

PHIl! One c lock long PHI/B = PHI SW9 

TSl Down align O-register DXDR8 = FAST PHI/B + ... Shift D-register 8 bits 
right to complete 16-bit 
down alignment. Space 
count is now in 017 
through 031 

Mnemonic: PlW (08, 88) 

(Continued) 

·3-~5 



SDS 901172 

Table 3-69. Pull Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH1/B Enable signal (S/SXDPl) (S/SXDP1) = FUPLW PH1/B + .•. Preset adder for 0 plus 1 

T8L Set flip-flop SW 10 S/SWlO = SW9 STEP815 
(Cont. ) Reset flip-flop NTl1 L S/NTl1L = N(S/Tll L) Set clock Tll L for 

(S/T11L) = FAST PH l/B PH1/C 

R/NTllL = · .. 
Sustain PH1 BRPH1/1 = FAST PHl N(NSW7 PH1/C) Hold PH 1 for PH l/C 

+ •.. 

PH1/C One c lock long PH1/C = PHl SW10 

Tl1L 0+ l--S Adder logic set at PH l/B clock Increment space count 

I in 017 through 031 for 
overflow check only 

Set SW 1 if space count S/SWl = (S/SW 1) Space count overflows 
overflows (S/SWl ) = (A16 ffi K16) FAST PH1/C into adder bit 16 

+ ••• 

Set flip-flop SW7 S/SW7 = (S/SW7) 

(S/SW7) = FAST PH l/C NSW7 + ••• 

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + ••• Request for core memory 

(S/MRQ/3) = FAST PH l/C + 00' 
cycle 

R/MRQ = · .. 
Reset flip-flop NMRQPl S/NMRQPl = N(S/MRQ/3) Delay flip-flop for data 

R/NMRQP1 = · .. release signal 

Go to PH2 if abort or 
first pass 

PH2 One clock long 

T5L Trap conditions: 

Set flip-flop TRAP if word count S/TRAP = (S/TRAP) SW3 is word count under-
underflows and TW = 0 or if 

(S/TRAP) FAST PH2 SW3 NSW6 
flow, SWl is space count 

space count overflows and TS = 0 = overflow, NSW6 ~ TW 
+ FAST PH2 SWl NSW5 = 0, NSW5 ~ TS = 0 

Abort if SWl or SW3 is set S/FASTABORT = FAST PH2 SWl Instruction uncondition-

+ FAST PH2 SW3 
a Ily aborted on overflow 
or underflow. Note that 

S/FASTFl = SW3 + SWl FASTABORT is built with 

I two flip-flops, FASTF 1 

I 

and FASTF2 

Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) MRQPl + ••• transmission of another = clock unti I data release 
R/DRQ = '0 • rece ived from core 

memory 

PH3 Sustained unti I data release 
I 

DR 

I 
(MBO-MB31 )--(CO-C31) CXMB = DG (data gate) Top of stack address from 

memory--C-register 

Mnemonic: PLW (08, 88) 

(Continued) 

3-456 



SDS 901172 

Table 3-69. Pull Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH3 (CO-C31)-+- (00-031) DXC = FAST/A PH3 Top of stack address 

DR 
--r-- D-register 

(Cont. ) P + l-+--P PUC31 = FAST/A PH3 + ••• Add 1 to SPWO address 
to obtain SPWl address 

Set flip-flop MRQ if instruction S/MRQ = (S/MRQ/2) + ••• Request for core memory 
aborted (S/MRQ/2) = FASTABORT PH3 + ••• cycle 

R/MRQ = · .. 
Set flip-flop DRQ if instruction SIDRQ = (S/DRQ) NCLEAR Data request, inhibits 
aborted (S/DRQ) = (S/MRQ/2) + ••• transmission of another 

clock unti I data re lease 
R/DRQ = · .. from core memory 

PH4 One clock long 

T5L (PO-P31) - (50-531) SXP = FAST PH4 NDIS Store SPWl address in 
(DR if A-register 
abort) 

(SO-S31 )-(AO-A31 ) AXS = FAST PH4 

If instruction not aborted, (S/SXD) = FAST PH4 NBRPH9 Preset adder logic for 
enable signal (S/SXD) D-S in PHS 

Abort conditions: 

If SWl or SW3 set, branch BRPH9 = FAST PH4 (SWl + SW3) Branch to PH9 to set 
to PH9 condition code 

(MBO-MB31) --- (CO-C31) CXMB = DG Load SPW1 from memory 
into C-register 

(CO-C31) -f-- (00-031) OXC = FASTABORT PH4 Return SPW1 to 0-
register 

PH5 One dock long 

TSl (00-031) - (SO-S31) Adder logic set at PH4 clock Top of stack address 
(SPWO)--f--- P-register 

(SO-S31) -I-- (PO-P31) PXS = FAST/A PHS + ••• 

Set flip-flop MRQ S/MRQ = (S/MRQ/2) + ••• Request for core memory 

(S/MRQ/2) = FAST/L PHS cycle 

R/MRQ = · .. 
Set flip-flop ORQ S!DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) S/MRQ/2 
transmission of another = clock until data release 
from memory 

PH6 Sustained until data release 

DR (MBO-MB31) --- (CO-C31) CXMB = OG Load pul I word from top 

1st 
of stack address in mem-

Pass 
ory - C-register 

Mnemonic: PLW (08, 88) 

(Continued) 

3-457 



SOS 901172 

Table 3-69. Pu II Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH6 (CO-C31) -+-(00-031) OXC = FAST/L PH6 + ... Place pull word in 

DR 
0- reg ister for tro nsfer 
to pri vate memory 

1st Set flip-flop RW S/RW = (S/RW) RW is private memory 
Pass (S/RW) = FAST/L PH6 NMCZ + ••• write flip-flop 

(Cont.) 
P - l-+--P POC31 = FAST/L PH6 QUO + .•. Decrement P-register to 

obta in new top of stack 
address 

MC -l~MC MDC7 = FAST/M PH6 NIQEN + ••. I Decrement macro-
counter by 1 

Enable signal (S/5XO) (5/SXD) = FAST/L PH6 NMCZ + •.• Preset adder logic for 
D -5 in second PH6 

5ustain PH6 BRPH6 = FAST/M PH6 NMCZ + ••• Repeat PH6 to store 
contents of D-register 
in private memory 

PH6 Sustained unti I data release 

T5L (DO-031)-- (SO-531) Adder logic set at first PH6 clock Transfer D-register con-

2nd 
tents to private memory 

Pass 
via S-register 

(50-531) -(RWO-RW31) RWX5 = RW 

Enable signal (S/SXA) (S/SXA) = FAST/L PH6 MCZ QUO + ••. Preset adder for A-S 
in PH7 

PH7 Qne clock long 

T5L (AO-A31) -- (50-531) Adder logic set at first PH6 clock SPW1 address _ S 

(SO-S31) -+-- (PO-P31) PX5 = FAST/A PH7 + ... S PW 1 address -+- P 

Set flip-flop MRQ S/MRQ = (5/MRQ/2) + ••• Request for memory 

(5/MRQ/2) = FAST/A PH7 + ••• cycle 

R/MRQ = ... 
Set flip-flop ORQ S/ORQ = (5/0RQ) NCLEAR Data request, inhibits 

(S/DRQ) (S/MRQ/2) + ••• 
transmission of another = clock unti I data release 

R/ORQ = ... from memory 

PH8 Sustained until data release 

DR (MBO-MB31) --(CO-C31) CXMB = DG S PWl from core memory 
----C-register 

(CO-C31) -+--(00- 031) OXC = FAST/A PH8 + .•. SPW1-f--0-register 

Zeros -f--(AO-A31) AXZ = FAST (PH8 + ... ) Clear A-register for word 
count and space count 

Enable signal (S/SXDM1) (S/SXOM1 ) = FUPLW (PH8 + ... ) + ... Preset adder for D minus 
1 in PH1/A 

Mnemonic: PLW (08, 88) 

(Conti nued) 

3-458 



SDS 901172 

Table 3-69. Pull Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PHS Set flip-flop SW8 S/SW8 = NRESET BRSW8 

DR BRSW8 = FAST/A PH8 + .•• 
(Cont.) 

Reset flip-flop NCXS S/NCXS = N(S/CXS) Preset for S--C in 

(S/CXS) = FAST/ A PH8 + ••• PH1/A 

R/NCXS = ... 
P - l-+--P PDC31 = FAST/A PH8 + ... Decrement P-register to 

obta inS f'W0 address 
Reset flip-flop Nll1 L S/Nll1 L = N(S/T11 L) Set clock 111 L for 

(S/111 L) = FAST PH8 + •.. PH1/A 

R/Nll1 L = ... 
Branch to PH1/A BRPH1 = FAST/A PH8 + .•• 

S/PH1 = BRPH 1 NC LEA R 

PH1/A One c lock long PH1/A = PH1 SW8 FAST 

TilL 0-1-5 Adder logic for 0 minus 1 set at PH8 clock Update word cou nt by 
subtracting 1 from SPW1 
in D-register. Gate 
onto sum bus 

Force a zero into S16 S16 = (K16 <±> PR16) SXADD S16 (bit 48 of SPW1) is 

NS161NH trap-on-word inhibit bit 
TW, and is not inclu~ed 

S161NH = FAST PH1/A + ..• in word count 

(516-531 )--(C16-C31) CXS set at P~.8 c lock I'~ew word count into 
C-register bits 17 
through 31 

Zeros-(CO-C15) CXS/O = CXS N(FAST PH1/A) SO-S15 not gated into 

CXS/1 = CXS N(FAST PH1/A) CO-C15 because CXS/O 
and CXS/1 are low 

Down align D-register DXDR8 = FAST PH1/A + ..• Shift D-register 8 bits 
right as first half of 16-
bit down alignment 

Set flip-flop SW9 S/SW9 = SW8 STEPS15 

Reset flip-flop NT8L S/NT8L = N(S/T8L) Set clock T8L for PH1/B 

(S/T8L) = FAST PH1 + ••• 

R/NT8L = ... 
Sustain PH1 BRPH1/1 = FAST PH1 N(NSW7 PH1/C) 

+ •.• 

Mnemonic: PLW (08, 88) 

(Continued) 

3-459 



SoS 901172 

Table 3-69. Pull Word Sequence (Cont.) 
-

Phase Function Performed Signals Involved Comments 

PH1/B One c lock long PH1/B = PH1 SW9 

T8l Down align o-register oXoR8 = FAST PH l/B + •.• Shift o-register 8 bits 
right to complete 16-bit 
down alignment. Spa~ 
count is now in 017-031 

Enable signal (S!SXoP1) (S/SXoPl ) = FUPlW PH1/B + ••• Preset adder for 0 plus 1 
in PH1/C 

Set flip-flop SW10 S/SW10 = SW9 STEP815 

Reset flip-flop NTlll S/NTlll = N(S/Tlll) Set clock Tl1l for 

(S/Tlll) = FAST PH1 + ••• PH1/C 

R/NTlll = · .. 
Sustain PH 1 BRPH1/1 = FAST PHl N(NSWl PH1/C) 

+ ••• 

PH1/C One c lock long PH1/C = PH1 SW10 

T11l o + l---..S Adder logic set for 0 plus 1 in PH l/B Update space count by 
adding 1 to 017-031 

Force a zero into S 16 S16 = (K16 (t) PR16) PH1/A S 16 is now trap-on-space 
NS16INH inhibit bit TS, and is not 

S16INH = FAST PH1/C included in space count 

(SO-S31 )-f-(AO-A31) AXS = FAST PH1/C SW7 + ••• Hold new space count in 
A-register 

(CO-C31) --I--- (00-031) OXC = FAST PH l/C + ••• Hold new word count in 
O-register 

Reset fl ip-flop SW7 R/SW7 = (R/SW7) 

(R/SW7) = FAST PH1/C SW7 + ••• 

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + ••• Request for core memory 

(S/MRQ/3) = FAST PH1/C cycle 

R/MRQ = · .. 
Reset flip-flop NMRQPl S/NMRQPl = N(S/MRQ/3) Delay flip-flop for data 

R/NMRQPl = release signal · .. 
Reset flip-flop NT8l S/NT8l = N(S/T8l) + ••• Set clock T8l for PH 1/0 

(S/T8l) = FAST PHl 

R/NT8l = · .. 
Set flip-flop SWll S/SWll = SW10 STEP815 

Sustain PH 1 BRPH 1/1 - FAST PHl N(NSW7 PH1/C} 
+ ••• 

PH1/0 One clock long PH1/0 = PHl SWll 

T8l Up aiign A-register AXAl8 = FAST PH 1/0 + ••• Shift A-register 8 bits left 
as first half of 16-bit up 
alignment 

Mnemonic: PLW (08, 88) I 
(Continued) 

3-460 



SDS 901172 

Table 3-69. Pull Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PHI/D Set fl ip flop DRQ S/DRQ = (S/DRQ) NC lEAR Data request, inhibits 

T8l S/DRQ = MRQPl + ••• transmission of another 

(Cont. ) clock until data release 
R/DRQ = · .. rece ived from core 

memory 

Set flip-flop SW 12 S/SWI2 = SW11 STEP815 

PHI/E Sustained until data release PHI/E = PHI SW12 

DR (M80-MB31) ---.. (CO-C31) CXMB = DG SPWO (TSA)--C-
register 

Up align A-register AXAl8 = FAST PH l/E + ••• Shift A-register 8 bits 
left as second half of 16-
bit up alignment. New 
space count is now in 
A 1 through A 15 

Enable signal (S/SXAORD) (S/SXAORD) = FAST PH l/E + ••• Preset adder for A OR 0 
~ Sin PHI/F 

Set fl ip-flop AO if TS is 1 (SW5) S/AO = FAST PHI/E SW5 Set trap-on-space inhibit 
AXAl8 + ••• . bit if set in original 

SPWI 

Set flip-flop A 16 if TW is 1 S/A16 = FAST PH l/E SW6 Set trap-on-word inhibit 
(SW6) AXAl8 + ••• bit if set in original 

SPWI 

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset for transfer of 

(S/MBXS) = FAST PH l/E + ••• A OR 0 to core memory 
in PHI/F 

Set fl ip-flop MRQ S/MRQ = (S/MRQ) Request for core memory 

(S/MRQ) = (S/MBXS) + ••• cycle 

R/MRQ = · .. 
Set fiip-fiop ORQ - 1 .... _"... = ,,. ~ .... -"""\ .. ,,. ... &- Data request, inhibits ;)/UK~ (;)/UK~J NLLtAK 

(SIDRQ) (S/MBXS) + ••• transmission of another = clock until data re lease 
R/DRQ = · .. from memory 

P t l--f--P PUC31 = FAST PH l/E + ••• Increment P-register to 
obtain SPWI address 

Set flip-flop SW13 S/SW13 = SW12 STEP815 

PHI/F Sustained until data release PHI/F = PHI SW13 

DR A OR 0---.. S Adder logic set at PHI/E clock New word count in 0-
register and new space 
count in A-register--e--S 

(SO-S31) -(MBO-MB31) MBXS set by PH l/E clock Store new space count 
and word count in core 
memory at SfWl location 

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset for memory wri te 

(S/MBXS) = FAST PHI/F + ... 

R/MBXS = · .. 
Mnemonic: PlW (OS, 88) 

(Continued) 



SDS 901172 

Table 3-69. Pull Word Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH1/F Set flip-flop MRQ S/MRQ = (S/MRQ) Request for core memory 

DR (S/MRQ) = (S/MBXS) + ••• cycle 

(Cont. ) R/MRQ = ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) = (S/MBXS) + ••• another clock unti I data 
release received from 

R/DRQ = ... core m~mory 

(CO-C31) -+-(00-031) DXC = FAST PH1/F + ... Top of stack address 
(S PWO) inC-register 
c locked into D-register 

Enable signa! (S/SXDM1) (S/SXDM1) = FUPLW (PH1/F + ..• ) + .•. Preset adder for 0 minus 
1 in PH1/G 

P - l-+--P POC31 = FAST PH1/F + .•. Decrement P-register to 
obtain SPWO address 

Set flip-flop SW14 S/SW14 = SW13 STEP815 

Sustain PH1 BRPH1/1 = FAST PH1 N(NSW7 PH1/C) 
+ ... 

PH1/G Sustained unti I data release PH1/G = SW14 PHl 

DR 0-1--S Adder logic set at PH1/F clock Subtract 1 from top of 
stack address in 0-
register to obtain new 
top of stack address 

(SO-S31 )----(MBO-MB31) MBXS set by PH1/F clock Store new top of stack 
address in memory at 
SPWO focation 

Branch to PH9 S/PH9 = BRPH9 NCLEAR + ..• 

BRPH9 = FAST PH1/G 

PH9 One c lock long 

T5L (80-B31)--(SO-S31) SXB = PXSXB NOIS Program address+--P-

PXSXB = NFAFL NFAMOS PH9 
register via sum bus 

(SO- S31 ) -+-(PO- P31 ) PXS = PXSXB 

Set condition code: 

Set flip-flop CC3 if word count S/CC3 = (S/CC 3/1) + ••• SW3 indicates word 
underflow and TW = 1 (SW6) 

(S/CC3/1) = FAST PH9 SW3 + ••• count underflow. IfTW 
were 0, instruction 
would have trapped and 
not reached PH9 

Set flip-flop CCl if space count S/CC1 = (S/CC 1/1) + ••• SWl indicates space 
overflow and TS = 1 (SW5) 

(S/CC1/1 ) = FAST PH9 SW1 + ••• count overflow. If TS 
were 0, instruction 
could have trapped and 
not reached PH9 

Mnemonic: PLW (08, 88) 

(Conti nued) 

3-462 



SOS 901172 

Table 3-69. Pull Word S~uence (Cont.) 

Phase Function Performed 

PH9 Set fl i p-flop CC4 if new word S/CC4 

T5L 
count = 0 

(S/CC4/1) 
(Cont.) 

R!CC 

Enable signal (S/SXO) if (S/SXO) 
instruction aborted 

PH10 Sustained until data release 

DR Normal ENOE 

If instruction aborted: 

Correct CC2 S/CC2 

(S/C C 2/4) 

Correct CC4 S/CC4 

(S/CC4/2) 

Force zeros Into SG TZ, SO, SGTZ 
and S16 SO 

S16 

PUSH MULTIPLE (PSM; OB, 8B). The PSM instruction stores 
the contents of a sequential set of private memory registers 
into the push-down stack defined by the stack pointer 
doubleword. The number of words to be pushed is indicated 
by the condition code. If the contents of all 16 private 
memory registers are to be pushed into the stack, the initial 
value of the condition code is 0000. The private memory 
registers are treated as a circular set, with register 0 
following register 15. The first register to be pushed into 
the stack is the register specified in the R field of the 
instruction. The contents of the last register pushed become 
the contents of the new top of stack location. 

The private memory register contents are stored in core 
memory in ascending order, beginning with the location 
plus 1 of the current top of stack address pointed to in the 
stack pointer doubleword and ending with the current top 
of stack address plus the condition code. 

The current top of stack address in the stack pointer double­
word is incremented by the value of the condition code to 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

Signals Involved Comments 

(S/CC4/1) + ••• If instruction is success-

(FASTNABORT PH9) fully completed and 

SW4 + ••• stack is empty, flip-flop 
CC4 is set 

FAST PH9 + .•• Reset inputs to CC flip-
flops to reset those not 
set in this phase 

FASTABORT PH9 Preset adder for 0 --S 
in PH10 

(S/CC2/4) + H. Set flip-flop CC2 if 

SOOO7Z SOS15Z original space count (in 

(FASTABORT ENOE) 
O-register) = 0 

(S/CC4/2) + ••• Set fl ip-flop CC4 if 

(FASTABORT ENOE) S1631Z 
original word count (in 
O-register) = 0 

N(FASTABORT ENOE) To prevent setting CC3 

N(FASTABORT ENOE) SO is TS inhibit bit. S16 

N(FASTABORT ENOE) 
is TW inhibit bit. 
Neither should be 
checked for zero 

" 
_I". ,,,_ --

point to the new top of stack location. The space count in 
the stack pointer doubleword is decremented by the value 
of the condition code, and the word count is incremented 
by the value of the condition code. The condition code is 
set as described under Stack Pointer Doubleword (page 
3-438) to reflect the new status of the space count and 
word count. If the space count or word count limits would 
be exceeded by the instruction, the instruction is aborted 
and a trap routine is entered if allowed by the TS or TW 
inhibit bit. The condition code is set as described under 
Stack Pointer Ooubleword (page 3--tJ8). 

PUSH MULTIPLE PHASE SEQUENCE. Preparation 
phases for the PSM instruction are the same as the general 
PREP phases for word instructions, paragraph 3-59. 
Figure 3-173 shows the simplified phase sequence for 
the PSM instruction. Table 3-70 lists the detailed 
logic sequence during all PSM execution phases. During 
the first pass through the phase 1 phases, word count over­
flow and space count underflow are checked in the adder 
and indicators are set, but the adder output is not used. 
The instruction branches from PH1/C to PH2 and obtains 



SOS 901172 

the top of stack address before PH6. The instruct ion loops 
through P1-16, stori ng words from pri vate memory into core 
memory, the number of loops dependi ng on the number of 
words to be pushed. When a zero value in the macro­
counter i ndi cates that the last word has been stored, the 
instruction proceeds to PH7, and from PH8 branches back 
to PH1/A. From PH1/A to PH1/G, the new top of stack 
address, new space count, and new word count are calcu­
lated and stored in core memory in the stack pointer 
doubleword. After PH1/G, PH9 is entered to obtain the 

address of the next instruction, and PH10 enables the ENDE 
operot ion to take plac.e. 

If the condition code at the beginning of the instruction 
contains 0000, indicating that all 16 private memory 
registers are involved in the push operation, bit 3 of the 
macro-counter is set at the time the condition code is 
transferred to the A-register, thereby establishing 10000 
as the number of words. 

PREP 

I 
(C): SPWI 

I (D): SPWI 

I (B): PROGRAM 
1 ADDRESS 

(P): SPWO 
I ADDRESS 

(A): CC 

PHI/A 

FIRST PASS 

PHI/B 

FIRST PASS 

(S/SXDMA) 

PHI/C 

FIRST PASS 

D+A-S D-A-S 
(CHECK WORD (CHECK SPACE 

I COUNT OVERFLOW) I 1 COUNT UNDERFLOW) I 
o RIGHT a ~ 0 RIGHT a ---I-- 0 

I I +- SW3 I + SW10 I 

I 

(IF WORD COUNT I-+- TlIL I 
OVERF1LOW) I I --f-- SWI 

PHI;!> PHI;t 

'\ (NO. OF WORDS~ 
(MC): CC 'I 

I -+-- SW5 (IF SPACE COUNT I 
(IF T~ = I) I UNDERFLOW) 

I 
(NO. OF WORDS)I 

(S/SXAPD) 

I I 
I 

1 

I-r-SW6 I 1+SW2 

(IF TW = J) I (IF NEW SPACE 
I COUNT = 0) 

I I-+-swa 
1+'-1 SW9 I I 

I-f-- SWl 

I 

I 

I 

I 

I 
I 

I. 

3-464 

I 
I~TllL 

I -I- TaL I I 
BRPH1/1 

I I -+-MRQ 

BRPHI/I I I 

I 
~ ____ I~ __ I __ M_R_Q_P_II _____ G_O_T_O __ PH_2_I_F_F_IR_ST __ PA_S_S ____ --~._ 

I I I FROM PHa 

f I I I I I -t- MBXS 
• 1--1-- MRQ 

SECOND PASS I SECOND PASS I SECOND PASS 1 I I -J-- DRQ 

0+ A-S-C I (S/SXDMA) 0 A S I I~ : A LEFT 8 ---f/-.~ A LEFT 8 -+- A 
NEW WORD COUNT ~EW SP~CE~NT:' I I 

(0-CO-CI5) I I 0 ~ SW7 Ii DRQ 

o RIGHT a --f,-- 0 RIGHT a ---+- 0 I { • MRQ I +--1 SW12 I 
I I I • MRQPI 

1-1--- SW9 1 -f-- SWIO I I MB - C 

I I -J-. TlIL '1, TaL I SPWO I 
I I TaL I I I 'I • SWI I (s/sXAO~Dll -I-- P 

C I { • 0 I SPWI ADDRESS 
I \ NEW WORD COUNT I -t-- AO 

I 
(IF SW5) 

I I I-r- AI6 
BRPHI/l BRPH1/1 BRPH1/1 I (IF SW6) 

I I BRPHI/l liSWI3 

BRPHI/I 

901172A.3165/1 

Figure 3-173. Push Multiple Instruction, Phase Sequence Diagram (Sheet 1 of 3) 



.. 

SOS 901172 

PH1/F PH1/G PH2 PH3 PH4 PH5 

I (S/SXD) I D-S~P 
1 --,L--TRAP TSA ADDRESS I 

I (IF WORD COUNT OVERFLOW I I I 
AND TW = 0 OR SPACE COUNT MB-C......,t--D 

FROM PH1/C IF FIRST PASS 

I 

UNDERFlOW
I 
AND TS = 0) I (IF ABORTED) I I 

(S/AXRR) 
1-1--FASTABORT 

(IF SWl o'R SW3 = 1) I I 
'tDRQ ! I 

MB~C~D I 
I TSA ADDRESS i 
I (S/CXS) i I 

P + l-+-P -S--C I I 
I SPWl A~DRESS 

(IF {l--f--MRQ I I 
ABORTED) l~DRQ 

i BRPH9 I I 
(IF ABORTED) I I 

I I GO TO PH9 IF ABORTED .. 

t 

TO PH1/A FROM PH9 ; I I 
IA OR D-- S --MBI 

NEW SPACE AND. 

WORD COUNT I I 
C-T"-D +A--S-- MB 

SPWO NEW TSA 

CC+-A I 
l--f--MBXS 

I 

I--f--MRQ I 
l---f--DRQ 

I 

P-I-r--P 
SPWO ADDRESS 

1,t--SW14 
(S/SXAPD) BRPH9 

I 

BRPHI/l 

I 

I 

I 

I 

I 
GO TO PH9 

I I 
I 

I I 
I 
I 
I 
I 

I .. 

901172A.3165/2 

Figure 3-173. Push Mu Itiple Instruction, Phase Sequence Diagram (Sheet 2 of 3) 

3-465 



SOS 901172 

PH6 PH6 I P_H7 I P_H8 I PH9 PHI0 

FIRST PASS INOT FIRST PASSI I C-S~P I 
RR-+--A --S-MB --,--

PUSH ;WORD I I SPWI ADDRESS I 

I 
I 

B-S-+--P 
PROGRAM ADDRESS 

I 
I I I 

I I I I I 
l-+--MaxS I l~MRQ I I-f--CC3 I 
I--1---MRQ I--f--DRQ I (IF WORD COUINT OVERFLOW) 

I-f--DRQ I I I MB-C-f--D l+-CCI I 
I I I SPWI I I(IF SPACE COUNT UNDERFLOW) 

P + I-+-- P + It • PI' I I 
NEW TSA '1 0 -+-A 

MC - l,L...MC - 1 -+-- MC I I I 1~CC2 I 
I I I (S/SXAPD) I I (IF NEW SPACE COUNT = 0) 

R+ l-+--R+ 1 ,; I R I CC-+---A I I, I 
I I l--r--SW8 

l-+--AXRR I . I l-+--CXS I O-+-CC I I 

I IOEN6 IF we > 4 I I I I BITS NOT SET BY THIS CLOCK' 
(S/SXC) I I P -ljP I I 

I IF MC = 0 I I I I-f--I TIlL I I I 
I 

RR~ I 
I-f--MBXS I BRPHI I (S/SXD) I ENDE I 

(IF MC 10) I I (IF ABORTED) I (IF ABORTED) 

I I I 1--+--CC2 
I-f--MRQ I I (IF NEW SPACE I OF MC ,0) I I COTT =0) 

I 
l-+'-DRQ I I I I 
(IF~IO) I I 

l-+--AXRR I I I 
IOEN6 IF we> 4 I 
I BRPH6 I I I I FORCE ZERO I 

I 
(IF MCIO) , I I I INTO SO 

(S/SXA) 

BRPH6 

• IF MC 10. I t I I 
1 I I FROM PH4 IF ABORTED ! I I I 

~1------~I------I----TO-P-Hl-~--~I--4-~I----~I~ I I 
I I FROM PHI/G IF SECOND PASS 

901172A.3165/3 

Figure 3-173. Push Multiple Instruction, Phase Sequence Diagram (Sheet 3 of 3) 

3-466 



50S 901172 

Table 3-70. Push Mu I tip Ie Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: 

(C) : SPWl Stack pointer double-
word 1 

(D) : SPWl Stack pointer double-
word 1 

(B) : Program address Address of next instn,Jc-
tion in sequence 

(P) : SPWO address Location of bits 0 
through 31 of stack 
pointer doubleword 

(A) : CC (number of words) A-register contains 
number of words 

(MC) : CC (number of words) Macro-counter set to 
number of words 

Preset conditions with PRE3 

Enable signal (S/SXAPD) (S/SXAPD) = FAST/C (PRE3 + ••• ) + no Preset adder for A plus 
o in PHI/A 

Set flip-flop SW8 S/SW8 = BRSW8 NRESET/A 

BRSW8 = FAST PRE3 + ••• 

Reset flip-flop NT11 L S/NT11L = N(S/TllL) Set clock T11 L for 

(S/TllL) = FAST PRE3 + ••• PH1/A 

R/NT11L = ... 
PH1/A One clock long PH1/A = PHl SW8 

T11L D + A---S Adder logic set at last PREP clock Add number of words to 
word count in SPW1. to 
check for overflow 

Force a zero into 516 S16INH = FAST PH1/A Inhibit TW 

Set SW3 if word count overflows S/SW3 = (S/SW3) Word count overflows 

(S/SW3) = (A 16 (f) K 16) F AS T PH 1/ A into adder bit 16 

Set SW5 if TS is 1 S/SW5 = (S/SW5) Trap-on-space inhibit 
I (S/SW5) = FAST PH l/A DO + ••• bit is in DO 

Set SW6 if TW is 1 S/SW6 = (S/SW6) D16 contains trap-on-
(S/SW6) = FAST PH1/A 016 + ••• word inhibit bit TW 

Down align D-register DXDR8 = FAST PH l/A + ••• Shift O-register 8 bits 
right as first half of 16-
bit down alignment 

Set flip-flop SW9 S/SW9 = SW8 STEP815 

STEP815 = NBRSW8 NBRSW10 NBRSWll 
NBRSW12 NBRSW13 NBRSW15 

Reset flip-flop NT8L S/NT8L = N(S/T8L) Set clock T8L for PH l/B 

(S/T8L) = FAST PH 1 

R/NT8L = ... 
Sustain PH 1 BRPH1/1 = FAST PHI N(NSW7 PHI/C) Hold PH 1 for PH l/B 

+ ••• 

Mnemonic: PSM (OB, 8B) 

(Continued) 

3-467 



SDS 901172 

Table 3-70. Push Multiple Sequence (Cant.) 

Phase Function Performed Signals Involved Comments 

PH1/B One clock long PH1/B = PHl SW9 

T8l Down align D-register DXDR8 = FAST PH1/B + ••. Shift D-register 8 bits 
right to complete 16-bit 
down alignment. Space 
count is now in 017 
through D31 

Enable signal (S/SXDMA) (S/SXDMA) = FAST/C PH l/B Preset odder for D minus 

I Set flip-flop SW 10 

A 

S/SW10 = SW9 STEP815 
I 

S/NT11l N(S/Tl1l) 
I Reset flip-flop NT11 l = Set clock T11 l for 

(S/Tl1 l) = FAST PH1/B 
PH1/C 

R/NT11l = ... 
Sustain PHl BRPH1/1 = FAST PHl N(NSW7 PH1/C) Hold PH 1 for PH l/C 

+ ••• 

PH1/C One clock long PH1/C = PH 1 SW10 

T11l D-A-S Adder logic set at PH1/B clock Subtract number of words 
from space count in D17 
through D31 for under-
flow check on Iy 

Force a zero into S 16 S16INH = FAST PH1/C Inhibit TS 

Set SW 1 if space count .S/SWl = (S/SWl ) Space count underflows 
underflows (S/SW1) = (A 16 Et> K 16) FAST PH l/C into adder bit 16 

+ ••• 
Set SW2 if new space S/SW2 = (S/SW2) New space count = 0 if 
count = 0 (S/SW2) = N(A 16 Et> K 16) S 1631Z bits 16 through 31 of 

FAST PH1/C + ••• S-register = 0 
Set flip-flop SW7 S/SW7 = (S/SW7) 

(S/SW7) = FAST PH1/C NSW7 + ••• 

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + ••• Request for core memory 
(S/MRQ/3) = FAST PH l/C + ••• cycle 

R/MRQ = ... 
Reset flip-flop NMRQPl S/NMRQPl = N(S/MRQ/3) Delay flip-flop for data 

R/NMRQPl = release signal ... 
Go to PH2 if abort or 
first pass 

PH2 One clock long 

T5l T rap conditions: 

Set flip-flop TRAP if word count S/TRAP = (S/TRAP) SW3 is word count over-
overflows and TW = 0 or if space : 

flow, SWl is space count 
count underflows and TS = 0 (S/TRAP) = FAST PH2 SW3 NSW6 

underflow, NSW6 =='> TW 
+ FAST PH2 SW1 NSW5 

I 
= 0, NSW5 ~ TS = 0 

Mnemonic: PSM (08, 88)1 

(Continued) 

3-468 



SOS 901172 

'Table 3-70. Push Multiple Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH2 Abort if SW 1 or SW3 is set S/FASTABORT = FAST PH2 SW1 Instruction uncondition-

T5L 
+ FAST PH2 SW3 ally aborted on overflow 

(Cont. ) S/FASTF1 = SW3 + SW1 
or underflow. Note that 
FASTABORT is built with 
two flip-flops, FASTF1 
and FASTF2 

Set flip-flop ORQ S/ORQ = (S/ORQ) Data request, inhibits 

(S/ORQ) = MRQP1 + ••. trarismission of another 
clock unti I data re lease 
received from core 
memory 

PH3 Sustained until data release 

DR (MBO-MB31 )---{CO-C31) CXMB = OG (data gate) Top of stack address 
(SPWO) from memory 
---C-register 

(CO-C31) -+- (00-031) OXC = FAST/A PH3 Top of stack address 
, -f- O-register 

If not aborted, reset flip-flop S/NCXS = N{S/CXS) Preset for S~C in 
NCXS 

(S/CXS) FAST/A PH3 NFASTF1 + ••• 
PH4 = 

R/NCXS = ... 
P + 1--f-P PUC31 = FAST/A PH3 + •.• Add 1 to SPWO address 

to obtain SPW1 address 

Set flip-flop MRQ if instruction S/MRQ = (S/MRQ/2) + ... Request for core memory 
aborted 

(S/MRQ/2) = FASTABORT PH3 + ••• cycle 

R/MRQ = ... 
Set fiip-fiop DRQ if instruction S/DRQ = (SIDRQ) NCLEAR Data request, inhibits 
aborted 

(S/ORQ) (S/MRQ/2) + ••• 
transmission of another = clock unti I data re lease 

R/ORQ = ... from core memory 

PH4 One clock long 

T5L (PO-P31) --- (SO-S31) SXP = FAST PH4 NOIS + ••• Store SPW1 address in 

(DR if 
C-register 

abort) 
(SO-S31) --(CO-C31) CXS set at PH3 clock 

If instruction not aborte'd, (S/SXO) = FAST PH4 NBRPH9 + ••• Preset adder logic for 
enable signal (S/SXO) O-S in 'PHS 

Abort conditions: 

If SW1 or SW3 set, branch BRPH9 = FAST PH4 (SW1 + SW3) Branch to PH9 to set 
to PH9 condition code 

(M BO-MB31) - (CO-C31) CXMB = OG Load S PW 1 from memory 
into C-register 

(CO-C31)-+-- (00-031) DXC = FAST ABORT PH4 Return SPW1 to 0-
register 

Mnemonic: PSM (OB~ 8B) 

(Continued) 

3-469 



SDS 901172 

Table 3-70. Push Multiple Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PHS One clock long 

TSL (DO-D31) --- (SO-S31) Adder logic set at PH4 clock Top of stack address 
(SPWO)-+-- P-register 

(SO-S31) -+-(PO-P31) PXS = FAST/A PHS + ••. 

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset for transfer of 

(S/AXRR) = FAST/S PHS + ••• 
private memory R con-
tents-+-- A-register 

R/NAXRR = ... in PH6 

PH6 One clock long 

I 

I 

TSL (RRO-RR31) -+- (AO-A31) AXRR set at PHS clock Store private memory 

1 st 
register R contents in 

Pass 
A-register 

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset for transfer of A-

(S/MBXS) = FAST/S PH6 NMCZ 
register contents to core 
memory in second PH6 

Set flip-flop MRQ S/MRQ = (S/MRQ) Request for core memory 

(S/MRQ) = (S/MBXS) + •.• cycle 

R/MRQ = ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) (S/MBXS) + ••• 
transm iss ion of another = clock until data release 

R/DRQ = ... from core memory 

P + 1 ---f-- P PUC31 = FAST/S PH6 + ••. Upcount P-register to 
obtain new top of stack 
address 

R + 1--f--R RUC31 = FAST/S PH6 Upcount R-register for 
next sequential private 
memory address 

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset for transfer of 

(S/AXRR) = FAST/S PHS + ••• private memory contents 
-f-- A-register 

R/NAXRR = ... 
MC-l -+--MC MCD7 = FAST/M PH6 NIOEN + •.• Decrement number of 

words in macro-counter 

Enable signal (S/SXA) (S/SXA) = FAST/S PH6 NMCZ Preset adder logic for 
A --- S in next PH6 

Enable signal IOEN6 if IOEN6 = FAST/A IOEN6/1 PH6 I/O service call enable 
MC > 4 

IOEN6/1 NMCOOOSZ - = 

Sustain PH6 BRPH6 = FAST/M PH6 NMCZ Repeat PH6 to store 
contents of A-register 
in memory 

Mnemonic: PSM (DB, 8B 

(Continued) 

3-470 



SDS 901172 

Table 3-70. Push Multiple Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH6 Sustained unti I data release 

DR (AO-A31) ---(SO-S31) Adder logic set at first PH6 clock Store A-register contents 
Not 

(50-531) --- (MBO-MB31) M BXS set by fi rst PH6 clock 
in memory at new top of 

1st stack address 
Pass 

Enable signal (S/SXC) if MC = 0 (S/SXC) = FAST/S PH6 OUO MCZ + , ., Preset adder for C --- S 
in PH7 

P + 1---f--P PUC31 = FAST/S PH6 + , ., Upcount P-register for 
new top of stack address 

R + 1---R RUC31 = FAST/S PH6 + , .. Upcount R-register for 
new private memory 
address 

I MC - 1 --f-- MC MCD7 = FAST/M PH6 NIOEN +". Decrement number of 

I 
words in macro-counter 

Inn" nn",,\ I IA" .1"\,,\ AXRR set at iast PH6 ciock Store private memory R \I\I\U-I\I\" I ) --r-- \AU-A" I ) 

contents in A-register 

Set flip-flop MBXS if MC /; 0 S/MBXS = (S/MBXS) Preset for transfer of A-

(S/MBXS) = FAST/S PH6 NMCZ 
register contents to core 
memory 

Set flip-flop MRQ if MC /; 0 S/MRQ = (S/MRQ) Request for core memory 

(S/MRQ) = (S/MBXS) +", 
cycle 

R/MRQ = ,. , 

Set flip-flop DRQ if MC /; 0 S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) = (S/MBXS) + .,. transm iss ion of another 
clock unti I data re lease 

R/DRQ = , " from core memory 

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) I Preset for trans fe r of 

(S/AXRR) = FAST/S PH5 + •. , 
I 

private memory contents 
-+-- A-register 

R/NAXRR = ... 
I I I 

Enable signal IOEN6 if MC~ 4 IOEN6 = FA5T/A IOEN6/1 PH6 I/O service call enable 

IOEN6/1 = NMCOO05Z 
if number of words to be 
loaded> 4 

-

Sustain PH6 if MC /; 0 BRPH6 = FA5T/M PH6 NMCZ Repeat PH6 to store pri-
vate memory contents in 
core memory unti I num-
ber of words = 0 

PH7 One clock long 

T5L (CO-C31 )---(50-S31) Adder logic set at first PH6 clock 5 PW 1 address --- 5 

(50-531) -f-- (PO-P31) PX5 = FA5T/A PH7 + ... 5 PW 1 address -f-- P 

Set flip-flop MRQ 5/MRQ = (5/MRQ/2) + •.. Request for memory cycle 

(5/MRQ/2) = FA5T/A PH7 + ... 
R/MRQ = ... 

Mnemonic: P5M (OB, 8B) 

(Continued) 

3-471 



SDS 901172 

Table 3-70. Push Multiple Sequence (Cont.) 

r-" 

Phase Function Performed Signals Involved Comments 

PH7 Set flip-flop DRO S/DRO ::: (S/DRO) NCLEAR Data request, inhibits 

T5L (S/DRO) ::: (S/MRO/2) + ••• 
transmission of another 
clock unti I data release 

(Cont. R/DRO = from memory ... 
PH8 Sustained unti I data release 

DR (MBO-MB31 )---(CO-C31) CXMB = DG 5 PW 1 from core memory 
---- C-register 

(CO-C31)-I-- (DO-D31) DXC = FAST/A PH8 + ... SPW1-+-- D-register 

(CC 1-CC4) -+-- (A28-A31) AXCC = FAST/M (PH8 + ... ) Number of words-+--
A-register 

I o ---f--(AO-A31 ) AXZ = FAST (PH8 + ... ) 

Enable signal (S/SXAPD) (S/SXAPD) = FAST/C (PH8 + ... ) + ... Preset adder for D plus 
A in PH1/A 

Set flip-flop SW8 S/SW8 = NRESET BRSW8 

BRSW8 ::: FAST/A PH8 + ... 
Reset flip-flop NCXS S/NCXS = N(S/CXS) Preset for 5 ---- C in 

(S/CXS) = FAST/A PH8 + ••• PH1/A 

R/NCXS = ... 

I 
P-1--+--P PDC31 = FAST/A PH8 + ••• Decrement P-register to 

obtain SPWO address 

Reset fl ip-flop NTl1 L S/NTl1L = N(S/T11L) Set clock Tl1LforPH1/A 

(S/Tl1L) = FAST PH8 + ... 
R/NTl1L = ... 

Branch to PH l/A BRPH1 = FAST/A PH8 + •.• 

S/PH1 = BRPH1 NCLEAR 

PH1/A One c lock long PH1/A = PH1 SW8 FAST 

Tl1L D + A---S Adder logic for D plus A set at PH8 clock Update word count by 
addi ng number of words 
to SPW1 in D-register. 
Gate onto sum bus 

Force a zero into 516 516 = (K160PR16) SXADD 516 (bit 48 of SPWl) is 

NS16INH 
trap-on-word inhibit bit 

I 
TVy, and not included in 

S16INH = FAST PH1/.A + ... word count 

I (516-531 )---(C16-C31) CXS set at PH8 clock New word count into C-
register bits 16 through 
31 

Zeros-(CO-C15) CXS/O = CXS N(FAST PH1/A) 50- S 15 not gated onto 

CXS/1 = CXS N(FAST PH1/A) 
CO-C15 because CXS/O 
and CXS/1 are low 

Down align D-register DXDR8 = FAST PH1/A + ... Shift D-register 8 bits 
I right as first half of 16-

bit down alignment 

Mnemonic: PSM (OB, 8B) 

(Continued) 

3-472 



SOS 901172 

Table 3-70. Push Mu I tip Ie Sequence (Cont. ) 

Phase Function Performed Signals Involved Comments 

PHI/A Set flip-flop SW9 S/SW9 = SW8 STEP815 
Tlll 

(Cont. ~ Reset flip-flop NT8l S/NT8l = N(S/T8l) Set clock T8l for PH l/B 
I (S/T8L) == FAST PHi + ••• 

R/NT8l = ... 
Sustain PH 1 BRPHI/l = FAST PHI N(NSW7 PH l/C) 

PH1/B One clock long PHI/B = PHI SW9 

T8l Down align D-register DXOR8 = FAST PHI/B + ••• Shift O-register 8 bits 
right to complete 16-
bit down alignment. 
Space count is now in 
017-031 

Enable signal (S/SXOMA) (S/SXOMA) = FAST/C PH l/B + ••• Preset adder for 0 minus 

I Set fI ip-flop SW 10 

A in PHI/C 

S/SWlO = SW9 STEP815 

Reset flip-flop NTll l S/NTll l = N(S/Tlll) Set clock Tll l for 

(S/Tll l) == FAST PHI + ••• 
PHI/C 

R/NTlll == ... 
Sustain PH 1 BRPH 1/1 = FAST PHI N(NSW7 PHI/C) 

+ ••• 

I 

PHI/C lone clock long PHI/C = PHI SWI0 

Tlll D-A---S Adder logic set for 0 minus A in PH l/B Update space count by 
subtracting number of 
words from 017-031 

Force a zero into S 16 S16 = (K 16 (Z) PR16) PHl!A S 16 is now trap-on-
I NS16INH I space bit TS, and is not 

.. 
S16INH = FAST PHI/C 

included in space count 

(SO-S31) -+- (AO-A31 ) AXS = FAST PH1/C SW7 Store new space count 
in A-register 

(CO-C31) -+-- (00-031) OXC = FAST PH1/C + ... Store new word count in 
O-register 

Reset flip-flop SW7 R/SW7 = (R/SW7) 

(R/SW7) = FAST PHI/C SW7 

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + ... Request for core memory 

(S/MRQ/3) = FAST PH1/C 
cycle 

R/MRQ = ... 
Mnemonic: PSM (OB, 8B) 

(Continued) 

3-473 



SDS 901172 

Table 3-70. Push Multiple Sequence (Cont.) 

r-----,---------------r------------------~-.--.. --.-- - ~----~-~ 

Phase Function Performed 

PH l/C Reset flip-flop NMRQPl 

TllL 
(Cant. ) 

Reset flip-flop NT8L 

Set fl ip-flop SVV 11 

I Sustain PHl 

PH l/D One clock long 

T8L Up align A-register 

Set flip-flop DRQ 

Set flip-flop SW12 

PH1/E Sustained until data release 

DR (MBO-MB31) ----(CO-C31) 

Up align A-register 

Enable signal (S/SXAORD) 

Set flip-flop AO if TS is 1 (SW5) 

Set flip-flop A 16 if TW is 1 (SW6) 

Set flip-flop MBXS 

3-474 

S/NMRQP1 

R/NMRQP1 

S/NT8L 

(S/T8L) 

R/NT8L 

S/SW11 

BRPH 1/1 

PHl/D 

AXAL8 

S/DRQ 

(S/DRQ) 

S/SW12 

PH1/E 

CXMB 

AXAL8 

Signals Involved 

= N(S/MRQ/3) 

= ... 
= N(S/T8L) + •.• 

= FAST PH1 

= ... 

= SW10 STEP815 

-- FAST PH 1 N(NSW7 PH lie) 
+ ••. 

= PH1SW11 

= FAST PH l/D + •.. 

= (S/DRQ) NCLEAR 

MRQPl + = ... 

= SW11 STEP815 

= PH 1 SVV 12 

= DG 

= FAST PH1/E + ••. 

(S/SXAORD) = FAST PH1/E + .•• 

S/AO = FAST PH l/E SW5 AXAL8 

S/A16 = FAST PH liE SW6 AXAL8 
+ ... 

S/MBXS = (S/MBXS) 

(S/MBXS) = FAST PH liE + ... 

S/MRQ = (S/MRQ) 

(S/MRQ) = (S/MBXS) + ... 
R/MRQ = ... 

(Continued) 

Comments 

De lay fl ip-fiop for data 
release signal 

Set clock T8L for PH 1/D 

Shift A-register 8 bits 
left as first half of 16-
bit up alignment 

Data request, inhibits 
transmission of another 
clock until data release 
received from core 
memory 

SPWO--- C-register 

Shift A-register 8 bits 
left as second half of 
l6-bit up alignment. 
New space count is now 
in A 1 through A 15 

Preset adder for A OR D 
---5 in PH1/F 

Set trap-on-space inh ibit 
bit if set in original 
SPW1 

Set trap-an-word inhibit 
bit i f se tin or i gin a I 
SPW1 

Preset for transfer of 
A OR D to core memory 
in PH l/F 

Request for core memory 
cycle 

Mnemonic: PSM (OB, 8B) 



SOS 901172 

Table 3-70. Push Multiple Sequence (Cont.) 

Phase Function Performed Signals Involved I Comments 

PH1/E Set fl ip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

DR (S/DRQ) = (S/MBXS) + ••• 
transm ission of another 

(Cont. ) 
clock unti I data re lease 

R/DRQ = ... from memory 

P+l-f--P PUC31 = FAST PH liE Increment P-register to 
obtain SPYv 1 address 

Set fl ip-flop SW 13 S/SW13 = SW12 STEP815 

PH1/F Sustained unti I data re lease PH1/F = PHl SW13 

DR A OR D---S Adder logic set at PH l/E clock New word count in D-
register and new space 
count in A-register 
---5 

(SO-S31) --- (MBO-MB31) MBXS set by PH1/E clock Store new space count 
and word count in core 
memory at 5 PW 1 

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset for memory write 

(S/MBXS) = FAST PH l/F + ..• 

R/MBXS = ... 
Set flip-flop MRQ S/MRQ = (S/MRQ) Request for core memory I 

(S/MRQ) (S/MBXS) + •.. 
cycle = 

R/MRQ = ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/ORQ) (S/MBXS) + •.. 
transm ission of another = clock unti I data re lease 

R/ORQ = ... received from core 
memory 

(CO-C31) -+--(00-D31) DXC = FAST PH l/F + ... Top of stack address 
(SPWO) in C-register 
clocked into D-register 

Enable signal (S/SXAPD) (S/SXAPO) = FAST/C (PH1/F + ••• ) + ••• Preset adder for D plus 
A in PH1/G 

P-1-+--P PDC31 = FAST PH l/F + ••• Decrement P-register to 
obtain SPWO address 

(CC 1-CC4) +- (A28-A31 ) AXCC = FAST/M (PH1/F + ••• ) + ••• Number of words -I--
A-register 

Set flip-flop SW14 S/SW14 = SW13STEP815 

Sustain PH 1 BRPH 1/1 = FAST PH 1 N(NSW7 PH l/C) 
+ ••• 

Mnemonic: PSM (OB, 8B) 

(Conti nu ed) 

3-475 



SDS 901172 

Table 3-70. Push Multiple Sequence (Cont.) 
c ___ ~_ ~ ___ 

Phase Function Performed 
1 

Signals Involved Comments 

PH1jG Sustained unti I data release PH1/G == SW14 PHl 

DR D + A---S Adder logic set at PH1/F clock Add number of words to 
top of stack address in 
D-register to obtain new 
top of stac k address 

(SO- S31) ___ (MBO-MB3l) MBXS set by PH1/F clock Store new top of stack 
address in memory at 
SPWO location 

Branch to PH9 BRPH9 = FAST PH1/G 

SjPH9 = BRPH9 NC LEAR + ... 

RjPH9 = ... 

PH9 One c lock long 

T5L (80-B31)-(SO-S31 ) SXB = PXSXB NDIS Program address~P-

PXSXB = NFAFl NFAMDS PH9 
register via sum bus 

(SO-S31 )-f--(PO- P31) PXS = PXSXB 

Set condition code: 

Set CC3 if word count overflow S/CC3 = ($/CC3/1) + ••• SW3 indicates word 
and TW = 1 (SW6) count overflow. IfTW 

(S/CC3/1) = FAST PH9 SW3 were 0, instruction 
wou Id have trapped and 
not reached PH9 

Set CCl if space count underflow S/CC1 = (S/CC 1/1) + ••• SW1 indicates space 
and TS = 1 (SW5) 

(S/CC1/1 ) FAST PH9 SW1 
count underflow. If TS = were 0, instruction 
wou Id have trapped and 
not reached PH9 

Set CC2 if new space count = 0 S/CC2 = (S/CC2/1) + ••• If instruction is success-

(5/CC2/1) = (FASTNABORT PH9) fu Ily completed and 

SW2 + ••• stack is full, CC2 is set 

I Place zeros in condition code RjCC = FAST PH9 + ... Places inputs on reset 
flip-flops not set by this sides of CC1 through 
instruction CC4 so that they will be 

reset if not set by th is 
instruction 

Enable signal (SjSXD) if (SjSXD) = FASTABORT PH9 Preset adder for D----S 
instruction aborted in PH10 

.. ... I n \ 

(Continued) 

3-476 



SDS 901172 

Table 3-70. Push Multiple Sequence (Cont.) 

Phase Function Performed 

PH10 Sustained until data release 

DR Normal ENDE 

If instruction aborted: 

Correct CC4 S/CC4 

(S/CC4/2) 

Correct CC2 S/CC2 

(5/CC2/4) 

Force ones into S16 and SO SGTZ 

S16 

rn 
.JV 

PULL MULTIPLE (PLM; OA, SA). The PLM instruction 
loads a sequential set of private memory registers from 
the push-down stack defined by the stack pointer double­
word, which is located at the address specified in the 
reference address field of the PLM instruction. The number 
of words to be pulled is indicated by the condition code. 
If a total of 16 words are to be pu lied from the stack, the 
initial value of the condition code is 0000. The private 
memory registers are treated as a circu lor set, with register 
o following register 15. The first private memory register 
to be loaded from the stack is the register specified in the 
R field of the instruction plus the condition code minus 1, 
and the contents of the current top of stack location 
become the contents of this register. The last private 
memory register to be loaded is the register specified in 
the R field of the instruction. 

Registers R + CC-1 to register R are loaded in descending 
sequence, beginning with the contents of the location 
pointed to by the current top of stack address and ending 
with the contents of the location pointed to by the current 
top of stack address minus CC-1. 

The current top of stack address is decremented by the 
value of the condition code to poi nt to the new top of 

= 
= 

= 
= 

= 

= 

= 

Signals Involved Comments 

(S/CC4/2) + ••• Set CC4 if original word 

(FASTABORT ENDE) 
count (in D-register) = 0 

S1631Z 

(S/CC2/4) + ••• Set CC2 if original 

SOO07Z 50815Z 
space count {in 0-

(FA5TABORT ENDE) 
register) = 0 

N(FA5TABORT ENDE) To prevent setting CC3 

N(FA5TABORT ENDE) S 16 is TW inhibit bit; 
50 is TS inhibit bit 

t~(FASiABORi ENDE) Neither should be 
checked for 0 

Mnemonic: PSM (OB, SB) 

stack location. The space count is incremented by the 
value of the condition code, and the word count is 
decremented by the value of the condition code. The 
condition code is set as described under Stack Pointer 
Doubleword (page 3-438) to reflect the new status of the 
space count and word count. 

If the space count or word count limits would be exceeded 
by the instruction; the instruction is aborted and a trap 
routine is entered if allowed by the TS or TW bit. The 
condition code is set as described under Stack Pointer 
Doubleword (page 3-438). 

PULL MU LTIPLE PHASE SEQUE NCE. Preparation phases 
for the PLM instruction are the same as the genera I PREP 
phases for word instructions, paragraph 3-59. Figure 
3-174 shows the simplified phase sequence for the PLM 
instruction. Table 3-71 lists the detailed logic sequence 
during all PLM execution phases. During the first pass 
through the phase 1 phases, word count underflow and 
space count overflow are checked in the adder and indi­
cators are set, but the adder output is not used. The 
instruction branches from PH1/C to PH2 and obtains the 
top of stack address before PH6. The instruction loops 
through PH6, loading words from core memory 

3-477 



SDS 901172 

into private memory, the number of loops depending instruction, and PH10 enables the ENDE operation to 
tc~E' r'''I"'E' on the number of words to be pu lied. 'v'/hen a zero ':c luc 

in the macro-counter indicates that the last word has 
been loaded, the instruction proceeds to PH7, and If the condition code at the beginning of the instruction 

contains 0000, indicating that all 16 private memory 
registers are involved in the pull operation, bit 3-of the 
macro-counter is set at the time the condition code is 
transferred to the A-register, thereby establishing 10000 
as the number of words. 

from PH8 branches back to PH1/A. From PH1/A to 
PH1/G, the new top of stack address, new space count, 
and new word count are calculated and stored in core 
memory in the stack pointer doubleword. After PH1/G, 
PH9 is entered to obtain the address of the next 

3-478 

I 

I 

PREP 

(C): SPWI 

1(0): SPWI 

I (8): PROGRAM 
ADDRESS 

I (P): SPwo 

I ADDRESS 
(A): CC 
(MC): CC 

I (S/SXDMA) 

PHI/A 

FIRST PASS 

PHI/B 

FIRST PASS 

(S/SXAPO) 

PHI/C 

FIRST PASS 

D+A---S D+A---S 
(CHECK WORD (CHECK SPACE 

PHIlO PHI/E 

I COUNT OVERFLOW) I I COUNT OVERFLOW) I 
o RIGHT 8 --I-- 0 RIGHT 8 --/-- 0 

I 
l-,t--Swa 

I 
l-f--T11L 

I I 
1 -+-- SW3 1 --r-- SWIO 

I I 
(IF WORD COUNT 1 -f-- TIl L 

UNDERF, lOW) I (S/SXAMl) , 
1 -f-- SWI 

1 --f-- SW5 (IF SPACE COUNT I 
(If T~ = 1) I OVERFLOW) 

I 
1-1- SW6 

(IF TW = 1) 
I 

1 --t-- SW9 

I 

I 
I 

I 
1 -+-- TaL I 

I 
I 

1 --+--SW2 

(If NEW SPACE 
COUNT = 0) 

I 
l-f--SW7 

I 
1-f--MRO 

I ",PH 1/1 I I 
l-t-MROPll 8RPHI/l 

I I 

GO TO PH2 IF FIRST PASS 

FROM PHS 

I I 1 --t-- M8XS 
1 --+-- MRO 

I SECOND PASS . I SECOND PASS I SECOND PASS 1 -f-- ORO 

I 
0 + A-S-C I (S/SXAPD) I D-l-S r Jill • A LEFT 8 -~(-. A lEFT 8 --+-- A 
NEW WORD COUNT I NEW SPACE COUNT ( I I 

(0 -CO-CI5) I I 0-· { • SW7 1-;- DRO 

o RIGHT 8-f,--D RIGHT 8 --/---0 1-+1---{'---- MRO l-f--- SW12 
I I I I i .. MROPI II 

I-+- SW9 1 --I--- SW10 I I MB - C 

II-+--TIl l <. T 8 liS PWO IT T8l I 1 I II'· SWll (S/SXAO~Dll --I--- P 

I 
C I < • D SPWI ADDRESS 
NEW WORD COUNT 1 -f--AO 

I 
(IF SW5) 
l-f"--A16 

BRPHI/l (IF SW6) 

I BRPHI/l ljSW13 

BRPHI/l BRPHI/l 

901172A,3166/1 

Figure 3-174. Pull Multiple Instruction, Phase Sequence Diagram (Sheet 1 of 3) 



.. 

PHI/F PHI/G 

SOS 901172 

PH2 PH3 

I 
l-+-TRAP 

I 
(IF WORD COUNT UNDERFLOWI 
AND TW = 0 OR SPACE COUNT 

OVERFLOW ~ND TS = 0) I 
l-+-FASTABORT 

PH4 

(S/SXD) 

I 

PH5 

D-S-f--P 
TSA ADDRESS I 

MB-C-I--D I 
(IF ABORTED) 1 

I 
I 

I 
I' (IF SWI OR SW3 ~ 1) I 

l-+--DRQ I 
'I 
1 

1 

I 

l-+-MRQ 
I 

I 

I A + D-S-f--R 
I 

l~DRQ 

MB-C-f--D 

I TSA. ~~D.RESS i 
I l~/LX~) I 

A - l-S--f--D 
NUMBER OF WORDS P + I-f--P -S 

1 SPWI A~DRESS 

(IF {l--f--MRQ 
ABORTED) l~DRQ 

I FROM PHI/C IF FIRST PASS t 
BRPH9 

I-A 
I 

I 
I 

(IF ABORTED) I I 
I GO TO PH9 IF ABORTED .. 

TO PHI/A FROM PH9 I I 
I~~~~D~~;:~~BI I I I 

WORD COUNT I! I 
C -f-D - A - S -- Mal 

SPWO NEW TSA 

Il-MBXS I I 

I I 

I-f-.-MRQ I I 
I-f---DRQ 

P-l--f--P I I 
SPWO ADDRESS 

1~SW14 I I 
(S/SXDMA) BRPH9 GO TO PH9 ~I ____________________________________________________________________________________ ~~._ 

BRPHI/l 
I 1 

901172A.3166/2 

Figure 3-174~ Pull Multiple Instruction, Phase Sequence Diagram (Sheet 2 of 3) 

'3-479 



Phase 

PREP 

3-480 

PH6 I PH6 I 
FIRST PASS NOT FIRST PASS 

I I 
MB-C-I---D - S-+--RW 
FIRST PULL WORD . 

I 

P - l-f---P 
NEW TSA 

NC -1-f--MC 
I 

l-f---RW 
I 

SDS 901172 

PH? PHS 

I 
A-S-+--P 
SP'WI ADDRESS 

l-f---MRQ 
I 

l-f---DRQ 

I MB-C-f---D 
SP'WI I 

PH9 PH10 

I
! l----f--MRQ 

I-+-DRQ 

1 

I 

I 
O--f--A 

P -1-1--P 
SP'WO ADDRESS 

I. IOEN6 IF MC ~ 4!1 MB-C-f---D 

SECOND PULL 'NORD 
(S/SXD) I 

I 

I 
l-f--SWS I 

BRPH6 

P - l--f--P 

I 
R -1-f--R 

I 
I 
I 

I 
NC -1~NC 

l-f---MRQ 
(IF MC # 0) 

I 

l-f---CXS 
I 

l-f---T11L 
I 

(S/SXDMA) 

B-S-I--P I 
PROGRAM ADDRESS 

I 

I I-+-CC3 I 
nF WORD COUNT UNDERFLOW) 

I I 
I 

I BRPHI 
l-f--DRQ I I I-+--CCI I 

I (IF M~ ., 0) TO PHI/A (IF SPACE COUNT OVERFLOW) 

I 
I IOEN6 I I-+--CC4 I 

~~~~~~~~(_IF_M_C~~_4_)~~~_F_ro~M_P_H_4_IF_A_B~0_R~TE_D~~~~~~~~_nFNMWmDCOUNT=~ 

1
(S!SXA) I I I- O~CC I

(IF MC = 0) FROM PHl/G IF SECOND PASS BITS NOT SET
~~~~~~~I~~~~~~------~--~~--~------~----~~I-~ BY THIS CLOCK 

I ENDE 

I 
(S/SXD) l-f-CC4 

(IF WORD 
COUNT = 0) 

FORCE ZERO I 
I (IF ABORTED) I 

I I INTO S16 

901172A.3166/3 

Figure 3-174. Pull Multiple Instruction, Phase Sequence Diagram (Sheet 3 of 3) 

Table 3-71. Pull Multiple Sequence 

Function Performed Signals Involved Comments 

At end of PREP: 

(C) : SPW1 Stack pointer double-
word 1 

(D) : SPW1 Stack pointer double-
word 1 

(B) : Program address Address of next i nstruc-
tion in sequence 

(P) : SPWD address Location of bits 0-31 of 
stack pointer doubleword 

Mnemonic: PLM (OAf SA) 

(Continued) 



Phase Function Performed 

PREP (A) : CC (number of words) 
(Cont.) 

(MC) : CC (number of words) 

Preset conditions with PRE3: 

Enable signal (S/SXDMA) 

Set flip-flop SW8 

ft • to.- r. ... I~ ... I 
I\eser r liP-flOP 1"'4 I I I L 

PH1/A One clock long 

T11 l 0 - A-f-S 

Force a zero into S 16 

Set SW3 if word count 
underflows 

Set SW5 if TS is 1 

Set SW6 if TW is 1 

Down align D-register 

Set SW4 if word count = 0 

Set flip-flop SW9 

Reset flip-flop NT8l 

Sustain PH 1 

SDS 901172 

Table 3-71. Pull Multiple Sequence (Cont.) 

Signals Involved 

(S/SXDMA) = FUPLM (PRE3 + •.• ) + ..• 

S/SW8 = BRSW8 NRESET/A 

BRSW8 = FAST PRE3 + ••. 

,. I ... ..... 'I. .. I'''' 1 .. '1 ... \ 
~/I"'4111 L = 1"'4\~/ I I I LJ 

(S/T11 l) = FAST PRE3 + .•. 

PHI/A = PHI SW8 

Adder logic set at last PREP clock 

S16INH = FAST PHI/A 

S/SW3 = (S/SW3) 

(S/SW3) = (A 16 e K16) FAST PHI/A 
+ ••• 

S/SW5 = (S/SW5) 

(S/SW5) = FAST PH I/A DO + ••• 

S/SW6 = (S/SW6) 
leo Ir:o\AU \ ;;::; r- A COT nLJ, II. ..... , I 0 

PI ;JYVOI r,...;J I rn 1/"" LlIO T ••• 

DXDR8 = FAST PHI/A + ••• 

I 
S/SW4 = (S/SW4) 

(S/SW4) = N(A 16 ED K 16) S 1631Z 
FAST PH1/A 

S/SW9 = SW8 STEP815 

STEP815 = NBRSW8 NBRSWI0 NBRSWll 
NBRSW12 NBRSW13 NBRSW15 

S/NT8l = N(S/T8l) 

(S/T8l) = FAST PHl 

R/NT8l = ... 
BRPH 1/1 = FAST PH 1 N(NSW7 PH l/C) 

(Continued) 

Comments 

A-register contains 
number of words 

Macro-counter set to 
number of words 

Preset adder for 0 minus 
A in PHI/A 

Set c iock ii i L for 
PH1/A 

Subtract number of words 
from word count in SPWI 
to check for underflow 
Inhibit TW 

Word count underflows 
into adder bit 16 

Trap-on-space inhibit 
bit is in DO 

D 16 contains trap-on-
word inhibit bit TW 

Shift D-r,gister 8 bits 
right as first half of 16-
bit down alignment 

New word count = 0 if 
S 16-S31 = 0 

Set clock T8l for PH l/B 

Hold PHl for PH1/B 

Mnemonic: PLM (OA, 8A) 

3-481 



SDS 901172 

Table 3-71. Pull Multiple Sequence (Cont.) 
z~~~~_ 

Phase Function Performed Signals Involved Comments 

PH1/B One c lock long PH1/B = PHl SW9 

T8L Down align D-register DXDR8 = FAST PH liB + ... Shift D-register 8 bits 
right to complete 16-bit 
down alignment. Space 
count is now in D17 
through D31 

Enable signal (S/SXAPD) (S/SXAPD) = FUPLM PH l/B + ••• Preset adder for D plus A 

Set flip-flop SW10 S/SW10 = SW9 STEP815 

Reset fl ip-flop NT 11 L S/NTllL = N(S/TllL) Set clock TllL for 

(S/Tll L) = FAST PH1/B PH1/C 

R/NTllL = ... 
Sustain PH 1 BRPH1/l = FAST PH 1 N(NSW7 PH l/C) Hold PHl for PH1/C 

+ ••. 

PH1/C One c lock long PH1/C = PHl SW10 

TllL D + A---S Adder logic set at PH1/B clock Add number of words to 
space count in D17 
through D31 for overflow 
check only 

Set SWl if space count S/SWl = (S/SW1) Space count overflows 
overflows (S/SW1) = (A 16 (9 K16) FAST into adder bit 16 

PH1/C + ••. 
Set flip-flop SW7 S/SW7 = (S/SW7) 

(S/SW7) = FAST PH l/C NSW7 + •.. 
Set flip-flop MRQ S/MRQ = (S/MRQ/3) + •.. Request for core memory 

(S/MRQ/3) = FAST PH l/C + ••• cycle 

R/MRQ = ... 
Reset flip-flop NMRQPl S/NMRQPl = N(S/MRQ/3) Delay flip-flop for data 

R/NMRQPl = ... release signal 

Enable signal (S/SXAM 1) (S/SXAM1) = FUPLM PH l/C NSW7 + ••• Preset adder for A minus 
1 in PH2. Go to PH2 
if abort or fi rst pass 

PH2 One clock long 
I 

T5L T rap conditions: I SW3 is word count 

Set flip-flop TRAP if word S/TRAP = (S/TRAP) NRESET underflow, SWl is space 

count underflows and TW = 0 (S/TRAP) FAST PH2 SW3 NSW6 
I count overflow, NSW6 

= ~TW = 0, NSW5 ~ or if space count overflows 
and TS = 0 + FAST PH2 SWl NSW5 TS = 0 

A-l--S Adder set at PH l/C clock Subtract 1 from number 
of words in preparation 
for finding starting 
register 

Mnemonic: PLM (OA, 8A) 

(Continued) 

3-482 



SOS 901172 

Table 3-71. Pull Multiple Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

PH2 (SO-S31 )-f-{OO- D31) DXS = FUPLM PH2 + ..• Ho Id number of words 

T5L minus 1 in D-register 

(Cent .) (RO-R31 )-+-(AO-A31) AXR = FUPl!v~ PH2 Prepare to find starting 
register 

Abort if SW1 or SW3 is set S/FASTABORT = FAST PH2 SWI Instruction uncondition-
+ FAST PH2 SW3 a lIy aborted on overflow 

or underflow. Note 
S/FASTF1 = SW3 + SW1 that FASTABORT is built 

with two fl!p-flops, 
FASTFI and FASTF2 

Set fl ip-flop DRQ S/ORQ = (S/DRQ) NCLEAR Data request, inhibits 
(~/f'lP("\ \ ~ UP(')Pl + transmission of another 
, .... , ...... "~I ." "''-I(I I ... 

clock unti I data re lease 
R/DRQ = · .. received from core 

memory 

Enable signa I (S/SXAPD) (S/SXAPO) = FUPLW PH2 + ••• Preset adder for A plus 0 
in PH3 

PH3 Sustained until data release 

DR A + D--S Adder preset at PH 2 clock Add number of words 
minus 1 to private mem-
ory address to determ ine 
starting register 

(SO-S31) --f--(RO-R31) RXS = FUPLW PH3 + ••• Place private memory 
starting address in 
R-register 

(MBO-MB31) --- (CO-C31) CXMB = OG (data gate) Top of stack address from 

I (CO-C31) -f--- (00-031 ) DXC = FAST/A PH3 I ~:;:~/s~ac; a~~~:::ster 
·1 P + I--f--P PUC31 = FAST/A PH3 + ••• 

I-f--D-register 
Add 1 to SPWO address 

I to obtain SPWI address 

1 
Set flip-flop MRQ if instruction S/MRQ = (S/MRQ/2) + ••• Request for core memory 
aborted (S/MRQ/2) = FASTABORT PH3 + ••• cycle 

R/MRQ = · .. 
Set flip-flop DRQ if instruction S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 
aborted (S/DRQ) = (S/MRQ/2) + ••• transmission of another 

clock until data release 
R/DRQ = · .. from core memory 

PH4 One clock long 

T5L (PO- P31) -(SO-S31) SXP = FAST PH4 NDIS Hold SP'NI address in 

(DR if A-register 

abort) (50-531 )-+--(AO-A31) AXS = FAST PH4 

Mnemonic: PLM (OA, 8A) 

(Continued) 

3-483 



SOS 901172 

Table 3-71. Pull Multiple Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH4 If instruction not aborted, enable (S/SXO) = FAST PH4 NBRPH9 Preset adder logic for 

T5L 
signal (S/SXO) O---S in PH5 

(DR if Abort conditions: 
abort) 
(Cont .) If SW1 or SW3 set, branch to PH9 BRPH9 = FAST PH4 (SW1 + SW3) Branch to PH9 to set 

condition code 

(MBO-MB31 )---(CO-C31) CXMB = OG Load SPWl from memory 
into C-reg ister 

I (CO-C31)-+--(00-D31) OXC = FASTABORT PH4 Return SPWl 'to 0-
register 

PH5 One c lock long 

T5L (00-031)--{SO-S31) Adder logic set at PH4 clock Top of stack address 
(SPWO) -f--P-register 

(SO-S31) -+- (PO-P31) PXS = FAST/A PHS + ••• 
Set flip-flop MRQ S/MRQ = (S/MRQ/2) + ••• Request for core memory 

(S/MRQ/2) = FAST/L PHS cycle 

R/ORQ = · .. 
Set flip-flop DRQ S/ORQ = (S/DRQ) NC LEAR Data request, inhbits 

(S/ORQ) S/MRQ/2 
transmission of another = 
clock unti I data re lease 

R/ORQ = · .. from memory 

PH6 Sustained until data release 

DR 
(MBO-MB31) ----..(CO-C31) CXMB OG Load first pull word from = 

1st top of stack address in 
Pass memory --C-register 

(CO-C31)-+--(00-031) DXC = FAST/L PH6 + ... Place first puJ I word in 
O-register for transfer 
to private memory 

Set "flip-flop RW S/RW = (S/RW) + ••• Prepare to write into 

(S/RW) = FAST/L PH6 NMCZ + ••• private memory 

P - l-+-P POC31 = FAST/LPH6 OUO + ••• Oecrement P-register to 
obtain new top of stack 
address 

MC - I--f--MC MOC7 = FAST/M PH6 NIOEN + ••• Oecrement macro-
counter by 1 

Enable signal (S/SXO) (S/SXO) = FAST/L PH6 NMCZ + ••• Preset adder logic for 
0--- S in second PH6 

Set flip-flop MRQ S/MRQ = (S/MRQ/2) + ••• Request for core memory 

(S/MRQ/2) = FAST/L PH6 NMCZ + ••• cycle 

R/MRQ = · .. 
Mnemonic: PLM (OA, 8A) 

(Continued) 

3-484 



SDS 901172 

Table 3-71. Pull Multiple Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH6 Set flip-flop DRQ S/DRQ = (S/DRQ) NClEAR Data request, inhibits 

DR (S/DRQ) = (S/MRQ/2) + ••• tran.mllllon of another 
clock until data release 

1st R/DRQ = from memory 
Pass 

... 
(Cont.) Enable signal IOEN6 if MC2 4 IOEN6 = IOEN6/1 PH6 + ••. I/O service ca II enable 

IOEN6/1 ;; NMCOO05Z 

Sustain PH6 BRPH6 = FAST/M PH6 NMCZ + ••. Repeat PH6 to store con-
tents of D-register in 
private memory 

PH6 Sustained until data release 

DR (OO-D31)~(SO-S31) Adder logic set at first PH6 clock Transfer first pull word to 
Not private memory via S-
1st register 
Pass 1SO-S31 )-+--(RWO-RW31) RWXS = RW 

(MBO-MB31 )_(CO-C31) CXMB = DG Read subsequent words 
from core memory and 
place in D-register 

(CO-C31 )-+--(00-031) DXC = FAST/l PH6 + ••• 

P - l---f-P PDC31 = FAST/l PH6 OUO + .•• Decrement P-register for 
address of next core 
memory word 

R - l-f--R RDC31 = FAST/l PH6 OUO + ••• Decrement R-register for 
address of next private 
memory reg ister 

Enab!e signa! IOEN6 if MC2 4- IOEN6 = IOEN6/1 PH6 + .... lin u.rvirp rnll -, - -_ ... _- -_ .. 
IOEN6/1 = NMCOO05Z 

Enable signa I (S/SXA) if MC = 0 (S/SXA) = FAST/l PH6 OUO MCZ + ••• Preset adder for A~S 
in PH7 

MC - 1-+--MC MCD7 = FAST/M PH6 NIOEN + ••• Decrement macro-
counter to obtain new 
number of words 

Set flip-flop MRQ if MC f 0 S/MRQ = (S/MRQ/2) + ••• Request for core memory 

(S/MRQ/2) = FAST/l PH6 NMCZ + ••• cycle 

R/MRQ = ... 
Set flip';'flop ORQ if MC f 0 S/DRQ = (S/DRQ) NClEAR Data request, inhibits 

(S/DRQ) = (s/MRQ/2) + ••• transmission of another 
clock until data release 

R/DRQ = ... from memory 

Sustain PH6 if MC f 0 BRPH6 = FAST/M PH6 NMCZ + ••• Repeat PH6 if more 
words are to be pu lied 

Mnemonic: PLM (OA, SA) 

(Continued) 

3-485 



SOS 901172 

Table 3-71. Pull Multiple Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH7 One clock long 

T5L (AO-A31) --- (SO-S31) Adder logic set at first PH6 clock S PW 1 address ____ S 

(SO-S31) -+--(PO-P31) PXS = FAST/A PH7 + ••• S PW 1 address ~ P 

Set flip-flop MRQ S/MRQ = (S/MRQ/2) + ••. Request for memory 

(S/MRQ/2) = FAST/A PH7 + ••• cycle 

R/MRQ = ... 
Set fl ip-flop ORQ S/ORQ = (S/ORQ) NCLEAR Data request, inhibits 

(S/ORQ) = (S/MRQ/2) + ••• transmission of another 
clock unti I data re lease 

R/DRQ = I 

from memory '00 

PH8 Sustained until data release 

DR (MBO-MB31 )--(CO-C31) CXMB = DG S PYV 1 from core memory 
-C-register 

(CO-C31 )-+--(00-031) DXC = FAST/A PH8 + •.. SPW1-+--0-register 

Zeros-f--(AO-A31) AXZ = FAST (PH8 + ••• ) C lear A-register for 
word count and space 
count 

Enable signa I (S/SXOMA) (S/SXOMA) = FUPLM (PH8 + •.. ) + ..• Preset adder for D minus 
A in PH1/A 

Set flip-flop SW8 S/SW8 = NRESET BRSW8 

BRSW8 = FAST/A PH8 + ... 

Reset fl ip-flop NCXS S!NCXS = N(S/CXS) Preset for S--C in 

(S/CXS) = FAST/A PH8 + ... PH1/A 

R/NCXS = ... 
P - 1-t--P POC31 = FAST/A PH8 + ••• Decrement P-register to 

obtain SPYVO address 

Reset flip-flop NT11 L S/NTll L = N(S/T11 L) Set clock T11 L for 

(S/T11 L) = FAST PH8 + ... PH1/A 

R/NT11 L = ... 
Branch to PH1/A BRPH1 = FAST/A PH8 + .•. 

S/PH1 = BRPH1 NCLEAR 

PH1/A One c lock long PH1/A = PH1 SW8 FAST 

Tll L O-A-S Adder logic for 0 minus 1 set at PH8 clock Update word count by 
subtracting number of 
words from SPW1 in D-
register. Gate onto sum 
bus 

I Mnemonic: PLM (OA, SA) I 
(Cont i nued) 

3-486 



SOS 901172 

Table 3-71. Pull Multiple ~equence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH1/A Force a zero into S 16 S16 = (K16 0 PR16) SXAOO S16 (bit 48 of SPW1) is 

T11 L 
NS161NH trap-on-word inhibit bit 

(Cont.) S16INH = FAST PH1/A + .•• TW, and not included in 
word count 

(S16-S31)-(C16-C31) CXS set at PH8 clock New word count into C-
register bits 17 through 
31 

Zeros-(CO-C 15) CXS/O = CXS N(FAST PHI/A) SO-SI5 not gated into 

CXS/l = CXS N(FAST PHI/A) CO-C 15 because CXS/O 
and CXS/l are low 

Down align O-register OXOR8 = FAST PHI/A + ••• Shift O-register 8 bits 
p:_ ..... _~ t:_ .. "'_It _t lL 
II~III U~ III~I IIUII VI • ..,-

bit down alignment 

Set flip-flop SW9 S/SW9 = SW8 STEPS15 

Reset flip-flop NT8L S/NT8L = N(S/T8L) Set clock T8L for PH1/B 

(S/T8L) = FAST PHI + ••• 

R/NT8L = ... 
Sustain PHI BRPHI/l = FAST PH1 N(NSW7 PHI/C) 

+ .•. 

PH1/B One c lock long PHI/B = PH1 SW9 

T8L Down align O-register OXOR8 = FAST PH1/B + ••. Shift O-register 8 bits 
right to complete 16-bit 
down alignment. Space 
count is now in 017-031 

Enable signa I (S/SXAPO) (S/SXAPO) = FUPLM PH1/B + .•• Preset adder for 0 plus 
A in PH1/C 

Set flip-flop SWIO S/SWIO = SW9 STEPS15 

Reset flip-flop NTll L S/NTll L = N(S/Tll L) Set clock Tll L for 

(S/T11 L) = FAST PHl + .•. PHI/C 

R/NTll L = ... 
Sustain PHl BRPH1/1 = FAST PHl N(NSWl PH1/C) 

+ ••• 

PH1/C One clock long PH1/C = PH1 SW10 

T11 L D+A-S Adder logic set for D plus A in PH1/B Update space count by 
adding number of words 
to 017-031 

Mnemonic: PLM (OA, 8A) 

(Continued) 

·3-487 



SDS 901172 

Table 3-71. Pull Multiple Sequence (Cant.) 

Phase Function Performed Signa Is Involved Comments 

PH1/C Force a zero into S 16 S16 = NS16INH ( .•• ) S 16 is now trap-on-

TllL 
space inhibit bit TS 

(Cant. ) S16INH = FAST PH1/C 
and is not included in 
space count 

(SO-S31) -+---{AO-A31) AXS = FAST PH l/C SW7 + ••• Hold new space count 
in A-register 

I (CO-C3l)-+-- (DO-D31) DXC = FAST PH l/C + ... Hold new word count 
in D-register 

Reset flip-flop SW7 R/SW7 = (R/SW7) 

I (R/SW7) = FAST PH l/C SW7 + ••• 

I Set flip-flop MRQ S/MRQ = (S/MRQ/3) + •.• I Request for core memory 

(S/MRQ/3) = FAST PH1/C cycle 

R/MRQ = · .. 
Reset flip-flop NMRQP1 S/NMRQPl = N(S/MRQ/3) Delay flip-flop for data 

R/NMRQPl = · .. release signal 

Reset flip-flop NTSL S/NTSL = N(S/TSL) + ••• Set clock TSL for PH l/D 

(S/TSL) = FAST PH1 + ... 

R/NTSL = · .. 
Set flip-flop SW 11 S/SW11 = SW10 STEPS15 

Sustain PH 1 BRPH 1/1 = FAST PHl N(NSW7 PH1/C) 
+ ••• 

PH1/D One c lock long PH1/D = PH1 SWll 

TSL Up a lign A-register AXALS = FAST PH1/D + •.. Shift A-register S bits 
left as first ha If of 16-
bit up alignment 

Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) = MRQPl + ••• 
transmission of another 
clock until data release 

R/DRQ = · .. received from core 
memory 

Set flip-flop SW12 S/SW12 = SW1l STEPS15 

PH1/E I Sustained until data release PH1/E = PH1 SW12 

DR I (MBO-MB31)_(CO-C31) CXMB = DG SP'NO (TSA)---C-
register 

Up a lign A-register AXALS = FAST PH1/E + ••. Shift A-register S bits 
left as second ha If of 16-
bit up alignment. New 
space count is now in 
A 1 through A 15 

Enable signa I (S/SXAORD) (S/SXAORD) = FAST PH1/E + ... Preset adder for A OR D 
---S in PH1/F 

Mnemonic: PLM (OA, SA) 

(Conti nued) 

3-4SS 



SDS 901172 

Table 3-71. Pull Multiple Sequence (Cont.) 

Phase Function Performed Signals. Involved Comments 

PH1/E Set flip-flop AO if TS is 1 (SW5) S/AO = FAST PH1/E SW5 AXAL8 Set trap-on-space 

DR 
inhibit bit if set in 

(Cont. ) 
original SPWl 

Set flip-flop A 16 if TW is 1 (SW6) S/A16 = FAST PH l/E SW6 AXAL8 Set trap-on-word inhibit 
-< bit if set in original T ••• 

SP'Wl 

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset for transfer of 

(S/MBXS) = FAST PH1/E + ••• A OR 0 to core memory 
in PH1/F 

R/MBXS = · .. 
Set flip-flop MRQ S/MRQ = (S/MRQ) + ••• Request for core memory 

(S/MRQ) = (S/MBXS) + ••• cycle 

R/MRQ = · .. 
Set fiip-fiop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) = (S/MBXS) + ••• 
transmission of another 
clock unti I data re lease 

R/DRQ = · .. from memory 

P+l-+--P PUC31 = FAST PH l/E + ••• Increment P-register to 
obtain SPWl address 

Set flip-~Iop SW 13 S/SW13 = SW12 STEP815 

Sustain PHl BRPH 1/1 = FAST PH1.N(NSW7 PH1/C) 
+ ••• 

PH1/F Sustained until data release PH1/F = PH1 SW13 

DR A OR D---S Adder logic set at PH1/E clock New word count in 0-
register and new space 
count in A-register---S 

(SO-S31) -----(MBO-MB31) MBXS set by PH l/E clock Store new space count 
and word count in core 
memory at 5PWi iocation 

Set flip-flop MBXS S/MBXS = (S/MBXS) + ••• Preset for memory wri te 

(S/MBXS) = FAST PH1/F + ••• 

R/MBXS = · .. 
Set flip-flop MRQ S/MRQ = (S/MRQ) + ••• Request for core memory 

(S/MRQ) = (S/MBXS) + ••• cycle 

R/MRQ = · .. 
Set flip-flop ORQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/ORQ) (S/MBXS) + ••• 
another clock unti I data = release received from 

R/ORQ = · .. core memory 

(CO-C31) -+- (00-031) OXC = FAST PH l/F + ••• Top of stack address 
(SP'WO) in C-register 
clocked into O-register 

Enable signal (S/SXOMA) (S/SXOMA) = FUPLM (PH l/F + ••• ) + ••• Preset adder for 0 minus 
A in PH1/G 

P-l-+--P POC31 = FAST PH l/F + ••• Decrement P-register to 
obtain SPWO address 

Mnemonic: PLM (OA,8A) 

(Continued 

3-489 



SD5901172 

Table 3-71. Pull Multiple Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH1/F (CC1-CC4)---(A28-A31) AXCC = FAST/M (PH1/F + ... ) + ... Number of words~ 

DR 
A-register 

(Cont .) 5et flip-flop SW14 S/SW14 = SW13 STEP815 

Sustain PH1 BRPH1/1 = FAST PHl N(NSW7 PH1/C) 
+ ..• 

PH1/G Sustained unti I data release PH1/G = SW14 PHl 

DR D - A--S Adder logic set at PH1/F clock Subtract number of 
I 

words from top of stack 
address in D-register to 
obta i n new top of stack 
address 

(SO-S31 )-(MBO-MB31) MBXS set by PH1/F clock Store new top of stack 
address in memory at 
SPWO location 

Branch to PH9 BRPH9 = FAST PH1/G 

S/PH9 = BRPH9 NCLEAR + ... 

R/PH9 = ... 

PH9 One c lock long 

T5L (60-831)--(50-531 ) SXB = PXSXB NDIS Program address-,£--P-

PXSXB = NFAF L NFAMDS PH9 
register via sum bus 

(SO- S31 )-+--(PO- P31) PXS = PXSXB 

Set condition code: 

Set CC3 if word count under- S/CC3 = (S/CC3/1) + ••• SW3 indicates word 
flow and TW = 1 (SW6) 

(S/CC3/1 ) = FAST PH9 SW3 + ••• count underflow. If TW 
were 0, instruction 

R/CC3 = 000 would have trapped and 
not reached PH9 

Set CCl if space count over- S/CCl = (S/CC 1/1) + ••• SWl indicates space 
flow and TS = 1 (SW5) 

I (5/CC1/1 ) = FAST PH9 SWl +. 0 0 

count overflow. If TS 
were 0, instruction 

I 
would have trapped and 
not reached PH9 

Set CC4 if new word count = 0 S/CC4 = (S/CC4/1) + 0 0 0 If instruction is success-

(5/CC4/1 ) = (FASTNABORT PH9) SW4 fully completed and 

+. 0 0 

stack is empty, CC4 is 
set 

R/CC = FAST PH9 + ... Reset inputs to CC fl i p-
flops to reset those not 
set in th is phase 

Mnemonic: PLM (OA, 8A) 

(Continued) 

3-490 



SDS 901172 

Table 3-71. Pull Multiple Sequence (Cont.) 

Phase Function Performed 

PH9 Enable signa I (S/SXD) if (S/SXD) 

T5L 
instruction aborted 

(Cont. ) 

PH10 Sustained until data release 

DR 
Norma I ENDE 

If instruction aborted: 

Correct CC2 (S/CC2/4) 

Correct CC4 (S/CC4/2) 

Force zeros into SO, S16, SGTZ 
and SGTZ 

S16 

SO 

MODIFY STACK POINTER (MSP; 13, 93). The modify 
stack pointer instruction changes the stack pointer 
doubleword located at the address specified in the refer­
ence address field of the MSP instruction. The amount 
of change is determ ined by the contents of the private 
memory register specified in the R field of the instruction. 
The private memory word contains the signed modifier in 
bits 16 through 31; bits 0 through 15 are insignificant. A 
negative integer used as a modifier is expressed in two1s 
complement form as a fixed-point ha If word. 

The modifier is algebraically added to the top of stack 
address, subtracted from the space count, and added to 

= 

= 

= 

= 

= 

= 

Signa Is Invo Ived Comments 

FASTABORT PH9 Preset adder for D--S 
in PH10 

(FASTABORT ENDE) Set CC2 if origina I 
c:nn("'p ("'1"\1 mt (i n 1)-

SJ631Z 
-r--- --_ ... , ... -

register) = 0 

(FASTABORT ENDE) Set CC4 if word count 

S1631Z 
(in D-register) = 0 

N(FASTABORT ENDE) To prevent setting CC3 

N(FASTABORT ENDE) S16 is TW inhibit bit. 
SO is TS inhibit bit. 

N(FASTABORT ENDE) Neither should be 
checked for 0 

Mnemonic: PLM (OAf 8A) 

the word count in the stack pointer doubleword. If as a 
result of the addition the space count or word count would 
be decreased be low zero or increased above 2 15_ 1, the 
instruction is aborted. The operations performed in this 
case are described under Stack Pointer Doubleword 
(page 3-438). If the instruction is successfully executed, 
the condition code is set as described under Stack Pointer 
Doub leword. 

MODIFY STACK POINTER PHASE SEQUENCE. Prepara­
tion phases for the MSP instruction are the same as the 
general PREP phases for word instructions, paragraph 3-59. 
Figure 3-175 shows the simplified phase sequence for the 
MSP instruction. Table 3-72 lists the detailed logic 
sequence during all execution phases of the instruction. 

3-491 



3-492 

PREP 

\(C): SPWI 
! 

i i (D): SPWI 

\ (B): PROGRAM 
ADDRESS 

I (P), SPWO 

SDS 901172 

1 
! PHI/A I 
\ \ 

: D+ A--S---C \ I • D 
\ t-.JEW WORD COU~...jT 'I I I 
,I A LEFT 8-+--A LEFT 8-+--A 
I I I I I I 
I D RIGHT 8-f-D RIGHT 8-f--D \ I 

I J-SW3 I D -A-SJ--A I-t-SWI2 I 

I 
IF WORD COUNT I NEW SPACE C?UNT I-+--\ DRO I 

PH] IE 

I ADDRESS 
I I 
I (A): RR(MODIFIER) I 

I-+--SW8 

OVERFLOW I 1 I-+--SWI 
IF SPACE COUNT I MB---C \ 

I OVERFLOW SPWO 

l---f--SW5 I I I I 

\ 1-+--SW7 

I l--f---CXS 

l-f--Tll L 

\ (S/SXAPD) 

I 

\ 

I 

I 

I 

S I 
I-+--SW2 P + l-f--P 

IF T = 1 I IF NEW SPACE SPWI 
l-f--SW6 COUNT = 0 I ADDRESS 

IF TW" II I I--.L-MRQ I (S/SXAORD) II 

l--f--SW4 I I I 
IF NEW WORD COUNT = 0 l--f--MROPI I l-f--AO 

I I I I IF TS = 1 (SW5) 
1-1--SW9 O--l--SW7 I I 

I I I l-f--A16 
l-f--T8L I l--f--T8L I IF TW= 11 (SW6) 

I \ 
BRPHI/l I 

BRPHI/l (S/SXDMA) IF NOT I l--f--MBXS 

I I ABORTED I l-t-MRO 

1-+-T1IL I I IjDRQ 

i I1-
SWIO 

I I li
SWI3 

I 
BRPHI/l I \ I BRPHI/l 1\ 

I ~ _______ TO __ PH_2_I_F_A_BO~R_T~ED ______ ~~_ 

I I 1 . 

