
Xerox Real-Time Batch Monitor (RBM)
- .

Xerox 530 and Sigma 2/3 Computers

-

Technical Manual

J
. \

]

90 11 53F

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Xerox Real-Time Batch Monitor (RBM)
Xerox 530 and Sigma·2/3 Computers

Technical Manual

90 11 53F

February 1975

Price: $8.75

@) Xe~ox Corporation.1969~1973.1975

XEROX

Printed in U.S.A.

REVISION

This publication, 90 11 53F, is a revIsion of the Xerox Real-Time Batch Monitor (RBM)/Technical Iv\anual for
Xerox 530 and Sigma 2/3 computers, 90 11 53E (dated October 1973). The changes made to the text are for the
GOO version of RBM. All changes in the text from that of the previous manual are indicated by a vertical I ine in
the margin of the fXlge.

RELATED PUBLICATIONS

Title Publication No.

Xerox 530 Computer/Reference Manual 90 1960

Xerox Sigma 2 Computer/Reference Manual 900964

Xerox Sigma 3 Computer/Reference Manual 90 15 92

Xerox Availabil ity Features/Reference Manual 9030 54

Xerox Real-Time Batch Monitor (RBM)/RT, BP Reference Manual 90 10 37

Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual 90 15 55

Xerox Real-Time Batch Monitor (RBM)/SM Reference Manual 9030 36

Xerox Real-Time Batch Monitor (RBM)/User's Guide 90 17 85

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing, RT - real
time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

ii

CONTENTS

6. CHARACTER-ORIENTED COMMUNICA nONS SEQADD 185
HANDLER (R:COC) 141 SEQEND 185

SEQSTART 185
Introduction 141 SETERRX 185
R:COC Input Buffer 141 SKIPLINE 186
Character Output 141 STBYTE 186
Monitor Service Request (M:COC) 150 TYPE 186
Translation Tables 150

8. ERROR LOGGING AND DEVICE
7. SYSERR ANALYSIS 157 ISOLATION 187

Resident SYSERR Routine 157 Error Logg i ng 187
SYSG EN Considerations 160 Error Log Formats 187
Operator-Forced SYSERR 160 Glossary for Error- Log Formats 202

Background SYSERR-Analysis Program 160 Device Isolation 204
Root Segment 161 Device Key-in Implementation 204

Base Table 161 Tests for "Down" Devices 204
I/o Buffers 161 Special Receiver Group 205
Common Subroutines 161 Global AIO Receiver 206

GTCTXTWD 162 Dismissal Receiver 206
LDWD 162 M:TERM Receiver 206
LDNXT 162 Q:ROC Receiver 207
BURST 165 Keyin Receiver 207
CVDEC 166 M:ABORT Receiver 208
CVSTORE 166 JOB/FIN Receiver 208
DELZRO 166 Fi Ie Directory Receiver 208
NDECCH 167 DBUF 208
BLANK 167
MOVE 167
STBYTE 167 9. BASIC SPOOLING SYSTEM 209
STCHAR 168
SEQADD 168 Line Printer "Symbiont" 212
SEQST 168 Blocking/Compression Scheme 213
PRINT 169
MESSAGE 169
IOERR 169
TYPE 170
CPSTRING 170
GETPAR 170
SCAN 171 APPENDIXES
SEGLD 172

Initialization Routine 172 A. XEROX 16-BIT STANDARD OBJECT
Control Routines 172 LANGUAGE 215

Overlay Segments 172
Procedures 182 Introduction 215

BLANK 182 Description of Object Modules 215
BURST 182 General Description 215

CPSTRING 182 Binary Object Record Format 215
CVSTORE 182 Format of Record Header 216

DISPLAY 183 Load Item Format 216
ENTRY 183 Format of Load Item Control (Header) Word_ 216
GET#CHAR 183 Summary of Load Item Formats 216

GETPAR 183
GTCTXTWD 183 B. CRITICAL RBM TIMES 222

IOERR 184
LITERALS 184 C. MAGNETIC TAPE HANDLING 223
LOAD 184
LOADNEXT 184 Magnetic Tape Command Chaining
LOADSEG 184 Receiver (Resident) 223
MESSAGE 184 Resident Magnetic Tape Pre-I/O Edit 223
MOVE 185 7-Track BCD Tape Pre-I/O Edit and BCD
PRINT 185 Conversion Overlay 223

iv

Magnetic Tape Error Recovery Overlay 224 16. Job Control Processor 32
Noise Record Correction 225

M:CTRl Overlay 225 17. loading Processors from JCP 34
Recommended Practices 225

18. Queue Stack loading of Foreground
D. BCD/EBCDIC CODE CONVERSION 227 Processors 35

Introduction 227 19. Postmortem Dump Tab Ie 36
SYSGEN Options 227

Programming Considerations 228 20. Operator Abort wi th Postmortem Dump 37
Other Considerations 229

21. RBM Accounting Table 38
E. ERROR SUMMARY ACCOUNTING 230

22. RBM Accounting File (RBMAl) 39
F. LINE PRINTER VFCs 232

23. Illustration of Command Chaining 41
G. lOGICAL DEVICES 233

24. M:READ/M:WRITE Flow 43
General 233
Overview 233 25. Device Type Tables 52
SYSGEN Considerations 233
Implementation 235 26. Operational label Table Pointers 55

Pre-I/O Edit Routine 235
Error Recovery Routine 238 27. Operational label Table 55
Post-I/O Edit Routine 238
Use of M:READ/M:WRITE 238 28. Channel Status Table Structure 57

Recommended Practices 238
29. Channel Status Table 58

30. File Control Table 59

31. Storage Allocation of File Control Tables 62
FIGURES

32. Non-RAD I/O Control Tables 63
1. RBM Machine Fault Task Flow 2

33. RAD I/O Control Table 67
2. RBM Protection Task Flow 5

34. Disk I/O Control Subtable 69
3. RBM Input/Output Task Flow 6

35. Disk Pack Seek Overlap Flow 70
4. RBM Control Panel Task Flow 11

36. Dismissal Routine (Optional) 72
5. RBM Clock 1 Task Flow 12

37. M:RSVP Table Format 76
6. RBM Control Task Flow 13

38. M:RSVP Decision Table 76
7. RBM M:SAVE/M:EXIT Task Flow 14

39. Permanent RAD Fi Ie loyout (RAD Area N
8. Q:ROC Use of Temp Stack and K:SEGIN 15 Containing M Fi les) 80

9. Q:ROC Flow 16 40. Processes Executed by M:ASSIG N 82

10. Temp Stack Usage 19 41. Processes Executed by M:DEFINE 83

1l. RBM Selection Operation 21 42. Processes Executed by M:OPEN 85

12. Core Memory Allocation 22 43. Processes Executed by M:CLOSE 86

13. RBM Control Task Status Word (R:RBM) 25 44. Overlay loader Core Layout 90

14. Power On/Power Off Tasks 26 45. OV: lOAD Tab Ie Format 91

15. JCP Status Word (R:JCP) 29 46. Overlay 1 Structure 92

v

47. Overlay 2 Structure 93 77. ANSCII to EBCDIC Table Entry Format 156

48. Overlay 3 Structure 94 78. Data Acquisition Subroutines LDWD and
LDNXT 163

49. Overlay 4 Structure 95
79. Initio I ization Routine 173

50. Overlay 5 Structure 96
80. Control Routines 175

51. Segment Table Format 98
81. Resident Error Log Code 188

52. Symbol Table Format 100
82. Nonresident Error Log Code

53. Background Overlay Task Header 102 (Overlay '06') 189

54. Foreground Overlay Task Header 103 83. System-Startup Entry 190

55. System/User library Area Structure 105 . 84. Power-On Entry 191

56. Building the library Search Criterion Table __ 106 85. Time-and-Date Entry 192

57. Building the library Module Load List 107 86. Operator-Message Entry 193

58. BLOAD Tree Structure 108 87. SIO-Rejection Entry 194

59. BLOAD Overlay 1 Structure 109 88. Device-Timeout Entry 195

60. BLOAD Overlay 2 Structure 110 89. Spurious-I/O-Interrupt Entry 196

61. BLOAD Overlay 3 Structure 111 90. I/O-Error Entry 197

62. BLOAD Overlay 4 Structure 112 91. Lost-Entries Entry 198

63. BLOAD Overlay 5 Structure 113 92. Configuration Entry 199

64. BLOAD Overlay 6 Structure 114 93. System-Identification Entry 200

65. Overlay 10 Structure 114 94. Machine-Fault Entry 201

66. BLOAD Overlay 20 Structure 115 A-l. Typical Object Module of M Records 215

67. RBM File Structure 117 A-2. Displacement Chain Format 220

68. RADEDIT Tree Structure 122 G-l. Logical Device Handler 236

69. Control Command Execution Flow 123

70. File Area Before Squeeze 126

71. File Area After Squeeze 127 TABLES

72. GDTRACKS/BDTRACKS Command Flow l. RAD Editor Root Segment Entry Points 124
Diagram 139

2. Area Maintenance Routines 128
73. R:COC Input Interrupt Handler 142

3. Library File Maintenance Routines 129
74. R:COC Output Interrupt Handler 148

C-l. M:CTRL Mag Tape Operations Status
75. line Status Table Format 151 Returns 225

76. M:COC Request Processing 152 D-l. Special Character BCD/EBCDIC Conversions __ 227

vi

PREFACE

The primary purpose of this manual is to provide a guide for better comprehension of the Monitor listings supplied
with the Xerox 530 and Sigma 2/3 Real-Time Batch Monitor operating system. The manual is intended for users who
require an in-depth knowledge of the structure and internal functions of the system for maintenance purposes.

It is assumed that the reader is familiar with the RBM Reference Manual (90 1037) and that more detailed informa
tion about the various program elements wi II be obtained from the listings.

Since this manual and the Monitor listings are complementary, it is recommended that the listings be readily
available when referencing the manual.

vii

1. INTRODUCTION

Priority Interrupts
Under RBM, both Monitor and user real-time tasks must be connected to a specific, unique hardware priority level.
Each task operates at the priority level of its corresponding hardware interrupt. There is no software scheduling of
tasks, except for two special cases:

1. The background has no specific hardware interrupt, but operates as though it were connected to the low
est priority interrupt, below all hardware priority levels.

2. The RBM Control Task controls its subtasks on a software-priority basis. The Control Task must be connec
ted to the lowest priority hardware interrupt in the system. Each subtask priority corresponds to a bit in
a special core location (R:RBM). When this bit is set to 1, the subtask is active or waiting; when the bit
is reset to 0, the subtask is inactive. Thus, RBM tasks and sub tasks can set the appropriate bit {or bits} in
this status word and trigger the RBM Control Task interrupt with a special write-direct code to provide simple,
responsive, and ordered processing of other related subtasks. Since the priority level of the RBM Control
Task is lower than all real-time levels and higher than the background, it can provide simple and direct
control of all operator communication and all batch background processing.

Figures 1 through 7 show the flow of control through the various RBM tasks, and the sum of all these tasks can be
considered to be RBM. Each task is a closed loop in terms of execution; however, a task may pass information to
other tasks or may trigger other tasks to ensure that RBM functions take place at the appropriate priority level. The
accounting routine for RBM is shown in Figure 5.

Monitor Service Routines

Each Monitor service routine operates as a closed subroutine when called by a task to aid in carrying out task func
tions. All Monitor servi ce routines can be reentered, can be interrupted during execution at any time by a higher
priority task/can perform a service for the higher priority task, and can continue execution of the interrupted task
when the higher task releases control.

To achieve reentrancy, certain Monitor service routines require temporary storage. This storage space is provided by
the user task's dynamic temporary (temp) stack. The Monitor service routines will reserve the amount of temporary
space required by a call to the Monitor service routine M:RES, which will reserve the requested space and return
with the base register set to the first word of the reserved temporary space. Since there is a three-cell overhead,
all routines requiring temporary space must request the amount actually required plus three. The first three words
reserved are used as foJ lows:

1. Word 0 is a flag used by M:POPtodetermine whether dynamic storage orstatic storage is used. It isalso used by
the Monitor routine Q:ROCto control the loadingand un loading of nonresident Monitor service routines.

2. Word 1 is set to the previous contents of the base register.

3. Word 2 is set to the return address, initially set by M:RES to M:ABORT.

Thus, Monitor service routines using temp storage do not modify the first two words of the temp space reserved. The
appropriate return address must be stored in the third word prior to calling the service routine M:POP to release the
temporary space and exit to the address given in the third word.

Entry to all Monitor service routines from the background is through a vector of addresses in the zero table, so that
validity of background service calls can be established. All Monitor service routines must verify that requested
background operations will not modify protected memory or use any devices reserved for the foreground. Return ad
dresses are verified by the Protection Task when the original entry is made, and the background is aborted jf the re
turn is not set to valid background space.

2

MftCHU£
fRULT

UHERRUPT

MISfWE

SAVE
REGISTERS

AND CONTEXT

REflD fN) ST£ft:
fRULT RElYLSTER
tRn X~L040' J

RfST£ft:
REGISTERS

AND CONrE](T.
EXIT •

1£ THIS I.S SAfE
ERROR RT SftE

lJlC.. LfiI LE SRME
reB IS RCTI\IE.g

TIt LS IS fl RETRY

Machine Fault Interrupt Task

Model 530

OCTERHIJ'£ ERROR
SEVERlrY. SRVE

SEVER1IT IN
fflULT RE(j.,.1"L.

L~ fINO BRfN:H
to RECE1VER ..

fMD 11'1 K '1ffi '1
X P01NTS HT
fflULT REl;"

MID~

LOG
MRCH lJ>E fflUL T

ERRlJ\ ..

ffiORT
BftC~D an:
~ 'Nt\' OR 'fIF'.

Cft.TRST~HlC
SlTUTflTLON1

HftLT WLtH ft-=
\Mf ~ X = fflJLf

REG.

SftV[Kgn:~J __
PS1l1" 1 fN) ff'I.LI
REG-. FeR RETR.Y
fEST r-6T T!HE"

RBORTOCTlVE
fftSK. COOE-=

'Mf'

Figure 1. RBM Machine Fault Task Flow

CRR.SH;
COOE ~ 'Mf'

ABORT MEANS:
L.. LOR s(PSi}tll
2. LOX :: CODE
3. PSOtl =

fllRL IOU ABORT

MftCHINE
FAULT

INTERRUPT

OC· GIVES

SAVE OVER.fLOU ~O CARRY IN

INDrCRfION Of
ERROR frPE

M;SAVE
SRV E REGl STERS

fiNO CONTEXT

LOG
lIar TIMEOUT

ERROR.

UNK . RNa BRRNCH
TO HOP TIMEOUT

REtEll/ER.
(POlNTER IN

'{'lAC}

SET 'DEVICE NOf
REC OGNIlE 0 ,

STRTUS fOR
EXIT •

'f(S

Machine Fault Interrupt Task

Sigma 3

LOG
WRTCHDOG
nMEOUf
ERROR ..

LINK RNa BRRNCH
fO 010 ERROR
RECEIVER.

(POINTER IN
X'lAR')

ABORf
RCTlVE fASK

CODE = 'Mf'

fU:STORE
~G15TERS

AND CONfEXT.
EXIT •

M:OOW

LOG
EIOP TIMEOUT

ERROR ..

LI NI(RND BRANCH
fa E lOP n HEOUf

RECEIVER
(POINTER IN

X'IAB')

CRASH;
conE = 'n'

RBORT MEAN51
1. LOR ={PSO"tll
2. LOX = CODE
3. PSO'tl =

f\ORL H1ABORf

ABORf
RCHVE fASK
CODE = 'PE'

Figure 1 • RBM Machine Fault Task Flow (coot.)

LOG
MEMORY PARITY

ERROR ..

LI NI(AND BRRNCH
fO PRRlfY ERROR

RECEP.1ER.
(POINTER IN

X'IRQ')

3

4

Machine Fault Interrupt Task

Sigma 2

MACHINE
FRULT

INTERRUPT

\

MlSfWE

SAVE
REG1STERS

AND CONTEXf

M:DOW
LOG

MEMORY PRRIT'Y
ERROR

IS
JCP OR

BACKGROUND
fIVE7

LINK AND BRANCH
fO Pffil n ERROR.

')-O ___ .. ~ RECE IVER.
, (POINTER IN

ES

ABORT MERNS: [, 1. LOA ~(PSD~lJ RBORf
2. LOX::: COOE I- - - - RCTlVE T~SK.,
3. PSO~1 ::: CODE::: PE

RrRL M:RBORr -----r-
M~EXlT

RESTORE
REGISTERS

AND CONIEXT.
EXIT

~.------'

X'IAO')

I

Figure 1. RBM Machine Fault Task Flow (cant.)

Allow Branch
To Take Place

no

Note: Foreground cannot cause a protection violation.

Figure 2. RBM Protection Task Flow

Set Control To
Abort Background

5

6

B JIIl:LDfG
SEE I'CTE FOR IIIE---~

alL[R; USE
EXPLtNrrION •

If SOFTHftRE
TIMEOUT I.2U.lYG ---.-:~
PonlTS mel(RT

Ill' TASK.

If ralDY'S
THEREJ:. ~ HILL

SET uvtKt LtIt.
llTHERHlSE lEV
ffiORESS -t 'R'.

SAVE c~rEXT
'L' .REG.

B TO H:SAVE'

LOG SPURIOUS
I to INTERRUPT

SAVE RIO Dse ..
SAVE CRRRY.

DERIVE CHAff£L
I'n. FROM DEVICE
ffiDRESS IN fnll.

PICST1 fOR THIS
CHAffa

CONTAINS HE
El'"N CY THE FILE
us I f.IZ T1£ Offi.

INTERRlFT ON
ZERO BtT'E CCDlT

IS INlICftTED
BY TtE H: JOE)(

'z' BlT.

Figure 3. RBM Input/Output Task Flow

PAGE 1

ISSUE TIll'.

SET DfN
~GRTIVE"

SftYE 10 CONTEXT
nnlTOV -) FeT7
EVN. REG -) FCT4. .
000 REG -) FCTS

INYERT SIGN.IY
FeT2.
(SET

ENO-flCn QN
PfNOIN:71

CLEffi
(OR RE-6ETl
PICST1 f()R

TlI I S ct8INa.

6 Tn CtMtftMl
OtAINlN:1

RECEIVER ~X' =
Cf'N 'L'=

RlJURN

Cf'N -? CST6
CST3 & 4. -) FCT

CST1 19 fREE
fO'R flft:GR0lNl.

LOfto· CHRNNa
REGS fN) ISStE

St.""

SET ERROR
CONDLTION IN
rca & FeT7"

THE CC .RECElVER
1$.DEVICf

SPECIfIC fM
COOfLfO

ti'ERftTlONS"

SUSff:N9I QIoI
OCC~·fQR
BftCQl1:JNO

OOIUN:i
OIECKPOINT"

Figure 3. RBM Input/Output Task Flow (cont.)

PAGE 2

GO" TO OflNfB..
SPECIfIC Ala

RECEIVER.

TASKS ~IT UG
fOR THIS CtflN.
~E RETRI GGERED
RT THIS PtlINT.

7

8

NOW THAT SEEK
IS COMPLETE..!...
ISSUE Sill fUK

TRRNSFER.

STEP STATE COO£
DfN -> csn
RIO RXR -> CSTZ

Q -> (sT3.

SET ERROR
CONDITION.

IF NO HClVEfIBlE
tfAD DEVICES

fR[INCLUDED AT
SYSGEN!f A:OSK

-> .ft:~~.

INCLUOf TIMEOUT
Bif IN lit

CI}N TEXT. H 10
THE DEVICE.

SET O:LD"G = o.

RESTORE
CONTEXT.

EX IT 10 LEVEL

PAGE 3

Note: Q:LDFG is a convention which allows code to be executed at the I/O interrupt level. This is
necessary for non-reentrant code, such as the "load channel registers, set channel status tables,
issue 510" sequence found in Q:l0ADC and the RAD handler. These routines inhibit interrupts,
set Q:LDFG to the address of the non-reentrant code, trigger the I/O interrupt level and then un
inhibit interrupts. The non-reentront.code then resets Q:LDFG, performs the prescribed functions
and exits the I/O level.

This convention precludes. tasks which run at an interrupt level higher than the I/O level from using
Monitor I/O (nearly all Monitor Service Routines use Monitor I/O).

This restriction can be overcome by setting Q:NLDFG to some" nonzero value. However, other
implications of doing Monitor I/O at a level higher than the I/O level make this a very esoteric
feature. For example, guaranteed response time will increase to about 700 to 800 IJ5eC.

Figure 3. RBM lnput/Output Task Flow (cont.)

Reset 'Seek-Active'
Bit in CST5, Get
DFN from laCS,
Save It.

no

Load Chain Regs.
for Command
Chain (lOCO in
(laCS); SIO

no

Sa~e SIO Status;
AIO Receiver
Address - CST2;
o - CST3;

page 2

Disk Pack Seek
Interrupt Handler

no

H

yes

yes

G

D2

page 1

G

Build Header
Read Order
in lacs

Advance to
Next State

-DFN - CST1
0- CST2
1 - CST3
(Dummy Chaining Flag)

page

Set Up IOCD
in IOCS to
Seek to an
Alternate Track

SET 'Seek-Active'
Bit in CSIS
-DFN - CSTl
o - C5T2
o - CST3

page

Figure 3. RBM Input/Output Task Flow (cont.)

PAGE 4

G

H

Order was a
Restore Carriage

+DFN - CSTl
">"n-o----i--t AIO Receiver - CST2

o - CST3

page 1

9

10

O-A
(Indicates OK
to Continue
Chaining)

yes

Used by 300-CPM Card
Punch, Low Cost Printer,
720X and 7232 RADS.

-1-A
(Terminate
Chaining)

o - CST3
(New lOCO Pointer)

-1 - A
(I",hibit Chaining)

HIO

Figure 3. RBM Input/Output Task Flow (cant.)

PAGE 5

Called for Both
7-Track and
9-Track Magnetic
Tapes.

Load lOCO Into
Chon. Regs to Do
Sense into 10CT;
510

Entry After
Control Panel

Interrupt

Compare and
Store Data Swi tch
Value in DSWTCH

Switch PSD
to Exit
to M:ABORT

nO

Figure 4. RBM Control Panel Task Flow

Trigger
Key-In
Sub task

.11

12

ENTRY AT
COUNTER 1 =0

SAVE CONTE Xl

CLKICNT=
CLKICNT+l

A=tLKICNT
BRANCH T\}

CLOCKl RXRS

INCREMENT
ACTIVE CHANNEL
T1MEOOT VALUE

SIMULATE
CHANNEL ENO

INCREMENT
SECOND IY HflLF

DRY

INCREMENT HflLF
OOY Of YEfiR

RESET SECOND IY
Hftlf DAY

Hfllf OAY
TIME STfI1r

TIt ERRCR lOG·

CHARGE FGO IF
PARTIAL QUANTUM

OVERRLN

CHARGE FGO FULL
OUANTLM

PRECHARGf
CURRENT USER
~XT QUANTUM

MORT
BACKGROUND
CIWE='TL'

Figure 5. RBM Clock 1 Task Flow

INHIBlT
INTERRlPTS

RESTORE
INTERRLPTS

I
-~

RESTORE CONTEXTl

, EXIT CLOCKl)

r----'
I Under I
I Debug I

L
Control ___ ...I

Generate Calling
Parameters for a
Reload. Branch to
Q:ROCXfor a
Reload

yes~ __________ ~

Figure 6. RBM Control Task Flow

13

14

M:SAVE

SAVE CONTEXT IN
NEW TASK TCB

SET K::TCB TO
NEW TASK

SET TO CHfiRGE
fGD

CRED IT 01..0 USEf.:
fOR OUffiTUH

REHAl I'UER

PRE CHARGE FGO
fOR QUANTUM

REMAINDER

SET K::BASE AND
fl T ACe

INHIBIT
INTERRUPTS

RES TeRE K: BASE
ANO FLT Ace

CREDIT fGO fOR
OUftNTlJ1

Rf"ftINOCR

f'REQ-flGE OLD
USER fOR
OUANTlJ1

RfMRINCER

Figure 7. RBM M:SAVE/M:EXIT Task Flow

RE STORE K: reB
ffiD REG! S T[RS

"-
t-fl ~OWAR[EX IT)

'- ./

Access to the overlaid Monitor service routines is controlled by service routine Q:ROC. By using the temp stack
and the overlay control flag K:SEGIN (see Figures 8 and 9), Q:ROC controls the loading and subsequent reloading
(if requir~d) of the Monitor overlay area (a 512-word reserve). Normally a call to an overlaid Monitor service
routine results in a three-word call to Q:ROC to explicitly load and transfer control to the overlaid routine. The
calling sequence to Q:ROC is as follows:

RCPYI
B
DATA

K:SEGIN

P,T
Q:ROC
'IDNN'

Temp Stack 0

2

3

4

5

6

7

8

9

10

11

11 + R

Notes:

T points to ADRLST

ID = segment ID
NN = temp stack requirement

(NN ~ 12)

TASKID Current Overlay ID

o 2 7 8

AI I Previous Overlay ID

M:RES/M:POP (8)

Set to (L) by Q:ROC

X

A

E

Request (overlay ID)

X'8802'

Device File Number of 'RM' File

Overlay Area Address

Byte Size of Overlay

Sector Displacement of Overlay

I I
Additional Temp Space Required by the Overlay

o 2 I 7 8

1. Words 3 through 12+R are avai lable for use by the overlay, where R is the number of cells required
minus 12. If the result is negative, Ris zero.

2. The symbols used in the figure are described below.

15

15

K:SEGIN is the overlay control flag and actually resides as the first word of the overlay region. It
is composed of the following:

A indicates whether the overlay is active (A = 1) or not active (A = 0).

TASKID is the seven low order bits of the dedicated interrupt location of the task using
the overlay.

X, A, and E contain, at exit, the status returned by the routine.

Figure 8. Q:ROC Use of Temp Stack and K:SEGIN

15

16

CAll INC SEO:
" RCPYI P, T
B ~V:ROC
DATA X'lOOO

+ TEMP

Sf E ""TE 1 FOR
"K:SEGlN

EXPLANftTI ON.

GO" TO RES.
OVERLAY. "

~KE SPECIAl
Cflll TO M:RES

TO'RESERVE
'lEtP' CELLS.

X'OOlO' TO 6,,1
K:SfGIN TO 0,,1
'X' REG TO' 3 1

REllffl TO 2,' 1
RETLRN IS ,r'

mINTER I S IN ~---<

TR J GGER RBM FOR
BKGO RE-lOAO

K:SfGIN ->
K:OlOOO TABEL.

RETURN
IHMfOlATlY.
'fl' 'E' ANO ,X- = -1.

GET BYTE CID4T
fWD POINTER

fROM K:11.0flO
TflBlE fNl BUILD
H:REfIO ~GL5T.

Cflll O:ROC
REef IVER ((lR~

• Xlfl6).
'f' =0.

I NflCTlVE.

Figure 9. Q:ROC Flow

SAVE leNT OF
ACT IVE OVERLAY
IN HIGH 8YTE Of

TCB H(HJ 15.

THISHIU'ftLLOW
OVERLflY RELOfIO

SHOULD THIS
TASK flB~T.

RESET ACT IVE
FlftG.

INHIBIT
INTfRRtrTS.

UNINHIBIT
INTE~Lf'TS.

CALL M:READ TO
READ OVERLAY.

CRASH:COOE=
'Sf'

BRANCH TO" PATCH
ROUT I lIE fOR

TE"PCRFRY
PRTCHES.

SET K:SECTIN
UNINHIBIT INTS.

RESTORE' X'
BRftNCH TIt
OVERLAY.

SET K:SEGIN ;;
. 6" 1. ~INHIBIT

INTERRUPTS

Figure 9. Q:ROC Flow (cont.)

'PAGE 2

SEE NOTE 1 FOR
K:SEG1N

EXPlANflTI ON.

17

a:ROCX

Bl)----..,::IP!.

SAVE 'A'
SET K:5EGIN

INRCTlVE SRVE
'X' AND 'E'

HOVE 0,,1 TO
6 1. 6 1 < 0

"]NDICATES
RELOfOo

CflLL O:ROC
RECEIVER.
'E' = -1.

RESTORE 'fI',
'X' flNOE'

REGS, flS'f'fl55ED
fRIlM OVERLA'1o

PAGE 3

Note: Q:ROC first reserves NN temporary cells via the monitor service routine M:RES and then saves the
current status of the overlay area (indicated by K:SEGIN) into word 0 and the return address into
word 2 of the temp stack iust reserved. (Q:ROC steps -into M:RES with the number of required temp
cells in the A register and with the T register less than X'l00'. M:RES recognizes a call from
Q:ROC by the contents of the Tregister and after reserving the requested number of cells and saving
the original contents of the A register, returns directly to Q:ROC.) Q:ROC then sets K:SEGIN to
reflect the status of the overlay area. If the overlay is not already resident, Q:ROC loads the re
quested overlay. At completion of the load, K:SEGIN is set to 10 "active", the X register is re
stored, and control is transferred to the second word of the overlay area. The routine will perform
its prescribed function and return to the location indicated by the monitor pointer Q:ROCX.

K:SEGIN, pointed to by location X'7F' is the first cell of the overlay area and contains the follow
ing information.

Bit 0

Bits 1-7

Bits 8-15

if on, the overlay area is active; if ()ff, the overlay area passively contains the
last overlay executed.

contain the low order 7 bits of the dedicated interrupt location associated with
the task currently (or, most recently) using the overlay area. These 7 bits are
zero for Background, JC P or PMO.

contain the overlay IONT.

Each overlay must be assembled with the first cell containing X1FFOO' + IONT.

Figure 9. Q:ROC Flow (cont.)

This address is also contained in the L register at entry to the routine. Q:ROC will initiate a reload operation if
the previous overlay status was "active'~. A call is now made to the Monitor service routine M:POP to release the
temporary space and to return to the calling program with the status returned by the overlaid routines in the X, A,
and E regi sters.

A special entry point, Q :ROCC, is used when one overlay calls another. This entry requires that the IDENT of the
requested overlay be in 6" 1.

The minimum temp stack requirement for any overlay is 12 + R. The maximum temp stack requirement is a function
of the nested calls to both resident and overlaid Monitor service routines.

The maximum nested temp stack requirement occurs when a call is made to M:SEGLD, data switch #0 is set, and
RBM and its overlays are assembled with #TEST = YES.

Reserved Total

1. User calls M:SEGLD 10 10

2. M:SEGLD calls M:READ to read segment 19 29

3. M:READ returns to M:SEGLD -19 10

4. M:SEGLD calls M:WAIT which transfers to Q:ROC 15 25

5. Q:ROC calls M:READ to load overlay 19 44

6. M:READ returns to Q:ROC, which branches to M:WAIT -19 25

7. M:WAIT calls M:WRITE to write "BEGIN SEG XX" 19 44

8. M:WRITE calls Keyboard Edit routine which transfers to Q:ROC 13 57

9. Q:ROC calls M:READ to load overlay 19 76

10. M:READ returns to Q:ROC which branches to the Keyboard
Edit routine which, in turn, exits, and the temp stack is
eventua Ily unwound. The entire process is diagrammed in
Figure 10.

10 20 30 40 50 60 70

I I I I I I I

M:SEGLD M:READ

M:WAIT M :READ for Q :ROC

M:WRITE KP EDIT M:READ for Q:ROC

Figure 10. Temp Stack Usage

80

I

19

20

RBM Initialization and Selection

There are two phases in establishin~ an RBM tailored to a particular installation:

1. The selection phase, SYSGEN (shown in Figure 11), is performed at least once for each system. SYSGEN
selects the options and the peripheral devices to be used by the system and allocates areas on the RAD.

2. The initialization phase, SYSLOAD, loads the RBM overlays onto the RAD and then writes RBM and the
RBM symbol table onto the RAD. SYSLOAD also stores information in the RBM RAD bootstrap that enables
the bootstrap to load RBM from the RAD. SYSLOAD then exits to the bootstrap.

There are several characteristics common to both phases. Both are nonresident (as shown in Figure 12); that is, when
each has performed its function, it can be overwritten by foreground or background programs. Also, both operate
as protected programs, and hence the memory protection must be off during these phases because the protection reg
isters are not set up until the RAD bootstrap executes.

There are several functions performed in the selection phase:

1. All I/O tables are set to the installation dependent values.

2. Afl tables are compacted in low core (either in unused hardware interrupt space or just above resident RBM
instructions) to conserve space. Thus, pointers to all I/O tables are dynamically assigned and initialized
in the zero table as part of the selection operation.

3. The selection of mandatory and optional resident tasks and routines and nonresident routines is determined
by symbols placed in the SYSGEN Symbol Table and in the RBMOverlay Tabfe. The format of the SYSGEN
Symbol Table is based on the BCM Linking Loader symbol table.

The maximum allowable size of an entry is six words (up to eight characters) per symbol. The table is not
ordered by the loader during the loading process. Entries are inserted as encountered. The entry size
includes the control word.

word 0

word 1

o

word 2

No. of
words Module declaration No.

5 6 7 8 9 10 11 12 13 14 15

For a DEF: Effective address
For a REF: Effective address of 1st link in REF chain

15

1st character of DEF or REF 2nd character

o 7 8 15

word 5

7th character 8th character

o 15

In this item, word 0 is the control word

where

bit 0 is set only if the entry is a definition value. During loading, definitions are declared at
the beginning of the module but are defined later in the module. The entry is made in the sym
bol table when the REF is encountered or the DEf is declared. Bit 2 = 1 indicates that the entry is
a definition decfaration (the symbol has not been defined yet). Bit 0 = 1 indicates thata definition
address or value has been inserted in word 1 of the table.

Binary Input of SYSGEN
(in Absolute) and
RBM Module.s (in Relocatable)

\

\
\

\
\
\

\
\

\
\

\
\

~

Required: 16K Sigma 2 or Sigma 3
with a Binary Input Device; the
RBM Selection Routines Will Cus-
tomize All I/o Tables and Core
Allocation Parameters for a
Particular System

/~ + \ I
I I \ /

/
I \

/ I \ I
/ I \

I I \
/ I \

/ I \ / I
/ I \

/ \

~/
\

~

Listing Output

Operator's Console; KP Device; Either
KP or LP

-
I

/' -
I

Parameter Input
Device; Either
KP, PT f or CR

Figure 11. RBM Selection Operation

21

22

16K

o

Unused
(if any)

16K·
Relocatable loader

Initialization

Selection routines

Unused

I/O tables and
interrupt locations

Constants
o

Selection phase

Unused
(if any)

Relocatable loader

Initial ization

Unused

RBM routines
and tasks

I/o tables and
interrupt locations

Constants

Initialization phase
(After loading resident
RBM routines and tasks)

Figure 12. Core Memory Allocation

bit 1 is set if the reference name is encountered prior to encountering a definition value. When
bit 0 is set, bit 1 is reset. However, bits 1 and 2 may both be set at the same time if a reference
and definition declaration are encountered before the definition value.

bit 2 is set when a declaration is encountered. It is used for flagging (on the map) definitions that
are declared but not defined.

bits 5-7 indicate the length of an entry in words (the length can be 3 to 6 words). Trailing blanks
ina symbo I are suppressed.

bits 8-15 are the declaration number of the entry. As a start item is encountered, the Loader
assigns to the module a declaration number between 1 and XIFF 1 (this includes library programs).
The number is used to locate the source of definitions for mapping.

Word 1 is the effective address of the item. If the entry is a definition address the effective address or
value of the definition is contained in word 1. If the entry is a reference, the effective address of the
first. link in the threaded reference list is contained.

Words 2 to 5 contain the EBCDIC representation of the SREF, REF, or DEF. If the symbol entry contains
less than ei ght characters, trai I ing blank words are suppressed.

The following procedures are avai lable in the SYSGEN source program to simplify management of the sym
bol and overlay tables.

Procedure

REFSYM

STDSYM

ADDREF

ADDOV

Function

Creates a symbol table entry for an optionally-included module DEF.

where ci are up to eight characters.

Creates a symbol table entry for a required module DEF. These symbol table
entries must appear between the labels PST and SYSLOAD.

where ci are up to eight characters.

Adds a symbol to the SYSGEN REF stack.

Calling sequence: [label] ADDREF symbol

where 'symbol' is the label of the REFSYM procedure.

If the symbol already exists, the new pointer wi I I be linked to the previous
one, in which case carry wi II be set on return; otherwise, carry is reset
on return.

Adds an ident to the OV:LOAD table.

Calling sequence: [label] ADDOV lid'

where id is a 2-character EBCDIC constant corresponding to the ident of the
overlay to be added.

If the overlay ID already exists in the table, the routine wi II exit without adding
it again, in which case carry will be set on return; otherwise, carry will be reset.

4. The resident tasks and routines (optional and mandatory) for monitor services and I/o handling are loaded
from the same device used to load SYSGEN. Each routine is assembled as a relocatable module that con
tains a DEF statement to externally define the module. The module may also contain any (or all) of the
fol lowing characteristics:

• REF statements for linkage to other modules.

• DEF statements for reference by other modules.

• Initialization code to set pointers in zero table, I/o tables, etc., or to eliminate unnecessary
configuration-dependent code. The cell IN:UBl is set to the initialization start, which may be
altered by the initialization routine. Loading of the next module begins at the location in
IN:UBl on return.

23

24

Initially, if there is no previous data on the RAD to be saved, the initialization phase writes zeros into the first two
sectors of all SYSGEN-defined areas of the RAD. Then the initialization phase loads the RBM overlays from the
SYSGEN boot device, writes them on the RAD, and constructs the RBM OV:LOAD table that is used by Q:ROC
when the overlays are loaded for execution. Next, RBM and the transfer vector (TVECT) table are written on the
RAD. The 10CDs necessary to read RBM from the RAD are calculated and stored in the RAD bootstrap, and the
bootstrap is written on the RAD. Finally, the RBM symbol table (used by the Overlay Loader to satisfy external ref
erences to Monitor service routines) is written, and the initialization phase reads in the RAD bootstrap and trans
fers control to it.

Job Control Processor

The Job Control Processor for RBM is herein defined as the routines required to control the operation of a background
processor, which includes loading, initializing, and checkpointing and subsequent restarting of a background job.
For the purpose of illustration, the Job Control Processor has been divided into three main parts: the RBM Control
Task, the RBM subtasks, and the Control Command Interpreter. Each part is described separately, but each part
interacts with all of the other parts.

RBM Control Task

The RBM Control Task operates at the lowest hardware interrupt level. When triggered to operate one of the RBM
subtasks, the RBM Control Task will scan the RBM Control Task status word (R:RBM) for the highest priority subtask
currentl y requested (see Fi gure 13).

If the subtask is not already in core, it wi" be read into the RBM overlay area, and control wi II be transferred to
the subtask at the RBM Control Task level. When its operation is finished, the subtask will clear the respective
flag in the RBM Control Task status word and return to the RBM Control Task. This process is repeated until all
requests for subtasks have been satisfied.

RBM Subtosks

Currently there are 13 RBM subtasks, each of which is described below in order of priority:

1. S:PARPWR outputs power-on and machine fault alarms (see Figure 14).

2. S:CKPT controls the checkpainting of a background processor.

3. S:REST controls the restarting of a background processor that has been checkpointed.

4. S:LOAD loads root segments and controls the initialization of background processors or foreground program.

5. S:ABORT controls the aborting of a background processor and also outputs foreground abort messages with
out affecting background. S:ABORT examines the Job Control Processor status word (R:JCP; see Figure 15)
to determine whether or not additional subtasks are required (e.g., S:PMD, S:IDLE).

6. S:ELOG writes error-log entries from memory to the ERRLOG disk file, and tests the file for imminent
overflow condition.

7. S:KEY responds to all unsolicited key-ins and is called as a result of a control panel interrupt.

8. S:TERM terminates a background processor after all background input/output is finished.

9~ S:ATTN transmits Turn Data Terminal Ready On order code to the keyboard/printer device with AIS
code of 2 in FCT2, and sets AIS to 3. If function is being performed for keyboard/printer other
than DFN 1, foreground attention receiver (A TINRXR) is entered with the X register containing the
keyboard/printer DFN.

t- ----
I

1 c~y o ~-
I

I
I
I ------

R:RBM
(Bit No.)

S,LQAD ~-----.() 0-----
Notes: 1. Solid lines show direct access to RBM, and broken lines shown indirect access via subsequent calls.

