
J .0 IntrrJdtlctOry

;'CT)t0T!1Lcr -Y), J (ii~

'! -]

~"ne Ber1:cley Thne-8haring System is divided. intr) three ma\i~)r 'DD.rt~:

the In(.Jnitor, the ~<:...~tive, and the subsystcror.. Only th(~ first b;·rr) (Jf'

thesr; aT'(; discus Bf'U in detail in this manual. The manual atterrlptr; tr)

describe czhaustlvely aJ.J. the featu.ren (jf the rr.r;ni tsr an(l th(~ (;x 0 cu.tiv(;,

and in addition to give a number r:.f irr:-plc}(icntati(ln details.

"de use the word monItor trj refer tr) that nortlon (,f thr: sy~t(;rr, uhl.r;h

is concC!~ncd 'Hi th sched1.l.lin~, input- r;utput, interrupt prrJc(;:::;s inr:.) rr:(;!!J .. Y"'J

~ll()catio!1 and sW~PT>in~, and the c()ntrol ()f active procrams. Th0. exec,

(..In the ()theT hand, .i.s c()ncerncd '\-lith the comrna.YJd lanr.;uacc by vrhich thr:

user c(mtrols the system from his teletype, the idcnt ificat ic,n of uoel's

and. npccification of the limits of their access to th(~ system, the c(lntrr)l

of the direct~)ry of symbolic file names and backup 2.t(Jrar.~e fLr thcsr: f-Lll;s,

a.Yl.Q (JtrlCr nliscellaneolls matters.

The next ten 0ectiunn of this manual diGCllSS various fc~at1J:rCG rJi' the

r,onitor. The rcmainin[~ sectior.s deal vrith the (;xecutive.

2.0 The Scheduler

August 8, 1966
2-1

The p~tmary entities with which the time-sharing system is concerned are
I

called act'ive ErogrB!,B. Each active progrt'Jll 18 an abstract object ca.pa.ble of

executing machine instructions. At least one active program 18 associa.ted with

each active user, but e. user may ha.ve many programs, each computing independently

under his control.

An active program is defined by its entry in the program active table (PAC ta.ble

or PACT). This table contains all of the information required to specify the

instant~leous state of the extended computer which the user is programming,

except for that contaiped in the user's memory or in the system's permanent

tables, The structure of a PACT entry is displayed ~n the following page,

together with brief notes about the significa.nce of the variouD. i terns, These

m~tters will be explained in more detail in the following few sections. It will

be observed that PACT contains locations for saving the program counter And the

contents of the active A, B and X registers. . It also contA.ins two pseudo-

relabeling registers for the user. A third one, which specifies the monitor map,

is kept in the job tables.' The matter of pseudo-relabe ling is discussed Irf detail

in section 5. There is a word called PTEST which determines the conditions under
..

which the program should be reactivated if it is not currently running. The
I

panic table addre~s in PrAB and the three pointers called PFO~K, POOWN and FPAR

are discussed in section 3 on f~rk6.

The word called PrAB contains in bits 2 through 8 the number of the ,job to

which this program belongs. The top of ~U contains informati,on about the

amount of time for which the program is allowed to compute before it is d18miBs~d.
I •

Seven bits of QR count the number of clock cycles remninin~ before the program is

dismissed, and three bits of QUTAB point to a ta~le which specifies the length

of time which the program should be allowed to run when it is activated, All

times in the discuBsion are measured in periods of th~ 60-cycle computer clock.

Novem'ber 4, 1965
~)-2

A program is B.llowed to run fot' a f:txed period of time, artIer which

it is d-lsmissed if any other programs are ready to run. Thin time is

called a ~~~ ·qu~~. It may be different for different progr~s. In

fact, the size of the long quantum is determined by the entry in QTAB

which is pointed to by the program's QUTAB bits in PACT.

When u program Is a.ctive.ted, it is first allowed to run for a. short

quantwn. During this time it cannot be dismissed except by its Ov.rrl .

request. The length of the short quantum is tentatively going to be the

same for all users. It is put into a word called TIME; the long quantum

is also put into a l-!ord called TTrnE at this time. Both are decremented

at every clock cycle.

When TIME goes negative, a word called }£~~ is checked to determine

whether any program which is dismissed for I/O can be run. If not, the

progrrun is allowed to continue. At each subsequent clock cycle the

program may be dismissed if any programs dismissed for I/O are ready

to run. It may also be dismissed when tho long quantum is exhausted if

any other programs are waiting to run. In either case it is said to be

dismissed for quantum overflow. If ACTR indicates that another program

dismissed for I/O is· ready to run at the end of the short quantum, the

progrrum is also dismissed for quantum overflow.

In order to allow an efficient implementation' of this scheme, ACTR is

incremented by every interrupt routine which takes action allowing a program

which is waiting for I/O to run.

August 8, 1966
2- 3

Since ACTR is set to -1 when a program 18 activated, this means that

the clock 'interrupt needs only to do

I
'SKR TIME

BRU *+3

SKN ACTR

BRU *+3 ready to dismiss

SKR TTIME

BRI return to program

in order to check both the conditions which may require further a.ction. If

ACTR is positive or the shor~ quantum has not run out, it is of course ignored,

in accordance with the above discussion.

When a program is dismissed for I/O, TTIME is put into QR. When the program

is reactivated, TTIME is Bet from QR. TIME is reset to the full short quant'~.

That is, the long quantum is allowed to run down while a program computes,

regardless of whether it has to wait for I/O between computations. On the other

hand, a program is always given a full ahort quantum. If a program is dismissed

for quantum overflow, it is given a new loag quantum when it 18 reactivhted.

There are two operations available to the U8(;r which are connected with the

quantum overflow machinery. BRS 45 causes the user to be dismissed as though he

had overflowed his quantum. BRS 57 guarantees to the user upon return at lea.ot

16 maec of uninterrupted computation. Th18 feature is implemented by dismissing

the user if less than 16 maec "remain in his quantum.

Ordinarily, the code ~~ich is being executed at any particular instant

is that belonging to the program which is currently active. This situation

may be disturbed, however, by the occurrence of interrupts from I/O devices.

These interrupta--cauae the computer to enter syctem mode a.nd are processed

entirely independently of the currently running program. They never take

Au~utJt 8, 1966
~-4

direct hction to disturb the running of this pro~ram, although they ma.y set up
I

conditions in memory which will cause some other progrFJm to 'be activated when
I

the presently running one is dismissed. Interrupt routines always run in system

mode. Other code which may be running which may not belong to the program

currentl'y active is the code of system programmed operators OT' BRS routines.

These routines are not re-entrant and therefore should not be dismissed by the

clock. To ensure tha.t they.' will not be, the convention is established that the

clock will not dismiss a program running in system mo?e. In order to p;ullrHntee

that B. user program will not monopolize the ma.chine by executing a large number

of SYSPOPs, the user mode tra.p is turned on when the clock indicates that II

program is to be dismissed. The tra.p will occur and CliUBe dismissal as aoon A.S

the program returns to user mode.

The PACT word called PrEST contains the activation condi.tion for a currently

inactive program. The condition for activation is contained in the 6 opcode bits

of this word, while the address field norm:llly contains the absolute address of

a word to be tested for the specified condition. It is pOSSible, however, for

the address to contain a time count, in the case where the activ~tion condition

is that a certain amo~nt of time should elapse. It is ~18o possible for the

address to hold a mask indicating which program interrupt has occurred.

The following activation conditions are possible:

o Word greater than 0

1 Word less than or equal to 0

2 Word greater than or equal to 0

3 Word less than or equa.l to teletype early warn:lng

4 Special test. The address points to a special activation
test routine.

5 Interrupt occurred. The address contains the number of
~ __ ~_the interrupt which occurred.

-(

0 dead

1 running

~ BRS 31
7 Special: address •

3 BRS 106
4 ERS 109

5 executive

11 Word 2OOOQOOOg 0 (buffer ready)

12 Word less than zero

BRS

Auguct 8, 1966
2-5

An executive program can dismiss itself explicitly by putting a queue

ntnnber (0 to 3) in X and 'a dismissal condition in B and executing BRS 72. The

address of a dismissal condition must be absolute.

There is normally one running progrmm in the system, i.e., a program which

is executing instructions, or will be executing instructions after the currently

pending interrupts have been proceased. An active program (i.e. a PACT entry)

which is not running is said to be dismissed, and 1s kept track of in one of

two way8.

1) If it has dismissed itself with ERS 31, 106 or 109 (cf. section 5) it is

said to be in limbo and is pointed to only by the PFORK, PDOWN, and PFAR of the

neighboring programs in the fork structure.

2) If it han been diBmissed for any other reason, it is On on~ of. the

scheduler queues. There are four queues of dismissed programs. In order, they are:

QTI programs dismis&ed for teletype input/output
QIO progr~9 dimniseed for other I/O
QSQ programs di~iBsed for exceeding their short quanta
QQE programs dismissed for exceeding their quanta.

Programs within the queues are chained together in Fl~, and PNEXT for the lazt

program in each queue points to the beginning of the next queue.

Whenever-it--is time to act! vate a new program, the old program is put on

the ~ of the appropriate queue. The scheduler then begins at QTI and
(

seane through the queue structure looking for a program whose activation

August 8, 1966
?-6

structure and turned. 0ver to the swapper to be read in and r'ln. If tlH~re

Je no programs uhich can be activated the Behc(lulcr slJr.ply ccmtinueG

n~a.nning the queue structure.

Programs reactivated for various reanons having to do with forks
!

(interrupts, rubouts, panics) are put onto QIO with an immediate
, I

I

activation condition. They therefore take priority over all programs
i

dismissed for qlia.l1tum overflow.

There is a permanent entry on the teletype queue for an entity called

the ph<om user. The activation condition for thi8 entry is a type 4

condl~ion which tests for two possibilities:

a) th~ cell PUCTR is non-zero

b) ten seconds have elapsed since the last activation of the phantom
user for this condition.

When the phantom user is activated by (b), it runs around the system 'checkinp;

that everything is functioning properly. In particular) it checks thnt the

W-buffer has not been waiting for an interrupt for an unusual length of time J

and that all teletype output is pzoceeding normally. Details of this procedure

are described in sections 9 and 7.

If the phantom user is activated by (a), it runs down the phantom user

queue looking for things to do. A phantom user queue entry is dra.wn on page

2B; it is essentially a very abbreviated PAC table entry. Such an entry' is

made vhen the system haa some activity which it wants to carry out more or

less independently of any UGer PAC table entry: tea~~ for tape ready (on

rewind) and card render ready, and processing of rubouts (an interrupt routine

ki.nd of activity, but too time-consuming). The second word of the entry is the

activation condition. PUCTR contains the number of entries on the phantom

ueer queue.

PNEXT

PL

PA

PB

PX

RIJ.

HL2

PPI'R

PrEST

PQU

PrAB

PIM

August 8, 1966

PAC TABLE

next queue or next program in queue

8
..

U 0 3
file # of M 0

V 0 sa.ved (p)
subroutine file

saved (A)

saved (B)

saved (X)

first pseudo-relabeling regist.er

second pseudo-relabeling register

p 11 12
PD¢vlN PF¢RK

3 activation ~ 10 test word address, 000 0 condition or other relev&nt
parameter

E IE 2 QR
() 9

QUTAB
11 12

X B PPAR

L 2 lj

M
0 job number 0

M T N 3
T W T !EM

UM :: user mode (1) or system

ov :: overflovl

10
pa.nic table address

PDOWN = PACT address of lower fork (if any)

PFORK :: PACT address of upper fork (if any)

PPAR :: PACT address of parallel fork (ends with 0)

2A

23

23

23

23

~j

QUTAB = address of "Tord in table indicating quantum leneths

EX = exe(;utive type program
.'----~------

Q,R == amount of q1Jantum remaining: <.

IEH :: interrupt enahled mask

1M ~ local memory

MT :: ado no mpmnrv

EB JIS exec BRS

TW • waiting for termination

NT ~ non-terminable

Pointer to next entry

0 8 9
test number routine address

0 11 12
PACPrR for user parameter

routine

Phantom user queue entry

2'-1
'-'

23 for·

August 8, 19(./)
r'B

3. O. :Forks and Jobs

3.1 Creation of Forks

Augu~t 8, 1966
3-1

A program may create new, dependent, entrieo in the PAC table by

executing BRS 9. This BRS takes its argument in the A register, which

contains the address of a }Len1c table, 8. 7-word table with the fol1owing

format:

Program counter

A register

B register

X register

FirB~ relabelinG register

Second relabeling register

Status

The statue word may be:

-2 dismissed for input-output

-1 running

o dismissed on rubout or BRS 10

1 dismissed on illegal instruction panic

2 dismissed on memory panic

The panic table address must not be the samEl for two forks of the Beme program J

or overlap a page boundary. IT it is, BRS 9 is illegal. The first 5 bits of

the A regi~ter have the following significanee:

o make fork executive if current program is executive

1 set fork relabeling from panic table. otheMliee use current
relabeling

2 ' propagate rubout a.8!ignment to fork (see BRS 90)

3 make fork fixed memory. It is not allowed to obtain any more
memory than it is started with.

August 8, 1966
3-2

make fork local memory. New memory will be ass.igned to it
independently of the controlling fork.

When ERS 9 is executed, a new entry in the PAC table is created. This
I
I

new program is said to be a ~ of the program creating it, which is called

the controlling program. The fork is said to be lower in the hierarchy of

forks than the controlling pro~ram. The latter may itself be a fork of some

still higher program. The A, B and X regiatemfor the fork are set up from

the current contents of the pa~ic table. The address at which execution of

the fork is to be started is also taken from the panic table. The relabeling

registers are set up either from the current contents of the panic table

or from ~he relabeling registers of t.he currently running program. An

executive program may change the relabeling as it pleases. A UBer program

is restricted to changing relabeling in the ma~ner permitted by BRS 44. The

status word is Bet to -1 by BRS 9.

The fork structure is kept track of by pointers in PACT. For each

program PFORK points to the controlling fork, PDOWN to one of the subsidiary

forks, and PPAR to a fork on the same level. All the subsidiary forks of- a

single fork are chained in a list. A complex situation is shown on the previous

page. The arrows indicate the various pointers.

The program executing a DRS 9 continues execution after the instruction.

The fork established by the BRS 9 begins execution at the location specified

in the panic table and continues independently until it 1s terminated by a

panic as described below. It is connected to its controlling prop-rem in the

following three ways:

1) The(!o~t!,~~ing program may examine its state and control its operation

with the following six instructions:

BRS 30'

BRS 31

BRS 32

August 8, 1966
3-3

reads the current atatu6 of a subsidiary fork into

the panic table. It does not influence the operation

of the fork in any way.

causes the controlling program to be dismissed until

the subsidiary fork causes a pardc. \fuen it does, the

controlling program is reactivated at the instruction

following the ERS 31, and the panic table contains the

status of the fork on its dismissal. The status is alBo

put into X.

causes a subsidiary fork to be uncondltionally terminated

and its status to be read into the panic table.

All of these instructions require the panic table address of the fork in A.

They are illegal if this address is not that of a panic table for Borne fork.