901172A. 3167/1 

Figure 3-175. Modify Stack Pointer Instruction, Phase Sequence Diagram (Sheet 1 of 2) 



SOS 901172 

I PH9 I PH10 

I B-S-LP 

I 
NEW SPWI I I 

I 
l-f-CC3 

C-f--D+A-S-MB IF WORD COUNT 
I SPWO NEW TSA OVERFLOW AND TW = 1 I 

I RR-J-A I I+-CCI II 

I 
MODIFIER I IF SPACE COUNT 

I OVERflOW AND TS = 1 . 
I I I I 

I P + l-f--P I I.,t---CC2 
I IF NEW SPACE I 

I l-f--MBXS COUNT = 0 

l-J-MRQ I l1-CC4 I 

I 
I I IF NEW WORD I 

l-+--DRQ COUNT = 0 

I 
lJ-.SWI4 I (S/SXD) I ENDE I 

I IF ABORTED I 

I (S/SXAPD) I I I I-+--CC2 

ABORT PHASES 

PH2 I _PH_3 I PH .. 

IlTRAP I 
IF SWl

l
OR SW3 I 

I-+--FASTABORT I 
!F SW~ OR SW3 I 

I P + I-+--P 
I l'1"MRQI 

l-f--DRQ I 
IMB-C-f--D 

I SPWI 

I BRPH9 I 

I I 
I 

I I 

I I 
I I 

I I I IF ORIGINAL 
BRPHI/I I BRPH9 I SPACE ~OrTr:~ I 

I I I, ~~. II 

I I IF ORIGINAL WORD 

I I 

I I 
I I 
I I 

I I • I COUNT = 0 

I FORCE ZERb'S INTO I 
I I I I SO, Sl6 I I 

I FROM PHI/J IF ABORTED I I I t I 

~--~~~~--~~~I--~I--~I~ I 

901172A. 3167/2 

Figure 3-175. Modify Stock Pointer Instruction, Phose Sequence Diagram (Sheet 2 of 2) 

3-493 



SDS 901172 

Table 3-72. Modify Stack Pointer Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: 

(C) : SPW1 

(D) : SPW1 

(B) : Program address 

(P) : S PWO address 
(A) : RR (modifier) 

Preset conditions with PRE3: 

Enable signal (S/SXAPD) (S/SXAPD) = FAST/C (PRE3 + ••• ) + ••• Preset adder for A plus 

I 
D in PH1/A 

Set fl ip-flop SW8 S/SW8 = BRSW8 NRESET/A 

BRSW8 = FAST PRE3 + ••• 

Set fl ip-flop SW7 S/SW7 = (S/SW7) 

(S/SW7) = FAST PRE3 N04 

Reset flip-flop NCXS S/NCXS = N(S/CXS) Preset for S ---C in 

(S/CXS) = FAST PRE3 + ••• PH1/A 

R/NCXS = ... 
Reset flip-flop NTl1L S/NTl1L = N(S/Tl1L) Set clock Tl1 L for 

(S/T11 L) = FAST PRE3 + ••• PH1/A 

R/NTl1L = ... 
PH1/A One c lock long PH1/A = PH1 SW8 

Tl1L D + A---S Adder preset at last PREP clock Add modifier to word 
count ~n SPW1 

(SO-S31) --(CO-C 31) CXS set at last PREP clock Place new word count 
in C-register 

o ---(CO-C15) CXS/O = CXS N(FAST PH l/A) CXS/O and CXS/1 are 
CXS/1 = CXS N(FAST PH1/A) low 

Down align D-register DXDR8 = FAST PH1/A + ••• Shift D-register 8 bits 
right as first half of 16-
bit down alignment 

Set flip-flop SW3 if word S/SW3 = (S/SW3) Word count overflows 
count overflows (S/SW3) = (A 16 (f) K16) FAST into adder bit 16 

PH1/A + ••• 

Set flip-flop SW5 if TS is 1 S/SW5 = (S/SW5) Trap-on-space inhibit 

(S/SW5) = fAST PH1/A DO + •.. bit is in DO 

Set flip-flop SW6 if TW is 1 S/SW6 = (S/SW6) D 16 conta ins trap-on-

(S/SW6) = FAST PH l/A D16 + •.• word inhibit bit TW 

Set flip-flop SW4 if word S/SW4 = (S/SW4 ) New word count = 0 if 
count = 0 

(S/SW4) N(A16 ED K16) S1631Z S 16-S31 contain zeros = 
FAST PH 1/A + •.• 

Set flip-flop SW9 S/SW9 = SW8 STEP815 
STEP815 = NBRSW8 NBRSW10 NBRSW11 

NBRSW12 NBRSW13 NBRSW15 
Mnemonic: MSP (13, 93) 

(Continued 

3-494 



SOS 901172 

Table 3-72. Modify Stack Pointer Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH1/A Reset fl ip-flop NT8l S/NT8l = N(S/T8l) Set clock T8l for PH l/B 

nll (S/T8l) = FAST PHl 
(Conf. ) R/NT8l = ... 

Sustain PHl BRPH1/1 = FAST PHl N(NSW7 PH1/C) Hold PHl for PH1/B 
+ ••• 

PH1/B One clock long PH1/B = PHI SW9 

TSl Down align O-register DXDRS = FAST PH l/B + ••• Shift O-register right 8 
bits as second half of 
16-bit down alignment. 
Space count is now in 
D16-031 

Set flip-flop SW10 S/SW10 = SW9 STEP8l5 

Enable signal (S/SXOMA) (S/SXOMA) = FAST/C PHl/B + ••• Preset adder for 0 minus 
A in PH1/C 

Reset flip-flop NTll l S/NT1ll = N(S/Tlll) Set clock T11 l for 

(S/Tlll) = FAST PH l/B + ••• PHl/C 

R/NT11l = · .. 
Sustain PH 1 BRPH1/1 = FAST PHl N(NSW7 PH1/C) Hold PH 1 for PH l/C 

+ ••• 

PH1/C One clock long PHl/C = PHl SW10 

nll o - A---S Adder preset at PH l/B clock Subtract modifier from 
space count 

(50-531) ---... (AO-A31) AXS = FAST PH l/C SW7 + ••• Place new space count 
in A-register 

(CO-C31 ) -I-- (00-031 ) DXC = FAST PH l/C + ••• Transfer new word count 
to O-register 

Set SWl if space count I S/SWl = (S/SW1) Space count overflows 
overflows (S/SWl) = (A16 ® K16) FAST PH1/C 

into adder bit 16 

+ ••• 

Set SW2 if space count = 0 S/SW2 = (S/SW2) Space count = 0 if bits 

(S/SW2) = N(A 16 ® K 16) S 1631Z 
16 through 31 of sum 

FAST PH l/C + ••• 
bus are 0 

Set flip-flop MRQ S/MRQ = (S/MRQ/3) + ••• Request for core memory 

(S/MRQ/3) = FAST PH1/C 
cycle 

R/MRQ = · .. 
Reset fl ip-flop NMRQP 1 S/NMRQPl = N(S/MRQ/3) Delay data request one 

R/NMRQPl = · .. phase 

Mnemonic: MSP (13, 93) 

(Continued) 

'3-495 



SDS 901172 

Table 3-72. Modify Stack Pointer Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

PH1/C Reset flip-flop SW7 R/SW7 = (R/SW7) 

T11 L (R/SW7) = FAST PH l/C SW7 + ••• 

(Cont .) Reset fl ip-flop NT8L S/NT8L = N{S/T8L) Set clock T8L for PH l/D 

(S/T8L) = FAST PHl 

R/NT8L = ... 
Sustain PH 1 unless aborted BRPH1/l = FAST PHl [N{NSW7 PH1/C) Go to PH2 {which fol-
or trapped + (SW3 PH l/C) lows PH lOin this table) 

+ (A16 ~ K16 PH1/C)] if aborted or trapped be-
cause of word count or 
space count overflow 

PH1/D One c lock long PH1/D = PHl SWll 

T8L Up align A-register AXAL8 = FAST PH1/D + .•• Shift A-register 8 bits 
left as first ha If of 16-
bit up alignment 

Set flip-flop DRQ S/DRQ = MRQPl + .•• Data request, inhibits 
transmission of another 
clock unti I data release 
received from core 
memory 

Set flip-flop SW12 S/SW12 = SWll STEP815 

Sustain PHl BRPH1/1 = FAST PH1 N(NSW7 PH1/C) Hold PHl for PH1/E 
+ ... 

PH1/E Sustained until data release PH1/E = PHl SW12 

DR (MBO-MB31)--(CO-C31) CXMB = DG Read SPWO from core 
memory 

Up a Ii gn A- reg ister AXAL8 = FAST PH1/E Shift A-register 8 bits 
, left as second ha If of 

16-bit up alignment. 
New space count is now 
in AO through A 15 

P + 1-f---P PUC31 = FAST PH1/E Increment P-register for 
SPWl address 

Enable signa I (S/SXAORD) (S/SXAORD) = FAST PH1/E + ••. Preset for A 0 R D---
S in PH1/G 

Set flip-flop AO if TS is 1 (SW5) SlA~ = FAST PH1/E SW5 AXA L8 Set trap-an-space 
+ ..• inhibit bit if set in 

original SPWl 

Set flip-flop A 16 if TW is 1 (SW6) S/A16 = FAST PH1/E SW6 AXA LB Set trap-on-word inhibit 
+ ... bit if set in original 

S PVv' 1 

Mnemonic: MSP (13, 93' 

(Continued) 

3-496 



SOS 901172 

Table 3-72. Modify Stack Pointer Sequence (Cont.) 

Phase Function Performed 

PH lIE Set flip-flop MBXS 

DR 
(Cont. ) 

Set flip-flop MRQ 

Set flip-flop DRQ 

Set flip-flop SW13 

Sustain PH1 

PH1/F Sustained until data release 

DR A OR D---S 

(SO-S31) - (MBO-MB31) 

(CO-C31) -+-- (DO-D31 ) 

(RR 16-RR31) --f---.. (A 16-A31) 

DD11.. _-'-~ A 11:. 

I 
""IU~""I.J 

P - l-+-P 

I Enable signal (S/SXAPD) 

Set flip-flop MBXS 

Set flip-flop MRQ 

Set fl ip-flop DRQ 

Signals Involved 

S/MBXS = (S/MBXS) 

(S/MBXS) = FAST PH lIE + ••• 
R/MBXS = 
S/MRQ 

(S/MRQ) 

R/MRQ 

S/ORQ 

(S/DRQ) 

R/DRQ 

S/SW13 

BRPH 1/1 

PH1/F 

= (S/MRQ) + •.. 

= (S/MBXS) + •.. 

= (S/DRQ) NC LEAR 

= (S/MBXS) + .' . 

= SW12 STEPS1S 

= FAST PH1 N(NSW7 PH1/C) 
+ ••• 

= PHl SW13 

(S/SXAORD) set at previous clock 

MBXS set at previous clock . 

DXC == FAST PH1/F + ••• 

AXRR/2 == AXRR/12 + ••• 

AXRR/12 == FUMSP PH l/F NAXRR/6 

S/A 15 == 
nn, I r-I 11" t' ft ftl I' Ir- • 
"" 10 rU'Vl~r rn 1/ r T ••• 

PDC31 == FAST PH llF + ••• 

(S/SXAPD) == FAST/C (PH1/F + ••• ) + ••• 

S/MBXS == (S/MBXS) 

{S/MBXS} == FAST PH l/F + ••• 

R/MBXS 

S/MRQ 

(S/MRQ) 

R/MRQ 

S/DRQ 

{S/DRQ} 

= (S/MRQ) + ••• 

= (S/MBXS) + •.• 

== (S/DRQ) NCLEAR 

= (S/MBXS) + •.. 

R/DRQ 

{Continued 

Comments 

Preset for transfer of 
A OR 0 to core memory 
in PH1/F 

Request for core memory 
cycle 

Data request, inhibits 
transm ission of another 
clock until data release 
received from core 
memory 

Hnld PH 1 fnr PH 1 IF I . -- --- - - - -- - - -"' -

New word count in D­
register and new space 
count in A-register ___ 
S 

Store new space count 
and word count in core 
memory at SPWl location 

Transfer top of stack 
address (SPWO) to 
D-register 

I Obtain modifier from 

I 
private memory, place 
in A-register 

I
' Decrement P-register to 

get SPWO address 

I Preset adder for A plus 
I D in PH1/G 

I 
Preset for core memory 
write operation 

Request for core memory 
cycle 

Data request, inhibits 
transmission of another 
clock until data release 
re ce i ved from co re 
memory 

Mnemonic: MSP (13, 93) 

3-497 



SDS 901172 

Table 3-72. Modify Stack Pointer Sequence (Cont.) 

r------,.--------------------.~~--- .-.~ -~~-----.~--------------.........----------.., 

Phase Function Performed 

PH1/F Set flip-flop SW14 

DR 
(Cont .) 

Sustain PHl 

PH1/G Sustained until data release 

DR A + D---S 

(SO-S31 )---(MBO-MB31) 

Branch to PH9 

PH9 One c lock long 

T5L 

3-498 

(80- B31) ---(SO- S31 ) 

(SO-S31 )-f-(PO- P31) 

Set condition code: 

Set CC3 if word count overflow 
and NY = 1 (SW6) 

Set CCl if space count overflow 
and TS = 1 (SW5) 

Set CC2 if new space count = 0 

Set CC4 if new word count = 0 

Place zeros in condition code 
flip-flops not set 

Enable signa! (S/SXD) if 
instruction aborted 

S/SW14 

BRPH1/l 

PH1/G 

Signa Is Involved 

= SW13 STEP815 

FAST PHl N(NSW7 PH1/C) 
+ ... 

= PHl SW14 

Adder preset by PH1/F clock 

MBXS set by PH1/F clock 

BRPH9 = FAST PH1/G + ... 

SXB 

PX5XB 

PX5 

= PXSXB NDIS + ... 

= NFAF L NFAMDS PH9 

= PXSXB + ... 

5/CC3 = 

(5/CC3/1) = 

5/CCl = 

(5/CC 1/1) = 

5/CC2 = 

(5/CC2/1) = 

5/CC4 = 

(5/CC4/1) = 

(5/CC3/1) + ••• 

FAST PH9 SW3 + ••• 

(S/CC 1/1) + .•. 

FAST PH9 SW1 + ••• 

(5/CC2/1) + •.. 

(FASTNABORT PH9) 
SW2 + ••• 

(S/CC4/1) + ••• 

FASTNABORT PH9 SW4 

R/CC = FAST PH9 + ... 

(S/SXD) = FASTABORT PH9 

(Cont i nued) 

Comments 

Hold PHl for PH1/G 

Add modifier in A­
register to top of stack 
address in D-register 
a nd gate onto sum bus 

Store new top of stack 
address in core memory 
at SPWO address 

Program address-P­
register via sum bus 

SW3 indicates word 
count overflow. If TW 
were 0, instruction 
would have trapped and 
not reached PH9 

SWl indicates space 
count overflow. If T5 
were 0, instruction 
would have trapped and 
not reached PH9 

If instruction is success­
fu lIy completed and 
stack is full, CC2 is set 

If instruction is success­
fully completed and 
word count = 0, CC4 
is set 

Places input on reset 
sides of CCl through 
CC4 so that they wi \I be 
reset if not set by th is 
instruction 

Preset adder for D--S 
in PH10 

Mnemonic: M5P (13, 93) 



SOS 901172 

Table 3-72. Modify Stack Pointer Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

PH10 Sustained unti I data release 

DR Normal ENOE 

If instruction aborted: 

Correct CC2 S/CC2 = (S/CC2/4) + ••. Set CC2 if origina I 

(S/CC2/4) = SOOO7Z (FASTABORT ENOE) space count (i n 0-
register) = 0 

Correct CC4 S/CC4 = (S/CC4/2) + ••• Set CC4 if origina I word 
(S/CC4/2) = (FASTABORT ENOE) S 1631Z count (in O-register) =0 

Force zeros into SO, S 16, SGTZ = N(FASTABORT ENOE) To prevent setting CC3 
and SGTZ S16 = N(FASTABORT ENDE) S 16 is TW inhibit bit. I 

I 

SO N(FASTABORT ENOE) 
SO is TS inhibit bit. I = 
Neither should be 
tested for zero 

PH2 If instruction is aborted 

T5L (from PH1/C) 

One c lock long 

Trap conditions: 

Set flip-flop TRAP if word count S/TRAP = (S/TRAP) SW3 is word count over-
overflows and TW = 0 or if space (S/TRAP) = FAST PH2 SW3 NSW6 flow, SWl is space. 
count overflows and TS = 0 count overflow, NSW6 

+ FAST PH2 SW1 NSW5 ==>TW = 0, NSW5==> 
TS = 0 

Abort if SWl or SW3 is set S/FA ST ABORT = FAST PH2 SW1 Instruction uncondition-
+ FAST PH2 SW3 a lIy aborted on space 

I S/FASTFl = SW3 + SWl 
count or word count 
overflow. Note that 
FASTABORT is built with 
two flip-flops, FASTFl 
and FASTF2 

PH3 Sustained until data release 

DR 
(memory access not applicable 
for this instruction) 
Set fl ip-flop MRQ S/MRQ = (S/MRQ/2) + ••• Request for core memory 

(S/MRQ/2) = FASTABORT PH3 + ••• cycle 

R/MRQ = ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) (S/MRQ/2) + ••• transmission of another = clock until data release 
R/ORQ = ... from core memory 

Mnemonic: MSP(13, 93} 

(Continued) 

3-499 



SOS 901172 

Table 3-72. Modify Stack Pointer Sequence (Cont.) 

Phase Function Performed 

PH3 P + 1---f--P PUC31 

DR 
(Cont .) 

PH4 One,; lock long 

T5L (MBO-MB31 )---(CO-C31) CXMB 

I 

(CO-C31 )-+--(00- 031) OXC 

Branch to PH9 BRPH9 

LOAD MULTIPLE (LMi 2A, AA). The LM instruction 
loads a sequentia I set of words from core memory into a 
sequentia I set of private memory registers. The set of 
core memory words begins with the contents of the loca­
tion specified if"! the reference address field of the LM 
instruction and follows in ascending order. The set of 
private memory registers begins with the register specified 
in the R field of the LM instruction and continues in 
ascending order. The number of words to be loaded is 
indicated by th(~ condition code. If a II 16 private memory 
registers are to be loaded, the initial value of the con­
dition code is 0000. The private memory registers are 
treated as a circular set, with register 0 following 
register 15. 

LOAD MULTIPLE PHASE SEQUENCE. Preparation phases 
for the LM instruction are the same as the general PREP 
phases for word instructions, paragraph 3 -59. Figure 
3-176 shows the simplified phase sequence for the LM 

3-500 

= 

= 

= 

= 

Signa Is Involved Comments 

FAST PH3 + ... Increment P-register to 
get SP'YV1 address 

OG Load SP'YV1 from core 
memory into C-register 

FASTABORT PH4 Transfer SPW1 to 
O-register 

FAST PH4 (SW1 + SW3) Branch to PH9 to set 
condition code 

Mnemonic: MSP (13, 93) 

instruction. Table 3-73 lists the detailed logic sequence 
during all LM execution phases. After the preparation 
phases, the instruction branches to PH6 to read the first 
word from core memory. In the second pass through PH6, 
the first word is loaded into private memory and the second 
word is read from core memory. The Instruction continues 
looping through PH6 unti I a zero value in the macro­
counter indicates that all of the words have been loaded. 
The instruction then enters PH9 to obtain the address of the 
next instruction and then proceeds to the ENOE operation 
in PH10. 

If the condition code at the beginning of the instruction 
conta ins 0000, indicating that a II 16 private memory 
registers are to be loaded, bit 3 of the macro-counter is 
set at the time the condition code is transferred to the 
A-register, thereby establishing 10000 as the number of 
words. 



SOS 901172 

PH6 I 
INOT FIRST PASS I 
I I 

I PH6 
FIRST PASS 

I 

PREP 

'

(B): PROGRAM I MB---C-I--D -- S-+-RR 
ADDRESS FIRST WORD I 

I I I (P): FIRST I P+ l-f--P+ 1 /--P 
I I EFFECTIVE I 

I I (')r ATT("\...... I 
Me-l-f--MC-l / • Me I ~......,. '-',-~. &. '" I ~ 

I (A): CC(NUMBER I 
OF WORDS) I 

I (MC): CC(NUMBER " 

I 
OF WORDS) (S/SXD) 

I 
IOEN6 IF 
MC~4 I PRE3: 

I 
l-f--MRQ 

l-l---DRQ 

I 
I 
I 

BRPH6 

" 

I 
I 
I 
I 
I 
I 

BRPH6 

i i 
l-+--RW I 

I 
l--r--MRQ 

I 
I 
I 

l~DRQ 
I I 

I 
I 
I 
I 

MB---C-f--D 

SUBSEQUE NT I 
WORDS I 

R + l-+-R 

IOEN6 IF I 
MC~4 , 

I (S/SXD) IF 
MC,O 

I 
I 

1-1--RW 
IF I-K. ,0 

I 
BRPH6 IF 
MC,O I 

BRPH9 IF I 
MCr I 

I PH9 I PHIO 

I I 
I I B-S-+--P 

PROGRAM ADDRESS 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 

ENOE 

Figure 3-176. Load Multiple Instruction, Phase Sequence Diagram 

901172A.3168 

3-501 



SOS 901172 

Table 3-73. Lood Multiple Sequence 

Phase Function Performed Signa Is Involved Comments 

PREP At end of PREP: 

(B) : Program address 

(P) : First effective location 

(A) : CC (number of words) 

(Me) : CC (number of words) 

Preset conditions with PRE3: 

Set fl ip-flop MRQ S/MRQ = (S/MRQ/2) + •.• Request for core memory 
(S/MRQ/2) = FAST/M PRE3 NOUO OLA cycle 

+ •.. 
R/MRQ = ... 

Set fl ip-flop ORQ S/ORQ = (S/ORQ) NCLEAR Data request, inhibits 
(S/ORQ) = (S/MRQ/2) + .•. transmission of another 

clock until data release 
R/ORQ = ... received from memory 

Branch to PH6 BRPH6 = FAST/M PRE3 NOUO 
NANLZ + ... 

PH6 Susta i ned u nt i I data re lease 

DR (MBO-MB31 )---(CO-C31) CXMB = DG Read fi rst word from 

1 st core memory 

Pass (CO-C31 )-+--(00-031) OXC = FAST/L PH6 + ... Transfer first word to 0-
register for subsequent 
tra nsfer to pri vate 
memory 

P + l--f--P PUC31 = FAST/L PH6 NOUO + ... Increment P-register to 
obta in core memory 
location of second word 

MC - l---MC MC07 = FAST/M NIOE N PH6 + ... Decrement macro-
counter for new number 
of words to be loaded 

Enable signa I (S/SXO) (S/SXO) = FAST/L PH6 NMCZ + ••. Preset adder logic for 
o --S in PH6 second 
pass 

Set flip-flop RW S/RW = (S/RW) Prepare to wri te into 
(S/RW) = FAST/L PH6 NMCZ + ..• 

I 
private memory 

R/RW = ... 
Set flip-flop MRQ S/MRQ = (S/MRQ/2) + .•• Request for core memory 

(S/MRQ/2) = FAST/L PH6 NMCZ + •.. cycle 

R/MRQ = ... 
Set fl ip-flop ORQ S/ORQ = (S/ORQ) NCLEAR Data request, inhibits 

(S/ORQ) (S/MRQ/2) + ... transmission of another = clock until data release 
R/DRQ = ... received from memory 

Mnemonic: LM (2A, AA) 
(Cont i nued) 

3-502 



SOS 901172 

Table 3-73. Load Multiple Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

PH6 Enable signa I IOEN6 if MC ~ 4 IOEN6 = IOEN6/1 PH6 + ..• Enab Ie I/O servi ce ca II 

OR IOEN6/1 = NMC0005Z + ••• 
if number of words to be 
loaded L4 

1 st 
Sustain PH6 BRPH6 = FAST/M PH6 NMCZ + •.. Repeat PH6 to write into 

Pass 
(Cont.) 

pri vote memory a nd read 
another word 

PH6 Susta i ned unt i I data re lease 

OR (00- 031) -(SO-S31) Adder logic set at first PH6 clock Load word into private 

Not 
memory 

(SO- S31) -(RWO-RW31) RWXS = RW 
1 st 
Pass (MBO-MB31 )--(CO-C31) CXMB = OG Read another word from 

core memory 

(CO-C31 )-+-(00-031) OXC = FAST/L PH6 + ••• Transfer word to 0-
register for subsequent 

-
transfer to private memory 

P + l-+--P PUC31 = FAST/L PH6 NOUO + ... Increment P-register to 
obtain next sequentia I 
core memory location 

R + 1--f--R RUC31 = FAST/L PH6 NOUO + .•. Increment R-register for 
next sequentia I private 
memory address 

MC-1--MC MC07 = FAST/M NIOEN PH6 + ••. Oecrement macro-
counter for new number 
of words if no I/O 
interrupt 

Enable signa I IOEN6 if MC 2: 4 IOEN6 = IOEN6/1 PH6 + .•• Enable I/O service call 

IOEN6/1 = NMC0005Z + ••• 
if number of words yet 
to be loaded ~ 4-

Enable signa I (S/SXO) if MC I- 0 (S/SXO) = FAST/L PH6 NMCZ + ••. Preset adder for O-S 
if another word is to be 
loaded into private 
memory 

Set flip-flop RW if MC I- 0 S/RW = (S/RW) Prepare to write into 

(S/RW) = FAST/L PH6 NMCZ 
private memory if 
another word is to be 

R/RW = ... loaded 

Sustain PH6 if MC I- 0 BRPH6 = FAST/M PH6 NMCZ + ..• Repeat PH6 if another 
word is to be loaded 

Branch to PH9 if MC = 0 BRPH9 = FAST/M PH6 NOUO MCZ Branch to PH9 if no more 
words are to be loaded 

Mnemonic: LM{2A,AA 

(Continued) 

3-503 



SDS 901172 

Table 3-73. Load Multiple Sequence (Cont.) 

Phase Function Performed 

PH9 One c lock long 

T5L (BO-B31 )--(SO-S31) SXB 

(SO-S31 )-+--(PO-P31 ) PXS 

I PXSXB 

PH10 Normal ENDE 

STORE MULTIPLE (STMi 2B, AB). The STM instruction 
stores the contents of a sequentia I set of private memory 
registers into a sequentia I set of core memory locations. 
The set of private memory registers begins with the register 
spec ified in the R field of the STM instruction and follows 
in ascending order. The set of core memory iocations 
begins with the location specified in the reference address 
field of the instruction and continues in ascending order. 
The number of words to be stored is indicated by the 
condition code immediately before the STM instruction. 
If all 16 private memory registers are involved in the 
operation, the initial value of the condition code is 0000. 
The private memory registers are treated as a circular set, 
with register 0 following register 15. 

STORE MULTIPLE PHASE SEQUENCE. Preparation phases 
for the STM instruction are the same as the general PREP 
phases for word instructions, paragraph 3-59. Figure 
3-177 shows the simplified phase sequence for the STM 

3-504 

= 

= 

= 

Signals Involved Comments 

PXSXB NDIS Address of next instruc-
tion in sequence -

PXSXB P-register via sum bus 

NFAFL NFAMDS PH9 

I 

Mnemonic: LM(2A, AA, 

instruction. Table 3-74 lists the detailed logic sequence 
during all STM execution phases. After the preparation 
phases, the instruction branches to PH6 to get the first 
word from private memory. In the second pass through 
PH6, the first word is stored in core memory and the second 
word is obtained from private memory. The instruction 
continues looping through PH6 unti I a zero value in the 
macro-counter indicates that a II the words have been 
stored. The instruction then enters PH9 to obta in the 
address of the next instruction and then proceeds to the 
ENDE operation in PH10. 

If the condition code at the beginning of the instruction 
contains 0000, indicating that a II 16 private memory 
registers are to be loaded, bit 3 of the macro-counter 
is set at the time the condition code is transferred to the 
A-register, thereby establishing 10000 as the number of 
words. 



Phase 

PREP 

PREP 

I 
(B): PROGRAM 

ADDRESS 

I 
I (P): FIRST EFFECTIVE 
I LOCATION-l 

I 
(A): CC(NUMBER 

OF WORDS} 

I(MC}: CC (NUMBER OF,' 
WORDS) 

I un. Ann~r:c:c: (')r: I ''', ... --.. _-- ..... I 
FIRST WORD IN 
PRIVATE MEMORY I 

I 

I PRE3: 

I-f--AXRR 

BRPH6 

SDS 901172 

FIR:r~ASS I NOT ~=T PASS : 

RRlA-s-MBI 
FIRST IWORD I 

P + l-+--P + 1 / P 
I I 

MC-l~MC-l / • MC 
I I 

R+ l--r--R+ 1 I • R 

(S/SXA) 

IOEN6 IF 
MC ~4 

BRPH6 

IJ-MBXS I 
I--f-MRQ I 

I I 
I-f--DRQ I 
l--f-AXRR I 

I I 
I RR~A 
I SUBSEQUENT1WORDS 

I BRPH9 IF I 

'

I I<K.rO I 

BRPH6 IF , 
I MC = 0 . 

I : 

PH9 I PHIO 

I 
I 

B---S-I--P 
I 
I 
I ENDE 

I 
I 

I 
I 

I 

901172A.3169 

Figure 3-1n. Store Multiple Instruction, Phase Sequence Diagram 

Table 3-74. Store Multiple Sequence 

Function Performed Signa Is Involved Comments 

At end of PREP: 

(B) : Program address 

(P) : First effective location 
minus 1 

(A) : CC (number of words) 

(MC) : CC (number of words) 

(R) : Location of first word 

Preset conditions with PRE3: 

Reset fl ip-flop NAXRR S/NAXRR = N(S/AXRR} Preset for transfer of 

(S/AXRR) = FAST/M PRE3 NOUO private memory contents 

NOLA + ••. -I-- A-register in PH6 

R/NAXRR = ... 
Mnemonic: STM (2B, AB) 

(Continued) 

3-505 



SDS 901172 

Table 3-74. Store Multiple Sequence (Cont.) 

Phase Function Performed Signa Is Involved Comments 

PREP Branch to PH6 BRPH6 = FAST/M PRE3 NOUO 
(Cont .) NANLZ + ... 

PH6 One c lock long 

T5L 
(RRO- RR31 )-f--(AO-A31 ) AXRR set at previous clock Get first word from 

1 st private memory 
Pass 

P + 1-f--P PUC31 = FAST/L PH6 NOUO + ... Increment P-register to 
obta i n core memory 

I location of first word 

R + l-+--R RUC31 = FAST/S PH6 + ... Get address of second I 
word in private memory 

MC - 1---MC MCD7 = FAST/M NIOEN PH6 + •.. Decrement macro-
counter for new number 
of words to be loaded 

Enable signa I (S/SXA) (S/SXA) = FAST/S PH6 NMCZ + ... Preset adder logic for 
A---S in PH6 second 

I 
pass 

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset for transfer of A-

(S/MBXS) = F AS T /S PH6 NMCZ 
register contents to core 
memory 

R/MBXS = ... 
Set flip-flop MRQ S/MRQ = (S/MRQ/2) + •.. Request for core memory 

(S/MRQ/2) = (S/MBXS) cycle 

R/MRQ = ... 
Set fl ip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Data request, inhibits 

(S/DRQ) = (S/MBXS) transm ission of another 
clock unti I data re lease 

R/DRQ = ... received from memory 

Reset fl ip-flop NAXRR S/NAXRR = N(S/AXRR) Preset for transfer of 

(S/AXRR) = FAST/S PH6 + ..• 
private memory contents 
--f-- A-register 

R/NAXRR = ... 
Enable signal IOEN6 if MC ~ 4 IOEN6 = IOEN6/1 PH6 + ..• Enable I/O service call 

IOEN6/1 NMC0005Z + ... 
if number of words to be = 
stored> 4 -

Sustain PH6 BRPH6 = FAST/M PH6 NMCZ + •.• Repeat PH6 to transfer 
another word to core 
memory 

(Continued) 
Mnemonic: STM (2B, AB) I 

3-506 



50S 901172 

Table 3-74. Store Multiple Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH6 Sustained until data release 

DR 
(AO-A31)~(SO-S31) Adder logic set at last PH6 clock Write first word into 

Not memory 
1st (SO-S31 )-(MBO-MB31) 
Pass 

(RRO-RR31 )-f--(AO-A31) AXRR set at previous clock Read subsequent words 
from private memory 

P + 1-f--P PUC31 = FAST/L PH6 NOUO + .•• Increment P-register to 
obta i n next seq uent ia I 
core memory location 

R + 1--f--R RUC31 = FAST/L PH6 NOUO + ;;; In("rpmpnt R_rp,.,ictpr fnr _ .. -- _ ... _- -- _. -->:1--- -- ---
next sequentia I private. 
memory address 

MC - 1---MC MCD7 = FAST/M NIOEN PH6 + ••• Decrement macro-
counter for new number 
of words if no I/O 
interrupt 

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset for transfer of 

(S/AXRR) = FAST/S PH6 + .•. subsequent words from 

R!NAXRR = 
private memory ... 

Enable signa I IOEN6 if MC2 4 IOEN6 = IOEN6/1 PH6 + .•• Enable I/O service call 

IOEN6/1 = NMC0005Z + ..• 
if number of words yet to 
be stored2 4-

Enable signa I (S/SXA) if MC f 0 (S/SXA) = FAST/S PH6 NMCZ + •.• Preset adder logic for 

I 
A--S 

Sustain PH6 if MC f 0 BRPH6 FAST/M PH6 NMCZ + ••• Repeat PH6 if another = 
word is to be stored 

I 
Branch to PH9 if MC = 0 BRPH9 = FAST/M PH6 NOUO MCZ Branch to PH9 if no more 

words are to be stored 

PH9 One c lock long 

T5L (BO- B31 )---(SO- S31 ) SXB = PXSXB NDIS Address of next i nstruc-

(SO-S31 )-f--(PO-P31) 
tion in sequence-

PXS = PXSXB P-register via sum bus 
= 

PXSXB = NFAFL NFAMDS PH9 

PHlO Sustained unti I data release 

DR Normal ENDE 

Mnemonic: STM (2B, AB) 

3-507 



Paragraph 3-76 SDS 901172 

3-76 Fami Iy of Branch Instructions (FABRANCH) 

BRANCH ON CONDITIONS SET (BCSi 69, E9). The BCS 
instruction forms the logical product (AND) of the R field 
of the instruction word and the current condition code. If 
the logica I product is nonzero, the branch condition is sat­
isfied, and the instruction pointed to by the effective ad­
dress of the BCS instruction is executed. If the logical 
product is zero, the branch condition is not satisfied, and 
the next instruction in norma I program sequence is executed. 
If the R field of the BCS instruction is 0000, the logical 

PREP PHI 

(B): PROGRA
S 

M IIIF (R) AN~ (CC) t- 01 

ADDRE S BRPH10 I 
(C): EFFECTIVE ~F (R)-ANO..(cC)-=OI 

ADDRESS I BRPH9 
1- - - - - - - - --I 

product is unconditionally zero. Therefore, the BCS can 
be used as a no-operation instruction by setting the R field 
to zero. 

Branch on Conditions Set Phase Seguence. Preparation 
phases for the BCS instruction are the same as the general 
PREP phases for the word instructions, described in para-
graph 3-59. Figure 3-178 shows the simplified phase 
sequence for the BCS instruction during execution, and 
table 3-75 lists the detailed logic sequence during all 
BCS execution phases. 

PH9 PH10 

(1 -f--DRQ) 

t 
1 

B---S -+-- P 
I 

1 -+- BRP 

I 
1 l-+-DRQ 

I 
1 

(S/MRQ/1) ENDE 
1 

I 
1 --I-- MRQ 

I (S/MRQ/2) I 
I 

1--1--- DRQ 

I 

1-f---MRQ 

I 
1--1-- DRQ 

I I 

901172A.3171 

Figure 3-178. BCS Instruction, Phase Sequence Diagram 

3-508 



Phase Function Performed 

PREP At end of PREP: 

(B) : Program address 

(P) : Effective address 

Set flip-flop MRQ 

Set flip-flop DRQ 

PHl One clock long 

DR Compare contents of R field 
of BCS instruction with 
condition code and branch 

I 

I 

PH9 Sustai ned unti I DR 

DR 

(MBO-MB31)-- (CO-C31) 

SDS 901172 

Table 3-75. Branch on Conditions Set Sequence 

I 

S/MRQ 

S/MRQ/l 

FABRANCH 

R/MRQ 

S/DRQ 

(S/DRQ) 

Signals Involved 

= (S/MRQ/l) + ... 

= FABRANCH NANLZ 
PRE/12 + ... 

= 01 02 N03 + ... 

= ... 

= (S/DRQ) NCLEAR 

= (S/DRQ/2) + .•• 

(S/DRQ/2) = FABRANCH PRE3 

BRPH9 = FUBCS PHl N(R CC) + ... 

FUBCS = OU6 OL9 

S/PH9 = BRPH9 NCLEAR + ..• 

R/PH9 = ... 
BRPH10 = FUBCS PHl (R CC) + ... 

S/PH10 = BRPH10 NCLEAR + ... 

R/PH10 = ... 
(R/CC) = CCl R28 + CC2 R29 

+ CC3 R30 + CC4 R31 

CXMB = DG = IDGI 

SXB = PXSXB NDIS + .•. 

(Continued) 

Comments 

Address of next i nstruc­
tion in sequence 

Address of next instruc­
tion if branch conditions 
satisfied 

Memory request set for a II 
branch instructions. This 
memory request is for the 
instructio')J11 the effec-
ti ve address incase the 
branch condition is satis-
,.. I .,..1 I I nea. If me crancn con-
dition is satisfied, PH9 is 
skipped and memory re­
quest must have been 
made previously 

Inhibits transmission of 
another clock until data 
release received from 
memory 

Branch to PH9 if logical 
product of (R) and (CC) is 
zero. Branch condi tion 
not satisfied 

Branch to PH10 if logical 
product of (R) and (CC) is 
not zero. Branch con­
dition satisfied 

Logical product of R field 
and condition code 

Requirement for DR is 
result of unconditional 
MRQ in PREP and DRQ 
in PHl 

Instruction in effective 
address. Meaningless if 
this phase is entered since 
branch condi tion has not 
been satisfied 

Mnemonic: BCS (69, E9) 

3-509 



SDS 901172 

Table 3-75. Branch an Conditions Set Sequence (Cont.) 

Phase Function Performed 

PH9 (80- B31) --(SO- S31) PXSXB = 

DR 
(S15-S31) -+--(P15- P31) PXS = (Cont .) 

Set flip-flop BRP S/BRP = 

R/BRP = 

Set flip-flop MRQ S/MRQ = 
(S/MRQ/2) = 

R/MRQ = 

Set flip-flop ORQ S/DRQ = 

(S/DRQ) = 

R/DRQ = 

PH10 ENDE functions See table 3- 18 

DR 

BRANCH ON CONDITIONS RESET (BCR; 68, E8). The 
BCR instruction forms the logical produce (AND) of the 
R field of the instruction word and the current condition 
code. If the logical product is zero, the branch condition 
is satisfied, and the instruction pointed to by the effective 
address of the BCR instruction is executed. If the logical 
product is nonzero, the branch condition is not satisfied, 
and the next instruction in normal program sequence is 
executed. If the R field of the BCR instruction is 0000, 
the logical product is unconditionally zero. Therefore, 

3-510 

Signals Involved 

NFAFl NFAMDS PH9 + ... 

PXSXB + ... 

PXSXB + ... 

PRE1 NFAIM + ... 

(S/MRQ/2) + ... 
PSXSB + ... 

... 
(S/DRQ) NClEAR 

(S/MRQ/2) + ... 

... 

Comments 

Store program address in 
P-register 

Signifies that 'program 
address is in the P-register 

Memory request for next 
instruction in sequence 

Inhibits transmission of 
another clock until data 
release received from 
memory 

If entered from PH1, next 
instruction is from effec­
tive address in P-register 
at end of PREP. If 
entered from PH9, next 
instruction is from 
program address 

Mnemonic: BCS (69, E9) 

the BCR instruction can be used as an unconditional branch 
instruction by setting the R field to zero. 

Branch on Conditions Reset Phase Seguence. Preparation 
phases for the BCR instruction are the same as the general 
PREP phases for word instructions, described in paragraph 
3-59. Figure 3-179 shows the simplified phase sequence 
for the BCR instruction during execution, and table 3-76 
I ists the detai led logic sequence during all BCR execution 
phases. 



SDS 901172 

PREP PHI 

I 
I I I 
,IF (R) AN.D. (CC) = 0, 

BRPH10 

L---------I 
(B): ~~~;::SM !IF (R) ANt> (CC) #: 0 

I BRPH9 I 
(C): EFFECTIVE 1- - - ~ - - - -­

ADDRESS 
I , 

l-+-DRQ 
(S/MRctll) I 

I 
l.....f--MRQ 

I· 
I 
I 

PH9 PH10 

(I~DRQ) 

B-S=T- P 

1-!-- BRP 

t 

I 
ENDE 

(S/MRctl2) 

I 

l~MRQ 

I 
I 

I I 

l-+--DRQ 

°1------_1---------' ______ ~ _ 901172A.3172 

Figure 3-179. BCR Instruction, Phase Sequence Diagram 

Table 3-76. Branch on Conditions Reset Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: 

(B) : Program address Address of next instruc-
tion in sequence 

(P) : Effective address Address of next i nstruc-
tion if branch conditions 
satisfied 

Set flip-flop MRQ S/MRQ = (S/MRQ/l) + ••. Memory request set for 
all branch instructions. 

(S/MRQ/l) = FABRANCH NANLZ This memory request is 
PRE/12 + ••• for the instruction in the 

effective address in case 
FABRANCH = 01 02 N03 + ••• the branch condition is 

satisfied and PH10 is 
R/MRQ = ... entered from PH 1 

Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR 

(S/DRQ) = (S/DRQ2) + ... 

(S/DRQ/2) = FABRANCH PRE3 

Mnemonic: BCR (68, "E8) 

(Conti nued) 

·3-511 



SOS 901172 

Table 3-76. Branch on Conditions Reset Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH1 One c lock long 

DR Compare contents of R field of BRPH9 = FUBCR PH1 (R CC) + •.• Branch to PH9 if logical 
BCR instruction with condition 

FUBCR OU6 OLB product of (R) and (CC) 
code, and branch = 

is not zero. Branch 
S/PH9 = BRPH9 NCLEAR + ..• condition not satisfied 

R/PH9 = ... 
BRPH10 = FUBCR PH1 N(R CC) + .•. Branch to PH10 if logical 

S/PH10 = BRPH10 NCLEAR + .•• product of (R) and (CC) 
is zero. Branch condition 

R/PH10 = ... satisfied 

(R CC) = CC1 R28 + CC2 R29 + CC3 Logical product of R field 
R30 + CC4 R31 and condition code 

PH9 Sustained until DR Requirement for DR result 

OR of unconditional MRQ in 
PREP and ORQ in PH1 

(MBO-MB31 }---(CO-C31) CXMB = OG = /OG/ Instruction ineffective 
address. Meaningless if 

SXB = PXSXB NOIS + ... t'his phase is entered 
since branch condition 
has not been satisfied 

(BO-B31}--(SO-S31) PXSXB = NFAFL NFAMOS PH9 + .•. Stores program address in 

(S15-S31 }-+--(P15-P31) PXS = 
P-register 

PXSXB + ... 

Set flip-flop BRP S/BRP = PXSXB + ... Signifies that program 
address is in P-register 

R/BRP = PREl NFAIM + •.• 

Set flip-flop MRQ S/MRQ = (S/MRQ/2) + ... Memory request for next 
instruction in sequence 

(S/MRQ/2) = PXSXB + ... 

R/MRQ = ... 
Set flip-flop ORQ S/ORQ = (S/ORQ) NCLEAR Inhibits transmission of 

(S/ORQ) (S/MRQj2) + another clock unti I data = ..... 
release received from 

R/ORQ = ... memory 

Mnemonic: BCR (68, E8) 

(Continued) 

3-512 



SDS 9011n 

Table 3-76. Branch on Conditions Reset Sequence (Cont.) 

Phase Function Performed 

PHlO ENDE functions See table 3-18 

DR 

BPANCH AND LINK (BAL; 6A, EA). ihe SAL instruction 
determines the effective address, loads the address of the 
next instruction in normal sequence into bit positions 15 
through 31 of private memor,! register R, and cleaiS bit 
positions 0 through 14 to zero. The effective address 
then replaces the address of the next instruction in 
normal sequence, and the instruction pointed to by the 
effective address of the BAL instruction is executed. 

If the effective address of the BAL instruction is a non­
existent memory address, the computer aborts execution 
of the BAL instruction and traps to location X'40' • In 
this case, the instruction address stored by the XPSD 
instruction in location X'40' is the address of the BAL 
instruction. 

Branch and Link Phase Sequence. Preparation phases 
for the BAL instruction are the same as the general 
PREP phases for word instruction, described in paragraph 
3-59. Figure 3-180 shows the simplified phase sequence 
for the instruction during execution, and table 3-77 
lists the detai led logic sequence during all BAL execution 
phases. 

Signals Involved Comments 

If entered from PH1, next 
instruction is from effec-
tive address in P-register 
at end of PREP. If 
entered from PH9, next 
instruction is from 
program address 

Mnemonic: BCR (68, E8) 

PREP PHI PH10 

(B): PROGRAM 
ADDRESS 

(P): EFFECTIVE 
ADDRESS 

(S/MRQ,!l) I 
1 --I-- DRQ 

I 
1-f---MRQ 

I 
1 H-f - RW 

B~S--RW 

(S/SXB) 

ENDE 

fOllnA.3173 

Figure 3-180. BAL Instruction, Phase Sequence Diagram 

3-513 



SDS 901172 

Table 3-77. Branch and Link Sequence 

Phase Function Performed Signa Is Involved Comments 

PREP At end of PREP: 

(B) : Program address Address of next i nstruc-
tion in sequence 

(P) : Effective address Address of next instruc-
tion to be used 

Enable signal (S/SXB) (S/SXB) = FUBAL PRE3 + ..• Preset logic for B---S 

FUBAL OU6 OLA 
in PH1 = 

Set flip-flop RW S/RW = (S/RW/1) = (S/RW) + ... Prepare to store next in-
I 

(S/RW) NANLZ PRE3 + ... 
struction in sequence in = FUBAL 
private memory 

R/RW = ... 
Set flip-flop MRQ S/MRQ = (S/MRQ/1) + ... Memory request for in-

(S/MRQ/1) = FABRANCH NANLZ 
struction at effective 

PRE/12 + ... 
address 

FABRANCH = 01 02 N03 + ... 

R/MRQ = ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Inhibits transmission of 

(S/DRQ) = (S/DRQ/2) + ... another clock unti I data 
release received from 

(S/DRQ/2) = FABRANCH PRE3 memory 

PH1 One c lock long 

DR (BO-B31) -(SO-S31) Adder logic set at last PREP clock Store program address in 

(SO-S31 )~(RWO-RW31) RWXS/O- RWXS/3 = RW + ... 
private memory register R 

RW = Set at last PREP clock 

Branch to PH10 BRPH10 = FUBAL PH1 + ... 

S/PH10 = BRPH10 NCLEAR + ... 
R/PH10 = ... 

PH10 

DR ENDE functions See table 3-18 Execute instruction in 
effective address 

Mnemonic: BAL (6A, EA) 

3-514 



SOS 901172 

BRANCH ON DECREMENTING REGISTER (BDR; 64, E4). 
The BDR instruction decrements the contents of private 
memory register R by one. If the resu It is a positive value, 
the branch condition is satisfied, and the instruction 
pointed to by the effective address of the BDR instruction 
is executed. If the result is zero or a negative value, the 
branch condition is not satisfied, and the next instruction 
in normal program sequence is executed. 

If the effective address of the BDR instruction is a non­
existent memory address and the result of decrementing 
private memory register R is a positive value, the computer 
aborts execution of the BDR instruction and traps to 

PREP PHI 

A: RR I 
I 

B: PROGRAM I 
ADDRESS 

I 
(P): EFFECTIVE I IF (S~O) 

ADDRESS BRPH10 
I 
1-- ------

IF (S< 0) 
I BRPH9 

I 1-- -- -- ---I 

(S/SXAM1) 

I(A-1)-S-RWI 

I I 
1~RW 

(S/MRQj1): Q I 
1-r-DR 

1--+--MRQ 

I 

location X'40 ' • In this case, private memory register R 
contains the value that existed just before execution of 
the BDR instruction, and the instruction address stored by 
the XPSD instruction in location X'40 ' is the address of 
the aborted BDR instruction. 

Branch on Decrementing Register Phase Sequence. Prepa­
ration phases for the BDR instruction are the same as the 
general PREP phases for \vord instr,"-,ctions, described in 
paragraph 3-59. Figure 3-,181 shows the simplified 
phase sequence for the BDR instruction during execution, 
and table 3-78 lists the detai led logic sequence during 
all BDR execution phases. 

PH9 PH10 

(1 -+-- DRQ) 

I t 
(S/MRQj2) I 

I 
1-1--- MRQ 

I 
I-+-- DRQ 

I 
I 

I 
I 
I 
I 
I 

ENDE 

B-S -+-- P 
I 

1--1--- BRP 

I 

901l72A.3174 

Figure 3-181. BDR Instruction, Phase Sequence Diagram 

3-515 



50S 901172 

Table 3-78. Branch on Decrementing Register Sequence 

----------------------------------~-------------------------------~~--~-------------------

Phase Function Performed 

PREP At end of PREP: 

(A) : RR 

(B) : Program address 

(P) : Effective address 

Enable signal (S/5XAM1) 

5et flip-flop RW 

5et flip-flop MRQ 

5et flip-flop DRQ 

PH lOne c lock long 

DR (AO-A31) - 1----(50-531) 

(50-531) -+-(RWO-RW31) 

3-516 

5et PH10 if (50-531) 
is greater than zero 

5et PH9 if (50-531) 
is zero or less than zero 

Signals Involved 

(5/5XAM1) 

FUBDR 

5/RW 

(5/RW) 

R/RW 

5/MRQ 

(5/MRQ/1) 

R/MRQ 

= 
= 
= 
= 
= 
= 
= 

FUBDR PRE3 + .•. 

OU6 OL4 

(5/RW/1) = (5/RW) + ... 

FUBDR NANLZ PRE3 + ..• 

(S/MRQ/1) + ••• 

FABRANCH NANLZ 
PRE/12 + .•. 

S/DRQ = (5/DRQ) NCLEAR 

= (S/DRQ/2) + ... (S/DRQ) 

(5/DRQ/2) = FAB~NCH PRE3 

Adder logic set at last PREP clock 

RWX5/0-RWX5/3 = RW + ••• 

RW = 5et at last PREP clock 

5/PH10 = FUBDR PH1 5GTZ + ... 

5GTZ = (50 + 5 1 + • •. + 531) 
N(SO NFACOMP) + ••• 

R!PH10 = ... 
5/PH9 = FUBDR PH1 N5GTZ + ... 

R!PH9 = ... 

(Continued) 

Comments 

Contents of private 
memory register R 

Address of next i nstruc­
tion in sequence 

Address of next instruc­
tion if branch conditions 
satisfied 

Preset adder for (A-l) 
-5 inPHl 

Prepare to store (A-l) in 
private memory register R 

Memory request set for 
all branch instructions. 
This memory request is for 
the instruction in the 
effective address in case 
the branch condition is 
satisfied and PH 10 is en­
tered from PH1 

Inhibits transmission of 
another clock unti I data 
release received from 
memory 

5tore (A-1) in private 
memory register R 

5 is greater than zero if 
(50-531) contains at least 
one 1, and 50 = O. Branch 
condi tion satisfi ed 

Branch condi tion not 
satisfied 

Mnemonic: BDR (64, E4) 



SOS 901172 

Table 3-78. Branch on Decrementing Register Sequence (Cont.) 

Phase Function Performed 

PH9 Sustained until DR 

DR 

(MBO=~."B31 )--(CO-(31) rV""D '-AIVIU = 

(BO- 831) ---(SO-531 ) SXB = 
PXSXB = 

(S15-531 )-f--(P15-P31) PXS 
~ 

= 
-

Set flip-flop BRP S/BRP = 
R/BRP = 

Set flip-flop MRQ S/MRQ = 
(S/MRQj2} = 

R/MRQ = 

Set flip-flop DRQ S/DRQ = 
(S/ORQ) = 

R/DRQ = 

PH10 ENOE functions See table 3-18 

DR 

BRANCH ON INCREMENTING REGISTER (BIR; 65, E5). 
The BIR instruction increments the contents of private 
memory register R by one. If the result is a negative 
value, the branch condition is satisfied, and the instruction 
pointed to by the effective address of the BIR instruction 
is executed. If the result is zero or a positive value, the 
branch condition is not satisfied, and the next instruction 
in normal program sequence is executed. 

If the effective address of the BIR instruction is a non­
existent memory address, and the result of incrementing 
the contents of private memory register R is negative, the 
computer aborts execution of the BIR instruction and traps 

Signals Involved Comments 

Requirement for DR result 
of unconditional MRQ in 
PREP and DRQ in PH1. 

r.I"" = Jr.,... / 
instruction in effective 1.1\.:1 /1.1\.:1/ 

address meaning less in 
this phase 

PXSXB NOIS + ••• Stores program address 

NFAFL NFAMD5 PH9 + ••• in P-register 

PXSXB + ••• 

PXSXB + ••• Signifies that program 

PREl NFAIM + •.. address is in P-register 

(S/MRQ/2) + ••• Memory request for next 

PXSXB + ••• 
instruction in sequence 

... 
(S/DRQ) NCLEAR Inhibits transmission of 

(S/MRQ/2) + .•. 
another clock unti I data 
release received from 

... memory 

If entered from PH 1, next 
instruction is from effec-
tive address in P-register 
at PREP. If entered· from 
PH9, next instruction is 
from program address 

Mnemonic: BDR (64, E4) 

to location X'40'. In this case, private memory register R 
sti" contains the value that existed just before execution 
of the BIR instruction, and the instruction address stored 
by the XPSD instruction in location X'40' is the address 
of the aborted BIR instruction. 

Branch on Incrementing Register Phase Sequence. Prepa­
ration phases for the BIR instruction are the same as the 
general PREP phases for word instructions, described in 
paragraph 3-59. Figure 3-182 shows the simplified 
phase sequence for the instruction during execution, and 
table 3-79 lists the detai led logic sequence for all BIR 
execution phases. 

3-517 



Phase 

PREP 

3-518 

SDS 901172 

PREP 
1 

I 

PH1 PH9 PH 10 

(A): RR 

(B): PROGRAM 
ADDRESS 

I IF (S<O) 

(1 ~DRQ) 

t 

(P): EFFECTIVE 
ADDRESS 

1_ - _B!P~l.Q - --I 
IF (S ~O) I ENDE 

I BRPH9 
---------1 

(S/MRQ/l) ! 
1 -I- ORQ I 
liMRQ I 

I I 
(S/SXAP1) I 1 

I(A + l)~S"""'RW I 
1 -J.- RW I 

I I 
I 1 

I I 
I 

B--S~P 

(S/MRQ/2) 

I 
1 --+-- BRP 

I 
I 
I 
I 

l~MRQ 

t 
1 --r-- DRQ 

Figure 3-182. BIR Instruction, Phase Sequence Diagram 

Table 3- 79. Branch on Incrementing Register Sequence 

Function Performed Signals Involved 

At end of PREP: 

(A) : RR 

(B) : Program address 

(P) : Effective address 

Set flip-flop MRQ S/MRQ = (S/MRQ/l) + ... 

(S/MRQ/l) = FABRANCH NAN LZ 
PRE/12 + ... 

R/MRQ = ... 

(Continued) 

901172A.3175 

Comments 

Contents of private 
memory register R 

Address of next instruc-
tion in sequence 

I Address of next i nstruc-
tion if branch conditions 
satisfied 

Memory request set for all 
branch instructions. This 
memory request is for the 
instruction in the effective 
address in case the branch 
condition is satisfied and 
PH lOis entered from PH 1 

Mnemonic: BIR (65, E5) 



SOS 901172 

Table 3-79. Branch on Incrementing Register Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PREP Set flip-flop ORQ S/ORQ = (S/ORQ) NCLEAR Inhibits transmission of 
(Cont.) 

(S/ORQ) (S/ORQ/2) + ••• another clock unti I data = release received from 
(S/ORQ/2) = FABRANCH PRE3 memory 

Enable signal (S/SXAP1) (S/SXAP1) = FUBIR fRE3 + ..• Preset adder for (A + 1) 

FUBIR OU6 OL5 
-S in PH1 = 

Set flip-flop RW S/RW = (S/RW/1) = (S/RW) + ..• Prepare to store (A + 1) 

(S/RW) = FUBIR NANLZ PRE3 + ... in private memory register 
R 

R/RW = ... 

PH1 One c lock long 

DR (AO-A31) + 1-(SO-S31) Adder logic set at last PREP clock Store (A + 1) in private 

(SO-S31) -I-- (RWO-RW31) RWXS/0-RWXS/3 = RW + .•• memory register R 

RW = Set at last PREP clock 

Branch to PH9 if (A + 1) positive BRPH9 = FUBIR PH1 NSO + ... Sign bit (SO) is 0 for 
or zero 

S/PH9 = BRPH9 NCLEAR + .•• (A + 1) positive or zero. 
Branch condition not 

R!PH9 = ... satisfied 

Set PH 10 if (A + 1) S/PH10 = FUBIR PH1 NBRPH9 + •.• If not BRPH9, sign bit is 1, 
I negative indicating negative num-

ber. Branch condition 
satisfied 

I 

PH9 

I 
Sustained unti I DR Requirements for DR resuh' 

of unconditional MRQ in 
DR 

I 
PRE and ORQ in PH 1 

I 
(MBO-MB31)--- (CO-C31) CXMB = OG = /OG/ Instruction in effective 

address. Meaningless in 
I I this phase 

(BO-B31) --(SO-S31) PXSXB = NFAFL NFAMOS PH9 + ... Stores program address 

(S 15-S31) -I--(P15-P31) in P-register 

Set flip-flop BRP S/BRP = PXSXB + ... Signifies that program ad-

R/BRP = PRE1 NFAIM + dress is in the P-register ... 
Set flip-flop MRQ S/MRQ = (S/MRQ/2) + ... Memory request for next 

(S/MRQ/2) = PSXSB + .•• instruction in sequence 

R/MRQ = ... 

Mnemonic: BIR (65, E5) 

(Continued) 

'3-519 



50S 901172 

Table 3-79. Branch on Incrementing Register Sequence (Cont.) 

Phase Function Performed 

PH9 Set flip-flop DRQ S/DRQ = 
DR 

(Cont.) 
(S/DRQ) = 

R/DRQ = 

PH10 ENDE functions See table 3-18 

EXECUTE (EXU; 67, E7). The EXU instruction causes the 
computer to execute the instruction in the location pointed 
to by the effective address of the EXU instruction (subject 
instruction). The subject instruction is performed exactly 
as if it, instead of the EXU instruction, were initially 
accessed. If the subject instruction is another EXU in­
struction, the computer executes the new subj ect i nstruc­
tion. A sequence of EXU instructions wi II be processed 
unti I an instruction other than an EXU is accessed. After 
the final effective instruction is executed, the computer 
returns to the next instruction in sequence after the initial 
EXU instruction, un less the effective instruction is a 
branch instruction, which results in transfer to a different 
location. 

If an interrupt activation occurs between the beginning 
of an EXU instruction and the last interruptible point of 
the effective instruction, the computer processes the 
interrupt-servicing routine for the active interrupt level 
and then returns program control to the EXU instruction. 
A program is interruptible after every instruction access, 
inc luding accesses made with the EXU instruction. The 
effective instruction is interrupted in the normal manner 
for its type of instruction. 

If a trap condition occurs between the beginning of an 
EXU instruction and the completion of the effective 
instruction, the computer traps to the appropriate location. 
The instruction address stored by the XPSD in the trap 
location is the address of the EXU instruction. 

Execute Phase Sequence. Preparation phases for the 
EXU instruction are the same as the general PREP phases 
for word instruction, described in paragraph 3-59. 

3-520 

Signa Is Involved Comments 

(S/DRQ) NCLEAR Inhibits transmission of 
another clock unti I data 

(S/MRQ/2) + ••. release received from 
memory 

... 

If entered from PH 1 , 
next instruction is 
effective address in P-
register. If entered 
from PH9, next i nstruc-
tion is from program 
address 

Mnemonic: BIR (65, E5) 

Figure 3-183 shows the simplified phase sequence for the 
instruction during execution, and table 3-80 lists the 
detai led logic sequence during a II EXU execution phases. 

PREP PH10 

ENDE 
(P): PROGRAM 

ADDRESS 

(S/MRQj1) 

I ENABLE (P-1) -- P 
I IF (INT + lOSe) 

I 
1 -+- MRQ 

I 
l'j"--DRQ 

I INHIBIT 

I (P+ l}-P 

901172A.3176 

Figure 3-183. EXU Instruction, Phase 
Sequence Diagram 



SOS 901172 

Table 3-80. ,Execute Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: 

(P) : Program address Address of next i nstruc-
tion in sequence 

Set fl ip-flop MRQ S/MRQ = (S/MRQ/l) + •.. Memory request for sub-
ject instruction addressed 

(S/MRQ/l) = FABRANCH NAN LZ by EXU instruction 

PRE/12 + •.. 

R,/MRQ = ... 
Branch to PH 1 0 BRPH10 = FUEXU NANI 7 PRE3 

+ ••• 

FUEXU = OU6 Ol7 

S/PH10 = BRPH10 NClEAR + •.• 

R/PH10 = ... 

Set flip-flop ORQ S/ORQ = (S/ORQ) NC lEAR Inhibits transmission of 
another clock unti I data 

(S/ORQ) = BRPH10 + ... release received from 
memory 

R/ORQ = ... 

PH10 ENDE functions, with See table 3-18 
following exceptions: 

Inhibit (P + 1 )-+--P PUC31 = N(FUEXU ENDE) PH10 PUC31 false because 

NHAlT NIOSC NINT 
(FUEXU ENDE) true, 
unless (INT + 10SC) 

NKAHOlD 

Enable downcount PDC31 = FUEXU ENDE (INT + IOSC) (P - l)-+--P if I/O 
service call pending or 
interrupt pending. The 
EXU wi II be executed 
aga in after the I/O 
service call or interrupt 
routine is processed 

Mnemonic: EXU (67, E7) 

3-521 



Paragraph 3-77 SOS 901172 

3-77 Fami Iy of Ca II Instructions (FACAl) 

~All 1 THROUGH CAll4 (CAll THROUGH CAl4; 04 
THROUGH 07, 84 THROUGH 87). CAll through CAl4 
cause a trap to memory locations X'48 1 through X'4B ', 
respectively, for the next instruction in sequence. The 
instruction in the trap location must be an exchange program 
status doubleword (XPSO) instruction. The R field of the 
CAL instruction word is ORed with CCl through CC4 of the 
new program status doubleword. The R field value may also be 

used to modify the instruction address portion of the new 
progra ... :;tatus double·Nord. Botr. of these actions are dis­
cussed in the description of the XPSD instruction, paragraph 
3- 78. Execution of a CAll instruction involves storing the 
R field and enabling the INTRAP phases; further actions are 
then the same as the normal TRAP sequence discussed in 
paragraph 3-30. Table 3-81 lists the detailed logic 
sequence during all CAL execution phases. Preparation 
phases for CA l are the same as the genera I PREP phases for 
word instructions, described in paragraph 3-59. 

Table 3-81. CAll Through CAl4 Sequence 

Phase Function Performed 

PREP At end of PREP: 

PHl 
T5l 

3-522 

(B) : Program address 

(R28-R31 }-+--(TRACC1-TRACC4) 

Set flip-flop TR28 

Set flip-flop TR30 if CAl3 or 
CAl4 

Set flip-flop TR31 if CAL2 or 
CAl4 

Signals Involved 

S/TRACCl = FACAl PHl NTRAP 
NSTRAP R28 

S/TRACC4 = FACA l PHl NTRAP 
NSTRAP R31 

FACAl = OUO (N0405) 

R/TRACC1- R/TRACC4 = (S/TRAP) + ... 

(S/TRAP) = FACAl PHl + ... 

S/TR28 = FACAl PHl NTRAP NSTRAP 
+ ... 

R/TR28 = (S/TRAP) + ... 

S/TR30 = FACAl PHl NTRAP NSTRAP 
06 + ... 

R/TR30 = (S/TRAP) + ••. 

S/TR31 = FACAl PHl NTRAP 
NSTRAP 07 

R/TR31 = (S/TRAP) + ... 

(Continued) 

Comments 

Not used 

TRACCl through TRACC4 
are used to set the con­
dition code flip-flops 
during execution of the 
XPSD instruction 

During INTRAP phases, 
TR28 through TR31--f--
P28 through P31 to give 
least si~nificant hexa-
decimal digit of trap 
location 

INST TR TR TR TR DIGIT 
28 29 30 31 

CAll 1 o 0 0 X'8
1 

CAl2 1 0 0 1 X'91 

CAl3 1 0 1 0 X'A' 

CAl4 1 0 1 1 X'B' 

Most significant hexa­
decimal digit is always 4 

TR28 through TR31 may 
a Iso modify instruction 
address during XPSD 
instruction 

Mnemonic: CALl-CAl4 
(04-07, 84-87) 



Phase Function Performed 

PHl Set flip-flop TRAP 

T5L 
(Cont.) 

Set flip-flop INTRAP 

I 

I Set flip-flop INTRAPl 

Set flip-flop INTRAP2 

Inhibit setting PREl 

I 

I Clear 

SOS 901172_ 

Table 3-81. CAll Through CAL4 Sequence (Cont.) 

Signals Involved 

S/TRAP = (S/TRAP) NRESET 

(S/TRAP) = FACAL PHl + ••• 

R/TRAP = (R/TRAP) = FAPSD PHS + ••• 

S/INTRAP = (S/INTRAP) NRESET 

(S/I NT RA P) = N(PCP2 NKRUN 

+ INTRAP + DCSTOP) 

NPCPACT (S/TRAP) 

R/INTRAP = (R/TRAP) + ... 

S/INTRAPl = (S/INTRAP) NRESET 

R/INTRAPl = INTRAP2 + .•. 

S/INTRAP2 = (S/INTRAP) + ... 

R/INTRAP2 = ... 

PREIEN = N(S/TRAP) N(S/INTRAP) 

NIOSC NHALT 
I 

I 

CLEAR = (S/INTRAP) + ••. 
I 

Comments 

Preliminary actions before 
going into INTRAP phases. 
INTRAP phases are now 
entered 

Mnemonic: CALl-CAL4 
(04-07, 84-87) 

3-523 



Paragraph 3-78 SDS 901172 

3-78 Fami Iy of Program Status Doubleword Instructions 
(FAPSD) 

LOAD PROGRAM STATUS DOUBLEWORD (LPSD; OE, 8E). 
The LPSD instruction replaces bits 0 through 39 of the 
current program status doubleword with bits 0 through 39 
of the effective doubleword of the instruction address. 
Bits 56 through 59 of the program status doubleword are 
conditiona Ily replaced. 

General. A program status doubleword is stored in memory 
as a 64-bit word in two consecutive memory locations. The 
current program status doubleword (PSD) is stored in flip­
flops and registers of the Sigma 5. The correspondence 
between the two storage locations is indicated in table 
3-82. 

Table 3-82. Program Status Doubleword Storage 

Doubleword 
. Bits Flip-Flops Content and Mnemonic 

0-3 CC1-CC4 Condition code (CC) 
... 

4 Zero 

5 FS Floating significant 
mask (FS) 

6 FZ Floating zero mask (FZ) 

7 NFN Floating normalize 
mask (FN) 

8 NMASTER Master/s lave mode ~ 
V) 

contro I (MS) a.. 

9 Zero 

10 DM Decimal fau It trap 
mask (DM) 

11 AM Fixed-point arithmetic 
overflow trap mask (AM) 

12-14 Zeros 

15-31 P15- P31 Instruction address (IA) 
~ 

(Continued) 

3-524 

Table 3-82. Program Status Doubleword Storage (Cont.) 

Doubleword 
Bits Flip-Flops Content and Mnemonic 

32-33 Zeros 

34-35 WKO, WK1 Write key (W K) 

36 Zero 

37 CIF Counter interrupt group 
inhibit (CI) 

38 II I/O interrupt group 
N 

~ ~ 
inhibit (II) V) 

a.. 

39 EI Externa I interrupt group 
inhibit (EI) 

40-55 Zeros 

56-59 RP24-RP27 Register pointer (RP) 

60-63 Zeros ~ 

Conditional Operations. If bit position 8 of the LPSD 
instruction contains a one, bits 56 through 59 of the cur­
rent program status doubleword (register pointer bits) are 
replaced by bits 56 through 59 of the effective doubleword 
(bits 24 through 27 of PSW2). If bit position 8 of the LPSD 
instruction contains a zero, the register pointer bits of the 
current PSD are not changed. 

If bit position 10 of the LPSD instruction contains a one, 
the highest priority interrupt level currently in the active 
state is reset to either the armed or the disarmed state. 
The interrupt level is armed if bit 11 of the LPSD instruc­
tion contains a one, or is disarmed if bit 11 of the LPSD 
instruction contains a zero. If bit 10 of the LPSD 
instruction contains a zero, no interrupt level is affected 
in any way. 

Load Program Status Doubleword Phase Seguence. Prepa­
ration phases for the LPSD instruction are the same as the 
general PREP phases for doubleword instructions, paragraph 
3-59. Figure 3-184 shows the simplified phase sequence 
for the LPSD instruction during execution. Table 3- 83 
lists the detailed logic sequence during all LPSD execution 
phases. 



SDS 901172 

PREP PH3 I PH4 PH5 PH10 

(A): PSWl I IF R30 ENDE 
(NOT USED) I LEVACT 

(B) : PROGRAM MB--C-+--D 
ADDRESS I IF R30 R31 
(NOr IIc\Fn) LEVARM ,- -_. ----, 

(P+ 1) -+-P 
(P) : PSW1 ADDRESS I I O'S+--A 

I I 
(S/SXAPD) I (A+D)-S-+--P 

I I 
S-f---PSW1 

I I 
i MB---C+--D - S+--PSW2 

I I 
I 

(S/SXD) 

I 
~ I 
(S24-S27)~(RP24-RP27) 

I 
IF R30 

I I (S/CEINT) 

(S/MRQ) (S/MRQ) 
I 

(S/MRQ) 
I I 

I I I 
1-f-MRQ 1--f--MRQ 1-f--MRQ I I I I 

(S/DRQ) 

I 
(S/DRQ) 

I I (S/DRQ) 
I 

1-f--DRQ 1 -f--DRQ 

I 
l--!-DRQ 

I I I 
I I I BRPH10 I BRPH3 

I I I I 

901172A.3191 

Figure 3-184. Load Program Status Doubleword Instruction, Phase Sequence Diagram 

3-525 



SDS 901172 

Table 3- 83. Load Program Status Doubleword Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: 

(A) : PSW1 (bits 0-3, 5-8, 10, 11) Current PSW1 (not used) 

(B) : Program address Address of next i nstruc-
tion in sequence (not used) 

(P) : PSW1 address Address of fi rst word of 
program status doubleword 
to be loaded 

Set flip-flop MRQ S/MRQ = (S/MRQ) = (S/MRQj2) + ... Memory request for 

(S/MRQ/2) = FAPSD (PRE/34 + PH2) + ... 
MB---C transfer in PH3 

FAPSD = OUO 06 (04 05) 

R/MRQ = ... 
Set flip-flop DRQ S/DRQ = (SID RQ) NC LEA R Inhibits transmission of 

(S/DRQ) (S/MRQj2) + ... 
another clock unti I data 

= 
release received from 

R/DRQ = ... memory 

Branch to PH3 BRPH3 = FAPSD N07 NANLZ 
PRE3 + •.. 

PH3 Sustained until DR 

DR (MBO-MB31) --(CO-C31) tXMB = DG = IDG/ Transfer addressed PSW1 
to C-register 

(CO-C31) -+--(00-D31) DXC = FAPSD PH3 + •.. Transfer addressed PSW1 
to D-register 

Enable signal (S/SXAPD) (S/SXAPD) = FAPSD PH3 + .•. Preset adder for (A + D) 
-S in PH4 

Clear A-register AXZ = FAPSD PH3 + ... (A + D) becomes (0 + D) 

Upcount P-register PUC31 = FAPSD (PH1 + PH3) + ... S~ore address of PSW2 
in P-register 

Set flip-flop MRQ 5/MRQ = (S/MRQ) = (S/MRQ/2) + ••. Core memory request for 

(S/MRQ/2) = FAPSD PH3 + ... addressed PSW2 

R/MRQ = ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Inhibits transmission of 

(S/DRQ) (S/MRQ/2) + ... 
another clock unti I data 

= 
release received fro!Tl 

R/DRQ = ... memory 

PH4 Sustained until DR 

DR (MBO-MB31) -+--(CO-C31) CXMB = DG = IDGI Transfer addressed PSW2 
to C-register 

Mnemonic: LPSD (OE, 8E) 

(Continued) 

3-526 



SOS 901172 

Table 3- 83. Load Program Status Ooubleword Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH4 (CO-C31)-+--(00-031) OXC = FAPSD PH4 + .•• Transfer addressed PSW2 

DR to O-register 

(Cont.) (AO-A31) + (00-031)-- Adder logic set at PH3 clock A-register cleared, there-
(50-531) fore effectiveiy a D--

S transfer 

(S15-S31) --f--(P15- P31) PXS = FAPSD PH4 + ... Store PSW2 address (AI) 
in P-register 

Set flip-flop CEINT if R30 S/CEINT = FPASD PH4 N07 R30 Clock enable interrupt 

R/~EINT = ... 
Store bits 0-3, 5-8, 10, and 11 S/CC1 = SO CCXS/O + •.• Condition code 
of PSW1 in flip-flops 

CCXS/O = PSW1XS + ... 

PSW1XS = FAPSD PH4 + ••• 

R/CC1 = (R/CC1) = (R/CC) + ••• 

(RlCC) = CCXS/O + ••. 

S/CC2 = Sl CCXS/O + ••• 

S/CC3 = S2 CCXS/O + ••• 

S/CC4 = S3 CCXS/O + ••• 

R/CC2 = R/CC3 = R/CC4 = (R/CC) 
+ ••. 

S/FS = S5 PSW1XS + ..• Floating significant mask 

R/FS = PSW1XS + ••. 

S/FZ = S6 PSW1XS + .•. Floating zero mask 

R/FZ = PSW1XS + ••. 

S/FNF = S7 PSW1XS + ••. Floating normalize mask 

R/FNF = ... 
S/NMASTER = S8 PSW1XS + ••. Master/slave mode control 

R/NMASTER = PSW1XS + •.• 

S/OM = S10 PSW1XS + ••• Decimal fault trap mask 

R/DM = PSW1XS + ••. 

S/AM = Sl1 PSW1 XS + ••• Fixed point arithmetic 

R/AM = PSW1XS + •.• overflow trap mask 

Enable signal (S/SXO) (S/SXO) = FAPSO PH4 + ••• Preset adder for D--S 
transfer in PH5 

Set flip-flop MRQ S/MRQ = (S/MRQ) = (S/MRQ/1) + ..• Core memory request for 

(S/MRQ/1) = FAPSD PH4 + .•• addressed PSW2 

R/MRQ = ... 

Mnemonic: lPSD (OE, 8E) 

(Continued) 

·3-527 



SDS 901172 

Table 3-83. Load Program Status Doubleword Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH5 One c lock long 

T5L (00-D31)---(SO-S31) Adder logic set at PH4 clock Transfer addressed PSW2 
to sum bus 

Store bits 34, 35, 37, 38, and S/WKO = S2 PSW2XS Write key bit 0 
39 of program status doubleword 

PSW2XS = FAPSD PH5 + ... (bits 2, 3, 5, 6, and 7 of PSW2) 
R/WKO = PSW2XS 

S/WK1 = S3 PSW2XS Write key bit 1 

R/WK1 = PSW2XS 

S/CIF = (S/CIF/2) + ... = S5 PSW2XS Counter interrupt bit 

R/CIF = PSW2XS/1 + .•. 

PSW2XS/l = PSW2XS N07 For LPSD, PSW2XS/1 = 
PSW2XS 

S/II = S6 PSW2XS/1 I/O interrupt bit 

R/II = (R/I) = PSW2XS/1 + ... 

S/EI = S7 PSW2XS + ... External interrupt bit 

R/EI = PSW2XS/l + ••• 

If R28, store register pointer bits S/RP24 = S24 RPXS + ..• If R28 not set, register 
pointer bits (56-59) of 

S/RP27 = S27 RPXS + ... 
program status doub le-
word not changed 

RPXS = PSW2XS R28 + .•. 

R/RP24 = R/RP25 = R/RP26 = 
R/RP27 = RPXS 

Enable signal LEVACT (if R30) LEVACT = FAPSD PH5 N07 C lear highest priority 
R30 + ••• interrupt in active state 

Enable signal LEVARM (if R30 R31) LEVARM = FAPSD PH5 N07 Arm interrupt level 
R30 R31 + ... 

Reset fli p-flop TRAP R/TRAP = (R/TRAP) 

(RiTRAP) = FAPSD PH5 + ... 
Reset flip-flops TRACC/l R/TRAcc/l = (R/TRACC) 
through TRACc/4 

R/TRACC/4 (R/TRACC) = 

(R/TRACC) = FAPSD PH5 

PH6 Branch to PH 10 BRPH10 = FAPSD PH6 + ... 

DR Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Inhibits transmission of 

(S/DRQ) BRPHlO 
another clock unti I data 

= + .•. release received from 
R/DRQ = ... memory 

PHlO ENDE functions See table 3-18 

DR 

Mnemonic: LPSD (OE, 8E) 

3-528 



SDS 901172 

EXCHANGE PROGRAM STATUS DOUBlEWORD (XPSDi 
OF, 8F). The XPSD instruction stores the entire current 
program status doubleword (PSD) and replaces the current 
PSD with a new PSD. Bits 0 through 35 of the current PSD 
are unconditionally replaced by bits 0 through 35 of the 
new PSD. Bits 37 through 39 and bits 56 through 59 of the 
current PSD are conditionally modified. 

General. A program status doubleword is stored in memory 
as a 64-bit word in two consecutive memory locations. 
The current PSD is stored in flip-flops and registers of the 
Sigma 5. The relation between the two storage locations 
is indicated in table 3-82. 

Standard Operations. Word 1 (PSW1) of the current' 
PSD is stored in the location pointed to by the effective 
address of the XPSD instruction. The P-register count is 
then incremented by one, and word 2 (PSW2) of the 
current PSD is stored in the next consecutive location. 
The P-register count is incremented once more, and the 
PSW1 of the new PSD is fetched from memory and stored 
in flip-flops and registers of the Sigma 5. (Refer to bits 0 
through 31 in table 3-82.). The P-register count is incre­
mented once again, PSW2 of the new PSD is fetched from 
memory, and bits 32 through 36 are stored. The contents 
of bits 37 through 63 of the new PSD are dependent upon 
additional data. 

Conditional Operations. If bit position 8 of the XPSD 
instruction contains a one, bits 56 through 59 of the 
current PSD (register pointer bits) are replaced by bits 56 
through 59 of the new PSD (bits 24 through 27 of the new 

PSW2). If bit 8 of the XPSD instruction contains a zero, 
the current register pointer bits are not changed. An OR 
operation is performed between bits 37 through 39 of the 
current PSD and the corresponding bits in the new PSD 
fetched from memory. For these bit positions, if the bit 
in the new PSD is a zero, the corresponding bit of the 
current PSD is stored in the new PSD without change. If 
the bit in the new PSD is a one, the corresponding bit of 
the new PSD is set to 1. For example: 

Current PSD New PSD Stored PSD (final value) 

101 000 101 

101 010 111 

001 100 101 

000 110 110 

011 101 111 

Trap Operations. If the XPSD instruction is executed 
because of a nonallowed operation or a CAL instruction, 
the operations illustrated in figure 3-185 are performed. 
Information stored in flip-flops TRACCl through TRACC4 
causes flip-flops CCl through CC4 to be set, and results 
in arithmetic operations or logic operations during 
execution of the XPSD instruction. 

3-529 



SDS 901172 

CAll 

END 

901172A.3192 

Figure 3-185. Exchange Program Status Doubleword Instruction, Flow Diagram 

3-530 



SOS 9011n 

Exchange Program Status Ooubleword Phase Sequence. 
Preparation phases for the XPSD instruction are 

the simplified phase sequence for the XPSD instruc­
tion during execution. Table 3-84 lists the 

the same as the general PREP phases for doubleword 
instructions, paragraph 3-59. Figure 3-186 shows 

detai led logic sequence during all XPSD execution 
phases. 

I 

! (Al , CURRENT PSWI I 
I (B) : PROGRAM I 

ADDRESS I 

I (Pl , :: ~~~~~SS I 
I 

PREP I PH3 I 

I I 
I I 

i I (S/SXAPD) I 
I I I 

\rT"IJ-+--P (P+1)+-P (P+1)+-P I 
I I IIF R29 

I PSW2-f-A--S-MBI I(TRACC1-TRACC4)... I.. I 
I ,n-tCC1-CC4) 

I I I I (SO - S3) I 
(TRACC1-TRACC4)-+--(TR28-TR31~ (TR28-TR31)-+-- (A28-A31) I 

! I I MB-cJ-o I 

I I I I (A+Ol-sl-P 
I I I I 
I I ! S-f--PSWI 

PHI PH2 

ENDE 

(S/SXA) (S/SXD) 

IF R28 I 
(S24-S27)~(RP24-RP27) 

I 
I 

I I I I I 
I I I MB-C ~ D-SjPSW2 

I (S/MBXS) I I I I (S/MBXS) 

(S/MRQ) 

(S/DRQ) 

IF NTRAP 
(S/SXA) 

IF TRAP 
(S/SXAM1) 

1 -+-MBXS 1 -I--- MBXS I I I 
I I I I (S/MRQ) I (S/MRQ) I (S/MRQ) I (S/MRQ) I 

l-+-MRQ l-f--MRQ l-+-MRQ l-+--MRQ l+--MRQ I 
I (S/DRQ) I (S/DRQ) : (S/DRQ) I I (S/DRQ) I 

1 -f--DRQ 1 -+- DRQ l-+-DRQ 1 -+-- DRQ I 1-+- DRQ 

I I II II I I 
I A-S"MSI I I I I 

I (A-1)-S/ I I I I 

901172A.3193 

~igure 3-1186. Exchange Program Status Doubleword Instruction, Phase Sequence Diagram 

3-531 



SDS 901172 

Table 3- 84. Exchange Program Status Doubleword Sequence 

Phase Function Performed Signals Involved Comments 

PREP At end of PREP: 

(A) : PSW1 (bits 0-3, 5-8, 10, S/AO = CC1 AXPSW1 + '" Condition code 
and 11) 

S/A1 = CC2 AXPSW1 + '" 

S/A2 = CC3 AXPSW1 + '" 

S/A3 = CC4 AXPSWl + •• , 

AXPSWl = FAPSD PRE3 + '" 

FAPSD = OUO 06 (04 05) 

R/AO-R/A3 = AX/O + .. , 

AX/O = AX + .. , = AXZ + .. , 

AXZ = FAPSD PRE3 + , , , 

S/A5 = FS AXPSW1 + '" Floating significant mask 

S/A6 = FZ AXPSWl + '" F loati ng zero mask 

S/A7 = FNF AXPSWl + .. , Floating normalize mask 

S/A8 = NMASTER AXPSWl + '" Master/slave mode control 

S/A1O = DM AXPSWl + '" Decimal fault trap mask 

S/All = AM AXPSWl + '" Arithmetic trap mask 

R/An = AX/m ==AX +", = AXZ 
+ '" 

(B) : Program address Address of next instruction 
in sequence (not used) 

(P) : PSWl address Address into which PSWl 
, 

of current PSD is to be 
stored 

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset for S--MB in 

(S/MBXS) FAPSD PRE3 07 + ,.,' 
PHl = 

R/MBXS = " , 

Set fl ip-flop MRQ S/MRQ = (S/MRQ) = (S/MRQ/2) Memory request for 

+ '" S----MB transfer in PH 1 

(S/MRQ/2) = FAPSD (PRE/34 + PH2) 
+ '" 

R/MRQ = ., , 
Set fl ip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Inhibits transmission of 

(S/DRQ) (S/MRQ/2) + ,., 
another clock unti I data 

= release received from 
R/DRQ = ,. , memory 

If NTRAP: 

Enable signa I (S/SXA) (S/SXA) = FAPSD PRE3 NTRAP +", Preset adder for A--S 
in PHl 

Mnemonic: XPSD (OF, 8F) 

(Continued) 

3-532 



SOS 901172 

Table 3-84. Exchange Program Status Ooubleword Sequence (Conto) 

Phase Function Performed Signals Involved Comments 

PREP If TRAP: 
(Conto) 

Enable signal (S/SXAM1) (S/SXAM1) = FAPSO PRE3 TRAP + 000 Preset adder for (A - 1) 
--5 in PHi 

PH1 Sustained unti I DR 

DR If NTRAP: 

(AO-A31) -(SO-S31) Adder logic set at last PREP clock Transfer address bits 
(15-31) without change 

If TRAP: 

(AO-A31) - 1---(50-531) Adder iogic set at iast PREP ciock Decrement address bits 
(15-31) and transfer 

(SO-S31 )--(MBO-MB31) MBXS = Set at last PREP clock Transfer current PSW1 
from A-register to memory 
'(with or without 
decrement) 

Upcount P-register PUC31 = FAPSD (PH1 + PH3) + 00. Store current PSW2 
address in P-register 

Store bits 34, 35, 37-39, and S/A2 = WKO AXPSW2 + 0 •• Write key bit 0 
56-59 of current PSD (bits 2, 3, 

S/A3 = WK1 AXPSW2 + 0.0 Write key bit 1 
5-7, and 24-27 of PSW2) 

S/A5 = CIF AXPSW2 + o. 0 Counter interrupt bit 

S/A6 = II AXPSW2 + 0 •• I/O interrupt bit 

S/A7 = EI AXPSW2 + 000 External interrupt bit 

S/A24 = RP24 AXPSW2 + 000 Register pointer bits 

0 

S/A27 = RP27 AXPSW2 + 000 

AXPSW2 = FAPSD PH1 + 000 

R/An = AXm + 0 00 = AX + 000 

AX = AXPSW2 + 000 

(TRACC1-TRACC4)-+- S/TR28 = NSTRAP (S/TR28) + 000 TRACC1- TRACC4 contain 
(TR28- TR31) (S/TR28) = TRACC1 FAPSD PH1 

code stored by CA l 
instruction or by response 

R/TR28 = (R/TR) = (R/TRACC/1) + 0 0 0 to a nona II ow ed operation 

(R/TRACC/1) = FAPSD PH5 

S/TR29 = TRACC2 FAPSD PH1 

S/TR30 = TRACC3 FAPSD PH1 

S/TR31 = TRACC4 FAPSD PH1 

R/TR29 = R/TR30 = R/TR31 = (R/TR) 

Mnemonic: XPSD (OF,8F) 

(Conti nued) 

3-533 



SOS 901172 

Table 3- 84. Exchange Program Status Doubleword Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PHl Enable signal (S/SXA) (S/SXA) == FAPSD PHl Preset for A-S in PH2 

DR 
Set flip-flop MBXS S/MBXS == (S/MBXS) == FAPSD PHl + ... Preset for S--MB in 

(Cont.) 
PH2 

R/MBXS == ... 
Set flip-flop MRQ S/MRQ == (S/MRQ) = (S/MBXS) + ... Memory request for 

R/MRQ = S---MB transfer in PH2 ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NClEAR Inhibits transmission of 

(S/DRQ) (S/MBXS) + .•• 
another clock until data 

== release received from 
R/DRQ == ... memory 

PH2 Sustained until DR 

DR (AO-A31 )---(SO-S31) Adder logic set at PHl clock Transfer current PSW2 to 
sum bus 

(SO-S31) --(MBO-MB31) MBXS = Set at PH 1 clock Transfer current PSW2 to 
memory 

Set flip-flop MRQ S/MRQ = (S/MRQ) = (S/MRQ/2) Core memory request for 
+ ... PSWl of new PSD 

(S/MRQ/2) = FAPSD (PRE/34 + PH2) + .•. 

R/MRQ = ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NClEAR Inhibits transmission of 

(S/DRQ) (S/MRQ/2) + ... 
another clock unti I data 

= 
release received from 

R/DRQ = ... memory 

Upcount P-register PUC31 = FAPSD PH2 + ... Store address of new PSWl 
in P-register 

PH3 Sustained unti I DR 

DR (MBO-MB31 )--(CO-C31) CXMB = DG = /DG/ Transfer new PSWl to 
C-register 

(CO-C31 )-f--(DO-D31) DXC = FAPSD PH3 + •.. Transfer new PSWl to 
D-register 

Enable signa I (S/SXAPD) (S/SXAPD) = FAPSD PH3 + ... Preset adder for (A + D) 
---S in PH4 

Upcount P-register PUC31 = FAPSD (PHl + PH3) Store address of new PSW2 
of PSD in P-register 

(TR28- TR31) -f--{A28-A31) S/A28 = TR28 AXTR + ... Code stored in TR28- TR31 

AXTR = FAPSD PH3 TRAP R29 07 
from TRACC1- TRACC4 
transferred to A-register, 

R/A28 = AX/3 + . .. = AX + ... and other A-register fl ip-

AX == AXZ + ... = FAPSD PH3 
flops reset (if bit 9 of 

+ t·· XPSD instruction a 1) 

Mnemonic: XPSD (OF, 8F) 

(Continued) 

3-534 



SDS 901172 

Tab Ie 3- 84. Exc hange Program Status Doub I eword Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PH3 S/A29 = TR29 AXTR + .•. 

DR S/A30 = TR30 AXTR + ... 
(Cont.) S/A31 = TR31 AXTR + ... 

Set flip-flop MRQ S/MRQ = (S/MRQ) = (S/MRQ/2) + ... Core memory request for 

(S/MRQ/2) = FAPSO PH3 + •.• 
PSW2 of new PS 0 

R/MRQ = ... 
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Inhibits transmission of 

(S/ORQ) = (S/MRQ/2) + ... 
another clock unti I data 
release received from 

R/DRQ = ... memory 

PH4- Sustained unti I DR 

DR (MBO-MB3i )---(CO-C3i) CXMB = DG / .... .-. / Transfer P5Wi of new = /Uu/ 
PSD to C-register 

(CO-C31 )--+--(00-031)- DXC = FAPSD PH4- + ... Transfer PSW1 of new 
PSD to O-register 

(AO-A31) + (00-D31)- Adder logic set at PH3 clock Add code stored in 
(SO-S31) A28-A31 to AI of PSW1 

(S15-S31 )-f--(P15- P31) PXS = FAPSD PH4 + ••• Store AI in P-register 

Set condition code flip-flops S/CC1 = CCXTRACC TRACC1 Each CC flip-flop stores 
+ SO CCXS/O + ••. corresponding bit of 

CCXTRACC = FAPSO PH4 07 TRAP 
PSW1 of new PSD if 
NTRAP, or stores bit from 

CCXS/O = PSW1XS + ••. = FAPSD corresponding TRACC if 
PH4 + ... TRAPP 

R/CC1 = (R/CC1) = (R/CC) + ..• 

(R/CC) = (CCXS/O) + ••• 

General Equations: 

TRACC1 + SO-+--CC1 S/CCn = (S/CCn/3) + • .. = (S/CCn/1) 

TRACC2 + Sl-+--CC2 
+ ••. 

