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ABSTRACT 

This paper describes the design of the computer seen by n mn.ch1.ne-

language programmer in a time-sharing system developed Itt the University 

of California at Berkeley. Some of the instructions in this machine are 

executed by the hardware, and some are implemented by software. The user, 

however, thinks of them all as part of his machine, a machine having extensive 

and unusual capabilities, many of which might be part of the hardware of a 

(considerably more expensive) computer. 

Among the important features of the machine are the arithmetic and 

string manipulation instructions, the very general memory allocation and 

configuration mechanism, and the multiple processes which can be created 

by the program. Facilities are provided for communication among these 

processes and for the control of exceptional conditions. 

The input-output system is capable of handling all of the peripheral 

equipment in a uniform and convenient manner through files having symbolic 
. 

names. Programs can access files belonging to a number of people, but each 

person can protect his own files from unauthorized access by others. 

Some mention is made at various points of the techniques of imple-

mentation, but the main emphasis is on the appearance of the user's machine. 
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INTRODUCTION 

A characteristic of a time-sharing system is that the computer seen by 

the user programming in machine language differs from that on which the system 

is irm>lemented [l,?,6;lO,1l]. In fact, the ~ machine is defined by the 

combination of the .time-sharing hardware running in user mode :md the software 

which controls input-output, deals with illegal actions which may be taken 

by a user's prop;rrun, and provides va.rious other services. If the hardware 

j s arrrm/T,ed in such a way that calls on the system have the same form as the 

hardware instructions of the machine [7], the distinction becomes irrelevant 

to the user; he simply programs a machine with an unusual and powerful 

instruction set which relieves him of many of the problems of conventional 

machine-language programming [8,9]. 

In a time-sharing system which has been developed b,V. and for the use of 

members of Pro,ject GENIE at the University of California at Berkeley [7], the 

user machine has a number of interesting characteristics. The computer in 

this system is an SDS 930, a 24 bit, fixed-point machine with one index rep:ister, 

multi-level indirect addressing, a 14 bit address field rmd 32 thousand words 

of 1.75 us memory in two independent modules. Figure 1 shows the basic 

configuration of equipment. The memory is interleaved between the two modules 

so that processing and drum transfers may occur simultaneously. A detailed 

description of the various hardware modifications to the computer and their 

implications for the performance of the overall system has been r:iven in a previous 

paper (7].· 

Briefly, these modifications include the addition of monitor and user modes, 

in which for user mode the execution of a class of instructions is prevented 

and replaced by It trap to [J. system rout ine . The protect i on from un1tuthorl zed 

access to memory has been subsumed in an address mappinl~ scheme: hath the 

16,384 words addressable by a user program (logical addresses) ::md the 32.7(.£< 
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words of actual core memory (physical addresses) have been divided into 

2,048-word pages. A set of eight six-bit hardware reRisters defines a map 

from the logical address space to the real memory by specifying the real page 

which is to correspond to each of the user's logical pages. Implicit in this 

scheme is the capability of markjnp; ench of the user's pages as lffi:lssigned or 

re:td-only, so that any attempt to access such 11 llll.ge improperl..v will result 

in a trap. 

All memory references in uspr mode are mapped. In monitor mode all memory 

references are normally absolute. It is possible, however, with any instruction 

in monitor mode or even within a chain of indirect addressing to specify use 

of the user map. Furthermore in monitor mode the top 4,096 words are mapped 

through two additional registers called the monitor map. The mapping process 

is illustrated in Figure 2. 

Another significant hardware modification is the mechanism for v,oing 

between modes. Once the machine is in user mode, it can get to monitor mode 

under three circumstances: 

(It) if a h:~rdware interrupt occurs 

(b) if a trap is generated by the user program as outlined above 

(c) if an instruction with a particular configuration of two bits 

is executed. Such an instruction is called a system programmed 

operator (SYSPOP). 