BRS 31 and BRS 32 return the status word in the X register, as well as

leaving it in the panic table. This makes it convenient to do an indexed

jump wi.th the contents of the status word. ERS 31 returns the pnnic table

address in A.

BRS 106

BRS 107

BRS 108

causes the controlling program to be d.ismissed until any

subsidiary fork causes a panic. When it does, the

controlling program is reactivated at the following

instruction with the panic table address in A, and the

panic table contains the status of the fork at its dismissal.

causes ERS 30 to be executed for all subsidiary forks.

causes BRS 32 to be executed for all subsidiary forkS.

August 8, 1966
3-4

2) If interrupt 3 is armed in the controlling fork, the termination

of any subsidiary fork will cause that interrupt to occur. The interrupt

takes precedence over a BRS 31. If the interrupt occurs and control is

returned to a ERS 31 after proceSSing the interrupt, the fork will be

dismissed until the subsidiary fork specified by the restored (A) te,rminates.

3} The forks can share memory. The creating fork can, as already

indicated, set the memory of the subsidiary fork when the latter is started.

In addition, there is some interaction when the subsidiary fork attempts

to acquire memory.

3.2 ~remory Acquisition

If the fork addresses a block of memory which is not assi~ed to it,

the following action is taken: a check is made to determine whether the machine

size specified by the user (cf. section 14) has been exceeded. If so, a

memory panic (see below) is generated. If the fork is fixed memory, a memory

panic is also v,enerated. Otherwise a new block is 8~signed to the fork so

that the illegal address becomes legal. For a local memory fork, a new.,

block is always assigned. Otherwise, the following algorithm is used.

The number, n J of the relabeling byte for the block addressed by the

instruction causing the memory trap is determined. A scan is made upwards

through the fork structure to (and including) the first local memory fork.

If all the forks encountered during this scan have Rn (the Nth relabeling

byte) equal to 0, a new entry is created in PMT for a new block of user

memory. The address of this entry is put into Rn for all the forks

encountered during the scan.

August 8, 19(1)
1-5

If a fork with non-zero Rn is encountered, ita Rn ia pra-pagated

1oWllW,ard to all the forks between it and the fork causing the trap.

any fixed memory fork is encountered before a non-zero Rn is found, a

memory panic occurs.
.. !

If

i This arrangement permits a fork to be started with less memory than
f

its controlling fork in order to minlloize the amount of drum swapping

required durinr, its execution. If the fork later proves to require more

memory, it can be reassi~ed the memory of the controlling fork in a

natu~al way. It is, of course, possible to use this machinery in other

ways, for ipstance to permit the user to acquire more than 16K of memory,

and to run different forlcs with non-overlapping or almost non-overlapping

memory.

3.3 Panic Conditions

The three kinds of panic condition which may ceuse a fork to be

terminated are listed in the description of the status word above. When any

of these conditions occurs, the PACT entry for the fork beinp; terminated is returned

to the free program list. The status of the fork is read into its panic table

in the controlling fork. If the fork being terminated has a subsidiary fork,

it too is terminated. This process will of course cause the termination of

all the lower forks in the hierarchy.

The pa'1ic which returns a statuB vTord of zero is called a program panic

and may be caused by either of two conditions:

A) the rubout button on the controlling teletype is pushed. This

terminates some fork with a program panic. A fork may declare that it is

August 8, 1966'
3-6

the bne to be terminated by executing BRS 90. In the absence of such a

dec~arat;on the highest user fork is terminated. When 0. fork iB terminated

in this ,way its controlling fork becomes the one to be terminated. If a user

fork is terminated by rubout the telepype input huffer is cleared. If the
I

controtling fork of the one terminated is executive, the output buffer is also cleared.

If the fork which should be terminated by rubout has armed interrupt 1,

this interrupt will occur instead of a termination. The teletype buffers will

not be affected. If there is only one fork active, control goes to the

. t
locatl0n EXECP in the executive. This consideration is of no concern to the

user. Executive programs can turn the rubout button off with BRS 46 and turn

it back on with BRS 1~7. A rubout occurring in the meantime will be stacked.

A second one will be ignored. A program which is running with rubout turned off

is said to be non-terminable ru1d cannot be terminated by a higher fork. BRS 26

skips if there is a rubout pending.

If two rubouts occur within about .12 seconds, the entire fork structure

will be cleared and t~~ __ j<?b left executing the top level executive fork." This

device permits a user trapped in a malfunctioning lower fork to escape. Closely

spaced rubouta can be conveniently generated with the repeat button on the teletype.

B) A ERS 10 may be executed in the lower fork. This condition can be

distinguished from a panic caused by the rubout button only by the fact that

in the former case the program counter in the panic table points to a word

containing BRS 10.

As an extension of this machinery, there is one way in which several forks
f

may be terminated at once by a lower fork. This may be done by ERS 73, which

provides a count in the A register. A scan is made upward through the fork

structure, decrementing this count by one each time a fork is passed. When

the count goes to 0, the scan is terminated and all forks passed by are

I

August 8, 1966
3-7

terminated. If an executive program is reached before the count' "is 0, then

all th~ uaer programs below it are terminated.

An executive program can clear the fork structure of a job by putting the
/

job number in A and executing ERS 22. The effect is as though enouv.h rubouta
I

had occurred to send the ,job back to the top-level executive fork.
I

The panic which returns a status word of 1 is caused by the execution of

an illegal instruction in the fork. Illegal instructions are of two kinds:

1) Machine instructions ~~ich are privileged

2) ~ISPOPs which are forbidden to the user or which have been"
provided with unacceptable arguments.

If interrupt 2 is armed ruld the fork is executive, interrupt 2 will occur

instead of an illegal instruction panic.

A status word of 2 is returned by a memovy panic. This may be caused by

an attempt to address more memory than is permitted by the machine size which the

user has set, or by an attempt to store into a read-only block. If interrupt 2

is armed, it will occur instead of the memory panic.

3.4 Debugging Fork Structure

Some special machinery exists in the monitor to assist in the debugging

of programs with complex fork structure. ~1e use of this machinery is restricted

to executive type programs. The idea behind it is that it is possible to detach

a section of a user's fork structure and leave it hanging} and later to re-attach

it and continue execution.

An executive type program may give a. 80-C ailed wait command, BRS 74, which

sets up a special activation condition for the fork." This instructlon is other-

wise equivalent to BRS 31. Any program may give a freeze command, BRS 75, which

causes the fork structure to be scanned upward for a program with this activation

/

August 8, 1966
3-8 '

condttion. If such a progral1l is not found, an illegal instruc"tion trap io

genetated. Otherwise, all the forks below the one found are removed from

the ueu7 structure. The status of each fork is read into the panic table of

the i~~ediately higher fork as though each fork had been terminated. The fork
I

: I "
found is restarted and it is ~iven the PACT address of the next lower fork in A,

J
the location of the freeze command in X, and the depth of the fork containinr~

the freeze command in the fork structure in B. All the forks below the one

being reactivated axe entirely disconnected from the rest of the fork structure.

The onl~ handle on these "forks is the PACT address which is returned to A.

After the waiting program has been reactivated, it may proceed to generate

a ne1? "fork structure. Eventually, however, it will wish to do something with

the fork structure which has been frozen. It may do one of two things: the

~ conunand, BRS 76, takes in A the PACT address whlch was returned by the

freeze command, and re-establishes the fork structure as it was when the freeze

command was given. It does not, however, activate any of the forks, since

this will be done by the scheduler in the normal course of events.

If the fork which did the wait does not wish to reactivate the frozen

fork structure, it may simply destroy it by putting the PACT address which it

received from the freeze command into A and executing BRS 77. Tois causes all

the PAC table entries in this structure to be returned to the free pro~ram list.

No other action is taken.

A variant of freeze is provided by BRS 89, which takes a panic table

address and freezes the fork structure beginning with the subsidiary fork

yhich has the specified panic table and continuing to all its subsidiary

structure. The action taken is similar to that taken in a freeze, and the

PACT address of the disconnected fork structure is returned in A.

3.5 Jobs

August. 8, 1966
3-9

Every complete fork structure is associated with a ,job, which is

the fundamental entity thought of as e. user of the system, from the system' B

own point of view. The job n~~ber appears in the PAC table entry for every

fork in the job's fork structure. In addition there are several tables

indexed by job number. These are shown on page 3B, and indicate more or less

what it is that is specifically associated with each job.

1. 0 UP
,

~~ ~ DO~TN

0 ACHOSS
~

~. 1 I- 4.~ 1

~ ~ 0 .J

!t 5
I

1:-
,.,-

1"
2 ~ ?

J' 'r. r' 2 t---

O r)
()

7 0

lL
8. r(~

0

0

Hierarchy of P~ocesseB

5·

6.

10.

November ll, l::l~)

3A

-~

~
1 ~

G ,-

0

L
)

) t-

~ 10

0

.~

-
G ~ (). 6 rl
0 0

CJ U
L-____

I-

PMA

RL3

TTNO

ETTB

DBA

r o

'0 N
0 \locksH

p left

9110
_ start of job's PMT

9 11 12 blocks 17 Ib lenRth
0

used of Hv1T

Augu at 8, 1966
3B'

23

o 11 12drum buffe~ 7 18temp.~ 2
block storage

block
relabeling relabeling

teletype associated with this job

amount of CPU time used

drum blocks available

NP= don't charge memory against machine size.

Job Tables

4.0 Program Interrupts

August 8, 19(;6
4-1

A facility :i.s provided in the monitor to simulate the existence of

hardware interrupts. There are 20 possible interrupts; four are reserved

for special purposes and 16 are available to the programmer for v,eneral uoc.

A fork may arm the interrupts by executing BRS 78 with a 20-bit mask in the

A register. This causes the appropriate bits in PIM to be set or cleared

accord.ing to whether the corresponding bit in the mask is 1 or O. Bit 4

of A corresponds to interrupt number 1, etc. No other action is taken at

this time. When an interrupt occurs (in a manner to be described) the

execution of an SBRM* to location 200 plus the interrupt number is simulated

in the fork which armed the interrupt. Note that the prO{~rf..un counter whi.ch

is stored in the case is the location of the instruction being executed by

the fork which is interrupted, not the location in the fork which causes

the interrupt. The proper return from an interrupt is a'BRU to the location

~rom vmich the interrupt occurred. This will do the right thing in all cases

including inter~upts out of input-output instructions.

A fork may generate an ~nterrupt by executing BRS 79 with the numue:r

of the desired interrupt in the A re~ister. Tllis number may not he one, tvlO J

three or four. The effect is that the fork structure is scanned, startinl:~

with the forks parallel to the one causing the interrupt and pro~eccJln~ to

those above it in the hierarchy (i.e., to its ance£tors). The flrnt forr:

encountered during this scan "Ti th the appropriate interrupt mask b:1.t set
\

is interrupted. Execution of the program in the fork causing the interrupt

continues without disturbance. If no interruptable fork is found, the

interrupt instruction is treated. as a NOP; otherwise, it skips on return.

November 4} 1965
I+_~

Interrupts 1 and 2 are handled In n specieJ.. way. If a fork arms
I

interrupt 1, a program panic (ERS'IO or rubout button) which would
I

, I

normally terminate the fork which has armed interrupt 11 will instead

cause '~nterrupt 1 to occur, that is, will cause the execution of an SBRM*

to location 201. This permits the programmer to control the action taken

when the rubout button is pushed without establishing a fork specifically

for this purpose. If pushine the rul)out button causes an interrupt to
1;

occur rather than terminating a fork, the input buffer will not be cleared.

If a memory panic occurs in a fork which has armed interrupt 2, it

will cause interrupt 2 to occur rather than terminating the fork. If an

illegal instruction p~~ic occurs in an executive fork which has armed

interrupt 2, it will cause interrupt 2 to occur rather than terminating the

fork.

Interrupt 3 is caused, if arnled, when any subsidiary fork terminates.

Interrupt 4 is caused, if armed, when any input-output condition occurs --

which sets a flag bit (end of record, end of file and error conditions can

do this).

Whenever any interrupt occurs, the corresponding bit in the interrupt

mask is cleared and must be reset explicitly if it is desired to keep the

interrupt on. Note that there is no restr:l.ction on the number of forks

which may have an interrupt on.

To read the interrupt mask into A, the program may execute BRS 49.

5·0 The'Swapper and Memory Allocation
I

August H, 196(;
')~l

Because of the necessity in various parta of the system for relabeling

"' registers which do not change with time, the user has been denied any access

to ordinary relabeling. In place, he is given access to so-called ~8eudo-

rela.belin~. Hia pseudo-relabeling registers consists, a8 do the orninFlry

. relabeling registers, of 8 six-bit bytes. Each one of these bytes points}

however, not to a real block of memory, but to an entry in the user's pseuno-

memory table, PMT (but see below). This table may contain up to 64 words, ,

ea.ch one specifying a certain 2K block of memory. The first version of the

system, however, will allow access to only 14 bytes. The possible forms of

an entry in the pseudo- memory table are 8ho\\11 on pA.ge 5A. All of the

entries are more or less self-explanatory, except the second, which will be

discussed in considerable detail later.

When it is necessary to activate a user, his pseudo-relabeling registers

are used to read out the proper bytes from PMT and construct a list of blocks

which need to be read in from the drum. When this list has been constructed,

the current state of core is examined to determine whether any blocks need to

be ~Titten out to make room for these which must be read in. If so, a list of

blocks to be written out is constructed. The drum command list is then set up

with the a.ppropriate commands to write out and read in the neceSB8.ry blocks.

The scheduler then passes on in an attempt to activate another pro~ram while

the drum operations are being performed. If it is not successful in doinp, aD,

it simply hangs up until the swapping is complete. In the Bcan which sets up the

drum read commands, the Bwapper collects from PMT or SJwfl' the actual absolute

memory add-reffsesof the page called for by thet,paeudo-relabeling and constructs

a set of real relabeling registers which it puts in two fixed locations in the

monitor. It then outputs these relabeling registers to the hardware and activates

the progr?lf\.

August 8, 1966
)-?

Mattera are sliRhtly complicated by the existence of a system parameter

called NCMEM. Pseudo-relabeling bytes with va.lues from 1 to NCMEM-l (0 means

an unassigned page) actually refer directly to the first NCMEM-l pages of SMT, the

shared memory table and the user's own PMT is addressed beginning at NCMEM. The

"connnon" portion of SMI' is used to hold the most common subsystems.

There are two BRS's which permit the user to read and write his paeudo-

relabeling. BRS 43 reads the current pseudo-relabelin~ re~iBters into A and B.

BRS 44 takes the contents of A and B and puts them into the current pseudo-

relabeling registers. An executive program may set the rela.beling registers in

arbitra.ry fashion by using this instruction. A user progrma, however, may add

or delete only blocks which do not have the executive bit set in PMT. This

prevents the user from gaining access to executive blocks whose destruction may

cause damage to the system. Note that the user is doubly restricted in his

access to real memory, firstly because he can only access real memory which is

pointed to by his pseudo-relabeling, and secondly because he is only allowed to

adjust those portions of his pseudo-relabeling which are not executive type.

