
REFERENCE MANUAL FOR

HARP, AN ASSEMBLER FOR THE SDS 940

Roger House

Dana Angluin

Laurence P. Baker

Document No. R- 32

Issued January 5, 1968
Revised November 21, 1968

Office of Secretary of Defense

Advanced Research Projects Agency

Washington, D. c. 20325

TABLE OF CONTENTS

1.0 Introduction.

1.1 Pseudo-history of assembly languages.

1.2 Assembly languages: Some basic constituents and

1-1

1-1

concepts. • . 1-4

2.0 Basic constituents of NARP

2.1 Character set

2.2

2·3
2.4

Statements and format .

Symbols, numbers, and string constants ••.

Symbol definitions ..•.

2.5 ExpreSSions and literals ..

2.6 Opcode classification .

3.0 Instructions

4.0 Directives ...••

4.1 ASC Generate text (3 characters per word) ••

4.2 BES Block ending symbol .•

4.3 BSS Block starting symbol.

4.4 COpy Mnemonic for RCH. .

4.5 DATA Generate data ...

4.6 DEC Interpret integers as dec~al.

4.7 DELSYM Do not output any symbols .

4.8 END End of assembly. . . •

4.9 EQU Equate a symbol to a value ..

4.10 EXT Define a symbol as external . . . • .

4.11 FREEZE Preserve symbols, opcodes, and macros •.

4.12 FRGT Do not output a specific symbol.

4.125 FRGTOP Forget selected opcodes

4.13 IDENT

4.135

Identification of a package ...

LIBEXT Specify library symbol.

4.14 LIST Set listing controls • . .

4.15 NOLIST Reset listing controls

4.16 OCT Interpret integers as octal .

4.17 OPO Define an opcode ...•..

4.19 POPD Define a programmed operator

4.20 RELORG Assemble relative with absolute origin .

2-1

2-1

2-1

2-3
2-4

2-7

2-11

3-1
4-1

4-3

4-4

4-5

4-6
4-7
4-8

4-9
4-10

4-11

4-12

4-13
4-15

4-16
4-17
4-18
4-20

4-20

4-22
4-23
4-24

4-25

5·0

4.21 REM Type out remark . . . • . . • • . . • 4-27
4.22 RETREL Return to relocatable assembly . . 4-28
4.23 TEXT Generate text (4 character per wor~) . . 4-29
Conditional assemblies and macros. •

5 .1 IF, ELSF, ELSE, and ENDF If statements

5 .2 RPr, CRPr, and ENDR Repeat statements.

5-1

5-1
5-4

5·3 Introduction to macros. · .. · .. • . 5-9
Figure 1 Information Flow During Macro Processing. 5-11

5.4 MACRO, LMACRO, and ENDM Macro definition. 5-15
5.4.1 Dunmy arguments 5-17

5.4.2 Generated symbols. 5-20
5.4.3 Concatenation. . . • 5-22
5.4.4 Conversion of a value to a digit string 5-23
5.4.5 A note on subscripts••.•. 5-24

. 5,.5 NARG and NCHR Number of arguments and number
of characters io • • • • • • • • • •• ••••• 5-25

5.6 Macro calls ... 5-26
5.7 Examples of conditional assembly and macros 5-28

6.0 Operating NARP 6-1
6.1 Error comments on statements ...

6.2 Other error comments .•..•.

6.3 StartiDg an assembly •.

Appendix A: List of all pre-defined opcodes and pre-

6-1
6-1
6-3

defined symbols A-I

Appendix B: Table of ASCII character set for the SDS 940 A-2

Prefatory Note

Certain sections of the following reference manual are

written in a pr~er-like style, especially parts of the

introduction and the discussion of macros. However, it is

assumed that the reader is familiar with the logical operation

of general-purpose digital computers, and, in particular, is

acquainted with the SDS 940 instruction set (see the SDS

publication, SDS 940 Computer Reference Manual, No. 90 06 40A,

August, 1966, or the Project GENIE document, SDS 930 Instructions,

Document R-27, October 11, 1966).

Acknowledgment

Much of this manual. is similar to the ARPAS manual (ARPAS,

Reference Manual for Time-Sharing Assembler for the SDS 930,

Document R-26, February 24, 1967), written by Wayne Lichtenberger,

and some paragraphs are taken verbatim from the ARPAS manual.

Related Documents

1) For a precise description of the binary program output

by NARP, see Project GENIE document, Format of Binary Program

Input to DDT,. Document R-25, January 26, 1967.

2) For a description of the implementation of NARP see

Project GENIE document, ~lementation of NARP, Document M-16,

January 25, 1968.

1-1

1.0 Introduction

NARP (~ew ARPAS) is a one-pass assembler for the SDS 940
with literal, subprogram, conditional assembly, and macro

facilities. The source language for NARP,primarily a one-for

one representation of machine language written in symbolic form,

is very similar to that for ARPAS (another assembler for the9l4-0),

but there are notable exceptions making it necessary to do a

certain amount of transli terat ion to convert an ARPAS program. to

a NARP program. No further mention will be made of ARPAS

in this manual; for more details see ARPAS, Reference Manual for

Time-Sharing Assembler for the SDS 930, Doc. No. R-26,

February 24, 1967.

To motivate the various facilities of the assembler, the

following pseudo-historical development of assembly languages

is presented.

1.1 Pseudo-history of assembly languages

A program stored in the main memory of a modern computer

consists of an array of tiny circular magnetic fields, some

oriented clockwise, others orientedcounterclock.wise~ Obviously,

if a programmer had to think in these terms when he sat. down

to write a program, few problems of any complexity would be

solved by computers, and the cost of keeping programmers sane would

be prohibitive. To remedy this Situation, utility programs

called assemblers have been developed to translate programs

from a symbolic form convenient for human use to the rather

tedious bit patterns that the computer handles. At first these

assemblers were quite primitive, little more than number converters,

in fact. Thus, for example:

Tag Opcode Address

76
55
35

1-2

would be converted into three computer instructions which would

add together the contents of cells 40¢ and 4~l and place the

result in cell 4~2. An assembler for doing this type of conver

sion is trivial to construct.

After a time, some irritated programmer who could never

remember the numerical value of the operation "load the A register

with the contents of a cell of memory" decided tha.t it would not

be too difficult to write a more sophisticated assembler which

would allow him to write a short mnemonic word in place of the

number representing the hardware operation. Thus, the sequence

of instructions shown above became:

This innovation cost something, however, namely the assembler

had to be more clever. But not much more clever. The programmer

in charge of the assembler simply added a. table to the assembler

which consisted of all the mnemonic operation names (opcOdes)

and an associated number, namely the numerical value of the

opcode • When a mnemonic name, say • ADD', was encountered by the

assembler during the conversion of a program, the opcode table

was scanned until the mnemonic name was fOWld; then the associated

numerical value (in this case, 55) was used to form the instruc

tion. Within a month, no programmer cou1d tell you the numerical

value of XMA.

In a more established field, the innovation of these mnemonic

names would have been quite enough for many years and many

theoretical papers. However, programmers are an irritable lot,

and furthermore,· are noted for their ability to get rid of sources

of irritation, either by writing more clever programs or by

asking the engineers to refrain from making such awkward machines.

And the use of numbers to represent addresses in memory was a

large source of irritation. To see this we need another example:

~CIA
fJ LDX ¢~~
2 STA ¢t/J5 ¢7
fJ BRX ¢¢3¢J¢

1-3

Assuming cell 4¢¢ contains -7, this sequence stores zeroes in

cells 5~ through 5¢6 provided that the sequence is loaded in

memory so that the STA instruction is in cell 3¢¢ (otherwise,

the BRX instruction would ha.ve to be modified). This was the

crux of the problem: Once a progrwn was written, it could only

run from a fixed place in memory and could only operate on fixed

cells in memory. This was especially awkward when a program was

changed, since inserting an instruction anywhere in a program would

generally require changes in many, many addresses. One day a

clever programmer saw that this problem could be handled by a

generalization of the scheme used to handle opcodes, namely,

let the programmer use symbolic names (symbols) for addresses

and have the assembler build a ts.ble of these symbols as they

are defined and then later distribute the numerical values

associated with the symbols as they are used. Thus the example

becomes:

LOOP

CIA
LDX
STA
BRX

TABLEN
TABEND,2
LOOP

(Note that at the same time the progr~er decided to move

the tag field to after the' address field (simply for the sake

of readability) and to even dispense with it entirely in case

it was zero,) The asse.bler now has two tables, the fixed opcode

table with predefined names in it, and a symbol table which is

initially empty. There is also a. special cell in the assembler

called the location counter (LC) which keeps track of how many

cells of program have been assembled; LC is initially zero.

There is another complicat ion: In the above example, when the

symbol TABLEN is encountered, it may not be defined yet, so the

assembler doesntt know what numerical value to replace it with.

There are several clever ways to get around this problem, but

the most obvious is to have the assembler process the program

to be assembled twice. Thus, the first time the assembler scans

the program it is mainly interested in the symbol definitions

in the left margin (a symbol used to represent a memory address

is called a label). In our example, when LOOP is encountered,

it is stored in the symbol table and given the value 2 {because

1-4

it is preceded by two cells; remember that LC keeps track of

this). At the end of pass 1, all symbols defined in the program

are in the symbol table with numerical values corresponding to

their addresses in the memory. So when pass 2 begins, the symbol

table is used exactly as the opcode table is used, namely, when,

for example, LOOP is encountered in the BRX instruction above,

it is looked up in the symbol table and replaced by the value 2.

If the program should later be changed, for example to

CLA

LOOP

LDB
LDX
STP
EAX
BRX

EIGHT
TABLEN
TABEND,2
1,2
LOOP

then the assembler will automatically fix up LOOP to have the

value 3 (because of the inserted LDB instruction) and will

convert BRX LOOP to BRX 3 instead of to BRX 2 as before. Thus,

the programmer can forget about adjusting a lot of numerical

addresses and let the assembler do the work of assigning new

values to the symbols and distributing them to tbepoints where

the symbols are used. In addition to the greater flexibility

achieved, sym,\?ols with mnemonic value can be used to make the

program more readable.

The use of symbols to stand for numerical values which

are computed by the assembler and not the programmer is the basic

characteristic of all assembly languages. Its inception was

a fundamental breakthrough in machine l.anguage programming,dil.spensing

with much dullness and tedium. And a new breed of programmer

was born: the assembler-writer. To justify his existence, the

assembler-writer began to add all sorts of bells and whistles

to his products; the primary ones are discussed tnthe next

section (with reference to NARP).

1.2 Assembly languages: same basic constituents and concepts

Times: assembly time: when a program in symbolic form is

converted by an assembler to binary

(relocatable) program form.

1-5

load time: when a. binary program is converted by a loader to

actual machine language in the main memory of

the computer.

rul time: when the loaded program is executed.

source program assembler loader
-------------4) binary program----------~) object program

Expressions: The idea of using a symbol to stand for an address

is generalized to allow an arithmetic expression (possibly

containing symbols) to stand ror an address. Thus, some calcu

lations can be performed at assembly time rather than at run

time, making programs more efficient.

Literals: Rather than writing LDA Ml and somewhere else defining

Ml to be a cell containing -1, the literal capability allows the

programmer to write the contents of a cell in the address field

instead of the address of a cell. To indicate this, the expression

is preceded by '='. The assembler automatically assigns a cell

for the value of the expression (at the end of the program):

LOOP

CIA
LDB
LDX
STP
FAX
BRX

=8
=-16*2
TABBEG+16*2,2
1,2
LOOP

Relocation: A relocatable program is one in which memory locations

have been computed relative to the first word or origin of the

program. A loader (for this assembler, DDT) can then place the

assembled program into core beginning at whatever looationmay be

specified at load time. Placement of the program involves a

small calculation. For example, if a memory reference is to the

nth word of a program, and if the program is loaded beginning

at location k, the loader must transfor.m the reference into

absolute location n+k. This calculation should not be done to

each word of a program since some machine instructions (shifts,

for example) do not refer to memory locations. It is therefore

necessary to inform the loader whether or not to relocate the

address for each word of the program. Relocation information is

determined automatically by the assembler and transmitted as a

relocation factor (rfactor). Constants or data may similarly

1-6

require relocation, the difference here being that the relocation

calculation should apply to all 24 bits of the 940 word, not just

to the address field. The assembler accounts for this difference

automatically.

Subprograms and external symbols: Programs of'ten become quite

large or fall into logical divisions which are almost independent.

In either case it is convenient to break them into pieces and

assemble (and even debug) them separately. Separately assembl.ed

parts of the same program are called subprograms (or packages).

