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Foreword

UNIX started life as an operating system for technical or scientific
users, and following its adoption as the basis for the Open System
operating environment, it has now progressed to become a general
purpose operating environment for business applications. By com-
bining UNIX and computer systems based on industry standard
Personal Computer hardware, solutions based on Open Systems are
now becoming increasingly popular in an ever-expanding range of
applications. This move into new territories has been largely as a
result of the desire by large scale users of computers to build complex
systems out of standard low-cost components and to break free from
the restrictions created when they have a single source provider for
their computer hardware.

The Open Systems standards established by organizations such as
X/Open and the commitment to these standards from software pro-
viders such as SCO, have meant that highly powerful systems that
are capable of running the most sophisticated applications can be put
together at previously undreamed of costs to match the users’ needs
exactly.

This flexibility to produce powerful and sophisticated systems has
created a need for special software device drivers to be produced to
run the ever-increasing range of special hardware products available
for standard PC hardware. There are already many hundreds of
device drivers available for SCO UNIX and yet every week many new
requirements appear. These might be for a new point-of-sale ter-
minal, a new type of tape back-up drive, a new graphical display
card, or maybe for an intelligent telephone exchange!

We at SCO are totally committed to the Open System process, and
through this process, to providing our customers with the freedom to
put together the very best systems that precisely meet their needs.
The development of special device drivers for incorporating the
optimum components into a system is a key element in our approach
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Foreword

to Open Systems. I believe that this excellent book based on training
courses delivered by the Santa Cruz Operation provides you with an
insight into the requirements for producing a device driver for SCO
UNIX and I hope that it will encourage you to take on the challenge of
developing many new device drivers.

Lars Turndal
Senior Vice President and Managing Director
The Santa Cruz Operation Ltd



Preface

Welcome!

This book is written for students of computer science and systems
programming professionals. Our objective is to offer information
about writing UNIX device drivers and the operation of the UNIX
kernel that is practical and accessible.

On successful completion of this book you will be able to write a
variety of device drivers. If you have completed the exercises set at
the end of each chapter, you will have built a UNIX kernel, written a
device driver for a mouse, experimented with interrupts, written a
simple line discipline, written a Stream driver and modified a disk
driver. You are likely to have a better grasp of operating system
functions and the inside of UNIX than most of your colleagues in the
computer industry.

Although it is rare for most systems programmers to have to write
device drivers, the investigation of this topic can pay many divi-
dends. It yields an understanding of the following areas:

(1) The structure and mechanisms of an Operating System.
(2) Device drivers and the concept of device independence.
(3) Computer and peripheral hardware architecture.

To provide an accessible environment, the exercises are designed
for SCO UNIX. At the time of writing the current release is SCO
UNIX Release 3.2 Version 4.0. The exercises are set at the end of each
chapter with hints and model answers to aid the reader. They can be
readily adapted to operate on other vendors’ versions of UNIX after
consultation with the appropriate implementation-specific documen-
tation. Although we use UNIX as the basis for this book, many of the
principles that we discuss extend to other operating systems.

The information that we have distilled into this book has tradi-
tionally been fragmented in many different places: computer science

ix
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text books, hardware manuals, software guides and the minds of a
few developers who may be difficult to contact or to understand.

Conventions

Throughout the text of the book, when UNIX system calls or com-
mands are mentioned, they will be followed by an abbreviation in
parentheses to indicate where they are documented in the SCO UNIX
manual set. For example nm(CP) indicates that the nm command is
documented under Commands: Programming (CP) in the Program-
mer’s Reference Manual.

UNIX commands, system calls and function names will be in
constant width type, as will code extracts, structures and variables.

Where UNIX commands are listed they will be preceded by a
prompt that will indicate whether the command needs to be typed as
root (#) or any user ($).

A convention that we have not adhered to is the use of troff (CT) in
the preparation of this book. We used Microsoft Word!

Prerequisites

In order to gain the most from this book it is necessary to have
experience of using the C programming language, including an
understanding of the use of libraries, system calls, pointers and
bitwise operations. In order to attempt the exercises it will be neces-
sary to have experience of developing programs using UNIX and
access to a machine running SCO UNIX. Some knowledge of the
issues relating to UNIX system administration would also be useful
but is not essential.

Choice of operating system

UNIX is supported by nearly every major mainframe, mini and micro-
computer manufacturer in the world. Since its appearance in the early
1970s it has been adopted by Altos, Amdahl, AT&T, Bull, Cray, Data
General, DEC, Fujitsu, HP, IBM, ICL, Intel, MIPS, Motorola, NCR,
Olivetti, Prime, Sequent, Siemens/Nixdorf, Sun, Tandem, Tandy,
Unisys, Wang and many others.

SCO XENIX and latterly SCO UNIX have proliferated throughout
industry and academia, running on many different manufacturers’
computers and in greater quantities than any other variant of UNIX.
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The latest estimates run at 500000 SCO licences sold, most of which
are multi-user licences. SCO UNIX will run on some of the least
expensive Intel i386 and 1486 microprocessor-based computers. It is
likely that if you have a Personal Computer in your office that is
running UNIX, it will be running SCO UNIX.

Device drivers for SCO XENIX and SCO UNIX differ in some areas.
We have chosen SCO UNIX as a basis for the examples in this book,
as most developers are working with SCO UNIX rather than XENIX.

How to use this book

At the end of each chapter there is a short quiz. We recommend that
you use these to test your understanding of the chapter. There is also
a practical exercise at the end of each chapter. Answers to quizzes and
exercises are provided in separate chapters at the end of the text.

If you attempt the quizzes and the exercises, you are more likely to
retain more of what you have read, gain a deeper understanding of
the topics that we have discussed, derive more satisfaction and have
an opportunity to learn about related issues through the process of
exploration.

We also suggest that you discard the conventional reverence for
books and annotate the text wherever needed.

Materials required to perform the exercises

If you are going to attempt the exercises, the following materials will
be useful:
(1) A copy of SCO UNIX and the SCO UNIX Development System.

(2) A computer based on either the Intel i386 or 486 microprocessor,
with the above software installed.

(3) A copy of the SCO UNIX Device Driver Writer’s Guide, which
contains more information about SCO-specific details.

(4) For a number of the exercises, you will need a mouse. The model
answers assume that you have a Microsoft InPort Bus Mouse®.
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Fundamentals

Overview

Before we launch ourselves into the midst of writing device drivers it
is advisable to revisit some fundamental facts. We will review:

® The definition of a UNIX device driver

Computer hardware architecture

The role of an operating system

The structure of the UNIX operating system

The purpose of a device driver

What device drivers do and what they don’t do
How device drivers communicate with peripherals
An overview of character and block drivers.

The objective of this chapter is to ensure that the reader has an

understanding of the foundation concepts necessary to progress with
the later material. This chapter may be omitted if you feel you have an
adequate understanding of all the above topics.

1.2

The definition of a UNIX device driver

A device driver is a collection of software routines that make up part
of an operating system. It allows the UNIX kernel and user programs
to communicate with peripheral devices.

A UNIX device driver hides hardware device-specific details from

the user and the rest of the operating system. It provides an interface
between the kernel and the device which allows the device to be

1



2 Fundamentals

/etc/init /bin/ls /bin/mail

User programs

Filesystem
management

Memory

. management
Operating system kernel

Device drivers @

Figure 1.1 User programs, the kernel and device drivers.

accessed using the same system calls as those associated with access-
ing a regular file. Figure 1.1 shows device driver modules along with
other parts of the operating system kernel offering services to user
programs.

B R R R T

Computer hardware architecture

For the sake of our discussions computer hardware can be divided
into the Central Processing Unit (CPU), memory, peripheral control-
lers and the peripherals themselves.

Device drivers typically are written by computer manufacturers,
peripheral manufacturers, system integrators and sophisticated end
users with specialized needs. The devices supported by these device
drivers include hard disks, visual display units, keyboards, speakers,
printers and sometimes even the flashing lights on the front of the
computer. All of these need to be controlled by the computer using
sets of software routines called device drivers.

The connection of the CPU to its peripherals is via a component
known as the system bus. This normally takes the physical form of
the system back-plane, a printed circuit board with a large number of
address, data and control lines, joining together most of the cards in
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Terminal

10
i)

Memory

el

Bus

Figure 1.2 The logical structure of a computer.

the computer chassis. Examples of types of bus are the original IBM
PC Bus (known as Industry Standard Architecture, ISA), the
Extended Industry Standard Architecture Bus (EISA), Intel’s Multi-
bus and the IBM Micro Channel Architecture (MCA) bus. Other
examples used on larger machines include the VME bus, the IEEE
Future Bus and a multitude of proprietary designs from many manu-
facturers. The system bus acts as a data highway, linking the CPU,
memory and peripherals. The relationship between these is shown in
Figure 1.2. Although it is useful to be aware of its existence, the
device driver writer rarely becomes involved in the details of the
system bus operation.

Some machines employ a hierarchy of buses, with a peripheral bus
attached to the system bus. This allows larger numbers of peripherals
to be connected to the system and also makes possible the integration
of peripherals that are not directly compatible with the interface used
on the system bus. In these cases the driver writer needs some
knowledge of the bus operation in order to achieve access to these
peripherals.

An example of this is the Small Computer Systems Interface (SCSI)
bus which can be attached to the ISA, EISA and MCA buses as well as
many others. The SCSI bus attaches to the system bus using a host
adaptor, which is addressed in the same way as any peripheral
controller would be. This adaptor manages access to the SCSI bus,
which usually takes the form of a cable, connecting up to seven SCSI
controllers. Each controller may support up to eight devices. In this
way a single slot in the system bus yields connections with up to 56
peripherals.
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1.4

The role of an operating system

The operating system of a computer manages the hardware resources
and provides an environment that allows users’ application programs
to run.

The kernel, as its name suggests, is at the centre of the operating
system and performs the following low-level functions:

® Input/Output (I/O) from and to peripherals
® Management of memory
® Process creation and scheduling

® File system management.

It also provides a set of entry points into the kernel code that allow
programs to make use of facilities such as device access and process
creation, through a system call interface. A system call is a request for
action from the kernel, such as ‘read some bytes from a file’.

In the same way that one might consciously decide to blink one’s
eyes without having to consider the speed, start and stop point of
each eyelid, an application program such as a spreadsheet will make a
system call to display a character on the terminal, without consider-
ing issues of what bit patterns are to be placed on the terminal’s
communications line and determining the state of the peripheral
controller.

1.5

The structure of the UNIX operating system

The UNIX operating system is divided into two classes of software:
the routines that make up the kernel and the programs that make up
a broad set of utilities.

The utilities consist of hundreds of separate executable programs.
One can subdivide the utilities into two separate groups. The first is
quite remote from the workings of the low-level operating system, for
example, the spelling checker, the sort program or the hangman
game. The other group is closely linked to the operation of the kernel.
It includes the programs /etc/init, /etc/login and /bin/sh. Despite
the fact that these programs are fundamental to the use of the system
(they allow users to log in, type commands and log out again), they
are distinctly separate from the kernel code and operate through the
same system call interface as the hangman program. Figure 1.3
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/etc/init
User programs
prog read(S)
Library
1|1 LR LA
JIL
System call entry
_________________ ¥

Filesystem
Operating system kernel management

Disk device driver

\

Figure 1.3 The /etc/init program making a system call in order to read the
disk.

illustrates the request for kernel services from the read(s) system call
in a user program.

During the period that the CPU is executing the code of a user
program or utility it is said to be in user mode. When it executes code
within the kernel (the /unix binary) it is in system mode.

When programmers make a system call in their code, they are
setting up a request for services from the operating system. If we
examine the assembly language instructions generated by compiling
a program which makes a single system call, we see the following
sequence.

A system call such as open(S) consists of a short library routine.
This library routine switches the flow of execution from the instruc-
tions in the user’s executable file, for example a.out, over to instruc-
tions in the operating system kernel, by performing the following
operations:

(1) Setting up parameters (a file name and a number which signifies
the access mode (read or write) to be used). These are pushed
onto the user program’s stack.
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(2) Executing a special machine code instruction to switch from user
mode into the system call entry point in the UNIX kernel. SCO
UNIX on the Intel i386/i486 CPU uses a call gate machine code
instruction (see the Intel i80386 Programmer’s Reference Manual for
further details). On other CPUs the instruction is commonly
referred to as a ‘trap’. Once this has been executed, the kernel
then takes control, checks the parameters on the user’s stack,
ascertains the system call operation that is required and then
executes the relevant kernel functions. When this has been com-
pleted the kernel returns control to the user’s code.

(3) In the user’s code the call gate is immediately followed by
instructions that test to see if the system call has been suc-
cessful.

In between execution of the call gate (step 2) and the return to user
mode (step 3), many thousands of kernel instructions will have been
executed.

The instructions that implement the open(S) system call are con-
tained within the kernel. The system call mechanism is quite different
from a library call, although from the programmer’s view point there
is little noticeable difference.

System calls and library routines are linked into executable
object files or binaries using the link editor 1d(CP). Library routines,
which are generally made up of many thousands of instructions, are
copied from library archives such as /lib/libc.a and linked with the
library function call in the program to create the object file. For a
system call, the library consists of only a short piece of code that
contains a call gate. As in the case of a library routine, it is copied and
linked with the program; however, the bulk of the code that
implements the system call is not in the library, it is contained in the
kernel.

Device drivers are part of the UNIX kernel. Therefore they cannot
make system calls and do not have the standard set of library func-
tions available to them (such as those within the library /1ib/1ibc.a).
Use of a system call within a device driver would be like using the
front door of a house as an entry point into the kitchen, when you are
already in the living room. Functions such as printf(S), which are
sometimes mistakenly considered to be part of the C language, are in
fact library routines contained within libc.a and hence are not avail-
able for use within kernel code.

Familiar library routine names sometimes reappear within the ker-
nel but this time with different functionality. For example, putc(S)
changes from being a general function to pass characters to a file, to a
mechanism for adding characters to a kernel buffer structure.
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Routines that are provided for the device driver writer are known
as 'kernel support routines’. These routines should always be used to
ensure the portability of the device driver code. Potentially you can
call any routine in the kernel, but if you choose to use undocumented
ones, device drivers may stop working when the routines change
their functionality or disappear in future releases of the operating
system. If all operations are coded explicitly within the source of the
driver, rather than using the documented support routines, the same
problems can occur when kernel structures and mechanisms evolve.
To avoid these problems, the kernel support routines which are
documented in the SCO UNIX Device Driver Writer's Guide should
always be used. These routines are identified in this book as follows:
putc(K).

As UNIX has evolved, larger numbers of support routines are
provided by operating system vendors in order to offer uniform and
sophisticated implementations of functions such as disk partitioning
and screen handling, across ranges of different devices.

The UNIX kernel is a stand-alone executable file. A copy of it
resides in the filesystem and is usually called /unix. Just like any
other program its source can be modified, compiled using the C
compiler cc(CP) and linked using 1d(CP). It is written in a mixture of
C and a small amount of assembly language code. Less than 1% of
the code is written in assembly language.

Users rarely have access to all the source code of the operating
system. It is usually jealously guarded by the lawyers of its authors
and only released at great expense, although traditionally, academic
institutions receive UNIX source for a token sum. However, certain
parts of the source code escape these restrictions and are ‘freely’
available to the UNIX user (albeit copyrighted). These parts include
nearly all of the header files which define the data structures used
within the kernel (the majority of these are contained in the
/usr/include/sys directory on most UNIX systems) as well as source
files containing definitions of configurable values such as process
table size, file table size and user-defined device drivers.

The kernel can be investigated with standard UNIX development
utilities such as the debugger adb (CP) and the name list display utility
nm(CP). The command

# nm -p /unix

can be run on a system to list the address, type and name of all the
routines and variables used within your kernel. adb(CP) can be used
to disassemble your driver routines, as well as modify constants and
variables. You will find this very useful when you come to do any
practical work.
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The purpose of a device driver

- -

A device driver is a set of routines linked into the kernel which are
used as part of the mechanism to translate the general file handling
system calls open (S), read(8), write(S) and close(S) into commands
that will operate the specific peripheral device being accessed.

The system call interface and most of the kernel routines below it
are not hardware specific, but the device driver is. The device driver
provides an interface between the low-level parts of the kernel and
the hardware.

One of the great strengths of UNIX is the simplicity of being able to
use the same file handling primitives (read(S) and write(S)) on any
type of file. These files can be regular files, directory files, pipes,
symbolic links or the special device files that control peripherals such
as disks, terminals and tapes. A device is seen by the users as an
extension of the filesystem, so that just as they open(S) and read(s) a
text file, they may use the same system calls to access a peripheral. As
a result of this a utility such as od(C), the octal dump program, can be
used to examine text or binary files as well as the contents of a disk
partition or the data arriving on a communications line. This gives
great flexibility to the programmer and simplifies the building of what
would otherwise be complex and unportable software.

When accessing regular files and directories, the following com-
mand might be used:

$ od /etc/passwd

A layer of software between the system call interface and the disk
device driver provides the filesystem management functions. This is
almost completely bypassed when special device files are accessed
directly:

# od /dev/root

The modularity of the UNIX kernel combined with the increase in
compatible computer hardware, based on common chip sets, means
that once the initial CPU-specific implementation of UNIX has been
completed (often by the chip vendor or an industry consortium), the
bulk of the programming task involved in porting UNIX to a new
machine is the writing or modification of device drivers.

Part of the device driver writer’s task is to hide the complexities of
the peripheral from the kernel and hence the user. If programmers
had to write the code to operate a specific type of disk at the register
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level every time they developed a general ledger accounting
application, then their task would be complicated many times over. It
would also be very difficult to port any software that was finally
produced to other machines that did not use the same hardware
interface to control the disk. Some large computer manufacturers
have done very well offering solutions similar to this despite these
disadvantages.

There is a trade-off however between using a simple standard
system call interface to a peripheral and accessing the device at a
lower level. The trade is in the area of performance. This is best
illustrated in the world of MS-DOS, first developed for the Intel 8088
processor. Some application writers have been tempted to access
display devices at a low level, bypassing the machine’s Basic Input
Output System (BIOS) and writing directly to the registers of a device
in order to gain maximum control and performance. Often this is in
order to access display devices such as a VGA graphics card. Pro-
grams written in this way are less portable and may not run on
another manufacturer’s PC. These applications are also more difficult
to transfer to other operating systems. Machines such as the IBM PC
which were based on comparatively simple processors without mem-
ory management units permitted the accessing of a machine’s hard-
ware directly from application programs. This practice is becoming
less common. With the advent of the Intel 80286 processor, the CPU
has a protected mode which can be used selectively to control access
to a machine’s hardware.

In protected mode a mechanism is enforced which is built on four
levels of privilege. Level 3 is the least privileged and under normal
circumstances it is not possible to use the processor’s I/O instructions.
At level 0 it is possible to use all of the processor’s instructions and
have access to all of the machine’s memory. These levels of privilege
are like the layers of an onion, as shown in Figure 1.4. SCO UNIX
uses only two levels of privilege. It disregards the middle levels and
runs user processes at level 3 and the kernel at level 0. These two
levels correspond to user mode and system mode. These modes have
no relationship with the root and user account privileges or file
permissions which are implemented in software by the kernel.

