SCIENTIFIC DATA SYSTEMS

Reference Manual

1-1

SDS SIGMA 5 BASIC INSTRUCTIONS

Mnemonic	Code	Instruction Name	Page	Menmonic	Code	Instruction Name	Page
LOAD/STOR	RE			LOGICAL			
LI	22	Load Immediate	26	OR	49	OR Word	41
LB	72	Load Byte	26	EOR	48	Exclusive OR Word	41
LH	52	Load Halfword	27	AND	4B	AND Word	41
LW	32	Load Word	27				
LD	12	Load Doubleword	27	SHIFT			
LCH	5A	Load Complement Halfword	27				
LAH	5B	Load Absolute Halfword	27	S S	2 5	Shift	41 ::
LCW	3A	Load Complement Word	28	SF	24	Shift Floating	43
LAW	3B	Load Absolute Word	28			Ş	
LCD	1A	Load Complement Doubleword	28	FLOATING	-POINT A	RITHMETIC (OPTIONAL)	
LAD	1B	Load Absolute Doubleword	28				
LS	4A	Load Selective	29	FAS	3D	Floating Add Short	47
LM	2A	Load Multiple	29	FAL	1D	Floating Add Long	47
LCFI	02	Load Conditions and Floating Control Immediate	30	FSS	3C	Floating Subtract Short	47
LCF	70	Load Conditions and Floating Control	30	FSL	1C	Floating Subtract Long	48
XW	46	Exchange Word	30	FMS	3F	Floating Multiply Short	48
STB	75	Store Byte	30	FML	1F	Floating Multiply Long	48
STH	55	Store Halfword	31	FDS	3E	Floating Divide Short	48
STW .	35	Store Word	31	FDL	1E	Floating Divide Long	48
STD	15	Store Doubleword	31				
STS	47	Store Selective	31	PUSH DOW	N		
STM	2B	Store Multiple	31	· · · · · · · · · · · · · · · · · · ·			
STCF	74	Store Conditions and Floating Control	32	PSW	09	Push Word	50
		Ŭ		PLW	08	Pull Word	50
				PSM	OB	Push Multiple	51
ANALYZE/I	NIERPRE	<u>I</u>		PLM	0A	Pull Multiple	51
· · · · -			22	MSP	13	Modify Stack Pointer	52
ANLZ	44	Analyze	32			,	
INI	68	Interpret	33	EXECUTE/B	RANCH		
FIXED-POIN	AT ARTH	METIC		EXII	67	Execute	53
	11 AMIT	METIC .		BCS	69	Branch on Conditions Set	54
ΔI	20	Add Immediate	34	BCR	68	Branch on Conditions Reset	54
	50	Add Halfword	34	RIR	65	Branch on Incrementing Register	54
AW	30	Add Word	34	BDR	64	Branch on Decrementing Register	54
AD	10	Add Doubleword	35	BAI	6A	Branch and Link	55
SH	58	Subtract Halfword	35				
SW	38	Subtract Word	-35	CALL			
SD	18	Subtract Doubleword	35				55
MI	23	Multiply Immediate	36	CAL1	04	Call 1	55
MH	57	Multiply Halfword	36	CAL2	05	Call 2	55
MW	37	Multiply Word	37	CAL3	06	Call 3	55
DH	56	Divide Halfword	37	CAL4	07	Call 4	55
DW	36	Divide Word	37				
AWM	66	Add Word to Memory	37	CONTROL			
MTB	73	Modify and Test Byte	38		05		~ /
MTH	53	Modify and Test Halfword	38	LPSD	UE	Load Program Status Doubleword	56
MTW	33	Modify and Test Word	38	XPSD		Exchange Program Status Doubleword	56
				LKP	2F	Lodd Register Pointer	- 38 - 50
				MMC	01	Move to Memory Control	28
COMPARISO				WAII	2E	wair Dead Dian	29
				KD M/D		Read Direct	27
CI	21	Compare Immediate	39	WD	6D	Write Direct	60
СВ	71	Compare Byte	39	THIN IT COUL	101.17		
СН	51	Compare Halfword	39		IFUI		
CW	31	Compare Word	40	SIO	4C	Start Input/Output	63
CD	11	Compare Doubleword	40	HIO	4F	Halt Input/Output	66
CS	45	Compare Selective	40	TIO	4D	Test Input/Output	66
CLR	39	Compare with Limits in Register	40	TDV	4E	Test Device	67
CLM	19	Compare with Limits in Memory	40	AIO	6E	Acknowledge Input/Output Interrupt	67

SDS SIGMA 5 COMPUTER REFERENCE MANUAL

90 09 59C

September 1968

SCIENTIFIC DATA SYSTEMS/701 South Aviation Boulevard/El Segundo, California 90245

REVISION

This publication, SDS 90 09 59C is a revision of the SDS SIGMA 5 Computer Reference Manual, 90 09 59B (dated January, 1967). A change in text from that of the previous manual is indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

le ma 5/7 Symbol/Meta-Symbol/Reference Manual ma Glossary of Computer Terminology	Publication No.
Sigma 5/7 Symbol/Meta-Symbol/Reference Manual	90 09 52A
Sigma Glossary of Computer Terminology	90 09 57A

CONTENTS

4.

5.

1.	SIGMA 5 SYSTEM	1
	General Characteristics —	2
	Real-Time Features	. 3
	General-Purpose Features	. 4
	Multiusage Features	
	Compatibility with Signa 7 Systems	· 4 5
	Company with Signa 7 Systems	. ງ
2.	SIGMA 5 SYSTEM ORGANIZATION	6
	Information Format	. 6
	Core Memory	6
	Dedicated Core Memory Locations ————	6
	Information Boundaries	- 6
	Computer Modes	• 7
	Master Mode	. 7
	Slave Mode	. 7
	CPU Fast Memory ————	- 7
	Central Processing Unit	- 8
	CPU Fast Memory	- 8
	Arithmetic and Control Unit	- 8
	General Registers and Register Block Pointer —	• 9
	Memory Control Storage	- 9
	Instruction Formats	. 9
	Memory Reference Addresses	. 10
	Address Modification	- 10
	Memory Write Protection	· 12
	Program Status Doubleword	· 12
	Interrupt System	- 13
	Internal Interrupts	- 13
	External Interrupts	- 15
	States of an Interrupt Level	10
	Control of the Inferrupt System	- 10
	Single Interrupt Occurrence	- 10 17
		· 17
	Nonallowed Operations	· 17
	Unimplemented Instructions	· 17 10
	Push-Down Stack Limit Reached	20
	Fixed-Point Overflow	. 20
	Electing-Point Arithmetic Egult Condition	21
	Watchdog Timer Rupout	. 21
	Call Instructions	. 21
3.	INSTRUCTION REPERTOIRE	23
	Load/Store Instructions	- 26
	Analyze/Interpret Instructions	- 32
	Fixed-Point Arithmetic Instructions	- 33
	Comparison Instructions ————	- 39
	Logical Instructions	- 41
	Shift Instructions	- 41
	Floating-Point Shift	- 43
	Floating-Point Instructions	- 44
	Floating-Point Numbers	- 44
	Unimplemented Floating-Point Instructions —	- 45
	Floating-Point Addition and Subtraction ———	- 46
	Floating–Point Multiplication and Division ———	- 46
	Condition Codes for Floating–Point Instructions -	- 47

Push-Down Instructions	- 48
Stack Pointer Doubleword	- 49
Push-Down Condition Code Settings	- 49
Execute/Branch Instructions	— 53
Call Instructions	— 55
Control Instructions	— 55
Program Status Doubleword	56
Interruption of MMC	- 59
Read Direct, Internal Computer Control	
(Mode U)	- 60
(Mode 0)	60
Input / Output Instructions	- 00 - 62
I/O Addresses	— 62
I/O Unit Address Assignment	— 62
I/O Status Response	— 62
Status Information for SIO	63
	40
	07
IOP Command Doublewords	70
Memory Byte Address	- /1
Flags — Plags	- /
Byre Count	- 72
OPERATOR CONTROLS	73
Processor Control Panel	- 73
Power	— 73
CPU Reset/Clear ————	- 73
I/O Reset	— 74
Load	— 74
Unit Address ————	— 74
System Reset/Clear	— 74
Normal Mode	74
Run	74
Wait	74
Interrupt	- 74
Insert	— 74
Instr Addr	75
	— /5
Addr Stop	— /5
Select Address	— 70 74
Display	70 76
Display	70 76
	70 76
Control Mode	77
Memory Fault	— 77
Alarm	— 77
Audio	77
Watchdog Timer	- 77
Interleave Select	— 77
Parity Error Mode	— 77
Phases	— 78
Register Select	— 78
Sense	- 78
Clock Mode	— 78
Load Operation	<u> </u>
Load Procedure	- 78
Load Operation Details	— 79

APPENDIXES

A. REFERENCE TABLES

Β.

o	\sim	
n	.,	

SDS Standard Symbols and Codes	- 80
SDS Standard Character Sets	- 80
Control Codes	- 80
Special Code Properties	- 80
SDS Standard 8-Bit Computer Code (EBCDIC)	- 81
SDS Standard 7–Bit Communications Codes	
(USASCII)	- 81
SDS Standard Symbol-Code Correspondences —	- 82
Hexadecimal Arithmetic	- 86
Addition Table	- 86
Multiplication Table	- 86
Table of Powers of Sixteen 10	. 87
Table of Powers of Ten ₁₆	- 87
Hexadecimal-Decimal Integer Conversion Table —	- 88
Hexadecimal - Decimal Fraction Conversion Table -	- 94
Table of Powers of Two	- 98
Mathematical Constants	- 98
REFERENCE DIAGRAMS	99
Basic Sigma 5 Instruction Execution Cycle	- 100

	e ergina e mer		
F	loating-Point	Addition and Subtraction ——	102
F	loating-Point	Multiplication and Division	103
F	loating-Point	Shift	104

c.	INSTRUCTION LIST	105
D.	EXECUTION TIMES	107

Basic Instruct	ion Timing Table ———	108
----------------	----------------------	-----

ILLUSTRATIONS

	SDS Sigma 5 Computer — v
1.	A Typical Sigma 5 System 1
2.	Information Boundaries 7
3.	Sigma 5 Central Processing Unit 8
4.	Index Displacement Alignment 11
5.	Typical Interrupt Priority Chain 15
6.	Interrupt Level Operation 15
7.	Processor Control Panel 73

TABLES

1.	Dedicated Sigma 5 Core Memory Locations ———	- 7
2.	Sigma 5 Interrupt Locations —————	14
3.	Summary of Sigma 5 Trap System	18
4.	Glossary of Symbolic Terms	25
5.	ANALYZE Table for Sigma 5 Operation Codes	33
6.	Floating-point Number Representation	45
7.	Condition Code Settings for Floating-point	
	Instructions	47
8.	Status Bits for I/O Instructions	64
9.	Program Status Doubleword Display ————	75

SDS SIGMA 5 Computer

1. SIGMA 5 SYSTEM

A typical SIGMA 5 system (see Figure 1) consists of the following major elements:

- A memory consisting of up to eight magnetic core storage modules
- A central processing unit (CPU) that addresses core memory, fetches and stores information, performs arithmetic and logical operations, sequences and

controls instruction execution, and controls the exchange of information between core memory and other elements of the system.

An input/output system controlled by one or more input/output processors (IOPs), each providing data transfer between core memory and peripheral input/ output devices, and operating simultaneously with the CPU.

Figure 1. A typical SIGMA 5 System

^tThe integral multiplexor IOP allows up to 32 devices (one per device controller) to operate simultaneously. This IOP preempts central processor memory accesses and computation time. Other multiplexor (or selector) IOPs may be added to the SIGMA 5 system, with each additional IOP having an independent memory path. IOPs with independent paths allow for input/output simultaneous with computation.

^{tt}The selector IOP allows one device at a time to operate at a high-speed transfer rate of up to one 32-bit word per memory cycle. A selector IOP may service up to 32 high-speed devices.

GENERAL CHARACTERISTICS

A SIGMA 5 system has many advanced features and operating charactersitics that enable it to function efficiently in real-time, general-purpose, and multiusage computing environments:

- Word-oriented memory (32-bit word plus parity bit) for maximum efficiency; memory is addressable and alterable by byte (8-bit), halfword (2-byte), word (4-byte), and doubleword (8-byte) quantities.
- Full parity checking for both CPU/memory and input/ output operations
- Memory expandable from 4096 to 131,072 words (16,384 to 524,288 bytes) in blocks of 4096, 8192, 12,288 or 16,384 words, for complete flexibility of capacity
- Direct addressing of the entire core memory, within the primary instruction word and without the need for base registers, indirect addressing, or indexing
- Indirect addressing, with or without post-indexing, for additional programming flexibility
- Displacement index registers, automatically selfadjusting for all data sizes
- Immediate addressing of operands, for greater storage efficiency and increased speed
- 16 general-purpose registers, expandable (in blocks of 16) to 256 to reduce transfer of data into and out of registers in a multiusage environment
- Selective memory write protection (optional)
- Watchdog timer, assuring nonstop operation
- Real-time priority interrupt system with automatic identification and priority assignment, extremely fast response time, and up to 240 levels that can be individually armed and/or enabled by program control
- Interruptibility of long instructions, guaranteeing fastest possible response to interrupts by the system
- Automatic traps for error conditions and for simulation of optional instructions not physically implemented, all under flexible program control
- Power fail-safe for automatic, safe shutdown in the event of a power failure
- Multiple interval timers, with a choice of resolutions for independent time bases
- Privileged instruction logic (master/slave modes), for concurrent, multiusage operation
- Complete, powerful instruction set including:
 - Byte, halfword, word, and doubleword operations
 - Use of all memory-referencing instructions for register-to-register operations, with or without indirect addressing and post-indexing, and within the normal instruction format
 - Multiple-register operations

- Fixed-point arithmetic operations in halfword, word and doubleword modes
- Optional floating-point hardware operations, in short and long formats, with significance, zero, and normalization control and checking, all under full program control
- Full complement of logical operations (AND, OR, exclusive OR)
- Comparison operations, including compare between limits (with limits in memory or in registers)
- Calls, an extension of the SDS programmed operators concept, permitting up to 64 dynamically variable, user-defined instructions, and permitting a program to gain access to monitor functions without monitor intervention
- Push-down stack operations (hardware implemented) of single or multiple words, with automatic limit checking, for dynamic space allocation, subroutine communication, and recursive routine capability
- An analyze instruction, for facilitating effective address computation
- An interpret instruction, for increased compilation effectiveness and speed
- Shift operations (left and right) of words or doublewords, including logical, circular, arithmetic, and floating-point modes
- Efficiently operating input/output system with the following features:
 - Direct input/output of a full word, without the use of a channel
 - Up to five external input/output processors
 - Multiplexor input/output processors, for simultaneous operation of up to 32 standard-speed devices per I/O processor. One multiplexor I/O processor is integral with the CPU, sharing memory access and processing time; optional I/O processors operate semi-independently and simultaneously with computation
 - Selector input/output channels (8 or 32 bits wide), for data rates approaching 3.3 million bytes per second
 - Up to 32 device controllers connected to each external I/O processor
 - Both data and command chaining, for scatter-read and gather-write operations
 - Up to 32,000 output control signals and input test signals
- Comprehensive array of modular software:
 - Expands in capability and speed as system grows, with no reprogramming required
 - Operating systems: Basic Control Monitor and Batch Processing Monitor

- Compiler: FORTRAN IV in standard and highefficiency versions
- Assemblers: Symbol and advanced Meta-Symbol
- Conversational language: FORTRAN IV calculator mode
- Library: Mathematical, utility, and input/output programs
- Business software: Generalized Sort/Merge, 1401 Simulator, and SDS COBOL-65
- The same comprehensive, field-proven peripheral devices that are available for SIGMA 7 computer systems are also available for SIGMA 5 computer systems. The available peripheral devices include the following:
 - Rapid-access data (RAD) files: Capacities to 5.37 million bytes per unit; transfer rates to 3 million bytes per second; average access times as low as 17 milliseconds. Fixed read/write head for each track eliminates time delays associated with movable-head units.
 - Magnetic tape units: Four models; 7-track and 9-track systems, IBM-compatible; high-speed units operate at 150 inches per second with transfer rates of up to 120,000 bytes per second; low-cost units operate at 37.5 inches per second with transfer rates of 20,800 characters per second
 - Displays: Keyboard/display, buffered, with 8.5 x 11-inch page area containing up to 2048 characters displayed in any of 32 lines of 86 characters each. The display operates in character or message modes. Graphic display has standard character generator, vector generator, and closeups, as well as light pen, refresh buffer, and alphanumeric/function kayboard options. Both types feature display rates of up to 100,000 characters per second.
 - Card equipment: Reading speeds of up to 1500 cards per minute; punching speeds of up to 300 cards per minute; intermixed binary and EBCDIC card codes; simplified punch programming does not require "corner-turning" logic
 - Line printers: Fully buffered, with speeds of up to 1,000 lines per minute; 132 print positions with 56 different characters.
 - Keyboard/printers: 10 characters per second; also available with integral paper tape reader (20 characters per second) and punch (10 characters per second)
 - Paper tape equipment: Readers with speeds of up to 300 characters per second; punches with speeds of up to 120 characters per second.
 - Graph plotters: Digital incremental; providing drift-free plotting in two axes in up to 300 steps per second at speeds from 30 mm to 3.5 inches per second.

 Data communications equipment: A complete line of character- and message-oriented equipment to connect remote and local user terminals to commoncarrier lines

REAL-TIME FEATURES

Real-time applications are characterized by a need for hardware that provides quick response to an external environment, speed great enough to keep up with the real-time process itself, and sufficient input/output flexibility to handle a wide variety of data types at varying speeds. The SIGMA 5 system includes provisions for the following real-time computing features:

Multilevel, True Priority Interrupt System. The real-timeoriented SIGMA 5 system provides for quick response to interrupts by means of up to 224 external interrupt levels. The source of each interrupt is automatically identified and responded to according to its priority (this function need not be programmed). For further flexibility, each level can be individually disarmed (to discontinue accepting inputs to it) and disabled (to defer responding to it). Use of the disarm/ disable feature makes programmed dynamic reassignment of priorities quick and easy, even while a real-time process is in progress. In establishing a configuration for the system, each group of 16 interrupt levels can have its priority assigned in different ways in order to meet the specific needs of the problem; the way in which interrupt levels are programmed is not affected by the priori ty assignment.

Programs that deal with interrupts from specially designed equipment sometimes must be checked out before that equipment is actually available. To permit simulating this special equipment, any SIGMA 5 interrupt level can be triggered by the CPU itself through execution of a single instruction. This capability is also useful in establishing a hierarchy of responses. For example, in responding to a high-priority interrupt, after the urgent processing is completed, it may be desirable to assign a lower priority to the remaining portion in order to respond to other critical stimuli. The interrupt routine can accomplish this merely by triggering a lower-priority level, which processes the remaining data only after other interrupts have been handled.

<u>Nonstop Operation</u>. When connected to special devices (on a ready/resume basis), the computer can sometimes become excessively delayed if the special device does not respond quickly. A built-in watchdog timer assures that the SIGMA 5 computer cannot be delayed for an excessive length of time.

<u>Real-Time Clocks</u>. Many real-time functions must be timed to occur at specific instants. Other timing information is also needed – elapsed time since a given event, for example, or the current time-of-day. SIGMA 5 can contain two or four real-time clocks with varying degrees of resolution (1/60 second or 1/8 millisecond, for example) to meet these needs. These clocks also allow easy handling of separate time bases and relative time priorities.

Rapid Context Switching. When responding to a new set of interrupt-initiated circumstances, a computer system must

preserve the current operating environment, for continuance later, while setting up the new environment. This changing of environments must be done quickly, with a minimum of "overhead" costs in time. In SIGMA 5, each one of up to 16 blocks of general-purpose arithmetic registers can, if desired, be assigned to a specific environment. All relevant information about the current environment (instruction address, current general register block, memory-protection key, etc.) is kept in a 64-bit program status doubleword (PSD). A single instruction stores the current PSD anywhere in memory and loads a new one from memory to establish a new environment, which includes information identifying a new block of general-purpose registers. A SIGMA 5 system can thus preserve and change its operating environment completely through the execution of a single instruction.

<u>Simultaneous Device Operation</u>. The integral multiplexor input/output processor permits up to 32 channels with standard-speed devices to operate concurrently; the addition of external multiplexor I/O processors increases this throughput.

<u>High-Speed Channel Operation</u>. The use of the selector I/O processor permits very high-speed data transfer – up to one 32-bit word per memory cycle. To meet special needs, data size can be 8 or 32 bits wide.

<u>Memory Protection</u>. Both foreground (real-time) and background programs can be run concurrently in a SIGMA 5 system because a foreground program is protected against destruction by an unchecked background program. The optional memory write-protection feature guarantees that protected areas of memory can be written into only under certain conditions.

<u>Variable Precision Arithmetic</u>. Many of the data encountered in real-time systems are 16 bits (or less) in precision. To permit this length of data to be processed efficiently, SIGMA 5 provides halfword arithmetic operations in addition to full word operations. Doubleword arithmetic operations (for extended precision) are also included.

Direct Data Input/Output. For handling asynchronous I/O, a 32-bit word can be transferred directly to or from a general-purpose register, so that an I/O channel need not be occupied with relatively infrequent transmissions.

<u>Interleave/Overlap.</u> To increase processing speeds, memory modules overlap cycles automatically wherever possible. Core memory addresses can be interleaved modulo-2 (oddeven), or modulo-4 to increase the probability of overlapping.

GENERAL-PURPOSE FEATURES

General-purpose computing applications are characterized primarily by an emphasis on computation, internal data handling, and large amounts of input/output at standard speeds. The SIGMA 5 system includes the following general-purpose computer features:

<u>Floating-Point Hardware (optional)</u>. Floating-point instructions are available in both short (32-bit) and long (64-bit) formats. Under program control, the user can select optional zero checking, normalization, and significance checking (which causes the computer to trap when a post operation shift of more than two hexadecimal places occurs in the fraction of a floating-point number). The significance checking feature permits the use of the short floatingpoint format for high processing speed and storage economy and the use of the long format when loss of significance is detected.

<u>Indirect Addressing</u>. This feature provides for simple table linkages and permits the user to keep data sections of his program separate from procedure sections for ease of maintenance.

Displacement Indexing. The technique of indexing by means of a "floating" displacement permits the user to access the desired unit of data without the need to consider its size. The index registers automatically align themselves appropriately; thus, the same index register can be used on arrays with different data sizes. For example, in a matrix multiplication of any array of fullword, single-precision, fixed-point numbers, the results can be stored in a second array as double-precision numbers, using the same index quantity for both arrays. If an index register contains the value of k, then the user always accesses the kth element, whether it is a byte, halfword, word, or doubleword. Incrementing by various quantities according to data size is not required; instead, incrementing is always by units in a continuous array table no matter which size of data element is used.

<u>Powerful Instruction Set</u>. The availability of a large number of major instructions results in programs that are short, rapidly assembled, and quickly executed.

<u>Call Instructions.</u> Four instructions permit handling up to 64 user-defined subroutines (as if they were built-in machine instructions) and gaining access to specified monitor services without requiring monitor intervention.

<u>Interpret Instruction</u>. This instruction simplifies and speeds compiling operations, thus reducing the space and time requirements for compilers.

<u>Four-Bit Condition Code</u>. This feature simplifies the checking of results by automatically providing information on almost every instruction execution (including indicators for overflow, underflow, zero, minus, and plus, as appropriate) without requiring an extra instruction execution.

MULTIUSAGE FEATURES

"Multiusage operation", as implemented in the SIGMA 5 system, consists of two or more major kinds of computing applications running concurrently – general purpose computing with real-time process control, for example. Because SIGMA 5 has been designed on a real-time base, it is qualified for efficient operation in a multiusage environment. Many of its hardware features that prove valuable for certain application areas are equally useful for others, although in different ways. This characteristic of SIGMA 5 makes it particularly effective in multiusage applications. The major SIGMA 5 multiusage computer features are:

<u>Priority Interrupt</u>. In a multiusage environment, many elements operate asynchronously. Thus, having a true priority interrupt system, as SIGMA 5 does, is expecially important. With it the computer system can respond quickly (and in proper order) to the many demands being made upon it, without the high overhead costs of complicated programming, lengthy execution time, and extensive storage allocations.

Quick Response. The many features that combine to produce a quick-response system – multiple register blocks, quick context saving, push-pull operations – benefit all users because more of the machine's power at any instant is available for useful work.

Multiple Register Blocks. The optional availability of up to 16 blocks of general-purpose registers further improves response time by reducing the need to store and load register blocks. As needed, each user can be assigned a distinct block; the program status doubleword automatically points to the currently applicable register block.

Rapid Context Saving. When changing from one user to another, the operating environment can be switched quickly and easily. Stack-manipulating instructions permit from one to 16 general-purpose registers to be stored in a pushdown stack by a single instruction – with automatic updating of stack status information – and to be retrieved (again, by a single instruction) when needed. The current program status doubleword, which contains the entire description of the current user's environment and mode of operation, can be stored anywhere in memory and a new program status doubleword loaded, all with a single instruction.

<u>User Protection</u>. The master/slave mode of operation restricts each user to his own set of instructions while reserving to the monitor those instructions that could, if used incorrectly, destroy another user's program. The optional memory write protection feature not only protects each user from every other user, but also guarantees the integrity of programs essential to critical real-time applications.

Input/Output. Because of its wide range of capacities and speeds (with and without channels), the SIGMA 5 I/O system simultaneously satisfies the needs of many different application areas economically, both in terms of equipment and of programming. SIGMA 5 can control up to eight input/output processors (of two types in various combinations. Each multiplexor I/O processor can have to 32 standard-speed I/O channels operating simultaneously; selector I/O processors can have any one of up to 32 highspeed I/O devices operating on each processor. The external I/O processors operate semi-independently of the central processor, leaving it free to provide faster response to overall system needs.

Nonstop Operation. A watchdog timer assures that the system continues to operate even if certain special I/O capabilities are used with special devices that can cause delays or halts if they fail.

Instruction Set. The large, powerful SIGMA 5 instruction set provides the computational and data handling capabilities required for widely differing application areas, so that each user's program length (thus running time) is decreased and the speed of obtaining results is increased.

Flexible Storage Capacity. SIGMA 5 memory is available in 32 sizes (from 4096 to 131,072 words) to provide the precise capacity needed, while assuring potential for expansion.

COMPATIBILITY WITH SIGMA 7 SYSTEMS

SIGMA 5 computer hardware and software systems have been designed for program compatibility with SIGMA 7 systems. In this context, "compatibility" means the following:

- Any program written for a SIGMA 5 computer can be assembled (or compiled) by SIGMA 7 software and then executed by either a SIGMA 5 or a SIGMA 7 computer.
- 2. Any program written for a SIGMA 5 computer and assembled (or compiled) by SIGMA 5 software can be executed by a SIGMA 7 computer.
- .3. Any program written for a SIGMA 7 computer can be assembled (or compiled) by SIGMA 5 software, even if the program cannot be executed by the SIGMA 5 computer.
- 4. Any SIGMA 7 program that can be executed under control of the SIGMA 7 Basic Control Monitor or the SIGMA 7 Batch Processing Monitor can be executed under control of the corresponding SIGMA 5 monitor. A simulation package is provided as part of the standard SIGMA 5 monitor systems for those SIGMA 7 instructions that are not implemented in the SIGMA 5 computer. The instruction simulation package occupies a portion of core memory while the SIGMA 7 program is being executed; thus, the maximum size for programs that require simulated instructions is less than the maximum size for programs that use only SIGMA 5 instructions, within a specific memory system.
- 5. The only SIGMA 7 programs that cannot be executed under the control of a SIGMA 5 monitor system are those programs that either use the SIGMA 7 memory map option or require the Universal Time-Sharing Monitor system to use the memory map option. Such programs include conversational, time-sharing programs.

2. SIGMA 5 SYSTEM ORGANIZATION

The primary elements in a basic SIGMA 5 system – a central processor, core memory, and input/output processor – are all designed around a central bus structure. Each primary element of the system operates asynchronously and semi-independently, automatically overlapping the operation of the other elements (when circumstances permit) for greater speed. The basic configuration can be expanded merely by increasing the number of core memory modules (up to eight), increasing the number of buses (up to six), or by increasing the number of input/output processors (up to six).

INFORMATION FORMAT

The basic element of SIGMA 5 information is a 32-bit word, in which the bit positions are numbered from 0 through 31, as follows:

Γ													W	/0	rd						- 1							٦
Ļ	1	2	314	1 5	6	7	8	9	10	nh	2	13	14	15	16	17	18	19 20	21	22	23 24	25	26	27	28	29	30	-31

A SIGMA 5 word can be divided into two 16-bit parts (called halfwords) in which the bit positions are numbered from 0 through 15, as follows:

Halfword 0	Halfword 1

A SIGMA 5 word can also be divided into four 8-bit parts (called bytes) in which the bit positions are numbered from 0 through 7, as follows:

		B	Y	te	; (0						B	yt	e	1					B	yt	e	2					B	y	e	3		
0	١	2	3	1	4	5	6	7	0	, —	۱	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	14	5	6	7

Two SIGMA 5 words can be combined to form a 64-bit element (called a doubleword) in which the bit positions are numbered from 0 through 63, as follows:

Most significant word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Least significant word

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Four bits of information can be expressed by means of a single hexadecimal digit. Hexadecimal digits (and their binary and decimal equivalents) are expressed in the following notation:

Hexadecimal	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6

Hexadecimal	Binary	Decimal
7	0111	7
8	1000	8
9	1001	9
А	1010	10
В	1011	11
С	1100	12
D	1101	13
E	1110	14
F	1111	15

Thus, a byte can be expressed as a 2-digit hexadecimal number, a halfword as a 4-digit hexadecimal number, a word as an 8-digit hexadecimal number, and a doubleword as a 16-digit hexadecimal number. In this reference manual, a hexadecimal number is displayed as a string of hexadecimal digits surrounded by single quotes and preceded by the letter "X". For example, the binary number 01011010 is expressed hexadecimally as X'5A'.

CORE MEMORY

SIGMA 5 core memory systems use a 32-bit word (four 8-bit bytes, plus a parity bit) as the basic unit of information. All core memory is directly addressable both by the CPU (except for memory locations 0 through 15) and by the IOP. The SIGMA 5 addressing capability accommodates a maximum core memory size of 131,072 words (524,288 bytes). Core memory is modular and is available in up to 8 blocks of 4096 words (16,384 bytes), 8192 words (32,768 bytes), 12,288 words (49,152 bytes), or 16,384 words (65,536 bytes), in almost any combination.

DEDICATED CORE MEMORY LOCATIONS

Core memory locations 0 through 319 are reserved by standard SDS software for special purpose as shown in Table 1.

INFORMATION BOUNDARIES

SIGMA 5 instructions assume that bytes, halfwords, and doublewords are located in core storage according to the following boundary conventions:

- 1. A byte is located in bit positions 0 through 7, 8 through 15, 16 through 23, or 24 through 31 of a word.
- 2. A halfword is located in positions 0 through 15 or 16 through 31 of a word.
- 3. A doubleword is located so that bits 0 through 31 of the doubleword are contained within an even-numbered word, and bits 32 through 63 of the same doubleword are contained within the next consecutive (odd-numbered) word.

The various information boundaries are illustrated in Figure 2.

Loc	ation	
Decimal	Hexadecimal	Function
0	0	
:	:	Addresses of general registers
•	F	
16	10	
•	•	Reserved for future use
31	1F	
32	20	CPU/IOP communication
33	21	
34	22	Program stored by LOAD
•	•	switch on the processor
41	29	parter
42	2A	First record read from pe-
:	•	ripheral device during a
•	•	load operation
63	3F	
64	40	
•	•	Traps
79	4F	
80	50	
•	•	Override interrupts
87	57	
88	58	
		Counter interrupts
91	5B	
92	5C	
•		Input/output interrupts
95	5F	
96	60	
:	:	External interrupts
319	13F	

Table 1. Dedicated SIGMA 5 Core Memory Locations

COMPUTER MODES

The SIGMA 5 computer operates in either the master mode or the slave mode. The mode of operation is determined by the state of the master/slave mode control bit in the arithmetic and control unit.

MASTER MODE

The master mode is the basic operating mode of the computer. In this mode, all legal SIGMA 5 operations are permissible. It is assumed that there is a resident executive program (operating in the master mode) that controls and supports the operation of other programs (which may be in the master mode or in the slave mode).

SLAVE MODE

The slave mode is the problem-solving mode of the computer. In this mode, certain "privileged" operations are prohibited. Privileged operations are those relating to input/output and to changes in the basic control state of the computer. All privileged operations are performed (in the master mode only) by a group of privileged instructions. Any attempt by a program to execute a privileged instruction while the computer is in the slave mode results in a return of control to the resident executive program. The master/slave mode control bit can be changed only when the computer is in the master mode; thus, a slave program cannot directly change the computer mode from slave to master. However, the slave program can gain direct access to certain executive program operations by means of CALL instructions without requiring executive program intervention. The operations available through CALL instructions are established by the resident executive program.

CPU FAST MEMORY

Several special (fast) memories may be used in a SIGMA 5 CPU. These memories consist of high-speed integrated circuits that are capable of delivering information to (or receiving information from) the arithmetic and control unit simultaneously with the operation of core memory modules. These integrated-circuit memories are not accessible to any other unit in a SIGMA 5 system.

			Doubl	eword							Doubl	eword			
Wo	ord (eve	en addre	ss)	W	ord (od	d addres	s)	W	ord (eve	n addre	ss)	W	/ord (od	d addres	s)
Halfwa	ord 0	Halfw	vord 1	Halfw	vord 0	Halfw	vord 1	Halfw	vord 0	Halfw	vord 1	Halfw	vord 0	Halfw	ord 1
Byte 0	Byte 1	Byte 2	Byte 3	Byte O	Byte 1	Byte 2	Byte 3	Byte O	Byte 1	Byte 2	Byte 3	Byte O	Byte 1	Byte 2	Býte 3

Figure 2. Information Boundaries

CENTRAL PROCESSING UNIT

This section describes the organization and operation of the SIGMA 5 central-processing unit in terms of information processing and program control, instruction and data formats, indirect addressing and indexing, memory write-protection, overflow and trap conditions, and interrupt control. Basically, the SIGMA 5 CPU consists of a fast memory and an arithmetic and control unit (see Figure 3).

Figure 3. SIGMA 5 Central Processing Unit

GENERAL REGISTERS AND REGISTER BLOCK POINTER

An integrated-circuit memory, consisting of sixteen 32-bit words, is contained within the basic SIGMA 5 CPU for general-purpose register usage; these 16 words of fast memory are referred to as a register block. A SIGMA 5 system may contain up to 16 such register blocks, and a 4-bit control field (called the register block pointer) in the arithmetic and control unit selects the block currently available to a program. The 16 general registers selected by the register block pointer are referred to as the current register block. The register block pointer can be changed only when the computer is in the master mode, thus, a slave program cannot change the register block pointer.

Each of the general registers in a register block is identified by a 4-bit code in the range 0000 through 1111 (0 through 15 in decimal, or X'0' through X'F' in hexadecimal notation). Any of the general registers can be used as fixedpoint accumulators, floating-point accumulators, temporary storage, or to contain control information such as data addresses, counts, pointers, etc. Any (or all) of general registers 1 through 7 can be used as index registers.

MEMORY CONTROL STORAGE

An optional, high-speed integrated-circuit memory is available for storage of a set of memory write-protection codes, or locks, which can be changed only when the computer is in the master mode. The memory write-protection option includes the necessary integrated-circuit memory for the memory write locks. These locks operate in conjunction with a 2-bit field, called the write key, in the arithmetic and control unit. The locks and the key determine whether or not the program (slave or master) may alter the contents of specific regions of core memory. The write key can be changed only when the computer is in the master mode; thus the current write key cannot be changed by a slave program. (The functions of the locks and key are described in the section "Memory Write Protection".)

INSTRUCTION FORMATS

The normal SIGMA 5 memory addressing instruction has the following format:

*	Operation	R	x	Reference address
0	1 2 3 4 5 6 7	8 9 10 11	12 13 14	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

* This bit position indicates whether or not indirect addressing is to be performed. Indirect addressing is performed (one level only) if this bit position contains a 1, and is not performed if this bit position contains a 0.

- Operation This 7-bit field contains the code that designates the operation to be performed.
- R This 4-bit field designates any of the 16 registers of the current register block as an operand source, result destination, or both.
- X This 3-bit field designates any one of registers 1-7 of the current register block as an index

register. X = 0 designates no indexing; hence register 0 cannot be used as an index register.

Reference address This 17-bit field contains the initial address of the instruction operand. The reference address field allows any word, doubleword, left halfword, or leftmost byte within a word in memory to be directly addressed. Halfword and byte operations require additional address bits for halfwords and bytes that do not begin on a word boundary. Thus, to address the second halfword of a word, the X field of the instruction must designate a register that contains a 1 in its low-order bit position. To address bytes 1, 2, or 3 of a word, the X field of the instruction must designate a register that contains 01, 10, or 11, respectively, in its two low-order bit positions. See "Indexing and Index Registers" for a more complete description of the SIGMA 5 indexing process.

Some SIGMA 5 instructions are of the immediate-addressing type. The format of these instructions provides for an operand within the instruction word itself, as shown below. The functions of the Operation and R fields are identical to those of the normal instruction format.

0		0	pe	rc	ıti	or	ו		R	2									٧	′a	lu	е							
Ļ	1	1 2	•	-	6			-	0	10	 12	12	14	15	12	17	10	10	20	21	- 10	22	24	25	24	07	20	 20	- 11

- 0 This bit position is coded with a 0 because indirect addressing is not meaningful for this type of instruction. If indirect addressing is attempted, the computer treats the instruction as a nonexistent instruction.
- Value This field contains an operand that is 20 bits in length, with negative numbers represented in two's-complement form.

There are several methods by which an instruction word may specify the source of an operand or the destination of a result. These methods are explained below.

Immediate Operand

The operation code of an immediate-addressing instruction specifies that an operand is to be found in the value field (bit positions 12-31) of the instruction word itself and not in a general register or core memory location. The value field of this type of instruction cannot be modified by indexing. The following SIGMA 5 instructions are of the immediate-addressing type:

Instruction Name	Mnemonic	Page
Load Immediate	LI	26
Load Conditions and Floating Control Immediate	LCFI	30
Add Immediate	AI	34
Multiply Immediate	MI	36
Compare Immediate	CI	39

MEMORY REFERENCE ADDRESSES

Core Memory locations 0 through 15 are not accessible to the programmer because memory addresses 0 through 15 are reserved as register designators for register-to-register operations. Thus, an instruction can treat any register of the current register block as if it were a location in core memory. Furthermore, the register block can be used to hold an instruction (or a series of up to 16 instructions) for execution just as if the instruction (or instructions) were in core memory. The only restriction upon the use of the register block for instruction storage is:

If an instruction accessed from a general register uses the R field of the instruction word to designate the next higher-numbered register and execution of the instruction would alter the contents of the register so designated, the contents of that register should not be used as the next instruction in sequence; otherwise, the operation of the instruction in the affected register is unpredictable.

In the maximum core memory configuration (131,072 words), memory addresses "wrap around" with address 0 (general register 0) being the next consecutive memory address after X'IFFFF'(131,071). Core memory location 16 follows general register 15 as the next location in ascending sequence. All SIGMA 5 instructions not of the immediate-address type are reference addressing instructions, which specify that the reference address field (bit positions 15-31) of the instruction is to be used as the initial address of the location where an operand is to be obtained (or the location where a result is to be stored), or as an initial instruction value.

<u>Direct Reference Address</u>. If neither indirect addressing nor indexing is called for by the instruction, the reference address field of the instruction is a direct reference address.

Indirect Reference Address. If indirect addressing is called for by the instruction (a 1 in bit position 0 of the instruction word), the reference address field is used to access a word location that contains the direct reference address in bit positions 15-31. The direct reference address then replaces the indirect reference address. Indirect addressing is limited to one level; only the reference address field of the indirect word is significant.

Indexed Reference Address. If indexing is called for by the instruction (a nonzero value in bit positions 12-14 of the instruction), the direct reference address is modified by addition of the displacement value in the general register (index) called for by the instruction (after scaling the displacement according to the instruction type). This final reference address value (after indirect addressing, indexing, or both) is defined as the effective address of the instruction. If indirect addressing and indexing are both called for in an instruction, the index displacement is not used to modify the indirect reference address, but is used to modify the direct reference address obtained from the location pointed to by the indirect reference address. This method of indexing after indirect addressing is called postindexing. Register Address. If any instruction produces an address that is a memory reference (i.e., a direct, indirect, or indexed reference address) in the range 0 through 15, the CPU does not attempt to read from or write into core memory. Instead, the 4 low-order bits of the reference address are used as a general register address, and the general register (of the current register block) corresponding to this address is used as the operand location or result destination. Thus, the instruction can use any register in the current register block as the source of an operand, the location of a direct address, or the destination of a result.

Effective Address

An effective address is defined as the final address produced for an instruction. The effective address is usually used as the address of an operand location or result destination. However, some instructions do not use the effective address as a location reference; instead, the effective address is used to control the operation of the instruction (as in a shift instruction), to designate the address of an input/output device (as in input/output instruction), or to designate a specific element of the system (as in a READ DIRECT or WRITE DIRECT instruction).

Effective Location

An effective location is defined to be the location in core memory or in the current register block that is to receive the result of a memory-referencing instruction, and is referred to by means of an effective address (whether the effective address refers to core memory or to a general register).

Effective Operand

An effective operand is defined to be the contents of a location in core memory or in the current register block that is to be used as an operand by a memory-referencing instruction, and is referred to by means of an effective address.

ADDRESS MODIFICATION

Indirect Addressing

The 7-bit operation code field of the SIGMA 5 instruction word format provides for up to 128 instruction operation codes, nearly all of which can use indirect addressing (the exceptions, already mentioned, are the immediate-addressing instructions). The indirect addressing operation is limited to one level, as called for by the indirect address bit (bit position 0) of the instruction word. Indirect addressing does not proceed to further levels, regardless of the contents of the word location pointed to by the reference address field of the instruction. Indirect addressing occurs before indexing; that is, the 17-bit reference address field of the instruction is used to obtain a word, and the 17 low-order bits of the word thus obtained effectively replace the initial reference field; then, indexing is carried out according to the operation code of the instruction.

Indexing and Index Registers

The X field of the normal instruction format permits any one of registers 1 through 7 in the current register block to be designated as an index register. The contents of this register are then treated as a 32-bit displacement value.

The indexing technique employed in SIGMA is unique. SIGMA instructions provide for operations on bytes, halfwords, words, and doublewords. These units of information are typically organized in lists that are processed sequentially. The SIGMA indexing technique is based on the concept that the index register contains an integer value (k) that permits the accessing of the kth item of a list (where k = 0 refers to the first item, k = 1 refers to the second item, etc.), independent of the kind of data that is in the list. Thus, a byte-addressing instruction that is indexed accesses the kth byte of a list; a halfword-addressing instruction that refers to the same index register obtains the kth halfword of a list; a word-addressing instruction that refers to the same index register obtains the kth word of a list; and a doubleword-addressing instruction that is indexed with the same register obtains the kth doubleword of a list.

Figure 4 shows how the indexing operation takes place. As the instruction is brought from memory, it is loaded into a 34-bit instruction register that initially contains 0's in the 2 low-order bit positions (32 and 33). The displacement value from the index register is then aligned with the instruction register (as an integer) relative to the addressing type of the instruction. That is, if it is a byte-addressing instruction, the displacement is lined up so that its loworder bit is aligned with the least significant bit of the 34bit instruction register. The displacement is shifted one bit to the left of this position for a halfword-addressing instruction, two bits to the left for a word-addressing instruction, and three bits to the left for a doubleword-addressing instruction. An addition process then takes place to develop a 19-bit address, which is referred to as the effective address of the instruction. High-order bits of the 32-bit displacement field are ignored in the development of this effective address (i.e., the 15 high-order bits are ignored for word operations, the 25 high-order bits are ignored for shift operations, and the 16 high-order bits are ignored for doubleword operations). However, the displacement value can cause the effective address to be less than the initial reference address within the instruction if the displacement value contains a sufficient number of high-order 1's (i.e., the displacement is a negative integer in two's complement form).

The effective address of an instruction is always a 19-bit byte address value; however, this value is automatically adjusted to the SIGMA 5 information boundary conventions. Thus, for halfword-addressing instructions, the low-order bit of the effective halfword address is 0, for word-addressing instructions, the 2 low-order bits of the effective word address are 0's; and for doubleword-addressing instructions, the 3 loworder bits of the effective doubleword address are 0's.

Figure 4. Index Displacement Alignment

If no indexing is used with a byte-addressing instruction, the effective byte is the first byte (bit positions 0-7) of a word location, if no indexing is used with a halfwordaddressing instruction, the effective halfword is the first halfword (bit positions 0-15) of a word location. A doubleword operation always involves a word at an even-numbered word address and the word at the next sequential (oddnumbered) word address. If an odd-numbered word location is specified in a doubleword-addressing instruction, the loworder bit of the effective address field (bit position 31) is automatically forced to 0. Thus, an odd-numbered word address (referring to the middle of a doubleword) designates the same doubleword as an even-numbered word address, when used in a doubleword-addressing instruction.

MEMORY WRITE PROTECTION

With a SIGMA 5 computer, an optional method is available for controlling the use of core memory by a program: the lock and key technique implemented in the memory writeprotection feature.

This feature provides a 2-bit write-protect lock (WL) for each 512-word page of core memory addresses. Thus, there are 256 of these locks, each one assigned to a 512-word page of addresses as follows:

The write-protect locks can be changed only by the execution of the privileged instruction MOVE TO MEMORY CONTROL (see "Control Instructions", Chapter 3).

The write-key (a 2-bit field in the arithmetic and control unit) works in conjunction with the lock storage to determine whether or not the program (whether slave or master) can write into a specific block of memory. The keys and locks control access for writing, according to the following rules:

A lock value of 00 means that the corresponding memory block is "unlocked"; write access to that block is permitted independent of the key value.

A key value of 00 is a "skeleton" key that will open any lock; thus, write access to any memory block is permitted independent of its lock value.

A lock value other than 00 for a memory block permits write access to that block only if the key value is identical to the lock value. Thus, a program can write into a given memory block if the lock value is 00, if the key value is 00, or if the key value matches the lock value.

If an instruction attempts to write into a write-protected memory page, the computer aborts the instruction, and traps to location X'40', which is the "nonallowed operation" trap (see "Trap System").

PROGRAM STATUS DOUBLEWORD

The critical control conditions of the SIGMA 5 CPU can be defined within 64 bits of information. These 64 bits are collectively referred to as the current program status doubleword (PSD). The current PSD can be considered as a 64-bit internal CPU register, although it actually exists as a collection of separate registers and flip-flops. When stored in memory, the PSD is always in the following format:

	C	C		0	F S	FZ	FN	M S	0	D M	A M	C)0()	[IA	1							
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	<u>29</u>	30	31

00	wк	0	C I	I I	E I	000)	00	00)	00)0(<u>כ</u>		00	00	0		R	P		()0(00	
32 33	34 35	36	37	38	39	40 41 4	43	44 45	46	47	48 49	50	51	52	53	54	55	56	57	58	59	60	61	62	63

Designation

CC

Function

Condition code. This generalized 4-bit code indicates the nature of the results of an instruction. The significance of the condition code bits depends on the particular instruction just executed. After an instruction is executed, the instructions BRANCH ON CONDITIONS SET (BCS) and BRANCH ON CONDITIONS RESET (BCR) can be used, singly or in combination, to test for a particular condition code setting (these instructions are described in "Execute/Branch Instructions", Chapter 3).

In some operations only a portion of the condition code is involved; thus, the term CC1 refers to the first bit of the condition code, CC2 to the second bit, CC3 to the third bit, and CC4 to the fourth bit. Any program (slave or master mode) can change the current value of the condition code by executing either the instruction LOAD CONDITIONS AND FLOATING CONTROL IMMEDIATE (LCFI) or the instruction LOAD CONDITIONS AND FLOATING CONTROL (LCF); any program can store the current condition code by executing STORE CONDITIONS AND FLOATING CONTROL (STCF). These instructions are described in "Load/ Store Instructions", Chapter 3.

- FS Floating significance mode control
- FZ Floating zero mode control
- FN Floating normalize mode control

The three floating-point mode bits (FS, FZ, and FN) control the operation of the computer with respect to floating-point significance checking, the generation of zero results, and the normalization

Designation Function

of the results of floating-point additions and subtractions, respectively. (The floating-point mode controls are described in "Floating-point Instructions", Chapter 3). Any program (slave or master) can change the state of the current floating-point mode controls by executing either the instruction LCFI or the instruction LCF; any program can store the current state of the current floating-point mode controls by executing the instruction STCF.

- MS Master/slave mode control. The computer is in the master mode when this bit is a 0; it is in the slave mode when this bit is a 1. The master/slave mode control cannot directly be changed by a slave program, however, a master mode program can change the control by executing either the instruction LOAD PROGRAM STATUS DOUBLE-WORD (LPSD) or the instruction EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD). These two privileged instructions are described in "Control Instructions", Chapter 3.
- DM Decimal mask. This bit position is used only to preserve the status of the decimal arithmetic fault trap mask when a SIGMA 7 program is being executed. The decimal mask bit does not affect the operation of the SIGMA 5 computer in any other way.
- AM Arithmetic mask. The fixed-point arithmetic overflow trap is in effect when this bit is a 1; the trap is not in effect when this bit is a 0. The instructions that can cause fixed-point overflow are described in the section "Trap System". The arithmetic trap mask cannot be changed by a slave program; a master mode program can change the mask by executing either the instruction LPSD or the instruction XPSD.
- IA Instruction address. This 17-bit field contains the address of the next instruction to be executed.
- WK Write key. This field contains the 2-bit key used in conjunction with the optional memory protection feature. A slave program cannot change the current write key; a master mode program can change the write key by executing either the instruction LPSD or the instruction XPSD.
- CI Counter interrupt group inhibit
- II Input/output interrupt group inhibit
- EI External interrupt group inhibit

The three interrupt inhibit bits (CI, II, and EI) determine whether an interrupt can occur. The functions of the interrupt inhibits are described in the section "Interrupt System". A slave program cannot change the state of the interrupt inhibits; a master mode program can change the interrupt inhibits by executing

Desig-	

RP

nation Function

LPSD, XPSD, or the instruction WRITE DIRECT (WD). The WD instruction is described in "Control Instructions", Chapter 3.

Register pointer. This 4-bit field selects one of the 16 possible blocks of general-purpose registers as the current register block. A slave program cannot change the register pointer; a master mode program can change the register pointer by executing LPSD, XPSD, or the instruction LOAD REGISTER POINTER (LRP). The LRP instruction is described in the section "Control Instructions".

INTERRUPT SYSTEM

The SIGMA 5 priority interrupt system is an improved version of the system used successfully in SDS 900/9300 series computers. Up to 237 interrupt levels are normally available, each with a unique location (see Table 2) assigned in core memory, each with a unique priority, and each capable of being selectively armed and/or enabled by the CPU. Also, any interrupt level can be "triggered" by the CPU (supplied with a signal at the same physical point where the signal from the external source would enter the interrupt level). The triggering of an interrupt permits the testing of special systems programs before the special systems equipment is actually attached to the computer, and also permits an interrupt-servicing routine to defer a portion of the processing associated with an interrupt level by processing the urgent portion of an interrupt-servicing routine, triggering a lowerpriority level (for a routine that handles the less-urgent part), then clearing the high-priority interrupt level so that other interrupts may occur before the deferred interrupt response is processed.

SIGMA 5 interrupts are arranged in groups that are connected in a predetermined priority chain by groups of levels. The priority of each level within a group is fixed: the first has the highest priority and the last level the lowest. The user has the option of ordering a machine with a priority chain starting with the override group and connecting all remaining groups in any sequence. This allows the user to establish external interrupts above, between, or below the counter and input/output groups of internal interrupts. Figure 5 illustrates this with a configuration that a typical user might establish; where (after the override group) the counter group of internal interrupts is given the second highest priority, followed by the first group of external interrupts, then the input/output groups of internal interrupts, and finally all succeeding groups of external interrupts.

INTERNAL INTERRUPTS

Internal interrupts include the standard interrupts normally supplied with a SIGMA 5 system, as well as the optional power fail-safe and the additional counter interrupts.

Override Group (Locations X'50' to X'56'

The seven interrupt levels of this group always have the highest priority in a Sigma 5 system.

The power on and power off interrupt levels are included in the optional power fail-safe feature.

Locati Dec.	ion Hex.	WRITE DIRECT Register bit [†]	Function	Availability	PSD Inhibit	WRITE DIRECT Group code ^{tt}
80 81	50 51	none none	Power on Power off	optional (as a set)		none
82 83	52 53	16	Counter 1 count pulse	optional (as a set)	none	
84 85 86	54 55 56	18 19 20	Counter 2 count pulse Counter 4 count pulse Memory parity	standard	Tione	
87	57		Unassigned			
88 89	58 59	22 23	Counter 1 equals zero Counter 2 equals zero	optional (as a set)	CI	X'0'
90 91	5A 5B	24 25	Counter 3 equals zero Counter 4 equals zero	standard		
92 93	5C 5D	26 27	Input/output Control panel	standard	II	
94 95	5E 5F		Unassigned			
96	60	16				
:	:	•	External Group 2			X'2'
111	6F	31			•	
112	70	16				
:	• •	•	External Group 3			X'3'
127	7F	31				
:	• • •	•	:	optional	EI	
288	120	16				
:	:	•	External Group 14			Х'Е'
303	12F	31		1		
304	130	16				
	•		External Group 15			X'F'
319	13F	31				

Table 2. SIGMA 5 Interrupt Locations

^tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the interrupt levels are selected by specific bit positions in register R. The numbers in this column indicate the bit positions in register R that correspond to the various interrupt levels.

^{tt}The numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels.

The override group can also contain 2 or 4 count-pulse interrupt levels that are triggered by pulses from clock sources. Counters 1, 2, and 3 can be individually set to any of five manually switchable frequencies – the commercial line frequency, 50Hz, 2kHz, 8kHz, and a user-supplied external signal – that may be different for each counter. Counter 4 has a constant frequency of 500Hz. All counter frequencies are synchronous, except for the line frequency and the signal supplied by the user. Each of the count-pulse interrupt locations must contain one of the modify and test instructions, MTB, MTH, or MTW. The results of any other instruction are unpredictable when the instruction is executed as the result of a countpulse interrupt level advancing to the active state. When the modification of the effective byte, halfword, or word causes a zero result, the appropriate counter-equals-zero interrupt level is triggered (see "Counter-Equals-Zero Group").

The override group also includes a memory parity interrupt level that is triggered whenever a memory parity error is reported to the CPU.

Counter-Equals-Zero Group (Locations X'58' to X'5B')

Each interrupt level in the counter group (called a counterequals-zero interrupt) is associated with a count-pulse interrupt level in the override group. When the execution of a modify and test instruction in the count-pulse interrupt location causes a zero result in the effective byte, halfword, or word location, the corresponding counter-equals-zero interrupt is triggered.

All of the counter-equals-zero interrupt levels can be inhibited or permitted as a group. If bit position 37 (CI) of the current program status doubleword contains a 0, the counter-equals-zero interrupt levels are allowed to interrupt the program being executed. However, if the CI bit is a 1, the counter-equals-zero interrupt levels are not allowed to interrupt the program; also, the interrupt levels are effectively removed from the priority chain, allowing a lower-priority interrupt level to interrupt the program even if a counter-equals-zero interrupt level is currently in the waiting state.

Input/Output Group (Locations X'5C' and X'5D')

This interrupt group includes two standard interrupts: the I/O interrupt and the control panel interrupt. The I/O interrupt level accepts interrupt signals from the standard I/O system. The I/O interrupt location normally contains an EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD) instruction that transfers program control to a routine for servicing all I/O interrupts. The I/O routine then contains an ACKNOWLEDGE I/O INTERRUPT (AIO) instruction that identifies the source and reason for the interrupt.

The control panel interrupt level is connected to the IN-TERRUPT switch on the processor control panel. The control panel interrupt level can thus be triggered by the computer operator, allowing him to initiate a specific routine.

The interrupts in the input/output group can be inhibited or permitted by means of bit position 38 (II) of the program status doubleword. If II is a 0, the interrupts in the I/O group are allowed to interrupt the program being executed. However, if the II bit is a 1, the interrupts are inhibited from interrupting the program, and are effectively removed from the interrupt priority chain.

EXTERNAL INTERRUPTS

A SIGMA 5 system can contain up to 14 groups of optional interrupt levels, with 16 levels in each group. As shown in Figure 5, the groups can be connected in any priority sequence.

All external interrupts can be inhibited or permitted by means of bit position 39 (EI) of the program status doubleword. If EI is a 0, external interrupts are allowed to interrupt the program; however, if EI is a 1, all external interrupts are inhibited and effectively removed from the priority chain.

Figure 6. Interrupt Level Operation

STATES OF AN INTERRUPT LEVEL

A SIGMA 5 interrupt level is mechanized by means of three flip-flops. Two of the flip-flops are used to define any of four mutually exclusive states: disarmed, armed, waiting, and active. The third flip-flop is used as a level-enable. The various states and conditions causing them to change state (see Figure 6) are described in the following paragraphs.

Disarmed

When an interrupt level is in the disarmed state, no signal to that interrupt level is admitted; that is, no record is retained of the existence of the signal, nor is any program interrupt caused by it at any time.

Armed

When an interrupt level is in the armed state, it is to accept and remember an interrupt signal. The receipt of such a signal advances the interrupt level to the waiting state.

Waiting

When an interrupt level in the armed state receives an interrupt signal, it advances to the waiting state, and remains in the waiting state until it is allowed to advance to the active state. If the level-enable flip-flop is off, the interrupt level can undergo all state changes except that of moving from the waiting to the active state. Furthermore, if this flipflop is off, the interrupt level is completely removed from the chain that determines the priority of access to the CPU. Thus, an interrupt level in the waiting state with its levelenable in the off condition does not prevent an enabled, waiting interrupt of lower priority from moving to the active state.

When an interrupt level is in the waiting state, the following conditions must all exist simultaneously before the level advances to the active state.

- 1. The level must be enabled (i.e., its level-enable flipflop must be set to 1).
- 2. The CPU must be at an interruptible point in the execution of a program.
- 3. The group inhibit (CI, II, or EI, if applicable) must be off (i.e., the appropriate inhibit in the PSD must be a 0.
- 4. No higher-priority interrupt level is in the active state, or is in the waiting state and totally enabled (i.e., enabled and not inhibited).

<u>Active</u>

When an interrupt level meets all of the conditions necessary to permit it to move from the waiting state to the active state, it is permitted to do so by being acknowledged by the computer, which then executes the contents of the assigned interrupt location as the next instruction. The instruction address portion of the program status doubleword remains unchanged until the instruction in the interrupt location is executed. The instruction in the interrupt location must be one of the following: EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD), MODIFY AND TEST BYTE (MTB), MODIFY AND TEST HALFWORD (MTH), or MODIFY AND TEST WORD (MTW). If the execution of any other instruction in an interrupt location is attempted as the result of an interrupt level advancing to the active state, the results of the instruction are unpredictable.

The use of the privileged instruction EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD) in an interrupt location permits an interrupt-servicing routine to save the entire current machine environment and establish a new environment. If working registers are needed by the routine and additional register blocks are available, the contents of the current register block can be saved automatically with no time loss. This is accomplished by changing the value of the register pointer, which results in the assignment of a new block of 16 registers to the routine.

An interrupt level remains in the active state until it is cleared (removed from the active state) by the execution of the instruction LOAD PROGRAM STATUS DOUBLEWORD (LPSD) or the instruction WRITE DIRECT (WD). (See "Control Instructions" for the detailed descriptions of LPSD and WD.) An interrupt-servicing routine can itself be interrupted (whenever a higher-priority interrupt level meets all of the conditions for becoming active) and then continued (after the higher-priority interrupt is cleared). However, an interrupt-servicing routine cannot be interrupted by a lower-priority interrupt as long as it remains in the active state. Normally, the interrupt-servicing routine clears its interrupt and transfers program control back to the point of interrupt by means of an LPSD instruction with the same effective address as the XPSD instruction in the interrupt location.

CONTROL OF THE INTERRUPT SYSTEM

The SIGMA 5 system has two points of interrupt control. One point of control is achieved by means of the interrupt inhibits in the program status doubleword. The interrupt inhibits can be changed by executing XPSD, LPSD, or a WD instruction.

The second point of interrupt control is at the individual interrupt level. The WD instruction can be used to individually arm, disarm, enable, disable, or trigger any interrupt level (except for the power fail-safe interrupts, which are always armed, always enabled, never inhibited, and have the highest priority). The detailed operation of the WD instruction is described in the section "Control Instructions".