Before a program assembled in pieces as subprograms can be run it

is necessary to load the pieces into memory and link them. The

symbols used in a given subprogram are generally local to that

subprogram. Subprograms do, however, need to refer to symbols

defined in other subprograms. The linking process takes care of

such cross-· references. Symbols used for it are called external

symbols.

Directives: A directive (pseudo-opcode is a message to the

assembler serving to change the assembly process in some way.

Directives are also used to create data:

MESSAGE
S'MRT

LIST
TEXT
LDA

'THIS IS A PIECE OF TEXT'
ALPHA

The LIST 4irective will cause the program to be listed during

assembly, while the TEXT directive will cause the following text

to be stored in memory, four characters to a word.

Conditional assembly: It is frequently desirable to permit the

assembler to either assemble or skip a block of statements

depending on the value of an expression at assembly time; this

is called conditional assembly. With this facilitYj totally

different object programs can be generated, depending on the values

of a few parameters.

Macros: A macro is a block of text defined somewhere in the

program and given a name. Later references to this name cause

the reference to be replaced by the block of text. Thus, the

macro facility can be thought of as an abbreviation or shorthand

notation for one or more assembly language statements. The macro

1-7

facility is more powerful than this~ however, since a macro may

have formal arguments which are replaced by actual arguments when

the macro is called.

One-pass assembly: Instead of processing a source program twice

as was described above (section 1.1), HARP accomplishes the swme

task in one scan over the source program.

rather complex and is described elsewhere.

NARP, Doc. M-16)

The method used is

(Implementation of

2-1

2.0 Basic constituents of NARP

2.1 Character set

All the ~haracters listed in Appendix B have meaning in

NARP except for '? t and ,'t. The following classification of

the character set is useful:

letter: A-Z

octal digit: 0-7

digit: 0-9

alphanumeric character: letter or digit or colon

terminator: , , blank CR (denotes carriage return)

operator: # % & * + - I < = > @ t

delimiter: " $ t () [] • +-

The multiple-blank cha.racter (1358) may appear a.nywhere that a

blank is allowed. All characters with values greater than 778 are

ignored except for multiple-blank character (1358) and carriage

return (1558).

2.2 Statements and format

The logical unit of input to NARP is the statement,a. sequence

of characters terminated bya semi-colon or a carriage return.

There are five kinds of statements:

1.. empty: A statement may consist of no characters at all, or only

of blank characters.

2. comment: If the very first character of a statement is an

asterisk, then the entire statement is treated as a

comment containing information for a human rea.der.

Such statements generate no output.

The format for the next three kinds of statements is split into

four fie 1ds :

label field: This field is used primarily for symbol definition;

it begins with the first character of the statement and

ends on the first non-alphanumeric character (usua.lly a

blank) .

2-2

opcode field: This field contai.ns a directive name, a macro

name, or an instruction (t.e., any opcode other than a

directive or macro). rrhe field begins with the first

non-blank character after the label field and terminates

on the first non-a.lphanumeric character; legal terminators

for this field are blank, asterisk, semi-colon, and

carriage return.

operand field: The operand for an instruction, macro, or

directive appears in this field, it begins with the first

non-blank character followipg the opcode field and terminates

on the first blank, semi-colon, at' cRrriage return. Note

that a statement may terminate before the opera,nd field.

comment field: This field contains no ini"ormRtion for NARP but

may be used to help clarify a program for a human read€r.

The field starts with the first non-blank ci."1aracter after

the operand field (or after the ~'Pcode field if the opcode

takes no operand) and ends on a semi-colon or carriage return.

Now we continue describing the kinds of st.atements:

3. instruction: If the opcode field of a statement does not contain

a directive name or a macro name, then the statement is

an instruction. An instruction usually has an expression

as an opera.nd and generates a single machine word of

program. See section 3 for a detailed description of

instructions.

4. directive: Tf a directive name appears in the opcode field, then

it is a directive statement. The action.of each directive

is unique and thus each one is described separately (in

section 4).

5. macro: A macro name in the opcode field of a statement indicates

that the body of text associDted with the macro name should

be processed (see section 5).

Example of various kinds of statements:

* FOLLOWING ARE 'TIIO DIRECTIVES (MACRO,ENDM) WHICH DJi:FINF.
... THE MACRO SKAP
SKAP MACRO; SKA =4B7; ENDM

2-3

* NOW SKAP IS CALLED:
LDA ALPHA
SKAP; BRU BAD IF NEGATIVE TREN ERROR

OKAY ADD BETA NOW A=ALPHA +BETA ; BRU GOOD

In subsequent sections the details of instructions, directives,

and macros will be explained, but first some basic constituents

and concepts cammon to all of these statements will be discussed.

2.3 Symbols, numbers, and string constants

Any string of alphanumeric characters not forming a ntmlber

is a symbol, but only the first six characters distinguish the

symbol (thus Q,12345 is the same symbol as Ql23456). Note that

a symbol may begin with a digit, and that a colon is treated as

a letter (as a. matter of good programming practice, colons should

be used rarely in symbols, although they are often useful in

macros and other obscure places to avoid conflicts with other

names). In the next section the definition and the rfactors

of symbols are discussed.

A number is anyone of the following:

a) A string of digits

b) A string of digits followed by the letter 'D'

c) A string of octal digits followed by the letter 'B'
d) A string of octal digits followed by the letter I B'

followed by a single digit.

A D-suffix indicates the number is decimal, whereas a B-suffix

indicates an octal number. If there is no suffix, then the

current radix is used to interpret the number (the current

radix is initially 10 but it may be changed by the OCT and DEC

directives). If the digit 8 or 9 is encountered in an octal

number, then an error message is typed. If the value of a

number exceeds 223_1 overflow results; NARP does not check for

this condition, and in general it should be avoided. A B-suffix

followed by a digit indicates an octal scaling; thus, 74B3=74~B.

Examples:

symbols:

numbers:

START 1M CAlCUIATE 14D2 14B10

14 18n 773B 777B5 13B9

A string constant is one of the following:

a) A string of 1 to 3 characters enclosed in double

quotes (").

b) A string of 1 to 4 characters enclosed in single

quotes (t).

2-4

In the first case the characters are considered to be 8 bits

each (thus only 3 can be stored in one machine word), while in

the second case they are considered to be 6 bits each. In both

cases, strings of less than the maximum length (3 or 4, as the

case may be) are right-justified. Thus

fA t - t A' - "'A" -" A" - '.J.}. - -. J.).

where L denotes a blank. If a string constant is too long, then

an error message is typed and only the first 3 (or 4) characters

are taken. Normally string constants are not very useful in

address computation, but are most often used as literals:

LDA WORD
SKE ='00'
BRU STOP

Both numbers and string constants are absolute, i.e., their

rfactor is zero.

2.4 Symbol definitions

Since NARP is a one-pass assembler, the statement that a

symbol or expression is "defined'! usually means that it is defined

at tha.t instant and not somewhere later in the program.. Thus,

assuming ALPHA is defined nowhere else, the following

BETA
ALmA

EQU
BSS

ALPHA
3

is an error because the EQU directive demands a defined operand

and ALPHA is not defined until the next statement. This convention

is not strictly adhered to, however, since sometimes the state

ment "XYZ is not defined" will mean that XYZ is defined nowhere

in the program.

A symbol is defined in one of two ways: by appearing a.s a

label or by being assigned a value with an EQU directive (or

2-5

equivalent ly, by being assigned a value by NARG, NCHR, EXT

(see below), or by being used in the increment list of a RPT

or CRPT statement). This latter sort of symbol is called

equated.

Labels: If a symbol appears in the la.bel field of an

instruction (or in the label field of some directives)

then it is defined with the current value of the location

counter (rfactor=l). If the symbol is already defined,

either as a label or as an equated symbol, the error

message '(Symbol) REDEFINED' is typed and the old

definition is completelY replaced by the new one.

Equated symbols: These symbols are usually defined by EQU,

getting the value of the expression in the operand field

of the EQU directive. This expression must be defined

and have an rractor in the range (-15,15]. If the symbol

has been previously defined as a label, then the error

message '(Symbol) REDEFINED' is typed and the old definition

is completely replaced by the new one; if the symbol has

already been defined as an equated symbol, then no error

message is given, and the old value and rfactor are

replaced by the new ones. Thus, an equated symbol can be

defined over and over again, getting a new value each time.

A defined symbol is always local, and may also be external.

If a symbol in package A is to be referred to from package B,
it must be declared external in package A. This is done in

one of the following ways:

Declared external by $: If a label or equated symbol is

preceded by a $ when it is defined, then it is declared external.

$IABELI LDA ALPHA
IABEL2 STA BETA IABEL2 IS LOCAL ONLY
$GAMMA EQU DELTA

2-6

Declared external by the EX(r directive: There are two cases:

i) EXT has no operand: The symbol in the label field is declared

external; it may have already been declared external or may

even have a $ preceding it.

ii) EXT has an operand: This case is treated exactly like the

case: $label EQU operand.

Certain symbols are pre-defined in NARP, i.e., they already

have values when an assembly begins and need not be defined by

the programmer':

:ZERO: This is a relocatable zero (i.e., value = 0, rfactor = 1).

:LC: This symbol is initially zero (rfactor=l) and remains

*

so until the END directive is encountered and all literals

are output, at which time it gets the value of the location

counter. See the description of FREEZE for a discussion

of the use of this symbol.

Syntactically this is not a symbol, but semantically

it acts like one. At any given moment, * has the value

of the location counter (rfactor=l), and can thus be used

to avoid creating a lot of local labels.

Thus CIA; LDX LENGTH
LOOP STA TABLE, 2; BRX LOOP

can be written as

CIA; LDX LENGTH; STA TABLE, 2; BRX *-1

If a given symbol is referred to in a program, but is not

defined when the END directive is encountered then it is assumed

that this symbol is defined as external in some other package.

Whether this is the case cannot be determined until the various

packages have been loaded by DDT. Such symbols are called

"undefined symbols" or "external symbol references. " It is

possible to perform arithmetic upon them (e .g., LDA UNDEF+l);

an expreSSion in post-fix Polish form will be transmitted to DDT.

2-7

2.5 E;pressions and literals

Loosely speaking, an expression is a sequence of constants

and symbols connected by operators. Examples:

lOO-2*ABC/[ALPHA+BETA]

GAMMA

E>=Q

Following is the formal description (in Backus normal form)

of a NARP expression:

<primarp: : :lll(number> l<string constant> '<symbol> 1*' [<expr>]

<expr>: :=<:primarp I<unary operator> <expr> I<expr> <:hinary operatOr> <expr>

<expression>::=<expr>I<literal operator> <expr>

<binary operator>::=tl*I/I+I-I<I<=I=I*I>=t>I&I! 1%
<unary operator>:: =+, -,.
<literal operator>::= =

Notice that the literal operator is rather special, only

being allowed to appear once in a given expression, and only

as the first character of the expression. Literals are

discussed in greater detail below.

The value of an expression is obtained by applying the

operators to the values of the constants and symbols, evaluating

from left to right except when this order 1s interrupted by the

precedence of the operators or by square brackets* ([,J); the

result 1s interpreted as a 24-bit signed integer. The following

table describes the various operators and lists their precedences

(the higher the precedence, the tighter the operator binds its

operands) :

* not parentheses:

2-8

Operator Precedence Comment

l' 6
* 5
I 5
+ (u) 4
- (u) 4
+ 4

4
< 3
<= 3
= 3
II 3
>= 3
> 3
& (u) 2
& 1

0
;, 0

exponentiation; exponent must be > 0
multiplication
integer division
unary plus
negation (arithmetic)
addition
subtraction
less than
less than or equal to
equal to
not equal to
greater than or equal
greater than
logical not
logical and
logical or
logical exclusive or

J
res. u1t of opera.tion is
o if relation is fa.lse,
otherwise 1

to

}

logical operation
applied to all
24 bits

The rfactor of an expression is computed at the same time

the value is computed. There a.re constraints, however, on the

rfactors of the operands of certain operators, as shown in the

table below: (Note: Rl is a symbol with an rfactor of 1, R2

is a symbol with an rfactor of 2).

relocation factor(s) relocation factor
operator of operand (s) of result examples

t 21'4=16,
Rltl(error)

& , all operands absolute absolute 7&3=3,
6&Rl(error)

/ 4/2=2,
Rl!l(error)

* at least one rractor found by multi- 3*R2 has
must be absolute, the plying the value rfactor of 6,
other is arbitrary of the absolute Rl*Rl{error)

operand time s the
rfa.ctor of the
other o-oerand

< <= = arbitrary relocation Rl=Rl is true
>= > factors, but must be absolute R2>Rl{error)

eaual
+ - found by applying Rl+R2 has
(unary and arbitrary rractors operator to the relocation
binary) relocation factors factor of 3

of the ope~ra.nds

The final rfactor of an expression must be in the range

[-8191, 8191].

