

Writing Device Drivers
for sea UNIX

Writing Device Drivers
forSCOUNIX

A Practical Approach

Peter Kettle
The Santa Cruz Operation Ltd

Steve Statler
Sequent Computer Systems Ltd

• ~~ Addison-Wesley Publishing Company
Wokingham, England . Reading, Massachusetts . Menlo Park, California
New York· Don Mills, Ontario· Amsterdam· Bonn· Sydney· Singapore
Tokyo· Madrid· San Juan· Milan· Paris· Mexico City· Seoul· Taipei

© 1993 Peter Kettle and Steve Statler

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission of the
publisher.

The programs in this book have been included for their instructional value. They have
been tested with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept any
liabilities with respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Addison-Wesley has made every attempt to
supply trademark information about manufacturers and their products mentioned in
this book. A list of the trademark designations and their owners appears on p. xvi.

Cover designed by Designers & Partners of Oxford and
printed by The Riverside Printing Co. (Reading) Ltd.
Typeset by CRB (Drayton) Typesetting Services, Norwich, Norfolk.
Printed in Great Britain at the University Press, Cambridge.

First printed 1992.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data
Kettle, Peter.

Writing device drivers for SCO UNIX: a practical approach {Peter
Kettle, Steve Statler.

p. cm.
Includes index.
ISBN 0-201-54425-3
1. UNIX device drivers (computer programs) I. Statler, Steve.

II. Title.
QA76.76.D49K48 1992
005,4'3--dc20 92-36521

CIP

This book is dedicated
to our parents.

Foreword

UNIX started life as an operating system for technical or scientific
users, and following its adoption as the basis for the Open System
operating environment, it has now progressed to become a general
purpose operating environment for business applications. By com
bining UNIX and computer systems based on industry standard
Personal Computer hardware, solutions based on Open Systems are
now becoming increasingly popular in an ever-expanding range of
applications. This move into new territories has been largely as a
result of the desire by large scale users of computers to build complex
systems out of standard low-cost components and to break free from
the restrictions created when they have a single source provider for
their computer hardware.

The Open Systems standards established by organizations such as
XlOpen and the commitment to these standards from software pro
viders such as sca, have meant that highly powerful systems that
are capable of running the most sophisticated applications can be put
together at previously undreamed of costs to match the users' needs
exactly.

This flexibility to produce powerful and sophisticated systems has
created a need for special software device drivers to be produced to
run the ever-increasing range of special hardware products available
for standard PC hardware. There are already many hundreds of
device drivers available for SCO UNIX and yet every week many new
requirements appear. These might be for a new point-of-sale ter
minal, a new type of tape back-up drive, a new graphical display
card, or maybe for an intelligent telephone exchange!

We at SCO are totally committed to the Open System process, and
through this process, to providing our customers with the freedom to
put together the very best systems that precisely meet their needs.
The development of special device drivers for incorporating the
optimum components into a system is a key element in our approach

vii

viii Foreword

to Open Systems. I believe that this excellent book based on training
courses delivered by the Santa Cruz Operation provides you with an
insight into the requirements for producing a device driver for SCO
UNIX and I hope that it will encourage you to take on the challenge of
developing many new device drivers.

Lars Turndal
Senior Vice President and Managing Director

The Santa Cruz Operation Ltd

Preface

Welcome!

This book is written for students of computer science and systems
programming professionals. Our objective is to offer information
about writing UNIX device drivers and the operation of the UNIX
kernel that is practical and accessible.

On successful completion of this book you will be able to write a
variety of device drivers. If you have completed the exercises set at
the end of each chapter, you will have built a UNIX kernel, written a
device driver for a mouse, experimented with interrupts, written a
simple line discipline, written a Stream driver and modified a disk
driver. You are likely to have a better grasp of operating system
functions and the inside of UNIX than most of your colleagues in the
computer industry.

Although it is rare for most systems programmers to have to write
device drivers, the investigation of this topic can pay many divi
dends. It yields an understanding of the following areas:

(1) The structure and mechanisms of an Operating System.

(2) Device drivers and the concept of device independence.

(3) Computer and peripheral hardware architecture.

To provide an accessible environment, the exercises are designed
for SCO UNIX. At the time of writing the current release is SCO
UNIX Release 3.2 Version 4.0. The exercises are set at the end of each
chapter with hints and model answers to aid the reader. They can be
readily adapted to operate on other vendors' versions of UNIX after
consultation with the appropriate implementation-specific documen
tation. Although we use UNIX as the basis for this book, many of the
principles that we discuss extend to other operating systems.

The information that we have distilled into this book has tradi
tionally been fragmented in many different places: computer science

ix

x Preface

text books, hardware manuals, software guides and the minds of a
few developers who may be difficult to contact or to understand.

Conventions

Throughout the text of the book, when UNIX system calls or com
mands are mentioned, they will be followed by an abbreviation in
parentheses to indicate where they are documented in the SCO UNIX
manual set. For example run (CP) indicates that the nrn command is
documented under Commands: Programming (CP) in the Program
mer's Reference Manual.

UNIX commands, system calls and function names will be in
constant width type, as will code extracts, structures and variables.

Where UNIX commands are listed they will be preceded by a
prompt that will indicate whether the command needs to be typed as
root (#) or any user ($).

A convention that we have not adhered to is the use of troff (CT) in
the preparation of this book. We used Microsoft Word!

Prerequisi tes

In order to gain the most from this book it is necessary to have
experience of using the C programming language, including an
understanding of the use of libraries, system calls, pointers and
bitwise operations. In order to attempt the exercises it will be neces
sary to have experience of developing programs using UNIX and
access to a machine running SCO UNIX. Some knowledge of the
issues relating to UNIX system administration would also be useful
but is not essential.

Choice of operating system

UNIX is supported by nearly every major mainframe, mini and micro
computer manufacturer in the world. Since its appearance in the early
1970s it has been adopted by Altos, Amdahl, AT&T, Bull, Cray, Data
General, DEC, Fujitsu, HP, IBM, ICL, Intel, MIPS, Motorola, NCR,
Olivetti, Prime, Sequent, Siemens/Nixdorf, Sun, Tandem, Tandy,
Unisys, Wang and many others.

SCO XENIX and latterly sca UNIX have proliferated throughout
industry and academia, running on many different manufacturers'
computers and in greater quantities than any other variant of UNIX.

Preface xi

The latest estimates run at 500000 sea licences sold, most of which
are multi-user licences. sea UNIX will run on some of the least
expensive Intel i386 and i486 microprocessor-based computers. It is
likely that if you have a Personal Computer in your office that is
running UNIX, it will be running sea UNIX.

Device drivers for sea XENIX and sea UNIX differ in some areas.
We have chosen sea UNIX as a basis for the examples in this book,
as most developers are working with sea UNIX rather than XENIX.

How to use this book

At the end of each chapter there is a short quiz. We recommend that
you use these to test your understanding of the chapter. There is also
a practical exercise at the end of each chapter. Answers to quizzes and
exercises are provided in separate chapters at the end of the text.

If you attempt the quizzes and the exercises, you are more likely to
retain more of what you have read, gain a deeper understanding of
the topics that we have discussed, derive more satisfaction and have
an opportunity to learn about related issues through the process of
exploration.

We also suggest that you discard the conventional reverence for
books and annotate the text wherever needed.

Materials required to perform the exercises

If you are going to attempt the exercises, the following materials will
be useful:

(1) A copy of sea UNIX and the sea UNIX Development System.

(2) A computer based on either the Intel i386 or i486 microprocessor,
with the above software installed.

(3) A copy of the sea UNIX Device Driver Writer's Guide, which
contains more information about Sea-specific details.

(4) For a number of the exercises, you will need a mouse. The model
answers assume that you have a Microsoft InPort Bus Mouse®.

Acknowledgements

We are very grateful to the following people for their technical assist
ance and constructive and courteous feedback during the preparation
of this book: Rob Adams, Tony Booker, John Forrest, Steve Gzesh,

xii Preface

Craig Heath, Dave McLeman, Simon Plackett, Pete Shephard,
Hendrik Jan Thomassen at AT Computing, Dave Tollow (who wrote
the original mousey test program), Nadeem Wahid, John Warn ants
and many others.

Many thanks go to Jo and Miranda for their support, patience and
coffee, and to Rattle and Hum for their miaows, purrs and assistance
at the keyboard .
. Parts of this book were prepared and tested on an Olivetti M380

computer.
A special thank-you to Nicky Jaeger at Addison-Wesley, for her

infinite patience and continuous support and encouragement over
the past two years.

And finally, thank-you to Doug Michels and SCO, who first sug
gested that the book should be written, and who granted free access
to the necessary research materials.

Peter Kettle
Steve Statler

August 1992

Contents

Foreword

Preface

vii

ix

1 Fundamentals 1
1.1 Overview 1
1.2 The definition of a UNIX device driver 1
1.3 Computer hardware architecture 2
1.4 The role of an operating system 4
1.5 The structure of the UNIX operating system 4
1.6 The purpose of a device driver 8
1.7 Demarcation between drivers and the rest of the kernel 10
1.8 Communicating with devices 12
1.9 Controllers 14
1.10 An overview of block and character devices 17
1.11 Summary 20

Qu~ W
Exercises 20

2 Getting started 22
2.1 Overview 22
2.2 A methodology for writing device drivers 22
2.3 How device drivers are invoked 23
2.4 The device driver/kernel interface 32
2.5 Routines within a device driver 32
2.6 Guidelines for writing device drivers 34
2.7 Summary 46

Q~ ~
Exercise 47

xiii

xiv Contents

3 Simple character device drivers 48
3.1 Overview 48
3.2 The character device driver kernel interface 49
3.3 The U-area and simple character devices 53
3.4 Transferring data between user and device driver 57
3.5 Transferring data between device driver and device 59
3.6 Mechanisms to schedule execution of device drivers 61
3.7 An example parallel printer driver 65
3.8 Summary 67

Quiz 68
Exercise 68

4 Interrupts 72
4.1 Overview 72
4.2 What is an interrupt? 72
4.3 Process contexts 73
4.4 The system stack 75
4.5 How interrupts arrive in a device driver 77
4.6 Writing an XXintr routine 87
4.7 Sleep(K) and wakeup(K) 91
4.8 Context switching 98
4.9 Buffering data 101
4.10 Summary 108

Quiz 109
Exercise 109

5 Line disciplines and serial device drivers 111
5.1 Overview 111
5.2 An introduction to line discipline 0 112
5.3 Accessing a line discipline 113
5.4 Serial device drivers 115
5.5 A description of line discipline 0 125
5.6 Additional kernel support for serial device drivers 135
5.7 An example serial device driver 140
5.8 Summary 162

Quiz 162
Exercise 163

6 STREAMS 165
6.1 Overview 165
6.2 Wha t is a Stream? 166
6.3 Messages 170
6.4 QUEUEs and the kernel interface 178
6.5 Flow control and STREAMS scheduling 186
6.6 STREAMS system calls 190

Contents xv

6.7 Advanced topics 198
6.8 Error logging 206
6.9 Configuring Stream modules and drivers 207
6.10 An example STREAMS driver 209
6.11 Summary 221

Quiz 221
Exercise 222

7 Block device drivers 224
7.1 Overview 224
7.2 Block device characteristics 225
7.3 The buffer cache 228
7.4 The kernel interface 235
7.5 A RAM disk driver 237
7.6 The geometry of a hard disk 240
7.7 Partitions and divisions 244
7.8 Bad blocks 247
7.9 Kernel support for disk drivers 247
7.10 An extended RAM disk driver 253
7.11 Direct memory access (DMA) 266
7.12 Summary 269

Quiz 270
Exercise 271

8 Raw device drivers 273
8.1 Overview 273
8.2 Raw 110 on paged architectures 274
8.3 Conventions for raw device drivers 275
8.4 Disks and raw 110 276
8.5 Tapes and raw 110 280
8.6 Summary 282

Quiz 283
Exercise 283

9 Where to now? 284
9.1 Overview 284
9.2 More device drivers 284
9.3 Further reading 286
9.4 Summary 287

Answers to quizzes 289

Answers to exercises 295

xvi Contents

Appendix A
Adding a new device driver to the kernel
A.1 Overview
A.2 The SCO UNIX Link Kit
A.3 Building a new kernel
A.4 Testing the device driver

Appendix B
Debugging device drivers
B.1 Overview
B.2 Defensive programming
B.3 Debugging device drivers
B.4 Dealing with hanging processes and kernel panics
B.5 Summary

Index

Trademark notice
sca ™ is a trademark of The Santa Cruz Operation, Inc.
UNIX™ and 3b2™ are trademarks of AT&T

325
325
325
328
335

337
337
337
339
343
346

347

Microsoft InPort Bus MouseR and XENIXR are registered trademarks and
Word™ is a trademark of Microsoft Corporation
Motorola 68000™ is a trademark of Motorola Corporation
IBM PSI2™ and AIX™ are trademarks of International Business Machines
Corporation
8088™, 80286™, 80386™, 80486™ and Multibus™ are trademarks of Intel
Corporation

1
Fundamentals

1.1 Overview

Before we launch ourselves into the midst of writing device drivers it
is advisable to revisit some fundamental facts. We will review:

• The definition of a UNIX device driver

• Computer hardware architecture

• The role of an operating system

• The structure of the UNIX operating system

• The purpose of a device driver

• What device drivers do and what they don't do

• How device drivers communicate with peripherals

• An overview of character and block drivers.

The objective of this chapter is to ensure that the reader has an
understanding of the foundation concepts necessary to progress with
the later material. This chapter may be omitted if you feel you have an
adequate understanding of all the above topics.

1.2 The definition of a UNIX device driver

A device driver is a collection of software routines that make up part
of an operating system. It allows the UNIX kernel and user programs
to communicate with peripheral devices.

A UNIX device driver hides hardware device-specific details from
the user and the rest of the operating system. It provides an interface
between the kernel and the device which allows the device to be

1

2 Fundamentals

letc/init Ibin/ls Ibin/mail

User programs

I I I I I I

Operating system kernel

Devicedrivers @) ~ ~~~

Figure 1.1 User programs, the kernel and device drivers.

accessed using the same system calls as those associated with access
ing a regular file. Figure 1.1 shows device driver modules along with
other parts of the operating system kernel offering services to user
programs.

1.3 Computer hardware architecture

For the sake of our discussions computer hardware can be divided
into the Central Processing Unit (CPU), memory, peripheral control
lers and the peripherals themselves.

Device drivers typically are written by computer manufacturers,
peripheral manufacturers, system integrators and sophisticated end
users with specialized needs. The devices supported by these device
drivers include hard disks, visual display units, keyboards, speakers,
printers and sometimes even the flashing lights on the front of the
computer. All of these need to be controlled by the computer using
sets of software routines called device drivers.

The connection of the CPU to its peripherals is via a component
known as the system bus. This normally takes the physical form of
the system back-plane, a printed circuit board with a large number of
address, data and control lines, joining together most of the cards in

Computer hardware architecture 3

Terminal

Memory 6a[§JQ

< Bus

~--

Figure 1.2 The logical structure of a computer.

the computer chassis. Examples of types of bus are the original IBM
PC Bus (known as Industry Standard Architecture, ISA), the
Extended Industry Standard Architecture Bus (EISA), Intel's Multi
bus and the IBM Micro Channel Architecture (MCA) bus. Other
examples used on larger machines include the VME bus, the IEEE
Future Bus and a multitude of proprietary designs from many manu
facturers. The system bus acts as a data highway, linking the CPU,
memory and peripherals. The relationship between these is shown in
Figure 1.2. Although it is useful to be aware of its existence, the
device driver writer rarely becomes involved in the details of the
system bus operation.

Some machines employ a hierarchy of buses, with a peripheral bus
attached to the system bus. This allows larger numbers of peripherals
to be connected to the system and also makes possible the integration
of peripherals that are not directly compatible with the interface used
on the system bus. In these cases the driver writer needs some
knowledge of the bus operation in order to achieve access to these
peripherals.

An example of this is the Small Computer Systems Interface (SCSI)
bus which can be attached to the ISA, EISA and MCA buses as well as
many others. The SCSI bus attaches to the system bus using a host
adaptor, which is addressed in the same way as any peripheral
controller would be. This adaptor manages access to the SCSI bus,
which usually takes the form of a cable, connecting up to seven SCSI
controllers. Each controller may support up to eight devices. In this
way a single slot in the system bus yields connections with up to 56
peripherals.

4 Fundamentals

1.4 The role of an operating system

The operating system of a computer manages the hardware resources
and provides an environment that allows users' application programs
to run.

The kernel, as its name suggests, is at the centre of the operating
system and performs the following low-level functions:

• Input/Output (I/O) from and to peripherals

• Management of memory

• Process creation and scheduling

• File system management.

It also provides a set of entry points into the kernel code that allow
programs to make use of facilities such as device access and process
creation, through a system call interface. A system call is a request for
action from the kernel, such as 'read some bytes from a file'.

In the same way that one might consciously decide to blink one's
eyes without having to consider the speed, start and stop point of
each eyelid, an application program such as a spreadsheet will make a
system call to display a character on the terminal, without consider
ing issues of what bit patterns are to be placed on the terminal's
communications line and determining the state of the peripheral
controller.

1.5 The structure of the UNIX operating system

The UNIX operating system is divided into two classes of software:
the routines that make up the kernel and the programs that make up
a broad set of utilities.

The utilities consist of hundreds of separate executable programs.
One can subdivide the utilities into two separate groups. The first is
quite remote from the workings of the low-level operating system, for
example, the spelling checker, the sort program or the hangman
game. The other group is closely linked to the operation of the kernel.
It includes the programs /ete/init, jete/login and /hin/sh. Despite
the fact that these programs are fundamental to the use of the system
(they allow users to log in, type commands and log out again), they
are distinctly separate from the kernel code and operate through the
same system call interface as the hangman program. Figure 1.3

The structure of the UNIX operating system 5

/etc/init

User programs

System call entry

Operating system kernel

Figure 1.3 The /ete/init program making a system call in order to read the
disk.

illustrates the request for kernel services from the read(S) system call
in a user program.

During the period that the CPU is executing the code of a user
program or utility it is said to be in user mode. When it executes code
within the kernel (the junix binary) it is in system mode.

When programmers make a system call in their code, they are
setting up a request for services from the operating system. If we
examine the assembly language instructions generated by compiling
a program which makes a single system call, we see the following
sequence.

A system call such as open (S) consists of a short library routine.
This library routine switches the flow of execution from the instruc
tions in the user's executable file, for example a. out, over to instruc
tions in the operating system kernel, by performing the following
operations:

(1) Setting up parameters (a file name and a number which signifies
the access mode (read or write) to be used). These are pushed
onto the user program's stack.

6 Fundamentals

(2) Executing a special machine code instruction to switch from user
mode into the system call entry point in the UNIX kernel. SCO
UNIX on the Intel i386/i486 CPU uses a call gate machine code
instruction (see the Intel i80386 Programmer's Reference Manual for
further details). On other CPUs the instruction is commonly
referred to as a 'trap'. Once this has been executed, the kernel
then takes control, checks the parameters on the user's stack,
ascertains the system call operation that is required and then
executes the relevant kernel functions. When this has been com
pleted the kernel returns control to the user's code.

(3) In the user's code the call gate is immediately followed by
instructions that test to see if the system call has been suc
cessful.

In between execution of the call gate (step 2) and the return to user
mode (step 3), many thousands of kernel instructions will have been
executed.

The instructions that implement the open (8) system call are con
tained within the kernel. The system call mechanism is quite different
from a library call, although from the programmer's view point there
is little noticeable difference.

System calls and library routines are linked into executable
object files or binaries using the link editor ld (CP). Library routines,
which are generally made up of many thousands of instructions, are
copied from library archives such as /lib/libc. a and linked with the
library function call in the program to create the object file. For a
system call, the library consists of only a short piece of code that
contains a call gate. As in the case of a library routine, it is copied and
linked with the program; however, the bulk of the code that
implements the system call is not in the library, it is contained in the
kernel.

Device drivers are part of the UNIX kernel. Therefore they cannot
make system calls and do not have the standard set of library func
tions available to them (such as those within the library /lib/libc. a).
Use of a system call within a device driver would be like using the
front door of a house as an entry point into the kitchen, when you are
already in the living room. Functions such as printf (8), which are
sometimes mistakenly considered to be part of the C language, are in
fact library routines contained within libc. a and hence are not avail
able for use within kernel code.

Familiar library routine names sometimes reappear within the ker
nel but this time with different functionality. For example, putc (8)

changes from being a general function to pass characters to a file, to a
mechanism for adding characters to a kernel buffer structure.

The structure of the UNIX operating system 7

Routines that are provided for the device driver writer are known
as 'kernel support routines'. These routines should always be used to
ensure the portability of the device driver code. Potentially you can
call any routine in the kernel, but if you choose to use undocumented
ones, device drivers may stop working when the routines change
their functionality or disappear in future releases of the operating
system. If all operations are coded explicitly within the source of the
driver, rather than using the documented support routines, the same
problems can occur when kernel structures and mechanisms evolve.
To avoid these problems, the kernel support routines which are
documented in the sea UNIX Device Driver Writer's Guide should
always be used. These routines are identified in this book as follows:
putc(K) .

As UNIX has evolved, larger numbers of support routines are
provided by operating system vendors in order to offer uniform and
sophisticated implementations of functions such as disk partitioning
and screen handling, across ranges of different devices.

The UNIX kernel is a stand-alone executable file. A copy of it
resides in the file system and is usually called /unix. Just like any
other program its source can be modified, compiled using the C
compiler cc(CP) and linked using Id(CP). It is written in a mixture of
C and a small amount of assembly language code. Less than 1 % of
the code is written in assembly language.

Users rarely have access to all the source code of the operating
system. It is usually jealously guarded by the lawyers of its authors
and only released at great expense, although traditionally, academic
institutions receive UNIX source for a token sum. However, certain
parts of the source code escape these restrictions and are I freely'
available to the UNIX user (albeit copyrighted). These parts include
nearly all of the header files which define the data structures used
within the kernel (the majority of these are contained in the
/usr/include/sys directory on most UNIX systems) as well as source
files containing definitions of configurable values such as process
table size, file table size and user-defined device drivers.

The kernel can be investigated with standard UNIX development
utilities such as the debugger adb (CP) and the name list display utility
nm (CP). The command

run -p /unix

can be run on a system to list the address, type and name of all the
routines and variables used within your kernel. adb(CP) can be used
to disassemble your driver routines, as well as modify constants and
variables. You will find this very useful when you come to do any
practical work.

8 Fundamentals

1.6 The purpose of a device driver

A device driver is a set of routines linked into the kernel which are
used as part of the mechanism to translate the general file handling
system calls open (S) , read (S) , write (S) and close (S) into commands
that will operate the specific peripheral device being accessed.

The system call interface and most of the kernel routines below it
are not hardware specific, but the device driver is. The device driver
provides an interface between the low-level parts of the kernel and
the hardware.

One of the great strengths of UNIX is the simplicity of being able to
use the same file handling primitives (read(S) and write(S)) on any
type of file. These files can be regular files, directory files, pipes,
symbolic links or the special device files that control peripherals such
as disks, terminals and tapes. A device is seen by the users as an
extension of the filesystem, so that just as they open (S) and read (S) a
text file, they may use the same system calls to access a peripheral. As
a result of this a utility such as od(C), the octal dump program, can be
used to examine text or binary files as well as the contents of a disk
partition or the data arriving on a communications line. This gives
great flexibility to the programmer and simplifies the building of what
would otherwise be complex and unportable software.

When accessing regular files and directories, the following com
mand might be used:

$ od /etc/passwd

A layer of software between the system call interface and the disk
device driver provides the file system management functions. This is
almost completely bypassed when special device files are accessed
directly:

od /dev/root

The modularity of the UNIX kernel combined with the increase in
compatible computer hardware, based on common chip sets, means
that once the initial CPU-specific implementation of UNIX has been
completed (often by the chip vendor or an industry consortium), the
bulk of the programming task involved in porting UNIX to a new
machine is the writing or modification of device drivers.

Part of the device driver writer's task is to hide the complexities of
the peripheral from the kernel and hence the user. If programmers
had to write the code to operate a specific type of disk at the register

The purpose of a device driver 9

level every time they developed a general ledger accounting
application, then their task would be complicated many times over. It
would also be very difficult to port any software that was finally
produced to other machines that did not use the same hardware
interface to control the disk. Some large computer manufacturers
have done very well offering solutions similar to this despite these
disadvantages.

There is a trade-off however between using a simple standard
system call interface to a peripheral and accessing the device at a
lower level. The trade is in the area of performance. This is best
illustrated in the world of MS-DOS, first developed for the Intel 8088
processor. Some application writers have been tempted to access
display devices at a low level, bypassing the machine's Basic Input
Output System (BIOS) and writing directly to the registers of a device
in order to gain maximum control and performance. Often this is in
order to access display devices such as a VGA graphics card. Pro
grams written in this way are less portable and may not run on
another manufacturer's pc. These applications are also more difficult
to transfer to other operating systems. Machines such as the IBM PC
which were based on comparatively simple processors without mem
ory management units permitted the accessing of a machine's hard
ware directly from application programs. This practice is becoming
less common. With the advent of the Intel 80286 processor, the CPU
has a protected mode which can be used selectively to control access
to a machine's hardware.

In protected mode a mechanism is enforced which is built on four
levels of privilege. Level 3 is the least privileged and under normal
circumstances it is not possible to use the processor's I/O instructions.
At level 0 it is possible to use all of the processor's instructions and
have access to all of the machine's memory. These levels of privilege
are like the layers of an onion, as shown in Figure 1.4. SCO UNIX
uses only two levels of privilege. It disregards the middle levels and
runs user processes at level 3 and the kernel at level o. These two
levels correspond to user mode and system mode. These modes have
no relationship with the root and user account privileges or file
permissions which are implemented in software by the kernel.

On an Intel8088-based machine, running MS-DOS, a user can use
an assembly language routine to read directly from a device. That
same routine, if it were executed on an Intel 80286 machine running
in protected mode, would fail to complete its execution. The CPU
would detect that a protected instruction was about to be executed
whilst the CPU was at privilege level 3 and would generate an
exception. This would cause the CPU to switch to system mode to
deal with the exception and the offending process would probably
be terminated. These restrictions on the use of I/O instructions are

10 Fundamentals

Figure 1.4 Privilege levels on sea UNIX.

necessary when the hardware is being shared in a multi-user environ
ment, where users need to be protected from the actions of them
selves and others on the system.

1.7 Demarcation between drivers and the rest of the
kernel

If we examine the events following a read (8) system call, we will be
able to appreciate the areas of demarcation between a device driver
and the rest of the kernel. When a program executes a read (8) system
call to retrieve data from a file, a hierarchy of kernel functions are
invoked. Eventually these result in device driver routines being
executed.

In response to a read(8) system call the kernel will look up the
current offset of the file pointer from the file table and map this offset
to the location of the disk block within the filesystem containing the
data.

Demarcation between drivers and the rest of the kernel 11

User code Kernel code

Application specific General Driver code

open(FILE, O_RDWR) ;

I pathname to inode
conversion

permissions check
I hardware startup

initialize driver
data structures

t_
read(fd, data, SIZE) ;

I check current
position

if data in buffer
cache, pass back &
return

set up data
structures that
driver expects

ask driver to read
block

I check request is
legal

translate to
hardware-specific
parameters

maintain driver
data structures

transmit commands
to device

walt for~results
check results and
pass data back

J
t

Figure 1.5 Functions performed by the kernel and a device driver.

The kernel keeps copies of recently accessed disk blocks in RAM.
This memory area is known as the disk buffer cache. If there is a copy
of the desired block in the disk buffer cache, the kernel copies the

12 Fundamentals

data from the cache back to the user and so completes the read
without using the device driver or accessing the disk hardware. If
there is not a cached version of the block, the kernel must call the
driver.

Parameters will be set up by the kernel so that the driver will know
how far from the beginning of the file system to start reading the disk,
how much data to read and where in memory to put the data. The
device driver code then takes over.

The driver validates the request, determining whether the block is
actually contained on the disk and whether the size of the request is
reasonable. This depends on whether the requested data extends past
the end of the division, partition or disk that is being read. Divisions
and partitions divide a disk into separate areas. This allows more than
one operating system (each in its own partition) with a number of
filesystems (each in their own division) to reside on the same disk.
Partitions and divisions are implemented by the device driver. They
are not physical attributes of a disk.

Before the request can be passed to the disk controller, the block
number provided by the kernel must be translated from an offset
within a filesystem to a physical location on the disk. The block
number received from the kernel does not include offsets for the
partitions and divisions, neither does it take into account any bad
tracks. The disk driver must deal with all of these issues.

Having translated the block number, a request is formulated in
terms that the disk controller understands. It will probably need to be
told the cylinder, sector and track being accessed and how many
sectors to read.

Once the driver has programmed the disk controller with the
request, control returns from the driver back up to the kernel. The
kernel waits for the transfer to be completed by the controller which
will send an interrupt when the data has been transferred into the
buffer cache. The kernel then copies the data from the buffer cache
out to the user process and the read(S) system call returns.

The functions performed by the kernel and device driver are illus
tra ted in Figure 1. 5.

1.8 Communicating with devices

A device driver communicates with hardware devices in a similar way
that PC programmers do when they bypass the BIOS. It outputs
instructions directly to the controller's registers.

Communicating with devices 13

The procedure is similar to that which a customer might use to
communicate with a waiter in a Chinese restaurant. Predefined num
bers are used to signify what is required. At the restaurant, the
numbers are defined in a menu and transmitted by the customer to
the waiter, indicating for instance that number 96 (sweet and sour
pork) is required. When dealing with the device, the numbers and
their meanings are detailed in a hardware specification (often harder
to obtain than a menu). The device driver outputs these numbers into
the controller's registers, indicating that a disk read is required, for
example. The command 'read the disk' might be specified by placing
the value 96 into the disk controller's command register. There will
also be numbers used to specify where on the disk the read is to be
made and how much data is to be read and where to put the data in
memory.

Passing these commands between the device driver and the
peripheral is achieved by one of two methods, depending on whether
the device has been designed to be I/O mapped or memory mapped.

1.8.1 I/O mapped transfers

Accessing I/O space and the devices that are mapped within it
requires use of specific machine instructions. These instructions pass
commands and data to and from the I/O space address locations.
They do not work with ordinary memory address locations. In the
case of the Intel-based machines, these instructions are called IN and
OUT and can normally be executed only by the UNIX kernel running at
privilege level O. I/O space is a special address space which is limited
to 64K on the Intel iX86 and is logically separate from physical
memory. The SCO UNIX kernel only allows access to the first 4K of
I/O space.

Having the two address spaces removes the possibility of
peripheral addresses conflicting with those used for program storage.
Processors such as the Motorola 68000 series do not offer the facility
of a separate I/O address space and use memory mapped I/O instead.

1.8.2 Memory mapped transfers

Memory mapped I/O means that the CPU's general purpose instruc
tion set can be used to pass commands and data to and from memory
locations which are linked to the registers of a device. Memory
mapped I/O can be used on Intel-based machines despite the fact that
they have a separate I/O space. This is illustrated in Figure 1.6.

14 Fundamentals

Address

OxFFFFFFFF

OxOOOOOOOO

Memory space

Applications

Graphics
device

OCR device

Kernel

I/O space Address

Disk port OxOFFF

Terminals

Printer

Mouse OxOOOO

< __ BUS~>
Figure 1.6 Diagram of 1/0 and memory mapped devices.

Memory mapped I/O allows the hardware integrator to tie specific
physical memory addresses to the registers of a peripheral. This has
the advantage that a full complement of assembly language instruc
tions is available to the programmer to manipulate these registers.
Typically, devices such as graphics displays are memory mapped so
that programmers may easily modify bit patterns in memory, which
are then transformed into related patterns on the display screen by
the graphics device.

1.9 Controllers

It is important to distinguish between devices and controllers. Device
drivers usually communicate with a controller rather than directly
with the device itself. A controller interprets the commands sent to it
by the device driver, often using an embedded processor that
executes code stored in firmware. There are a number of standard
controller command sets. A device driver written to use a particular

Controllers 15

command set (for example SCSI) can communicate with controllers
produced by any manufacturer that conforms to that standard. This
gives the user a choice of supplier for device controllers and mini
mizes the number of device drivers that need to be written for dif
ferent peripherals.

The controller commands are translated into signals which are
passed to the device by the controller over an electrical interface.
Examples of different controller/device interfaces are Storage Module
Device (SMD) and Seagate Technology 506 (ST506). This standardiza
tion allows different controllers to be used in combination with a
variety of devices.

Successive generations of controllers are becoming more intel
ligent, which usually makes the task of writing device drivers for
them more straightforward. Unfortunately, the intelligence of the
controller is sometimes wasted when it does not fit the method of
operation expected by the operating system.

Hence a device driver is a layer of software that is positioned
between two other layers of code. The upper layer is the kernel's
system call and filesystem management routines and the lower layer
is the controller's firmware.

In order to communicate with a controller the device driver uses
three types of data:

• Commands and parameters passed to the controller via command
registers.

• Data moving to and from the controller via data registers.

• Status information received from the controller's status registers.

These registers are provided at predetermined 110 or memory
addresses where this information can be read or written (see Figure
1.7). These addresses may be configurable via jumper connections on
the controller board.

Some devices map many registers to the same address. The map
ping can be done in a number of ways. One method (used by a disk
controller found in the IBM PS/2 machine) is for the controller to map
two different registers to a single address, depending upon whether
the location is being read or written. The controller can sense this by
examining the system bus to see if a read or write is being performed
by the CPU. If the address is written to, the command register is
mapped, if the address is read from, the status register is mapped
(see Figure 1.8). Given that you will only write commands and only
read the status of a device, this works well. The problem with this
approach to hardware design is that it makes drivers more difficult to
write and understand.

16 Fundamentals

I/O space

OxOFFF Mouse controller

Command register

Status register

Data register

OxOOOO

Figure 1.7 Each register has an address in order to allow the CPU to read
and write its contents.

The main disadvantage with registers sharing addresses becomes
apparent when a device is memory mapped and an instruction that
the programmer assumed only writes to the location actually per
forms an implicit read as well. Unexpected results will occur in this
situation when using C's bitwise operators such as I = and &=, which
are frequently used to set and unset bits within variables, or any
operator which performs an implicit read.

An example of this can be seen if you increment the value held in a
command register which is also mapped to the same address as a
status register. Common sense dictates that this would result in a
write. However, after consideration it becomes apparent that the
memory location will need to be read first in order to know what
value is to be incremented. If the initial value in the command register
is 2 and the status register is set to 41, the result of incrementing the
command register would be to set it to 42, not 3 as one might have
wanted. The solution to this problem is to use a static variable in the

1.10

An overview of block and character drivers 17

Memory

OxFFFFFF Controller

Command register

I~
.... 1 I

Status register

-I I

OxOOOOO

Figure 1.8 Registers can be mapped into place depending upon the oper
ation being performed.

driver to record the last value written to the command register. It can
be safely incremented and then copied to the command register.

Another complication which often exists is when registers are
switched into place depending upon the value that has been written
to another register. Effectively you have a register selection register,
as well as the actual register that you want to access. The advantage
of this scheme, from the hardware designer's point of view, is that it
conserves physically mapped locations. This technique is often used
for graphics cards, for example the IBM Video Graphics Adaptor
(VGA), where one may want to have a palette of many colours, each
one programmable to different shades but without having to use up
hundreds of memory locations.

An overview of block and character drivers

There are two basic types of interface to devices offered to users on a
UNIX system, block and character device files. You can verify this by
typing is -1 /dev, which should produce output similar to that
shown in Figure 1.9. The field on the left displays the access permis
sions of the device files and has either a b or a c to indicate whether

18 Fundamentals

crw-r--r-- 1 sysinfo sysinfo 7, o Jun 26 00:27 cmos
crw------- 3 bin terminal 3, 1 Aug 16 09:39 console
brw-rw-rw- 5 bin bin 2, 52 Jun 25 04:52 fdO
brw-rw-rw- 1 bin bin 2, 36 Jun 26 00:27 fd0135ds9
brw------- 2 sysinfo sysinfo 1, 23 Jun 25 04:52 hd02
brw-rw-rw- 1 bin bin 2, 64 Jun 25 04:52 install
c---r----- 1 bin mem 4, 1 Jun 26 00:27 kmem
crw------- 2 bin bin 6, o Jun 26 00:27 lp
crw-rw-rw- 1 root other 43, o Aug 14 14:08 ptsOOO
crw------- 2 sysinfo sysinfo 1, 47 Jun 25 04:53 rhdOa
b---r----- 1 bin backup 1, 40 Aug 9 13:42 root
crw-rw-rw- 1 bin terminal 3, o Jun 25 04:52 tty
crw------- 1 root terminal 0, o Aug 16 09:40 tty01
crw-rw-rw- 1 bin bin 52, 5 Jun 26 00:27 vga

Figure 1.9 Part of the output from the command 'Is -1 /dev'.

the device has a block or character interface. The implications of this
categorization represent one of the many hurdles at which most
people fall when trying to get to grips with UNIX device drivers.

1.10.1 Block drivers

Block devices are usually associated with peripherals used to support
fi1esystems such as disks. They read and write fixed-size blocks of
data. A large number of kernel support routines are provided to do
buffering, sorting of requests and read-ahead functions that work
with the device-specific driver code.

1.10.2 Character drivers

Character interfaces cover a wide range of drivers. A character inter
face usually exists for all peripherals supported on the system. A
common misconception of character device drivers is that they only
transfer data one character at a time. In fact transfers can be of a
variable size depending upon the characteristics of the device. There
are no fixed-size transfers of data that are inherent in the character
interface and as a result character device drivers can be written for all
peripherals.

Serial drivers

The most obvious category is that of serial drivers used to interface to
asynchronous terminals. These use additional device-independent
kernel support functions which provide a lot of the more complex but

An overview of block and character drivers 19

standard functionality associated with terminal modes such as
character erase and keyboard signals.

STREAMS drivers

The STREAMS interface became available when UNIX System V
Release 3.0 was introduced. It provides a framework for implement
ing and using software modules within a driver. STREAMS is most
commonly used to implement layered protocol stacks to support use
of communications devices. It allows the modularization of drivers
that were previously very large, complex and hence difficult to main
tain and port to other systems. The architecture offers the potential
flexibility of easily combining various different communication pro
tocols (such as TCP/IP running over X.2S) that were not originally
designed to work together.

Raw drivers

Another category of character device drivers are those which are
associated directly with block device drivers. These provide an alter
native mechanism for accessing the same physical device as the block
driver. They bypass the buffering mechanism provided through the
block driver and allow variable-sized transfers directly between a user
process and a device such as a tape. Raw drivers also offer device
specific control of the peripheral to the user through the ioctl(S)
system call. This invokes additional routines in the driver which
implement functions such as formatting or retensioning a tape.

Pseudo-drivers

Pseudo-device drivers are unique in that they do not talk directly to a
peripheral device but offer an entry point to the kernel in order to
gain access to a kernel facility. An example of this is the /dev/null
device driver which acts as a benevolent black hole in the operating
system, absorbing any output that is sent to it. Another example is
/dev/kmem which allows programs to access kernel virtual memory.

Other drivers

Most other drivers are also implemented as character devices.
Devices such as mice and Ethernet cards which have a variable data
unit size and do not use the standard kernel support routines
associated with filesystems or terminals fall into this category.

20 Fundamentals

1.11 Summary

In this chapter we have reviewed some fundamental information
about the architecture of a computer system and the UNIX operating
system that runs on it. We have drawn the lines of demarcation
between user processes and the kernel, kernel code and driver code,
as well as character and block device drivers.

QUIZ

To test your understanding of this chapter, try to answer the
following questions.

1.1 Can programmers bypass UNIX device drivers in order to
control peripherals directly?

1.2 The /etc/init program is part of the operating system. Is it
part of the kernel?

1.3 Which file conventionally contains the UNIX kernel object
file?

1.4 Can character device drivers be used to access disks?

1.5 Can a UNIX device driver make system calls?

1.6 Does a disk device driver writer have to implement the
code to perform buffer caching?

EXERCISES

(1) Using nm(CP), examine the names of the routines within the
kernel and locate all of the routines associated with reading.

Hint: The routines will have read in their name.

(2) Using adb(CP), examine the read(S) library routine. How is the
transition made from user mode to system mode?

Exercises 21

Hint: Write a very short C program which has one statement, a
read (8) call, with no parameters. Use adb (CP) on the resultant
executable file. Print the instructions that follow the 'main' and
the 'read' symbol.

Users of systems other than SeQ UNIX should use the sdb
debugger instead.

2
Getting started

2.1 Overview

Chapter 1 established some of the fundamentals necessary to under
stand the environment that device drivers work in. This chapter
describes:

• An approach to follow when writing device drivers.

• How accessing a UNIX special device file results in device driver
routines being called.

• An introduction to the routines that make up a UNIX device driver.

• Some initial rules to follow when writing device driver code.

The objective of this chapter is to offer readers a methodology and a
foundation of information that will allow them to understand and
write the various types of device drivers described in the following
chapters.

2.2 A methodology for writing device drivers

22

During this chapter we will introduce a practical, exploratory method
of learning. It is necessary to adopt this approach in order to be
successful when working at the complex level of operating system
internals. Much of the information that is needed is not documented.
This is because of the small target audience for such documentation,
the complexity of the subject matter and its dynamic nature. There
fore the device driver writer has to adopt a methodology which
moves away from reliance on documentation or consulting local

How device drivers are invoked 23

experts and relies instead on experimentation, use of source code and
reference to first principles.

Use of operating system source code is an important part of the
methodology that needs to be adopted in order to understand device
drivers. The full source code of the operating system can be expensive
to obtain, but other useful sources of information include:

(1) The header files which contain the definitions of the data struc
tures used within the operating system.

These are available on nearly every UNIX system which offers
a C compiler. They can normally be found in the /usr/include
and /usr/include/sys directories. Examination of the files in
these directories will pay dividends. We will demonstrate the
use of these files in this chapter.

(2) The source code of other related device drivers.
If the source code supports a device similar to yours, it will

contain useful information about the device, even if it is written
for another operating system. This may include the locations of
registers, how they can be used, comments about problem areas
and idiosyncrasies of the device that might need to be dealt with.

(3) Example device drivers that illustrate how specific types of
devices are normally handled by UNIX.

Some examples are available in this book.

We will now use the discussion on 'how device drivers are invoked'
to illustrate this practical, exploratory methodology.

2.3 How device drivers are invoked

The two objectives of this section are:

(1) To give you an understanding of how and when device driver
routines are invoked by the kernel. From this you will gain a
perspective on where the device driver fits within the overall
scheme of things.

(2) To illustrate the process of using header files to understand
kernel data structures and the examination of data held in these
structures using UNIX utilities. This will be achieved through
the use of a tutorial style for the rest of this section.

We will now describe the relationship between the special device
file and the device driver. This will include the mechanism which is
used to translate the reading and writing of a special device file to
physical operations on the peripheral device which it references.

24 Getting started

2.3.1 From the special device file to the inode

The Index Node or inode is the central data structure that holds the
detailed information describing a file. For regular and directory files it
stores the file type, access permissions, ownership, file size, location
of the file's data blocks on the disk and records of access times. The
kernel reads this structure from the disk when a file is open (S) ed and
uses it to locate the necessary data blocks that the read (S) and
write(S) system calls need to access.

Each UNIX file name has an inode number which is used to index
into an inode list. This list is part of the filesystem structure held on
the disk. Inodes that are currently in use are cached in the inode
table, an array of inodes held in RAM.

A directory is a type of file. A directory entry for a file consists of an
inode number and an array containing the file name. This is true for
all types of file. Many different file names can use the same inode
number. These file names are all linked to the same file. New links are
established with the In(C) command or the link(S) system call. The
relationship between directory entries and inode table entries is illus
trated in Figure 2.1 which shows multiple directory entries linked to
single entries in the inode table.

All of the information necessary for the system to locate the correct
set of device driver routines for a device is stored in the inode
associated with the relevant special device file.

A special device file is distinguished from other types of file by the
contents of the file type member of the inode structure. The special
file type is displayed as either a b or a c in the first column of a
directory listing.

A file's inode number can be listed using the Is (C) command with
the -i flag, for example:

$ Is -i /dev/console

All this does is format the entry in the /dev directory file. Since all of
the requested information is held in the directory file, the operating
system does not need to access the inode table. If the command

$ Is -il /dev/console

had been entered, the system would need to use the inode number to
index into the inode table where all the remaining information relat
ing to the file resides (as a result of this, on heavily loaded systems
you will find that Is and Is -i execute much faster than Is -1).

Special device files can exist anywhere in the UNIX file system, but
conventionally they are grouped below /dev.

How device drivers are invoked 25

/ dev directory / directory

inode File inode File
number name number name

3 2
2 .. 2 ..

27 install r--- 3 dev
27 fdO ;---- 318 unix
27 fd0135
27 fd0135ds18

r--- 572 data
r--- 25 console

Inode table

inode Permissions Links I I I UID GID Size
number

--. 25 crw-rw-rw- 2 0 2 3,1
-----+- 572 -rw------- 1 21 50 900

r 27 brw-rw-rw- 4 0 2 2,60
28 brw-rw-rw- 3 0 2 2,61

r 2 drwxr-xr-x 15 2 2 592 ~ - 3 drwxr-xr-x 7 0 19 2832 ~
318 ----r----- 1 2 20 499200

Figure 2.1 Diagram showing relationship between directory entries and an
inode.

The ability to have multiple file names linked to the same inode is
often used with special device files in order to designate a particular
device as being the default. For example, in Figure 2.2 the output
from the command

$ Is -i /dev/fdO* /dev/install I sort

shows that the default devices fdO and install use the same inode as
/dev/fd0135ds18 (on this particular system it is inode number 27).
This allows us to infer that the default format for floppy disks on this
system is 135 cylinders, double sided, 18 sectors and that the instal
lation device relies on reading disks of this format. The fd0135ds18
notation is a device naming convention peculiar to seo.

Another application of this facility is to maintain compatibility with
previous names given to devices following name changes. A new
name can be used to access the device whilst the old one remains. In
this way versions of software that explicitly reference the old device

26 Getting started

27 /dev/fdO
27 /dev/fd0135
27 /dev/fd0135ds18
27 /dev/install

1494 /dev/fd048ds8
1496 /dev/fd048
1496 /dev/fd048ds9
1516 /dev/fd096ds9
1517 /dev/fd096
1517 /dev/fd096ds15
1518 /dev/fd096ds18
1493 /dev/fd048ss8
1495 /dev/fd048ss9
1609 /dev/fd0135ds9

Figure 2.2 Example output from the command
ls -i /dev/fdO* /dev/insta11 I sort.

name will still work. An example of this is the special device file for
the cartridge tape unit. These can be examined with the following
command:

$ Is -il /dev/rctO /dev/rmt/Ob

whose output is shown in Figure 2.3. The -il flag displays the inode
number (first column) as well as the number of file names linked to
the inode (third column). The first device name is used to preserve
compatibility with programs written for XENIX systems, whilst the
second is compatible with the UNIX System V convention.

The numbers 10, 0 taken from the example output in Figure 2.3 are
examples of major and minor device numbers. Each characterlblock
device driver has a unique major device number associated with it.
The major and minor device number are separated by a comma and
are seen in place of the size field which is displayed for regular files
and directories. The way these numbers are used will be explained
later on in this chapter.

Investigating and analysing data structures

In order to get accustomed to the investigative technique required to
understand UNIX, the reader is encouraged to follow the steps out
lined in this section which confirm the basic information that was
related earlier.

3069 crw-rw-rw- 2 root other 10, 0 Oct 26 12:26 /dev/rctO
3069 crw-rw-rw- 2 root other 10, 0 Oct 26 12:26 /dev/rmt/Ob

Figure 2.3 Output from the command ls -il /dev/rctO /dev/rmt/Ob.

How device drivers are invoked 27

0000220 00011 25714 12337 14133 27745 00108 00000 00000
013 \0 r d 1 a 5 7 a 1 1 \0 \0 \0 \0 \0

0000240 00025 28515 29550 27759 00101 00000 00000 00000
031 \0 c 0 n 5 0 1 e \0 \0 \0 \0 \0 \0 \0

0000260 00026 29285 28530 00114 00000 00000 00000 00000
032 \0 e r r 0 r \0 \0 \0 \0 \0 \0 \0 \0 \0

0000300 00027 25702 12592 13619 29540 14385 00000 00000
033 \0 f d 0 1 3 5 d 5 1 8 \0 \0 \0 \0

Figure 2.4 Selected output from the command od -de /dev I more showing
the directory entries for /dev.

The same data as obtained using the Is -i command can be
retrieved by examining the directory file directly, using the octal
dump program od(C). You can do this by typing

$ od -de /dev I more

This will display the contents of the /dev directory file with the
position or offset in octal in the leftmost column and the contents
listed in decimal and character notation (see Figure 2.4). In order for
one to make sense of numeric data like this it is necessary to under
stand the structure declaration that is used by the operating system to
manipulate the data. The format of the directory entry for the original
System V filesystem is held in one of the header files used to build the
kernel (sys/fs/s5dir .h) (see Figure 2.5).

od(C) displays the position of the data in the file in its first column.
In this case (Figure 2.4) the console entry starts at the (octal) 240th
byte (160 decimal). The inode number is octal 031 or decimal 25. The
first two characters are of the file name and are displayed by od(C) as
decimal 28515. This is equal to binary 0110 1111 0110 0011. The Intel
iX86 processor is byte swapped and word swapped, so the two bytes
need to be reversed and then translated to 8-bit character codes if they
are to be viewed in the correct order. Hence 01100011 equals octal
0143 which equals the ASCII character 'c'. 01101111 equals octal 0157
or the character '0'. The rest of the characters in the string can be
translated in the same way.

#define DIRSIZ 14
struct direct
{

ushort d_ino;
char d_narne [DIRSIZ I ;

} ;

Figure 2.5 Directory structure declared in (sys/fs/s5dir.h).

28 Getting started

25 /dev/console

Figure 2.6 Output from the command ls -i /dev/console.

The command Is -i /dev/console (Figure 2.6) confirms the
information we gleaned using od(C).

Other types of filesystem (such as Berkeley and the Extended Acer
Filesystem (EAFS) offered with sea UNIX) have a slightly more
complex directory structure. The Berkeley file system incorporates
other fields, including one that stores the number of characters in
each file name so that longer file names can be stored.

2.3.2 From inode to device driver code

The structure of the inode as held on disk is declared in (sys/ ino. h) ,
part of which is shown in Figure 2.7. (The types such as ushort used
in this and other kernel header files are declared in (sys/types. h) .)
Through this structure the kernel can invoke the device driver
routines associated with the special device file. The di-Inode member
indicates whether the inode relates to a regular data file or a special
device file. The permissible types are defined in (sys/ inode . h). A
subset of these is shown in Figure 2.8.

If the IFREG bit is set, read and write system calls are routed through
to the regular file handling code in the kernel. Alternatively, if the

Inode structure as it appears on a disk block.

struct dinode
{

} ;

/*

ushort
short
ushort
ushort
ofLt
char
char
time_t
time_t
time_t

di-ffiode;
dLnlink;
dLuid;
dLgid;
dLsize;
dLaddr(39) ;
dLgen;
dLatime;
dLmtime;
dLctime;

/* mode and type of file */
/* number of links to file */
/* owner's user id */
/* owner's group id */
/* number of bytes in file */
/* disk block addresses */
/* file generation number */
/* time last accessed */
/* time last modified */
/* time status last changed */

* The 40 address bytes:
39 used as 13 addresses of 3 bytes each.
40th byte is used as a file generation number.

Figure 2.7 Lines from the file (sys/ino.h).

How device drivers are invoked 29

#define
#define
#define
#define

IFDIR
IFCHR
IFBLK
IFREG

Ox4000
Ox2000
Ox6000
Ox8000

/* directory */
/* character special */
/* block special */
/* regular */

Figure 2.8 Lines from the file (sys/inode.h).

IFCHR or IFBLK bits are set, system calls are routed so that they result
in device driver routines being called. In this case they will transfer
data to and from the device rather than a regular file.

The device driver calls are routed through two arrays of structures,
which contain pointers to functions. These functions are the routines
inside the device driver that have been created by the device driver
writer. The array bdevsw, otherwise known as the block device switch
table, is used for calling block device driver routines. The other array
cdevsw, or the character device switch table, contains pointers to the
character device driver routines. These data structures are defined in
(sys/conf .h). The relevant section is shown in Figure 2.9. The arrays
cdevsw and bdevsw are indexed by the major device number, which is
obtained from the inode of the special device file being accessed.

/*
* Declaration of block device switch. Each entry (row) is
* the only link between the main unix code and the driver.
* The initialization of the device switches is in the file conf.c.
*/

struct bdevsw {

} ;

int (*d_open) ();
int (*d_close) ();
int (*d_strategy) ();
int (*d_print) ();
char *d_narne;
struct iobuf *d_tab;

extern struct bdevsw bdevsw[] ;

/*
* Character device switch.
*/

struct cdevsw {

} ;

int (*d_open) ();
int (*d_close) ();
int (*d_read) ();
int (*d_write) ();
int (*d_ioctl) () ;
struct tty *d_ttys;
struct strearntab *d_str;
char *d_narne;

extern struct cdevsw cdevsw[J;

Figure 2.9 Lines from the file (sys/conf.h).

30 Getting started

open(" Idev/rhdOO", O_RDWR);

!
It struct dinode {

di_mode = IFCHRlperms;
di_addr[] = 1,0;

}

t

cdevsw[]=
{/*O* 1 sioopen, sioclose, sioread, siowrite, sioioctl,

~ /*1*1 hdopen, hdclose, hdread, hdwrite, hdioctl,

1*2*1 bmopen, bmclose, bmread, bmwrite, bmioctl,
}

The open (S) of the character device file Idev/rhdOO results in the call to driver

routine hdopen

open("/dev/fdO",

d~_mode = IFBLK perms;
1 sLet dinode {

di_addr[] = 1,0;
}

bdevsw[]=
{/*O* 1 ctopen, ctclose, ctstrategy,

~ 1*1*1 fdopen, fdclose, fdstrategy,

}

The open(S) of the block device file /dev/fdO results in the call to driver routine
fdopen

It

I

I

Figure 2.10 Diagram showing relationship between the inode and an entry
in cdevsw and bdevsw.

The di_addr array, which is a member of the dinode structure, is
normally used to store pointers to the data blocks of regular files. In
the case of special device files, the first three bytes of di_addr are used
to store the major and minor numbers associated with the device in
question. Figure 2.10 demonstrates how a combination of the identity
of the system call being executed, plus the information held in the

How device drivers are invoked 31

inode being operated on, is used to access the required device driver
routine.

In summary, the kernel uses a combination of the IFCHR or IFBLK
bits along with the major device number (all found in the special
device file's inode) and the type of operation which is being per
formed (for example read (S) or write (S)), to locate the correct device
driver function to call.

The kernel is able to invoke the selected function through use of a
statement such as:

(*cdevsw[major(dev)] .d_write) (dev);

The dey variable is taken from the di_addr member of the inode for
the special device file being accessed. Since cdevsw is indexed by the
major number, the macro major (defined in <sys/sysmacros.h)) is
used to mask and shift out the lower order bits which make up the
minor device number.

This mechanism allows calls to device driver routines to be inde
pendent of the device driver name. As a result, kernel routines which
access devices can be made device independent. The device drivers
for these devices can be substituted without affecting the code that
calls them. An example of this is the kernel code which implements
the UNIX virtual memory system. The routines within this code
implement swapping and paging. In doing this they need to write
memory pages directly out to disk. The disk device. driver can be
varied using this calling mechanism without modifying the virtual
memory code in the kernel, thus allowing a modular approach to the
development of the operating system.

Both the major and minor numbers are passed on to the device
driver code as a parameter. The major number selects which device
driver is to be called. The minor number is often used to modify the
device driver's behaviour. Typical examples are:

• Indicating which partition on a disk is being mapped by the special
device file.

• Indicating which line on a terminal controller is being accessed.

• Specifying whether a tape unit needs to rewind when the device is
closed.

The interpretation of the minor device number is at the device driver
writer's discretion.

A special device file needs be created for each value of the minor
number that is understood by the device driver. In this way it is
possible for all valid minor number values to be passed to the device
driver. Using the last example, there would be a special device file

32 Getting started

that causes the tape to be rewound when it is closed and an alterna
tive special device file, with the same major number but a different
minor number, which would not initiate the rewind upon closing.

To summarize, it is the major device number that controls which
device driver is invoked and the minor device number which modi
fies its behaviour. The device driver is independent of any file sys
tem, file name, or inode number.

2.4 The device driver/kernel interface

The device driverlkernel interface consists of both the device driver
routines that are called by the kernel and the kernel support routines
that are called by the device driver.

The kernel expects certain routines to be provided by the device
driver writer. The identity of the routines that need to be provided
depends primarily upon whether the device requires a character
interface and/or block interface.

Each device driver model has a set of kernel support routines which
it can use. For instance, serial device drivers which are used to
interface to terminal lines can make use of kernel support routines
that implement the command line editing facilities expected by ter
minal users.

2.5 Routines within a device driver

Certain routines must be present to enable the device driver to be
called by the kernel. These routines are the entry points to the device
driver. The device driver model dictates which entry points are
required. From the (sys/conf .h) file, listed in Figure 2.9, one can see
most of the possible entry points that can be provided for each type of
device. These are explained individually later in this section.

It is not always necessary to provide all of the possible entry points
for a device driver. The exceptions fall into two classes. One is that
the function may be invalid for the hardware being supported, for
example, provision of a routine to service write (8) calls as part of a
mouse device driver. The second possibility is when the routine does
not need to be provided for the device to operate but the operation is
still a reasonable one for a user process to request, given that it is not
aware of the device-specific requirements. An example of this might

Routines within a device driver 33

be a close routine for a parallel printer driver. It might well be that no
operation is required by the hardware when a process has finished
sending output to the printer.

In both cases no routines need to be written for these functions.
Stub routines to fill in the bdevsw and cdevsw entries are provided
automatically by SCQ's link_unix (ADM) script when the kernel is
built. The procedure for doing this is explained in Appendix A,
Section A.3.

The device driver writer must decide upon a common prefix for all
of the key device driver routines (for our purposes this is denoted as
xx). The prefix should be from two to four characters long. The
remainder of the routine name depends upon the function that the
routine provides to the operating system.

A brief summary of the function of the routines that need to be
written for block, character and raw devices follows. More detailed
explanations are provided in the following chapters.

2.5.1 Character device drivers

Character device drivers should provide some or all of the following
routines:

XXinit
Performs hardware and memory initialization at system initializa
tion time.

XXopen
Performs checks and initialization when the special device file is
open(s)ed.

XXclose
Performs any operations necessary when the device becomes inac
tive.

XXread, XXwri te
Called as a result of a user's read(S) orwrite(S) system call. They
verify the requests, program the controller and transfer the data.

XXioctl
Invoked following an ioctl (S) system call to implement functions
not possible through the system call interface used with regular
files.

XXhalt
Called when the system is halted in order to implement any shut
down functions necessary for the peripherals.

34 Getting started

XXintr
Called following an interrupt generated by a peripheral device.
Interrupts will be fully explained in Chapter 4.

2.5.2 Block device drivers

The block device driver should provide some or all of the following
routines:

XXinit, XXopen, XXclose, XXintr, XXhalt
These routines have the same role as their character device name
sakes.

XXstrategy
This routine is central to the operation of block and raw device
drivers and must be provided. It is called indirectly as a result of
both read (8) and write (8) requests, as well as by other parts of the
operating system when it needs to access disk (for example, the
virtual memory system, when paging is performed). It should
validate a request and sort it into a queue of other requests waiting
to be sent to the device.

2.5.3 Raw device drivers

The raw device driver supplements the routines provided for the
block device driver with the following:

XXread,XXwrite
These routines perform some basic checks and then indirectly call
the XXstrategy routine written for the block interface to the same
device.

XXioctl
Invoked following an ioctl (8) system call. In the context of raw
device drivers, the device-specific functions that this implements
are often concerned with the formatting of disks and tapes or
writing of partition tables to disks.

2.6 Guidelines for writing device drivers

So far, we have established an approach to take when writing device
drivers, explained how device driver routines are called and outlined

Guidelines for writing device drivers 35

the basic function of the principal routines. We will now cover some
fundamental guidelines to follow when writing these routines.

2.6.1 Virtual and physical memory

Virtual memory (VM) systems offer two main features:

(1) Locational independence of a process' instructions and data.

(2) A pageable address space.

Most UNIX implementations use VM when accessing kernel and user
memory. It is useful to be aware of the way VM management oper
ates when working at the device driver level.

For applications programmers VM management is transparent.
However, since the VM system is controlled by the kernel, this facility
is not completely transparent to the device driver writer. Although
the bulk of the VM management is done by other kernel modules,
device drivers, by virtue of the fact that they are part of the kernel,
must cooperate with the VM system.

One of the features of VM is Iocational independence. This allows
code to be written without hard-wiring the physical addresses that
are used to store data and instructions in RAM. There is a virtual to
physical address translation performed by the Memory Management
Unit (MMU) associated with, or built into, the CPU, as in the case of
the i386/i486 processors.

The i386/i486 processors have a sophisticated memory management
system which makes a distinction between three types of address:

(1) Logical or virtual.

(2) Linear.

(3) Physical.

User processes use logical addresses which are expressed as offsets
from the start of a memory segment. Memory segments are used by
the operating system to separate different types of memory (instruc
tions, data, stack, shared data, kernel and user memory). These
segments form the basis of the protection mechanisms used by the
processor and the operating system. Their properties are defined by
segment descriptors. The base address of a segment is added to a
offset portion of a logical address to produce the second type of
address, a linear address. This is translated into a physical address
using the data structure depicted in Figure 2.11. This translation
allows the memory that a segment uses to be distributed throughout
the system, but to appear to user processes as if it were contiguous.

36 Getting started

Linear address

31 22121 12111 01

Page directory Page table Data page

----.. .. Physical address

~

t t

PDBR I
Figure 2.11 Linear to physical address translation.

The linear to physical address translation also allows for sections of
the memory space to be held on disk rather than in RAM. This
enables the sum of the address spaces of processes in the system to
exceed the amount of available RAM.

The three main structures used in the linear to physical address
translation are the page directory base register (PDBR), which on sea
UNIX points to a single page directory, the page directory itself and
the page tables. A page directory can contain up to 1024 pointers to
page tables and each page table can contain up to 1024 pointers to
pages, otherwise known as page frames. Page frames, tables and
directories are all 4K in size. A 32-bit linear address consists of three
parts. The most significant ten bits index into the page directory to
select a page table to access. The next ten bits index that page table, to
select a page frame to access. The last twelve bits provide the offset
into the page to point to the byte which is being addressed.

This system allows support for a maximum of four gigabytes of
virtual address space. The data structures themselves are initialized
by software, but the translation is performed automatically by the

Guidelines for writing device drivers 37

MMU hardware. The hardware mechanisms that perform the transla
tion are fully described in Intel's i486 Programmer's Reference Manual.

The initial page tables and segment descriptors are set up for the
kernel when it is read into memory at the time the system is boot
strapped. Once the system is running, page directory entries are
remapped to include the address space of the currently running
process.

One important difference between user and kernel virtual
addresses with SCO UNIX is that kernel code and data are perma
nently resident in RAM, whereas only a subset of a user process will
normally be resident. User processes themselves are not aware of
this. Whenever they access a page that is not resident in RAM their
execution is suspended, the relevant code or data is then read in from
disk by the kernel and the program is restarted without any knowl
edge of this activity. This page fault recovery is implemented through
a combination of MMU hardware and kernel software.