In case (c) the six-bit operation field is used to select one of 64 locations in 

absolute core. The current address of the instruction is put into absolute 

location zero as a subroutine link, the indirect address bit of this link word 

is set, and another hit is set m:t.rkinr; the memory locat ion in the link word as 

havinf~c()me from user-mapped memory. The system rout. inc thus i nvokpll may trlke 

L par:tmeter from the word addressed by the SYSPOP, si.nce lts 11ddress field is not. , 
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interpreted by the hardware. The routine will address the parruneter indirectly 

through location zero; and because of the bit murking the contents of locfltion 

zero as having come from user mode, the user map will be applied to the remainder 

of the address indirection. All calIf' on the system which Ilrc not inndvertant 

are made in th is way. 

A monitor mode program gets into user mode by transferring to an address 

with mapping specified. This means, among other things, that a SYSPOP can 

return to the user program simply by branching indirect through location zero. 

As the above discussion has perhaps indicated, the mode-changing arrangements 

are very clen.n and permit rapid and natural transfers of control between user and 

system programs. Advantage has been taken of this fn.ct to create a rather 

grandiose mn.chine for the user. Its features are the sub,iect of this paper. 



BASIC FJt:ATl.JRES OF THE MACHINE 

A user in the Berkeley time-sharing system working at what he thinks of 

as the hardware language level has at his disposal a ma.chine with a configuration 

and capability which can be conveniently controlled by the execution of machine 

lnst.ruction sequences. Its simplest \configuration is very similar to that of 

a standard medium-sized computer. In this configuration, the machine possesses 

the stano/lTd 930 complement of llrithmi~tic and logic instructions and. in 

Ilddit ion, II. set of software interpreted monitor and executive instructions. 

The latter instructions, which will be discussed more fully below, do rather 

complex input-output of many different kinds, perform many often-used table 

lookup and string processing functions, implement floatinr. point operations, 

and provide for the creation of more complex machine confir;urations. Some 

examples of the instructions available are: 

(a) load A, B or X (index) registers from memory or store any of 

the registers. Indexing and indirect addressing are available 

on these and almost all other instructions. Double word load 

and store are Filso available. 

(b) the normal complement of fixed-point arithmetic and logic operations 

(c) skips on various arithmetic and logic conditions 

(d) floating point arithmetic and input-output. The latter is in free 

format or in the equivalent of Fortran E or F format 

(e) input a character from a teletype or write a block of arbitrary 

length on a drum file 

(f) look up a string in a hash-coded table and obtain its position 

in the table. 

(IY,) create a new process and start it runninp; concurrently with the 

present one at a specified. point 
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mapping register consisting of eight 6-bit bytes, one byte for each of the eight 

2K blocks addressable by the 14 bit address field of an instruction. E'lCh of 

these bytes either is 0 or addresses one of the 63 words in a table called the 

private memory table (FMT). Ea.ch user has his own private memory tahle. An 

entry in this table provides informati.on about a particular ~)K block of memory, 

The block may he either local to the user or it may he shared, If the block is 

local, the entry I~ives information about whether it is currently in core or on 

the drum. This information is important to the system but neert not (~oncern the 

user. If the block is shared, its PMT entry.points to an entry in another table 

called the shared memory table (SMT). Entries in this table describe blocks 

of memory which are shared by several users. Such blocks may contain invariant 

programs and constants, in which case they will be marked as ~-only, or they 

may contain arbitrary data which is being processed by programs belonging to 

two different users. 

A possible arrangement of logical or virtua.l memory for a process is shO'NTl 

in Figure 3. The nature of each page has been noted in the picture of the 

virtual memory; this information can also be obtained by taking the correspondinr' 

byte of the map and looking at the PM!' entry specified by that byte. The figJre 

shows a large amount of shared memory, which suggests that the process might be 

a compilation, sharing the cod~ for the compiler with other processes trans-

lating programs written in the same source language. Virtual pages one and two 

might hold tables and temporary storage which are unique to each separate 

compilation. Note that although the flexibility of the map allows any block 

of code or data to appear anywhere in the virtual memory, it is certainly not 

true that a program can run regardless of which paf~es it is in. In particular, 

if it contains references to itself such as branch instructions, then it m1Jst. 

run in the same virtual pages into which it was loaded. 
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Two instructions are provided which permit the user to read and modify 

his process map. The f),bility to read the process mappinl~ registers permits 

the user to obtain the current memory assip;nment, and the nhilit..v to write 

the registers permits him to reassign memory in /lny way which suits his fnnc.v. 

