
INTERACTIVE SNOBOL4 SYSTEM FOR THE SDS 940

System Implemented By

Eric R. Anderson and Roger Sturgeon

University of California, Berkeley

Document No. R-34

Issued September 6, 1968

Contract No. SD-1BB

Office of Secretary of Defense

Advanced Research Projects Agency

Washington, D. C. 20325

()

..

c
Introduction.

SNOOOL4 Program •

Strings.

Names and Variables.

String Assignment

Concatenation

Simple Pattern Matching

Labels.

The Go-To Field

TABLE OF CONTENTS

Simple Pattern Matching Continued

Fields of a Statement

Teletype Input and Output

Binary and Unary Operators.

Arithmetic.

Indirect Referencing.

Grouping.

Functions

User Functions.

Distinction Between Names

Order of Evaluation •

Patterns.

Alternation (!lOR").

Concatenation

Arbitrary Strings

Balanced Strings.

Fixed Length Strings.

Fixed Positions In Strings.

Tabulation.

Remainder.

Alternative

Runs of Characters.

Repetitions

Signaling Failure

1

2

3
4

5
6

7

9
10

11

12

13
14
15
16
17
18
19
22

23
24
24

25

25
25
26
26
26
26

27

27
28

28

The Order of Pattern Matching. •

Deferred Pattern Definition. .

Value Assignment. . • • • . •

Immediate Value Assignment • .

. .

· "
. . . .

· . . .
·

In:f'ini te Loops. • . • • . • • . . . •

Additional Built-in Functions .•••

Additional Input-Output Facilities •

The Editor, Compiler, and Runt~e .•
Special Operations.

Keywords ••....
· . . .

Pseudo-Teletype Functions • ••••••..•• •

LOGIN () or LOGIN(NAME,PASSWORD) .

LOGOUT () ••

WAIT (). •

SEND(S). • .

.

. . . .

. . .
ATSEND(S) .

RECV(N). • •

RECVLINE().

ECHO(N). • .
.

Sample Pseudo-Teletype Programs. . • •

Appendix A

Appendix B

References

29
31
32

33
34

35
36

38
40
41
43

43

44
44
44
44
45

45
46
47
48

52
53

Ii •

.. ~

/

---r----------------------------------/

i
j/

C···
/

Introduction

The SDS 94¢ SNOBOL4 system will accept programs written

in a language which is basically compatible with a subset of

Bell Labs I November 22, 1967 version of SNOBOL4. SNOBOL4 is

not a superset of SNOBOL3 but is in most ways very similar

to SNOBOL3. The major exception is in pattern matching and

the pattern datatype. The SNOBOL4 system permits programs to

be created, run and debugged interactively.

The principal data object in the SNOBOL language is a

string of characters. The language permits building up longer

strings from shorter strings through concatenations. In

addition, through pattern matching, strings can have their

contents tested and have the matched substrings assigned to

string variables.

Other features of the,language are arithmetic on integer

strings, built-in functions for general use, and programmer

defined functions which may have local variables and can be

recursive to arbitrary depth. Input-output from files is

provided as well as from the teletype.

-2-

SNOBOL4 Program

A SNOBOL4 program is a set of statements, each involving

a rule. A set of rules provides the means for manipulating

strings and other data objects. Each statement of a program

is written only with printable characters, but the contents

of the data strings can be any 8-bit characters. The & character

is reserved as an escape character for entering non-printable

characters literally into the source program. To enter an &

in a source program use && (see section on special operations).

ltJlhA-fn",\~ d~:""" "'ovvc,,: <'»(e ;cjM'/e& b., +te ~fd-0'(,)
Characters in the language

blank ! "If $ % & I () * + , .. • / ¢ 1 2 3 4 5 6 7 8 9 ; < = > ?

.ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]t~

W·

1

.1
/

C···)
./

c)

c)

-3-

Strings

A string is a sequence of 8 bit characters ordered from

left to right (see special operations for entering non-printable

characters). A string may be represented literally in the language

by surrounding its contents by a pair of Single quotes or

double quotes. When one kind of quote is used, only the other

kind may appear within the literal string. A fundamental

property of a string is its length. In particular, the string

of length 0 exists and is called the null string. It can appear

, literally as " or "".

The string which contains the digits in order from ¢ to 9
can be literally written as

'¢123456789' or "¢123456789"

These are legal ",11 These are illegal " ,
, II ,

" , /FILENAME' "

This is a string of length ¢
1

2

3

, ,

'X'

'PQ'

'*1: '

These strings have different contents:

One contains AB, the other contains EA.

"""
'CAN'T'

the null string

the string containing X

the string containing PQ,

the string containing *1,:

-4-

Names and Variables

Names in the SNOBOJA. language may be of any length (up to

4095 characters). The first character must be a letter or O.
Each of the remaining characters must be a ., letter, or digit.

The @ is intended for keyword names (see section on keywords).

Variables in the language are those things which are given a

name and have strings, patterns, or some other data object as

their contents.

These are legal names

X

STRING

@ANCHOR

A.WNG.NAME

These are illegal names

10
lABC

AT~

• NAME

~

----------~---,--------------~-------------------

i'

~ I
I

i.

jJ

, c

o

C)

o

-5-

String Assignment

In a string processing language it is necessary to store

strings, to build up longer strings, to test strings for their

contents, and to take strings apart. The storing of a string is

specified by an assignment rule of one of the following forms:

STRINGNAME I = I LITERAL STRING

STRINGNAME I = I STRINGNAME

STRINGNAME ,=,

Blanks around the = are not necessary, but all other binary

operators in the SNOBOL4 language require blanks on both sides.

The third example is semantically equivalent to the first with

a null string, II, on the right-hand side. Names which have

not been assigned a value contain the null string. The above

rules say to take the contents of the strings on the right-hand

side and store them in the string variable whose name is given

on the left hand side.

Examples:

STRING = I THING I

ALPHABET = I ABCDEFGHIJ'KI.MNOPQRSTUVWXYZ I

LETTERS = ALPHABET

NULL =

-6-

Concatenation

Building up longer strings can be specified by concatenation

(or juxtaposition). Any number of strings may be concatenated

to produce one long string. The operation is denoted by a space

between each of the parts to be concatenated (sometimes parentheses

are required to denote the range of the concatenation). Thus,

to store the results of a concatenation into a string variable,

simply use an assignment rule with the concatenation appearing

on the right-hand side.

Assume the following are executed in order:

A = 'ALPHA'

B = 'BETA'

D=ABC

A = B

B =

A would contain the characters ALPHA

B would contain the characters BETA

D would contain the characters ALPHABETA

since C is assumed to be the null string.

A would contain the characters BETA

B would contain the null string.

o '

()

(J

~ (,

c)

-7-

Simple Pattern Matching

It is often desirable to know if one string is contained

somewhere within another string. A test of this type is denoted

by a rule of the form: STRING' , STRING. That is, the string

to be tested (the subject string), followed by a blank (or

blanks), followed by the string to be searched for in the subject

string (the object string). The possible confusion between

pattern matching and concatenation is avoided by the fact that

the subject string must be the first string in the statement

, and be immediately followed by another string, the object string,

with a separating blank (or blanks). If the subject string is

to be a concatenation of other strings, then the concatenation

must be surrounded by parentheses. If the object string is to

be a concatenation, it does not have to have surrounding

parentheses. If the object string is found anywhere in the

subject string, i.e., it is a substring of the subject string,

then the pattern match succeeds, otherwise, the pattern match

fails.

Each of the following statements indicate pattern matching

is to be done.

NAMEl NAME2

NAMEl NAME2 NAME3 NAME4
NAME 'STRING'

, STRING' NAME

(NAMEl 'STRING1') "STRING2" NAME2

Assume X = 'AB' Y = 'ABC' Z = 'ABCD'

The following pattern matches succeed.

