

13.

(c) 4if the process attempts to obtain new memory, scan upward through
the process hier~—chy until the topmost process is reached. If at
any time during this scan a process is found for which the address
causing the trap is legal, propocgate the memory assipgned to it down
through the hierarchy to the process causing the trap.
Option (e) permits a process to be started with a subset of memory and
later Lo reacquire some of the memory which was not given to it initially. This
ferture is important because the amount of memory assiyned to a process influences
the operating cTficiency of thc¢ system and thus the speed with which it will

be =ble to respond to teletypes or other real time devices.

1h
. .

THE INPUT-OUTPUT SYSTEM

The user machine has a straightforward but unconventional set of input-
output instructions. The primary emphasis in the design of these instructions
has been to make all input-output devices interface identically with a pfogram,
and to provide as'much flexibility in this common interface as possi£le. Two
advantages result from this uniformity: 1) it becomes natural to write programs
which are essentially independent of the environment in which they operate and
2) the implementation of the system is greatly simplified. To the user the
former point is of course the important one.

It has been common, for example, for programs written to be controlled from
a teletype to be driven instead from a file on, let us say, the drum. There
exists a command which permits the recognizer for the system command language
and all of the subsystems to be driven in this way. This device is particularly
useful for repetitive sequences of program assemblies and for background jobé
which are run in the absence of the user. Output which normally goes to the‘
teletype is similarly diverted to user files. Another application of the
uniformity of the file system is demonstrated in some of the subsystems -- notably
the assembler and the various compilers. The subsystem may request the user to
specify where he wishes the program listing to be placed. The user may choose
anything from paper tape to drum to his own teletype. 1In the absence of file
uniformity each subsystem would require a separate block of code for each
possibility. In fact, however, the same input-output instructions are used for
all cases.

The input-output instructions communicate with files. The system in turn
associates files with the various physiéal devices. Programs for the most part,
therefore, do not have to account for the peculiarities of the various actual

devices. Since devices differ widely in characteristics nd behavior, the

flexibility of the operations available on files is clearly critical. They
must range from single-character input to the output of thousands of words.

A file is opened by giving its name as an argument to the appropriate
instruction. Programs thus refer to all files symbolically, leaviﬁg the details
of physical locatjon and organization to the system. If authorized, a program
may refer to files belonging to other users by supplying the names of the other
users as well as the file name. The owner of a file determines who is authorized
to nccess it. The reader may compare this file naming mechanism with a more
sophisticated one [1”], bearing in mind the fact that file names can be of any
length nnd can be manipulated (as strings of characters) by the program.

Access to files is in general either sequential or random in nature. Some
devices (like a keyboard-display or a card reader) are purely sequential, while
others (like a disk) may be either sequentially or randomly accessed. There are
accordingly two major I/O interfaces to deal with these different qualities.

The interface used in conjunction with a given file depends on whether the file

was declared to be a random or a sequential file. The two major interfaces are

each broken down into other interfaces, primarily for reasons of implementation.
Althourh the distinction between sequential and random files is great, the sub-

interfaces are not especially visible to the user.

Sequential Files

The three instructions CIO (character input-output), WIO (word input-output),
and BIO (block input-output) are used to communicate with a sequential file. Each
instruction takes as an operand a file number. This number is given ib the |
program when it opens a file. At the time of opening a file it must be specified
whether the file is to be read from or written onto. Whether any given device
associnted with the file is character-oriented or word-oriented is unimportant;
the system takes care of all necessary character-to-word nssembly or word-to-

character disassembly.

16

There are actually three separate, full-duplex physical interfaces to devices
in the sequential file mechanism. Generally these interfaces are invisible to
programs. They exist, of course, for reasons of system efficiency and becnuse
of the way in which some devices are used. The interfaces are:

(1) character-by-character (basically for low-speed, character-

oriented devices used for man-machine interactions)

(2) buffered block I/O (for medium-speed I/O applications)

(3) block I/0 directly from user core (for high-speed situations).

It should be pointed out that there is no particular relation between these
interfaces and the three instructions CIO, WIO and BIO. The interface used in
a given situation is a function of the device involved, and sometimes of the
volume of data to be transmitted, not of the instruction. Any interface may be
driven by any instruction.

Of the three sub-interfaces under discussion, the last two are straight-
forward. The character-by-character interface is, however, somewhat different
and deserves some elaboration. Devices associated with this interfa;e are
generally (but not necessarily) used for man-machine interaction. Consider
the case of a person communicating with a program by means of a keyboard-display
(or a teletype). He types on the keyboard and the information is transmitted
to the computer. The program may wish to make an immediate response onthe display
screen. In many cases this response will consist of an echo of the same
character so that the user has the feeling of typing directly onto the screen
(or onto the teleprinter).