On an Intel 8088-based machine, running MS-DOS, a user can use
an assembly language routine to read directly from a device. That
same routine, if it were executed on an Intel 80286 machine running
in protected mode, would fail to complete its execution. The CPU
would detect that a protected instruction was about to be executed
whilst the CPU was at privilege level 3 and would generate an
exception. This would cause the CPU to switch to system mode to
deal with the exception and the offending process would probably
be terminated. These restrictions on the use of I/O instructions are



10

Fundamentals

Level 3
User process code & data

Level 2
Unused

Level 1
Unused

Level O
Kernel code
& data

Figure 1.4 Privilege levels on SCO UNIX.

necessary when the hardware is being shared in a multi-user environ-
ment, where users need to be protected from the actions of them-
selves and others on the system.

1.7

SR R R R

Demarcation between dnvers and the rest of the
kernel

If we examine the events following a read(S) system call, we will be
able to appreciate the areas of demarcation between a device driver
and the rest of the kernel. When a program executes a read (S) system
call to retrieve data from a file, a hierarchy of kernel functions are
invoked. Eventually these result in device driver routines being
executed.

In response to a read(s) system call the kernel will look up the
current offset of the file pointer from the file table and map this offset
to the location of the disk block within the filesystem containing the
data.
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User code Kernel code

Application specific General Driver code

open(FILE, O_RDWR);
l pathname to inode
conversion

permissions check
L » hardware startup

initialize driver
data stlructures

\J
read(fd, data, SIZE);
| 5. check current
position

if data in buffer
cache, pass back &
return

set up data
structures that
driver expects

ask driver to read

block
;—-—» check request is
legal

translate to
hardware-specific
parameters

maintain driver
data structures

transmit commands
to device]

]

wait for results
check results and
pass data back

Figure 1.5 Functions performed by the kernel and a device driver.

The kernel keeps copies of recently accessed disk blocks in RAM.
This memory area is known as the disk buffer cache. If there is a copy
of the desired block in the disk buffer cache, the kernel copies the
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data from the cache back to the user and so completes the read
without using the device driver or accessing the disk hardware. If
there is not a cached version of the block, the kernel must call the
driver.

Parameters will be set up by the kernel so that the driver will know
how far from the beginning of the filesystem to start reading the disk,
how much data to read and where in memory to put the data. The
device driver code then takes over.

The driver validates the request, determining whether the block is
actually contained on the disk and whether the size of the request is
reasonable. This depends on whether the requested data extends past
the end of the division, partition or disk that is being read. Divisions
and partitions divide a disk into separate areas. This allows more than
one operating system (each in its own partition) with a number of
filesystems (each in their own division) to reside on the same disk.
Partitions and divisions are implemented by the device driver. They
are not physical attributes of a disk.

Before the request can be passed to the disk controller, the block
number provided by the kernel must be translated from an offset
within a filesystem to a physical location on the disk. The block
number received from the kernel does not include offsets for the
partitions and divisions, neither does it take into account any bad
tracks. The disk driver must deal with all of these issues.

Having translated the block number, a request is formulated in
terms that the disk controller understands. It will probably need to be
told the cylinder, sector and track being accessed and how many
sectors to read.

Once the driver has programmed the disk controller with the
request, control returns from the driver back up to the kernel. The
kernel waits for the transfer to be completed by the controller which
will send an interrupt when the data has been transferred into the
buffer cache. The kernel then copies the data from the buffer cache
out to the user process and the read(S) system call returns.

The functions performed by the kernel and device driver are illus-
trated in Figure 1.5.

1.8

R e e

i

G .

Communicating with devices
A device driver communicates with hardware devices in a similar way

that PC programmers do when they bypass the BIOS. It outputs
instructions directly to the controller’s registers.
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The procedure is similar to that which a customer might use to
communicate with a waiter in a Chinese restaurant. Predefined num-
bers are used to signify what is required. At the restaurant, the
numbers are defined in a menu and transmitted by the customer to
the waiter, indicating for instance that number 96 (sweet and sour
pork) is required. When dealing with the device, the numbers and
their meanings are detailed in a hardware specification (often harder
to obtain than a menu). The device driver outputs these numbers into
the controller’s registers, indicating that a disk read is required, for
example. The command ‘read the disk’” might be specified by placing
the value 96 into the disk controller’s command register. There will
also be numbers used to specify where on the disk the read is to be
made and how much data is to be read and where to put the data in
memory.

Passing these commands between the device driver and the
peripheral is achieved by one of two methods, depending on whether
the device has been designed to be I/O mapped or memory mapped.

I/O mapped transfers

Accessing I/O space and the devices that are mapped within it
requires use of specific machine instructions. These instructions pass
commands and data to and from the I/O space address locations.
They do not work with ordinary memory address locations. In the
case of the Intel-based machines, these instructions are called IN and
OUT and can normally be executed only by the UNIX kernel running at
privilege level 0. I/O space is a special address space which is limited
to 64K on the Intel iX86 and is logically separate from physical
memory. The SCO UNIX kernel only allows access to the first 4K of
I/O space.

Having the two address spaces removes the possibility of
peripheral addresses conflicting with those used for program storage.
Processors such as the Motorola 68000 series do not offer the facility
of a separate I/O address space and use memory mapped I/O instead.

Memory mapped transfers

Memory mapped I/O means that the CPU’s general purpose instruc-
tion set can be used to pass commands and data to and from memory
locations which are linked to the registers of a device. Memory
mapped I/O can be used on Intel-based machines despite the fact that
they have a separate I/O space. This is illustrated in Figure 1.6.
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Address Memory space 1/O space Address
OXFFFFFFFF
Applications
Graphics
device
Disk pOI’t OXOFFF
OCR device
Terminals
Kernel Printer
0x00000000 Mouse 0x0000

Bus

Figure 1.6 Diagram of /O and memory mapped devices.

Memory mapped /O allows the hardware integrator to tie specific
physical memory addresses to the registers of a peripheral. This has
the advantage that a full complement of assembly language instruc-
tions is available to the programmer to manipulate these registers.
Typically, devices such as graphics displays are memory mapped so
that programmers may easily modify bit patterns in memory, which
are then transformed into related patterns on the display screen by
the graphics device.

1.9

Controllers

It is important to distinguish between devices and controllers. Device
drivers usually communicate with a controller rather than directly
with the device itself. A controller interprets the commands sent to it
by the device driver, often using an embedded processor that
executes code stored in firmware. There are a number of standard
controller command sets. A device driver written to use a particular
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command set (for example SCSI) can communicate with controllers
produced by any manufacturer that conforms to that standard. This
gives the user a choice of supplier for device controllers and mini-
mizes the number of device drivers that need to be written for dif-
ferent peripherals.

The controller commands are translated into signals which are
passed to the device by the controller over an electrical interface.
Examples of different controller/device interfaces are Storage Module
Device (SMD) and Seagate Technology 506 (5T506). This standardiza-
tion allows different controllers to be used in combination with a
variety of devices.

Successive generations of controllers are becoming more intel-
ligent, which usually makes the task of writing device drivers for
them more straightforward. Unfortunately, the intelligence of the
controller is sometimes wasted when it does not fit the method of
operation expected by the operating system.

Hence a device driver is a layer of software that is positioned
between two other layers of code. The upper layer is the kernel’s
system call and filesystem management routines and the lower layer
is the controller’s firmware.

In order to communicate with a controller the device driver uses
three types of data:

® Commands and parameters passed to the controller via command
registers.

® Data moving to and from the controller via data registers.

® Status information received from the controller’s status registers.

These registers are provided at predetermined 'O or memory
addresses where this information can be read or written (see Figure
1.7). These addresses may be configurable via jumper connections on
the controller board.

Some devices map many registers to the same address. The map-
ping can be done in a number of ways. One method (used by a disk
controller found in the IBM PS/2 machine) is for the controller to map
two different registers to a single address, depending upon whether
the location is being read or written. The controller can sense this by
examining the system bus to see if a read or write is being performed
by the CPU. If the address is written to, the command register is
mapped, if the address is read from, the status register is mapped
(see Figure 1.8). Given that you will only write commands and only
read the status of a device, this works well. The problem with this
approach to hardware design is that it makes drivers more difficult to
write and understand.
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I/O space
OXOFFF Mouse controller
Command register
|1 _
] Status register
- | ]
\ Data register
N ]
0x0000

—

Figure 1.7 Each register has an address in order to allow the CPU to read
and write its contents.

The main disadvantage with registers sharing addresses becomes
apparent when a device is memory mapped and an instruction that
the programmer assumed only writes to the location actually per-
forms an implicit read as well. Unexpected results will occur in this
situation when using C’s bitwise operators such as |= and &=, which
are frequently used to set and unset bits within variables, or any
operator which performs an implicit read.

An example of this can be seen if you increment the value held in a
command register which is also mapped to the same address as a
status register. Common sense dictates that this would result in a
write. However, after consideration it becomes apparent that the
memory location will need to be read first in order to know what
value is to be incremented. If the initial value in the command register
is 2 and the status register is set to 41, the result of incrementing the
command register would be to set it to 42, not 3 as one might have
wanted. The solution to this problem is to use a static variable in the
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Memory
OXFFFFFF Controller
Command register
T N/ ——
—1 Status register
D S ] Peripheral
0x00000

Figure 1.8 Registers can be mapped into place depending upon the oper-
ation being performed.

driver to record the last value written to the command register. It can
be safely incremented and then copied to the command register.

Another complication which often exists is when registers are
switched into place depending upon the value that has been written
to another register. Effectively you have a register selection register,
as well as the actual register that you want to access. The advantage
of this scheme, from the hardware designer’s point of view, is that it
conserves physically mapped locations. This technique is often used
for graphics cards, for example the IBM Video Graphics Adaptor
(VGA), where one may want to have a palette of many colours, each
one programmable to different shades but without having to use up
hundreds of memory locations.

1.10

An overview of block and character drivers

There are two basic types of interface to devices offered to users on a
UNIX system, block and character device files. You can verify this by
typing 1s -1 /dev, which should produce output similar to that
shown in Figure 1.9. The field on the left displays the access permis-
sions of the device files and has either a b or a ¢ to indicate whether
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crw-r--r-- 1 sysinfo sysinfo 7, 0 Jun 26 00:27 cmos
Crw------- 3 bin terminal 3, 1 Aug 16 09:39 console
brw-rw-rw- 5 bin bin 2, 52 Jun 25 04:52 fd0
brw-rw-rw- 1 bin bin 2, 36 Jun 26 00:27 £d0135ds9
brw------- 2 sysinfo sysinfo 1, 23 Jun 25 04:52 hd02
brw-rw-rw- 1 bin bin 2, 64 Jun 25 04:52 install
c-—-r----- 1 bin mem 4, 1 Jun 26 00:27 kmem
Crw-—-—--- 2 bin bin 6, 0 Jun 26 00:27 1lp
crw-rw-rw- 1 root other 43, 0 Aug 14 14:08 pts000
CrW—=====- 2 sysinfo sysinfo 1, 47 Jun 25 04:53 rhdla
b--—-r----- 1 bin backup 1, 40 Bug 9 13:42 root
crw-rw-rw- 1 bin terminal 3, 0 Jun 25 04:52 tty
crw---—--- 1 root terminal 0, 0 Aug 16 09:40 tty0l
CYW=-rwW=rw- 1 bin bin 52, 5 Jun 26 00:27 vga

Figure 1.9 Part of the output from the command ‘1s -1 /dev’.

the device has a block or character interface. The implications of this
categorization represent one of the many hurdles at which most
people fall when trying to get to grips with UNIX device drivers.

Block drivers

Block devices are usually associated with peripherals used to support
filesystems such as disks. They read and write fixed-size blocks of
data. A large number of kernel support routines are provided to do
buffering, sorting of requests and read-ahead functions that work
with the device-specific driver code.

1.10.2 Character drivers

Character interfaces cover a wide range of drivers. A character inter-
face usually exists for all peripherals supported on the system. A
common misconception of character device drivers is that they only
transfer data one character at a time. In fact transfers can be of a
variable size depending upon the characteristics of the device. There
are no fixed-size transfers of data that are inherent in the character
interface and as a result character device drivers can be written for all
peripherals.

Serial drivers

The most obvious category is that of serial drivers used to interface to
asynchronous terminals. These use additional device-independent
kernel support functions which provide a lot of the more complex but
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standard functionality associated with terminal modes such as
character erase and keyboard signals.

STREAMS drivers

The STREAMS interface became available when UNIX System V
Release 3.0 was introduced. It provides a framework for implement-
ing and using software modules within a driver. STREAMS is most
commonly used to implement layered protocol stacks to support use
of communications devices. It allows the modularization of drivers
that were previously very large, complex and hence difficult to main-
tain and port to other systems. The architecture offers the potential
flexibility of easily combining various different communication pro-
tocols (such as TCP/IP running over X.25) that were not originally
designed to work together.

Raw drivers

Another category of character device drivers are those which are
associated directly with block device drivers. These provide an alter-
native mechanism for accessing the same physical device as the block
driver. They bypass the buffering mechanism provided through the
block driver and allow variable-sized transfers directly between a user
process and a device such as a tape. Raw drivers also offer device-
specific control of the peripheral to the user through the ioctl(S)
system call. This invokes additional routines in the driver which
implement functions such as formatting or retensioning a tape.

Pseudo-drivers

Pseudo-device drivers are unique in that they do not talk directly to a
peripheral device but offer an entry point to the kernel in order to
gain access to a kernel facility. An example of this is the /dev/null
device driver which acts as a benevolent black hole in the operating
system, absorbing any output that is sent to it. Another example is
/dev/kmem which allows programs to access kernel virtual memory.

Other drivers

Most other drivers are also implemented as character devices.
Devices such as mice and Ethernet cards which have a variable data-
unit size and do not use the standard kernel support routines
associated with filesystems or terminals fall into this category.
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1.11 Summary

R R

In this chapter we have reviewed some fundamental information
about the architecture of a computer system and the UNIX operating
system that runs on it. We have drawn the lines of demarcation
between user processes and the kernel, kernel code and driver code,
as well as character and block device drivers.

QUIZ

To test your understanding of this chapter, try to answer the
following questions.

1.1 Can programmers bypass UNIX device drivers in order to
control peripherals directly?

1.2 The /etc/init program is part of the operating system. Is it
part of the kernel?

1.3 Which file conventionally contains the UNIX kernel object
file?

1.4 Can character device drivers be used to access disks?
1.5 Can a UNIX device driver make system calls?

1.6 Does a disk device driver writer have to implement the
code to perform buffer caching?

EXERCISES

(1) Using nm(CP), examine the names of the routines within the
kernel and locate all of the routines associated with reading.
Hint: The routines will have read in their name.

(2) Using adb(CP), examine the read(s) library routine. How is the
transition made from user mode to system mode?
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Hint: Write a very short C program which has one statement, a
read(S) call, with no parameters. Use adb(CP) on the resultant
executable file. Print the instructions that follow the ‘main’ and
the ‘read” symbol.

Users of systems other than SCO UNIX should use the sdb
debugger instead.
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Overview

Chapter 1 established some of the fundamentals necessary to under-
stand the environment that device drivers work in. This chapter
describes:

® An approach to follow when writing device drivers.

® How accessing a UNIX special device file results in device driver
routines being called.
¢ An introduction to the routines that make up a UNIX device driver.

® Some initial rules to follow when writing device driver code.

The objective of this chapter is to offer readers a methodology and a
foundation of information that will allow them to understand and
write the various types of device drivers described in the following
chapters.

2.2

22
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A methodology for wntmg device dnvers

During this chapter we will introduce a practical, exploratory method
of learning. It is necessary to adopt this approach in order to be
successful when working at the complex level of operating system
internals. Much of the information that is needed is not documented.
This is because of the small target audience for such documentation,
the complexity of the subject matter and its dynamic nature. There-
fore the device driver writer has to adopt a methodology which
moves away from reliance on documentation or consulting local
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experts and relies instead on experimentation, use of source code and
reference to first principles.

Use of operating system source code is an important part of the
methodology that needs to be adopted in order to understand device
drivers. The full source code of the operating system can be expensive
to obtain, but other useful sources of information include:

(1) The header files which contain the definitions of the data struc-
tures used within the operating system.
These are available on nearly every UNIX system which offers
a C compiler. They can normally be found in the /usr/include
and /usr/include/sys directories. Examination of the files in
these directories will pay dividends. We will demonstrate the
use of these files in this chapter.

(2) The source code of other related device drivers.

If the source code supports a device similar to yours, it will
contain useful information about the device, even if it is written
for another operating system. This may include the locations of
registers, how they can be used, comments about problem areas
and idiosyncrasies of the device that might need to be dealt with.

(3) Example device drivers that illustrate how specific types of
devices are normally handled by UNIX.
Some examples are available in this book.

We will now use the discussion on ‘how device drivers are invoked’
to illustrate this practical, exploratory methodology.

)

How device drivers are invoked

The two objectives of this section are:

(1) To give you an understanding of how and when device driver
routines are invoked by the kernel. From this you will gain a
perspective on where the device driver fits within the overall
scheme of things.

(2) To illustrate the process of using header files to understand
kernel data structures and the examination of data held in these
structures using UNIX utilities. This will be achieved through
the use of a tutorial style for the rest of this section.

We will now describe the relationship between the special device
file and the device driver. This will include the mechanism which is
used to translate the reading and writing of a special device file to
physical operations on the peripheral device which it references.
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From the special device file to the inode

The Index Node or inode is the central data structure that holds the
detailed information describing a file. For regular and directory files it
stores the file type, access permissions, ownership, file size, location
of the file’s data blocks on the disk and records of access times. The
kernel reads this structure from the disk when a file is open (S) ed and
uses it to locate the necessary data blocks that the read(s) and
write(S) system calls need to access.

Each UNIX file name has an inode number which is used to index
into an inode list. This list is part of the filesystem structure held on
the disk. Inodes that are currently in use are cached in the inode
table, an array of inodes held in RAM.

A directory is a type of file. A directory entry for a file consists of an
inode number and an array containing the file name. This is true for
all types of file. Many different file names can use the same inode
number. These file names are all linked to the same file. New links are
established with the 1n(C) command or the 1ink(S) system call. The
relationship between directory entries and inode table entries is illus-
trated in Figure 2.1 which shows multiple directory entries linked to
single entries in the inode table.

All of the information necessary for the system to locate the correct
set of device driver routines for a device is stored in the inode
associated with the relevant special device file.

A special device file is distinguished from other types of file by the
contents of the file type member of the inode structure. The special
file type is displayed as either a b or a ¢ in the first column of a
directory listing.

A file’s inode number can be listed using the 1s(C) command with
the -i flag, for example: :

$ 1s -i /dev/console

All this does is format the entry in the /dev directory file. Since all of
the requested information is held in the directory file, the operating
system does not need to access the inode table. If the command

$ 1s -il /dev/console

had been entered, the system would need to use the inode number to
index into the inode table where all the remaining information relat-
ing to the file resides (as a result of this, on heavily loaded systems
you will find that 1s and 1s -i execute much faster than 1s -1).