TIME OF INTERRUPT OCCURRENCE

The SIGMA 5 CPU permits an interrupt to occur during the following time intervals (related to the execution cycle of an instruction) providing the control panel COMPUTE switch is in the RUN position and no "halt" condition exists:

1. Between instructions: An interrupt is permitted between the completion of any instruction and the initiation of the next instruction. 2. Between instruction iterations: An interrupt is also permitted to occur during the execution of the instruction Move to Memory Control (MMC). The control and intermediate results of this instruction reside in registers and memory; thus, the instruction can be interrupted between the completion of one iteration (operand execution cycle) and the point in time (during the next iteration) when a memory location or register is modified. If an interrupt occurs during this time, the current iteration is aborted and the instruction address portion of the program status doubleword remains pointing to the interrupted instruction. After the interruptprocessing routine is completed, the instruction continues from the point at which it was interrupted and does not begin anew.

SINGLE-INSTRUCTION INTERRUPTS

A single-instruction interrupt is a situation where an interrupt level is activated, the current program is interrupted, the single instruction in the interrupt location is executed, the interrupt level is automatically cleared and armed, and the interrupted program continues without being disturbed or delayed (except for the time required for the single instruction).

If any of the following instructions is executed in any interrupt location, then that interrupt automatically becomes a single-instruction interrupt.

Instruction Name	Mnemonic	Page
Modify and Test Byte	МТВ	38
Modify and Test Halfword	MTH	38
Modify and Test Word	MTW	38

The modify and test instruction modifies the effective byte, halfword, or word (as described in the section "Fixed-point Arithmetic Instructions") but the current condition code remains unchanged (even if overflow occurs). The execution of a modify and test instruction in an interrupt location is independent of the write-protection locks; thus, a memory protection violation trap cannot occur (a nonexistent memory address trap can occur). Also, the fixed-point overflow trap cannot occur as the result of overflow caused by executing MTH or MTW in an interrupt location.

The execution of a modify and test instruction in a countpulse interrupt location automatically clears and arms the corresponding interrupt level, allowing the interrupted program to continue. When a modify and test instruction is executed in a count-pulse interrupt location, all the above conditions apply, in addition to the following: if the resultant value in the effective location is zero, the corresponding counter-equals-zero interrupt level is triggered.

TRAP SYSTEM

When a condition that is to result in an interrupt is sensed, a signal is sent to an interrupt level. If that level is "armed" it advances to the waiting state. When all of the conditions for its acknowledgment have been achieved, the interrupt level eventually advances to the active state, where it finally causes the computer to take an instruction from a specific location in memory. The computer may execute many instructions between the time that the interrupt requesting condition is sensed and the time that the actual interrupt acknowledgment occurs. However, detecting any of the conditions listed in Table 3 results in a trap (the immediate execution of the instruction in a unique location in memory).

When a trap condition occurs, the CPU sets the trap state. Depending on the type of trap, the instruction currently being executed by the CPU may or may not be carried to completion. In any event, the instruction is terminated with a trap sequence. In this sequence, the instruction address(IA) portion of the program status doubleword (PSD), which has already been incremented by 1, is decremented by 1 and then the instruction in the location associated with the trap is executed. An interrupt acknowledgment cannot occur until the execution of the instruction in the trap location is completed. The instruction in the trap location must be an XPSD instruction; if the execution of any other instruction in a trap location is attempted as the result of a trap activation, the results of the instruction are unpredictable. No memory protection violation or privileged instruction violation can occur as a result of executing an XPSD instruction in a trap location. The detailed operation of XPSD is described in "Control Instructions", Chapter 3.

NONALLOWED OPERATIONS

The occurrence of one of the nonallowed operations always causes the computer to abort the instruction being executed (at the time that the nonallowed operation is detected) and to immediately execute the instruction in trap location X'40'.

Nonexistent Instruction

Any instruction that is neither standard nor optional on SIGMA 5 is defined as nonexistent (this includes immediateaddressing instructions that are indirectly addressed). If execution of a nonexistent instruction is attempted, the computer traps to location X'40 at the time the instruction is decoded. The operation of the XPSD instruction in trap location X'40' (with respect to the condition code and instruction address portions of the PSD) is as follows:

 Store the current PSD. The condition code stored is that which existed at the end of the instruction executed immediately prior to the nonexistent instruction. The instruction address stored is the address of the nonexistent instruction.

Locatic Dec, He	n x. Trap Condition	PSD Mask Bit	Time of Occurrence	Special Action During XPSD				
64 40	Nonallowed operation	none						
	1. Nonexistent instruction		Instruction decode	Set CC1 after new CC is loaded from memory. If bit 9 of XPSD is 1, add 8 to the new instruction address value loaded from memory				
	2. Nonexistent memory address		Prior to memory access	Set CC2 after new CC is loaded from memory. If bit 9 of XPSD is 1, add 4 to the new instruction address value loaded from memory.				
	 Privileged instruction in slave mode 		Instruction decode	Set CC3 after new CC is loaded from memory. If bit 9 of XPSD is 1, add 2 to the new instruction address value loaded from memory.				
	4. Memory protection violation		Prior to memory access	Set CC4 after new CC is loaded from memory. If bit 9 of XPSD is 1, add 1 to the new instruction address value loaded from memory.				
65 41	Unimplemented instruction	none	Instruction decode	none				
66 42	Push-down stack limit reached	τw,τs [†]	At time of stack limit detection	none				
67 43	Fixed-point arithmetic over- flow	AM	For all instruction except DW and DH, trap occurs after com- pletion of instruction. For DW and DH, instruction is aborted with memory, registers, CC1, CC3, CC4 unchanged.	none				
68 44	Floating-point fault							
	1. Characteristic overflow	none	At time of fault detection; the	none				
	2. Divide by zero	none	the reason for the trap					
	3. Significance check	FS,FZ, FN						
70 46	Watchdog timer runout	none	At time of runout	none				
72 48	CALL 1	none	Instruction decode	The R field of the CALL instruc-				
73 49	CALL 2	none	Instruction decode	tion is ORed into new CC settings loaded from memory. If bit 9 of				
74 4 <i>4</i>	CALL 3	none	Instruction decode	XPSD is 1, the R field of the CALL				
75 4B	CALL 4	none	Instruction decode	Instruction is added to the new in- struction address value loaded from memory.				
		I		I				

Table 3. Summary of SIGMA 5 Trap System

^tThe push-down stack limit trap is masked within the stack pointer doubleword for each push-down stack (see page 49).

- 2. Load the new PSD. The current PSD is replaced by the contents of the doubleword location following the doubleword location in which the current PSD was stored.
- 3. Modify the new PSD:
 - a. Set CC1 to 1 (CC2, CC3, and CC4 remain set at the values loaded from memory).
 - b. If bit position 9 of XPSD contains a 1, the instruction address loaded from memory is incremented by
 8. If bit position 9 of XPSD contains a 0, the instruction address remains at the value loaded from memory.

Nonexistent Memory Address

Any attempt to access a nonexistent memory address causes a trap to location X'40' at the time of the request for memory service. The operation of XPSD in trap location X'40' is as follows:

- Store the current PSD. The condition code stored is that which existed immediately prior to the instruction that attempted to access a nonexistent memory address. The instruction address stored is the address of the instruction that attempted to access a nonexistent memory address. If an instruction execution is followed by an access to a nonexistent memory address for the next instruction in sequence, the stored instruction address is the nonexistent memory address.
- 2. Load the new PSD.
- 3. Modify the new PSD:
 - a. Set CC2 to 1 (CC1, CC3, and CC4 remain set at the values loaded from memory).
 - b. If bit position 9 of XPSD contains a 1, the instruction address loaded from memory in incremented by 4. If bit position 9 of XPSD contains a 0, the instruction address remains at the value loaded from memory.

Privileged Instruction in Slave Mode

An attempt to execute a privileged instruction while the CPU is in the slave mode causes a trap to location X'40' at the time of instruction decoding. The operation of XPSD in trap location X'40' is as follows:

- Store the current PSD. The condition code stored is that which existed immediately prior to the privileged instruction. The instruction address stored is the address of the privileged instruction.
- 2. Load the new PSD.
- 3. Modify the new PSD:
 - a. Set CC3 to 1 (CC1, CC2, and CC4 remain set at the values loaded from memory).
 - b. If bit position 9 of XPSD contains a 1, the instruction address loaded from memory is incremented by 2. If bit position 9 of XPSD contains a 0, the instruction address remains at the value loaded from memory.

The operation codes OC, OD, 2C, 2D and their indirectly addressed forms, 8C, 8D, AC, AD, are both nonexistent and privileged. If one of these operation codes is used while the CPU is in the slave state, both CC1 and CC3 will be set to 1's after the new PSD has been loaded, and if bit position 9 of XPSD contains a 1, the instruction address loaded from memory is incremented by 10.

Memory Write-Protection Violation

A memory protection violation occurs when any instruction attempts to alter write-protected memory and the current write key is nonzero and does not match the write lock for the memory page. When a memory protection violation occurs, the CPU aborts execution of the current instruction (without changing protected memory) and traps to location X'40'. The operation of the XPSD in trap location X'40' is as follows:

- Store the current PSD. The condition code stored is that which existed immediately prior to the instruction attempting to alter protected memory. The instruction address stored is the address of the instruction that attempted to alter protected memory.
- 2. Load the new PSD.
- 3. Modify the new PSD:
 - a. Set CC4 to 1 (CC1, CC2, and CC3 remain at the values loaded from memory).
 - b. If bit position 9 of XPSD contains a 1, the instruction address loaded from memory is incremented by
 1. If bit position 9 of XPSD contains a 0, the instruction address remains at the value loaded from memory.

An attempt to access a memory location that is both writeprotected and nonexistent causes both CC2 and CC4 to be set to 1's after the new PSD has been loaded, and if bit position 9 of XPSD contains a 1, the instruction address loaded from memory is incremented by 5.

UNIMPLEMENTED INSTRUCTIONS

There is on optional SIGMA 5 instruction group, the floatingpoint option, which includes the following instructions:

Mnemonic	Page
FAS	47
FAL	47
FSS	47
FSL	48
FMS	48
FML	48
FDS	48
FDL	48
	Mnemonic FAS FAL FSS FSL FMS FML FDS FDL

If an attempt is made to execute an instruction in this group when the floating-point option is not implemented, the computer traps to location X'41'.

The operation of the XPSD in trap location X'41' is as follows:

- Store the current PSD. The condition code stored is that which existed immediately prior to the unimplemented instruction. The instruction address stored is the address of the unimplemented instruction.
- 2. Load the new PSD. The condition code and the instruction address portions of the PSD remain at the values loaded from memory.
- Note: The Move to Memory Control (MMC) instruction is always considered implemented even if the memoryprotection option is not implemented.

PUSH-DOWN STACK LIMIT REACHED

Push-down stack overflow or underflow can occur during execution of any of the following instructions:

Instruction Name	Mnemonic	Page
Push Word	PSW	50
Pull Word	PLW	50
Push Multiple	PSM	51
Pull Multiple	PLM	51
Modify Stack Pointer	MSP	52

During the execution of any stack-manipulating instruction (see "Push-down Instructions") the stack is either pushed (words added to stack) or pulled(words removed from stack). In either case, the space count and word count fields of the stack pointer doubleword are tested prior to moving any words. If execution of the instruction would cause the space count to become less than 0 or greater than 2^{15} -1, the instruction is aborted with memory and registers unchanged; then, if bit 32 (TS) of the stack pointer doubleword is 0, the CPU traps to location X'42'. If execution of the instruction would cause the word count to become less than 0 or greater than 2^{15} -1, the instruction is aborted with memory and registers unchanged; then, if bit 48 (TW) of the stack pointer doubleword is a 0, the CPU traps to location X'42'. The execution of XPSD in trap location X'42' is as follows:

 Store the current PSD. The condition code stored is that which existed immediately prior to the aborted push-down instruction. The instruction address stored is the address of the aborted push-down instruction. Load the new PSD. The condition code and instruction address portions of the PSD remain at the values loaded from memory.

FIXED-POINT OVERFLOW

Fixed-point overflow can occur for any of the following instructions:

Instruction Name	Mnemonic	Page
Load Complement Word	LCW	28
Load Absolute Word	LAW	28
Load Complement Doubleword	LCD	28
Load Absolute Doubleword	LAD	28
Add Immediate	AI	34
Add Halfword	AH	34
Add Word	AW	34
Add Doubleword	AD	35
Subtract Halfword	SH	35
Subtract Word	SW	35
Subtract Doubleword	SD	35
Divide Halfword	DH	37
Divide Word	DW	37
Add Word to Memory	AWM	37
Modify and Test Halfword	MTH	38
Modify and Test Word	MTW	38

Except for the instructions DIVIDE HALFWORD (DH) and DIVIDE WORD (DW), the instruction execution is allowed to proceed to completion, CC2 is set to 1 and CC3 and CC4 represent the actual result (0, -, or +) after overflow. If the fixed-point arithmetic trap mask (bit 11 of PSD) is a 1, the CPU traps to location X'43' instead of executing the next instruction in sequence.

For DW and DH, the instruction execution is aborted without changing any register and CC2 is set to 1; but CC1, CC3, and CC4 remain unchanged from their values at the end of the instruction immediately prior to the DW or DH. If the fixed-point arithmetic trap mask (AM) is a 1, the CPU traps to location X'43' instead of executing the next instruction in sequence.

The execution of XPSD in trap location X'43' is as follows:

1. Store the current PSD. If the instruction causing the trap was an instruction other than DW or DH, the stored condition code is interpreted[†] as follows:

1#	2	3	4	Significance
-	1	0	0	result after overflow is zero
-	1	0	1	result after overflow is negative
-	1	1	0	result after overflow is positive
0	-	-	-	no carry from bit position 0
1	-	-	-	carry from bit position 0

[†]A hyphen (-) indicates that the condition code bit is not affected by the condition given under the "significance" heading.

^{tt}CC1 remains unchanged for the instructions LCW, LAW, LCD, and LAD.

If the instruction causing the trap was DW or DH, the stored condition code is interpreted as follows:

1 2 3 4 Significance

- 1 - - overflow

The stored instruction address is the address of the instruction that caused fixed-point overflow.

 Load the new PSD. The condition code and instruction address portions of the PSD remain at the value loaded from memory.

FLOATING-POINT ARITHMETIC FAULT CONDITION

Floating-point fault detection is performed after the operation called for by the instruction code is performed, but before any results are actually loaded into the general registers; thus, the floating-point operation that causes an arithmetic fault is not carried to completion (in the sense that the original contents of the general registers remain unchanged). Instead, the computer traps to location X'44' with the current condition code indicating the reason for the trap. A characteristic overflow or an attempt to divide by zero always results in a trap condition; a significance check or a characteristic underflow result in a trap condition only if the floating-point mode controls (FS, FZ, and FN) in the program status doubleword are set to the appropriate state.

If a floating-point instruction causes a trap, the execution of XPSD in trap location X'44' is as follows:

1. Store the current PSD. If division is attempted with a zero divisor or if characteristic overflow occurs, the stored condition code is interpreted as follows:

1	2	3	4	Significance
0	1	0	0	divide by zero
0	1	0	I	characteristic overflow, negative result
0	1	1	0	characteristic overflow, positive result

If none of the above conditions occurs, but characteristic underflow occurs with the floating zero (FZ) mode bit set to 1, the stored condition code is interpreted as follows:

1	2	3	4	Significance
1	1	0	1	characteristic underflow, negative result

1 1 1 0 characteristic underflow, positive result

If none of the above conditions occurs, but an addition or subtraction results in either a zero result (with FS = 1and FN = 0), or a postnormalization shift of more than two hexadecimal places (with FS = 1 and FN = 0), the stored condition code is interpreted as follows:

1	2	3	4	Significance
1	0	0	0	zero result of addition or subtraction
1	0	0	1	more than 2 postnormalizing shifts, negative result
1	0	1	0	more than 2 postnormalizing shifts, positive result

The stored instruction address is the address of the instruction that caused the floating-point fault.

2. Load the new PSD. The condition code and instruction address portions of the PSD remain at the values loaded from memory.

WATCHDOG TIMER RUNOUT

The instruction watchdog timer insures that the CPU must periodically reach interruptible points of operation in the execution of instructions. An interruptible point is a time during the execution of a program when an interrupt request (if present) would be acknowledged. Interruptible points occur at the end of every instruction and during the execution of some instructions. The watchdog timer measures elapsed time from the last interruptible point. If the maximum allowable time has been reached before the next time that an interrupt could be recognized, the current instruction is aborted and the watchdog timer runout trap is activated. Except for a nonexistent address used with READ DIRECT (RD) or WRITE DIRECT (WD), programs trapped by the watchdog timer cannot (in general) be continued. Exccution of XPSD in trap location X'46' is as follows:

- 1. Store the current PSD. The stored condition code is, in general, meaningless. The instruction address stored is the address of the aborted instruction.
- 2. Load the new PSD. The instruction address portion of the PSD remains at the value loaded from memory; however, the resulting condition code value is generally, meaningless. If the watchdog timer runout trap was activated while an operation was being performed by the integral IOP, the condition code is set to all 1's. In this case the integral IOP is inhibited from further operation until the inhibit is reset by a specific configuration of the WD instruction or by pressing either the CPU RESET/CLEAR switch or the SYSTEM RESET/CLEAR switch on the processor control panel.

CALL INSTRUCTIONS

The four CALL instructions (CAL1, CAL2, CAL3, and CAL4) cause the computer to trap to location X'48' (for CAL1) X'49' (for CAL2), X'4A' (for CAL3), or X'4B' (for CAL4). Execution of XPSD in the trap location is as follows:

- 1. Store the current PSD. The stored condition code is that which existed immediately prior to the CALL instruction. The stored instruction address is the address of the CALL instruction.
- 2. Load the new PSD.

- 3. Modify the new PSD.
 - a. The R field of the CALL instruction is logically ORed with the condition code value loaded from memory, and the result is loaded into the condition code.
- b. If bit 9 of XPSD contains a 1, the R field of the CALL instruction is added to the instruction address loaded from memory.

If bit 9 of XPSD contains a 0, the instruction address remains at the value loaded from memory.

3. INSTRUCTION REPERTOIRE

This section describes all SIGMA 5 instructions, grouped into the following functional classes:

		Page
1.	Load and Store	26
2.	Analyze and Interpret	32
3.	Fixed-Point Arithmetic	33
4.	Comparison	39
5.	Logical	41
6.	Shift	41
7.	Floating-Point Arithmetic	44
8.	Push Down	48
9.	Execute and Branch	53
10.	Call	55
11.	Control	55
12.	Input/Output	62

SIGMA 5 instructions are described in the following format:

MNEMONIC () INSTRUCTION NAME (2)

(Addressing type(3), Optional(4),

Privileged (5), Interrupt Action (6)

_`	~			_																										_	
* Operation							D			Х						Re	efe	er	en	ce	è /	٩d	ldı	re:	SS						
0 Code								N.												V	al	υe	;								
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Description (8)

 \bigcirc

Affected 🧿

Trap 🔟

Symbolic notation 🕕

Condition Code Settings (2)

Trap Action 🔞

Example 🕨

- 1. MNEMONIC is the code used by the SIGMA 5 assemblers to produce the instruction's basic operation code.
- 2. INSTRUCTION NAME is the instruction's descriptive title.
- 3. The instruction's addressing type is one of the following:
 - a. Byte addressing: the reference address field of the instruction can be used to address a byte in core memory or in the current block of general registers.
 - b. Halfword addressing: the reference address field of the instruction can be used to address a halfword in core memory or in the current block of general registers.
 - c. Word addressing: the reference address field of the instruction can be used to address any word in core memory or in the current block of general registers.
 - d. Doubleword addressing: the reference address field of the instruction can be used to address

any doubleword in core memory or in the current block of general registers. The addressed doubleword is automatically located within doubleword storage boundaries.

- e. Immediate addressing: the instruction word contains an operand value used as part of the instruction execution. If indirect addressing is attempted with this type of instruction (i.e., bit 0 of the instruction word is a 1), the instruction is treated as a nonexistent instruction, in which case the computer unconditionally aborts execution of the instruction (at the time of operation code decoding) and traps to location X'40', the "nonallowed operation" trap. Indexing does not apply to this type of instruction.
- 4. If the instruction is not in the standard SIGMA 5 instruction set, it is labeled "optional". If execution of an optional instruction is attempted on a computer in which the instruction is not implemented, the computer unconditionally aborts execution of the instruction (at the time of operation code decoding) and traps to location X'41', which is the "unimplemented instruction trap".
- 5. If the instruction is not executable while the computer is in the slave mode, it is labeled "privileged". If execution of a privileged instruction is attempted while the computer is in the slave mode, the computer unconditionally aborts execution of the instruction (at the time of operation code decoding) and traps to location X'40'.
- 6. If the instruction can be successfully resumed after its execution sequence has been interrupted by an interrupt acknowledgement, the instruction is labeled "continue after interrupt". Otherwise, the instruction is either completed or the instruction is aborted and then restarted after the interrupt is cleared. In the case of the "continue after interrupt" instruction, certain general registers contain intermediate results or control information that allows the instruction to continue properly.
- 7. Instruction format:
 - a. Indirect addressing If bit position 0 of the instruction format contains an asterisk (*), the instruction can utilize indirect addressing; however, if bit position 0 of the instruction format contains a 0, the instruction is of the immediate addressing type, which is treated as a nonexistent instruction if indirect addressing is attempted (resulting in a trap to location X'40').
 - Dperation code The operation code field (bit positions 1–7) of the instruction is shown in hexadecimal notation.
 - c. R field If the register address field (bit positions 8-11) of the instruction format contains the letter

"R", the instruction can specify any register in the current block of general registers as an operand source, result destination, or both; otherwise, the function of this field is determined by the instruction.

- d. X field If the index register address field (bit positions 12-14) of the instruction format contains the character "X", the instruction can specify indexing with any one of registers 1 through 7 in the current block of general registers; otherwise, the function of this field is determined by the instruction.
- e. Reference address field Normally, the reference address field (bit positions 15-31) of the instruction format is used as the initial address value for an instruction operand. For some instructions the effective address of the instruction is not used to access an operand; instead, the effective address itself is used as an operand. In these cases, the function of the effective address is represented in the lower half of the reference address field in the instruction format diagram.
- f. Value field In immediate addressing instructions, bit positions 12-31 of the instruction format contain the word "value". This field is treated as a 20-bit integer, with negative integers represented in two's complement form.
- g. Ignored fields In the instruction format diagrams, any area that is shaded represents a field or bit position that is ignored by the computer (i.e., the content of the shaded field or bit has no effect on instruction execution) but should be coded with O's so as to preclude conflict with possible modifications.
- 8. The description of the instruction defines the operations performed by the computer in response to the instruction configuration depicted by the instruction format diagram. Any instruction configuration that causes an unpredictable result is so specified in the description.
- 9. All programmable registers and storage areas that can be affected by the instruction are listed (symbolically) after the word "Affected". The instruction address portion of the program status doubleword is considered to be affected only if a branch condition can occur as a result of the instruction execution, since the instruction address is updated (incremented by 1) as part of every instruction execution.
- All trap conditions that may be invoked by the execution of the instruction are listed after the word "Trap". SIGMA 5 trap locations are summarized in the section "Trap System".
- 11. The symbolic notation presents the instruction operation as a series of generalized symbolic statements. The symbolic terms used in the notation are defined in Table 4.
- 12. Condition code settings are given for each instruction that affects the condition code. A 0 or a 1 under any

of columns 1, 2, 3, or 4 indicates that the instruction causes a 0 or 1 to be placed in CC1, CC2, CC3, or CC4, respectively, for the reasons given. If a hyphen (-) appears in column 1, 2, 3, or 4, that portion of the condition code is not affected by the reason given for the condition code bit(s) containing a 0 or 1. For example, the following condition code settings are given for a comparison instruction:

1	2	3	4	Result of comparison
-	-	0	0	equal
-	-	0	1	register operand is arithmetically less than effective operand
-	-	1	0	register operand is arithmetically greater than effective operand
-	0	-	-	logical product (AND) of the two operands is zero
-	1	-	-	logical product of the two operands is nonzero

CC1 is unchanged by the instruction. CC2 indicates whether or not the two operands have 1's in corresponding bit positions, regardless of their arithmetic relationship. CC3 and CC4 are set according to the arithmetic relationship of the two operands, regardless of whether or not the two operands have 1's in corresponding bit positions. For example, if the register operand is arithmetically less than the effective operand and the two operands both have 1's in at least one corresponding bit position, the condition code setting for the comparison instruction is:

- 1 2 3 4
- 1 0 1

The above statements about the condition code are valid only if no trap occurs before the successful completion of the instruction execution cycle. If a trap does occur during the instruction execution, the condition code is normally reset to the value it contained before the instruction was started, and then the appropriate trap location is activated.

- 13. Actions taken by the computer for those trap conditions that may be invoked by the execution of the instruction are described. The description includes the criteria for the trap condition, any controlling trap mask or inhibit bits, and the action taken by the computer. In order to avoid unnecessary repetition, the two trap conditions that apply to all instructions (i.e., nonallowed operations and watchdog timer runout) are not described for each instruction.
- 14. Some instruction descriptions provide examples to illustrate the results of the instruction. These examples are intended only to show how the instructions operate, and not to demonstrate their full capability. Within the examples, hexadecimal notation is used to represent the contents of general registers and storage locations (condition code settings are shown in binary notation). The character "x" is used to indicate irrelevant or ignored information.

Term	Meaning	Term	Meaning
()	Contents of	ED	Effective doubleword – the 64-bit contents of the effective doubleword location, or (EDL).
AM	rixed-point arithmetic trap mask – bit 11 of the program status doubleword. If this bit is a 1, the computer traps to location X'43' after executing an instruction that causes fixed-point arithmetic overflow; if this bit is a 0, the computer does not trap to location	сс	Condition code – a 4-bit value (whose bit po- sitions are labeled CC1, CC2, CC3, and CC4) that is established as part of the execution of most SIGMA 5 instructions.
I	X'43'. Instruction register – the internal CPU regis- ter used to hold instructions obtained from memory while they are being decoded.	FN	Floating normalize mode control – bit 7 of the program status doubleword. If this bit is a 0, the results of floating-point additions and sub- tractions are to be normalized; if this bit is a 1, the results are not normalized.
R	General register address value – the 4-bit contents of bit positions 8-11 (the R field) of an instruction word, also expressed symbol- ically as (I) ₈₋₁₁ .	FS	Floating significance mode control – bit 5 of the program status doubleword. If this bit is a 1, the computer traps to location X'44' when more than two hexadecimal places of postnor- malization chifting are required for a floating-
Ru l	Odd register address value – register Rulis the general register pointed to by the value ob- tained by logically ORing 0001 into the ad-		point addition or subtraction; if this bit is a 0, no significance checking is performed.
	dress value for register R. Thus, if the R field of an instruction contains an even value, Ru1 = R + 1 and if the R field contains an odd value, Ru1 = R.	FZ	Floating zero mode control – bit 6 of the program status doubleword. If this bit is a 1, the computer traps to location X'44' when either characteristic underflow or a zero
х	Index register address value – the 3-bit con- tents of bit positions 12-14 (the X field) of an instruction word. If $X = 0$ for an instruction, no indexing is performed. If $X \neq 0$ for an in-		result occurs for a floating-point multiplica- tion or division; if this bit is a 0, charac- teristics underflow and zero results are treat- ed as normal conditions.
	struction, indexing is performed (after indirect addressing, if indirect addressing is called for) with general register X in the current register block.	IA	Instruction address – the 17 bit value that defines the address of an instruction im- mediately before the instruction is executed.
EA	Effective address — the final address value ob- tained as a result of indirect addressing and/or indexing.	X'n'	Hexadecimal qualifier – a hexadecimal value (n) is a string of hexadecimal digits enclosed by quote marks and preceded by the qualifier "X".
EBL	Effective byte location – the byte location pointed to by the effective address of a byte- addressing instruction.	n	AND (logical product, where $0 \cap 0 = 0$, $0 \cap 1 = 0$, $1 \cap 0 = 0$, and $1 \cap 1 = 1$.
EB	Effective byte – the 8-bit contents of the ef- fective byte location, or (EBL).	υ	OR (logical inclusive OR, where $0 \cup 0 = 0$, $0 \cup 1 = 1$, $1 \cup 0 = 1$, and $1 \cup 1 = 1$).
EHL	Effective halfword location – the halfword lo- cation pointed to by the effective address of the halfword addressing instruction.	U	EOR (logical exclusive OR, where $0 \bigcirc 0 = 0$, $0 \bigcirc 1 = 1$, $1 \bigcirc 0 = 1$, and $1 \bigcirc 1 = 0$).
EH	Effective halfword – the 16-bit contents of the effective halfword location, or (EHL).	SE	Sign extension – some SIGMA 5 instructions operate on two operands of different lengths; the two operands are made equal in length by
EWL	Effective word location – the word location pointed to by the effective address of a word- addressing instruction.		extending the sign of the shorter operand by the required number of bit positions. For posi- tive operands, the result of sign extension is
EW	Effective word – the 32-bit contents of the ef- fective word location, or (EWL).		nign-order U's prefixed to the operand; for neg- ative operands, high-order 1's are prefixed to the operand. This sign extension process is per-
EDL	Effective doubleword location – the double- word location pointed to by the effective ad- dress of a doubleword-addressing instruction.		formed after the operand is accessed from mem- ory and before the operation called for by the instruction code is performed.

LOAD/STORE INSTRUCTIONS

The following load/store instructions are implemented in SIGMA 5 computers:

Instruction Name	Mnemonic	Page
Load Immediate	LI	26
Load Byte	LB	26
Load Halfword	LH	27
Load Word	LW	27
Load Doubleword	LD	27
Load Complement Halfword	LCH	27
Load Absolute Halfword	LAH	27
Load Complement Word	LCW	28
Load Absolute Word	LAW	28
Load Complement Doubleword	LCD	28
Load Absolute Doubleword	LAD	28
Load Selective	LS	29
Load Multiple	LM	29
Load Conditions and Floating Control		
Immediate	LCFI	30
Load Conditions and Floating Control	LCF	30
Exchange Word	XW	30
Store Byte	STB	30
Store Halfword	STH	31
Store Word	STW	31
Store Doubleword	STD	31
Store Selective	STS	31
Store Multiple	STM	31
Store Conditions and Floating Controls	STCF	32

SIGMA 5 load and store instructions operate with information fields of byte, halfword, word, and doubleword lengths. Load instructions load the information indicated into one of the general registers in the current register block. Load instructions do not affect core memory storage; however, nearly all load instructions provide a condition code setting that indicates the following information about the contents of the affected general register(s) after the instruction is successfully completed.

Condition code settings:

1	2	3	4	Result
-	-	0	0	zero–the result in the affected register(s) is all 0's.
-	-	0	I	negative–register R contains a 1 in bit position 0.
-	-	1	0	positive—register R contains a 0 in bit position 0, and at least one 1 appears in the remainder of the affected register(s) (or appeared during execution of the cur- rent instruction.)
-	0	-	-	no fixed-point overflow—the result in the affected register(s) is arithmetically correct.
_	1	-	-	fixed-point overflow-the result in the

 - I - fixed-point overflow—the result in the affected register(s) is arithmetically incorrect. Store instructions affect only that portion of memory storage that corresponds to the length of the information field specified by the operation code of the instruction; thus, register bytes are stored in memory byte locations, register halfwords in memory halfword locations, register words in memory word locations, and register doublewords in memory doubleword locations. Store instructions do not affect the contents of the general register specified by the R field of the instruction, unless the same register is also specified by the effective address of the instruction.

LI LOAD IMMEDIATE

(Immec	liate a	ddressi	ng)
--------	---------	---------	-----

0	22								F	2								٧	'a	lυ	e										
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

LOAD IMMEDIATE extends the sign of the value field (bit position 12) of the instruction word 12 bit positions to the left and then loads the 32-bit result into register R.

Affected:	(R), CC3, CC4
^(I) 12-31 SE	→ R

Condition code settings:

1	2	3	4	Result in R
-	-	0	0	zero
-	-	0	1	negative
-	-	1	0	positive

If LI is indirectly addressed, it is treated as a nonexistent instruction, in which case the computer unconditionally aborts execution of the instruction (at the time of operation code decoding) and traps to location X'40' with the contents of register R and the condition code unchanged.

LB	LOAD BYTE
	(Byte addressing)

*			7	72						F	२			х					I	Re	fe	re	ene	ce	a	dd	dre	es	5			
0	1	2	3	14	5	6	;	7	8	9	10	n	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

LOAD BYTE loads the effective byte into positions 24-31 of register R and clears bit positions 0-23 of the register to all 0's.

Affected: (R), CC3, CC4 EB \longrightarrow R₂₄₋₃₁; 0 \longrightarrow R₀₋₂₃

Condition code settings:

1	2	3	4	Result in R
-	-	0	0	zero
-	-	1	0	nonzero

Example:

		Before execution	After execution
EB	=	X'B4'	X'B4'
(R)	=	xxxxxxx	X'00000B4'
CC	=	xxxx	xx10

LOAD HALFWORD (Halfword addressing)

*			5	52						R			х						Re	fe	re	en	ce	a	Ida	dro	es	5			
0	1	2	3	14	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

LOAD HALFWORD extends the sign of the effective halfword 16 bit positions to the left and then loads the 32-bit result into register R.

Affected: (R), CC3, CC4 EH_{SF} \rightarrow R

Condition code settings:

1	2	3	4	Result in R
- - -	- - -	0 0 1	0 1 0	zero negative positive
LW	1	LC (W	AD \ ord c	WORD ddressing)

						_	•								_	·															
*				32					1	R			х						Re	efe	ere	en	ce	с	ıdo	dro	es	s			
0	1	2	3	14	5	6	7	8	9	10	n	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

LOAD WORD loads the effective word into register R.

Affected: (R), CC3, CC4 EW ---- R

Condition code settings:

1	2	3	4	Result in R
-	-	0	0	zero
-	-	0	1	negative
-	-	1	0	positive

LOAD DOUBLEWORD

(Doubleword addressing)

*				12						R			х						Re	fe	ere	en	ce		ıda	dre	es:	s			
0	1	2	3	4	5	6	7	18	3 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

LOAD DOUBLEWORD loads the 32 low-order bits of the effective doubleword into register Ru1 and then loads the 32 high-order bits of the effective doubleword into register R.

If R is an odd value, the result in register R is the 32 highorder bits of the effective doubleword. The condition code settings are based on the effective doubleword, rather than the final result in register R (see example 3, below).

Affected: (R), (Ru1), CC3, CC4 $ED_{32-63} \rightarrow Ru1; ED_{0-31} \rightarrow R$

Condition code settings:

1	2	3	4	Effective doubleword
-	-	0	0	zero
-	-	0	1	negative
-	-	1	0	positive

Example 1, even R field value:

	Before execution	After execution
ED = (R) = (Rul) = CC =	X'0123456789ABCDEF' xxxxxxxx xxxxxxxx xxxxxxxx xxxx	X'0123456789ABCDEF' X'01234567' X'89ABCDEF' xx10
Example	e 2, odd R field value:	
ED = (R) = CC =	X'0123456789ABCDEF' xxxxxxxx xxxx	X'0123456789ABCDEF' X'01234567' xx10
Example	e 3, odd R field value:	
ED = (R) = CC =	X'000000012345678' xxxxxxxx xxxx	X'000000012345678' X'00000000' xx10

LCH LOAD COMPLEMENT HALFWORD (Halfword addressing)

*			5	Ą				ŀ		R			х					l	Ref	er	en	ce	+ e c	Ide	dro	ess				
6	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19 2	02	1 22	23	24	25	26	27	28	29	30	31

LOAD COMPLEMENT HALFWORD extends the sign of the effective halfword 16 bit positions to the left and then loads the 32-bit two's complement of the result into register R. (Overflow cannot occur.)

Affected: (R), CC3, CC4 - $\begin{bmatrix} EH_{SE} \end{bmatrix} \longrightarrow R$

Condition code settings:

1	2	3	4	Result in R
-	-	0	0	zero
-	-	0	1	negative
_	-	1	0	positive

LAH LOAD ABSOLUTE HALFWORD (Halfword addressing)

*		5B						R			х					ł	Re	fe	ere	en	ce	a	dd	dre	es	s			
0	1 2	3 4	5	6	7	8	9	10	11	112	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the effective halfword is positive, LOAD ABSOLUTE HALFWORD extends the sign of the effective halfword 16 bit positions to the left and then loads the 32-bit result in register R. If the effective halfword is negative, LAH extends the sign of the effective halfword 16 bit positions to the left and then loads the 32-bit two's complement of the result into register R. (Overflow cannot occur.)

Affected: (R), CC3, CC4
$$|EH_{SE}| \longrightarrow R$$

Condition code settings:

1	2	3	4	<u>Result in R</u>
_	_	0	0	zero
-	-	1	0	nonzero

*	3	A			I	R			Х	C					R	ef	er	er	nc	e	ac	ldı	re	ss			
0	1 2 3	4 5	6 7	18	0	10	i1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

LOAD COMPLEMENT WORD loads the 32-bit two's complement of the effective word into register R. Fixed-point overflow occurs if the effective word is -2^{31} (X'8000000'), in which case the result in register R is -2^{31} and CC2 is set to 1; otherwise, CC2 is reset to 0.

Affected: (R), CC2, CC3, CC4 Trap: Fixed-point overflow -EW \longrightarrow R

Condition code settings:

1	2	3	4	Result in R
-	0	0	0	zero
-	-	0	1	negative
-	0	I	0	positive
-	0	-	-	no fixed-point overflow
-	1	0	1	fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after execution of LOAD COMPLEMENT WORD; otherwise, the computer executes the next instruction in sequence.

LAW LOAD ABSOLUTE WORD (Word addressing)

	r-	-	-	_				+-			-	r																			
*	3B					R				X			Reference address																		
	38							_																							
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the effective word is positive, LOAD ABSOLUTE WORD loads the effective word into register R. If the effective word is negative, LAW loads the 32-bit two's complement of the effective word into register R. Fixed-point overflow occurs if the effective word is -2^{31} (X'80000000'), in which case the result in register R is -2^{31} and CC2 is set to 1; otherwise, CC2 is reset to 0.

Affected: (R), CC2, CC3, CC4 Trap: Fixed-point overflow |EW| ----- R

Condition code settings:

1	2	3	_4	Result in R
-	0	0	0	zero
-	-	I	0	nonzero
-	0	-	-	no fixed-point overflow
-	1	1	0	fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after execution of LOAD ABSOLUTE WORD; otherwise, the computer executes the next instruction in sequence.

LCD LOAD COMPLEMENT DOUBLEWORD (Doubleword addressing)

*		۱۸					R	2			x					R	ef	er	e	nc	e	a	bb	re	ss	_			
0	1 2	31	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29 :	30	31

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit two's complement of the effective doubleword, loads the 32 loworder bits of the result into register Ru1, and then loads the 32 high-order bits of the result into register R.

If R is an odd value, the result in register R is the 32 highorder bits of the two's complemented doubleword. The condition code settings are based on the two's complement of the effective doubleword, rather than the final result in register R.

Fixed-point overflow occurs if the effective doubleword is -2^{63} (X'8000000000000000), in which case the result in registers R and Rul is -2^{63} and CC2 is set to 1; otherwise, CC2 is reset to 0.

Affected: (R), (Ru1), CC2, Trap: Fixed-point overflow CC3, CC4

$$[-ED]_{32-63} \longrightarrow Ru1; [-ED]_{0-31} \longrightarrow Ru1$$

Condition code settings:

1	2	3	4	Two's complement of effective doubleword
-	0	0	0	zero
-	-	0	1	negative
-	0	1	0	positive
-	0	-	-	no fixed-point overflow
-	1	0	1	fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after execution of LOAD COMPLEMENT DOUBLEWORD; otherwise the computer executes the next instruction in sequence.

Example 1, even R field value:

		Before execution	After execution
ED (R)	=	X'0123456789ABCDEF'	X'0123456789ABCDEF'
(Rul)	=	****	X'76543211'
CC	=	xxxx	×001

Example 2, even R field value:

D	=	X'FEDCBA9876543210'	X'FEDCBA9876543210'
R)	=	xxxxxxxx	X'01234567'
(Ru1)	=	xxxxxxxx	X'89ABCDF0'
CC	=	xxxx	×010

Example 3, odd R field value:

ED	=	X'0123456789ABCDEF'	X'0123456789ABCDEF'
(R)	=	xxxxxxxx	X'FEDCBA98'
CC	=	xxxx	x001

LAD LOAD ABSOLUTE DOUBLEWORD (Doubleword addressing)

*			1	B						R			Х						Re	efe	ere	en	ce	e c	bi	dr	es	s			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the effective doubleword is positive, LOAD ABSOLUTE DOUBLEWORD loads the 32 low-order bits of the effective doubleword into register Ru1, and then loads the 32 highorder bits of the effective doubleword into register R. If R is an odd value, the result in register R is the 32 high-order bits of the effective doubleword. The condition code settings are based on the effective doubleword, rather than the final result in register R.

If the effective doubleword is negative, LAD forms the 64bit two's complement of the effective doubleword, loads the 32 low-order bits of the two's complemented doubleword into register Ru1, and then loads the 32 high-order bits of the two's complemented doubleword into register R. If R is an odd value, the result in register R is the 32 high-order bits of the two's complemented doubleword. The condition code settings are based on the two's complement of the effective doubleword, rather than the final result in register R.

Fixed-point overflow occurs if the effective doubleword is -2^{63} (X'8000000000000000), in which case the result in registers R and Ru1 is -2^{63} and CC2 is set to 1; otherwise, CC2 is reset to 0.

Affected: (R), (Ru1), CC2 \longrightarrow Trap: Fixed-point overflow CC3, CC4 $|ED|_{32-63} \longrightarrow Ru1; |ED|_{0-31} \longrightarrow R$

Condition code settings:

	1	2	3	4	Absolute value of effective doubleword
I	-	0	0	0	zero
	-	-	1	0	nonzero
	-	0	-	-	no fixed-point overflow
	-	1	1	0	fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after execution of LOAD ABSOLUTE DOUBLEWORD; otherwise, the computer executes the next instruction in sequence.

Example 1, even R field value:

		Before execution	After execution
ED (R) (Ru1) CC	н н н	X'0123456789ABCDEF' xxxxxxxx xxxxxxxx xxxx	X'0123456789ABCDEF' X'01234567' X'89ABCDEF' x010
Examp	ble	2, even R field value:	
ED (R) (Ru1) CC		X'FEDCBA9876543210' xxxxxxxx xxxxxxxx xxxx	X'FEDCBA9876543210' X'01234567' X'89ABCDF0' x010
Examp	ble	3, odd R field value:	
ED (R) CC		X'0123456789ABCDEF' xxxxxxxx xxxx	X'0123456789ABCDEF' X'01234567' ×010
LS		LOAD SELECTIVE (Word addressing)	

 *
 4A
 R
 X
 Reference address

 0
 1
 2
 314
 5
 6
 7
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 25
 27
 28
 29
 0
 31

 Register Rul contains a 32-bit mask. If R is an even value,

 LOAD SELECTIVE loads the effective word into register R

in those bit positions selected by a 1 in corresponding bit positions of register Ru1. The contents of register R are not affected in those bit positions selected by a 0 in corresponding bit positions of register Ru1.

If R is an odd value, LS logically ANDs the contents of register R with the effective word and loads the result into register R. If corresponding bit positions of register R and the effective word both contain 1's, a 1 remains in register R in the corresponding bit position of register R.

Affected: (R), CC3, CC4

If R	is	even,	[EWn(Rul)] u	[(R)n(Ru1)]	→	R
If R	is	odd, E	EW∩(R)				

Condition code settings:

	2	3	4	Result in R
-	-	0	0	zero
-	-	0	1	bit 0 of register R is a 1
-	-	1	0	bit 0 of register R is a 0 and bit positions 1–31 of register R contain at least one 1

Example 1, even R field value:

		Before Execution	After execution
EW		X'01234567'	X'01234567'
(Ru1)		X'FF00FF00'	X'FF00FF00'
(R)		xxxxxxxx	X'01xx45xx'
CC		xxxx	xx10
Examp	le 2 ,	odd R field value:	
EW	=	X'89ABCDEF'	X'89ABCDEF'
(R)		X'F0F0F9F0'	X'80A0C0E0'
CC		xxxx	xx01

LOAD MULTIPLE

(Word addressing)

*	* 2A						RX							Reference address																	
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

LOAD MULTIPLE loads a sequential set of words into a sequential set of registers. The set of words to be loaded begins with the word pointed to by the effective address of LM, and the set of registers begin with register R. The set of registers is treated modulo 16 (i.e., the next register loaded after register 15 is register 0 in the current register block).

The number of words to be loaded into the general registers is determined by the value of the condition code immediately before the execution of LM. (The desired value of the condition code can be set with LCF or LCFI.) An initial value of 0000 for the condition code causes 16 consecutive words to be loaded into the register block.

Affected: (R) to (R+CC-1) (EWL) \longrightarrow R;...(EWL+CC-1) \longrightarrow R+CC-1

If the instruction starts loading words from an existent region of memory and then crosses into a nonexistent memory region, the nonexistent memory address trap occurs. In this case, the trap is activated with
the condition code unchanged from the value it contained before the execution of LM. The effective address of the instruction permits the trap routine to compute how many registers have been loaded. Since it is permissible to use indirect addressing or indexing through a general register or even to execute an instruction located in a general register, a trapped LM instruction may have already overwritten the index, direct address, or the LM instruction itself, thus destroying any possibility of continuing the program successfully. If such programming must be done, it is advisable that the register containing the direct address, index displacement, or instruction be the last register loaded by the LM instruction.

LCFI LOAD CONDITIONS AND FLOATING CONTROL IMMEDIATE (Immediate addressing)

If bit position 10 of the instruction word contains a 1, LOAD CONDITIONS AND FLOATING CONTROL IMMEDIATE loads the contents of bit position 24 through 27 of the instruction word into the condition code; however, if bit 10 is 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1, LCFI loads the contents of bit positions 29 through 31 of the instruction word into the floating significance (FS), floating zero (FZ), and floating normalize (FN) mode control bits, respectively (in the program status doubleword); however, if bit 11 is 0, the FS, FZ and FN control bits are not affected. The functions of the floating-point control bits are described in the section "Floating-Point Instructions".

Affected: CC, FS, FZ, FN If (I)₁₀ = 1, (I)₂₄₋₂₇ \longrightarrow CC If (I)₁₀ = 0, CC not affected If (I)₁₁ = 1, (I)₂₉₋₃₁ \longrightarrow FS, FZ, FN If (I)₁₁ = 0, FS, FZ, and FN are not affected

Condition code settings, if $(I)_{10} = 1$:

$$\frac{1}{(I)}_{24} = \frac{2}{(I)}_{25} = \frac{3}{(I)}_{26} = \frac{4}{(I)}_{27}$$

If LCFI is indirectly addressed, it is treated as a nonexistent instruction, in which case the computer unconditionally aborts execution of instruction (at the time of operation code decoding) and traps to location X'40' with the condition code unchanged.

Example:

		Before execution	After execution
(I)	=	X'023000A1'	xxxxxxx
CC	=	xxxx	1010
FS	=	x	0
FΖ	=	x	0
FN	=	×	1

LCF LOAD CONDITIONS AND FLOATING CONTROL

(Byte addressing)

*	70	CF	x	Reference address
5	1 2 3 4 5 6	7 8 9 10 11	12 13 14	15 16 17 18 19 20 21 22 22 24 25 26 27 28 29 20 31

If bit position 10 of the instruction word contains a 1, LOAD CONDITIONS AND FLOATING CONTROL loads bits 0 through 3 of the effective byte into the condition code; however, if bit 10 is 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1, LCF loads bits 5 through 7 of the effective byte into the floating significance (FS), floating zero (FZ), and floating normalize (FN) mode control bits, respectively; however, if bit 11 is 0, the FS, FZ, and FN control bits are not affected. The functions of the floating-point mode control bits are described in the section "Floating-Point Instructions".

Affected: CC, FS, FZ, FN If (I)₁₀ = 1, EB₀₋₃ \longrightarrow CC If (I)₁₀ = 0, CC not affected If (I)₁₁ = 1, EB₅₋₇ \longrightarrow FS, FZ, FN If (I)₁₁ = 0, FS, FZ, FN not affected

Condition code settings, if $(I)_{10} = 1$:

1	2	3	4
(EB) ₀	(EB)	(EB) 2	^(EB) 3

XW EXCHANGE WORD

(Word addressing)

*				4	6	 						R			Ī		х			+				R	e	fe	ere	en	c	+- 2	a	do	dr	e	55	5				
0	1	-	2	ĩ	4	5	6	7	<i>,</i>	8	9	-	10	11	Т	12	13	14	1	5	16	17	18	1	91	20	21	22	2:	iî 2	4	25	26		77	28	29	30	31	7

EXCHANGE WORD exchanges the contents of register R with the contents of the effective word location.

Affected: (R), (EWL), CC3, CC4 (R) ←→ (EWL)

Condition code settings:

1	2	3	4	Result in R
-	_	0	0	zero
-	-	0	1	negative
-	-	1	0	positive

STB STORE BYTE

(Byte addressing)

*	75		R	х	Reference address
6	1 2 3 4 5	567	8 9 10 11	12 13 14	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

STORE BYTE stores the contents of bit positions 24-31 of register R into the effective byte location.

Affected: (EBL) (R) $_{24-31} \longrightarrow EBL$

a	ltword	add	ressing)
---	--------	-----	---------	---

	*			5	5							R			Х					1	Re	fe	re	ene	ce	a	dd	dre	es	5			
7	n	1	2	2	4	5	6	7	7 [8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

STORE HALFWORD stores the contents of bit positions 16-31 of register R into the effective halfword location. If the information in register R exceeds halfword data limits, CC2 is set to 1; otherwise, CC2 is reset to 0.

Affected: (EHL), CC2 (R)₁₆₋₃₁ → EHL

Condition code settings:

1	2	3		Information in R
-	0	-	-	(R) ₀₋₁₆ = all 0's or all 1's
-	1	-	-	(R) $_{0-16} \neq all 0's or all 1's$

STW	STORE WORD
	(Word addressing)

*			3	5					ł	R			Х						Re	fe	re	en	ce	a	dd	dre	es	5			
0	1	2	31	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

STORE WORD stores the contents of register R into the effective word location.

Affected: (EWL) (R) ---> EWL

STD STORE DOUBLEWORD (Doubleword addressing)

*			•	15						R			Х					1	Re	fe	ere	en	ce	. a	dd	dre	es	5			
0	1	2	3	14	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

STORE DOUBLEWORD stores the contents of register R into the 32 high-order bit positions of the effective doubleword location and then stores the contents of register Rul into the 32 low-order bit positions of the effective doubleword location.

Affected: (EDL) $(R) \longrightarrow EDL_{0-31}; (Ru1) \longrightarrow EDL_{32-63}$

Example 1, even R field value:

	Before execution	After execution
(R) =	X'01234567'	X'01234567'
(Rul) =	X'89ABCDEF'	X'89ABCDEF'
(EDL) =	*****	X'0123456789ABCDEF'
Example	2, odd R field value:	

(R)	=	X'89ABCDEF'	X'89ABCDEF'
(EDL)	=	*****	X'89ABCDEF89ABCDEF'

STS STORE SELECTIVE

(Word addressing)

*			Z	17						R			Х						Re	fe	ere	en	ce	. 0	ide	dro	es	5			٦
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Register Rul contains a 32-bit mask. If R is an even value, STORE SELECTIVE stores the contents of register R into the effective word location in those bit positions selected by a 1 in corresponding bit positions of register Rul; the effective word remains unchanged in those bit positions selected by a 0 in corresponding bit positions of register Rul.

If R is an odd value, STS logically inclusive ORs the contents of register R with the effective word and stores the result into the effective word location. The contents of register R are not affected.

Affected: (EWL) If R is even, $[(R)n(Ru1)] \cup [EWn(Ru1)] \longrightarrow EWL$ If R is odd, (R) u EW ---- EWL

Example 1, even R field value:

		Before execution	After execution
(R)	=	X'12345678'	X'12345678'
(Rul)	=	X'F0F0F0F0'	X'F0F0F0F0'
EW	=	xxxxxxxx	X'1x3x5x7x'
Examp	ole	2, odd R field value:	
(R)	=	X'00FF00FF'	X'00FF00FF'
ÉŴ	=	X'12345678'	X'12FF56FF'

STM STORE MULTIPLE (Word addressing)

				r+
*	20	р		Petersner address
	20	ĸ	^	Reference address
0	1 2 3 4 5 6 7	8 9 10 11	12 13 14	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

STORE MULTIPLE stores the contents of a sequential set of registers into a sequential set of word locations. The set of locations begins with the location pointed to by the effective word address of STM, and the set of registers begins with register R. The set of registers is treated modulo 16 (i.e., the next sequential register after register 15 is register 0). The number of registers to be stored is determined by the value of the condition code immediately before execution of STM. (The condition code can be set to the desired value before execution of STM with LCF or LCFI.) An initial value of 0000 for the condition code causes 16 general registers to be stored.

Affected: (EWL) to (EWL + CC-1) $(R) \longrightarrow EWL, \dots, (R + CC-1) \longrightarrow EWL + CC-1$

If the instruction starts storing words into an accessible region of memory and then crosses into an inaccessible memory region, either the memory protection trap or the nonexistent memory address trap can occur. In either case, the trap is activated with the condition code unchanged from the value it contained before the execution of STM. The effective address of the instruction permits the trap routine to compute how many words of

memory have been changed. Since it is permissible to use indirect addressing through one of the affected locations, or even to execute an instruction located in one of the affected locations, a trapped STM instruction may have already overwritten the direct address, or the STM instruction itself, thus destroying any possibility of continuing the program successfully. If such programming must be done, it is advisable that the direct address, or the STM instruction, occupy the last location in which the contents of a register are to be stored by the STM instruction.

STCF STORE CONDITIONS AND FLOATING CONTROL

(Byte Addressing)

*		74			-						х						Re	ef€	ere	en	ce	o	dd	dre	es	S			
0	1 2	3 4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

STORE CONDITIONS AND FLOATING CONTROL stores the current condition code and the current values of the floating significance (FS), floating zero (FZ), and floating normalize (FN) mode control bits of the program status doubleword into the effective byte location as follows:

Affected: (EBL) (PSD) $_{0-7} \xrightarrow{} EBL$

ANALYZE/INTERPRET INSTRUCTIONS

ANLZ	ANALYZE
	A.,

(Word a	addressing)	
---------	-------------	--

*			4	4						R			Х						Re	fe	ere	en	ce	e c	ıdı	dr	es	s			
0	1 3	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

. .

The ANALYZE instruction treats the effective word as a SIGMA 5 instruction and calculates the effective address that would be generated by the instruction if the instruction were to be executed. ANALYZE produces an answer to the question, "What effective address would be used by the instruction located at N if it were executed now?" The ANALYZE instruction determines the addressing type of the "analyzed" instruction, calculates its effective address (if the instruction is not an immediate-addressing instruction), and loads the effective address into register R as a displacement value (the condition code settings for the ANALYZE instruction)

The nonexistent instruction, the privileged instruction violation, and the unimplemented instruction trap conditions can never occur during execution of the ANLZ instruction. However, the nonexistent memory address trap condition can occur as a result of any memory access initiated by the ANLZ instruction. If this trap condition occurs, the instruction address stored by an XPSD in trap location X'40' is the address of the ANLZ instruction. The detailed operation of ANALYZE is as follows:

- The contents of the location pointed to by the effective address of the ANLZ instruction are obtained. This effective word is the instruction to be analyzed. The nonallowed operation trap (nonexistent memory address) can occur as a result of this memory access.
- 2a. If the operation code portion of the effective word specifies an immediate-addressing instruction type, the condition code is set to indicate the addressing type, and instruction execution proceeds to the next instruction in sequence after ANLZ. The original contents of register R are not changed when the analyzed instruction is of the immediate addressing type.
- 2b. If the operation code portion of the effective word specifies a nonimmediate addressing type, the condition code is set to indicate the addressing type of the analyzed instruction and the effective address of the analyzed instruction is computed (using all of the normal address computation rules). If bit 0 of the effective word is a 1, the contents of the memory location specified by bits 15-31 of the effective word are obtained and then used as a direct address. The nonallowed operation trap (nonexistent memory address) can occur as a result of this memory access. Indexing is always performed (with an index register in the current register block) if bits 12-14 of the analyzed instruction are nonzero. The effective address of the analyzed instruction is aligned as an integer displacement value and loaded into register R, according to the instruction addressing type, as follows:

Byte Addressing:

	0000	0000 0000	0	19-bit byte displacement
ľ	0 1 2 3	4 5 6 7 8 9 10 11	12	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Halfword Addressing:

0	00	00)		00	00)		00	00	0		0	0		1	8-	bi	t	hc	lf	w	or	d	di	sp	ola	ice	en	ne	nt	
0	1	2	3	4	5	6	7	T	3	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Word Addressing:

0000	0000	0000 00	000 17-bit word displacement
L	3 4 5 6	7 8 9 10 11 12 1	13 14 15 16 17 18 19 20 21 22 22 24 25 24 27 29 20 20 2

Doubleword Addressing:

	0	00	00)	. (00	00)	-+	C)0	00)	C)0(00)				w	16 or	d d	oit di	d sp	ou la	ice Jp	le enr	- nei	nt			
Ĩ	0	Ŧ	ź	3	4	5	6	,	л	8	9	10	п	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Operation codes and mnemonics for the SIGMA 5 instruction set are shown in Table 5. Circled numbers in the table indicate the condition code value (decimal) available to the next instruction after ANALYZE when a direct-addressing operation code in the corresponding addressing type is analyzed. The R field of the instruction in the effective word location is ignored.

Affected: (R), CC

Condition code Settings:

1	2	3		Instruction addressing type
0	0	_	0	byte
0	0	-	1	immediate, byte
0	1	-	0	halfword
1	0	-	0	word
1	0	-	1	immediate, word
1	1	-	0	doubleword
-	-	0	-	direct addressing (EW ₀ = 0)
-	-	1	-	indirect addressing $(EW_0 = 1)$

Table 5. ANALYZE Table for SIGMA 5 Operation Codes

X'n'	X'00' + n	X'20' + n	X'40' + n	X'60' + n
00 01 02 03	 LCFI	AI CI LI MI		
04 05 06 07	CAL1 CAL2 CAL3 CAL4	SF S	ANLZ CS XW STS	BDR BIR AWM EXU
08 09 0A 0B	PLW PSW PLM PSM	LM ®	EOR OR LS AND	BCR BCS BAL INT
OC OD OE OF	LPSD ⁽¹²⁾ XPSD	WAIT LRP	SIO TIO TDV HIO	RD WD AIO MMC
10 11 12 13	AD CD LD MSP	AW CW LW MTW	AH CH LH MTH	LCF CB LB MTB
14 15 16 17	STD	STW DW MW	STH DH () MH	STCF STB ③
18 19 1A 1B	SD CLM LCD LAD	SW CLR LCW LAW	SH LCH LAH	
1C 1D 1E 1F	FSL FAL FDL FML	FSS FAS FDS FMS		
INT	INTERPRE (Word add	T Iressing)	•	L

*			1	6B							R			х			_		Refe	ere	en	ce	; c	dd	dre	ess	;			
0	1	2	3	14	5	6	1	71	8	9	10	ĩĩ	12	13	14	15 16	17	18	19 20	21	22	23	24	25	26	27	28	29	30	31

INTERPRET loads bits 0-3 of the effective word into the condition code, loads bits 4-15 of the effective word into bit positions 20-31 of register R (and loads 0's into the remainder of register R), and then loads bits 16-31 of the effective word into bit positions 16-31 of register Ru1 (and loads 0's into bit positions 0-15 of register Ru1). If R is an odd value, INT loads bits 0-3 of the effective word into the condition code, loads bits 16-31 of the effective word into bit positions 16-31 of register R, and loads 0's into bit positions 0-15 of register R (bits 4-15 of the effective word are ignored in this case).