X 'A'

X 'B'

X 'AB'

X X

Y X

Z X

Z Y

(X Y)

'CD'

"BAB"
'BABABCABCDC ' XYZ

-8-

The following pattern matches fail
o

X 'X'

X Y

X Z

'A' Y

(X Y) 'AB' z

(J

o

-9-

Labels

Any statement in a SNOBOrA program may be labeled. A

statement is labeled if there is a character in the first

character position (except '*'). The label is all the characters

up to the first blank. If a statement is to be unlabeled, the

first character position must be blank. The purpose of the

label is to give a name to the statement so that it may be

referred to easily. END, RETURN, FRETURN may not be used as

labels since they are reserved for special purposes.

The following statements are labeled FIRST, LOOP and NAMEl.

FIRST ALPHANUMERIC = @ALPHABET @DIGITS

LOOP X=INPUT
NAMEl NAME2 NAME3

The following statements are not labeled.

A = 10

NAMEl NAME2 NAME3

-10-

The Go-To Field

The last field of a statement is called the go-to field.

If it is not present then,after the current statement is executed,

the statement below it will be executed. The field starts with

a colon, :, (followed by any number of blankS). Only exit

commands may follow the colon. Below are the three kinds of

exit commands.

'(I label name I)'

'Set label name I)'

'F(' label name ,),

unconditional exit

success exit

failure exit

If none of the exit commands are given after the colon, then

the statement is treated like no colon was present.

A statement fails (immediately) if any part of it fails,

otherwise, it succeeds. If an unconditional exit is given, then

the statement to be executed is given by the label name regardless

of success or failure of the statement. Otherwise, the colon

may be followed by a success exit, failure exit, or both

(either order, blanks permitted between the commands). If a

statement fails and it has a failure exit, then the next statement

is given by that label name; similarly, if it succeeds and
,

there is a success exit. Otherwise, the next statement to be

executed is the following statement. An exit to END will

terminate the execution of statements.

The following are legal go-to fields.

The

(LOOP)

S(IOOP) F(DONE)

F(DONE) S(LOOP)

S(HERE)

F(NEXT)

next statement will be •

'ABC' 'B' :S(Ll) F(L2)

'AB' 'XY' :S(Ll)

'AB' 'AB' :S(Ll)

X = Y : (AGAIN)

"X' 'Y' : (TOP)

.
Ll

the following statement

Ll

AGAIN

TOP

()

()

()

(;

o

-11-

S~le Pattern Matching Continued

One method of statement failure is for a pattern match to

fail. Using this fact, appropriate exit commands can be used

to decide if one string is a substring of,another. If the

subject string is given by name (i.e., it is not a concatenation

or literal) then a successful pattern match can be followed by

a replacement. The rule has the form: STRINGNAME STRING '=' STRING,

where either STRING can be an arbitrary concatenation of strings.

The subject string is searched from left to right for the first

. occurrence of the object string. If it is found, the part of

the subject string matched by the object string is replaced by

the string on the right hand side. If the pattern fails, no

repl~cement is done since the statement fails immediately. For

statements which contain pattern matching but no replacement

field (i.e., no =) the subject string is not affected even if

matching is successful.

These statements result in TOPCARD = 'KING OF SPADES' and an

exit to OUTIT.

TOPCARD = 'ACE OF SPADES'

TOpCARD 'ACE' = 'KING' :S(OUTIT)F(TRYAGAIN)

These statements result in ST3 = 'ABBBXXXBBA'

STl = 'AB'

ST2 = 'BA'

ST3 = 'ABBBABBABBA'

ST3 STl ST2 = 'XXX'

These statements result in TEST = ',PQR, WXY, KIM, ,

LIST = ',PQR, WXY, KLM, X'YZ, '

ELEMENT = 'X'YZ'

TEST = LIST

TEST ',' ELEMENT
, , , = ' , , :S(SUCCESS)F(FAIL)

1-

2.

3.
4.

-12-

Fields of a Statement

There are five fields to every statement.

LABEL REFERENCE PATTERN REPLACEMENT

If the label field is missing, then the statement is unlabeled.

If the reference field is missing, the pattern and replacement

field must be missing. Thus, the statement is at most a 30 t9
• aM.' statement that will succeed.

If the pattern field is missing, then the statement is at most an
assignment statement.

If the replacement field is missing, it is at most a pattern match

without replacement.

If the go-to field is missing, the following statement will

be executed next.

The following statements contain:

1. Pattern match with replacement and an unconditional exit,

2. Simple assignment,

3. Unconditional branch,

4. Pattern match with exit depending on success or failure

of the pattern match.

Label Reference
Field Field

LABEL REFER

NAME

FINI

SUBJECT

Pattern
Field

PAT

OBJECT

Replacement
Field

• REPLACi~E

= 'ABC'

Go-To
Field

: (GOTONEXT)

: (END)

:S(S) F(F)

1\)

\ __________________ --r-__________ I

c)

-13-

Teletype Input and Output

INPUT, OUTPUT, INPUTC, OUTPUTC are special teletype input

output variables. Anytime the variable OUTPUT is assigned a

string value its contents are printed. A carriage return and

1inefeed are supplied at the end of the string and after every

72nd character printed on the teletype. Anytime the variable

INPUT is used, its value will be collected from the teletype up

to a carriage return, which is deleted from the string.

INPUTC and OUTPUTC are used for character-oriented input

and output rather than line input and output. INPUTC collects

exactly one character from the teletype. OUTPUTC outputs its

contents to the teletype when it is assigned a value. No

carriage returns are supplied, that is, it outputs its contents

literally (see special conventions concerning line input).

Execution of the following will print the line "NOW IS" after

the line "NOW" is typed in.

OUTPUT = INPUT 'IS'

After the following program is run the teletype line will be

"APPEND", "BREAK", or "CHANGE", or a character which is not

A, B, or C followed by a

X = INPUTC

X 'A' :S(A)

X 'B' :S(B)

X 'c' :S(C)

OUTPUT = ' ?'

A OUTPUT :- 'PPEND'

B OUTPUT .", 'REAK'
C OUTPUT = I !lANGE'

? ..

: (END)

: (END)

: (END)

: (END)

The following statements will print "PROBLEM NUMBER" on the

teletype and will pick up a response terminat~d by carriage

return on the same line.

OUTPUTC = 'PROBLEM NUMBER'

NO. = INPUT

-14-

Binary and Unary Operators

There are many operators in the SNOBOL4 language, e.g.,

+, -, *, /, **, $, =, ., !. A binary operator requires a space

on both sides of it (except for the binary operator space, as

in concatenation, and the = operator). A unary operator may

~ have a space between it and its operand. Parentheses are

not required for multiple unary operations (see precedence table).

The following are legal statements:

X=A * B
A B = C

X = $$$Y

These are illegal:

X = A* B
A B .C

X=$$$Y

'::J '

(.~

::').'
'-...

\,

C)

Ci
/

-15-

Arithmetic

A string is an integer if it is the null string (value ¢)

or it is a string of digits with or without a leading + or _,

and its absolute value is less than 223_1 • A literal string of

digits may be written with or without surrounding quote marks.

Arithmetic on integers results in integers with leading + Signs

and ¢'s suppressed. If the value of an arithmetic operation is

¢, the result will be the string '¢'. The binary operators

+, -, *, /, ** are used for addition, subtraction, multiplication,

division, and exponentiation, with the usual precedences prevailing.

The unary operators +, - are used for plus and minus. Parentheses

can be used as needed. An arithmetic operation will cause an

error message if the resulting integer is too large, if division

by ¢ occurs, or if ¢ is raised to a power ~ ¢.