2. The priority of subtasks is from left to right.

~ Figure 13. RBM Control Task Status Word (R:RBM)

JCP
(FIN)

26

Power-On Task for Sigma 3 Computers with External Interrupts and Sigma 2 Computers.

Entry after
Power-on
Interrupt

Wait 30 seconds
for peripherals
to power up.

Wait for system
RAD to become
ready.

Arm and enable
RBM-required
i nt erru pts.

M:DOW

Log power failure.

Restore
protection
registers.

Q:RBMSET

Trigger RBM
control task to
send power-on
message.

no

Set error
severity level
equal 3.

Set error
severi ty I eve I
equal O.

Call
power-on
receiver.

M:SYSERR
code =- 'PF'.

Trigger I/O task to
call AIO receivers
for I/o active at
power-off time.

Trigger I/o task to
call AIO receivers
for disks doing seek
overlap (Sigma 3
only).

Set up to enter
RBM control
task at its inter
rupt level.

Figure 14. Power-On/Power-Off Tasks

This code not
assembl ed for sys
tems not inc luding
disk packs.

Power-On Task for Sigma 3 Computers with no External Interrupts and Xerox 530 Computers.

Wait 30 seconds
for peri ph era I s
to power up.

Wait for system
RA D to become
ready.

Restore
protection
registers.

Restore
interrupt
system.

Q:RBMSET

Trigger RBM
control task to
send power-on
message.

M:DOW

Log power fai lure.

Set error
severity level
equal O.

Ca II power-on
receiver.

no

Trigger I/o task to
call AIO receivers
for I/o active at
power-off ti me •

Trigger I/O task to
call AIO receivers
for disks doing seek
overlap.

M:EXIT

Figure 14. Power-On/Power-Off Tasks (cant.)

M:SYSERR
code='PF'.

Th is code not
assembled for sys
tems not including
disk packs.

27

28

Power-:-Off Task for Sigma 2/3 and Xerox 530 Computers

Entry after
power-off:
interrupt

Save available
interrupt system - - - -
status

M:SAVE

Save active
task context

HIO all active
devicest

Save status

Ca II power-off
receiver

HALT
A contains' PF'

Sigma 3 and
530 Computers only

tAn assembly switch can be reset which will cause the removal, at assembly time, of the code which
HIO's disk packs doing overlapped seek operations for systems not configured with these devices.

Figure 14. Power On/Power Off Tasks (cont.)

R:JCP

Bit No.

I I I I I I I

Z:JCKPT CKPT Z:JBKACT ZdNRACT Z:JPMACT Z:JPMREQ Z:JATEND
I Type J .1 .1 I I I

o 12 3 4 5 6 7

Z:JCKPT

CKPT Type

Z:JBKACT

Z:JNRACT

Z:JPMACT

Z:JPMREQ

Z:JATEND

0= no checkpoint.
1 = background is checkpointed.

00 = resident or nonresident foreground.
01 = S:LOAD checkpoint.

0= not active (RAD not required for checkpoint).
1 = active.

o = nonresident foreground not active.
1 = nonresident active (prevents any new loads).

o = postmortem dump not active.
1 = active.

o = postmortem dump not req uested.
1 = req uested •

o = background job not attended.
1 = attended.

I I I I I I

Z:JSKIP Z:JTEMP Z:JIDLE Z:JCCACT Unused Z:JSAVCC Z:JERFIL
J I J I I 1

8 9

Z:JSKIP

Z:JTEMP

Z:JIDLE

Z:JCCACT

Z:JSAVCC

Z:J ERFIL

10 11 12 13 14 15

o = not in skip mode.
1 = skip until JOB or FIN.

0= clear background temp files at end -of activity.
1 = retain background temp files unti I next job.

o = not in idle.
1 = idle mode.

o = JC P not active.
1 = JCP active.

o = reset ICC' at IJ OB
1 = SAVE ICC' for 1 !JOB.

0= No-op.
1 = out error file overflow warning.

Figure 15. JCP Status Word (R:JCP)

30

10. S:DEBUG transfers control to the Debug executive.

11. S: IDLE is a resident routine that causes the background to go into an idle state until the operator suppl ies
a key-in of S to resume operation.

12. S:PMD controls the operation of the postmortem dump by loading and transferring control to the postmortem
dump overlay.

13. S:CCI initiates the loading of the control command interpreter and extends memory protection to the
background.

RBM Overlay Table

The format of the RBM overlay table is shown below:

K:OLOAD Number of entries

FWA I Ident

[Word size

1
o I 3 4 I 7 8

where FWA is

1. The relative sector number of the start of this overlay, or

1
15

} EntrY j

1
Subsequent
Entries

2. A flag (X' FF') which indicates that this overlay permanently resides in resident core.

If FWA is a relative sector number, Q:ROC, which makes extensive use of the K:OLOAD table, will add FWA
to the contents of absolute core location Xl 1 B5' (ROVBIAS) and use the result as the disk record displacement for
the 10 operation to read in the overlay specified by Ident. The byte count for this operation is Word Size times
two.

If, on the other hand, FWA is XIFF', Word Size is actually a 16-bit value and indicates the core-resident starting
address of the overlay.

Nonresident Foreground Queue Stock

The format of the nonresident foreground queue stack is shown below.

K:NRFQ 0

2

3

4

5

n1

n3

n5

n7

No. of Queue Entries

DFN for JCP Load

where n 1 through n8 represent the program name.

n2

n4

n6

n8
}

Queue Stack Entry 1
(4 words per entry)

Queue Stack EntrYn
(word 0 of entry = 0
if avai lable)

The size of the nonresident foreground queue stack is 4n + 3, where n is the number of queue entries allocated at
SYSGEN (n is always greater than 0). A request is inserted into the queue stack by storing the program name (as
defined in the User Processor Dictionary) into the first available entry. As each entry is loaded, the queue stack
entries are pushed up and the last entry is set to lIemptyli by zeroing out the first word of that entry. Word 1 is a
special entry for the Job Control Processor; whenever a load is requested by the Job Control Processor, the device
file number associated with the load is stored into word 1 of the queue stack.

Control Command Interpreter

The Control Command Interpreter (CCI) is a routine that operates in the background area to read and process control
commands (see Figure 16). It operates at the background priority level, with memory protection extended to the
background. When CCI is <active, the task control block pointer K:TCB will be set to K:BACKP + 1. This process
identifies CC I as a foreground task.

The Control Command Interpreter wi II process all the Monitor control commands (see the Sigma 2/3 RBM Reference
Manual for a description of the control commands); will copy relocatable binary decks onto the GO file; and, via
processor control commands, will cause the loading of system or user processors.

See Figure 17 for an illustration of loading processors from JCP, and Figure 18 for queue stack loading of foreground
processors.

Background Termination Procedures

There are two ways for a background job to terminate: (1) normal termination, with a call to M:TERM, and (2) ab
normal termination, with a call toM:ABORT.

On termination" the RBM subtask S:TERM allows all input/output for the background to run to completion. If an
SIO has been issued on a background device and if that device is in manual when the termination is attempted, the
input/output is aborted by an HID operation and the input/output status tables are cleared. This procedure prevents
an uncompleted or incorrect operation in one job from affecting the following job. A postmortem dump will be per
formed if appropri ate.

A postmortem dump is initiated by a PMD command following the JOB command. The Job Control Processor builds
the postmortem dump table from the parameters on the PMD card (see Figure 19). Whenever background terminates,
this table is used to determine whether or not a dump must be performed and what areas of memory are tobedumped.

31

Figure 16. Job Control Processor

32

t

DFLTASS

Do All Default
ASSIGNs

Do All Default
DEFINEs

Current system processors

. Set Up the Dynamic
Stocking Buffer Pool

Set Up Back
groundTCB

Figure 16~ Job Control Processor (cont.)

Abort with
no Code PV

yes
Abort with
Code XE

33

Q:ROC

Read in
S:CCI

Extend Memory
Protection

Trigger S:LOAD

Figure 17. Loading Processors from JCP

Q:ROC

Read in
S:LOAD

Read Processor
into Core

yes

~
Vl

«
I--

I-
e..
:J
CY:
CY:
w
I--
Z
---.J
W

Z
« e..
2....J

o
CY:
I--

Z
o
u

---.J

o
CY:
I--
Z
o
u
:E
eo
CY:

Vl
~
VI

«
I
eo
:J
VI

Trigger RBM
Control Task
for S:KEY

~
Vl

«
I-

o
Z
:J o
CY:

o
w
CY:

o
LL.

Figure 18. Queue Stack Loading of Foreground Processors

Extend
Memory
Protection

35

36

KEYS lu
--

fWA (1)

LWA (1)
. - -.
FWA (2)

l,WA (2)

lWA (4)
I

a 3 4 ~ I
7

...
14 15

KEYS is a series of 3 bit code~ interpreted as follows (each code specifies a <;omplete dump entry):

000 no more dumps

001 hexadecimal

010 hexadecimal/EBCDIC

100 integer

110 mnemonic

U is set to 1 for (In unconditional dump request (i,e" PMD will occur regardless of the method
if background termination).

FWA is the fi rst word address to be dumped.

l WA is the last word address to be dumped.

Figure 19. Postmortem Dump Table

If an unconditional postmortem dump WQ5 requested, it will OCCl)r after either type of background termination. If a
condHionqf post.mortem dl)mp WQS reqvested, it will occur only aft~r gn abnormal termination.

Fisure 20 illustrates the operation of the R8M Control Tosk following 0 request for a postmortem dump.

RBI Accounting

When the J08ACCT option is specified at SYSGEN, occoontingservit:e$ ore pn;:)Vided for c-ontro1Jing the execution
time of a background job and for maintaining a fog of bae.kgrotJAd lobs.

The accounting functions are controlled via the RPM accounting table (see Figure 21). The current date and time
of doy are stored and maintained in the first two words of the accounting t(lble. The dqte is stored as the year bias
from the most recent leopyeor (e. g., year-68) and os the ha.lf ... day of year. The time is stor-ed as the second of the
half-day, minus 43,200, and is incremented on<;e each second by the covnter-one-equaJs,..zero routine. The COllnter
one-eqvols-zero routine will reset this valve to -43,200ot the end of the half-day and will irl<;:rement the half-day
of year. The Clock 1 routine will provide watchdog services on background execution time.

CONTROL PANEL
INTERRUPT TASK

RBM
CONTROL TASK

RBM SUBTASKS

BACKGROUND

Trigger RBM
Contro I Task
for S:KEY

Hardware Exit

Wait for Back
ground I/o
to Run Down

Perform
Dump Per
K:PMDTBL

Figure 20. Operator Abort with Postmortem Dump

Wait for Back
ground I/o
to Run Down

Extend
Memory
Protecti on

38

-

2 Millisecond licks (+ 1 quantum) Since last Second

Year Bias Curtent Holf"'Doy of Year

Word -1 T
Always

Current Second of Holf-Day Minus 43,200 Present

K:CLOCK~O

1

2

3

4

5
6

N~~ eX
i
_

3 I ex. 2 ,- J CX
i
_

1 I ex.
I

Push Stock ...----- (right to left)

Yeor Bias Background Start (half-day of yeor)

Background Start (second of ha If-day minus 43,200)

7

8

9

10

11

12

13
II o 1

,
3 4

lim it for Background (minutes)

2 MS Accumulator for exO
2 MS Accumu lator for ex 1

2 MS Accumulator for eX2
2 MS Accumulator for CX3

Minute Accumulator for CXO

Minute Accumulator for ex 1

Minute Accumulator for CX2

Minute Accumulator for eX3 ,
67 .' 9 10 .' 12 13

Notes: 1. The abbreviations used in this table are described below:

K:eLoct< is a pointer in the zero table.

15

Year Bios is the value to be added to 1972 to determine year.

N is a flag to indicate job accounting (N = 1 for no job accounting).

ex. indicates current charge index.
f

CX i _t]
ex. 2

l-ex. 3
1-

CXO

eXl

CX
2

CX3

indicate previous charge index.

fOl'eground execution plus I/O wait.

reserved for background I/O wait.

background execution.

idle (WI FIN, M:WAIT, PAUSE).

2. The number 43200 is a constant (there are 43,200 seconds in a half day).

3. Word-l when added to Counter 1 wHf yieJd 2 ms ticks since last second.

Figure 21. RBM Accounting Tahle

JOBACCT

When a JOB control command is encountered, an entry is made in the RBM accounting fife (RBMAL,SO) (see ~ig
Ure 22). At this time the entry will contain the stort time of the lob, the user name, and the occounting number
as specified on the JOB command. The start time is also recorded in fhe RBM accounting fable. If a LlM1T com
mand is encountered, the execution limit (expressed in seconds) is stored in the RBM accounting table cmd will be
used by the RBM accounting routine to control job execution time.

All time available for use by the background is charged to the entry just created. On encountel'ing d new JOB
command or a FIN command, the entry is updated on the RAD to reflect the accornutoted execotion time.

RBM Accounting File (RBMAL)

The RBM accounting file is a blocked random RAD file that is allocated at system initialization time. It is long
enough to contain approximately 75 entries and resides in the System Data area. Each entry or record within the
fi Ie is submitted as shown in Figure 22.

A special case is made for the IDLE account. The IDLE account will occupy the first entry in the accounting file.
Entries n1 through n12 will be blank, entries a3 and a4 will contain the record displacement to the current account
ing file entry, and entries a5 and a6 will be used to expand the elapsed time to a double precision value.

All non-IDLE entries, and the elapsed time given in words 10 and 11 of the IDLE entry, will be reset when the
accounting file is cleared by the PURGE command specifying the clear option.

Word 0 Year Bias I

2 n1

3

4

5

6

7 nll

8 a1

9 a3

10 a5

11
I

o 3 4

Half-Day of Year

Second of Half-Day Minus 43,200

Elapsed Time (seconds)
I

7 8

n2

n12

a2

a4

a6

]

15

Date and Ti me
of Start of Job

Note: The abbreviations in this accounting file are described as follows:

Year Bias is the value to be added to 1972 to ~etermine year.

Half-Day of Year is the date at the start of the job.

Second of Half-Day is the time at the start of the job.

n 1 - n 12 represents the name given on the JOB card, expressed as 12 EBCDIC characters.

a1 - a6 represents the accountnumbergiven on the JOB card, expressed as 6 EBCDIC characters.

Elapsed Time represents the total background execution time. This value is not set unti I the
next !JOB or !FIN card is encountered.

Figure 22. RBM Accounting File (RBMAL)

39

40

2. INPUT jOUTPUT PROCEDURES

Protection

All input/output tables are in protected memory, and all foreground and RBM devi ces are flagged as protected
input/output. Consequently, all background input/output requests are checked for va I idity before operation is per
mitted; the check includes both device name and device address and data address. Since any number of devices
can be specified for an installation at system generation time, the user has complete control over all input/output
protection in the system.

Input/Output Priority

All input/output is initiated at the priority level of the requesting task by ca lis to the appropriate RBM service rou
tines. No queuing of requests, either on a device or a channel basis, is performed. Thus, up to the point just
prior to issuing the SIO, a higher level task can interrupt and seize control of a channel or device from a lower
level task. Since device-file numbers are unique to a task, any end action for an input/output operation is remem
bered for the initiating task until that task has a chance to process it. This implies that all channel end information
is saved in the device-file tables rather than in the channel registers. Thus, real-time tasks always have control of
the order of input/output operations.

The Monitor does not explicitly know the priority level associated with a given request, but the method of interrupt
control guarantees responsiveness to the higher priority tasks. By initiating I/O at the I/O interrupt priority level
and following the ground rule that a task with a priority level higher than I/o may not use Monitor I/O, RBM pre
vents having one I/o request partially initiated on a particular device and then having a higher priority task inter
rupt with a request for the same device. Without these "inhibits", a device shared by m"any tasks (e. g., the
keyboard/printer) could become "locked", with an operation partially begun by a low-priority task and with a wait
loop in a high-priority task that could never be satisfied.

To further solve this problem, all input/output initiated by RBM uses interrupts at device and channel end. When
an input/output interrupt is received by the RBM input/output interrupt task, all pertinent status is saved and the
channel and device are released for subsequent use by another task. The I/o interrupt is higher than all interrupts
that can use RBM I/o services; hence RBM can always release a channel as soon as the actual input/output is com-
plete. Real-time tasks with a priority higher than the I/O level must perform their own input/output without using
I/O interrupt control.

Asynchronous Operation

Since Sigma 2/3 can simultaneously operate up to 28 I/O devices on separate I/O channels, RBM must provide for
buffering operations. The no-wait options in alt I/o requests and the Ala receiver option for foreground can be
used to simply and efficiently control buffering operations on severa I channels concurrently . To reduce system
overhead, RBM does not attempt any buffering for the user, but assumes that the user knows better than the Monitor
the operations that should be buffered. Hence the user can always control which operations are to be buffered.

Error Recovery
All error recovery is performed at the initiating task level rather than at the I/O interrupt level. Each call to RBM
can control whether standard error checking is to be attempted by RBM or whether the user" is to perform his own.
RBM will retry all operations a given number of times (depending on the device), providing that automatic retry is
possible for the device involved and that the user has specified standard error recovery in his calling sequence. RBM
makes no attempt to provide "bandwidth" control over I/O operations; thus systems with high-speed devices must
control these devices through the external I/o processor. (If a data rate error occurs, it wi" be treated by RBM
like a parity error.) No error recovery will be performed until a "check" operation is requested if the input/output was
initiated with a no-wait option. If the background task terminates or aborts without a check request, no error recovery
wi" be attempted. (An initiate and wait is the same as a check request f but may be used in place of a check request.)

Any error message is output to the operator on device file number 1 without using a specific device-file entry,. since
no entry may be free. The status at channel end is not saved for these messages.

Command Chaining

Command chaining in 530 RBM is a software convention that parallels the command chaining in the Sigma 5/7
hardware. It is used only by RBM and is not available to the user except by M:IOEX. Command chaining is used
by RBM to control the unbuffered card punch and low-cost line print (but could be easily adapted to control only
unbuffered device). In addition, command chaining is used to obtain sense information from the 9-track tapes and
to check for errors on the RAD. It also controls the input/output of information from the keyboard/printer and paper
tape to provide flexible editing on a character basis and to simulate fixed-length records on nonrecord equipment by
a character-by-character analysis. The pre-setup and the post-setup (e.g., adding or deleting trailing blanks to
the keyboard/printer or paper tape in EBCDIC mode) is performed at the level of the initiating task. On input,
however, the characters are scanned for editing codes or termination codes at the I/O interrupt level by the key
board/printer command chaining receiver.

Use of a command chain a Ilows output or input to be performed without requiring the lOCOs to be at the end of the
data buffer (e.g., when ~ NEW LINE code is issued by RBM at the end of each line of output to the keyboard/
printer) and without modifying the user's buffer or moving the entire buffer to the Monitor area. This use is similar
to the performance of the Sigma 5/7 with a separate stack of IOCDs. The format of the command chaining opera
tion is ill ustrated in Figure 23.

When RBM loads the channel registers, the loading routine checks the E flag in the second word of the first IOCD.
If the flag is set, RBM will then clear the flag before loading the actual hardware registers, but will pick up the
word following the IOCD as a pointer to the next lOCO in the command chain.

Command Chain Flag
r- ALPHA

1
lOCO No.1

Command Chain Pointer 111101 0 0 0 1

GAMMA

0'1 23 15

ALPHA l+ 0 0 Write Order

.--- BETA I lOCO No.2

010111 Byte Count (Data Chained)

o 123 78 15

---.
BETA

Data
Buffer

GAMMA· - DELTA I
.. ...
lOCO No.3

010111 0 0 0 2

01 2'3 15

DELTA ---. Write NEWLINE
Order Code

0 78 15

Figure 23. Illustration of Command Chaining

41

42

Command chaining requires a new SIO to be issued by the I/o interrupt task when channel end occurs on the first
10CD and when all data chaining is complete. When the chaining modifier or an unusual end is encountered, com
mand chaining ceases. (The command chaining receiver for the keyboard/printer signals the end of the command
chaining when a NEW LINE code is encountered in read automatic.)

Command chaining allows RBM to perform editing on a character-by-character basis for low-priority requesting
tasks (e.g., the background) even though high-priority tasks are active, since the editing is performed at the I/o
task level. Thus operator input to the background on the keyboard/printer can never exceed the abi I ity of the sys
tem to respond, even though the requesting task is waiting for a higher priority task to finish. However, a real-time
task at a level higher than I/o can seriously affect an I/o operation where command chaining is used. If this task
operates for too long (or if interrupts are locked out for too long), the I/o interrupt task will be delayed and a data
overrun may occur. For this reason, any real-time task with higher priority than the I/o group must operate for a
very short time.

Device-Independent Input/Output

RBM can make many standard operations completely device-independent by (1) using the routines M:READ and
M:WRITE to set up I/o requests on a functional rather than a specific basis (see Figure 24), and (2) using device
type tables (see Figure 25). Special device-dependent editing routines are called by the general M:READ/M:WRITE
routines without the user's knowledge. The structure can also be expanded to new devices with similar character
istics. Device type tables are used by M:READ, M:WRITE, and M:CTRL to set up standard lOCOs and standard
order bytes; this frees the user from the work and minimizes duplication of Monitor routines when several I/O de
vices are included in a system. The device type tables are assembled into RBM and then are compressed and relo
cated by the selection routines to use only the devices referenced. The general routine M:IOEX does not use the
device type tables and thus permits the user to operate with nonstandard requests on standard or nonstandard I/O
devices, providing that the devices are compatible with the Sigma I/O interface.

M:CTRL

M:CTRL provides a device-independent positioning capabi lity for magnetic tapes and disk files. An M :CTRL ser
vice call exercised on other devices or files will receive a status return of "operation not meaningful".

M:CTRL may be used with either "WAIT" or "NO-WAIT" for completion. Calls to M:CTRL mayor may not result
in physical transfers. If a "NO-WAIT" call is performed and no physical transfer occurs (e.g., a record backspace
for a magnetic tape already at load point), a return will be made with the X-register set to -1 to indicate that the
AIO receiver will not be entered. The "check" should be performed immediately. The same condition occurs for
both magnetic tape and disk files (although I/o for disk files is actually performed with a "WAIT").

End-action status will be deferred until a subsequent "check" operation is performed. M:CTRL status returns are
identical to those for M:READ/M:WRITE. Specifically the X-register wi II be set to a -1 (when the A-register is
equal to zero) on return from "NO-WAIT" calls. This indicates that the AIO receiver will not be entered.

The M:CTRL entry point is the same as for M:READ/M:WRITE. However, M:READ/M:WRITE will bypass the device.
status check, pseudo order byte test, and validity test on buffer address and byte count, and will proceed directly
to the M:CTRL overlay. The magnetic tape overlay will establish the IOCT and temp stack for Q:LOADC. It will
then POP to M:READ/M:WRITE to call Q :LOADC.

For "NO-WAIT" M:CTRL calls, a check (order=4) must be performed. This order is treated in the same way as a
M:READ/M:WRITE "check" request except that the appropriate device post-I/o editor will be entered. This facil
i tates E OF and BOT tests.

Channel Time Limits

When Clock 1 is reserved at SYSGEN for RBM accounting, I/O operations initiated by M:READ and M:WRITE are
subject to channel time limits. The actual time limit depends on the device and is assembled into RBM. When
Q:lOADC (i .e., the channel register loading routine) is called by M:READ or M:WRITE, the two's complement of

c

"H~[hD
V.~HR ITt:"
'UCTRL

mRES

RES nWE
ORfif<Y
flCE.

rn-if
Sf'.

tl.i)'V
RF.GUNf.

[' USER
f~r LI5T
fEf-lP. TO'

H~OPfl

CONVER r O?lB ro
fNa 0

If IJO OPl6
'[' :-1~_ 'f\ '=8 ..

If ut'LB=O IC----<
t.o

'['=0, 'f\":=2.

SET NRX
RrTRIE5 := 0 IN iE----<

PlfCT2

_. ___ . ___ . _____ .1--___ --'

SET Nf'\X R[TR1ES
fROM r:Drrc.

'f\':= OC{ Nf1l~E
'E' = fDV

SHHU5
'X' = R[CORD

SIlf.

Nt} CHECK
PENDWG.

S[T 'ft' = 6
'E' = O.

Figure 24, M:READ/M:WRITE Flow

PAGE 1

CflllWG
SEOUfNC[
[~ROR

'fI':=4, '[':-1.

UEf,R
REn~r

COUNT ..
{P~fCT2}

R.ETURfJ
DEVICE

l)NfWt1lLR!:JlE'
SnHU5 .. ('R '=9)

DISH 15 THE TASK.
"Til Oi.~mr,
GGLS fRE[a

ONl Y ef\CP\Gr.:O\..r.,,'D
CAN CRUSE:

f'Rora:fl ON
VIOlftTIOU

ASSUHE M:nRl
CFlLla

RETURN or fJOT
MfftNINGflILa

"fl" :: 2a

lWP;: fir·!{) BRntJCH
Ht fRE lin

[oHORa
If ReiD -)

a:Ri\Da

OUTPUT:
"UNREC" (}R

"HJECr"
~IES5AG£a

CHRt-'NEL Hf\S SET
ftCTlV[HI Tli ~
SE:CntJll n H[our

Vf\LUE ..

Figure 24. M:READ/M:WRITE Flow (corit.)

PAGE 2

M!';N~
amo n I O~ filS!)

GETS30t
TI MEOUr Vf\LUE.

DISMISS THE
TfIS" "fIL

DlfiNNEL GaES
fREta

RLTURtJ BUSt"
STftru5a

°ft° = -1, °Eo
=0

OlSHl5 fliE lflSK
° TIt Cf'!-1EL GOES

rREE.
(oTIL E.f\.P.)

ClEAR FILE
RCT1VE fi!~O

[.A.P .. BITS.

PAGE 3

LlN~ fi:.JD 6RAr .. !CH NO
r~ POS. lIO /.Ef--------------<

[oIT Rrunt-f.

HlPOf'
>------3101 °ft°:: 3 fOR EOF.

Figure 24. M:READ/M:WRITE Flow (cont.)

46

Go to Format
Specific Routine:

Blocked, RD300
Unb locked RD400
Compressed, RD500
Random, RD600
Random Brocked, RD300

(Resident Fi Ie Management Routines)

yes

yes

yes

yes

Return "Write
Protect" Status

Update Iocr
EOF Pointer
(Word 3)

Save Status
SetE.A.P.
Return 111/0
Initiated"
(AIO will not
be recognized)

Figure 24. M:READ/M:WRITE Flow (cant.)

PAGE 4

(Resident Fi Ie Management Routines: Blocked)

RD350
Limit Byte Count
to no More Than
One Logical Record.

Incorrect Length is
Determined at this

- - Point and Maintained
on Bit 5 of IOCl,
Word O.

yes

no

PAGE 5

Move User Byte Count to
End of Full Size Record.

14---------------------~ Set Byte Count = LRZ.

no

Figure 24. M:READ/M:WRITE Flow (cont.)

Set 'SR condition; Bit 15
IOCT Word 14.

47

48

(Resident File Management Routines: Blocked - cont.) PAGE 6

yes

Transfer One Word
of Data (compress/

J------~ decompress) Decrement
Byte Count (by 2)

yes

Write Out Current
Block, Read in
Next Block if
Read Operation

Figure 24. M:READ/M:WRITE Flow (cont.)

(Resident File Management Routines: Unblocked)
PAGE 7

yes

yes

RD350
limit Byte Count

Incorrect Length is
Determined at this

to no More Tha n
One Logical Record.

- - Point and Maintained
on Bit 5 of IOCT,
Word O.

Move User Byte Count to
End of Full Size Record.

~-----------------------i Set Byte Count = LRZ.

no

Set 'SR'condition; Bit 15
IOCr Word 14.

yes

Posi tion Fi Ie to
Requested Record

Figure 24. M:READ/M:WRITE Flow (cont.)

49

50

r------
f (Disk only)
I
I
I
I
I

no

yes

yes

no

yes

(Pre-I/O Edit for RAD and Disk Pack) PAGE 8

Return EOT Status

Reduce Byte Count to
Do Only 1 Granule or
Block at a Time

Reduce Byte Count to
Maximum Even Number
of Sectors

Reduce Byte Count to
Transfer Only to End
of Track

~f~~sulting~;:-::~
I does not equal the re- I

14-----------.-----'-- - - - - -I quested byte count ot this I
I point, the transfer wi II I
I be done in multiple I
L.?perati o~: ____ .J

Figure 24. M:READ/M:WRITE Flow (coot.)

(Post I/O Edit for
RAD and Disk Pack)

Return to Resi dent Fi Ie
Management Routines
which wi II complete
blocking/deblocking,
update pointers, and
return to call er.

yes

Substitute Alternate
Track if Requested
Track in Bad Track
List for Device.

Enter I/O Interrupt
Level to Initiate I/O

Set up 10CS,
Activate Channel,
and Issue SIO

Update Core Address,
Byte Count, and Sector
Address

no

no

Figure 24. M:READ/M:WRITE Flow (cont.)

PAGE 9

Query Dismissal
(see Fi gure 36).

Deacti vate Channe I

yes

no

51

52

ABS loc (Hex.)

55 P:DTT length of Device Type Tables

Pointer Contents of Tables Pointed to

56 P: DTTlt Device Type Name for Error Messages

57 P:DTT2 Standard Record Size (bytes)

58 P:DTT3 Read Automatic Order Byte Write EBCDIC Order Byte

59 P:DTT4 Read Binary Order Byte Write Binary Order Byte

If not rotating memory:

5A P:DTT5 Read Backward Order Byte Write E OF Order Byte

If rotating memory:

Number of Sectors per Track

If not rotating memory:

5B P:DTT6 Pre-I/O Editor Address (if applicable; zero means none)

If rotating memory:

Number of Tracks per Device Number of Cylinders per Devke

If not rotating memory:

5C P:DTT7 Post-I/O Editor Address (if applicable)

If rotating memory:

Number of Tracks per Cylinder Number of Alternates per Device

If not rotating memory:

5D P:DTT8 Command Chaining Receiver Address (if applicable)

t For all logical Device DFNs, the mnemonic 'LD' will be stored in DTll, while the actual two-character
mnemonic used in the SYSGEN deck will be stored in FCT7; e.g., lD, lP, II etc.

Figure 25. Device Type Tables

"--

If rotating memory:

Flags (see Note 4)

If not rotating memory:

5E P:DTT9 Special Error Recovery Address (if applicable)

If rotating memory:

YTaC Sector

If not rotating memory:

5F P:DTTA TPV Manual Read Mask. (DSB) TDY Manual Write Mask (DSB)

If rotating memory:

Number of Sectors On Device

60 P:DTTB Standard 10CD Flags and Byte Count Word, for 10CD No. 1

61 P:DTIC Max. No. of Retries IOCT Length

6 7

62 P:DTTD Standard User-Byte-Count-Word 10CD Flags

If 1 PT' device:

63 P:DTTE Transfer Rate (always < X 180001)

For all other devices:

21
5 Complement of Timeout Value (seconds) -- 0 if 'KP' Device

70 P:DTTF Model Number as a Binary Integer

Notes: 1. Some order bytes are pseudo order bytes and are modified during the pre-I/O process to an actual
hardware order byte.

2. This table is indexed by device type, from 1 to n, in the same way as file control tables.

3. I = 1 if command chaining for the device can be interrupted if the device is used by the back
ground and the background has been checkpointed.

Figure 25. Device Type Tables (cont.)

53

54

4. Flags in DTT8

Bit

0

2

3

4

5

6

7

8

Designation

SOP

SO

BTL

FlW

RRS

RRH

TWS

CSD

SST

If Set to 1

Seek overlap okay on devices whose addresses differ only in
least significant bi t.

Seek overlap okay on device type subject to restriction of
bit O. til

Alternates indicated for bad tracks by bad track list.

Alternates indicated for bad tracks by flaw marks in headers.

Restore required for seek.

Restore requires header read.

Two word seek address.

Collect sense data.

Single track transfers.

Figure 25. Device Type Tables (cont.)

the device time limit is stored into the channel status table entry, indexed through P:CST8. Once each second,
this value is incremented by the counter-one-equals-zero routine, and if the time limit is exceeded, an HIO is
issued to the offending device and the status and end-action pending flags are stored in the associated fi Ie control
table entry. The associated channel then is made available for use.

Operational Labels
Many references to I/O devices are on a logical rather than physical basis, and the operational label tables are
designed to permit this logical referencing. There are two such tables, one for background and one for foregrqund.
When RBM operates at a hardware priority level, the foreground operational labels are used; when RBM operates at
the background level (below all hardware int~rrupts), the background table is used. The structure of the table is
shown in Figures 26 and 27. Note that entries in the tables are indexed with a negative value in the index register
to facilitate searching with a BXNC instruction. Thus, the pointers point to one location beyond the actual tables.
The pointers P:BOLl and P:BOL2 are in the zero table to facilitate RBM referencing. The item P:BOL contains the
negative length of the table, to be loaded into the X register before the search. All other I/O tables use indexing
and zero table pointers but are indexed forward.

Channel Status Tables
The channel status table is a convenient method of controlling channel activity. Since there is no "test channel II
I/O command, RBM will maintain status for all device controllers on each channel. The following items are also
included in the channel status tables since there are no hardware registers for these items: the AIO receiver, the
command chaining receiver, and the command chaining pointer. The channel status tables are created at RBM
selection and are cleared with each initial ization process.

The channel status tables for a given channel are accessed via a double index, once with a device1s actual hardware
channel number into the index table (CSTO) to the channel status table and then, with the attained value, into the
channel status tables. For example, where B:CHAN is the actual channel number,

LDX B:CHAN
LDX *P:CSTO, 1
LDA *P:CST(X), 1

BOll FOLl
Table Table

rs in Pointe
Zero T

~ _______ J rs in Pointe
Zero T

~L-_____ J

able able

P:BOLl P:FOLl f--

P:BOL2 f-- P:FOL2 I---

BOL2 FOL2
Table Table

• ~ .
'---------' ~ '-- _____ J

ABS Loe
(Hex.)

40 P:BOL
43 P:FOL

Pointer

41 P:BOLl
44 P:FOLl

42 P:BOL2
45 P:FOL2

Figure 26. Operational Label Table Pointers

Negative Length of Operational Label Table

o 15

Contents of Tables Pointed To

Operational Label or Device Unit No.

o 15

Permanent Fi Ie No. Current File No.

o 789 15

Notes: 1. Appropriate BOL 1 and BOL2 table entries are obtained by an indexed search operation on a
background operational label. Appropriate FOL 1 and FOL2 table entries are obtained by an
indexed search operation on a foreground operational label.

Figure 27. Operational Label Table

55

56

Notes: 2. Blank (i.e., zero) entries are used for temporary user assignments.
(cont.)

3. A permanent fi Ie is indicated by bi t 0 of word 2 being set to 1.

4. Foreground operational labels are simi lar to background operational labels.

5. If A = 1, this oplb has a standard or permanent file assignment; if A = 0, it does not.

6. B is set to 1 whenever the oplb is assigned to a file by a call to M:ASSIGN or
M:DEFINE.

Figure 27. Operational Label Table (cont.)

P:CSTO points at the CSTO (the index table to the channel status table), and the A register contains the valu~ in the
Xth channel status table.

Care must be taken in deriving a device's actual channel number from its device number, since multiunit devices
on the external lOP will have the same apparent channel number as a device on one of the first eight channels of
the internal lOP. To resolve this ambiguity, a nine-word table with a zero table pointer (R:IOP) is used. The ap
parent channel number of a multiunit device is used as an index into this table. If the result is X'20', the multi
unit device is on the external lOP and its true channel number is the apparent channel number plus 12. Otherwise,
the value in this table is eight, which indicates that the device is on an internal lOP and that the apparent and
actual device channel numbers are the same.

RBM wi" support one multiunit controller on each of the internal lOP channels 0 through 7 and the external lOP
channels X'C' through X'13', and up to four single-unit controllers on each of the remaining channels.

Note: In contrast to any other RBM tables, the channe1 status tables are indexed forward by the value attained in
P:CSTO, beginning with zero and ending with the value in P:CST. The channel status pointers and tables
are iJlustrated in Figures 28 and 29.

File Control Tables

A number of central tables are used to preserve the information needed for maintaining reentrant, asynchronous op
eration, and multiple tasks per device. To facilitate referencing and searching, the central file tables are organized
as shown in Figures 30 and 31.

The I/o control tables (see Figures 32, 33, and 34) are designed to control the 10CDs (which must be contiguous)
created by the RBM routines.

Disk Pack Seek Overlap

Seek overlap is achieved in RBM by setting the channel status indicator (C:CST 1) active for only those operations
that actually uti lize the channel. On the 7242 device, head movement after the seek address is received does not
require channel activity, the channel is not set active and other disk devices may use the channel to initiate seek
or data transfer operations.

During head movement, the device itself is busy and this status is indicated by the "busy" bit in P:CST5. During
other phases of disk pack I/o, the entire channel is active. A flow diagram of the disk pack I/o is given
in Figure 35.

Task Dismissal on Wait 110

The task dismissal feature, a SYSGEN option, allows foreground tasks to be automatically dismissed by RBM if they
elect to wait for I/Ocompletion. Dismissal is to the next lower priority ready task, providing a further overlap of
CPU execution and I/o processing to the enhancement of low priority throughput. This task is DISABLED for inter
rupts while dismissed. The feature is controltable on a task basis and on a system basis. This feature can signif
cantly increase total system throughput. The flow of the Dismissal routine is shown in Figure 36.

Dev ice Number

I
Channel Numbe/

I CSTO

P:CSTO--- Channel 0 o ~ Xl < (P:CST)

Channel o ~ X
2

< (P:CST)

Channel 27 o ~ X
28

< (P:CST)

where

...

CST(Y) tt

P:CST(Y), X.
I

14

X. = 0
I

x = 1
i

X. = (P:CST) - 1
I

CSTO is a table, 28 words long, one word for each possible channel. If a channel is
undefined, X. :::-: -1.

I

P:CSTO is a pointer in the zero table at entry 0 of CSTO.

P:CST contains the number of defined channels.

CST(Y) (1 ~ Y ~ 8) is the actual channel status tables, 1 through 8, as used in Figure 29.

P:CST(Y) is a pointer in the zero table at entry 0 of CST(y).

tAs normally derived from the device number, except add 12 for a multiunit device on an
external lOP.

ttln this example, 10 unique channels have been defined at SYSGEN (i. e., (P:CST) = 10).

Figure 28. Channel Status Table Structure

57

58

ABS Loc
(Hex.)

19C P:CST

Pointer

46 P:CSTO

47 P:CSTl

48 P:CST2

49 P:CST3

4A P:CST4

4B P:CST5

4C P:CST6

40 P:CST7

6D P:CSTB

Notes: l.

2.

3.

4.

5.

Number of I/o Channels

Contents of Table Pointed To

Channel Index Value (28 words long)

Active Device-File Number

Response Control Word (AIO)

Command Chaining Pointer

Command Response Word

Busy Bits

P:CSTl If CKPT Suspension

(Currently Unused)

Channel Time Limit

o
This table is indexed by channel status table index value, from 0 to P:CST - 1.

CSTl = 0 if channel is inactive.

CST2 = address of AIO receiver. (Zero means none.)

CST3 = address of lOCO for 2nd transfer. (Zero means none.)

CST4 = address of command chaining receiver. (Zero means none.)

15

6. P:CST5 contains a busy bit for each disk device attached to the channel. This bit indicates that
a seek is in progress. For example, on the Sigma 3, if there is a seek in progress on device E1,
bit 1 of P:CST5 is set for channel 6.

7. CST6 holds the contents of CSTl when background command chaining is suspended because of
chec kpo i nt.

B. CSTB is set by Q:LOADC to -N, where N represents the allowable channel time limit for this
device. Once per second this value is incremented by the counter-one-equals-zero routi ne,
and if the time limit has been exceeded (i.e" the count reaches zero) an HIO is sent
to the offending device and unusual end condition flags are set in the associated fj Ie
control table. In addition, if the operation specified an AIO Receiver, the receiver
wi II be entered at this time.

9. The following is an example of testing channel activity.

LOX

LOX

LOA

B:CHAN

*P:CSTO,

*P:CST1,

(channel number)

(CST Index Value)

(A = 0, inactive)

Figure 29. Channel Status Table

ABS Loc
(Hex.)

