
A :USER MACHnm IN A TrnE-SHARING SYSTEH

Butler W. Lampson

W. Wayne Lichtenberger

Melvin W. Pirtle

Document Number '+0. ~)O·.·lO

• R(~vised October n, .1966

Contract SD-1135

Ofi'ice of Secretary of Defense

Aclv8.nced Res€llrch Projects Agency

Washington 25, D.C.

ABSTRACT

This paper describes the design of the computer seen by n mn.ch1.ne-

language programmer in a time-sharing system developed Itt the University

of California at Berkeley. Some of the instructions in this machine are

executed by the hardware, and some are implemented by software. The user,

however, thinks of them all as part of his machine, a machine having extensive

and unusual capabilities, many of which might be part of the hardware of a

(considerably more expensive) computer.

Among the important features of the machine are the arithmetic and

string manipulation instructions, the very general memory allocation and

configuration mechanism, and the multiple processes which can be created

by the program. Facilities are provided for communication among these

processes and for the control of exceptional conditions.

The input-output system is capable of handling all of the peripheral

equipment in a uniform and convenient manner through files having symbolic
.

names. Programs can access files belonging to a number of people, but each

person can protect his own files from unauthorized access by others.

Some mention is made at various points of the techniques of imple-

mentation, but the main emphasis is on the appearance of the user's machine.

1

INTRODUCTION

A characteristic of a time-sharing system is that the computer seen by

the user programming in machine language differs from that on which the system

is irm>lemented [l,?,6;lO,1l]. In fact, the ~ machine is defined by the

combination of the .time-sharing hardware running in user mode :md the software

which controls input-output, deals with illegal actions which may be taken

by a user's prop;rrun, and provides va.rious other services. If the hardware

j s arrrm/T,ed in such a way that calls on the system have the same form as the

hardware instructions of the machine [7], the distinction becomes irrelevant

to the user; he simply programs a machine with an unusual and powerful

instruction set which relieves him of many of the problems of conventional

machine-language programming [8,9].

In a time-sharing system which has been developed b,V. and for the use of

members of Pro,ject GENIE at the University of California at Berkeley [7], the

user machine has a number of interesting characteristics. The computer in

this system is an SDS 930, a 24 bit, fixed-point machine with one index rep:ister,

multi-level indirect addressing, a 14 bit address field rmd 32 thousand words

of 1.75 us memory in two independent modules. Figure 1 shows the basic

configuration of equipment. The memory is interleaved between the two modules

so that processing and drum transfers may occur simultaneously. A detailed

description of the various hardware modifications to the computer and their

implications for the performance of the overall system has been r:iven in a previous

paper (7].·

Briefly, these modifications include the addition of monitor and user modes,

in which for user mode the execution of a class of instructions is prevented

and replaced by It trap to [J. system rout ine . The protect i on from un1tuthorl zed

access to memory has been subsumed in an address mappinl~ scheme: hath the

16,384 words addressable by a user program (logical addresses) ::md the 32.7(.£<

2

words of actual core memory (physical addresses) have been divided into

2,048-word pages. A set of eight six-bit hardware reRisters defines a map

from the logical address space to the real memory by specifying the real page

which is to correspond to each of the user's logical pages. Implicit in this

scheme is the capability of markjnp; ench of the user's pages as lffi:lssigned or

re:td-only, so that any attempt to access such 11 llll.ge improperl..v will result

in a trap.

All memory references in uspr mode are mapped. In monitor mode all memory

references are normally absolute. It is possible, however, with any instruction

in monitor mode or even within a chain of indirect addressing to specify use

of the user map. Furthermore in monitor mode the top 4,096 words are mapped

through two additional registers called the monitor map. The mapping process

is illustrated in Figure 2.

Another significant hardware modification is the mechanism for v,oing

between modes. Once the machine is in user mode, it can get to monitor mode

under three circumstances:

(It) if a h:~rdware interrupt occurs

(b) if a trap is generated by the user program as outlined above

(c) if an instruction with a particular configuration of two bits

is executed. Such an instruction is called a system programmed

operator (SYSPOP).