Special device files can exist anywhere in the UNIX filesystem, but
conventionally they are grouped below /dev.
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/dev directory

/ directory
inode File inode | File
number | name number| name

3 2
2 . 2 .
27 install 3 dev
27 £d40 318 unix
27 £d0135
27 £d0135ds18
572 data
25 console
Inode table
inode Permissions | Links [+ ++| UID | GID | Size
number
» 25 CXW-Iw-rw— 2 0 2 3,1
» 572 B L —— 1 21 | 50 900
27 brw-rw-rw- 4 0 2 2,60
28 brw-rw-rw- 3 0 2 2,61
- 2 drwxr-xr-x | 15 2 2 592
I 3 drwxr-xr-x 7 0 19 2832
318 ————fe———— 1 2 20 1499200

i‘igure 2.1 Diagram showing relationship between directory entries and an
inode.

The ability to have multiple file names linked to the same inode is
often used with special device files in order to designate a particular
device as being the default. For example, in Figure 2.2 the output
from the command

$ 1s -i /dev/fd0* /dev/install | sort

shows that the default devices £d0 and install use the same inode as
/dev/£d0135ds18 (on this particular system it is inode number 27).
This allows us to infer that the default format for floppy disks on this
system is 135 cylinders, double sided, 18 sectors and that the instal-
lation device relies on reading disks of this format. The £40135ds18
notation is a device naming convention peculiar to SCO.

Another application of this facility is to maintain compatibility with
previous names given to devices following name changes. A new
name can be used to access the device whilst the old one remains. In
this way versions of software that explicitly reference the old device
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27 /dev/£fd0

27 /dev/£40135

27 /dev/£fd0135ds18

27 /dev/install
1494 /dev/£d048ds8
1496 /dev/£d048
1496 /dev/£dA048ds9
1516 /dev/£d096ds9
1517 /dev/£d096
1517 /dev/£d096ds15
1518 /dev/£d096ds18
1493 /dev/fd048ss8
1495 /dev/£d048ss9
1609 /dev/£fd0135ds9

Figure 2.2 Example output from the command
1s -i /dev/fd0* /dev/install | sort.

name will still work. An example of this is the special device file for
the cartridge tape unit. These can be examined with the following
command:

$ 1s ~il /dev/rct0 /dev/rmt/0Ob

whose output is shown in Figure 2.3. The -il flag displays the inode
number (first column) as well as the number of file names linked to
the inode (third column). The first device name is used to preserve
compatibility with programs written for XENIX systems, whilst the
second is compatible with the UNIX System V convention.

The numbers 10, 0 taken from the example output in Figure 2.3 are
examples of major and minor device numbers. Each character/block
device driver has a unique major device number associated with it.
The major and minor device number are separated by a comma and
are seen in place of the size field which is displayed for regular files
and directories. The way these numbers are used will be explained
later on in this chapter.

Investigating and analysing data structures

In order to get accustomed to the investigative technique required to
understand UNIX, the reader is encouraged to follow the steps out-
lined in this section which confirm the basic information that was
related earlier.

3069 crw-rw-rw- 2 root other 10, 0 Oct 26 12:26 /dev/rct0
3069 crw-rw-rw- 2 root other 10, 0 Oct 26 12:26 /dev/rmt/0b

Figure 2.3 Output from the command 1s -il /dev/rct0 /dev/rmt/0b.
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0000220 00011 25714 12337 14133 27745 00108 00000 00000
013 0 r 4 1 0 5 7 a 1 1 N0 N0 \O \O ©\O
0000240 00025 28515 29550 27759 00101 00000 00000 00000
031 \0 ¢ o n s o 1 e \0 \NO \O \NO \O \O ©\O
0000260 00026 29285 28530 00114 00000 00000 00000 00000
032 \0 e r r o] r \0 \0 \0O \O \O \O \O \O O
0000300 00027 25702 12592 13619 29540 14385 00000 00000
033 W0 £ & 0 1 3 5 4 s 1 8 \0 \0 \0 \O

Figure 2.4 Selected output from the command od -dc /dev | more showing
the directory entries for /dev.

The same data as obtained using the 1s -i command can be
retrieved by examining the directory file directly, using the octal
dump program od(C) . You can do this by typing

$ od -dc /dev | more

This will display the contents of the /dev directory file with the
position or offset in octal in the leftmost column and the contents
listed in decimal and character notation (see Figure 2.4). In order for
one to make sense of numeric data like this it is necessary to under-
stand the structure declaration that is used by the operating system to
manipulate the data. The format of the directory entry for the original
System V filesystem is held in one of the header files used to build the
kernel (sys/fs/s5dir.h) (see Figure 2.5).

od(cC) displays the position of the data in the file in its first column.
In this case (Figure 2.4) the console entry starts at the (octal) 240th
byte (160 decimal). The inode number is octal 031 or decimal 25. The
first two characters are of the file name and are displayed by od(C) as
decimal 28515. This is equal to binary 0110 1111 0110 0011. The Intel
iX86 processor is byte swapped and word swapped, so the two bytes
need to be reversed and then translated to 8-bit character codes if they
are to be viewed in the correct order. Hence 01100011 equals octal
0143 which equals the ASCII character ‘c’. 01101111 equals octal 0157
or the character ‘0’. The rest of the characters in the string can be
translated in the same way.

#define DIRSIZ 14
struct direct

{

ushort d_ino;
char d_name[DIRSIZ];
b

Figure 2.5 Directory structure declared in (sys/fs/s5dir.h).



28

2.3.2

Getting started

25 /dev/console

Figure 2.6 Output from the command 1s -i /dev/console.

The command 1s -i /dev/console (Figure 2.6) confirms the
information we gleaned using od(C).

Other types of filesystem (such as Berkeley and the Extended Acer
Filesystem (EAFS) offered with SCO UNIX) have a slightly more
complex directory structure. The Berkeley filesystem incorporates
other fields, including one that stores the number of characters in
each file name so that longer file names can be stored.

From inode to device driver code

The structure of the inode as held on disk is declared in (sys/ino.h),
part of which is shown in Figure 2.7. (The types such as ushort used
in this and other kernel header files are declared in (sys/types.h).)
Through this structure the kernel can invoke the device driver
routines associated with the special device file. The di_mode member
indicates whether the inode relates to a regular data file or a special
device file. The permissible types are defined in (sys/inode.h). A
subset of these is shown in Figure 2.8.

If the IFREG bit is set, read and write system calls are routed through
to the regular file handling code in the kernel. Alternatively, if the

/*
* Inode structure as it appears on a disk block.
*/
struct dinode
{
ushort di_mode; /* mode and type of file #/
short di_nlink; /* number of links to file #/
ushort di_uid; /* owner's user id =/
ushort di_gid; /* owner's group id */
off_t di_size; /* number of bytes in file */
char di_addr[39]; /+ disk block addresses */
char di_gen; /* file generation number */
time_t di_atime; /* time last accessed */
time_t di_mtime; /* time last modified */
time_t di_ctime; /* time status last changed */
}.
I

+ The 40 address bytes:

* 39 used as 13 addresses of 3 bytes each.

*  40th byte is used as a file generation number.
*/

Figure 2.7 Lines from the file (sys/ino.h).
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#define IFDIR 0x4000 /* directory */

#define IFCHR 0x2000 /* character special */
#define IFBLK 0x6000 /* block special */
#define IFREG 0x8000 /* reqgular */

Figure 2.8 Lines from the file (sys/inode.h).

IFCHR or IFBLK bits are set, system calls are routed so that they result
in device driver routines being called. In this case they will transfer
data to and from the device rather than a regular file.

The device driver calls are routed through two arrays of structures,
which contain pointers to functions. These functions are the routines
inside the device driver that have been created by the device driver
writer. The array bdevsw, otherwise known as the block device switch
table, is used for calling block device driver routines. The other array
cdevsw, or the character device switch table, contains pointers to the
character device driver routines. These data structures are defined in
(sys/conf.h). The relevant section is shown in Figure 2.9. The arrays
cdevsw and bdevsw are indexed by the major device number, which is
obtained from the inode of the special device file being accessed.

/*
+ Declaration of block device switch. Each entry (row) is
* the only link between the main unix code and the driver.
* The initialization of the device switches is in the file conf.c.
*
/
struct bdevsw {
int (xd_open) ();
int (*d_close) ();
int (=d_strategy) ();
int (*d_print) ();
char +d_name;
struct iobuf *d_tab;
yi
extern struct bdevsw bdevsw(];
/*
* Character device switch.
v/
struct cdevsw {
int (*d_open) (
int (*d_close)
int (*d_read) ()
int (*d_write) ();
int (*d_ioctl) ();
struct tty =d_ttys;
struct streamtab *d_str;
char +d_name;

)
0O;

)i
)

}i

extern struct cdevsw cdevswl[];

Figure 2.9 Lines from the file (sys/conf.h).
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open("/dev/rhd00", O_RDWR);

!

struct dinode {
-di_mode = IFCHR|perms;

di_addr[] = 1,0;
} )
Y
cdevsw[ ]=
{/*0%/ sioopen,| sioclose, sioread, siowrite, sioioctl,
/*1%/ hdopen, | hdclose, hdread, hdwrite, hdioctl, |
/%2%/ bmopen, | bmclose, bmread, bmwrite, bmioctl,
}

The open (S) of the character device file /dev/rhd00 results in the call to driver
routine hdopen

open("/dev/£d40", O_RDWR);

struct dinode {
di_mode = IFBLK|perms;

di_addr[}] = 1,0;
}
Y
bdevsw( 1=
{/*0%/ ctopen,| ctclose, ctstrategy,
/*1%/ fdopen,| fdclose, fdstrategy, |
}

The open(s) of the block device file /dev/£d0 results in the call to driver routine
fdopen

Figure 2.10 Diagram showing relationship between the inode and an entry
in cdevsw and bdevsw.

The di_addr array, which is a member of the dinode structure, is
normally used to store pointers to the data blocks of regular files. In
the case of special device files, the first three bytes of di_addr are used
to store the major and minor numbers associated with the device in
question. Figure 2.10 demonstrates how a combination of the identity
of the system call being executed, plus the information held in the
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inode being operated on, is used to access the required device driver
routine.

In summary, the kernel uses a combination of the IFCHR or IFBLK
bits along with the major device number (all found in the special
device file’s inode) and the type of operation which is being per-
formed (for example read(S) orwrite(S)), to locate the correct device
driver function to call.

The kernel is able to invoke the selected function through use of a
statement such as:

(*cdevsw([major (dev) ] .d_write) (dev);

The dev variable is taken from the di_addr member of the inode for
the special device file being accessed. Since cdevsw is indexed by the
major number, the macro major (defined in (sys/sysmacros.h)) is
used to mask and shift out the lower order bits which make up the
minor device number.

This mechanism allows calls to device driver routines to be inde-
pendent of the device driver name. As a result, kernel routines which
access devices can be made device independent. The device drivers
for these devices can be substituted without affecting the code that
calls them. An example of this is the kernel code which implements
the UNIX virtual memory system. The routines within this code
implement swapping and paging. In doing this they need to write
memory pages directly out to disk. The disk device.driver can be
varied using this calling mechanism without modifying the virtual
memory code in the kernel, thus allowing a modular approach to the
development of the operating system.

Both the major and minor numbers are passed on to the device
driver code as a parameter. The major number selects which device
driver is to be called. The minor number is often used to modify the
device driver’s behaviour. Typical examples are:

® Indicating which partition on a disk is being mapped by the special
device file.

¢ Indicating which line on a terminal controller is being accessed.

® Specifying whether a tape unit needs to rewind when the device is
closed.

The interpretation of the minor device number is at the device driver
writer’s discretion.

A special device file needs be created for each value of the minor
number that is understood by the device driver. In this way it is
possible for all valid minor number values to be passed to the device
driver. Using the last example, there would be a special device file
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that causes the tape to be rewound when it is closed and an alterna-
tive special device file, with the same major number but a different
minor number, which would not initiate the rewind upon closing.

To summarize, it is the major device number that controls which
device driver is invoked and the minor device number which modi-
fies its behaviour. The device driver is independent of any file sys-
tem, file name, or inode number.

24

The device driver/kernel interface

The device driver/kernel interface consists of both the device driver
routines that are called by the kernel and the kernel support routines
that are called by the device driver.

The kernel expects certain routines to be provided by the device
driver writer. The identity of the routines that need to be provided
depends primarily upon whether the device requires a character
interface and/or block interface.

Each device driver model has a set of kernel support routines which
it can use. For instance, serial device drivers which are used to
interface to terminal lines can make use of kernel support routines
that implement the command line editing facilities expected by ter-
minal users.

2.5

Routines within a device driver

Certain routines must be present to enable the device driver to be
called by the kernel. These routines are the entry points to the device
driver. The device driver model dictates which entry points are
required. From the (sys/conf.h) file, listed in Figure 2.9, one can see
most of the possible entry points that can be provided for each type of
device. These are explained individually later in this section.

It is not always necessary to provide all of the possible entry points
for a device driver. The exceptions fall into two classes. One is that
the function may be invalid for the hardware being supported, for
example, provision of a routine to service write(S) calls as part of a
mouse device driver. The second possibility is when the routine does
not need to be provided for the device to operate but the operation is
still a reasonable one for a user process to request, given that it is not
aware of the device-specific requirements. An example of this might
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be a close routine for a parallel printer driver. It might well be that no
operation is required by the hardware when a process has finished
sending output to the printer.

In both cases no routines need to be written for these functions.
Stub routines to fill in the bdevsw and cdevsw entries are provided
automatically by SCO’s link_unix(ADM) script when the kernel is
built. The procedure for doing this is explained in Appendix A,
Section A.3.

The device driver writer must decide upon a common prefix for all
of the key device driver routines (for our purposes this is denoted as
XX). The prefix should be from two to four characters long. The
remainder of the routine name depends upon the function that the
routine provides to the operating system.

A brief summary of the function of the routines that need to be
written for block, character and raw devices follows. More detailed
explanations are provided in the following chapters.

Character device drivers

Character device drivers should provide some or all of the following
routines:
XXinit
Performs hardware and memory initialization at system initializa-
tion time.

XXopen
Performs checks and initialization when the special device file is
open(S)ed.

XXclose
Performs any operations necessary when the device becomes inac-
tive.

XXread, XXwrite
Called as a result of a user’s read(S) or write(S) system call. They
verify the requests, program the controller and transfer the data.

XXioctl
Invoked following an ioctl(S) system call to implement functions
not possible through the system call interface used with regular
files.

XXhalt
Called when the system is halted in order to implement any shut-
down functions necessary for the peripherals.
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XXintr
Called following an interrupt generated by a peripheral device.
Interrupts will be fully explained in Chapter 4.

Block device drivers

The block device driver should provide some or all of the following
routines:

XXinit, XXopen, XXclose, XXintr, XXhalt
These routines have the same role as their character device name-
sakes.

XXstrategy

This routine is central to the operation of block and raw device
drivers and must be provided. It is called indirectly as a result of
both read (S) and write(S) requests, as well as by other parts of the
operating system when it needs to access disk (for example, the
virtual memory system, when paging is performed). It should
validate a request and sort it into a queue of other requests waiting
to be sent to the device.

Raw device drivers

The raw device driver supplements the routines provided for the
block device driver with the following;:

XXread, XXwrite
These routines perform some basic checks and then indirectly call
the XXstrategy routine written for the block interface to the same
device.

XXioctl
Invoked following an ioctl(S) system call. In the context of raw
device drivers, the device-specific functions that this implements
are often concerned with the formatting of disks and tapes or
writing of partition tables to disks. ’

2.6

R R R,

Guidelines for writing device drivers

So far, we have established an approach to take when writing device
drivers, explained how device driver routines are called and outlined
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the basic function of the principal routines. We will now cover some
fundamental guidelines to follow when writing these routines.

Virtual and physical memory

Virtual memory (VM) systems offer two main features:

(1) Locational independence of a process’ instructions and data.
(2) A pageable address space.

Most UNIX implementations use VM when accessing kernel and user
memory. It is useful to be aware of the way VM management oper-
ates when working at the device driver level.

For applications programmers VM management is transparent.
However, since the VM system is controlled by the kernel, this facility
is not completely transparent to the device driver writer. Although
the bulk of the VM management is done by other kernel modules,
device drivers, by virtue of the fact that they are part of the kernel,
must cooperate with the VM system.

One of the features of VM is locational independence. This allows
code to be written without hard-wiring the physical addresses that
are used to store data and instructions in RAM. There is a virtual to
physical address translation performed by the Memory Management
Unit (MMU) associated with, or built into, the CPU, as in the case of
the i386/i486 processors.

The 1386/i486 processors have a sophisticated memory management
system which makes a distinction between three types of address:

(1) Logical or virtual.
(2) Linear.
(3) Physical.

User processes use logical addresses which are expressed as offsets
from the start of a memory segment. Memory segments are used by
the operating system to separate different types of memory (instruc-
tions, data, stack, shared data, kernel and user memory). These
segments form the basis of the protection mechanisms used by the
processor and the operating system. Their properties are defined by
segment descriptors. The base address of a segment is added to a
offset portion of a logical address to produce the second type of
address, a linear address. This is translated into a physical address
using the data structure depicted in Figure 2.11. This translation
allows the memory that a segment uses to be distributed throughout
the system, but to appear to user processes as if it were contiguous.
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Linear address

L31 22|21 12|11 q

Page directory Page table Data page

Physical address

L PDBR

Figure 2.11 Linear to physical address translation.

The linear to physical address translation also allows for sections of
the memory space to be held on disk rather than in RAM. This
enables the sum of the address spaces of processes in the system to
exceed the amount of available RAM.

The three main structures used in the linear to physical address
translation are the page directory base register (PDBR), which on SCO
UNIX points to a single page directory, the page directory itself and
the page tables. A page directory can contain up to 1024 pointers to
page tables and each page table can contain up to 1024 pointers to
pages, otherwise known as page frames. Page frames, tables and
directories are all 4K in size. A 32-bit linear address consists of three
parts. The most significant ten bits index into the page directory to
select a page table to access. The next ten bits index that page table, to
select a page frame to access. The last twelve bits provide the offset
into the page to point to the byte which is being addressed.

This system allows support for a maximum of four gigabytes of
virtual address space. The data structures themselves are initialized
by software, but the translation is performed automatically by the
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MMU hardware. The hardware mechanisms that perform the transla-
tion are fully described in Intel’s 486 Programmer’s Reference Manual.

The initial page tables and segment descriptors are set up for the
kernel when it is read into memory at the time the system is boot-
strapped. Once the system is running, page directory entries are
remapped to include the address space of the currently running
process.

One important difference between user and kernel virtual
addresses with SCO UNIX is that kernel code and data are perma-
nently resident in RAM, whereas only a subset of a user process will
normally be resident. User processes themselves are not aware of
this. Whenever they access a page that is not resident in RAM their
execution is suspended, the relevant code or data is then read in from
disk by the kernel and the program is restarted without any knowl-
edge of this activity. This page fault recovery is implemented through
a combination of MMU hardware and kernel software.