The kernel support routines used to copy data between
peripherals, kernel and user memory take account of this added
complexity and ensure that the user memory of the currently execut
ing process is accessible.

Other implementations of UNIX such as IBM's AIX allow portions
of the kernel to be paged in on demand. This is a more complex
solution but does enable larger kernels to run without using up so
much physical memory.

As mentioned earlier, although the VM accessed by user processes
appears to be contiguous in memory, this is not the case when
dealing with the same data at the physical level. The memory pages
containing a 16Kb array might physically reside out of sequence and
with gaps in between them. This is not something that we normally
need to worry about when writing device driver code unless the
virtual addressing mechanism is bypassed, using, for example, a
DMA controller. DMA controllers don't use the CPU and its MMU
when transferring data directly from peripherals to physical memory.
This potential problem is normally resolved either by using kernel
support routines to allocate physically contiguous memory buffers or
by breaking up DMA requests into smaller transfers that do not cross
page boundaries. The SCO kernel provides a number of support
routines to allocate both physical and virtual memory; these are
described in the next section.

If a device driver needs to access physical memory, the device
driver writer must arrange for a given virtual address to map onto the
desired physical location in memory, for example a video buffer. This
is because all addresses used by device drivers must be virtual
addresses. This is enforced by the i386/i486 CPU when it operates in
protected mode. In other words, all memory references use the

38 Getting started

segment and page table translation mechanisms described above. The
mapping of a virtual address to a physical address can be done using
·the sptalloe (K) routine described in the following section.

2.6.2 Memory management routines

When writing user programs, memory is allocated either auto
matically or explicitly by the programmer. This section deals with the
mechanisms available for explicitly controlling memory within a
device driver. Chapter 4's section on the system stack deals with the
issues relating to automatic allocation of memory.

One of the key differences between writing device drivers and
writing application programs is the lack of the familiar system call
facilities with which to manage memory. When writing device
drivers, the brk (8) system call and its associated libraries (malloe (8)

are not available. In their place are a number of other routines.
SCO UNIX uses the following routines, which are summarized

here in order for you to gain an initial idea of the facilities available.

memget

Syntax:

memget(npages)
int npagesi

• Allocates npages of physically contiguous memory, suitable for
DMA transfers.

• Provides storage which is not at a predetermined position in mem
ory.

• Should be called at initialization time from XXini t.

• Memory cannot be deallocated.

db_alloc

Syntax:

#inelude (sys/devbuf.h)
db_alloe(dv)

struet devbuf *dVi

• Provides storage which is not at a predetermined position in
memory.

Guidelines for writing device drivers 39

• Provides physically, contiguous storage suitable for use with
DMA.

• Cannot be called from XXintr.

• Memory can be deallocated.

• devbuf . count is used to specify how many bytes are required. The
other pointers in devbuf describe the start and end point of the
memory allocated and the current positions in the buffer for read
ing and writing.

db_free

Syntax:

#include (sys/devbuf.h)
db_free (dv)

struct devbuf *dv;

• Returns memory allocated by db_alloc (K) to a pool.

db_read

Syntax:

#include (sys/devbuf.h)
db_read (dv, va, count)

struct devbuf *dv;
caddr_t va;
unsigned count;

• Used to transfer count bytes from physical memory (allocated with
db_alloc (K) and described by dv) into user virtual address location
va.

db_write

Syntax:

#include (sys/devbuf.h)
db_write (dv, va, count)

struct devbuf *dv;
caddr_t va;
unsigned count;

• Used to transfer data from a user virtual address to a physical
address.

40 Getting started

sptalloc

Syntax:

sptalloc(pages, mode, base, flag)
int pages, mode, base, flag;

• Used to allocate pages of temporary kernel virtual storage.

• Can be used to address physical memory at a specific location
(base) for memory mapped I/O.

• Cannot be called from XXintr.

• The addresses returned are accessible to the kernel and all user
programs.

sptfree

Syntax:

sptfree(va, npages, freeflg)
char *va;
int npages, freeflg;

• Returns the npages of memory allocated at address va by
sptalloc (K) to a pool.

These SCO-specific routines are documented in the sea UNIX
Device Driver Writer's Guide. There is an explanation .of how these
functions operate in the context where they are used in later chapters.
Different UNIX versions tend to vary in the routines that they provide
to implement memory management.

2.6.3 Programming in a multi-tasking environment

This topic is one of the more'challenging areas to understand, so we
will introduce it at this early stage so that you have a chance to think
about it at some length. It will "be covered in greater detail in Chapter
4 when interrupts are discussed.

Programmers do not have to consider how UNIX achieves multi
tasking when writing user application code. This is because at the
user level they have no direct control over how multi-tasking is
performed. Despite the fact that their processes coexist with many
others on the system they are prevented from corrupting other

Guidelines for writing device drivers 41

processes' memory space. This is not the case when writing code at
the kernel level.

Time-sharing

The CPU has a number of processes to execute. Details of these
processes are held on a run queue. The CPU executes each process in
the run queue one at a time. It cycles between each of them so rapidly
that all users gain the impression that they are being given dedicated
access to the CPU. This impression is maintained provided the run
queue does not get too long and so long as other significant delays are
not incurred, such as waiting for a large number of disk accesses to
complete.

If there is a substantial amount of processing work to do in order to
complete the execution of a process, the CPU runs it for a fixed period
of time. The process will continue to run until the end of this period or
until it needs to wait for I/O. Following this, the CPU suspends
execution of the current process and continues execution of the highest
priority process in the run queue. The CPU returns later on to resume
execution of the original process, if this is required, repeating this cycle
continuously. Most UNIX systems implement time-sharing in a way
similar to this.

Complications become apparent when one considers scheduling
algorithms, prioritization of processes and their order on the run
queue.

Context switching

A process' context consists of all the data structures required to record
its state so that it can be restarted at a later time. It includes, among
other things a copy of the CPU's registers, the kernel stack, an entry
in the process table and a data structure called the U-area.

The process table structure is defined in (sysjproc. h). It contains
an entry for every active process on the system, holding key details
such as process ID, user ID, CPU time consumed, pointers to other
key structures relating to the process and all the information neces
sary for scheduling. The process table is permanently resident in
memory. The U-area, which may not always be memory resident,
contains additional per-process information which is used whilst the
process is running. The U-area is defined in (sysjuser. h).

When the CPU moves from executing the code of one process to
another this is known as a context switch. At this time details of the
current process' context are replaced by those of the process about to
be run. The act of context switching consumes CPU time; this is
known as the context switching overhead.

42 Getting started

Data integrity

When executing in user mode a process can normally only reference
variables that are in its own address space. When a process is execut
ing in system mode this is not the case. The kernel will update many
variables which are shared by all processes and occur only once in the
system. An example of this is the linked list structure that is used to
manage the buffer cache. This data structure is shared by all pro
cesses. Another example would be the list of vacant swap locations
on disk. If the kernel partially modifies one of these structures and
does not complete the operation before moving on to something else
(because the end of a time-slice occurs), these structures would be
corrupted. As a result the kernel is written with the assumption that it
will only give up control voluntarily. In other words, the operating
system will only allow a context switch to occur when the kernel is
ready, once all the data structures are coherent.

Device drivers for real-time and multi-processor systems require
the use of more complex techniques in order to ensure the integrity of
shared data structures. These centre around use of atomic locks and
semaphores to guard access to all shared data structures. This can be
extremely complex. Device drivers for multi-processor systems are
often run by a single processor in order to simplify their develop
ment.

Sleep(K) and wakeup(K)

A context switch will occur when a process in system mode relin
quishes control of the CPU voluntarily. This is performed by calling
the sleep(K) kernel support routine (not to be confused with the
sleep(S) system call). A sleep(K) is usually called by a process when
it is waiting for an event to occur and is therefore unable to continue
to run. This could be a physical event such as a character being
received from a keyboard or a resource such as memory space becom
ing available.

When giving up control of the CPU, sleep(K) sets a field in the
process table entry for the current process to enable it to be woken up
at some future time. This field is known as the Wait Channel (p_wchan
in (sysjproc. h). Although its value can be arbitrary, typically it is
equal to the address of a global data structure which relates to the
pending event. An example might be the address of a buffer that is
being filled by DMA from a disk.

The kernel routine wakeup (K) is used to put all the processes sleep
ing on a given Wait Channel back on the run queue. Once back on the
run queue a process is ready to continue execution. The Wait Channel
that a process is sleeping on can be seen under the WCHAN heading
of a ps -1 listing.

Guidelines for writing device drivers

crash
dumpfile = /dev/mem, namelist = /unix, outfile = stdout
> proc
PROC TABLE SIZE = 100
SLOT ST PID PPID PGRP UID PRI CPU EVENT NAME FLAGS

o s 0 0 0 0 0 o dOOa51dc sched load sys nwak
1 s 1 0 0 0 39 o eOOOOOOO init load
2 s 2 0 0 0 0 o d004e108 vhand load sys nwak
3 s 3 0 0 0 20 o d0048170 bdflush load sys nwak
4 s 174 1 174 0 30 o d007d378 sh
5 s 15162 173 0 0 39 7 eOOOOOOO sleep load
6 s 173 1 0 0 30 8 d007d628 sh load
7 s 40 1 0 0 26 o d006be48 logger load
8 s 148 1 148 0 26 o d00965f2 cron load
9 s 176 1 176 0 30 o d007da30 sh

10 s 156 1 156 0 26 o d0096dd4 lpsched load
11 s 6257 1 6257 0 28 o d006bfb4 getty

> trace 11

STACK TRACE FOR PROCESS 11:
STKADDR FRAMEPTR FUNCTION POSSIBLE ARGUMENTS
eOOOOcdO eOOOOcf4 swtch (d006c154,lc,d006c154,d006c160)
eOOOOcfc eOOOOd24 canon (d006c154,d006c154,d008a3f4,d0095f60)
eOOOOd2c eOOOOd4c ttread (d006c154,d008ffac,64013)
eOOOOd54 eOOOOd60 vidread (d008ffac,d0099ae8,60d84,d0010fc2)
eOOOOd68 eOOOOd78 cnread (6,1,d008a3f4,d0099ae8)
eOOOOd80 eOOOOdb4 s5readi (d0099ae8,eOOOOe38,d0073838,0)
eOOOOdbc eOOOOde8 rdwr (1)
eOOOOdfO eOOOOdf4 read (d0069314,402360,0,4031c8)
eOOOOdfc eOOOOe2c systrap (eOOOOe38)

eOOOOe38 sys_call from 00004ed8
ax: 3 cx: 0 dx: 737 c bx: 0 fl: 202 ds: 1£ f s : 0
sp:eOOOOe68 bp:7ffffba4 si: 401faO di: 402360 err: 3 es: If gs: 0

> quit

Figure 2.12 Output from crash showing getty(M) sleeping.

43

sleep (K) gives up its thread of execution by calling the process
scheduler, a routine called swtch. This can best be seen by running
the diagnostic tool crash (ADM). The process table can be inspected
and a slot in the table can be used as a reference point to examine the
system stack of any process. Figure 2.12 gives an example of a session
where the stack trace of one of the getty (M) s on the system is exam
ined.

The output from this stack trace shows a variety of functions that
are currently on getty (M) 's system stack. At the base of the stack is
the routine that handles the entry point into the system through the
system call interface (systrap). The getty(M) process made a read(S)
system call on one of the console's multiscreens. The en console
device driver's read routine (cnread) has been called. This then called

44 Getting started

the video-adaptor keyboard read routine (vidread), which in turn
called the routine ttread (K). This called the routine canon (K) which
waited for characters to arrive. As there were no characters to be read
the process then slept, using the address of a data structure that
related to the input buffer of the console device as its Wait Channel.
When the characters arrive, the kernel will wakeup (K) all processes
that are sleeping using that address. Chapter 5 will deal more fully
with the operation of terminal drivers, but this example serves to
illustrate the way in which control of the CPU is relinquished by the
device driver.

Process priority

Sleep (K) has a second parameter which specifies the priority level at
which the process will sleep (p_pri in (sys/proc. h)). This sets the
process' priority relative to other processes on the system. This pri
ority is used when the process is competing for the CPU, once it has
been woken up. The priority of a process is shown in the PRI column
of the output from ps -1.

One implication of the design of the standard UNIX kernel is that if
device drivers do not relinquish the CPU whilst waiting for events,
the time-sharing system will not function correctly. An example of
this would be the implementation of long delays using spin loops,
where a process stays on the CPU for many milliseconds preventing
other processes from running. The appropriate action is to sleep(K)
rather than to spin in these cases.

A context switch can occur in the following cases:

• Whenever a process calls sleep (K), waiting for an event or a
resource.

• Whenever the CPU returns from system mode to user mode (at the
end of exceptions, interrupts and system calls).

Critical sections of code

Having described the circumstances under which a context switch
can occur we can apply that knowledge to provide a facility which is
key when writing operating system code, that of guarding critical
code and data structures.

Often there are operations that need to be atomic or indivisible.
These operations are often centred on objects such as:

• Shared data structures

• Variables used in test-and-set operations

• Device registers.

Guidelines for writing device drivers 45

static int no_entry=O;

while (no_entry)
sleep (&no_entry, WDPRI);

no_entry = 1;
/* START Critical Code which sleeps */
/* read disk */
/* compute change */
/* update structure on disk */
/* END Critical Code */
no_entry=O;
wakeup (&no_entry) ;

Figure 2.13 Example of guarding critical code.

These can potentially be manipulated by other parts of the same
device driver, executing in the context of another process. The two
basic types of critical section are:

(1) Code containing a sleep(K) which allows other processes to
execute and potentially access shared objects.

(2) Code which accesses objects which are manipulated by an inter
rupt routine. Guarding these critical sections will be discussed in
Chapter 4.

An example of the first situation is the update of a partition table on
disk. This may require several operations: a read, some computation
and a write to update the structure. This series of operations is likely
to result in the process sleeping. If another process then attempts to
perform the same operation, corruption may well occur. The solution
is to guard critical sections of code like this with flags. An example is
shown in Figure 2.13. Despite the fact that the test and set of no_entry
is spread over two statements it is still indivisible. This is because the
code is executed in system mode and therefore cannot be pre-empted
by another process.

There is potential for a context switch in this critical code section,
since the reading of the disk could involve a call to sleep (K). Any
other process that tried to invoke this code whilst the update was
being done would sleep on the address of the no_entry variable. The
Wait Channel shown by ps (C) would be equal to the address of the
no_entry variable. The sleeping process or processes would be
rescheduled once the update was completed. In this way the device
driver writer can control the execution of critical sections of the device
driver code.

46 Getting started

2.7 Summary

This chapter has described how to understand the operation of the
kernel through use of software tools and header files and how device
driver routines are invoked. We then detailed the main routines that
need to be written for character, block and raw device drivers and
covered some guidelines to follow when writing operating system
code. These included:

• Memory allocation

• Use of sleep (K) and wakeup (K)

• Process priority

• Guarding critical code.

Our next step will be to look at a specific type of device driver, the
simple character device driver.

QUIZ

To test your understanding of this chapter, try to answer the
following questions.

2.1 Can character device drivers be used to transfer blocks of
data?

2.2 What are the first three bytes of the di_addr array used for
in the inodes of special device files?

2.3 Which pieces of information are required in order to locate
the device driver routine that is required to service a
system call?

2.4 What is the major device number used for?

2.5 What is the minor device number used for?

2.6 What are the two circumstances under which a context
switch can take place?

Exercise 47

EXERCISE

Write a simple device driver.
The objective of this exercise is for you to write your first device

driver. All the device driver needs to do is to print messages to the
console announcing when each of its functions has been called.

It should be a character device driver made up of a number of short
routines (one line each). There should be a routine to service the
open (8), close (8), read (8), write (8) and ioctl(8) system calls. Each
of the routines should be named using the three letter prefix durn.

The routines should announce that they have been called through
use of the kernel support routine cmn_err (K) which is fully docu
mented in the sea UNIX Device Driver Writer's Guide. For this
exercise, only two arguments need to be supplied. The first might be
the symbol CE_CONT. This is defined in (sys/cmn_err .h). The second
should be the string that you want printed when the routine is called.
The cmn_err (K) routine is similar to the routine printf (K) which is
commonly available on most systems.

Test the device driver by using simple UNIX commands with 110
redirection from the shell. These commands should read from and
write to the special device file which corresponds to your device
driver. The stty(C) command can be used to test the XXioctl routine.

For hints and further detailed guidance on how to link device
driver routines into a kernel and how to reboot using this new kernel,
refer to Appendix A.

There is a sample answer in I Answers to Exercises' along with a set
of shell commands that will cause the device driver routines to be
called.

3
Simple character device
drivers

3.1 Overview

48

The objective of this chapter is to guide readers to a position where
they can write simple character device drivers. These drivers provide
the basic facility of transferring small amounts of data between a user
process and a device.

Character device drivers are used to support devices that accept
variable amounts of data and that do not support filesystems. The
simple character device drivers we will be looking at in this chapter
do not use the more complex kernel data structures and support
routines which are described later in the book. We will be concentrat
ing on the basics of passing small amounts of data between the user
process and the device and leaving the development of higher perfor
mance, buffering techniques, data flow control and interrupt hand
ling until later . As a result, the examples we will use are simpler than
production device drivers.

This approach will allow us to concentrate on the following topics:

• The principal routines within simple character device drivers.

• The way in which user requests are specified to the device driver
and the way in which the success or failure of the operation is
reported back.

• Transferring data between the user and the device driver.

• Transferring data between the device driver and the device.

• Some of the mechanisms available to schedule the execution of
device driver code: polling, delays and timeouts.

The character device driver kernel interface 49

Most of the techniques covered in this chapter are applicable when
writing the other types of device drivers discussed later in this book.
This chapter includes a parallel printer driver which we will use as a
working example. The exercise is to write a device driver for a mouse.

3.2 The character device driver kernel interface

Our first step towards writing a simple character device driver is to
gain an understanding of the principal functions that form the basis
of the code that needs to be written. This section describes these
routines, expanding upon the outline given in Chapter 2. Most of the
routines are invoked by the kernel from the cdevsw table.

3.2.1 XXinit

Syntax:

XXinit ()

This routine is called by the operating system at boot time. This is the
point at which the peripheral hardware is initialized or reset. No
operations that require user processes to be present should be per
formed at this stage. It should display a message on the console
confirming that the hardware is present. This can be done by check
ing for a 'signature' value or magic number which some devices
guarantee to have set at a given address. Alternatively, known bit
patterns can be checked in peripheral registers following a command
that is written to the device.

Memory can be requested by the device driver at this point. If
contiguous memory is required, this is a suitable time to request it
(before it is fragmented by user process activity). No operations that
require interrupts can be performed at this stage as interrupts are not
enabled when this routine is called.

3.2.2 XXopen

Syntax:

XXopen(dev, flag, id)
dev_t dev;
int flag, id;

50 Simple character device drivers

This routine is called by the operating system every time the device is
open(S) ed. The dey parameter specifies the major and minor device
number of the device file used to invoke the driver. It is passed to
many of the other driver entry points. flag is used to record the
values used with the open (S) call. The values are defined in
(sys/f ile. h). These include values such as FAPPEND which corres
ponds to the O-APPEND parameter used with open (S). The id flag is set
by the kernel to indicate how the device is being used by the kernel.
The values are defined in (sys/open.h); for example, OTYP_CHR indi
cates that the XXopen routine is being called as a result of an open(S)
on a character device file.

XXopen is a suitable place to code:

• Error and status checking (for example, is the floppy disk inser
ted?)

• Hardware initialization that requires interrupts in order to com
plete.

• Exclusivity, where only one open (S) of the device is allowed.

• Validation of minor device numbers passed as a parameter.

3.2.3 XXclose

Syntax:

XXclose(dev, flag, id)
dev_t dey;
int flag, id;

Whereas the XXopen routine is called whenever a user performs an
open(S) system call on the device, XXclose is called only when the last
close(S) system call is made on the special device file. The only
exception to this is when an XXclose routine has been called by
another layered XXclose routine (for instance, by a software driver to
implement disk mirroring). If this is the case XXclose calls will be
paired with XXopen calls and id should be set to OTYP_LYR by the driver
invoking the XXclose routine.

The value of flag corresponds to that of the flag passed to the
XXopen routine.

This is a suitable place to code any clean-up operations that are
required. These might include flushing buffers, deallocating dynamic
resources which have been previously claimed, disabling the device
or shutting down a motor drive.

3.2.4 XXread

Syntax:

XXread(dev)
dev_t dev;

The character device driver kernel interface 51

This routine is called as a result of a user's read (S) system call.
The routine should:

• Validate the feasibility of the request, bearing in mind the hard
ware constraints.

• Wait for the device to become ready and then send the required
bytes to the device's control register in order to request the data
from the device.

• Wait for the data to arrive. When the data arrives from the device
XXread should transfer it into the user process' address space.
Alternatively, if there has been a hardware error this needs to be
passed back to the process which made the read (S) request.

3.2.5 XXwrite

Syntax:

XXwrite(dev)
dev_t dev;

This routine is called whenever a user makes a write (S) system call.
The routine should:

• Likewise validate the feasibility of the request, bearing in mind the
hardware constraints.

• Copy the data from the user process.

• Wait for the device to become ready and program the device's
control registers in order to initiate the transfer.

• Write the data to the device in question. If there is a hardware error
this should be passed back to the process which made the wr i te (S)

request.

52 Simple character device drivers

3.2.6 XXioctl

Syntax:

XXioctl(dev, cmd, arg, mode)
dev_t dey;
int cmd, mode;
caddr_t arg;

This routine is used to implement hardware-specific functions. emd is
used to specify a device driver-specific command. arg can hold either
the address of the argument passed to the system call or a single
integer argument. The value of mode corresponds to the value of the
flag passed to the open (8) system call.

Given the simple open (8) /close (8) /read (8) /write (8) interface that
is available for all files, the I/O control system call ioctl (8) was
introduced as a 'catch all' system call to control any idiosyncrasies of
the device being controlled. This call is often used by application
writers who wish to control the behaviour of a serial line. For exam
ple, the baud rate is modified by the stty (C) command using
ioctl (8) requests. However, it can be used to do almost anything.
The device driver writer needs to document the parameters for his or
her particular device driver so that users understand the significance
of any parameters that are passed to this routine, as these will be
device driver specific.

3.2.7 XXhalt

Syntax:

XXhalt()

The halt routine is called by the kernel when the system is shut down.
It allows the device driver to leave the hardware in a state where it
can be re-initialized without a power cycle.

3.2.8 XXintr

Syntax:

XXintr(irq)
int irq;

This routine is called following an interrupt from the device. irq
indicates which interrupt request line generated the interrupt.

The U-area and simple character devices 53

Many devices generate interrupts. They can occur when the device
has completed an operation such as a read or a write or when there is
a change in the device's status, such as when the carrier signal drops
on a communications line.

3.2.9 XXstart

Syntax:

XXstart()

This routine is not a kernel entry point, it is private to the device
driver. It is conventionally used to interact directly with the device's
hardware, setting up commands in a controller's register in order to
start a transfer. XXstart is often called from the XXread, XXwrite and
XXintr routines.

3.2.10 XXpoll

Syntax:

XXpoll(ppl)
int ppl;

When interrupts from a device are either not available or not reliable
this routine can be written and used to service the device. It is called
by the kernel following a clock tick. The frequency of the clock is
defined by HZ in (sysjparam.h) (HZ is defined as 100 in sea UNIX
3.2 v4). The interrupt priority of the system before the clock tick is
supplied in ppl.

3.3 The U-area and simple character devices

Having looked at the routines that provide the entry points into a
device driver, we will now look at a key data structure that many of
these routines use to communicate with the user process. When an
XXread or an XXwr i te routine is called as a result of a read (S) or
write(S) system call, the only parameter that is passed to these
functions (under sea UNIX) is the device number which corres
ponds to the device file being accessed. The specification of the

54 Simple character device drivers

read(fd, array, 10); User code
--

42030

42020

42010 User data

~
r--

u count 10
U-area

u_o ff 5 set

0 t 10 20 30 40

TH E LAZ Y DO G JU MP ED I File

Figure 3.1 The u_base, u_count and u_offset fields in the U-area before a
read(S) .

transfer that is required is communicated via a data structure called
the V-area.

The V-area is a data structure maintained by the kernel. Each
process has its own V-area. It contains information that describes the
read and write operations which the user application has requested
and which the device driver has to implement. The V-area is also
used to communicate back to the user process the status of the
requested transfer following its execution. The V-area is defined in

The U-area and simple character devices 55

read(fd, array, 10); User code

1--___ --i42030

42020

42010 User data

o
U-area

,.----u offset 15

30 40

File

Figure 3.2 The u_base, u_count and u_offset fields in the U-area after a
read(S) .

the header file (sys/user .h) and is described in greater detail in
Chapter 4. In this section we will look at a small part of it.

When a read (S) or write (S) system call is made, its parameters
specify:

• The descriptor number of the file to be read or written.

• Where it is to be transferred to or from in the process' memory.

• The amount of data to be transferred.

56 Simple character device drivers

Following the system call, the kernel copies these parameters from
the user process' stack into the appropriate variables in the process'
V-area held in kernel space. The current offset in the file which is
being read or written is copied from the system file table into the
V-area.

These values should be updated by the device driver following the
transfer of data from the device.

The following three entries are taken from the V-area structure
defined in (sys/user. h). They are used to store the values discussed
above:

caddr_t u_base; /* base address for I/O */
unsigned u_count; /* bytes remaining for I/O */
off_t u_offset; /* offset in file for I/O */

The types used here are defined in the header file (sys/types. h). This
is used to hold the type definitions commonly used within kernel
source code. caddr _ t is defined as char * and is described as being a
pointer to a core address. off_t is a long.

The following example shows how these fields are used if a read (S)
is performed on a storage device. Figure 3.1 shows values in the
V-area before the read(S), Figure 3.2 shows them afterwards. In this
example ten bytes are to be transferred by the device driver, starting
at byte 5 in the device, into an array which starts in memory at user
virtual address 42010. Initially the kernel would set u_base to 42010,
u_count would be set to 10 and u_offset would be set to 5. At the end
of the successful call the V-area fields should be updated by the
device driver so that u_base holds 42020, u_count is set to zero and
u_offset should equal 15. The return value that the user gets from the
read (S) call is calculated by subtracting the value left in u_count by
the device driver from the original byte count.

In this example we have seen how the V-area is used to confirm how
much data has been transferred. The U-area is also used to communi
cate back to the user process the nature of any errors that might have
occurred as a result of the request. This is done in the form of an error
code which is stored in the u_error member of the u structure. The
possible error codes are defined in (sys/ errno. h) . Setting this field will
result in the corresponding value being copied into the errno external
variable in the user process. Currently it is possible to set u. u_error
with the following: u. u_error = EFAULT; however, it is good practice to
use the sca kernel support routine seterror (K) (which does the same
thing), for example, seterror (EFAULT). This ensures forward compat
ibility if error handling changes in future versions of sca VNIX.

The errors that should be reported can result from a number of
causes including kernel resource shortage, incorrect parameters

Transferring data between user and device driver 57

Table 3.1 Commonly used error codes.

Code Description

EAGAIN Kernel resources not available (e.g. memory space or a table
entry)

EBUSY Device busy (e.g. used in XXopen when enforcing exclusive
access)

EFAULT Invalid memory address passed (e.g. ioctl (S) arg parameter or
a memory address is referenced that is outside permitted areas)

EINVAL Invalid argument passed (e.g. ioctl (S) cmd parameter)

EIO An error was detected by the device following a valid 110
request (e.g. a bad block on a disk is detected)

ENXIO Attempting to access beyond the boundaries of a device
(e.g. writing beyond the end of a disk) or attempting to access a
non-existent device (e.g. an invalid minor device number was
used)

passed to device driver entry points or peripheral hardware failures.
When selecting an error code you should consult the sea UNIX
Programmer's Reference Manual (Volume 2) entry for the system calls
that use the device driver function being written and (if possible)
choose from the codes listed for that system call. A summary of the
meaning of commonly used error codes is given in Table 3.1.

3.4 Transferring data between user and device
driver

So far in this chapter we have established the main routines that make
up character device drivers, the way requests are specified and the
way status is returned. Now we will look at the process of transfer
ring data between the user and the device driver.

Data transfer between kernel and user space cannot be achieved
using the same constructs as would be used in application programs.
Code such as

while (data_to_be_copied) {
*u.u_base++ = *kernel_data++;

should not be used to transfer data between kernel and user memory.

58 Simple character device drivers

Kernel support routines are provided to implement the transfers
between kernel address space and user address space. These routines
improve the portability of device driver code and relieve the device
driver writer of having to understand fully the operation and con
straints of the memory management model that is in use. sea UNIX
provides the routines copyout(K) and copyin(K) which are also found
in other implementations of UNIX. These support routines are often
used in XXread/XXwrite functions to transfer data between user and
kernel space. They are also frequently used in XXioctl routines to
copy ioctl (S) arguments to and from the user's memory.

copyin (K) copies data from a user's virtual address to a kernel
virtual address. It takes three arguments. The first is the address of
the user's data, the second is the address of the destination data
structure in kernel memory. The last argument specifies how many
bytes need to be copied. copyout (K) works the other way around,
with the first argument being the kernel address which is being
copied from.

XXread routines generally make use of copyout (K), whereas XXwrite
routines use copyin(K). Here is an example of how they would
typically be used within an XXioctl routine:

struct dev_param d_p;

XXioctl(dev, cmd, arg, mode)
dev_t dev;
int cmd, mode;
caddr_t arg;

swi tch (cmd)

case SET_PARAMETER:
if (copyin(arg, &d_p, sizeof(d_p))

seterror(EFAULT);

}
break;

return;

case GET_PARAMETER:
if (copyout(&d_p, arg, sizeof(d_p))

seterror(EFAULT);

}
break;

return;

default:
seterror(EINVAL);
break;

-1) {

-1) {

Transferring data between device driver and device 59

The parameter arg is the virtual address in user space of the structure
containing the device driver parameters that the user wants to be read
or written. The d_p parameter is the structure which has been allo
cated to store these parameters for the device driver code to access. If
SET_PARAMETER has been passed as the value of the crnd parameter,
copyin (K) will copy the values from user space into the d_p structure
in the kernel. If the ioctl(S) call is made with an unknown value in
cmd then the XXioctl routine will return, setting the u_error field in
the user process' U-area so that the ioctl(S) system call fails.

Both copyin (K) and copyout (K) perform bounds checking on the
range of user virtual addresses involved. They do not update the
u_base, u_count and u_offset fields held in the U-area. When they are
used in XXread and XXwrite routines these fields must be updated
explicitly by the device driver.

3.5 Transferring data between device driver and
device

This section describes how to pass data between the device driver
software and the input/output registers of the physical device.

3.5.1 I/O mapped devices

If a device is 110 mapped you will need to establish what are the
addresses of the 1/0 ports required to operate it. This can often be
configurable and depend on the position of switches or placement of
'jumper' connectors on the device controller. Generally the standard
'User Guides' for peripherals do not contain this information and a
'Programmer's Guide' or detailed hardware specification is required.

The Intel iX86 instruction set contains machine code instructions
that transfer data to or from an 110 mapped device. The assembly
code mnemonics for the main instructions are IN and OUT. These
instructions transfer data between a register and an 1/0 port. They are
privileged instructions and are normally only available to the kernel.

sea UNIX provides a series of assembly language macros defined
in (sys/inline.h) which allow these instructions to be used in order
to transfer 32-bit (ind(K), outd(K)), 16-bit (inw(K), outw(K)) and 8-bit
(inb (K), outb (K)) values to 110 ports.

60 Simple character device drivers

This is an example of how a device driver might use these routines:

#define REG-ADDR Ox1234
ffiywrite()
{

char c;
get_data_froffi_user(&c);
outb(REG-ADDR, c);

In this example the peripheral has an 110 port mapped at address
Ox1234. The device driver writer has written a routine
get_data_froffi_user which may use copyin(K) to load a value into the
variable c. This value is output to the 110 port using the macro
outb (K) which in turn uses the OUTB assembly language instruction.

3.5.2 Memory mapped devices

A memory mapped controller will interpret all reads and writes to
memory addresses within its address space as input and output to the
device. Memory within this chosen range cannot be used for the
normal purpose of Random Access Memory storage.

The device driver writer must establish the start and end locations
in physical memory where the peripheral is mapped. Having done
this, a mechanism is required to establish a usable pointer to this
address so that the device driver can read from and write to it.

seo UNIX provides a kernel support routine called sptalloc (K)

which allocates a virtual address that the device driver writer can use.
This can be used for peripherals such as video adaptors where bits
written to memory mapped addresses are translated into patterns on
the screen.

An example of how sptalloc (K) could be used with a hypothetical
video controller follows:

#define DEV-ADDR
#define DEV_SIZE

caddr_t va;
int i;

(caddr_t) OxBBOOO
4096

va = sptalloc(1, PG_P I PG_RW, btoc(DEV-ADDR), 1);
for (i = 0; i < DEV_SIZE; i++)

*va++ = 0;

Mechanisms to schedule execution of device drivers 61

DEV--.ADDR is the physical start address of the memory mapped device.
DEV_SIZE, the size of the device, is equal to a single (4K) page. The
variable va is assigned the virtual address at which the physical
memory is mapped. The first parameter to sptalloc (K) specifies that
a single page be mapped. The page is marked present (PG_p) and is
made writable (PR_RW). The physical memory address is specified
using the macro btoc to convert the byte address DEV.-AODR to a page
frame address. The final parameter (1) stipulates that sptalloc (K)

should not sleep if a page is unavailable.
The body of the for loop sets the contents of the memory map to

zero. With our hypothetical video device it would have the effect of
clearing the display.

3.6 Mechanisms to schedule execution of device
drivers

Device drivers often have to interface with electro-mechanical devices
(such as printers and disks) and other peripherals (such as communi
cations devices) that operate significantly more slowly than the CPU
of the main system. In these situations, controlling the time when
parts of the device driver are executed becomes important and an
extra layer of complexity is introduced. The device driver must be
able to wait for events, to execute routines at regular intervals and to
give up the CPU to allow other processes to use processor time that
would otherwise be wasted. This section describes the kernel support
routines that provide these facilities.

All of these functions rely on interrupts that originate from the
system's hardware clock. A full discussion of the mechanisms behind
this and the wider topic of using interrupts generated by peripherals
will be postponed until the next chapter.

3.6.1 Polling

Polling is a simple way of regularly passing data to or from a relatively
slow device. Polling is a useful mechanism to use when the device
either does not generate interrupts at all or does not generate them in
a reliable way. It has been used as a mechanism to service the parallel
printer device on IBM AT clones, some of which do not reliably
deliver the hardware interrupts that indicate when a character has
been printed.

62 Simple character device drivers

Once interrupts are enabled on the machine, a driver's XXpoll
function will be repeatedly called by the kernel, after every clock
interrupt, HZ times a second. This system clock is a source of regular
interrupts which are used and controlled by software. It is separate
from the processor clock which regulates the speed at which the CPU
fetches, decodes and executes machine code instructions. The pro
cessor clock operates at a much higher speed, typically measured in
MHz.

Calls to XXpoll will occur irrespective of which process is running,
or whether the device corresponding to the XXpoll routine has been
opened. As a result of this, the data structures that are accessed by
the XXpoll routine should not relate to any particular user process.
Accessing the U-area or copying data back to user process' address
space should not be attempted as there is no guarantee which process
will be running when the XXpoll routine is called. Following the
execution of all the XXpoll routines the kernel increments the system
clock, performs process ageing and initiates the routines that imple
ment process scheduling.

By virtue of the fact that the XXpoll routines are called frequently,
time spent within XXpoll routines should be brief. One simple way to
help achieve this is for XXpoll routines to check to see if their device is
open before commencing any work. They can do this by testing a flag
set by the driver's XXopen routine.

Although polling is simple and reliable, there are two main disad
vantages to using this technique to service a device:

(1) Performance The XXpoll routine is called at a constant rate.
There may be periods between calls when the device is ready to
read or write data, but has to wait until the next clock tick. It
remains idle during these times. This limits the device's
throughput which may unnecessarily delay the user process
which is accessing it.

(2) Data loss Devices which have minimal 'on-board' buffering
space may lose data if the device driver does not empty their
buffers before more data arrives. Most dumb serial cards only
have a single character buffer. Data can arrive very rapidly when
serial cards are supporting communications lines or lots of users
are typing quickly. If data arrives faster than the device driver
copies from the character buffer it will be lost. In the case of the
communications line, this may be detected and corrected by the
communications protocol being used. However, it is not reason
able to expect a user to retype commands if the system loses
characters from the keyboard.

In summary, polling is a simple, reliable technique for servicing
slower devices that do not generate interrupts reliably.

Mechanisms to schedule execution of device drivers 63

3.6.2 Delays
When reading from or writing to a slow device it is often useful to
insert delays in device driver code which allow the peripheral to
complete an operation. These delays will be necessary when the
device waits before accepting any more data, pausing until the cur
rent data has been dealt with (printed, transmitted or stored). This
happens when the controller has no buffering space for outgoing data
or it may be that the buffer is full. Alternatively it could be that the
controller itself is slow to react when being written to. This often
becomes apparent as the speed of CPUs overtakes the speed of the
embedded processors in hardware controllers.

One way of implementing such delays is to write a spin loop to
slow down the device driver. This has a number of disadvantages.
One is that the CPU is locked into executing this rather wasteful code
loop when it could be used for some more productive work. Another
problem is that if the device driver is run on a faster CPU, the delay
loop can be executed faster and as a result of this shorter delay, the
device driver code can stop working. This can occur if code is moved
from a machine with an i386 CPU to an i486 CPU.

An alternative to using spin loops is to use a kernel support routine
called delay (K). This routine is implemented using a sleep (K) call
and consequently should not be used within routines called from
XXintr or XXpoll. The length of the delay is specified in clock ticks. As
mentioned earlier, there are HZ clock ticks a second. Providing that
the delay required is not less than one clock tick, then the delay (K)
routine can be used. Using this function relinquishes control of the
CPU and allows the processing of other work on the system.

There is a processing overhead involved as a result of the context
switch which follows use of delay(K) (or sleep(K). So in some cases
very short delays are implemented with spin loops.

Another drawback with using delay (K) is that the length of the delay
is approximate. This is because the process only becomes 'runnable' at
the end of the specified delay period and therefore cannot be guaran
teed to run immediately. The danger of this happening increases when
using delay (K) if other jobs do not give up the CPU or are scheduled at
a higher priority. When this happens the other jobs will be executed
first and the length of the delay will be extended beyond what was
anticipated. As with XXpoll, if the peripheral is ready before the delay
period expires, time is wasted and data may be lost.

For these reasons this technique is not ideal, especially if data loss
will occur if the device is not serviced quickly. In this case, interrupts
and an interrupt service routine are normally used. However the
delay(K) routine has the benefit of simplicity and can be used when
the peripheral is not capable of generating interrupts.

64 Simple character device drivers

Here is an example which uses the delay(K) routine to help inter
face to a relatively slow device where data loss will not occur if the
delay is extended, a parallel printer.

lpwrite()
{

char c;
while (there_is_data) {

while ((inb (PSTATUS) & READY) 0)
delay(HZ/25);

get_data_froffi_user(&c);
outb(PDATA, c);

The outer while loop continues whilst there is data to be sent to the
printer. The second while loop is used to pause until the printer is
ready to receive more data. It detects that the device is busy by
reading the printer's status register at address PSTATUS. The inb (K)
function reads the printer's hardware status byte. The C language
bitwise-AND & operator is used to check the relevant bit, whilst
ignoring other bits in the status byte by using the mask READY. Bit 8 is
used to indicate whether the controller is ready for more data while
the remaining bits are used to indicate other information (such as
whether the printer is on-line). READY is therefore defined as the value
128 (10000000 in binary). Whilst the READY bit is held at 0, the while
condition evaluates to true and the delay (K) function is called, paus
ing for at least four clock ticks. Once the printer is ready to receive
more data the READY bit is set to 1. The device driver then gets the
character from the user and outputs the data held in the variable c to
the data register of the printer controller, at which point the loop
repeats.

3.6.3 Timeouts

The timeout (K) function allows for a designated routine to be sched
uled for execution after a given time period. In the meantime, the
device driver can continue to operate. The timeout (K) mechanism is
useful in device drivers when waiting for an event that is not guaran
teed to happen. It allows the device driver to wait an amount of time
for an event and then schedule a course of action if the event fails to
occur. Its functionality is comparable with what is achieved using the
signal (S) and alarm(S) system calls within application programs.

timeout (K) is used within the terminal driver to implement the
VTlME functionality. When VTlME is set using an ioctl (S) , a read (S) on

An example parallel printer driver 65

a serial line will return after a given time, whether or not any charac
ters have been received.

timeout(K) is also used in combination with sleep(K) and
wakeup (K) to implement the delay (K) function described above.

3.7 An example parallel printer driver

This section describes the operation of a simplified but working
parallel printer driver. The device driver was developed to work with
the IBM AT on-board parallel printer port. As a result of its simplifica
tion, this device driver is not optimally efficient. The code will be
developed further and made more efficient in the following chapter.
This version uses most of the concepts and facilities discussed in this
chapter. It can be configured into the system using the command:

./configure -a lpinit lpwrite -c -m MAJOR

First we will discuss the preamble.

1 #include sys/errno.h)
2 #include sys/types.h)
3 #include sys/dir.h)
4 #include sys/param.h)
5 #include sys/user.h)

The file errno. h is included so that the standard error code defini
tions can be used when reporting error conditions in the device
driver. This device driver references the u_count, u_base and u_offset
fields which make up part of the U-area. As a result of this, the user
structure must be included into the source code for this module. All
of the other include files are necessary to satisfy structures, typedefs
and defines used within (sys/user .h).

6
7 #define PBASE Ox378
8 #define PDATA (0 + PBASE)
9 #define PSTATUS (1 + PBASE)

10 #define PCNTRL (2 + PBASE)
11
12 #define SELECT Ox08
13 #define PRIME OxOc
14 #define READY Ox80
15 #define STROBE OxOl

66 Simple character device drivers

Lines 7 to 10 define the addresses of the liD mapped registers for
the parallel printer controller interface. The PDATA register is written to
by the device driver. It holds the ASCII code of the character to be
printed. PSTATUS indicates whether the device is busy printing or not.
The control register, PCNTRL, is used to initialize the controller and to
indicate when a new character has been written to the PDATA register.

SELECT and PRIME are written into PCNTRL in order to initialize the
printer. The READY value is used to mask bit 8 in PSTATUS. This is set to
1 by the printer controller when the printer has space in its buffer to
receive another character. STROBE is used to mask bit 0 in PCNTRL which
is toggled between 1 and 0 by the device driver, to signal the presence
of a new character in the PDATA register.

16 #define RESET_DELAY 1000000
17
18 lpinit()
19 {
20 int i;
21
22 outb(PCNTRL, SELECT);
23 for (i = 0; i < RESET_DELAY; i++);
24 outb(PCNTRL, PRIME);
25 printcfg("lp", PBASE, 2, -1, -1,

26
27

"Simple Parallel Driver");

The lpini t routine sets up the printer controller and displays the
device driver configuration message. Line 22 writes the SELECT value
out to the control register. Line 23 implements a delay so that the
controller can reset before the second part of the initialization
sequence is performed on line 24. A busy loop is used on line 23
because at the time the XXini t routines are executed, interrupts have
not been enabled on the system and as a result, delay(K) will not
work. The printcfg (K) call displays on the console the name of the
device driver ("lp "), the base address of the control registers (PBASE),
along with the range of registers occupied by the registers (PBASE
through to PBASE+2). Since the device driver does not use DMA or
interrupts, -1 is supplied as the value for the next two parameters,
followed by a comment describing the device driver.

28
29
30
31
32
33
34

lpwrite()
{

char c;

while (u.u_count) {
while ((inb(PSTATUS) & READY)

delay (HZ/25) ;
0)

35
36
37
38
39
40
41
42
43
44
45
46
47
48

Summary 67

if (copyin(u.u_base, &c, 1) == -1) {
seterror(EFAULT);
return;

u.u_count--;
u.u_base++;
u.u_offset++;

outb (PDATA, c);
outb(PCNTRL, PRIME I STROBE);
outb(PCNTRL, PRIME);

lpwrite is called once for every write(S) system call made to the
parallel printer device file. The outer while loop (from line 32 through
to 47) is executed once for each character written to the printer. The
number of characters remaining that have been transferred by
wr i te (S) is held in the U -area variable u. u_count. Lines 33 and 34 are
used to wait until the controller is ready to receive the next character.
If the 8th bit in PSTATUS is low, then the device driver requests a
delay(K) for four clock ticks, enough to introduce a short pause and
to allow another process to be scheduled if necessary.

Line 35 copies a character from the user process' address space
(u.u~ase) into the device driver's address space. If the address were
illegal, the copyin (K) routine would return -1, the device driver
routine would return and the system call would fail with errno set to
EFAULT.

On lines 40 to 42, the appropriate U-area variables are updated to
reflect the fact that data has been transferred from the user.

On line 44, the character is written to the hardware. In order for the
device to understand that a new character has been passed to it, bit 1
of the printer's control register is toggled from high to low, whilst bits
2 and 4 are maintained high by the outb (K) calls on lines 45 and 46.

3.8 Summary

In this chapter we have looked at all of the basic techniques required
to write a simple device driver. We have described the entry points
into the device driver, the principal routines that govern its structure.
The mechanism used to specify the parameters of requests was
detailed in the section which introduced the U-area. We have also
seen how data is transferred between the user and the device driver,

68 Simple character device drivers

and from there to the hardware. All of these techniques, when com
bined with some simple scheduling mechanisms, have allowed us to
write our first device driver for a printer.

QUIZ

To test your understanding of this chapter, try to answer the
following questions.

3.1 If ten processes concurrently open a device file and then
close it, how many times will the XXopen and XXclose
routines be invoked?

3.2 Following a read (8) of 20 bytes, how should the variables
u . u_base and u. u_count be changed?

3.3 Why should spin loops be avoided when implementing
delays in device drivers?

3.4 What kernel support routine can be used to transfer data
between user space and an XXread routine?

3.5 What kernel support routine can be used to transfer data
between user space and an XXwrite routine?

EXERCISE

Write a device driver for the Microsoft InPort Bus Mouse. Your device
driver should use polling in order to read the data from the mouse
controller. You should provide XXinit, XXpoll and XXread routines.

The device driver should maintain a data structure defining the
state of the mouse. This should be copied out to any user process
which is reading the appropriate device file following movement of
the mouse or any of the buttons on it.

Exercise 69

Format of returned data

It is often the case that the data returned by a device driver is simply
an unformatted byte stream terminated by an end of file. This is true
for data read from devices such as disks or terminal lines. However
for a device such as a mouse where the data is more structured, the
data which is copied back to the user from the device driver has to be
held in an agreed format. This is normally defined in a header file
used by both the device driver writer and the programmer accessing
the device.

The format of the data returned by the mouse is defined by the
following structure which should be placed in a header file used by
your device driver and the application used to test the device driver.

/*
* Structure of the data passed back to applications
* reading the mouse device file
*/

struct bmouse {
char buttons;
char x, y;

} ;

If bmouse. x is a negative value this indicates that the mouse is being
moved towards the left. If bmouse. y is a negative value then this
indicates the mouse is being moved upwards.

The application program needs to allocate the storage for this
structure within its process space so that the device can be read with a
statement such as:

main()
{

struct bmouse mouse;

cc = read (fd, &mouse, sizeof(struct bmouse));

The source code to two programs designed to test your device
driver is provided in I Answers to Exercises' along with a model
answer.

Description of the device

The mouse controller has two I/O mapped registers. The first, which
we will refer to as BM_CTL, is only written to and is mapped to address

70 Simple character device drivers

Table 3.2 Description of the values written to BM_CTL.

Value

OxOO

Description

When BM_CTL is set to 0 BM_DATA will contain a bit map which will
indicate whether the mouse has moved, whether the mouse
buttons have changed position since the register was last read,
as well as the state of the buttons on the mouse. See Table 3.3
for details.

OxOl BM_DATA will contain the value of the X counter. This indicates
how much the mouse has just moved in the X axis. This is not an
absolute X coordinate; it is a delta value, recording the amount of
movement relative to the last time the hardware was read.

Ox02 BM_DATA will contain the value of the Y counter. This indicates
how much the mouse has just moved in the Y axis. This is not
an absolute Y coordinate; it is a delta value.

Ox80 This resets the mouse. The value should be written as the first
part of the initialization of the device.

Ox07 BM_DATA will act as a control register which may be written with
one of two control values. The value 0 configures the correct
mode of operation for this exercise. It should be written to
BM_DATA as the second part of the initialization sequence. The
value 0x20 freezes the X/Y movement counters. This should be
set before the XIY counters are read and then cleared afterwards.

Ox23c; the second, which we will refer to as BM_DATA, is both written to
and read from. It is mapped to address Ox23d.

BM_CTL is used to reset the device as well as to provide a means to
select which of the four alternative internal registers is accessed
through BM_DATA. Table 3.2 describes the values written to BM_CTL.

BM_DATA provides data on whether the mouse has moved, whether
any of its buttons have been moved, the state of each button and the
amount the mouse has moved in the X and Y axes. The meaning of
the BM_DATA bit map is shown in Table 3.3.

Hints

Here is the pseudo code for the working device driver:

bminit()
{

Reset the mouse controller.
Set the mouse for the correct mode of operation.
Print the configuration message on the console.

Exercise 71

Table 3.3 Meaning of the BM_DATA bit map.

Bit Description

0--2 Set high if the corresponding button is pressed down. If bit a is
set to 1 then the right hand button is being held down. If bit 2
is set to 1 the left hand button is down.

3-5 Set high if the corresponding button has been moved up or
down since the register was last read. If these bits are set, then
update bits 0--2 in the bmouse structure, copy it out to the user
address space and wake up the user process.

6 Indicates whether the mouse has moved on the X or Y axis. If
this is set, it is worth reading the other mouse registers to obtain
the data on how far the mouse has moved.

bmpoll()
{

Freeze the mouse X/Y counters.
Check to see if the mouse has moved or the buttons have been
pressed.
If so:

Copy the state of the buttons to the bmouse structure.
Select the X counter and copy its value into the bmouse
structure.
Select the Y counter and copy its value into the bmouse
structure.
Set a flag in the dr i ver indicating that data has been
received from the mouse.
Wake up the bmread routine.

Release the X/Y counters.

bmread()
{

While the flag indicates there is no new data, sleep.
Copy the bmouse structure out to the user.
Set the flag back to indicate there is no new data.

4
Interrupts

4.1 Overview

This chapter will describe interrupts. We shall explore what an inter
rupt is, where interrupts come from, and how to deal with them. We
shall also review the definition of a process' context, discuss why we
might want to arrange for context switches to occur at the end of
interrupt routines, and how to do this. Some parts of this chapter
assume a reasonable amount of knowledge about the i386 CPU.

In the previous chapter, we wrote a device driver for a mouse
which relied on the XXpoll routine being called at each clock tick,
from the clock's own interrupt routine. An XXpoll routine is a very
good way of managing slow devices that either cannot generate their
own interrupts, or that interrupt so infrequently that it might be a
good idea to poll the device regularly to make sure that it is still
working properly.

However, relying exclusively on the XXpoll mechanism means that
the maximum throughput of the device is dependent on the speed of
the clock, rather than on the speed of the actual device. By using
interrupts, a device can run at its maximum speed, and only receives
attention from the kernel when it is required.

In the exercise at the end of this chapter, we shall add an interrupt
routine to our mouse device driver.

4.2 What is an interrupt?

72

An interrupt is a request for service or attention from a device or a
controller. A device sends an interrupt (sometimes we say that a
device raises an interrupt) to indicate that something has happened

Process contexts 73

and that the kernel should do something about it. Here are some
examples of why devices interrupt:

• A disk controller raises an interrupt to indicate that it has finished
dealing with a request or command that has been issued to it. For
example, it has finished transferring a block of data between the
kernel's memory and a disk.

• A dumb serial card raises interrupts to indicate that new data has
arrived on one of its ports (a user may have typed a character), that
data has been transmitted successfully from its output port, or that
the carrier has been lost or restored on the modem control lines.

• A mouse raises an interrupt to indicate either that it has been
moved or that one of its buttons has been pressed.

• A lineprinter raises interrupts to indicate that its on-board buffer
has emptied and that it is now ready to receive some more data
from the kernel.

• The real-time clock raises an interrupt 100 times a second so that
the kernel can measure time and reschedule processes.

• Some devices raise interrupts to warn the kernel of hardware
failure.

When the device driver handles the interrupt, it should check the
controller's status by reading the status register. Assuming all is well,
the driver can then read the data from the device, or write some more
data to the device, and issue the next I/O request.

In the period when the kernel is handling an interrupt, we describe
the system to be at interrupt-time. All interrupts are handled in
system mode, and any routines which execute at interrupt-time
should not do certain things, such as making references to the U-area.

The system is said to be at task-time at all other times, when it will
be either in user mode or system mode.

4.3 Process contexts

Each process that executes has a context. A process' context describes
the process' state, and the environment in which it is running. A
process' context is set up initially by the fork (8) system call, and is
changed by the kernel and the CPU as the process executes instruc
tions, makes system calls, opens files, grows its stack, and so on. The
following list describes some of the components of a process' context:

• The contents of all of the registers, including the instruction
pointer C8:EIp1 and the stack pointer 88:E8P.

74 Interrupts

• File table entries for the process' open files, inode table entries for
the current and root directories, and so on.

• The process' segments, including its text, data and stack segments.

• The process' page tables.

• The process' entry in the process table.

• The process' U-area, including its system stack and Local Descrip
tor Table (LOT).

Each of the components of the process' context falls into one of two
categories:

(1) Information used by the kernel to manage the process, such as
the process table entry, the U-area and file table entries.

(2) Information used by the CPU to manage the process, such as the
register contents and the LOT.

The kernel and the CPU access the components of the current
process' context through a set of variables and registers. For example,
the kernel variable curproc points to the process' entry in the process
table, and the kernel variable u is the process' U-area. The Local
Descriptor Table Register LDTR points to the process' LOT, and the
Page Directory Base Register PDBR2 points to the current page dir
ectory.

The CPU is shared amongst the many processes that are competing
for it by a mechanism called a context switch, which saves the register
values of the current process in a context save area, loads a new set of
register values from the context save area of the new process and
establishes new values for curproc and u. When context switching
occurs many times a second, a system appears to be able to run
processes simultaneously, and this is the basis of a multi-tasking
operating system.

The i386 CPU provides some special instructions and data struc
tures for saving and restoring contexts. A process' registers are saved
in a structure called a Task State Segment (TSS), which is pointed to
by the Task Register TR. See Figure 4.1. The TSS also contains three
read-only stack pointers for privilege levels 0, 1 and 2, which are
automatically loaded into SS: ESP by the CPU whenever there is a
corresponding change of privilege level. For example, when a process
makes a system call and switches from privilege level 3 to privilege
level 0, a new privilege level ° stack pointer is loaded from the
process' TSS, and the old stack pointer is saved on the new stack.

sca UNIX switches contexts by making an indirect jump through a
task gate (a single machine instruction), which saves the context of
the current process in the TSS indicated by TR, and loads the context

The system stack 75

LDT selector

Segment selectors

~ TSS descriptor r-- General purpose
registers

EFLAGS

Global descriptor EIP

Task register (TR) - table (GDT) PDBR

SS:ESP(2)

SS:ESP(l)

SS:ESP(O)

Task state segment (TSS)

Figure 4.1 A process' TSS is pointed to by the Task Register (TR).

of the new process from the TSS indicated by the task gate. The next
instruction to be executed is the one immediately following the indir
ect jump, but it will be executed in the context of the new process.
Context switches are described in more detail in Section 4.8.

4.4 The system stack

In many implementations of UNIX, including SCO UNIX, each pro
cess has its own private system stack at the beginning of its U-area.
Whenever the i386 CPU switches to privilege level 0 to handle system
calls, exceptions and interrupts, it also switches from the process'
user stack to the process' system stack. Stack frames for function calls
and auto variables are created and removed from the system stack in
the same way as they are on the user stack. On return to user mode,
the system stack is emptied (see Section 4.5.5), and execution con
tinues on the user stack. The fork (8) system call establishes a new
U-area for the child process, and sets up the privilege level 0 stack
pointer in the child's TSS to point to the base of the new system stack.
See Figure 4.2.

76 Interrupts

SS:ESP(O)

T SS of new child process

System stack

~

U-area

u-

Figure 4.2 Fork(S) sets the child's SS:ESP(O) to point to the base of the
system stack in the new U-area.

sea UNIX handles all exceptions and interrupts in the context of
the process that is running at the time of the exception or interrupt. 3

This means that interrupts are dealt with on the system stack of a
process which in most cases is not the one which is waiting for the
interrupt.4 We shall discuss the implications of this in Section 4.6.

You may want to re-examine the header file (sys/user .h) and look
for the space reserved for the system stack. The system stack is a fixed
size - approximately 3.7Kb, and this has one very important implica
tion:

• All functions in the kernel, including interrupt routines, must be
written so that they do not overflow the system stack by declaring
too many auto variables.

If a kernel function does declare too many auto variables, the U-area
will be corrupted and eventually the kernel will panic.

How interrupts arrive in a device driver 77

In summary, each process has its own fixed-size system stack in its
U-area, which is used by that process whenever it is in system mode.
Exceptions and interrupts are handled in the context of whichever
process is running at the time of the exception or interrupt.

4.5 How interrupts arrive in a device driver

In the ISA and MCA architectures, the interrupt request lines (IRQs)
of devices that generate interrupts are connected to one of two i8259A
Programmable Interrupt Controllers (PICs), which are cascaded
together as shown in Figure 4.3, giving a total of 15 different IRQs
available for devices to use. The output pin of the slave PIC is
connected to line 2 of the master PIC, and the output pin of the
master PIC is connected to the Interrupt Request (INTR) line on the
i386 CPU. In the simplest case, different controllers or devices are

NMI

Clock IROO INTR

Console--. IR01
i386 CPU

IR08 IR02

--.. IR09 COM2 IR03

--.. IR010 IRQ4

IR011 Mouse IR05

IR012 Floppy--.
disk

IR06

--.. IR013 Parallel.....,........
printer

IRQ7

Hard.....,........
disk

IR014
Master i8259A

--. IR015

Slave i8259A

Figure 4.3 Master and slave i8259A PIes.

78 Interrupts

Table 4.1 Responding to exceptions and interrupts.

Priority level Exceptions and interrupts

High priority

Low priority

Debug breakpoints
Non-maskable interrupts on NMI
External interrupts on INTR

Faults and exceptions

attached to different lines on the PICs, although it is possible for the
IRQ lines to be shared between many controllers and/or many
devices. Our explanation assumes that each device has its own IRQ.

Whenever a device raises an interrupt, a complex sequence of
firmware instructions and i386 assembly code arranges for the appro
priate device driver's XXintr routine to be called. We say that the
interrupt is vectored to the device driver's XXintr routine.

Although it is not necessary to understand exactly what is going on
at the lowest levels of the kernel in order to write device driver
interrupt routines, it is useful to be aware of the mechanisms that are
being used. If you are not too familiar with the i386 architecture, you
may choose to skip Section 4.5.4 which describes the low-level inter
rupt handling mechanisms.

4.5.1 Interrupt priorities

The PICs have a built-in set of hardware interrupt priorities which
provide limited control over the order in which devices can interrupt.
UNIX implements an additional set of software priority levels which
provides the user with some flexibility when adding new devices to
the system.

Hardware priority levels

The i386 CPU responds to exceptions and interrupts in the order
shown in Table 4.1. The i386 CPU can only respond to external
interrupts at the end of an instruction, although it can respond to
some exceptions (for example, a Page fault) at any time.

SCO UNIX programs the PICs to operate in Fully Nested Mode.
This means that IRQ lines 0 through to 7 will be assigned interrupt
priorities from 0 through to 7, where interrupt priority 0 is the high
est.5 For example, if two devices interrupt at exactly the same time on
IRQ 3 and IRQ 7, the master PIC will notify the CPU of the interrupt
on IRQ 3 before the interrupt on IRQ 7.

How interrupts arrive in a device driver 79

Whilst the interrupt from IRQ 3 is being serviced by the CPU, the
PICs automatically inhibit interrupts of the same priority or less.
However, hard-wiring the interrupt priorities in this way gives the
user less flexibility when adding new devices to the system. Suppose
that he wants to add a new device that operates at priority level 6, but
IRQ line 6 is already being used by another peripheral? This problem
is solved by using software priority levels.

Software priority levels

Most versions of UNIX, including sca UNIX, support the concept of
software priority levels, which is a mechanism used to modify the
hardware interrupt priorities imposed by the PICs. UNIX can dif
ferentiate between seven different software priority levels, from pri
ority 1 (the lowest) to priority 7 (the highest). An example of a device
that runs at a high software priority is the real-time clock (it operates
at priority 6), and an example of a device that operates at a low
software priority is the parallel printer (it operates at priority 2). The
general rule is that faster, high volume devices operate at a higher
priority than slower, low volume devices. 6 Whenever a device inter
rupts, the kernel reprograms the PICs so that only higher software
priority devices will be allowed to interrupt until the device's own
interrupt routine completes. For example, if the kernel is busy servic
ing an interrupt from the parallel printer, the real-time clock is still
able to interrupt whenever it wants to so that the kernel can keep an
accurate record of real time. At any moment, therefore, there may be
nestings of different interrupt stack frames on the same system stack,
each for a different software priority level.

However, if there are two serial ports attached to the machine, each
operating at the same priority level but with different IRQ lines on the
PIC, one of them could not interrupt the other. This rule is true for all
devices - a device's interrupt routine can only be interrupted by a
device of a higher priority. Two side-effects of this rule are that a
device cannot overwhelm the kernel with interrupts - it has to wait
until its own interrupt routine completes before it is allowed to
interrupt again - and that interrupt routines do not need to be re
entrant. Table 4.2 gives an indication of typical software interrupt
priorities for a selection of devices and kernel subsystems. Note that
these priorities may not be the same on other versions of UNIX or in
future releases of sca UNIX.

It is important to note that this concept of interrupt priorities is
implemented in the kernel, and is entirely independent of the actual
controllers and devices which do not know what priority they are
operating at. They only know whether they are able to interrupt or
not.

80 Interrupts

Table 4.2 Typical software priority levels.

Priority Device

7 Dumb serial cards

6 Clock, Buffer cache

5 Floppy disk, Hard disk, STREAMS

4 Network cards

3 Unused

2 Parallel printer

1 Console keyboard

Interrupt requests from external devices are always latched by the
PICs, and are dispatched to the CPU as soon as the software priority
level permits. Providing interrupt requests are dispatched reasonably
quickly by the PICs, devices should operate without error. However,
if interrupt requests are not dispatched quickly enough by the PICs,
the reason that a device requested to interrupt may change (for
example, the user types another character). When the XXintr routine
finally executes and reads the device's status register, an error condi
tion will be indicated (in this case, an overrun error).

4.5.2 Disabling interrupts

All versions of UNIX provide kernel support routines to disable
interrupts at a particular priority level. The routines are called
splO (K), spll (K), ••• sp17 (K) 7 (the spl means software priority
level), and they cause the kernel to reprogram the PICs in the same
way as it does when responding to device interrupts, described
above. A kernel programmer should use these routines to disable
interrupts temporarily, in order to interlock task-time processes and
interrupt routines which share data structures. For example, whilst a
process is reading data from a buffer, it is necessary to prevent an
interrupt routine from writing data to the buffer at the same time,
otherwise data could be corrupted.

These spl (K) routines write the specified software priority level out
to the PICs, and return the previous software priority level (main
tained by the kernel in a variable called picipl).