These are integers

'123'

123

+1

'~l'

These are legal statements

X = (Y + 2 + 1) ** w
our pur = 5 1 '2'

These statements output the result of dividing X by Y. If

Y is ¢, it will output "INFINITE". The function NE, not equal,

will be explained later.

ANSWER = NE(Y,¢)

INF

x / Y :S(OurIT)

: (END) ourPUT = 'INFINrrE'

ourrr ourPUT = ANSWER : (END)

Indirect Referencin6

A program may construct names by using the unary operator

$ applied to a string. The result is a name which is the same

as the contents of the string. Indirect referencing may appear

anywhere that a name is legal (except in the label field). In

the go-to field the resulting name should be a label. Indirect

referencing can become a remarkably powerful facility since it

provides the ability to change the names that are used in a

statement between executions of that statement. It is important

to note that names obtained by indirect referencing do ~

have to conform to the @, letters, digits, and . rules for

names appearing in the source language.

Ii' NAMEl = 'ALPHA',NAME2 == 'BETN,NAME3 = 'GAMMA', and LABEL I: 'OK'

then the following two statements would accomplish the same thing.

ALPHA BETA = GAMMA : S(OK)

$NAMEl $NAME2 = $NAME3 :S($LABEL)

If Y = 'A', A = 'B I
, B = 'c', C = 'D' then after the follOwing

statement is executed X will contain D.

X = $$$Y

,1 ' I
I

c) -17-

Grouping

Parentheses are used for grouping parts of a statement

together, e.g., in arithmetic operations. The subject string

of a pattern match can be given by a grouping of a number

of strings together, or the name of the subject string can be

given by a $ applied to a grouping. In general, groupings can

appear in any field of a statement except the label field.

This is a legal statement.

$(X Y Z) (A + B) / C = (A * B) ** 2 :S($(Al»

/

-18-

Functions

In most programming languages the idea of a function is

perhaps the most powerful feature. A function will take some

arguments and produce a result which depends on those arguments.

A function appears in the SNOBOL4 language as a function name

followed by a I(~ followed by a list of arguments separated by

I)' commas, followed by a closing • Null arguments are permissible

and miss ing arguments are assumed to be null. SNOBOL4 functions

are recursive and the arguments are transmitted to the function

by value (to be explained later). Throughout the SNOBOL4

language there are a number of pre-defined functions, e.g.,

SIZE(S), LE(I,J), LT(I,J), GE(I,J), GT(I,J), EQ(I,J), NE(I,J).

SIZE returns the length of the string argument. The others

make comparisons between two integer string arguments. For

example, LT(I,J) returns the null string if I < J; otherwise,

it fails. SNOBOL4 functions may either succeed or fail.

If a function succeeds, it will return a value (many times

it is a null string). A function may appear in any field of

a statement (not the label field). It is a fatal error for

a function to fail if it is in the go-to field.

The following are legal statements

X ;: SIZE(Y)

X = GT(Y,X) Y :S($('X' SIZE(Y»)

If X and Y are null strings, then the following function calls are

equivalent.

EQ(X, Y)

EQ(, Y)

EQ(X,)

EQ(X)

EQ(,)

EQ()

C)

o

c

-19-

User Functions

The user is permitted to define his own functions. There

are four parts to the use of a user defined SNOBOL function.

1. Defining the function, listing its formal arguments, its

local variables, and the label of its starting statement.

2. Calling the function with actual parameters.

3. Executing the function.

4. Returning from the function with a value or a failure

return from the function, and in either case restoring

saved values.

A function is defined by executing a DEFINE function with

appropriate arguments. The DEFINE function has two arguments.

TIle first argument is a string which contains the name of the
'(' function, followed by , followed by a list of formal arguments

(if any) separated by ,'~followed by')~ followed by a list

of local variables (if any) separated by','s. The second

argument is a string which contains the label name of the first

statement to be executed in the function. If it is null,

the label name is assumed to be the same as the function name.

The body of a function can be any of the statements of

the program. The termination of a function is by an exit to

RETURN or FRETURN. (RETURN & FRETURN cannot be user-defined

labels~)

The call of a function is done when the part of the state

ment containing the function is evaluated (see order of evaluation).

It appears in the source statement as a function name followed

by an argument list in parentheses. TIle execution of the

function is as follows. The actual arguments have been

evaluated, i.e., all operations and function calhin the

arguments have been completed, yielding actual argument values

(of any datatype) to be assigned to the formal arguments. Then
I

the current contents of the variable whose name is the same as

the function name is saved. Similarly, the values of the formal

arguments and the local variables are saved in the order specified

when the function was defined. Then for formal

-20-

arguments are given the values of the actual arguments. The

assignments are done left to right; each actual argument is

assigned to the formal argument in the corresponding position.

Any missing actual arguments are assumed to have a null value.

The variable whose name is the same as the function name is

given a null value and the local variables are also assigned

null values.

The function is terminated by an exit to either RETURN

or FRETURN. If the exit is to RETURN, then the function's

value is the contents of' the variable whose name is the same

as the function name. If the exit is to FRETURN, then the

statement which calls the function fails. In either case the

saved values of the variable whose name is the same as the

function name, the formal arguments, and the local variables

are restored. It is quite permissible for a function to call

other functions (before returning) including itself. Any exit

to RETURN or FRETURN is a return from the most recent function

call. The number of functions called which have not yet

returned is called the level of recursion. Every call of a

function increases the level by one. Before any function has

been called the level is 11. A function which is called at

level n changes the level to n+l and the return from the function

is when the level changes from n+l to n by a RETURN or FRETURN.

An exit to RETURN or FRETURN at level fi' is an error.

The following is the renowned factorial function.

FACT FACTORIAL = GT(N,~ N * FACTORIAL(N - 1) : S(RETURN)

FACTORIAL = 1 : (RETURN)

A program which takes a number N > jlf from the teletype and outputs

N~ is the following.

START DEFINE ('FACTORIAL(N)', 'FACT')

OUTPUT = FACTORIAL(INPUT) : (END)

FACT FACTORIAL = GT(N~ N * FACTORIAL(N - 1)

FACTORIAL = 1 : (RETURN)

:S(RETURN)

()

_________________________ ~--------------~I

c

c)

-21-

The maximum function of two integer arguments can be defined by
the statement

DEFINE ('MAX(X, y)')

and the function body can be

MAX MAX = GT(X, Y) X :S(RETURN)

MAX = Y : (RETURN)

-22-

Distinction Between Names

The names of a variable, a function, and a label are

distinct even when they are spelled the same. But there is the

definite connection between the value of a function and the

contents of the variable whose name is the same as the function's

name. Also, it is common for the label of the first statement

in the function to be the same as the function name.

o

o

o

-23-

Order of Evaluation

The order of evaluation of a statement is extremely

important in determining the effect of the statement's execution.

The ordering is as given below and is left to right in all

fields, except as modified by the precedence of operators.

1. The reference field is evaluated. If it fails, the

statement fails.

2. If there is a pattern field, it is evaluated. If it fails,

the statement fails.

Pattern matching is attempted. All immediate assignments

(to be explained later) are done regardless of eventual

success or failure of the pattern match. If the match fails,

the statement fails. If the match succeeds, all assignments

(to be explained later) are done regardless of eventual

success or failure of the statement.

3. If there is a replacement field, it is evaluated. If it

fails, the statement fails; otherwise, the replacement or

assignment is made.

If any of the above fails, the statement fails; otherwise,

the statement succeeds.

4. The appropriate go-to field is evaluated. All function

calls within the go-to field must succeed.