In case (c) the six-bit operation field is used to select one of 64 locations in

absolute core. The current address of the instruction is put into absolute

location zero as a subroutine link, the indirect address bit of this link word

is set, and another hit is set m:t.rkinr; the memory locat ion in the link word as

havinf~c()me from user-mapped memory. The system rout. inc thus i nvokpll may trlke

L par:tmeter from the word addressed by the SYSPOP, si.nce lts 11ddress field is not. ,

3

interpreted by the hardware. The routine will address the parruneter indirectly

through location zero; and because of the bit murking the contents of locfltion

zero as having come from user mode, the user map will be applied to the remainder

of the address indirection. All calIf' on the system which Ilrc not inndvertant

are made in th is way.

A monitor mode program gets into user mode by transferring to an address

with mapping specified. This means, among other things, that a SYSPOP can

return to the user program simply by branching indirect through location zero.

As the above discussion has perhaps indicated, the mode-changing arrangements

are very clen.n and permit rapid and natural transfers of control between user and

system programs. Advantage has been taken of this fn.ct to create a rather

grandiose mn.chine for the user. Its features are the sub,iect of this paper.

BASIC FJt:ATl.JRES OF THE MACHINE

A user in the Berkeley time-sharing system working at what he thinks of

as the hardware language level has at his disposal a ma.chine with a configuration

and capability which can be conveniently controlled by the execution of machine

lnst.ruction sequences. Its simplest \configuration is very similar to that of

a standard medium-sized computer. In this configuration, the machine possesses

the stano/lTd 930 complement of llrithmi~tic and logic instructions and. in

Ilddit ion, II. set of software interpreted monitor and executive instructions.

The latter instructions, which will be discussed more fully below, do rather

complex input-output of many different kinds, perform many often-used table

lookup and string processing functions, implement floatinr. point operations,

and provide for the creation of more complex machine confir;urations. Some

examples of the instructions available are:

(a) load A, B or X (index) registers from memory or store any of

the registers. Indexing and indirect addressing are available

on these and almost all other instructions. Double word load

and store are Filso available.

(b) the normal complement of fixed-point arithmetic and logic operations

(c) skips on various arithmetic and logic conditions

(d) floating point arithmetic and input-output. The latter is in free

format or in the equivalent of Fortran E or F format

(e) input a character from a teletype or write a block of arbitrary

length on a drum file

(f) look up a string in a hash-coded table and obtain its position

in the table.

(IY,) create a new process and start it runninp; concurrently with the

present one at a specified. point

6

mapping register consisting of eight 6-bit bytes, one byte for each of the eight

2K blocks addressable by the 14 bit address field of an instruction. E'lCh of

these bytes either is 0 or addresses one of the 63 words in a table called the

private memory table (FMT). Ea.ch user has his own private memory tahle. An

entry in this table provides informati.on about a particular ~)K block of memory,

The block may he either local to the user or it may he shared, If the block is

local, the entry I~ives information about whether it is currently in core or on

the drum. This information is important to the system but neert not (~oncern the

user. If the block is shared, its PMT entry.points to an entry in another table

called the shared memory table (SMT). Entries in this table describe blocks

of memory which are shared by several users. Such blocks may contain invariant

programs and constants, in which case they will be marked as ~-only, or they

may contain arbitrary data which is being processed by programs belonging to

two different users.

A possible arrangement of logical or virtua.l memory for a process is shO'NTl

in Figure 3. The nature of each page has been noted in the picture of the

virtual memory; this information can also be obtained by taking the correspondinr'

byte of the map and looking at the PM!' entry specified by that byte. The figJre

shows a large amount of shared memory, which suggests that the process might be

a compilation, sharing the cod~ for the compiler with other processes trans-

lating programs written in the same source language. Virtual pages one and two

might hold tables and temporary storage which are unique to each separate

compilation. Note that although the flexibility of the map allows any block

of code or data to appear anywhere in the virtual memory, it is certainly not

true that a program can run regardless of which paf~es it is in. In particular,

if it contains references to itself such as branch instructions, then it m1Jst.

run in the same virtual pages into which it was loaded.

7

Two instructions are provided which permit the user to read and modify

his process map. The f),bility to read the process mappinl~ registers permits

the user to obtain the current memory assip;nment, and the nhilit..v to write

the registers permits him to reassign memory in /lny way which suits his fnnc.v.

The system naturally checks each new map as it is established to ensure thnt

the process is not attempting to obtain unauthorized access to memory which

does not belong to it.