Affected: (R), (Ru1), CC

$$EW_{0-3} \longrightarrow CC$$

 $EW_{4-15} \longrightarrow R_{20-31}; 0 \longrightarrow R_{0-19}$
 $EW_{16-31} \longrightarrow Ru1_{16-31}; 0 \longrightarrow Ru1_{0-15}$

Condition code settings:

$$\frac{1}{EW_0} = \frac{2}{EW_1} = \frac{3}{EW_2} = \frac{4}{EW_3}$$

Example, even R field value:

		Before execution	After execution
EW	=	X'12345678'	X'12345678'
(R)	=	xxxxxxxx	X'00000234'
(Ru1)	=	xxxxxxxx	X'00005678'
ĊC	=	xxxx	0001

FIXED-POINT ARITHMETIC INSTRUCTIONS

The following fixed-point arithmetic instructions are included as a standard feature of the SIGMA 5 computer:

Instruction Name	Mnemonic	Page
Add Immediate	AI	34
Add Halfword	AH	34
Add Word	AW	34
Add Doubleword	AD	35
Subtract Halfword	SH	35
Subtract Word	SW	35
Subtract Doubleword	SD	35
Multiply Immediate	MI	36
Multiply Halfword	мн	36
Multiply Word	MW	37
Divide Halfword	DH	37
Divide Word	DW	37
Add Word to Memory	AWM	37
Modify and Test Byte	MTB	38
Modify and Test Halfword	MTH	38
Modify and Test Word	MTW	38
-		

The fixed-point arithmetic instruction set performs binary addition, subtraction, multiplication, and division with integer operands that may be data, addresses, index values, or counts. One operand may be either in the instruction word itself or may be in one or two of the current general registers; the second operand may be either in core memory or in one or two of the current general registers. For most of these instructions, both operands may be in the same general register, thus permitting the doubling, squaring, or clearing the contents of a register by using a reference address value equal to the R field value.

All fixed-point arithmetic instructions provide a condition code setting that indicates the following information about the result of the operation called for by the instruction:

Condition code settings:

1	2	3	4	Result
-	-	0	0	zero – The result in the specified general register(s) is all zeros.
-	-	0	1	negative – The instruction has produced a fixed-point negative result.
-	-	1	0	positive – The instruction has produced a fixed-point positive result.
-	0	-	-	fixed-point overflow has not occurred dur- ing execution of an add, subtract, or di- vide instruction, and the result is correct.
-	1	-	-	fixed-point overflow has occurred during execution of an add, subtract, or divide instruction. For addition and subtraction, the incorrect result is loaded into the des- ignated register(s). For a divide instruc- tion, the designated register (s), and CC1, CC3, and CC4 are not affected.
0	-	-	-	no carry – For an add or subtract instruc- tion, there was no carry of a 1-bit out of the high-order (sign) bit position of the result.

I - - - carry - For an add or subtract instruction, there was a 1-bit carry out of the sign bit position of the result.

AI ADD IMMEDIATE

(Immediate addressing)

0	20	R	Value
5	1 2 3 4 5 6 7	8 9 10 11	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The value field (bit positions 12-31) of the instruction word is treated as a 20-bit, two's complement integer. ADD IMMEDIATE extends the sign of the value field (bit position 12 of the instruction word) 12 bit positions to the left, adds the resulting 32-bit value to the contents of register R, and loads the sum into register R.

Affected: (R), CC	Trap:	Fixed-point overflow
$(R) + (I)_{12-31SE} \longrightarrow R$		

Condition code settings:

1	2	3		Result in R
_	_	0	0	zero
-	-	0	1	negative
-		1	0	positive
-	0	-		no fixed-point overflow
-	1	-	-	fixed-point overflow
0	-	-	-	no carry from bit position 0
1		-	-	carry from bit position 0

If AI is indirectly addressed, it is treated as a nonexistent instruction, in which case the computer unconditionally aborts execution of the instruction (at the time of operation code decoding) and traps to location X'40' with the contents of register R and the condition code unchanged.

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after loading the sum into register R; otherwise, the computer executes the next instruction in sequence.

AH	ADD HALFWORD
	(Halfword addressing)

*			5	50						Ŕ			х						Re	fe	ere	en	ce	e c	ıdo	dro	es	s			
0	1	2	3	14	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

ADD HALFWORD extends the sign of the effective halfword 16 bit positions to the left (to form a 32-bit word in which bit positions 0-15 contain the sign of the effective halfword), adds the 32-bit result to the contents of register R, and loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow

$$(R) + EH_{SE} \longrightarrow R$$

Condition code settings:

1	2	3	4	Result in R
_	-	0	0	zero
-	-	0	1	negative
-	-	1	0	positive
-	0	-	-	no fixed-point overflow
-	1	-	-	fixed-point overflow
0	-	-	-	no carry from bit position 0
1	-	-	-	carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after loading the sum into register R; otherwise, the computer executes the next instruction in sequence.

AW	ADD WORD
	(Word addressing)

*			3	30						R			Х						Re	fe	re	en	ce	e c	Ide	dr	es	s			
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

ADD WORD adds the effective word to the contents of register R and loads the sum into register R.

Affected: (R),	CC	Trap:	Fixed-point	overflow
(R) + EW → R	ł			

Condition code settings:

1	2	3	4	Result in R
-	-	0	0	zero
-	-	0	1	negative
-	-	1	0	positive
-	0	-	-	no fixed-point overflow
-	1	-	-	fixed-point overflow
0	-	-	-	no carry from bit position 0
1	-	-	-	carry from bit position 0

34 Fixed-point Arithmetic Instructions

If CC2 is set to 1 and the fixed-point arithmetic trap mask (PSD₁₁) is 1, the computer traps to location X'43' after loading the sum into register R; otherwise, the computer executes the next instruction in sequence.

AD ADD DOUBLEWORD (Doubleword addressing)

П		_	-		_	-	\vdash						_		-					_			-			-				
*	* 10								R			Х						Re	efe	ere	en	ce	e c	d	dro	es	S			
0	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

R must be an even value. ADD DOUBLEWORD adds the effective doubleword to the contents of registers R and Rul (treated as a single, 64-bit register), and then loads the 64-bit sum into registers R and Rul. If R is an odd value, the result in register R is unpredictable.

Affected: (R), (Rul), CC	Trap: Fixed-point overflow
(R, Ru1)+ED → R, Ru1	

Condition code settings:

1	2	3	4	Result in R, Rul
-	-	0	0	zero
-	-	0	1	negative
-	-	1	0	positive
-	0	-	-	no fixed-point overflow
-	1	-	-	fixed-point overflow
0	-	-	-	no carry from bit position 0
1	-	-	-	carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after loading the sum into registers R and Ru1; otherwise, the computer executes the next instruction in sequence.

Example, even R field:

		Before execution	After execution
ED	=	X'33333333EEEEEEEE'	X'33333333EEEEEEE'
(R)	=	יוווווויX	X'4444445'
(R+1)	=	X'33333333'	X'22222221'
CC	=	xxxx	0010

SH	SUBTRACT HALFWORD
	(Halfword addressina)

*				58						R			х		- ·				Re	efe	ere	en	ce	; ;	d	dr	es	S			
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	151	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

SUBTRACT HALFWORD extends the sign of the effective halfword 16 bit positions to the left (to form a 32-bit word in which bit positions 0-15 contain the sign of the effective halfword), forms the two's complement of the resulting word, adds the complemented word to the contents of register R, and loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow -EH_{SF} + (R) \rightarrow R Condition code settings:

erflow
ow
position (
ition 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after loading the sum into register R; otherwise, the computer executes the next instruction in sequence.

SW SUBTRACT WORD (Word addressing)

*			3	38			-		R				х					Re	efe	er	er	nc	e	ac	ldı	e	ss				٦
0	1	2	3	14	5	6	7	18	9	10	31	12	13	14	15	16	17	18	191	20	21	22	23	24	25	26	27	28	29	30	31

SUBTRACT WORD forms the two's complement of the effective word, adds the complemented word to the contents of register R, and loads the sum into register R.

Affected:	(R), CC	Trap:	Fixed-point overflow
-EW + (R)	→ R		-

Condition code settings:

1	2	3	4	Result in R
-	-	0	0	zero
-	-	0	1	negative
-	-	1	0	positive
-	0	-	-	no fixed-point overflow
-	1	-	-	fixed-point overflow
0	-	-	-	no carry from bit position 0
1	-	-	-	carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after loading the sum into register R; otherwise, the computer executes the next instruction in sequence.

SD SUBTRACT DOUBLEWORD

(Doubleword	addressing)
-------------	-------------

*			1	8					R				х					R	əf	er	er	nc	e	ac	ldı	e	ss				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

R must be an even value. SUBTRACT DOUBLEWORD forms the 64-bit two's complement of the effective doubleword, adds the complemented doubleword to the contents of registers R and Ru1 (treated as a single, 64-bit register), and then loads the 64-bit sum into registers R and Ru1. If R is an odd value, the result in register R is unpredictable.

Affected: (R), (R+1), CC Trap: Fixed-point overflow -ED + (R, Ru1) ----- R, Ru1 Condition code settings:

<u> </u>	2	3	4	Result in R, Rul
-	-	0 0	0 1	zero negative nacióne
-	0	-	-	no fixed-point overflow
- 0 1	 - -	-		fixed–point overflow no carry from bit position 0 carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after the result is loaded into registers R and Rul; otherwise, the computer executes the next instruction in sequence.

MI MULTIPLY IMMEDIATE (Immediate addressing)

0			2	23					R									٧	'al	lu	е										
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	151	16	17	18	191	20	21	22	23	24	25	26	27	28	29	30	31

The value field (bit positions 12-31) of the instruction word is treated as a 20-bit, two's complement integer. MULTI-PLY IMMEDIATE extends the sign of the value field (bit position 12) of the instruction word 12 bit positions to the left and multiplies the resulting 32-bit value by the contents of register Rul, loads the 32 high-order bits of the product into register R, and then loads the 32 low-order bits of the product into register Rul.

If R is an odd value, the result in register R is the 32 loworder bits of the product. Thus, in order to generate a 64bit product, the R field of the instruction must be even and the multiplicand must be in register R+1. The condition code settings are based on the 64-bit product formed during instruction execution, rather than on the final contents of register R. Overflow cannot occur.

Affected: (R), (Ru1), CC2, CC3, CC4 $(Ru1) \times (I)_{12-31SE} \longrightarrow R, Ru1$

Condition code settings:

1	2	3	4	64-bit product
-	-	0	0	zero
-	-	0	1	negative
-	-	1	0	positive
-	0	-	-	result is correct, as represented in reg- ister Rul
-	1	-	-	result is not correctly representable in register Ru1 alone.

If MI is indirectly addressed, it is treated as a nonexistent instruction, in which case the computer unconditionally aborts execution of the instruction (at the time of operation code decoding) and traps to location X'40' with the contents of register R, register Rul, and the condition code unchanged. .

Example	• •		
		Before execution	After execution
^(I) 12-31	=	X'70000'	X'70000'
(R)	=	xxxxxxxx	X'00007000'
(Rul)	=	X'10001000'	X'70000000'
сс	=	xxxx	×110
Example	2,	odd R field value:	
^(I) 12-31	=	X'01234'	X'01234'
(R)	=	X'00030002'	X'369C2468'
СС	=	хххх	×010
мн	M (H	ULTIPLY HALFWORD Ialfword addressing)	

Example 1 even R field value:

*				57					R				Х					Re	əf	er	er	C	e	bc	dı	e	s				
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

MULTIPLY HALFWORD multiplies the contents of bit positions 16-31 of register R by the effective halfword, and stores the product in register Rul, with both halfwords treated as signed, two's complement integers (overflow cannot occur). If R is an even value, the original multiplier in register R is preserved, allowing repetitive halfword multiplication with a constant multiplier; however, if R is an odd value, the product is loaded into the same register. Overflow cannot occur.

Affected: (Rul), CC3, CC4 $(R)_{16-31} \times EH \longrightarrow Ru1$

Condition code settings:

<u>1 Z 3 4 Result 1</u>	
0 0 zero	
0 1' negativ	'e
1 0 positive	e

Example 1, even R field:

		Before execution	After execution
EH (R) (Ru1) CC		X'FFFF' X'xxxx000A' xxxxxxxx xxxx	X'FFFF' X'xxxx000A' X'FFFFFFF6' xx01
Exam	ole	2, odd R field:	
EH (R) CC	=	X'FFFF' X'xxxx000A' xxxx	X'FFFF' X'FFFFFFF6' ××01
ww		MULTIPLY WORD (Word addressing)	

Г				-		-		<u> </u>	-		-		_																		-
*			3	7					R				х					Re	efe	ere	en	ce		bc	dr	es	s				
																											-				
0	ī	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

MULTIPLY WORD multiplies the contents of register Rul by the effective word, loads the 32 high-order bits of the

1

product into register R and then loads the 32 low-order bits of the product into register Rul (overflow cannot occur).

If R is an odd value, the result in register R is the 32 loworder bits of the product. Thus, in order to generate a 64bit product, the R field of the instruction must be even and the multiplicand must be in register R+1. The condition code settings are based on the 64-bit product formed during instruction execution, rather than on the final contents of register R.

Affected: (R), (Ru1), CC (Ru1) x EW → R, Ru1

Condition code settings:

1	2	3	4	64-bit product
-	-	0	0	zero
-	-	0	1	negative
-	-	1	0	positive
-	0	-	-	result is correct, as represented in register Ru1
-	1	-	-	result is not correctly representable in register Ru1 alone

DH DIVIDE HALFWORD (Halfword addressing)

*			5	6					R				Х					Re	efe	re	nc	e	ad	dr	es	s			-	
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	191	20 2	21 22	23	24	25	26	27	28	29	30	31

DIVIDE HALFWORD divides the contents of register R (treated as a 32-bit fixed-point integer) by the effective halfword and loads the quotient into register R. If the absolute value of the quotient cannot be correctly represented in 32 bits, fixed point overflow occurs; in which case, CC2 is set to 1 and the contents of register R, CC1, CC3 and CC4 are unchanged.

Affected: (R), CC2, CC3 Trap: Fixed-point overflow CC4

 $(R) \div EH \longrightarrow R$

Condition code settings:

1	2	3	4	Result in R
_	0	0	0	zero quotient, no overflow
-	0	0	1	negative quotient, no overflow
-	0	1	0	positive quotient, no overflow
-	1	-	-	fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' with the contents of register R, CC1, CC3, and CC4 unchanged; otherwise, the computer executes the next instruction in sequence.

DW DIVIDE WORD (Word addressing)

*			3	6					R				х					R	ef	e	e	nc	e	a	bb	re	ss				
5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	

DIVIDE WORD divides the contents of registers R and Rul (treated as a 64-bit fixed-point integer) by the effective word, loads the integer remainder into register R and then loads the integer quotient into register Rul. If a nonzero remainder occurs, the remainder has the same sign as the dividend (original contents of register R). Fixed-point overflow occurs if the absolute value of the quotient cannot be correctly represented in 32 bits, in which case, CC2 is set to 1 and the contents of register R, register Rul, CC1, CC3, and CC4 remain unchanged; otherwise, CC2 is reset to 0, CC3 and CC4 reflect the quotient in register Rul, and CC1 is unchanged.

If R is an odd value, DW divides the contents of register R by the effective word, and loads the quotient into register R (in this case, the remainder is lost).

Affected: (R), (Ru1), CC2, Trap: Fixed-point overflow CC3, CC4 (R, Ru1) ÷ EW → R (remainder), Ru1(quotient)

Condition code settings:

1	2	3	4	Result in Rul
-	0	0	0	zero quotient, no overflow
-	0	0	1	negative quotient, no overflow
-	0	1	0	positive quotient, no overflow
-	1	-	-	fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' with the original contents of register R, register Ru1, CC1, CC3, and CC4 unchanged; otherwise, the computer executes the next instruction in sequence.

AWM	ADD WORD TO MEMORY
	(Word addressing)

*		66	,				R				Х					R	ef	eı	e	nc	e	a	bb	re	ss				
ني ا	1 2	3 4	5	6	7	8	ò	10	11	12	13	14	15	16	17	18	10	20	21	22	23	24	25	26	27	28	29	30	31

ADD WORD TO MEMORY adds the contents of register R to the effective word and stores the sum in the effective word location. The sum is stored regardless of whether or not overflow occurs.

Affected: (EWL), CC	Trap:	Fixed-point overflow
$EW + (R) \longrightarrow EWL$	•	

Condition code settings:

1	2	3	4	Result in EWL
-	_	0	0	zero
-	-	0	1	negative
-	-	1	0	positive
-	0	-	-	no fixed-point overflow
-	1	-	-	fixed-point overflow
0	-	-	-	no carry from bit position 0
1	-	-	-	carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after the result is stored in the effective word location; otherwise, the computer executes the next instruction in sequence.

*		7	73					R				Х					R	eł	eı	e	nc	e	ac	bb	re	ss				
0	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the value of the R field (bit positions 8-11) of the instruction word is zero, the effective byte is tested for being a zero, or nonzero value. The condition code is set according to the result of the test, but the effective byte is not affected, and no memory write-protection violation can occur.

If the value of the R field is nonzero, the high-order bit of the R field (bit position 8 of the instruction word) is extended 4 bit positions to the left, to form a byte with bit positions 0-4 of that byte equal to the high-order bit of the R field. This byte is then added to the effective byte, the sum replaces the previous contents of the effective byte location, and the condition code is set according to the value of the resultant byte. This process allows modification of a byte by any number in the range -8 through +7, followed by a test. (A memory write-protection violation can occur in this case.)

Affected: CC if (I)₈₋₁₁ = 0;
(EBL) and CC if (I)₈₋₁₁
$$\neq$$
 0

If $(I)_{8-11} = 0$, test byte and set CC

If (I)₈₋₁₁
$$\neq$$
 0, EB + (I)_{8-11SE} \longrightarrow EBL and set CC

Condition code settings:

1	2	3	4	Result in EBL
- - 0 1	0 0 - -	0 1 -	0 0 - -	zero nonzero no carry from byte carry from byte

If MTB is executed in an interrupt location, the condition code is not affected (see "Interrupt System" in Chapter 2).

MTH MODIFY AND TEST HALFWORD (Halfword addressing)

*			5	3					R				Х					R	ef	er	e	nc	e	ac	łd	re	ss				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	231	24	25	26	27	28	29	30	31

If the value of the R field (bit positions 8-11) of the instruction is zero, the effective halfword is tested for being a zero, negative, or positive value. The condition code is set, according to the result of the test, but the effective halfword is not affected, and no memory write-protection violation can occur.

If the value of the R field is nonzero, the high-order bit of the R field (bit position 8 of the instruction word) is extended 12 bit positions to the left, to form a halfword with bit positions 0-11 of that halfword equal to the high-order bit of the R field. This halfword is then added to the effective halfword, the sum replaces the previous contents of the effective halfword location, and the condition code is set according to the value of the resultant halfword. This process allows modification of a halfword by any number in the range -8 through +7, followed by a test. If no memory write-protection violation is detected, the sum is stored regardless of whether or not overflow occurs.

Affected: CC if (I)₈₋₁₁ = 0; Trap: Fixed-point overflow (EHL) and CC if (I)₈₋₁₁ \neq 0

If $(I)_{8-11} = 0$, test halfword and set CC

If (I)₈₋₁₁
$$\neq$$
 0, EH + (I)_{8-11SE} \longrightarrow EHL and set CC

Condition code settings:

EHL
•
-point overflow
oint overflow
from halfword
om halfword

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after the result is stored in the effective halfword location; otherwise, the computer executes the next instruction in sequence, However, if MTH is executed in an interrupt location, the condition code is not affected and no fixed-point overflow trap can occur (see "Interrupt System" in Chapter 2).

MTW MODIFY AND TEST WORD (Word addressing)

*			3	33					ļ	R			x			•			Re	fe	ere	en	ce	a	d	dr	es	s			٦
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the value of the R field (bit positions 8-11) of the instruction word is zero, the effective word is tested for being a zero, negative, or positive value. The condition code is set according to the result of the test, but the effective word is not affected, and no memory write-protection violation can occur.

If the value of the R field is nonzero, the high-order bit of the R field (bit position 8 of the instruction word) is extended 28 bit positions to the left, to form a word with bit positions 0-27 of that word equal to the high-order bit of the R field. This word is then added to the effective word, the sum replaces the previous contents of the effective word location, and the condition code is set according to the value of the resultant word. This process allows modification of a word by any number in the range -8 through +7, followed by a test. If no memory write-protection violation is detected, the sum is stored regardless of whether or not overflow occurs.

Affected: CC if (I)₈₋₁₁ = 0; Trap: Fixed-point overflow (EWL) and CC if (I)₈₋₁₁ \neq 0

If (I) $_{8-11} = 0$, test word and set CC

If (I)
$$_{8-11} \neq 0$$
, EW+I $_{8-11SE} \rightarrow$ EWL and set CC

Condition code settings:

1	2	3		Result in EWL
-	-	0 0	0 1	zero negative
-	-	1	0	positive
-	0	-	-	no fixed-point overflow
-	1	-	-	fixed-point overflow
0	-	-	-	no carry from word
1	-	-	-	carry from word

If CC2 is set to 1 and the fixed-point arithmetic trap mask (AM) is 1, the computer traps to location X'43' after the result is stored in the effective word location; otherwise, the computer executes the next instruction in sequence. However, if MTW is executed in an interrupt location, the condition code is not affected and no fixed-point overflow trap can occur (see "Interrupt System" in Chapter 2).

COMPARISON INSTRUCTIONS

All SIGMA 5 comparison instructions produce a condition code setting, which is indicative of the results of the comparison, without affecting the effective operand in memory and without affecting the contents of the designated register.

CI COMPARE IMMEDIATE

(Innite	unuic	aaan coornig,	/	
	+			
~ •	-			

V			4	21						1	ĸ								V	a	U	e										
		-		-		_	_	_	_			_	_	_	_	_	-			_	_			_				_		_	_	_
0	1	2	3	4	- 5	i 6	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

COMPARE IMMEDIATE extends the sign of the value field (bit position 12) of the instruction word 12 bit positions to the left, compares the 32-bit result with the contents of register R (with both operands treated as signed fixed-point quantities), and then sets the condition code according to the results of the comparison.

Affected: CC2, CC3, CC4 (R): (I) 12-31SE

Condition code settings:

1	2	3	4	Result of Comparison
-	-	0	0	operands are equal
-	-	0	1,	register value is arithmetically less than immediate value
-	-	1	0	register value is arithmetically greater than immediate value
-	0	-	-	logical product (AND) of the two operands is zero
-	1	-	-	logical product of the two operands is nonzero

If CI is indirectly addressed, it is treated as a nonexistent instruction, in which case the computer unconditionally aborts execution of the instruction (at the time of operation code decoding) and then traps to location X'40' with the condition code unchanged.

СВ	COM	PARE	ΒY	ΤE

(Byte addressing)

*			;	71							R			х						Re	efe	ere	en	ce	; ;	bc	dr	es	s			
Ļ	1	2	3	14	5	_	6	7	8	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	20	20	

COMPARE BYTE compares the contents of bit positions 24-31 of register R with the effective byte, with both bytes treated as positive integer magnitudes, and sets the condition code according to the results of the comparison

Affected: CC2, CC3, CC4 (R)₂₄₋₃₁: EB

Condition code settings:

1	2	3	4	Result of Comparison
-	-	0	0	operands are equal
-	-	0	1	register byte is less in magnitude than effective byte
-	-	1	0	register byte is greater in magnitude than effective byte
-	0	-	-	logical product (AND) of the two operands is zero
-	1	-	-	logical product of the two operands is nonzero
сн		СС	ompa	ARE HALFWORD

H COMPARE HALFWORD (Halfword addressing)

*	51	R X	Reference address
Ļ	1234567	8 9 10 11 12 13 14	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

COMPARE HALFWORD extends the sign of the effective halfword 16 bit positions to the left and then compares the resultant 32-bit word with the contents of register R, with both words treated as signed fixed-point quantities, and sets the condition code according to the results of the comparison.

Affected: CC2, CC3, CC4 $(R) : EH_{SF}$

Condition code settings:

1	2	3	4	Result of Comparison
-	-	0	0	operands are equal
-	-	0	1	register word is arithmetically less than effective halfword with sign extended
-	-	1	0	register word is arithmetically greater then effective halfword with sign extended
-	0	-	-	logical product (AND) of the two operands is zero
-	1	-	-	logical product of the two operands is nonzero

*				31						R			Х						Re	fe	ere	en	ce	e c	bb	dr	es	S			
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	191	20	21	22	23	24	25	26	27	28	29	30	31

COMPARE WORD compares the contents of register R with the effective word, with both words treated as signed fixedpoint quantities, and sets the condition code according to the results of the comparison.

Affected: CC2, CC3, CC4 (R) : EW

Condition code settings:

1	2	3	4	Result of Comparison
- ,	-	0	0	operands are equal
-	-	0	1	register word is arithmetically less than effective word
-	-	1	0	register word is arithmetically greater than effective word
-	0	-	-	logical product (AND) of the two operands is zero
-	1	-	-	logical product of the two operands is nonzero
CD		CC (Do)MPA ouble	ARE DOUBLEWORD word addressing)

*			1	1					F	2			Х						Re	efe	re	en	ce	c	ıdı	dn	es	s			
0	1	2	3		5	6	7	8	0	10	11	12	13	14	15	16	17	18	19	20	21	22	22	24	25	26	27	28	20	30	31

COMPARE DOUBLEWORD compares the effective doubleword with the contents of registers R and Ru1, with both doublewords treated as signed fixed-point quantities, and sets the condition code according to the results of the comparison. If the R field of CD is an odd value, CD forms a 64-bit register operand (by duplicating the contents of register R for both the 32 high-order bits and the 32 low-order bits) and compares the effective doubleword with the 64bit register operand. The condition code settings are based on the 64-bit comparison.

Affected: CC3, CC4 (R, Rul) : ED

Condition code settings:

1	2	3	4	Result of Comparison
-	-	0	0	operands are equal
-	-	0	I	register doubleword is arithmetically less than effective doubleword
-	-	I	0	register doubleword is arithmetically greater than effective doubleword

COMPARE SELECTIVE

(Word addressing)

*				45	i				R	2			х					F	₹e	fe	re	nc	e	A	d	dro	es	s			
0	1	2	3	14	5	6	Ź	18	9	10	n	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

COMPARE SELECTIVE compares the contents of register R with the effective word in only those bit positions selected by a 1 in corresponding bit positions of register Ru1 (mask). The contents of register R and the effective word are ignored in those bit positions designated by a 0 in corresponding bit positions of register Ru1. The selected contents of register R and the effective word are treated as positive integer magnitudes, and the condition code is set according to the result of the comparison. If the R field of CS is an odd value, CS compares the contents of register R with the logical product (AND) of the effective word and the contents of register R.

Affected: CC3, CC4 If R is even: $(R) \cap (Ru1) : EW \cap (Ru1)$ If R is odd: (R) : EW n (R)

Condition code settings:

1	2	3	4	Results of Comparis on under Mask in Rul
-	-	0	0	operands are equal
-	-	0	1	register word is less in magnitude than effective word
			~	

0 register word is greater in magnitude than effective word

COMPARE WITH LIMITS IN REGISTER CLR (Word addressing)

Γ.	Г		_					T		_						-															٦
1*				39						ł			Х						Rε	ete	ere	en	ce	c	bb	dr	es	S			
0	1	2	3	4	5	6	7	8	9	10	11	112	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

COMPARE WITH LIMITS IN REGISTER simultaneously compares the effective word with the contents of register R and with the contents of register Rul, with all three words treated as signed fixed-point quantities, and sets the condition code according to the results of the comparisons. Note that if the R field of CLR is an odd value, the settings for CC1 and CC2 are identical (respectively) to the settings for CC3 and CC4.

Affected: CC (R) : EW, (Rul) : EW

Condition code settings:

1	2	3		Result of Comparison
-	-	0	0	contents of R equal to effective word
-	-	0	1	contents of R less than effective word
-	-	1	0	contents of R greater than effective word
0	0	-	-	contents of Rul equal to effective word
0	1	-	-	contents of Rul less than effective word
1	0	-		contents of Ru 1 greater than effective word

CLM COMPARE WITH LIMITS IN MEMORY (Doubleword addressing)

[*			1	9					R				Х					F	٦e	fe	re	n	e	a	do	dre	ess	5			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

COMPARE WITH LIMITS IN MEMORY simultaneously compares the contents of register R with the 32 high-order bits of the effective doubleword and with the 32 low-order bits of the effective doubleword, with all three words treated as 32-bit signed quantities, and sets the condition code according to the results of the comparisons.

Affected: CC (R) : ED_{0-31} ; (R) : ED_{32-63}

Condition code settings:

1	2	3	4	Result of Comparison
-	-	0	0	contents of R equal to most significant word, $(R) = ED_{0-31}$
-	-	0	1	contents of R less than most significant word, $(R) < ED_{0-31}$
-		1	0	contents of R greater than most significant word, $(R) > ED_{0-31}$
0	0	-	-	contents of R equal to least significant word, $(R) = ED_{32-63}$
0	1	-	-	contents of R less than least significant word, (R) $\leq ED_{32-63}$
1	0	-	-	contents of R greater than least signifi- cant word, (R) > ED_{32-63}

LOGICAL INSTRUCTIONS

All logical operations are performed bit by corresponding bit between two operands; one operand is in register R and the other operand is the effective word. The result of the logical operation is loaded into register R.

OR OR WORD (Word addressing)

			•	
k	49	R	х	Reference address

OR WORD logically ORs the effective word into register R. If the corresponding bits of register R and the effective word are both 0, a 0 remains in R; otherwise, a 1 is placed in the corresponding bit position of R. The effective word is not affected.

Affected: (R), CC3, CC4 (R) \cup EW \rightarrow R, where $0 \cup 0 = 0$, $0 \cup 1 = 1$, $1 \cup 0 = 1$, $1 \cup 1 = 1$

Condition code settings:

1	2	3	4	Result in R
-	-	0	0	zero
-	-	0	1	bit 0 of register R is a 1

– 1 0 bit 0 of register R is a 0 and bit positions
 1–31 of register R contain at least one 1

EOR EXCLUSIVE OR WORD

(Word addressing)

*			4	18						R			Х						Re	efe	ere	en	ce	e c	bi	dr	ess				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27 1	28 2	29 3	30	31

EXCLUSIVE OR WORD logically exclusive ORs the effective word into register R. If the corresponding bits of register R and the effective word are different, a 1 is placed in the corresponding bit position of R; if the contents of the corresponding bit positions are alike, a 0 is placed in the corresponding bit position of R. The effective word is not affected.

Affected: (R), CC3, CC4 (R) 0 EW $\xrightarrow{}$ R, where 0 0 0 = 0, 0 0 1 = 1, 1 0 0 = 1, 1 0 1 = 0

Condition code settings:

1	2	3	4	Result in R
-	-	0	0	zero
-	-	0	1	bit 0 of register R is a 1
-	-	1	0	bit 0 of register R is a 0 and bit positions 1–31 of register R contain at least one 1

AND AND WORD

(Word addressing)

*				1 ₿						R			х						Re	efe	ere	en	ce	e c	bi	dr	es	s			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

AND WORD logically ANDs the effective word into register R. If the corresponding bits of register R and the effective word are both 1, a 1 remains in R; otherwise, a 0 is placed in the corresponding bit position of R. The effective word is not affected.

Affected: (R), CC3, CC4 (R) $n EW \longrightarrow R$, where 0n0=0, 0n1=0, 1n0=0, 1n1=1

Condition code settings:

1	2	3	4	Result in R
-	-	0	0	zero
-	-	0	1	bit 0 of register R is a 1
		_	-	

- 1 0 bit 0 of register R is a 0 and bit positions
 1-31 of register R contain at least one 1

SHIFT INSTRUCTIONS

The instruction format for logical, circular, and arithmetic shift operations is

S SHIFT

(Word addressing)

*			2	25					R				Х					F	<u>د</u>	fe	re T	no yp	<u>ce</u> e	a	dc	lre C	ess	Un	t		
0	1	2	3	4	5	6	7	8	9	10	11.	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If neither indirect addressing nor indexing is called for in the instruction SHIFT, bit positions 21–31 of the reference address field determine the type, direction, and amount of the shift. If only indirect addressing is called for in the instruction, bits 15-31 of the instruction are used to access the indirect word and then bits 21-31 of the indirect word determine the type, direction, and amount of the shift. If only indexing is called for in the instruction, bits 21-31 of the instruction word determine the type of shift; the direction and amount of shift are determined by the 7 low-order bits of the sum of bits 25-31 of the instruction and bits 25-31 of the specified index register. If both indirect adressing and indexing are called for in the instruction, bits 15-31 of the instruction are used to access the indirect word and then bits 21-23 of the indirect word determine the type of shift; the direction and amount of the shift are determined by the 7 low-order bits of the sum of bits 25-31 of the indirect word and bits 25-31 of the specified index register.

Bit positions 15-20 and 24 of the effective address are ignored. Bit positions 21, 22 and 23 of the effective address determine the type of shift, as follows:

Bit	Posit	ions	
21	22	23	Shift Type
0	0	0	Logical, single register
0	0	1	Logical, double register
0	1	0	Circular, single register
0	1	1	Circular, double register
1	0	0	Arithmetic, single register
1	0	1	Arithmetic, double register
1	1	0	Undefined
1	ł	1	Undefined

Bit positions 25 through 31 of the effective address are a shift count that determines the direction and amount of the shift. The shift count (C) is treated as a 7-bit signed binary integer, with the high-order bit (bit position 25) as the sign (negative integers are represented in two's complement form). A positive shift count causes a left shift of C bit positions. A negative shift count causes a right shift of |C| bit positions. The value of C is within the range: $-64 \le C \le +63$.

All double-register shift operations require an even value for the R field of the instruction, and treat registers R and Rul as a 64-bit register with the high-order bit (bit position 0 of register R) as the sign for the entire register. If the R field of SHIFT is an odd value and a double-register shift operation is specified, a register doubleword is formed by duplicating the contents of register R for both the 32 highorder bits and the 32 low-order bits of the doubleword. The shift operation is then performed and the 32 high-order bits of the result are loaded into register R.

Overflow occurs (on left shifts only) whenever the value of the sign bit (bit position 0 of register R) changes. At the completion of logical left, circular left, and arithmetic left shifts, the condition code is set as follows:

1	2	3	4	Result	· of	Shift

- 0 - even number of 1's shifted off left end of register R
- 1 - odd number of 1's shifted off left end of register R.

1	2	3	4	Result of Shift
-	0	-	-	no overflow on left shift

1 - - overflow on left shift

At the completion of logical right, circular right, and arithmetic right shifts, the condition code is set as follows:

1	2	3	_4
0	0	-	-

Logical Shift, Single Register

Ļ			~	_								Γ.			Γ			R	le	fe	re	nc	e	a	dc	Ire	ss				٦
ſ			2	S					ĸ	ί.			×								0	0	0				C	οu	nt		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the shift count, C, is positive, the contents of register R are shifted left C places, with 0's copies into vacated bit positions on the right. (Bits shifted past R_0 are lost.) If C is negative, the contents of register R are shifted right |C| places, with 0's copied into vacated bit positions on the left. (Bits shifted past R_{31} are lost.)

Affected: (R), CC1, CC2

Logical Shift, Double Register

L.	Γ		~	_				Γ		、			$\overline{}$		Γ			F	le	fe	re	no	e	a	dc	Ire	ess	;			
Ĺ			2:)					ł	<u>د</u>			X								0	0	1				C	οu	nt		
0	1	2	31	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the shift count, C, is positive, the contents of registers R and Rul are shifted left C places, with 0's copied into vacated bit positions on the right. Bits shifted past bit position 0 of register Rul are copied into bit position 31 of register R. (Bits shifted past R_0 are lost.) If C is negative, the contents of registers R and Rul are shifted right |C| places, with 0's copied into vacated bit positions on the left. Bits shifted past bit position 31 of register R are copied into bit position of register R are copied into bit positions on the left. Bits shifted past bit position 31 of register R are copied into bit position 0 of register Rul. (Bits shifted past Rul₃₁ are lost.)

Affected: (R), (Rul), CCl, CC2

Circular Shift, Single Register

*	Τ		2	5						, ,			v					F	Re	fe	re	ene	ce	a	dc	ire	ess	;			٦
									ſ	`			^								0	1	0				C	οU	nt		
0	1	2	3	14	5	6	7	18	9	10	īī	112	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the shift count, C, is positive, the contents of register R are shifted left C places. Bits shifted past bit position 0 are copied into bit position 31. (No bits are lost.) If C is negative, the contents of register R are shifted right |C| places. Bits shifted past bit position 31 are copied into bit position 0. (No bits are lost.)

Affected: (R), CC1, CC2

Circular Shift, Double Register

*		25				-	R				x			•		Re	efe	er	en	ce	e (ad	dr	es	s				٦
		2.5					ĸ												0	1	1			C	0	Jn	ł		
0	1 2	3 4	5	6	7	8	9	10	Ī1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the shift count, C, is positive, the contents of registers R and Rul are shifted left C places. Bits shifted past bit position 0 of register R are copied into bit position 31 of register Rul. (No bits are lost.) If C is negative, the contents of registers R and Rul are shifted right |C| places. Bits shifted past bit position 31 of register Rul are copied into bit position 0 of register R. (No bits are lost.)

Affected: (R), (Ru1), CC1, CC2

Arithmetic Shift, Single Register

L.				25									v					1	٦e	fe	re	ene	ce	a	dd	dre	ess	;			
Ľ			4	20					ĸ				~								1	0	0			l	C	οu	nt		
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the shift count, C, is positive, the contents of register R are shifted left C places, with 0's copied into vacated bit positions on the right. (Bits shifted past R_0 are lost.) If C is negative, the contents of register R are shifted right |C| places, with the contents of bit position 0 copied into vacated bit positions on the left. (Bits shifted past R_{31} are lost.)

Affected: (R), CC1, CC2

Arithmetic Shift, Double Register

[2	5				Γ		D			$\overline{\mathbf{v}}$						Re	efe	re	en	ce	c	Ide	dro	es	s			
[2							ĸ			<u> </u>								1	0	1			(Cq	νU	nt		
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the shift count, C, is positive, the contents of registers R and Rul are shifted left C places, with 0's copied into vacated bit positions on the right. Bits shifted past bit position 0 of register Rul are copied into bit position 31 of register R. (Bits shifted past R_0 are lost.) If C is negative, the contents of registers R and Rul are shifted right |C| places, with the contents of bit position 0 of register R copied into vacated bit positions on the left. Bits shifted past bit position 31 of register R uncertainty are copied into bit position 0 of register R copied into vacated bit positions on the left. Bits shifted past bit position 31 of register R uncertainty are lost.)

Affected: (R), (Ru1), CC1, CC2

FLOATING-POINT SHIFT

Floating-point numbers are defined on page 44. The instruction format for floating-point shift operation is:

SF SHIFT FLOATING (Word addressing)

•				24				T	D				~					R	e	fe	re	nc	e	a	dd	re	ss				٦
				24					ĸ				^										D			C	0	un	it		
0	1	2	3	4	5	ó	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If indirect addressing and/or indexing are called for in the instruction word, the effective address is computed as for the instruction SHIFT (see page 41) except that bit position 23 of the effective address determines the type of shift. If bit 23 is 0, the contents of register R are treated as a short-format floating-point number; if bit 23 is 1, the contents of registers R and Ru1 are treated as a long-format floating-point number.

The shift count, C, in bit positions 25 through 31 of the effective address determines the amount and direction of the shift. The shift count is treated as a 7-bit signed binary integer, with the high-order bit (bit position 25) as the sign (negative integers are represented in two's complement form). The absolute value of the shift count determines the number of hexadecimal digit positions the floating-point number is to be shifted. A positive shift count specifies a left shift; a negative shift count specifies a right shift.

SHIFT FLOATING loads the floating-point number from the register(s) specified by the R field of the instruction into a set of internal registers. If the number is negative, it is two's complemented. A record of the original sign is retained. The floating-point number is then separated into a characteristic and a fraction, and CC1 and CC2 are both reset to 0's.

A positive shift count produces the following left shift operations:

- If the fraction is normalized (i.e., is less than 1 and is equal to or greater than 1/16, or the fraction is all 0's), CC1 is set to 1.
- If the fraction field is all 0's, the entire floating-point number is set to all 0's (true zero), regardless of the sign and the characteristic of the original number.
- If the fraction is not normalized, the fraction field is shifted 1 hexadecimal digit position (4 bit positions) to the left and the characteristic field is decremented by
 Vacated digit positions at the right of the fraction are filled with hexadecimal 0's.

If the characteristic field underflows (i.e., is all 1's as the result of being decremented), CC2 is set to 1. However, if the characteristic field does not underflow, the shift process (shift fraction, and decrement characteristic) continues until the fraction is normalized, until the characteristic field underflows, or until the fraction is shifted left C hexadecimal digit positions, whichever occurs first. (Any two, or all three, of the terminating conditions can occur simultaneously.)

- 4. At the completion of the left shift operation, the floating-point result is loaded back into the general register(s). If the number was originally negative, the two's complement of the resultant number is loaded into the general register(s).
- 5. The condition code settings following a floating-point left shift are as follows:

1	2	3	4	Result
-	-	0	0	true zero (all 0's)
-	-	0	1	negative
-	-	1	0	positive
0	0	-	-	C digits shifted (fraction unnormal- ized, no characteristic underflow)
1	-	-	-	fraction normalized (includes true zero)
	1	-	-	characteristic underflow

A negative shift count produces the following right shift operations (again assuming that negative numbers are two's complemented before and after the shift operations):

- The fraction field is shifted 1 hexadecimal digit position to the right and the characteristic field is incremented by 1. Vacated digit positions at the left are filled with hexadecimal 0's.
- If the characteristic field overflows (i.e., is all 0's as the result of being incremented), CC2 is set to 1. However, if the characteristic field does not overflow, the shift process (shift fraction, and increment characteristic) continues until the characteristic field overflows or until the fraction is shifted right C hexadecimal digit positions, whichever occurs first. (Both terminating conditions can occur simultaneously.)
- 3. If the resultant fraction field is all 0's, the entire floating-point number is set to all 0's (true zero), regardless of the sign and the characteristic of the original number.
- 4. At the completion of the right shift operations, the floating-point result is loaded back into the general register(s). If the number was originally negative, the two's complement of the resultant number is loaded into the general register(s).
- 5. The condition code settings following a floating-point right shift are as follows:

1	2	3	4	Result
-	-	0	0	true zero (all 0's)
-	-	0	1	negative
-	-	1	0	positive
0	0	-	-	C digits shifted (no characteristic overflow)
0	ì	-	-	characteristic overflow

Floating Shift, Single Register

ľ.			,					T	D				v					Re	efe	er	er	nce	e d	ad	dr	es	s				
			4	4					ĸ				^										0			(Cq	our	nt		
0	ï	2	3	T4	5	6	7	8	9	10	н	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The short-format floating-point number in register R is shifted according to the rules established above for floating-point shift operations.

Affected: (R), CC

Floating Shift, Double Register

L.			24							n			$\overline{\mathbf{v}}$					1	Re	efe	ere	en	ce	a	do	dre	es	s			
["			24	ŀ					1	ĸ			^]				С	ou	Int	•	
0	1	2	3 4	1	5	6	7	18	9	10	11	12	13	14	15	1 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The long-format floating-point number in registers R and Rul is shifted according to the rules established above for floating point shift operations. (If the R field of the instruction word is an odd value, a long-format floating-point number is generated by duplicating the contents of register R, and the 32 high-order bits of the result are loaded into register R.)

Affected: (R), (Rul), CC

FLOATING-POINT INSTRUCTIONS

The following floating-point arithmetic instructions are available as optional SIGMA 5 instructions:

Instruction Name	Mnemonic	Page
Floating Add Short	FAS	47
Floating Add Long	FAL	47
Floating Subtract Short	FSS	47
Floating Subtract Long	FSL	48
Floating Multiply Short	FMS	48
Floating Multiply Long	FML	48
Floating Divide Short	FDS	48
Floating Divide Long	FDL	48

FLOATING-POINT NUMBERS

SIGMA 5 accommodates two number formats for floatingpoint arithmetic: short and long. A short-format floatingpoint number consists of a sign (bit 0), a biased, base 16 exponent, which is called a characteristic (bits 1-7), and a six-digit hexadecimal fraction (bits 8-31). A long-format floating-point number consists of a short-format floatingpoint number followed by an additional eight hexadecimal digits of fractional significance and occupies a doubleword memory location or an even-odd pair of general registers.

A SIGMA 5 floating-point number (N) has the following format:

F	-	(Cł	10	11	a	ct	e	r-	T									E.	~~~		-		(E)	1								
-	•	i	st	i	C,	(C)												uç					<u>'</u>								
Ō	1		2	3	I	4	5	6	7	18	9	10	11	112	13	14	15	16	17	18	19	120	21	22	23	24	25	26	77	28	29	30	31

									E>	ctr	a	F	ra	ct	io	nc	ıl	Pr	e	cis	ic	'n								
_	_	_	-		_		_	_												-			_					_	_	_
2	33	34	35	36	37	38	391	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	- 6

A floating-point number (N) has the following formal definition:

- 1. $N = F \times 16^{C-64}$ where F = 0 or $16^{-6} \le |F| < 1$ (short format) or $16^{-14} \le |F| < 1$ (long format) and $0 \le C \le 127$
- 2. A positive floating-point number with a fraction of zero and a characteristic of zero is a "true" zero. A positive floating-point number with a fraction of zero and a nonzero characteristic is an "abnormal" zero. For floatingpoint multiplication and division, an abnormal zero is treated as a true zero. However, for addition and subtraction, an abnormal zero is treated the same as any nonzero operand.

- 3. A positive floating-point number is normalized if and only if the fraction is contained in the interval $1/16 \le F < 1$.
- 4. A negative floating-point number is the two's complement of its positive representation.
- 5. A negative floating-point number is normalized if and only if its two's complement is a normalized positive number.
- By this definition, a floating-point number of the form

1xxx xxxx 1111 0000 ... 0000

is normalized, and a floating-point number of the form

lxxx xxxx 0000 0000 ... 0000

is illegal and, whenever generated by floating-point instructions, is converted to the form

lyyy yyyy 1111 0000 ... 0000

where yy ... y is 1 less than xx ... x. Table 6 contains examples of floating-point numbers.

Modes of Operation

SIGMA 5 contains three mode control bits that are used to qualify floating-point operations. These mode control bits are identified as FS (floating significance), FZ (floating zero), and FN (floating normalize), and are contained in bit positions 5, 6, and 7, respectively, of the program status doubleword (PSD₅₋₇). The floating-point mode is established by setting the three floating-point mode control bits. This can be performed by any of the following instructions:

Instruction Name	Mnemonic	Page
Load Conditions and Floating Control	LCF	30
Load Conditions and Floating Control Immediate	LCFI	30
Load Program Status Doubleword	LPSD	56
Exchange Program Status Doubleword	XPSD	56

The floating-point mode control bits are stored by executing either of the following instructions:

Instruction Name	Mnemonic	Page
Store Conditions and Floating Control	STCF	32
Exchange Program Status Doubleword	XPSD	56

UNIMPLEMENTED FLOATING-POINT INSTRUCTIONS

If the optional floating-point instruction set is not implemented in the computer and execution of a floating-point arithmetic instruction is attempted, the computer unconditionally aborts execution of the instruction (at the time of operation code decoding). The computer then traps to location X'41', with the contents of the condition code and

Decimal Number		Short Flo	ating-point Fo	ormat	Hexadecimal Value
	±	с		F	
$+(16^{+63})(1-2^{-24})$	0	111 1111	1111 1111	1111 1111 1111 1111	7F FFFFFF
+(16 ⁺³)(5/16)	0	100 0011	0101 0000	0000 0000 0000 0000	43 500000
+(16 ⁻³)(209/256)	0	011 1101	1101 0001	0000 0000 0000 0000	3D D10000
+(16 ⁻⁶³)(2047/4096)	0	000 0001	0111 1111	1111 0000 0000 0000	01 7FF000
+(16 ⁻⁶⁴)(1/16)	0	000 0000	0001 0000	0000 0000 0000 0000	00 100000
0 (called true zero)	0	000 0000	0000 0000	0000 0000 0000 0000	00 000000
-(16 ⁻⁶⁴)(1/16)	1	111 1111	1111 0000	0000 0000 0000 0000	FF F00000
-(16 ⁻⁶³)(2047/4096)	1	111 1110	1000 0000	0001 0000 0000 0000	FE 801000
-(16 ⁻³)(209/256)	1	100 0010	0010 1111	0000 0000 0000 0000	C2 2F0000
-(16 ⁺³)(5/16)	1	011 1100	1011 0000	0000 0000 0000 0000	BC B00000
$-(16^{+63})(1-2^{24})$	1	000 0000	0000 0000	0000 0000 0000 0001	80 000001
Special Case					
-(16 ^e)(1)	1	ē	0000 0000	0000 0000 0000 0000	
is changed to -(16 ^{e+1})(1/16))	e + 1	1111 0000	0000 0000 0000 0000	
whenever ger	nerated	as the result o	of a floating-	point instruction.	

Table 6. F	loating-point	Number	Representation
------------	---------------	--------	----------------

all general registers unchanged. Location X'41' is the "unimplemented instruction" trap location.

FLOATING-POINT ADDITION AND SUBTRACTION

The floating normalize (FN), floating zero(FZ), and floating significance (FS) mode control bits determine the operation of floating-point addition and subtraction (if characteristic overflow does not occur) as follows:

- FN Floating normalize:
 - FN = 0 The results of additions and subtractions are to be postnormalized. If characteristic overflow occurs, if the result is zero, or if more than two postnormalization hexadecimal shifts are required, the settings for FZ and FS determine the resultant action. If none of the above conditions occur, the condition code is set to 0010 if the result is positive or to 0001 if the result is negative.
 - FN = 1 Inhibit postnormalization of the results of additions and subtractions. The settings of FZ and FS have no effect on the instruction operation. If the result is zero, the result is set to true zero and the condition code is set to 0000. If the result is positive, the condition code is set to 0010. If the result is negative, the condition code is set to 0001.
- FZ Floating zero: (applies only if FN = 0)
 - FZ = 0 If the final result of an addition or subtraction operation cannot be expressed in normalized form because of the characteristic being reduced below zero, underflow has occurred, in which case the result is set equal to true zero and the condition code is set to 1100. (Exception: if a trap results from significance checking with FS = 1 and FZ = 0, an underflow generated in the process of postnormalizing is ignored.)
 - FZ = 1 Characteristic underflow causes the computer to trap to location X'44' with the contents of the general registers unchanged. If the result is positive, the condition code is set to 1110. If the result is negative, the condition code is set to 1101.
- FS Floating significance: (applies only if FN = 0)
 - FS = 0 Inhibit significance trap. If the result of an addition or subtraction is zero, the result is set equal to true zero, the condition code is set to 1000, and the computer executes the next instruction in sequence. If more than two hexadecimal places of postnormalization

shifting are required and characteristic underflow does not occur, the condition code is set to 1010 if the result is positive, or to 1001 if the result is negative; then, the computer executes the next instruction in sequence. (Exception: if characteristic underflow occurs with FS = 0, FZ determines the resultant action.)

FS = 1 The computer traps to location X'44' if more than two hexadecimal places of postnormalization shifting are required or if the result is zero. The condition code is set to 1000 if the result is zero, to 1010 if the result is positive, or to 1001 if the result is negative; however, the contents of the general registers are not changed. (Exception: if a trap results from characteristic underflow with FZ = 1, the results of significance testing are ignored.)

If characteristic overflow occurs, the CPU always traps to location X'44' with the general registers unchanged and the condition code set to 0110 if the result is positive, or to 0101 if the result is negative.

FLOATING-POINT MULTIPLICATION AND DIVISION

The floating zero (FZ) mode control bit alone determines the operation of floating-point multiplication and division (if characteristic underflow does not occur and division by zero is not attempted) as follows:

- FZ Floating zero:
 - FZ = 0 If the final result of a multiplication or division operation cannot be expressed in normalized form because of the characteristic being reduced below zero, underflow has occurred. If underflow occurs or if the result is zero, the result is set equal to true zero and the condition code is set to 0000. Otherwise, the condition code is set to 0010 if the result is positive, or to 0001 if the result is negative.
 - FZ = 1 Underflow causes the computer to trap to location X'44' with the contents of the general registers unchanged. The condition code is set to 1110 if the result is positive, or to 1101 if the result is negative. If underflow does not occur, the resultant action is the same as that for FZ = 0.

If the divisor is zero in a floating-point division, the computer always traps to location X'44' with the general register unchanged and the condition code set to 0100. If characteristic overflow occurs, the computer always traps to location X'44' with the general register unchanged and the condition code set to 0110 if the result is positive, or to 0101 if the result is negative.

CONDITION CODES FOR FLOATING-POINT INSTRUCTIONS

The condition code settings for floating-point instructions are summarized in Table.7. The following provisions apply to all floating-point instructions:

- 1. Underflow and overflow detection apply to the final characteristic, not to any "intermediate" value.
- 2. If a floating-point operation results in a trap, the original contents of all general registers remain unchanged.
- 3. All shifting and truncation are performed on absolute magnitudes. If the fraction is negative, the two's complement is formed after shifting or truncation.

FAS FLOATING ADD SHORT (Word addressing, optional)

ł			;	3D)			T	R				X					F	Re	fe	re	n	:e	a	dc	fre	ess	;			
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The effective word and the contents of register R are loaded into a set of internal registers and a low-order hexadecimal zero (guard digit) is appended to both fractions, extending them to seven hexadecimal digits each. FAS then forms the floating-point sum of the two numbers. If no floatingpoint arithemtic fault occurs, the sum is loaded into register R as a short-format floating-point number.

Affected: (R), CC	Traps: Unimplemented in-
(R) + EW → R	struction, floating-
	point arithmetic fault

FAL FLOATING ADD LONG

(Doubleword addressing, optional)

*			1	D)				R				X					F	Re	fe	re	no	ce	a	dd	Ire	ess	;			
5	1	2	3	14	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The effective doubleword and the contents of registers R and Ru1 are loaded into a set of internal registers.

The operation of FAL is identical to that of FLOATING ADD SHORT (FAS) except that the fractions to be added are each 14 hexadecimal digits long, guard digits are not appended to the fractions, and R must be an even value for correct results. If no floating-point arithmetic fault occurs, the sum is loaded into registers R and Ru1 as a long-format floatingpoint number.

Affected: (R), (Ru1), CC Traps: Unimplemented instruction, floatingpoint arithmetic fault

FSS FLOATING SUBTRACT SHORT (Word addressing, optional)

*			3	С					R				Х					F	٦e	fe	re	n	ce	a	dc	dre	ess	;		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

The effective word and the contents of register R are loaded into a set of internal registers.

FLOATING SUBTRACT SHORT forms the two's complement of the effective word and then operates identically to FLOATING ADD SHORT (FAS). If no floating-point arith-

Co	onditi	on C	ode	Meaning if no trap to location X'44' occurs	Meaning if trap to location X'44' occurs
1	2	3	4		
0 0 0	0 0 0	0 0 1	0 1 0	$ \begin{array}{l} A \times 0, \ 0/A, \ \text{or} \ -A + A^{\begin{subarray}{c} 1 \\ N < 0 \\ N > 0 \end{array} \end{array} \right\} \ \text{normal} \\ \begin{array}{l} \text{normal} \\ \text{results} \end{array} $	*② * *
0 _0 _0	1 1 1	0 0 1	0 1 0	*② * *	divide by zero overflow, N < 0 overflow, N > 0
$\left(3\right)\left\{\begin{array}{c}1\\1\\1\end{array}\right\}$	0 0 0	0 0 1	0 1 0	$ \begin{array}{c} -A + A^{(1)} \\ N < 0 \\ N > 0 \end{array} > 2 \text{ postnormal} - \begin{cases} FS=0, FN=0, \text{ and} \\ no \text{ underflow} \end{cases} $	-A + A N < 0] > 2 postnormal - N > 0 , izing shifts FS=1, FN=0, and no underflow with FZ=1
1 1 1	1 1 1	0 0 1	0 1 0	underflow with FZ=0 and no trap by FS=1 ① * *	* underflow, N < 0 FZ=1 underflow, N > 0
				 result set to true zero "*" indicates impossible configurations applies to add and subtract only where FN 	=0

Table 7.	Condition	Code	Settinas	for	Floating-point	Instructions
Tubic 7.	Condition	Codo	001111g0		roung point	

metic fault occurs, the difference is loaded into register R as a short-format floating-point number.

Affected: (R), CC	Traps: Unimplemented in-
(R) – EW → R	struction, floating-
	point arithmetic fault

FSL FLOATING SUBTRACT LONG (Doubleword addressing, optional)

*			1	C					R				х					F	Re	fe	re	n	ce	a	dc	İre	ess				
0	1	2	3	14	5	6	7	8	9	10	n	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The effective doubleword and the contents of registers R and Ru1 are loaded into a set of internal registers.

FLOATING SUBTRACT LONG forms the two's complement of the effective doubleword and then operates identically to FLOATING ADD LONG (FAL). If no floating-point arithmetic fault occurs, the difference is loaded into registers R and Rul as a long-format floating-point number.

Affected: (R), (Ru1), CC	Traps: Unimplemented in-
(R, Ru1) - ED→R, Ru1	struction, floating-
,	point arithmetic fault

FMS FLOATING MULTIPLY SHORT (Word addressing, optional)

*				3	:			t	I	२			Х		•			I	Re	fe	re	ene	ce		dd	dre	es	5			
÷	<u> </u>	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The effective word (multiplier) and the contents of register R (multiplicand) are loaded into a set of internal registers, and both numbers are then prenormalized (if necessary). The product of the fractions contains 14 hexadecimal digits (the lower two of which are 0's). If no floating-point arithmetic fault occurs, the product is loaded into registers R and Ru1 as follows:

- If R is an even value, the product is loaded into registers R and R + 1 as a long-format floating-point number.
- 2. If R is an odd value, the product is loaded into register R as a properly truncated short-format floatingpoint number.

The result of floating multiply is always postnormalized. At most, one place of postnormalizing shift may be required. Truncation takes place after postnormalization.

Affected:	(R), (Rul), CC
$(R) \times EW$	→R, Ru1

Traps: Unimplemented instruction, floatingpoint arithmetic fault

FML	FLOATING MULTIPLY LONG
	(Doubleword addressing, optional

*			1	F				ſ	R				х						Re	fe	ere	en	ce	• •	b	dr	es	5			
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

48 Floating-point/Push-down Instructions

The effective doubleword (multiplier) and the contents of registers R and Ru1 (multiplicand) are loaded into a set of internal registers. FLOATING MULTIPLY LONG then operates identically to FLOATING MULTIPLY SHORT (FMS), except that the multiplier, the multiplicand, and the product fractions are each 14 hexadecimal digits long, and R must be an even value for correct results. If no floating-point arithmetic fault occurs, the postnormalized product is truncated to a long-format floating-point number and loaded into registers R and Ru1.

Affected: (R), (Ru1), CC	Traps: Unimplemented in-
$(R, Ru1) \times ED \longrightarrow R, Ru1$	struction, floating-
	point arithmetic
	fault

FLOATING DIVIDE SHORT (Word addressing, optional)

FDS

*				3E	_			Γ	R				x					1	Re	fe	re	n	ce	 a	do	ire	ess	;			
0	1	2	3	14	5	6	7	18	9	10	н	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The effective word (divisor) and the contents of register R (dividend) are loaded into a set of internal registers and both numbers are then prenormalized (if necessary).

FLOATING DIVIDE SHORT then forms a floating-point quotient with a 6-digit, normalized hexadecimal fraction. If no floating-point arithmetic fault occurs, the quotient is loaded into register R as a short-format floating-point number.

Affected: (R), CC	Traps: Unimplemented in-
(R) ÷ EW►R	struction, floating-
	point arithmetic fault

FDL FLOATING DIVIDE LONG

(Doubleword addressing, optional)

*				IE					R				х						Re	efe	ere	en	ce		ide	dro	es	s			
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	151	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The effective doubleword (divisor) and the contents of registers R and Ru1 (dividend) are loaded into a set of internal registers. FLOATING DIVIDE LONG then operates identically to FLOATING DIVIDE SHORT (FDS), except that the dividend, the divisor, and the quotient fractions are each 14 hexadecimal digits long, and R must be an even value for correct results. If no floating-point arithmetic fault occurs, the quotient is loaded into registers R and Ru1 as a long-format floating-point number.

Affected: (R), (Ru1), CC (R, Ru1) ÷ ED → R, Ru1 Traps: Unimplemented instruction, floating-point arithmetic fault

PUSH-DOWN INSTRUCTIONS

The term "push-down processing" refers to the programming technique (used extensively in recursive routines) of storing the context of a calculation in memory, proceeding with a new set of information, and then activating the previously stored information. Typically, this process involves a reserved area of memory (stack) into which operands are pushed (stored) and from which operands are pulled (loaded) on a last-in, first-out basis. The SIGMA 5 computer provides for simplified and efficient programming of push-down processing by means of the following instructions:

Instruction Name	Mnemonic	Page
Push Word	PSW	50
Pull Word	PLW	50
Push Multiple	PSM	51
Pull Multiple	PLM	51
Modify Stack Pointer	MSP	52

STACK POINTER DOUBLEWORD

Each of these instructions operates with respect to a memory stack that is defined by a doubleword located at the effective address of the instruction. This doubleword, referred to as a stack pointer doubleword (SPD), has the following structure:

				ŧ				• • -				I				+		To	p	0	f	sto	30	k	ac	ldı	re	ss			
0	1	2	3	14	5	6	7	18	9	10		112	13	14	15	1 15	17	18	19	120	21	22	23	24	25	26	2	128	29	30	31
T S					Sp	a	ce	+ : C	:01	Jn	t					T					W	01	rd	c	ou	nt					

Bit positions 15 through 31 of the SPD contain a 17-bit address field that points to the location of the word currently at the top (highest-numbered address) of the operand stack. In a push operation, the top-of-stack address is incremented by 1 and then an operand in a general register is pushed (stored) into that location, thus becoming the contents of the new top of the stack; the contents of the previous top of the stack remain unchanged. In a pull operation, the contents of the current top of the stack are pulled (loaded) into a general register and then the top-of-stack address is decremented by 1; the previous stack contents remain unchanged.

