
i \.----_ ..

C:'

..

•

CAL REFERENCE MANUAL

Butler W. Lampson

University of California, Berkeley

Document No. R ~ 23

Issued August 10, 1967

Contract SD~l85

Office of Secretary of Defense

Advanced Research Projects Agency

Washington 25, D. C .

;,' ,

i
/

r,
,,,,- .. _ ... ~_ ".c-. ---'--'---"--__ ---'~.:...'-:....-__ ~~~ __ ~ __ ___'~~~~ ________________ .:..-.,;,,;' • .:..::.:"~::... • ..:;;.=;:;..;;.; __ ::.....;._, . .:... '.::.:i"~:::::,:==== __ :;;;"=_::::""'::":":"'"

c)

•

I
I. ,. L

This revision of the CAL Manual obsoletes documents W-13

and W-?l. It describes CAL a.s it exists as of its date, wIth the

exception of the DRUM feature, which is not implemented.

TABLE OF CONTENTS

1.0 Introduction

2.0 Input to CAL

2.1 Editing Input

3·0 Numbers, Variables and Expressions

4.0 Steps.

4.1 Direct-Only Steps.

4.2 Indirect-Only Steps.

5.0 Modifiers.

6.0 Forms. •
6.1 Type in Form

6.2 Demand in Form

7·0 Functions.

C) 8.0 Input-Output .
9·0 Display Output "

10.0 Running the Program.

CAL Summary

C)
./

1-1

2-1

2-2

3-1

4-1

4-2

4-3

. 5-1

. 6-1

6-1

6-2
7-1

8-1
9-1

.10-1

A

; ,

1
f

I
i -,

I

1-1

1.0 Introduction

This manual describes the CAL language and the operating

features of the CAL system. It is not a primer hut a reference

manual. Anyone who is not an experienced programmer will have

a great deal of trouble learning CAL from it.

CAL is a conversational algebraic language based on the

Joss system developed by Shaw at the Ra.nd Corporation. It is

designed to faciUtate the computer solution of small a.nd

medium-s:i.7.ed numerical problems. SInce it is very much slower

in execution than, say, the code produced by a FortrDn compiler,

it is not suitable for problems requiring a large amount of

computation. It does provide nearly fool-proof operation,

complete error-checking and a very powerful and convenient

language,.

To enter CAL, give its name to the executive:

@ CAL.

If nothing is typed within two seconds CAL will assume that you

want ,a program of about 50 steps and no page headings. ,It will

type out

>

which is an indication that it is expecting input.

If the assumption sta.ted a,bove is wrong, type a carriage

return within two seconds after entering CAL. It will respond

with'

NUMBER OF STEPS NEEDED =

Give an estimate, followed by a carriage return.

about 320. It will then request a heading:

HF..ADmG, PLEASE

The l:i,mi t is

\'
\. '

Y 1\\

c)

C)

1-2

If you do not want a heading, type a carriage return. Otherwise,

type the desired heading, which ends with a carriage return.

This heading together with a page number will be supplied at the

top of each page during the following session. A page contains

55 lines of output, together with enough separation to use 11

inches of paper.

T,yping enough rubouts (usually 2 or 3) will get you from

CAL back into the executive. To re-enter CAL, do

@j CONTINUE CAL,

All files will be closed.

I :

CO)

/'

C)

2-1

2.0 Input to CAL

CAL accepts two· kinds of input: steps and numbers. Whenever

the user's program is not actually computing or typinr.; out, CAL

is wait ing for one of these ki_nds of input. A DEMAND step in the

program will cause CAL to type out the variable demanded and wait

for a number to assign to it. At all other times input to CAL

Should be steps.

Whenever CAL is accepting a step, it will recognize the characters

AC (control A, obtained by depressing the A key and the CONTROL key

simultaneously), W
C

and QC as editing characters. AC causes CAL to

type t and forget the immediately preceding character. It may be

repeated to delete several characters. WC prints \ and eauses the

last word typed to be deleted. More precisely, all immediately

preceding blanks are deleted and then all characters up to but not

including the next preceding blank. QC prints ~and causes the entire

line typed to be deleted. That is, it deletes all characters up to

the nearest preceding LINE FEED, or up to the beginning of the line.

An immediately preceding line feed is also deleted. CAL accepts

a number of other control characters. Their function is described

at the end of this section.

I

Li.ne feed is the continuation character. It causes CAL to.

generate a carriage. return and is otherwise completely i.gnored,
• c· except by the Q operation.

A CAL program is composed of steps. Each step in the program

begins with a step number, whi6h has the form <integer>. <integer>.

The decimal integer formed by the digits preceding the dot is called

the part number of the step. All steps with a given number belong

to that part. A linear ordering of step numbers is defined by

taking them as ordinary decimal numbers. Thus

1 < 1.1 = 1.10 < -1.101 < 1.2 = 2.0 < 10.0

The ordering of steps in the program is determined by their

step numbers and not by the order in which they are input. If

c)

•

2-2
.several steps with the same number are input, the last one will

be kept and the earlier ones thrown away. There is a limit

of six digits on each of the integers in a step number.