When the user's process is initiated, it is assip;ned only enout~h memory to

contain the pror,ram data as initjally loaded. For instance, if the pro~ram and

constants occupy 3000 words, two blocks, say blocks 0 and 1, will be assip;ned

At this point the first two bytes of the process mappin~ rep.;ister will be non­

zero; the others will be zero, When the pror:ram runs, it may address me,mory

outside of the first 4K, If it does, and if the user has specified a machine

size larger than 4K, a new block of memory will be assigned to him which makes

the formerly illegal reference legal. In this way, the user' s proces~ may

obtain more memory, In fact, it may easily obtain more than 16K of memory

simply by addressing 16K, readinr; and preserving the process mappinp: register,·

settinp; it with some of the bytes cle,ared to zero, and grabbing some more memory.

Of course, only 16K can be addressed at one time; this is a limitation imposed

by the address field of the machine.

There is an instruction which allows a process to specify the maximum

amount of memory which it is allowed to have. If it attempts to obtain more

than this amount, 11 memory violation will occur. A memory violation can also

be caused by attempts to transfer into or indirect through unassigned memory, or

to store into read-only memory. The effect of this violation is similar to the

effect of an illegal instruction violation and is discussed below.

The fllcilities ,just described are entirely sufficient for pro~r:tms wh ich

need to reorganize the machine's memory solely for internal purposes. In many

8

cases, however, the program wishes to obtain access to memory blocks which

have been created by the system or by' other programs. For example, there may

be a package of mathematical and utility routines in the system which the program

would like to use. To accoDUnodate 'this requirement, there is an instruction

which establishes a .relationship between [L name a.nd 11. certain process mapping

function. Thls instruction moves the 1m' entries for the blocks IlCldressed by

the specified process mapping function into the shared memory tllble so tha.t they

a.re generally accessible to all users. Once this correspondence has been

established, there is another instruction which allows a different user to deliver

the name and obtain in return the associated process map. This instruction will

if necessary make new entries in the second user's PMT. Various subsystems and

programs of general interest have names permanently assigned to them by the system.

The user machine thus makes it possible for a number of processes belonging

to independent users to run with memory which is an arbitrary combination of

blocks local to each indiviaual process) blocks shared between several processes

and blocks permanently available in the system. A complex configuration is

sketched in Fip,ure 4. Process 1.1 in this picture was shown in more detail in

Figure 3. Each box represents a process, and the numbers within represent the

eight map bytes. The arrows between processes show the process hierarchy, which

is discussed in the next section. Note that the PMTs belong to the users, not

to the processes.

From the above discussion, it is apparent that the user can manipulate the

machine memory configuration to perform simple memory overlays, to change data

bases, or to perform other more complex tasks requiring memory reconfiguration.

For eX3.mple, the use of common routines is greatly facilita.ted, since it is

necessary only to adjust the process map so that 1) memory references internal

and external to the common routine are correct, and 2) the memory area in which

the routine resides is read-only. Irl the simplest case, in which the common routine

9

and the data base fit into 16K of memory, the map is initially established and

remains static throughout the execution of the routine. In other cases where

the routine and data base do not fit into 16K, or where several common routines

are concurrently employed, it may be necessary to make frequent adjustment to

the map during execution.

Multiple Processes

An important feature of the user machine allows the user progr~, which in

the current context will be referred to as the controlling process, to establish

one or more subsidiary processes. With a few minor exceptions to be discussed

below, each subsidiary process has the same status as the controlling process.

Thus it may in turn establish a subsidiary process. It is therefore apparent

that the user machine is in fact a multi-processing machine. The original

suggestion which gave rise to this capability was made by Conway [3]; more

recently the Mu1tics system has included a multi-process capability [4,5,13].

A process is the logical environment for the execution of a program, as

contrasted to the physical environment, which is a hardware Erocessor. It is

defined by the information which is required for the program to run; this

information is called the state vector. To create a new process, a given process

executes an instruction which has arguments specifying the state vector of the new

process. This state vector includes ·.~he program counter, the central registers,

and the process map. The new process may have a memory configuration which is

the same as, or completely different from, that of the originating process .. The

only constraint placed on this memory specification is that the total memory

available to the multi-process system is limited to l28K by the process mapping

mechanism, which is cammon to all processes. Each user, of course, has his own

128K.

This facility was put into the system so that the system could control the

user processes. It is also of direct value, however, for many user processes. The

most obvious exrunp1es are input-output buffering routines, which can operate

independently of the user's main progrwn, communicating with it through memory

Dnd with :interrupts (see below). Whether the operation being buffered is large

volume output to a disc or teletype requests for information about the progress

of n rllnninr; pro["rnm, the degree of flexibility l1fforded by multiple processes

far exceeds onything which could have been built into the input-output system.