TRACC3 + S2-+-CC3 
(S/CCn/1) = CCXTRACC TRACCn + ..• 

TRACC4 + S3-f--CC4 
S/CCn = Sm CCXS/O + ••. 

(CCXS/O) = PSW1XS + ••. 

R/CCn = (R/CCn) = (RlCC) + ... 

(RlCC) = (CCXS/O) + .•• 

Mnemonic: XPSD (OF,8F) 

(Continued) 

3-535 



SOS 901172 

Table 3-84. Exchange Program Status Ooubleword Sequence (Cont.) 
~~-~" 

Phase Function Performed Signals Involved Comments 

PH4 Store bits 5-8, 10, and 11 of PSW1 S/FS = S5 PSW1 XS + ... Floating significant mask 

DR 
of new PSO in flip-flops 

R/FS = PSW1XS + ... 
(Cont.) 

S/FZ = S6 PSW1XS + ... Floating zero mask 

R/FZ = PSW1XS + ... 

S/FNF = S7 PSW1 XS + ... Floating normalize mask 

R/FNF = PSW1X5 + ... 

S/NMASTER = S8 PSW1 XS + .•. Master/slave mode control 

R/NMASTER = PSW1XS + ... 

S/OM = S10 PSW1XS + •.• Dec ima I fau It trap mask 

R/OM = PSW1XS + .•. 

S/AM = S11 PSW1XS + ... Arithmetic trap mask 

R/AM = PSW1 X5 + .•• 

Enable signa I (5/SXO) (S/SXO) = FAPSO PH4 + ... Preset adder for D---S 
transfer in PH5 

Set flip-flop MRQ S/MRQ = (S/MRQ) = (S/MRQ/1) Core memory request for 
+ ... next instruction in 

(5/MRQ/1) = FAPSO PH4 + ... sequence 

R/MRQ = ... 

PH5 One c lock long 

T5L (00- 031) ---(SO-S31) Adder logic set at PH4 clock Transfer new PSW2 to 
sum bus 

Store bits 34, 35, and 37-39 S/WKO = S2 PSW2XS Write key bit 0 
of new PSO (bits 2, 3, and 

R/WKO = PSW2XS 5-7 of PSW2) 
5/WK1 = 53 PSW2XS Write key bit 1 

R/WK1 = PSW2XS 

PSW2XS = FAPSO PH5 + ... 

For bits 5-7, perform OR S/CIF = (S/CIF/2) + ... = 55 Counter interrupt bit 
operat ion between input data PSW2XS 
and stored data 

R/CIF PSW2XS/1 + ... = 
PSW2XS/1 = PSW2XS N07 Enable OR operation 

S/II = S6 PSW2XS + ... I/O interrupt bit 

- R/II = (R/I) = PSW2XS/1 

S/EI = S7 PSW2XS + ... External interrupt bit 

p lEI I Y 
= PSW2XS / l 

Mnemonic: XPSD (OF, 8F) I 
(Cont i nued) 

3-536 



SOS 901172 

Table 3-84. Exchange Program Status Ooubleword Sequence (Cont.) 

Phase Function Performed Signals Involved Comments 

PHS Store new register pointer bits if S/RP24 = S24 RPXS If bit 8 is a 0, no change 

TSL 
bit 8 of XPSD instruction was 1 in register pointer bits 

(Cont.) 
(now stored in R28) S/RP25 = S25 RPXS 

S/RP26 = S26 RPXS 

S/RP27 = S27 RPXS 

RPXS = PSW2XS R28 + ••• 

R/RP24- R/RP27 = RPXS 

If TRAP, r,:.c",. flin_fll'\nc I)/Tt-..ITI)A D = /1) /T t...ITO A D\ - 10 /TOA D\ . --- ......... -... - Iy A' ... IV" \ I V & I , I 1..,-, I , \ 'V I IV""' I , 

+ .•. 

(R/TRAP) = FA PS 0 P H5 + ;;. 

R/TRAP = (R/TRAP) 

R/TRACC1- R/TRACC4 = FAPSO PHS 

Branch to PHlO BRPH10 = FAPSO PHS + ..• 

Set flip-flop DRQ SiDRQ = (SiDRQ) NCLEAR Inhibits transmission of 
another clock unti I data 

(S/DRQ) = BRPH10 + ... release received from 
memory 

R/DRQ = ... 

PHlO ENDE functions 

DR 

Mnemonic: XPSD (OF,8F) 

3-537 



Paragraph 3-79 SDS 901172 

3-79 Move to Memory Control (MMC; 6F, EF) 

GENERAL. The memory protection feature of the Sigma 5 
computer includes a block of 256 write-locks. Each write­
lock consists of two flip-flops. Each two-bit configuration 
in a write-lock, and the configuration in the write-key of 
the program status doubleword, control a page of core mem­
ory, or 512 memory locations. All 256 write-locks control 
the maximum core memory of 128K locations. The 512-bit 
block of write-locks is byte-addressable, that is, four 
write-locks at a time may be addressed and their contents 
modified or read. The first group of four write-locks has 

X'1FF' 

FIRST 2K 
t-~-----""-+----4 OF MEMORY 

PG 
3 

an address of 0000002 and controls fXlges 0 through 3 of 
core memory. The last group of four write-locks has an 
address of 1111112 and controls fXlges 252 through 255. 
Figure 3-187 shows the write-lock block and its relation­
ship to core memory. The memory protection feature is 
discussed in detail in paragraph 3-59. 

The MMC instruction loads one or more words from core 
memory into the write-lock block, thereby modifying 16 
or more write-locks. The words to be loaded, taken to­
gether, are called the lock image. 