The UBer can also Bet the relabeling of a fork when he creates it. See

section 3. The Bame restrictions on manipulation of executive blocks of course

apply.

The system maintains a pair of relabeling registers which the executive and

various subsystems think of as the user's program relabeling. For the convenience

of subsystems, an executive program can read these registers withERS 116 and set

them with BRS 117.

The memory allocation algorithm is described on page 3-2. A user can

release a block ~hich is in his current relabelin~ by putting any address 1n

that block into A and executing BRS 4. The ~ff entry for the block is removed

and in any other fork which haB this PMT byte in its relabeling, the byte is

cleared to O.

August f1, 19(£
~j- 3

Equ1va.lent to BRS 4 is BRS 121, which takes a. pBeudo-relFlbelinr~ h)te in /I.

rather then an address. An inverse operation is BRS 120, which tnkes a pseudo

relabelin~ b~e in A, generates an illegal instruction trap if the correspond tn~

FMr entry is occupied, and otherwise obtains a new page and puts it in that en tr.l.
I

This is an e'xec-only operation, of course.

A word of FMT whose first two bits are 01 contains a pointer to the shn.reti

rn~morJ t.arJle,SMT. An entry in 8M'!' looks exactly like an unused or pri·.rate entr:1

in TMT. The read-orily 1it is not used by the swapper, however, since the rerJJ3-

only statuB of the pA.{~e ia taken from the FMT word which points to it. It ref~r8

to a block of memory which has a fixed location on the drum and may be referred

to by more than one program. E'ntries in 3MT may be made by the exec or by a llser.

The exec makes an entry in 8MI' by executing BRS 68 with a byte number in A.

The block address by the specified byte in the pseudo-relabeling registers is put

into SMT and the pointer in SMT of this byte is returned. If bit 0 of A is set,

the byte is made read-only. By putting an index in SMT in A and executing BRS 69,

a pointer to the specified location in 8MI' is put into the first free byte of a

user t s ·FMr and the byte number is returned in A. The read-only hit in the SMT

entry is propa~a.ted to the PMT entry thus created. To delete ~ entry in SMT 1 the

exec rnaj deliver its index in A and execute ERS 70. The detailed use of this

machinery is discussed in section 16.

The user may declare a block read-only by executing BRS 80 with the pselldo-

relabeling byte number of the block in A and with bit 0 of A set. To make a block

read-write, bit 0 of A should be clear. Bit 0 of A rrill be reset if the block was

formerly read-write or set if it was fonnerly read-only. If the pro(;ram doinp; this

is not an executive program, then the block must not be an executive hlock. Only

an executive program can make u read-only PMT entry which points to ~~T into a
-~---~--- ,{

"
read-write entry, for obvious reaSons. The significance of a read-only block to

the swapper, of course, is that it need not be rewritten on the drum when it is

removed from memory.

August 8, 1966
5-4

The drum is divided into 84 bands, each contaJ.ning 16,000 words arranged

in 8 blocks of 2K each. Up to 48 of these bands may be used by the Bwapper

for program storage. A bit table is maintained to indicate the availe.bility

of 2K blocks in these bands. The table consists of 8 words, each containin~

24 bits, one for each band. If a bit is zero, it indicates that the block is

in use. If it is set , the block is e.vailable. When the user t 8 memory is

wri tten out onto the drum, it is written as nearly as possible in ad.jacent

blocks, 80 that it may be read in without undue drum latency time. This method

for keeping track of available blocks facilitates optimum output of the user's

program.

It should be noted that whenever a user is activated, all of the memory

in his current relabeling registers is brought in. The user does, however, have

considerable control oyer precisely what memory will be brought in, because he

can read and set his own relabeling registers. He may therefore establish a

fork with a minimal amount of memory in order to speed up the swapping process

if this is convenient.

For a user with an especially great need for rapid response, an instruction

is provided to make a block permanently resident in core. Use of this instruct ion

is restricted to users with the appropriate bit of the user directory set. To

make a block permanently resident, execute ERS 55 with the pseudo-relabeling byte

number of the block in A. To make the block swappable again, execute ERS 55 with

o in A. To reserve a block of core memory for the use of ERS 55 instructions,

execute BRS 54 with 0 in A. To release this block, execute ERS 54 with -1 in A.

To make a block executive, execute BRS 56 with the srune argument as for BRG 80,
. \

make block read-only. This "instruction is legal only for executive type programs.

The system keeps track of the state of real core with two tables called the real

memory table (ru.rr) and the real memory use count table (RMC). 1m RMC entry is -1

if a page is not in use; otherwise it is one less than the number of reasons why

August 8, 1966
5-5

it io in use. Every occurrence of the page in the relabeling of a process which
. I

is running or about to be run counts as such a reason. In addition, other p~rts

of the system can increment an RlIoC word to lock a. block in core. BRS 55 also does
!

this. No block with non-negative R~ro can be released by the 8wapper.

The format of an RMT entry (one per real page) 1s

M
R

2 9 10 23

0
0 0 address of PMT or SMT entry

responsible

USE :II: in use RO • read-only

There is one more table indexed by real memory, called the real memory aging

table. Whenever the swapper is entered, every word in this table is shifted right

one bit. All blocks which show up in the real relabeling computed from the paeudo-

relabeling with which the swapper was entered then have bit 1 turned on. The

blocks wi.th lowest RMA are selected for swapping out; of course their RMC entri~s

must be negative.

The swapper also contains a device called the simulated associative memory

or SAM, which contains pseudo-relabeling and real relabeling for the most recently

used ma.ps. It serves to reduce the amount of time needed for map-changing when
•

little s\,lapping is taking place. It is cleared whenever a drum read takes place,

since this changes the contents of real memory and potentially invalidates all

real relabeling registers.

Two BRS's exist for reading and writing 2K blocks at specified places on

the drum. They are of course restricted to executive programs. To read a block, put

the drum address into B and the ·core address in A Jilld execute BRS 104. To write
.,'"

a block use BRS 105. Drum errors cause these instructions to generate illegal

instruction panics.

.'

(a) Unused

(b) Shared

(e) Private

DM • on drum

EX =- executive

RO D read only

August 8, 1966
5A

lo41 Ro 1
16

J . SMT entry number

Possible Formats for PMT Entries

August 8, 1966
(~-.l

G.o 1·iiscr-;llaner:Ju5 Features

A user r~lS¥ dismiss his program fc)r a specified length r)f real time

by (:X(.;cut ine BRS !jl v1i th the number of milliseconds for which he wishes to he

dismissed in A. At the firnt availa11c r;ppr)rturJity aftc:r trd.r~ tir(j(~ han

been r:!xhuu::;ted, his prOLTElI,: vlil1 be r0activated. Thtn featurr~ i.s irrlnl~-

r{\.entecl vlith a Gljccial activation conc.lit ion and the value of the clocJ~.

at the time "Then a user is to be reactivated is kept in the a<1clre:;s / If

PrEST. The activation condition causes the current value of thp. clGc}{,

IJ~
nodulo 2 ,to be corr,pa.red with this value. Hhen the clock. becor.1(!S

Greater, it is time to reactivate the program.

He can read the real-time clock into A by executing BRS 42. The

number obtained increments by one every 1/6oth of a second. Its absolute

magnitude is not significant. He can read the elapsed time counter in A

by executing BRS 88. This number is set to 0 whe.l :!e enters the system

and incrementa by 1 at every 1/6oth second clock interrupt at which his

program is running.

To obtain the date and time, he can execute BRS 20. This puts six

8-bit characters into AB. These characters contain, in order, the year,

month, day, hour (0-23), minute and second at which the instruction is

executed.

A user may dismiss his program until an interrupt occurs or toe fork

in question i8 terminated by execu~ing BRS 109.

A progrrum can test whether it is executive or not by executin~ BRS 11,
\

which skips ,in the former case.

August 8, 1966
6-2

An executive program can di~1s8 itself explicitly. See section 2.

There are two operation. designed for so-called executive BRSs, which

~rat~ in user mode with a map different from the one they are called from.

ERS 11i returns from one of these BRSa, transmitting A, B and X to the calling
j

I
progrmm as it finds them. BRS 122 simulates the addressing of memory at the

I location specified in A. If new memory is assigned, it is put into the

relabeling of the calling program. A memory panic can occur, in which caee

it appears to the calling program that it comes from the BRS instruction. ~

An executive program can cause an instruction to be executed in system
1

mode by addressing it with EXS.

7.0 Teletype Input-Output
I

August 8, 1966
'(_1

We begin with an outline of the implementation of the teletype operatiolls.
I

This may' serve to clarify the exact disposa.l of the characters which are beirw

read. and written. Every telet'ype has attached to it a ta.ble which is I~iven OT!

the following page. Also attached to the teletype is a. buffer which contA.i ns

input and output characters in the following format:

0 7 CS 15 lIb character to-, echo 2)
input character output,character (if any)

As cha.racters are output by the program, they are added to the output buffer,

which may be regarded as logically independent from the input buffer in spjte

of the fact that it resides in the same words. The characters are then output

by the teletype interrupt routine as rapidly as the teletype wlll Fl.ccept them.

These buffers are called character ring buffers (CRBs), filld they are not

necessarily attached to teletypes. This question is discussed in detail in

section 9.5·

When a character is typed in on a teletype, it is converted to internal form
........

and added to the input buffer unless it is rub out on a controlling teletype. The

trea.tment of rubouts is discussed in section 3. The echo routine address is then

obtained from TTYTBL and called. It figures out what to echo and whether or not

the character is a brenk character. The available choices of echoa and break

characters are listed below. If the character is a break character, anrl if a

user's program has been dismissed for teletype input, it will be reactivated

regardless of the number of wo~ds in the input buffer. In the absence of n hreak

character~the--user' s program is reactivated cnly when the input buffer is nearly

full.

August 8, 1966
'{-2,

If the teletype 1s in the process of outputting (T¢S2 > -1) then the

character to be echoed 1s put into the m~ byte of the buffer word which

contains the input character. When the,' character is read. from the buffer by

the pro(~ram, the echo, if any, will be generated. This mechanism, called

deferred echoin~, permits the user to type in while the teletype is outputting

without having his input mixed with the teletype output.

There are four standard echo routines in the system, referred to by the

numbers 0, 1, 2 and 3. 0 is a routine in which the echo for each chara~ter 'is

the character itself, and all characters are break characters. Routine 1 has

the same echos, but all characters except letters, diGits and space are break

chara~ters. Routine 2 again has the same echoB, but the only break characters

are control characters (including carrj.age return and line feed). Routine 3

specifies no echo for any character, and all characters are break characters.

This routine is useful for a program which wishes to compute the echo itself.

To set the echo routine, put the teletype number in X and the echo routine

number in A and execute ERS 12. Note that ERS 12 is also used to turn on 8-level

mode (see below). To read. the echo routine number into A, put the teletype number

in X and execute BRS 40. This operation returns in A the following word:

r
To input a character from the controlling teletype (the teletype on w~lich

the user of the program is entered) into location M in memory the SYSPOP

Tel M (teletype character input)

is used. This SYSPOP reads the character from the teletype input buffer and places

it into the 8 rightmost bits of location M. The remainder of location M is cleareu

The character is also placed in the A register, ~Those former contents are destroyed.

The

the

I
contents of the other

I

r
ther teletype SYSPOPs

To output a character

August 8, 1966
7-3

internal registers are preserved by this and all

and BRS' a.

from loca.tion M, the SYSPOP

TOO M (teletype character output)

is used,'. This instruction outputs a character from the rightrr..ost 8 bits of

I
location M. In addition to the ordinary ASCII characters, all teletype output

operations will accept 135 (octal) as a multiple blank character. The next

character will be taken 8.8 a blank count, and tha.t many blanks will be typec:l..

The TTYTIM cell 1n the teletype table 1s set to the current valu~ of the
1

clock whenever any teletype activity (interrupt on output SYSPOP) occurs. The top

bit is left clear unless the activity is a rubout input. This cell is checked

~) by the rubout processor to determine whether the rubout should

reset the job to the exec. See p3-6

b) by the phantom user's ten-second routine to check that no output

interrupt haa been dropped by the teletype interface. If no activity

has occurred for 2 seconds and characters are waiting to be output,

the interface is awakened.

c) by the phantom user'a ten-second routine to check whether any activity

has taken place in the last 30 seconds. If not, a control character

18 output to reeAsure the user that the system 18 ali\~.

Every teletype in the system is at all times 10 one of three statea:

a) It may be the controlling teletype of some user'. progr~.

It gets into thio state when a user enters on it.

b) It .,mr:w be attached to some user in a manner about to be described.

c) It may be completely free.

The status of the teletype is reflected by the contents of TTYASG. There are

mechanisms to be described by which the user ma.y direct output to any teletyp~

August 8, 1966
'(-4

in the system which is willing to accept it and receive input from any teletype

which is not free. If, however, he wishes to have better control oyer a

teletype (for instance, to prevent other users from accessing it) he may attach

it by executing the instructions

LDA -teletype nwnber

BRS 27

If the indicated teletype :ts free, it is attached to the user whose program

executes the instruction, and the BRS will skip. Otherwise the teletype status

is not affected, and the BRS does not skip. In the following discussion we

will say that a teletype is attached to a user even if it is the controlling

teletype.

To release an already attached teletype, execute the instructions

LDA =teletype number

BRS 28

If the specified teletype 1s not already attached to the user, this is an

illegal instruction and causes a panic. All attached teletypes are, of course)

released wh~n the user logs out.

A telet~e becomes a controlling teletype if it is dormant and rubout is

psuhed on it. It can be returned to its dormant state by ERS 112, which takes

the job number of the job associated with the teletype in X. A job may terminate

itself. This operation also releases all teletypes attached to the job.

The user may specify for his controlling teletype or for one which he haa

attached, whether or not messages from outside will be accepted, and whether or

not input from outside will be accepted. The former cond~tion is governed.by

the accept messages bit, the latter by the accept input bit. The accept message

bit controls execution of OST instructions and the setting of teletype output

links. The accept input bit controls execution of STI instructiong.and the

setting of teletype input links.

August 8, 1966
~(-5 '

To set theBe bits, the user may execute

LDX -teletype number

LDA BITS
BRS 25

The last bit of BITS will set the accept input bit, the next to last the accept

messages bit. Setting or clearing these bits will not affect W1Y teletype

links currently active.

To do input and output to specified teletypes (rather than implicitly to
...

a controlling teletype as,in Tel and Teo) the SYSPOPs 1ST and OST are availnble.

To input a character from a specified teletype, execute the instruction

1ST =teletype number (input from specified teletype)

~hich brings the character into the A register. This instruction is illegal

unless the teletype is attached to the user. To output a character to a

specified teletype, execute the instructions

LDA =character

CST =teletype number (output to specified teletype)

This instruction is illegal if the following three conditions are satisfied:

(1) the specified teletype is not attached to the user,

(2) the specified teletype does not have its accept messages bit set,

(3) the program executing an instruction is a user rather than an

executive program., If these conditions are satisfied, an illegal

instruction panic will be generated.

Note that attached teletypes do not have the same status as the controlling

teletype for a user. In particular, pushing the rubout button on an attached
\

teletype will have no effect.