Furthermore, the overheAd is very low: an additional process requires about 15

",ords of core, and process switching takes about 1 ms under favorable connitions.

There arc numerous other examples of the value of multiple processes; most,

llnfortUrt8teJy, are too complex to be briefly explained.

A process may create 8. number of subsidiary processes, each of which is

indepenrlent of the others and equivalent to them from the point of view of the

originati.nr; process. }t''l.gure '.j. shows two simple multi-process structures, one

for each of two users. Note that each process has associated with it pointers to

its controlling process and to one of its subsidiary processes. When a process

has bro inuned late descendants, as in the case of processes 1.? and 1. 3, they

arc chained together on a ring. Thus three pointers: up, down and ring,

suffice to define the process structure completely. The up pointers·are of

course redundant, but are convenient for the implementation.

A complex structure such as that in Figure 5 may result from the creation

of a number of subsidiary processes. The processes in Figure 5 have been

numberNl arbitrarily to allow a clear description of the way in which the

pointers are arranr;ed. Note that the user need not be o.ware of these pointers;

they are shwon here to clarify the manner in which the multiple proc('ss mechanlsm

is implemented.

A process may d.estroy one of its subsidiary processes by executing the

iippropr'; nte instruction. For obvious reasons this operation is not legrl.l if

the process beinE', destroyed itself has subsidiary processes. It is possible

10

to find out what processes are subsidiary to nny given one; this permits (J

process to destroy an entire tree of sub-processes by reading the tree from

the Lop down nnd destroying it from the bottom up.

11.

The operations of creating and destroying processes arc entirely separate

from those of sta~tinv, ann stopping their execution, for which two more operations

are provided. A process whose execution has been stopped i.s said to be susl'!'nded.

To assure that these various processes can effectively work together on

a common task, several means of interprocess communication exist. The first

alJm.,s the controlling process to obtain the current status of each of its

subsidiary processes. This status information, which is read into a table by

the execution of the appropriate system instruction, includes the current state

vector and operating status. The operating status of any proc;css may be:

1. runninG

~). dismissed for input-output

3. terminated for memory violation

4. terminated for illegal instruction yiolation

5. terminated by the process itself.

A second instruction allows the controlling process to become dormant until

one of its subsid.iary processes is sllspended. This can occur in the follovring

three ways:

1. because of a memory violation

? because of an illegal instruction violation

3. because of self-termination

Interactions described. above provide no method by which a process can attract

the I:'.ttention of another process ,.,hieh is pursning an independent course. 'Phis ~Rn

1w done with a pror;rwil interrupt. I\ssoe if1.ted with each P"'occss is a ''O-bH

i lltcrr1lpL masl\. If:J mns1\: bit j s sc l;, the process may 1lnder c0.rtai.n (!unlli t ions

(to be dEscribed below) be :i.nterrupted; i.e., n transfer to n. fixed address will

12.

be simulated. The prol~rrun will presumably have at. this fixerl Address the location

of Il suhroutine r.Hpnble ot' de:!ljnr; with the interrupt nnd returning to the

tnterrupted computation afterwards. This mechanism is fllnctionully almost

identical to many hardware interrupt systems.

A process may cause an interrupt by deliverin~ the number of the interrllpt

to the appropriA.te instruction. The process cf.l.using the interrupt continues

undisturbed, but the nearest process which is on the same level as the one

causing the interrupt or above it in "the hierarchy of processes and which has

the appropriate interrupt armed will be interrupted. This mechanism provides a

very flexible way for pror.esses to interl),ct with ellch ot.her without wasting any

time :in the testine of flags of similm' frlvolous HctivUies.

Iuterrupts may be caused not only by the explicit nction oC processes, but

131so "by the occurrence of severa.l special conditions. The occurrence or a memory

violntj.on, Rttempted execution of an illegal instruction, nn unusual input-

output condition, the termination of e subsidiary pror.ess, or the intervention 'of

13 user nt a console (by pushing a reserved. 111ltton) all m~ly cause unique interrupts

(H they have been previously armed). In this way n process may be nctifiecl

conveniently of any unusual conditions associated with other processes, thc!

process itself, or a console user.