Bit positions 33 through 47 of the SPD, referred to as the space count, contain a 15-bit count (0 to 32,767) of the number of word locations currently available in the region of memory allocated to the stack. Bit positions 49 through 63 of the SPD, referred to as the word count, contain a 15bit count (0 to 32,767) of the number of words currently in the stack. In a push operation, the space count is decremented by 1 and the word count is incremented by 1; in a pull operation, the space count is incremented by 1 and the word count is decremented by 1. At the beginning of all push-down instructions, the space count and the word count are each tested to determine whether or not the instruction would cause either count field to be incremented above the upper limit of 2^{15} -1 (32,767), or to be decremented below the lower limit of 0. If execution of the push-down instruction would cause either count limit to be exceeded, the computer unconditionally aborts execution of the instruction, with the stack, the stack pointer doubleword, and the contents of the general registers unchanged. Ordinarily, the computer traps to location X'42' after aborting a push-down instruction because of impending stack limit overflow or

underflow, and with the condition code unchanged from the value it contained before execution of the instruction. However, this trap action can be selectively inhibited by setting either (or both) of the trap inhibit bits in the SPD to 1.

Bit position 32 of the SPD, referred to as the trap-on-space (TS) inhibit bit, determines whether or not the computer is to trap to location X'42' as a result of impending overflow or underflow of the space count (SPD₃₃₋₄₇), as follows:

- TS Space count overflow/underflow action
- 0 If the execution of a pull instruction would cause the space count to exceed 2¹⁵-1, or if the execution of a push instruction would cause the space count to be less than 0, the computer traps to location X'42' with the condition code unchanged
- TS Space count overflow/underflow action
- Instead of trapping to location X'42', the computer sets CC1 to 1 and then executes the next instruction in sequence

Bit position 48 of the SPD, referred to as the trap-on-word (TW) inhibit bit, determines whether or not the computer is to trap to location X'42' as a result of impending overflow or underflow of the word count (SPD_{49-63}) as follows:

- TW Word count overflow/underflow action
- 0 If the execution of a push instruction would cause the word count to exceed 2¹⁵-1, or if the execution of a pull instruction would cause the word count to be less than 0, the computer traps to location X'42' with the condition code unchanged.
- Instead of trapping to location X'42', the computer sets CC3 to 1 and then executes the next instruction in sequence.

PUSH-DOWN CONDITION CODE SETTINGS

If the execution of a push-down instruction is attempted and the computer traps to location X'42', the condition code remains unchanged from the value it contained immediately before the instruction was executed.

If execution of a push-down instruction is attempted and the instruction is aborted because of impending stack limit overflow or underflow (or both) but the push-down stack limit trap is inhibited by one (or both) of the inhibits (TS and TW), then CC1 and CC3 indicate the reason for aborting the push-down instruction, as follows:

1	2	3	4	Reason	for	abort	

- 0 1 impending overflow of word count on a push operation or impending underflow of word count on a pull operation. The push-down stack limit trap was inhibited by the TW bit (SPD₄₈)
 - 0 impending overflow of space count on a pull operation or impending underflow of space count on a push operation. The

1 2 3 4 Reason for abort

push-down stack limit trap was inhibited by the TS bit (SPD₃₂)

 1 - 1 - impending overflow of word count and underflow of space count on a push operation or impending overflow of space count and underflow of word count on a pull operation. The push-down stack limit trap was inhibited by both the TW and the TS bits

If a push-down instruction is successfully executed, CC1 and CC3 are reset to 0 at the completion of the instruction. Also, CC2 and CC4 are independently set to indicate the current status of the space count and the word count, respectively, as follows:

1	2	3		Status of space and word counts
0	0	0	0	the current space count and the current word count are both greater than zero
0	0	0	1	the current space count is greater than zero, but the current word count is zero, indicating that the stack is now empty. If the next operation on the stack is a pull instruction, the instruction will be aborted
0	1	0	0	the current word count is greater than zero, but the current space count is zero indicating that the stack is now full. If the next operation on the stack is a push instruction, the instruction will be aborted

If the computer does not trap to location X'42' as a result of impending stack limit overflow/underflow, CC2 and CC4 indicate the status of the space and word counts at the termination of the push-down instruction, regardless of whether or not the space and word counts were actually modified by the instruction. In the following descriptions of the pushdown instruction, only those condition codes are given that can actually be produced by the instruction, provided the computer does not trap to location X'42'.

PSW PUSH WORD

(Doubleword	addressing)
-------------	-------------

*		09					R				x					R	ef	er	er	nc	e	ac	ldı	res	ss				
5	1 2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

PUSH WORD stores the contents of register R into the pushdown stack defined by the stack pointer doubleword located at the effective doubleword address of PSW. If the push operation can be successfully performed, the instruction operates as follows:

- The current top-of-stack address (SPD₁₅₋₃₁) is incremented by 1, to point to the new top-of-stack location.
- 2. The contents of register R are stored in the location pointed to by the new top-of-stack address.

- 3. The space count (SPD $_{33-47}$) is decremented by 1 and the word count (SPD $_{49-63}$) is incremented by 1.
- 4. The condition code is set to reflect the new status of the space count.

Affected: (SPD), (TSA+1), CC Trap: Push-down stack limit (SPD)₁₅₋₃₁ + 1 \longrightarrow SPD₁₅₋₃₁ (R) \rightarrow (SPD₁₅₋₃₁) (SPD)₃₃₋₄₇ -1 \rightarrow SPD₃₃₋₄₇ (SPD)₄₉₋₆₃ + 1 \rightarrow SPD₄₉₋₆₃

Condition code settings:

1	2	3		Result of PSW		
0	0	0	0	space count is greater than 0	}	instruction
0	1	0	0	space count is now 0	J	completed
0	0	1	0	word count = 2 ¹⁵ -1, TW = 1		
1	1	0	0	space count = 0, $TS = 1$		
1	1	0	1	space count = 0, word count = 0, TS = 1	}	instruction aborted
1	1	1	0	word count = 2^{15} -1, space count = 0 TW = 1, and TS = 1		

PLW	PULL WORD	
	(5)]]]]]	

(Doubleword addressing)

*			()8					R				х	_				R	ef	er	er	nc	e	ac	ld	re	ss				
0	1	2	3	14	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

PULL WORD loads register R with the word currently at the top of the push-down stack defined by the stack pointer doubleword located at the effective doubleword address of PLW. If the pull operation can be performed successfully, the instruction operates as follows:

- Register R is loaded with the contents of the location pointed to by the current top-of-stack address (SPD₁₅₋₃₁).
- 2. The current top-of-stack address is decremented by 1, to point to the new top-of-stack location.
- 3. The space count (SPD_{33-47}) is incremented by 1 and the word count (SPD_{49-63}) is decremented by 1.
- 4. The condition code is set to reflect the status of the new word count.

Affected: (SPD), (R), CC Trap: Push-down stack limit ((SPD)₁₅₋₃₁) \longrightarrow R; (SPD)₁₅₋₃₁ -1 \longrightarrow SPD₁₅₋₃₁ (SPD)₃₃₋₄₇ + 1 \longrightarrow SPD₃₃₋₄₇; (SPD)₄₉₋₆₃ -1 \longrightarrow SPD₄₉₋₆₃

Condition code settings:

1	2	3	4	Result of PLW	
0	0	0	0	word count is greater than 0	instruction
0	0	0	1	word count is now 0	completed
0	0	1	1	word count = 0, $TW = 1$	
0	1	1	1	space count = 0, word count = 0, TW = 1	
1	0	0	0	space count = 2 ¹⁵ -1, TS = 1	instruction aborted
1	0	1	1	space count = 2^{151} , word count = 0, TS = 1, and TW = 1	
PS	M	PU	SH M	ALJI TIPI F	

(Doubleword addressing)

Г	Г	-	-							•			_		-	-										_				_	
*	* OB								R				х					R	ef	en	er	hce	e i	ad	d	res	22				
																					•••				-						- 1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

PUSH MULTIPLE stores the contents of a sequential set of general registers into the push-down stack defined by the stack pointer doubleword located at the effective doubleword address of PSM. The condition code is assumed to contain a count of the number of registers to be pushed into the stack. (An initial value of 0000 for the condition code specifies that all 16 general registers are to be pushed into the stack.) The registers are treated as a circular set (with register 0 following register 15) and the first register to be pushed into the stack is register R. The last register to be pushed into the stack is register R + CC -1, and the contents of this register become the contents of the new top-of-stack location.

If there is sufficient space in the stack for all of the specified registers, PSM operates as follows:

- The contents of registers R to R + CC -1 are stored in an ascending sequence, beginning with the location pointed to by the current top-of-stack address (SPD₁₅₋₃₁) plus 1 and ending with the current top-of-stack address plus CC.
- 2. The current top-of-stack address is incremented by the value of CC, to point to the new top-of-stack location.
- The space count (SPD₃₃₋₄₇) is decremented by the value of CC and the word count is incremented by the value of CC.
- 4. The condition code is set to reflect the new status of the space count.

Affected: (SPD), (TSA+1 to Trap: Push-down stack limit TSA+CC), CC

$$(R) \longrightarrow (SPD_{15-31})+1...(R+CC-1) \longrightarrow (SPD_{15-31})+CC$$

$$(SPD)_{15-31}+CC \longrightarrow SPD_{15-31}$$

$$(SPD)_{33-47}-CC \longrightarrow SPD_{33-47}$$

 $(SPD)_{49-63}^+CC \longrightarrow SPD_{49-63}^-$

If the instruction starts storing words into an accessible region of memory and then crosses a memory page boundary into an inaccessible region, either the memory protection trap or the nonexistent memory trap can occur. In either case, the trap is activated with the condition code unchanged from the value it contained before the execution of PSM. The effective address of the instruction permits the trap routine to compute how many words of memory have been changed. Since it is permissible to use indirect addressing through one of the affected locations, or even to execute an instruction located in one of the affected locations, a trapped PSM instruction may have already overwritten the direct address, or the PSM instruction itself, thus destroying any possibility of continuing the program successfully. If such programming must be done, it is advisable that the direct address, or the PSM instruction, occupy the last location in which the contents of a register are to be stored by the PSM instruction.

Condition code settings:

1	2	3		Result of PSM	
0	0	0	0	space count >0	instruction
0	1	0	0	space count=0	completed
0	0	1	0	word count + CC > 2^{15} - 1, TW = 1	
1	0	0	0	<pre>space count <cc, ts="1</pre"></cc,></pre>	
1	0	0	1	space count <cc, word<br="">count = 0, TS= 1</cc,>	
1	0	1	0	space count < CC, word count +CC> $2^{15}-1$, TS = 1, and TW = 1	instruction aborted
1	1	0	0	space count = 0, TS = 1	
1	1	0	1	space count = 0, word count = 0, TS = 1	
1	1	1	0	space count = 0, word count + CC > 2 ¹⁵ -1, TS = 1, and TW = 1	

PLM PULL MULTIPLE (Doubleword addressing)

PULL MULTIPLE loads a sequential set of general registers from the push-down stack defined by the stack pointer doubleword located at the effective doubleword address of PLM. The condition code is assumed to contain a count of the number of words to be pulled from the stack. (An initial value of 0000 for the condition code specifies that 16 words are to be pulled from the stack.). The registers are treated as a circular set (with register 0 following register 15), the first register to be loaded from the stack is register R + CC -1, and the contents of the current top-of-stack location becomes the contents of this register. The last register to be loaded is register R. If there is a sufficient number of words in the stack to load all of the specified registers, PLM operates as follows:

- Registers R + CC -1 to register R are loaded in a de-1. scending sequence, beginning with the contents of the location pointed to by the current top-of-stack address (SPD15-31) and ending with the contents of the location pointed to by the current top-of-stack address minus (CC -1).
- 2. The current top-of-stack address is decremented by the value of CC, to point to the new top-of-stack location.
- 3. The space count (SPD_{33-47}) is incremented by the value of CC and the word count is decremented by the value of CC.
- 4. The condition code is set to reflect the new status of the word count.

Affected: (SPD), (R+CC-1) Trap: Push-down stack limit to (R), CC

 $((SPD)_{15-31}) \longrightarrow R+CC-1, \dots,$ $((SPD)_{15-31} - |CC-1|) \longrightarrow R$ $(SPD)_{15-31} - CC \longrightarrow SPD_{15-31}$ $(SPD)_{33-47} + CC \longrightarrow SPD_{33-47}$ (SPD) $_{49-63}$ - CC \rightarrow SPD $_{49-63}$

If the instruction starts loading words from an existent region of memory and then crosses a memory page boundary into a nonexistent memory region, the nonexistent memory address trap occurs. In this case, the trap is activated with the condition code unchanged from the value it contained before the execution of PLM. The effective address of the instruction permits the trap routine to compute how many registers have been loaded. Since it is permissible to use indirect addressing through a general register, indexing, or even to execute an instruction located in a general register, a trapped PLM instruction may have already overwritten the index, direct address, or the PLM instruction itself, thus destroying any possibility of continuing the program successfully. If such programming must be done, it is advisable that the register containing the direct address, index displacement, or instruction be the last register loaded by the PLM instruction.

Condition code settings:

1	2	3	_4	Result of PLM		
0	0	0	0	word count > 0	J	instruction
0	0	0	1	word count = 0	5	completed
0	0	1	0	word count < CC, TW = 1		
0	0	1	1	word count = 0, TW = 1	}	instruction aborted
0	1	1	0	space count = 0, word count < CC, TW = 1		

1	2	3	4	Result of PLM	
0	1	1	1	space count = 0, word count = 0, TW = 1	
1	0	0	0	space count+ CC>2 ¹⁵ -1 TS = 1	
1	0	1	0	<pre>space count+CC>2¹⁵-1, word count<cc,ts=1, and TW = 1</cc,ts=1, </pre>	, instruction aborted
1	0	1	1	space count + CC > 2^{15} -1, word count = 0, TS = 1, and TW = 1	

MSP MODIFY STACK POINTER (Doubleword addressing)

	<u> </u>				_			+	-	-	-			-	· · · +					-			+	-					_	
*				13					R				Х					Re	efe	ere	en	ce	e c	b	dr	es	s			
Ļ	Ļ	2	3	14	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27 28	29	30	31

MODIFY STACK POINTER modifies the stack pointer doubleword, located at the effective doubleword address of MSP, by the contents of register R. Register R is assumed to have the following format:

																±						м		li	fie	er					
0	1	2	3	4	5	6	7	18	9	10	11	112	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Bit positions 16 through 31 of register R are treated as a signed integer, with negative integers in two's complement form (i.e., a fixed-point halfword). The modifier is algebraically added to the top-of-stack address, subtracted from the space count, and added to the word count in the stack pointer doubleword. If, as a result of MSP, either the space count or the word count would be decreased below 0 or increased above 2¹⁵-1, the instruction is aborted. Then, the computer either traps to location X'42' or sets the condition code to reflect the reason for aborting, depending on the stack limit trap inhibits.

If the modification of the stack pointer doubleword can be successfully performed, MSP operates as follows:

- 1. The modifier in register R is algebraically added to the current top-of-stack address (SPD)₁₅₋₃₁, to point to a new top-of-stack location. (If the modifier is negative, it is extended to 17 bits by appending a high-order 1.)
- The modifier is algebraically subtracted from the cur-2. rent space count (SPD $_{33-47}$) and the result becomes the new space count.
- The modifier is algebraically added to the current word 3. count (SPD₄₉₋₆₃) and the result becomes the new word count.

```
Affected: (SPD), CC
                                  Trap: Push-down stack limit
(SPD) 15-31 + (R) 16-31 SE - SPD 15-31
(SPD)_{33-47} - (R)_{16-31} \longrightarrow SPD_{33-47}
```

 $(SPD)_{49-63} + (R)_{16-31} \longrightarrow SPD_{49-63}$

Condition code settings:

1	2	3	4	Result of MSP		
0	0	0	0	space count > 0, word count > 0		
0	0	0	1	space count > 0, word count = 0		instruction
0	1	0	0	space count = 0, word count > 0	}	completed
0	1	0	1	space count = 0, word count = 0, modifier = 0		

If CC1, or CC3, or both CC1 and CC3 are 1's after execution of MSP, the instruction was aborted but the pushdown stack limit trap was inhibited by the trap-on-space inhibit (SPD₃₂), by the trap-on-word inhibit (SPD₄₈), or both. The condition code is set to reflect the reason for aborting as follows:

<u> </u>	2	3		Status of space count and word count
-	-	-	0	word count > 0
-	-	-	1	word count = 0
-	-	0	-	$0 \le word \ count + modifier \le 2^{15}-1$
-	-	1	-	word count + modifier < 0 and TW = 1, or word count + modifier > 2 ¹ 5-1 and TW = 1
-	0	-	-	space count > 0
-	1	-	-	space count = 0
0	-	-	-	$0 \le \text{space count} - \text{modifier} \le 2^{15} - 1$
1	-	-	-	space count – modifier < 0 and TS = 1, or space count – modifier > 2^{15} –1 and TS = 1

EXECUTE/BRANCH INSTRUCTIONS

The EXECUTE instruction can be used to insert another instruction into the program sequence, and the branch instructions can be used to alter the program sequence, either unconditionally or conditionally. If a branch is unconditional (or conditional and the branch condition is satisfied), the instruction pointed to by the effective address of the branch instruction is normally the next instruction to be executed. If a branch is conditional and the condition for the branch is not satisfied, the next instruction is normally taken from the next location, in ascending sequence, after the branch instruction.

Prior to the time that an instruction is accessed from memory for execution, bit positions 15-31 of the program status doubleword contain the core memory address of the instruction, referred to as the instruction address. At this time, the computer traps to location X'40' if the instruction address is nonexistent. If the instruction address is existent, the instruction is accessed and the instruction address portion of the program status doubleword is incremented by 1, so that it now contains the address of the next instruction in sequence (referred to as the updated instruction address).

If a trap condition occurs during the execution sequence of any instruction, the computer decrements the updated instruction address by 1 and then traps to the location assigned to the trap condition. If neither a trap condition nor a satisfied branch condition occurs during the execution of an instruction, the next instruction is accessed from the location pointed to by the updated instruction address. If a satisfied branch condition occurs during the execution of a branch instruction (and no trap condition occurs), the next instruction is accessed from the location pointed to by the effective address of the branch instruction. Thus, during execution of a branch instruction, the updated instruction address is decremented, unchanged, or replaced, as determined by the following critera:

- 1. Trap condition. A nonallowed operation trap condition can occur during execution of a branch instruction, but only if an attempt is made to access a nonexistent memory address. The trap condition occurs in the following situations:
 - a. The branch instruction is indirectly addressed, but the address of the location containing the direct address is nonexistent.
 - b. The branch instruction is unconditional (or the branch is conditional and the condition for the branch is satisfied), but the effective address of the branch instruction is nonexistent.

If either or both of the above situations occur, the computer aborts execution of the branch instruction, decrements the updated instruction address by 1, and traps to location X'40'. In this case, the instruction address value (IA) stored by the XPSD instruction in location X'40' is the address of the aborted branch instruction.

- No branch condition. If the branch instruction is conditional, the condition for the branch is not satisfied, and no trap condition occurs, the updated instruction address remains unchanged. Then, instruction execution proceeds with the instruction pointed to by the updated instruction address.
- Branch condition. If the branch instruction is unconditional (or if the branch instruction is conditional and the condition for the branch is satisfied) and no trap condition occurs, the updated instruction address is replaced by the effective address of the branch instruction. Then, instruction execution proceeds with the instruction located at the effective address of the branch instruction.

EXU EXECUTE (Word addressing)

*				67	7								х			_			Re	efe	ere	en	ce	e c	d	dr	es	s			
0	1	ź	3	4	5	6	7	Τ8	9	10	111	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

EXECUTE causes the computer to access the instruction in the location pointed to by the effective address of EXU and execute the subject instruction. The execution of the subject instruction, including the processing of trap and interrupt conditions, is performed exactly as if the subject instruction were initially accessed instead of the EXU instruction. If the subject instruction is another EXU, the computer executes the subject instruction pointed to by the effective address of the second EXU as described above. Such "chains" of EXECUTE instructions may be of any length, and are processed (without affecting the updated instruction address) until an instruction other than EXU is encountered. After the final subject instruction is executed, instruction execution proceeds with the next instruction in sequence after the initial EXU (unless the subject instruction is an unconditional branch or is a conditional branch instruction and the branch condition is satisfied).

If an interrupt activation occurs between the beginning of an EXU instruction (or chain of EXU instructions) and the last interruptible point in the subject instruction, the computer processes the interrupt-servicing routine for the active interrupt level and then returns program control to the EXU instruction (or the initial instruction of a chain of EXU instructions), which is started anew. Note that a program is interruptible after every instruction access, including accesses made with the EXU instruction, and the interruptibility of the subject instruction is the same as the normal interruptibility for that instruction.

If a trap condition occurs between the beginning of an EXU instruction (or chain of EXU instructions) and the completion of the subject instruction, the computer traps to the appropriate trap location. The instruction address stored by the XPSD instruction in the trap location is the address of the EXU instruction (or the initial instruction of a chain of EXU instructions).

Affected:	Determined by	Traps:	Determined by
	subject instruction		subject instruction

Condition code settings: Determined by subject instruction.

BCS BRANCH ON CONDITIONS SET (Word addressing)

1	1		1	
*	69	R	X	Reference address
L				
0	1 2 3 4 5 6	8 9 10 1	12 13 14	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BRANCH ON CONDITIONS SET forms the logical product (AND) of the R field of the instruction word and the current condition code. If the logical product is nonzero, the branch condition is satisfied and instruction execution proceeds with the instruction pointed to by the effective address of the BCS instruction. However, if the logical product is zero, the branch condition is unsatisfied and instruction execution then proceeds with the next instruction in normal sequence.

Affected: (IA) if CC $n R \neq 0$

If CC n (I)₈₋₁₁ \neq 0, EA₁₅₋₃₁ \rightarrow IA If CC n (I)₈₋₁₁ = 0, IA not affected

If the R field of BCS is 0, the next instruction to be executed after BCS is always the next instruction in ascending sequence, thus effectively producing a "no operation" instruction.

BCR BRANCH ON CONDITIONS RESET (Word addressing)

*			6	8					R	2			х					Re	ef	ere	en	ce	e (br	dr	es	s				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	.23	24	25	26	27	28	29	30	31

BRANCH ON CONDITIONS RESET forms the logical product (AND) of the R field of the instruction word and the current condition code. If the logical product is zero, the branch condition is satisfied and instruction execution then proceeds with the instruction pointed to by the effective address of the BCR instruction. However, if the logical product is nonzero, the branch condition is unsatisfied and instruction execution then proceeds with the next instruction in normal sequence.

Affected: (IA) if CC n R = 0 If CC n (I)₈₋₁₁ = 0, EA₁₅₋₃₁ \rightarrow IA

If CC n (I) $_{8-11} \neq 0$, IA not affected

If the R field of BCR is 0, the next instruction to be executed after BCR is always the instruction located at the effective address of BCR, thus effectively producing a "branch unconditionally" instruction.

BIR	BRANCH ON INCREMENTING REGISTER
	(Word addressing)

*		65					R				Х					R	ef	er	er	nc	e	ac	ld	re	55				
0	1 2	3 4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

BRANCH ON INCREMENTING REGISTER increments the contents of general register R by 1. If the result is a negative value, the branch condition is satisfied and instruction execution then proceeds with the instruction pointed to by the effective address of the BIR instruction. However, if the result is zero or a positive value, the branch condition is not satisfied and instruction execution proceeds with the next instruction in normal sequence.

Affected: (R), (IA)

$$(R) + 1 \rightarrow R$$

If $(R)_0 = 1$, $EA_{15-31} \rightarrow IA$
If $(R)_0 = 0$, IA not affected

If the effective address of BIR is a nonexistent memory address and the result of incrementing register R is a negative value, the computer aborts execution of the BIR instruction (with register R containing the value that existed just before the BIR instruction) and traps to location X'40'. In this case, the instruction address stored by the XPSD instruction in location X'40' is the address of the aborted BIR instruction.

BDR BRANCH ON DECREMENTING REGISTER (Word addressing)

×				64	ŀ				I	2			Х					R	lef	e	re	nc	e	a	dd	re	ss				٦
0	1	2	3	4	5	6	7	6	9	10	Ð	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

BRANCH ON DECREMENTING REGISTER decrements the contents of general register R by 1. If the result is a positive value, the branch condition is satisfied and instruction execution then proceeds with the instruction pointed to by the effective address of the BDR instruction. However, if the result is zero or a negative value, the branch condition is unsatisfied and instruction execution proceeds with the next instruction in normal sequence.

Affected: (R), (IA)

1

(R) - 1 \longrightarrow R If (R)₀ = 0 and (R)₁₋₃₁ \neq 0, EA₁₅₋₃₁ \longrightarrow IA If (R)₀ = 1 or (R) = 0, IA not affected

If the effective address of BDR is a nonexistent memory address and the result of decrementing register R is zero or is a positive value, the computer aborts execution of the BDR instruction (with register R containing the value that existed just before the BDR instruction) and traps to location X'40'. In this case, the instruction address stored by the XPSD instruction in location X'40' is the address of the aborted BDR instruction.

BAL BRANCH AND LINK (Word addressing)

*			4	5A					F	2			х					R	le	fe	re	nc	e	a	dd	re	ss				
0	1	2	3	14	5	6	7	8	9	10	Ш	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

BRANCH AND LINK determines the effective address, loads the updated instruction address (the address of the next instruction in normal sequence after the BAL instruction) into bit positions 15–31 of general register R, clears bit position 0–14 of register R to 0's and then replaces the updated instruction address with the effective address. Instruction execution proceeds with the instruction pointed to by the effective address of the BAL instruction.

Affected: (R), (IA)

$$IA \longrightarrow R_{15-31}; 0 \longrightarrow R_{0-14}; EA_{15-31} \longrightarrow IA$$

If the effective address of BAL is a nonexistent memory address, the computer aborts execution of the BAL instruction (after loading the updated instruction address into register R) and traps to location X'40'. In this case, the instruction address stored by the XPSD instruction in location X'40' is the address of the BAL instruction.

CALL INSTRUCTIONS

The four CALL instructions each cause the computer to trap to a specific location for the next instruction in sequence.

Each of these four trap locations must contain an EX-CHANGE PROGRAM STATUS DOUBLEWORD (XPSD) instruction. Execution of XPSD in the trap location for a CALL instruction is described on page 57. If the XPSD instruction is coded with bit position 9 set to 1, the next instruction (executed after the XPSD) is taken from one of 16 possible locations, as designated by the value in the R field of the CALL instruction. Each of the 16 locations may contain an instruction that causes the computer to branch to a specific routine; thus the four CALL instructions can be used to enter any of as may as 64 unique routines

CALI	CALL 1
	(Word addressing)

_				
*	04	R	x	Reference address
0	1 2 3 4 5 6 7	8 9 10 11	12 13 14	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CALL 1 causes the computer to trap to location X'48'.

CAL2 CALL 2 (Word addressing)

*	05	R	x	Reference address
Ļ	1 2 3 4 5 6 7	8 9 10 11 1	12 13 14	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CALL 2 causes the computer to trap to location X'49'.

C/	AL3			(V	A I Vc	LL vrc	. 3 1 c	ba	dro	es	sin	g))																	
*		(26					F	2		;	X					F	le	fe	re	n	e:	a	dc	lre	ess	;			
6	1 2	3	4	5	6	7	8	9	10	11	12 1	3	14	15	16	17	.18	19	20	21	22	2	3 24	25	26	27	28	29	30	31

CALL 3 causes the computer to trap to location X'4A'.

C/	۹L	4		(C/ (W	AL ∕o	.L rd	4 a	dd	dre	es	sir	ng))										L						
*			(07	,				F	2			Х					R	e	fe	re	nc	e	a	do	lre	ess	;		
ò	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

CALL 4 causes the computer to trap to location X'4B'.

CONTROL INSTRUCTIONS

The following privileged instructions are used to control the basic operating conditions of the SIGMA 5 computer:

Instruction Name	Mnemonic	Page
Load Program Status Doubleword	LPSD	56
Exchange Program Status Doubleword	XPSD	56
Load Register Pointer	LRP	58
Move to Memory Control	MMC	58
Wait	WAIT	59
Read Direct	RD	59
Write Direct	WD	60

If execution of any control instruction is attempted while the computer is in the slave mode (i.e., while bit 8 of the current program status doubleword is a 1), the computer unconditionally aborts execution of the instruction (at the time of operation code decoding) and traps to location X'40'.

PROGRAM STATUS DOUBLEWORD

The SIGMA 5 program status doubleword has the following structure when stored in memory:

	(C			F S	F Z	FN	N S	N.	D M	A M											_	IA	4							
0	٦	2	3	14	5	6	7	B	9	10	11	12	13	14	151	16	17	18	191	20	21	22	23	24	25	26	27	28	29	30	31

RP

57 58 59 60

WK CIFE IIII 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Bit		
Position	Designation	Function
0-3	СС	Condition code
5	FS	Floating significance mask
6	FZ	Floating zero mask
7	FN	Floating normalize mask
8	MS	Master/slave mode control
10 [†]	DM	Decimal fault trap mask
11	AM	Fixed-point arithmetic overflow trap mask
15-31	IA	Instruction address
34,35	WK	Write key
37	CI	Counter interrupt group inhibit
38	II	I/O interrupt group inhibit
39	EI	External interrupt inhibit
54-59	RP	Register pointer

The detailed functions of the various portions of the SIGMA 5 program status doubleword are described on page 12.

LPSD LOAD PROGRAM STATUS DOUBLEWORD (Doubleword addressing, privileged)

*			(DE				L P		C L	A D	0	0	0				ſ	Ref	e	re	n	:e	a	do	ire	ess				
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	151	16	17	18	191:	20	21	22	23	24	25	26	27	28	29	30	31

LOAD PROGRAM STATUS DOUBLEWORD replaces bits 0 through 39 of the current program status doubleword with bits 0 through 39 of the effective doubleword. The following conditional operations are also performed:

 If bit position 8 (LP) of LPSD contains a 1, bits 56 through 59 of the current program status doubleword (register pointer) are replaced by bits 56 through 59 of the effective doubleword; if bit 8 of LPSD is a 0, the current register pointer value remains unchanged. If bit position 10 of LPSD contains a 1, the highestpriority interrupt level currently in the active state is cleared (i.e., reset to either the armed or disarmed state). The interrupt level is armed if bit 11 of LPSD is a 1, or is disarmed if bit 11 of LPSD is a 0. If bit 10 of LPSD is a 0, no interrupt level is affected in any way, regardless of whether bit 11 of LPSD is 1 or 0. (Interrupt levels are described in detail on page 15.)

Those portions of the effective doubleword that correspond to undefined fields in the program status doubleword are ignored.

Affected: (PSD), interrupt system if (I)₁₀ = 1 $ED_{0-3} \rightarrow CC$ $ED_{5-7} \rightarrow FS, FZ, FN$ $ED_8 \rightarrow MS$ $ED_{10} \rightarrow DM; ED_{11} \rightarrow AM$ $ED_{15-31} \rightarrow IA$ $ED_{34-35} \rightarrow WK$ $ED_{37-39} \rightarrow CI, II, EI$ If (I)₈ = 1, ED₅₆₋₅₉ $\rightarrow RP$ If (I)₁₀ = 1 and (I)₁₁ = 1, clear and arm interrupt If (I)₁₀ = 1 and (I)₁₁ = 0, clear and disarm interrupt

XPSD	EXCHANGE	PROGRAM	STATUS	DOUBLEWORD
	(Doubleword	addressing,	privileg	ed)

*				OF				L P	A I			0	0	0					Re	fe	ere	en	ce	e c	bb	dr	es	s			
0	1	2	3	4	5	6	7	6	9	10	111	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

EXCHANGE PROGRAM STATUS DOUBLEWORD stores the entire current program status doubleword and then replaces the current program status doubleword with a new program status doubleword.

The current program status doubleword is stored in the doubleword location pointed to by the effective address of XPSD in the following form:

C	с	0	F S	FZ	FN	M S	0	D M	Â	0	00)	Γ								IA	, \							
0 1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
00	wк	0	C I	I I	E I	0	00	00		0	00	00		 ()0	00)		00)0	0	T	R	P		6	00	00	

The current program status doubleword is replaced by a new program status doubleword as follows:

- 1. The effective address of XPSD is incremented by 2, so that it points to the next doubleword location. The contents of the next doubleword location are referred to as the second effective doubleword, or ED2.
- Bits 0 through 35 of the current program status doubleword are unconditionally replaced by bits 0 through 35

^tThis bit position is used only to preserve the status of the decimal arithmetic fault trap mask when a SIGMA 7 program is being executed. The decimal trap mask bit does not affect the operation of the SIGMA 5 computer in any way.

of the second effective doubleword. The affected portions of the program status doubleword are:

Bit Position	Designation	Function
0-3	СС	Condition code
5-7	FS, FZ, FN	Floating control
8	MS	Master/slave mode control
10	DM	Decimal trap mask
11	AM	Fixed-point arithmetic trap mask
15-31	IA	Instruction address
34-35	WK	Write key

3. A logical inclusive OR is performed between bits 37 through 39 of the current program status doubleword and bits 37 through 39 of the second effective doubleword.

Bit Position	Designation	Function
37	CI	Counter interrupt inhibit
38	II	I/O interrupt inhibit
39	EI	External interrupt inhibit

If any (or all) of bits 37, 38, or 39 of the second effective doubleword are 0's, the corresponding bits in the current program status doubleword remain unchanged; if any (or all) of bits 37, 38, or 39 of the second effective doubleword are 1's, the corresponding bits in the current program status doubleword are set to 1's. See page 15 for a detailed discussion of the interrupt inhibits.

4. If bit position 8 (LP) of XPSD contains a 1, bits 56– 59 of the current program status doubleword (register pointer) are replaced by bits 56 through 59 of the second effective doubleword; if bit 8 of XPSD is a 0, the current register pointer value remains unchanged.

The following additional operations are performed on the new program status doubleword if, and only if, the XPSD is being executed as the result of a nonallowed operation (trap to location X'40') or a CALL instruction (trap to location X'48', X'49', X'4A', or X'4B'):

- Nonallowed operations the following additional functions are performed when XPSD is being exeucted as a result of a trap to location X'40':
 - a. Nonexistent instruction if the reason for the trap condition is an attempt to execute a nonexistent instruction, bit position 0 of the new program status doubleword (CCT) is set to 1. Then, if bit 9 (AI) of XPSD is a 1, bit positions 15–31 of the new program status doubleword (next instruction address) are incremented by 8.

- b. Nonexistent memory address if the reason for the trap condition is an attempt to access or write into a nonexistent memory region, bit position 1 of the new program status doubleword (CC2) is set to
 1. Then, if bit 9 of XPSD is a 1, the instruction address portion of the new program status doubleword is incremented by 4.
- c. Privileged instruction violation if the reason for the trap condition is an attempt to execute a privileged instruction while the computer is in the slave mode, bit position 2 of the new program status doubleword (CC3) is set to 1. Then, if bit position 9 of XPSD is a 1, the instruction address portion of the new program status doubleword is incremented by 2.
- d. Memory protection violation if the reason for the trap condition is an attempt to write into a memory region to which the program does not have proper access, bit position 3 of the new program status doubleword (CC4) is set to 1. Then, if bit 9 of XPSD is a 1, the instruction address portion of the new program status doubleword is incremented by 1.

There are certain circumstances under which two of the above nonallowed operations can occur simultaneously. The following operation codes (including their indirect counterparts) are considered to be both nonexistent and privileged: X'0C', X'0D', X'2C', and X'2D'. If any of these operation codes is used as an instruction while the computer is in the slave mode, CC1 and CC3 are both set to 1's; if bit 9 of XPSD is a 1, the instruction address portion of the new program status doubleword is incremented by 10. If an attempt is made to write into a memory region that is both nonexistent and protected from the program by means of the memory protection feature, CC2 and CC4 are both set to 1's; if bit 9 of XPSD is a 1, the instruction address of the new program status doubleword is incremented by 5.

- CALL instructions the following additional functions are performed when XPSD is being executed as a resule of a trap to location X'48', X'49', X'4A', or X'4B':
 - a. The R field (contents of bit positions 8-11) of the CALL instruction causing the trap is logically inclusively ORed into bit positions 0-3 (CC) of the new program status doubleword.
 - b. If bit position 9 of XPSD contains a 1, the R field of the CALL instruction causing the trap is added to the instruction address portion of the new program status doubleword.

If bit position 9 of XPSD contains a 0, the instruction address portion of the new program status doubleword always remains at the value established by the second effective doubleword. Bit position 9 of XPSD is effective only if the instruction is being executed as the result of a nonallowed operation trap or a CALL instruction trap. Bit position 9 of XPSD must be coded with a 0 in all other cases; otherwise, the results of the XPSD instruction are undefined.

Affected: (EDL), (PSD) PSD ---- EDL $ED2_{0-3} \rightarrow CC; ED2_{5-7} \rightarrow FS, FZ, FN$ $ED2_8 \rightarrow MS; ED2_{10} \rightarrow DM; ED2_{11} \rightarrow AM$ $ED2_{15-31} \rightarrow IA; ED2_{34-35} \rightarrow WK$ ED2₃₇₋₃₉^U CI, II, EI → CI, II, EI If (I)₈ = 1, $ED2_{56-59} \rightarrow RP$ If (I) $_{o} = 0$, RP not affected If nonexistent instruction, $1 \rightarrow CC1$ then, if $(I)_0 = 1$, IA + 8 → IA If nonexistent memory address, $1 \rightarrow CC2$ then, if (I) = 1, IA + 4 → IA If privileged instruction violation, $1 \rightarrow CC3$ then, if (I)_o = 1, IA + 2 \longrightarrow IA If memory protection violation, $1 \rightarrow CC4$ then, if (I)_q = 1, IA + 1 → IA If CALL instruction, CC u CALL $_{8-11} \rightarrow$ CC then, if (I)₉ = 1, IA + CALL₈₋₁₁ \rightarrow IA if $(I)_{o} = 0$, IA not affected

LRP LOAD REGISTER POINTER

(Word addressing, privileged)

•	•				2F	:								х					F	le	fe	re	nc	:e	a	do	łre	ess	;			
0	,	1	2	3	14	5	6	7	18	9	10	11	112	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

LOAD REGISTER POINTER loads bits 24 through 27 of the effective word into the register pointer (RP) portion of the current program status doubleword. Bits positions 0 through 23 and 28 through 31 of the effective word are ignored, and no other portion of the program status doubleword is affected. If the register pointer is loaded with a value that points to a nonexistent block of general registers, the computer subsequently generates either all 1's or all 0's as the contents of the nonexistent block of general registers whenever an instruction designates a general register by means of the R field of the reference address field.

Affected: RP $EW_{24-27} \longrightarrow RP$

MMC MOVE TO MEMORY CONTROL

(Word addressing, privileged, continue after interrupt)

Г	-							-						- 1	-												*	-		٦
*	ļ			6	Ξ				Ī	2		0	0	1				R	efe	ere	en	ce	c	d	dr	es	s			
			_	<u>.</u>																			_				-			
0	1	2	3	14	5	6	7	8	9	10	11	12	13	14	151	16 1	7 1	3 15	20	21	22	23	24	25	26	27	28	29	30	31

MOVE TO MEMORY CONTROL loads a string of one or more words into the memory control registers (memory control registers are described on page 12). Bit positions 12-14 of MMC are not used as an index register address; instead, they are used to specify that memory control registers are to be loaded. Bit positions 12-14 of MMC must be coded as 001, in order to load the memory control storage. If bit positions 12-14 of MMC are not coded as 001, the instruction produces an undefined result. Also, if an attempt is made to load unimplemented memory control storage, the contents of the general registers specified by the MMC instruction are undefined at the completion of the instruction.

Bit positions 15-31 (reference address field) of MMC are ignored insofar as the operation of the instruction is concerned, and the results of the instruction are the same whether or not MMC is indirectly addressed. However, if MMC is indirectly addressed and the indirect reference address is nonexistent, the nonallowed operation trap (location X'40') is activated. The effective address of the MMC instruction however, is not used as a memory reference (thus does not affect the normal operation of the instruction).

The R field of MMC designates an even-odd pair of general registers (R and Ru1) that are used to control the loading of the memory control registers. Registers R and Ru1 are assumed to contain the following information:

Register R:

									L	(Co	ont	rc	Ы	ir	na	ge	e o	ad	dı	es	s		
00000		_	 	 	 	_	 _	 	 _	 		_	_		_								_	

Register Rul:

		(С	0	U	nt											C	or St	ıtr ar	ol t											
0	1	2	1	3 T	4	5	6	7	18	9	10	11	12	13	14	151	16	17	18	19/20	21	22	23	24	25	26	27	28	29	30	31

Bit positions 15 through 31 of register R contain the address of the first word of the control image to be loaded into the memory control registers. Bit positions 0 through 7 of register Ru1 contain a count of the number of words to be loaded. If bits 0-7 of register Ru1 are initially all 0's a word count of 256 is implied.

Bit positions 15 through 20 of register Ru1 point to the beginning of the memory region controlled by the registers to be loaded.

The R field of the MMC instruction must be an even value for proper operation of the instruction; if the R field of MMC is an odd value, the operation of the instruction is undefined.

LOADING THE MEMORY WRITE PROTECTION LOCKS

The following diagrams represent the configuration of MMC, register R, and register Ru1 that are required to load the memory write-protection locks:

The instruction format is

0			6	δF	_				F	ł		0	0	1	0	C	0	0	0	C	0	0	0	C	0	0	0	C	0	0	0
0	٦	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The contents of register R are

0	0	0	0	C	00	0	0	C	0	0	0	0	00	0				L	00	:k	ir	no	ge	e o	bc	dr	e	is			
ō	ï	2	2	4	5	٨	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The contents of register Rul are

			(20	οι	۶r	nt			С	0	0	0	C	0	0		C	on St	tr ar	ol t		C	0	0	(00	0	0	C	0	0	0
C	•	1	2	3	П	4	5	6	7 [8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Memory Lock Control Image

The initial address value in register R is the address of the first word of the memory lock control image, and word length of the image is specified in the initial count in register Ru1. A word count of 16 is sufficient to load the entire block of memory locks. The memory lock registers are treated as a circular set, with the register for memory addresses 0 through X'1FF' immediately following the register for memory addresses X'1FFE00' through X'1FFFF; thus, a word count greater than 16 causes the first registers loaded to be overwritten. Each word of the lock image is assumed to be in the following format:

WL	WL	WL	WL	WL	WL	WL	WL	WL	WL	WL	WL	WL	WL	WL	WL
0 1	2 3	4 5	6 7	18 9	10 11	12 13	14 15	16 17	18 19	20 21	22 23	24 25	26 27	28 29	30 31

Memory Lock Loading Process

Bit positions 15-20 of register Ru1 initially point to the first 512word page of core memory addresses that are to be controlled by the memory lock image. MMC moves the lock image into the lock registers 1 word at a time, thus loading the locks for 16 consecutive 512-word pages with each image word. As each word is loaded, the address of the lock image is incremented by 1, the word count is decremented by 1, and the value in bit positions 15-20 of register Ru1 is incremented by 4; this process continues until the word count is reduced to 0. When the loading process is completed, register R contains a value equal to the sum of the initial lock image address plus the initial word count. Also, the final word count is 0, and bit positions 15-20 of register Ru1 contain a value equal to the sum of the initial contents plus 4 times the initial word count.

INTERRUPTION OF MMC

The execution of MMC can be interrupted after each word of the control image has been moved into the specified control register. Immediately prior to the time that the instruction in the interrupt (or trap) location is executed, register R contains the address of the next word of the control image to be loaded, and register Rul contains a count of the number of control image words remaining to be moved and a value pointing to the next memory control register to be loaded.

Affected: (R), (Ru1), memory control registers

WAIT WAIT (Word addressing, privileged)

*			2	2E									х					R	efe	re	nc	ec	bi	ldr	e	55				
0	Т	2	3	Τ4	5	6	7	18	9	16	,1	12	13	14	151	16	17	18	19 2	0 21	22	231	24	25	26	27	28	29	30	31

WAIT causes the central processing unit (CPU) of the SIGMA 5 system to cease all operations until an interrupt activation occurs, or until the computer operator manually moves the COMPUTE switch (on the processor control panel) from the RUN position to IDLE and then back to RUN. The instruction address portion of the program status doubleword is updated before the computer begins waiting; therefore, while the CPU is waiting, the program status doubleword contains the address of the next location in ascending sequence after WAIT and the contents of the next location are displayed in the DISPLAY indicators on the processor control panel (see Chapter 5). If any input/output operations are being performed when WAIT is executed, the operations proceed to their normal termination.

When an interrupt activation occurs while the CPU is waiting, the computer processes the interrupt-servicing routine. Normally, the interrupt-servicing routine begins with an XPSD instruction in the interrupt location, and ends with an LPSD instruction at the end of the routine. After the LPSD instruction is executed, the next instruction to be executed in the interrupted program is the next instruction in sequence after the WAIT instruction. If the interrupt is to a single-instruction interrupt location, the instruction execution proceeds with the next instruction in sequence after the WAIT instruction. When the COMPUTE switch is moved from RUN to IDLE and back to RUN while the CPU is waiting, instruction execution, and the instruction in sequence after the WAIT instruction.

If WAIT is indirectly addressed and the indirect reference address is nonexistent, the nonallowed operation trap (location X'40') is activated. The effective address of the WAIT instruction, however, is not used as a memory reference (thus does not affect the normal operation of the instruction.

RD READ DIRECT (Word addressing, privileged)

•					-			T					v		Γ			R	le	fe	re	nc	e	a	dd	re	ss				٦
	6C								ſ	`			^			٨	٨c	de	e				F	ur	١C	tic	on				
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The CPU is capable of directly communicating with other elements of the SIGMA 5 system, as well as performing internal control operations, by means of the READ DIRECT/WRITE DIRECT (RD/WD) lines. The RD/WD lines consist of 16 address lines, 32 data lines, 2 condition code lines, and various control lines that are connected to various CPU circuits and to special systems equipment.

READ DIRECT causes the CPU to present bits 16 through 31 of the effective address to other elements of the SIGMA 5 system on the RD/WD address lines. Bits 16-31 of the effective address identify a specific element of the SIGMA 5 system that is expected to return information (2 condition code bits plus a maximum of 32 data bits) to the CPU. The significance and number of data bits returned to the CPU depend on the selected element. If the R field of RD is nonzero, up to 32 bits of the returned data are loaded into general register R; however, if the R field of RD is 0, the returned data is ignored and general register 0 is not changed. Bits CC3 and CC4 of the condition code are set by the addressed element, regardless of the value of the R field . (CC1 and CC2 are also set when the RD instruction is coded for the internal control mode.)

Bits 16–19 of the effective address of RD determine the mode of the RD instruction, as follows:

Bit	posit	ion		
<u>16</u>	17	18	<u>19</u>	Mode
0	0	0	0	Internal computer control
0	õ	ŏ	ĩ	Unassianed
0	0	1	0	SDS testers
0	0	1	1)	
			Į	Assigned to various groups of
	:		1	standard SDS products
1	1	1	0)	
1	1	1	1	Special systems control (for customer use with specially designed equipment)

READ DIRECT, INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the condition code portion of the program status doubleword is unconditionally set according to the states of the four SENSE switches on the processor control panel. If a particular SENSE switch is set, the corresponding bit of the condition code is set to 1; if a SENSE switch is reset, the corresponding bit of the condition code is reset to 0.

Read SENSE Switches

The following configuration of RD can be used to read the control panel SENSE switches:

Γ.			,					Γ	1	D			v					R	ef	er	er	١Ç	e	ac	dı	res	SS				
		6C						N.			^			(00	00)	(00	00)	(00	00)	()0(00)		
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

In this case, only the condition code is affected.

Read MEMORY FAULT Indicators

Each core memory module is associated with a MEMORY FAULT indicator that is turned on whenever a memory parity or overtemperature condition occurs. The following configuration of RD is used to record and reset the MEMORY FAULT indicators.

F			4	~	,				Γ	r	,			~					F	(e	fe	re	n	e	a	dc	lre	ess	;			
ľ			С		•					r				^			0	0	0	0	0	0	0	0	0	0	0	1	0	0	00	2
0	1	2	3	14		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the R field of RD is nonzero, bit positions 0-23 of register R are reset to all 0's, and bit positions 24-31 are set according to the current states of the MEMORY FAULT indicators; then all MEMORY FAULT indicators are reset. If a bit position in register R is set to 1, a memory fault has been detected in the corresponding core memory module. If the R field of RD is zero, the MEMORY FAULT indicators and the contents of register 0 remain unchanged (although the condition code is still set to the value of the SENSE switches). The MEMORY FAULT indicators are also reset by means of the SYS RESET/CLEAR switch on the processor control panel.

Affected: (R), CC, MEMORY FAULT indicators

WD WRITE DIRECT

(Word addressing, privileged)

																Γ			R	e	fei	e	٦C	e	ac	łd	re	ss				
*			(6 C)					R				Х			N	Иc	de	Э	Γ		F	ur	nc	tic	on					
0	1	2	3	14	1	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

WRITE DIRECT causes the CPU to present bits 16 through 31 of the effective address to other elements of the SIGMA 5 system on the RD/WD address lines (see READ DIRECT). Bits 16-31 of the effective address identify a specific element of the SIGMA 5 system that is to receive control information from the CPU. If the R field of WD is nonzero, the 32-bit contents of register R are transmitted to the specified element on the RD/WD data lines. If the R field of WD is 0, 32 0's are transmitted to the specified element (instead of the contents of register 0). The specified element may return information to set the condition code.

Bits 16-19 of the effective address determine the mode of the WD instruction, as follows:

Bit	posit	ion		
16	17	18	19	Mode
0	0	0	0	Internal computer control
0	0	0	1	Interrupt control
0	0	1	0	SDS testers
0	0	1	1)	
			- [Assigned to various groups of
	:		ĺ	standard SDS products
1	1	1	0	
1	1	1	í	Special systems control (for customer use with specially designed equipment)

WRITE DIRECT, INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the condition code portion of the program status doubleword (PSD_{0-3}) is unconditionally set according to the states of the four SENSE switches on the processor control panel. If a particular SENSE switch is set, the corresponding bit of the condition code is set to 1; if a SENSE switch is reset, the corresponding bit of the condition code is reset to 0.

Set Interrupt Inhibits

The following configuration of WD can be used to set the interrupt inhibits (bits 37-39 of the program status doubleword):

*		6	D.					ĥ	2	_		x		[F	Re	fe	re	n	e	a	dc	Ire	ess				
		Ŭ							`						0	0	0	0	0	0	00)	0	0	1	1	0	C	I	E
0	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

A logical inclusive OR is performed between bits 29-31 of the effective address and bits 37-39 of the program status doubleword. If any (or all of bits 29-31) of the effective address are 1's, the corresponding inhibit bits in the program status doubleword are set to 1's; the current state of an inhibit bit is not affected if a corresponding bit position of the effective address contains a 0.

Reset Interrupt Inhibits

The following configuration of WD can be used to reset the interrupt inhibits:

I.	40	р	v	Reference address
ľ	00	ĸ	^	0000 0000 0010 0CI E
5	1 2 3 4 5 6 7	8 9 10 11	12 13 14	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

If any (or all) of bits 29-31 of the effective address are 1's, the corresponding inhibit bits in the program status doubleword are reset to 0's; the current state of an inhibit bit is not affected if a corresponding bit position of the effective address contains a 0.

Set ALARM Indicator

The following configuration of WD is used to set the ALARM indicator on the maintenance section of the processor control panel:

L	Γ			~							<u> </u>		,	~					F	Re	fe	re	no	;e	a	dd	Ire	-	;			
Γ			С	U.						ľ	(ĺ	1	X			0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	1	2	3	14	5	6	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

If the COMPUTE switch on the processor control panel is in the RUN position and the AUDIO switch on the maintenance section of the processor control panel in in the ON position, a 1000-Hz signal is transmitted to the computer speaker. The signal may be interrupted by moving the COMPUTE switch to the IDLE position, by moving the AUDIO switch to the OFF position, or by resetting the ALARM indicator.

Reset ALARM Indicator

The following configuration of WD is used to reset the ALARM indicator:

F				ŝ									v		Г			Ī	٢e	fe	re	n	ce	a	dc	Ire	ess	5			
				,					ľ	`						0	0	00)	0	0	0	0	0	1	0	0	0	0	0(5
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The ALARM indicator is also reset by means of either the CPU RESET/CLEAR switch or the SYSTEM RESET/CLEAR switch on the processor control panel.

Reset Integral IOP Inhibit

If the integral IOP is operating when the instruction watchdog timer runout trap is activated, the integral IOP is inhibited from further operation until the integral IOP inhibit is reset. The following configuration of WD is used to reset the integral IOP inhibit:

Γ.				_															Re	efe	ere	en	ce	è	ad	dr	es	s			
*			6	D					К				х		*	(00	00)	С	00	00	1	(וכ	00)1(00	1
0	1	2	3	4	5	6	7	8	9	10	11.	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The integral IOP inhibit is also reset by means of the CPU RESET/CLEAR switch or the SYS RESET/CLEAR switch on the processor control panel.

Toggle Program-Controlled-Frequency Flip-Flop

The following configuration of WD is used to "toggle" the CPU program-controlled-frequency (PCF) flip-flop:

*			4	n	-			Γ	,	2			v						Re	fe	re	enc	:e	a	dc	Ire	ess	;			٦
			0							τ.			^			0	0	00	0	0	0	00)	0	1	0	0	0	0	10	5
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The output of the PCF flip-flop is transmitted to the computer speaker through the AUDIO switch on the maintenance section of the processor control panel. If the PCF flip-flop is reset when the above configuration of WD is executed, the WD instruction sets the PCF flip-flop, if the PCF flip-flop was previously set, the WD instruction resets it. A program can thus generate a desired frequency by toggling (setting and resetting) the PCF flip-flop at the appropriate rate. Execution of the above configuration of WD also resets the ALARM indicator.

WRITE DIRECT, INTERRUPT CONTROL (MODE 1)

The following configuration of WD is used to control the alteration of the various states of the individual interrupt levels within the CPU interrupt system:

l.				ŝ					0	,			v																		
	Ì		_						r	`			^			0	0	0	1	0	C	oc	le	0	0	0	0	C	۶r	οu	р
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Bits 28 through 31 of the effective address specify the identification number (see page 14) of the group of interrupt levels to be controlled by the WD instruction.

The R field of the WD instruction specifies a general register that contains the selection bits for the individual interrupt levels within the specified group. Bit position 16 of register R contains the selection bit for the highest-priority (lowest numbered) interrupt level within the group, and bit position 31 of register R contains the selection bit for the lowestpriority (highest-numbered) interrupt level within the group. Each interrupt level in the designated group is operated on according to the function code specified by bits 21 through 23 of the effective address of WD. The codes and their associated functions are as follows:

- Code Function
- 000 Undefined
- 001 Disarm all levels selected by a 1; all levels selected by a 0 are not affected.
- 010 Arm and enable all levels selected by a 1; all levels selected by a 0 are not affected.
- 011 Arm and disable all levels selected by a 1; all levels selected by a 0 are not affected.
- 100 Enable all levels selected by a 1; all levels selected by a 0 are not affected.
- 101 Disable all levels selected by a 1; all levels selected by a 0 are not affected.
- 110 Enable all levels selected by a 1 and disable all levels selected by a 0.

Code Function

111 Trigger all levels selected by a 1. All such levels that are currently armed advance to the waiting state. Those levels currently disarmed are not altered, and all levels selected by a 0 are not affected. The interrupt trigger is applied at the same input point as that used by the device connected to the interrupt level.

INPUT/OUTPUT INSTRUCTIONS

"Standard" SIGMA 5 I/O refers to the normal I/O system consisting of input/output processors, device controllers, and devices. This system handles normal communication with standard peripherals such as printers, discs, tapes, and so forth. When dealing with standard I/O operations, the CPU uses the following five instructions:

Instruction Name	Mnemonic	Page
Start Input/Output	SIO	63
Halt Input/Output	HIO	66
Test Input/Output	τιο	66
Test Device	TDV	67
Acknowledge Input/Output Interrupt	AIO	67

If execution of any input/output instruction is attempted while the computer is in the slave mode (i.e., while bit 8 of the current program status doubleword is a 1), the computer unconditionally aborts execution of the instruction (at the time of operation code decoding) and traps to location X'40'.

I/O ADDRESSES

The device to be operated on by an I/O instruction is selected by the effective address of the I/O instruction itself. Indirect addressing and/or indexing are performed, as for other word-addressing instructions, to compute the effective address of the I/O instruction. However, the effective address is not used as a memory reference (i.e., not subject to memory protection). For the SIO, HIO, TIO, and TDV instructions, the 11 low-order bits of the effective address constitute an I/O address. For the AIO instruction, the device causing the interrupt returns its 11-bit I/O address as part of the response to the AIO instruction.

An I/O address occupies bit positions 21 through 31 of the effective address, with bits 21, 22, and 23 of the I/O address specifying one of eight possible IOPs that can be controlled by a CPU. The remainder of the I/O address is factored into one of two forms, depending on bit 24, as follows:

Case I: Single-unit device controllers (bit 24 is 0)

[*	Γ	C)p	er	al	i	or	ſ		D				~					Re	efe	ere	en	ce		bc	dr	es	s				
 "			Ċ	ò	de	•				ĸ				^								I	0	Ρ	0		C	:/	De	e٧	ic	e
0	1	2	3	14	5		6	7	6	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Bits 25 through 31 of the I/O address (DC/Device) constitute a single code specifying a particular combination of device controller and device. Normally, these codes refer to device controllers that drive only a single device, such as card readers, card punches, line printers, etc.

Case II:	Multiunit	device	controllers	(bit 24	lis	1)
----------	-----------	--------	-------------	---------	-----	----

*		С)p	er	at	io	n	Γ	R				x	,	Γ			R	ef	er	er	nc	e	ad	dı	re	ss				
			Ċ	Çc	de	2			n	•				•							Ι	0	Ρ	1		D	С		C)	٦
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Bits positions 25 through 31 of the I/O address contain a 3-bit device controller code (DC) in bit positions 25-27 and a 4-bit device code (Device) in bit positions 28-31. This form of I/O address is used for device controllers (such as magnetic tape and rapid access data file controllers) that control information exchange with only one device at a time (out of a set of as many as 16 devices).

I/O UNIT ADDRESS ASSIGNMENT

Device controller numbers are normally assigned to a multiplexor IOP in numerical sequence, beginning with zero and continuing through the highest number recognized by the IOP (i.e., X'7', X'F', X'17', or X'1F'). In the case of multiunit device controllers, the device controller number must be in the range X'0' through X'7' because the I/O address field structure allows for a 3-bit multiunit device controller number. In the case of single-unit device controllers, any of the available numbers in the range X'0' through X'IF' maybe assigned to the device controller, providing that the same number has not already been assigned to a multiunit device controller. For example, if device controller number X'0' is assigned to a magnetic tape unit controller, the number X'0' cannot also be used for a card reader (although the coding of the I/O address field would be different in bit position 24). The I/O address codes used by standard SDS software are

I/O address	Peripheral device designation
X'080'	IOP 0, device controller 0, magnetic tape unit 0
X'081'	IOP 0, device controller 0, magnetic tape unit 1
:	:
X'087'	IOP 0, device controller 0, magnetic tape unit 7
X'001'	IOP 0, device controller 1, keyboard/printer
X'002'	IOP 0, device controller 2, line printer
X'003'	IOP 0, device controller 3, card reader
X'004'	IOP 0, device controller 4, card punch
X'005'	IOP 0, device controller 5, paper tape reader/punch

I/O STATUS RESPONSE

All I/O instructions result in the setting of condition code CC1 and CC2 to denote the nature of the I/O response. The R field of the I/O instruction specifies one of the gen-

eral registers that is to accept additional I/O response information during the execution of an $I\!\!\!/O$ instruction. In some situations, the programmer may want two sets of response information loaded into the general registers, while in other situations he may want only one set, or even no information loaded into a general register. This control is achieved by coding the R field of the I/O instruction. One set of response information is loaded into register R and another set may be loaded into register Ru1. If the R field is an even, nonzero number, registers R and R + 1 are each loaded with response information. If the R field specifies an odd-numbered general register, then only register R is loaded with response information. However, if the R field is 0 or if the I/O address is not recognized by the I/O system, or if the device controller is attached to a "busy" selector IOP, no general registers are loaded with response information. The I/O response information loaded into the general register for SIO, HIO, TIO and TDV instructions is in the following format:

Word into register R

1										+					,		_											-					_
)()	Ю	0)		00	00	0		00	00	0		00)0(0		С	ึบเ	re	en	t d	co	mr	nc	in	d	ac	ldı	re	ss	
1																										_					_		
	0	1	2	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Word into register Rul

						S	Sto	atu	JS												B	yt	e	co	υ	nt					
0	1	2	3	14	5	6	Ī	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Current Command Doubleword Address. After the addressed device has received an order, this field contains the 16 high-order bits of the core memory address for the command doubleword (see page 70) currently being processed for the addressed device.