When the task-time process has finished accessing the shared data
structure, it must restore the software priority level to its previous
value by using the splx (K) kernel support routine. Typically, the value
returned from spl (K) is stored in an integer variable called s:

How interrupts arrive in a device driver 81

int s;
s = sp16 () ; /* disable s/w priority level 6 interrupts */
access data structure which is shared with XXintr;
splx(s) ; /* enable XXintr */

The operation of these spl (K) routines will become clearer in
Section 4.5.4.

4.5.3 Kernel data structures

sea UNIX maintains three tables of data to help it manage software
interrupt priorities. The first of these is called intpri, a table of
interrupt priority levels, indexed by the IRQ number. The second is
called iplrnask, a table of 8-bit values which the kernel writes to the
PIes' Interrupt Mask Registers to disable interrupts from devices
which operate at the current software priority level or less. It is
indexed by the software priority level. A third table, ivect, is a table
of device driver interrupt routines. It is indexed by the IRQ number,
and is used by the kernel to vector interrupts to the correct device
driver interrupt routine.

The intpri and ivect tables are filled out whenever the kernel is
rebuilt with link_unix (ADM) from information in mdevice and sdevice,
supplied by the configure (ADM) command. For example, the follow
ing configure (ADM) options add details of an XXintr routine to mdevice
and sdevice for a character device with major device number 17. The
device operates at priority level 4 (-1 4), uses IRQ line 5 (-v 5), which
it doesn't share with any other devices or controllers (-T 1):

./configure -a XXintr -1 4 -v 5 -T 1 -c -m 17

The iplrnask table is filled out by the kernel at boot time. Figure 4.4
summarizes the contents of these three tables on a typical sea UNIX
system. The use of the configure (ADM) is described more fully in
Appendix A.

4.5.4 Low-level interrupt handling

The PIes are initialized by sea UNIX to respond to either edge
triggered or level-triggered interrupts, depending on the capabilities
of the machine architecture. The ISA architecture requires that
peripherals generate edge-triggered interrupts, but the Me architec
ture requires that peripherals generate level-triggered interrupts.

unsigned char intpri[]

6,
1,
0,
7,

{ unsigned short iplrnask[]

OxXXXX,
OxXXXX,
OxXXXX,

{ int (*ivect[])()

clock,
cnintr,
intnull,

OxXXXX,
OxXXXX,
OxXXXX,

siointr,
IRQ4 ~ siointr,

Oxxxxx, This mask is

IRQ4~7,

2,
5,
2,
0,
0,
0,
0,
0,
0,
5,
0,

sp17 (K) .. Oxxxxx, ---.. written to PICs

brnintr,
flintr,
paintr,
intnull,
intnull,
intnull,
intnull,
intnull,
intnull,
hdintr,
intnull,

} ;

}; };

Figure 4.4 Interrupt tables.

~

~

~
;:
~
~

How interrupts arrive in a device driver 83

Level-triggered interrupts are more reliable, as the PIC is less likely to
be triggered by noise on the IRQ line and trigger timing accuracy is
not so critical.

The i386 CPU can recognize up to 256 different interrupt IDs (or
vectors). The first 32 are reserved for exceptions (such as Invalid
opcode, Page fault, and so on), and the remaining 224 are available
for external interrupts. SCO UNIX programs the PICs to generate
vectors 64 through 79 for interrupts arriving on IRQ line 0 on the
master PIC through IRQ line 7 on the slave PIC. The vector is used to
index the Interrupt Descriptor Table (lOT), a table of task gates,
interrupt gates and trap gates which indirectly point to the kernel's
exception and interrupt handling routines. lOT entries 0 through 63
are all trap gates, except for entry 2 (an interrupt gate to deal with
non-maskable interrupts) and entry 8 (a task gate to deal with Double
faults). lOT entries 64 through 79 are all interrupt gates, so that SCO
UNIX will handle interrupts in the context of the process that is
running at the time of the interrupt.

When any of the devices attached to the PICs wants to interrupt, it
raises its IRQ line high. If the bit corresponding to the IRQ line in the
PIC's Interrupt Mask Register is 0, the PIC raises the INTR line on the
CPU. The CPU examines INTR at the end of each instruction, and if it
is set, it will acknowledge the interrupt by lowering the Interrupt
Acknowledge (INTA) line. On the next clock cycle, the CPU lowers
INTA again, and the PIC responds by loading the interrupt 10 onto the
data bus. The interrupt 10 is read from the data bus by the CPU, and
control jumps through the appropriate interrupt gate in the lOT into
the kernel's interrupt handler. Figure 4.5 shows the interrupt gate
mechanism for an interrupt from IRQ 4 on the Master PIC.

The jump through the interrupt gate causes the CPU to perform
several actions before it starts to execute kernel text:

• If the interrupt happens whilst the CPU is executing user code at
privilege level 3, the CPU must switch to privilege level 0 to handle
the interrupt. It loads a new privilege level 0 stack pointer from the
user's TSS, and pushes the old level 3 stack pointer onto the
system stack. 8

• The EFLAGS register and the instruction pointer are pushed onto the
system stack.

• The Interrupt Enable (IF) flag is cleared, so that external interrupts
are disabled. This is to prevent the current interrupt handler being
interfered with by other interrupts.

• A new instruction pointer is loaded from the interrupt gate, and
the CPU starts to execute kernel text.

84 Interrupts

Offset into kernel text segment
IRQ4

(Interrupt ID SS)----+- Interrupt gate

Interrupt descriptor
table register (IDTR) -

I--

Interrupt descriptor
table (IDD

Global descriptor
table register (GDTR)-

Kernel text ---. descriptor

Global descriptor
table (GDT)

Figure 4.5 The i386 interrupt gate mechanism.

~

Entry point of
interrupt handler

for IRQ4

Kernel text segment

Figure 4.6 shows the contents of the system stack on entry to the
kernel's interrupt handler from privilege level 3 (user mode).

Each of the IRQ vectors enters the kernel at a different point - the
kernel pushes a dummy error code and the IRQ number onto the
system stack,9 and then jumps to a common interrupt handler. The
common interrupt handler does the following:

(1) Pushes all of the general purpose registers onto the system stack.

(2) Pushes the DS, ES, FS and GS segment selectors onto the system
stack.

(3) Copies the ESP register into the stack-frame base pointer register,
EBP.

(4) Saves the current software priority level on the stack, by copying
it into the space occupied by the dummy error code.

(5) Uses the IRQ to index the table of software priorities, intpri, to
determine the new software priority level corresponding to the
device on this IRQ.

(6) Uses the new interrupt priority level to index the table of PIC
masks, iplmask, and writes out the contents to the PICs' Inter
rupt Mask Registers so that interrupts from all devices at this
priority or less are disabled.

How interrupts arrive in a device driver 85

SS :ESP (0) from
user's TSS

New SS:ESP

--.

..

User's SS: ESP

User's EFLAGS

User's CS: EIP System stack
in U-area

Figure 4.6 The system stack on entry to the kernel from user mode
(privilege level 3).

(7) Sends an End-Of-Interrupt command to the PICs, so that they
can now accept further interrupts.

(8) Sets the IF flag so that external interrupts are now enabled again.
Interrupts can now arrive, but only from higher priority devices
(see step 6, above).

(9) Pushes the old software priority level onto the system stack.

(10) Pushes the IRQ onto the system stack.

Finally, the IRQ is used to index the table of device driver interrupt
routine names, ivect, and control jumps to the device driver's XXintr
routine. The IRQ is passed to XXintr, so that if more than one piece of
hardware is sharing the same device driver, the device driver can
establish which device actually interrupted. For example, COM 1 and
COM2 on IRQs 4 and 3 (Figure 4.3) share the same serial I/O device
driver:

XXintr(irq)
int irq;

Figure 4.7 shows the contents of the system stack on entry to an
XXintr routine from user mode (privilege level 3).

4.5.5 Returning from interrupts

The device driver's interrupt routine eventually returns to the low
level common interrupt handler, which does the following:

(1) Clears the IF flag, to disable all interrupts.

86 Interrupts

SS :ESP (0) from
user's TSS

SS: ESP

..
~

..

User's SS: ESP

User's EFLAGS

User's CS: EIP

Error code

IRQ

General purpose
registers

Segment selectors

Old spl

IRQ

Return address

Figure 4.7 The system stack on entry to XXintr.

(2) Uses the old software priority level (saved at the top of the stack)
to index the table of PIC masks, iplroask, and writes out the
contents to the PICs' Interrupt Mask Registers so that interrupts
from all devices at this priority or less are re-enabled.

(3) Checks the cs segment selector that was saved on the stack to
see whether the interrupt occurred in user mode or system
mode.

If the Table Index (TI) bit of the selector is 0, the selector points
into the GOT, and therefore the interrupt occurred in system
mode. If the TI bit is I, the selector points into an LDT, and
therefore the interrupt occurred in user mode.

(4) If the interrupt occurred in user mode, the common interrupt
handler calls a kernel routine to deal with rescheduling and signal
dispatching. If the scheduling flag runrun was set during the
interrupt routine, a context switch is likely to occur, and the
remaining actions of the common interrupt handler, including
signal dispatching, will execute in the context of the new process.

Writing an XXintr routine 87

Section 4.7 describes how to use the wakeup(K) routine to
reschedule the CPU at the end of an interrupt.

(5) For both user mode and system mode interrupts, the GS, FS, ES

and DS segment selectors are popped off the system stack.

(6) The general purpose registers are popped off the system stack.

(7) The IRQ and the previous interrupt priority level (the dummy
error code) are removed from the system stack.

Finally, an IRET instruction is executed, which pops CS :EIP and EFLAGS

from the system stack. Note that popping EFLAGS will set IF, enabling
interrupts as soon as the IRET instruction completes. If the CS segment
selector indicates that IRET is returning to a less privileged segment
(that is, returning from system mode to user mode), IRET also pops
SS : ESP, leaving the system stack empty.

Execution now continues in either user mode or system mode, at the
first instruction after the one that was interrupted by the PICs. If there
was a context switch at the end of the interrupt, the IRET will have
returned into a process that is different from the one that was running
before the interrupt.

4.6 Writing an XXintr routine

Writing an XXintr routine is not as difficult as you may think, provid
ing that you follow some basic rules. The key points to remember are:

• Keep your interrupt routines as short (and therefore as fast) as
possible.

• Do not make any assumptions about which process is currently
executing.

The basic job of an interrupt routine is to respond to a device's request
for attention. In the majority of cases, a device interrupts because
either it has some data to give to the system or it has finished
outputting data and is now ready to do some more work.

The following pseudo-code can be used as the basis for all interrupt
routines:

XXintr(irq)
int irq;

if (the device has data to give us)
copy data from device into the kernel;

88 Interrupts

else
copy data from kernel to device;
tell device to start outputting again;

Not all interrupt routines will be as simple as this:

• Different devices on the same controller may be sharing an IRQ, so
the first thing that the interrupt routine must do is to check the
controller's status register to determine which device actually inter
rupted.

A similar technique should be used if different controllers are also
sharing an IRQ.

• The controller's status register must be checked for any errors. If the
device does interrupt with an error, the kernel must inform the
relevant user process that its system call has failed.

In some cases, the driver may need to initiate further I/O oper
ations. For example, after a disk read or write error, the disk heads
are recalibrated (returned to cylinder 0) and the transfer is retried.

• Not all devices are capable of doing input and output. For example,
a lineprinter only outputs data. A mouse only inputs data. Some
devices, such as the clock, don't input or output - they just provide a
constant source of regular interrupts.

• The kernel must be able to inform the user process which made the
I/O request that new data has now arrived in the kernel, or that the
device is now ready to accept more data.

• The kernel must also provide some storage space to buffer the data
that is arriving from the device, as the user process may not be able
to read (S) all the data each time the device interrupts (or may not
want to). Storage space for buffering output data is also desirable, as
this will maximize the overall throughput of the system. Buffering
data is fully described in Section 4.9.

4.6.1 Informing the user process of errors

As described in Chapter 3, task-time errors that occur during 110 (such
as an invalid read (S) request, detected by the XXread routine) are
flagged to the user by calling the seterror (K) routine to set
u_error in the process' U-area.

The seterror (K) routine must not be used at interrupt-time, as we
have already explained that UNIX handles interrupts in whichever
context is valid at the time of the interrupt. If you do call seterror (K)

Writing an XXintr routine 89

from an interrupt routine, u_error might be set in the wrong U-area,
and the user process that should have received the error will remain
unaware of any problems!

The correct way to pass errors back from an interrupt routine is to
use a variable or a structure which is not related to the process' context,
but which can be shared between the task-time parts of the device
driver and the interrupt routine. The following pseudo-code illustrates
this:

static XXerror;
XXread(dev)

dev_t dev;

while (there is no data to read) {
wait for the device to interrupt;

if (XXerror != 0) {
seterror(XXerror);

XXintr(irq)
int irq;

if (there was an I/O error)
XXerror = EIO;

4.6.2 Synchronizing with the user process

After a user process has made an 110 request to a device, there is
nothing else that it can do until the data is available. In general, system
calls do not return to the user process until after the device has
interrupted, indicating either that new data has arrived, or that all the
data has been sent. During this time, well-behaved system calls and
device driver routines should call the sleep (K) routine to relinquish
control of the CPU by forcing a context switch to another runnable
process. When the device interrupts, the interrupt routine should
wakeup (K) the user process so that its system call can continue and
eventually return to user mode. Sleep (K) and wakeup (K) were intro
ducedin Section 2.6, and will be described in more detail in Section 4. 7.

90 Interrupts

Here is some pseudo-code to illustrate this:

XXread(dev)
dev_t dev;

disable XXintr with spl(K);
while (there is no data to read)

sleep(K);

copy data from shared buffer out to the user process;
enable XXintr with splx(K);

XXintr(irq)
int irq;

if (this is a read interrupt) {
copy data from the device into shared buffer;
wakeup(K) anyone who is asleep;

4.6.3 A list of rules for interrupt routines

By now, you should have a good understanding of some of the
principles of writing XXintr routines. Here is a full list of rules which
you must always follow:

• Never access any context-related data, such as the U-area, from an
interrupt routine. Context-related data also includes any part of the
user's address space, which may have been either swapped or
paged out whilst the process was asleep, waiting for the interrupt.

• Never call sleep (K) inside an interrupt routine, as the wrong
process may go to sleep, perhaps forever, and the interrupt routine
will not complete.

• Never use spl (K) to lower the software interrupt priority level inside
an interrupt routine, unless your interrupt routine is properly re
entrant. An example of are-entrant XXpoll routine is given in
Chapter 5.

• Never declare large amounts of auto storage in any kernel routine.
This is particularly true in high priority interrupt routines, whose
stack frames are more likely to be towards the end of the available
system stack space.

Sleep(K) and wakeup(K) 91

• Postpone as much time-consuming processing as you can until task
time, so that the device is able to interrupt again as soon as possible,
reducing the likelihood of data loss.

• Always check the device's status register for errors to establish
whether it is safe to read or write any data.

4.7 Sleep(K) and wakeup(K)

The sleep (K) and wakeup (K) kernel support routines should be used to
synchronize between the task-time and interrupt-time parts of a device
driver. Since UNIX is a multi-tasking, multi-user operating system,
processes must relinquish the CPU whenever they have to wait for a
resource such as a semaphore, or in our case, an interrupt. For
processes in user mode, this is not a problem, as the real-time clock
provides a constant source of interrupts which will switch the CPU into
system mode 100 times per second. As the system returns from system
mode back to user mode, the kernel can make a context switch and
schedule a different process to run. However, the same is not true of
processes in system mode. Unless a process in system mode volun
tarily relinquishes control of the CPU by calling sleep (K), there is no
way that UNIX can force a context switch. We say that UNIX is not pre
emptive, which means that it cannot arbitrarily decide to make a
context switch in system mode whenever it wants to. This has two
important implications:

• All UNIX system code is atomic. This means that all system calls will
always run to completion, without being context switched, unless
they explicitly call sleep (K) . They are of course liable to be inter
rupted, but interrupts are handled in the context of the system mode
process that is running at the time of the interrupt.

• UNIX is not a real-time operating system. Real-time operating
systems are pre-emptive, and are able to force context switches
away from processes that are running in system mode. UNIX cannot
do this.lO

4.7.1 Sleep(K)

A process calls sleep (K) with two arguments:

sleep (wchan, priority)
caddr_t wchan;
int priority;

92 Interrupts

The calling process is taken off the CPU and put onto a queue of other
sleeping processes, called the sleep queue, and a context switch
occurs. When the process is eventually woken up, it is returned to the
run queue, and eventually switched back onto the CPU, and sleep (K)
returns 0 to the calling process.

The wchan (wait channel) parameter is a key which will be used by the
wakeup(K) call to identify which processesll should be removed from
the sleep queue and returned to the run queue. To improve readability
of source code, the wait channel is usually associated with the reason
for going to sleep. For example, the mouse XXread routine might sleep
on the address of the data structure containing the mouse X and Y
coordinates. It is essential that the wait channel is known to both the
sleep (K) and wakeup (K) calls, so do not use the addresses of either auto
or static data.

The priority parameter determines the process' scheduling pri
ority after it has been returned to the run queue by wakeup (K) . When
ever the dispatcher examines the run queue, it always selects the
process which has the highest priority (a high priority is a low
numeric value). A process that sleeps at a higher priority will be
chosen in preference to a process that sleeps at a lower priority, if
they are both woken up and returned to the run queue before the
next context switch. A process can therefore effect a limited amount
of control over its scheduling priority each time that it goes to sleep.

Figure 4.8 shows the priorities used by SCO UNIX. A list of pri
orities is given in (sysjparam.h). Note that processes which wait for
more critical resources, such as inodes, sleep at a higher priority than
processes which wait for less critical resources, such as character I/O.
For example, the system processes sched (the swap per) and vhand
(the page stealing daemon) always sleep at priority O. Thus, when
ever one of them is woken up and added to the run queue, it will
have the highest priority and will run after the next context switch.

The priority and wait channel are saved in the process' process
table entry, and are two of the fields displayed by the command:

$ ps -el

During the development period of a device driver, it can be useful
for the device driver to display the wait channels that it uses to
sleep(K), as an aid to debugging. Appendix B gives some useful tips
and techniques for debugging device drivers.

4.7.2 Interrupting a sleep(K)

Processes that sleep (K) can choose whether or not they want to be
woken up prematurely by the kernel, to receive signals. In some cases

Sleep(K) and wakeup(K) 93

System mode

User mode

1

1
Cannot

receive signals

Can
receive signals

Figure 4.8 sea UNIX priorities.

PSWP (0)

PINOD (10)

PRIBIO (20)

21

PZERO (25)

PPIPE (26)

28

29

PWAIT (30)

PSLEP (39)

40

119

Swapper, paging daemon

Waiting for inodes

Waiting for I/O

Waiting for buffer

Waiting for pipe

Waiting for terminal input

Waiting for terminal output

Waiting for exi t (S)

Waiting for sleep(S)

User level 0

Lowest user priority

this is desirable, but in others it is not. For example, a process that is
sleeping as a result of making a wait (S) system call should respond
normally to keyboard signals. However, a process that is refilling the
inode cache in the superblock and has set the s_ilock semaphore (see
(sys/fs/s5filsys.h)) to lock the cache, wants to be certain that it
cannot be interrupted by any signals until the semaphore is released.

Processes that need to block out signals should sleep (K) at a pri
ority of PZERO or less (that is, between 0 and 25). For example, in
Figure 4.8, PINOD is 10. Processes that do not mind receiving signals
should sleep (K) at a priority higher than PZERO. For example, in
Figure 4.8, PWAIT is 30. Here is an extract from the output of a ps -el
command:

PID PPID
o 0
1 0
2 0
3 0

C PRI NI
o 0 20
o 39 20
o 0 20
o 20 20

WCHAN TTY
d014ffdd ?
eOOOOOOO ?
dOOab078 ?
dOOa4e18 ?

TIME CMD
0:00 sched
0:02 init
0:00 vhand
0:00 bdflush

94 Interrupts

274 1 0 30 20 dOOe5660 01 0:02 csh
284 1 0 28 20 dOOca2cc 07 0:01 getty
276 1 1 30 20 dOOe5910 02 0:01 sh
233 1 0 26 20 d013d01c ? 0:00 lpsched
364 276 5 62 20 02 0:00 ps

You can see that sched and vhand are sleeping at priority 0 (PSWP), init
is asleep at priority 39 (PSLEP), getty is asleep at priority 28 (waiting
for terminal input), sh is asleep at priority 30 (waiting for ps to
exit(S), and so on. The sched, vhand and bdflush processes are all
asleep at PZERO or less, and therefore are immune to signals.

If a process is asleep and able to receive signals, the usual
behaviour when a signal arrives is for the kernel to longjrnp(K) the
process out of the sleep (K) to the end of the system call, which
returns to user mode with the error EINTR. The device driver receives
no notification of this activity.

If the device driver wants to be notified of the interrupted sleep (K)

(for example, so that it can cancel any pending 110 request on the
hardware, clean up data structures, and so on), the process should
bitwise-OR the constant PCATCH (from (sys/param. h)) into the priority
passed to sleep (K). In this way, the sleep (K) will return 1 into the
device driver rather than performing a longjrnp (K) to the end of the
system call when a signal arrives. The device driver now has an
opportunity to clean up before setting u_error to EINTR, and returning:

XXread(dev)
dev_t dey;

while (there is no data to read)
if (sleep (wchan, priority I PCATCH) == 1) {

/*
* We have been interrupted by a signal
*/

cancel I/O request;
clean up appropriate data structures;
seterror(EINTR) ;
return;

else {

/*
* We have been awakened by a wakeup(K)
*/

Sleep(K) and wakeup(K) 95

4.7.3 Wakeup(K)

The more usual way of waking up a sleep (K) ing process is to make a
call to wakeup (K) :

wakeup (wchan)
caddr_t wchan;

Wakeup (K) calls are normally issued at interrupt-time, to notify a
process that the resource or the event which it was waiting for is now
available (for example, a disk I/O request has completed). The
wakeup (K) routine searches the sleep queue, looking for processes
that are asleep on the specified wait channel. Any that it finds are
removed from the sleep queue and put back onto the run queue, and
the wait channel in the process table entry is cleared. The last thing
that wakeup (K) does is to set the extern variable runrun, which will
schedule a context switch to happen before the next lRET to user
mode. It is important to note that, unlike sleep (K), wakeup (K) does not
force a context switch. It merely schedules a context switch to happen
at the next opportunity.

When the process is next scheduled to run, the sleep (K) call
returns 0, and execution continues normally.

Since wakeup(K) will move all processes with a matching wait chan
nel onto the run queue, regardless of whether they should have been
woken up or not, it is extremely important that the task-time process
should first check that it has been woken up for the correct reason. If
not, it should immediately go back to sleep again. This is most easily
accomplished with a while loop. Here is some pseudo-code to illus
trate task-time and interrupt-time parts of a device driver synchroniz
ing with sleep (K) and wakeup (K). The next section will explain why
an exact implementation of this pseudo-code may cause the kernel to
deadlock!

static XXflag;
XXread(dev)

dev_t dey;

while ((XXflag & DATA_READY) == 0) {
set DATA_WANTED in XXflag;
sleep(address of shared buffer, priority);

disable XXintr with spl(K);
copy data from shared buffer out to the user process;
enable XXintr with splx(K);

96 Interrupts

XXintr(irq)
int irq;

if (this is a read interrupt) {
copy data from the device into shared buffer;
if (XXflag & DATA_WANTED) {

clear DATA_WANTED in XXflag;
set DATA_READY in XXflag;
wakeup(address of shared buffer);

4.7.4 Avoiding deadlock

In the example pseudo-code above, consider what would happen if
the device interrupted immediately after the point that the XXread had
tested XXflag & DATA_READY to be 0, and then set DATA_WANTED:

• At interrupt-time, XXintr clears DATA_WANTED, sets DATA_READY and
issues a wakeup (K) .

• Control returns to XXread at task-time, which immediately calls
sleep (K), even though DATA_WANTED is now clear and data is avail
able in the shared buffer.

The process will now sleep indefinitely, as XXintr will never see
DATA_WANTED set again, and therefore will never issue another
wakeup (K)! To make matters worse, the process may be asleep at a
priority of PZERO or less, so it will not be possible to terminate it with a
signal.

The solution is to apply the rule that we described in Section 4.5.2,
to protect data shared between task-time and interrupt-time routines:

static XXflag;
XXread(dev)

dev_t dev;

disable XXintr with spl(K);
while ((XXflag & DATA_READY) == 0) {

set DATA_WANTED in XXflag;
sleep(address of shared buffer, priority);

copy data from shared buffer out to the user process;
enable XXintr with splx(K);

Sleep(K) and wakeup(K) 97

It is now safe to manipulate XXflag at task-time, and deadlock is
avoided.

4.7.5 Waking up processes sleeping at PZERO or less

During the early stages of device driver development, particularly for
prototype hardware that does not interrupt reliably, processes which
sleep at PZERO or less whilst waiting for an interrupt can become
locked in the system if the interrupt doesn't arrive. The following
pseudo-code shows how to wakeup (K) such a process and report the
suspected hardware problem using a timeout (K) :

#define SLEEPING_EVENT Oxl
#define DID_GET_INTERRUPT Ox2

int flag = 0;

/*
* hwfail() is called by a tirneout(K)
*/

hwfail()
{

if ((flag & DID_GET_INTERRUPT) != 0) {

/*
* The timeout expired after the device
* has interrupted - so nothing to do
*/

return;

/*
* The timeout has expired before the device
* has interrupted - so wakeup(K) the process.

* When the process wakes up, EVENT will be set
* but INTERRUPT will not be set.
*/

flag 1= SLEEPING_EVENT;
wakeup (&flag) ;

/*
* XXfoo() sleeps at <= PZERO, but will be woken up
* by a tirneout(K) after .5 seconds.
*/

XXfoo()
{

int id, s;
s=splN(K) ;

98 Interrupts

while ((flag & SLEEPING_EVENT) == 0) {

/*
* Before we sleep(K), set a timeout(K) to
* call hwfail() if we are not woken up
* correctly by XXintr() within .5 seconds
*/

id = timeout(hwfail, 0, Hz / 2);
sleep (&flag, at a priority <= PZERO);

/*
* When we wake up, see if INTERRUPT is
* still clear. If so, we assume that the
* hardware has failed.
*/

if ((flag & DID_GET_INTERRUPT) 0) {

splx(s) ;

XXintr(irq)
{

untimeout (id) ;
indicate error in u.u_error;
cmn_err(CE_WARN, "possible hardware failure");
clear up any temporary or inconsistent data
structures;
splx(s) ;
return;

flag 1= SLEEPING_EVENT;
flag 1= DID_GET_INTERRUPT;
wakeup (&flag) ;

Remember that the timeout (K) call to hwfail will happen at
spl6 (K) , so the usual rules for interrupt routines apply.

4.8 Context switching

In Chapter 2 we listed the different circumstances in which a context
switch can occur:

Context switching 99

• Whenever the CPU returns from system mode to user mode, at the
end of exceptions, interrupts and system calls.

Note that the regular and frequent source of interrupts from the
real-time clock ensures that processes which stay in user mode for
relatively long periods will still be subject to context switching.

• Whenever a process in system mode is waiting for an event or
resource, such as free memory, or data from a device, and calls
sleep(K) .

In Section 4.7 above, we described how a call to sleep (K) forces a
context switch to occur. We explained that wakeup (K) does not force a
context switch - it just sets runrun12 which schedules a context switch
to happen at some point in the future.

In this section, we will describe how a context switch happens as a
result of runrun being set.

At the end of every exception, interrupt and system call, the kernel
examines the CS selector saved at the bottom of the system stack to
determine whether the exception (or interrupt or system call)
occurred in user mode or system mode. If the exception occurred in
user mode, a routine is called to examine runrun. If runrun is set, the
kernel calls qswtch to actually make the context switch. The qswtch
routine does the following:

(1) The current process is taken off the CPU and put onto the run
queue. Its state is changed from SONPROC to SRUN.

(2) The dispatcher is called to search the run queue for the highest
priority process.

(3) The new process is taken off the run queue. Its state is changed
from SRUN to SONPROC.

(4) A TSS Descriptor is constructed in the GOT, to point to the new
process'TSS.

(5) The kernel executes an indirect jump through a task gate, which
selects the TSS Descriptor described above.

The indirect jump saves the context of the old process in the
TSS pointed to by TR, and loads the context of the new process
from the TSS pointed to by the TSS Descriptor. 13

(6) The new U-area is mapped to u.

(7) The CPU's cache (called the Translation Lookaside Buffer, or
TLB) is flushed, so that all memory references must be fetched
from memory rather than being satisfied by the out-of-date (and
therefore incorrect) TLB entries.

Finally, qswtch returns from the system stack in the new U-area, in
the context of the new process. The entire context switch operation
takes approximately 1000 clock cycles. Most of these are used by the

Kernel text
(old context)

Jump through
task gate

resume:

Next
instruction

Kernel text
(new context)

isk
er (TR)

~

~

I ~

cs: ElP = resume -

TSS descriptor ..
TSS of old process

TSS descriptor

Global descriptor
table (GOT)

CS :ElP = _resume

TSS of new process

Figure 4.9 An i386 context switch.

Registers
saved

in old TSS

i386
CPU

,
Registers
loaded

from new TSS

~ o o

~
~
~
;::

'1::l
~

Buffering data 101

indirect jump through the task gate. Figure 4.9 illustrates the funda
mental context switch mechanisms.

The common interrupt handler then returns back to user mode, as
described in Section 4.5.5, above.

We have now described how an interrupt routine can wakeup(K) a
user process which is asleep at task-time. With a reasonable amount
of luck, that process will be switched onto the CPU at the end of the
current exception. It will return from its sleep (K), and its system call
will then be able to run to completion.

4.9 Buffering data

The final area that we need to discuss in order to fully understand
interrupts is the buffering of data. Buffering data serves to increase
system throughput, and decouples the user process from the device,
so that they can operate asynchronously of each other. Buffering
increases throughput on all devices, but is particularly effective for
low speed, low volume devices. Recall the parallel printer driver from
Chapter 3, and consider the following pseudo-code modifications:

static char c;
lpwrite(dev)

dev_t dev;

while (u.u_count)
while ((inb(PSTATUS) & READY) == 0) {

sleep(K) and wait for lpintr();

spl(K) to disable lpintr() and protect c;
if ((c = get next character from user) -1) {

splx(K) to enable lpintr() again;
return;

call lpintr() to start output;
splx(K) to enable lpintr() again;

lpintr(irq)
int irq;

Qutb(PDATA, c);
Qutb(PCNTRL, PRIME I STROBE);
Qutb(PCNTRL, PRIME);
wakeup(K) anyone asleep in Ipwrite();

102 Interrupts

Note that we are calling XXintr at task-time to start up output. This
is perfectly valid,. providing that we interlock correctly with spl (K) •

Although we are apparently using sleep (K) and wakeup (K) correctly
to synchronize between the task-time and interrupt-time parts of the
driver, this is probably the least efficient device driver that we could
write! In fact, we are no better off than we were at the start of this
chapter with XXpoll:

• There will be at least two context switches (at approximately 1000
clock cycles per switch on an Intel CPU) for each byte of data that is
written to the printer.

• On a busy system, the user process that has made the write (8)

system call and is now asleep will almost certainly not be able to
run at the first context switch following the wakeup (K) •

• The user process may even get paged or swapped out whilst it is
asleep, which will put an even greater load on the system, as the
process will have to be swapped back in again after the wakeup (K) •

In the meantime, the printer will be idle for most of the time, printing
only a few characters per second at best.

4.9.1 Buffering output

We can address these problems by introducing a buffer into the
device driver, which is shared between the task-time and interrupt
time parts. We have added some more pseudo-code to our parallel
printer driver:

static char Ipbuf[10241i
lpwrite(dev)

dev_t dey;

while (u.u_count and space in lpbuf) {

}

spl(K) to disable Ipintr() and protect Ipbufi
if (copyin(u.uJbase, into lpbuf, 1) == -1) {

seterror(EFAULT)i
splx(K) to enable Ipintr() againi
return;

u.u_count--i
u.u_base++i
u.u_offset++i

call lpintr() to start outputi
splx(K) to enable Ipintr() again;

lpintr(irq)
int irq;

while (printer is ready
&& there is data in Ipbuf) {

Buffering data 103

move byte of data out to printer;

Our pseudo-code is not quite complete, as we should put the user
process to sleep (K) if Ipbuf is already full at the start of Ipwrite, and
then call lpintr. The user process should be woken up from lpintr
when lpbuf empties.

We can assume that the printer has its own on-board buffering
capability, so that most of the time lpbuf will be emptied on the first
call to Ipintr. You can see that we have addressed the main problems
of the previous driver:

• The user process' write (8) system call can run to completion,
without any context switches, assuming that there is enough space
in lpbuf to hold all of the data .

• The printer can be serviced directly from lpbuf at interrupt-time,
whether or not the user process is actually writing any data.

4.9.2 Buffering input

Similar benefits can be obtained on input. By decoupling the interrupt
routine from the task-time process making read(8) system calls, the
interrupt routine can fill up a buffer as fast as the device interrupts,
whether or not the user process is reading any data.

Using buffers does introduce the added complexity of what to do if
the buffer fills up (this is particularly true for input), but this disad
vantage is far outweighed by the benefits of increased throughput
and overall system efficiency.

4.9.3 Low and high water marks

Device drivers can use low and high water marks to monitor the
amount of free space in the buffer, and to further improve
throughput. A water mark is simply a threshold value. If the amount
of data in the output buffer exceeds the high water mark, the XXintr
routine should be called to start up output and the user process
should sleep(K). When the amount of data in the buffer falls back

104 Interrupts

Data

High water --.
mark

Low water
mark

XXwrite calls XXstart or XXintr to
start up output, and then goes to

sleep(K)

XXintr removes data from
buffer, outputs it to device

t4--t---XXintr wakes up XXwri te

XXwr i te writes
data into buffer

xXintr writes more
data into buffer

Time

Figure 4.10 High and low water marks.

beneath the low water mark, XXintr should wakeup (K) the user pro
cess so that it can start filling the buffer again. The low wat&r mark is
almost always greater than zero, because we know that *~eri a
wakeup (K) is issued, the user process may not get to run immediately
after the next context switch. During this time, the device is still aple
to do some work, and it can be kept busy with the last remaining
characters in the buffer. If the wakeup(K) isn't issued until the buffer
empties, the device would go idle and wouldn't start up again until
the user process was next switched onto the CPU.

Low and high water marks can be applied to all buffering schemes.
Figure 4.10 shows them being used to monitor a char array.

4.9.4 Kernel support for buffering data

The kernel provides two major buffering schemes for device drivers
to use, depending on whether they are character device drivers or
block device drivers. Both schemes have been designed to address
the issues that we have. discussed in this chapter.

Buffering data 105

Character device drivers can use buffers called character lists, or
clists. Chapter 5 gives a full account of how clists work. All that we
need to understand for the time being is how to use two new kernel
support routines putc (K) and getc (K) which put data onto and take
data off a clist:

#include (sys/tty.h)
putc(c, cp)

int Ci
struct clist *CPi

And:

#include (sys/tty.h)
getc(cp)

struct clist *CPi

Character device drivers are free to use an alternative buffering
scheme, if they so wish.

Block device drivers implicitly use 1 K buffers from the kernel's
buffer cache for all their 110. On output, data moves from the user
process into the buffer cache, and from there out to the device. The
reverse happens on input. A full account of block device drivers is
given in Chapter 7.

We can now complete our modifications to the parallel printer
driver from Chapter 3. The device driver uses a clist to decouple the
user process from the interrupt routine. Note that XXintr is called
indirectly at task-time via XXstart. To aid readability, we have added
a new routine called utok14 to take care of transferring data between
user space and the kernel. The printer runs at software priority
level 2:

/*
* src/lpintr.c

* Copyright (c) 1992 Peter Kettle and Steve Statler

* Interrupt driven parallel printer driver for the onboard
* printer port of a PC AT compatible.

This is based on the simple printer driver discussed in
* Chapter 3.

* The enhancements include the use of interrupts, clist
* buffering, and moving the code which copies from user to
* kernel into a separate module.

* ./configure -a lpinit lpwrite lpintr -v VECTOR -1 INTPRI
* -T 1 -c -m MAJOR
*/

106 Interrupts

#include (sys/types.h)
#include (sys/dir.h)
#include (sys/pararn.h)
#include (sys/user.h)
#include (sys/tty.h)
#include (sys/errno.h)
#define PBASE Ox378
#define PDATA (0 + PBASE)
#define PSTATUS (1 + PBASE)
#define PCNTRL (2 + PBASE)
#define SELECT
#define PRIME
#define STROBE
#define INTENBL
#define READY
#define RESET_DELAY
#define LPSLEEP
#define LPACTIVE
#define LPPRI
#define LOWAT
#define HIWAT

struct clist lpq;
int lpflags;

/*
* lpinit()
*

Ox08
Ox1e
Ox01
Ox10
Ox80
1000000
Ox1
Ox2
(PZERO +
50
150

1)

* Initialize printer controller and announce its presence.

*/
lpinit ()
{

int i;
outb(PCNTRL, SELECT);

} ;

/*

for (i=O; i < RESET_DELAY; i++);
outb(PCNTRL, PRIME);
printcfg(Ulp", PBASE, 2, 7, -1,

UInterrupt driven printer driver");

* lpwrite()

* Called by the user process write(S) via cdevsw[] to
* write to the device.

* Move characters from the user onto the clist.

* If the clist fills up, call lpintr() at task-time via
* lpstart() to start up output, and put the task-time
* process to sleep.
*/

Buffering data 107

lpwrite(dev)
dev_t dev;

int c, s;
while ((c = utok()) >= 0) {

s = sp12(); /* protect lpq from

while (lpq.c_cc >= HIWAT) {
lpstart();
lpflags 1= LPSLEEP;
sleep (&lpq, LPPRI);

putc(c, &lpq);
splx(s) ;

s sp12 () ;
lpstart() ;
splx(s) ;

lpintr() */

/*
* lpstart()

If the driver is already busy (possibly just waiting for
* an interrupt), return.

* Otherwise call lpintr() at task-time to start up output.
*/

lpstart()
{

if (lpflags & LPACTlVE)
return;

lpflags 1= LPACTIVE;
lpintr(O);

/*
* lpintr ()

* Called at task-time from lpwrite() to start up output,
* and at interrupt-time when the printer's on-board buffer
* empties.

Output characters whilst the printer is idle and the
* clist isn't empty.
*/

lpintr(irq)
int irq;

int c;
if ((lpflags & LPACTlVE) 0) {

return;

108 Interrupts

/*

while ((inb(PSTATUS) & READY) && ((c = getc(&lpq)) >=
0)) {

outb(PDATA, c);
outb(PCNTRL, PRIME I STROBE);
outb(PCNTRL, PRIME);

if ((lpq.c_cc < LOWAT) && (lpflags & LPSLEEP)) {
lpflags &= -LPSLEEP;
wakeup (&lpq) ;

if (lpq.c_cc == 0) {
lpflags &= -LPACTIVE;

outb(PCNTRL, PRIME I INTENBL);

* utok()

* Use copyin(K) to transfer a byte of data from user space
* into the kernel, then adjust the U-area I/O fields.
* Returns -1 on fail, or no more data.
*/

utok()
{

char C;
int s;
if (u.u_count == 0) {

return (-1) ;

s = copyin(u.u_base, &c, 1);
if (s == -1) {

seterror(EFAULT);
return(-1);

u.u_count--;
u.u_base++;
u.u_offset++; /* for completeness */
return ((int)c);

4.10 Summary

In this chapter, we have described how interrupts work and why
it is beneficial to use them. We have examined a process' context in
detail, and we have explained what a context switch is and why it is

Exercise 109

important to enable context switches to happen in a multi-user, multi
tasking operating system such as UNIX. We have presented a list of
rules for use when writing interrupt routines, and we have looked at
the benefits of buffering data.

Finally, we have seen that maximum bandwidth to a device can be
attained by using interrupts, and by decoupling the task-time and
interrupt-time parts of a driver with a buffer.

QUIZ

To test your understanding of this chapter, try to answer the
following questions.

4.1 How should a task-time process force a context switch
when there is no work for it to do?

4.2 Is a device driver permitted to call wakeup (K) at interrupt
time?

4.3 How many clock cycles (approximately) does a context
switch take on an Intel CPU?

4.4 How should a task-time process protect data that is shared
with the interrupt routine?

4.5 How should a device driver arrange to receive notification
of interrupted sleep (K) s?

4.6 How does the kernel determine whether an interrupt
occurred in user mode or system mode?

EXERCISE

Modify the mouse device driver from Chapter 3 so that it is interrupt
driven.

Here are some hints:

• Set jumper 2 on the mouse to use a spare IRQ line. Use the
hwconfig(ADM) command to find out which IRQ lines are free .

• Use interrupt priority 6.

110 Interrupts

• Remember to deconfigure your XXpoll routine!

• Remember to specify the -T 1 option to configure (ADM) so that the
system knows to expect interrupts.

• A quick, simple solution would be to call XXpoll from XXintr.

Advanced session:

• Modify xXopen to examine the minor device number. If the minor
device number is 0, use timeouts. If the minor device number is 1,
use interrupts. Remember to create a new entry in /dev with the
appropriate minor device number.

Disable interrupts or timeouts when the device is closed.

A suggested answer is given in I Answers to Exercises'.

NOTES

1. We use the notation exemplified by CS :ElP to describe segment selector
registers (CS is the code segment selector) and offsets into segments (ElP

is the 32-bit instruction pointer, used as an offset into the code segment).

2. PDBR is an alternative name for Control Register 3 (CR3).

3. Except for the Double fault exception, which is handled in its own
context.

4. The process which is waiting for the interrupt will probably be asleep.

5. This is exactly the reverse of the software priority levels that UNIX uses!

6. An exception to this priority rule is dumb serial cards, which operate at
priority level 7. This is to avoid overruns and data loss.

7. We refer to the spl routines generally by using the notation spl (K).

8. If the CPU has to switch from privilege level 3 to privilege 0 to handle the
interrupt, the system stack will be empty at this point.

9. The i386 automatically pushes an error code for some exceptions. The
interrupt handler pushes a dummy error code so that all exception and
interrupt stack frames are the same size.

10. Some implementations of UNIX provide real-time extensions, but do not
necessarily provide the guaranteed response time of dedicated real-time
operating systems.

11. More than one process can sleep on the same wait channel.

12. The clock interrupt routine sets runrun directly, to force context switches
at the end of time-slices.

13. If the dispatcher found the same process on the run queue that had just
been taken off the CPU, the actual context switch is bypassed.

14. utok is equivalent to SCQ's cpass (K).

11111
I1IIII 11 II
11.IU//fIJIII!!11iJIl

Line disciplines and serial
device drivers

5.1 Overview

In this chapter we shall look at line disciplines and serial device
drivers, traditionally the most difficult of all device driver types to
understand.

A line discipline is a layer of kernel software between a serial device
driver and a user process, and it provides a set of support routines
and data structures that can be used by the driver writer. Many of the
tasks that a serial device driver has to do, such as handling backspace
characters from the user's keyboard and echoing characters, are com
mon for all serial device drivers. A line discipline offloads the
responsibility for these common tasks and provides a well-defined
interface which can significantly reduce the development time of the
device driver.

Line disciplines are identified by a number. In most UNIX systems,
line discipline 0 provides the support routines required by device
drivers for dumb serial I/O cards. seo UNIX includes two additional
line disciplines, 1 and 2, which provide support for Shell Layers and
mouse device drivers. Some manufacturers of intelligent serial I/O
cards provide their own specialized line disciplines, which must be
installed into the kernel alongside the manufacturer's device driver.

This chapter describes the operation of line discipline 0, and shows
how it should be used by a serial device driver for a dumb serial card
based on the Intel i8250 Universal Asynchronous Receiver/
Transmitter (UART).

The example serial device driver presented in Section 5.7 is the
most complex of all device drivers in this book. To ensure that data is

111

112 Line disciplines and serial device drivers

never lost, dumb serial cards must operate at software interrupt
priority 7 (the highest of all). However, one of the rules for interrupt
routines is that they must be as short as possible. This is particularly
true of higher priority interrupt routines, so our device driver uses an
XXpoll routine (called 100 times per second at software priority level
6) to offload processing from the XXintr routine.

In the exercise at the end of this chapter, we shall write a very
simple line discipline for the mouse device driver. The line discipline
will manage a queue of events describing each movement of the
mouse. We shall modify the mouse's XXread routine so that it calls the
line discipline to read an event from the event queue. This will enable
processes to track the movement of the mouse closely, which might
be desirable in a drawing application.

5.2 An introduction to line discipline 0

Line discipline 0 is used by device drivers for dumb serial 1/0 cards,
and provides all of the functionality required to support
asynchronous terminals and serial communications software, such as
uucp(C) . It includes the following major features:

• Two character buffering schemes to decouple the task-time and
interrupt-time parts of the device driver.

• Backspace and Line Kill (Ctrl-u) processing.

• Generation of signals from certain keys (for example, SIGQUIT from
Ctrl-\' SIGINT from Del).

• Flow control and Modem control (XON/XOFF, CTS/RTS).

• International keyboard support.

• Echoing.

• Character expansion and translation (for example, tabs to spaces,
newline to carriage return and newline).

Figure 5.1 shows the relationship between the user, the serial device
driver, line discipline 0 and a user process.

Line disciplines from intelligent serial I/O card manufacturers have
more or less identical responsibilities, although the actual implemen
tation is different. Some manufacturers run part of the line discipline
on the serial I/O card, using a secondary processor (for example, an
i80l86) to offload processing from the main CPU.

User space

Kernel space

getty

Line discipline 0

Serial
device driver

Accessing a line discipline 113

LJ
/ \

Figure 5.1 The user, the serial device driver, line discipline 0 and a user
process.

5.3 Accessing a line discipline

Device driver routines such as XXread and XXwrite call the line disci
pline routines via entries in a line switch table, in much the same way
that the kernel uses the character and block device switch tables to
call a device driver's entry points. The line switch table is an array of
Iinesw structures, and is indexed by the line discipline number. The
structure is defined in (sys/conf. h):

struct Iinesw {

} ;

int (*I_open) () ;
int (*I_cIose) ();
int (*I_read) () ;
int (*I_write) ();
int (*I_ioctl) ();
int (*I_input) ();
int (* I_output) () ;
int (*I~dmint) ();

114 Line disciplines and serial device drivers

extern struct linesw linesw[];
extern int linecnt;

The contents of linesw and linecnt are defined in /etc/conf/
pack. d/kernel/space. c. Additional line disciplines can be added to
space. c using the shell script idaddld (ADM). You will have an oppor
tunity to use idaddld (ADM) in the exercise at the end of this chapter.

The line discipline routines are called by the corresponding
routines in the device driver. For example, when the user makes a
read (S) system call, the device driver's XXread routine uses the I_read
entry from the linesw structure to call the line discipline read routine:

(*linesw[line discipline number] . I_read) (parameters);

In the case of line discipline 0, this calls ttread, which transfers data
from the input buffer out to the user process.

The I_input and I_output routines are called at XXpoll-time to
transfer data from the device to the input buffer, and to transfer data
from the output buffer to the device. The I-Indmint routine should be
called to service modem interrupts, although this is a nulldev in the
current release of sea UNIX.

Figure 5.2 summarizes control flow and data flow between the user
process, the serial device driver, the line discipline and the hardware.

User space read(S)

Data is transferred to user
at task-time

Kernel space t---t-----------~----......f

Line discipline
read

XXread

Figure 5.2 Control flow and data flow.

Line discipline 0

Serial device driver

Data arrives in buffer at
XXpoll-time

Serial device drivers 115

5.4 Serial device drivers

High-performance device drivers for dumb serial I/O cards are per
haps the most difficult of all to write:

• UARTs have eight registers (described in Section 5.7.2) which must
be programmed correctly to set the baud rate, character size, num
ber of stop bits, and so on.

• Serial device drivers have three sources of interrupts: one for
input, one for output and one for the modem. Dumb serial cards
with single-character buffers raise an interrupt each time a byte of
data either arrives in the UART or is transmitted from the UART.

• Three separate character buffers are required. Two are used for
buffering input data, and one is used for buffering output data.
Each buffer is constructed from a clist, introduced in Chapter 4.

The two input buffers are called the raw and canonical queues.
Data arrives on the raw queue at XXpoll-time via a ccblock struc
ture (described in Section 5.4.3), and is moved onto the canonical
queue at task-time by the kernel support routine called canon (K) ,

described in Section 5.6.
• The line discipline manipulates the clists with putc (K) and

getc (K), which are protected from software priority levelS inter
rupts with calls to splS (K) . We have already stated that the XXpoll
routine offloads processing from the high priority XXintr routine,
but of course XXpoll runs at software priority level 6, not at levelS!

To ensure that all processing is properly interlocked, an extra
buffer decouples XXintr from XXpoll, and XXpoll calls the line
discipline only if putc (K) or getc (K) have not already set splS (K) .

To further improve performance, XXpoll also calls splS (K) so that
the clock can continue to interrupt whilst the line discipline is
processing the clists. This means that XXpoll is re-entrant, and
must be protected with a semaphore.

Figure 5.3 illustrates the relationship between the input buffer,
the ccblock, and the raw and canonical clists.

• Serial device drivers must provide XXioctl support for ioctl (S)

requests from stty (C) to change the parity, the baud rate, the
character size (5, 6, 7, or 8 bits), the number of stop bits, and so on.

• On a multipart card, the XXintr routine must be able to determine
which line requires attention. It must also determine why it was
called.

• Some applications require characters to be marked with the
sequence 0377, 0, X if the received character X has a framing or
parity error.

116 Line disciplines and serial device drivers

To user space

'I'

I Canonical input clist

,~

I Raw input clist

,

l Input ccblock

I'

I Input buffer

,

From hardware

Data is transferred to the user

I

I

I

at task-time

Data is processed and transferred
at task-time

XXpoll calls the line discipline
to transfer data from the input
ccblock to the raw input clist

Data is transferred from the input
buffer to the input ccblock

at XXpoll-time

I
Data arrives from the hardware

at interrupt-time

Figure 5.3 The input buffer, ccblock and the raw and canonical clists.

The next sections will explain some of the data structures that are
used.

5.4.1 Raw and canonical processing

UNIX commands, utilities and applications require that serial lines
can be switched, via ioctl (S), to operate in either raw or canonical
mode. For example, most text editors, including vi (C), set the line to
raw mode. Command interpreters, such as sh (C), set the line to
canonical mode. The mode of the line determines how much data will
be returned from each read (S) system call.

Raw mode

In raw mode, everything that the user types is returned to the applica
tion when it makes a read (S) system call. The application can specify
the minimum number of characters to return, the maximum amount of

Serial device drivers 117

time to wait for characters after the read (S) is issued, or a combination.
The default behaviour is to return however many characters the user
asks for, although the application can make ioctl (S) calls to modify
this behaviour if necessary. The two parameters to modify are called
min and time, and are stored in the t_cc array of special control
characters in the tty structure (see Section 5.4.3).

The default values are min = 0, time = 0, which causes a read (S)
system call to return however many characters have been asked for,
providing that the characters are present in the raw queue (otherwise
it will return less).

The other values of min and time and their interactions are fully
described in the termio (M) manual pages.

Canonical mode

In canonical mode, the read(S) system call returns only when a
delimiter character (newline, end-of-file or end-of-line) is found on
the canonical queue.

As well as checking for delimiter characters, the line discipline is
also responsible for some intermediate processing of the data, before
it is read by the application. For example, each incoming character is
checked against the special control characters interrupt, quit and
suspend, and appropriate action is taken if one of these characters is
detected (a signal is sent to the process group).

Backspace characters are echoed as a backspace followed by space
and another backspace, and line kill characters are echoed as a car
riage return followed by a newline. Any characters that the user has
either erased or killed are removed from the canonical queue, so that
they will not be returned by the read(S) system call. Figure 5.4 shows
some canonical processing.

It is possible to see the difference between the two modes by setting
your terminal line into raw mode, and then resetting it. Type:

$ stty raw -echo

Your terminal line is now in raw mode. Try typing some characters!
Restore canonical mode by first pressing Ctrl-j (Ctrl-j in raw mode is
equivalent to carriage return in canonical mode). Your shell will
probably complain about all the rubbish characters that you have just
typed. Then type:

$ stty sane

Note that you do not have any echoing enabled, and that you must
terminate this line with another Ctrl-j. Sanity should then be restored.

118 Line disciplines and serial device drivers

To user process

Canonical r----'---....

input
clist

Raw
input
clist '---~---....I

From. input ccblock

Figure 5.4 Canonical processing.

5.4.2 The clist structure

~_h_e_1 _k_B_S-rS_P_B_S_I_O_ ~~1~~t

To output ccblock

BS = Backspace
SP = Space

A clist is an anchor for a linked list of cblock structures, which
contain the input and output data. The clist and cblock structures
are defined in (sys/tty. h) :

#include (sys/tty.h)

struct clist {

} ;

int c_cc;
struct cblock *c_cf;
struct cblock *c_cl;

/* character count */
/* pointer to first */
/* pointer to last */

#define CLSIZE 64
struct cblock {

} ;

struct cblock *c_next;
unsigned char c_first;
unsigned char c_last;
unsigned char c_data[CLSIZE);

The kernel resource NCLIST determines how many cblocks are
available for use by the system. 1 To set up a clist, all the device
driver has to do is to declare a struct clist variable, and then to begin

Serial device drivers 119

using putc (K) and getc (K). These two routines automatically obtain
new cblocks as they are required, and free them up when they
become empty and are no longer being used. All clist manipulations
are interlocked from software priority levelS interrupts with splS (K).

Line discipline 0 uses low and high water marks (explained in
Chapter 4) on the input and output queues to ensure that individual
serial lines cannot use up all of the NCLIST resource. The values for
each pair of water marks are dependent on the baud rate of the line.
For example, a 9600 baud line has a low water mark of 80, and a high
water mark of 240. A 1200 baud line has a low water mark of 60, and a
high water mark of 180.

Here are the putc (K) and getc (K) routines again. The putc (K)

routine adds a character to the end of a clist. It makes its own call to
splS (K):

#include (sys/tty.h)
putc(c, cp)

int C;
struct clist *cp;

A character is removed from the front of a clist with the getc (K)

routine. It also makes its own call to splS (K) :

#include (sys/tty.h)
getc(cp)

struct clist *cp;

Figure 5.5 shows a typical clist. Note that the first and last cblocks
are partially empty - these are the ones that will be accessed by the
next calls to putc (K) and getc (K). Figure 5.6 shows the same clist
after some more calls to getc (K). Note that one of the cblocks has
now been freed.

5.4.3 The tty structure

Line discipline a requires serial device drivers to declare a struct tty
for each of the serial lines to be supported. Most serial device drivers
do this by declaring an array of tty structures, and reference the
appropriate entry using bits from the minor device number. The tty
structure contains all of the information needed by the line discipline
and a serial device driver. It is defined in (sys/tty.h):

120 Line disciplines and serial device drivers

A c1ist

u
-

A cb10ck

c_next

c_first = 21

-

The c1ist contains 96 characters.

... -
Acb10ck

c_next = NULL

c_first = 0

There are 43 characters in the first cb1ock, from c_data [21] to c_data [63].
There are 53 characters in the second cb1ock, from c_data[0] to c_data[52].

Figure 5.5 A typical clist.

A c1ist Acb10ck ... -
c_cc = 53 c _next = NULL

c _cf c first = 0 -
c _c1 c_1ast = 52

c_data[64]

-

The cHst now contains 53 characters.
The first cb10ck has been emptied by calls to getc (K) , and has been returned to the freelist.
There are 53 characters in the remaining cb1ock, from c_data[0] to c_data[52].

Figure 5.6 The same clist after some calls to getc (K) •

#define NCC
struct tty {

8

} ;

struct clist t_rawq;
struct clist t_canq;
struct clist t_outq;
struct ccblock t_tbuf;
struct ccblock t_rbuf;
int (* t_proc) ();

ushort
ushort
ushort
ushort

t_iflag;
t_oflag;
t_cflag;
t_lflag;

short
short
char
char
char
char
char
char
char
char
char

t_state;
t_pgrp;

t_line;
t_delct;
t_term;
t_trnflag;
t_col;
t_row;
t_vrow;
t_lrow;
t_hqcnti

unsigned char

char L_mstate;
char t-Illerr;
char t_xstate;
struct xmap *t_xmp;

unsigned char
char t_yyy[3J;

Serial device drivers 121

/* raw input queue */
/* canonical queue */
/* output queue */
/* tx control block */
/* rx control block */
/* routine for device

functions */
/* input modes (stty) */
/* output modes (stty) */
/* control modes (stty) */
/* 'line discipline modes

(stty) */
/* internal state of driver */
/* process group ID */
/* line discipline number */
/* delimiter count in t_canq */
/* terminal type */
/* terminal flags */
/* current column */
/* current row */
/* variable row */
/* last physical row */
/* number of hi queue

packets on t_outq */
/* used by terminal handlers

and line disciplines */
/* settable control

chars */
/* emapping state */
/* emapping error flag */
/* extended state */
/* ptr to extended tty

struct */
/* saved timeout char */
/* reserved */

Many of the fields in the tty structure are used by the line disci
pline, and do not need to be referenced by the serial device driver.
The fields that are used by the serial device driver are as follows. You
can see some examples in the serial device driver presented in Section
5.7.

Lrawq, Lcanq

These are the clist anchors for the raw and canonical queues. Data
arrives on t_rawq at XXpoll-time, and is transferred onto t_canq at
task-time by the routine canon (K) .

122 Line disciplines and serial device drivers

t_outq

This is the clist anchor for the output queue. Data arrives on t_outq
at task-time from I_write, and at XXpoll-time from I_input, when
echoing is enabled.

Lrbuf, Ltbuf

These are the intermediate ccbIocks for input and output. For input,
XXpoll transfers data from the input buffer onto t_rbuf, and then calls
I_input to transfer data from t_rbuf onto t_rawq (see Figure 5.3). For
output, XXpoll calls I_output to transfer data from t_outq onto
t_tbuf, and then transfers data from t_tbuf to the output buffer.

The ccbIock structure is defined in . (sys/t ty . h) :

struct ccblock {
caddr_t c_ptr;
ushort c_count;
ushort c_size;

} ;

/* buffer address */
/* character count */
/* buffer size */

The c_ptr field is set up to point to the c_data field in a cbIock, and is
incremented after each character is moved into the buffer. The
c_count field records how many characters are in the cbIock, and is
incremented after each character is moved into the buffer. The c_size
field doesn't change - its value is always CLSIZE. Figure 5.7 shows
data arriving on t_rbuf at Xxpoll-time.

Lproc

This is the address of the serial device driver's XXproc routine. It is
used by the line discipline to make calls into the driver. For example,
if t_rawq goes above the high water mark, the line discipline will call
XXproc to send an XOFF down the line to the transmitter. When
t_rawq falls back beneath the low water mark, XXproc is called again to
send an XON, so that the transmitter can start sending more data.

The serial device driver fills out the t_proc entry on the first XXopen
of the device.

The example serial driver in Section 5.7 includes an XXproc routine.

Liflag

This is a 16-bit mask of flags defining the input modes of the line,
such as whether to ignore parity, whether to strip input characters to
7 bits, and so on. A full list of the different bits is given in
(sys/termio. h), and the function of each bit is described in the
stty(C) and termio (M) manual pages.

t_rbuf (a ccblock)

c.,..ptr t---

c_count = 27

c_size = 64

Serial device drivers 123

Acblock

c_next = NULL

c_first = 0

c_last = 0

.1
~

c_data [64]

The ne
will be

xt character from XXpoll
placed here

Data from X:Xpoll

Figure 5.7 Data arriving on t_rbuf.

Loflag

This is a 16-bit mask of flags defining the output modes of the line,
such as whether to map lower case characters to upper case, whether
to map newline to carriage return and newline, and so on. Bits in
t_oflag also determine whether any delays are inserted after carriage
returns, horizontal and vertical tabs, backspaces and formfeeds. Out
put delay processing is important on devices such as slow, dumb
lineprinters, where the print head may take a relatively long time to
return back to column 0 from the end of each line. In practice, most
modern devices are more intelligent and have on-board buffering
capabilities, so output delays are rarely used.

The line discipline takes care of the interpretation of each of the bits
in t_oflag. A full list of the different bits is given in (sys/termio.h) ,
and the function of each bit is described in the stty (C) and termio (M)

manual pages.

Lcflag

This is a 16-bit mask of flags describing the hardware status of each of
the serial lines, including the baud rate, the character size, whether to
enable parity generation and checking, the number of stop bits, and
soon.

124 Line disciplines and serial device drivers

The t_cfIag field is maintained by the kernel support routine
ttiocom(K), but it is also used by the serial device driver to determine
how to program the hardware in response to calls to XXioctl. A full
list of the different bits is given in (sys/termio.h), and the function of
each bit is described in the stty(C) and termio(M) manual pages.

Llflag

This is a 16-bit mask of flags used exclusively by the line discipline to
control terminal functions, such as whether the line is in canonical
mode, whether echoing is enabled, whether to echo a newline on
receipt of a line kill character, and so on. A full list of the different bits
is given in (sys/termio.h) , and the function of each bit is described in
the stty(C) and termio(M) manual pages.

Lstate

This is a 16-bit mask of flags describing the software status of each of
the serial lines. For example, whether the line is open, whether the
serial device driver is waiting for the modem carrier, whether an
XOFF has been received on the line, and so on. A full list of the
possible states is given in (sys/tty. h). Bits in t_state are set, cleared
and used exclusively by the serial device driver.

Lline

This is the line discipline number to be used by the serial line. Recall
from Section 5.3 that the line discipline number is used to index the
line discipline switch table:

struct tty *tp = &ttys[UNMODEM(dev)];
(*linesw[tp->t_Iine] . I_read) (parameters) ;

Since each serial line has its own value for t_Iine, it is possible
(although unusual) for the serial lines attached to the same serial I/O
card to use different line disciplines. The default is for all serial lines
to use line discipline 0, but this can be changed with an appropriate
ioctl (S) call.

Lde1ct

This counts the number of delimiter characters in either the raw or
canonical buffers, depending on the mode of the serial line. If the line
is in raw mode, t_delct corresponds to the length of the raw buffer. If
the line is in canonical mode, t_delct counts the number of newline
and end-of-line characters in the canonical buffer. It is set by the line
discipline, and is used during the processing of read (S) system caIls.

A description of line discipline 0 125

Lee

This contains the current values for the special control characters
interrupt, quit, erase, line kill, end-of-file, end-of-line, end-of-line-2,
switch,2 suspend, start and stop.3 These default to DEL, Ctrl-\' Ctrl-h,
Ctrl-u, Ctrl-d, NUL, NUL, Ctrl-z, Ctrl-z, DCI (Ctrl-q) and DC3
(Ctrl-s) respectively.

If the line is in raw mode, end-of-file and end-of-line have no
meaning, and these locations contain the values for min and time
instead.

The contents of t_cc are used by I_input during the processing of
t_rbuf (see Section 5.5.6).

Lsehar

This is the value used to prime the timeout, in clock ticks, for output
delay processing (see the discussion of t_oflag, above). It is set and
used exclusively by the line discipline.

5.5 A description of line discipline 0

We now present a description of the routines in line discipline O.
Some readers may choose to skip this section and the next, and go
directly to Section 5.7. However, readers who are planning to imple
ment either a new line discipline or a device driver for an intelligent
serial card will find this section of particular benefit.

The heading of each section will contain:

• The name of the field in the linesw structure.

