
ARPAS

REFERENCE MANUAL FOR TlME SHARING

ASSEMBLER FOR SDS.930

Document No. R-26

Revised February 24,.1967

Contract SD-l85

Office of Secretary of Defense

Advanced Research Projects Agency

Washington 25, D. C •

.1.0

2.0

3.0

.4.0

5·0
6.0

T~LE OF CONTENTS

Introduction • • • • 1-1
1.1

1.2

1.3'

1.4
1.5
1.6
1.7
1.8

Basic Description or the Assembler

Symbols ••• ·
• 1-1.

1-1

Instructions, Directives, and Comments " .•• 1~2

Subprograms • • • • • • • • • • • · ~ . .
Literals

Relocation

e.. • • •• · ..
· .. -.. ' .. ~

·
.. .'

· . . .
• •

. .. Basic Assembly Procedure

Notation • • • • • • •• • • · · . .
· . . · ... · e· •

1-2

1-2

1-2

1-3,

1-4
The Assembly Language

2.1 Charecter Set · . . · • .' ••• 2-1
2.2 Statements · . . · .". .. . 2-1

2.3 Programs ••••• · . . ". · . . 2-3
The Syntax of Instructions •

3.1 Their Classification
· . . · · •• 3-1

Use of the Label Fie1d

Operand Field • • • •
· . .

· . .
.'''; .

3-1

3-2

3-2

Alternate Conventions for Expressing
Indexed and Indirect Addresses • · • • 3':'2

3-3

4-1
Comment Field

Expression Syntax

4.1 Operators

..
· .,. ,... · . . . · . .

4.2
4.3
4.4
4.5
4.6

·'. ·
. Constants . · • . ·0'.
Classification of Symbols. • ·
Terms .' • • e_ • • •

Expressions • • • •••.• • • • • · . .
Constraints of Relocatability of Expressions · . .

4.7 Special Relocation · . . · . .
-Literals . . · · · · .. · ~ .. · • · · • · ·
Directives . · · · · · • · • · · · . · • ·
6.1 COpy Generalized Register Change Command

6.2 DATA Generate Data • · · . · · · · · · ·
6.3 TEXT Generate Text · · · · • · ·0 · · · • ·
6.4 ASC Generate Text with Three Characters per Word ·
6.5 EQ.U Equals · · · · · · · · · · · · · • · · . • · ·

4-1
4-2
4 ... 2

4:"3

4-4
4-4
4-5
5-1
6 ... 1

6-2
6-3
6-3
6-4
6-4

R-26

6.6 EXT Define External Symbol • • • • ~ • • e. _. ~ ..• • .•. _. 6-5
6.7 NARG Equate Symbol to Numbe~ of Arguments

in Macro Call . • • _ • • • • • • • .'~: • •

6.8 NCHR Equate Symbol to· the Number of
Characters in Operand • • • • • • •• • • 6-6

6.9 OPD Operation Code Definition ••• -. '.:r~· • ...• 6-7

6.10 PqPD Progranuned Operator Definition • '."" -Y;<. • 6-7
.6.11 BES .-Block Ending Symbol. ~ • • • • • • • ,; ' .• 6-8

6.12 BSS Block Starting Symbol • • • .'. .'.. • • • .' -. q. 6-9

6.13 ORG Program Origin • • • .• • • '. .• • • • .: 6-9

_ .6.14 END End of Assembly • • • • • • • • •.• • • • • •• 6-9
_ . 6,.15 pEe Interpret Integers as Decimal

i .~ • .-

", ,p.16 OCT: Interpret. Integers as Octal,-

, . ,6.?-7. RAJ) Set Special Relocation Radix

6.18 FR~T Forget Name of Symbol

. .. .
- :

· . '.
.. ' . .

6-10

6-10

6-10
6;,.11

• .• 6-11 . -' 6.19 IDENT Program :Identification . • • ••

..,~.20 DELSYM Delete Output 'of Symbol Table and
Defined Op-codes ••.• • • -.. • -, •. ,e. • • • '>~ 6-12

~"_6.21 RELORG 'Assemble Relative with .Absolute 6~i~i~ ' ••• 6-12

, '''6.22 RETREL Return- to Relocatabl~ Assembly, • • • • • • • 6-13
'-.~: 6.23 FREEZE Preserve Symbols, Op-codes, and Macros - • 6-14'

;. ,/ 6.24 NOEXT Do Not -Create External Symbols ••.•• • 6-15
:. /~6.25 LIST' Turn Specified Listing Controls 'On •••••• '6-15

, '

. -->·6.26 NOLIST ~n Specified Listing Cont:rols Off _ -. '

· -6~27' PAGE Begin New Page on 'Assembly'Listing' •.•

6.28 REM Type Out Remarks in Pass 2

7.0 . Macros and Conditional Assembly •

7.1 Introduction to Macros "
7.2 Macro Definition . .
FIGURE 1: Information.Flow ~lring Macro Processing.

7 • 3 Macro Expans ion • • • • • • • • • • '.,. '. • • •

7.4 'Macro Arguments • • • • • • • • • .- ~ • • • • •

The Use of Dummy 'Arguments in Macro 'Definitions

Concatenation • • . .'
,7.7 Generated Symbols
,7.8 . Conversion of a Value to a Digit String

7.9 The NARG and NCHR Directives

• 6..;1:5
'6-16

• 6-17

• 7-1
7-1

•. 7-2

· 7-4

• 7-5
7-6

· 7-8
7-11

7-12

7-13

• :' 7-14

7.10 Conditional Assembly •••••••• c •••••• 7-15

7.11 ~e RPT Directive ••••••• c •••••••• 7-16

~IE 7-6 · • • · • • • • • • • • • c • '.' • • • • • 7-17·
EXA.lffi.E 7-7 •• • • • ••• c· • '. • • • • • • 7-.18

~IsE 7-8 •••• '. • • • • c. • '. • • • • • • • • 7-19'

EXA.lffi.E 7 - 9 • • • • • • • c • . .• • c • • • c • 7-20
7.12 CRpr, Conditional Repeat •••••• c ••• c c • 7-21

7.13 IT Capability •• • • • • • • • • • • • • • • 7-21
7.14 IF, Assemble if Expression True (i.e., > 0) ••• 7~22

~I.E 7-10 • c • 7-24
EX.AJ.iPIE 7-11 • • • • • • • •. • • • • • • • • • • • • 7-26

. 7.15 Special Symbols jn Conditional Assembly ••••• 7-34
8.0 Assembler Error Messages .. • ,. ,. , •.• • c. • ••.• • • 8-1

8.1 Error Messages • • • • • .• • • • • • •.• • • • , .•

8.2 .Interpretation of the Error Listing • • • • • • •

9,0 Assembler Operating Instructions • • •
9.1 Assembler Parameters • • • • • • • , ,

9.~ Termination of the Assembly • , • , •

10.0 Assembler Binary Output,'

10.1 Relocatab1e BinarY.Output ••••••

10.2 Absolute Assembly (Sel~-filling) Output

· . . .
... . , . .
· .' . . , .
• • • • • •

APPENDlX A: Extended List of' Instructions .•••••••

APPENDIX B: Table of Trimmed ASCII Code for-the SDS 930.

8-1

8-3

.9-1

9-1

9-4
10-1
·10-1

10-6

A-l

B-1

Mnemonic

wail/store

LDA

STA

LDB

STB

LDX

STX

EAX

XMA

Arithmetic

ADD

ADC

ADM

MlN

SUB

SUC

MOL

DIV

Logical

ETR

MaG

EOR

Register Change

.RCH

CIA
CLB

CIAB

CLX

CLEAR

CAB

APPENDIX A

EX'l~ED LIST OF mSTRUCTIONS

Operation· Cod'e

76
35

75
36
71
37
77
62

.- 55

57

63
61

54

, 56
64

65

14
16
17

46
o 46 00001

o 46 00002

o 46 00003

2 46 00000

2 46 00003

o 46 00004

Function

wad A

'Store A

Load B

store B

Load. X

Store index

Copy effective address

Exchange M and A

AddMtoA

Add with carry

Add A to M

Memory increment

Subtract M from A

Subtract with carry

Multiply
~

Divide

Extract (AND)

Merge (OR)

Exclusive or

Register change

Clear A

Clear B

Clear AB
- Clear X

Clear A, B and X

Copy A into B

into index

_ l{-C::O

A-I

Mnemonic

CM

XAB

BAC

ABC

CXA

CAX

XXA

CBX

CXB

XXB

STE

LDE

XEE

CNA

AXC

Branch

BRU

BRX

BRM

BRR

BRI

Test/Skip

SKS

SKE

SKG

SKR

SKM

SKN

SKA

SKB

SKD

Operation Code

o 46 00010

o 46 00014

o 46 0001'2

o 46 00005

o 46 00200

o 46 00400

o 46 00600

o 46 00020

o 46 00040

o 46 00060

o 46 00122

o 46 00140

o 46 00160

·0 46 01000

o 46 00401

01

41
43

51
11

,40

50

,73

·60

70

53
72

52
74

Function

Copy B into A

Exchange A into B

Copy B into A, Clearing B

Copy A into B, Clearing A
Copy X into A

Copy A into X

Exchange X and A

Copy B into X

Copy X into B

Exchange X and B

Store Exponent

Load Exponent

Exchange Expo~ents

Copy negative into,A

Copy A to X, clear A

Branch unconditionally

Increment index and branch

" Mark place and branch

Return branch

Branch and return from interrupt

Skip if signal not set

Skip if A equals M

Skip if A greater than M

Reduce M, skip if negative

, Skip if A = M on B mask

Skip if M negative

Skip if M and A do not compare ones

Skip if M and B do not compare ones

Difference' exponents and skip

n-c:u

A-a •

Mnemonic

Shift

RSH

RCY

LRSH

LSH

LeY

NOD

Control

lILT, ZRO

NOP

EXU

Breakpoint Tests

BPI'x

Overflow

ROV

REO
OVT

OTO

Interrupt

Em
Dm
Am
lET

.. .A IDT

Channel Tests

CATW

CEiW

CZiW

CITW

Input/Output

. EOn

Operation ,Code

o 66 OOxxx

. 0 66 20xxx

o 66 24xxx

.0 67 OOxxx

o 67 20xxx

o 67 lOxxx

00

20

23

o 40 2OxxO

o 22 00001

o 2200010

- 0 22 00101

.0 22 00100

·0 02 20002

o 02 20004

o 02 20020

o 40 20002

o 40 20004

o 40 14000

o 40 11000

o 40 12000

o 40 10000

06

Function

Right shift AB

Right cycle AB

Logical right shift

Left shift AB

Left ·cycle AB

Normalize and decrement X

-Halt

No operation

Execute

Breakpoint test

Reset overflow

Record exponent overflow

Overflow test and reset

'Overflow test only

Enable interrupts

Disable interrupts

Arm/disarm interrupts

Interrupt enabled test

Interrupt disabled test

Channel W active test

Channel W error test

Channel W zero count test

Channel W inter-record test

Energize output D

R-2~

A-:

Mnemonic Operation Code

Input/Output (920 Compatible)

MIW 12

WIM 32

pm 33·

POT

EOM

BETW

BR1W

Syspops

BIO

BRS

CIO

CTRL

DB!

DBa

Dwi
DWO

EXS

FAD

FDV

FMP

FSB

GCD

GGI

1SC

1ST

LAS

LDP

LIO

OST

SAS

. SBRM

SBRR

SIC

SKSE

SKSG

13
02

o 40 20010

o 40 21000

576
573
561 .
572
542
543
544
545
552
556
553
554
555
537
565
541
550
546
566
552
551
547
570
51*
540

563
562·

Function

M.into W buffer when empty

W buffer into M when full

Parallel input

Parallel output

- Energize output M

W buffer error test

W buffer ready test.

Block r/o
Branch to system

Character Ilo .
Control

Drum block input

Drum block output

Drum word input

Drum word output

. Execute instruction in system mode

Floating add

Floating divide

Floating multiply

Floating subtract

Get character and decrement

Get character and increment

R-26
A-4·

Internal to string conversion (floating)
. 'output

Input from specified teletype

Load from secondary memory

Load pointer (AB)

Link r/q
Output to specified teletype

store in secondary memory

System BRM

System BRR (prestored macro)

String to internal conversion (flqatin£
1nput)

Skip on string equal

Skip on string greater

,n-c:.\J

A-5

Mnemonic Operation Code Function

STI 536 Simulate teletype input

STP 567 Store pointer

TCl 574 Teletype character input

TCO 575 Teletype character output

WCD 535 Write character and decrement

·WCH 564 Write character

WeI 557 Write character and increment

WlO 560 Word I/O

1.0 Introduction

An assembler is a translator whose source language is assembly language

R-26
1-1

and whose object code is actual machine language-. Assembly language is mostly

a one-for-onerepresentation of machine ianguage written in a symbolic form.

Its value comes from being easier to read and from the facilities provided by

the assembler for doing calculations at assembly_time. These range from simple

address calculations to complex conditional assemblies in which totally'

different object programs may be generated, with the choice among them

depending on the value~ of a few parameters.

This section serves to define the terminology used. It- is assumed that

* the programmer is familiar with the basic characteristics of the SDS 940 .
'.

1.1 Basic Description of the Assembler

The assembler is a two-pass assembler with subprogram, literal,

. macro, and conditional a.ssembly capabilities.

1.2 Symbols

Numbers may be represented symb?licall~ in assembly language by

-symbols. A symbol is any string- of letters. and digits not forming a

constant. (Constants are defined in Section 4.2) .. In particular, it

is not nece~sary that a symbol begin with a letter. Although symbols

as written may be arbitrarily long,' only the first six characters of a

symbol are used to distinguish it from others. When a symbol is used to

represent a memory address, it is called a label. Examples of symbols

are:

START ZIC A12 CALCULATE

* Ref. to SDS 940 Computer Reference Manual, No. 90 06 40A, August, 1966.