The kernel support routines used to copy data between
peripherals, kernel and user memory take account of this added
complexity and ensure that the user memory of the currently execut-
ing process is accessible.

Other implementations of UNIX such as IBM’s AIX allow portions
of the kernel to be paged in on demand. This is a more complex
solution but does enable larger kernels to run without using up so
much physical memory.

As mentioned earlier, although the VM accessed by user processes
appears to be contiguous in memory, this is not the case when
dealing with the same data at the physical level. The memory pages
containing a 16Kb array might physically reside out of sequence and
with gaps in between them. This is not something that we normally
need to worry about when writing device driver code unless the
virtual addressing mechanism is bypassed, using, for example, a
DMA controller. DMA controllers don’t use the CPU and its MMU
when transferring data directly from peripherals to physical memory.
This potential problem is normally resolved either by using kernel
support routines to allocate physically contiguous memory buffers or
by breaking up DMA requests into smaller transfers that do not cross
page boundaries. The SCO kernel provides a number of support
routines to allocate both physical and virtual memory; these are
described in the next section.

If a device driver needs to access physical memory, the device
driver writer must arrange for a given virtual address to map onto the
desired physical location in memory, for example a video buffer. This
is because all addresses used by device drivers must be virtual
addresses. This is enforced by the i386/i486 CPU when it operates in
protected mode. In other words, all memory references use the
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segment and page table translation mechanisms described above. The
mapping of a virtual address to a physical address can be done using

‘the sptalloc(K) routine described in the following section.

Memory management routines

When writing user programs, memory is allocated either auto-
matically or explicitly by the programmer. This section deals with the
mechanisms available for explicitly controlling memory within a
device driver. Chapter 4’s section on the system stack deals with the
issues relating to automatic allocation of memory.

One of the key differences between writing device drivers and
writing application programs is the lack of the familiar system call
facilities with which to manage memory. When writing device
drivers, the brk(S) system call and its associated libraries (malloc(S))
are not available. In their place are a number of other routines.

SCO UNIX uses the following routines, which are summarized
here in order for you to gain an initial idea of the facilities available.

memget
Syntax:

memget (npages)
int npages;

® Allocates npages of physically contiguous memory, suitable for
DMA transfers.

® Provides storage which is not at a predetermined position in mem-
ory.

® Should be called at initialization time from XXinit.

® Memory cannot be deallocated.

db_alloc
Syntax:
#include (sys/devbuf.h)

db_alloc(dv)
struct devbuf =dv;

® Provides storage which is not at a predetermined position in
memory.
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® Provides physically, contiguous storage suitable for use with
DMA.

¢ Cannot be called from XXintr.
® Memory can be deallocated.

® devbuf.count is used to specify how many bytes are required. The
other pointers in devbuf describe the start and end point of the
memory allocated and the current positions in the buffer for read-
ing and writing.

db_free
Syntax:

#include (sys/devbuf.h)
db_free(dv)
struct devbuf #dv;

® Returns memory allocated by db_alloc(K) to a pool.

db_read
Syntax:

#include (sys/devbuf.h)

db_read(dv, va, count)
struct devbuf #dv;
caddr_t va;
unsigned count;

® Used to transfer count bytes from physical memory (allocated with
db_alloc(K) and described by dv) into user virtual address location
va.

db_write
Syntax:

#include (sys/devbuf.h)

db._write(dv, va, count)
struct devbuf +=dv;
caddr_t va;
unsigned count;

® Used to transfer data from a user virtual address to a physical
address.
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sptalloc
Syntax:

sptalloc(pages, mode, base, flag)
int pages, mode, base, flag;

Used to allocate pages of temporary kernel virtual storage.

Can be used to address physical memory at a specific location
(base) for memory mapped I/O.

Cannot be called from XXintr.

The addresses returned are accessible to the kernel and all user
programs.

sptfree
Syntax:

sptfree(va, npages, freeflg)
char *va;
int npages, freeflg;

® Returns the npages of memory allocated at address va by
sptalloc(K) to a pool.

These SCO-specific routines are documented in the SCO UNIX
Device Driver Writer’s Guide. There is an explanation of how these
functions operate in the context where they are used in later chapters.
Different UNIX versions tend to vary in the routines that they provide
to implement memory management.

Programming in a multi-tasking environment

This topic is one of the more‘challenging areas to understand, so we
will introduce it at this early stage so that you have a chance to think
about it at some length. It will be covered in greater detail in Chapter
4 when interrupts are discussed.

Programmers do not have to consider how UNIX achieves multi-
tasking when writing user application code. This is because at the
user level they have no direct control over how multi-tasking is
performed. Despite the fact that their processes coexist with many
others on the system they are prevented from corrupting other



Guidelines for writing device drivers 41

processes” memory space. This is not the case when writing code at
the kernel level.

Time-sharing

The CPU has a number of processes to execute. Details of these
processes are held on a run queue. The CPU executes each process in
the run queue one at a time. It cycles between each of them so rapidly
that all users gain the impression that they are being given dedicated
access to the CPU. This impression is maintained provided the run
queue does not get too long and so long as other significant delays are
not incurred, such as waiting for a large number of disk accesses to
complete. '

If there is a substantial amount of processing work to do in order to
complete the execution of a process, the CPU runs it for a fixed period
of time. The process will continue to run until the end of this period or
until it needs to wait for I/O. Following this, the CPU suspends
execution of the current process and continues execution of the highest
priority process in the run queue. The CPU returns later on to resume
execution of the original process, if this is required, repeating this cycle
continuously. Most UNIX systems implement time-sharing in a way
similar to this.

Complications become apparent when one considers scheduling
algorithms, prioritization of processes and their order on the run
queue.

Context switching

A process’ context consists of all the data structures required to record
its state so that it can be restarted at a later time. It includes, among
other things a copy of the CPU’s registers, the kernel stack, an entry
in the process table and a data structure called the U-area.

The process table structure is defined in (sys/proc.h). It contains
an entry for every active process on the system, holding key details
such as process ID, user ID, CPU time consumed, pointers to other
key structures relating to the process and all the information neces-
sary for scheduling. The process table is permanently resident in
memory. The U-area, which may not always be memory resident,
contains additional per-process information which is used whilst the
process is running. The U-area is defined in (sys/user.h).

When the CPU moves from executing the code of one process to
another this is known as a context switch. At this time details of the
current process’ context are replaced by those of the process about to
be run. The act of context switching consumes CPU time; this is
known as the context switching overhead.
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Data integrity

When executing in user mode a process can normally only reference
variables that are in its own address space. When a process is execut-
ing in system mode this is not the case. The kernel will update many
variables which are shared by all processes and occur only once in the
system. An example of this is the linked list structure that is used to
manage the buffer cache. This data structure is shared by all pro-
cesses. Another example would be the list of vacant swap locations
on disk. If the kernel partially modifies one of these structures and
does not complete the operation before moving on to something else
(because the end of a time-slice occurs), these structures would be
corrupted. As a result the kernel is written with the assumption that it
will only give up control voluntarily. In other words, the operating
system will only allow a context switch to occur when the kernel is
ready, once all the data structures are coherent.

Device drivers for real-time and multi-processor systems require
the use of more complex techniques in order to ensure the integrity of
shared data structures. These centre around use of atomic locks and
semaphores to guard access to all shared data structures. This can be
extremely complex. Device drivers for multi-processor systems are
often run by a single processor in order to simplify their develop-
ment.

Sleep(K) and wakeup(K)

A context switch will occur when a process in system mode relin-

quishes control of the CPU voluntarily. This is performed by calling
the sleep(K) kernel support routine (not to be confused with the
sleep(S) system call). A sleep(K) is usually called by a process when
it is waiting for an event to occur and is therefore unable to continue
to run. This could be a physical event such as a character being
received from a keyboard or a resource such as memory space becom-
ing available.

When giving up control of the CPU, sleep(K) sets a field in the
process table entry for the current process to enable it to be woken up
at some future time. This field is known as the Wait Channel (p_wchan
in (sys/proc.h)). Although its value can be arbitrary, typically it is
equal to the address of a global data structure which relates to the
pending event. An example might be the address of a buffer that is
being filled by DMA from a disk.

The kernel routine wakeup (K) is used to put all the processes sleep-
ing on a given Wait Channel back on the run queue. Once back on the
run queue a process is ready to continue execution. The Wait Channel
that a process is sleeping on can be seen under the WCHAN heading
of aps -1 listing.
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# crash
dumpfile = /dev/mem, namelist = /unix, outfile = stdout
> proc
PROC TABLE SIZE = 100
SLOT ST PID PPID PGRP UID PRI CPU EVENT NAME FLAGS
0s 0 0 0 0 0 0 do0a51dc sched load sys nwak
1s 1 0 0 0 39 0 e0000000 init load
2s 2 0 0 0 0 0 d004el08 vhand load sys nwak
3s 3 0 0 0 20 0 40048170 bdflush load sys nwak
4s 174 1 174 0 30 0 d007d378 sh
5 s 15162 173 0 0 39 7 e0000000 sleep load
6 s 173 1 0 0 30 8 d007d628 sh load
7s 40 1 0 0 26 0 d006bed48 logger load
8 s 148 1 148 0 26 0 d00965f2 cron load
9s 176 1 176 0 30 0 d007da30 sh
10 s 156 1 156 0 26 0 d0096dd4 lpsched load
11 s 6257 1 6257 0 28 0 4A006bfb4 getty
> trace 11

STACK TRACE FOR PROCESS 11:

STKADDR

FRAMEPTR FUNCTION POSSIBLE ARGUMENTS

e0000cd0 e0000cfd4 swtch (d006c154,1c,d006c154,d006c160)
e0000cfc e0000d24 canon (d006c154,d006c154,4008a3f4,d0095£60)
e0000d2c e0000d4c ttread (d006cl54,d008ffac,64013)

e0000d54 e0000d60 vidread (d008ffac,d0099ae8,60d84,d0010£fc2)
0000468 e0000d78 cnread (6,1,d008a3f4,d0099ae8)

0000480 e0000db4 s5readi (d0099ae8,e0000e38,d0073838,0)
e0000dbc e0000de8 rdwr (1)

e00004f0 e0000df4 read (d0069314,402360,0,4031c8)

e0000dfc e0000e2c systrap (e0000e38)

e0000e38 sys_call from 00004ed8

ax: 3 cx: 0 dx: 737c bx: 0 f1: 202 ds: 1f fs: 0
sp:e0000e68 bp:7ffffba4 si: 401fa0 di: 402360 err: 3 es: 1f gs: 0
> quit
#

Figure 2.12 Output from crash showing getty (M) sleeping.

sleep(K) gives up its thread of execution by calling the process
scheduler, a routine called swtch. This can best be seen by running
the diagnostic tool crash(ADM). The process table can be inspected
and a slot in the table can be used as a reference point to examine the
system stack of any process. Figure 2.12 gives an example of a session
where the stack trace of one of the getty (M) s on the system is exam-
ined.

The output from this stack trace shows a variety of functions that
are currently on getty(M)’s system stack. At the base of the stack is
the routine that handles the entry point into the system through the
system call interface (systrap). The getty (M) process made a read(S)
system call on one of the console’s multiscreens. The cn console
device driver’s read routine (cnread) has been called. This then called
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the video-adaptor keyboard read routine (vidread), which in turn
called the routine ttread(X). This called the routine canon(K) which
waited for characters to arrive. As there were no characters to be read
the process then slept, using the address of a data structure that
related to the input buffer of the console device as its Wait Channel.
When the characters arrive, the kernel will wakeup(K) all processes
that are sleeping using that address. Chapter 5 will deal more fully
with the operation of terminal drivers, but this example serves to
illustrate the way in which control of the CPU is relinquished by the
device driver.

Process priority

Sleep(K) has a second parameter which specifies the priority level at
which the process will sleep (p_pri in (sys/proc.h)). This sets the
process’ priority relative to other processes on the system. This pri-
ority is used when the process is competing for the CPU, once it has
been woken up. The priority of a process is shown in the PRI column
of the output from ps -1.

One implication of the design of the standard UNIX kernel is that if
device drivers do not relinquish the CPU whilst waiting for events,
the time-sharing system will not function correctly. An example of
this would be the implementation of long delays using spin loops,
where a process stays on the CPU for many milliseconds preventing
other processes from running. The appropriate action is to sleep(K)
rather than to spin in these cases.

A context switch can occur in the following cases:

® Whenever a process calls sleep(K), waiting for an event or a
resource.

® Whenever the CPU returns from system mode to user mode (at the
end of exceptions, interrupts and system calls).

Critical sections of code

Having described the circumstances under which a context switch
can occur we can apply that knowledge to provide a facility which is
key when writing operating system code, that of guarding critical
code and data structures.

Often there are operations that need to be atomic or indivisible.
These operations are often centred on objects such as:

® Shared data structures
® Variables used in test-and-set operations
® Device registers.
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static int no_entry=0;

while (no_entry)
sleep (&no_entry, WDPRI);
no_entry = 1;
/* START Critical Code which sleeps */
/* read disk */
/* compute change */
/* update structure on disk */
/* END Critical Code */
no_entry=0;
wakeup (&no_entry) ;

}

Figure 2.13 Example of guarding critical code.

These can potentially be manipulated by other parts of the same
device driver, executing in the context of another process. The two
basic types of critical section are:

(1) Code containing a sleep(K) which allows other processes to
execute and potentially access shared objects.

(2) Code which accesses objects which are manipulated by an inter-
rupt routine. Guarding these critical sections will be discussed in
Chapter 4.

An example of the first situation is the update of a partition table on
disk. This may require several operations: a read, some computation
and a write to update the structure. This series of operations is likely
to result in the process sleeping. If another process then attempts to
perform the same operation, corruption may well occur. The solution
is to guard critical sections of code like this with flags. An example is
shown in Figure 2.13. Despite the fact that the test and set of no_entry
is spread over two statements it is still indivisible. This is because the
code is executed in system mode and therefore cannot be pre-empted
by another process.

There is potential for a context switch in this critical code section,
since the reading of the disk could involve a call to sleep(K). Any
other process that tried to invoke this code whilst the update was
being done would sleep on the address of the no_entry variable. The
Wait Channel shown by ps(C) would be equal to the address of the
no_entry variable. The sleeping process or processes would be
rescheduled once the update was completed. In this way the device
driver writer can control the execution of critical sections of the device
driver code.
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2.7

Summary

This chapter has described how to understand the operation of the
kernel through use of software tools and header files and how device
driver routines are invoked. We then detailed the main routines that
need to be written for character, block and raw device drivers and
covered some guidelines to follow when writing operating system
code. These included:

® Memory allocation

e Use of sleep(X) and wakeup (K)
® Process priority

® Guarding critical code.

Our next step will be to look at a specific type of device driver, the
simple character device driver.

QUlIZ

To test your understanding of this chapter, try to answer the
following questions.

2.1 Can character device drivers be used to transfer blocks of
data?

2.2 What are the first three bytes of the di_addr array used for
in the inodes of special device files?

2.3  Which pieces of information are required in order to locate
the device driver routine that is required to service a
system call?

2.4 What is the major device number used for?

2.5 - What is the minor device number used for?

2.6 What are the two circumstances under which a context
switch can take place?
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EXERCISE

Write a simple device driver.

The objective of this exercise is for you to write your first device
driver. All the device driver needs to do is to print messages to the
console announcing when each of its functions has been called.

It should be a character device driver made up of a number of short
routines (one line each). There should be a routine to service the
open(S), close(S), read(S), write(S) and ioctl(S) system calls. Each
of the routines should be named using the three letter prefix dum.

The routines should announce that they have been called through
use of the kernel support routine cmn_err (K) which is fully docu-
mented in the SCO UNIX Device Driver Writer's Guide. For this
exercise, only two arguments need to be supplied. The first might be
the symbol CE_CONT. This is defined in (sys/cmn_err.h). The second
should be the string that you want printed when the routine is called.
The cmn_err (K) routine is similar to the routine printf(K) which is
commonly available on most systems.

Test the device driver by using simple UNIX commands with I/O
redirection from the shell. These commands should read from and
write to the special device file which corresponds to your device
driver. The stty(C) command can be used to test the XXioctl routine.

For hints and further detailed guidance on how to link device
driver routines into a kernel and how to reboot using this new kernel,
refer to Appendix A.

There is a sample answer in ‘Answers to Exercises’ along with a set
of shell commands that will cause the device driver routines to be
called.
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Overview

The objective of this chapter is to guide readers to a position where
they can write simple character device drivers. These drivers provide
the basic facility of transferring small amounts of data between a user
process and a device.

Character device drivers are used to support devices that accept
variable amounts of data and that do not support filesystems. The
simple character device drivers we will be looking at in this chapter
do not use the more complex kernel data structures and support
routines which are described later in the book. We will be concentrat-
ing on the basics of passing small amounts of data between the user
process and the device and leaving the development of higher perfor-
mance, buffering techniques, data flow control and interrupt hand-
ling until later. As a result, the examples we will use are simpler than
production device drivers.

This approach will allow us to concentrate on the following topics:

® The principal routines within simple character device drivers.

® The way in which user requests are specified to the device driver
and the way in which the success or failure of the operation is
reported back.

® Transferring data between the user and the device driver.
® Transferring data between the device driver and the device.

® Some of the mechanisms available to schedule the execution of
device driver code: polling, delays and timeouts.
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Most of the techniques covered in this chapter are applicable when
writing the other types of device drivers discussed later in this book.
This chapter includes a parallel printer driver which we will use as a
working example. The exercise is to write a device driver for a mouse.

The character device driver kernel interface

Our first step towards writing a simple character device driver is to
gain an understanding of the principal functions that form the basis
of the code that needs to be written. This section describes these
routines, expanding upon the outline given in Chapter 2. Most of the
routines are invoked by the kernel from the cdevsw table.

3.2.1 XXinit

Syntax:
XXinit()

This routine is called by the operating system at boot time. This is the
point at which the peripheral hardware is initialized or reset. No
operations that require user processes to be present should be per-
formed at this stage. It should display a message on the console
confirming that the hardware is present. This can be done by check-
ing for a ‘signature’ value or magic number which some devices
guarantee to have set at a given address. Alternatively, known bit
patterns can be checked in peripheral registers following a command
that is written to the device.

Memory can be requested by the device driver at this point. If
contiguous memory is required, this is a suitable time to request it
(before it is fragmented by user process activity). No operations that
require interrupts can be performed at this stage as interrupts are not
enabled when this routine is called.