• The name of the corresponding entry point in line discipline o.
• The name of the serial device driver routine that calls the line

discipline.

Each section will contain an extract from a working serial device
driver to illustrate the interaction between the device driver and the
line discipline. The complete device driver is given in Section 5.7.

5.5.1 I_open, ttopen, XXopen
int
ttopen(tp)

struct tty *tPi

126 Line disciplines and serial device drivers

The I_open routine is called from XXopen, on each open (S) of a serial
line. The specific serial line to be opened is indicated by the minor
device number.

If the process is not already a member of a process group, and this
terminal is not already a controlling terminal, ttopen establishes this
terminal as a controlling terminal for a new process group:

u.u_ttyp = &tp->t_pgrp;
tp->t_pgrp = u.u_procp->p_pgrp;.

This ensures that any keyboard-generated signals (SIGQUIT and
SIGINT) received from this terminal will be dispatched to the correct
process group.

If the XCLUDE bit is already set in t_Iflag, and the user who is
making this open (S) request is not root, ttopen returns EBUSY. This
will cause the open (S) system call to fail.

Processes should use an ioctl (S) system call, described in the
termio (M) manual pages, to set the XCLUDE bit to request exclusive use
of the serial line. For example, a communications package such as
uucp (C) would set XCLUDE.

After establishing a process group and checking for exclusive use,
ttopen calls the kernel support routine ttioctl (K) to allocate an
empty cblock to t_rbuf, and to initiate input on the device with a call
to XXproc (tp, T _INPUT) :

ttioctl(tp, LDOPEN, 0, 0);

Finally, ttopen clears the WOPEN bit (waiting for open to complete),
and sets the ISOPEN bit (open is complete) in t_state.

The line is now open. Here is an extract from a typical XXopen
routine showing the call to I_open:

XXopen(dev, flags, id)
dev_t dev;
int flags, id;

register struct tty *tp = &XX_tty[UNMODEM(dev)];

/*
* If we've been asked to do an exclusive open, fail
* if already open or if user process doesn't belong
* to root.
*/

if ((tp->t_lflag & XCLUDE)
&& (tp->t_state & (ISOPEN I WOPEN))
&& (suser() == 0)) {

/*

seterror (EBUSY) ;
return;

A description of line discipline 0 127

* If not already open, initialize data structures
* and the hardware. Set CLOCAL (we are assuming no
* modem control) and CARR_ON, then call the line
* discipline open.
*/

if ((tp->t_state & (ISOPEN WOPEN)) 0) {

tp->t_proc = XXproc;
tp->t_xstate 1= EXTDLY;
XXpinit(udev) ;
ttinit (tp) ;
tp->t_cflag 1= CLOCAL;
XXparam(udev) ;

tp->t_state 1= CARR_ON;

s = spl7 () ;
(*linesw[tp->t_Iine).I_open) (tp);
splx(s);

5.5.2 I_close, ttclose, XXclose
int
ttclose(tp)

struct tty *tp;

The I_close routine is called from XXclose on the last close (S) of a
serial line .

Most of the work is done by a call to ttioctl (K), which waits for
the contents of t_outq to empty to the device, and then calls
ttyflush (K) to free the cblocks from t_canq and t_rawq. Before
returning to ttclose, ttioctl (K) also frees the cblocks from t_rbuf
and t_tbuf:

ttioctl(tp, LDCLOSE, 0, 0);

Finally, ttclose clears the ISOPEN bit in t_state, clears the XCLUDE bit
in t_Iflag, and disassociates the terminal from the process group:

128 Line disciplines and serial device drivers

The line is now closed. Here is an extract from a typical XXclose
routine showing the call to I_close:

XXclose(dev)
dev_t devi

register struct tty *tp &XX_tty[UNMODEM(dev)]i
int Si

dey = UNMODEM(dev)i

/*
* Call the line discipline close, then turn off
* interrupts for this device (we have only one) .

* At the end of XXclose(), the line will be in the
* same state as before XXopen() .
*/

(*linesw[tp->t_line] . I_close) (tp)i

outb(RIENABL, 0) i
tp->t_state &= -(CARR_ON/WOPEN)i
tp->t_cflag &= -CLOCALi

5.5.3 I_read, ttread, XXread
int
ttread(tp)

struct tty *tPi

The I_read routine is called from XXread to transfer data from either
the raw or canonical queue to the user process, in response to a
read(S) system call.

If there are no characters on the canonical queue, ttread must first
call canon (K) to process any data waiting on t_rawq. The canon (K)

routine is responsible for task-time processing in both raw and can
onical modes - it is described in Section 5.6.1.

The read(S) system call described in the V-area is then satisfied by
a call to copyout (K), which copies characters from the appropriate
queue out to the user's address space. Either u. u_count bytes or the
entire contents of the queue are copied, whichever is the smaller.

Finally, if the TBLOCK bit is set in t_state, indicating that an XOFF
has been sent down the line to the transmitter, and t_rawq has
drained beneath its low water mark, ttread calls XXproc (tp,
T_UNBLOCK) to send an XON down the line to restart input.

Here is an extract from a typical XXread routine showing the call to
I_read:

XXread(dev)
dev_t devi

A description of line discipline 0 129

register struct tty *tp = &XX_tty[UNMODEM(dev)]i
(*linesw[tp->t_Iine] . I_read) (tp)i

5.5.4 I_write, ttwrite, XXwrite
int
ttwrite(tp)

struct tty *tPi

The I_write routine is called from XXwrite at task-time to copy charac
ters from the user process onto t_outq, in response to a write(S)
system call.

It copies all of the characters into temporary cblocks, calling
ttxput(K) to transfer the contents of each cblock onto t_outq. If any
of the calls to ttxput (K) cause t_outq to go above its high water mark,
I_write calls XXproc(tp, T-,OUTPU'l') to start up output on the device,
and then puts the task-time process to sleep. The ttxput (K) routine is
described in Section 5.6.10.

When all of the characters have been copied from the user process,
I_write calls XXproc(tp, T_OUTPUT) to start up output on the device.

Here is an extract from a typical XXwrite routine showing the call to
I_write:

XXwrite(dev)
dev_t devi

register struct tty *tp = &XX_tty[UNMODEM(dev)]i
(*linesw[tp->t_Iine] . I_write) (tp)i

5.5.5 l_ioctl, ttioctl, XXioctl
int
ttioctl(tp, cmd, arg, mode)

struct tty *tPi
int cmd, arg, modei

The I_ioctl routine is called from I_open and I_close as described in
Sections 5.5.1 and 5.5.2 above, and also indirectly from XXioctl via
ttiocom(K). The value of the cmd parameter is one of LDOPEN, LDCLOSE,
LDCHG, LDSMAP, LDGMAP or LDNMAP .

130 Line disciplines and serial device drivers

The ttioctl routine is called with LDCHG to deal with the ICANON bit
(canonical processing on input) when it is set in t_lflag by an
ioctl (S) system call. For example, a process which has been using
the line in raw mode may restore the line to canonical mode before
the process calls exit (S) .

The contents of the raw queue are transferred onto the end of the
canonical queue, and then the raw queue is thrown away.

The other three commands LDSMAP, LDGMAP and LDNMAP are for inter
national keyboard support, which is outside the scope of this book.

Here is an extract from a typical XXioctl routine showing the call to
ttiocom, which calls l_ioctl:

XXioctl(dev, cmd, arg, mode)
dev_t dey;
int crod, mode;
caddr_t arg;

register struct tty *tp = &XX_tty[UNMODEM(dev)];
dey = UNMODEM(dev);
if (ttiocom(tp, cmd, arg, mode)) {

XXparam(dev) ;

5.5.6 I_input, ttin, XXpoU
int
ttin(tp, code)

struct tty *tp;
intcode;

The I_input routine is called at XXpoll-time to transfer characters
from t_rbuf onto t_rawq. It deals with international keyboard map
ping, input flow control, keyboard signals and echoing.

The value of code is either L~BREAK or L-BUF. If the value of code is
L_BREAK, a hardware break interrupt has occurred on the line (the
input was held in the spacing state for longer than the· total time of
start bit + data bits + parity + stop bits). This condition is indicated
by an error bit in the Line Status Register (see Section 5.7.2). The
I_input routine sends a SIGINT signal to the process group, calls
ttyfIush(K) to flush the input and output buffers, then returns to
XXpoll. The ttyflush(K) routine is described in Section 5.6.11.

If the value of code is L_BUF, there are characters in t_rbuf waiting
to be processed and moved onto t_rawq.

A description of line discipline 0 131

From input buffer

BS = Backspace
CR = Carriage return
NL = Newline

Figure 5.8 I_input transfers characters from t_rbuf to t_rawq. Note proces
sing of ICRNL (map carriage return to newline).

If any of the following bits are set in t_ifIag:

• INLCR (map newline to carriage return)

• IGNCR (ignore carriage return)

• ICRNL (map carriage return to newline)

• IUCLC (map upper case to lower case)

I_input does the appropriate mapping before calling putc (K) to copy
each individual character from t_rbuf onto t_rawq. Otherwise,
I_input calls putcb (K) to copy all of the characters from t_rbuf onto
t_rawq in a single operation. The contents of t_rbuf are kept intact for
further processing by I_input (see below). Figure 5.8 shows charac
ters being transferred from t_rbuf to t_rawq.

If t_rawq now exceeds its high water mark, I_input calls
XXproc (tp, T_BLOCK) to send an XOFF down the line to the transmit
ter, and then it wakes up any processes that are waiting for input so
that t_rawq can be emptied.

If the transmitter does not respond to the XOFF, there is a possibil
ity that t_rawq will continue to grow and eventually consume all of
the available cbIocks. To prevent this happening, I_input also checks
t_rawq against the absolute high water mark TTYHOG (256 characters in
seo UNIX release 3.2v4), and calls ttyflush (K) to flush the input
buffers if this limit is reached.

132 Line disciplines and serial device drivers

After all the characters have been copied into t_rawq, I_input
examines each of the characters in t_rbuf again, looking for keyboard
generated signals, delimiters, and erase and line kill characters.

If the ISIG bit (enable signal processing on input) is set in t_IfIag,
characters in t_rbuf are checked against the special control characters
interrupt (SIGINT), quit (SIGQUIT), suspend (SIGTSTP) and switch. If
the character is interrupt or quit, the appropriate signal is sent to the
process group, and ttyflush (K) is called to flush the input and output
buffers. If the character is suspend, the signal is sent to the process
group, but only the input buffers are flushed. If the character is
switch, the input and output buffers are flushed, and then XXproc is
called with T_SWTCH. No signal is sent.

If the ICANON bit (canonical processing) is set in t_IfIag, characters
in t_rbuf are checked against the newline and end-of-file delimiters.
The value in t_delct is incremented if any are found. Characters are
also checked against backspace and line kill. If the character is a
backspace, and the ECHOE bit (echo erase) is set in t_IfIag, I_input
calls ttxput (K) to put a backspace character followed by a space
character onto t_outq. If the character is a line kill, and the ECHOK bit
(echo line kill as a newline) is set in t_IfIag, I_input calls ttxput (K) to
put a line kill character onto t_outq.

If ECHO is set, I_input calls ttxput (K) to echo the character onto
t_outq,4 and then calls XXproc(tp, T_OUTPUT) to start up output.

The processing of t_rbuf is now complete. Figure 5.9 summarizes
the canonical processing of t_rbuf by I_input.

From input buffer

h elk BS SP BS IoCR

BS = Backspace
CR = Carriage return
NL = Newline
SP = Space

Figure 5.9 i_input does canonical processing of t_rbuf. Note that t_deict
has been incremented (there is an NL delimiter on t_rawq).

A description of line discipline 0 133

If the ICANON bit is not set in t_Iflag, I_input checks to see whether
conditions for raw input can now be met, and sets t_delct if they can.

Finally, if t_delct is set, indicating that characters are available on
t_rawq for either canonical or raw input, I_input calls ttiwake (K) to
wake up any processes that are waiting for input.

Here is an extract from a typical XXpo11 routine showing a call to
I_input:

XXpo11 ()
{

register struct tty *tPi

for (each port on the serial card) {

/*
* Copy the received character rchar into t_rbuf,
* then call I_input to transfer it onto t_rawq.
*/

*tp->t_rbuf.c_ptr++ = rchari
if (--tp->t_rbuf.c_count == 0)

tp->t_rbuf.c_ptr -= tp->t_rbuf->c_sizei
(*linesw[tp->t_Iinel.l_input) (tp, L_BUF)i

5.5.7 I_output, ttout, XXpoll
int
ttout(tp)

struct tty *tPi

The I_output routine is called at XXpoll-time and at task-time to
transfer characters from t_outq into t_tbuf, and to deal with output
delay processing. All characters arrive on t_outq from ttxput (K).

The first job of I_output is to check for a value in t_schar, which
indicates that the character that has just been sent to the hardware
requires an output delay. The required delay is indicated by two
special characters on t_outq, placed there by ttxput (K). The first of
these is the queue escape character QESC, defined in (sys/tty. h). The
second character is the required delay in clock ticks, bitwise-OR'd
with QESC.

134 Line disciplines and serial device drivers

Whenever i_output sees a QESC on t_outq, it examines the next
character to determine whether any special processing is required. If
this character has a value higher than QESC, i_output copies it into
t_schar.5

If i_output finds a value in t_schar, it sets the TIMEOUT bit (delay
timeout in progress) in t_state, and then primes a timeout (K) to call
ttrstrt (K) after t_schar clock ticks. When the timeout expires,
ttrstrt (K) will call XXproc (tp, T_TIME) to restart output. Since there
is nothing to do in the meantime, i_output returns to XXpoil.

If the OPOST bit (output post-processing, that is, output delays) is
not set in t_ofiag, i_output copies as many characters as possible
from t_outq onto t_tbuf. However, if the OPOST bit is set, i_output
copies individual characters from t_outq onto t_ tbuf, processing any
QESC characters as described above. Characters that are not QESC are
copied directly onto t_ tbuf.

Finally, if t_outq has drained beneath its low water mark, i_output
calls ttowake (K) to wake up any processes that are asleep waiting to
output.

Figure 5.10 summarizes the operation of i_output.

From ttxput(K)

t_outq I he I k BS SP BS IoCR QESC QESC+delay W 0 r I dl

t_tbu£ I h elk BS SP BS IoCR I
I'

"
To output buffer

After this carriage return has been
transferred onto t....;tbu£, l_output
sets a timeout (K) for delay seconds
arid returns to KKpoll

When l_output is restarted after the
timeout (K) expires, it will transfer
'world' onto t_tbuf

Figure 5.10 l_output transfers characters from t_outq to t_tbuf and deals
with output delay processing.

Additional kernel support for serial device drivers 135

The value returned to XXpo11 is either CPRES (defined in
(sys/tty .h) or o. A CPRES indicates that characters were copied from
t_outq onto t_tbuf, and XXpo11 should now output some more data
from t_ tbuf to the device.

Here is an extract from a typical XXpoll routine showing a call to
I_output:

XXpoll()
{

register struct tty *tPi

for (each port on the serial card)

if ((tp->t_tbuf.c_ptr == NULL)
I I (tp->t_tbuf.c_count == 0)) {

if (tp->t_tbuf.c_ptr) {

tp->t_tbuf.c_ptr -= tp->t_tbuf.c_sizei

if (((*linesw[tp->t_Iine] . I_output) (tp) &
CPRES) 1= 0) {

/*
* CPRES tells us that data was
* transferred onto t_tbuf.
*/

if ((tp->t_state & BUSY) == 0)
XXstart(O)i

5.6 Additional kernel support for serial device
drivers

The sea UNIX kernel provides some additional support routines for
line disciplines that can be used by third party device driver writers.
The routines are fully described in the SeQ UNIX Device Driver
Writer's Guide, but are included ,here for completeness.

136 Line disciplines and serial device drivers

To user process

Canonical ,---....1.--....,
input
clist

Intermediate .---"""---....
canonical

buffer

Raw
input
clist "'"----r------'

From input ccblock

Figure 5.11 The operation of canon (K).

5.6.1 canon(K)
int
canon (tp)

struct tty *tp;

The canon (K) routine is called at task-time from i_read. It processes
data on either the raw or canonical queues.

In canonical mode, canon (K) processes data on t_rawq and places
the results into an intermediate buffer called canonb, before copying
the results onto t_canq. The intermediate buffer is used so that the
number of unnecessary calls to putc (K) and getc (K) is minimized (for
example, whilst processing a backspace). Each character is checked
against backslash (the escape character), backspace, line kill and end
of-file, and the contents of t_canq are modified accordingly. Figure
5.11 summarizes the operation of canon (K) .

In raw mode, canon(K) manages the min and time processing
described in Section 5.4.1 above, sets timeouts if necessary, and
returns when the appropriate conditions for raw input are met.

Additional kernel support for serial device drivers 137

5.6.2 ttiocom(K)
int
ttiocom(tp, cmd, arg, mode)

struct tty *tPi
int cmd, arg, modei

The ttiocom(K) routine is a general purpose ioctl (8) routine for use
by serial device drivers. It is called at task-time from XXioctl, and is a
convenient way of responding correctly to ioct1(8) calls from
programs such as stty(C). It takes care of managing most of the fields
in the tty structure, including all of the bits in the t_cfIag, t_ifIag,
t_IfIag and t_oflag.

The ttiocom (K) routine returns 1 to the device driver if the
requested change should also be passed out to the hardware, such as
a change to the baud rate, parity checking, and so on.

5.6.3 ttinit(K)
int
ttinit(tp)

struct tty *tPi

This is called at task-time from XXopen to establish reasonable default
values for most of the tty structure members. It assumes that line
discipline a will be used.

5.6.4 ttiwake(K)
int
ttiwake(tp)

struct tty *tPi

This is called at XXpoll-time from I_input to wake up any processes
that are asleep on t_rawq, waiting for input.

5.6.5 ttowake(K)
int
ttowake(tp)

struct tty *tp

This is called at XXpoll-time from I_output to wake up any processes
that are asleep on t_outq, waiting to output.

138 Line disciplines and serial device drivers

5.6.6 ttrdchk(K)
int
ttrdchk(tp)

struct tty *tPi

This is called at task-time via the rdchk(S) and select(S) system calls
to determine whether there is data waiting to be read on either t_canq
or t_rawq. The rdchk (S) system call is provided for backwards com
patibility with sea XENIX serial device drivers.

5.6.7 ttrstrt(K)
int
ttrstrt(tp)

struct tty *tPi

This is called to restart output after an output delay timeout expires.
Its only task is to call XXproc(tp, T_TlME). See the discussion of
i_output in Section 5.5.7, above.

5.6.8 ttselect(K)
void
ttselect(tp, rw)

struct tty *tPi
int rwi

This is called at task-time via the select(S) system call to ensure that
a subsequent one-byte read(S) orwrite(S) system call will be able to
complete without blocking. The rw parameter is either SELREAD or
SELWRITE (see (sys/ select. h)).

5.6.9 tttimeo(K)
tttimeo(tp)

struct tty *tPi

This is called at task-time from canon(K), or at XXpoll-time from
i_input to manage min and time processing for raw mode.

Additional kernel support for serial device drivers 139

5.6.10 ttxput(K)
ttxput(tp, ucp, ncode)

struct tty *tPi
union {

ushort Chi
struct cblock *ptri

} UCPi
int ncodei

This is called at XXpoll-time from i_input (for echoing characters),
and at task-time to put characters onto t_outq. It is responsible for
functions such as adding output delays, expanding tabs to spaces,
mapping lower case to upper case and mapping newline to carriage
return newline, and also for international keyboard support.

It is passed either as a single character (ncode is I), or a pointer to a
cblock of ncode characters.

5.6.11 ttyflush(K)
ttyflush(tp, crnd)

struct tty *tPi
int rdwri

This is called at Xxpoll-time and at task-time to flush the input and
output queues. The rdwr parameter is a mask of FREAD and FWRITE (see
(sys/file.h)).

If FREAD is set, ttyflush (K) throws away the contents of t_canq and
t_rawq, returns all the cblocks to the freelist, and then calls
XXproc (tp, T_RFLUSH) to empty the hardware's input buffer. If FWRITE
is set, ttyflush(K) throws away t_outq and calls XXproc(tp,
T_WFLUSH) to empty the hardware's output buffer.

5.6.12 ttywait(K)
ttywait(tp)

struct tty *tPi

This is called at task-time via XXclose to wait for characters to drain
from t_outq to the device. It then calls delay(K) to allow the hard
ware's output buffer to empty.

140 Line disciplines and serial device drivers

5.7 An example serial device driver

In Sections 5.5 and 5.6, we presented a detailed description of the
operation of line discipline O. In this section, we present an example
high performance serial device driver for a dumb ~erial card. Although
it is not a fully tested production device driver, it illustrates many of the
principles that we have been discussing in this chapter, including the
use of XXpoll to offload clist processing from XXintr. For clarity, we
shall assume that only a single serial line is supported by the hardware,
and we have omitted all code relating to modem control.

5.7.1 Serial I/O chips

We shall begin with a description of the actual serial I/O chip that our
device driver controls.

The i8250 UART and the i8251A USART both implement
asynchronous communication in a functionally identical manner.
Each has separate single character buffers for input and output,
where data is assembled and converted tolfrom parallel/serial format.
The chips generate an interrupt either when the input buffer contains
a complete character or when the output buffer empties and is ready
to accept another character from the CPU. They incorporate full
modem control (clear to send, request to send, data set ready, data
terminal ready, ring indicator and carrier detect). They can generate
5-, 6-, 7- or 8-bit characters with odd or even parity, and I, 1.5 or 2
stop bits. The on-chip baud rate generator allows the chips to operate
at speeds of up to 9.6Kbaud (19.2Kbaud for the i8251A USART).

The NS16550 serial I/O chip has a similar specification, but features
on-chip buffers, or FIFOs, for input and output which can each
contain a maximum of 16 characters. The NS16550 chip can be pro
grammed to generate an interrupt when the input FIFO contains I, 4,
8 or 14 bytes. A transmit interrupt is generated each time the output
FIFO empties. If required, the FIFOs can be disabled so that the
NS16550 chip will behave similarly to the i8250 and i8251A chips.
However, enabling the FIFOs reduces the number of interrupts and
makes the NS16550 chip more suitable for use in dumb multiport
cards, where higher volumes of data must be managed.

5.7.2 Programming the serial I/O chips

The serial I/O chips described above each have a set of eight registers
which controls the operations of the serial lines and provides access

An example serial device driver 141

to the receive and transmit buffers. All dumb serial cards which have
ports conforming to the original IBM Personal Computer Type 1
Serial Adaptor can be programmed identically through these regis
ters. Manufacturers fix the base address in 110 space for their particu
lar card, and the different registers are at the same offsets on all cards.
You will see the registers being used in the example serial device
driver, below. The register definitions are as follows.

Base address + 0, Transmitter Holding register

The Transmitter Holding register contains the character to be sent. If
the register is read rather than written, it is called the Receiver
Holding register, and contains the received character. If the chip has
FIFOs, the FIFOs are also written and read through this same
register.

If the Divisor Latch Access Bit of the Line Control register is 1, this
register is used to read or write the low byte of the Divisor Latch,
which is used to program the baud rate generator.

Base address + 1, Interrupt Enable register

The Interrupt Enable register is used to specify when the chip will
generate an interrupt on its single interrupt output pin. Four separate
interrupts can be enabled by setting the appropriate bits in this
register:

(1) Modem Status Interrupt.

(2) Receiver Line Status Interrupt.

(3) Transmitter Holding Register Empty Interrupt.

(4) Received Data Available Interrupt.

If the Divisor Latch Access Bit of the Line Control register is 1, this
register is used to read or write the high byte of the Divisor Latch,
which is used to program the baud rate generator.

Base address + 2, Interrupt Identification register

When an interrupt arrives, this register can be read to indicate what
kind of interrupt it is.

If this register is written, it is called the FIFO Control register and is
used to program the FIFO registers. Bits 6 and 7 of this register
program the trigger level for the FIFO receive interrupt to be 1, 4, 8 or
14 bytes.

142 Line disciplines and serial device drivers

Base address + 3, Line Control register

This register is used to set the format of asynchronous communica
tions, including parity generation and checking, word length and the
number of stop bits.

Base address + 4, Modem Control register

This register controls the handshaking with the modem, including
the Request to Send (RTS) and Data Terminal Ready (DTR) signals.

Base address + 5, Line Status register

This is the status register, and includes bits which indicate framing
errors, parity errors and overrun errors.

Base address + 6, Modem Status register

This register indicates the status of the control lines from the modem,
including Carrier Detect, Data Set Ready (DSR) and Clear to Send
(CSR) signals.

Offset 7, Scratch register

This register is not used by the chip and is available as a scratch
register for the Operating System to use.

Here is the complete serial device driver. It controls a single I/O
port at base address Ox3f8. Its operation is summarized in Figure 5.12.
If you want to test the device driver, deconfigure the existing sio
driver from the kernel as follows:

$./configure -d -Y -m MAJOR -c

First, the header file .. extt. h":

/*
* src/extt.h

* Register definitions for UART at Ox3f8.

* Copyright (c) Peter Kettle and Steve Statler, 1992
*/

/*
* UART registers
*/

#define
#define

RBASE
RTDATA

Ox3f8
(RBASE + 0) /* Transmitter holding

reg (W) */

Task-time

XXpoll-time

Interrupt-time

XXread calls I_read

XXintr at software
priority level 7

To user space

From hardware

From user space

To hardware

Figure 5.12 A high performance serial device driver.

XXwrite calls I_write,
I_write calls ttxput(K)

XXpoll calls XXclock at
software priority level 5,
Xxclock calls I_output

XXclock calls XXgetch

XXclock calls XXstart.
XXproc calls XXstart at task-time.
XXintr calls XXstart at software

priority level 7

~
;::s

~
~
~
f.Il
~
"""t

§:

~
R'
l':l...
"""t

~.

~
~
~

144 Line disciplines and serial device drivers

#define RRDATA RTDATA /* Receiver holding
reg (R) */

#define RLSBLAT RTDATA /* LSB of Divisor
latch (W) */

#define RIENABL (RBASE + 1) /* Interrupt enable
reg (W) */

#define RMSBLAT RIENABL /* MSB of Divisor
latch (W) */

#define RIIREG (RBASE + 2) /* Interrupt
identification reg (R) */

#define RFCNTRL (RBASE + 2) /* FIFO control
register (W) */

#define RLCNTRL (RBASE + 3) /* Line control
reg (W) */

#define RMCNTRL (RBASE + 4) /* Modem control reg (W) */
#define RSTATUS (RBASE + 5) /* Line status reg (R) */
#define RMODEM (RBASE + 6) /* Modem status reg (R) */
/*
* Bits in Interrupt enable reg
*/

#define ERxEINT OxOl /* Enable receive intrs */
#define ETxEINT Ox02 /* Enable transmit intrs */
#define ERxSTAT Ox04 /* Enable receive line

status intrs */
#define EMoEINT Ox08 /* Enable modem

interrupts */

/*
* Bits in Interrupt identification reg
*/

#define INOINTP OxOl /* No interrupt pending */
#define ITxINTR Ox02 /* Transmitter intr */
#define IRxINTR Ox04 /* Receive intr */
#define IRxERRO Ox06 /* Receive error intr */
/*

* Bits in Line control reg
*/

#define CCHAR8 Ox03 /* 8 bit character */
#define C2STOP Ox04 /* 2 stop bits if set,

else 1 */
#define CPARON Ox08 /* Enable parity */
#define CEVENP OxlO /* Even parity */
#define CBREAK Ox40 /* Generate a break

condition */
#define CDIVLB Ox80 /* Divisor latch access

bit */
/*

* Bits in Line status reg
*/

#define SRxCHAR OxOl /* Received character */
#define SRxOVER Ox02 /* Overrun error */
#define SPARERR Ox04 /* Parity error */
#define SFRMERR Ox08 /* Framing error */

#define SBRKINT
#define STxEMPT

/*

Ox10
Ox20

An example serial device driver 145

/* Break interrupt */
/* Transmitter holding

reg is empty */

* Bits in Modem control reg
*/

#define MCRDTR
#define MCRRTS
#define MCRBIT2
#define MCRBIT3

Ox01
Ox02
Ox04
Ox08

/* Data Terminal Ready */
/* Request To Send */

/* Interrupt control for
8250 level 4 */

#define LOBYTE(x) ((x) & Oxff)
#define HIBYTE(x) (((x) » 8) & Oxff)

/*
* How many serial ports
*/

#define NEXTT 1

/*
* Intermediate buffers between XXintr() and XXpoll()

* q_rxbuf[] and q_erbuf[] contain received characters
and corresponding error values (from RSTATUS), and
behave as circular lists indexed by q_rxtsrt (front)
and q_rxend (end).

q_txbuf[] contains characters waiting to be output.
*/

#define NQCHRS32
struct extt_queue {

char q_rxbuf[NQCHRS]i
char q_erbuf[NQCHRS]i
int q_rxstrt, q_rxendi
char q_txbuf[NQCHRS];
int q_txstrt, q_txend;

extt_queue[NEXTT]i
#define QDELAY Ox100

/* Received characters */
/* Received errors */

/* Output characters */

And finally, the device driver itself:

/*
* src/extt.c

* An example serial device driver.

* Copyright (c) Peter Kettle and Steve Statler, 1992

* This driver defers clist processing to XXpoll(), in a
* similar way to scots sio.c

* Supports a single UART port at Ox3f8 to Ox3ff. Modem
* control is not shown.

146 Line disciplines and serial device drivers

*
* ./configure -a exttinit exttopen exttclose exttread

exttwrite exttioctl exttpoll exttintr -1 7 -v 4 -T 1 -I
* 3f8 3ff -c -m MAJOR
*/

#include (sys/types.h)
#include (sys/param.h)
#include (sys/conf.h)
#include (sys/dir.h)
#include (sys/file.h)
#include (sys/user.h)
#include (sys/termio.h)
#include (sys/tty.h)
#include (sys/errno.h)
#include (sys/cmn_err.h)
#include lIextt.h"

int exttopen(), exttclose(), exttread(), exttwrite(),
exttioctl();
void exttintr();

/*
* exttbauds[] are used as divisors of the UART's
* clock frequency.
*/

unsigned short exttbauds[] = {

} ;

/*

OxOO,
Ox900,
Ox600,
Ox417 ,
Ox359,
Ox300,
Ox240,
Ox180,
OxOcO,
Ox060,
Ox040,
Ox030,
Ox018,
OxOOc,
Ox006,
Ox003

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

50 baud */
75 baud */
110 baud */
134 baud */
150 baud */
200 baud */
300 baud */
600 baud */
1200 baud */
1800 baud */
2400 baud */
4800 baud */
9600 baud */
19200 baud */
38400 baud */

* The tty structure for the single (NEXTT) serial port.
*/

struct tty extt_tty[NEXTT];

/*
* Synchronize exttintr() and exttpoll(). Set exttwork if
* there is work for exttpoll() to do.
*/

int exttwork = 0;

An example serial device driver 147

/*
* Synchronize exttpoll() and exttclock(). Set exttblock
* whenever we are inside exttclock().
*/

int exttblock = 0;

/*
* exttini t ()

* Announce our presence with printcfg(K) .
*/

exttinit ()
{

printcfg(lIserial lJ
, Ox3f8, 7, 4, -1,

lIunit=O type=EXTT nports=II1);

/*
* exttpini t ()

* Initialize a port.
* Turn off interrupts and disable any FIFOs.
*
* Called from exttopen() .
*/

exttpinit(udev)

/*

int udev;

outb(RIENABL, 0);
inb (RRDATA) ;
inb (RSTATUS) ;
inb (RMODEM) ;
outb(RMCNTRL, MCRDTR I MCRRTS I MCRBIT3);
outb(RFCNTRL, 0);

* exttopen ()

* Open the device and set the initial state of the serial
* card, including baud rate and parity
*/

exttopen(dev, flags, id)
dev_t dey;
int flags, id;

register struct tty *tp;
struct extt_queue *qp;
int s, udev, exttproc();

udev = UNMODEM(dev);
tp &extt_tty[udevJ;
qp = &extt_queue[udevJ;

148 Line disciplines and serial device drivers

/*

if «tp->t_Iflag & XCLUDE)
&& (tp->t_state & (ISOPEN 1 WOPEN))
& & (suser () == 0)) {
seterror (EBUSY) ;
return;

if «tp->t_state & (ISOPEN 1 WOPEN)) 0) {
qp->q_rxstrt = qp->q_rxend = 0;
tp->t_proc = exttproc;
tp->t_xstate 1= EXTDLY;
exttpinit(udev) ;
ttinit (tp) ;
tp->t_cflag 1= CLOCALi
exttparam(udev) i

tp->t_state 1= CARR_ON;
outb(RMCNTRL, MCRBIT3 1 MCRDTR 1 MCRRTS);
s = spl7 () i
(*linesw[tp->t_Iine] . I_open) (tp);
splx(s);

* exttclose ()

* Close the device.

* Most of the work is done by the line discipline. We just
* turn off all interrupts.
*/

exttclose(dev)
dev_t dev;

/*

register struct tty *tPi
int Si
dev = UNMODEM(dev);
tp = &extt_tty[dev];
(*linesw[tp->t_Iine] . I_close) (tp);
outb(RIENABL, 0);
tp->t_state &= -(CARR_ONIWOPEN)i
tp->t_cflag &= -CLOCAL;

* exttread ()

* Call the line discipline to return data to the user.
*/

exttread(dev)
dev_t dev;

register struct tty *tPi

/*

An example serial device driver 149

tp = &extt_tty[UNMODEM(dev)];
(*linesw[tp->t_line] . i_read) (tp);

* exttwri te ()

* Call the line discipline to read data from the user.
*/

exttwrite(dev)

/*

dev_t dev;

register struct tty *tp;
tp = &extt_tty[UNMODEM(dev)];
(*linesw[tp->t_line].l_write) (tp);

* exttparam ()

* Called from exttopen() and exttioctl() to change the
* state of the line.
*/

static
exttparam(udev)

int udev;

register struct tty *tp;
int flags, intr = 0, lctrl 0, s;
tp = &extt_tty[udevJ;
flags = tp->t_cflag;

/*
* Set up the Line control reg
*/

if (flags & PARENB) {

lctrl 1= CPARON;
if ((flags & PARODD)

lctrl 1= CEVENP;

/* Turn on parity */
0) {
/* Even parity */

lctrl 1= (flags & CSIZE) »4; /* Character size */
if (flags & CSTOPB) {

lctrl 1= C2STOP; /* 2 stop bits */

/*
* Now write out the baud rate and Line control
*/

s = sp17 () ;
intr = inb(RIENABL) & EMoEINT;

150 Line disciplines and serial device drivers

/*

outb(RLCNTRL, CDIVLB); /* Divisor latch */
outb(RLSBLAT, LOBYTE(exttbauds[flags&CBAUD)));
outb(RMSBLAT, HIBYTE(exttbauds[flags&CBAUD)));
outb(RLCNTRL, (char)lctrl);

/*
* Finally, allow the device to interrupt
*/

intr 1= ETxEINT;
if (flags & CREAD)

intr 1= (ERxEINTIERxSTAT);

outb(RIENABL, (char)intr);
splx(s);

* exttioctl ()

* Call general purpose ttiocom(), and then exttparam()
* if the hardware must change too.
*/

exttioctl(dev, cmd, arg, mode)

/*

dev_t dev;
int cmd, mode;
caddr_t arg;

register struct tty *tp;
dev = UNMODEM(dev);
tp = &extt_tty[dev);
if (ttiocom(tp, cmd, arg, mode)) {

if (tp->t_cflag & CLOCAL) {
tp->t_state 1= CARR_ON;

}
exttparam(dev)i

* exttintr ()
*

Determine whether this is a receive or transmit
* interrupt, and behave accordingly.
*

o For receive, add the received character and error
status to q_rxbuf[], doing X-Off processing as
necessary.

o For transmit, call exttstart() to outb() the next
character from q_wxbuf[).

* NOTE THAT WE CANNOT CALL THE LINE DISCIPLINE OR ACCESS
* t_rbuf OR t_tbuf AS WE ARE AT SPL7().
*/

An example serial device driver 151

void
exttintr(irq)

int irq;

register struct tty *tp;
register int iir;
unsigned char rxchar, status;
struct extt_queue *qp;
int udev;

if (irq == 4){

udev = 0;
else {

cmn_err(CE_WARN, "Stray interrupt from IRQ %d",
irq);

return;

tp &extt_tty[udev);
qp = &extt_queue[udev);

/*
* Tell XXpoll() that there is some
* work to do
*/

exttwork = 1;

/*
* Find out why we were interrupted, and then loop
* dealing with all pending interrupts
*/

iir = inb(RIIREG);

do {
iir &= (ITxINTR I IRxINTR);

if (iir & IRxINTR) {

/*
* This is a receive interrupt. Get the
* character and the status from the hardware.

* Do X-Off processing here, then transfer
* the character(s) onto q_rxbuf.

* We have .already set exttwork so that
* XXpoll() will move data from q_rxbuf
* to t_rbuf.
*/

status inb(RSTATUS);
rxchar inb(RRDATA);

/*
Check that there is room in q_rxbuf.

*/

152 Line disciplines and serial device drivers

/*

if (((qp->q_rxend + 1) % NQCHRS) !=
qp->q_rxstrt) {

unsigned xchar = rxchar & ((tp->t_iflag
& ISTRIP) ?
Ox7f : Oxff);

if ((xchar == CSTOP)
&& (tp->t_iflag&IXON)
&& ((tp->t_state & TTSTOP) 0» {
(*tp->t_proc) (tp, T_SUSPEND);

else {
qp->q_rxbuf[qp->q_rxend] = rxchar;
qp->q_erbuf[qp->q_rxend] = status;
qp->q_rxend++;
qp->q_rxend %= NQCHRS;

/*
* If STxEMPT is set, (transmitter holding
* register empty), set iir to ITxINTR so that
* it will appear that we have a transmit
* interrupt as well as this receive
* interrupt.
*/

if (status & STxEMPT)
iir = ITxINTRi

else {
continue;

if (iir & ITxINTR) {

/*
* Transmit interrupt. Call exttstart() to
* output the next character from q_txbuf.
*/

exttstart(udev);

while (((iir = inb(RIIREG» & INOINTP) == 0);

/*
* This inb() is required to fix a peculiar glitch
* on some cards.
*/

inb (RSTATUS) ;

* exttproc()

* Respond to requests from exttintr(), exttclock(), and
* the line discipline.

An example serial device driver 153

* Set udev = tp - extt_tty to determine which line we've
been called to service.

*/
exttproc(tp, cmd)

register struct tty *tp;
int cmd;

extern int ttrstrt();
struct extt_queue *qp;
int udev, s;

udev = tp - extt_tty;
switch (cmd) {

case T_OUTPUT:

/*
* Send more data to the device. Set exttwork to
* be picked up by XXpoll() then return.
*/

exttwork = 1;
break;

case T_SUSPEND:

/*
* We've received an X-Off.
*/

tp->t_state 1= TTSTOP;
break;

case T_RESUME:

/*
* We've received an X-On
*/

s = sp17 () ;
tp->t_state &= -TTSTOP;
exttwork = 1;
exttstart(udev) ;
splx(s);
break;

case T_BREAK:

/*
* Send a hardware break and then tirneout(K) for
* .25 second
*/

s = sp17 () ;
tp->t_state 1= TIMEOUT;
outb (RLCNTRL, inb (RLCNTRL) 1 CBREAK);
splx(s);
timeout (ttrstrt, (caddr_t)tp, HZ/4);
break;

154 Line disciplines and serial device drivers

case T_TIME:

/*
* The hardware break initiated by T_BREAK has
* expired, so clear the CBREAK bit from the
* line control register.
*/

s = spl7 () ;
outb (RLCNTRL , inb (RLCNTRL) & -CBREAK);
tp->t_state &= -TIMEOUT;
exttstart(udev) ;
splx(s) ;
break;

case T_WFLUSH:

/*
* Throwaway the contents of t_tbuf, then call
* I_output to empty t~outq into t_tbuf.
*/

qp = &extt_queue[udevJ;
if (tp->t_tbuf.c_ptr) {

tp->t_tbuf.c_ptr -= tp~>t_tbuf.c_size -
tp->t_tbuf.c_count;

(*linesw[tp->t_IineJ.I_output) (tp);
s = spl7 () ;
qp->q_txstrt = qp->q_txend;
tp->t_state &= -TTSTOP;
exttstart(udev) ;
splx(s) ;
break;

case T_RFLUSH:

/*
* Flush the device's input buffer.
* If input is blocked, unblock it by falling
* through this case into T_UNBLOCK
*/

qp = &extt_queue[udevJ ;
s = spl7 () ;
qp->q_rxstrt = qp->q_rxend;
splx(s) ;
if ((tp->t_state & TBLOCK) == 0) {

break;
} /* else fall through to T_UNBLOCK */

case T_UNBLOCK:

/*
* Called from I_input when t_rawq falls below
* its low water mark. Call exttstart() to
* send an X-On down the line.
*/

/*

An example serial device driver 155

s=spl7 () ;
tp->t_state &= -(TBLOCKITTXOFF);
tp->t_state 1= TTXON;
exttstart(udev) ;
splx(s);
break;

case T_BLOCK:

/*
* Called from I_input when t_rawq goes above
* its high water mark. Call exttstart() to
* send an X-Off down the line.
*/

s=spl7 () ;
tp->t_state &= -TTXON;
tp->t_state 1= (TBLOCKITTXOFF);
exttstart(udev) ;
splx(s);
break;

case T_PARM:

exttparam(udev) ;
break;

default:
break;

* exttstart ()

* Called at spl7() from XXintr(), XXproc(), and XXclock()
* to start output on the device.

* The port parameter is an UNMODEM'd minor device number.
*/

exttstart(port)
int port;

register struct tty *tp;
struct extt_queue *qp;
char txchar;
tp &extt_tty[portJ;
qp = &extt_queue[portJ;

/*
* If we are blocked or waiting for a timeout(K)
* to expire, return immediately
*/

if (tp->t_state & (TIMEOUTITTSTOP))

return;

156 Line disciplines and serial device drivers

/*
* If we should be responding to X-On X-Off
* on input ...
*/

if (tp->t_iflag & IXOFF)

/*

/*
* •.. and XXproc() has asked us to send
* an X-Off, send a CSTOP to the device.
*/

if ((tp->t_state & TTXOFF)

/*

1 1 (tp->t_state & TBLOCK»
tp->t_state 1= BUSY;
tp->t_state &= -TTXOFF;
outb(RTDATA, eSTOP);
inb (RSTATUS) ;
return;

else {
tp->t_state &= -TTXOFF;

* ... and XXproc() has asked us to send
* an X-On, send a eSTART to the device.
*/

if ((tp->t_state & TBLOCK)
II (tp->t_state & TTXON»
tp->t_state 1= BUSY;
tp->t_state &= -TTXON;
outb(RTDATA, eSTART);
inb (RSTATUS) ;
return;

else {
tp->t_state &= -TTXON;

* Get the next character from q_txbuf, and send
* it to the device.
*/

if (qp->q_txstrt == qp->q_txend)
tp->t_state &= -BUSY;
if (tp->t_state & TTIOW) {

tp->t_state &= -TTIOW;
exttwork = 1;

return;

txchar = qp->q_txbuf[qp->q_txstrt++l;
qp->q_txstrt %= NQCHRS;

/*

An example serial device driver 157

/*
* We have a character in txchar to send to the
* device. Check for output delay processing.
*/

if (txchar & QDELAY) {

/*

tp->t_state 1= TIMEOUT;
timeout (ttrstrt, (caddr_t)tp, (txchar & Ox7f) +

HZ/IO) ;
return;

* Output txchar, and then return
*/

outb(RTDATA, (char)txchar);
tp->t_state 1= BUSY;
inb (RSTATUS) ;

* exttpoll ()

* Called at spI6() by the clock interrupt routine. If the
* system was NOT already at spI5() or higher when the clock
* ticked, and there is something for us to do (exttwork is
* not 0), call exttclock().
*/

exttpoll(ps)
int pSi

int s;

if (ps >= 5)

return;

if (exttblock)

/*
* We are already in exttclock at spI5()
* from a previous exttpoll(), so don't
* go there again on this clock tick.
*/

return;

if (exttwork)

/*
* We are allowed to spI5() because we know that
* the system was at LESS than spI5() before the
* clock tick.
*/

158 Line disciplines and serial device drivers

/*

exttwork = 0;
exttblock++;
s=sp15();
exttclock();
splx(s) ;
exttblock = 0;

* exttclock ()

* Called at sp15() from XXpoll() whenever there is any work
* to do:

o For receive, transfer characters from q_rxbuf to
t_rbuf, and then to t_rawq, handling all errors
and also X-On.

o For transmit, transfer characters from t_tbuf to
q_txbuf, and then call exttstart().

*/
exttclock ()
{

register struct tty *tp;
struct extt_queue *qp;
int flg, i, c, status, s, lcnt, qlen, rflag, xflag;
char lbuf[3J;

for (i = 0; i < NEXTT; i++)

tp &extt_tty[iJ;
qp = &extt_queue[il;

/*
* Deal with input first of all. Transfer
* characters from q_rxbuf to t_rbuf (if there's
* space), and then call l_input to move them onto
* t_rawq.

Set rflag as soon as we know there is some
* data.
*/

rflag = 0;
while (qp->q_rxstrt != qp->q_rxend) {

if (tp->t_rbuf.c_ptr == NULL)

break;

rflag = 1;
c = qp->q_rxbuf[qp->q_rxstrtl;
status = qp->q_erbuf[qp->q_rxstrtl;
lcnt = 1;
if (tp->t_iflag & IXON) {

if (tp->t_state & TTSTOP)

An example serial device driver 159

if «e == CSTART)
I I (tp->t_iflag & lXANY))

}
else

if (e == eSTOP)
(*tp->t_proe) (tp, T_SUSPEND);

if «(e == CSTART) I I (e == CSTOP)) {
goto out;

fIg = tp->t_iflag;
if ((fIg & INPCK) == 0)

status &= -SPARERR;

if (status & (SRxOVER I SPARERR I SFRMERR I
SBRKINT)) {

if (status & SBRKINT) {
if (fIg & IGNBRK) {

goto out;

if (fIg & BRKINT)
(*linesw[tp->t_Iine] . I_input)
(tp, L_BREAK);

goto out;

e = 0;
else {

if (fIg & IGNPAR)
goto out;

if (fIg & PARMRK)
Ibuf[2] = Oxff;
lbuf[1] = 0;
lent = 3;

else {
e = 0;

}
else

if (fIg & ISTRIP)
e &= Ox7f;

else {
e &= Oxff;

160 Line disciplines and serial device drivers

out:

}

if ((c == Oxff) && (fIg & PARMRK))
Ibuf[l] = Oxff;
lcnt = 2;

} /* if (status & ••• */
Ibuf[O] = c;
while (lent) {

*tp->t_rbuf.c_ptr++ = Ibuf[--lent];
if (--tp->t_rbuf.c_count == 0) {

tp->t_rbuf.c_ptr -=
tp->t_rbuf.c_size;

(*linesw[tp->t_line) . I_input) (tp,
L_BUF) ;

if (qp->q_rxstrt == qp->q_rxend)
break;

qp->q_rxstrt++;
qp->q_rxstrt %= NQCHRS;

} /* while */
if (rflag) {

/*

if (tp->t_rbuf.c_count != tp->t_rbuf.c_size)
tp->t_rbuf.c_ptr -= tp->t_rbuf.c_size -

tp->t_rbuf.c_count;
(*linesw[tp->t_line).l_input)

(tp, L_BUF);

* Now deal with output. Determine how much space
* there is in g_txbuf, and then transfer that
* many characters from t_outg, via calls to
* exttgettch.
*/

if (tp->t_state & BUSY) {
continue;

xflag = 0;
if ((glen = (qp->q_txstrt -

qp->q_txend - 1)) < 0)
glen += NQCHRS;

while (--qlen >= 0) {
if ((c = exttgettch(tp)) < 0) {

break;

/*

An example serial device driver 161

xflag = 1;
if ((c == QESC) && (tp->t_oflag & OPOST))

if ((c = exttgettch(tp)) > QESC) {

c 1= QDELAY;
else {

if (c < 0) {

break;

qp->q_txbuf[qp->q_txend++l = c;
qp->q_txend %= NQCHRS;

} /* while */

if (xflag) {

}

tp->t_state 1= BUSY;
s = sp17();
exttstart (i) ;
splx(s) ;

} /* for */

* exttgettch ()

* Called at spIS() by exttclock() to get the next
* character from t_tbuf.

* Return -1 if there are no characters present.
*/

exttgettch(tp)
register struct tty *tp;

register struct ccblock *tbuf = &tp->t_tbuf;

if ((tbuf->c_ptr == NULL)
II (tbuf->c_count == 0)) {

if (tbuf->c_ptr) {

tbuf->c_ptr -= tbuf->c_size;

if (((*linesw[tp->t_Iinel . I_output) (tp) & CPRES)
== 0) {

return (-1) ;

tbuf->c_count--;
return(*(unsigned char *)tbuf->c_ptr++);

162 Line disciplines and serial device drivers

5.8 Summary

We began this chapter by stating that serial device drivers are the
most difficult of all device driver types to understand. We have
presented a detailed explanation of SeQ's line discipline 0, and we
have shown how this can be used by a real serial device driver for a
dumb serial card.

The principles that we have described in this chapter are applicable
to all serial device drivers, and you should now have at least a
conceptual understanding of how they might work.

QUIZ

5.1 How many separate clists are there for each line sup
ported by a serial device driver?

5.2 What is the name of the kernel support routine that does
task-time processing of t_rawq?

5.3 What are the names of the routines that add and remove
characters to and from clists?

5.4 What is the name of the routine in line discipline 0 that is
called at XXpoll-time to transfer data from t_rbuf onto
t_rawq?

5.5 What should the line discipline do if t_rawq fills up?

5.6 If the carriage return character requires an output delay of
five clock ticks, how would ttxput(K) encode this informa
tion in t_outq?

5.7 What should the XXproc routine do when it is called with
T_UNBLOCK?

5.8 In the example serial device driver presented in Section
5.7, why can't XXintr access the input and output ccblocks
directly?

Exercise 163

5.9 How should you add a new line discipline to the kernel?

5.10 Can you think of any additional benefits of having buffers
between XXintr and the ccblocks when using an NS16550
chip?

EXERCISE

The mouse device driver from Chapters 3 and 4 does not have any
buffering between the hardware and the user. This means that indi
vidual mouse movements could be lost if the user process does not
read the device often enough or quickly enough. This problem can be
solved by storing individual mouse movements, so that the user
process can track the exact movement of a mouse. This might be
useful in a drawing application, for example.

Write a simple line discipline that manages an event queue.
The event queue will be a linked list of structures which will

contain a record of the mouse's movement and buttons, each time the
mouse changes state.

Here are some hints:

• Your line discipline should have four routines called I_open,
I_close, I_input and I_read.

• Your I_open routine will be called from XXopen to initialize a freelist
of mouse event structures. Decide how many event structures to
have. A suitable structure would be as follows:

struct bmevent {
struct bmevent *next;
struct bmouse bmouse;

} ;

• Declare anchors for the freelist and the event queue.

• Your I_close routine will be called from XXclose and should clear
the event queue by returning all the event structures to the freelist.

• Your I_input routine will be called from XXintr to add an event
structure to the event queue. It should remove a structure from the
freelist, copy the mouse data into the structure, and then add the
structure to the event queue.

164 Line disciplines and serial device drivers

• Your I_read routine will be called from XXread to remove the next
event structure from the event queue, copy the data to the user,
and then return the structure to the freelist.

• Remember to protect the event queue from mouse interrupts.

• Add sleep (K) and wakeup (K) calls to the line discipline so that the
user process- goes to sleep if the event queue is empty. Wake up the
user process when another event arrives on the event queue.

• Decide what to do when the freelist is empty and another mouse
event arrives from XXintr.

• Modify your mouse device driver from Chapter 4 to use your line
discipline. Make sure that the line discipline number to be used is
made available in your device driver.

• Modify idaddld(ADM) to recognize $ROOT, and add details of your
line discipline to pack.d/kernel/space.c. Alternatively, use vi(C)
to edit space. c and add the appropriate information by hand.

Test your device driver and line discipline using mouse and mousey,
which should not require any modifications.

A suggested answer is given in I Answers to Exercises'.

NOTES

1. The default value is 120 on SCQ UNIX release 3.2v4.

2. The switch character is used by SCQ's Shell Layers.

3. The suspend, start and stop characters are used for PQSIX Job Control.

4. The echoed character is another backspace if a backspace has been
received, or a newline if a line kill character has been received.

5. Characters that do not have values higher than QESC are treated as
normal characters.

STREAMS

6.1 Overview

In this chapter we shall look at STREAMS. The Stream Input-Output
System was first described by Dennis Ritchie in the AT&T Bell Laborat
ories Technical Journal Volume 63, Number 8, October 1984. Additional
background information for this chapter has been drawn from The
AT&T STREAMS Primer and The AT&T STREAMS Programmer's
Guide.

Ritchie developed STREAMS to address two separate issues:

• There was no existing mechanism in the UNIX kernel to facilitate
the separation of network protocols into functionally distinct layers
(for example, TCP/IP, or the OSI 7-layer model).

• The traditional line discipline solution to character-based 110 was
becoming unwieldy and too slow for certain applications. More
significantly, it was becoming more difficult to understand and
consequently more difficult to maintain and modify (see
Chapter 5).

STREAMS first appeared in a commercial product in AT&T's
System V Release 3.0 in 1986. It has been available for SCO XENIX
and SCO UNIX since 1988 and has been used to implement many of
SCO's networking products, including TCP/IP. At present, serial
device drivers continue to use the clist-based line discipline 0 to
support character I/O, as described in Chapter 5.

In the exercise at the end of this chapter, we shall convert the
mouse driver to a Stream driver.

165

166 STREAMS

6.2 What is a Stream?

We shall begin by introducing some of the concepts and terminology
of STREAMS. A Stream is a flexible character-based full-duplex com
munications path that links a user process to a device driver. The
simplest Stream has a Stream head which is next to the user, and a
Stream driver which controls the hardware. The connection between
the Stream head and the Stream driver is established automatically
when the device is first opened, and a user process can make open (S),
close(S), read(S), write(S) and ioctl(S) system calls in exactly the
same way as for ordinary character device drivers. STREAMS sup
ports three additional system calls getmsg(S), putmsg(S) and poll (S),
which are described later in this chapter.

Data is passed through a Stream in a structure called a message,
which is the basic data type used by a Stream. Messages awaiting
processing are buffered into message queues, similar to clists, which
include high and low water marks for use by the STREAMS flow
control, discussed in Section 6.5.1. A message contains a description
of the message type and any data associated with the message. For
example, messages containing data from a write (S) system call are of
type M_DATA.

A message is constructed from one or more message blocks, and is
passed downstream from the Stream head towards the Stream driver,
or upstream from the Stream driver towards the Stream head. The
downstream and upstream flows of messages are completely inde
pendent of each other, so that STREAMS can be full-duplex mechan
isms. Figure 6.1 shows the basic architecture of a simple Stream
configuration.

A more complex configuration can have one or more Stream mod
ules between the Stream head and the Stream driver, to carry out
intermediate processing of the messages. For example, SCO TCP/IP
implements the TCP and IP protocol layers in separate Stream mod
ules, with several Stream drivers (Western Digital Ethernet, 3COM
Ethernet, IBM Token Ring, and others) multiplexed onto the bottom
of the IP Stream module (see Section 6.7). Figure 6.2 shows an
example Stream configuration including some Stream modules.

A Stream module consists of two QUEUEs, which are responsible
for processing the respective downstream and upstream messages as
they pass through the module. Stream modules are linked into a
Stream at run time in response to special ioctl (S) system calls to
push or pop Stream modules onto the Stream, which grows upwards
from the Stream driver towards the Stream head. Modules that are
linked in this way are said to be adjacent to each other.

What is a Stream? 167

User spa ce User process

Kernel spa ce Stream head

"
Downstream Upstream

if

Stream driver

,

Device

Figure 6.1 A simple Stream configuration.

U serspace User process

Ke rnel space Stream head

"
If

TCP Stream module

"

'"

IP Stream module

,
I I

Ethernet Token Ring
Stream driver Stream driver

" '"
1 ,

Ethernet device Token Ring device

Figure 6.2 A multiplexed Stream configuration.

168 STREAMS

A Stream driver has the same job as any other UNIX device driver -
it provides a uniform interface between the kernel and the hardware.
The major differences between a Stream driver and a regular charac
ter device driver are the kernel interface and the manner in which
data is manipulated. For example, a Stream driver does not have an
XXread routine, and the XXwrite routine has been replaced with an
xxput routine, called from upstream to receive a message. A Stream
driver passes messages upstream by calling the upstream XXput
routine of the appropriate Stream module (or the Stream head).

In the remainder of this chapter, we shall indicate downstream
routine names, such as XXput, by writing xXwput (the w indicates
write), and upstream routine names by writingxxrput (the r indicates
read).

6.2.1 A Stream head

A Stream head provides the interface between the user process and
the Stream in kernel space. The Stream head converts data from
write(S), putmsg(S) and ioctl(S) system calls into messages, which
are sent to a downstream module by calling the appropriate xxwput
routine. Messages which have travelled upstream to arrive at the
Stream head are made available to read (S), getmsg (S) and ioctl (S)

system calls.
A Stream head is allocated and initialized by the kernel on the first

open(S) system call of the device, and requires no further attention
from the STREAMS developer.

6.2.2 A Stream module

A Stream module is pushed into a Stream between a Stream head and
a Stream driver, and consists of an upstream QUEUE artd a down
stream QUEUE which are responsible for manipulating the messages
that pass through the module (see Section 6.4). ~ach QUEUE consists
of a set of routines (for example, xxopen, XXput), information such as
the high and low water marks used fot STREAMS flow control, and
an anchor point for the appropriate message queue.

An upstream QUEUE (or the StreaI11 head) passes messages down
stream by using the putnext macro to call the downstream QUEUE's
xxwput routine:

putnext(q, mp)
queue_t *q;
mblk_t *mp;

What is a Stream? 169

The parameters to putnext are the calling QUEUE and the message to
be passed. These data structures are described in Sections 6.4 and 6.3
respectively.

The downstream QUEUE's xXwput routine should accept the mes
sage and either process it immediately, or defer processing by adding
it to a message queue. Similarly, a downstream QUEUE (or the
Stream driver) passes messages upstream by using the putnext macro
to call the upstream QUEUE's XXrput routine.

If a QUEUE chooses to defer processing until later, the STREAMS
scheduler (see Section 6.5) will invoke the QUEUE's XXservice
routine to complete the processing of the queued message. A typical
XXservice routine will manipulate each message on its message
queue (for example, divide each message into 32-byte packets, add
checksum bytes and allocate some new message blocks for the new
packets) and then pass the new messages either upstream or down
stream with putnext.

Note that when a module is pushed into a Stream, all user pro
cesses which have that Stream open will be affected. This is compar
able to user processes that are sharing a serial line - when anyone of
them makes an ioctl (S) request to change the line characteristics,
they will all be affected.

QUEUEs and flow control are fully described in Sections 6.4 and 6.5
respectively.

6.2.3 A Stream driver

A Stream driver has more or less the same responsibilities as any
other device driver. It must provide a uniform interface to the higher
level parts of the kernel, and therefore hide the complexities of the
underlying hardware from the kernel and user processes. A Stream
driver is merely a special instance of a Stream module.

As for all character device drivers, a Stream driver can have XXinit,
XXopen, XXclose and XXpoll routines. The write interface to a Stream
driver is through the driver's xxwput routine, which is called by the
upstream module (or Stream head) to accept messages.

Stream drivers do not have an ordinary character device driver
XXread interface. When data arrives on the device, the Stream driver's
XXintr routine allocates a message to contain the data and then passes
the message upstream by calling the upstream module's XXrput
routine. The message eventually arrives at the Stream head, where it
can be read by the user process. The STREAMS support software in
the kernel protects itself from interrupts where necessary by making
calls to splS (K) , so Stream drivers should not be configured to run at
sp16 (K) or higher. 1

170 STREAMS

Ioctl (S) system calls pass down the Stream as messages of type
M_IOCTL. Any ioctl (8) that is intended for the Stream driver will
arrive via the Stream driver's xxwput routine, where the message type
will identify it as an ioctl (8) message. The xxwput routine can either
process the message itself or pass it to an optional, private XXioctl
routine. Note that an XXioctl routine is not part of the kernel inter
face, and it should not be specified with the configure (ADM) com
mand.

Finally, a Stream driver can have an XXpol1 routine which behaves
in the same way as for ordinary character drivers (but see the note
regarding splS (K) above). Note that the XXpo11 routine is not related
to the new poll (8) system call, described in Section 6.6.4.

6.3 Messages

A message is described by a triplet of data structures. The head of the
triplet is a structure of type struct msgb, called a message block. The
message block contains a pointer to a second structure of type struct
datab, called a data block. The data block describes the message type
and contains a pointer to a buffer containing the actual data. These
structures are defined in (sys/ stream. h) :

/*
* Message block descriptor
*/

struct msgb {
struct msgb *b_next;

struct msgb *b_prev;

struct msgb *b_cont;

unsigned char *b_rptr;

struct datab *b_datap;
} ;

typedef struct msgb mblk_t;

/*
* Data block descriptor
*/

/* next message on
queue */

/* previous message
on queue */

/* next message
block of message */

/* first unread byte
in buf */

/* first unwritten
byte in buf */

/* data block */

struct datab {
struct datab
unsigned char
unsigned char
unsigned char

} ;

unsigned char
unsigned char

*db_freep;
*db_base;
*db_lim;
db_ref;

db_type;
db_class;

typedef struct datab dblk_t;

Messages 171

/* internal use only */
/* first byte of buf */
/* last byte of buf + 1 */
/* # messages pOinting

to this block */
/* message type */
/* internal use only */

Figure 6.3 shows a simple message of type M_DATA (see below), con
taining 32 bytes of data.

If a Stream module needs to extend a message beyond the original
data buffer, either a new buffer of the correct size can be allocated or
further message blocks describing the additional buffer space can be
attached to the original message block. Whichever method the
module chooses, the final messages are semantically identical. Figure
6.4 shows the same message after it has been extended by an addi
tional eight bytes, using an additional message block attached to
b_cont.

Messages awaiting processing are linked onto a message queue
using additional pointers in the message block at the head of each
message. Figure 6.5 shows two messages on a message queue.

Message block

Data block
Buffer

32 bytes

Figure 6.3 An M_DATA message of 32 bytes.

Message block

b_cont

b_datap
Data block

db_base

db_type
=M_DATA

Message block

b_datap

Buffer

32 bytes

Data block

db_base

db_type
= M_DATA

Buffer

8 bytes

Figure 6.4 An M_DATA message of 40 bytes. The two components of the message are linked on b_cont.

~

tj

en
;;d

~ en

Message queue
header Message block

b_next

b_dat.ap
Data block

db_base

db_type
= M_DATA

Message block

b_datap

Buffer

32 bytes

Data block

db_base

db_type
=M_DATA

Buffer

Figure 6.S Two M_DATA messages on a message queue. The two messages are linked on b_next.

16 bytes

~
C/l

i
...
~

174 STREAMS

At present, there are 24 different message types supported, and
these are divided into two classes called ordinary messages and
priority messages.

6.3.1 Ordinary messages

Ordinary messages are subject to the regular flow control mechan
isms of the Stream, as described in Section 6.5. They are linked onto a
message queue on a FIFO basis, and receive no special priority pro
cessing. The ten different types of ordinary message are M_DATA,
M_PROTO,M_BREAK,M_PASSFP,M_SIG,M_DELAY, M_CTL, M_IOCTL, M_SET OPTS
and M_RSE. The most common types are M_DATA and M_IOCTL:

• M_DATA messages contain ordinary data. For example, a Stream
head would use an M_DATA message to send data downstream from
a write(S) system call.