4E P:FCT Number of File Control Table Entries

0 15

Pointer Contents of Table Pointed To ---

4F P:FCTl I F I R I AI Channel Number B Q S DT

0 1 2 3 7 8 9 10 11 15

50 P:FCT2 I P I AIS Max Retry DV _ Number of Retries I
0 2 3 6 7 8 9 12

51 P:FCT3 AIO Device Status Byte J~I Device Number

0 8

52 P:FCT4 Operati ona I Status Byte

0 7

53 P:FCT5 Byte Count Residue

3

54 P:FCT6 Address of I/O Control Table

0

66 P:FCT7 no Device Status Byte 1 TDV Device Status Byte

or Logical Device two-character mnemonict

0 7 8

Notes: 1. This table is indexed by device-file number.

2. The abbreviations used in this table are explained below:

F indicates whether or not the file is active (F = 1, if active file; F = 0, if inactive
file). F is set by Q :LOADC or Q :RADLIO and is reset by M:READ/M:WRITE/
M:CTRL/M:IOEX. (Refer to RAD I/o routines within the Monitor for mnemonics
of the form Q :RAD.)

R indicates whether or not the file is RAD (R = 1, if RAD file; R = 0, if non-RAD
file). R is set by SYSGEN.

A indicates whether or not the device-file number has been assigned to a RAD
file (A = 1, if assigned to RAD file; A = 0; if not assigned to RAD file). A is
set by M:ASSIGN/M:DEFINE and is reset by M:CLOSE. A is only meaningful
if R == 1.

B indicates whether file is background (B = 1), foreground (B = 0), or RBM (B = 0).
B is set by SYSGEN.

tThe two-character mnemonic used in the SYSGEN deck to define the Logical Device DFN is stored in
P:FCT7 for that DFNi e.g., LP, Ll, or even LD. However, all Logical Device DFNs will have the
mnemonic 'LD' stored in P:DTTl.

Figure 30. File Control Table

15

15

15

15

15

15

59

60

Q indicates whether or not the AIO receiver is operating when data chaining on zero byte
count (Q = 1, if yes; Q = 0, if no). This is used only for M:IOEX.

S indicates that the file may be processed through a "shared ll blocking buffer if such is war-
ranted by the Task Control Block.

DT is the five-bit Device Type Table Index (DTTX). DT is set by SYSGEN for non-RAD
files and by M:ASSIGN/M:DEFINE for disk files.

P indicates the presence of end action {P = 1, if end action pending on current I/o
operation; P = 0, if no end action}. P is set by I/o interrupt task or Q:RADLIO and
is reset by M:READ/M:WRITE/M:CTRL/M:IOEX.

AIS is the "attention interrupt status II used to control use of the remote terminal ring re-
sponse interrupt. The possible states are:

° disarmed - any ring interrupt is ignored.

armed - a ring interrupt causes bi t 15 of R:R BM (X:A TT N) to be set, the RBM
control task to be triggered, and AIS to be advanced to 2.

2 waiting - RBM control subtask S:ATTN transmits order to turn data terminal ready
signal on, links to foreground receiver ATTNRXR if other than DFN1, and AIS
is advanced to 3.

3 active - remote connection has been made. If TDV indicates loss of "carrier
detect" status, S:ATTN wi II transmit order to disarm ring indicator interrupt
and will transmit order to turn data terminal ready signal off.

Max Retry is the maximum number of retries to attempt on transmission errors. Max retry is
device specific, but is set to zero if no error recovery is specified in the M:READ/M:WRITE
argument list.

DV is used to indicate whether a device is; avai lable to Background and Foreground (00),
reserved to foreground (01), reserved to a specific foreground task (10), or down (11). I/o
may not be performed on a down device unless bit 7 of the request order word is a 1; other
wise, device-unavai lable status is returned. Similarly, I/o may not be performed on an
"up" device unless bit 7 of the request order word is a zero. If DV = 11 and bit 7 of the request
order word is one, the background program may use a foreground DFN.

Number of Retries is the number of retries attempted on the current I/o operation. Number
of retries is set/reset by M:READ/M:WRITE.

AIO Device Status Byte is the byte returned from the device when an AIO instruction is
executed. Device status byte is set by the I/O interrupt task or Q:RADLIO, Q:RADlWP,
Q:RADBOT, Q:RADEOF, or Q:RADEOT.

M is set to 1 if the device was in manual mode, or nonoperational when the SIO was issued.
This bit is maintained with the "AIO" DSB (Device Status Byte) if the device times out.

Figure 30. File Control Table (cont.)

Device Number is the hexadecimal number assigned to a peripheral device. Device
number is set by SYSGEN for non-RAD fj les and by M:ASSIGN/M:DEFINE for RAD
files.

Operati onal Status Byte is the byte returned from the device at the conclusion of an
I/O operation (i. e., channel end). This is set by the I/o interrupt task or Q :RADLIO.

C indicates whether bits 8-15 of the even I/o channel register were all zeros (C 0

T

if yes; C = 1 if no).

indicates whether the last I/o operation on the device was timed out (T
T = 0 if no).

a 1 Ala overflow indicator. t

C 1 Ala carry indicator. t

02 TIO overflow indicator. t

C2 TIO carry indicator. t

03 TDV overflow indi cator. t

C3 TDV carry indicator. t

1 if yes;

E indicates if there are parity errors (E = 1, if there are parity errors on the write oper-
ation, or memory parity or bad punches on a read operation; E = 0, if there are no parity
errors). E is set by the I/o interrupt task.

Byte Count Residue is the number of bytes not transferred in the I/O operation. This is set
by the I/o interrupt task. Note: Bits 1 and 2 of FCT5 will reflect the settings of the data
chain and interrupt flags by the last I/O operation on the channel.

Address of I/o Control Table (IOCT) is the core address of the IOCT entry associated with
this file. This is set by SYSGEN.

TIO and TDY Device Status Bytes are the status bytes returned from the device when TIO
and TDY instructions are executed at I/O completion time.

When a No-Wait M:CTRL operation is performed for RAD files TIO DSB = FF.

t Overflow and carry status at completion of the last I/o operation.

Figure 30. Fi Ie Control Table (cont.)

61

62

.. ----, ..
FCn
Table

_'--I

FCT2
Table

P:FCTl

.. ---,
P:FCT2

FCT3
Table

P:FCT3

P:FCT4
--l

FCT4
P:FCT5 Table

P:FCT6 ~----~

P:FCT7 FCT5
Table

~....-----,

FCT6
Table

-.--- ---,

FCT?
Table

Note: The following is used as an index into the I/O control tables:

LDX
LDX

B:IOEX2
*P:FCT6,1

For example, LDA 2, 1

(device-file number)

Figure 31. Storage Allocation of File Control Tables

.. I/O Control Table - for Device File N

The general setup after M:READ/M:WRITE is as follows:

NO COMMAND CHAINING

Address

0, 1
1, 1
2, 1
3, 1
4, 1

Contents

$+2
(*P:DTTB)
0 I
User Buffer Address
(*P:DTTD) + BC
o .1 78

Order Byte

15

where BC is the user byte count.

COMMAND CHAINING

Address Contents

$+3
(*P:DTTB)
0
0 I

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1

User Buffer Address
(*P:DTTD) + BC
o .'. 78

Order Byte

After pre-I/O edit, the setup of the tables depends on the device type:

LINE PRINTER (3451,7440,7441,7445)
Format Byte =Ax, Bx, Dx or Ex (Format, then print)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1

Contents

$+3
A002
$+2
0300 + Format Byte
$+2
4002
4560
User Text Address
X'2000'+ (User byte count-1)

o

LINE PRINTER (3451,7440,7441,7445)
Format Byte = 60, Cx, Fx

Address

0, 1
1, 1
2, 1
3, 1
4, 1

Contents

$+2
X '4002'
X'4500' + Format Byte
User Text Address
X'2000' + (User Byte Count -1)

15

o 15

LINE PRINTER (3451,7440,7441,7445)
Format Byte =8x or 9x (Print, then format)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1

Contents

$+3
X'C002'
$+4
X'0560'
User Text Address
X'200Q' + (User Byte Count -1)
$+2
X'2002'
X'4300' + Format Byte

o

LINE PRINTER (3451,7440,7441,7445)
User Byte Count = 0 or 1 (Format Only)

Address

0, 1
1, 1
2, 1

Contents

$+2
X'2002'
X'4300' + Format Byte

o

LINE PRINTER (7446, 346x) LINE PRINTER (7446, 346x)
Format Byte = 60, Ax, Bx, Cx, Dx, Ex, Fx User Byte Count = 0 or 1 (Format Only)

Address

0, 1
1, 1
2, 1
3, 1
4, 1

Contents

$+2
X '4002'
X '4500· + Format Byte
User Text Address
X '2000 , + (User Byte Count -1)

o 15

Address

0, 1
1, 1
2, 1

Contents

$+2
X'2002'
X'4300' + Format Byte

o

Figure 32. Non-RAD I/o Control Tables

15

15

15

15

63

64

LINE PRINTER (7446, 346x)
Format Byte = 8x, 9x (Print, then Format)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1

Contents

l$+3
X'C002'

1$+4
X'0560'
User Text Address
X '2000' + (User Byte Count -1)
$+2
X'2002'
X 143001 + Format Byte
o

LINE PRINTER (7450)
Format Byte = 60, Ax, Cx, Ex, Fx

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1
9, 1
10, 1

Contents

$+3
X'C002'
$+4
X'0500' + Format Byte
User Text Address
X'2000' + (User Byte Count -1)
$+2
X '4002'
X '4500' + Format Byte
User Text Address
X'2000' + (User Byte Count -1)
o

LINE PRINTER (7450)
User Byte Count = 0 or 1 (Format Only)

Address

0, 1
1, 1
2, 1

Contents

$+2
X'2002'
X '4300' + Format Byte
o

PAPER TAPE (Read Binary)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1

Contents

$+3
X'4001'
0
X'0082'
User Buffer Address
X'2000' + Be
0
-1
-1
o

15

15

15

15

LINE PRINTER (7450)
Format Byte = Bx or Dx (Format, then Print)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1
9, 1
10, 1
11, 1
12, 1
13, 1
14, 1

Contents

$+3
X'A002'
$+2
X-'0300' + Format Byte
$+3
X'C002'
$+4
X '0560'
User Text Address
X'2000' + (User Byte Count -1)
$+2
X'4002'
X'4560'
User Text Address
X'2000' + (User Byte Count -1)
o

LINE PRINTER (7450)
Format Byte = 8x or 9x (Print, then Format)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
,5, 1
6, 1
7, 1
8, 1
9, 1
10, 1
11, 1
12, 1
13, 1
14, 1

Contents

$+3
X rCOO2'
$+4
X'0560'
User Text Address
X'2000' + (User Byte Count -1)
$+3
X'C002 1

$+4
X'0560'
User Text Address
X '2000' + (User Byte Count -1)
$+2
X'2002'
X'4300' + Format Byte
o

PAPER TAPE (Write Binary)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1

Contents

$+3
X'4001'
0
X'OOOl'
User Buffer Address
X '2000' + BC
0
-1
-1
o

Figure 32. Non-RAD I/o Control Tables (cont.)

15

15

15

KEYBOARD/PRINTER- Model 7012 (Auto. Input)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1

Contents

1$+3
X'A002 1

$-2
X'061 I Data
User Buffer Address
BC
Actual Byte Count (O)
X'0082 1

0
o 78 15

KEYBOARD/PRINTER - Model 419x (Auto. Input)

Address

0, 1
1, 1
2, 1
3, 1
4, 1 (0,1)

12, 1 (8, 1)
13,1 (9,1)
14,1 (10,1)

Contents

$+3
X'A002 1

$+2
X'0500' + PROMPT (cell X'FC')
Same as 0 through 7 for
7012 Keyboard/Pri nter
Automatic Input
$+2
X'2002 1

X'050D '
o

PAPER TAPE (Read Automatic)

Same as Keyboard/Printer (Automatic Input)
except:

Address

3, 1

Contents

IX'02 1 Data (8 - 15)
o

KEYBOARD/PRINTER (Binary Input)

Same as Paper Tape (Write Binary) except:

Address

3, 1

Contents

Ix'o0061
o

LOGICAL DEVICE

Address

0, 1
1, 1
2, 1

Contents

$+2
Device Type Table B Entry
Pseudo-order Byte

15

15

15

3, 1 User Buffer Address from B:IOCD
4, 1 User Byte Count from B:IOCD + 1
5, 1 Wri te Order Byte from Last

Completed I/O operation
6, 1 0

o 15

KEYBOARD/PRINTER- Model 7012 (EBCDIC Out.)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1

Contents

$+3
X'C001 1 or X' C002 It

$+4
X'0005' or X'0505 1t

User Buffer Address + w

X'2000' + BC - TB - 1
$+2
X '2002'
X'0515'
o 15

where

TB = number of trailing blanks.

w = 1 if byte count is odd.

w = 0 if byte count is even.

KEYBOARD/PRINTER - 419x (EBCDIC Output)

Same as Keyboard/Pri nter 7012 0 through 8
except:

Address Contents

7, 1 X'20031

8, 1 X'0005'
9, 1 X' 150D'

0

PAPER TAPE (Write EBCDIC)

15

Same as Keyboard/Printer (EBCDIC Output) except:

Address

3, 1

Contents

IX '0001'
o

KEYBOARD/PRINTER (Binary Output)

Same as Paper Tape (Write Binary) except:

Address

3, 1

Contents

Ix'0005'
o

CARD READER

Address

0, 1
1, 1
2, 1
3, 1
4, 1

Contents

$+2
X'4001 1

X'OOOE ' or X'OOOA'
User Buffer Address
X'2000' + BC
o

--

15

15

15

tUse X'C001 ' and X'00051 if format is single space; use X'C002 1 and X '0505 1 if format is double space.

Figure 32. Non-RAD I/o Contro I Tab les (cont.)

65

66

MAGNETIC TAPE (3xxx - 9 track)

Address Contents

$+3
X'COOl l

$+4
XX Order Byte
User Buffer Address
X'2000 ' + BC
$+12
X'2010 '

0, 1
1, 1
2,1
3, 1
4, 1
5, 1
6, 1
7, 1
8, 1
9, 1
10, 1
11, 1
12, 1
13, 1
14, 1
15, 1
16, 1
17, 1
18, 1
19, 1

SYSGEN Mode Byte Assign Mode Byte
X'OOFF '
0
$+2
28
X'9600'
0
0
0
DFN
X'041
Sense Byte 1

25, 1 Sense Byte 13
o 7 8

MAGNETIC TAPE (7xxx - 9 track)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
8,1

Contents

$+3
X'COOl l

$+4
XX I
User Buffer Address
X'2000 ' + BC
$+2
X'20021

X'041 I
o I 7 8

MAGNETIC TAPE (7xxx - 7 track)

Address

0, 1
1, 1
2, 1
3, 1
4, 1
5, 1

Contents

$+3
X'COOl l

0

User Buffer Address
X'2000 ' + BC
o

I

'I 7 8

I/o Address
Sense Byte 0
Sense Byte 2

Sense Byte 14
15

Order Byte

Sense Byte 0

15

Order Byte

15

CARD PUNCH
t

(Model 7160)
(300 cards per mi nute)

Address

0,1
1,1
2,1
3,1
4, 1

63, 1
64, 1
65, 1
66,1

67, 1

68,1

127, 1

Contents

$+3
X'AOOO ' + 81 (or + 121)
$ - 2
X 1091 or X 'OD '

80 or 120 Bytes of Data
(current card)

$ + 3
X I AOOO I + 81 (or + 1 21)
$ - 2
X ' 191 or X ' 1D '
(Previous Order Byte + X'IO')

Previous Card (mage

o

CARD PUNCH (Model 7165)
(100 cards per minute)

Address

0,1
I, 1
2,1
3,1
4,1

Contents

$+2
X '4001 1

0 I Order Byte
User Buffer Address
X 120001 + BC I
o 'I, 7 8

tThe card punch table is very long because error recovery on the card punch requires the previous card
image.

Figure 32. Non-RAD I/O Control Tables (cant.)

15

15

a

2

3

4

5

6

7

8

9

10

11

12

13

14

Fi I e Format Byte STATE I Order Byte

lRZ logical record size or granule size, in words
t---------. ------.----.--------.-----.. ---- -------.----------------------------------

BOT
1---------------------------.-------.----------.---------------.-.--.-------1

EOF
t---.---------.--.--------.--.------------.----------------------.-----------------

EOT
t-----.-.. -.---------------------------------.. -----------------------.----

PRAD, Pointer to Current RAD Address
r--·----·-----------.t----------------------·-------------.----.-

Temporary Storage
r-----------------------.----------------.--------------------

BBA (blocking buffer address)
f--------------------.--- ----- ----------.. ---- -.------------------.------

SBP
~--------- ----------------- -------------- ------------_._------_._--------

Temporary Storage
r-------------- -------.--.-----... - -- .. ------.---.-------- -.- -----------------.--------------

Remaining word count
r----- ---------------.-------------------------------

Word count for current I/o
1-----.------- --.-----"1

Buffer address for current I/O
t---------.-----.------------------------ -------.-.--.-------------------------1

Return address to file management routine (-1 for return to M:CTRl)

PlR (bits 0-15) or SR (bit 15)

a 10 I 11 14 15

Note: The abbreviations used in this table are explained below:

Fi Ie Format Byte is I X I X I X I WP I
a 2 3 4

where the following values of XXX specify the indicated conditions and modes:

Value Format Condition tt Mode

000 Unblocked N/A sequential only

001 Blocked inactive sequential only

010 Compressed inactive sequential only

all Blocked (Packed) inactive random and sequential

100 Random N/A random and sequential

101 Blocked Device access pending N/A

110 Compressed Device access pending N/A

111 Blocked (Packed) Device access pending N/A

WP indicates the write-protection status (WP= 11, if write is permitted only when K:TCB equals
T:R BM TCB, unless SY is keyed in; WP = 10, if write is permitted only when K :TCB does not equal
K:BACKP, unless SY is keyed in; WP=Ol, if write is permitted only when K:TCB equals K:BACKP,
unless SY is keyed in; WP = 00, if there is no write protection).

F if set, indicates incorrect length on the last transfer.

W indicates the status of data in the blocking buffer (W = 1, if data has been written in the
blocking buffer that has not been written on the .disk; W = 0, if data in the blocking buffer has
already been output on the disk).

S indicates whether or not the sector addressed by PRAD is currently in the blocking buffer (S = 1,
if it is; S = 0, if it is not).

tRecord number for blocked and packed file formats.

ttSee RAD File Management, Chapter 3.

Figure 33. RAD I/O Control Table

67

68

STATE

o SEEK to READ FLAWED HEADER

2 READ FLAWED HEADER

4 SEEK FOR REQUESTED OPERA nON

5 RESTORE

6 PERFORM REQUESTED OPERA nON

7 HEADER READ FOLLOWING RESTORE

Order Byte is the actual order byte for the last operation.

Logical Record Size is the number of words in a logical record or granule.

BOT is the absolute RAD address of the first sector defined for the file.

EOF is the pointer to the logical fi Ie mark. If EOF =- -1, a logical fi Ie mark has not been
written. For Unblocked, Random, or Compressed files, EOF is the absolute RAD address of
the logical file mark; otherwise (for Blocked files) EOF is the count of the number of logical
records that precede the logical file mark.

EOT is the absolute RAD address of the last sector plus one defined for the file.

PRAD is the pointer to the current absolute RAD address of the file and is initially set to BOT
by M:ASSIGN/M:DEFINE. Complications may arise in the unauthorized manipulation of
this pointer, especially in a mixed RAD system.

BBA is the core address of the blocking buffer assigned to the fi Ie or zero. The pointer is
initially set to zero by M:ASSIGN/M:DEFINE.

BBP this pointer contains the address, within the blocking buffer, where the file is currently
positioned. The pointer is initially set to BBA by M:ASSIGN/M:DEFINE.

PLR is the address of the FORTRAN-associated variable. Meaningful only for random
mode files.

SR is the short record flag (see RAD Fi Ie Directory).

Figure 33. RAD I/O Control Table (cont.)

X'E2
1

K.·IOCS ~L~~~~~~_il~_h~~~~~~~~~~~~~~lt --------- . - engt of ad track I ist) or zero .

I/o Control
Subtable for
Device N1

I/o Control
Subtabl e for
Device N.

I

where

{

DTTX Device No. n1

o 7 8 15

F

o 7 8 15

AIO Receiver Address

o 15

Seek Order

Seek Address

SA

$ + 2 (Unused for 724x, 7270, and 323x)

X'4001 1

Order Byte

o 7 8 15

Core Address

XI 2000' + Byte Count

DTTX Device No. ni

7 8 15

X' 2000' + Byte Count

10----------------01

DTTX is the Device Type Table index.

Device No. ni is the hardware device address for which this table is dedicated. One table is used for
each rotating device. As many as 12 unique rotating devices may be defined.

F is zero for disk devices. For disk devices, F is the Device Fi Ie Number of the file using the device dur-
ing the seek operation. At the conclusion of the seek operation, the DFN is moved to the channel
status tables. •

Seek Order is X' 83 1 for Model 724x, 7270, and 323x disk devicesi for all other disk devices use 3.

SA is $+2 for 7202/3/4, 7251/2, and 7232 devices and is loaded into the even channel register
during the command chaining procedure. SA is the second 2 bytes of the seek address for all
other devices.

tSee Disk Pack alternate Track Hand ling Section at the end of this chapter.

Figure 34. Disk I/o Control Subtable

69

70

RX280

11"----------------------------------~

Inhibit Interrupts

Load Channel Reg~
Store Order Bytes, AIO
Receiver, Buffer Address
and Byte Count in 10CS

Issue SIO

yes

Trigger I/O Task,
Uninhibit Interrupts; I/O
Task Wi II Return to
Issue SIO

Store DFN (Two's
Complemented in
C:CSTl). Set "B" bit

Uninhibit Interrupts or
Exit I/o Interrupt
Level

Exit, Device
Busy Status

Figure 35. Disk Pack Seek Overlap Flow

yes

r---------,
I Indicates Device Con- I

-----.- ___ -1 troller Has Received Seek I
Address and Head Move- I

Because Value in
C:CSTl is Negative, I/o
Task Wi II Clear Channel
Status

Lm.:~~ Been ":itiated_ J

r-------,
I At This Point, Any I

J Other Device on This I
---- -- Channel May Take I

I Control of the Channel I
E~T L J -------

yes

Seek is Complete.
Initiate I/O, Set Channel
Active

tThis interrupt will occur twice for each transfer on the disk; once when the heads have completed their
movement, and once when the transfer is complete.

Figure 35. Disk Pack Seek Overlap Flow (cont.)

71

72

0:015MI5
(PRIHftRy ENTRY)

BU IlO PSEUDO
AlO RECEIVER

IN TEMP.

Dl5MISSRl
CRNNOT
OCC~ ..

INHlBlf
INTERRUPTS.

UNINHlflIT
INTERRUPTS.
STATUS IN
R:PSWl

VI

DlSMISSRl
WILL
OCC~ ..

BRANCH TO
DISMISSAL
RECEIVER

11 NK: PS[lJ{)O RIO
RECEIVER fO

PCflVE CHRt.tJEL.

11 NI(fORMER RIO
RECEIVER TO
PSEUDO AIO
RECOVER.

M~EXlT
WILL RESfORE
INTERRUPTS.

,
M~EXlT

Figure 36. Dismissal Routine (Optional)

I-

NOTE:
INTERRUPTS
ARE INHIBITED

1/0 INTERRUPT

,~

1/0 TRSK HILL
ENTER PSEUDO

RIO RECEl VER RT
CHRNNEL END.

R[-TRIGGER
DISMISSED

TRSK.

BUILD
'6 M:SRV['

IN TEMP.

POINT DEDICATED
INTERRUPT

LOCRTlON IH
TEMP.

BRRNCH TO NEXT
RIO RECEIVER OR

RETURN fO 10
TRSK.

TRSK
RE-AC\IIIRTEO ..

RESTORE
'6'

REGISTER.

RESTORE
PSD.

REf URN
(RCP" L,r)

Figure 36. Dismissal Routine (Optional) (cont.)

73

74

The task dismissal feature is used for I/o requests that must wait for access to a channel that is busy; that is, an
I/O request to a busy channel is queued, followed by task dismissal. The queue is serviced automatica "y in
priority order on the queued channel upon I/o completion. The task dismissal code is entered by M:READ/M:WRITE
at any dismissal opportunity via location V :DISMIS. This location points either to the dismissal routine or to an
RCPY L,P instruction (determined at SYSGEN).

Dismissal is disabled during the disk-boot sequence to avoid conflicts resulting from the loading of resident foreground
routines. In addition, a 'no dismissal' flag in a task's TCB wi II inhibit dismissal if desired.

Disk Pack Flawed Track Handling - Models 7242/46

The tracks on cylinder's 200, 201, and 202 of the 7242 disk packs may be used as alternates for faulty tracks on the
device. The track substitution is made using RADEDIT !#GDTRACKS command. The !#BDTRACKS command locates
the next available alternate track and writes new headers on it and the faulty track, as follows:

Faulty Track Alternate Track

o X'FF' 0

0 0

2 Faulty track cylinder A I ternate cyl i nder

3 Faulty track head Alternate head

4 Sector Sector

5 Alternate cylinder Faulty track cylinder

6 Alternate head Faulty track head

7 0 0

The !# GDTRACKS command places zero in bytes 0, 5, and 6 of the faulty track headers, and it sets the contents of
bytes 5 and 6 of the alternate track header to X'FF'.

Whenever a Read or a Write is issued to the flawed track, a flawed track error condition wi" be returned. As all
Reads and Writes are segmented initially to a maximum transfer size of a single track, there is no difficulty in
merely repeating the last transfer with the aJternate track instead of the flawed track. The determination that the
track returned a IIflawed header" status is made by Q:RADE, the RAD error recovery routine.

After the sensibility of a retry is established, Q:RADE returns to RX128 (the point where a simple retry is made) with
the state code set to zero, indicating that a seek to the original track is to be fol lowed by a header read.

When the seek is complete, the header read is formatted in the lacs by the disk pack seek interrupt handler to read
the header into the lacs. The state code is then set to 2, indicating that a seek to the track described by the
alternate cylinder and head is to be formatted and issued when the header read is complete (by the disk pack com
mand chaining receiver). The state code is set to 4 at the completion of issuing the seek to the alternate track.
The remainder of the operation proceeds as if the seek were to the original track.

Disk Pack Alternate Track Handling - Models 7251/52 and 3231/32/33

The tracks in cylinders 400-407 of the 3232 disk packs and cylinders 200-203 of the disk packs model 7252, may be
used as alternates for faulty tracks on the device. A record of faulty tracks is kept on cylinder 0, track 0, sector 2,
in a bad track list (BTL). The BTL is created and modified using the RADEDIT !#GDTRACK and !#BDTRACK com
mands. The M (Mount) keyin will read the BTL into the system tables and the R {Remove "ALL"} will delete the BTL
for the specified device from the system tables. The bad track list in core precedes the lacs in memory and is located
via K:IOCS which points at the cell following the bad track list. This cell contains - (length of the bad track list).

The format of the BTL in core is as follows:

Word

o

o

2 to n-1

n

Bits Meaning

0-7 n= number of alternates on the device + 2.

8-15 d = device number.

0-15 equals -1 if BTL is in core; equals 0 if not.

0-15

0-15

Bad track list entry containing

Value

-1

-2

t

Significance

Corresponding alternate track has never been assigned.

Corresponding alternate track has been assigned to a bad track and has
subsequently .been unassigned by a ! #GDTRACK command.

Corresponding alternate track has been assigned to replace track t by a
!#BDTRACK command.

Same as word 0 for the next device or negative if there are no more devices.

The bad track list is written on the device without word 0 of the core version.

It is necessary before initializing a disk pack to write the BTL on sector 2 using a !#GDTRACK or !#BDTRACK com
mand. The next step is to key in M dn, BTL in order to read the bad track list into core. Then the !#INITIALIZE
command can be used to construct areas on the device.

In bringing up a system, a startup deck is required to initialize the disk packs and their bad track lists. It is most
likely that the disk packs which usually are not removed or cannot be removed will have had the BTL in sector 2
destroyed. A record must be kept of the bad tracks for each device.

M:RSVP

The M:RSVP service routine allows foreground tasks to acquire a physical device for exclusive use or for use by only
foreground tasks. This is accomplished by flagging the FCTs pointing to that device as IIreserved II for foreground use.

A device may be reserved at two different levels. The first level is the same as for pre-GOO RBM reserves. The de
vice is not reserved to a particular task, but only foreground tasks may access it. The second level (new in GOO
RBM) is an exclusive reserve. At this level only the task whose dedicated interrupt location (DIL) was active at the
time of the reserve call to M:RSVP is allowed to access the device (until such time as that task, M:TERM/M:ABORT,
or a "Bpn keyin releases it).

When M:RSVP is called for a reserve request and the device has already been reserved, the caller may be queued if
table space is available, the request was for exclusive use of the device, and the call specified a Reserve Complete·
Receiver (RXR).

When M:RSVP is called for a rel.ease request, the device is released to the next requestor (the background is the de
fault lowest priodty request) in priority order. Release requests always return a status of A=O.

M:RSVP treats reserve and release requests for logical devices as val id, but performs no operation on such requests.
The status return is A=O for both reserve and release of logical devices.

M:RSVP uses a single table with three words per entry (see Figure 37). The size of the table is set by SyS
GEN and defaults to 5 entries. If RSVPTABL is set to zero entries at SYSGEN, M:RSVP will be omitted from
the system and no table space will be allocated for it. Any calls to M:RSVP when RSVP is not part of the
system will receive a status return ofA=O but with X=-l (see Figure 38). The maximum size of the. table is
255 entries. The table contains the DT index and Device Number in word 1 of the entry, flags and the DIL in
word 2, and the RXR in word 3.

75

76

en try 1 word 1

entry 2 word 1

entry Z word

entry Z word 2

entry 2 word 2

entry 1 word 2

entry Z word 3

entry 2 word 3

entry 1 word 3

Request

Reserve lIexclusive ll

Reserve "standard ll

Explicit release

BR keyin

Implicit
(M :TERM/M :ABOR T)

0 7 8 15

DT INDEX Devi ce Number

(-Z) .. K :RSYTBl

FLAGS (0-6) OIL (7-1S)

RXR

figure 37. M :RSVP Table Format

DEVICE STATUS (CURRENT)

Available Reserved

Background Device Standard Exclusive

Device becomes reserved Request is queued, status Request is queued, status
exclusive mode, status return IIA = 3 11 • return "A == 3'1.
return UA = 0".

Devi ce becomes reserved Device previously reserved, Device previously re-
nnon-exclusive n mode, status return llA == - 1" • served, status return
status return llA = on. uA = _1" •

. --
Status return llA == 011, Device is released from If OIL == table OIL, re-
no action. current task to the next lease the devi ce to the

task and status is re- next task and return
turned IIA = 0" • status "A = 0".

IIKey error 11 is output Device is released to the Device is reJ eased to
on OC. next task, status return the next task, status

uA = 011. return "A == Oil •

Status return IIA = 011. No acti on, status return All devices reserved to
.tA == 011. the current OIL are re-

leased to the next user,
return status lIA = 0".

~

Figure 38. M:RSVP Decision Table

3. RAD FILE MANAGEMENT

Overview

As the central storage medium for RBM, the RAD is used for permanent storage of RBM and all related processors and
for permanent or temporary storage of users' programs and data. The RBM RAD management scheme is flexible both
for rapid storage and retrieval and for easy file maintenance.

The RAD is addressable in physical units called sectors. The most important unit of RAD storage is the file which
consists of one or more contiguous sectors treated by RBM as a unit. The RAD file is bounded by the first sector
address (BOT) and by the last sector address plus 1 (EaT).

A RAD file becomes accessible to RBM whenever an entry in the file control table is initialized to the boundaries
of the fi Ie, which usually takes place as one of the functions of an assi gn or define process. In this sense, a RAD
fi Ie is simi lar to a devi ce, and the entire RAD can be considered as many devi ces.

All RAD files are either blocked or unblocked.

Blocked Files

Blocked files differ from unblocked files in that actual I/O is done in terms of blocks, rather than granules (which
are synonymous with logical records) for unblocked files. (On the RAD, a physical record is a sector.)

A block is an increment of RAD space, the size of which is determined at SYSGEN. When a block is in memory,
it resides in a blocking buffer.

A block may contain a partial logical record, one logical record, a number of logical records, or a number of logi
cal records and one or two partial records. If a IIno-wait ll transfer operation references a record which crosses a
block boundary and the second block (containing the remainder of the record) cannot be accessed because the RAD
devi ce is busy, the fi Ie is set to the II I/O Pending ll status and II Device Busy" status is returned. The remainder of
the record will be transferred on the retry operation.

Blocked files may have anyone of the following formats. Only one logical record may be accessed with each call
to M:READ/M:WRITE:

Compressed

File format equals 010, must be accessed sequentially. The special codes used for compressed files are as
follows:

XI 26001

X'ECOO'

X'DCOO'

Denoting end of sector.

Denoting end of record.

Denoting compression code, bits 6 through 15 contain the two's complement of the number of words
containing X' 4040 ' which are replaced by this code word.

T1

78

For the sake of COO capability, the following codes are also recognized.

X'2500' Denoting end of record.

X'2700' Denoting compression code. In this case bits 9-15 contain the number of subsequent blank words.

Implications of the above scheme are:

• The maximum record size is 2K-2 bytes.

• Single blanks will not be compressed.

• Only standard EBCDIC data should be compressed.

In addition. each write of a compressed record is followed by an implied EOF mark, which is overwritten on sub
sequent data writes.

Blocked

File format equals 001, must be accessed sequentially.

Packed

Format equals 011, may be accessed sequentially or randomly. Access mode is determined solely by the "R" bit of
the M:READ/M:WRITE argument list (see the RBM/RT,BP Reference Manual, 90 1037, "Monitor Service Routines"
section, M:READ, M:WRITE).

"Packed ll files differ from other blocked files in that about twice as many RAD accesses will be required for write
operations in the random mode. Therefore, it is more economical to create files sequentially, when possible.

"Shared" Files

RBM permits packed files to use common blocking buffers under certain restrictions.

• The file must be in packed format and may only be accessed randomly.

• The file must only be accessed with the IIwait" specification.

• The task using this file must be flagged as possessing "shared" files (via a !$BlOCK card).

• The file must itself be flagged as "shared" via M:ASSIGN or M:DEFINE calls.

• Non-"shared II fi les may not make use of the IIshared II buffer.

If these restrictions are met and a user block is not identified, M:OPEN will allocate the last available blocking
buffer for any requests for "shared II files.

In using such a buffer, input records are extracted from a block(s) newly read into the shared buffer regardless of
its previous contents, and the buffer is set as clear (W, S = 0 in the 10CT) after each record is extracted. Output
will always require the block(s) containing the record in question to be freshly read, updated, and then written to
secondary memory before completing the output request and marking the buffer as clear.

Unblocked Files

Unblocked files are unique from blocked in that a RAD transfer is always required and an AIO receiver will always
be acknowledged. "I/a Pending II condition does not apply to unblocked files. Unblocked files may have either
of the following formats:

"Unblocked", file format equals 000, may be accessed sequentially only, one record at a time.

"Random:, file format equals 100, may be accessed randomly or sequentially. The access mode is determined
by the IIR" bit of the M:READ or M:WRITE argument list, as for "Packed II files. "Random II files differ from all
other files in that the transfer size is determined by the byte count; multiple records may be accessed with one
call to M:READ/M:WRITE.

No transfer initiated by M:READ/M:WRITE for a disk pack will cross a track boundary. The advantages for this
restriction are twofold:

1. Long transfers cannot tie up a device. Foreground response Hme is improved.

2. Flawed track handling is simplified.

The implication of this restriction is that an AIO Receiver may be entered before thel/O transfer is complete. Sec
ondary transfers will be initialed when the "check II operation is performed. The "check II operation may also specify
an AIOReceiver. .

At SYSGEN the RAD is divided into large blocks called RAD areas. These areas generally represent functional
groupings of files (e.g., RBM and all related processors reside in the system processor area) and are either perma
nent or temporary. Permanent areas contain a directory of the fi les within that area, whi Ie temporary areas do not.
Also while temporary files are created on demand by calls to M:DEFINE and are eliminated by calls to M:CLOSE,
permanent fi les must be created by a separate processor, the RAD Editor. .

The boundaries of the RAD areas are contained in the master dictionary in core memory. Since an area is a block
of RAD space containing RADfiles, it is itself Q file. This concept is important in understanding the manipulation
of RAD files. To gain access to a permanent file, the directory containing that file's location must be read into
core memory by considering the area as a random-access file with BOT and EaT i.n the master dictionary. Thus
the directory of an area is read from sector 1 of the area. Figure 39 shows the relationship between the master

79

80

.--- K MASTD :

Master Pennanent

Dictionary RAD Area

(Core)
Lobel (Sector 0) ..

0
File

Directory

I

File 1
2

3

· File 2 · ·
3N + 0 Mnemonic

3N + 1 Format File 3
Word

3N + 2 BOT -

3N +3 EOT -

· · ·
(Neg. Length File M ..
of Directory)

Unused

~: First Sector of

where

/
/

/

/
I

/

1/

/
/

It

1\
\

./

t'-

•

\
\

\
\

\

./
./

,/
,/

\

/'

'\

~I NEP or NFD

NAS

File 1

Entry

File 2

Entry

File M

Entry

Unused

OV File Header
(1 Sector)

Programs
and/or
Data

Comprising
File M

Unused

Expanded
File Directory
for RAD
Area (N)

jFOr
Programs

·Only

Expanded
RAD File M

mnemonic is the two-character EBCDIC name of the area. The mnemonic may be any two
characters except "SKill but is usually one of the following:

SP UP BT Dn

SD UD CP Xn

Sl Ul

where

n is a hexadecimal digit.

If the mnemonic is zerol this entry of the Master Dictionary is not in use.

Figure 39. Permanent RAD File Layout (RAD Area N Containing M Files)

Format Word

DTTX WP I I 10CSB

o 4 5 6 7 8 15

where

DTTX is the index into the Device Type Table for the devi ce containing this area.

WP is the write protect code. (See Figure 33.)

10CSB is the I/O Control Subtable Bias. When this value is added to the contents of Zero Table
cell K:IOCS, it gives the address of the lacs for the device containing the area.

BOT is the absolute sector address of the beginning of this area.

EOT is the absolute sector address of the end of this area, plus 1.

LABEL always occupies the first sector of each area, including BT and Cp, and contains the follow-
ing information:

Word 0

Word 1

Word 2

Word 3

Area mnemonic in EBCDIC.

Bits 0-3 contain the value of the third digit of device model number (e. g., 0 for
7202, 3 for 7232, etc.).

BOT

EOT

Directory is as shown. All directories may be composed of one or more segments, but each segment
is as long as a blocking buffer (K:BLOCK). Therefore, on a 7204 device the label and directory
may span relative sector numbers ° through 3 if K:BLOCK = 512.

Figure 39. Permanent RADFile Layout (RAD Area N Containing M Files) (cont.)

di ctionary, the permanent area, and the fi Ie within the area. Figures 40 through 43 show functionally the
processes executed by the Monitor service routines M:ASSIGN, M:DEFINE, M:OPEN, and M:CLOSE.

RAD File Directory

The first two words of a RAD fi Ie directory contain the following:

::~: ~ I-I_C_---L. ___ o_NN_oE_:_;_r_N_FD ___ ---11

where

o 15

:} First Entry of
Directory

C indicates the sector in which the directory ends (C = 0, if the directory ends in this RAD sector; C = 1,
if the directory continues on anQther sector).

NEP or NFD depends on the status of C. If C = 0, NEP is the location of the next cell in this RAD sector
to be used for future directory entries. If C = 1, NFD is the relative sector address where the directory
is continued.

NAS indi cates the relative address of the next avai lable sector in this area, and is only meaningful ifC = 0.

81

82

Convert Optb(2)
to DFN

Error Check
DFN

Set Oplb(l) Assigned
to the DFN

Rei ease Temp Cell s
and Exit

M:OPFIlE

Find Spare
DFN

Go to M:ASSIGN
Receiver (X 11 BC)
IX I =-1
III = Return

Go to M:ASSIGN
Rece iver (X I} BC)
IX I =-2
III = Return

Initial ize
This Fi Ie to the

RAD Area

M:READ

Read in Area
File Directory

Find Correct File Name,
Initialize Fi Ie IOCT
From Directory Entry

no

no

Set Bit 10 of
Fen (i. e. Flag
File as "Shared").