The instruction

eIC =teletype number + 1000

,
I

is exactly equivalent to
!
I
'1ST =teletype number.

The instruction

CIO =teletype number + 2000

is exactly equivalent to

CST =teletype number.

August 8, 1966
7-6

ThiB mechanism permits the user to do r/o to specifie~d teletypes within the

framework of the sequential file m8~hinery.

The user has considerable control over the statE~ of the teletype buffers

for the teletypes attached to him. In particular, h€~ may execute the followjng

BRS' s. All these take the teletype number in X. Recall that -1 may be used

for the controlling teletype.

BRS

BRS

BRS

BRS

11

13

14

clears the teletype input buffer.

clears the teletype output buffer.

skips if the teletype input buffer is empty.

waits tmti1 the teletype output buffer is empty.

There is one additional piece of machinery which permits output to go to

a teletype other than the controlling teletype. Thi~1 machinery is implied by

the top bits of 'l~YTBL, wh1.ch spec:i.fy whether any link bits are set. Associated

wi th each teletype are tlfO words called· the absolute input link control word

(LCW) 8l1d the absolute output I..CW. Each of these words contains one bit for

each teletype in the system. If the bit for teletyp€~ m is aet in the input ICW,

for teletype n every character which goes into n's input buffer will also 100 into

ro's input buffer. If the bit is set in the output DC~, every character which is

output to n,-incLuding echoes, will also be output to m.

Also associated with each teletype are relative LCW's for. input and output.

The bits in these LCW's are set by BRS 23. Ea,Ch time any relative I.CW is changed,

tt,·\ absolute LCW' B are all recomputed. The Boolean t1Btrix formed by the absolute

AUp'uet 8, 1966
'"'-'7

input (output) LCW's is the infinite product of the matrix of the relative

input (output) LCW's.

The instructions

LDX =teletype number

IJ)A =TABLE

LDB CTI,

BRS ?"j

wlll set one of the relative LCW's for the indicated teletype. TABLE is the

address of a list of telet.'fPe numbers terminated witb: -2. The bits of CTL are

interpreted as follows:

o O=output LCW

l=input WW

1 O=clear all links first

l=do not clear links first

2 O=set link bits for teletypes whose numbers are in the ta.ble

l=clear link bits for teletypes whose numbers are in the tnble

From the old relative LCW and the information supplied by BRS 23 a new relative

LCW is created. New absolute WI's for a.ll teletypen are then computed.

An output link can be set up between two telet~)es only if each of the

teletypes satisfies at least one of the following conditions:

a) it is the controlling teletype of t.he program executing BRS 23

b) it is attached to the program

c) its accept messages bit is on (destination ()nl~)
\

d) the fork executing the BRS is executive.

An input link can be set up only if the same conditions are satisfied for the

accept input bit.

AugufJt 8, 1966
7-8

To clear all links, input and output, to or from a telet~, execute

i
: LDX :lite Ie type number

BRS 24

Special provision is made for reading 8-bit codes from the teletype

without sensing rubout or doing the conversion from ASCII to internal which

is done by TeI. To switch a teletype into this mode, execute

LDX =teletype number

LDA =tennin.al character + 40000000B

BRS 1?

This will cause each 8-bit character read from the teletype to be transmitted

unchanged to the user's program. The teletype can be returned to normal

operation by

(1) reading the terminal character specified in A, or

(2) setting the echo table with BRS 12.

No echoes are generated while the teletype is in 8-level mode. Teletype output

is not affected.

A parallel operation, BRS 85J is provided for 8-level output. BRS Bh

returns matters to the nor~al state, as does any setting of the echo table.

To simulate teletype input, the operation

STI =teletype number

is available. STI puts the character in A into the input buffer of the specified

teletype. It is legal only if the accept input bit is on.

Tlf2
TIS4

TIS5

TOS2 !
TOS3

TOs4

TOSj -1

TTYTBL

TTYFLG

TTYBRK

TELETYPE TABLE

number of characters in input buffer

August 8, 1966
7A

next available space in input buffer (pointer)

next filled .pace in input buff'er(1~o1nter)

number of characters in output buff(~r; -1 • inactive

< 0 • not in multiple blank mode; 4(~ - just saw 135
(multiple blank character); other. number of blanks

next filled space in output buffer (pointer)

next available space in output buffe~r

don't listen for input (except rubout) when O. Set when input
buffer is full.

waiting for break character when -1

23

ftY StatuI

PACPTR of fork to terminate on rubout

TTYA8G 3 7 7 7 7

\ ill controlling jO~

ROICW relative output link control word

RIICW relative input link control ~~rd

23

active
inactive

attached

value of clock when last action occurred on this ttyl

TTYDEV device (normally physical teletype) using this buffer.
NS = not linked or 8-level AI -accept input

AM • accept message 8I • 8-level input

IL • input linked SO • 8-level output

OL • output linked RB - last action was input of rubout

8.0 Drum and Buffer Organization; Devices

8.1 File Storage on the Drum

August 8, 1966
8-1

The drum is divided into two major sections, program swapping and

file storage. The organization of the prograa"'n swapping area is d.iscussed in

section 5. The file etorage area is divided into ~6 word blocks which form

the physical records for storage of files.

Every file has one or more index blocks which contain pointers to the

data blocks for the file. An index block is a 256 word block, as are all other

physical blocks in the file .storage area. Only the first 144 words of the index

block are u.sed, however, for data storage. A couple of additional worda are

used to chain the index blocks for any particular file, both forward and backward.

The index blocks for a file contain the addresses for all the physical blocks

uced to hold information for the file.

Available storage in the file area of the dMlm is kept track of with a

bit table similar to the table used to keep track of progr8Jn swa.pping storage.

Since there are sixty-four ~6-word blocks around the circumference of the

drum and a maximum of 72 drum banda (out of the 84 available) may be used for

file storage, a 192-word bit table which contains 3 'W'ord" or 72 bit!! for each

row of physical blocko suffices. If a bit in this table i8 set, it indicates

that the corresponding block on the drum is in use. Again, as with pro~ram

swapping storage, the organization of this table makes it easy to optimize

the writing of files. This is done by putting contJecutive physical blocks in

the file in alternating rowo on the drum. The intervening row between each two
\

physical blocks provides the time for the channel to fetch a new command and

the heads to 'switch. The result of this organization is that information ma.y

be transferred frmn a. file on the drum into core at one-half core memory speed

if conditions are right.

8.2 File Buffers

August 8, 1966
8-2

Every open file in the sygtem with the ex.~ept1on· -of 'pure ly" charttcte r-

oriented files such as the teletype has u file buffler Fissociated with it. The
I

form of this buffer 18 shown on page ~A. Part (1:.1.) c)f this figure shows the

buffer p,roper, and part (b) ShO\:!B the index block buffer and pointers (1SS0~ ihted

wi th 1 t. purt (b) is not used only by drum file 8, lDut is present in all case s .

Each job has associated with it a temporary stt:>ru.ge block, which is Iilwl.1ys

. the first entry in the job' a PMT. This block 1s usted to hold information hbout

the user and for the system' B temporary storage. It also has room for j buffers .
..

An additional block may ~e assigned with room for 5 more buffers if more than 3

files are open at one time. The pseudo-relabeling for the extra buffer block hlld

. the TS block is held in a table called RL3 which is indexed by ,job number, and is

put into the monitor map whenever any fork belonging to thf:l.t job is run.

Note that the amount of buffer apace actually used 1s Ii function of the device

attached to the file. In all cases the two pointer words :it the head of the buffer

indicate the location of the data. The first word J~oints to the beginning of the

relevant data and is incremented as data are read f:rom an input buffer. The

second word points to the end of the data and ia ineremented as data are written into

an output buffer. When the buffer is in its dormant state, both words point to the

first datA. word of the buffer. Whenever any physical I/O Operation is completed

the first pointer contains the address of this word.

8.3 Devices

Every different kind of input-output deviee l1ttached to the Bystem h!i8

a device number. The numbers applicable to specifie devices are given in section

9; here the various tables indexed by device number are described. The entries

in these tables addressed by a specific device number together with the unit number

(if any) andthe-buffer address, completely deffine the file. All this information

is kept in the file control block (section 4.3) which is addressed by the file

nwmber.

August 8, 1966
R-3

Ptl{~e 8B shows the tables indexed by de vice· number. Note the mult iplic i ty

I

of bits which specify the characteristics of the device. Some of these call
I

for comment. A device may be common (shared by users, who must not access it
!

simultaneously; e.~. tape or cards) or not common (e.g. drum); this characteristic

is defined by NC. It may have units; e.g. there may be multiple mar~apel. The

U bit specifies this. The DIU word indicates which file is currently monopolizinc~

the device; in the. case of a device with multiple units, DIU points to a table

called ADIU which contains one word for each unit.

The major parameters .of a device are

- the openin~ routine, which is responsible for the operation necessary

to attach it to a file

- the G~l routine, which performs character and "rord I/O

- the BIO routine, which performs block I/O

Minor parameters are

- maximum legal unit number

- physical record size (determining the proper 13etting of buffer pointers

and interlace control words for the channel)

- the expected time for an operation; the swapper llses this number to

decide whether it is worthwhile to Buap the ul~er out while it is

taking place.

BIA

BIP

Bm
BDN

BIe
BDC

BBP

BFP

pointer to t1rlt relev&nt data word of buffer

pointer to lest relevant data word of buffer

1st data word

•
·

· ·
·
·
·

2)6th da.ta word

(a) ~t of a file buffer

drum address of current index block

pointer to 1ndix block entry for
data bock

current

number of index blocks in buffer

number of data. blocks in buffer

index changed flag
data. changed flag

first index block word
..... , -·

·
·
..

0 0
E 3 15 116
0 drum addre S G for data word count.
R

·
· · ·

144.th index block word
pointer to previous index block (or 0)
pointer to next index block Qr 0)

23

\

August 8, 1966
eA

} random files only

index block word format
EOR~end of record. flag

11 always 0 for
sequential files

'-O~
'-00:::>
C'\.
rl

...
a)

+>
III
-<
fi\
~

DEV word or
character I/o
routine

Bll'S
" buf'f'er size

"BDEV
block I/O routine

DID _
device in" use

OPNDEV
opening routine

" 1 :2 3 4 ':1 6 7 8 9 16 23

§ i ° I CHlpRl~ I rue 1 0 I BF I ,m lour 10 I GPW routine I
CH char oriented
DRM drum

RX random access
BF requires buffer

WB W bui'fer
OUT output

o -1 2 . 3 8 9 16 23

f 1° I ~ I max. unit number I u I p~ical record size I
U check unit n~ber NC not cammon (i.e. don't set DIU)

o 9 ~ "')~
L....)

10 ¢ BIO routine -1

(') 23

file number uSing this device or -1

points to ADm (has unit number added)

-

0 (6 E expected wait time 0 opening subrout ine
0 in clock cycles

- -~-

EO exec only al.l.owed to open

U = 0

U=l

August 8, 1966
9-1

'.

9.0 Sequential Files

9·1. Sequential·Drum Files

There are two basically different kinds of files which the user ; lay

write on the drum: sequential end random. A sequential file has a structure

very similar to that of an ordinary magta.pe file. It consists of a sequence

of logical records of arbitrary length and number. Drum sequential files are

however, considerably more flexible than corresponding files on tape, hec alJse

lo~ical records may be inserted and deleted in arbitrary positions and increased_

or decreased in length. li'urthermore, the file ma.y be instantaneously positionF!d

to any specified logical record.

A sequential drum file may be opened by the following sequence of

instructions:

LDX =device number, 8 (input) or 9 (output)

LDA =unit number, address of first index block

BRS 1

If the file is opened successfully, the BRS sklps; otherwise it returns without

skipping. Use of this BRS is restricted to executive type prOJl,rruns. User

programs may access drum files only through the executive file handling machinery.

BRS 1 can also be used to open other kinds of files. The device and unit numbers

are used to determine the physical location of the flle. See section 9.2.

If BRS I fails to skip, it returns in the A register an indication of the

reason:

-2 too many files open -- no file control blocks or no buffers available.

-1 device already in use. For the drum, produced by an attempt to open
a file for output twice

o no. drum space left. This inhibits opening of output files only.

See section 9.2 for other error conditions.

August 8, 1966
9-2

rs 1 returns in the A register a file munber for the file. This file

numb~r is the handle which the user has on the file. He may use it to close the

file! whe~ he is done with it by puttine it in the A register and executing WS 2.

This severs his connection with the file. BRS 2 is available to both user and
/

• I
executive programs.

I To close all his open files the user may execute BRS 8.

If the si~?1 bit of A is set when the BRS 1 is executed, the file is made read-

only. This means that it cannot be switched from input to output. If this bit

is not set, then the instructions
i

LDA =file number

LDB =1

i1~S 82
will change the file to an output file regardless of its initial charac~er. The

instructions

LDA =file number

LDB =0

BRS 82
are always legal and make the file an input file rega.rdless of its initial character.

Three kinds of input-output may be done with sequential files. Each of these

is specified by one SYSPOP. Each of theBe SYSPOPs hE~dles input and output in-

differently, since the file muat be specified as an 1nput or an output file when it

is opened. If the user desires to read and write on the same file at the lame time,

he should open it twice, once as an input file and once as an output file.

To input a single character to the A register or output it from the A reg:1ster,

the instruction

CIO =file number
"

is executed. On input an end of record or end of file condition will !!!:! ~ ~

and ~ ~ I in the file number (these are called ~ bits) and return a 134 or 137

character, respectively. If interrupt 4 is armed, it will occur. The end of record

condition occurs on the next input opera.tion after the last character of the record

August 8, 1966

9-3

hns been input. The end of file condition occurS un the next input operation

after the end of record, which signals the last record of the file. The lJSer

ma.y r-enerate an end of record while writing a file by using the control operation

to be' described,

To input a word to the A register or output it from the A register,

WIO :--file number

is executed. An end of record condition returns a vlord of three 131+

characters as well as s~ttine the flae bit, and an end of file returnn
;

a Horel of triTee 137 characters. If the condition occurs \-,hen a :part ially

filled.- Gut ,-,ord is present, the 1-1ord is filled Gut 1:1 th ',TIe of these

characters.

J:iixinC ".Tord and character operations "d.ll lead to peculiarities and.

Tr) input a bl()ck ()f vTords to memor'J or output them fr0Tr rncTr':()r"J, th c

in structions

LDX =first 'Ilord address

LlJA =numb er of ,·ror ds

BIO ::-file nW:lber

should be executed. The c0ntent3 of A, B and X will be destroyp.d. The

A register at the end of the operation contains the first memory location

not read into or out of.

If the operation caUSC:3 an:y of the fla.e bits to be set, it i,; terminatE!d

at that point and the instruction fails to skip. If the r,peration in c()Tlpl(;tcd

\
successfully, it does skip. Note that a BIO cannot set both the EOR and the

EOF bits.

August 8 J 196()
9-4

I i
BIO is implemented with considerable efficiency and is capable of, reading

I
a properly written file (or writing any file) at one-half the maximum drum

tran/rer rate.