If a step is input without a step number, it will not

become part of the program, . but instead will be executed

immediately. Such a step is called direct; steps with numbers

are indirect.

Each step ends with a carriage return. Blanks are ignored,

except that they may serve to delimit words and variables.

Line feed continues the step onto the next line. A step may

not have more than 300 characters. A; followed by any string

of characters as a comment may be appended to any step.

Rubout may be used at any time during input of steps to

abort the current step. It is essentially equivalent to yC below.

2.1 Editin~ Input

This section may be skipped on an initial reading. It

describes some very useful features of CAL which are unfortunately

rather difficult to get the hang of.

With one exception, every input of a step into CAL may be .
thought of as an editing process performed on the line ~

typed lE' Ordinary characters typed during this editing simply

replace the corresponding characters in the old step, and carriage

return causes the remainder of the old step to be thrown away_

The user may therefore ignore the existence of the editing

operation if he wishes. There are, however, a number of control

characters which direct the operation of the edit. It is helpful

to know about them when the step about to be entered is similar

to the one last typed.

c

~""

l)
~./

2-3

copies the next character of the old line to the new

one, and types-out that character. CC is especially

useful in conjunction with the repeat button.

SC skips the next character of the old line and types out i.
ZCC copies the old line up to the next occurrence of the

character C. 'The character Q is not typed until this

occurrence is reached, so that the operation is exactly

equi valent to a number of CC
, s. If £. does not a,ppear

in the line, CAL rings the bell and takes no other action.
c is the same as 7. except that it deletes the characters

passed over and types %. C is never typed.

RC (retype). CAL types line feed, then the rest of the

original line, then on the next line the edited line

so far. Editing can be resumed. This character is

intended to permit recovery in cases where the user

has become confused about the state of the edit.

TC is the same as RC except that the new line is correctly

aligned with the remainder of the old one. It takes

longer.

yC copies the remainder of the old line to the new one

without typing it. The new line then becomes the old

line for a continuation of the edit.

DC causes the remainder of the original line to be typed

.out and copied to the edited line, which then replaces

the original lin:.
c is the same as D except that the rest of the line is

not typed. Among other things, it is useful for

executing the same direct statement more than once.

EC types < and switches CAL so that text typed in is

inserted in the new line without replacing any characters

of the old line. Another use of EC causes> to be

typed and restores replace mode.

The EDIT operation causes a specified step to be typed.

This step then becomes the old line for the edit operation. 1\
j I I I I

i I

/ JI
. \

______ ~----------------~--------~--------------~----------------------~I

c)

c)

2-4

The step is not deleted or altered. If the step resulting

from the edit has the same number as the origina.l step, of

course, the latter will be replaced. The following variations

are possible:

> EDIT STEP n. n STEP may be omitted

> EDIT FORM expression

> EDIT varia.ble (functions only)

The MODIFY operation is identical to EDIT except tha.t the

step being edited is not typed out. It may be a,bbreviated MOD.

li
;1

II
, I

.. _ ; I
~---'="-----'----~"';";;"'''';'';;'''''';'';;'''''';'';;'''--''--'''''-'-'-''--'-''--'---''--'-''--'---''''';'';;'''''';'';;'''=~=''';'';;'''=--'':'''''';;==='=' "= _;;;;;;;---=' ;;;;;;; .. ,'='_. ::::="--'"

o

c

~-----.-. -_ ... ---... -

3-1

3.0 Numbers, Variables and Expressions

All numbers in CAL may be thought of as being expressed

in scientific notation. There are eight significant digits,

and the exponent may be in the range -'77 to +'(7. However,

integers or decimals may be input and numbers will be output

as integers if they have no fractional part and are smaller

than 223.

There are 11*26=286 distinct named variables in CAL. A

variable is named by a single letter or by a letter followed

by a digit. A variable may be subscripted. Examples of

variables and subscripts:

A4 A(l) S(23,65,-147.3) M3(A(1,3), B(CO(D8))*13)

A subscript may be any arbitrary expression. It is truncated

to the nearest smaller integer before use, and this integer

is taken modulo 223, A variable may have any number of sub­

scripts, and is not required to have the same number ea.ch

time it is referenced. A refers to a different number than

A(O) or A(l).

Expressions are formed by combining operands with operators.

The available operators are:

+- (replacement)

AND OR . (same as * and + except for precedence)

NOT (changes 0 to 1, any non-zero

= #« = »= (relations)

4-
r~) ,.

* I MOD

t (exponentiation)

The precedence is as indicated. Thus

A AND B=C+D*EtF s A AND (B=(C+(D*(EtF»»

The replacement operator takes the largest expression it can

find on the right and sets the value of the variable on the

left accordingly. The relations yield the numbers 1 or 0

operand to 0)

C)

..