• M_IOCTL messages are allocated by the Stream head in response to
ioctl (S) system calls. See Section 6.6.5 below.

The remaining ordinary message types are described in Appendix B
of The AT&T STREAMS Programmer's Guide.

6.3.2 Priority messages

Priority messages bypass the regular flow control mechanisms of the
Stream, and are always placed at the front of a message queue, after
any other priority messages that are already present. Figure 6.6
shows a message queue containing priority messages and ordinary
messages.

The 14 different types of priority message are M_IOCACK, M_IOCNAK,
M_PCPROTO, M_PCSIG, M_READ, M_FLUSH, M_STOP, M_START, M_HANGUP,
M_ERROR, M_COPYIN, M_COPYOUT, M_IOCDATA and M_PCRSE. The most com
mon types are M_IOCACK, M_IOCNAK, M_ERROR and M_FLUSH:

• M_IOCACK and M_IOCNAK messages are sent upstream to the Stream
head in response to M_IOCTL messages, as described in Section 6.3.1
above.

An M_IOCACK message indicates positive acknowledgement of a
previous M_IOCTL message, and the Stream head will return a non
negative integer through the ioctl (S), as specified by the ioc_rval
member of the struct iocblk (see Section 6.6.5).

An M_IOCNAK message indicates failure of a previous M_IOCTL
message, and the Stream head will return -1 through the
ioctl(S) .

Messages 175

Message queue
header· ..

M PC PROTO M IOCACK M IOCTL M DATA
(priority) (priority) (ordinary) (ordinary)

Figure 6.6 Priority and ordinary messages.

• M_ERROR messages are sent upstream to the Stream head to report
error conditions from downstream, such as a hardware failure.
When the Stream head receives an M_ERROR message, all sub
sequent system calls on the Stream will fail.

• ~FLUSH messages can originate at the Stream head or in any
module or driver, and request that all recipients flush their mes
sage queues according to the flags specified in the first byte of the
message (FLUSHR to flush the read queue, FLUSHW to flush the write
queue, or FLUSHRW to flush both), and then pass the message to
their neighbour.

A message queue is flushed by discarding all of the messages
that it contains, using the flushq routine.

All modules and Stream drivers which queue messages must
implement support for M_FLUSH messages, as described in
Appendix B of The AT&T STREAMS Programmer's Guide.

The remaining priority message types are described in Appendix B of
The AT&T STREAMS Programmer's Guide.

6.3.3 Message block allocation

Message blocks are allocated by a kernel routine called allocb () :

rnblk_t *
allocb(size, pri)

int size, pri;

The allocb routine returns a pointer to a message block of type
~DATA, with a single data block describing a buffer of at least size
bytes attached, or NULL if no message blocks are available. The pri
parameter indicates the priority of the allocb request, and can

176 STREAMS

have one of three values BPRI_LO, BPRIJ1ED and BPRI_HI (see
(sysj stream. h)). The priority gives an indication of the urgency of the
request:

• A BPRI_LO priority request is normally used by a Stream head to
allocate a message block to contain data from a write (8) or a
putmsg (8) system call. The tunable kernel parameter 8TRLOFRAC2

determines whether or not a request to allocate a BPRI_LO message
will fail. If the number of message blocks already allocated is more
than 8TRLOFRAC per cent of the total number of message blocks
available of a particular size (called a class), allocb tries to allocate a
message block from the next largest class. If this allocation also
fails, allocb returns a NULL pointer. Section 6.7.3 describes what to
do if allocb fails.

• A BPRIJ1ED priority request is the most common request, and is
used for general purpose messages. For example, a Stream driver's
XXintr routine would allocate message blocks at BPRIJ1ED to con
tain data arriving from a device, before sending the message
upstream. The tunable kernel parameter 8TRMEDFRAC3 determines
success or failure in the same way as for BPRI_LO messages.

• A BPRI_HI priority is used for urgent control messages such as
sending an M_ERROR message upstream when the Stream driver
detects hardware failure. Providing that a message block is avail
able, calls to allocb will always succeed.

The interaction of message priorities and the tunable thresholds tries
to ensure that message buffers are always available for BPRI_HI
requests.

Figure 6.7 shows the result of a call to allocb (32, BPRIJ1ED) .
Once the buffer has been allocated, the module should copy data

into mp->b_rptr, and adjust mp->b_wptr by the number of bytes
copied:

if ((mp = allocb(sizeof(buf), BPRIJ1ED) == NULL)

cmn_err(CE_WARN, IICouldn't allocb(%d, BPRIJ1ED)II,
sizeof(buf));

return;

bcopy(&buf, mp->b_rptr, sizeof(buf));
mp->b_wptr += sizeof(buf);

Figure 6.8 shows the data buffer at the end of this operation.
The tunable resources NBLK4 through NBLK4096 determine the num

ber of message blocks, data blocks and buffers in each class. The

Messages 177

Message block
mp ...

b_rptr

b_wptr
Data block

b_datap ...
Buffer

db_base ...

db_type

= M_DATA

32 bytes

~

Figure 6.7 The result of calling allocb (32, BPRI-MED).

strstat option of the crash (ADM) utility reports how many buffers of
each size are allocated. The column headed FAIL indicates how many
times allocb has had to allocate a buffer from the next largest class,
and is an indication that STREAMS may need retuning.

Message block
mp --... r------,

Data block

Buffer

32 bytes

Figure 6.8 After copying 32 bytes and adjusting b_wptr.

178 STREJth1S

6.4 QUEUEs and the kernel interface

Each Stream module (including the Stream head and the Stream
driver) consists of two QUEUEs. which are responsible for processing
the downstream and upstream messages ~hat pass through a module.
A QUEUE has four principal components:

• One or more routines to procesS-the messages. A QUEUE must
have at least an XXput routin~ that can be called to accept messages
from other modules. It may also have an XXservice routine to carry
out some or all of the message processing.

Additional, private routines can also "be provided for local use by
the XXput and XXservice routines. For example, an XXioctl routine.

• A set of QUEUE attributes, including high and low water marks for
the message queue.

• A message queue, containing the messages that are waiting to be
processed by the QUEUE.

• Private data, used to manage the state of the module and the
QUEUE. For example, a state transition look-up table.

6.4.1 The QUEUE structure

A QUEUE is defined by a struct queue (see (sys/stream.h)):

/*
* The QUEUE structure
*/

struct queue {

} ;

struct qinit *q_qinfo; /* routines a~d limits
for QUEUE */

struct msgb
struct msgb
struct queue
struct queue

q_first; / head of message queue */
q_last; / tail of message queue */
q_next; / next QUEUE in Stream */
q_link; / to next QUEUE (for

caddr_t q_ptr;
ushort q_count;
ushort q_flag;
short q-Illinpsz;

short q -Illaxps z ;

ushort q_hiwat;
ushort q_lowat;

/*
/*
/*
/*

/*

/*
/*

scheduling) */
to private data structure */
number of blocks on QUEUE */
QUEUE state */
min packet size
accepted by this module */
max packet size
accepted by this module */
message queue high water mark */
message queue low water mark */

typedef struct queue queue_t;

I

QUEUEs and the kernel interface 179

Each module (including the Stream head and the Stream driver)
has two QUEUES allocated automatically when the module is first
opened.4

6.4.2 The kernel 'interface

The kernel interface to a Stream module (and therefore a Stream
driver) is via the routines described by the struct qini t *q_info
member of each QUEUE. A struct qinit defines the XXput,
XXservice, XXopen, XXclose and XXadmin routines for the QUEUE, and
also holds pointers to a struct module_info and an optional struct
module_stat:

/*
* QUEUE information structure
*/

struct qinit {

} ;

/*

int (*qi_putp) (); /* XXput() routine */
int (*qi~srvp) (); /* XXservice() routine */
int (*qi_qopen) (); /* XXopen() routine */
int (*qi_qclose) (); /* XXclose() routine */
int (*qi_qadmin) (); /* for ATT 3bnet only */
struct module_info *qi-ffiinfo; /* module information

structure */
struct module_stat *qi-ffistat; /* module statistics

structure */

* module information structure
*/

struct module_info {
ushort mi_idnum;
char *mi_idname;
short mi-ffiinpsz;
short mi-ffiaxpsz;
ushort mi_hiwat;
ushort mi_lowat;

} ;

struct module_stat {

} ;

long ms_pcnt;
long ms_scnt;

long
long
long
char
short

ms_ocnt;
ms_ccnt;
ms_acnt;
*ms-xptr;
ms_xsize;

/* module id number */
/* module name */
/* min packet size accepted */
/* max packet size accepted */
/* hi-water mark */
/* lo-water mark */

/* counts calls to XXput() */
/* counts calls to

XXservice() */
/* counts calls to XXopen() */
/* counts calls to XXclose() */
/* counts calls to XXadmin() */
/* private statistics buffer */
/* length of private

statistics buffer */

180 STREAMS

I'

f

QUEUE QUEUE QUEUE QUEUE
information information

CLqinfo CLqinfo ~

p p

qi_minfo - qi_minfo -

Module
information

-
""---

JI'

Figure 6.9 A Stream module has two QUEUEs.

Figure 6.9 shows a typical Stream module with two QUEUEs. Note
that the two QUEUEs share the same module information structure,
and also the absence of a module statistics structure.

Figure 6.10 shows the same Stream module with some messages
attached to each of the QUEUEs.

The XXput routine

A QUEUE's XXput routine is always required, and is called via the
putnext macro by another module's QUEUE (or the Stream head or
Stream driver) to receive a message for processing:

xxput(q, mp)
queue_t *qi
mblk_t *mpi

The q parameter identifies the appropriate read or write QUEUE, and
mp points to the message. Any immediate processing that is required
should be performed by the XXput routine. In general, all priority

QUEUE

'Lfirst

'L1ast

QUEUE
information

QUEUEs and the kernel interface 181

QUEUE

'Lqinfo

'Lfirst

'L1ast

Messages

QUEUE
information

Messages

Figure 6.10 Message queues attached to module QUEUEs.

messages (see Section 6.3 above) should be processed immediately
by XXput, and/or passed on to the next module. Ordinary messages
can also be processed by XXput, although the module designer can
provide an XXservice routine so that processing can be deferred.
After processing the message, both the xxput and XXservice routines
should use putnext to pass the message to the adjacent module's
xxput routine.

Therefore, depending on the design of each of the modules in a
Stream, a message can flow all the way from the Stream head to the
Stream driver (and vice versa) as an atomic operation. Figure 6.11
shows a message flowing downstream to a Stream driver via XXput
routines.

There may be times when an XXput routine cannot immediately
process the message. For example, a Stream driver's XXput routine
may have to wait until a device's output buffer empties before it is
able to transmit any more data. A Stream head may be receiving data
from downstream, but there may not be any user processes making
read(S) system calls. In both of these cases, it is clear that the

User process

Stream head

Stream head calls
Stream module's xxput

Stream module

Stream driver

Device

User process

Stream head

Stream module

Stream module calls
Stream driver's XXput

Stream driver

Device

Figure 6.11 A message flowing downstream.

User process

Stream head

Stream module

Stream driver

Stream driver sends
data to hardware

Device

~
00
N

CJ)

;d

~
CJ)

QUEUEs and the kernel interface 183

messages must be queued in some way and the actual processing of
the message must be deferred until later .

If the XXput routine is unable to process the message, it should call
the putq routine to add the message to the QUEUE's own message
queue. The putq routine also enables the corresponding QUEUE by
adding it to the end of the STREAMS scheduling queue (see Section
6.5 below). After a short period, the STREAMS scheduler will call the
QUEUE's XXservice routine to complete the processing.

The XXput routine should return as soon as putq returns.

The XXservice routine

The XXservice routine is responsible for the deferred processing of
messages. An XXservice routine is not mandatory, and the module
designer (or device driver writer) should determine whether to pro
vide an XXservice routine or not. Generally, if it is likely that XXput
may not be able either to start or to complete the processing of a
message, an XXservice routine must be provided.

When a QUEUE is enabled as described above, the STREAMS
scheduler will call the QUEUE's XXservice routine at the next conven
ient opportunity:

XXservice(q)
queue_t *q;

The q parameter identifies the appropriate read or write QUEUE. The
XXservice routine should retrieve the first message from the message
queue using the getq routine, process the message and then pass it
on to the next module, using putnext. XXservice should repeat these
steps until either the queue is empty, or flow control prevents any
more messages being passed to the next module.

It is important to note that XXput and XXservice routines do not
always run in a valid user context. This is a side-effect of the
STREAMS scheduling mechanism, and means that the same care
must be taken as when writing interrupt routines:

• Never access any context-related data, such as the U-area, or any
part of the user's address space.

• Never go to sleep (K) inside an XXput or XXservice routine.

• Always return to the caller.

Flow control is discussed in Section 6.5 below.
The STREAMS loopback driver in Section 6.10 includes an

XXservice routine.

184 STRE~S

The XXopen routine

The XXopen routine is called on every open (S) system call on the
Stream, and also on each push of a Stream module:

XXopen(q, dey, flag, sflag)
queue_t *q;
dev_t dey;
int flag, sflag;

The q parameter always points to the module's read QUEUE. The dey
and flag parameters are the same as for ordinary driver XXopen calls
they contain the major and minor device numbers and a value from
(sys/file.h). If this is an XXopen request on a module, dey and flag
are both zero. The sflag parameter is the Stream open flag, and has
one of three values from (sys/stream.h):

• MODOPEN indicates that this is a normal Stream module open
request.

• 0 indicates that this is a normal Stream driver open request.

• CLONEOPEN indicates that this is a clone driver open request (see
Section 6.7.1).

Modules should return OPENFAIL if the open request does not com
plete successfully.

The STREAMS loopback driver in Section 6.10 includes an XXopen
routine.

The XXclose routine

The XXclose routine is called on the last close (S) system call on the
Stream, and also on each pop of a Stream module:

XXclose(q, flag)
queue_t *q;
int flag;

The flag parameter is the same as for ordinary driver XXclose calls,
unless this is an XXclose request on a module, when it will be zero.

The STREAMS loopback driver in Section 6.10 includes an XXclose
routine.

The XXadmin routine

The XXadmin routine is used only on the AT&T 3b2 computer. It is not
used by sea UNIX.

QUEUEs and the kernel interface 185

The module info structure

The module_info structure contains module identification information
and values used by the flow control mechanism which will be dis
cussed in Section 6.5. The two QUEUEs within a Stream module (or a
Stream driver) share the same module information structure.

The module 10 is used by the STREAMS logging and tracing
subsystems, which are described in Section 6.8. The module 10
should be unique, although this is not necessary for the correct
operation of the module.

The module name is not used currently, but it is recommended that
it should be the same as the prefix used for the streamtab structure
(see Section 6.4.3).

The minimum and maximum packet sizes limit the size of each
message (measured in bytes) passed to the module. These limits are
advisory except for the Stream head, which observes the limits of the
write QUEUE of the adjacent downstream module. The use of these
limits is developer-dependent in all other modules. The value INFPSZ,
defined in (sys/stream.h), indicates that there is no limit.

The high and low water marks are used to implement flow control,
described in Section 6.5, and represent the total amount of space,
measured in bytes, consumed by all of the messages in a message
queue.

The module stat structure

The module_stat structure is optional, and is not used at present by
the sea UNIX kernel. In the future, it will be used to gather Stream
statistics about the module, possibly including message service time.

6.4.3 The streamtab structure

A module's two qini t structures are described by the module's
struct streamtab:

/*
* Streamtab (used in cdevsw and frnodsw to point to module
* or driver)
*/

struct streamtab {
struct qinit
struct qinit
struct qinit
struct qinit

} i

*st_rdiniti
*st_wriniti
*st-Illuxriniti
*st-Illuxwiniti

/* read QUEUE */
/* write QUEUE */
/* rnux read QUEUE */
/ * rnux write QUEUE * /

186 STREAMS

The elements describe the upstream and downstream QUEUEs of a
module, as described in Section 6.4.1 above. The structure should be
declared in the Stream module or Stream driver as follows:

static struct qinit XXrinit = };
static struct qinit XXwinit = };

struct streamtab XXinfo =

} ;

&XXrinit,
&XXwinit,
NULL,
NULL

Depending on whether the streamtab structure is describing a
Stream driver or a module, it will be pointed to by either the d_str
field of the cdevsw table or the f_str field of the frnodsw table (see
(sysjconf .h). These tables are set up from information provided to
the configure (ADM) command when the module or Stream driver is
added to the kernel (see Section 6.9), and are used to access the
module. For example, if a user process opens a character device that
has an entry in the d_str field of cdevsw, the kernel recognizes the
device as a Stream driver and calls the XXopen routine specified in the
upstream qinit structure. It does not call the XXopen routine from the
cdevsw. The operation of the open(S) system call is described in more
detail in Section 6.6.l.

The st-Inuxrinit and st-Inuxwinit fields are described in Section
6.7.

6.5 Flow control and STREAMS scheduling

When an XXput routine decides to defer the processing of messages to
an XXservice routine, a mechanism is required to ensure that the
XXservice routine is called at an appropriate point in the future. It is
also necessary to ensure that an XXput routine cannot overwhelm an
XXservice routine with too many messages to process. In this section,
we shall describe the STREAMS mechanisms that satisfy these two
requirements.

6.5.1 Flow control

Flow control is necessary in STREAMS to ensure that the pool of
message blocks managed by allocb and freeb does not empty, and

Flow control and STREAMS scheduling 187

also to ensure that XXservice routines do not become overwhelmed
with too many messages to process and therefore consume too much
CPU resource. It should be noted that flow control is applied only to
ordinary messages, as described in Section 6.3.1 above. Flow control
does not apply to priority messages.

We have already seen that allocb allocates message blocks accord
ing to a priority BPRI_LO, BPRIJ.lED and BPRI_HI, and under certain
circumstances may fail. In addition, a Stream head always asks for
BPRI_LO message blocks in response to write(S) system calls, so that
when resources are low it will be one of the first modules to block,
waiting for a message block to become available (see Section 6.7.3
below). A desirable side-effect of this is that output on a Stream
happens at a lower priority than input.

An additional advisory flow control mechanism limits the amount
of processing that XXservice routines are allowed to do when they are
invoked by the STREAMS scheduler. Advisory flow control should be
applied only to ordinary messages, as described in Section 6.3.1.
Priority messages, identified by the following test, are not subject to
flow control:

if (mp->b_datap->db_type > QPCTL)

An XXservice routine should use the canput routine to determine if
there is sufficient space in the next message queue to contain another
message. The parameter passed to canput should identify the QUEUE
to be examined (for example, q->q_next):

canput(q)
queue_t *qi

If the total amount of space being consumed by the next message
queue is greater than the high water mark defined for that module,
canput returns O. If there is sufficient space to receive another mes
sage, canput returns l.

Whenever canput returns 0, XXservice should use the putbq routine
to put the message back onto its own message queue, and return. In
addition, the STREAMS scheduler blocks the XXservice routine from
further execution, and will not reschedule it again until the next
message queue drops beneath its low water mark. As soon as the next
message queue does drop beneath its low water mark, the STREAMS
scheduler will automatically reschedule the blocked QUEUE. This
automatic rescheduling is called back-enabling.

An XXservice routine should process all of its messages whenever
it is invoked by the STREAMS scheduler, unless it is blocked by flow
control:

188 STREAJJS

while ((mp = getq(q)) != NULL) {
if (mp is a priority message I I canput(q->q_next)) {

process message;
putnext(q, message);

else {
putbq(q, message)i

6.5.2 STREAMS scheduling

STREAMS scheduling ensures that CPU resource is allocated to
QUEUEs whose XXput routines have deferred message processing to
the corresponding XXservice routine. This happens either when an
xxput routine or an XXservice routine cannot putnext a message onto
the adjacent QUEUE because of constraints imposed by flow control
(see above). The provision of an XXservice routine is at the module
developer's discretion, and there are no definite rules about when to
use them. However, an XXservice routine should be used when there
are other, more time-sensitive activities elsewhere in the system, such
as lower priority interrupt handling. Without XXservice routines,
messages would flow downstream all the way from the Stream head
to the Stream driver at task-time (not necessarily a great inconve
nience), but more importantly, all the way upstream from the Stream
driver to the Stream head at interrupt-time (potentially very inconve
nient). The use of XXservice routines also permits full use of
STREAMS flow control including automatic back-enabling of
QUEUEs.

An XXput routine can defer processing to the appropriate XXservice
routine by using the putq routine to add the current message to the
QUEUE's message queue:

putq(q, mp)
queue_t *qi
mblk_t *mpi

The call to putq causes the appropriate XXservice routine to be sched
uled for execution by the STREAMS scheduler at the next convenient
opportunity .

The implementation of STREAMS scheduling varies between dif
ferent versions of UNIX. On sca UNIX, the QUEUE is added to the
end of a linked list of other QUEUEs requiring CPU resource, using
the q_link field of the QUEUE structure, and the STREAMS schedul
ing flag, extern int qrunflag, is set.

Flow control and STREAMS scheduling 189

Enabled Enabled Enabled Enabled

STREAMS QUEUE QUEUE QUEUE QUEUE

scheduling
queue

CLlink CLlink CLlink CLlink NULL

Figure 6.12 The STREAMS scheduling queue.

This flag is examined at least once during every STREAMS-related
system call, at interrupt-time whenever a QUEUE is enabled, and also
each time the kernel enters the idle loop. If it is set, the kernel calls
runqueues to execute the XXservice routine of each of the scheduled
QUEUEs:

• The QUEUE is unlinked from q_link.

• The QENAB bit is cleared from q_flag.

• The XXservice routine is called at spll (K).

Finally, qrunflag is cleared. Figure 6.12 shows a typical state of the
scheduling queue.

Remember that STREAMS can automatically back-enable a
QUEUE, which causes the QUEUE to be added to the end of the
scheduling queue in a similar way to how putq operates.

If you are planning to write XXput and XXservice routines, it is
worth including a final reminder about the potential pitfalls (repeated
from Section 6.4.2):

• Never access any context-related data, such as the U-area, or any
part of the user's address space.

• Never go to sleep (K) inside an XXput or an XXservice routine.

• Always return to the caller.

190 STREAMS

6.6 STREAMS system calls

In this section, we shall explain the operation of the open (S),
close(S), read(S), write(S), getmsg(S), putmsg(S), poll(S) and
ioctl (S) system calls with respect to STREAMS.

6.6.1 Open(S), close(S)

When a Stream is opened with the open (S) system call, the
kernel recognizes that it should open a Stream because the d_str
field in the appropriate cdevsw entry will have a non-NULL value, and
will be pointing to a streamtab structure, described in Section 6.4.3
above.

On the first open (S) of the Stream, the kernel calls stropen to
allocate a struct stdata5 for the Stream head (see (sys/stream.h),
and then to attach and initialize two QUEUEs. The downstream
QUEUE does not have a Xxwput routine, but does have an XXservice
routine called strwsrv. The upstream QUEUE has an XXrput routine
called strrput, but does not have an XXservice routine.

The kernel then calls qattach to attach the Stream driver to the
Stream head, passing the pointer to the streamtab structure obtained
from the cdevsw entry. The qattach routine allocates a pair of
QUEUEs from the NQUEUE resource, attaches each queue to its respect
ive upstream QUEUE in the Stream head (via the q_next pointers),
initializes each QUEUE from the streamtab, and finally calls the
Stream driver's XXopen routine, as specified in the upstream qini t
structure. Figure 6.13 shows the result of an open (S) system call on a
device called exst.

If this is not the first open (S) on the Stream, the kernel only calls the
XXopen routines of each of the Stream modules and the Stream driver.

On the last close (S) of a Stream, the kernel calls strclose to
dismantle the Stream. The strclose routine works downstream
towards the Stream driver, closing each module. If the file's O_NDELAY
bit is not set, strclose waits for 15 seconds to allow the module's
messages to drain, before calling qdetach for the module. The qdetach
routine calls the module's XXclose routine, frees each of the module's
messages, pops the module from the Stream, and then frees the
QUEUEs.

Finally, strclose frees the QUEUEs from the Stream head, and then
returns the Stream head itself to the NSTREAM resource.

struct stdata

-
sd_strtab

sd_wrq -

STREAMS system calls 191

struct streamtab

streamtab describing
exst Stream driver

QUEUE QUEUE

~next

jr-

,
~next

QUEUE QUEUE

Stream head

exst
Stream driver

Figure 6.13 The open (S) system call attaches the Stream driver to the Stream
head.

6.6.2 Read(S), write(S)

The read (8) , write (8) , getmsg (8) and putmsg (8) system calls should be
used to receive or send messages between a user process and the
Stream head. The read (8) and write (8) system calls are byte-stream
oriented, so they can transfer only M-DATA messages, and have no
regard for message boundaries (the separation between one message
and the next).

The read (8) system call moves data from the Stream head into user
space. The kernel calls the routine strread which attempts to satisfy
the u. u_count request by reading one or more messages from the
Stream head's upstream QUEUE message queue, attached to
q_first. Messages arrive from downstream via the Stream head's
strrput routine.

192 STREAMS

For M_DATA messages, strread moves data from the buffer starting at
address b_rptr, as shown in Figure 6.8, and calls freeb to free up any
message blocks that become available. Strread then examines the
remaining messages on the message queue, looking for M_SIG mes
sages. If a SIGPOLL is found (that is, *b_rptr == SIGPOLL), the kernel calls
strsendsig to send a SIGPOLL to the user process (see Section 6.6.4
below). All other signals are posted to the process group. Any
M_SIG messages are freed by freeb.

Message types other than M_DATA are not readable by the read (S)
system call, and are returned to the message queue with putbq. They
cause EBADMSG to be returned.

Note that the read (S) system call does not invoke any routines in the
Stream driver, unlike a read(S) system call on an ordinary character
device.

The write (S) system call copies data from user space into the kernel,
builds a message and sends the message downstream. The kernel calls
the routine strwrite, which first calls canput to ensure that there is suf
ficient space downstream for the new message. If canput indicates that
space isn't available, strwrite will sleep (K). When the Stream head is
next back-enabled, strwsrv will wakeup (K) the sleeping strwrite,6

which can then continue to process the write(S) system call.
Strwri te calls strmakernsg to allocate a message buffer of type

M_DATA, and to copy the data from user space into the buffer.
Finally, strwrite uses putnext to send the message downstream,

and then returns.

6.6.3 Getmsg(S), putmsg(S)

We have already explained that the read(S) and write (S) system calls
are byte-stream oriented, and have no regard for message bound
aries. If an implementation wants to define and use its own control
messages and preserve message boundaries, it should use getmsg(S)
and putmsg(S), which recognize non-M_DATA message types. A non
M_DATA message type can be M_PROTO, M-PCPROTO or user-defined.

The getmsg(S) system call retrieves the next message from the
Stream head:

getmsg(fd, ctlptr, dataptr, flags)
int fd, *flagsi
struct strbuf *ctlptri
struct strbuf *dataptri

The ctlptr and dataptr parameters each describe a strbuf structure,
which will contain the control and data parts of the received message
respectively:

struct strbuf {
int maxlen;
int len;
char *buf;

STREAMS system calls 193

/* maximum buf length */
/* actual number of bytes */
/* buffer */

The kernel calls the strgetrnsg routine in response to the getrnsg (8)
system call. 8trgetrnsg copies the non-M_DATA part of the message from
the Stream head into the buffer described by ctlptr, and copies the
~DATA part into dataptr. Note that a message need contain only one
of these components, so the user process should check the contents
of both strbuf structures to determine what has been received. Figure
6.14 shows an M_PROTO message being returned to a user process.

The putmsg (8) system call works in a similar way:

putrnsg(fd, ctlptr, dataptr, flags)
int fd, *flags;
struct strbuf *ctlptr;
struct strbuf *dataptr;

The kernel routine strputrnsg calls strrnakemsg to construct a control
message from the data described by ctlptr and dataptr, then uses
putnext to send the message downstream.

For further details of these two system calls, please refer to the seQ
UNIX Programmer's Reference Manual, Volume 2.

6.6.4 Poll(S)

The poll (S) system call provides the user with a mechanism to
monitor activity on a number of STREAMs simultaneously. For each
Stream (file descriptor) of interest, the user can specify that he wants
to be notified of a variety of different events, described in
(sys/poll. h) :

• If the user specifies POLLIN, poll (8) will return as soon as data
arrives on the appropriate file descriptor (or immediately, if data is
already available).

• If the user specifies POLLPRI, poll (S) will return as soon as a
priority message arrives on the appropriate file descriptor (or
immediately, if a priority message is already present).

• If the user specifies POLLOUT, poll(S) will return as soon as the
STREAMs flow control mechanism back-enables the first down
stream QUEUE (or immediately, if the QUEUE is already enabled).

These events can be OR'd together.

User space

Kernel space

Message block

b_cont

b_datap

strbuf

Data is
copied by

getmsg(S)

Data block

db_base

db_type
= M_PROTO

Message block

b_datap

4 bytes of
M PROTO control

- data

Buffer containing data
part of message

Data block

db_base

db_type
=M_DATA

Data is
copied by

getmsg(S)

32 bytes

Figure 6.14 An M_PROTO message being received by getmsg(S).

~
\0
~

CJJ

~

~
CJJ

STREAMS system calls 195

The poll (8) system call takes three arguments:

poll (fds, nfds, timeout)
struct pollfd fds[l;
unsigned long nfds;
int timeout;

The file descriptors and the events of interest (POLLIN, POLLOUT and
POLLPRI) are specified in an array of pollfd structures:

struct pollfd {
int fd;
short events;
short revents;

/* fd of 8tream */
/* events requested */
/* events returned */

The revents field contains a description of what actually happened on
the corresponding file descriptor. As well as containing the events
described above, it can also contain the following:

• POLLERR indicates that a priority M_ERROR message has arrived at the
Stream head.

• POLLHUP indicates that a priority M_HANGUP message has arrived at
the Stream head.

• POLLNVAL indicates that the corresponding file descriptor does not
describe an open Stream.

The timeout argument specifies how long the poll (8) system call
should wait, in milliseconds? before returning if none of the
requested events occurs. The caller should specify -1 to make
poll(S) block indefinitely, until one of the requested events occurs.

The poll (8) system call as described allows for synchronous 110
over a Stream. If the user process prefers (or needs) to do
asynchronous I/O, the poll (8) system call should be used in conjunc
tion with the 8IGPOLL signal. The process should use the I_8ET8IG
ioctl (8) system call (see Section 6.6.5 below) to indicate that a
SIGPOLL should be sent when one of the following events occurs on a
Stream. Inside the signal handler, the process must make a poll (S)
system call to determine what to do next:

• If the user process requests 8_INPUT, it will receive a 8IGPOLL as
soon as a message arrives at the Stream head, providing that a
message was not already present.

• If the user process specifies 8_HIPRI, it will receive a 8IGPOLL as
soon as a priority message arrives at the Stream head.

• If the user process specifies 8_0UTPUT, it will receive a 8IGPOLL as
soon as the first downstream QUEUE is back-enabled.

196 STREAMS

• If the user process specifies SJlSG, it will receive a SIGPOLL as soon
as either an M_SIG or an M_PCSIG message containing a SIGPOLL
signal arrives at the Stream head.

If you are planning to implement asynchronous 1/0, remember that
System V signals are inherently unreliable. Under certain circum
stances, your process is liable to be killed by the kernel if it receives
another SIGPOLL signal before it has restored the signal handler. We
recommend that you use reliable POSIX signals, as described by the
sigaction(S), sigprocmask(S) and sigsuspend(S) manual pages in the
sea UNIX Programmer's Reference Manual, Volume 2.

6.6.5 Ioct1(S)

The user's ioctl (S) interface follows the same mechanism as all other
ioctl (S) system calls:

ioctl(fd, command, arg)
int fd, command;
char *arg;

The full list of STREAMS ioctl (S) requests, gIvIng the possible
values for the command parameter, is described in the STREAMIO(M)
manual page.

In order to send an ordinary ioctl (S) request downstream to either
a module or the Stream driver, the user should make an I_STR
ioctl (S) request, using the arg parameter to pass any data. There are
some examples in Section 6.10. In response to an I_STR request, the
Stream head constructs an M_IOCTL message, consisting of an iocblk
structure describing the ioctl (S) request and zero or more ~DATA
message blocks containing any ioctl (S) data:

#include (sys/stream.h)
struct iocblk {

int ioc_cmd;
ushort ioc_uid;
ushort ioc_gid;
uint ioc_id;

uint ioc_count;

int ioc_error;

int ioc_rval;

/* ioctl(S) request */
/* effective user ID */
/* effective group ID */
/* ioctl ID, generated by

Stream head */
/* number of bytes in

M_DATA buffer */
/* error code from

downstream * /
/* return value from

downstream * /

strioctl

ic_crnd =
I_INTARG

i)ctl(fd, I_STR, &strioctl); i_len = 4

An integer
ic_dp

User spa ce

Kernel s)ace

Message block Message block

Data is
b_cont copied by

ioctl(S)

Data block Data block
b_datap b_datap

locblk
db_base db_base

db_type ioc crnd = 4 bytes of - db_type I INTARG = M_IOCTL - = M_DATA integer data

Figure 6.15 A user-defined LINTARG ioctl (S) request at the Stream head.

C/)

~

~
C/)

~
rt
3

~
Vl

~
\0
'I

198 STRE~S

Figure 6.15 shows a user-defined I_INTARG ioctl (8) request and the
corresponding M_IOCTL message (see Section 6.10). The Stream head
then sends the M_IOCTL message downstream. Modules which don't
recognize ioc_cmd should putnext the message to the adjacent
module. Eventually, an xxwput routine in one of the modules (or the
Stream driver) will recognize ioc_cmd, and either deal with it locally or
dispatch it to a private XXioctl routine, thus preserving the familiar
structure of character device drivers.

If the M_IOCTL message is processed successfully, the Stream driver
should respond with an M_IOCACK message, by changing the original
message type to M_IOCACK and then calling qreply to send the message
back upstream to the Stream head:

qreply(q, mp)
queue_t *qi
mblk_t *mpi

Any data that either a module or a Stream driver wants to return to
the user process in response to the ioctl (8) request should be stored
in M_DATA message blocks and then attached to the original iocblk
message block. The module should set ioc_count to be the number of
bytes being returned.

The Stream head waits for the M_IOCACK response, and compares
the ioc_id received from downstream with the ioc_id from the origi
nal ioctl (8) request. If the two values don't match, the response is
discarded.

A Stream driver should respond to unrecognized ~IOCTL messages
by calling qreply to send an M_IOCNAK message to the Stream head.

Finally, if a response is not received within the interval specified by
the original ioctl(8) request (see 8TREAMIO(M), the Stream head will
time out and the ioctl (8) will fail with ETlME.

6.7 Advanced topics

6.7.1 Cloning

STREAMS includes a special pseudo-driver, called clone. The clone
driver provides a convenient way for a user process to open a Stream
device without having to specify the minor device number. This
mechanism can be useful for network applications which must

Advanced topics 199

establish their own Stream connection to a Stream driver (for exam
ple, /dev /e3AO is the Stream driver for the 3COM 3C501 Etherlink
card) and do not need to be concerned about which minor devices are
actually available.

A clone device is associated with the target Stream driver as fol
lows:

• The major device number corresponds to the clone driver. This is
major device 40 in SCO UNIX 3.2v4.

• The minor device number corresponds to the target Stream driver.

For example, if the major device number of the 3COM 3C501 device is
36, and the device driver supports cloning (see below), the following
two entries in /dev are equivalent:

crw-rw-rw- 1 root other 36, 0 Dec 27 1992 /dev/e3AO
crw-rw-rw- 1 root other 40, 36 Dec 27 1992 /dev/e3AO

The first entry specifies minor device o. This may already have been
open (S) ed by somebody else, which means that the user should then
try to open(S) the next minor device, and so on, until the open(S)
completes successfully.

The second entry open(S)s the clone device, which examines the
minor device number, establishes the corresponding entry in cdevsw,
and then calls that driver's XXopen routine with sflag set to CLONEOPEN
(see Section 6.4.2). The driver should respond by examining an inter
nal table of available minor device numbers, pick one that isn't
already allocated, and then return that minor device number to the
clone driver.

The clone driver completes the open(S) call by allocating a new
inode to record the final major and minor device numbers. Note that
this inode has no name associated with it in the filesystem.

Therefore, the user's first open (S) system call always completes
successfully, whether or not any minor devices are already open. 8

There are some additional points to note:

• It is up to the driver designer to decide whether to implement
cloning. The example Stream driver provided in Section 6.10 illus
trates how an XXopen should respond to CLONEOPEN in sflag.

• The driver designer should document his decision so that applica
tion developers know how to implement their open (S) system
calls.

• The driver designer should ensure that the installation procedure
for his Stream driver creates the appropriate entry (entries)
in /dev.

200 STREAMS

6.7.2 Multiplexing

Until now, we have limited our discussions to linear STREAMS con
nections, where each Stream module is linked to only one upstream
module (or the Stream head) and only one downstream module (or
the Stream driver).

STREAMS also allows for multiplexed connections between mod
ules, so that there can be a many-to-many relationship between the
connections above and below a module. A Stream module configured
in such a way is called a STREAMS multiplexor. The two fundamental
multiplexor types are called I-to-M (or lower) and N-to-l (or upper)
multiplexors, and are illustrated in Figure 6.16. Figure 6.2 showed a
high-level representation of an implementation of TCP/IP, with a
choice of either Ethernet or Token Ring network drivers. In this
scenario, the IP module is an example of a lower STREAMS multi
plexor.

In the next two sections, we shall explain how a process should
construct and subsequently dismantle such a configuration.

Constructing a multiplexor

The connection of each of the modules is done by a reasonably
complex combination of open(8) and I_LINK ioctl (8) system calls. In
order that the actual users of the implementation (for example,
ftp (TC) , rlogin (TC) should not have to concern themselves with the
mechanisms required to connect the components together, this
responsibility is offloaded to a daemon process. This daemon process
constructs the multiplexor and then keeps the Stream open for other
processes to use.

STREAMS does not allow ioctl (8) requests to pass through a
multiplexed module - they must be sent directly to the required
module or driver. For this reason, any multi-level multiplexing con
figuration, such as those illustrated in Figure 6.16, must be built from
the bottom up. The basic algorithm for the daemon process is there
fore:

open(8) the Ethernet driver;
open(8) the IP module;
I_LINK the Ethernet driver to the bottom of IP;
open(8) the Token Ring driver;
I_LINK the Token Ring driver to the bottom of IP;
open(8) the TCP module;
I_LINK the IP module to the bottom of TCP;
close(8) the Ethernet driver, Token Ring driver, and

IP module;
pause(8), to hold multiplexor open forever.

A 1-to-M (or lower)
multiplexor configuration

Advanced topics 201

An N-to-1 (or upper)
multiplexor configuration

Figure 6.16 I-to-M and N-to-l Stream multiplexors.

Note that the controlling Stream head is connected to the TCP
module, so we can close the Ethernet driver, Token Ring driver and
IP modules without breaking the multiplexor.

The basic source code for the daemon is as follows:

#include (fcntl.h)
#include (sys/stropts.h)
main()
{

int efd, tfd, ip£d, tcpfd;

/*
* Make this process a daemon, and disconnect it
* from its process group.
*/

switch (fork())
case 0:

case -1:

default:

/*

/* child - continue */
break;
perror (lifork failed");
exit(l) ;

/* parent - exit */
exit(O);

* Set a new process group so that pause(S) will
* not receive any signals sent to our old process
* group.
*/

setpgrp() ;

202 STREAMS

if ((efd = open(lI/dev/ethernet", O_RDWR) == -1)

perror(lIcouldn't open /dev/ethernet ll
);

exit (1) ;

if ((ipfd = open(lI/dev/ipll, O_RDWR)) == -1)

perror(lIcouldn't open /dev/ipll);
exit (1) ;

/*
* Now link Ethernet to bottom of IP
*/

if (ioctl(ipfd, I_LINK, efd) == -1) {

perror(lIcouldn't I_LINK Ethernet to Ip lI);
exit(l);

if ((tfd = open(lI/dev/tokenll, O_RDWR)) == -1)

perror(lIcouldn't open /dev/token ll);
exit(l) ;

if (ioctl(ipfd, I_LINK, tfd) == -1) {

perror(lIcouldn't I_LINK Token Ring to Ipll);
exit (1) ;

if ((tcpfd = open(lI/dev/tcpll, O_RDWR)) == -1) {

perror(lIcouldn't open /dev/tcpll);
exit (1) ;

if (ioctl(tcpfd, I_LINK, ipfd) == -1) {

perror(lIcouldn't I_LINK IP to TCPIl);
exit(l);

close(efd);
close (tfd) ;
close (ipfd) ;
pause(); /* wait forever */

Now that the multiplexor has been built by the daemon, all other
applications can establish their own connections to TCP by making an
open(S) system call on /dev/tcp.

In SCQ's TCP/IP, the daemon that builds a TCP/IP multiplexor
similar to the one described here is called slink (ADMN), which is
started up at run level 2. The slink (ADMN) daemon parses the file
/etc/strcf to find a list of Stream modules to I_LINK together.

Advanced topics 203

Dismantling a multiplexor

The kernel will automatically dismantle the multiplexor when the last
close(S) is received on the controlling Stream head, which is owned
by our daemon process. Thus, when the daemon process receives a
signal and exits, the multiplexor will automatically be dismantled.

A multiplexor can be explicitly dismantled by I_UNLINK ioctl (S)
calls, which pass the multiplexor 10 returned by the corresponding
I_LINK call. If our daemon process wanted to dismantle the multi
plexor for itself, it would have to save the multiplexor IDs from the
I_LINK calls, and then install a signal handler to pass them to the
appropriate I_UNLINK calls:

if ((iemuxid = ioctl(ipfd, I_LINK, efd)) == -1)
perror(lIcouldn't I_LINK Ethernet to Ipll);
exit(l);

And then inside the daemon's signal handler:

if (ioctl(ipfd, I_UNLINK, iernuxid) == -1)
perror(lIcouldn't I_UNLINK Ethernet from Ipll);
exit(l) ;

Configuring a multiplexor

In order that the system calls being made by the daemon process
described above have the desired effect, additional functionality must
be added to the multiplexor. In particular, the I_LINK calls to link each
of the Stream drivers to the IP module require that the multiplexor
fields of the struct strearntab described in Section 6.4.3 be properly
filled out:

struct streamtab {
struct qinit
struct qinit
struct qinit
struct qinit

} ;

*st_rdinit;
*st_wrinit;
*st-Illuxrinit;
*st-Illuxwinit;

/* read QUEUE */
/* write QUEUE */
/* mux read QUEUE */
/* mux write QUEUE */

An I_LINK call to the target multiplexor causes STREAMS to replace
the initial contents of the Stream head describing the lower module
with the contents of the multiplexor's st-Illuxrinit and st-Illuxwinit
respectively. For example, the call

ioctl(ipfd, I_LINK, efd)

204 STREAMS

replaces the contents of st_rdinit and st_wrinit from the Ethernet
driver's struct streamtab with the contents of the
st-Inuxrinit and sL.rnuxwinit fields of the IP module's own struct
streamtab. The effect of this is that all messages subsequently sent
upstream by the Ethernet driver will pass through the multiplexor,
and eventually arrive at the multiplexor's Stream head, rather than at
the Ethernet driver's Stream head.

Finally, the Stream head sends an M_IOCTL message to the multi
plexor's xXwput routine with ioc_crnd set to I_LINK (see Section 6.6.5).
The attached M_DATA message block contains a struct linkblk, defined
in (sys/ stream. h) :

struct linkblk {
queue_t *l_qtop;

int I_index;

} ;

/* lowest level write
queue of upper Stream */

/* highest level write
queue of lower Stream */

/* filer] index for lower
Stream */

The multiplexor should record the information from the linkblk in
private storage, and return an M_IOCACK to the Stream head. The
Stream head returns the value of I_index to the process requesting
the I_LINK (this is the value iernuxid in our example above). The two
QUEUEs identify the upper write QUEUE from where the M_IOCTL
came (l_qtop), and the new lower write QUEUE where the multi
plexor should putq its data (l_qbot) in the future. The l_qtop QUEUE
is always the same as the original upper write QUEUE, but l_qbot
identifies the former QUEUE from the Stream driver's Stream head.

Thus the logical connection between the multiplexor and the
Stream driver is established.

6.7.3 Recovering from no message blocks

Calls to allocb are liable to fail if there are no message blocks left to
allocate (see Section 6.3.3). If allocb does fail, a module can register
an asynchronous call to a recovery routine with bufcall:

bufcall(size, pri, func, arg)
int size, pri, (*func) ();
long arg;

The bufcall routine calls (*func) (arg) when a message block of size
bytes at pri priority is available. It returns 1 on success, indicating
that the request has been registered successfully, and 0 on failure.

Advanced topics 205

When func is called, it has no user context so it must complete
without referencing the U-area or calling routines such as sleep (K) .

Although a message block is available when bufcall initially dis
patches func, the message block may already have been used by an
interrupt routine before control arrives in func. This means that if
func calls allocb to get a message block, allocb will fail again, and
there could be a potential deadlock situation.

A more sensible strategy in the event of an allocb failure is to
return the current message to the module's QUEUE, and to use
bufcall to re-enable the QUEUE when a buffer becomes available.
The STREAMS support routine qenable can be used to do this. Here is
some sample code to illustrate this technique:

XXservice(q)
queue_t *q;

int qenable();
rnblk_t *mp, *bp:

while ((mp = getq(q)) != NULL) {

/*
* Check for priority messages and canput() ...
*/

/*
* Allocate a message block to contain some header
* information, then prepend this to mp
*/

if ((bp = allocb(HDRSZ, BPRI-MED)) == NULL)

/*
* No message blocks left, so use bufcall()
* to reschedule this XXsrv() routine when
* space is available.
*/

if (bufcall(HDRSZ, BPRI-MED, qenable, q)
0) {

/*
* Give up completely - discard the
* current message and continue around
* the while() loop
*/

freemsg (mp) ;
continue;

206 STREAMS

/*

/*
* bufcall() has succeeded, so return mp to
* our queue and wait to be re-enabled
* later on
*/

putbq(q, mp);
return;

* allocb() succeeded, so we can continue and
* process the message
*/

} /* end while () */

6.8 Error logging

STREAMS includes error logging and event tracing mechanisms, to
provide STREAMS diagnostics for the Systems Administrator and to
provide a debugging facility for the STREAMS developer.

Log messages and trace messages can be generated by a module or
a Stream driver by using the strlog(STR) support routine:

strlog(mid, sid, level, flags, fmt, arg, ...)
short mid, sid;
char level;
ushort flags;
char *fmt;

The mid is the module ID of either the module or Stream driver, as
defined by the mi_idnurn field of the module_info structure described in
Section 6.4.2. The sid is a sub-ID, usually used to identify the particu
lar minor device. The level is an arbitrary value that is intended to
denote an indication of the priority or severity of the trace message
(see strace (ADM)). The flags are any combination of SL_ERROR (the
message is for the error logger), SL_TRACE (the message is for the
tracer), SL_FATAL (the reported condition is considered to be fatal) and
SL_NOTIFY (a copy of the message should be mailed to the System
Administrator).

The fmt and arg parameters follow the conventions of the kernel's
printf (K) routine. The maximum number of arguments allowed is
fixed by the value of NLOGARGS, which is currently defined to be 3 in
(sys/strlog .h).

Configuring Stream modules and drivers 207

The user interfaces to the error logger and the tracer are via
strace (ADM) and strerr (ADM), which read the special STREAMS
driver /dev /log. The strerr (ADM) process writes error log messages to
files in the directory /usr/adm/streams, which should be cleaned out
periodically by strclean (ADM) .

6.9 Configuring Stream modules and drivers

As might be expected, the configuration of a module or a Stream
driver is somewhat more complex than the equivalent process for a
regular character or block device driver.

For each Stream module or Stream driver to be configured, the
developer must provide the following:

• A struct streamtab XXinfo, containing pointers to qinit structures
describing the module QUEUEs. See Section 6.4.3.

• A qinit structure for each of the module's QUEUEs, containing the
names of the QUEUE functions and pointers to module_info and
optional module_stat structures. See Section 6.4.2.

• A module_info structure, shared by each of the QUEUEs, contain-
ing module identification information. See Section 6.4.2.

• An optional module_stat structure (not used by sea at present).

Finally, the developer must provide the module routines described by
the qini t structures. An example Stream driver is presented in
Section 6.10 below.

A Stream driver should be added to the kernel using the
configure (ADM) command, specifying -s with -m and -c to indicate
that you are configuring a Stream driver. A Stream module should be
specified by -s with -h (-m and -c are not required).

The sea UNIX Link Kit does not have STREAMS configured by
default, so before relinking the kernel for the first time you must do
one of the following:

• If you are working with $ROOT set to / (see Appendix A), run the
command mkdev streams and follow the prompts to add STREAMS
to your Link Kit.

• If you are working with $ROOT identifying a private Link Kit hier
archy, use vi (C) to change the configure field in sdevice.d/str
from an N to a Y, and then run the configure (ADM) command to add
the clone driver (major device 40) to your Link Kit.

208 STREAMS

Table 6.1 STREAMS resources. Default values are for sea UNIX release
3.2 version 4.

Resource
name Resource description Default

NQUEUE Total number of QUEUEs available 96

NSTREAM Total number of STREAMS that can be opened 32

NMUXLINK Total number of STREAMS that can be linked 87
beneath a multiplexor

NSTREVENT Total number of events available to support 256
bufcall () and poll ()

MAXSEPGCNT Total number of additional memory pages that 1
can be allocated for events

NSTRPUSH Maximum number of modules that can be pushed 9
onto a Stream

STRMSGSZ Maximum size (in bytes) of a write(S) or 4096
putmsg (S) M_DATA message

STRCTLSZ Maximum size (in bytes) of a putmsg(S) M_PROTO or 1024
M_PCPROTO message

STRLOFRAC Percentage of data blocks available from a class 80
for BPRI_LO requests

STRMEDFRAC Percentage of data blocks available from a class 90
for BPRlJiED requests

NLOG Total number of minor devices to be configured 3
for the log (STR) driver

NUMSP Total number of Stream pipe devices supported 64

NUMTIM Total number of Stream modules that can be 16
pushed by the TLI

When the kernel is relinked, the -s will cause references to your
streamtab to be included in cf .d/conf.c (see Appendix A). If you
have configured a Stream driver, the streamtab will be referenced
from cdevsw, and if you have configured a module, the streamtab will
be referenced from fmodsw.

Here are some additional points to note:

• You should not specify the names of the QUEUE routines, as these
are defined indirectly via the streamtab .

• You should not specify the names of any XXread, XXwrite or
XXioctl routines to be included in cdevsw.

An example STREAMS driver 209

Table 6.2 STREAMS resources. Default values are for sea UNIX
release 3.2 version 4.

Resource
name Resource description Default

NBLK4096 Total number of 4096-byte data blocks 0

NBLK2048 Total number of 2048-byte data blocks 20

NBLKI024 Total number of 1024-byte data blocks 20

NBLK512 Total number of 512-byte data blocks 8

NBLK256 Total number of 256-byte data blocks 8

NBLK128 Total number of 128-byte data blocks 8

NBLK64 Total number of 64-byte data blocks 40

NBLK16 Total number of 16-byte data blocks 40

NBLK4 Total number of 4-byte data blocks 40

• All other routines, including XXpoll and XXintr, should be spec
ified as required.

The following configure (ADM) command shows you how to config
ure the example Stream driver from Section 6.10 into the kernel. We
assume that major device number 17 is available:

$./configure -a exstopen exstclose -c -s -m 17

Tables 6.1 and 6.2 summarize the tunable parameters applicable to
STREAMS.

6.10 An example STREAMS driver

The STREAMS loopback driver shown here and the accompanying
test harness are adapted from original versions published in the sea
UNIX Device Driver Writer's Guide.

210 STREAMS

6.10.1 A STREAMS loopback driver

/*
* src/exst.c

* A STREAMS loopback driver.

* Copyright (c) The Santa Cruz Operation, 1986, 1987.
* This Module contains Proprietary Information of
* The Santa Cruz Operation, Microsoft Corporation
* and AT&T, and should be treated as Confidential.

* This is a pseudo-driver designed to loop data from one
* open Stream to another open Stream. The user processes
* view the associated files as a full duplex pipe. This
* driver is a simple multiplexor which passes messages from
* one Stream's write queue to the other Stream's read queue.
* The driver also illustrates a Stream's ioctl() function.

* Note from the authors:

* We have added additional comments and calls to cmn_err(K)
to help you to see what is happening when this driver is

* invoked by strtest.c. Compile with -DDEBUG to see all of
* the diagnostics.

* ./configure -a exstopen exstclose -m MAJOR -c -s
*/

/*
* necessary include files
*/

#include (sys/types.h)
#include (sys/param.h)
#include (sys/sysmacros.h)
#include (sys/stream.h)
#include (sys/stropts.h)
#include (sys/dir.h)
#include (sys/signal.h)
#include (sys/page.h)
#include (sys/seg.h)
#include (sys/user.h)
#include (sys/errno.h)
#include (sys/strlog.h)
#include (sys/log.h)
#include (sys/cmn_err.h)

*/
* function declarations
*/

int nodev(), exstopen(), exstclose(), exstsrv()i

/*
* streams structure declarations
*/

An example STREAMS driver 211

static struct module_info exstm_info = {
40, /* module ID number */
lIexstll, /* module name */
0, /* min packet */
256, /* max packet */
512, /* hi-water mark */
256 /* lo-water mark */

} ;

/*
* Initialization for the read QUEUE.

* There is no need for an XXrput(), as messages
* are queued on the write side and sent upstream
* by the shared XXservice() .
*/

static struct
NULL,

qinit exstrinit = {

} ;

/*

exstsrv,
exstopen,
exstclose,
NULL,
&exstm_info,
NULL

/* put procedure */
/* service procedure */
/* called on each open or push */
/* called on last close */
/* reserved for future use */
/* information structure */
/* statistics structure */

* Initialization for the write QUEUE.

* Xxwput() (i.e. putq()) is called by the Stream head
* to accept messages.
*/

qinit exstwinit = { static struct
putq,
exstsrv,
exstopen,
exstclose,
NULL,
&exstm_info,
NULL

} ;

struct streamtab
&exstrinit,
&exstwinit,
NULL,

} ;

/*

NULL

/* put procedure */
/* service procedure */
/* called on each open or push */
/* called on last close */
/* reserved for future use */
/* information structure */
/* statistics structure */

exstinfo = {
/* defines read queue */
/* defines write queue */
/* no multiplexing */
/* no multiplexing */

* The private exst structure is used to create
* an array of clonable devices.
*/

212 STREAMS

struct exst {

} ;

/*

unsigned exst_state;

* Driver state values
*/

/* driver state flag,
see below */

/* queue pointer */

#define
#define
#define

EXSTOPEN 01
EXSTFAIL 02

/* device is opened */
/* open failed */

NEXST 4 /* number of clonable devices */

*/
* Allocate streams blocks
*/

struct exst exst_lo[NEXST1;
int exstcnt = NEXST;

/*
* User-defined ioctl(S) requests
*/

#define
#define
#define
#define
#define
#define
#define

I_NOARG
I_INTARG
I_ERRNAK
I_ERROR
EXSTSLPTEST
I_SETHANG
I_SETERR

20
21
23
25
32
42
43

exstopen(q, dev, flag, sflag)
queue_t *q;
dev_t dev;
int flag, sflag;

struct exst *lp;

#ifdef DEBUG
cmn_err (CE_CONT , II DEBUG : in exstopen () \ nil) ;

#endif

dev = minor(dev);

/*
* If CLONEOPEN, pick a minor device
* number to use.
*/

if (sflag == CLONEOPEN)

for (dev = 0; dev < exstcnt; dev++)

if (!(exst_lo[devl.exst_state & EXSTOPEN)) {

break;

An example STREAMS driver 213

/*
* Check to see if we have a
* good device number
*/

if «dev < 0) I I (dev>= exstcnt)) {
return (OPENFAIL) i /* default = ENXIO */

}
lp = &exst_Io[dev)i
if (lp->exst_state & EXSTFAIL) {

/*

/*
* Clear the fail flag so it can be
* reopened later
*/

lp->exst_state &= -EXSTFAILi
return(OPENFAIL)i

* Set up data structures
*/
if (1 (lp->exst_state & EXSTOPEN))

}

lp->exst_rdq = qi
q->q_ptr = (caddr_t)lp;
WR(q)->q_ptr = (caddr_t)lpi
return (dev) i

else {
/*

* Check that we are not opening the same Stream
* twice - this might happen if the user is not
* opening the clone device.
*/

if (q 1= lp->exst_rdq)
return(OPENFAIL);

exstclose(q, flag)
queue_t *qi
int flagi

{
#ifdef DEBUG

cmn_err (CE_CONT, IIDEBUG: in exstclose () \nll) i
#endif

/*
* Remove all the messages from the write
* message queue.
*/

«struct exst *) (q->q_ptr))->exst_state &= -EXSTOPENi
«struct exst *) (q->q_ptr))->exst_rdq = NULL;
flushq(WR(q), FLUSHALL)i
q->q_ptr = NULL;

214 STREAMS

/*
* The XXservice() routine takes messages off write
* queue and sends them back up the read queue,
* processing them along the way.

* Messages arrive on the queue from putq(), which is
* called via putnext() from strwrite() in the Stream
* head.
*/

exstsrv(q)
queue_t *q;

mblk_t *bp;

/*
* If exstsrv has been called from the

read side, set q to write side
*/

q = ((q)->q_flag & QREADR ? WR(q) : q);
#ifdef DEBUG

cmn_err(CE_CONT, IIDEBUG: in exstsrv(): II);
#endif

/*
* If the upstream queue is full,
* only process priority messages
*/

while ((bp = getq(q)) != NULL) {
if (((bp->b_datap->db_type) <= QPCTL)

&& !canput(RD(q)->q_next)) {
cmn_err(CE_NOTE,

lIexstsrv(): upstream queue is full ll);
putbq(q, bp);
return;

switch (bp->b_datap->db_type)
case M_IOCTL:

#ifdef DEBUG

#endif

/*

cmn_err(CE_CONT,
IImessage type is
M_IOCTL\nll) ;

exstioctl(q, bp);
if (((struct exst *)

(q->q_ptr))->exst_state &
EXSTSLPTEST) {

return;
}
break;

* If testing offset, calculate and place at
* start of data message.
*/

#ifdef DEBUG

#endif

#ifdef DEBUG

#endif

#ifdef DEBUG

#endif

/*

An example STREAMS driver 215

case M_DATA:
/* flow through */
case M_PROTO:
case M-PCPROTO:

cmn_err(CE_CONT,
IImessage type is
M_DATA, M-PROTO,
or M_PCPROTO \ nil) ;

qreply(q, bp);
break;

case M_CTL:

cmn_err(CE_CONT,
IImessage type is M_CTL\nll);

freernsg (bp) ;
break;

case M_FLUSH:

default:

printf(CE_CONT,
IImessage type is M_FLUSH\nll);

if (*bp->b_rptr & FLUSHW) {
flushq(q, FLUSHALL);
*bp->b_rptr &= -FLUSHW;

}
if (*bp->b_rptr & FLUSHR)

qreply(q,bp) ;
} else {

freernsg (bp) ;
}
break;

freemsg (bp) ;
break;

* XXioctl() tests the User-defined
* ioctl commands, passed to us from the
* test harness.
*/

exstioctl(q, bp)
queue_t *q;
mblk_t *bp;

register s;
int i, n;

216 STREAMS

rnblk_t *tmPi
struct iocblk *iocbp;
struct stroptions *so;

#ifdef DEBUG
cmn_err(CE_CONT, IIDEBUG: in exstioctl(): II);

#endif

/*
* Each particular ioctl has a special function for
* testing the streams error mechanism.
*/

iocbp = (struct iocblk *)bp->b_rptr;
switch (iocbp->ioc_cmd)

case I_NOARG:
#ifdef DEBUG

#endif
bp->b_datap->db_type = M_IOCACK;
qreply (q, bp) i
return;

case I_INTARG:
#ifdef DEBUG

#endif

/*
* Send integer argument back as return
* value
*/

if (bp->b_cont NULL) {
freemsg (bp) ;
return;

}
iocbp->ioc_rval = *((int *)

bp->b_cont->b_rptr);
tmp = unlinkb(bp) ;
freeb (tmp) ;
iocbp->ioc_count = 0;
bp->b_datap->db_type = M_IOCACK;
qreply(q, bp);
return;

case I_ERROR:
#ifdef DEBUG

#endif

/*
* Verify that error return works.
*/

iocbp->ioc_error = EPERM;
bp->b_datap->db_type = M_IOCACK;
qreply(q, bp);
return;

An example STREAMS driver 217

case I_ERRNAK:
#ifdef DEBUG

#endif

/*
* Send a NAK back with an error value.
*/

iocbp->ioc_error = EPERM;
bp->b_datap->db_type = M_IOCNAK;
qreply(q, bp);
return;

case I_SETHANG:
#ifdef DEBUG

#endif

/*
* Send ACK followed by M_HANGUP upstream.
*/

bp->b_datap->db_type = M_IOCACK;
qreply(q, bp);
putctl (RD (q)->q_next, M_HANGUP);
return;

case I_SETERR:
#ifdef DEBUG

#endif

/*
* Send ACK followed by M_ERROR upstream -
* value is sent in second message block.
*/

tmp = unlinkb(bp);
bp->b_datap->db_type = M_IOCACK;
((struct iocblk *)bp->b_rptr)->ioc_count = 0;
qreply(q, bp);
tmp->b_datap->db_type = M_ERROR;
qreply (q, tmp);
return;

default:
#ifdef DEBUG

#endif

/*
* NAK anything else.
*/

bp->b_datap->db_type = M_IOCNAK;
qreply(q, bp);
return;

218 STREAMS

6.10.2 A STREAMS test harness

/*
* src/strtest.c

* A test harness for the STREAMS loopback driver exst.c
*
* Copyright (c) The Santa Cruz Operation, 1986, 1987.
* This Module contains Proprietary Information of
* The Santa Cruz Operation, Microsoft Corporation
* and AT&T, and should be treated as Confidential.