2-9

If an expression contains an undefined symbol or if it is a

literal, then the entire expression is undefined.

Although a literal is a special kind of expression, it is

often convenient to think of it as a quite separate entity. The

use of literals is discussed below.

2-10

Programmers frequently write such things as

LDA FIVE

where FIVE is the name of a ce 11 containing the constant 5. The

programmer must remember to include the datum FIVE in his program

somewhere. This can be avoided by the use of a literal.

LDA =5

will automatically produce a location containing the correct

constant in the program. Such a construct is called a literal.

When a literal is encountered, the assembler first evaluates the

expression and looks up its value in a table of literals constructed

for each subprogram. If it is not found in the table, the value

is placed there. In any case the literal itself is replaced by

the location of its value in the literal table. At the end of

assembly the literal table is placed after the sub-program.

The following are examples of literals:

=10 =4B6 =ABC*20-DEF/12 ='HELP'

=2>AB (This is a conditione.l literal. Its value will
be 1 or 0 depending on whether 2>AB at assembly
time.)

Some programmers tend to forget tha.t the literal table

follows the subprogram. This could be harmful if the program

ended with the declaration of a large array using the statement

ARRAY BSS I

It is not strictly correct to do this, but some programmers

attempt it anyway on the theory that all they want to do is to

name the first cell of the array. The above statement will do

that, of course, but only one cell will be reserved for the

array. If any literals were used in the subprogram, they would

be placed in the following cells which now fall into the array.

This is, of course, an error. Other than this exception, the

programmers need not concern h~self with the locations of the

literals.

3-1

3.0 Instructions

There are three different syntactical forms of instruction

statements, depending on the class of the instruction "in the

opcode field: (In the following, syntactical elements enclosed

in square brackets are optional; they mayor may not be present.)

class~: [[$]label] opcode[*] [operand[,tag] [comment]]

class 1: [[$)label] opcode[*] [comment]

class 2: [[$]label)" opcode[*] operand[,tagl [comment]

Each of the syntactical elements is discussed below:

$ A label preceded by a dollar sign is declared external

(see section 2.4).
label The label is defined with the current value of the

location counter (rfactor=l).

opcode: The opcode must be either an instruction which is

already defined or a number. If it is a number, then

the value (mod 29) of the number is placed in b~-b8
(bit ~ through bit 8) of the instruction, and it is

treated as a class ¢ opcode (i.e., operand optional).

* . . If an asterisk follows immediately after the opcode

then b9 (the indirect bit) of the instruction is set.

operand: The operand is an expression which mayor may not be

defined and which has any rfactor. The expression may

be preceded by 'I' or ,~, (or both in any order);

these characters cause the following bits to be set:

Thus:

I bl (index bit)

b9 (indirect bit)

LDA /VECTOR is the same as
STA H?OINTER is the same as
LDA *7'CCMPLX is the same as

LDA VECTOR, 2
STA* POINTER
LDA* CCMPLX, 2

tag The tag is an expression which must be defined and

absolute. Its value (mod 23) is placed in b9S-b2 of

the instruction.

3-2

comment: The comment does not affect the instruction generated;

it may be listed.

In addition to its class, a given opcode is designated as

being either a shift instruction or a non-shift instruction.

This has nothing to do with whether the action of the instruction

involves shifting, but is simply a way of distinguishing between

two kinds of instructions. For non-shift instructions, operands
14 are computed mod 2 ,while for shift instructions there are t.wo

possibilities:

a) If the indirect bit is set by '*' or '~', then the value

of the opcode is trimmed so that b10-b23 are zero, and

then the instruction is treated as if it were a non

shift instruction.

b) If the indirect bit is not set as above, then the

operand is computed mod 29; it must be defined and

absolute.

4-1

4.0 Directives

There are many directives in NARP; although sorne of them are

similar, each in general has its own syntax. Fo11owing is a

concise sUlllll8.ry:

C1ass Directive Use or Function Section

Mnemonic for instructions: COPY Mnemonic for RCH 4.4

Data generation DATA Generate data

Value declaration

Assembler control :

ASC Generate text

(3 characters-per word) 4.1

TEXT Generate text . (4

EQU

EXT

NARG

HCHR

OPD

POPD

BES

BSS

END

DEC

OCT

FRGT

FRGTOP

!DENT

characters per word) 4.23

Equate a symbol to

a value

Define a symbol as

external

Number of arguments

Number of characters

Define an opcode

Define a programm.ed

operator

4.9

4.10

5·5
5.5
4.17

4.19

Block ending symbol 4.2

Block starting symbol 4.3
End of assembly 4.8
Interpret integers

as decimal

Interpret integers

as octal

Do not output a

specific symbol
Suppress output

of opcode

Identification of

. a package

4.6

4.16

4.12

4.l25

4.13

4-2

Class Directive Use or Function Section

DELSYM Do not output any

symbols

RELORG Assemble relative
with absolute orig~ 4.20

RETREL Return to relocatable
assembly 4.22

FREEZE Preserve symbols,
opcodes, and macros 4.11

Output and listing
control LIST Set listing controls 4.14

NOLIST Reset listing controls 4.15
PAGE Begin a new page on

the listing 4.18

REM Type out remark 4.21

Conditional assembly
and macros IF Begin if body 5·1

ELSF Alternative if" body 5·1
ELSE Alternative if body 5·1
ENDF End if body 5·1
RPr Begin repeat body 5.2
CRPr Begin conditional

repeat body 5·2

ENDR End repeat body 5·2
MACRO Begin macro body 5.4
IMACRO ALternative to MACRO 5·4
ENDM End macro body 5.4

In the remainder of this section, all directives listed

above except for those associated with conditional assembly and

macros are described.

4-3

4.1 Ase Generate text (3 characters per word)

[($]label] ASC string [comment]

This dire'ctive creates a string of 8-bit characters stored

3 to a word. The string starts in the leftmost character of a

word and takes up as many words as needed; if the last word is

not filled up completely with characters from the string, then

the right end of the word is filled out with blanks. If a label

appears, its value is the address of the first word of the

string. The syntactical element "string" is usually any

sequence of characters (not containing a single quote) surrounded

by single quotes. However, the first character encountered

after 'ASC' is. used as the string delimiter (of course, blanks

and semi-colons cannot be used as string delimiters).

Examples:

ASC
$ALPHA ASe

'NO SmGLE Q,'OOTES, HERE IS A SEMI-COLON:; t

$HERE IS A SmGLE QUOTE: '$

4-4

4.2 BES Block ending symbol

[[$] label) BES expression (comment]

The location counter is incremented by the value of the

expression in the operand field and then the label (if present)

is given the new value of the location counter. Thus, in

effect, a block of words is reserved and the label 8.ddresses

the first word after the block. The expression must be defined

and absolute. This directive is most often used in conjunction

with the BRX instruction, as in the following loop for adding

together the elements of an array:

LDX
BRX

ARRAY BES

=-LENG'I'H;
*-1; STA
LENGTH

CLA; ADD ARRAY, 2
RESULT; HLT

4-5
4.3 BSS Block starting symbol

[[$] label] BSS expression [comment]

This directive does exactly the same thing as BES except that

the label (if present) is defined before the location counter

is changed. Thus, the label addresses the first word of the

reserved block. It should be noted that the expression for both

BES and BSS m~ have a negative value, in which case the location

counter is decremented.

4.4 COpy Mnemonic for RCH

[[$]label] COPY sl,s2,s3' ... [comment]

(where s. are symbols from a special set associated with the
~

COpy directive)

4-6

The COpy directive produces an RCH instruction. It takes

in its operand field a series of special symbols, each standing

for a bit in the address field of the instruction. The bits

selected by a given choice of symbols are merged together to

form the address. For example, instead of using the instruction

CAB (04600004), one could write COpy AB. The special symbol

AB has the value 00000004.
The advantage of the directive is that unusual combinations

of bits in the address field--those for which there exist

normally no operation codes--may be created quite naturally.

The special symbols are mnemonics for the functions of the

various bits. MOreover, these symbols have this special meaning

only when used with this directive; there is no restriction on

their use either as symbols or opcodes elsewhere in a program.

The symbols are:

Symbol

A
B
AB
BA
BX
XB
E
XA
AX
N
X

Bit

23
22
21
20
19
18
17
16
15
14
1

Function

Clear A
Clear B
Copy (A) -+B
Copy (B) -+A
Copy (B) -+X
Copy (X) -+ B
Bits 15-23 (exponent part) only
Copy (X) -+ A
Copy (A) -+ X
Copy - (A) -:; A (negate A)
Clear X

To exchange the contents of the B and X registers, negate A,

and only for bits 15-23 of all registers, one would write

COPY BX,XB,N,E

4-7

4.5 ~A Generate data

[[$]label] ~A el.e2,e~,... [comment]

The DAi'A directive is used to 1l1"oduce data in programs.

Each expression in the o~rand field is evaluated and the 24-bit

values assigned to increasing memory locations. One or more

expressions lIl8¥ be present. The label is assigned to the

location of the first expression. The effect of this directive

is to create a list of data, the first word of which m~ be

labeled.

Since the expressions are not restricted in ~ w'Y, any

type of data can be created with this directive. For example:

DATA lOO,-2l7B,START,.AB*2/lEF, 'NUTS',5
creates six words.

4-8
4.6 ,;;;;11E;;;,c,.;;;,' __ In~t;:;.;e_r;;..,l;pr:;.;..;e_t.....-;i_nt;..;;..;;;.leg~e_r_s;;.......;a_s;........,;d;..;:e...;;c_im;;;;;;;;;;al;;;;

DEC [comment]

The radix for integers is set to ten so that all fol1owi~

integers (excent those with a R-suffix) are interpreted as

dec imal. lJben an assPJJlbly begins the radix is ini tiaJ.ized to

ten, so DEC need never be used unless the OCT directive is used.

4.7 DELSYM Do not output any symbols

DELS~ [comment]

If DELSYM appears anywhere in a program being assembled,

the symbol table and opcode definitions will not be output

4-9

by NARP when the END directive is encountered. The main purpose

of this directive is to shorten the object code generated by

the assembler, especially when the symbols are not going to

be needed later by DDT.

4.8 END End of assemblY

END [comment]

4-10

When this directive is encountered the assembly terminates.

If the LIST directive has been used then various information may

be listed, for example undefined symbols.

4-ll

4.9 EQU Equate a symbol to a value

($] symbol EQU expression [comment]

The symbol is defined with the value of the expression; if

the symbol is already defined, its value and rfactor are changed.

The expression must be defined and must have an rfactor in the

range [-15,15]. If the symbol has been dec lared external before

or if it has been forgotten (using FRGT) then EQU preserves this

information. Thus

$ALPHA EQU 4
ALPHA EQU 3

will cause ALPHA to be declared external but with a value of

three at the end of the assembly (provided ALPHA is not changed

again before the END directive). See section 2.4 for more

discussion of EQU.

4-12
4.10 EXT Define a symbol as external

[$] symbol EXT [expression [comment]]

This directive is used to declare symbols as external. See

section 2.4 for a discussion of the various cases.

4-13

4.11 FREEZE Preserve sytp.bols, opcodes, and macros

FREEZE [comment]

Sometimes subprograms share definitions of symbols, opcodes,

and macros. It is possib1e to cause the assembler to take note

of the current contents of its symbol and opcode tables and the

currently defined macros and include them in future assemblies,

el~inating the need for including copies of this information

in every subprogram's source langua.ge.

When the FREEZE directive is used, the current table

boundaries for sy.mbols and opcodes and the storage area for macros

is noted and saved away for later use. These tables may then

continue to expand during the current assembly. (A separate

subprogram may be used to make these definitions; it will then

end with FREEZE; END.) The next assembly may then be started

with the table boundaries returned to what they were when FREEZE

was last executed. This is done by entering the assembler

at its "continue" entry point, i.e., by typing

~ CONTINUE NARP.

Note that the assembler cannot be released (i.e., another

subsystem like QED or DDT cannot be used) without losing the

frozen information.