-24-

Patterns

So far the only data object discussed has been a string

(although some strings are integers). In this section we will

introduce a new object called a pattern. Since a pattern is a

data object, it may be stored in a variable. That is, assignment

statements with a pattern in the right-hand side store the

pattern in the variable on the left-hand side. So far we have

met just one kind of pattern matching, i.e., a test of whether

or not one string is a substring of another. For the purposes

of this section, a string can sometimes be thought of as a

pattern (although it is a data object of type string, not pattern).

The general idea behind a pattern is that the pattern matches

a number of different strings. It tries each of the possible

matches against the subject string in some specified order. The

first match is taken as the successful pattern match; the

matched substring is replaced if there is a replacement field.

If none of the possible substrings match, then pattern matching

fails. Below are listed the available pattern elements and

rules for combining them.

Alternation ("OR")

A pattern which can match whatever anyone of a number of

alternative patterns will match may be formed by using the

binary operator. The operands are patterns (or strings). The

! operator has lowest precedence of all operators. If Pl, P2,

and P3 are patterns, then the pattern which will match whatever

Pl, or P2, or P3 matches can be written Pl ! P2 ! P3. First,

Pl is tried for a match; if it fails, then P2; if it fails,

1;;hen P3.

If P = 'AA' ! 'AB' ! 'AC',then P can match any of the substrings

, AA', ' AB', or ' AC' •

(J

o

()

C)

C)

-25-

Concatenation

A pattern may be formed by the concatenation operator(space)

which can match the concatenation of strings matched by each of

a number of patterns. If Pl matches some part of the subject

string and P~ matches some other part of the subject string

such that the two parts are adjacent in the subject string, then

Pl P2 matches the concatenation of the two parts.

If P = 'A' (, A'

an A, B, or C.
'B' ! 'C'), then P can match an A followed by

Arbitrary Strings

The variable name ARB contains the primitive pattern which

can match any number of characters. It first matches the null

string (¢ Characters). If that fails, it will try one more
character, etc.

'A' ARB ('B' ! 'C')

can match substrings of the form A followed by any number of

characters up to a B or a C.

ARB ',' can match any substring ending in a ,.

Balanced Strings

The variable name BAL contains the primitive pattern which

can match any non-null string of characters which is balanced

with respect to the number of left and right parentheses. That

is, it matches at least one character, and left and right

parenthesis can be paired up such that every left parenthesis

comes before the corresponding right parenthesis.

ThUS, BALcan match any of the following substrings 'ABC',

'(XlZ)', '()', '«AB)CD)' and not any of these ,) (', 'ABC)',

'«X), .

matching

The following pattern match will succeed with ARB

'»)(, and BAt matching ,« », •
,»))«(», ARB BAL.

There are several primitive functions which will return

patterns as their value.

------~------------------------------~-----------------------------

I

I

-26-

Fixed Length Strings

The function LEN(N) requires an integer argument and

returns as its value a pattern Which can match any string of

exactly N characters.

'ABCDEFGH' LEN(3) 'G'

Here LEN(3) matches 'DEF' and 'G' matches 'G'.

Fixed Positions In Strings

The function roSeN) requires an integer argument and returns

as its value a pattern Which will match the null string immediately

after the Nth character of the subject string. That is, it

checks for the proper position in the subject string, in particular,

POs(¢) will only match at the start of the subject string.

Similarly, RPOS(N) will match the null string N characters

from the end of the subject string. In particular, RPOS(~)
O~\~

willA match at the end of the subject string.

SUBJECT POS (¢) BAL RPOS (¢)

This will succeed if the subject string is balanced with respect

to parentheses since BAL is forced to match the whole string.

Tabulation

The function TAB(N) requires an integer argument and returns

as its value a pattern Which will match all characters up to and

including the Nth character of the object string. Similarly,

RTAB(N) will match up to the last N characters. In particular,

RTAB(¢) will match to the end of the subject string.

Remainder

The variable name REM contains the primitive pattern Which

will match the remainder of the subject string. It is equivalent

to RTAB(¢).

c/

c)

c

-'Z(-

The following pattern match will succeed with TAB(4) matching
'CD' and RTAB(2) matching 'EF'

'ABCDEFGH' 'BI TAB(4) RTAB(2)

In the following REM matches 'BABCBA'

'ABCBABCBA' 'C' REM

Alternative Characters

The function ANY(S) requires a string argument and returns

as its value a pattern which will match any character which

is in the string S. Conversely, NOTANY(S) will match any

character which is not in S.

Runs of Characters

The function SPAN(S) requires a string argument and returns

as its value a pattern which will match a string composed of

characters which are in the string S. It ~ ~ match the

null string, i.e., it must match at least one character. It

will ~ match a string of characters if the run of characters

from S can be lengthened, i.e., it matches up to the first

character not in S or else the end of the subject string.

Conversely, BREAK(S) will match characters which are not in S

up to the first Character which is in S. It can match the null

string and will not match if a break character cannot be found.
-- L.__ ••.. .t ,

I,~ l· $

Let X = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ¢l23456789, then the pattern

P = (POS(¢) ! NOTANY(X» NAME (NOTANY(X) ! RPOS(¢» will match

successfully if there is an occurrence of the string NAME in the

subject string which is not preceded or followed by an alphanumeric

character.

, l23ABCD456' SPAN(' ABC DEFGHIJKI.MNOPQRSTUVWXYZ ,)

Here the SPAN matches 'ABCD' .

-28-

Repetitions

The function ARBNO(P) has a pattern argument and returns

as its value a pattern which matches any string that would be

matched by an arbitrary number of consecutive occurrences of

the pattern P. It first matches the null string. It is equi

valent to the pattern X where X = " ~ P *X~he * operator

will be defined later). That is, if it ever matches n P's,

then it will try n+l pIS next. If the n+lst P fails to match,

it will try more cases of n PIS, if any.

'ABCDEFGHIJKL' POS(.0) ARBNO(LEN(3» RPOs(.0')

will match the complete subject string since it is of length

12 = 3*4.

Signaling Failure

The variable name FAIL contains the primitive pattern which

will always fail to match. The variable name FENCE contains

the primitive pattern which will match the null string, but

if tried for alternatives (rematch), it will cause pattern

matching to completely fail. The variable name ABORT contains

the primitive pattern which will cause pattern matching to

completely fail.

No matter what pattern P is, the following will always fail:

SUBJECT P ABORT

This succeeds

'AB' 'A' FENCE 'B'

This fails

'ACAB' 'A' FENCE 'B'

The FAIL alternative in the following is superfluous

'ABC' 'A' (FAIL ~ 'B' ~ 'C')

J

C/I

c'

-29-

The Order of Pattern Matching

A pattern is made up of subpatterns which are combined by

concatenation and alternations. The primitive patterns are

the contents or else the returned values of: strings, ARB, BAL,

LEN(N) , POS(N), RPOS(N), TAB(N), RTAB(N), REM, ANY(S), NOTANY(S),

SPAN(S), BREAK(S), ARBNO(P), FAIL, FENCE, ABORT. There are

four states of the pattern matching process that are of interest:

match, success, fail, rematch. Success and failure here have

little to do with success and failure of the statement. These

are local states of the pattern matching process. The previous

sections state what each of the primitive patterns will first

match. If for some reason a match of an element does not work

out later on, it is tried for a rematch. Most of the primitive

elements fail to remat"ch. ARB, BAL, ARBNO(P) can be tried to

rematch. (FENCE aborts all matching on rematch.) ARB and

ARBNO(P) first match the null string. BAL first matches a

substring of one character, or else more, if the first character

was a'(f which needs to be balanced. On rematch whatever ARB

has matched it extends that by one character. If no characters

remain in the subject string, then ARB fails to rematch. What

BAL has matched, on rematch it will try to extend that by

another balanced substring of one or more characters. Failing

that, rematch fails. ARBNO(P) on rematch tries to extend

whatever it has matched by whatever another P will match.