()

3-3

(I in the example) is not altered by the iterative function;

whatever value it had when the function was entered will be

restored when the function is complete. Within the function,

of course, its value is determined by the FOR clause.

(e) A CAL function call, of the form f[a,b+c,d(l)J.

These functions are discussed in detail in Section 7.
(f) $, which has the value of the current line on the page.

(g) PI, which has the value one might expect.

Conditional expressions are also possible, and t~akc the

general form

IF e l' THEN e 1 ELSE IF e THEN e 2 ••• ELSE e
p ,r p2 v vn

When a conditional expression is evaluated, epl is evaluated.

If it is non-zero, evl is evaluated, and its value becomes the

value of the expression.

ep2 is evaluated. If the

indicated, then the value

If epl is zero, e
vl

is ignored and

expression ends with ELSE e ,as vn
of evn will be the value of the

expression it all the e . are O. The expression may, however, pl
end with

IF e THEN e pn vn

In this case the value of the expreSSion is 0 if all the epi
are O.

Note that the only expressions actually evaluated are

those whose values are required in determining the va.lue of

the expression. For example, the expression

IF X MOD 2=0 THEN -1 ELSE IF X> 10 THEN 0 ELSE I

has the value -1 if X is an even integer, 0 if X is an even

integer and is greater than 10, and 1 otherwise •

. A WHERE modifier can be appended to any expression. The

form is

expression WHERE variable = expreSSion & variable = expression

The modifier is evaluated before the expreSSion, and its effect

is to set the value of each variable to the value of the corres­

ponding expression. Thus the expreSSion

()
---- /

C)

\

SlN(Z)!COS(Z) WHERE Z=ATAN(X, Y)

has the va1ue(X/~r The expression

l+SUM (I=l BY 1 WHILE T>10E-8: T WHERE

T=XfI/F WHERE F=I*F) WHERE T=l & F=l
x -8

computes e with accuracy better than 10 •

3-4

I

I~"--~------~--~--------~--------------~~------------~~~--~~--~=-~~~==~~

c)

c)

c)

4-1

4.0 Steps

The following steps may be direct or indirect. Each one

begins with a unique word. The variable mentioned may be

subscripted.

SET variable = expression

sets the value of the variable to that of the expression

The SET may be omitted.

TYPE expression, expression

causes the expressions to be typed out, followed by

their values. Each expression is typed on a separate

line. Subscripts will be replaced by their actual

values. If a single unsubscripted variable name

appears, an~ subscripted elements it may have will

also be printed.

TYPE IN FORM EXPRESSION: expression, expression

is discussed in Section 6.
TYPE STEP step no, step no, •••
TYPE PART expression
TYPE FORM expression
TYPE "string"
TYPE ALL STEPS
TYPE ALL FORMS
TYPE ALL VALUES
TYPE ALL FUNCTIONS
TYPE ALL

do the obvious things. The "string" may contain
line feeds.

TO STEP step number
TO PART expression

(STEP may be omitted)

Execution of steps continues with the one specified.

The first step in the program with,step number ~

the expression is used.

DO STEP step number
DO PART expression

(STEP may be omitted)

The specified step or part is executed, and control then

goes to the step following the DO. It is not legal to DO a

TO step. A part being DOne may have TO steps, however. The

DO is completed when the last step of any part is executed or

c ..

c)

•

4-2

when a DONE step is executed. It is not completed by a transfer

out of the part being DOne. The DO PART operation starts at

the first step with number> the value of the expression.

DEMAND variable, variable, ...

Each variable is typed out, and CAL awaits input of n

number, which will be used to set the value of the variable.

Any non-numeric characters typed before the number will

be ignored. During the typing of a number, the character
c Q deletes all characters typed so far and allows the

number to be retyped. The character following the number

must be carriage return, space, comma or semi-colon. If

it is anything else, the number is ignored and may be

retyped.

DEMAND IN FORM expression: variable, variable .••

is discussed in Section 6.
PAGE

LINE

spaces to the top of the next page. This works even if

there is no heading and CAL is not separating pages.

spaces one line

OPEN, CLOSE, INPUT, OUTPUT, READ, WRITE, and CALL are discussed

in Section 8 on input/output.

4.1 Direct-Only Steps .

The following steps may be used directly only:

DELETE STEP step no, step no ..• (STEP may be omitted)
DELETE PART expreSSion
DELETE FORM expreSSion
DELETE variable DELETE ALL STEPS
DELETE ALL VALUES DELETE ALL FORMS
DELETE ALL DELETE ALL FUNCTIONS

The specified object is deleted. If it is a variable,

, all subscripted occurrences of the variables are qeleted.

DELETE ALL starts CAL over at the very beginning," It is

equivalent to leaving CAL and re-entering it from the executive

wi th a new @ CAL command.

i

4-3

CANCEL

GO

DUMP

Kills off the information about the current state of the

running program. See Section 10.

