

12.

be simulated. The �p�r�o�l�~�r�r�u�n� will presumably have at. this fixerl Address the location

of Il suhroutine r.Hpnble ot' de:!ljnr; with the interrupt nnd returning to the

tnterrupted computation afterwards. This mechanism is fllnctionully almost

identical to many hardware interrupt systems.

A process may cause an interrupt by �d�e�l�i�v�e�r�i�n�~� the number of the interrllpt

to the appropriA.te instruction. The process cf.l.using the interrupt continues

undisturbed, but the nearest process which is on the same level as the one

causing the interrupt or above it in "the hierarchy of processes and which has

the appropriate interrupt armed will be interrupted. This mechanism provides a

very flexible way for pror.esses to interl),ct with ellch ot.her without wasting any

time :in the testine of flags of similm' frlvolous HctivUies.

Iuterrupts may be caused not only by the explicit nction oC processes, but

131so "by the occurrence of severa.l special conditions. The occurrence or a memory

violntj.on, Rttempted execution of an illegal instruction, nn unusual input-

output condition, the termination of e subsidiary pror.ess, or the intervention 'of

13 user nt a console (by pushing a reserved. 111ltton) all �m�~�l�y� cause unique interrupts

(H they have been previously armed). In this way n process may be nctifiecl

conveniently of any unusual conditions associated with other processes, thc!

process itself, or a console user.

The memory assignment algorithm discussed previollsly is slightly modified

jn the presence of multiple processes. \fuen a process is activated, one of three

options may be specified:

(a) assign new memory to the process entirely independently of the

controlling process

(b) assle;n no new memory to the process. Any attempt to obtain new

memory will enuse 11 memory violation

(c) if the process attempts to obtain new memory, SCM upward through

the process hierc"~chy until the topmost process is reached. If at

any time during this sc~n a. process is found for which the address

causing the trap is legal, propDgate the memClry assigned to it down

through the hierarchy to the process causinc; the trap.

Option (c) perml ts a process to be started with B. G1l11set of memory F.lnd

13.

lilt':r 1,0 rca.cqui re some of the memory which was not I~iven to it initlally. This

f'('l'tllrf? 1 r: i.mportant lH~enl1BC the amount of memory ass l:r,necl to 11 proeess influences

the' opernt Inrr, eff'i c i ency of the system :md thus the speed wi. th which i.t will

be ~hle to respond to teletypes or other real time devi.ces.

14

THE INPUT-OUTPUT SYSTEM

The user machine has a straightforwnrd but unconventional set of input

output instructions. The primary emphasis in the design of these instructions

has been to make all input-output devices interface identically with a program,

and to provide as much flexibility in this common interface as possible. Two

advantages result from this uniformity: 1) it becomes natural to write programs

which are essentially independent of the environment in which they operate and

2) the implementation of the system is greatly simplified. To the user the

former point is of course the important one.

It has been common, for example, for programs written to be controlled from

a teletype to be driven instead from a file on, let us say, the drum. There

exists a command which permits the recognizer for the system command language,

and all of the subsystems to be driven in this way. This device is particularly

useful for repetitive sequences of program assemblies and for background jobs

which are run in the absence of the user. Output which normally goes to the

teletype is similarlJ' diverted to user files. Another application of the

uniformity of the file system is demonstrated in some of the subsystems notably

the ~ssembler and the various compilers. The subsystem may request the user to

specify where he wishes the program listing to be placed. The user may choose

anything from paper tape to drum to his own teletype. In the absence of file

uniformity each subsystem would require a separate block of code for each

possibility. In fact, however, the same input-output instructions are used for

all cases.

The input-output instructions communicate with files. The system in turn

n.ssociates files with the various phYSical devices. Progrruns for the most part,

therefore, do not have to account for the peculiarities of the vnrious actual

devices. Since devices differ widely in chnrncteristics ~md behavior, the

flexihility of the operations IlVnilable on files is clearly critical. They

must ranp:e from sinv.le-character input to the output of thousands of words.

A file is opened by ~ving its name as an argument to the appropriate

instruction. Programs thus refer to all files symbolically, leaving the details

of physical loc:1.tion 1md organization to the system. If authorized, a program

may refer to files belonr;in~ to other users by supplying the names of the other

users as well as the file name. The owner of a file determines who is authorized

to access it. The reader may compare this file naming mechanism with a more

sophisticated one [l~)], bearinrr, in mind the fact that file names can be of any

lenr:th and can be mnnipulated (as stri!1p;s of characters) by the program.

Access to files is in general either sequential or random in nature. Some

devices (like a. keyboard-display or a card reader) are purely sequential, while

others (like a disk) may be either sequentially or randomly accessed. There are

accordingly two ma,ior I/O interfaces to deal with these different qualities.