1.3 Instructions, Directives! and Comments

Input to the assembler takes the form or a sequence of statements

called instructions, directives, or comments. Instructions are symoolic

representations or machine commands and are translated by the assembler

R-2b
1-2 ·

into machine language. Directives, by contrast, are messages which serve

to control the assembly process or create data .. They mayor may not

generate output. Comments are ignored by the assembler, and serve only

to clarify the meaning of a program.

1.4 Subprograms

Frograms orten become quite large or fall into logical divisions'

which are almost independent. In either case it is convenient to break

them into pieces and assemble (and even debug) them separately. Separately

assembled parts or the same program .are called subprograms.

. Before a program assembled in pieces as subprograms can be run it is

necessary to load the pieces into' memory and link them. The symbols used

in a given subprogram are generally local to that subprogram. Subprograms

do, however, need .to refer to symbols derined in other subprograms. The

linking process takes care of such cross references. Symbols used for it

are called external symbols.

1.5 Literals'

Often data is placed in programs at assembly time. It is frequently

convenient to refer to constants by value than by label'~ A literal is a

symbolic reference to a datum by value. The assemplerallows any type of

expression to be used as a literal. Some examples of literals are:

=5 =3*XYZ-2 ='END' =EXTERN

1.6 Relocation

A relocatable program is one in which memory locations have been

-
computed relative to the first word or origin of the program. A loader

(for this assembler, DDT) cari then place the assembled program into

core beginning at whatever loc~tion may be specified at load time.

Placement of the program involves a.small calculation. For example,

if a memory reference is to the nth word of a program, and if the program

is loaded beginning at locAtion k, the loader must transform the reference

into absolute location n+k.

This calculation shc>uld not be done to each word of a program since

some machine instructions· (shifts, for example) do not refer to memory

locations. It is therefore necessary to inform the loader whether or not

to relocate the address for each word of the program. Relocation infor-

mation is determined Rutomatically by the as~embler and transmitted 't-0

the loader as a binary quantity called the relocation value. If R = 1

the operand is to be reloceted; if R = 0 the opera~d is absolute.

Constants or data m~y similarly require relocation, the difference

R-2
1-,

here being that the relocati0n ca.lculation should apply to all 24 bits of the

940 word, 'not just to the address field. The assembler accounts for this

difference automatically ..
-

It is possible to disable relocation in the assembler and to do

absolute ,assembly. In this event there, is an option which produces a

paper tape which can be loaded using the 940 fill switch.

1.7 Basic Assembly Procedure

During pass 1 of the two-pass process the operands of instructions and

some directives are scanned for the presence.of single symbols. If a single

symbol is present, a table of symbols is searched. If absent, the symbol is

added to the table but marked as not yet defined, i. e., having no value. -

Labels are placed into the symbol table in similar fashion, except that

they are assigned the current value.of the location counter, a word within

the assembler which contains the relative Address of the instruction. If

a label has been previously defined, it is marked as a duplicate symbol

(this is taken to be an error).

At the end of pass 1 the symbol table is sorted. All symbols present

h-:lving no value are assumed to be external. These symbols are then output

by the assembler for" later use by the loader. During" pass 2 the labels

R-26
1-4·

are not computed; rather, the operand fields of instructions and directives

are evaluated using the now known sYmbol values ..

In absolute assemblies the scan for single symbols in pass 1 is

disabled. This has the effect of doing away with external symbols.

1.8 Notation

In the following pages, square brackets [] are used to indicate the

presence of optional quantities.

2.0 The Assembly Language

2.1 Character Set

The classes of characters recognized by the assembler are as follows:

(a) digits

(1) octalO-7

(2) decimal 0-9

(b) letters A-Z

(c)alrhanumerics 0-9 and A-Z

(d~ deltmiters + -* / , ' () = $ blank ~

- (e) special characters <>?[1- ft

Note that -the characters ! # ~ & @ , t which are normally found on standard
- (

Teletypes are not recognized"by the assembler.. Us~ of them in a program

will result in their being replaced by blanks.

2.2 Statements

Statements are logical units of input. They may be delimited either

by being placed on separate lines- or by being separated with semi-colons.

Semi-colons do not serve as statement delimiters when used between single

quotes (as in the TEXT directive) or inside of matched parentheses (as in

arguments of macro calls). Examples of statements are

START LDA DAT21
MOL 21B
STA ANSWER

- or (

START LDA DAT21; MOL -21B; STA ANSWER

If a statement requires more than one line for any reason, it can be

continued on the next line by typing a + in the first column of the next Ii!

Thus:

START LDA DAT2l; MUL 2lB; STA ANSWER THE COM
#lENT ON THIS LINE REQUmES A CONTINUA1?ION

This kind of continuation may be done for about five lines (320 characters).

R-26
2-2

Each non-blank statement is an instruction, e directive, or a .

comment. Blank statements are ignored. Comments begin .with an asterisk;

they have absolutely ·no effect on the. progr·am being assembled and serve

only as annotati.ons to clarify the meaning of the assembly langu:lge.

Directives and instructions are divided into four fields. The

fields are, from left to right, the label field, the operation fie·ld,· the

operand field, and the comment field. The assembler is a free-form

assembler; its various fields are delimited by blanks rather than

·restricting them to fixed places in a line. This is explained in more

detail be 1o", .

The label field is used mostly for symbol definitions. It begins

with the first character in the statement and ends on the first non-

alphanumeric character. (The blank is usually the only legal terminator.) .

Thus ,. in the· following statements the symbol XYZ appears in label fields.

XYZ LDA =10
STA DEI"; XYZ LDA =10; LDB-){- LMN

The operation field contains (usually) a s~n~olic operation code or

directive name. It begins with the first non-blank character after the

termination of the label field. In the statements above, each operation

field begins in a different position. Like the label field, the operation

field terminates on the first non-alphanumeric character. Legal

terminators are the bla.nk, asterisk, semi-colon, and .carriage return.

The operand and comment fields each begin with the first non-blank

character after the termination of the preceding field. The operqnd

field terminates on the first blank or semi-colon not between matched

single quates or parentheses. The carriage return always.terminates the

field (and the statement). The comment field terminates on a semi-colon

or carri3ge return. This field, like the comment statement, is not used

by the assembler; it may contain anything.

2. 3 Progr ams

A program consists of a sequence of statements terminated by an END

directive. Normally programs are assembled in relocatable form. A

program is assembled in absolute self-loading. 'form if it begins with an

ORG directive. It is possible (by using RELORG) to make an absolute

assembly to be .loaded by DDT.

· R-2E
2-:

3.0 The Syntax of Instructions

3.1 Their 'Classification

(a) Class 1 (normal instructions).

Class 1 instructions in general use the'operand field. Its

absence implies the value zero. It is possible to specify for each

, R-~

3-

Class 1 instruction whether or not the operand field ~ be present.

It is also possible to specify that bit 0 of the instruction word is

to be set to one (as in SYSPOPs). There are two types of Class 1

instructions:

(1) type 0

The address is formed mod 214. All instructions

making memor~ references are of this type.

(2) type 1

The operand is formed mod 29. This type is used for

shift instructions. If indirect addressing is used with

, 14
this type, the address is formed mod 2 •

Class 1 instructions have the following' form:

[[$]label] opcode[*] [operand[, tag] r ,[comme'nt)

Indirect addressing is signified by an asterisk ~ediately

following the operation code or by. preceding the operand with ~.

The use of the dollar sign is explained in 3.2 The tag is used

to specify bits 0, 1 and 2 of the 940 instruction word.

(b) Class 2 (complete or full word instructions).

Class 2 instructions have no operand field. Indirect addressing

is signified by an asterisk immediately. following the ol">eratlon

code. Class 2 instructions have the following form:

[[$]labei] opcode[*] [comment)

(e) Numeric op codes.

Operation codes may be speci~ied as decimal or octal numbers,

as for example:

[[$] label] 76B[*) [operand(~ tag]] [comment]

R-26
3-2

The assembler shi~ts the numeric op c~de (modulo 177
8

) le~t to

the correct position in the instruction·word. In such cases, the

op code is assumed to be Class 1, type 0, no operand required,

and with bit 0 not set.

3.2 Use of the Label Field

A label identifies the instruction or data word being generated. The

symbol used in the label field is given'the current value of the location

counter. Instructions will have labels normally if they are referred to

elsewhere in the program, although it is not necessary that ,symbols defined

in this way be used in references. Symbols defined but not used are c~lled

nulls; they are marked as such in the assembly listing and explicitly

typed out at the end of an assembly.

, If the same symbol appears in the label field of more than one
-

instruction, it is marked as a duplicate and given the newer value.

A $ preceding a label causes an external s.ymbol definition (cf. 6.6).

3.3 f>per?nd Field

- The operand field contains at most two arithmetic expressions (or a

literal and one expression) used to determine the operand and tag of the.

-machine command. The tag, if present, is evaluated mod 23 and must be

absolute (i.e. non-relocatab1e).

3.4 Alternate Conventions for Expressing Indexed & Indirect Addresses

It is possible to express both the use of indexing and indirect

addressing in an alternative manner. In each c~se a special character'

is placed at the beginning of the operand field. These characters are /

for indexing and ~ for indirect addressing. Thus, for example,

LDA VECTOR,2 is the same as LDA /VECTOR

and

STA* POINTR is the same as STA H'OWTR·

Similarly,

LDA* COMPLX,2 may be written either as

. LIlA I ~OMPLX

or LnA ~COMPIll.

Anything normally ~eful may follow the initial ~·or /, for example

LDA4-=CHAIN (LDA* =CHArn)

Th:i.s alternate way of expressing indexing and indirect addressing

may be used by programmers as they choose. It was devised to simplify

the indication of these operations in the use of macros (see chapter 7).

3.5 Comment Field

The comment field i~ not processed by the assembler, but is copied

to the assembly listing.

. R-2t
3-~

4.0 Expression Syntax

'R-2t
4-1

The assembler evaluates expressions as 24-bit, signed integers. Expressions

cons ist of constants and symbols connected by operators. Examples of express ions

are:

100-2*ABC(OR)DEF/27B
22

Cl2>Dl9

Expressions are evaluated from left to right, some operators taking precedence

over others. As an expression is evaluated, a parallel calculation of its

relocation value R is made. Only absolute expressions (R = 0) and reiocatable

expressions (R = 1) are 'legal (cf. 4.7).

4.1 Operators

The operators recognized' by the assembler and their precedenc'e are

given below. Operators of highest precedence are applied first in

evaluation of expressions.

Operator Precedence

(a) unary

+ 4
4

(NOT) 4

'(R) .. 4· . (cf. 4.7)

(LSS) or < 3
(b) relational

(GRT) or> 3
(EQU) or = 3

(c) binary

* 2

/ 2

(P.ND) 2

+ 1

1

(OR) 1

(EOR) 1

Note that some operators are more than one character long .. These

are enclosed in parentheses to avoid confusion with symbols which would

0therwise look the same. Parentheses are therefore not allowed in

expressions to delineate terms and modify the order of evaluation.

The relational operators give rise to a value 1 if the relation is

true and 0 if false. There may be only one relational operator in an

exp;ression.

4.2 Constants

Constants are of three types:

(a) decimal integers: one or more decimal chdracters possibly

terminated with the letter D.

2129, 600D, -217

(b) octal integers: one or more octal characters possibly terminated

with the letter 13 and optionally a single-d.igit oct~ll scaling

factor.

217, 32B, 4B3 (which is the same as 40008)

(c) string: '1-4 characters (e~ce~t ')'.

All constants are absolute, i.e., their relocation value is O.

The assembler normally expects integers to be decimal. This can

be changed, however, by using a directive (OCT or DEC). In any case,

integers may be terminated with B or D, overriding the normal inter-

pretationof· integers. string constants are not normally useful in the

direct comp~tation of memory addresses, but exist basically to be used

in literals (cf. 5.0).

4.3 Classification of Symbols

The assembler recognizes the follovring types of symbols:

(a) local symbols: These symbols are defined by their use in the

label field of instructions and in some directives. Their

R-26
4-2

R-26
4-3

value is that of the location counter at their definition. They

are thus symbolic addresses of memory cells. These symbols are

relocatable (R = 1) if the assembly is relocatable; if the

assembly is absolute, they are absolute. Once having been

defined, a local symbol may not be redefined. Attempts to do so

are considered errors, and diagnost~cs result.

(b) equated symbols: Equated symbols may be defined by equating

. ·them to an expression (using directives EQU, NAHG, or NCHR).

Their relocation value will be that of the expression. Unlike.

local symbols, equated symbols may be given new values· at any

point in the program.

(c) current location counter symbol (*): The character *, if used

in the proper context, is understood to mean the current value

of the l·ocation counter. It is relocatable or absolute

depending on the nature of the assembly.

(d) external symbols: External symbols are those which are used·

but not defined in a given subprogram. They can be -aSSigned

no value, and it is not reasonable to regard them ·either as

absolute or relocatable. External symbols may be used only as

the sole object in an expression; other than its appearance as

a sole object, the external symbol may not be used in an

expression.

4.4 Terms

Terms are either constants or symbols, optionally preceded by a unary
. .

op~rator. The unary operator serves to modify both the·value of the term

and its relocation value. One unary operator special relocation, (R)

may set the relocation value of a term to any value. This feature is

explained in much more detail in 4.7. J"

4.5 Expressions

R-26
4-4 .