Continues execution after an interrupt or execution error.

See Sect ion 10.

TO file.

LOAD

causes all steps and forms to be written on the specified

file. The format is such that the file can be listed or

read in by LOAD.

FROM file.

reads in the contents of the specified file, treating it

as though it were being typed in from the teletype.

DEFINE variable [argument list] = expression
: statement

This step defines a CAL function. It is discussed in

Section 7.

DRUM variable

STEP

causes the values of the indicated variable to be stored

on the file which has been opened as DRUM. See Section 8.
The variable may thereafter be referenced only with exactly

~ subscript. It may be deleted, which cancels the

effect. Access to the variable may be slowed down.

! causes the next step 01' the program to be executed.

Control then returns to CAL as though a PAUSE had been

executed.

4.2 Indirect-Only Steps

PAUSE

The follOWing steps can be used indirectly only:

causes a message to be typed out and execution to stop.

The program can be restarted at the next step with GO.

c)

DONE

4-4

If a DO PART is in force, it is terminated. Otherwise

the step is ignored.

RETURN expression

The expression is returned as the value of the function

most recently called. If any DO or FOR started inside

the function is not complete, the step is an error.
" I'

:1
:1

C)

c)

I

5-1

5.0 Modifiers

Any step which can be used indirectly may be followed by

any number of modifiers which will govern its execution. A

modifier may be preceded by a comma. The available modifiers

are

IF expre s s ion

which allows the preceding step to be executed if

the expression is non-zero.

UNLESS expression

which allows the preceding step to be executed if

the expression is zero.

WHILE expression

which causes the preceding step to be executed

repeatedly as long as the expression is non-zero.

UNTIL expression

which causes the preceding step to be executed

repeatedly as long as the expression is zero.

FOR for clause

which causes the preceding step to be executed

repeatedly under control of the for clause; iterative

functions also contain for clauses. The form is

variable = for clause section, for clause section,

for clause section. The value of the variable is

set by each for clause section and the step executed.

If the variable is subscripted, the subscript is

evaluated each time. For clause sections can have

the form:

(a) a single expression

(b) expressionl BY expression2 TO expression
3

which sets the variable to the' value of the

first expression and then adds the second

expression on each repetition until it

passes the third expression; if the second

expression :is poSitive, repetition continues

until the variable becomes larger, if it

I
I .

. l

C:\

c)

5-2

is negative until the variable becomes smaller.

If the BY clause is omitted, it is taken to

be 1. Examples

1 BY 1 TO 10; 1 TO 10; 100 BY -3 TO 50

(0) expressionl BY expr~sSion2 {WHlLE1 expresSion
3 UNTIL

is exactly like (b) except that repetition

continues under control of the WHILE or UNTIL,

which work exactly like the modifiers described

above.

The following are equivalent:

FOR X=l TO 5

FOR X=1,2, 3,4,5 ",''2. '2...G
FOR X=l BY 1 WHILE;f <l~

A useful device for initializing a vector to an arbitra,ry

collection of values is illustrated by the following program:

1.1 SET I=I + 1 FOR X(I)=23,46,-16.5,3.l4159, WHERE I=l

This also illustrates the WHERE modifier for steps; its works

exactly like the modifier for expressions, described in Section 4.
It is for this reason that the above step contains the comma

before the WHERE; otherwise it would attach itself to the last

expression of the for clause and would not be evaluated until

that expression was reached. It would then not serve its

intended purpose of setting I to 1 initially.

Note: WHILE, UNTIL and FOR modifiers may not be used on'

a TO step, for more or less obvious reasons.

; I
I:

, ,

:

c)

C)
/

C)

6.0 Forms

6.1 Type in Form

Formatted output can be done with the TYPE TIl' FORM

statement--the form.specifies the format. The method is

illustrated by the example

FORM 1:

6-1

SCIENTIFIC NOTATION IfH##IHI=# DECIMAL NOTATION %%%.%%%%
TYPE IN FORM 1: 3.1414, -lO.lE-l

SCIENTIFIC NOTATION 3.11~ 00 DECIMAL NOTATION -1.0100

The characters in the form are typed literally except for

fields containing #'s, which cause numbers to be printed in

scientific notation, and fields containing %'s and zero or one

dots, which cause numbers to be printed as decimals. The

character & is not typed. If either field is too small, an

error will be indicated. Note that in a # field six characters

are needed for the decimal point, the exponent, the sign and

at least one digit of the number. In a % field one character

is needed before the decimal point for the sign. If the number

is known to be positive, the position for the Sign is not needed.