* Note from the authors:

* We have added additional comments and calls to printf(S)
* to help you to see what is happening as this test harness
* invokes exst.c. We have also corrected the use of the
* I_INTARG call so that the driver correctly returns the
* integer argument.
*/

#include (errno.h)
#include (fcntl.h)
#include (stdio.h)
#include (sys/stropts.h)
/* Loopback driver ioctl() commands */
#define I_NOARG 20
#define I_INTARG 21
#define I_ERRNAK 23
#define I_ERROR 25
#define I_SETHANG 42
struct strioctl ioc;
main (argc, argv)

int argc;
char *argv[];

int fd, i, foo = 55;
char buf[BUFSIZ);

/*
* Open the loopback device.
*/

if ((fd = open (II/dev/exst ll , O-RDWR)) == -1) {

/*

perror (limain (): Cannot open () /dev /exse') ;
exit(1);

* Try writing to the loopback device,
* and reading data from it.
*/

printf(lIPlease enter a string to write to stream's
loopback device\nll);

An example STREAMS driver 219

if ((fgets(buf, BUFSIZ, stdin)) == NULL)
perror (IImain (): fgets () failed II) ;

exit (1) ;

/*
* strwrite() writes, strread() reads
*/

strwrite(fd, buf);
strread (fd) ;

/*
* Test the ioctl calls
*/

strioctl(fd, I_NOARG, 0, 0, NULL);
strwrite(fd, buf);
strread (fd) ;
strioctl(fd, I_INTARG, 0, sizeof(foo), &foo);
strwrite(fd, buf);
strread (fd) ;
strioctl(fd, I_ERRNAK, 0, 0, NULL);
strwrite(fd, buf);
strread (fd) ;
strioctl(fd, I_ERROR, 0, 0, NULL);
strwrite(fd, buf);
strread (fd) ;
strioctl(fd, I_SETHANG, 0, 0, NULL);
strwrite(fd, buf);
strread (fd) ;
close(fd);
exit(O) ;

strwrite(fd, s)
int fd;
char *5;
{

printf(lI\nWriting to loopback device ... \nll);
if (write (fd, s, BUFSIZ) == -1) {

perror(lI strwrite(): write() failedll);
exit(2);

strread(fd)
int fd;
{

char buf[BUFSIZ];
printf(lI\nReading from loopback device ... \nll);
if (read(fd, buf, BUFSIZ) == -1) {

perror (II strread (): read () failed II) ;

exit(3);

220 STREAMS

}

/* print the results of the read */

printf(IIString = %s\nll ,buf) ;

strioctl(fd, arg, time, len, s)
int fd, arg, time, len;
char *s;

int i;
char *P, *e;

ioc.ic_cmd = arg;
ioc.ic_timout = time;
ioc.ic_len = len;
ioc.ic_dp = s;

switch (arg) {

case I_NOARG:
p = lIi_noarg";
e = IIWil1 complete successfully.lI;
break;

case I_ERRNAK:
p = II i_errnak II ;
e = IIWil1 fail with EPERM. II ;
break;

case I_ERROR:
p = lIi_error";
e = IIWil1 fail with EPERM. II ;
break;

case I_SETHANG:
p = lIi_sethangll ;
e = IISubsequent read()'s and write()'s

will fail.lI;
break;

case I_INTARG:

default:

p = lIi_intargll;
e = IIWil1 complete successfully (55).";
break;

p = lIunknown ioctl ll ;
e = IIWil1 fail with ETIME.II;
break;

printf(lI\nTrying ioctl() call '%s': %s\nll, p, e);
if ((i = ioctl(fd, I_STR, &ioc)) == -1) {

perror (listrioctl (): ioctl failed ll);
printf (liioctl () return code %d\nll, i);

else {

printf(lIioctl() return code %d\n", i);

sleep(5);

6.11

Quiz 221

Summary

STREAMS provides a convenient mechanism to construct protocol
stacks from functionally distinct layers of software. Any character
based 110 subsystem that does intermediate processing of data as it
moves between the user and a device can be implemented as a Stream
module, thus imposing a layered, structured approach to the soft
ware design. Some obvious examples are a TCP/IP stack, and line
disciplines for serial device drivers.

This chapter has described how STREAMS works in the SCO UNIX
kernel, and we have presented a simple STREAMS loop back driver to
illustrate the important principles.

In the exercise at the end of this chapter, you will have an oppor
tunity to write your own Stream driver for the mouse, and reinforce
the theory that we have presented.

QUIZ

To test your understanding of this chapter, try to answer the
following questions.

6.1 Do modules and Stream drivers have entries for XXread,
XXwri te and XXioctl routines in cdevsw?

6.2 What are the two main characteristics of priority messages,
when compared with ordinary messages?

6.3 If an XXput routine defers processing to the XXservice
routine, how is that XXservice ultimately invoked?

6.4 When is the XXopen routine of a module or Stream driver
called?

6.5 What is the purpose of the routine called strwsrv in the
Stream head?

222 STREAMS

6.6 Which option of the crash(ADM) utility should you use to
determine whether allocb has failed to allocate a data
buffer from a particular class?

6.7 What are the three message types that can be handled by
read(S), write(S), getmsg(S) and putmsg(S) at the Stream
head?

6.8 What software priority level does the STREAMS support
software in the kernel run at?

EXERCISE

Convert the mouse driver from Chapter 4 to a Stream driver.
Here are some hints:

• As the mouse is an input-only device, you should declare a qini t
only for the upstream QUEUE. Use NULL as a placeholder for the
downstream QUEUE in the streamtab.

• Modify your XXintr routine to allocb a message block to contain
the data from the mouse. Use bcopy(K) to copy the data into the
message block, then call putq to add the message to the read
QUEUE.

• Provide an XXservice routine which uses getq to get messages from
the read QUEUE, and then calls putnext to send the message to the
Stream head.

• Put some cmn_err (K) calls into your driver so that you can see the
routines being called. In particular, check that the STREAMS
scheduler is calling your XXservice procedure.

• Configure your driver to run at splS (K).

The mouse and mousey test programs will work without any modi
fication.

Advanced sessions:

• Add support for CLONE OPEN in your XXopen routine.

• Add support for M_FLUSH messages in your XXservice routine.

A suggested answer is given in ~ Answers to Exercises'.

Notes 223

NOTES

1. A Stream driver should not be configured to run at sp16 (K) or higher,
unless the Stream driver is implemented in a similar way to the example
serial driver in Chapter 5.

2. The default value for STRLOFRAC is 80% on sea UNIX 3.2v4.

3. The default value for STRMEDFRAC is 90% on sea UNIX 3.2v4.

4. The maximum number of QUEUEs available is determined by NQUEUE.
The default value is 96 on sea UNIX 3.2v4.

5. The maximum number of STREAMS that can be active is dependent on
how many stdata structures are configured. The configurable resource is
NSTREAM. The default value is 32 on sea UNIX 3.2v4.

6. The only purpose of the Stream head's strwsrv routine is to wakeup(K)
anyone who is asleep, whenever the Stream head is back-enabled.

7. The length of time the poll (S) system call should wait is rounded to the
nearest clock tick by the kernel.

8. The statement that the user's first open(S) system call always completes
assumes that there is a minor device available.

Block device drivers

7.1 Overview

224

The previous chapters in this book have all described different types
of character device drivers. In this chapter, we shall examine device
drivers which conform to the block device model, first described in
Chapter l.

Block device drivers transfer data between the machine's memory
and devices which structure and manage their data in fixed-size
blocks, such as disks and tapes. For example, a disk drive might
organize data in sectors of 512 bytes, and a tape might organize data
in blocks of 1024 bytes.

In practice, block devices are used almost exclusively to support
UNIX file systems and swapping, and so the terms block device driver
and disk device driver are normally used interchangeably. 1 In this
chapter, we shall discuss the operation of an sca UNIX disk device
driver for a disk controller with an STS06 register interface, emulated
in software.

In the exercise at the end of this chapter, we shall test the extended
RAM disk driver presented in Section 7.10.

A disk driver's job is to manage the data on the device so that it can
be presented to the kernel as a logically contiguous single-dimensional
array of filesystem blocks. To do this, it must translate the operating
system's logical interpretation of the filesystem blocks into divisions
and partitions (see Section 7.7), and reconcile this with the physical
attributes of the device (cylinders, tracks, sectors and bad blocks).

Users' requests to read files in the filesystem are translated by the
kernel's file system support routines into requests to transfer one or
more blocks between the kernel's buffer cache and the device. When
the transfer is complete, the kernel copies the data which the process
actually wants from the buffer cache into the process' address space.

Block device characteristics 225

A similar sequence of events happens in response to requests to write
to files in the filesystem.

For example, a request to read 16 bytes from /etc/passwd is trans
lated by the kernel to read the first block of /etc/passwd from the
filesystem (this might be block number 2654) into the buffer cache.
The disk driver receives a request from the kernel to read block 2654,
and is told whereabouts to put it in memory. When the disk driver
indicates that the data has been read from the device, the kernel
copies the first 16 bytes out to the user process and control returns
through the read (S) system call.

The buffer cache serves two purposes for block devices:

• It is an intermediate buffer between the user process at task-time
and the device driver's XXintr routine at interrupt-time. In this
sense, it is comparable to the clists used by character device
drivers.

• It contains copies of the kernel buffers used during previous trans
fers, so that user requests to read commonly-accessed files can, in
the majority of cases, be satisfied directly from the contents of the
buffer cache, rather than a new request being sent to the device.

The operation of the buffer cache is described in more detail in
Section 7.3.

Figure 7.1 shows the layers of software between the system call
code and the device driver.

7.2 Block device characteristics

The principal kernel interface to a block device driver is through the
routine called XXstrategy. The kernel calls XXstrategy whenever a
user's read(S) request cannot be satisfied from the buffer cache, or
whenever it wants to synchronize the filesystems with the buffer
cache contents, by flushing out to the disk any buffers that have been
changed by write (S) system calls. The kernel fills out a struct buf to
describe the request (see Section 7.4), and passes the address of this
structure to XXstrategy. The struct buf includes:

• The block number that is required, and which device (file system)
contains it.

• How many bytes should be transferred (this number is the same as
the kernel's internal block size, 1024 bytes on sea UNIX).

• The address of a 1 Kb entry in the buffer cache.

• A flag indicating whether to read or write.

226 Block device drivers

User space

Kernel sp ace
System call
entry code

Generic
filesystem code

Filesystem
specific code

Buffer cache
management code

Block device
drivers

.

,
Block devices

Figure 7.1 Block device drivers.

Since the device can only deal with one request at a time, the device
driver must maintain a queue of requests that it receives from the
kernel. As soon as the device finishes with one request, the driver
sends it the next request from the queue.

The file system code and the buffer cache management code take
care of everything else, including blocking and unblocking of data,
read-ahead and management of the buffer cache.

7.2.1 Blocking and unblocking of data

The file system code blocks and unblocks data to ensure that variable
sized read (S) and write (S) requests from the u~er are translated to
fixed-size requests before passing them on to the buffer cache man
agement code. An example of how this is done for a read(S) system
call was described in Section 7.1 above.

Block device characteristics 227

For a write(S) system call, the sequence of events can be more
complex. Consider a request to write into only the first 15 bytes of
/etc/termcap. In order to preserve the fixed-size block interface, the
kernel must first of all read the first block of /etc/termcap from the
file system into the buffer cache. When the block has been read into
the buffer cache, the kernel can copy the 15 bytes from the user
process into the buffer cache, leaving the remaining 1009 bytes intact.
Finally, the modified buffer is passed to the device driver for writing
back out to the filesystem.

Blocking and unblocking are completely transparent to the device
driver.

7.2.2 Read-ahead

Empirical evidence demonstrates that user processes tend to access
files sequentially. That is, they open a file, read and process each of
the file's data blocks, and after they have read and processed the last
data block, the file is closed. For example, consider the behaviour of
grep(C), more (C), cc (CP), and so on.

Because sequential access of files is such a common occurrence, the
file system support code contains checks to determine if sequential 110
is happening, and if so, to start making read-ahead requests on behalf
of the process. Each time a block is read, the block address is recorded
in the file's inode entry in the inode table. If the next block requested
by the process is the one following the block that has just been read,
the kernel assumes that the file is being accessed sequentially.

The kernel now issues two requests to the device driver instead of
one. The first request is to read the block that is required, and the
second request is to read the following block. Thus, when the user
process has finished processing the first block, the next block will
already be in the buffer cache, and the next read (S) system call can be
satisfied without accessing the device. The kernel sees that the pro
cess is still accessing the file sequentially, and sends another request
to the device to read the next block, so that the process' next read (S)
system call can also be satisfied from the buffer cache, and so on.

Although the number of requests arriving at the device is the
same,2 the read-ahead ensures that the process' hit-rate on the buffer
cache is maximized, therefore improving the process' throughput.

Read-ahead is implemented transparently by the file system sup
port code, and is therefore transparent to the device driver.

The Acer Filesystem (AFS) supported by sca UNIX extends the
idea of read-ahead a step further, and sends requests to the device to
read clusters of blocks in advance, rather than just single blocks. A
cluster is a logically contiguous sequence of disk blocks,3 and the AFS

228 Block device drivers

attempts to allocate clusters of blocks to files when they are created.
For most of the time, logically contiguous means physically con
tiguous on the disk surface (the exception is if there are bad blocks in
a cluster), so it is an advantage to be able to read-ahead entire
clusters. As well as improving the hit-rate on the buffer cache, clus
tering helps to minimize disk head movement as all files can be read
with significantly fewer disk accesses.

Support for clustering read-ahead and the associated scatter-gather
I/O operations requires modifications to the device driver which are
beyond the scope of this book.

7.3 The buffer cache

The buffer cache is a key mechanism which contributes significantly
to the overall effectiveness of the block I/O subsystem. As illustrated
in Figure 7.1, the buffer cache system is a layer of software positioned
between the file system code and the block device drivers. It has the
following responsibilities:

• To decouple the task-time and interrupt-time components of an I/O
request. All buffer cache manipulation is protected at sp16 (K).

• To maintain copies of the buffers that have been recently used for
. I/O.

• To provide an efficient mechanism for searching the cache contents
so that read(S) requests can be satisfied directly from the cache,
without needing to call the device driver to access the disk.

• To provide a mechanism for asynchronous write (S) requests. This
allows user processes to write data into the cache and return from
the write (S) system call, without having to wait for the data to be
written to the disk.

In seo UNIX, the size of the buffer cache is dependent on the total
amount of memory available, and is determined by the kernel as it
starts up. A typical size on a machine with 4Mb of RAM would be 600
1 K blocks. The upper limit of the size of the buffer cache is the
resource MAXBUF which can be modified with configure (ADM) .4 Depen
ding on the actual mix of processes that are being run on the machine,
the overall performance of the I/O subsystem can sometimes be
improved by configuring the buffer cache to be as large as possible.
However, note that a larger cache implies that less memory will be
available for user processes, which in turn may increase the overall
amount of paging and swapping activity. This may have exactly the
opposite effect on overall performance to that which is desired!

The buffer cache 229

7.3.1 The buffer header structure

Each buffer in the buffer cache is described by a struct buf buffer
header, and the buffer headers are linked onto one or more doubly
linked lists. It is important to note that the buffer header is not the
actual buffer, merely a description of it.

The doubly-linked lists are called the free list and the cache, and
there is a busy list for each device. The XXstrategy routine is passed
the address of one of these structures whenever it is called to initiate
an 1/0 request. The structure is defined in (sys/buf. h) :

typedef struct buf
{

int
struct

struct
struct

struct
dev_t

struct

b_flags;
buf *b_forw;

buf *b-hack;
buf *av_forw;

buf *av_back;
b_dev;

lockb b_cilock;

unsigned b_bcount;

union {
caddr_t b_addr;

int *b_words;
daddr_t *b_daddr;

#ifdef FFS

/* status of buffer */
/* headed by driver's

XXtab */

/* position on free list
if not B_BUSY */

/* major+minor device
name */

/* MPX buf struct
synchronization */

/* how many bytes to
transfer */

/ * virtual address of.
buffer */

/* words for clearing */
/* disk blocks */

struct filsys *b_filsys; /* superblocks */

#define paddr(X) (paddr_t) (X->b_un.b_addr)
daddr_t b_blkno; /* block # on device,

char b_error;
char b_res;
ushort b_cylin;
unsigned int b_resid;

time_t
struct

b_start;
proc *b_proc;

unsigned long b_reltime;

in 512 byte blocks */
/* returned after I/O */
/* XENIX Compatibility */
/* XENIX Compatibility */
/* bytes not transferred

after error */
/* physical sector of

disk request */
/* request start time */
/* process doing physical

or swap I/O */
/* previous release

time */

230 Block device drivers

#ifdef FFS
int b_s2;
int b_s3;

#define b_umd b_s2
#define b_fbit b_s2
#define b_pt b_s3
#endif

int b_want;

/* temporary space */
/* temporary space */

/* Stores B_WANTED to
avoid race */

Most of these fields are used only by the file system and buffer cache
management code, and do not need to be examined or modified by
the device driver. The most relevant fields are presented here.

b_flags

Contains a mask of bits OR'd together describing the status of the
buffer. The possible bits are defined in (sys/buf . h). The only two bits
of interest to the device driver are the B_READ or B_WRITE bit, which
indicates whether the request received in XXstrategy is a read or a
write, and B_ERROR, which the device driver should set to indicate an
error.

b_forw, b_back

Used to link the buffer header into the cache (see Section 7.3.3
below).

av_forw, av_back

Used to link the buffer header into the free list (see Section 7.3.2
below), or onto the device's busy list if an I/O request is outstanding
(see Section 7.3.4 below).

b_dev

The major and minor device number of the device where the block
resides (for example, the root filesystem).

b_bcount

The number of bytes to be transferred in this request. This is always
1024 bytes when the device is being accessed through the block
interface.

The buffer cache 231

b_un.b_addr

The virtual address of the buffer in the kernel's buffer cache. 5 The
device driver should transfer data between here and the device.

b_blkno

The offset within the device (specified by b_dev) of the start of the
transfer, measured in 512-byte blocks.

b_error

Used to return error codes from the device driver to the user process.
A list of valid error codes is given in (sysjerrno.h). Whenever
B_ERROR is set in b_flags, the kernel will return EIO through the
system call, unless an alternative error code is put here by the device
driver.

b_resid

This value should be set by XXstrategy to indicate the number of
bytes that cannot be transferred due to an error in the request. For
example, a request to read beyond the end of a device.

b_sector

Set by XXstrategy to be the absolute physical offset into the drive of
the start of the transfer. It is used as a sort key to insert the request
into the device's busy list (see Section 7.3.4 below).

7.3.2 The free list

When the system starts up, all of the buffer headers are linked onto
the free list anchored at bfreelist, using the av_forw and av-hack
pointers. They are not linked onto either of the other two lists.

Buffer headers are removed from the free list whenever an 1/0
request is sent to the device, and put back onto the free list when the
110 request completes.

7.3.3 The cache

When the buffer cache management code wants to send a request to
the device, it unlinks a buffer header from the free list and links it into
the cache, using the b_forw and b_back pointers. The cache is the set

232 Block device drivers

of buffers which contain useful data (data that has either been read
from the device, or written by the kernel or a user process). Access to
the cache is via a hash key, generated by the bhash macro in
(sys/buf. h):

#define bhash(dev,blkno) \
((struct buf *)&hbuf[((int)dev + (int) (blkno» 1)) &

v. v_hmaskl)
struct hbuf
{

int b_flags;
struct buf *b_forw;
struct buf *b_back;
int b_pad; /* round size to 2An */

} ;

extern struct hbuf hbuf[l;

The hash key is used to index the array hbuf,6 which is a list of entry
points (called hash buckets) into the cache. When adding a buffer to a
hash bucket, the kernel searches along b_forW, comparing the b_dev
and b_blkno fields with those in the request, and inserts the new
buffer header into the appropriate position. The b_flags field is
marked B_BUSY.

A similar sequence of operations is used to establisH a cache hit or a
miss.

Figure 7.2 shows some buffer headers in the cache.

7.3.4 The busy list

After the buffer header has been linked into the cache, the kernel taUs
xx strategy to deal with the request. If there are many processes
making 110 requests, xxstrategy will be called at a rate higher than
the device can deal with the requests, so XXstrategy must maintain a
queue of requests that it receives from the kernel, and issue these one
by one to the device.

This final queue is called the busy list. Typically, a device driver
will maintain one busy list for each drive attached to the controller,
assuming that the controller is able to operate the drives indepen
dently of each other. The kernel provides a support routine called
disksort (K) which sorts a request onto the appropriate busy list,
using the av_forw and av_back pointers in the buffer header. Note
that these pointers are the same as those used when the buffer header
was on the free list.

Each busy list is anchored by a struct iobuf XXtab (see
(sys/iobuf.h), and is sorted in ascending b_sector order. The

The buffer cache 233

Hash buckets Buffer headers

Figure 7.2 The buffer cache.

XXstrategy routine sets b_sector to be the physical sector number of
the start of the request before calling disksort (K) .

Each time the device completes a request and the device becomes
free, the device driver issues the next request from the head of the
busy list.

A higher physical sector corresponds to a higher offset into the
drive, which means that the disk heads will typically move from the
outermost cylinders towards the innermost cylinders as the device
driver issues each of the requests from the busy list. Figure 7.3 shows

XXtab

b_actf ---. av_forw r---+- aV_forw -----. aV_forw NULL

b sector b sector b sector
=432 =694 =1124

Figure 7.3 Buffer headers on a busy list.

234 Block device drivers

XXtab

b_actf r-----+ av_forw f-----+ av_forw f-----+ av_forw f-----+ av_forw NULL
b sector b sector b sector b sector
=694 =800 =1124 =264

Figure 7.4 The same busy list a short while later.

a typical busy list. Figure 7.4 shows the same list after some more
requests have been received from the kernel. Note that the request to
read/write starting at sector 432 has been completed. The two new
requests are sectors 800 and 264. The request to read/write starting at
sector 264 is appended to the end of the busy list, as the disk heads
are already beyond this position, dealing with the current request at
sector 694.

When an 110 request completes, the device driver's XXintr routine
calls iodone (K) to set B_DONE in b_flags, unlink the buffer header from
the busy list, and return it to the free list. 7 Note that the buffer header
is still in the cache when iodone (K) is called. The exact behaviour of
iodone (K) depends on whether B-ASYNC is set in b_flags:

• Buffer headers that have been used for asynchronous I/O, such as
those written by the system process bdflush, and those written by
a write (S) system call where O_SYNC was not specified in the
open(S) request, will have B-ASYNC set. These buffer headers will be
returned to the free list directly by iodone (K), and a wakeup (K) will
be issued to wake up any processes which may be waiting for a free
buffer .

• Buffer headers that have been used for synchronous I/O (all
read (S) requests are synchronous) will not have B-ASYNC set, and
will require further task-time processing by the file system manage
ment code after it has been woken up by iodone(K).

At task-time, the filesystem copies the data from the buffer cache
out to the user's address space, and then returns the buffer header
to the free list.

Figure 7.5 shows how a buffer header moves between the lists during
a read (S) request.

Buffer activity can be monitored with the -b option of the sar (ADM)

utility. Figure 7.6 shows a typical report from sar(ADM). The bread and

The kernel interface 235

Free list Free list

~ u ~ L-...J

Cache Cache

Busy list Busy list

0-0----0 0-0----0
(a) A buffer header is removed from the free list. (b) The buffer header is linked into the cache.

Free list Free list

Cache Cache

Busy list

0-0----0
(c) The buffer header is linked onto a busy list. (d) The buffer header is returned to the free list

Figure 7.S Buffer header activity.

bwri t figures report the number of transfers between the cache and
the device. The lread and lwrit figures report on the number of
transfers between either the kernel or user processes and the cache (a
cache hit). On a typical system, the cache hit rate for reads should be
approximately 85%, and approximately 65% for writes.

7.4 The kernel interface

As we have seen, the principal interface between the kernel and a
block device driver is through the XXstrategy routine, which is called
when the kernel wants to transfer data between the buffer cache and
the device:

N
(H
0"1

OJ
C n
?\'"
~
~
(j

~.

~
~ c:i.
~

12:57:44 bread/s 1read/s %rcache bwrit/s 1writ/s %wcache pread/s pwrit/s ~

12:57:49 0 2 100 14 15 10 0 0

12:57:54 14 100 86 3 32 89 0 0
12:57:59 37 401 91 2 136 99 0 0
12:58:04 55 290 81 5 46 89 0 0
12:58:09 8 259 97 20 155 87 0 0
12:58:14 2 299 99 29 186 84 0 0
12:58:19 16 179 91 19 104 82 0 0

12:58:24 8 253 97 20 152 87 0 0

12:58:29 2 259 99 19 144 86 0 0

12:58:34 8 220 96 30 138 78 0 0

Average 15 230 93 16 113 86 0 0

Figure 7.6 Buffer activity measured with sar -b.

void
XXstrategy(bp)

struct buf *bp;

A RAM disk driver 237

The bp parameter describes the kernel's request, as discussed in
Section 7.3.1 above. The XXstrategy routine should do the following:

(1) Validate the request described by bp.

(2) Calculate the physical offset, b_sector.

(3) Call sp16 (K) to interlock other buffer activity.

(4) Call disksort(K) to add the request to the device's busy list.

(5) Call XXstart to start up the device.

(6) Call splx (K) to re-enable interrupts.

(7) Return to the caller.

The XXstart routine is private to the device driver, and is respons
ible for issuing requests from the busy list to the device. A description
of the XXstart routine is given in Section 7.10.4.

The device driver must also provide an XXprint routine which the
kernel can call to display error messages on the console. All the
XXprint routine has to do is call cmn_err(K) to display the message:

void
XXprint(dev, message)

dev_t dev;
char *message;

There is an example XXprint routine in the RAM disk driver below.
The remainder of the kernel interface (XXinit, XXopen, XXclose,

XXintr and xXhalt) is described in Section 7.10. XXstrategy and
XXprint routines are all that we require to write a simple RAM disk
driver.

7.5 A RAM disk driver

The following RAM disk device driver illustrates the principles that
we have discussed so far. It manages an area of kernel virtual mem
ory of RAMD_SIZE kilobytes, set up by a call to memget (K) in XXini t.
Since there is no actual hardware to be controlled, all of the kernel's
requests can be satisfied at task-time, without the need for a busy list
or an XXstart routine. The XXstrategy routine is responsible for
copying data between the RAM disk and the buffer cache, using the
copyio (K) routine:

238 Block device drivers

copyio(paddr, caddr, nbytes, mapping)
paddr_t paddr;
caddr_t caddr;
int nbytes, mapping;

Note that the paddr parameter must be a physical address. The
ktop(K) macro is used to convert b_un.b_addr from a kernel virtual
address to a physical address.

Here is the device driver:

/*
* src/ramd.c

* A sample block device driver.
*
* ./configure -a ramdinit open close strategy -b -m MAJOR
*/

#include (sys/types.h)
#include (sys/param.h)
#include (sys/sysmacros.h)
#include (sys/errno.h)
#include (sys/cmn_err.h)
#include (sys/dir.h)
#include (sys/signal.h)
#include (sys/page.h)
#include (sys/seg.h)
#include (sys/user.h)
#include (sys/mmu.h)
#include (sys/map.h)
#include (sys/iobuf.h)
#include (sys/buf.h)
#include (sys/immu.h)
#include (sys/region.h)
#include (sys/proc.h)

/*
* The following XXtab is the anchor for the device's busy
* list. We must declare it to keep configure(ADM) content,
* even though this device driver doesn't uSe it.
*/

struct iobuf ramdtab;

#define RAMO_SIZE 400

char *ramdbasei

/*
* ramdinit ()

/* Kilobytes */

* Allocate RAMO_SIZE kilobytes of memory with memget(K)
*/

A RAM disk driver 239

ramdinit()
{

ramdbase = (char *)ctob(memget(btoc(RAMO_SIZE * BSIZE)));
printcfg ("ramd ll

, 0, 0, -1, -1, "%dK allocated II ,

RAMO_SIZE) ;

ramdopen()
{}

ramdclose ()
{}

void
ramdprint(dev, str)

dev_t dev;
char *str;

/*

cmn_err(CE_NOTE, "%S on RAM disk major %d, minor %d",
str, major(dev), minor(dev));

* XXstrategy() is called when the kernel wants us
* to do I/O. The I/O request is described by bp.
*/

void
ramdstrategy(bp)

register struct buf *bp;

int flag;
char *base;
if (bp->b~lkno < 0)

bp->b_flags 1= B_ERROR;
iodone (bp) ;
return;

if (bp->b~lkno >= (RAMO_SIZE * 2)) {

/*
* The request starts at the end of, or beyond
* the end of, the device.
*/

if (bp->b~lkno == (RAMO_SIZE * 2)
&& (bp->b_flags & B_READ)) {

/*
* If we're reading, that's OK. Indicate
* end-of-file by setting b_resid, then
* return. DO NOT set B_ERROR.
*/

bp->b_resid = bp->b~count;
else {

/*
* If we're writing, that's an error.
*/

240 Block device drivers

/*

bp->b_flags 1= B_ERROR;
bp->b_error = ENXIO;

iodone (bp) ;
return;

* The request is valid. Compute the starting offset
* into the RAM disk, and copyio(K) data from this
* point.
*/

base = rarndbase + (bp->b_blkno * 512);
flag = bp->b_flags & B_READ? U_WKD: U_RKD;
if (copyio(ktop(paddr(bp), base, bp->b-hcount, flag)

== -1) {

crnn_err(CE_WARN, "bad copyio(K) on RAM disk");

iodone (bp) ;

7.6 The geometry of a hard disk

A hard disk typically contains a number of platters mounted onto a
spindle. Each platter has two surfaces, and there is a separate read/
write head for each surface. Each surface is organized into a number
of concentric tracks, and the tracks are divided into sectors. Each
track contains the same number of sectors,8 and the sectors contain
the data that is read or written by the kernel.

7.6.1 Cylinders, heads and sectors

From the device driver's point of view, a disk is a set of cylinders,
heads and sectors. A cylinder is the vertical set of tracks which are at
the same offset within each of the surfaces. The track to be accessed is
specified by a cylinder and head number, and the sector is specified
within the track. Figure 7.7 illustrates these components.

As previously described, the device driver's job is to present the
data on the device as a logically contiguous single-dimensional array
of fixed-size blocks. The kernel might issue a request to the disk
driver to 'read block 167 from the root filesystem', which must be
translated by the device driver's xxstart routine to a request such as

The geometry of a hard disk 241

Figure 7.7 Cylinders, heads and sectors.

'read 2 sectors from the disk at {cylinder, head, starting sector}'. The
XXstart routine translates the kernel's request, dealing with any bad
track mapping, and then passes the request out to the hardware.

7.6.2 Low-level formatting

Before the hard disk firmware is able to recognize tracks and sectors,
the disk must be formatted. Formatting is a low-level operation that is
done before the Operating System is first installed, and it varies
between one type of disk controller and another.

For example, to format drives attached to an Adaptec ACB-2322
ESDI disk controller, you must boot from DOS, and then run DEBUG.

At the - prompt, type G=C800: 5 to run the formatting software on the
disk controller:

A> DEBUG

-G=C800:5

The disk controller writes track numbers and sector numbers (called
sector IDs) onto the disk, and computes an Error Correction Code
(ECC) value for each sector. The track numbers and sector IDs are
used by the disk drive to locate individual sectors on the disk, in
response to requests from the device driver and controller. The ECC
is used to check that the sector was read correctly, and is recomputed
and rewritten each time a sector is written. The ECC can also be used
to repair corrupted parts of the sector if a bad block develops whilst
the disk is in use.

242 Block device drivers

7.6.3 Interleave

The physical gap between logically adjacent sectors is called the
interleave factor. If the controller has no on-board caching facility, it is
essential to specify the correct interleave factor in order to optimize
I/O performance. If the wrong interleave factor is specified, the kernel
may have to wait longer than necessary for the disk controller to
interrupt at the end of each request, leading to a substantial drop in
throughput of sequential 1/0.

Figure 7.8 shows a disk formatted with an interleave of 1. An
interleave of 1 implies that the disk drive, the controller and the
device driver can together respond to an interrupt from one request
and issue a request to read or write the next logical sector in less than
the time it takes for the disk to spin from the end of one sector to the
beginning of the next. That is, an entire track can be read sector-by
sector within one revolution of the disk. If the drive, controller or
device driver is too slow, then the next logical sector may have
already passed beneath the disk head, and in the worst possible case
there will be a delay of almost an entire disk revolution before the
sector comes underneath the disk head again and can be read. That
is, for a disk that has 33 sectors per track, it will take 33 disk

Rotation

o

Figure 7.S A disk interleave factor of 1.

The geometry of a hard disk 243

Rotation

o

Figure 7.9 A disk interleave factor of 3.

revolutions to read the entire track, sector-by-sector! Controllers such
as the Adaptec ACB-2322 have an on-board cache which effectively
alleviates this problem. Whenever they receive a request to read a
sector, the entire track is read into the cache. Subsequent read
requests from that track can then be satisfied from the controller's
cache without making any further disk accesses.

Figure 7.9 shows a disk formatted with an interleave of 3, which
gives the drive, controller and device driver more time to respond to
an interrupt and issue the next request. The entire track can be read
within three disk revolutions.

Being aware of the disk controller's capabilities and being aware of
the overheads of the device driver and the kernel are important
factors when specifying the interleave for the disk format. The manu
facturer of the disk controller usually advises which interleave factor
you should use, but it is often worth experimenting with different
values to see which gives you the best results.

The mkfs (ADM) command has two optional parameters called gap
and inblocks,9 which allow you to specify different values for file
system interleave (the gap parameter), without having to reformat the
disk.

244 Block device drivers

7.7 Partitions and divisions

The translation of kernel requests to requests which the controller can
understand is complicated by a further abstraction of the physical
disk surface into partitions and divisions. Partitions and divisions
have special meanings in sea UNIX, and we shall explain them here.

7.7.1 Partitions

A hard disk has between one and four partitions,10 which together
span the entire surface of the disk. A partition contains a complete
Operating System, such as DOS, sea XENIX, or sea UNIX. It is
therefore possible to have many different Operating Systems
installed on a single hard disk. Partitions are maintained by the
fdisk (ADM) utility, and are set up during the installation procedure.
The sizes, locations and types of each partition are maintained in a
partition table at the end of the Masterboot block in sector 0 on the
disk. See Figure 7.10. This partition table is read into memory when
the disk is first opened and is used by the device driver to validate
and translate I/O requests from the kernel.

One of the partitions is designated the active partition, and it is this
partition the machine's BIOS will boot from. The active partition can
be changed with fdisk (ADM) .

A bootable partition contains a number of other structures, includ
ing primary and secondary bootstraps, a division table and possibly a
table of bad tracks. Figure 7.11 summarizes these structures.

7.7.2 Divisions

Each partition can be further divided into between one and eight
divisions. 11 A division can contain a file system, it may be empty, or it
may have special functionality dependent on the Operating System
installed on the partition. By convention, division 0 in the bootable
UNIX partition on the primary drive contains the root file system, and
division 1 is the swap area. The machine will normally boot from
/boot and /unix in the root filesystem.

sea UNIX uses division 6 to record diagnostics from fsck (ADM) ,

and division 7 to map the entire partition. Divisions are maintained
by the divvy (ADM) utility, and are set up during the installation pro
cedure. Each partition has its own division table. See Figure 7.11.

Sector 0
(Masterboot block)

Sector 1

Partitions and divisions 245

t-----------I Maximum of 4 entries
1'-----------1 in partition table

Figure 7.10 The Masterboot block contains the partition table.

The partition table should be modified only during installation.
However, it is possible to change division information at any time,
although you must be careful. For example, you could use divvy (ADM)

to split an existing division, containing a file system called lu, into two
new divisions containing file systems Ix and Iy. Remember to take a
backup of the lu filesystem before you start!

7.7.3 The minor device number

A disk driver identifies partitions and divisions by examining bits in
the minor device number. Hard disk drivers for sea UNIX should
interpret the eight bits as follows:

• Bits 7 and 6 encode the physical drive number within the controller
(physical drive 0, 1, 2 or 3) .

• Bits 5,4 and 3 encode the partition within the drive (partition 1, 2,3
or 4).

The active partition is a special case and is indicated by setting
bits 5 and 3.

246 Block device drivers

Primary bootstrap

Gap

Secondary bootstrap

Division table

Bad track table

Gap

Alias tracks

Divisions

Figure 7.11 A bootable partition .

• Bits 2, 1 and a encode the division within the partition (division 0,
1, 2, 3, 4, 5, 6 or 7).

For example, minor device 40, represented as 00 101 000 in binary,
selects division 0, on the active partition, on physical drive O. Minor
device 40 identifies /dev/root.

Note that in the XXstrategy routine, the device number is available
in b_dev.

Section 7.9 will show how a hard disk driver should use the minor
device number in cooperation with the kernel disk support routines
to support partitions and divisions.

Kernel support for disk drivers 247

7.8 Bad blocks

All ST506 and ESDI disk controllers, and some SeSI disk controllers,
require support from the device driver to deal with bad blocks. A bad
block is a block that cannot be read or written without causing a
checksum error, and which cannot be fixed by the controller's Eee
firmware. When a bad block is detected, the controller sets an error
bit in the status register, so that the device driver's XXintr routine can
decide whether to retry the same request again, or to report an error
on the console.

A typical 300Mb ESDI drive may have between 20 and 50 bad
blocks when it is shipped from the manufacturer, and of course more
bad blocks may develop during the drive's lifetime.

sea UNIX provides kernel support routines for use by the
badtrk (ADM) utility and the device driver, which maintain a bad track
table on each non-DOS partition on the drive. The bad track table is
located at a fixed location within the partition, and is read into
memory when the disk is first opened. It is followed by an area
reserved for the alias tracks. The table is created and initialized by
badtrk (ADM) during the installation procedure,12 and can be modified
later if any new bad tracks develop. See Figure 7.12.

The device driver's XXstart routine examines the in-core bad track
table each time it translates an 110 request. If the request spans a bad
track, it is remapped by XXstart into smaller sub-requests before
being issued to the device.

Of course, mapping a bad track to an alias track can undo all of the
good work of disksort (K), as the disk heads have to move to the alias
track to access the data, and then back again for the next request. But
this is a relatively small price to pay to ensure the integrity of the disk.

The next section will explain how a hard disk driver can use the
kernel support routines to manage bad tracks.

Figure 7.13 shows a complete physical disk with partitions, div
isions, bootstraps and a bad track table.

7.9 Kernel support for disk drivers

seo UNIX provides a number of kernel support routines for hard
disk device drivers to use. These routines allow the device driver to
support partitions, divisions and bad tracks. You should use these
routines if you want your device driver to be able to respond correctly

248 Block device drivers

I--_____ "--_~ __ ___fl------ir----, Bad track table

Alias tracks

Divisions

Figure 7.12 Bad tracks.

to the standard sea UNIX commands badtrk (ADM), divvy (ADM) ,
dpararn (ADM) and fdisk (ADM) .13

The next section shows these routines being used in the RAM disk
driver from Section 7.5.

7.9.1 Data structures

The principal data structure used by each of the routines is a struct
diskinfo, defined in (sys/disk.h). A dip_t is a pointer to one of these
structures. Secondary data structures are in (sys/dio.h):

Kernel support for disk drivers 249

Masterboot

Gap

Partition 1 (DOS)

Primary bootstrap Partition 2 (UNIX)

Gap

Secondary bootstrap

Division table

Bad track table

Gap

Alias tracks

Division 0

Root filesystem

Division 1
Swap area

Recover Division 6

Figure 7.13 A disk with two partitions, DOS and UNIX.

j*
* Disk geometry (from (sysjdio.h)). Included
* in the struct diskinfo, below.
*j

struct dparam {

} ;

unsigned short d_cylin;
unsigned short d_heads;
unsigned short d_sectors;
unsigned short d_bytes;
unsigned short d_reserved;

j* cylinders per drive *j
j* heads per drive *j
j* sectors per cylinder *j
j* bytes per sector *j
j* sectors reserved for

system use at
beginning of disk *j

250 Block device drivers

/*
* Drive parameters. Included in the
* struct diskinfo, below.
*/

struct dkparms {

} ;

/*

unsigned short prcmp;
unsigned short lzone;
unsigned short wrt_reduce;
unsigned char ecc;
unsigned char ctrl;

/* Write precompensation */
/* Landing zone */
/* Write reduce cylinder */
/* Ecc level */
/* Control surface */

* The diskinfo structure. Only the parts
* directly relevant to the device driver
* are shown.
*/

struct disk info {

/*

int dkflags;
int (*dkstrat) ();
struct dparam dkparam;
struct dkparms dkparms;
int spcyl;
int dkcinit;

/* XXstrategy() */
/* drive params */
/* more drive params */
/* sectors per cylinder */
/* re-initialize

controller when set */

* Device drivers should not set or examine
* anything past this point.
*/

A diskinfo structure is allocated by the dkalloc (K) support routine:

dip_t
dkalloc()

This routine should be called from XXopen on the first open of each
physical drive. It allocates an empty struct diskinfo for use by the
device driver. There should be one of these structures for each phys
ical drive.

The device driver's XXopen should fill out dkstrat with the address
of XXstrategy, and fill out dkparam and dkparms with disk geometry
information obtained from the ROM BIOS, see (sys/rom.h).

When the physical drive is dosed, the struct diskinfo should be
freed. In practice, most disk drivers do not call dkfree (K) , as the last
close of a physical drive implies that the kernel is shutting down:

dkfree(dip)
dip_t dip;

Kernel support for disk drivers 251

Once the struct diskinfo has been allocated and filled out, the
device driver's XXopen routine should call dksetup (K) to read the
Masterboot block, partition table, division table and bad track table
from the drive. The dksetup (K) routine makes calls to the device
driver's XXstrategy routine to read the appropriate blocks from the
device. If all is well, dksetup (K) calls printcfg (K) to display the
information from the struct dkcntlrtab (see (sysjdisk.h):

dksetup(dip, dey, dkcntlr)
dip_t dip;
dev_t dey;
struct dkcntlrtab *dkcntlr;

The badtrk (ADM) , divvy (ADM), dparam (ADM) and fdisk (ADM) com
mands all send ioctl (8) requests to the device driver's XXioctl
routine. The XXioctl routine should validate the ioctl (8) request
against those listed in (sysjdio.h), and then just call dkiocornm(K).
The dkiocomm (K) routine uses information from the struct diskinfo,
and the tables obtained from the drive by dksetup (K) . It will arrange
for all relevant changes (for example, a new division table from
divvy (ADM)) to be written out to the disk:

dkiocornm(dip, dey, cmd, addr, mode)
dip_t dip;
dev_t dev;
caddr_t addr;
int cmd, mode;

7.9.2 Partitions and divisions

The information set up and managed by dksetup(K) and dkiocomm(K)
is available for use by other routines in the device driver. In particu
lar, XXstrategy and XXstart can both call dksecstart(K) to determine
the physical offset (in 512-byte sectors) of the start of the minor device
described by b_dev:

dksecstart(dip, dey)
dip_t dip;
dev_t dey;

The size (in 512-byte sectors) of the minor device described by b_dev
can be obtained from dksecsize (K) :

dksecsize(dip, dey)
dip_t dip;
dev_t dey;

252 Block device drivers

7.9.3 Bad blocks

The bad track table described in Section 7.8 is set up and managed by
the badtrk (ADM) command. It is read from the disk during dksetup (K) ,
called by XXopen.

The table must be examined by XXstart before each 1/0 request is
sent to the disk controller. If the 110 request spans a bad track, it must
be divided into two separate sub-requests:

(1) If the 110 request is already on a bad track (which has been
mapped to an alias track), the first sub-request will be to transfer
the sectors up to the end of the alias track.

If the 1/0 request is starting on a good track but extends onto a
bad track, the first sub-request will be to transfer the sectors up
to the beginning of the bad track.

(2) The second sub-request will be to transfer the remaining sectors.

Note that the second sub-request may span further bad tracks. The
XXstart and XXintr routines must cooperate to ensure that both sub
requests are sent to the device before the buffer header is released
with iodone (K) .

The kernel support routine dktrkcnt (K) examines the bad track
table for the partition described by the struct diskinfo:

dktrkcnt(dip, dey, tp)
dip_t dip;
dev_t dey;
unsigned *tp;

The starting track of the current 1/0 request is *tp. If *tp is a bad
track, dktrkcnt (K) replaces it with its alias track and returns O.

If there are no bad tracks between *tp and the end of the partition,
dktrkcnt (K) returns -1.

If there is a bad track between * tp and the end of the partition,
dktrkcnt (K) returns the number of good tracks between *tp and the
next bad track.

Figure 7.14 shows a typical bad track situation.

Driver receives a request
to read these sectors

Track 81 (good) _ Track 82 (bad)

Figure 7.14 A typical bad track situation.

Track 83 (good)

An extended RAM disk driver 253

7.10 An extended RAM disk driver

We have extended the RAM disk driver from Section 7.5 to illustrate
all the principles that we have been discussing in this chapter, includ
ing the use of the kernel support routines described in Section 7.9 to
support partitions, divisions and bad tracks.

We have simulated disk latency by setting a timeout (K) after data
has been transferred between the buffer cache and the device. When
the timeout (K) expires, XXintr is called.

The XXstrategy routine must now maintain a queue of outstanding
1/0 requests, which is ordered with disksort (K), and the XXstart
routine becomes responsible for sending requests to the device. In
our example device driver, XXstart calls copyio (K) and then sets the
timeout (K) .

We have added an XXioctl routine, via the character device inter
face,14 so that the driver can respond to divvy (ADM), fdisk (ADM) and
badtrk (ADM) commands. 15 A simple disk geometry is defined by
RAMO_SECTORS, RAMO_TRACKS and RAMD_CYLINDERS.

We will describe the remaining block device driver routines before
presenting the complete device driver.

7.10.1 XXinit
void
XXinit()

The XXinit routine is not used in SCO UNIX disk device drivers.
Instead, initialization of the hardware and the disk management data
structures (partition table, division tables, and so on) is deferred until
XXopen. The reason for this is that many of the data structures are
initialized by actually reading them from the disk. This is done by
making calls to XXstrategy, and that of course implies that interrupts
must be enabled. Recall from Chapter 3 that interrupts are not
enabled during XXinit.

We use XXini t in our RAM disk driver to allocate some virtual
memory for the device.

7.10.2 XXopen
XXopen(dev, flag, id)

dev_t dey;
int flag, id;

254 Block device drivers

The XXopen routine is called on each open of a device (typically a
partition or division).

The flag parameter is a bitwise OR of the following values from
(sys/file.h) :

• FAPPEND to open the device for appended writes.

• FEXCL to open the device for exclusive access.

• FNDELAY to open the device immediately and return without sleep-
ing, even if there is a problem.

• FREAD to open the device for reading.

• FSTOPIO to prevent further I/O.

• FSYNC to open the device for synchronous writes.

• FWRITE to open the device for writing.

The id parameter is a bitwise OR of the following values from
(sys/open. h):

• OTYP_BLK to open the device for block I/O.

• OTYP _CRR to open the device for raw I/O.

• OTYP J.1NT to open the device to mount a filesystem.

• OTYP_SWP to open the device as a swap device.

On the first open, XXopen should use the kernel support routines
dkalloc (K) and dksetup(K) described in Section 7.9 to initialize a
struct diskinfo for the drive.

7.10.3 XXclose
XXclose(dev, flag)

dev_t dev;
int flag;

This routine is called on the last close of a device. The flag parameter
corresponds to the flag parameter of XXopen.

In some disk drivers, XXclose calls dkfree (K) to release the struct
diskinfo allocated in XXopen, although this is not actually necessary.

7.10.4 XXstart
void
XXstart()

An extended RAM disk driver 255

The XXstart routine is called at task-time from XXstrategy, and at
interrupt-time from XXintr, to send the next 110 request from the
busy list to the device. The buffer header describing the request is at
XXtab. b_actf .

XXstart can use dksecstart (K) to obtain the physical offset of the
start of the device specified by b_dev, and add b-hlkno to obtain the
physical offset of the start of the transfer, in sectors.

After mapping the request to a disk coordinate (a starting sector
within a track and cylinder), XXstart can check for any bad blocks by
calling dktrkcnt (K), and remap the request accordingly.

The request can then be sent to the controller. Recall that ST506 and
ESDI disk controllers do not have any DMA capability, so additional
support is required from the XXstart and XXintr routines:

• If the request is a B_READ, XXstart sends the disk coordinates to the
controller, followed by a command to initiate the read.

Soon afterwards, the controller will raise an interrupt to indicate
that the data has been read from the device, and is now available
via the controller's data register. The XXintr routine must then
transfer the data from the controller into the buffer cache.

• If the request is a B_WRITE, XXstart sends the disk coordinates to
the controller, followed by the data from the buffer cache, followed
by a command to initiate the write.

Soon afterwards, the controller will raise an interrupt to indicate
that the data has been written to the device.

The extended RAM disk driver uses copyio (K) to simulate DMA
activity.

7.10.5 XXintr
void
XXintr(irq)

int irq;

The XXintr routine is responsible for dealing with interrupts from the
controller. The majority of these interrupts will be to indicate that
read and write requests issued by XXstart have completed, but the
controller may interrupt for a number of other reasons:

• The device driver has issued a head recalibration request to seek
the disk heads back to cylinder 0, before retrying a read or write
request that previously returned an error.

256 Block device drivers

• There has been a hardware failure on the controller or on one of the
drives attached to it.

• The hardware has generated a spurious interrupt, which must be
ignored.

If the device driver is expecting an interrupt, XXtab. b_acti ve and/or
XXtab. b_actf will be set, so it is straightforward for XXintr to dis
tinguish real and spurious interrupts.

Transfer errors are usually indicated by an error bit in the status
register - the actual error can then be obtained by reading the error
register. The total number of errors for the current request is main
tained in XXtab.b_errcnt. If this count exceeds a predetermined value
(for example, 4), an error is returned to the user via b_flags, and the
request is aborted. 16 However, if the error count has not exceeded the
limit, the request is retried from where it failed. This is done by
issuing a call to XXstart from inside XXintr, which will retry the same
request from XXtab. b_actf.

Some disk device drivers issue a request to recalibrate the disk
heads before re-attempting the request, and if the request continues
to fail (a bad block may have developed), you are sometimes able to
hear the disk heads seeking backwards and forwards before the error
is finally reported on the console.

If there are no errors, the next action of XXintr depends on whether
the interrupt is the result of a read or write request, as described in
XXstart, above:

• A read interrupt indicates that the data has been read from the
device into the controller, and should now be transferred into the
buffer cache.

• A write interrupt indicates that the data has been written from the
controller to the device.

If the request spanned any bad tracks, XXintr must now reprogram
the controller to transfer the remaining sectors,17 and then return to
wait for the next interrupt to arrive.

When the complete request has been transferred, XXintr should
clear XXtab. b_acti ve and XXtab. b_errcnt, and move XXtab. b_actf
along the busy list:

Finally, XXintr should call iodone(K) to wakeup(K) anyone who is
waiting for the transfer to complete, and then call XXstart to send the
next request from the busy list to the device.

7.10.6 XXhalt
void
XXhalt()

An extended RAM disk driver 257

XXhalt is called when the Operating System is shutting down. It
should do device-specific tasks as required, such as seeking the disk
heads to the landing zone.

Here is the extended RAM disk driver. At the exercise at the end of
this chapter, you will have an opportunity to test it with badtrk (ADM) ,
divvy (ADM) and fdisk (ADM) :

/*
* src/ramd.c
*
* A sample block device driver which uses the dk*() kernel
* support routines.
*
* We have added a simulated interrupt routine, called by a
* timeout(K) primed from XXstart() .
*
* We have also added an XXioctl() routine in the raw
* interface for use by fdisk(ADM), divvy(ADM), etc.
*
* The XXread() and XXwrite() routines of the raw interface
* will not be functional until Chapter 8.
*
* To configure this driver, you must specify -b and -c
* together, so that the block and character switches are
* correctly filled out.
*
* ./configure -a ramdinit open close strategy read write
* ioctl -b -c -m MAJOR
*/

#include (sys/types.h)
#include (sys/param.h)
#include (sys/sysmacros.h)
#include (sys/errno.h)
#include (sys/crnn_err.h)
#include (sys/dir.h)
#include (sys/signal.h)
#include (sys/page.h)
#include (sys/seg.h)
#include (sys/user.h)
#include (sys/mrnu.h)
#include (sys/map.h)
#include (sys/iobuf.h)
#include (sys/buf.h)

258 Block device drivers

#include (sys/immu.h)
#include (sys/dio.h)
#include (sys/disk.h)
#include (sys/region.h)
#include (sys/proc.h)

/*
* The following XXtab is the anchor for the device's busy
* list. This driver uses it.
*/

struct iobuf ramdtab;

/*
* The following is the disk geometry:

RAMO_SECTORS sectors per track
RAMO_TRACKS tracks/heads
RAMO_CYLINDERS cylinders

RAMO_SIZE size of disk, kilobytes
*/

#define RAMO_SECTORS 16
#define RAMO_TRACKS 4
#define RAMO_CYLINDERS 32
#define RAMO_SIZE(RAMO_SECTORS * RAMO_TRACKS *

RAMO_CYLINDERS / 2)

/*
* The following structure manages requests
* split across bad tracks.
*/

struct ramdreq· {
int blkno;
int rsectors;
int nsectors;

int tsectors;
ramdreq;

char *ramdbase;

/* copy of b_blkno */
/* requested sectors */
/* sectors available before

bad track */
/* actual number to be transferred */

void ramdintr(), ramdstart(), ramdstrategy();

struct diskinfo *ramddip;
int ramdflags;

/*
* ramdini t ()

* Allocate RAMD_SIZE kilobytes of memory with memget(K).
*/

ramdinit()
{

ramdbase (char *)ctob(memget(btoc(RAMO_SIZE *
BSIZE)));

An extended RAM disk driver 259

/*
* ramdopen ()

* On the first XXopen(), dkalloc() a struct diskinfo
* and then fill it out with the details of the RAM
* disk geometry.

* Call dksetup() on every XXopen() .
*/

ramdopen(dev, flag, id)
dev_t dev;
int flag, id;

static int firsttime = 1;
struct dkcntlrtab ramdctlr;
struct dparam *dp;
struct dkparms *dkp;
if (ramddip == NULL)

/*
* The first XXopen() will allocate a
* struct diskinfo
*/

if ((ramddip = dkalloc()) NULL) {

return;

ramddip->dkstrat = ramdstrategy;

if ((ramdflags & DK_PARAM) == 0) {

/*
* At this point a real driver would load the
* disk parameters from the ROM BIOS, which
* contains a struct hdpblk, see (sys/rom.h).

* Our example RAM driver fakes it.
*/

dp = &ramddip->dkparam;
dp->d_cylin = RAMO_CYLINDERS;
dp->d_sectors = RAMO_SECTORS;
dp->d_heads = RAMO_TRACKS;
dp->d_bytes = DKSECTOR; /* bytes per sector */
ramddip->spcyl = dp->d_heads * dp->d_sectors;

dkp = &ramddip->dkparms;
dkp->prcmp = -1;
dkp->ctrl = 0;
dkp->lzone = RAMO_CYLINDERS;
dkp->wrt_reduce = 0;
dkp->ecc = 0;
ramdflags 1= DK_PARAM;

/* write precomp */
/* control surface */
/* landing zone */
/* write reduce */
/* ecc */

260 Block device drivers

if (firsttime)

/*
* Set up ramdctlr. These parameters will be
* printcfg(K)'d inside dksetup().

* Our example RAM driver fakes it. The numbers
* are from an Adaptec ESDI controller.
*/

ramdctlr.base = OxlfO;
ramdctlr.offset = 7;
ramdctlr.vec = 16;

else {

ramdctlr.base = 0;
ramdctlr.offset = 0;
ramdctlr.vec = -1;

ramdctlr.dma = -1;
ramdctlr . type = II RAM II ;

/*
* Now call dksetup() to read the Masterboot,
* and printcfg(K) the RAM disk description.
*/

dksetup(ramddip, dev, &ramdctlr);
if (u.u_error) {

return;

firsttime = 0;

ramdclose ()
{}

ramdread()
{}

ramdwri te ()
{}

ramdprint(dev, str)
dev_t dev;
char *str;

/*

cmn_err(CE_NOTE, II%S on RAM disk major %d, minor %d ll
,

str, major(dev), minor(dev));

* XXstrategy() is called when the kernel wants us
* to do I/O. The I/O request is described by bp.
*/

An extended RAM disk driver 261

void
ramdstrategy(bp)

/*

register struct buf *bp;

int s;

if (bp->b-hlkno < 0)

bp->b_flags 1= B_ERROR;
iodone (bp) ;
return;

if (bp->b_blkno >= (RAMO_SIZE * 2)) {

/*
* The request starts at the end of, or beyond
* the end of, the device.
*/

if (bp->b-hlkno == (RAMO_SIZE * 2)
&& (bp->b_flags & B_READ)) {

/*
* Indicate End-Of-File by setting b_resid,
* then return. DO NOT set B_ERROR.
*/

bp->b_resid = bp->b-hcount;
else {

/*
* Error
*/

bp->b_flags 1= B_ERROR;
bp->b_error = ENXIO;

iodone (bp) ;
return;

bp->b_sector = dksecstart(ramddip, bp->b_dev) +
bp->b_blkno;

s = sp16 () ;
disksort(&ramdtab, bp);
ramdstart () ;
splx(s) ;

* ramdstart ()

* Take the next request from the busy list and
* send it to the device.

* The hard work is done for us by ramdxfer().
*/

262 Block device drivers

void
ramdstart ()
{

/*

register struct buf *bp;

/*
* Nothing to do if we're already busy, or our
* busy list is empty
*/

if (ramdtab.b_active
I I ((bp = ramdtab.b_actf) == NULL)) {
return;

ramdtab.b_active++;

/*
* Set up a description of the request in ramdreq.

* This request may be updated by XXintr() if the
* transfer has to be split by ramdxfer(), due to
* bad tracks.
*/

ramdreq.blkno = bp->b_blkno;
ramdreq.rsectors = bp->b_bcount » DKSSHIFT;
ramdxfer (bp) ;

* ramdxfer ()

* Called by XXstart() and by XXintr() to transfer
* data between the buffer cache and the device.

* If the request spans a bad track, we will transfer
* as much as we can until the next track, and arrange
* for XXintr() to call us to transfer the remainder.
*/

ramdxfer(bp)
struct buf *bp;

daddr_t offset;
int sector, tc, track, head, cylinder;

/*
* Determine the physical offset into the device,
* then translate this to a disk coordinate:

* - starting sector
* - starting track (0 thru RAMO_TRACKS *

RAMO_CYLINDERS) /
* - starting head (not u~ed by thiS RAM disk driver)

starting cylinder (not used by this RAM disk * -
driver)

*/

An extended RAM disk dri.ver 263

offset = ramdreq.blkno + dksecstart(ramddip,
bp->b_dev);

sector = offset % RAMO_SECTORS;
track = offset / RAMO_SECTORS;

/*
* dktrkcnt will tell us about any
* bad tracks ahead
*/

tc = dktrkcnt(ramddip, bp->b_dev, &track);

head = track % RAMD_TRACKS;
cylinder = track / RAMO_TRACKS;

if (tc == -1) {

/*
* The request doesn't span any bad tracks,
* so it's OK to transfer the number of sectors
* required.
*/

ramdreq.nsectors ramdreq.rsectors;
ramdio (bp) ;
return;

else {

/*
* This track is bad and has already been replaced
* by dktrkcnt() (tc == 0), or there is a bad
* track somewhere ahead (tc >= 1).
*/

if ((tc == 0) II (tc == 1)) {

/*
* nsectors is the space available until
* the end of this track.
*/

ramdreq.nsectors = RAMO_SECTORS - sector;
ramdio(bp) ;
return;

else {

/*
* nsectors is the space available until
* the next bad track.
*/

ramdreq.nsectors = RAMO_SECTORS - sector;
ramdreq.nsectors += tc * RAMO_SECTORS;
ramdio (bp);
return;

264 Block device drivers

/*
* ramdio()
*
* Determine how much data we can xfer before
* hitting a bad track, and then transfer it.
*
* Note that:
*

ramdreq.rsectors is how many we want
* ramdreq.nsectors is how many available
* ramdreq.tsectors is how many we'll actually xfer
*/

ramdio(bp)

/*

struct buf *bp;

char *base;
int flag;
if (ramdreq.rsectors > ramdreq.nsectors)

ramdreq.tsectors = ramdreq.nsectors;
ramdreq.rsectors -= ramdreq.tsectors;

else {
ramdreq.tsectors = ramdreq.rsectors;
ramdreq.rsectors = 0;

base = ramdbase + (ramdreq.blkno * 512);
flag = bp->b_flags & B_READ? U_WKD: U_RKD;
if (copyio(ktop(paddr(bp)), base, ramdreq.tsectors «

DKSSHIFT, flag) == -1) {

} ;

/*

cmn_err(CE_WARN, IIbad copyio(K) on RAM disk ll
);

* Call XXintr() after approx 3 clock ticks
*/

timeout (ramdintr, 0, 3);

* ramdintr() is called via a timeout(K) primed
* in XXstart().

* Check for spurious interrupts (shouldn't be
* any of these), and then wakeup everyone with
* iodone(K).
*/

void
ramdintr()
{

register struct buf *bp;
if ((ramdtab.b_active == 0)

I I ((bp = ramdtab.b_actf) == NULL)) {
return;

/*

An extended RAM disk driver 265

/*
* Determine whether all of the request has
* completed. If not, call ramdxfer() to
* do the remainder
*/

if (ramdreq.rsectors != 0) {
ramdreq.blkno += ramdreq.tsectors;
ramdxfer (bp) ;

ramdtab.b_active = 0;

/*
* Move to the next request
*/

ramdtab.b_actf = bp->av_forw;
iodone (bp) ;
ramdstart();

* ramdioctl() responds to ioctl(S) requests
* from fdisk(ADM), divvy(ADM), etc. We just
* have to validate the request and pass it
* to dkiocomm() .
*/

ramdioctl(dev, cmd, addr, mode)
dev_t dey;
int cmd, mode;
char *addr;

swi tch (cmd)
case DIOGETP:
case DIORPART:
case DIOWPART:
case DIORBTRK:
case DIOWBTRK:
case DIORBTRK22:
case DIOWBTRK22:
case DIORVDT:
case DIOWVDT:
case DIOBITP:
case DIOSDISK:
case DIORDISK:
case DIOWDISK:
case DIOSBTRK:
case DIODKTYPE:
case DIOFORCE22:

dkiocomm(ramddip, dey, cmd, addr, mode);
break;

default:
u.u_error = EINVAL;
break;

266 Block device drivers

7.11 Direct memory access (DMA)

We have confined our discussions so far to ST506 and ESDI disk
controllers, which do not have any DMA capability. We have seen
that all data transfers between the kernel and the disk are managed
by the kernel, either in XXstart for a B_WRITE or in XXintr for a B_READ.

Devices that do have DMA capability (including tapes, SCSI disks,
CD-ROM drives) can relieve the kernel and the CPU of the overhead
of transferring data, and leave them free to attend to more useful
tasks such as executing processes! DMA controllers transfer data
directly between the device and memory, without any intervention
from the kernel or the CPU. See Figure 7.15.

7.11.1 Hardware support for DMA

ISA, EISA and MCA machines have two i8237 DMA controllers,
which provide four 8-bit DMA channels and three 16-bit DMA chan
nels, each capable of transferring up to 65535 bytes (words) between
a device and memory.

The 8-bit channels are numbered from 0 through 3, and the 16-bit
channels are numbered from 5 through 7. The channels are managed
by a set of kernel support routines which provide for the allocation,
configuration and release of each channel. Some controllers, such as
the floppy disk controller, are hard-wired to use a specific channel
(the floppy disk controller uses . channel 2). Others (such as tape
controllers) have a jumper on the card to configure the channel to be
used. Once the channel number has been set, it can be read by the
device driver's XXinit routine and used for all subsequent transfers.

7.11.2 Programming the DMA controllers

The kernel support routines for DMA provide two different methods
for using the DMA controllers, called managed DMA and queued
DMA.

ManagedDMA

To use managed DMA, the device driver should allocate a channel
with dma_alloe (K) , program the details of the transfer with
dma_param(K) and then enable the transfer with drna_enable (K). The
device and the DMA controller then cooperate to manage the
transfer.

Direct memory access (DMA) 267

I
I

RAM

CPU " -
l-

I
Bus

I

Data l Control I r ,

Device

DMA
controller

Figure 7.15 Direct memory access.

When the transfer is complete, the device raises an interrupt.
Block device drivers, including SeQ's floppy disk driver, typically

use managed DMA.

Queued DMA

To use queued DMA, the device driver should set up a struct drnareq
(see (sysjdma.h) to describe the transfer, and then call dma_start{K)
to add the structure to a queue of outstanding DMA requests.