Expressions may consist of one or more terms connected by binary operators,

or they may be just"a single external symbol. Their evaluation proceeds

"from left to right using operators of decreasing precedence. For example,

let A = 100, B = 200, and C = -1. Then

A+B*CjA = 98

Again, letting A = 543218' B = 444448"' and C = 000778, then

A(OR)B(AND)C = 543658

4.6 Constraints of Relocatability of Expressions

"'I'll-

The implementation of the assembler forces the following constraints

on the use of expression~:

(a) No relocatable term (R = 1) may occur in conjunction with the

operators oX- or /. In other words J no relocatable symbol may

multiply, be multiplied by, divide, or be divided by anything.

" (b) In the absence of the spec ial relocation operator (R) the

final relocation value of an expression may be only 0 or 1.

It is possible that the relocation value may attain other

values in the course of evaluation.

(c) If the special relocation operator (R) appears in an expression,

then the reloc~tion value of the expression m8.Y be either 0 or

some other value K, where K is the special relocation radix. DDT

is informed by the assembler that special relocation is being used

in this case. DDT will then multiply the base address by K

before adding it to the value of the expression (see next section).

4.7 Special Relocation

The special relocation feature has been provided to permit the

programmer limited use of expressions Which are not absolute or singly

relocatnble. To see why this is desirable, and how it works, consider

the process of assembling and loading a relocatable program. Let the

symbol A have value a. If one writes

LDA A

the assembler produces

076 a

and marks the' instruction's address as being relocatable. Late~ when

told to load the program beginning at base address b, DDT will form

076 a+b

R-2t
4-5

Thus no matter where the prqgram is loaded, the memory reference will be to

the ath word from the base address.

Now suppose ?ne writes

LDA 2*A

The assembler, of course, can form

076 2*a

and presumably what DDT should form is

076 2*a+2*b = 076 2*(a+b)

. To do.this, it must be told that b is to be multiplied specifically by 2.

Only one bit is reserved, however, for such i~formation in t~e assembler's

.binary output; it is this fact which causes the restriction that'

expressions may have only the relocation yalues 0 and 1. And this

restriction can be gotten around (inelegantly) by the use of {R).

The following example gives one of the main reasons for which (R) was.

put into the assembler.

Programs may make use of the string-handling SYSPOPs of the 940.

These instructions use string pointers, two-word objects containing

starting and ending character addresses. Now characters are packed

three per word. A character address therefore consists of the memory

address containing the ch~lracter multiplied by 3 plus OJ 1, or 2

depending on the position of the character in the word. If a character

address is divided by 3, the quotient gives the word address and the

remainder the character position in the word.

To form a chara.cter address at assembly time, one must be able to

multiply a word address (a relocatab1e item) by a constant (in this

case, 3). This is the reason for special reloca~ion. The statement

DATA (R)A+l

will produce the value

3*a+1

together with a notation to DDT that special relocation applies to that

value.

DDT will then form the 'value

(3*a;·t)+3*b = 3* {a+b)+1

symbol, representing a relocatable word address, may thus be used to form

character addresses in string pointers. There are other examples for the

need for special relocation, but they will not be mentioned here. Let it

suffice to say that special relocation is merely a device to make up

partially for the rather severe relocation constraints the assembler

imposes upon programmers.

It should be pointed out that the multiplicative constant associated

with (R) in the example above was 3 because of the nature of string

pointers. This constant is called the special relocation radix. It need

R-26
4-6

·not be 3 always. In fact, it may be changed to any value by the directive

RAD. Because of the relative importance of string pointers, however,

the assembler is initialized with this value set to 3; it is hence

unnecessary to use RAD to set it to.3 unless it has been changed for

some reason.

5.0 Literals

Progr?~ers frequently ~rrite such things as

LDA FIVE

where FIVE is the name of a cell containing the const~nt 5. The programmer

must remember to include the datum FIVE in his program somewhere. This can

be avoided by the use of a literal.

LDA =5

will produce automatically a locution containing the correct constant in the

program. Such a construct is called a literal.

Literals are of the form

=expression

vfuen encolli~t~ring a literal, the assembler first evaluates the expression and

iooks up its value in a table of literals constructed for each subprogram.

-If it is not found in the table, the value is placed there. In any case the

liter.al itself if' replaced by the location of its value in the literal table.

At the end of assembly the literal table is placed after the sub-progrma~

The following are examples of literals:

=10 =ABC*20-DEF/l2 ='HELP'-

=2=AB (This is a conditional literal. Its value will be 1 or 0
depending on whether 2=AB at assembly time.)

Some progr~~ers tend to forget that the literal table follows the

subprogram. This could be harmful if the program ended w·ith the declaration

of a large array using the statement

ARRAY BSS 1

It is not strictly correct to do this , b':lt. some programmers attempt it anyway

on the theory that all they want to do is to name the first cell of the array.

R-26
5-1

The above statement will do that, of course, but only one cell will be reserved

for the array. If any literals were used in the subpr.ograro, they ,,[ould be

· placed in the follO'\ving cells which nOvT fall into the array. This is, of

course, an error. Other thqn the -above exception, the programmer ·need not

concern himself with the locations of the literal values.-

l{-cb

5-2

6.0 Directives

There is a large number of directives associated with this assembler.

Although many of the directives are similar, each in general ?as its own

syntax. A concise summary is given below:

Class

Data Generation:

Value Declaration:

Assembler Control:

Output & Lis~ing
Control:

Macro Generation
& Conditional

Assembly:

Directive

COpy
DATA
TEXT
ASe

EQ,U
EXT
NARG
NeHR
OPD
POPD

BES
BSS
ORG
END
DEC

" OCT
RAD
FRGT
IDENT
DELSYM
RELORG
RETREL
FREEZE
NOEXT

LIST
NOLIST
PAGE

"REM

MACRO
ENDM
RPT
CRPr
ENDR
IF
ELSF
ELSE
ENDF

Use/Function

Facilitates use of RCH command
Generation of data
Generation of text
Generation of text

Setting or changing symbol v-3.lues
Defining external symbols
See
See -
Defining new op codes
Defin~ng po~ codes

Block ending symbol
Block starting symbol
Origin: absolute as sembly
End of program
Interpret integers as decimal
Interpret integers as octal
Set special relocation radix
Forget name of symbol
Identify name of program
Do not transmit symbols to loader
See-6.21
See 6.22
Preserve sYmbols and macros
Do not create external symbols

Set listing flags
Reset-listing flags
Skip to new page on listing
Type out remarks in pass 2

Head of macro body
End of macro body "
Begin repeat body"
Begin conditional repeat body
End repeat body
Be gin if body
Alternative if body
Alternative if body
End of if' body

.K-~O

6-1

6.1 COpy Generalized Register Change COITillland

[[$]label] COpy sl' s2' S3' ." .. [comment 1
where s. are symbols from a special
set assaciated with the COpy directive

The COpy directive produces an RCR instruction. It takes in its operand

field a series of special symbols, each standinf6 for a bit in the address

field of the instruction. The bits selected by a given choice of symbols

are merged together to form the address. For example, -lnstead of using

the instruction CAB (04600004), "one could WL~ite COpy AB. The special

symbol AB has the value 00000004.

The advantage of the directive is that unusual combinations of bits

in the address field -- those for which there exist normally no operation

codes -- may be created quite naturally. The special symbols are mnemonics

for the functions of the various bits. Moreover, these symbols have this

special meaning only when used with this directive; there is no restriction

on their use either as symbols or op codes elsewhere in a program. The

symbols are:

Symbol BeL l"-' fu,ction

A 23 Clear A
B 22 Clear B
AB 21 Copy (A) ~B
BA 20 Copy (B) ~A
BX 19 Copy (B) ~X
XB 18 Copy (X) ~ B
E 17 Bits 15-23 (eA~onent part) only
XA 16 Copy (X) ~ A
AX 15 Copy (A) ~ X
N 14 Copy - (A) -4 A (negate A)
X 2 Clear X

To exchange the contents of the B and X registers, negate A, and only

for bits 15-23 of all registers, one would write

COpy BX,XB,N,E

Of course} the' symbols may be written in any order.

Clever programmers please note: This directive facilitates nicely

some spe,cial RCH functions which might not otherwise be .attempted (it

is usually too much trouble). For example,

COpy AX,BX

has the effect of loading into X the logical 'OR (merging) of the A and B

registers. Interested readers are referred to the SDS 940 manual ~or more

details of the RCH instruction.
, I

6.2 DATA ~~nerat~ Data

[[$] label] DATA [comment] '0

The DATA directive is used to produce data in pro~ra~s. Each expression

in the operand field is evaluated and the 24-bit va]nes assigned to

increasing memory locati,ons. One or more ex-press ions may be present.

~ne label is assigned to the location of the first ex~ression. The effect

R-26
6·~3

'of this directive is to create a list of data, the first word of, w'hich may,

be labeled.

-
Since the expressions are not restricted in any way, any type of

data can be created with this directive. For example:

DATA l00,-217B,START,AB*2/DEF, '1~S',5

6.3 TEXT Generate Text

[($]label] TEXT 'text' [comment].'-

or,

([$llabel] TEXT expression,text [comment]

The TEXT directive is used to create a string of 6-bit trimmed ASCII

cliaracters, packed four to a word and assigned to increasing memory

locations. The fi~st word of the string, may be labeled. The string to be

packed may be delineated either by enclosing it in quotes (as in the first

case above} or by preceding it with a word count (as in the second case).

The second form of the directive must be used, of course, if·the string

contains one or more quotes. A pote~tial hazard arising here should be

pointed out. If a stntement contains a single quote (or any odd number

o~ them), it will not terminate with a semi-colon; a carriage return must

be used .

. TEXT 4,THIS WON'T ·WORK; TEXT 4,DISASTER AHEAD

In the line above the semi-colon will be part of the text, and the second

statement will be interpreted as being in the·comment field,

TEXT 4,THIS WILL '

TEXT l,A-OK

In the first form of the directive, characters in the last word are

left-justified and remaining positions filled in by blanks (octal 00).

In the second form, sufficient characters are packed to satisfy the vrord

count.

6.4 Ase Generat.e Text vlith 'Three Characters per Word

This directive is identical in form and use to TEXT, except that

8-bit characters are packed three ~ word. The 940 string processing

system normally deals 'vi th such text.

6.5 .ft.QU Equals

[$)symbol EQU expression [comment]

The EQU directive causes the symbol in its label field to be defined

and/or given the value of the expression. The eA-pression must have a.

R-26 •
6-4

value when EQ,U is first encountered; i.e., symbols present in it must have

been previously defined. It is permissible to redefine by EQ,U any symbol

previously defined by EQ,U (or NARG or NCHR, cf. below). This ability is

particularly useful in macros and conditional assembly.

6.6 EXT Define External Symbol

There are four ways which may be used to define external symbols.

(a) $label opcode or directive operand, etc.

The $ preceding the label causes the symbol in the label field

to be defined externally at the same time it is defined locally ..

(b) symbol EXT (comment not permitte~)

The symbol given in the label field is defined externally.

This symbol must have been defined previously in the program.
. .

. .
The operand and comment fields must be absent.

Both of the above forms have the ~ame effect; the' name and value of a local

symbol is given to the loader for external purposes.

Occasionally it is desirable to define an external symbol whose nrune

is different from that of a local symbol; or an external symbol maybe

defined in terms of an expression involving local symbols. There are

two ways of doing this.

(c) $symbol EQU expression

(d) symbol EXT ~xpression

[comment)

[comment}

In (c) above the symbol is defined both locally ~nd externally at the same

time. (d)' differs subtly in that the symbol in the label field is defined

only externally; its name and value· are 'completely unknovm to the local

program.

R-2E
6-:

The feature (d) above is particularly-useful in situations where two.or

more subprograms loaded together have name conflicts. For example, suppose

programs A and B 'both make use of the symbol START J and A not only refers

to its own START but B's as well. The latter references can be chang;d to

BEGIN. Then into program B can be inserted the line

BEGJN EXT 'START

No other changes need be made either to A or B.

Occasionally, after having written a program, one would like to make

a list of local symbols to be externally defined. A built-in macro ENTRY

serves this function. That it is a built-in macro is irrelevant; the

programmer may think of it as a related directive. Thus

is precisely equivalent to

A EXT
B EXT
C EXT
D EXT

6.7 NARG .Equate Symbo=!- to "Number of ""Arguments in Macro C?-l1.

[$)symbol NARG [comment]

This directive may be "used only in macro definitions. It is mentioned

here only for completen~ss. It operates exactly"as EQU except that in

place of an expression in the operand field,the value of the symbol i£

set to the number of arguments useq in calling the macro currently being"

expanded. Cf. 7.9 below.

6.8 NCHR Equate Symbol to the Number of Characters in". Operand

[$]symbol NCHR operand [comment]

This directive is intended for u~e mostly in macro definitions, but it

may be used elsewhere. It operates exactly as EQU except that in place

of an expression in the operand field, the value of the symbol is set to

the number of characters included in the operand field. A further

explanation of the utility of this directive is deferred to section 7.

6 6

6.9 OPO Operation Code Definition

The OPD directive gives the programmer the facility to add to the

existing table of operation codes kept in" the assembler new" codes or to

change the equiva~ences of current ones. The form of OPD is:

opcode OPO expression,class[,ar[,type[,sb]]] [comment)

where: 1) class must be 1 or 2 (cf. Section 3.1).

2) ar (address required) may be 0 or 1"

3) type may be 0 or 1 (cf. Section 3.1).

4) sb (sign bit) may be 0 or 1

Quantities governed by the optional terms above (2,3 and 4) are set to

zero if the terms are missing. As examples of how the directive is used,

some standard machine instructions are defined as follows:

CLA

LDA

RCY

OPD

OPD

OPD

0460000lB,2

76B5,1,1

662B4,1,1,1 (TYPE 1 = SHIFT)

A "hypothetical SYSPOP LLA might be defined by

LLA OPD 110B5 , I, 1,0, 1

(class 1, address required, type 0, sign b:i.t set}.