The interface used in conjunction with a given file depends on whether the file

was declared to be a random or a sequential!.!!!:.. The two rna,jor interfaces ate

each broken down into other interfaces, primarily for reasons of implementation.

Althour;h the distinction between sequential and ra.ndom files is great, the sub

interfaces are not especially visi.hle to the user.

Sequential Files

The three instructions CIO (character input-output), WIO (word input .. output),

and BIO (block input-output) are used to communicate with a sequential file. Each

instruction takes as an operand a ~ number. This number is r,iven to the

program when it opens a file. At the time of opening a file it must be specified

whether the file is to be rend from or written onto. Whether any given device

associated with the file is charact.er-oriented or word-oriented is unimportant;

the system takes care of nIl necessary character-to-word :1.ssemhly or word-to

charaeter disassembly.

16

There are actually three separnte, full-duplex pAysical interfaces to devices

in the sequential file mechnnism. Generally these interfaces are invisible to

pro~rruns. They exist, of course, for reasons of system efficiency and becfmse

of the Wfl..y in which some devices are used. The interfaces nre:

(1) character-by-character (basically for low-speed, character

oriented devices used for man-machine interactions)

(2) buffered block I/O (for medium-speed I/O applications)

(3) block I/O directly from user core (for high-speed situations).

It should be pointed out that there is no particular relation between these

interfaces and the three instructions CIO, WIO and BIO. The interface used in

a given situation is n function of th(~ device involved, and sometimes of the

volume of data to be transmitted, not of the instruction. Any interface may be

driven by any instruction.

Of the three sub-interfaces under discussion, the last two are straight

forward. The character-by-character interface is, however, somewhat different

and deserves some elaboration. Devices associated with this interface are

generally (but not necessarily) used for man-machine interaction. Consider

the case of a person communicating with It program by means of a keyboard-display

(or a teletype). He types on the keyboard nnd the information is tr.msmitted

to the computer. The program may wish to make an immediate /'esponse on the display

screen. In mn.ny cases this response will consist of an echo of the Srune

ch:lracter so that the user has the feeling of typing directly onto the scree:1

(or onto the teleprinter).

So that input-output can be carried out when the prof~ram is not actually in

main memory the character-by-character input interface permits programs 11 choice

of a number of echo tables; it further permits pro{r,rams a choice of I';rade of

service by permittinG them to specify whether a given character is nn attention

17

(or bref1.k) ch~.rl'l.cter. Thus, for example, the prol~rmn may specify that each

character typed is to be echoed immediately and that all control characters

nre to result in activation of the pror~rnm re~n.rdless of the number of characters

in the input buffer. J\lternatively, the pror;rmn may specify that no characters

are echoed and every chara.cter is a break character. By changing the speci

fiCfJ.tion the pror;rnm can obtain an appropriate (and varying) grade of service

without putting undue load on the system. Figure 6 shows the components of the

character-by-character interface; responsibility for its operation is split

between the interrupt routine called when the device signals for attention

rmd the routine which processes the user's I/O request.

The advantlige of the full-duplex, character-by-character mode of operation

is considerable. The chliracter-by-character capability means that the user

can interact with his program in the smallest possible unit -- the character.

Furthermore, the full-duplex capability permits, among other things: (1) the

program to substitute characters of strings of characters as echoes for those

received, (2) the keyboard and display to be used Simultaneously (as, for

example, permitting a character typed on a keyboard to pre-empt the operation

of a process. In the case of typing information in during the output of

information, a simple algorithm prevents the random admixture of characters

which might otherwise result), and (3) the ready detection of transmission errors.

Instructions are included to enable the state of both input and output

buffers to be sensed and perhaps cleared (discarding unwnnted output or input).

Of course it is possible for a program to use any number of authorized physical

devices; in particular this includes those devices used for remote consoles. A

mechanism is provided to permit output which is directed to a given device to be

copied on all other devices which are output linked to it (and similarly for

i.nput). This is useful when communication amonr; users is desired and in numerous

18

other situations.

The sequential file has a structure somewhat similar to that of un ordinary

maetape file. _ It consists of a sequence of logical records of arbitrary length

and number. On some devices, such as a card reader or the teletype, a file may

have only one log.ical record. The full generality is available for drum files,

which nre the ones most commonly used. The logical record is to be contrasted

with the variable length physical record of magtape or the fixed length record

of n. card. Instructions are provided to insert and delete logical records or

increase or decrease them in length. Other instructions permit the file to

be "positioned" almost instantaneously to a specified logical record. This

~ives the sequential file greater flexibility than one which is completely

unaddressable. This flexibility is only possible, of course, because the file

is on a random-access device, and the sequential structure is maintained by

pointers. The implementation is discussed below.