Failing that, it will rematch the previous PIS.

A match of a concatenation is attempted by trying to match

its first operand. If that succeeds, it will try its next

operand. If all operands eventually succeed, then the concatena

tion succeeds. If any operand fails to match, then the previous

operand is tried for a rematch. If the first operand fails,

then the concatenation fails to match. If a concatenation m~st

be rematched, then the last operand is rematched, etc.

A match of an alternative is attempted by trying to match

the first operand. If that succeeds, the alternation succeeds.

If it fails, then the next operand is tried. If all operands

-30.

fail to match, then the alternation fails to match. If an

alternation must be rematched, the operand that was matched

last is rematched. If this fails, then the next operand is

tried for a match, etc.

The matching process begins with the first character of

the subject string. Each primitive pattern element that

matches extends the substring that has been match<J ... If pattern

matching fails using the first character of the SUbject string,

a pattern match is attempted starting with the next character

in the subject string, and so on, until there are no more

characters in the subject string at Which to try to start a

match. If pattern matching succeeds, it will have matched some

substring of the subject string Which can be replaced if the

statement contains a replacement field. If pattern matching

fails, then all possible substring matches of the subject

string have failed to match. Complete failure of the pattern

matching process causes the statement to fail. It is possible

to set a mode Where only matches which include the first

character of the subject string (or no characters at all) are

attempted. This mode can be set by assigning a negative integer

to the keyword @ANCHOR (see keywords).

C)

-31-

Deferred Pattern Definition

~ ~M9..a-
Patterns can be stored into ft~es. When the ~ is used, it

is just like using the pattern that was stored in the ~ In

particular, when a pattern is defined, it may be defined in terms

of other patterns. When a pattern is constructed (defined),

the current values of its components are used. Consider the

following statements:

P = RPOS(fb)
Q = POS(fb) ARB P

P = RPOS(l)

SUBJECT Q

What is the pattern Q that is used? When Q was defined, it

became the pattern POs(fb) ARB RPOS(fb) and it has not been

redefined.

At times it is desirable to define a pattern in terms of

another pattern without the value of the other pattern being

defined yet. The unary operator *, when applied to a name (the

name is evaluated at definition time), says to use the pattern

given by the name whenever a match of this pattern is attempted.

Because * operates on a name to yield (eventually) a pattern,

the * operator may only appear where a pattern is allowed.

In particular, it cannot be used where an integer or string

argument is expected, Le., SPAN(*S) and POS (*N) are illegal.

Altering the previous example a bit, now what is the

pattern Q that is used?

P = RPOS(fb)
Q = POS (fb) ARB *p

P = RPOS(l)

SUBJECT Q

Q is POs(fb) ARB *p which here is equivalent to POs(fb) ARB RPOS(l).

The * operator can be used to yield recursive pattern

definitions.
P = 'B' ! *p 'C' can match any of the following substrings

'B', 'BC', 'BCC', 'BCCC', etc.

--------------.-----------------~~-----------------------
j

-32-

Value Assignment

When a pattern successfully matches, it is possible to

assign the substring matched by any component (subpattern) of

the pattern to a variable. The binary operator . is used to

indicate value assignment in case the pattern successfully

matches. Its left operand is a pattern (or subpattern) and

its right operand is a name.

If pattern matching is ·successful and the subpattern was

part of the successful match, then the substring that the

subpattern matched will be aSSigned to the variable with the

given name. If the subpattern was not part of the successful

match, then no assignment is made. It is possible to do multiple

assignments like ARB • X . Y. If the ARB was part of a successful

match, then X and Y would receive the same value. ASSignments

are made left to right; thus, if two aSSignments are made to

the same name, the last assignment would be the right most

assignment.

Consider the following pattern matches.

'ABCDEFGH' (ARB. X 'F') • Y

The pattern match succeeds resulting in the aSSignments

X = 'ABCDE', Y = 'ABCDEF' •

"123456789' (1 • X ~ '2' . Y) LEN(3) • z

The pattern match succeeds resulting in the aSSignments

X = '1', Z = '234' . Y will retain its previous value.

Suppose STRING = 'AB,CD,EF' •

STRING ',' ARB . X',' = ';' X';'

The pattern match will succeed with X = 'CD' and will result

in STRING = 'AB;CD;EF' .

(J

(~

I ~
I

I Ie

c)

CI

-33-

Immediate Value Assignment

The value assignment described in the previous· section

occurs only on successful completion of pattern mat~hing. It

is also possible to assign a substring matched by ~ component

(subpattern) of a pattern Whenever that component s~ccessfully

matches during the pattern matching process, regard~ess of the

eventual success or failure of pattern matching. T~e binary

operator $ is used in the same way . is used, except that

assignments are immediate. Immediate assignment c~ be combined

with deferred pattern definition, so that Whenever a variable

is assigned a new string value by immediate assignm¢nt the

deferred pattern of the same name becomes a pattern Which

matches the new string value. Due to the fact that the pattern

matcher will signal failure as soon as it knows it ~s no use

trying any more possible matches, immediate assignm¢nts may not

always have their expected final value When the sUbpattern is

not part of a successful pattern match. In order t~ assure

that the pattern matches will try all possible matc~es, the

keyword OFULLSCAN can be set (to -1).

Consider the following pattern matches.

'BABCABCD' BAL $ Z *Z

The pattern match succeeds with Z = 'ABC' • The pattern

BAL $ Z *Z matches only substrings of length 2 or l$rger in which

the first half of the substring is identical to the second half

and is balanced with respect to parentheses.

'ABC' ('A' $ X ~ 'B' $ Y) 'D'

The pattern match fails but X and Y are assigned new values.

X = 'A', Y = tB' since an A and a B occur, in the string.

-34-

Infinite Loops

The pattern matcher is sophisticated enough to prevent all

infinite loops (due to recursive pattern definitions). When an

infinite loop is detected, the matcher will know that it is

useless to try to match some deferred pattern and will signal

that the match of that deferred pattern fails, thus seeking

alternative rematches. Suppose X = 'A' ! *X 'B' then, taken

literally, the following pattern match would go into an infinite
loop. ,vOQ1 .\lVDV'

("
, e ' (*X ! ' e ')

. That is, X is first tried for a match. 'A' fails to match,

therefore, the alternative is tried. The first thing in the

alternative is a match of the current value of X. Thus, a

second attempt to match X is made. 'A' fails to match; therefore,

the alternative is tried. The first thing in the alternative is

a match of the current value of X. Thus, a second attempt to

match X is made. 'A' fails to match; therefore, the alternative

(to this instance of X) is tried. The first thing in the

alternative is to match another X. And so it goes. The fact

is that the pattern matcher catches this loop quite easily,

signaling failure at the second instance of X. Thus, the first

instance of X also fails. The alternative leI is now tried and

the pattern match succeeds. In particular, such patterns as

X = *x will always fail.

I
/-:"> q •

C)

(J

()

c'

Efficiency in Patterns

-34a.
~

The following eight ideas on more efficient patterns are

not exhaustive but cover many of the most corunon or most costly

cases of inefficiency.

1. A pattern that could be anchored should be anchored if

it can possibly fail and thus try many extra unanchored

matches. Use FENCE or PCs(¢) to anchor the pattern.

2. ARBNO is relatively slow. It is much preferable to find

another construction if possible (without resorting to

deferred patterns). For example, in most cases, ARBNO(' .)

is best replaced by SPAN(' .) ! 'I

3. In many patterns a BREAK or SPAN can be used instead of ARB.

In such places it is usually preferable to use such a

construction since BREAK and SPAN are extremely efficient.

4. Such constructions as I.' · " are best replaced by

ANY(' -,.)