In conjunction with the FREEZE directive, the predefined

symbol :1'£: is useful, especially when writing large

re-entrant programs. Following is a three-package program

us ing FREEZE and : 1'£ : •

Pl IDENT

P2

<definitions of macros, opcodes, and global equated
symbolS>

<definition of working storage (i.e., read-write
memory»

FREEZE
END

IDENT
BSS :I.C:-:ZERO:
<read-only code>
END

Pl IDENX
BSS :LC:-:ZERO:
<rea.d-only code>
END

4-14

The FREEZE directive at the end of Pl preserves all the

definitions in this package so they can be referenced in packages

P2 amd P3. By including the definitions of all the working storage

cells in the preserved definitions, these s.y.mbols need not be

declared as external. Al.so, it makes "external" arithmetic on these

symbols l)ossible in P2 and P3, and it reduces .the number of'

undefined symbols 'Printed at the end of an assembly. Packas:es

P2 and P3 start with the rather l)eculiar looking BRS in order

to set the location counter so that references between the

packap:es will be correct. This is the main pur'DOse of' :1£:,

it saves the final value of the location counter from the

-previous pack~e for use by the current pack~e. In order for

this scheme to work" all. three packages must be loaded 'at the

same location, usua..lly 0 for large re-entrapt programs.

Assume ALPHA is a symbol defined in Pl. Unless some

special action is taken, ALPHA will be output to DI7!' three times,

once at the end of Pl, once at the end of P2, and once at the end

of' P3. To avoid this, all symbol and opcode definitions are

marked a:rter they have been output once so that they won't be

output again •.

4.12 FRGT Do not output a specific symbol

FRGT s1,s2' •.• (comment]

4-15

The symbols si (which must have been previously defined)

are not output to DDT. FRGT is especially useful in situations

where symbols have been used in macro expansions or conditional

assemblies, and have meaning only at assembly time. When DDT

is later used, memory locations are sometimes printed o~t in

terms of these meaningless symbols. It is desirable to. be

able to keep these symbols from being delivered to DDT, hence

the FRGT directive.

4.125 FRGTOP Forget selected opcodes

FRGTOP s1,s2' .. · (comment)

4-16

The s. must be opcodes. The specified opcodes are marked
l.

as forgotten and will not be output to DDT. Since DDT knows

in advance about the standard instruction set (e.g.,. LDA, BRS,

CIO), FRGTOP or such opcodes has no effect. It fol1ows that

the chief use of FRGTOP will be to suppress output of opcodes

generated by OPD and roPD.

FRGTOP does not take a label.

4-17

symbol IDENT [cOImnent]

The symbol in the label field is delivered to DDr as a

special identification record. DDT uses the IDENT name in con

junction with its treatment of local symbols: in the event of

a name conflict between local symbols in two different subprograms,

DDr resolves the ambiguity by allowing the user to concatenate

the preceding lIENT name with the symbol. in question. Also,

during an assembly the first six characters of the symbol followed

by the word t IDElf.l" are typed on the teletype to show the user

what package is being assembled. The -progress of an assembly

can be followed by placing lDEN'l' t S at various points in the

package.

4.135 LIBEXT Specify library symbol

Symbol LIBEXT [comment]

4-18

This directive ca.uses "symbol" to be output to the binary

file, marked as a special "library-symbol." The resulting

binary file must then be mauled by a library-making program

before it will be intelligible to the loader in DDT.

The library-maker takes a binary file and moves all of the

library-symbols to the beginning of the program, and puts the

result on a file as a "library-program." When a "library-fil-e"

(which contains one or more library-programs) is loaded into

DDT, the loader scans the list of library symbols before each

library-program. If any of them is currently undefined (i.e.,

referenced but notdefined in previously loaded programs), the

associated library-program is loaded normally; otherwise, it

is not loaded.

For example, one could write a sine and cosine library program:

SIN LIBEXT

*SINE ROt1rINE: ANGLE IN RADIANS
$SIN ZRO SINX

(sine routine code)

COS LIBEXT

*COSINE ROUTINE: ANGLE IN RADIANS
$COS ZRO COSX

(cosine routine code)

END

Assemble it with NARP and use the library-maker to put it on

a library-file as a library-program. Then, if either "SIN"

or "COS" is undefined when the library-file is loaded, both

the sine and cosine subroutines will be loaded, and the symbols

"SIN" and "COS" defined as the entry points of the routines

(respectively). (If one desired to have them load independently,

each subroutine could be made into a separate library-program.)

(Note: The library-program is loaded normally once the decision

to load it has been made; thus, undefined library-symbols will

only be defined and linked in previously-loaded programs. if they

are defined and made external in the library-program in the

usual fashion (as in the example).)

4-20

4 .14 _L.;;;.IS_T ____ S_et_l....;i;....s....;t __ in~g_c.;_.o_n_t..;..r_o.;..;;l_s

4.15 NOLIST Reset listing controls

f LIST} [sl' •••
L NOLIST

[comment]]

There are various booleans which control the format in

which statements are 1isted (certain fields and/or certain

kinds of statements may be suppressed, or listed selectively).

The user is allowed to set (or reset) these booleans via the

LIST (or NOLIST) command. Each of the S. may be one of the
~

following special symbols:

s. Set (or reset)
J.

LeT

SLCT

VAL

SRC

COM

CALL

DEF

EXP

SKIF

EXT

What is (or is not) listed

the current value of the location
counter, in octal

the symbolic a.ddress of the current
value of the location counter

the value of the statement, if it is
one of the directives: EQU, NCHR,
NARG, IF, ELSF. (in octalY

the symbolic source code

the comment field of a. statement, a
comment statement

macro and RPr calls

MACRO and RPr definitions

macro and RPI' expansions

the skipped parts of an IF statement

external symbol references {at the
end of the assembly

In addition, s. may be "ALL", which will cause all of the
l.

booleans in the table to be set (or reset).

4-21

If a LIST (or NOLIST) directive is encountered for which

no arguments (s.) have been specified, NARP will begin (or
l.

cease) listing statements on the LISTING FILE (the teletype,

in case no other listing file is specified when the assembly

is begun) according to the current settings of the" listing

booleans. Including "GO~' among the arguments for a LIST

(or NOLIST) will have the same effect.

When NARP is called, the listing booleans are initialized

as follows:"

Set: LCT, VAL, SRC, COM, CALL, DEF, EXP, EXT

RESET: SLCT, SKIF

and NARP is in its "no list" state, i.e., listing will not

be started"unless (and until) the program initiates it with,a

LIST directive.

Exampl.es of the LIST directive:

NO LIST
LIST

ALL Resets all format booleans
SRC, GO Sets SRC boolean and starts listing.

(only the source code will be listed)

Examples of listing format:

LCT SLCT VAL SRC COM

r OO~17 (A)~ '~ '--A----4;-U---6/-2----1p==t:~(-sET A) ,,\,

00117 (HERE) HERE LDA A*B,2
00l.2O (HERE+l) CLB

4-22

4.16 OCT Interpret integers as octal

OCT [comment]

The radix for integers is set to eight so that au following

integers (except those with a D-suffix) are interpreted as octal.

4-23

4.17 OPO Define an opcode

symbol OPD value(,class[,shift kludge]]

The symbol in the label field is defined as an opcode with

a val.ue equal to the first expression in the operand field. All

expressions in the operand field must be defined and absolute; if

an optional. expression does not appear then the value 0 is assumed.

value computed mod 224 (see important note below)

class

shift kludge:

must have a value of 0,1, or 2:

o - the opcode may or m~ not have
an operand

1 - the o~code does not take an
operand

2 - the opcode requires an operand

must have a val.ue of 0 or 1:

o - non-shift instruction
(see section 3)

1 - shift instruction (see section 3)

Note: Although an opcode that takes operands can be defined with

bits blo-b23 set, the u~er must be careful of what he is doing.

In partiauJ.ar. if such an opcode anpp8rs in an instruction which

contains a literal or a~ undefined value then bits blo-b23 of the

opcode are set to 7.eTO.

If the symbol in the label field is alrea~ defined as an

oncode then the old definition is lost.

Examples:

ADD OPD 055:85,2
CIA OPD 0460000lB,l

RCY OPD 0662:84,2,1
NOP OPD 020:85

4-24

4.19 POPD Define a programmed operator

symbol POPD value[,class[,shift kludge]]

This directive does exactly what OPO does with one addition:

The instruction BRU* is placed in the memory location whose

address is in b2-b8 of the value given to the symbol (this

address must be in the range [lOOB, l77B]). Thus

MIN
IMIN

POPD
SKG*
BRR
LDA*
BRR

lOOB) ,2
o
o
o
o

THE CALL t MIN ALPHA' WILL
CAUSE THE MINlMUM OF
A-REG AND ALPHA TO BE
LEFT m A-REG.

will cause BRU !MIN to be loaded in word lOOB.

4-25
4.20 RELORG Assemble relatIve with absolute origin

RELORG expression [comment]

On occasion it is desirable to assemble in the midst of

otherwise normal program a batch of code which, although loaded

in o~re in one position, is destined to run from another position

im memory _ (It will first be moved there in a block.) This is

:pa.rticuJ.arly useful when prepar it¥!: program overlay~ _ 'l'he

expression in the operand field (which must be absolute and

defined) denotes an origin in memory. The following occurs when

the directive is encountered:

a.) The current Talue of the location counter is saved, and

im its place is put the absdlute origin (i.e., the

value of the expression) _ This f'act is not revealed

to DDl', however, so during loading the next instruction

assembled will be placed in the next memory cell available

as if nothing had happened.

b.) The mode of assemb~y is switched to absolute, i.e., all

symbols defined in terms of the location counter will

be absolute.

It is possible to restore normal relocatable assembly ·(see section

4.22).

As an example of' the use of RELORG, consider a program

beginning with REWRG 300B. The assembler's outJ>Ut represents

an absolute urogram whose origin is 0030°8' but which can be

loaded anywhere using n.I1.r in the usual fashion. Of course,

before executing the program it will be necessary to move it to

location 003,008 -
As another example, consider the following use of RELORG and

RETREL:

<normal relocatable -program>

RELORG IOem

<absolute program with ori~in at 10aH>

RELORG 200B

<absolute program with origin at 200B>

RETREL

<normal. relocatable prOgram>

RELORG 300B

<absolute program with origin at 100B>

END

4-26

4-27

4.21 REM Type out remark

REM text

This directive causes the text in its operand and comment

fields to be typed out either on the teletype or whatever file

has been designated as the text file (see section 6.2). This

typeout occurs regardl.ess of what listing controls are set. The

directive ~ be used for a variety of purposes: It·may inform

the user of the progress of assembly; it m~ give him instructions

on what to do next (this might be especially nice for complicated

assemblies); it might announce the last date the source language

was updated; or it might be used within complex macros to

show which argument substrings have been created during

expansion of a highly nested macro (for debugging purposes).

4-28
4.22RETREL Return to relocatable assembly

RETREL [comment]

This directive is used when it is desired to return to

relocatable assembly after having done a RELORG. It is not

necessar,y to use RETREL unless one desires more relocatable

program. An example of the use of RETREL is shown in section

4.20. The effects of RETREL are

a.} to restore the location counter to the value it would

have had if the RELORG (s) had never appeared, and

b.) to return the assembly to relocatable mode so that

labels are no longer absolute.

4.23 TEXT Generate text (4 character per word)

[[$)labe11 TEXT string [comment]

This directive is exact~ the same as ASC (see section 4.1)
except that characters are taken as six bits each and are stored

four to a word.

5-1

:; . 0 Conditional assemblie.s and macros

5 .1 IF, ELSF, ELSE, and ENDF If statements

It is frequently desirable to permit the assembler either to

assemble or to skip blocks of statements, depending on the value of

an expression at assembly time. This is primarily what is meant

by conditional assembly. In NARP, conditional assembly is done

by using either an if'statement or a repeat statement.

The format of an if statement is

IF expression (conment]

< if body>

ENDF [comment]

The if body is any block of NARP statements, in particular, it may

contain directives of the form

ELSF expression (comnent]

and

ELSE [coument]

If the operand of IF is true, then the block of code up to the

matching ENDF (or ELSF or ELSE) is processed; otherwise, it is

skipped. The values for true and false are:

true value of expression > t/J
false value of expression < t/J

Examples:

IF l>¢
LDA ALPHA -i

STA BETA } processed

ENDF

IF '/J
LDA GAMMA J skipped
STA DELTA
ENDF

5-2

Often there are more than two alternatives, so the ELSF

directive is used in the if body_ When ELSF is encountered while

skipping a block of statements, its operand is evaluated (just

as for IF) to decide whether to process the block following the

ELSF.

Examples:

IF ¢ > 1
LDA ALPHA skipped
ELSF 1> ¢
LDA BETA processed
ENDF

IF ¢ > 1
LDA ALPHA skipped
ELSF '/J > 1
LM BETA skipped
ENDF

IF 1 > ~
LDA ALPHA processed
ELSF 1 > ~
LDA BETA skipped
ENDF

IF ¢ > 1
LDA ALPHA skipped
ELSF 1> ¢
LDA BETA processed
ELSF 1> ¢
LDA GAMMA skipped
ENDF

From the last two examples above it should be clear that either

no blocks are processed or precisely one is; thus, as soon as one

block is processed, all following blocks are skipped regardless

of whether the ELSF expressions are true.