The system naturally checks each new map as it is established to ensure thnt 

the process is not attempting to obtain unauthorized access to memory which 

does not belong to it. 

When the user's process is initiated, it is assip;ned only enout~h memory to 

contain the pror,ram data as initjally loaded. For instance, if the pro~ram and 

constants occupy 3000 words, two blocks, say blocks 0 and 1, will be assip;ned 

At this point the first two bytes of the process mappin~ rep.;ister will be non­

zero; the others will be zero, When the pror:ram runs, it may address me,mory 

outside of the first 4K, If it does, and if the user has specified a machine 

size larger than 4K, a new block of memory will be assigned to him which makes 

the formerly illegal reference legal. In this way, the user' s proces~ may 

obtain more memory, In fact, it may easily obtain more than 16K of memory 

simply by addressing 16K, readinr; and preserving the process mappinp: register,· 

settinp; it with some of the bytes cle,ared to zero, and grabbing some more memory. 

Of course, only 16K can be addressed at one time; this is a limitation imposed 

by the address field of the machine. 

There is an instruction which allows a process to specify the maximum 

amount of memory which it is allowed to have. If it attempts to obtain more 

than this amount, 11 memory violation will occur. A memory violation can also 

be caused by attempts to transfer into or indirect through unassigned memory, or 

to store into read-only memory. The effect of this violation is similar to the 

effect of an illegal instruction violation and is discussed below. 

The fllcilities ,just described are entirely sufficient for pro~r:tms wh ich 

need to reorganize the machine's memory solely for internal purposes. In many 
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cases, however, the program wishes to obtain access to memory blocks which 

have been created by the system or by' other programs. For example, there may 

be a package of mathematical and utility routines in the system which the program 

would like to use. To accoDUnodate 'this requirement, there is an instruction 

which establishes a .relationship between [L name a.nd 11. certain process mapping 

function. Thls instruction moves the 1m' entries for the blocks IlCldressed by 

the specified process mapping function into the shared memory tllble so tha.t they 

a.re generally accessible to all users. Once this correspondence has been 

established, there is another instruction which allows a different user to deliver 

the name and obtain in return the associated process map. This instruction will 

if necessary make new entries in the second user's PMT. Various subsystems and 

programs of general interest have names permanently assigned to them by the system. 

The user machine thus makes it possible for a number of processes belonging 

to independent users to run with memory which is an arbitrary combination of 

blocks local to each indiviaual process) blocks shared between several processes 

and blocks permanently available in the system. A complex configuration is 

sketched in Fip,ure 4. Process 1.1 in this picture was shown in more detail in 

Figure 3. Each box represents a process, and the numbers within represent the 

eight map bytes. The arrows between processes show the process hierarchy, which 

is discussed in the next section. Note that the PMTs belong to the users, not 

to the processes. 

From the above discussion, it is apparent that the user can manipulate the 

machine memory configuration to perform simple memory overlays, to change data 

bases, or to perform other more complex tasks requiring memory reconfiguration. 

For eX3.mple, the use of common routines is greatly facilita.ted, since it is 

necessary only to adjust the process map so that 1) memory references internal 

and external to the common routine are correct, and 2) the memory area in which 

the routine resides is read-only. Irl the simplest case, in which the common routine 
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and the data base fit into 16K of memory, the map is initially established and 

remains static throughout the execution of the routine. In other cases where 

the routine and data base do not fit into 16K, or where several common routines 

are concurrently employed, it may be necessary to make frequent adjustment to 

the map during execution. 