64 BLOCKS OF 2K ::: 128K 
MAXIMUM CORE MEMORY CONFIGURA nON 

3-538 

ADDRESS 0000012 

ADDRESS 00000o 2 

~~~---------------------
WRITE-LOCKS

i

256 WRITE-LOCKS
OF 2 BITS EACH

64TH WRITE-LOCK GROUP,
ADDRESS 1111112

901172A.3201

Figure 3-187. Write-Lock Configuration

SDS 901172

INSTRUCTION FORMAT. The R field of the instruction
word defines a pair of private memory registers that contain
additional data for the instruction as shown below. The R
field of the instruction word must be even for correct results.

The lock image address, in private memory register R (fig­
ure 3-188), is the address of the first core memory word to
be loaded into the write-locks. The count field of private
memory register P~l (figure 3-188) contains the number of
words to be loaded into the write-locks. If this field con­
tains all zeros, 256 words from core memory are to be load­
ed; otherwise one through 255 words are loaded. If the

count field specifies a value greater than 16, the write­
locks are loaded in circular fashion and some or all of the
write-locks are overwritten. The control start field of
private memory register Ru1 points to the address of the first
four write-locks to be modified. An example of MMC is
shown in figure 3-189.

MOVE TO MEMORY CONTROL PHASE SEQUENCES.
Preparation phases for MNC. are the same as the genera I
PREP phases for word instructions. Figure 3-190 shows the
simplified phase sequence for the instruction during exe­
cution, and table 3-85 lists the detailed logic sequence
during all MMC execution phases.

~ LOCK IMAGE ADDRESS I PRIVATE MEMORX
W~_ /ff~/ff~/~///""","",,///~//~/.M~...--_______ ~. REGISTER R
o 14-15 31

'901172A.3202

Figure 3-188. Contents of Private Memory Registers Rand Ru1

3-539

w

~
o

~
o
<
I'D

o
~
I'D
3
o
~
()
o
~
d
m
X
o
3
~
I'D

1~1,1,~:~~:I.IJ.~:~,:,t:,:._ INSTRUCTION WORD
FIRST CORE MEMORY WORD IS

AT LOCATION X'1OO'
, ,

~ X'IOO' I ~ .. r"l"rWr,J"I"I"I"I"r"r"r"r",,,,r,,
START WITH

LOAD 2 CORE WRITE LOCK
MEMORY WORDS GROU P 32

i ' i i ,

PRIVA TE MEMORY
REGISTER X'A'

PRIVA TE MEMORY
REGISTER XIS I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 11 19 20 21 22 23 24 25 26 27 21 29 30 31 0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 l6 17 18 19 20 21 22 23 24 25 26272. 29 30 31

CORE MEMORY
"LOCK IMAGE"

IIIIIII:EEXECUTION
I I I I ~~~I~I~I~I 1~1~~-1 I I I I

GROUP 0 GROUP 32 - - - -- GROUP 39 GROUP 63

i
WRITE LOCKS

8 --i;j

C

SDS 901172

PRE PARA nON

I A \

\'"'J: I'U'\

(B): PROGRAM ADDRESS

(S/SXA)

0----. NLR31 F

1 O--NAXRR

PHI

IA-S-D
(515-531 +--(P15~P31) (LOCK IMAGE ADDRESSj

~---.j .. ~
RRul-+--A (COUNT AND CONTROL START)

I-+--MRQ

l-+--DRQ

'F (S/SXA)

PH2

A--S

(SO-57) ~ (MCO-MC7) (COUNT)

(515-531) --I-- (Pi5-P3i) (CONTROL START)

MB--C (FIRST IMAGE WORD)

, O~NSXCF

PH3

,~

A

C --S -+--A (FIRST IMAGE WORD)

l---1--LOCKW

(S/SXA)

BRPH6

Figure 3-190. Move to Memory Control, Flow Diagram (Sheet 1 of 3)

901172A. 32~/1

3-541

3-542

PH6

NO

YES

SDS 901172

YES
:>-------, A----S

(SO-S7)---

(W/LK "X I /O-W/LK I X"!7)

(S/SXA)

P + 1-f--- P

BC-1 --f-- BC

MC --- (AO-A7)

0-1---- NLR31 F

1-r--RW

PH7

NO P -(S15-S31) (NEW CONTROL START)

MC -1 --I--MC
(WORD COUNT-1)

A - (SO-S31) (NEW WORD COU NT)

SV--- A

Y--RRu1

(S/SXDP1)

1 --f--RW

A----S

(SO-S7) - (W/LK"XII/O- (SET 4 WRITE-LOCKS)
W/LK"XII/7)

(S/SXA)

A ---I--A
SHIFT
LEFT 8
PLACES

P + 1--1-- P (NEXT WRITE-LOCK GROUP)

'-----------.1 BC-1--- BC (BYTE COUNT)

Figure 3-190. Move to Memory Control, Flow Diagram (Sheet 2 of 3)

901172A.3204/2

SDS 901172

PHS

D+1-S
STf--D

Lf--RR
NO

(NEW LOCK IMAGE ADDRESS)

YES
NO

PH9

B-S -+-- P (PROGRAM ADDRESS)
1~BRP
1-+--MRQ
l-f--DRQ

NO

NEXT
INSTRUCTION

OR REPEAT THIS
INSTRUCTION

YES

NO

BRPH2
(S/SXA)
1-+-MRQ
1--1-- DRQ

P-1-+-- P (HOLD ADDRESS OF
THIS INSTRUCTION)

901172A.32<W3

Figure 3-190. Move to Memory Control, Flow Diagram (Sheet 3 of 3)

.3-543

Phase Functi on Performed

PREP At end of PREP:

(A) : RR

(8) : Program address

Enable signal (S/5XA)

Reset flip-flop NLR31F

Reset fl i p-flop NAXRR

PH1 One clock long

T5L (AO-A31)-- (50-531)

(50-531)--f---(DO-D31)

(515-531)-+--(P15-P31)

(RRO-RR31)-+--(AO-A31)

5et flip-flop MRQ

3-544

SDS 901172

Table 3-85. Move to Memory Control Sequence

Signals Involved

(5/5XA) = FUMMC PRE3 + ...

FUMMC = OU6 OLF

5/NLR31F = N(5/LR31)

(5/LR31) = FUMMC NANLX PRE3 + ...

R/NLR31 F = ...

5/NAXRR = N(5/ AXRR)

(5/ AXRR) = FUMMC PRE3 + ...

R/NAXRR = ...

Adder logic set at last PREP clock

DX5 = FUMMC PH1 + ...
PX5 = FUMMC PHl + ...
AXRR = 5et at last PREP clock

5/MRQ = (5/MRQ/2) + •..

(5/MRQ/2) = FUMMC PH 1 + ...

R/MRQ

Comments

Contents of pri vate
memory register R. The
lock image address
points to the first word
of the lock image to be
loaded into memory
control registers

Next instruction in
sequence

Preset adder for
A-5 in PHl

Force a one onto pri­
vate memory address
line LR31 to select
private memory regis­
ter Ru1 in PHl

Prepare to transfer con­
tents of private memory
register Ru 1 to
A-register

Transfer address of first
word of lock image to
P- and D-registers

Transfer contents of
private memory register
Ru 1 to A-register.
Private memory register
Rul contains word count
and control start

Core memory request
for fi rst word of control
image

I Mnemonic: MMC (6F, EF)

(Continued)

SDS 901172

Table 3-85. f.iove to Memory Control Sequence {Cont.}

Phase Functi on Performed

PHl Set flip-flop DRQ
T5L
~Cont)

Enable signal (S/SXA)

PH2 Sustained unti I data release

DR (AO-A31) - (SO-S31)

(SO-S7)-I--(MCO-MC7)

(S 15-S31)~(P15-P31)

(MBO-MB31) ~ (CO-C31)

Reset flip-flop NSXCF

PH3 One clock long

T5L (CO-C31) -(SO-S31)

(SO-S31)-f-(AO-A31)

Set flip-flop LOCKW

Enable signal (S/SXA)

Branch to PH6

S/DRQ

R/DRQ

Signals Involved

= (S/MRQ/2) + ...

(S/SXA) = FUMMC PHl + ...

Adder logic set at PH 1 clock

MCXS = FUMMC PH2

PXS = FUMMC PH2 + ...

CXMB = OG = /OG/

Comments

Inhibits transmission of
another clock unti I data
release signal received
from core memory

Preset adder for
A ----S in PH2

Transfer word count
to macro-counter

Transfer control start
to P-register

Transfer first image
word to C-register

S/NSXCF = N(S/SXC) N(FAST/S PH6 NMCZ) Preset logic for
C-S in PH3

(S/SXC) = FUMMC PH2 + ••.

R/NSXCF = ...

SXC = NOIS SXCF + ...

SXCF = Set at PH2 clock

AXS = FUMMC PH3 + ...

S/LOCKW = F.UMMC PH3 + ...

R/LOCKW = ...

(S/SXA) = FUMMC PH3 + ...

BRPH6

S/PH6

R/PH6

= FUMMC PH3 + ...

= BRPH6 NIOEN NCLEAR + ...

Transfer first image
word to A-register

LOCKW enables writing
into memory control
registers

Preset adder for
A-S in PH4

I Mnemonic: MMC (6F, EF)

(Continued)

3-545

SDS 901172

Table 3-85. Move to Memory Control Sequence (Cont.)
-" ... -~ ~

Phase Function Performed Signals Involved Comments

PH6 Four clocks long. During first three
clock periods perform the following

T8l operations:

(AO-A31)---(SO-S31) Adder logic set at PH3 clock or previous
PH6 clock ,.

Byte 0 of sum bus is

(SO-S7) ---- W/LK'X'/O SO
transferred to four = write-locks pointed to

(W/lK 'X'/O-W/lK IX ' /7) .
by P15-P20. 'X I is 1,

W/LK'X'/7 = S7 2, 3, or 4. K/ is

\.
clock enable

K/LKO-K/LK3 = lOCKW CK-32P43

Enable signal (S/SXA) (S/SXA) = FUMMC PH6 + ___ Preset adder for
A --S in next clock
period

(A8-A31) -+- (AO-A23) AXAl8 = FUMMC PH6 N(BC = 1) Shift A-register left

+ - -- eight bit positions;
next byte of image to

Zeros-+-(A24-A31) byte 0 location

Increment (P15-P20) by one PUC20 - FUMMC PH6 Poi nt to next group
of four write-locks

Decrement byte count in BCO, BCDCl = FUMMC PH6 + ___ Count at beginning
BCl by one of PH6 is 002- BCO,

BC 1 are decremented
with each clock of
PH6. 01 2 signals the
end of PH6, since on
next c lock a" four
bytes from the first
image word wi" have
been written into 16
write-locks

Sustain PH6 BRPH6 = FUMMC PH6 N(BC = 1)
+ ...

S/PH6 = BRPH6 NIOEN NCLEAR + _ ..

IOEN = Not enabled for MMC PH6

R!PH6 = ...

Decrement macro-counter by one MCDC7 = FUMMC PH6 BCZ + ... fv\acro-counter now
at fi rst c lock of PH6 contains the original

word count mi nus 1.
PH6 wi" be re-entered
after PH8 if word count
is not zero

I Mnemonic: MMC (6F, EF)

(Continued)

3-546

SOS 901172

Table 3-85. ~ve to Memory Control Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH6 At last clock (BC = 1) perform the
TaL

(Cont.)
following operations:

(AO-A31)---(SO-S31) Adder logic set at third PH6 clock

(SO-S7) --- W/LK'X'/O = SO Last byte of current
~/LK'X'/O-W/LK'X'/7) image word transferred

to write-lock write
W/LK ' X'/7 :::l S7 lines. 'X' is 1,2, 3,

or 4. K/ is clock
K/LKO-K/LK3 = LOCKW CK-32P43 enable. Write-lock

address lines go to
P15-P20

Enabie signai (S/SXA) (S/SXA) = FUMMC PH6 + ... Preset adder for
A-S in PH7

Increment (P15-P20) by one PUC20 = FUMMC PH6 Point to next group of
four write-locks. This
group will be modified
during next PH6 (if any)

Decrement byte count in BCO, BCDCl = FUMMC PH6 + ... BCO, BC 1 now hold 002
BCl by one for next PH6 (if any)

(MCO-MC7) -+-(AO-A7) AXMC = FUMMC PH6 (BC = 1) Transfer updated word
count to A-register

Reset flip-flop NLR31F S/NLR31F = N(S/LR31) Force a one on private
memory address line

(S/LR31) = FUMMC PH6 (BC = 1) + ... LR31 to select private
memory register Ru 1

R/NLR31F = ... in PH7

Set fIi p-flop RW S/RW = (S/RW/l) Prepare to write new
word count and new

(S/RW/l) = FUMMC PH6 (BC = 1) + .•• control start into pri-
vate memory register Ru 1

R/RW = ...
Branch to PH7 NBRPH6 = (BC = 1) + ...

S/PH7 = PH6 NBR NIOEN + ...

R/PH7 = ...

1 Mnemonic: MMC (6F, EF)

(Continued)

3-547

SDS 901172

Table 3-85. Move to Memo!)' Control Sequence (Cont.)
..------,r--------------.---'~'---~.-.. -------------.........,....--------......,

Phase Function Performed

PH7 One c lock long

T8L (P15-P31)--(S 15-S31)

(AO-A31) --(SO-S31)

(SO-S31) -+--(AO-A31)

(SO-S31) ---(RWO-RW31)

Enable signal (S/SXDP1)

Set fli p-flop RW

Enable clock T8L

PH8 One c lock long

T8L

3-548

(DO-D31) + 1 ~(SO-S3l)

(SO-S31)--(DO-D31)

(SO-S31)---(P15-P31)

(SO-S31)---(RWO-RW31)

Enable clock T8L

Signals Involved

SXP = FUMMC PH7 NDIS + •••

Adder logic set at last PH6 clock

AXS = FUMMC PH7 + ...

RWXS/0-RWXS/3 = RW + •••

RW

(S/SXDP1)

S/RW

R/RW

T8EN

NT5EN

=

=

=

=

=

=

Set at last PH6 clock

FUMMC PH7 + ...

FUMMC PH7 + ...

...

NT5EN NTl1L
N(SXADD/1 RW)
N(RW REU)
N(REU AXRR)

RW + .•.

Adder logic set at PH7 clock

DXS = FUMMC PH8 + ...
PXS = FUMMC PH8 + ...
RWXS/0-RWXS/3 = RW + ...

RW = Set at PH7 clock

T8EN = NT5EN NTl1L
N(SXADD/1 RW)
N(RW REU)
N(REU AXRR)

NT5EN = RW + ...

Comments

New control start in
(P15-P20) and new
count in (AD-A?) are
merged into the
A-register and private
memory register Ru 1

Preset adder for
D + 1 --- S in PH8

Prepare to wri te new
lock image address in
private memory regis-
ter R

Increment lock image
address to poi nt to
next control image
word

Transfer updated lock
image address to
D-register, P-register,
and private memory
register R

l Mnemonic: MMC (6F, EF)

(Continued)

SOS 901172

Table 3-85. t<iove to Memory ~ontrol Sequence (Cont.)

Phase

PHS
TSl

(Cont)

Function Performed

If macro-counter count does not
equal zero and no interrupt or I/o
service call is pending, perform
the following functions:

Branch to PH2

Enable signal (S/SXA)

Set fl i p-flop MRQ

r • ,.,. ,.1 ~ """
.leT TlIp-TiOp LJK\.al

If interrupt is present or I/O
service call is pending, or if
count in macro-counter is zero,
branch to PH9

PH9 One c lock long

TSl (BO-B31)---{SO-S31)

(S lS-S31)~{P1S-P31)

Set fIi p-flop BRP

Set flip-flop MRQ

Set fli p-flop ORQ

Signals Involved

BRPH2 = FUMMC PHS N(INT + lOSe)
NMCZ

(S/SXA) = FUMMC BRPH2 + •.•

S/MRQ = (S/MRQ/2) + .•.

(S/MRQ/2) = FUMMC BRPH2 + ...

R/MRQ = ...

S/DRQ = (S/MRQ/2) + •.•

R/DRQ = ...

S/PH9 = PHS NBR + ..•

R/PH9 = ...

SXB = PXSXB NDIS + •.•

PXSXB = NFAFl NFAMDS PH9

PXS = PXSXB + ...
S/BRP = PXSXB + ...
R/BRP = PREl NFAIM + ...
S/MRQ = (S/MRQ/2) + .••

(S/MRQ/2) = PXSXB NINTRAP2 + .••

R/MRQ = ...
S/DRQ = (S/MRQ/2) + •.•

R/DRQ = ...

Comments

Count F 0 indicates
that more words are
to be loaded

Branch to PH2 to load
next image word

Preset adder for
A~S in PH2

Core memory request
for next lock image
word

Inhibits transmission of
another clock unti I data
release signal from core
memory

Interrupt or I/o service
call will be processed
at PH10

Transfer program address
to P-re'gister from tem=
porary storage in B­
register

Indicates that program
address is in P-register

Core memory request
for next instruction
in sequence

Inhibits transmission
of another clock until
data release from core
memory

I Mnemonic, MMC (6F, EF)

(Continued)

3-549

SDS 901172

Table 3-85. I'iove to Memory Control Sequence (Cont.)

Phase Function Performed Signals Comments

PH10 Sustai ned unti I data re lease

DR Decrement program address in PDC31 = FUMMC PH10 NMCZ MMC instruction will
P-register to point to this instruc- (INT + 10SC) ENDE be executed as many
tion if interrupt or I/o service ti mes as necessary to
call is processed and not all image load all image words
words were loaded

ENDE functions See table 3-18

Mnemonic: MMC (6F, EF)

3-550

SDS 9011n Paragraph 3-80

3-80 Wait (WAIT; 2E, AE)

GENERAL The WAIT instruction halts the s.equential
operation of the CPU unti I an interrupt activation occurs
or until the computer operator manually moves the COM­
PUTE switch on the Processor Control Panel from RUN to
IDLE and back to RUN or to STEP.

If an interrupt is activated while the CPU is halted, the
interrupt subroutine wi II be carried out; the instruction
executed after completionof the interrupt routine wi II be
the next instruction in sequence after the WAIT instruction.

Table 3-86.

Phase Function Performed

PREP At enn of PREP:

(P) : Program address

Set flip-flop MRQ S/MRQ

(S/MRQ/l)

FUWAIT

R/MRQ

PHI One clock long
YI:.
I~L Set flip-flop HALT S/HALi

R/HALT

Branch to PH10 BRPH10

S/PH10

R/PHIO

Set flip-flop DRQ S/DRQ

R/DRQ

If the COMPUTE switch is moved from RUN to IDLE and
bock to RUN or STEP while the CPU is halted, normal
instruction execution wi II proceed with the next instruction
in sequence after WAIT.

Wait Phase Sequence. Preparation phases for WAIT are
the same as the general PREP phases for word instructions.
Table 3-86 lists the detailed logic sequence during all
WAIT execution phases. Execution of a WAIi instruction,
however, also involves enabling the PCP phases to halt
CPU operations. PCP phases are discussed in paragraph
3-56.

Wait Sequence

Signals Involved Comments

Address of next instruc-
tion in sequence

= (S/M RQ/l) + ... Memory request for next
instruction in sequence.

= FUWAIT PRE3 + ... This instruction wi II be
decoded and held in the

= OU2 OLE CPU during ENDE and
PCP phases. The PREP

= ... and execution phases of
this instruction will not
be entered unti I comple-
tion of PCP phases

= FUWAiT PHi + ... Setting HALT enables
branch to PC P phases

= NKAS PCP2 + •.•

= FUWAIT PH1 + .••

= BRPH10 NClfAR + •..

= ...
= BRPHlO NClEAR + .•• Inhibits transmission of

another clock unti I dota
= ... release is received from

core memory

Mnemonic: WAIT (2Et BE)

(Continued)

3-551

SOS 901172

Table 3-86. Wait Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH10 One c lock long

DR Enable signal ENOE ENOE = PH10 EXC

(MBO-MB31)-(CO-C31) CXMB = OG = /OG/ Next instruction ~
C-register

(CO-C31)~(DO- 031) OXC = PH10 + ... Next instruction-f--
D-register

(C1-C7)-(01-07) OXC = PH10 + ••• Opcode of instruction
--f--O-reg ister

(C8-C11)-(R28-R31) RXC = PH10 + ••• R field of instruction
-f--R-register

Inhibit incrementing program PUC31 = N(FUEXU ENOE) PH10 Preserve address of this
address

NHALT NIOSC NINT instruct ion

NKAHOLO + •••

Enable signal (S/SXO) (S/SXO) = PH10 + .•. Not used. Enabled
again in PCPl

Set flip-flop 10EN if I/O S/IOEN = 10SC PH10 NIOINH + ..• I/O service call inhibits
service call branch to PCP phases

Interrupt enable lEN = KRUN PH10 NIOSC Interruptible point.
Interrupt causes bronc h
to INTRAP phases

Set flip-flop LRXO S/LRXO = OXC + ••. For index operations in
PREP phases

R/LRXO = ...
Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) For index operations in

(S/AXRR) = PH10 + •.•
PREP phases

R/NAXRR = ...
Inhibit branch to PREl PRE1 EN = N(S/TRAP) N(S/INTRAP) PREl is entered after PCP

NIOSC NHALT phases

C lear and reset functions CLEAR = PH10 + •..

RESET/A = CLEAR + ••.

Branch to PC Pl BRPCPl = NFUEXU HALT/l ENOE
NIOSC + ...

S/PCPl = BRPCPl + ...

R/PCPl = ...

Mnemonic: WAIT (2E, BE)

3-552

SOS 901172 Paragraph 3-81

3-81 Fami Iy of Direct Instructions (FARWD)

GENERAL .. The two direct instr-uctions, Read Direct and
Write Direct, enable the computer to transmit and receive
a fu II word of data at a time without the use of an input/
output channel. A special set of address, data, and con­
trol lines are provided for this direct communication with
other elements (analog-to-digitgl converters; digital
counters, etc.) of the Sigma 5 system. The Read Direct
instruction requests data from the other element, and the
Write Direct instruction transmits data to the other element.

READ DIRECT (RD; 6(, EC). The RD instruction oper~tes
in one of two modes, depending on the state of bits 16
through 19 of the instruction word. If any of these bits
contain a logical 1, the computer operates in the external
mode, communicating directly with other system elements
without the aid of an input/output unit. The signals are
carried on the read direct/write direct (RD;WD) lines
consisting of 16 address lines, 32 data lines, two condition
code iines, and various controi iines. if bits i 6 through
19 contain zeros, the computer performs internal control
operations.

External Mode. If bits 16 through 19 of the instruction
word contain X'2' through X'F', the CPU presents bits 16
through 31 of the effective address to other elements of
the Sigma 5 system on the RD;WD address lines. Bits 16
through 31 of the effective address identify G specific sys­
tem element that is to return two condition code bits and a
maximum of 32 data bits to the CPU. The significance and
number of data bits depend on the selected element. If the
R field of the instruction word is nonzero, the returned

data is loaded into the private memory register specified
by the R field. If the R field is zero, the returned data is
ignored. Bits CC3 and CC4 of the condition code portion
of the program status doubleword are set by the addressed
element regardless of the value of the R field.

Internal Mode. If bits 16 through 19 of the instruction word '
contain zeros, the condition code is set according to the
states of the four SENSE switches on the orocessor control
panel. If a particular SENSE switch is s~t, the correspond­
ing condition code bit is set to one; if a SENSE switch is
reset, the corresponding condition code bit is reset to zero.

If the RD instruction specifies the internal mode and bit 27
contains a one, the states of the eight memory fault indi­
cators, one for each core memory module, are read. A
memory fau It i ndi cator is set when a parity error or over­
temperature condition occurs in its corresponding module.
If the R field of the instruction word is nonzero, bit positions
o through 23 or the pri vate memory regi ster spec i fi ed by the
R field are reset to zeros, and bit positions 24 through 31
are set according to the current states of the memory fault
indicators. Then the memory fault indicators are reseT. If
the R field is zero, the memory fault indicators and the
contents of the private memory register specified by the R
field remain unchanged. In either case, the condition code
is set according to the states of the SENSE switches.

RD Phase Sequence. Preparation phases for RD are the some
as the general PREP phoses for word instructions, paragraph
3-59.

Figure 3-191' shows the simolified phase sequence for the
RD instruction. Table 3-87 lists the detailed logic
sequence during the execution phases.

3-553

SDS 901172

PREP PH1 PH2 I PH3 I PH6 I PH7 I PH8 I PH10

I (') : PROGRAM I I I I I I
B-f--OIO

I
1-f--OIOFS I I

I ADDRESS
I

I I I I 1-+--MRO

I O+-NT8l O-+-NT8l (S/SXA) I

I (I): EFFECTIVE I I I I I I 1-+-- ORO
ADDRESS MC-1 +-MC I

1--+-RW O-f--NT8l

: (A), ZElOS I I I I I I IRPH6 DIOIND D--7'--NT8l

I I I AFTER FSA I I I ENOE

I RECEIVED
\INTERNAL MODE:,

I I I I I
I I

10EN6 I I I KSS-+-CC IF NDIOEXIT I MFL-I--A I I IF 127 :;: 1 I I I I
I MFR-MEMORvl

I I /010/-+-010 /rA-S-+--RW

I I INCOMING DATA I I
I RESET FAULT I I I I

I I 1-+-CC3 I INDICATORS IF 01051 I
I \ I I I 1-f--CC<4 I BRPH10

o-r--CC IF 01052 I
I I o-+-NT8L I I O-f--NT8l I I I I
I I I I I BRPH6

I I I BRPH8 IF NOIOEXlT

J
I I

I
I I I t I I I I

I I I I I NOIOEXlT I I I
I I I I I I I I

901172A.3221

Figure 3-,1911. Read Direct Instruction, Phase Sequence Diagram

Table 3-87. Read Direct Sequence

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(P) : Program address

(B) : Effective address

(A) : Zeros AXRRINH = FARWD OLC PRE3 + ... Enter zeros into A when
AXRR is performed in

FARWD = OU6 (04 05) + •.• PREl

Reset condition code fl ip-flops RlCC = FARWD PRE3 + ..• Prepare to read SENSE
switches or receive con-
dition code from other
element

Mnemonic: RD (6C, EC)

(Continued)

3-554

SOS 901172

Table 3- S7. Read Direct Sequence (Cont.)

Phose Function Performed Signals Involved

PH1 One clock long

T5L (816-831)-+--(01032/1-01047/1) 010X8 = FARWO PH1

PH2

TaL

PH3

T81

Internal Mode (816-819 = 0):

(KSS 1- KSS4)--f--(CC 1-CC4)

(MF LO-MF L7)-f--(A24-A31)

Enabie signai (S/SXA) if it I- 0

Reset memory fault indicators
if R/O

Reset flip-flop NT8L

8ranch to PH8

One c lock long

Reset flip-flop NT8L

One c lock long

Reset flip-flop NOIOFS

MC-l----J--.-MC

Reset flip-flop NT8L

CCXRWO = FARWO 81619Z PH1

AXPARITY = ROXMFI

ROXMFI = OLC CCXRWO 827/1

(S!SXAj = fARWD PHI NRZ + •••

MFR = ROXMFI NRZ + •.•

S/NT8 L = N (S/T8 L)

(S/T8L) = FARWO NPREP

R/NT8L

8RPH8

S/PH8

R,/PHS

S/NT8L

(S/TSL)

R,/NT8L

= FARWO 81619Z PH1

= BRPH8 NCLEAR + ...

= N(S/T8L)

= FARWO NPREP

=

R/NOIOFS =

(S/OIOFS) =
/DI~/ =

(S/OIOFS)

FARWO PH3

OIOFS

MDC7

S/NT8L

(S/T8L)

R/NTSL

= FAR'ND PH3 + ...

= N(S/TSL)

= FARWD NPREP + ...

=

(Continued)

Comments

Present bits 16 through 31
of effective address to
other system element on
RO;WO lines

Set condition code
according to pcp SENSE
switches

Set A24 through A31
according to memory fault
indicaton if 827 = 1

Preset adder for A-S
in PHS

MFR set to memory via
cable driver

Set clock T8 L for PH2 or
PH8

Set clock T8 L for PH3

Set function strobe, to be
transmitted to other ele­
ment via RO;WD control
line OI~S

Decrement macro-counter
from OOOOOOOO to 11111111
to make instruction
interruptible

Set clock TS L for PH6

Mnemonic: RD (6C, EC)

3-555

SOS 9011n

Table 3- 87. Read Direct Sequence (Cont.)
-,~----- -, -------

Phase Function Performed Signals Involved Comments

PH3 Branch to PH6 BRPH6 = FARWO PH3 + ...

T8l S/PH6 = BRPH6 NIOEN NClEAR + ...
(Cont.)

R/PH6 = ...

PH6 One c lock long

T8l Enable signal IOEN6 unti I IOEN6 = FARWO PH6 NEWOM I/O service call enable
OIOEXlT goes true NOIOEXIT NMCOOO5Z

Enable signal OIOINO when OIOINO = NOIOT2 010T3 FSA is function strobe
function strobe acknow ledge

5/010T3 = FSA + DIOIND
acknow ledge received

is received from other system element
R/OIOT3 = ...
F5A = 01049 + ...

(/010O/-/01031/)-+- OJOXOJO = OIOINO Receive 32 data bits from
(0100/1-01031/1) selected element via

RO;WO lines

Set flip-flops CC3 and CC4 S/CC3 = (S/CC3/1) + •.. Receive two condition
according to 01051 and 01052 1 (5/CC3/1) = 01051 OIOINO + ••. code bi ts from se lected

S/CC4 = (S/CC4/1) + •.. element via RO;WO lines

(5/CC4/1) = 01052 OIOINO + ...
Reset flip-flop NT8l S/NT8l = N(5/T8l) Set clock T8l for PH7

(S/T8l) 1= FARWO NPREP

R/NT8l ,= t ••

Sustain PH6 until OIOEXlT BRPH6 = FARWO PH6 NOIOEXIT If no I/O action,

OIOEXlT 010T2 NOIOTl
OIOEXIT rises four clock

=
times after FSA goes true.

S/010T2 = NIOACT If I/O action takes place,

S/OIOTl = OIOINO
NOIOEXlT is delayed
unti I the I/O action is

R/OIOTl = NOIOT3 complete

(See figure 3-192)

PH7 One c lock long

Tal (0100/1- 01031/1 }-+-(AO-A31) Adder ,logic set at PH7 clock Transfer incoming data
bits to A-register

Enable signal (S/SXA) (S/SXA) = FARWO PH6 Preset adder for A--5
NOIOEXlT NRZ in PH8

Set flip-flop RW S/RW = (S/RW) Prepare to wri te into

(S/RW) = FARWO PH7 OlC NRZ private memory

Reset flip-flop NT8l S/NT8l = N(S/T8l) Set clock T8l for PH8

(S/T8l) = FARWO NPREP

R/NT8l = ...
Mnemonic: RO (6C, EC)

(Conti nued)

3-556

Phase

PH8

T8l

PH10
OR

SDS 901172

Table 3-87. Read Direct Sequence (Cont.)

Function Performed Signals Involved Comments

(Entered from PH1 if internal mode)

One c lock long

(AO-A31)--(SO-S31) Adder logic set at PH7 clock Write incoming data or

(SO-S31)-f--(RWO-RW31) RWXS =
memory fault indicator

RW bits in private memory
via sum bus

Set fl ip-flop MRQ S/MRQ = (S/MRQ/1) + •.. Request for core memory
(S/MRQ/1) = FARWD PH8 + ••. cycle

R/MRQ = · ..
Set flip-flop ORQ S/ORQ = (S/DRQ) NClEAR Data request, inhibiting

(S/ORQ) = BRPH10 + ••• transm ission of another
clock unti I data release

R/DRQ = · .. received from memo!')"

"onch to PH 1 0 BRPH10 = FARWO PH8 + •••
S/PH10 • BRPH10 NClEAR + •••
R/PH10 :I: · ..

Sustained until data release
ENDE functions

Mnemonic: RO (6C, EC)

~~----------------~s '----L-------.OIOTl

FF
cDiOTl

r--+----IR
I

FF
COI012

NIOACT--+-------+-t----t •

oL---..r-......
I

~-+~ --tS I
FSA FF

CPU ClOCK---------+----ac 010T3

CLOI EIO---------+-----1 R

Figure 3-192. 010 Timing Flip-Flops, Simplified Logic Diagram

OIOEXIT

,,1172A.3222

3-557

SOS 901172

WRITE DIRECT {'NO; 60, ED}. The WO instruction operates
in one of three modes depending on the state of bits 16
through 19 of the instruction word. If this field contains
X'3' through XIF I, the computer operates in the external
mode, communicating directly with other system elements
without the aid of an input/output unit. The signals are
carried on the read direct/write direct (RO,!WO) lines
consisting of 16 address lines, 32 data lines, two condition
code lines, and various control I ines. If bits 16 through 19
of the instruction word contain X1 1', the interrupt control
mode is entered to alter the various states of the individual
interrupt levels in the CPU interrupt system. If bits 16
through 19 contain zeros, the computer performs internal
control operations.

External Mode. In the external mode, the computer pre­
sents bits 16 through 31 of the effective address to other
elements of the Sigma 5 system on the RO,!WO address lines.
These bits identify a specific element of the Sigma 5 system
that is to receive control information from the CPU. If the
R field of the WO instruction is nonzero, the 32-bit con­
tents of the private memory register specified by the R field
are transmitted to the specified element on the RO,!WO data
lines. If the R field is zero, 32 zeros are transmitted to the
specified element. The specified element may return
information to set bits 3 and 4 of the condition code.

Interrupt Mode. If bits 16 through 19 of the WO instruction
contain 0001, the states of the interrupt levels in the CPU
interrupt system are changed according to the states of bits
16 through 31 of the private memory register specified by
the R field of the instruction. Bit position 16 of register R
contains the selection bit for the highest priority (lowest
numbered) interrupt level within the group, and bit position
31 of register R contains the selection bit for the lowest
priority (highest numbered) interrupt level within the group.
Bits 28 through 31 of the effective address specify the iden­
tification number of the group of interrupt levels to be
controlled by the instruction. Bits 21 through 23 of the
effective address contain a function code that specifies the
type of control to be used.

Internal Mode. If bits 16 through 19 of the WO instruction
contain zeros, the program is in the internal computer con­
trol mode. In this mode the condition code is set according
to the states of the four SENSE switches on the processor
control panel. If a particular SENSE switch is set, the
corresponding condition code bit is set to a one; if a SENSE
switch is reset, the corresponding condition code bit is reset
to zero.

If bit positions 26 and 27 of the internal mode WO instruc­
tion contain ones, the interrupt inhibit bits in the program
status doubl eword (bits 37 through 39) are set, if in the zero

3-558

state, according to bits 29 through 31 of the WO instruction.
If any or all of bits 29 throuqh 31 of the effective address
are ones, the corresponding inhibit bits in the program status
doubleword are set to ones. The current state of an inhibit
bit is not affected if the corresponding bit position in the
effective address contains a zero.

If bit position 26 of the internal mode instruction word
contains a one and bit position 27 contains a zero (bit 25
not set) the interrupt inhibit bits of the program status
doubleword are reset, if in the one state, according to bits
29 through 31 of the WO i nstructi on. If any or all of bi ts
29 through 31 of the effecti ve address are ones, the corre­
sponding inhibit bits in the program status doubleword are
reset to zero. The current state of an inhibit bit is not
affected if a corresponding bit position of the effective
address contains a zero.

When bit positions 25 and 31 of the internal mode WO
instruction contain ones, the ALARM indicator on the
mai ntenance secti on of the processor control panel is set.
The ALARM indicator is reset with an internal mode WO
instruction containing a one in bit position 25.

The CPU program-control led-frequency fl ip-flop (MUSIC)
is toggled with an internal mode WO instruction containing
ones in bit positions 25 and 30. In response to the instruc­
tion, the flip-flop toggles.

An AUDIO signal is generated from the ALARM and MUSIC
flip-flops and connected through the AUDIO switch on the
processor control panel to the computer speaker. When
flip-flop ALARM is set, a 1000-hz AUDIO signal is gener­
ated if the PCP COMPUTE switch is in the RUN position.
The MUSIC flip-flop generates an AUDIO si gnal with a
frequency determined by the rate at which the MUSIC
flip-flop is toggled.

The integral lOP inhibit signal, set when the watchdog
timer run out trap is activated, is reset by an internal mode
WO instruction with ones in bit positions 25, 26, and 29
(or by manual control).

WO Phase Sequence. Preparati on phases for WO are the same
as the general PREP phases for word instructions, paragraph
3-59.

Figure 3-193 shows the simplified phase sequence for the
WO instruction. Table 3-88 lists the detailed logic
sequence during the execution phases.

I
I

PREP

I (P) : PROGRAM
ADDRESS

I
(8) : EFFECTIVE

I ADDRESS

I

I
(A): RR (WRITE

DIRECT
DATA)

I
I
I

(S/SXA) IF R l' 0

I
RlCC

SDS 901172

1_ PH2 I PH3 1 PH6 I
I ! I I

PHI PH7

I AO-31-SO-31-+--DIOO-31/1' MC-I -+- MC I
(IF EXTERNAL MODE) DATA I (S/SXA) IF R:f ° I O+-NT8L

I 816-31-J..-DI032-47/1 I I I
I EFFECTlV,E ADDRESS I I I
I °iNT8L 0 -+-- NT8L 1--1--- DIOFS I

: FIJNCI!ON STROBE I
IINTERNAL MODE! I o--+-NTBL I

KSS-J- CC 8RPH6 1 (S/SXA) I
ill IF NDIOEXIT I

I-+-ALARM O-DIOWD
IF ~25 AND 831 = 1 I I IF DIOEXIT

1 OR 0 -+--MUSIC I IOEN6 IF' NOT I
IF 825 AN,D 830 = 1 I I INTERRUPT AND I

NOIOEXIT I
I-+-, OIOWO I I

OIOINO
I I 'IF FSA RECEIVED I

(S/SXA) I , ' I-+- CC3
IF R :f 0 I I I IF 01051

BRPHa

1-,'- CC4
I ! I IF 01052

I
'8RPH6 I

I Ilf NOIOEXIT I
1 INTERRUPT I INTERlUPT I INTEMUPT I
I

CONTROL I CONTROl 1 COND<? L
MODE: ~: ~ I

I A-S-J.-DAT A-S-J..-OAT A-SJ..-OAT
I INTERRUPT SELECTION IITS I I
I (S/SXA) IF R l' 0 l I I
I I I

,
I

I PH8

I ,
O-r--NT8L

I

I
I
I
I 8RPH10

I
I
I
I
I
I
I
I
I
I
I
I j

I
I
I
I

Figure 3-193. Write Direct Instruction, Phase Sequence Diagram

Table 3-88. Write Direct Sequence

I PH 10

I
I

o-T--NT8L
I-+-MRQ
l-r--ORQ

ENOE

901172A.3223

Phase Function Performed Signars Invorved Comments

PREP At end of PREP:

(P) : Program address Address of next instruction

(8) : Effective address Mode and function

(A) : Contents of private memory Interrupt selection bits
register R

Enable signa I (S/SXA) if RIO (S/SXA) = FARWD (PRE/34 + PH2) Preset adder for A-S
NRZ + ••• in PHI

FARWD = 0U6 (04 05) + •.•

Reset condition code fl ip-flops R!ce = FARWD PRE3 + ••• Prepare to read SE NSE
switches or receive code
from other element

Mnemonic: WD (60, ED)

(Continued)

, 3-559

SDS 901172

Table 3-88. Write Direct Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH1 One clock long
T5L (AO-A31)---(SO-S31) Adder logic set at last PREP clock Present contents of private

memory register R or zeros
to other element via bits

(SO-S31)-f--(DIOO/1-DI031/1) DIOXS =
o through 31 of RD;WD

FARWD PH1 NB1619Z lines
(B 16-B31)-+--(01032/1-DI047/1) DIOXB = FARWO PH1 Present effective address

to other element or inter-
rupt system via bits 32
through 47 of RD;WD
lines

Reset flip-flop NT8L S/NT8L = N(S/T8L) Set clock T8L for PH2
(S/T8L) = FARWD NPREP + •••

R/NT8L
Internal mode (B16-B19 = 0):

(KSS 1-KSS4)~{CC 1-CC4) CCXRWD = FARWD B1619Z PH1 Set condition code
according to PCP SENSE
switches

Set counter, input/output, and S/CIF = (S/CIF /1) + ••. Set interrupt group inhibit
external interrupt group inhibit (S/CIF/1) = INHXWD B29 B27 speci fied by B29 through
flip-flops in program status R/CIF = (R/CIF) B31 if B27 = l. Reset
doubleword (R/CIF) = INHXWD B29 + •.. specified inhibit if B27

S/II = (S/II) + •.. = O. B26 specifies setting
(S/II) = INHXWD B30 B27 interrupt inhibits or

R/ll = (R/II) resetting lOP inhibit
(R/II) = IN HXWD B30 + •..

S/EI = (S/EI)
(S/EI) = INHXWD B31 B27

R/EI = (R/EI)
(R/EI) = INHXWD B31 + •••
INHXWD = CCXRWD OLD B26

Set or reset ALARM indicator on S/ALARM = WDINT B31 Alarm also resets when
processor control pane I WDINT = CCXRWD OLD B25 PCF is toggled (B25 true)

R/ALARM = WDINT + RESET

Toggle program-control led- S/MUSIC = WDINT B30 NMUSIC 1000-hz audio signal
frequency flip-flop (PCF)

R/MUSIC = WDINT B30 transmitted to speaker
when ALARM is set and

Transmit l-hz: alarm or music to AUDIO MUSIC NALARM COMPUTE switch is in =
speaker through AUDIO switch RUN position. PCF out-

+ ALARM KRUN 1 KC put also transmitted to
speaker as AUDIO signal

Reset direct input/output write (R/NDIOWD) = (S/DIOWD) Prepare to transmit infor-
flip-flop NDIOWD

{S/DIOWD} = FARWD PH1 OLD motion to other system
element in interrupt mode

Enable signal {S/SXA} (S/SXA) = FARWD (PH1 +PH3) Preset adder for A---S
NRZ + •.. in PH2

Mnemonic: WD (6D, ED)

(Continued)

3-560

SDS 901172

Tobie 3-88. Write Direct Sequence (Cont.)

Phase Function Performed

PH1 Branch to PH8 if internal mode

T5L
(Cont.)

Set flip-flop NIOWD

Interrupt control mode (B19 = 1):

PH2 One c lock long

T8L (AO-A31)-(SO-S31)

(S 16-S31)-f--(DA T16- DAT31)

Enable signa I (S/SXA)

Reset flip-flop NT8L

PH3 One c lock long

T8L (AO-A31)--- (SO-S31)

(S16-S31)-f--(DAT16-DAT31)

Enable signal (S/SXA)

MC-1-1--MC

Reset flip-flop NDIOFS

Reset fl ip-flop NT8 L

Branch to PH6

Signals Involved

BRPH8 = FARWD B1619Z PH1 + •.•

S/PH8 = 8RPH8 NC LEAR + •••

R/PH8 = ...
S/NIOWD = WDINT 829 + •••

Adder preset at PH 1 clock

OAT = S EWDM n n

EWDM = NB16 NB17 N818 B19
DIOWD

(S/SXA) = FARWD (PRE/34 + PH2)
NRZ + ••.

S/NT8L = N(S/T8L)

(S/T8L) = FARWD NPREP + •••

R/NT8L = ...

Adder preset ot PH2 clock

OAT = S EWDM
n n

(S/SXA) = FARWD (PH1 + PH3)
NRZ + •••

MDC7 = FARWD PH3 + •••

R/NDIOFS = (S/DIOFS)

(S/DIOFS) = FARWD PH3

/01048/ = DIOFS

S/NT8L = N(S/T8L)

(S/T8L) = FARWD NPREP + •.•

R/NT8L = ...
BRPH6 = FARWD PH3 + •••

S/PH6 = 8RPH6 NIOEN NCLEAR + .••

R/PH6 = ...

(Continued)

Comments

Reset integral lOP inhibit
if B25, 826, and B29 are
true

Transfer contents of pri-
vate memory reg ister R to
interrupt system via OAT
lines. Bit 19 in instruc-
tion word specifies inter-
rupt control mode

Preset adder for A-S
in PH3

Set clock T8 L for PH3

Transfer contents of R-
register to interrupt system
if interrupt control mode

Decrement macro-counter
from OOOOOOOO to 11111111
to make instruction
interruptible

Transmit function strobe
on 01048

Set clock T8 L for PH6

Mnemonic: WD (60, ED)

3-561

SDS 901172

Table 3- BB. Write Di rect Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH6 One clock long

TBl (AO-A31)---(SO-S31) Adder logic set at PH3 clock Transfer contents of R-

(S 16-S31)~(DAT16-DAT31) DAT = S EWDM register to interrupt system
n n

Enable signal (S/SXA) (S/SXA) = FARWD PH6 NDIOEXIT Conti nue to present R-
NRZ + •.• register contents to inter-

rupt system until DIOEXIT

Enable signal IOEN6 IOEN6 = FARWD PH6 NEWDM I/O service call enable
NDIOEXIT NMCOO05Z if not interrupt control

mode

Set flip-flop NDIOWD S/NDIOWD = DIOEXIT Clear direct I/O write
flip-flop

Enable signal DIOIND when DIOIND = NDIOT2 DIOT3 FSA is function strobe
function strobe acknowledge

S/DIOT3 = FSA + DIOIND
acknowledge received

is received
(See figure 3-193)

from other system element

R/DIOT3 = ...
FSA = DI049

Set flip-flops CC3 and CC4 S/CC3 = (S/CC3/1) Receive two condition
according to DI051 and DI052

(S/CC3/1) DI051 DIOIND + .•. code bits from selected = element via RD;WD lines
S/CC4 = (S/CC4/1)

(S/CC4/1) = DI052 DIOIND + •.•

Reset fl ip-flop NTBl S/NTBl = N(S/T8l) Set clock T8l for PH7

(S/T8l) = FARWD NPREP + •..

R/NT8l = ...
Sustain PH6 until DIOEXIT BRPH6 = FARWD PH6 NDIOEXIT If not I/O action,

DIOEXIT DIOT2 NDIOTl
DIOEXIT rises four clock = times after FSA goes true.

S/DIOT2 = NIOACT If I/O action takes place,

S/DIOT1 = DIOIND
NDIOEXIT is delayed
unti I the action is

R/DIOT1 = NDIOT3 (See figure 3-193) completed

PH7 One c lock long

TBl Reset flip-flop NT8l S/NTBl = N(S/T8l) Set clock T8l for PH8

(S/TBl) = FARWD NPREP + •.

R/NT8l = ...

Mnemonic: WD (6D, ED)

(Conti nued)

3-562

SOS 901172

Table 3-88. Write Direct Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PH8 One clock long S/MRQ = (S/MRQ/l) + ••.

T8l Set flip-flop MRQ (S/MRQ/l) = FARWD PH8 + ••• Request for core memory

R/MRQ = cycle
~ ~ .

I Set flip-flop DRQ S/DRQ = (S/ORQ) NCLEAR Data request, inhibiting

(S/DRQ) = BRPHIO transmission of another
clock until data release

R/ORQ = ... rece ived from memory

Branch to PH 10 BRPH10 = FARWO PHB + ••.
S/PH10 = NClEAR BRPH 10 + •••

R/PH10 = ...
PHiO Sustained untii data reiease

DR ENDE functions

Mnemonic: WD (6D, ED)

3-563

Paragraph 3-82 SOS 901172

3 -82 Fam i Iy of Input/Output Instructions (FAIO)

GE NERAL. The Sigma 5 CPU uses this family of instruc­
tions to communicate with standard peripheral devices such
as line printers, card readers, and tape punches. If execu­
tion of an input/output instruction is attempted while the
computer is in the slave mode (bit 8 of the current program
status doubleword is a one), the computer aborts the instruc­
tion unconditionally and traps to location X'40'. Indirect
addressing and indexing are performed in the same way as
for the other instructions. With the exception of the AIO
instruction, the 11 low-order bits of the effective address
constitute the I/O address. For the AIO instruction, the
device that initiated the interrupt call returns its I1-bit
I/O address as part of the status response. Following is a
list of instructions that comprise the FAIO:

SIO - Start Input/Output
TIO - Test Input/Output
TOV - Test Device
HIO - Halt Input/Output
AIO - Acknow ledge Input/Output Interrupt

SIO INSTRUCTION. This instruction is used to initiate
an input/output operation in the addressed device. In
response, and based on the contents of the R field, the
addressed lOP returns zero, one, or two words of status
and condition codes CCl and CC2. Also, the addressed
lOP examines contents of private memory register 0
for address of first command doubleword in core memory.i
Figure 3-194 shows the structure of the instruction word,
status format, distdbution of data in the applicable regis­
ters, command doubleword format, and the significance
of the condition codes.

HIO INSTRUCTION. This instruction is used to halt an
input/output operation in the addressed device. If the
device is in the interrupt pending condition, the condition
is cleared. Information shown in figure 3-194 also 'applies
to the HIO instruction, with the following exceptions:

a. The contents of private memory register 0
are not examined.

b. There is no command doubleword associated with
an HIO instruction.

c. Condition codes are interpreted as follows:

1. CC1 CC2 = Address not recognized

2. NCCl CC2 = Address recognized but device
controller was busy at the time of the HIO instruction

d. FUSIO is false.

TIO INSTRUCTION. ThIs instruction tests the current
status of the addressed device, device controller, and

3-564

lOP. No operation is initiated or term inated. Informa­
tion shown in figure 3-194 also applies to the TIO instruc­
tion, with the following exceptions:

a. The contents of pri vate memory regi ster 0
are not examined.

b. There is no command doubleword associated with
a TIO instruction.

c. Condition codes are interpreted as follows:

1. CC 1 CC2 = Address not recognized

2. CCl NCC2 = lOP busy

3. NCCl CC2 = SIO cannot be accepted

d. FUSIO is false.

TOY INSTRUCTIO N. This instruction tests conditions in
the addressed device not obtainable by means of a TIO
instruction. Operation of the device, device controller,
and lOP are not affected by this instruction. Informa­
tion shown in figure 3-194 also applies to the TOY
instruction, with the following exceptions:

a. Jhe co.ntents ,of private memory register! 0
are not examined.

b. There is no command doubleword associated with
a TOV instruction.

c. Condition codes are interpreted as follows:

1. CCl CC2 = Address not recognized

2. CCl NCC2 = lOP busy

3. NCCl CC2 = Oevi ce-dependent condition
exists

d. FUSIO is false.

AIO INSTRUCTION. This instruction is executed in re­
sponse to an interrupt call issued by any device controller
and is used to determine which device controller raised the
interrupt ca II and for what purpose. In response, the high­
est priority device controller with an interrupt pending
returns its address and condition codes CC 1 and CC2,
which specify the type of interrupt. Figure 3-195 illus­
trates the structure of the instruction word, the status for­
mat, and the significance of condition codes CC 1 and CC2.

o 1

INSTRUCTION *
FORMAT

+

4C

OPCODE

ASTERISK IN 8IT
POSITION 0 INDICATES
INDIRECT ADDRESSING

78

R x

SOS 9011n

DEVICE ADDRESS

~
L DEVICE CONTROLLER

ADDRESS

o SINGLE UNIT
----+ DEVICE CONTROLLER

MULTI UNIT
1 ----+ DEVICE CONTROLLER

~-----. lOP ADDRESS

....... --------.. NOT USED

~-Z-E-R-O-_-_-_-_-_ -----.:S-T-A-T-U-S-N-O-: :~::R;:LD
I : ODD • ONE WORD OF STATUS REQUIRED

SINGLE-WORD
STATUS FORMAT

TWO-WORD {
STA TUS FORMAT

i EVEN---"""".~TWO WORDS OF STATUS REQUIRED

I I
I
I L ,
I
I

R

~ ~r--------------~I--C~U-R-RE-N-T--C-O-MMA---N-D~I
I - - - I DOUBlEWORD ADDRESS R
I OI,IZI) i • r J i .' 7 i. i t' 10' II ',Z' U' ,.'15 ,.' '7',.'"i.JZlin'zi2.i2~'2.12i2.i2t'1JJi),
i
I

L --1, , ,I~~. R~T~~~~E, , , I, , , ~~E,C,~,N~, , , , IAu1
o , Z) • 5 6 7 • , 10 II IZ' U' 1.'1' I" 17'''' "·NZI·n·Z3·Z. 2,'26-2721 :;t'1JJ Ji

FIRST COMMAND DOUBLE­
WORD ADDRESS STORED RO
IN GENERAL REGISTER 0

COMMAND
DOUBLEWORD FORMAT

CONDITION CODES

TRUE SIGNALS

EVEN

~rT~~~~~~~~rr~~~~~~~WORD

CCl lOP BUSY
CC2 SIO NOT ACCEPTED
CCl CC2 = ADDRESS NOT RECOGNIZED

FAIO, FUSIO

901172A.3231

Figure 3-194. Start Input/Output Instruction Format

3-565

SDS 901172

o 1 78 1112 1415 2021 2324 31
EFFECTIVE WORD

* 6E R x
I 000 1

~NOT USED

1

ASTERISK IN BIT
POSITION 0 INDICATES
INDIRECT ADDRESSING

WHEN CODED 000, SPECIFIES
~ STANDARD I/O SYSTEM

INTERRUPT ACKNOWLEDGMENT

STATUS WORD FORMAT

CONDITION CODES

TRUE SIGNALS

------~ NOT USED

~---------t.~ INDEX FIELD

t------ ZERO -----.... STATUS NOT REQUIRED

----r--,-- NOT ZERO-----1.~STATUS REQUIRED

i
i

NCCl NCC2 = NORMAL INTERRUPT RECOGNITION
NCCl CC2 = UNUSUAL INTERRUPT RECOGNITION
CCl CC2 = NO INTERRUPT RECOGNITION

I

FAIO, FUAIO

Figure 3-195. Acknowledge Input/Output Interrupt Instruction Format

I/O PHASE SEQUENCE CHARTS. Preparation phases for Type Sequence
the I/o instructions are the same as the general PREP phases Instruction of lOP Chart
described in paragraph 3-59. The execution phases of the
I/O instructions are described in four phase sequence charts

SIO, HIO, Integral Table 3-90 and illustrated in associated flow diagrams as follows:
TIO, TDV

Type Sequence Flow
Instruction of lOP Chart Diagram AIO MIOP Table 3-91

SIO, HIO MIOP Table 3-89 Figure 3-196
TIO, TDV AIO Integral Table 3-92

3-566

R

fOl172A.3232

Flow
Diagram

Figure 3-197

Figure 3 -198

Figure 3 -199

50S 901172

(I) : NIADD
(D): 10PADD
(P): 10PADD
IF SIO,,* (A): FIRST COW ADD«ESS

/FNOC/-/FN22/ (FUNCTION
LINES SET)

/I0PAOC/-/IOPA2C (lOP ADDRESS
LINES SET)

DXDRS (DC/DEVICE ADDRESS
ALIGNED IN D-REGISTER)

S/P26 (20+-P)
(S/SXD) (PRESET FOR D--:-S)

(S/SXA) (PRESET FOR A-S)
S/MlXS ("EPARE TO WRITE INTO

X '20' OF CORE MEMOlY)
S/MltQ
S/DltQ
It/CCI
It/CC2

i
s/SWO (PREVIOUS

OPERATION
COMPlETE)

r-----------~~----~

C31 (SET CORE ADDRESS
TO X '21')

IRPH4

IRPH9

I>----S-+-RW
(WRITE STATUS AND
IYTE COUNT INTO
PRIVATE MEMORY
REGISTER R)

NRZ R31

S/MltQ
S/DltQ
I--S+-P

(S/SXD)
S/RW

IRPH9

YES

YES

CON02

NSWO

(S/SXD) [PREPARE TO WRITE SECOND]
S/RW WORD INTO PRIVATE
It/NLR31 F MEMORY REGISTER Ru I

S/MRQ [PREPARE TO READ 1
s/DIt~ NEXT INSTRUCTlONj
I-~P

[

WRITE SECOND WORD]
o--S+-RW INTO "IVATE

'------------.,.,. MEMORY REGISTER Rul

f01172A.lUl

I

Figure 3-196. 510, HIO, TlO, TDV, Flow Diagram for MIOP

3-567

SOS 901172

Table 3-89. SIO, TIO, TOV, HIO Sequence for MIOP

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(B): Program address New instruction address

(D): 10PAOO lOP, device controller,
devi ce address

(P): IOPAOO

If SIO, (A): RR First command double-
word (COW) address

PHl One clock long
T5L

Opcode transferred from
O-register to function lines

(02, 6, 7) --- (FNCOC, 1 C, SIO TIO TOV HIO Specify the type of
2C)

/FNCOC/ 0 0 0 0
instruction to be
executed

/FNC1C/ 0 0 1 1

/FNC2C/ 0 1 0 1

lOP address transferred from the
P-register to the address lines:

(P21, 22, 23) --- (SW5, 6, 3) S/SW5 = (S/SW5) + ••• Specify one of eight

(S/SW5) FAIO PH 1 P21 + •••
lOP's =

FAIO = OU4 (0405)

R/SW5 = (R/SW5)

S/SW6 = (S/SW6) + •••

(S/SW6) = FAIO PHl P22

R/SW6 = RESET/A

S/SW3 = (S/SW3) + •••

(S/SW3) = FAIO PHl P23

R/SW3 = RESET/A

(024- 031)-+-- (00- 07) OXOR8 = (FAIO PH 1) + ••• Align device controller/
devi ce address by means
of a right circular shift.
Bits 0 through 7 of the
O-register wi II be
trans ferred to the A-
register during PH2

Mnemoni c: SIO (4C, CC)
TIO (40, CD)
TOV (4f, CE)
HIO (4F, CF)

(Continued)

3-568

SOS 901172

Table 3-89. SIO, TIO, TOV, HIO Sequence for MIOP (Cont.)

Phase Function Performed Signals Involved Comments

PHl 2O-+--P S/P26 = (S/P26) + ••• Preset P-register to
T5L

(S/P26) (FAIO PH l) + ••• X '20' by forcing a 1 = (Cont.) into bit 26 and resetting
R/P26 = PX + ••• the other 16 bits. Our-

nv - FAIO PHi + ••• ing PH2 a word is trans-
r/\

m i tted to the addressed
MIOP via location
X '20' in core memory

Enable signal (S/SXO) (S/SXO) = (FAIO PH l) + ••• Preset adder for
O---S In PH2

PH2 One clock long
T5L

(00-07) ---(SO-S7) Adder logi c set at PH 1 clock

(SO - S7) -+-(AO - A7) AXS/O = AxsI4 + ••. Transfer device con-

AXS/4 = AXS/2 •••
troller/device address
to the A-register

AXS!2 = (FAIO PH2) + •••
If R field is not zero (NRZ), S/A9 = (S/ A9) 10AXST + .0 0 Generate R portion of
set flip-flop A9 (S/A9) = (FAIO PH2) NRZ + 0 • 0

word to be stored in

10AXST (FAIO PH2) + 0 ••

location X'20' of =
R/A9 AX;'l

core memory
=

If R field is not zero and even S/A8 = (S/A8) 10AXST + .0.

(NR31), set fl ip-flop A8 (S/A8) = (FAIO PH2) NR31
NRZ +. o.

R/A8 = AX/l

Enable signal (S/SXA) (S/SXA) = (FAIO PH2) + •.. Preset adder logic for
A-S in PH3

Set flip-flop MBXS S/MBXS = (S/MBXS) Prepare to transfer

(S/MBXS) = (FAIO/l PH2) contents of A-register

(NIOPAOO + 0 0 •)
to core memory

NIOPAOO = SW5 + SW6 + SW3 Indicates multiplexing

R/MBXS = lOP
o 0 •

I I
Set flip-flop MRQ S/MRQ = (S/MRQ) Memory request for

(S/MRQ) = (S/MBXS) + •••
transferring contents of
A-register

R/MRQ = ...
Set flip-flop ORQ S/ORQ = (SjDRQ) NCLEAR-2 Inhibits transmission of

(S/DRQ) = (S/MBXS) + •••
another clock unti I data
release is received from

R/DRQ = • 0 • core memory

Reset flip-flops CCI and CC2 R/CCI = (R/CCl) CCI and/or CC2 are set

(R/CC1) = (R/CC 1/1) + •••
in PH4 if specified by
conditions in the

(R/CCI/l) = (FAIO PH2) + •• 0 addressed MIOP

Mnemonic: SIO (4(, CC)
TlO (40, CD)
TOV (4E, CE)
HIO (4F, CF)

~---------- -

(Continued)

3-569

SDS 901172

Table 3-B9. SIO, TIO, TDY, HIO Sequence for MIOP (Cont.)

Phase

PH2
T5L

(Cont.)

Function Performed

If NPR, set flip-flop SWO

PH3 One or more clocks long, de-
DR pending on the state of flip-flop
or SWO. First clock controlled by

T5l data release signal DR. Subse­
quent clocks, if any, are T5l

(AO-A31) --(SO-S31)

(SO-S31) -- (MBO-MB31)

If R field odd (R31), increment
P-register

If flip-flop SWO was not set in
PH2, set SWO when PR goes low

If NSWO, enable signal BRPH3

If SWO, set flip-flop IOCONST

PH4 Two or more clocks, depending
T5l on the state of flip-flop SWO.
or First clock T5L. Subsequent

TBl clocks, if any, T5l, except for
the last clock. Last clock TBl

If PR, reset flip-flop SWO

3-570

R/CC2

(R/CC2)

(R!CC2I1)

S/SWO

(S/SWO)

R/SWO

Signals Involved

= (R/CC2)

= (R/CC2l1) + .•.

= (FAIO PH2) + •••

= (S/SWO) NClEAR + •••

= (FAIO PH2) NPR + •••

= (R/SWO)

Adder logic set at PH2 clock

MBXS = Set at PH2 clock

PUC31

S/SWO

(S/SWO)

R/SWO

BRPH3

= (FAIO PH3) R31 + •••

= (S/SWO) NClEAR-2

= (FAIO PH3) NPR + •••

= (R/SWO)

= FAIO PH3-B NSWO-1
+ •••

S/IOCONST = (S/IOCONST)

(S/IOCONST) = (FAIO PH3) SWO

R/IOCONST

R/SWO

(R/SWO)

= (R/IOCONST) + ••.

= (R/SWO)

= (FAIO PH4) PR + ...

(Continued)

Comments

Early det~ct of NPR,
indicating that previous
operation has been
completed. If NSWO,
NPR is checked again
in PH3

Transfer contents of
A-register into location
X '20' of core memory

Set core memory ad­
dress to X '21'. When
R is odd, the addressed
MIOP places a single
word of status in loca­
tion X '21' of the core
memory

Wait for NPR from pre­
vious operation

Sustain PH3 until flip­
flop SWO gets set

Raise control strobe
before entering PH4

Wait unti I addressed
MIOP returns PR signa I
in response to the con­
tro� strobe signa I

Mnemonic: SIO (4C, CC)
TIO (4D, CD)
TDY (4E, CE)
HIO (4F, CF)

SOS 9011n

Table 3-89. SIO, TIO, TOV, HIO Sequence for MIOP (Cont.)

Phase Function Performed Signals Involved Comments

PH4 If SWO, enable signal BRPH4 BRPH4 = (FAIO PH ..) SWO Sustain PH4 while flip-
T5L NSW2 flop SWO is in the set
or state

T8L
if NSWO, and R fieid is zero BRPH9 = (FAiO PH4) NSWO If R is zero, status is

(Cont.)
(RZ), enable signal BRPH9 RZ + ••• not required

If NSWO, and R field is not zero S/MRQ = (S/MRQ/2) + ••• Memory request for
(NRZ), set flip-flops MRQ and

(S/MRQ/2) = (FAIO PH4)
reading status word from

ORQ
(NRZ NSWO) + ••• X '20' (R even) or X '21'

(R odd) of core memory
R/MRQ = ...
S/ORQ = (S/ORQ) NCLEAR Inhibits transmission of

(SiDRQ) = (S/MRQ/2) + ••• another clock until
data ielease signal is

R/ORQ = ... received from core
memory

if NSWO, set fiip-fiops CCi S/CCi = (FAiO PH4) NSWO Setting of CCl and
and/or CC2 if specified CONOl + ••• CC2 is controlled by

R/CCl (R/CCI)
conditions in the

=
addressed MIOP

S/CC2 = (FAIO PH4) NSWO
COND2

R/CC2 = (R/CC2)

If NSWO, reset flip-flop R/IOCONST = (R/IOCONST) + ••• Drop control strobe in
10CONST

(R/IOCONST) = (FAIO PH5) NSWO
response to PR

+ •••

PH5 One clock long
NSWO

(MBO-MB31) - (CO-C31) CXMB = DG=/OG/ Transfer word from 10-
DR

I I cation X '20' (R even) or
(CO-C31)-I-- (DO-D31) DXC-O thru = DXC

-1 1

DXC-3
X '21' (R odd) of core
memory into the C-

I DXC = (FAIO PH5) NSWO register and then to
+ ••• the D-register

If R even (NR31), increment PUC31 = (FAI0/1 PH5) NR31 Prepare to read second
P-register and set flip-flop MRQ NSWO + ••• of two status words out
and reset flip-flop NMRQPl

S/MRQ (S/MRQ)
of core memory. Lo-

= cation of this word is
(S/MRQ) = (S/MRQ/3) + ••• X'21'

(S/MRQ/3) = (FAIO PH5) NSWO NR31

R/MRQ = ...
S/NMRQPl = N (SMRQ/3) + ••• Delays setting of flip-

R/NMRQP1 =
flop DRQ ...
Mnemoni c: SIO . (4<:, -CC)

TIC (40, CD)
TOV (..e, CE)
HIO (4F, CF)

(Continued)

3-571

SOS 901172

Table 3-89. SIO, TIO, TOY, HIO Sequence for MIOP (Cont.)

Phase Function Performed Signals Involved Comments

PH5 If R is odd (R3l), enable signal (S/SXO) = (FAIO PH5) NSWO Preset adder for
NSWO (S/SXO) and set flip-flop RW R31 + ••• O~S in PH6

DR
S/RW (S/RW/l) + ••• Prepare to transfer

(Cont.) =
(S/RW/1) = (S/RW) + ••• status word into private

memory register R
(S/RW) = (FAIO PH5) NSWO

R31

R/RW = ...
PH6 One c lock long. Clock is T5L if
T5L R is even, T8L if R is odd
or

If R is even, set flip-flop ORQ and S/ORQ = (S/ORQ) NCLEAR Inhibits transm ission of
T8L

shift O-register 8 places to the another clock unti I
right

(S/ORQ) = MRQP1
data release signal

R/ORQ = ... received from core
memory

OXOR8 = (FAIO PH6) + ••• First step of COW
address alignment.
Meaningful only if
R is even

If R is odd:

(00-031) --(SO-S31) Adder logic set at PHS clock Transfer lOP status and

(SO-S3)-+--- (RWO-RW31) RWXS/O- = RW
byte count from

RWXS/3
O-register to private
memory register R

Enable signal BRPH9 BRPH9 = (FAIO PH6) NSWO If R is odd, transfer of
R31 + ••• additional status infor-

mation wi" not be
performed

PH7 One clock long
DR

Enable signal OXOR8 OXOR8 (FAIO PH7) + ••• Second and final step =
of COW address
alignment

(MBO-MB31) --- (CO-C31) CXMB = DG=/DG/ Transfer second status
word from location
X 1211 of core memory
to the C-register. Dur-
ing PH8 contents of
C-register wi II be
clocked into the
O-register

Mnemonic: SIO (4C, CC)
TIO (40, CD)
TOY (4E, CE)
HIO (4F, CF)

(Continued)

3-572

50S 901172

Table 3-89. 510, TIO, TOV, HIO Sequence for MIOP (Cont.)

Phase Function Performed Signals Involved Comments

PH7 Enable signal (S/SXD) (S/SXD) = (FAIO PH7) + ••• Preset adder for
DR O--S in PH8

(Cont.)
Set flip-flop RW S/RW = (S/RW/l) + ••• Prepare to write CDW

(S/RW/l) = (S/RW) + address into private ...
memory register R

(S/RW) = (FAIO PH7) + ...

R/RW = · ..
PH8 One clock long
T8l (DO-031) ---(SO-S31) Adder logi c set at PH7 clock Trans fer COW address

from D-regis.ter to
(SO-S3l)-+- (RWO-RW31) (R) RWXS/O- = RW private memory regis-

RWXS/3 ter R

(CO-C31) --+-- (DO-D31) OXC-O thru = DXC Transfer second word
OXC-3 of status {lOP status

DXC = (FAIO PHS) + •.•
and byte count) into
the D-register

PH9 One clock long
T8l

If R field not zero (NRZ) and (5/5 X D) = IOBR9 NSWO + ••• Preset adder for
even (NR31), enable signal D~S in PH10
(S/SXD), set flip-flop RW, and IOBR9 = FAIO/l NR31 NRZ
reset flip-flop NlR31 F PH9

S/RW = (S/RW/l) Prepare to write lOP
I status and byte count

I
(S/RW/l) = (S/RW) + ••• into private memory

register Ru 1
(S/RW) = iOBR9 NSWO + •••

I
R/RW = · .. I

I I S/NlR31 F = N(S/lR31) I Force a one on private
memory address Ii ne

(S/lR31) = (FAIO PH9 NSWO) lR31 during PH 10 to
+ ••• se lect private memory

register Ru 1
R/NlR31 F = · ..

Mnemonic: SIO (4C, CC)
no (40, CD)
TOY (4E, CE)
HIO (4F, CF)

(Continued)

3-573

SDS 901172

Table 3-89. SIO, TIO, TDV, HIO Sequence for MIOP (Cont.)

Phase Function Performed Signals Involved Comments

PH9 (BO-B31) --- (SO-S31) SXB = PXSXB NDIS Transfer next instruc-
T8l tion address to
Cont.) PXSXB = NFAFl NFAMDS P-register

PH9

(S 15-S31) ---I-- (P15-P31) PXS = PXSXB + •••

Set flip-flops MRQ and DRQ S/MRQ = (S/MRQ) Prepare to read next
instruction from core

(S/MRQ) = (S/MRQ/2) + ••• memory

(S/MRQ/2) = PXSXB NINTRAP2
+ •••

R/MRQ = ...
S/DRQ = (S/DRQ) NClEAR Inhibits transmission

of another clock until
(S/DRQ) = (S/MRQ/2) data re lease is re-

+ (S/DRQ/2) + ••• ceived from core
memory

(S/DRQ/2) = PH9 + •••

R/DRQ = ...

PH10 One clock long
DR

If R not zero (NRZ) and even
(NR31):

(00-031) ---(SO-S31} (S/SXD) = PH 10 + ••• Transfer lOP status
and byte count from

(SO-S31}-+-- (RWO-RW31) (Ru1} RWXS/O- = RW D-register to private
RWXS/3 memory register Rul

EN DE functions

Mnemonic: SIO (4C, CC)
TlO (40, CO)
TOY (4E, CE)
HIO (4F, CF)

3-574

BRPH3

50S 901172

(8): NIADD (NEW INSTRUCTION ADDRESS)
(D): 10PADD (lOP ADDRESS)
(P): 10PADD
IF SIO =* (A): FIRST COW ADDRESS

..._--1-----.

/HIO/
+ DECODED FROM OPCODE AND

/S~O/ I
IT:OI APPLIED TO THE DEVICE CONTROLLERS

/TDV/ I·
NSW5 }
NSW6 INTEGRAL lOP ADDRESS
NSW3
DXDR8 (DC/DEVICE ADDRESS ALIGNED IN D-REGISTER)
(S/SXD) (PRESET FOR 0-S)

.----1----.

(PREVIOUS OftERATION COMPlETE)

or

A

R/SW2
S/IOFS (RAISE FUNCTION STROBE)

...----.t R/NIOFM
R/NAXRR
S/SWS

10FM CAME TRUE AT
AXRR }

NIOFRS PH .. CLOCK
NIOFR9
(RRO-RR31) -r- (AO-A31)
BRPH5

10fM
10FR9
NIOFRS

S/CCI

S!CC2

,
\./

AXRR/6
(1I16-1131)-+--(AI6-A31)
R/SWl

, • VALST ~SIO NCCI NCC2

S/RW
R/NIOFM

'01172A.3234/1

Figure 3-197. 510, HID, no, TOY Flow Diagram for Integral lOP (Sheet 1 of 2)

·3-575

(SO-S31) +-(RWO-RW31)
(CLEAR OLD STATUS)
(S/SXA) (PRESET FOR A-S)

(FRO-FR7) +--(NJ-A7)

50S 901172

AXAL8 (ALIGN MS8 OF COW IN A-REGISTER)
(RR24-RR31)-+-(A24-+--A31)
(STORE LS80F COW IN A-REGISTER)
(OFRS
(OFR9
(OFM
S/rN
BRPH5

(NJ-A31 >-- (SO-S31)+-(RWO-RW31) (R)
R/IOFS (DROP FUNCTION STROU) (STORE DEVICE CONTROLLER STATUS IN A-REGISTER)

R/NLR31F
(SELECT Ru 1)

)-___ ~ R/IOCONST (DROP CONTROL STROlE)

(AO-A31) - (SO-S31) -+- (RWO-RW31) (Ru 1)
o -+-RWI5
AXZ

YES

(S/AXRR/4)
S/IOFRB
R/NIOFM
BRPH5 o

8RPH5
8RSW13
(ONL Y ONE WORD OF STATUS REQUIRED)

(RR24-RR31)-(A24-A31)
(STORE MS8 OF COW IN A-REGISTER)
IOFRS
NIOFR9
IOFM
S/IOFRS
S/IOFR9
R/NIOFM
BRPH5

NO

YES S/IOFRS
R/NIOFM
S/RW
(S/SXDM1)
BRPH5

SXDMI
AXS
RWXS/2
BRPH9

AXAL
(S/SXA)
S/IOFRS
S/IOFR9
S/NIOFM
S/RW
SX8
PXS
S/MRQ
S/DRQ

(AO-A31)-(SO-S31)
(SI6-S23l-+--(RWI6-RW23)
Riswo .

BRPH9

SX8
PXS
S/MRQ
S/DRQ

'01172A..1234/2 J
~--j

Figure 3-197. 510, TIO, TOV, HIO Row Diagram for fntegraf fOP (Sheet 2 of 2)

3-576

50S 901172

Table 3-90. SIO, TIO, TOV, HIO Sequence for Integral lOP

.
, Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(/(B): Program address New instruction address
Ir\ \. IOPADD lOP, device controiier, ,"' , ... ,.

dev i ce address

, (P): 10PAOO
I

L If SIO, (A) : RR First command double-
word (COW) address

PH1 One clock long
T5L

Opcode decoded from the /SIO/ FUSIO NIOCON By means of the func-=
contents of the O-register, NPH10 tion indicator lines the
causing the appnJpriate

V FUSIO I = OU40LC integrai iOP notifies the
function indicator line to be appropriate device con-
raised /HIO/ = 0607 NIOCON troller of the type of

NPH10 function to be

/TOV/ = N02 06 N07 performed

NIOCON NPH10

/TIO/ = N06 07 NIOCON
NPH10

10CON = 10SC + lOIN Service call pending

(P21, 22, 23) -f--(SW5, 6, 3) S/SW5 = (S/SW5) + ••• Integral lOP is selected

(S/SW5) = FAIO PHl P21 when SW5, SW6, and
SW 3 are fa Ise

R/SW5 = (R/SW5)

S/SW6 = (S/SW6) + ••• ."

It: /C\l.11.. \ = rAJ'"' DU, D'V\ I

\..1/ ..IY'fUj rl"'\IV rn I ... ££ T •••

R/SW6 = RESET/A

S/SW3 = (S/SW3) + •••

(S/SW3) = FAIO PH1 P23

R/SW3 = RESET/A

(024-031)-f-- (00-07) OXOR8 = (FAIO PH 1) + ••• AUgn device controller/
device address by means
of a right circular shift.
Bits 0 through 7 of the
O-register wi II be
transferred to the A-
register during PH2

Enable signal (S/SXO) (S/SXO) = (FAIO PHl) + ••• Preset adder for
O~S in PH2

Mnemonic: 510 (4<:, eC)

-- TlO (40, CD)
TOV (4E, CE)
HIO (4F, CF)

(Continued)

3-577

SOS 901172

Table 3-90. SIO, TIO, TOY, HIO Sequence for Integral lOP (Cont.)

-~" ~~~:

1 Phase Function Performed Signals Involved Comments

PH2 One clock long
T5L

(00-07) --- (SO-S7) Adder logi c set at PH 1 clock

(50-57) -+-- (AO-A7) AXS/O = AX5/4 Transfer device con-

AXS/4 = AXS/2
troller/device address
to A-register

AXS/2 = (F AIO PH2) + •••

If R field is not zero (NRZ), set S/A9 = (S/ A9) IOAXST Generate R portion of
flip-flop A9 (S/A9) = (FAIO PH2) NRZ + ••. word to be stored in

IOAXST = (FAIO PH2) + ••.
O-register

R/A9 = AX/l

If R is not zero and even (NR31), S/AB = (S/AB) IOAXST
set flip-flop AB (S/AB) = (FAIO PH2) NRZ

NR3l

R/AB = AX/l

Enable signal (S/SXA) (S/SXA) = (FAIO PH2) + ••• Preset adder for
S~A in PH3

Reset flip-flops CCl and CC2 R/CCl = (R/CCO Flip-flops CCl and/or

(R/CC1) - (R/CC1/l) + •••
CC2 are set duri ng PH5
SWB SW7 if specified

(R/CC1/l) = (FAIO PH2) + ••• by conditions in the

R/CC2 = (R/CC2)
se lected devi ce
controller

(R/CC2) = (R/ CC2/1) + •••

(R/CC2/1) = (FAIO PH2) + •••

If NPR, set flip-flop SWO S/SWO = (S/SWO) NCLEAR + ••• Early detect of NPR,

(S/SWO) = (FAIO PH2) NPR + ... i ndi cati ng that previous
operation has been

R/SWO = (R/SWO) completed. If NSWO,
NPR is checked again
during PH3

PH3 One or more clocks long, depend-
T5L ing on the state of flip-flop SWO

(AO-A31) ~ (SO-S31) Adder logi c set at PH2 clock

(SO-S31) -+- (00-031) OXS = FAIO PH3

Mnemoni c: SIO (4(, CC)
TIO (40, CO)
TOY (4E, CE)
HIO (4F, CF)

(Continued)

3-57B

50S 901172

Table 3-90. SIO, TIO, TOV, HIO Sequence for Integral lOP (Cont.)

Phase Function Perfonned Signals Involved Comments

PH3 (AO-A]) -f--- (IOOAO-IOOA7) IOOAXA = (FAIO PH3) + ••• Transfer device con-
T5L troller/device address
(Cont.) to the IOOA-register.

From here the informa-
tion is transmitted on
Ii nes /DAO/ through
/OA7/ to the devi ce
controlfers associated
with the integral lOP

(AO-A?) ~ (IOFRO-IOFR7) IOFRXA = FAIO PH3 Transfer device
controller/device
address to the IOFR-
register. Information
stored in this register
is used to select the
appropriate IOFM-
register

If flip-flop SWO was not set in S/SWO = (FAIO PH3) NPR + ••• Wait for NPR from
PH2, set SWO when PR goes low

R/SWO = (R/SWO)
previous operation

If NSWO, enable signal BRPH3 BRPH3 = FAIO PH3 NSWO + ••• Sustain PH3 unti I flip-
flop SWO gets set

If SWO, set flip-flop IOCONST S/IOCONST = ($/IOCONST) Raise control strobe

(S/IOCONST) = (FAIO PH3) SWO before entering PH4.
IOCONST will be reset

R/IOCONST = (R/IOCONST) + ••• at the end of PH5 SW13

PH4 Two or more clocks, dependi ng on
Trl /r"'IC"T /
I,) l- I ~I"I")II

Set flip-flop SW2 S/SW2 = (S/SW2) Wait for /CNST/ to be

(S/SW2) ~ (FAIO PH4) 10PAOO
returned through the

I I lOP priority cable.
eNST + •••

/CNST/ is derived
CNST = /CNST/ NIOPOP from 10CONST

(IOCONST + •••)

10PAOO = NSW5 NSW6 NSW3 Indicates integral lOP

Enable signal BRPH4 BRPH4 = (FAIO PH4) SWO NSW2 Sustain PH4 unti I flip-
flop SW2 has been set

If flip-flop SW2 is set:

Reset flip-flop SW2 R/SW2 = (R/SW2)

(R/SW2) = FAIO PH4 SW2 + ...

Mnemonic: 510 (4C, CC)
TIO (40, CD)
TOV (4E, CE)
HIO (4F, CF)

(Contmued)

3-579

SOS 901172

Table 3-90. SIO, TIO, TOV, HIO Sequence for Integral lOP (Cont.)

Phase Function Performed Signals Involved Comments

PH4 Set flip-flop 10FS S!IOFS = (S/IOFS) Raise function strobe
T5L

(S/IOFS) = FAIO PH4 SW2 + ••• to device controllers
(Cont.)

R/IOFS = (R/IOFS) Will be reset during
PH5 SW13

Reset flip-flops NIOFM and S/NAXRR = N(S/AXRR) Prepare to read byte
NAXRR

(S/AXRR) (S/AXRR/2) + ••• address and lOP status =
from lOP fast memory,

(S/AXRR/2) = (FAIO/1 PH4) SW2 area 00. Byte address
+ ••• will only be stored

R/NAXRR =
temporari Iy and then · .. replaced by the byte
count

S/NIOFM = N(S/IOFM) Select lOP fast memory

(S/IOFM) = (5/ AXRR/2) + •••
registers

R/NIOFM = · ..
Set flip-flop SW8 S/SW8 = NRESET/A BRSW8+ ... Used to define the first

BRSW8 = (FAIO PH4) SW2 + ••• two subphases in PH5

R/SW8 = · ..
PH5 One or more clocks, depending
SWO on the state of flip-flop SW7
SW8
NSW7 Enable signal BRPH5 BRPH5 = (FAIO PH5 SWO) NSW 14 Sustain PH5 during
T5L (VAlST + NSW13) integral lOP sequence

VAlST = FUSIO NCC1 NCC2 through subphase SW 13
if not SIO, and through
SW14 if SIO and valid
start • Vafid start
occurs if during an SIO
the addressed devi ce
controller returns
NCCl and NCC2,
i. e., CCl and CC2
will remain reset

Maintain flip-flop SW8 in set S/SW8 = NRESET/A BRSW8 + ... Sustain subphase SW8
state

BRSW8 FAIO PH5 SW8 while flip-flop SW7 is =
NSW7 + ••• in reset state

R/SW8 = · ..

Mnemonic:SIO (4C, CC)
TIO (40, CD)
TDV (4E, CE)
HIO (4F, CF)

(Continued)

3-580

SOS 9011n

Table 3-90. SIO, TIO, TDV, HIO Sequence for Integral lOP (Conto)

Phase Function Performed Signals Involved Comments

PH5 Set flip-flop SW7 S/SW7 = (S/SW7) Wait for either FSL or
SWO

(S/SW7) FAIO PH5 SW8
A VO response from

SW8 = device controller sys-
NSW7

NSW7 (FSL + AVO)+ ... '
tem. FSL signifies

T5L R/SW7 = (R/SW7) that one of the device
(Conto) controllers recognized

the address; AVO
signifies that the
addressed device con-
troller is not present in
system

(RRO-RR31)-,l-- (AO-A31) AXRR = Preset at PH4 clock Load word from I/O

IOFM = Preset at PH4 dcck
fast memory register,
area ~ into A-register

NIOFR8 = Reset during previous
operation

NIOFR9 = Reset during previous
operation

Maintain flip-flop NIOFM in S/NIOFM = N(S/IOFM) Prepare to read byte
the reset state and set flip-flop

(S/IOFM) = (S/AXRR/6)'+ 000

count from lOP fast
IOFR9 memory register,

(S/AXRR/6) = (FAIO PH5) SW8 area 01
NSW7 NFUMH + ... -

R/NIOFM = o 0 0

S/IOFR9 = (S/IOFR910POP)
I

(S/IOFR9) (S/AXRR/6) + 000

I

I
=

I R/IOFR9 = o 0 0

PH5 One clock long

I I
SWO

Set flip-flops CCl and CC2,. if S/CCl FAIO PH5 SW8 SW7 Setting of CCl and = SW8
specified NDOR + •• 0 CC2 is controlled by

SW7 I I
T5L R/CCl = (R/CCO

conditions in the
addressed devi ce

S/CC2 = FAIO PH5 SW8 SW7 controller
NIOR + •••

R/CC2 = (R/CC2)

(RR24-RR3l) -+- (A24-A3l) AXRR/3 = AXRR/13 + ••• Load bytes 3 and 2

AXRR/13 = AXRR/6
(bits 16 through 31)
from I/O fast memory

AXRR/6 = FAIO PH5 SW7 SW8 register to A-register.

Mnemonic: 510 (4C,' CC)
TID (40, CO)
TOV (4E, CE)
HID (4F, CF)

(Continued)

3-581

SOS 901172

Table 3-90. SIO, TIO, TDV, HIO Sequence for Integral lOP (Cont.)

Phase Function Performed Signals Involved Comments

PH5 (RR 16-RR23)-+- (A 16-A23) AXRR/2 = AXRR/12 + ... Area of I/O fast mem-
SWO

AXRR/12 = AXRR/6 + ...
ory register is 01, as

SW8 defined by IOFR9
SW7 10FM = logic set during NIOFR8. Bits 16
T5l preceding subphase through 31 contain

(Cont.)
IOFR9 = logic set during the !>yte_c~~nt and re-

pre cedi ng subphase
place the byte address
previously stored in

NIOFR8 = Reset during previous A-register
. operation

If SIO, address recognition, and S/RW = (S/RW/l) Prepare to write zeros
SIO accepted, set flip-flop RW

(S/RW/l) = (S/RW) + ••• into I/O fast memory,
and maintain flip-flop NIOFM area 00, to clear the
ina reset state (S/RW) = (S/RW/2) + ••• old status

(S/RW/2) = SIOSP /1 DOR lOR
+ •••

SIOSP/1 = FUSIO PH5 SW8 SW7

R/RW = · ..
S/NIOFM = N(S/IOFM)

(S/lOFM) "" (S/RW/2) + •••

R/NIOFM = · ..
Reset flip-flop SW7 R/SW7 = (R/SW7)

(R/SW7) = FAIO PH5 SW8 SW7 + ...

Set flip-flop SW9 S/SW9 = SW8 STEP815 + ••• Branch to SW9

STEP815 = NBRSW8 NBRSW10
NBRSWll NBRSW13
NBRSW15 NRESET/A

R/SW9 = · ..
PH5 One clock long
SWO

If RW was set duri ng the pre-
SW9
T8l

ceding subphase:

! (SO-S31) +--(RWO-RW31) RWXS/O- = RW + ••• Transfer zeros to I/O
RWXS/3 fast memory register,

area 00

(FRO-FR7) ---I-- (AO-A7) AXFR = (FAIO/l PH5) SW9 load device controller
+ ••• status supplied on

FR lines to A-register

Mnemonic: SIO (4C, CC)
TIO (4D, CD)
TOV (4E, CE)
HIO (4F, CF)

(Continued)

3-582

50S 901172

Table 3-90. SIO, TIO, TOV, HIO Sequence for Integral lOP (Cont.)

Phase Function Performed Signals Involved Comments

PH5 If R field is zero or if AVO was BRSW13 = (FAIO PH5 SW9) AVO Advance to PH5 SW 13.
SWO returned by the devi ce controller + (FAIO/1 PH5) SW9 RZ If either of these two
SW9 system, enable signal BRSW 13 + ••• conditions exists, the
T8l contents of the
(Cent.) A-register wi II not be

transferred to the pri-
vate memory register

Reset fl i p-flop N lR31 F S/NlR31F = N(S/lR31) Force a one into pri-

(S/lR31) = (FAIO/1 PH5) SW9
vate memory address

'+ ••• line lR31 during PH5
SW10 to select private

R/NlR31 F = · .. memory register Ru 1

If R field is not zero (NRZ), S/RW = (S/RW/l) + ••• Prepare to wri te status
set flip-flop RW (S/RW/1) = (S/RW) + •.. and byte count into

(S/RW) = (FAIO/1 PH5) SW9
private memory

NRZ + ••• register Ru 1

R/RW = ...
If SIO, and valid start, enable (S/SXA) = FAIO PH9 SWO VAlST Preset adder logic for
signal (S/SXA) + ••• A-S in PH5 SWIO

VAlST = FUSIO NCC1 NCC2

Set flip-flop SW 1 0 S/SW10 = SW9 STEP815 Branch to SW10

R/SW10 = · ..
PH5 One clock long
SWO

(AO-A31)--- (50-531) Adder logic set during previous clock Load status and byte
SW10 I

T8l

I
(50-531) -f-- (RWO-RW31) (Ru1) RWX5/0-RWX5/3 = RW

count into private
memory register Ru 1

'. Zero --I-- RW15 NRW15 = NRW15XZ + ••• A zero in bit 15 indi-

NRW15XZ = FAIO/l PH5 5W 1 0
cates that the integra I
lOP is not a selector
lOP

I I
Enable signal AXZ AXZ = (FAIO PH5) 5Wl0 + ••• Reset A-register to zero

If R field is odd (R31), enable BRSW13 = (FAIO/1 PH5) If odd R field, only one
signal BRSW13 SW 10 R31 + ••• word of status is required

If R field is even (NR31), enable S/IOFR8 = (S/IOFR8) Prepare to read most
signal (S/AXRR/4), set flip-flop

(S/IOFR8) = (S/AXRR/4) + •••
significant byte of COW

IOFR8, and reset flip-flop from I/O fast memory
NIOFM (S/AXRR/4) = (FAIO/l PH5) SW10 register, area 10

NR31 + ...
R/IOFR8 = · ..

Mnemonic: 510 (4C, CC I

TIO (40, CO~
TOV (4f, CE)
HIO (4F, CF)

(Continued)

3-583

SOS 901172

Table 3-90. SIO, TIO, TOY, HIO Sequence for Integral lOP (Cont.)

Phase Function Perfonned Signals Involved Comments

PH5 S/NIOFM = N(S/IOFM) Se lect lOP fast memory
SWO

(S/IOFM) (S/AXRR/4) + •••
registers

SWI0 =
TSl R/NIOFM = ...
(Cont.)

Set flip-flop SW 11 S/SWll = SW 1 0 STEPS15 + ••• Branch to SW 11

R/SW11 = ...
PH5 One clock long
SWO

(RR24-RR31) -f- (A24-A31) AXRR/3 AXRR/13 + ... Transfer most significant SW11 =
T5l AXRR/13 = 10FRS NRW+ ... byte of COW from area

10 of the I/O fast mem-
10FRS = Set during preceding ory register to the

subphase A-register

Set flip-flop IOFR9, maintain S/IOFRS = (S/IOFR8) Prepare to read least
flip-flop IOFR8 in the set state,

(S/IOFR8) = (S/AXRR/4) + •••
significant byte of COW

and maintain flip-flop NIOFM from I/O fast memory,
in the reset state (S/AXRR/4) = FAIO/l PH5 SWll area 11

+ •••
R/IOFR8 = .00

S/IOFR9 = (S/IOFR9) IOPOP

(S/IOFR9) = (S/AXRR/6) + •• 0

(S/AXRR/6) = FAIO/l PH5 SWll
R/IOFR9 = 000

S/NIOFM = N(S/IOFM) Select lOP fast memory

(S/IOFM) = (S/ AXRR/ 4) + •••
registers

R/NIOFM = ...
Set fl ip-flop SW 12 S/SW12 = SW11 STEPS15 + 00. Branch to SW 12

R/SW12 = ...
PH5 One clock long
SWO

(A24-A31) -I-- (A 16-A23) AXAl8 = FAIO PH5 SW12 + • 0 • Shift most significant
SW12 byte of COW in Tal A-register 8 places to

the left

(RR24-RR31) -f-- (A24-A31) AXRR/3 = AXRR/13 + ... load least significant

AXRR/13 = IOFR8 NRW+. o.

byte of I/O fast memory
register, area 11, into

IOFR8 = Set during preceding A-register
subphase

IOFR9 = Set during preceding
subphase

Mnemonic: SIO (4C, CC)
TIO (40, CD)
TOY (4E, CE)
HIO (4F, CF)

(ContI nued)

3-5S4

SOS 901172

Table 3-90. SIO, TIO, TOV, HIO Sequence for Integral lOP (Cont.)

Phase Function Performed Signals Involved Comments

PH5 If R field not zero, enable signal (S/SXA) = (FAIO PH5) SW12 + ••• Preset adder for
SWO (S/SXA), and set flip-flop RW A--S in PH5 SW13
SW12

S/RW = (S/RW/l) + ••• Prepare to wri te COW T8l
(Cont.) (S/RW/1) = (S/RW) + ••• into piivate memoiY

register R
(S/RW) = FAIO PH5 SW12 NRZ

+ ...
R!RW = · ..

Set flip-flop SW 13 S/SW13 = SW12 STEP815 + ... Branch to SW 13

R/SW13 = · ..
PH5 One clock long; T5l if RZ, T8l
SWO if NRZ NAVO
SW13

Reset flip-flop 10CONST R/IOCONST = (R/10CONST) + ••• Drop control strobe
T8l
or (R/IOCONST) = FAIO PH5 SW13 + •••
T5l Reset flip-flop 10FS R/IOFS (R/10FS) Drop function strobe =

(R/IOFS) = FAIO PH5 SW13 + •••

If R fierd not zero (NRZ):

(AO-A31) ---(SO-S31) Adder logic set during prec~ding subphase load CDW address into
private memory register
R

(SO-S31) -+- (RWO-RW31) (R) RWXS = RW

RW = Set during preceding
subphase

If not valid start (NVAlST), BRPH9 = FAIO PH5 SWO SW 13 If no address recogni-
enable signa! BRPH9

I
NVALST tion or SIO not suc-

NVAlST = N(FUSIO NCCl NCC2) cessful, branch to PH9

I If SIO and valid start:
I I I

Enable signal (S/SXDM 1) (S/SXDM 1) = FAIO PH5 SW 13 Preset adder logi c for
VALST + ••• D-l~S

Set flip-flop IOFR8 S/IOFR8 = (S/IOFR8) Prepare to transfer

(S/IOFR8) = (S/RW/4) + ... contents of D-register
minus 1 to A-register,

(S/RW/4) = FAIO PH5 SW 13 and byte 2 of
VAlST + ••• D-register to I/O fast

R/IOFR8 =
memory register, · .. area 10

Mnemonic:SIO (4C, CC)
TIO (40, CD}
TDV (4E, CE)
HIO (4F, CF)

(Continued)

3-585

SDS 901172

Table 3-90. SIO, TIO, TDY, HIO Sequence for Integral lOP (Cont.)

Phase Function Performed Signals Involved Comments

PH5 Reset flip-flop NIOFM S/NIOFM = N(S/IOFM)
SWO

(S/IOFM) = (S/AXRR/4) + •••
SW13
T8l R/NIOFM = · ..
or
T5l Set flip-flop RW S/RW = (S/RW/1)
(Cont.)

(S/RW/1) = (S/RW) + •••

(S/RW) = (S/RW/4) + •••

R/RW = · ..
Set flip-flop SW 14 S/SW14 = SW13 STEP815 + ••• Branch to SW 14

R/SW14 = · ..
PH5 One clock long
SWO

(D-1}~(SO-S31) SXDM1 Adder logic set during load byte 2 of the =
SW14

preceding subphase D-register in the I/O
T5l

(SO-S31) -+--- (AO-A31) AXS = FAIO PH5 SW14 + •••
fast memory register,
area 10. Byte 2 is the

(S 16-S23) --f-- (RW 16-RW23) RWXS/2 = RW + ••• most significant byte of

RW = Set during preceding
the next CDW address.
Load the contents of

subphase
the D-register into
A-register. The A-
register now contains
the next CDW address
minus 1

Enable signal BRPH9 BRPH9 = FAIO SW5 SW14 Branch to PH9
SWO + •••

PH9 One clock long
SWO

Enable signals AXAl8-0 AXAl8-0 thru AXAlB Shift contents of A-
TBl =

th ru AXAlB-2 AXAl8-2 register 8 places to

AXAlB FAIO SWO PH 9 + •.. the left =
If SIO and valid start (VAlST):

Enable signal (S/SXA) (S/SXA) ~ FAIO PH9 SWO YAlST Preset adder logic for
+ ... A--S in PH10

S/IOFR8 = (S/IOFRB) Prepare to transfer

(S/IOFRS) = (S/RW/4) + •••
byte 2 of the
A-register to the I/O

(S/RW/4) = FAIO PH9 SWO fast memory register,
YALST + ... area 11

R/IOFR8 = ...
Mnemonic: SIO (4C, CC)

TIO (4D, CD)
TDY (4E, CE)

(Continued)

HIO (4F, CF) I

3-586

SDS 901172

Table 3-90. SIO, TIO, TDV, HIO Sequence for Integral lOP (Conto)

Phase Function Performed Signals Involved Comments

PH9 Set flip-flop IOFR9 S/IOFR9 = (S/IOFR9) IOPOP
SWO (S/IOFR9) = (S/RW/3) +.0.
T8l
(Conto) (S/RW/3) = FAIO PH9 SWO VAlST

+ 000
R/lOFR9 = • .0

Reset flip-flop NIOFM S/NIOFM = N(S/IOFM) Selects lOP fast

(S/lOFM) = (S/RW/3) + (S/RW/4) memory registers

+ •• 0
R/NIOFM = · ..

Set flip-flop RW S/RW = (S/RW/l)
(S/RW/1) = (S/RW) + 0 ••

(S/RW) = (S/RW /3) + (S/RW /4)
+ •• 0

p/PW -
"1 "" 'f · ..

(BO-B31) - (SO-S31) SXB = PXSXB NDIS Transfer next instruction
PXSXB = NFAFl NFAMDS PH9 address to P-register

(S 15-S31) -+-- (P15-P31) PXS = PXSXB + •• 0

Set flip-flops MRQ and DRQ S/MRQ = (S/MRQ) Prepare to read next

(S/MRQ = (S/MRQ/2) + o •• instruction from core

(S/MRQ/2) = PXSX B NI NTRAP2 + • 0 0
memory

R/MRQ = • • 0
SiDRQ = (SiDRQ) NClEAR Inhibits transmission of

(S/DRQ) = (S/MRQ/2) + (S/DRQ/2) another clock unti I data

+ •• 0 release is received from

(5/DRQ/2) = PH9 + 000 core memory

R/DRQ = • 0 0

PHIO One clock long
C:\A.ln
""'V (AO-A31) --(50-531) Adder logic set at PH9 clock load byte 2 of the A-DR

(S 16-S23) ~ (RW 16-RW23) RWXS/2 = RW + •• 0
register in the I/O fast
memory register, area

RW = Set at PH9 clock 11. Combined, area 10
and area 11 now contain
the next COW address
minus 1. During IOPH3
SW10 of the order-out
sequence, the COW
address is automatically
incremented by 1

Reset nip-flop 5WO R/5WO = (R/SWO)
(R/5WO) = RESET/A + .00
RESET/A = CLEAR + .00
CLEAR = PH 10 + 0 ••

ENDE functions

Mnemonic: SIO (4(, CC)
TIO· {4D, CD}
TDV (4E, CE)
HIO (4F, CF)

3-587

BRPH3

3-588

SOS 901172

PRE

(B) : NIADD

PHI

/FNOC/,/FN1C/,N/FN2C/
(FUNCTION LINES SET FOR AIO)
S/P26 (20 ---P)

PH2

YES (PREVIOUS OPERATION
COMPLETE)

S/SWO

PH3

S/IOCONST
(RAISE CONTROL
STROBE)

BRPH4

PH4

BRPH9

CONDl

NSWO S/CCI

COND2

NSWO S/CC2

R/IOCONST
(DROP CONTROL STROBE)

NO S/MRQ} PREPARE TO READ
S/DRQ WORD FROM X 1201

PHS

MB~C-f--D

S/RW

PH6

D--S-+--RW
BRPH9

PH9

8-S -+--P} PREPARE TO
S/MRQ READ NEXT
S/DRQ INSTRUCTION

PHI0

tOII72A.las

Figure 3-198. AIO Instruction Flow Diagram for MIOP

SOS 901172

Table 3-91. Ala Sequence, MIOP

Phase Function Performed

PREP At end of PREP:

(8): NIADD

PHl
TSL

PH2
TSL

(A): RR (not used)

One clock long

Opcode transferred from 0-
register to function lines:

02 --/FNCOC/

06-/FNC1C/

07--/FNC2C/

20-/--P

One clock long

Reset flip-flops CCl and CC2

If NPR, set flip-flop SWO

PH3 One or more clocks, depending
TSL on the state of flip-flop SWO

If flip-flop SWO was not set in
PH2, set SWO when PR goes low

/FNCOC/

/FNC1C/

/FNC2C/

S/P26
Ie- In", \ PI r L.O}

R/P26

PX

R/CC1

(R/CC])

(RiCC1/1)

R/CC2

(R/CC2)

(R/CC2/l)

I S/SWO

(S/SWO)

R/SWO

S/SWO

(S/SWO)

R/SWO

Function Performed

= 02

= 06

= 07

(S/P26) + •••
lro A'''' nu, \ .
\rM1V rn I} T •••

PX + •••

= FAIOPH1+ ••.

= (R/CCl)

= (Rice 1/1) + •..

= (FAIO PH2) + •..

= (R/CC2)

= (R/CC2/1)

= (FAIO PH2) + ..•

= (S/SWO) NCLEAR

= (FAIO PH2) NPR
+ •••

= (R/SWO)

= (S/SWO) NCLEAR

= (FAIO PH3) NPR + •••

= (R/SWO)

(Continued)

Comments

Next instruction address

Contents of private
memory register R. Not
used in t,his instruction

Specify Ala instruction

Preset P-register to
X '20' by forcing a 1
into bit 26 and resetting
the other 16 bits. Dur­
ing PH6 a word is trans­
ferred from location
X '20' of core memory
into the C-register

Flip-flops CCl and/or
CC2 are set in PH4 if
specified by conditions

I
I in the device controller

with an interrupt
pending

I Early detect of NPR,
indicating that previous
operation has been
completed

Wait for NPR from
previous operation

Mnemonic: Ala (6E,
EE)

3-589

SOS 901172

Table 3-91. AIO Sequence, MIOP (Cont.)

Phase Function Performed Signals Involved Comments

PH3 If NSWO, enable signal BRPH3 BRPH3 = FAIO PH3 NSWO Sustain PH3 until flip-
T5l + ••• flop SWO gets set
(Cont.)

If SWO, set flip-flop IOCONST S!IOCONST = (S!IOCONST) Raise control strobe

(S!IOCONST) = (FAIO PH3) SWO before entering PH4

R/IOCONST = (R!IOCONST) + •••

PH4 Two or more clocks, depending
T5l on the state of flip-flop SWO.
or First clock T5l. Subsequent

Tal clocks, if any, T5l, except for
the last clock. last clock Tal

If SWO, enable signal BRPH4 BRPH4 = (FAIO PH4) SWO NSW2 Sustain PH4 whi Ie flip-
flop SWO is in the set
state

If PR, reset fl i p-flop SW 0 R/SWO = (R/SWO) Wait until MIOP sys-

(R/SWO) = (FAIO PH4) PR + ••• tem returns PR signal
in response to-the con-
trol strobe signal

If NSWO, and R field is zero BRPH9 = FAIO PH4 NSWO RZ If R is zero, status is
(RZ), enable signal BRPH9 + ••• not required

If NSWO, and R field is not zero S/MRQ = (S/MRQ/2) + ••• Memory request for
(NRZ), set flip-flops MRQ and

(S/MRQ/2) = FAIO PH4 NRZ NSWO reading status and lOP /
ORQ device controller ad-

+ ••• dress f~om location
R/MRQ = ... X 1201 of core memory

S/ORQ = (S/ORQ) NClEAR Inhibits transmission of

(S/ORQ) = (S/MRQ/2) + ••• another clock unti I data
release signal is

R/ORQ = ... rece ived from core
memory

If NSWO, set flip-flops CCl S/CCl = (FAIO PH4) NSWO Setting of CCl and
and/or CC2 if specified CONDl + ••• CC2 is controlled by

R/CCl = (R/CC]) conditions specified by
the appli cable device

S/CC2 = (FAIO PH4) NSWO controller. If normal
CON02 + ••• interrupt recognition,

R/CC2 = (R/CC2) CCl and CC2 are not
set

If NSWO, reset flip-flop R/IOCONST = (R/IOCONST) + •••
IOCONST

(R/IOCONST) = (FAIO PHS) NSWO Drop control strobe in
+ ••• response to PR

Mnemonic: AIO (6E,
EE)

(Continued)

3-590

SDS 901172

Table 3-91. AIO Sequence, MIOP (Cont.)

Phase Function Performed Signals Involved Comments

PH5 One clock long Transfer word from
NSWO

(MBO-MB31)--- (CO-C31) CXMB DG =/DG/
location X '20' of core

=
DR memory into the C-

(CO-C31) -+-- (DO-D31) DXC-O thru = DXC register and then to
DXC-3 the D-register

DXC = (FAIO PH5) NSWO
+ •••

Enable signal (S/SXD) (S/SXD) = (FUAIO PH5) NSWO Preset adder for
+ ••• D~S in PH6

Set flip-flop RW S/RW = (S/RW/1) Prepare to transfer

(S/RW/1) = (S/RW) + ••• status word into private
memory register R

It'" InuI\ - Ir-I I A __ nl J!",,\ ... II'"U'" •

I ~ __ -+�--------------------~--R~-R-~-/~-VY-I--------~r-.~-~-lv--rn-~-I-I~_~_VY_vT_·_·_·I~------------~1
PH6 One clock long
Tal

(00-031) - (SO-S31) Adder logic set at PH5 clock Transfer status and

(SO-S31)--f-- (RWO-RW31) (R) RWXS/O thru = RW
lOP/device controller

RWXS/3
address to private mem-
ory register R

Enable signal BRPH9 BRPH9 = (FAIO PH6) FUAIO Information exchange
+ ••• between MIOP/device

controller and the CPU
completed. Branch to
PH9

PH9 One clock long
T5l

(BO-B31)- (SO-S31) SXB = PXSXB NDIS Transfer next instruc-

PXSXB NFAFl NFAMDS PH9
tion address to

=
P-register

(S 15-S3l)-f--(P15-P31) PXS = PXSXB + •••

Set fl ip-flops MRQ and DRQ S/MRQ - (S/MRQ) I Prepare to read next

(S/MRQ) = (S/MRQ/2) + ••• instruction from core

(S/MRQ/2) = PXSXB NINTRAP
memory

+ •••
R/MRQ = ...
S/DRQ = (S/DRQ) NClEAR Inhibits transmission

(S/DRQ) (S/MRQ/2)
of another clock unti r

=
data release signal + (S/DRQ/2) + •••
is received from core

(S/DRQ/2) = PH9 + ••• memory

R/DRQ = ...
PH10 EN DE functions
DR

Mnemonic: AIO (6E,
EE)

. 3-591

BRPH3

S/SWO

S/SW2

SDS 901172

/AIO/ {DECODED FROM OPCODE AND
r---....... _--, APPlIED TO THE DEVICE CONTROllERS

(PREVIOUS OPERATION COMPlETE)

S/SWO

S/IOCONST (RAISE CONTROl STROlE)

S/IOFS (RAISE FUNCTION STROBE)
S/SWS
R/SW2

10DAX (RESET 10DA REGISTER)
AX/0-AX/3 (RESET A-REGISTER)
R/NIOFM (S/IOFM)
IRPHS

SICCI

S/CC2

YES

IRSWI3

A

NO

10FM
NIOFR9
NIOFRS
10FRXFR
(FRO-FR7)+--{IOFRO-IOFR7) { DEVICE CONTROlLER
IRPHS ADDRESS
S/SW9

(AO-A31)-(SO-S31)
(SO-SIS)+-(RWO-RWIS)
0'. +-(RW2, RW3, RW4) CLEAR OlD lOP INTERRUPT STATUS
(A2, A3, M)-f-(AIO, All, A12) ALIGN lOP INTERRUPT STATUS
(FRO-FR7)-+--(AO-A7) DEVICE CONTROlLER ADDRESS
IRPHS
S/SWII

(DAO-DA7)-(SO-S7) } DEVICE CONTROLLER
(SO-S7)-f-(AO-A7) INTERRUPT STATUS
(S/SXA)
S/RW
IRPHS
S/SWI3

(AO-A31)- (SO-S31)
(SO-S31) -+- (RWO-RW31)

R/IOFS (DROP FUNCTION STI!OIE)
RiIOCONST (DROP CONTROl STROlE)
S/NIOIR (CLEAR INTERRUPT PENDING CONDITION)
BRPH9 .

(80-831)-(SO-S31) }
(SI5-S31)-+-(PI5-P31) NEXT INSTRUCTION ADDRESS

S/MRQ
S/DRQ

'-.... ___J

'01171A.31U

Figure 3-199. Ala Instruction Flow Diagram for Integral lOP

50S 901172

Table 3-92. AIO Sequence for Integral lOP

Phase Function Performed Signals Involved Comments

PREP At end of PREP:

(B): NIAOO Next instruction address

(A): RR (not used) Contents of private
memory register R. Not
used in this instruction

PHl Opcode decoded from the con- /AIO/ = FUAIO Function indicator AIO
T5L tents of the O-register, raising

FUAIO OU6 OLE
is transmitted on a com-

function indicator line /AIO/ = mon line to all device
controllers associated
with the integral lOP.
The device controller
with an interrupt pend-
i ng wi II respond by re-
turning its address,
condi tion codes, and
status

PH2 One clock long
T5L

Reset flip-flops CCl and CC2 R/CCl (R/C;Cl) Flip-flops CCl and/or =
(R/CC1) (R/CC 1/1) + ••• CC2 are set in PH5 = SW8 NSW7, if speci-
(R/Cel/]) = (FAIO PH2) + ••• fied by conditions in

the devi ce contro Iler
R/CC2 = (R/CC2) with an interrupt

(R/CC2) = (R/CC2/1) + ••• pending

(R/CC2!l) = (FAIO PH2) + •••

I
If NPR, set flip-flop SWO S/SWO = (S/SWO) NCLEAR Early detect of NPR,

(S/SWO) (FAIO PH2) NPR
i ndi cati ng that pre-

I
= vious operation has

+ •••
been completed

I R/SWO - (R/SWO)

PH3 One or more clocks, depending
T5L on the state of flip-flop SWO

If flip-flop SWO was not set S/SWO = (S/SWO) NCLEAR Wait for NPR from pre-
during PH2, set flip-flop SWO

(S/SWO) = (FAIO PH3) NPR + ••• vious operation
when PR goes low

R/SWO = (R/SWO)

If NSWO, enable signal BRPH3 BRPH3 = FAIO PH3 NSWO Sustain PH3 until flip-
+ ••• flop SWO gets set

Mnemonic: AIO t6E, EE)

(Continued)

3-593

SOS 901172

Table 3-92. AIO Sequence for Integral lOP (Cont.)

Phase Function Performed Signals Involved Comments

PH3 If SWO, set flip-flop IOCONST S/IOCONST = (S/IOCONST) Raise control strobe
T5l (S/IOCONST) = (FAIO PH3) SWO

before entering PH4
(Cont.)

R/IOCONST = (R/IOCONST) + ••• Wi II be reset during
PH5 SW13

PH4 Two or more clocks, depending
T5l on /CNST/

Set flip-flop SW2 S/SW2 = (S/SW2) Wait for /CNST/ to be

(S/SW2) = (FUAIO PH4) IOIR returned through the
lOP priority cable.

CNST + ••• /CNST/ is derived
CNST = /CNST/ NIOPOP from IOCONST

(JOCONST + •••)

IOIR = NFF IOIR indicates that an

S/NIOR = IC
interrupt is pending,
i.e., the applicable

IC = /lC/ device controller has

R/NIOR = NFUAIO
raised interrupt call
line /IC/

Enable signal BRPH4 BRPH4 = (FAIO PH4) SWO NSW2 Sustain PH4 unti I flip-
flop SW2 has been set

If flip-flop SW2 is set:

Set flip-flop IOFS S/IOFS = (S/IOFS) Raise function strobe

(S/IOFS) = FAIO PH4 SW2 + ••• to device controllers

R/IOFS = (R/IOFS) Will be reset during
PH5 SW13

Reset flip-flop SW2 R/SW2 = (R/SW2)

(R/SW2) = FAIO PH4 SW2

Set flip-flop SW8 S/SW8 = NRESET/A BRSW8 Used to define the first

BRSW8 = (FAIO PH4) SW2 + ••• two subphases in PH5

R/SW8 = ...
PH5 One or more clocks long,
SWO depending on the state of flip-
SW8 flop SW7
NSW7
T5l Enable signal BRPH5 BRPH5 = (FAIO PH5 SWO) Sustain PH5 during

NSW14 integral lOP sequence
(NSW13 + •••) through subphase SW 13

Mnemonic: AIO (6E, EE)

(Continued)

3-594

SOS 901172

Table 3-92. AIO Sequence for Integral lOP (Cont.)

Phase Function Performed Signals Involved Comments

PH5 Maintain flip-flop SW8 in the set S/SW8 = NRESET/A BRSW8 Sustain subphase SW8
SWO state

BRSW8 FAIO PH5 SW8 NSW7 while flip-flop SW7 is
SW8 =

in the reset state
NSW7 + •••

T5l R/SW8 = ...
(Cont.)

Set flip-flop SW7 S/SW7 = (S/SW7) Wait for either an FSl

(S/SW7) = FAIO PH5 SW8 NSW7 or AVO response from

(FSl + AVO) the devi ce contro Iler
system. FSl signifies

R/SW7 = (R/SW7) that the device con-
troller with an interrupt
pendi ng has responded
to AIO FS. AVO sig-
nifies that the device
controller which ori-
ginally had an interrupt
pending has in the
meantime dropped its
interrupt ca II

Enable signal IOOAX IOOAX = (R/IOOA) Clear the IOOA-

(R/IOOA) = FUAIO PH5 SW8
register

NSW7 + •••

Enable signals AX/O through AX/3 AX/O thru AX/3 = AX + ••• Clear the A-register

AX = AXRR + •••

AXRR = NFF

S/NAXRR = N(S/AXRR)

(S/AXRR) = (S/AXRR/2) + •••

(S/AXRR/2) = FUAIO PH5 SW8 + •••

R/NAXRR = ... I
Reset flip-flop NIOFM S/NIOFM = N(S/IOFM) Prepare to read lOP

(S/IOFM) = (S/ AXRR/2) + ••• interrupt status from
lOP fast memory reg-

R/NIOFM = ... ister, area 00. IOFM
se lects lOP fast memory
registers

PH5 One clock long
SWO Set flip-flops CC 1 and/or CC2, S/CC1 = (FAIO PH5) SW8 SW7 Setting of flip-flops
SW8 if specified NOOR + ••• CC 1 and CC 2 is con-
SW7

R/CC1 = (R/CC 1) trolled by conditions
T5l

S/CC2 (FAIO PH5) SW8 SW7 in the device con-=
NIOR + .•• troller with the

R/CC2 = (R/CC2)
interrupt pending

Mnemonic: AIO (6E, EE)

(Continued)

3-595

SOS 901172

Table 3-92. AIO Sequence for Integral lOP (Cont.)

Phase Function Perfonned Signals Involved Comments

PH5 Enable signal (S/SXA) (S/SXA) = FAIO PH5 SW9 + ••• Preset adder logic for
SWO A--S in PH5 SW10
SW9 Reset flip-flop NIOFM S/NIOFM N(S/IOFM) 5e lect lOP fast memory T5l =
(Cont.) (S/IOFM) = (S/RW/2) + •••

registers

R/NIOFM = · ..
Set flip-flop SW10 S/SW10 = SW9 STEP815 + ••• Branch to SW 1 0

R/SW10 = · ..
PH5 One clock long
SWlO (AO-A31)-- (SO-S31) SXA Adder logic set at SWO = Transfer contents of

T8l PHS SW9 SWO clock A-register to the sum

NIOER8 = Reset at PHS 5W9 bus

SWO clock

NIOFR9 = Reset at PHS SW9
5WO clock

(50-S lS)-+-- (RWO-RW1S) RWXS/O = RWXS/1 = RW + ••• Transfer contents of

RW = Set PH5 SW9 SWO clock sum bus to 10FM
register, area 00

Zeros --f-- (RW2, RW3, RW4) RW2 = S2. RWXS/O N(FUAIO Clear the old lOP
PHS SW10) interrupt status

RW3 = 53 RWXS/O N(FUAIO
PHS SW10)

RW4 = S4 RWXS/O N(FUAlb
PHS SW10)

(A2, A3, A4) -+- (A 10, All, S/Al0 = A210AXST + ••• Align lOP interrupt
A12) 10AXST = 10lNTST + ••• status in A-register

10INTST = FUAIO PH5 SW10 + .••

S/All = A3 10AXST + •••

S/A12 = A4 IOAXST + .••

R/Al0-A12 = AX/l

(FRO-FR7) ---+- (AO-A7) AXFR = FUAIO PH5 SW10 + ••• Transfer device con-

AXZ FAIO PHS SW10 + •••
troller address to the = A-register

Set flip-flop SW 11 S/SW11 = SW10 STEP815 + ••• Branch to SW 11

R/SW11 = · ..
PHS One clock long
SWO (AO-A7) -+-- (A24-A31) AXAR24 = FUAIO PH5 SW11 + ••• Align device controller
SW11
T5L Set flip-flop S,!, 12 S/SW12 - SW 11 STEP815 + ••• address in A-register

R/SW12 = · ..
Mnemoni c: AIO (6E, EE)

(Continued)

3-596

SOS 901172

Table 3-92. AIO Sequence for Integral lOP (Cont.)

Phase Function Performed Signals Involved Comments

PH5 (FRO-FR7) --I-- (IOFRO-IOFR7) IOFRXFR = (FUAIO P5 8 7) + ••• Transfer device con-
SWO IOFRX (FUAIO P5 8 7) + ••• troller address to the
SW8 = IOFR-register. Infor-
SW7 mation stored in this
T5L register is used to
(Cont.) se lect the appropriate

IOFM-register

Reset flip-flop NAXRR S/NAXRR = N(S/AXRR) Preset AXRR for trans-

(S/AXRR) = (S/AXRR/2) + ••• ferring RR---A in
PH5 SW9

(S/AXRR/2) = FUAIO PH5 SW8

R/NAXRR = · ..
Reset flip-flop NIOFM S/NIOFM = N(S!IOFM) Select lOP fast mem-

(S!IOFM) = (S/ AXRR/2) + ••• ory registers

R/NIOFM = · ..
Set flip-flop SW9 S/SW9 = SW8 STEP815 + •••

STEP815 = NBRSW8 NBRSW10 Branch to SW9
NBRSW1' NBRSW12
NBRSW13 NBRSW15
NRESET/A

R/SW9 = · ..

PH5 One clock long
SWO
SW9 (RRO-RR15)-+-- (AO-A 15) AXRR/O = AXRR/l = AXRR Transfer lOP interrupt
T5L NAXRRINH status to the A-register

AXRR = Set at PH5 SW8 SW7
clock

IOFM = Set at PH5 SW8 SW7
clock

NIOFR8 = Reset during previous
operation

NIOFR9 = Reset during previous
operation

If AVO, enable signal BRSW 13 BRSW13 = (FAIO PH5) SW9 AVO Branch to SW 13
+ •••

Set flip-flop RW S/RW = (S/RW/l) Prepare to clear old

(S/RW/l) = (S/RW) + ••• lOP interrupt status

(S/RW) = (S/RW/2) + •••

(S/RW/2) = FUAIO SW9 PH5 + •••

R/RW = ...
Mnemonic: AIO (6f, EE)

(Continued)

3-597

50S 901172

Table 3-92. AIO Sequence for Integral lOP (Cont.)

Phase Function Perfonned Signals Involved Comments

PH5 One clock long
SWO
SW12 (DAO-OA7) --- (SO-S7) SXDA = FUAIO PH5 SW 12 Trans fer device con-
T5L + ••• troller interrupt status

to the A -reg is ter
(SO-S7) -+-- (AO-A7) AXS/O = AXS/4

AXS/4 = AXS/2 + •••

AXS/2 = FUAIO PHS SW 12
+ •••

Enable signal (S/SXA) (S/SXA) = FAIO PH5 SW12 Preset adder for
A---S in PH5
SW13

If R field is not zero (NRZ), set S/RW = (S/RW/1) Prepare to transfer
fl ip-flop RW

(S/RW/1) = (S/RW) + ••• contents of A-register
to private memory

(S/RW) = FAIO PH5 SW 12 NRZ register R
+ •••

R/RW = ...
Set flip-flop SW 13 S/SW13 = SW 12 STEP815 + ••• Branch to SW 13

R/SW13 = ...

PH5 One clock long
SWO
SW13 (AO-A31) ~ (50-531) Adder logic set at PH5 SW 12 clock Trans fer contents of
T8l A-register to private

(50-531) -+-- (RWO-RW31) (R) RWXS/0-RWXS/3 = RW + ••• memory register R

RW = Set at PH5 SW12 clock

Reset flip- flop IOFS R/IOFS = (R/IOFS) + ••• Drop function strobe

(R/IOFS) = FAIO PH5 SW 13

Reset flip-flop IOCONST ., ',_,.._ ... r", - (R/IOCOt..JST) + ••• Drop control strobe
I

1\/ IV~VI'U I

(R/IOCONST) = FAIO PH5 SW13 + •••

Set flip-flop NIOIR S/NIOIR = NIC + ••• Clear interrupt pending

IC = /lC/ condition when device
controller drops inter-

R/NIOIR = NFUAIO rupt call

Mnemonic: AIO (6E, EE)

(Continued)

3-598

SOS 901172

Table 3-92. AIO Sequence for.lntegral lOP (Cont.)

Phase Function Perfonned Signals Involved Comments

PHS Enable signal BRPH9 BRPH9 = FAIO PHS SWO Instruction complete
SWO SW13 NVALST + •.. branch to PH9 SWO
SW13 NVAlST = NFUSIO + •..
Tal
(Cont.)

PH9 One clock long
SWO (80-B31) -(SO-S31) SXB = PXSXB NOIS Transfer next instruc-
TSL tion address to .' PXSXB = NFAFL NFAMDS PH9

P-register
(S lS-S31)-+- (P1S-P31) PXS = PXSXB + ••.

Set fl ip-flops MRQ and DRQ S/MRQ = (S/MRQ) Prepare to read next

(S/MRQ) = (S/MRQ/2) + ••. instruction from core
memory

(S/MRQ/2) = PXSXB NINTRAP2
+ ..•

R/MRQ = ...
SIDRQ = (S/DRQ) NCLEAR Inhibits transmission of

(SIDRQ) (S/MRQ/2)
another clock unti I data

=
release is received from + (S/DRQ/2)
core memory

+ •.•

(S/DRQ/2) = PH9 + •..

R/ORQ = ...

PH10 Reset flip-flop SWO R/SWO = (R/SWO)
SWO ..

DR (R/SWO) = RESET/A + ...
RESET/A = CLEAR + ...

CLEAR = PH10-E + •.•

ENDE functions

Mnemonic: AIO (6E, EE)

3-S99

Paragraph 3-83 SDS 901172

3-83 GLOSSARY OF TERMS

Glossaries of signal names for the CPU, Floating-Point,
and Memory are listed in tables 3-=-J~_.~-94., and 3-~,
respectively. These glossaries ~define the main signals
used in the Signa S system. The glossary signals are iden­
tical to those found in the Sigma S logic equations (SDS
drawing number 133263) except that the signals in the logic
equations may be suffixed by a dash, followed by a number
or letter. This suffix defines the driver used in the hard­
ware and does not affect the signal logically. Other
prefixes, suffixes, and conventions used in both the signal
glossaries and the logic equations are shown below.

N

S/

R/

C/

E/

F/

W/

L/

K/

/

W

z

-U or
/U

-L or
/L

->

Prefixes

Not. Same as bar or overscore

Set input to flip-flop

Reset input to flip-flop

Clock input to flip-flop

Erase input to flip-flop (dc reset)

Force input to flip-flop (dc set)

Data write input to high-speed memory

Address line to high-speed memory

Read/write control to high-speed memory

Suffixes

Related logic signal. Example: XX/B is a logic
signal related to logic signal XX

Usually means "one"

Usually means "zero"

"Upper" bit positions (47-71). Floating-point only

"Lower" bit positions (0-31). Floating-point only

Symbols and Conventions

Implies

Transfer to

--f--- Clock transfer to

/XX/ Cable signal

3-600

Table 3-93. Glossary of CPU and Integral lOP Signals

Signal

AO-A31

AOO

AOL-A7L
A21L-A31L

A31XP32
A31 XP33

ABO

/ABOC/

ABOT

ACCL/1

ACCLG

ADBDB

ADC3

ADMATCH

ADNH

ADNHCL

ADNHL

AEADB

AEENLE

AH

(NAH AHCL)

/AHC/

AlB

Definition

Bits 0 through 31 of A-register

One .. bit extension to most significant
end of A-regi ster

Logic used for setting up bootstrap pro­
gram during the time the LOAD switch
is activated

P32 to be transferred to A31
P33 to be transferred to A31

Abort requested memory operation, and
trap to location X'40'

Abort si goo I to memory

Abort timing pulse from delay line 2
(DL2/110)

AC clock pulse derived from DL 1

AC clock generate. Buffered latch used
to retain clock pulse as it comes out of
DL3 until another clock pulse is started
down DL1

Arm and disable or disable interrupts

Downcount A-register; begin looking
at A3

Address match between KSP1S-31 and
P15-31

Memory address not here flip-flop

Memory address not here clock. TIming
pulse derived from DL3. Impl ies that
sufficient time has elapsed for memory
to have recognized the address

Logic term used for setting ADNH
flip-flop

Arm and enable or arm and disable
interrupts

Arm and enable or enable or load
enable interrupts

Memory address here si goo I

Memory address not here and address
recognition time

Memory address here si gna I from port C

Control flip-flop used in interrupt
logic. Used during enter-active and
!eave-actlve 1 nterrupt level states

(Continued)

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

Signal

AIEl

AIE2

IAIOI
ALARM

AM

AM/L

ANLZ

(ANLZ IA)

AR

IARCI
ARE

ARMCTR

ARMIO

ARMOVD

IASC/
AUC3

AUDIO

AUDIO/L

AVO

AX

AXALS

AXAR16

Definition

Control flip-flop used by interrupt
logic. Used when interrupt level enters
active state

Control flip-flop used by interrupt
logic. Used when interrupt level
leaves active state

Acknowledge 10 interrupt request

Flip-flop which causes AUDIO indi­
cator to go on if COMPU TE switch is
set to RUN and AUDIO switch is ON

Arithmetic trap mask bit. Part of PSW1

ARITH TRAP light indicator on PCP
panel

Anaiyze

Analyze and indirect address

. Memory address release signal

AR from port C

Action-response signal from interrupt
logic. Notifies CPU that action to
interrupts has been accepted, and CPU
can start clock and continue. Used in
conjunction with CEINT

Arm counter interrupts

Arm 10 interrupts

Arm override interrupts. Note that
basic interrupts are divided into over­
ride, counter, and 10 groups

Acknowledge service call

Upcount A-register! Begin looking
at A3

Signal sent to PCP speaker

AUDIO indicator on PCP panel

Available output priority signal.
Generated when a function is not
accepted

Reset A-register. Overridden if a set
term is presen t

Shift A-register left eight places

Shift A-register right 16 places
(similarly AXARS, AXAR24)

Table 3-93. Glossary of CPU and Integral lOP
Siglals (Cont.)

Signal Definition

AXCC Condition codes transferred to A-

register: CC~S_31' CCZ+--A27

CCZ=X:C 1 + CC2 + CC3 + CC4 = 0

AXDIO Transfer 010 data to A-register

AXFC Transfer condition codes and floating
control to A24-31

AXFR Transfer function response lines (FRn) to
A-register

AXK Transfer data switches (KSn) from PCP
to A-register

AXLOAD Logic term used to enable data to A-
register during load procedure

AXMC Transfer macro-counter (MC) to A-
register: MCoh PrAO_7

AXNR NR2St31 A2S- 31

AXPARITY Transfer memory fault indicators to A-

register: MFL:O~7>;A.24_31

AXPSW1 Transfer PSWl to A-register

AXPSW2 Transfer PSW2 to A-register

AXR R2S~3 r A2S- 31

AXRR RR",~A,..,.. ,... w-", w-",
AXRRINH Inhibit RR to A transfer, or inhibit

reacH ng fast memory

AXS Transfer sum bus to A-register

AXSLl Transfer sum bus shifted left one posi-
tion to A-register

AXSR1 Transfer sum bus shifted right one
position to A-register

AXTR TR2~A2S_31
AXZ Put all zeros into the A-register

BO-B31 Bits 0 through 31 of B-register

BOOOl EN/1 Enables the two upper bits of B during
multiply and double register shift

B0031Z BO through B31 contain zeros

(Conti nued)

3-601

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

Signal

(B31-BC31)

BC31

(BC == 1)

BCO, BC1

NBCDCO
BCDC1

NBCX

BCl

NBR

BRP

BRPCP1
BRPCPS

BRPH1

BRPHn

BRPRE4

BRSW8

BRSWn

BX

BXB-O
BXB-1

BXBGND-2
BXBGND-3

BXBLl

BXBR2

BXFP

BXP

BlC

BlI

BlO

3-602

Definition

(B31 0 BC31)

One-bit exte'nsion to least significant
end of B-regi ster

Byte count equals one

Byte count fl ip-flops

Logic used for decrementing byte
counter

Logic used to reset byte counter

Contents of byte counter equal zero

Not branch. When high allows a binary
progression from one execution phase
to the next (e.g., PH6 to PH7, PHl to
PH2)

Flip-flop used to keep track of location
of program address.

BRP = 1, program address in P-register
BRP == 0, program address in B-register

Branch to PCP1 and PCPS, respectively

Branch to PH 1

Branch to PHn

Branch to PRE4

Branch to SW8

Branch to SWn

Reset B-regi ster

Logic which effects BO-1S-- BO- 1S•
Useful at BXP time

Inhibit transfer of Bl({231 B16-31" Used
in conjunction with BXB, BXP

Shift B left one position

Shift B right one position

Transfer FP OO~3r Boo-31 • FP ==*
floating-pOint

Transfer (P) to B

Busy signal generated by counter
interrupt group

Busy signal generated by 10 interrupt
group

Busy signal generated by override
interrupt group

Table 3-93. Glossary of CPU and Integral lOP
S;gnuL (Cont.)

Signal

N(R/CC)

CC 1, CC2,
CC3, CC4

CCXRWD

CCXTRACC

CCZ

CEINT

CIF

CK-n

CKin

Cl-n

Cl/n

CLEARMEM

ClEN

ClFP/n

CLIS

CNA, CNB

Definition

(R/CC)==*Reset CC
l
_
4

Four-bit condition code register. Part
of PSW1

Enable setting of sense switches to be
used to set condition codes. KSS~
CC l -4

TRACC~CCl-4

Contents of condition codes equal zero

Flip-flop used to inhibit clock enable
(ClEN). Used in conjunction with
interrupts and watchdog timer. During
watchdog timer runout, CEINT ensures
that a clock has not just been ~nt down
the delay line. During interrupt pro­
cessing, CEIN T inhibits clock until ARE
is received from interrupt logic

Inhibit counter interrupt group flip-flop.
Part of PSW2

(C K-n)==*fast-memory clock. n is a
point of distribution of fast-memory
clock

logic name given to the output of a
fast-memory clock driver, where 1 ~ n
~ 12

(CL-n)==*CPU ac clock. 01 E01 is a
point of distribution of CPU ac clock

logic name given to CPU ac clock
driver, where 1 ~ n ~ 12

Write zeros throughout core memory.
KCPURESET and KSYSR must be acti­
vated simultaneously for CLEARMEM to
be true

Clock enable. Must be true for an ac
clock to be generated in delay line

Ac clock for floating point. FP===)
floating point. 1 ~n ~ 12

1 mc clock transmitted to external lOP

Control flip-flops used in basic inter­
rupt logic. Used during write direct
mode of communication with basic
interrupt logic

(Continued)

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

CNLK

CNLN7
CNLN8

CNST

CONDl
CON02

Definition

Flip-flop used as interlock so that only
one interrupt request can be made for
each time the interrupt button on the
PCP is activated

Address lines generated by counter
interrupt group

Control strobe generated for use by the
lOP

Data used to set CC 1 and CC2. lOP
generates CONDl and COND2 to indi­
cate whether or not an instruction is
acceptable

CPULl, CPUL2, Flip-flop outputs used to set IS2, IS3,
CPUl3, CPUL4 IS4, and ISS. IS2-IS5 correspond to the

count puise interrupt ieveis of the over­
ride group

/CPURST/ Reset signal used by external interrupts

NCROSSCL This term being low will inhibit CPU ac
clock, because crossover clock has been
requested

CROSSADD Crossover address. Fast memory register
has been addressed

CROSS Combination of CROSSADD and memory
request has been made

CROSSDCL Crossover clock taken from DL 1 (DL 1/
170)

CROSSD Disables ac clock

CROSSEN Crossover enable. Enables LR-f-P

CROSSENR

CXMB

CXRR

CXS

DO-D31

DAO-DA7

DAP

DARM

DASW4

Enable crossover read

Enable memory bus (MB) to C-register

Enable fast memory register data to
C-register

Enable sum bus data to C-register

Bits 0 through 31 of D-register

Data lines between lOP and device
controller

Odd parity line between lOP and device
subcontroller

Disarm selected levels in basic interrupt
(pertains to all three groups)

(DATAIN + DATAOUn NSW4

DA T16-DA T31 16 bits of data presented to interrupt
logic during write direct mode

Table 3-93. Glossary of CPU and Integral lOP
Siglals (Cont.)

Signal

DATAIN

DATAOUT

OCCL/l

OCSTOP

DG

DIOO-DI054

DIOEXIT

D!OFS

DIOIND

DIOT1,
DI012,
DIOn

DIOWD

DIOX

DIOXB

D!OXD!O

DIOXS

DIS

DIT/l

DIVOVER

DL 1/040

DL2/050

DL3/080

DM

DOR

DR

Definition

lOP has been requested to read data

lOP has been requested to write data

Clock to be used on C-register. Used
in HOLDC logic

Siglal to stop CPU if address switches
match memory address, and KADDRS TOP
switch is on

Data gate siglal from memory

Direct input/output I ines. (See Inter­
face Design Manual for purpose of
individuai iines)

Direct input/output exit signal

Direct input/output function strobe

Direct input/output indicator. Used to
enable DI051 and 01052 to set CC3
and CC4

Flip-flops used to accept FSA and gen­
erate DIOIND and DIOEXIT

Signifies that direct input/output func­
tion is a Write Direct

I

I Reset DIO register bits 0 through 31

Reset DIO register bits 32 through 47

Enable direct input/output data lines to
DIO-register

Enable sum bus to DIO-register

I Display. Allows a register other than
the sum bus to be displayed

Divide iteration signal

Divide overflow

40 nsec tap on delay line 1

50 nsec tap on delay line 2

80 nsec tap on delay line 3

Decimal trap mask bit

Data order request. DOR = 1 implies
order, DOR = 0 implies data. During an
instruction, DOR is used to set condition
code 1

Data release from core memory

(Conti nued)

3-603

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Signa I s (C on t .)

Signal

DR/1

/DRC/

DRQ

DRQAC

OX

DXC

DXCLl

DXDR8

DXS

DXZ

ECPULl,
ECPUL2,
ECPUL3

ED

EI

ENCNTR

ENIO

ENOVRD

ENDE

/ENXSTRI/

/ES/

EWDM

EXC

FAADD

FAARITH

FABRANCH

FABYTE

FACAL

3-604

Definition

Data release latch. Used to force a
data release for crossover, to force a
data release if address not here (AD NH),
and to save DR if DR is received from
memory before DRQ has been set

DR from memory port C

Data request flip-flop (data from
memory)

Combination of DRQ and ac clock.
Hold term for DR/1 latch

Reset D-register

Transfer C-register to D-register

Transfer C to D left one bit position

Shift D right eight places

Transfer sum bus to D-register

Put all zeros into the D-register

External count pulse (CPUL) request to
count pulse interrupt levels 1, 2, 3

End data line. Indi ca tes last data or
order byte is being transmitted

External interrupt inhibit flip-flop.
Part of PSW2

Enable counter interrupt group request

Enable 10 interrupt group request

Enable override interrupt group request

End of execution

Enter exit strobe. Pertains to interrupt
logic

End service iine. indicates iast byte of
service is being transmitted '

Enable write direct mode. Pertains to
interrupt logic

Execution fl ip-flop. Set when prepara­
tion phase is entered

Family of Add instructions

Family of Arithmetic instructions

Family of Branch instructi ons

Family 'of Byte instructions

Fami Iy of Call instructions

Table 3-93. Glossary of CPU and Integral lOP
Signa!~ (C()!'1+')

Signal Definition

FACOMP Family of Compare instructions

FADIV Family of Divide instructions

FADIVH Forni Iy of Divide Halfword instructions

FADW Forni Iy of Divide Word instructions

FAFL Family of Floating point instructions

FAHW Family of Halfword instructions

FAILL Family of Illegal instructions

FAIM Family of Immediate instructions

FAIO Family of Input/Output {IO} instructions

FALCF Fam.ily of Load Conditions and Floating
Control instructions

FALCFP FALCF or Function of Load Register
Pointer

FALOAD Fami Iy of Load instructions

FALOGIC Forni Iy of Logic instructions

FAMDS Family of Multiply, Divide, or Shift
ins truc ti ons

FAMDST IFAS T/L or IFAMDS

FAMT Family of Modify and Test instructions

FAMUL Fami Iy of Multiply instructions

FAMULNH Family of Multiply-not-halfword
i nstructi ons

FANIMP Family of Nonimplemented instructions

FAPRIV Family of Privileged instructions

FAPSD Forni Iy of Program Status Doubleword
instructions

FARWD Family of Read Direct/Write Direct
instructions

FASEL Family of Select instructions

FASH Family of Shift instructions

FASTABORT Family of Store Abort instructions

FAS T/L Family of Pull Word, Pull Multiple,
Load Multiple instructions

FAS T/S Family of Push Word, Push Multiple,
Store Multiple instructions

FAST/A Family of Pull or Push Word, Pull or
Push Mui tipie instructions

FAS T/B Family of Load Multiple or Store
Multiple instructions

(Conti nued)

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

FASTORE

FASUB

FAW

FAWORDW

FCXS

FL 1, FL2, FL3

FMCL

r .. ,,.." r ... ""
r I \..V, rl \.. I,

FNC2

FNF

F NLO, FNLl,
FNL2

FNORM

FORCL

FORCLEN

FORCLG

FPO-FP31

FPCLEN

FPCON

NFPOPTION

NFPRR

NFPXS

FRO-FR7

FS

FSA

NFSHEX

FSL

FUAIO

FUANLZ

FUAWM

FUBAL

FUBCR

FUBCS

Definition

Family of Store instructions

Family of Subtract instructions

Family of Word instructions

Family of Word or Doubleword
instructions

Transfer sum bus to condition code fl ip­
flops and floating control fI ip-flops

Flag regi ster

Fast memory clock
r- .. - .- __ .,," Ir Y. (' rvn(,;lIon IIne:i ro Ivr. \.lee Inrerroc;e

Design Manual for coding of lines)

Normalize mask bit, part of PSW1

Function lines to interrupt logic. De­
coded to determine function requested
by write direct instruction

Floating point normalize

Force clock

Force clock enable

Force clock gate signal

Floating point data lines 0 through 31

Floating point clock enable

Floating point connect

Not floating point option

Not fl oati ng poi nt resul t ready

FPXS. Transfer sum bus to floating-
I point box

Function response lines. Pertains to lOP

Function strobe

Function strobe acknowledge

Not floating shift exit

Function strobe leading acknowledge

Functi on of AIO

Function of Analyze

Function of Add Word to Memory

Function of Branch and Link

Function of Branch on Conditions Reset

Function of Branch on Conditions Set

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

Signal

FUBDR

FUBIR

NFUCS

FUDW

FUEXU

FUINT

FULAD

FUlRF

FUMH

FUMI

FUMMC

FUMSP

FUMTHOVER

FUMTSIGN

FUPLW

FUPLM

FUPSW

FUS

FUSF

FUSIO

GO-G31

GOO

/GATCLK/

GCLK

GND1101

GND2110

/GPADRO/­
/GPADR3/

GRPO

GXAD

Definition

Function of Branch on Decrementing
Register

Function of Branch on Incrementing
Register

Not Function of Compare Selective

Function of Divide Word

Function of Execute

Function of Interpret

Function of Load Absolute Doubleword

Function of Load Register Pointer

Function of Multiply Halfword

Function of Multiply Immediate

Function of Move to Memory Control

Function of Modify Stack Pointer

Function of Modify and Test Halfword
Overflow

Function of Modify and Test Sign
adjustment

Function of Pull Word

Function of Pull Multiple

Function of Push Word

Function of Shift

Function of Shift Floating

Function of SIO

Generate terms from adder

Extension to most significant end of
generate I ogi c

Gated clock. Used by external interrupts

Gated clock. Used by basi c interrupts

Ground signal on frame 1, row 1, module
location 01

Ground signal on frame 2, row 1, module
location 10

Group address data. Defines which ex­
ternal chassis of interrupts is addressed
by WD instruction

Group 0 (basi c interrupts)

Generate AD

(Continued)

3-605

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Sj9nol~ (Cont.)

Signal Definition

GXAND Generate AND

GXNAD Generate NAD

HALT Flip-flop that causes CPU to stop in
PCP2 (PCP2 = idle phase)

/HBZC/ Busy si gna I transmi tted by override
group to interrupts of lower priority

/HBZV Busy signal transmitted by counter group
to interrupts of lower priority

/HBZE/ Busy signal transmitted by I/O group to
interrupts of lower priority

/HIO/ Halt I/o

/HOF/ Halt on parity error signal transmitted
to memory

HOLDC Hold term used on C-register latches

/HRQBZC/ Higher requesting or busy signal trans-
mi tted by override group

/HRQBZV Higher requesting or busy signal trans-
mitted by counter group

/HRQBZE/ Higher requesting or busy signal trans-
mitted by Vo group

/HRQBZI/ Hi gher requesti ng or busy si gnal trans-
mi tted by counter group

IA Indirect address

il.:: Leave active state signal to counter
group

IBI Leave active state signal to I/O group

IBO Leave active state signal to override

IC Interrupt request from internal I/O

IEC Enter active state signal to counter
group

lEI Enter active state signal to I/o group

lEO Enter active state signal to override
group

lEN CPU interrupt enable

IFAM IFAST/S or IFAST/L or IFAMDS

IFAMDS (FAMDS and NIPH 1 0) or PC P2

IFAS T/L (FAS T/L and NIPH10 and NPCP2)
IFAS Tis
II Inhibit I/o interrupt group, part of

PSW2

3-606

Table 3-93. Glossary of CPU and Integral lOP
Signa!:; (Cont.)

Signal Definition

INO-IN15 Enable flip-flops contained in basic
interrupts

INDX Index

INHXWD Transfer write direct data to interrupt
inhibit bits

INT Interrupt request flip-flop used by CPU
logic

INTO-INTS Interrupt subroutine address lines
I receiv~d by CPU from interrupt logic
I

INT9 Interrupt request received by CPU from
interrupt logic

IN TRAP, Interrupt/trap sequence phase fI ip-flops
INTRAP1,
INTRAP2

K/IOmBn Where 0 ~ n ~ 4. Clock to 10 fast
memory where 1 S. m ~ 4

L/IOmBn Address lines to 10 fast memory

w/IOmBn Data lines to 10 fast memory

10ACT Internal 10 active

10AXST Align I/o status in A-register

lOBO Abort 10 operation. No recognition
due to AVO

10CON Internal VO connect

10CONST I/O control strobe

10DAO- I/o data register. Used for terminal
IODA7 order data out and regular data out

10DAP Parity bit for 10DA-register

10DAX Clear 10DA-register

10DAXA Transfer A-register to 10DA-register

10DC I I/o data chain

10EN I/o enable. Goes true when permissible
for I/O to interrupt CPU

IOEN6 I/o enable during execution PH6

10ENIN 10 is enabled and FSL has been received

10FF Power-off interrupt request from power
fail-safe monitor

10FM I/o fast memory. True when reading
I from or \vri ting to internel I/o fast

memory

(Conti nued)

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

Signal

IOFRO-IOFR9 (

10FRX

10FRXA

10FRXFR

10FS

lOIN

10lNH

iOiNiST

10lR

IOLN7-
IOLN8

/IONEN/

/IONN/

IOPA9-IOPA2

10PADD

10PC

NIOPEX

10PG

IOPHO-IOPH3

10POP

lOR

10RB

10SC

10TRIN

10WD

lPO-IP15

Definition

I/O function response register. Outputs
decoded to defi ne fast memory address

Clear 10FR-register

Transfer A to IOFR

Tran~er FR to 10FR

I/O function strobe

I/O in. Accepts FSL

Inhibit I/O, because of ABORT, pro­
cessing INTRAP sequence, or ADNH

Used to aiign interrupt status in A­
register, status was returned in response
to an AIO instruction

Flip-flop that receives interrupt call
(IC) from internal lOP. 10lR is put on
IR line through a cable driver. IR is
used to set common I/O interrupt level
in basic interrupt chassis

Interrupt address lines 7 and 8 brought
high by I/O interrupt group

ION enable. Power-on enable from
power fail-safe monitor

Power-on signal from power fail-safe
monitor

lOP address lines 0, 1, and 2

I

I :~e:il~~:~~kaddressed
No external lOP in system

10 parity generator on most significant
byte of A-re'gister

Interna I 10 phases 0 through 3

Internal lOP is plugged in

Input-output line during lOP service.
lOR = 1 output, lOR = 0 input

I/O read backward

Internal 10 service call flip-flop

I/o transfer-in-channel

Watchdog Timer runout during I/O
operation

Sixteen arm flip-flops of basic inter­
rupt logic

.Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

Signal Definition

IPH10 10SC interrupted CPU during execution
PHlO

IR lOP interrupt request. Used to set
common lOP interrupt level in basic
interrupt

ISO-IS 15 Sixteen request fl ip-flops of basic
interrupt logic

NISINO N(ISO INO)

NISNlPO N(ISO NIPO)

IX Index fl ip-flop

IXAL Index alignment flip-flop

KO-K31 32 carry bits of sum bus

KOO Extension to most significant end of
carry logic

KADDRSTOP Address stop si gna I from PC P panel

NKAHOLD Not address hold

KAS/1 If KAS/1 is true and NKAS/2 is false,
NKAS/2 one of the following PCP switches is
NKAS/B activated: DATA ENTER, DATA CLEAR,

STORE SElECT ADDR, STORE INSTR
ADDR, INSERT PSW1, INSERT PSW2,
COMPUTE STEP, COMPUTE RUN, DIS-
PLAY SELECT ADDR, DISPLAY INSTR
ADDR, INS TR ADDR INCREMENT, or
LOAD: If NKAS/B is true, none of the
above I isted switches are activated

KC Signal from PCP, low during no clock or
continuous clock

NKC/B I Signal from PCP, high during no clock
or continuous clock

KCLEAR/B Data clear signal from PCP

KCLRPSW1 Clear PSWl signal from PCP

KCLRPSW2 Clear PSW2 signal from PCP

NKCLRPSW/B Not clear PSW signal from PCP

KCONT True if PARITY ERROR MODE switch is
in CONT position

KCPURESET True if CPU RESET switch is activated

KD True if REGIS TER DISPLAY switch is
ON and CLOC K MODE switch is not in
CONT position

NKDI True if REGIS TER SELEC T switch is not
in the EXT position

(Continued)

. 3-607

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

Signal Definition

KDISPLAK/B Display contents of SELEC T ADDRESS
switches

KDISPLAQ/B Display contents of INSTRUCTION
ADDRESS indicators

KENTER/B Enter data signal

KFILL/B True if LOAD switch is activated

KHOP Halt on parity error

KINCRE/B Increment instruction address

KINLVSEL True if INTERLEAVE SElECT switch is
in the DIAGNOSTIC position

KINTRP True if INTERRUPT switch is activated

KIORESET True if VO RESET switch is activated

KPSW1/B True if INSERT PSW1 switch is set

~PKPSW2/B True if INSERT PSW2 switch is set

KRUN True if COMPUTE switch is in RUN
position

KSO-KS31 32 DATA swi tches, true if particular
switch is in the 1 position

KSC Low during CONT CLOCK

KSP15-KSP31 17 S EL EC T ADDRESS switches, true if
particular switch is in the 1 position

KSS1-KSS4 SENSE switches, true if particular
switch is in the 1 position

KS TEP/B True if the COMPUTE switch is in the
STEP position

KSTORK/B Store in SELECT ADDRESS location

KSTORQ/B Store in INSTRUCTION ADDRESS
location

KSXA, KSXB, REGIS TER SElEC T switch signals, select
KSXC, KSXD, A, B, C, D, or sum bus
KSXS

KSYSR True if SYSTEM RESET switch is
activated

KUA21- True as a function of UNIT ADDRESS
KUA31 switch

KWDlR True if WATCHDOG TIMER switch is in
the OVERRIDE position

/LB 15/ -/LB31/ Address lines to core memory

LCKO-LCK1 Wri te lock decodi ng used to cause abort

LEVACT Leave Active State signal to interrupt
logic

3-608

Table 3-93. Glossary of CPU and Integral lOP
5ignols (Cont.)

Signal

LEVARM

LINOO-LIN08

LINREQ

L103-LI07

LKO, LK1,
LK2, LK3

K/LKn

W/LKn/m

LOCKO­
LOCK7

Definition

When exiting an interrupt level, leave
level in armed state

Nine address lines associated with an
interrupt request to CPU

Interrupt request from external interrupts

Address lines to internal I/O fast memory

Signals which are decoded to define a
particular location in fast memory which
is used for write lock data

Where 0 ~ n ~3. Clock to fast memory
used for write lock data

Where 0 ~n ~3, m 0 ~5. Write data
lines to write lock fast memory

Data output from write lock fast memory
modules

LOCKW Enable clock to fast memory write locks