The fl~ bits (0 and 7 or 8) of the file number are set hy the aystem

whenever end-of-record or end-of-file is encountered Find cleared on any input-
; I

output operation in ,,,hieh net ther or these conni tions occurs. Bit 0 is set on

I
any unusufil condition. In the case of a BIO the A register at the end of the

operation indicates the first memory location not read into or out of. For any

input operation, the end of record bit (bit 7) of the file nu~ber may oe 8et:

An output operation never sets ei.ther one of these bits. Bit 6 of the rile
1; .

number may be set on an error condition (which CAn occur only on devices other than

the drum). Whenever any flag bit is set as a result of Fin input-output operation

in a fork, interrupt 4 will occur in that fork if it is armed.

The CTRL SYSPOP provides various control functions for sequential drum

files. To use this operation, execute the lTIstructions

LDA =control number

(LDB =record count, if required)

CTRL =file number

The available control numbers are

1 write end of record on output or skip the remaining part of
the logical record on input. This control does not take a
record count.

2 Backspace (B) records.

3 Forward space (B) recorda.

4 Delete (B) records (legal on output only).

5 Space to end of file and backspace (B) records.

6 Space to beginning of file and forward space (B) records.

7 Insert logical record (legal on output file only). This
control does not require record count.

8 Write end of file (output only).

August 8, 1966
9-5

The user may delete all the information in a drum file by executinf~ the

instructions

LDA =file number

BRS 66

He may' alao elimina.te the file entirely b.y ~iv1n~ an executive command described

in sect ion 14.

The index block for a sequential drum file contains one word for each

physj.cal record in the file. This word contains the address on the drum of .. the

physical record in the bottom 12 bits. The tep bit is set if the physical record

is the last record of a 1o~ica1 record. The intervening bits indicate the nurnher

of da.ta words 'in the phYSical record. ft. sequential file may ha.ve only ene innex

bleck, or a maximum of 146 X 256 = 37376 worda of data.

Putting the file number of a. sequential file in A and exec\Jtin~ BRS 1~3

will cause the file to. be rewound, scanned to find the total number of data

words, and rewound again. The number of data worda is added to X. This also

works for random files.

Three operations are available to executive programs only. They are intended

for use by the system in dealine with file names and executive commands.

A new drum file with a new index block can be created by BRS 1 with an index

block number of 0 in A. The file number is returned in A as usua.l and the index

block number in X. The read-only bit may be set (bit 0 of A) as USUA.l.

BRS 67

returns the drum block with address in A to available storage. To read an index

block into core

BRS 87

rna be used. It takes the address of the block in A and in X the first word in

core ".nto which the block ~s to be read.

August 8, 1966
,9-6

A single word or a sequential file may be directly addressed by apec1-

fY,ng t~e logical record number and wOrd number within the logical record.

All the' operations legal for random files (see section 10) can also be used

for sequential files with this convention. The format of the address 18
I

I

0 1 2 7 e ~1 .J

record number word addrgS8
(6 bits) (16 bits)

9.2
I

other Sequential Files

August 8, 1966
9-,7'

I
In addition to drum sequential files, the user has some other kinds of

sequential files available to him. These are a.ll opened with the same BRS 1,

except 'for the device number. Ava.ilable device numbe rS are

Paper tape input 1

Paper tape output 2

Card input 3

MagtA.pe input 4

Magtape output 5

PDP-5 link input 6

PDP-5 link output 7

The device number is put into X. The unit number, if any, is put into A. The

file number for the resulting open file is returned jn A. If BRS I fails it

returns an error condition in A as described in section 9.1. Three error conditions

apply to magtape only:

o Tape not ready
1 Tape file protected (output only)

2 Tape reserved (see p. 9-8).
BRS I is inverted by BRS 110, which takes a file number in A and returns

the corresponding device number in X and unit number in A.

These files may also be closed and read or written in the same maImer as

sequential drum files. The magtape is not ava.ilable to the user as a phYRical

device.

CTRL =1 (end of record)

is available for phY3ical sequential files 2 and 5 (paper tape and magtape output).
--'----------' '\

Several other controls are also available for 'magtape files only. These are

2

3

4

backspace record

forward space file

backspace file

,) write three inches blank tape
i

!6 rewind
I
I

7 write end of file
I

Aup;ust B, 1966
9-8

These controls may be executed only by executive type progr81lls. I/O operations

to the mA.gtape may, of course, be executed by user programs if they have the

correct file nu~ber.

An executive program may arrogate a tape unit to itself by puttinv. the

unit number in A and executinr.; BHS 118, which skips if the tape is not rilreajy

attached to some other joh. BRS 119 releases a. tape so attached.

It is possible for magtape and card reader files to set the error bit in

the file number. The first I/O instruction after an error condition will read

the first word of the next record -- the remainder of the record causing the

error is ignored. The magtape routines take the usual correct:tve procedures when

they see hardware error flags, and si~al errors to the program only as a last

resort.

In order to make the card reader look more like other files in the system,

the follo'iing transformatic'Ds ~re made by the system on card input:

1) All non-trailing strings of more than 2 blanks are converted

to a 135 character followed by a character giving the number of

blanks. The teletype output routines will decode this sequence

correctly.

2) Trailing blanks on the card are not transmitted to the program.

3) The card is not regarded as a logical record. However, the

system generates the characters 155 and 152 (carriap;e return and

The result of all this machinery is that the 8trin~ of characters obt~ined

by reading in a card deck may be output. wtthout chanr,e to a teletype and will

result in a correct listing of the deck.

August R, 1966
'. '9-9

Whenever a card reader error (feed check or validity check) occurs, the
i

program is dismissed until the reader becomes not ready.

: The EOF light is sensed as an end of file at all times.

i The phantom user's 10 second routine checks to see whether a W-buffer

interrupt has been pendint1 for more thnTt 10 seconds. If so it takes drastic

and ill-defined nctton to clear the W-buffer.. BRS 114 alao ta.kes this drfJ.stie

action; it can be used if a program is fiware that the W-buffer is mH.lfunctiordnl~.

9.3 File Control Blocks

Every open file in the system has nssociFited with it a file control

block. This block consists of four words in the following format:

FA

FW

FD

Fe

0 ? 3 . b 8 9 first index block address or 0
0 JO

0 C
l

E B
R B
R I--

0

0 2 :3
char
crunt

Drum
files
only

number 0 subroutine address
7 t1 C

2
15 16 C

3

c ~1 R \ R \ B 0 0 device X D P H 0 U
0 0 0 0 T

unit 81 9
nwnber drum buffer arldresB or 0

0 0

Cn = word being packed or unpacked

char count:: -1 to 2

CH ~ character oriented

¢UT = output

BB = buffer busy

DF = drum fi Ie

fRX = random acce s s

h~D = read only

BP ~ buffer in use and protected

ERR = error

?3

normal file

subr. f:lles

norm ~ll f11p.
B1Jbr. fj le

normal J'11e

subr. fj le

)
9!.4 Pennanently Open Files

I ,

August 8, 1966
9-10

There are a few built-in sequential files with fixed file numbers:

0 controlling teletype input

1 controlling teletype output

2 nothing (discard all output)

lOOO+n input from te letype n

2000+n optput to teletype n

These files need not be opened and cannot be closed.

9.5 ~Character Buffers

Section 7 describes the format of a teletype buffer. Such an ob if, '..:'!.

is capable of dealing with any character-oriented device J not merely wi tit &

teletype. For this reason the character ring buffers are not directlJ indexed

'by the physical number of the teletypes to which they are attached. Instean,

a table indexed by physical teletype number is used to obta.in the buffer number.

It is possible for other devices to obtain buffers; the mechanism for doing this

is not spelled out in detail at the moment.

J.O.O Ran<1om Drum Files

August 8, 19Gf) ,

10-1

A randCJTf. drum file i~ very similar in pnysicaJ. structure r Jr, the: d:rur~

logico..1 recurdn and that the bi to in the indey. block which k(~(~p tracJ: ',if

l'Jr;icnl record ntruct'J.rf:! are alvlaY3 (). Furthermore, the lHin-Zc.r() 1-lords

(.Jf the index block are not n(;cesGari~ c r mrpact. The rea::J(.Jn for thin is

that information is extracted from (Jr vrrittcn lnto a rancJ.om file by

adclressinr~ the specific word or block of words which is desired. Frr)f(l the

addre [j S vlhtcb the user supplies, the system extra.cts a phys ical block nWilbcY.'

by dividing by 256 and a location of the 1-Tord within the block vThich is thr

rCll',ainder of this di vis ion. Further divis ion by 144 yields the apprrJpriatt?

inde:: 'hlock. A random file may ha.ve any number of index blocks.

A randor~l file mC\'[be opened by using BRS 1 vlith a devicc nw.lber J.(J.

lIo distinction is made bc;t\·recn input and output to a random dru,'n file.

A r~~dom file may also be closed by BRS 2, like any sequential file.

Hm-rever, CIO, VlIO and BIO are not used for input-output t(j random files.

Instead, the i'olimrinr.:; operations are ava.ilable:

Tr) read a 'liard from a random file, execute the instr1.1.ctlorJz

LDB ~-address

,!l·1I ~'filc number

The ",ord is returned in A.

To write a "lord on a random file, put the word in A and execute the
\

instructions:

LDB ~-::ad<1ress

]l'IO :-'filc number

i
I

September 30, 1965
1()-2

Block input-output to random files is also possible. To input a
I

block,execute the instructions

LDX =first word address

LDA =number of words

LDB =firot address in file

DBI =filc nuro.ber

To output a block of worda to a random file, execute the in.struct ion

DBO =file number

,\-lith the same parameters in the central registers. These block inp'lt-outrmt

operations are done directly to and from the user's memOr"J, as is BIO. DrtlI::

buffers are not involved and the operation can go very quickly.

If the sign bit of A w'as set vThen BRS 1 'VTas executed to open the file,

then output to it is not alJ.ovTed and the file is said to have been made

read-only. This is a natural extension of the treatment (If' read-cmly

sequential files.

It is possible to 'define a random file ",hieh has been prc:viou3Jy

opened as the seeondEU-Y memory file. To do this, execute the instructions

LDA =file number

BRS 58

The specified file remains the secondary file. until another secondary m~nory

file is defined or until the :file is closed. To access information in the

secondary memorY', tvro syspop~ are provided. These POPs work exactly like

nIT and rHO except that they take the drum ac1.dl'eas from memory instead (Jf

September 30, '19(;5'
10-3

requir lYle: it t(") 'he in n. Trj read a 1-T(Jrd of secondur-J memOT"j intrJ the A

rcei:Jtcr, th~ in~tructi()n
i

I
addreGs

I
nll'J1.11d 1;(; CX(~cut(.d.

I
instr1.:.ct .L'Jn

adcJ.res::;

shuulcJ. be executed. The H~-;rd addres[;ed by either (me of these SYSPOP3

sl}ould contain the drur:1 address "Thieh is to be referf~nccd. Thi;; HOT(l TilEJ..Y

also have the index hit set, in vh ieh caGe the contentf> r,f the index

recister 'HilI be added to the contf:nts r;f thr~ vrGrd t(; forn the ei':['(!ctivc_

address '\'Thich is actually used to "perform the 5.nput-rAttput ';perat:ton.

The mcch~"'1ism for acquiring and rclea:::;in{~ rand()}',- ,1rum file space in

"..lscr addresses a Gcction of a ran<loIYL drwr file vrhich he flaG not nrevi(j'_I:~l;!

used, the necessary blocKs are created. and cleared to O. lkJtc; that the

us(::r ~.;hould avoid unnecessarily large random drum addresncs, s inc8 they

Day re:.n,ut in the creation of an unnecessary number of index bJ.()cr:;;. T, J

relcanc randarfl dl'um I,ternory, execute the instructions

LOA =onurnbcr (.If words to be zer(.Jcd

LOX ~:file nU1:-.ber

ERS 59

The Gpecifif.;d 3ection of the file is cleared to zero. Physical bJr)cl':G wIdell

are entirely zeru ,\,/ill be released. A Dlore drastic clearing ()pcratlon way be

obtained uith DRS 66, vThich c1cletes the entire illforrl1ation content r ,f the fil'J.

i
li.O Subroutine Files

I

August 81 1966
11-1

In add.ition to the above--mentloned machinery for performing input-

output through physical files, a facility is provided in the synterr for

malcine a subroutine caJJ. appear to be an input-output request. Thic facility

makes it :p0s3ible to m:-ite a program vThich does input-output f'ror;J a. file

and later to cause further processirlf":; to be performed before th(~ actual

input-output is done, simply by chaneing the file hom a physical t'j a

subroutine file. A subroutine :file is opened by executj.ng the instructions

LDX parameter word

BRS . 1

.. 'his instruction never skips. The opcode field of the parameter ",ord

indicates the characteristics of the file. It r.1L\Y be one of the following

combinations:

11000000 Character input subroutine

11100000 Character output subroutine

01000000 . \-lord input subrout ine

OllOOOOO \vord output subrout ine

I/O to the :file mew be done with CIa 0r vTIO, regardless of whether it is lit

'Word or a character oriented subroutine. The system will take care of the

necessary packing and unpackinG of characters. BIO is also acceptable.

The opening of a subroutine file does nothing except to crel.te a file

control block and return a file number in the A register. When an I/O

operation on the file is :performed, the subroutine will be called. This is

done by simulating an SHRM to the location given in the word follCMine; the
~(

BRS 1 which opened the file. The contents of the B and X registers are

transmitted from the I/O SYSpop to the subroutine unchanged. The contents

i
r

AU{~1Jst i~, l~){lJ
l)~?

of the' A ref'-ister mllY he ch81);~ed b:1 the p;.If.!kin!~ IJnd unpa.ckin:: ope fTltj OTIS

I
Df!CCSsnry to convert from (;h8.ru.et~r-orienteri to word-orIented operations or

vice versn .. The I/O suoroutine may do an H.rbitrf.1ry ~.\lTlount of comput:Jtion

any may calIon any numher of other I/O devices or other rio sllbrolJtin~s.

A subroutine file should not call itself recursively.

When the subroutine is ready to return, it should execute BRS 41. This

operation replaces the SBRR which would normally be used to return from ,I
suhroutine call. The contents of B FUld X when the BRS !~l is executed TJTf!

trn.nsmitted unchanf~ed' back to the callinl7; proll,rrun. The contents of f.. mn .. y hrJ

a.ltered by packing and unpacking operations. A Bubroutine file j s cloBeri

with BRS 2 like any other file.

In order to implement ERS 41, it is necess ary to keep track 0 f which r/()

subroutine is open. This information is kept in 6 bits of the PAC tahle. TI:e

contents of these 6 bits is transferred into the opcode field of the return

address when an r/o subroutine is called, and is recovered from there when

the BRS 41 is executed.

12.0 The Exec. Treatment of Files

B-21
March 8, 1967

12-1

Because of the possible conflicts which may arise when several users are

simultaneously trying to access the same peripheral device, such devices

cannot be handled directly by users at the level offered by BRS 1 -- which is

available only to programs with executive status. At the user level, storage

devices can only be referenced in an indirect manner, by writing o~ reading

a "file".