Multiple Processes 

An important feature of the user machine allows the user progr~, which in 

the current context will be referred to as the controlling process, to establish 

one or more subsidiary processes. With a few minor exceptions to be discussed 

below, each subsidiary process has the same status as the controlling process. 

Thus it may in turn establish a subsidiary process. It is therefore apparent 

that the user machine is in fact a multi-processing machine. The original 

suggestion which gave rise to this capability was made by Conway [3]; more 

recently the Mu1tics system has included a multi-process capability [4,5,13]. 

A process is the logical environment for the execution of a program, as 

contrasted to the physical environment, which is a hardware Erocessor. It is 

defined by the information which is required for the program to run; this 

information is called the state vector. To create a new process, a given process 

executes an instruction which has arguments specifying the state vector of the new 

process. This state vector includes ·.~he program counter, the central registers, 

and the process map. The new process may have a memory configuration which is 

the same as, or completely different from, that of the originating process .. The 

only constraint placed on this memory specification is that the total memory 

available to the multi-process system is limited to l28K by the process mapping 

mechanism, which is cammon to all processes. Each user, of course, has his own 

128K. 

This facility was put into the system so that the system could control the 

user processes. It is also of direct value, however, for many user processes. The 

most obvious exrunp1es are input-output buffering routines, which can operate 



independently of the user's main progrwn, communicating with it through memory 

Dnd with :interrupts (see below). Whether the operation being buffered is large 

volume output to a disc or teletype requests for information about the progress 

of n rllnninr; pro["rnm, the degree of flexibility l1fforded by multiple processes 

far exceeds onything which could have been built into the input-output system. 

Furthermore, the overheAd is very low: an additional process requires about 15 

",ords of core, and process switching takes about 1 ms under favorable connitions. 

There arc numerous other examples of the value of multiple processes; most, 

llnfortUrt8teJy, are too complex to be briefly explained. 

A process may create 8. number of subsidiary processes, each of which is 

indepenrlent of the others and equivalent to them from the point of view of the 

originati.nr; process. }t''l.gure '.j. shows two simple multi-process structures, one 

for each of two users. Note that each process has associated with it pointers to 

its controlling process and to one of its subsidiary processes. When a process 

has bro inuned late descendants, as in the case of processes 1.? and 1. 3, they 

arc chained together on a ring. Thus three pointers: up, down and ring, 

suffice to define the process structure completely. The up pointers·are of 

course redundant, but are convenient for the implementation. 

A complex structure such as that in Figure 5 may result from the creation 

of a number of subsidiary processes. The processes in Figure 5 have been 

numberNl arbitrarily to allow a clear description of the way in which the 

pointers are arranr;ed. Note that the user need not be o.ware of these pointers; 

they are shwon here to clarify the manner in which the multiple proc('ss mechanlsm 

is implemented. 

A process may d.estroy one of its subsidiary processes by executing the 

iippropr'; nte instruction. For obvious reasons this operation is not legrl.l if 

the process beinE', destroyed itself has subsidiary processes. It is possible 

10 



to find out what processes are subsidiary to nny given one; this permits (J 

process to destroy an entire tree of sub-processes by reading the tree from 

the Lop down nnd destroying it from the bottom up. 

11. 

The operations of creating and destroying processes arc entirely separate 

from those of sta~tinv, ann stopping their execution, for which two more operations 

are provided. A process whose execution has been stopped i.s said to be susl'!'nded. 

To assure that these various processes can effectively work together on 

a common task, several means of interprocess communication exist. The first 

alJm.,s the controlling process to obtain the current status of each of its 

subsidiary processes. This status information, which is read into a table by 

the execution of the appropriate system instruction, includes the current state 

vector and operating status. The operating status of any proc;css may be: 

1. runninG 

~). dismissed for input-output 

3. terminated for memory violation 

4. terminated for illegal instruction yiolation 

5. terminated by the process itself. 