/LR23/-/LR31/ Address lines to CPU fast memory

LRXD

LRXR

LRXZ

MASTER

NMBOCRO­
NMB3CRO

MBXS

MBO-MB31

MCO-MC7

MCDC3,
MCDC7

MCX

MCXNPli

MCXPL2

Transfer D12=14 LR
29

_
31

, where

D
12

-
14

equals index register selection

Transfer R2"8-31 L R28- 31

Put all zeros into the LR lines

Flip-flop denoting slave mode when
MASTER == 0

CRO =>memory address is a crossover
address or address of fast memory
register. MBO-MB3 ~Bytes 0 through
3. NMBOCRO being low, implies write
byte 0 data in fast memory

Transfer sum bus to memory bus (MB)
data lines

Memory data bits 0 through 31

Eight-bit macro-counter, used to keep
record of multiply iterations, etc.

Decrement macro-counter. If MCDC3 is
true, macro-counter wi II be decremented
by 1016, If MCDC7 is true, macro­
counter wi II be decremented by one

Clear macro-counter

Transfer NP left one to ',lie (i .e., NP26
-+-MC1)
Transfer P left two to MC (i .e., P26
-f--MCO)

(Conti nued)

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

MCXS

MCZ

MFlO-MFl7

MFR

MIT

/MQC/

/MR/

MRC

MRCl

MRQ

MRQP1

Definition

Transfer S~CO_7

Contents of macro-counter equal zero

Memory fault lights 0 through 7

Memory fault reset signal

Multiply iteration signal

Memory request to port C

Memory reset si gna I

Flip-flop set if memory request out. If
DRQ set and na memory request was
iitadc, ~~tvj,RC:::: 1, in this case DRQ.
NMRC generates ClEN

Memory request clock ,

Memory request fl ip-flop set by CPU

Flip-flop which causes DRQ to be set
.on clock following the clock which set
MRQ

MUSIC Flip-flop used to drive speaker on PC P
panel

/MWO/-/MW3/ Write byte lines to core memory

01-07

ODINST

OlO-OlF

ORAB

ORDERIN,
ORDEROUT

ORDSW4

OUO-OU7

OVERIND

OVlN6-
OVlN8

OX

OXC

P15-P31

P32-P33

Seven -bi t opcode regi ster

Order-in status enable

Decode of bits 4 through 7 of opcode
register (0 lower)

Override memory requests to ports A
and B, giving highest priority to port C

Order in, order out. Applicable during
internal lOP operations

Implies order or switch 4 (SW4).
SW4=9data chain

Decode of bits 1 through 3 of opcode
register (0 upper)

Overflow indicator fl ip-flop

Interrupt address lines 6, 7, 8 driven by
override interrupt group

Clear O-register

Transfer C 17 0
1

_
7

Seventeen-bi t address register

Two additional bits of address registers,
used for byte count, etc.

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

Signal

P32HOlD,
P33HOlD

PARITYOK

PBAHOlD

PC

PCP1-PCP6

PCPACT

Definition

Hold P32 and P33 at their current value

Parity OK signai from memory port C

Hold byte address in P32 and P33 at
current value

Parity check signal received by internal
lOP from a device controller

Processor control panel phases 1 through
6

Processor is active in PCP phases

PuC is, PD(22, Decrement P counter. PDC18 explained
PDC25, PDC29 as follows: P19-P33 = 0, then decre­

ment P15-P18 by one

PE

PEINT

PEM

PH1-PH10

/POKC/

PON

PR

nnn nn "I 1 rl\v-rr",J I

PROD

/PRC/

PRE1-PRE4

PREIO

PREOPER

NPREP

PRETR

PRI

I

Pari ty error from memory port C

Flip-flop which accepts PEM and is used
to set parity error interrupt level

Parity error in memory latch

CPU execution phases 1 through 10

Pa ri ty 0 K from C port. Used to gener­
ate PARITY OK signal

Power-on request to power-on interrupt
level

I ~roceedsi9:",1 ~ro~ exter~1 lOP

I r-ropagare Signals tor sum bus

'I Extension to most significant end of
propagate logic

I Proceed signal on cable. Used to gen­
erate PR

CPU preparation phases 1 through 4

Preparation for 10 service

Signal true for those instructions which
require reading contents of effective
address

CPU not in PRE1, 2, 3, or 4

PRE- TRAP. Flip-flop denoting when
CPU may TRAP out of preparation phases

Proceed signal

PROBEOVER Probe for overflow

PROBOVER/H' Probe for overflow, halfword

(Continued)

3-609

SDS 901172

Table 3-93. Glossary of CPU and Integral lOP
Si gnols (Cont.)

Siglal Definition

PRXAD Enable propagation of AD

PRXAND Enable propagation of AND

PRXNAD Enable propagation of NAD

PRXNAND Enable propagation of NAND

PSW1XS Transfer sum bus to PSW1

PSW2XS Transfer sum bus to PSW2

PUC18 Upcount P-register. ,Add one to bit 18
level of P-register

PULLUP Source is a terminator. Prov ides addi-
tiona� drive input to clock drivers

NPX Not clear P-register

PXINT Transfer interrupt address to P-register.
Also used as source of enter active state
signal to interrupt logic

PXK Transfer address switches to P (i .e.,
store select address, display select
address)

PXS Transfer sum bus to P-register

PXSXB Transfer B to P via the sum bus

PXTR Transfer TRAP address to P

RO Interrupt level 0 requesting service

R2 Interrupt level 2 requesting service

NR01 Interrupt levels 0 and 1 are not
requesting service

NR23 Interrupt levels 0 through 3 are not
requesting service

R28-R31 Four-bit R-register. Used to retain the
R field of instructions

RDC31 Decrement contents of R-register

RDXMFI Read and reset MEMORY FAUL T
indicators

REIP1 Interrupt level 1 is requesting service.
Level 0 is not active or requesting

REIP3 Interrupt level 3 is requesting service.
Levels 0 through 2 are not active or
requesting

REN Reset enable flip-flops signal to inter-
rupt logic

REU Register extension unit

RIO Reset I/o

\ 3-610
\
\

Table 3-93. Glossary of CPU and Integral lOP
Signals (Cont.)

Signal

RP24-RP27

K/RPOBO

L/RPOBO

W/RPOBO

RRO-RR31

RPXS

RQBZC

RQBZI

RQBZO

/RRWO/­
/RRW31/

RS

RSA

RSCLEN

/RST/

RTC

RT09

RUC31

RW

RWO-RW31

RW15XZ

RX

RXC

RXS

RZ

RWBO-RWB3

SO-S31

I ;~CINH

Definition

Four-bit register pointer (RP) register

Clock signal to CPU internal fast mem­
ory, byte 0

CPU internal fast memory address line

CPU internal fast memory data write line

CPU inte~nal fast memory read data lines

Transfer sum bus to register pointer (RP)
register

Requesting or busy signal from counter
interrupt group

Requesting or busy signal from VO
interrupt group

Requesting or busy signal from override
in terrup t group

Read/write data signals on cable from
CPU to internal fast memory

Request service strobe

Request service acknowledge

RS clock enable

Reset signal to internal lOP

Real-time clock signal. Generated by
power mon i tor

Request terminal order

Upcount R
28

- 31

Write signal to fast memory

Write-data lines to internal CPU or
internal lOP fast memory

Zero RW15

Clear R28- 31

Transfer C to R
28

-
31

Transfer sum bus to R
28

-
31

Contents of R
28

-
31

equa I zero

Read/write byte lines to fast memory

32 sum bus bi ts

Not service cal! inhibit

Service call

(Continued)

SDS 9011n

Table 3-93. Glossary of CPU and Integral lOP
Si gnals (Cont.)

Signal

SCL

SFT

SGTZ

/SIO/

SPIM

SPW

SPZ

SRS, 9, 10,
11 __ ..J 1')
I ., U_IU I tJ

/ST/

START

STEPS15

STRAP

SWO-SW15

SWK1, 2, 3,4,
5,6, 12

Definition

Single clock latch

Shift

Sum greater than zero

Start 10

Sign1>ad immediate. Extend sign of
data for immediate instructions

Sign-pad with ones

Sign1>ad with zeros

Set term to IS flip-flops of interrupt
1 ... " ... 1 .. R 0 1n 11 ,.,,,,,,.1 11 r ... e ,. .. :" ... I"
,,, oJ "" 'I '-I I II - •• - ._"-..,t"'--,t,,,-,/

Start signal from power monitor

Derived from /S T/

Signal which allows switches to progress
in a binary fashion from SWS through
SW15

SET-TRAP signal caused by watchdog
timer runout

16 switch signals which help to define
certain states of the CPU

Logical decoding of functions performed
by the PCP switches

N(S/SXAEORD) Not transfer the exclusive OR of A and
o to sum bus

N(S/SXAMD)

N (S/SXAORD)

N(S/SXAP1}

SXBF

SXB

SXDA

NSYSR

T5, TS, T11

T5EN

TSEN

/TDV/

/TIO/

Not transfer (A minus D) to sum bus

Not transfer (A or D) to sum bus

Not transfer (A plus one) to sum bus
I. .

SXB flip-flop

Transfer B to sum bus

Transfer DA data I ines to sum bus

Not (system reset or start)

CPU clock pulses. Nominal values:

T5 = 220 nsec
TS = 290 nsec
T11 = 420 nsec

Enable T5 clock pulse

Enable TS clock pulse- (T11 is auto­
matically selected if T5 or TS are not
enabled)

Test device

Test Vo

Table 3-93. Glossary of CPU and Integral lOP
Si gnals (Cont.)

Signal Definition

TESTS Signal which enables the testing of the
contents of the sum bus

TODATA Terminai order data

TORDIN Terminal order in

TR2S- TR31 Four-bi t TRAP address regi ster

(R/TR) Reset TR-register

TRACC1- Four-bi t TRAP accumulator register.
TRACC4 Holds least significant hex digit of call

instruction trap address, as well as data
for setti ng CC 1-4 for certa i n bytes of
TRAP conditions

TRAP Flip-flop which is set when CPU
attempts to perform an illegal operation

TRIG Enable signal which gates the setting
of IS flip-flops (TRIG ~trigger)

VALST Valid start

VDATAIN Valid data in

VORDER Valid order

WAIT/L Wait indicator on PCP panel

WCTl-WCT6 Six-bit flip-flop register used for
watchdog timer accumulator

WDINT Internal write direct

WDTA FI ip-flop set when watchdog accumu-
lator has reached the length of time
when an operation should have been

I completed

WDTR Watchdog timer reset. One of the terms
used to set WDTRAC

WDTRAC Reset watchdog timer accumulator.
This allows count to start over

WKO-WKl Write key fl ip-flops

ZXX Set 10WD because watchdog timer ran
out during an VO operation

12SKC 12S kilocycles per second clock

n KC n kilocycles per second clock

1 MC 1 megacycle per second clock

N1MCS Clock pulse formed from the combina-
tion of N1MC 2MC

500 CPS 500 cycles per second

3-611

Signal

M7-A31

A2831XB

A4a51Z

A5255Z

ALM

ALR

SDS 901172

Table 3-94. Glossary of Floating Point Signals

Definition

A-register (57 bits, multipurpose)

B3128-f--A2831 (for postnormalizing in multiply - see AXSL4)

A4a51 = 0 (for normalization logic)

A5255 = 0 (for normalization prediction logic)

Ri~t align memory operand [augend (EW) in ADD/SUB]

Right align register operand [addend (R) in ADD/SUB]

ASN A-register is simple-normalized:

i.e., 1/16 s...A < 1 } ('A47 h A51 I h) t ru are not equa to one anot er
or -1 ~A < -1/16

or forced high if FN = 1 in add/sub (when interrogated) to inhibit normalization

ASPP Add/subtract preparation (mantissas are al igned, therefore prepare to add or subtract)

AX
AXL
AX-U
AX/L

AXFP

AXS

AXSL1

1

AXSL4 }
AXSL4/1

AXSR2

AXSR4
AXSR4/1

B48-B31

BX

BXBL1

BXBL2

BXFP)
BXFPU

BXFP/L

BXFP/U

C46-C31

S/CC1/FP

IS/CC2/FP I

3-612

Enable
Enable
Enable
Enable

A4731
A0031 only
A4771
A0031

(via -U, /L - see below)

(= AX)
(= AX + AXL)

FP0031-+--A0031 (via -4 thru -7)

S4731-+-A4731 (via -1 thru -7)

S4831-+--A4730, B48-f--A31 (via -1 thru -7)

S.5131--f---A4727, 0's-f--A2831 except where A2831XB is high (via -1 thru -7)
High speed version ofAXSL4 used for control logic

S4629-f--A4831, S45--f--A47 (via -1 thru -7)

L(S/A47/2) = (G46 + PR46 NK46) BXBL2 = AXSR2

S4627-f--A5031, 0's-+--A4749 (via -1 thru -7)
Hi gh speed version ofAXSR4 used for control logic

B-register (56 bits, multipurpose)

Enable B4831 (via -U, -L)

B4931---f--B4830 (via -U, -L)

(K46-f--B31 if long DIV; K46--f--B71 if short div)

B5031-f--B,4829, S3130+--B3031 (via -U, -L)

F P31 00-f--B4807,

FP31 08-+--B4871 ,

F PO 700 +--B 000 7,

FP3108~B4871

B4871--f--B0831 (via /U, /L - see below)

0's-f---BOO31

B4871-,L-B0831 (= BXFP)

(= BXFP + BXFPU)

Buffers for DXDL 1 and DXDR 1 logic

Set CC 1 in CPU

Set CC2·in CPU

(Continued)

} (Multiply functions where B­
register is played backward)

Signal

046-031

OIT 1
OIT/1 _

DIY

OPP

OSN

ox
ox-u
OX/L

OXA

OXOLl

OXOR1

1
j

DXS l oxs-u
OXS/L

EO-E7

Eoo03Z

E0407Z

EOC3

EOC7

EUC3

EX

EXFM64

EXNE

EXNFM64

FO-F7

FOC3

FOC7

FEOF

FEUF

FN/FNF

FPO-FP31

I

SOS 901172

Table 3-94. Glossary of Floating Point Signals (Cont.)

Definition

O-register (58 bits, multipurpose)

Divide iterations (excluding final 2 clocks of PH8)
Divide iterations (excluding final clock of PH8)

Divide (0 decoding)

Divide preparation (operands are simple-nonnalized, therefore prepare to divide)

O-register is simple-normalized

i.e., 1/16 ~O < 1

Enabl~

Enable

or -1 ~O < -1/16

04631

04671

Enable 00031

A4731--1-- 04731

} (047 thru D51 are not equal to one another)

(via -U, /L - see below)

(= OX)

(= OX + PH4)

(A47-f--046)

04831-+--04730, sustain 046, 0-+--031

04630-+--£)4731, sustai n 046

(via -U, -L and C4631) (OX2:+--0)

(via -U, -L and C4631) (OX-1/2-+--0)

S4631-!--04631

S4671--1--04671

S0031-+--ooo31

(via -U, /L - see below)

(= OXS)

(= OXS + PH4)

E-register (8 bits, for exponent processing)

E0003 = 0

E0407= 0

Oowncount EOOO3 [inhibited if E < -9610 to prevent false overflow indication arising from certain cases
of unrecoverable underflows (e.g.; 00000001 i6 x 00000001 i6>]

Oowncount E0407

Upcount E0003 [inhibited if E > 9610 to prevent false underflow indication arising from certain cases of
unrecoverable overflows (e.g., 7FFFFFFF

16
(0000001

16
)] .

Enable EOO07

F minus 64-f--.-E

Invert EOOO7

(Inverted F) mi"nus 64-+--E

. F-register (8 bits, primarily iterations counter)

Oowncount FOOO3

Oowncount F0407

Floating exponent overflow (E 264) (result -10)

Floating exponent underflow (E < -64) (result -I 0) N{significance trap with FZ = 0)

FN flag in CPU PSW (called FNF in hardware). FN = 1 inhibits nonnalization in add/sub·

Bidirectional bus between CPU and box for transmission of data;

(Continued)

3-613

Signal

FPCON

FPDIS

FPR

FPRR

FPX

FPXMISC

FPXSL

FPXSU

FS

FX

FXD

FXNA

FZ

G46-G31

GOOO3, etc.

GXAD

GXAND

K46-K31

KFPXMISC

KFPXSL

KFPXSU

KSXA

KSXB

KSXD

M1

M2

MIT

MUL

3-614

SDS 901172

Table 3-94. Glossary of Floating Point Signals (Cont.)

Definition

Floating point box control (from CPU). Starts box by setting PH1, and stores sign of EW in MWN during
PH1

Floating point display. Substitutes infonnation to be displayed onto the FP bus in place of normal logic.
Also contributes to SDIS logic

Floating polarity reversed. When hig, indicates that the sign of an intermediate result is opposite to that
of the fi nal resul t

Floating point result ready. Signals the CPU that the results are to be available on the FP bus starting
with the next clock (which is PH9 in the box)

High when the box is feeding the FP bus

Miscellaneous signals--FPOO31 for display purposes

SOO31---FPOO31

S47--FPO, El----FP1, E0207---FP0207, S4871---FP0831

FS flag in CPU PSW. FS = 1 causes trap if> 2 postnormalizing shifts are needed or if result = 0 in add/sub

Enable FOOO7

DOOO7-+-FOOO7

Inverted AOOO7-+--FOOO7 (storing inverted AOOO7 instead of true outputs is for signal loading only and
has no logical significance)

FZ flag in CPU PSW. FZ = 1 causes trap on underflow instead of store zero

Generate tenns in adder

Group generate tenns in carry system (high when a carry is generated out of the specified bit range)

A D---G if NSDIS

A O---G if NSDIS

(via /7, / A thru /E)

(via /7, / A thru /E)

Adder carries (none can be high unless SXADD NSDIS)

(flip-flops set by the S/SX ••• tenns)

Special cases: K15: Output directly enabled by SXADD to assure early turnoff of higher order
carries derived from K15 (for benefit of S = 0 test following an add)

K31: Input carry for 2's complementing (= PRXNAND NSDIS)

K71: Can be forced high by special input to GOOO3 = K31 PH10 NFPRD for cases
where only bits 4771 are to be 2's complemented

Switch signal raising FPXMISC if FPDIS

Switch signal raising FPXSL if FPDIS

Switch signal raising FPXSU if FPDIS

Switch signal raising PRXADls and PRXANDls if SDIS

Switch signal raising SXB if SDIS

Switch signal raising PRXAD/'s and PRXNADls if SDIS

(for A--PR--S)

(for B---S)

(for D---PR---S)

21 of multiplier bit pair 1
2
0

of multiplier bit pair J
Polarity matched to that of multiplicand to produce product

Multiply iterations (excluding final clock of PH7)

Multiply (0 decoding)

(Conti nued)

Signal

MWN

02, 06, 07

PH1-PH10

PR46-PR31

PROOO3, etc.

PRXAD

PRXAND

PRXNAD

PRXNAND

R31

RTZ

S/RW/FP

S46-S31

S0031 XFP

S4607XFP

SDIS

SWO, 1, 2

S/SXA

SXADD

S/SXAMD

S/SXAMD/1

S/SXAMD/2

S/SXAPD

S/SXAPD/1

S/SXAPD/2

S/SXAVA

S/SXAVD

SXB

S/SXD

SXFP/4

SXFP/A

SXFP/U

SDS 901172

Table 3-94. Glossary of Floating Point Signals (Cont.)

Definition

Memory word negative. Flip-flop that stores sign of the EWoperand

Opcode bits from CPU. Define particular floating point instruction

Phase flip-flops:

Propagate terms in adder

Group propagate terms in carry system. (PROOO3 means PROO-PR03 are all high)

A D-PR if NSDlS (via /7, /A thru /E) 1
A ND-PR if NSDIS (via /7, /A thru /E) (Flip-flops set by the S/SX ••• terms)

NA D-PR if NSDIS (via /7, /A thru /E)

NA ND-PR if NSDlS (via/7, /A thru/E) PRXNAND NSDIS~1---K31

R31 from CPU. Register address add, used to determine product length in multiply

Result is zero flip-flop. Detects zero result in mantissa

Sets RW fiip-fiop in CPU, causing write into CPU scratch-pad

Sum bus bits. (S45 is synthesized - see AXSR2)

FPOO31--S0031 (via SXFP/4, /A)

FPO--S4647 (sign), FP0831----S4871 (mantissa - MSW), FPOO07--S0007 (exponent)
(via SXFP/4, /U)

S display. Substitutes A, B, or Dfor normal logic on S bus; also kills all carries

General purpose control flip-flops

Preset A----S (i.e., S/PRXAD, PRXAND) (A-PR)

The S bus is performing an arithmetic operation where carries are involved (= PRXNAND + GXAD)

Preset A - D---S (i.e., S/PRXAD, PRXNAND, GXAND) [N(A ® D)----PR, A ND----G, 1---K31J

S/SXAMD unconditionally

S/SXAMD if conditions do not call for S/SXAPD

Preset A + D---S (i.e., S/PRXAND, PRXNAD, GXAD) [(A@ D)----PR, A D----GJ

S/SXAPD unconditionally

S/SXAPD as a condition of signals demanding a minimum number of logic levels. When S/SXAPD/2 is
high, S/SXAPD reduces to:

DIl (K46 @ MWN @ SXADD) [(Divide: = MWN on 1st clock, then = (K46 = MWN)]

+ PH6 N06 N(K46 <±> PR46) [(Add/sub: = (S46 = O)J

Preset IAI----S (i .e., S/SXA if A47 = 0, or S/SXMA if A47 = 1)

Preset IDI---- S (i .e., S/SXD if D46 = 0, or S/SXMD if D46 = 1)

B4831--S4831, 0·s----S4647 (via -L, -U)

Preset D--S (i.e., S/PRXAD, PRXNAD (D----PR)

FPOO07 ----S0007 (= S4607XFP + S0031XFP)

FP0831---S0831 (= S0031XFP)

FPO-S4647, FP0831-S4871 (= S4607XFP)

(Conti nued)

3-615

SDS 901172

Table 3-94. Glossary of Floating Point Signals (Cont.)

Signal Definition

S/SXMA Preset -A---S (i .e., S/PRXNAD, PRXNAND) (NA-PR,1---K31)

S/SXMD Preset -D---S (i .e., S/PRXAND, PRXNAN D) (ND,--PR,1-K31)

SZL S0031 = 0

SZU S4771 = 0

,TRAP TRAP to X'441 and inhibit write into scratch-pad in CPU

Conditions:

Signal

00YNIP-32YNIP

00YPIP-32YPIP

3YNCON-3YNC7N

3YNVON-3YNV7N

3YPCON-3YPC7N

3YPVON-3YPV7N

(4K)

(12K)

ABOA, ABOB, ABOC

ADA, ADB, ADC

ADACO, ADBCO, ADCCO

ADADG

ADAM, ADBM, ADCMB;
ADCMI

ADAMW,ADBMW,ADCMW

3-616

Underflow (exp. < 64
10

) (Result "I 0) (FZ = 1)

+ Overflow (exp. 26410) (Result "I 0)

+ Divide by zero (SW1 = 1 when interrogated)

+ Significance trap (FS = 1) (F N = 0) (top 3 hexes of unnormai ized Iresultl in
add/sub = 0)

Table 3-95. Glossary of Memory Signals

Definition

Y negative inhibit driver signals. Generated by the true condition of TNYI and the reset
output of the respective M-register flip-flops

Y positive inhibit driver signals. Generated by the true condition of TPYI and the reset
output of the respective M-register flip-flops

Y negative current predrive elements. Decode bits L19, L20, and L21 of the address
register

Y negative voltage predrive elements. Decode bits L18, L22, and L24 of the address
register

Y positive current predrive elements. Decode bits L 19, L20, and L21 of the address
register

Y positive voltage predrive elements. Decode bits L 18, L22, and L24 of the address
register

True when the memory size switches are in the configuration NSO NS 1. Used in address
and interleave logic

True when the memory size switches are in the configuration SO NS1. Used in the address
here and interleave logic

Abort signals from the CPU to ports A, B, and C. Used to override a write operation to
prevent changi ng the contents of a memory I ocati on

Port priority signals. Used to indicate which port has access decision

Intermediate port logic signals. Used to gate various timing signals to the CPU and lOP

Port A data gate enable signal

Amplified versions of ADAS, ADBS, and ADC

Amplified versions of ADAS, ADBS, and ADC

(Continued)

Signal

ADAS, ADBS

ADBDG

ADCDG

/AHA/, /AHB/, /AHC/

AHA, AHB, AHC

AP

APA

APB

A nc-
Mrl:.

/ARA/, /ARB/,/ARC/

CFA, CFB

DECENP

DG

/DGA/

DGAO-DGA7

/r..,-. n /

I
/ L/\,;7D/

DGBO-DGB7

I /DGC/

DGCO-DGC7

/DRA/, /DRB/, /DRC/

/EDRA/, /EDRB/, /EDRC/

HALT

HOF

IPD

L18-L31

SDS 901172

Table 3-95. Glossary of Memory Signals (Cont.)

Amplified versions of ADA and ADB

Port B data gate enable signal

Port C data gate enable signa!

Definition

Address here signals as they appear from each port cable driver. True whenever a memory
module responds to an implemented address configuration

Address here signals as they appear in the internal memory logic. True when the requested
address (post-map, post-interleave) compares with the setting of the starting address
switches for that particular memory module (bits 15-19)

Almost parity. Third level parity signal

Port A priority signal. True when AHA and MOA have been received and memory is not
busy. Used to tri gger the port del ay line, causi ng IPD to go true

Port B priority signal. True when AHB and MOB have been received and memory is not
busy. Same function as APA

Almost parity error. Fourth ievei parity signai

Address release signals as they appear in the interface. Used to allow CPU and lOP to
drop their address lines. Generated by the memory logic when an address has been entered
into the address regi ster

Control signals for ports A and B. Used to allow memory to set up for a cycle for A or B
while memory is busy

Sense preamplifier selection enable signals

Data gate enable signal. True during a read process

Data gate signal from port A telling requesting unit that memory data output lines are
active and may be sampled

Port A data output gates. Gate output of M-register onto data lines for port A

Data gate signai from port B. Same function as /DGAI

Port B data output gates. Same functi on as DGAO-DGA7

Data gate signal from port C. Same function as /DGA/

Port C data output gates. Same function as DGAO-DGA7

Data release signals as they appear in the interface. Perform different functions relating
to data, depending upon whether the memory operation is read, write, or write partial

Early data release signals as they appear in the interface. Mayor may not be present,
depending upon whether the memory operation is read, write, or write partial

Generated whenever the following conditions exist: either the power fail-safe and reset
(PFSR) is true, or halt on fault (HOF) and memory fault (MF), ANDed together, are both
true. The HALT si gna lis used to cause memory busy (MB) to stay true and ignore any
further memory requests

Halt on fault signal. Generated by the CPU whenever it is desirable to halt memory when
a memory parity error occurs

Initiate port delay signal. Used to trigger the Port Delay (PORTDL). IPD is used in port A
and B only for access decision

L-register outputs. Used for X-V selection. Bits 15-17 do not go into the L-register.
Instead, they are used for address here (AH), mapping, and interleaving to determine which
of the eight possible memory modules is to be selected

(Continued)

3-617

Signal

Ll8SEN, Ll9SEN

/LA15/, /LA31/

LA15-LA31

LA16S-LA19S

LA18L-LA19L

LA30 L, LA31 L

/LB 15/, /LB31/

LB15-LB31

LB16S-LB19S

LB 18L, LB 19L

LB30L, LB31 L

/LC15/ - /LC31/

LC15-LC31

LC16S-LC 19S

LC18L, LC19L

LC30L, LC31 L

LXA--

LXB--

LXC--

LXL

LXL--

/LX 15/ -/LX31/

MOO-M31

M32

M32XP

/MAOO/-/MA31/

MAOO-MA31

MB

/MBOO/-/MB31/

3-618

SDS 901172

Table 3-95. Glossary of Memory Signals (Cont.)

Definition

Duplicate logic of Ll8 and Ll9. Used to dr; ve the preamplifier selection signals PASLO­
PASL7 where they appear as Ll8J and Ll9J

Port A address I ines as they appear at the input to the port A cable receivers

Port A address I ines as they appear at the output of the port A cable receivers. LA20-
LA29 are direct inputs to the L-register

Port A memory selection signals. May be interleave modified by LA30 and LA31. Inputs
to the starting address comparison logic

Special 4K and 8K address lines as they appear at the input to the L-register

Port A memory selection signals. May be interleave modified by LA16-LA19. Inputs to
the L-regi ster

Port B address lines as they appear at the input to the port B cabl e recei verso AI so the
CPU address lines as they appear at the output of the CPU cable drivers

Port B address lines. Same function as LA15-LA31

Port B memory selection signals. Same function as LA16S-LA19S

Port B special address lines. Same function as LA18L-LA19L

Port B memory selection signals. Same function as LA30L-LA31 L

Port C address lines. Same function as /LA15/-/LA31/

Port C address lines. Same function as LA15-LA31

Port C memory selection signals. Same function as LA 16S-LA 19S

Port C special address lines. Same function as LA18L-LA19L

Port C memory selection signals. Same function as LA30L-LA31 L

Port A transfer signals for address lines into the L-register

Port B transfer signals for address lines into the L-register

Port C transfer signals for address lines into the L-register

Source of clear and latch signals for the L-register

L-register latch signals generated by LXL

lOP address I ines as they appear at the output of the lOP cable drivers

M-register flip-flops. Accept data inputs from ports A, B, and C, or from core memory dis­
criminator outputs. Each complete memory block (4, 8, 12, or 16K) has its own M-register

Parity flip-flop. Set during a read restore or partial-write operation if the word from
memory contains an even number of ones. Also set during a partial or full write if the data
to be strobed into core memory has an even number of ones

Parity flip-flop transfer signal. Used to set flip-flop M32 during parity generation
(partial or full write)

Port A delay Ii nes. Input-output of cable receiver/drivers

Port A data lines. Inputs to the M-register

Memory busy signal. True during the time memory is in the process of satisfying a memory
request. Also kept true during a memory hal t condition to prevent any new memory
requests from being honored

Port B data lines. Input-output of cable receiver/drivers

(Continued)

Signal

MBOO-MB31

/MCOO/ -/MC31/

MCOO-MC31

MDOOP-MD31 P

MD32P

MF

/MF LOO/-/MF L07/

MFR

MI

MQA, MQB, MQC

/MNN/

MR

MWO-MW3

MWOA-MW3A

MWOB-MW3B

MWOC-MW3C

MXAO-MXA3

MXBO-MXB3

MXCOB-MXC3B

MXCOI-MXC31

MXDOB-MXD3B

MXDOI -MXD31

MXMO-MXM3

MXM32

NO, Nl, N2

I

I
I

SDS 9011n

Table 3-95. Glossary of Memory Signals (Cont.)

Definition

Port B data lines. Inputs to the M-register

Port C data lines. Input-output of cable receiver/drivers

Port C data lines. Inputs to the M-register

Sense amplifier/discriminator outputs from core memory. Inputs to the M-register

Sense amplifier/discriminator output from parity bit in core memory. Input to parity
flip-flop

Memory fault signal. Used to gate MFLOO-MFL07 memory fault siglals

Memory fault lamp signals. Used to specify in which memory module a memory fault
(typically a parity error) occurred. These siglals appear only on port C

Memory fault reset signal. Generated by the CPU and used to reset MF

Memory initiate signal. Used to begin a memory cycle when the address here and memory
request signals are both true

Memory request signals from external units as they appear in the memory logic

Margins not normal signal as it appears in the interface. Generated by anyone of the
PT16 power supplies in the system if its associated margin switch is not in the normal
position. The end effect is to extinguish the NORMAL MODE indicator on the Processor
Control Pane I

Memory reset signal from the CPU (where it appears as MRS). Resets control elements in
core memory. Do not confuse this signal with the MR signaled by the CPU as a memory
request

Byte presence indicator flip-flops. Determine which memory operation is to take place.
If all flip-flops are reset, a read-restore operation occurs. If all flip-flops are set, a full­
write operation occurs. If neither of these conditions exists, a partial-write operation
occurs

Write-byte signals to port A from an external unit. Used to set the byte presence
indicator fiip-fiops

Write-byte signals to port B from an external unit. Used to set the byte presence
indicator flip-flops

Write-byte signals to port C from an external unit. Used to set the byte presence
i ndi cator fl i p-fl ops

Port A transfer signals between the M-register set input and the port A data lines

Port B transfer signals between the M-register set input and the port B data lines

Port C transfer signals between the M-register set input and the port C data lines

Port C transfer signals between the M-register reset input and the port C data lines

Core memory discriminator transfer signals between the M-register set input and the
discriminator outputs

Core memory discriminator transfer signals between the M-register reset input and the
discriminator outputs

M-register clear and latch siglOis

Parity flip-flop clear and latch signal

Memory number switches. Used to control the MEMORY FAULT lamps on the Processor
Control Panel

(Continued)

3-619

NIL

NTSSTB

ORIL

ORSP

Signal

PAS LO-PAS L7

PE

/PEA/, /PEB/, /PEC/

PFOO-PF30

PFSR

POK

PORTDL

PORTDL2

PSOO-PS27

RD

READDL

RESMW

SO, Sl

S8

S16

S32

S64

SAS TO-SAS T3

SPAOOP-SPA07P
SPAOON-SPA07N

SPA08P-SPA15P
SPA08N-SPA15N

SPA16P-SPA23P
SPA 16N-SPA23N

SPA24P-SPA32P
SPA24N-SPA32N

3-620

SDS 901172

Table 3-95. Glossary of Memory Signals (Cont.)

Definition

Interleave logic. True if interleaving is not established

Not time for sense strobe signal. When false, causes the strobe signals, SASTO-3, to go
false and to strobe the preamplifier outputs into the sense amplifiers

Override interleave signal. Generated by the Processor Control Panel and used to
disable interleaving

Override slow port signal. Generated by the CPU to cause port C to have the highest
priority. Locks out ports A and B even though the CPU may not have a memory request
pending

Sense preamplifiers selection signals. Enable the proper preamplifiers by decoding
address bits L18, L19, and L23

Parity error signal. True if a parity error is detected during a read-restore or partial-write
operation. Also called a fifth level parity signal

Parity error signals as they appear at the output of the individual port cable drivers

Parity first level gates

Power fail-safe and reset si gna I. Can go true as a result of recei vi ng MR (memory reset)
from the CPU, or ST (start) from the power fail-safe circuits. Used to reset MF

Parity OK flip-flop.. Used to signal external unit that parity check was satisfactory on
word just received from memory. Signal is ANDed with port logic to develop /POKA/,
/POKB/, and /POKC/

Port delay line. Triggered by IPD, which generates TPOO through TP100 in 20 nsec steps.
Generated whenever port A or B receives a memory request, unless CFA or CFB is active

Port delay line. Triggered by TP100, which generates TP120 through TP200 in 20 nsecsteps

Parity second level gates

Read signal. Generated whenever all four byte lines are false

Read delay line. Triggered by MI to generate TROOO through TR620 in 20 nsec steps. Used
to control read portion of a memory cycle

Latch signal for byte presence indicator flip-flops MWO-3

Memory size switches. Used to establish size of memory module

Interleave switch. True for 8K

Interleave switch. True for 16K

Interleave switch. -True for 32K

Interleave switch. True for 64K

Sense amplifier strobe signals

Sense preamplifier outputs for byte 0

Sense preamp Ii fi er outpu ts for byte 1

Sense preamplifier outputs for byte 2

Sense preamplifier outputs for byte 3

(Continued)

Signal

ISRAA/, ISRAB/, ISRACI

ST

TNXC

TNXV

TNYC

TNYI

TNY10-TNY13

TNYV

TPXC

TPXV

TPYC

TPYI

TYPIO-TPYI3

TPYV

WF

WP

WRITEDL

X, NX

X8

X161, X162

X32

X641, X642

SDS 9011n

Table 3-95. Glossary of Memory Signals (Cont.)

Definition

Second request allowed signals as they appear in the interface. Used to signal external
unit that another memory request may be issued

Start signal. Generated by the power-on circuit, which is true for at least 300 ms

Time for negative X current. True during the read portion of a memory cycle if L22 t L25
and during the write portion of a memory cycle if L22 = L25. Used to enable selected
negative X voltage predrive switches

Time for negative X voltage. True during the read portion of a memory cycle if L22 = L25
and during the write portion of a memory cycle if L22 t L25. Used to enable selected
negative X voltage predrive switches

Time for negative Y current. True during the read portion of a memory cycle if the sum of
L22, L23, and L25 is odd and during the write portion of a memory cycle if the sum is even.
Used to enable selected negative Y current predrive switches

Time for negative Y inhibit. True during the write portion of a memory cycle if the sum of
L22, L23, and L25 is even. Used to short-circuit those Y current switches where a zero is
to be generated in core me."Tlory

Amplified versions of TNYI

Time for negative Y voltage. True during the read portion of a memory cycle if the sum of
L22, L23, and L25 is even and during the write portion of a memory cycle if the sum is odd

Time for positive X current. True during the read portion of a memory cycle if L22 = 25
and during the write portion of a memory cycle if L22 t L25

Time for positive X voltage. True during the read portion of a memory cycle if L22 t L25
and during the write portion of a memory cycle if L22 = L25

Time for positive Y current. True during the read portion of a memory cycle if the sum of
L22, L23, and L25 is even and true during the write portion of a memory cycle if the sum
is odd

Time for positive Y inhibit. True during the write portion of a memory cycle if the sum of
L22, L23, and L25 is odd

Amplified version of TPYI

Time for positive Y voltage. True during the read portion of a memory cycle if the sum of
L22, L23, and L25 is odd and during the write portion of a memory cycle if the sum is even

Write full signal. True whenever all the byte presence indicator flip-flops are set

Write partial signal. True whenever some (but not all) of the byte presence indicator
flip-flops are set

Write delay line. Triggered by TR160 during a read-restore or full-write operation and
by TR560 during a write-partial operation. Used to control the write portion of a memory
cycle

Current direction control signals for the X selection. X is true when L22 = L25. NX is
true when L22 t L25

Interleave logic: interleave size is 8K

Interleave logic: interleave size is 16K

Interleave logic: interleave size is 32K

Interleave logic: interleave size is 64K

(Continued)

3-621

Signal

XNCDO-XNCD3

XNCKO-XNCK3

XNVDO-XNVD7

XNVKO-XNVK3

XPCDO-XPCD3

XPCKO-XPCK3

XPVOO-XPVD7

XPVKO-XPVK3

Y, NY

3-622

SDS 9011n

Table 3-95. Glossary of Memory Signals (Cont.)

Definition

X negative current predrive elements. Decode L19 and L25

X negative current predrive elements. Decode L26 and L27. XNCDO-3 and XNCKO-3
form a matrix for the X negative current predrive system

X negative voltage predrive elements. Decode L1S, L2S, and L29

X negative voltage predrive elements. Decode L30 and L31. XNVDO-7 and XNVKO-3
form a matrix for the X negative voltage predrive system

X positive current predrive elements. Decode L 19 and L25

X positive current predrive elements. Decode L26 and L27. XPCDO-3 and XPCKO-3
form a matrix for the X positive current predrive system

X positive voltage predrive elements. Decode LlS, L2S, and L29

X positive voltage predrive elements. Decode L30 and L31. XPVDO-7 and XPVKO-3
form a matrix for the X positive voltage predrive system

Current direction control signals for the Y selection. Y is true if the sum of L22,- L23,
and L25 is even. NY is true if the sum is odd

SOS 901172

This page left blank intentionally

. 3-623

Para~raphs 3-84 to 3-87 SDS 901172

3-84 POWER FAIL-SAFE

3-85 Genera I

The Sigma 5 power fail-safe feature detects primary power
application and primary power failure in the CPU and pro­
vides reset and interrupt signals to initiate startup and
shutdown sequences at appropriate times. This feature also
supplies power to execute the transfer of data during the
interrupt operati on. Power fai I-safe sequences are initiated
under the following conditions:

a. When power is initially supplied to the CPU.

b. When a complete power failure is detected.

c. When a short-term power failure is detected.

If power returns to an acceptable level, normal operation
resumes automatically. During power fail-safe shutdown,
information in certain volatile flip-flop registers is stored
in core memory to prevent cri ti co I program data loss.
When power is restored, the information in core memory is
returned to the volatile flip-flop registers so that the pro­
gram can resume at or near the interrupted poi nt. Core
memory serves as the storage devi ce duri ng power fa ii-safe
operation since the cores are nonvolatile and retain infor­
mation without the presence of power.

The power fail-safe feature is composed of two major com­
ponents: the power fail-safe interrupts, which initiate the
save and recovery programs, and the power monitor assembly,
which monitors the primary power source.

3-86 Interrupts

When a power fai I ure occurs, the power fai I-safe feature
notifies the CPU by means of a power-off interrupt. Suffi­
cient energy is stored in the Sigma 5 power supply system
to maintain dc power for the duration of a short power
failure subroutine. When primary power resumes, a power­
on interrupt causes the CPU to enter a recovery subroutine
that restores the CPU to the state existing before the lapse
of power.

The interrupt memory locations are X'50' for the power-on
interrupt and X' 51' for the power-off interrupt. The power­
on interrupt is the hi ghest pri ori ty interrupt in the system;
power-off interrupt has second highest priority. Both of
these interrupt levels are always enabled; they cannot be
disarmed, disabled, inhibited, or triggered under program
control.

3-87 Power Monitor Assembly

Figure 3-200 is a simplified block diagram of the power
monitor assembly, a standard equipment item in Sigma 5,
which consists of three standard modules: the WT21

3-624

regulator and independent power suppl y, the WT22 line
detector, ulld the AT13 line dr;~er.

The WT21 applies regulated dc voltages to the WT22 line
detector and AT13 line driver. It also supplies unregulated
voltages to the WT22 line driver.

The WT22 line detector performs the function of detecting
a power failure and indirectly providing the necessary
signa~s to the CPU for a startup or shutdown sequence.

The AT13 line driver is basically a cable driver used to
drive the output si gnals of the WT22.

Although the primary power sources are opti onal, depending
on user requi rements, the primary power source shown in
the simplified block diagram is single phase 120 Vac.

The application of primary power to the Sigma 5 system
power supplies provides the power fail-safe feature with
the voltage necessary to power the WT21, WT22, and AT13
modules. These standard dc voltages are provi ded by the
internal power supply in the WT21 regulator. The power
fai I-safe feature receives 120 Vac and 60 Vdc power when
pri mary power is appl i ed. The 120 Vac power is transmitted
to the WT21 regulator, which in turn is converted to regu­
lated +4 Vdc, +8 Vdc, and -8 Vdc and unregulated +24 Vdc
and +50 Vdc. These voltages are routed to the WT22 and
A T13 circlli ts.

Duri ng three-phase operation, the 60 Vdc power output
from the PT14 power supply is monitored directly to the
WT22 line detector, which senses this input to determine
whether it is within acceptable limits.

The requirements for a startup or shutdown sequence are
governed by the WT22 line detector, which contains the
basic sensing circuits within the power fail-safe feature.
Detection of an out-of-tolerance voltage by the WT22 line
detector generates the necessary logic signals to the AT13
line driver for a fail-safe shutdown. A subsequent return
of voltage within tolerance generates the necessary logic
signals to the AT13 line driver for a fail-safe startup.

REAL-TIME CLOCK. The real-time clock circuit on the
WT22 module generates a stable clock frequency synchro­
nized to the line frequency. This real-time clock is not an
integral part of the power fail-safe feature and is located
on the WT22 primarily for purposes of convenience.

INPUT REQUIREMENTS. Note that the input power source
wi I I vary accordi ng to user requi rements. For i nformati on
on the va ri ous power sources, refer to the secti on on Power
Di stri buti on.

THREE-PHASE INPUT DETECTION. When three-phase
detection is required, one phase supplies power to the power
monitor. The presence of three phases is detected by sensing
the presence of a three-phase rectified but unfiltered 60
Vdc signal supplied by the PTl4 power supply.

SDS901172

PI
CONNECTOR

~

120 VAC 1 PH- ~

UNFILTERED 60 VD~

GND~

REGULATOR AND
INDEPENDENT
POWER SUPPLY

WT21

I
+24V

+50V

-

•

UNE DETECTOR
WT22

+4V

+8V

-8V

. -

• •

UNE DRIVER
AT13

--.ST
--'RTC
--'IONEN
-.ION]- TO LT16

__ ---,,--_-..t'-+ IOFF INTERRUPT
MODULE

~'----------~--~--------------~ I
901172A.301

Figure 3-200. Power Monitor Assembly, Simplified Block Diagram

SINGLE-PHASE DETECTION. Si ngle-phase detection is
provided for by a simple rewiring in the power monitor.
When rewired, this standard 110 Vac line is the only
external input to the power monitor assembly.

INTERNAL POWER SUPPLY. The power monitor has its
own internal power supply capable of delivering power to
the WT21, WT22, and ATl3 modules. This supply comes
into operation when external power is applied. When
power is shut off this internal supply outlasts the dc sup­
plies in the computer, thereby keeping logic signals in
their appropriate state as power decays and the power-off
subroutine is executed.

PARALLEL OPERATION. The power monitor is capable of
paralleling its output with the output of other power moni­
tors. This is necessary, since several power monitors may
be used to monitor individual lines and power supplies in
a system. Therefore, if more than one power monitor is
used in a given installation, the equivalent logic outputs
of the power monitors are ORed together.

OUTPUT SIGNALS. There are five output signals from the
ATl3 line driver: ST, the master reset signal, ION, which
initiates the startup sequence, IOFF, which initiates the
shutdown sequence, IONEN, the ION enable signal, which
performs an AND functi on for the output of the power
monitor assembly, and RTC, the real-time clock signal,
which is a clock synchronized to the I ine frequency, but is
not used di rectly in the power fai I-safe feature.

CIRCUIT DISCRIPTION. Figure 3-201 is a functional
schematic of the power monitor assembly. Input power to
the internal power supply on the WT21 regulator is shown
to be single phase 110/120 Vac from pins 1 and 2 of the Pl
connector. This input power is transmitted to transformer
Tl, which is in the internal power supply of the WT21 regu­
lator package. Diodes CRl through CR4 co.'Tlprise a full­
wave bridge rectifier and provide the de inputs to the +8
Vdc and +4 Vdc regulator drivers. Diodes CR5 and CR6 act
as a full-wave rectifier providing ac input to -8 Vdc
regulator circuit.

WT21 REGULATOR. The WT21 (figure 3-202) is the voltage
regulator-driver used to supply regulated de to the WT22
power monitor and AT13 line driver. The WT21 contains a
+8 Vdc regulator-driver, +4 Vde regulator-driver, and -8
Vdc regulator. The +8 volt and +4 volt drivers are used with
external pass transistors. The -8 volt regulator contains the
pass transistor located on the module. The -8 volt regulator
contains a rectifier circuit to allow operation from ac inputs
at pins 14 and 18. The +8 and +4 volt regulator-drivers re­
quire dc input voltages. Two additional bridge rectifying
circuits are located on the WT21 to provide 24 Vdc and 50 .
Vdc.

Filter capacitors for input filtering to the series regulators
are not located on the module; however, provisions are
made for external connections. Surge resistors are located
on the WT21 to prevent damage to the external rectifiers
that supply current to the +8 Vdc and +4 Vdc regulators.

3-625

2

3

4

5

6

7

8

Fl ~
1'1

NOTE:

T1 9

~ ~10
"

~
: Rl .

<:"Rl

;-..7 ...
<:,R2

19

...... 21

COM

1
+60V

i. DASH liNE iNDiCATES - THREE PHASE
2. REFERENCE SDS DWG: 132391-1 B

SDS 901172

~Ql

Q)Q2

Jl
(~)

o

7

9

3

'" 17 -

13 50V 5

~
V3 46

V2 1]
VI 27

Bl 23
32

V4 33

B2 ~

20

49

..,
51

I
I
I
I
r

I I 21

30
I 0

I ~1
!-.- 24V I 45

49

50

51

14 AC IN

18 AC IN -

Figure 3-201. Power Monitor, Functional Schematic Diagram

3-626

5T

RTC

IOFF

22

33

35
0- f--

~f-­
~~
41
O-~

~~
48

50

51

901172A. 302

Q5

RI3

18

AC
IN

POL PINS: 15 , 2~

+8V 510

-8V 500

+4V 490

+50v 130

+24\/ "0

GRD4SB
32

o

NOTE: REFERENCE SOS OWG: 132374-18

RI4

CRiO 6
14 20

AC C
IN

SDS 9011n

RI5

06
\/R3

':"

OJ
+2~V

CR3 CR4

CRI CR2

':"

6 6
9 7

2~ 24
VAC VAC

":

-8\/

RIT

3
RI8

":

+50V

C3 CRB

CR6

':"

6 6
3 5

50 50
\/AC VAC

Q3

I .'Of ."L9 RS
C61

1\9 J +
CZ

+ VR2 RIZ

leI

":

R4

A
23 27 17 ~6 33

81 VI \/2 V3 \/~

Figure 3-202. WT21 Regulator, Schematic Diagram

35

82

901172A.303

3-627

SDS 901172

R 1 through R4 are the surge protecti on resi stors. CR 1
through CR4 and CR5 through CR8 recti fy the ac ; nput
voltages, which are then used to operate the power monitor
with 24 Vdc and 50 Vdc.

+S Vdc Regulator. Q2 and Q1 are the sense and drive
transistors used in the +S Vdc regulator. The input of the
regulator is pin 17 (V2). Pin 27 (V1) is brought out to
connect to an externa I fil ter capaci tor. Vol tage adj ust­
ment is accomplished by controlling the current in Q2.
This current is determined by the emitter voltage, which is
the reference voltage, and the sampled base voltage as
adjusted by RS. The Ql emitter output drives the external
pass transi stor.

+4 Vdc Regulator. Q3 and Q4 are the drive and sense
transistors for the +4 volt regulator. Collector voltage to
Q3 is derived from the +S volt supply. Drive voltage to
Q3 also comes from the +S volts, therefore providing pre­
regulation for the +4 volt regulator. Q3 drives a power
transistor external to the WT21. The base of Q4 is con­
nected to the +4 volt output. Current is controlled by
changing the reference voltage, R12, at the emitter of Q4.

-S Vdc Regulator. The -S volt regulator, including pass
transistor Q5, is located on the WT21. CR9 and CR10
provide a negative supply voltage when ac is applied to
pins lS and 14. Pin 20 is the common and external
capacitor connection. R17 provides voltage control of
the output.

WT22 LINE DETECTOR. Figure 3-203 is a block diagram
of the WT22, figure 3-204 is the WT22 schematic, and
figure 3-205 shows the WT22 w~veforms. Basic timing and
input power for the WT22 are as follows:

Delay time D

ION time A

Power fai lure
detection time

Input power

Adjustable from 5 to 20 ms
(set@ 10ms)

300 ms ± 10%

< 3 ms

+S Vdc @ 40 ma

+4 Vdc @ 30 ma

+60 Vdc @ 50 ma for 3~ detecti on

+22 Vdc @ 10 ma for 1~ detection

+50 Vdc @ 35 ma for 1~ detection

The WT22 is the line detector module that provides all
output signals for the power monitor. This is the basic
unit within the power fail-safe feature. The principal
functi on of the WT22 is to detect a power fai I ure and

3-62S

provide the necessary reset and interrupt signals for the
cpu. These signals initiate startup and shutdown sequences
when power comes on and goes off.

Startu!, Sequence (see fi gure 3-204). When power is first
turned on, the ST flip-flop is dc set by V1 (+S Vdc),
charging CS, causing ST to go high. VD, the sampled
voltage, is also applied and charges C4 through R 13. The
voltage across C4 is determined by the magnitude of VD
through R13, as well as the time constant R13-C4. This
time constant determines the time after power is applied
that the threshold sensing circuit will trigger the ION
pulse. As shown in figure 3-205, the occurrence of ION
istime A, or the approximate time necessary for all dc
power supplies in the computer to stabilize. The ION
pulse resets the flip-flop and ST falls to O. If ST is 0, the
reset of the flip-flop is high and prevents C4 from charging
by holding the NOR gate on.

Shutdown Sequence. When the line detection circuit indi­
cates power fai ling it generates the IOFF si gna I. The IOFF
signal is delayed by the peri od D shown in figure 3-205.
D is the approximate maximum time dc power supplies will
remain within regulation after a power failure. IOFF is
applied to the clock input of the ST flip-flop, and since the
set is held high, the flip-flop sets when IOFF returns to 0,
which is at the conclusion of period D. IOFF pulses will
continue to be generated as long as power is below the
acceptable threshold level.

IOFF pulses and NST prevent C4 from charging in case of
a short power interrupt, as shown in figure 3-205. As long
as IOFF produces a pulse, C4 will discharge, preventing an
ION pulse until C4 charges up again. During this time ST
is held high by IOFF, setting the flip-flop continuously.

ST will go false when ION goes true and there are no IOFF
pulses present. This means that any time an IOFF pulse
occurs, the enti re startup sequence wi II take place. When
power returns, the line detection circuit will generate
IOFF pulses whenever the line voltage drops below thresh­
old. Threshold oscillation is prevented by a preset
hysteresis. IOFF and ION, as determined by their respec­
tive threshold settings, may be set 10v apart; for example,
IOFF will be present at SOv line and ION will occur at
90v line. ST will go high when the line drops below SOv
and will remain high until the line raises above 90v.

Real-Time Clock Signal (RTC). In addition to the ST, ION
and IOFF signals, the WT22 generates a real-time clock
pulse (RTC) synchronized to the line frequency. By selec­
ting the 1 F or 2F term on the module this pulse wi II be at
the Ii ne frequency or twice the Ii ne frequency.

Circuit Description. The line detection circuit is that pert
of the WT22 module which detects an ac line failure. The
detection scheme is slightly different for single phase and
three phase operati on; however, both phases are detected
by the WT22.

SDS 901172

1 PH 39 LINE 21 IOFF
DETECTOR

DELAY

VD 45 ADJ

1 PH 13
~ -
~ R24

REG t---.-. + 50V

+ 50V~5r--.....a...---I
REAL - TIME ~----------------4

1f - CONN L_.17 CLOCK
~--""'RTC

2f - REMOVE
TO VD

3 PH IN~~-......--......-----------------_____ ~l1~~ (PIN 45) 4 FOR3PH

CONNECTIONS:
1 PH = 22V UNREG TO 13 AND 45; CONN 5 TO 39 ; 1 AND 11 NO CONN
3 PH = INPUT TO 1; CONN 11 TO 45; 13 AND 39 NO CONN

Figure 3-203. WT22 Line Detector, Block Diagram

901172A.304

3-629/3-630

.fav 51 0---- A I E6, A5 E6

+4V 49 O----A2E6,A3E10,A4EIO

GRO 48 3-A3E5, A4E5

32 !: ~ POLARIZING PINS: 16 & 18

r---------
LINE DETECTION CIRCUIT 3

I . ~

I
I
I
!~Ql

: JVRl ~R1''l
J ~
I RI -=-

r------------,
IOFF ONE SHOT (O} I

I
I

I
II ~ I

I
+4V I

I
+8V

A1R4 A3-2

CR4 CR5

A2R2 I
I
I --_____ -.J

! --:;-. ,:: ~:-:: A-:: -.

I
'" .. v+' s'"'v" '-'~... " r-------l

I ION ONE SHOT :~~, I I ! I
I \. VY 3 I I A5R4.

I I I CR7 CR6

I I I
I I I

I I I ______ ~L _______ · _____ ~ I
+SV

I L

I I
r;~~'-~~~~~~~

I R15 I
I I

A5R2 I
I
J

CR14

VR2

VR5
I-=-_ I
L _______ ----1

---------1
ION AMPLIFIER +4V

t" i eR!!

I I L ___________ --.J

SOS 901172

+BV

MR5
+8V

CR13
A2R5

+4V I
I
I
I
I
I
I
I
I
I
I
I

A5R2 A2Rli
L _______ _ _J

CRI

CR1S
R22

I
I
I
I
I

39 5 I 17 19 I
10 50 VDC C RTC L _________ ---J

NOTE: THIS ILLUSTRATION WAS PREPARED FROM
THE FOLLOWli'~G Ei'~GINEERING DRAWINGS: 132379-1A

13
S

I
60 VOC

II
M RESISTOR NETWORK 114344

AI, A2, AS

23
ION

SDS 306 BUFFER
(BOTTOM VIEW)

10

5
A3

21
IOFF

SOS 307 FLIP-FLOP
(BOTTOM VIEW)

3

A4

25
ST

45
VO

Figure 3-204. WT22 Line Detector,
Schematic Diagram

90 11 72A. 305

3-631/3-632

SDS 901172

STARTUP SEQUENCE SHUTDOWN SEQUENCES
I I

COMPLETE SHORT -TERM
STARTUP -I----=: LINE-=--! FAILURE\.

LINE VOLTAGE
(ANY PHASE)-----J

FAILURE \'

DC POWER
SUPPLIES

ST

ION

JOFF

JONEN I
ION TRIGGER POINT
VOLTAGE
ACROSS C4

RTC

LEGEND

A. J NITIAL TIME FOR DC SUPPLIES TO STABILIZE IS APPROXIMA TEL Y 300 MS
B. 5-100 !-,SEC AFTER ST FALLS
C. RESPONSE OF IOFF AFTER COMPLETE LINE FAILURE <1.0 MS
D. TIME BETWEEN IOFF AND ST OR MAXIMUM TIME POWER SUPPLIES WILL REMAIN WITHIN

SPECIFICATIONS AFTER A POWER FAILURE IS 5 TO 20 MS

Fi gure 3-205. Power Fai I-Safe Waveforms

STARTUP SEQUENCE
I

L
I

901060A. 31105

. 3-633

SDS 901172

Single-phase operation is shown in figure 3-206. C1 can­
nc-+ charge to level Vp if an ac signal is prec;ent /"It Fin, thp

single-phase input. Ein is generated by an unfiltered dc
signal that is clamped to provide a steep rise at the zero
crossing. This rise time determines the minimum response
time of the IOFF pulse. C1 must charge to Vp, and Vp is
determined by setting potentiometer R2. The time constant
of R3C1 (T2) is longer than T1 as the voltage charges to Vp.
In addition, the base voltage, VD, is derived from an un­
regulated source so it will decrease with line voltage,
causing Vp to be at a lower point, Vp = n VBB where n is
0.7 and Vp is the firing point of the unijunction transistor
Q2. If power drops out completely, V8 decreases immedi­
ate�y and T1 then equals or exceeds T2 and triggers 02 in
less than one-quarter of a cycle. If power goes down slowly
below threshold, 02 will fire at a worst-case condition of
one-half cycle caused by the decrease in VBB; however,
this is only if power drops slowly below threshold and is not

SINGLE PHASE
INPUT

E.
In

NOTE:

REGULATED
50 VDC

1. TO PREVENT FALSE TRIGGERING T2 >T1.

LEGEND
81 SIGNAL TO 10FF ONE-SHOT.

Vp PEAK-POINT VOLTAGE WHICH IS THE FIRING
POINT OF Q2. THIS VOLTAGE LEVEL IS
INDIRECTLY DETERMINED BY SETTING R2.

V
E

VOLTAGE ACROSS C1.

Y
B

INPUT SIGNAL TO BASE OF Ql.

Y
BB

VOLTAGE LEYEL ACROSS Q2.

E.SINGLE PHASE LINE YOLTAGE.
In

a worst-case condition. This happens because in this case
the pc-vIer supplies v,;ll take I':'nge r to co""e 0'J+ 0 f

regulation.

For three-phase operation the threshold is set within the dc
range of the multiphase signal, as shown in figure 3-207.
This unfiltered signal supplies the VBB source voltage in
three-phase operati on. If any phase falls below threshold
the unijunction transistor will trigger. Since the voltage
is now sampled at six times the line frequency, response
time wi II be faster than in single-phase operati on. The
additional transistor across C1 is not used and is therefore
disconnected in threeoophase operation by selection of the
proper input connections to the WT22 module.

Pin Connections. For single-phase detection, connect pin 5
to pin 35; connect pin 13 to pin 45. For three-phase detec-
tion, connect pi n 11 to pi n 45. .

TO IOFF
I--~ B) ONE-SHOT

----ACIN

'-----ACIN

WILL GENERATE ~
10FF

I
REGULATED DC :

::-'------'-~L...---ILJ1]-

50-YDC
INPUT

LINE DROPOUT

901060A.31106

Figure 3-206. Single-Phase Detection

3-634

SDS 901172

3- PHASE
INPUT
E.

In

LEGEND

1. B 1 SIGNAL TO IOFF ONE-SHOT
2. V

E
VOLTAGEACROSSCI

3. V BEl VOLTAGE LEVEL ACROSS Q2

4. E. 3-PHASE LINE VOLTAGE
In

REGULATED
60 VDC

1---+-_13-PHAS E
J INPUT

90 11 72A. 306

Figure 3-207. Three-Phase Detection

The ION one-shot is used to generate the ION pulse. This
occurs when there are no IOFF pulses and the ST flip-flop
is reset with ST low if the line is above the ION threshold.
The one-shot, shown in figure 3-208, consists of a unijunc­
tion transistor threshold circuit, an inverter, and a 2-input
NOR gate. If pulses are applied to D, the emitter voltages
will not reach Vp on 06; likewise, if R is positive 05 will
conduct and C4 will not charge. This provides the inhibit
function of the one-shot. C4 will charge only if power is
on and no IOFF pulses are present, which is the startup
routine. When 06 fires it produces a pulse across R15 that
is used to generate ION.

The real-time clock puts out pulses at the line frequency
or twice the line frequency, as shown in figure 3-209.
07 derives its interbase voltage VBB from a clamped, high
voltage, unfiltered, dc source. R20C7 is set to be longer
than one cycle. As C7 charges, VBB suddenly reduces, and
07 fires when Vp = n VBB and produces a pulse at B1. If
single frequency pulses are required, 07 must not fire every
half cycle. C7 is prevented from charging by diverting the
current through R20 through CR1 every other cycle.

POWER MONITOR LOGIC. There are five power monitor
logic signals put out by the AT13 logic module. The signals
and their cable pins are as follows:

~ Cable Pin

ST 04

RTC 07

IONEN 08

ION 09

IOFF 10

The ION and IOFF signals are input to the L T16 interrupt
module.

Startup Routine. The following steps outline the logic
signals that make up the power monitor assembly startup
routine.

a. ST is the master reset signal that is true during the
time when power on-off transiti ons are occurri ng. When
power is applied this signal comes true as soon as possible
{determined by the internal power supply}. ST remains high
initially as the power supplies in the computer stabilize.
This time is determined by ION occurring.

b. ION occurs only if the line voltage is above a
preset level, which is the ION threshold. ION is then
generated approximately 900 ms after power is turned on.

3-635

SDS 901172

When ION occurs, ST falls to zero. ION should outlast
ST by more than 2 f-lsec ,=,,-,+ 1".<:<: +hnn 100 !,<:P(".

c. IONEN is a true signal as long as a power monitor
is operating. This signal is necessary only when using more
than one power monitor per system. It is available on an
A Tl3 cable driver-receiver where the receivers and drivers
are connected externally. This signal from a driver of one
power monitor connects to the receiver of another, thus
cascading the signals. IONEN then becomes an AND
function which will only be true if all power monitors are
operative.

As shown in figure 3-201, the IONEN switch, Sl, is left
open if only one power monitor is used in a system. If
more than one is used, the ION EN switches are closed on
all power monitors except the first switch in the cable
scheme. This wi II be the IONEN switch closest to the
cable terminator, and it is always left open. With Sl open,
the IONEN signal will be high as long as primary power is
applied to the power monitor. IONEN is ANDed with
ION to produce the PON signal for the L T16 interrupt
module so that the power-on interrupt subroutine can be
initiated.

RTC (Real-Time Clock). A clock pulse that is jitter-free
and synchronized to the Ii ne frequency is one of the out­
puts. This output is arranged so that one RTC signal will

VD
REGULATED

DC

0

-
R

B)

(ION)

not be paralleled with other RTC signals by the inter­
connecting cables. One of the isolated receiver-drivers
on the ATl3 is used for this purpose. This precaution is
necessary since these RTC signals may be on different
phases of the line.

Shutdown Routine. The following steps outline the logic
signals that make up the power monitor assembly shutdown
routine.

a. IOFF is a signal that sets an interrupt channel
indicating to the CPU that the line voltage is below a pre­
set threshold. This interrupt initiates a shutdown subroutine
that stores all volatile data, into core storage before the
master reset signal, ST, causes a cessation of memory oper­
ations. The IOFF pulse should be greater than 2 ~sec, but
less than 20 ms. The delay between a power failure and
the IOFF pulse going true should be minimized (less than
2 ms for single phase, less than 1 ms fo~ three phase).

b. ST will go true, after a delay time, when power
fails. This delay time is determined by the amount of time
it takes for the external dc supplies in the computer to fall
below their specified tolerances. This delay time or the
time between IOFF occurring and ST going true should be
adjusted to as long a duration as possible to allow maximum
time to store data before shutting down the input to the
memory. The delay is adjustable between 5 and 20 ms;
however, it is set at 10 ms.

o flJUUl

R

Vp

VE 7[/1
B) I

901060A.31108

Fi gure 3-208. ION One-Shot Operati on

3-636

SOS 901172

A 0------,

BO-----I

CONNECT TO { ~
INHIBIT FIRING :
EVERY HALF CYCLE C c).1 --r--~I--"r""""-----1

NOTES:

1. WHEN C IS CONNECTED TO B, CR1 IS FORWARD
BIASED AND PREVENTS C7 FROM CHARGING.

2. FOR THE REAL-TIME CLOCK TO FUNCTION AT TWICE
THE LINE FREQUENCY, C IS LEFT OPEN.

3. FOR THE REAL-TIME CLOCK TO FUNCnON AT THE
LINE FREQUENCY, C IS CONNECTED TO B.

VBB~

V VB--"
CTOB V

E

P
_, ...-/1 ~ ~ ~

OPEN V V V V I

V

~I
E B--:7'

C TO B V
E CLOSED

B1 ~ ~

Figure 3-209. Real-Time Clock Operation

901060A.31109

3-637

Paragraphs 3-88 to 3-91 SDS 901172

3-88 FLOA rING POINT UNIT

The floating point unit consists of five registers, an adder,
and control logic for the execution of the following Sigma
5 instructions:

Floati ng Add Short, code 3D

Floating Add Long, code 10

Floating Subtract Short, code 3C

Floating Subtract Long, code 1C

Floating Multiply Short, code 3F

Floating Multiply Long, code 1 F

Floating Divide Short, code 3E

Floating Divide Long, code 1E

The floating point registers are similar to the CPU arith­
metic registers with the following exceptions:

a. The floating point registers contain 25 or 26
additional flip-flops.

b. Two additional registers, the E- and F-registers,
are included to handle exponents.

c. Hexadecimal shift logic is included for normal­
izing.

A block diagram of the floating point unit is shown in
figure 3-210. The floating point unit and the CPU com­
municate by means of 32 bidirectional data lines, FPO
through FP31, and by control signals. The CPU transmits
the following control signals to the floating point unit:

FS (floating significance)

NFZ (not floating zero)

FNF (floating normalize)

R31 (bit 31 of R-register)

02}
06

07

(bits 2, 6, and 7 of O-register)

FPCON (enables connection of floating point unit)

FPDIS

3-638

(enables display of floating point register
on PCP)

Signals from the floating point unit to the CPU are:

N(S/CC l/FP} }
(to set condition code flip-flops)

N(S/CC2/FP)

NFPRR (not floating point result ready)

Clock signals for the floating point unit flip-flops are de­
rived from CPU delay line 1. The clocks are designated
CLFP/1 through CLFP/2 in the CPU and are generated at
the same time as the CPU ac clock signals. The floating
point clock signals are enabled by signals FPCLEN/1,
FPCLEN/2, and NCROSCL.

The functions of the floating point registers are described
in the paragraphs below. The detailed functions of the
registers during instruction execution are described in the
floating point instruction sequence charts.

3-89 A-Register

The A-register is used to hold the augend during addition
and subtraction, the multiplier and then the product during
multiplication, and the numerator and then the quotient
during division. Left shifting for normalizing takes place
in the A-register four bits at a time.

The inputs to the A-register and their enabling signals are
shown in figure 3-211.

3-90 B-Register

The B-register holds the multiplier in reverse order and
then the product during multiplication, and receives the
quotient during division. This register also serves as a
counter during postnormalizing.

The inputs to the B-register and their enabling signals are
shown in figure 3-212.

3-91 D-Register

The D-register holds the addend and then the result in
addition and subtraction, the multiplicand in multiplica­
tion, and the denominator in division. The inputs to the
D-register and their enabling signals are shown in
figure 3-213.

FROM CPU
SUM BUS,
TO CPU
B-REGISTER

flOATING
POINT
SUM BUS
SO-S71

INTERFACE SIGNALS

FS

NFZ ..

FNF -
NRJI ..

N02 .. _ FROM
CPU

N06 ..

N07 -
FPCON -J

FPDIS -r. N (S/CCI/FP)

t N(S/CC2jFP)
TO CPU •• ---'----'-

• NFPRR

r

I

SDS 901172

FPO-FPJI

ORDER
FP7-FPO t l:REVERSE

MISCELLANEOUS
SIGNALS r-I ---.....11------" 1r--------., I

r---\ \ B-REGISTER <r-i
~ iLL 1 _1L...J1.!..7!..111~0~1---,-1---,-1--,-1 --,-I --1..1 --1..1 .:....7~1 8::....&...1 _IL.-..L.II I ~

1

1
I

I

I UFTSHWTI

l LEFT SHIFT 2
L-----::.~ __ --'

I

r,-------------~i-----------~,

RIGHT I
SHIFT 4.

RIGHT I
SHIFT 2.

A-REGISTER

LEFT
SHIFT I

LEFT l
SHIFT 4

171,0 1 1 1 1 1 1

((~-REGISTER l r-I
1 I 1)IL_~I~I~7~II~O.....lI---,-I---,-I---,-I---,-I--I..I--L.17~18LI~I~I.....IJ~

I

F-REGISTER
J
l

1 1 III i7

J

l - I

,

; ~ ____________ ~L~EF~T~SH~IF~T~I _________ ~I I'

. RIGHT SHIFT I .

I

1
1 ,

F-64, NF-64 J E-REGISTER I
-, 01 1 I 1 1 I 17

I 1

I I . ± I
~~------------------------.....I

I'S COMPLEMENT

Figure 3-210. Floating Point Unit, Block Diagram

901172A. 3250

3-639

o

3-640

NA1-NA7
I

PH2AO

SDS 901172

S68-S71, SO-S27
I

AXSR4

S70, S71, SO-S29
I

AXSR2

Sl-S31, B48
I

AXSL1

FPO-FP31
I

AXFP

SO-S31
I

AXS

S4-S31
I

AXSL4

PH2 NMUL

A-REGISTER (LOWER)

AXIL
I

ZEROS

Figure 3-211. Floating Point A-Register Inputs and Enabling Signals (Sheet 1 of 2)

B31-B28
I

A2831XB

9011 nA. 3251/1

SOS 901172

S51-S71, SO- S3
I

I
[(PR46 N K46) + G46] BXBL2

r [(PR48 + K48) +N (PR48 K48)]

r-A4]' PH], DIV

AXSL4

S47-S71
I

AXS

S46-S69
I

AXSR2

S49-S71, SO
I

AXSL1

S46-A67
I

BXBLJ

AX-U
I

ZEROS

AXSR4

Figure 3-211. Floating Point A-Register Inputs and Enabling Signals (Sheet 2 of 2)

9011 nA. 3251/2

·3-641

0

3-642

528-531
I

PH8 DIV
5W1

5D5901172

FP31-FPS
I

BXFPjU

850-B71, BO, B1
I

BXBL1-U

849-867, 868 + N06, 869-B71, 80 + NSWO K46
I

BXDL2-U

DX-U
I

ZEROS

FP7-FPO,848-B71
I

BXFP/L

B2-B31, 531, 530
I

DXBL2-L

Bl-D31, SWO, K46
I

BXBU-L

BX-L
I

ZER05

Figure 3-212. Floating Point B-Register Inputs and Enabling Signals

71

31

901172A.3252

o

SOS 901172

A47, A47-A71
1

OXA-U

S46-S71
1

OXS-U

C46-C71
I

D-REGISTER (UPPER)

5615715815916016116216316416516616716816911 71

DX-U
I

ZEROS

AO-A31
1

DXA-L

SO-S31
1

OXS/L

CO-C31
I

D-REGISTER (LOWER)

OX/L
I

ZEROS

Figure 3-213. Floating Point O-Register Inputs and Enabling Signals

9011 nA. 3253

3-643

Paragraphs 3-92 to 3-95 SDS 901172

N02,X X

~
I

DPP

SUBTRACT 1

FOC3

00-07
I

FXO

NAO-NA7
I

FXNA I

8XFP/L

BXFPjU

. F-REGISTER

5

FX
I

ZEROS

90 11 nA. 3254

Figure 3-214. Floating Point F-Register Inputs
and Enabling Signals

3":'92 F-Register

The F-register is used as an exponent buffer during floating
addition and subtraction while the E-register is involved in
pre-alignment logic. In multiplication and division, the F­
register is used as an iteration counter, subtracting one from
the count with each iteration. The inputs to the F-register
and their enabling signals are shown in figure 3-214.

3- 93 E-Register

The E-register receives the unbiased exponent for all float­
ing point operations and is used as an alignment counter
during addition and subtraction. The inputs to the E-register
and their enabling signals are shown in figure 3-215.

3-94 Adder

The adder in the floating point unit operates in the same
manner as the adder in the arithmetic and control unit. The
same type of adder preset terms are used; for example,
S/SXA to transfer the contents of the A-register to the sum
bus, and S/SXAPD to add the contents of the A- and D­
registers. Two preset terms not found in the CPU adder are
used in the floating point adder: S/SXAuA to place the
absolute value of the A-register contents on the sum bus,
and S/SXAuD to place the absolute volue of the D-register
contents on the sum bus.

3-644

The preset terms set repeater flip-flops as in the CPU adder.
These flip-flops produce propagate terms PRXAD, PRXAND,
PRXNAD, and PRXNAND. Generate terms GXAD and
GXAND and carry terms KO through K71 are also developed
as a result of the preset logic, as in the CPU adder. The
propagate, generate, and carry signals are combined in a
parallel adder configuration to place on the sum bus the
results of the adder functions shown in figure 3-210.

3-95 Floating Point Display

The contents of the floating point registers may be displayed
in the CPU DISPLAY indicators by placing the REGISTER
SELECT switch in the EXT position and operating switches
on the ST14 toggle switch module in location 6A in the
floating point unit. To display the contents of registers
A, B, 0, the sum bus outputs, or a set of miscellaneous
signals, S 1-1 through S 1-5 on the switch module are set
as shown in table 3-96. Switches Sl-l through Sl-5 are
the five switches on the front of the module, S 1-5 on the
top and S 1-1 on the bottom. The information displayed in
the miscellaneous (FPXMISC), sum bus lower (FPXSL),
and sum bus upper (FPXSU) positions is shown in figure
3-216.

MINUS 1
I- EUC3 EUC7

PLUS 1

EOC3 EOC7

NEO-NE7
I

EXNE

NFl, NFl, F2-F7
I

EXFM64

Fl, Fl, NF2-NF7
I

EXNFM64

SO-S7
I

I PH3 I

I E-REGISTER I
01] 121314151617

EX
I

ZEROS
9011 nA. 3255

Figure 3-215. Floating Point E-Register Inputs
and Enabl ing 5 ignals

SDS 901172

FO-F7, NSWO, MWN, RTZ, FPR, SW1, Ml, M2, SW2, EO, El, X, X, D46, PH1-PH10, FPRR
I

FPX MIse

50-531
I

FPXSL

547, NE1, E2-E7, 548-571
I

FPXSU

NFPX

Figure 3-216. Data on Floating Point tines and Gating Terms

901172A.3256

Table 3-96. Switch Positions for Floating Point When the REGISTER SELECT switch is in the EXT position,
signal NKDI in the CPU is true, gating the FP lines into
the PCP DISPLAY indicators. When the REGISTER SELECT
switch is in the A, B, C, D, or S position, signal KDI is
true, gating CPU sum bus information into the DISPLAY

Information Display

SWITCH POSITIO NS I NF ORMA TION
DISPLAYED

51-5 Sl-4 51-3 51-2 51-1

Down X X X X I Miscellaneous

I I I I
Up Down Down Down Down Sum bus, lower

Up Down Down Down Up Sum bus, upper

Up Up Down Down Down A-register, lower

Up Up Down Down Up A-register, upper

Up Down Up Down Down B-register, lower

Up Down Up Down Up B-register, upper

Up Down Down Up Down D-register, lower

Up Down Down Up Up D.-register, upper

i ndi cators.

A logic diagram of the display switches is shown in fig­
ure 3-217. The swi tch outputs are used to gate the desi red
information onto the FP lines. When signal KFPXSL or
KFPXSU is true, the lower or upper portion of the sum
bus contents is gated directly onto the FP lines with the
equations

FPXSL FPDIS KFPXSL

FPXSU FPDIS KFPSU

FPO-FP31 SO-S31 FPSL

FP8-FP31 548-571 FPSU

The contents of the B-regi ster are placed on the sum bus
when KSXB is true with the equations

SXB KSXB SDIS

50-571 BO-B71 SXB

3-645

SDS 901172

r-------,
I ,
I DIS >-F_PD;.;.IS---.....;.I -------..--------,r---------... FPDIS
, {IN CPU} I
L _______ J

Y1~----.NFPDIS

MISC. ~--------------------------~--------------------------~KFPXSMISC

s

~----_+--~------._--------~--------------------------~NKSXA

A ------SOlS

t------------------I~SDIS

B.

~----_+--~~----+------------------------------------~KSXB

~----_+--~~----~-----------------------------------~,NKSXO

o

~-----+--~--~KFPXSL
U

L

~------------------I~KFPXSU

NFPXMISC

9011 nA. 3257

Figure 3-217. Floating Point Display Switches, Logic Diagram

3-646

SDS 901172

The miscellaneous signals are displayed as a result of
enabling signal FPXMISC with the equation

FPXMISC = FPDIS KFPXSMISC

The A-register and D-register contents are placed on
the sum bus by way of the adder when NKSXA or N KSXD
is false. The adder propagate terms are generated as
follows:

PRXAD/

PRXAND/

PRXNAD/

SDIS (KSXA + KSXD) + •••

SDIS KSXA + •••

SDIS KSXD + •••

The PRX NA N D term, the G terms, and K31 are 0-11 qua I i -
fied by NSDIS.

Using bit 12 as an example, figure 3-218 shows the transfer
of data between the CPU and the floating point unit by
means of the FP lines.

-- l I -- --FWATING POINT UNIT - --1 ,-- -- --
CPU

~ __ ,~~ ______ ~.~ __________ ~~_F~Pl~2 __ -' ____________ 4'-----______ __

"----...... S12
KDI SXFP/A--t--L ____ ~

NKDI
a...-...... S52

SXFP/U-t--L.._~

S/A12

AXF P ---1r--L._,..,.
BXFP

t--~S/B67

BXFP/U--L_,..,.

NFPX---"'"

FPXMISC--.....

SW1--L_-",

FPXSUi_-r---..

S52--L_-",

FPXSL--~--"

S 12--L._""
L ________ ---1 ____ --..J

901172A. 3258

Figure 3-218. Floating Point Bit 12, Logic Diagram

3-647

Paragraphs 3-96 to 3-101 SDS 901172

3-96 PROCESSOR CONTROL PANEL (PCP)

The Sigma 5 Processor Control Panel, with its switches,
indicators and displays, is shown in figure 2-1. The PCP
is divided into two separate functional sections. The upper
section (labeled MAINTENANCE SECTION) is reserved
for maintenance controls and indicators, and the lower sec­
tion (not labeled) contains the controls and indicators for
the computer operator.

3-97 Control Switches

The PCP control switches, their designators, logic names,
and true or false logic levels, as well as their functions,
are given in table 3-97. The COMPUTE switch must be
set to the IDLE position before the control switches, except
in the case of the POWER and INTERRUPT pushbuttons and
the CONTROL MODE, ADDR STOP, and INSTR ADDR
switches, wi \I function.

Three logic signals are not directly associated with any
single control switch, but, rather, are the result of several
combinations of switch settings. These logic signals are
KAS/1, KAS/2, and NKAS/B. The following switch logic
describes the conditions under which these signals are true.

KAS/1

KAS/2

NFlll (DATA CLEAR + DATA ENTER)

+ NFILL (STORE INST ADDRESS
+ STORE SEl ADDRESS)

+ NFILL (KPSW1 + KPSW2)

+ NFILL (COMPUTE RUN
+ COMPUTE STEP)

+ NFILL (DISPLAY INST ADDRESS
+ DISPLAY SEL ADDRESS)

+ NFILL (INST ADDRESS INCREMENT)

+ FILL (DATA CNTR STORE CNTR
INSERT CNTR COMPUTE IDLE
DISPLAY CNTR INSTR ADDR CNTR)*

+ CONTROL MODE LOCK

NFIll COMPUTE RUN

+ NFILL DISPLAY INST ADDR

+ DATA (ENTER + CLEAR) NFILL

+ NFILL INSERT PSW2

+ NFILL STORE INST ADDRESS
+ SEL ADDRESS

+ FILL

+ CONTROL MODE LOC K

~~KAS/B = NFILL {DATA CNTR STORE C!'JTR
INSERT CNTR COMPUTE IDLE DISPLAY
CNTR INSTR ADDRESS CNTR}*

*Where CNTR = switch in center position

3-648

3-98 Indicators

The PCP indicators, their designators, and their associated
lamp drivers are listed in table 3-98.

3-99 pcp Phase Sequencing

Most control operations carried out by the PCP require one
or more PC P phase sequences. - These phase sequences are
controlled by six flip-flops, PC P1 through PC P6. The log ic
for the PC P phase fl ip-f1ops is given in the sequence charts
for the individual PCP functions.

3-100 CLOCK MODE Switch

When the program is sequencing normally, the CLOCK
MODE switch is in CONT and the clock enable signal,
CLEN, is not inhibited, since switch signal KSC is false.
When the switch is in the center position, however, KSC
is true and the clock enable signal is inhibited. The equa­
tion for clock enable signa I CLEN is as follows:

CLEN = N [(NCEINT KSC) NSC2]
N [(NCEINT KSC) SCL] + •••

If the switch is set to SINGLE STEP, KC goes true, causing
SC1 to set on the next l-MHz clock with the equation

S/SC1 = KSC KC

Flip-flop SC2 then sets on the next l-MHz c lock- with the
equation

S/SC2 = SCl

Signal CLEN is enabled momentarily when SC2 is set. The
first ac c lock generated sets latch SCL, which inhibits fur­
ther clocks by disabling signal CLEN. The SCL latch resets
when SC2 is reset:

SCL = SCL SC2 + SC2 NCEINT CL

When the CLOC K MODE switch is returned to the center
position, N KC/B is true and SCl is reset with the equation

R/SCl = NKC/B SCL

Flip-flop SC2 is then reset with the equation

R/SC2 = NSCl

At this point, signal CLEN is again inhibited.

3-,101: CONTROL MODE Switch

The CONTROL MODE switch is a two-position key lock.
When the switch is in LOCAL, all controls and indicators
on the PCP are operative. Except for the POWER and
INTERRUPT pushbuttons and the SENSE and AUDIO switches,
when the switch is in LOC K the gates associated with most
control panel switches are inhibited and retain the functional
status that was occupied when the CONTROL MODE switch
was set to the LOC K position.

The switches I isted in table 3-99 are interlocked to the
states indicated when the CONTROL MODE switch is in
the LOC K position.

SDS 901172

Table 3-97. PCP Control Switches

Switch Name Designator Logic Name Swi tch Posi ti on Logic Level Function

CONTROL S3 None LOCAL Supplies +8v and -8v local voltages
MODE to PCP

LOCK Interlocks COMPUTE switch to RUN
(KRUN/B true), WATCHDOG TIMER
switch to NORMAL (KWDTR false),
INTERLEAVE SELECT switch to NORMAL
(KINLVSEL false), PARITY ERROR MODE
switch to CaNT (KHOP false), and
CLOC K MODE switch to CaNT (KSC
fa Ise). The POWER, INTERRUPT, AUDIO,
and SENSE switches remain operative.
All other switches on the PCP are dis-
abled. All indicators on the PCP con-
+inllCo .1"\ inrli,..,,+o .ho ",.. ... :"llr ,.." "" 0 ... ","_- .- ... _. __ "- •.. - "'_. --'"''* -"' ••• t''''' • ...,.

states. Setting the CONTROL MODE
switch to LaC K prevents unauthorized
persons from disrupting a program by
switch manipulation

WATCHDOG S12 KWDTR NORMAL False Allows watchdog timer runout trap
TIMER

OVERRIDE True Inhibits watchdog timer runout trap

INTERLEAVE Sl1 KINLVSEL NORMAL False Memory interleaving in effect
SELECT DIAGNOSTIC True Memory interleaving not in effect

PARITY S10 KCONT HALT False In HALT, halt when parity error occurs
ERROR MODE

CaNT True In CaNT, interrupt when parity error
occurs, but do not halt

KHOP HALT True

CaNT False

I I I
SENSE 1 S9 KSS1 1 True Sense switches. Data from these switches
SENSE 2 S8 KSS2 1 True can be read into the Condidion Codes
SENSE 3 S7 KSS3 1 True (CC1-CC4) by a read direct or write
SENSE 4 S6 KSS4 1 True direct instruction

CLOCK S5 KC CaNT False Three-position switch. Center position
MODE Center False inhibits all ac clocks in CPU. CaNT

SINGLE STEP True position allows continuous ac clocks.

NKC/B CaNT True
SINGLE STEP momentary position pro-
vides one clock each time switch is

Center True moved to SINGLE STEP position
SINGLE STEP False

KSC CaNT False
Center True
SINGLE STEP True

(Conti nued)

3-649

SDS 901172

Table 3-97. PCP Control Switches (Cont.)

Switch Name Designator Logic Name Switch Position Logic Level Function

REGISTER S4 KD ON True When ON, permits REGISTER SELECT
DISPLA Y Off False switch to display selected register in

DISPLA Y indicators. KD will be true
only if REGISTER DISPLAY switch is
ON and the CLOCK MODE switch is
not in CONT

REGISTER Sl KDI A True Selects register whose contents wi" be
SELECT

8 True transferred to sum bus

C True

0 True

S True

EXT False

KSXB B True Force BO-B31 to sum bus for display if
KDI

KSXD 0 True Force 00-031 to sum bus for display if
KDI

KSXS S True Display contents of sum bus SO-S31 if
KDI

KSXA A True Force AO-A31 to sum bus for di splay if
KDI

KSXC C True Force CO-C31 to sum bus for display
if KDI

AUDIO S2 None ON Closes speaker circuit to allow an audio
alarm when alarm flip-flop is set

POWER S19 None Supplies or removes ac power to power
supplies PTl4, PTl5, PTl6, and PT17.
Causes signal ST (START) to initialize
system. When power is supplied to or
removed from the system PON or IOFF
signa Is in the optiona I power monitor
cause interrupts

CPU S18 KCPURESET Pressed True Initializes CPU. If pressed simultaneously
RESET/

NKCPURESET/B False
with SYSTEM RESET/CLEAR switch, the

CLEAR CPU and the lOP are initialized and core
memory is cleared to O's

I/O RESET S17 KIORESET Pressed True Initializes all I/O operations. All periph-
eral devices are halted, and all status
a nd control i ndi cators in the II 0 system
are reset. Does not affect the current
operations of the CPU

-

(Continued)

3-650

SDS 901172

Table 3-97. PCP Control Switches (Cont.)

Switch Name Designator Logic Name Switch Position Logic Level Function

LOAD S16 KFILVB Pressed True Pressi ng the LOAD switch (with COM-
PUTE in IDLE) forces a bootstrap pro-
gram to be entered in memory locations
X'20' through X'29'

UNIT S15A Encoded The three UNIT ADDRESS thumbwheel
ADDRESS KUA21 2

10 switches are used in the load operation

2
9 to designate from left to right the input/

KUA22 0-7 output processor, the device controller,

KUA23 28 and the device. The address designated
by the UNIT ADDRESS switches is stored

S15B Encoded
into memory location X'25' when the

27
LOAD switch is set

KUA24

KUA25 O-F 26

KUA26 25

KUA27 24

S15C Encoded

KUA28 23

KUA29 O-F 22

KUA30 21

KUA31 20

SYSTEM 514 KSYSR/B Pressed True Initia lizes the CPU and all I/O func-
RESET/ NKSYSR False

tions. If pressed simultaneously with
CLEAR CPU RESET/CLEAR switch, core memory

is cleared to all O's

INTERRUPT S13 KINTRP Pressed True Causes an interrupt to location X'5D' if

NKINTRP/B False PSW2 bit 6 (flip-flop II) is a 0

I I
INSERT S21 KPSW1/B PSW1 True Enters the contents of the DATA switches

PSW2 False into PSW1 or PSW2 if COMPUTE is in

KPSW2/B PSW1 False IDLE

PSW2 True

STORE S23 KSTORK/B SELECT ADDR True In SELECT ADDR stores the current va lue

INSTR ADDR False of the DISPLA Y indicators into the loca-
tion pointed to by the SELECT ADDRESS
switches

KSTORQ/B INSTR ADDR True In INSTR ADDR stores the current value

SELECT ADDR False
of the DISPLA Y indicators into the loca-
ti on poi nted to by the INS TRUCTI ON
ADDRESS indicators

(Conti nued)

3-651

Switch Name Designator

DATA

INSTR ADDR

DISPLA Y

COMPUTE

SELECT
ADDRESS

ADDRSTOP

3-652

S43

S20

S22

S42

S24

S40

S41

SDS 901172

Table 3-97. PCP Control Switches (Cont.)

Logic Name Switch Position Logic Level

KCLEAR/B CLEAR True

ENTER False

KENTER/B ENTER True

CLEAR False

KINCRE/B INCREMENT True
HOLD False

NKAHOLD HOLD False
INCREMENT True

KDISPLAK/B SELECT AD DR True

INSTR ADDR False

KDISPLAQ/B INSTR ADDR True

SELECT ADDR False

KRUN/B RUN True
IDLE False
STEP False

KSTEP/B RUN False
IDLE False
STEP True

KSP31 True

KSP15 o False

KADDRSTOP ON True

(Conti nued)

Function

Resets the DISPLAY indicators (0-
register)

Enters the contents of the DISPLAY
indicators according to the states of
the 32 DATA swi tches.

MomentarY position. Causes the instruc­
tion address in the P-register to count up
by 1

Inhibits the P-register from counting

Displays in the DISPLA Y indicaton the
contents of the location pointed to by
the SELECT ADDRESS switches

Displays in the DISPLAY indicators the
contents of the locati on poi nted to by
the INSTRUCTI ON ADDRESS indicators

With COMPUTE in RUN the CPU
sequences normally through the program.
With COMPUTE in IDLE the CPU waits
in PCP2. When COMPUTE is set in the
momentary STEP position from IDLE, the
CPU executes the current instruction,
reads the next instruction, and returns
to PCP2 and waits

The 17 SELECT ADDRESS switches are
used with the ADDR STOP switch to
select the address at which the program
is to be halted; with the STORE switch
to select the address of a memory loca­
tion to be altered; and with the DISPLAY
switch to select the address of a memory
location to be displayed

When this switch is ON the CPU halts
w.he~ the va lue of tne~·~~rY-~(id;~]
reglster eguals the value set in the
SELECT ADDRESS switches. At the
ha It, the instruction in the location
pointed to by the INSTRUCTION
ADDRESS indicators appears in the DIS­
PLA Y indicators. This instruction is the
one that would have been executed next
had the halt not occurred . Wi~'" Jl)f\?

'~",c,~..,... {.lu ... \..oMo P W\\\ ,>t-9 to ,t/JL..._

,:~ \..\..,t.. o..CA,.(,i'-tS \I.o"tt""k~ vuitL
'\

r""'-' \- .l.c ~J..W~.: t ['·'-tt:~ ~ \. Vi·'"

~~ ~ ... 'i' o.,,~ t. "'<' \... / ~,/\._ \ r) \- w \ ~
~ v.,~ ,"vJ..,)<,/\.- /,.,,", /yV·'·, ~\...'-­

~ .----~ t 0._ --' \---"

SDS 901172

Table 3-97. PCP Control Switches (Cont.)

Switch Name Designator Logic Name Switch Position Logic Level Function

DATA 0 S75 KSO 1 True Th; 32 DATA switches are used to enter
0 False a new value into PSW1 or PSW2 when

used with the INSERT switch, or to
enter a new vaiue in the DISPLAY indi-
cators when used with the DATA switch

DATA 31 S44 KS31 1 True
0 False

CLEAR PSW1 S77 KCLR PSW1 Up True Clears contents of PSWI

CLEAR PSW2 S76 KCLR PSW2 Up True Clears contents of PSW2-

Table 3-98. PCP Indicators

Indicator Name Designator Lamp Driver Origin

INSTRUCTION ADDRESS· DS39 P31/L . · . · · DS55 P15/L

TRAP
ARITH 0556 AWL

MODE
5LAVE

I
0559 MA5TER/l

FLOAT MODE

I NRMZ 0560 FNF/L
ZERO I DS61 I FZ/L
51G 0562 FS/L

CONDITION CODE
1 0566 CC1/L
2 0565 CC2/L
3 0564 CC3/L
4 0563 CC4/L

POINTER 0529 RP27/L

. .
0532 RP24/L

(Conti nued)

3-653

SDS 901172

Table 3-98. PCP Indicators (Cont.)
...----o~~~~_o~_~_

Indicator Name Designator Lamp Driver Origin

INTRPT INHIBIT
EXT OS34 EI/L
I/O DS35 n/L
CTR OS36 CIF/L

WRITE KEY OS38 WKO/L
DS37 WK1/L

OISPLA Y OS67 S31/L .
· · .

OS98 SOil

POWER OS28 +8v

NORMAL MODE 0525 Special from PT16

RUN OS24- RUN/L

WAIT OS23 WAIT/L

INTERRUPT OS22 CPI/L

MEMORY FAULT OS21 MFLO/L · · · · · · OS14 MFL7/L

ALARM OS13 ALARM/L

PHASES OS12 PRE4/L
PREPARA TION OS 11 PRE2/L

OSlO PRE1/L

PCP OS9 PCP4/L
OS8 PCP2/L
OS7 PCP1/L

EXECUTION OS6 PH8/L
OS5 PH4/L
OS4 PH2/L
OS3 PH1/L

I NT/TRAP OS2 INTRAP2/L
DS1 I INTRAP1/L

3-654

SDS 901172 Parawaphs 3-102 to 3-107

Table 3-99. Control Mode Lock Switch Status

Switch Interlock State

COMPUTE RUN

WATCHDOG TIMER NORMAL

iNTERLEAVE SELECT NORMAL

PARITY ERROR MODE CONT

CLOCK MODE CONT

Note

Unpredictable results may occur if the CONTROL
MODE $witch h octuoted while the CO".~PUTE
switch is not in RUN

3-102 WATCHDOG TIMER Switch

When the WATCHDOG TIMER switch is in NORMAL, the
watchdog timer counter is reset (flip-flops WCT1-WCT6 set
to all ones) by signal WDTR at each interruptible period
during program execution.

S/WDTR = lEN + PH10 + ...

If the watchdog timer, which counts up by ones each micro­
second, reaches a count of 42 without being reset, a watch­
dog timer runout condition exists and the program traps to
location X'46'.

When the WATCHDOG TIMER switch is in OVERRIDE,
WDTR is held true, and the watchdog timer flip-flops are
constantly held to all ones and cannot count.

WDTR = KWDTR + KSC + N KRUN
+ PCPACT

3-103' INTERLEAVE SELECT Switch

When the INTERLEAVE SELECT switch is in NORMAL, core
memory interleaving is in effect. When the switch is in
DIAGNOSTIC, memory interleaving is not in effect. Nor­
mally this switch is in DIAGNOSTIC only when the operator
is performing memory diagnostic programs. Interleave logic
is found in the core memory.

3-104 AUDIO Switch

The AUDIO switch in the ON position connects the PCP
speaker to either flip-flop MUSIC or flip-flop ALARM. If
ALARM is true, and the AUDIO switch is ON, the speaker
will emit a 1-kHz signal. The ALARM and MUSIC flip-flops
are set or reset by the write direct instruction.

3-105 SENSE Switches

The four SENSE switches on the PCP operate in either the
loca I or lock control modes.

3-106 REGISTER DISPLAY Switch

The REG ISTER DISPLAY switch is used with the REGISTER
SELECT 12~positien switch to display the contents of the
CPU internal registers. The logic signal KD generated by
the REGISTER DISPLAY switch is true only when the REGIS­
TER DISPLAY switch is ON and the CLOC K MODE switch
is not in CONT.

3-107 REGISTER SELECT Switch

The REGISTER SELECT switch is used to display the follow­
ing information under the conditions noted:

a. Contents of the CPU reg isters or sum bus, as se lec­
ted by positions A, B, C, 0, and S on the panel above the
switch when the REGISTER DISPLAY switch is ON. The
display is in the DISPLAY indicators.

b. Contents of the floating point unit registers or sum
bus, as selected by switches on the floating point unit (para­
graph 3-95) when the REG ISTER SE LECT switch is in the
EXT position. The display is in the DISPLAY indicators.

c. Integral lOP information as shown in table 2-2
when the REGISTER SELECT switch is set at EXT. The display
is in the INSTRUCTION ADDRESS and EXECUTION, PCP,
and PREPARATION PHASES indicators.

The DISPLAY indicators are I ighted by lamp drivers SOIL
through S31/L, which receive their inputs from the sum bus,
SO through 531, or the fleating point unit, FPC through FP31
as follows:

SO/L-S31/L = SO-S31 KDI + FPO-FP31 NKDI

where N KDI is true when the REGISTER SELECT switch is
in the EXT position.

The contents of the CPU B- and C -registers are gated onto
the sum bus as fo Ilows:

SO-S31 = BO-B31 SXB + CO-C31 SXC + .••

SXB = KSXB DIS + •••

SXC = KSXC DIS + •••

DIS = NKSXS KD KSC NSC1

Signa Is KSXB and KSXC are the outputs of the REGISTER
SELECTswitch in the Band C positions respectively, signal
KD is true when the REGISTER DISPLAY switch is ON, and
KSC is true when the CLOC K MODE switch is in the center
position.

The A- and D-register outputs are placed on the sum bus by
way of the adder propagate signa Is, PRO through PR31.

3-655

Paragraphs 3-108 to 3-113 SDS 901172

REGISTER SELECT switch outputs KSXA and KSXD, true
•• hen the switch is in the A and D positions resoectively,
are inverted and used in the adder enable terms PRXAD,
PRXNAD, PRXAND, and PRXNAND in such a way that the
propagate term for each bit wi II contain the A- or D-register
information when the switch is in the appropriate position.
The propagate logic is explained in detail in the discussion
on the CPU adder.

If the REGISTER SELECT switch is in the S position, the
REG ISTER DISPLAY switch is off, or the CLOC K MODE
switch is in the CONT position, signal N KSXS, KD, or KSC
respectively is false, driving signal DIS false. In this case,
any information that happens to be on the sum bus is dis­
played in the DISPLAY indicators.

The integral lOP information is displayed by way of the
following lamp drivers:

INSTRUCTION ADDRESS

P16/l-P25/l

P26/l

EXECUTION PHASES

PH1/L-PH4/l

PCP PHASES

PCP4/l

PRE PARA TIO N PHASES

PRE4/l, PRE2/L, PRE1/L

IOFRO-IOFR9

10FM

10 PHO-IO PH3

10SC

SW4/LP, SW2/LP,
SW1/lP. Stat~s of
SW9-SW15, binary
coded from 001 (SW9)
to 111 (SWI5)

The I/O information is gated onto the appropriate lamp driver
lines by signal NKDI, which is true when the REGISTER
SELECT switch is in the EXT position. Typical equations are
as follows:

P19/L = P19 KDI + IOFR3 NKDI

PCP4/l = PCP4/LP KDI + 10SC NKDI

3-108 I/O RESET Switch

The I/O RESET switch generates signa I KIORESET. KIORESET
is gated with NKAS~-1 to produce the I/O reset signal
/RIOC/. Signa I KIORESET is interlocked to the fa Ise state
when the CONTROL MODE switch is in LOC K. The I/O
RESET switch does not affect the current operation of the
CPU.

3-109 UNIT ADDRESS Switches

The three UNIT ADDRESS switches are used with the LOAD
switch to enter into the initial bootstrap load routine the
address of the device, device controller and the lOP from

3-656

which the data is to be read into memory. The UNIT
ADDRESS switches decode the hexadecimal numbers to their
binary representations.

3-110 INTERRUPT Switch

The CPU INTERRUPT switch generates the signal KINTRP,
which causes the CPU to interrupt to location X'5D'. Unless
PSW2 bit 6 is a zero and the interrupt level is armed, the
interrupt will not occur.

3-111 SELECT ADDRESS Switches

The 17 SELECT ADDRESS switches are used with the ADDR
STOP switch to select the address at which the program is
to be halted. They are used with the STORE switch to
select the address of a memory location to be altered, and
are a Iso used with the DISPLAY switch to select the address
of a memory location to be displayed.

3-112 DATA Switches

The 32 DATA switches are used to alter the contents of PSWI
or PSW2 when used with the INSERT switch, or to change the
value of the DISPLAY indicators (D-register) when used with
the DATA switch.

3-113 Entering PCP Phases (See figure 3-219.)

The PCP phases are entered when signal HALT/I is true and
phase 10 of the current instruction is reached.

S/PCPI = BRPCPl + •••

BRPCPI = HALT/l PHIO NFUEXU NIOSC
N(INT lEN) N(S/TRAP)

Signal HALT/I goes true under the following conditions:

a. The COMPUTE switch is set to IDLE and phase PREI
of the current instruction is reached.

S/HALT = NKRUN PREI NFUEXU + .••

b. A wait instruction has been executed.

S/HALT = FUWAIT PHI + ••.

c. The ADDR STOP switch is ON and the value in
the SELECT ADDRESS switches is equa I to the address on
the memory address lines.

HALT/l

DCSTOP

DCSTOP + •••

MR ADMATCH KADDRSTOP NIOACT + ••.

d. A trap or interrupt has occurred and the instruction
being executed is not a modify and test or exchange program
status doubleword instruction.

S/HALT = INTRAP PRETR N(FAMT + XPSD)

SDS 901172

e. Power is appl ied to or removed from the system.

S/PCP2

RESET/KS

RESET

SYSR

START

RESET/KS + •••

RESET NKCPURESET/B

SYSR + •••

START + •••

= /ST/ (from power monitor)

Each of the above conditions, except condition e, causes
the CPU to enter PCPl. When dc power is applied to or

L WAIT

I iNSTRUCTiON I

ADDRESS MATCH
WITH ADDRESS
STOP SWITCH

INTERRUPT OR TRAP

removed from the system, signal START forces the CPU
di'rectly to PCP2. Phase PCPl is entered at the end of any
instruction, except execute, if signa I HALT/1 is true and
no trap or interrupt is active.

The program goes from PCPl to PCP2 with the equations

R/PCPl

S/PCP2 PC Pl + RESET /KS

The program remains in PCP2 until a control switch is
operated.

COMPUTE SWITCH
TO IDLE

CONTINUE I
TO ENDE
READ NEXT I

,
I PREl J

l~HALT

NSTRUCTION

NSTRUCTION

CONTINUE CURRENT
INSTRUCTIO N TO ENDE

AND NO MODIFY l-f---- HALT. CONTINUE ~

AND TEST OR EX- INSTRUCTION TO ENDE I PCPl J CHANGE PROGRAM ~l

STATUS DOUBLEWORD (S/SXD)
INSTRUCTION

" .. J PCP2 I
SEE FIGURE 3-220

l~HALT

START (ST FROM
l---RESET

POWER MONITOR) 1~RESET/KS
POWER ON

INTERRUPT AND
WAIT FOR START

POWER OFF

901172A.318

Figure 3-219. Entering PCP Phases

"3-657

Paragraphs 3-114 to 3-116 SDS 901172

The PC P phase sequenc ing following PC P2 is described under
the various functions of the control switches.

An overa II diagram of the PC P sequencing beyond the id Ie
phase is shown in figure 3-220.

3-114 Reset Function

To reset the CPU by pressing either the CPU RESET/CLEAR
switch or the SYSTEM RESET/CLEAR switch, the COMPUTE
switch must first be placed in the IDLE position. The logical
sequence of events when either of these switches is pressed
is shown in table 3-100 and figure 3-221.

3-115 Clear PSW1, PSW2 Function

When the CPU is in PCP2 because the COMPUTE switch is
in IDLE, setting the CLEAR switch to PSW1 or PSW2 clears
program status doubleword 1 or 2 respectively. Signa I
KCLRPSW1 or KCLRPSW2 is generated at the switch output
and signal PSW1XS or PSW2XS is developed:

P.SW1XS

PSW2XS

KCLRPSW1 NIOCO N N KAS/B + •••

KCLRPSW2 NIOCON N KAS/B + •.•

Zeros are placed on the sum bus by inhibiting signal S/SXD,
wh ich is norma Ily true during PC P2:

S/SXD = NKCLRPSW/B PCP2/1 NRESET/C NIOCON

Signal NKCLRPSW/B goes low when either of the CLEAR
switches is operated.

The control flip-flops in PSWl are cleared as follows:

R/CC 1 -CC4 = CCXS/O

CCXS/O = PSW1XS

R/FS, R/FZ, R/FNF, R/NMASTER, R/AM = PSW1XS

The P-register {instruction address} is cleared by transferring
the zeros on the sum bus into the P-register with PXS:

PXS PSW1XS + •••

The control flip-flops in PSW2 are cleared as follows:

R;WKO, R;WK1, R/CIF, R/II, R/EI = PSW2XS + •••

The register painter in PSW2 is cleared by transferring the
zeros on the sum bus into the RP-register as follows:

R/RP24 - RP27 = RPXS

RPXS = PSW2XS

3-116 STEP or RUN from Idle Operation

When the CPU is idling in PCP2 because the COMPUTE
switch is in IDLE, setting the switch to STEP causes the CPU
to enter PC P3 and branch to phase 10, then perform the
instruction execution. After execution, the signal BRPCP1
goes true and the CPU sequences to PC P1 and PC P2 where
it again remains in the idle state.

Table 3-100. Reset Sequence Chart

Phase I Function Performed I Signals Involved I Comments

Switches and signals involved:

CPU RESET/CLEAR ~ KCPURESET, KCPURESET/B

or-

SYSTEM RESET/CLEAR~ KSYSR, KSYSR/B

COMPUTE in IDLE~ NKAS/B, NKRUN (necessary for either switch operation)

1 Mnemoni c: RES ET

(Conti nued)

3-658

SOS 901172

Table 3-100. Reset Sequence Chart (Cont.)

Phase Function Performed Signals Involved Comments

PCP2 Idle phase - sustained unti I control
switch operated

Reset HALT flip-flop R/HAlT = PCP2 N KAS/B + ... Prepare logic for setting
PCP3

Inhibit interrupts during idle phase- (S/INTRAP) = N(PCP2 NKRUN) Inhibit setting of first
of interrupt phase
sequence flip-flops

X'02000000' -+-(00-031) S/06 = RESET/C + ... Place in D-register a

RESET/C = RES ET/B NI OC ON NMRC load conditions and float-

+ ... ing control immediate
instruction with zeros in

__ "" __ 1-

= N(KSYSR/B KCPURES ET/Bj bi ts 10 and 11 to produce Kt~t 1/ Jj

NKAS/B (KCPURESET/B a no operation instruction
+ KSYSR/B)

OX = OXZ + ...
OXZ = RESET

RESET = SYSR + (KCPURESET
RESET/B· NIOCON)

SYSR = KSYSR RESET/B + ...
I

o -+-- PSW1 (except P) PSW1XS = RESET + ... Sum bus contains zeros

0--!--PSW2 PSW2XS = RESET +
because no adder preset ...
has been made

I I

I
X'25'~(P15-P31)

I
S/P26

1 S/P29 = RESET/C + ... Set program address
S/P31 J to X'25'
R/P15-P31 = PX

PX = RESET + ...
I

Set flip-flop BRP I S/8RP RESET/C + ... Indicates that program =
address is in P-register

o --f- interrupt arm and enable f/ISO-E/IS 15 = RESET Reset interrupt levels
flip-flops to di sa rmed and di s-

E/IPO-E/IP15 = RESET abled state

R/INO-R/IN 15 = REN

REN = RESET + ...

Reset ALARM indica'tor ALARM/l = ALARM Turn off alarm indicator
on panel

R/ALARM = RESET

Mnemonic: RESET

(Continued)

3-659

SDS 901172

Table 3-100. Reset Sequence Chart (Cont.)

Phase Function Performed Signals Involved Comments

PCP2 SYSTEM RESET/CLEAR ~ RESETIO = SYSR + ... Initialize input/output
(Cont) RESETIO system

/MFR/ /MFR/ = RESET + ... Send signal to memory
to reset memory fau I t
indicators

/MR/ /MR/ = RESET/KS Send signal to memory

RESET/KS = RESET NKCPURESET
to initialize memory
control logic

Sustai n PCP2 unti I control S/PCP3 = PCP2/1 NIOCON
switch activated NDCSTOP (CLEARMEM

+ INT KRUN
+ NHALT KAS/l KAS/2)

Mnemonic: RESET

3-660

IF REGISTER DISPLAY SWITCH
IS OFF, DISPLAY CONTENTS
Of O-REGISTER, OTHERWISE
DISPLAY REGISTER POINTED
TO BY REGISTER SELECT

KAS/l KAS/2 YES

P+I-+-P
C -+--0
C -+--R
C -+--0

EXECUTE INSTRUCTION IN
C-REGISTER AND CONTINUE

PROGRAM SEQUENCE

ENDE
P+I-i-P
C -+--0
C -+-R
C -+-0

SOS 901172

REMAIN IN PHASE 1'<:1'2

INHIBIT S/SXD
O-S

YES PSWIXS.PSW2XS

YES

YES SEE FIGURE 3-22 2

YES SEE FIGURE 3-223

YES SEE FIGURE 3-224

YES SEE FIGURE 3-22'

YES SEE FIGURE >-2~

YES SEE FIGURE 3-227

YES SEE FIGURE 3-228

1 - KAS/I KAS/2
GO TO PCP3

Figure 3-220. PCP Sequencing Beyond Idle State

901172A.319

3-661

SDS 901172 Paragraphs 117 to 118

PCP1

NO

YES

L..-_____ _

PH10

R/HALT
INHIBIT (S/INTRAP)
S/D6
0-+--PSW1 (EXCEPT P)
0-+-PSW2
S/BRP
X '02000000'+--D
X '00000025 ~P
S/BRP
O-+- lSO-IS15
o -+-IPO-IP15
o -+--INO-IN15
R/~LARM

RESET 10
/MFR/
/MR/

901172A.310

Figure 3-221,. CPU RESET/CLEAR and SYSTEM RESET/
CLEAR, Flow Diagram

When the COMPUTE switch is moved from IDLE to RUN,
the CPU sequences to PCP3, branches to phase 10, and
conti nues to sequence through the program in its norma I
manner. The sequence of operations when this. switch is
operated is shown in figure 3-219.

3-117 INSERT Function (See figure 3-222.)

If in idle phase PCP2 the INSERT switch is placed in PSW1,
a program status word PSW1 wi II be entered according to
the settings of the DATA switches. If the INSERT switch is
set to PSW2, the program status word PSW2 wi II be entered
according to the settings of the DATA switches. The DATA
switches can on Iy set or cause no change in the correspond­
ing bits of PSW1 and PSW2. If a reset is required in any bit,
the contents of PSWl or PSW2 must be cleared before enter­
ing new data. The logic sequence for the INSERT function
is provided in table 3-101.

3-662

PCP2

KPSW1
OR ~ KAS/1 KAS/2

KPSW2
(S/SXD

D-S B
(S/SXA)
PSW1 (EXCEPT ADDRESS)
OR PSW2-f--A

YES

P-S-+--D

AuD-S-f--PSWl OR PSW2
S24-27 -+-- RP24-27
(S!SXB)

D

901172A.317

Figure 3-222. Insert PSW1/lnsert PSW2, Flow Diagram

3-118 DATA ENTER/CLEAR Function (See figure 3-223.)

When the DATA switch is set to ENTER, the states of the
32 DATA switches are transferred to the D-register and are
displayed in the 32 DISPLAY indicators. When the DATA
switch is set to CLEAR, zeros are transferred to the D­
register. If after data has been transferred from the DATA

SOS 901172

Table 3-101. Insert PSW1/lnsert PSW2 Sequence

Phase Functi on Performed Signals Involved Comments

PCP2 Idle phase sustained until
KAS/1 KAS/2

Reset HALT flip-flop R/HALT = PCP2 NKAS/B + ... Enable program to pro-
ceed to PCP3

KPSWI J
or ~ KAS/l, KAS/2

KPSW2

Enable signal (S/SXO) (S/SXO) = PCP2/1 NRESET/C Preset adder for
NKCLRPSW/B NIOCON O-S in PCP3
+ ••.

PCP2/1 = PCP2 NPCP3

Set fli p-flop PCP3 S/PCP3 = (NHALT KAS/1 KAS/2 + •••)
PCP2/1 NIOCON NOCSTOP

PCP2/3 One clock long

(00-031) ---(SO-S31) Adder preset at PCP2 clock Transfer instruction
currently in O-register

(SO-S31) -+-- (BO-B31) BXS = PCP3 SWK12 + ... to B-register

SWK12 = SWKl + SWK2

SWK2 = KPSWl + KPSW2
I

Enable signa I (S/SXA)

I
(S/SXA) = PCP3 + .•• Preset adder for

A ---S in PCP4

Insert PSWl =* AXPSW1 = KPSW1/B PCP3 + ..• Condition code, float-
PSWl (bit O-bit ll)--f-- ing control bits, MS,
(AO-A 11) OM, AM---A-

I register to save current
PSWl

o -I--A bits not being set AX = AXZ + ..• Enable reset i "puts to
AXZ = PCP3 + ... A-register

INSERT PSW2 ~ AXPSW2 = KPSWZ/B PCP3 + ..• Write key, inhibits,
PSW2 (bit 2-bit 27)-r-- register pointer-
(A2-A27) A-register to save

current PSW2

NIOFS ~ RESET 10SC if set R/IOSC = PCP3 NIOFS + ... Reset i nterna I I/O
service call flip-flop
if no 10 function
strobe

R/PCP2 = PCP3

(Conti nued)

3-663

SDS 901172

Table 3-101. Insert PSW1/lnsert PSW2 Sequence (Cont.)
-----------------,..----~~~"~~~~~--~~~~~~ ~-~--~~~-.------...,.---------....,

Phase Function Performed Signals Involved Comments

PCP4 One clock long

Enable signal (S/SXAORD) (S/SXAORD) = PCP4 + ... Preset adder for
AuD --- Sin PCPS

INSERT PSW1 ====* (P1S-P31)-- SXP = PCP4 KPSW1/B NDIS + ... Transfer PSW1 or PSW2
to D-register

PCPS

I I
3-664

(S lS-S31)

(AO-A31) --- (SO-S31)

(SO-S31)-+- (DO-D31)

(KSO-KS31) -+-- (AO-A31)

Enable A-register reset inputs

One clock long

(AO-A31) or (DO-D31)-
(SO-S31)

INSERT PSW1 ~ (SO-S3)--I---
(CC1-CC4); (SS-S8) -+-- FS,
FZ, FNF, NMASTER; (S10, Sl1)
-f--DM, AM

INS ERT PSW2 ~ (S2, S3)-+--
WKO, WK1; (S5-S7)-+- CI, II, EI

(S24-S27) -+-- (RP24- RP27)

Enable signal (S/SXB)

Adder logic preset in PCP3

DXS = PCP4 SWK12 + ..•

AXK = PCP4 SWK2 + ...

AX = AXK + ...

Adder logic preset in PCP4

PSW1XS = PCPS KPSW1/B + ...

PSW2XS = PCP5 KPSW2/B + ...

RPXS = PSW2XS + ...

(S/SXB) = PCP5 NBRPCP5

(Conti nued)

If PSW1, A lS-A31 is
empty, and S lS-S31
comes from P-register
(program address). If
PSW2, all information
goi ng into D comes
from A-register but
only A2-A7 and
A24-A27 contain use­
ful information

Manually entered
information from DATA
switches --A­
register. KSO-KS31 are
DATA switch outputs
and are true when cor­
responding switches are
in up position. Clear
A-register flip-flops
not set by switches.

Sets PSWl and PSW2
flip-flops if correspond­
ing DATA switches
are set to 1. Causes
no change where data
switches are not set.
(To enter zeros where
the original PSW con­
tained ones, the PSW
must first be cleared
with the PSWl or
PSW2 CLEAR switch.)

Preset adder logic for
B--S in PCP6

SOS 901172

Table 3-101. Insert PSW1/Insert PSW2 Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

PCP6 One clock long

(80-831) - (SO-S31) Adder logic set in PCPS Return current instruc-
tion to O-register

(SO-S31)~(OO-031) OXS = PCP6 SWK12

Set flip-flop HALT S/HALT = PCP6 + ••• Ha It computer

,

PCP1 One c lock long

enable signal ,,. Jr." \ (S/SXD) = PePi + ••• Preset adder iogic for

I
l~/~"U}

O-Sin
PCP2

flCP2 Idle

D-S~Display Preset in PC P1
indicators

.,

. 3-665"

Paragraphs 3-119 to 3-122 SDS 901172

I

PCP2

KENTER/B} .
OR ==* KAS/1 KASj2

KCLEAR/B

NO
KENTER/B
S~D
S~C

A---S
S~D

901172A.313

Figure 3-223. DATA ENTER/DATA CLEAR, Flow Diagram

3-666

switches into D the COMPUTE switch is set to either RUN
or STEP, the contents of the D-register wi II be accepted as
the next i nstructi on to be executed. The logi c sequence
for the DATA ENTER/CLEAR function is given in table 3-102.

3-119 STORE INSTR ADDRISELECT ADDR Function (See
figure 3-224.)

The STORE switch is operative only while the CPU is in the
idle state, PCP2. When the STORE switch is set to INSTR
ADDR, the contents of the D-register are stored into the
memory address currently in the P-register. When the
STORE switch is set to SELECT ADDR, the contents of
the D-register are stored into the address specified by
the settings of the 17 SELECT ADDRESS switches. The
logic sequence for the STORE INSTR ADDR/SELECT ADDR
function is given in table 3-103.

3-120 DISPLAY INSTR ADDR/SELECT ADDR Function {See
figure 3-225. }

If the DISPLAY switch is set to INSTR ADDR i'n PCP2 idle
state, the CPU reads into the D-register the contents of the
memory location pointed to by the P-register. If the DIS­
PLAY switch is set to SELECT ADDR in PCP2 wait state, the
CPU reads into the D-register the contents of the memory
location whose value is equal to the value of the 17 SELECT
ADDRESS switches. The logic sequence for the DISPLAY
INSTR ADDR/SELECT ADDR function is given in table 3-104.

3-121; INSTR ADDR HOLD/INCREMENT Function

During normal program execution the INSTR ADDR switch
is in the center position, and signals KAHOLD and
KINCRE/B are false. When this switch is in the center posi­
tion the contents of the P-register are incremented at the
end of each instruction execution (ENDE).

With the INSTR ADDR switch in HOLD and the COMPUTE
switch set to RUN, the CPU wi" repeatedly execute the
instruction addressed by the INSTRUCTION ADDRESS dis­
play {P-register}, and wi II not sequence to the next i nstruc­
tion.

With the COMPUTE switch in IDLE, moving the INSTR ADDR
switch to INCREMENT will cause the current instruction
address to be counted up by one, as shown in figure 3-226
and the contents of this updated address to be displayed in
the DISPLAY indicators. Thus, the operator can display the
contents of sequential memory locations by repeatedly mov­
ing the INSTR ADDR switch to INCREMENT. The logic
sequence for the INCREMENT function is given in table
3-105.

3-122 Clear Memory Function

When the CPU RESET/CLEAR and the SYSTEM RESET/CLEAR
pushbuttons are pressed sumultaneously, signal CLEAR
MEM is true, and all core memory locations are cleared
to zero.

SDS 901172

Table 3-102. DATA ENTER/CLEAR Sequence

pcp
Function Performed Signals Involved Comments

Phase

PCP2 Go to PCPJ S/PCPJ = (NHALT KAS/1 KAS/2 + •••)
PCP2/1 NIOCON NDCSTOP

PCP2/3 One clock long AX = AXZ + ...
O's~A AXZ = PCPJ + •••

PCP4 One c lock long

KCLEAR/8~
/ ..

(SO-S31) --;-.. (00-031) DXS = PCP4 KCLEAR/B + •••

KENTER/B ~

DataSW~A AXK = PCP4 KENTER/B + ...
PresetS-C (S/CXS) = PCP4 ~NTER/8 + ...

Preset A or D-S S/SXAORD = PCP4 + •••

PCPS One clock long

Enter Data =+

(50-531) ~ (00-031) DXS = PCPS KENIER/8 ,+ •••

(50-531) - (CO-C31)

(AO-A31) or (DO-031)~(SO-S31) Preset in PCP4

Preset B~S S/SXB = PCPS NBRPCPS + •••

PCP6 One c lock long

(10-131) ~ (50-531) Preset In PCPS

Set HALT flip-flop S/HALT = PCP6 + •••

PCP1 One clock long .
Preset 0-5 for PCP2 (S/SXD) = PCPl + ...

PCP2 ' Idl.

(00-031) ~ (50-531)~dis-
play indicators Preset during PCPl

Reset HALT flip-flop R/HALT = PCP2 NKAS/B + .•• No control switch
. action

3-667

SDS 901172

PCP2

OR ===9
KSTORKj8 } KAS/l

KSTORQ/B KAS/2

PCP3

D---S
O'S-r--A

NO
KSTORQj8
P-f--B

NO
KSTORQ/B

NO
KSTORQ/B
S--+-P

'"------_/

SEL ADDR
sw-I-p

901l72A.316

Figure 3-224. STORE INSTR ADDR/STORE SELECT ADDR,
Flow Diagram

3-668

PCP2

OR ===9
KDISPLAK/B} KAS/l

KDISPLAQ/B KAS/2

IDLE

SELECT
ADDR
SWITCHES
-I--- P

901172A.315 I

Figure 3-225. DISPLAY SELECT ADDR/DISPLA Y INSTR
ADDR, Flow Diagram

SDS 901172

Table 3-103. Store INSTR ADDR/STORE SELECT ADDR Sequence

PCP Function Performed Signals Involved Comments
Phase

PCP2 Enable signal (S/SXD) (S/SXD) = PCP2/1 NRESET/C Preset adder for
NKCLRPSW/B NIOCON 0-5 in PCP3

Go to PCP3 S/PCP3 = (NHALT KAS/1 KAS/2 + •••)
PCP2/1 NIOCON NDCSTOP

PCP2/3 One clock long

(DO~31) ---"(SO-S31) Adder logic preset in PCP2 For display PRESET
during PCP2

O's--A AX = AXZ + •••

AXZ = PCP3 + •••

j (P16-P31)-I--(816-831) BXP = PCP3 SWKS + ... Tral1lfer address in

R/PCP2 = PCP3 PSWl to B-register

PCP4 Enable signal (S/SXAORD) (S/SXAORD) = PCP4+ ... Preset adder logi c
forA orD~S
in PCPS

STORE SELECT ADDR ===>

Address swi tches +- P PXK = PCP4 SWKS Transfer address switch
outputs to P-register

Set flip-flop MBXS S/MBXS = (S/MBXS) + ••• Prepare for memory
(S/MBXS) = PCP .. SWK3 + ••• write

Set flip-flop ORQ S/DRQ = (S/MBXSj + ... Data request. Inhibits
transmission of another
clock unti I data re lease
received from memory

PCPS One c lock long
(AO-A31)or (DO~31)--(SO-S31) Adder logic preset in PCP4 Store address in 0-

register in i nstructi on
(50-531) ~(MBO-M831) MBXS set in PCP4 address or address

pointed to by SELECT
ADDRESS switches

Preset 8--S for PCP6 S/SXB = PCPS NBRPCPS + •••

PCP6 One clock long

(80-B31) -(SO-S31) Preset in PCPS Return program address

(SO-531) -+-- (PO-P31) PXS = PCP6 SWKS +
to P-register ...

3-669

SDS 901172

Table 3-104. DISPLAY INSTR ADDRiDISPLA Y SELECT ADDR Sequence

PCP Functi on Performed Signals Involved Comments
Phase

PCP2 (DO-031) -(SO-S31) (S/SXD) = PCP2/1 NRESET/C For display

(SO-S31) ---display indicators
NKCLRPSW/B NIOCON

Go to PCP3 S/PCP3 = (NHAL T KAS/1 KAS/2 + •.•)
PCP2/1 NIOCON NDCSTOP

PCP3 (PO-P31) ---f-- (BO-831) BXP = PCP3 SWKS + •.• Save i nstructi on
address in P-register

,~.

I

PCP4 DISPLA Y SELECT ~

Enable signal PXK PXK = PCP4 SWKS Transfer to P-register
address selected by
SELECT ADDR switches

Set flip-flop MRQ S/MRQ/2 = PCP4 SWK4 + ••. Request for memory
cycle

Set flip-flop DRQ S/DRQ = S/MRQ/2 + ... Data request. Inhibits
transmissi'on of another
clock until data release
received from memory

PCPS One c lock long

(MBO-MB3l) --(CO-C3l) CXMB = DG (data gate) Read contents of pro-
gram address or address

(CO-C31) --I-- (DO-D31) DXC = PCPS SWK4 + ... pointed to by SELECT
ADDRESS switches from

Preset B--S S/SXB = PCPS NBRPCPS + ..• memory into D-register
by way of C-register

PCP6 One c lock long

(BO-B31) -- (50-531) Return program address
to P-register if replaced

(50-S31) --- (PO-P31) PXS = PCP6 SWKS + ... by selected address

PCP1 One c lock long
Preset D--S S/SXD = PCP1 + ... Prepare to display

D-register contents

PCP2 Idle R/HALT = PCP2 NKAS/B + ...

3-670

SDS 901172

Table 3-106. Clear Memory Sequence

Phase Functi on Performed Signals Involved Comments

Switches and signals involved:

CPU RESET/CLEAR ~ KCPURESET, KCPURESET/B

and

SYSTEM RESET/CLEAR ==* KSYSR, KSYSR/B

COMPUTE in IDLE ~ NKAS/B, NKRUN (necessary for clear memory operation)

PCP2 Idle phase - sustained until CPU
RESET/CLEAR and SYSTEM
RESET/CLEAR afe pre$$ed

Reset HALT fl ip-flop R/HALT = (R/HALT)

(R/HALT) = PCP2 NKAS/8

Inhibit interrupts during idle (S/INTRAP) = N(PCP2 NKRUN) Inhibit setti ng of fi rst
phase of interrupt phase

sequence fli p-flops

Enable signal (S/SXD) (S/SXD) = PCP2/1 NRESET/C Preset adder logic for
NKCLRPSW/B NIOCON D~·S in PCP3
+ .•.

Set fli p-flop PCP3 S/pcP3 = (S/PCP3) Go to PCP phase 3

(S/PCP3) = PCP2/1 NIOCON
NOCSTOP (CLEARMEM + •••)

CLEARMEM = N KAS/8 KSYSR/8
KCPURESET~

PCP3 One clock long

(00-031) - (SO-S31) Adder logic preset in PCP2 Transfer next instruc-
tion in D-register to

(SO-S31) -+- (bO-B31) BXS = PCP3 SWK12 + ... B-register

SWK12 = SWK1 + SWK2

SWKl = CLEARMEM + ...
NIOFS = Reset 10SC R/IOSC = PCP3 NIOFS Cancel internal I/O

service call enable

0~(AO-A31) AX = AXZ + •.• Clear A-register

AXZ = PCP3 + ...
Enable signal (S/SXA) (S/SXA) = PCP3 + ... Preset adder logic for

A~S in PCP4

(Continued)

3-673

SDS 901172

Table 3-106. Clear Memory Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PCP4 One c lock long

Enable signal (S/SXAORD) (S/SXAORD) = PCP4 + ••• Preset adder logic for
A or D-S in PCPS

(AO-A31) ___ (SO-S31) Adder Jogic preset in PCP3 Clear D-register by
transferring zeros in

(SO-S31) -+- (DO-D31) DXS = PCP4 SWK12 + ••• A-register to D-register

Set flip-flop MBXS S/MBXS = (S/MBXS) Prepare for memory
write

(S/MBXS) = PCP4 SWK1

Set flip-flop DRa SIDRa = (S/MBXS) + ... Data request. Inhibits
transmission of another
clock unti I data re lease
received from core
memory

PCPS Sustained until switches released

(AO-A31) or (DO-D31)--- Adder logic preset in PCP4 Place zeros on memory
(SO-S31) bus (A- and D-registers

both contain zeros)
(SO-S31) -I-- (MBO-MB31) Memory write preset in PCP4

P + 1--f--P PUC31 = PCPS SWK1 Add 1 to P-register
each PCPS to address
all memory locations

Set flip-flop MBXS S/MBXS = (S/MBXS) Preset for memory wri te
to write zeros into each

(S/MBXS) = PCPS SWK1 + ••• addressed memory
location as PCPS repeats

Set flip-flop DRa (S/DRa) = (S/MBXS) + ••• Data request. Inhibits
transmission of another
clock unti I data re lease
received from core
memory with each
memory access

(Continued)

3-674

SOS 901172

Table 3-106. Clear Memory Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PCP5 Enable signal (S/SXA) (S/SXA) = BRPCP5 + .•. Preset adder logic for
(Cont.) A--S with each

repeti ti on of PCP5

Enable signal (S/SXB) (S/SXB) = PCP5 NBRPCP5 Preset adder logic for
B-S in last PCP5

Repeat PCP5 as long as both BRPCP5 = PCP5 CLEARMEM + ••• All memory locations
switches are pressed are cleared whi Ie

swi tches are pressed

Set flip-flop PCP6 when switches S/PCP6 = PCP5 NBRPCP5 Go to PCP phase 6
are released

:6 G80-831)-<50-531) Adder logic preset in PCP5 Return next i nstructi on
to D-regiiter

\0

(SO-S31)~(OO-D31) OXS = PCP6 SWK12 + ••.

Set HALT· flip-flop S/HALT = (S/HALT) Ha It computer

(S/HALT) = PCP6 + •••

PCP1 Enable Signal (S/SXD) (S/SXD) = PCP1 + ••• Preset adder logic for
O~S in PCP2

PCP2 Idle phase

. (DO-D3i)--(SO-S3i) ~ Preset in pePi
DISPLAY indicators

Table 3-107. Load Sequence

Phase Function Performed Signals Involved Comments

PCP2 Signals true:

KFILVB, KAS/1, KAS/2, SWKl SWKI = KFILL/B + •••

Idle phase

Reset HALT flip-flop R/HALT = (R/HALT)

(R/HALT) = PCP2 NKAS/B + •••

Inhibit signal (S/INTRAP) (S/INTRAP) = N(PCP2 NKRUN) Inhibit interrupts during
idle phase

(Conti nued)

3-675

SOS 901172

Table 3-107. Load Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

PCP2 Enable signal (S/SXO) (S/SXO) = PCP2/1 NRESET/C Preset adder logic for
(Cont) NKCLRPSW/B NIOCON O--S in PCP3

Set flip-flop PCP3 S/PCP3 = PCP2/1 NIOCON Go to PCP phase 3
NOCSTOP (NHALT
KAS/1 KAS/2 + ...)

PCP3 One c lock long

(00-031) - (SO-S31) Adder logic preset in PCP2 Save next i nstructi on
in B-register

(SO-S31) -I-- (BO-B31) BXS = PCP3 SWK12

SWK12 = SWK1 + SWK2

NIOFS ~ Reset 10SC R/IOSC = PCP3 NIOFS Reset 10 service call
if no function strobe

Enable signal (S/SXA) (S/SXA) = PCP3 + ••• Preset adder logic for
S--A in PCP4

R/PCP2 = PCP3

PCP4 One clock long
Set flip-flop MBXS S/MBXS = (S/MBXS) 'Prepare for memory write

(S/MBXS) = PCP4 SWKl

Set flip-flop MRQ S/MRQ = (S/MBXS) + ... Request for core memory
cycle

Set flip-flop ORQ 5/0RQ = (S/MBX5) + ... Oata request. Inhibits
transmission of another
clock unti1 data release
received from memory

(AO-A31) - (50-531) Adder logic preset in PCP3 Zeros transferred from
A-register to O-register

(50-531) -I-- (00-031) OX5 = PCP4 SWK12

Enable signal (5/5XAORD) (5/SXAORO) PCP4 + ... I
Preset adder iogic for =
A or 0--- 5 in PCP5

(Conti nued)

3-676

Phase Function Performed

PCP4 Set X'20' in P-register
(Cont)

PCPS One c lock long

(AOL-A31 L) -f--(AO-A31)

First pass·~

(AO-A31) or (00-031)--­
(SO-S31)

Not last pass ~
Enable signal (S/SXA)

I Not first pass ~
(AO-A31) --f- (SO-S31)

(SO-S31) --- (MBO-MB31)

Set flip-flop MBXS

Set flip-flop MRQ

Set flip-flop DRQ

SDS 901172

Table 3-107. Load Sequence (Cont.)

Signals Involved

S/P26 = PCP4 KFI LL/B

R/PlS-P31 = PX

PX = PC P4 KFI LL/B

AXLOAD = PCPS KFILL/B

Adder logic set in PCP4

(S/SXA) = BRPCPS

Adder logic preset in previous PCPS

Memory write preset in PCP4 or previous
PCPS

S/MBXS = (S/MBXS)

(S/MBXS) = PCPS SWKI + ••.

S/MRQ = (S/MRQ/2) + ..•

(S/MRQ/2) = BRPCPS + ...
S/DRQ = (S/DRQ)

(S/DRQ) = (S/MBXS) + ..•

(Conti nued)

Comments

Address location X'20'
to load first word of
bootstrap program

Load bootstrap program
into A-register. AOL­
A-31L logic decodes
P-register contents to
set correct instruction
in A-register for each
bootstrap address from
X '20' to X '29'. When
(P) = X'24', indicating
that next location to be
loaded is X'2S', A21 L­
A31L contain outputs of
UNIT ADDRESS switches,
KUA21-KUA31

Wri te zeros into loca­
tion X'20'

Preset adder logic for
A ---Sin next PCPS

Place successive A­
register contents on sum
bus to be written in
memory

Load bootstrap program
into memory

Prepare for memory
wri te in next PCPS

Request for core memory
cycle in next PCPS

Data request. Inhibits
transmission of another
clock unti I data release
received from memory

3-677

SDS 901172

Table 3-107. load Sequence (Cont.)

Phase Function Performed Signals Involved Comments

PCP5 P + l-+--P PUC31 = PCP5 SWKl Add one to P-register.
(Cont.) Contents du ri ng each