When the required DMA channel becomes free, the routine spec
ified in the d_proc field of the DMA request is called to program the
details of the transfer with dma_param{K), and then enable the transfer
with dma_enable{K), as with managed DMA.

When the transfer is complete, the device raises an interrupt.

Transfer errors

If the device indicates an error during the transfer, the device driver's
XXintr routine can use dma_resid (K) to establish how much data was
not transferred.

If the DMA channel is not being used exclusively by a particular
device, the device driver should release it when it is not being used,
using dma_relse (K).

268 Block device drivers

7.11.3 An example of managed DMA

The following code extracts show you how seQ's floppy device
driver uses managed DMA:

XXstrategy{bp)
struct buf *bp

disksort(&XXtab, bp);

/*
* Allocate DMA channel 2. We block (DMA_BLOCK)
* until the channel is released by XXstart(), so
* we may be put to sleep(K) inside dma_alloc{K) .

* Hence MUST NOT call dma_alloc from XXstart() !
*/

dma_alloc(DMA_CH2, DMA_BLOCK);
XXstart() ;

XXstart{)
{

if ({XXtab.b_active == 0)

/*

I I ({bp = XXtab.b_actf) == NULL)) {

* Nothing to do. Release the DMA channel.
*/

dma_relse{DMA_CH2);

* Issue SEEK request to position the head.
* The device will call XXintr{) when this has
* been done.
*/

XXintr()
{

/*
* The SEEK command issued from XXstart() has
* completed. Program the DMA transfer, and then
* enable it.

7.12

Quiz 269

* Note that we specify the number of bytes to
* transfer, less 1. A transfer size of 0
* indicates 64K.
*/

dma_param(DMA_CH2,
bp->b_flags & B_READ? DMA_Rdmode: DMA_Wrmode,
vtop(paddr(bp), bp->b_proc),
bp->b_bcount - 1);

dma_enable(D~CH2);

Note the use of vtop(K) rather than ktop(K) in XXintr. This driver
must use vtop(K) as it can do block and raw I/O, which means that
paddr (bp) can be a kernel virtual address or a user virtual address.
Raw I/O is discussed in the next chapter.

Summary

In this chapter, we have described the structure and operation of
block device drivers. A block device driver is used to transfer fixed
size blocks of data between the buffer cache and a device such as a
disk or tape. UNIX file systems reside on divisions within a partition
on a hard disk, and are accessed through a block device driver
interface. The SCO UNIX kernel provides a number of support
routines for disk drivers, which simplify the implementation of parti
tions, divisions and bad blocks. These routines were demonstrated in
the extended RAM disk driver in Section 7.10.

In Chapter 8, we shall complete our description of block devices by
adding a raw interface to the RAM disk driver.

QUIZ

To test your understanding of this chapter, try to answer the
following questions.

7.1 What are the names of the three different lists of buffer
headers maintained by the buffer cache system?

270 Block device drivers

7.2 Is it possible for user processes to read (8) less than one
block of data at a time from a regular file?

7.3 Can a read(8) system call complete before data is trans
ferred from the device into the buffer cache? What about a
write (8) system call?

7.4 Which kernel support routine is responsible for freeing
buffer headers that have been used for write requests?
What about read requests?

7.5 Assuming the disk controller is not capable of doing any
DMA, which device driver routine is responsible for mov
ing data between the buffer cache and the controller dur
ing a write request? Which routine is responsible during a
read request?

7.6 Why isn't the XXinit routine responsible for initializing the
data structures which the kernel uses to manage the drive?

7.7 What is one of the first things that the XXintr routine
should do when it is called?

7.8 Why are 110 requests sorted onto the device's busy list?

EXERCISE

Compile, install and test the extended RAM disk driver from Section
7.10. Use fdisk(ADM) and badtrk(ADM) to set up the disk, and create a
file system with divvy (ADM) .

Here are some hints:

• Specify the -b and -c options together in the same configure (ADM)
command to add details of the block and character interfaces .

• Refer to Section 7.7.3 to determine the minor device numbers to set
up.

You will need entries in /dev for the entire physical drive and the
entire partition (both of these are special character device files).

Notes 271

• Use the -f rawdevice option of fdisk (ADM) to specify the entire
physical drive:

fdisk -f /dev/rawdevice

• Use the -e and -f options of badtrk (ADM) to specify the entire
partition:

badtrk -e -f /dev/rawdevice

• Use the -m option of divvy (ADM) to create one or more mountable
filesystems:

divvy -m /dev/rawdevice

Advanced sessions:

• Follow the same steps again, but this time do not use badtrk (ADM) .
You will find that divvy (ADM) is able to allocate more space for your
filesystem.

• Use divvy (ADM) to divide the single file system into two new file
systems.

• Experiment with different disk geometries.

NOTES

1. Tape devices are usually accessed through the raw device interface,
described in Chapter 8.

2. Note that some read-ahead blocks may already be in the buffer cache
from previous requests.

3. The maximum cluster size is 32 blocks, specified with the -c option of
mkfs (ADM).

4. The default value is 600 on SCO UNIX 3.2v4.

5. b_un.b_addr is a user virtual address when the process is doing raw 110
rather than block 110. Raw I/O is described in Chapter 8.

6. The size of the array hbuf is the tunable parameter NHBUF, which should
be approximately one quarter of the total size of the buffer cache,
rounded to the nearest power of 2. The v. v_hmask component of the
bhash macro is NHBUF - 1.

7. iodone (K) must be called at the end of every 110 request, whether or not
the request completed successfully.

272 Block device drivers

8. Hard disk technology is evolving so that the outermost tracks will in
future contain more sectors than the innermost tracks.

9. Although mkfs (ADM) requires gap and inblocks to be specified together,
the value for inblocks is always ignored.

10. In other versions of UNIX, partitions may be referred to as virtual drives.

11. In other versions of UNIX, divisions may be referred to as partitions.

12. Disks that do not require kernel support for bad track mapping do not
have space reserved for a bad track table nor any alias tracks. The
division table is followed immediately by division o.

13. The badtrack (ADM) , divvy (ADM), dparam (ADM) and fdisk (ADM) commands
work by issuing ioctl (8) requests to the character (raw) interface of the
device driver.

14. The remaining parts of the character interface, XXread and XXwrite, will
be described in Chapter 8.

15. The dkinit (ADM) command is not supported by this device driver.

16. The XXintr routine can report errors by calling deverr (K).

17. Note that XXintr cannot call XXstart to transfer the remaining sectors,
because XXstart will issue the next request from the busy list!

8
Raw device drivers

8.1 Overview

In Chapter 7, we explained that block device drivers work by transfer
ring fixed-size blocks of data between the kernel and the device, via
the buffer cache. The kernel interface to a block device driver is
through the XXstrategy routine, which is passed requests to read or
write 1 Kb blocks of data. The buffer cache and the block interface
offer many benefits with respect to ordinary file 110.

However, there are times when the characteristics of a block device
driver interface prove to be more of a drawback than a benefit. For
example, when a file system is being archived onto a backup medium
with either the tar (C) or cpio (C) utilities, there is no advantage in
writing the archive via the buffer cache in 1 Kb blocks, as the backup
medium is not being accessed as a filesystem. The same argument
applies when an archive is being extracted into a filesystem - the
archive will be read sequentially. Indeed, if it were possible to com
pletely bypass the buffer cache and to read and write the data in blocks
larger than lKb, we could achieve a much faster transfer of data:

• Data would be transferred directly between user address space and
the device, bypassing the buffer cache. That means that data is
copied only once, not twice as is the case for block devices.

• The block size would not be limited to 1 Kb.
On devices that have a DMA capability (for example, tapes), the

block size is limited by the capabilities of the DMA controllers,
which is 64Kb on ISA, EISA and MCA machines.

On devices that do not have a DMA capability, the block size is
limited by the size of a segment, which is 4Gb on i386 and i486
based machines.

The ability to transfer larger blocks of data means that the hardware is
accessed less often, and the result is a much higher throughput.

273

274 Raw device drivers

User space

System call
entry code

Generic
filesystem code

Filesystem
specific code

Buffer cache
management code

Block device
drivers

Block devices

Figure 8.1 Block lIO and raw lIO.

Raw I/O

This method of data transfer which bypasses the buffer cache is
called raw I/O. Figure 8.1 summarizes the differences between block
and raw I/O.

In this chapter, we shall explain how raw I/O is implemented via
the character device kernel interface for disk and tape devices. In the
exercise at the end of the chapter, we shall add a raw 1/0 capability to
the disk device driver from Chapter 7.

8.2 Raw 1/0 on paged architectures

Devices that have a DMA capability require additional support from
the device driver when doing raw 1/0 on machines that have a paged
memory management architecture, such as the i386 and i486 CPUs.

User's virtual
memory

2

1

0

Conventions for raw device drivers 275

Machine's physical
memory

/
410

409

408

407

V -
406

~Onswap 405

Figure 8.2 User's virtual memory in the machine's physical memory.

This is because the DMA controllers have no knowledge of the under
lying architecture of the machine, and deal with physical addresses
only. The user's virtual address space is not physically contiguous,
and the pages spanning a user's buffer may be scattered throughout
physical memory, possibly even paged or swapped out to the swap
device. Figure 8.2 illustrates a typical situation.

Therefore, before a raw I/O operation can start, the driver must
ensure that all of the appropriate pages are resident in the user's
address space, and that DMA activity will not cross page boundaries
which are not physically contiguous.

By contrast, neither of these issues arises for a block device driver,
as the blocks are always resident in the buffer cache (they are part of
the kernel), and they never cross page boundaries.

Disk drivers and tape drivers which do raw 110 deal with these
problems in different ways.

B.3 Conventions for raw device drivers

Adding a raw interface to a device driver is relatively straightforward,
once the underlying block device driver is working. The following
conventions apply:

• The additional kernel interface routines which are required for the
character device share the same source file as the block device.

276 Raw device drivers

• The same major and minor device numbers are used as for the
block device .

• The special file names in /dev are prefixed with the letter r. For
example, /dev/fd096ds15 is the block device for the floppy disk,
and the raw device is /dev/rfd096ds15.

The kernel accesses raw device drivers through the character device
switch table cdevsw.

8.4 Disks and raw liD

As described above, raw transfers to a disk pass directly between user
address space and the device, and offer an improved throughput
when compared with block I/O. In this section, we shall show how
easy it is to add a raw interface to a disk driver.

8.4.1 Kernel support for raw disks

The seo UNIX kernel provides three support routines for use by raw
disk drivers, called physck (K) , physio (K) and dma_breakup (K) .

physck(K)
physck(nblocks, rw)

int nblocks, rw;

The physck (K) routine should be called from XXread and XXwrite (see
below) to check that the user's I/O request described in the U-area can
be satisfied within the size of the device (that is, the partition or
division) which the user has specified. The nblocks parameter
describes the size of the device in 512-byte blocks, and is typically the
result of a call to dksecsize (K) :

if (physck(dksecsize(XXdip, dey), B_READ)) {

/*
* User's request is valid
*/

The physck (K) routine returns non-zero if the request is valid. If the
request is invalid, physck (K) returns 0, and sets u. u_error to ENXIO.

physio(K)
physio(breakup, bp, dey, rw)

int (*breakup) (), rw;
struct buf *bPi
dev_t dey;

Disks and raw 110 277

The physio(K) routine is central to the operation of disk and tape raw
110. Its main job is to set up a buffer header with details of the user's
request, described in the V-area fields u. u-hase, u. u_offset and
u. u_count, and then to initiate 1/0 by calling the driver's XXbreakup
routine, as specified by the breakup parameter. The XXbreakup routine
is described in the next section. Physio (K) is called from the driver's
XXread or XXwrite routines, after they have validated the request with
physck(K) :

XXread(dev)
dev_t dey;

if (physck(dksecsize(XXdip, dey), B_READ)) {
physio(XXbreakup, (struct buf *)0, dey, B_READ)

Physio (K) first of all probes the user's data pages by reading a byte
from each of them. Pages that are not present in memory will either
be faulted in from the disk, or allocated Demand-Fill-With-Zeros by
the kernel. Each of the pages is then locked into memory so that they
cannot be swapped or paged out whilst the raw 110 is happening. See
Figure 8.3, and compare this with Figure 8.2. Note that page 0 has
been faulted in from swap, and that page 2 has been paged out and
faulted back in again to a different physical page whilst the user
process has been running.

If the caller has not passed a struct buf parameter, physio(K)
allocates one from the NPBUF resource, and fills out the details of the
transfer as described in the V-area. Before the request is dispatched to
XXbreakup, physio (K) checks that each of the user's pages can be
accessed by the DMA controller. On ISA and MeA architectures,
only the first 16Mb of memory can be DMA'd - if any of the user's
data pages are above this threshold, the entire request is remapped
into kernel address space using pages from the DMAABLEBUF resource. 1

Finally, physio (K) calls XXbreakup to initiate the transfer, and then
sleep (K) s waiting for B_DONE.

When the transfer is complete, XXbreakup returns, physio(K)
unlocks the user's data pages, returns the buffer header to the NPBUF

resource, and then returns to XXread or XXwrite.

278 Raw device drivers

Machine's physical
memory

410 locked

409
User's virtual

memory 408

2 407

406 locked

0 405 locked

Figure 8.3 Physio (K) locks each page into memory.

The driver's XXbreakup routine is called by physio(K), and is
responsible for dividing the complete raw I/O request into separate
pages, arranging for I/O to happen to each page, and stopping and
restarting DMA at the page boundaries. Fortunately, this isn't as
difficult as it sounds, as the kernel support routine dma-hreakup (K)
does all of the difficult work, calling XXstrategy when necessary.

dma_breakup(K)
dma_breakup{strat, bp)

int (*strat) () ;
struct buf *bp;

The dma-hreakup (K) routine examines the U-area request, and divides
the transfer into page-sized blocks (4Kb on an i386 or an i486 CPU),
and calls XXstrategy for each page. It adjusts u. u-hase, u. u_offset
and u. u_count after each transfer, and uses these to set new values for
bp->b-hcount and bp->b_un . b_addr before each new call to
XXstrategy.

Recall from Chapter 7 that the final conversion of bp->b_un.b_addr
to a physical address is done by a call to ktop (K) from the driver's
XXstart routine. In a raw device driver, bp->b_un.b_addr can be a
kernel virtual address or a user virtual address, so XXstart must use
vtop (K) instead:

vtop(paddr{bp), bp->b_proc);

The implementation of XXbreakup is described in the next section.

Disks and raw I/O 279

8.4.2 The kernel interface

The character device switch table contains entry points for XXopen,
XXclose, XXread, XXwrite and XXioctl. Of these, the XXopen and
XXclose routines from the block device driver can be used without
any modification, so only the XXread, XXwrite and XXioctl routines
need to be written.

The implementation of XXread and XXwri te should be clear from the
description of the kernel support routines, above, and an XXioctl
routine for a disk driver was provided in Chapter 7. However, for
completeness, we shall provide examples of each of the routines here:

XXread(dev)
dev_t dey;

int XXbreakup();
if (physck (dksecsize (XXdip, dey), B_READ)) {

physio(XXbreakup, (struct buf *)0, dey, B_READ)

XXwrite (dev)
dev_t dey;

int XXbreakup();
if (physck (dksecsize (XXdip, dey), B_WRlTE)) {

physio(XXbreakup, (struct buf *)0, dey, B_WRlTE)

XXbreakup(bp)
struct buf *bp;

drna_breakup(XXstrategy, bp);

XXioctl(dev, cmd, addr, mode)
dev_t dey;
int cmd, mode;
char *addr;

switch (cmd) {
case DIOGETP:
case DIORPART:
case DIOWPART:
case DIORBTRK:
case DIOWBTRK:
case DIORBTRK22:
case DIOWBTRK22:
case DIORVDT:
case DIOWVDT:

280 Raw device drivers

case DIOBITP:
case DIOSDISK:
case DIORDISK:
case DIOWDISK:
case DIOSBTRK:
case DIODKTYPE:
case DIOFORCE22:

dkiocomm(XXdip, dev, cmd, addr, mode);
break;

default:
u.u_error = EINVAL;
break;

The actual I/O request received by XXbreakup is described by an
ordinary buffer header structure, identical to those used to describe
block I/O requests. Unless the device driver has special reasons why it
must provide its own buffer header for raw I/O, the XXread and
XXwrite routines should pass a null pointer (struct buf *) 0 to
physio (K), as illustrated above. The buffer header is used by
XXstrategy and disksort (K) in the same way as for block devices,
except that when I/O is complete, it is released back to the raw buffer
header pool rather than being linked back onto the ordinary buffer
free list.

8.5 Tapes and raw 110

Raw I/O is important for tape devices because of the way that data is
organized on the media. Tape drives write a fixed-size gap between
each data block (or record), so it is desirable to make the records as
large as possible, and therefore reduce the proportion of wasted inter
record space.

In addition, raw I/O to and from streamer devices, such as the
Archive Scorpion 5945, requires support from the device driver to
ensure that the device is able to stream properly and isn't constantly
stopping and starting whilst it waits for the user process to be sched
uled to write or read more data.

Tape drivers, generally implemented only as raw devices, solve
these problems by allocating a large, physically contiguous buffer at
XXinit time, containing only pages that are guaranteed to be access
ible by the DMA controllers.

Tapes and raw I/O 281

8.5.1 The kernel interface

The tape driver's XXread and XXwrite routines are implemented in
exactly the same way as for raw disk drivers (see above), using
physio(K) and dma-hreakup(K) to call xXstrategy.3

For read requests, the XXstrategy routine copies data from the
contiguous buffer out to the user process. When the buffer empties,
XXstrategy calls XXstart to initiate further activity on the device to
refill the buffer. Note that the size of DMA transfers between the
device and the buffer is limited only by the size of the buffer,4 and the
large buffer allows the device to stream properly.

For write requests, the XXstrategy routine copies data from the user
process into the contiguous buffer. When the buffer fills up,
XXstrategy calls XXstart to empty the buffer. The same benefits for
DMA transfers and streaming ability apply as for read requests.
Figure 8.4 summarizes the I/O mechanisms of a streaming tape
driver.

The seo UNIX kernel does not provide any support for tape
XXioctl routines. A list of standard tape ioctl (S) requests, such as
those issued by the tape (C) command, is provided in (sys/tape.h).

User space

Kernel space

,

,

User's data pages
(virtually contiguous)

XXstrategy transfers data
between user and streamer buffer

]IJJ CTBUFSIZE buffer
(physically contiguous)

XXstart programs DMA controllers
to transfer data between streamer buffer

and the device

o 0 Tape streamer

Figure 8.4 110 to a tape streamer.

282 Raw device drivers

8.6 Summary

Raw 110 offers major performance benefits over block 110, and should
be used whenever the buffering facility of the blockllO system is not
required, for example, when archiving files onto a tape or floppy disk
with the tar(C) or cpio(C) commands. On tapes, raw 110 allows a
larger blocking factor to be specified, which reduces the proportion of
wasted inter-record space as well as improving throughput. In addi
tion, the raw 110 interface provides an ioctl (S) mechanism through
cdevsw, which can be used by utilities such as badtrk (ADM) ,
divvy (ADM) . and fdisk (ADM) •

We have seen that the addition of a raw 110 interface to a disk
driver is trivial- simply add XXread, XXwrite, XXbreakup and XXioctl
routines to the block device driver.

QUIZ

To test your understanding of this chapter, try to answer the
following questions.

8.1 In raw 110, does data pass between the user and the device
via the buffer cache?

8.2 What is the size of the largest raw transfer that can happen
directly between user space and a device on an i386 CPU?

8.3 Why must the user's data pages be locked into memory
during raw IIO?

8.4 Are filesystems implemented on block or raw devices?

8.5 Is it necessary for the intermediate buffer used in stream
ing tape drivers to be physically contiguous?

Notes 283

EXERCISE

Add a raw I/O interface to the disk device driver from Chapter 7.
Here are some hints:

• Add XXread, XXwrite and XXbreakup routines to the device driver,
as described in Section 8.4.2 .

• Replace ktop(K) with vtop(K) in XXstart.

Test your device driver with tar (C) . Put a text file onto the disk
through the block interface, and extract it through the raw interface.
Compare the two files with diff (C).

Choose a fairly large file (for example, /etc/termcap), and use the
time (C) utility to compare the throughput of the block and raw
devices. You should see a significant improvement when using the
raw interface with a large block size.

A suggested set of modifications is given in I Answers to Exercises' .

NOTES

1. If the entire request is remapped into kernel address space, an additional
overhead is incurred as the data can no longer move directly between
the user process and the device. It has to be copied into and out of the
kernel's DMA buffers, in much the same way that data in a block 110
request moves via the buffer cache.

The default value for DMAABLEBUF is 16 on seo UNIX release 3.2v4.

2. The configurable parameter CTBUFSIZE fixes the size of the buffer. The
default value is 128Kb on sea UNIX release 3.2v4.

3. The XXstrategy routine is local to the device driver if only the character
interface is implemented.

4. Streamers have a block size of only 512 bytes.

9
Where to now?

9.1 Overview

Congratulations! If you have followed and understood each of the
chapters in this book, attempted the quizzes and completed the
exercises, you will have arrived at this final chapter with a much
improved knowledge of UNIX device drivers and the UNIX operating
system.

We shall conclude with some final words of advice about the next
actions that you should pursue, if you are planning to write produc
tion device drivers.

9.2 More device drivers

This book has demonstrated the following device drivers:

• A polled parallel printer driver.

• An interrupt-driven parallel printer driver.

• A mouse driver.

• A serial driver.

• A line discipline.

• A Stream driver.

• A RAM disk driver.

• An emulated ST506 disk driver.

284

More device drivers 285

• A raw device driver.

We have not described video drivers, network drivers, SCSI device
drivers, or drivers for more exotic devices such as CD-ROMs, disk
arrays and document scanners. However, the principles that you
have learned can be applied to any type of device driver, as they will
all conform to either the basic character (including STREAMS) or
block device models that we have presented.

Two things that will change as UNIX evolves over the coming years
will be the interface between the kernel and the device driver (the
device driver entry points), and the kernel support routines available
for device drivers to use. Until recently, these interfaces have been
very much vendor-specific (this is particularly true of the kernel
support routines), which can cause portability problems when mov
ing a device driver from one UNIX implementation to another. AT&T
has addressed both of these issues in UNIX System V Release 4.0
(more popularly known as System V/4). They have revised the kernel
interface to device drivers (called the Device Driver Interface, or DOl),
defined a list of kernel support routines (called the Driver-Kernel
Interface, or DKI), and have made changes to some UO-related data
structures. AT&T has published all of this in a book called the UNIX
System V Release 4.0 Device Driver Interface/Driver-Kernel Interface (DDI/
DKI) Reference Manual. The book is in effect a list of manual pages
which describe the 001 (for example, XXopen and xxclose), the DKI
(for example, allocb, bzero and vtop), and data structures (for exam
ple, the STREAMS QUEUE structure), and represents a major step
forward for UNIX device driver writers.

At the present time, sea's kernel is based on UNIX System V
Release 3.2 which, although there are many common areas, does not
fully comply with the DDUDKI. There are some new routines in the
DOl, including XXsize, which returns the logical size of a device, and
XXstart,l which is called during the kernel startup procedures, after
XXinit but before the first XXopen. Many familiar routines are still
present in the DKI, although some have had subtle name changes (for
example, iodone(K) is called biodone), and some have disappeared
altogether (including all of the line discipline support routines such as
ttin (K), ttwrite (K), and so on2

). Appendix B of the DDUDKI provides
some advice about migrating device drivers from Release 3.2 to Release
4.0.

Providing that you adhere to the current sea equivalent of the
DDUDKI, using only the kernel support routines described in the
Device Driver Writer's Guide, and try to write well-structured, thor
oughly commented code, you will have relatively little difficulty
migrating your device drivers to future releases of sea UNIX, which
ever technology they decide to pursue.

286 Where to now?

9.3 Further reading

The following is a suggested reading list. It includes all of the books
that we have referenced in our text:

• The Santa Cruz Operation Inc. seo UNIX Device Driver Writer's
Guide. Available from SCO.

• The Santa Cruz Operation Inc. seo UNIX Version 4.0 Device Driver
Writer's Guide Supplement. Available from SCO.

• The Santa Cruz Operation Inc. seo UNIX System Administrator's
Guide. Available from sca.

• The Santa Cruz Operation Inc. seo UNIX System Administrator's
Reference . Available from sca.

• The Santa Cruz Operation Inc. seo UNIX User's Guide. Available
from sca.

• The Santa Cruz Operation Inc. seo UNIX User's Reference. Avail
able from SCO.

• The Santa Cruz Operation Inc. seo UNIX Programmer's Reference
Manual, Volumes 1 and 2. Available from sca.

• Intel (1986) 80386 Programmer's Reference Manual. Intel Corporation.
ISBN 1-55512-022-9.

• Intel (1990) i486 Programmer's Reference Manual. Intel Corporation.
ISBN 1-55512-101-2.

• Bach M.J. (1986) The Design of the UNIX Operating System. Prentice
Hall, Englewood Cliffs, NJ. ISBN 0-13-201799-7.

• Pajari G. (1992) Writing UNIX Device Drivers. Addison-Wesley,
Reading, MA. ISBN 0-201-52374-4.

• AT&T (1989) The AT&T STREAMS Primer. Prentice-Hall,
Englewood Cliffs, NJ.

• AT&T (1989) The AT&T STREAMS Programmer's Guide. Prentice
Hall, Englewood Cliffs, NJ.

• AT&T (1990) UNIX System V Release 4.0 DDIIDKI Reference Manual.
AT&T. ISBN 0-13-933680-X.

Further reading 287

9.4 Summary

We hope that you have enjoyed this book, and that you have found it
informative, interesting and a worthwhile investment.

Good luck!

NOTES

1. XXstart is a private device driver routine in Release 3.2.

2. Serial drivers are implemented as Stream drivers in Release 4.0, using a
Stream module called ldterm which implements the equivalent of line
discipline O.

111111

Answers to quizzes

Chapter 1

1.1 No. The hardware protection levels of the CPU prevent the
peripheral control registers from being read from and written
to directly.

1.2 No, /etc/init runs in user mode.

1.3 The kernel code is held in the file /unix.

1.4 Yes. Most disks have a block and a raw character interface.

1.5 No. Functions such as device driver routines, that are within
the kernel, cannot make system calls. System calls are made
by user processes requesting kernel services.

1.6 No. This facility is provided by other routines within the
kernel.

Chapter 2

2.1 Yes, character device drivers can transfer blocks of data.
However, they do not make use of the kernel support
routines used by block device drivers that perform buffering,
sorting of requests and read-ahead.

2.2 They are used to hold the major and minor device number.

2.3 The kernel needs to know whether the special device file is a
character or block device file, the major device number and
the operation that is required (for example, xXopen).

2.4 The major device number is used to index through the device
switches cdevsw or bdevsw in order to select the device driver
routines that correspond to the special device file being used.

ILi
J&J

289

290 Answers to quizzes

2.5 The minor device number is passed to the device driver in
order to vary its behaviour in some way. This could include
directing data to a particular port on a device.

2.6 A context switch can occur whenever a process calls
sleep(K), waiting for an event or a resource, or whenever the
CPU returns from system mode to user mode.

Chapter 3

3.1 XXopen will be invoked ten times and XXclose will be invoked
once, on the final close(S). This is assuming they have not
been called from another device driver.

3.2 u. u_base should be incremented by 20 and u. u_count should
be decremented by 20.

3.3 Spin loops will become shorter and hence may not work
when CPU speeds increase. They also use valuable process
ing resource and prevent time-slicing.

3.4 When coding an XXread function, the copyout(K) routine can
be used to copy data out from kernel to user space.

3.5 When coding an XXwrite function, the copyin(K) routine can
be used to copy data from the user into kernel space.

Chapter 4

4.1 By calling sleep(K).

4.2 Yes, as wakeup (K) does not force. a context switch - it sets
runrun which causes a context switch to occur at the next
opportunity .

4.3 Approximately 1000 clock cycles.

4.4 By calling spl (K) .

4.5 By bitwise-ORing PCATCH into the priority parameter. If the
sleep (K) is interrupted by a signal, sleep (K) will return 1,
rather than o.

4.6 By examining the CS segment selector saved on the system
stack. If the TI bit is 1, the interrupt occurred in user mode. If
the TI bit is 0, the interrupt occurred in system mode.

Answers to quizzes 291

Chapter 5

5.1 There are three clists called t_rawq, t_canq and t_outq.

5.2 The canon (K) routine processes t_rawq at task-time.

5.3 The putc (K) routine adds characters to a clist, and the
getc (K) routine removes characters from a clist.

5.4 The XXpol1 routine calls I_input (ttin in line discipline 0) to
transfer data from t_rbuf onto t_rawq.

5.5 Call XXproc with T-BLOCK to send an XOFF down the line.

5.6 The sequence of characters in t_outq would be carriage
return, QESC, QESC bitwise-OR'd with 5.

5.7 Send an XON character down the line.

5.S The input and output ccbIocks are also accessed by the line
discipline routines I_input and I_output, which indirectly
make calls to putc (K) and getc (K). The putc (K) and getc (K)

routines call splS (K) to protect clist access, which allows the
serial card to interrupt. Hence there must be a buffer between
XXintr and the ccbIocks.

5.9 Use idaddld(ADM) to add details of the line discipline to the
kernel configuration files. Link the line discipline object
module to the device driver object module, and name the file
Driver.o.

5.10 The buffer between XXintr and the ccblocks can be made big
enough to hold several full FIFOs of characters from the
NS16550 chip, thus increasing overall serial I/O throughput
as well as reducing the likelihood of data loss or overrun
errors.

Chapter 6

6.1 No. These routines are not part of the kernel interface for a
module or a Stream driver, and therefore do not appear in
cdevsw. However, a module or a Stream driver can have
private routines with these names.

6.2 Priority messages are not subject to flow control, and are
always placed on a message queue before any ordinary mes
sages.

6.3 The qrunflag is tested at each context switch. If it is set, the
kernel calls queuerun to execute each of the XXservice routines
on the linked list of scheduled QUEUES.

292 Answers to quizzes

6.4 The XXopen routine is called on every open (8) system call on
the Stream, and also on each push of a Stream module.

6.5 Its purpose is to wakeup (K) any writers who have been
blocked by flow control downstream. The strwsrv routine
will be called when the STREAMS scheduler back-enables the
Stream head.

6.6 Examine the FAIL column displayed by the strstat option.

6.7 The three message types are M_DATA, M_PROTO and M_PCPROTO.

The getrnsg (8) and putmsg (8) system calls can also deal with
user-defined message types.

6.S STREAMS support software protects itself from interrupts by
making calls to splS (K) .

Chapter 7

7.1 The lists are called free list, the cache and the busy list. There
is one busy list for each device.

7.2 Yes. The kernel reads the entire block from the disk, but only
copies the actual amount of data that the user requested from
the buffer cache into the user's data segment.

7.3 A read (8) system call does not complete until the data has
been transferred from the device into the user's data seg
ment, via the buffer cache. A write (8) system call completes
as soon as the data has been transferred from the user's data
segment into the buffer cache.

7.4 The iodone (K) routine releases buffer headers that have been
used for a write request. Buffer headers used for a read
request are released by the file system code, a short while
after iodone (K) . The device driver only has to call iodone (K) .

7.5 The xxstart routine transfers data on a write request. The
XXintr routine transfers data on a read request.

7.6 The data structures (the Masterboot block, the partition table,
the division table and the bad track table) are read from the
disk by dksetup (K), which makes calls to XXstrategy. This
means that interrupts must be enabled, but since the kernel
doesn't enable interrupts until after all the XXinit routines
have been called, dksetup (K) cannot be called until XXopen.

7.7 XXintr should read the controller's status register to see if
there was an error during the transfer.

7.S To minimize unnecessary movement of the disk heads
between successive requests.

Answers to quizzes 293

Chapter 8

8.1 No. Data passes directly between the user address space and
the device.

8.2 4Kb. This limit is enforced by the paging mechanism of the
i386. Larger transfers (for example, to tapes) pass via a large
physically contiguous kernel buffer.

8.3 They must be locked so that they cannot be swapped or
paged out from memory whilst the user process is waiting for
the transfer to complete.

8.4 They are implemented on block devices.

8.5 No, because the actual DMA requests to the device transfer
only 512 bytes.

Answers to exercises

This chapter contains sample answers and test programs (where
appropriate) for all of the exercises set in this book.

The following sample Makefile shows you how to compile and
build each of the device drivers in this chapter, and whereabouts to
install them into your Link Kit directory tree:

src/Makefile

A sample Makefile with the appropriate C preprocessor
flags to build device drivers for SCO UNIX 3.2v4.

Modify this Makefile to suit your own requirements

CPPFLAGS=-DVPIX -DWEITEK -DSCO_VAL-ADDED -DSCO_ONLY \
-DSecureWare -DFFS -DXNET -DMERGE386 -D_INKERNEL

-DM_S_UNIX -D_IBCS2

CFLAGS = -Oit -Gs S(CPPFLAGS) -c
LDFLAGS = -r -0
PACKDIR = S(ROOT)/etc/conf/pack.d
mkdir:

-mkdir S(PACKDIR)/dum
-mkdir S(PACKDIR)/bm

dum. 0:' dum. c
S(CC) S(CFLAGS) dum.c
cp dum.o S(PACKDIR)/dum/Driver.o

bm.o: bm.c bm.h
S(CC) S(CFLAGS) bm.c
cp bm.o S(PACKDIR)/bm/Driver.o

bmintr.o: bmintr.cbm.h
S(CC) S(CFLAGS) bmintr.c
cp bmintr.o S(PACKDIR)/bm/Driver.o

295

296 Answers to exercises

bmevt.o: bmev.c bmld.c bm.h
$(CC) $ (CFLAGS) bmev.c
$(CC) $ (CFLAGS) bmld.c
ld $(LDFLAGS) bmevt.o bmev.o bmld.o
cp bmevt.o $(PACKDIR)/bm/Driver.o

bmst.o: bmst.c bm.h
$(CC) $(CFLAGS) bmst.c
cp bmst.o $(PACKDIR)/bm/Driver.o

mouse: mouse. c
$(CC) -0 mouse mouse.c

mousey: mousey.c
cc -0 mousey -DMLTERMCAP mousey.c -ltcap -ltermlib

The following shell script, called doconf, provides an easy-to-use
front-end to the configure (ADM) command:

src/doconf

Copyright (c) Peter Kettle and Steve Statler, 1992

Front-end to configure

Adds and deletes configuration information from
$ROOT/etc/conf

This script assumes that bin/idaddld has been modified to
interpret $ROOT correctly.

This script assumes that major devices 75 and 76 are
available.

dununajor=7S
bmmajor=76
doadd() {

cd $ROOT/etc/conf/cf.d
case $1 in

dum) ./configure -d ~m $~tiffiffiajof ~c 2>&1 >
/dev/null

./configure ~a ~tifflSPefi dtifuclose dumread
dumwrite dtiffi!Ostl ;m $Bmmajor -c

return 0
; ;

bm) ./configure -6 -m $bmmajot ~c 2>&1 >
/dev/null

./configure -a bminit bmopen bmclose bmpoll
bmread -m $bmmajor -c

return 0
; ;

Answers to exercises 297

bmintr) ./configure -d -m $bmmajor -c 2>&1 >
/dev/nu11

./configure -a bminit bmopen bmc10se bmintr
bmread -1 6 -v 5 -T 1 -m $bmmajor -c

return 0
; ;

bmevt) ./configure -d -m $bmmajor -c 2>&1 >
/dev/nu11

./configure -a bminit bmopen bmc10se bmintr
bmread -1 6 -v 5 -T 1 -m $bmmajor -c

.. /bin/idadd1d -d bm1d

.. /bin/idadd1d -a bm1d bm1dopen bm1dc1ose
bm1dread nu11dev nu11dev bm1din nu11dev
nu11dev

return 0
; ;

bmst) ./configure -d -m $bmmajor -c -s 2>&1 >
/dev/nu11

./configure -a bminit bmopen bmc10se bmintr
-1 5 -v 5 -T 1 -m $bmmajor -c -5

return 0
; ;

*) echo IIdoconf: don't know how to add $1 yet ll

return 1
; ;

esac

dode1()
{

cd $ROOT/etc/conf/cf.d

case $1 in

dum) ./configure -d -m $dummajor -c 2>&1 >
/dev/nu11

return 0
; ;

bm) ./configure -d -m $bmmajor -c 2>&1 >
/dev/nu11

return 0
; ;

bmintr) ./configure -d -m $bmmajor -c 2>&1 >
/dev/nu11

return 0
; ;

bmevt) ./configure -d -m $bmmajor -c 2>&1 >
/dev/nu11

.. /bin/idadd1d -d bm1d
return 0
; ;

298 Answers to exercises

esac

bmst) ./configure -d -m $bmmajor -c -s 2>&1 >
/dev/null

return 0
; ;

*) echo IIdoconf: don't know how to remove $1 yet II
return 1
; ;

main starts here

case $# in
2) case $1 in

esac
; ;

-a) doadd $2
exit 0
; ;

-d) dodel $2
exit 0
; ;

*) echo IIUsage: $0 -al-d device"
exit 1
; ;

*) echo IIUsage: $0 -al-d device ll

exit 1
; ;

esac

Chapter 1 - Fundamentals

Exercise 1

Type the command

nm /unix I fgrep read I more

Exercise 2

Type in the following program called prog. c:

main{)
{

read{) ;

Answers to exercises 299

Then compile it with the command:

$ make prog

Use adb(CP) to disassemble the read(S) system call code, which will
have been linked into prog from the C library libc. a by the link
editor. Use the following commands:

$ adb prog -
* read,4?ai
* Ctl-d
$

You should see the following output from adb (CP) :

read:
read+Ox5:
read+Oxc:
read+Ox12:

mov eax, Ox3
call far Ox7:0xO
jb _cerror
ret

The read(S) system call number, which is 3, is loaded into the
general purpose 32-bit register called EAX, and is followed by a call to a
call gate, which switches the CPU into system mode to run the
kernel's system call handler.

The kernel system call handler examines the contents of EAX, and
knows that the value 3 means that the user has made a read(S)
system call, and calls the appropriate routines to deal with it.

When control returns through the call gate back into the user
process, cerror is jumped to if the kernel has set the carry bit in the
EFLAGS register, to indicate a failed system call.

Chapter 2 - A dummy device driver

/*
* src/dummy.c

* Copyright (c) Peter Kettle and Steve Statler, 1992

* A simple dummy device driver

* This driver uses cmn_err(K) to print messages onto the
* console when any of its routines are called .

*/

. /configure -a dumopen dumclose dumread dumwrite
dumioctl -c -m MAJOR

#include (sys/types.h)
#include (sys/cmn_err.h)

300 Answers to exercises

dumopen(){
crnn_err(CE_CONT, "dumopen () \n ") ;

dumclose(){
crnn_err(CE_CONT, "dumclose 0 \n") ;

dumread(){
crnn_err(CE_CONT, "dumread () \n") ;

dumwrite(){
crnn_err(CE_CONT, "dumwriteO \nll);

dumioctl(){
crnn_err(CE_CONT, "dumioctlO \nll) ;

Chapter 3 - A Microsoft InPort Bus Mouse device
driver

The sample answer is followed by the header file IIbm.h" and the
source for two user programs which will test the mouse device driver.

A Microsoft InPort Bus Mouse device driver

/*
* src/bm.c

* Copyright (c) 1992 Peter Kettle and Steve Statler

* Simple device driver for Microsoft InPort Bus Mouse.
* Polls the mouse controller updating a static structure
* which is read and copied out to the user whenever a
* read(S) is performed.

* ./configure -a bminit bmpoll bmread -c -rn MAJOR
*/

#include (sys/errno.h)
#include (sys/types.h)
#include (sys/dir.h)
#include (sys/param.h)
#include (sys/user.h)
#include IIbrn.hll
#define BM_BA Ox23c

#define BM_CTL (O+BM_BA)
#define BM_DATA (l+BM_BA)

/*

/*
/*

Base Address for mouse
registers */
Control Register */
Window to other mouse
registers */

Answers to exercises 301

/*
* Values written to BM_CTL
*/

#define B~REG_1 a /* Select Internal Reg. 1:
Buttons and Status */

#define BM_REG_2 1 /* Select Internal Reg. 2 :
X Coordinate */

#define BM_REG_3 2 /* Select Internal Reg. 3:
Y Coordinate */

#define BM_REG_4 7 /* Select Internal Reg. 4 :
Mode of operation */

#define BM_RESET Ox80 /* Reset the mouse
controller */

/*
* Mask values used to read BM_DATA, when BM_REG_1
* is selected
*/

#define BM_BUTTONS 7 /* State of buttons
l=Right Down, 4=Left Down*/

#define BM~OUSE~ Ox40 /* Set if the mouse
is moved on the X/Y axis

#define B~BTNS~ Ox38 /* Set if the buttons are
pressed or released*/

/*
* Values written to BM_DATA when BM_REG_4 is selected
*/

#define BM_HOLD Ox20 /* Freeze counters so
they can be read */

#define BM_QUADMODE a /* Set mode for data
to be read */

/*
* Structure written to by bmpoll{) and read from
* by bmread{) holding the current data from the mouse.
*/

struct bmouse bm;

/*
* Flag indicating whether there is any data
* ready to be read in the bm structure.
*/

char nodata = 1;

/*
* bminit()

* Initialize the mouse hardware and print the
* configuration message on the console.
*/

bminit {}
{

outb{BM_CTL, BM_RESET};
outb{BM_CTL, BM_REG_4};
outb{BM_DATA, BM_QUADMODE};

*/

302 Answers to exercises

/*

printcfg(lIbmll, BM_BA, 3, -1, -1,
IIInPort Mouse (Polling)II);

* bmpoll ()

* Called HZ times a second by kernel. Checks to see if
* mouse or buttons have moved, and if so it reads the new
* data.
*/

bmpoll(ps)
int pSi

/*

outb(BM_CTL, BM_REG_4);
outb(BM_DATA, BM_HOLD);

outb(BM_CTL, BM-REG_l);
bm_reg_l = inb(BM_DATA);

if (bm_reg_l & (BM~OUSE-MVDIBM-BTNS~))

bm.buttons = bm_reg_l & BM-BUTTONS;

outb(BM_CTL, BM_REG_2);
bm.x = inb(BM_DATA);

outb{BM_CTL, BM-REG_3);
bm.y = inb{BM_DATA);

nodata = 0;
wakeup (&bm) ;

outb{BM_CTL, BM_REG_4);
outb{BM_DATA, BM_QUADMODE);

* bmread{)

* Copy data from bmouse into the user's memory.
*/

bmread(dev)
dev_t dev;

int nbytes;

while (nodata)
sleep (&bm, PZERO + 1);

nbytes = min(sizeof(struct bmouse), u.u_count);

Answers to exercises 303

if (copyout(&bm, u.u_base, nbytes) == -1) {
seterror(EFAULT);
return;

nodata = 1;
u.u_count -= nbytes;
u.u_base += nbytes;
u.u_offset += nbytes;

The next file is the header file IIbm. h ":

/*
* src/bm.h

* Copyright (c) Peter Kettle and Steve Statler, 1992

* Data structure passed to applications reading the mouse
* device file
*/

struct bmouse {
char buttons;
char x, y;

} ;

User programs to test the mouse device driver

The following programs called mouse and mousey will test your mouse
device driver. We suggest that you use mouse to debug and test your
driver, and then use mousey when you are confident that all the bugs
are fixed.

/*
* mouse.c

* Copyright (c) 1992, Peter Kettle and Steve Statler

* A basic interface to the mouse device driver

* Accepts as a parameter the device file which corresponds
* to the mouse driver. Reads the mouse device printing the
* status of the X/Y coordinates and the buttons. The
* output scrolls up the screen.
*/

#include (stdio.h)
#include (sys/fcntl.h)
#include "bm.h"
struct bmouse mouse;

304 Answers to exercises

main (argc, argv)
int argc;
char *argv[];

/*

int cc, fd;
char *file = II/dev/bmll;
char errmsg [32] ;
if (argc > 1) {

file = argv[1];

if ((fd = open (file, O_RDONLY)) == -1) {
sprintf(errmsg, IIcouldn't open %Sll, file);
perror (errmsg) ;
exit (1) ;

while (1) {
if ((cc = read (fd, &mouse, sizeof(mouse)))

!= sizeof(mouse)) {
sprintf(errmsg, IIcouldn't read %Sll, file);
perror (errmsg) ;
exit(1);

printf (lI%s%4d , mouse.x < 0 ? IILeft II:
mouse.x == 0 ? II II: II Right II , mouse.x);

printf (lI%s%4d II, mouse.y < 0 ? IIUp II:
mouse.y == 0 ? II II: IIDown II mouse.y);

printf(lI%c ll , mouse.buttons & Ox4 ? 'L': ' ');
printf (II%C Il

, mouse.buttons & Ox2 ? 'M': ' ');
printf(lI%c\nll, mouse.buttons & Ox1 ? 'R': ' I);

* mousey.c

* Copyright (c) 1989, Dave Tollow
* Copyright (c) 1992, Peter Kettle and Steve Statler

* Displays current state of the mouse using curses.

* Sets up a curses screen and loops reading the mouse
* device file and moving the '*' character around the
* screen depending upon where the mouse is moved.

* The state of the mouse buttons is displayed at the base
* of the screen. The delta values read from the mouse are
* added to the record of the current mouse position. The
* ratio of mouse to '*' movement is controlled by a scale
* parameter that can be set as an argument.

* This program needs additional libraries:

cc -0 mousey -DM_TERMCAP mousey.c -ltcap -ltermlib
*/

#include (stdio.h)
#include (curses.h)
#include (fcntl. h)
#include (signal.h)

#define XLIMIT
#define YLIMIT

#define LBUTTON
#define MBUTTON
#define RBUTTON

#include IIbm.hll

struct bmouse mouse;

/*

79
22

Ox04
Ox02
OxOl

Answers to exercises 305

/* Limit of screen size */
/* Limit of screen size */

/* Position delta, read from
mouse */

* Scale of bus mouse coordinates relative to
* position on the screen.

* A lower number yields a more sensitive mouse.
*/

int scale = 5;

WINDOW *curscr, *stdscr;

int x_limit, y_limit;

int screen_x, screen_y;
int cur_x, cur_y = 0;

main (argc, argv)
int argc;
char *argv [] ;

int fd, cc, restore();
char errmsg [32] ;
char *file = II/dev/bm ll

;

/* Maximum values for mouse
coordinates */

/* Position on screen */
/* Current position of mouse */

signal (SIGINT, restore);

switch (argc) {

case 1:
break;

case 2:
file = argv [l] ;
break;

case 3:
file = argv [l] ;
scale = atoi(argv[2]);
break;

default:
fprintf(stderr, IIUsage: %s device scale\nll,

argv[O]) ;
exit(1) ;

306 Answers to exercises

if «(fd = open(file, O_RDONLY)) == -1) {
sprintf(errmsg, IIcouldn't open %Sll, file);
perror(errmsg);
exit (1) ;

x_limit = XLIMIT * scale;
y_limit = YLIMIT * scale;
initscr(); /* initialize curses data

structures */
mvaddch(O, 0, '*');
refresh();

/* display initial position */
/* and display it */

while (1) {
if ((cc read(fd, &mouse, sizeof(mouse)))

1= sizeof(mouse)) {
sprintf(errmsg, IIcouldn't read %Sll, file);
perror (errmsg) ;
endwin();
exit(!) ;

/*
* blank old position on screen
*/

mvaddch(screen_y, screen_x, , I);

cur_x += mouse.x; /* accumulate the movement */
cur_y += mouse.y;

/*
* check screen bounds
*/

if (cur_x > x_limit)
if (cur_y > y_limit)
if (cur_x < 0) cur_x
if (cur_y < 0) cur_y

cur_x = x_limit;
cur_y = y_limit;

0;
0;

screen_y cur_y/scale; /* scale coordinates to
fit on screen */

screen_x cur_x/scale;

/*
* update position of screen
*/

mvaddch(screen_y, screen_x, '*');
if (mouse. buttons & LBUTTON)

mvaddstr(23, 10, IILeftll);
else

mvaddstr (23, 10, II II) ;
if (mouse.buttons & MBUTTON)

mvaddstr (23, 35, IIMiddle ll);
else

mvaddstr (23, 35, II II) ;
if (mouse.buttons & RBUTTON)

mvaddstr(23, 60, IIRightll);

Answers to exercises 307

else
mvaddstr(23, 60, II II);

refresh(); /* update the virtual screen */

/*
* restore()

* restore sane tty settings
*/

restore (sig)
int sig;

endwin() ;
exit(O);

Chapter 4 - Adding interrupts to the mouse
device driver

We present the complete device driver, although only small parts of it
have changed from Chapter 3:

/*
* src/bmintr.c

* Copyright (c) 1992 Peter Kettle and Steve Statler

* An interrupt-driven device driver for the Microsoft
* Inport Bus Mouse.

* ./configure -d bmpoll -c -m MAJOR
* ./configure -a bminit open close read intr -T 1 -v 5

-1 6 -c -m MAJOR
*/

#include (sys/errno.h)
#include (sys/types.h)
#include (sys/dir.h)
#include (sys/param.h)
#include (sys/sysmacros.h)
#include (sys/user.h)
#include IIbm.hll

#define BM_BA Ox23c

#define BM_CTL (O+BM_BA)
#define BM_DATA (l+BM_BA)

/* Base Address for mouse
registers */

/* Control Register */
/* Window to other mouse

registers */

308 Answers to exercises

/*
* Values written to BM_CTL
*/

#define BM_REG_l 0 /* Select Internal Reg. l:
Buttons and Status */

#define BM_REG_2 1 /* Select Internal Reg. 2 :
X Coordinate */

#define BM_REG_3 2 /* Select Internal Reg. 3 :
Y Coordinate */

#define BM_REG_4 7 /* Select Internal Reg. 4 :
Mode of operation */

#define BM_RESET Ox80 /* Reset the mouse
controller */

/*
* Mask values used to read BM_DATA, when BM_REG_l
* is selected

*/
#define BM_BUTTONS 7 /* State of buttons

l=Right Down,
4=Left Down */

#define BMjlOUSEJ1VD Ox40 /* Set if the mouse
is moved on the
X/Y axis */

#define BM_BTNSJ1VD Ox38 /* Set if the buttons are
pressed or released

/*
* Values written to BM_DATA when BM_REG_4 is selected
*/

*/

#define BM_HOLD Ox20 /* Freeze counters so they
can be read */

#define BM_INTR_ON Ox08 /* Enable interrupts */
#define BM_INTR_30HZ OxOl /* Interrupt at 30 Hz */
#define BM_QUADMODE 0 /* Set mode for data to

be read */
/*

* Structure written to by bmpoll() and read from
* by brnread() holding the current data from the mouse.
*/

struct bmouse bm;

/*
* Flag indicating whether there is any data
* ready to be read in the bm structure.
*/

char nodata = 1;

/*
* Flag indicating whether we are using interrupts
* or timeouts.
*/

char bmflags = 0;
#define BM_INTR Oxl
#define BM_OPEN Ox2

Answers to exercises 309

/*
* bminit(}

* Initialize the mouse hardware and print the
* configuration message on the console.
*/

bminit(}
{

/*

outb(BM_CTL, BM_RESET};
outb(BM_CTL, BM_REG_4};
outb(BM_DATA, BM_QUADMODE};
printcfg(lIbmll, BM_BA, 3, 5, -1,

IIInPort Mouse (Interrupts}II);

* bmopen(}
*
* Examine the minor device number:

o If it is 0, turn on interrupts.
* 0 Otherwise, turn on polling via timeout(K} .
*/

bmopen(dev, flag, id}
dev_t dev;

/*

int flag, id;

void bmintr(};
if (minor (dev) == O} {

outb(BM_CTL, BM_REG_4};
outb(BM_DATA,

BM_INTR_ONIBM_INTR_30HZIBM_QUADMODE};
bmflags 1= BM_INTR;

else {
outb(BM_CTL, BM_REG_4};
outb(BM_DATA, BM_QUADMODE};
timeout (bmintr, 0, 2};

brnflags 1= BM_OPEN;

* bmclose(}
*
* Turn off interrupts
*/

brnclose(dev, flag, id}
dev_t dev;
int flag, id;

if (bmflags & BM_INTR) {
outb(BM_CTL, BM_REG_4};
outb(BM_DATA, BM_QUADMODE & -BM_INTR_ON};
bmflags &= -BM_INTR;

310 Answers to exercises

bmflags &= -BM_OPEN;

* bmintr{irq}
*
* Called whenever the mouse state changes or by a timeout.

* Read the mouse data and wake up any processes trying to
* read from the device.
*/

void
bmintr(irq}

int irq;

char bm_reg_l, bm_reg_4;

/*
* Freeze the counters so that we can read them
*/

outb{BM_CTL, BM_REG_4};
bm_reg_4 = inb{BM_DATA};
outb{BM_DATA, bm_reg_4IBM_HOLD};

outb{BM_CTL, BM_REG_l};
bm_reg_l = inb{BM_DATA};

if {bm_reg_l & {BM-MOUSE-MVDIBM_BTNS-MVD}}

bm.buttons = bm_reg_l & BM-BUTTONSi

outb{BM_CTL, BM_REG_2};
bm.x = inb{BM_DATA};
outb{BM_CTL, BM_REG_3};
bm.y = inb{BM_DATA};

nodata=O;
wakeup (&bm) ;

/*
* Release the counters
*/

outb{BM_CTL, BM_REG_4};
bm_reg_4 = inb{BM_DATA};
outb{BM_DATA, bm_reg_4 & -BM_HOLD};

/*
* Reprime the timeout{K} if we are not
* using interrupts
*/

if {{{bmflags & BM_INTR} == O}
&& {bmflags & BM_OPEN}}{

timeout {bmintr, 0, 2};

Answers to exercises 311

/*
* bmread()
*
* Wait until bmintr() detects mouse movement and then
* copy the data into the user's memory.
*/

bmread(dev)
dev_t dev;

int s, nbytes;
s = spl6 () ;
while (nodata)

sleep (&bm, PZERO+1);
nbytes = min(sizeof(struct bmouse), u.u_count);
if (copyout(&bm, u.u_base, nbytes) == -1) {

seterror(EFAULT);
splx(s);
return;

nodata=l;
splx(s) ;
u.u_count -= nbytes;
u.u_base += nbytes;
u.u_offset += nbytes;

Chapter 5 - A simple line discipline

We present the line discipline routines first of all, followed by the
device driver from Chapter 4, modified to use the line discipline.

/*
* src/bmld.c
*
* Copyright (c) Peter Kettle and Steve Statler, 1992.

* Line discipline support for Microsoft Inport Bus Mouse.
*/

#include (sys/errno.h)
#include (sys/types.h)
#include (sys/dir.h)
#include (sys/param.h)
#include (sys/user.h)
#include (sys/cmn_err.h)
#include IIbm.hll
#define NBMEVENT 16
struct bmevent {

struct bmevent * next;
struct bmouse bmouse;

} bmevent[NBMEVENT)i

312 Answers to exercises

static int bmldflags;

#define BMLDOPEN OxOI

struct bmevent bmfree, bmqueue;
struct bmevent *bmget();

/*
* bmldopen ()

* Initialize the freelist
*/

bmldopen(dev)

/*

dev_t dev;

int i;
struct bmevent *ptr;

if (bmldflags & BMLDOPEN)

return;

bmldflags 1= BMLDOPEN;
for (ptr = &bmfree, i = 0; i < NBMEVENT; ptr

ptr->next, i++) {

ptr->next = &bmevent[il;

ptr->next = NULL;

* bmldclose ()

* Clear the event queue (the freelist will be rebuilt at
* the next open), and clear bmldflags.
*/

bmldclose(dev)
dev_t dev;

/*

bmqueue.next (struct bmevent *)NULL;
bmldflags = 0;

* bmldread ()

* Called from bmread() to return the next event structure
* to the user.

* Get the next event structure from the event queue, copy
* it out to the user, and then return it to the freelist.

* Sleep here if there is nothing to do.
*/

Answers to exercises 313

bmldread(dev)
dev_t dev;

/*

int nbytes, s = sp16();
struct bmevent *bmep;
while ((bmep = bmget(&bmqueue))

NULL) {
sleep (&bmqueue, PZERO + 1);

(struct bmevent *)

nbytes = min(u.u_count, sizeof(struct bmouse));
if (copyout(&bmep->bmouse, u.u_base, nbytes) == -1) {

seterror(EFAULT) ;
else {

u.u_count -= nbytes;
u.u_base += nbytes;
u.u_offset += nbytes;

bmput(&bmfree, bmep);
splx(s);

* bmldin()

* Called from bmintr() to copy a mouse movement or button
* press into an event structure, and then link the event
* structure onto the queue.
*/

bmldin(bmp)

/*

struct bmouse *bmp;

struct bmevent *bmep;
if ((bmep = bmget(&bmfree)) == (struct bmevent *)NULL) {

/*
* No free space left - just return
*/
cmn_err(CE_WARN,

IINo space left on event queue\nll);
return;

bmep->bmouse.x = bmp->x;
bmep->bmouse.y = bmp->y;
bmep->bmouse.buttons = bmp->buttons;
bmput(&bmqueue, bmep);
wakeup(&bmqueue);

* bmput()

* Put an event structure onto the front of either
* the event queue or the freelist
*/

314 Answers to exercises

static
bmput(list, bmep)

/*

struct bmevent *list, *bmepi

int s = sp16 () i

bmep->next = list->nexti
list->next = bmepi

splX(S)i

* bmget(list)

* Unlink an event structure from either the
* event queue or the freelist.

* Returns a if list is empty.
*/

static struct bmevent *
bmget(list)

/*

struct bmevent *list;

struct bmevent *bmepi
int s = sp16 () i

if (list->next == (struct bmevent *)NULL)

splx(s) i
return ((struct bmevent *)NULL)i

bmep = list->next;
list->next = list->next->nexti
splx(S)i

return (bmep) i

* src/bmev.c

* Copyright (c) 1992 Peter Kettle and Steve Statler

* An interrupt-driven device driver for the Microsoft
* Inport Bus Mouse.

* This driver has been modified to call line discipline
* routines from src/bmld.c.

Assume line discipline 6 (BMLlNE, below) is available.

* ./configure -d bmpoll -c -m MAJOR
* ./configure -a bminit open close read intr -T 1 -v 5 -1

6 -c -m MAJOR
*/

#include (sys/errno.h)
#include (sys/types.h)
#include (sys/dir.h)
#include (sys/param.h)
#include (sys/user.h)
#include (sys/conf.h)
#include IIbm.hll

#define

#define
#define

/*

Ox23c

(O+BM_BA)
(l+BM_BA)

* Values written to BM_CTL
*/

#define BM_REG_l 0

#define BM_REG_2 1

#define BM_REG_3 2

#define BM_REG_4 7

#define BM_RESET Ox80

/*

Answers to exercises 315

/* Base Address for mouse
registers */

/* Control Register */
/* Window to other mouse

registers */

/* Select Internal Reg.
Buttons and Status */

1 :

/* Select Internal Reg. 2:
X Coordinate */

/* Select Internal Reg. 3 :
Y Coordinate */

/* Select Internal Reg. 4 :
Mode of operation */

/* Reset the mouse
controller */

* Mask values used to read BM_DATA, when BM_REG_l
* is selected
*/

#define BM_BUTTONS 7 /* State of buttons
l=Right Down,
4=Left Down */

#define BMJ10USEJ1VD Ox40 /* Set if the mouse is
moved on the
X/Y axis */

#define BM_BTNSJ1VD Ox38 /* Set if the buttons are
pressed or released */

/*
* Values written to BM_DATA when BM_REG_4 is selected
*/

#define BM_HOLD Ox20 /* Freeze counters so they
can be read */

#define BM_INTR_ON Ox08 /* Enable interrupts */
#define BM_INTR_30HZ OxOl /* Interrupt at 30 Hz */
#define BM_QUADMODE 0 /* Set mode for data to

be read */

#define BMLINE 6 /* Use this line
discipline */

316 Answers to exercises

/*
* bminit()

* Initialize the mouse hardware and print the
* configuration message on the console.
*/

bminit{)
{

/*

outb{BM_CTL, BM_RESET);
outb{BM_CTL, BM_REG_4);
outb{BM_DATA, BM_QUADMODE);
printcfg (IIbm", BM_BA, 3, 5, -1,

"InPort Mouse (Event)");

* bmopen{)
*
* Turn on interrupts
*/

bmopen{dev, flag, id)
dev_t dev;
int flag, id;

outb{BM_CTL, BM_REG_4);
outb{BM_DATA, BM_INTR_ONIBM_INTR_30HZIBM_QUADMODE);
(*linesw[BMLINE] . I_open) (dev);

/*
* bmclose{)
*
* Turn off interrupts
*/

bmclose{dev)
dev_t dev;

outb{BM_CTL, BM_REG_4);
outb{BM_DATA, BM_QUADMODE & -BM_INTR_ON);
(*linesw[BMLINE] . I_close) (dev);

/*
* bmintr{irq)
*
* Called whenever the mouse state changes.
*
* Read the mouse data and call the line discipline.
*/

bmintr{irq)
int irq;

struct bmouse bm;
char bm_reg_1, bm_reg_4;

/*

Answers to exercises 317

/*
* Freeze the counters so that we can read them
*/

outb(BM_CTL, BM_REG_4);
bm_reg_4 = inb(BM_DATA);
outb(BM_DATA, bm_reg_4IBM_HOLD);
outb(BM_CTL, BM_REG_l);
bm_reg_l = inb(BM_DATA);
if (bm_reg_l & (BM~OUSE~IBM_BTNS~))

bm.buttons = bm_reg_1 & BM_BUTTONS;
outb(BM_CTL, BM_REG_2);
bm.x = inb(BM_DATA);
outb(BM_CTL, BM_REG_3);
bm.y = inb(BM_DATA);
(*linesw[BMLINE) . I_input) (&bm);

/*
* Release the counters
*/

outb(BM_CTL, BM_REG_4);
bm_reg_4 = inb(BM_DATA);
outb(BM_DATA, bm_reg_4 & -BM_HOLD);

* Call the line discipline I_read to pass an
* event structure to the user.
*/

bmread(dev)
dev_t dev;

(*linesw[BMLINE) . I_read) (dev);

Chapter 6 - A STREAMS driver

This is the final evolution of the Microsoft InPort Bus Mouse, modi
fied to be a Stream driver. The clone driver in the sea UNIX kernel is
major device number 40:

/*
* src/bmst.c

* Copyright (c) Peter Kettle and Steve Statler, 1992.