The memory assignment algorithm discussed previollsly is slightly modified

jn the presence of multiple processes. \fuen a process is activated, one of three

options may be specified:

(a) assign new memory to the process entirely independently of the

controlling process

(b) assle;n no new memory to the process. Any attempt to obtain new

memory will enuse 11 memory violation

(c) if the process attempts to obtain new memory, SCM upward through

the process hierc"~chy until the topmost process is reached. If at

any time during this sc~n a. process is found for which the address

causing the trap is legal, propDgate the memClry assigned to it down

through the hierarchy to the process causinc; the trap.

Option (c) perml ts a process to be started with B. G1l11set of memory F.lnd

13.

lilt':r 1,0 rca.cqui re some of the memory which was not I~iven to it initlally. This

f'('l'tllrf? 1 r: i.mportant lH~enl1BC the amount of memory ass l:r,necl to 11 proeess influences

the' opernt Inrr, eff'i c i ency of the system :md thus the speed wi. th which i.t will

be ~hle to respond to teletypes or other real time devi.ces.

14

THE INPUT-OUTPUT SYSTEM

The user machine has a straightforwnrd but unconventional set of input­

output instructions. The primary emphasis in the design of these instructions

has been to make all input-output devices interface identically with a program,

and to provide as much flexibility in this common interface as possible. Two

advantages result from this uniformity: 1) it becomes natural to write programs

which are essentially independent of the environment in which they operate and

2) the implementation of the system is greatly simplified. To the user the

former point is of course the important one.

It has been common, for example, for programs written to be controlled from

a teletype to be driven instead from a file on, let us say, the drum. There

exists a command which permits the recognizer for the system command language,

and all of the subsystems to be driven in this way. This device is particularly

useful for repetitive sequences of program assemblies and for background jobs

which are run in the absence of the user. Output which normally goes to the

teletype is similarlJ' diverted to user files. Another application of the

uniformity of the file system is demonstrated in some of the subsystems notably

the ~ssembler and the various compilers. The subsystem may request the user to

specify where he wishes the program listing to be placed. The user may choose

anything from paper tape to drum to his own teletype. In the absence of file

uniformity each subsystem would require a separate block of code for each

possibility. In fact, however, the same input-output instructions are used for

all cases.

The input-output instructions communicate with files. The system in turn

n.ssociates files with the various phYSical devices. Progrruns for the most part,

therefore, do not have to account for the peculiarities of the vnrious actual

devices. Since devices differ widely in chnrncteristics ~md behavior, the

flexihility of the operations IlVnilable on files is clearly critical. They

must ranp:e from sinv.le-character input to the output of thousands of words.

A file is opened by ~ving its name as an argument to the appropriate

instruction. Programs thus refer to all files symbolically, leaving the details

of physical loc:1.tion 1md organization to the system. If authorized, a program

may refer to files belonr;in~ to other users by supplying the names of the other

users as well as the file name. The owner of a file determines who is authorized

to access it. The reader may compare this file naming mechanism with a more

sophisticated one [l~)], bearinrr, in mind the fact that file names can be of any

lenr:th and can be mnnipulated (as stri!1p;s of characters) by the program.

Access to files is in general either sequential or random in nature. Some

devices (like a. keyboard-display or a card reader) are purely sequential, while

others (like a disk) may be either sequentially or randomly accessed. There are

accordingly two ma,ior I/O interfaces to deal with these different qualities.

The interface used in conjunction with a given file depends on whether the file

was declared to be a random or a sequential!.!!!:.. The two rna,jor interfaces ate

each broken down into other interfaces, primarily for reasons of implementation.

Althour;h the distinction between sequential and ra.ndom files is great, the sub­

interfaces are not especially visi.hle to the user.

Sequential Files

The three instructions CIO (character input-output), WIO (word input .. output),

and BIO (block input-output) are used to communicate with a sequential file. Each

instruction takes as an operand a ~ number. This number is r,iven to the

program when it opens a file. At the time of opening a file it must be specified

whether the file is to be rend from or written onto. Whether any given device

associated with the file is charact.er-oriented or word-oriented is unimportant;

the system takes care of nIl necessary character-to-word :1.ssemhly or word-to­

charaeter disassembly.

16

There are actually three separnte, full-duplex pAysical interfaces to devices

in the sequential file mechnnism. Generally these interfaces are invisible to

pro~rruns. They exist, of course, for reasons of system efficiency and becfmse

of the Wfl..y in which some devices are used. The interfaces nre:

(1) character-by-character (basically for low-speed, character­

oriented devices used for man-machine interactions)

(2) buffered block I/O (for medium-speed I/O applications)

(3) block I/O directly from user core (for high-speed situations).