loop through PCP5 to
address successive boot-
strap locations

S ustai n PCP5 unti I P-register BRPCP5 = PCP5 N(P28 P3l) location X'29' is last
contains X '00000029 , KFIlL/B bootstrap locati on

last pass ~
Set flip-flop PCP6 S/PCP6 = PCP5 NBRPCP5 Go to PCP phase 6

PCP6 (BO-B31) ~(SO-S31) Adder logic preset in last PCP5 X '02000000' into D-
register making next

(SO-S31) -+-- (DO-D31) DXS = PCP6 + ... instruction a "no

Set HALT flip-flop S/HAlT = (S/HAlT)
operation" (lCFI with
zeros in bits 10 and 11)

(S/HAlT) = PCP6 + •.•

Set X'25' in P-register S/P26

I
location X'26' is first
executed i nstructi on

S/P29 = RESET/C in bootstrap program.

S/P31

RESET/C = PCP6 KFIlL/B + ... One is added to P-

R/P15-P31 = PX
register contents in
PH 10 when COMPUTE

PX = PCP6 KFIll/B switch is set to RUN

Set X'02000000' in D-register S/D6 = RESET /C Ensure that no operati on
instruction is in D-

RESET/C = PCP6 KFI lL/B register

PCPl Enable signal (S/SXD) (S/SXD) = PCPl + . ~. Preset adder logic for
D--S in PCP2

PCP2 Idle

(DO-D31)--(SO-S31) --- Preset in PC Pl
DISPLAY indicators

3-678

BRPCP5

PCP2

CPU RESET/CLEAR
SYSTEM RESET/CLEAR=:>
l~CLEARMEM

~HALT
INHIBIT (S/INTRAP)
(S/SXD)

B

PCP4

(S/SXAORD)
A-S~D (ZEROS)
l-f-MBXS
l~DRQ

AORD~S-MB

P+l~P
l-f--MBXS
l~DRQ

(SjSXA)
(S/SXB)

SDS 901172

901172A.311

Figure 3-227. Clear Memory, Flow Diagram

PCP2

o -HALT
INHIBIT (S/INTRAP)
(S/SXD)
X02000000~ 0

D-S-I--B
o --I--IOSC
(S!SXA)

1 -+--MBXS
l--1--MRQ
1 --+-DRQ
A~S-+--D
(S!SXAORD)
X '20' ~ P-REGISTER

NO A~S MB' AORD~S"""MB

AOL-A31L~A
l-+-MBXS
l-+-MRQ
l~DRQ
P+l-+--P

NO BRPCPS

B~S-+--D
l-1--HALT
X'251-f-P

S/SXA

901172A.320

Figure 3-228. Load, Flow Diagram

3-679

\

Paragraphs 3-126 to 3-130 SDS 901172

3-126 INTEGRAL INPUT/OUTPUT PROCESSOR

3-127 General

The Sigma 5 integral lOP controls data transfer between
core memory and one or more peripheral devices. To do
this, the integral lOP uses standard CPU registers and cir­
cuits together with registers and circuits which have only
an I/O function. Since portions of the integral lOP are
an integral part of the CPU, the term integral lOP refers
to a functional rather than a physical unit.

Figure 3-229shows the functional circuit groups included
in the integral lOP. Blocks with heavy lines denote circuit
groups used only for I/O purposes.

3-128 Address and Priority Assignment

lOP address 000 is assigned exclusively to the integral lOP.
Interrupt priority is determined by the relative position of
an lOP within the interrupt priority chain; the integral lOP
may be placed at the discretion of the user, at any level
within the priority chain. The integral lOP is not. involved
in memory priority, since it cannot access memory inde­
pendently, but only by normal CPU channels.

'3.6129 Capabilities

Eight VO channels are standard equipment with the Sigma
5 integral lOP; that is, the integral lOP can service eight
device controllers. Additional I/O channels are available,
in 8-channel increments, as an option. The maximum num­
ber of I/O channels, including the eight standard channels,
is 32. For the remainder of this discussion it is assumed,
unless stated otherwi se, that the integral lOP has a full
complement of 32 VO channels.

Each increment of eight I/O channels is termed a group,
and labeled 1 through 4. Of these, group 1 controls
multidevice device controllers, each capable of handling
16 devices. Therefore, the maximum number of devices that
can be accommodated by the integral lOP is 152, as ill us­
trated in figure 3-230.

3-130 I/O Fast Memory 10FM

GENERAL. The I/O fast memory consists of 32 channel
regi sters, di stri buted among four 8-channe I groups. Each
group is made up of five FT25 fast memory modules. Group
1 is typical and is illustrated in figure 3-231. Each
channel register is dedicated to a device controller and
contains 80 bi ts. To form the 80 bi ts, each channel regi ster
is distributed twice across the five FT25 modules; 40 bits
are contained in the top half channel and 40 bits in the
bottom half channel. Channel 0 in figure 3-231 is detailed
to show byte distribution, and channel 7 is detailed to show

3-680

byte information assignment. The bit index in figure 3-231
def!nes bH i""f0rm a t i0!'" assignment,

Each channel register is divided into four memory access
areas, labeled 0 through 3; area selection is controlled by
address bits IOFR8 and IOFR9. Areas 0 and 1 each contain
four bytes in a channel (bytes 0 through 3), and areas 2 and
3 each contain one byte ina channel (byte 4). Group and
channel selection is controlled by address bits LI03 through
LI07 according to the codes shown in the group and channel
selection charts in figure 3-231.

FT25 FAST MEMORY MODULE. Figure 3-232 is a simpli­
fied logic diagram of a typical FT25 fast memory module
as used in the I/O fast memory. The module depicted in
fi gure 3- 232 represents byte 0 for both upper and! ower
half channels of channels 0 through 7 in group 1. The basic
unit of memory is memory element SDS 304. There are 16
memory elements in an FT25 module, labeled A 1 through
A 16, each with an 8-bit storage capacity. Data distribu­
tion is as follows: memory element A 1 stores ei ght bit O's,
one for each of upper half channels 0 through 7; memory
element A2 stores bit l's for upper half channels 0 through
7; memory element A9 stores bit O's for lower half channels
o through 7; and so on.

To write into the fast memory module, the information code
is placed on the fast memory input (RW) lines and applied
as data inputs. After entering the module, the input lines
are changed to write I/O lines with desi gnations applicable
to each module. In the example shown in figure 3-232 the
input line designations are W/I01 BO/X, indicating that this
module represents byte O's for all 16 half channels in group
1. When clock signal K/IOBO/O and I/o enable term
10FM are both high, the information contained in the data
input lines is stored in this module within the half channel
specified by the address lines. The address configuration
shown in figure 3-232 selects either half channel of
channel 0 in group 1; the state of IOFR9 determines which
half channel is selected.

Data is read out of the module without the use of the clock
signal. When I/o enable term IOFM is high, the contents
of the half channel selected by the address lines are placed
on data output lines RRO through RR7 and become avai lable
for use.

In figure 3-232 the data input lines shown are RWO through
RW7. These same input lines are connected to three
additional FT25 modules (byte 0 group 2, byte 0 group 3,
and byte 0 group 4). Simi larly, input Ii nes RW8 through
RW15 are connected to the four byte 1 modules and input
lines RW24 through RW31 are connected to the four byte 3
modules. Data input lines RW16 through RW23 are shared
by the four byte 2 modules with the four byte 4 modules;
when address bit IOFR8 is false, the byte 4 modules cannot
be accessed; when address bit IOFR8 is true, only the byte
4 modules can be accessed.

TOANO
FROM
DEVICE
CONTROLLERS

I

I

SDS 901172

/DAO/-

(STATUS
DC/D

ADDRESS)

/DA7/,- I

/DAP/ ,-)?~ ~

IOfR REGISTER
0-7,8,9

DC/D ADDRESS

IOFRO-IOfR7

(S/RW/3,4), (S/AXRR/3,4,6)

IOfR8,10FR9

DATA,
r----...., ORDER,.

ADDRESS {FROM
A-ItEGISTER

10FM (ENAlLE)-+

ADDRESS
CONVERSION

CIRCUITS

10FM
(32 CHANNELS)

FAST
__ ~ DATA/IN, ORDER/IN

L~ S~ I r--___ :..:.;RW..:..-___ ~~ MEMORY
INPUT ~

LR (ADDRESS)

~ R

NIOfM (ENAlLEIJ
GENERAL

REGISTERS

I I

SW8-SWIS

RSCLEN,RSACLE N
FUNCnON INDICATORS (CLOCK DISABLE)

FS (FUNCnON STROBE)

ES (END SERVICE)
ED (END DATA) 10 PHASE
RS(REQUEST STROBE) INTERFACE IOPHO-IOPH3 CONTROL

RSA (RS ACKNOWLEDGE)
CONTROL CIRCUITS
CIRCUITS (IOPHO,IOPH I,

FSL (FS ACKNOWLEDGE) IOPH2,IOPH3)
DOR

lOR CPU PHASES

"-

DOl
CCI

lOR
CC2

TO IODA AO-A7....-_....L.._--.

REGISTER~

~

FAST
MEMORY
.OUTPUT

S (SUM IUS)

:."

~

TO
IODA--
REGISTER

A-REGISTER

ADDER

DO-031

b--
/IR./
TO AND

~FROM
CORE

OTHER MEMORY

STANDARD

~-CPU REGISTERS
(I,C,D,P)

AND CIRCUITS

901172A.3603

Figure 3-229. Integral lOP, Functional Block Diagram

. 3-681

SDS 901172

SIGMA 5
INTEGRAL lOP

DEVICE CONTROLLER
PRIORITY CABLES

+
II 1

""'"
DEVICE I/O DEVICE I/O DEVICE ... CONTROLLER f-- NO. 0 --- NO. 15
NO.1

GROUP 1
I 8 MUL TI- DEVICE - ~ I + If + CHANNELS

DEVICE
I/O DEVICE I/O DEVICE CONTROLLER f-- """"---..

NO. 0 NO. 15
NO. 8

I-

....
DEVICE . CONTROLLER · I/O DEVICE
NO. 9

GROUP 2
I 8 SINGLE-DEVICE - :::: I CHANNELS

DEVICE .. CONTROLLER .. I/O DEVICE
NO. 16

-

-
DEVICE .. CONTROLLER · I/O DEVICE -
NO. 17

GROUP 3
I 8 SINGLE-DEVICE- :::: I

CHANNELS
DEVICE . CONTROLLER · I/O DEVICE ... -
NO. 24

~

DEVICE .. CONTROLLER I/O DEVICE
NO. 25

GROUP 4
8 SINGLE-DEVICE - :::: I

I CHANNELS
DEVICE .. CONTROLLER ... I/O DEVICE
NO. 32

I-

90 1172A. 3602

Figure 3-230. Integral lOP, Device Controller/Device Configuration

3-682

CHANNEL O-r--

CHANNEL 1 = r==-

CHANNEl 7-

FT25
MODULE 0

FT25
MODULE 1

SOS 9011n

GROUP 1 (TYPICAl)

FT25
MODULE 2

FT25
MODULE 3

r---------~I--------~U'------~--------'II·--------~-------,II·--------~-------,

----- BYTE 0 1 BYTE 1 BYTE 2 IYTE 3

I I I I I 1 I
~.l~l~J..~l~1..~..L~.!. ~+--------------t-----------------t----------------f
..... 1 I I I I I I
z I 1 1 I I liZ
~ I 1 1 1 I I I ~+-------------+------------+------------f
~ 1 1 1 I I I 1 ~+ _________ AR_E+-A_O ________ -+ _________ -f
"', i I I I I ,'"
~ 1 , 1 , , 1 1 ~
~ 1 1 I I 1 , I ~+-------------~-------------+-----------____4
wI' I 1 1 1 1 w+ ______________ -+ _______________ -+ ____________ -f
~ 1 1 I I , 1 ~

l , I 1 1 1 j

BKICMI-INT -l~ f--STAruS---'--~I__-------BYTE AOORESS----------t

o 1 2 3 .. 5 6 7 8 15 16 23 2"

--- BYTE 0 --'-- e..,..- ,
p, n. t .""i£ ~

31

iiYiE 3

lol_INI..,I~IIOI-o
0-1-1-1-1-1..- 1-'-
~I~T~T~T~ I ~T~T~+-----------+------------+-------------t
Z 1 1 I I I I 1 Z+-______ ~o~-+-_______ -+ _______ ___1

~ , I I I, 1 1 ,~ AREA 1
~, " 1 1 1 ~ w, 1 1 I , , ,w+_------------+----------------+-------------____4
~ I 1 , I I I 1 ~+_---------------+---------------+-------------____4 ~, , 1 I 1 I 1 ~
~ I 1 , I 1 , 1 ~+--------~---------+------------4
"' I 1 I I I I

1 1 Iii I ,

FT25
MODULE 4

I

BYTE 4

AREA 2 -

I--COMMANO AOORESS.-

24 3t

IYTt 4

AREA 3

L..t--- FLAGS BL I ~ -----------BYTE COUNT --------oi f--COMMANO AOORESS-

123 .. 56789

GROUP SELECTION

SIGNAL CODE
GROUP

LI03 I 1I0 ..

1
2
3 ..

BITS

o
1
2
3
4

5-7
8
9

10
12
13
14

0
o
1
1

I 0
1
o
1

AREA 0

BK - BACKWARD READ
CM - CHAINING MODIFIER
ZERO COUNT
CHANNEL END
UNUSUAL END
NOT USED
INCORRECT LENGTH
TRANSMISSION ERROR
TRANSMISSION MEMORY ERROR
CHAINING MEMORY ERROR
CHANNel END
lOP HALT

15 16 23 2 ..

CHANNEL SELECTION

CHANNEl
SIGNAL CODE

LlO5 LI06

o ~
I
2
3 ..
"

0
0
0
0
1

BIT INDEX

}
INTERRUPT
CAUSES

}

STATUS
(OPERA TlONAL)

C
0
1
1
0
A

15-31 BYTE ADDRESS (MS BIT = 15, LS BIT = 31)

BITS AREA 2

2 31 COMMAND ADDRESS, MS BYTE
(MS BIT = 24, LS BIT = 31)

31 2 .. 31

AREA SELECTION

AREA
SIGNAL CODE

1lO7

C
1
0
1
0

o
1

BITS

o
I
2
3 ..
5
6
7

0
I
2
3

AREAl

DATA CHAINING

IOFRS

0
0
I
I

INTERRUPT ON ZERO COUNT
COMMAND CHAINING
INTERRUPT ON CHANNel END
HAL T ON TRANSMISSION ERROR
INTERRUPT ON UNUSUAL END
SUPPRESS INCORRECT LENGTH
SKIP
BYTE LEVEL (BIT 8 = 21, BIT 9 = 2<»
NOT USED

IOFR9

0
1
0
1

l~GS
8,9

10-15
16-31 BYTE COUNT (MS BIT = 15, LS BIT = 31)

BITS AREA 3

2 31 COMMAND ADDRESS, LS BYTE
(MS BIT = 2", LS BIT = 31)

90 1172A. 3600

Figure 3-231. I/O Fast Memory, Group Organization

3-683

WRITE CONTRO
AND CLOCK It"'

CK

OAT
FRO ~I~J~TBUS-

NES

RWO

RWI--

RW2

RW3

RW4

RWS

RW6

.... RW7

B
K/IOIB/O

B
W/I01BO/0

B
W/IOlBO/l

B
W/IOlBO/2

B
W/I01BO!3

B
W!I01BO!4

B
W/I01BO!S

B
W/IOIBO/6

B
W/IOlBO/7

SDS 901172

AREA 0
i i i

MEMORY
ELEMENT
SDS 304

(TYPICAL)

7_~ 2

rl Al Fr-

~~F r--
~

~ f-
~

~ r---

~ ---

~ -
I -L

R A7 F I--

-

ADDRESS LI

IOFM

SELECT {Nl103
GROUP NLI04

rNIOFR 8

~
""----' D-D> LlIOlBO!1

(CONTROL LINE)
9

~ER~~T lNIOFR

IOFR9

SELECT .
CHANNEL

L

1I0S

1I06

L107

'--

-
LlI0180/2

B
(CONTROL LINE)

B
LlIOI BO/3

8
LlIOlBO/4

B "'
L/IOIBO/5

v

AREA 1
i i I

j

1 BIT 0 [~~ CHANNELS 0-7
(TYPICAL)

I
I 1

1 BIT I [~ f-
I

1 "T2 [

I -L
RAllC f---

I

1 BlT3 [

I -L
RAl2c r--

-
I

] Blf4 [

I 1
---=1 Al3 L=-

-----..

I

] BIT S [

I -L
RA14 L= -

I

] "" [
I 1

R AIS t= I-

--..

I

] BIT7 [

I _ 1

~ I-

Figure 3-232. Fast Memory Module FT25, Logic Diagram

3-684

RRO

RRI

RR2

RR3

RR4

RRS

RR6

RR7

DATA
OUTPUT
TO /RR/
LINES

901172A.3601

SOS 901172 Paragraphs 3-131 to 3-132

3-131, I/O Address Register 10FR

The I/O address register is a 10-bit flip-flop register used
for selecting the group number, channel number,and area in
the IOFM register. Group and channel number selection
are controlled by the eight high order bits 10FRO through
IOFR7. Area selection is controlled by the two low order
l>its 10FRS and IOFR9.

Input to the eight high order bits is obtained either from the
A-register or from the function response I ines, as follows:

S/IOFRO Ap 10FRXA + FRO 10FRXFR

.
S/IOFR7 A7 10FRXA + FR7 10FRXFR

C/IOFRO-IOFR7 CL

R/IOFRO-IOFR7 10FRX

IOFRXA = FAIO PH3 (Execution phase of an

10FRXFR

10ENIN

SIO, HIO, TIO, or TOV
instruction when A-
regi ster conte i ns devi ce
control I er/ devi ce address)

10ENIN + FUAIO PS·S·7

Servi ce ca II processi ng phase when
device controller places its address on
the function response lines FRO-FR7 in
response to an ASC

FUAIO PS·S·7 = Execution phase for an AIO in­
struction when device controller
places its address on function'
response lines FRO-FR7 in response
to an interrupt query

10FRX FAIO PH3 + FUAIO PS·S·7
+ IOENIN

The two low order bits, IOFRS and IOFR9, are controlled by
general transfer terms used for transferring data to and from
the IOFM register, as follows:

S/IOFRS

(S/IOFRS) =
C/IOFRS

R/IOFRS

S/IOFR9

(S/IOFR9) =
C/IOFR9

R/IOFR9

(S/ AXRR/3) =

(S/IOFRS)

(S/AXRR/4) + (SRW/4)

CL

(S/IOFR9) 10POP

(S/AXRR/3) + (SRW/3) + (S/AXRR/6)

CL

10PH 1 SWS ORDSW4

+ 10PH 1 SWS NIODC DASW4

+ 10PHO SW9

+ 10PHO SWS 10PHlO

+ 10PHO SW11 IFAST

(S/AXRR/4)

(S/AXRR/6)

(S/RW/3)

I~ Inul 14\
\~/I\VV/Ii'J

FAIO/l PHS
(SWll + SW10 NR31)

+ 10PHO SW12 DOR lOR

+ 10PHl SWS DASW4 10DC

+ IOPH3 SWS

FAIO/l PHS
(S'vVll + SVV8 NSW7 NFUMH)

+ IOPH3 SWS

IOPHO SW10 NIOPH10

+ FAIO PH9 SWO VALST

+ 10PHl SW12

+ 10PHl SWll NSW3 NIFAM

+ IOPH3 SW12

FAiO PH5 SWi3 VALST

+ FAIO PH9 SWO VALST

+ IOPH3 (SVI11 I M"',..\
T ;)VVI.£J

3-132 I/O Data Register IODA

The I/O data register is a 9-bit flip-flop register used for
transmitting one byte of information (data, address, order,
or terminal order) to the device controller. Eight of the
nine bits, 100AO through IODA7, store the actual byte of
information to be transmitted. The ninth, IODAP, is the
data pari ty bit.

Input to the four high order bits, 100AO through IOOA3, is
obtained either from the A-register or, in the case of 'a ter­
minal order, from flags and status bits stored in the D- and
B-registers, as follows:

S/IOOAO

(S/IODAO)

(S/B3)

(S/B4)

TODATA

TORDIN

(S/IODAO) + TODATA SWO D1
+ AO IOOAXA

(S/B3) + (S/B4)

TOROIN (•••)

TORDIN (•••)

Terminal order condition during the
phase sequence of any of the four
service cycles

Terminal order condition during an'
order-i n phase sequence

100AXA Term used for transferring data from
the A-register
IOPH3 SW1S NSW4 + FAIO PH3
+ DATAOUT 10PHO SW13 ND7

IOPH3 SW1S NSW4 = Phase during order-out
phase sequence when A­
register stores order

FAIO PH3 Execution phase during an I/o in­
struction when A-register stores
devi ce control I er/ devi ce address

3-685

Paragraphs 3-133 to 3-137 SDS 901172

DATAOUT IOPH3 SW13 ND7 Phase during data-

R/IODAO

10DAX

(R/IODA) =

C/IODAO

S/IODA1

C/IODAl

R/IODAl

S/IODA2

C/IODA2

R/IODA2

S/IODA3

C/IODA3

R/IODA3

10DAX

(R/IODA)

...... " .. f""'i'Ih"'(,D ~t"Ir.""I'P.,",,...et
~-' I""'~"~ "-'1~-'--

when A-register
stores data, and
the skip flag is not
high

FUAIO PHS SW8 NSW7 + TODATA
+ 10ENIN + 10DAXA

CL

TODATA SWO NDO + A1 10DAXA

CL

10DAX

TODATA D2 + A2 10DAXA

CL

10DAXA

TODATA B4 + A3 10DAXA

CL

IODAXA

Input to bits IODA4 through IODA7 is obtained from the
A-register only:

S/IODA4

S/IODA7

R/IODA4

C/IODA4

A4 IODAXA

A7 IODAXA

R/IODAS-IODA7 = IODAXA

C/IODAS-IODA7 = CL

Parity flip-flop IODAP has a dual function: one for data­
out and another for data-in. During data-out, odd parity is
established by parity generator term IOPG. Flip-flop
IODAP assumes the state of 10PG and, accordingly, drives
the data parity line /DAP/. During data-in, flip-flop
10DAP is set if the byte received from the device controller
does not pass parity and a parity check is required. The
complete logic for IODAP is as follows:

S/IODAP

10PG

NIOPC

PC

R/IODAP

C/IODAP

3-686

10PHO SW13 DATAOUT 10PG
+ 10PHO SW14 DATAIN NIOPC PC

Sum of true data bits is even

Byte from device controller did not
pass parity

Parity check required, as specified by
device controller

IOPHO SW13

CL

3-133 Address Conversi on Ci rcui ts

The address conversion circuits sample bits IOFRO through
IOFR7 of the address register and, accordingly, provide a
S-bit output, LI03 through LI07, to the I/o fast memory.
Bits LI03 and LI04 are used to select one of four channel
groups, and bits LIOS through LI07 select one of eight
channels within the selected group. Bits IOFR8 and IOFR9
of the address register are applied directly to the I/o fast
memory and are used to select the proper area. The bit
conversion logic is as follows:

LI03 IOFR3 NIOFRO

NIOFRO Specifies a single-device device
controller

LI04 IOFR4 NIOFRO

LIOS IOFRS NIOFRO + IOFR1 IOFRO

IOFRO Specifies a multidevice device
controller

LI06 IOFR6 NIOFRO + IOFR2 10FRO

LI07 IOFR7 NIOFRO + IOFR3 10FRO

In the case of a single-device device controller (IOFRO = 0),
bits LI03 through LI07 follow bits IOFR3 through IOFR7,
allowing IOFR3 and IOFR4 to control group selection and
bits 10FRS through IOFR7 to control channel selection. In
the case of a multidevice device controller (IOFRO = 1),
channel selection is controlled by bits IOFR1 through IOFR3
via LIOS through LI07, and group 1 is selected automati­
cally by the logic NLI03 NLI04 (see figure 3-231 for the
group selection chart).

3-134 Instructions, Commands, Orders

See Sigma 5 Computer Reference Manual, SDS Publication
No. 900959.

3-135 Integral lOP/Device Controller Interface

See Interface Desi gn Manual, SDS Publication No. 900973.

3-i36 Service Cycles

See Interface Design Manual, SDS Publication No. 900973.

3-137 I/o Phase Seguencing

GENERAL. Input/output operations fall into two categories:
instructions, which are CPU-initiated, and service cycles,
which are initiated when a device controller generates a
service call. Instructi ons are processed ina sequence of
CPU phases and subphases and are described in tables 3-89
through 3-92. The following paragraphs describe the
device controller-initiated I/o operations.

I/O PHASES AND SUBPHASES. Service calls are processed
in a sequence of connect phases, 10SC and IOEN NIOIN,

SDS 901172

preliminary phase 10EN lOIN NIOPH1, and main phases
10PHO through IOPH3. Each main phase is divided into
from one to eight subphases, SW8 through SW15. The four
main phases are not necessari Iy sequential and are sustained
until reset. The eight subphases are normally sequential;
branching terms are used to alter the sequence. The logic
for the main phases and subphases is shown below.

S/NIOPHO = RESET/A + (R/IOPHO)

(R/IOPHO)= lOR 10PHO SW12

+ 10PHO SW15

R/NIOPHO =

(S/IOPHO)=

S/NIOPHl =

(R/IOPH1)=

R/NIOPHl =

(S/IOPH1)=

+ 10PHO SW14 DATAOUT
NVDATAOUT

(S/IOPHO)

IOENIN + (R/IOPH2)
+ (IOPH3 SW15)

RESET/A + (R/IOPH1)

IOPHl SW8 DASW4 10DC

(S/IOPH1)

IOPHO SW15

+ lOBO IOENNIN

+ 10PHO SW14 DA TAOUT
NVDATAOUT

S/NIOPH2 = RESET/ A + (R/IOPH2)

(R/IOPH2)= BCZ IOPH2 (SW14 + SW15)

R/NIOPH2 =

(S/IOPH2)=

S/NIOPH3 =
R/NIOPH3 =

(S/IOPH3)=

S/SW8

R/SW8

S/SW9

STEP815

R/SW9

S/SW10

R/SW10

S/SW11

R/SW11

(S/IOPH2)

10PHO SW12 lOR NDOR

RESET/A + IOPH3 SW15

(S/IOPH3)

10PHO SW12 DOR lOR

+ 10PHl SW8 10DC DASW4

NRESET/ A BRSW8

SW8 STEP815

NBRSW13 NBRSW15 NRESET/A
NBRSW8 NBRSW10 NBRSWll
NBRSW12

NRESET/A BRSWll + SW9 STEP815

NRESET/A BRSWll + SW10 STEP815

S/SW12

R/SW12

S/SW13

R/SW13

S/SW14

R/SW14

S/SW15

R/SW15

NRESET/A BRSW12 + SWll
STEP815

NRESET/A BRSW13 + SW12
STEP815

SW13 STEP815

NRESET/A BRSW15 + SW14
STEP815

INDICATORS SWO THROUGH SW7. During the I/O phase
sequencin9: flip-flops SWO through SW7 !ndicate the
following VO-related conditions, as follows:

SWO Zero byte count

SWl Order (when true) or data
(when false)

SW2 Out (when true) or in (when false)

SW3 Terminal order condition

SW4 Data chaining condition

SW5 Transfer in channel condition

SW6 End data; line /ED/ follows SW6

SW7 End service; line /ES/ follows SW7

PHASE SEQUENCE CHARTS. The Vo phases associated
with service cycles are described in eight phase sequence
charts and one summary chart, as follows:

Table 3 -108 - Service Call Connect Phases. Initiated when
the first service call is received and ended when flip-flop
lOIN is set. If two successive service calls are processed,
the connect phases of the second service call overlap with
the restoration phases of the first service call, as shown in
table 3-115. A typical timing sequence of the service call
connect phases is illustrated in figure 3-233.

Table 3-109 - I/O Setup Phase Seguence. Deals with the
savi ng of the interrupted i nstructi on, stori ng the address of
the device controller that generated the SC, and storing the
service cycle type specified by the device controller.
Events described in this table are common to all service
cycles, and occur before the events described in table 3-110,
table 3-112, table 3-113, or table 3-114, as applicable.

Table 3';"110 - Order-Out Phase Sequence. Describes a
sequence of events applicable only to the order-out service
cycle. Other events occurring during the order-out service

3-687

SDS 901172

cycle, but which are common to all service cycles, are
described in tables 3-109 and 3-115.

Table 3-111 - Data Chaining Phase Sequence. The sequence
of events described in this table is similar to table 3-110,
and is entered, under certain conditions, from a data-out or
data-in phase sequence.

Table 3-112 - Data-Out Phase Sequence. Describes a
sequence of events that occurs only during the data-out
service cycle.

Table 3-113- Data-In Phase Sequence. Describes a
sequence of events that occurs only during a data-in
service cycle.

Table 3-114- Order-In Phase Sequence. Describes a se­
quence of events that occurs only during an order-in service
cycle.

Table 3-115 - I/O Restoration Phase Sequence. Dealswith
the restoring of the interrupted instruction, and is common

CPU CLOCK

EXECUTION OF
CPU INSTRUCTION

to all service cycles. Note that certain phases of this
table, such as 10PH 1 SW9, also appear in table 3-110.
This is the same phase, and was placed in table 3-115 to
avoid repeating events common to all service cycles.

Table 3-116- I/o Abort Phase Sequence. Deals with
conditions resulting from an aborted service call.

Table 3-117 - Summary of I/O Phase Sequences. Combines
the phases listed in tables 3-109 through 3-115 in a chrono­
logical order, and describes the main events occurring in
each phase. Where no entry appears in the general activi­
ties column, that phase is entered only during those service
cycles that have an entry in the corresponding special
activities column. For example, phases IOPH2 are entered
only during a data-out service cycle. On the other hand,
if an entry appears in the general activities column, that
phase is entered in the course of every servi ce cyc Ie, re­
gardless of whether or not there is an entry in the corre­
sponding special activities column.

PH10
3Zft04

____________________ ~r--l~ __________________ _

3-688

/SC/

t/ :::'7
10SC = /ASC/

) I" .. ;1
<. -=.. f .. - C

10~S = /FS/

/FSL/

10EN; SET AT 10
INTERVENTION POIt~T

101 N; WAITS FOR F~L

10ENIN

IPH10

PREIO

10PHO SW8;
FIRST I/O PHASE

L

____________________________ ~r__l~ __________________ __

______________________________ r__l _______________________ __

_____________________________ ~r__l~--~-~======~
901172A.3604

Figure 3-233. Service Call Connect Phases, Typical Timing Sequence

SDS 901172

Table 3-108. Service Call Connect Phase Sequence

Phase Function Performed Signals Involved Comments

ENTRY Device controller may raise SC = /sc/
service call during any CPU phase

Integral lOP will defer SC SCINH = PCP2 RQBZO Override interrupt busy
acknowledgement if SC inhibit

+ PCP2/1 10ACT I/O active during PCP is present
idle phase

+ PCPACT PCP active

+IOWD I/O watchdog timer
runout

+ FAIO NPH9 NPCP2 Execution phase of I/O
instruction

+ RESET/KS KS reset

+ N(IOPH 1 SW9) IOACT I/O is processing pre- I vious service call, but
IOPHI S'N9 has not yet
occurred

+ PHIO

If not SCINH, set flip-flop 10SC S/IOSC = (S/IOSC) Prepare to acknowledge

(S/IOSC) = SC NSCINH 10POP
service call

10POP = Integral lOP option present

R/IOSC = PCP3 NIOFS

+ 10PHl SW13 lOBO

+ RESETIO

+ 10PHO SW8

<lr

IOSC Enable signal IASC/ /ASC/ = 10SC Acknowledge service
call

Set flip-flop 10FS S/IOFS = (S/IOFS)

(S/IOFS) 10SC NPCP3 + •••
I

=

R/IOFS = (R/IOFS)

+ 10PHl SW13 lOBO

+ RESETIO

Enable signal 10CON ·IOCON = 10SC + lOIN lOP connect

Inhibit RESETIO RESETIO = RESIO + •••

RESIO = (NRCPUIOCON •••)

NRCPUIOCON = NIOCON + •••

If PCP2:

Inhibit (S/CXS) (S/CXS) = (PCP2/1 NIOCON •••) + •••

(Continued)

3-689

SDS 901172

Table 3-108. Service Call Connect Phase Sequence (Cont.)
-~ - ---~ - ----- ---- _co

Phase Function Performed Signals Involved Comments

10SC Inhibit (S/PCP3) (S/PCP3) = (PCP2/1 NIOCON •••) + •••
(Cont.)

Inhibit 0--PSW1 PSW1XS = (KCLRPSW1 NIOCON •••) + •••

Inhibit 0--PSW2 PSW2XS = (PSW2XS) + •••

(PSW2XS) = (KCLRPSW2 NIOCON •••) + •••

Inhibit (S/SXD) (S/SXD) = (PCP2/1 NIOCON •••) + •••
I

If SC was obtained in PH10:

Inhibit P + 1---P PUC31 = (PHlO NIOSC •••) + •••

I Set flip-flop NPRE1 S/NPRE1 = N(S/PRE1)

I (S/PRE1) = PRE1EN PH10 + •••

PRE1 EN = (f'.!IOSC •••)

Inhibit interrupt enable lEN = (PHlO NIOSC •••)

Inhibit branch to PCP1 BRPCP1 = (PH 10 NIOSC •••)

Set flip-flop IPH10 S/IPH10 = (S/IPH 10) Indicates CPU phase

(S/IPH10) = PH10 10SC NIOINH left at time SC was
received. Used during

10lNH = INTRAP NPCP2 IOPH1 SW13 as a

+ ADNH PH6 reentry term

+ ABO PH6

+ (S/TRAP)

R/IPH10 = (R/IPHlO)

Set fI ip-flop 10EN at one S/IOEN = (S/IOEN) Setting of flip-flop
of the four points at which 0 10EN inhibits further
I/o intervention is possible, CPU activities until
wh i chever occurs fi rst I/o phase sequencing

is comp I eted

(S/IOEN) = 10FS PCP2/1 PCP idle phase

+ 10SC PH10 NIOINH

+ 10SC IOEN6 NIOINH

+ 10SC NIOINH IOPH1 SW11 This intervention point
occurs during an I/o
phase sequence when a
previous SC is being
processed. See IOPH1
SW11 of table 3-113

IOEN6 = (FAMDS + FAST/A IOEN6 indicates that

+ FAST/B + FAFL + FARWD) execution phase PH6 is
in progress and that the

I NDIOEXIT (NFPRR NFSHEX instruction being exe-

IOEN6/1 PH6) cuted qualifies for I/o
i nterven ti on

IOEN6/1 = N(MC005Z + FADIV CC2
+ EWDMj

(Continued)

3-690

SDS 901172

Table 3-10B. Service Call Connect Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOEN Set flip-flop lOIN at the next S/IOIN = (S/IOIN) Setting of flip-flop
NIOIN clock after the device controller

(S/IOIN) = IOEN FSL NPH6 NIOINH lOIN indicates that FSL
returned FSL has been returned and

R/IOIN = RESET/A SC is about to be
processed

If IFAST/L or IFAMDS, enable (S/SXA) = FAMDST PREIO + ••• Prepare adder for
signal (S/SXA)

PREIO = 10EN NIOIN NPCP2 A~S in IOEN

NIOINH NIOIN NIOPH1

FAMDST = (IFAST/L + IFAMDS) NPH6

IFAST/L = FAST/L NIPH10 NPCP2

IFAMDS = FAMD NIPHlO NPCP2

If devi ce controller di d not return R/NIOBO = (S/IOBO) . Indicates I/O abort
FSL, reset flip-flop NIOBO at the

(S/IOBO) = 10ENNIN NIOINH AVO condition, as specified
next clock following AVO bv AVO suoolied bv thp. , I I - - -- I - --

10ENNIN = 10EN NIOIN AVO device controller sys-

S/NIOBO = IOPH1 SW13 + RESET/A tem; exit to phase
IOEN NIOIN NIOPH1
lOBO in table 3-116

If IFAST/L, enable si goo I (S/CXS) (S/CXS) = PREIO IFAsT/L + ••• Prepare to transfer
S---CinIOEN
lOIN NIOPH1

If IFAMDS, set flip-flop RW S/RW = (S/RW/l) Prepare to transfer

(S/RW/1) = (S/RW) + .09

S---RW in 10EN
lOIN NIOPH1

(S/RW) = IFAMDS PREIO

Table 3-109. I/O Setup Phase Sequence

Phase Function Performed Signals Involved
I

Comments

10EN One clock long. TBL if IFAMDS,
lOIN T5L if IFAST/L
NIOPH1
T5L or Reset flip-flops IODAO-IODA7 R/IODAO-IODA7 = 10DAX Clear 10DA register
T8L

10DAX (R/IODA) =

(R/IODA) = 10ENIN + •••

-. (AO-A31)---(SO-S31) SXA = Set at 10EN NIOIN Transfer contents of A-
clock regi ster to sum bus

If IFAMDS:

(SO-S31)---(RWO-RW31) (R) RWX S/O-RWX S/3 = RW + ••• Transfer contents of sum

RW = Set at IOEN NIOIN bus to pri vote memory

clock register R

(Conti nued)

3-691

sDs 901172

Table 3-109. Vo Setup Phase Sequence (Cont.)
.~~

-.
___ .L~ ___ ~~~ ___ ~_'

Phase Function Performed Signals Involved Comments

IOEN If IFAsT/l:
lOIN

(50-531)---(CO-C31) CXs = Set at IOEN NIOIN clock Transfer contents of sum NIOPH1
bus to the C-register T5lor

T8l Reset flip-flop IOEN R/IOEN = (R/IOEN) + •••
(Cont.)

(R/IOEN) = lOIN NIOPH1 + •••

Reset flip-flop IOFs R/IOFs = (R/IOFs) + ••• Drop function strobe

(R/IOFs) = lOIN NIOPH1 + •••

I
(FRO-FR7)-+--(IOFRO-IOFR7) IOFRXFR = IOENIN + ••• Transfer device con-

IOENIN = IOEN lOIN NIOPH 1 troll er/ de vi ce address
to the IOFR register

IOFRX = IOENIN + •••

Enable signal (s/AXRR/2) (S/AXRR/2) = IOENIN + ••• Prepare to transfer inter-
rupt status, lOP status,

Reset flip-flop NIOFM R/NIOFM = · .. and byte address from

S/NIOFM = N(s/IOFM) IOFM, area 00, to the
A-register during

(S/IOFM) = (s/AXRR/2) + ••• IOPHO SW8

Maintain flip-flops IOFR8 and R/IOFR8 = · ..
IOFR9 in a reset state

R/IOFR9 = · ..
Reset flip-flop NIOPHO R/NIOPHO = (S/IOPHO) Prepare to exi t to

(S/IOPHO) = IOENIN + ••• IOPHO SW8

Enable signal BRSW8 BRSW8 = IOENIN + •••

IOPHO One clock long
SW8

Reset flip-flop IOSC R/IOSC IOPHO SW8 Drop acknowledge T5l =

s/IOSC = SC (•••) service call signal ASC

(RRO-RR31)-f--(AO-A31) AXRR = Set at NIOPH1 IOEN lOIN T ra nsfer byte address,
clock lOP status, and interrupt

IIOFM)'~ ,![OOl
IOFM = Set at NIOPH 1 IOEN lOIN status from IOFM, area

clock 00, to the A-register

I NIOFR8 = Reset at NIOPH1 IOEN lOIN
clock

A : liNT I lOP I BYTE I NIOFR9 Reset at NIOPH 1 IOEN lOIN (): STATUS STATUS ADDRESS =
0 78 1415 31 clock

901172A.3605

Disable signal PEM PEM = PEM N(R/PEM) Erase previous parity

(R/PEM) = iOPHO SW8 + ••• I error in memory
condition

(Continued)

3-692

If r
f

Phase

lOPHO
SW8
T5l
(Cont.)

I

I

SDS 901172

Table 3-109. I/o Setup Phase Sequence (Conto)

Function Performed Signals Involved

Set flip-flop RSCLEN S/RSCLEN = (S/RSCLEN) NCLEAR

(S/RSCLEN) = !OPHO SW8 + 00.

R/RSCLEN = ...

If IFAST/L or IFAST/S and
NIOPHlO:

(B15-B31)---(S 15-S31) SXB-O through SXB-3 = SXB

SXB = SXBF NDIS + ...
D/ ICVDI: = ..0 IV I'...",IJ.

S/NSXBF = N(S/SXB)

(S/SXB) = IOPHO SW8 NIOPHlO

(S 15-S31)-f-(P 15-P31) PXS = IOPHO SW8 IFAST + .0.

IFAST = IFAST/L + IFAST/S

(P 15-P31)-+-(B 15-B31) BXP = BXP/1 + .•.

BXP/1 = IOPHO SW8 IFAST + ...

Enable signal (S/RW/2) (S/RW/2) = IOPHO SW8 NIOPH10

Reset flip-flop NIOFM R/NIOFM = ...
S/NIOFM = N(S/IOFM)

(S/IOFM) = (S/RW/2)

Maintai n flip-flops IOFR8 and R/IOFR8 = R/IOFR9 = ...
IOFR9 in a reset state I

Reset flip-flop NSXBF R/NSXBF = ...

S/NSXBF == N(S/SXB)

(S/SXB) = IOPHO SW8 NIOPHlO

Set flip-flop BRP S/BRP == (S/BRP) + .. 0

(S/BRP) = IOPHO SW8 + ...
R/BRP == (R/BRP)

(Conti nued)

Comments

Disable clock at the end
of this phase unti I the
device controller returns
RS

Exchange contents of
B-register with con-
tents of P-register

Prepare to transfer con-
tents of B-register to
IOFM, area 00, in
IOPHO SW9

Prepare adder for
B---S in IOPHO SW9

Indicates that program
address is now in P-
register

3-693

SDS 901172

Table 3-109. I/O Setup Phase Sequence (Cont.)
....-~_~_~~=-O,~ --= ___ -"-"'.",,.-""-'<~..._'==__', -~""~

Phase Function Performed Signals Involved Comments

10PHC If IOPH10
SW8
T5L Enable signal (S/SXA) (S/SXA) = 10PHO SW8 IOPH10 + ... Prepare to transfer con-
(Cont. tents of 10FM, area 01,

10PHlO = NPCP2 IPH 10 + ... to A-register

IPH10 = Set at phase 10SC clock

Reset flip-flop NAXRR R!NAXRR = N(S/AXRR)

(S/AXRR) = (S/AXRR!3) + ...

(S/AXRR!3) = IOPHO SW8 IOPH10 + ...

Reset flip-flop NIOFM R!NIOFM = ...
S/NIOFM = N(S/IOFM)

(S/IOFM) = (S/AXRR!3) + ..•

Set flip-flop IOFR9 S/IOFR9 = (S/IOFR9) 10POP

10POP = Integral lOP option present

(S/IOFR9) = (S/AXRR/3) + .••

R!IOFR9 = ...

Maintain flip-flop IOFR8 in R/IOFR8 = ...
a reset state

Enable signal BRSW10 BRSW10 = IOPHO SW8 IOPH10 + .•. Branch to IOPHO SW10

OPHO Entered if NIOPH10
':JW9

T8l minimum. Duration of clock T8l
controlled by device controller
via RS

(BO-B31)---(SO-S31) SXB = Set at IOPHO SW8 clock Transfer contents of
B-register to sum bus

(SO-S31)-+-(RWO-RW31) RW = Set at IOPHO SW8 clock Transfer contents of sum

IOFM = Set at IOPHO SW8 clock bus to IOFM, area 00

NIOFR8 = Reset at IOPHO SW8 clock

NIOFR9 = Reset at IOPHO SW8 clock

Enable signa I (S/SXA) (S/SXA) = IOPHO SW9 + ... Preset adder for A--S
in IOPHO SW10

(Continued)

3-694

SOS 901172

Table 3-109. VO Setup Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPHO Reset flip-flop NIOFM R/NIOFM = · .. Prepare to transfer con-
SW9

S/NIOFM = N(S/IOFM) tents of IOFM, area 01,
T8l to the A-register
(Cont.) (S/IOFM) = (5/ AXRR/3) + •••

Enable signal (S/AXRR/3) (S/AXRR/3) = IOPHO SW9 + •••

Set flip-flop IOFR9 S/IOFR9 = (S/IOFR9) IOPOP

IOPOP = Integral lOP option present

(S/IOFR9) = (S/AXRR/3) + •••

R/IOFR9 = · ..
Reset fl ip-flop IOFR8 R/IOFR8 = · ..

I I

I

When RS, enable signal ClEN ClEN = RSClEN NRSA RS + •••

I
Enable clock when RS is
obtained from device
contiollei

---,IOPHO One clock long. This phase
-;~SWIO entered ei ther from IOPHO SW8

T5l or IOPHO SW9. If entered from
IOPHO SW8, duration of clock
controlled by device controller
via RS

(AO-A31)-(SO-S31) Adder logic set at IOPHO SW8 clock or IOPHO Transfer status from A-
SW9 clock, as applicable regi ster through sum bus

(SO-S14)~(BO-B14) BX5/0 = BXS/l -- BXP/2 + ••• to the most significant
half of B-register.

BXP/2 = IOPHO SWIO + ••• Transfer contents of P-

(P15-P31)~(B15-B31) BXP = BXP/2 regi ster to the least si g-
nificant half of B-

(P): I J register

15 31

(A): I J1 I I

0

+
14

(S): I L~
0 1 14

I II I

(B): I STATUS I CONTENTS OF J
P-REGISTER

0 1415 31
If IOPHI0:

(RRO-RR31),L--(AO-A31) AXRR = Set at IOPHO SW8 clock or Transfer byte count and

IIOFMh~ ,![OU
IOPHO SW9 clock flags from IOFM, area

IOFM = Set at IOPHO SW8 clock or 01, to the A-register

1 IOPHO SW9 clock

I I
IOFR9 = Set at IOPHO SW8 clock or

IA), I FLAGS H1 BYTE
IOPHO SW9 clock COUNT

NIOFR8 = Reset at IOPHO SW8 clock 0 7 8 9 1516 31

901172A.3606 (Conti nued)

3-695

SOS 901172

Table 3-109. I/o Setup Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPHO Enable signal (S/SXA) (S/SXA) :::: IOPHO SW10 IOPH10 + .•• Preset adder for A---S
SW10

Enable signal BRSW12 BRSW12 :::: IOPHO SW10 IOPH10 in IOPHO SW12, and
T5L branch to SW12
(Cont.)

If entered from IOPHO SW8, CLEN :::: RSCLEN NRSA RS + ••• Enabl e cI ock when RS is
enable signal CLEN when RS obtained from device

controller
If NIOPHlO

Enable si gnal (S/SXC) (S/SXC) :::: IOPHO SW10 NIOPH10 + ••• Prepare to transfer con-

Reset flip-flop NIOFM R/NIOFM :::: tents of C-register via · ..
sum bus to IOFM, area I I

I
S/NIOFM N(S/IOFM) I

01, in IOPHO SW11 ::::

(S/IOFM) :::: (S/RW/3) + •••

(S/RW/3) :::: IOPHO SW10 NIOPH10 + •••

Set flip-flop IOFR9 S/IOFR9 :::: (S/IOFR9) IOPOP

(S/IOFR9) :::: (S/RW/3) + •••

R/IOFR9 :::: · ..
Maintain flip-flop IOFR8 in a R/IOFR8 :::: · ..
reset state

S/IOFR8 (S/IOFR8) I
::::

IOPHO Entered if NIOPH10
SWll

One clock long
TaL

(CO-C31) ---(SO-S31) SXC :::: SXCF NOIS + ••• Transfer contents of C-

R/NSXCF :::: register via sum bus to · ..
IOFM, area 01

S/NSXCF :::: N(S/SXCF)

(S/SXCF) :::: Came true at IOPHO SW10
clock

(SO-S31)-+--(RWO-RW31) (01) RWXS/0-RWXS/3 :::: RW + •••

S/RW :::: (S/RW/1) + •••

(S/RW/l) :::: (S/RW) + •••

(S/RW) :::: (SjRWj3) + •••

(S/RW/3) = Came true duri ng IOPHO
SW10 clock

Enable signal (S/SXA) (S/SXA) :::: IOPHO SW11 + ••• Preset adder for A-S
in IOPHO SW12

IOPHO One clock long
SW12

(AO-A31)---(SO-S31) SXA Set at IOPHO SW10 clock or Transfer contents of A-T5L ::::

IOPHO SW11 clock, as register via sum bus to
applicable

I
O-register

I I
(50-S31)-+--(00-031) IOPHO SW12 + •••

(Continued)

3-696

SDS 901172

Table 3-109. I/O Setup Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

,!
10PHO ~)'~ SW12
T5L I (Cont.)

(5). ~
i ,!

(D): I R.AGS f r. BYTE
COUNT

0 7. 9 i16 3

90J172A.3607

If A8, set flip-flop P32 S/P32 = A8 10PHO SW12 + ••• Flip-flops P32 and P33

R/P32 = PX-3 are the byte level
indicators

If A9, set flip-flop P33 S/P33 = A9 10PHO SW12 + •••

R/P33 = PX-3

If DOR, set fl ip-flop SWl S/SWl = (S/SW1) By means of DOR and

(S/SW1) = DOR 10PHO SW12 + ••• lOR the device con-
troller specifies one of

R/SWl = RESET/A four types of servi ce it

If lOR, set flip-flop SW2 S/SW2 = (S/SW2) requires. This conditi on
is stored in flip-flops

(S/SW2) = lOR IOPHO SW12 + ••• SWl and SW2 until

R/SW2 = (R/SW2) 10PHl and SW13

llQ& ma
0 0 = data in

0 1 = data out

I 1 0 = order in

I 1 1 = order out

I If order out I

Enable signal (S/AXRR/4) (S/AXRR/4) = 10PHO SW12 DOR lOR + ••• I f order out, prepare to

Reset flip-flop NIOFM R/NIOFM = transfer most significant · .. ha I f of C OW address from
S/NIOFM = N(S/IOFM) IOFM, area 10, to the

(S/IOFM) = (S/AXRR/4) + ••• A-register

Set fl ip-flop IOFR8 S/IOFR8 = (S/IOFR8)

(S/IOFR8) = (S/AXRR/4) + •••

R/IOFR8 = · ..
Reset flip-flop IOFR9 R/IOFR9 = · ..
Set fl ip-flop NIOPHO S/NIOPHO = (R/IOPHO) Advance to IOPH3 SW8,

(R/IOPHO) = lOR IOPHO SW12 + ••• as required to process the
order-out servi ce cyc I e

R/NIOPHO = (R/IOPHO) + RESET/A

(C ont i nued)

3-697

SDS 901172

Table 3 .. 109. I/O Setup Phase Sequence (Cont.)
- ~- ---~-

Phase Functi on Performed Signals Involved Comments

IOPHO Reset flip-flop NIOPH3 R/NIOPH3 = (S/IOPH3)
SW12

(S/IOPH3) 10PHO SW12 DOR lOR T5L =
(Cont.) S/NIOPH3 = IOPH3 SW15 + RESETI A

Enable signal BRSW8 BRSW8 = 10PHO SW12 DOR lOR + •••

If data out

Set flip-flops MRQ and DRQ S/MRQ = (S/MRQ) Prepare to read first

(S/MRQ) (S/MRQ/2) + •••
word of data from core -
memory

(S/MRQ/2) = 10PHO SW12 NDOR lOR

R/MRQ = ...
S/DRQ = (S/DRQ) NCLEAR Inhibits transmission of

(S/DRQ) = (S/MRQ/2) + •••
another clock until data
release is received from

R/DRQ = ... core memory

Set flip-flop NIOPHO S/NIOPHO = (R/IOPHO) Advance to IOPH2 SW13

(R/IOPHO) = lOR IOPHO SW12 + •••
as required to process
the data-out service

Reset flip-flop NIOPH2 R/NIOPH2 = (S/IOPH2) cycle

(S/IOPH2) = 10PHO SW12 NDOR lOR

If data in

Enable signal (S/SXDM1) (S/SXDM1) = (~O.p.~o SW12'f..DOR NIO~) Prepare adder for D -1
---S in IOPHO SW13

I ' ,

Exit
!..; j:- \ ~

If order out, to IOPH3 SW8
(see table 3-110)

If order in, to IOPHO SW13
(see table 3-114)

If data out, to IOPH2 SW 13
(see table 3-112)

If data in, to IOPHO SW13
(see tabl e 3- 113)

I

I I

I

3-698

50S 9011n

Table 3-110. Order-Out Phase Sequence

Phase Functi on Performed Signals Involved Comments

IOPH3 One clock long
SW8

(RR24-RR31)_(A24-A31) AXRR Set at IOPHO SW12 clock Transfer most si gni fj cant = T5L
(IOFM): I

,!DOl
half of command double-IOFR8 = Set at IOPHO SW12 dock

I word address from I OF M,
2. I NIOFR9 = Set at IOPHO SW12 clock area 10, to A-register

I
IOFM = Set at IOPHO SW 12 clock

(A)'I IM%fl
0 232. 31

901172A.3608
Enable signal (S/AXRR/4) (S/AXRR/4) = IOPH3 SW8 + ••• Prepare to transfer least

Enable signal (S/AXRR/6) (S/AXRR/6) = IOPH3 SW8 + ••• significant half of com-
mand doubleword address

Set flip-flop IOFR8 S/IOFR8 = (C:;/T()F=~R\ from IOFM, uieu ~~, to ,-, --- .~-,

(S/IOFR8) = (S/AXRR/4) + ••• A-register

R/I0FR8 = ·
Set flip-flop IOFR9 S/IOFR9 = (S/IOFR9) IOPOP

(S/IOFR9) = (S/AXRR/6) + •••

R/IOFR9 = · ..
Reset flip-flop NIOFM R/NIOFM = · ..

S/NIOFM = N(S/IOFM)

(S/IOFM) = (5/ AXRR/6) + •••

Set flip-flop SW3 5/5W3 = (S/SW3) + ••• Used as a qua Ii fyi ng term

(5/SW3) = IOPH3 + ••• during IOPHl SW12

R/SW3 = RESET/A

IOPH3 One clock long
SW9

Enable signal AXAL8 AXAL8 IOPH3 SW9 + ••• Shift contents of A-= T5L
register 8 places to the

IM~irl I (A)'I I
left

0 1516 232. 31

(RR24-RR31)-+--(A24-A31) AXRR = Set at IOPH3 SW8 clock Transfer least significant

~OFMI'I IlSH OF I IOFM = Set at IOPH3 SW8 clock half of command double-
word address from IOFM, . ;~~. ,° 1

]
IOFR8 = Set at IOPH3 SW8 clock area 11, into A-register 0

n~ IOFR9 = Set at IOPH3 SW8 clock

CA):I I MSH OF I LSH OF I
COW COW
ADD. ADD.

0 1516 232. 31

901172A.3609

Enable si gnal (S/SXAP1) (S/SXAP1) = IOPH3 SW9 + ••• Preset adder I ogi c for
A + l~A in IOPH3
SW10

(Continued)

3-699

50S 901172

Table 3-110. Order-Out Phase Sequence (Cont.)
~-- - ~~--~.......--,---

Phase Functi on Performed Signals Involved Comments

IOPH3 Exit: to IOPH3 SWlO NB 1 or
SW9 IOPH3 SW10 B1, depending
T5L on the state of chaining
(Cont.) modifier flip-flop B 1

IOPH3 One clock long
SW10

Reason for enteri ng th is phase:
NB1
T5L a. From IOPH3 SW9, if order-

out sequence was entered follow-
ing an 510 instruction.

b. From IOPH3 SW9, if order-
out sequence was entered as a
result of command chaining, and
a chaining modifier was not present.

c. From IOPH3 SWlO B1, if
order-out sequence was entered as
a result of command chaining, and
a chaining modifier was present.

d. From IOPH3 SWl4-, if bits 4-
through 7 of the command double-
word specified transfer in channel.

If not transfer in channel

(A + 1)---(5) SXAP1 == Set at IOPH3 SW9 clock or Increment COW address
at IOPH3 SW10 B1 clock by one. The term SXAPl

(A)'I
1

UPDATED

1

enables the A-register to
cow ADDRESS functi on as a command

0 1516 31 address counter. Tomake
I

1
I the initial address come

OBTAINED BY out correctly, it was
INCREMENTING

decremented by one dur-LAST cow
ADDRESS ing PH5 SW13 of the SIO

instruction

If this phase was entered from
IOPH3 SW14

(AO-A31) ___ (SO-S31) SXA == Set at IOPH3 SW14 clock Incrementation not re-

(A)'I
1

NEW cow

1

qui red, since in this case
ADDRESS the A-register contains

0 1516 31 the actua I address of the
I I new COW

I
OBTAINED FROM

ADDRESS FIELD OF
TIC DOUBlEWORD

2S--+--A 901172A.3610
AXSLl == IOPH3 SW10 NBl + ••• A left shift is necessary

I I to obtain the correct
word address of the com-
mand doubleword

(Continued)

3-700

SDS 901172

Table 3-110. Order-Out Phase Sequence (Cont.)

Phase Functi on Performed Si gnal s Invol ved Comments

IOPH3 Enable signal (S/SXA) (S/SXA) = IOPH3 SW10 NBl + ••• Preset adder I ogi c for
SW10 A---S in IOPH3
NBl SWll
T5L Exit: to IOPH3 SWll
(Cont.)

IOPH3 One clock long
SWlO

Reason for entering this phase:
Bl
T5L From IOPH3 SW9, when order-

out sequence was entered as a
result of command chaining,
and chaining modifier was
present

(A + l)---S SXAPl = Set at IOPH3 SW9 clock Increment command

(50-53 i)-f---(AO-A3 i) AXS = IOPH3 SW10 Bl
doubl eword address by

+ ••• one

Reset fl i p-fl op B 1 R/Bl = (RiB 1) Erase chaining modifier

(R/B 1) = (RiB 1/1) + ••• condition

(RiB 1/1) = IOPH3 SWl0 + •••

S/Bl = (S/Bl) IOPOP + ••• Chaining modifier B 1 was

(S/B 1) = TORDIN A2 originally set during the
preceding order-in se-
quence if specified by
the device controller.
During IOPHO SW13"of
the order-in sequence A2
is controlled by bit DA2
via S2

Enable signal (S/SXAP1) (S/SXAP1) = IOPH3 SW10 Bl + ••• Preset adder I ogi c for
A + l~A in IOPH3
SW10 NBl

Enable signal BRSW10 BRSW10 = IOPH3 SW10 Bl + ••• Command doubleword ad-
dress is incremented
twice, during this phase
and during IOPH3 SWl0
NB 1, before core memory
is accessed. This way,
the next command in

Exit: to IOPH3 SW10 NB1
sequence is ski pped

OPH3 One clock long
~1l

(AO-A31)-(SO-S31) SXA = Set at IOPH3 SW10 NB1 Transfer contents of A-5L
clock register via the sum bus

(S15-S31)-+-(P15-P31) PXS = IOPH3 SW11 + •••
to the P-regi ster

(Conti nued)

3-701

SDS 901172

Table 3-110. Order-Out Phase Sequence (Cont.)
~_o ___

Phase Function Performed Signals Involved Comments

IOPH3 (A),!
,) SWll

T5l t
(Cont.)

(5), I I I
0 1415 31

: i : I CURRENT III {P}: COMMAND 0
WORD ADD.

15 30 31

901172A.3611

Set f1 ip-flop MRQ and reset S/MRQ = (S/MRQ) Prepare to read even
flip-flop NMRQPl

(S/MRQ) (S/MRQ/3) + ••• word of C DW from core
=

memory
(S/MRQ/3) = IOPH3 SW11 + •••

R/MRQ = · ..
S/NMRQP1 = N(S/MRQ/3) + ••• Delays setting of flip-

R/NMRQP1 = flop DRQ by one clock · ..
If NSW5, enable signal (R/PEM) (R/PEM) = IOPH3 SW11 NSW5 If not transfer in channel

reset parity error in
memory condition

Enable signal AXSR1 AXSR1 = IOPH3 SW11 + ••• Change word address
stored in A-regi ster to
doubleword address by
means of a ri ght shi ft

Enable signal (S/SXA) (S/SXA) = IOPH3 SW11 + ••• Preset adder for A--S
in IOPH3 SW12

Set flip-flop IOFR8 and maintain S/IOFR8 = (S/IOFR8) Prepare to transfer
flip-flop IOFR9 in a reset state

(S/IOFR8) = (S/RW/4) + ••• byte 2 of A-register
via the sum bus to

(S/RW/4) = IOPH3 SW11 + ••• IOFM, area 10

R/IOFR8 = · ..
R/IOFR9 = · ..
R/NIOFM = · ..
S/NIOFM = N(S/IOFM)

(S/IOFM) = (S/RW/4) + •••

Set flip-flop RW S/RW = (S/RW/4) + •••

R/RW = · ..
IOPH3 One clock long
SW12

(AO-A31)---(SO-S31) SXA T8l = Set at IOPH3 SW1l clock load most significant

(516-523) -+--(RW 16-RW23) RWXS/0-RWXS/3 = RW + ••• half of current command
doubleword address to

RW = Set at IOPH3 SW11 clock IOFM, area 10

(Continued)

3-702

SOS 901172

Table 3-110. Order-Out Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPH3 (A): I I MSH OF I LSH OF I IOFR8 Set at IOPH3 SWl1 clock cow cow =

SW12 ADD. ADD.
0 16 232-4 31 NIOFR9 = Reset at IOPH3 SWl1 clock

T8l I !
(Cont.) I IOFM = Set at !OPH3 SWll clock

!
!

I

(S): I 1 I I
0 16 I 232-4 31

1
:1 MSH OF I (IOFMl: cow [1~

ADD.
2-4 31

90 11 72A. 3612
C\.. fI i n_fl "V'\ f'lIU,) c:::/nDf""i = /C'/r"\D,",\ "'lrll"'An '1'1 _, _0.. •• flO

-_ ,... .. _,... _I'~ ..." ""n~ , , vr-.~J 1'4'-LLMI\ InniDITS TransmiSSion or

(S/ORQ) = MRQPl + •••
another clock unti I data
release signal is received

R/DRQ =- from core memOiY

Set flip-flop RW S/RW = (S/RW/l) Prepare to transfer lSH

(S/RW/l) = (S/RW) + ••• of command doubleword
address from A-regi ster

(S/RW) = (S/RW/3) + (S/RW/4) + ••• into IOFM, area 11

(S/RW/3) = IOPH3 SW12 + •••

(S/RW/4) = IOPH3 SW12 + •••

R/RW = · ..
Set flip-flops IOFR8 and S/IOFR8 = (S/IOFR8)
IOFR9

(S/IOFR8) = (S/RW/4) + •••

R/IOFR8 =

S/IOFR9 = (S/IOFR9) IOPOP

(S/IOFR9) = (S/RW/3) + •••

I R/IOFR9 - I · ..
Reset flip-flop NIOFM R/NIOFM = · ..

S/NIOFM = N(S/IOFM)

(S/IOFM) = (S/RW/3) + (S/RW/4) + •••

Enable signal AXAL8 AXAL8 = IOPH3 SW12 + ••• AI i gn L SH of command

(A>=[
1 MSH ! LSH OF I I

doubl eword address by

c'5~: cow shifting the contents of
ADD. i ADD. the A-register 8 places

0 71 IS 16 232-4 31 to the left
901172A.3613

Enable signal (S/SXA) (S/SXA) = IOPH3 SW12 + ••• Preset adder I ogi c for
A-S in IOPH3 SW13

(Continued)

3-703

SOS 901172

Table 3-110. Order-Out Phase Sequence (Cont.)
-~~~

Phase Function Performed Signals Involved Comments

IOPH3 One clock long
SW13

(AO-A31)---(SO-S31) SXA = Set at IOPH3 SW12 clock Load LSH of command OR
doubleword address from (S 16-S23)-+--(RW 16-RW23) RW = Set at IOPH3 SW11 clock
A-register to IOFM,

(A),I
1 ~w IlSH OF

I

IOFR8 = Set at IOPH3 SW12 clock area 11 cow cow
ADD. ADD.

IOFR9 Set at IOPH3 SW12 clock 0 78 1516 2324 31 =

: I : IOFM = Set at IOPH3 SW12 clock

(S), I
I I

0 1516 I 2324 31

l
lSH OF II (lOFM): cow [11]

ADD.
24 31

(MBO-MB31)--(CO-C31) CXMB = OG = /OG/ Load even word of com-

IC)' 10'DERI
1 1

mend doubleword from
ADDRESS core memory into the

0 78 1213 31 C-register

Enable signal (S/SXC) (S/SXC) = IOPH3 SW13 + ••• Preset adder for C-S
in IOPH3 SW14

Enable signal PUC31 PUC31 = IOPH3 SW13 + ••• Increment P-regi ster by

I CURRENT 1 J one to obtai n the odd
(P): COMMAND 1 word of the COW duri ng

WORD ADDRESS
IOPH3 SW14 15 30 31

901172A.3614

IOPH3 One clock long
SW14

(CO-C31) __ (SO-S31) SXC Set at IOPH3 SW13 clock Load even command word T5L =
into the A -regi ster • If

(SO-S31)-f--(AO-A31) AXS = IOPH3 SW14 + ••• order, bits 13 through 31

(C): I
I

contain the memory byte
address. If T1 C, bits 16

0 ~ 31 through 31 contain new
command address

(S): I j
0 l 31

I I

:rRDE1 I MEMORY BYTE 1
(A): OR OR COMMAND

TIC ADDRESS
0 78 1516 31

901172A.3615
(S/SXA) Enable signal (S/SXA) = IOPH3 SW14 + ••• Prepare adder logic for

A---S in IOPH3 SW15
or IOPH3 SW10, as

I I
applicable

(Continued)

3-704

SDS 901172

Table 3-110. Order-Out Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPH3 If IOTRIN (transfer in channel)
SW14

Set flip-flop SW5 S/SW5 = (S/SW5) + ••• Store transfer in channel T5L
(Cont.) (S/SW5) = IOPH3 SW14 VORDER condition in flip-flop

IOTRIN SW5

IOTRIN = C4 NC5 NC6 NC7

VORDER = (ORDEROUT + SW4)
NSW5 NPEM NADNH

SW4 = Data <::haining

Enable signal BRSWlO BRSW10 = IOPH3 SW14 VORDER Return to IOPH3 SW10
IOTRIN + ••• NBl and obtain a new

command fro.rr. core mem~

ory, as specified by the
address field of the A-
register

If NIOTRIN (not transfer in
channel)

Set flip-flop MRQ S/MRQ = (S/MRQ) Prepare to read odd com-

(S/MRQ) = (S/MRQ/2) + ••• mand word from core
memory

(S/MRQ/2) = IOPH3 SW14 NIOTRIN

R/MRQ = ...
Set flip-flop DRQ S/DRQ = (S/DRQ) NCLEAR Inhibits transmission of

(S/DRQ) = (S/MRQ/2) + ••• another clock unti I data
I release is received from

R/DRQ = ...
I

core memory

Reset flip-flop SV15 o 1t:\A/t::. = In /r\&/~\
''1 .J"~ \IV :JVVJ}

(R/SW5) = (R/SW5/1) + •••

(R/SW5/1) = IOPH3 SW14 NIOTRIN

One clock long
IIODAXA IOPH3 (AO-A7)-f---(I ODAO-I ODA7) = IOPH3 SW15 NSW4 + ••• Load order into the IODA

SW15 register. From here the
DR (IODAO-IODA7) -- /DAO/ -/DA7 I = IOD'AO-IODA7 order is transmitted auto-

(/DAOI -/DA7/) matically, via data lines
/DAOI -IDA7 I, to the
device controller

(AO-A31)---(SO-S31) SXA = Set at IOPH3 SW14 clock Shift the contents of the
A-register two positions

Enable si gnal AXSR2 AXSR2 = IOPH3 SW15 + ••• to the right

If A30, set flip-flop P32 S/P32 = A30 AXSR2 + ••• Transfer two least signifi-

R/P32 = PX + ••• cant bits ofthe A-register
to P32 and P33,

If A31, set fl i p-f1 op P33 S/P33 = A31 AXSR2 + ••• respectively

R/p33 = PX + •••

(Continued)

3-705

SDS 901172

Table 3-110. Order-Out Phase Sequence (Cont.)

Phase Functi on Performed Si gna I s Invol ved Comments

P33-

IOPH3 P32-

SW15
(A): IIIORDERI

I

MEMORY ,r] DR
BYTE

ADDRESS

(Cont.; 012 910 1415

901172A.3616

(MBO-MB31) -- C -::f- (DO-D31) CXMB = DG = /DG/ load odd word into the

(0), I'LAGSI I
BYTE

I
DXC = VORDER C-register and then to

COUNT the D-register
0 78 1516 31

901172A.3617
R/NIOPHO Reset flip-flop NIOPHO = (S/IOPHO) Branch to IOPHO SW15

(S/IOPHO) = IOPH3 SW15 + •••

S/IOPHO = (R/IOPHO) + •••

Set fI ip-flop NIOPH3 S/NIOPH3 = IOPH3 SW15 + •••

R/NIOPH3 = (S/IOPH3)

Enable signal BRSW15 BRSW15 = IOPH3 SW15 + •••

IOPHO One clock long
SW15

Set fl ip-flop SW6 S/SW6 (S/SW6) + ••• SW6 and NSW7 are used = T5l
(S/SW6) = (IOPHO SW15) (SW1 + SW4) during IOPH1 SW8 to

instruct the devi ce con-+ •••
troll er to request a

R/SW6 = RESET/A terminal order

Reset fI ip-flop SW7 R/SW7 = (R/SW7)

(R/SW7) = IOPHO SW15 + •••

If VORDER, enable signal (S/SXA) = IOPHO SW15 VORDER If VORDER, prepare
(S/SXA)

VORDER (ORDEROUT + SW4) adder for A-S in = IOPH1 SW8 NSW5 NPEM NADNH

Set flip-flop NIOPHO S/NIOPHO = (R/IOPHO) + .•• Advance to IOPH1 SW8

(R/IOPHO) = IOPHO SW15 + •••

R/NIOPHO = (S/IOPHO)

Reset flip-flop NIOPH1 R/NIOPH1 = (S/IOPH1)

(S/IOPH 1) = IOPHO SW15 + •••

Enable signal BRSW8 BRSW8 = IOPHO SW15 + •••

IOPH1 One clock long
SW8
T8l Enable signal /ED/ /ED/ = SW6 = Set in IOPHO SW15 Instruc t devi ce con troll er

I by means of IEDI r-..VES/
Disable signal /ES/ N/ES/ = NSW7 = Reset in IOPHO to request a term ina I

SW15 order. Meaningful only
when RSA is rai sed

(Continued)

3-706

SDS 901172

Table 3-110. Order-Out Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPH1 Set flip-flop RSA S/RSA = (S/RSA) Rai se request strobe
SW8

(S/RSA) IOPH1 SW8 ORDSW4 + ••• acknowledge signal to = T8l the device controller
(Cont.) ORDSW4 = 1."'1&11 , t"'1&1~ then drop it when devi ce ;;)VY I T ;;)vv"+

SW1 = Order out or order in controller drops RS

SW4 = Data chaining

E/RSA = NRS

If VORDER

(AO-A31)---(SO-S31) SXA = Set at IOPHO SW15 clock load new memory byte

(S15-S31)-t--(P15-P31) PXS IOPH1 SW8 VORDER + ••• address into the P-=
I I I register

(A): I
I J

VORDER = NSW5 NPEM NADNH I
(ORDEROUT + SW4)

I
0 U 15

I I NSW5 = Not transfer in channel
t \

~hl I I
NPEM = Not parity error in memory

NADNH = Not address not here
0 10415 31

: I :
(p):1 NEW MEMORY 1 BYTE ADDRESS

15 3 ~23J
Set status flip-flops as applicable

I If read backward order, set flip- J 5/BO = (S/BO) IOPOP + •••

I
ftop BO

I ~~~~) = IOPH1 SW8 ORDEROUT IORB

= ',",,",A~ T,",,",A~ .. 1'1"" A. 1

\
-\

\ IV,,"" IVIJ/"\,,+ IVIJ/"\J 1"41VUI-\O

NIODA7

I I R/BO = (R/BO) I
I If lOP control error, set flip- I S/B13 (S/B13) IOPOP + •••

I
With no error, SW5 =

I flop B 13
(S/B 13) = IOPH1 SW8 ORDEROUT SW5 should be false. If SW5

is true, it indicates two
R/B13 = BX/1 consecutive transfers in

channel
If lOP memory error, set flip- S/B12 = (S/B12) IOPOP + •••
flop B 12

(S/B 12) = IOPH1 SW8 ORDEROUT PEM

R/B12 = BX/l

If lOP halt, set flip-flop B14 S/B14 = (S/B 14) IOPOP + ••• Duri ng order out an lOP

(S/B 14) (SiB 12) + (SiB 14/1) + ••• halt can be caused either =
by a control error,

(SiB 14/1) = (S/B 13) + (S/B 11) + ... memory parity error, or

(S/B 11) = ADNH lOIN (memory memory address error

address error)

R/B14 = BX/1

901172A.3618 (Continued)

3-707

SDS 901172

Table 3-110. Order-Out Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPH1 Set flip-flop RSClEN S/RSClEN = (S/RSClEN) NClEAR Advance to IOPH1 SVV9,
SW8

(S/RSClEN)= IOPH1 SW8 ORDSW4 + ••• then disable clock until
T8l device controller returns
(Cont.) R/RSClEN = ... RS

ClEN = NRSClEN + •••

IOPH1 One clock long. Duration of
SW9 clock controlled by device
T8l controller via RS

Set flip-flops SW6 and SW7 S/SW6 = TODATA + ••• Prepare to specify final

TODATA = IOPH1 SW9 ORDSW4 + ••• byte exchange between
the integral lOP and the

ORDSW4 = SW1 + SW4 devi ce control I er

R/SW6 == RESET/A

S/SW7 = TODATA + •••

R/SW7 = (R/SW7) + •••

If D1 and SWO, set flip-flop S/IODAO = TODATA SWO D1 + ••• Assemble terminal order
IODAO

SWO Zero byte count in IODA register. Dur-=
i ng an order-out

Dl = Interrupt on zero byte count sequence, IODAO and
flag, stored in D-register IODA3 are the only two

R/IODAO = IODAX meaningful terminal
order bits

If B 14, set flip-flop IODA3 S/IODA3 == B14 TODATA + •••

B14 = lOP halt

R/IODA3 = IODAX

If SWO and NDO (count done), S/IODA1 = TODATA SVVO NDO + •.•
set flip-flop IODA 1

NDO = Not data chaining

R/IODA1 = IODAX

If D2 (command chaining), set I S/IOD.A2 = D2 TODATA + ...
I fl ip-flop IODA2

IODAX I R/IODA2 =

I D2 = Command chaining
!

(IODAO-IODA7)-- /DAO/ -/DA7/ = IODAO-IODA7 From the IODA register
(/DAO/ -/DA7/) the terminal order is

transmitted automatically
via data lines /DAD/-
/DA7/ to the devi ce
controller

I When RS, enable signal CLEN CLEN == RSCLE!'J f'JRS,t., RS + ... Enable clock 'vvhen RS is

I

obtained from device
controller

(Continued)

3-708

50S 901172

Table 3-110. Order-Out Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPH1 One clock long. Start of next
SW12 clock controlled by device
T5L controller via NRS

Enabie signai IED/ IE 01 = SW6 Spec i fy fi na I byte

Enable signal /ES/ /ES/ = SW7 exchange by means of
/ED/ and /ES/

Set fl i P -flop RSA S/RSA = (S/RSA) Raise request strobe ac-

(S/RSA) = IOPH1 SW12 SW3 knowledge signal to de-

SW3 = Set at IOPH3 SW8 clock
vice controller, then drop
it when device controller

E/RSA = NRS drops request strobe

Set flip-flop RSACLEN S/RSACLEN = (S/RSACLEN) NCLEAR Delay start of next clock

I I (S/RSACLEN) = IOPHI SW12 'YN3
by setting flip-flop

I

RSACLEN. Clock starts
R/RSACLEN = ... again when device

(LEN RSACLEN NRSA + ••• controller drops RS, dc-=
resetting RSA. NRSA
RSACLEN drive clock
enable signal CLEN true.
Falling edge of RS also
disconnects device
controller

Table 3-111. Data Chaining Phase Sequence

Phase Functi on Performed Si gnals Involved Comments

IOPH3 This phase is identical to IOPH3
SW8 SW8 of the order-out phase
T5L sequence. See table 3-110

Conditions for entering this phase:

a. From IOPH1 SW8 of the data-
out phase sequence. See table 3-112

b. From I OPH 1 SW8 of the data-
in phase sequence. See table 3-113

IOPH3 This phase is similar to IOPH3 SW9
SW9

\
of the order-out phase sequence,

T5L with the following additions:

If parity error in memory, set S/B10 = (S/B 10) IOPOP + ••• Store transm i ssi on error
flip-flop BlO

(S/B 10) = PEM NSW1
condition

(IOPH3 SW9 SW4 + •••)

PEM = Pari ty error in memory

NSW1 = Data out or data in

(Conti nued)

3-709

Phase

IOPH3
SW9
T5l
(Cont.)

IOPH3
SW10
NBO

IOPH3
SW11
T5l

IOPH3
SW12
Tal

IOPH3
SW13
DR

IOPH3
SW14
T5l

IOPH3
SW15
DR

I I
3-710

SOS 901172

Table 3-111. Data Chaining Phase Sequence (Cont.)

Functi on Performed

If parity error in memory, and
halt on transmission error flag
is high, set flip-flop B14

This phase is similar to IOPH3
SW 10 NBO of the order-out
phase sequence (see table 3-110),
with the following exceptions:

a. Reason for entering this
phase:

1. From IOPH3 SW9 of
the data chaining sequence

2. From IOPH3 SW14, if
data bits 4 through 7 of the double-
word specified transfer in channel

b. SXAP1 = Set at IOPH3
SW9 clock

This phase is identical to IOPH3
SW11 of the order-out phase
sequence. See table 3-110

This phase is identical to IOPH3
SW 12 of the order-out phase
sequence. See Table 3 -110

This phase is identical to IOPH3
SW13 of the order-out phase
sequence. See table 3-110

This phase is idenHcal to IOPH3
SW14 of the order-out phase
sequence. See table 3-110

This phase is similar to IOPH3
SW15 (see table 3-110), with
the following exception:

Signal IOOAXA does not come
true (NSW4 is false) and data is
not transferred to the IOOA
register

Signals Involved

SW4 = Data chaini ng

R/B10 = BX/1

S/B14 = (S/B 14) IOPOP + •••

(S/B 14) = (S/B 10) 04

04 = Halt on transmission error flag

R/B14 = BX/1

(Cont in ued)

Comments

Store lOP halt condition

I

Phase

IOPHO
SW15
T5l

IOPH1
SW8
T8l

IOPH1
SW9
T8l

IOPHl
SW12
T5l

Phase

IOPH2
SW13
DR

IOPH2
SW14
T5l

I

I

SDS 901172

Table 3-111. Data Chaining Phase Sequence (Cont.)

Function Performed

This phase is identical to IOPHO
SW15 of the order-out phase
sequence. See table 3-110

This phase is identical to IOPHl I
SW8 of the order-out phase
sequence. See table 3-110

This phase is similar to IOPHl
SW9 of the order-out phase
sequence (see table 3-110), with
the following exception:

"I'" • I I I ""'''' A 1. I
lermlnal oraer OIT IVUI'-\I IS also I
meaningful

This phase is identical to IOPHl
SW12 of the order-out phase
sequence. See table 3-110

Signals Involved

Table 3-112. Data-Out Phase Sequence

Function Performed Signals Involved 1

One clock long

(MBO-MB31)--(CO-C31) CXMB = DG = IDGI I

Ie), I DATA

I I
0 31

I ~O:.~2 SW13 P32 NPRE/34 I P32-f--BCO 901172A.3619 siB CO =

I
RIB CO I = (R/BCO) I

P33-+-BC1 I S/BC1 = IOPH2 SW13 P33 NPRE/34
+ •••

R/BC1 = (R/BC1)

Enable si goo I (S/SXC) (S/SXC) = IOPH2 SW13 + .' ••

One clock long

(CO-C31)---(50-S31) SXC = Set at IOPH2 SW13

(SO-S3l}---f--(AO-A3l) AXS = IOPH2 SW14 + •••

IAII 0

I
1

I
2

I
3

I
0 78 1516 2324 31

- 1 -f---- (BC 0- BC 1)
901172A.3620 BCDCl = IOPH2 SW14 + •••

(Continued)

Comments

Comments

Load one word of data
from core memory in the
C-register

Load byte level from P32
and P33 in byte level
indicators BCO and BC1,
respectively

Prepare adder for C--
S in IOPH2 SW14

load data word from C-
register via sum bus to
A-register

Decrement byte level
by one

3-711

SDS 901172

Table 3-112. Data-Out Phase Sequence (Cont.)

Phase Functi on Performed

IOPH2 If BCl
SW14
T5L Set fl ip-flop NIOPH2
(Cont .)

IOPH2
SW15
T5L

3-712

Reset flip-flop NIOPHO

Enable signal BRSW13

Enable si gnal (S/SXDM 1)

One, two, or three clocks long,
depending on the initial count
stored in BCO-BC1, until BCZ
is reached

Enable signal AXAL8

(A): 1 12 I 3.

D 78 1516 2324 31
901172A.3621

- l-+-- (BCO- BC 1)

If BCZ

Set flip-flop NIOPH2

Reset flip-flop NIOPHO

Enable signal BRSW13

Enable signal (S/SXDM1)

If not BCl

Enable signal BRSW15

I

I

Signals Involved

BCl == NBCO NBC1

S/NIOPH2 = (R/IOPH2)

(R/IOPH2) = BCl IOPH2 SW14 + •••

R/NIOPH2 -- (S/IOPH2)

R/NIOPHO = (S/IOPHO)

(S/IOPHO) = (R/IOPH2) + •••

BRSVv'13 - IOPH2 SW14 BCZ + •••

(S/SXDMl) = IOPH2 SW14 BCl + •••

AXAL8 = IOPH2 SW15 + ..•

BCDC

Bez =

S/NIOPH2 =

(R/IOPH2) =
R/NIOPHO =

(S/IOPHO) =

IOPH2 SW15

NBCO NBCl

(R/IOPH2)

BCl IOPH2 SW15 + •••

(S/IOPHO)

(R/IOPH2) + •••

BRSW13 = IOPH2 SW15 BCZ + •••

(S/SXDM1) = IOPH2 SW15 BCZ + •••

BRSW15 = IOPH2 SW15 NBCZ + •••

(Continued)

I
I
I

I

I

Comments

Test for BCZ; if true,
exit to IOPHO SW13.
If BCZ occurs in this
phase, byte 0 wi II be
the fi rst byte to be
sent to the device
controller in IOPHO
SW13. If NBCZ,
advance to IOPH2
SW15

Prepare adder for (0 - 1)
---0 in IOPHO SW13

Shift contents of A­
regi ster 8 places to the
left

Decrement byte level
by one

T est for BCZ; if true, exi t
to IOPHO SW13

Prepare adder for (0 - 1)
---0 in IOPHO SW13

Sustain IOPH2 SW15
until BCZ is reached.
During each iteration the
most si gnificant byte is
shifted out of the A­
register and BCO-BCl is
decremented by one. At
BCl, any bytes (or byte)
still remaining in the A­
register will eventually
be transferred, one byte
at a time, to the device
controller

SDS 901172

Table 3-112. Data-Out Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPHO This phase is entered initially
SW13 from IOPH2 SW14 or IOPH2
T8l SW15. Subsequently, it is re-

entered from IOPHO SW14 each
time the term VDATAOUT is
true. The maximum number of
iterations is four. When entered
from IOPHO SW14, duration of
the clock is controlled by the
device controller via RS

(016-031 minus 1)- SXDMI = Set at IOPH2 SW14, or Decrement byte count
(SI6-S31) IOPH2 SW15, or IOPHO by one

SW14 clock, as applicable

(S16-S31)-+--(016-031) DXS/2 = DXS/3 = DXS/4 + DXS

DXS/4 = IOPHO SW13 NSW1

NSW1 = Data out or data in

T est for zero byte count S1631 Z = N(S16 + S17 + ••• + S31)

If S1631Z, set flip-flop SWO S/SWO = S1631 Z IOPHO SW13 NSW1
+ •••

SWO = Zero byte count

(AO-A7)-+-(IODAO-IODA7) IODAXA = DATAOUT IOPHO SW13 ND7 Transfer data byte to the
- device controller ND7 = Skip flag not present

I
/DAO/-/DA7/ = IODAO-IODA7

I If sum of AO-A7 even, enable IOPG = True if sum of AO-A7 even

I signal IOPG; otherwise, reset
/DAP/ = IODAP; S/IODAP = (S/IODAP)

I
flip-flop IODAP

(S/IODAP) = IOPHO SW13 DATAOUT Generate odd data par-

I IOPG~IODAP-/DAP/ I IOPG + ••• ity by means of parity bit

I
R/IODAP = IOPHO SW13

IOPG. Flip-flop IODAP
is used in data-out to
generate data parity bi t;
during data-in to store
data parity fail condition

Enable signal AXAl8 AXAl8 = DATAOUT IOPHO SW13 AI i gn next data byte
+ •••

If this phase entered from
IOPHO SW14

Increment P32-P33 PUC3033 = PUC33 + ••• Increment byte address

PUC33 = IOPHO SW13 DATAOUT

I
RSClEN

RSClEN = Set at IOPHO SW14 clock

When RS, enable signal CLEN ClEN = RSClEN NRSA RS Enable clock when RS is

NRS ~ E/RSA (not clocked) obtained from device
controller

(Conti nued)

3-713

SDS 901172

Table 3-112. Data-Out Phase Sequence (Cont 0)

Phase Functi on Performed Signals Involved Comments

IOPHO When VDATAOUT is true, this
SW14 phase alternates with IOPHO
T8L SW13 for a maximum of four

iterations. Each iteration
transmits one byte of data to
the device controller

Enable signal (S/T8L) (S/T8L) = IOPHO SW14 DATAOUT

Test for VDATAOUT VDATAOUT = IOPHO SW14 DATAOUT

N(P32 P33) Not word boundary

N(SWO) Not zero byte count

NPEM Not parity error in
memory

NADNH Not address not here

NED Not end data
If VDATAOUT

Enable signal BRSW13 BRSW13 = VDATOUT + 000 Return to IOPHO SW13

Set fl ip-flop RSA S/RSA = (S/RSA) Apply function strobe

(S/RSA) = VDATAOUT + 000

acknowledge signal to
the device controller

E/RSA = NRS

/RSA/ = RSA

Set fl ip-flop RSCLEN S/RSCLEN = (S/RSCLEN) NCLEAR Disable clock at the end

(S/RSCLEN) = VDATAOUT + 000

of this phase until the
device controller returns

R/RSCLEN = o 0 0 RS

Enable signal (S/SXDM 1) (S/SXDM1) = VDATAOUT + 000 Prepare adder for (0 - 1)
---0 in IOPHO SW13

If NVDATAOUT

Enable signal BRSW8 BRSW8 = IOPHO SW14 NVDATAOUT Branch to IOPH 1 SW8
DATAOUT + 000

Set flip-flop NIOPHO S/NIOPHO = (R/IOPHO) + 000

(R/IOPHO) = IOPHO SW14 NVDATAOUT
DATAOUT + 000

Reset flip-flop NIOPH 1 R/NIOPHl = (S/IOPH1)

(S/IOPHl) = IOPHO SW14 NVDATAOUT
DATAOUT + o. 0

IOPHl One clock long
SW8

1-+--(P15-P33) PUC33 IOPHl SW8 DATAOUT NSW4 I Increment byte address = Tal
+ '0' j n P-regj ster

NSW4 = Not data cha j n j ng; true in
IOPHl SW8

(Conti nued)

3-714

SDS 901172

Table 3-112. Data-Out Phase Sequence (Cont.)

Phase Function Performed Si gna I s Invol ved Comments

IOPH1 Set flip-flops SW6 and SW7 S/SW6 = (S/SW6) + ••• Preparation for discon-
SW8

(S/SW6) = IOPH1 SW8 DASW4 + ••• necting the device con-
T8l tro II er. If term i no I order
(Cont.) DASW4 = NSWl NSW4 pending, SW7 will be

NSW1 = Data out or data in reset before RSA is raised

NSW4 = ...
R/SW6 = RESET/A

S/SW7 = (S/SW7) + •••

(S/SW7) = IOPH 1 SW8 DASW4 + •••

R/SW7 = (R/SW7)

If memory address error, set S/B11 = (S/B 11) IOPOP + •••
status bit B 11

(S/B 11) = ADNH lOIN

If data chaining and parity error S/B14 = (s/B14) IOPOP + ••• B 14 = lOP halt status bit
in memory, set flip-flop B14

(S/B14) = (S/B12) + (S/Bl0) D4 + •••

(S/B 12) = PEM IOPH1 SW8 SW4:
+ •••

(S/B 10) = PEM NSW1 + •••

04 = Halt on transmission error flag

R/B11 = BX/1

If zero byte count was detected S/B2 = (S/B2) IOPOP + •••
in IOPHO SW13, set status bit

(S/B2) = IOPH1 SW8 SWO 01 DASW4 B2 if interrupt on zero byte count
flag is high 01 = Interrupt on zero byte count

flag
I

Test for data chaining IODC = SWO (Zero byte count)
I condition DO (Data chaining flag)

I NADNH (Not address not
here)

If IODC and DASW4

Set flip-flop SW4 S/SW4 = (S/SW4) Store data chaining

(S/SW4) = IOPH1 SW8 IODC DASW4 condition

+ •••

QASW4 = NSW1 NSW4

R/SW4 = RESET/A

Set flip-flop NIOPH1 S/NIOPHl = (R/IOPH 1) + ••• Exit to IOPH3 SW8 of the

(R/IOPH1) = IOPH 1 SW8 IODC DASW4
data chaining phase
sequence. See table

R/NIOPHl = (S/IOPHl) 3-111

Reset flip-flop NIOPH3 R/NIOPH3 = (S/IOPH3)

(S/IOPH3) = IOPH1 SW8 DASW4
IODC + •••

S/NIOPH3 = RESET/A + •••
(Conti nued)

3-715

SDS 901172

Table 3-112. Data-Out Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPHl Enable si gnal BRSW8 BRSW8 = IOPHl SW8 IODC DASW4
SW8 + •••
T8L

Enable signal (S/AXRR/4) (S/AXRR/4) = IOPHl SW8 DASW4 IODC Prepare adder for RR (Cont.)
+ ••• ---A in IOPH3 SW8

of the data chaining
phase sequence

Reset flip-flop NIOFM R/NIOFM = · .. Select IOFM, area 10,

S/NIOFM = N(S/IOFM)
for source of RR

(S/IOFM) = (S/AXRR/4) + •••

Set flip-flop IOFR8 S/IOFR8 = (S/IOFR8)

(S/IOFR8) = (S/AXRR/4) + •••

R/IOFR8 = · ..
Maintain IOFR9 in a reset R/IOFR9 = · ..
state

IOPHl One clock long
SW9

Test for terminal order RT09 (S/B10) (Pari ty error in = T8L
condition memory)

+ B14 (lOP halt)

+ SWO (Zero byte count)

+ SW3 (Terminal order)
If RT09 Terminal order condition

exists

Set fI ip-flop SW3 S/SW3 = (S/SW3) + ••• Store term ina I order

(S/SW3) = IOPHl SW9 DASW4 RT09
condition

DASW4 = NSWl NSW4

R/SW3 = RESET/A

Maintain flip-flop SW6 in S/SW6 = (S/SW6) + ••• SW6 and NSW7 are used
a set state

(S/SW6) IOPH 1 SW9 RT09 DASW4 during IOPH1 SW10 to =
instruct the device con-+ •••
troller to request a

R/SW6 = RESET/A terminal order

Reset fI ip-flop SW7 R/SW7 = (R/SW7)

(R/SW7) = IOPH1 SW9 RT09 DASW4
+ •••

Enable signal (S/B10) if parity (S/B 10) = PEM NSW1 + ••.
error in memory exi ts I

Set flip-flop B/14 if (S/BlO) is S/B14 = (S/B 14) IOPOP + •••
true and halt on transmission

(S/B14) = (S/B 10) D4 + •••
error flag is high

D4 = Halt on transmission error flag
(Continued)

3-716

SDS 901172

Table 3-112. Data-Out Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPHl If NRT09 If terminal order con-
SW9 dition does not exist
T8L

Set fl ip-flop RSA S/RSA = (S/RSA) Rai se request strobe (Cont.)
I acknowledge signal to (S/RSA) = IOPH1 SW9 DASW4

I
device controller then

NRT09 + •••
drop it when device

E/RSA = NRS controller drops RS

Set flip-flop RSACLEN S/RSACLEN = (S/RSACLEN) NCLEAR Delay start of next clock

(S/RSACLEN) = IOPHl SW9 NRT09
by setting flip-flop
RSACLEN. Clock starts

DASW4 + •••
again when device con-

R/RSACLEN = ... troller drops RS, dc-

(LEN RSACLEN NRS.A. + ••• resetti ng RSA. NRSA =
RSACLEN drive clock I

I enable signal CLEN true

I Enable signal /ED/ /ED/ = SW6 = Set at IOPHl SW8 Sped fy fi no I byte ex-
clock change by means of /ED/

Enable signal /ES/ /ES/ = SW7 = Set at IOPH 1 SW8
/ES/. Mean i ngful to the
device controller only if clock
RSA is high. With /ED/
and /ES/ high, falling
edge of RS disconnects
device controller

IOPHl One clock long. This portion of
SWIO the data-out phase sequence
T5L (other than I/O restoration) is

I meaningful only if terminal order

I
conditions (RT09) existed in
IOPHl SW9

I Set flip-flop RSA S/RSA = (S/RSA) Rai se request strobe

I (S/RSA) = IOPHI SWlO DASW4 SW3 acknowledge signal to
device controller, then

I

+ •••
drop it when device

E/RSA = NRS controller drops RS

Set flip-flop RSCLEN S/RSCLEN = (S/RSCLEN) NCLEAR Advance to IOPHI SWll

(S/RSCLEN) = IOPHl SWlO DASW4 SW3
then disable clock until
devi ce control I er returns + •••
RS R/RSCLEN = ...

Enable signal /ED/ /ED/ = SW6 = Set at IOPHl SW9 Instruct device controller
clock to request terminal order

Disable signal /ES/ N/ES/ = NSW7 = Reset at 10PHl
by means of /ED/ and
N/ES/. The state of

SW9 clock
these two signals is
meaningful only when
accompanied by RSA

(Continued)

3-717

SDS 901172

Table 3-112. Data-Out Phase Sequence (Cont.)

Phase F uncti on Performed Signals Involved Comments

IOPH1 One clock long. Duration of
SW11 clock controlled by device
T8l controller via RS

Set fI i P -fl op SlY? S/SW7 = TODATA + ••• Prepare to spec i fy fi no I

TODATA = IOPH1 SW11 DASW4 SlY3 byte exchange by means

+ ••• of SW6 and SW7 via
/ED/ and /ES/. SW6

R/SW7 = (R/SW7) was set in IOPH1 SW9

Assemble terminal order byte TODATA
in IODA register, as follows:

Set flip-flop IODAO if S/IODAO = TODATA 01 SWO + ••• Interrupt
applicable

01 = Interrupt on zero byte count
flag

SWO = Zero byte count

R/IODAO = IODAX

Set flip-flop IODA1 if S/IODA1 = NDO SWO TODATA + ••• Count done
applicable

NOO = Data chain flag is low

R/IODA1 = IODAX

Set flip-flop IODA2 if S/I 0 DA2 = 02 TODATA + ••• Command chain
applicable

02 = Command chain flag

R/I 0 DA2 = IODAX

Set flip-flop IODA3 if S/IODA3 = 814 TODATA + ••• lOP halt
applicable

814 = lOP halt status bit

R/IODA3 = IODAX

IOPH1 One clock long
SW12

Enable signal /ED/ /ED/ SW6 = Set at IOPHl SW9 Specify final byte ex-T5l =
clock change by means of

Enable signal /ES/ /ES/ . = SW7 = Set at IOPHl SW11 /ED/ and /ES/

clock

Set flip-flop RSA S/RSA = (S/RSA) Raise request strobe

(S/RSA) = IOPH1 SW12 SW3 acknowledge signal to
device controller, then

SW3 = Set at IOPH1 SW9 clock drop it when device

E/RSA = NRS controller drops RS

(Continued)

3-718

SDS 901172

Table 3-112. Data-Out Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPH1 Set flip-flop RSACLEN S/RSACLEN = (S/RSACLEN) NCLEAR Delay start of next clock
SW12

(S/RSACLEN) = IOPH1 SW12 SW3 by setting flip-flop
T5L RSACLEN. Clock starts
(Cont.) R/RSACLEN = ... again when device

CLEN = RSACLEN NRSA controller drops RS, dc-
resetting RSA. NRSA
RSACLEN drive clock
enable signal CLEN true.
Fall ing edge of RS also
di sconnects devi ce
controller

T obi e 3-113. Data-In Phase Sequence

Phase Functi on Performed Signals Involved Comments

IOPHO This phase is entered initially
I SW13 from IOPHO SW12. Subse-

TaL quently, it is reentered from
IOPHO SW14 each time the
term VDA TAl N is true. The
maximum number of iterations
is four. When entered from
IOPHO SW14, duration of the

I

clock is controlled by the
device controller via RS

I I
(D16-D31 minus 1) ___

I

SXDM1 = Set at IOPHO SW12 clock

I
Decrement byte count

(S16-S31) (see table 3-502) by one

I (S16-S31)-+-(D16-D31) I DXS/2 = DXS/3 = DXS/4 + DXS I
I I

DXS/4 = IOPHO SW13 NSW1 + •••
I

I NSW1 = Data in or data out I

Reset flip-flop IODAP R/IODAP = IOPHO SW13 Erase previ ous data par-
ity fail conditi on

Test for zero byte count S1631Z = N(S16 + S17 + ••• S31)

If S1631Z, set flip-flop SWO S/SWO = S1631 Z IOPHO SW13 NSW1
+ •••

SWO = Zero byte count

First pass (NRSCLEN)

If N(P32 + P33), enable si gnal (S/CXS) = IOPHO SW13 DATAIN If P32 and P33 are both
(S/CXS) NP32 NP33 NRSCLEN + ••• false, prepare to transfer

NP32 NP33 duri ng the fi rst pass speci fies first byte to the C-

that four bytes, one byte at a time, are to register in IOPHO SW14

be received from the device controller

(Conti nued)

3-719

SDS 901172

Table 3-113. Data-In Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPHO Second and subsequent passes
SW13 (RSClEN)
T8l

If NP32 and P33, enable AXAR8 = IOPHO SW13 DATAIN NP32 Shift byte 0 in the A-(Cont.)
signal AXAR8 P33 + ••• register 8 places to the

right

If P32 and NP33, enable AXAR16 = IOPHO SW13 DATAIN P32 Shift byte 0 in the A-
signal AXAR16 NP33 + ••• register 16 places to

the ri ght

If P32 and P33, enable AXAR24 = IOPHO SW13 DA TAIN P32 Shift byte 0 in the A-
si gna I AXAR24 P33 + ••• regi ster 24 p laces to

If NBO
the ri ght

1 --f--(P32-P33) PUC3033 = PUC31 + PUC33 If when read backward

PUC33 = IOPHO SW13 DATAIN status bit is not high,

RSCLEN NBO + ••• increment (P32-P33)
by one

NBO = Not read backward

RSClEN = Set at IOPHO SW14 clock
If BO

-1~(P32-P33) PSC3033 = PDC31 + PDC33 If when read backward

PDC33 = IOPHO SW13 DATAIN status bit is high, decre-

RSClEN BO ment (P32-P33) by one

IOPHO When VDATAIN is true, this
SW14 phase alternates with IOPHO
T8l SW13 for a maximum of four

i terati ons. Each i terati on
transfers one byte of data from
the device controller to the
A-register

(DAO-DA7)-(SO-S7) SXDA = IOPHO SW14 DATAIN Transfer data byte via the
NDIS + ••• sum bus to the A-register

(SO-S7) -r-(AO-A7) AXS/O = AXS/4 = AXS/2 + •••

AXS/2 = IOPHO SW14 DATAIN

If P32 and P33 were both fal se
during fhe initial pass of IOPHO
SW13

(SO-S7)-(CO-C7) CXS = Set at IOPHO SW13 if load fi rst data byte in
NP32 NP33 the C-register

Set byte control flip-flops S/MBXS/O = IOPHO SW14 DATAIN Allows byte 0 to be trans-
MBX S/O through MBX S/3, as NP32 NP33 ferred to core memory in
applicable

R/MBXS/O = DRQ IOPHO SW15

S/MBXS/l = IOPHO SW14 DATAIN Allows byte 1 to be trans-
NP32 P33 + ••• ferred to core memory in

R/MBXS/1 = DRQ IOPHO SW15

(Continued)

3-720

Phase

IOPHO
SW14
T8L
(Cont.)

SDS 901172

Table 3-113. Data-In Phase Sequence (Cont.)

Functi on Performed

Byte distribution in the A- and
C-registers during a typical
data -i n phase sequence is i II us­
trated below. It is assumed that
the initial byte address was NP32
NP33, and that the read back­
ward status bit is false (NBO)

AT THE END OF THE FIRST
PASS (NP32 NP33)

AT THE END OF THE SECOND
PASS (NP32 P33)

AT THE END OF THE THIRD
PASS (P32 NP33)

AT THE END OF THE FOURTH
AND FINAL PASS (P32 P33)

I f PC, test for data pa ri ty

If parity checks, enable signal
IOPC

If parity fails, set flip-flop
IODAP

Test for VDATAIN

S/MBXS/2

R/MBXS/2

S/MBXS/3

R/MBXS/3

(A):

(A): BYTE
3

Ipc
I fpc!

I
IOPC

S/IODAP

(S/IODAP)

PC

NIOPC

R/IODAP

VDATAIN

Signals Involved

IOPHO SW14 DATAIN
P32 NP33 + •••

DRQ

IOPHO SW15 DATAIN
P32 P33 + •••

DRQ

/PC/

Used by device controller to
specify that parity check is
necessary

Sum of true data bits plus
parity bit is odd

(S/IODAP)

IOPHO SW14 DATAIN
NIOPC PC + •••

Pari ty check requi red

Parity failed

IOPHO SW13

IOPHO SW14 DATAIN NED

(lOPC + NPC)

(Conti nued)

Comments

Allows byte 2 to be trans
ferred to core memory in
IOPHO SW15

Allows byte 3 to be trans­
ferred to core memory in
IOPHO SW15

901172A.3622

Flip-flop IODAP is used
duri ng data into store a
data parity fail con-
dition, during data out
to gene ra te data pa ri ty
bit DAP

Not end data

Data parity checks, or
data pari ty check not
re uired

3-nl

SDS 901172

Table 3-113. Data-In Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPHO N(NP32 NP33 BO) Not word boundary on
SW14 read backward
T8L

N(P32 P33 NBO) Not word boundary on (Cont.)
read forward

If VDATAIN

Set fl ip-flop RSA S/RSA = (S/RSA) Apply function strobe

(S/RSA) = VDATAIN + ••• acknowledge signal to
the device controller,

E/RSA = NRS then drop it when NRS

Set fl ip-flop RSCLEN S/RSCLEN = (S/RSCLEN) NCLEAR Disable clock until

(S/RSCLEN) = VDATAIN + ••• device controller
returns RS

R/RSCLEN = ...
Enable si gnal (S/SXDM 1) (S/SXDM1) = VDATAIN + ••• Prepare adder for (D -1)

--D in IOPHO SW13

Enable signal BRSW13 BRSW13 = VDATAIN + ••• Return to IOPHO SW13

If NVDATAIN, enable signal (S/SXC) = IOPHO SW14 NVDATAIN Prepare adder for C-
(S/SXC) DATAIN + ••• Sin IOPHO SW15

IOPHO One cI ock long
SW15

If NBO and N SW4 T5L
(CO-C7)--(SO-S7) SXC = Set at IOPHO SW14 clock Transfer byte 0 from the

(SO-S7) -+--(AO-A7) AXS/O = AXS/4 C-register via the sum
bus to the A-register

AXS/4 = AXS/2 + •••

AXS/2 = IOPHO SW15 DATAIN
NSW4 NBO

NSW4 = Not data chaining

NBO = Read forward

Enable signal AXAR8, AXAR16, AVADD = IOPHO SW15 DATAIN NSW4 Fina! byte alignment in ~""'I'U

or AXAR24, as applicable NP32 P33 + ••• A-register

AXAR16 = IOPHO SW15 DATAIN
NSW4 P32 NP33 + •••

AXAR24 = IOPHO SW15 DATAIN NSW4
P32 P33 + •••

Enable signal (S/SXA) (S/SXA) = IOPHO SW15 DATAIN NSW4
+ •••

I If skip flag is not high (S/MBXS) = IOPHO SW15 DATAIN NSW4 Prepare to store data
enable signal (S/MBXS) ND7 + •.. word in core memory in

IOPHl SW8

(Continued)

3-722

SDS 901172

Table 3-] 13. Data-In Phase Sequence (Cont.)

Phase Function Performed

IOPHO Set flip-flops MRQ and DRQ
SWl5
T5L
(Cont.)

IOPH1 I
SW8 I
DR

I

Reset flip-flop NIOPHl

Set flip-flop NIOPHO

Enable signal SRSW8

Final byte alignment in A­
register at the end of this clock
(continuation of example i lIus­
trated in IOPHO SW14 portion
of phase sequence chart)

One clock long

(AO-A3l)---{SO-S31)

(SO-S3l)-+--- (MBO-MB3l)

If NSO

l-+--(Pl5-P31)

If SO

-1~{P15-P31)

S/MRQ

R/MRQ

S/DRQ

(S/DRQ)

R/DRQ

R/NIOPH1

(S/IOPHl)

S/NIOPHl

S/NIOPHO

(R/IOPHO)

R/NIOPHO

BRSW8

Signals Involved

(S/MBXS) + •••

(S/DRQ) NCLEAR

(S/MBXS) + •••

(S/IOPH1)

IOPHO SWl5 + •••

RESET/A + (R/IOPHl)

(R/IOPHO) + •••

IOPHO SWl5 + •••

(S/IOPHO)

IOPHO SWl5 + •••

nl\, ,..,."'. "\1"',.,
7VI I''''''. JO~"

SXA Set at IOPHO SWl5 clock

MBXS/0-MBXS/3 = Applicable flip-flop (or
flip-flops) set at IOPHO
SW14 clock

PUC33 IOPHl SW8 DATAIN NSW4
NBO + •••

NBO Read forward

NSW4 Not data chaining

PDC33 IOPHl SW8 DATAIN NSW4
SO + •••

BO Read backward

(Conti nued)

Comments

Advance to IOPH 1 SW8

I

I Store data word in core
memory

Increment byte address
in P-register

Decrement byte address
in P-register

3-723

SDS 901172

Table 3-113. Data-In Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPH1 Set fI ip-f1ops SW6 and SW7 S/SW6 == (S/SW6) + ••• Preparation for discon-
SW8

(S/SW6) IOPH1 SW8 DASW4 + •••
necting the device

== DR controller. If terminal
(Cont.) DASW4 == NSW1 NSW4 order pending, SW7 will

NSW1 Data in or data out
be reset before RSA is

== raised
R/SW6 == RESET/A

I
S/SW7 == (S/SW7) + •••

(S/SW7) == IOPH1 SW8 DASW4 + •••

R/SW7 == (R/SW7) I

I
I

If memory address error, set S/B11 ::- (S/B11) IOPOP + ••• I
status bit B 11

(S/B 11) ADNH lOIN ==

If data pari ty error, set status S/B9 == (S/B9) IOPOP + •••
bit B9

(S/B9) IOPH1 SW8 DATAIN DAP ==
+ •••

R/B9 == BX/1

If memory address error, or data S/B14 == (S/B 14) IOPOP + •••
priority error with halt on trans-

(S/B 14) == (S/B12) + (5/B10) D4 + •••
mission flag high, set lOP halt
flip-flop B 14 (S/B12) == PEM + IOPH1 5W8 SW4

+ •••

PEM == Pari ty error in memory

SW4 == Data chaining

(S/B 10) == PEM NSW1 + •••

D4 == Halt on transmission error flag

If zero byte count was detected S/B2 == (5/B2) IOPOP + •••
in IOPHO 5W13 and interrupt on

(5/B2) zero byte count flag is high, set == IOPH1 SW8 SWO D1 DA5W4

flip-flop B2 D1 == Interrupt on zero byte count flag

Test for data chaining condition IIODC == 5WO DO NADNH
I

I
SWO == Zero byte count; set in IOPHO

I 5W13

DO == Data chaining flag

NADNH == No memory address error

If IODC and DASW4

Set flip-flop SW4 S/SW4 = (S/SW4) Store data chaining

(S/5W4) = IOPHl SW8 lODe DASW4 condition
I I i

I I
RESET/A

I
!R/SW4

+ •••

(Cont i nued)

3-724

SDS 901172

Table 3-113. Data-In Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPH1 Reset flip-flop NIOPH3 R/NIOPH3 = (S/IOPH3) Exit to IOPH3 SW8 of
SW8

(S/IOPH3) = IOPH1 SW8 DASW4 IODC the data chaining phase
DR sequence. See table
(Cont.) S/NIOPH3 = DE:CE:T/A I 3- ii i ".L.JL 1/ /""\ T •••

Enable signal BRSW8 BRSW8 = IOPH1 SW8 IODC DASW4
+ •••

Set flip-flop NIOPH1 S/NIOPH1 = (R/IOPH1) + ••.

(R/IOPH1) = IOPH1 SW8 IODC DASW4

Enable signal (S/AXRR/4) (S/AXRR/4) = IOPH1 SW8 DASW4 IODC Prepare adder for RR
+ ••• -A in IOPH3 SW8

I of the data chaining

I R/NIOFM

phase sequence

Reset flip-flop NIOFM = · .. Select 10 Ftv', register,

S/NIOFM = N(S/IOFM} area 10, for source of RR

(S/IOFM) = (S/AXRR/4) + •••

Set flip-flop IOFR8 S/IOFR8 = (S/IOFR8)

(S/IOFR8) = (S/ AXRR/4) + •••

R/IOFR8 = · ..
Maintain flip-flop IOFR9 in R/IOFR9 = · ..
the reset sta te

If NIODC, exit to IOPH1 SW9

iOPHi One ciock iong

I RT09
SW9

Test for terminal order condition (S/B 10) (Pari ty error in = T8l
memory)

I + 814 (lOP halt)

+ SWO (Zero byte count)

+ SW3 (Terminal order)

If RT09 Terminal order condition
exists

Set fl i p-fl op SW3 S/SW3 = (S/SW3) + ••• Store term i no I order

(S/SW3) = IOPHl SW9 DASW4 RT09 condition

DASW4 = NSWl NSW4

R/SW3 = RESET/A

Maintain flip-flop SW6 in a S/SW6 = (S/SW6) + ••• SW6 and NSW7 are used
set state

(S/SW6) IOPH1 SW9 RT09 DASW4 during IOPH1 SW10toin-=
+ ••• struct the device control Ie.

R/SW6 = RESET/A to request a terminal order

(Conti nued)

3-725

SDS 901172

Table 3-113. Data-In Phase Sequence (Cont.)

Phase Function Performed

IOPH1 Reset flip-flop SW7
SW9
T8L
(Cont.)

IOPH1
SW10
T5L

3-726

Enable si gnal (S/B 1 0) if parity
error in memory exi ts

Set flip-flop B/14 if (S/BlO)
is true and halt on transmission
error flag is high

If NRT09

Set flip-flop RSA

Set flip-flop RSACLEN

Enable signal /ED/

Enable signal /ES/

One clock long. This portion of
the data-in phase sequence (other
than I/o restoration) is meaning­
ful only if terminal order conditions
(RT09) existed in IOPH1 SW9

Set fl ip-flop RSA

Signals Involved

R/SW7 = (R/SW7)

(R/SW7) = IOPH1 SW9 RT09 DASW4

(S/B 10)

S/B14

(S/B 14)

+ •••

= PEM NSWl + •..

= (S/B 14) IOPOP + •••

= (5/810) D4 + .•.

D4 = Halt on transmission error flag

S/RSA

(S/RSA)

E/RSA

= (S/RSA)

= IOPHl SW9 DASW4
NRT09 + •••

= NRS

S/RSACLEN = (S/RSACLEN) NCLEAR

(S/RSACLEN) = IOPH1 SW9 NRT09
DASW4 + •••

R/RSACLEN =

CLEN = RSACLEN NRSA + •••

/ED/

/ES/

S/RSA

(S/RSA)

E/RSA

= SW6 = Set at IOPH1 SW8
clock

= SW7 = Set at IOPH1 SW8
clock

= (S/RSA)

= IOPH1 SW10 DASW4
SW3 + •••

= NRS

(Conti nued)

Comments

If terminal order con­
dition does not exist

Raise request strobe ac­
knowledge signal to
device controller, then
drop it when device
controller drops RS

Delay start of next clock
by setting flip-flop
RSACLEN. Clock starts
again when device con­
troller drops RS, dc­
resetting RSA. NRSA
RSACLEN drive clock
enable si gnal CLEN true

Specify final byte ex­
change by means of
/ED/ /ES/. Meaningful
to the device controller
only if RSA is high.
With /ED/ and /ES/ high
falling edge of RS dis­
connects devi ce
controller

Raise request strobe ac­
knowledge signal to
devi ce control I er, then
drop it when device
controller drops RS

SDS 901172

Table 3-113. Data-In Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPHl Set flip-flop RSClEN S/RSClEN = (S/RSClEN) NClEAR Advance to IOPHl SWll
SWIO

(S/RSClEN) = IOPHl SWIO DASW4 SW3 then disable clock unti I
T5l device controller returns
(Cont.) + •••

RS
R/RSClEN = ...

Enable signal /ED/ /ED/ = SW6 = Set at IOPHl SW9 clock Instruct device con-
troller to request ter-

Disable signal /ES/ N/ES/ = NSW7 = Reset at IOPHl SW9 clock mi nal order by means of
/ED/ and N/ES/. The
state of these two signals
is meaningful only when
accompanied by RSA

IOPHl One clock long. Duration of
SWll clock controlled by device
Tal controller via RS

Set fl ip-flop SW7 S/SW7 = TODATA + ••• Prepare to specify final

TODATA = IOPHl SWll DASW4 SW3 byte exchange by means

+ ••• of SW6 and SW7 via
/ED/ and /ES/. SW6

R/SW7 = (R/SW7) was set in IOPHl SW9

Assemble terminal order byte TODATA I
in IODA register, as follows:

Set flip-flop IODAO if S/IODAO = TODATA Dl SWO + ••• Interrupt
applicable

Dl = Interrupt on zero byte count
flag

c:.\A1n = ZeiO byte count J"V

R/IODAO = IODAX

Set flip-flop IODAl if S/IODAl = NDO SWO TODATA + ••• Count done
applicable

NDO = Data chain flag is low

R/IODAl = IODAX

Set flip-flop IODA2 if S/IODA2 = D2 TODATA + ••• Command chain
applicable

D2 = Command chain flag

R/IODA2 = IODAX

Set flip-flop IODA3 if S/IODA3 = 814 TODATA + ••• lOP halt
applicable

814 = lOP halt status bit

R/IODA3 = IODAX

IOPHl One clock long
SW12

Enable signal /ED/ IIED/ = SW6 = Set at IOPHl SW9 clock Speci fy fi na I byte ex-T5l
Enable signal /ES/ IIES/ = SW7 = Set at IOPHl SWll clock change by means of /ED/

and /ES/

(Conti nued)

3-n7

SDS 901172

Table 3-113. Data-In Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPH1 Set flip-flop RSA S/RSA = (S/RSA) Ra i se request strobe
SW12

(S/RSA) = IOPH1 SW12 SW3
acknowledge si gnal to

T5l device controller, then
(Cont.) SW3 = Set at IOPHl SW9 clock drop it when device

E/RSA = NRS
controller drops RS

I Set flip-flop RSAClEN S/RSAClEN = (S/RSACLEN) NClEAR Delay start of next clock

(S/RSAClEN) = IOPHl SW12 SW3
by setting flip-flop
RSAClEN. Clock starts

R/RSAClEN = ... again when device

I ClEN = RSAClEN NRSA controller drops RS, dc-
I resetting RSA. NRSA

RSAClEN drive clock
enable signal ClEN true.
Fall ing edge of RS also
disconnects device
controller

Table 3-114. Order-In Phase Sequence

Phase Functi on Performed Signals Involved Comments

IOPHO (/DAO/ -/DA? /)---(SO-S7) SXDA = NDIS ORDERIN IOPHO load order-i n byte, sup-
SW13 SW13 + ••• plied by the device
T5l

(50-S7) -f-(AO-A 7) Axs/o AXS/4
controller via data lines =
/DAO/ ~/DA7 /, into the

AXS/4 = AXS/2 + ••• A-register

~)'~ AXS/2 IOPHO SW13 ORDERIN + ••• =
o 7

SW1 NSW2 ORDERIN =

(A): IO~~ERkI21 I BYTE -1 COUNT
0 7 8 9 1516 31

901172A.3624

Enable signal BRSW15 BRSW15 = IOPHO SW13 ORDERIN Advance to IOPHO SW15

IOPHO One clock long

I SW15
Set status flip-flops as applicable

T5l
If AO, set flip-flop B9 S/B9 = (S/B9) IOPOP + ••• AO represents the trans-

(S/B9) = ODINST AO + ••• mission error bit of the
order-i n byte

ODINST = ORDERIN IOPHO SW15

R/B9 = BX/l

If A 1, set flip-flop BS SiBS = (S/BS) IOPOP + ••• I A 1 represents the i ncor-

(S/BS) = ODINST Al rect length bit of the
order-i n byte

R/BS = BX/l

(Conti nued)

3-ns

SDS 901172

Table 3-114. Order-In Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPHO If (S/89) and D4, or (S/88) and S/814 = (S/814) IOPOP + ••• D4 represents the hal t on
SW15 D4 and ND6, set flip-flop 814 (S/814) = (S/8 14/1) + ••• transmission error flag;
T5l D6 represents the sup-
(Cont.) (S/814/1) = (S/88) D4 N 06 press incorrect length

+ (S/89) D4 flag

Set flip-flop IOPHO S/NIOPHO = (R/IOPHO) + ••• Change to IOPH1 SW8

(R/IOPHO) = IOPHO SW15 + •••

R/NIOPHO = (S/IOPHO)

Reset flip-flop NIOPH 1 R/NIOPH1 = (S/IOPH1)

(S/IOPH1) = IOPHO SW15 + •••

S/NIOPHl = (R/IOPH1) + RESET/A

Enable signal 8RSW8 8RSW8 = IOPHO SW15 + •••

Set flip-flop SW6 S/SW6 = (S/SW6) + •••

(S/SW6) = IOPHO SW15 (SW1 + •••)
+ •••

R/SW6 = RESET/A

Reset flip-flop SW7 R/SW7 = (R/SW7) SW6 and NSW7 are used

(R/SW7) = IOPHO SW15 + •••
during IOPH1 SW8 to
instruct the device con-

S/SW7 = (S/SW7) + TO DATA trol I er to request a
terminal order

Set flip-flop SW3 S/SW3 = ODINST + ••• Flip-flop SW3 stores a

ODINST = ORDERIN IOPHO SW15 terminal order condition,
and is used during

R/SW3 = RESET/A IOPH1 SW12 as a
qualifying term

IOPH1 One clock long
SW8

Enable signal /ED/ /ED/ SW6 Instruct device controller =
T8l

by means of /ED/ and
Disable signal /ES/ N/ES/ = NSW7

N/E 5/ to request a
terminal order

Set flip-flop RSA S/RSA = (S/RSA) Rai se request strobe

(S/RSA) = IOPH1 SW8 ORDSW4
acknowledge to device
controller, then drop it

ORDSW4 = SWl + SW4 when device controller

E/RSA = NRS
drops request strobe

/RSA/ = RSA

Set flip-flop RSCLEN S/RSCLEN = (S/RSCLEN) NCLEAR Advance to IOPHl SW9,

(S/RSCLEN)= IOPH1 SW8 ORDSW4 + ••• then disable clock until

R/RSCLEN
device controller returns

= ... RS
CLEN = NRSCLEN + •••

(Continued)

3-729

SDS 901172

Table 3-114. Order-In Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPH1 One clock long. Durati on of clock
SW9 controlled by device controller via
Tal RS

Set flip-flop SW6 S/SW6 = TODATA + ••• Prepare to specify final

TODATA = IOPH1 SW9 ORDSW4 + ••• byte exchange between
integral lOP and device

ORDSW4 = SW1 + SW4 controller

R/SW6 = RESET/A

Set flip-flop SW7 S/SW7 = TODATA + •••

R/SW7 = (R/SW7) + •••
Set the followi ng status fl ip-
flops, as applicable

Set fI ip-flop B 1 S/B1 = (S/B 1) IOPOP + ••• Bits 0 through 7 of the

(S/B 1) = TORDIN A2 A-register contain the
order-i n byte suppl i ed

TORDIN = ORDERIN IOPH1 SW9 by the device controller.

A2 = Chaining modifier bit of Bits 0 through 7 of the
D-register contain flags order-in byte
originally obtained from

R/B1 = (R/B 1) the IOFM register

Set flip-flop B3 5/B3 = (5/B3) IOPOP + •••

(5/B3) = TORDIN A3 D3

A3 = Channel end

D3 = Interrupt on channel end

R/B3 = BX

5et flip-flop 84 5/B4 = (S/B4) + •••

(5/B4) = TORDIN A4 D5

+ TORDIN AO A3 04 D5

+ TORDIN A 1 ND6 A3 04 D5

A1 = Incorrect length

A4 = Unusual end

AO = T ra nsm i ssi on error

D3 = Interrupt on channel end

D4 = Halt on transmission error

D5 = Interrupt on unusua I end

ND6 = Not suppress incorrect length

R/B4 = BX

If (5/B3), or (S/84), set 5/IODAO = (S/IODAO) + ••• Assemble terminal order
flip-flop IODAO I in IODA register (5/IODAO) = (5/B3) + (5/B4)

R/I0 DAO = IODAX

(Conti nued)

3-730

SDS 9011n

Table 3-114. Order-In Phase Sequence (Conto)

Phase Function Performed Signals Involved Comments

IOPHI If D2, set flip-flop IODA2 S/IODA2 = TODATA D2 + 000

SW9
D2 = Command chaining

T8L
(Conto) R/IODA2 = IODAX

If 814, set flip-flop IODA3 S/IODA3 = TODATA 814 + .00

814 = lOP halt

R/IODA3 = IODAX

(IODAO-IODA7) -- /DAO/ -/DA7/ = IODAO-IODA7 + ••• From the IODA register
VDAO/ -/DA7/) the terminal order is

transmitted automatically
by data !! ne! /DAO/-
/DA7/ to the devi ce
controller

When RS, enable signal CLEN CLEN = DC',... ~
".J~LI:I"I

.... nC'A nC'
1"11\.;),", 1\.;)

r- I I I I I ft tnaDle ClOCK wnen K::> IS

obtained from device
controller

IOPHl One clock long. Start of next
SW12 clock controlled by device
TSL controller via NRS

Enabl e si gna I /E D/ /ED/ = SW6 Specify final byte

Enable signal /ES/ /ES/ = SW7
exchange by means of
/ED/ and /ES/

Set flip-flop RSA S/RSA = (S/RSA) Raise request strobe

(S/RSA) = IOPH1 SW12 SW3
acknowledge signal to
device controller, then

I I SW3 = Set at IOPHO SW1S clock drop it when device
controller drops request

I
IE/RSA = NRS

strobe

Set flip-flop RSACLEN I S/RSACLEN = (S/RSACLEN) NCLEAR Delay start of next clock

(S/RSACLEN) = IOPH1 SW12 SW3
by setting flip-flop
RSACLEN. Clock starts

R/RSACLEN = ... again when device

CLEN = RSACLEN NRSA
controller drops RS, dc-
resetting RSA. NRSA
and RSACLEN drive
clock enable signal
CLEN true. Falling edge
of RS also disconnects
device controller

3-731

SDS 901172

Table 3-115. I/o Restoration Phase Sequence

Phase Function Performed Signals Involved Comments

IOPH1 Enable signal (S/AXRR/3) (S/AXRR/3) =:: IOPH1 SW8 Prepare to transfer con-
SW8 (ORDSW4 + DASW4 10DC) tents of 10FM, area 01,
T8l to the A-register

Reset flip-flop NIOFM R/NIOFM = · ..
S/NIOFM = N(S/IOFM)

(S/IOFM) =:: (S/ AXRR/3) + •••

Set flip-flop IOFR9 S/IOFR9 = (S/IOFR9) IOPOP

(S/IOFR9) =:: (S/ AXRR/3) + •••

Maintain IOFR8 in a reset state R/IOFR8 = · ..
S/IOFR8 = (S/IOFR8)

IOPH1 (RRO-RR31)-f--(AO-A31) AXRR = Set at IOPH1 SW8 clock Transfer contents of
SW9 IOFM = Set at IOPH1 SW8 clock

IOFM, area 01, to the
T8l A-register

IOFR9 = Set at IOPH1 SW8 clock

NIOFR8 = Reset at IOPH1 SW8 clock

(B15-B31)~S15-S31) SXB = Set at IOPH1 SW8 clock Exchange contents of P-
register with contents· of

(S15-S31)~(P15-P31) PXS = IOPH1 SW9 + •••
B-regi ster

(P15-P31)-f--(B 15-B31) BXP = BXP/1 + •••

BXP/1 = IOPH1 SW9 + •••

Set flip-flop BRP S/BRP = (S/BRP) + ••• Indicates that P-register

(S/BRP) = IOPH1 SW9 + •••
contains the program
address

If NIFAM NRT09 BRSW11 = IOPH1 SW9 NIFAM NRT09 If 10PH 10, advance to
Enable signal BRSW 11 RT09 SW3 + •••

IOPH1 SWll
=

IFAM = IFAST/S + IFAST/l + IFAMDS

NIFAM ~ IOPH10

Enable signal (S/RW/2) (S/RW/2) = IOPHl SW9 NRT09

Reset flip-flop NIOFM R/NIOFM = · ..
S/NIOFM = N(S/IOFM)

(S/NIOFM) = (S/RW/2) + ••.

Enable signal (S/SXB) (S/SX B) = IOPH1 SW9 NIFAM NRT09

If SC, set flip-flop 10SC S/IOSC = (S/IOSC) If another service call is

(S/IOSC) = SC NSCINH 10POP
pending, acknowledge
it at th is point

SCINH = N(IOPH 1 SW9) IOAeT + •••
I

R/IOSC = IOPHl SW13 lOBO + •.•

(Continued)

3-732

SOS 901172

Table 3-115. I/O Restoration Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

10PHl If IFAM
SW9

Enable signal (S/AXRR) (S/AXRR) = (S/ AXRR/2) + ••• Prepare to transfer con-T8l
(Cont .) (S/AXRR/2) = 10PHl SW9 IFAM tents of 10FM, area 00,

to the A -regi ster
IFAM = IFAST/l + IFAST/S + IFAMOS

Reset flip-flop NIOFM R/NIOFM = ...
S/NIOFM = N(S/IOFM)

(S/IOFM) = (S/ AXRR/2) + •••

Maintain flip-flops IOFR8 R/IOFR8 = R/IOFR9 + •••
and IOFR9 in the reset state S/IOFR8 = (S/IOFR8) + (S/AXRR/4) + •••

S/IOFR9 = (S/IOFR9) 10POP

(S/IOFR9) = (S/ AXRR!3) + (S/ AXRF/6) 4- •••

Enable signal (S/CXS) (S/CXS) = 10PHl SW9 IFAM + ••• Prepare to transfer con-
tents of sum bus to the
C-register

Enable signal (S/SXA) (S/SXA) = IOPHl SW9 IFAM + ••• Preset adder for A--S
in 10PHl SWlO

10PHl This phase entered from
SWI0 10PHO SW9 if IFAM
T5l

One clock long

(AO-A31) --(SO-S31) SXA = Set at 10PHI SW9 clock Transfer contents of A-
register via sum bus to

(SO-S31) --(CO-C31) CXS = Set at 10PHl SW9 clock C-register

(RRO-RR31)-f--(AO-A31) AXRR = Set at 10PHl SW9 clock Transfer contents of.

NIOFR8 = Reset at IOPHI SW9 clock 10FM, area 00, to the

NIOFR9 Reset at 10PH 1 SW9 cI ock
A-register

=

If 10SC, set flip-flop 10FS S/IOFS = 10SC NPCP3 + ••• If flip-flop 10SC was
set at the end of I OPH 1
SW9, rai se function
strobe

Enable signal (S/RW/2) (S/RW/2) = 10PHl SWI0 + ••• Prepare to transfer new
lOP status from B-
register to 10FM, area
00

Enable signal (S/SXB) (S/SXB) = 10PHl SWI0

Reset flip-flop NIOFM R/NIOFM = ...
S/NIOFM = N(S/IOFM)

(S/NIOFM)= (S/RW/2) + •••

Maintain flip-flops IOFR8 and R/IOFR8 = R/IOFR9 + •••
IOFR9 in their reset states

S/IOFR8 = (S/IOFR8)

S/IOFR9 = (S/IOFR9) 10POP

(Continued)

3-733

SOS 9011n

Table 3-115. I/o Restoration Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPH1
SW11
TSl

One clock long

(BO-B31)-(SO-S31) SXB = Set at IOPH1 SW9 clock or Transfer new lOP status
IOPH1 SW10 clock, as from B-register via sum
applicable bus to 10FM, area 00

RWXS/0-RWXS/1 = NRWXZ (RW-2 + •••)

RW-2 = RW NCROSSEN

RWXS/2 = RW-1 + •••

RW-1 = RW-2

RWXS/3 = RW-1 + •••

(50-S31) -I--{RWO-RW31) RW = Set at IOPH1 SW9 clock
or IOPH1 SW10 clock,
as applicable

10FM = Set at IOPH1 SW9 clock
or IOPH1 SW10 clock,
as applicable

NIOFRS = Not set at last clock

NIOFR9 = Not set at last clock

O-l--{OS-O 15) R/os = OX/1 Clear old byte count

OX/1 = 00815XZ + •••

00815XZ = IOPH1 SW11

R/D9 = OX/1

. .
R/015 = OX/1

If flip-flop IOSC was set in S/IOFS = IOSC NPCP3 + ••• Raise function strobe
IOPH1 SW9,and IOPH1 SW10
was not entered, set flip-flop
10FS

If flip-flop IOSC was set in S/IOEN = (S/IOEN) IOPH1 SW11 is one of
IOPH1 SW9, set flip-flop

(S/IOEN) = 10PHl SWll 10SC NIOINH four i nterruptib Ie poi nts
10EN for I/O service. The + •••

other three are shown in
R/IOEN = (R/IOEN) + ••• phase IOEN NIOIN of

table 3-108

If IFAM, enable signal (S/SXA) (S/SXA) = IOPH1 SWll IFAM + ... Prepare adder for A-S
in IOPHl SW12

If FAMOS, enable signal (S/AXRR) (S/AXRR) = 10PHl SWll FAMOS + ••• Prepare to transfer con-
tents of general register
R to the A-register

(Cont i nued)

3-734

SOS 901172

Table 3-115. I/O Restoration Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPH1 If IFAST
SW11
T8l Enable signal (S/AXRR) (S/AXRR) = (S/ AXRR/3) + ••• Prepare to transfer con-
(Cont.)

(S/ AXRR/3) = IOPH1 SW11 IFAST + ••• tents of IOFM, area Oi,
to the A-register

Reset flip-flop NIOFM R/NIOFM = · ..
S/NIOFM = N(S/IOFM)

(S/IOFM) = (S/AXRR/3) + •••

Set flip-flop IOFR9 S/IOFR9 = (S/IOFR9) IOPOP

(S/IOFR9) = (S/AXRR/3) + •••

R/IOFR9 = · ..
leave flip-flop IOFR8 in a R/IOFR8 = · ..
reset state

S/IOFR8 (S/IOFR8) =

If IOPH10 and not SW3, BRSW13 = IOPH1 SW1 NIFAM NSW3 Branch to SW13
enable signal BRSW13 NIFAM =9 IOPH10

IOPH1 If IFAST
SW12

(AO-A31)--(50-S31) SXA Set at IOPH1 SW11 clock Transfer contents of A-=
(S15-S31)-+--(P15-P31) PXS = IOPH1 SW12 IFAST + ••• register to P-register

(P15-P31) -+-(B 15-B31) BXP = BXP/1 + ••• Transfer contents of P-

BXP/1 = IOPH1 SW12 IFAST + •••
register to B-register

If IFAMOS

(AO-A31)---(50-S31) SXA = Set at IOPH1 SW11 clock Transfer contents of A-

(50-S31)-+--(BO-B31) BXS/O = BXS/1 = BXS + •••
register to B-register

BXS = IOPH1 SW12 IFAMOS + •••

(RRO-RR31)-+--(AO-A31) IAXRR = Set at IOPH1 SW11 clock
I

Transfer contents of
genera I regi ster R to
A-register

If IFAST

(RRO-RR31)-+--(AO-A31) AXRR = Set at IOPH1 SW11 clock Transfer contents of

IOFM = Set at IOPH1 SW11 clock
IOFM register, area 01,
to A-register

IOFR9 = Set at IOPHl SW11 clock

NIOFR8 = Not set at IOPHl SW11

Enable signal (S/SXO) (S/SXO) = IOPHl SW12 + ••• Prepare adder for 0--
Sin IOPHl SW13

Enable signal (S/RW) (S/RW) = (S/RW/3) + ••• Prepare to transfer con-

(S/RW/3) = IOPHl SW12 + •••
tents of sum bus to IOFM,
area 01

(Conti nued)

3-735

SOS 901172

Table 3-115. I/o Restoration Phase Sequence (Cont.)

Phase Functi on Performed Signals Involved Comments

IOPHl Reset flip-flop NIOFM R/NIOFM = · ..
SW12

S/NIOFM = N(S/IOFM) (Cont.)
(S/IOFM) = (S/RW/3) + •••

Set flip-flop IOFR9 S/IOFR9 = (S/IOFR9) 10POP

(S/IOFR9) = (S/RW/3) + •••

R/IOFR9 = · ..
Leave flip-flop IOFR8 in R/IOFR8 = · ..
the reset state

S/IOFR8 (S/IOFR8) =

IOPH1 One clock long
SW13
NIOBO (00-031)---(50-S31) SXO = Set at IOPH1 SW12 clock Transfer contents of 0-
T8L register via sum bus to

(SO-S31)~(RWO-RW31) RWXS/O = RWXS/l = NRWXZ 10FM, area 01
(RW-2 + •••)

RW-2 = RW NCROSSEN

RWXS/2 = RW-l + •••

RWXS/3 = RW-l + •••

.RW-l = RW-2

RW = Set at 10PHl SWl2 clock

IOFM = Set at 10PHl SWl2 clock

IOFR9 = Set at IOPHI SWl2 clock

NIOFR8 = Not set at 10PHl SWl2 clock

P32---S8 S8 = P32 S0809XP + ••• Transfer byte level bi ts

S0809XP 10PHl SWl3 NOIS-4
via sum bus into 10FM,

= area 01, bit positions

P33--S9 S9 =
8 and 9

P33 S0809XP + •••

(CO-C31)-+-(00-031) OXC = IOPH1 SW13 NBXBR2 + ••• Transfer contents of C-
register to O-register

If flip-flop 10EN was set in S/IOIN = (S/IOIN) Setting of flip-flop
IOPH1 SW11 and FSL is

(S/IOIN) = FSL IOEN NIOINH NPH6 lOIN prepar~ CPU to
returned by device controller, process new service call
maintain flip-flop lOIN in a R/IOIN = RESET/A and inhibits all other
set state; otherwi se, reset

RESET/A = IOPH1 SW13 + ••• CPU functions
flip-flop lOIN

(ContI nued)

3-736

SDS 901172

Table 3-115. I/o Restoration Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

IOPHl If flip-flop 10EN was set in R/IOIN = RESET/A Indicates that device
SW13 10PHl SWll, but FSL was not

RESET/A = 10PHl SW13 + ••• controller, whi ch ori gi-
NIOBO returned by device controller, na II y rai sed new servi ce
T8l reset flip-flop lOIN and branch call, has in the mean-
(Cont.) to 10EN NIOIN NIOPH1. See time dropped its service

table 3-116 call pending condition.
During 10EN NIOIN
INOPHl the I/O opera-
tion is aborted

Set flip-flop NIOPHl S/NIOPHl = RESET/A + ••• End I/o sequence
I-- -- ---------~.----------1--------
lOBO If flip-flop 10EN was not set in

+ IOPHl SWll and NIPHI0 and
N!OEN NPCP2:

and IFAST/L and OUO, enable PUC31 = 10PHl SW13 IFAST/L Increment P-regi ster
signals PUC31 and RUC31 OUO (NIOEN + •••) by one

+ •••

RUC31 = 10PHl SW13 IFAST/L Increment private mem-
OUO (NIOEN + •••) ory register R by one
+ •••

and IFAST/L and NOUO, enable PDC31 = 10PHl SW13 IFAST/L Decrement P-register
signals PDC31 and RDC31 NOUO (NIOEN + •••) by one

+ •••

RDC31 = 10PHl SW13 IFAST/L Decrement private mem-
NOUO (NIOEN + •••) ory register R by one
+ •••

and IFAST/S, enable signals PDC31 = 10PHl SW13 IFAST/S Decrement P-register
PDC31, RDC31, and (S/AXRR) (NIOEN + •••) + ••• by one

RDC31 = 10PHl SW13 IFAST/S I Decrement private mem-
(NIOEN + •••) + •••

I
ory register by one

(S/AXRR) = IOPH1 SW13 IFAST/S Prepare to tro nsfer con-

I (NIOEN + •••) + ••• tents of private memory
regi ster to the A -regi ster

and IFAST/L,set flip-flops S/MRQ = (S/MRQ) Prepare to request next
MRQ and DRQ

(S/MRQ) (S/MRQ/2) + ••• stock word from core =
memory in PH6

(S/MRQ/2) = IFAST/L 10PHl SW13
(NIOEN + •••) + •••

R/MRQ = ...
S/DRQ = (S/DRQ) NCLEAR Inhibits transmission of

(S/DRQ) (S/MRQ/2) + ••• another clock until data =
release signal is received

R/DRQ = ... from core memory

and FAMDST, enable signal (S/SXA) = FAMDST PREIO/l + ••• Preset adder for A-S
(S/SXA)

PREIO/l 10PHl SW13 10EN NPCP2
in 10EN lOIN NIOPH 1 =

(Conti nued)

3-737

SOS 9011n

Table 3-115. I/O Restoration Phase Sequence (Cont.)

Phase Function Performed Signals Involved Comments

lOBO Set fI ip-flop PH6 S/PH6 = BRPH6 NIOEN NClEAR + ••• Exit from I/o phases and
+ BRPH6 IOPHl SW13 (S/PH6/10)

return to execution phase =
NIOEN + ••• PH6
(Cont.)

(S/PH6/10) = 10PHl SW13 NIPH10
NPCP2 (NIOEN + •••)

R/PH6 = ...
Set flip-flops MRQ and ORQ S/MRQ = (S/MRQ) Prepare to request next

(S/MRQ) = (S/MRQ/2) + ... instruction from core
memory in PH10

(S/MRQ/2) = 10PHl SW13 IPH10 NPCP2
(NIOEN + ...) + ...

R/MRQ = ... Inhibits transmission of

S/ORQ (S/ORQ) NClEAR
another clock until data = release signal is received

(S/ORQ) = (S/MRQ/2) + ... from core memory

R/ORQ = ...
Set flip-flop PH 10 S/PH10 = BRPH10 NClEAR + .•• Exit from I/O phases and

BRPH10 = IOPH1 SW13 IPH10 NPCP2
return to execution phase

(NIO E N + ...) + ... PH10

R/PHlO = ...
If lOBO, set flip-flop NIOBO S/NIOBO = IOPH1 SW13 + RESET/A Erase I/o abort condition

Table 3-116. I/o Abort Phase Sequence

Phase Function Performed Signa Is Involved Comments

10EN One c lock long
NIOIN
NIOPH1 Enable signal 10ENNIN 10ENNIN = 10EN NIOIN NIOPH1 Indicates I/O disable
NIOBO condition
T5l

Reset flip-flop NIOBO R/NIOBO (S/IOBO) Stores I/o abort con-=
(S/IOBO) = 10ENNIN NIOINH AVO dition at clock following

AVO. Signal AVO sup-
S/NIOBO = 10PHl SW13 + RESET/A plied by the device con-

troller system following a
new service call, speci-
fies an unusual condition

IOEN One clock long
NIOIN Reset flip-flop NIOPHl R/NIOPHl (S/IOPH1) Return to IOPHl SW13 NIOPHl =
lOBO (S/IOPH 1) = 10ENNIN lOBO + ••• (See table 3-115.)

T5l
S/NIOPHl (R/IOPH1) + RESET/A =

Enable signal BRSW13 BRSW13 = AVO lOBO IOENNIN + •••

3-738

PHASE GENERAL ACTIVITIES SPECIAL ACTIVITIES

AND (APPLICABLE TO ALL Order Out l::Jnd Data
CLOCK SERVICE CYCLES) Chain'ing

Order In Data Out' Data In

IOEN
lOIN
NIOPHl I/O I'S/IOPHO

Setup S/SW8
R/IOEN
R/IOFS

T8l (S/AXRR/2)
or S/IOFM

T5l
DC/D Address -I

Q

To IOFR
FR--f--IOFR

~
tI
W

IFAMDS=>A-S I -
S-!-RW(R) ::-"

Vl

IF A ST/l=>A--S c
3

S-C
g Vl

-< 0
Vl

IOPHO RR+--A [OOJ
SW8 I/O R/PEM
T5l Setup R/IOSC

S/RSClEN

0 8
"- ;:j 0
'"tI :r
Q
CIt
tI

IFAST/l=>B-S ~
or ~ c

IFAST/S S-P
tI
:;,
n
tI

P-S CIt

IOPH10 =>(S/SXA)
BRSW10
S/IOFM
S/IOFR9

IOPHO PCP2
SW9 or

=>B-S
I/o

IFAMDS
>S---RW or Setup

IFAST/l
(00)

T8l (RS)
or ClEN

IFAST/S

SPECIAL ACTIVITIES

PHASE GENERAL ACTIVITIES
AND (APPLICABLE TO All Order Out and Data

CLOCK SERVICE CYCLES) Chaining Order In Data Out Data In

IOPHO A-S
SW10 S-f--B

P---B
T5l I/o

IOPHlO~RR-+--A [OIJ Setup
(S/SXA)
BRSW12
ClEN -i

Q
CT"

NIOPH1O~(S/SXC)
S/IOFM

()

W
I

S/IOFR9
....
;""

IOPHO r-s
SWll S+--RW [01J

T8l
(S/SXA)

I/O
Setup

~

(S/AXRR/4) S/MRQ (S/SXDM1) IOPHO
I/O

A--S
SW12 S+--D S/IOFM S/DRQ Setup

< A8 ~ S/P32 S/IOFR8 S/IOPH2
T5L A9 ~ S/P33 S/IOPH3 R/IOPHO

DOR ~ S/SWl R/IOPHO
,...IOR ~ S/SW2 BRSW8

Vl
c
3

8 .,
~

0 Vl
...... 0

"
Vl

0 ~
~
::r ;:j Q

~

~
..0
C
()
:::I
n
~

IOPH2 MB---C
()
0

SW13 P32-+--BCO

DR P33-+--BCO
(S/SXC)

t

IOPH2 C---S
SW14 S---f-A

T5L DECR--f--(BCO-BC 1)

BCZ~ S/IOPHO
R/IOPH2
BRSW13
(S/SXDM1)

W
I

~ -

PHASE
AND

CLOCK

10PHO
SW15
T5l

IOPH1
SW8

GENERAL ACTIVITIES
(APPLICABLE TO All

SERVICE CYCLES)

fs/AXRR/3)
S/IOFM
S/IOFR9

I/O <
Resto-
ration

Order Out and Data
Chaining Order In

S/SW6 (ED) AO ==9S/B9

R/SW7 (NES) A1 ==9S/B8

VORDER ==9 (S/SXA) (S/B8) (S/B9) }
==9S/B14

R/IOPHO D4 ND6

S/IOPH1 S/SW3
S/SW6 (ED)

BRSW8 R/SW7 (NES)
S/IOPH1
R/IOPHO
BRSW8

T8l T8l
ED ED
NES NES
S/RSA S/RSA

VORDER =9 A ----S S/RSClEN

-f--p

Read Backward =9 S/80

I OP Contro~=9S/B 13
Error

lOP Memory}=>S/B 12
Error

lOP Halt ===>S/B14

ADNH ==9 siB 11

S/RSClEN

SPECIAL ACTIVITIES

Data Out DClta In

NBO }
NSW4 ==>C ---S-I--A

NP32 P33 => AXAR8
P32 N P33 ==9 AXAR 16
P32 P33 ==9 AXAR24

NSW4 ~(S/SXA) -t
Q

~
ND7~ { (S/MBXS)

S/MRQ
S/DRQ

CD
W
I

~

R/IOPHO
S/IOPH1
BRSW8

V)
c
3
3
Q

~

T8l DR
l-+-P A-S-r--MB

0 V) 0

~
V)

8
S/SW6
S/SW7 NBO==9 1 -f-- P
IADNH =9S/B11

BO=9 -l-f-·P
fEM + SW4· ==9 sIB 14

S/SW6
SWO D 1 =9 S/B2 S/SW7

"'tJ :r ;::j Q
CIt
(I)

V)
(I)

..0

i
:::s n
(I)
CIt

10DC DASW4=9 ~S/SW4 ADNH ==9 SiB 11
R/IOPH1

DAP =9 S/B9 S/IOPH3

n
0
:::s
.:::.

~ BRSW8 PEM + DAP D4 =9 S/B14
S/AXRR/4)

SWO D1 DASW4 =9 S/B2 S/IOFM
S/IOFR8 10DC DASW4=;9 ~ S/SW4

R/IOPHl
S/IOPH3

-< BRSW8
(S/AXRR/4)
S/IOFM
S/IOFR8

SPECIAL ACTIVITIES

PHASE GENERAL ACTIVITIES
AND (APPLICABLE TO ALL Order Out and Data

CLOCK SERVICE CYCLES) Chaining Order In Data Out Data In

IOPH2 AXAL8
SW15 DECR~(BCO-BC1)
T5L NBCZ ~ BRSW15

BCZ~ S!IOPHO
R/IOPH2
BRSW13
(S/SXDM1)

-t
Q
e-

IOPH3 RR-,L-- A [1 OJ
SW8 (S/AXRR/4)

li'"
w
I

T5L (S/AXRR/6)
S/IOFR8

-~
S/IOFR9 ~

c:
S/SW3
5/Bl0

3
3
Q

-<
IOPH3 RR-A [11]
SW9 AXAL8
T5L (S/5XAPl)

0
~

..... 0

~
~

-0
~

;q
" Q ,..."

CI'
(D

IOPH3 A+l---S ~
(D

SWI0 S-A ..Q
c:

B1 R/Bl
T5L (S/SXPl)

(D
::l
(')

~
BRSW10 ()

0

IOPH3 AXSLl ~
SWI0 (S/SXA)
NBl SXAP1~A+l--S
T5L SXA~A-S

IOPH3 A--S
SWll S-P
T5L S/MRQ

S/MRQP1
AXSRl
(S/SXA)

SPECIAL ACTIVITIES

PHASE GENERAL ACTIVITIES
AND (APPLICABLE TO ALL Order Out ·end Data

CLOCK SERVICE CYCLES) Chaining Order In Data Out Data In

IOPH3 (S/RW/4)
SWll S/IOFM
T5L S/IOFR8
(Cont.) R/IOFR9

NSW5 ~ (R/PEM)

IOPH3 A_S -t

SW12 S--f---. RW Do]
T8L S/DRQ

(S/RW/3)

Q
0-
CD
W
I

(S/RW/4)
S/RW8

~

S/RW9
S/IOFM

~
c:
3
3

AXAL8
(S/SXA)

Q

-.< ~

0 0 ~

IOPH3 A--- S-I--- RW [11] ~ -.0

3
SW13 MB-C
DR (S/SXC)

P+1-+-P

." ""-J :r
Q "->
III
ct
~
ct

.0

IOPH3 C---S-f- A
SW14 (S/SXA)
T5L 10TRIN =9 S/SW5

BRSW10

c:
ct
:J
n
l!
()
0

NIOTRIN ~ S/MRQ ~
S/DRQ
R/SW5

IOPH3 A--/-- IODA-/DA/
SW15 A-S
DR A30-+--P32

A31-1-- P33
AXSR2
MB-----C
S!IOPHO
R/IOPH3
BRSW15

SPECIAL ACTIVITIES
PHASE GENERAL ACTIVITIES
AND (APPLICABLE TO ALL Order Out and Data

CLOCK SERVICE CYCLES) Chaining Order In Data Out Data In

IOPHO T5L T8L T8L
SW13

/DA/----S (0 -1) ---S-I--0 (0 -1)---S-+-O

--f--A Sl631Z~S/SWO Sl631 Z :::;.S/SWO

BRSW15 A-f--IOOA----/OA/ R/IOOAP

(AO-A7) Even =* S/IOOAP NRSCLEN } =* (S/CXS)
Odd ~ R/IOOAP NP32 NP33

AXAL8 RSCLEN }

RSCLEN ~1-+-(P32-P33)
NP32 P33 ~ AXAR8

RS=*CLEN RSCLEN } =*AXAR16 P32 NP33

RSCLEN } -=>AXAR24 P32 P33

-I
Q
c-
it
w
I

~
Vl

~
8 ...

"'<

RSCL EN} ~1-+-(P32 -P33)
NBO

0 Vl
~ 0

"-
Vl

0 (3

RSCLEN}==>_1-f-(P32_P33)
BO

~
;r

~ Q

;
RS~CLEN ~

.jl
c:

IOPHO VOATAOUT ~ BRSW 13 OA ---S--f--A,
(D
::J
n

SW14 S/RSA NP32 NP33 ===>S/MBXS/O (D
CIt

T8L
S/RSCLEN NP32 P33 ~S/MBXS/l
(S/SXOM1) P32 NP33 ===>S/MBXS/2

NVOATAOUT ~BRSW8 P32 P33 ~S/MBXS/3

n
0

~ -
R/IOPHO CXS~S-C
S/IOPH1

Parity Checks :::;.IOPC
Parity Fails=* S/IOOAP

VOATAIN ===>S/RSA
S/RSCLEN
(S/SXOM1)
BRSW13

NVOATAIN ~(S/SXC)

SPECIAL ACTIVHIES

PHASE GENERAL ACTIVITIES
AND (APPLICABLE TO ALL Order Out and Data

CLOCK SERVICE CYCLES) Chaining Order In Data Out Data In

IOPH1 I/O I""RR-r-A [01 J S/SW6 S/SW6 RT09_ flSW3 RT09- rlSW3 SW9 Resto- B-S--f---P S/SW7 S/SW7 S/SW6 S/SW6
T8L ration

P-f--B D1 SWO ~S/I()DAO A2 ~S/B1 R/SW7 R!SW7
and PE:M~S/B14 PEM ===> SIB 14 process- S/BRP NOO SWO ~S/IODA1 A3 D3~S/B3
ing of

NIFAM} ~ BRSWll D2 ~S/IODA2 A4 D5 ~S/B4 NRT09 - {S/RSA NRT09 _ {S/RSA new
(S/RW/2) S/RSCLEN NRT09

S/RSCLEN service
S/IOFM B14~S/IODA3 (S/83) } ED call
(S/SXB) + ~S/IODAO ES ED

SC ~S/IOSC
RS~CLEN

(S/B4) ES

ct
2:
(D

W
I

IFAM ~ (S/AXRR/2) D2 ~S/IODA2
S/IOFM

B14~S/IODA3 (S/CXS)
(S/SXA) RS~CLEN

-~
Vl
C

~
Q

10PHl I/O /"A--S-C S/RSA S/RSA
SW10 Resto- RR-+-A [OOJ S/RSCLEN S/RSCLEN T5L ration

and 10SC ~ S/IOFS ED ED
-< (S/RW/2) NES NES process-

ing of (S/SXB)
new

S/IOFM service
call

-<
0 Vl ... 0

~
Vl

~
." -
:T t:j Q

-;
~
~

CD
;:,
n
CD
CIt

IOPH1 I/O '8 --S-f--RW [OOJ S/SW7' S/SW7
SW11 Resto-

0-+-(D8-D15) TODA'TA TODATA T8L ration

n
0

~ -
and 10SC } ~ S/IOFS SWO D1 ~S/IODAO SWO 01 ~S/IOOAO
process- NIOFS

SWO NIOO~ S/IOOA 1 SWO NOO =>S/IOOA 1 ing of
10SC ~ S/IOEN new
IFAM => (S/SXA) 02 ~S/IOOA:2 02 =>S/I00A2

service ~
B14~·S/100A3 B14 =>S/I0[)A3 call NIFAM} =>BRSW13

NSW3

FAMOS ~ (S/ AXRR)

IFAST _ {(SI AXRR)
S/IOFM
S/IOFR9

-
SPECIAL ACTIVITIES

PHASE GENERAL ACTIVITIES
AND (APPLICABLE TO ALL Order Out and Data

CLOCK SERVICE CYCLES) Chaining Order In Data Out Data In

10PHl I/O IFAST- r-s,t--p ED ED ED ED

SW12 Resto- P-f--B ES ES ES ES

T5L
ration RR-f-A[Ol]
and

IFAMDS~ {A-S-f--B
S/RSA S/RSA S/RSA S/RSA

process-
RR-f--A[RJ S/RSACLEN S/RSACLEN S/RSACLEN S/RSACLEN

ing of ~

new S/SXD) NRS ~CLEN NRS ~CLEN NRS~CLEN NRS=.9CLEN ~
2:

service
(S/RW/3) call

CD
W
I

S/IOFM
:--'

S/IOFR9 Vl
c:
3

IOPHl I/O D -S--I---RW [01] g
SW13 Resto-

P32---S8
NIOBO ration

P33-S9
T8L

and
process- C-+--D
ing of

10EN FSL=.910IN new

...
"<
0 Vl

0

~ Vl

8
"l:J -;:r -Q

~ ;
service R/IOPHl Vl

CD
call

IOEN FSL=.910IN
..Q
c:
CD
:J

~-- ---1--------- f---------------'--f--------- n
CD
\I'

I

lOBO 0(NIOEN + NFSL~ R/IOIN n
0

+ :J
NIOEN NIOEN } (P + l)--f--P

FAST/L ~(R + l)--f--R
OUO

-
NIOEN } (P - 1)-+--P
FAST/L =9(R - l)-+--R
NOUO

NIOEN } (P - l)~P
FAST/S =.9(R - 1)-f--R

(S/AXRR)

IOEN }
NPCP2 ~(S/SXA)
FAMDST

SPECIAL ACTIVITIES

PHASE GENERAL ACTIVITIES
AND (APPLICABLE TO ALL Ordttr Out and Data

CLOCK SERVICE CYCLES) Chaining Order In [)ata Out Data In

NIOBO I/o NIOEN} {S/MRQ
+ Resto- IFAST/L ==* S/DRQ

IOEN ration
NIOEN} _S/PH6 (Cont.) and
NIPH10

process~
NPCP2 ing of

new NIOE N } r/MRQ
service IPH 10 ~ S/DRQ
call S/PHlO

-t
Q

~
CD
Co.)
I

lOBO ==* R/IOBO :..a
v» c:
3
3
Q .,

'<
0 v»

a 0
v»

8 ." -':T -Q
j:j ;

v»
ct

A c:
ct
::J
n
CD
III

()
0
::J

.::.

ParaRraphs 3-138 to 3-139

3-138 POWER DISTRIBUTION

The following units supply and distribute power in the
Sigma 5 CPU, memory, and peripheral equipment:

a. Main power distribution box

b. Power i uncti on box

c. PT14 converter power supply

d. PT15 inverter power supply

e. PT16 logic power supply

SDS 901172

f. PT17 memory power supply

g. PT18 interface power supply

3-139 Main Power Distribution Box

Primary power is supplied to the Sigma 5 system through
the main power distribution box in the CPU. The power
distribution box, as shown in figure 3-234, contains a
LOCAL-OFF-REMOTE switch, five connectors, a contactor,
terminal board, and power monitor assembly. Details of
the power monitor assembly are presented under the
description of the power fail-safe feature in this section.

r -51- i
: LOCAL I

'--:---,...---:,---i-OFF

3-748

TO PRIMARY
POWER
SOURCE

TB1

C1 REM~O~T=E:---+---+-----'

Figure 3-234. Main Power Distribution Box, Schematic Diagram

TO/FROM
PT14

901172A. 3240

505 901172 Paragraphs 3-140 to 3-141

The LOCAL-OFF-REMOTE switch (51, figure 3-234), allows
the operator to select whether power shall be turned on and
off at the PCP or at some unit of peripheral equipment. The
solenoid-actuated contactor (CB 1) is controlled through
switch 51; this contactor connects the primary power source
with the PT14 power supply and the five connectors in the
main power distribution box. Duplex connectors J3 and J4
supply power at 120v/60 Hz to unit ventilating fans and to
the power iunction box. Connectors J 1 and P1 connect
10c~1 and r"emote power controls, respectively, to 51. The
local power control is on the processor control pane I; the
remote power controls are on the peripheral equipment.
Connector J2 supp\ ies source power to the power monitor
assembly. Terminal board TB 1 serves as a connection point
for primary power input.

3-140 Power Junction Box

The power junction box provides four 12Ov/60 Hz connectors
and s!x 120v/2 kHz CO!'H"!ectors. The 60 Hz power 1s derived
from the main power distribution box; the 2 kHz power is
obtained from the PT15 power supply.

3=141 Power Suppl i es

The PT14/PT15 power supply combination changes the 60
Hz source power to 2 kHz, wh i ch serves as input to PT16,
PT17, and PT18. Detailed descriptions and theories of

operati on for the PT -seri es power supp Ii es are covered in
associated technical manuals applicable to each power
supply.

A power frequency of 2 kHz is used so that the individual
low-voltage high-current power supplies may be small
enough to be mounted on each frame. As a result, short,
direct connections to the high-current loads are used.

The physical and electrical confi guration of power supplies
and the locations of voltage terminals are presented in a
series of illustrations. Figure 3-235 emphasizes PT16 and
PT17 details and shows the mounting of these power suppli es
relative to the PT14 and PT15 power supplies and main
power di stri buti on box. Fi gure 3- 236 shows PT14 and PT15
power supplies, main power distribution box, and power
junction box physical details. Figure 3-237 shows the CPU
and memory backwiring, with terminals that provide ground,
+4v, +8v, -8v, +21.5v, +24v, and +10.25v. Refer to table
3-118 for jacks and pins on which the voltages appear.

Power interconnection varies with the 5igma 5 configura­
tion and peripheral equipment used. Therefore, typical
power connecti ons are shown in fi gure 3-238. One 5i gma
5 cabinet and an accessory cabinet for optional equipment
are shown as examples. More than one power junction box
may be used when a greater number of outlets are required.

3 -749/3 -750

~

VC VOLTAGE, CONSTANT

VCR VOLTAGE, DIODE (CR)
(USED TO NULL AN AMPUFIER
CONTROLLED BY TEMPERATURE
SENSING DIODES)

VD VOLTAGE, DRIVE

PT15 INVERTER
PO\VER SUPPLY

PT14 CONVERTER
POWER SUPPLY

VC ADJUSTMENT

VD ADJUSTMENT

XY DRIVE, COARSE ADJUSTMENT
REFERENCE NO.

XY DRIVE, COARSE ADJUSTMENT

------- -----..-...... -- _-------- --------... ,~
_--- -" __ .. ",// I

--- --.. '" '" I F"-:~ __ -.:~ ,,~-:/'"
I - ... ~... ...--_ ___, ~ ---- -'""'--- -----~----n I II

.. -....-.. -- .. ,"",- - I I I --- -- -........... - -_..------.............

SDS 901172

PTl6, LOGIC POWER SUPPLY
INPUT: 120V, 2000 HZ, SINGLE PHASE
REGULATED OUTPUTS: +4V, 100 AMP

+BV, 50 AMP
-BV, 5 AMP

:-CB1, CIRCUIT BREAKEF/POWER SWITCH

S 1, MARGINS SWITCH, HIGH,
NORMAL, LOW (USED WITH
DIAGNOSTIC TESn

1.. ___ J-----:-;-Fr.----~Tt;_--F3, FUSE, 3 AG, J25V, B AMP

.!-___ I-----+-;-i++----;y)~rir1r_--F2, FUSE, 3 AG, 125V, B AMP

r+----i----'T"""'T""";-i-~-""'"~-......;..;...---Fl, FUSE, 3 AG, 125V, B AMP

I
I

I
I
I

I

OVER VOLTAGE ADJUSTMENT

ADJUSTMENT

PT17, MEMORY POWER SUPPLY
INPUT: 120V, 2000 HZ
REGULATED OUTPUTS: 18 TO 25 VDC
(ADJUSTABLE) 0-20 AMP
25 VDC, 0-2 AMP

I~l __ --J----f-t-h~----Ir-_VCR :~~~AGE ADJUSTMENT

~L ___ +---++-Ht-----;f---XY DRIVE, FINE ADJUSTMENT
.. REFERENCE NO.

MAIN POWER
DIS TRIBUT10N'-----------'

BOX

XY DRIVE, FINE ADJUSTMENT

__ ---+---4--~__T_+=_+_.,~-----Fl, FUSE, 3AG, 250V, 15 AMP

5----r----r~~~~~::!.-------_cBl, CIRCUIT BREAKEiVPOWER SWITCH

Figure 3-235. Physical Details of Sigma 5
PT16 and PT17 Power Suppl ies

900630A. 359

3-751/3-752

120VAC, 2000HZ Fl
OUTPUT (OUTPUT ON
LEFT AND RIGHT SIDES J5
CONNECTED IN PARALLEL)

U
REGULATOR MODULES

FUSE, 3AG, 125V, 1 AMP

LOCAL OFF REMOTE SWITCH

LOCAL-----------~

REMOTE -----------+_~

FAN POWER------r-_...(

Jl J2
120V
60 HZ

®

SDS 901172

CABLE TO CPU

I J3 J4 J5 J6 J7 J8 I
I

120V
2000 HZ

©
J9 JIO
120V
60 HZ

®

PT15 INVERTER
POWER SUPPLY

... ~~ ____ -Pl, 120V

.2000 HZ
OUTPUT

PT14 CONVERTER
POWER SUPPLY

TEMP 10C SWITCH
(OVERCURRENT
CIRCUIT BREAKER)

120V 2000 HZ

MAIN POWER
DISTRIBUTION BOX

FAN POWER