After the last number in the TYPE IN FORM statement has

been printed characters continue to be printed from the form

until another numeric field or the end of the form is reached • .
If there are more numbers in the TYPE statement than fields

in the form, the form is reused as often as necessary. If the

last character of a form is processed according to the above

rule, a carriage return is generated, otherwise 'not. Several

different TYPE IN FORM steps can therefore put information on

the same line •. If the last character of the form is &, the

usual carriage·return is suppressed. A carriage return is

generated before CAL types its> if this has not already been

done.

,

.1
_.' H "H"" .. ". H _,' I

Ci

c;

6-2

Example:

FORM 1:

%%%%%%
TYPE IN FORM 1: It2 FOR I = 1 TO 14 will result in

1 4 9 16 36

49 64 81 100 121 144

169 196
Note: The colon of a FORM must be followed by a ~ ~.

6.2 Demand in Form

The step

DEMAND IN FORM expression: variable, variable, •••

can be used instead of a simple demand. The characters of the

form will be typed literally with the exception of # or %
characters. Any contiguous group of these will cause a number

to 'be read and assigned to one of the variables in the list.

The length of the group has nothing to do with the length of the

number input. This process proceeds, just like a TYPE IN FORM,

until the list of variables is exhausted.

The program:

1.1 DEMAND IN FORM 1: Nl,N2

1.2 TYPE IN FORM 2: Nl+N2, Nl*N2

FORM 1:

NO. 1 = #; NO. 2 = I
FORM 2:

SUM = %%%.%%; PRODUCT:: /HW/I####
might produce a page like thiS:

>DO PART 1

NO. 1=12.6; NO. 2=40

suM=52 .60; PRODUCT = 5.040 02

,
• i
; ,

; I
I
I

; .

c)

..

c)

7-1

7.0 Functions

A CAL function may be defined by the statement

DEFINE F(X,Y,Z,Wl = (XtW+YtW+ZtW)t(l!W)

This statement may be direct only. It deletes a.ny old value

which F may have and assigns the function definitions as the

value of F. X,Y,Z and Ware local variables of the function.

This means that when the function is. called, the values of

these variables are saved and new values obtained from the

arguments provided with the call. Thus F[3,4,5,2] will result in

X=3 y=4 Z=5 W=2

when execution of the function is started. When the function

returns, the values of the local variables a.re thrown away

and the old values which were saved by the function call are

restored.

The above DEFINE will cause the expression after the =
to be evaluated and returned as the value of the function call.

An alternate form permits more complicated functions to be written:

DEFINE F[X, y,Z,Wl: any statement

If the statement is not a TO, it is executed and a zero value

is returned. If it js a TO, control is transferred to the

specified point. The function can return by executing

RETURN expression

which causes the express~on to be taken as the value of the

function.

A function must not have a local variable which is the same

as the name of the function itself. It is not necessary to

supply values for all the local variables when the function is

called. The arguments supplied will be aSSigned to the first

few local variables, and the others will be left undefined. This

permits temporary storage locations to be created for the function.

Care must be taken that any DO or FOR started within the function

is finished before the RETURN. It is an error to termina.te a

DO started before the function call within the function.

I '

(~)

7-2

If an actual function argument is a name, its value can

be changed by the function. Thus

DEFINE F[A,B): SET A+-Bt2
when called with

SET Y = F[I,4]
sets I to 16 (and Y to 0).

DEFINE F[X,Y,N,I): SET XCI) = Y(I) FOR I = 1 TO N
when called with

Z := F[A,B,14]

sets A(l)=B(l), A(2)=B(2), .•. , A(14)=B(14).

A function may do anything, including calling itself.

Compare two definitions of the factorial function

DEFINE Fl(X) = IF X<*l THEN 1 ELSE X*Fl[X-l]

DEFM F2(X, Xl] = PROD (Xl=l TO X:Xl)
Or a more complex example, which computes the exponential to
one part in 10-'r

DEFINE E[X,I,J,S,T] = l+SUM (I=l BY 1 WHILE Tis> lE-7

WHERE S=S+T : T WHERE T=XtI/PROD(J=l TO I : J»

WHERE S=O & T=l
A somewhat more efficient form is

DEFINE E[X, S,T, IJ :: l+SUM (I=l BY 1 WHILE TIs> ll! .. 7

WHERE S=S-tT: T 4- T*X/I)

WHERE S=O & T=l

•

8-1

8.0 Input-output

CAL ha.s fac1.11.ties for, aD.()wine the user to read from and

write on standard sy::;tem fUes. For a discussion of file

naming, consult the executive manual.

To¢pcn a file and assign it anumuer, the step

OPEN "name" FOR {~~}AS FILE expression

The value of the expression should be used to reference the file

after it is open.

When ·the file is no longer being read or written, the step

CLOSE expression

wUl close it. The information 1.s not affected; the file simply

becomes unavailable for Input/output until it is reopened.

The step

WRITE ON expression:

is exactly 11ke TYPE, and anything which is legal after TYPE

may follow the colon, with one exception: The format

WRITE ON expression IN FORM expression:

should be used if a form is desired.