A second instruction allows the controlling process to become dormant until 

one of its subsid.iary processes is sllspended. This can occur in the follovring 

three ways: 

1. because of a memory violation 

? because of an illegal instruction violation 

3. because of self-termination 

Interactions described. above provide no method by which a process can attract 

the I:'.ttention of another process ,.,hieh is pursning an independent course. 'Phis ~Rn 

1w done with a pror;rwil interrupt. I\ssoe if1.ted with each P"'occss is a ''O-bH 

i lltcrr1lpL masl\. If:J mns1\: bit j s sc l;, the process may 1lnder c0.rtai.n (!unlli t ions 

(to be dEscribed below) be :i.nterrupted; i.e., n transfer to n. fixed address will 
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be simulated. The prol~rrun will presumably have at. this fixerl Address the location 

of Il suhroutine r.Hpnble ot' de:!ljnr; with the interrupt nnd returning to the 

tnterrupted computation afterwards. This mechanism is fllnctionully almost 

identical to many hardware interrupt systems. 

A process may cause an interrupt by deliverin~ the number of the interrllpt 

to the appropriA.te instruction. The process cf.l.using the interrupt continues 

undisturbed, but the nearest process which is on the same level as the one 

causing the interrupt or above it in "the hierarchy of processes and which has 

the appropriate interrupt armed will be interrupted. This mechanism provides a 

very flexible way for pror.esses to interl),ct with ellch ot.her without wasting any 

time :in the testine of flags of similm' frlvolous HctivUies. 

Iuterrupts may be caused not only by the explicit nction oC processes, but 

131so "by the occurrence of severa.l special conditions. The occurrence or a memory 

violntj.on, Rttempted execution of an illegal instruction, nn unusual input-

output condition, the termination of e subsidiary pror.ess, or the intervention 'of 

13 user nt a console (by pushing a reserved. 111ltton) all m~ly cause unique interrupts 

(H they have been previously armed). In this way n process may be nctifiecl 

conveniently of any unusual conditions associated with other processes, thc! 

process itself, or a console user. 

The memory assignment algorithm discussed previollsly is slightly modified 

jn the presence of multiple processes. \fuen a process is activated, one of three 

options may be specified: 

(a) assign new memory to the process entirely independently of the 

controlling process 

(b) assle;n no new memory to the process. Any attempt to obtain new 

memory will enuse 11 memory violation 



(c) if the process attempts to obtain new memory, SCM upward through 

the process hierc"~chy until the topmost process is reached. If at 

any time during this sc~n a. process is found for which the address 

causing the trap is legal, propDgate the memClry assigned to it down 

through the hierarchy to the process causinc; the trap. 

Option (c) perml ts a process to be started with B. G1l11set of memory F.lnd 

13. 

lilt':r 1,0 rca.cqui re some of the memory which was not I~iven to it initlally. This 

f'('l'tllrf? 1 r: i.mportant lH~enl1BC the amount of memory ass l:r,necl to 11 proeess influences 

the' opernt Inrr, eff'i c i ency of the system :md thus the speed wi. th which i.t will 

be ~hle to respond to teletypes or other real time devi.ces. 
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THE INPUT-OUTPUT SYSTEM 

The user machine has a straightforwnrd but unconventional set of input­

output instructions. The primary emphasis in the design of these instructions 

has been to make all input-output devices interface identically with a program, 

and to provide as much flexibility in this common interface as possible. Two 

advantages result from this uniformity: 1) it becomes natural to write programs 

which are essentially independent of the environment in which they operate and 

2) the implementation of the system is greatly simplified. To the user the 

former point is of course the important one. 

It has been common, for example, for programs written to be controlled from 

a teletype to be driven instead from a file on, let us say, the drum. There 

exists a command which permits the recognizer for the system command language, 

and all of the subsystems to be driven in this way. This device is particularly 

useful for repetitive sequences of program assemblies and for background jobs 

which are run in the absence of the user. Output which normally goes to the 

teletype is similarlJ' diverted to user files. Another application of the 

uniformity of the file system is demonstrated in some of the subsystems notably 

the ~ssembler and the various compilers. The subsystem may request the user to 

specify where he wishes the program listing to be placed. The user may choose 

anything from paper tape to drum to his own teletype. In the absence of file 

uniformity each subsystem would require a separate block of code for each 

possibility. In fact, however, the same input-output instructions are used for 

all cases. 