Status. The meaning of this field depends on the particular I/O instruction being executed and upon the selected I/O device (see Table 8).

Byte Count. After the addressed device has received an order, this field contains a count of the number of bytes yet to be transmitted by the operation called for by the order.

The format of I/O response information loaded into register R for the instruction AIO is described on page 68.

SIO START INPUT/OUTPUT (W

/ord addressing, p	privileged)
--------------------	-------------

٢.				c					D				v		Γ			F	łe	fe	re	n	ce	a	d¢	lre	ess	;			
	ł		4	Ċ					ĸ				^									Ī/	O	a	dc	Ire	ess	;			
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

START INPUT/OUTPUT is used to initiate an input or output operation with the device selected by the I/O address (bits 21-31 of the effective address of the instruction).

SIO utilizes data in general register 0, which is assumed to have the following content when SIO is executed.

	00	00	C		00	00	0		0	00)()	_	00	00)				Fi	irs	t	сс	m	m	an	d	ac	bb	re	ss	
0	1	2	3	14	5	6	7	1	8 5	1	0	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

General register 0 is temporarily dedicated during the execution of an SIO instruction to specify the starting doubleword address for the IOP command list. The doubleword address in register 0 is the 16 high-order bits of a memory address; thus, the address in register 0 always specifies an even-numbered word location. (The IOP command list is described in "IOP Command Doublewords", Chapter 4.)

If I/O address recognition exists in the I/O system, the first command doubleword address is loaded into the IOP command address counter associated with the device controller specified by the I/O address of the SIO instruction. If, at this time, the device is in the "ready" condition and the device does not have an interrupt condition pending, the device is started (i.e., advanced to the "busy" condition). Then, if the device is in the "automatic" mode, it requests an order from the IOP. The IOP loads the first command doubleword of the I/O command list into its appropriate registers and transmits the order to the device.

The CPU condition code provides an indication of whether or not the I/O address specified by the SIO instruction was recognized by the I/O system and whether the SIO instruction was or was not accepted by the device (i.e., whether the device did or did not advance to the "busy" condition).

The condition code settings for SIO are:

1	2	3		Result
0	0	-	-	I/O address recognized and SIO accepted
0	1	-	-	I/O address recognized but SIO not accepted
1	0	-	-	device controller is attached to a "busy" selector IOP
1	1	-	-	I/O address not recognized

STATUS INFORMATION FOR SIO

In the event that the SIO instruction was not accepted (i.e., CC1 = 0 and CC2 = 1), the status information returned as a part of the I/O response provides indications of why the SIO instruction was not accepted. If the SIO instruction has been coded with an R field value of 0, or if the I/O address is not recognized by the I/O system, or if the device controller is attached to a "busy" selector IOP, only the condition code settings are available. If the R field value is odd, register R contains the following information:

					St	tc	itu	JS												B٩	vte	e	co	U	٦t					
0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Bit

Position Function

0 Device interrupt pending: if this bit is 1, the addressed device has requested an interrupt and the interrupt has not been acknowledged by an AIO instruction. Device interrupts can be achieved by coding of the flag portion of the I/O command doubleword. Device interrupts can also be achieved by using M modifiers in the basic order to the device (Mbits in the Order portion of the

Meaning (SIO, HIO, TIO)

device interrupt pending

device not operational device unavailable device busy device manual device automatic

device unusual end device controller ready

device controller not operational device controller unavailable device controller busy

device ready

Meaning (TDV)

data overrun

unique to the device and the device controller

same as for SIO, HIO,

and TIO

Position and State in Regis	ter	Rul
-----------------------------	-----	-----

	De	evio	ce S	tatu	JS	Byt	е		C	Эре	rat	iona	S	tat	US	Byt	е
0	1	2	3		4	5	6	7	8	9	10	11		12	13	14	15
_																	
1	-	-	-		-	-	-	-	-	-	-			-	-	-	-
-	0	0	-		-	-	-	-	-	-	-	-		-	-	-	-
-	0	1	-		-	-	-	-	-	-	-	-		-	-	-	-
-	1	0	-		-	-	-	-	-	-	-	-		-	-	-	-
-	1	1	-		-	-	-	-	-	-	-	-		-	-	-	-
-	-	-	0		-	-	-	-	-	-	-	-		-	-	-	-
-	-	-	1		-	-	-	-	-	-	-	-		-	-	-	-
-	-	-	-		1	-	-	-	-	-	-	-		-	-	-	-
-	-	-	-		-	0	0	-	-	-	-	-		-	-	-	-
_	-	-	_		-	0	1	-	-	_	_	-		-	-	_	_
-	_	-	-		-	1	0	-	-	-	-	_		_	-	-	_
_	-	-	_		_	1	1	_	-	-	-	-		-	_	-	_
-	_	-	_		_	_	-	0	_	-	-	-		_	-	-	-
								Ť									
-	-	-	-		_	_	-	_	1	_	-	_		_	_	-	_
_	_	-	-		_	_	_	_	_	1	-	_		_	-	_	-
_	-	_	_		_	_	-	-	_	-	1	-		_	_	_	_
_	_	_	_		-	-	_	-	_	_	_	1		_	_	_	_
												•					
_	_	-	-		_	-	_	_	_	_	-	-		1	_	-	_
_	_	-	_		-	_	_	_	_	_	_	_		<u>.</u>	1	_	-
-	_	_	-		_	_	_	_	_	_	_	_		_	<u>.</u>	1	-
_	_	_	_		_	-	_	_		_	_	_		_	_	-	1

Position and State in Register R

Device Status Byte

incorrect length
 transmission data error
 transmission memory error
 memory address error
 IOP memory error
 IOP control error
 IOP halt
 Selector IOP busy

unassigned

Meaning (AIO)

<u>0 1 2 3</u>	4567	<u>8 9 10 11</u>	12 13 14 15	
1				data overrun
- 1)	
1 -				
1				unique to the device and the
			}	device controller
	- 1			
	1 -			
	1		J	
				incorrect length
		- 1		transmission data error
		1 -		zero byte count interrupt
		1		channel end interrupt
			1	unusual end interrupt
			· - 0 ·	
			0 _	ungestandel
				unassignea
			~ 0 j	

Operational Status Byte

command doubleword). In either case, the device will not accept a new SIO instruction until the interrupt-pending condition is cleared (i.e., the condition code settings for the SIO instruction will indicate "SIO not accepted" if the interrupt-pending condition is present in the addressed device).

- 1,2 Device condition: if bits 1 and 2 are 00 (device "ready"), all device conditions required for proper operation are satisfied. If bits 1 and 2 are 01 (device "not operational"), the addressed device has developed some condition that will not allow it to proceed; in either case, operator intervention is usually required. If bits 1 and 2 are 10 (device "unavailable"), the device has more than one channel of communication available and it is engaged in an operation controlled by an IOP other than the one specified by the I/O address. If bits 1 and 2 are 11 (device "busy"), the device has accepted a previous SIO instruction and is already engaged in an I/O operation.
- 3 Device mode: if this bit is 1, the device is in the "automatic" mode; if this bit is 0, the device is in the "manual" mode and requires operator intervention. This bit can be used in conjunction with bits 1 and 2 to determine the type of action required. For example, assume that a card reader is able to operate, but no cards are in the hopper. The card reader would be in state 000 (device "ready", but manual intervention required), where the state is indicated by bits 1, 2, and 3 of the I/O status response. If the operator subsequently loads the card hopper and presses the card reader START switch, the reader would advance to state 001 (device "ready" and in automatic operation). If the card reader is in state 000 when an SIO instruction is executed, the SIO would be accepted by the reader and the reader would advance to state 110 (device "busy", but operator intervention required). Should the operator then place cards in the hopper and press the START switch, the card reader state would advance to 111 (device "busy" and in automatic operation), and the input operation would proceed. Should the card reader subsequently become empty (or the operator press the STOP switch) and command chaining is being used to read a number of cards, the card reader would return to state 110. If the card reader is in state 001 when an SIO instruction is executed, the reader advances to state 111, and the input operation continues as normal. Should the hopper subsequently become empty (or should the operator press the card reader STOP switch) and command chaining is being used to read a number of cards, the reader would go to state 110 until the operator corrected the situation.
 - Device unusual end occurred during last operation: if this bit is 1, the reason for the indication may

4

Bit Position Function

be a normal end (such as an end of file) or a fault condition. For a fault condition, the device has halted at other than its normal stopping point. In either case, the device will not automatically request further action from its device controller. The specific details of this indication are a function of the particular device.

- 5,6 Device controller condition: if bits 5 and 6 are 00 (device controller "ready"), all device controller conditions required for its proper operation are satisfied. If bits 5 and 6 are 01 (device controller "not operational"), some condition has developed that does not allow it to operate properly. In either case, operator intervention is usually required. If bits 5 and 6 are 10 (device controller "unavailable"), the device controller is currently engaged in an operation controlled by an IOP other than the one addressed by the I/O instruction. If bits 5 and 6 are 11 (device controller "busy"), the device controller has accepted a previous SIO instruction and is currently engaged in performing an operation for the addressed IOP.
- 7 Unassigned

8

- Incorrect length: if this bit is 1, an incorrect length condition has been signaled to the IOP during the previous operation. Incorrect length is caused by a channel end (or end of record) condition occurring before the device controller has received a "count done" signal from the IOP, or is caused by the device controller receiving a count done signal before channel end (or end of record); e.g., count done before 80 columns have been read from a card. Normally, a count done signal is sent to the device controller by the IOP to indicate that the byte count associated with the current operation has been reduced to zero. The IOP is capable of suppressing an error condition on incorrect length, since there are many situations in which incorrect length is a legitimate situation and not a true error condition. Incorrect length is suppressed as an error by coding the SIL flag (a 1 in bit 38) of the IOP command doubleword (see page 72). At the end of the execution of an I/Ocommand list, this status bit is 1 if an incorrect length condition occurred anywhere in the command list, regardless of the coding of the SIL flag.
- 9 <u>Transmission data error</u>: this bit is set to 1 if the IOP or device controller has detected a parity error or data overrun in the transmitted information.
- 10 <u>Transmission memory error</u>: this bit is set to 1 if a memory parity error has occurred during a data input/output operation. A parity error is detected on any output operation and on partial-word input operations. A device halt does not occur unless
Bit

Position Function

The HTE flag in the IOP command doubleword is set to 1 (see page 72).

- 11 Memory address error: a nonexistent memory address has been encountered on either data or commands. Core memory locations 0 through 15 are not considered nonexistent because the IOP can work with these addresses as normal memory addresses.
- 12 IOP memory error: if a memory parity error has occurred while the IOP was fetching a command, this bit is set to 1.
- 13 <u>IOP control error</u>: this bit is set to 1 if the IOP has encountered two successive TRANSFER IN CHANNEL commands.
- 14 <u>IOP halt</u>: this bit is set to 1 if the IOP has issued a halt order to the addressed I/O device because of an error condition.
- 15 <u>IOP busy</u>: this bit is set to 1 if a selector IOP is addressed by the I/O instruction and the selector IOP is currently in use by some I/O device operating in conjunction with the selector IOP.
- 16-31 <u>Byte count</u>: a count of the number of bytes yet to be transmitted in the operation called for by the current command doubleword.

If the R field value of the SIO instruction is even and not 0, the condition code and register R+1 contain the information described above and register R contains the following information:

0000	0000	0000	0000	Current command address
	1 1 1 31	0 0 10 11	10 10 14 16	

Bit

Position Function

16-31 Current command doubleword address: the 16 highorder bits of the core memory address from which the command doubleword for the I/O operation currently being processed by the addressed device controller was fetched.

Ordinarily, on an SIO instruction, the programmer has no interest in where the IOP is in executing its command list, and thus will usually code the R field of the SIO instruction to specify an odd-numbered general register, loading only the byte count and status information into the CPU. The condition code is set regardless of the coding of the R field.

HIO HALT INPUT/OUTPUT (Word addressing, privileged)

							C	<u>,</u>		Γ	~	,					Re	efe	ere	en	ce		ıd	dr	es	s			
_		4F					г	`				•									I,	/0)	ad	ldı	res	55		
0	1 2	314	5	6	7	18	9	10	11	112	13	14	15	1 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3

HALT INPUT/OUTPUT causes the addressed device to immediately halt its current operation (perhaps improperly, in the case of magnetic tape units, when the device is forced to stop at other than an interrecord gap). If the device is in an interrupt-pending condition, the condition is cleared. If the R field of the HIO instruction is 0 or if no I/O address recognition exists, no general registers are affected, but the condition code is set. If the R field is an odd value, the condition code is set and the following information is loaded into register R.

Status	Byte count
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The status information returned for HIO has the same interpretation as that returned for the instruction SIO (see page 64), and shows the I/O status at the time of the halt. The count information shows the number of bytes remaining to be transmitted at the time of the halt. If the R field of HIO is an even value and not 0, the condition code is set, register R+1 is loaded as shown above, and register R contains the following information:

C	0	0	0	(00	0	0		0	00	00		00	0	0		C	່ບາ	٠re	en	to	:0	mi	mc	'n	d	ac	ldı	re	55	
0	1	2	3	14	5	6	7	T	8	9 10	1 (T I:	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The current command doubleword address has the same interpretation as that for the instruction SIO.

Affected: (R), (Ru1), CC1, CC2

Condition code settings:

1	2	_3_	4	Result of HIO
0	0	-	-	I/O address recognized and device con- troller is not "busy"
0	1	-	-	I/O address recognized but device con- troller was "busy" at the time of the halt
۱	1	-	-	I/O address not recognized

TIO TEST INPUT/OUTPUT

(Word addressing, privileged)

*				In					D				Y		Γ			1	Re	fe	re	en	ce	e c	add	dre	es	s			
			-						N				^									l/	<u>/</u> C) (ad	dr	es	s			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

TEST INPUT/OUTPUT is used to make an inquiry on the status of data transmission. The operation of the selected IOP, device controller, and device are not affected, and no operations are initiated or terminated by this instruction. The responses to TIO provide the program with the information necessary to determine the current status of the device, device controller, and IOP, the number of bytes remaining to be transmitted in the operation, and the present point at which the IOP is operating in the command list. If the R field of the TIO instruction is 0 or if the device controller is attached to a "busy" selector IOP, no general registers are affected, but the condition code is set. If the R field of TIO is an odd value, the condition code is set and the I/O status and byte count are loaded into register R as follows:

						S	ta	tu	s					,							Ву	/te	e o	00	ur	nt					
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

The status information has the same interpretation as the status information returned for the instruction SIO (see page 64), and shows the I/O status at the time of sampling. The count information shows the number of bytes remaining

to be transmitted at the time of sampling. If the R field of the TIO instruction is an even value and not 0, the condition code is set, register R+1 is loaded as shown above, and register R is loaded as follows:

0000 0000 0000 0000 Current command address

The current command doubleword address has the same interpretation as for the instruction SIO.

Affected: (R), (Ru1), CC1, CC2

Condition code settings:

1	2	3	4	Result of TIO
				· ·····

- 0 0 - I/O address recognized and acceptable SIO is currently possible
- 0 1 – I/O address recognized but acceptable SIO is not currently possible
- 1 0 - device controller is attached to "busy" selector IOP
- 1 1 - I/O address not recognized

TDV TEST DEVICE (Word addressing, privileged)

*				15				Γ		<u> </u>	_		v		Γ	-		R	lefe	re	nc	e	a	dd	re	SS			7
				4L					1	`			^									Ī,	70) (b	dr	ess		
0	1	2	3	14	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19 20	21	22	23	124	25	26	27	28 2	X9 3	31

TEST DEVICE is used to provide information about a device other than that obtainable by means of the TIO instruction. The operation of the selected IOP, device controller, and device are not affected, and no operations are initiated or terminated. The responses to TDV provide the program with information giving details on the condition of the selected device, the number of bytes remaining to be transmitted in the current operation, and the present point at which the IOP is operating in the command list. If the R field of the TDV instruction is 0 or if no I/O address recognition exists, or if the device controller is attached to a "busy" selector IOP, the condition code is set, but no general registers are affected. If the R field of TDV is an odd value, the condition code is set and the device status and byte count are loaded into register R as follows:

						S	ta	itu	JS												Ву	/te	e c	:0	ur	nt					
0	1	2	3	4	5	6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Bit

Position Function

0 <u>Data overrun</u>: This bit is set to 1 if a data overrun has occurred in the current I/O operation. A data overrun is a situation wherein the device controller is ready to transmit data to the IOP but the IOP has not received the previous data, or the device controller requires data but cannot obtain it from the IOP. In either case, the condition is caused by an equipment malfunction or by the total I/O data rate exceeding system limits.

Bit

Position Function

- 1-7 Unique to the device.
- 8–15 Same as for bits 8–15 of the status information for the instruction SIO

The count information shows the number of bytes remaining to be transmitted in the current operation at the time of the TDV instruction. If the value of the R field of TDV is an even value and not 0, the condition code is set, register R+1 is loaded as shown above, and register R is loaded as follows:

0000 0000 0000 0000 Current command address

The current command doubleword address has the same interpretation as for the instruction SIO.

Affected: (R), (Rul), CCl

Condition code settings:

1	2	3	4	Result of TDV
0	0	-	-	I/O address recognized
0	1	-	-	I/O address recognized and device- dependent condition is present
1	0	-	-	device controller is attached to "busy" selector IOP
1	1	-	-	I/O address not recognized

AIO ACKNOWLEDGE INPUT/OUTPUT INTERRUPT (Word addressing, privileged)

Γ.							Γ					~		Γ			F	Ref	e	re	nc	e	a	dd	Ire	ss				
Ľ			6E					ĸ				X			•					()0	0								
0	1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

AIO is used to acknowledge an input/output interrupt and to identify what I/O unit is causing the interrupt and why. Bits 21, 22, and 23 of the effective program address of the AIO instruction (the IOP portion of the I/O selection code field) specify the type of interrupt being acknowledged. These bits should be coded 000 to specify the standard I/O system interrupt acknowledgment (other codings of these bits are reserved for use with special I/O systems). The remainder of the I/O selection code field (bit positions 24-31) has no other use in the standard I/O interrupt acknowledgment because the identification of the interrupt source is one of the responses of the standard I/O system to the AIO instruction.

Standard I/O system interrupts can be initiated for the following conditions:

Condition	Interrupt prerequisite	Status bit set
Zero byte count	IZC = 1	10
Channel end	ICE = 1	11
	4	

^tIZC, ICE, IUE, HTE, and SIL refer to flag bits in the IOP command doublewords (see Chapter 4).

Condition	Interrupt prerequisite	Status bit set
Transmission memory error	IUE = 1, HTE = 1	12
Incorrect length	IUE = 1, $HTE = 1$ and $SIL = 0$	8, 12
Memory address error (IOP memory error or IOP control error)	IUE = 1	12
Transmission data error	IUE = 1, HTE = 1	9,12

When a device interrupt condition occurs, the IOP forwards the request to the CPU interrupt system I/O interrupt level. If this interrupt level is armed, enabled, and not inhibited (see page 16, "Control of the Interrupt System"), the CPU eventually acknowledges the interrupt request and executes the XPSD instruction in core memory location X'5C', which leads to the execution of an AIO instruction.

For the purpose of acknowledging standard I/O interrupts, the IOPs, device controllers, and devices are connected in a preestablished priority sequence that is customerassigned and is independent of the physical locations of the portions of the I/O system in a particular installation.

If the R field of the AIO instruction is 0 or if no device interrupt request is present, the condition code is set but the general register is not affected. If the R field of AIO is not 0, the condition code is set and register R is loaded with the following information:

Status	0000 0 I/O address
	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bit

Position Function

- 0 <u>Data overrun:</u> This bit is set to 1 if a data overrun has occurred in the current I/O operation.
- 1-7 Unique to the device and the device controller.

Bit	
Position	Function

9

- 8 Incorrect length: if this bit is 1, an incorrect length condition has been signaled to the IOP by the device controller during the previous operation. Incorrect length is suppressed as an error by coding the SIL flag (a 1 in bit 38) of the command doubleword. At the end of the execution of an I/O command list, this status bit is 1 if an incorrect length condition occurred anywhere in the command list, regardless of the coding of the SIL flag.
 - <u>Transmission data error</u>: this bit is set to 1 if the IOP or device controller has detected a parity error or data overrun in the transmitted information.
- 10 <u>Zero byte count</u>: if this bit is 1, the byte count for the operation being performed by the interrupting device has been reduced to 0, and the interrupt at zero byte count (IZC) flag in the command doubleword for the operation was coded with a 1.
- 11 <u>Channel end:</u> if this bit is 1, the device controller has signaled channel end to the IOP, and the interrupt at channel end (ICE) flag in the command doubleword for the operation was coded with a 1.
- 12 <u>IOP unusual end interrupt</u>: if this bit is 1, the IOP has originated the interrupt as a result of a fault or unusual condition reported by the device.
- 13-20 Unassigned
- 21-31 <u>I/O address</u>: this field identifies the highestpriority device requesting an interrupt. Bit positions 21-23 identify the IOP. If bit 24 is 0, bits 25-31 constitute a common device controller and device code; if bit 24 is 1, bits 25-27 constitute a device controller code and bits 28-31 identify a device attached to that device controller.

Affected: (R), CC1, CC2

Condition code settings:

1	2	3	4	Result of AIO
0	0	-	_	normal interrupt recognition
0	1	-	-	unusual interrupt recognition
1	1	_	-	no interrupt recognition

^tIZC, ICE, IUT, HTE, and SIL refer to flag bits in the IOP command doublewords (see Chapter 4)

4. INPUT/OUTPUT OPERATIONS

In a SIGMA 5 system, input/output operations are primarily under control of one or more input/output processors (IOPs). This allows the CPU to concentrate on program execution, free from the time-consuming details of I/O operations. Any I/O events that require CPU intervention are brought to its attention by means of the interrupt system.

In the following discussion, the terminology conventions used are that the CPU executes instructions, the IOP executes commands, and the device controllers and/or I/O devices execute orders. To illustrate, the CPU will execute the START INPUT/OUTPUT (SIO) instruction to initiate an I/O operation. During the course of an I/O operation, the IOP might issue a command called Control, to transmit a byte to a device controller or I/O device that interprets the byte as an order, such as Rewind.

SIGMA 5 IOPs operate independently after they have been started by the central processor. They automatically pick up a chain of one or more commands from core memory and then execute these commands until the chain is completed.

The SIGMA 5 computer consists of an integrated CPU-IOP combination that utilizes a single memory bus. When an input/output service call is presented to the IOP, instruction execution is suspended only long enough to allow the IOP to complete the servicing. Since the IOP is capable of operating at the maximum rated speed of memory unit response, the instruction execution rate may approach zero for very high speed I/O operations. Additional (external) I/O processors have their own memory buses, thus providing for input/output of data simultaneous with computation. Also, the external I/O processors may take advantage of memory overlap, providing higher overall I/O data rates.

The multiplexor IOP can simultaneously operate up to 32 device controllers with a combined transfer rate of 250,000 bytes per second. Each device controller is assigned its own channel and chain of I/O commands. The selector IOP can handle any one of up to 32 high-speed device controllers at rates up to the full speed of the core memory (one 32-bit word/cycle).

The flexible SIGMA 5 I/O structure permits both command chaining (making possible multiple-record operations) and data chaining (making possible scatter-read and gatherwrite operations) without intervening CPU control. Command chaining refers to the execution of a sequence of I/O commands, under control of an IOP, on more than one physical record. Thus, a new command must be issued for each physical record even if the operation to be performed for a record is the same as that performed for the previous record. Data chaining refers to the execution of a sequence of I/O commands, under control of an IOP, that gather (or scatter information within one physical record from (or to) more than one region of memory. Thus, a new command must be issued for each portion of a physical record when the data associated with that physical record appears (or is to appear) in noncontiguous locations in memory. For

example, if information in specific columns of two cards in a file are to be stored in specific regions of memory, the I/O command list might appear as follows:

- 1. Read card, store columns 1-10, data chain
- 2. Store columns 11-60, data chain
- Store columns 61–80, command chain (end of data chain)
- 4. Read card, store columns 1-40, data chain
- 5. Store columns 41–80 (end of command chain, end of data chain)

The SIGMA 5 CPU itself plays a minor role in the execution of an I/O operation. The CPU-executed program is responsible for creating and storing the command list (prepared prior to the initiation of any I/O operation) and for supplying the IOP with a pointer to the first command in the I/O command list. Most of the communication between the CPU and the I/O system is carried out through memory.

The following is an example of the sequence of events that occurs during an I/O operation:

- 1. A CPU-executed program writes a sequence of I/O commands in core memory.
- 2. The CPU executes the instruction START INPUT/OUTPUT and furnishes the IOP with an 11-bit I/O address (designating the device to be started) and a 16-bit first command address (designating the actual core memory doubleword location where the first command for this device is located). At this point, either the device is started (if in the "ready" condition with no device interrupt pending) or an instruction reject occurs. The CPU is informed by condition code settings as to which of the two alternatives has occurred. If the START I/O instruction is accepted, the command counter portion of the IOP register associated with the designated device controller is loaded with the first command address. Assuming that the SIO instruction is accepted, from this time until the full sequence of I/O commands has been executed, the main program of the CPU need play no role in the I/O operation. At any time, however, it may obtain status information on the progress of the I/Ooperation without interfering with the operation.
- 3. The device is now in the "busy" condition. When the device determines that it has the highest priority for access to the IOP, it requests service from the IOP with a service call. The IOP obtains the address of the first command of the I/O command sequence (from the command counter associated with this device). The IOP then fetches an I/O command from a doubleword in core memory, loads the double-word into another register associated with the device, and transmits the first order (extracted from the doubleword) to the device.

- 4. Each command counter contains the memory address of the current I/O command in the sequence for its device. When the device requires further servicing, it makes a request to the IOP, which then repeats a process similar to that of step 3.
- 5. If a data transmission order has been sent to a device, control of the transmission resides in the device. As each character is obtained by the I/O device, the IOP is signaled that data is available. The IOP uses the information stored in its own registers to control the information interchange between the I/O device and the memory, on either a word-by-word or character-by-character basis, depending on the nature of the device.
- 6. When all information exchanges called for by a single I/O command doubleword have been completed, the IOP uses the command counter to obtain the next command doubleword for execution. This process continues until all such command doublewords associated with the I/O sequence have been executed.

IOP COMMAND DOUBLEWORDS

All IOP command doublewords (except Transfer in Channel and Stop) are assumed to be in the following format:

Order															M	lei	nc	ory	/	by	/te	e (bc	dr	es	s								
0	1	2	2	3	4	5	é	ý	7	8	9	10) 1	11	12	13	14	15	16	5 17	1	B 19	7	0 2	1 2	22 3	2312	4 2	52	62	7 2	3 29	30	31
	Flags												В	yt	e	+ cc	bu	nt																
32	33	34	13	51	36	37	38	3	91	40	41	42	43	314	4 4	15	46	47 I	48	49	50	51	152	53	54	\$ 5!	5 56	57	58	59	60	61	62	63

ORDER

Bit positions 0 through 7 of the command doubleword contain the IOP order for the device controller or device. The IOP orders are shown below. Bits represented by the letter "M" specify orders or special conditions to the device and are unique for each type of device.

Bit	ро	siti	ons	;				
0	1	2	3	4	5	6		<u>Order</u>
м	м	м	м	м	м	0	1	Write
Μ	Μ	Μ	М	Μ	Μ	1	0	Read
М	Μ	М	Μ	Μ	Μ	1	1	Control
М	Μ	Μ	М	0	1	0	0	Sense
М	Μ	Μ	М	1	1	0	0	Read Backward

<u>Write</u>. The Write order causes the device controller to initiate an output operation. Bytes are read in an ascending sequence from the memory location specified by the memory byte address field of the command doubleword. The output operation continues until the device signals "channel end", or until the byte count is reduced to 0 and no further data chaining is specified. Channel end occurs when the device has received all information associated with the output operation, has completed all checks, and no longer requires the use of IOP facilities for the operation. Data chaining is described on the following page. <u>Read.</u> The Read order causes the device controller to initiate an input operation. Bytes are stored in core memory in an ascending sequence, beginning at the location specified by the memory byte address field of the command doubleword. The input operation continues until the device signals channel end, or until the byte count is reduced to 0 and no further data chaining is specified. Channel end occurs when the device has transmitted all information associated with the input operation and no longer requires the use of IOP facilities for the operation.

<u>Control</u>. The Control order is used to initiate special operations by the device. For magnetic tape, it is used to issue orders such as rewind, backspace record, backspace file, etc. Most orders can be specified by the M bits of the Control order; however, if additional information is required for a particular operation (e.g., the starting address of a discseek), the memory byte address field of the command doubleword specifies the starting address of the bytes that are to be transmitted to the device controller for the additional information. When all bytes necessary for the operation have been transmitted, the device controller signals channel end.

<u>Sense</u>. The Sense order causes the device to transmit one or more bytes of information, describing its current state. The bytes are stored in core memory in an ascending sequence, beginning with the address specified by the memory byte address field of the command doubleword. The number of bytes transmitted is a function of the device and the condition it describes. The Sense order can be used to obtain the current sector address from a disc or drum unit.

<u>Read Backward</u>. The Read Backward order (for devices that can execute it) causes the device to be started in reverse, and bytes to be transmitted to the IOP for storage into core memory in a descending sequence, beginning at the location specified by the memory byte address field of the command doubleword. In all other respects, Read Backward is identical to Read, including reducing the byte count with each byte transmitted.

The Transfer in Channel command doubleword is assumed to be in the following format:

<u>Transfer in Channel.</u> The Transfer in Channel order is executed within the IOP, and it has no direct effect on any of the I/O system elements external to the addressed IOP. The primary purpose of Transfer in Channel is to permit branching within the command list so that the IOP can, for example, repeatedly transmit the same set of information a number of times. When the IOP executes Transfer in Channel, it loads the command counter for the device controller it is currently servicing with the command doubleword address field of the Transfer in Channel command, loads the new command doubleword specified by this address into the IOP registers associated with the device controller, and then executes the new command. (Bit positions 0-3, and 32-63 of the command doubleword for Transfer in Channel are ignored.) Transfer in Channel thus allows a command list to be broken into noncontiguous groups of commands. When used in conjunction with command chaining, Transfer in Channel facilitates the control of devices such as unbuffered card punches or unbuffered line printers. The current flags (see "Flags" below) are not altered during this command; thus, the type of chaining called for in the previous command doubleword is retained until changed by a command doubleword following Transfer in Channel.

For example, assume that it is desired to present the same card image twelve times to an unbuffered card punch. The punch counts the number of times that a record is presented to it and, when twelve rows have been punched, it causes the IOP to skip the command it would be executing next. Thus, a command list for punching two cards might look like the following example.

Location	Command
: A	: Punch row for card 1, command chain Transfer in Channel to A
В	Punch row for card 2, command chain Transfer in Channel to B Stop
:	•

If the IOP encounters two successive Transfer in Channel commands, this is considered an IOP control error, resulting in the IOP setting the IOP control error status bit and issuing an "IOP halt" signal to the device controller. The IOP then halts further servicing of this command list.

The Stop command doubleword is assumed to be in the following format:

Stop. The Stop order causes certain devices to stop, generate a channel end condition, and also request an interrupt at location X'5C' if bit 0 in the Stop order is a 1. An AIO instruction, executed after the interrupt is acknowledged, results in a 1 in bit position 7 of Register R to indicate the reason for the interrupt. (Bit positions 32-39 of the command doubleword for stop must be zero; bit positions 8-21 and 40-63 are ignored.) The Stop order is primarily used to terminate a command chain for an unbuffered device, as illustrated in the example given for Transfer in Channel.

MEMORY BYTE ADDRESS

For all IOP commands (except Transfer in Channel and Stop), bit positions 13–31 of the command doubleword provide for a 19-bit core memory byte address, designating the memory location for the next byte of data. For the Write, Read, and Control orders, this field (as stored in an IOP register) is incremented by 1 as each byte is transmitted in the I/O operation; for the Read Backward command, the field is decremented by 1 as each byte is transmitted.

FLAGS

For all IOP commands (except Transfer in Channel and Stop) bit positions 32–39 of the command doubleword provide the IOP with eight flags that specify how to handle chaining, error, and interrupt situations. The functions of these flags are:

Bit

Position Function

- Data chain. If this flag is 1, data chaining is 32 (DC) called for when the current byte count is reduced to 0. The next command doubleword is fetched and loaded into the IOP register associated with the device controller, but the new order code is not passed out to the device controller; thus, the operation called for by the previous order is continued. (Except for Transfer in Channel, the new command doubleword is used only to supply a new memory address, a new count, and new flags.) If the data chain flag is 0, no further data chaining is called for. Channel end is initiated either by the device running out of information, or by the byte count being reduced to 0. At channel end, the device may accept a new SIO instruction, providing that a device interrupt is not pending as a result of coding the IZC (bit 33), ICE (bit 35), or IUE (bit 37) flags, and no fault condition exists.
- 33 (IZC) Interrupt at zero byte count. If this flag is 1, the IOP requests an interrupt at location X'5C' when the byte count of this command doubleword (as stored in the IOP register) is reduced to 0. An AIO instruction executed after the interrupt is acknowledged results in a 1 in bit position 10 of register R, to indicate the reason for the interrupt.
- 34 (CC) <u>Command chain</u>. If this flag is 1, command chaining is called for when channel end occurs. The next command doubleword is fetched and loaded into the IOP register associated with the device controller, and the new order code is passed out to the device controller. If the CC flag is 0, no further command chaining is called for. If both data chaining and command chaining are called for in the same command doubleword, data chaining occurs if the byte count is reduced to 0 before channel end, and command chaining occurs if channel end occurs before the byte count is reduced to 0.
- 35 (ICE) Interrupt at channel end. If this flag is 1, the IOP requests an interrupt at location X'5C' when channel end occurs for the operation being controlled by this command doubleword. An AIO instruction executed after the interrupt is acknowledged results

Bit Position Function

> in a 1 in bit position 11 of the status information, to indicate the reason for the interrupt. If the ICE flag is 0, no interrupt is requested.

- 36 (HTE) <u>Halt on transmission error.</u> If this flag is 1, any error condition (transmission data error, transmission memory error, incorrect length error) detected in the device controller or IOP results in halting the I/O operation being controlled by this command doubleword. If the HTE flag is 0, an error condition does not cause the I/O operation to halt, although the error conditions are recorded in the IOP register and returned as part of the status information for the instructions SIO, HIO, and TIO.
- 37 (IUE) Interrupt on unusual end. If this flag is 1, the device controller requests an interrupt at location X'5C' when a fault condition or unusual termination is encountered. A fault is a condition requiring the device to halt, irrespective of the coding of the HTE flag. Examples of faults are torn magnetic tape and jammed cards. When unusual termination is signaled to the IOP, further servicing of the commands for that device is suspended. An AIO instruction executed after the interrupt is acknowledged results in a 1 in bit position 12 of register R, to indicate the reason for the interrupt. If the IUE flag is 0, no interrupt is requested.
- 38 (SIL) Suppress incorrect length. If this flag is 1, an incorrect length indication by the device controller is not to be classified as an error by the IOP, although the IOP retains the incorrect length indication and provides an indicator (bit 8 of the status response for SIO, HIO, and TIO) to the program. If the SIL flag is 0, an incorrect length is considered an error and the IOP performs as specified by the HTE and IUE flags. Incorrect length is caused by a channel end condition occurring before the device controller has received a count-done signal from the IOP, or is caused by the device controller necessary of the status received a count-done signal before end

of record; e.g., count-done before 80 columns have been read from a card. Normally, a countdone signal is sent to the device controller by the IOP to indicate that all data transfer associated with the current operation has been completed. The IOP is capable of suppressing an error condition on incorrect length, since there are many situations in which incorrect length is a legitimate condition and not a true error.

39 (S) Skip. If this flag is 1, the input operation (Read or Read Backward) controlled by this command doubleword continues normally, except that no information is stored in memory. When used in conjunction with data chaining, the skip operation provides the capability for selective reading of portions of a record.

> If the S flag is 1 for an output (Write) operation, the IOP does not access memory, but transmits zeros as data instead (i.e., the IOP transmits the number of X'00' bytes specified in the byte count of the command doubleword). This allows a program to punch a blank card (by using the S bit and a Punch Binary order with a byte count of 120) without requiring memory access for data. If the S flag is 0, the I/O operation proceeds normally.

BYTE COUNT

For all commands except Transfer in Channel and Stop, bit positions 48-63 of the command doubleword provide for a 16-bit count of the number of bytes to be transmitted in the I/O operation; thus, 1 to 65,536 bytes (16,384 words) can be specified for transfer before command chaining or data chaining is required. This field (as stored in an IOP register) is decremented by 1 after each byte transmitted in the I/O operation; thus, it always contains a count of the number of bytes to be transmitted and this count is returned as part of the response information for the instructions, SIO, HIO, TIO, and TDV. An initial byte count of 0 is interpreted as 65,536 bytes.

5. OPERATOR CONTROLS

PROCESSOR CONTROL PANEL

The processor control panel (PCP) mounted in one of the CPU cabinets has two distinct functional sections (see Figure 7). The upper section (labeled MAINTENANCE SECTION) is reserved for controls and indicators related to computer maintenance and diagnostic operations. The lower section contains the controls and indicators for the computer operator and for program debugging.

POWER

The POWER switch controls all AC power to the central processor and to all units under its direct control. The POWER switch is unlighted when the AC power is off, and is lighted when AC power is on. The POWER switch is always operative (i.e., not affected by the position of the CONTROL MODE switch) to allow for situations in which power must be removed from the system.

CPU RESET/CLEAR

The CPU RESET/CLEAR switch is used to initialize the central processor. When this switch is pressed, the following operations are performed:

- 1. All interrupt levels are reset to the disarmed and disabled state.
- 2. The ALARM, WRITE KEY, INTRPT INHIBIT, POINTER, CONDITION CODE, FLOAT MODE, MODE, and TRAP indicators are all reset to 0's (turned off).
- 3. The INSTRUCTION ADDRESS indicators are set to X'25'.
- 4. The DISPLAY indicators are set to X'02000000', which is a LOAD CONDITIONS AND FLOATING CONTROL IMMEDIATE (LCFI) instruction with an R field of 0 to produce a "no operation" instruction.

The CPU RESET/CLEAR switch does not affect any operations that may be in process in the standard input/output system.

The CPU RESET/CLEAR switch is also used in conjunction with the SYS RESET/CLEAR switch to clear core memory (i.e., reset memory to all 0's). The two switches are interlocked so that both must be pressed simultaneously for the memory clear operation to occur. The memory clear operation does not affect any general register – core memory locations 0 through 15 are cleared instead. Also the clear operation does not affect the memory control storage (write locks). Note that pressing the SYS RESET/CLEAR switch affects the I/O system and the MEMORY FAULT indicators.

I/O RESET

The I/O RESET switch is used to initialize the standard input/output system. When this switch is pressed, all peripheral devices under control of the central processor are halted, and all status and control indicators in the input/ output system are reset. The I/O RESET switch does not affect any operations that may be in process in the central processor.

LOAD

The LOAD switch initializes memory from an input operation that uses the peripheral unit selected by the UNIT ADDRESS switches. The detailed operation of the loading process is described in the section "Loading Operation".

UNIT ADDRESS

The three UNIT ADDRESS switches are used to select the peripheral unit to be used in the loading process. The left switch has eight positions, numbered 0 through 7, designating an input/output processor. The center and right switches each have 16 positions, numbered 0 through F (hexadecimal) that designate a device controller/device under the control of the selected input/output processor.

SYSTEM RESET/CLEAR

The SYS RESET/CLEAR switch is used to reset all controls and indicators in the SIGMA 5 system. Pressing this switch causes the computer to perform all operations described for the CPU RESET/CLEAR switch, perform all operations described for the I/O RESET switch, initialize the memory control logic, and reset the MEMORY FAULT indicators.

The SYS RESET/CLEAR switch is also used in conjunction with the CPU RESET/CLEAR switch to reset core memory to 0's.

NORMAL MODE

The NORMAL MODE indicator is lighted when all the following conditions are satisfied:

- 1. The WATCHDOG TIMER switch is in the NORMAL position
- 2. The INTERLEAVE SELECT switch is in the NORMAL position
- 3. The PARITY ERROR MODE switch is in the CONT (continue) position

- 4. The CLOCK MODE switch is in the CONT (continuous) position
- 5. All memory margins are "normal"

If any of the above conditions is not satisfied, the NORMAL MODE indicator is unlighted.

RUN

The RUN indicator is lighted when the COMPUTE switch is in the RUN position and no halt condition exists.

WAIT

The WAIT indicator is lighted when any of the following halt conditions exist:

- 1. The computer is executing a WAIT instruction
- 2. The program is stopped because of the ADDRESS STOP switch
- 3. The computer is halted because of the PARITY ERROR MODE switch.

INTERRUPT

The INTERRUPT switch is used by the operator to activate the control panel interrupt. If the control panel interrupt (level X'5D') is armed when the INTERRUPT switch is pressed, a single pulse is transmitted to the interrupt level, advancing it to the waiting state. The INTERRUPT switch is lighted when the control panel interrupt level is in the waiting state, and remains lighted until the interrupt level advances to the active state (at which time the INTERRUPT switch is turned off). If the control panel interrupt level is disarmed (or already in the active state) when the INTER-RUPT switch is pressed, no computer or control panel action occurs. If the control panel interrupt level advances to the waiting state and the level is disabled, the INTERRUPT switch remains lighted until the level is either enabled and allowed to advance to the active state or is returned to the armed or disarmed state. The INTERRUPT switch is always operative.

Two rows of binary indicators are used to display the current program status doubleword (PSD). For the convenience of use and display, the second portion of the PSD, labeled PSW2, is arranged above the first portion, labeled PSW1. The PSD display consists of the indicators shown in Table 9.

INSERT

The INSERT switch is used to make changes in the program status doubleword. The switch is inactive in the center position and is momentary in the upper (PSW2) and lower (PSW1) positions. When the INSERT switch is moved to the PSW1 or PSW2 position, the corresponding indicators in the program status doubleword are altered (according to current state of the 32 DATA switches below the DISPLAY indicators) as follows: if a DATA switch is in the 1 position, the corresponding program status indicator is changed to a 1 (if not already 1); otherwise, the program status indicator remains unchanged.

Indicate	Dr	Function	PSD Bit Position	PSD Designation
	WRITE KEY	Write key	34-35	wκ
PSW2	INTRPT INHIBIT CTR I/O EXT	Interrupt inhibits Counter interrupt group inhibit Input/output interrupt group inhibit External interrupts inhibit	37 38 39	CI II EI
	POINTER	Register block pointer	56-59	RP
	CONDITION CODE	Condition code	0-3	сс
	FLOAT MODE SIG ZERO NRMZ	Floating-point mode controls Significance trap mask Zero trap mask Normalize mask	5 6 7	FS FZ FN
PSW1 ·	MODE SLAVE	Master/slave mode control	8	MS
	TRAP ARITH	Fixed-point arithmetic overflow trap mask	11	АМ
	INSTRUCTION ADDRESS	Address of next instruction to be executed	15-31	IA

Table 9. Program Status Doubleword Display

INSTR ADDR

The INSTR ADDR (instruction address) switch is inactive in the center position; the upper position (HOLD) is latching and the lower position (INCREMENT) is momentary. When the switch is placed in the HOLD position, the normal process of incrementing the instruction address portion of the program status doubleword with each instruction execution is inhibited. If the COMPUTE switch is placed in the RUN position while the INSTR ADDR switch is at HOLD, the instruction in the location pointed to by the value of the IN-STRUCTION ADDRESS indicators is executed, repeatedly, with the INSTRUCTION ADDRESS indicators remaining unchanged. If the COMPUTE switch is moved to the STEP position while the INSTR ADDR switch is at HOLD, the instruction is executed once each time the COMPUTE switch is moved to STEP; the INSTRUCTION ADDRESS indicators remain unchanged unless the instruction is LPSD, XPSD, or a branch instruction with the branch condition satisfied.

The following operations are performed each time the INSTR ADDR switch is moved from the center position to the INCREMENT position:

- 1. The current value of the INSTRUCTION ADDRESS indicators is incremented by 1.
- 2. Using the new value of the INSTRUCTION ADDRESS indicators, the contents of the location pointed to by the INSTRUCTION ADDRESS is displayed in the DIS-PLAY indicators.

CLEAR

The two CLEAR toggle switches below the program status doubleword display are used to clear the program status doubleword. When the left CLEAR toggle switch is moved to the PSW1 position, the CONDITION CODE, FLOAT MODE, MODE, TRAP, and INSTRUCTION ADDRESS indicators are all reset to 0's (turned off). When the right CLEAR toggle switch is moved to the PSW2 position, the WRITE KEY, INTRPT INHIBIT, and POINTER indicators are all reset to 0's.

ADDR STOP

The ADDR STOP (address stop) switch is used (with the COMPUTE switch in the RUN position) to cause the central processor to establish a halt condition and turn on the WAIT indicator whenever the CPU accesses the memory location whose address is equal to the SELECT ADDRESS value.

When the halt condition occurs, the instruction in the location pointed to by the INSTRUCTION ADDRESS indicators appears in the DISPLAY indicators. The displayed instruction is the one that would have been executed next, had the halt condition not occurred. If the halt condition is caused by an instruction access, the value of the IN-STRUCTION ADDRESS indicators (at the time of the halt) is equal to the SELECT ADDRESS value. If the halt condition is caused by execution of an instruction with an indirect reference address equal to the SELECT ADDRESS value (i.e., by a direct address fetch), is caused by an instruction operand fetch, or is caused by an unsatisfied conditional branch instruction whose effective address is equal to the SELECT ADDRESS value, the value of the INSTRUCTION ADDRESS indicators (at the time of the halt) is 1 greater than the address of the instruction.

If an interrupt or trap condition is detected after the AD-DRESS STOP halt condition is detected and before the CPU reaches the normal ADDRESS STOP halt phase, the CPU executes the instruction in the appropriate interrupt or trap location and then enters the ADDRESS STOP halt phase. In this case; the value of the INSTRUCTION ADDRESS indicators (at the time of the halt) is equal to the address of the next instruction in <u>logical</u> sequence after the instruction in the interrupt or trap location.

The ADDRESS STOP halt condition is reset when the COM-PUTE switch is moved from RUN to IDLE; if the COMPUTE switch is then moved back to RUN (or to STEP), the instruction shown in the DISPLAY indicators is the next instruction executed.

SELECT ADDRESS

The SELECT ADDRESS switches select the address at which a program is to be halted (when used in conjunction with the ADDR STOP switch), select the address of a location to be altered (when used in conjunction with the STORE switch), and select the address of a word to be displayed (when used in conjunction with the DISPLAY switch). Each SELECT ADDRESS switch represents a 1 when it is in the upper position, and represents a 0 in the lower position.

STORE

The STORE switch is used to alter the contents of a general register or a memory location. The switch is inactive in the center position and is momentary in the INSTR ADDR and SELECT ADDR positions. When the switch is moved to the INSTR ADDR position, the current value of the DISPLAY indicators is stored in the location pointed to by the INSTRUC-TION ADDRESS indicators; when the switch is moved to the SELECT ADDR position, the current value of the DISPLAY indicators is stored in the location pointed to by the INSTRUC-TION ADDRESS indicators; when the switch is moved to the SELECT ADDR position, the current value of the DISPLAY indicators is stored in the location pointed to by the SELECT ADDRESS switches.

DISPLAY

The DISPLAY switch is used to display the contents of a general register or memory location. The switch is inactive in the center position and is momentary in the INSTR ADDR and SELECT ADDR positions. When the switch is moved to the INSTR ADDR or SELECT ADDR position, the word in the location pointed to by the indicators or switches, respectively, is loaded into the instruction register and displayed with the DISPLAY indicators.

The 32 DISPLAY indicators are used to display a computer word, when used together with the INSTR ADDR, STORE, DISPLAY, and DATA switches. The DISPLAY indicators represent the current contents of the internal CPU instruction register.

DATA

The 32 DATA switches beneath the DISPLAY indicators are used to alter the contents of the program status doubleword (when used in conjunction with the INSERT switch) and to alter the value of the DISPLAY indicators (when used in conjunction with the single DATA switch). Each of the 32 DATA switches is latching in both the upper (1) and lower (0) positions. In the upper position it represents a 1; in the lower, a 0. The single DATA switch is used to change the state of the DISPLAY indicators. The switch is inactive in the center position and is momentary in the CLEAR and ENTER positions. When the switch is moved to the CLEAR position, all the DISPLAY indicators are reset (turned off). When the switch is moved to the ENTER position, the display indicators are not affected in those positions corresponding to DATA switches that are in the 0 position, but if a DATA switch is in the 1 position, that value is inserted into the corresponding indicator.

COMPUTE

The COMPUTE switch is used to control the execution of instructions. The center position (IDLE) and the upper position (RUN) are both latching, and the lower position (STEP) is momentary. When the COMPUTE switch is in the IDLE position, all other control panel switches are operative and the ADDRESS STOP halt and the WAIT instruction halt conditions are reset (cleared). If the computer is in a halt condition as a result of a memory parity error, moving the COMPUTE switch to IDLE does not clear the memory parity halt condition. This condition can be cleared only by pressing the SYSTEM RESET/CLEAR switch.

When the COMPUTE switch is moved from IDLE to RUN, the RUN indicator is lighted and the computer begins to execute instructions (at machine speed) as follows:

- 1. The current setting of the DISPLAY indicators is taken as the next instruction to be executed, regardless of the contents of the location pointed to by the current value of the INSTRUCTION ADDRESS indicators.
- The value of the INSTRUCTION ADDRESS indicators is incremented by 1 unless the instruction in the DIS-PLAY indicators was LPSD, XPSD, or a branch instruction and the branch should occur (in which case the INSTRUCTION ADDRESS indicators are set to the value established by the LPSD, XPSD, or branch instruction).
- Instruction execution continues with the instruction in the location pointed to by the new value of the IN-STRUCTION ADDRESS indicators.

When the COMPUTE switch is in the RUN position, the only switches that are operative are the POWER switch, the INTERRUPT switch, the ADDR STOP switch, the INSTR ADDR switch (in the HOLD position), and the switches in the maintenance section.

Each time the COMPUTE switch is moved from the IDLE to the STEP position, the following operations occur:

- 1. The current setting of the DISPLAY indicators is taken as an instruction, and the single instruction is executed.
- 2. The current value of the INSTRUCTION ADDRESS indicators is incremented by 1 unless the "stepped" instruction was LPSD, XPSD, or a branch instruction and the branch should occur (in which case the INSTRUCTION ADDRESS indicators are set to the value established by the LPSD, XPSD, or branch instruction).
- 3. The instruction in the location pointed to by the new value of the INSTRUCTION ADDRESS indicators is displayed in the DISPLAY indicators.

If an instruction is being stepped (executed by moving the COMPUTE switch from IDLE to STEP), all interrupt levels are temporarily inhibited while the instruction is being executed; however, a trap condition can occur while the instruction is being executed. In this case, the XPSD instruction in the appropriate trap location is executed as if the COMPUTE switch were in the RUN position. Thus, if a trap condition occurs during a stepped instruction, the program status doubleword display automatically reflects the effects of the XPSD instruction and the DISPLAY indicators then contain the first instruction of the trap routine.

CONTROL MODE

The CONTROL MODE switch is a two-position key lock. When the switch is at LOCAL, all controls and indicators on the processor control panel are operative.

When the CONTROL MODE switch is in the LOCK position, most of the controls in the lower portion of the processor control panel are inoperative, although all indicators on the central processor control panel continue to indicate the various computer states.

The following switches on the processor control panel remain operative when the CONTROL MODE switch is in the LOCK position:

- The POWER switch remains operative to allow for situations in which power must be removed from the system
- 2. The INTERRUPT switch remains operative to allow the operator to interrupt the program being executed
- The SENSE switches remain operative to allow the operator to provide information to the program being executed
- 4. The AUDIO switch remains operative to allow the operator to control the computer speaker

The following switches on the processor control panel are interlocked to specific states when the CONTROL MODE switch is in the LOCK position:

Switch	Interlock State
COMPUTE	RUN
WATCHDOG TIMER	NORMAL
INTERLEAVE SELECT	NORMAL
PARITY ERROR MODE	CONT
CLOCK MODE	CONT

MEMORY FAULT

The MEMORY FAULT indicators each correspond to a specific memory module. Whenever a memory parity error occurs or an overtemperature condition exists in a memory module, the appropriate indicator is lighted and remains lighted until the indicators are reset. When a memory parity error occurs, an interrupt pulse is also transmitted to the memory parity interrupt level. The MEMORY FAULT indicators are reset whenever the SYS RESET/CLEAR switch is pressed or whenever the computer executes a READ DIRECT instruction coded to read the MEMORY FAULT indicators. If the reason for a MEMORY FAULT indicator being on is overtemperature, and the condition still exists when the indicators are reset, the indicator is immediately turned on again.

ALARM

The ALARM indicator is used to attract the computer operator's attention, and is turned on and off (under program control) by executing a properly coded WRITE DIRECT instruction. When the ALARM indicator is lighted and the AUDIO switch is ON, a 1000-Hz signal is sent to the computer speaker; when the AUDIO switch is not in the ON position, the speaker is disconnected. (The AUDIO switch does not affect the state of the ALARM indicator.) The ALARM indicator is reset (turned off) whenever either the CPU RESET/ CLEAR or the SYS RESET/CLEAR switch is pressed.

AUDIO

The AUDIO switch controls all signals to the computer speaker, whether from the ALARM indicator or from the program-controlled frequency flip-flop.

WATCHDOG TIMER

The WATCHDOG TIMER switch is used to override the instruction watchdog timer. When this switch is at NORMAL, the watchdog timer is operative; when the switch is in the OVERRIDE position, the watchdog timer is inactive.

INTERLEAVE SELECT

The INTERLEAVE SELECT switch is used to override the normal operation of interleaved memory modules. When this switch is in the NORMAL position, memory address interleaving occurs normally; however, when the switch is in the DIAGNOSTIC position, memory addresses are not interleaved between core memory modules.

PARITY ERROR MODE

The PARITY ERROR MODE switch controls the action of the computer when a memory parity error occurs. If the PARITY ERROR MODE switch is in the CONT (continue) position when a parity error occurs, the appropriate MEMORY FAULT indicator is turned on and an interrupt pulse is transmitted to the memory parity interrupt level. If the switch is in the HALT position when a parity error occurs, the appropriate MEMORY FAULT indicator is turned on and the computer enters a "halt" state; the memory module in which the parity error occurred is unavailable to any access until the MEMORY FAULT indicators are reset. If the COM-PUTE switch is in the RUN position during a halt, the WAIT indicator is lighted; however, the COMPUTE switch cannot be used alone to proceed from a halt caused by a parity error. In order to proceed, the SYS RESET/CLEAR switch must first be pressed.

PHASES

The PHASES indicators, used for maintenance functions, display certain internal operating phases of the computer. The PREPARATION indicators display computer phases during the preparation portion of an instruction cycle. The PCP (processor control panel) indicators display computer phases during processor control panel operations. The EX-ECUTION indicators display computer phases during the execution portion of an instruction cycle. The INT/TRAP (interrupt/trap) indicators are individually lighted when an interrupt, or trap condition occurs. When the COMPUTE switch is in the IDLE position, all of the PHASES indicators are normally off except for the center PCP indicator (phase 2 is the "idle" phase for processor control panel functions).

REGISTER SELECT

The REGISTER SELECT switch is used to display the contents of selected internal registers. When the REGISTER DISPLAY switch is in the inactive position, the DISPLAY indicators display the current contents of the internal instruction register. When the COMPUTE switch is in the IDLE position, the register selected by the REGISTER SELECT switch may be shown in the DISPLAY indicators by moving the REGIS-TER DISPLAY switch to the ON position.

SENSE

The four SENSE switches are used, under program control, to set the condition code portion of the program status doubleword. When a READ DIRECT or WRITE DIRECT instruction is executed in the internal control mode, the condition code is set according to the state of the four SENSE switches. If a SENSE switch is in the set (1) position, the corresponding bit of the condition code is set to 1; if a SENSE switch is in the reset (0) position, the corresponding bit of the condition code is reset to 0. The SENSE switches are always operative.

CLOCK MODE

The CLOCK MODE switch controls the internal computer clock. When the switch is in the CONT (continuous) position, the clock operates at normal speed. However, when the CLOCK MODE is in the inactive (center) position, the clock enters an idle state and can be made to generate one clock pulse each time the switch is moved to the SINGLE STEP position. When the clock is pulsed by the CLOCK MODE switch, the PHASE indicators reflect the computer phase during each pulse of the clock.

LOADING OPERATION

This section describes the procedure for initially loading programs into core memory from certain peripheral units attached to an input/output processor in the SIGMA 5 system. The computer operator may initiate a loading operation from the processor control panel only when the CON-TROL MODE switch is in the LOCAL position. The LOAD switch and the UNIT ADDRESS switches are used to prepare a SIGMA 5 computer for a load operation. When the LOAD switch is pressed, the following bootstrap program is stored in core memory locations X'20' through X'29':

Lo (Hex	ocation .) (Dec.)	Contents <u>(Hexadecimal)</u>	Symbolic form of Instruction
20	32	0000000	
21	33	00000000	
22	34	020000A8	
23	35	0E000058	
24	36	00000011	,
25	37	00000xxx [†]	
26	38	32000024	LW,0 36
27	39	CC000025	SIO,0 *37
28	40	CD000025	TIO,0 *37
29	41	69C00028	BCS_12 40

When the LOAD switch is pressed, the selected peripheral device is not activated, and no other indicators or controls are affected; only core memory is altered.

LOAD PROCEDURE

To assure correct operation of the loading process, the following sequence should always be used when initiating a load operation:

- 1. Place the COMPUTE switch in the IDLE position.
- 2. Press the SYS RESET/CLEAR switch.
- 3. Set the UNIT ADDRESS switches to the address of the desired peripheral unit.
- 4. Press the LOAD switch.
- 5. Place the COMPUTE switch in the RUN position.

After the COMPUTE switch is placed in the RUN position, in step 5, the following actions occur:

- The first record on the selected peripheral device is read into memory locations X'2A' through X'3F'. (The previous contents of general register 0 are destroyed as a result of executing the bootstrap program in locations X'26' through X'29'.)
- 2. After the record has been read, the next instruction is taken from location X'2A' (provided that no error condition has been detected by the device or the IOP).
- When the instruction in location X'2A' is executed, the unit device and device controller selected for loading are in a "ready" condition.
- 4. Further I/O operations from the load unit may be accomplished by coding subsequent I/O instructions to indirectly address location X'25'.

^tThe x's in location X'25' represent the value of the UNIT ADDRESS switches at the time the LOAD switch is pressed.

LOAD OPERATION DETAILS

The first executed instruction of the bootstrap program (in location X'26') loads general register 0 with the doubleword address of the first I/O command doubleword. The I/O address for the SIO instruction in location X'27' is the 11 low-order bits of location X'25' (which have been set equal to the load unit address as a result of pressing the LOAD switch). During the SIO instruction, general register 0 points to locations X'22' and X'23' as the first I/O command doubleword for the selected device. This command doubleword contains an order that instructs the selected peripheral device to read 88 (X'58') bytes into consecutive memory locations starting at word location X'2A' (byte location X'A8'). At the completion of the read operation, neither data chaining nor command chaining is called for in the I/O command doubleword. Also, the suppress incorrect length flag is set to 1 so that an incorrect length indication will not be considered an error. (This means that no transmission error halt will result if the first record is either less than or greater than 88 bytes. If the record is greater than 88 bytes, only the first 88 bytes will be stored in memory.) After the SIO instruction, the computer executes a TIO instruction with the same effective

address the SIO instruction. The TIO instruction is coded to accept only condition code data from the IOP. The BCS instruction in location X'29' will cause a branch back to the TIO instruction as long as either CC1 or CC2 (or both) is set to 1. In normal operation, CC1 is reset to 0 and CC2 remains set to 1 until the device can accept another SIO instruction, at which time the next instruction will be taken from location X'2A'.