Files are the primary means by which the user establishes continuity

between one computer run and the next ~a "run" being that sequence of

activities, mutual to the computer and a user, between the ~fTER cO~dand and

the next LOGOUT command). A file is any named block of information which the

user finds "it convenient to regard as a single entity; the commonest example

of a file is just a program. To provide a check against inappropriate use,

files created by the Exec and TSS subsystelus are claSSified, according to the

nature of the information in them, into one of five types -- with each of

which is associat.ed a type num.ber. This tJ,¥e number is car!'ied along with

the information content and is checked whenever the file is referenced by

an Exec command (or any other of the TSS facillties which reference files).

If the file is found to be of a type inappropriate to the context the command

is not implemented and an error is indicated.

The file types are:

1. Core Image - The information in this originates from specified

segments of core memory.

2. Binary - The information has the form of an assembled, but

unloaded program.

3. ,Symbo lie - The information is of a form which can be readily listed

on some printing device.

R-21
March 8, 1967

12-2

- Comprises all the information in memory necessary to"
restart the user from his current situation, i.e. the

situation at the time of creation of the dump file.

5. Subsystem - Comprises up to eight 2K blocks which can be read into

shared memory. The information originates from core

memory and is normally executable as an assembled and

loaded program.

Files of types 1, 4 and 5 originate from information in core. Before names

have been explicitly a.ssigned to them, type 1, "Core Imagen files are r~ferred "GO

by their bounding core addresses; the whereabouts of a type 4, "Dump" file, is

i
,implicit in its nature, while type 5, "Subsystem," files are specified by

delivering'the pseudo-relabeling of the pages containing the information to the

command which attaches a name to them.

The information in-type 3, "Symbolic," files may come directly from paper

tape or teletype and in such a case is referred to by using the name of the

corresponding physical medium, viz. -

PAPER TAPE

TELETYPE

These names are built into the system and a.re alwaya appropriate recognized.

Another built-in "file" name is

NOTHmG

which always contains precisely nothing and whose function is to act as an

infinite sink in which limitless unwanted output can be lost.

A commoner source for symbolic files is the output from some BubsystenlS,

notably the text editor, QED and publication preparer, AUTO-SEC.
<

Type 2, "binary" :files may originate from paper tape, but, more commonly,

arise as the output from the machine-language assembly subaystem, Arpas.

Until the actual process of output from the subsyt-~tem occurs, identification

R-21
March 8, 1967

12-3

of the information is handled by the said subsystem and is usually implicit

since the subsystems can handle only one file at a time. However, when the

information is ejected into a context involving many other blocks of information

of a similar kind some explicit identification must be attached to it.

I
12.1 File Naming

The names which the user is free to invent and assign to files are

of two types:

1. unquoted names

2. scratch names

Scratch names differ from mlquoted names in that they and the files

associated with the'm are lost when the user leaves the system, using the

LOGOUT command; they are otherwise treated identically.

An unquoted name is an arbitrary string of characters not beginning

with' or /. A scratch name is of the form / < arbitrary character string >.

As unquoted names we have -

ABC
PROGRPJv1 1

124

while as scratch names we have -

/ABC

/421/

Any unquoted or scratch file name may be quoted by surrounding it

with single quote marks. Thus 'ABC' and '/001/ 1 are quoted file names.

The quoted name refers to exactly the same file as the unquoted one; it

differs only in the way it is recognized by the Exec.

When reference is made to an unquoted or scratch file name, the Exec

will-anticipate the user Bnd consider the name to be fully delivered as

R-21
March 8, 1967

12-4

soon as it has received sufficient characters to distinguish the name

from all others currently defined by the user. IThis mC811S that a nCvl

name can never be introduced in its unquoted form. A quoted name, on

the other hand, is alw'ays accepted in its entirety from the user. IThe

initial and terminal quotes are then removed and the naJY1C compa,red

with the directory of names currently defined by the user. If it matcheD

one of them, it is taken to refer to that file, just as though it :tad

been presented in lmquoted form. If it is new, hovrever , it will n..ormally

give rise to an error message unless it appears in one of the follm'iing

contexts:

"a) In the DEFINE NAME command (cf. section 5.5)

b) As an output file name, in -w'hich case a new file vri th the

specified narne w'ill be created to ho1(l the output.

For example, let 'XYZ' be the name of an existin~ file and /123

be a ne'~·;r unattached file name. Then

COpy 'XYZ' TO '/123'.

has the effect of creating a nevl scratch file, called /123, having the

same information content as XYZ. If /123 is, hO\ATever, already attached

to some existing file, then the information content of that file is

replaced by that of XYZ.

In summary, it will be seen that the Exec f s fi.le na."11C recognition

apl)aratus w'Orks in two vrays, depending essentially on \·rhether the n8Jne

is quoted or not. Quoted names must always be given in entirety; the

Exec waits for the terminating quot.e before attempting to recognize

the--name. UnCluoted names are anticipated; the Ex.ec recognizes or
'"

rejects them as soon as it can, insisting that they match some narne

R-21
March 8, 1967

12-5

already :i.n the user's directory of file names. Note that the BEGINNER,

NOVICE and EXPERT commands apply to file name recognition (see section

5·7 of Document R-22.

12.2 Accessing Other User's Files, ~~~cial Groups

The naming system described is adequate to reference all the files

belonging to the current user, in whose name the Exec was entered.

However, to refer to files belonging to another user, it is possible to

augment the file name by that user's name together with, optionally,

a special accessing code called the "Group" name.

To do this the basic file name must be prefixed by one of:

(< user name >)

or (< user name >, < group nru~e >)

Thus for example:

or

(JONES) , FILEI '.

(JONES,GROUPl)'FILE1'

When such a string as the l.ast is collected from ~ teletype by

BRS 15, 16 or an Exec. command the characters ",GROUPl" lre not echoed

to the teletype so that the secrecy of the special group name is preserved.

The access that any other user may have to each of Jones' files is in

the hands of Jones himself. Jones may declare that a member of the public

at large who tries to access his 'FILEl' using (JONES)'FILE1' has entire

(read-write) access, read-only access, or no access at all. It is also

open to Jones to define independently a greater degree of accessibility

to a user who quotes the group name.

Special groups can be created by BRS 61 and the co~rn8nd SET MODES

FOR FILE (5.5 of R-22) or deleted by ERS 62 and the same command.

BRS 61 - Define Special Group

Takes a string pointer in AB.

R-21
March 8, 1967

12-6

The string is an arbitrary string of characters and is taken to define a

new special-group name. The BRS associates with it a number, n, in the

,'range I:::: n:,:: 15, which it skip returns in A. A file may then be pI' ced

'in that special group by setti.ng this ntLl1ber in the appropriate bits of

the file mode word (see BRS 48).

A user may have up to 15 currently defined, distinct special groups;

an attempt to define more results in a no skip return with A=O. An

attempt to define an already existing special group name also results

in a no skip return,' but with the group number in A.

BRS 62 - nelete Special Group

Takes a special group number j.n A.

The associated special group name is deleted and the number made available

for reassignment to a new name. All files belonging to the special group

are released from it. If no name is attached to the number the BRS has

no effect.

12.3 Pseudonyms

By means of the command USE N!~ it is possible for a user to insert

in his file directory a pseudonym, that is, a name which, instead of being

a tag for a real file, is a tag for another name possibly including a user

name and group name. If he later uses the pseudonym, the action taken is

exactly the same as if he had typed the ent:t.re name for which the pseudonym

stands.

12.4 Doing I/O to Files, File Nwnbers

R-21
March 8, 1967

12-7

The file name is an unwieldy and inconvenient handle for the I/O
I
routines to use in transferring data.
I

These routines instead reference

the file by a compact, I-word file number which is more closely related

I'to the file t s whereabouts. Thus system subroutines are provided to assign

Ito a given file name some temporary file number.

The user may find it useful to remember that the system subroutines

which perform :i.nformation transfers to and from sequential files are the

same for input as for output. The distinction is carried by the file

number with which they are used -- whose character is in turn determined

by whether it was returned by BRS 15 (input) or BRS 16 (output). Hence

a program which was designed to output information can, without ill-effect,

be delivered an input file number. The effect will be to lose the

characters which the program would be trying to output, while taking in

characters in their place -- these too, due to the nature of the program,

will in general be ignored and lost.

Names are recognized and a file number provided, if required, by the

system subroutines BRS 15, 16; they may be deleted by ERS 63. The

preceding description of the manner in which file names are recognized

largely assumes that they are being typed in on a teletype. They may,

however, be presented to the ERS's as a ready-made string of characters

in core. Entry parameters for the BRSs include a string pointer to a

string in core together with an input-file number. The character string

may be null or an initial part of a file name or an entire file name.

In the first two cases sufficient characters are appended from the input

file to ensure recognition or rejection of the name.

[A Remark on "Random" files on Tape

Random and sequential files may be stored and accessed with equal

R-21
March 8, 1967

12-8

facility on "random" storage devices, such as the drum nnd disk. On"

the other hand sequential devices, such as magnetic or paper tape,
I
I
cannot be conveniently or efficiently accessed in the manner of random
!
I

files and are restricted to holding on~y sequential files. How~ver, the

command 'COpy FILE' wi.ll allow a user to copy information from an existing

random file, say on the drum, to a sequential medium, such as magnetic

tape. The file created is, of necessity, sequential but has a special

format which does not allow it a sensible interpretation as a sequential

file but permits the original random format to be restored when it 1'B

copied back to a random device. Such a "random" file on a sequential

medium will result in the return of the apparently paradoxical infor-

mation, 1-0 in bits 0,1 of X when the file is opened by BRS 15, 16.

Before accessing information in such a file the user should copy it

(using the Exec. command or BRS 92) to a non-sequential medium.]

BRS 15 - Open named file for input:

Takes in A a control word

in B the address of a string pointer

in X a dual file number.

The function of this BRS is to recognize an existing file name, optionally,

open the file for input and return a file number for use with subsequent

data-input commands.

Designation of the File

The string addressed by B must be the complete or incomplete name of a

predefined file. If the name is incomplete, characters will be appended from

the input file whose number is given in the least significant 12 bits of X --

until sufficient characters are availa~le to determine uniquely a file name

R-21
March 8, 1967

12-9

(or no such name). If the file name is unquoted so that prerecognition

occurs, the Utail" of the name is echoed back to the output file whose

number is given in the most significant 12 bits of X.
I

If B=O on entry a null string is assumed and characters collected

j!from the input file are not transmitted to the caller's memory. If bit

o of B is set, the string delivered is considered null -- its position

being defined by the first word of the string pointer. Unless B=O on

entry the completed or, in the case of non-recognition, partially

completed file name will be transmitted to the caller's memory. If

a pseudonym was delivered, it will be replaced by the string for which

it stands.

Unless the file name was complete on entry (i.e. no characters

need be taken from the input file), a terminating character must be

delivered to confirm or abort the file name. Confirming characters

are those with an internal code representation 0 to 168, also semicolon,

tab, line feed and carriage return; the aborting character is 1. All

other characters cause ? to be output and are otherwise ignored.

Action:

This is dependent on options which are specified by bits 1 and 2

of A on entry. These are:

bit 1, if set, suppresses opening the file (no file number
is returned)

bit 2, if set, suppresses the need for a terminating
character; when these bits are not set, the action is as
follows:

If the name is recognized and a valid terminating character
is received, the file is opened for input. There is a skip
return with

-- in A, a file number

in B, the terminating character

in X, is a composite word comprising

in bits 6 to 23, the file length
in bits 3 to 5, the file type
bit 0 is set if the file is random
bit 1 is set if the file is not stored on a

sequential medium.

Error Conditions

R-21
March 8, 1967

12-10

All error condit.ions are follo,.,red by a no-skip return with an

indicator in X; A and B are undisturbed.

-5~~-1 shows that the file could not be opened. The possible

reasons correspond one-one with those associated with a

no-skip return from ERS 1 with -~~2 (see pp. 9-1, 9-7). '

X=l This exit occurs if the name given is not a predefined name

in the specified user's file directory.

X=2 indicates that the file name was aborted by delivering ? as

a terminating character.

X=O Any such error is accompanied by one of the following

'error messages' being sent to the command output file

(normally the teletype).

?
ILLEGAL USE OF PSEUDONYM
-NOT PUBLIC

R .. 21
March 8, 1967

12-11 .

ERS 16 - Open named file for output

Takes in A a control word

in B the address of a string pointer

in X a dual file ntwber.

This ERS is provided to read an existing or new file name and,

optionally, open the file for output and return a file number for use

with subsequent data-output commands.

Designation of the File

The file name is obtained from B and X in exactly the manner of

BRS 15 (q.v.) except that if the name is enclosed between quotes and is

not delivered in association with some other user's name, then it may

be new.
Action

This is again dependent on the control word in A, on entry.

Bit 0, according as it is 0 or 1, specifies that the file to be

created is sequential or random.

Bit 1 is normally zero, to indicate that the specified file should

be opened and a file nmnber returned in A. If the user does not ~ish to

open the file this bit should be set.

Bit 2 if set suppresses the need for a terminating character. It

also suppresses output of the message OLD FILE or NEW FILE, which is

normally produced after identification of a quoted file nrume.

Bits 3 to 5 =t, indicate the file type.

The type of a new file is always set to be t.

The type of an old file is changed to t unless t=O, when the old

, file type is retained. An attempt to open the teletype as anything

but a type 3 file is an error.

\

Bits 6 to 2~ = S, significant only for tape files.

R-21
March 8, 1967

12-12

S is taken to be the number of word's of information about to be written.

If a new ta.pe file is specified, a space of 3/2 Swords i,8 reserved

after the current last file on tape. For an old tape file, S is compared

with the amount of tape space currently reserved for the file. If it is

greater, an error message - TOO SHORT is produced, followed by a no-skip

exit; the file is not opened.

The normal return from the BRS is with a skip, the same parameters

being returned in A, B and X as for BRS 15 viz.

in A a file number (if opened)

in B the terminating character (if delivered)

in X a composite word comprising the file length, type and logical

structure (random or sequential) -- see BRS 15.

Error Conditions

All error conditions are followed by a no-skip return with an

indicator in X; A and B are undisturbed.

-5~~-1 shows that the specified file could not be opened. The

possible reasons correspond one-one with those associated

with a no-skip return from BRS 1 with -2<A<2 (see pp. 9-1,

9-7) ·

x=o This exit follo\'lS the printing of one of the follo,.,ing

error messages on the command output file.

NOT PUBLIC
READ ONLY
WRONG TYPE
Fn..E TOO SHORT
FILE DIRECTORY FULL

X=l if the file name is new and either unquoted or is delivered

in association with the name of another user.

X=2 if the abort terminator(?) is delivered.

R-21
March 8, 1967

12-13

Notes:
i
j

1)
I

Although new tape files for the ordinary user will be created on

! the standard user's tape, some users can specify the tape on which

a new file is to be created. For such users a message

TAPE SYS. NO. a::s

is printed and a decimal number must here be delivered through the

command-input medium.

2) If the file name is quoted and not built in, one of the messages OLD

FILE or NEW,FILE is sent to the command output medium. As described

above, this'message may be suppressed by setting bit 2 of A on entry.