The input-output instructions communicate with files. The system in turn 

n.ssociates files with the various phYSical devices. Progrruns for the most part, 

therefore, do not have to account for the peculiarities of the vnrious actual 

devices. Since devices differ widely in chnrncteristics ~md behavior, the 



flexihility of the operations IlVnilable on files is clearly critical. They 

must ranp:e from sinv.le-character input to the output of thousands of words. 

A file is opened by ~ving its name as an argument to the appropriate 

instruction. Programs thus refer to all files symbolically, leaving the details 

of physical loc:1.tion 1md organization to the system. If authorized, a program 

may refer to files belonr;in~ to other users by supplying the names of the other 

users as well as the file name. The owner of a file determines who is authorized 

to access it. The reader may compare this file naming mechanism with a more 

sophisticated one [l~)], bearinrr, in mind the fact that file names can be of any 

lenr:th and can be mnnipulated (as stri!1p;s of characters) by the program. 

Access to files is in general either sequential or random in nature. Some 

devices (like a. keyboard-display or a card reader) are purely sequential, while 

others (like a disk) may be either sequentially or randomly accessed. There are 

accordingly two ma,ior I/O interfaces to deal with these different qualities. 

The interface used in conjunction with a given file depends on whether the file 

was declared to be a random or a sequential!.!!!:.. The two rna,jor interfaces ate 

each broken down into other interfaces, primarily for reasons of implementation. 

Althour;h the distinction between sequential and ra.ndom files is great, the sub­

interfaces are not especially visi.hle to the user. 

Sequential Files 

The three instructions CIO (character input-output), WIO (word input .. output), 

and BIO (block input-output) are used to communicate with a sequential file. Each 

instruction takes as an operand a ~ number. This number is r,iven to the 

program when it opens a file. At the time of opening a file it must be specified 

whether the file is to be rend from or written onto. Whether any given device 

associated with the file is charact.er-oriented or word-oriented is unimportant; 

the system takes care of nIl necessary character-to-word :1.ssemhly or word-to­

charaeter disassembly. 
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There are actually three separnte, full-duplex pAysical interfaces to devices 

in the sequential file mechnnism. Generally these interfaces are invisible to 

pro~rruns. They exist, of course, for reasons of system efficiency and becfmse 

of the Wfl..y in which some devices are used. The interfaces nre: 

(1) character-by-character (basically for low-speed, character­

oriented devices used for man-machine interactions) 

(2) buffered block I/O (for medium-speed I/O applications) 

(3) block I/O directly from user core (for high-speed situations). 

It should be pointed out that there is no particular relation between these 

interfaces and the three instructions CIO, WIO and BIO. The interface used in 

a given situation is n function of th(~ device involved, and sometimes of the 

volume of data to be transmitted, not of the instruction. Any interface may be 

driven by any instruction. 

Of the three sub-interfaces under discussion, the last two are straight­

forward. The character-by-character interface is, however, somewhat different 

and deserves some elaboration. Devices associated with this interface are 

generally (but not necessarily) used for man-machine interaction. Consider 

the case of a person communicating with It program by means of a keyboard-display 

(or a teletype). He types on the keyboard nnd the information is tr.msmitted 

to the computer. The program may wish to make an immediate /'esponse on the display 

screen. In mn.ny cases this response will consist of an echo of the Srune 

ch:lracter so that the user has the feeling of typing directly onto the scree:1 

(or onto the teleprinter). 