3.2.2 XXopen

Syntax:

XXopen (dev, flag, id)
dev_t dev;
int flag, id;
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3.2.3

Simple character device drivers

This routine is called by the operating system every time the device is
open(s)ed. The dev parameter specifies the major and minor device
number of the device file used to invoke the driver. It is passed to
many of the other driver entry points. flag is used to record the
values used with the open(S) call. The values are defined in
(sys/file.h). These include values such as FAPPEND which corres-
ponds to the O_APPEND parameter used with open(S). The id flag is set
by the kernel to indicate how the device is being used by the kernel.
The values are defined in (sys/open.h); for example, OTYP_CHR indi-
cates that the XXopen routine is being called as a result of an open(S)
on a character device file.
XXopen is a suitable place to code:

® Error and status checking (for example, is the floppy disk inser-
ted?)

® Hardware initialization that requires interrupts in order to com-
plete.

® Exclusivity, where only one open(S) of the device is allowed.

® Validation of minor device numbers passed as a parameter.

XXclose

Syntax:

XXclose(dev, flag, id)
dev_t dev;
int flag, id;

Whereas the XXopen routine is called whenever a user performs an
open(8) system call on the device, XXclose is called only when the last
close(S) system call is made on the special device file. The only
exception to this is when an XXclose routine has been called by
another layered XXclose routine (for instance, by a software driver to
implement disk mirroring). If this is the case XXclose calls will be
paired with XXopen calls and id should be set to OTYP_LYR by the driver
invoking the XXclose routine.

The value of flag corresponds to that of the flag passed to the
XXopen routine.

This is a suitable place to code any clean-up operations that are
required. These might include flushing buffers, deallocating dynamic
resources which have been previously claimed, disabling the device
or shutting down a motor drive.



3.2.4

3.2.5

The character device driver kernel interface 51

XXread

Syntax:

XXread(dev)
dev_t dev;

This routine is called as a result of a user’s read(S) system call.
The routine should:

® Validate the feasibility of the request, bearing in mind the hard-
ware constraints.

® Wait for the device to become ready and then send the required
bytes to the device’s control register in order to request the data
from the device.

® Wait for the data to arrive. When the data arrives from the device
XXread should transfer it into the user process’ address space.
Alternatively, if there has been a hardware error this needs to be
passed back to the process which made the read(S) request.

XXwrite

Syntax:

XXwrite (dev)
dev_t dev;

This routine is called whenever a user makes a write(S) system call.
The routine should:

® Likewise validate the feasibility of the request, bearing in mind the
hardware constraints.
® Copy the data from the user process.

® Wait for the device to become ready and program the device’s
control registers in order to initiate the transfer.

® Write the data to the device in question. If there is a hardware error
this should be passed back to the process which made the write(S)
request.
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3.2.6

3.2.7

3.2.8

Simple character device drivers

XXioctl

Syntax:

XXioctl(dev, cmd, arg, mode)
dev_t dev;
int cmd, mode;
caddr_t arg;

This routine is used to implement hardware-specific functions. cmd is
used to specify a device driver-specific command. arg can hold either
the address of the argument passed to the system call or a single
integer argument. The value of mode corresponds to the value of the
flag passed to the open(S) system call.

Given the simple open(S)/close(S)/read(S)mrite(S) interface that
is available for all files, the /O control system call ioctl(S) was
introduced as a ‘catch all’ system call to control any idiosyncrasies of
the device being controlled. This call is often used by application
writers who wish to control the behaviour of a serial line. For exam-
ple, the baud rate is modified by the stty(C) command using
ioctl(S) requests. However, it can be used to do almost anything.
The device driver writer needs to document the parameters for his or
her particular device driver so that users understand the significance
of any parameters that are passed to this routine, as these will be
device driver specific.

XXhalt

Syntax:

XXhalt()

The halt routine is called by the kernel when the system is shut down.
It allows the device driver to leave the hardware in a state where it
can be re-initialized without a power cycle.

XXintr
Syntax:

XXintr (irq)
int irq;

This routine is called following an interrupt from the device. irg
indicates which interrupt request line generated the interrupt.



3.2.9

The U-area and simple character devices 53

Many devices generate interrupts. They can occur when the device
has completed an operation such as a read or a write or when there is
a change in the device’s status, such as when the carrier signal drops
on a communications line.

XXstart
Syntax:

XXstart ()

This routine is not a kernel entry point, it is private to the device
driver. It is conventionally used to interact directly with the device’s
hardware, setting up commands in a controller’s register in order to
start a transfer. XXstart is often called from the XXread, XXwrite and
XXintr routines.

3.2.10 XXpoll

Syntax:

XXpoll (ppl)
int ppl;

When interrupts from a device are either not available or not reliable
this routine can be written and used to service the device. It is called
by the kernel following a clock tick. The frequency of the clock is
defined by HZ in (sys/param.h) (HZ is defined as 100 in SCO UNIX
3.2 v4). The interrupt priority of the system before the clock tick is
supplied in ppl.

SRR
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The U-area and simple character devices

Having looked at the routines that provide the entry points into a
device driver, we will now look at a key data structure that many of
these routines use to communicate with the user process. When an
XXread or an XXwrite routine is called as a result of a read(S) or
write(S) system call, the only parameter that is passed to these
functions (under SCO UNIX) is the device number which corres-
ponds to the device file being accessed. The specification of the
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read(fd, array, 10); User code
42030
42020
42010 -€— User data
—
Y
L—u _base 42010
u count 10—
- U-area
u_offset 5
0 y 10 20 30 40
TH|E| |LiAlZlY] [DlOG] |JUMPIEID File

Figure 3.1 The u_base, u_count and u_offset fields in the U-area before a
read(S).

transfer that is required is communicated via a data structure called
the U-area.

The U-area is a data structure maintained by the kernel. Each
process has its own U-area. It contains information that describes the
read and write operations which the user application has requested
and which the device driver has to implement. The U-area is also
used to communicate back to the user process the status of the
requested transfer following its execution. The U-area is defined in
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read(fd, array, 10); User code
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User data
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Figure 3.2 The u_base, u_count and u_offset fields in the U-area after a
read(S).

the header file (sys/user.h) and is described in greater detail in
Chapter 4. In this section we will look at a small part of it.

When a read(S) or write(S) system call is made, its parameters
specify:
® The descriptor number of the file to be read or written.
® Where it is to be transferred to or from in the process’ memory.
® The amount of data to be transferred.
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Following the system call, the kernel copies these parameters from
the user process’ stack into the appropriate variables in the process’
U-area held in kernel space. The current offset in the file which is
being read or written is copied from the system file table into the
U-area.

These values should be updated by the device driver following the
transfer of data from the device.

The following three entries are taken from the U-area structure
defined in (sys/user.h). They are used to store the values discussed
above:

caddr_t u_base; /* base address for I/0 %/
unsigned u.count; /* bytes remaining for I/0 */
off_t u_offset; /+ offset in file for I/0 */

The types used here are defined in the header file (sys/types.h). This
is used to hold the type definitions commonly used within kernel
source code. caddr_t is defined as char * and is described as being a
pointer to a core address. off_t is a long.

The following example shows how these fields are used if a read(s)
is performed on a storage device. Figure 3.1 shows values in the
U-area before the read(S), Figure 3.2 shows them afterwards. In this
example ten bytes are to be transferred by the device driver, starting
at byte 5 in the device, into an array which starts in memory at user
virtual address 42010. Initially the kernel would set u_base to 42010,
u_count would be set to 10 and u_offset would be set to 5. At the end
of the successful call the U-area fields should be updated by the
device driver so that u_base holds 42020, u_count is set to zero and
u_offset should equal 15. The return value that the user gets from the
read(S) call is calculated by subtracting the value left in u_count by
the device driver from the original byte count.

In this example we have seen how the U-area is used to confirm how
much data has been transferred. The U-area is also used to communi-
cate back to the user process the nature of any errors that might have
occurred as a result of the request. This is done in the form of an error
code which is stored in the u_error member of the u structure. The
possible error codes are defined in (sys/errno.h). Setting this field will
result in the corresponding value being copied into the errno external
variable in the user process. Currently it is possible to set u.u_error
with the following: u.u_error = EFAULT; however, it is good practice to
use the SCO kernel support routine seterror (K) (which does the same
thing), for example, seterror (EFAULT) . This ensures forward compat-
ibility if error handling changes in future versions of SCO UNIX.

The errors that should be reported can result from a number of
causes including kernel resource shortage, incorrect parameters
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Table 3.1 Commonly used error codes.

Code Description

EAGAIN Kernel resources not available (e.g. memory space or a table
entry)

EBUSY Device busy (e.g. used in XXopen when enforcing exclusive
access)

EFAULT Invalid memory address passed (e.g. ioctl(S) arg parameter or
a memory address is referenced that is outside permitted areas)

EINVAL Invalid argument passed (e.g. ioctl(S) cmd parameter)

EIO An error was detected by the device following a valid /O

request (e.g. a bad block on a disk is detected)

ENXIO Attempting to access beyond the boundaries of a device
(e.g. writing beyond the end of a disk) or attempting to access a -
non-existent device (e.g. an invalid minor device number was
used)

passed to device driver entry points or peripheral hardware failures.
When selecting an error code you should consult the SCO UNIX
Programmer’s Reference Manual (Volume 2) entry for the system calls
that use the device driver function being written and (if possible)
choose from the codes listed for that system call. A summary of the
meaning of commonly used error codes is given in Table 3.1.

3.4

Transferring data between user and device
driver

So far in this chapter we have established the main routines that make
up character device drivers, the way requests are specified and the
way status is returned. Now we will look at the process of transfer-
ring data between the user and the device driver.

Data transfer between kernel and user space cannot be achieved
using the same constructs as would be used in application programs.
Code such as

while (data_to_be_copied) {
*U.u_base++ = *kernel_data++;
}

should not be used to transfer data between kernel and user memory.
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Kernel support routines are provided to implement the transfers
between kernel address space and user address space. These routines
improve the portability of device driver code and relieve the device
driver writer of having to understand fully the operation and con-
straints of the memory management model that is in use. SCO UNIX
provides the routines copyout (K) and copyin(K) which are also found
in other implementations of UNIX. These support routines are often
used in XXread/XXwrite functions to transfer data between user and
kernel space. They are also frequently used in XXioctl routines to
copy ioctl(S) arguments to and from the user’s memory.

copyin(K) copies data from a user’s virtual address to a kernel
virtual address. It takes three arguments. The first is the address of
the user’s data, the second is the address of the destination data
structure in kernel memory. The last argument specifies how many
bytes need to be copied. copyout (K) works the other way around,
with the first argument being the kernel address which is being
copied from.

XXread routines generally make use of copyout (K) , whereas XXwrite
routines use copyin(K). Here is an example of how they would
typically be used within an X¥Xioctl routine:

struct dev_param d_p;

XXioctl(dev, cmd, arg, mode)
dev_t dev;
int cmd, mode;
caddr_t arg;

switch (cmd) {
case SET_PARAMETER:

if (copyin(arg, &d_p, sizeof(d_p)) == -1) {
seterror (EFAULT) ;
return;
}
break;
case GET_PARAMETER:
if (copyout(&d.p, arg, sizeof(d_p)) == -1) {
seterror (EFAULT) ;
return;
}
break;
default:

seterror (EINVAL) ;
break;

}
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The parameter arg is the virtual address in user space of the structure
containing the device driver parameters that the user wants to be read
or written. The d_p parameter is the structure which has been allo-
cated to store these parameters for the device driver code to access. If
SET_PARAMETER has been passed as the value of the cmd parameter,
copyin(K) will copy the values from user space into the d_p structure
in the kernel. If the ioct1(8) call is made with an unknown value in
cmd then the XXioctl routine will return, setting the u_error field in
the user process’ U-area so that the ioct1(S) system call fails.

Both copyin(K) and copyout (K) perform bounds checking on the
range of user virtual addresses involved. They do not update the
u_base, u_count and u_offset fields held in the U-area. When they are
used in XXread and XXwrite routines these fields must be updated
explicitly by the device driver.

3.5

3.5.1

Transferring data between device driver and
device

This section describes how to pass data between the device driver
software and the input/output registers of the physical device.

I/O mapped devices

If a device is /O mapped you will need to establish what are the
addresses of the /O ports required to operate it. This can often be
configurable and depend on the position of switches or placement of
‘jumper’ connectors on the device controller. Generally the standard
‘User Guides’ for peripherals do not contain this information and a
‘Programmer’s Guide’ or detailed hardware specification is required.

The Intel iX86 instruction set contains machine code instructions
that transfer data to or from an I/O mapped device. The assembly
code mnemonics for the main instructions are IN and OUT. These
instructions transfer data between a register and an I/O port. They are
privileged instructions and are normally only available to the kernel.

SCO UNIX provides a series of assembly language macros defined
in (sys/inline.h) which allow these instructions to be used in order
to transfer 32-bit (ind(K), outd(K)), 16-bit (inw(K), outw(K)) and 8-bit
(inb(K), outb(K)) values to I/O ports.



60

3.5.2
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This is an example of how a device driver might use these routines:

#define REG_ADDR 0x1234

mywrite()
{

char c;

get_data_from_user(&c) ;
outb (REG_ADDR, c);

In this example the peripheral has an I/O port mapped at address
0x1234. The device driver writer has written a routine
get_data_from_user which may use copyin(K) to load a value into the
variable c. This value is output to the /O port using the macro
outb (K) which in turn uses the OUTB assembly language instruction.

Memory mapped devices

A memory mapped controller will interpret all reads and writes to
memory addresses within its address space as input and output to the
device. Memory within this chosen range cannot be used for the
normal purpose of Random Access Memory storage.

The device driver writer must establish the start and end locations
in physical memory where the peripheral is mapped. Having done
this, a mechanism is required to establish a usable pointer to this
address so that the device driver can read from and write to it.

SCO UNIX provides a kernel support routine called sptalloc(K)
which allocates a virtual address that the device driver writer can use.
This can be used for peripherals such as video adaptors where bits
written to memory mapped addresses are translated into patterns on
the screen.

An example of how sptalloc (K) could be used with a hypothetical
video controller follows:

#define DEV_ADDR (caddr_t) 0xB8000
#define DEV_SIZE 4096

{

caddr._t va;
int i;
va = sptalloc(l, PG_P | PG_RW, btoc(DEV_ADDR), 1);

for (i = 0; 1 < DEV_SIZE; i++)
*vat++ = 0;
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DEV_ADDR is the physical start address of the memory mapped device.
DEV_SIZE, the size of the device, is equal to a single (4K) page. The
variable va is assigned the virtual address at which the physical
memory is mapped. The first parameter to sptalloc(K) specifies that
a single page be mapped. The page is marked present (PG_P) and is
made writable (PR_RW). The physical memory address is specified
using the macro btoc to convert the byte address DEV_ADDR to a page
frame address. The final parameter (1) stipulates that sptalloc(K)
should not sleep if a page is unavailable.

The body of the for loop sets the contents of the memory map to
zero. With our hypothetical video device it would have the effect of
clearing the display.

3.6

3.6.1

Mechanisms to schedule execution of device
drivers

Device drivers often have to interface with electro-mechanical devices
(such as printers and disks) and other peripherals (such as communi-
cations devices) that operate significantly more slowly than the CPU
of the main system. In these situations, controlling the time when
parts of the device driver are executed becomes important and an
extra layer of complexity is introduced. The device driver must be
able to wait for events, to execute routines at regular intervals and to
give up the CPU to allow other processes to use processor time that
would otherwise be wasted. This section describes the kernel support
routines that provide these facilities.

All of these functions rely on interrupts that originate from the
system’s hardware clock. A full discussion of the mechanisms behind
this and the wider topic of using interrupts generated by peripherals
will be postponed until the next chapter.

Polling

Polling is a simple way of regularly passing data to or from a relatively
slow device. Polling is a useful mechanism to use when the device
either does not generate interrupts at all or does not generate them in
a reliable way. It has been used as a mechanism to service the parallel
printer device on IBM AT clones, some of which do not reliably
deliver the hardware interrupts that indicate when a character has
been printed.
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Once interrupts are enabled on the machine, a driver’s XXpoll
function will be repeatedly called by the kernel, after every clock
interrupt, Hz times a second. This system clock is a source of regular
interrupts which are used and controlled by software. It is separate
from the processor clock which regulates the speed at which the CPU
fetches, decodes and executes machine code instructions. The pro-
cessor clock operates at a much higher speed, typically measured in
MHz.

Calls to xXpoll will occur irrespective of which process is running,
or whether the device corresponding to the XXpoll routine has been
opened. As a result of this, the data structures that are accessed by
the XXpoll routine should not relate to any particular user process.
Accessing the U-area or copying data back to user process’ address
space should not be attempted as there is no guarantee which process
will be running when the XXpoll routine is called. Following the
execution of all the XXpoll routines the kernel increments the system
clock, performs process ageing and initiates the routines that imple-
ment process scheduling.

By virtue of the fact that the XXpoll routines are called frequently,
time spent within XXpoll routines should be brief. One simple way to
help achieve this is for XXpoll routines to check to see if their device is
open before commencing any work. They can do this by testing a flag
set by the driver’s XXopen routine.

Although polling is simple and reliable, there are two main disad-
vantages to using this technique to service a device:

(1) Performance The XXpoll routine is called at a constant rate.
There may be periods between calls when the device is ready to
read or write data, but has to wait until the next clock tick. It
remains idle during these times. This limits the device’s
throughput which may unnecessarily delay the user process
which is accessing it.

(2) Data loss Devices which have minimal ‘on-board” buffering
space may lose data if the device driver does not empty their
buffers before more data arrives. Most dumb serial cards only
have a single character buffer. Data can arrive very rapidly when
serial cards are supporting communications lines or lots of users
are typing quickly. If data arrives faster than the device driver
copies from the character buffer it will be lost. In the case of the
communications line, this may be detected and corrected by the
communications protocol being used. However, it is not reason-
able to expect a user to retype commands if the system loses
characters from the keyboard.

In summary, polling is a simple, reliable technique for servicing
slower devices that do not generate interrupts reliably.
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Delays

When reading from or writing to a slow device it is often useful to
insert delays in device driver code which allow the peripheral to
complete an operation. These delays will be necessary when the
device waits before accepting any more data, pausing until the cur-
rent data has been dealt with (printed, transmitted or stored). This
happens when the controller has no buffering space for outgoing data
or it may be that the buffer is full. Alternatively it could be that the
controller itself is slow to react when being written to. This often
becomes apparent as the speed of CPUs overtakes the speed of the
embedded processors in hardware controllers.

One way of implementing such delays is to write a spin loop to
slow down the device driver. This has a number of disadvantages.
One is that the CPU is locked into executing this rather wasteful code
loop when it could be used for some more productive work. Another
problem is that if the device driver is run on a faster CPU, the delay
loop can be executed faster and as a result of this shorter delay, the
device driver code can stop working. This can occur if code is moved
from a machine with an i386 CPU to an i486 CPU.

An alternative to using spin loops is to use a kernel support routine
called delay(K). This routine is implemented using a sleep(K) call
and consequently should not be used within routines called from
XXintr or XXpoll. The length of the delay is specified in clock ticks. As
mentioned earlier, there are HZ clock ticks a second. Providing that
the delay required is not less than one clock tick, then the delay (K)
routine can be used. Using this function relinquishes control of the
CPU and allows the processing of other work on the system.