To read from a symbolic file, the step

READ FROM-expression:

may be used. It is exactly like DEMAND. The convention that

preceding non-numeric characters are ignored is. cQnv~nient.

READ IN FORM makes little Sense and is not available.

·Binary floating point numbers may ·be written on a fHe,

two words per number, with the step

OUTPUT ON expression: expression, expression

Such a file may be read with

INPUT FROM expression: variable, variable .••

c)

()

A file can also be opened with

OPEN "name" AS DRUM

8-2

Thereafter it is available for storage of singly-subscripted

variables. See Section 5.

If an input operation encounters an end of file, it normally

aborts. To prevent this from happening, the step

CALL funct ion ON END OF' J<'ILE

exists.

It' an end of' file occurs on input, t.he specifjed f'tmction

will be called with a sine;le argument whose value is the number

of the file responsible. The value of the function wi]~ be taken

to be the number which the program was trying to read from the

file. Example: Ii' numbers are to be read first from file V and

then from file W, the following program will do the job:

1.1 OPEN "V" FOR INPUT AS FILE 1
1.2 CALL EO ON END OF FILE
1.3 READ FROM 1: X(I) FOR I=l TO 1000
DEFINE EO[A,B): 10 STEP 2.1
~.l l!I..OSE A
2.2 OPEN "w" FOR INPUT AS FILE A
2.3 TYPE "FILE W OPENED" IF TO
2.4 READ FROM A:B

'2.5 RETURN B

It will also type a message when it switches files if TOrO.

i I
I I

".,' _" .___,_.LJ

C)

9-1

9.0 Display Output

CAL contains a number of features which permit figures

and text to ~e presented on one of the two Project Genie displays
',"

e,ttached to ~he 9)+0 througb. PDP-5 IS.
,:.~

To beg~,Bl u~ing the display through CAL, the rollowin{~

procedure should be followed:'

1) Start the link loader running in the PDP-'). This is

normally done by putting T(l~O in the switches and

dOing LOAD ADDRESS and START. If the memory address

register shows a fairly tight loop in the vicinity

of '('(40, the loader can be assumed to be running.

2)

If *hiS is not the case, instructions attached to the

mac~:j.ne should be followed to get the loader i.nto

cor~t
~1';

Ex~qute the CAL step
,~'~;~r

~'OPEN DISPLAY e

Where e is an expression with the value 0 or 1. An

o value denotes the Burroughs display, a 1 the IDI

display. Other values of e will give rise to error

comments. This step may be executed directly or

indirectly.

As a result of these operations, a. program (the PDP-') part of

the object package) will be sent to the PDP-5, and the character
" .

D will appear in the lower left corner of the screen. If the D

does not appear, push the GO button on the display. If it does

not appear, something is wrong. Try turning up the intensity

on the display. If this does not work, close the display in

CAL (see below), read in a fresh copy of the link loader, and

try again. If this doe-s not work, give up and complain.

Once the display has been successfully opened, it will

'remain attached to CAL and ready for output until it is closed

with the step.

CLOSE DISPLAY

Return to the exec will close' the link files, but they will be

reopened by a CONTINUE CAL command.

,

.'

':

, I

_II

C)

•

9-?

Do not attempt to open the display unless the link loader

is running. If you do, it will probably be necessary to restart

CAL from scratch, as it will be very confused.

Two types of' material may be displayed through CAr,:

"curves" and text. Locations of both are specified by internal

display coordinates, which are initialized to the range -1

to +1 on both X a.nd Y axes. An internal coordinate of -1

corresponds to the bottom or left side of' the display, one of'

+1 to the top or l"ight side. The range of internal coordinates

can be changed by the step

SCALE X AXIS FROM el TO e2

and the corresponding operation for Y. The word AXIS may be

omitted. This step makes el correspond to the bottom (or left

side) of the display and e2 to the top (or right Side). It is

not necessary that el < e2, but el = e2 is an error. Addressing

points on the display outside the range specified by a SCALE

is not forbidden, and a linear extrapolation is performed.

The portion of the scope face addressed by the current

SCALEs can be altered with the step

DISPLAY X AXIS FROM el TO e2

and the corresponding operation for Y. The word AXIS may be

deleted. The expressions here specify absolute display coordinates,

which range from 0 (bottom or left side) to 1023 (top or right . , ' .

side), and the values of the expressions are restricted to thi.s

range'. CAL is initialized to address the whole scope face.

The initial state may thus be reestablished by the four steps

SCALE X AXIS FROM -1 TO 1

SCALE Y AXIS FROM -1 TO 1

DISPLAY X AXIS-FROM 0 TO 1023

DISPLAY Y AXIS FROM 0 TO 1023

As with SCALE, it is possible to display on the scope outside the

area defined by DISPLAY; the same linear extrapolation 1s performed.

After an internal di.splay coordinate has been converted to an

absolute one, It 1.s taken modulo 1024.