So that input-output can be carried out when the program is not actually in
main memory the character-by-character input interface permits programs a choice
of a number of echo tables; it further permits programs a choice of grade of

service by permitting them to specify whether a given character is an attention

17

(or 23325) character. Tﬁus, for example, the prosram mny specify that each
character typed is to be echoed immediately and that all control characters
are to result in activation of the program repardless of the number of characters
in the input buffer. Alternatively, the program may specify that no characters
are echoed and every character is a break character. By changing the speci-
ficetion the program can obtain an appropriate (and varying) grade of service
without putting undue load on the system. Figure 6 shows the components of the
character-by-character interface; responsibility for its operation is split
between the interrupt routine called when the device signals for attention
and the routine which processes the user's I/O request.
The advantage of the full-duplex, character-by-character mode of operation
is considerable. The character-by-character capability means that the user
can interact with his program in the smanllest possible unit -- the character.
Furthermore, the full-duplex capability permits, among other things: (1) the
program to substitute characters of strings of characters as echoes for those
received, (2) the keyboard and display to be used simultaneously (as, for
example, permitting a character typed on a keyboard to pre-empt the operation
of a process. In the case of typing information in during the output of
information, a simple algorithm prevents the random admixture of characters
which might otherwise.result), and (3) the ready detection of transmission errors.
Instructions are included to enable the state of both input and output
buffers to be sensed and perhaps cleared (discarding unwanted output or input).
Of course it is possible for a program to use any number of authorized physical
devices; in particular this includes those devices used for remote consoles. A
mechanism is provided to permit output which is directed to a given device to be

copied on all other devices which are output linked to it (and similarly for

input). This is useful when communication among users is desired and in numerous

18

other situations.
The sequential file has a structure somewhat similar to that of an ordinary

magtape file. It consists of a sequence of logical records of arbitrary length

and number. On some devices, such as a card reader or the teletype, a file may
have only one logical record. The full generality is available for drum files,
which are the ones most commonly used. The logical record is to be contrasted
with the variable length physical record of magtape or the fixed length record
of a card. Instructions are provided to insert and delete logical records or
increase or decrease them in length. Other instructions permit the file to

be "positioned" almost instahtaneously to a specified logical record. This
gives the sequential file greater flexibility than one which is completely
unaddressable. This flexibility is only possible, of course, because the file
is on a random-access device, and the sequential structure is maintained by
pointers. The implementation is discussed below.

When reading a sequential file CIO and WIO return certain unusual data
confifurations when they encounter an end of record or end of file, and BIO
terminates transmission on either of the conditions and returns the address
of the last word transmitted. In addition, certain flag bits are set by the un-
usual conditions, and an interrupt may be caused if it has been armed.

The implementation of the sequential file scheme for auxiliary storage
is illustrated below in Figure 7. Information is written on the drum in
56-word physical records. The locations of these records are kept track of
in 64-word index blocks containing pointers to the data blocks. For the file
shown, the first logical record is more than 256 words long, but ends in the
second S6-word block. The second logical record fits in the third 256-ﬁord
block and the third logical record -- in the Lth data block -- is followed by

an end of file. If a file requires more than 64 index words, additional index

19

blocks are chained together both forward and backward. Thus in order to access
information in the file it is necessary only to know the location of the first
index block. It may be worthwhile to point out that all users shqre the same
drum. Since the system has complete control over the allocation of space on
the drum, there is no possibility of undesired interaction among users.

Available space for new data blocks or index blocks is kept track of by a
bit table, illustrated in Figure 8. 1In the figure each column represents one
of the 7. physical bands on the drum allocated for the storage of file information.
Eanch row represents one of the 64 S6-word sectors around a band. Each bit in
the table thus represents one of the 4,608 data blocks available. The bits are
set when a block is in use and cleared when the block becomes available. Thus,
if a new data block is required, the system has only to read the physical
position of the drum, use this position to index in the table, and search a row
for the appearance of a 0. The column in which a O is found indicates the
physical track on which a block is available. Because of the way the row was
chosen, this block is immediately accessible. This scheme has two advantages
over its alternative, which is to chain unused blocks together:

(1) it is easy to find a block in an optimum position, using the

algorithm just described
(?) no drum operations are required when a new block is needed or an old
one is to be released.

Tt may be preferable to assign the new block so that it becomes accessible
immediately after the block last assigned for the file. This scheme will spéed

up subsequent reading of the file.