There is a processing overhead involved as a result of the context
switch which follows use of delay (K) (or sleep(K)). So in some cases
very short delays are implemented with spin loops.

Another drawback with using delay (K) is that the length of the delay
is approximate. This is because the process only becomes ‘runnable’ at
the end of the specified delay period and therefore cannot be guaran-
teed to run immediately. The danger of this happening increases when
using delay (K) if other jobs do not give up the CPU or are scheduled at
a higher priority. When this happens the other jobs will be executed
first and the length of the delay will be extended beyond what was
anticipated. As with XXpoll, if the peripheral is ready before the delay
period expires, time is wasted and data may be lost.

For these reasons this technique is not ideal, especially if data loss
will occur if the device is not serviced quickly. In this case, interrupts
and an interrupt service routine are normally used. However the
delay (K) routine has the benefit of simplicity and can be used when
the peripheral is not capable of generating interrupts.
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Here is an example which uses the delay(K) routine to help inter-
face to a relatively slow device where data loss will not occur if the
delay is extended, a parallel printer.

lpwrite()
{

char c;

while (there._is_data) {
while ((inb(PSTATUS) & READY) == 0)
delay (HZ/25);
get_data_from_user (&c) ;
outb (PDATA, c);

}

The outer while loop continues whilst there is data to be sent to the
printer. The second while loop is used to pause until the printer is
ready to receive more data. It detects that the device is busy by
reading the printer’s status register at address PSTATUS. The inb(K)
function reads the printer’s hardware status byte. The C language
bitwise-AND & operator is used to check the relevant bit, whilst
ignoring other bits in the status byte by using the mask READY. Bit 8 is
used to indicate whether the controller is ready for more data while
the remaining bits are used to indicate other information (such as
whether the printer is on-line). READY is therefore defined as the value
128 (10000000 in binary). Whilst the READY bit is held at 0, the while
condition evaluates to true and the delay (K) function is called, paus-
ing for at least four clock ticks. Once the printer is ready to receive
more data the READY bit is set to 1. The device driver then gets the
character from the user and outputs the data held in the variable c to
the data register of the printer controller, at which point the loop
repeats.

Timeouts

The timeout (K) function allows for a designated routine to be sched-
uled for execution after a given time period. In the meantime, the
device driver can continue to operate. The timeout (K) mechanism is
useful in device drivers when waiting for an event that is not guaran-
teed to happen. It allows the device driver to wait an amount of time
for an event and then schedule a course of action if the event fails to
occur. Its functionality is comparable with what is achieved using the
signal(S) and alarm(S) system calls within application programs.
timeout (K) is used within the terminal driver to implement the
VTIME functionality. When VTIME is set using an ioct1(S), aread(S) on
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a serial line will return after a given time, whether or not any charac-
ters have been received.

timeout (K) is also used in combination with sleep(K) and
wakeup (K) to implement the delay (K) function described above.

3.7

An example parallel printer driver

This section describes the operation of a simplified but working
parallel printer driver. The device driver was developed to work with
the IBM AT on-board parallel printer port. As a result of its simplifica-
tion, this device driver is not optimally efficient. The code will be
developed further and made more efficient in the following chapter.
This version uses most of the concepts and facilities discussed in this
chapter. It can be configured into the system using the command:

# ./configure -a lpinit lpwrite -c -m MAJOR
First we will discuss the preamble.

#include (sys/errno.h)
#include (sys/types.h)
#include (sys/dir.h)

#include (sys/param.h)
#include (sys/user.h)

Ul W N =

The file errno.h is included so that the standard error code defini-
tions can be used when reporting error conditions in the device
driver. This device driver references the u_count, u_base and u_offset
fields which make up part of the U-area. As a result of this, the user
structure must be included into the source code for this module. All
of the other include files are necessary to satisfy structures, typedefs
and defines used within (sys/user.h).

6
7 #define  PBASE 0x378
8 #define  PDATA (0 + PBASE)
9 #define  PSTATUS (1 + PBASE)
10 #define PCNTRL (2 + PBASE)
11
12 #define  SELECT 0x08
13 #define  PRIME 0x0c
14 #define  READY 0x80

15 #define STROBE 0x01
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Lines 7 to 10 define the addresses of the I/O mapped registers for
the parallel printer controller interface. The PDATA register is written to
by the device driver. It holds the ASCII code of the character to be
printed. PSTATUS indicates whether the device is busy printing or not.
The control register, PCNTRL, is used to initialize the controller and to
indicate when a new character has been written to the PDATA register.

SELECT and PRIME are written into PCNTRL in order to initialize the
printer. The READY value is used to mask bit 8 in PSTATUS. This is set to
1 by the printer controller when the printer has space in its buffer to
receive another character. STROBE is used to mask bit 0 in PCNTRL which
is toggled between 1 and 0 by the device driver, to signal the presence
of a new character in the PDATA register.

16 #define RESET_DELAY 1000000

17

18 lpinit()

19 {

20 int i;

21

22 outb (PCNTRL, SELECT);

23 for (i = 0; i < RESET.DELAY; i++);

24 outb (PCNTRL, PRIME);

25 printcfg("1lp", PBASE, 2, -1, -1,
“Simple Parallel Driver");

26 }

27

The 1pinit routine sets up the printer controller and displays the
device driver configuration message. Line 22 writes the SELECT value
out to the control register. Line 23 implements a delay so that the
controller can reset before the second part of the initialization
sequence is performed on line 24. A busy loop is used on line 23
because at the time the XXinit routines are executed, interrupts have
not been enabled on the system and as a result, delay(K) will not
work. The printcfg(K) call displays on the console the name of the
device driver ("1p"), the base address of the control registers (PBASE),
along with the range of registers occupied by the registers (PBASE
through to PBASE+2). Since the device driver does not use DMA or
interrupts, —1 is supplied as the value for the next two parameters,
followed by a comment describing the device driver.

28 lpwrite()

29 {

30 char c;

31

32 while (u.u_count) {

33 while ((inb(PSTATUS) & READY) == 0)

34 delay(HZ/25) ;
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35 if (copyin(u.u_base, &c, 1) == -1) {
36 seterror (EFAULT) ;

37 return;

38 }

39

40 u.u_count--;

41 u.u_base++;

42 u.u_offset++;

43

44 outb (PDATA, c¢);

45 outb (PCNTRL, PRIME | STROBE);
46 outb (PCNTRL, PRIME);

47 }

48 }

lpwrite is called once for every write(S) system call made to the
parallel printer device file. The outer while loop (from line 32 through
to 47) is executed once for each character written to the printer. The
number of characters remaining that have been transferred by
write(S) is held in the U-area variable u.u_count. Lines 33 and 34 are
used to wait until the controller is ready to receive the next character.
If the 8th bit in PSTATUS is low, then the device driver requests a
delay(K) for four clock ticks, enough to introduce a short pause and
to allow another process to be scheduled if necessary.

Line 35 copies a character from the user process’ address space
(u.u_base) into the device driver’s address space. If the address were
illegal, the copyin(K) routine would return —1, the device driver
routine would return and the system call would fail with errno set to
EFAULT.

On lines 40 to 42, the appropriate U-area variables are updated to
reflect the fact that data has been transferred from the user.

On line 44, the character is written to the hardware. In order for the
device to understand that a new character has been passed to it, bit 1
of the printer’s control register is toggled from high to low, whilst bits
2 and 4 are maintained high by the outb(K) calls on lines 45 and 46.

3.8

Summary

In this chapter we have looked at all of the basic techniques required
to write a simple device driver. We have described the entry points
into the device driver, the principal routines that govern its structure.
The mechanism used to specify the parameters of requests was
detailed in the section which introduced the U-area. We have also
seen how data is transferred between the user and the device driver,
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and from there to the hardware. All of these techniques, when com-
bined with some simple scheduling mechanisms, have allowed us to
write our first device driver for a printer.

QUIZ

To test your understanding of this chapter, try to answer the
following questions.

3.1 If ten processes concurrently open a device file and then
close it, how many times will the XXopen and XXclose
routines be invoked?

3.2 Following a read(S) of 20 bytes, how should the variables
u.u_base and u.u_count be changed?

3.3 Why should spin loops be avoided when implementing
delays in device drivers?

3.4 What kernel support routine can be used to transfer data
between user space and an XXread routine?

3.5 What kernel support routine can be used to transfer data
between user space and an XXwrite routine?

EXERCISE

Write a device driver for the Microsoft InPort Bus Mouse. Your device
driver should use polling in order to read the data from the mouse
controller. You should provide XXinit, XXpoll and XXread routines.

The device driver should maintain a data structure defining the
state of the mouse. This should be copied out to any user process
which is reading the appropriate device file following movement of
the mouse or any of the buttons on it.
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Format of returned data

It is often the case that the data returned by a device driver is simply
an unformatted byte stream terminated by an end of file. This is true
for data read from devices such as disks or terminal lines. However
for a device such as a mouse where the data is more structured, the
data which is copied back to the user from the device driver has to be
held in an agreed format. This is normally defined in a header file
used by both the device driver writer and the programmer accessing
the device.

The format of the data returned by the mouse is defined by the
following structure which should be placed in a header file used by
your device driver and the application used to test the device driver.

/*
+ Structure of the data passed back to applications
+ reading the mouse device file
*/
struct bmouse {
char buttons;
char x, y;

Vi

If bmouse.x is a negative value this indicates that the mouse is being
moved towards the left. If bmouse.y is a negative value then this
indicates the mouse is being moved upwards.

The application program needs to allocate the storage for this
structure within its process space so that the device can be read with a
statement such as:

main()
{

struct bmouse mouse;

cc = read (fd, &mouse, sizeof(struct bmouse));
}

The source code to two programs designed to test your device
driver is provided in ‘Answers to Exercises’ along with a model
answer.

Description of the device

The mouse controller has two I/O mapped registers. The first, which
we will refer to as BM_CTL, is only written to and is mapped to address
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Table 3.2 Description of the values written to BM_CTL.

Value

Description

0x00

0x01

0x02

0x80

0x07

When BM_CTL is set to 0 BM_DATA will contain a bit map which will
indicate whether the mouse has moved, whether the mouse
buttons have changed position since the register was last read,
as well as the state of the buttons on the mouse. See Table 3.3
for details.

BM_DATA will contain the value of the X counter. This indicates
how much the mouse has just moved in the X axis. This is not an
absolute X coordinate; it is a delta value, recording the amount of
movement relative to the last time the hardware was read.

BM_DATA will contain the value of the Y counter. This indicates
how much the mouse has just moved in the Y axis. This is not
an absolute Y coordinate; it is a delta value.

This resets the mouse. The value should be written as the first
part of the initialization of the device.

BM_DATA will act as a control register which may be written with
one of two control values. The value 0 configures the correct
mode of operation for this exercise. It should be written to
BM_DATA as the second part of the initialization sequence. The
value 0x20 freezes the X/Y movement counters. This should be
set before the X/Y counters are read and then cleared afterwards.

0x23c; the second, which we will refer to as BM_DATA, is both written to
and read from. It is mapped to address 0x23d.

BM_CTL is used to reset the device as well as to provide a means to
select which of the four alternative internal registers is accessed
through BM_DATA. Table 3.2 describes the values written to BM_CTL.

BM_DATA provides data on whether the mouse has moved, whether
any of its buttons have been moved, the state of each button and the
amount the mouse has moved in the X and Y axes. The meaning of
the BM_DATA bit map is shown in Table 3.3.

Hints

Here is the pseudo code for the working device driver:

bminit ()
{

Reset themouse controller.
Set the mouse for the correct mode of operation.
Print the configurationmessage on the console.
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Table 3.3 Meaning of the BM_DATA bit map.

Bit Description

0-2 Set high if the corresponding button is pressed down. If bit 0 is
set to 1 then the right hand button is being held down. If bit 2
is set to 1 the left hand button is down.

3-5 Set high if the corresponding button has been moved up or
down since the register was last read. If these bits are set, then
update bits 0-2 in the bmouse structure, copy it out to the user
address space and wake up the user process.

6 Indicates whether the mouse has moved on the X or Y axis. If
this is set, it is worth reading the other mouse registers to obtain
the data on how far the mouse has moved.

bmpoll ()
{
Freeze themouse X/Y counters.
Check to see if the mouse has moved or the buttons have been
pressed.
If so:
Copy the state of the buttons to the bmouse structure.
Select the X counter and copy its value into the bmouse
structure.
Select the Y counter and copy its value into the bmouse
structure.
Set aflaginthedriver indicating that data has been
received from the mouse.
Wake up the bmread routine.
Release the X/Y counters.

}

bmread ()

While the flag indicates there is nonewdata, sleep.
Copy the bmouse structure out to the user.
Set the flagback to indicate there is nonewdata.
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Overview
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This chapter will describe interrupts. We shall explore what an inter-
rupt is, where interrupts come from, and how to deal with them. We
shall also review the definition of a process’ context, discuss why we
might want to arrange for context switches to occur at the end of
interrupt routines, and how to do this. Some parts of this chapter
assume a reasonable amount of knowledge about the i386 CPU.

In the previous chapter, we wrote a device driver for a mouse
which relied on the XXpoll routine being called at each clock tick,
from the clock’s own interrupt routine. An XXpoll routine is a very
good way of managing slow devices that either cannot generate their
own interrupts, or that interrupt so infrequently that it might be a
good idea to poll the device regularly to make sure that it is still
working properly.

However, relying exclusively on the XXpoll mechanism means that
the maximum throughput of the device is dependent on the speed of
the clock, rather than on the speed of the actual device. By using
interrupts, a device can run at its maximum speed, and only receives
attention from the kernel when it is required.

In the exercise at the end of this chapter, we shall add an interrupt
routine to our mouse device driver.

4.2

72

R R R e B e
What is an interrupt?
An interrupt is a request for service or attention from a device or a

controller. A device sends an interrupt (sometimes we say that a
device raises an interrupt) to indicate that something has happened
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and that the kernel should do something about it. Here are some
examples of why devices interrupt:

® A disk controller raises an interrupt to indicate that it has finished
dealing with a request or command that has been issued to it. For
example, it has finished transferring a block of data between the
kernel’s memory and a disk.

® A dumb serial card raises interrupts to indicate that new data has
arrived on one of its ports (a user may have typed a character), that
data has been transmitted successfully from its output port, or that
the carrier has been lost or restored on the modem control lines.

® A mouse raises an interrupt to indicate either that it has been
moved or that one of its buttons has been pressed.

® A lineprinter raises interrupts to indicate that its on-board buffer
has emptied and that it is now ready to receive some more data
from the kernel.

® The real-time clock raises an interrupt 100 times a second so that
the kernel can measure time and reschedule processes.

® Some devices raise interrupts to warn the kernel of hardware
failure.

When the device driver handles the interrupt, it should check the
controller’s status by reading the status register. Assuming all is well,
the driver can then read the data from the device, or write some more
data to the device, and issue the next /O request.

In the period when the kernel is handling an interrupt, we describe
the system to be at interrupt-time. All interrupts are handled in
system mode, and any routines which execute at interrupt-time
should not do certain things, such as making references to the U-area.

The system is said to be at task-time at all other times, when it will
be either in user mode or system mode.

4.3

Process contexts

Each process that executes has a context. A process’ context describes
the process’ state, and the environment in which it is running. A
process’ context is set up initially by the fork(s) system call, and is
changed by the kernel and the CPU as the process executes instruc-
tions, makes system calls, opens files, grows its stack, and so on. The
following list describes some of the components of a process’ context:

® The contents of all of the registers, including the instruction
pointer CS:EIP' and the stack pointer SS:ESP.
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e File table entries for the process’ open files, inode table entries for
the current and root directories, and so on.

® The process’ segments, including its text, data and stack segments.
® The process’ page tables.
® The process’ entry in the process table.

® The process’ U-area, including its system stack and Local Descrip-
tor Table (LDT).

Each of the components of the process’ context falls into one of two
categories:

(1) Information used by the kernel to manage the process, such as
the process table entry, the U-area and file table entries.

(2) Information used by the CPU to manage the process, such as the
register contents and the LDT.

The kernel and the CPU access the components of the current
process’ context through a set of variables and registers. For example,
the kernel variable curproc points to the process’ entry in the process
table, and the kernel variable u is the process’ U-area. The Local
Descriptor Table Register LDTR points to the process” LDT, and the
Page Directory Base Register PDBR® points to the current page dir-
ectory.

The CPU is shared amongst the many processes that are competing
for it by a mechanism called a context switch, which saves the register
values of the current process in a context save area, loads a new set of
register values from the context save area of the new process and
establishes new values for curproc and u. When context switching
occurs many times a second, a system appears to be able to run
processes simultaneously, and this is the basis of a multi-tasking
operating system.

The i386 CPU provides some special instructions and data struc-
tures for saving and restoring contexts. A process’ registers are saved
in a structure called a Task State Segment (TSS), which is pointed to
by the Task Register TR. See Figure 4.1. The TSS also contains three
read-only stack pointers for privilege levels 0, 1 and 2, which are
automatically loaded into SS:ESP by the CPU whenever there is a
corresponding change of privilege level. For example, when a process
makes a system call and switches from privilege level 3 to privilege
level 0, a new privilege level 0 stack pointer is loaded from the
process’ TSS, and the old stack pointer is saved on the new stack.

SCO UNIX switches contexts by making an indirect jump through a
task gate (a single machine instruction), which saves the context of
the current process in the TSS indicated by TR, and loads the context
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LDT selector

Segment selectors

General purpose

TSS descriptor ) registers

EFLAGS

Global descriptor EIP

table (GDT)

Task register (TR) PDBR

SS:ESP(2)

SS:ESP(1)

SS:ESP(0)

Task state segment (TSS)

Figure 4.1 A process’ TSS is pointed to by the Task Register (TR).

of the new process from the TSS indicated by the task gate. The next
instruction to be executed is the one immediately following the indir-
ect jump, but it will be executed in the context of the new process.
Context switches are described in more detail in Section 4.8.

4.4

The system stack

In many implementations of UNIX, including SCO UNIX, each pro-
cess has its own private system stack at the beginning of its U-area.
Whenever the 1386 CPU switches to privilege level 0 to handle system
calls, exceptions and interrupts, it also switches from the process’
user stack to the process’ system stack. Stack frames for function calls
and auto variables are created and removed from the system stack in
the same way as they are on the user stack. On return to user mode,
the system stack is emptied (see Section 4.5.5), and execution con-
tinues on the user stack. The fork(S) system call establishes a new
U-area for the child process, and sets up the privilege level 0 stack
pointer in the child’s TSS to point to the base of the new system stack.
See Figure 4.2.
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Figure 4.2 Fork(s) sets the child’s SS:ESP(0) to point to the base of the
system stack in the new U-area.

SCO UNIX handles all exceptions and interrupts in the context of
the process that is running at the time of the exception or interrupt.>
This means that interrupts are dealt with on the system stack of a
process which in most cases is not the one which is waiting for the
interrupt.* We shall discuss the implications of this in Section 4.6.