~~~---r-- P2,l20V 
60 HZ 

IONEN SWITCH 
(POWER ON 
INTERRUPT ENABLE) 

POWER JUNCTION BOX 

900630A. 360 

Figure 3-236. Physical Details of PTl4 and PTl5 Power Supplies, Main Power Distribution Box, and Power Junction Box 

3-753/3-754 



-8V ~G~N:D~ _____________________________ -==========:::::r-_1 PT16 POWER SUPPLY _~/ 

~~L/ 
~~ 

+8V~ 

{ 
I Jf 

4V I ~Io 
+ I I 

GNDfn 
I l: 

_sv--H 

PT17 POWER SUPPLY 

~OR M~:r-) ____ _ 

NOTES: 
1. All JACKS IN CPU +4V ON PIN 49 

+8V ON PIN 51 GROUND ON PINS 
0, 16, 32, 48. SEE TABLE 3-20 
FOR JACK AND PIN NUMBERS FOR: 
-8V IN CPU AND ALL MEMORY 
VOLTAGES 

2.*VD VARIES IN VOLTAGE 
DEPENDING UPON MEM­
ORY USED AND AMBIENT 
TEMPERATURE 

LEGEND 

VC VOLTAGE, CONSTANT 
VD VOLTAGE, DRIVE 
VM VOLTAGE, MIDDLE 

(1/2 VD) 

." -. 
D'CC 

8 ~ 
o...W 
In I 

Q "-J 
:J W 
0...:--' 

~< 
-0 
~ -.... 
Q Q 
:JCC 
0...(1) 

-0-1 
-1(1) 
-~ 
".J ~. 
005 
~ v; 
~ 0 
Vl:J 

cg C D' 
~\J Q 
,,\J 0 
..... -1'\" g C;. ~ 
• '" _e 

"'" :;. 
CC 

GND 

ve +24V 

~-......QI~--+4V 

~-~----GND 

~_~J~--+4V 

l--.:&----GND 

1--_c~ ... --+4V 
1.--.._-GND 

~~~ 
_GND

·-..J.....--+4V

~_-.QJ~--GND

~.-.J;u-~-+4V

J--~~--GND

~ __ ol~--+4V

QI....o_-GND

~~~~ 
t~GND 
1.-...:mr-.--+4V 
~ __ c»---GND 

~-....J:a---+4V 

L--OJ----GND 

~+8V 
~ -8V 

GND 

,_15 .... --+4V 

._ C!li-4--- GND 

~Q.-.--+4V 

,_u. __ --GND 

_l5l.----+4V 
",-"_-GND 

-8V ~~. +8V 

tt:==GND 

1.-._1511 ___ --+4V 

'--_~OI_ __ --G ND 

__ ~..,.-----+4V 

J-_.o .. ----GND 

t:~!-..-._-~~~ 
'e!!:__.__GND 

~
+4V 
GND 

+4V 

~E=
GND 

+4V 
_ n GND 

~
~. +8V 
!! -8V 
~GND 

€:j----+24Y 

~C=GND 
+21.5V 

F-.~---'GND 

\-.~"5---+4V 

GND 

~_.J!B-o---+8V 

"L~\~--- -8V 
GND 

} 
~~ 25V FOR REFERENCE, NO 

iiI-o ___ 
G_N_D_ CONNECTIONS TO TERMINALS 

1-.. 1:i-__ --GND 

L-.. 01-----21.5 V 
.... ----GND 

~
i5I .. +21.5V 
'-'---_-8V 
-r_GND 

D ... ---GND 

'-_J:m--~-+24V 

""!---+4V 
"iiJo __ --+8V 

'0 
'0 

-t4V - HI 

+4V • 11 

+4V -. 

+8V---a 

+4V • 18 

+-4V • II 

+4V .. iii 

+8V~ 

+4V • a 
+·W • II 

+<~V • Iii 

+8V-----

+4V • II 

+4V • 11 

+4V -. 

+8V ------rt 

+JI~V----..a 

HIV--a 

+4,v - II 

+S'IV--i 

+4V • II 

+4V • iii 

+4V • a 

+8y-......al 

+2J.5Vh~ 

+24V 

+4V~ 
+8V~ 

A 

B 

C 

D 

E 

F 

G 

H 

J 

til 
o 
til 

8 -
;::-j 



(,.) 
I 

~ 
" 

--t 
'< 
~. 
o 
o 

9-
III .... 
::!. 
0-
C 
::!". 
o 
:J 

o c· 
co 
C 
3 

120V, 
2000 HZ 
TO 
PERIPHERAL 

,-
I POWER CONNECTIONS, TYPICAL SIGMA 5 CABINET 

• I 
1 

I.....,. 1:-----0 V SUPPLY \'Q Io--J 
J5 

5FT 
EQUIPMENT 1"'+--"" ® 

INVER;;~5POWfR (~~""'J 
(2000 HZ J6 A 
SOURCE) \0 ~ ___ --L.. __ --. 