3) An attempt to change the logical structure of an old file (from

random to sequential or vice versa) will elicit a message to notify

the user before the name terminator is delivered.

DRS 63 - Delete name ~rom file directory

Takes in B a string pointer

in X a dual file number

The entry parameters are used to designate a name in the file

directory in the manner of BRS 15. The name is removed from the directory

subject to the following conditions:

A tape file or built-in file cannot be deleted in this way. The

ERS will in this case allow the user to delete all its names

except the last.

When a pseudonym is delivered to the BRS the pseudonym itself is lost.

When the last name of a scratch file is deleted, the file's contents

is also lost.

A successful deletion is followed by a skip return.

R-21
March 8, 1967

12-14

A no-skip return indicates that the attempt to delete failed. The

contents of X will indicate the reason for failure as follows:

X=-3,-2,-1 correspond to no-skip returns from BRS 1 with

A=-2,-1,O respectively. Such an exit results only

from an attempt to delete a drum file.

X=o indicates an attempt to delete the last name of a

tape or built-in file.

X=l if the name is not in the file directory.

12.5 Opening Scratch Files

Scratch files are all kept on the drum. They.differ from ordinary

files.in that they disappear completely when the user who created them

logs out. A fixed amount of drum space is available to each user for

scratch files, which be may allocate as he sees fit. If ever he attempts

to exceed the allocation a message will be given.

A scratch file may be created by BRS 16 or any of the commands which

create a new file, by delivering to them a new scratch name (see 12.1).

Alternatively, for a scratch file with a name of the form /ddd/ where d

is any decimal digit, the elaborate string delivery and recognition

procedure of BRS's 15, 16, 63 can be bypassed by using ERS's 18, 19, 65

respectively. Instead of a string pointer and dual file number, these

three ERSs take, for file identification, an integer in X. The decimal

equivalent of this number as a string of three digits enclosed between

slashes is then used as a file name to refer to the file in the conven-

tional way.

BRS 18

Takes in.A a code word

in X an integer

R-21
March 8, 1967

12-15

This provides an alternative way of referencj.ng and opening for input,

scratch files whose names are decimal integers.

The number in X is transformed into its equivalent string of three

decimal digits enclosed between slashes, 5 characters in a.ll, (a number

which exceeds 999 is taken to desi@1ate the string /999/). This string

should be a predefined name in the caller's file directory. The sub-

sequent action of this ERS is to open the file for input in exactly
i

the manner of BRS 15, i.e. dependent on bits 1 and 2 of A; the return

conditions are the same as for BRS 15.

BRS 19

Takes in A a code word

in X an integer

By means of this BRS a scratch file with a decimal-integer name can be

opened for output. As for BRS 18, the numb~r in X is first transformed

to a string of three decimal digits enclosed betw'een slashes. The name

is then treated as a possibly new name for a scratch file, belonging to

the caller, in exactly the manner of BRS 16. Bits 0 to 5 of A also have

the same signi~icance as for BRS 16.

BRS&)

Takes in X an integer

The-integer is converted into a string of three decimal digits, as in

BRS 18, 19. The action therea~ter is exactly as for BRS 63, successful

deletion being indicated by a skip return.

R-~l
March 8, 1967

12-16

12.6 Format of the Fiie Directory, some]mplementation Details

File names, group names and pseudonyms are contained in a hash

structure of the type described in the S~ Manual (Document R-17). The

first two words of each hash table entry are the conventional string

pointers to the file name. The third word (the string "value") is a

pointer to a 4-word "description block". In these four words is held

all the information necessary to characterize the name, whether it be

the name of a drum file, tape file, special group, pseudonym, etc.

Notice that several entries in the hash table may point to a singl~

description block; the associated names are then synonyms for the same

object, which can be referenced by anyone of them.

The command DEFINE NAME creates a new name to point to an existing

description block; conversely DELETE NAME detaches the name from its

description block, the description block itself is lost only if this

was the only name pointing to it.

Certain parameters associated with each file directory are listed

on page l2A. The format of a single hash table entry with attached file

description block is sketched on page 12B.

Executive commands and BRSs are available for interrogating and

changing parts of the user's file directory. The commands FILE DIRECTORY

and SET MODES FOR FILE are described in the manual for the TSS Executive

(Document R-22). The corresponding BRSs are BRS 60, 48.

ERS 60 - Interrogate file Description Block

Takes in B the address of a string pointer
\

in X a dual file number

The entry data are used, in the manner of BRS 15, to determine a file. The

first three words of the description block for that file (see p. 128)

are skip-returned in A) B and X respectively.

I
BRS' 48 - Set File Mode

Takes in A a file mode word

in B a string pointer address

in X a dual file number.

R-21
March 8, 1967

12-17

B and X are used, in the manner of ERS 15, to determine a file name.

BRS 48 will then usefue information in A to set or change the special

group membership, type and accessibility of the specified file (which

must belong to the caller).

All of these characteristics are determined by bits 1 to 4, and 6 to 16

of the third, "mode", ltord of the description block associated with the

file (see p. l2B). BRS 48 directly replaces these bits by the corres-

p~nding bits of A after checking A for consistency and existence of the

specified special group.

A successful mode change is denoted by a skip return, failure by a

return without skipping.

FILE DIRECTORY DESCRIPrION

R-21
March 8, 1967

12A

. (A) PREFIX AND STORAGE ARRANGEMENTS

o FLENGT ZRO File directory length

1 CFTADD ZRO Address of end of file directory

2

3
} 4
I

5
6

7

9
10

11

12

13

Unused

SGNUSD ZRO (Bits set to indicate special group numbers in use)

Unused

STRrl

P1'RN

FIDW

ZRO System tape n~~ber

ZRO Private tape reel number

ZRO Drum index block address for this file directory;
user number in opcode bits

TAPPAN ZRO System tape parameters: number of first tape file
(bits 0-11), number of tape files allowed (bits 12-23)

BSS
HTL

EHTL

FDSS

ZRO Address of beginning of description block storage

ZRO Beginning of hash table (BRS 5,6 table)

ZRO End of hash table

ZRO BRS 5,6 link

ZRO Character address of beginning of string storage
(WCH table)

14 EFDSS ZRO End of string storage

15 ZRO Exit to garbage collector

The remaining parts of the file directory appear in the following order:

Hash table (HTL, EHTL)

String storage (EHTL, BSS)

File description block storage (BSS, CFTADD)

. ;Fm . DrnECTORY DESCRIPl'ION

(n) TYPICAL HASH TABLE ~TRY

AUgust 8, 1966
12B

o I POJlf.rER TO ~
~ ~: ____________ ~DE~S~C~R~I~n~jI~m~~~B~~ __ K~~~~~~_S~S _____________________ ~

The name may be a file name, spec ial group nmne, read- in

group nwme, or a pseudonym.

(C) TYPICAL DESCRIPl'ION BLOCK ENl'RY

o
1

2

3 ~ _____ ~~ ____ ~~~ __ ~I _______ ~ ______ ~ _______ L ______ ~ ______ ~
9 12 18 21

(bits)

[0 1 1,1 1 0,1 1 1,1 1 1.1 1 I, 1 1 OJ 0 0 0, 0 0 ·0]

Mask for BRS 48

SR = sequential or random 1 = random

PRA = private accessibility 1 = read only

PUA = public accessibility O. denied to public
1 = public read only

TAPE

2 • public read and write

SGA z special group accessibility 0 ~ read and write
1 • read· Qnly

o file came from system
tape

1 file came from private
tape

RGN ~ read-in group number o. none

SON = special group number o· none c~ - called by owner

CF II: change flag

S = status o. file permanently on drum
1 = file on drum
2 = file on system tape
3 = file on private tape

CiT • number of people who have
c a.lled the fil.e and not
logged out.

POSSIBLE FORMATS FOR A FIT....E DmECTORY ENTRY

(A) THREE-WORD HASH TABLE ENTRY

R-21
March 8, 1967

12B-l

WORDS 0,1

WORD 2

[Bits 8 to 23] - String pointer to name in F.D. string store . .ge

- Pointer to 4-word description block

or -1 (unattached. name)

unattached names may be created by commands which are not completed. If

not deleted explicitly, they will be so automatically, when next encountered

in a command or ERS.

(B) FOUR-WORD DESCRIPrION BLOCK

1. TAPE or PERMANENT FILES

WORD 0

WORD 1
WORD 2

WORD 3

SR = sequential or random

PRA = private accessibility

PUA = public accessibility

1 = random

1 := read only

o = denied to
public

1 = public read only

u

2 := public read and write

SGA = special group accessibility 0 = read and write
1 = read only

SGN = special group number 0 = none

S = status 0 = file permanently on drum
1 = file on drum

U = unused

2 = file on system tape
3 = file on private tape

2. SCRATCH FILES

WORD 1· = -1

WORD 0 = 0, WORDS 2, 3 as for TAPE FILES

3. BUJLT-IN FILES

WORD 3 = -2 WORD 2 = 0

a. Device WORD 0 = 0
WORD 1 [9 to ilJ ::: no. of tape unit
WORD 1 [12 to 17] = device no. (0 p)
WORD 1 [18 to 23) = device no. (l:P)

.... b. Permanent file no. WORD 0 ~ 0

4. SPECIAL GROUPS

WORD 1 [6 to 11] = file no. (o-p)
WORD 1 [18 to 23] = file no. (l-P)

R-21
March 8, 1967

12B:"2

\-10RD 2 = -1

WORD 0 = 0 WORD 1 = creation date WORD 3 [20 to 23J = group no.

5. PSEUDONYMS

WORD 3 = -1

WORDS 0,1 = string pointer to real string WORD 2 = 0

B-2l
March 8, 1967

FORMAT FOR USER DIRECTORY ENI~Y

(A) PREFIX AND STORAGE ARRANGEMENTS

0 BURT ZRO Beginning of hash table (BRS 5,6 table)

1 EUHT ZRO End of hash table

2 ZRO BRS 5,6 link

3 BUDSS ZRO Character address of beginning of string storage
(WCH table)

4 EUDSS ZRO End of string storage

5 ZRO Garbage collection option

6 BUDBT ZRO Address of beginning of description block table

7 LUDB ZRO Length of each user description block

The remainder of the directory appears in the following order:

Hash table (BUHT, EUHT)

String storage (Emrr, BUDBT)

User description blocks (BUDBT, end of directory)

(B) THREE-~'10RD HASH TABLE ENTRY

-.-.12C

I

WORDS 0,1 [Bits 8 to 23) - String pointer to user name in U.D. s~ring storage

WORD 2 [15 to 23) - User number.

(c) SEVEN-WORD DESCRIPrION BLOCK ENTRY

o HTA 7.RO Address of hash table entry (backward pointer)

1 FDL ZRO Drum address of file~directory

2 DA ZRO Maxtmum drum block allowance

3 AW ZRO Access word (determines user's status)

4 PiT ZRO Password hash code

5 CTW ZRO Total computation time (in real-time-clock cycles)

6 L'lW ZRO Total time logged in (in seconds)

13.0 Executive Commands Related to Files
j
!

R-21
March 8, 1967

13-1

Executive commands related to files are described in detail in
i

Document R-22, the TSS Reference Manual.

14.0 Execut i ve Commands

R-21
March 8, 1967

14-1

The camnands which are accepted by the executive are described in
I

detail in Document R-22, the TSS Reference Manual.

15.0 Subsystems

The time sharing system is organized into a central executive, whictL

perfo~s a minimum number of f'Ul1ctions, and a considerable number of Bub-
I

, I
systems vlhich perform more specia11.zed functions. Each of' these sllbsYSt8fQS
I. :'

is celled by givine its name to the executive as a command. The result of

thic 0per rJ.tion ifl to bring the subsystem off the drum with the nharcd InCJfnI'Y

lor~ic descrtbed irl 3(~et1.on 16 t3l1d to transfer to its start ine point. The '

system will thereafter remember the subsystem which is in use awl will
1

accept the CONTllruE conun:md as an instruction to re-entf.!r the sul)s'yGtern

vlithout any ini tiD-liz [-It ion. Thus J for example, the line

@,DDT.

"lOuld call the debugging system. The line

@,cONTINUE DDT.

would re-enter DDT without initializing. Most of the subsystems are

permanently present in the shared memory table which is discussed in

3ection 16, and may therefore be called on by 8. user pror~ram.

SubsyGtems presently a.vailable in the tirne-sha.ring system f.l.r8:

ARPAS: A symbolic macro assemuler

DDT: The debu~ging 3ystem

Q,ED: The symbolic text editor

FTC: Fortran compiler

FOS: Tne Fortran loader and operatin~ system

-AJ.IJ : The Algol compiler

AOS: The Algol loader and operatine system

CAL: Conversational algebraic languaee

LISP: The list processing language

SNOBOL: A string processine laneuage

TRAC: Another string process ing lan[,ruage

December 30) 19&)

l~-~~

n.u>: An integrated machine language progrannning system

Q,AS: A question answering system

All subsystems n.tld the executive itself will E.1.ccept the cormnanrl HELP,

~'lhich vtill co.ll in the question answering subsystem and the (1.pproprib,te dat,;.

l)~J.~e lJlldcll "'ill be nule to :D1:Jwer questions about the system in'/olvecl. Th(: ..

(V\S subsystem is used. to. prepare data. ba.ses for commarlCls.

i
16 [) Sh ared l'iemory LoGic

December 30) 19&)
16-1

I. .
'fhe' monl tor mechaY1J.Gms for controlling memory confiGUration Wld for

puttine mem0ry lJlocks into the shared memory ta.ble have been described in

I
iJection 5. This section is concerned. w:1.th the m(~ans h,Y vrhich a pr0:~rrun c:Jn

. rWlw::rl h.'/ otber 1J[~crs.

There is 8. C;lolJG.l table called the named memory t:lrJle (NMT). ILs

c0113truction is "[ery similar to thE.t of the file dIrectory 'out it points

to chunks of shared memory rather than to files. The forlflat of a.D NMT

entry is ind.ic ated on the follo\1:jn[~ page.

'An NMT entry is referenc ed eX8,ct1y like a file directory) i. e .} yd, Lft

NANE

or

(passvTord) llAl·1E

usine;

BRS 100

BRS 100 takes the same a.rgl..lInents as BRS 15 in B [lnc1 X. It takes no

arJuments in A. If it is successful, it returns in AB the relabellinc;

registers defined by the Nl..rr entry and skips; othen'rise it fa i Is to skip.

Whether the password is required is determined by the author of the entr}

\.[hen he inserts it into the table. The startinf~ address associated with

the entry is returned in X.

To make an entry in NMT, use the following instru~tions:

LDA =NPrR

l2JB---- =PPl'R

LDX =RLW

BRS 99

December 30, 19&j
16-2

NPTR is the address of the name of the entry. If there is another

entry with the same name belonging to the same user, it is removed. If

there is another entry with the same name belonging to another user, the

BRS 99 fails and returns without skipping. PPTR is the address of a string

which serves as the password for this entry. This string is encoded into

24 bits in Bome uniform fa.shion, and the same encoding is used to determine

whether a password supplied with BRS 100 is correct. If the B re~i8ter is

0, no password will be required for the entry. RIM is the address of the

first of two relabelling registers. The word following the second re-

labelling register is taken as the starting address for the entry. The

PMT entries indicated by these registers will be transferred to S?q,r and

the appropriate specification will be constructed in NMT. Whenever this

entry is extracted from NMT by a BRS 100, each byte of the relabelling

registers returned will point to exactly the same memory block as the one

addressed by the corresponding byte in the relabelling registers deljvered

to BRS 99. The actual bits in the byte may, of course, be different,

since the pointing is done indirect through a given user's PMT.