Random Files

Auxiliary storage files can also be treated us extensions of core memory

rather than nas sequentinl devices. Such files are called random files. A random

20

file differs from a sequential file in that there is no logical record structure
to the file and that information is extracted from or written into the random
file by nddressing « specific word or block of words. It may be opened like
a sequential file; the only difference is that it need not be specified as an
output or an input file.

Four instructions are used to input and output words and blocks of words
on 2 random file. To permit the random file to look even more like core memory,
an instruction enables one of the currently open random files to be specified as

the secondary memory file. Two instructions, LAS (load‘A from secondary memory)

and SAS (store A in secondary memory) act like ordinary load and store instructions
with one level of indirect addressing (cf. Figure 9) except of course that the
data are in a random file instead of in core memory.

Random files are implemented like sequential files except that end of
record indicators are not meaningful. Although as many index blocks are used up
as required by the size of a random file, only those data blocks which actually
contain information will be attached to a random file. As new locations are

accessed, new data blocks are attached.

Subroutine Files

Whereas it makes little sense to associate, say, a card reader with a
random file, a sequential file can be associated with any physical device in the
system. In addition a sequential file may be associated with a subroutine. Such

a file is called a subroutine file, and the subroutine may thus be thought of

as a '"non-physical" device. The subroutine file is defined by the address of
a subroutine together with information indicating whether it is an input or
an output file and whether it is word or character oriented. An input operation

from a subroutine file causes the sutroutine to be called. When it returns, the

21

contents of the A register is taken to be the input requested. Correspondingly,
an output operation causes the subroutine to be called with the word or character
being output in A. A subroutine is completely unrestricted in the kinds of
processing it can do. It may do further input or output and any amount of
computation. It may even call itself if it preserves the old return address.

Recall that for sequential files the system transforms all information
supplied by the user to the format required by the particular file. Hence the
requirement that the user, in opening a subroutine file, must specify whether
the file is to be character or word oriented. The system will thereafter do all
the necessary packing and unpacking.

Subroutine files are the logical end-product of a desire to decouple a
program from its environment. Since they can do arbitrary computations, they
can provide buffers of any desired complexity between the assumptions a program
has made about its environment and the true state of things. 1In fact, they
make it logically unnecessary to provide an identical interface for all the
input-output devices attached to the system; if uniformity did not exist, it
could he simulated with the appropriate subroutine files. Considerations of

convenience and efficiency of course militate against such an arrangement, but

it sugprests the power inherent in the subroutine file machinery.

22

SUMMARY

The user machine described above was designed to be a flexible
foundation for development and experimentation in man-machine systems.
The user has heen given the capability to establish configurations of
multiple processes, and the processes have the ability to communicate
conveniently with each other, with central files, and with peripheral
devices. A given user may, of course, wish only to use a subsystem of
the peneral system (e.g., a compiler or a debugging routine) for his
particular job. In the course of using the subsystem, however, he may
‘become dissatisfied with it and wish to revise or even rewrite the
subsystem. The features of the user machine not only permit this

activity but considerably alleviate some of its onerous aspects.

ACKNOWLEDGMENT

The software portion of the system was designed and written in
part by Mr. L. Peter Deutsch, who is entitled to equal credit with the
authors for the ideas in this paper. Mr. JLarry Barnes also contributed

signitvic:nmtly to the final result.

a3

(8]

(9]

(10]

(11]

2k

BIBLIOGRAPHY

H. S. Bright, "A Philco Multiprocessing System," Proc. AFIPS Conf.,

vol. 26, Part II, pp. 97-141, 196k4.
W. T. Comfort; "A Computing System Design for User Service," Proc.
AFIPS Conf., vol. 27, Part I, pp. 619-626, 1965.

M. Conway, "A Multiprocessor System Design," Proc. AFIPS Conf., vol.

24, pp. 139-146, 1963.
F. J. Corbato and V. Vyssotsky, "Introduction and Overview of the

MUTTICS System," Proc. AFIPS Conf., vol. 27, Part I, pp. 185-196, 1965.

J. Dennis and E. Van Horn, "Programming Semantics for Multiprogrammed
Computations," Comm. ACM, vol. 9, no. 3, pp. 143-155, March, 1966.
J. Forgie, "A Time- and Memory-Sharins; Executive Program for Quick-

response On-line Applications," Proc. AFIPS Conf., vol. 2/, Part I,

pp. ©99-609, 1965.
W. Tichtenberper and M. W. Pirtle, "A Facility for Experimentation in

Man-Machine Interaction," Proc. AFIPS Conf., vol. 27, Part I, pp. 589-598,

196 .