In operation, the assembler simply adds new op codes def~n.ed by OPD

to its opcode table. This table is always searched backward, so the new·

codes are seen first. At the beginning of the second pass the original

table boundary is reset; thus if an opcode is redefined somewhere during

assembly, it is"treated identically in both passes.

6.10" POPD Progr~med QEerator Definition

In programs containing POPs it is desirable" to provide the POPD

directive. This directive works exactly like OPD and is used in the same

way. Its essential difference from OPD is that it places automatically

R-26
6-7

in the pop transfer vector (1008 1778) a branch instruction to the body

of the pop routine.

In order to do this the assembler must know two things:

R-26
6-8

(1) the location for the branch instruction in the transfer vector and

(2) the location of the pop routine (i.e. the address of the branch

instruction) .

Item .(1) is given by the pop code itself. Item (2) is provided by the

convention that the POPD must ~ediately precede the body of -the pop

routine. The address of the branch instruction placed in the transfer

vector is the current value of the location counter.

If the automatic insertion of a word in the ~p transfer vector is

not desired, then OPD should be used instead. An example of this case

would occur in a subprogram containing-a pop whose routine is found in

another subprogram.

6.11 BES Block Ending Symbol

[[$]label] BES express.~on [comment]

The use of BES reserves a block of storage for which the first location

after the block may be labeled (i.e._ if the label is given). The block

size is determined by the value of the expression; it must therefore be

'ab~olute, and it must have a value when BES is first encountered, (symbols

present must have been previously defined). BES is most useful for

labeling a block which is to be referred ~oby indexing using the BRS

instruction (where the contents ~f X are usually negative). For example,

to add together the contents of an array one might write:

LDX =-100 ARRAY HAS 100 ENTRIES
CIA -

LOOP ADD ARRAY,2 NEGATIVE TIffiEXlliG HERE
BRX *-1
STA RESULT
HLT

ARRAY BES 100

6.12 BSS Block Starting Symbol

[[$]label] BSS expression [comment]

The use of BSS reserves a block of storage for which the first word may

be labeled (if the label is given). The block size is determined by the

value of the expression; it must therefore be absolute, and it must" have

a value when BSS is first encountered. ·The difference between BSS and BES

o-~

is that in the case of BSS the first word of the ~lock is" labeled, whereas'"

for BES the first word after the block is lab~led by the associ'ated symbol ..

BSS is most useful for labeling a block which is referred to by positive
.'

indexing (cf. 6.11 above).

6.13 ORG Program Origin

ORG expression (comments]'

The use of ORG forces an absolute assembly. The location counter is

initialized to the value of the expression. The expression must therefore

.be absolute, and it must have a value when ORG is first encountered.

Pn ORG must precede the first instruction or data item in an absolute

program, although it does not necessarily_have to be the first statement;

The output of the assembler will have a.bootstrap loader at the front

which is capable of loading the program after initiation by th~ 940

FILL switch.

6.14 END End of Assembly

END (expressi~n]

The END directive terminates the assembly. For 'relocatable assemblies,

no expression is used. For absolute assemblies the expression gives the

starting location for the program. When assembling in absolute mode,

the assembler produces a paper tape which can be read into the machine

with the FILL switch, i. eo, out of the time-sharing mode. If the

expression is not included with the END directive, the bootstrap loader

n-cu
6-10

on this paper tape will halt after the tape has read in. Otherwise, control

will automatically transfer to the location designated in the expression.

6.15 DEC Interpret Integers as Decimal

DEC [comments]

Integers terminated with B or D are always interpreted respectively as

being oct2l or decimal. On the other hand, integers no~ terminated with

these letters m~y be interpreted either as dectmal or octal depending on

the setting of a switch inside the assembler. The mode controlled by this

switch is set to decimal by the above directive.

When the assembler is started this mode is initialized to decimal •.

Thus, the DEC directive is not really necessary unless the mode has been

changed to octal and it is desired to return it to decimal. .

6.16 OCT Interpret Integers as Octal

OCT [cqmments]

As noted in 6.15 above, this directive sets a mode within the assembler

to interpret unterminated integers as octal. When the assembler -is

started this mode is initialized to decimal. Thus, the OCT directive

must be used before unterminated octal integers can be-written.

6.17 BAD Set Special Relocation Radix

RAD expression [comment]

As explained in 4.7 it is possible in a limited way to have multiple-

relocated symbols. This action is performed when the special ~elocation

operator (R) is used. The value of a symbol preceded by (R) is multiplied

by a constant called the radix of the special relocation. The loader is

informed of this situation so that it can multiply the base address by this

same constant before performing the relocation. Because the special

R-26
6-11

relocation vTaS developed specifically to facilitat"e the assembly of string

pointers (cf. 4.7), this constant is initialized to 3. If' it is desired

to change its value, however, the RAD directive must be used. The value

of the expression in the operan? field sets the.new value of the radix.

It must be absolute, and the expression.must have a value when it is

first encountered.

6.18 FRGT Forget Name of Symbol

[comment]

where s. are pre,viously defined symbqls
1

The use of FRGT prevents the symbol(s) named in its operand field from

being listed or delivered to DDT. FRGT is esp~cially useful in situations,

for example, where symbols have been used in macro expansions or conditional

assemblies. Frequently such symbols have meaning only at assembly time;
. '

they have no connection whatever with the program being assembled. When

DDT is later ,used, however, memory locations sometimes are printed out

in terms of these meaningless symbols. It is desirable to be able to ,

keep these symbols from being delivered to DDT .

. 6.19' IDENT Program Identification

symbol IDENT [comment]

!DENT causes the symbol found in its label field to be delivered to DDT

as ? special identification record. DDT uses the IDENT name in conjunction

with its treatment of local symbols: in the event of a name conflict

betvreen local symbols in tyro different subprograms, DDT resolves the

ambiguity by allovring the user to concatenate the prec~ding mENT name

to the symbol in question.

!DENT statements are othervrise useful for editing purpos~s. They

are always listed on pass 2, usually on the teletype.

6.20 DELSYM Delete Output of SYmbol Table and Defined Op-codes

DELSYM [comment]

DELSYM inhibits the symbol table and opcodes defined in the course of.

assembly from being output for later use by DDT. Its main purpose is to

shorten the object code output from the assembler. This might be

especially desirable for an absolute assembly wqich produces a paper tape
'-

which is to-be filled into the machine.

6.21 RELORG Assemble Relative with Abs.olute Origin

RELORG expression [comment]

On occasion it is desirable to assemble in the midst of otherwise normal

R-26
6-12

program a batch of code which, although loaded into core ~n some position,

is destined to run from another position in memory. (It will first

have to be moved there in a block.) This is particularly useful when

preparing program overlays.

RELORG, like ORG, takes an absolute eA1?ressio~ denoting some origin

in memory. It has the following effects:

(a) The current value of the location counter is saved, i.e. the
..

value of the expression and in its place .is put the absolute

origin. This fact is not revealed to DDT, however; during

loading the next instruction assembled will be placed in the

. next memory cell available as if nothing ha~ happened.

(b) . The mode of assembly is svTitched to absolute without changing

the object code format; it still looks like relocatable binary

program to DDT. All symbols defined in terms of the location

counter will be absolute. Rules for computing the relocation

value of expressions are those for absolute assemblies.

It is possible to restore normal relocatable assembly (cf. 6.22, RETREL).

Some examples of the use of RELORG follow:

(1)' A program begins "lith RELORG 300B and ends "lith END. The

assembler's output represents an absolute program whose origin is 0030°8

but which can be loaded anYVlhere us ing DDT in the usual fashion. (It'

is, of course, necessary to move the program to location 0030°8' before

executing it.)

R-26'
6-13

(2) A program starts and continues normally as a relocatable program.

Then there is a series of RELORGs and some RETRELs .. The effect is as

sho1;'lIl below:

} Normalrelocatable program •

RELORG . 100

J Absolute program or.igined to 100

RELORG .:200

} Absolute program origined to 200

RETREL

} Normal relocatable program

RELORG 300

J Absolute program origined t~ 300

END

6.22 RETREL Return to Relocatable Assembly

RETREL (comment]

This directive is used when it is desired to return to relocatable assembly

after having done a RELORG. It is not necessary to use RETREL unless'one

desires more relocatable program. The use of RETREL is shown in 6.21.'

The effects of RETREL are

(a) to restore the location counter to what it would have'been

had the RELORG(s) never been used, and

(b) to return the assembly to relocatable mode.

6.23 FREE7~ Preserve Symbols, Op-codes) and Macros

FREEZE [comment]

It is sometimes true "Then assemb'ling various sub-programs that they share

R-26
6-14

definitions of symbols, op-codes, and macros. It is possible to cause the

assembler to take note of the current contents of its symbol ~nd opcode

tables and the currently defined macros and include them in future

assemblies, eliminating the need for including copie.s of this information

in every subprogram's source language. This greatly facilitates the.

editing of this information.

When the FREEZE dir~ctive is used, the current table boundaries for

symbols and opcodes and the storage area for macros is noted and saved away

for later use. These tables may then continue to expand during the curr~nt

assembly. (A separate sub-program may be used'to make these definitions.

It will then end with FREEZE; END.) The next assembly may then be. started

with the table boundaries returned to what they were when FREEZE was last

executed. This is done by entering the ass.embler at its continlle entry

point, i.e. one types

. @. CONTJNUE ARPAS.

Note that when the assembler has been pre-loaded with symbols, opcodes

and macros, it cannot be released (i.e. one c·annot use ~nother s~b-system

like DDT, QED, etc.) without the loss of this information.

6.24 NOEXT Do Not Create External Symbols

Because of its subprogram capability, the assembler assumes auto-

R-26
6-15

matically that symbols which are not defined in a given program are external

and will be defined in another subprogram. It does not therefore list out

the use of. such symbols as errors.

If a program is in fact a.free-standing program, i.e. if it is

supposed to be complete, then clearly symbols which are not defined are

errors and shoulu be so noted in assembly. The NOEXT directive simply

prevents external symbols from being established; thus undefined symbols

are noted as errors. Tne directive must be used at the beginning of a "

program before instructions or data have been assembled. Its use affects·

the entire program. Its form is

NOEXT {comment]

6".2j LIST Turn SpeCified Listing Controls on

6.26 NOLIST Turn ?pecified Listin~.~ontrols Ofr

Most assemblers provide a means of listing. a program during assembly,

i.e. printing out such items as the location counter, binary code being

assembled, source program statement, etc. The association of these items
'. .

on one page is frequently of great help to programmers. Two directives,

LIST and NOLIST, control this process. Their form is as follows:

LIST}
NOLIST

[comment]

where the s. are from a set of special symbols having
~

"meaning only when used with these directives.

There are many listing options for this assembler. A list of special

mnemonic symbols used in conjunction with these two directives is given

below. The symbolf? have special meaning only when used with LIST and

NOLIST. They may be used at any other time for any particular purpose.

The special symbols are:

Symbol

1

2

LCT

Em

SRC

COM

MC

ME

EXT

NUL

Listing during pass I. Listing format will be

controlled by other parameters.

Listing during pass 2. Listing format will be

controlled by other parameters.

Listing of location counter value (see below)

Listing of binary object code or valu~s (see below)

Listing of source language (see below')

Listing of comments (see below)

Listing of macro calls" (see below)

Listing of certain directives during macro

expansions (EQU, NCHR, NARG, RPr, CRPI', ENDR, IF,

ELSF, ELSE, ENDF, ENDM).

Listing of external symbols at end of assembly

Listing of null & duplicate symbols at end of

assembly.

As an example of the meanings of various symbols above, consider the line

of code A2l STB OUTCHR SAVE POJNTER •.

It might list as

~ ~0S'21~ ~2l S~~ ~
LeT BIN SRC COM

It is not necessary to include each symbol"possible, but rather only those

parameters for which changes are desired. It is, in fact, not necessary

to give any symbols.

LIST is equivalent to LIST 2

R-26
6-16

R-26
6-17

When the assembler is started) it initializes itself in the follo,.,ing

way:

- LIST

NOLIST

The actual format of the assembly listing is controlled by the current

combination of parameter values. The parameters are independent items

except for the parameters Me and ME. In this case it is more reasonable

to think of their combination. Thus:

MC ME

o o

1 o

o 1

1 1

Effect

List outer level macro calls only

List all macro calls and code generated) but

suppress listing of certain directives (see ME

in table above).

List no macro calls) but rather all -co~e generated

except for certain directives.

List everything involved in macro expansions.

. Regardless of the'list control parameters which have been giv~n to

the assembler) it can be made to begin listing at- any time in either pass

. t,-'

simply by typing a single rubout (typing a 'second rubout in succession will

abort the assem~ly). Listing having been started -in this manner can be

stopped by typing the letter S.

6.27 PAGE Begin New Page on Assembly Listing

PAGE (comment]

This directive causes a page eject on the assembly listing medium

unless a page eject has just been given. It is used to improve the

appearance of the assembly listing.

6.28 REM Type Out Remarks in Pass 2

REM remark to be typed

This directive) when encountered in, pass 2) causes the contents of

its operand and comments fields to be typed out either O!1 the Teletype

or whatever file has been design2ted as the output message device. This

tYPeout occurs regardless of whRt listing modes are set. The directive

may be used for a variety of purposes. It may inform the user of the

progress of assembly. It may give him instructions on-what to do next

(this might be especially nice for complicated assemblies). It might
,-

announce the last date the source language was updated. Or; it might be

used within complex macros to shovl which argument substrings have been

created during expansion of a highly nested-macro (this for debugging

purposes).