If a transmission error or equipment malfunction is detected by either the device or the IOP, the IOP instructs the device to halt and initiate an unusual end interrupt signal (as specified by the appropriate flags in the I/O command doubleword). The unusual end interrupt will be ignored, however, since all interrupt levels have been disarmed by pressing the SYS RESET/CLEAR switch prior to loading. The device will not accept another SIO while the device interrupt is pending and, therefore, the BCS instruction in location X'29' will continue to branch to location X'28'. The correct operator action at this point is to repeat the load procedure. If there is no I/O address recognition of the load unit, the SIO instruction will not cause any I/O action and CC1 will continue to be set to 1 by the SIO and TIO instructions; thus causing the BCS instruction to branch.

APPENDIX A. REFERENCE TABLES

This appendix contains the following reference material:

Title	Page				
SDS Standard Symbols and Codes	80				
Standard 8–Bit Computer Codes (EBCDIC)					
SDS Standard 7-Bit Communication Codes (USASCII)	81				
SDS Standard Symbol-Code Correspondences	82				
Hexadecimal Arithmetic					
Addition Table Multiplication Table Table of Powers of Sixteen ₁₀ Table of Powers of Ten ₁₆	86 86 87 87				
Hexadecimal-Decimal Integer Conversion Table	88				
Hexadecimal-Decimal Fraction Conversion Table	94				
Table of Powers of Two	98				
Mathematical Constants	9 8				

SDS STANDARD SYMBOLS AND CODES

The symbol and code standards described in this publication are applicable to all SDS products, both hardware and software. They may be expanded or altered from time to time to meet changing requirements.

The symbols listed here include two types: graphic symbols and control characters. Graphic symbols are displayable and printable; control characters are not. Hybrids are SP, the symbol for a blank space, and DEL, the delete code which is not considered a control command.

Three types of code are shown: (1) the 8-bit SDS Standard Computer Code, i.e., the SDS Extended Binary-Coded-Decimal Interchange Code (EBCDIC); (2) the 7-bit United States of America Standard Code for Information Interchange (USASCII); and (3) the SDS standard card code.

SDS STANDARD CHARACTER SETS

57-character set: uppercase letters, numerals, space, and & - / . < > () + 1 \$ * : ; , % # @ ' =

4 ,63-character set: same as above plus ¢ ! _ ? " ¬ ∧

89-character set: same as 63-character set plus lowercase letters

2. USASCII

64-character set: upper case letters, numerals, space, and ! " \$ % & ' () * + , - . / ; : = < > ? @ _ [] ^ #

95-character set: same as above plus lowercase letters and $\{\}$ $\stackrel{|}{}_{\downarrow}$ ~ '

CONTROL CODES

In addition to the standard character sets listed above, the SDS symbol repertoire includes 37 control codes and the hybrid code DEL (hybrid code SP is considered part of all character sets). These are listed in the table titled SDS Standard Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all SDS standard codes will be retained for future standard code extensions:

- 1. All control codes, and only the control codes, have their two high-order bits equal to "00". DEL is not considered a control code.
- 2. No two graphic EBCDIC codes have their seven loworder bits equal.

SDS STANDARD 8-BIT COMPUTER CODES (EBCDIC)

			Most Significant Digits															
	Hex	adecimal	0	1	2	3	4	5	6	7	8	9	А	В	с	D	E	F
		Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	0	0000	NUL	DLĔ	ds		SP	&	_*		¥							0
	1	0001	SOH	DC1	ss				ŀ		a	j		\backslash^1	Α	J		1
	2	0010	STX	DC2	fs						Ь	k	s	$\{1$	В	к	S	2
	3	0011	ETX	DC3	si						с	I	t	} ¹	с	L	т	3
	4	0100	EOT	DC4							d	m	υ	[1	D	м	υ	4
ş	5	0101	нт	LF NL			Will	not b	e assig	gned (е	n	v	ינ	E	И	v	5
Digil	6	0110	АСК	SYN							f	0	w		F	0	W	6
icant	7	0111	BEL	ETB							g	р	x		G	Р	х	7
ignif	8	1000	EOM BS	CAN							h	٩	у		н	Q	Y	8
east S	9	1001	ENQ	EM							i	r	z		I	R	Z	9
	А	1010	NAK	SS			¢ 2	1	^ ¹	:'								
	В	1011	VT	ESC				\$*	, `	#		-						
	с	1100	FF	FS			< •	*	%	@`					Wil	l not b	be assig	gned
	D	1101	CR	GS			(')		1;								
	E	1110	so	RS			+	;	>*	='								
	F	1111	SI	US	PE		• ²	²	?	11								DEL
			_	3	,				4				5		,			

NOTES:

- 1 The characters ~ \ { } [] are USASCII characters that do not appear in any of the SDS EBCDIC-based character sets, though they are shown in the EBCDIC table.
- The characters ≠ | → appear in the SDS 63- and 89-character EBCDIC sets but not in either of the SDS USASCII-based sets. However, SDS software translates the characters ≠ | → into USASCII characters as follows:

EBCDIC	=	UASCII
¢		` (6-0)
		(7-12)
_		~ (7-14)

- 3 The EBCDIC control codes in columns 0 and 1 and their binary representation are exactly the same as those in the USASCII table, except for two interchanges: LF/NL with NAK, and HT with ENQ.
- 4 Characters enclosed in heavy lines are included only in the SDS standard 63and 89-character EBCDIC sets.
- 5 These characters are included only in the SDS standard 89-character EBCDIC set.

SDS STANDARD 7-BIT COMMUNICATION CODES (USASCII)¹

			Most Significant Digits									
	Deci (rows)	mal) (col¹s.)→	0	1	2	3	4	5	6	7		
	↓ Binary ¹		×000 ×001		×010	×011	×100	×101	×110	×111		
	0	0000	NUL	DLE	SP	0	@	Р	١	р		
	1	0001	SOH	DC1	! 5	1	А	Q	a	q		
	2	0010	STX	DC2	н	2	В	R	Ь	r		
	3	0011	ETX	DC3	#	3	с	S	/ c	s		
	4	0100	EOT	DC4	\$	4	D	т	d	t		
ş	5	0101	ENQ	NAK	%	5	E	U	е	υ		
Digi	6	0110	АСК	SYN	&	6	F	v	f	v		
icant	7	0111	BEL	ETB	'	7	G	w	g	w		
ignif	8	1000	BS	CAN	(8	.H	х	h	×		
east	9	1001	нт	EM)	9	I	Y	i	у		
-	10	1010	LF NL		*	:	ſ	z	j	z		
	11	1011	VT	ESC	+	;	к	[5	k	{		
	12	1100	FF	FS	,	<	L	\	I	1		
	13	1101	CR	GS	-	=	м] 5	m	}		
	14	1110	so	RS		>	Ν	4~5	n	~ 4		
	15	1111	SI	US	/	?	0	_4 	o	DEL		
			_	,	-			3				

NOTES:

- 1 Most significant bit, added for 8-bit format, is either 0 or an even-parity bit for the remaining 7 bits.
- 2 Columns 0-1 are control codes.
- 3 Columns 2-5 correspond to the SDS 64-character USASCII set. Columns 2-7 correspond to the SDS 95-character USASCII set.
- 4 On many current teletypes, the symbol

^	is	t	(5-14)	
	is	+	(5-15)	
~	is	ESC	or ALTMODE control (7-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the three symbol differences noted above, therefore, such teletypes provide all the characters in the SDS 64-character USASCII set. (The SDS 7015 Remote Keyboard Printer provides the 64-character USASCII set also, but prints ^as ^.)

5 On the SDS 7670 Remote Batch Terminal, the symbol

1	is	I	(2-1)
[is	¢	(5-11)
]	is	!	(5-13)
	is	-	(5-14)

and none of the symbols appearing in columns 6–7 are provided. Except for the four symbol differences noted above, therefore, this terminal provides all the characters in the SDS 64-character USASCII set.

SDS STANDARD SYMBOL-CODE CORRESPONDENCES

EBCDIC [†]	Symbol	Card Code	USASCII ^{††}	Meaning	Remarks
00 01 02 03 04 05 06 07 08 07 08 09 0A 09 0A 08 0C 0D 0E 0F	NUL SOH STX ETX EOT HT ACK BEL BS or EOM ENQ NAK VT FF CR SO SI	12-0-9-8-1 12-9-1 12-9-2 12-9-3 12-9-4 12-9-5 12-9-6 12-9-7 12-9-8 12-9-8-1 12-9-8-2 12-9-8-3 12-9-8-3 12-9-8-4 12-9-8-5 12-9-8-6 12-9-8-7	0-0 0-1 0-2 0-3 0-4 0-9 0-6 0-7 0-8 0-5 1-5 0-11 0-12 0-13 0-14 0-15	null start of header start of text end of text end of transmission horizontal tab acknowledge (positive) bell backspace or end of message enquiry negative acknowledge vertical tab form feed carriage return shift out shift in	00 through 23 and 2F are control codes. EOM is used only on SDS Keyboard/ Printers Models 7012, 7020, 8091, and 8092.
10 11 12 13 14 15 16 17 18 19 1A 18 19 1A 1B 1C 1D 1E 1F	DLE DC1 DC2 DC3 DC4 LF or NL SYN ETB CAN EM SS ESC FS GS RS US	12-11-9-8-1 11-9-1 11-9-2 11-9-3 11-9-4 11-9-5 11-9-6 11-9-7 11-9-8 11-9-8-1 11-9-8-3 11-9-8-4 11-9-8-5 11-9-8-6 11-9-8-7	$ \begin{array}{c} 1-0\\ 1-1\\ 1-2\\ 1-3\\ 1-4\\ 0-10\\ 1-6\\ 1-7\\ 1-8\\ 1-9\\ 1-10\\ 1-11\\ 1-12\\ 1-13\\ 1-14\\ 1-15\\ \end{array} $	data link escape device control 1 device control 2 device control 3 device control 4 line feed or new line sync end of transmission block cancel end of medium start of special sequence escape file separator group separator record separator unit separator	
20 21 22 23 24 25 26 27 28 29 2A 28 29 2A 28 20 2C 2D 2E 2F	ds ss fs si PE	11-0-9-8-1 0-9-1 0-9-2 0-9-3 0-9-4 0-9-5 0-9-6 0-9-7 0-9-8 0-9-8-1 0-9-8-1 0-9-8-2 0-9-8-3 0-9-8-3 0-9-8-4 0-9-8-5 0-9-8-6 0-9-8-7		digit selector significance start field separation immediate significance start parity error	20 through 23 are used with Sigma 7 EDIT BYTE STRING (EBS) instruction – not input/output con- trol codes. 24 through 2E are unassigned. If parity checking is requested.
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F [†] Hevedes ¹	ngl potetion	12-11-0-9-8-1 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-7 9-8-1 9-8-2 9-8-3 9-8-4 9-8-3 9-8-4 9-8-5 9-8-6 9-8-7			30 through 3F are unassigned.
tt Decimal	notation (colum	nn-row).			

SDS STANDARD SYMBOL-CODE CORRESPONDENCES (Cont.)

EBCDIC [†]	Symbol	Card Code	USASCII ^{††}	Meaning	Remarks
40 41 42 43 44 45 46 47 48 47 48 49 4A 4B 4C 4D 4E 4F	SP ¢ or ' († or ¦	blank 12-0-9-1 12-0-9-2 12-0-9-3 12-0-9-4 12-0-9-5 12-0-9-6 12-0-9-7 12-0-9-8 12-8-1 12-8-2 12-8-3 12-8-3 12-8-4 12-8-5 12-8-7	2-0 6-0 2-14 3-12 2-8 2-11 7-12	blank cent or accent grave period less than left parenthesis plus vertical bar or broken bar	41 through 49 will not be assigned. Accent grave used for left single quote. On model 7670, ' not available, and ¢ = USASCII 5-11. On Model 7670, ¹ / ₁ not available, and 1 = ASASCII 2-1
50 51 52 53 54 55 56 57 58 59	&	12 12-11-9-1 12-11-9-2 12-11-9-3 12-11-9-4 12-11-9-5 12-11-9-6 12-11-9-7 12-11-9-8 11-8-1	2-6	ampersand	51 through 59 will not be assigned.
5 A 5B 5C 5D 5E 5F	! \$ *) ; ~ or ¬	11-8-2 11-8-3 11-8-4 11-8-5 11-8-6 11-8-7	2-1 2-4 2-10 2-9 3-11 7-14	exclamation point dollars asterisk right parenthesis semicolon tilde or logical not	On Model 7670, ! is 1. On Model 7670, ~ is not available, and \neg = USASCII 5-14.
60 61 62 63 64 65 65 66 67 68 69	7	11 0-1 11-0-9-2 11-0-9-3 11-0-9-4 11-0-9-5 11-0-9-6 11-0-9-7 11-0-9-8 0-8-1	2-13 2-15	minus, dash, hyphen slash	62 through 69 will not be assigned.
6A 6B 6C 6D 6E 6F	~ ,% _ ?	12-11 0-8-3 0-8-4 0-8-5 0-8-5 0-8-6 0-8-7	5-14 2-12 2-5 5-15 3-14 3-15	circumflex comma percent underline greater than question mark	On Model 7670 ^ is ¬. On Model 7015 ^ is ^ (caret). Underline is sometimes called "break character"; may be printed along bottom of character line.
70 71 72 73 74 75 76 77 78 79 7A 78 79 7A 78 7C 7D 7E 7F	: # @ 1 =	12-11-0 12-11-0-9-1 12-11-0-9-2 12-11-0-9-3 12-11-0-9-4 12-11-0-9-5 12-11-0-9-6 12-11-0-9-7 12-11-0-9-8 8-1 8-2 8-3 8-4 8-5 8-6 8-7	3-10 2-3 4-0 2-7 3-13 2-2	colon number at apostrophe (right single quote) equals quotation mark	70 through 79 will not be assigned.
t Hexadecir ^{tt} Decimal	nal notation notation (colur	nn-row).			

SDS STANDARD SYMBOL-CODE CORRESPONDENCES (Cont.)

EBCDIC [†]	Symbol	Card Code	USASCII ^{††}	Meaning	Remarks
80 81 82 83 84 85 86 87 88 87 88 89 84 88 80 82 80 85 85	a b c d e f g h i	12-0-8-1 $12-0-1$ $12-0-2$ $12-0-3$ $12-0-4$ $12-0-5$ $12-0-6$ $12-0-7$ $12-0-8$ $12-0-9$ $12-0-8-2$ $12-0-8-3$ $12-0-8-4$ $12-0-8-5$ $12-0-8-6$ $12-0-8-7$	6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9		 80 is unassigned. 81-89, 91-99, A2-A9 comprise the lowercase alphabet. Available only in SDS standard 89- and 95- character sets. 8A through 90 are unassigned.
90 91 92 93 94 95 96 97 98 97 98 99 94 99 90 9D 9E 9F	j k I m n o p q r	12-11-8-1 12-11-1 12-11-2 12-11-3 12-11-4 12-11-5 12-11-6 12-11-7 12-11-8 12-11-8 12-11-8 12-11-8-3 12-11-8-4 12-11-8-5 12-11-8-6 12-11-8-7	6-10 6-11 6-12 6-13 6-14 6-15 7-0 7-1 7-2		9A through A1 are unassigned.
A0 A1 A2 A3 A4 A5 A6 A7 A8 A7 A8 A9 AA A8 A0 AC AD AE AF	s t v w x y z	11-0-8-1 $11-0-1$ $11-0-2$ $11-0-3$ $11-0-4$ $11-0-5$ $11-0-6$ $11-0-7$ $11-0-8$ $11-0-8-2$ $11-0-8-3$ $11-0-8-4$ $11-0-8-5$ $11-0-8-6$ $11-0-8-7$	7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10		AA through BO are unassigned.
B0 B1 B2 B3 B4 B5 B6 B7 B8 B7 B8 B9 BA B8 B9 BA BB BC BD BE BF		12-11-0-8-1 12-11-0-1 12-11-0-2 12-11-0-3 12-11-0-4 12-11-0-5 12-11-0-6 12-11-0-7 12-11-0-8 12-11-0-8 12-11-0-8-2 12-11-0-8-3 12-11-0-8-4 12-11-0-8-5 12-11-0-8-6 12-11-0-8-7	5-12 7-11 7-13 5-11 5-13	backslash left brace right brace left bracket right bracket	On Model 7670, [is ¢. On Model 7670,] is !. B6 through BF are unassigned.
Hexadecim ^{tt} Decimal n	nal notation. Notation (colur	nn-row).			

SDS STANDARD SYMBOL-CODE CORRESPONDENCES (Cont.)

EBCDIC [†]	Symbol	Card Code	USASCII ^{††}	Meaning	Remarks
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA C9 CA C9 CA CD CE CF	A B C D E F G H I	12-0 12-1 12-2 12-3 12-4 12-5 12-6 12-7 12-8 12-9 12-0-9-8-2 12-0-9-8-3 12-0-9-8-4 12-0-9-8-5 12-0-9-8-6 12-0-9-8-7	4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9		C0 is unassigned. C1–C9, D1–D9, E2–E9 comprise the uppercase alphabet. CA through CF will not be assigned.
D0 D1 D2 D3 D4 D5 D6 D7 D8 D7 D8 D9 DA D9 DA D0 D0 D0 D0 D0 D0 D0 D0 D0 D0	J K L M N O P Q R	11-0 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 12-11-9-8-2 12-11-9-8-3 12-11-9-8-4 12-11-9-8-5 12-11-9-8-6 12-11-9-8-7	4-10 4-11 4-12 4-13 4-14 4-15 5-0 5-1 5-2		D0 is unassigned. DA through DF will not be assigned.
E0 E1 E2 E3 E4 E5 E6 E7 E8 E7 E8 E9 EA EB EC ED EE EF	S T U V W X Y Z	0-8-2 11-0-9-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 11-0-9-8-2 11-0-9-8-3 11-0-9-8-3 11-0-9-8-5 11-0-9-8-6 11-0-9-8-7	11-0-9-1 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10		E0, E1 are unassigned. EA through EF will not be assigned.
F0 F1 F2 F3 F4 F5 F6 F7 F8 F7 F8 F9 FA F8 F0 FC FD FE FF FF	0 1 2 3 4 5 6 7 8 9 9 DEL	0 1 2 3 4 5 6 7 8 9 12-11-0-9-8-2 12-11-0-9-8-3 12-11-0-9-8-4 12-11-0-9-8-5 12-11-0-9-8-6 12-11-0-9-8-7	3-0 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-7 3-8 3-9	delete	FA through FE will not be assigned. Special — neither graphic nor con- trol symbol.

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0	1	2	3	4	5	6	7	8	9	А	В	С	D	Ē	F
1	02	03	04	05	06	07	08	09	0A	ОВ	0C	0D	0E	0F	10
2	03	04	05	06	07	08	09	0A	OB	0C	0D	OE	0F	10	11
3	04	05	06	07	08	09	0A	OB	0C	0D	OE	OF	10	11	12
4	05	06	07	08	09	0A	OB	0C	0D	ŌĖ	0F	10	11	12	13
5	06	07	08	09	0A	OB	0C	0D	OE	OF	10	11	12	13	14
6	07	08	09	0A	ОВ	0C	0D	OE	OF	10	11 -	12	13	14	15
7	08	09	0A	OB	0C	0D	OE	OF	10	11	12	13	14	15	16
8	09	0A	OB	<i>о</i> с	0D	0Ē	OF	10	11	12	13	14	15	16	17
9	0A	OB	0Ċ	0D	OE	OF	10	11	12	13	14	15	16	17	18
A	OB	0C	0D	OE	0F	10	11	12	13	14	15	16	17	18	19
B	0C	0D	0E	OF	10	11	12	13	14	15	16	17	18	19	1A
с	0D	OE	OF	10	11	12	13	14	15	16	17	18	19	1A	1B
D	OE	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
E	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
F	10	11	12	13	14	15	16	17	18	19	1A	1B	10	1D	1E

MULTIPLICATION TABLE

1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
2	04	06	08	0A	0C	OE	10	12	14	16	18	1A	1C	1E
3	06	09	0C	OF	12	15	18	1B	1E	21	24	27	2A	2D
4	08	0C	10	14	18	۱C	20	24	28	2C	30	34	38	3C
5	0A	0F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	0C	12	18	1E	24	2A	30	36	ЗC	42	48	4E	54	5A
7	OE	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
А	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
с	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
D	1A -	27	34	41	4E	5B	68	75	82	8F	9C	A9	B6	C3
E	1C	2A	38	46	54	62	70	7E	8C	9A	A8	B6	C4	D2
F	1E	2D	- 3C	4B	5A	69	78	87	96	A5	B4	С3	D2	El

86 Appendix A

TABLE OF POWERS OF SIXTEEN

					<u>16</u> ⁿ	n			16 ⁻ⁿ	_		
					١	0	0.10000	00000	00000	00000	x	10
					16	1	0.62500	00000	00000	00000	x	10 ⁻¹
					256	2	0.39062	50000	00000	00000	x	10 ⁻²
				4	096	3	0.24414	06250	00000	00000	x	10 ⁻³
				65	536	4	0.15258	78906	25000	00000	x	10 ⁻⁴
			1	048	576	5	0.95367	43164	06250	00000	x	10 ⁻⁶
			16	777	216	6	0.59604	64477	53906	25000	x	10 ⁻⁷
			268	435	456	7	0.37252	90298	46191	40625	x	10 ⁻⁸
		4	294	967	296	8	0.23283	06436	53869	62891	x	10 ⁻⁹
		68	719	476	736	9	0.14551	91522	83668	51807	×	10 ⁻¹⁰
	1	099	511	627	776	10	0.90949	47017	72928	23792	x	10 ⁻¹²
	17	59 2	186	044	416	11	0.56843	41886	08080	14870	x	10 ⁻¹³
	281	474	976	710	656	12	0.35527	13678	80050	09294	x	10 ⁻¹⁴
4	503	599	627	370	496	13	0.22204	46049	25031	30808	x	10 ⁻¹⁵
72	057	594	037	927	936	14	0.13877	78780	78144	56755	x	10-16
152	921	504	606	846	976	15	0.86736	17379	88403	54721	x	10 ⁻¹⁸

TABLE OF POWERS OF TEN16

1

			<u>10ⁿ</u>	<u>n</u>		10	n 			
			1	0	1.0000	0000	0000	0000		
			А	1	0.1999	9999	9999	999A		
			64	2	0.28F5	C28F	5 C28	F 5 C 3	x	16-1
			3 E 8	3	0.4189	374B	C6 A7	EF9E	×	16 ⁻²
			2710	4	0.68DB	8 B AC	710C	B296	×	16 ⁻³
		1	86A0	5	0.A7C5	AC47	1B47	8423	×	16-4
		F	4240	6	0.10C6	F7A0	B5ED	8 D3 7	x	16-4
		98	9680	7	0.1 AD7	F29A	BCAF	4858	x	16 ⁻⁵
		5 F 5	E100	8	0.2 AF 3	1 DC4	6118	7 3 B F	x	16 ⁻⁶
		3 B 9 A	CA00	9	0.44B8	2 F A0	9 B 5 A	52CC	×	16 ⁻⁷
	2	540B	E400	10	0.6 DF 3	7F67	5 E F 6	E ADF	x	16 ⁻⁸
	17	4876	E800	11	0.AFEB	FFOB	CB 2 4	AAF F	×	16 ⁻⁹
	E 8	D4A5	1000	12	0.1197	9981	2 DE A	1119	×	16 ⁻⁹
	918	4E72	A000	13	0.1C25	C268	4976	81C2	×	16-10
	5 AF 3	107A	4000	14	0.2 D0 9	370D	4257	3604	x	16-11
3	8 D7 E	A4C6	8000	15	0.480E	BE7B	9 D5 8	566D	×	16-12
23	8652	6FC1	0000	16	0.734A	CA5 F	6226	FOAE	x	16-13
163	4578	5 D8 A	0000	17	0.B877	AA3 2	36A4	B449	x	16-14
DE 0	B 6 B 3	A764	0000	18	0.1272	5 DD 1	D243	AB A 1	×	16-14
8 AC7	2304	89E8	0000	19	0.1 D8 3	C94F	B 6 D 2	AC35	x	16 ⁻¹⁵

The table below provides for direct conversions between hexadecimal integers in the range 0-FFF and decimal integers in the range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

!	lexade	cimal	Deci	nal	Hexad	ecimal	Deci	mal		pla	ces
	01 000		4 0)96	20	000	1	31 072			0
	02 000		8 1	92	30	000	1	96 608			
	03 000		12 2	288	40	000	2	62 144		2. Fin	d ti
	04 000		16 3	384	50	000	3	27 680			
	05 000		20 4	80	60	000	3	93 216			С
	06 000		24 5	576	70	000	4	58 752			
	07 000		28 6	572	80	000	5	24 288		3. Mu	Itip
	08 000		32 7	768	90	000	5	89 824			•
	09 000		36 8	364	AO	000	6	55 360			1
	0A 000		40 9	260	BO	000	7	20 896		x	59
	0B 000		45 ()56	C0	000	7	86 432		0.	.79
	0C 000		49	52	DO	000	8	51 968			
	0D 000		53 2	248	EO	000	9	17 504		Decima	l fr
	0E 000		57 3	344	FO	000	9	83 040		by succ	essi
	0F 000		61 4	140	100	000	10	48 576		Áfter ed	ach
	10 000		65 5	536	200	000	2 0	97 152		form a h	hex
	11 000		69 6	532	300	000	31	45 728		hexadeo	cim
	12 000	1	73 7	728	400	000	41	94 304		used in	thi
	13 000	1	77 8	324	500	000	52	42 880		must be	со
	14 000	ł.	81 9	720	600	000	62	91 456			
	15 000	1	86 (016	700	000	73	40 032		Example	e:
	16 000	ł	90	112	800	000	83	88 608			_
	17 000	l	94 (208	900	000	94	37 184			
	18,000	1	98 3	304	A00	000	10 4	85 760			
	19 000		102 4	400	BOO	000	11 5	34 336			
	1A 000)	106 4	4%	C00	000	12 5	82 912			
	1B 000	1	110 3	592	D00	000	13 6	31 488			
	1C 000)	114 (688	E00	000	14 6	80 064			//.
	1D 000)	118	784	F00	000	15 7	28 640			$'\!$
	1E 000)	122	880	1 000	000	16 7	77 216		0.65	51 F
	1F 000) r	126	976	2 000	000	33 5	54 432			
,		0	1	2	3	4	5	6	7	8	
	000	0000	0001	0002	0003	0004	0005	0006	0007	0008	6
	010	0016	0017	0018	0019	0020	0021	0022	0023	0024	- (
	020	0032	0033	0034	0035	0036	0037	0038	0039	0040) (
	030	0048	0049	0050	0051	0052	0053	0054	0055	0056) (
	040	0044	0045	0044	0047	004.9	004.0	0070	0071	0072	, ,
	040	0004	0005	0000	0007	0000	0007	0070	00/1	00/2	
	050	0000	0001	0002	0000	01004	0000	0000	000/	0000	
	000	0090	0097	0096	0099	0100	0101	0102	0103	0104	
	0/0	0112	0113	0114	0115	0116	0117	0110	0117	0120	, (
	080	0128	0129	0130	0131	0132	0133	0134	0135	0136	5 (
	090	0144	0145	0146	0147	0148	0149	0150	0151	0152	2 (
	0A0	0160	0161	0162	0163	0164	0165	0166	0167	0168	3 (
	OBO	0176	0177	0178	0179	0180	0181	0182	0183	0184	1 (
		0102	0102	0104	0195	0104	0107	0100	0100	റാഹ	<u>،</u> ۱
		0209	0173	0210	0175	0212	0212	0214	0215	0200	
	OFO	0200	0207	0210	0211	0212	0213	0230	0213	0232	
		0240	0223	0240	0243	0220	0245	0230	0247	02.02	2 1
		0240	0241	0242	0240	0244	0240	0240	V44/	0240	

Hexadecimal fractions may be converted to decimal fractions as follows:

Express the hexadecimal fraction as an integer times 1. 16⁻ⁿ, where n is the number of significant hexadecimal to the right of the hexadecimal point.

0. CA9BF3₁₆ = CA9 BF3₁₆ ×
$$16^{-6}$$

he decimal equivalent of the hexadecimal integer

$$CA9 BF3_{16} = 13 278 195_{10}$$

ply the decimal equivalent by 16⁻ⁿ

	13	278	195		- .
x	596	046	448	x	10-16
0.	791	442	096	10	

actions may be converted to hexadecimal fractions ively multiplying the decimal fraction by 16₁₀. multiplication, the integer portion is removed to adecimal fraction by building to the right of the al point. However, since decimal arithmetic is s conversion, the integer portion of each product inverted to hexadecimal numbers.

Convert 0.89510 to its hexadecimal equivalent

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
000	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	0010	0011	0012	0013	0014	0015
010	0016	0017	0018	0019	0020	0021	0022	0023	0024	0025	0026	0027	0028	0029	0030	0031
020	0032	0033	0034	0035	0036	0037	0038	0039	0040	0041	0042	0043	0044	0045	0046	0047
030	0048	0049	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	0060	0061	0062	0063
040	0064	0065	0066	0067	0068	0069	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079
050	0080	0081	0082	0083	0084	0085	0086	0087	0088	0089	0090	0091	0092	0093	0094	0095
060	0096	0097	0098	0099	0100	0101	0102	0103	0104	0105	0106	0107	0108	0109	0110	0111
070	0112	0113	0114	0115	0116	0117	0118	0119	0120	0121	0122	0123	0124	0125	0126	0127
	• · · -					- · ·	-									
080	0128	0129	0130	0131	0132	0133	0134	0135	0136	0137	0138	0139	0140	0141	0142	0143
090	0144	0145	0146	0147	0148	0149	0150	0151	0152	0153	0154	0155	0156	0157	0158	0159
0A0	0160	0161	0162	0163	0164	0165	0166	0167	0168	0169	0170	0171	0172	0173	0174	0175
OBO	0176	0177	0178	0179	0180	0181	0182	0183	0184	0185	0186	0187	0188	0189	0190	0191
0C0	0192	0193	0194	0195	0196	0197	0198	0199	0200	0201	0202	0203	0204	0205	0206	0207
0D0	0208	0209	0210	0211	0212	0213	0214	0215	0216	0217	0218	0219	0220	0221	0222	0223
0E0	0224	0225	0226	0227	0228	0229	0230	0231	0232	0233	0234	0235	0236	0237	0238	0239
0F0	0240	0241	0242	0243	0244	0245	0246	0247	0248	0249	0250	0251	0252	0253	0254	0255

	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
100	0256	0257	0258	0259	0260	0261	0262	0263	0264	0265	0266	0267	0268	0269	0270	0271
110	0272	0273	0274	0275	0276	0277	0278	0279	0280	0281	0282	0283	0284	0285	0286	0287
120	0288	0289	0290	0291	0292	0293	0294	0295	0296	0297	0298	0299	0300	0301	0302	0303
130	0304	0305	0306	0307	0308	0309	0310	0311	0312	0313	0314	0315	0316	0317	0318	0319
140	0320	0321	0322	0323	0324	0325	0326	0327	0328	0329	0330	0331	0332	0333	0334	0335
150	0336	0337	0338	0339	0340	0341	0342	0343	0344	0345	0346	0347	0348	0349	0350	0351
160	0352	0353	0354	0355	0356	035/	0358	0359	0360	0361	0362	0363	0364	0365	0366	0367
1/0	0308	0369	0370	0371	0372	03/3	03/4	03/5	0376	03//	03/8	03/9	0380	0381	0382	0383
180	0384	0385	0386	0387	0388	0389	0390	0391	0392	0393	0394	0395	0396	0397	0398	0399
190	0400	0401	0402	0403	0404	0405	0406	0407	0408	0409	0410	0411	0412	0413	0414	0415
1A0	0416	0417	0418	0419	0420	0421	0422	0423	0424	0425	0426	0427	0428	0429	0430	0431
1B0	0432	0433	0434	0435	0436	0437	0438	0439	0440	0441	0442	0443	0444	0445	0446	0447
100	0440	0440	0450	0451	0452	0452	0454	0455	0454	0457	0450	0450	0440	0441	0440	0442
100	0440	0447	0450	0451	0452	0455	0454	0455	0450	0457	0450	0439	0400	0401	0402	0403
150	0480	0403	0400	0407	0484	0485	0486	0487	04/2	04/3	04/4	04/3	04/0	04/7	0470	04/ 7
1E0	0496	0497	0498	0499	0500	0501	0502	0503	0504	0505	0506	0507	0508	0509	0510	0511
200	0512	0513	0514	0515	0516	0517	0518	0519	0520	0521	0522	0523	0524	0525	0526	0527
210	0528	0529	0530	0531	0532	0533	0534	0535	0536	0537	0538	0539	0540	0541	0542	0543
220	0544	0545	0546	0547	0548	0549	0550	0551	0552	0553	0554	0555	. 0556	0557	0558	0559
230	0560	0561	0562	0563	0564	0565	0566	0567	0568	0569	0570	0571	0572	0573	0574	0575
240	0576	0577	0578	0579	0580	0581	0582	0583	0584	0585	0586	0587	0588	0589	0590	0591
250	0592	0593	0594	0595	0596	0597	0598	0599	0600	0601	0602	0603	0604	0605	0606	0607
260	0608	0609	0610	0611	0612	0613	0614	0615	0616	0617	0618	0619	0620	0621	0622	0623
270	0624	0625	0626	0627	0628	0629	0630	0631	0632	0633	0634	0635	0636	0637	0638	0639
280	0640	0641	0642	0643	0644	0645	0646	0647	0648	0649	0650	0651	0652	0653	0654	0655
290	0656	0657	0658	0659	0660	0661	0662	0663	0664	0665	0666	0667	0668	0669	0670	0671
2A0	0672	0673	0674	0675	0676	0677	0678	0679	0680	0681	0682	0683	0684	0685	0686	0687
280	0688	0689	0690	0691	0692	0693	0694	0695	0696	069/	0698	0699	0700	0701	0702	0/03
2C0	0704	0705	0706	0707	0708	0709	0710	0711	0712	0713	0714	0715	0716	0717	0718	0719
2D0	0720	0721	0722	0723	0724	0725	0726	0727	0728	0729	0730	0731	0732	0733	0734	0735
2E0	0736	0737	0738	0739	0740	0741	0742	0743	0744	0745	0746	0747	0748	0749	0750	0751
2F0	0752	0753	0754	0755	0756	0757	0758	0759	0760	0761	0762	0763	0764	0765	0766	0767
300	0704	0705	0704	0797	0/72	0790	0//4	07/5	0/76	0//7	0704	0705	0/80	0/81	0/82	0/83
220	0/04	0/05	0/00	0/ 0/	00 10	0/07	0/ 90	0/91	0/ 92	0/ 93	0/ 94	0/ 73	0/ 70	0/ 9/	0/ 70	0/ 77
330	0816	0817	0818	0803	0820	0803	0800	0807	0824	0825	0826	0827	0878	0013	0830	0831
	00.0	0017	0010	0017	0020	0021	0022	0020	0024	0025	0020	002/	0010	0027	0000	0001
340	0832	0833	0834	0835	0836	0837	0838	0839	0840	0841	0842	0843	0844	0845	0846	0847
350	0848	0849	0850	0851	0852	0853	0854	0855	0856	0857	0858	0859	0860	0861	0862	0863
360	0864	0865	0866	0867	0868	0869	0870	0871	0872	0873	0874	0875	0876	0877	0878	0879
370	0880	0881	0882	0883	0884	0885	0886	0887	0888	0889	0890	0891	0892	0893	0894	0895
380	0804	0807	0868	0800	0900	0901	0000	0003	10004	0005	000%	0907	0008	0000	0010	0011
390	0912	0913	0914	0915	0916	0917	0918	0919	0920	0921	0922	0923	0924	0925	0926	0927
3A0	0928	0929	0930	0931	0932	0933	0934	0935	0936	0937	0938	0939	0940	0941	0942	0943
3B0	0944	0945	0946	0947	0948	0949	0950	0951	0952	0953	0954	0955	0956	0957	0958	0959
3C0	0960	0961	0962	0963	0964	0965	0966	0967	0968	0969	0970	0971	0972	0973	0974	0975
3D0	0976	0977	0978	0979	0980	0981	0982	0983	0984	0985	0986	0987	0988	0989	0990	0991
3EU	0992	0993	0994	0995	0996	099/	0998	0999	1000	1001	1002	1003	1004	1005	1006	1007
350	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023

	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
400	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039
410	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055
420	1056	105/	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071
	10/2	10/ 5	10/4	10/5	10/0	10/7	10/0	1077	1000	1001	1002	1005	1004	1000	1000	1007
440	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103
450	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119
460	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135
470	1130	1137	1130	1137	1140	1141	1142	1140	1144	1140	1140	114/	1140	1147	1150	1151
480	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167
490	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183
4A0	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199
400	1200	1201	1202	1203	1204	1205	1200	1207	1208	1209	1210	1211	1212	1213	1214	1215
4C0	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231
4D0	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247
4E0	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263
4F0	1264	1265	1266	1267	1268	1269	12/0	12/1	12/2	12/3	12/4	12/5	12/6	12//	12/8	12/9
500	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295
510	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311
520	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327
530	1328	1329	1330	1331	1332	1333	1334	1335	1336	133/	1338	1339	1340	1341	1342	1343
540	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359
550	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375
570	13/0	13//	13/8	13/9	1380	1381	1382	1383	1384	1385	1386	138/	1388	1389	1390	1391
5/0	1372	1373	1374	1375	1370	1377	1370	1377	1400	1401	1402	1403	1404	1400	1400	1407
580	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423
590	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439
5A0	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455
560	14,00	1437	1430	1437	1400	1401	1402	1403	1404	1400	1400	1407	1400	1407	1470	147 1
5C0	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487
5D0	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503
5E0	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	151/	1518	1519
510	1320	1321	1,522		1524	1525	1520	1527	1520	1,527		1551	1552		1554	1555
600	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551
610	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567
620	1584	1207	1586	1571	15/2	15/3	15/4	15/5	15/6	15//	15/8	15/9	1580	1581	1582	1583
	1504	1505	1500	1507	1500	1307	1370	1371	1372	1373	1374	1373	1370	1,577	1370	1377
640	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615
650	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631
660	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647
0/0	1040	1047	1050	1051	1052	1003	10,04	1055	1000	1057	1000	1037	1000	1001	1002	1003
680	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679
690	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689	1690	1691	1692	1693	1694	1695
6A0	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711
000	1712	1/13	17 14	1713	1/10	1717	1/10	17 19	17 20	1721	1/22	1723	1724	1723	17 20	1/2/
6C0	1728	1729	1730	1731	1732	1733	1734	1735	. 1736	1737	1738	1739	1740	1741	1742	1743
6D0	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759
6E0	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775
	1//0	1777	1//0	1//9	1780	1/01	1/02	1/83	1784	17 00	17 00	1/8/	1788	1797	17.90	1791

	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
700	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807
710	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823
720	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839
730	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855
740	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871
750	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887
760	1888	1889	1890	1891	1892	1893	1894	1895	18%	1897	1898	1899	1900	1901	1902	1903
//0	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1912	1910	1917	1918	1919
780	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935
790	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951
7A0	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967
	1700	1707	1770	1771	1772	1775	17/4	1775	1770	17/7	1770	1777	1700	1701	1702	1705
7C0	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
7D0	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
7E0	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
		2000	2004	2000		2007					2012	2010		2040		204/
800	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063
810	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079
830	2080	2081	2082	2003	2004	2101	2102	2103	2000	2105	2106	2107	2072	2073	2110	2073
												_				
840	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127
850	2128	2129	2130	2131 2147	2132	2133	2134	2135	2130	213/	2138	2139	2140	2141	2142	2143
870	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175
880	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191
8A0	2192	2193	2194	2175	2176	2213	2170	2177	2200	2201	2218	2203	2204	2200	2222	2223
8B0	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239
								00/7	00.40	00.40		0051	0050	0050	0054	0055
800	2240	2241	2242	2243	2244	2245	2246	224/	2248	2249	2250	2251	2252	2253	2254	2255
8E0	2272	2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287
8F0	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303
000	2204	2205	2204	2207	7200	2200	2210	2211	2212	2212	2214	2215	2214	2317	2318	2310
910	2320	2305	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335
920	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351
930	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367
940	2368	2369	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383
950	2384	2385	2386	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399
960	2400	2401	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415
970	2416	2417	2418	2419	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431
980	2432	2433	2434	2435	2436	2437	2438	2439	2440	2441	2442	2443	2444	2445	2446	2447
990	2448	2449	2450	2451	2452	2453	2454	2455	2456	2457	2458	2459	2460	2461	2462	2463
9A0	2464	2465	2466	2467	2468	2469	2470	2471	2472	2473	2474	2475	2476	2477	2478	2479
980	2480	2481	2482	2483	2484	2480	2400	<u> 240/</u>	2488	<u> 2407</u>	24YU	247 I	247Z	2473	2474	2473
900	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511
9D0	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527
9E0	2528	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540 2554	2541	2542	2543
970	2044	2040	2040	234/	2048	2047	2550	2551	2052	2000	2554	2000	200	2.557	200	2337

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
A00	2560	2561	2562	2563	2564	2565	2566	2567	2568	2569	2570	2571	2572	2573	2574	2575
A10	2576	2577	2578	2579	2580	2581	2582	2583	2584	2585	2586	2587	2588	Ž589	2590	2591
A20	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603	2604	2605	2606	2607
A30	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622	2623
A40	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639
A50	2640	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655
A60	2656	2657	2658	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	2669	2670	2671
A70	2672	26/3	2674	2675	2676	2677	2678	2679	2680	2681	2682	2683	2684	2685	2686	2687
A80	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697	2698	2699	2700	2701	2702	2703
A90	2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715	2716	2717	2718	2719
AA0	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734	2735
ARO	2/36	2/3/	2/38	2/39	2740	2/41	2/42	2/43	2/44	2745	2/46	2/4/	2/48	2/49	2/50	2/51
AC0	2752	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767
AD0	2768	2769	2770	2771	2772	2773	2774	2775	2776	2777	2778	2779	2780	2781	2782	2783
AE0	2784	2785	2786	2787	2788	2789	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799
AF0	2800	2801	2802	2803	2804	2805	2806	2807	2808	2809	2810	2811	2812	2813	2814	2815
BOO	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827	2828	2829	2830	2831
B10	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842	2843	2844	2845	2846	2847
B20	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857	2858	2859	2860	2861	2862	2863
B30	2864	2865	2866	2867	2868	2869	2870	2871	2872	2873	2874	2875	2876	2877	2878	2879
B40	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890	2891	2892	2893	2894	2895
B50	2896	2897	2898	2899	2900	2901	2902	2903	2904	2905	2906	2907	2908	2909	2910	2911
B60	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923	2924	2925	2926	2927
B/O	2928	2929	2930	2931	2932	2933	2934	2935	2936	293/	2938	2939	2940	2941	2942	2943
B80	2944	2945	2946	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959
B90	2960	2961	2962	2963	2964	2965	2966	2967	2968	2969	2970	2971	2972	2973	2974	2975
BAO	2976	2977	2978	2979	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	2990	2991
BBO	2992	2993	2994	2995	2996	2997	2998	2999	3000	3001	3002	3003	3004	3005	3006	3007
BCO	3008	3009	3010	3011	3012	3013	3014	3015	3016	3017	3018	3019	3020	3021	3022	3023
BDO	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033	3034	3035	3036	3037	3038	3039
BEO	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051	3052	3053	3054	3055
BFO	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067	3068	3069	3070	3071
C00	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084	3085	3086	3087
	3088	3089	3090	3091	3092	3093	3094	3095	3096	309/	3098	3099	3100	3101	3102	3103
C20	3104	3105	3100	310/	3108	3109	3110	3111	212	3113	3114	3115	3110	311/	3118	3119
C30	3120	3121	3122	3123	3124	3125	3120	312/	5120	3127	3130	3131	3132	3133	3134	3135
C40	3136	3137	3138	3139	3140	3141	3142	3143	3144	3145	3146	3147	3148	3149	3150	3151
C50	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162	3163	3164	3165	3166	3167
C60	3168	3169	3170	3171	3172	31/3	31/4	31/5	31/6	31//	31/8	31/9	3180	3181	3182	3183
C/0	3184	3185	3180	318/	3188	3187	3190	3171	3172	3173	3174	3173	3170	319/	3178	3177
C80	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215
C90	3216	3217	3218	3219	3220	3221	3222	3223	3224	3225	3226	3227	3228	3229	3230	3231
CA0	3232	3233	3234	3235	3236	3237	3238	3239	3240	3241	3242	3243	3244	3245	3246	3247
CB0	3248	3249	3250	3251	3252	3253	3254	3233	3256	325/	3258	3234	3260	3261	3262	3263
CC0	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274	3275	3276	3277	3278	3279
CD0	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291	3292	3293	3294	3295
CEO	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311
CFO	3312	3313	3314	3315	3316	331/	3318	3319	3320	3321	3322	3323	3324	3325	3326	332/

Do0 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3 D10 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3378 3377 3373 3371 3372 3373 3374 3 D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3 D40 3392 3393 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3 340 3404 3405 3406 3 3390 3 3384 3385 3386 3387 3388 3389 3390 3 340 3404 3405 3406	F
D10 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3 D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3 D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3 D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3 D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3 3433 3433 3434 3435 3436 3437 3438 3 3433 3433 3434 3435 3436 34	3343
D20 3360 3361 3362 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3372 D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3387 3388 3389 3390 3 D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3 D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3 D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3 3451 3452 3453 3454 3 3453 3454 3 3453 3454 3459 3446 34	3359
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3 D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3 D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3 D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3 D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3 D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3	3375
D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3 D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3 D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3 D70 3440 3441 3442 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3 D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3 D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3	3391
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3420 D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3430 3431 3432 3433 3434 3435 3436 3437 3438 3450 3451 3452 3453 3454 3450 3451 3452 3453 3454 3454 3454 3454 3454 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3450 3454 3454 3455 3454 3455 3454 3457 3454 3457 3454 3457 3454 3457 3454 3457 3454 3457 3454 3457 3454 3457 3454 3457 3468 3467 3468 3467 3468 3467 3468 3467 3468 3481 <t< td=""><td>3407</td></t<>	3407
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3430 D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3450 D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3470 3470 3470 3470 3470 3470 3480 3481 3482 3483 3484 3485 3486 3485 3486 3481 3482 3483 3484 3485 3486 3480 3481 3482 3483 3484 3485 3486 3480 3497 3490 3501 3501 3501 3501 3502 3500 3501 3502 3503 3516 3517 3518 3510 3511 3512 3513 3514 3517	3423
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3454 D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3 D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3466 3467 3468 3469 3470 3 DA0 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3 0 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3 DC0 3520 3521 3522 3523 3524 3525 3526 <td< td=""><td>3439</td></td<>	3439
D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3 D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3485 3486 3481 3482 3483 3484 3485 3486 3486 3481 3482 3483 3484 3485 3486 365 3500 3501 3502 3500 3501 3502 3500 3501 3502 3511 3512 3513 3514 3515 3516 3517 3518 3517 3518 3517 3518 3517 3518 3518 3517 3518 3516 3517 3518 3544 3542 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 354 3549 3550 3556 3557 3558 3559 3560 3561 3562 356	3455
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3 DA0 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3 DB0 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3 DC0 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3 DC0 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3 3564 3564 3563 3564 3565 3556 3557 3558 3559 3560 3561 3562 3563 <td< td=""><td>347 1</td></td<>	347 1
DA0 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3 DB0 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3 DC0 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3 DD0 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3 DE0 3552 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3566 3564 3565 3566 3566 3561 3562 3563 3564 3565 3566 3566 3564 3565 3566	3487
DE0 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3516 3517 3518 3516 3517 3518 3514 3515 3516 3517 3518 3518 3517 3518	3503
DC0 3520 3521 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3531 DD0 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3550 3550 3550 3560 3561 3562 3563 3564 3565 3566 3566 3560 3561 3562 3563 3564 3565 3566 3566 3561 3562 3563 3564 3565 3566 3566 3561 3562 3563 3564 3565 3566 3566 3561 3562 3563 3564 3565 3566 3566 3567 3568 3559 3560 3561 3562 3563 3564 3565 3566 3566 3566 3566 3566 3566 3566 3566 3566 3566 3566	3217
DD0 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3 DE0 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3	3535
DE0 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3	3551
	3567
DF0 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3	3583
E00 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3	3599
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3	3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3	3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3	3647
E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3	3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3	3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3	3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3	3711
E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3	3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3	3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3	3759
EBU 3/60 3/61 3/62 3/63 3/64 3/65 3/66 3/6/ 3/68 3/69 3//0 3//1 3//2 3//3 3//4 3	\$//5
EC0 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3	3791
ED0 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3	3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3	3823
EFU 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3	3839
F00 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3	3855
F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3	3871
F20 38/2 38/3 38/4 38/5 38/6 38/7 38/8 38/9 3880 3881 3882 3883 3884 3885 3886 3	388/
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3	3903
F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3	3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3	3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3	3951
F/U 375∠ 3753 3754 3755 3756 3757 3758 3757 3760 3961 3962 3963 3964 3965 3966 3 	576/
F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3	3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3	3999
FA0 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4	1015
FBU 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4	1031
FC0 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4	1047
FD0 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4	1063
FE0 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4	1079
רי 1080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4	1095