~ 
Ij. 

?> 
w NOTE, ....., 
~ 

PI TBI 
L-------~,-----r_r_-

3FT 

OVER 56 
LOAD VDC 

PTI4 
CONVERTER 

POWER SUPPLY 
(56 VDC 
SOURCE) 

PWR 
MO~~ WYE 

MAIN POWER 
DISTRIB UTION 

BOX 

TBI 

120V, 60 HZ 
INPUT, 208V, 3 PHASE WYE 

,--L----, 

Jl J2 J3 

@@® 

PT16 
PT18 POWER SUPPLY PTl8 

POWER J2 n FAN) J3 POWER 
SUPPLY @@ SUPPLY 

L ____ -- ----, 
PT18 IS INTERFACE POWER SUPPLY. I 
USED FOR DEVICE CONTROLLERS 

J4 
@ 
@ 

120V 
60 HZ 

,--L----, 

PT16 
POWER SUPPLY 

J2 (1 FAN) J3 

@@ 

L_ - - - -- - --

120V, 60 HZ 120V, 2000 HZ 
r~ Ir----------~I-----------__. 

• + • • • • 
JI J2 J3 

@!)@@ 

PTI7 
POWER :iUPPL Y 

(1 FAN) 

POWER JUNCTION BOX 

J4 J5 .J6 J7 

~~@® 

PTl6 
POWER SUPPLY 

J2 (1 FAN) J3 

@@ 

120V, 60 HZ 

~ 

JI0 

@ 

V1 
o 
V1 



SOS 901172 

Table 3-118. Voltages on Pins and Jacks in Backwiring 

Row Ground +4v +8v -Bv vc +24v vd +21.5v vm +1O.25v 

A Pi ns 0,16,32, Pin 49; all Pin 51; all Pi ns 50; jacks 1, 2, 
48; all jacks jacks jacks 3,4,28,30,32 

B Pi ns 0,16,32, Pin 49; all Pin 51; all Pin 50; jacks 1,3, 
48; all jacks jacks jacks 5,6,7,8,30,32 

C Pi ns 0,16,32, Pin 49; all Pin 51; all Pin 50; jacks 1,3, I 
48; a II jacks jacks jacks 5,7, 11,25,27 

Pin 4, jack 32 

0 Pins 0,16,32, Pin 49; all Pin 51; all 
48; all jacks jacks jacks 

E Pins 0,16,32, Pin 49; all Pin 51; all Pi n 50; jacks 2, 3, 
48; a II jacks jacks jacks 22 

f' Pins 0,16,32, Pin 49; all Pin 51; all Pi n 50; jacks 3 thru 
48; a II jacks jacks jacks 12, 27 thru 32 

G. Pi ns 0, 16,32, Pin 49; Pin 51; Pin 1, jack 15 Pin 31; jacks Pin 21; jacks 9, 
48; jacks 1, jacks 3 thru jacks 3 thru 9,10 10 
2,11,16 8, 11 thru 8, 12 thru 

Pin 20; jack 
Pi ns 0, 16,48; 

16 16 
15 

jacks 3 thru 8, 
12,13,14 

Pi ns 0,20,48; 
jacks 9,10 

Pi ns 16,32; 
jack 15 

H Pins 3, 20; Pin 51; jacks Pin 21; jacks 1 
jacks 1 thru 1 thru 16 thru 16 
16 

J Pi ns 0, 16,32, 
48; jacks 1,4, 
7,10,13,16 
thru 32 

Pi ns 0,20,48; 
jacks 2,3,5,6, 
8,9,11,12,14, 
15 

I I 

I I I 
3-758 



SDS 901172 Paragraphs 4- 1 to 4-5 

SECTION IV 

MAINTENANCE AND PARTS LIST 

4-1 MAINTENANCE 

Maintenance requirements for the Sigma 5 computer depend 
upon the selection of optional features and device con­
trollers included in the CPU and core memory. Reference 
documents for basic and optional features are identified in 
th is section. For maintenance of an item of peripheral 
equipment and its controller, refer to the appropriate tech­
nical and programming manuals. 

4-2 SPECIAL TOOLS AND TEST EQUIPMENT 

Special tools and test equipment recommended for repair or 
maintenance of the Sigma 5 computer are listed in 
table 4-1. 

4-3 PREVENTIVE MAINTENANCE 

Preventive maintenance of the Sigma 5 computer consists of 
scheduled diagnostic testing in addition to visual inspection 
and routine maintenance. Because there are no mechanicai 
devices in the Sigma 5, lubrication and mechanical adjust­
ments are not required. 

External surfaces of the Sigma 5 computer cabinets must be 
kept clean and free of dust. Doors and panels must close 
completely and be in reasonable alignment. Tops of cabi­
nets must be cleared of all materials so that fan assemblies 
are able to expel the air taken in at the bottom of the 
cabinets. 

The interior of cabinets must be free of wire cuttings, dust, 
and other foreign matter. No clip leads or push-on jump­
ers should be in use during normal operation, and all 
cables must be neatly dressed by sufficient clamps or rout­
ing. All chassis and frames must be properly bolted down, 
with all hardware in place. 

The air filters (SDS part number 117427) should be checked 
for cleanliness periodically. They may be washed with 
water and detergent, and reinstalled. 

Note 

Do not spray the Sigma series filters with 
adhesive fluid, since it inhibits air flow. 

Tobie 4-1. Special Tools and Test Equipment 

Manufacturer's 
Name Part No. Manufacturer 

P6010 IBM acces- 010-0186-00 
sories and Tektronix 
probe package Beaverton, 

Osci Iloscope 453 
Oregon 

Wirewrap tool 14XA2 

Wirewrap bit 502128 
Gardner-Denver 

Grand Haven, 

Wirewrap sleeve 502129 Mich. 

Wire unwrap tool 505084(LH} 

Module extractor 126668 

Extende.r Module 117037 
ZTlO SDS 

Solder sucker {None} 

Device controller 124300 
simulator JK58 

4-4 DIAGNOSTIC TESTING 

Diagnostic test procedures for features of the Sigma 5 com­
puter are described in the documents listed in table 4-2. 
The diagnostic test programs should be run at intervals not 
longer than those indicated in table 4-3. Diagnostic test 
procedures should be run with power supplies at normal, +10 
percent level, and -10 percent level. 

4-5 ELECTRONIC TESTING 

For two- or three-port memories, make the following elec­
trical performance monitoring measurements each time the 
MEDIC 75 diagnostic program is run. 

a. Remove ATl1 modules from 6C, 40, and 80 to 
present continuous memory requests from all ports. 

b. Place address switches for each port to a starting 
address of zero (see table 4- 11). 

c. Ground pins 80-36 {signal ORAB}, 40-36 (signal 
ORAC), 6C-36 (signal ORBC), and 30-35 (signal MR). 

d. Check that memory cycles {period approximately 
860 nsec} are initiated at the following pins by signal CFA. 

4-1 



Paragraph 4-6 SDS 901172 

Pin 

29C-7 

29C-21 

CFA 

CFB 

Duration 

True approximately 350 nsec 

True approximately 60 nsec 

e. Ground pin 29C-7 (signal CFA). 

f. Check that signal CFB initiates memory accesses 
approximately every 860 nsec. 

g. Ground pin 29C-21 {signal CFB}. 

h. Check that signal APA causes memory cycles with 
a period of 1. 1 ,",sec {1100 nsec} at the following pins. 

Pin 

27D-18 APA 

27D-2 APB 

Duration 

True for approximately 
250 nsec 

True for less than 60 nsec 

i. Ground pin 27D-18 (signal APA). 

j. Check that signal APB causes memory cycles 
approximately every 1100 nsec, and is true for approxi­
mate Iy 250 nsec. 

k. Ground pin 27D-2 (signal APB). 

I. Check that there are no memory cycles, and that 
signal MI (pin 28D-2) is false. 

m. Remove all grounds attached in steps c, e, g, i, 
and k, except the one on pin 3D-35 (signal MR). 

n. Check that continuous memory cycles are gener­
ated from port C (indicating that signals MOA and MOB 
are locked out), that signal ADC {pin 29D-15} is true, and 
that MI {pin 28D-2} is true approximately every 860 nsec: 

o. Ground pin 8D-36 (signal aRAB). 

p. Check that port B initiates memory cycles and 
that signal CFB (pin 29C-21) is true for approximately 
350 nsec. 

q. Ground pin 4D-36 {signal ORAC}. 

r. Check that port A causes memory cycles and that 
signal CFA {pin 29C-7} is true for approximately 350 nsec. 

s. Remove all grounds, and restore address switches 
to original value. 

4-6 SWITCH SETTINGS 

Modules STl4 and LT26, included in features of the 
Sigma 5 computer, require specific settings of switches to 
enable proper operation of the computer, as summarized in 

4-2 

table 4-4. The reference designations for switches on these 
modules are indicated in figure 4-1 and figure 4-2. 

Primary sources for switch position data are listed in 
table 4-4. Table 4-5 summarizes functions of switches 
associated with the memory. Tables 4-6 through 4-17 
locate modules STl4 and LT26 as specified in module loca­
tion charts for each feature. Basic and optional features 
of the Sigma 5 computer are normally assigned locations in 
accordance with the Sigma 5 System Installation Drawing 
(137112). However, locations in a specific installation 
should be verified by consulting documents included with 
the equipment. 

Switches associated with the floating point feature permit 
display of data stored in the floating point registers on the 
CPU DISPLAY indicators when the REGISTER SELECT switch 
is in the EXT position. The type of data displayed is 
described in detail in Section III of this manual and is 
summarized in table 4-18. 

Table 4-2. Diagnostic Programming Manuals 

Publication 
Number Publication Title 

900712 Sigma 5 and 7 Diagnostic Control Progr.am 

900825 Sigma 5 and 7 Memory (~8K) Test 
{MEDIC 75} 

900870 Sigma 5 and 7 CPU Diagnostic System 
(Verify) 

900891 Sigma 5 and 7 CPU Diagnostic System 
(Pattern) 

900898 Sigma 5 and 7 CPU Diagnostic System 
{Float} 

. 900972 Sigma 5 and 7 Relocatable Diagnostic 
Program Loader 

901071 Sigma 5 and 7 Memory Interleaving Test 
(MIT) 

901076 Sigma 5 and 7 Systems Monitor 

901126 Sigma 5 and 7 Multiplexor lOP Test 

901134 Sigma 5 and 7 Interrupt Test 

901135 Sigma 5 and 7 Power Fai I-Safe Test 

901136 Sigma 5 and 7 Real-Time Clock Test 

901158 Sigma 5 and 7 Selector lOP Channel Test 

901516 Sigma 5 and 7 CPU Diagnostic Program 
I 

(Memory Protect) 

901519 Sigma 5 CPU Diagnostic System {Suffix} 

901523 Sigma 5 CPU Diagnostic System (Auto) 



FREQUENCY 
SELECTION 
SWITCHES 

PLACE ONE SWITCH UP 2 KHZ 
TO SELECT FREQUENCY 
FOR EACH COUNTER. -
IF ALL FOUR SWITCHES 500 HZ 
ARE DOWN, THE EXTER-
NALLY SUPPUED SIG-
NAL IS SELECTED (IF 
IT IS CONNECTED). 

SDS 901172 

COUNT COUNT COUNT 
PULSE I PULSE PULSE 

I INTERRUPT I INTERRUPT INT ERRUPT I 
I NO. 3 I NO. 2 I NO. 1 I 

901172A.4013 

Figure 4-1. Address Selector Module STl4 

Table 4-3. Diagnostic Programming Schedule 

Feature Publication Interva I 

Central Processing Unit I * I 2 weeks 

I I 4K Memory t 2 weeks 

Multiplexing lOP 901126 2 weeks 

Real-Time Clock 901136 4 weeks 

Power Fail-Safe 901135 8 weeks 

Memory Protection 901516 2 weeks 

Private Memory Register Extension 900891 2 weeks 

Floating Point 900898 2 weeks 

External Interrupt Chassis 901134 2 weeks 

Memory Expansion (8K, 12K, 16K) 900825 2 weeks 

Table 4-3. Diagnostic Programming Scheduie (Cont.) 

Feature Publication Interval 

Two- to Three-Port Expansion I ** 

Three- to Six-Port Expansion ** 

Additional Eight Subchannels 901126 2 weeks 

Selector lOP 901158 4 weeks 

Additiona I Se lector Channe I 901158 4 weeks 

* CPU is tested by five programs (described in publi­
cations 900870, 900891, 900898, 901519, and 901523) 
which also test optional features. 

t No test for 4K memory; see publication number 
900825 for memory of 8K and greater. 

** No test for expansion units. Malfunction detected 
as part of memory test. 

4-3 



SDS 901172 

901172A . .401 

Figure 4-2. Switch Comparator LT26 

Table 4-4. Switch Setting Data 

lnstal-
Function MLC lation Module Table Module 

Rea 1-Time Clock 135273 133279 STl4 4-6 
Location 

Port Expansion 117652 127409 STl4 4-1 

Memory Interleave 117652 127409 STl4 4-8 20C 

Memory Fault Number 117652 127409 STl4 4-9 

Memory Size 117652 127409 STl4 4-10 

MIOP Address 123656 123652 LT26 4-17 

Priority Interrupt 

Most Significant Digit 129700 124469 LT26 4-14 

Least Significant Digit 129700 124469 LT26 4-12 

Register Extension Unit 124819 124816 LT26 4-13 
21C 

SlOP Address 134000 133995 LT26 4-15 
I 

SlOP Bus Share 134000 133995 LT26 4-16 

Floating Point 145613 136253 STl4 4-18 

Starting Address 117652 127409 STl4 4-11 

4-4 

Table 4-5. Memory Setup Swi tches 
in STl4 Modules 

Function 

PORT EXPANSION , 
I 

S1-2
1 

S1-1 S1-3 S1-4 

STARTING ADDRESS - PORT C 
I 

j 

S1-6 Sl-7 S1-8 S1-9 

STARTING ADDRESS - PORT A , 
! 
S 1-11 Sl-12 S1-13 S1-14 

S1-5 

i 
Sl-10 

I 
Sl-15 

MEMORY SIZE INTERLEAVE SIZE , , 
i i I I 
Sl-1 S1-2 S1-3 S1-4 S1-5 

INTERLEAVE 
SIZE MEMORY NUMBER 

,...-L-, i 
, 

I 

51-6 S1-7 51-8 S1-9 S1-1O 

STARTING ADDRESS - PORT B , 
I i 

51-11 51-12 51-13 S1-14 S1-15 



Table 4-6. Address Selector Module ST14 Switch 
Settings for Counters (Location 3K) 

Counter 1 SI-12 SI-13 S1-14 S1-15 

Counter 2 S1-7 SI-8 SI-9 S1-10 

Counter 3 SI-2 S1-3 S1-4 S1-5 

External Freq 0 0 0 0 

500 Hz 1 0 0 0 

2000 Hz X 1 0 0 

8000 Hz X X 0 1 

Notes 

1. X denotes that switch setting is irrelevant 
2. Input counter 4 always wired to 500 Hz 

Table 4-7. Switch Settings for ST14 Modules in 
Port Expansion (Location 20C) 

Condition Switch 

Port A Expanded S1-2 set to 1 

Port A Not Expanded SI-2settoO 

Port B Expanded S 1-1 set to 1 

Port B Not Expanded 51-1 set to 0 

Table 4-8. Switch Settings for ST14 Modules in 
Memory Interleave (Location 21 C) 

Interleave S1-3 1 S1-4 1 SI-5 I SI-6 
Size 

I 
I I 

None 0 

1 

0 0 0 

8K 0 0 0 
I I I 

16K 0 

I I 
0 

I 
0 

32K 0 

64K 

Table 4-9. 5witch 5ettings for ST14 Modules Which 
Determine Memory Fault Number (Location 21C) 

Memory 
Number 51-8 SI-9 51-10 

0 

I 

0 

I 

0 

I 

0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

SDS 901172 

Table 4-9. Switch Settings for ST14 Modules Which 
Determine Memory Fault Number 

(Location 21C) (Cont.) 

Memory 
Number SI-8 SI-9 SI-10 

5 1 0 1 

6 1 1 0 

7 1 1 1 

Note 

Memory fault lights are numbered 1 through 8, so 
that light number is one greater than switch code. 

Tobie 4- iO. Switch Settings for ST14 Modules Which 
Indicate Memory Size (Location 21C) 

Memory 
Size 51-1 SI-2 

4K 0 0 

8K 0 1 

12K 1 0 

16K 1 1 

Table 4-11. Starting Address in STl4 Modules 

Port A (20 C) S11 512 513 514 S15 

Port B (20 C) 56 57 58 59 510 

Port C (21 C) 511 512 S13 S14 515 

Memory 
5ize 

OK 0 0 0 0 0 

4K 0 0 0 0 1 

8K 0 0 0 1 0 

12K 0 0 0 1 1 

16K 0 0 1 0 0 

20K 0 0 1 0 1 

24K 0 0 1 1 0 

28K 0 0 1 1 1 
(Continued) 

4-5 



SDS 901172 

Table 4-11 •. Starting Address in ST14 Modules (Cont.) 

Port A (20 C) 511 512 513 514 515 

Port B (20 C) 56 57 58 59 510 

Port C (21 C) 511 512 513 514 515 

Memory 
Size 

32K 0 1 0 0 0 

36K 0 1 0 0 1 

40K 0 1 0 1 0 

44K 0 1 0 1 1 

48K 0 1 1 0 0 

52K 0 1 1 0 1 

56K 0 1 1 1 0 

60K 0 1 1 1 1 

64K 1 0 0 0 0 

68K 1 0 0 0 1 

72K 1 0 0 1 0 

76K 1 0 0 1 1 

80K 1 0 1 0 0 

84K 1 0 1 0 1 

88K 1 0 1 1 0 

92K 1 0 1 1 1 

96K 1 1 0 0 0 

lOOK 1 1 0 0 1 

104K 1 1 0 1 0 

108K 1 1 0 1 1 

112K 1 1 1 0 0 

116K 1 1 1 0 1 

120K 1 1 1 1 0 

124K 1 1 1 1 1 

Table 4-12. Switch Settings for L T26 Modules in 
Priority Interrupt (Least Significant Address Digit) 

Module Interrupt Level Switch Module Switch 
Location Address· (lJ) Settingt 

7J XO None 0 

Xl None 0 

4-6 

Table 4-12. Switch Settings for LT26 Modules in 
Priority Interrupt (Leo)t Significant 

Address Di gi t) (Cont. ) 

Module Interrupt Leve I Switch Module Switch 
Location Address· (lJ) Settingt 

8J X2 51-1 1 

X3 51-2 1 

9J X4 51-3 1 

X5 51-4 1 

10J X6 51-5 1 

X7 51-6 1 

14J X8 51-7 1 

X9 51-8 1 

15J XA 51-9 1 

XB 51-10 1 

16J XC 51-11 1 

XD 51-12 1 

17J XE None 0 

XF 51-13 1 

Notes 

• X denotes the most significant digit of the address, 
and is determined by the group select switches in the 
priority interrupt chassis 

tSwitches corresponding to vacant module locations 
must be set to 0 

Table 4-13. Switch Settings for LT26 Modules in 
Register Extension Units (Location 32A) 

Register Extension 53-2 53-1 52-2 
Unit Assembly 

4 thru 7 0 0 1 

8 thru 11 0 1 0 

12 thru 15 0 1 1 

16 thru 19 1 0 0 

20 thru 23 1 0 1 

24 thru 27 1 1 0 

28 thru 31 1 1 1 

Note 

Positions of 52-1, Si - i, 54-1, and 54-2 irrelevant 



SDS 901172 

Table 4-14. Switch Settings for LT26 Module in Location 
30J of Priority Interrupt (Most Significant Address Digit) 

Required 
Group No. Address Sl-l S2-1 S3-1 

2 60 - 6F 0 0 1 

3 70 - 7F 0 0 1 

4 80 - 8F 0 1 0 

5 90 - 9F 0 1 0 

6 AO - AF 0 1 1 

7 BO - BF 0 1 1 

8 CO - CF 1 0 0 

9 DO - DF 1 0 0 

A EO - EF 1 0 1 

B FO - FF 1 0 1 

C 100 - lOF 1 1 0 

D 110-l1F 1 1 0 

E 120-12F 1 1 1 

F 130 - 13F 1 1 1 

Note 

Settings of S 1-2, S2-2, S3-2, and S4-2 irrelevant 

Table 4-15. Switch Settings for LT26 Module in 
SlOP Unit (Location 8F) 

Unit 
Address SI-1 S2-1 S3-1 S4-1 

0 0 0 0 X 

1 0 0 1 X 

2 0 1 0 X 

3 0 1 1 X 

4 1 0 0 X 

5 1 0 I X 

S4-1 

0 

1 
I 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

Table 4-15. Switch Settings for L T26 Module in 
SlOP Unit (Location 8F) (Cont.) 

Unit 
Address SI-1 S2-1 S3-1 S4-1 

6 1 1 0 X 

7 1 1 1 X 

Notes 

l. Sl-2 and S2-2 used for optional bus shore 

2~ 54-1 must be 1 for lost lOP in system, 0 for all 

others 

Table 4-16. Switch Settings for LT26 Module Using 
Optional Bus Shore with SlOP (Location 8F) 

SlOP Sl-2 S2-2 

First 1 1 

Second 0 1 

Table 4-17. Switch Settings for LT26 Module in 
MIOP Unit (Location 13C) 

Unit 
Address Sl-1 S2-1 S3-1 SI-2* 

0 0 0 0 X 

1 0 0 1 X 
I I 

2 0 1 0 X 

3 0 1 1 X 

4 1 0 0 X 

5 1 0 1 X 

6 1 1 0 X 

7 1 1 1 X 

* S 1-2 must be 0 for the lost MIOP in the system and 
1 for a II others 

4-7 



Paragraphs 4-7 to 4-14 SDS 901172 

Table 4-18. Switch Settings for Display of Floating 4-11 TABULAR LISTINGS (Tables 4-20 through 4-51) 
Point Register Information* (Location 6A) 

SWITCH SETTINGSt 
INFORMA TION 

Sl-5 Sl-4 Sl-3 Sl-2 Sl-l DISPLAYED 

0 X X X X Mi sce II aneous 

1 0 0 0 0 Sum Bus, Lower 

1 0 0 0 1 Sum Bus, Upper 

1 1 0 0 0 A-Register, Lower 

1 1 0 0 1 A-Register, Upper 

1 0 1 0 0 B-Register, Lower 

1 0 1 0 1 B-Register, Upper 

1 0 0 1 0 D-Register, Lower 

1 0 0 1 1 D-Register, Upper 

* REGISTER SELECT switch on PCP must be set to EXT 
and REGISTER DISPLAY switch must be set to ON 

tx indicates that the switch position is irrelevant 

4-7 CORRECTIVE MAINTENANCE 

4-8 Wirewrap Techni ques 

Solderless wirewrap is done with the wirewrap tools listed 
in table 4-1. For detailed information about solderless 
wirewrap, see SDS Application Bulletin 64-51-07. 

4-9 Power Supplies 

Power supplies are installed on the frames of the Sigma 5 
computer as described in section I. Reference documents 
for maintenance of the power supplies are listed in table 
4-19. 

4-10 PARTS LISTS 

The tables and figures in this section list and illustrate re­
placeable parts of the Sigma 5 computer group, including 
the accessory cabinet, the central processing unit, and the 
memory cabinet, with optional equipment listed in typical 
arrangements. 1 

1 Although typical arrangements are listed in this 
section, customer requirements would determine exact 
arrangements. 

4-8 

The replaceable parts are arranged in tables of parts lists, 
starting with the listing of the main assemblies of the 
equipment, table 4-20. Each main assembly is then broken 
down into subassemblies or component parts. Breakdown 
by table continues until all replaceable parts down to a 
field-replaceable level have been listed and illustrated. 

4-12 ILLUSTRATIONS (Figures 4-3 throudt 4-14) 

Each parts list table has an accompanying illustration that 
indicates the parts described in the table and their loca­
tions in the assembly that has been listed. 

4-13 PARTS LIST TABLES 

Each parts list table is arranged in six columns as follows: 

a. Figure and index number of the listed part. 

b. Brief description of the part. 

c. The reference designator of the part as shown on 
the schematic diagrams for that part. 

d. Manufacturer's code for the part. 

e. Manufacturer's part number for the part. 

f. Quantity of the part used per assembly. 

4-14 MANUFACTURER CODE INDEX (Table 4-52) 

The manufacturers of parts Ii sted in these tables are identi­
fied by code numbers. Their names and addresses may be 
found by consulting the manufacturer code index at the end 
of this section. 

Table 4-19. Reference Documents for Sigma 5 
Power Suppl ies 

Power Assembly Installation Schematic Technical 
Supply Drawing Drawing Diagram Manual 

PTl4 117262 123310 123311 SDS 901078 

PTl5 117263 123310 123381 SDS 901078 

PTl6 
I 

117264 
I 

123352 
I 

123533 I SDS 901080 

PTl7 117265 123636 123637 SDS 901079 

PTl8 127137 127156 127157 SDS 900866 



." <co 
c 
; 
• I 

~ 

VI 

CO 
3 
Q 

<..n 
() 
0 
3 

"'0 c 

~ 
G> a 
c 

"'0 

FRAME NO.2 

FRAME NO 1 
(OPTIONAL) 

pcp (133280) 

PT16 (117264) 

PT16 (OPTIONAL 
WITH FRAME NO.1) 

POWER 
DISTRIBUTION 
BOX (OPTIONAL) 

POWER-
DISTRIBUTION 
BOX (117428) " 

ACCESSORY CABINET NO. I 

~ 

CPU (117282) ~ 
NOTE: THIS FIGURE ILLUSTRATES A 

TYPICAL SIGMA 5 GROUP. 
SOME OF THE ITEMS SHOWN 
ARE OPTIONAL EQUIPMENT 
OR PART OF OPTIONAL EQUIPMENT 

FRAME FRAME 
NO.2 

CPU CABINET NO.1 

-------~ 

PT15 
(117263) 

POWER POWER 
PT14 [)ISTRIBUTlCN DISTRIBUTION 

(1172.2) 87'"'57(117428) 

'1 --- ..... FRAME NO.3 
(OPTIONAL) 

-FRAME NO.2 

-FRAME NO.1 
(OPTIONAL) 

r-'"t-ttt-tttt-ffi--\--__ PT16 (117264) 

MEMORY CABINET NO.1 

-PT16 (OPTIONAL WITH 
FRAME NO.3) 

-PT16 (OPTIONAL WITH 
FRAME NO.1) 

-PT17 (117265) 

-POWER 
DISTRIBUTION 
BOX (117428) 

~~PT17 (OPTIONAL WITH 
FRAME NO.1) 

VI 
o 
VI 

-0 
o 



SOS 901172 

Table 4-20. Sigma 5 Computer Group, Replaceable Parts 

Fig. & Description 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-3 Sigma 5 Computer Group SOS 

• Central Processing Unit With Integral SOS 117282 1 
lOP (see table 4-21 for parts break-
down)· 

• Basic 4K Memory Module (see table SOS 132546 1-8 
4-30 for parts breakdown) 

• Options: 

• • Real-Time Clock (see table 4-32 SOS 117616 1 
for parts breakdown) 

• • Power Fai I-Safe, (see table 4-33 SOS 117612 1 
.for parts breakdown) 

• • Memory Protection Feature (see SOS 134101 1 
table 4-34 for parts breakdown) 

• • Additional Register Block (see SOS 1-15 
tab Ie 4-35 for parts breakdown) 

• • Floating Point Arithmetic (see table SOS 134099 1 
4-39 for parts breakdown) 

• • Interrupt, two level (see table 4-40 SOS 132206 1-
for parts breakdown) 112 

• • Interrupt Control Chassis SOS 117330 1-14 
(see table 4-41 for 'parts breakdown) 

• • Additional Groups of 8 Multiplexor SOS 134077 1-3 
Channels for Integral lOP (see table 
4-42 for parts breakdown) 

• • Memory Expansion Kit, 4K to 8K SOS 117638 1-4 
(see table 4-43 for parts breakdown) 

• • Memory Expansion Kit, 8K to 12K SOS 117639 1-4 
(see table 4-44 for parts breakdown) 

• • Memory Expansion Kit, 12K to 16K SDS 117640 1-4 
(see table 4--45 for parts breakdown) 

• • Two-Way Access (see table 4-46 SOS 129463 1-8 
for parts breakdown) 

• • Three-Way Access (see table 4-47 SOS 128125 1-8 
for parts breakdown) 

• • Port Expander F (see table 4-48 SOS 130625 1-4 
for parts breakdown) 

It 

The Sigma 5 group may consist of a Central Processing Unit without integral lOP, M9del 8202, in place of 
the Central Processing Unit with integral lOP Model 8201. Modules required for the Integral lOP are shown In figure 4-8. 

4-10 



SOS 901172 

Table 4-20. Sigma 5 Computer Group, Replaceable Parts (Cont.) 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-3 
(Cont. ) 

• • Port Expander S (see table 4-49 SOS 130626 1-4 
for parts breakdown) 

• • lOP/DC Expansion Kit (see SOS SOS 117618 
publication No. 901515 for parts break-
down) 

• • I/O Processor (see SOS publication SOS 117610 
No. 901515 for parts breakdown) 

• • Seiector VO Processor "A" (see SOS 117620 
SOS publication No. 901515 for parts 
breakdown) 

• . Selector I/o Processor "B" (see SOS SOS 117620 
publication No. 901515 for parts break-
down) 

• • External Interface Feature (see table SOS 137086 1 
4-50 for parts breakdown) 

• • Extema I lOP Interface Feature (see SOS 1 
table 4-51 for parts breakdown) 

4-11 



SDS 901172 

Table 4-21. Central Processing Unit With Integral lOP, Replaceable Parts 

Fig. & Oescr i ption Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-3 Central Processing Unit With Integral lOP SDS 117282 Ref 
(see table 4-20 for next higher assembly) 

CPU Cabi net No.1: 

Frame No.1 (see table 4-22 for 1 
parts breakdown) 

· Frame No. 2 (see table 4-22 for 1 
parts breakdown) 

· Power Distribution Assembly (see SDS 130155 1 
table 4-25 for parts breakdown) 

· Power Supply, PT14 (see SDS publica- SDS 117262 1 
tion No. 901078 for parts breakdown) 

• Power Supply, PT15 (see SDS publica- SDS 117263 1 
tion No. 901078 for parts breakdown) 

• Power Supply, PT16 (see SDS publica- SDS 117264 2 
tion No. 901080 for parts breakdown) 

• Power Distribution Box Assembly SDS 117428 1 
(see table 4-27 for parts breakdown) 

· Module Assembly (see table 4-28 SDS 146275 1 
for parts breakdown) 

Accessory Cabi net No. 1 : 

f Frame No. 2 (see table 4-22 for 1 
parts breakdown) 

· Power Supply, PT18 (see SDS publica- SDS 127137 1 
tion No. 900866 for parts breakdown) 

• Power Supply, PT16 (see SDS publica- SDS 117264 1 
tion No. 901080 for parts breakdown) 

· Processor Control Panel (see table 4-29 SDS 133280 1 
for parts breakdown) 

· Power Distribution Box Assembly (see SDS 117428 1 
table 4-27 for parts breakdown) 

4-12 



Fig. & 
Index No. 

4-4 

SOS 901172 

Table 4-22. Frame Assembly, Replaceable Parts 

Description 

Frame Assembly (see table 4-21 for next 
higher assembly) 

• Fan, Top, Assembly (see table 4-23 
for parts breakdown) 

• Fan, Bottom, Assembly (see table 4-24 
for parts breakdown) 

FRAME----" 

FAN ASSEMBLY 
(117320) 

Reference 
Designator 

FAN ASSEMBLY 
(123943) 

Manu facturer 

SOS 

SOS 

SOS 

Figure 4-4. Frame Assembly With Fan Arrangement 

Part No. Qty 

Ref 

123943 1 

117320 1 

901172A.4002 

4-13 



SOS 901172 

Table 4-23. Fan, Top, Assembly, Replaceable Parts 

Fig. & Description Reference 
Manu fac turer Part No. Qty 

Index No. Designator 

4-4 Fan, Top, Assembly (see table 4-22 SOS 123943 Ref 
for next higher assembly) 

· Fan, electric 139 104052 3 

· Cord, ac 378 126374-001 1 

Table 4-24 •. Fan, Bottom, Assembly, Replaceable Parts 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-4 Fan, Bottom, Assembl y (see table 4-22 SOS 117320 Ref 
for next higher assembly) 

• Fan, electric 139 104052 3 

• Cord, ac 378 126374-001 1 

4-14 



SDS 901172 

Table 4-25. Power Distribution Assembly, Replaceable Parts 

Fig. & Description Reference Manufacturer Part No. Qty 
Index No. Designator 

4-5 Power Distribution Assembly (see table SDS 130155 Ref 
4-21 for next higher assembly) 

-1 • Contactor, 3-pole CBl 211 130422-001 1 

-2 • Switch, toggle, 3-position 51 54 130462 1 

-3 • Outlet, duplex, female J3, J4 106 127672 2 

-4 • Block, terminal TBl 107 109432-007 5 

-5 • Inlet, flanged, male P1 365 127675 1 

-6 • Connector, female J1 365 101430 1 

-7 • Socketj female J2 C1 100544 i oJl 

-8 Power Monitor Assembly (see table 4-26 50S 132389 1 
for parts breakdown) 

4-15 



4 

3 

l 

r---r-, 
I I I 
~ __ "' __ I 
L __ ...J 

~ I J 
LEFT END VIEW 

NOTE: REFERENCE SOS OWG: 130155-1 F 

4-16 

SDS 901172 

7 

0 \ = ) 

2 

D do ... (? 

<> " <> 0 0 . Q 

0 

a 0 

Q 0 0 . " .. 
0 () 

0 

0 0 0 

8 

2 

RIGHT END VIEW 

VIEW 1.\-1.\ 
901172A.4003 

Figure 4-5. Power Distribution Assembly 



SDS 901172 

Table 4-26. Power Monitor Assembly, Replaceable Parts 

Fig. & Oescr i ption 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-6 Power Monitor Assembly (see table 4-25 SDS 132389 Ref 
for next higher assembly) 

-1 • Fan, electric 139 104052 1 

-2 • Connector, solder tai I Jl, J2, J3 356 117874 3 

-3 • Transistor, SDS 225, 01, 02 1 107820 2 

-4 • Post, extractor, fuse XFl 49 100331 1 

-5 • Switch, subminiature toggle, spdt Sl 54 107396 1 

-6 • Diode, rectifier, SDS 125 CR1, CR2, CR3 211 123939 6 
CR4, CR5, CR6 

-7 • Transformer, power supply T1 145 117115 1 

-8 • Resistor, wirewound, 20w Rl 45 101155-102 1 

-9 • Capacitor, electrolytic C2 20 108474-019 1 

-10 • Capacitor, electrolytic Cl, C3 20 108474-004 2 

-11 • Plug, 10 pin Pl 51 100532 1 

-12 • Cable Driver Assembly, A T13 SDS 125260 1 

-13 • Detector Assembly, WT22 SDS 131183 1 

-14 • Regulator Assembly, WT21 SDS 131181 1 

-15 • Fuse, 3 AG, slow burning Fl 48 124865-011 1 

4-1? 



50S 901172 

12 13 14 

6 3 

PI 11~ 
a 

C2 

10 

8 

7 

NOTE: REFERENCE SOS OWG: 132389-1H 

901172A.4OO4 

Figure 4-6. Power Monitor Assembly 

4-18 



SDS 901172 

Table 4-27. Power Distribution Box Assembly, Replaceable Parts 

Fig. & Description 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-7 Power Distribution Box Assembly (see SDS 117428 Ref 
table 4-21 for next higher assembly) 

-1 • Power Distribution Box SDS 126846 1 

-2 • Receptacle, female (twist lock) 106 127677 3 

-3 • Receptacle, female . 106 127672 2 

-4 • Connector, male 365 127679 1 

-5 • Connector, male 365 127674 1 

, {4 
.~ • I 

] 

o o 

~l 
NOTE: REFERENCE SOS OWG: 117428-E 901172A.4OO5 

Figure 4-7. Power Distribution Box Assembly 

4-19 



SDS 901172 

Table 4-28. Module Assembly, Replaceable Parts 

Fig. & Oescr i ption 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-8 Module Assembly (see table 4-21 SDS 146275 Ref 
for next higher assembly) 

• Cable Receiver, printed wire assembly, SDS 123018 1 
ATlO 

• Cable Driver Receiver, printed wire SDS 123019 4 
assembly, ATl1 

• Cable Driver, printed wire assembly, SDS 124629 2 
ATl2 

• Cable Driver, printed wire assembly, SDS 127797 7 
AT21 

• Clock Driver, printed wire assembly, SDS 128166 4 
AT23 

• Clock Driver, printed wire assembly, SDS 125260 2 
ATl3 

• Buffered AND/OR Gate, printed wire SDS 116056 9 
assembly, BT10 

• Band Gate, printed wire assembly, BTl 1 SDS 116029 22 

• Gated Buffer, printed wire assembly, SOS 125262 21 
BTl 6 

• Gated Buffer, printed wire assembly, SDS 126330 2 
BTl 7 

• Band Gate, printed wire assembly, BTl8 SDS 126613 7 

• Buffered Matrix, printed wire assembly, SDS 116407 1 
BTl 3 

• Clock Osci IIator, printed wire assembly, SDS 133694 1 
CTl6 

• Delay Line, printed wire assembly, DTl4 SDS 127319 3 

• Register Flip-Flop, printed wire assem- SDS 124628 6 
bly, FTl7 

• Counter Flip-Flop, printed wire assembly, SDS 124634 10 
FTl8 

• Universal Flip-Flop, printed wire SDS 124713 24 
assembly, FT22 

• Fast Access Memory, 16X 18, pri nted SDS 126743 .. 
wire assembly, FT25 

• Buffered Latch No.3, printed wire SDS 126856 1 
assembly, FT26 

• Register Flip-Flop, printed wire SDS 133251 1 
assembly, FT 41 

• Gate Expander No. 1, printed wire SDS 124750 2 
assembly, GTlO 

(Continued) 

4-20 



SOS 901172 

Table 4-28. Module Assembly, Replaceable Parts (Cont.) 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-8 • Gate Expander No.2, pri nted wi re SOS 125271 6 
(Cont. ) assembly, GTll 

• Gate Expander, printed wire assembly, SOS 133375 8 
GT12 

• Delay Line Sensors, printed wire SOS 127391 2 
assembly, HT15 

• Gated Delay Line Sensors, printed wire SOS 128011 I 
assembly, HTl6 

• Inverter Matrix, printed wire assembly, SOS 117000 I 
ITl3 

• Gated Inverter, printed wire assembly, SOS 125264 33 
ITl6 

• Gated Inverter, printed wire assembly, SOS 126331 4 
1T17 

• Gated Inverter, printed wire assembly, SOS 126747 18 
1T20 

• NAND Gate, printed wire assembly, SOS 128190 29 
IT25 

• NAND Gate, printed wire assembly, SOS 126372 I 
1T18 

• NAND Gate, printed wire assembly, SOS 128192 1 
IT26 

• Buffer Inverter No. 1, printed wire SOS 123016 5 
assembly, lTl3 

• Buffer Inverter No.2, printed wire SOS 123017 12 
assembly, lT14 

• Priority Interrupt, printed wire assem- SOS 123379 4 
bly, lTl6 

• Carry No.1, printed wire assembly, SOS 123590 5 
lTl8 

• logic Element, printed wire assembly, SOS 124717 8 
lT20 

• logic Element,' printed wire assembly, SOS 126615 4 
lT21 

• Clock logic, printed wire assembly, SOS 127643 I 
lT29 

• Adder No.3, printed wire assembly, SOS 133383 17 
lT42 

• SW Module, printed wire assembly, ST14 SOS 123008 1 

• Time Base Selector, pri nted wi re assem- SOS 129460 1 
bly, ST29 

(Conti nued) 

4-21 



SOS 901172 

Table 4-28. Module Assembly, Replaceable Parts (Cont.) 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-8 • Terminator Module, printed wire assem- SOS 116527 40 
(Cont. ) bly, XTlO 

• Clock Term, printed wire assembly, SOS 132009 4 
XTl8 

• Cable Plug-Clock, printed wire assem- SOS 128164 5 
bly, ZT23 

• Jumper Module, printed wire assembly, SOS 139244 1 
ZT50 

4-22 



SIGMA 5 MODULES 
CPU CABINET NO.1, FRAME NO.1 

32 31 30 29 28 27 26 25 24 23 22 21 21) 19 18 17 16 15 14 13 12 11 10 9 8 i' 6 5 4 3 2 1 

r~n~A~~~A~r~~~A~A~~[~~[9A~~~A[1]~~~~ 
CHASSIIAL UUUUUUUUUL UUUUUUUU 'JU JUUUUU 18 UU~~ 

." 

~. n M ~ A ~ ~ ~ ~ M A f ~ n AM M ~ ~ ~ A~ [~~ n A A ~ [5] M ~ n n ~ CHASSISBUUUUUUUUUUL UUUUUUUUlju JUUUUU UUUU 
c 
ib 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 i' 6 5 4 3 2 1 

~ ~~~~~~~~A~fARAA~A~~[~~[~AAA~Ar]~A~A ~ CHASSISCUUUUUUUUUUL UUUUUUUU IJU juljUUUL UUU~ ~ 
~ 32 31 30 29 28 27 26 25 24 2J 22 21 20 19 18 17 16 15 14 13 12 11 010 09 08 07 

u
6 l5] u4 03 

u2 ~1 ~ 

_~ CHASSISDuuuDDUUUUOL UOUUUOUUUU[J ~ ~; ~! ~ ~~ ~: 1: ~ ~ ~ § 
." 

~ U:U~U:U~U:U~U:U~~UU:L~lu~u:Dl:u:u:Dl:u~u~['J~U~Jl:Dl~~~u:u:D~l5]u~~~~~ulT - 16 16 10 14 14 16 25 14 13 10 16 20 10 17 25 10 25 14 17 20 18 18 11 14 20 10 21) 14 46 46 23 
(/) CHASSIS E ® tG\ @ 
if 8 & 12 
~ 

Q., 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9· 8 7 6 5 4 3 2 1 

~ uTDTuTOTuTuTuTuTu~DTLTluTuTuTuTDTuTuTDT[JuT[muT~TuT~TDT~luT~T~T~ [ 1616 41 22 16 11 10 22 22 11 22 11 11 25 17 18 11 16 16 16 10

J 
25 10 12 2513 16 1:1 1646 46 

~ CHASSIS F * 
® ® @~ @@ 

8 
~ NOTES: CD MODULES REQUIRED FOR FLOATING POINT FEATURE, ASSY NO. 134099 CD MODULES REQLlRED FOR POWER FAIL-SAFE FEATURE, A'5SY NO. 117612 

t ); CD MODULES REQUIRED FOR MEMORY PROTECTION FEATURE, ASSY NO. 134101 CD MODULES REQUIRED FOR TWO ADDITIONAL REAL-TIME CLOCKS, ASSY NO. 117616 
~ ~ CD MODULES REQUIRED FOR EXTERNAL INTERFACE FEATURE, ASSY l'lO. 137086 ® MODULES REQUIRED FOR INTEGRAL lOP WITH EIGHT MUL TlPLEXER CHANNELS, 
~ ~ f4\ MODULES REQUIRED FOR ADDITIONAL REGISTER BLOCKS, ASSY I-lO. 130071 ~RSES(~ NIROED· 1045N978

y 
IF EXTER 

I .::;; \::J ... U L NAL lOP IS INSTALLED ....., f5\ MODULES REQUIRED FOR REGISTER EXTENSION INTERFACE FEATURE, ASSY NO. 132208 ~ \:V. 



SIGMA 5 MODULES 
CPU CABINET NO.1, FRAME NO.2 

32 31 30 29 28 27 26 25 24 2~. 22 21 20 19 18 17 16 15 14 13 11 11 10 

CHASSIS'~ ~ A A rl r1 ~ n ~ rl ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
~~UUUUUUUE~~~U~~~~~~~~~U~~~~UUUU 

32 31 30 29 28 27 26 25 24 23 22 2 I 20 19 18 17 16 15 14 13 1:' II 10 9 8 7 6 5 4 3 2 1 

CHASSlSL~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ [] ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
32 31 30 29 28 27 26 25 24 2~. 22 21 20 19 18 17 16 15 14 13 I:' 11 10 9 8 7 6 5 4 3 2 1 

CAASSISM~ ~ ~ ~ u ~ u u ~ ~ ~ u u ~ ~ u ~ ~ u ~ [] ~ ~ ~ ~ ~ ~ u u u ~ ~ 
32 31 30 29 28 27 26 25 24 2~ 22 21 20 19 18 17 16 15 1'1 13 1;' II 10 9 8 7 6 5 4 3 2 1 

CAASSlSN~ U U U ~ U ~ ~ u ~ ~ ~ ~ u u u.~ u u u [J ~ u u u u u u ~ ~ ~ ~ 
32 31 30 29 28 27 26 25 24 2,1 22 21 20 19 18 17 16 15 1 ~ 13 1 :! 11 10 9 8 7 6 5 4 1 2 1 

. C~SSlSPu ~ u ~ ~ ~ u ~ ~ ~ u u ~ u u u ~ u u ~ lJ u u ~ ~ ~ u u ~ u u ~. . 
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1 3 1 :, 11 1 0 9 8 7 6 5 4 3 2 I 

CHASSIS Q~ ~ ~ ~ ~ ~ ~ ~ u ~ ~ ~ u u ~ ~ ~ u U U l] ~ ~ ~ u ~ u u ~ u u ~. 
32 31 30 29 28 27 26 25 24 n 22 21 20 19 18 17 16 15 1~ 13 I:' 11 10 9 B 7 6 5 4 3 2 1 

CH"SlSRU ~ ~ ~ ~ u ~ ~ u u ~ u u uu u u ~ ~ ~ [] u u ~ u ~ u u ~ ~ u ~. 
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1 3 1 :' II 10 • 9 8 7 6 5 4 3 2 1 

CAASSlSS~ ~ U U U U U ~ U ~ ~ ~ u u ~ ~ u u ~ ~ [] ~ u ~ ~ ~ ~ ~ ~ ~ ~ ~ 
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 I:! 11 10 9 8 7 6 5 4 3 2 I 

C~SSlST~ ~ ~ ~ ~ ~ u u u u u ~ u ~ u ~ ~ ~ ~ ~~j ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
1------11 i NOTES: CD MODULES REQUIRED FOR ADLiITlONAL GROUPS OF EIGHT MULTIPLEXER@USEZT46PARTNO.I3044:1-442(RIBBONCABLE) FROM lQ 0 

CHANNELS FOR THE INTEGRAL lOP, ASSY NO. 134077 03F 32S (J') 

.,"T1 @ MODULE REQUIRED FOR THE EXTERNAL lOP INTERFACE FEATURE 02F 31Q 
-. 03E 32M -..0 

CO @ USE ZT46 PART NO. 130443-852 (RIBBON CABLE) FROM TO ~ a 
Z c "Oi'C 32Q ~ USE ZT45 PAF!T NO. 13321.H82 (RIBBON CABLE) FROM TO ...... 

.., @ . OIM 01R ...... ? (1) 12 USE ZT46 PART NO. 130443-362 (RIBBON CABLE) F~8t ~ USE PART NO. 133212-171 FOR OTHER ZT45'S '! 

...... t 02A 31K '" 
.... CD 010 32N 

• 02E 31 P 
"T1 .., 
~ ~ 
(1) a.. 
...... s.. 

(1) 

VI» 
:::rUt 
~ m 
- 3 ",0-

Q..:'< 
;g '" () 
:::: CII " 

'" ~urQ 
01 0 -- 0-t"1~f~ I 
t~ [ 



SOS 901172 

Table 4-29. Processor Control Panel Assembly, Replaceable Parts 

Fig. & Description 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-9 Processor Control Panel Assembly SOS 133280 Ref 
(see table 4·-21 for next higher assembly) 

-1 Switch, lever, single state S2, S4, S6 thru S 12, 384 124406-001 11 
S41, & S41 

-2 Switch, lever S76, S77 384 124406-003 2 

-3 Switch, lever, 8 station S24 thru S39 384 124404 6 
S44 thru S75 

-4 Switch, lever S21, S22, S23, S43 156, 384 126993 4 

-5 Switch, lever S5, S20, S42 156, 384 126994 3 

-6 Switch, alternating action dpdt S19 162; 203; 381 111455 1 

-7 Switch, momentary, dpdt S13, S14, S16, 162, 203, 381 111459 5 
S17, S18 

-8 Switch, rotary S1 55, 208 115928 1 

-9 Switch, rotary S3 SOS 133967 1 

-10 Switch, thumbwheel, 1-6 position S16 82, 140, 387 126600-003 1 

-11 lamp, miniature, incandescent 83, 84, 211, 382 102266 18 

-12 lamp, miniature, incandescent 56, 63, 104 123710 88 

=13 ReceptCic Ie, femu Ie j32 365 101430 1 

-14 Speaker, miniature SP1 379, 380 108042 1 

-15 I Receptacle, male J31 1365 127675 1 

-16 lampholder (INTERRUPT) OS22 162, 203, 381 116284-002 1 

-17 lampholder 0N AIT) OS23 162, 203, 381 116284-003 1 

-18 lampholder (RUN) OS24 162, 203, 381 116284-004 1 

-19 lampholder (NORMAL MOOE) OS25 162, 203, 381 116284-005 1 

-20 lampholder (CLEAR) OS26 162, 203, 381 116284-006 1 

-21 lampholder (lOAO) OS27 162, 203, 381 116284-007 1 

-22 lampholder (I/O RESET) OS99 162, 203, 381 116284-008 1 

-23 lampholder (CPU RESET) OS 100 162, 203, 381 116284-009 1 

(Continued) 

4-27 



SDS 901172 

Table 4-29. Processor Control Panel Assembly, Replaceable Parts (Cont.) 

Fig. & Description 
Reference 

Manufacturer Part No. Oty 
Index No. Designator 

4-9 
(Cont.) 

-24 Lampholder (POWER) DS28 162, 203, 381 116284-010 1 

-25 Lamp Driver, printed wire assembly, OT14 SDS 132055 1 

-26 Console Interface, printed wire assembly, SDS 134936 7 
NT26 

-27 Cable Plug-Clock, printed wire assembly, SDS 124164 1 
ZT23 

-28 Block, terminal TBl 107 109432-009 1 

-29 Connector, one pin 221 130811 2 

4-28 



iO 

21 
7 
II 

22 
7 
J1 

~4 -It--+-____ I 
11 

23 

000 

1~ _u._-+--=--t::c:::::= ... ...!:o~OI~~o:!.!o:!..!g:!.lil __ jIL _~IIL _---RI_---IIIOI,,;;;;....;;;;o...;;;;o....;;;;d;r .... 1 _----' 
12 

o I 000110 011 ollOoo~lOoodlOooOl 
2_"""----1 

l-r--_~ 

12 

3 

NOTE: REFERENCE SOS OWG: 133280-18 

11_ SIGMR S I I I II 

SDS 901172 

.1 

5 

8 

19 
11 

17 
II 

16 
11 
7 

[i" 
18 
11 

5 

4 

Figure 4-9. Processor Control Panel Assembly 
(Sheet 1 of 2 sheets) 

90 1172A. 4007/1 

4-29 



Ii II 
! 1 

9 

'9' 
---v 

C10R 

C7R 
VIEW D-D IEB 

k! 
28 

15 29 13 I(! 
EB 

~ 

V 
14 

@ 

~ ~b 
Cf;t 

VIEW 8-8 

SECTION E-E 

T 
c: 

VIEW C-C 

NOTE: REFERENCE SDS DWG: 133280-28,38 

4-30 

EI3 
fa 

IS 

e 

o 

SDS 901172 

@C@)@)@ 191 

(9) 

'Q' 

~I~ 

~e 

VW' 'W 

V=::='Q' ~ 

~ ~ ~ 
V oQl 

T 
c: 

Figure 4-9. Processor Control Pane I Assembly 
(Sheet 2 of 2 sheets) 

901172A. 4007/2 



Fig. & 
Index No. 

4-3 

SOS 901172 

Table 4-30. Memory Module, Basic 4K, Replaceable Parts 

Description 

Memory Module, basic 4K (see table 
4-20 for next higher assembly») 

· Frame No. 1 (see table 4- 22 for 
parts breakdown)· 

• Frame No. 2 (see table 4-22 for 
parts breakdown)· 

· Power Supply, PT16 (see SOS publica­
tion No. 901080 for parts breakdown) 

· Power Suppiy, PIl7 (see SDS publica­
tion No. 901079 for parts breakdown) 

• Module Assembly (see table 4-3i for 
parts breakdown) 

· Memory Cabinett Assembly, power 
distribution box (see table 4-27 for 
parts breakdown) 

Reference 
Designator 

SOS 

SOS 

SOS 

SOS 

SOS 

SOS 

SOS 

Manu fac turer Part No. Qty 

132546 Ref 

117264 

117265 

117428 

* The first basic memory block (up to 16K with memory increments, assemblies 117638, 117639, and 117640) is con-
tained in frame 2 of memory cabinet 1. The next memory block is contained in frame 1 of memory cabinet 1. Addi­
tional memory blocks, up to 8 total, are contained in memory cabinets 2 through 4 

t 
Additional memory cabinets are added as required 

4-31 



SDS 901172 

Table 4-31. Module Assembly, Replaceable Parts 

Fig. & Description Reference Manufacturer Part No. Qty 
Index No. Designator 

4-10 Module Assembly (see table 4-30 for SDS Ref 
next higher assembly) 

· Core Diode Module Assembly SDS 111550 1 

· Core Diode Module Assembly SDS 111549 3 

· Cable Receiver, ATlO SDS 123018 1 

• Cable Driver Receiver, A Tl1 SDS 123019 6 

· Rejection Gate, ATl6 SDS 126611 2 

· Cable Driver Receiver, AT31 SDS 133053 1 

· Gated Buffer, BTl6 SDS 125265 6 

· Fast Buffer, BT22 SDS 127393 11 

· Buffered AND/OR Gate, BT24 SDS 130967 3 

• Band Gate, BT25 SDS 130947 1 

• Delay Line, DTl1 SDS 126963 2 

• Buffered Latch No.2, FT37 SDS 130942 3 

• Buffered Latch No.3, FT38 SDS 130952 7 

· Memory Sense Amplifier, HTl1 SDS 123010 6 

· Delay Line Sensor, HTl5 SDS 127391 3 

Memory Preamplifier, HT26 SDS 131633 6 

· Gated Inverter, IT 14 SDS 126617 6 

· Gated Inverter, ITl6 SDS 125264 3 

· NAND/NOR Gate, IT24 SDS 128188 2 

· NAND Gate, IT25 SDS 128190 2 

· Logic Element, LTl9 SDS 123915 1 

• Logic Element with inverter, LT20 SDS 124717 1 

· Logic Element with buffer, LT21 SDS 126615 5 

· Parity Generator! LT34 SDS 130958 9 

(Continued) 

4-32 



SDS 901172 

Table 4-31 Module Assembly, Replaceable Parts (Conto) 

Fig. & Description 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-10 o Memory Switch A, STlO SDS 123005 10 
(Conto) 

o Memory Switch B, STll SDS 123006 16 

o Toggle Switch Module, STl4 SDS 123008 2 

o Memory Preamp Selector, STl5 SDS 123012 1 

o Voltage Regulator, STl7 SDS 131292 1 

o Inhibit Driver, ST21 SDS 132153 6 

o Memory Driver, ST22 SDS 132159 1 

o Strobe Generator, ST34 SDS 130902 2 

o Terminator Module, XTlO SDS 116257 16 

o Resistor Module C, XT 13 SDS 127791 9 

o Resistor Module D, XTl4 SDS 12n93 1 

o Cable Intra-frame Assembly, ZT35 SDS 132411-171 3 

o Coaxial Cable Connection SDS 115832 2 

. Resistor Connector Assembly SDS 127315 2 

4-33/4-34 



SIGMA 5 
MEMORY CABINET FRAMES I AND 2 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 

~T~T~T~T~T~T~T~T~T~T~T~T~T~T~T~T~TLT~TLTl~T~T~T~T~T~T~T~T~T~T~T~T 
13 13 13 13 13 14 13 13 13 13 10 25 34 34 34 34 34 34 22 34 34 10 16 :rJ 11 :rJ 11 :rJ 11 :rJ 11 10 

CHASSIS A CD CD 0 0 0 0 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 IB 17 16 15 14 13 12 II 10 9 8 7 6 5 4 3 2 1 

~T~T~T~~T~T~,n~T~TI~T~T~T~T~T~T~T~T~T~T[T~T~T~T~T~T~T~'~~'~T~T~T 
10 35 35 16 22 ! 22 10 14 38 14 38 24 24 24 24 38 14 38 14 10 16 35 :rJ 11 37 11 37 11 :rJ II 10 

CHASSIS B CD CD CD CD 8) 0 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 J 2 I 

~T~T~T~T~~T~l~T~TuTuT,uTuT~TuT~T~T~T~TLTu'~TuTuT~T~T~Tu',~'~'uT~' 
10 35 35 22 11 15 15 11 15 10 14 14 20 21 20 21 20 21 21 21 10 35 21 11 37 11 16 10 16 31 10 

CHASSIS C ,CD CD 0 8) 0 
I 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 

10 10 16 16 16 16 22 22 22 22 22 22 10 25 25 16 16 34 14 34 38 14 10 21 11 22 10 19 11 38 10 10 

~TuTuTuTuTuTuTu'uT~TuTuT~TuTuTuTuTuT~T['I~Tu~uT~TuT~TuT~T~T~T~TuT , CHASSIS D CD 
I 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

U
T 

uT u

T uT uT 

~T ~T uT 

~T ~T ~T ~T ~T ~T u
T 

u

T 

u
T 

u' u
T 

u

T 

u

T 

u

T 

u
T 

u
T 

~T ~T [ST ~T u' u
T 

ST ~T 
21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 22 22 22 22 22 22 10 10 10 10 

CHASSIS E (0 CD CD 
00 0000000 00 00 

(2) 0 <2) 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 4 

Ul~ ~li ul~ ~1~ ~i ~i ~i ~; ~li u

1i ~li u~i ~i ~i ~i ~i ~li ~li ~li u

1i ~i ~i ~i ~i u

1i 

u

1i 

[Jli u

1i ~i ~i ~i ~i 0000 0000 CD o CD CD 0000 
CHASSIS F 

0000 0000 0000 0000 
0000 OO00@ @000 0@0@ 

32 31 30 29 2B 27 :>6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

CHASSlSG~~~~' ,~~~~~~, ,~~~~~~, ,~~~~~~ II ~~ 
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 (, 5 4 3 2 1 

m~mm~ ~m~m~~~~ ~mmm~~~~ ~mm~~~MrnOOM~ 
C~SlSHUU~~ ~ i ~~U J~~ i i ~~uu~~i i ~~uu~~~~~~ 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 !I 7 (, 5 4 3 2 1 

C~ASSlSJ~~ i ~~~~~~ J i ~~~ i ~~~~ i ;J~~~~~~ i ~~~~ ~ 
~ '"T1 NOTES: CD MEMORY INCREMENT - 4096 WORDS, 1'4K TO 8K) 117638 0 ASSEMBLY, THREE-WAY ACCESS, 128125 ::: 

(1) cO· 0 MEMORY EXPANSION KIT (BK TO 12K) 117639 CD ASSEMBLY, TWO-WAY ACCESS, 129463 ;:j 
3 c CD MEMORY EXPANSION KIT (12K TO i16K) 117640 
g (D 
'< ~ 
()I 
Q ---g::P 
::l 
(1) 

... -~ 
'"T1 0 
.., 0.. 
Q C 
3 m 
~ » 

en 
- en 
Q (1) 

-o::l 5-
00.._ 

~ :::",->'< 
I ~ ... 

~ ~ 
~ 8 
I 00 

W 

~ ~----~-----------------------.--------------------------------------------~ 



SOS 901172 

Table 4-32. Real-Time Clock, Replaceable Parts 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-8 Real-Time Clock (see table 4-20 SOS 117616 Ref 
for next higher assembly) 

• Pri nted Wi re Assemb I y, lT16 SOS 123379 2 

I I I I I 

Table 4-33. Power Fail-Safe, Replaceable Parts 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-8 Power Fail-Safe (see table 4-20 for next SOS 117612 Ref 
higher assembly) 

• Printed Wire Assembly, lT16 SOS 123379 1 

Table 4-34. Memory Protection Feature, Replaceable Parts 

Fig. & Description Reference 
Manu fac turer Part No. Qty 

Index No. Designator 

4-8 Memory Protection Feature (see table SOS 134101 Ref 
4-20 for next higher assembly) 

• Fast Access Memory, FT25 SOS 123743 4 

• NAND/NOR Gate, IT24 SOS 128188 I 

I 

4-37 



Fig. & 
Index No. 

SOS 901172 

Table 4-35. Additional Register Block, Replaceable Parts 

Reference 
Designator 

Manufacturer Description 

-
~-

Part No. Qty 

4-8 Additional Register Block (see table 
4,-20 for next higher assembly) 

SOS Ref 

• High-Speed Register Page (see table 
4-36 for parts breakdown) 

• Register Extension Unit (see 
table 4-37 for parts breakdown) 

• Register Extension Unit Interface 
(see table 4-38 for parts breakdown) 

SOS 

SOS 

SOS 

117621 

130071 

132208 

*The first three additional register blocks (0 to 3) require only one high-speed register page assembly to supple­
ment the additional register blocks. The next four additional register blocks (4 to 7) require one to four register page 
assemblies and one register extention unit, as do the (8-11) blocks and the (12 to 15) blocks. 

tThe register extension unit interface is added with the first register extension unit only. 

Table 4-36. High-Speed Register Page, Replaceable Parts 

Fig. & Description 
Reference 

Manufacturer Part No. 
Index No. Designator 

4-8 High-Speed Register PaQe (see table SOS 117621 
4-35 for next higher assembly) 

4-11* • Printed Wire Board Assembly, FT25 SOS 126743 

*The first three high-speed register page modules are installed in the CPU and are shown in figure 4-8. Addi-
tional modules are installed in the register extension units, assembly No. 130071, and are shown in figure 4-11. 

4-38 

1 

1* 

1t 

Qty 

Ref 

4 

I 

I 



SOS 901172 

Table 4-37. Register Extension Unit, Replaceable Parts 

Fig. & Description 
Reference 

Manufacturer Part No. 
Index No. Designator 

4-11 Register Extension Unit (see table 4-35 SOS 130071 
for next higher assembly) 

· Printed Wire Board Assembly, All 1 SOS 123019 

• Printed Wire Board Assembly, BT16 SOS 125262 

• Printed Wire Board Assembly, IT16 SOS 125264 

• Printed Wire Board Assembly, lT26 SOS 126982 

• Printed Wire Board Assembly, X110 SOS 116257 

32 31 30 29 28 27 26 25 2~ 23 22 21 20 19 18 !7 16 15·14 13 12 11 10 9 8 7 6 5 " 3 2 

ZT AT IT AT BT FT FT FT FT FT FT FT FT 
23 JJ 16 II 16 25 25 25 25 25 25 25 25 

0 CD CD CD CD 
0 CD ® 0 ® 0 ® 0 

NOTES: CD MODULES REQUIRED FOR EACH REGISTER EXTENSION UNIT 
CHASSIS, ASSEMBLY NUMBER 130071 

o 
® 
8) 
® 
o 
o 
® 

MODULES REQUIRED FOR REGISTER EXTENSION UNIT 
INTERFACE, ASSEMBLY NUMBER 132208 

MODULES REQUIRED FOR FIRST HIGH-SPEED REGISTER 
PAGE, ASSEMBLY NUMBER 117621 

MODULES REQUIRED FOR SECOND PAGE 

MODULES REQU,RED FOR THIRD PAGE 

MODULES REQUIRED FOR FOURTH PAGE 

WHEN 3 PAGES ARE INSTALLED, REMOVE XTJO 

WHEN 4 PAGES ARE INSTALLED, REMOVE XTIO 

AT FT FT FT FT AT XT XT BT AT XT FT FT FT FT 
II 25 25 25 25 II 10 10 16 II 10 25 25 25 25 

CD CD CD CD CD CD CD 
(}) 0 ® 0 ® 0 (}) CD ® 0 

® 

Qty 

Ref 

5 

2 

1 

1 

3 

901172A.4009 

Figure 4-11. Module Assembly, Register Extension Unit, Register Interface, High-Speed Register Page 

4-39 



SDS 901172 

Table 4-38. Register Extension Unit Interface, Replaceable Parts 

Fig. & 
Description 

Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-8 Register Extension Unit Interface (see SDS 132208 Ref. 
table 4-35 for next higher assembly) 

4-11 
• Printed Wire Board Assembly, ATl1 SDS 123019 4 

• Printed Wire Board Assembly, AT23 SDS 128166 1 

• Cable Module Assembly, ZT23 SDS 128164 2 

4-40 



SOS 901172 

Table 4-39. Floating Point Arithmetic, Replaceable Parts 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-8 Floating Point Arithmetic (see table SOS 134099 Ref. 
4-12 4-20 for next higher assembly) 

· Cable, single condition coaxial SOS 128147-372 14 

· Printed WIre Board Assembly, AT23 SOS 128166 2 

• Printed Wire Board Assembly, BTl 0 SOS 116056 3 

· Printed Wire Board Assembly, BTl 1 SOS 116029 2 

· Printed Wire Board Assembly, BTl 6 SOS 125262 3 

• Printed Wire Board Assembly, BTl 8 SOS 126613 1 

• Printed Wire Board Assembly, FTl8 SOS 124634 4 

• Printed Wire Board Assembly, FT22 SOS 124713 10 

- • Printed Wire Board Assembly, FT26 SOS 126856 4 

• Printed Wire Board Assembly, FT41 SOS 133251 7 

• Printed Wire Board Assembly, GTl1 SOS 124881 2 

· Printed Wire Board Assembly, GTl2 SOS 133375 7 

· Printed Wire Board Assembly, ITl6 SOS 125264 9 

Printed Wire Board Assembly, In7 C'r"\C' i2633i 1 .JL/.J 

• Printed Wire Board Assembly, IT25 SOS 128190 3 

· Printed Wire Board Assembly, IT26 SOS 128192 1 

· Printed Wire Board Assembly, LTl8 SOS 123590 9 

• Printed Wire Board Assembly, LT20 SOS 124717 2 

· Printed Wire Board Assembly, LT42 SOS 133383 29 

• Printed Wire Board Assembly, STl4 SOS 123008 1 

· Printed Wire Board Assembly, XTlO SOS 116257 11 

• Printed Wire Board Assembly, ZT25 SOS 128164 1 

• Ribbon Cable Assembly, ZT46 SOS 133204-113 1 

I 

4-41 



.~ 
I 
.~ 
Ir-.l 



SOS 901172 

Table 4-40. Interrupt, 2 Level Assembly, Replaceable Parts 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-13 Interrupt, 2 Level Assembly (see table SOS 132206 Ref. 
4-20 for next higher assembly) 

• Printed Wire Board Assembly, LT16 SOS 123379 1 

32 31 30 29 28 ?J 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 .4 3 2 

AT LT AT AT 8T 8T IT BT AT LT LT LT LT 
11 26 13 11 17 16 25 17 11 16 16 16 16 

CD CD CD CD (3) CD (3) (3) CD CD CD CD CD 

NOTES: CD MODULES REQUIRED FOR TOTAL OF 16 PRIORITY INTERRUPTS 
(EIGHT TWO-LEVEL INTERRUPT ASSEMBLIES, ASSEMBLY NO. 132206) 

(3) MODULES PROVIDED WITH EACH INTERRUPT CONTROL CHASSIS, 
ASSEMBLY NO. 117330. ONE INTERRUPT CONTROL CHASSIS REQUIRED 
FOR EACH i6 ADDITIONAL INTERRUPTS. THREE INTERRUPT CONTROL 
CHASSIS MAY FIT IN CPU CABINET, FRAME I, LOCATIONS G, H, AND 
J. ADDITIONAL CHASSIS INSTALLED IN ACCESSORY CABINET 

AT LT LT LT 
11 16 16 16 

(3) CD CD CD 

Figure 4-13. Module Assembly, Interrupt Control Chassis 

LT IT BT XT 
16 25 18 10 

CD (3) (3) (3) 

901172A.4011 

4-43 



SOS 901172 

Table 4-41. Interrupt Control Chassis, Replaceable Parts 

Fig. & Description 
Reference 

Manu fac turer Part No. Qty 
Index No. Designator 

4-13 Interrupt Control Chassis (see table SOS 117330 Ref. 
4-20 for next higher assembly) 

· Printed Wire Board Assembly, AT 11 SOS 123019 4 

• Printed Wire Board Assembly, ATl3 SOS 125260 1 

• Printed Wire Board Assembly, BTl 6 SOS 125262 1 

· Printed Wire Board Assembly, BTl 7 SOS 126330 2 

• Printed Wire Board Assembly, BTl 8 SOS 126613 1 

• Printed Wire Board Assembly, LT25 SOS 128190 2 

• Printed Wire Board Assembly, LT26 SOS 126982 1 

• Printed Wire Board Assembly, ST14 SOS 123008 1 

• Printed Wire Board Assembly, XTlO SOS 116982 1 

4-44 



SDS 901172 

Table 4-42. Additional Groups of Eight Multiplexer Channels for Integral lOP, Replaceable Parts 

Fig. & 
Description Reference 

Manu fac turer Part No. Qty Index No. Designator 

4-8 Additional Groups of Eight Multiplexer SDS 134077 Ref. 
Channels for Integral lOP (see table 
4-20 for next higher assembly) 

• Printed Wire Board Assembly, F125 SDS 126743 4 

.. 

Table 4-43. Memory Expansion Kit, 4K to 8K, Replaceable Parts 

Fig. & 
Descr i pt ion 

Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-10 Memory Expansion Kit, 4K to 8K (see SDS 117638 Ref. 
table 4-20 for next hig~er assembly) 

• Core Diode Module Assembly SDS 111549 3 

• Core Diode Module Assembly SDS 111550 1 

• Memory Preamplifier SDS 131633 5 

• Memory Switch A, HT26 SDS 123005 2 

• Memory Swi tch B, ST11 SDS 123006 16 

• Memory Driver, S122 SDS 132159 1 

·4-45 



SDS 901172 

Table 4-44. Memory Expansion Kit, 8K to 12K, Replaceable Parts 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-10 Memory Expansion Kit, 8K to 12K, SDS 117639 Ref. 
(see table 4-20 for next higher assembly) 

• Core Diode Module Assembly SDS 111549 3 

• Core Diode Module Assembly SDS 111550 1 

• Memory Switch A, STlO SDS 123005 8 

• Memory Driver, ST22 SDS 132159 1 

• Memory Preamplifier, HT26 SDS 131633 6 

Table 4-45. Memory Expansion Kit, 12K to 16K, Replaceable Parts 

Fig. & Description 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-10 Memory Expansion Kit, 12K to 16K SDS 117640 Ref. 
(see table 4-20 for next higher assembly) 

• Core Diode Module Assembly SDS 111549 3 

• Core Diode Module Assembly SDS 111550 1 

• Memory Preamplifier, HT26 SDS 131633 5 

4-46 



SOS 901172 

Table 4-46. Two-Way Access, Replaceable Parts 

Fig. & Description Reference 
Manufacturer Part No. Qty 

Index No. Designator 

4-10 Two-Way Access (see table 4-20 for SOS 129463 Ref. 
next higher assembly) 

· Cable Receiver, ATlO SOS 123018 1 

• Cable Driver Receiver, A Tll SOS 123019 3 

• Buffered Latch No. 2a, FT37 SOS 130942 3 

• Logic Element with Inverter, LT20 SOS 124717 1 

• logic Element with Buffer, lT21 SOS 126615 1 

Table 4-47. Three-Way Access, Replaceable Parts 

Fig. & Description Reference 
Manu fac turer Part No. Qty 

Index No. Designator 

4-10 Three-Way Access (see table 4-20 SOS 128125 Ref. 
for next higher assembly) 

• Cable Receiver, ATlO SOS 123018 1 

• Cable Driver Receiver, AT 11 SOS 123019 3 

• Buffered Latch, FT37 SOS 130942 3 

• Logic Element with Inverter, LT20 SOS 124717 1 

• Logic Element with Buffer, LT21 SOS 126615 1 

4-47 



SDS 901172 

Table 4-48. Port Expander F Assembly, Replaceable Parts 

Fig. & Description 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-14 Port Expander F Assembly* (see table SDS 130625 Ref. 
4-20 for next higher assembly) 

• Memory Cabinet, Frame No. 3 SDS 117264 1 

• Power Supply, PTl6 (see SDS publica-
tion No. 901080 for parts breakdown) 

• Cable Plug Module Assembly SDS 133763 5 

• Cable Receiver Assembly, ATlO SDS 123018 4 

• Cable Driver Receiver Assembly, ATll SDS 123019 16 

· Rejection Gate, printed wire SOS 126611 2 
assembly, AT16 

• Gated Buffer, printed wire SDS 117389 1 
assembly, BT15 

• Fast Buffer, printed wire SDS 127393 2 
assembly, BT22 

• Buffered AND/OR Gate, pri nted wi re SDS 130967 1 
assembly, BT24 

• Buffered latch No.3, printed wire SDS 126856 1 
assembly, FT26 

• Buffered latch No. 2a, printed wire SDS 130942 14 
assembly, FT37 

· Buffered latch No. 3a, printed wire SDS 130952 7 
assembly, FT38 

• Gated Inverter, printed wire SDS 117375 1 
assembly, IT15 

· Gated Inverter, printed wire SDS 125264 6 
assembly, IT16 

• logic Element with inverter, printed SDS 124717 4 
wire assembly, lT20 

• logic Element with buffer, printed SDS 126615 4 
wi re assembl y, l T21 

• Address Selector, printed wire assembly, SDS 123008 2 
ST14 

• Terminator Module, printed wire SDS 116257 10 
assembly, XT10 

• Cable Plug Module Assembly P252-P253 SDS 133763-201 2 

• Cable Plug Module Assembly P252-P253 SDS 133763-301 2 

• Cable Plug Module Assembly P252-P253 SDS 133763-401 1 

*Port expander F is the first port expander installed in a memory cabinet and is used to expand the first block 
of memory (frame 2) in the cabinet. 

4-48 



SOS 901172 

Table 4-49. Port Expander S Assembly, Replaceable Parts 

Fig. & Oescr i ption 
Reference 

Manufacturer Part No. 
Index No. Designator 

4-14 Port Expander S Assembly* (see table SOS 130626 
4-20 for next higher assembly) 

· Memory Port Expander S Assembly SOS 133651 

• Cable Plug Module Assembly SOS 133763 

· Rejection Gate, printed wire SOS 126611 
assembly, ATl6 

• Gate Buffer, printed wire SOS 117389 
assembly, BTl5 

• Fast Buffer, printed wire SOS 127393 
assembly, BT22 

• Buffered AND/OR Gate, printed wire SOS 130967 
assembly, BT24 

• Buffered Latch No. 3a, printed wire SOS 130952 
assembly, FT38 

• Gated Inverter, printed wire SOS 117375 
assembly, 1115 

• Logic Element with inverter, printed SOS 124717 
wire assembly, LT20 

• Logic Element with inverter, printed SOS 126615 
wire assembly, LT21 

• Address Selector, printed wire SOS 123008 
assembly, STl4 

· Terminator Module, printed wire SOS 116257 
assembly, XTlO 

• Ribbon Cable, printed wire SOS 133212-171 
assembly, ZT45 

• Cable Plug Modules, printed wire P252-P253 SOS 133763-601 
assembly 

· Cable Plug Modules, printed wire P252-P253 SDS 133763-651 
assembly 

*Port expander S is the second port expander installed in memory cabinet and is used to expand the second block 
of memory (frame 1) in the cabinet. 

Qty 

Ref. 

1 

5 

2 

1 

2 

1 

7 

1 

4 

4 

2 

3 

2 

3 

2 

4-49 



SDS 901172 

Table 4-50. External Interface Feature, Replaceable Parts 

Fig. & Description 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-8 External Interface Feature (see table SDS 137086 Ref. 
4-20 for next higher assembly) 

• Cable Driver Receiver Assembly, AT 11 123019 4 

• Cable Driver Assembly, AT12 124629 1 

• Universal Flip-Flop Assembly, FT22 124713 6 

• Gate Expander No. 1 Assembly, GTll 124881 2 

• Inverter Matrix Assembly, IT13 117000 1 

Table 4-51. Externa I lOP Interface Feature, Replaceab Ie Parts 

Fig. & Description 
Reference 

Manufacturer Part No. Qty 
Index No. Designator 

4-8 External lOP Interface (see table 4-20 SDS Ref. 
for next higher assembly) 

• Printed Wire Board Assembly, AT13 SDS 125260 1 

I I I 

4-50 



t ...-

SIGMA 5 
MEMORY PORT EXPANDERS FRAME 3 

32 31 30 29 28 'Z7 26 25 2" 23 2:1 21 20 19 18 17 16 15 I" 13 12 11 10 9 8 7 6 5 " 3 2 I 

11 22 11 37 11 37 11 10 10 10 10 38 10 38 10 16 11 16 11 3711 37 11 37 11 37 11 :17 11 37 11 37 
"TI 

cO· CHASSIS B f.\ ~TgT~T~T~T~T~T~T~T~T~]~T~T~T~T~T~T~T~TJT~TJT~T~T~T~.T~TlJ~~T~T~T~T ~ CD 0 ~ 
CD 

~ 
I 

~ 
• 32 31 30 29 28 27 26 25 2" 23 2:1 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

~ ~T~T~T~T~T~T~T~T~T~Tr·]~T~~~T~T~T~T~T~T~T~TJT~T~T~T~T~TlJ·T~T~T~T~T ~ 10 26 22 24 16 38 22 38 38 38 3H 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 :18 10 10 10 10 

3 
~ CHASSIS C 

Ii· CD CD CD (0 CD CD CD (D CD CD 0 
-¥' 

~ 0 
3 ~ 
o 32 31 30 29 28 27 26 25 24 23 2:1 21 20 19 18 17 16 15 I" 13 12 11 10 9 8 7 6 .5 " 3 2 1 -0 

~ n~~~~~~~~~~]~~~A~~~~~~~~MnAnAn~n~ ~ i CHASSISDU@UUUUUUUUL UUUUUUU@ JU JUUUUUUUUUU ~ 
"'" -¥,. 

i ~n~~~:~~~~~:~~~~~~~~~~l!~:~~~I:~:~I:~~~~~14[~:~~~~~I:~9~8~7~6[!]i~"~3~2~1 ~ 24 22 10 15 16 16 16 15 14 14 10 20 21 20 21 20 21 20 21 10 

W CHASSIS E CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD ~ CD CD CD CD 

NOTES: CD PORT EXPANDER S (EXPANSION FROM: SIX-WAY ACCESS, Ol-JE MEMORY TO: SIX-WAY CD WHEN PORT EXPANDER S (130626) IS REQUIRED, MODULES (XTlO) REMOVED FROM PORT 
ACCESS, TWO MEMORIES,) ASSY NUMBER 130626 EXPANDER F" ASSY 1306:'5, LOCATIONS 014 AND 31, ARE TO BE USED IN LOCATIONS 

~ 
'J 
t-.) 

~ 
~ 
t-.) 

CD FOR PORT EXPANDER F, ASSY NO. 130625 USE MODULE XTlO, ASSY NUMBER 116257 825 AND C2 

CD FOR PORT EXPANDER S, ASSY NO. 130626, USE MODEL ZT45, ASSY NUMBER 1'33212-171 

___________ - ___ ------1 



Code No. 

7 

8 

20 

23 

25 

45 

48 

49 

51 

53 

54 

55 

56 

63 

82 

83 

84 

104 

106 

107 

121 

i39 

140 

4-52 

SDS 901172 

Table 4-52. Manufacturer Code Index 

Name 

Motorola Semiconductor Products, Inc. 

RCA, Electronic Components & Devices 

Si licon Transistor Corp. 

Sangamo Electric Co. 

Sprague Electric Co. 

General Electric Co., Capacitor Dept. 

Dale Electronics, Inc. 

Littlelfuse, Inc. 

Bussman Manufacturing Div. 
McGraw-Edison Co. 

Cinch Manufacturing Co. 

Ohmite Manufacturing Co. 

Cutler-Hammer, Inc. 

Centra lab Electronics 

Eldema Corp. 

Transitron Electronic Corp. 

Elco Corp. 

Chicago Miniature Lamp Works 

General Electric Co., 
Miniature Lamp Dept. 

Dialight Corp. 

Arrow-Hart & Hegeman Electric Co. 

Allen-Bradley Co. 

Astro Dynamics, Inc. 

Rotron Manufacturing Co. 

The Digitran Co. 

Address 

P. O. Box 2953, Phoenix, Ariz. 85002 

415 S. 5th St., Harrison, N. J. 07029 

150 Glen Cove Rd., Carle Place, N. Y. 11514 

Box 359, 1301 N. Eleventh St. , 
Springfield, III. 62705 

481 Marshall St., N. Adams, Mass. 01248 

P. O. Box 158, Irmo, S. C. 29063 

1342 28th Avenue, Columbus, Neb. 68601 

800 E. Northwest Hwy., Des Plaines, III. 60016 

University at Jefferson, St. Louis, Mo. 63107 

1026 S. Homan Avenue, Chicago, III. 60624 

3635 Howard St., Skokie, III. 60076 

321 N. 12th St., Milwaukee, Wisc. 53201 

900 E. Keefe Ave., Milwaukee, Wisc. 63201 

18435 Susana Rd., Compton, Calif. 90221 

168-182 Albion St., Wakefield, Mass. 01881 

Maryland Rd. & Computer Ave., Wi Ilow 
Willow Grove, Md. 19090 

Dept. E, 4433 Ravenswood Ave. 
Ch i cago, I II. 60640 

Nela Park, Cleveland, Ohio 44112 

60 Stewart Ave" Brooklyn, N. Y. 11237 

103 Hawthorne St., Hartford, Conn. 06106 

1201 Second St., Milwaukee, Wisc. 53204 

2nd Ave., Northwest Industrial Pk., 
Burlington, Mass. 

'Woodstock, N. Y. 12498 

855 S. Arroyo Pkwy., Pasadena, Co I i f. 91105 



Code No. 

145 

156 

162 

175 

194 

203 

204 

208 

211 

244 

340 

365 

376 

377 

378 

381 

382 

383 

384 

385 

387 

SDS 901172 

Table 4-52. Manufacturer Code Index (Cont.) 

Name 

Malco Manufacturing Co., Inc. 

Capitol Machine & Switch Co. 

Honeywell, Micro Switch Div. 

Ward Leonard Electric Co. 

P. R. Mallory & Co., Inc. 

Master Specialities Co. 

Alco Electronic Products, Inc. 

Oak M!CAiiufCiCtuil iig Co. 

Westinghouse E!ectric Corp., Lamp Div. 

Hardwick, Hindle Products 

Bryant Electric 

Harvey Hubbell, Inc. 

C & K Components 

Standard Tool & Manufacturing Co. 

I
' Electric Parts Manufacturing Co., Inc. 

Korry t-Aanufacturing Co. 

Union Carbide 

Pass and Seymour, Inc. 

Switchcraft, Inc. 

Lectrohm, Inc. 

Cycle-Dyne, Inc. 

Address 

4025 W. Lake St., Chicago, III. 60624 

36 Balmforth St., Danbury, Conn. 06813 

11 W. Spring St., Freeport, III. 61033 

75 South St., Mt. Vernon, N. y. 10550 

3029 E. Washington St., Indianapolis, Ind. 46206 

15020 Figueroa, Gardena, Calif. 90247 

3 Wolcott Ave., Lawrence, Mass. 01843 

E. Crystal Lake Ave., Dept, EL, 
Crystal Lake, III. 60014 

.MacArthur B!vd., Bloomfield, N. J. 07003 

Huntington, Ind. 46750 

1421 State, Bridgeport, Conn. 06600 

Narvey Street & Boxtwick, Bridgeport, Conn. 

103 Morse St., Newton, Mass. 02158 

738 Schuyler Ave., Lyndhurst, N. J. 

508-10 25th St., Union Ctty, N. J. 07087 

233 8th St., N., Seattle, Wash. 98109 

270 Park Avenue, N. Y., N. Y. 10017 

Solvay Station, Syracuse, N. Y. 13209 

5533 N. Elston Ave., Chicago, III. 60630 

5560 Northwest Hwy, Chicago, III. 60600 

134-20 Jamaica Ave., Jamaica, N. Y. 11418 

4-53/4-54 


	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-001
	3-002
	3-003
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-023
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-047
	3-048
	3-049
	3-050
	3-051
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-141
	3-142
	3-143
	3-145
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167
	3-168
	3-169
	3-170
	3-171
	3-172
	3-173
	3-174
	3-175
	3-176
	3-177
	3-178
	3-179
	3-180
	3-181
	3-182
	3-183
	3-184
	3-185
	3-186
	3-187
	3-188
	3-189
	3-190
	3-191
	3-192
	3-193
	3-194
	3-195
	3-196
	3-197
	3-198
	3-199
	3-200
	3-201
	3-202
	3-203
	3-204
	3-205
	3-206
	3-207
	3-208
	3-209
	3-210
	3-211
	3-212
	3-213
	3-214
	3-215
	3-216
	3-217
	3-218
	3-219
	3-220
	3-221
	3-222
	3-223
	3-224
	3-225
	3-226
	3-227
	3-228
	3-229
	3-230
	3-231
	3-232
	3-233
	3-234
	3-235
	3-236
	3-237
	3-238
	3-239
	3-240
	3-241
	3-242
	3-243
	3-244
	3-245
	3-246
	3-247
	3-248
	3-249
	3-250
	3-251
	3-252
	3-253
	3-254
	3-255
	3-256
	3-257
	3-258
	3-259
	3-260
	3-261
	3-262
	3-263
	3-264
	3-265
	3-266
	3-267
	3-268
	3-269
	3-270
	3-271
	3-272
	3-273
	3-274
	3-275
	3-276
	3-277
	3-278
	3-279
	3-280
	3-281
	3-282
	3-283
	3-284
	3-285
	3-286
	3-287
	3-288
	3-289
	3-290
	3-291
	3-292
	3-293
	3-294
	3-295
	3-296
	3-297
	3-298
	3-299
	3-300
	3-301
	3-302
	3-303
	3-304
	3-305
	3-306
	3-307
	3-308
	3-309
	3-310
	3-311
	3-312
	3-313
	3-314
	3-315
	3-316
	3-317
	3-318
	3-319
	3-320
	3-321
	3-322
	3-323
	3-324
	3-325
	3-326
	3-327
	3-328
	3-329
	3-330
	3-331
	3-332
	3-333
	3-334
	3-335
	3-336
	3-337
	3-338
	3-339
	3-340
	3-341
	3-342
	3-343
	3-344
	3-345
	3-346
	3-347
	3-348
	3-349
	3-350
	3-351
	3-352
	3-353
	3-354
	3-355
	3-356
	3-357
	3-358
	3-359
	3-360
	3-361
	3-362
	3-363
	3-364
	3-365
	3-366
	3-367
	3-368
	3-369
	3-370
	3-371
	3-372
	3-373
	3-374
	3-375
	3-376
	3-377
	3-378
	3-379
	3-380
	3-381
	3-382
	3-383
	3-384
	3-385
	3-386
	3-387
	3-388
	3-389
	3-390
	3-391
	3-392
	3-393
	3-394
	3-395
	3-396
	3-397
	3-398
	3-399
	3-400
	3-401
	3-402
	3-403
	3-404
	3-405
	3-406
	3-407
	3-408
	3-409
	3-410
	3-411
	3-412
	3-413
	3-414
	3-415
	3-416
	3-417
	3-418
	3-419
	3-420
	3-421
	3-422
	3-423
	3-424
	3-425
	3-426
	3-427
	3-428
	3-429
	3-430
	3-431
	3-432
	3-433
	3-434
	3-435
	3-436
	3-437
	3-438
	3-439
	3-440
	3-441
	3-442
	3-443
	3-444
	3-445
	3-446
	3-447
	3-448
	3-449
	3-450
	3-451
	3-452
	3-453
	3-454
	3-455
	3-456
	3-457
	3-458
	3-459
	3-460
	3-461
	3-462
	3-463
	3-464
	3-465
	3-466
	3-467
	3-468
	3-469
	3-470
	3-471
	3-472
	3-473
	3-474
	3-475
	3-476
	3-477
	3-478
	3-479
	3-480
	3-481
	3-482
	3-483
	3-484
	3-485
	3-486
	3-487
	3-488
	3-489
	3-490
	3-491
	3-492
	3-493
	3-494
	3-495
	3-496
	3-497
	3-498
	3-499
	3-500
	3-501
	3-502
	3-503
	3-504
	3-505
	3-506
	3-507
	3-508
	3-509
	3-510
	3-511
	3-512
	3-513
	3-514
	3-515
	3-516
	3-517
	3-518
	3-519
	3-520
	3-521
	3-522
	3-523
	3-524
	3-525
	3-526
	3-527
	3-528
	3-529
	3-530
	3-531
	3-532
	3-533
	3-534
	3-535
	3-536
	3-537
	3-538
	3-539
	3-540
	3-541
	3-542
	3-543
	3-544
	3-545
	3-546
	3-547
	3-548
	3-549
	3-550
	3-551
	3-552
	3-553
	3-554
	3-555
	3-556
	3-557
	3-558
	3-559
	3-560
	3-561
	3-562
	3-563
	3-564
	3-565
	3-566
	3-567
	3-568
	3-569
	3-570
	3-571
	3-572
	3-573
	3-574
	3-575
	3-576
	3-577
	3-578
	3-579
	3-580
	3-581
	3-582
	3-583
	3-584
	3-585
	3-586
	3-587
	3-588
	3-589
	3-590
	3-591
	3-592
	3-593
	3-594
	3-595
	3-596
	3-597
	3-598
	3-599
	3-600
	3-601
	3-602
	3-603
	3-604
	3-605
	3-606
	3-607
	3-608
	3-609
	3-610
	3-611
	3-612
	3-613
	3-614
	3-615
	3-616
	3-617
	3-618
	3-619
	3-620
	3-621
	3-622
	3-623
	3-624
	3-625
	3-626
	3-627
	3-628
	3-629
	3-631
	3-633
	3-634
	3-635
	3-636
	3-637
	3-638
	3-639
	3-640
	3-641
	3-642
	3-643
	3-644
	3-645
	3-646
	3-647
	3-648
	3-649
	3-650
	3-651
	3-652
	3-653
	3-654
	3-655
	3-656
	3-657
	3-658
	3-659
	3-660
	3-661
	3-662
	3-663
	3-664
	3-665
	3-666
	3-667
	3-668
	3-669
	3-670
	3-673
	3-674
	3-675
	3-676
	3-677
	3-678
	3-679
	3-680
	3-681
	3-682
	3-683
	3-684
	3-685
	3-686
	3-687
	3-688
	3-689
	3-690
	3-691
	3-692
	3-693
	3-694
	3-695
	3-696
	3-697
	3-698
	3-699
	3-700
	3-701
	3-702
	3-703
	3-704
	3-705
	3-706
	3-707
	3-708
	3-709
	3-710
	3-711
	3-712
	3-713
	3-714
	3-715
	3-716
	3-717
	3-718
	3-719
	3-720
	3-721
	3-722
	3-723
	3-724
	3-725
	3-726
	3-727
	3-728
	3-729
	3-730
	3-731
	3-732
	3-733
	3-734
	3-735
	3-736
	3-737
	3-738
	3-739
	3-740
	3-741
	3-742
	3-743
	3-744
	3-745
	3-746
	3-747
	3-748
	3-749
	3-751
	3-753
	3-755
	3-757
	3-758
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-25
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-35
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53