When reading a sequential file CIO and WIO return certain unusual data

configurations when they encounter an end of record or end of file, and BIO

terminates transmission on either of the conditions and returns the address

of the last word transmitted. In addition, certain flag bits are set by the un

usual conditions, and an interrupt may be caused if it has been armed.

The implementation of the sequential file scheme for auxiliary storage

is illustrated below in Figure 7. Information is written on the drum in

256-word physical records. The locations of these records are kept track of

in 64-word index blocks containing pOinters to the data blocks. For the file

shown, the first logical record is more than 256 words long, but ends in the

second ~6-word block. The second logical record fits in the third 256-word

block and the third logical record -- in the 4th data block -- is followed by

an end of file. If a file requires more than 64 index words, additional index

19

blocks are cha.ined together both forward and backward. Thus in order to access

information in the file it is necessary only to know the location of the first

index block. It may be worthwhile to point out that all users share the some

drum. Since the system has complete control over the allocation of space on

the drum, there is no possibility of undesired interaction among users.

Av::d In.ble space for new data blocks or index blocks is kept trnck of by a

bit table, illustrated in Figure 8. In the fip;ure each column represents one

of the 7;' physical bnnds on the drum allocated for the storap;e of file information.

Each row represents one of the 64 Z56'-word sectors around a band. Each bit in

the table thus represents one of the 1+,608 data blocks n.vailable. The bits are

set when a block is in use and cleared when the block becomes available. Thus,

if a new data block is required, the system has only to read the physical

position of the drum, use this position to index in the table, and search a row

for the appearance of a O. The column in which a 0 is found indicates the

physical track on which a block is avnilable. Because of the way the row was

chosen, this block is immediately a.ccessible. This scheme has two advnntae;es

over its rJ.lternative, which is to chain unused blocks together:

(1) it is easy to find a block in 1m optimum position, using the

algorithm just described

(2) no' drum operations are required when a new block is needed or an old

one is to be released.

It may be preferable to assign the new block so that it becomes accessible

immediately after the block last asslr;ned for the file. This scheme will speed

up subsequent reading of the file.

Random Files

Aux] li:rry storaf~e files can also be treA.ted as extensions of core memory

rather than :tS sequential devices. Such files a.re c::tllerJ random files. I, r'..nrlom

20

file differs from a sequential file in that there is no logical record structure

to the file and that information is extracted from or written into the random

file by n.ddressinp, a specific word or block of words. It may be opened like

A. sequential file; the only difference is that it need not be specified as fln

output or an input file.

Four instructions are used to input and output words and blocks of words

on a random file. To permit the random file to look even more like core memory,

an instruction enables one of the currently open random files to be specified as

the secondary memory file. Two instructions, LAS (load A from secondary memory)

and SAS (store A in secondary memory) act like ordinary load and store instructions

with one level of indirect addressinG (cf. Figure 9) except of course that the

da.ta are in a random file instead of in core memory.

Random files are implemented like sequential files except that end of

record indicators are not meaningful. Although as many index blocks are used up

~lS required by the size of a random file, only those data blocks which actually

contain information will be attached to a random file. As new locations are

accessed, new data blocks are attached.

Subroutine Files

Whereas it makes little sense to associate, say, a cn.rd reader with a

random file, a sequential file can be associated with any physical device in the

system. In addition a sequential file may be associated with a subroutine. Such

a file is called a subroutine file, and the subroutine m~v thus be thought of

as a "non-physical" device. The subroutine file is defined by the address of

a subroutine to~ether with information indicating whether it is an input or

an output file and whether it is word or character oriented. An input operation

from a subroutine file causes the subroutine to be called. When it returns, the

21

contents of the A register is taken to be the input requested. Correspondingly,

an output operation causes the subroutine to be called with the word or character

being output in A. A subroutine is completely unrestricted in the kinds of

processing it can do. It may do further input or output and any amount of

computation. It.may even call itself if it preserves the old return address;

Recall that for sequential files the system transforms all information

supplied by the user to the format required by the particular file. Hence the

requirement thllt the user, in opening a subroutine file, must specify whether

the file is to be character or word oriented. The system will thereafter do all

the necessary packing and unpackinr,.

Subroutine files are the lor,ical end-product of a desire to decouple a

program from its environment. Since they can do arbitrary computations, they

can provide buffers of any desired complexity between the assumptions a program

has made about its environment and the true state of things. In fact, they

make it logically unnecessary to provide an identical interface for all the

input-output devices attached to the system; if uniformity did not exist, it

could be simulated with the appropriate subroutine files. Considerations of

convenience and efficiency of course militate against such an arrangement, but

it sUGI~ests the power inherent in the subroutine file machinery.

SUMMARY

The user machine described above was designed to be a flexible

foundation for development and experimentation in man-machine systems.