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

00 00<	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
01 00 <td< td=""><td>.00 00 00 00.</td><td>.00000 00000</td><td>.40 00 00 00</td><td>.25000 00000</td><td>.80 00 00 00</td><td>.50000 00000</td><td>.C0 00 00 00</td><td>.75000 00000</td></td<>	.00 00 00 00.	.00000 00000	.40 00 00 00	.25000 00000	.80 00 00 00	.50000 00000	.C0 00 00 00	.75000 00000
1/2 00 00 0.00 1.2 1.2 00 0.00 2.00 1.2 1.00 0.00 1.2 1.00 0.00 1.2 1.2 1.00 0.00 1.2 1.2 1.00 0.00 1.2	.01 00 00 00	.00390 62500	.41 00 00 00	.25390 62500	.81 00 00 00	.50390 62500	.C1 00 00 00	.75390 62500
1.00 00 0.01 0	.02 00 00 00	.00/81 25000	.42 00 00 00	.25/81 25000		.50/81 25000	.C2 00 00 00	.75/81 25000
15 00000 00000 19133 12500 1250		01562 50000		26562 50000	84 00 00 00	51562 50000		76562 50000
Go 00 00 00 00 00 02744 37500 47 00 00 00 27734 37500 47 00 00 00 27734 37500 47 00 00 00 27734 37500 47 00 00 00 27734 37500 47 00 00 00 27734 37500 47 00 00 00 27315 62500 48 00 00 00 2315 62500 48 00 00 00 2315 62500 48 00 00 00 2315 62500 48 00 00 00 2315 62500 48 00 00 00 2315 62500 48 00 00 00 3315 62500 48 00 00 00 23256 5200 48 00 00 00 3315 62500 48 00 00 00 3305 62500 48 00 00 00 3305 62500 48 00 00 00 3426 87500 450 00 00 00 3426 87500 450 00 00 00 3426 87500 450 00 00 00 3426 87500 450 00 00 00 3426 87500 450 00 00 0 3426 87500 450 00 00 0 3426 87500 450 00 00 0 3426 87500 450 00 00 0 3426 87500 450 00 00 0 3426 87500 450 00 00 0 3426 87500 450 00 00 0 3426 97500	.05 00 00 00	.01953 12500	.45 00 00 00	.26953 12500	.85 00 00 00	.51953 12500	.C5 00 00 00	.76953 12500
07 00 00 0.02734 37500	.06 00 00 00	.02343 75000	.46 00 00 00	.27343 75000	.86 00 00 00	.52343 75000	.C6 00 00 00	.77343 75000
0.8 0.00 0.0315 620000 .48 0.00 0.3315 620000 .7815 620000 0.00 0.03515 62200 .44 0.00 0.2315 62200 .76 0.00 0.7815 62300 0.00 0.00 0.3356 25000 .44 0.00 0.3315 62200 .76 0.00 0.7815 62300 0.00 0.00 0.4426 873000 .4C 0.00 0.30078 12200 .7206 .7200 0.00 0.30078 12200 .7206 .7200 .7206 .7200 .7206 .7200 .7206 .7200 .7206 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7200 .7211 .7200 .7211 .7200 .7211 .7200 .7211 .7200 .7211 .7211 .7211 .72111 .72111 .72111	.07 00 00 00	.02734 37500	.47 00 00 00	.27734 37500	.87 00 00 00	.52734 37500	.C7 00 00 00	.77734 37500
0.9 000 0.0315 62500 -47 000 00 .2315 62200 .C 0.00 000 .7815 62500 0.8 000 00 .3346 22000 .C 0.00 000 .7815 62500 0.8 000 00 .54296 67500 .C 0.00 000 .7845 62500 0.00 0.00 .6467 5000	.08 00 00 00	.03125 00000	.48 00 00 00	.28125 00000	.88 00 00 00	.53125 00000	.C8 00 00 00	.78125 00000
AA 000 000 .0342 62300 .48 000 000 .33906 26000 .7264 67000 .7264 67000 .7264 67000 .7264 67000 .7264 67000 .7264 57000 .726000 .7264 57000 .7264 57000 .7264 57000 .7264 57000 .7264 57000 .7274 5700 .7274 5700 .7274 5700 .7274 5700 .7274 57000 .7274 57000	.09 00 00 00	.03515 62500	.49 00 00 00	.28515 62500	.89 00 00 00	.53515 62500	.C9 00 00 00	.78515 62500
18 00 00 14229 9730 142 0740 97300 17278 97300 17278 97300 17278 97300 17278 97300 17278 973000 17278 973000 17278 973000 17278 973000 17278 973000 17278 973000 17286 973000 17286 973000 17286 973000 17286 973000 17286 973000 17286 973000 17286 973000 17286 973000 17286 973000 18200 00000 354278 973000 170 000000 354278 973000 170 000000 354278 973000 170 000000 354278 973000 170 000000 37421 87300 170 000000 37421 87300 170 000000 37421 87300 170 000000 37421 87300 170 000000 37421 87300 170 000000 32312 50000000 323122 50000000	.0A 00 00 00	.03906 25000	.4A 00 00 00	.28906 25000	00 00 00 A8.	.53906 25000	.CA 00 00 00	/8906 25000
DD DO DO <thdo< th=""> DO DO DO<td></td><td>.04296 8/300</td><td></td><td>29687 50000</td><td></td><td>.54296 8/ 500</td><td></td><td>79687 50000</td></thdo<>		.04296 8/300		29687 50000		.54296 8/ 500		79687 50000
DE D00 D00 D3448 75000 JE D00 D00 DE D10 D00 DE D00 D00		05078 12500		30078 12500		55078 12500		80078 12500
OF 0 0 0 00 .06239 37500 .4F 0 0 0 00 .385 9 37500 .555 9 37500 .CF 0 0 0 0 0 .885 0 0 0 0 0 0 .385 0 0 0 0 0 0 .885 0 0 0 0 0 0 .555 0 0 0 0 0 0 0 .885 0 0 0 0 0 0 .885 0 0 0 0 0 0 .555 0 0 0 0 0 0 0 .885 0 0 0 0 0 0 .885 0 0 0 0 0 0 .555 0 0 0 0 0 0 0 .885 0 0 0 0 0 0 .555 0 0 0 0 0 0 0 .885 0 0 0 0 0 0 .576 0 0 0 0 0 0 .885 0 0 0 0 0 0 <th< td=""><td>.0E 00 00 00</td><td>.05468 75000</td><td>.4E 00 00 00</td><td>.30468 75000</td><td>.8E 00 00 00</td><td>.55468 75000</td><td>.CE 00 00 00</td><td>.80468 75000</td></th<>	.0E 00 00 00	.05468 75000	.4E 00 00 00	.30468 75000	.8E 00 00 00	.55468 75000	.CE 00 00 00	.80468 75000
10 00 0.0250 .50 00 00 0.02520 .51 00 00 .51 00 00 .51 00 00 .51 00 00 .51 00 00 .51 00 .51 00 .51 00 .51 00 .51 00 .51 .51 00 .51 .51 00 .51	.0F 00 00 00	.05859 37500	.4F 00 00 00	.30859 37500	.8F 00 00 00	.55859 37500	.CF 00 00 00	.80859 37500
11 00 00 0.0540 25500 .51 00 00 0.0540 25000 .52 00 0		06250 00000	.50, 00, 00, 00	31250 00000	90 00 00 00	56250 00000		81250 00000
12 00 00 0721 25000 52 00 00 00 07421 87500 75701 75000 7502 75000 7502 75000 7502 75000 7502 75000 7502 75000 7502 75000 7502 75000 7502 75000 7502 75000 7502 75000 7502 75000 7502 75000 75000 75000 75000 7500	.11 00 00 00	.06640 62500	.51 00 00 00	.31640 62500	.91 00 00 00	.56640 62500	.D1 00 00 00	.81640 62500
13 00 00 0.07412 15700 .53 00 00 .5421 15700 .5421 57000 .54 00 00 .82412 5700 15 00 0.08537 7500 .55 00 00 .82303 12500 .55 00 00 0.83593 7500 .56 00 00 .83593 7500 .76 00 00 .83593 7500 .76 00 00 .83593 7500 .76 00 00 .83593 7500 .77 00 00 .83793 7500 .77 00 00 .83793 7500 .78 00 00 .83735 7500 .75 00 00 .77 00 00 .83735 7500 .75 00 00 .83735 75000 .77 00 00 .84745 85500 .77 00 00 .84745 85500 .75 00 00 .84745 85500 .75 00 00 .84745 875000 .75 00 00 .75745 <td>.12 00 00 00</td> <td>.07031 25000</td> <td>.52 00 00 00</td> <td>.32031 25000</td> <td>.92 00 00 00</td> <td>.57031 25000</td> <td>.D2 00 00 00</td> <td>.82031 25000</td>	.12 00 00 00	.07031 25000	.52 00 00 00	.32031 25000	.92 00 00 00	.57031 25000	.D2 00 00 00	.82031 25000
14 00 <td< td=""><td>.13 00 00 00</td><td>.07421 87500</td><td>.53 00 00 00</td><td>.32421 87500</td><td>.93 00 00 00</td><td>.57421 87500</td><td>.D3 00 00 00</td><td>.82421 87500</td></td<>	.13 00 00 00	.07421 87500	.53 00 00 00	.32421 87500	.93 00 00 00	.57421 87500	.D3 00 00 00	.82421 87500
15 00 0.08303 12500 .55 00 00 0.32303 12500 .55 00 00 0.3233 75000 .56 00 00 .83533 75000 .56 00 00 .83533 75000 .56 00 00 .83533 75000 .56 00 00 .83533 75000 .57 00 00 .33743 75000 .58533 75000 .DF 00 00 .83755 00000 .83755 00000 .58763 750000 .DF 00 00 .84755 05000 .DF 00 00 .84755 05000 .DF 00 00 .851545 25000 .DF 00 00 .85345 875000 .DF 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 <td>.14 00 00 00</td> <td>.07812 50000</td> <td>.54 00 00 00</td> <td>.32812 50000</td> <td>.94 00 00 00</td> <td>.57812 50000</td> <td>.D4 00 00 00</td> <td>.82812 50000</td>	.14 00 00 00	.07812 50000	.54 00 00 00	.32812 50000	.94 00 00 00	.57812 50000	.D4 00 00 00	.82812 50000
$ \begin{array}{c} 16 & 00 & 00 & 00 & 0.8934 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$.15 00 00 00	.08203 12500	.55 00 00 00	.33203 12500	.95 00 00 00	.58203 12500	.D5 00 00 00	.83203 12500
17 00 00 1.874 37.00 1.97 00 00 0.8735 000 00 1.8745 37.00 1.8764 37.00 1.8764 37.00 1.8764 37.00 1.8765 37.00 00 00 1.8765 25.00 1.870 00.00 1.8765 25.00 1.870 0.00 0.8735 00.00 0.8155 25.00 1.870 0.00 0.8155 25.00 1.870 0.00 0.8155 25.00 1.870 0.00 0.83546 87500 98 00.00 0.6155 25.00 1.870 0.8544 87500 1.800 0.00 0.85345 87500 97 00.00 0.80737 50000 1.85748 87500 1.800 0.00 0.85328 12500 1.800 0.00 83281 12500 1.8500 0.00 0.37109 37500 97 00.00 0.42109 37500 1.8700 1.87300 1.87300 1.87300 1.87300 1.87300 1.87300 1.87300 1.87300 1.87300 1.87300 1.87300 1.87300 1.87300 1.87300 1.8730	.16 00 00 00	.08593 75000	.56 00 00 00	.33593 75000	.96 00 00 00	.58593 75000	.D6 00 00 00	.83593 75000
10 00 <td< td=""><td></td><td>.08784 3/300</td><td>58 00 00 00</td><td>34375 00000</td><td></td><td>.38784 3/300</td><td></td><td>.83784 3/300</td></td<>		.08784 3/300	58 00 00 00	34375 00000		.38784 3/300		.83784 3/300
1.1 0 00 00 0 1.0155 25000 1.5 0 00 00 0 .35156 25000 1.9 0 00 00 0 .60156 25000 1.5 0 00 00 0 .85156 25000 1.8 00 00 0 1.0937 5000 .5 0 00 00 0 .35346 87500 .5 0 00 00 0 .60156 25000 .5 0 00 00 0 .85156 25000 1.0 00 00 0 1.1937 5000 .5 0 00 00 0 .33345 873 50000 .5 0 00 00 0 .45937 50000 .5 0 00 00 0 .84318 12500 .5 0 00 00 0 .84318 12500 .5 0 00 00 0 .84318 12500 .5 0 00 00 0 .84718 75000 .5 0 00 00 0 .84718 75000 .5 0 00 00 0 .87109 73500 .5 0 00 00 0 .87197 3500 .5 0 00 00 0 .87199 37500 .5 0 00 00 0 .87199 37500 .5 0 00 00 0 .87199 37500 .5 0 00 00 0 .87398 62500 .6 0 00 00 0 .87398 62500 .6 0 00 00 0 .88281 2500 .4 0 00 00 0 .82871 87500 .5 0 00 00 0 .88281 2500 .2 0 00 00 0 .88271 87500 .6 00 00 00 .88281 2500 .2 0 00 00 0 .4463718 7500 .6 00 00 00 .88281 2500 .2 0 00 00 0 .88281 2500 .2 0 00 00 0 .88281 2500 .2 0 00 00 0 .88281 2500 .2 0 00 00 0 .88281 2500 .2 0 00 00 0 .88281 2500 .2 0 00 00 0		09765 62500	59 00 00 00	34765 62500	.78 00 00 00	59765 62500		84765 62500
1B 00 00 01 01 03<	.1A 00 00 00	.10156 25000	.5A 00 00 00	.35156 25000	.9A 00 00 00	.60156 25000	.DA 00 00 00	.85156 25000
1C 00 00 00 .1037 50000 .5C 00 00 00 .3537 50000 .9C 00 00 00 .60937 50000 .DC 00 00 00 .85328 12500 1E 00 00 00 .11718 75000 .5E 00 00 00 .3378 75000 .9F 00 00 00 .61328 12500 .DD 00 00 00 .85328 12500 20 00 00 00 .1219 37500 .5F 00 00 00 .3718 75000 .9F 00 00 00 .62109 37500 .DF 00 00 00 .8708 75000 20 00 00 00 .12500 00000 .60 00 00 .37500 00000 .A1 00 00 00 .62109 37500 .DF 00 00 00 .8708 062500 21 00 00 00 .1281 25000 .61 00 00 00 .3780 62500 .A1 00 00 00 .63281 25000 .E2 00 00 00 .8871 87500 22 00 00 00 .14453 12500 .64 00 00 00 .3943 12500 .A3 00 00 00 .64453 75000 .E4 00 00 00 .89843 12500 22 00 00 00 .14433 12500 .65 00 00 00 .3943 12500 .A5 00 00 00 .64453 75000 .E4 00 00 00 .99234 37500 22 00 00 00 .16234 37500 .67 00 00 00 .40234 37500 .A7 00 00 00 .64453 12500 .E7 00 00 00 .99243 47500	.1B 00 00 00	.10546 87500	.5B 00 00 00	.35546 87500	.9B 00 00 00	.60546 87500	.DB 00 00 00	.85546 87500
1D 00 00 00 .11718 12500 .5D 00 00 00 .36328 12500 .9P 00 00 00 .61328 12500 .DD 00 00 00 .86328 12500 1F 00 00 00 .11718 75000 .5F 00 00 00 .37109 37500 .9F 00 00 00 .61328 12500 .DD 00 00 00 .86718 75000 20 00 00 00 .12109 37500 .5F 00 00 00 .37109 37500 .9F 00 00 00 .62109 37500 .ED 00 00 00 .86718 7500 20 00 00 01 .12890 62500 .61 00 00 00 .37809 62500 .A1 00 00 00 .62890 62500 .EI 00 00 00 .88781 2500 20 00 00 01 .13671 87500 .63 00 00 01 .38281 2500 .A2 00 00 00 .63271 87500 .E3 00 00 00 .88781 2500 24 00 00 00 .14633 12500 .65 00 00 00 .39433 12500 .A5 00 00 00 .64443 37500 .E3 00 00 00 .89453 12500 25 00 00 00 .14433 7500 .65 00 00 00 .39433 7500 .A7 00 00 00 .64463 37500 .E6 00 00 0 .99453 12500 26 00 00 00 .16230 3750 .66 00 00 00 .40234 37500 .A7 00 00 00 .64643 37500 .E6 00 00 00 .99048 37500 27 00 00 00 .164525 00000 .68 00 00 00 .40	.1C 00 00 00	.10937 50000	.5C 00 00 00	.35937 50000	.9C 00 00 00	.60937 50000	.DC 00 00 00	.85937 50000
1E 00 00 1.1718 75000 .5E 00 00 .62109 37500 .5F 00 00 .62200 .62109 37500 .6200 00 00 .87890 62500 .A1 00 00 .63281 25000 .A2 00 .63671 87500 .6300 00 .88671 87500 .A3 00 .63671 87500 .6300 .6300 .84671 87500 .A4 00 .63671 87500 .6500 .6000 .88671 87500 .A4 00 .63671 87500 .65000 .63312500 .A5 00 .63671 87500 .6500000 .84671 87500 .A5 00 .63671 87500 .6500000 .84671 87500 .6500000 .64143 12500 .A6 00	.1D 00 00 00	.11328 12500	.5D 00 00 00	.36328 12500	.9D 00 00 00	.61328 12500	.DD 00 00 00	.86328 12500
11 00 00 00 1.37 00 00 0.62 1.06 00	.1E 00 00 00	.11718 75000	.5E 00 00 00	.36718 75000	.9E 00 00 00	.61718 75000	.DE 00 00 00	.86718 75000
120 00 00 1.2500 000000 1.2500 000000 1.2500 000000 1.2500 000000 1.2500 0.00000 1.2500 0.00000 0.37890 62500 A.1 000000 6.3281 25000 E1 000000 88281 25000 22 000000 1.14642 50000 .64 00000 .38671 87500 .63 00000 .88281 25000 .54 00000 .88621 15500 .65 0.0000 .39642 50000 .44 00000 .84631 15500 .65 00000 .894531 15500 .65 00000 .894531 15500 .65 00000 .894531 15500 .65 00000 .894531 15500 .65 00000 .894531 15500 .65 00000 .894531 15500 .65 00000 .894531 15500 .65 00000 .894531 15500 .65 00000 .894531 15500 .65 00000 .494531 15500 .65 00000 .65123 37500 .66 00000 .4	.1F 00 00 00	.12109 3/500	.5F 00 00 00	.3/109 3/500	.9F 00 00 00	.62109 3/500	.DF 00 00 00	.8/109 3/500
121 00000 1.1210 00000 1.1210 00000 1.1210 00000 1.1210 00000 1.8211 1.120000 00000 1.8211 1.25000 1.20000 0.1210	.20 00 00 00	12200 00000	61 00 00 00	37890 62500	AU 00 00 00	.02300 00000 62890 62500	EU 00 00 00	.8/300 00000
123 000000 113271 17300 163 000000 386271 17500 1.43 000000 1.63671 17500 1.63 00000 1.84671 17500 1.63 00000 1.84671 17500 1.63 00000 1.4662 50000 1.4463 15500 1.65 00000 3.3962 50000 1.4453 12500 1.66 00000 .84671 87500 1.65 00000 .89042 50000 1.64453 12500 1.66 00000 .89043 12500 1.66 00000 .89453 12500 1.6400 00000 .64453 12500 1.65 00000 .89843 75000 1.66 00000 .89843 75000 1.6600 0.90234 37500 1.67 00000 .90234 37500 1.65 00000 .90234 37500 1.65 00000 .90234 37500 1.68 000000 .40243 07500 .48 000000 .66416 25000 1.64016 25000 1.64016 25000 1.64016 25000 1.718 50000 0.60000 .91056 <	22 00 00 00	13281 25000		38281 25000	A2 00 00 00	63281 25000	E2 00 00 00	.88281 25000
24 00 00 .14062 50000 .64 00 00 .39062 50000 .64 00 00 .89062 50000 25 00 00 .14453 12500 .65 00 00 .89453 12500 .66 00 00 .89453 12500 .66 00 00 .89453 12500 .66 00 00 .89453 12500 .67 00 00 .44234 37500 .47 00 .64437 5200 .67 00 00 .40234 37500 .47 00 .6515 60 00 .9025 520000 .5615 60 00 .9025 52000 .27 00 .6015 62500 .48 00 00 .5625 52000 .5615 6200 00 .9116 52500 .28 00 .9116 52500 .28 00 .9176 87500 .28 00 .9176 875000 .27	.23 00 00 00	.13671 87500	.63 00 00 00	.38671 87500	A3 00 00 00	.63671 87500	.E3 00 00 00	.88671 87500
.25 00 00 .455 00 00 .455 00 00 .64433 12500 .65 00 00 .87433 75000 .6400 .64433 75000 .65 00 00 .87433 75000 .6400 .64843 75000 .65 00 00 .87433 75000 .6400 .64433 75000 .65 00 00 .87433 75000 .6400 .64433 75000 .65 00 00 .87433 75000 .6400 .64433 75000 .6400 .97433 .75000 .6400 .6400 .6400 .6400 .65225 .679 00 .9000 .91015 .652500 .27 00 00 .9115 .652500 .48 00 .9000 .64106 .55000 .48 00 .9115 .652500 .27 00 .9100 .1615 .65200 .48 00 .9116 .652500 .27 .28 .25000 .4106 .25000 .4000 .66100 .67<68	.24 00 00 00	.14062 50000	.64 00 00 00	.39062 50000	.A4 00 00 00	.64062 50000	.E4 00 00 00	.89062 50000
.26 00 00 .464 00 00 .44843 75000 .46 00 00 .64843 75000 .67 00 00 .65234 37500 .67 00 00 .65234 37500 .67 00 00 .65234 37500 .67 00 00 .65236 0000 .65236 0000 .65236 00000 .65236 .67 00 00 .90234 37500 .29 00 00 .1615 65500 .64 00 00 .41105 62500 .A4 00 00 .66406 250000 .EA 00 00 .91105 62500 .20 00 00 .16476 87500 .68 00 00 .41796 87500 .AE 00 00 .64796 87500 .EE 00 00 .91165 65200 .25781 12500 .AD 00 .67788 75000 .EE 00 00 .92187 57000 .25781 12500 .2500 .25781 12500 .2500	.25 00 00 00	.14453 12500	.65 00 00 00	.39453 12500	.A5 00 00 00	.64453 12500	.E5 00 00 00	.89453 12500
.27 00 00 00 .15234 37500 .67 00 00 00 .40234 37500 .A7 00 00 00 .65234 37500 .E7 00 00 00 .90234 37500 .28 00 00 00 .15625 00000 .68 00 00 00 .46025 00000 .A8 00 00 00 .65615 62500 .E9 00 00 00 .64015 62500 .E9 00 00 00 .41015 62500 .A9 00 00 00 .66015 62500 .E8 00 00 00 .9116 52500 .28 00 00 00 .16796 87500 .68 00 00 00 .41796 87500 .A6 00 00 00 .66776 87500 .EB 00 00 00 .9116 52500 .20 00 00 00 .17787 12500 .6C 00 00 00 .42578 12500 .AC 00 00 00 .67788 7500 .ED 00 00 00 .92187 50000 .25 00 00 00 .17788 7500 .6F 00 00 00 .42578 12500 .AF 00 00 00 .67788 7500 .ED 00 00 00 .92948 75000 .25 00 00 00 .18750 00000 .43359 37500 .AF 00 00 00 .68750 00000 .F0 00 00 00 .92948 7500 .33 00 00 00 .92948 7500 <	.26 00 00 00	.14843 75000	.66 00 00 00	.39843 75000	.A6 00 00 00	.64843 75000	.E6 00 00 00	.89843 75000
.28 00 00 .40625 00000 .48 00 00 .65625 00000 .E8 00 00 .90625 00000 .41015 62500 .A9 00 00 .66015 62500 .E9 00 00 .911046 25000 .A4 00 00 .66416 62500 .E9 00 00 .91146 25000 .28 00 00 0 .64786 87500 .A8 00 00 .66476 87500 .E8 00 00 .91146 25000 .20 00 00 .17187 50000 .6C 00 00 .42187 50000 .AC 00 00 .67788 7500 .EE 00 00 .92578 12500 .AC 00 00 .67788 7500 .EE 00 00 .92578 12500 .AC 00 00 .67788 7500 .EF 00 00 .92578 12500 .71 00 00 .43359 37500 .AF 00 00 .9	.27 00 00 00	.15234 37500	.67 00 00 00	.40234 37500	.A7 00 00 00	.65234 37500	.E7 00 00 00	.90234 37500
129 00000 1.6015 6.5900 0.69000 1.4105 6.2500 1.A900000 1.6605 6.25000 1.E900000 0.6406 25000 1.E900000 9.1708 6.25000 2.8 00000 1.6406 25000 .4106 25000 1.4406 25000 1.A800000 .66406 25000 1.E000000 .91796 87500 2.20 00000 1.1787 50000 .6C00000 .41287 50000 .AC00000 .67187 50000 .EC000000 .92187 50000 2.20 00000 .17578 12500 .6C00000 .42287 12500 .AC000000 .67587 12500 .EC000000 .92578 12500 2.21 00000 .17548 75000 .6E 000000 .42387 57000 .AE 00000 .67587 12500 .EF 000000 .92578 12500 2.25 00000 .18359 37500 .6F 000000 .42387 5000 .AF 000000 .68359 37500 .EF 000000 .93359 37500 .36000000	.28 00 00 00	.15625 00000	.68 00 00 00	.40625 00000	.A8 00 00 00	.65625 00000	.E8 00 00 00	.90625 00000
128 00 00 1.6736 87500 .68 00 00 0.64736 87500 .68 00 00 0.71736 87500 .20 00 00 .177578 12500 .66 00 00 0.41736 87500 .AE 00 00 0.6736 87500 .EE 00 00 0.92187 50000 .2C 00 00 0.7578 12500 .AC 00 00 .67378 12500 .EE 00 00 .92187 50000 .2E 00 00 .92187 50000 .AC 00 00 .67378 12500 .EE 00 00 .92578 12500 .2E 00 00 .42968 75000 .AE 00 00 .663359 37500 .EE 00 00 .92387 37500 .36 00 00 .43759 37500 .B2 00 00 .68750 00000 .F0 00 00 .93359 37500 .33 00 00 .43759 37500 .8200 00	.29 00 00 00	16013 62300		.41015 62500		.00015 02500	.E9 00 00 00	.91015 62500
1.2C 0.0 0.0 1.7187 50000 .42187 50000 .AC 0.0 0.7187 50000 .22187 50000 2.D 0.0 0.0 .17578 12500 .6D 0.0 0.0 .42187 50000 .AC 0.0 0.67578 12500 .ED 0.0 0.0 .92187 50000 2.E 0.0 0.0 .17768 7500 .6E 0.0 0.0 .42387 5000 .AC 0.0 0.0 .67578 12500 .EE 0.0 0.0 .92187 50000 2.E 0.0 0.0 .18359 37500 .6F 0.0 0.0 .43359 37500 .AE 0.0 0.0 .68359 37500 .EF 0.0 0.0 .92375 000000 .93359 37500 .31 0.0 0.0 .68750 00000 .FI 0.0 0.0 .93359 37500 .33 0.0 0.0 .68751 25000 .FI 0.0 0.0 .93359 37500 .73 0.0 0.0 .44140 <td>2B 00 00 00</td> <td>16796 87500</td> <td>68 00 00 00</td> <td>41796 87500</td> <td>AB 00 00 00</td> <td>66796 87500</td> <td>EB 00 00 00</td> <td>91796 87500</td>	2B 00 00 00	16796 87500	68 00 00 00	41796 87500	AB 00 00 00	66796 87500	EB 00 00 00	91796 87500
.2D 00 00 .17578 12500 .6D 00 00 .42578 12500 .AD 00 00 .67578 12500 .ED 00 00 .92578 12500 .2E 00 00 .17968 75000 .6E 00 00 .42968 75000 .AE 00 00 .6F 00 00 .43359 37500 .AF 00 00 .6F 00 00 .43359 37500 .AF 00 00 .6F 00 00 .43750 00000 .68359 37500 .FF 00 00 .93359 37500 .6F 00 00 .44140 62500 .FI 00 00 .93750 00000 .93750 00000 .93750 00000 .93750 .93059 37500 .82 00 00 .67578 12500 .FI 00 00 .93359 37500 .830 00 .67578 12500 .FI 00 00 .93151 50000 .FI .00 00 .93151 50000 <td>.2C 00 00 00</td> <td>.17187 50000</td> <td>.6C 00 00 00</td> <td>.42187 50000</td> <td>AC 00 00 00</td> <td>.67187 50000</td> <td>.EC 00 00 00</td> <td>.92187 50000</td>	.2C 00 00 00	.17187 50000	.6C 00 00 00	.42187 50000	AC 00 00 00	.67187 50000	.EC 00 00 00	.92187 50000
.2E 00 00 .6E 00 00 .42968 75000 .AE 00 00 .6E 00 00 .43359 37500 .AE 00 00 .6E 00 00 .43359 37500 .AF 00 00 .6E 00 00 .43359 37500 .AF 00 00 .6E 00 00 .93359 37500 .EF 00 00 00 .93359 37500 .6E 00 00 .93359 37500 .EF 00 00 .93359 37500 .9268 75000 .6E 00 00 .93359 37500 .EF 00 00 .93359 37500 .500 .93359 37500 .500 .93359 37500 .500 .93359 37500 .513 00 00 .93750 00000 .93750 00000 .93750 00000 .93750 00000 .93750 00000 .94140 62500 .F1 00 00 .94140 62500 .71 00 00 .445312 50000	.2D 00 00 00	.17578 12500	.6D 00 00 00	.42578 12500	.AD 00 00 00	.67578 12500	.ED 00 00 00	.92578 12500
.2F 00 00 00 .18359 37500 .6F 00 00 00 .43359 37500 .AF 00 00 00 .68359 37500 .EF 00 00 00 .93359 37500 .30 00 00 00 .18750 00000 .70 00 00 00 .43750 00000 .80 00 00 00 .68750 00000 .F0 00 00 00 .93750 00000 .31 00 00 00 .19140 62500 .71 00 00 00 .44140 62500 .81 00 00 00 .69140 62500 .F1 00 00 00 .94140 62500 .32 00 00 00 .19531 25000 .72 00 00 00 .44531 25000 .82 00 00 00 .69531 25000 .F2 00 00 00 .94531 25000 .33 00 00 0 .2012 5000 .74 00 00 00 .45312 50000 .84 00 00 00 .70703 12500 .F4 00 00 00 .95703 12500 .35 00 00 00 .21093 75000 .76 00 00 00 .45703 7500 .85 00 00 00 .71093 75000 .F5 00 00 00 .95703 12500 .37 00 00 00 .21875 00000 .78 00 00 00 .46875 00000 .86 00 00 00 .71093 75000 .F6	.2E 00 00 00	.17968 75000	.6E 00 00 00	.42968 75000	.AE 00 00 00	.67968 75000	.EE 00 00 00	.92968 75000
.30 00 00 .18750 00000 .43750 00000 .80 00 00 .68750 00000 .F0 00 00 .93750 00000 .31 00 00 .19140 62500 .71 00 00 .44140 62500 .81 00 00 .69140 62500 .F1 00 00 .94140 62500 .32 00 00 .19531 25000 .72 00 00 .44531 25000 .82 00 00 .69531 25000 .F2 00 00 .94531 25000 .33 00 00 .20312 50000 .74 00 00 .45703 12500 .83 00 00 .F4 00 00 .95703 12500 .55 00 00 .95703 12500 .55 00 00 .95703 12500 .55 00 00 .95703 12500 .55 00 00 .95703 12500 .55 00 00 .95703 12500 <t< td=""><td>.2F 00 00 00</td><td>.18359 37500</td><td>.6F 00 00 00</td><td>.43359 37500</td><td>.AF 00 00 00</td><td>.68359 37500</td><td>.EF 00 00 00</td><td>.93359 37500</td></t<>	.2F 00 00 00	.18359 37500	.6F 00 00 00	.43359 37500	.AF 00 00 00	.68359 37500	.EF 00 00 00	.93359 37500
.31 00 00 .19140 62500 .71 00 00 .44140 62500 .81 00 00 .69140 62500 .F1 00 00 .94140 62500 .32 00 00 .19531 25000 .72 00 00 .44531 25000 .82 00 00 .69531 25000 .F2 00 00 .94140 62500 .33 00 00 0 .19921 87500 .73 00 00 .44921 87500 .83 00 00 .69921 87500 .F3 00 00 .94121 87500 .34 00 00 .20703 12500 .75 00 00 .45703 12500 .85 00 00 .70703 12500 .F5 00 00 .95703 12500 .36 00 00 .2193 75000 .76 00 00 .46484 37500 .87 00 00 .71843 37500 .F7 00 00 .96484	.30 00 00 00	.18750 00000	.70 00 00 00	.43750 00000	.B0 00 00 00	.68750 00000	.F0 00 00 00	.93750 00000
.32 00 00 .19531 25000 .72 00 00 .44531 25000 .82 00 00 .69531 25000 .F2 00 00 .94531 25000 .33 00 00 .19921 87500 .73 00 00 .44921 87500 .83 00 00 .69921 87500 .F3 00 00 .94921 87500 .34 00 00 .20312 50000 .74 00 00 .45312 50000 .84 00 00 .70312 50000 .F4 00 00 .95312 50000 .35 00 00 .20703 12500 .75 00 00 .46093 75000 .85 00 00 .71093 75000 .F6 00 00 .95703 12500 .36 00 00 .21484 37500 .77 00 00 .46875 0000 .87 00 .7184 37500 .F7 00 00 .948875 00000 <t< td=""><td>.31 00 00 00</td><td>.19140 62500</td><td>.71 00 00 00</td><td>.44140 62500</td><td>.B1 00 00 00</td><td>.69140 62500</td><td>.F1 00 00 00</td><td>.94140 62500</td></t<>	.31 00 00 00	.19140 62500	.71 00 00 00	.44140 62500	.B1 00 00 00	.69140 62500	.F1 00 00 00	.94140 62500
.33 00 00 00 ./3 00 00 .44921 8/500 .83 00 00 .69921 8/500 .F3 00 00 .94921 8/500 .34 00 00 .20312 50000 .74 00 00 .45312 50000 .84 00 00 .70312 50000 .F4 00 00 .95312 50000 .35 00 00 .20703 12500 .75 00 00 .46093 75000 .85 00 00 .70703 12500 .F5 00 00 .95703 12500 .36 00 00 .21093 75000 .76 00 00 .46493 7500 .86 00 00 .71093 75000 .F6 00 00 .96093 75000 .87 00 00 .96484 37500 .87 00 00 .96484 37500 .87 00 .96093 .7183 00 00 .96484 37500 .88 00 00 .71843	.32 00 00 00	.19531 25000	.72 00 00 00	.44531 25000	.B2 00 00 00	.69531 25000	.F2 00 00 00	.94531 25000
.34 00 00 00 .74 00 00 00 .76 12 50000 .74 00 00 00 .76 12 50000 .74 00 00 00 .76 12 50000 .76 12 50000 .75 00 00 00 .70 12 50000 .75 00 00 00 .70 12 50000 .76 00 00 .46093 75000 .85 00 00 .71093 75000 .76 00 00 .46493 75000 .86 00 00 .71093 75000 .F6 00 00 .96093 75000 .37 00 00 .21484 37500 .77 00 00 .46487 37500 .87 00 00 .71484 37500 .F7 00 00 .96484 37500 .88 00 00 .72656 62500 .F8 00 00 .97265 62500 .79 00 00 .97265 625000 .F4 00	.33 00 00 00	.19921 87500	./3 00 00 00	.44921 87500	.B3 00 00 00	.69921 87500	.F3 00 00 00	.94921 87500
.36 00 00 .21 03 125 00 00 .45 12500 .15 00 00 00 .15 00 00 00 .15 00 00 00 .15 00 00 00 .15 00 00 00 .15 00 00 00 .15 00 00 00 .15 00 00 00 .15 00 00 00 .15 00 00 .15 00 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 .15 00 00 <t< td=""><td>35 00 00 00</td><td>20312 20000</td><td></td><td>45312 50000</td><td>B5 00 00 00</td><td>70312 50000 70703 12500</td><td></td><td>.70312 0000 95703 12500</td></t<>	35 00 00 00	20312 20000		45312 50000	B5 00 00 00	70312 50000 70703 12500		.70312 0000 95703 12500
137 00 00 .21484 37500 .77 00 00 .46484 37500 .87 00 00 .71484 37500 .F7 00 00 .6484 37500 .87 00 00 .71484 37500 .F7 00 00 .6484 37500 .87 00 00 .71484 37500 .F7 00 00 .6484 37500 .87 00 00 .6484 37500 .87 00 00 .71484 37500 .F7 00 00 .6484 37500 .87 00 00 .71484 37500 .F7 00 00 .6484 37500 .78 00 00 .71484 37500 .F8 00 00 .71484 37500 .F8 00 00 .72655 62500 .78 00 00 .72656 62500 .F8 00 00 .72656 62500 .78 00 00 .77656	.36 00 00 00	.21093 75000	.76 00 00 00	.46093 75000	.B6 00 00 00	.71093 75000	.F6 00 00 00	.96093 75000
.38 00 00 .21875 00000 .78 00 00 .46875 00000 .88 00 00 .71875 00000 .F8 00 00 .96875 00000 .96875 00000 .96875 00000 .96875 00000 .96875 00000 .96875 00000 .97265 62500 .F9 00 00 .97265 62500 .979 00 00 .47265 62500 .89 00 00 .72265 62500 .F9 00 00 .97265 62500 .98 00 00 .72265 62500 .F4 00 00 .97656 25000 .80 00 00 .72656 25000 .F4 00 00 .97656 25000 .98 00 00 .72656 25000 .F8 00 00 .97656 25000 .80 00 00 .72656 25000 .F8 00 00 .97656 25000 .98 00 00 .73046 87500 .FE 00 00 .98437 50000	.37 00 00 00	.21484 37500	.77 00 00 00	.46484 37500	.B7 00 00 00	.71484 37500	.F7 00 00 00	.96484 37500
.39 00 00 .22265 62500 .79 00 00 .47265 62500 .89 00 00 .72265 62500 .F9 00 00 .97265 62500 .3A 00 00 .22656 25000 .7A 00 00 .47656 25000 .BA 00 00 .72656 25000 .FA 00 00 .97656 25000 .3B 00 00 .23046 87500 .7B 00 00 .448046 87500 .BB 00 00 .73046 87500 .FB 00 00 .97656 25000 .3C 00 00 .23437 50000 .7C 00 00 .48437 50000 .BC 00 00 .72437 50000 .FC 00 00 .98437 50000 .3D 00 00 .23828 12500 .7D 00 00 .4828 12500 .BD 00 00 .FD 00 00 .98282 12500 .FD 00<	.38 00 00 00	.21875 00000	.78 00 00 00	.46875 00000	.B8 00 00 00	.71875 00000	.F8 00 00 00	.96875 00000
.3A 00 00 .22656 25000 .7A 00 00 .47656 25000 .BA 00 00 .72656 25000 .FA 00 00 .97656 25000 .3B 00 00 .23046 87500 .7B 00 00 .48046 87500 .BB 00 00 .73046 87500 .FB 00 00 .98046 87500 .3C 00 00 .23437 50000 .7C 00 00 .48437 50000 .BC 00 00 .73437 50000 .FC 00 00 .98437 50000 .3D 00 00 .23828 12500 .7D 00 00 .4828 12500 .BD 00 00 .73328 12500 .FD 00 00 .98282 12500 .3E 00 00 .24218 75000 .7E 00 00 .49218 7500 .BE 00 00 .FE 00 00 .99218 75000 .FE 00 <td>.39 00 00 00</td> <td>.22265 62500</td> <td>.79 00 00 00</td> <td>.47265 62500</td> <td>.B9 00 00 00</td> <td>.72265 62500</td> <td>.F9 00 00 00</td> <td>.97265 62500</td>	.39 00 00 00	.22265 62500	.79 00 00 00	.47265 62500	.B9 00 00 00	.72265 62500	.F9 00 00 00	.97265 62500
.3B 00 00 .23046 87500 .7B 00 00 .48046 87500 .BB 00 00 0.73046 87500 .FB 00 00 0.98046 87500 .3C 00 00 .23437 50000 .7C 00 00 .48437 50000 .BC 00 00 .72437 50000 .FC 00 00 .98437 50000 .3D 00 00 .23828 12500 .7D 00 00 .48282 12500 .BD 00 00 .73828 12500 .FD 00 00 .98828 12500 .3E 00 00 .24218 75000 .7E 00 00 .49218 75000 .BE 00 00 .74218 75000 .FE 00 00 .99218 75000 .3F 00 00 .24609 37500 .7F 00 00 .49609 37500 .BF 00 00 .FF 00 00 .99609 37500 <td>.3A 00 00 00</td> <td>.22656 25000</td> <td>.7A 00 00 00</td> <td>.47656 25000</td> <td>.BA 00 00 00</td> <td>.72656 25000</td> <td>.FA 00 00 00</td> <td>.97656 25000</td>	.3A 00 00 00	.22656 25000	.7A 00 00 00	.47656 25000	.BA 00 00 00	.72656 25000	.FA 00 00 00	.97656 25000
.3C 00 00 .23437 50000 .7C 00 00 .48437 50000 .8C 00 00 .73437 50000 .FC 00 00 .98437 50000 .3D 00 00 .23828 12500 .7D 00 00 .48828 12500 .8D 00 00 00 .73828 12500 .FD 00 00 .98828 12500 .3E 00 00 .24218 75000 .7E 00 00 .49218 75000 .BE 00 00 00 .74218 75000 .FE 00 00 .99218 75000 .3F 00 00 .24609 37500 .7F 00 00 .49609 37500 .BF 00 00 .74609 37500 .FF 00 00 .99609 37500	.3B 00 00 00	.23046 87500	.7B 00 00 00	.48046 87500	.BB 00 00 00	.73046 87500	.FB 00 00 00	.98046 87500
.3E 00 00 00 .24218 75000 .7E 00 00 00 .49218 75000 .BE 00 00 00 .74218 75000 .FE 00 00 00 .98828 12500 .98828 12500 .3F 00 00 00 .24609 37500 .7F 00 00 00 .49218 75000 .BF 00 00 00 .74609 37500 .FF 00 00 00 .99218 75000 .3F 00 00 00 .24609 37500 .FF 00 00 00 .99609 37500 .FF 00 00 00 .99609 37500 .3F		.2343/ 50000		.4843/ 50000		7343/ 50000		.9843/ 50000
.3F 00 00 00 .24609 37500 .7F 00 00 00 .49609 37500 .BF 00 00 00 .74609 37500 .FF 00 00 00 .99609 37500	.3E 00 00 00	.23020 12300	.7E 00 00 00	.40020 12000	BE 00 00 00	74218 75000		.70028 12000
	.3F 00 00 00	.24609 37500	.7F 00 00 00	.49609 37500	.BF 00 00 00	.74609 37500	.FF 00 00 00	.99609 37500

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
.00 00 00 00	.00000 00000	.00 40 00 00	.00097 65625	.00 80 00 00	.00195 31250	.00 C0 00 00	.00292 96875
.00 01 00 00	.00001 52587	.00 41 00 00	.00099 18212	.00 81 00 00	.00196 83837	.00 C1 00 00	.00294 49462
.00 02 00 00	.00003 05175	.00 42 00 00	.00100 70800	.00 82 00 00	.00198 36425	.00 C2 00 00	.00296 02050
.00 03 00 00	.00004 57763	.00 43 00 00	.00102 23388		.00199 89013	.00 C3 00 00	.0029/ 54638
	00007 62939	00 45 00 00	00105 28564	00 85 00 00	00201 41001		00300 59814
.00 05 00 00	.00009 15527	.00 46 00 00	.00106 81152	.00 86 00 00	.00202 /410/	.00 C6 00 00	.00302 12402
.00 07 00 00	.00010 68115	.00 47 00 00	.00108 33740	.00 87 00 00	.00205 99365	.00 C7 00 00	.00303 64990
.00 08 00 00	.00012 20703	.00 48 00 00	.00109 86328	.00 88 00 00	.00207 51953	.00 C8 00 00	.00305 17578
.00 09 00 00	.00013 73291	.00 49 00 00	.00111 38916	.00 89 00 00	.00209 04541	.00 C9 00 00	.00306 70166
.00 0A 00 00	.00015 25878	.00 4A 00 00	.00112 91503	.00 8A 00 00	.00210 57128	.00 CA 00 00	.00308 22753
.00 0B 00 00	.00016 /8466	.00 48 00 00	.00114 44091		.00212 09/16		.00309 /5341
	.00018 31034	0040 0000	00117 49267		00215 14892		00312 80517
.00 0E 00 00	.00021 36230	.00 4E 00 00	.00119 01855	.00 8E 00 00	.00216 67480	.00 CE 00 00	.00314 33105
.00 OF 00 00	.00022 88818	.00 4F 00 00	.00120 54443	.00 8F 00 00	.00218 20068	.00 CF 00 00	.00315 85693
00 10 00 00	00024 41404	00.50,00,00	00122 07031	00.90.00.00	00219 72656		00317 38281
.00 11 00 00	.00025 93994	.00.51 00.00	.00123 59619	.00 91 00 00	.00221 25244	.00 D1 00 00	.00318 90869
.00 12 00 00	.00027 46582	.00 52 00 00	.00125 12207	.00 92 00 00	.00222 77832	.00 D2 00 00	.00320 43457
.00 13 00 00	.00028 99169	.00 53 00 00	.00126 64794	.00 93 00 00	.00224 30419	.00 D3 00 00	.00321 96044
.00 14 00 00	.00030 51757	.00 54 00 00	.00128 17382	.00 94 00 00	.00225 83007	.00 D4 00 00	.00323 48632
.00 15 00 00	.00032 04345	.00 55 00 00	.00129 69970	.00 95 00 00	.00227 35595	.00 D5 00 00	.00325 01220
.00 16 00 00	.00033 56933	.00 56 00 00	.00131 22558	.00 96 00 00	.00228 88183	.00 D6 00 00	.00326 53808
.00 17 00 00	.00035 09521	.00 57 00 00	.00132 /5146		.00230 40771	00 07 00 00	.00328 06396
	.00030 62109		.00134 27734		00231 93339		.00327 36764
.00 1A 00 00	.00039 67285	.00 5A 00 00	.00137 32910	.00 9A 00 00	.00233 45747	.00 DA 00 00	.00332 64160
.00 1B 00 00	.00041 19873	.00 5B 00 00	.00138 85498	.00 9B 00 00	.00236 51123	.00 DB 00 00	.00334 16748
.00 1C 00 00	.00042 72460	.00 5C 00 00	.00140 38085	.00 9C 00 00	.00238 03710	.00 DC 00 00	.00335 69335
.00 1D 00 00	.00044 25048	.00 5D 00 00	.00141 90673	.00 9D 00 00	.00239 56298	.00 DD 00 00	.00337 21923
.00 1E 00 00	.00045 77636	.00 5E 00 00	.00143 43261	.00 9E 00 00	.00241 08886	.00 DE 00 00	.00338 74511
.00 1F 00 00	.00047 30224	.00 5F 00 00	.00144 95849	.00 9F 00 00	.00242 61474	.00 DF 00 00	.00340 27099
.00 20 00 00	00048 82812		.00146 46437		00244 14082		.00343 32275
00 22 00 00	00051 87988	00 62 00 00	00149 53613	.00 A2 00 00	.00247 19238	.00 E2 00 00	.00344 84863
.00 23 00 00	.00053 40576	.00 63 00 00	.00151 06201	.00 A3 00 00	.00248 71826	.00 E3 00 00	.00346 37451
.00 24 00 00	.00054 93164	.00 64 00 00	.00152 58789	.00 A4 00 00	.00250 24414	.00 E4 00 00	.00347 90039
.00 25 00 00	.00056 45751	.00 65 00 00	.00154 11376	.00 A5 00 00	.00251 77001	.00 E5 00 00	.00349 42626
.00 26 00 00	.00057 98339	.00 66 00 00	.00155 63964	.00 A6 00 00	.00253 29589	.00 E6 00 00	.00350 95214
.00 27 00 00	.00059 50927	.00 67 00 00	.00157 16552	.00 A7 00 00	.00254 82177	.00 E7 00 00	.00352 4/802
.00 28 00 00	.00061 03515	00 00 88 00 00	.00158 69140	00 00 8A 00 00	.00256 34/65		.00354 00370
.00 29 00 00	.00062 30103		.00160 21726		.00257 87353		00357 05566
.00 2A 00 00	.00065 61279	.00 6B 00 00	.00163 26904	00 AB 00 00	.00260 92529	.00 EB 00 00	.00358 58154
.00 2C 00 00	.00067 13867	.00 6C 00 00	.00164 79492	.00 AC 00 00	.00262 45117	.00 EC 00 00	.00360 10742
.00 2D 00 00	.00068 66455	.00 6D 00 00	.00166 32080	.00 AD 00 00	.00263 97705	.00 ED 00 00	.00361 63330
.00 2E 00 00	.00070 19042	.00 6E 00 00	.00167 84667	.00 AE 00 00	.00265 50292	.00 EE 00 00	.00363 15917
.00 2F 00 00	.00071 71630	.00 6F 00 00	.00169 37255	.00 AF 00 00	.00267 02880	.00 EF 00 00	.00364 68505
.00 30 00 00	.00073 24218	.00 70 00 00	.00170 89843	.00 B0 00 00	.00268 55468	.00 F0 00 00	.00366 21093
.00 31 00 00	.00074 76806	.00 71 00 00	.00172 42431	.00 B1 00 00	.00270 08056	.00 F1 00 00	.00367 73681
.00 32 00 00	.000/6 29394		.00173 95019	.00 B2 00 00	.002/1 60644	.00 F2 00 00	.00309 20209
.00 33 00 00	.00077 81982		.00175 4/60/	00 B3 00 00	.00273 13232	00 F4 00 00	.00370 78837
	00080 87158	00 75 00 00	00178 52783	.00 B4 00 00	.00274 03020	.00 F5 00 00	.00373 84033
.00 36 00 00	.00082 39746	.00 76 00 00	.00180 05371	.00 B6 00 00	.00277 70996	.00 F6 00 00	.00375 36621
.00 37 00 00	.00083 92333	.00 77 00 00	.00181 57958	.00 B7 00 00	.00279 23583	.00 F7 00 00	.00376 89208
.00 38 00 00	.00085 44921	.00 78 00 00	.00183 10546	.00 B8 00 00	.00280 76171	.00 F8 00 00	.00378 41796
.00 39 00 00	.00086 97509	.00 79 00 00	.00184 63134	.00 B9 00 00	.00282 28759	.00 F9 00 00	.00379 94384
.00 3A 00 00	.00088 50097	.00 7A 00 00	.00186 15722	.00 BA 00 00	.00283 81347	.00 FA 00 00	.00381 46972
.00 3B 00 00	.00090 02685	.00 7B 00 00	.00187 68310	00 BE 00 00	.00285 33935		00384 53149
.00 3C 00 00	.00091 55273		.00189 20898		.00200 00323		00386 04736
00 3E 00 00	00073 0/001	007E 0000	.0017073480	.00 BE 00 00	.00289 91699	.00 FE 00 00	.00387 57324
.00 3E 00 00	.00096 13037	.00 7E 00 00	.00193 78662	.00 BF 00 00	.00291 44287	.00 FF 00 00	.00389 09912
		1		1		1	