It should be pointed out that there is no particular relation between these

interfaces and the three instructions CIO, WIO and BIO. The interface used in

a given situation is n function of th(~ device involved, and sometimes of the

volume of data to be transmitted, not of the instruction. Any interface may be

driven by any instruction.

Of the three sub-interfaces under discussion, the last two are straight­

forward. The character-by-character interface is, however, somewhat different

and deserves some elaboration. Devices associated with this interface are

generally (but not necessarily) used for man-machine interaction. Consider

the case of a person communicating with It program by means of a keyboard-display

(or a teletype). He types on the keyboard nnd the information is tr.msmitted

to the computer. The program may wish to make an immediate /'esponse on the display

screen. In mn.ny cases this response will consist of an echo of the Srune

ch:lracter so that the user has the feeling of typing directly onto the scree:1

(or onto the teleprinter).

So that input-output can be carried out when the prof~ram is not actually in

main memory the character-by-character input interface permits programs 11 choice

of a number of echo tables; it further permits pro{r,rams a choice of I';rade of

service by permittinG them to specify whether a given character is nn attention

17

(or bref1.k) ch~.rl'l.cter. Thus, for example, the prol~rmn may specify that each

character typed is to be echoed immediately and that all control characters

nre to result in activation of the pror~rnm re~n.rdless of the number of characters

in the input buffer. J\lternatively, the pror;rmn may specify that no characters

are echoed and every chara.cter is a break character. By changing the speci­

fiCfJ.tion the pror;rnm can obtain an appropriate (and varying) grade of service

without putting undue load on the system. Figure 6 shows the components of the

character-by-character interface; responsibility for its operation is split

between the interrupt routine called when the device signals for attention

rmd the routine which processes the user's I/O request.

The advantlige of the full-duplex, character-by-character mode of operation

is considerable. The chliracter-by-character capability means that the user

can interact with his program in the smallest possible unit -- the character.

Furthermore, the full-duplex capability permits, among other things: (1) the

program to substitute characters of strings of characters as echoes for those

received, (2) the keyboard and display to be used Simultaneously (as, for

example, permitting a character typed on a keyboard to pre-empt the operation

of a process. In the case of typing information in during the output of

information, a simple algorithm prevents the random admixture of characters

which might otherwise result), and (3) the ready detection of transmission errors.

Instructions are included to enable the state of both input and output

buffers to be sensed and perhaps cleared (discarding unwnnted output or input).

Of course it is possible for a program to use any number of authorized physical

devices; in particular this includes those devices used for remote consoles. A

mechanism is provided to permit output which is directed to a given device to be

copied on all other devices which are output linked to it (and similarly for

i.nput). This is useful when communication amonr; users is desired and in numerous

18

other situations.

The sequential file has a structure somewhat similar to that of un ordinary

maetape file. _ It consists of a sequence of logical records of arbitrary length

and number. On some devices, such as a card reader or the teletype, a file may

have only one log.ical record. The full generality is available for drum files,

which nre the ones most commonly used. The logical record is to be contrasted

with the variable length physical record of magtape or the fixed length record

of n. card. Instructions are provided to insert and delete logical records or

increase or decrease them in length. Other instructions permit the file to

be "positioned" almost instantaneously to a specified logical record. This

~ives the sequential file greater flexibility than one which is completely

unaddressable. This flexibility is only possible, of course, because the file

is on a random-access device, and the sequential structure is maintained by

pointers. The implementation is discussed below.

When reading a sequential file CIO and WIO return certain unusual data

configurations when they encounter an end of record or end of file, and BIO

terminates transmission on either of the conditions and returns the address

of the last word transmitted. In addition, certain flag bits are set by the un­

usual conditions, and an interrupt may be caused if it has been armed.

The implementation of the sequential file scheme for auxiliary storage

is illustrated below in Figure 7. Information is written on the drum in

256-word physical records. The locations of these records are kept track of

in 64-word index blocks containing pOinters to the data blocks. For the file

shown, the first logical record is more than 256 words long, but ends in the

second ~6-word block. The second logical record fits in the third 256-word

block and the third logical record -- in the 4th data block -- is followed by

an end of file. If a file requires more than 64 index words, additional index

19

blocks are cha.ined together both forward and backward. Thus in order to access

information in the file it is necessary only to know the location of the first

index block. It may be worthwhile to point out that all users share the some

drum. Since the system has complete control over the allocation of space on

the drum, there is no possibility of undesired interaction among users.