5-3

An ELSE directive is equivalent to an ELSF directive with a

true expression.

Example:

IF
LDA
ELSE
LDA
ENDF

¢ > 1
ALPHA

BETA

skipped

processed

As a more general example, consider the following:

IF el

<body 1>

ELSF e2

< body 2 >

ELSF e3

<body 3>

ELSE

< body 4 >

ENDF

There are four possibilities:

a) el > ~

b) el ~ ~, e2 > r/J

c) el :s~, e2:S r/J,
e3 > r/J

d) el :s ~, e2 ~ r/J,
e3 ~ ~

process body 1, skip the other three

process body 2, skip the other three

process body 3, skip the other three

process body 4, skip the other three

The bodies between the IF, ELSF, ELSE, and ENDF directive s

may contain arbitrary NARP statements, in particular they may
contain other if statements. This nesting of if statements may

go to any level.

When evaluating the expression in the operand field of IF or

ELSF, all undefined symbols are treated as if they were defined with

value -1. These expressions must be absolute.

5-4

5 . 2 RPI', CRPr, andENDR Repe&t statements

A repeat statement is a means of processing the same text many

time s . The format is

[[$]label] RPT expression[,increment list] [comment]

< repeat body >

ENDR [comment]

The value of the RPr operand (which must be defined and absolute)

determines how ma.ny times the repeat body will be processed, while

the increment list (described below) is a mechanism to allow the

values of various symbols to be changed each time the repeat body

is processed.

Example:

ABC RPI'
DATA
ENDR

This is equivalent to

ABC DATA
DATA
DATA
DA'rA

4
o

o
o
o
o

An increment list has the form (s=el[,e2]) ••• (s=el[,e2])

where s stands for a symbol and el and e2 denote expressions

(which must be absolute; undefined symbols are treated as if they

were defined with the value -1). Before the repeat body is processed

for .the first time, each symbol in the list is given the value of

its associated el. Thereafter, each symbol is incremented by the

value of its associated e2 just before the repeat body is processed.

If e2 is missing, the value I is assumed. There is no limit on

the number of elements that may appear in an increment list.

5-5

Examp~e:

RPT 3, (I=4)(J=O,-l)
DATA I
DATA J*I+l
ENDR

This results in code equiva~ent to the fo1~owing:

DATA 4
DATA 0*4+1 =1
DATA 5
DATA -1"*5+1 =-4
DATA 6
DATA -2*6+1 =-11

There is another format for RPT:

[[$]labe1] RPT (s=e~[,e2],e3)[increment list] [comment]

In this case, the number of times the repeat body is processed is

determined by the construct (s=e1[,e2],e3). This is the same as

an increment list except that it includes a third expression

(which must be absolute; all undefined symbo1s are treated as if

they were defined with the value -1), namely a bound on the va1ue

of the symbol. As soon as the bound is passed, processing of' the

repeat body stops. In the example above, the same effect could

have been achieved by writing the head of the repeat statement as

RPr (J=O, -1, -2XI=4)

or as

RPI' (I=4,6XJc:O,-1)

Note that the bound does not have to be positive or greater than

the initial value of the symbol being incremented; the algorithm

for determining when the bound has been passed is given below.

Occasionally one wishes to perform an indefinite number of

repeats, terminating on an obscure condition determined in the

course of the repeat operation. The conditional repeat directive,

CRPT, serves this function. Its effect is like that ofRPT (and

5-6

its repeat body is also closed orf with an ENDR) except that instead

of giving a number of repeats, its associated expression is evaluated

just prior to each processing of the repeat body to determine

whether to process the block. As for IF, > 0 means true, :5 0 means

false; the expression must be defined and absolute each ttme it is

evaluated. The form is

(($)label] CRPI' expression(,increment list] (comment]

For example, one may write

CRPI' X > Y

or

CRPI' STOP, (X=1,2) (Y=-3)

Note that the statement

CRPl' 10

will c4use an infinite number of repeats.

The following flowcharts describe precisely the a.ctions of

the various repeat options:

RPI' expression[,increment list]

count::: value of expression

skip the wh01
repeat block

yes no initialize symbols in increment
list;evaluate all e2 expressions

process the repeat body

increment the symbols in
the increment list

count:s count-l

yes no

,
• I

The el and e2 expressions
are evaluated just once.

yes

5-7

RPT (S=el[,e2],e3)[increment list]

evaluate e2 and e3;
initialize symbols in ~ - -
increment list; evaluate
all e2 expressions.

process the repeat block

increment the symbols in
the increment list

All expressions are
evaluated just once.

no

5-8

CRPI' expression{,increment list]

initialize symbols in increment
list; evaluate all e2 expressions;

expression >

yes

the repeat block

increment the symbols in the increment
list

All el and e2 expressions
are evaluated just once

This expres s ion is eval
uated over and over again
and, of course, the values
of the symbols in this.
expression may change from
one evaluation to the next.

The contents of a repeat body may contain any NARP code, in

particular it may contain other repeat statements; the nesting of

repeat statements may go to any level.

5-9

5.3 Introduction to macros

On the simplest level a macro name may be thought of as an

abbreviation or shorthand notation for one or more assembly

language statements. In this respect it is like an opcode in that

an opcode is the name of a machine command and a macro name is

the name of a sequence of assemb~ language statements.

The 940 has an instruction for skipping if the contents of

a specified location are negative, but there is no instruction

for skipping if the accumulator is negative. The instruction

SKA (skip if memory and the accumulator do not compare ones) will

serve when used with a cell whose contents mask off all but the Sign

bit. The meaning of SICA. when used with such an operand is It skip

if A is

However,

wants to

positive" . Thus a programmer writes

SICA =4B7
BRU NEGCAS NEGATIVE CASE

it is more than likely the case that

skip if the accumulator is negative.

SKA =4B7
BRU *+2
BRU POSCAS rosrrIVE CASE

the programmer

Then he must write

Both of these situations are awkward in terms of assembly language

programming.

But we have in effect just developed simple conventions for

doing the operations SKAP and SRAN (skip if accumulator positive

or negative). Define these operations as macros:

SKAP

SKAN

MACRO
SKA
ENlM

MACRO
SKA
BRU
ENIM

:4B7

=4B7
*+2

Now, more in keeping with the operations he had in mind, the

Programmer may write

A22 SKAN
BRU POSCAS

5-10

The advantages of being able to use SKAP a.nd SKAN should be

apparent. The amount of code written in the course of a program

is reduced; this in itself tends to reduce errors. A greater

advantage is that SKAP and SKAN are more indicative of the action

that the programmer had in mind, so that progr~s written in this

way tend to be easier to read. Note, incidentally, that a label

may be used in conjunction with a macro. Labels used in this way

are usually treated like labels on instructions; they are assigned

the current value of the location counter. This will be discussed

in more detail later.

Before discussing more complicated uses of macros, some

additional vocabula.ry should be established. A macro is an

arbitrary sequence of assembly language statements together

with a symbolic~. During assembly, the macro is stored in an

area of memory called the string storage. Macros are created

(or, as is more frequently said, defined) by giving a name and the

associated sequence of statements. The name and the beginning

of the sequence of statements s.re designated by the MACRO directive:

name MACRO

ENJl.1:

The end of the sequence of statements is indicated by the ENDM

directive.

Refer to figure 1. Vlhen the assembler encounters a. MACRO

directive, switch B is thrown to position I so that the macro

is simply copied into the string storage; note tha.t the assembler

does no normal processing but simply copies the source language.
--, .

When the ENII-f terminating the macro definition is encountered,

switch B is put back to position ~ and the assembler goes on

processing as usual.

It is possible that within a. macro definition other definitions

Figure 1: Information flow Durine Macro Processing

BINARY
MACHINE

LANGUAGE

~SSEMBLER I
----a

o

1

5-11

.----------~------~

t

i l SOURCE I LANGUAGE 1---_-l'>~-_-J

A B Effect

0 0 normal assembly
0 1 macro definition
1 0 macro expansion
1 1 macro definition during

macro expansion

5-12

may be embedded. The macro defining machinery counts the

occurrences of the MACRO directive and matches them against the

occurrences of ENDM. Thus switch B is actually placed back in

position 0 only when the ENDM matching the first MACRO is

encountered. Therefore, MACRO and ENm are opening and closing

brackets around a segment of source language. Structures like

the following are possible:

name 1 MACRO------~

name 2

name 3

name 4

name 5

MACRO

ENDM

::OJ
ENDM-----

The utility of this structure will not be discussed here. Use

of this feature of imbedded definitions should in fact be kept

to a minimum since the implementation of this assembler is such

that it uses large amounts of string storage in this case. What

is important, however, is an understanding of when the various

macros are defined. In particular, when name 1 is being defined,

name 2, 3, etc., are not defined; they are merely copied into

string storage. Name2, for example, will not be defined until

namel is expanded. (It should be noted that macros, like

opcodes, may be redefined.)

The use of a macro name in the opcode field of a statement

is referred to -as a ~. The assembler, upon encountering a macro

call, moves switch A to position 1 (see figure 1). Input to the

assembler from the original source file temporarily stops and comes

fnstead fiom string storage. During this period the macro is said

to be undergoing expanAion. It is clear that a macro must be

defined before it is called.

An expanding macro may include other macro calls, and these,

in turn, may call still others. In fact, macros m~ even call

themselves; this is called recursion. Examples of the recursive
use of macros are given later. When a new macro expansion begins

5-13

within a macro expansion, informa.tion about the progress of

the current expansion is saved. Successive macro calls cause

similar information to be saved. At the end of each expa.nsion

the information about each' previous expansion is restored. When

the final expansion terminates, switch A is placed back in

position 0, and input is again taken :from the source file.

Now let us carry our example one step further. One might

argue that the a.ction of skipping is itself awkward. It might

be preferable to write ma.cros BRAP and BRAN (branch to specified

location if contents of accumulator are positive or negative).

How is one to do this? The location to which the branch should

go is not known when the macro is defined, in fact, different

locations will be used from ca.ll to ca.ll. The macro processor,

therefore, must enable the programmer to provide some of the

information for the macro expansion a.t ~ time. This is done

by permitting dummy arguments in macro definitions to be replaced

by arguments (i.e., arbitrary substrings) supplied at call time.

Each dummy argument is referred to in the macro definition by a

subscripted symbol. This symbol or dummy ~ is given in the

operand field of the MACRO directive.

Let us define the macro BRAP:

BRAP MACRO
SKAN
BRU
EN1J.1

IABEL

IABEL(I)

When called by the statement 'BRAP POSCAS~ the macro will

expand to

SKA
BRU
BRU

=4B7
*+2
POSCAS

Note that BRAP was defined in terms of another macro, SKAN. Also

note that as defined BRAP was intended to take only one argument;

other macros may use more than one argument.

5-14

The macro CBE (compare and branch if equal) takes two

arguments. The first argument is the location of a cell to be

compared for equality with the accumulator; the second is a

branch location in case of equality. The definition is

CBE MACRO D
SKE D(l)
BRU *+2
BRU n(2)
ENDM

When CBE is called by the statement

CBE ~21B,EQLOC

the statements generated will be

SKE =21B
BRU *+2
BRU EQLOC

Note that in the macro call, the arguments are separated by

commas.

The following sections describe macro definitions and

calls in more detail.

5-15

5.4 MACRO, LMACRO, and ENDM Macro definition

The form of a macro definition is:

name [dummy[,generated,expression] [comment]

where ~, generated, and dummy are all symbols, and expression

is an expression.

LMACRO is completelY equivalent to MACRO except that if

name is defined as a macro with MACRO the construct

label name arguments

will automatically cause label to be defined as the current

value of the location counter, whereas if name were defined

with LMACRO this automatic definition of label would not

occur.

Some details of the definition

If generated appears , it should not be the same symbol

as dummy, and neither of them should be "MACRO", "IMACRO", or

"ENDM. n

If name is already defined as an opcode, the old definition·

is completely replaced by the new.

If the MACRO (or LMACRO) directive has no operand, then

name is defined as an opcode that takes no operands. Otherwise,

~ becomes an opcode that mayor may not take an operand.

Whole-line comments (lines beginning with *) in the macro

body are not saved in string storage as part of the macro

definition, but comments following instructions are. Thus, it

behooves the programmer to avoid the latter, as they eat

string storage.

5-16

When a macro body is placed in string storage, superfluous

blanks are removed. Thus, any contiguous string of blanks is

compressed to one blank with the following exceptions:

a) Blanks enclosed in single quotes (t) are not compressed.

b) Blanks enclosed in double quotes (") are not compressed.

c) Blanks enclosed in parentheses are not compressed. In

this use, the nesting of parentheses is taken into

account, but a parenthesis between single or double

quotes is not considered as part of the nesting

structure.