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

00 00 00000	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
000001 000000 000000 000000000000000000000000000000000000	.00 00 00 00	.00000 00000	.00 00 40 00	.00000 38146	.00 00 80 00	.00000 76293	.00 00 C0 00	.00001 14440
0.0 0.0 0.0000 01192 0.0 0.0000 13337 0.000 0.0000 7486 0.000 0.0000 1622 0.0 0.0 0.0000 01234 0.0000 1023 1.0000 10000 78778 0.000 0.0000 11421 0.0 0.0000 01376 0.0000 10104 1.00000 11421 0.0000 100000 11421 0.0000 11421 0.0000 11421 0.0000 11421 0.0000 11421 0.0000 11421 0.0000 11421 0.0000 11421 0.0000 11421 0.0000 11421 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000 11431 0.0000	.00 00 01 00	.00000 00596	.00 00 41 00	.00000 38743	.00 00 81 00	.00000 76889	.00 00 C1 00	.00001 15036
0.0 0.0 0.0000 1728 0.0000 1628 0.0 0.0000 78682 0.0	.00 00 02 00	.00000 01192	.00 00 42 00	.00000 39339	.00 00 82 00	.00000 77486	.00 00 C2 00	.00001 15633
0.00004 0.00000 02844 0.00004 0.00000 02876 0.00000 02876 0.00000 0.00	.00 00 03 00	.00000 01788	.00 00 43 00	.00000 39935	.00 00 83 00	.00000 78082	.00 00 C3 00	.00001 16229
0.0000 0.0000 00000 0.00000 0.00000 0.0000	.00 00 04 00	.00000 02384	.00 00 44 00	.00000 40531	.00 00 84 00	.00000 78678	.00 00 C4 00	.00001 16825
10 0.00 0.0000 0472 100 0.00 200 0.0000 07 00 0000 18413 00 05 00 00000 0534 .00 0.0000 4311 .00 0.0000 00000 1845 .00 000 C C 00 .00001 18965 00 00 0.0000 0.0000 4703 .00 0.0000 0.0000 .00001 18965 00 0.0000 0.0000 0.0000 .00000 .00001 29977 .00 0.00000 .00000 2718 .00 .00001 27381 00 0.0000 0.0000 0.0000 .00000 .00001 27331 .00 0.00000 .00000 .00001 27331 .00 .00000 .00000 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 <t< td=""><td></td><td>.00000 02980</td><td></td><td>.00000 4112/</td><td></td><td>.00000 79274</td><td></td><td>.00001 1/421</td></t<>		.00000 02980		.00000 4112/		.00000 79274		.00001 1/421
000000000000000000000000000000000000	.00 00 07 00	.00000 03070	.00 00 40 00	.00000 41723	.00 00 87 00	.00000 77870	.00 00 C7 00	.00001 18613
00 00 P 00 .00000 05364 .000 04 9 00 .00000 1468 .00000 05256 .000 00 2265 .000 00 2275 .000 00 50 00 .00000 8443 .000 00 200 .00000 12275 .000 00 726 .000 00 00 00 000 .0000 02275 .000 00 720 .000 00 000 .00000 12377 .000 00 10 00 .00000 12377 .000 00 10 00 .00000 12377 .000 00 10 00 .00000 12377 .000 00 10 00 .00000 12377 .000 00 10 00 .00000 12377 .000 00 10 00 .00000 12377 .000 00 12401 .000 00 12401 .00000 12377 .000 00 720 .000 00 10 00 .00000 12377 .000 00 12401 .000 00 12401 .000 00 12401 .0000 12401 .0000 12401 .0000 12401 .0000 12401 .0000 01 12401 .00000 12401 .00000	.00 00 08 00	.00000 04768	.00 00 48 00	.00000 42915	.00 00 88 00	.00000 81062	.00 00 C8 00	.00001 19209
00 00 0k 00 .0000 05560 .00 00 4 00 .0000 05224 .00 00 C 200 .0000 05254 .00 00 C 200 .0000 05255 .00 00 05 00 .0000 05255 .00 00 05 00 .0000 05255 .00 00 05 00 .0000 05255 .00 00 05 00 .0000 05255 .00 00 05 00 .0000 05255 .00 00 05 00 .0000 05234 .00 00 05 00 .0000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 05234 .00 00 05 00 .00000 12575 .00 00 10 0000 12575 .00 000 05 00 .00000 05234 .00 0000 05234 .00 0000 05234 .00 00000 05234 .00 0000 052344 .00 000	.00 00 09 00	.00000 05364	.00 00 49 00	.00000 43511	.00 00 89 00	.00000 81658	.00 00 C9 00	.00001 19805
00 00 80 00 .0000 04556 .00 00 48 00 .0000 04703 .00 00 88 00 .00000 82460 .00 00 0C 00 .0000 07748 .00 00 40 00 .0000 04597 .00 00 00 .0000 04597 .00 00 00 .0000 04598 .00 00 00 .0000 04598 .00 00 00 .0000 04598 .00 00 00 .0000 04533 .00 00 0C 00 .0000 04788 .00 00 00 .0000 04598 .00 00 00 .0000 04598 .00 00 00 .0000 04598 .00 00 00 .0000 04598 .00 00 00 .0000 04598 .00 00 00 .0000 04598 .00 00 00 .0000 04598 .00 00 0700 .0000 01 2377 .00 00 10 .00000 04722 .00 00 01 00 .00001 24575 00 00 11 00 .000001 1324 .00 00 50 .000004 4777 .00 00 75 00 .00000 87168 .00 00 00 00 00 .00000 12516 .00 00 05 00 .00000 87168 .00 00 00 00 00 00 .00000 12533 00 00 15 00 .000001 12516 .00 00 5 00 .00000 9750 .00 00 00 0000 12753 .00 00 05 00 .00000 12753 .00 00 00 0000 00000 .00000 12753 .00 00 00 0000 00000 .00000 12753 .00 00 00 00 0000 00000 .00000 12753	00 A0 00 00.	.00000 05960	.00 00 4A 00	.00000 44107	.00 00 8A 00	.00000 82254	.00 00 CA 00	.00001 20401
000 00 C 00 .00000 07152 .000 00 4C 00 .00000 8246 .000 00 C 00 .00000 12189 000 00 D 00 .00000 08344 .000 00 4E 00 .00000 8443 .000 00 C 00 .00000 12189 000 00 D 00 .00000 08344 .000 00 50 .00000 1000 .00000 8443 .000 00 C 00 .00000 12331 00 00 D 10 .00000 07533 .000 05 00 .00000 8716 .000 00 00 .00000 8716 .000 00 00 .00000 12573 00 00 112 .000 00 11728 .000 05 10 .00000 84711 .000 00 00 .00000 87161 .000 00 1200 .00000 12575 00 00 112 .000 00 11728 .000 05 10 .00000 5563 .000 00 74 00 .00000 87161 .000 00 1200 .00000 12575 00 00 11 400 .000001 11720 .000 05 00 .00000 5563 .000 09 700 .000000 87161 .000 00 10000 12697 00 00 11 400 .000001 13113 .000 05 00 .00000 55643 .000 09 700 .00000 00000 12697 .000000 12000 12697 00 00 11300 .00000 5400 .000000 90003 .000 00 0000 120000 .00000 12000 .00000 12000 <td>.00 00 0B 00</td> <td>.00000 06556</td> <td>.00 00 4B 00</td> <td>.00000 44703</td> <td>.00 00 8B 00</td> <td>.00000 82850</td> <td>.00 00 CB 00</td> <td>.00001 20997</td>	.00 00 0B 00	.00000 06556	.00 00 4B 00	.00000 44703	.00 00 8B 00	.00000 82850	.00 00 CB 00	.00001 20997
$ \begin{array}{c} 100 \ 000 \ 000 \ 0000$.00 00 0C 00	.00000 0/152	.00 00 4C 00	.00000 45299	.00 00 8C 00	.00000 83446	.00 00 CC 00	.00001 21593
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	.00 00 0D 00	.00000 07748	00 00 4D 00	.00000 45895		.00000 84042		.00001 22189
0 0	.00 00 0E 00	.00000 08940	.00 00 4E 00	.00000 47087	.00 00 8E 00	.00000 85234	.00 00 CE 00	.00001 23381
$ \begin{array}{c} 0.0 & 0.0 & 0.0 & 0.0000 & 0.000 & 0.000 & 0.0000$				00000 17/00				00001 00077
cc cc<		.00000 09536		.00000 4/683 00000 19270		.00000 85830		.00001 239/7
100 001 13 00 0000 1324 00 0000 2745 0000 12765 0000 12765 0000 12765 0000 12765 0000 12765 0000 12765 0000 12765 0000 12765 0000 12765 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12753 0000 12764 0000 12753 0000 12765 0000 12765 0000 12765 0000 12765 0000 12765 0000 12765 0000 12765 0000 12771 0000 1070 0000		00000 10132		.00000 4827 9		00000 80420		.00001 24573
00 014 00 00000 1520 .00000 5400 .00000 5540 .00000 5550 .00000 .00000 5550 .00000 .00000 5550 .00000 .00000 5550 .00000 .00000 .00	.00 00 13 00	.00000 11324	.00 00 53 00	.00000 49471	.00 00 93 00	.00000 87618	.00 00 D3 00	.00001 25765
00 00 15 00 .00000 12516 .000 05 50 .00000 50253 .000 095 00 .00000 18950 .000 00 127553 00 00 17 00 .00000 1379 .00 057 00 .00000 51253 .00 00 97 00 .00000 90033 .00 00 00 0000 .000 00 127553 00 00 18 00 .00000 14051 .00 00 57 00 .00000 53454 .00 00 97 00 .00000 1979 .00 00 00 0000 .0000 127533 00 00 18 00 .00000 14001 .000 05 40 .00000 5442 .00 00 97 00 .00000 1771 .00 00 1400 .00001 13334 00 00 11 00 .00000 16693 .000 05 00 .00000 5424 .000 09 700 .00000 79783 .000 00 10 .00001 13725 00 00 11 00 .00000 15427 .000 05 10 .00000 55428 .000 09 700 .00000 79783 .000 00 1000 .00001 13725 .00 00 11 1703 .000 05 100 .00000 57220 .000 04 00 .00000 99377 .000 00 1000 .00001 13725 .00 00 12 100 .00000 1477 .000 05 100 .00000 57220 .000 04 00 .0000 02347 .000 00 10000 13334 .00 00 220 00 .000000 14777	.00 00 14 00	.00000 11920	.00 00 54 00	.00000 50067	.00 00 94 00	.00000 88214	.00 00 D4 00	.00001 26361
00 00 16 00 .00000 13113 .00 00 55 00 .00000 51255 .000 09 % 00 .00000 97063 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7500 .0000 01 12342 .000 01 8 00 .0000 11 2533 .000 01 7503 .000 00 7571 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7571 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 7503 .000 00 750	.00 00 15 00	.00000 12516	.00 00 55 00	.00000 50663	.00 00 95 00	.00000 88810	.00 00 D5 00	.00001 26957
000017 00000017 0000017 <t< td=""><td>.00 00 16 00</td><td>.00000 13113</td><td>.00 00 56 00</td><td>.00000 51259</td><td>.00 00 96 00</td><td>.00000 89406</td><td>.00 00 D6 00</td><td>.00001 27553</td></t<>	.00 00 16 00	.00000 13113	.00 00 56 00	.00000 51259	.00 00 96 00	.00000 89406	.00 00 D6 00	.00001 27553
0.0 00 18 00 .00 00 58 00 .00 00 58 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 78 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 79 00 .00 00 00 77 20 .00 00 70 00 .00 00 77 20 .00 00 77 20 .00 00 77 25 .00 00 72 10 0 .00 00 77 25 .00 00 77 20 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 77 25 .00 00 7	.00 00 17 00	.00000 13709	.00 00 57 00	.00000 51856	.00 00 97 00	.00000 90003	.00 00 D7 00	.00001 28149
000017000 00000017000 000000000000000000000000000000000000		.00000 14305		.00000 52452	.00 00 98 00	.00000 90599	.00 00 D8 00	.00001 28/46
00001 000001 10000000 1000000000000000000000000000000000000		00000 14901		00000 53048		.00000 91195		.00001 29342
100 100 100 00	.00 00 1A 00	.00000 16093	.00 00 58 00	.00000 54240	.00 00 98 00	.00000 92387	.00 00 DA 00	.00001 30534
.00 10 00 00000 17285 .00 00000 55432 .00 0000 98.00 .00000 98.07 .00 00 00 00001 17285 .00 00	.00 00 1C 00	.00000 16689	.00 00 5C 00	.00000 54836	.00 00 9C 00	.00000 92983	.00 00 DC 00	.00001 31130
0.0000 IE 00 .00000 18477 .00 00 5E 00 .00000 56628 .00 00 9E 00 .00000 94175 .00 00 DE 00 .00001 32218 0.00 00 21 00 .00000 18477 .00 00 5F 00 .00000 57220 .00 00 A0 00 .00000 95337 .00 00 DE 00 .00001 3218 0.00 02 10 .00000 18459 .00 00 6E 00 .00000 57816 .00 00 A1 00 .00000 95337 .00 00 E 00 .00001 34716 0.00 02 20 .00000 02861 .00 00 65 00 .00000 58042 .00 00 A3 00 .00000 97155 .00 00 E 00 .00001 35302 0.00 02 20 .00000 22053 .00 00 65 00 .00000 59064 .00 00 A3 00 .00000 97155 .00 00 E 00 .00001 36494 .00 00 22 00 .00000 42 00 .00000 45 00 .00000 45 00 .00000 7155 .00 00 E 5 00 .00001 3788 .00 00 22 00 .00000 42 00 .00000 45 00 .00000 45 00 .00000 7135 .00 00 E 6 00 .00001 3788 .00 00 22 00 .00000 45 00 .00000 45 00 .00000 45 00 .00000 7135 .00 00 E 6 00 .00001 3788 .00 00 22 00 .00000 45 00	.00 00 1D 00	.00000 17285	.00 00 5D 00	.00000 55432	.00 00 9D 00	.00000 93579	.00 00 DD 00	.00001 31726
.00 00 IF 00 .00000 18477 .00 00 5F 00 .00000 5624 .00 00 9F 00 .00000 94771 .00 00 DF 00 .00001 32118 .00 00 20 00 .00000 19659 .00 00 64 00 .00000 5786 .00 00 07565 .00 00 E0 00 .00001 34110 .00 00 21 00 .00000 20455 .00 00 43 00 .00000 75761 .00 00 A1 00 .00000 95537 .00 00 E1 00 .00001 34706 .00 00 21 00 .00000 21457 .00 00 43 00 .00000 5964 .00 00 A4 00 .00000 97751 .00 00 E1 00 .00001 35898 .00 00 25 00 .00000 21457 .00 00 45 00 .00000 4766 .00000 99533 .00 00 E5 00 .00001 37080 .00 00 25 00 .00000 22449 .00 00 46 00 .00000 4192 .00 00 A7 00 .00000 99539 .00 00 E5 00 .00001 37686 .00 00 24 00 .00000 23441 .00 00 46 00 .00000 41988 .00 00 A7 00 .00000 10135 .00 00 E8 00 .00001 37686 .00 00 24 00 .00000 2523 .00 00 46 00 .00000 4373 .00 00 A8 00 .00001 10132 .00 00 E0 0 .00001 38788 .00 00 25 00	.00 00 1E 00	.00000 17881	.00 00 5E 00	.00000 56028	.00 00 9E 00	.00000 94175	.00 00 DE 00	.00001 32322
100 100 <td>.00 00 1F 00</td> <td>.00000 18477</td> <td>.00 00 5F 00</td> <td>.00000 56624</td> <td>.00 00 9F 00</td> <td>.00000 94771</td> <td>.00 00 DF 00</td> <td>.00001 32918</td>	.00 00 1F 00	.00000 18477	.00 00 5F 00	.00000 56624	.00 00 9F 00	.00000 94771	.00 00 DF 00	.00001 32918
100 02 1 00 100 00 21 00 100 00 21 00 100 00 21 00 100 00 21 00 100 00 21 00 100 00 21 00 100 00 21 00 100 00 21 00 100 00 21 00 100 00 21 00 100 00 21 00 100 00 23 00 100 00 23 00 100 00 21 00 100 00 21 00 100 00 23 00 100 00 21 00 100 00 00 10 00 00 10 000 100 00 00 00 00 <t< td=""><td>.00 00 20 00</td><td>.00000 190/3</td><td></td><td>.00000 57220</td><td>00 0A 00 00.</td><td>.00000 95367</td><td>.00 00 E0 00</td><td>.00001 33514</td></t<>	.00 00 20 00	.00000 190/3		.00000 57220	00 0A 00 00.	.00000 95367	.00 00 E0 00	.00001 33514
1.000012 1.0000120841 1.000012		.00000 19009		.00000 57810	00 00 AT 00	.00000 93963	.00 00 E1 00	.00001 34110
00 00 00 00 04 00 00000 97751 .00 00 02 00 00 25 00 .00001 25898 .00 00 25 0 .00000 22649 .00 00 6 .00000 4844 .00 00 6 .00001 35989 .00 00 25 00 .00000 22649 .00 00 6 .00000 4844 .00 00 6 .00001 37686 .00 02 0 .00000 2433 .00 00 6 .00000 61388 .00 00 A0 .00001 038176 .00 .00001 01317 .00 00 EB 0 .00001 38474 .00 02 00 .00000 2533 .00 06 .00001 3878 .00 00 .00001 38474 .00 00 .00001 .00001 .00001	.00 00 22 00	.00000 20203	.00 00 63 00	.00000 59008	.00 00 A2 00	.00000 97155	.00 00 E2 00	.00001 35302
.00 00 25 00 .00000 22053 .00 00 65 00 .00000 60200 .00 00 A5 00 .00000 98347 .00 00 E5 00 .00001 37090 .00 00 28 00 .00000 23245 .00 00 68 00 .00000 61392 .00 00 A5 00 .00000 99539 .00 00 E5 00 .00001 37686 .00 00 29 00 .00000 23441 .00 00 68 00 .00000 63182 .00 00 A7 00 .00001 10135 .00 00 E5 00 .00001 38282 .00 00 29 00 .00000 25629 .00 00 68 00 .00000 63180 .00 00 A4 00 .00001 101327 .00 00 EF 00 .00001 38784 .00 00 26 00 .00000 25629 .00 00 68 00 .00000 63180 .00 00 AA 00 .00001 10127 .00 00 EC 00 .00001 410070 .00 00 2C 00 .00000 25224 .00 00 64 00 .00000 64373 .00 00 AC 00 .00001 12519 .00 00 EC 00 .00001 41263 .00 00 2E 00 .00000 28014 .00 00 6F 00 .00000 64557 .00 00 AF 00 .00001 03712 .00 00 EF 00 .00001 42455 .00 00 30 00 .00000 29801 .00 00 70 00 .00000 6757 .00 00 081 00 .00001 05500 .00 00 F1 00 <t< td=""><td>.00 00 24 00</td><td>.00000 21457</td><td>.00 00 64 00</td><td>.00000 59604</td><td>.00 00 A4 00</td><td>.00000 97751</td><td>.00 00 E4 00</td><td>.00001 35898</td></t<>	.00 00 24 00	.00000 21457	.00 00 64 00	.00000 59604	.00 00 A4 00	.00000 97751	.00 00 E4 00	.00001 35898
.00 00 26 00 .00000 22649 .00 00 66 00 .00000 607%6 .00 00 A6 00 .00000 98943 .00 00 E6 00 .00001 370%0 .00 00 27 00 .00000 23841 .00 00 67 00 .00000 61392 .00 00 A7 00 .00000 95397 .00 00 E7 00 .00001 37868 .00 00 29 00 .00000 23443 .00 00 68 00 .00000 61388 .00 00 A8 00 .00001 10132 .00 00 E8 00 .00001 38878 .00 00 28 00 .00000 25629 .00 00 64 00 .00000 63776 .00 00 A8 00 .00001 101327 .00 00 E0 00 .00001 40070 .00 00 20 00 .00000 26222 .00 00 64 00 .00000 63776 .00 00 AB 00 .00001 0219 .00 00 EC 00 .00001 41263 .00 00 20 00 .00000 26822 .00 00 64 00 .00000 64755 .00 00 AE 00 .00001 03116 .00 00 ED 00 .00001 41263 .00 00 2F 00 .00000 28410 .00 00 6F 00 .00000 64757 .00 00 AF 00 .00001 04308 .00 00 EF 00 .00001 43647 .00 00 2F 00 .00000 28401 .00 00 70 00 .00000 6733 .00 00 AF 00 .00001 04596 .00 00 F1 00 .	.00 00 25 00	.00000 22053	.00 00 65 00	.00000 60200	.00 00 A5 00	.00000 98347	.00 00 E5 00	.00001 36494
00 00 27 00 .00000 23245 .00 00 67 00 .00000 61392 .00 00 47 00 .00000 99539 .00 00 E8 00 .00001 37686 .00 00 28 00 .00000 24437 .00 00 68 00 .00000 62844 .00 00 69 00 .00000 62844 .00 00 68 00 .00001 00135 .00 00 E8 00 .00001 38278 .00 00 28 00 .00000 25033 .00 00 6A 00 .00000 63764 .00 00 AA 00 .00001 1923 .00 00 EC 00 .00001 40070 .00 00 20 00 .00000 26222 .00 00 6C 00 .00000 64767 .00 00 AA 00 .00001 03711 .00 00 EC 00 .00001 40070 .00 00 2F 00 .00000 26222 .00 00 6E 00 .00000 64767 .00 00 AE 00 .00001 03712 .00 00 EF 00 .00001 41263 .00 00 2F 00 .00000 27118 .00 00 6F 00 .00000 65555 .00 00 AE 00 .00001 03712 .00 00 EF 00 .00001 42455 .00 00 2F 00 .00000 28610 .00 00 71 00 .00000 67533 .00 00 80 0 .00001 40308 .00 00 F1 00 .00001 43647 .00 00 30 00 .00000 3098 .00 00 73 00 .00000 67333 .00 00 81 00 .000	.00 00 26 00	.00000 22649	.00 00 66 00	.00000 60796	.00 00 A6 00	.00000 98943	.00 00 E6 00	.00001 37090
.00 00 28 00 .00000 23841 .00 00 68 00 .00000 61988 .00 00 A8 00 .00001 10135 .00 00 E9 00 .00001 3878 .00 00 29 00 .00000 24437 .00 00 64 00 .00000 62584 .00 00 A9 00 .00001 10327 .00 00 E9 00 .00001 39747 .00 00 2A 00 .00000 25629 .00 00 6A 00 .00000 63776 .00 00 AB 00 .00001 1923 .00 00 EB 00 .00001 40070 .00 00 2E 00 .00000 25629 .00 00 6C 00 .00000 64373 .00 00 AC 00 .00001 12519 .00 00 ED 00 .00001 40666 .00 00 2E 00 .00000 28422 .00 00 6E 00 .00000 64555 .00 00 AE 00 .00001 03116 .00 00 ED 00 .00001 41859 .00 00 2E 00 .00000 28014 .00 00 6F 00 .00000 65555 .00 00 AF 00 .00001 04308 .00 00 F0 00 .00001 42455 .00 00 30 00 .00000 28610 .00 00 70 00 .00000 67533 .00 00 B1 00 .00001 14308 .00 00 F1 00 .00001 43641 .00 00 32 00 .00000 3398 .00 00 73 00 .00000 67333 .00 00 B2 00 .00001 66692 .00 00 0F 100 .0	.00 00 27 00	.00000 23245	.00 00 67 00	.00000 61392	.00 00 A7 00	.00000 99539	.00 00 E7 00	.00001 37686
100 00 27 00 .00000 25437 .00 00 87 00 .00000 62584 .00 00 AA 00 .00001 10377 .00 00 EA 00 .00001 39478 00 00 28 00 .00000 25629 .00 00 6A 00 .00000 63776 .00 00 AA 00 .00001 10327 .00 00 EB 00 .00001 40070 .00 00 2E 00 .00000 26226 .00 00 6C 00 .00000 64776 .00 00 AA 00 .00001 103116 .00 00 ED 00 .00001 40666 .00 00 2E 00 .00000 28222 .00 00 6E 00 .00000 64555 .00 00 AE 00 .00001 13316 .00 00 ED 00 .00001 41859 .00 00 2F 00 .00000 28014 .00 00 6E 00 .00000 65555 .00 00 AF 00 .00001 14308 .00 00 FE 00 .00001 42455 .00 00 30 00 .00000 28610 .00 00 71 00 .00000 67353 .00 00 B1 00 .00001 64904 .00 00 FE 00 .00001 43647 .00 00 31 00 .00000 29206 .00 00 72 00 .00000 67349 .00 00 B1 00 .00001 65500 .00 00 F1 00 .00001 43447 .00 00 32 00 .00000 3398 .00 00 73 00 .00000 67949 .00 00 B2 00 .00001 66592 .00 00 F2 00 .00001 44243 .00 00 33 00 .00000 31590 .00 00 75 00 <td>.00 00 28 00</td> <td>.00000 23841</td> <td>.00 00 68 00</td> <td>.00000 61988</td> <td>00 8A 00 00.</td> <td>.00001 00135</td> <td>.00 00 E8 00</td> <td>.00001 38282</td>	.00 00 28 00	.00000 23841	.00 00 68 00	.00000 61988	00 8A 00 00.	.00001 00135	.00 00 E8 00	.00001 38282
100 00 2F 00 100 00 2629 100 00 6F 00 100 00 63776 100 00 AF 00 100 00 1923 100 00 EF 00 100 00 14243 100 00 2F 00 100 00 26226 100 00 6F 00 100000 43776 100 00 AF 00 100 00 12519 100 00 EF 00 100001 40666 100 00 2F 00 100000 26422 100 00 6F 00 100000 44969 100 00 AF 00 100001 03712 100 00 EF 00 100001 41859 100 00 2F 00 100000 28014 100 00 6F 00 100000 64757 100 00 AF 00 100001 04904 100 00 EF 00 100001 42455 100 00 31 00 00000 298012 100 00 77 00 00000 67353 100 00 B1 00 100001 05500 100 00 F1 00 100001 42443 100 00 32 00 100000 29802 100 00 72 00 00000 67349 100 00 B2 00 100001 05500 100 00 F1 00 100001 44243 100 00 33 00 100000 3398 100 00 75 00 100000 67337 100 00 B3 00 10001 06696 100 00 F4 00 100001 44243 100 00 34 00 100000 3398 100 00 75 00 100000 67377 100 00 B4 00 10001 07288 100 00 F4 00 100001 44243 100 00 34 00 1000000 33984 100 00 75 00		.00000 2443/		.00000 62584		.00001 00/31	.00 00 E9 00	.00001 388/8
00 00 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .00 00 AC 00 .00001 0219 .00 00 EC 00 .00001 41263 .00 00 2E 00 .00000 27418 .00 00 6E 00 .00000 645565 .00 00 AE 00 .00001 03116 .00 00 EE 00 .00001 41859 .00 00 2F 00 .00000 28014 .00 00 6F 00 .00000 64557 .00 00 AF 00 .00001 04308 .00 00 FF 00 .00001 43647 .00 00 31 00 .00000 28610 .00 00 70 00 .00000 67577 .00 00 B0 00 .00001 04904 .00 00 F1 00 .00001 43647 .00 00 32 00 .00000 29802 .00 00 71 00 .00000 67573 .00 00 B1 00 .00001 0696 .00 00 F1 00 .00001 44243 .00 00 32 00 .00000 29802 .00 00 73 00 .00000 67937 .00 00 B2 00 .00001 0696 .00 00 F1 00 .00001 44389 .00 00 33 00 .00000 30994 .00 00 75 00 .00000 67337 .00 00 B5 00 .00001 07884 .00 00 F4 00 .00001 44631 .00 00 32 00 .00000 31590 .00 00 76 00 .00000 70333 .00 00 B7 00 .00001 07884 .00 00 F5 00 .00	.00 00 2B 00	.00000 25629	.00 00 68 00	.00000 63776	.00 00 AB 00	.00001 01923	.00 00 ER 00	.00001 40070
.00 00 2D 00 .00000 26822 .00 00 6D 00 .00000 64969 .00 00 AD 00 .00001 03116 .00 00 ED 00 .00001 41263 .00 00 2F 00 .00000 28014 .00 00 6F 00 .00000 65565 .00 00 AF 00 .00001 03712 .00 00 EE 00 .00001 42455 .00 00 30 00 .00000 28610 .00 00 70 00 .00000 66757 .00 00 B0 00 .00001 04904 .00 00 F1 00 .00001 43061 .00 00 31 00 .00000 29206 .00 00 71 00 .00000 67533 .00 00 B1 00 .00001 06964 .00 00 F1 00 .00001 42433 .00 00 33 00 .00000 29206 .00 00 72 00 .00000 67949 .00 00 B2 00 .00001 06964 .00 00 F2 00 .00001 42433 .00 00 33 00 .00000 30994 .00 00 74 00 .00000 69737 .00 00 B3 00 .00001 07884 .00 00 F5 00 .00001 46632 .00 00 37 00 .00000 32782 .00 00 77 00 .00000 70929 .00 00 B5 00 .00001 07884 .00 00 F6 00 .00001 46637 .00 00 37 00 .00000 77 00 .00000 70233 .00 00 B5 00 .00001 07884 .00 00 F5 00 .00001 46627	.00 00 2C 00	.00000 26226	.00 00 6C 00	.00000 64373	.00 00 AC 00	.00001 02519	.00 00 EC 00	.00001 40666
.00 00 2E 00 .00000 27418 .00 00 6E 00 .00000 65565 .00 00 AE .00001 03712 .00 00 EE .00 00 141859 .00 00 2F .00 000 28014 .00 00 6F .00000 66161 .00 00 AF .00001 04308 .00 00 EF .00 000 142455 .00 00 31 .00 0000 29206 .00 00 71 .00 0000 67353 .00 00 B1 .00 0001 05500 .00 00 F1 .00 0001 43647 .00 00 32 .00 .00000 29206 .00 00 72 .00 0000 67349 .00 00 B1 .00 0001 66692 .00 00 F1 .00 0001 44243 .00 00 33 .00 00 73 .00 .00000 67149 .00 00 B3 .00 00 F2 .00 00 F1 .00 0001 44839 .00 00 34 .00 .00000 30398 .00 00 74 .00 000 69737 .00 00 B4 .00 0001 07884 .00 00 F6 .00 001 44631 .00 00 37 .00 00 77 .00 .00000 7929 .00 00 B5 .00 001 7884 .00 00 F6 .00 0001 44637 .00 00 37 .00 00 77 .00 .00000 7929 .00 00 B8 .00 00 76 .00 000 76 .00 00 76 .00 0001 46677 .00 00 78 .0	.00 00 2D 00	.00000 26822	.00 00 6D 00	.00000 64969	.00 00 AD 00	.00001 03116	.00 00 ED 00	.00001 41263
.00 00 2F 00 .00000 28014 .00 00 6F .00000 66161 .00 00 AF .00001 04308 .00 00 EF .00001 42455 .00 00 30 00 .00000 28610 .00 00 70 00 .00000 66757 .00 00 80 00 .00001 04904 .00 00 F0 00 .00001 43051 .00 00 31 00 .00000 29206 .00 00 71 00 .00000 67353 .00 00 81 00 .00001 05500 .00 00 F1 00 .00001 44243 .00 00 32 00 .00000 30398 .00 00 72 00 .00000 68545 .00 00 82 00 .00001 06692 .00 00 F3 00 .00001 44243 .00 00 34 00 .00000 30994 .00 00 74 00 .00000 69141 .00 00 84 00 .00001 07884 .00 00 F5 00 .00001 4631 .00 00 37 00 .00000 76 00 .00000 77333 .00 00 87 00 .00001 7884 .00 00 F6 00 .00001 4627 .00 00 32 00 .00000 32782 .00 00 77 00 .00000 71255 .00 00 87 00 .00001 9076 .00 00 F7 00 .00001 47233 .00 00 38 00 .00000 33774 .00 00 78 00 .00000 72171 .00 00 88 00 .00001 10268 .00 00 F8 00 .00001 47213 <td>.00 00 2E 00</td> <td>.00000 27418</td> <td>.00 00 6E 00</td> <td>.00000 65565</td> <td>.00 00 AE 00</td> <td>.00001 03712</td> <td>.00 00 EE 00</td> <td>.00001 41859</td>	.00 00 2E 00	.00000 27418	.00 00 6E 00	.00000 65565	.00 00 AE 00	.00001 03712	.00 00 EE 00	.00001 41859
.00 00 30 00 .00000 28610 .00 00 70 00 .00000 66757 .00 00 80 00 .00001 04904 .00 00 F0 00 .00001 43051 .00 00 31 00 .00000 29206 .00 00 71 00 .00000 67353 .00 00 81 00 .00001 05500 .00 00 F1 00 .00001 43647 .00 00 32 00 .00000 29802 .00 00 72 00 .00000 67949 .00 00 82 00 .00001 06696 .00 00 F2 00 .00001 44243 .00 00 34 00 .00000 30994 .00 00 74 00 .00000 69737 .00 00 85 00 .00001 07884 .00 00 F5 00 .00001 46031 .00 00 36 00 .00000 32782 .00 00 77 00 .00000 70333 .00 00 86 00 .00001 08480 .00 00 F6 00 .00001 46227 .00 00 37 00 .00000 78 00 .00000 71525 .00 00 87 00 .00001 0976 .00 00 F7 00 .00001 7217 .00 00 78 00 .00007 7313 .00 00 88 00 .00001 10864 .00 00 F8 00 .00001 48415 .00 00 38 00 .00000 33774 .00 00 78 00 .00000 7217 .00 00 80 .00001 10268 .00 00 F8 00 .00001 48415 .00 00 38 00 .00000 35762	.00 00 2F 00	.00000 28014	.00 00 6F 00	.00000 66161	.00 00 AF 00	.00001 04308	.00 00 EF 00	.00001 42455
.00 00 31 00 .00000 29206 .00 00 71 00 .00000 67353 .00 00 B1 00 .00001 05500 .00 00 F1 00 .00001 43647 .00 00 32 00 .00000 29802 .00 00 72 00 .00000 67949 .00 00 B2 00 .00001 06096 .00 00 F2 00 .00001 44243 .00 00 33 00 .00000 30398 .00 00 73 00 .00000 68545 .00 00 B3 00 .00001 06692 .00 00 F4 00 .00001 4433 .00 00 34 00 .00000 30994 .00 00 74 00 .00000 69737 .00 00 B5 00 .00001 07288 .00 00 F5 00 .00001 46031 .00 00 36 00 .00000 32186 .00 00 76 00 .00000 70333 .00 00 B6 00 .00001 08480 .00 00 F7 00 .00001 47223 .00 00 37 00 .00000 32782 .00 00 77 00 .00000 7029 .00 00 B7 00 .00001 09076 .00 00 F8 00 .00001 47223 .00 00 38 00 .00000 3377 .00 00 77 00 .00000 71225 .00 00 B8 00 .00001 09076 .00 00 F8 00 .00001 4723 .00 00 38 00 .00000 33774 .00 00 78 00 .00000 7211 .00 00 B8 00 .00001 10268 .00 00 F9 00 .0000	.00 00 30 00	.00000 28610	.00 00 70 00	.00000 66757	.00 00 B0 00	.00001 04904	.00 00 F0 00	.00001 43051
.00 00 32 00 .00000 29802 .00 00 72 00 .00000 6/949 .00 00 B2 00 .00001 06096 .00 00 F2 00 .00001 44243 .00 00 33 00 .00000 30398 .00 00 73 00 .00000 68545 .00 00 B3 00 .00001 06692 .00 00 F3 00 .00001 44339 .00 00 34 00 .00000 30994 .00 00 75 00 .00000 69737 .00 00 B5 00 .00001 07288 .00 00 F5 00 .00001 46631 .00 00 35 00 .00000 32186 .00 00 76 00 .00000 70333 .00 00 B5 00 .00001 07884 .00 00 F5 00 .00001 46227 .00 00 37 00 .00000 32782 .00 00 77 00 .00000 7929 .00 00 B7 00 .00001 09076 .00 00 F7 00 .00001 47223 .00 00 38 00 .00000 33974 .00 00 78 00 .00000 72117 .00 00 B9 00 .00001 10268 .00 00 F8 00 .00001 48415 .00 00 38 00 .00000 35166 .00 00 78 00 .00000 72117 .00 00 B8 00 .00001 10268 .00 00 FA 00 .00001 49071 .00 00 38 00 .00000 35762 .00 00 7F 00 .00000 73313 .00 00 B8 00 .00001 10268 .00 00 FA 00 .00001 4907 .00 00 38 00 .00000 35762 .00 00 7F 00	.00 00 31 00	.00000 29206	.00 00 71 00	.00000 67353	.00 00 B1 00	.00001 05500	.00 00 F1 00	.00001 43647
.00 00 33 00 .00000 30398 .00 00 73 00 .00000 68343 .00 00 83 00 .00001 06892 .00 00 F3 00 .00001 44839 .00 00 34 00 .00000 30994 .00 00 74 00 .00000 69141 .00 00 84 00 .00001 07288 .00 00 F4 00 .00001 45435 .00 00 35 00 .00000 31590 .00 00 75 00 .00000 69737 .00 00 85 00 .00001 07884 .00 00 F5 00 .00001 46031 .00 00 36 00 .00000 32186 .00 00 76 00 .00000 70929 .00 00 86 00 .00001 09076 .00 00 F7 00 .00001 47223 .00 00 38 00 .00000 33378 .00 00 77 00 .00000 71525 .00 00 88 00 .00001 109672 .00 00 F8 00 .00001 47213 .00 00 39 00 .00000 33974 .00 00 74 00 .00000 72117 .00 00 88 00 .00001 10268 .00 00 FA 00 .00001 49011 .00 00 38 00 .00000 35166 .00 00 78 00 .00000 73313 .00 00 88 00 .00001 10864 .00 00 FA 00 .00001 49011 .00 00 38 00 .00000 35762 .00 00 7A 00 .00000 73313 .00 00 BE 00 .00001 10268 .00 00 0FC 00 <t< td=""><td>.00 00 32 00</td><td>.00000 29802</td><td>.00 00 /2 00</td><td>.00000 6/949</td><td>.00 00 B2 00</td><td>.00001 06096</td><td>.00 00 F2 00</td><td>.00001 44243</td></t<>	.00 00 32 00	.00000 29802	.00 00 /2 00	.00000 6/949	.00 00 B2 00	.00001 06096	.00 00 F2 00	.00001 44243
.00 00 34 00 .00000 3074 .00 00 75 00 .00000 6737 .00 00 B5 00 .00001 07884 .00 00 F5 00 .00001 4031 .00 00 35 00 .00000 31590 .00 00 75 00 .00000 67737 .00 00 B5 00 .00001 07884 .00 00 F5 00 .00001 46031 .00 00 37 00 .00000 32782 .00 00 76 00 .00000 70929 .00 00 B5 00 .00001 99076 .00 00 F7 00 .00001 47223 .00 00 38 00 .00000 33378 .00 00 78 00 .00000 71525 .00 00 B8 00 .00001 10268 .00 00 F8 00 .00001 47213 .00 00 39 00 .00000 34570 .00 00 79 00 .00000 72121 .00 00 B9 00 .00001 10268 .00 00 F8 00 .00001 49611 .00 00 38 00 .00000 335166 .00 00 78 00 .00000 72117 .00 00 B8 00 .00001 10268 .00 00 FA 00 .00001 49011 .00 00 35 00 .00000 35762 .00 00 7E 00 .00000 7399 .00 00 BE 00 .00001 11460 .00 00 FC 00 .00001 5023 .00 00 35 00 .00000 35762 .00 00 7D 00 .00000 74505 .00 00 BE 00 .00001 12652 .00 00 FD 00 .000	.00 00 33 00	.00000 30398		.00000 68545		.00001 06692		.00001 44839
100 00 36 00 100 00 76 00 100 00 76 00 100 00 70333 100 00 86 00 100 00 18480 100 00 76 00 100 00 46627 100 00 37 00 .00000 32186 .00 00 77 00 .00000 70929 .00 00 87 00 .00001 08480 .00 00 76 00 .00001 47223 100 00 38 00 .00000 33378 .00 00 78 00 .00000 71525 .00 00 88 00 .00001 09672 .00 00 78 00 .00001 47219 100 00 38 00 .00000 33974 .00 00 78 00 .00000 72121 .00 00 88 00 .00001 10268 .00 00 78 00 .00001 48415 .00 00 38 00 .00000 34570 .00 00 7A 00 .00000 7211 .00 00 88 00 .00001 10864 .00 00 FA 00 .00001 49011 .00 00 38 00 .00000 35166 .00 00 7B 00 .00000 73313 .00 00 BB 00 .00001 11460 .00 00 FA 00 .00001 49607 .00 00 35 00 .00000 35762 .00 00 7C 00 .00000 74505 .00 00 BE 00 .00001 12652 .00 00 FC 00 .00001 5023 .00 00 3E 00 .00000 36358 .00 00 7E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .0	00 00 34 00	00000 31590		00000 69737	00 00 B4 00	00001 07288	00 00 F5 00	00001 45455
.00 00 37 00 .00000 32782 .00 00 77 00 .00000 70929 .00 00 B7 00 .00001 09076 .00 00 F7 00 .00001 47223 .00 00 38 00 .00000 33378 .00 00 78 00 .00000 71525 .00 00 B8 00 .00001 09076 .00 00 F8 00 .00001 47213 .00 00 39 00 .00000 33974 .00 00 79 00 .00000 72121 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 49011 .00 00 38 00 .00000 34570 .00 00 7A 00 .00000 72117 .00 00 B8 00 .00001 10864 .00 00 FA 00 .00001 49011 .00 00 35 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 BE 00 .00001 12056 .00 00 FC 00 .00001 50203 .00 00 3L 00 .00000 36358 .00 00 7E 00 .00000 75101 .00 00 BE 00 .00001 12652 .00 00 FD 00 .00001 50799 .00 00 3E 00 .00000 36954 .00 00 7E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395 .00 00 3F 00 .00000 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991 </td <td>.00 00 36 00</td> <td>.00000 32186</td> <td>.00 00 76 00</td> <td>.00000 70333</td> <td>.00 00 B6 00</td> <td>.00001 08480</td> <td>.00 00 F6 00</td> <td>.00001 46627</td>	.00 00 36 00	.00000 32186	.00 00 76 00	.00000 70333	.00 00 B6 00	.00001 08480	.00 00 F6 00	.00001 46627
.00 00 38 00 .00000 33378 .00 00 78 00 .00000 71525 .00 00 B8 00 .00001 09672 .00 00 F8 00 .00001 47819 .00 00 39 00 .00000 33974 .00 00 79 00 .00000 72121 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 48415 .00 00 3A 00 .00000 34570 .00 00 7A 00 .00000 72717 .00 00 BA 00 .00001 10864 .00 00 FA 00 .00001 49607 .00 00 3B 00 .00000 35166 .00 00 7B 00 .00000 73909 .00 00 BB 00 .00001 11460 .00 00 FB 00 .00001 50203 .00 00 3D 00 .00000 36358 .00 00 7D 00 .00000 75101 .00 00 BE 00 .00001 12652 .00 00 FD 00 .00001 50799 .00 00 3E 00 .00000 36954 .00 00 7E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395 .00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991	.00 00 37 00	.00000 32782	.00 00 77 00	.00000 70929	.00 00 B7 00	.00001 09076	.00 00 F7 00	.00001 47223
.00 00 39 00 .00000 33974 .00 00 79 00 .00000 72121 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 48415 .00 00 3A 00 .00000 34570 .00 00 7A 00 .00000 72717 .00 00 BA 00 .00001 10864 .00 00 FA 00 .00001 49011 .00 00 3B 00 .00000 35166 .00 00 7B 00 .00000 73313 .00 00 BB 00 .00001 11460 .00 00 FB 00 .00001 49607 .00 00 3C 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .00001 50203 .00 00 3L 00 .00000 36358 .00 00 7D 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 50799 .00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51991	.00 00 38 00	.00000 33378	.00 00 78 00	.00000 71525	.00 00 B8 00	.00001 09672	.00 00 F8 00	.00001 47819
.00 00 3A 00 .00000 34570 .00 00 7A 00 .00000 72717 .00 00 BA 00 .00001 10864 .00 00 FA 00 .00001 49011 .00 00 3B 00 .00000 35166 .00 00 7B 00 .00000 73313 .00 00 BB 00 .00001 11460 .00 00 FB 00 .00001 49607 .00 00 3C 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .00001 50203 .00 00 3D 00 .00000 36358 .00 00 7D 00 .00000 74505 .00 00 BD 00 .00001 12652 .00 00 FD 00 .00001 50799 .00 00 3E 00 .00000 36954 .00 00 7E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395 .00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991	.00 00 39 00	.00000 33974	.00 00 79 00	.00000 72121	.00 00 89 00	.00001 10268	.00 00 F9 00	.00001 48415
.00 00 38 00 .00 00 35166 .00 00 78 00 .00000 73313 .00 00 BE 00 .00001 11460 .00 00 FB 00 .00001 49607 .00 00 3C 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .00001 50203 .00 00 3D 00 .00000 36358 .00 00 7D 00 .00000 74505 .00 00 BD 00 .00001 12652 .00 00 FD 00 .00001 50799 .00 00 3E 00 .00000 36954 .00 00 7E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395 .00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991	.00 00 3A 00	.00000 34570	.00 00 7A 00	.00000 72717	.00 00 BA 00	.00001 10864	.00 00 FA 00	.00001 49011
.00 00 3C 00 .00 00 35/82 .00 00 7C 00 .00000 7307 .00 00 BC 00 .00001 12058 .00 00 FC 00 .00001 50203 .00 00 3D 00 .00000 36358 .00 00 7D 00 .00000 74505 .00 00 BC 00 .00001 12652 .00 00 FD 00 .00001 50799 .00 00 3E 00 .00000 36954 .00 00 7E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395 .00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991	.00 00 38 00	.00000 35166		.00000 /3313		.00001 11460		.00001 49607
.00 00 3E 00 .00 00 75 00 .00 00 7E 00 .00 00 75 101 .00 00 BE 00 .00001 12072 .00 00 FE 00 .00001 51395 .00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51991		00000 33/62 00000 36358		00000 73909		00001 12000		00001 50203
.00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991	.00 00 3E 00	.00000 36954	.00 00 7E 00	.00000 75101	.00 00 BE 00	.00001 13248	.00 00 FE 00	.00001 51395
	.00 00 3F 00	.00000 37550	.00 00 7F 00	.00000 75697	.00 00 BF 00	.00001 13844	.00 00 FF 00	.00001 51991

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
.00 00 00 00	.00000 00000	.00 00 00 40	.00000 00149	.00 00 00 80	.00000 00298	.00 00 00 C0	.00000 00447
.00 00 00 01	.00000 00002	.00 00 00 41	.00000 00151	.00 00 00 81	.00000 00300	.00 00 00 C1	.00000 00449
.00 00 00 02	.00000 00004	.00 00 00 42	.00000 00153	.00 00 00 82	.00000 00302	.00 00 00 C2	.00000 00451
.00 00 00 03	.00000 00006	.00 00 00 43	.00000 00155	.00 00 00 83	.00000 00305	.00 00 00 C3	.00000 00454
.00 00 00 04	.00000 00009	.00 00 00 44	.00000 00158	.00 00 00 84	.00000 00307	.00 00 00 C4	.00000 00456
.00 00 00 05	.00000 00011	.00 00 00 45	.00000 00160	.00 00 00 85	.00000 00309	.00 00 00 C5	.00000 00458
.00 00 00 06	.00000 00013		.00000 00162	.00 00 00 86	.00000 00311		.00000 00461
.00 00 00 0/			.00000 00165		.00000 00314		.00000 00463
	00000 00018		.00000 00167		.00000 00318		.00000 00465
	00000 00020		00000 00107		.00000 00318		00000 00437
00 00 00 0A	00000 00025	00 00 00 4A	00000 00172	00 00 00 88	00000 00323	00 00 00 CA	00000 00470
.00 00 00 00	.00000 00025	.00 00 00 4C	.00000 00174	.00 00 00 80	.00000 00325	.00 00 00 CC	.00000 00474
.00 00 00 0D	.00000 00030	.00 00 00 4D	.00000 00179	.00 00 00 8D	.00000 00328	.00 00 00 CD	.00000 00477
.00 00 00 0E	.00000 00032	.00 00 00 4E	.00000 00181	.00 00 00 8E	.00000 00330	.00 00 00 CE	.00000 00479
.00 00 00 0F	.00000 00034	.00 00 00 4F	.00000 00183	.00 00 00 8F	.00000 00332	.00 00 00 CF	.00000 00481
00 00 00 10	00000 00027	00 00 00 50	00000 00194	00 00 00 00	00000 00225		00000 00484
	.0000 0003/		00000 00180		00000 00335		.0000 00484
	00000 00037		00000 00188		.00000 0033/		.00000 00488
.00 00 00 12	.00000 00044	.00 00 00 52	.00000 00193	.00 00 00 93	.00000 00342		.00000 00400
.00 00 00 14	.00000 00046	.00 00 00 54	.00000 00195	.00 00 00 94	.00000 00344	.00 00 00 D4	.00000 00493
.00 00 00 15	.00000 00048	.00 00 00 55	.00000 00197	.00 00 00 95	.00000 00346	.00 00 00 D5	.00000 00495
.00 00 00 16	.00000 00051	.00 00 00 56	.00000 00200	.00 00 00 96	.00000 00349	.00 00 00 D6	.00000 00498
.00 00 00 17	.00000 00053	.00 00 00 57	.00000 00202	.00 00 00 97	.00000 00351	.00 00 00 D7	.00000 00500
.00 00 00 18	.00000 00055	.00 00 00 58	.00000 00204	.00 00 00 98	.00000 00353	.00 00 00 D8	.00000 00502
.00 00 00 19	.00000 00058	.00 00 00 59	.00000 00207	.00 00 00 99	.00000 00356	.00 00 00 D9	.00000 00505
.00 00 00 1A	.00000 00060	.00 00 00 5A	.00000 00209	.00 00 00 9A	.00000 00358	.00 00 00 DA	.00000 00507
.00 00 00 1B	.00000 00062	.00 00 00 5B	.00000 00211	.00 00 00 9B	.00000 00360	.00 00 00 DB	.00000 00509
.00 00 00 1C	.00000 00065	.00 00 00 5C	.00000 00214	.00 00 00 9C	.00000 00363	.00 00 00 DC	.00000 00512
.00 00 00 1D	.00000 0006/	.00 00 00 5D	.00000 00216	.00 00 00 9D	.00000 00365	.00 00 00 DD	.00000 00514
.00 00 00 1E .00 00 00 1F	.00000 00089	.00 00 00 5E .00 00 00 5F	.00000 00218	.00 00 00 9E .00 00 00 9F	.00000 00387	.00 00 00 DE .00 00 00 DF	.00000 00518
.00 00 00 20	.00000 00074	.00 00 00 60	.00000 00223	.00 00 00 A0	.00000 00372	.00 00 00 E0	.00000 00521
.00 00 00 21	.00000 00076	.00 00 00 61	.00000 00225	.00 00 00 A1	.00000 00374	.00 00 00 E1	.00000 00523
.00 00 00 22	.00000 00079	.00 00 00 62	.00000 00228	.00 00 00 A2	.00000 00377	.00 00 00 E2	.00000 00526
.00 00 00 23	.00000 00081	.00 00 00 63	.00000 00230	.00 00 00 A3	.00000 00379	.00 00 00 E3	.00000 00528
.00 00 00 24	.00000 00083	.00 00 00 64	.00000 00232	.00 00 00 A4	.00000 00381	.00 00 00 E4	.00000 00530
.00 00 00 25	.00000 00086	.00 00 00 65	.00000 00235	.00 00 00 A5	.00000 00384	.00 00 00 E5	.00000 00533
.00 00 00 26	.00000 00088	.00 00 00 66	.00000 00237	.00 00 00 A6	.00000 00386	.00 00 00 E6	.00000 00535
.00 00 00 27	.00000 00090	.00 00 00 67	.00000 00239	.00 00 00 A7	.00000 00366	.00 00 00 E7	.00000 00537
.00 00 00 28	.00000 00093	.00 00 00 68	.00000 00242		.00000 00371	.00 00 00 L8	00000 00540
	00000 00095		00000 00244		00000 00375	00 00 00 E7	00000 00542
.00 00 00 2R	.00000 00100	.00 00 00 6R	.00000 00240	.00 00 00 AB	.00000 00398	.00 00 00 EB	.00000 00547
.00 00 00 2C	.00000 00102	.00 00 00 6C	.00000 00251	.00 00 00 AC	.00000 00400	.00 00 00 EC	.00000 00549
.00 00 00 2D	.00000 00104	.00 00 00 6D	.00000 00253	.00 00 00 AD	.00000 00402	.00 00 00 ED	.00000 00551
.00 00 00 2E	.00000 00107	.00 00 00 6E	.00000 00256	.00 00 00 AE	.00000 00405	.00 00 00 EE	.00000 00554
.00 00 00 2F	.00000 00109	.00 00 00 6F	.00000 00258	.00 00 00 AF	.00000 00407	.00 00 00 EF	.00000 00556
.00 00 00 30	.00000 00111	.00 00 00 70	.00000 00260	.00 00 00 B0	.00000 00409	.00 00 00 F0	.00000 00558
.00 00 00 31	.00000 00114	.00 00 00 71	.00000 00263	.00 00 00 B1	.00000 00412	.00 00 00 F1	.00000 00561
.00 00 00 32	.00000 00116	.00 00 00 72	.00000 00265	.00 00 00 B2	.00000 00414	.00 00 00 F2	.00000 00563
.00 00 00 33	.00000 00118	.00 00 00 73	.00000 00267	.00 00 00 B3	.00000 00416	.00 00 00 F3	.00000 00565
	.00000 00121		00000 002/0	00 00 00 04	00000 00417	00 00 00 F4	00000 00588
00 00 00 33	.00000 00125	.00 00 00 75	.00000 00272	.00 00 00 B3	.00000 00421	.00 00 00 F6	.00000 00572
.00 00 00 37	.00000 00125	.00 00 00 77	.00000 00277	.00 00 00 B7	.00000 00426	.00 00 00 F7	.00000 00575
.00 00 00 38	.00000 00130	.00 00 00 78	.00000 00279	.00 00 00 B8	.00000 00428	.00 00 00 F8	.00000 00577
.00 00 00 39	.00000 00132	.00 00 00 79	.00000 00281	.00 00 00 B9	.00000 00430	.00 00 00 F9	.00000 00579
.00 00 00 3A	.00000 00135	.00 00 00 7A	.00000 00284	.00 00 00 BA	.00000 00433	.00 00 00 FA	.00000 00582
.00 00 00 3B	.00000 00137	.00 00 00 7B	.00000 00286	.00 00 00 BB	.00000 00435	.00 00 00 FB	.00000 00584
.00 00 00 3C	.00000 00139	.00 00 00 7C	.00000 00288	.00 00 00 BC	.00000 00437	.00 00 00 FC	.00000 00586
.00 00 00 3D	.00000 00142	.00 00 00 7D	.00000 00291	.00 00 00 BD	.00000 00440	.00 00 00 FD	.00000 00589
.00 00 00 3E	.00000 00144	.00 00 00 7E	.00000 00293	.00 00 00 BE	.00000 00442	.00 00 00 FE	.00000 00591
.00 00 00 3F	.00000 00146	.00 00 00 7F	.00000 00295	.00 00 00 BF	.00000 00444	.00 00 00 FF	.00000 00593

TABLE OF POWERS OF TWO

MATHEMATICAL CONSTANTS

APPENDIX B. REFERENCE DIAGRAMS

This appendix contains flow diagrams that are intended to illustrate the major operations involved during the execution of instructions by the SIGMA 5 computer. The flow diagrams are not intended to depict actual computer operations and sequences, but the operations and sequences shown are valid representations of the internal computer operations. The symbolic notation used in the flow diagrams is consistent with that used in other portions of this reference manual. The symbolic terms used are:

Term Meaning

- A An internal CPU register used to hold an operand obtained from the general register that is specified by the R field value in the instruction word.
- ADDR Address any reference address.
- B An internal CPU register used to hold an operand obtained from the general register that is specified by the value produced by performing a logical OR between the R field of the instruction and the value 1.
- C An internal CPU register used to hold an immediate operand obtained from the instruction, or a byte, halfword, or word operand obtained from the memory (or general register) location specified by the effective address of the instruction. For doubleword operations, the register holds the 32 high-order bits of the effective doubleword.
- D An internal CPU register used to hold the 32 loworder bits of the effective doubleword in a doubleword operation.
- EB Effective byte.
- EBL Effective byte location.
- ED Effective doubleword.
- EDL Effective doubleword location.
- EH Effective halfword.
- EHL Effective halfword location.
- EW Effective word.
- EWL Effective word location.

- I Instruction register.
- IA Instruction address.
- IRA Indirect reference address.
- MA Memory address an actual core memory address.
- OP Operation code bits 1-7 of an instruction word.
- R General register address value.
- TCC Trap condition code the code that is used during the EXCHANGE PROGRAM STATUS DOUBLE-WORD (XPSD) instruction.
- TYPE Memory access type the following values are used to indicate the reason for accessing memory:
 - 0 = write 1 = read
- WK Write key
- WL Write lock
- X Index register designator.

BASIC SIGMA 5 INSTRUCTION EXECUTION CYCLE

The hexagonal elements in the flow diagram labeled "Memory Control" refer to the memory request process shown at the right of the basic flow diagram. The memory request process is represented as a subroutine with two inputs: an address value (ADDR) and a memory access TYPE, separated by a slash, that correspond to the values shown in the "Memory Control" elements of the basic flow diagram.

The circular entry point labeled "TRAP" is a continuation of the circular exit points labeled "Trap X'n'", where n is the appropriate trap location.

The triangular entry point labeled "EXU" indicates the point in the basic flow diagram at which an instruction (being executed as an operand of the EXECUTE instruction) is started.

The triangular entry point labeled "ANLZ" indicates the point in the basic flow diagram at which the effective address computation for the instruction being analyzed is started; the triangular exit points indicate the completion of the effective address calculation.

BASIC SIGMA 5 INSTRUCTION EXECUTION CYCLE

APPENDIX C. INSTRUCTION LIST

Mnemonic	Code	Instruction Name	Addressing Type	Page
AD	10	Add Doubleword	Doubleword	35
АН	50	Add Halfword	Halfword	34
AI	20	Add Immediate	Immediate	34
AIO	6F	Acknowledge Input/Output Interrupt	Word	67
AND	4B	AND Word	Word	41
ANI 7	44	Anglyze	Word	32
	30	Add Word	Word	34
	66	Add Word to Memory	Word	37
	64	Branch and Link	Word	55
	68	Branch on Conditions Reset	Word	54
PCS	40	Branch on Conditions Set	Word	54
	64	Branch on Conditions Sel	Word	54
	04 45	Branch on Decrementing Register	Word	54
	00		Ward	55
CALI	04		Word	55
	05		word	55
CAL3	06		vyord	55
CAL4	07		vvora	30
CB	/1	Compare Byte	Byte	40
CD			Doubleword	20
CH	51	Compare Halfword	Halfword	20
	21		Immediate	40
CLM	19	Compare with Limits in Memory	Doubleword	40
CLK	39	Compare with Limits in Register	Word	40
CS	45		Word	40
CW	31		word	40
DH	26 07		Halfword	37 27
	36		Word	3/
EOK	48	Exclusive OR Word	Word	41
EXU	6/		Word	23
FAL		Floating Add Long	Doubleword	47
FAS	3D	Floating Add Short	Word	4/
FDL	IE	Floating Divide Long	Doubleword	48
FDS	3E	Floating Divide Short	Word	48
FML		Floating Multiply Long	Doubleword	40
FMS	3F	Floating Multiply Short	Word	40
FSL		Floating Subtract Long	Doubleword	40 17
F35	30	Floating Subtract Short	Word	4/
HIO	41-	Halt Input/Output	Word	22
	6B	Interpret	Word	20
LAD	IB	Load Absolute Doubleword	Doubleword	20
	5B	Load Absolute Haltword	Haltword	20
LAW	3B	Load Absolute Word	Word	20
LB	72	Load Byte	Byte	20
LCD	IA	Load Complement Doubleword	Doubleword	20
LCF	70	Load Conditions and Floating Control	Byte	30
LCFI	02	Load Conditions and Floating Control	T 1• 1	30
	~ ^		Immediate	27
LCH	5A	Load Complement Halfword	Halfword	27
LCW	3A	Load Complement Word	Word	20
LD	12	Load Doubleword	Doubleword	27
LH	52	Load Halfword	Haltword	27
	22	Load Immediate	Immediate	20
	2A	Load Multiple	word	27 51
LPSD	UE	Load Program Status Doubleword		50
LKP	26	Load Kegister Pointer	Word	08 20
LS	4A	Load Selective	Word	27 07
LW	32	Load Word	Word	<i>∠1</i>

Mnemonic	Code	Instruction Name	Addressing Type	Page
мн	57	Multiply Halfword	Halfword	36
MI	23	Multiply Immediate	Immediate	36
ММС	6F	Move to Memory Control	Word	58
MSP	13	Modify Stack Pointer	Doubleword	52
мтв	73	Modify and Test Byte	Byte	38
MTH	53	Modify and Test Halfword	Halfword	38
MTW	33	Modify and Test Word	Word	38
MW	37	Multiply Word	Word	37
OR	49	OR Word	Word	41
PLM	A0	Pull Multiple	Word	51
PLW	08	Pull Word	Word	50
PSM	OB	Push Multiple	Word	51
PSW	09	Push Word	Word	50
RD	6C	Read Direct	Word	59
S	25	Shift	Word	41
SD	18	Subtract Doubleword	Doubleword	35
SF	24	Shift Floating	Word	43
SH	58	Subtract Halfword	Halfword	35
SIO	4C	Start Input/Output	Word	63
STB	75	Store Byte	Byte	30
STCF	74	Store Conditions and Floating Control	Byte	32
STD	15	Store Doubleword	Doubleword	31
STH	55	Store Halfword	Halfword	31
STM	2B	Store Multiple	Word	31
STS	47	Store Selective	Word	31
STW	35	Store Word	Word	31
SW	38	Subtract Word	Word	35
TDV	4E	Test Device	Word	67
TIO	4D	Test Input/Output	Word	66
WAIT	2E	Wait	Word	59
WD	6D	Write Direct	Word	60
XPSD	OF	Exchange Program Status Doubleword	Doubleword	56
XW	46	Exchange Word	Word	30

APPENDIX D. SIGMA 5 EXECUTION TIMES

This appendix shows the timing (in microseconds) for executing individual Sigma 5 computer instructions under a variety of circumstances. All of the times are based on the assumption that whenever the CPU requests a service cycle from a particular memory bank, there is never a wait due to other devices (such as IOPs) being connected to that memory bank.

Basic timing information is summarized in Table D-1. A dash entry for any item indicates a nonapplicable or impossible condition for the instruction. Special notes (identified by numbers in the "Notes" column) are given at the end of the table. Execution times shown are for instructions under the most common conditions the user can expect to encounter in his program. The basic timing differences for indexed byte and halfword instructions are due to the alignment of bytes or halfwords in the specified register. For example, to load byte zero into register R, the computer must

- 1. access the byte from core;
- 2. align the byte three byte positions to the right;
- 3. load it into the register.

Also shown are the additional times that must be added to the basic times if the instruction performs a register-toregister operation (i.e., accesses one or more of the general registers for one or more operands or a direct address). The following conditions are assumed:

- 1. All instructions are in core memory.
- 2. In the case of an instruction with a direct address, its operand is in one or more of the general registers. For a push-down instruction with a direct address, however, its stack pointer doubleword is in the general registers and the stack is in core memory.
- 3. In the case of an instruction with an indirect address, the indirect reference is to one of the general registers, which contain the direct address of the operand. For all indirect address references, add 0.16 microseconds to the indirect address execution times. The resultant virtual address is assumed to be a core memory address. For a push-down instruction with an indirect address, therefore, both the stack pointer doubleword and the stack are assumed to be in core memory.
- Note: 1. All times are subject to change.
 - 2. Execution times are considered to be on the C port of memory.
 - 3. A + 10% tolerance should be allowed for all execution times.
 - 4. Sigma 5 attains memory overlap in the Push Multiple Instruction only.

BASIC INSTRUCTION TIMING TABLE

		Direct						Indirect						
		No Indexing with Byte or Halfword Alignment			No Index		Indexing with Byte or Halfword Alignment				Additional Times, Register-			
Mnemonic	Notes	or Immed	Word Index	HW 0 Byte 0	Byte 1	Byte 2	HW 1 Byte 3	or Immed	Word Index	HW 0 Byte 0	Byte 1	Byte 2	HW 1 Byte 3	to-Register Operation
AD		2.8	3.5					3.9	4.0					.82
AH		2.8		3.5			2.9	4.0		4.1			3.5	. 16
AI		1.8												0
AIO		6.9	7.3					9.1	9.2					0
AND		2.0	2.4					3.1	3.2					. 16
ANLZ	minimum	4.3	4.7					5.5	5.6					. 16
ANLZ	maximum	5.6	5.9					6.7	6.8					. 16
AW		2.0	2.4					3.1	3.2					. 16
AWM		3.3	3.7					4.5	4.6					.40
BAL		1.3	1.7					2.4	2.5					.72
BCR BCS	branch	1.2	1.6					2.4	2.5					.72
BCR BCS	no branch	2.0	2.4					3.1	3.2			_		.72
BDR BIR	branch	1.5	1.8					2.6	2.7					.72
BDR BIR	no branch	2.0	2.4					3.1	3.2					.72
CALL		1.0			<u> </u>									0
СВ		3.0		3.8	3.5	3.2	2.9	4.2		4.3	4.0	3.8	3.5	. 16
CD		2.8	3.5					3.9	4.0					.78
СН		2.8		3.5			2.9	4.0		4.1			3.5	. 16
CI		1.8										_		0
CLM		2.8	3.5					3.9	4.0					. 82
CLR		2.7	3.1					3.8	3.9					. 16
CS		2.8						3.9	4.0					. 16
CW		2.0	2.4					3.1	3.2					. 16
DH		16.0		16.5			16.1	17.1		17.2			16.6	. 16
DW		15.8	16.2					17.0	17.1					. 16
EOR		2.0	2.4		 			3.1	3.2					. 16
EXU		1.4	1.8					2.6	2.7					. 54
FAL FSL	minimum	4.9	5.3					6.0	6.1					. 78
FAL FSL	maximum	14.8	15.2					15.9	16.0					. 78
FAS FSS	minimum	4.9	5.3					6.0	6.1					. 16
FAS FSS	maximum	9.5	9.9					10.6	10.7					. 16
FDL	minimum	26.7	27.0					27.7	27.8					.78
FDL	maximum	37.2	37.6					38.3	38.4					. 78
FDS	minimum	14.4	14.8					15.5	15.6					. 16
FDS	maximum	10.0	19.4					20.1	20.2					. 16
FML	minimum	15.5	15.9					16.6	16.7					.78
FML	maximum	21.6	22.0					22.7	22.8	L		ļ		.78
FMS	minimum	9.5	9.9				ļ	10.6	10.7	ļ				. 16
FMS	maximum	12.5	12.9					13.6	13.7					. 16

BASIC INSTRUCTION TIMING TABLE (Cont.)

			Direct						Indirect						
		No Indexing with Byte or Halfword Alignment						No Indexing with Byte or Halfword Alignment						Additional Times,	
Mnemonic	Notes	or Immed	Word Index	HW 0 Byte 0	Byte 1	Byte 2	HW 1 Byte 3	or Immed	Word Index	HW 0 Byte 0	Byte 1	Byte 2	HW 1 Byte 3	to-Register Operation	
HIO	internal	7.8	8.2					10.0	10.1					0	
HIO	external	9.7	9.1					11.9	12.0					0	
INT		2.6	3.0					3.8	3.9					. 16	
LAD		3.1	3.8					4.2	4.3					.70	
LAH		3.1		3.8			3.2	4.2		4.3			3.8	. 16	
LAW		2.3	2.6					3.4	3.5					. 16	
LB		2.9		3.6	3.3	3.0	2.7	4.0		4.1	3.8	3.6	3.3	. 16	
LCF		2.9		3.6	3.3	3.0	2.7	4.0		4.1	3.8	3.6	3.3	. 16	
LCD		2.8	3.5					3.9	4.0					.70	
LCH		2.6		3.3			2.7	3.7		3.8			3.3	. 16	
LCFI		1.4												0	
LCW		2.0	2.4					3.1	3.2					. 16	
LD		2.8	3.5					3.9	4.0					.70	
LH		2.6		3.3			2.7	3.7		3.8			3.3	. 16	
LI		1.4												0	
LM	1	2.2+ 0.84N	2.6+ 0.84N					3.3+ 0.84N	3.4+ 0.84N					. 16N	
LRP		2.0	2.4					3.1	3.2					. 16	
LPSD		3.2	3.6				 	4.2	4.3					. 32	
LS		2.8	3.2			L		3.9	4.0					. 16	
LW		2.0	2.4					3.1	3.2					. 16	
мн	minimum	5.3						6.4						. 16	
мн	maximum	6.1						7.2				·		. 16	
MI	minimum	7.2												0	
MI	maximum	8.9												0	
ммс	1	2.1+ 3.52N												. 16N	
MSP		6.0	6.4					7.1	7.2					1.18	
MTB	R≠0	6.1		6.8	6.2	5.6	5.1	7.2		7.3	6.8	6.2	5.7	. 08	
MTB	R=0	4.5		5.1	4.8	4.5	4.3	5.6		5.7	5.4	5.1	4.8	. 08	
MTH	R≠0	5.5		6.2			5.1	6.7		6.8			5.7	. 08	
MTH	R=0	4.1		4.8			4.3	5.3		5.4				. 08	
	R≠0	3.6	4.0					4.7	4.8				l	.40	
MIW	к=0 • •	3.1	3.5			ļ		4.2	4.3					.40	
	minimum	7.2	7.0					8.3	8.4					. 10	
OR	maximum	0.7	7.3		<u> </u>			3.1	3.2					16	
PLM	1	9.8+	10.2+					11.0+	11.1+					1.88	
		0.84N	0.84N			<u> </u>		0.84N	0.84N					1.00	
PSM	1	9.7+	10.1+					10.9+	11.9					1.88	
PSW		0.84N	U.84N					0.84N	U. 84N			ļ		1.89	
RD	internal	1.0	2.2					20	3.0					0	
RD	external 2	4.0+D	4.4+D					5. 1+D	5.2+D					0	
S	left 3	1.1+ .28NB	1.5+ .28NB					2.2+ .28NB	2.3+ .28NB					0	

BASIC INSTRUCTION TIMING TABLE (Cont.)

		Direct						Indirect						
		Nc Index		Ind Ha	lexing wit Ifword AI	h Byte or ignment		No		Ind Ha	lexing wit Ifword Al	th Byte or ignment		Times, Register-
Mnemonic	Notes	or Immed	Word Index	HW 0 Byte 0	Byte 1	Byte 2	HW 1 Byte 3	or Immed	Word Index	HW 0 Byte 0	Byte 1	Byte 2	HW 1 Byte 3	to-Register Operation
S	right 3	1.1+ .14NB	1.5+ .14NB					2.2+ .14NB	2.3+ .14NB					0
SD		2.8	3.5					3.9	4.0					. 82
SF	short left 4	2.3+ 1.1NH	2.7+ 1.1NH					3.4+ 1.1NH	3.5+ 1.1NH					0
SF	short right 4	2.3+ .56NH	2.7+ .56NH	1				2.4+ .56NH	3.5+ .56NH					0
SF	long left 4	3.0+ 1.1NH	3.4+ 1.1NH					4.1+ 1.1NH	4.2+ 1.1NH					0
SF	long right 4	3.0+ .56NH	3.4+ .56NH					4.1+ .56NH	4.2+ .56NH					0
· SH		2.3		3.5			2.9	3.4						. 16
\$1O	internal	8.5	8.9					10.7	10.8					0
SIO	external	10.6	11.0					12.8	12.9					0
STB		2.8		4.3	4.0	3.7	3.4	3.9		4.9	4.6	4.3	4.0	08
STCF		2.8		4.3	4.0	3.7	3.4	3.9		4.9	4.6	4.3	4.0	08
STD		3.4	4.0					4.5	4.6					.48
STH		2.8		4.0			3.4	3.9		4.6			4.0	08
STM	1	2.0+ 0.84N	2.4+ 0.84N					3.1+ 0.84N	3.2+ 0.84N					. 24N
STS		3.5	3.9					4.7	4.8					.24
STW		2.5	2.9					3.6	3.7	1				. 24
SW		2.0	2.4											. 16
TDV	internal	7.8	8.2					10.0	10.1					0
TDV	external	9.7	9.1					11.9	12.0					0
TIO	internal	7.8	8.2					10.0	10.1					0
TIO	external	9.7	9.1					11.9	12.0					0
WAIT		1.5	1.9					2.6	2.7					0
WD	internal	1.8	2.2					2.9	3.0					0
WD	external 2	4.0+D	4.4+D					5.1+D	5.2+D					0
XPSD		4.8	5.1					5.9	6.0					. 80
xw		3.4	3.7					4.5	4.6					.40

Notes:

1. N = Number of words.

- D = Delay caused by an external device returning the Function Strobe Acknowledge (FSA), which is the ready/resume signal.
- 3. NB = Number of bits shifted.
- 4. NH = Number of Hex (4-bits) positions shifted.

INDEX

A

Address direct reference, 10 effective, 10,25 indexed reference, 10 indirect reference, 10 input/output, 62 instruction, 13 memory, 6 modification, 10 nonexistent, 19 reference, 10,25 register, 10,25 updated instruction, 53 Analyze/Interpret Instructions, 32 Arithmetic Shift, 42 Armed Interrupt, 16

B

Block Pointer, register, 9, 13 Branch Instructions, 53 Byte Format, 6

C

Call Instructions, 55 Call Instruction Trap, 21 Central Processing Unit, 8-21 Circular Shift, 42 Comparison Instructions, 39 Computer Modes, 7 Condition Code Setting for fixed-point arithmetic instructions, 34 floating-point arithmetic instructions, 44 load/store instructions, 26 push-down instructions, 48 shift instructions, 42, 43 Control Instructions, 55 Core Memory, 6 dedicated locations, 7, 14, 18 Counter Interrupts, 14

D

Disabled Interrupt, 15 Disarmed Interrupt, 16 Displacement Indexing, 10 Doubleword format, 6 IOP command, 70 program status, 12 stack pointer, 49

E

Effective Address, 10, 25 Effective Location, 10, 25 Effective Operand, 10, 25 Enabled Interrupt, 16 Execute/Branch Instructions, 53 Execution Timing, 107 External Interrupt, 15

F

Fault, Interrupt System, 19
Fixed-Point Arithmetic instructions, 33 overflow trap, 20
Floating-Point addition and subtraction, 45 arithmetic fault trap, 21 condition code settings, 47 instructions, 21, 44 multiplication and division, 46 normalize control, 45 numbers, 44 shift, 43 significance control, 46

G

General Characteristics, 2 General Registers, 9 General-Purpose Features, 4

H

Halfword, Format, 6

Immediate Addressing, 10 Immediate Operand, 10 Indexed Reference Address, 10 Indexing, 10 Index Registers, 10 Indirect Addressing, 10 Information Boundaries, 7 Information Format, 6 Input/Output commands, 70 instructions, 62 interrupt, 15 operations, 68 status information, 64

Instruction Format, 9 Instructions, analyze/interpret, 32 branch, 53 call, 55 comparison, 39 control, 55 execute/branch, 53 fixed-point arithmetic, 33 input/output, 62 load/store, 26 logical, 41 privileged, 55-68 push-down, 48 shift, 39 Interrupt active, 16 armed, 16 control panel, 15 counter, 14 count pulse, 14 disabled, 16 disarmed, 15 enabled, 16 external, 15 fault trap, 19 inhibits, 16 input/output, 15 locations, 14 operation, 15 override, 13 priority chain, 15 single-instruction, 17 states, 15 system, control, 16 time of occurrence Interleave/Overlap, 4

L

Loading Process core memory, 79 write protection, 58 Load/Store Instructions, 26 Logical Instructions, 41 Logical Shift, 42

M

Master Mode, 7, 13 Memory addresses, 6 control, 9, 12 nonexistent addresses, 19 nonexistent address trap, 19 protection violation trap, 19 write locks, 9, 12 write protection, 9, 12, 13 Multiusage Features, 4

N

Normalize Control, floating-point, 45 Numbers, floating-point, 44

0

Operator Controls, 73 Overflow fixed-point, 20 floating-point characteristic, 21 Override Interrupt Group, 13

P

Peripheral Equipment, 3 Priority Interrupt Chain, 15 Privileged Instructions, 55–62 violation trap, 19 Program Status Doubleword, 12 Processor Control Panel, 73–79 Push–Down instructions, 48 stack limit trap, 20

R

Real-Time Clocks, 3 Real-Time Features, 3 Reference Address, 10, 25 Register Address, 10, 25 Register Block Pointer, 9, 13

S

Significance Control, Floating-Point, 46 Single-Instruction Interrupt, 17 Slave Mode, 7, 13 Stack Pointer Doubleword, 48 States of an Interrupt Level, 15 System interrupt, 13–17 organization, SIGMA 5, 6–21 trap, 17–21 SIGMA 5, 1–5

T

Times of Interrupt Occurrence, 16 Trap, 17-21 call instruction, 21, 55 fixed-point overflow, 18, 20 floating-point arithmetic fault, 21 interrupt system fault, 19 memory protection violation, 19 nonallowed operations, 17 nonexistent memory address, 19 nonexistent instruction, 17 privileged instruction violation, 19 push-down stack limit, 20 unimplemented instruction, 19 watchdog timer runout, 21

U

Unimplemented Instructions, 19, 33 Updated Instruction Address, 53

W

Watchdog Timer Runout Trap, 21 Word Format, 6 Write key, 9, 12 lock, 9, 12 Write Protection, 9, 12, 19 lock control image, 58 lock loading process, 58

Z

Zero Control, floating-point, 46 Zero Interrupt, 14

SDS SIGMA 5 BASIC OPERATION CODES

Code	Mnemonic	Instruction Name	Page	Code	Mnemonic	Instruction Name	Page
02	LCFI	Load Conditions and Floating Control Immediate	30	3C	FSS	Floating Subtract Short	47
04	CALI	Call 1	55	3D	FAS	Floating Add Short (optional)	47
05	CAL2	Call 2	55	3E	FDS	Floating Divide Short	48
06	CAL3	Call 3	55	3F	FMS	Floating Multiply Short	48
07	CAL4	Call 4	55				
08	PLW	Pull Word	50	44	ANLZ	Analyze	32
09	PSW	Push Word	50	45	CS	Compare Selective	40
0A	PLM	Pull Multiple	51	46	XW	Exchange Word	30
OB	PSM	Push Multiple	51	47	STS	Store Selective	31
0E	LPSD	Load Program Status Doubleword	56	48	EOR	Exclusive OR Word	41
0F	XPSD	Exchange Program Status Doubleword	56	49	OR	OR Word	41
				4A	LS	Load Selective	29
10	AD	Add Doubleword	35	4B	AND	AND Word	41
11	CD	Compare Doubleword	40	4C	SIO	Start Input/Output	63
12	ID O	Load Doubleword	27	4D	TIO	Test Input/Output	65
13	MSP	Modify Stack Pointer	52	4F	TDV	Test Device	67
15	STD	Store Doubleword	31	4F	HIO	Halt Input/Output	66
18	SD	Subtract Doubleword	35	-11	1110	men her earbor	00
19	CIM	Compare with Limits in Register	40	50	АН	Add Halfword	34
14		Load Complement Doubleword	28	51	СН	Compare Halfword	39
18		Load Absolute Doubleword	28	52	I H	Load Halfword	27
ic	FSI	Electing Subtract Long	48	53	MTH	Modify and Test Halfword	38
	FAI	Electing Add Long	47	55	STH	Store Halfword	31
1F	FDI	Electing Divide Long (optional)	48	56	DH	Divide Halfword	37
16	EMI	Electing Multiply Long	48	57	мн	Multiply Halfword	36
	1746	rioding Moniply Long	-0	58	SH SH	Subtract Halfword	35
20	14	Add Immediate	31	54	I CH	Load Complement Halfword	27
20	CI	Compare Immediate	30	5B	LOH	Load Absolute Halfword	27
22		Load Immediate	26	00	Dail	Edd / Ebolore Harriera	
22	M	Multiply Immediate	36	64	BDR	Branch on Decrementing Register	54
24	SE .	Shift Electing	13	65	BIR	Branch on Incrementing Register	54
25	51	shift Houring	40	66	6WAA	Add Word to Memory	37
20	1.64	Load Multiple	20	60 67	EXII	Evenute	52
28	STAA	Store Multiple	27	68	BCP	Branch on Conditions Reset	54
20	WAIT	Wait	50	40	BCS	Branch on Conditions Set	54
25	IPP	Logd Register Pointer	58	60	BAI	Branch and Link	55
21	LM	Loud Register Former		AR -	INT	Interpret	33
20	A \A/	Add Word	34	60	PD	Read Direct	50
21	CW/	Compare Word	40	40	WD	Write Direct	-60
22		Load Word	27	45		Acknowledge Input/Output Internut	- 60
32	L Y Y A AT\//	Medify and Test Word	. 20 .	45	MMC	Move to Memory Control	50
25	ST\A/	Store Word	21	01	munic	Move to Menory Control	50
36	DW	Divide Word	37	70	LCE	Load Conditions and Electing Control	30
37	AA\\\/	Multiply Word	37	71	CB	Compare Byte	30
38	5/0/	Subtract Word	35	72	LB LB	Load Byte	26
30	CLR	Compare with Limits in Register	40	73	MTR	Modify and Test Byte	38
30		Load Complement Word	28	74	STCF	Store Conditions and Floating Control	32
20		Load Absolute Word	20	75	STR	Store Byte	30
30	LAN1		20	/5	510		

701 South Aviation Blvd./El Segundo, California 90245