Figure 40. Processes Executed by M:ASSIGN

M~OEflNE:

st1U~TEN ll\lT
MCmmltO TEr1P

>H:_S __ ~flU sa 1T 1r11ll.
m: (J'L f "l lmG

M Irs (Uf.

Df'S1

Sl:T ~~~
amo ITHl'f l~=ll

sIH ~llL
P(~TI\]N Ta

T"Rum:rm:o fILE.

Figure 41. Processes Executed by M:DEFINE

'lECT~' =
[lECTORS lIOO)
DIVIDED tn z

fIELD

83

84

sn {MRfLatt
tuftD 1 TIa.

(i'=41. SIH
"ILL r'tRTlHN TO
TRUNCftTED fILE ..

E:nl'6...IstI
Iocr.

[fURMf\T
5ITClf1C)

Dt: -N..lOCl' n:
nn: [TN.

rOHn OPL H rn
NOI (]fI'f.

x = ~~D Sl~(
(= r'"]U: ~I~(
n = ~ COO(

Figure 41. Processes Executed by M:DEFINE (cont.)

Declare File
Non-"Sharabl ell.

Perform Various
Error Checks on
the File

Set Last Blocking
Buffer in Use.

Allocate Last
Blocking Buffer.

Find One in Buffer Pool;
Set Corresponding Use Bit

Store Blocking Buffer
Address in the Fi Ie
IOCT Entry

Recompute Sector Address
and Buffer Pointer.

Figure 42. Processes Executed by M:OPEN

yes

85

M:CLOSE

no

no

86

Set III/egal
no DFNI Status

yes

Clear "Buffer Written
In" and "In Core" Bits

Go to M:ClOSE Receiver
(DBUF, X ' 1 Be')

>--...... 'X' =-3 yes
'L' = Return

If Buffer is Available,
Update EOF Value and
'SR' Flag in Area File
Directory

yes

Figure 43. Processes Executed by M:CLOSE

Wri te Out Last Buffer

Clear all References to
This DFN jn the OPLB
Table(s}

Undefine IOCT and
Set DFN Unused

yes

Clear Use Bit in TCB and
Deallocate Buffer

Q:ROCX

Load Status
Release Temp

and Return

Figure 43. Processes Executed by M:C LOSE (cont.)

87

88

Each RAD directory entry has the following format:

o

2

3

4

5

6

7

8

where

o

n1

n3

n5

n7

Fi Ie Format Byte RFI

logical Record Size

RAD FWA of File

RAD Address of EOF

RAD lWA + 1 of File
2 345 7 8 9

n2

n4

n6

n8

/SR

'/

14 15

n1 - n8 is the name of the fi Ie in EBCDIC.

File Format Byte (see Figure 33).

RF if set to 1, indicates that this HIe (foreground) is to be loaded and initialized at boot time.

logical Record Size is the number of words in a logical record or granule.

SR is only meaningful for 'Blocked' or 'Unblocked' ('B' or lUI) format fifes and indicates that the final rec-
ord written in this fife (i .e., iust before the .fOF marker) was written with a byte countless than that
specified in word 5, 'logical Record Size'. If this record is subsequently read with a byte count equal to
or greater than the size specified by 'logical Record Size', incorrect length will be returned and the num
ber of bytes transferred (in the iX' register) will be the same as that specified in the original, short record
written.

This feature is only invoked when the user specifies the 'Short Record' flag in the M:WRITE argument list.
Otherwise, 'SR' will be reset on all write operations.

A 'Write-End-of-File' must follow a short record written if the directory is to be updated.

4. OVERLAY LOADERS

Introduction

. The following discussion applies to the OLOAD loader. The BLOAD loader is functionally and structurally similar.
The differences from OLOAD are detai led at the end of Chapter 4 under the BLOAD heading.

The Overlay Loader consists of a root segment and five overlay segments. Loading of the root segment is initiated
by the Job Control Processor upon receiving an !OLOAD control command.

The Overlay Loader performs two mutually exclusive functions:

1. Forms a program (load module) through Loader !$ROOT and !$SEG control commands.

2. Forms a Public Library through Loader! $PUBLIB control commands.

The Loader is assembled as absolute code since it is initially loaded into the system by a separate Loader called the
Absolute Loader. However, the Overlay Loader is self-relocating in execution through the use of a base table.
The base table, which is pointed to by the B register during execution, is divided into three main areas:

1. Relocatable vector elements (initialized by the root).

2. A common overlay vector area (initialized by each overlay loaded).

3. Remaining pointers, flags, constants, etc. (initialized by the value loaded except where modified by the
root or overlays).

An "EQU II list (O:BASE procedure from the S24RBM fi Ie) precedes the individual overlay assemblies to define the
relative displacements of items in the Root Base Table. Thus, S2 must be assigned to the S24RBM file for successful
assembly of the Loader. (S24RBM must have been assembled with switch #OLOAD set YES.)

loader Structure

The Overlay Loader consists of a root and five segment overlays with the root containing the following elements:
OY:LOAD Table, subroutines of common utilization, and the temporary storage space for the monitor service rou
tines. Figure 44 illustrates the Overlay Loader and its parts and Figure 45 shows the format of the OY:LOAD Table.

An OY:LOAD Table is created for the user's program by the Overlay Loader. Information is collected in the
Segment Table during PASS1, and the actual OY:LOAD Table inserted in the root segment of the user's pro
gram during PASS2.

Each entry is a fixed-length, five-word entry, and the table length = 5n + 1, where n is number of segments specified
on the ! 0 LOAD control card.

The first overlay initializes the loading process. Symbol table pointers are set and the Permanent Symbol Table is
read in. This table consists of LIBSYM, the Public Library definitions, and the RBMSYM Monitor service routine
defini.tions. The first overlay is illustrated in Figure 46.

The next three overlays (2, 3, 4}constitute PASS1 of the loading process. These overlays read control cards, load
input modules, and lOud the required library modules. These. overlays are illustrated in Figures 47, 48, and 49
respectively.

The last or fifth; overlay (PASS2) wi II: satisfy forward references, print any required load map, complete the OY
file; or alternatively, create a new Public Library. This overlay is illustrated in Figure 50.

PASS1

The three overlays (2, 3, and 4) of PASS 1 are called individually as required. The subfunctions for instruction/
data storing (O:STOR) and for Symbol Table insertion (O:INSERT), plus the address lists associated with common
read/writes of PASS1 are loaded by overlay 2 and are undisturbed when overlay 3 or 4 is called. The Library
Search Criterion Table is used commonly by overlays 3 and 4 and is defined as a leading reserve area of 300 cells
in both these segments.

89

90

(K:UNAVBG)

(K:ceBUF)

(K :BA CK BUF)

(P:SEGTAB)
(P:SYMEND)

(P:psn

(P:RST)

(P:SST)

(P:LDLOe)

(P:SEG)

Overlays

Root

c.e. Buffer

t- - -- - - - -----------

RBMSYM
t------ - - -- --- -----

LI8SYM

Root Symbol Table
r-- - -- - ---- - ----

Segment/Path

Symbol Tab~e
-- ---- --------- ---

r--------r- - -- -- -
Segment Being loaded

General I/O and Blocking Buffer

t-- --

Overlay 4
---_ Overlay 2 Overlay 3

Pass 2: (eel)
MAP/

Overlay 1 LSCT PUBLIB
(lnit and Overlay 5
CCI) -- - - -'-----------

O:STORE/O:INSERT

OV:lOAD Table

Binary Input Buffer

OC/DO ~ffer

Root Subroutines

Overlay and Base Table;

Root Initialization

Temp Stack

-,
BG TCB

Figure 44. Overlay Loader Core Layout

}

Permanent
Symbol
Table

(B:Ol)

(B:CC)

(R:INIT)

(K:BAeKP)

OV:LOAD Number of Entries in Table o
Segment Identifier (binary)

Core Load Address 2

Number Bytes (even) 3 Entry 1

Sector Displacement in File 4

Entry Point (optional) 5

1 1 J.
} Entry 2

'J ~
1 L

{ .,
1 } Entry n

where

Word Description

2

3

4

5

Segment identifier as specified on !$SEG card (1 5 N 5 X'FP).

Core load address (address where segment is to be loaded at execution time).

Number of bytes in this overlay segment (must be even).

Sector displacement of this segment in the OV file (numbering starts at 0). Segments
begin on sector boundaries.

Entry point, which must be present only if load-and-enter mode is specified in the call
to M:SEGLD.

Figure 45. OV:LOAD Table Format

91

92

Overlay 1

Initialize
Appropriate Base
Table Entries

Analyze
Parameters on
IOLOAD
Command

Establish Upper
End of Symbol
Table .

Load RBMSYM
and LIBSYM into
Symbol Table

Read and Print
Control Cards

no

Figure 46. Overlay 1 Structure

Reset (Erase)
LIBSYM

Write Header
Sector on
OV File

Process
Parameters

Set Appropriate
Map Flag

Process
Parameters

Process
Parameters

Exit
Overlay 2

!$INCLUDE,
!$EXCLUDE,
!$RES,!$lCOM
Process Parameters

I $lB Process
Parameters

! $LlB Process
Parameters

Sequence Error

Initial.ize
Appropriate
Base Table
Entries

!$ROOT
Process
Parameter

Save Appropriate
Segment Symbol
Tables on 'Xl'

Process
Parameters

Figure 47. Overlay 2 Structure

93

94

Write Out the
Root Program to
an Integral Num
ber of Sectors

yes

Initialize Appro
priate Base Table
Entries

Write Out Segment
_f-------' or library Portion

of the Root.

no

Match EBCDIC
File Against
Symbol Table
to Build lSCT

Match DEF /REF
File Against LSCT
to Build Module .-1------,
Load Table

yes

Figure 48. Overlay 3 Structure

O:LDN

Input Single
Module from

Input File

Read Input
Oplabel

O:TYPEO

Padding

O:TYPE2

Relocate on
Execution

Bias

O:TYPE4

Start Item

O:TYPE7

Load Origin

Resolution

no

Initialize
Appropriate
Base Table
Entries

yes

O:TYPEI

Unrelocated
Load

O:TYPE3

Relocate on
Common

Bias

O:TYPE5

End Item

O:TYPE8

Oi sp lacement
Chciin

O:TYPEB

External
Reference

O:TYPED

Labeled
Common

Figure 49. Overlay 4 Structure

O:LDLBMD

Input Library
Module

Read Input
Library Oplabel

95

96

Initialize Ap
propriate Base
Table Entries

Close the ID
Fi Ie if Needed,
Rewind GO

If Needed,
Generate
Map Headings

Read Root Program
and Resolve
Forward References

Update
OVLOAD
Table

Create TeB
if Needed

Map the Root
Symbol Table
if Needed

Write Out
Program Section
of the Root (OV)

no

Read Segment and
Associated Symbol
Table from Xl

Resolve
Forward
Linkages

Map Segment
if Required

Write Out
Segment on
OV File

Update the
OV Header
Sector

Figure 50. Overlay 5 Structure

yes.

Write Public
Library on
OV File

Read and Update
TVECT Table with
Public Library DEFs

Write Out New
LIBSYN File with
Public Library DEFs

The primary function of overlay 2 is to read and interpret control commands subsequent to and including I $ROOT
or I $PUBLIB commands. These commands include the I $ROOT, I $SEG, ! $LD, ! $LB, ! $INCLUDE, I $EXCLUDE,
IMD, ITCB, !$BLOCK, and !$PUBLIB control commands. If a set of modules are required as input, overlay 4
is called to perform the load. As a new I $SEG is encountered, optional and default libraries are searched to
satisfy the unsatisfied reference. This function is performed by overlay 3, and where library modules are determined
to be required, they are loaded by overlay 4.

When a segment is complete it is written on the OV file and the Segment Table is updated. If a new I $SEG card
indicates that the last segment written has completed a path, the Symbol Table entries for all segments in the path
are written to the Xl file and the Path Segment Table is updated.

The Segment Table is lO{N+l)+l words in length, where N is the number of segments specified on the !OLOAD
card. The Segment Table is illustrated in Figure 51.

The Symbol Table space just purged becomes available for next path. The Symbol Table entry formats are described
in Figure 52.

If an I EOD card is encountered in the control command stack, the preceding procedure is followed and overlay 5
(PASS2) is loaded.

PASS2

PASS2 initializes the overlay section of the Base Table. The program section of the root is then read, and forward
references into the library section or to higher level segments are satisfied (this is the only segment fracti.oned in
this manner). The Permanent and Root Symbol Tables are mapped. PASS2 then reads each segment into core from
OV, reads the appropriate Segment Symbol Table, and satisfies any forward external chain in the segment. Con
currently, the segment map is output on LO and the completed segment is rewritten to OV. When a" segment pro
cessing has been dorie, the sector header is reread, updated, and written to OV. OV is closed and normal termina
tion through M:TERM takes place. Header formats are shown in Figures 53 and 54.

If a Public Library is being created, overlay 4 creates a new Public Library on the RAD. The Public Library just
loaded is written to the PUBUB file in the System Processor area. The Monitor Services Transfer Vector (TVECT)
file is read from System Processor area, the Public Library section updated, and written to TVECT. A new Public
library Symbol Table is written to UBSYM file on the System Data area. The new UBSYM is incompatible with
the current in-core Public Library. A" files are closed and normal termination through M:TERM takes place.

loading a User Program Root Segment

The technique used By the Overlay Loader in loading the root of a user overlay program is different from the loading
of any other segment. This is because of the special case where a root and its library subroutines will not fit in core
with the Loaderaod.its tables. To allow for such a case, a root is loaded by using the general scheme given below.

"Since the temp stack need not occupy core at load time, its presence is indicated by updating the execution loca
tion by the appropriate amount. Thus, P:EXORG points to the beginning of the temp stack and P:EXLOC points
to the actual origin of the task.

The program section of the root is loaded without resolving any external chains. When a ! $SEG card is encountered,
an integral number of secto"rs is written to OV and the OV pointer is updated. The remaining fractional sector of
the program section of the root is moved to P:SEG (beginning of the loading area of core), pointers in the segment
table updated, and the load bias reset to P:SEG (plus the remainder of the Program segment). The search and load
ing of the library now commences. It is assumed that all forward and external REFs in the library section will be
satisfied and chains resolved during the PASS 1 loading of the library subroutines.

At the completion of the library loading, the remaining program portion of the root segment is written out onto the
OV file with the required library routines. During PASS2, only the complete program portion of the root segment
is read. External reference chains to the library routines are resolved using the Symbol table and rewritten again
onto the OV file. The library section of the root is not read duri"ng PASS2. Only an integral number of sectors
are read and written.

The preceding scheme is followed even in cases where both the program segment and library segment could be con
tained in core with the Loader.

98

(P:SEGTAB)

(P:CSGTAB)

(K:CCBUF)

where

Zl

'7
~

7

1

Number of Segments (including root)

Segment Identifier = 0

FWA {execution}

Total Bytes (even)

No. Sectors of Program Code in Root

Entry Point (transfer address)

Address of OY:LOAD

0

0

0

FWA (Load for PASS2)

Segment Identifier (1 5 Si ~ X'FF')

FWA {execution}

No. Bytes (even)

Sector Displacement in OY (this segmenf)

Entry Point (optional)

Identification of parent segment (node)

~rror. } Displacement of Symbol Table in Xl
eventy

No. Bytes in Symbol Table (Xl file)

FWA Segment Symbol Table

FWA Load

Word

0

2

3

4

5
Root entry

6

7

8

9

10

2

3

4

5

6 Segment entry 1

7

8

9

10

'7
Segment entry 2

l

{

P:SEGTAB points to word 0 of the table, which contains the number of entries currently in the
table. This may be less than the number of entries specified on the ! LOAD card. After
PASS 1 has completed it will specify the actual number of segments loaded (including the root).

Figure 51. Segment Table Format

P:CSGTAB points to the entry for the current segment being loaded. It is initialized to
{P:SEGTAB)+l for the root and incremented by P:SLEN for each segment entry.

Root Entry

Word Descri pti on

Segment identifier of the root (always 0). No segment may have the segment
identifier O.

2 Address to which M:LOAD will read in the root segment.

3 Number of bytes to read (must be even).

4 During PASS1, the OV:LOAD table is assigned as a reserve at the end of the
program section of the root, and P:LDLOC and P:EXLOC updated by that amount.
The following is applied:

P:LDLOC-P:SEG
sector size

N (sectors) + R (words)

N sectors of program code are written to OV starting at sector 1, P:OV is
updated to N+1, and N is entered into word 4. R words are moved down to
P:SEG and P:LDBIAS and P:LDLOC is set to P:SEG+R. The library section of
the root is then loaded. This effectively allows a root up to twice the avail
able load space to be loaded. During PASS2, N+ 1 sectors of root program
code are loaded, and reference chained to the library portion and to other
segments resolved. During PASS2 the OV:LOAD table is also completed.

5 Last transfer address encountered in loading the root modules.

6 Load time address of OV:LOAD table in the user's program. The table is
completed in PASS2.

7-9 Not used.

10 Load address for N+ 1 sectors of program code during PASS2 (= P:SEG).

Segment Entry

Word Description

1-5 Identical to entries in the Root Entry.

6 Corresponds to the Sn parameter on the ! $SEG card. If the segment is attached
to the root, word 6 is zero.

Figure 51. Segment Table Format (cant.)

99

100

7 Error severity (bit 0 -= 0 or 1). It is equal to the severity encountered in binary
modules forming this segment.

Displacement of the Symbol table in Xl (bits 1-15). As paths are completed and
new paths started, symbol tables for each segment are written to XL They are
read during PASS2 to resolve forward references. Word 7 contains the displace
ment of the Symbol table for this segment in the Xl file. All Symbol tables
begin on sector boundaries.

8 Number of bytes in this Symbol table (even number). Z, bit 0, is a flag mean
ing this Symbol table has been written on the RAD.

9 Location of the Symbol table in core during PASS 1. PASS2 does not use this
address during loading.

10 Load address for this segment during PASS2. The Loader does not output leading
reserves on a segment. Thus word 10 == P:SEG+r, where r is the sum of alf re
serves in the first module of the segment up to the first roadable data. Note
that re-orging data into the leading reserve of a segment wi II thus cause an
SL abort.

Figure 51 .. Segment Table Format (cont.)

D DD RS R SR Sl US EB P DR LC Entry Length

Segment ID of Satisfying DEF (or lC) Segment ID of this Symbol Entry

Chain Address (UR); Veafue (OEF or lC); Zero for LC REF Entry

Value for REF Chain PASS2, Size for lC-DEF, or SYMTAB link for LC-REF

Character 1 Character 2

Character 3 Character 4

Character 5 Character 6

Character 7 Character 8

J I . I I I I I . t t
8 9 10 11 12 5 0- 3 4 6 7 1 2

Figure 52.. Symbol Table Format

Word 1

Word 2

Word 3

Word 4

, ...

Words 5-8

' ..
15

where, if the bit is on

Word Description

D = DEF

DD = DEF .declared

RS = Satisfied REF

R = Primary REF

SR = Secondary REF

SL = Segment or Library (0 = Segment, 1 = library)

US = User or System (0 = System, 1 -= User)

EB = Extended, Basic, or Main Mode (10 = Extended, 01 = Basic, 11 = Main)

P = Public library

DR = Doubl e Reference

LC = Labeled COMMON

Entry Length = 5 to 8 (variable)

2 Segment identifier number (on ! $SEG card).

3 Chain address for unsatisfied references. If the entry is a primary or secondary
reference, this is the last link in the threaded reference chain. If the entry
is a DEF, this is the value. If a labeled COMMON entry, this word is the
block size value for a defining entry, or zero for a reference entry.

4 If entry is a "satisfied" REF (i. e., a DEF has been found) this is its value to
be inserted in the reference chain .during PASS2. If an unsatisifed reference
(primary or secondary) is meant to be excluded, then word 4 will be a -1-
If this is a labeled COMMON entry, word 4 is the defined location address
or link to the defining Symbol Table entry.

5-8 Alphanumeric characters of the Symbol Table entry.

Note that if the DEF is in the same segment as the REF, the chain is completed during PASS 1 and the
reference item is converted to a definition at that time.

References chained from the program section to the library section of the root are completed during PASS 1.
They are inserted as "satisfied" references.

References from the library section of the root to a segment definition will remain an unsatisfied reference
since the library section is not reviewed during PASS2.

Figure 52. Symbol Table Format (cont.)

101

102

where

2

3

4

5

6

7

8

9

10

11

12

18

19

B I

5 I

, o 1

load Address

Number of Words to load

Task Area length

Entry Point

FWA of TEMP Area

lWA+l of TEMP Area

lWA+1 of Blocking Buffer Pool

Number of Blocking Buffers Available

Number of Oli to use Blocking Buffers (m)

Oll

Ol2

.

OlJO

15

Word Description

2

3

4

5,6

7,8

9

10-19

location at which to begin loading (K:BACKBG).

(B = 1) bits 1-15 contain the number of words to load for the root segment.

Maximum length needed for largest overlay path (including COMMON).

Entry point of the root (must be nonzero). The last transfer address encountered in load
ing the root.

Contain words 3 and 4 of TCB.

Contain words 14 and 15 of the TCB. Word 7 is the value of the COMMON base or end
of avai lable memory for this task. Word 8 is calculated by dividing the area between the
end of the largest overlay and beginning of COMMON by the sector size.

Number of blocking buffers to allow at execution time or, if word 10 is nonzero, the num
ber of operational labels in words 10-19 which may use blocking buffers at execution
time. 5=1 indicates that block sharing for packed random fi les is acceptable.

Two-character EBCDIC operational labels or binary values of F:xxx FORTRAN operational
labels.

Fi gure 53. Background Over! ay Task Header

where

Word

2

3

4

5

6

7

8

14

15

B I

Sl

o 1

load Address

Number of Words to load

Task Area length

Entry Point

Number of Oli to use Blocking Buffers (m)

Oll

Ol2

.

.

Ol10

15

Word Descri pti on

FWA for loading (also word 0 of TCB).

2 (B = 0) bits 1-15 contain the number of words in the root segment.

3 largest area.this task will require, including reserves and COMMON.

4 If word 4 = 0, M:lOAD arms and enables interrupts. If 4/0, this is the entry point to
initialization routine in the task that will arm and enable interrupts.

5 Number. of blocking buffers to allow at execution time or, if word 6 is nonzero, the num
ber of operational labels to follow in words 6-15 which may require Blocking Buffers
at execution time. $=1 indicates that block sharing for packed random files is acceptable.

6-15 Two-character EBCDIC operational labels or binary values of F:xxx FORTRAN operational
labels.

Since the TCB for foreground task is output as part of the task, the temp storage limits (words 3 and 4)
and the blocking buffer parameters {words 14 and 15} are inserted directly into the TCB befort::: outputting.

Figure 54. Foreground Overlay Task Header

103

104

Public library

Creating the Public Library

In creating the Public library, the Loader must insert indicators into each definition item in the Permanent Symbol
table (UBSYM) to show whether the routine is in Extended, Basic, or Main mode (see below, IlLoading the Public
library"). Since the Loader cannot determine the mode implicitly from the binary module, control information must
be input to the Loader through $PUBLIB control commands. By.proper use of this command. (optionally followed by
!$LD, !$LB, and !$INCLUDE commands) a Public library of any combination can be created. The Loader sup
presses the use of the current LIBSYM in creating a new PUBUB.

To create the Public library, the Loader selectively loads the routines, concurrently building a Symbol table with
bits E, B, or M appropriately set. An! EOD completes the input. Nothing is written on the OV file as loading is
completed. Overlay 5 optionally maps the library, writes the Public library core image onto the System Processor
file, creates the Public library portion of the Monitor Transfer Vector file (TYECT) in the System Processor area by,
using information from the Symbol table, and writes the new Symbol table into the LIBSYM file of the System
Processor area.

Loading the Public Library

Before searching the User or System library, the Loader will endeavor to satisfy references from the Public library.
Definitions from the Pub Ii c library are input as part of the Permanent Symbol table in Overlay 1 from the LIRSYM
fife in the System Data area of the RAD. Where applicable, the mode (E, B, or M) is checked. If the mod~ of a
matching Public library definition is incorrect, the appropriate RAD library searches will be made to load the routine
of correct mode. A Main mode routine in the Public library may be utilized in both Extended and Basic library
search modes.

System and User Libraries

Library Search Order Tables

The library Search Order Tables, T:DLIB and T:OLIBcontain information as to which I,ibraries are to be searched,
and in what order, at any given time in the load process.

T :OLIB, which defines the optional case, is reset to zero (empty) by O:INIT. It can be set to a temporary nonzero
value only by a !$lB card. At the completion of the total loading process for that segment, both cells ofT:OLlBare
reset to zero. T:DLIB defines the default case library search. It is set initially by overlay 1 to the Basic System
library. A! $lB card will not override any values in T :DLIB. However, a ! $LIBcard sets T :DLIB to the new default
case, which remains constant until the termination of the complete load process or until a new! $L1B is encountered.

T:OLIB is always searched first. If the first entry in T:OLlB is empty, the search continues through T:DUB. If
T:OLIB contains entries, T:DLIB is not searched. T:DLIB and T:OLIB are contained in the Root Base table.

Structure of the System/User library Area is shown in Figure 55.

Input/Output

All 1/0 is done in initiate-wait mode, using operational label.s and invoking RBM error recovery procedures. A
generalized I/O check routine, R:CHEKIO, checks the return status and outputs diagnostics for such conditions as
end-of-tape, file-protect, etc. Control is returned to the calling routine only by an EOF or normal return.

Three buffers are allocated in the root segment of the Loader: B:INBLOCK, a single 512-word or double lBO-word
blocking buffer and general RAD I/O buffer; B:OL, a 60-word deblocking buffer; and B:CC, the Loader's control
card buffer. No internal provision is provided for blocked I/O to the CC, DOor OC operational labels.

Word

2

3

4

5

6

Library Loading

System/User Module Directory

System/User EBCDIC Fi Ie

System/User Extended DEF /REF File

System/User Basic DEF/REF File

System/User Main DEF/REF File

System/User Modules

File 1
Module Directory File

File 2
EBCDIC File

File 3
Extended DEF /REF F i Ie

File 4
Basic DEF/REF File

File 5
Main DEF/REF File

File 6
Library Modules

, ...

''''

Library Area Directory
(standa rd dire ctory format)

Fi gure 55. System/User Library Area Structure

If there are unsatisfied references within an input program, individual libraries will be searched for satisfying defini
tions. In the process, a Library Search Criterion Table (LSCT) will be built as shown below:

E EBCDIC File Number

2 15

where

D = 1 indicates the EBCDIC symbol has been defined along the program path.

N = 1 indicates the EBCDIC symbol asa reference has been added to the table during the current library search.

E = 1 indicates the library module having the EBCDIC symbol as a DEF that should be excluded from loading.

EBCDIC File Number is the sequential count of the associated symbol in the EBCDIC file.

The LSCT will be comprised of those symbols defined within the library (System or User) and occurring in the pro
gram Symbol table. To do so, the EBCDIC file is matched against the program Symbol table to produce LSCT entries
reflecting symbols already defined, those needing satisfaction, and those to be excluded from library loading. This
procedure is shown in the flowchart of Figure 56.

Subsequently, the LSCT is matched against the individual library DEF/REF files to determine those modules to be
loaded. A module to be loaded (i. e., one or more of its DEFs are required by the program) in turn needs its REFs
satisfied. Consequently, the LSCT may be added to in this process. Should the LSCT exceed 300 entries, the pro
cess will abort with an "LS" diagnostic.

When an individual DEF/REF file is completely searched without adding new elements to the LSCT, library modules
specified as being required will be loaded. Figure 57 shows the logical flow of this processing.

105

106

Fetch Next
EBCDIC
File Entry

Enter Symbol
into LSCT
as a REF

Enter Symbol
into LSCT
as Excluded

Enter Symbol
into LSCT as
Defined

Figure 56. Building the Library Search Criterion Table

Change the LSCT
Entry to a DEF and
Set the New REF
Flag

Figure 57. Bui Iding the Library Module Load List

107

108

BLOAD

The BLOAD loader facilitates the loading of large load modules by providing a paging mechanism for the core image
of the object programs. BLOAD is syntax-compatible with OLOAD, but it does not have the capability of creating
a Public Library. BLOAD has lower core requirements than OLOAD and is relocatable. BLOAD creates a load mod
ule one granu Ie at a time, trading speed for the ability to load program segments larger than the ava.i lable loading
space.

The following discussion and flow charts detail the major differences between BLOAD and OLOAD. The tree struc
ture of BLOAD is shown in Figure 58 and the flow charts are shown in Figures 59 through 66.

Segment numbering of BLOAD maintains the functional correlation of OLOAD as far as possible; this requires fewer
modifications in the OLOAD sequence of calls to M:SEGLD. Also, BLOAD overlays 1-5 perform the same primary
functions as OLOAD overlays 1-5. The significant differences are discussed below.

OLOAD overlays 1 and 2 contain duplicate code for reading, printing, and scanning control commands. This code
is consolidated in BlOAD overlay 20.

OlOAD overlay 2 is preceded by routines to store load module data and insert symbol table entries required by over
lays 3 and 4 (3 and 4 are biased high enough to avoid overlaying these routines). These routines are contained in
BLOAD overlay 10.

BLOAD overlay 30 contains M:ASSIGN and M:READ FPTs and loader tables required by overlays 3 and 4 but not by
overlay 2. These FPTs and tables in OlOAD are also loaded as part of overlay 2.

BLOAD overlay 6 contains the I/O diagnostic messages contained in OLOAD overlay 1.

Overlay 1 I

Overlay 20

Overlay 10 Overlay 2 I

Overlay 3 I
Overlay 30

ROOT

IOverlay 10 Overlay 4 I

Overlay 5 I

Overlay 6 I

Figure 58. BLOAD Tree Structure

Overlay 1

Bring inOveriays
10 and 20

Analyze
Parameters on
!OLOAD
Command

Establish Upper
End of Symbol
Table '

Load RBMSYM
and LIBSYM into
Symbol Table

S:RDPTCC

Read and Print
Control Cards
(Overlay 20)

Figure 59. BLOAD Overlay 1 Structure

Wri te Header
Sector on
OV File

Process
Parameters

Set Appropriate
Map Flag

Process
Parameters

Process
Parameters

Exit
Overlay 2

109

110

!$INCLUDE,
I$EXClUDE,
!$RES,!$lCOM
Process Parameters

I $lB Process
Parameters

!$lIB Process
Parameters

Sequence Error

Initialize
Appropriate
Base Table
Entries

Read a Control
Card and Print

!$ROOT
Process
Parameter

Bring in
Overlay 20

Save Appropriate
Segment Symbol
Tables on 'Xl'

Process
Parameters

Figure 60. BLOAD Overlay 2 Structure

Reserve Program
OV:LOAD Table

Exit to

Overlay 2

yes

Bring in
Overlay 30

no

Write Residua I
of Segment

Load Modu I es
Link to

Overlay 4

Overlay 4

no

no

Ntatch EBCDIC
File Against
Symbol Table
to Sui Id LSCT

Match DEF jREF
File Against LSCT
to Build Module ~-----,

Load Table

yes

Figure 61. SLOAD Overlay 3 Structure

111

112

O:LDN

Input Single
Module from

Input File

Read Input
Oplabel

O:TYPEO

Padding

O:TYPE2

Relocate on
Execution

Bias

O:TYPE4

Start Item

O:TYPE7

Load Origin

O:TYPE9

External
Definition

O:TYPEC

Address li tera I
Chain

Resolution

no

Initialize
Appropriate
Base Table
Entries

O:LD

Process Input
Card Images by

Item Types'

yes

O:TYPEl

Unrelocated
load

O:TYPE3

Relocate on
Common

Bias

O:TYPE5

End Item

O:TYPE8

Displacement
Chain

O:TYPEB

External
Reference

Figure 62. BlOAD Overlay 4 Structure

O:lDLBMD

Input library
Module

Read Input
library Oplabel

Close the ID
Fi Ie if Needed,
Rewind GO

If Needed,
Generate
Map Headi ngs

Update
OVLOAD
Table

Create TCB
if Needed

Map the Root
Symbol Table
if Needed

no

Read Segment
Symbol Table
from Xl

Resolve
Forward
Linkages

Map Segment
if Required

Update the
OV Header
Sector

Figure 63. BLOAD Overlay 5 Structure

M:ABORT

113

114

S:STORE

Bump load loc
and Execution
Counters

Calculate Message
Address from

Status

Write Message
to OC

yes

S:ABORT

Call M;ABORT

Figure 64. BlOAD Overlay 6 Structure

S :RESET

Clean up load
Space. Rese t CT R

. Swap Out Current,
Swap in Next

S:INSERT

Update SYMT AB
Pointers. Transfer
SYMBOL Text

Figure 65. Overlay 10 Structure

Return

Set Abort Flag

Continue

I NIT Counters and
Pointers. Scan to
First non Blank
After Mnemonic

Get Next
Character

Determine
Parameter Type.
Return with
Indicators Set.

Return with
E negative
(Blank)

Return
with A = 0
(End Scan)

S:RDPTCC

Put ICC' in
M:READ FPT

no

M:READ

Read Record

S:CHEKIO

I/o Check
(Root)

M:WRITE

Print CC
to'LL'

Figure 66. SLOAD OverJay 20 Structure

Put lOCI in
yes M:READ FPT

Transfer 40 Bytes
from SI to CC

Set IEOD
yes Return

115

116

5. RADEDIT

Each current file area is defined by an entry in theRBMMaster Directory. The relationship of the Master Directory,
the file directory, and their corresponding fi les is shown in Figure 67.

The first file directory begins in sector 1, relative to the beginning of the disk or disk pack area. Word 2 of the
Master Directory entry for an area contains the sector address of the first (label) sector of the area.

The first two words of every directory sector contain an identification entry, with the form:

o NEP or NFD

NAS

15

where

C is the file directory sector for this area (0 = last file directory sector, 1 == not the fast file directory
sector).

NEP i·s the word offset (if C = 0) to the word foflowing the lost entry in this directory.

NFD is the sector offset (if C = 1) from the beginning of area to the next file directory sector for this area ..

NAS is the next availabfe sector (if C = 0) in the area (relative to the beginning of area) for the addition
of a new file.

E~ch subsequent nine (K:FDSIZE) words define a file in the area as foflows:

o n1 n2

n3 n4

2 n5 n6

3 n7 n8
.

I WP IC I T I RF I /SR F 4

5 Record Size

6 BOT (first Sector of File)

7 EOF

8 EOT (Last Sector of Fi Ie + 1)

I I I I I . . .
012345678 14 15

where

n 1 - n8 is the name of the file (three to eight nonblank EBCDIC characters followed by blank EBCDIC char-
actersto make a total of eight characters).

CORE MEMORY

0

.-- K:MASTD

-
- f--

~

Mnemon i c (AA)

Format Word
(Figure 37)

BOT

EOT

L.--. Length of Directory

Figure 67. RBM Fi Ie Structure

Area AA

Label

First Fi Ie
Directory

Entry M
Entry N

File M

File N

Area
ZZ

117

118

F is the format of the file

o = unblocked.

1 = blocked.

2 = compressed.

3 = packed.

4 = random.

WP is the write-protection code for the file

o = no protecti on.

1 = write permitted by background only.

2 = write permitted by foreground only (unless SY key-in is in effect).

3 = write permitted by RBM only (unless SY key-in is in effect).

C is a cylinder maintenance flag which indicates (if C = 1) that the BOT of the file is to be maintained
on a cylinder boundary.

T is a track maintenance flag which indicates (if T = 1) that the BOT of the file is to be maintained on a
track boundary.

RF is the resident foreground program flag for files in SP, UP, or FP areas. If set, the program is loaded
by RBM at system boot time.

SR is the short record flag (see Disk File Directory).

Record Size is the number of words in a record.

BOT is the absolute sector address of the first sector defined for the file.

EOF is the pointer to the logical or pseudo file mark. If EOF = -1, no file mark has been written.

EOT is the absolute sector address of the last sector plus one defined for the file.

If a directory entry is deleted or empty, every word of the entry contains zeros. No entry extends over a file direc
·tory sector boundary.

Library File Formats

The System library area and User Library area both have the same structure. Each contains six files: the Module
Directory File (MODIR), the Library Module File (MODULE), the main DEF/REF File (MDFRF), the Extended DEF/
REF File (EDFRF), the Basic DEF/REF File (BDFRF), and the EBCDIC File (EBCDIC). These files must be defined
via !#ADD commands before attempting to generate them via !#LADD commands.

MODIH File

The MODIR file is random access, where each sector contains an integral number of six-word entries.

Entry 0 of the MODIR fi Ie contains the following identifi cation entry:

o Word Count

Next Available Module Sector

2

Unused

5
o 15

where

Word Count is the number of active words in the MODIR file. The word count is 6n, where n is the number
of entries in the file (including entry 0).

Next Available Module Sector
object module.

is the relative sector within the MODULE file available for storing the next

Each subsequent entry of the file contains MODIR entries numbered through n. A MODIR entry contains:

o lib I MODULE Record Number

Relocatable Length

2

Identification

5
I I

012 15

where

Lib indicates which DEF/REF (xDFRF) file contains the external definitions and references for the module
(11 := MDFRF file, 10 =BDFRF file, 01 := EDFRF file, 00 = entry has been deleted).

MODULE Record Number is the relative sector within the MODULE file where the object module begins.

Relocatable Length is the relocatable length of the object module in the MODULE file.

Identi fi cati on is the name from the start item of the object module beginning at MODULE sector number.

A deleted or empty MODIR entry contains all zeros.

MODULE File

The MODULE file is a packed random access file containing object modules. The MODIR file acts as a directory
to the object modules contained in the MODULE file. Each entry in the MODULE file is an object module. The
120-byte card i"mages of the object module are blocked by RADEDIT.

119

120

MDFRF, BDFRF. and EDFRF Files

The MDFRF, BDFRF, and EDFRF files (xDFRF files) all have the same format. The files are random access with vari
able length entries.

Entry 0 in the file contains an identification entry-as follows:

o

Word Count

o 9 I 10 15

where Word Count is the number of active words in the file including entry o. If no entries have been placed in
the file, it is zero. This count can be used to compute the sector access and relative position within that sector
where the next DEF/REF entry can be stored.

The remaining entries in the fj Ie are called DEF/REF entries. A DEF/REF entry never extends over a sector boundary.
Empty entries are used to pad sectors. Each entry contains.

o MODULE Record Number

n t m

2 DEF 1

3 DEF 2

·
· --

1+n DEF n

2+n REF 1

31n REF 2

·

REF

o I ,
7 8 9 10 15

where

MODULE Record Number is the record number of the first record of the ReM in the MODULE file. If the
MODULE entry number is -1, the entry is empty.

DEF. is the entry" number of an externar definition symbol in the EBCDIC file.
t

REF. is the entry number of an external reference symbol in the EBCDIC file.
t

An empty or deleted DEF/REF entry contains a MODIR Entry No. of zero, and Entry Size is the length of
-the padding entry.

EBCDIC File

The EBCDIC file is a random access file where each entry contains four words. Every sector contains an integral
number of entries.

Entry 0 is an identification entry that contains

0
- -

Zeros
- -

2

3 Word Count

0 15

where Word Count is the number of words in the EBCDIC file (including entry zero). The word count is 4n, where
n is the number of entries in the file (including entry 0).

Each subsequent entry in the file is called an EBCDIC entry. Each contains:

o

Symbol

2

3

o 15

where Symbol is an external definition or reference in EBCDIC, left-justified with trai ling blanks.

Overlay Structure

The RAD Editor consists of a root' segment plus 12 overlay segments. Each segment contains one object module.
Before a command is executed, the appropriate segment(s) is loaded via M:SEGLD. Control is·transferred to the
cornmand execution segment by the RAD Editor; not by M:SEGLD.