So that input-output can be carried out when the prof~ram is not actually in 

main memory the character-by-character input interface permits programs 11 choice 

of a number of echo tables; it further permits pro{r,rams a choice of I';rade of 

service by permittinG them to specify whether a given character is nn attention 
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(or bref1.k) ch~.rl'l.cter. Thus, for example, the prol~rmn may specify that each 

character typed is to be echoed immediately and that all control characters 

nre to result in activation of the pror~rnm re~n.rdless of the number of characters 

in the input buffer. J\lternatively, the pror;rmn may specify that no characters 

are echoed and every chara.cter is a break character. By changing the speci­

fiCfJ.tion the pror;rnm can obtain an appropriate (and varying) grade of service 

without putting undue load on the system. Figure 6 shows the components of the 

character-by-character interface; responsibility for its operation is split 

between the interrupt routine called when the device signals for attention 

rmd the routine which processes the user's I/O request. 

The advantlige of the full-duplex, character-by-character mode of operation 

is considerable. The chliracter-by-character capability means that the user 

can interact with his program in the smallest possible unit -- the character. 

Furthermore, the full-duplex capability permits, among other things: (1) the 

program to substitute characters of strings of characters as echoes for those 

received, (2) the keyboard and display to be used Simultaneously (as, for 

example, permitting a character typed on a keyboard to pre-empt the operation 

of a process. In the case of typing information in during the output of 

information, a simple algorithm prevents the random admixture of characters 

which might otherwise result), and (3) the ready detection of transmission errors. 

Instructions are included to enable the state of both input and output 

buffers to be sensed and perhaps cleared (discarding unwnnted output or input). 

Of course it is possible for a program to use any number of authorized physical 

devices; in particular this includes those devices used for remote consoles. A 

mechanism is provided to permit output which is directed to a given device to be 

copied on all other devices which are output linked to it (and similarly for 

i.nput). This is useful when communication amonr; users is desired and in numerous 
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other situations. 

The sequential file has a structure somewhat similar to that of un ordinary 

maetape file. _ It consists of a sequence of logical records of arbitrary length 

and number. On some devices, such as a card reader or the teletype, a file may 

have only one log.ical record. The full generality is available for drum files, 

which nre the ones most commonly used. The logical record is to be contrasted 

with the variable length physical record of magtape or the fixed length record 

of n. card. Instructions are provided to insert and delete logical records or 

increase or decrease them in length. Other instructions permit the file to 

be "positioned" almost instantaneously to a specified logical record. This 

~ives the sequential file greater flexibility than one which is completely 

unaddressable. This flexibility is only possible, of course, because the file 

is on a random-access device, and the sequential structure is maintained by 

pointers. The implementation is discussed below. 

When reading a sequential file CIO and WIO return certain unusual data 

configurations when they encounter an end of record or end of file, and BIO 

terminates transmission on either of the conditions and returns the address 

of the last word transmitted. In addition, certain flag bits are set by the un­

usual conditions, and an interrupt may be caused if it has been armed. 

The implementation of the sequential file scheme for auxiliary storage 

is illustrated below in Figure 7. Information is written on the drum in 

256-word physical records. The locations of these records are kept track of 

in 64-word index blocks containing pOinters to the data blocks. For the file 

shown, the first logical record is more than 256 words long, but ends in the 

second ~6-word block. The second logical record fits in the third 256-word 

block and the third logical record -- in the 4th data block -- is followed by 

an end of file. If a file requires more than 64 index words, additional index 



19 

blocks are cha.ined together both forward and backward. Thus in order to access 

information in the file it is necessary only to know the location of the first 

index block. It may be worthwhile to point out that all users share the some 

drum. Since the system has complete control over the allocation of space on 

the drum, there is no possibility of undesired interaction among users. 

Av::d In.ble space for new data blocks or index blocks is kept trnck of by a 

bit table, illustrated in Figure 8. In the fip;ure each column represents one 

of the 7;' physical bnnds on the drum allocated for the storap;e of file information. 