I ,
I [
t ..

I
i
I

.................................... t.

c)

c!

9-3

l'hedisplay may be treated as a teletype with the step

WRITE ON DISPIAY: output

where the output may be anything which could appear after TYPE.

Another versi.on, also modeled after TYPE, is

WRITE ON DISPlAY IN FORM e: output

Ie no other action is taken, output will appear after the

initial D in the lower left corner. The location of UIC next

character output by a WRITE ON DISPLAY can be fixed, however,

by adding after DISPIAY the modifier

AT e,e

where the two expressions are internal display coordinates of'

a. point on t.he scope. Characters will then be written on the

horizontal line specified by the Y coordinate and sta.rting at

the position specified by the X coordinate. A carri~ge return

or overflow off the right side of the screen will cause the

next character to be written at the same X position as the first

one, but one line further down. I.e., an AT modifi.er defines

the left margin.

The display can also be used for presenting graphical

materi.al. This is done with the PLOT step, which has the

form

PLOT ON CURVE e: el,e2

The el and e2 are internal scope coordinates specifying a point

on the scope face .. A line is drawn from the last point plotted .
on curve e to this one. If no points have been plotted on

curve e, no display will be generated by this step.; it will

simply serve to establish the origin for the line which will be

drawn by the next plot on this curve.

Curve numbers must range between 1 and 20.!The phrase

ON CURVE e may be omitted, in which case the last curve mentioned

will be assumed. Curve 1 will be assumed initially.

Any of the modifiers BUNK, DOTS (or POINTS), DASHED or

SOLID may appear after the curve specification. These modifiers
\

•

t

c)

9-4

determine the kind of line to be drawn. They are self-explana­

tory except perhaps for DOTS, which simply causes the endpoint

of the line to be displayed. It is useful for plotting isolated
points.

All curves are initialized to SOLID. A modifier remains

in force until another one is used for the same curve. Examples:

PLOT ON CURVE 5,' DASHED: .5 , . ~)

PLOT ON CURVE 6+1, SOLID: X, SIN(X+I*P1) ron x=o BY

.1 TO 2*PI FOR 1=0,1

will plot sin x and s:i.n(x+n) between 0 and 2n • .. ~
PLOT DOTS: I,J FOR 1=f BY .1 TO 1 FOR J=-~ BY .1 TO 1

will plot a matrix of 121 dots evenly spaced over the scope

face (assuming initial scale and range).

PLOT ON CURVE 10, BLANK: -1,0

PLOT SOLID: 1,0

PLOT BLANK: 0, -1

PLOT SOLID: 0,1

will put x and y axes on the screen.

Material to be displayed is buffered in the 930 and will -
not ap~ar on the screen until the step

DISPLAY

is executed, except that if this buffer overflows, its contents

will be sent to the display automatically. . Too frequent use of ' ,

DISPLAY will slow down the execution of the program, however,

becauSe of the manner in which the system qandles the output.

A DISPLAY is supplied automatically whenever CAL type its> sign.

There is no way to remove material which has been put on

the display with PLOT or WRITE except by execution of

CLEAR l)ISPLA Y

which reinitializes the display to its original state. Scale

and range are reset and all material except the initial D is

removed from the screen.

" It is possible to overflow the PDP .. , memory available for

buffering the display. If this happens, output is terminated

1 ,
, I . ,
i

,.

..

9-5

and an error message generated. Execution of CLEAR DISPLAY

will permit new material to be dis~layed. Experience indicates,

however, that flicker will reach ob;jectionable levels before

this overflow occurs. Flicker can be alleviated by adjustment

of the intensity, and by turning off the lights in the display

half of the room. A cord which controls these lights hangs

down from the ceiling near the !DI display.

The amount of space taken up by a display picture depends

to a considerable extent on how it is generated. Space requ ire­

ments are minimal for a display in which all the pOints ror

one curve are plotted before a.ny plottine; is done for any other

curve, and in which all text is written without any interspersed

PLOT steps and with a minimum number of AT modifiers. Two words

are used for each point, one for each character, one for each
. I

occurrence of DOTS, DASHED or SOLID. Two extra words are used

each time a point is plotted on a curve different from the one

on which the last point is plotted. There arc about 31~OO

words available.

Occasionally the display will start to show something

funny. Pushing the GO button will usually correct this. Do not,

however, push the GO button while your program in transmitting

to the display. If things become fouled up, clear the display

and try again. If the PDP-5 program becomes clobbered, close

the display, restart the link loader, and re~pen it •

. .

I

. J

•

c)

., ,,' 1

10-1

10.0 Running the Program

A program can be started by typing a direct TO or DO step.

Execution will continue until

1) The DO is complete or, in the case of a TO, the last

step of the program has been executed.