The overlay tree structure showing the function and segment number of each object module is illustrated in
Figure 68 •

. Control Command Execution

RBM loads and transfers control to the RAD Editor upon reading a IRADEDIT command from CC. The Executive
routine (R:EXEC) of theRAD Editor gains control. It initializes all Hags and pointers and reads a control command
from CC and scans it . The Execute Command routine (R:CMDEX) loads the overlay segments needed (if they are not

121

122

Add, Delete, Truncate, Clear, Squeeze (2)

Directory Routines (1) Save (3)

Rebootable Save (4)

Restore (5)

Rebootable Restore (6)

Root (Exec~tive) Library Add, Delete, Replace, Copy (8)

library R ')ut; nes (7)

Library Squeeze Copy (9)
Dump,
File Copy,
Disk Pack Copy (10)

Map, li brary Map (11)

Initialize Good Track/Bad Track (12)

Figure 68. RADEDIT Tree Structure

already core and transfers control to the routine to process the command. On encountering a !#END command
or an EOF status, (!EOD), the RAD Editor terminates by calling the Monitor service routine (M:TERM) which returns
control to the Monitor. A functional flow diagram is shown in Figure 69.

For each command the root segment initializes the base table, reads and scans the control command, loads the seg
mentes) required for command segment for command execution (if necessary), and transfers control to the appropriate
segment for command execution. Routines commonly referenced by other segments are also included in the root. The
base table included in the root segment contains the addresses of the entry points to all routines in the root plus the
addresses of error messages. Storage in the base table is also provided for flags, file entries, directory entries, and
constants.

The entry points to routines included in the root segment and their functions are given in Table 1.

Area Maintenance Commands

The permanent fi Ie directories are maintained so that the directory entries in the permanent file directory appear in
the same order as the actual fi les (i. e., the BOT in each directory entry is greater than the BOT in the previous
entry). This ordering of entries and files facilitates maintenance, particularly execution of the ! #SQUEEZE
command.

To preserve this ordering of entries and files, the !#ADD, !#DELETE, !#CLEAR, !#TRUNCATE, and !#SQUEEZE
commands must be executed as follows:

#ADD Command

The "area" parameter on the! #ADD command is used to determine the active area to be updated.

The 11 name " , "fsize", "rsize", "format", "Wpll, "foreground", and "maintenance" parameters are used to form
words 0, 1, 2, 3, 4, and 5 of a new directory entry. The EOF (word 7) is set to -1. The new entry is added to the

RBM Reads
IRADEDIT
Control Command

Determine CC,
DO~ and OC
Assignments

Close and Release
Op Labels XO-X6

yes

Transfer
Control To
Segment

yes

no

Figure 69. Control Command Execution Flow

123

Entry Point

R:EXEC

R:CHKIO

R:CLOSE

R:CMDEX

R:GDIR

R:GPAR

R:OPCOMM

R:RDSCAN

R:RADR

R:RADW

R:RSI

124

Table 1. RADEDIT Root Segment Entry Points

Routine Name

RADEDIT Executive

Check I/o

Close

Command Execution

Get Di rectory Entry

Get Next Parameter

Operator Communication

Read-Scan Command

RAD Read

RAD Write

Read SI

Function

Controls operation of the Editor and is entered
to begin execution of the Editor.

Checks I/o status and, if necessary, writes
appropriate error message. This routine is
called after performing every I/o operation.

Closes the indicated file in order to release
the device file number assigned to it.

Determines which segment(s) are needed for
command execution, loads the required seg
ments, and calls the appropriate routine for
actual command execution.

Gets the next entry from a permanent file
directory.

Gets the address of the next entry in the pa
rameter table created by R:RDSCAN.

Writes, solicits, and receives messages on
the OC device.

Reads a control command from CC and creates
a parameter table.

Reads a sector from a random access RAD fi Ie
or file directory. This routine is called to
read all RAD files.

Writes and check-writes a sector on a ran
dom access RAD file or file directory. This
routine is called to write all RAD files.

Reads a standard 120-byte binary card image
from SI.

directory sector having an identification entry with C == 0 and is stored in the directory sector at NEP. The BOT
(word 6) of the new entry is set equal to the next available sector (unless C or T is specified as a "maintenance ll

parameter). The EOT (word 8) of the new entry is computed from the "recordll and "fi le" parameters. After the
new entry has been added, the next available sector (word 1 of the last fi Ie directory sector) is set equal to the EOT
of the new entry.

If the C or T is specified as a IImaintenance ll parameter, the BOT is set to the next available cylinder (C) or
track (T) boundary.

To complete the !#ADD execution, the identification entry of the directory sector is updated. If there is room in
the directory sector for another entry, the address in the identifi cation entry is incremented by 9 (K:FDSIZE). If
there is no room in the directory sector for another entry, the C-bit in the identification entry is set to 1, a new
fi Ie directory sector is reserved, the volume sector number of the new file directory sector is stored as NFD, and
the new file directory sector is initialized with the new volume of NAS.

#DELETE Command

The "area" parameter on the ! #DELETE command is used to determine the active area to be updated. The IIname ll

parameter is used to search the directory for the directory entry to be deleted. The file (defined by the BOT and
EaT parameters) is deleted by zeroing out the directory entry. The space formerly occupied by the files becomes
unused until a !#SQUEEZE command is executed. The deleted space is automatically recovered if the entry is the
last one in the file directory.

#CLEAR Command

This command clears areas and/or files. Files are cleared by assigning the XO oplabel to the area and then zeroing
the file with a maximum byte count. Areas are cleared by assigning the XO oplabel to the area and then zeroing
out the area with a maxi mum byte count.

#TRUNCATE Command

This command is identical to !#DELETE, except that instead of the directory entry be.ing zeroed out, the EOF is used
to compute a minimum EaT value to replace the current EOT. The space between the new EOT and old EOT be
comes unused unti I a ! #SQUEEZE command is executed. The truncated space is automati cally recovered if the entry
is the last one in the file directory.

#SQUEEZE Command

The "area ll parameters on the !#SQUEEZE command determine which permanent RAD areas to initialize. Executing
a !#DELETE command causes the part of the permanent RAD area where directory entries are files were previously
located to be lost from use (except when the file being deleted is the last file in the area). Executing !#ADD com
mands causes new entries and files to be added without attempting to regain any unused space. Squeezing eliminates
these unused portions of the permanent RAD area. The directories are compacted and the files themselves are moved
to regain these unused spaces. If C or T (cylinder or track) maintenance is specified for a file, it is moved to the
next available cylinder or track boundary above the previously IIsqueezedll file. The BOT and EaT in the directory
entries are updated as they are compacted to indicate the area occupied by the moved file. Figures 70 and 71 show
a file area before and after squeezing.

Area Maintenance Routines

Segment 1 contains the common routines necessary for execution of area maintenance commands. The entry points,
routine names, and functions are defined in Table 2.

125

126

First Sector
of Area

Area label

First File Directory

File-l

Unused

File-2

File-3

Fi les 4 through n-1

File-n

Second File Directory

File-n+l

File-n+2

Unused

V
/'

\

\

\

~
\
\

\

\

/'
/'

/'

\

\

\

\

\

\
\

\

\

\

\
\

\
\
\

\

./

\ ,

\
\

Identifi cation
Entry (C = 1)

File-1 Directory
Entry

Zero Directory Entry

File-2 Directory
Entry

File-3 DIrectory
Entry

F i I es 4 through
n-1 Directory Entries

File-n Directory
Entry

Identification
Entry (C = 0)

File n+1 Directory
Entry

File n+2 Directory
Entry

Unused

Figure 70. Fife Area Before Squeeze

First
Directory
Sector

Second
Directory
Sector

First Sector
of Area

Area Label V

First File Directory

\
File-1

File-2

File-3

Files 4 through n-1

File-n

Fi le-n+ 1

Second File Directory

'" File-n+2

Unused

/

,I

/
/

/

/

\

\

\

\

\
\

\

\
\

\
\
\
\

\
\

\
\

\ ,

Identifi cati on
Entry (C = 1)

File-1 Directory
Entry

File-2 Directory
Entry

File-3 Directory
Entry

Fi I es 4 through
n-1 Directory Entries

File-n Directory
Entry

File-n+1 Directory
Entry

Identifi cati on
Entry (C = 0)

File-n+2 Directory
Entry

Unused

Figure 71. File Area After Squeeze

First
Directory
Sector

Second
Directory
Sector

127

128

Table 2. Area Maintenance Routines

Entry Point Routine Name Function

R:DSRCH Directory Search Searc.hes a permanent file directory for an
entry having a designated name.

PDN Process Directory and Processes the "directoryll and IIname" pa-
Name Parameters rameters on an !#ADD, !#DELETE command

by utilizing the parameter table created by
R:RDSCAN.

R:SETY Store Entry Completes a directory entry by determining
the BOT and EOT for the fi Ie it describes and
stores the entry in the permanent file directory.

R:GNF Get Next File Gets the next II a rea/fi I ename" from the con-
tro I command.

PROTEST Protection Test Tests the current area protection code un-
less an SY key-in is in effect.

library File Maintenance Commands

The library files are maintained through the execution of !#LADD, !#LREPLACE, and !#LDELETE commands. The
entries in the MODIR file, MODULE file, and xDFRF files are all ordered the same way. The ith entry in the
MODIR file identifies the ith object module in the MODULE file. The jth MODIR entry referencing a particular
library corresponds to the ith entry in the xDFRF file for that library. The MODULE file is in a packed random format.

To preserve the ordering of these files, the !#lADD, !#lREPLACE, !#LDElETE, and !#lSQUEEZE commands·must
be executed as follows:

#LADD Command

The "area" parameter on the !#LADD command determines which active area contains the library files to be updated.
For each object module added the following procedure is used:

• The "Iibraryll parameter determines the setting of the IIlib ll bits (word 0) in the new MODIR entry and which
one of the xDFRF files to update.

• The MODULE record number (word 0) of the new MODIR entry is set equal to the "next available MODULE
record II (MODIR identification entry). The remaining information stored in the library files is obtained
from the obi ect modu Ie read from Bf.

• The object module is placed on the MODULE file beginning the IInext available MODULE record II •

• The identification and relocatable length are obtained from the module and stored to complete the MODIR
entry.

The symbols for each external definition and reference in the object module are extracted and stored as entries in
the EBCDIC file (if they are not already stored there). The entry number of the EBCDIC entry for each extemal
definition and reference is saved to create the "DEFj" and "REFi" words of the DEF;REF entry written on the xDFRF
file. The addition of the object module to the library is completed by updating the identifi cation entries in the
MODIR, MODFRF, BDFRF, EDFRF, and EBCDIC files.

#L)DELETE Command

The "area ll parameter on the !#LDELETE command determines which active area contains the library files to be
updated. The MODIR entry containing the same "identification" indicated on the !#LDELETE command is zeroed
out. The information in the MODIR entry is used to zero out the DEF/REF entry in the xDFRF file indicated by the
"Iibrary" parameter. No changes are made to the identification entries in the MODIR and xDFRF files. No changes
whatsoever are made to the EBCDIC file or MODULE file as the result of !#LDELETE command execution.

#LREPLACE Command

The "areal! parameter on the !#LREPLACE command determines which active area contains the library files to be
updated. The procedure followed is identical to executing a !#LDELETE command followed by a !#LADD command,
where both commands have the same parameters.

#LSQUEEZE Command

The "areal! parameter on the !#LSQUEEZE command determines which active area contains the library files to be
squeezed. The command saves the MODIR file in core, clears the MODIR, EBCDIC, and xDFRF files, and then
recreates them by performing a ! #LADD function using the old MODULE file as input.

Library file Maintenance Routines

Segment 7 contains the routines necessary for maintaining and referencing the library files via !#LADD, !#LREPLACE,
!#LDELETE, and !#LCOPY commands. Routines in the root segment are referenced. The entry points to the routines
in this segment are shown in Table 3.

Entry Point

R:ASSIGN

R:DRADD

R:DRDELE

R:GBIN

R:ESRCH

R:GMD

R:MDADD

Table 3. library File Maintenance Routines

Routine Name

Assign library Fi Ie

DFRF Add

DFRF Delete

Get Binary Card
Image

EBCDIC Search

Get MODIR Entry

MODIR Add

Function

Assign a designated library file to an opera
tional label.

Place a new entry in either the MDFRF, BDFRF,
or EDFRF file.

Deletes an entry from either theMDFRF,
BDFRF, or EDFRF file by chaning the entry to
a padding entry.

Gets a binary card image from the MODULE
file by deblocking sector images.

Searches the EBCDIC file for a designated
DEF or REF symbol. If the symbol is not
found, it is added to the file. The entry
number of the symbol is returned.

Obtains the next entry from the MODIR
file.

Places a new entry in the MODIR file.

129

130

Table 3. Library Fi Ie Maintenance Routines (cont.)

Entry Point

R:MDDELE

R:MDSRCH

R:MOADD

R:PLC

Utility Commands

Routine Name

MODIR Delete

MODIR Search

MODULE Add

Process Library Com
mand Parameters

Utility functions are included in the RAD Editor to allow

• Dumping random access RAD files.

Function

Removes an entry from the MODIR file by
zeroing it out.

Searches the MODIR file for an entry having a
matching "IDNT" and library-mode (E, B, or M).

Reads an object module from BI and writes
it on the MODULE file. From data in the
module it forms or completes entries to add
to the EBCDIC file, MODIR file, and either
the MDFRF, BDFRF, or EDFRF file.

Processes "area", II identifi cation " , and
library parameters on the ! #LADD,
!#LDELETE, !#LREPLACE, and !#LCOPY
commands by utilizing the parameter
table created by R:RDSCAN.

• Copying the contents from one random access RAD file into another.

• Copying a library routine from the System Library or User Library onto BO.

• Mapping the RAD areas.

• Saving contents of permanent RAD areas or files.

• Restoring the RAD using data saved.

• Initialization of new disk packs.

• Messages to the operator.

• Messages with operator response required.

#DUMP Command
-

The !#DUMP command outputs data on LO. The file must be random access and is read and dumped one sector at
a time.

The format of the dump of each sector is

SECTOR ssss

rrrr dddd dddd dddd

rrrr dddd dddd dddd

where

ssss is the relative address (hexadecimal number) of the sector in the file defined by the "oplb" parameter.

rrrr is the relative address (hexadecimal number) of the first data word dumped.

dddd is the image of a data word (a hexadecimal number). The number of data words per line is eight if
LO is assigned to a keyboard/printer. Otherwise, 16 data words per fine are output.

#FCOPY Command

The !#FCOPY command copies the contents of the random access fi Ie assigned to the "input" operational label onto
the random access file assigned to the "output" operational label. The data is read and written one sector at a time.
When EOT is encountered on either file, the copy terminates.

#LCOPY Command

The !#LCOPY command outputs an object module on the BO device. The object module is found by searching the
MODIR file for an entry having an identification matching the identification requested as a command parameter.
From the MODULE sector number in the entry, the MODULE file is positioned and card images are deblocked and
written on SO.

#MAP Command

The !#MAP command outputs data on LO. The "area" parameters determine which RAD area to map. Each area
mapped may cause up to two items to be output. The items or parts of a map are:

1. Information from Master Directory consisting of the directory area identification, its beginning RAD ad
dress, and ending RAD address.

2. Information obtained from the permanent file directory about each file in the area, its name, format, write
protection, foreground task indicator, logical record size, beginning RAD address, ending RAD address,
and end-of-file pointer.

For CP or ST areas mapped, only part 1 is printed; for every area, parts 1 and 2 are printed.

Part 1 of the map has the format

AREA aa DEY cc BOT bbbb EOT tttt

where

aa identifies the area.

bbbb is the volume sector address of the beginning of the area. It is in the form of a hexadecimal number.

131

132

cc is the device number.

tttt is the volume sector address of the last sector plus one of the area. It is in the form of a hexadecimal
number.

Port 2 of the map has the format

NAME FORMAT WRITE FORE RECORD CYl TRACK SECT BOT EOF EOT

nnnnnnnn f w cccc tttt ssss bbbb ffff eeee

where

nnnnnnnn is the name of a fi Ie in the permanent RAD area.

f is the file format (U = unblocked; R = random; C = compressed, blocked sequential access; B = blocked
sequential access; P = blocked random access).

w is the write protection for the file

SY is write permitted from RBM only.

FG is write permitted from foreground onty.

BG is write permitted from background.

NO for no write protection.

is the foreground task indicator. It is RF if the file contains a resident foreground task (only meaningful
for files in the SP, UP, and FP areas). It is blank if the fi Ie does not contain a resident fore
ground task.

rrrr is the logical record length, in bytes, represented as a hexadecimal number.

ccce is the hardware cylinder address (if the fi Ie is contained on a disk pock) containing the BOT of the
file.

tttt is the hardware track address containing the BOT of the file (included if the file is on a disk pack or
7232 RAD).

ssss is the hardware sector address containing the BOT of the file (included if the file is on a disk pock or
7232 RAD).

bbbb is the volume sector number of the first sector defined for the file. It is a hexadecimal number.

ffff is the end-of-Hle pointer. It is a hexadecimal number.

eeee is the volume sector number of the last sector plus one in the file, represented as a hexadecimal
number.

#LMAP Command

The! #LMAP command maps the library files in the area specified by the command. The library map is printed for
each object module in the format.

LIBRARY x IDENT ii i i ii i i LENGTH yyyy SECTOR ssss

DEFS REFS

dddddddd rrrrrrrr

where

x indicates the library in which the library object module is located (M -= Main, B -= Basic, E -= Extended).

iiiiiiii is the identification (from start module item) of the object module.

yyyy is the relocatable length of the object module.

ssss is the relative record number of the module within the MODULE file.

dddddddd is the symbol for an external definition in the module.

rrrrrrrr is the symbol for an external reference in the module.

For each entry in the Master Directory, the following steps are repeated:

1. If the Master Directory entry is empty, no information is output; otherwise, Part 1 of the map is produced
from the Master Directory entry.

2. If the Master Directory entry is for an active area, the permanent file directory for the area is read
to produce Part 2 of the map. If the area is allocated but contains no permanent files, nothing is
output.

3. If the active area is either the SL or UL, the I ibrari es are mapped in the following order:

a. Basic

b. Extended

c. Main

4. The contents of each library (Basi c, Extended, or Main) are mapped by referencing the MDFRF, BDFRF,
or EDFRF file for that library. Each nonpadding entry in the xDFRF file identifies an object module in
the library. The information about the object module is obtained in the following manner:

a. LIBRARY - this is the first character in the file name of the MDFRF, EDFRF, or BDFRF file being
mapped.

b. IDNT and LENGTH - each xDFRF entry contains a MODIR entry numb~r. The corresponding entry in
the MODIR file contains the identification and relocatable length of the object module.

c. DEFs and REFs - each xDFRF entry contains n DEFi words and m REF. words describing the external
definitions and references in the object module. Each DEFi or REF; is the entry number of a symbol
in the EBCDIC file. The symbolic representation of each DEF and REF is obtained by referencing the
indicated entry in the EBCDIC file.

133

134

#SAVE Command

The file save tape/deck created by the !#SAVE file command has the following format:

Control Records

The following records are output if the media is magnetic tape or paper tape:

(BOR nn Where nn is a hexadecimal digit of value 1 for the first reel, 2 for the second reef, etc.

!EOR This record indicates the end of a tape reel and appears at the end of paper tape reefs only.

!EOD This record indicates- the end of a standard binary file on cards or paper tape.

Data Records

The foHowing format is used for all saved files:

where

o

2

3

n

F or 9

t

o 3 4

F I Size (n - 3) for CP or PT

Size (n - 3) for MT

Sequence

Checksum (3 thru n)

First Record Word

·
· ·

last Record Word
t

7 8 15

For 9 if the media is cards or paper tape, word 0 begins with FF or 9F as the first byte. 9F means this is
the fast record of the file; FF means this is not the last record. If the media is magnetic tape, word 0
begins with F or 9 as the first digit (9 means this is the last record).

Size is the number of active words in the record. If the media is cards or paper tope, the maximum value
of n is 59; if the media is magnetic tape, the maximum value of n is 4093.

Sequence is the sequence number for the current record.

Checksum is the arithmetic sum (with carry) of the n-3 acti ve words after the record header.

File Definition Record

Record 0 of each file contains the directory information necessary to restore the file in words 3 through 12.

Standard Binary Fi les

3

4

5

6

7

8

9

10

11

12

13

n

F

I I

o

Area Mnemonic

C
1

C
2

C3
C

4

Cs C
6

C
7

C
8

1 Wp I cl T I RFI I SR

Record Size

1 if Standard Binary

Relative EOF

Relative EaT (fsize in sectors)

First Record of File

Last Record of File
I I I I I I I

2345678 14 15

If the output media is cards or paper tape, file being saved is blocked, the record size is 120, and the first three
words of the first record conform to the format described in Appendix A of the Sigma 2/3 RBM Reference Manual
(90 1037) the file is simply copied to the BO device; otherwise, the file data is reformatted for output. Any record
within a standard binary fi Ie found to have all zeros or all blanks is not saved.

Region of Save

If an EOF has been written on a file it will be saved up to and including the EOF. If no EOF has been written on
the file and the first block or record of the file is all zeros, only the file definition is saved. Otherwise, the file
is saved up to the EaT.

Listing of Saved Files

As each file is saved, it is listed on the La device. The format of the output is

SAVED~ area, filename

135

Rebootable Save Tape Format

The save tape created when the FILE parameter is absent has the following format:

Record Content

Bootstrap to read record 2

2 Restore program

3 Area definition record

4 Data records

n End record

Tope mark

Tape mark

Area definition records, data records, and the end record have the following Header Format for words 0-2:

Bit Position

o Type I Word Count

Sequence Number

2 Checksum . . o 2 15

where

Type identifies the record (1 = data record, 2 = area definition, 3 = end record).

Word Count is the number of active words in the record, excluding the three-word header.

Sequence Number is the sequential record number, beginning with record number 0, which contains the
tape creation date and time.

Checksum is the arithmetic sum (with carry) of the active words in the record.

136

Area Definition Record

3 Sectors/Record I Devi ce Number

4 Words Per Record

5 Seek Address (Sector Number)

6 Device Type I Channel Register

7 Area Mnemon i c

8
Date/fime (for record 0 only)

14

o I
7 8 15

where

Sectors/Record is the number of sectors in the following data record.

Devi ce Number is the hardware device number.

Words Per Record is the number of words in the following data record.

Seek Address is the hardware seek address for the following record expressed as a sector number.

J Device Type signifies the model number (0 = 7202, 7203, or 7204; 1 = 3231; 2 = 3232/33; 3 = 7232;
4 = 7242 or 7246; 5 = 7251 or 7252; 6 = 3203/04; 7 = 7270).

Channel Register is the even-numbered channel register for the device.

Area Mnemonic indicates the area on the first definition record, and is zero on subsequent definition
records.

Date/Time is the date/time the tape was created (as given by M:DA TIME).

#RESTORE Command

This command restores files that have been saved with a previous !#SAVE command.

As each file is encountered onSI, tests are made to determine

1. If a restore of the fi Ie was requested.

2. If the file has an entry in the file directory (an entry is made if one does not already exist).

3. If the proper write authorization for the area is in effect (SY key-in).

137

138

Files to be restored are read/written using double buffering and I/O overlap wherever possible. As each file is
restored, the message "RESTORED area, filenameII is output on the LO device.

If the magnetic tape being from BI is a rebootable save tape, the areas saved on the tape will be restored in their
entirety.

#INITlALIZE Command

This command initializes RAD/disk packs to conform to the requirements of the RBM file management system. The
command is followed by a set of area definitions, which are used to build a label sector for each disk pack volume
as follows:

For model 7242, sector zero of track 19 of cylinder 202 contains the disk pack label. The format of this label is

0-3

4-11

12-19

132-139

Contents

Zero.

Volume serial number (left-justified and blank-filled).,

Directory entry for first area on disk pack.

Directory entry for 16th area on disk pack.

Each directory entry contains the same information as a Master Directory entry for an area, i. e. ,

Word

o

2

3

Sits Contents

0-15 Area name or zero if no correspondi ng area.

5-6 Area protection code.

0-15

0-15

Sector address of first sector of area.

Sector address of last sector of area +1.

For models 725x and 323x, the format of the label is identic~I, but is written in sector 1 of track 0 of cylinder O.

#MESSAGE and #PAUSE Commands

#MESSAGE

This command outputs the control comm<;md image on the OC device. No RADEDIT overlay is used.

#pAUSE

This command is identical to !#MESSAGE, except that the RBM routine M:WAIT is executed before the next control
command is read.

#GDTRACKS and #BDTRACKS Commands

The !#GDTRACKS and !#SDTRACKS Commands have the format
"

IflGDTRACKS dn,number [,number ••• J.

The flow diagram for !#GDTRACKS and !#BDTRACKS is given in Figure 72.

GET
DEVICE
~M6ER

ftSSlGl Xl TO
DEVICE
NJMBfR

GET
TKRCH
Mute

SET 1=4000

READ
t£ftDER

TRRCK-t

I=1tl

fDtUf\l HERDERS
fOft RLTEKNRTE

TIRO(

'«lTE
HEADERS

fOitf\l HEftDERS
ro Fl..flH

SPECIFIED TRRCX

HRtTE
HERDERS

fORtf\T HERDERS
Ttl' \H1..RM

PflRftfETER TRf\O(

h1'HE
t£ADERS

fottMAT HEflDERS
ro RELEASE.

AI.. TEftNf\TE TIfl)(

Figure 72. GDTRACKS, BDTRACKS Command Flow Diagram

PAGE 1

139

140

R[ftDBTl
fROM SECT0R2

INSERT TKRCK
WMfIER INTO BTl

ENT'"

PftE5ET BAD
llRc(LIST TO

-t

REftD HEmERS

STORE TRltek
NJlllHER 1 N 811

PAGE 2

Figure 72. GDTRACKS, BDTRACKS Command Flow Diagram (cont.)

6. CHARACTER-ORIENTED COMMUNICATIONS HANDLER (R:COC)

Introduct ion

R:COC is a foreground program that serves as an interrupt handler for the Character-Oriented Communications
(COC) Controller, Model 7611. R:COC should be assembled with parameters set to installation-dependent charac
teristics with regard to channel identity, interrupt address, and number of lines to be serviced. Lines are assumed
to be a contiguous set (0 - n).

The program supports Teletypes (Models 33, 35, and 37) in addition to a Model 7555 keyboard display. Display
dependent code wi II be included as an assembly option. Unsupported devices wi II be serviced within certain
limitations.

R:COC can be established in one of the processor areas and loaded into the foreground either automatically when
the RBM system is loaded, or when called in by user command. When loaded, R:COC provides its own initialization
to link the program to the appropriate interrupt address pair (input and output), establishes linkage for Monitor serv
ice requests (M:COC), and provides continuous input to a circular buffer within R:COC.

R:COC Input Buffer

The circular buffer for input data coming from the COC is normally 64 words in length but may be enlarged by as
semblyoption. Input flows to the buffer from the COC as initiated by up to 64 communication lines. The COC
transfers a full word to the CPU for each character initiated by a communication line. This word contains the orig
inating line number (0-63) in the first byte and the generated character (ANSCII) in the second byte. An input
interrupt is provided with each word transferred. .

Once activated by an input interrupt, R:COC processes individual characters and adds to the user message buffer as
appropriate. R:COC maintains an index pointer to identify the next character to be processed and, after processing
a character, replaces it with a mask of all lis. An unprocessed character is identified in the circular buffer by bit
position one (1) being a zero. All input characters that may have been stacked in the circular buffer are processed
individually before exiting the input interrupt level (see Figure 73).

Character Output

The first character of an output message (or prompt character to el icit input) is initiated outside the handler in
M:COC. Upon completing the transmission of a character, the cae controller will provide an output interrupt.
The interrupt will be processed by R:COC, which will "read" the line number associated with the interrupt and then
continue the output message by transmission of either the next character from the user buffer or from the appropriate'
EOM sequence. After initiating character transmission, the interrupt level is exited to allow subsequent interrupts.
If no further transmission is required on the I ine, a "stop transmit" is performed before exiting.

Processing flow of the output interrupt handfer is diagrammed in Figure 74.

141

142

Initialize

ECWORD =0
BUFWORD =0
EDITWORD =0

Extract line Status
Bits as Working
Bits S, H, M, B, P

Set EOM Sequence
as Break list

page 3

IN 23

IN 20

Set
EDITWORD

Set Status as Escape
(S)

pageS

Figure 73. R:COC Input Interrupt Handler

PAGE 1

Separate by
Supported Device
Type

Set EBWORD as a
Delete

Set EBWORD to

yes

Perform Cursor

no

Place ASWORD
into ECWORD

page 3

IN2AA

Set EOM Sequence
as N L List

Link to
Establish

IN2B

PAGE 2

Reduce Line Byte
Count

Set EOM Sequence
as CR List

EOM Sequence

page 3

Figure 73. R:COC Input Interrupt Handler (cont.)

143

144

Set ASCWORD
into BUFWORD

Set Character into
User Buffer And
Adiust Counts

IN301

Terminate
1. Set Line Mode

to Message
Complete (5).

2. Set Message
Byte Count
(lINS2) •

3. link to EOM
Receiver (if
any) (LI NS4).

4. Clear LINS4.

no

no

IN3A

Link to Trigger
Output Echo or
EOM Sequence

Set EBCWORD
into BUFWORD

INEOM

link to Invoke
EOM Sequence

no

IN3A

no Link to Trigger
Output

PAGE 3

Reset Escape Status
>:-:y=es~~ Bit (S)

yes

no

page 5

Figure 73. R:COC Input Interrupt Handler (cont.)

IN3A

Trigger Echo or
E OM Sequence

Set Delete in
ECWORD

Transmit ECWORD

Set Status to IIEcho
in Progress ll (H)

yes

page 5

no

no

Return

Figure 73. R:COC Input Interrupt Hand ler (cont.)

PAGE 4

145

146

Restore Status Bits
5, H, M, B, P,
to Table

Set Buffer
Word to
X'FFFF '

Increment Buffer
Pointer (Index)

Reset Pointer to
Top of Buffer

no

page 1

Figure 73. R:COC Input Interrupt Handler (cont.)

PAGE 5

Start EOM

Set Message Byte
Count from Current

1. Set EOM Se
quence Address
(line 1).

2. Add EOM Se
quence Byte
Count to Total
(Line 2).

Reset Current
Byte CountiSet
EOM Status Bit
(M)

yes
Set Line Mode to
"Initiate EOM" (6)

Turn Off
Receiver

Figure 73. R:COC Input Interrupt Handler (cont.)

PAGE 6

147

148

o = Disconnect
4 = Inactive
5 == Message Complete

OUT2

Increment
Byte Count

page 2

Set EOM Status (M)
Set EOM Sequence
Address and Byte
Count in Status Table

Figure 74. R:COC Output Interrupt Handler

PAGE 1

page 2

Extract Next
Character Place in
Outbyte

OUT3A

Clear EOM Status (M)
Set Line Mode to
Message Complete (S)

Link to User
Routine

OUTOUTl

Stop Transmit

no

Clear Echo
Status (H)

, PAGE 2

no

no

Pickup ASKl1 of
Pickup Outbyte

Outbyte

Add Line Number
and T ransm it

Figure 74. R:COC Output Interrupt Handler (cont.)

149

J50

Monitor Service Request (M:COC)

The user interacts with the communications handler (R:COC) through Monitor service calls (M:COC), which can be
used to connect or disconnect communication lines, initiate message reads and writes,. break off a line function and
check on line or operation status. Coordination between R:COC and M:COC is maintained through status tabl:s in
the handler ~ode. (see .Figure 75. ~elow). Upon receiving any request, M:COC as a Monitor overlay is acti
vated and wd I fIrst shIft a specIfIc block (assembly dependent) of COC write directs and status table pointers
from the fo~eground handler to the Temp Stack of the calfer. If connection is required, the appropriate send
and/or receIve modules of the COC are activated, the line status checked, and the status tables for the in
dicated line are then set to the characteristics prescribed by the caller. Once a line is connected read/write
requests will be serviced. '

While processing a read or write message, the line mode is set as "busy" until message complete II status is registered
in the status tables by the handler. If need be, a message may be terminated whilein progress through a I1break"
call to M:COC, in which case the line mode is forced to output status and a "long-space II is generated. When this
"long-space" is recognized by the output handler, the message will be terminated in a normal fashion with the
appropriate activation of the EOM receiver and EOM sequence. In all cases, the EOM receiver is called from the
R:COC interrupt level (input or output) and should be used in the same manner as prescribed for an AIO receiver
(see Chapter 5 of the Sigma 2/3 RBM/RT ,BP Reference Manual, 90] 0 37).

Half-duplex lines, which require switching receiver modules off in order to transmit, are given special attention
when prompting, initiating EOM sequences, or activating an intervening IIbreak" (long-space). A variable time
delay (equipment dependent) is required to complete the turning off of receiver modules and this detay is always
incurred at the user program level (in M:COC) and not at the handler interrupt level.

The processing flow for requests to M:COC is illustrated in Figure 76.

Translation Tables

Conversion between ANSClI and EBCDIC characters is provided by two tables containing 256 words each. Both
tobles are resident in R:COC. EBCDIC to ANSCII translation is performed on a hyte-per-character basis, and the
ANSCII to EBCDIC table is built on a word-per-character basis. In the latter case, the first byte of each word is
used to flag the control characteristic of the ANSCIl character. Format identification is ilfttstratedin Figure 77.

o 1 2 3 456 7 89 1011 12 13 15

LlNS 0 EITI;ITYPEISIHIMIBI~ILlNEI DIMODE

LlNS 1 FWA of User Buffer

LlNS 2 Byte Count at EOM Total Byte Count

LlNS 3 Cursor Position Current Byte Count

LlNS 4 EOM Receive Address

where

E = 1 indicates input is to be echoed.

T = 1 indicates byte translate required.

CP = 1 indicates parity check required.

type = 0 identifies device as TTY model 33 or 35.

= 1 identifies device as TTY model 37.

=2 identifies device as keyboard display (7555).

=3 identifies device as unknown (unsupported).

S = 1 indicates previous character was escape (ESC).

H = 1 indicates echo in progress.

M = 1 indicates EOM sequence being echoed.

B = 1 indicates IIbreak ll was received.

PE = 1 indicates a parity error has been detected.

Line = 0 indicates a full duplex line.

= 1 indicates a simplex-send line.

=2 indicates a simplex-receive line.

=3 indicates a half-duplex line.

D=l indicates current request requires editing.

mode = 0 indicates I ine is logically disconnected.

= 1 indicates current request is output.

=2 indicates first character is prompt output, then to become input •.

=3 indicates current request is input.

=4 indicates line connected but inactive.

=5 indicates message has been completed.

=6 indicates EOM sequence must be initiated by M:COC for a half duplex line.

Figure 75. Line Status Table Format

151

PAGE 1

M:COC

Status Check

page 2

Shift Data from
Hand fer to Temp
Stack page 2

Disconnect

Initialize
page 2

Working Ce lis
Edit Write

page 3

Separate by Write
Request Type

page 3

Edit Read

page 4

Read

page 4

Break

page 4

page 3

Figure 76. M:COC Request Processing

152

Status Check

"
Sense Status of Send
and Receive Lines

,
Return ... -

Disconnect

,
Turn Receiver Off
and Stop Transmit

,
T urn Off Data Set
Receiver and
Transmitter

Connect

Write Message
IT ROU BlE LINE

Figure 76. M:COC Request Processing (cont.)

PAGE 2

Turn on Rece i ver
as Applicable

153

Edit Write

C:MOY

Move Data
To Status
Table

~

Edit Out Word
of Double Null
or Blanks

,~

Set Edit
Status in
Table

154

Write

r
C:MOY

Move Data
To Status
Tables

1~

C:GET

.. Get First ... Character and
Reset Pari ty Break

•
Transmit
First
Character

"
Return

Separat9 by
line Mode

=0

PAGE 3

C4HDEOM

= 6 Initiate EOM
Sequence (Half
Duplex)

=1,2,3

= 4,5 Set Byte
Count at EOM
into X Register

Set Mode
to Inactive

Set A Register
to Parity,
Break Status

Figure 76. M:COC Request Processing (cont.)

Edit Read

Set Edit Flag

Set Mode to
Out/In

C:TRANS

Transmit
Prompt

yes

yes

Read

C:MOV

Move Data
to Status
Flags

Set Mode to Input

Set Status
Mode, Edit,
Reset Pari ty
and Break

Sense Line

Figure 76. M:COC Request Processing (cont.)

Break

Return Error

Stop Transmit

Set Break Status
and Line Mode
to Output

TURNLINE

Turn Receiver
Off

LNGSPACE

Transmit
LNGSPACE

PAGE 4

no

no

155

I ~ I E I ~ I t I ~ I Code I EBCDIC Character

o 1 2 3 4 5 78 15

where

CC = 1 flags a control character.

E = 1 flags the escape key-in.

SP = 1 flags a character appropriate after the escape key-in.

NL = 1 flags the NEW LINE character.

CR = 1 flags the carriage (error) return character.

Code is a 3-bit identifier for special keyboard display functions as indicated:

=0 ignore.

=1 cancel (CAN).

=2 bacl<space (BS).

=3 cursor left (EM).

=4 cursor right (HT).

=5 cursor return (CR).

=6 cursor up (BEL).

=7 cursor down (SUB).

Figure 77. ANSCII to EBCDIC Table Entry Format

156

7. SYSERR ANALYSIS

Resident SYSERR Routine

The resident routine M:SYSERR is responsible for shutting the system down in an orderly fashion in the event of a
catastrophic system failure. In addition, if the SYSGEN option IIANALYSIS" is selected, the routine must preserve
all hardware context information available for later analysis. M:SYSERR is entirely resident and is completely stand
alone; i. e., it does not use any zero-table constants or pointers, monitor tables, or monitor service routines.

The calling sequence for the SYSERR routine is as follows:

RCPYI P,A

B *Y:SYSERR

DATA SYSERR Code

M:SYSERR will perform the following functions if SYSERR ana lysis is not selected.

1. Inhibit interrupts.

2. Issue RIO if Sigma 3 or Xerox 530.

3. Halt with SYSERR code in accumulator.

If analysis is selected, M:SYSERR will perform the following:

1. Inhibit interrupts and save PSD status.

2. Save register contents.

3. Save SYSERR code.

4. Save data switch settings.

5. Save interrupt-system status if Sigma 3 or Xerox 530 .

. 6. TOY, HIO all devices; save device status. (Note: TOY first.)

7. Save all channel register contents.

8. Save Fault Register contents if Xerox 530.

9. Save contents of location zero; store pointer to data area in location zero.

10. Issue RIO if Sigma 3 or Xerox 530; if Sigma 2, clear all interrupt levels.

11. Call user's error receiver (if any) with error severity = 3.

12. Output"! !SYSERR xx" message to the console (where xx is the SYSERR code).

13. Copy memory to CP area on RAD or to tape in 512-word blocks.

14. Call user's error receiver (if any) with error severity = 4.

15. Halt with SYSERR code in accumulator.

If SYSERR analysis is selected, location zero of the memory dump wi 1\ be modified to point to the beginning of the
data saved by M:SYSERR. This data will be organized into six blocks, each of which has a key-word preceding it.

157

158

The key-word contains a key in the most significant byte position and the number of elements in the block in the
least significant byte position. The organization of the data is as fol lows (asterisked items are preset by SYSGEN):

Key = 1, Count = 7

*Word 1 - Software version (2-character EBCDIC)

*

*

*

2 - Computer type (same as K:CPU)

3 - Core size (same as K:U NA VBG)

4 - SYSERR code

5 - Original contents of location zero

6 - Current data switch settings

7 - Number of 512-word blocks in SYSERR dump.