Each row represents one of the 64 Z56'-word sectors around a band. Each bit in 

the table thus represents one of the 1+,608 data blocks n.vailable. The bits are 

set when a block is in use and cleared when the block becomes available. Thus, 

if a new data block is required, the system has only to read the physical 

position of the drum, use this position to index in the table, and search a row 

for the appearance of a O. The column in which a 0 is found indicates the 

physical track on which a block is avnilable. Because of the way the row was 

chosen, this block is immediately a.ccessible. This scheme has two advnntae;es 

over its rJ.lternative, which is to chain unused blocks together: 

(1) it is easy to find a block in 1m optimum position, using the 

algorithm just described 

(2) no' drum operations are required when a new block is needed or an old 

one is to be released. 

It may be preferable to assign the new block so that it becomes accessible 

immediately after the block last asslr;ned for the file. This scheme will speed 

up subsequent reading of the file. 

Random Files 

Aux] li:rry storaf~e files can also be treA.ted as extensions of core memory 

rather than :tS sequential devices. Such files a.re c::tllerJ random files. I, r'..nrlom 
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file differs from a sequential file in that there is no logical record structure 

to the file and that information is extracted from or written into the random 

file by n.ddressinp, a specific word or block of words. It may be opened like 

A. sequential file; the only difference is that it need not be specified as fln 

output or an input file. 

Four instructions are used to input and output words and blocks of words 

on a random file. To permit the random file to look even more like core memory, 

an instruction enables one of the currently open random files to be specified as 

the secondary memory file. Two instructions, LAS (load A from secondary memory) 

and SAS (store A in secondary memory) act like ordinary load and store instructions 

with one level of indirect addressinG (cf. Figure 9) except of course that the 

da.ta are in a random file instead of in core memory. 

Random files are implemented like sequential files except that end of 

record indicators are not meaningful. Although as many index blocks are used up 

~lS required by the size of a random file, only those data blocks which actually 

contain information will be attached to a random file. As new locations are 

accessed, new data blocks are attached. 

Subroutine Files 

Whereas it makes little sense to associate, say, a cn.rd reader with a 

random file, a sequential file can be associated with any physical device in the 

system. In addition a sequential file may be associated with a subroutine. Such 

a file is called a subroutine file, and the subroutine m~v thus be thought of 

as a "non-physical" device. The subroutine file is defined by the address of 

a subroutine to~ether with information indicating whether it is an input or 

an output file and whether it is word or character oriented. An input operation 

from a subroutine file causes the subroutine to be called. When it returns, the 
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contents of the A register is taken to be the input requested. Correspondingly, 

an output operation causes the subroutine to be called with the word or character 

being output in A. A subroutine is completely unrestricted in the kinds of 

processing it can do. It may do further input or output and any amount of 

computation. It.may even call itself if it preserves the old return address; 

Recall that for sequential files the system transforms all information 

supplied by the user to the format required by the particular file. Hence the 

requirement thllt the user, in opening a subroutine file, must specify whether 

the file is to be character or word oriented. The system will thereafter do all 

the necessary packing and unpackinr,. 

Subroutine files are the lor,ical end-product of a desire to decouple a 

program from its environment. Since they can do arbitrary computations, they 

can provide buffers of any desired complexity between the assumptions a program 

has made about its environment and the true state of things. In fact, they 

make it logically unnecessary to provide an identical interface for all the 

input-output devices attached to the system; if uniformity did not exist, it 

could be simulated with the appropriate subroutine files. Considerations of 

convenience and efficiency of course militate against such an arrangement, but 

it sUGI~ests the power inherent in the subroutine file machinery. 



SUMMARY 

The user machine described above was designed to be a flexible 

foundation for development and experimentation in man-machine systems. 

The user has been given the capability to establish configurations of 

multiple processes, and the processes have the ability to communicate 

conveniently with each other, with central files, and with peripheral 

devices. A given user may, of course, wish only to use a subsystem of 

the r:eneral system (e. g., a compiler or a debugging routine) for his 

particular job. In the course of using the subsystem, however, he may 

become dissatisfied with it and wish to revise or even rewrite the 

subsystem. The features of the user machine not only permit this 

activity but considerably alleviate some of its onerous aspects. 
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