The user has been given the capability to establish configurations of

multiple processes, and the processes have the ability to communicate

conveniently with each other, with central files, and with peripheral

devices. A given user may, of course, wish only to use a subsystem of

the r:eneral system (e. g., a compiler or a debugging routine) for his

particular job. In the course of using the subsystem, however, he may

become dissatisfied with it and wish to revise or even rewrite the

subsystem. The features of the user machine not only permit this

activity but considerably alleviate some of its onerous aspects.

22

ACKNOWLEDGMENT

The software portion of the system waS designed and written in

part by Mr. L. Peter Deutsch, who is entitled to equal credit with the

authors Cor the i'dens in this paper. Mr. TJa.rry Barnes IIlso contr ibuted

sif~nit'ic;ultly to the finn.l result.

23

24

BIBLIOGRAPHY

25

[l?] R. C. Daley and P. G. Neumann, "A General-purpose File System for

Secondary. storage," Proc. AFIPS Cont'., vol. Z1, Part I, pp. 21 ~- 229,. 1965.

[13] J. H. Saltzer, "Traffic Control in a Multiplexed Computer System,"

MAC-TR-30, M. I. T., Cambridge, Mass. (JUly 1966).

TTY
INTERFACE

TELETYPES

FIG. 1: Conf:i.guration of Equipnent

PAGE
o
I
2
3
4
5
6
7

16K VIRTUAL CORE

6
13
8
o
o
9
10
3

MAP

PAGE
o
I
2
.:3

II
12
13
14
15

.:32K REAL CORE

(n) Relation between virtual and real
memory for a. typical map.

o 2;] ,..,

1101100 I I O-IOI~

[OfOI~
o • • .e

~~~~~_?ITOO_~_1 0 I 0 I 1001 

(b) Construction of' a renl TlIemory 
address. 

VIRTUAL EFFECTIVE ADDRES3: ~46'54n 

MAPPING REGISTER 5: 11.8 

REiAD-ONLY BIT: OFF 

FIG. 2: The Hardware Memory Map 



PAGE 

0 SHARED B..I 4 

PRMTE 

2 PRI\ATE 2 

3 8L6 8 

4 6 

0 

6 9 

7 LNASSIQ\fD 0 

16K VIRTUAL 1v£fv1CRY PROCESS 
MAP 

ENTRY BLOCK 

I M3 
2 M4 
3 MS 
4 SMTJ 
5 SMT4 
6 SMT2 
7 MI2 
8 SMT6 
9 SMT3 
10 0 

PRIVATE t-.£M
ORY TABLE 

FIC. 3: LR.yout of virtual memory for a typical process 



PMT 1 PMT 2 SMT 

1 M3 1 SMT1 1Ml 
? Ml~ 2 SM'l5 ~ Ml6 
3t{) 3 r~ 3 M2 
4 SMT1 4MB 4 M10 
5 SM!".J, 5 M9 5 M11 
6 SM!'2 6 SM!'2 6M6 
7 Ml? rr M13 
8 sMT6 8 SMT3 
9 SMT3 9 M11~ 

10 0 10 Ml'j 

:ft'IG. 4· Process and. memory configurv.tion for two users. (The 
processes are numhered for each user and a.re :r.'epre
sented by their pseudo-mapping re~isters. Memory 
hlocks arc Identified by ,irum addresses, whi(~h ~rc 

wr'i tten M1, M2 .•• ) 



PIG. ): H:if:rtlrclly of Processes 



J . 

1 

[OUlPUl BLfTER I 

r OU~ PUl INn RflI-"I lJ [ 
\-L-'rm;::- _}_J 1- l&r5 .~ 
- _. . ".,' _. . -1 """""M \ 

r 1\ r J - '~~:~:;~~~f~llii]··· 

FIG. 6: The ,character-oriented interface 



I 
II 

FIG. 7: Index blocks and pointers to data olocks. 



72 BITS 
-. 

I I I I I I I I -
I I I I I I I I I I 

I I I I I I I I I I I I I I 

64 WORDS I I I I I I I I I I 
I I I I I I I I I 

I I I I I I I I I I I 

I I I I I I I I 

I I I I I I I 

FIG. R: Bit table for :lllocntion of spa~e on the ururn. 



M:! in Memory 

LD}\* J\DDR LAS I\DDR 

ST!\* ADDR 8M3 

I Address IncLrllclion 

600 I LAS 14Jo 
, 
; 

14,)0 lG31tc) 
, 
i 

! 16 )1+'5 I 1?)~')6'( I 
I 

Effect: 1234r)6'( -+ A 

(b) 

Fir:. 9. Load and store from m,'1in Ilnd secondnry memory. 

(,'1) Instrl1ct ions. (b) J\ddl'es:;in,r~. 