Key = 2, Count = 7

Word 1 - l-register contents

2 - T -register contents

3 - X-register contents

4 - B-register contents

5 - E-register contents

6 - A-register contents

7 - PSD status indicators

Key = 3, Count = 0, if Sigma 2

Key = 3, Count = 4, if Sigma 3

Word 1 - Group '0' interrupts enabled

2 - Group '0' interrupts armed or waiting

3 - Group '0' interrupts waiting or active

* 4 - Group '0' interrupts not implemented

Key = 3, Count = 12, if Xerox 530

Word 1 - Group '0' interrupts enabled

2 - Group '0' interrupts armed or waiting

3 - Group '0' interrupts waiting or active

* 4 - Group '0' interrupts not implemented

5 - Group '5' interrupts enabled

6 - Group '5' interrupts armed or waiting

7 - Group '5' interrupts waiting or active

* 8 - Group '5' interrupts not implemented

9 - Group '6' interrupts enabled

10 - Group '61 interrupts armed or waiting

11 - Group '6' interrupts waiting or active

* 12 - Group '6' interrupts not implemented

Key = 4, Count = 2n (where n = number of physical devices on the system)

Word (2n-2) + 1 - HIO status byte (0-7), device address *(8-15)

(2n-2) + 2 - TDV status byte (0-7), HIO 0, C (12-13), TDV 0, C (14-15)

Key = 5, Count = 3m (where m = the number of I/o channels on the system)

*Word (3m-3) + 1 - Even channel register address

(3m-3) + 2 - Contents of even channel register

(3m-3) + 3 - Contents of odd channel register

Key = 6, Count = 0, if Sigma 2 or Sigma 3

Key = 6, Count = 2 if Xerox 530

Word 1 - Fault Register, 1st read direct

2 - Fault Register, 2nd read direct

Key = X'FF', Count = 0 Last Key

If memory is saved on disk at SYSERR time, it is written in 512-word blocks regardless of the sector size. Writing
starts in the first sector of the CP area and continues until the CP area is full. Since the first word of the dump is
non-zero (it contains a pointer to the SYSERR-time context save area), it serves as a flag to indicate that a SYSERR
dump resides in the checkpoint area. The CHECKPOINT, RESTORE and SYSLOAD routines store a zero into the
first word of the checkpoint area. In the case of CHECKPOINT, the first word written is the first word of the back
ground TCB. This location is cleared prior to the first write operation (this word is unused for background operations).
If a disk error is detected, an error message will be output, and the computer will halt with the seek address in the
E- and A-registers. Clearing the halt will result in restarting the save process.

If memory is saved on tape ot SYSERR time, the operator will be instructed to mount a save tape and insert the de
vice address of the tape unit in the data switches, and the computer will come to a halt. When the halt is cleared,
writing will begin on the selected tape unit. Tape errors will result in an error message to the console, the tape unit
being rewound, and the save process will be repeated. If the tape unit is not ready or the tape is write-protected
when the halt i.s cleared, the operator will agai n be instructed to mount the save tape.

In order to reduce the number of address literals required for ca lis to M:SYSERR, zero-table location X'6B' contains
an ADRL pointer to the SYSERR routine. This location is labeled V:SYSERR.

If a user's error receiver is provided, its address must be stored in SYSERRXR by the user. (The contents of SYSERRXR
will default to the address of an RCPY L,P instruction.) When the receiver is called, the registers will be set as
follows:

L = Return link

x = Address of context block organized as follows:

Word 0 -- Error severity

Word 1 -- EBCDIC SYSERR code

159

160

The receiver will be called twice; just before saving the memory image, and just before halting. In the first call,
the error severity will be 3; in the second, the severity wi II be 4. The second call is to permit a user-written auto
matic restart routine.

SYSGEN Considerations

The following operations are performed during SYSGEN in order to support the optional SYSERR analysis feature:

1. Determine if SYSERR unalysis is desired (ANALYSIS input parameter).

2. If analysis is not desired, select the abbreviated version of the SYSERR routine.

3. If analysis has been selected, determine whether the SYSERR dump is to go th the CP area on disk or to
tape, and selectthe appropriate extended version of the SYSERR routine. This routine will be tailored to
the hardware/software configuration as fol lows:

a. A skeleton of the data area where the SYSERR-time context information is to be stored will be
constructed.

b. If the dump is to go to disk and the CP area size was not specified, allocate CP area with enough
room to contoin all of memory.

c. If the dump is to go to disk, the foJ lowing information will be stored into the SYSERR disk handler:

• Disk device address.

• Seek address of the first sector of the CP area.

• The number of sectors per 512-word block of memory.

• The number of sectors per tTack.

• The number of tracks per cylinder.

• The number of bits in the sector field of the seek address.

• The number of bits in the track field of the seek address.

• The number of 512-word blocks to be written. (Function of memory size and CP area
size.)

4. If the dump is to go to disk and a CP area size was specified which is not large enough to contain all of
memory, output an alarm indicating the size problem.

5. Store a pointer to M:SYSERR in zero-table location V:SYSERR.

Operator-Forced SYSERR

If ANALYSIS is selected at SYSGEN time, location zero will contain the address of an operator-SYSERR routine
which allows the operator to force a SYSERR condition via the PCP. This routine is, in fact, an alternate entry point
to M:SYSERR which sets a flag to indicate that an operator-forced SYSERR has occurred. In this way, all register
contents can be preserved with a minimum amount of temp space required. The SYSERR routine will test this flag
prior to fetching the SYSERR code and, if found set, will use the default SYSERR code IOPI.

Background SYSERR-Analysis Program

The background SYSERR-analysis program, ANALYZE, is comprised of a root segment, a number of level-2 overlay
segments, and an assembly-procedure set contained in the S24RBM file. This structure was chosen to minimize the
amount of background space required to perform a SYSERR analysis.

Root Segment

The root segment includes a base table, I/O buffers, common subroutines, an initialization routine, and control
routines. These components are described in the paragraphs below.

Base Table

The base table contains variables, pointers, and frequently used constants which are used by the several overlay
segments and the common subroutines in the root. In addition, there are temporary storage cells for exclusive use
by the overlay segments and storage cells for use in passing parameters to the overlays.

The base table is created by use of the procedure A:BASE (described later). The B register wi II be initial ized to
point at the stack when ANALYZE is started and is not to be modified. Implicit base-table references are used.

I/O Buffers

All necessary I/o is performed by common subroutines (described later) to or from one of seven I/o buffers located
in the root. All but one of these buffers has an associated base-table pointer. (To facilitate the description of buf
fer usage, these buffers will be referred to by the label of the base-table location containing the buffer pointer,
rather than by the buffer label itself.)

The significance of six of the seven buffers is as follows:

A:BLKO-A 512-word buffer used to contain the first data block of the SYSERR file if oplabel SI is not assigned
to zero.

INBUF - A 512-word buffer used to contain the current data block being accessed (other than the first).

LINEBUF-A 65-word image buffer used for the construction of formatted output.

TYPEBUF - A 65-word image buffer used for the construction and output of error messages.

HEADER1-A 65-word image buffer used for the construction and storage of an optional header line.

HEADER2 - A 65-word image buffer used for the construction and storage of an optional second header line.

A seventh buffer is used as a "sidell buffer for print operations to permit compute-I/O overlapping.

Direct usage of these buffers by overlay segments is discouraged except when absolutely necessary. Data may be
moved into these buffers by use of common subroutines and procedures described later in this chapter.

Common Subrouti nes

The functions of the common subroutines fall into one of four general categories: (1) data acquisition; (2) display
line construction; (3) display line and error-message output; and (4) control. Subroutine linkage is made through
the base table; all registers but the base register are considered volatile.

Data Acquisition. To acquire the contents of a particular location of the memory image being ana Iyzed, function
overlays need only to specify an address. Actual location of the data on disk, tape, or in memory will, be handled
automatically by common subroutines in the root.

If operational label 51 is assigned to zero, requests for the contents of memory locations will result in the actual
access of the corresponding real memory locations. If 51 is assigned to a disk file or to tape, the data will be
fetched from the appropriate device as follows:

• The first 512-word block of the file will be read into A:BLKO at initialization time. All subsequent
references to locations 0 through 511 will result in an access from this area.

161

162

• Accesses to dump locations higher than 511 result in the determination of the block number containing the
desired address (block number = address/512). If the block is currently contained in INBUF, the data will
be fetched from that buffer. If the block is not currently resident, it will be read from the appropriate
storage devi ceo

The decision to keep block zero of the SYSERR file resident is based on the frequency of accesses to the SYSERR
dump zero table. Failure to keep this block resident could result in large amounts of time required to perform an
analysis.

Three subroutines are avai lable for accessing data for analysis. They are described below.

GTCTXTWD Get a specified word from the SYSERR context-save area.

Call: LINK A:GTCTXT

DATA block key

DA TA displacement from block keyword.

Exit: If no error, carry will be set and value will be in the A-register.

If an error is detected (invalid key, error in context area, no context area pointer, or displacement larger
than the block size), and cell A:CXTERX is zero, the subroutine will return with carry reset. If A:CXTERX
is nonzero, the subroutine will exit to the address contained in that location. (A:CXTERX may be set with
the SETERRX procedure.)

LDWD Fetch the contents of a specified location from the SYSERR file.

Call: LINK A:LDWD

Entry: A-register contains the address.

Exit: A-register contains the contents of the specified address. A:CURADD contains the specified address.

If there is no error encountered while attempting to fetch the requested data, the subroutine will return
to (L) + 1 with carry set. If there is an error, location A:LDERRX wi II be tested and, if found to contain
zero, return will be made to (L) + 1 with carry reset. If A:LDERRX contains a nonzero value, the sub
routine wi II exit to that point.

LDNXT Fetch the contents of the next location from the SYSERR fi Ie.

Call: LINK A:LDNXT

Entry: A:CURADD contains the last address accessed via LDWD or LDNXT.

Exit: A-register contains the contents of the next consecutive location.

This routine is, in fact, a special entry to the LDWD subroutine. Instead of passing an address to the sub
routine, the effective address is implicitly (A:CURADD) + 1. Use of this routine can significantly reduce
access time for consecutive locations in the SYSERR fi Ie.

The error returns are the same as for the LDWD subroutine.

See Figure 78 for the flow of the LDWD and LDNXT routines.

Display Line Construction. To facilitate the problem of constructing formatted-display lines, four image buffers and
a set of conversion and text-handling common subroutines are provided. The construction of all messages and display
lines is done in the image buffers; conversion and text storage subroutines will deal exclusively with them.

LDNXT

A:CURADD+1
-A.

LDWD

LDWD

A
A:CURADD.

Save return
link.

Fetch contents
of real core
location.

Block =
A:CURADDR/512.

Fetch data
word from
appropri ate
buffer.

Figure 78. Data Acquisition Subroutines LDWD and LDNXT

PAGE 1

RDBLK

Fetch required
data block.

163

164

RDBlK

A - A:CURBlK
save return
link.

no

A:CURBlK - X

M:READ

Read record
X from random
file assigned
to SI.

page 3

Note: rA contains requested block number on entry to RDBlK.

no

-1 -
A:CURBLK

Reset carry to
indicate error.

Return

M·CTRl

REWIND

o - A:NXTREC

Set error
flag.

Reset error
flag.

x = A:CURBlK
- A:NXTREC.

M·

Space back
one record;

X + 1 - X

Figure 78. Data Acquisition Subroutines lDWD and LDNXT (cont.)

PAGE 2

page 3

-x - X

M·CTRl

Space fwd
one record.

x + 1 - X

page 3

A 1 t--------.
M:READ

Read data block

A:NXTREC =

A:CURBLK + 1

D 1 I----------~

Set carry to
indicate no error

yes

yes

PAGE 3

O-A:NXTREC

M:CTRL

Rewind

Report error on
rewind if any

Figure 78. Data Acquisition Subroutines LDWD and LDNXT (cont.)

The four buffers are identified as LINEBUF, TYPEBUF, HEADER1, and HEADER2. Function overlays, using common
subroutines, may construct display lines in any or all of the image buffers. In general, however, LINEBUF is used
for the construction of the current display line and HEADER 1 and HEADER2 are optionally used for construction and
storage of top-of-page and/or bottom-of-page header lines. Use of TYPEBUF should be restricted to error message
construction and output. Unless otherwise indicated, these buffers will not be output automatically- they must be
explicitly output via the subroutines described under II Display-Line and Error-Message Outputll

•

The five subroutines which perform data manipulation and conversion are described below.

BURST Expand a 16-bit word comprised of n nonzero-length fields into n consecutive locations in the temp
stack, starting at A:FLDl and extending through A:FLDn (where 1 ~ n ~ 16).

Call: LINK A:BURST

Entry: A-register contains the data word to be expanded.

X-register contains the first-word address of an associated pattern table.

Exit: Contents of the n fields stored into A:FLD 1 through A:FLDn (right-justified, no sign extension).

The pattern table must contain n nonzero words (where n is the number of fields in the word), each of which contai ns
the corresponding field length (in bits). The sum of the field sizes must equal sixteen (16).

165

166

As an example, the contents of FCn contains eight fields whose lengths are (from left to right) 1, 1, 1, 5, 1, 1, 1,
and 5 bits. To burst the contents of FCn entry, the following pattern table must be used:

DATA 1,1,1,5,1,1,1,5

CVDEC Converts a binary number to packed decimal.

Call: LINK A:CYDEC

Entry: A-register contains the binary number to converted. The number must be in the range 0 ~ n ~ 9999
10

,

Exit: A-register contains the number in packed decimal format.

CVSTORE Convert a binary number to EBCDIC (decimal or hexadecimal) and store it into a specified image buffer.

Call: LINK A:CYSTOR

DATA X'8000' *a + X'4000'*b + X'2000'*C

DATA d

DATA e

DATA f

where

a = 1 if number is hexadecimal.
=0 if number is decimal.

b = 1 if T contains negative character count.
= 0 if character count is in e.

c = 1 if X contains starting column.
= 0 if starting column is in f.

d = buffer indicator, as follows:

0= LINEBUF
1 = TYPEBUF
2 = HEADER1
3 = HEADER2

e contains positive character count and is present only if b (above) = O.

f contains starting column number and is present only if c (above) = O.

Entry: A-register contains binary number to be stored.

Exit: Number wi II be stored in appropriate position within specified buffer.

Remarks: Decimal numbers will have leading zeros suppressed.

DELZRO Delete leading zeros from an EBCDIC number contained in the E- and A-registers.

Call: LINK A:DELZRO

Entry: E- and A-registers contain a four-character, EBCDIC number.

Exit: E- and A..,registers contain the same number with the first three leading zero characters (X'FO') converted
to blanks (X '40 ').

NDECCH Ca Iculate the number of characters needed to represent a given binary number in decima I.

Call: LINK A:NDECCH

Entry: A-register contains the binary number.

Exit: A-register contains the number of decimal EBCDIC characters required.

The above subroutines are used in conjunction with the monitor service routine M:INHEX (binary integer to hexa
decimal representation in EBCDIC) to aid in data separation and conversion to text.

The following four subroutines are used to move text strings arid characters into image buffers.

BLANK Blank-fill an image buffer.

Call: LINK A:BLANK

Entry: X-register contains the first-word address of an image buffer (obtained from the temp stack).

Exit: The indicated buffer wi II be blank-filled.

MOVE Move a text string into an image buffer.

Call: LINK A:MOVE

DATA n

where

n indicates the buffer I as follows:

o = LINEBUF
1 =- TYPEBUF
2 = HEADER1
3 = HEADER2

Entry: A-register contains the first-word address of the message.

X-register contains the column number where the first character is to be stored.

Exit: Message will have been moved into the appropriate position within the designated buffer.

The message must be in. TEXTC format.

The first column printed i.s in column 1. If the message contains a format control character as the first byte, it must
start in column O.

STBVTE Store a byte into an image buffer.

Call: LINK A:STBYTE

Entry: A-register contains the column number where the character is to be printed (O for format byte).

E-register contains the total number of bytes in the message (129 for the I ine printer and 85 for the teletype).

X-register contains the first-word address of the image buffer (obtained from temp stack).

T -register contains the data byte right-justified.

Exit: Data byte will be stored in the appropriate position within the indicated buff~r.

167

168

STCHAR Store EBCDIC characters contained in the E- and A-registers into designated positions within an
i mage buffer.

Call: UNK A:STCHAR

Entry:

DATA n

where

n indicates i mage buffer, as follows:

0= UNEBUf
1 = TYPEBUF
2 = HEADERI
3 = HEADER2

E- and A-registers contoin the character string right-iustified.

T-register contains the negative of the number of characters to be stored (-1 through -4).

X-register contains the column number where the first character is to be stored (0 for format byte).

Exit: The characters wi II be stored into the appropriate positions within the indicated image buffer.

It should be noted that the above subroutines require the corumn numbers where characters are to be printed and not
the byte position within the buffer. This is because even/odd byte count adiustmentsaremade within the subroutines.

Two special-purpose subroutines are available which format and output decimal number sequences. They are
described below.

SEQADD Adds a number to the decimal number sequence being constructed in lINEBUF.

Coil: LINK A:SEQADD

Entry: A-register contains the binary number to be added. If the number is negative, the sequence will be
terminated.

Exit: The number will be added to the sequence.

The subroutine wil' construct the sequence in lINEBUF in decimal EBCDIC representation. When the image buffer
is full or when a negative number is input to terminate the string, the current contents of lINEBUF will be printed
automatically. Printing of partially completed sequences is transparent to the colling program.

The subroutine will determine whether or not a number input is port of a range. If not, the number will be con
verted to decimal EBCDIC and appended to the current contents of lINEBUF individually. If a number is port of a
range {i. e., a series of consecutive numbers}, the range upper limit witf be updated. The entire range will be
added to the sequence (in the form XX-YY) when the first number is input which is not equal to the previous number
plus one.

Note: Numbers may be added in any order, but a number range will be constructed only if the numbers are input
in incrementally increasing order.

If the first number input to the subroutine is negative, the message II NONE" will be output in place of a sequence.

The variable A:CURCOL will be used to indicate the column (within LlNEBUF) where the next number is to be stored.
LlNEBUF may not be used while a sequence is being constructed.

SEQST Initialize the decimal number sequence for the SEQADD subroutine.

Call: LINK A:SEQST

Return: LINEBUF will be blank-filled; A:CURCOL will be preset to 4.

This subroutine must be catted prior to colling SEQADD to add the first element to a sequence.

Display-Line and Error-Message Output. To provide for the maximum rate of output, a PRINT subroutine is provided
that handles all display-line output in a manner permitting compute-print overlap. This routine is described below
along with a message-printing subroutine (for LO).

PRINT Output the contents of an image buffer to the LO device.

Call: LINK A:PRINT

Entry: A-register contains the address of the image buffer (obtained from the temp stack).

Exit: Output operation will have been initiated.

A:L1NENO will show the line number of the next line to be printed.

If the printer is busy when the subroutine is entered, it Will wait unti I the printer becomes free. The contents of the
designated. buffer will then be moved to a side buffer for output and a write will be initiated with error record re
covery and without wait. The image buffer will, therefore, be free for use upon return.

If the attempt to initiate the I/O is unsuccessful, an error message will be output indicating the error-return and
ANALYZE will be aborted with code 1101•

MESSAGE Output a message to the LO device.

Call: LINK A:MSG

DA TA message address

DATA Substitute format byte or O.

The message must be in TEXTC format with a format control character as the first character.

If the second argument is zero, formatting will be as specified within the message. If the second argument is non
zero, it is assumed to contain a valid format byte which is to be substituted for the one in the message. Valid for
mat bytes are as follows:

EBCDIC Hex Function

o FO Double-space

Fl T op-of-form

space 40 Single-space

{JJ Inhibit auto upspacing

The subroutine uses L1NEBUF.

Two additional subroutines are available for outputting error-diagnostic information. They are described below.

IOERR Format and output an error message to the OC device for I/O errors.

Call: LINK A:IOERR

Entry: A-, E-, and X-registers contain the status returned from M:READ, M:WRITE, or M:CTRL.

Exit: An error message will have been output to the OC device.

The image buffer TYPEBUF will be used for construction and output of the error message. It will be free for use upon
return; original contents will not be preserved. I/O is performed with wait.

169

170

TYPE Output the current contents of TYPEBUF to the OC device.

Call: LINK A:TYPE

Entry: Message in TYPEBUF.

Exit: Message output to OC with wait.

I/O will be performed with wait and error recovery. If an unrecoverable I/o error occurs, ANALYZE will be
aborted with code 1101•

Control Subroutines. Several of the common subroutines are used primarily for control purposes; i. e., selection of
display functions. They are as follows.

CPSTRING Compare a text string with a parameter table entry.

Call: LINK A:CSTRNG

DATA comparison text-string pointer

Entry: X-register points to word one of a parameter table entry.

Exit: Carry indicator will be set if the strings are the same and will be reset if they are different. The sub
routine call may, therefore, be followed by a BE or BNE instruction.

X-register contents will be preserved.

The parameter entry must be a valid, non-null, EBCDIC entry. The comparison text string must be in TEXTC format;
the string lengths must be equal.

GETPAR
following).

Get the address of the next entry in the parameter table created by the SCAN subroutine (described

Call: LINK A:GETPAR

(return if no more parameters)

(norma I return)

Entry: A:PARE contains the address of the entry to be processed.

Exit: A:PARE unpated to show the address of the following entry. X-register contains the address of word 1 of
the current entry.

E-register contains the number of words in the parameter excluding the key word (word 0).

A-register contains a code indicating the entry type as follows:

A =-1
A =0
A = 1
A =2
A =3

null
EBCDIC
single integer
integer range
illegal (syntax error)

A:PAR incremented by one. This variable shows the parameter number currently being processed. (Used
for error messages.)

The parameter entries are organized as a key word (word 0) followed by n words containing the parameter (n > 0).
Decimal and hexadecimal values will be converted to binary, EBCDIC strings will be stored in consecutive locations

(2 bytes/word) in TEXTC format. EBCDIC strings containing an even number of characters will have a trailing blank
appended. The following examples show the significance and structure of the various entry types:

Null Entry:

Word 0

EBCDIC Entry:

Word 0

Word 1

Word 2

Word (n/2) + 1

Single Integer Entry;

Word 0

Word 1

Integer Range Entry:

Word 0

Word 1

Word 2

Illegal Entry:

Word 0

Last Entry;

Word 0

o 1 2

I 0 I

o 1 2 78
•

o I Char. Count + 1
2

Char. Count Char. 1

Char. 2 Char. 3

Char. n-1 Char. n

0 1 2

I I
Number

0 1 2

2 I
First Number

Second Number

0 1 2

I 3

0 1 2

I 3 I X'3FFF'

15

01

15

15

1 I

15

2

15

o I

15

I

Return will be made to the call plus one if there are no more parameters; otherwise, return will be made to the call
plus two.

SCAN Scan the !ANALYZE control card and create a parameter table composed of entries whose formats were
described above.

Call: LINK A:SCAN

(return if no parameters)

(norma I return)

171

172

Exit: A:PARE contains the address of the first entry.

A:PARTBl points to a parameter-entry table of n + 1 entries (where n is the number of !ANAl YZE param
eters). Each entry is of the form described above for GETPAR.

A:PAR initialized to zero. (This variable contains the number of the parameter currently being processed).

Return will be made to the call plus one if there were no parameters; otherwise, return will be made to the call plus
two. The last entry in the table wi" always contain a key of -1.

SEGLD load and transfer to a display-function overlay.

Call: LINK A:SEGlD

DA TA segment-ID

(error return)

(normal return)

Prior to calling the function overlay, the subroutine will set the lDWD error-transfer address (A:lDERRX) and
GTCTXTWD error-transfer address (A:CXTERX) to exit back to the root.

Initialization Routine

The initialization routine is entered when ANALYZE is first entered. It will perform the following functions:

• Initialize base register.

• Verify that the lO oplabel is assigned and set variables dependent upon the output-device type.

• Initialize run-time variables in the base table.

• Read first data block of SYSERR file into A:BlKO if oplabel SI is not assigned to zero.

The initialization routine is flowcharted in Figure 79.

Control Routi nes

The central control routine first determines whether there are any parameters on the !ANAl YZE control card. If
not, all display functions are individually called in a fixed order. If there are parameters, the appropriate group
control routine is called to set up the parameters and call the individual displays within the group. When the group
is completed, ANALYZE will exit to JCP through M: TERM.

The control routines are flowcharted in Figure 80.

Overlay Segments

The overlay segments contain the code which actually produces the various displays - one display per segment. Re
gardless of the function of a segment, several rules must be followed in its construction. They are:

• A pseudo base table must be assembled into the beginning of each segment. This may be accomplished
with the procedure A:BASE, having an argument greater than zero.

• Overlays should not do their own I/O - the subroutines provided in the root should be used.

• Upon completion, overlays must exit *A:OVEXIT. This wi II effect a return to the segment-load subroutine
(SEGlD) which will, in turn, return to the appropriate control routine.

INIT

Set up
stack pointer in
B-register.

M:OPFILE

Get ILOI
assignment.

Set OPLABEL to
ILOI.

M:WRITE

Output Ino
OPLABELI

MSG, OPLABEL.

Set abort code to
lAP.

abort with
specified

abort code.

Output ILOI
not assi gned
MSG

Set OPLABE L to
151'.

L4

0- > A:KPFLAG
129- > A:MAXCOL

yes

-1 >A:KPFLAG
85- > A:MAXCOL.

L5 M:OPFILE

Get 1511
assi gnment •

0- > A:SIFLAG.

page 2

Figure 79. Initialization Routine

PAGE 1

RDBLK

Read crash fi Ie
block DO into
INBUF.

Move data from
INBUF to A:BLKO.

0- >1

L6

1+1->1

RDBLK

Read crash file
block #1.

1-1- >A:MAXBLK.

page 2

173

174

L8

L7

Output Idata
block NO
error message.

Set abort
code to 1101•

page 1

o

o -A:CONTXT

lDWD

C(O) - A:CONTXT

GTCTXTWD

Get CPU type
from M:SYSERR
context area.

CPU type
- A:CPU.

Output Icon-
text error l

message.

K:CPU - A:CPU

yes

M:WRITE

Output
ISigma 3 as
sumed message.

A:SIG3 - A:CPU

no

no

Figure 79. Initialization Routine (cont.)

PAGE 2

Control

SCAN

Scan !ANALYZE
control card,
bui Id parameter
table.

yes

GETPAR

Get first parameter.

M:WRITE

Output
I parameter
error l message,
parameter no.

code = 'SE '

All

page 2

no

Figure SO. Control Routines

PAGE 1

Status

page 3

Tables

page 3

Files

page 4

Monitor

page 5

Memory

page 6

Tasks

page 5

175

176

PAGE 2

All

SEGLD SEGLD SEGLD SEGLD

Call SEG #1 Call SEG #6 Call SEG 111 Call SEG # 14
(general (Non-RAD (R: RBM, R:SYFG,
i nformati on). .IOCrS) R:JCP). (RBM Symbols).

Ir ,

SEGLD SEGLD SEGlD

Call SEG #2 Call SEG #7 Call SEG #12
1 - A:PAR1

(hardware context) (RAD IOcrs)
(RBM pointers
and variables).

SEGlD SEGLD SEGLD
o - A:PARl

Call SEG #3 Call SEG #8 I 1_ A:PAR2 Call SEG # 14
(Channe I status

(RAD IOCS)
o - A:PAR3 (PUBLIBsymbols).

tables).

SEGLD SEGLD
A:MAXBLK&512

Call SEG #4 Call SEG #9 + 511 - End
(devi ce type A:PAR4

(FCr summary).
tables).

, ,
SEGLD (3) SEGLD

1 - A:PARl Call SEG 1110, Call SEG # 13
P:FCT - A:PAR2. SEG 1115, (core dump).

SEG 1116.

'W

SEGLD SEGLD (2) --
Col/ SEG #5 Call SEG 117 o - A:PAR1
(fite control and SEG 1118.
tables).

SEG # 10 = Oplabel tables; # 15 = Master dictionary; #16 = RBM overlay table; #17 = Interrupt PSDS;
18 = Active task TCBs.

Figure 80. Control Routines (cont.)

Status

GETPAR

Get next parameter

SEGlD

Call SEG #1
(general
information)

no

SEGlD

Call SEG #2
(hardware context)

SEGlD (2)

Call SEG #4
and SEG '11

page 1

yes

SEG #4 = FCT summary; 1111 = R:RBM, R:JCP, R:SYFG;
'9 = Device type tables, '15 = Master dictionary;
1116 = RBM overlay table.

Figure 80. Control Routines (cont.)

PAGE 3

Tables

GETPAR

Get next parameter

SEGlD

Call SEG # 10
(OPLABEl tables)

SEGlD

Call SEG #3
(channe I status
tables)

SEGLD

Call SEG #8
(RAD IOCS)

SEGLD (3)

Call SEG #9,
SEG II 15,
SEG II 16

End

177

178

Files

GETPAR

Get next parameter

PAR(1) ->A:PARl
PAR(1) - >A: PAR2

no 1 ->A:PARl
P:FCT ->A:PAR2

page 1
M:WRITE

Output 'first
number too
small' message

l->PAR(l)

yes

M:WRITE

Output 'second
number too
large' message

128 ->PAR(2)

PAR(1) - >A:PAR1
PAR(2) - >A:PAR2

Figure 80. Control Routines. (cont.)

PAGE 4

Output
warning
message

SEGlD

Call SEG #5 (file
control tables)

SEGlD

Call SEG #6
(non-RAD JOCTS)

SEGlD

Call SEG #7
(RAD JOCTS)

End

Monitor

GETPAR

Get next parameter

O->A:PARl

SEGlD
Call SEG 17
(Interrup~ PSDs)
and SEG #18
(Active task TCSs)

SEGlD

Call SEG # 14
(RBM symbols)

1- >A:PARl

SEGlD

Call SEG #14
(PUBlIB symbols)

SEGlD

PAGE 5

Call SEG # 12 (RBM
pointers and
variables)

End

Figure 80. Control Routines (cont.)

179

lSO

Memory

O->A:PARl
I 1->A:PAR2
O->A:PAR3

A:MAXBlK*512
+511 - >A:PAR4

GETPAR

Get next parameter

SEGLD

Cal I SEG # 13 (core
dump)

PAR(1) - >A:PAR3
PAR(1) - >A:PAR4

page 1

Output 'second
number too
large' message

A:MAXBLK*512
+ 511 - >PAR(2)

PAR(l) - >A:PAR3
PAR(2) - >A:PAR4

Figure 80. Control Routines (cont.)

PAGE 6

IS
page 7

DS page 7

MON page 7

PUS page 7
RFG

page 7
NRFG

page 7

BKG
page 7

OTHER pagel

IS

-1 ->A:PAR1

page 6

DS

101 - >A:PAR2

page 6

MON

0->A:PAR3
K:PLFWA-1
->A:PAR4

PUB

K:PLFWA - >A:PAR3
K:RFFWA-l
->A:PAR4

RFG

K:RFFWA - >A:PAR3
K:NFFWA-l
->A:PAR4

NRFG

K:NFFWA - >A:PAR
K:BACKP-1
->A:PAR4

BKG

K:BACKP - >A:PAR3
K:UNAY8G-1
->A:PAR4

no

page 6

Figure 80. Control Routines (cont.)

yes

es

PAGE 7

M:WRITE

Output 'area
not saved '
message

M:WRITE

Output larea
partially saved '
message

A:MAXBLK*512
+ 511 - > A:PAR4

page 6

181

182

• Overlays may not ca II other overlays.

• Overlays may use the temp locations A: TEMPl through A: TEMP20 for their temporary storage. Base table
locations A:PARl through A:PARlO are used to pass control information and boundary conditions to over
lays. These locations may not be changed by the overlays.

• Upon entry to the overlay segments, the base register will point to the base table.

• Upon entry to the overlay segments, the LDWD, LDNXT, and GTCTXTWD error exits contain a pointer
back to the root.

• A transfer address must exist on the END statement for the overlay.

Procedures

The ANALYZE procedure set will be assembled into the S24RBM file if the label"ANALYZE is equated with YES
in the source file. Some of these procedures utilize one or more common subroutines to accomplish their function,
others do not. It should be assumed that all procedures that generate executable code will utilize all registers with
the exception of the base register (B). The exceptions are ENTRY (A-register altered), LITERALS (no registers
altered), and SETERRX (A-register altered). The procedures and their descriptions are as follows.

BLANK Blank-fill an image buffer.

Call: [label] BLANK buffer

where buffer = L1NEBUF, TYPEBUF, HEADER1, or HEADER2

BURST Expand the data word in the accumulator into n words in the temp stack starting at A:FLDl.

Ca II: [label] BURST pattern

where pattern is the first-word address of the burst pattern (see the description of the BURST subroutine
under "Common Subroutines", above).

CPSTRING Compares a text string (in TEXTC format) with the parameter entry pointed to by the X-register.

Call: [label] CPSTRING address

where address is the address of a comparison text string if no argument field asterisk (AFA). If an AFA is
present, address contains a pointer to the text string.

The X-register must point to word 1 of a valid non-null, EBCDIC entry and will not be altered. The pro
cedure call may be followed by a BE or BNE instruction.

CVSTORE Convert a binary word to printable hexadecimal or decimal and store it into an image buffer.

where

cf
2

indicates the output format: DEC or HEX.

cf
3

optionally specifies the address of binary data to be processed. If not present, the current
A-register contents wi II be used.

af 1 equals the number of characters if no argument field asterisk (AFA). If an AFA is present, af 1 is
the address of a location containing the number of characters.

I

af2 indicates the target buffer (LINEBUF, TYPEBUF, HEADER1, or HEADER2).

af3 specifies the column number where the first character is to be stored if there is no AFA. If there
is an AFA, af 3 specifies the address of a location containing the starting column number.

Example: CVSTORE,DEC,LOC 3, LINEBUF, *ADDR

Convert the binary number contained in LOC to decimal EBCDIC, and store the three least-significant
decimal characters Into LINEBUF, starting at the column number contained in AD DR.

DISPLAY Control PROC expansion listing.

Call: DISPLAY value

If value is nonzero, the listing of the PROC expansion will be controlled by the LIST directive currently
in effect. If value is zero, the expansion will not be listed and the location counter will be displayed.

ENTRY Mark the entry to a subroutine and optionally save one or more registers.

where

loc is the address where the contents of the first register are to be stored.

r 1 is the register number of the first register to be saved.

r. are the second and subsequent registers to be saved.
I

Registers will be stored in consecutive locations (beginning at loc) in the order indicated in the call. If
the A-register is to be saved, it must be the first register specified, since storage of other registers requires
use of the accumulator.

GET#CHAR Find the number of characters necessary to represent a binary number in decimal.

where

cf
2

is the optional address of the location containing the binary number. If not specified, the current
accumulator contents wi II be used.

af 1 is the optional address of the location where the character count is to be stored. If not supplied,
the count will be returned in the accumulator.

GETPAR Get the pointer to the next parameter in the parameter list.

Call: [label] GETPAR

Return ~ill be to the call plus one if there are no more parameters; otherwise, return will be to the call plus two.
Upon return, registers will be set as described for the GETPAR subroutine (described under "Common Subroutines").

GTCTXTWD Get the contents of a specified word within the M:SYSERR context area.

Call: [Iabel] GTCTXTWD af
1
,af

2

where

af 1 is the key of the desired context block if no AFA. If an AFA is specified, af 1 is the address of the
location containing the key.

183

184

af2 is the displacement of the desired word from the top of the entry if no AFA. If AFA is specified,
af2 is the address of the location containing the displacement.

IOERR Output I/O error status to the OC device (with WAIT).

Call: [label] IOERROR

LITERALS Generate a literal pool with a branch around it.

Call: [label] LITERALS

LOAD Load the contents of a specified location (from the SYSERR file) into the accumulator.

Call: [label] LOAD [[*]address[, index]]

Computation of the effective address is the same as for a LDA instruction with one exception: "index" is the loca
tion containing the index value.

If no address is specified, the current contents of the accumulator will be used as the effective address.

At return, A:CURADD will contain the effective address of the LOAD.

Examples:

LOADNEXT

LOAD K:SEGIN

Fetch the contents of K:SEGIN from the SYSERR context.

LDA
STA
LOAD

=5
INDEX
*P:FCT5, INDEX

Fetch the contents of the fifth entry in the table whose pointer is contained in P:FCT5.

Load the contents of the next consecutive location from the SYSERR dumr into the accumulator.

Call: OabeO LOADNEXT

The effective address wi" be contained in A:CURADD upon return.

LOADSEG Load and transfer to a display segment.

Call: [label] lOADSEG id

where id is the number of the desired segment.

MESSAGE Output a message to the LO device using lINEBUF.

Call: [label] MESSAGE(,d
2
] address

where

cf
2

is the optional address of a format control byte to be substituted (TOF, SS, DS, NS are the stan-
dard format bytes for Top-of-Form, Single-Space, Double-Space, and No-Space).

address is the address of a text string in TEXTC format. The first byte of the message is assumed to be
the format byte.

MOVE Move a TEXTC message into a designated image buffer.

where

af 1 is a TEXTC message address if there is no argument field asterisk (AFA). If an AFA is present, afl
is the address of a location containing the message address.

af2 is the image buffer (LINEBUF, TYPEBUF, HEADER 1, or HEADER2).

af3 is the starting column number if there is no AFA. If an AFA is present, af3 specifies the location
containing the starting column number.

If afl is omitted, the accumulator must contain the message address and af3 must be present.

If af3 is omitted, the buffer will be first blank-filled and the message will start at column zero (format byte column).
If af3 is present, the buffer will not be initially blank-filled.

The message must be in TEXTC format.

PRINT Output the contents of an image buffer through oplabel LO.

Call: [label] PRINT [buffer]

where buffer is the image buffer to be printed (L1NEBUF, HEADER1, or HEADER2). If not specified,
LlNEBUF will be printed.

SEQADD Add a number to the decimal number sequence being constructed in, and output from, L1NEBUF.

Call: [label] SEQADD [address]

where address (if specified) is the location containing the number to be added. If address is not specified,
the current A-register will be used.

SEQEND Terminate the decimal number sequence constructed by SEQADD.

Call: [label] SEQEND

SEQSTART Initia I ize a dec i rna I number sequence.

Call: [label] SEQSTART

This PROC must be issued prior to building a decimal sequence with SEQADD. The sequence must be terminated
with SEQEND.

SEJERRX Define an error transfer address from the LDWD subroutine.

Call: [label]SETERRX {~g~gNEXT} [,address]
GTCTXTWD

where address is the address to which the indicated subroutine is to transfer if it encounters an error. If an
AFA is present, address specifies the location containing the transfer address.

If "address" is omitted, the transfer address will be cleared. A subsequent error will cause a return to the subroutine
call plus one with the carry indicator reset.

185

SKIPLINE Output a blank line to the LO device.

Call: [label] SKIPLINE

This PROC uses LINEBUF.

STBYTE Store the byte right-justified in the accumulator into the designated buffer.

Cal.l: [label] STBYTE af
1
,af

2

where

af1 is the destination buffer (LINEBUF, TYPEBUF, HEADER1, or HEADER2).

af2 is the column number if no AFA. If an AFA is present, af2 specifies the location containing the
column number.

TYPE Output the current contents of TYPEBUF through oplabel OC (with WAIT).

Call: DabeO TYPE

186

8. ERROR LOGGING AND DEVICE ISOLATION

Error Logging

When error logging is specified atSYSGENtime, the defaultM:DOW linkage code -simply a calltothediagnostic
output-writer overlay (A6) - is replaced by an alternate module (DEF = M:DOWE), and an additional overlay (06) is
included in the monitor. Figure 81 shows the flow of the resident M:DOW code when error logging is specified.
Figure 82 shows the flow of the associated non-resident code (overlay 06), which essentially performs the I/O be
tween the resident (licircular ll

) buffer and the error-log file when required.

Also at SYSGEN time, the error-log fi Ie is automatically a lIocated in the SD area with the following attributes:

Name: ERRFILE

Logical record size: 30 if K:BLOCK = 180.

Fi Ie size:

Error Log Formats

32 if K:BLOCK = 2" (where n is any positive integer).

16 blocks if K:BLOCK = 180.

6 blocks if K:BLOCK = 512.

(100 records assuming default resident buffer size.)

Figures 83 through 94 show the detailed format of Xerox 530 and Sigma 2/3 RBM error-log entries. The following
generaliti es relating to the formats shou Id be noted:

• Relative time is expressed as milliseconds since midnight and is included only if CLOCK 1 is dedicated to
RBM at SYSGEN time. Otherwise, relative time wi" always be that last entered by the operator.

• All system error-log entries are fixed length. The byte length may be either 30 or 32 but only the first 30
bytes are meaningful. Unused words always contain zeros.

• The current release of RBM error logging defines the following entry codes:

Code

00

18

20

23

27

91

92

93

95

9E

A1

A2

B1

Entry Type

Nu II entry (byte 0 = 0) .

System startup ("boot II).

Power on.

Date and time ("time stamp ").

Operator message.

SIO rejection.

Device timeout (only if CLOCK 1 dedicated).

Spurious I/o interrupt.

Device error: any condition where the UE flag is set but some flag other than IL is
also set. Software and hardware write-protect violations wi "notbe logged, however.

Lost entri es.

Configuration.

System identificati on.

Machine fau It interrupt.

187

188

USER

LOX =RRGlST
RCPYI P,L
B M:DOH

ARGLST

WORD o/CODE
HORD 1

BUffER ROD.
BYTE COlI4T.

RESERVE RN
ENfRV.

HHO
INSTRUCTlOOS}

NO

GENERATE
ERROR L{)G.

OITR'Y.