You may want to re-examine the header file (sys/user.h) and look
for the space reserved for the system stack. The system stack is a fixed
size — approximately 3.7Kb, and this has one very important implica-
tion:

e All functions in the kernel, including interrupt routines, must be
written so that they do not overflow the system stack by declaring
too many auto variables.

If a kernel function does declare too many auto variables, the U-area
will be corrupted and eventually the kernel will panic.
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In summary, each process has its own fixed-size system stack in its
U-area, which is used by that process whenever it is in system mode.
Exceptions and interrupts are handled in the context of whichever
process is running at the time of the exception or interrupt.

How interrupts arrive in a device driver

In the ISA and MCA architectures, the interrupt request lines (IRQs)
of devices that generate interrupts are connected to one of two i8259A
Programmable Interrupt Controllers (PICs), which are cascaded
together as shown in Figure 4.3, giving a total of 15 different IRQs
available for devices to use. The output pin of the slave PIC is
connected to line 2 of the master PIC, and the output pin of the
master PIC is connected to the Interrupt Request (INTR) line on the
i386 CPU. In the simplest case, different controllers or devices are

—1 NMI
Clock—»| IRQO —»-{ INTR
Console—»{ IRQ1
i386 CPU
—»{ IRQ8 » IRQ2
—»| IRQ9 COM2—>{ IRQ3
—»| 1RQ10 COMi1—»| |IRQ4
—» IRQM1 Mouse—»{ IRQ5
—» IRQi2 Floppy__ | |ras
disk
—»| IRQ13 Parallel __y.| |RQ7
printer
Hard
“C—»! |IRQ14
disk Master i8259A
—

IRQ15

Slave i8259A

Figure 4.3 Master and slave i8259A PICs.
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Table 4.1 Responding to exceptions and interrupts.

Priority level Exceptions and interrupts

High priority Debug breakpoints
Non-maskable interrupts on NMI
External interrupts on INTR

Low priority Faults and exceptions

attached to different lines on the PICs, although it is possible for the
IRQ lines to be shared between many controllers and/or many
devices. Our explanation assumes that each device has its own IRQ.

Whenever a device raises an interrupt, a complex sequence of
firmware instructions and i386 assembly code arranges for the appro-
priate device driver’s XXintr routine to be called. We say that the
interrupt is vectored to the device driver’s XXintr routine.

Although it is not necessary to understand exactly what is going on
at the lowest levels of the kernel in order to write device driver
interrupt routines, it is useful to be aware of the mechanisms that are
being used. If you are not too familiar with the i386 architecture, you
may choose to skip Section 4.5.4 which describes the low-level inter-
rupt handling mechanisms.

Interrupt priorities

The PICs have a built-in set of hardware interrupt priorities which
provide limited control over the order in which devices can interrupt.
UNIX implements an additional set of software priority levels which
provides the user with some flexibility when adding new devices to
the system.

Hardware priority levels

The 1386 CPU responds to exceptions and interrupts in the order
shown in Table 4.1. The i386 CPU can only respond to external
interrupts at the end of an instruction, although it can respond to
some exceptions (for example, a Page fault) at any time.

SCO UNIX programs the PICs to operate in Fully Nested Mode.
This means that IRQ lines 0 through to 7 will be assigned interrupt
priorities from 0 through to 7, where interrupt priority 0 is the high-
est.® For example, if two devices interrupt at exactly the same time on
IRQ 3 and IRQ 7, the master PIC will notify the CPU of the interrupt
on IRQ 3 before the interrupt on IRQ 7.
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Whilst the interrupt from IRQ 3 is being serviced by the CPU, the
PICs automatically inhibit interrupts of the same priority or less.
However, hard-wiring the interrupt priorities in this way gives the
user less flexibility when adding new devices to the system. Suppose
that he wants to add a new device that operates at priority level 6, but
IRQ line 6 is already being used by another peripheral? This problem
is solved by using software priority levels.

Software priority levels

Most versions of UNIX, including SCO UNIX, support the concept of
software priority levels, which is a mechanism used to modify the
hardware interrupt priorities imposed by the PICs. UNIX can dif-
ferentiate between seven different software priority levels, from pri-
ority 1 (the lowest) to priority 7 (the highest). An example of a device
that runs at a high software priority is the real-time clock (it operates
at priority 6), and an example of a device that operates at a low
software priority is the parallel printer (it operates at priority 2). The
general rule is that faster, high volume devices operate at a higher
priority than slower, low volume devices.® Whenever a device inter-
rupts, the kernel reprograms the PICs so that only higher software
priority devices will be allowed to interrupt until the device’s own
interrupt routine completes. For example, if the kernel is busy servic-
ing an interrupt from the parallel printer, the real-time clock is still
able to interrupt whenever it wants to so that the kernel can keep an
accurate record of real time. At any moment, therefore, there may be
nestings of different interrupt stack frames on the same system stack,
each for a different software priority level.

However, if there are two serial ports attached to the machine, each
operating at the same priority level but with different IRQ lines on the
PIC, one of them could not interrupt the other. This rule is true for all
devices — a device’s interrupt routine can only be interrupted by a
device of a higher priority. Two side-effects of this rule are that a
device cannot overwhelm the kernel with interrupts — it has to wait
until its own interrupt routine completes before it is allowed to
interrupt again — and that interrupt routines do not need to be re-
entrant. Table 4.2 gives an indication of typical software interrupt
priorities for a selection of devices and kernel subsystems. Note that
these priorities may not be the same on other versions of UNIX or in
future releases of SCO UNIX.

It is important to note that this concept of interrupt priorities is
implemented in the kernel, and is entirely independent of the actual
controllers and devices which do not know what priority they are
operating at. They only know whether they are able to interrupt or
not.
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Table 4.2 Typical software priority levels.

Priority Device

Dumb serial cards

Clock, Buffer cache

Floppy disk, Hard disk, STREAMS
Network cards

Unused

Parallel printer

= N W s NN

Console keyboard

Interrupt requests from external devices are always latched by the
PICs, and are dispatched to the CPU as soon as the software priority
level permits. Providing interrupt requests are dispatched reasonably
quickly by the PICs, devices should operate without error. However,
if interrupt requests are not dispatched quickly enough by the PICs,
the reason that a device requested to interrupt may change (for
example, the user types another character). When the XXintr routine
finally executes and reads the device’s status register, an error condi-
tion will be indicated (in this case, an overrun error).

Disabling interrupts

All versions of UNIX provide kernel support routines to disable
interrupts at a particular priority level. The routines are called
splO(K), spll(K), ... spl7(K)” (the spl means software priority
level), and they cause the kernel to reprogram the PICs in the same
way as it does when responding to device interrupts, described
above. A kernel programmer should use these routines to disable
interrupts temporarily, in order to interlock task-time processes and
interrupt routines which share data structures. For example, whilst a
process is reading data from a buffer, it is necessary to prevent an
interrupt routine from writing data to the buffer at the same time,
otherwise data could be corrupted.

These spl (K) routines write the specified software priority level out
to the PICs, and return the previous software priority level (main-
tained by the kernel in a variable called picipl).

When the task-time process has finished accessing the shared data
structure, it must restore the software priority level to its previous
value by using the splx (K) kernel support routine. Typically, the value
returned from spl (K) is stored in an integer variable called s:
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int s;

s = spl6(); /* disable s/w priority level 6 interrupts */
access data structure which is shared with XXintr;

splx(s); /* enable XXintr =/

The operation of these spl(K) routines will become clearer in
Section 4.5.4.

Kernel data structures

SCO UNIX maintains three tables of data to help it manage software
interrupt priorities. The first of these is called intpri, a table of
interrupt priority levels, indexed by the IRQ number. The second is
called iplmask, a table of 8-bit values which the kernel writes to the
PICs’ Interrupt Mask Registers to disable interrupts from devices
which operate at the current software priority level or less. It is
indexed by the software priority level. A third table, ivect, is a table
of device driver interrupt routines. It is indexed by the IRQ number,
and is used by the kernel to vector interrupts to the correct device
driver interrupt routine.

The intpri and ivect tables are filled out whenever the kernel is
rebuilt with 1ink_unix (ADM) from information in mdevice and sdevice,
supplied by the configure (ADM) command. For example, the follow-
ing configure (ADM) options add details of an XXintr routine to mdevice
and sdevice for a character device with major device number 17. The
device operates at priority level 4 (-1 4), uses IRQline 5 (-v 5), which
it doesn’t share with any other devices or controllers (-T 1):

# ./configure -a XXintr -1 4 -v 5 -T 1 -c -m 17

The iplmask table is filled out by the kernel at boot time. Figure 4.4
summarizes the contents of these three tables on a typical SCO UNIX
system. The use of the configure(ADM) is described more fully in
Appendix A.

Low-level interrupt handling

The PICs are initialized by SCO UNIX to respond to either edge-
triggered or level-triggered interrupts, depending on the capabilities
of the machine architecture. The ISA architecture requires that
peripherals generate edge-triggered interrupts, but the MC architec-
ture requires that peripherals generate level-triggered interrupts.



unsigned char intpri[] = { unsigned short iplmask([] = { int (*ivect([])() = {
6, 0xXXXX, clock,
1, OXXXXX, cnintr,
0, 0xXXXX, intnull,
7, OxXXXXX, siointr,

IRQ4 —» 7, 0xXXXX, IRQ4 —— siointr,

2, O0xXXXX, bmintr,
5, 0xXXXXX, This mask is flintr,
2, spl7(K) ——— 0xXXXXX, — written to PICs paintr,
0, }; intnull,
0, intnull,
0, intnull,
0, intnull,
0, intnull,
0, intnull,
5, hdintr,
0, intnull,

}: }:

Figure 4.4 Interrupt tables.
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Level-triggered interrupts are more reliable, as the PIC is less likely to
be triggered by noise on the IRQ line and trigger timing accuracy is
not so critical.

The 1386 CPU can recognize up to 256 different interrupt IDs (or
vectors). The first 32 are reserved for exceptions (such as Invalid
opcode, Page fault, and so on), and the remaining 224 are available
for external interrupts. SCO UNIX programs the PICs to generate
vectors 64 through 79 for interrupts arriving on IRQ line 0 on the
master PIC through IRQ line 7 on the slave PIC. The vector is used to
index the Interrupt Descriptor Table (IDT), a table of task gates,
interrupt gates and trap gates which indirectly point to the kernel’s
exception and interrupt handling routines. IDT entries 0 through 63
are all trap gates, except for entry 2 (an interrupt gate to deal with
non-maskable interrupts) and entry 8 (a task gate to deal with Double
faults). IDT entries 64 through 79 are all interrupt gates, so that SCO
UNIX will handle interrupts in the context of the process that is
running at the time of the interrupt.

When any of the devices attached to the PICs wants to interrupt, it
raises its IRQ line high. If the bit corresponding to the IRQ line in the
PIC’s Interrupt Mask Register is 0, the PIC raises the INTR line on the
CPU. The CPU examines INTR at the end of each instruction, and if it
is set, it will acknowledge the interrupt by lowering the Interrupt
Acknowledge (INTA) line. On the next clock cycle, the CPU lowers
INTA again, and the PIC responds by loading the interrupt ID onto the
data bus. The interrupt ID is read from the data bus by the CPU, and
control jumps through the appropriate interrupt gate in the IDT into
the kernel’s interrupt handler. Figure 4.5 shows the interrupt gate
mechanism for an interrupt from IRQ 4 on the Master PIC.

The jump through the interrupt gate causes the CPU to perform
several actions before it starts to execute kernel text:

¢ If the interrupt happens whilst the CPU is executing user code at
privilege level 3, the CPU must switch to privilege level 0 to handle
the interrupt. It loads a new privilege level 0 stack pointer from the
user’s TSS, and pushes the old level 3 stack pointer onto the
system stack.®

® The EFLAGS register and the instruction pointer are pushed onto the
system stack.

® The Interrupt Enable (IF) flag is cleared, so that external interrupts
are disabled. This is to prevent the current interrupt handler being
interfered with by other interrupts.

® A new instruction pointer is loaded from the interrupt gate, and
the CPU starts to execute kernel text.
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Figure 4.5 The i386 interrupt gate mechanism.

Figure 4.6 shows the contents of the system stack on entry to the
kernel’s interrupt handler from privilege level 3 (user mode).

Each of the IRQ vectors enters the kernel at a different point — the
kernel pushes a dummy error code and the IRQ number onto the
system stack,’ and then jumps to a common interrupt handler. The
common interrupt handler does the following:

M
@

®)
4)
©)

(6)

Pushes all of the general purpose registers onto the system stack.

Pushes the DS, ES, FS and GS segment selectors onto the system
stack.

Copies the ESP register into the stack-frame base pointer register,
EBP.

Saves the current software priority level on the stack, by copying
it into the space occupied by the dummy error code.

Uses the IRQ to index the table of software priorities, intpri, to
determine the new software priority level corresponding to the
device on this IRQ.

Uses the new interrupt priority level to index the table of PIC
masks, iplmask, and writes out the contents to the PICs’ Inter-
rupt Mask Registers so that interrupts from all devices at this
priority or less are disabled.
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SS:ESP(0) from

\J

user's TSS
User's SS:ESP
User's EFLAGS
User's CS:EIP System stack
in U-area
New SS:ESP —»-

Figure 4.6 The system stack on entry to the kernel from user mode
(privilege level 3).

(7) Sends an End-Of-Interrupt command to the PICs, so that they
can now accept further interrupts.

(8) Sets the IF flag so that external interrupts are now enabled again.
Interrupts can now arrive, but only from higher priority devices
(see step 6, above).

(9) Pushes the old software priority level onto the system stack.

(10) Pushes the IRQ onto the system stack.

Finally, the IRQ is used to index the table of device driver interrupt
routine names, ivect, and control jumps to the device driver’s XXintr
routine. The IRQ) is passed to XXintr, so that if more than one piece of
hardware is sharing the same device driver, the device driver can
establish which device actually interrupted. For example, COM1 and
COM2 on IRQs 4 and 3 (Figure 4.3) share the same serial /O device
driver:

XXintr (irq)
int irg;

Figure 4.7 shows the contents of the system stack on entry to an
XXintr routine from user mode (privilege level 3).

Returning from interrupts

The device driver’s interrupt routine eventually returns to the low-

level common interrupt handler, which does the following;:

(1) Clears the IF flag, to disable all interrupts.



86

Interrupts

SS:ESP(0) from
user's TSS o

User's SS:ESP

User's EFLAGS

User's CS:EIP

Error code

IRQ

General purpose
registers

Segment selectors

Old spl

IRQ

Return address

SS : ESP >

Figure 4.7 The system stack on entry to XXintr.

)

®)

C))

Uses the old software priority level (saved at the top of the stack)
to index the table of PIC masks, iplmask, and writes out the
contents to the PICs” Interrupt Mask Registers so that interrupts
from all devices at this priority or less are re-enabled.

Checks the Cs segment selector that was saved on the stack to
see whether the interrupt occurred in user mode or system
mode.

If the Table Index (TT) bit of the selector is 0, the selector points
into the GDT, and therefore the interrupt occurred in system
mode. If the TI bit is 1, the selector points into an LDT, and
therefore the interrupt occurred in user mode.

If the interrupt occurred in user mode, the common interrupt
handler calls a kernel routine to deal with rescheduling and signal
dispatching. If the scheduling flag runrun was set during the
interrupt routine, a context switch is likely to occur, and the
remaining actions of the common interrupt handler, including
signal dispatching, will execute in the context of the new process.



Writing an XXintr routine 87

Section 4.7 describes how to use the wakeup(K) routine to
reschedule the CPU at the end of an interrupt.

(5) For both user mode and system mode interrupts, the GS, FS, ES
and DS segment selectors are popped off the system stack.

(6) The general purpose registers are popped off the system stack.

(7) The IRQ and the previous interrupt priority level (the dummy
error code) are removed from the system stack.

Finally, an IRET instruction is executed, which pops CS:EIP and EFLAGS
from the system stack. Note that popping EFLAGS will set IF, enabling
interrupts as soon as the IRET instruction completes. If the CS segment
selector indicates that IRET is returning to a less privileged segment
(that is, returning from system mode to user mode), IRET also pops
SS:ESP, leaving the system stack empty.

Execution now continues in either user mode or system mode, at the
first instruction after the one that was interrupted by the PICs. If there
was a context switch at the end of the interrupt, the IRET will have
returned into a process that is different from the one that was running
before the interrupt.

4.6

Writing an XXintr routine

Writing an XXintr routine is not as difficult as you may think, provid-
ing that you follow some basic rules. The key points to remember are:

® Keep your interrupt routines as short (and therefore as fast) as
possible.

® Do not make any assumptions about which process is currently
executing.

The basic job of an interrupt routine is to respond to a device’s request
for attention. In the majority of cases, a device interrupts because
either it has some data to give to the system or it has finished

* outputting data and is now ready to do some more work.

The following pseudo-code can be used as the basis for all interrupt
routines:

XXintr(irq)
int irq;
{

if (the device has data to give us) {
copy data from device into the kernel;
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} else {

copy data from kernel to device;
tell device to start outputting again;

}

Not all interrupt routines will be as simple as this:

e Different devices on the same controller may be sharing an IRQ), so
the first thing that the interrupt routine must do is to check the
controller’s status register to determine which device actually inter-
rupted.

A similar technique should be used if different controllers are also
sharing an IRQ.

® The controller’s status register must be checked for any errors. If the
device does interrupt with an error, the kernel must inform the
relevant user process that its system call has failed.
In some cases, the driver may need to initiate further I/O oper-
ations. For example, after a disk read or write error, the disk heads
are recalibrated (returned to cylinder 0) and the transfer is retried.

® Not all devices are capable of doing input and output. For example,
a lineprinter only outputs data. A mouse only inputs data. Some
devices, such as the clock, don’t input or output - they just provide a
constant source of regular interrupts.

® The kernel must be able to inform the user process which made the
I/O request that new data has now arrived in the kernel, or that the
device is now ready to accept more data.

® The kernel must also provide some storage space to buffer the data
that is arriving from the device, as the user process may not be able
to read(sS) all the data each time the device interrupts (or may not
want to). Storage space for buffering output datais also desirable, as
this will maximize the overall throughput of the system. Buffering
data is fully described in Section 4.9.

Informing the user process of errors

As described in Chapter 3, task-time errors that occur during I/O (such
as an invalid read(S) request, detected by the XXread routine) are
flagged to the user by calling the seterror(kK) routine to set
u_error in the process’ U-area.

The seterror (K) routine must not be used at interrupt-time, as we
have already explained that UNIX handles interrupts in whichever
context is valid at the time of the interrupt. If you do call seterror (k)
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from an interrupt routine, u_error might be set in the wrong U-area,
and the user process that should have received the error will remain
unaware of any problems!

The correct way to pass errors back from an interrupt routine is to
use a variable or a structure which is not related to the process’ context,
but which can be shared between the task-time parts of the device
driver and the interrupt routine. The following pseudo-code illustrates
this:

static XXerror;

XXread (dev)
dev_t dev;
{

while (there is no data to read) ({
wait for the device to interrupt;
}
if (XXerror != 0) {
seterror (XXerror) ;

}

}
XXintr(irq)
int irq;

if (there was an I/0 error) ({
XXerror = EIO;
!