B. W. Lampson, '"Interactive Machine-language Programming," Proc. AFIPS
Conf., vol. 27, Part I, pp. 473-L81, 1965.

J. McCarthy, S.Boilen, E. Fredkin and J. Licklider, "A Time-sharing

Debugging System for a Small Computer,'" Proc. AFIPS Conf., vol. 23,

pp. 51-57, 1962.
J. D. McCullogh, K. Speierman and F. Zurcher, "Design for a Multiple

User Multiprocessing System,'" Proc. AFIPS Conf., vol. 27, Part I,

pp. 611-617, 1965.
J. I. Schwartz, "A General-purpose Time-sharing System," Proc. AFIPS
Conf., vol. &, pp. 397-411, 196k,

25

(12] R. C. Daley and P. G. Neumann, "A General-purpose File System for

Secondary Storage," Proc. AFIPS Conf., vol. 27, Part I, pp. 213-229, 1965.

[13] J. H. Saltzer, "Traffic Control in a Multiplexed Computer System,"

MAC-TR-30, M. I. T., Cambridge, Mass. (July 1966).

—
TTY
INTERFACE TELETYPES
P.T. o
READER ey
SDS 930
&1' — MODIFIED GRAPHIC
MAG TAPES DISPLAY
PDP-Sﬂ
@-m HO Ao
MEMORY TABLET
] 16K
— 175 pSEC
DRUM % KYBD-
PROCESSOR
Ll | MEMORY PLANNED)
16K GRAPHIC
|| DISPLAY
(§DRUM) 175 pSEC ¢ LIGHT
1.310° WORDS PEN
5:10° WDS/SEC
L GENERAL
MASS o [REMOTE
STORE PROCESSOR COMPUTERS
1.510* WDS —]

FIG. 1: Configuration of Equipment

o)
]
PAGE g
? 6 4
13 5
2 8 6
3 0 7
: 0 :
9 9
6 10 7 \ 10
7 3 1
12
I6K VIRTUAL CORE MAP 13
14
IS

32K REAL CORE

(a) Relation between virtual and real
memory for a typical map.

0 23 3 N
101100110101 100 VIRTUAL EFFECTIVE ADDRESS: Ph65k
|ogo 0100 |] MAPPING REGISTER 5: 1lg
o lrl 16
[ootooiioor 10101100 REAL EFFECTIVE ADDRESS: Mhé5lhg
@ READ-ONLY BIT: OFF

(v) Construction of a real memory
address.

FIG. 2: The Hardware Memory Map

PAGE ENTRY BLOCK

O [SHARED BLI| - 4 | M3
2| Ma
! _R@\ATE | 3 MS
2| PR\ATE 2 4 | SMTI
e 5 | SMT4
3[R BLE 8 6 [SMT2
4 |SHARED BL 2| 6 71 M2
8 | SMT6
5 JUNASSIGNED 0 9 [SMT3
6 [SHARED BL 3 9 0] O
7 |UNASSIGNED 0 :
I6K VIRTUAL MEMORY PROCESS PRIVATE MEM-
MAP . ORY TABLE

FIG. 3: Layout of virtual memory for a typical process

Il 2.
(4, 1,2,8,6,0,9,0P 10,3,0,0,0,0,8,9

1.2

E[Jtzoo,jl}{4ooee7,|2h |34 Fg_p
, 23
1,3,4,0,0,5,8,0p

PMT 1 , PMT 2 SMT
1 M3 1 SMT1 1M

2 M4 2 SMIS 2 M16

3 M 3 M7 3 M2

4 sMrl L M8 4 M10

5 SMTh 5 M9 5 M1l

6 SMT? 6 SMT2 6 M6 :
7 M2 7 ML3

8 sMT6 8 sMT3

9 SMT3 9 M1k

10 O 10 M15

FIG. 4: Process and memory configuration for two users. (The
processes are numbered for each user and are repre-
sented by their pseudo-mapping registers. Memory
blocks are identified by drum addresses, which ~re
written M1, M2 ...)

FIG. 5: Hierarchy of Processes

[ouTPUT BUFFER |

OUTPUT INTERRUPT P~
ROUTINE
e e E =

b} ’ 1 ECHO USER'S

_TABLE PROGRAM
. ,
. o i
— Ut wTERRPT
ROUTINE

[INPUT BUFFER 7]

FIG. 6: The character-oriented interface

FIG. 7: Index blocks and pointers to data Llocks.

64 WORDS

FIG. 8: Bit table for allocation of space on the drum.

Mitin Memory Secondiry Memory

" LDA¥* ADDR LAS ADDR
© STA%* ADDR | SAS ADDR

r“’ Address Inclruction

600 LAS 1450
| 1450 16345
A
r 16345 ! 123456/

Effect: 1234567 — A

(v)

Fig. 9. Load and store from main and secondary memory.

(2) Instructions. (b) Addressing.