INHIB1T
INfERRlPTS

Htt I LE MAJ(I NG
ENTR'Y.

Figure 81. Resident Error log Code

CftlL OVERLRY
'R6' FOR

DIAGNOSTIC
fUNCTlON.

TRIGGER R6M
OVERlAY 'OSf

TO OOTPUT
BUffER

RBM
OVERUW '06'

CLERR OVERLRY
fLRG IN
R:RBM.

ROO TlME, ORTE
ETC.

SET ENTRY
COMPLETE.

SUSPEND
LOGGING.

co MPLEIT
PREVIOUS

61.0CK.

REST~
aJRRENT
BlOCK.

OUTPUT
CURRENT
BLOCK.

RESTORE
LOGGING.

OUTPUT
ERRORfILE
OVERflOW
MESSRfE.

Figure 82. Nonresident Error Log Code (Overlay '061
)

189

System Startup, Code = 18 {Recorded at boot time.}

X'18' Count = 6

2 0 0

3 Relative time

4 Re lative time
ii

5 Year - 1900 Binary

6 Julian day Binary
iii

7

8
iv

9

10
v

11

12
vi

13

14
vii

15 .
o 78 15

Figure 83. System-Startup Entry

190

Power On, Code = 20 (Recorded at power-on time.)

X '20 ' 4

2 K:TCB @ Power failure

3 Relative time

Time of Power Off

4 Relative time
ii

5

6
iii

7

8
iv

9

10
v

11

12
vi

13

14
vii

15

0 78 15

Figure 84. Power-On Entry

191

192

Time and Date (Time Stamp), Code = 23 {Recorded at startup, at half-day, and whenever a D or T key-in is
entered.}

X'23' Count = 6

2

3 Relative time

4 Relative time

ii

5 Year - 1900 Binary

6 Julian day Binary
iii

7

8
iv

9

10
v

11

12
vi

13

14
vii

15

0 78 15

Figure 85. Time-and-Date Entry

Operator Message, Code = 27

2

3

4

5

6

7

8

9

10

11

12

13

14

15

X'271 Count = 15

K:TCB

Relative time

Relative time
ii

~--~

~ __ ~iii

iv EBCDIC message,
~--~ 20 byte

~ __ ~v

~ __ ~vi

~ __ ~vii

o 7.8 15

maxi mum - unused
words wi I I contain
blanks.

Note: An L key-in will allow the operator to enter an 18-byte message into the Error Log. Excess bytes
will be truncated. Operator messages may also be recorded by user programs via M:DOW.

Figure 86. Operator-Message Entry

193

SIO Reiection, Code = 91

Figure 87. SIO-Reiection Entry

194

Device Timeout, Code = 92

Xl 92 1 Count = 14

2 Model number DTTF

3 Relative time

4 Relative time
ii

5 HIO DSB I/o address FCT3

6 OSB C HIO TIO TDY FCT4
OC OC OC

iii

1
State

Order DFN FCT Index
(disk)

8 TIO DSB TDV DSB FCTl
iv

9 Maximum retry Current retry FCT2
count count

10 Error count
v

11 I/o count

12 I/o count
vi

13 PRAD (FCT6) +5

14 E
D
C Byte count residue FCT5

vii

15

0 3 6

Figure 88. Device-Timeout Entry

195

196

Spurious I/o Intenupt, Code = 93

X'931 Count = 6

2

3 Relative time

4 Relative time

~----------------------~ __ ----__ --------------~ ii

5 Ala DSB I/O address Response to Ala

6 Response to Ala

7

8

~--__ ------------__ ----------------------------~iv

9

10
r-__ ~v

11

12
r-__ ~vi

13

14

~--I vii

15

o 15

Recorded by the I/o interrupt task whenever an Ala interrupt is received from a device which RBM believes
to be inactive or nonexistent.

Figure 89. Spurious-I/O-Interrupt Entry

I/O Error, Code = 95

X'95 1 Count = 14

2 Model number DTTF

3 Relative time

4 Relative time
ii

5 AIO DSB I/O address FCT3

6 OSB C
AIO TIO TOV FCT4 OC OC OC

H!

State
7 (disk) Order DFN FCT Index

8 TIO DSB TDV DSB FCT7

iv

9
Maximum retry Current retry

FCT2
count count

10 Error count
v

11 I/O count

12 I/O count
vi

13 PRAD (FCT6) + 5

E
D

Byte count residue FCT5 14 C
vii

15

0 3

Figure 90. I/O-Error Entry

197

Lost Entri es, Code = 9E

X'9E' Count = 8

2 Count of lost entri es

3
Relative time of

last lost entry
4

ii

5
Relative time of
first lost entry

6
iii

7 Last entry type lost

8 First entry type lost
iv

9

10
v

11

12
vi

13

14
vii

15

o 78 15

Recorded when buffering constraints make error-log recording temporarily impossible.

Figure 91. Lost-Entri es Entry

198

Configuration, Code = A 1

xIA11 Count = 7

2

3 Relative time

4 Relative time

5 I/O address

6 FCTl

7 Model number

8
r-__ ~iv

9

10
r-~ __ ~v

11

12
r-__ ~vi

13

14
1--__ --1 vi i

15

0 7 8 15

Note: If CLOCK 1 is dedicated for accounting at SYSGEN time, one configuration record with model
--- number = 8111 wi" be added. (DTTx and I/o address = 0 for 8111).

Recorded as part of the ERRFILE initialization sequence by the !PURGE, EL, R command.

DTTx and Model Number = 0 for devices declared for M:IOEX usage only.

Figure 92. Configuration Entry

199-

System Identification, Code = A2

X'A21 Count = 6

2· Number of 8K-word blocks
Relative time resolution

= 1 (2 ms)

3 Relative time

4 Relative time
ii

5 K:VRSION

6 K:CPU
iii

7

8
iv

9

10
v

11

12
vi

13

14
vii

15
I o 7 8 15

Recorded as part of the ERRFILE initialization sequence by the !PURGE, EL, R command.

Figure 93. System-Identification Entry

200

Machine Fault, Code = B 1

X I Bl l Count = 7

2 K:TCB

3 Relative time

4 Relative time

5 PSD1

6 PSD2

7 Fau It register

8

9

10

11

12

13

14

15

o .1
78

For Sigma 2/3, fau It regi ster wi II be 8102 for memory parity error.

For Sigma 3, fault register wi II be 2020 for any lOP timeout.

15

For Sigma 3, fault register will be 2010 for watchdog timeout {incorrect 010 address}.

For Sigma 3, fault register will be 2030 for watchdog and lOP timeout.

Figure 94. Machine-Fault Entry

ii

iii

iv

v

vi

vii

201

202

Glossary for Error- Log Formats

A glossary of terms pertinent to the error-log entry descriptions follows.

AIO DSB an 8-bit value representing the device status byte as returned by the hardware in response to an AIO
instruction. Device specific, see the appropriate devi ce reference manual.

AIO 0 and C a 2-bit value representing the overflow and carry (in that order) as returned by the hardware in
response to an AIO instruction. Device specific, see the appropriate device reference manual.

byte count residue a 14-bit value representing the number of bytes not transferred in the I/O operation. This
value is established by the I/o processor and is available in the odd channel.

Cal-bit value which indicates whether bits 5-15 of the even I/O channel register were all zeros at time of
AIO (C = 0 if yes; C = 1 if bits 8-15 were non-zero).

code an 8-bit value in the first byte of the error log message indicating message type. A va~ue of zero (0) indi-
cates a nu II entry.

count an 8-bit value representing the number of useful 16-bit words contained in the error-log message. In-
cludes the first word in the count.

current retry count a 4-bit value representing the retry attempt at which either the operation was successfu I or a
value equal to maximum retry count when all allowable retries have been exhausted. Thus, the range of cur
rent retry count is 1 through maximum retry count. When current retry count exceeds the maximum retry count,
an unrecoverable device error has occurred.

DC a I-bit value indicating whether data chaining (1 = yes) was specified for the I/O operation. This isob-
tained by the I/O interrupt task from bit 1 of the odd channe I register.

DFN an 8-bit value representing the device-file number which is used as a file control table index. The value
may be utilized in many cases to determine the task involved in a device-error condition. Ambiguity results
when there is multi-task usage of the same DFN.

DTT x an 8-bit value representing the device type table index. There is one entry in the table for each unique
physical device type in the configuration.

E a I-bit value indicating a memory fault or data parity error during an I/O operation. This is obtained by the
I/O interrupt task from bit 0 of the odd channel register.

HIO DSB an 8-bit value representing the device status bytes as returned by the hardware in response to an HIO
instruction. Device specific, see the appropriate device reference manual.

HIO 0 and C a 2-bit value representing the overflow and carry (in that order) as returned by the hardware in re-
sponse to an HIO instruction. Device specific, see the appropriate device reference manual.

a 1-bit value which indicates whether the lOP was requested to interrupt (1 =yes)atthe completion of the I/O.
This is obtained by the I/o interrupt task from bit 2 of the odd channel register.

I/O address an 8-bit value representing the physical I/O address. (E.g., X'92' represents multiunit device 2 on
device-controller 1 on I/o channell; X'C' if EIOP or Xerox 530 IOP-2.)

I/O count a 32-bit value which records channel activity. (For FOO, the 32-bit value obtained from the channel-
activity counts.)

Ju lian day a 16-bit binary value representing the Julian day of year. (E.g., March 1, 1976 wou Id be repre-
sented as X '3D'.)

K:TCB a 16-bit value indicating the address of the Task Control Block associated with the task possibly
affected by the fault condition.

K:CPU a 16-bit value which indicates CPU hardware options, as fol lows:

Bit 0 set indicates normalized-shift present.

Bit 1 set indicates extended-arithmetic present.

Bit 2 set indicates MUL/OIV hardware present.

Bit 3 set indicates floating-point hardware present.

Bi t 4 set indicates fi eld-addressing hardware present.

Bi ts 5- 1 0 are unused.

Bits 11-15 = 00010 (2) if Sigma 2.
= 00011 (3) if Sigma 3.
= 11110 (30) if 530.

K:VRSION a 2-byte EBCDIC value, assigned at SYSGEN time, that identifies the system version.

maximum retry count a 4-bit value representing the maximum retry count after which a device error is returned
to the requester. When current retry count exceeded the maximum retry count, an unrecoverable device error
has occu rred.

model number a 16-bit number which uniquely identifies peripheral devices.

order a 5-bit value representing the actual device order which resulted in the device error. Device specific, see
the appropriate device reference manual.

PRAD a 16-bit value representing the absolute sector number at which the latest disk transfer began. The range
is 0 through n-1 where n represents the number of physical sectors on the device. PRAD is meaningless for other
than RAD or disk-pack operations.

relative time a 32-bit value representing milliseconds since midnight. Resolution is 2ms.

SIO DSB an 8-bit value representing the device status byte as returned by the hardware in response to an SIO
instruction. Device specific, see the appropriate devi ce reference manual.

SIO 0 and C a 2-bit value representing the overflow and carry {in that order} as returned by the hardware in re-
sponse to an SIO instruction. Device specifi c, see the appropri ate device reference manual.

STATE a 3-bit value for current disk state, as follows:

o = seek to read flawed header.

2 = read flawed header.

4 = seek for requested operati on.

5 = restore.

6 = perform requested operation; 'order' specifies read or write.

7 = header read following restore.

TDV DSB an 8-bit value representing the device status byte as returned by the hardware in response to a TDV
instruction.

TDV 0 and C a 2-bit value representing the overflow and carry (in that order) as returned by the hardware in re-
sponse to a TDV instruction. Device specific, see the appropriate device reference manual.

TIO DSB an 8-bit value representing the device status byte as returned by the hardware in response to a TIO in-
struction. Device specific, see the appropriate device reference manual.

TIO 0 and C a 2-bit value representing the overflow and carry (in that order) as returned by the hardware in re-
sponse to a TIO instruction. Device specific, see the appropriate device reference manual.

year a 16-bit binary value representing current year minus 1900, e. g., 1973 expressed as X'49'.

203

204

Device Isolation

Device Key-in Implementation

Three key-ins are provided for device isolation. Theyare: DU (Device Unavailable), DA (Device Available), and
DS (Device Substitution).

The DU key-in is used to make nonrotating memory devices unavailable for all but special M:IOEX, M:CTRl,
M:READ, and M:WRITE operations. When this key-in is input, KEYIN wi" obtain the 2-digit hexadecimal device
address included as a parameter of the key-in. First, a check wi II be made to determine if the input address matches
the address of the operator's console (contained in FCT3(1». If there is a comparison, KEYIN wi II output the mes
sage! !KEY ERR and KEYIN will be reentered. If there is no address comparison, all non-disk File Control Tables
wi II be tested for device address comparison with the input address. If a match is found, bit 7 of FCT2(DFN) wi"
be set to a one to indicate that the DFN is unavai lable and the search wi II continue. If a DFN is marked down, a
flag will be set. When the last DFN has been checked, this flag will be tested and, if found reset, a ! !KEY ERR
message will be output and KEYIN will be reentered. If the flag was found to be set, KEYIN will exit.

The DA key-in is used to make a previously-unavai lable device available for normal usage again. The same actions
will be taken as for the DU key-in described above except that the tests for operator console wi II be bypassed and
the device-unavailioility bits will be reset. A! !KEY ERR message will only be output if there is no address
comparison •

Key errors wi" be generated for both DA and DU key-ins if no address is specified, if the argument contains other
than two characters, or if a nonhexadecimal value is input.

The DS key-in is used to substitute one devi ce address for another in one or more DFNs. KEYIN first checks for the
presence of valid hexadecimal numbers in argument fields one and two of the key-in (old and new device addresses
respectively), converts the fields to binary, and stores them into the stack. If a third argument is present, it also
will be converted to binary, checked for validity, and stored in the stack; if not present, a zero wi II be stored. If
a syntax error is detected, or the third argument contains a value higher than the number of DFNs or references a
disk DFN, a key error wi II be generated. If the third argument is present, that DFN wi II be checked to determine
if the address contained in FCT3 matches the address contained in argument field one of the key-in. If there is no
match, a key error wi" be generated; if the addresses do compare, the address contained in the second argument
field will be stored in FCT3(DFN) and KEYIN will exit. If there is no third argument in the key-in, all non-disk
DFNs will be checked for an address comparison with argument fi eld one. If found, the address contained in the
second argument field will be stored into FCT3, the message "CHANGED, DFN xx" will be output to the operator's
console, and the search wi II continue. If no address comparison is found, a key error wi II be generated. If the fj Ie
is faund active, however, the message "UNCHANGED, DFN xx" will be output and no action will be taken. This
is necessary to prevent deadlock conditions and the redefinition of device addresses during intermediate I/O oper
ations. Prior to changing the addresses in the FCT3 entries, a check wi" be made to determine if the address is
known to the system. If it is a known disk address, a key error will be generated. If the address is known, a check
for device-type comparison will be made. If this test fails, a key error wi" be indicated. The unavailability bit
will be set according to that of another file referencing the same device, if the address is found, or will be uncon
ditionally reset if no DFNs reference the new device address.

The ID of the nonoptional overlay that processes the DA, OS, and DU key-ins is '76'. KEYIN, part 1 (overlay ID07)
recognizes these three key-ins and calls overlay ID76 to handle the processing.

Tests for "Down" Devices

Device-Unavailable status is maintained in the File Control Table for non-disk devices. Bit 7 of FCT2 is used to in
dicate the availability of a non-disk device associated with a DFN. If this bit is set, the device will be unavailable
for normal M:READ, M:WRITE, M:CTRl and M:IOEX operations. If bit 7 is reset, access will be permitted. These
service routines wi" test this bit prior to attempti ng I/O operations in conjunction with bit 7 of word 0 of the user's
argument list. If argument list (0) bit 7 is set, device access will be permitted only if the device is unavailable.
If the device is unavailable and argument list (0) bit 7 is reset, or if bit 7 is set and the device is avai lab Ie, device
unavailab Ie status wi" be returned.

Special Receiver Group

Several special purpose receivers allow user access to additional RBM services. These are provided for the use of
Xerox appl ication programs and are not intended for general use. The documentation is i neluded here for complete
ness and should RBM users wish to take advantage of these facilities, they must be aware that these services are sub
ject to change as future requirements dictate.

The following receivers have been defined:

Nqme

Global AIO Receiver GAIORXR

Dismissal Receiver ORXR

M:TERM Receiver TERMRXR

Q :ROC Receiver QRXR

Keyin Receiver KEYRXR

M:ABORT Receiver ABORTRXR

JOB/FIN Receiver JOBRXR

Absolute Location

x'lB8'

x'lB9'

x'lBA'

x'lBB'

x'lBD'

x'lAF'

x'lBO'

All receivers connect by first saving the current contents of the receiver location at their entry address -1 and then
storing their entry address into the receiver location.

The delinking process requires a search of the receiver chain for the position within the chain of the del inking task
and a substitution of the delinking's ta~k exit address for that position within the chain.

It should be noted that interrupts should be inhibited whenever the chain is manipulated. The following code might
be utilized to connect and to delink from the chain.

To connect:

INHIBIT R:PSW1

LOA xxxRXR

STA MYENTRY-1

LOA =MYENTRY

STA xxxRXR

RESTORE R:PSW1

Assuming tasks A, B, and C had connected' in that order to the keyin receiver, the keyin receiver chain would be
as follows:

TASK C EXIT ~

KEYRXR -- TASK C ENTRY -

r-- TASK B EXIT

TASK B ENTRY f4-

TASK A EXIT ..
p Original value of KEYRXR

y.. TASK A ENTRY

205

To disconnect:

INHIBIT R:PSWl

LDX =KEYRXR

SEARCH LDA 0, 1

CP =MYENTRY

BNC $+2

B ITSME

RCPY A,X

RADD *Z,X

B SEARCH

ITSME LDA MYENTRY-l

STA 0, 1

RESTORE R:PSWl

Global AID Receiver

Location GAIORXP (ref: S24RBM) is a pointer to the global AIO receiver. Just prior to transferring control to
conventional user AIO receivers, RBM will route control through the global AIO receiver chain with the A register
containing AIO status as received from the device and X containing the RBM channel status table index.

The global AIO receiver must always restore the contents of A and X and return by a B *ENTRY-l.

Dismissal Receiver

The dismissal receiver is entered at a dismissal opportunity for either primary or secondary foreground tasks. The
receiver then dictates whether dismissal may occur or, in the case of a software scheduler, may defer service to
another secondary task.

Upon entry: Interrupts are inhibited, with status in R:PSW1.

B is a pointer to the M:READ/M:WRITE temp stack.

L is a pointer to the No-Dismiss return.

Upon exit: Register B and register L must be preserved.

If the dismissal receiver opts for normal dismissal, it may branch directly to M:EXIT. This, however, may only be
done for primary tasks; secondary software scheduled tasks cannot undergo normal dismissal. For these tasks, return
must be eventually be made to the ILl register after the interrupt status has been restored from R:PSW1.

M:TERM Receiver

The M:TERM receiver is entered upon termination of any background, primary, foreground, or secondary foreground
task. All registers are volatile. The M:TERM receiver must be reentrant.

Q:ROC Receiver

The Q:ROC receiver wi II give notification when an RBM overlay request has been made and when the RBM overlay
area is again free.

Upon entry:

Upon exit:

lEI - Pre/Post Flag

E ~ 0 means overlay requested.
E < 0 means overlay area free.

IBI - Q:ROC temp pointers.

The E register and B register must be preserved.

The Q:ROC receiver must be reentrant.

Note: There will not necessarily be a one to one correspondence between IE' negative and lEI non-negative entries
to this receiver. The receiver will not be entered for overlays declared as resident at SYSGEN time, but
the receiver may be entered (E ~ 0) even if no I/o is required for requested overlays already residing in the
overlay area.

Keyin Receiver

A keyin receiver pointer is contained at location KEYRXR (ref: S24RBM). After RBM examines a keyin and deter
mines that it is not an RBM keyin, control will be routed through user-connected keyin receivers. In addition, a
foreground task may initiate a command to be processed by the keyin receiver chain. The calling sequence is:

L register = return path.

(L) = command not recognized.
(L) + 1 = command recognized.

X register is a pointer to ARGLST as follows:

ARGLST Word 0 = Word address of buffer containing command in TEXT format.

Word 1 = Byte Count (always K:KEYBUF*2 for RBM keyin subtask).

Word 2 = Deferred Status Reply Address (0 if no reply is desired; always 0 for keyin subtask).

If return is to (L) + 1, the I A I reg ister indicates return status as fo IIows:

A = 0 = Command acknowledged (however, processing may be deferred).

A < 0 = Command recognized but cannot be accepted now.

A> 0 = Command recognized but byte count illegal, obvious syntax violation, or immediate processing has de
tected an error. Error messages if any, must be output by the processing task.

Details:

Location IKEYRXRI is initialized by SYSGEN to a pointer to a RCPY L, P instruction. A foreground task connects
to the keyin receiver chain by first saving the current contents of location KEYRXR at its entry address -1 and then
storing its entry address at KEYRXR. This will serve as its exit address and provides I] procedure for delinking. A
task may pass a command through the keyin receiver chain (i.e., RBM keyin subtask) by first pointing X to the
ARGLST. An RCPYI P, L followed by a branch to the contents of location KEYRXR will cause the request to be
examined by the reentrant keyin receiver chain.

If a receiver acknowledges the request, it will typically move the command to its own buffer and save the other
ARGLST information. The task to accomplish the actual processing is then triggered; the A register is set to zero

208

and return is made to (l) + 1 to inform the initiator that the command has been accepted for processing. Immediate
or deferred processing will report a reply if requested in the ARGLST.

If a receiver recognizes the command but cannot accept it now because of processing constraints, A is set to nega
tive and a return is made to (L) + 1.

If a receiver recognizes the command but initial (or complete) processing causes the command to be rejected, A is
set to a positive value and a return is made to (L) + 1.

If a receiver does not recognize the command, control is transferred to the next receiver (B *E NTRY-l) with the
X register and L register unchartged.

In particular, the RBM keyin subtask will react in the following manner:

1. Return to (l + 1)

A~O Command accepted, exit keyin subtask.

A<O Output !! BUSY message on dfn 1.

2. Return to (L); output! !KEYERR message.

M:ABORl Receiver

The M:ABORT receiver is entered at an abort of a background, primary foreground, or secondary foreground task.

Upon entry: III - Abort Locati on.

'X' - Abort Code.

Upon exit:- land X contain abort location and code (may be modified).

The M:ABORT receiver must be reentrant.

JOB/FIN Receiver

The JOB/FIN receiver is entered at two points, either before !JOB command processing takes place ('E' register
greater than -1) or after ! FIN command processing ('E' register tess than zero) but before WAIT. For the second
case (i .e., IFIN), a return of (l) + 1 will cause Z:JSAVCC to be set in R:JCP. This will retain the current assign
ment of ICCI for one !JOB or ! FIN command. A return of (L) + 1 for the !JOB command case will have no effect.

File Directory Receiver

DBUF

With the intent to provide support for in-core directory to minimize disk accesses, a Directory Buffer Receiver was
added to F01. M:ASSIGN and M:ClOSE will link to the address in DBUF(locatioh X l 1BC I)with the following reg
ister significance:

L = return address

X =-1

X =-2

X =-3

Request has been made for assign to a file.

An assign-to-fi Ie request has been satisfied.

M:CLOSE is about to update the associated file directory to record the new EOF pointer, please up
date the in-core directory.

The DBUF receiver will have the M:ASSIGN (overlay IB11) and M:ClOSE temp stacks at its disposal. In all cases
M:ASSIGN and M:ClOSE will proceed as normal if return is made.

9. BASIC SPOOL SYSTEM (BSS)

The Basic Spool System (BSS) is an independent foreground program that copies data from one foreground oplabel to
another. The data is diverted to a disk fi Ie so that the input process can proceed independently of the output. A
typical application for the BSS would be the transfer of data from a fast device to a slow device (i.e 0, magnetic
tape to line printer). If the input oplabel is a "logical device" (available in GOO) the BSS can, with certain modi
fications, serve as a I ine printer symbiont (see description of the #LPSPOOL assembly option).

Loading of the BSS is accomplished by assigning the CC oplabel to the release media containing the JCL and binary
data required for loading BSS. The operator will be queried during the loading process as to the form of the !$TCB
and !$ROOT cards, so that the user may specify the priority at which the BSS is to run and the memory location.

Various assembly options control the BSS, as described below. These options must be modified at the source level.
This is accomplished by acquiring a source copy of the BSS (available in compressed form on the release tape) and
then modifying the appropriate source I ines, as given below.

+20,20
#LPSPOOL EQU YES

NO

Function

This option, when assembled as a YES, will define the following op
tions as shown:

#KEVIN

#OUTOPLB

#INOPLB

#COMPRESS

#SUPPRESS

EQU

EQU

EQU

EQU

EQU

NO

'LP '

'LD'

YES

YES

With #LPSPOOL on (#LPSPOOL EQU YES), the BSS will become a
line printer symbiont. ihe BSS reads from the 'LD' oplabel and writes
to the I LP ' oplabel. All background output otherwise destined for the
same line printer as that referenced by the foreground 'LP' oplabel,
will bedkected to the background equivalent of the foreground
'LD' oplabel.

Other secondary changes wi II also occur. Primari Iy, a larger portion
of the spooling file will be maintained so that backspacing may allow
recovery from paper jams.

This option, when assembled as a NO, will define the following options
as shown:

#KEVIN EQU NO

#OUTOPLB EQU

#INOPLB EQU

'COMPRESS EQU YES

#SUPPRESS EQU YES

Modification of these options is possible as described below.

209

210

Option

+31,31
#KEYIN EQU
(Default is NO)

+32,32
#OUTOPLB EQU
(Default is zero)

+33,33
#INOPLB EQU

YES

NO

, 1313 '

, aO' '

Function

This option, when assembled as a YES will cause the BSS to determine
its input and output operational labels and (optionally) the spooling
file name from a key-in of the following format

where

kkk 0'0' to f313[VIA filename[,area]]

is ignored if a one character field (this facilitates use of the
Q key-in).

kkk is ignored (again to facilitate use of the Q key-in).

aa is the input oplabel.

1313 is the output oplabel.

filename [,area] specifies the spooling file name. 'area' de-
fauts to lSD' if not specified. If the filename is not speci
fied, this option will be satisfied by the assembly option
#FIlNAME, as described below.

The location of the key-in buffer will default to the RBM key-in buffer
area. In order to facilitate activation by other foreground tasks, the
contents of the DEFed item 'KEYBUF' (which resides in the BSS initial
ization routine) may be used as a pointer to a foreground mailbox lo
cation which in turn points to a foreground buffer containing a BSS
specification record of the format just described. Thus the 'KEYBUF'
location may be modified by reassembly on a !$MODIFY command to
allow foreground tasks to initiate a BSS copy function completely
without operator intervention.

NO is the default for #KEYIN. If NO is specified, the defau It values
for the options #INOPlB and #OUTOPLB may be specified {see the
#INOPLB and #OUTOPLB assembly options described below}.

This assembly option specifies the oplabel which the BSS is to use for
output. 1313 will default to 0 which will cause the BSS to query the op
erator. If upon accessing 1313, the BSS determines the oplabel to be in
valid or assigned to zero, the message "#STOPPED 1313" will be output
to the operator console. The operator may then properly assign 1313
through use of anFL key-in or !ASSIGN command and enter a II#GO
1313" key-in to restart the BSS.

This assembly option specifies the oplabel which the BSS is to use for
input. aawill default to 0 which will cause the BSS to query the op
erator. If upon accessing 0'0', BSS determines the oplabel to be in-

. valid or assigned to zero, the message II#.STOPPED aa" will be output
to the operator console. The operator may then properly assign 1313
through use of an FL key-in or !ASSIGN command and enter a #GO
1313" key-in to restart the BSS.

Option

+34,34
#COMPRES EQU
(Default is YES)

+35,35
#SUPRESS EQU
(Default is NO)

+40,40
#FILNAME TEXT

+41,41
#AREA EQU
(Default is SD)

+42,42
HEVEN EQU
(Defau It is NO)

+43,43
#BYTES EaU
(Defau It is 134)

+44,44
#GRACE EQU

YES

NO

YES

NO

IYYYYYYYV I

YES

NO

X

X
(Default is 150 but not greater
than 20%)

+45,45
#EOF DATA-X
(Default is 2)

Function

When #COMPRES is YES, the record will be compressed before it is
moved to the spool file. Compression is achieved by replacing two or
more consecutive words which are identical with the value of the word
and a count of the number of words. If the value of the iterative word
is X '4040'g the entire field is replaced by only a count of the number
of words.

When #COMPRES is NO, no compression is performed.

When #SUPRESS is YES, combinations of blanks and/or zeros are re
moved from the end of the record, with a subsequent reduction in the
record size. Blank/zero suppression occurs before compression if
#COMPRES is also specified.

#SUPRESS should be NO if the record length must be fixed, as for
binary cards.

yyyyyyyy specifies the name of the spooling file. If YYYYYYYY con
tains leading blanks or zeros (as in the default case) a file name of
"(3(3SPOOL" is assumed ((3(3being the output oplabel). If the spooling
file YYYYYYYVdoes not spool, the BSSwill attempt to use "(3(3 SPOOL"
in the 'UD' area. If this file does not exist, the BSS will abort with
code #F.

ss specifies the area name, which contains the spool file. If ss is
zero or blanks (as in the default case) the area will be assumed to be
'UD'.

If #EVEN is YES, records with an odd byte size wi II be padded with
one byte of zeros.

If HEVEN is NO, no padding will occur.

X indicates the maximum byte size passed to M:READ. The maximum
value for X is 210 •

X indicates the number of records which are guaranteed for a #BACK
key-in.

X indicates the number of consecutive EOFs which will terminate the
BSS stream.

As soon as the BSS resolves the parameters specified above, the copy will proceed.

211

212

Line Printer Symbiont

A copy of the BSS is available on the SYSTEM Release Tape which is suitable for a single device Line Printer
Symbiont. In the process of loading this version of BSS, the user will be queried for

1 • Interrupt level.

2. Load location.

3. Permanent fire name for that copy of BSS COV' file).

4. Spool file size. The name of the spoof file will default to 'LPSPOOl r on the SD area.

This version of ass contains special code which will redirect background output through the spooler. However, for
this process to be effective, the following conditions must be met.

1. Air of the appropriate background oplabels (i .e., 'lO', 'LL', 'DO', etc.) should point at a background
DFN which references a Line Printer (same as existing SYSGEN).

2. The foreground 'LP' oplabeJ must point at the same background line Printer via a foreground DFN.

3. The foreground 'LD' oplabel must point at a foreground DFN which references a logical device, which, in
turn specifies a device address unique from the line printer.

4. The background must also be supplied with a background DFN which references the same device address as
the foreground 'LD' oplabel. This DFN need not have an oplabel assigned to it.

This can be accomplished by adding the following SYSGEN considerations:

1. Assuming that a background DFN for the line Printer already exists in the SYSGEN deck and defines a line
Printer of device address 'dn', model 7445, add under "DEVICE FILE INFO"

7445/dn,F DFN =x Foreground Printer

LP/O'O', B DFN =y Background Logical Device

LD/O'a, F DFN =z Foreground Logical Device

where 0'0' is an otherwise unused device address.

Note: The 'LP' mnemonic on the background logical device definition is required by FORTRAN and
COBOL.

2. Assuming that the appropriate background line Printer oplabels already exist and point at the background
line Printer DFN (as in the existing SYSGEN deck), add, under "FGD. OPe LBL."

LD =y

LP =x

If these requirements are met, the line Printer Symbiont wilJ take control automaticatfy of the background line
Printer whenever the system is rebooted.

Blocking/Compression Scheme

Each record in the spool file will be accompanied with at least two words of control, as follows:

Word 0

X '0000 ,

X'DEaF'
X '0000'

X'OEaF'

X'OEaD'

where

Meaning

End of block.

End of spool file. The output routine will terminate when it encounters this
value.

End of file; this value represents a logical end of file and establishes a backup
point for use in the #BACK key-in.

This value indicates the end of data for the previous record.

Bit 0 when on, indicates that this record should be written with a write EBCDIC order byte.

Bits 6-15 indicate the total record size, in bytes. If these bits are all zero, the record size is 2
10

bytes, which is the maximum record size.

Bits 1-5 must be zero or the BSS will consider itself lost and search the spool file for the next valid
word O.

Word 1

Bit 0 when on, indicates that this record is not compressed or does not cross a block boundary. Bits 1-5
must be zero, or the BSS will consider itself lost and search for another valid word O. No X'OEaD'
value wi II follow a noncompressed record.

Bit 1 when set, indicates that a noncompressed series follows. The length of the series is given in
bits 6-15. Bits 2-5 must be zero or the BSS will consider itself lost, and search for a valid word O.

When reset, indicates that an iteration follows. The value for this iteration is given in word 2,
unless the iteration value is X'4040'. An iteration value of X'4040' is indicated by bit 2 being set.
Bits 3-5 must be zero or the BSS wi II consider itself lost and search for a vatid word O.

213

APPENDIX A. XEROX 16-BIT STANDARD OBJECT LANGUAGE

Introduction

The Xerox 16-bit standard object language provides a means
of expressing the output of a processor in a standard format.
All programs and subprograms in this object format can be
loaded by the Overlay Loader. The complete standard
object language contains 13 load item types.

An object module consists of the ordered set of binary rec
ords generated by an assembl y or compilation for later load
ing. The Overlay Loader has the facility to load and link
several object modules together to form an executable
program.

The Absolute Loader can load a single module (absolute
subset) to form an executable program. The following load
item types from the standard object language comprise the
absolute subset:

1. Record Header
2. Record Padding (type 0, subtype 0)
3. Repeat Load (type 0, subtype 1)
4. Unrelocated Load (type 1)
5. Start Module (type 4)
6. End Module (type 5)
7. Absolute Load Origin (type 7, subtype 1)

AI I load item types are acceptable input to the Overlay
Loader except Absolute Load Origin (type 7, subtype 1).

Description of Object Modules

General Description

An object module consists of a setof binary object records,
each containing an integral number of load items after a
standard three-word record header (see Figure A-1). Each
binary record in the module is a 120-byte record.

FF I n

Seq. No. 0

Checksum

Load Items First Record

Nonactive
Information

FF J n

Seq. No. 1

Checksum

Load Items Second Record

Nonactive
Information

Figure A-1. Typical Object Module of M Records

FF I n

Seq. No. M-2

Checksum

Load Items (M- 1)th Record

Nonactive
Information

9F I n

Seq. No. M-1

Checksum

Load Items Mth Record (Last record of module)

Nonactive
Information

FigureA-l. Typical Object Module ofM Records(cont.}

Each load item consists of a header word fol lowed by a
variable number of data words. The first load item in an
object module is a start-module item and the last item (other
than record padding) is an end-module item. There are 15
types of load items, described below.

Binary Object Record Format

Each 120-byte binary record in an object module consists of
these parts: Record Header, Load Items, and Nonactive In
formation in the following arrangement. The Record Header
and Load Items are considered the lIactive II portion of the
record.

Record Header

Load Item 1

Load Item 2

Load Item n

Nonactive
Information

3 words

up to 51 words

The lIactive II portion of the record is that information con
cerning type, sequence number, checksum and binary data
usually processed by loaders. The "nonactive" portion may
contain sequence or identification information, or it may be
empty. It is not processed by the loaders.

215

Format of Record Header

The first byte of the record header may be either X'P or X'9'.
X'F' denotes that this isa standard recordoftheobjectmodule:
X'9' denotes thatthis is the last record ofthe obiect module.

word 0

Contro I word
nl For 9 I F 10 0 n n n n n

0 3 4 7 8 9 10 1112 13 14 15

word 1

Is I C I Record seguence no.

I
0 2 15

word 2

Checksum

1
0 15

nnnnnn in the first word is the number of active words in the
record, excluding the record header. "Active" denotes data
to be processed by a loader. There may be same padding
words or sequence information at the end of the record that
is not included in the "active" count. The maximum value
of n is 51. Note that although the physical record size is
fixed at 120 bytes (80 columns of binary data) the number of
active words may vary from 3 to 54. This effectively stan
dardizes the reading of binary object records but allows ver
satility in the generation of active data. The record sequence
number starts at 0 and takes on consecutive integer values
for all the records in one file. The S bit is a sequence over
ride. If this is a 1, the loader ignores sequence checking
for the record. The checksum is an arithmetic sum, with
carry, of the n-3 active words after the record header. If
the C bit is a 1, the checksum is ignored.

Load Item Format

Each load item consists of a one-word header and an op
tional variable-length body of data.

Load Item Header I
t---------t Load Item

Load Item Data

Format of Load Item Control (Header) Word

Every header word has the same general format:

bits 0-3 Type

216

bits 4-7 Subtype or control.

bits 8-15 Number of data words in the load item (ex
cfuding item header).

This number plus 1 is equal to the size of the
foad item. All words of a load item must be
contained in the some physical record.

Summary of Load Item Formats

RECORD PADDING (Type 0, Subtype 0)

word 0

Contro I word
o 0 010 o 0 010 0 o 0 10 0 o

o 3 4 7 8 11 12 15

There is no body of data. Padding words are ignored by the
loader. The obiect language allows padding as a conve
nience for processors.

REPEAT LOAD (Type 0, Subtype 1)

word 0

Contro I word
o o 010 o 0 110 0 o 0 I 0 0 o

o 3 4 7 8 11 12

word 1

Repeat count

o

This item repeats the next load item a specified number of
times. The load item (type 1, 2, or 3 only) immediately
fortowing the repeat load is repeated (i. e., loaded) in its
entirety the number of times indicated by the data word.

UNRELOCATED LOAD (Type 1)

word 0

Contro I word
o o 1 10 o 0 010 0 n n In n n

o 3 4 7 8 11 12

word

First data word

15

15

o 15

word n

Last data word

o

This item loads n words without relocation.

RELOCATED LOAD-MODULE BASE (Type 2)

word 0

Contro I word
o 010 o 0 010 0 n n Inn

o 3 4 7 8 11 12

15

n
15

word

First data word

o 15

word n

Last data word

o 15

This item loads n words with module relocation. The reloca
tion bias of the currehtobject module is added to each data
word in the item.

RELOCATED LOAD-COMMON BASE (Type 3)

word 0

I 0
Contro I word nl 0 1 10 0 0 010 0 n nln n n

0 3 4 7 8 11 12 15

word 1

First data word

o 15

word n

Last data word

o 15

This item loads n words with a common base relocation.

START MODULE (Type 4)

word 0

Control word
.0 0 I 0 o 001 n + 1

o 3 4 7 8 15

word 1

Common size allocation

o 15

word 2

First character

I
Second character

o 7 8 15

word n + 1

Last character

7 8

This item identifies the start of the object module. The
characters in words 2 through n + 1 are the program name
(identification) for the module.

END MODULE (Type 5)

word 0

10
Control word

0 1 10 0 0 r 10 0 0 010 0
0 3 4 7 8 11 12 15

word

Starting address

0 15

word 2

Severity level

o 15

word 3

Relocatable size (or zero)

o 15

This item identifies the end of the object module. In the
control word (word 0), the starting address is defined in
bit 7

where

r = 1 indicates absolute starting address.
r = 0 indicates relocatable sh::Jrting address.

The severity level in word 2 is defined as the highest level
reached during processing.

The loader uses the relocatable module size to determine
the starting location for the next relocatable section.

A starting address of absolute 0 indicates there is no starting
address for this module •

LOAD ORIGIN (Type 7)

word 0

10
Contro I word

1 10 0 0 riO 0 0 010 0 0 1
0 3 4 7 8 11 12 15

word 1

Origin address

o 15

This item sets the origin within the object module. In the
control word (word 0), the origin is defined in bit 7

where

.r = 0 indicates relocatable origin.
r = 1 indicates absolute origin.

217

RELATNE LOCATION POINTER (Type 8)

word 0

Contro I word
o 0 0 I 0 0 0 r 10 0 0 0 10 o o

o 3 4 7 8 11 12 15

word 1

C ha i n base address

o 15

This item establishes the chain base for later chain resolu
tion. In the control word (word 0), the chain base address
is defined in bit 7

where

r = 0 indicates a relocatable address.
r = 1 indicates an absolute address.