R-26
6-18

, 7.0 Macros an~ Conditiona~ Assembl~

Assemblers with good macro and conditional assembly capability can have

surprising poy-rer. This assembler features such capability. In this section

the facilities for dealing with macros and conditional assembly will be

discussed. Many examples wtll be given.

7.1 Introduction to Macros

R-26
, 7-1

On the simplest level a'macro name may be thought of as an abbreviation

or shorthand notation for one or more ass~mbly language statements. In

this respect it is like an opcode. The opcode is the name of a bin8.!Y

machine command, and'the'macro name is the name of a sequence of assembly

language statements.

EXAMPLE 7-1 •

. The 940 has an instruction for skipping if the contents of a specified

location are negative, but none for testing the accumulator. SKA (skip

if' memory and accumulator do not compare ones) "Till serve when used ~ith

a cell "Those contents mask all but the sign bit. The meaning of SYJ\ used ,

in this way is "skip ~f A positive. tf Thus a, progrrumner will write

SKA
BRU

=4B7
NEGCAS NEGATIVE CASE

Programs, hOvrever J are more than likely to have a logical need for

skiPPing if the accumulator is negative. In these situations the programmer

. must write
SKA
BRU
BRU

=4B7
*+2
POSCAS POSITIVE CASE

Both of these situations are awhlNard in terms of assembly-language

progr amming.

But we have, in effect, just developed simple conventions for doing

the operations SKAP and SKAN (skip if accumulator positive or negative).

Let these operations be defined as macros.

SKAP MACRO
SKA =4B7
ENDM

SKAN MACRO
. SICA =4B7
BRU *+2
ENDM

Now -- more in keeping with the operations the.programmer has in mind

he may write
A22 SKAN

BRU POSCAS

R-26
7-2

The advantages of being able to use SKAP or SKAN should be apparent.

The amount or code written in the course of a program is reduced. This

in' itself" tends to reduce errors. A greater a.dvantage is that SKAP and

SKAN are more indicative of the action that the programmer has in mind.

Programs written in this way tend to be easier to read. Note, incidentally,

as sh01m above that a label may be· used in conjunction ~ith a macro. Labels

used in this way are usually treated like labels on' instructiqns; they are

assigned the current value of the location counter. This will be discussed

in more detail later.

7.2 Macro Definition

Before discussing more complicated use of macros, some additional

vocabulary should be established. A macro is an arbitrary sequence of

assembly-language statements together with a symbolic~. During

assembly it is held in an area of memory called text storage. Macros

may be created or defined. To do this one must give (1) a name and

(2) the sequence of statements comprising the macro. The name and the

beginning of the sequence of statements in a macro are designated by

the use of the MACRO directive (see ex. 7-1"above).

name MACRO

ENDM

The end of the sequence of statements in a macro is signalled by the

ENDM directive.

The reader should now refer to Figure 1. When the assembler en-

R-26
7-3

counters a macro definition (i.e., "when it sees a MACRO directive), s'YTitch

B is"thrown to position 1. The programmer's source language is merely

copied into text storage; note in par~icular that ~e assembler does not

~~ processing during the "definition of a macro. Switch B is put back

to position 0 when ENDM is encountered.

It is possible that within.a macro definition other definitions may

be imbedded. The macro defining machinery counts the occurrences of the

l~CRO directive and matches them against the occUrrences .of ENDM. SvTitch

B is "placed back in position 0 actually only when the ENDM matching the

last MACRO is seen. Thus lf~CRO and ENDM constitute opening and closing

brackets around a segment of source language. structures like the

following are possible:

SOURCE
LANGUAGE

A

0

0

1

1

B

0

1

0

1

Figure 1:

Binary Machine
Langua e·

t----..::::-~--;>_

ASSEMBLER

SYMBOLIC
ASSEMBLY

LANGUAGE

1

l'

Effect

normal assembly

,macro definition

macro expansion

TEXT
STORAGE

macro definition during macro expansion

(to be explained in more detail later).

Information Flow During Macro Processing

R-26
.7-4

name 1 MACRO

name 2 MACRO

name 3 MACRO

1 ENDM

name4 MACRO] .
'-

ENDM

ENDM
".

name5 MACRO]
ENDM

ENDM

The utility of this structure will not be discussed here. Use of this

feature of imbedded definitions should in fact be kept to a minimum since

the implementation of this assembler is such. that it uses large amounts

of text storage in this case. What is ~portant, however, is an under-
" .

standing of when the various macros are.defined. In particular, when

namel is being defined, name2,3, etc. will ~ be defined; they are

merely copied unchanged into text storage. Name2 will not be defined

* Until namel is used.

7.3 Macro E~~ansion

The use" of a macro name "in the opcode field of a statement" is referred

to as a call. The assembler, upon recognizing a macro call, moves switch A

to position 1 (again see Figure 1). Input to the assembler from the

original source language ceases tempOrarily and c~mes instead from text

storage. During this period the macro is said to be und~rgoing expansion.

* It should be noted that macros -- 1L~e opcodes -- may be redefined.

It is clear that a macro must first be defined before it is called.

An expanding macro may include other macro calls; and these, in

turn, may call still others .. In fact,'macros may even call themselves

(when this makes sense). This is called recursion. Examples of the

recursive use of macros are given later. When within a macro expansion

R-26
7-6

a new macro expansion begins, ~nforraation about the progress of the current

expansion is put away. Successive macro calls cause similar information

to be saved. At the end of each expansion the information about each

previous expansion is restored in inverse fashion. When the final

expansion terminates, swit~h A is placed back in position o. Input then

resumes from the source language program.

7.4 Macro Arguments

Now let us carry exrunple 7-1 one step further. One might argue that

the action of skipping is. itself awkward. It might be preferable to write

macros BRAP and B~ (branch to specified location if contents of accumulator

are positive 'or negative). How is one to do this? The location to which

the branch should go is not known when the macro is defined; in fact,

different locations will be used from call to call. The.macro processor,

therefore, must enable the programmer to provide some of the information

for the macro expansion at call~. This is done by permitting d~my

arguments in macro definitions to be replaced by arguments (i.e., arbitrary

substrings) supplied at call time. Each dummy argument is referred to in

the macro definition by a subscripted symbol. This symbol or dunmlY ~

. is given in the operand field of the MACRO directive.

EXANPLE 7-2

Let us define the macro BRAP.

BRAP MACRO DUM
SKAN
BRU DUM(l)
ENDM

When called by the statement BRAP POSCAS

the macro will expand to give the statements

SKA =4B7
BRU *+2
BRU roSCAS

R-26
7-7

Note that BRAP was defined in terms of another macro SKAN (a matter

of choice in this example). Also note that as defined, BRAP ~Tas intended·

to take only one argument. Other macros may use more than one argument.

EXAMPLE 7-3

The macro CBE (compare and branch if equal) takes two arguments.

The first argument is the location of a cell to be compared for equality"

with the accumulator; the second is a branch location in case of equality.

The definition is

~ CBE MACRO
SKE
BRU
BRU
ENDM

vllien called by the statement

D
Del)
*+2
n(2)

CBE =2lB,EQLOC

the statements generated will be

SKE =21B
BRU *+2
BRU EQLOC

Note that arguments furnished at call time are separated by commas~ .

R-26
7-8

It is possible to include both commas and. spaces in arguments by enclosing

the arguments in parentheses; the macro processor strips off the outermost

parentheses of any substring used in a call. For example in the call of

the ma.cro MUMBLE

MUMBLE A, (B,C),(n E)

we have

~m: ~,c
D(3) = D E

7.5 The Use of Dummy Arguments in Macro Definitions

Before giving further examples of the use of macros, the various

ways that dummy arguments may be used in macro definitions will be.

discussed. In general a dunnny may be referred to· by the symbolism

dummy(expression)

·The only restriction on the expression above is that it must not contain

other dummies or generated symbols (see 7.7). Furthermore, for obvious
, . *

reasons"it must have a kno~~ value when the macro is called.

I-bre than one dummy may be referred to by the notation

dummy(expression,expression)

In the case of the call

MUMBLE A,B,C,D,E

then

n(3,5)= C,D,E.

But it is possible to have confusion in this situation. If we have the call

MUMBLE A,B,C, (D)E),F

*It should be noted that a macro call may d.eliver more arguments than are referred
to in its definition, but the converse is not true. A dummy argument not supplied
with an argument at call time is considered an error.

then

DUM(3,5)= C,D,E,F

But which are DUM(3), DUM(4), and DUM(5)? To resolve this ambiguity," the

assembler produces in place ofDUM(3,5) the string

(c), (D,E), (F)

The notation

dummy()

R-2b

7-9

produces all of the arguments supplied in a macro call. Each is surrounded

by parentheses as in the example above.

The symbolism

dummy (0)

is legal and meaningful. It refers to the label field of the macro call.

Normally a label used with a macro call is assigned the current value of

the location counter (as with any instruction). Explicit use of dummy(O),

i.e., literal zero in parentheses, causes the label field not to be

handled in the normal way. It serves merely to transmit another argument.

There are three possible cases.

(1) Macro contains no references to dmnmy(O). Label field is

treated normally.

(2) Macro contains at least one reference t~ dummy(O). Label field

merely transmits an argument vThich r"eplaces dummy(O) in the

expansion.

(3) Macro contains no references to dummy(O) explicitly but does

contain dummy(expressi?n) where, at call time, the value of the

expression is zero. In this case the label field is handled as

in case (1) and also used to transmit the argument referred to by

dummy(expression) as in case (2).

The symbolism

is used to represent the terminal character o~the.opcode field} i. e.} to

deterrnin·e whether the macro name terminated with a blank or a * (in case

o~ indirect address). It allows macros to be ca~ed .with or without

"indirect addressing" specified. Thus in a typical call we have the

follOwing relationships:

Ml7,
"-v-

I
CALL-X~

t
dummy-eO) dtunmy(-l)

Note that dummy(-l) is always one character long.

Sometimes in a macro definition it is desirable to refer .only to a

R-26 1

7-10

portion of an argument} perhaps to a character or a few characters.):n the

case of a single character this may be done by writing

dummy(expression$expression)
. .

The first expression designates which argument; the second determines

which character of that argument. If a substring of an argument is

desired} one writes

dummy(eA~ression$expression}expression)

The second and third expressions determine the first and last characters·

·of. the substring. For example, if we have the call

then

MUMBLE A} BeDE, t FGHIJ'

DUM(2 $3) = D

DUM(3 $4} 7) = Hut

Beginning with the ith character the latter part of an argument can be

obtained by specifying an overlarge terminal bound. Thus

DUM(2$4,IOOO) =·HIJ'

7.6 Conc~tenatio~

R-2b
7-11

It is frequently useful to compose statement? out of mac:ro arguments

(or parts of them) and other information given' in the macro definition.'

This is'done by concatenating the various objects,together, i.e. simply

writing them next to each other. It is possible to confuse the assembler

when doing this, however. For example, let the dummy name in a definition

be C, and suppose we wish to cone atenate the strings AB and C (3) . If vIe

v~ite ABC(3), then do we mean AB concatenated with C(3), A concatenated

with BC(3) (whatever that is), ABC(3), or what?

To avoid ambiguity vle use the character"." (dot or perio?-) as a

concatenation delimiter. For, the example just above we would write

AB.C(3), and no ambiguity then exists. The assembler uses the dot to

. delineate objects it must deal with; in pro'ducing output the macro' expansion

machinery after having'recognizedthe various objects stmply skips over"

the dots. ~ dot character cannot therefore be- used literally in !:macro

definition.

-', EXAMPLE 7-4

Let us define a macro STORE. Suppose we have established the

.conv~ntion that certain temporary storage cells begin with the letters

A,B,.· or X, depending on from what 940 register information is to be stored.

there. The definition is

STORE MACRO D
ST.n(l$I).D(-l) D(l)
ENDM

If called by the statements

STORE B17

STORE7<- x44

the macro will expand as

STB B17 or STXoX- x44

The dot is not actually needed in every incidence of concatenation.

R-26
7-12

Some programmers may readily determine for themselves when it ~s actually

needed. As a matter of good practice, however, when in doubt, use it!

7.7 Generated Symbols

A macro should not, of course, have in its definition an instruction

having a label. Successive calls of the macro.would produce a multiply.

defined symbol. Sometim~s, however, it is convenient to put a label on

an instruction within a macro. There are at least t\fO ways of doing this.

The first involves transmitting the label as a macro argument when it is

called. This is' most reasonable in many cases; it is in fact often

desirable so that the programmer can control the label being defined.

and can refer to it elsewhere in' the program.

However, situations do arise in which the label is used purely for

reasons local to the macro and will 'not be referred to elsewhere. In

cases iike this it is desirable to' allow for the automatic creation of ~

labels so that the progrrumner is freed from worrying about this task.

This may be done by means of the generated symbol.

A generated symbol ~ may be declared when a macro is defined. To

do t.his requires tw"O things; (1) the name and (2) the maximum number of

generated symbols which will be encountered during an exp·ansion. These

.two items may follow the dummy symbol name given in the' MACRO directive.

The actual format used is

nrune MACRO dummyname,generatedname,expression

For example, \Ve might have

MUMBLE MACRO D,G,4

ENDM

In the definition of this macro there might be references to

G(l), G(2), G(3), and G(4), these being individual generated symbols.

With regard to generated symbols the macro expansion machinery

operates in the follo'\ving fashion. A generated symbol base value for each

macro is initialized to zero at the beginning of assembly. As each

genera.t~d symbol is encountered, the expression -constitut~ng its subscript

is evaluated. This value is added to the base value, and the sum ,is pro-

duced as a string of digits concatenated to the generated symbol name.

Enough digits are produced to make the resultant symbol six characters

long. Thus, the first time MUMBLE is called, for example, G(2) vlill be

transformed into GOOO02, G(4) into GOooo4, etc.