An entry may be deleted from NMT with BRS 101, which takes the same

arguments as BRS 100. Only the owner may delete an entry. All entries

belonging to a given owner are deleted when he logs out. When an ID.rr

entry is deleted, or'when any PMT entry which points to SMT is deleted,

a check is made to see whether there remain any entries in any user's PMT

or in NMT which point to the SMT entry involved. If not, the entry is
\

deleted from SMT.

Subsystems are permanent entries in NMT. Any user may therefore call

on a subsystem simply by executing BRS 99 with a Bubsystem name. The result

December ~O; l.r.J(ti

1(,- 3

'Hill be) of course, to deliver the subsystem relabelline to him. He may

the}: do vrhate~:er he "vTants vTi th it. Since subsystems are alwD.ys rea.d onl.Y J

t';lere is no 'VTay for him to damage the subsystem.

Another kind of aharerl memory is provided, in connectir)n vri tb the:

file J H file vTit}~ t:rpE! 5. ~;llch fJ. file is in a. senae eqlJi 'nJ.lent to f;!l NMT

entr:r. It contains the:: contents of D. num'ber of blocks of memory to:~eth(~r

",i th the same information contained in an NMT spec l.fication. A subsystem

file may also contain any number of sta.rtirJ[~ addresses. Such a fIle rna,] 'be

crea.ted Hit~ BRS 102, vlhich takes. the arguments of BRS 16 and also tf:llces

in the followine three vlords:

1) The a.ddress of the relabelling words

2) The address of a starting address ta.ble

3) The leneth of the startinij address table

To read frOT:l such a file J execute ERS 103 ' .. Tith the arguments of BEG 1:';.

The effect is to convert the contents of the file into an NMT entry unci to

set up the first s ~arting address in the start inc: address table as the

NMT startinG address. The two "lords rolloT/ring the BRS 103 specify the

location ut "Thich the startin{~ eil.dress 'Vlill be copied an r'l the number of

vl')rds on the table vlhich c an be a.ccepted. The relabellinr~ a.ssoc iaterJ with

the NM.r entry is returned in A and B a.s it is by BRS 100.

,This mechanism provides a way for a. user to create a file vlhich he

and. other userS cuT! regard as a subsystem. Ouch n pseuclo-oulisystccn CfJI; !J'.

\
cor;rrnon and con have a number of starting e.ddresses. In fact, it hn.s all of

the characteristics of a built-in subsystem except that it is not quite so

convenient to ~et at. The executi "re GO TO corrunand vril1, hOvTever J :.!.ccept a

subsystem file as "Tell as a save file and vrill do the reasonable thing in

the former case. The named memory logic is not ~lemented at the moment.

i
17 l) Hisce lluneo1)s J0{ecuti ve Fcv.tures

December 30, 196/
17-1

The execllti ve pro'fidcG a number of BRS t r; vlhicb e.re serviceD for the:

I

').8(: r. 11u.n:r 0 r the:se U.{'f: incorpor:::..tccJ In the string procc D a ing 3.:r8 tern or

in the floating point p~.l,ckage nnrl D.re dcscri'bcd in the next tvlO sc;ctions.

To input an inte;~er to any rorlix the instructions

LDB ==radix

LDX =file

BRS 38

mr.y be executed. The number, "rhich may he preceded by a plus or minus sir~n,

is returned in "the A register and the non-numeric character which tcrmlnv.tcd

the number in the B re13ister. The number is computed by multipl:yin[~ Lhe

nur1ber obtained at each sta{~e by the radix a.nd adding the ne~vT r1i.(~1 t. It

is therefore unlikely that the rie:ht thing will happen if the numher' or

digits is too large.

To output a number to arbitrary radix the instructions

LDB =radix

LDX =file

LDA number

BRS 36

may be executed. The rlUt'l1ber "Till he output 0.8 an unsil.?1ed 24 bjt Intcr~er.

If' the radix is less than ~, an error will be indicated.

To set the date and time into a string} the operations

LDP PI'R

BRS ____ 91

may be executed. The current date and time are appended to the string

provided in AB e.nd the resultinG strin~ is returned. The characters

appended have the form:

rom/ dd/ To! hhmm: s s

Hours a.re counted from 0 to 2!t.

Deceml)(~r 30, lj(Q

rl-~'

18.0 Strine Processing System

August 8, 1966
lH-l

A -cesident part of the system is a packtl.r~e of Btrinr~ hp.,nrjlinr~ r01J I,:i.n(:n.

These Ij.re t] i:3(!usserl in rleto.:l.l in their ovm rnrJnun.l, document jO.10. ~'O, ;UV)

\'1111 I"Jnly r)(; 1iste<l here.

Gcr

Her

vlCH

SKSE

3KSG

GCD
wen
BRS 5

BRS 6

DRS ')?
J..J

BRS 3tl-

BRS 35

DRS 37

Get character :)11<1 increm(;:nt

vl1'i te character onto strine;

Write character onto strine storage

Skip on string 'equal

Skip on string ~reater

Get character and decrement
Write character and decrement
-wok up strinG in hash table

Insert string in ha.sh table

Input string

Output string f.:iven word address

output string r~iven strinr~ pointer

General command lookup

L

SPS includes symbol table lookup facilities, and a. strin~~ storD.r.~e

earbage collector is available as a libre.ry subroutine. fjtrinr::s are com-

posed of e bit characters packed 3 per word and are addressed h.i ? vlord

strint3 pointers. 1\10 :JY8POPs "Thich are fortnal1y part of 3PJ but \'lllir.!h arc

useful in floating point operations and in general pro:~rrunminf~ ure:
\

LDP Load pointer

STP Store pointer

Toese are c.louble liard operations vlhich load A and n from thE.: effr.:cti.ve

address and the next location or store A and B into the effectivE: nJld-rC:8fJ

and the next location] respectively.

I
i
I

19.() Floatin,g Point

1')-:

Floating point arithmetic anel input/output operations are buIlt i rltu
I

the system. I The user may therefore think of 930 as a machine which has

both in its hardvTare. The floa.tin{~ point system is dencrHJed in ito O'V1Y1

manual) document 30.10.40. A brief' summary of the aVf:dlable operaf~ioIls

is jnr.:lllded here.

LDP Wf;J,U pointer (t'~lo-word loa.d)

STP Store pointer (two-vTord store)

FAD

, FSB Floating subtract

FMP Floating multiply

FDV Floating divide

BRS 21 FNA or floatinf~ negate

BRS 50 Fix

BRS 51 Float

SIC String to internal conversion

ISC Internal to 8trin~ conversiOTl

BRS 52 Formatted floating inplJt

BRS)3 Formatted floating output

The floating point format is similar to the SDS str.mdard: tyro vv)rds

are used for each num'ber and the exponent is housed in the bo"t tom '~ bits

of the second vlord. Conversions between this internal binary format:. and

0. string of decimal digits, decimal points and exponentn can b(: carried

out with ISC and SIC. These may be reBarded as c?nvers1.orl [,b.ther th1),n
,~

input-output operations. To perform the input-outP1Jt f.1n(l con'rer8io!j

simultaneously BRS's 52 and 53 are available.

August B, 19(~()

A-1
BRS TABLE

I

NAk NUMBER FUNCTION

AstetSk i.ndicates th~t the BRS is not implemented on 9/1/66

MONO 1 Open file 9-1, 9-5

MONCLS 2 Close file 9-1
3

MIT 4 Release memory 5-3

SSCH 5 SPS search 18-1

SSIN 6 SPS insert 18-1
'l

IOH 8 Close all files 9-1

FKST 9 Open fork 3-1

PPAN 10 Programmed panic 3-6

eIB 11 Clear input buffer 7-5

CET 12 Declare echo table 7-2

SKI 13 Skip if input buffer empty 7-5

DOB 14 Wait for output buffer empty 7-5

EXGIFN 15 Symbolic input file name 12-3

EXGOFN 16 Symbolic output file name 12-3

EXSIFN 17 Scratch input file 12-8

EXSOFN 18 Scratch output file 12-8

EXSFDL 19 Delete scratch fl1e·~ 12-8

RMDY 20 Read month, day, year 6-1

FNA 21 Floating negate 19-1

TPPAN 22 Send user back to exec 3-7

LNKS 23 Link TTY 7_'(

LNKC 24 Unlink 7-7

MSGS ~ Set AM and AI bits 7-4

SKROUT 26 Skip if rubout waiting (exec) 3-6

ASTT 27 Attach TTY 7-4

QSTT 28 Release TTY 7-4

NAME

C¢B

FKRD

FKWT

FKTM

GETSTR

¢UTMSG

¢UTSTR

¢UTNUM

GSr¢¢K

GETNUM

RDET

I¢RET

RREAL

RDRL

STRL

SETFDC

SRIH

FFIX

FFLT

FFI

RRSB

MRSB

MBEX

NUMBER

29

30

31

32

33

34

35

37

38

39

40

41

42

43

44

45

46

47

48

50

51

52

57

FUNCTION

Clear output buffer

Rf::t<il. fork

Wait for fork

Terminate fork

Collect string

Output message

Output string

Output number

General string lookup

Re ad ntunber

AUv,tlst 8, 1966
A-?

"(-6

3· 3 -

3- 3

3- 3

1F3-1

1'(-1

LU-l

17-1

Read echo table 7-3

R,::t.ll:"'n from I/O subroutine 11-2

Read clock 6-1

Read relabeling 5-2

Set relabeling 5-?

Dismiss on quantum overflow 2-3

Turn rubout off 3-6

Turn rub out on 3- 6

Set fd control word 12-7

Read interrupts armed 4-2

Fix 19-1

Float 19-1

Formatted floating input 19-1

Formatted floating output 19-1

Reserve resident block 5-5
-:("

Make or release resident block 5-4

Make block executive 5-5

Guarantee l6ms computing 2- 3

!
NAME;

SSMF

CBRF

RFDC

SGDEF

SGDEL

RGDEF

RGDEL

DFDL

DFER

EBSM

GBSM

SKXEC

EXDMS

EPPAN

*FSWT

*FSFZ

*FSMT

*FSTM

SAm
SIIR
MBRO

WHEAL

SWSF

*HELPS

*HELFM

SET8p

NUMBER

59

60

61

62

63

'64
&5
66

67

68

69

70

71

72

73

74

75

76

77

78
79
80

81

82

FUNCTION

Define secondary memory

Clear block in random drum file

Read file directory entry

Define special group

Delete special ~roup

Define read-in group

Delete read-in group

Delete drum file (contents only)

Delete specified file block
(exec only)

Enter block in SMT

Get SMT block to FMT

Skip if executive

Exec dismissal

Economy panic

Wait

Freeze

Melt

Destroy

Arm interrupts
Cause interrupt
Make block RO

Dismiss for specified time

'Switch sequential file to
input or output

Call Help system

Call Help maintenance

Set special teletype output

August H J 1966
A- .. ~

10-2

10-3

12-6

12 ... 7

1?-7

12-2

12-7

9-5

9-5

5-3

5-3

6-1

3-4

3-5

3-5

3-5

3-6

4-1
4-1
5-3

6-1

9-2

7-8

NAME

crn8p

DFRX

R'I'EX

FSCF

DFR

EXRTTh1

ECCOPY

ECSAVE

ECPIAC

ECDUMP

ECRECV

ECFNDU

ECCSLT

*ENSM

*GNSM

*DNSM

*ESSF

*GSSF

RSYB

WSYB

FKWA

FKRA

FKTA

DMS

RDU

BRSRET

TSOFF

NUMBER

86

87

88

89

90

91

. 92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

III

112

FtmCTION

Clear special te1ety~e output

Read drum h10ck

Read execution time

Cause freeze

Declare fork for robout

Time to string

Copy

Save

. Place

Dump

Recover

Find user

Consult with user

Make NNT entry

Read 1'1rTr entry

Remove NMT entry

Make subsystem-type file

Get subsystem-type file

Read 2K block

Write 2K block

Wait for any fork to terminate

Read all fork statuses

Terminate all forks
\

Dismiss

Read device and unit

Return from exec BRS (exec oniy)

Turn off teletype station
(exec only)

August e, 1906
A-4

7-8

9-5

6-1

3-6

"3-5

17-1

14

14

14

14

14

14

14

16-1

16-1

16-2

16-3

16-3

5-5

5-5

3-3

3-3

3-3

5-1

9-6

6-2

7-4

August 8, 19Gt:
A-5

....

NAME NtMSER FUNCTION

DFCD 113 Count da.te. in drtnn file 9-5

Ml'DI 114 Disconnect W-buffer (exec only) 9-7

115

RURL 116 Read user relabeling 5-3

SURL 117 Set use re labelinp; 5-3

TGET 118 TJ.)ck up ta.pe un1 t 9-8

TREL 119 Unlock tape unit 9-8

APMTE 120 Assign PMT entry 5-3

DIMrE 121 Release specified mT entry 5-3

MPAN, 122 Simulate memory panic (exe'c only) 6-2

B~O
Tbo

I

TCl
i

BRS
J

CTRL

SBRR

SBRM

STP

LDP

GeI

WCH

SKSE

SKSG

CIO

-WIO

WCI

FAD

FSB

FMP

FDV

EXB

~ST

!ST

SAS

176

175

174

173

172

171

170

167

166

105

164

163

162

161

160

157

156

155

154

153

152

151

150

147

SYSTEM PROGRAMMED OPERATORS

Block input-output

Teletype character output

Teletype charact~r input

Branch to system

Input-output control

System branch 8l1d return

System subroutine call

August 8) 196?;
B-1

9-3

7-2

7-2

Append i:x ~,

9-4, 9-(

Store pointer 18-1,19-1

Load pointer 18-1,1)-J

G€t character and increment 10-1

Write character lB-1

Skip on Eltrin~ equal lB-1

Skip on st.Tin~ greater 18-1

Character input-output 9-2

Word input-output 9-3

Wri te character and increment 18-1

Floating add 19-1

Floating subtract 19-1

Floating multiply 1.:)-1

Floating divide 19-1

~xecute instruction in eystem mode 6-2

Output to specified teletype 7-4

Input from specified te1et~e 7-4

Store in secondary memory 10-3

	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-a
	02-b
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-3a
	03-3b
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	05-05
	05-5a
	06-01
	06-02
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-7a
	08-01
	08-02
	08-03
	08-8a
	08-8b
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	11-01
	11-02
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-_12a
	12-_12b-0
	12-_12b-1
	12-_12b-2
	12-_12c
	13-01
	14-01
	15-01
	15-02
	16-1
	16-2
	16-3
	17-1
	17-2
	18-1
	19-1
	a-1
	a-2
	a-3
	a-4
	a-5
	b-1