NAME DEFINITION (Type 9)

word 0

Control word
o 0 1 10 0 1 0 I n + 1

o 3 4 7 8

word 1

First data word

o

word 2

First character Second character

o 7 8

word n + 1

15

15

15

word 1

First data word definition - address

o 15

word 2

First character Second character

o 7 8 15

word n + 1

last character or blanks

7 8 15

This item associates a location in the module with a defini
tion name (characters in words 2 through n + 1) for other
modules to reference. In the control word (word 0), the
definition address is defined in bit 7

where

r = 0 indicates relocatable definition address.
r = 1 indicates absolute definition address.

EXTERNAL REFERENCE (Type A)

word 0

Control word
010 o 0 r r n + 1

o 3 4 7 8

word 1

Chain address (or zero)

o

word 2

First character Second character

o 7 8

15

15

15

15 word n + 1

This item identifies a name as a defin ition within the object
module.

All name definitions immediately follow the start-module
item and must precede all other load items. For each name
definition, an address definition should appear later in the
obiect module.

ADDRESS DEFINITION (Type 9)

word 0

Control word
0011000 rl n + 1

o 3 4 7 8 15

218

Last character

7 8

This item states a name (characters in words 2 through n + 1),
defined in another module, whose definition address must be
inserted ina chain of locations within the module. In the
control word (word 0), the chain address is defined in bit 7

where

r = 0 indicates a relocatable chain address.
r = 1 indicates an absolute chain address.

Note: If there is no chain address, the reference address is
zero and is used for library searching purposes only.

SECONDARY REFERENCE (Type B)

word 0

Control word
o 1 I 0 o 0 r I n + 1

o 3 4 7 8 15

word 1

First data word chain address

o 15

word 2

First character Second character

o 7 8 15

word n + 1

Last character

7 8 15

This item states a name (characters in words 2 through n + 1),
defined in another module, whose address may be inserted
in a chain of locations within the module. This item is iden
tical to type A, above, except that it does notforce loading
of the routine from the library. In the control word, the
chain address is defined in bit 7

where

r = 0 indicates a relocatable chain address.
r = 1 indicates an absolute chain address.

ADDRESS LITERAL CHAIN RESOLUTION (Type C, sub
types 0, 1, 2, and 3)

word 0

Contro I word
o 0 10 o q r 10 0 0 0 I 0 0 o

o 3 4. 7 8 15

word 1

I Resolution address

0 15

y.Jord 2

I Chain address

0 15

This item defines a location within the module (called the
resolution address) whose address must be inserted in a chain
of displacement fields within the module. In the control
word, the cha.in address is defined in bit 6

where

q = 0 indicates a relocatable chain address.
q = 1 indicates an absolute chain address.

I

The resolution address is defined in bit 7

where

r = 0 indicates a relocatable resolution address.
r = 1 indicates an absolute resolution address.

An address literal chain is a threaded list of forward refer
ences to a single location in a program. The definition
value (called the resolution address) can be output as an
address literal chain resolution (Type C, subtypes 0, 1, 2,
and 3). The chain address points to the beginning of the
threaded list which is terminated by an absolute' zero value.
The resolution address and the chain address may be absolute
or relocatable.

Note: Because the terminator of the chain is zero, no pro
gram may have an address literal chain whose last
link is at absolute zero (i. e., the item would refer
ence zero and would thus appear to terminate the
chain).

Note that external reference (REF) (type A) and secondary
reference (SREF) (type B) chains are structured in the same
manner, but resolved by the loader using an external defi
nition value (type 9).

DISPLACEMENT CHAIN RESOLUTION (Type C, subtypes
6, 7, A, and B)

word 0

Contro I word
o 0 1 p p 9 r 10 0 0 0 10 0 o

o 3 4. 7 8 9 11 12 15

word

Resolution address

0 15

word 2

I Chain address

0 15

This item defines a location (called the resolution address)
within the module whose relative displacement must be in
serted in a chain of displacement fields within the module.
In the control word, the displacement chain is defined in
bits 4-5

where

pp = 01 indicates that an indirect bit is not set in each
instruction in the displacement chain.

pp = 10 indicates that an indirect bit is set in each
instruction in the displacement chain.

q = 1 always indicates absolute displacement of the
last item in the chain (relative to the chain
base declared in item type 8).

219

The resolution address is defined in bit 7

where

r = 0 indicates a relocatable resolution address.
r = 1 indicates an absolute resolution address.

When forward references occur during one-pass processing,
and the possibilityof resolving the reference bya definition
or literal may occur within 255 locations, the 8-bit dis
placement field of the instruction may be used to form a
displacement chain. The item types 8 (relative location
pointer - establish chain-base) and C (displacement-chain
resolution) must be used together to resolve the chain by
substituting actual displacements determined at load time.

In the creation of a displacement chain, the pointer in the
type 8 item defines the relative location in the program to
be established as the chain base. Each new type 8 item can
define a new chain base. The values in the displacement
field of the instructions included in any given displacement
chain refer to the absolute displacement of that instruction
relative to the currently established chain base; e. g., if the
chain base is established to be X'100' and an instruction is
located at X' 125 i , the displacement of that instruction for
purposes ofthe displacement chain is X'125'-X' 100' or X'25'.
This point is emphasized since the loader will use this dis
placement only to determine the final displacement of the in
struction relative to the location of Iiteral6r target locations.

When the displacement chain connects instructions that ref
erence 0 literal or a specific target location within range of
the chain base (e. g., lDA=3 lDA=LAB. B XR), no indirect
bit is set in each instruction (pp = 01 in Header - Type C).

When the chain connects references to an external sym
bol or forward reference whose value will be given in some
literal within range of the chain base, pp is set to 2 in the
type C header, to set the indirect bit in each instruc
tion in the chain (e.g., LDA X, which will be resolved

as LDA *$+n, where n is the displacement of ADRL X rel
ative to the instruction).

The chain base address (in the type 8 item) may be declared
as an absolute or relocatable value. The resolution address
(firstdata-wordofaType C item) is the address of the target
location or I iteral expressed as a location, and not as a dis
placement on the chain base. Note that although the reso
lution address isdefined atthis point, the value of the literal
at that resolution may not be defined until later. In fact, it
may be an element of an address-literal chain (type C) or
external reference chain (type A). The address-literal or
external chain resolution is independent of the displacement
chain resolution.

The chain address given in the second data word is the ob
solute displacement of the last item in the chain, relative
to the chain base declared in type 8 (e.g., if the effective
chain base were X' 1000' and the value of the chain address
were X'20', the last item of the displacement chain would
be located at X'1020').

A separate displacement chain will be created for each
unique variable in a given displacement region. Thus, many
displacement chains may be built using the same chain base.
As a matter of fact, the chain base may not be changed until
a displacement chain resolution item has been output for
each displacement chain. An unresolved displacement chain
is a serious error condition in the output, and is unaccept
able for execution.

The format of the displacement chain is described in the
example in Figure A-2.

Example: let a chain base be declared at 109(R). (Numbers
given are decimal.) It is assumed that the ADRl for XlB
wi" be ultimately loaded at 140(R). Note that the displace
ment field of each instruction before resolution is a pointer
to the location of the next item in the threaded list relative
to the chain base.

Relative Displacement
Displacement Displacement
Field of Instruc- Field of Instruc-

location Symbolic From Chain
tion Before tion After

Counter Base
Loading Resolution .

110 LDA XLB 1 00 (end of chain) 30 (140-110)
125 STA XLB 16 01 15 (140-125)
134 CP XLB 25 16 06 (140-134)
136 STA XLB 27 25 04 (140-136)
140

I Item Type C, Displacement I
Chain Resofution

I Resolution Address 140(R) I
(Chain Address 27(A) I

Figure A-2. Displacement Chain Format

220

LABELED COMMON (Type D, Subtype~ 0, 1, and 2)

word 0

Control word
o 1 I 0 o k k I n+1

o 3 4 7 8

word 1

Labeled COMMON index

o

word 2

Labeled COMMON size zero or dis lacement

word 3

Content (first word)

o

word n+1

Content (last word)

o

15

15

15

15

15

Subtype 0 -(k=O)- Labeled COMMON Definition. This
subtype conveys the block size in words and an index value
for the block being defined. The contents of the load
item designate the alphanumeric name for the Labeled
COMMON block. The index value is relative only to
the module being loaded and is sequenced from the integer
one. It is used only to economize on space in the refer
ence and data subtypes.

This subtype will follow the start module and name defini
tion items. It must precede the reference and data subtypes
for Labeled COMMON.

Subtype 1 -(k=l)- Labeled COMMON References. This
subtype carries as content a set of words that continue the
load program and to which a Labeled COMMON base will
be added. The particular base address to be added is in
dicated by the index value in the load item. The word
to which the base is added may contain positive or neg
ative content. Should the index value be zero on this
subtype, then the blank COMMON will be the added
base value.

The third word (word 2) of this item is non-functional and is
carried as zero.

Subtype 2 -(k=2)- Labeled COMMON Data. This subtype
will load labeled COMMON with a set of contiguous
data. Again the COMMON block is identified by an
index value. The starting displacement from its base is
identified in the third word (word 2) of the load item.

221

222

APPENDIX B. CRITICAL RBM TIMES

Routine

M:SAVE
Registers Only, No Temp, No Accounting
With Accounting, No Temp
Without Accounting, No Temp
Wi th Accounti ng and Temp

M:EXIT
Registers Only, No Temp
With Temp

Maximum Interrupt Inhibit by RBM

Multiply Simulation (average)
Minimum = 81
Maximum = 280

Divide Simulation (average)
Minimum = 86
Maxi mum = 340

Control Panel Interrupt

I/O Interrupt

No Command Chaining

Command Chaining Without Receiver

Command Chaining With Receiver
Keyboard/Pri nter (per character)
Card Punch (per row)
Disk Pack (no device waiting)
Disk Pack (device waiting)

Interrupt on Channel Active
(Seek Overlap; Set Device Waiting)

Time
(mi croseconds)

59
99
90

138

69
116

100

250

310

29

315

457

415
315
485
586

min 217
max 557

Note: Figures are given for Sigma 2. For Sigma 3, subtract 15 percent from each figure.

APPENDIX C. MAGNETIC TAPE HANDLING

It is assumed that the reader has a general knowledge of the structure of M:READ/M:WRITE, which is flowcharted
in Figure 24 of this manual.

When an RBM user makes a request for mag-netic tape I/O through M:READ, M:WRITE, or M:CTRL, several different
routines unique to magnetic tape handl ing may come into play. Which routines are called is a function of the ser
vice routine used (M:CTRL or M:READ/M:WRITE); the desired function (write binary, read BCD (7T), etc.); the
model of magnetic tape unit being used (9-track or 7-track); and the device status, both before and after the I/o
operation. Some of these routines are resident and others are overlays. With the exception of M:CTRL, all are
SYSGEN optional and are included only when the system has a requirement for the routines.

Magnetic Tape Command Chaining Receiver (Resident)

The command chaining receiver for magnetic tapes has two purposes; to allow mode control for 33xx magnetic tapes,
and to acquire SENSE information from 9-track tape controllers to provide the capability for correctable read error
recovery. The sense must be performed at I/O interrupt time to prevent the potential loss of track-in-error informa
tion caused by subsequent intermediate controller operations by tasks of higher priority than the one that initiated
the current operation. To simplify the code within the routine, a SENSE operation is issued to 9-track tapes only
if a transmission error is detected, the E-flag bit is set, if the byte count residue is nonzero, if a timeout occurred
or if any of the I/O left the overflow or carry indicators set in FCT4. The mode order is command chained to pre
cede any reads or writes moving the tape from load point (33xx magnetic tapes only).

Resident Magnetic Tape Pre-I/O Edit

The resident tape pre-I/O edit routine is called by M:READ/M:WRITE prior to the issuance of the SIO for binary
7-track and all 9-track tape operations. Its purpose is to check for I/O attempts past end-of-tape, device manual
or unrecognized, and build the command chaining necessary in the IOCT. Write EOF and read or write with error
recovery suppressed are the operation items permitted beyond end-of-tape. In this way, end-of-volume sentinels
can be written or read past the end-of':'tape marker. If the I/O operation cannot be performed because of the posi
tion of the tape, EOT status will be returned to the user and the SIO will not be attempted.

7-Track BCD Tape Pre-I/O Edit and BCD Conversion Overlay

This overlay is called from M:READ/M:WRITE or the magnetic tape error recovery overlay for the following
functions:

1. Pre-I/O edit for BCD 7-tracktape operations.

2. Post-I/o edit for BCD 7-track tape operations.

3. Post-read edit for BCD ca.rd operations.

4. Error recovery for BCD card reader operations.

Only the code pertaining to BCD 7-track tape operations is discussed below.

For all post-I/o operations, the overlay converts any special BCD characters in the user's buffer to EBCDIC and then
exists. If the overlay was called from M:READ/M:WRITE, the return status will be "successful I/O completion". If
the BCD conversion overlay was called from the magnetic tape error recovery overlay, the return status will be "in
correct length ", which is the only condition for which BCD-EBCDIC translation is performed following an error.

223

224

For pre-I/O edit operations, code similar to that of the resident tape pre-I/O edit routine is first executed. The
actions taken are the same with two major exceptions:

1. There is no read-backwards order for 7-track tapes, so checks for that condition are not performed.

2. If the operation is to be permitted, special EBCDIC characters in the user's buffer will be converted to BCD.
These special characters wi" be translated back to EBCDIC when the overlay is called to perform post-I/o
editing.

For a further discussion of the EBCDIC-BCD translation feature in RBM, see Appendix D.

Magnetic Tape Error Recovery Overlay

The resident magnetic tape error recovery module screens abnormal conditions for simple incorrect length. If any
other conditions exist, the appropriate error recovery overlay is called, depending on the device model number.

One of the magnetic tape error recovery overlays will be called from M:READ/M:WRITE if any of its magnetic tape
operations result in the detection of an abnormal condition. However, an abnormal condition for tapes mayor may
not be a ureal II error. In addition to real errors, such conditions as end of file, beginning of tape, write protect vi
olations and incorrect record length may be detected. These conditions are reported to the calling program but are
not treated as real errors. The error recovery overlay will be called to process abnormal device status even if the
calling program does not specify standard error recovery, due to the degree of analysis required to ensure correct
status report i ng •

If a genuine error occurs, it is either recoverable or irrecoverable. The conditions under which "irrecoverable-I/O"
status is returned to the call ing program are as follows:

1. Error recovery is not specified on the user call.

2. Indeterminate tape position (i.e., the tape position is lost).

3. Ten recovery attempts were performed without success.

4. An error occurred while repositioning tape prior to a retry attempt.

5. The nature of the error makes recovery impossible.

6. Device and/or channel status are in conffict and it is impossible to determine the exact nature of the
problem.

If an error is recoverable, a retry sequence will be initiated. In general, one or more intermediate positioning op
erations will be attempted (the over'lay will not exit while they are in progress). If they are successful, the overlay
will exit back to M:READ/M:WRITE with status which indicates that the original operation is to be retried.

For write operations, two recovery sequences are used, based on the current retry count. If the retry count is less
than three (i .e., 0, 1, or 2), the sequence is

SET CORRECTION - BACKSPACE - BACKSPACE..;. READ - SET ERASE - RETRY.

The purpose of this sequence is to ensure that the write attempt did not result in the generation of multiple records
due to a bad spot on tape (i .e., generating one record with gaps in its middle). If there is such an error, the second
backspace operation will not position the tape at the beginning of the previous record, but instead will stop in the
middle of a record. The following read operation will then result in the detection of a transmission error. In this
case, a "bad tape II message will be output to the operator's console and the error recovery overlay will exit with
"irrecoverable-I/O" status. If the read operation in the above sequence does not result in the detection of a trans
mission error but the retry attempts continue to fail (due to an inability to erase past the bad spot on tape), a second
recovery sequence will be attempted. If the retry count is three or greater, the following sequence will be used:

SET CORRECTION - BACKSPACE - SET ERASE - RETRY.

This sequence will allow the tape to erase approximately 25 inches of tape before the retry count is exhausted. If
the operation cannot be performed successfu lIy before the max imum number of retri es is reached, the operator wi II
be notified of a tape fault and II irrecoverab le- I/o II status will be returned to the calling program.

For read errors, two recovery sequences are also used, depending upon the type of magnetic tape unit and the nature
of the error. If the read error is correctable, the following recovery sequence will be used:

BACKSPACE - SET CORRECTION - RETRY.

The SENSE data used for the SET CORRECTION operation is that which was gathered at I/O Interrupt time by the
command chaining receiver. If the error is noncorrectable, the following retry sequence will be used:

BACKSPACE - RETRY.

Noise Record Correction

A maximum of 10 recovery attempt.s wi II be made before declaring the error irrecoverable. Under certain circum
stances, an irrecoverable read error wi II be ignored. If the retry count becomes exhausted, a transmission error is
reported, and there is an incorrect length with the number of bytes actually transmitted numbering seven or fewer,
the error will be designated a noise record. In this event, the operator will be notified of a noise record and the
next record on tape will be read. (If the user has specified IIno error recoveryll this sequence is not used.) This
does not mean that the user cannot write and read records of fewer than eight bytes, but does mean that if there are
irrecoverable errors in short records, the records may be ignored.

If the E-flag (bit 0 of the odd I/O channel register) is set, a memory parity error is indicated. In this case, the
error recovery routine wi II scan the user's buffer and/or 10CT via LDA instructions. If there is a real memory error,
the Machine Fault interrupt will be triggered and the task (or job) will be aborted. If the MFI is not triggered, a
further analysis will be made to determine if standard recovery techniques may be employed.

M:CTRL Overlay

Status at I/O interrupt time is analyzed to determine which status to return to the calling program. Table C-1 shows
the various posstble combinations and the status returned.

Table C-1. M:CTRL Iv\agnetic Tape Operations Status Returns

Device Status

EOF BOT UE Status Returned to Program

N N Successful - I/O

N Y Irrecoverab I e - I/O

Y N End-of-File

Y Y Begi nni ng-of-Tape

There is no attempt at error recovery for M:CTRL operations because of the possibi lity of incorrect tape position.

Recommended Practices

Several general practices are recommended for programs that support magnetic tape I/o under RBM.

1. Specify standard error recovery on all M:READ and M:WRITE service calls. This permits complete and
automatic recovery from errors whenever possible. This technique also prohibits the calling program from
writing or reading off the end of the reel.

225

226

2. Maintain a pair of indicators that always contain the current file and record numbers. If "irrecoverable-I/O
status is returned for a tape operation, there is no guarantee that the tape is positioned exactly where the
program assumes it to be. If this status is returned, the recommended procedure is to rewind the tape, posi
tion to the end of the last known bad record on tape, and continue from that point.

3. Although the Xerox magnetic tape drives handle a much wider range of record lengths, it is recommended
that values in the range of 16-4096 bytes be used, with record lengths of 1 K to 2K considered optimal.
This permits a moderately high packing density with a relatively low probability of errors.

APPENDIXID. BCD/EBCDIC CODE CONVERSION

Introduction

A feature of the Xerox card equipment and 7-track magnetic tape is hardware conversion of user's BCD inputs to
EBCDIC codes for Sigma computer internal use. The outputs are also hardware converted from EBCDIC to BCD. A
problem arises with the definition of BCD. The tape drives and card equipment are designed with the commercial
(COBOL) character set as the basis for conversion. Most of the Sigma installations operate using the scientific
(FORTRAN) set. Therefore, the RBM I/O routines provide pre-I/O and post-I/o software conversion for those char
acters that present conflicts in the two BCD sets when selected by appropriate users options. Note that BCD cards
are produced on an 026 keypunch or equivalent, and EBCDIC cards are produced on an 029 keypunch or equivalent.

SYSGEN Options

RBM performs character conversion when I/O is requested on the following device types:

Device Type Name Characteristics

B7 7-track magnetic tape with BCD option.

BR4 400 and 1500 cpm card reader.

BP1 100 cpm card punch.

BP3 300 cpm card punch.

Table D-l contains those character codes that are modified by the RBM I/O editing routines.

Table D-l. Special Character BCD/EBCDIC Conversions

Internal Code (Hex)

BCD Character I/O
t

Program
t

EBCDIC Character

% or { 6C 40 (

r:r or) 4C 50)

or = 7B 7E =

& or + 50 4E +

@or ' 7C 70
,

< 4E 4C <

> 7E 6E >

: 7D 7A :

? 4A 6F ?

tThe I/o value is the hexadecimal value in memory just after input or just before output.
The program value is the actual value used by the user program.

227

228

The characters in Table 0-1 are modified as follows:

1. If any of the BCD codes are encountered when reading from device type 87 or BR4, they are converted to
the corresponding EBCDIC codes by a post-I/o editing routine in RBM (i .e., after the data transfer).

2. If any of the EBCDIC codes are encountered in an output buffer for devices B7, BP1, or BP3 they are con
verted to the corresponding BCD codes by a pre-I/O editing routine in RBM (i.e 0, before the data transfer).
If the output device type is BP3, the output buffer in RBM is converted and the output buffer in the program
is not altered. However, for device types B7 and BP1, the user's buffer is temporarily altered by the pre
I/o edit routine. After output is complete, the characters are reconverted to their original values. If
I/o is performed with wait (for completion) the code conversion is not ordinarily apparent to the user.

Programming Consilerations

There are two conditions that wi II cause the user's buffer to temporarily contain erroneous data.

1. If output is to device type B7 or BPl and the argument list specifies "no wait", the user must not initiate
another output operation from the same buffer untiJ a "check" operation is performed after the first opera
tion is complete. When using UTILITY COpy, the user must not specify more than one device of type B7
or BPl in a list of operational labels for output. Device type B7 or BPl may be included in an operational
label list with UTILITY COpy provided that it is the last label in the list. For example, if operational
label BO is assigned to device type BPl and operational label RD is assigned to a RAD file, the foJ/owing
UTILITY control command must be used:

(*OPLBS RO,BO

However, the following command wi If cause incorrect data to be written to the RAD fi Ie:

(*OPLBS BO,RD

If BO is assigned to device type BPl and MT is assigned to device type B7, it is improper to copy to both
devices at once, and the follow ing control command must not be used:

('*OPLBS BO,MT

The reason for these restrictions is that UTILITY COpy performs I/o without wait to several devices con
currently (if several devices are specified).

2. If output is to device type B7, BP1, or BP3 and the data is to be later input using device type B7 or BR4,
the output buffer must not contain any EBCDIC character codes that do not have corresponding scientific
BCD character codes. For example, if an output buffer contains the EBCDIC character code "&,. (X'50'),
this character will be output to tape as an "&" in octal code. When input, the ,.&11 is converted by the
hardware to anX'50'but the BCD post-I/O editing routine will convert this code toX'4E' (+). Therefore,
the programmer must be extremely careful when outputting any of the following EBCDIC characters to de
vice types B7, BP1, or BP3 (in BCD mode):

Initial EBCDIC Initial EBCDIC Initial BCD
Converted Value After Reading

Character (Memory) Code (Hex) Character Code (Hex) EBCDIC Character

% 6C (or % 4D (
1/ 7B 1/ 7E =
& 50 & or + 4E +
@ 7C @or ' 7D

,

I- 4A i 6F ?

Other Considerations

All use of standard RBM operations to 7-track tape requires the packed binary option. This is also true of the LOAD
procedure initiated by the processor control panel. The BCD option can be used only for user data in the proper
BCD subset.

The unpacked binary feature is only available using M:IOEX.

229

230

APPENDIX E. ERROR SUMMARY ACCOUNTING

Optional assembly code is provided to keep track of the total number of M:READ and M:WRITE operations on each
I/O channel and the number of errors (including retry attempts). These counters provide the operator or Field Eng i
neer with a means of measuring the reliabi Iity of the peripheral device (s) on each channel.

To avoid penalizing installations that do not desire this feature, the code is assembled out of the ~ystem. To include
it, the #ERRSUM EQU NO source cards must be changed to #ERRSUM EQU YES in both the RBM Monitor and the
S24RBM procedure file. Files that must be reassembled with these switches set are

• RBM Monitor.

• Overlay ID #07 (Unsolicited Key-In Sub task, Part 1).

• Overlay ID #35 (Buffered Line Printer Error Recovery).

• Overlay ID #36 (BCD Card and 7-Track Tape Handler).

• Overlay ID #37 (BCD Low Cost Card Punch Handler).

• Overlay ID #38 (BCD High Speed Card Punch Handler).

These changes will result in an increase in residency of 2410 words plus four times the number of I/O channels de
fined at SYSGEN time. One additional overlay will be included in the SP area on the RAD.

To display and reset these operation and error counters, two unsolicited operator key-ins are provided if error sum
mary accounting is assembled in the system; DC (Display Counters) and RC (Reset Counters). The key-ins are invalid
if the assemb Iy switch is off.

The format of the key-ins is as follows:

{
DC} DEY,dev
RC DFN,dfn

[

CHAN'Chan 1
OPLB,{:~~} Hm

where

chan is a one- or two-digit hexadecimal number that represents the channel number. The limits on chan
are 0 ~ chan S 271 0 •

dev is the two-digit hexadecimal address of the device in question.

dfn is a one- or two-digit hexadecimal number that indicates a Device File Number.

fdun is a FORTRAN device unit number. If the second parameter begins with "F:" or a numeral, an fdun is
assumed.

oplb is a two-character operational label. It may not start with a numeral.

F or B if present, indicates that the specified operational label or FORTRAN device unit number is for the
foreground or background respectively. If not specified, the oplabel is assumed to be for the background.

If no parameters are specified, all channel error and access counters will be displayed or reset, as appropriate.

If an error is detected whi Ie processing a DC or RC key-in, the message "! ! KEY ERROR" will be output to the opera
tor1s console and the Key-In Subtask will be reentered. The following errors will cause a ! !KEY ERROR message:

1. Syntax errors in key-in statement.

2. Reference to an I/O channel number not defined at SYSGEN time.

3. Reference to a device address not defined at SYSGEN time.

4. Reference to an invalid Device File Number.

5. Reference to an undefined operational label or FORTRAN device unit number.

6. Reference to an oplb or fdun currently assigned to zero.

All error and access counts wi II be reset to zero if RBM is rebooted.

The format of the message (directed to the operator's console) that is output in response to a DC key-in is as follows:

CHAN cc ERRORS eeee ACCESSES aaaaaaaa

All numbers will be displayed in hexadecimal.

After processing a valid DC or RC command, the Key- In Subtask wi 1\ be called again. At this time, the operator
may elect to key in another DC or RC command or else input an liS II key-in to return to the background.

231

APPENDIX F. LINE PRINTER VFC's (WRITE BINARY)

Print Data Cha i ned to Printer
Pseudo VFC Print with Format Definition Real YFC Order Text (Yes/No) Model

X'60' Print, suppress upspace X'60' PF Yes A, 8, C

X'80' Print, suppress upspace X'60' PF Yes A, 8, C

X'81' Print, then space 1 line X'CO' PF Yes A, 8, C

X'82'-X'8F' Print, then space n lines (2-15) 1) X'60' PF Yes A, 8, C
2) X'CO'+n F No

X'90'-X'9F' Print, then skip to channel n 1) X'60' PF Yes A, 8, C
2) X'FO' +n F No

X'AO' -X'AF' Space n lines, print and inhibit 1) X'CO'+n F No A
upspace 2) X'60' PF Yes

X'EO'+n PF Yes 8, C

X'BO' -X'BF' Skip to channel n, print and 1) X'FO' +n F No A
inhibit upspace 2) X'60' PF Yes

X'DO'+n PF Yes / 8, C

X'CO'-X'CF' Space n lines, print and upspace X'CO' +n PF Yes A, 8, C

X'DO'-X'DF' Skip to channel n, print and 1) X'FO'+n F No A
i nh ib i t upspace 2) X'60' PF Yes

X'DO'+n PF Yes 8, C

X'EO' -X'EF' Space n lines, print and inhibit 1) X'CO'+n F No
upspace 2) X'60' PF Yes A

X'EO' +n PF Yes 8, C

X'FO'-X'FF' Skip to channel n, print and X'FO'+n PF Yes A, 8, C
upspace

legend

PF - Print with format.

F - Format.

A - Printer models 3451, 7440, 7445.

B - Printer models 7441, 7442, 7446, 3461, 3463, 3464, 3465, 3466.

C - Printer model 7450.

n - Number of lines to skip or channel number. N is limited by line printer capabilities (e.g., a skip to
channel> 1 for the 7450 line printer will result in a skip to channell).

Invalid YFC's result in a single space (X'CO') operation.

232

APPENDIX G. LOGICAL DEVICES

General

It is assumed that the reader has a general knowledge of the strcuture of M:READ/M:WRITE, which is flowcharted in
Figure 24 of this manual.

An RBM user makes an Input or Output request to a Logical Device (LD) through calls to M:READ and M:WRITE,
respectively.

Overview

The concept of a Logical Device arises from the need to be able to pass information and data between tasks. Logical
Devices are defined at SYSGEN via a two-character mnemonict (for model number), and an accompanying pseudo
device number (which indicates a channel number, preferably unique). The user performs Reads and Writes on DFNs
(or assigned oplabels) associated with the LDs via calls on M:READ and M:WRITE.

Oplabels to be used by tasks for intertask communication may be specified at SYSGEN via the DFNs assigned to the
same pseudo-device number of an LD. Communication between foreground and background tasks is accomplished by
use of the foreground {F)/background (B) SYSGEN option at definition of the LD. One example of possible use would
be where a tcisk receives data from a hardware device via a standard oplabel or DFN. This data may be manipulated
(if desired) by the task and passed on to another task via a pair of DFNs associated with the same LD. The receiving
task may, if desired, pass the data to another DFN of the same LD, a different LD, or to a real physical device.

There are no restrictions as to direction of flow of information. Any DFN associated with an LD may be used to read
or write to any other DFN associated. with the same LD. At least two DFNs must be associated with one pseudo
device number to define an LD. Only two DFNs associated with an LD can be involved in any given LD
data transfer.

SYSGEN Considerations

It is strongly recommended that the system be SYSGENed with the D.ISMISS option. This is necessary since the I/O
interrupt task is not triggered for LDs until a READ/WRITE pair of operations is satisfied. Dismissal prevents a task
from locking up the system waiting for an I/O operation to complete which cannot be completed until that task re-
linqu ishes control. .

Similarly, it is recommended that the pseudo-device number (channel) used to specify the LD be unique. RBM can
allow only one data transfer per channel at a time. Since an LD I/o operation requi.res both the read and write re
quests to be completed, the LD handler sets the channel busy when if processes the first request (Read or Write). The
channel will not be available until the corresponding request is handled. The problem with having a physical device
on the same channel as the LD is clear: no physical I/O transfers can be processed until the "handshake" LD request
is processed. Since there is no timeout logic for LD. operation, this could present a significant problem.

A discussion of the action taken by SYSGEN will aid in understanding the LD concept.

Real device definition at SYSGEN is implemented by requiring the user to specify the relationship between the
model numbers of his hardware units and the hardware aevice number for the unit as follows:

tThe mnemonic "LD" or any other· two-character mnemonic other than RD or XX can be used. This mnemonic may
indicate the "device type II the Logical device is to represent; e.g., LP for line printer as required by the printer
symbiont.

233

234

Referto the RBMSystem Management Reference Manual, 90 30 36, for parameter definiHon. To each such definition,
RBM assigns sequentially a DFN {Device File Number}.

Logical Device definition at SYSGEN is implemented by requiring the user to specify the distinct logical groupings
representing a Logical Device as follows:

where

model can be 'LD' or any other two-character mnemonic other than RD or xx. This mnemonic may indicate
the 'device type' the Logical Device is to represent; e. g., LP for line printer as required by the printer
symbiont. The mnemonic is placed in File Control Table 7 (FeT?) for that DFN and the mnemonic "LO" is
stored in Device Type Table 1 (DTTl) for all logical Device definitions.

yy is a pseudo-device number. This pseudo-device number will indicate a channel number that is prefer-
ably unused by any real device, X'OO' :s yy :s X'FF'.

For example, the definition of two Logical Devices might appear as follows:

LD/OS,F}
LO/08,F

Bl/09,S}
Fl/09,F
F2/09,F

To each of the above specifying lines, SYSGEN will assign a unique OFN.

All logical Device definitions should be grouped in the SYSGEN deck and placed immediately after the real device.
definitions (this is for the sake of cfarity). The user makes pseudo-device number assignments within the range yy =
hexadecimal 00 to Ff. These device numbers represent channels that are preferably not used by real devices.

For example, a real device assigned a device number from X'91' to X '9F' would be serviced by the same channel
register pair as a device assigned to X '0 1'. Thus, if a real device were assigned to any of the above device num
bers, no physical device transfer could be made while the channel was busy with a Logical Device transfer.

Since there is no timeout value for Logical Devices, this could create significant delay problems. Therefore, it is
suggested that the user avoid conflicts between hardware device numbers associated with hardware model numbers
and pseudo-device numbers associated with the tD model specifications.

The number of LDs that can be defined for a given system configuration is suggested to be the maximum number of
available channels (28) less the number of channels occupied by real devices.

In the previous example, SYSGEN would have made DFN assignments for the LD definitions as follows:

Device Definition DFN

{real devices} model/dn
l DFNI

model/dn DFN
n n

(logical Devices) to/OS,F DFNn+l

lD/08,F DFNn + 2

Bl/09~B DFNn + 3

Fl/09, F DFNn +4

F2/09,F DFNn+S

If desired, the user could specify oplabel association for the LDs as follows:

SYSG EN BCKG. OP. LBL.

SYSGEN FGD. OPe LBL. OP2 = DFNn + 1

OP3 = DFNn +2

OP4 = DFNn +4

OP5 = DFNn +5

where OP l/OP lOP 5 represent one LD and OP lOP 3 represent another LD.

Implementat ion

SYSGEN processes LOs in the same way as other devices. OTT and 10CT entries are established. M:RSVP checks
the DTT for LD and treats such requests as valid but performs no operation for an LO. M:READ/M:WRITE bypass the
call to Q:LOADC for LOs.

M:CTRL requests an LO's receive 'operational not meaningful' status. M:CKREST will ignore active DFNs included
in a Logical Device I/O operation when it is allowing I/O to run down prior to a checkpoint of background.

An Overlay contains a pre-I/O edit routine, a post I/O edit routine, and an error recovery routine for LDs (see Fig
ure G-l). Th is overlay is reentrant and opt iona Ily resident.

Pre-lID Edit Routine

Since one channel per Logical Oevice is assigned at SYSGEN, all read/write operations to a member OFN of the
LD share the same channel status table entry. (No.te that each DFN has its own FCT and IOCT entry.)

One restriction is imposed when background is involved in a Logical Device operation. All LO transfers involving
background will take. place at the background level. Therefore, between background and foreground, the foreground
request will always claim the channel. Then the background request will be honored and the transfer completed.
If background is the first to issue anlD request, the user will receive an artificial busy return on a NO-WAIT re
quest or will be held at the system level waiting for the corresponding foreground request if background issued a
WAIT request.

To describe.the "sharingllof a CST entry, consider that the.first operational request on an associated inactive chan"'!'
nel will cause the DFN of the requestor to be placed in the CST thus specifyihg the requestor as the "owner".of the
CST.

All LOs are specified by the same OTT entry. The pre-I/O edit, post~I/O edit, a.nderror recovery routines speci
fied in the DTT perform those operations necessary to satisfy the LO requests as indicated in M:READ/M:WRITE calls.

Subsequel')t operational requests utilizing the same channel{i .e., requests on member DFNs of the same LO), which
is now "ownedll by the first requestor, are. satisfied according to the following rules:

1. If the "owner"of the CST entry is a write request, a subsequent read satisfies the operation. The CST entry
is "frozen II and the data is moved. Completion is posted for both the read and write. Other read requests
occurring after the first read request will receive a busy indication. All further write requests will receive
a busy indication.

2. If the uowner'l of the CST entry is areqd request, a subsequent write request will satisfy the operation. At
that time, the CST entry is "frozen", the data is moved, and completion is posted for both the read and
write.

Subsequent read and write requests will receive a busy indication.

235

236

SET
BYTE ~T

RESltlE
IN

6:I~1

Cl~--~ME------~

ZERO OH..
TlKEIlJT (CSTBl

o..ft 1M Of«.
(C5T1) SET RI.,
RECEIVER CCST2J

Pl
SET fILE ftCTlVE.

ffCTD
RESET fW

(fCm

-lliNHii:iiYiNi-s:·

BYTE ClUIT
RESULt: TO
8t1 lX".Ot-l

SE"t,i:5'fM "Ib.

SET R=3 If ElF
aSE

SET 1\=1
nit) ERR)
CftTCH ftll

Figure G-l. logical Device Handler

PAGE 1

TRIGGER
lit) INTERRlFT

LEVEL

...............

STtlRf
~lTE COOE

IN
RfftO locr,5

fREEZE OiNL
(CST1= DfNl

SET
fILE ftCTI WE •••

RESET Eff

EXI T lID LEVEL

SET
6C RfSIDUE:ec

(fCTS)
SET UNJS. 00

(fCT4)

SET OC RfSIOOE
ffCTS)

RNO
ICl IN fCU IF

~CESSfIR'

fI NfL SET UP
fOR XfER
IY' REClJW

SET
CHfttIoEl.. TIMEOUT

VALUE =1
fCSTB)

TRlGOER
1/0' INTERRtf1T

LEVEL

LOOP fM
I/O INTERRIFT
TO' GO OCTIVE

SET ElF
(fCf2)

fOR IfNlSHft(E
REQUEST

PRf-5fT
TO'RETW

DIRECT f(tUSER
USUGV:PQf

X=-l, R=O

Figure G-l. Logical Device Handler (cont.)

PAGE 2

237

238

3. Because there is no real device to operate an I/O interrupt, a channel timeout for lDs must be simulated
when the pre-I/O edit routine determines that an I/O operation is satisfied. The mechanization of this is
documented in the code.

Error Recovery Routine

This routine merely checks the indicators set in the FCT by the pre-I/O edit routine and posts the appropriate com
pletion status.

P,ast-I/O Edit Routine

The post-I/O edit routine currently stores the byte count residue and returns to the user.

Use of M:READI M:WRITE

M:REAO and M:WRITE are used exactly as for an operation on a real device with the following exceptions:

1. Channel timeout does not appry and will be ignored if specified.

2. Read backward is not meaningful (order X'OC').

3. Read binary and read automatic are not differentiated. Only one record, as specified by buffer address
and byte count, is transferred per request (orders X '02' and X '06 ').

4. Check write is not meaningful (order X'071
}.

5. Write binary and write EBCDIC are not differentiated (orders X'Ol' and X '051
).

Coding of M:READ/M:WRITE calls should check for a status return indicating the AIO Receiver, if specified, will
not be entered. If requested, only the AIO Receiver of the channel "owner" will be entered. All other requests to
the channel (as long as the channel is "owned ") will return with the X-register set = -1 indicating the AIO Receiver
will not be entered.

All status returns and completion codes retain the same meaning, where applicable, as for real devices.

All no-wait operations should be followed by a CHECK operation as standard. Wait/no-wait I/O and the dismiss
function are handled as for real device I/O.

Recommended Practices

1. SYSGEN with the DISMISS option.

2. SYSGEN the lOs with unique pseudo-device numbers; i.e., allow no real devices to co-exist on the same
channel with a logical Device.

3. Check status on return from M:READ/M:WRITE to determine whether an AIO Receiver, if specified, will
be entered.

4. A CHECK operation should be performed for all no-wait M:REAO/M:WRITE calls.

5. The overlay containing the pre-I/O edit, post-I/O edit, and error routines for lDs should be made resident
to facilitate rapid response to M:READ/M:WRITE calls. This overlay is reentrant.

6. Channel timeout is not presently impremented for LDs. If timeout is requ ired for some application, use of
a clock routine combined with checking status could be used.

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

.Reader Comment Form
We would appreciate your comments and suggestions for improving this publication.

XEROX

Publication No. I Rev. Letter I Title I Current Date

How did you use this publication? Is the material presented effectively?

o Learning o Installing 0 Sales o Fully Covered DWell o Well Organized o Clear III ustrated o Reference o Maintaining 0 Operating

What is your overall rating of this publication? What is your occupation?

o Very Good o Fair o Very Poor

o Good o Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
appl icable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12172)
Thank You For Your Interest. (fold & fasten as shOVlIn on back, no postage needed if mailed in U.S.A.)

Staple

Fold

Attn: Programming Publications

Fold

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

Staple

First Class
Permit No. 229

EI Segundo,
California

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

r

XEROX J

XEROX!! Is 8 trademark of XEROX CORPORATION .

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	replyA
	replyB
	xBack