5. Immediate value assignment should be avoided it possible;

otherwise, many superfluous assignments ~~y be made during

pattern matching.

6. If pOSSible, do not use FULLS CAN mode.

7. When using deferred patterns, avoid left recursion and

other associated inefficiencies. The pattern matcher can

catch infinite recursion but it can be extremely expensive

in time_

8. It is very important that patterns be constructed once

instead of everytime the pattern is to be used._ Constant

patterns are best defined once and for all in the beginning

of the program outside of program loops. This is done by

assigning the pattern to a variable and using the variable

wherever that pattern was to be used.

----- ----

.. ~

-35-

Additional Built-in Functions

INTEGER(X) - Returns a null string if X is an 1nteg~r string,

otherwise, it fails.

TRIM(S)

DATE()

TIME()

- Takes a string argument and returns th. same string

with trailing blanks removed.

- Takes no argument and returns an 8 chatacter string

which is the current date.

Format MM/DD/YY

.. Takes no argument and returns a 7 char~cter string

which is the current time according to,a 24 .. hour

clock.

Format HHMM:SS

CLOCK(I) .. Takes an integer string argument. If i:;he argument

is p, it returns the elapsed time counter (BRS 88).
If the argument is not p, it returns the real time

C'\ counter (BRS 42). Both counters are in units of

l/6p of a second.

!DENT(S, S) - Compares two string arguments and returns the null

string if they are identical, otherwis~, it fails.

DIFFER(S,S)- Compares two string arguments and returns the null

string if they are not identical, othetwise, it
fa.ils. '. ,

,
I

I
, I

r--------------------------------------~--------------------------~-----------------------------~

I
I

-36-

Additional Input-OutEut Facilities

INPUT, OUTPUT, INPUTC, OUTPUTC have been introduced for

teletype input-output by line or characters. The following

explains how to associate other string names with file input

output.

To communicate with a file it must be opened. A file is

opened by calling either OPENIN or OPENOUT depending on whether

it is to be an input or an output. file. These f'unctions require

a single argument which is a string containing a complete file

name. The returned value is a file number which is used to make

references to that file.

To facilitate obtaining file names, the string name FILENAME

when used like INPUT prints "FILE NAME" on the teletype and

collects a file name. Thus) the value of FILENAME will be a

file name.

Associations between string names and files is done by the

ASSIGN function, which requires two arguments. The first

argument contains the string name, the second contains the file

number. When a string name is assigned to an input file, all

other assignments are voided. When it is assigned to an output

file, other output aSSignments remain.

Input and output can be by line or character. Initially,

a string name which is assigned to a file is of type line. It

can be changed to type character by calling the function CHAR

which requires one argument, the string name. Similarly, it

can be changed back to type line by calling the function LINE.

New aSSignments to the string name will not change the mode.

Charact,er input is just one character. Line input from a

file reads everything up to a carriage return, linefeed which

is discarded. Line input from the teletype is in the same

format as source statements. The resulting string has every

~c deleted and has all & codes translated. End of file

(DC as first character of teletype line) causes failure of

the statement.

:'

o

C)

c;

C~I

-37-

Character output is literal output of the cont~nts of the

string. Line output supplies needed carriage returns and line

feeds and recognizes the line length of the output tile.

The line length of an output file is initially! set to 72

when the file is opened. It can be changed by calling the

function, LENGTH, which requires two arguments. The first

argument contains the file number, the second conta~ns the new

line length of the file. (If the second argument is Jtf or null,

the new line length will be ~ 2.'2.5_ 1 .
To release all input or output assignments associated with

a string name, call the function RELEASE with the argument

containing the string name.

To close a file call CLOSE with the file number as the

argument. A negative argument will close all files.

Examples:
IN':'I t.. t:

N = OPENIN(FnnWIE)

ASSIGN(' IN' ,N)

CHAR(' IN')

M = OPENOUT (" , /NEWFILE ' ")

ASSIGN('OUT' ,M)

ASSIGN('OUT' ,1)

CHAR('OUT') LINE('OUT')

LENGTH(M,128)

OUTPUT = INPUT :F(EOF)

RELEASE ('OUT')

CLOSE(N)

CLOSE (-1)

~~--------------------------------~----~--------------------------~----------------------
II

-38-

The Editor, Compiler, and Runtime

The SDS 94P SNOBOL4 system is divided into two distinct

parts: The editor-compiler and the runtime. The editor-compiler

is used to write, modify, and compile source statements. The

runtime is responsible for the execution of statements.

The editor types $ when it is ready for commands. The

editor is in most ways like QED. Familiarity with QED is

required to use the capabilities of the editor. The editor

commands which are similar to QED commands are I, =, +-, APPEND,

CHANGE, DELETE, EDIT, FINISHED, INSERT, MODIFY, QUICK, READ FROM,

SUBSTITUTE, TABS, VERBOSE, WRITE ON'. Additional commands are BREAK,
:rUM"!' NE~T .

GO, HELP," KILL, LIST," PROCEED, and space followed by a SNOBOL

statement (which cannot be a comment nor be labeled) to be

immediately executed. Source statements can be read from a file,

or using APPEND may be typed in directly. As each statement is

read or typed, it is compiled. If there is an error, one edits

the statement immediately. All standard QED addressing can be

used; however, buffer operations are not available for addressing

and editing. One other difference between QED and the editor

is that every line typed in is an edit of the previous line typed

or deleted. One consequence is that control D is a terminator

only when no characters are in the new line. The QED commands

will not be explained (see the QED manual); the editing control

characters are summarized in Appendix B.

GO - begins execution of the SNOBOL statements after closing

all open files and clearin5 all variables and resettin5 preset

variables and functions. " __ OK" is printed out as a warning;

respond with ".". The first statement executed is given

by the address of the GO. If no address is given, then

execution begins at the first statement.

BREAK - sets up breakpoints at all statements in the interval

addressed. A break at a statement is made before executing

that statement and returns control to the editor.

()

C)

CI
-39-

'j\)M? - j-uAT ~ Go I W M~ ~~{~ ~A. ~~,
KILL - releases all breakpoints in the interval:addressed.

LIST - prints all breakpoints in the interval addressed.

PROCEED - continues execution after a breakpoint.
N~T - ~(U,~t.s N ~leW\~~~ (A('~ ':: 1)

A Single rub out during execution will cause a break at the

start of the next statement., (Remember that to complete the

current statement all teletype input must be compl~ted. You

may also have to wait until the teletype output bu~fer is

empty before seeing where the break was done; this Ibuffer may

have as much as 15 seconds worth of typing in it.)

A second rubout will return to the editor imm~diately

(before finishing the statement). It is not possible to proceed

in this case.

An unlabeled statement may be executed while ~n the editor

by typing it in. Of course, it must start with a space. In

particular, branches (goto's) are legal. This is the way to

begin execution without the side effects of the GO !command.

The following are equivalent ($ printed by the editor)

$GO.

$lGO.

To set a breakpoint at every statement type

~.

Or to kill all breakpoints type

$8KILL.
N~'#.r '11\~er

PROCEED and Me _.ltt use,.l ad~esses.

$PROCEED.
11> \t~-+ .a 6~u~,fOII\~V~'1re~
.pLIST.

This is an example of a SNOBOL statement line.

$ OUTPUT = INPUT

-40-

Special Operations

The source statements must be written in printable characters.

To enter non-printable characters, e.g., into a string, type &
followed by J octal digits, e.g.; &155, or else & followed by

a non-octal character, e.g., &A; however, in the latter case,

characters ¢ to 37 will remain unchanged, the others (40-77)

will become the corresponding control characters. Note that

& may only be entered by typing && or &006. To aid the above,
c the ~ editing character produces four characters, &XXX, where

XXX is the octal code of the next character typed.