At the-end of a macro expansion, the generated synfuol base value is

incremented by the amount designated by the exp~ession following the

generated symbol name in the ~~CRO directive. (This was 4 in the

-definition of MUMBLE above.) Thus the second call of MUMBLE will produce

in place of G(2),-coooo6, the third call will produce GOOO10, etc. It-

should be clear that a generated symbol name should be kept as short as

possible. It cannot _ be longer than 5 characters.

7.8 Conversion of a Value to a Digit string

As an adjunct to the automatic generation of symbols or ~or any other

_purposes for which it may be suitable a capability is provided in the

assembler's macro expansion machinery for conversion of the value of an

expression at call time to a string of decimal digits. The construct'

($expression)

will be replaced by a string of digits equal in value to the expression.

R-26
7-13

For example, let X = 5. Then

AB. ($2*X-l)

will be transformed into

AB9

Further examples of the use of this facility appe~r below.

7.9 The NARG and NCHR Directives

Macros can be more useful if the number of arguments supplied, at

call time is not fixed. The precis-e meaning of a macro (and indeed, the

results of its expansion) may depend on the n~ber or the arr~ngem~nt of

its argurrlcnts. In order to permit this th~ macro undergoing expansion must

be able to determine'. at call time the ,number of ar~ents supplied. The

NARG directive makes this possible.

NARG functions baSically like-EQU, except that no expression is used

with it. Its basic form _is

symbol NARG [comment]

The function 9f the directive is to _equate the value of the symbol to the

number of arguments supplied to the macro currently undergoing expansion.

The s~nbol can then be used by its~lf or in expressions for any required

purpose. Examples of the use of NARG appear later.

It is also useful to be able to determine at call time the number of

-characters in an argument. NCHR functions by equating-the symbol in 'its

label field to the number of characters in its operand field. Its form is

symbol NCHR character string [comment]

R-26
7-14

The notion of "operand field'~ must b~ elaborated on here. The operand field

normally terminates on the first blank after the beginning of the field.

This rule ~ rescinded if !:.. macro argument containing blanks appear .. ~ in

the ~rand field. For example, in the statement

XIZ LDA VECTOR, 2 THIS IS A COMMENT
t t

1\-co
7-15

the arrows delineate the operand field. Alternative~, if a statement like

TEXT X,D(l).E1ffiOR

is placed in a macro definition and the macro is called by

MUMBLE (NON-FATAL)

then the above statement will turn out to be

TEXT X,NON-FATAL ERROR
t t

Notice how the operand field terminates in this case •.

In the same example notice that the message produced by the text

directive is of unspecified length at definition time. Clearly, X must

depend on the number of characters in D{l). Accordingly; MUMBLE might be'

defined as

EXAMPLE 7-5

MUMBLE MACRO
X NCHR
X EQU

TEXT
ENDM

7.10 Conditional Assembly

D
D(l)
X +9 5 FOR 'ERROR I ,4 TO ROUND UP
X/4,D(1) . ERROR

The reader should see by now that the macro. is a powerful tool.

~ts power, however, is considerably multiplied when combined with the

features explained in this and the following sections. These features
-

basically the if and repeat capabilities -- a~e called conditional .

assembly capabilities bec~use they permit assembly-time calculations.

to determine the source language actually assembled. They are, however,

not strictly a part of the macro facilities and may be used quite apa~t .

from macros.

...

\ .

7.11 The RPr Directive

The RPT (repeat) directive is, like the MACRO directive, an opening

bracket for a segment of program. Its form is

{1}· [label] RPr expression (comment]

or, using s for symbol, e for expression, and c for comment

(2)

(3)

[label] RPr

[label] RPr

(s=el ,[e2,]e3) [c)

(s=el,[e2,]e3}(s=el[,e2)(s=el[,e2)··· [c)

Form (1) says to repeat the follo~ing sequence ~f statements down to the

matching ENDR (end repeat) as many times as given by the value· of the

expression. Forms (2) and (3) are really the same form; they are shorm
" "

. separately to emphasize that only the first parenthesized group in the

operand "field must be present. Their meaning is ~s follows:

(1) Set the symbol s to the value of e1 •

(2) Issue the sequence of statements dovm to the matching ENDR.

(3) Increment s by the value of e
2

or by one (if e2 is not present).

If the new value of s has not passed the limit, go back

to (2). When the limit is passed, quit.

In other words, for symbol=e1 step e2 until e
3
~

or for symbol=e1 until e
3

do •.•

Tne first parenthesized group (1) determines the number of times the

repeat is executed a~d'(2) controls the initial value and increment of a

symbol. Subsequent groups (there may be up to ten of them) mereiy control

the initial value and increments of other symbols carried"along in the

recent operation.

R-26
7-16

EXAMPLE 7-6

It is desired to· create an area of storage which is cleared to zero.

R-26
7-17

The BSS directive cannot be used for this purpose since i~s function (that

of reserving storage) is basicB:lly to advance the assembler's location

counter.· The problem is readily solved by

ABC

which is equivalent to

ABC

RPr
DATA
ENDR

DATA
DATA
DATA
DATA

DATA

100
o

0
0
0
0

0

i
100 statement13

!
Note that the label is applied effectively only to the first statement.

EXAMPLE 7-7

It is desired to fill an area of storage ",ith data starting ,,,ith 0

and increasing by 5 for each cell. We may write

x EQU 0
RPI' 20
DATA X

. X EQU X-t5
ENDR

.Alternatively (and more simply) ·one can "Trite··

RPl' (X=0,5, 100)
DATA X
ENDR

Note that in the latter form the terminal value (i.e., e
3

) does not have

to be positive or greater than the initial value of the symbo~ bei~g

incremented.

. RPT (X=lOO, -5 , 20)

and (X~INIT, -5 , - 30) RPI' ..

are both permissible.

Also note that a repeat directive followed by other statements and

R-26
7-18

an associated El~DR (referred to as a repeat block) may be imbedded in other

repeat blocks. This is similar to the imbedding of macro ~efinitions in

other macro definitions, and repeat structures similar to that shown in

section 7.2 may be used.

EXAHPLE 7-8

It is desired to" have a pair of macros SAVE and RESTOR for purposes

'of saving and restoring a~tive registers at the begi"nning and end of

subroutines. These macros should take a variable number of arguments

so that "one can write, for ex?~ple, ""

SAVE A,SUBRS

" or perhaps

RESTOR A,B,X,SUBRS

These calls are intended to generate the code

STA SUBRSA

and

LDA SUBRSA
LDB SUBRSB
LDX SUBRSX

We first define a generalized macro MOVE which is called by the same

arguments delivered to SAVE and RESTOR plus the stri~gs 'ST' and 'LD'"

which determine whethe"r one wishes to store or lpad.

MOVE MACRO D
X NARG

RPr (Y=2,X-l)
D(l). Dey) n(x). n(Y)"
ENDR
ENDM

Then, in terms of MOVE, SAVE and RESTOR are readily defined as

SAVE "MACRO D
MOVE ST,n() "
ENDM

RESTOR MACRO D
MOVE LD,D()
ENDM

R-26
7-19

EXAMPLE 7-9

Many programs "make use of flags, memory cells which are used as

binary indicators. The SKN (skip if memory negative) makes it easy to

test these flags. Let us adopt the convention that a flag is set if it

contains the value -1 and reset if' it contains zero. We want to develop

the macros SET and RESET to manipUlate flags. It is further desirable

"to deliver at call time the name of an active register whic~ will be used

for the action, together with a"variable-length list of flag locations.

Calls of these macros will look like

SET A,FLGl,FLG2,FLG3

or

RESET X,FLG37,FLG12

As in example 7-8 we make use of an intermediate macro STORE which

takes the same arguments.

STORE MACRO n
X NARG

RPr (Y=2,X)
ST.n(l) n(Y)
ENDR
ENDM

Thus SET and RESET are defined as

SET MACRO n
LD.D(l) =-1
STORE D()
ENDM

RESET MACRO D
CL.D(l)

D() STORE
ENDM

R-26 .
7-20

1.12 CRPT, Conditional Repeat

Occasionally one wishes to·perform an indefinite number of repeats,

termination coming on an obscure condition determined in the course of the
... -.

repeat operation. The conditional repeat directive, eRPI', serves this

function. Its effect is like that of RPr (and its ~epeat block -- like.

RPr-- is closed off by a matching ENDR) except that instead of giving

a number of repeats its associated expression is_evaluated each time in

.
a Boolean sense to determine whether the repeat should occur again. Its

. (

form is

[label] CRPr expres~ion[,(s=el[,e2]),(s=el[,e2)···]

[comment]

One ~ay yITi te, for example,

CRPr X>Y

or CRPl' STOP, (X=1,2) (Y=-3)

Note that the statement

CRPr 10

will cause an infinite· number· of repeats.

The termination of a CRPT operation is governed by whether the value

of the expression is one or greater. Zero·or negative quantities are

taken to mean don't repeat (Boolean 0 or false). Values of one or greater

mean do r~peat (Boolean 1 or true).

An example of the use of CRPT is shown in example 1-11.

7.13 IF Capability

It is frequently desirable to permit the assembler either to assemble

R-~

7-~

or merely skip blocks of st~tements 1epending on the value of an expression

at assembly time. This is primarily what is meant by the term conditional

assembly. Conditional assembly can be done (inelegantly) with CRPT.

Let the condition be given by an expression. (Once again a Boolean

value is ascribed to an expression in the manner

o if e<0

1 if e>O.)

Then one may write

EXAMPLE 7-10

'(»

c EQU condition
CRPT C

arbitrary block of statements
C EQU 0

ENDR

Note that the line before ENDR is required to prevent the eRPT from going

forever. By using the structure above, however, conditional assembiy may

be done; the arbitrary block of statements enclosed in the repeat body

may be assembled on condition.

7.14 IF, Assemble Lif E:x-pression True (i.e., > 0)

The same function shown in example 7-10 is performed much more

conveniently by the IF directive. Its form is

[label) IF expression [commel1;t]

ENDF

As with RPT and CRPT, the IF directive defines the beginning of a block

of statements (called the i~ body) terminated bY,a matching E1~F. The

if body may contain other if bodies.

R-26
7-22

When doing conditional assembly there are often alternative if bodies

to be assembled in case a certain if body does not assemble. This situation

is most easily dealt with by the use of the ELSF and ELSE directives.

These ,provide an end to the if body and also begin another body which is

to be assembled (again possibly on condition) in case the first body did

not. For example, consider the following structure:

IF el

} bodYl

ELSF e 2

}bOdY2
ELSF e

3
} bodY3

ELSE
l, bodY4

ENrlF
If ei>0, bodYl is assembled and bodies2,3,4 are skipped (regardless of

e
2

and e
3

.

If el~O and e2>0, bodY2 is assembled and bodies1,3,4 are skipped.

If el and e2~O and ej>0, bodY3
is assembled and bodiesl ,2,4 are skipped •.

Finally if el , e2 , and e3<S..0, bOdY4 is assembled.'

An example of the use of IF (and other features) follows.

R-26
7-23

EXAMPLE 7-10

This example serves to illustrate several of the preceding features

-R-26
7-24

and also the power of macros used recursively. The macro MOVE is intended

to take any number of pai~s of arguments. The first argument of each pair

is to be moved to the second. Each argument, however, may itself be a

pair of arguments, which may themselves be pairs, etc.

We first define MOVE. Basically it extracts pairs of argument

structures and transmits such a pair to another macro MOVEI.

MOVE
X

MACRO
NARG
RP1'
MOVE 1
ENDR
ENDM

D

(Y=i,2,X)(Z=2,~)
D(Y),D(Z)

We now define MOVEI. It calls itself recursively until it comes, up
0.:

with a single pair of arguments. Then it generates code.

MOVE 1
G(l)
G(2)

G(2)
U
V

MACRO
NARG
EQU
IF
LDA
STA
ELSE
RPT
EQU
EQU
EQU
MOVE 1
ENDR
ENDF
ENDM

D,G,2

-rjJ

~m=2
D(2)

G(1)/2
G(2)+1
G(l)
G(2)
D(V) ,D(V+U/2)

Thus when called by the line

MOVE A,B

the code generated will be
LDA A
STA B

J,,-LU

7-25·

In this case the main call results in the call-

MOVE 1 (A,B),(C,D),(E,F),(G,H)

MOVEI .calls itself by ".

MOVE 1

and again:
MOVE 1 A,E

where the first code is gen~rated. Then we get

Recursion then pops. up to the call

MOVE 1

and so on.

EXAMPLE 7-11

The following example makes use of virtually every feature in the macro

and conditional as~embly machinery. It is presented as a demonstration of

the power inherent in the use of macros but not as a" practical tool (critics

.have justly termed it the world,' s slowest compiler) ~ The macro COMPILE when

called with an arithmetic expr~ssion for its, argument produces assembly

language which computes the value of the expression in a minimum number of

steps (subject to the left-to-right scan technique u'sed). COMPILE in turn

R-26.
7-26

calls a large number of other 'macros. Their functions are explained by comments

in the text below:

The COMPIIE macro itself merely initializes some variables and calls

EXPAND where the more difficult work is done. J is the total number of

charOacters in the expression. K is used to keep track of the recursion level

on which the "lork is being done (EXPAND calls itself recursively when it s(!:es

an opening bracket [). 'AVAIL is the. counter for available temporary storage.

NPrR and PPm are stack pointers for the operand and operator stacks respe,ctively .. '
0"'"

COMPILE MACRO D;J NCHR D(l);K EGU O;P.VAIL EQU l;NPTR EQU -l;PPTR EQU-l
EX P t\ t,J D D (1); E ~ J D ~1

EXPAND initializes I, the current character pointer. It places

the value zero on the operator stack (marking its beginning on the current

level) and fetches the first operand. It then sets a switch (G(l» and goes

into a cycle of fetchi~g operators (GETP) and operands (GETN). If the

precedence of new operators is less than or equal to that of the previous

operators, code is generated. Otherwise the information is stacked and the

scan continued.