In most cases the programmer need not worry about these

conventions, although there are times when he may get pinched.

For example, if

appears in a macro definition, it will be expanded as

To avoid such problems use

Ase 'A.l.l~B t

5-17

5.4.1 Dummy arguments

The dummy argument specified as an operand of the MACRO

directive may appear anywhere in the macro body, followed by a

subscript. At call time the subscript is evaluated and its value

is used to select the appropriate argument supplied in the call.

Before describing the various kinds of dummy arguments a few

conventions are needed:

a) In the following, "argument" will refer to the character

string as given in the macro call after possible enclosing

parentheses have been removed (see section 5.6 for the

format of argument strings).

b) The number of arguments supplied by the call is n(~O).

c) The number of characters in argument ei is n(ei).

d) The structure ei for i an integer stands for an expression.

(However, its value stands for some argument usually, so

ei will be used somewhat ambiguously to stand for an

expression or the value of an expression.) The first

argument in a call is numbered 1.

e) The dummy argument is assumed to be lin".
With the above in mind, we consider the three forms of dummY

arguments:

1) D(el)

This expands to argument el (which may be the null string), where

o ~ el ~ n. (If el = 0 then D(el) expands to the label field of

the macro call; see section 5.6.)
Special notation: D() = D(l)

2) D(el,e2)

IT el > e2 then this expands to the null string (range ·of values

of el and e2 is arbitrary), otherwise, this expands to argument

el through e2, where 0 ~ el ~ e2 ~ n, with each argument enclosed

in parentheses and a comma inserted between each argument. For

example, D(3,3) = (D(3»).

Special notation: D(,) = n(l,n)

n(,el) = n(l,el)

n(el,) = n(el,n)

3) D(el$e2,e3)

In all cases, o::s. el :s n must be true. If e2 > e 3 then this

expands to the null string (range of values of e2 and e3 is

arbitrary), otherwise, it expands to characters e2 through e3 .

5-18

of argument el, counting the first character of an argument as

character 1. If either e2 or e3 lies outside the argument, then

the nearest boundary is chosen. To be more precise, before using

e2 and e3 to select the piece of argument el that is desired, the

following transformation is made:

e2:.::

e2:=

max (l,e2); e3: s

min (n(el), e2); e3:=

max (1, e3);

min (n (el) , e 3) ;

If argument el is the null string, then the dummy argument expands

to the null string regardless of the values of e2 and e3.

Special notations:

D(el$,) = D(el$l, n(el» = D(e1)

D(el$,e2) = D(el$l,e2)

D(el$e2,) = D(el$e2,n(el»

D(el$e2} = D(el$e2,e2)

D(el$) = D(el$l) = D(el$l,l)

In any of the six forms mentioned above, el may be missing;

if so, 1 is assumed. E.g., D($) = D(l$l,l).

A general rule which will help in remembering what the special

notations mean is the following: '~enever an expression is

missing from a form, the value 1 is assumed unless the expression

is missing from a place where an upper bound is expected (as in

D(3,) or D(3$2,), in Which case the largest 'reasonable' value is

assumed. tt

In any of the above three cases, if an expression which

designates an argument is out of range, then an error message is

typed and argument 0 is taken.

Following is an example of the various forms of dummy

arguments:

Macro definition:

XAMPLE D
D() D(O)
'D(2,4)'

5-19

MACRO
D(2)
ASC
TEXT
Ase
Ase
ENlM

'D(4,)' n(-3,-4) NULL STRING

Macro call:

BETA XAMPLE

Macro expansion:

BETA ADD
ASC
TEXT
ASC
Ase

'D(1$3,4) ,
'D(2$-3,18) ,

ALPHA,ADD,GAMMA,DELTA

ALPHA BETA
I (GAMMA), (DELTA) ,
, (DELTA)' NULL STRING
'PH' ,
'ADD'

5-20

5 .4.2 C'J€nera:L~rl symbols

A macro should not, of course, have in its definition an

instruction having a. label. Successive ca.lls of the macro would

produce a multiply-defined symbol. Sometimes, however, it is

convenient to put a label on an instruction within a macro.

There are at least two ways of doing this. The first involves

transmitting the label as a macro argument when it is called.

This is most reasonable in many cases; it is in fact often

desirable so that the programmer can control the label being

defined and can refer to it elsewhere in the program.

However, situations do arise in which the label is used

purely for reasons local to the macro and will not be referred

to elsewhere. In cases like this it is desirable to allow for

the automatic creation of labels so that the programmer is freed

from worrying about this task. This ma.y be done by means of the

generated symbol.

A generated symbol ~ ~ay be declared when a macro is

defined, specifying the n8Jl1.e a.nd the maximum number of generated

symbols T"rhich will be encountered during an expansion. These

two items follow the dtwwy symbol name given in the MACRO directive

(as shown in section 5.4 above) if the programmer wishes to use

generated symbols in a macro. For example,

MUMBLE MACRO D,G,4

< macro body >

ENDM

might contain references to G(l), G(2), G(3), and G(4), these

being individual generated symbols.

With regard to generated symbols the macro expa.nsion machinery

operates in the following fashion: A generated symbol ~ value

for each macro is initialized to zero at the beginning of assembly.

As each generated symbol is encountered, the expression constituting

its subscript is evaluated. This value is added to the base

value, and the sum is produced as a string of digits concatenated

to the generated symbol name; the first digit is always 0 to

reduce the likelihood of the generated symbol being identical to

5-21

a normal symbol defined elsewhere by the programmer. Thus, the

first time MUMBLE is called, G(2) will be expanded as G¢2, G(4)

as ~, etc.

At the end of a macro expansion, the generated symbol base

value is incremented by the amount designated by the expression

following the generated symbol name in the MACRO directive. This

is 4 in the case of MUMBLE. Thus, the second call of MUMBLE will

produce in place of G(2), G¢6, the third call will produce G¢1~,

etc. It should be clear that the generated symbol name shoUld

be kept as short as possible.

The expression in the macro head (call it m) must have a

value in the range [1,1023]. A generated symbol subscript must

have a value in the range [l,m].

5-22

5.4.3 Concatenation

Occasionally, it is desirable to have a dummy argument follow

immediately after an alphanumeric character, for example, to

have D(l) follow just after ALPHA. But then the assembler

would not recognize the dummy because it would see ALPHAD(l)

instead of D(l). To get around this problem the concatenation

symbol '.&' is introduced. Its sole purpose is to separate a

dummy argument (or conceivably a generated symbol) from a preceding

alphanumeric character during macro definition. Thus, the example

becomes ALPHA.&D(l). The concatenation symbol is not stored in

string storage so it does not appear during expansion.

As an example, say that we wish to define a macro STORE,

and suppose we have established the convention that certain

temporary storage cells begin with the letters A, B, or X

depending on what register is saved there. The definition is:

STORE MACRO D
ST.&D($) D(l)
ENIM

If called by the statements

STORE Bl7
STORE x44

the macro will expand as

STB Bl7
STX x44

The concatenation symbol may appear anywhere in a macro

definition, but it is only necessary in the case described above.

If one macro is defined within another, any concatenation symbols

within the inner macro will not be removed during the definition

of the enclosing macro.

5-23

5.4.4 Conversion of a value to a digit string

As an adjunct to the automatic generation of symbols (or

. for al\Y other purposes for which it may be suited) a capability

is provided in the assembler t s macro expansion machineT.'r for

conversion of the value of an expression at call time to a

string of decimal digits. The construct

($expression)

will be replaced by a string of digits equal to the vailue of

the expression. For example, if X=5 then

AB($2*X+l)

will be transformed into

ABll

If the value of the expression is zero then the digit string is

'0'; if it is negative then the digit string is preceded by a

minus sigD.

This convprsion scheme can also be used inside repeat blocks;

for example

RPI'
TEMP($I) BSS

ENDR

(1=1,10)
1

creates 10 cells labelled TEMPl through TEMPlO.

5-24

5.4.5 A note on subscripts

The expressions used as subscripts for dummy arguments

and generated symbols, as well as the expressions used in the

conversion to a digit string must be absolute. Any undefined

symbo1s appearing in these e~essions are treated as if they

were defined with the value -1. These expressions may themselves

contain dummy arguments, generated symbols, and ($...), so

constructs like ($4+n(I*n(3») are possible.

5-25

5.5 NARG and NCHR Number of argqments and number of characters

Macros are more useful if the number of arguments supplied

at call time is not fixed. The precise meaning of a macro (and

indeed, the resuLt of its expansion) may depend on the number or

arrangement of its arguments. In order to permit this, the

macro undergoing expansion must be able to determine at call time

the number of arguments supplied. The NARG directive makes this

possible.

NARG functions like EQU except that no expression is used

with it. Its form is

[$] symbol NARG [comment]

The function of the directive is to equate the value of the symbol

to the number of arguments supplied to the macro currently

undergoing expansion. The symbol can then be used by itself or

in expressions for any purpose. NARG may appear in any macro,

even one which has no dUIrlMY argument (and thus never has any

arguments at call time); it is an error for NARG to appear outside

a macro.

It is also useful to be able to determine at call time the

number of characters in an argument. NCHR functions by equating

the symbol in its label field to the number of characters in its

operand field. Its form is

[$] symbol NCHR [character string [comment]]

where "character string" has exactly the same form as an argument

sup~lied for a macro call, i.e., if it involves blanks, commas,

or semi-colons it should be enclosed in parentheses (see section

5.6) . NC'AR can appear anywhere, both in~ ide and out s ide macros,

but it is most usefUl in macros for determining the length of

arguments.

F.xam-ples:

A
B
C

NeHR
NCHR
NCHR

ABCDF.F
("XYZ,,)
n(I)

A:=6
B:=7
C:=?

5-26

5.6 Macro calls

The format of a macro call is:

[[$) label] lJ,lacroname [argstring] [comment]

Such a call causes the macro whose name appears in the

opcode field to be expanded, with the dummy a.rguments in the

macro body replaced by the actual arguments of the argstring.

The label field is always transmitted as argument 0, so

that D(el),where el has value 0, is always legal inside a macro.

An occurrence of D(el), where el=O, will be replaced by the

label field. If the label field is empty, then n(el) expands

to the null string. At most seven characters will be transmitted

this way: the first six characters of the symbol in the label

field, preceded by '$' if the label field begins with '$ t •

If the user wishes to transmit an argument to a macro in

the label field of the macro call, but does not wish to have

the symbol in this field defined, he should define the macro

with LMACRO rather than MACRO. (See section 5.4) An example:

NT !.MACRO D
RPI' D(l)
DATA n(2)
ENDR

n(o) DATA -D(l)
ENDM

when called by:

DTE NT 4,4B7

expands as:

DATA 4B7
DATA 4B7
DATA 4B7
DATA 4B7

DTE DATA -4

Notice that this would have caused a doubly-defined symbol

error had MACRO been used rather than LMACRO.

5-27

A macro call mayor may not have an arg string (see section

5.4). If an arg string is present, it may contain any number

of arguments, in fact, more than are referred to by the macro.

Before describing an arg string, the following should be

noted: blanks, commas, semi-colons, and parentheses that are

enclosed in single or double quotes are treated exactly like

ordinary characters enclosed in quotes; they do not serve as

terminators, separators, delimiters, or the like. In effect,

when the argument collector in NARP is collecting arguments

for a macro call, the occurrence of a quote causes it to stop

looking for special characters except for a matching quote (and,

of course, carriage return, which is an absolute terminator).

A single quote enclosed in double quotes is not a special

character and vice versa. Thus, when a blank, comma, semi-colon,

or parenthesis is referred to in the following, it is under

stood that it is ~ enclosed in quotes.

An arg string for a macro call has the following format:

<arg>,<arg>, ••. ,<arg> <terminator>

where a terminator is a blank, semi-colon, or carriage return.

There are three forms of <arg>:

1. <arg> may be the null string.

2. If the first character of <arg> is not a left paren

thesis then <arg> is a string of characters not con

taining blank, comma, semi-colon, or carriage return

(remember that blanks, commas, and semi-colons may

appear in <arg'> if they are enclosed in quotes).

3. If the first character of <arg> is a left parenthesis

the <arg~ does not terminate until a blank, comma,

or semi-colon is encountered after the right parenthesis

which matches the initial left parenthesis ("matches"

meanS that all left and right parentheses in the

argument are noted and paired off with each other so

that a nested parentheses structure is possible).