Continuation of a statement is possible by typing +-c at

the end of the line to be continued. This character is entered

into the source string and is treated like a blank when WC is

used, but is iggored by the compiler. Therefore, be sure to

type any needed blanks in the source statement. In the editor

typing linefeed is equivalent to typing~.
All teletype line input is edited and is subject to the

same rules as a source statement except that +-c is deleted and

& codes are translated into internal form. DC in the first

character position causes failure of the statement (due to end

of transmission).

Statements which begin with an * are treated as comments.

Comments have no affect on the execution of the program.

Execution is done the same as if the comments were not present.

... L:..;,

c/

C':

-41-

Keywords

Keywords provide an interface between the SNO:oo!L4 program

and certain internal symbols in the SNOBOL4 system. It is

expected that additional keywords beyond those listeid below will

be implemented.

Read-only keywords:

@STCOUNT contains the number of statements that have been

entered since execution began.

@STFCOUNT contains the number of statements that have failed.

@LEVEL contains the current level of recursion.

User changeable flags (a flag which is non-negative 'is off,

negative is on):

@ANCHOR if on, sets the mode of pattern matching to anchored,

that is, all patterns must match beginning with the first

character of the subject string.

@FULLSCAN if on sets the mode of pattern matching to try all

possible matches regardless of the impossibiHty of ever

matching (i.e., no heuristics to speed up pattern matching).

Changeable limits:

@MAXLNGTH is the limit on the length of strings that can be

formed. It is preset to 32~~~ which is the largest it

can be set •

• STLIMIT is the limit on the number of statements that can

be executed. It is preset to _1)1)) I 2'2.'3 - 1 (~'f'NN-i.\ 'tfo.W'M)

@INTLIMIT is the limit on the maximum absolute value an

integer can be. It is preset to _(and can have a

maximum Of) 223 -1.

-42-

Literals (these keywords have predefined values and are unchangeable):

8ALPHABET contains 'ABCDEFGHIJKlMNO~STUVWXYZ ,

@DIGITS contains '¢123456789,

The following have the same values that the corresponding

predefined pattern variables initially have.

~B

@BAL

@REM

@FAIL

@FENCE

@ABORT

o

()

()

-43-

Pseudo-Teletype Functions

There are a number of predefined functions whiQh enable

communication with a pseudo-teletype. The list inc~udes

LOGIN (), LOGOUT(), WAIT (), SEND(S), ATSEND(S), ~CV(N), and

RECVLINE(). Additionally, there is the ECHO(N) function which

can be used independently of the pseudo-teletype functions.

The conditional command processing capability produaed by the

combination of the pseudo-teletype functions and th~ SNOBOL

language has been inspired by the CCP subsystem.

LOGIN () or LOGIN(NAME,PASSWORD)

The LOGIN function may be called with either two arguments

or no arguments. The LOGIN function attempts to lo~ in (ENTER)

the user at a pseudo-teletype either under his name or under

another name. If two arguments are given, the first is a user

name and the second is the corresponding password t~ be used in

entering at the pseudo-teletype. If no arguments ate given, the

user is logged in under his own name and password. ilf LOGIN is

successful, it returns a null string as its value ~d places the

pseudo-teletype in BEGINNER mode at the EXECUTIVE l,vel with

the input and output buffers clear. If LOGIN fails t it is due

to one of the following reasons:

1. No pseudo-teletype is free.

2. No room on the time-sharing system.

3. The user name or password is incorrect.

It is an error to try to LOGIN if a previous LOGIN pas not been

logged out. It is also an error to call WAIT(), sEND(S),

ATSEND(S), RECV(N), or RECVLINE() if WGIN has not' been

successfully called.

------------------------------------~--------------------------~--------------------------1

-44-

LOGOUT ()

The LOGOUT function is used to log out the pseudo-teletype.

The user is automatically logged out (if logged in) whenever the

GO or FINISHED command is used in the SNOBOL editor. If the

LOGOUT function succeeds, it will return a null value. It will

fail if the user is not logged 1n at a pseudo-teletype.

WAIT ()

The WAIT function always succeeds and returns the null

string as its value, but before returning it waits until the

pseudo-teletype is waiting for the teletype input with an empty

input buffer. While it is waiting, it throws away all output

from the last SEND or ATSEND function call. Also, before

returning it clears the pseudo-teletype output buffer.

SEND(S)

The SEND function requires one argument which must be a

string. SEND first does a WAIT, then sends the characters of

the argument string to the pseudo-teletype. An error results

if the internal collection buffer (about ~ characters long)

of characters from the pseudo-teletype overflows before all

the characters are sent. The SEND function succeeds with a

null string as its value.

ATSEND(S)

The difference between AT SEND and SEND is that ATSEND does

not do a WAIT; instead it sends rubouts to the pseudo-teletype

to get it back to the EXECUTIVE level. Many times the user

may want to wait until the pseudo-teletype is waiting for input

or to receive all the output from the pseudo-teletype before

preceding with an ATSEND. To do this either do a WAIT() or

o

-45-

enough RECV's or RECVLINE' s to collect all the output. Both

SEND and AT SEND initialize the collection machinery, that is,

previous output from the pseudo-teletype is discard~d.

RECV(N)

RECV(N) takes an integer argument (N) ¢). It collects literally

the next X characters (X not greater than N but othE\rwise as

large as possible) from the pseudo-teletype output ~esulting

from the last SEND or ATSEND. If X is p, RECV .fail~, indicating

that all output from the last SEND or ATSEND has alrleady been

collected. If X is greater than ¢, RECV succeeds i~ returning

the X characters as its value. It should be noted that after

any SEND or ATSEND, at most one call of RECV(N) can successfully

return with less than N characters. Also, the function fails

only if the pseudo-teletype is waiting for input.

RECVLINE()

The RECVLINE function is used for receiving th~ output

from the pseudo-teletype by line. The algorithm is that the

first character is ignored if it is a linefeed, the~ all

characters up to a carriage return are collected and returned

as the value of RECVLINE; the carriage return is discarded.

If the output from the pseudo-teletype does not contain a

carriage return, then all the remaining characters ~e returned,

unless the returned string would be the null string~ in which

case RECVLINE fails. RECV and RECVLINE can be intermixed.

The following will print the same thing as what would

appear on the pseudo-teletype except it outputs an ~xtra

carriage return, linefeed in the case where the last line from

the pseudo-teletype does not terminate with a carri~ge return,
linefeed.

OtrrLOOP OUTPUT 0lIl RECVLINE() : S (OUTLOOP)

" I

('

I

-46-

ECHO(N)

The ECHO function requires an integer string argument.

It succeeds and returns the null string as its value. ECHO

is used for turning on and off the echoing of characters typed

during teletype input in the running of a SNOBOL program. If

the argument is negative, the echoing of characters is turned

off, if non-negative, it is turned on. Turning off the echo may be

of use in collecting passwords. Also, it is of use in preventing

a double echoing effect that would exist in the first sample

program if the echo was not turned off.

()

(J

r

c

Sample Pse~do-Telet~ Programs

* This program implements a direct interaction witlJl the

* pseudo-teletype.

* If a control ~is typed, a rubout is sent to the

* pseudo-teletype.

* If a control t is typed, the pseudo-teletype is logged out.

BEGIN LOGIN ()

ECHO (-1)

LOOPA A = INPUTC

IDENT(A, 'M') LOGOUT () :S(END)

IDENT(A, 'Be+-) SEND('&137') :S(LOOPB)

SEND (A)

LOOPB OUTPUTC = RECV(OMAXLNGTH) :S(LOOPB) F(LOOPA)

* This program does a fixed assembly, load and a d~p on a
t!J ~tJ1"'t=' II,.~ * specified file (second 7_ .. ').