EX P A ~J D Mt, C ROD , (j , 1 ; l E QUI ; KEG' LJ K + 1; ·s T~. C K 0, P ; GET N 0 (1); SET G (1)
CRP T G(1)

IF I<J; GETP D(lSI)
ELSE;OPTOR EOU 11; RESET G(l)
ENDF
;PSTf..K EQU PST.($PPTR)
eRPT OPTOR/I0<PSTJ\K/IO+1; GEtJ D(l)·

.t{-c:o.

7-z/

i~D~PTOR=ll;P?TR FQU PPTr.~l; RESET G(l);K EQU X-I;! EQU !.($K)+I-i"
ELS F.; S TI\ CK . CP TOR, P

I F NP TR>O .
I F NS T • (~t, NP TP. - 1) <0

I F N ST. ($ ~~ P T R - 1) = -1; S T Po T E f" P • ($ A VA I L)
'ELSf.; RSH 1; SIE TEt1P.($AVPoIL)

ENDF
;NST.($NPTR-l) ECU fl,VAIL;AVAIL EQU ~VAIL+l

EN~F
E~~DF
GETN D(lSI,J)

ENDF
ENDR

ENDM

SET and RESET change the setting of flags. STACK is used to put values

and pointers on "stacks." (These are not, of course',physl..cal stacks in

memor~ but rather.conceptual ones existing in the assembler's symbol table~

STAC~ functions by creating an ordered progression.of names and a~signing

values to the na~es by means of the EQU directive .

•. f"q

'" ".

SET MACRO D;D(I)·E0U 1; ENDM

R ES E T . MA C ROD; D(1) EQ U 0; E ~ D r1

STACK tTiACRO D; IS EQU D(2) .PIR+l; D(2) .PTR EQU TS; D(2) .51.($TS,) EQU D(1)
END~1

GETN fetches the next operand. Its. complexity is. due to the fact that

it must recognize symbols (in this example using the assembler's symbol rules)

and numbers •. When this recognition is complete it puts in the· operand stack

R-cb
7-2&

a pair of pointers to the head and tail of the· operand (i. e., character" numbers

in the string and a flag bit '\>rhich denot'es whether the object is a symbol or

a number. Note that if an opening bracket is seen, GETN calls EXPAND recur~ively.

GETN' ~lACRO D; TO F.QU I; RESET ERROR; GETC D(1 $1-TO+l)
I F C H A H = ' [, ; I • ($ K) E QUI; EX PAN D 0 (1$ 2 ; J)
ELSE

I F LETTER; R.ES ET r~UM8ER
ELS E;' S ET ~JUf'1P EP
ENDF
I F D1 G1 T; SET S~t}l TCH

eRP T S WI. Te}!; .GETC DC 1 $1 - TO+ 1)
. I F D1 GI T

ENDR

ELSF LETTER; RESET SW1 TCH
IF CH~R='B'; GETC D(I$I-TO+l)

IF LETTER; RESET NUMBER
ELSF ,DIGIT; RESET r.JUr~8ER

.. E~]DF

ELS E; RES ET NUnB ER
ENDF

ELS E; RES ET S \111 TCH
E~~ D F ~

ELS F LETTER
ELSE; SET EHROR
ErJDF
I F NUMBER
ELSE; SET SWITCH

C R P T S tv'l T C H; GET C D (1 $ I - TO + 1)
I F LET TEn

[NDH
ENDF

ELSF D1 G1 T
ELSE; RESET S~Jl TCH
ENDF

IF ERROR; ERROR; STA.CK O,N
ELS E; S TA CK TO* 1 B4+ 1- 2+4E- 3* NU~lEER, N .
ENDF

; I EQ U I-I
ENDF.

ENDt1

GETC's main function is to determine VThether a given character is a

letter, digit, or other type of character. GETP fetches' the next ·operator •.

It does some checking of the results and if valid sets 'OFTOR to a value

carrying both operator and precedence information'.

GETC ;V!ACRO D;CHpR EQU 9D(1) 9;1 EQU I+l;A'EQU CHAR>9Z9;E: EQU Cl-lAR<"A-
I F A (OR) [.; A EQ U CH f\ R> "9 9 ; B F Q 1I CH P R < '0 '

IF t-(CR)E'; RESET LETTER; RESET D1 GI T
ELSE; SET DIGIT; R~SET LETTER
~NT)F

ELSF.; SET LETTER; RESET DIGIT
ENDF

END~i

GETP ~1A CR 0 D; GETC D(1)
IF LETTER(OR)DIGIT; FRROR
ELS E; A EG' U CHA R> 1186; E EQ U CHA R<20B6

I F P (AND) D; or T OR EQ U OP S • ($C H P R 11 E 6) .
ELSF CHAR=']';OPTCR FrU 11
ELS E; OP TCR E(:' U -1
E~!DF

IF OPTOP=-t"; ERROR;OPTOR EGlI 40
ENDF

ENDF
E~~Dn

GEN and GENA serve to reconstruct the operands from the string pointers

and call generators which actually produce code.

GEN NACRO D;R EGU -1;PP2 EOU·PST.($PPTR);PP3 EQU NST.($NPTR-l)
;PP4 EQU PP3/1P4;PP5 EQU PP3-?P4*lB4

IF PP5>4B3;PP5 EGU PP5~483; SET LIT1; RESET L1T2
ELS E; RES ET L1 T 1; RES ET LI T2
E~}DF

IF PP3>lP4; ~EN~ D(1),D(1$PP4,PPS)
ELSF PP3>C; GENA 0(1) ,TEff;P.($PP3);AVPIL EQU PP3

.ELSF PP3=-1; GENt O(l),AREG
ELS F PP3 = -2; GEt,lA. D(1) ,t REG
ENDF

; r~PTR EQU NPTR-2; STP.CK R,~,!;PPTR EQU PPTR-l;PST~K EeU PST.($PPTR)
ENDM

n-c:.u

7-29

GENA MACRO Dj pp~' EQU NST. ($NPTR) ;PP6 EGU Pp5/1P.4
; p P 7 EQ U P P 5 - P P 6 * 1 E 4
IF PP7>4B3;PP7 EQU PP7-483; SET LIT2
El\!!) F
IF PP5>lP4; GEN It ($PP2) D(2),D(1$PP6,PP7)
ELSF PP5>O; G~N.($PP2) D(2),TEMP.($PP5);AVAIL EQU PP5
ELS F P P 5 = - 1; G E r,~ • ($ P P 2) 0 (2) , ARE G
ELS F P P 5 = - 2; G EN. ($ P P 2) 0 (2) ,B REG
ENDF

~~DN

GEN20, 21, 30, 31 and 40 are the code producing macros. They make

referenc: to LIT1 and LTI2 (flags set by G~N and GENA) a-r:d call macros

TEST, "'LA, LB, and ST. 'The purpose of the latter macros is to 'Worryqabout

the meaning of the contents of the A and B regi~ters so as not to inject

superfluous code.

GEN20 ~W.,CRO D; TEST D(1) ,D(2) ,X; LA D.(X) ,LI T.($X)
. I F X = 1

ELSE

I F LI T2; ADD =. D (2)
ELSE; ADD D(2)
ENDF

IF LITI; ADD =.0(1)
, EL 5 E; ,~ D D D (1)
ENOF

ENDF
EN~M

G E N2 1 Mt., eRa D ; T ES T D (2)" ,x
I F x; LA D (2) ,L I T 2

I F LI T 1; C Nt.. ; P. D D =. D (1")
ELS E; C N P. ; ADD D (1) .
ENDF

ELS E; LA 0 (1) , LIT 1

. ENDF
ENDM

I FLI T2; S us =. D (2)
ELSEj SUB 'D(2)
ENDF

R~~·26
7-30

GEN30 MACRO D; TEST D(I),0(2),>:; LA O(X),LIT~($X)

I FX = 1
IF LI T2; MUL = .0(2)
ELSE; MUL D(2)
EN~F

ELSE
I F LI T 1; MUL =. D (1)
ELSE; MUL D(l)
ENOF"

ENDr.
; R EQ U -2

ENOM

G E N3 1 MA C ROD; T ES T D (2) ,X
" I F X; S T D (2 $1); LP- D (1) ,L I T 1; D I V TEMP. ($ A VA 1 L)

ELS E; "LB D (1) ,L I T 1
I F LI T2; D I V =. D (2)
ELS E; Dl V "D(2)

ENDF
END~1.

ENDF

GEN40 ~~CRO D; NOP 0(1); NOP D(2)
.ENDM

LA MACRO D
IF'D(l)'='AREG·
ELSF 'D(l)'='BREG'; LSH 23"
ELSE

IF D(2); LOA =.D(I)
ELSE; LDA 0(1)

ENDf
ENDM

ENDr

LB MACRO D
IF' D (1)' = • BR EG' .
ELSE

IF '0(1) '='AREG'
ELSE

ENDr
RSH 23
ENDr

ENOM

5T MACRO D

IF D(2); LDA =.D(1)
ELSE; LDA 0(1)
ENDF

IF' D (1) ., = 'BR EG '; RSH 1
ENOr

51.0(1$1) TEMP.($AVAIL)·
ENOM

,t\-c:u

"7-31

TES T MA CR 0 .D; Y NAR G; DC Y) EQ U 0
RP T (Z =. 1 ,Y - I) :

1Ft D (Z $1 , 4) • = ' ARE G t ; DC Y) EQ U Z
ELSF 'D(Z$1,4)'='6REG';DCY) EQU·Z
ENDr

ENDR
IF Y>2

IF D(Y)=O;D(Y) EG!U
EMDF •

ENOF
ENDM

The following lines establish precedence information for the arithmetic

operators.

OPSIO EQU 30;OPSll EQU.20jOPS12 EQU -ljOPS13 EQU 21;CPS14 EQU-l
OPS 1 5 EQ U 31

When called by the following lines, the macro generates code as sho,"m:

Call: COMPILE X+200*Y

·Result: . LDA =200
MUL Y
ADD X

Call: COMPILE AB-[C+D]![E+F]
).

Result: LDA C
ADD D
STA TEMPI
LDA ·E
ADD F
STA TEMP2
LDA TEMPI
RSH 23
DIV TEMP2
CNA
ADD AB

R-26'
7-32

Call: COMPILE

Result: LDA
MUL
LSH
ADD
STA
LDA
RSH
DrV'
STA
LDA
MOL
LSH
ADD
MUL
DrV'
CNA
ADD
SUB
RSH
DIV
eNA
ADD
SUB

A+200+34c2l-[DEF!34B-HI*[J~20*K]!LM33B - N]!OPQ-22

=200
34c21
23 .
A
TEMPl
DEF
23
=34B
TEMP2
=20
K
23
J
HI
LM33B

TEMP2
N
23
ON.

TEMPl
=22

1 -;

R-26
7-33

7.15 ~ecial Symbols in Conditional Assembly

Although in the introduction it is stated that symbols 'consist
" .

only of letters and digits, it is possible to include the co~on in

symbol~. DDT, however, does not regard the c~lon as pa~t of a symbol.

The meaning of this is that DDT will type out such symbols but they
. . .

cannot· be typed in. In effect this makes them usel~ssJ arid it is for

this reason that the legality of colons in symbols has, just now been

mentioned.

Yet by judiciously. choosing when to use the colon in a ~ymbol

the feature can become worthwhile. In particul~r it can be used 'in

macros and other obscure places ~n t~e program to avoid possible

conflicts with other names. This might be particularly useful to

.d1-stinguish between symbols used in assembly-time calculations.and

those used at run-time.

R-26
7-34

8.0 Assembler Error Messages

upon discovering an error in the syntax of a.program being assembled, the

assembler will. list the statement in question and information about the

R-26
8-1

character of the error. The listing of errors will occur regardless of whether

regular listing is b~ing done.

8.1 Error Messages

Error messages and their interpretations are given below'. The first

group deals with difficulties found in a single statement.

Error Meaning

D Duplicate symbo1.

3'.,.

L Error in label field; most likely not a valid symbol.

M Missing field in statement.

0 Invalid or undefined opcode.

R Relocation error in expression.
• "'!il-

S General syntax error.

U Undefined symbol.

If when calling a macro the user fails to deliver an argument required

during expansion, the assembler will replace the argument with the charactert

and issue an undefined symbol message. at that'point~

The second group of error messages deal with more complicated difficulties

Error Message

SYMBOL TABLE FULL. ERROR
CHECK CONTINUES.

Meaning.

Too many synfuols and/or opcodes have
been defined. Assembly will continue,
but no new symbols or opcodes will be
recognized. Break the program into.
sub-progrruas or otherwise reduce the
number of symbols present.

Error Message

LITERAL TABLE FULL. FUR
THER LITERALS IGNORED.

MUST ASSEMBLE ABSPGM ON
PAPER TAPE

mFUT STACK OVERFLOW

EOF -- END CARD ASSUMED

ILLEGAL COMMAND

mruT FILE NOT TEXT

BAD CHAR·

. l!OF IN HACRO DEFINITION

mror STACK UNDERFLOW'.

. mPUT BUFFER FULL.

...

Me an in&

'Similar to the case above. Reduce the
n~ber of literals present.

R-26
8-2

The bootstrap.loader for self-filling,
absolute assemblies is intended for paper
tape only. Designating any other form on
output file (except NOTHING and TELETYPE
(another form of paper tape)) results in
this message. It is possible to assemble
an absolute program for loading by DDT.
See 6.21 RELORG.

There ~re t~o many nested macro calls,
repeats, and ifs in combination. The stack
provided for storing the previous source
of input is full., This is a disaster.
The program must be reorganized.