Of course, a carriage return at any point immediately

5-28

terminates <arg>o Again, remember that blanks, commas,

semi-colons, and parentheses enclosed in quotes are

ignored when <arg> is being delimited. The initial

left parenthesis and its matching right parenthesis

(which need not be the last character in <arg» are

removed before <arg> is transmitted to the macro.

Examples:

AMAC

D(l) =
D(2) =
D(3) =
D(4) =

(, "z";.z...') , , I HOUSE, .z...R OGER' , (AB") ")

'.1...' 1..'

null string

'HOUSE, ~OGER •

ABU)"

5.7 EXamples of conditional assembly and macros

1. It is desired to have a pair of macros SAVE and RESTOR

for saving and restoring active registers at the beginning and

end of subroutines. These macros should take a variable number

of arguments so that, for example, one can write

SAVE
RESTOR

A, SUBRS
A,B,X,SUBRS

to generate the code

STA SUBRSA
LDA SUBRSA
LDB SUBRSB
LDX SUBRSX

To this end we first define a macro MOVE which is called

by the same arguments delivered to SAVE and RESTOR, but with

the string 'ST' or 'LD' appended.

MOVE
X

MACRO
NARG
RPT
D(l)n(y)
ENDR
ENDM

D

(Y=2,X-l)
n(X)D(Y)

Now SAVE and RESTOR can be defined as

SAVE MACRO
MOVE
ENm

D
ST,D(,)

RESTOR MACRO
MOVE
F.Nrn

D
LD,D(,)

2. Many programmers use f1a.gs, memory cells that RTe

5-29

used as binary indicators. The instruction SKN (skip if memory

negative) makes' it easy to test these flags if the convention is

used that a flag is set (true) if it contains -1 and reset (false)

if it contains ¢. We want to define two macros, SET and RESET

to manipulate these flags; furthermore, it is desirable to

deliver at call 'time the name of an active register which will

be used for the action. Calls of the macros will look like

SET
RESET

A,FLGl,FLG2;FLG3
X,FLG37,FLG12

As in the previous example we make use of an intermediate

macro, STORE, which takes the same arguments as SET and RESET.

STORE
X

MACRO
NARG
RPT
ST.&D(l)
ENDR
ENIM

n

(Y=2,X)
D(Y)

Now SET and RESET are defined as

SET MACRO n
LD.&D(l) =-1
STORE D{,)
ENDM

RESET MACRO D
CL.&D(l)
STORE D(,)
ENIJ.1

3. The following macro, MOVE, takes any number of pairs

of arguments; the first argument of each pair is moved to the

second, but an argument may itself be a pair of arguments, which

may themselves be pairs of arguments, etc. MOVE extracts pairs of

argument structures and transmits them to a second macro MOVEl.

MOVE MACRO D
X NARG

RPr (Y=I,2,X)
MOVE 1 n(y), D(Y+l)
ENDR
ENDM

5-30

The main work is done in MOVEI which calls itself recursively

until it comes up with a single pair of arguments.

MOVE I
G(l)
G(2)

MACRO
NARG
EQU

'IF
LDA
STA
ELSE
RPr
MOVE 1
ENDR
ENDF
ENDM

D,G,2

¢
G(I)=2
D(l)
n(2)

G(I)!2,(G(2)=G(2)+I)
D(G(2»,D(G(2)+G(I)!2)

When MOVE is called by

MOVE A,B

the code generated is

LDA A
STA B

When called by

MOVE A,B,C,D

the code generated is

LilA A
STA B
LDA C
STA D

When called by

MOVE (A,B),(C,D)

the code generated is

LDA A
STA C
LDA B
STA D

5-31

And when called by

MOVE «A,B),(C,D)),«E,F),(G,H))

the code generated is

LDA A
STA E
LDA B
STA F
LDA C
STA G
LDA D
STA H

It is instructive to trace the last example by hand to see how

the recursive calls of MOVE1 work. This is an exercise left

to the reader.

6-1

6.0 Operating NARP

6.1 Error comments on statements

When NARP encounters a statement which it deems incompre

hensible or illegal, it lists the statement in error-format

(corresponds to all listing format booleans being set) and then

on the' following line (s) lists all error cODlllents pertaining

to the statement.

MOst error.comments are as intelligible as the situation

(and HARP's strangeness) allows. Some of the more common

and/or more obscure ones are listed and commented upon below:

£. , The character 2. caught NARP unawares

BAD TERMINATION Premature termination, or garbage (like
extraneous commas) where the statement
should end.

LC OVERFLOW The value of the location counter got
out of the range [0, 37777B].

DIRECTIVE OUTSIDE BODY And ENDF, ENDR, or ENIM without a
matching IF, RPr, or MACRO.

(sym.b) REDEFINED "symb" was defined (as a label) previous
to this definition of it.

(aymb) OPCODE' "symb" was used as an opcode and is not
in the opcode table.

UNDEFINED EXPRESSION An undefined symbol occurs in an
expreSSion which should be defined.

6.2 Other error comments

If a fixed-length table ever flows, a message (name)

OVERFLOW is ,printed (atter a listing of the offending statement

in error-format), followed by *****ASSEMBLY DEAD***** and

termination of one assembly.

The .!!!!!!. may be:

MAD TABLE

STRING STORAGE

Contains opcodes, literals, symbols
(both undefined and defined).

Contains MACRO definitions, macro calls
and RPI' expresions.

EXPRESSION TABLE·

INPUT POINTER STACK

CHARACTER STACK

OPERAND STACK

PILE

6-2

Contains post-fix Po1ish representations
of expressions containing undefined
symbols, until all the symbols in the
expression are defined.

Contains one entry for each embedded
change of input-source.

Holds the characters in a symbol while
they are being collected.

Holds operands in the processing of
expressions.

Space for temporaries in recursive calls
of the expression eater.

In addition, the following comments may appear:

TRAP AT XXXXX

I-O ERROR

NO END DmECTIVE

Error committed by NARP at location XXXXX;
assembly terminates.

Error in input or output of information,
assembly terminates.

An end-of-file encountered before an
END directive; assembly will terminate
as though an END directive was given
(i.e., normally).

6-3

6.3 Starting an assembly

Assuming that the user has entered the time-sharing system,

NARP is called by hitting the rubout button until the exec

answers (by typing '@') and then typing 'NARP' followed by a dot.

Control is then turned over to NARP and a source file must be

specified; other information may also be supplied, if desired.

The general format is:

default convention

eNARP.
SOURCE FILE: file name

file name
file name]

none
none
TELETYPE

OBJECT FILE:
[TEXT FILE:

Each line above is either terminated by a dot or a semi-colon.

A dot causes assembly to begin immediately (except after the

source file name). The default conventions are used for all

those options not explicitly specified. A semi-colon causes a

carriage return to be typed, and the specification of some

option is expected.

The various options are discussed in more detail below:

SOURCE FILE: As soon as NARP is, started this line is typed and

the user must specify a file containing a program

to be assembled. When he terminates the name,

NARP responds with 'OBJECT FILE:' on the next line.

OBJECT FILE: The file name given specifies where the binary

output fran the program should go. If the file

name is terminated by a semi-colon, then a

carriage return is typed and NARP waits for

TEXT FILE:

one of the following options to be specified.

The file name given specifies where the listing

of the source program and of the error messages

should go. This option may be specified only once.

A-l

Appendix A: List of all pre-defined o~odes and nre-defined symbols

The following table is a listing of an initialization program

used to initialize the opcode table and symbol table of NARP.

It will be noted that in some cases the OPD directive has four

operands. instead of the usual three; the fourth operand specifies

the type (directive, macro, or instruction) of the opcode being

defined. It is only possible to use four operands for OPD when

NARP is being initialized, and once the initialization program

has been assembled, OPD will only accept three operands.

* MAR? I~ITIALIZATION PROSRA~. (?l NOV 1966)

* 0P~ SY~TAX AND SFMA~TleS:
* <SY~F'OL> lPD <VALtlE>[,<OP 511>[,<SPIFTK>[,<TYP~»] J

* <"1PS IT>

*
'"
'" <SH I FTK > :

*
'" <T YPE > . .
'" *

* INSTRUCTION

LDP r)PP
STA '1PD
LPP OPD
STP ~JP[l

LrX ')PD
STX OPD
~AX nPD
X~A ()P,)

APr 0PD
A1)C' opn
ADi¥! OPt'
M I~.J :1Pf)
SUP np:-,
slIe OPD
~UL nPD
:iIt' :pn

FTr nPD
:VR~ 1Pf1
F0F npD

RCH C1Pf'
CL t\ rlPD
CLS r)PD
CLAP '1PD
eLY nPD
CL~~R "'PD
CAr f')Pfl
C?A ~pn

xPr:>- ;)pn
p. AC np~

AnC OP~
CXfl :,)Pi)

o - O?FRAND 0PTIONAL
I - NO OPERAND
? - OPERAND REGUIREO

o - N0R~AL INSTRUCTION
1 - S~IFT INSTRUCTION

~ - I NSTRUCT I O~J
I - DIRFCTIVF
2 - MACRO

DEFINITIONS:

~ 760 (IJ 0 91 t/jB , ? LO~D fi..
0,3 5 0000~B ,2 STORE ~

075 00f.'J0~ ,2 LOAD F<
01360 vH?IV) 08 , 2 STORE" 8
'" 71 0C?HI}~~P. , ? LOAD X
;13 70 vH~~ ~ , ? STORE X
~ 17vHH~0~ ,? COpy EFFECT I VE
~ 62 ~ 0 v.H~ 0~ , ? FYCHANGF :vi "ND

~ 5 50(1!0~0P ,2 ADD M TO A
o 5 7 ~ 0 0 ~ ~B • ? ,tIDD '--II TH Ct\.PF-Y
o 63 :;, 00008 , 2 t~f\D P- TO !VI

P.DDRESS
A

?l61 ~0~?I~ ,? MFM OF; Y INCRFMFNT
05"~](lJ0~F , 2 SllBT~'ACT M FROM A.
~~5 60 0 00~r , ? Sl'BTRACT ~, ITH CARRY
? f; ~ ?, ~, ;;, ~ 0B , ? MULTIPl.Y
?'f)5?1rt~~0P., ? DIVID~

I) J ,,~:) l~ ~ IlP , ? EXTRACT (A ND)
01 6~0(J1"'0F ,t~ MEQGE (OR)
~ 11V10~~~ ,2 FXCL US I \/F. ()R

fi14 ~~H1~001P , 2 REGISTFR CHANGE
01160?t7J01P, I CLEAR ~
'~L1 60 ? 0 0 2~ , J CLFAR 8
~4 6vHHH~ .. 'B , I CLEAR AB
2L1~vH~0~r.,p ,1 CLEAR X
?46"'00~3F , 1 CLEAR A, 8, ~ND Y
o LJ <) 9' 0 0 0 48 ,) copy A INTO B
:.1h 6~~?J I w:. , J COpy B INTO A
0LJ5~~014D, J ~YCHANCf. A AND P
:ll! r)0?1012E , 1 COpy E I NT (l ~ , CLF A.R I ~,IG
~L16000058t I cOpy A I ~T 8 R, CL~t\RING
:jLI6~0?' ~0B , I COpy X INTO A

INTO

["
f..

X

_AX
XXP
CFY
CXF
XXf~
STt;"
L0[
X~?
C~lA

"XC

P Fli
?~X
8 P f"1
FRR
8:::1

51< S
S)(~

SXG
SKR
SK~

SK N
Sl< A

c:v~ _.r. _
flSP
Rey
LF-S~
LS}-4
Ley
NOD

0PD
~Pf.'\
r)Pfl
()P~

OPr:'
0PD
:JPD
0P!:1
apr)
(,PC,

OPO
:lPf)
=,p[,
,",pr
OP!)

')P~

npc
nPD
opn
DPD
~PD
(,PD
npf'l
nPD

O?D
()pn
nPD
~PD
')pn
,)PO

HL 1 OPf)
ZP0 OPD
NOP OPD
EXU OPD

P PT I '1PD
PPT2 OPD
PPT3 npn
PPT4 ()PD

P 8 \l C1P[)
R~~ ('\PD
~VT 0P[1
:1T'1 OPD

FI R !"'J?fl
~ I R OPD
AlP 0pr
II FT OPT'
IJT DPD

?,ir 600.1J V10B , .}
~LJ 60~f)~(J!B , 1
0,n60~~2~P, 1
~n6t?1~~Il7JP., I
r} n 60 /1 ~H; 0F , 1
~LJ ()0/J 1 ??F , I
~1l60~14~R, 1
~1I6?1~ 1 6~B, 1
?lil6~ I ~?!~8 , 1
~iJ()~04~lP, 1

V1~ liHHH'I ~p , 2
041 110Vl00E ,2
0430~QHH~P ,2
~5 1 ('12!0.0~P,,?
?It 1000. ~H'!P , ?