2) A PAUSE step is executed, CAL types out

PAUSE :IN STEP n.n:

and awaits instructions. Steps can be added to the

program and any steps except DO and TO may be used

directly. The program can then be restarted with a

GO step. If a TO or DO has been executed the state

of the program at the time of the PAUSE is lost.

This also happens if any directly executed step

causes an error, or if any step, function or form

being executed is deleted or changed. If a complex

DO or functi.on call structure exists, there may be

many such steps •

. 3) The rubout key on the teletype is pushed. CAL completes

execution of the current step, or of the current loop

of a FOR, and then types

. 4)

INTERRUPl'ED :IN STEP n.n:

The situation is then identical to that produced by

a PAUSE •

An error occurs in the running program. A suitable
•

message will be typed out, and the situation is then

identical to that produced by a PAUSE.

i ., "'.
I

(-j

C)

A
CAL SUMMARY

Indirect (with step number) or
direct (execute immediately):

SET v = e (SET may be omitted)

TYPE el, e2, e3 ...
TYPE IN FORM e: el, e2
TYPE(STEP)n.n, n.n, .••
TYPE PART e
TYPE FORM e
TYPE "string ll

TYPE ALL STEPS
TYPE ALL FORMS
TYPE ALL VALUES
TYPE ALL FUNCTIONS
TYPE ALL

DEMAND vl, v2 ...
- DEMAND m FORM e: vl, v2 .•.

OPEN "name FOR 6th~ AS FILE e

OPEN "name AS DRUM
CLOSE e
WR ITE ON e: <as for TYPE>
READ FROM e: vl, v2 •..
OUTPUT ON e: el, e2 •..
INPUT FROM e: vl, v2 .••

PAGE
LINE

TO(STEP)n. n
TO PART e

Direct only:

DELETE v
DELETE(same as for TYPE).

DUMP
LOAD

GO
STEP
CANCEL
DEFINE v(v,v,v ...] =e

': statement
f

.. EDIT(or MODIFY or MOD) (STEP) n.n
.EDIT FORM'e , .•
EDIT v (function only)

Indirect only:

DRUM v

RETURN e

PAUSE (equivalent to rubout)

DONE (stops a DO PART)

Modifiers may be attached
to any step. Several modifiers
may appear on one step.

IFe

UNLESS e

-Go] , FOR v = e BY WHILE e (BY may
UNTIL be omitted)

e
any string of these
separated by commas

WHILE e
UNTIL e
WHERE v l = c l & v2 = e 2

Ex ressions (represented by "e"
'elsewhere are made up of opera,nds

and the operators.

+- (replacement)

AND OR (same as *, + except for
precedence)

NOT (changes 0 to 1, anything
not 0 to 0)

-=If> >=< <= (yielding 0 or 1)

+ -
* I .
t (exponentiation)

with the precedence levels indicated
by the order. Parentheses may be
used freely. ~.

THEN ev1 ELSE IF ep2 THEN ev2 ... ELSE evn

WHERE may be appended to expressions.

Operands may be

va.riabl'!s
numbers
$, with the vallie of the current ,Hne
PI
Special functions
Iterative functions
CAL functions

I

.1

I

i c·······

()

B

CAL Functions -. Variables (represented byv elsewhere)
are single letters followed by 0 or 1
digits, possibly with any number of
subscripts. Thus

XlS(l) X(Y(Z5),W9t2)

A CAL function is named by a
variable, which cannot then have
numeric val~es. It is called thus:

No restrictions on subscripts, which are
taken to the nearest integer mod 223,

Numbers may be written with decimal
digits, a decimal point, and an exponent
field indicated by E. Thus

10 = lEI = .OOlE4 = lOOOOE-03

Special Functions are

SIN, COS, TAN with arg in rads

ATAN (X,Y) with result in rads

LOG, LOGIO, EXP, SQRT, ABS

IP (integer part); FP (franctional part)

The argument need not be enclosed in
parentheses unless it has an ope~ator of
lower precedence than *.
Iterative Functions are

SUM, PROD, MAX and MIN.

Example:

SUM (I=O BY 1 WHn:.E I<lO:

XtI/PROD(J=l TO I:J»

10

\ i/" L x ~.

i = 0

F[A, 16.3*W(3)J.

Input: You are editing the statement last typed in. Characters typed replace
old ones. Control characters are,

AC print t and delete preceding character
WC print \ and delete preceding word
QC print ~and delete preceding line
c~ throwaway the rest of the old line. Done •

. C copy a character
SC skip a character and print %.
ZCC copy up to character C, inclusive
XCC skip up to character C. inclusive '.
c- -Rc retype

Tc pretty retype
Yc copy rest of old line without typing and start over
Dc. copy and type out rest of old line. Done.
F c copy rest of' old line. Done. , c
E type < and switch to insertin5 character typed. Second E mes.ns

type > and switch back to replacing.

I,' i
,_ ,_~,-..._._.,....... '.'_' .. ~. , .. .t. ___ ~ ..• '

•