Av::d In.ble space for new data blocks or index blocks is kept trnck of by a

bit table, illustrated in Figure 8. In the fip;ure each column represents one

of the 7;' physical bnnds on the drum allocated for the storap;e of file information.

Each row represents one of the 64 Z56'-word sectors around a band. Each bit in

the table thus represents one of the 1+,608 data blocks n.vailable. The bits are

set when a block is in use and cleared when the block becomes available. Thus,

if a new data block is required, the system has only to read the physical

position of the drum, use this position to index in the table, and search a row

for the appearance of a O. The column in which a 0 is found indicates the

physical track on which a block is avnilable. Because of the way the row was

chosen, this block is immediately a.ccessible. This scheme has two advnntae;es

over its rJ.lternative, which is to chain unused blocks together:

(1) it is easy to find a block in 1m optimum position, using the

algorithm just described

(2) no' drum operations are required when a new block is needed or an old

one is to be released.

It may be preferable to assign the new block so that it becomes accessible

immediately after the block last asslr;ned for the file. This scheme will speed

up subsequent reading of the file.

Random Files

Aux] li:rry storaf~e files can also be treA.ted as extensions of core memory

rather than :tS sequential devices. Such files a.re c::tllerJ random files. I, r'..nrlom

20

file differs from a sequential file in that there is no logical record structure

to the file and that information is extracted from or written into the random

file by n.ddressinp, a specific word or block of words. It may be opened like

A. sequential file; the only difference is that it need not be specified as fln

output or an input file.

Four instructions are used to input and output words and blocks of words

on a random file. To permit the random file to look even more like core memory,

an instruction enables one of the currently open random files to be specified as

the secondary memory file. Two instructions, LAS (load A from secondary memory)

and SAS (store A in secondary memory) act like ordinary load and store instructions

with one level of indirect addressinG (cf. Figure 9) except of course that the

da.ta are in a random file instead of in core memory.

Random files are implemented like sequential files except that end of

record indicators are not meaningful. Although as many index blocks are used up

~lS required by the size of a random file, only those data blocks which actually

contain information will be attached to a random file. As new locations are

accessed, new data blocks are attached.

Subroutine Files

Whereas it makes little sense to associate, say, a cn.rd reader with a

random file, a sequential file can be associated with any physical device in the

system. In addition a sequential file may be associated with a subroutine. Such

a file is called a subroutine file, and the subroutine m~v thus be thought of

as a "non-physical" device. The subroutine file is defined by the address of

a subroutine to~ether with information indicating whether it is an input or

an output file and whether it is word or character oriented. An input operation

from a subroutine file causes the subroutine to be called. When it returns, the

21

contents of the A register is taken to be the input requested. Correspondingly,

an output operation causes the subroutine to be called with the word or character

being output in A. A subroutine is completely unrestricted in the kinds of

processing it can do. It may do further input or output and any amount of

computation. It.may even call itself if it preserves the old return address;

Recall that for sequential files the system transforms all information

supplied by the user to the format required by the particular file. Hence the

requirement thllt the user, in opening a subroutine file, must specify whether

the file is to be character or word oriented. The system will thereafter do all

the necessary packing and unpackinr,.

Subroutine files are the lor,ical end-product of a desire to decouple a

program from its environment. Since they can do arbitrary computations, they

can provide buffers of any desired complexity between the assumptions a program

has made about its environment and the true state of things. In fact, they

make it logically unnecessary to provide an identical interface for all the

input-output devices attached to the system; if uniformity did not exist, it

could be simulated with the appropriate subroutine files. Considerations of

convenience and efficiency of course militate against such an arrangement, but

it sUGI~ests the power inherent in the subroutine file machinery.

SUMMARY

The user machine described above was designed to be a flexible

foundation for development and experimentation in man-machine systems.

The user has been given the capability to establish configurations of

multiple processes, and the processes have the ability to communicate

conveniently with each other, with central files, and with peripheral

devices. A given user may, of course, wish only to use a subsystem of

the r:eneral system (e. g., a compiler or a debugging routine) for his

particular job. In the course of using the subsystem, however, he may

become dissatisfied with it and wish to revise or even rewrite the

subsystem. The features of the user machine not only permit this

activity but considerably alleviate some of its onerous aspects.