0iJ?!(!I7I0~(i.1P, ?
r.15 (100~ ~0R t 2
?! 73 0 0 0 008 t 2
06(;10?l?l:tH~8 t 2
~ 7 0 ~ 0 V1 ~ ClIP. t 2
015 3 ~~~"'~8, 2
~1?tiHHH~08, 2
;152 " 000 0E , 2
?l14~l;'?J~"'8, 2

716 6 ~ 071 ?l0P , 2 , I
(I! 6 6?" ?J ~ ;liP , ~ , I
06624 710~P ,2, I
~6700~00P, 2, 1
?t612~00'ZB, 2, I
o 67 1 I1lHH~8, 2 , I

200~~lIiel0R, 1ft
o 0 71 (7J 0 0 ?H~B , ?I
~202100?10B, ~
V123 ~0~"'0F ,2

~4020'1~0B, I
~Ll02 02 0218 , J
~ 40201 (}, elF , 1
o 4 ~ 2 et 0 4 ~B , I

?'2?iI(iI~QlIB , 1
0?2~001~P,1
n220~1~lB, I
Q122~01 ~0B, 1

r;,QI?20~02B, I
~~22 ~ ?J0LtB , I
(If ~2 221 ?l2 ~B , 1
04()J21l?J02S, 1
04~? 20~iJB , 1

C()py f) INTO X
EXCHA~\C~ X AND A
COpy 8 I ~!T') X
COpy X I~ITO 8
FXCHANGF X AND 8
STORE' FXPONENT
LOAD FYPONFNT
FXCPANGF FXPON~NTS
COpy NEGATIVE OF A I~TO A
COpy A TOX, CLEAR A

F~ RAN C H II NCO ~l D I T I (" N ALL Y
INCRE~FNT INDEX AND ERANCH
MARK PLACE AND PRANCP
RETURN BRANCH
BRANCH AND RETUPN FROM INTERRUPT

SKIP IF SIG~AL NOT SET
SKIP IF A EQUALS M
SKIP IF A GREATER T~A~ M
REDUCE M, SKIP IF NEGATIVF
SKIP IF A EQUALS M ON B ~ASK
SKIP IF ~ NEGATIVE
SKIP IF ~ AND A DO ~OT COMPARE 0N~S
SKIP IF M A~D P DO ~nT CO~PARE ONES
DIFFERENCE EXPONENTS ~MD SKIP

RIGl-tT SHIFT AB
RIGHT CYCLF AS
LOGICAL RIGHT SHIFT A8
LEFT SPIFT AB
L EFT C VC L F. A 8
NORMALIZE A~D DECRF~FNT X

HALT
ZERO
NO OPERATION
EXECUTE

BREAKPOINT TEST I
BREAKPOINT TEST 2
8REAKPniNT TEST 3
8RFAKPOI~T TEST 4

RESET OVERFLOW
RFCORD EXPONENT OVFRFLO~
OVFRFLOW TEST AND RFSFT
OVERFLOW TEST ONLY

ENABLF INTFPRUPTS
DISABLF INTERRUPTS
ARM !DISARM INTERRUPTS
INTERRUPT ENABLED TEST
INTERRUPT DISABLED TFST

AL C 'I)

ASCI)'
TtlP'}!

CFT',!'
87 T 'j!
CIT 1.1

'-'.' I¥;
PIN
P 1T
~'l~
P~T'J
~,r'Thl

I)Pr.
oPO
t:p:;
f)P~

aPD
~pn

OPt'
('PI)

()pf'
OPf)
'}PI:'
1Pf'
OPD
,PI)
OPD
()P!l

81 n 0P~
PRS 0PD
CI~ 0PD
CTRL ()PD
~rI OPf)
~p 0 opr
Dljl I OPr'
D;}/O OPD
~xs 0Pfl
FA!:' OPD
F[) V opr.
FMP OP!:'
FSA OP!)
GeD nPD
CC I OPt)
ISC OPI)
1ST OPD
LAS npD
LDP ~PD
:1ST 1P[I

SAS OPD
S8RM C'lPD
S~RR npo
SIC OPD
SKSF OPl)
SKSG opn
STI f')Pf'l
SI'l 'lPD
STP OPD
Te I JPD
Te n 'lP!:'
/C D f'lPl)
~j'CH nPD
1",(, I "'PL'

02J25~"'/H1,P , 1
~"''J?' PI?J (.I! 9J 0B , 1
?I912129'?l0B,1
'?~2 J iJ00~B, 1

24 0 I 4 ~ r;, 08, 1
~ it 0 I l?l 0 91R, 1
0.1 ~ 1 2 e' ~ ~8 , 1
?J .1 tJJ 1 (II?! Y, 08, I

o ~ <)?I tlHiH'0f.' , 2
?!1271CH~?J0P, 2
0.3 2 ~ 0 vH~ aB , ?
!? 3 3 0 0 V1 0108 , 2
~ I 3 Vl0 ~ 0 08 , 2
? 0'2 0 0~ 0 r18 , 2
o Ll ~? 71 C'I 1 ?,I~, 1
~ Ll (IJ~ 1 0 ~ ~F<, I

5760"''''~0B,2
5 73~~0{i10B, 2
5 61'~HHH~0B, 2
5 7 2 ~ ~ 0 2 ~B , ?
5 iJ 2 " ?I00 ~B , 2
5 43 (IJ 0 (IJ 008 , 2
5 4 4 0 ~" ~ 0P , 2
5 Ll 5 0 0 ~ 0. 0P , 2
5 S2 tJJvHHJ,~E~ , 2
5 5 6 ~ 0 0 ~H~8 , ?
5 5 3 ~ 0 00 0E , 2
5 5 .1 ,,~ ,H'J ~p , 2
5 55 0 0 ~ ~ ~B , 2
5 3 702' 0?1 ~B , 2
5 65"'0~00B ,2
54100?1c;,0B,2
5 5 00 ~0?10P, 2
5 4 6 0 ;~ 0 (?!?lB , ?
5 661'0 ~'H~B , 2
5 S 1 0 0 ~ "'08 , 2
5 il 700 ~ 0 0P , 2
5 7910 OJ 0 ~ 9JB , ?
05140000B,2
5 A 0000008, ?
5 6.3 0910008 t 2
5 6?~00~?lR,?
53 63~fi"i'08, ~
5.3 Il 000 0 ;,[-; , ?
5 6 70 ?J OJ 0?1F t 2
574 ~vHi(IJ0B , ?
5 7 5 0 til ~fl0B , ?
5 .3 5 ~~ 0 OJ 0 0B , 2
5 6 L! 00 /H'" 1'8 , ~
5 5 7 '/H'! 00 08 , ?

ALFRT CHANNFL '"I
DIS C () N ~I r: C T C H A ~~ NFL I.'

ALERT TO STORE ADO~FSS I~ C~ANNEL w
T~R~INATE OUTPUT O~) CHAMNEL '~r

CHANNEL ACTIVF TFST
CHANNFL W ERROR TEST
CHANNFl. W COUNT TFST
C~ANNEL W INTFR-RECORD TEST

ENERGIZE OUTPUT D
~ I~TO ~ BUFFFR WH~N FMPTY
W Btl F'FF P I ~iT () M ~1HF N FULL
PARALLEL INPUT
PARALLFL OUTPUT
FNERGIZF OUTPUT [VI

1)1 BUFFER ERROR TFST
W RUFFFP READY TEST

BLOCK I/O
BRANCH TO SYSTFM
CHARACTER I/O
CONTROL
DR LIM P L OC J< I N PUT
DRUM BLOCK OUTPUT
DRUM '."ORD I ~lPUT
DRUM IA'ORD OllT PUT
FXfCUTF INSTRUCTION IN SYSTEM MOPE
FLOAT I ~lG ADD
FLOATING DIVIDF
FLOATING MULTIPLY
FLOATING SUBTRACT
GFT CH~RACTER AND DECREMENT
GET CHARACTER AND INCRE~fNT
INTERNAL TO ST~ING CONV. (FLOATI~G OUTPUl
I~PUT FROM SPECIFIED TFLETYPE
LOAD FPO~ SFCO~DARY ME~ORY
LOAV prINTER (AB)
OUTPUT TO SPFCIFIFD TELETYPF
STORE IN SfCO~D~RY ~F~ORY
SYSTEM PRM
SYSTEM BRP.
STRING TO INTERNAL CONV~ (FLOATING INPUT)
SKIP IF STPINGS EQU~L
SKIP IF STRING GREATER
SIMULATF TELFTYPF INPUT
STEAL TTY OIfTPl'T
STORF POI NTFR (AB)
TE LETYPF C~ A RACTEP r~! PU T
TFLETYP~ CHAPACTER OUTPUT
~PITE C~ARACTEP AND DECRE~E~T
l.alRITF CHARACTER
WHITF C~ARACT~P ~NC INCRE~E~T

;JPD

* D I ;~' Fe T I \/t ~FFINITIONS:

ASC ~Pl) ~,?,0, 1
st:'"S JP[, 1,?,~,1
8SS rlPD ?,?,~,l
C)py OP!) 3,2,?l,1
CSPT f)PD 4,2,O,1
DATA ,)PD 5,2,O,1
DEC '"'PD 7,1,~,1
DFLSY~ ()PD r,l,~,1
ELS~ JPfl 9,1,~,1
ELSF C1P!) 10,2,O,1
EN£:' OPD 11,1,~,1
ENDF 'JPD 12,1,O,1
~ tJ fl;': '1PD 13,1,O,1
FNPR OP£) 14,1,O,1
EQU ~PD 15,2,O,1
EXT "PD 16,0,~,1
FREEZE 3PD 17,1,"',1
FR3T nPD 18,2,O,1
I~FNT (lPD 19,1,O,1

tiBEXT
OPD 20,2,O,1
OPD 25,1,(11,1

LIST OPD 21,0,O,1
MACRO OPD 22,~,0, I
NARG OPD 23 , 1 , ~, 1
NC P. fi OPD ?4,0,~, 1
M 0L 15T OPt' 26,0,,",,1
aCT ,)PD 27,1,"',1
P0PD opr 2F.,2,I',1
REL ~PG OPD 29,2,~, I
RF.TR~L ')PD 30,1,~,1
RPT OPD 31,2,O,1
TfXT aPD 32,2,O, I
L~ACR~ (,PD 33,0,~,1
RFM. OPt:' 35,2,~,1
FF< :1T OP OPD 37,2,0,1

:ZFf,'(): E~U * : LC ~)7:'9.U :Z~j;'O :
FRGT :ZFRO:,:LC:

FREf.ZE

END

AS C I 1ST R I ~l G
~~LOCK ~ND SYMB':'L
2LOCK START SY~SOL
FEGISTER CHANGF
CONDITIONAL REPFAT
rAT p \\'OH~
SET NPMPFR RADIX TO 10
D~LETE SY~POL
FLSE
FLSE IF
END OF PROGRAM
END IF
END !Y!ACRO
END REPEAT
EQUATE
EXTERNAL
FREEZE TABLES
FORGET SYMBOL
IDENTIFICATION SYMBOL
IF
OUTPUT LABEL AS LIBRARY WYMBOL
TURN ON LISTING
MACRO DFFINITION
NUMBER OF ~RGUMENTS
NUMBER OF CHARACTERS
TURN OFF LISTING
SET NUMBER RADIX TO ~
POP DEFINITION
RELATIVE ORIGIN
RET R IE VE 0 RIG I N
RFPEAT
STRING (FOUR CHAPACT~RS PER WORD)
ALTERNATIVE MACRn DFF'N
PRINT RE~ARK ON TEXT FILE
FORGET SELECTED OPCODES

LAST LINE OF NAPP INITIALIZATION PROGRA~.

A-2

Appendix B: Table of ASCII character set for the SDS 940

octal value character octal value character octal value character

0 30 8 60 P

1 31 9 61 Q

2 It 32 62 R

3 #: 33 63 S

4 $ 34 < 64 T

5 % 35 = &5 u
6 & 36 > 66 V

7 37 ? 67 w
10 (40 @ 70 X

11) 41 A 71 y

12 * 42 B 72 Z

13 + 43 c 73 [

14 , 44 D 74 \
15 45 E 75]

16 46 F 76 f

17 I 47 G 77 ...
20 ~ 50 H 135 MULTIPLE BLANKS

21 1 51 I 137 END-OF-FILE

22 2 52 J 144 END-OF -TAPE

23 3 53 K 147 BELL

24 4 54 L 152 LF

25 5 55 M 154 START NEW PAGE

26 6 56 N 155 CR

27 7 57 0