4.6.2 Synchronizing with the user process

After a user process has made an I/O request to a device, there is
nothing else that it can do until the data is available. In general, system
calls do not return to the user process until after the device has
interrupted, indicating either that new data has arrived, or that all the
data has been sent. During this time, well-behaved system calls and
device driver routines should call the sleep (k) routine to relinquish
control of the CPU by forcing a context switch to another runnable
process. When the device interrupts, the interrupt routine should
wakeup (K) the user process so that its system call can continue and
eventually return to user mode. Sleep(K) and wakeup(K) were intro-
duced in Section 2.6, and will be described in more detail in Section4.7.
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Here is some pseudo-code to illustrate this:

XXread (dev)
dev_t dev;

{
disable XXintr with spl(K);
while (there is no data to read) {

sleep(K);
1

copy data from shared buffer out to the user process;
enable XXintr with splx(K);

}
XXintr (irq)
int irq;
{
if (this is a read interrupt) {

copy data from the device into shared buffer;
wakeup (K) anyone who is asleep;

4.6.3 A list of rules for interrupt routines

By now, you should have a good understanding of some of the
principles of writing XXintr routines. Here is a full list of rules which
you must always follow:

Never access any context-related data, such as the U-area, from an
interrupt routine. Context-related data also includes any part of the
user’s address space, which may have been either swapped or
paged out whilst the process was asleep, waiting for the interrupt.

Never call sleep(K) inside an interrupt routine, as the wrong
process may go to sleep, perhaps forever, and the interrupt routine
will not complete.

Never use spl (K) tolower the software interrupt priority level inside
an interrupt routine, unless your interrupt routine is properly re-
entrant. An example of a re-entrant XXpoll routine is given in
Chapter 5.

Never declare large amounts of auto storage in any kernel routine.
This is particularly true in high priority interrupt routines, whose
stack frames are more likely to be towards the end of the available
system stack space.
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® Postpone as much time-consuming processing as you can until task-
time, so that the device is able to interrupt again as soon as possible,
reducing the likelihood of data loss.

® Always check the device’s status register for errors to establish
whether it is safe to read or write any data.

4.7

4.7.1

Sleep(K) and wakeup(K)

The sleep (K) and wakeup (K) kernel support routines should be used to
synchronize between the task-time and interrupt-time parts of a device
driver. Since UNIX is a multi-tasking, multi-user operating system,
processes must relinquish the CPU whenever they have to wait for a
resource such as a semaphore, or in our case, an interrupt. For
processes in user mode, this is not a problem, as the real-time clock
provides a constant source of interrupts which will switch the CPU into
system mode 100 times per second. As the system returns from system
mode back to user mode, the kernel can make a context switch and
schedule a different process to run. However, the same is not true of
processes in system mode. Unless a process in system mode volun-
tarily relinquishes control of the CPU by calling sleep(K), there is no
way that UNIX can force a context switch. We say that UNIX is not pre-
emptive, which means that it cannot arbitrarily decide to make a
context switch in system mode whenever it wants to. This has two
important implications:

® All UNIX system code is atomic. This means that all system calls will
always run to completion, without being context switched, unless
they explicitly call sleep(K). They are of course liable to be inter-
rupted, but interrupts are handled in the context of the system mode
process that is running at the time of the interrupt.

e UNIX is not a real-time operating system. Real-time operating
systems are pre-emptive, and are able to force context switches

away from processes that are running in system mode. UNIX cannot
do this.*®

Sleep(K)

A process calls sleep (K) with two arguments:

sleep (wchan, priority)
caddr.t wchan;
int priority;
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The calling process is taken off the CPU and put onto a queue of other
sleeping processes, called the sleep queue, and a context switch
occurs. When the process is eventually woken up, it is returned to the
run queue, and eventually switched back onto the CPU, and sleep (K)
returns 0 to the calling process.

Thewchan (wait channel) parameter is a key which will be used by the
wakeup (K) call to identify which processes'' should be removed from
the sleep queue and returned to the run queue. To improve readability
of source code, the wait channel is usually associated with the reason
for going to sleep. For example, the mouse XXread routine might sleep
on the address of the data structure containing the mouse X and Y
coordinates. It is essential that the wait channel is known to both the
sleep(K) and wakeup (K) calls, so do not use the addresses of either auto
or static data.

The priority parameter determines the process’ scheduling pri-
ority after it has been returned to the run queue by wakeup (K) . When-
ever the dispatcher examines the run queue, it always selects the
process which has the highest priority (a high priority is a low
numeric value). A process that sleeps at a higher priority will be
chosen in preference to a process that sleeps at a lower priority, if
they are both woken up and returned to the run queue before the
next context switch. A process can therefore effect a limited amount
of control over its scheduling priority each time that it goes to sleep.

Figure 4.8 shows the priorities used by SCO UNIX. A list of pri-
orities is given in (sys/param.h). Note that processes which wait for
more critical resources, such as inodes, sleep at a higher priority than
processes which wait for less critical resources, such as character I/O.
For example, the system processes sched (the swapper) and vhand
(the page stealing daemon) always sleep at priority 0. Thus, when-
ever one of them is woken up and added to the run queue, it will
have the highest priority and will run after the next context switch.

The priority and wait channel are saved in the process’ process
table entry, and are two of the fields displayed by the command:

$ ps -el

During the development period of a device driver, it can be useful
for the device driver to display the wait channels that it uses to
sleep(K), as an aid to debugging. Appendix B gives some useful tips
and techniques for debugging device drivers.

Interrupting a sleep(K)

Processes that sleep(K) can choose whether or not they want to be
woken up prematurely by the kernel, to receive signals. In some cases
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PSWP (0) Swapper, paging daemon
PINOD (10) Waiting for inodes
(')ann.ot PRIBIO (20) Waiting for I/O
receive signals
21 Waiting for buffer
PZERO (25)

System mode

PPIPE (26) Waiting for pipe

28 Waiting for terminal input
Can 29 Waiting for terminal output
receive signals
PWAIT (30) Waiting for exit (S)
PSLEP (39) Waiting for sleep(S)
'
* 40 User level 0
User mode
119 Lowest user priority

Figure 4.8 SCO UNIX priorities.

this is desirable, but in others it is not. For example, a process that is
sleeping as a result of making a wait(S) system call should respond
normally to keyboard signals. However, a process that is refilling the
inode cache in the superblock and has set the s_ilock semaphore (see
(sys/fs/s5filsys.h)) to lock the cache, wants to be certain that it
cannot be interrupted by any signals until the semaphore is released.

Processes that need to block out signals should sleep(K) at a pri-
ority of PZERO or less (that is, between 0 and 25). For example, in
Figure 4.8, PINOD is 10. Processes that do not mind receiving signals
should sleep(K) at a priority higher than PZERO. For example, in
Figure 4.8, PWAIT is 30. Here is an extract from the output of a ps -el
command:

PID PPID C PRI NI WCHAN TTY TIME CMD
0 0 0 020 do0l4ffad - 0:00 sched
1 0 0 39 20 e0000000 2 0:02 init
2 0 0 020 do0ab078 2 0:00 vhand
3 0 0 20 20 d00adel8 2 0:00 bdflush
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274 1 0 30 20 do00e5660 01 0:02 csh
284 1 0 28 20 d00ca2cc 07 0:01 getty
276 1 1 30 20 d00e5910 02 0:01 sh
233 1 0 26 20 4d013d0lc 2 0:00 lpsched
364 276 5 62 20 02 0:00 ps

You can see that sched and vhand are sleeping at priority 0 (PSWP), init
is asleep at priority 39 (PSLEP), getty is asleep at priority 28 (waiting
for terminal input), sh is asleep at priority 30 (waiting for ps to
exit(S)), and so on. The sched, vhand and bdflush processes are all
asleep at PZERO or less, and therefore are immune to signals.

If a process is asleep and able to receive signals, the usual
behaviour when a signal arrives is for the kernel to longjmp(K) the
process out of the sleep(K) to the end of the system call, which
returns to user mode with the error EINTR. The device driver receives
no notification of this activity.

If the device driver wants to be notified of the interrupted sleep (K)
(for example, so that it can cancel any pending I/O request on the
hardware, clean up data structures, and so on), the process should
bitwise-OR the constant PCATCH (from (sys/param.h)) into the priority
passed to sleep(K). In this way, the sleep(K) will return 1 into the
device driver rather than performing a longjmp(K) to the end of the
system call when a signal arrives. The device driver now has an
opportunity to clean up before setting u_error to EINTR, and returning;:

XXread (dev)
dev_t dev;
{

while (there is no data to read) {
if (sleep(wchan, priority | PCATCH) == 1) {
/*
* We have been interrupted by a signal
+/
cancel I/0 request;
clean up appropriate data structures;
seterror (EINTR) ;
return;
} else {
/*
* We have been awakened by a wakeup(K)

+/
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Wakeup(K)

The more usual way of waking up a sleep(K)ing process is to make a
call to wakeup (K) :

wakeup (wchan)
caddr_t wchan;

Wakeup(K) calls are normally issued at interrupt-time, to notify a
process that the resource or the event which it was waiting for is now
available (for example, a disk I/O request has completed). The
wakeup (K) routine searches the sleep queue, looking for processes
that are asleep on the specified wait channel. Any that it finds are
removed from the sleep queue and put back onto the run queue, and
the wait channel in the process table entry is cleared. The last thing
that wakeup (K) does is to set the extern variable runrun, which will
schedule a context switch to happen before the next IRET to user
mode. It is important to note that, unlike sleep (K), wakeup (K) does not
force a context switch. It merely schedules a context switch to happen
at the next opportunity.

When the process is next scheduled to run, the sleep(K) call
returns 0, and execution continues normally.

Since wakeup (K) will move all processes with a matching wait chan-
nel onto the run queue, regardless of whether they should have been
woken up or not, it is extremely important that the task-time process
should first check that it has been woken up for the correct reason. If
not, it should immediately go back to sleep again. This is most easily
accomplished with a while loop. Here is some pseudo-code to illus-
trate task-time and interrupt-time parts of a device driver synchroniz-
ing with sleep(K) and wakeup (K). The next section will explain why
an exact implementation of this pseudo-code may cause the kernel to
deadlock!

static XXflag;

XXread (dev)
dev_t dev;
{
while ((XXflag & DATA_READY) == 0) {

set DATA_WANTED in XXflag;
sleep(address of shared buffer, priority);
}
disable XXintr with spl(K);
copy data from shared buffer out to the user process;
enable XXintr with splx(K);
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XXintr (irq)
int irq;

if (this is a read interrupt) {
copy data from the device into shared buffer;
if (XXflag & DATA_WANTED) {

clear DATA_WANTED in XXflag;
set DATA_READY in XXflag;
wakeup (address of shared buffer);

4.7.4 Avoiding deadlock

In the example pseudo-code above, consider what would happen if
the device interrupted immediately after the point that the XXread had
tested XXflag & DATA_READY to be 0, and then set DATA_WANTED:

® At interrupt-time, XXintr clears DATA_WANTED, sets DATA_READY and
issues a wakeup (K) .

® Control returns to XXread at task-time, which immediately calls
sleep(K), even though DATA_WANTED is now clear and data is avail-
able in the shared buffer.

The process will now sleep indefinitely, as XXintr will never see
DATA_WANTED set again, and therefore will never issue another
wakeup (K)! To make matters worse, the process may be asleep at a
priority of PZERO or less, so it will not be possible to terminate it with a
signal.

The solution is to apply the rule that we described in Section 4.5.2,
to protect data shared between task-time and interrupt-time routines:

static XXflag;

XXread (dev)
dev_t dev;
{

disable XXintr with spl(K);
while ((XXflag & DATA_READY) == 0) {
set DATA_WANTED in XXflag;
sleep(address of shared buffer, priority);
}
copy data from shared buffer out to the user process;
enable XXintr with splx(K);
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It is now safe to manipulate XXflag at task-time, and deadlock is
avoided.

4.7.5 Waking up processes sleeping at PZERO or less

During the early stages of device driver development, particularly for
prototype hardware that does not interrupt reliably, processes which
sleep at PZERO or less whilst waiting for an interrupt can become
locked in the system if the interrupt doesn’t arrive. The following
pseudo-code shows how to wakeup (K) such a process and report the
suspected hardware problem using a timeout (K):

#define SLEEPING_EVENT 0x1
#define DID_GET_INTERRUPT 0x2
int flag = 0;
*
* hwfail() is called by a timeout(K)
*/
hwfail ()
{
if ((flag & DID_GET_INTERRUPT) != 0) {
/*
* The timeout expired after the device
* has interrupted - so nothing to do
*/
return;
)
/*
* The timeout has expired before the device
*+ has interrupted - so wakeup(K) the process.
*
* When the process wakes up, EVENT will be set
* but INTERRUPT will not be set.
*/
flag |= SLEEPING_EVENT;
wakeup (&flag) ;

}
*
*+ XXfoo() sleeps at <= PZERO, but will be woken up
* by a timeout(K) after .5 seconds.
*/
XXfoo()
{

int id, s;
s=splN(K) ;
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while ((flag & SLEEPING_EVENT) == 0) {

/*
+ Before we sleep(K), set a timeout(K) to
+ call hwfail() if we are not woken up
* correctly by XXintr() within .5 seconds
*
/

id = timeout (hwfail, 0, Hz / 2);

sleep(&flag, at a priority <= PZERO);

/*
*+ When we wake up, see if INTERRUPT is
* still clear. If so, we assume that the
+ hardware has failed.

*/
if ((flag & DID_GET_INTERRUPT) == 0) {
untimeout (id);
indicate error in u.u_error;
cmn._err (CE_WARN, “possible hardware failure");
clear up any temporary or inconsistent data
structures;
splx(s);
return;
}
}
splx(s);
}
XXintr (irq)

{

flag |= SLEEPING_EVENT;
flag |= DID_GET_INTERRUPT;

wakeup (&flag) ;

}

Remember that the timeout(K) call to hwfail will happen at
spl6(K), so the usual rules for interrupt routines apply.

e e e e

4.8 Context switching

In Chapter 2 we listed the different circumstances in which a context
switch can occur:
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® Whenever the CPU returns from system mode to user mode, at the
end of exceptions, interrupts and system calls.
Note that the regular and frequent source of interrupts from the
real-time clock ensures that processes which stay in user mode for
relatively long periods will still be subject to context switching.

® Whenever a process in system mode is waiting for an event or
resource, such as free memory, or data from a device, and calls
sleep(K).

In Section 4.7 above, we described how a call to sleep(K) forces a
context switch to occur. We explained that wakeup (K) does not force a
context switch — it just sets runrun'? which schedules a context switch
to happen at some point in the future.

In this section, we will describe how a context switch happens as a
result of runrun being set.

At the end of every exception, interrupt and system call, the kernel
examines the CS selector saved at the bottom of the system stack to
determine whether the exception (or interrupt or system call)
occurred in user mode or system mode. If the exception occurred in
user mode, a routine is called to examine runrun. If runrun is set, the
kernel calls gswtch to actually make the context switch. The gswtch
routine does the following: '

1) The current process is taken off the CPU and put onto the run
P P
queue. Its state is changed from SONPROC to SRUN.

(2) The dispatcher is called to search the run queue for the highest
priority process.

(3) The new process is taken off the run queue. Its state is changed
from SRUN to SONPROC.

(4) A TSS Descriptor is constructed in the GDT, to point to the new
process’ TSS.

(5) The kernel executes an indirect jump through a task gate, which
selects the TSS Descriptor described above.
The indirect jump saves the context of the old process in the
TSS pointed to by TR, and loads the context of the new process
from the TSS pointed to by the TSS Descriptor.*?

(6) The new U-area is mapped to u.

(7) The CPU’s cache (called the Translation Lookaside Buffer, or
TLB) is flushed, so that all memory references must be fetched
from memory rather than being satisfied by the out-of-date (and
therefore incorrect) TLB entries.

Finally, gswtch returns from the system stack in the new U-area, in
the context of the new process. The entire context switch operation
takes approximately 1000 clock cycles. Most of these are used by the
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indirect jump through the task gate. Figure 4.9 illustrates the funda-
mental context switch mechanisms.

The common interrupt handler then returns back to user mode, as
described in Section 4.5.5, above.

We have now described how an interrupt routine can wakeup (K) a
user process which is asleep at task-time. With a reasonable amount
of luck, that process will be switched onto the CPU at the end of the
current exception. It will return from its sleep(K), and its system call
will then be able to run to completion.

4.9

Buffering data

The final area that we need to discuss in order to fully understand
interrupts is the buffering of data. Buffering data serves to increase
system throughput, and decouples the user process from the device,
so that they can operate asynchronously of each other. Buffering
increases throughput on all devices, but is particularly effective for
low speed, low volume devices. Recall the parallel printer driver from
Chapter 3, and consider the following pseudo-code modifications:

static char c;
lpwrite (dev)
dev_t dev;

while (u.u_count) ({
while ((inb(PSTATUS) & READY) == 0) {
sleep(K) and wait for lpintr();
}
spl(K) to disable lpintr() and protect c;

if ((c = get next character from user) == -1) {
splx(K) to enable lpintr() again;
return;

)

call lpintr() to start output;
splx(K) to enable lpintr() again;
}
}
lpintr(irq)
int irq;
{

outb (PDATA, c);

outb (PCNTRL, PRIME | STROBE);

outb (PCNTRL, PRIME);

wakeup (K) anyone asleep in lpwrite();
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4.9.1

Interrupts

Note that we are calling XXintr at task-time to start up output. This
is perfectly valid, providing that we interlock correctly with spl(K).
Although we are apparently using sleep(kK) and wakeup (K) correctly
to synchronize between the task-time and interrupt-time parts of the
driver, this is probably the least efficient device driver that we could
write! In fact, we are no better off than we were at the start of this
chapter with XXpoll:

® There will be at least two context switches (at approximately 1000
clock cycles per switch on an Intel CPU) for each byte of data that is
written to the printer.

® On a busy system, the user process that has made the write(S)
system call and is now asleep will almost certainly not be able to
run at the first context switch following the wakeup (K) .

® The user process may even get paged or swapped out whilst it is
asleep, which will put an even greater load on the system, as the
process will have to be swapped back in again after the wakeup (K) .

In the meantime, the printer will be idle for most of the time, printing
only a few characters per second at best.

Buffering output

We can address these problems by introducing a buffer into the
device driver, which is shared between the task-time and interrupt-
time parts. We have added some more pseudo-code to our parallel
printer driver:

static char lpbuf[1024];

lpwrite(dev)
dev_t dev;
{

while (u.u_count and space in lpbuf) {

spl(K) to disable lpintr() and protect lpbuf;
if (copyin(u.u-base, into lpbuf, 1) == -1) {
seterror (EFAULT) ;
splx(K) to enable lpintr() again;
return;

}

u.u_count--;
u.u_base++;
u.u_offset++;

}
call lpintr() to start output;
splx(K) to enable lpintr() again;
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lpintr(irq)
int irgq;

whil