22

ACKNOWLEDGMENT

The software portion of the system waS designed and written in

part by Mr. L. Peter Deutsch, who is entitled to equal credit with the

authors Cor the i'dens in this paper. Mr. TJa.rry Barnes IIlso contr ibuted

sif~nit'ic;ultly to the finn.l result.

23

24

BIBLIOGRAPHY

25

[l?] R. C. Daley and P. G. Neumann, "A General-purpose File System for

Secondary. storage," Proc. AFIPS Cont'., vol. Z1, Part I, pp. 21 ~- 229,. 1965.

[13] J. H. Saltzer, "Traffic Control in a Multiplexed Computer System,"

MAC-TR-30, M. I. T., Cambridge, Mass. (JUly 1966).

TTY
INTERFACE

TELETYPES

FIG. 1: Conf:i.guration of Equipnent

PAGE
o
I
2
3
4
5
6
7

16K VIRTUAL CORE

6
13
8
o
o
9
10
3

MAP

PAGE
o
I
2
.:3

II
12
13
14
15

.:32K REAL CORE

(n) Relation between virtual and real
memory for a. typical map.

o 2;] ,..,

1101100 I I O-IOI~

[OfOI~
o • • .e

~~~~~_?ITOO_~_1 0 I 0 I 1001 

(b) Construction of' a renl TlIemory 
address. 

VIRTUAL EFFECTIVE ADDRES3: ~46'54n 

MAPPING REGISTER 5: 11.8 

REiAD-ONLY BIT: OFF 

FIG. 2: The Hardware Memory Map 



PAGE 

0 SHARED B..I 4 

PRMTE 

2 PRI\ATE 2 

3 8L6 8 

4 6 

0 

6 9 

7 LNASSIQ\fD 0 

16K VIRTUAL 1v£fv1CRY PROCESS 
MAP 

ENTRY BLOCK 

I M3 
2 M4 
3 MS 
4 SMTJ 
5 SMT4 
6 SMT2 
7 MI2 
8 SMT6 
9 SMT3 
10 0 

PRIVATE t-.£M­
ORY TABLE 

FIC. 3: LR.yout of virtual memory for a typical process 



PMT 1 PMT 2 SMT 

1 M3 1 SMT1 1Ml 
? Ml~ 2 SM'l5 ~ Ml6 
3t{) 3 r~ 3 M2 
4 SMT1 4MB 4 M10 
5 SM!".J, 5 M9 5 M11 
6 SM!'2 6 SM!'2 6M6 
7 Ml? rr M13 
8 sMT6 8 SMT3 
9 SMT3 9 M11~ 

10 0 10 Ml'j 

:ft'IG. 4· Process and. memory configurv.tion for two users. (The 
processes are numhered for each user and a.re :r.'epre­
sented by their pseudo-mapping re~isters. Memory 
hlocks arc Identified by ,irum addresses, whi(~h ~rc 

wr'i tten M1, M2 .•• ) 



PIG. ): H:if:rtlrclly of Processes 



J . 

1 

[OUlPUl BLfTER I 

r OU~ PUl INn RflI-"I lJ [ 
\-L-'rm;::- _}_J 1- l&r5 .~ 
- _. . ".,' _. . -1 """""M \ 

r 1\ r J - '~~:~:;~~~f~llii]··· 

FIG. 6: The ,character-oriented interface 



I 
II 

FIG. 7: Index blocks and pointers to data olocks. 



72 BITS 
-. 

I I I I I I I I -
I I I I I I I I I I 

I I I I I I I I I I I I I I 

64 WORDS I I I I I I I I I I 
I I I I I I I I I 

I I I I I I I I I I I 

I I I I I I I I 

I I I I I I I 

FIG. R: Bit table for :lllocntion of spa~e on the ururn. 



M:! in Memory 

LD}\* J\DDR LAS I\DDR 

ST!\* ADDR 8M3 

I Address IncLrllclion 

600 I LAS 14Jo 
, 
; 

14,)0 lG31tc) 
, 
i 

! 16 )1+'5 I 1?)~')6'( I 
I 

Effect: 1234r)6'( -+ A 

(b) 

Fir:. 9. Load and store from m,'1in Ilnd secondnry memory. 

(,'1) Instrl1ct ions. (b) J\ddl'es:;in,r~. 


	001
	002
	01
	02
	03
	04
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34