* Stream driver for Microsoft InPort Bus Mouse.
*/

318 Answers to exercises

#include {sys/errno.h)
#include {sys/types.h)
#include {sys/stream.h)
#include {sys/stropts.h)
#include {sys/dir.h)
#include {sys/param.h)
#include {sys/sysmacros.h)
#include {sys/user.h)
#include {sys/cmn_err.h)
#include IIbm.hll
#define BM_BA Ox23c /* Base Address for mouse

registers */
#define BM_CTL (O+BM-BA) /* Control Register */
#define BM_DATA (l+BM_BA) /* Window to other mouse

registers */
/*

* Values written to BM_CTL
*/

#define BM_REG_l 0 /* Select Internal Reg. 1 :
Buttons and Status */

#define BM_REG_2 1 /* Select Internal Reg. 2:
X Coordinate */

#define BM_REG_3 2 /* Select Internal Reg. 3:
Y Coordinate */

#define BM_REG_4 7 /* Select Internal Reg. 4 :
Mode of operation */

#define BM_RESET Ox80 /* Reset the mouse
controller */

/*
* Mask values used to read BM_DATA, when BM_REG_l
* is selected

*/
#define BM_BUTTONS 7 /* State of buttons

l=Right Down,
4=Left Down */

#define BMJiOUSEJ1VD Ox40 /* Set if the mouse is
moved on the
X/Y axis */

#define BM_BTNSJ1VD Ox38 /* Set if the buttons are
pressed or released

/*
* Values written to BM_DATA when BM_REG_4 is selected
*/

*/

#define BM_HOLD Ox20 /* Freeze counters so they
can be read */

#define BM_INTR_ON Ox08 /* Enable interrupts */
#define BM_INTR_30HZ OxOl /* Interrupt at 30Hz */
#define BM_QUADMODE 0 /* Set mode for data to

be read */
/*

* Module info for each QUEUE. Values need to be tuned.
*/

Answers to exercises 319

static struct module_info bmstm_info = {

72 , / * module ID number * /
IIbmstll, /* module name */
0, /* min packet */
INFPSZ, /* max packet */
32, /* high water mark */
16, /* low water mark */

} ;

int bmstopen(), bmstclose(), bmstsrv();

/*
* QUEUE for read module
*/

static struct qinit bmstrinit = {

} ;

/*

NULL,
bmstsrv,
bmstopen,
bmstclose,
NULL,
&bmstm_info,
NULL

/* XXput routine */
/* XXservice routine */
/* XXopen routine */
/* XXclose routine */
/* reserved */

* Define the Stream driver
*/

struct streamtab bmstinfo =

} ;

/*

&bmstrinit,
NULL,
NULL,
NULL

/* read QUEUE */
/* write QUEUE not required */

bmstopen() copies the read queue here
* for use by bmstintr()
*/

queue_t *bmstqueue;

/*
* bmstinit ()

* Initialize the mouse hardware and print a configuration
* message on the console.
*/

bmstinit()
{

outb(BM_CTL, BM_RESET);
outb(BM_CTL, BM_REG_4);
outb(BM_DATA, BM_QUADMODE);
printcfg(lIbmstll, BM_BA, 3, 5, -1,

IIInPort Mouse (Stream)II);

320 Answers to exercises

/*
* bmstopen ()

* Called by the Stream head when the user process makes
* an open(S) call.

* Clone open is here for completeness, even though we only
* have one minor device available (minor = 0).

* Turn on interrupts
* Return the minor device number if successful, else
* OPENFAIL
*/

bmstopen(q, dev, flag, sflag)
queue_t *q;

/*

dev_t dev;
int flag, sflag;

dev = minor(dev);

if (sflag == CLONEOPEN)

dev = 0;

bmstqueue = q; /* Use this in bmstintr */
outb(BM_CTL, BM_REG_4);
outb(BM_DATA, BM_INTR_ONIBM_INTR_30HZIBM_QUADMODE);

return (dev) ;

* bmstclose ()

* Called by the Stream head when the user process makes the
* last close(S) call.

* There is no STREAMS work for us to do, this is all being
* taken care of by the Stream head

* Turn off interrupts
*/

bmstclose(q)
queue_t *q;

outb(BM_CTL, BM_REG_4);
outb(BM_DATA, BM_QUADMODE & -BM_INTR_ON);

/*
* bmstintr(irq)

* Called whenever the mouse state changes.

Answers to exercises 321

* Call allocb() to get a buffer for the mouse data.
* Copy the mouse data into the buffer, and adjust
* bp->b_wptr
* Call putq() to add buffer to read queue, then return.

* bmstsrv() will be called later at task time to move the
* data to the Stream head, and it will then be available
* for the user to read(S) .
*/

bmstintr (irq)
int irq;

char bm_reg_l, bm_reg_4;
struct bmouse bm;
mblk_t *bp;

/*
* Freeze the counters so that we can read them
*/

outb(BM_CTL, BM_REG_4);
bm_reg_4 = inb(BM_DATA);
outb(BM_DATA, bm_reg_4IBM_HOLD);

outb(BM_CTL, BM_REG_l);
bm_reg_l = inb(BM_DATA);

if (bm_reg_l & (BM~OUSE~IBM_BTNS~))
bm.buttons = bm_reg_l & BM_BUTTONS;

outb(BM_CTL, BM_REG_2);
bm.x = inb(BM_DATA);

outb(BM_CTL, BM_REG_3);
bm.y = inb(BM_DATA);

/*
* Release the counters
*/

outb(BM_CTL, BM_REG_4);
bm_reg_4 = inb(BM_DATA);
outb(BM_DATA, bm_reg_4 & -BM_HOLD);

/*
* Now allocb() a buffer, copy bm into it,
* and putq() it onto the read QUEUE.

* Note that allocb() sets db_type to M_DATA
* by default.
*/

if ((bp=allocb(sizeof(struct bmouse), BPRI~D)) ==
NULL) {

cmn_err(CE_WARN, IIbmstintr() couldn't allocb()II);
return;

322 Answers to exercises

/*

bcopy(&bm, bp->b_rptr, sizeof(struct bmouse));
bp->b_wptr += sizeof(struct bmouse);
putq(bmstqueue, bp);

* bmstsrv()

* - called by the STREAMS scheduler
* - Take messages off the read QUEUE and putnext()

them to the Stream head.
*/

bmstsrv(q)
queue_t *q;

mblk_t *mp;

while ((mp = getq(q)) != NULL) {

/*
* Check for room at the Stream head - but always
* putnext() any priority messages
*/

if ((mp->b_datap->db_type <= QPCTL)
&& Icanput(RD(q)->q_next)) {

/*
* There is no room at the Stream head, so
* return this message to read QUEUE.
*/

putbq(q, mp);
return;

switch (mp->b_datap->db_type)

case M_DATA:
putnext(q, mp);
break;

case M_FLUSH:
if (*mp->b_rptr & FLUSHW) {

flushq(q, FLUSHALL);
*mp->b_rptr &= -FLUSHW;

if (*mp->b_rptr & FLUSHR)

qreply(q, mp);
else {

freemsg (mp) ;
}
break;

default:

Answers to exercises 323

crnn_err(CE_WARN,
IIUnexpected message
type in bmstsrv (): %d II ,
mp->b_datap->db_type) ;

freemsg (mp) ;
break;

Chapter 7 - Using the extended RAM disk driver

Use mknod (ADM) to create the following block and raw devices for the
RAM disk, which we shall call ramd. The examples here assume that
major device number 72 is available:

mknod /dev/ramd b 72 0
mknod /dev/rramd c 72 0

You will now be able to run

fdisk -f /dev/rramd

to set up a partition table. Next, create the following device to access
the entire partition:

mknod /dev/rramda c 72 47

You will now be able to run badtrk (ADM) to set up a bad track table on
the partition, and to add some bad tracks:

badtrk -e -f /dev/rramda

Next, run divvy (ADM) to create a filesystem:

divvy -m /dev/rramd

After running divvy (ADM), you should have four new device entries
set up in /dev corresponding to the block and raw division table
entries that you have just created.

Check that everything is working properly by mounting the file
system on division 0, and copying some files into the RAM disk.

324 Answers to exercises

Chapter 8 - A raw device driver

Add these routines to the extended RAM disk driver from Chapter 7:

void
ramdbreakup(bp)

struct buf *bp;

drna_breakup(ramdstrategy, bp);

ramdread(dev)
dev_t dev;

if (physck(dksecsize(ramddip, dev), B-READ)) {

physio(ramdbreakup, (struct buf *)0, dev, B_READ);

ramdwrite(dev)
dev_t dev;

if (physck(dksecsize(ramddip, dev), B_WRITE)) {
physio(ramdbreakup, (struct buf *)0, dev, B_WRITE);

Raw transfers occur between user space and the device, which
means that the paddr (bp) macro will now yield a user virtual address,
rather than a kernel virtual address. To convert this to a physical
address, you must replace the call to ktop (K) with a call to vtop (K)

inside ramdio. Replace the line:

if (copyio(ktop(paddr(bp)), base, ramdreq.tsectors «
DKSSHIFT, flag) == -1) {

with the line:

if (copyio(vtop(paddr(bp), bp->b_proc), base,
ramdreq.tsectors «DKSSHIFT, flag) == -1)

A.1

A.2

APPENDIX A

Adding a new device driver
to the kerne 1

Overview

This ·appendix describes how to use the SCO UNIX System V Link Kit to
compile your driver source, to configure and link a new UNIX kernel, and
how to boot the new kernel so that you can test your device driver.

Only a subset of the Link Kit utilities and their options will be described.
When you have read and understood this appendix, you should feel comfort
able with the concepts of configuring, linking and booting a UNIX kernel so
that you can attempt all of the practical sessions included in this book.

The seo UNIX Link Kit

The focal point for all of the configuration and linking activity for building
new UNIX kernels is the set of directories beneath /etc/conf, as shown in
Figure A.I.

Device driver writers should focus on the cf. d, pack. d and sdevice. d
directories.

The contents of the directories are as follows.

A.2.1 bin

Contains the Installable Driver (IO) utilities which provide for building, con
figuring and tuning UNIX kernels. Some of these utilities are used internally
by the configure (ADM) and link_unix utilities.

325

326 Appendix A

$ROOT/etc/conf

I I
bin cf.d init.d mfsys.d node.d pack.d rc.d sd.d sdevice.d sfsys.d

A I
I

configure link_unix dum hd kernel sio

I
Driver.o

Figure A.I The sca UNIX Link Kit.

A.2.2 cf.d

Contains the configuration files describing the set of devices to be installed in
the UNIX kernel, the values of the kernel resources (such as the size of the
process table), a base version of /etc/inittab called init.base, and the two
utilities configure (ADM) and link_unix.

A.2.3 init.d

Contains text files which are appended to cf.d/init.base to build the
/etc/ini ttab file, which controls the actions of the /etc/init process (the first
user process to run after the UNIX kernel has booted).

A.2.4 mfsys.d

Contains master configuration information for each of the file system types
supported by the sca UNIX kernel. Each supported file system type has its
own configuration file, containing the file system name, some flags and a
bitstring used to generate the entry points into the file system switch struc
ture. This directory is not relevant for device drivers.

For further information, refer to the mfsys (F) manual page.

A.2.S node.d

Contains configuration information for special device files that should be
created in /dev by the idmknod (ADM) utility at the next kernel relink. For further
information, refer to the idmknod (ADM) manual page.

Appendix A 327

A.2.6 pack.d

Contains a subdirectory called kernel and many device driver subdirectories.
The kernel subdirectory contains the kernel object modules, and the device
driver subdirectories contain the individual device driver object modules. The
device driver subdirectory's name is the same as the device name, and the
device driver object module within the subdirectory is called Driver .0. For
example, $ROOT/etc/conf/pack.d/hd/Driver.o is the object module for the
hard disk device driver.

The object modules in these directories are linked together to build the
UNIX kernel.

A.2.7 rc.d

Contains device-dependent system initialization shell scripts that need to be
executed as the system goes into multi-user mode (run level 2). The
idmkenv (ADM) utility links the contents of this directory into /etc/idrc .d. l

For further information, refer to the rc2 (ADM) manual page.

A.2.8 sd.d

Contains device-dependent system shutdown shell scripts that need to be
executed as the system shuts down (run level 0). The idmkenv (ADM) utility
links the contents of this directory in /etc/idsd.d. 2

For further information, refer to the rcO (ADM) manual page.

A.2.9 sdevice.d

Contains files which describe the device-specific characteristics (including the
device name, the interrupt level and the I/O space addresses of the controller
registers) for each of the devices specified in the master device file, rodevice.
The files in sdevice. d are maintained by configure (ADM) •

A.2.10 sfsys.d

Contains configuration information used to determine which filesystem types
from rof sys . d (see above) are to be included in the next kernel relink. This
directory is not relevant to device drivers.

For further information, refer to the sfsys (F) manual page.

328

A.3

Appendix A

Building a new kernel

There are eight major steps to be followed whenever you want to add a new
device driver to the kernel:

(1) Make your own copy of the UNIX Link Kit directory tree, so that you
have a safe area to work in, away from the actual files and directories
used to maintain your machine's own copy of UNIX. Set up an environ
ment variable ROOT to point to the top of your Link Kit tree.

(2) Write the device driver in C, and provide a Makefile to compile it and to
copy the object file into the correct part of the Link Kit directory tree.

(3) Determine the device-specific information, including the major device
number, the interrupt vector and the priority level to be used (when
applicable). This information is used by the kernel when it wants to call
your device driver routines to handle I/O requests, to deal with inter
rupts, and so on.

(4) Use the configure (ADM) utility to add the details of your device driver to
the system configuration files.

(5) Compile your device driver and copy the object module into your Link
Kit hierarchy.

(6) Link a new UNIX kernel and copy the new kernel into a directory in /trnp.

(7) Shut down the system and reboot the new kernel from /trnp.

(8) Use the rnknod (C) utility to create one or more special device files in /dev so
that you can access your device driver.

These steps are described in more detail in the following subsections.

A.3.1 Make a copy of the UNIX Link Kit directory

Choose a directory where you want the top of your own UNIX Link Kit
directory tree to be, for example, your home directory. Then use the copy(C)
utility to make a copy of the directory /etc/conf. You will have to be the
superuser to read some of the files and directories:

copy -rv /etc/conf (destination directory)

When the copy (C) has finished, use the chown (C), chgrp (C) and chrnod (C)

utilities to ensure that you have appropriate ownership and permissions to
access all of the files in your new, private Link Kit directory.

Finally, set up an environment variable ROOT in either your .profile or
.login file to point to the top of your Link Kit tree. Make sure that you
export ROOT.

When you have finished, you should end up with the directory structure
shown in Figure A.l.

Appendix A 329

A.3.2 Write the device driver

This book contains many practical sessions and model answers for real,
working device drivers. We shall use the model answer for the exercise set at
the end of Chapter 2 (the answer is given in 'Answers to Exercises') to
illustrate the points covered in this appendix. Recall that this dummy driver
does nothing other than announcing its presence when any of its routines are
called. This device driver has the three-letter prefix dum.

We recommend that you set up an src directory somewhere beneath your
SHOME directory, which will contain your device driver source files and a
Makefile. Use your favourite text editor to type in the source for dummy. c (if
you want to, you can simply type in the model answer for Chapter 2, given in
'Answers to Exercises').

Next, type in a Makefile to compile your device driver source to an object
module, and then to copy the object module into your Link Kit hierarchy. An
example Makefile is given in 'Answers to Exercises'. You can easily extend
this to contain rules for your other device drivers from the exercises in this
book.

To compile your device driver source, type

S make dummy.o

To copy the resultant object module into pack.d, first ensure that you have
appropriate write privileges on your SROOT/pack.d directory, and then type

S make cp

A.3.3 Determine the device-specific information

The major device number, and whether your device driver is for a block or
character device, uniquely identify it to the UNIX kernel, so that user pro
cesses which make open (S), close (S) , read (S) , write (S) and ioctl (S) system
calls can access the device via your device driver routines.

If your device generates interrupts, you must also provide an XXintr
routine, and specify which interrupt vector your device is attached to, and at
what interrupt priority your device's interrupts should be serviced at. Note
that our dummy device driver does not have any interrupts.

Finally, you must specify whether your device is a character device or a
block devic~. All of these pieces of device-specific information are described
iIi. Chapter 2.

For' out dummy device driver, we need to determine the following pieces
of inforination:

• The major device number. Our example will use major device 17.

• The names of the XXopen, XXclose, XXread, XXwri te and XXioctl routines.
Our routines are called dumopen, durnclose, durnread, durnwrite and durnioctl.

• A character or block device driver. Our example is a character device
driver.

330 Appendix A

When the kernel wants to access your dummy device driver, it will use the
major device number from the inode of the special device file in /dev to index
cdevsw [I , which you will configure to contain the names of your device driver
routines. This mechanism is described in more detail in Chapter 2.

A.3.4 Use the configure(ADM) utility

Important note: Before using configure (ADM) for the first time, we advise you
to make copies of the following files and directories in $ROOT/etc/conf:

• Copy the file cf .d/mdevice to cf .d/mdevice.orig .

• Copy the directory sdevice.d to sdevice.d.orig.

Use the configure (ADM) utility to modify the system configuration files in
cf.d and sdevice.d to contain information about your dummy device driver.
Make sure that you are in the cf.d directory before starting, and that you
have appropriate values prepared for all of the items described in step 3
above.

If you do not know which major device number to use, you can use
configure (ADM) to tell you what the next available one is. The -j NEXTMAJOR
option to configure (ADM) prints out the next available major device number:

$./configure -j NEXTMAJOR

Note that there is a ./ before the configure command, as you are working in
the directory $ROOT/etc/conf/cf. d and this may not be on your PATH.

It is extremely important that you use a unique major device number for
your device, otherwise you may disable other critical devices and prevent the
kernel from booting. Unfortunately, configure (ADM) is not smart enough to
spot many of the potential mistakes that novices can make (and experts too,
sometimes!), so you must be very careful. For this example, we have assumed
that major device number 17 is available, but you must check your own
system and use a different major device number if 17 is already in use.

Type the following command to add the details of your dummy device
driver to the system configuration files:

$./configure -a dumopen dumclose dumread dumwrite dumioctl -c -m 17

The command you have just used instructs configure to add (-a) the routines
dumopen, dumclose, dumread, dumwrite and dumioctl for a character device (-c)
with major device number 17 (-m 17). Note that not all of the routines are
required for every device. For example, the XXioctl routine is only required if
you want your device to respond to ioctl (s) system calls. Similarly, it is not
necessary to configure an XXread routine for a printer driver! In general, all
devices require XXopen, XXclose and at least one of XXread, XXwrite or
XXstrategy. All the other routines are optional.

Appendix A 331

Configure(ADM) flags and options

The configure (ADM) utility has many flags and options, and some more are
described later on in this appendix. However, the only other flags that you
will need to use to complete the exercises in this book are as follows.

-b
This is similar to the -c flag that you have just used, but specifies a block
device rather than a character device. Raw device drivers that have character
and block device driver routines should be configured with both -b and -c in
the same command.

-d
This is the opposite to the -a flag that you have just used. It is used to delete
device driver routines and configuration options from the system configura
tion files.

-v IRQ
This flag is used to specify the interrupt request line, or interrupt vector, that
the device is attached to on the i8259A PIes.

-I level
This flag is used to specify which particular priority level the interrupt should
be serviced at. The lowest priority interrupts are at priority level I, and the
highest are at priority level 7. Note that there is no direct relationship
between a device's interrupt vector and its interrupt priority level.

-Tscheme
If your device is using interrupts, you must specify -T 1 to indicate that your
device will use its own interrupt line, unless the driver's XXinit routine auto
configures entries in the interrupt tables for the device.

Failure to specify -T 1 will mean that configure (ADM) will not generate
entries for your device driver's XXintr routine, and your device driver will not
be able to receive interrupts from the device.

-s
This flag indicates that you are configuring a Stream driver.

For further information about configure (ADM) and its many flags and options,
please refer to the manual pages in the sea UNIX System Administrator's
Guide.

The master device file, mdevice

If you compare the cf . d/mdevice file with the original cf . d/mdevice. orig, you
will see that configure (ADM) has added a line to the end of mdevice describing
the characteristics of your dummy device driver. The mdevice file contains a

332 Appendix A

one-line description of each device driver to be included in the next relink of
the UNIX kernel. The ~!ltry for yqur dummy device driver should be:

durn ocrwi durn o 17 o 1 -1

The first field is the device name, This field may be up to eight characters
long, and defaults to be the same as your device driver's prefix, unless you
use the -h flag of configure (ADM) when you in!t~fllly add the details of your
device to the system configuration files.

The second field is the function list, and sp~~ifies which routines are
present in your device driver. The contents of this field are used to generate
entries for bdevsw [I and cdevsw [I. Your dummy @evice driver should have
open, close, read, write and ioctl routines. '

The third field identifies the device driver cnilfacteristics. Your dummy
device driver is installable, it is required to p~ in every UNIX kernel, it
controls Hardware, and it is a character devi~e, The rand H flags are set by
default whenever you add a device driver with configure (ADM), although
since your dummy device driver is neither required nor does it control any
hardware, you should reset them using th~ foUowing command:

$./configure -d -R -H -c -m 17

The fourth field is the handler prefix, common to all of your device driver
routines which you have added using configure (ADM) •

The fifth and sixth fields are the block and character major device number~
respectively.

The seventh and eighth fields specify the minimum and maximum num
bers of devices that can be supported by the controller (see Chapter 1 for P
more detailed explanation of the differences between controUl?fS 9-n~
devices). These numbers can be changed by using the -M fla& to
configure (ADM) .

Finally, the ninth field specifies the DMA channel to be used by thi~
device. A -1 indicates that your device does not use any DMA. If your device
does use DMA, you must specify the DMA channel with the -C flpg to
configure (ADM). -'

For further information about the mdevice file, please refer to the
mdevice (F) manual page.

The system device file, sdevice

Configure (ADM) writes further information about your device driver to a fije in
sdevice. d. The name of that file is the same as the device name fielet i:R the
mdevice file. In our example, the file will be called sdevice.d/durn. Th~ fn~ ip
sdevice. d is an extension of the corresponding entry in the mdevice file.

The entry for your dummy device driver should be:

durn y o o o o o o o

The first field is the device name, and matches the corresponding efltry in
the mdevice file.

Appendix A 333

The second field is the configure field, which contains either a Y or an N. A Y

indicates that the corresponding device driver object module from pack.d/XX
should be installed into the UNIX kernel when the kernel is next relinked, an
N indicates that the device driver should rtot be installed in the next relink,
and that the pack.d/XX/stubs.c file should be used instead. This field can be
changed by specifying the -Y flag to configure (ADM).

The third field is the unit number, and is used to specify how many devices
are attached to the controller. Its value must be within the minimum and
maximum values specified in fields 7 and 8 of the mdevice entry. This field can
be changed by using the -u flag to configure (ADM) •

The fourth field is the interrupt priority level, and is set using the -1 flag to
configure (ADM) , as described earlier in this section.

The fifth field is the interrupt type, and indicates the type of interrupt
scheme required by the device (whether the device requires an interrupt, and
if so whether it is shared with other devices).

The sixth field is the interrupt vector, and is set by using the -v flag to
configure (ADM) , as described earlier in this section.

The seventh and eighth fields are the start and end I/O addresses respect
ively, and contain the start and end I/O addresses in the I/O space through
which the device communicates, if the device is I/O mapped (see Chapter 1).
These fields are set with the -I flag to configure (ADM) .

Finally, the ninth and tenth fields are the start and end controller memory
addresses respectively, and should be used if the controller has on-board
memory (some devices use buffers in the memory between 640K and 1Mb).
These fields are set with the -J flag to configure (ADM) .

Since your device driver is reasonably simple and doesn't control any real
hardware, all but the first three fields of sdevice .d/dum are set to O.

However, if you were writing a device driver for a complex piece of
hardware, you would see that the corresponding entries in mdevice and
sdevice.d have many more fields filled out. You may like to look at some of
the other files in this sdevice. d directory.

A.3.S Compile your device driver

If you haven't already done this, now is the time to compile your device
driver to an object module and to copy it into pack. d/XX, using the command

$ make cp

as described above. Note that you will not produce an executable file as a
result of this compilation. You must link and install a new UNIX kernel before
you can test your device driver. There should be no errors from the compiler
at this stage. If there are any errors, you must go back and correct the source
before trying to link a new UNIX kernel.

334 Appendix A

A.3.6 Link and install a new UNIX kernel

Move into your $ ROQT/ cf . d directory, and relink a new kernel by typing:

$./link_unix

Depending on the speed of your machine, building a new kernel can take up
to several minutes. Please be patient!

There should be no errors or warnings from the link_unix utility. If there
are any, you almost certainly made a mistake when you used configure (ADM) .
Carefully note down all of the errors, make sure that you understand why
they are caused, and go back and fix them. If you think that you made an
error with configure (ADM), it is often useful to remove the original configura
tion information completely, and then to start over again. Use the following
command to remove all the configuration information about your dummy
device driver:

$./configure -d -c -m 17

Remember to substitute your own major device number if you are not using
major 17.

When you have fixed all the errors, try relinking the UNIX kernel again.
You will not be able to boot your new kernel unless you resolve all of the
errors reported by link_unix.

When the new kernel has been relinked successfully, copy it into your test
directory in / tmp.

A.3.7 Shut down the system and reboot the new kernel

Now you are ready to reboot the new UNIX kernel that you have just built
with link_unix. Use the shutdown (ADM) command to bring the system down
cleanly - don't get too excited and be tempted to simply power the machine
off and back on again!

/etc/shutdown -y -g 0

Remember that you have to be the superuser to be able to shut down the
system.

To boot your new kernel, type its full pathname at the boot prompt:

seQ UNIX System V 386

Boot

: /tmp/peterk/unix

Important note: If your new UNIX kernel doesn't boot, power the machine
off, restart the boot sequence and reboot either /unix or /unix.orig.

Appendix A 335

A.3.8 Use the mknod(C) command

A.4

Before any utilities will be able to access your device driver, you must create a
character special device file in /dev with the correct major device number. The
major device number is the only way that the kernel has of accessing your
device driver. This has two important implications:

• It is essential that you specify the correct major device number.

• The actual name of the special device file can be anything that you want,
providing that it doesn't clash with any existing entries in /dev.

The following command will create a special device file for your dummy
device driver:

/etc/mknod /dev/dumrny c 17 0

You will have to be the superuser in order to run this command.
The command you have just used instructs mknod(C) to create a special

device file called /dev/durnrny, which is a character device (c), with major and
minor device numbers 17 and a respectively.

Testing the device driver

Test your driver with the cat (C) utility:

$ cat /etc/motd > /dev/dumrny
$ cat /dev/dumrny

If all is well, you should see your device driver routines being called by the
UNIX kernel as the cat(C) utility makes open(S), read(S), write(S) and
close (S) system calls.

You can test your XXioctl routine with the stty (C) utility:

$ stty < /dev/durnrny

At this stage, you need not concern yourself with any errors from cat (C) ,

stty (C), or any other utility that you are using to test your device driver -
these errors are being reported because your device driver routines are only
stubs.

NOTES

1. The current release of sea UNIX ignores this directory.

2. The current release of sea UNIX ignores this directory.

APPENDIX B

Debugging device drivers

B.l Overview

Unless you are extremely lucky or extraordinarily clever, sooner or later you
will write a device driver that doesn't behave exactly as it should when you
test it for the first time. The malfunction might be reasonably trivial, such as
mouse coordinates changing in a positive direction only, or more serious,
such as a hanging process, or even a kernel panic.

This appendix provides some advice about how to debug device drivers,
starting at the moment that you first put pen to paper (or fingers to the
keyboard). It is divided into three sections:

(1) Defensive programming.

(2) Debugging device drivers.

(3) Dealing with hanging processes and kernel panics.

The information gathered in this appendix comes from a variety of sources,
including the authors' own experience of debugging the device drivers in this
book, and watching students on SeQ's Writing Device Drivers for seQ UNIX
training course, on which this book is based.

B.2 Defensive programming

The easiest way to get device drivers to work properly is to write them
correctly in the first place. Although this does sound like a rather conde
scending statement, it is nevertheless true. It is surprising how often pro
grammers make trivial mistakes such as forgetting to pass the correct number
of arguments to functions, dividing by zero, using variables before they are
initialized (particularly pointers), and so on.

337

338 Appendix B

In a user program, such errors can only cause problems for the particular
process when it runs, as the kernel protects all processes from each other and
themselves. At worst, the process will receive a SIGSEGV or a SIGBUS signal,
drop a core file into the file system, and terminate before any damage can be
caused.

However, a device driver is part of the kernel, and therefore has access to
the entire address space of the machine, including all the processes and all
parts of the kernel. Therefore, trivial mistakes such as using uninitialized
pointers can corrupt any process that is running, and any kernel data struc
ture, such as the process table, the buffer cache contents, and so on. Depend
ing on the exact nature of the problem, the kernel may continue to run
apparently normally for a period after the corruption, before it eventually
panics. The first notification that you will receive of any problems will be
when the kernel panics, perhaps a long time after the original damage has
been done by your device driver.

Here is a list of things to check before testing your device driver for the
very first time:

• Check that you are passing the correct number of arguments, in the correct
order, to every routine that your device driver uses. For example, use
outb(addr, byte) rather than outb(byte, addr), or even outb(addr).

• Check that all variables, particularly pointers, are initialized before you use
them.

• Check that you are using user or kernel addresses as appropriate. Check
whether you should be using physical or virtual addresses, particularly
when calling kernel support routines such as copyio (K) •

• Check that your variables are signed or unsigned, as appropriate. This is
particularly important when making calls to inb (K) , which returns an 8-bit
quantity. If the top bit is set, and you assign the result to a signed integer,
you may get problems caused by sign extension.

• Don't be tempted to go all-out for glory at the first test. If the device uses
interrupts, consider testing it with an XXpoll routine before testing it with
interrupts. Get the basic mechanisms working first, to give you confidence
in yourself, your device driver and the hardware.

For example, during development of the mouse driver at the end of
Chapter 3, consider getting changes in the X coordinate reported properly
first. Afterwards, try for the Y coordinate, and then the buttons.

• Check that your driver will communicate correctly with the device, accord
ing to the manufacturer's hardware specification.

• Make a copy of /unix, called something other than /unix.old (for example,
/unix.orig), before you build a new kernel for the first time. You will be
able to boot this kernel with confidence if you get into difficulties later on.

• Create an emergency floppy set, with mkdev fd, which will allow you to
reboot the machine even if you corrupt the primary and secondary boot
straps on the UNIX partition.

• Check that your device driver is properly configured into the kernel.
Remember to recompile your device driver, copy the new object module
into pack.d, and relink the kernel, before each new test.

Appendix B 339

Reconfiguring should not be necessary unless you are adding new
routines or deleting old ones.

• If your device is using interrupts, remember to specify an IRQ line (-v), an
interrupt priority level (-1), and an interrupt scheme (normally -T 1).

• Make sure that the hardware configuration matches the information which
you have given to configure (ADM) • For example, if you have specified -v 4

for the IRQ line, check that any jumpers on the device are set accordingly.

• Check that the specified IRQ line is not already in use by another device
(examine the kernel startup messages in /usr/lib/adm/messages, or run
hwconfig (ADM)).

• Check that the task-time and interrupt-time parts of your device driver are
properly interlocked with spl (K) •

Initially, it pays to be over-cautious and to interlock for longer than
might finally prove to be necessary.

• If your device driver calls sleep (K), use printf (K) to display the wait
channel and priority parameters, which can be compared with the output
from ps (C) if the process appears to hang (see Section B.4 below).

• Make sure that you boot the correct kernel, with the latest version of your
device driver in it.

• Make sure that you have created a special device file of the correct type in
/dev, with a major device number which matches that which you have
specified with configure (ADM) .

If your test programs receive ENOENT (No such file or directory) from their
open (S) system calls, you have forgotten to create a special device file in
/dev.

If your test programs receive ENODEV (No such device) from their open(S)
system calls, you probably have your device driver configured with a
different major device number from that which you specified to mknod(C).

If your test programs receive ENXIO (No such device or address) from
their open (S) system calls, your device driver is probably not configured
into the kernel.

Verify that your device driver is there (or not) by using run (CP) to examine
the kernel object file, and look for your device driver routine names.

• Assume initially that the kernel and the hardware will function correctly,
and that any bugs that manifest themselves are being caused by your
device driver.

Remember that Rome wasn't built in a day!

B.3 Debugging device drivers

Once your device driver starts to show signs of life, you can be confident that
many of the teething troubles outlined above have been overcome. The next
step is to test each of the functional components of your device driver.

340

B.3.1

Appendix B

Testing the device driver

Think carefully about the design or choice of test programs that you intend to
use. For example, to test a block device driver, read from it before you try to
write to it, thus ensuring that the basic mechanisms are operating correctly
before you risk writing over the top of the process table!

Begin testing by using cat(C), od(C), hd(C), and then move on to dd(C),
before trying to use tar (C) . Put cmn_err (K) or printf (K) statements into your
device driver's routines so that you can see when they are invoked by the
kernel. Although these tests will not return any useful or sensible data, they
will enable you to verify that your device driver is properly configUred
into the kernel, and is responding correctly to open (S) and read (S) system
calls.

To test the write mechanisms, use the same commands again. For excim
pIe, cat (C) a small file, such as /etc/motd, to the device, and then cat (C)' it
back again onto stdout. Repeat the same sequence with progressively larger
files. Verify that your device driver behaves correctly at the end of the device,
for example, reading or writing the last block of a filesystem. As your
confidence builds, try more complex commands, such as mkfs (ADM) ,

fsck (ADM) and mount (ADM) . Copy some files into the file system, unmount the
device, mount it again, and check that the files are still all there and that they
have not been corrupted. Try writing a file to the block device and reading it
from the raw device, and vice versa.

Testing a character device driver; such as the mouse driver, is a little more
difficult and may require a small test program to be written. Write the least
complex test program possible, and present the data iii an easily-understood
format. A good example of a simple test program is rnouse.c, given in
I Answers to Exercises'. If your program displays hexadeciIrlal numbers with
the %x formatting string, prefix the numbers with Ox, and so on;

As a general principle, you will maintain a faster rate of progress if you
think and then test, rather than testing and then thinking.

B.3.2 Using debugging diagnostics

If you suspect that your device driver is not functioning correctly, insert some
debugging diagnostics which printf (K) variables, results of decision state
ments, arguments to functions, and so on. It is good practice to enclose all
debugging diagnostics inside a #ifdef DEBUG preprocessor directive, so that
you can leave them in the deviCe d.river during testing, and choose whether
to use them or not by specifyIng' -"'D'DEBUG iIi. the Makefile. You can also
associate the diagnostics with a de15ttg~ii1g level, which determines how
much output will be produced. One advafitage of this is that it is possible to
use adb(CP) to change the debugging level without having to recompile the
device driver and relink the kernel, which saves time.

For example, consider the following code extract from the mouse device
driver:

B.3.3

#ifdef DEBUG
int bmlevel l;
#endif

/*
* bmopen()
*
* Turn on interrupts
*/

bmopen(dev, flag, id)
dev_t dev;
int flag, id;

{
#ifdef DEBUG
switch (bmlevel) {

case l:
printf ("DEBUG: bmopen () \n") ;
break;

case 2:

Appendix B 341

printf ("DEBUG: bmopen (dev=%d, %d, flag=%d, id=%d) \n",
major (dev) , minor(dev), flag, id);

getchar();
break;

default:

}
#endif

break;

outb(BM-CTL, BM_REG_4);
outb(BM-DATA, BM_INTR_ONIBM_INTR_30HZIBM_QUADMODE);

The device driver declares a debugging level, bmlevel, and switches on its
value to determine how much debugging information is required. The initial
value is I, which produces the least amount of debugging information.

Patching kernel data with adb(CP)

To change the value of bmlevel to 2, which will produce more debugging
information, use adb (CP) as follows:

adb -w /tmp/peterk/unix
* bmlevel/x
bmlevel: Oxl
* /w 2
bmlevel: Ox2
* Ctl-d
reboot

342 Appendix B

The command /w 2 patches the value of bmlevel in the data segment of
/tmp/peterk/unix in the filesystem, so that when the kernel is rebooted, the
driver will produce more debugging information. Although this technique
may appear a little daunting at first, it is easily mastered and can save a lot of
unnecessary edit-recompile-relink cycles.

Note that with bmlevel at 2, the device driver calls getchar (K). This will
stop the kernel running until you press a key on the console, and will give
you an opportunity to examine the debugging information before allowing
the device driver to continue. 1

Using the get char (K) kernel support routine is the first step to writing your
own kernel debugger, which might print out data structures from the device
driver, dump the process table, change variables (including debugging levels)
in the running kernel, and so on.

B.3.4 Patching kernel text with adb(CP)

It is also possible to use adb (CP) to patch instructions in the kernel's text
segment! This is much more difficult than patching data, as you are only able
to give numeric values to adb(CP), not instruction mnemonics. However,
with a reasonable amount of patience, and access to a CPU reference manual,
most things are possible.

Consider the following example from a disk interrupt routine, which tests
an error count against a threshold value. The author suspected that a hard
disk was causing an abnormally high number of soft errors (errors that were
being reported to the disk driver's interrupt routine, but which could be
eventually corrected by retries). To find out how many retries were being
required, without recompiling the driver and relinking a new kernel, the
instruction that was testing against the threshold was modified.

The actual C statement was:

if (++xXtab[ctlr] .b_errcnt <= MAXRETRY)

Adb(CP) was used to find, and then disassemble, the instruction:

adb /tmp/peterk/unix
* XXintr+Ox127?i
XXintr+Ox127: cmp Byte Ptr [edi-Ox2fefOSeS],Ox4
* ?x
XXintr+Ox127: Oxbf80
* (Return)
XXintr+Ox129: Oxfalb
* (Return)
XXintr+Ox12b: OxdOlO
* (Return)
XXintr+Ox12d: Ox7f04
* Ctl-d

Appendix B 343

The description of the CMP instruction from the 80386 Programmer's Reference
Manual was used to determine that the 04 of the Ox7f04 was the value of the
threshold being tested against. It was now straightforward to patch a new
value for the threshold:

adb -w /tmp/peterk/unix
* XXintr+Ox12d?x
XXintr+Ox12d: Ox7f04
* ?w Ox7fOO
XXintr+Ox12d: Ox7f04= Ox7fOO
* XXintr+Ox127?i
XXintr+Ox127: crop Byte Ptr [edi-Ox2fef05e5),OxO
* Ctl-d
reboot

Even after this modification, the disk heads could still be heard seeking
over and over again, but no diagnostics were being reported on the console,
indicating that the disk controller was not reporting soft errors. Soon after
wards, the disk controller was replaced, and the problem was cured.

B.3.5 Timing problems

When your debugging diagnostics indicate that your device driver is working
properly, it is time to remove the -DDEBUG flag from the Makefile, and recom
pile your driver. At this stage, do not remove any of the #ifdef DEBUG clauses
from the device driver.

If your device driver really is working properly, it should behave exactly as
before. However, turning off the debugging diagnostics makes subtle
changes to the timing of the device driver, and you may discover that the
driver has now stopped working altogether! The reverse is also true - adding
debugging diagnostics to a device driver that does work can make it stop
working properly!

This is particularly relevant for devices that interrupt. The only advice that
we can offer is to be patient. Step by step, turn the debugging diagnostics
back on (or change the debugging level), until you reach a threshold beyond
which the device driver's behaviour changes. You should at least have some
clues about where to start looking in your device driver for the problem.

B.4 Dealing with hanging processes and kernel
panics

In this section, we shall describe how to use the crash (ADM) command to
display system stacks from the running kernel or from panic dumps in the
swap device.

344 Appendix B

B.4.1 Hanging processes

In Chapter 4, we explained how processes can sleep at a priority less than
PZERO, and that they will stay locked in the system if they are not woken up by
a wakeup(K) issued from an XXintr routine. If you suspect that your process is
hanging (for example, tar (C) starts writing to your device but never returns
to the shell, and doesn't respond to signals), it is likely that there is a bug in
your device driver.

Almost certainly, there is a problem in the interrupt routine. Either your
device driver is not receiving interrupts at all, or it is not issuing the wakeup (K)
call correctly.

There are two things that you can do to help determine the cause of the
problem. The first is to switch to another console multi-screen, run ps -el,
and look for the hanging process. Here is an extract from a ps -el command:

PID PPID C PRI NI WCHAN TTY TIME CMD
0 0 0 o 20 d014a919 ? 0:00 sched
1 0 0 39 20 eOOOOOOO ? 0:01 init
2 0 0 o 20 dOOa63ec ? 0:00 vhand
3 0 0 20 20 dOOa018c ? 0:00 bdflush

275 1 0 30 20 dOOeOc18 01 0:02 sh
276 1 0 30 20 dOOeOd70 02 0:02 sh
277 1 0 28 20 dOOc680c 03 0:00 getty
308 275 0 20 20 d100beaO 01 0:00 tar
242 1 0 26 20 d0137a08 ? 0:00 Ipsched
339 276 49 84 20 02 0:02 ps

The tar (C) command is asleep at priority 20 (PRIBIO), waiting for block I/O.
Because it is asleep at a priority less than PZERO, it is impossible to interrupt it
by sending it a signal.

To find out exactly why it is asleep, we can use crash (ADM) to examine the
system stack. 2 The p option displays the process table, and allows us to
identify which process table slot is being occupied by the tar (C) process (our
process was in slot 9). We can then specify t slotno, to print a kernel stack
trace for the process. For simplicity and formatting purposes, we have
replaced the possible arguments and some of the register values with w, x, y
and z. These are not important to our discussion:

crash -d /dev/mem -n /tmp/peterk/unix
dumpfile = /dev/mem, namelist = /tmp/peterk/unix,
> t 9
STACK TRACE FOR PROCESS 9:
STKADDR FRAMEPTR FUNCTION POSSIBLE ARGUMENTS
eOOOOcb8 eOOOOcdc swtch (x,y,z)
eOOOOce4 eOOOOcfO iowait (w,x,y,z)
eOOOOcf8 eOOOOd08 bread (w,x,y,z)
eOOOOd10 eOOOOd54 breadm (w,x,y,z)
eOOOOd5c eOOOOdb4 s5writei (w,x,y,z)
eOOOOdbc eOOOOdec rdwr (x)
eOOOOdf4 eOOOOdf8 write (w,x,y,z)
eOOOOeOO eOOOOe2c systrap (x)

eOOOOe38 sys_call from a00037a4
ax: 4 cx: 0 dx: 4 bx:7fff8000 fl: 216 ds:
sp: x bp: y si: z di:7fffff3f err: 14 es:

> quit

outfile = stdout

If fs: 0
If gs: 0

B.4.2

Appendix B 345

We can see that the tar (C) process is asleep inside iowait (K) I the last
routine that was called before the context switch inside swtch. This strongly
suggests that iodone(K) is never being called from the device driver's inter
rupt routine, or if it is, it is being called with incorrect arguments.

Examination of the offending device driver revealed that the call to
iodone (K) from XXintr was not being passed any arguments. This was easy to
fix.

Kernel panics

If the kernel panics and dumps a copy of physical memory to the swap
device, the same t option can be used to analyse system stacks of processes
that were running at the time of the panic.

It is not necessary to save the panic dump, as crash (ADM) can analyse it
directly from /dev/swap. Once again, the suspicious process can be deter
mined with the p option. Look for processes that have a p (running on a
processor) or an r (on the run queue) in the ST column. Here is a sample
crash (ADM) output from a kernel panic resulting from a kernel page fault,
reported on the console as follows:

PANIC: Kernel mode trap. Type OxOOOOOOOE

The trap type can be compared against the list of Exception IDs in the Intel
80386 Programmer's Reference Manual. A trap type OxE is a page fault. Under
normal conditions, the kernel is not supposed to cause page faults, and this
immediately makes us suspicious that our device driver is doing something
strange with pointers. We can use crash (ADM) to investigate further. As
before, we have replaced the possible arguments and some of the register
values with w, x, y and z:

crash -d /dev/swap -n /tmp/peterk/unix
durnpfile = /dev/swap, narnelist = /tmp/peterk/unix, outfile = stdout
> t 16
STACK TRACE FOR PROCESS 16:
STKADDR FRAMEPTR FUNCTION POSSIBLE ARGUMENTS
eOOOOb60 eOOOOb78 prf_task
eOOOOb80 eOOOOba4 crnn_err
eOOOObac eOOOObdO k_trap
Trap e eOOOObdc crnntrap

ax: x cx: 10 dx: bx:
sp: x bp: y si: z di:

eOOOObe4 eOOOOc2c bcopy
eOOOOc34 eOOOOc44 copyio
eOOOOc4c eOOOOc64 rarndio
eOOOOc6c eOOOOc88 rarndxfer
eOOOOc90 eOOOOc9c rarndstar
eOOOOca4 eOOOOcac rarndstra
eOOOOcb4 eOOOOccO dkrdrnb
eOOOOcc8 eOOOOcfc dkgetrnb
eOOOOd04 eOOOOd10 dksetdri
eOOOOd18 eOOOOd3c dksetup

(w,x,y,z)
(w,x,y,z)
(x)
from d0010fe4 in bcopy
o fl: 10246 ds: 160 fs: 0
x err: e0000002 es: 160 gs: 0
(w,x,y,z)
(w,x,y,z)
(w,x,y,z)
(x,y,z)
(y,z)
(x,y,z)
(w,x,y,z)
(x,y,z)
(w,x,y,z)
(w,x,y,z)

346 Appendix B

eOOOOd44 eOOOOd64 ramdopen (w,x,y,z)
eOOOOd6c eOOOOd88 sSopeni (w,x,y,z)
eOOOOd90 eOOOOdac copenl (w,x,y,z)
eOOOOdb4 eOOOOdeO copen (w,x,y,z)
eOOOOde8 eOOOOdf8 open (w,x,y,z)
eOOOOeOO eOOOOe2c systrap (x)

eOOOOe38 sys_call from aOO036dc
ax: 5 cx: x dx: d bx: 403700 £1: 202 ds: If fs: 0
sp: x bp: y si: z di: 403848 err: 5 es: If gs: 0

> quit

We can see that the last two stack frames before the kernel trap are from
bcopy(K) and copyio(K), and that copyio(K) was called from our device
driver's ramdio routine. The problem would appear to be related to the
arguments passed to copyio (K) .

Inspection of the source code revealed that we had forgotten to convert
paddr (bp) to a physical address with vtop (K), before calling copyio (K) . Again,
this was easy to fix.

B.S Summary

This appendix has provided a selection of useful hints and tips about how to
go about testing and debugging device drivers on an sca UNIX machine.
Section B.4 demonstrated that even if the kernel panics, all is not lost.

NOTES

1. Calls to getchar (K) should be avoided at interrupt-time.

2. A detailed description of the crash (ADM) command is beyond the scope
of this book. However, it is relatively straightforward to use it to exam
ine system stacks.

1 __ r.III11Jlll'i1 UiIIili •• J.Illf/ •• '.,II.,1I/I1if&11.'iIlI_li @1I1Ii III@I I I IliUm. I illUl1ZUllIl 1 nil Illi !IJI/IIIJ
r'lJljliIWIIIII~m m Iii ,m i I 111/,lIilBmZffiilUllilliiil iii! II'I Riil@1 II IIII i1i1IHljIII ii ..
W •• IlIflI/llflllllIlJJIJiJiiHTJ.IIIIUiIIWiIIiBilUiIUJii1 !lIlil! WiII_'"llgll i iii I II i I Ii I ttl i I ill] mil]] 111_. l1li

Index

68000 13
80286 9
8088 9

Acer Filesystem 28, 227
adb(CP) 7
alias track 246, 247, 252
allocb(K) 175-7,186-7,204-5

back-enabling: see STREAMS
bad block 12, 57, 224, 228, 247, 252,

255
bad track: see bad block
bad track table 244, 247, 248, 251,

252
badtrk(ADM) 247, 248, 251, 252, 253,

257, 282
bdevsw data structure 29, 33
Berkeley 28
BIOS 9, 12,244, 250
block device driver 17-'-19, 29, 30,

34, 224-5; see also disk device
driver

blocking and unblocking of data
226-7

brk(S) 38
buf data structure 225, 229-31, 277
bufcall(K) 204-5
buffer cache 11, 12, 42, 105, 224,

225, 226, 227, 228-35, 255, 256,
273, 274, 275

asynchronous write (S) requests
228, 234

buffer between task-time and
interrupt-time 225, 228

busy list 229, 230, 231, 232-5,
237,255, 256, 257

bypassing 19, 273
configuring the size of 228
free list 229, 230, 231, 232, 234,

280
hash entry points into 232
hit rate 227, 228, 235
synchronous requests 234

buffering data 88, 101-5
and context switches 102, 103,

104
high and low water marks

103--4
kernel support for 18, 104-5

bus 2, 3, 15, 83

cache 24; see also buffer cache
call gate 6
canonical mode 116, 117, 124, 128,

130, 136
canonical processing 117, 128, 130,

132
canon(K) 43, 115, 121, 128, 136,

138
canput (K) 187, 192
cblock data structure 118, 119, 122,

126, 127, 129, 131, 139
ccblock data structure 115, 122
cdevsw data structure 29,31, 33,

186, 190, 199, 208,276, 289

347

348 Index

character device driver 17-19, 29,
33,48-68

XXclose 33, 50
XXhal t 33, 52
XXini t 33, 49
XXintr 34, 52
XXioctl 33,52
XXopen 33, 49
XXread 33, 51
XXwrite 33, 51

clist data structure 105, 115,
118-19, 121, 122, 140, 165, 225

clock
processor 62
see also real-time clock

clone driver: see STREAMS
close(S) 8, 50, 52, 127, 166, 184,

190,203
cluster 65, 227, 228
cmn_err (K) 47, 237
communication protocol 19
communications line 4, 8, 53, 61, 62
configure (ADM) 81, 170, 186, 207,

209,228
context: see process context
context switch 41,42,44,45,63, 72,

74, 86, 87, 89, 92, 98-101, 102,
103, 104, 290; see also sleep (K)

at the end of interrupt routines
72

qswtch actually makes the 99
controller 2--4, 12-17, 33, 37, 53, 59,

60, 63, 64, 66, 72, 73, 77, 79, 81,
88, 224, 232, 241-5, 247, 252,
255, 256, 266, 273, 275, 277, 280

copyih (K) 58-60,67
copyib (K) 237-8, 253, 255
copyout (K) 58, 59, 128
crash (ADM) 43, 177
curproc 74
cylinders 12,25, 224, 233, 240-1

data loss 62-4, 91
datab data structure 170-1
db_alloc (K) 38, 39
db_free(K) 39
db_read (K) 39
db_write(K) 39
delay (K) 63-7, 139

delimiter character 117, 124, 132
dLaddr 28,30,31
Direct Memory Access 37, 38, 39,

66, 26fr-9
managed 266,268-9
queued 267

disk device driver 5, 8,20, 31
XXclose 254
XXhalt 257
XXinit 237, 253, 266
XXintr 225, 234, 247, 252, 255-7,

266,267
XXopen 250, 251,252, 253, 254
XXprint 237
XXstart 237, 241, 247, 255
XXstrategy 225, 229, 230, 231,

232, 233, 235-7, 246, 251, 252,
255

disk mirroring 50
diskinfo data structure 248-50, 251,

252,254
disksort (K) 232, 233, 237, 247, 253,

280
division 12, 224, 244-5,246, 247,

251, 253, 254, 276
minor device number identifies

245-6
table 244

divvy (ADM) 244,245,248,251,253,
257, 282

dkalloc(K) 250,254
dkfree (K) 250, 254
dkiocomm(K) 251
dkparms data structure 250
dksecsize (K) 251, 276
dksecstart (K) 251, 255
dksetup (K) 251, 252, 254
dktrkcnt (K) 252, 255
DMA: see Direct Memory Access
drnLalloc (K) 266
drna_breakup (K) 276, 278, 281
drnLenable (K) 266, 267
drnLpararn(K) 266,267
drnLrelse (K) 267
drna_resid (K) 267
drnLstart (K) 267
documentation 22
dpararn data structure 249
dpararn (ADM) 248, 251

ECC: see Error Correction Code
Error Correction Code 241, 247
exceptions 44, 75, 78,83, 99

fdisk (ADM) 244, 248, 282
file table 7, 10, 54, 74
filesystem 8, 10, 12, 15, 18, 24, 27,

28, 32, 199, 224-8, 230, 234, 240,
243-5, 254, 273

flushq (K) 175
fmodsw data structure 186, 208
framing error 115, 142
freeb (K) 186, 192
fsck (ADM) 244, 251, 253, 257

getc (K) 105, 115, 119, 136
getq(K) 183

hardware break 130
hbuf data structure 232
head: see track
header files 7, 23, 28, 69

i386/i486 6, 35, 37, 63, 72, 74, 75,
77, 78, 83,273,274, 278

i8250: see Universal Asynchronous
ReceiverlT ransmitter

i8259A: see Programmable Interrupt
Controller

idaddld(ADM) 114
IDT: see Interrupt Descriptor Table
IF: see Interrupt Enable flag
inb(K) 59,64,66
inode 24-32, 92, 93, 199
inode table 24, 74, 227
INTA: see Interrupt Acknowledge
interleave 242-3
interrupt 12, 49, 50, 61, 62, 63,

66
and buffering data 101-5
disabling 80-1
edge-triggered 81
gate 83
handler 83-6, 101
ID 83
level-triggered 81
low-level handling 81-5
returning from 44, 85-7

Index 349

user mode and system mode 73,
77, 86, 87, 91, 99

vector 83, 84
vectoring 78, 81

Interrupt Acknowledge 83
Interrupt Descriptor Table 83
Interrupt Enable flag 83, 85, 87
Interrupt Enable Register 141
Interrupt Identification Register 141
interrupt priority 53

hardware 78-9
software 79-80; see also priority

level
Interrupt Request 77, 83
interrupt request line 77, 78, 79, 81,

83, 84, 85, 87, 88
interrupt routine 34, 45, 52

errors 88
pseudo-code for 87-8
re-entrancy 79, 90
rules for 90-1

interrupt stack frame 79, 90
interrupt-time 73, 88, 91, 95, 96,

102,103,112,225,228,255
and wakeup (K) 95
error: see interrupt routine

intpri 81, 84
INTR: see Interrupt Request
1/0 mapped 13, 59, 66
iobuf data structure 232
iocblk data structure 174, 196
ioctl (S) 19, 29, 33, 34, 52, 57-9, 64,

115-17, 124, 126, 130, 137, 166,
168-70, 174, 190, 195, 196-8,
200, 203, 251, 281

iodone (K) 234, 252, 257, 285
iplmask data structure 81, 84, 86
IRET'instruction 87, 95
IRQ: Isee interrupt request line
i vect data structure 81, 85

kernel support routine 7, 18, 19, 32,
80, 91, 105, 115, 124, 126, 247,
252, 254, 266, 278, 279, 285

ktop(K) 238,269, 278

LDTR: see Local Descriptor Table
Register

Line Control Register 141, 142

350 Index

line discipline 111, 112-14, 125-35
accessing a 113-14
adding a 114

Line Status Register 130, 142
linesw data structure 113-14
linkblk data structure 204
link_unix (ADM) 33, 81
Local Descriptor Table Register

74

major device number 26,29,31,32,
50, 81, 184, 199, 207, 209, 230,
276

malloe(S) 38
Masterboot block 244, 251
mdeviee 81
memget (K) 38, 237
memory mapped 13, 14, 40, 60, 61
message: see STREAMS
minor device number 26, 31, 32, 50,

57, 119, 126, 184, 198, 199, 206,
230, 245-6, 276

rnkfs (ADM) 243
Modem Control Register 142
Modem Status Register 142
module_info data structure 179, 185,

206,207
module_stat data structure 179, 185,

207
MS-DOS 9
msgb data structure 170

open (S) 5, 6, 24, 33, 50, 52, 126,
166, 168, 184, 186, 190, 199, 200,
202,234

operating system I, 4, 5, 7, 9, 12,
15, 20, 23, 31

real-time 42, 91
outb(K) 59,60,64,66,67
overrun error 80, 142

Page Directory Base Register 36,
74

page directory table 36, 37, 74
parallel printer driver 61, 64-7, 79,

101, 102-3, 105-8
parity error lIS, 142
partition 7, 12, 224, 244, 246, 247,

251, 252, 253, 254, 276

minor device number identifies
31,245

table 34,45, 244, 245,251,
253

PCATCH 94
PDBR: see Page Directory Base

Register
performance 9,48, 62, 115, 140,

228, 242, 282
physek (K) 276, 277
physical memory 13, 35-40, 60, 61,

275
physio (K) 276, 277-8, 280
PIe: see Programmable Interrupt

Controller
picipl 80
pollfd data structure 195
polling 58, 61, 62
pre-emption 45,91
printcfg(K) 66
printf (K) 6, 47, 206
priority level

software 41, 44, 46, 63, 78, 79-80,
81, 84, 85, 86, 87, 90, lOS, 112,
115, 119

privilege level 9, 10, 13
change of 74, 75, 83, 84, 85,

87
process 4, 43, 44, 45, 49, 51

context 41,42, 73-5
process group 117, 126, 127, 130,

132, 192
process table 7,41, 74, 92, 95
Programmable Interrupt Controller

77-8
End-Of-Interrupt 85
Fully Nested Mode 78
Interrupt Mask Register 81, 83,

84,86
master 77
slave 77

protected mode 9, 37
putbq(K) 187, 192
puteb(K) 131
pute (K) 6, 7, lOS, 115, 119,

136
putnext (K) 168, 169, 180, 181,

183, 188, 192, 193, 198
putq(K) 183, 188, 189,204

qattach 190
qdetach 190
qenable (K) 205
qinit data structure 179, 185, 186,

190,203, 207
qreply(K) 198
qrunflag 188, 189
queue data structure 178--9
QUEUE: see STREAMS

RAM disk driver 237-40,253-65
raw device driver 19, 34

conventions 275-6
XXbreakup 277, 278, 280
XXinit 280
XXioctl 34, 279-80
XXread 34, 279
XXwrite 34, 279

raw I/O 274,275,277,278,280
and disks 276-80
and tapes 280--1

raw mode 116-17, 124, 125, 130,
136, 138

raw processing 116-17, 128
read-ahead 18, 226, 227-8
read(S) 5, 8, 10--12, 24, 33, 34, 43,

51, 53-6, 64, 88, 103, 114, 116,
117, 124, 128, 138, 166, 168, 181,
191-2, 225-8, 234

real-time dock 53, 61, 62, 63, 73,
79, 91, 99

register 8, 9, 12-17, 36,41, 44, 49,
51, 53, 59, 64, 66, 73, 74, 80, 83,
84, 86-8, 91, 115, 140, 141, 247,
255,256

run queue 41, 42, 92, 95, 99
runqueues 189
runrun 86, 95, 99

sar (ADM) 234
scatter-gather I/O 228
scheduling 4,41, 43, 45, 61-5, 67
scheduling priority 92-3

bdflush, getty, init, sched, sh,
and vhand 94

PZERO 93, 96, 97-8
signals and 92-4
see also STREAMS

sdevice 81

Index 351

sector 12, 25, 224, 233, 240--1, 242,
243,244,252,255,256

serial device driver 18, 32, 140--61
high and low water marks 119
XXclose 127-8
XXioctl 129-30
XXopen 125-7
XXpoll 130--5
XXproc 122, 126, 128, 129, 131,

132, 134, 138, 139
XXread 128--9
XXwrite 129

seterror (K) 56, 58, 67, 88
sleep queue 92, 95
sleep (K) 42-5, 63, 65, 89, 90, 91-8;

see also STREAMS
and deadlock 95, 96-7
and high water marks 103, 129
and longjrnp (K) 94
and PZERO 93, 94, 96, 97-8

slink (ADM) 202
slow devices 61
spl (K) 80, 90, 98, 102, 115, 119, 169,

170, 189
splx(K) 80
sptalloc (K) 38, 40, 60, 61
sptfree (K) 40
stack pointer 73, 74, 75, 83

for privilege levels 0, 1 and 2 74
stdata data structure 190
strace (ADM) 206, 207
strbuf data structure 192, 193
strclean (ADM) 207
strclose 190
Stream driver

configuring 207-9
XXadrnin 179, 184
XXclose 169, 179, 184, 190
XXinit 169
XXintr 169, 176, 209
XXioctl 170, 178, 198, 208
XXopen 168, 169, 179, 184, 186,

190, 199
XXpoll 169, 170, 209
XXput 168, 169, 170, 178, 179,

180--3, 186, 188, 189, 190, 198,
204

XXservice 169, 178, 179, 181, 183,
186, 187, 188, 189, 190

352 Index

Stream head 166, 168, 169, 174.-81,
185, 187-93, 195, 196, 198, 200,
201,203,204

Stream loopback driver 209-17
Stream module 166, 168-9, 171,

175, 176, 178-81, 183-7, 190,
196, 198, 200, 202, 203, 204, 206

configuring 207-9
STREAMS 19

back-enabling 187, 189, 192, 193,
195

calling sleep(K) 183, 189, 192,
205

clone driver 184, 198-9
cloning 198-9
error logging 206-7
flow control 166, 168, 174, 183,

185, 186-8, 193
high and low water marks 166,

168, 178, 185, 187
message 166, 168, 169, 170--7,

178, 180, 181, 183, 185-8,
190--3,195,196,198,204.-7

message block 166, 169, 170--3,
175-7, 186, 187, 192, 196, 198,
204.-6

message queue 166, 168, 169,
171, 174, 175, 178, 183, 185,
187, 188, 191, 192

multiplexing 200--4
polling 192, 193-6
QUEUE 166, 168, 169, 178-9, 180,

183-93,195,204,205,207
scheduling 183, 187, 188-9

streamtab data structure 185-6, 190,
203, 204, 207, 208

strerr (ADM) 207
strmakemsg 192, 193
stropen 190
strread 191, 192

- strrput 190, 191
strwrite 192
strwsrv 190, 192
system call 4.-6, 8-12,38, 56, 67

context switches during 44, 91,
99, 101, 103

returning to user mode 89
signals and 93, 94
switching to system mode 74

system mode 5, 9,42,44, 45, 73,
77, 86, 87, 91, 99

system stack 38,43, 74.-6, 79, 83-5,
87,90, 99

fixed size 75

tape device 19, 26, 31, 32, 34, 224,
266,273-5,277,280--1

task gate 74, 83, 99, 101
Task Register 74
Task State Segment 74

Descriptor 99
task-time 73, 91, 95, 101, 102, 115,

121, 122, 128, 129, 133, 13~ 137,
138, 139, 188, 237, 255

errors 88, 89
interlocking with interrupt-time

80, 91, 96, 97, 102, 103, 112,
225, 228, 234

terminal device 18, 31, 32, 43, 44,
64,69, 112

timeout (K) 64, 65, 97, 98, 134, 253
TLB: see Translation Lookaside

Buffer
TR: see Task Register
track 12, 224, 240--1, 242, 243, 255
track caching 243
Translation Lookaside Buffer 99
Transmitter Holding Register 141
trap gate 6,83
TSS: see Task State Segment
ttin (K) 130--3,285
ttinit (K) 137
ttiocom(K) 124, 129, 130, 137
ttioctl (K) 126, 127, 129-30
ttiwake(K) 133, 137
ttout (K) 133-5
ttowake (K) 134, 137
ttrdchk (K) 138
ttread (K) 44, 114, 128-9
ttrstrt (K) 134, 138
ttselect(K) 138
tttimeo (K) 138
ttxput (K) 129, 132, 133, 139
ttwrite (K) 129, 285
tty data structure 29, 117, 119-25
ttyflush (K) 127, 130, 131, 132, 139
TTYHOG 131
ttywait (K) 139

U-area 41, 53-6, 59, 62, 65, 67, 73,
74, 75, 76,88, 89, 90, 99, 128,
183, 189, 205, 276, 277, 278

UART: see Universal Asynchronous
Receiver/T ransmitter

Universal Asynchronous
ReceiverlTransmitter 111, 115,
140

user mode 5, 6, 9, 42, 73, 85, 86, 87,
99

return to 44, 75, 89, 91, 94, 95,
101

user stack 75

video device 17, 37, 44, 61, 285
virtual memory 19, 31, 34-40, 237,

253,275
vtop(K) 269,278,285

Index 353

wait channel 42, 44, 45, 92, 95
wakeup(K) 42,44,45,65,87,89,

91-8,99,101,102,192,234,
257

and low water marks 104
and PZERO 97

water mark 103-4, 119, 122, 128,
129, 131, 134; see also
sleep(K), wakeup(K) and

STREAMS
write (S) 8, 24, 31-4, 51-4, 67, 102,

103, 129-38, 166, 168, 174, 176,
184, 191-2, 225-8, 234

XENIX 26, 138, 165,244
XOFF 112, 122, 124, 128,

131
XON 112, 122, 128