* Output from the pseudo-teletype also goes to a specified

* tile (first iI.7IUE).
OI)T F'I t.,G"

BEGIN DEFINE('XMIT(X)')

N = OPENOUT(4'iE!if)

ASSIGN('OUT' ,N)

LOGIN ()

XMIT("KDF .RS1. '/S1' .RS2. '/s2' .F. ")

XMIT("NARP.I S1. ' /Bl' • ")

XMIT("NARP·/S2. '/B2' • ") 0 urt='1 e-
XMIT("DDT.;T/B1.; T/B2.%li'DUMP ON FILE" 7 • sk ".")

FINI CLOSE(N) LOGOUT() : (END)

XMIT SEND(X)

XMITl OUT = RECVLINE() :F(RETURN)

OUT '1' :F(XMIT1)

OUTPUT = ''tERROR' : (FINI)

/

I

-48-

APPENDIX A
C)

Primitive Functions

ANY(S)
NOTANY(S)
SPAN(S)
BREAK(S)
POS(I)
RPOS(I)
TAB(I)
RTAB(I)
LEN(I)
ARBNO(P)
SIZE(S)
LE(I,J)
LT(I,J)
GE(I, J) 0 GT(I,J)
EQ(I,J)
NE(I,J)
CHAR(S)
LINE(S)
OPENIN(S)
OPENOUT(S)
CLOSE(I)
ASSIGN(S,I)
RELEASE(S)
LENGTH(I;J)
DEFINE(S,S)
INTEGER (X)
TRIM(S)
DATE 0
TJl.1E()

CLOCK(I) ::)
IDENT(S,S)
DIFFER(S,S)
UN5TAc..K, (K)

/" " (I

I
c
0

t,

I

-49-
(Appendix A Continued)

I (';
I '~"--- ~

Variables With Preset Values

ARB

BAL

REM

FAIL

FENCE

ABORT

Special Input-Output Variables

INPUT

OUTPUT

INPUTC

OUTPUTC
;ij I.
11IJ'I=1t..~

OV-rFIL.t:

C'~
Reserved Labels

RETURN

FRETURN

END

c

(Appendix A Continued)

Operator Precedence Table

binary

unary

SNOBoL4 Smtax

. ,$
+,

*,/
**
+,-,*,$

-50-

(lowest)

(space)

(highest)

statement=[label] [, '[semi] [, 'H':' ':' goto]][' ']

semi=anam[[' '] '=' [, '] pexp] ! anam' , [patt [, 'H'=' [, '] pexp]]!

aatm[' '] [patt]

patt=non-null pexp
goto=[, ,] 'F' , (, gexp ,) , [, '][, S'

[, ,]' S' ,(, gexp ,) , [, 'H 'F'
[, ,] , (, gexp I) ,

gexp=[, ,]('$' aatm label)[, I]

pexp=ptrm{ , , , ! ' , , ptrm}

ptrm=pprm{' , pprm} null

pprm=patm{ , , (, . ' , '$') , ,
anam} .

patm='*' anam ! bexp , , (, [, '] pexp .
bexp=atrm{' , ('+' '-') , , atrm}

atrm=aprm{' , ('*' '/') , , aprm}

aprm=aun[' , '*' '*' , , aprm]

aun='+' aatm ! '-' aatm ! aatm

aatm=' $, aatm ! lit ! name ! fncl
• (, [, ,] aexp [, I 1 ,),

, (, gexp ,) ,]
, (, gexp ,) ,]

[, ,] ,) ,

fncl=fnam ,(, [, '] [pexp [, '] {, , ' [, '] pexp [, ']}],')'

aexp=bexp{ , , bexp}

anam=' $, aatm ! name

')

()

J

/'
I

I .,.,
.(" I ,1

[~
" !

('

r,

C'

(Appendix A Continued)

Keywords

SABORT
OALPHABET
OANCHOR

OARB

OBAL
~IGITS

@FAIL

4FENCE
IiFULLSCAN

@INTLIMIT

@LEVEL

@MAXLNGTH

SREM
@STCOUNT

@STFCOUNT

@STLIMIT

Pseudo-Teletype Functions

LOGIN(NAME,PASSWORD)
LOGOUT ()

WAIT ()

SEND(S)

ATSEND(S)

RECV(N)

RECVLINE()

ECHO(N)

-- ,

-51-

,...~. '
~

-52-

APPENDIX B

EDITING CONTROL CHARACTERS

Control Character

A

B

C

D

E

F

G

H

I

J,LINEFEED

K

L

M, CARRIAGE RETURN

N

o
P

Q

R

S

T

U

V

W

X

Y

Z

Result

Delete last character typed!

No action

Copy character from old lin~

Terminate or copy rest of l!ine

Change insert-replace mode

Copy rest of old line, no t~ing

No action

Copy to end of old line

Tab

Continuation

~ ... GIve Code ~y- V\e~+ C'~ ~p(l(L
Delete line

Terminate statement

Character delete, restoratiye

Copy up to next character tlvPed

Skip up to next character t¥ped

Dele.t.e statement, :r:estoratiye

Retype, fast

Skip character

Retype, aligned

Copy up to next tab stop

~ .es",.,. fttke. Ilet+ ~:t l/kYtttt,
Delete word

Skip through next character I

Concatenate and re-edit

Copy through next character

Continuation

.

>I,

I~
\)

fJ

[3]

[4]

-53-

References

D.C. Angluin, and L. P. Deutsch, "Reference Manual, Q.E.D.,
Time-Sharing Editor, It Document No. R-15, Projeet Genie,
Advanced Resea.rch Pro~ects Agency, University of Calit.,
Berkeley, California {March 26, 1968)

E.J. Desautels, and Douglas K. Smith, ItAn Intr9duction
To The String Processi~ Language SNOBOl;" Progtamming
Systems and Languages, (1967) pp. 419-451+

,L. Peter Deutsch, Larry Durham, and Butler W. ~ampson,
ftReference Manual, Time-Sharing System,!! Docum~nt No. R-21,
Project Genie, Advanced Research Projects Ageney, University
of Calif., Berkeley, California (November 13, 1967)

D. J. Farber, R. E. Griswold, and I. P. Polonsky, "The
SNOBOL3 Programming Language," Bell System Technical
Journal (July-August, 1966) pp. 895-943

Allen Forte, "SNOBOL3 Primer,1t Massachusetts I~stitute of
Technology, Cambridge, Massachusetts, and London, England,
(1967)

[6] c. A. Grant, "Reference Manual, CCP, Conditional Connnand
Processor,1l Document No. R-29, Project Genie, Advanced
Research Projects Agency, University of Calif., Berkeley,
California (July 14, 1967)

[7] R. E. Griswold, J. F. Poage, and I. P. Polonsky, "Preliminary
Description of the SNOBOL4 Programming Language," Bell
Telephone Laboratories, Inc., Holmdel, New Jer$ey) S4Dl

[8] R. E. Griswold, J. F. Poage, and I. P. Polonskyt, tlPreliminary
Report On The SNOBOL4 Programming Language, II Bell Telephone
Laboratories, Inc., Holmdel, New Jersey (November 22, 1967)
Sl.j.D4

[9] R. E. Griswold, J. F. Poage, and I. P. Polonsky, ftPreliminary
Report On The SNOBOL4 Programming Language," Be:ll Televhone
Labortories, Inc., Holmdel, New Jersey (March 20, 1968) S4D4b

[10] Butler W. Lampson, 11930 SNOBOL System, II Document No. 30.50.70,
Project Genie, Advanced Research Projects Agen~, University
of Calif., Berkeley, California (April 18, 1966)

." -

r">-"'''J·
~
\ .,

•

()

I
, I

I
I