No·ENDstatement~was found at the endot
the program. The assembler (except for
typing this message) takes the same action
as if it found the END statement.

The assembler does not recognize a command
typed ·in by a user upon start-up. It
makes him start again.

The input file described to the assembler
. is not a type 3 f_ile (i.e.·, text).

An unrecognizable character {or one
otherwise out of place} is found in the
text. The character is typed out in octal

_following the message, replaced by a blank
·in the text, and a~sembly continues.· .

The end of the program is reached, but the
assembler is still defining a mac~o. Look
for a missing ENDM.

The . oppos i te problem to the one above _ Not·
terribly serious. Look for the presence of
an extra ENDM, ENDR, or ENDF in the program.

An input statement must be less than 320 .
characters long. This message occurs when
tne rule is violated. It usuaily happens
when macros run wild. Look carefully at
the· program near vThere the error occurred.

Error Message

TOO l~CH MACRO RECURSION.

TOO MUCH RPT RECURSION.

TOO MANY ARGS IN MACRO.

. TOO MANY REPEAT ARGS.

STRING STORE EXCEEDED.

EOF IN TEXT.

8-3

Meaning

Too many nested macro.calls have occurred,
resulting in filling available pushdo'\-m
storage. Reorganize program.

Similar to above.

The macro is'being called with more
arguments ·than there is space for.
Reduce the number of arguments in the call.

. .

In beginning a repeat block, too many
requests for automatic incrementing of
symbols have been made. Reorganize the
block ..

No space remains to store new macro
definitions or to do repeats. Caution:
old macro definitions are not thrown away.
Do not redefine macros indiscriminately.
Reorganize program. .

The end of the input file has occurred
. in the middle of a statement.

8.2 Interpretation of the Error Listing

When an error is listed on any file other than TELETYPE, the single

letter error message (first group above) is listed in the line below at .

the point where the error was detected. Other information is given.

This is all depicted in the examples below.

In the following line there are errors in

001720 76 00000 UG~ 1

!?K+7)
Current value" of
location counter is
7 cells past the
symbol EEK.

Label cannot
terminate with
/.

the label and operand fields.

LDA

~~.
Relocation Expression
error. cannot terminate

with -

20117 o 35 10761 STA ZOTn 0

hl-->MiSSing tag·

Lo/s+11 I JBI.E II DOLi{,
Location Name of ~ Name of outermost
counter.
value.

innermost macro
in which offense

occurred.

macro in which
offense occurred.

Thus along with each error the location counter is printed o'ut relative

to the symbol most recently defined. In addition,. if the error occurs

during macro expansion the names of the innermost and outermost macros

are printed to give a clue on where to look for the error. If only

one level of macro expansion is involved, then only that name is listed.

In order to ~ave ttme when error listings are made .on the teletype,

the s ingle-letter error messages are typed out at the left marg:in.
o

R-26
8-4

9.0 Assembler Operating Instructions

When the assembler is entered it asks first ,for the name of the binary

output file (characters typed by the user are underlined).

@ARPAS.
BINARY:

The user types the name of the bin~ry file 'and confirms this n~~e either with

a comma or a period (a comma seems to the author to be preferable; 'both will

work). The, assembler then asks for ,the name of the source language file.

@ARPAS.
BlliARi: 'Blli'L TIfPUT:,

R-26
9-1

The user types the input file name and confirms it either with a comma or period.

pifferent things happen in this case. If a period is typed assembly begins

immediately with the various assembler parameters preset to a set of standard

initial values. If a comma is typed the 'assembler expects to see one or more

of a number of commands which set its parameters to values other than standard

initial values. Each such command is terminated either by a comma (in some

cases a semi-colon) or a period. Assembly always begins when a period is

typed; a comma signifies yet another parameter change.

9.1 Assembler Parameters'

The assembler makes use of the parameters listed below. Parameters

(a) and (b) must be supplied. If after this a period is supplied, default

or standard values are given to the othe! parameters. These values are

noted in parentheses.

(a) binary output file (specified by user)

(b) source input file (specified by user)

(c) list (t~xt output) file (user teletype)

(d) error message file ,(user te~etype)

(e) listing parameters

(1) list on pass 1 (no, except for disastrous errors)

(2) 'list on pass 2 (no, except for errors)

.' (3) list symbol table (no)

(4) list nuil symbols (yes)

(5) list external symbols (ye~)

(6) list location counter value' (yes)

(7) list binary (octal) equivalent (yes)

(8) list source language (yes)'

(9) list comments (yes)

,!

(10) list program 'and outer level macro calls (no)

(11) list program and all macro calls (yes)

(12) list program and no macro calls (no)

(13) list program and details of macro expansions (no)

Parameter (c) may be changed from its default value by'the command

"TEXT OUTPUT: rt • Thus:

@ARPAS.
BINARY: BIN.z... ll'TPUT: ~IN.L TEXT OUTPUT: L.

Normally, most error messages 'are output on the listing file. . Some'

particularly disastrous errors are always typed out on the teletype.

It is,possible, however, to specify the teletype as a binary output file

in which case it is used to punch a binary paper tape. It is necessary

lnsuch cases to designate some file --parameter(d)-- to receive those

error messages which would normally appear on the teletype. This is done

with the command "TTY MSG OUTPUT:".

@ARPAS.
BINARY: !ELETr""PEL INPUT: ~INL TTY MSG OUTPUT: !:..'

Binary paper tapes punched on the teletype may be read with the 940 papee

p·,,26

9···2

tape reader. The assembler pauses fora few seconds after the final pel~iocl,

is typed to allow the user to turn on the teletype paper tape punch and

, turn off the printing mechanism.

The various parnmeters noted under (e) are the BRme parameters set

or reset by the LIST and NOLIST directives. They may be changed from

R-26
9-3

their default values by'the similar commands "LIST:" and "NOLIST:". Either

command expects to see one or more symbolic arguments (the same arguments

used with the corresponding directives). Because these arguments are

separated by commas, it is necessary to terminate the list either by a

period (starting assembly) or a semi-colon (if other parameters are yet

to be set).

@ARPAS.:..
BINARY: !!OTHINGL INFUT: ~INL !!IST: ME;
!!OLIST: BIN,NULzEXT;
TEXT OUTPUT: L.

The following table summarizes the above information.

Parameter

binary output
file

source input,
file

listing file

error message
file

listing
controls

Command to Set or Chan~e

BJNARY:<file name>

INRJT: <file name>

TEXT· OUTPUT: <file name>

TTY· MSG OUTPUT: <file name>

LIST: '\ <list of following
NOLIST :) parameters> _

1.

1" '
2

SYT
NUL
EXT-
LeT
BIN
SRC
COM
MC

.. ME
. .-:

-

Default value

none: must be
by user.

none: must be
by user.

teletype

teletype

no
no
no
yes
yes
yes
yes _
yes
yes
yes
no -

specified

specified

9.2 Termination of the Assembly

The assembly process can be terminated by the user at any time

merely by typing t"ro or more rubouts in succession. The first rubout

causes the assembler to start listing (cf. 6.'26) 9

R-26
9~4

10.0 Assembler Binary Output*

Xllere are two basic formats for the assembler output. These are selected

depending on whether re10catable or absolute assembly is being done.

10.1 Relocatable Binary Output

Information in this type of output is divided into variable length

logical records. Each record begins with a control word which defines

its typee The first nine bits (bits 0-8) of each control word distin-

guish it from the others; the remaining bits are used in various ways.

Control Word

{a} 006 xxxxx:

{b} lXX 00000

(c) 200 00000

(d) 201 xxxxx:

(e) 202 xxxxx:

(f) 300 00000

(g) 400 00000

Me aning and Use

Binary program follm·rs. Update location
counter by amount given in address field of
control word.

Programmed operator follo,\"s. Place branch
instruction in location !XX with address
given by current location counter.

End of program. Final record of binary format.·

Origin of literal table. The origin of the
literal table is given in the address field.

Change special relocation radix. The new
value is given in the address field.

OPD follows. Revert to-triplet format
(see below).

External symbol definition(s) follows. Revert
to triplet format.

R-26
10-1.

(h) 500 00000 Identification record follows. Revert to triplet
format.

(i) 600 00000

(j) 700 00000

External symbol usage table follows. Revert to
triplet format.

Symbol table follows. Revert ~·to triplet ·format.

Control words b, c, d and e cause DDT to take various actions. No

a.dditional information is required for these controls, however; each is complete

in itself. This is to be contrasted to controls f through j. Each of the

latter prepares DDT to accept a variable-length list of symbols o~ opcodes.

~~~- n ~~~o ~~mnlpte descriution of binnry input to DDT see Project Genie 



These lists are 'in so-called "triplet format" because the various symbols and 

opcode s are handled as three-",ord ob.iects. Each list is terminated with a 
!: 

word of all ones. 

The contents of the address field of control word a are added to DDT's 

location counter. This, control' signals that binar~ program' (i. e.' information 

to be loaded) follows. The format of binary program consist~ of blocks of 

eight words. Words in each block are either 10 ad able information or controls 

of type a through e. Controls f through j also appear in binary, program; 

.when one of them does, however, format immediately' reverts to triplet mode. 

When the list of triples is 'terminated a new block of eight words is begun. 

The first word in this block is always a control of some type. 

There are seven different ways in which DDT treats information being 

loaded.' It is necessary, therefore, that a three-bit byte be associated with 

. each such word. Each eight-vlord block of binary progrrun format is preceded, 

then, by a ",ord of eight three-b:Lt bytes. The association of bytes to words 

is shovm below. 

R-26 
10-2 



Byte Value 

o 

1 

2 

3 

4 

5 

6 

7 

Meaning 

Absolute address: load as is 

. Evaluate address (mod 214) from external symbol 
usage table 

Relocate address (mod 214) 

Special relocation applies 

Do not load: interpret word as a control 

Derive entire word from external symbol usage 
table 

Relocate entire word (mod 2~4) 

Literal reference in address field 

.. 

A p'ortion of binary output might, for example, have the following 

appearance: 

l{-cO 

10-3 



j-bit byte register 

information to be loaded 
and controls a through e. 

~ ______ ~ ~~ start triple~ format 

end triples: revert to blocked 
format. 

start triplet. format 

end triplet format 

R-26' 
10-4 



Finally, the format of a triple depends on whether it represents 
'\. 

8. symbol or op code. For symbols the following hold$:· 

o 5 6· 11 12 17 18 23 
WDI 1 

WD2 xxxxxx zeros 

Symbol Value 

C
1 

through C6 are the six significant characters of the symbol, left

justified with trailing blanks. Bits 12 through 17 of WD2 are flags 

having the following meanings: 

Bit Meaning -
12 Relocatable Symbol 

13 Duplicate Symbol. 

14 ·External Symbol 

15 Null Symbol 

16 Generated Symbol 
. ~.' 

17 Equated Symbol 

Operation codes have the following format: 

0 5 6 11 12 17 18 23 

WDI I C
1 I C2 I C

3 I C4 I 
WD2 I C

5 
C6 Zeros 

J:{-CQ 

10-5 



The fOr:il~t of WD3 

bilities 

(a) 

(b) 

are: 

Class 

WD3 

Bit 

9 

19 

23 

Class 

WD3 

Bit 

9 

1 

2 

depends on the type of op code. The various possi-

instructions 

o 1 8 9 19 23 

EI op or pop Ixl zeros I X I zeros B code 

Meaning 

Set sign bit of instruction_ 

Operand required 

-Type number (0 or 1) 

Instructions 

o 1 -8 9 10 23 

El oP. or pop Ix I . remainder of code I code 

Meanin~ 

Set sign bit of instruction 

10.2 Absolute Assembly (Self-filling) Outpu~ 

R-26 
10-6 

For absolute programs, the assembler first punches' a bootstrap loader 

and then program in variable-length blocks. A new block is begun whenever 

it is necessary to jump the location counter ~head by more than one -or 

when certain directives are encountered. The bootstr~p lo~der is q~ite a 

primitive one. Ba~ically it executes repeatedly the first instruction. it 

sees in each block of code while incrementing the X register. For program 
- . 

blocks the first instruction in each block is an indexed store. 

For other types of blocks (as, for example IDENT' records, OPD's, 

or the entire- symbol table) the first word of each bloc~ is a NOP. END 

with a >lank operand produces a new block beginning with HLT. In case 



the operand is not blank, the last record begins with a transfer to 

the location indicated. When this instruction is read by the loader 

and executed, the loaded program is started. The loader uses location 1 

for this purpose so that the program may be easily restarted by pressing 

the machines' start button and throwing the Run-Step switch to Run. 

R-26 
10-7 



Q 

1 

2 
3 
4 
5 
6 

7 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 

.25 
26 

27 
30 

APPENDIX B 

Tl$LE OF ~[tRIMMED ASCII CODE FOR THE SDS 93~ 

(NUMERIC ORDER) 

SPACE 31 9 62 

lTI 32 63 
11 33 . 64 , 

[!J 34 < 65 
$ 35 = 66 

m "36 > 67 
~. 37 ? 70 

40 [@1 71 
( 41 A 72 
) 42 B 73 
~4 ·43 C 74 
+ 44 D 75 
, 45 E 76 

46 F 77 
47 G 144 

/ 50 H 145 
0 51· I 146 
1 52 J - 1~7 
2 53 K 152 
3 54 L 155 
4 .55 M 

5 56 N 

6 ·57 0 

7 60- p 

8 61 Q 

R 

S 

T 

·U 

V 

w 
X 

y 

Z 

[ 

[SJ 
] 

~ 
EOT 

WRU 
RU 

BELL 

-LF 

CR 

*The Teletype characters enclosed in boxes ~annot be handled by 
ARPAS and are converted to blanks when present. -

. 


