SCO" UNIX'

Operating System
User’s Reference

OPEN SYSTEMS SOFTWARE

SCO* UNIX
Operating System

User’s Reference

© 1983-1992 The Santa Cruz Operation, Inc.
© 1980-1992 Microsoft Corporation.

© 1989-1992 UNIX System Laboratories, Inc.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into any
human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual, or otherwise, without the prior written permission of the copyright owner, The Santa Cruz Operation,
Inc., 400 Encinal, Santa Cruz, California, 95061, U.S.A. Copyright infringement is a serious matter under the
United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use in strict accor-
dance with the End User License Agreement, which should be read carefully before commencing use of the soft-
ware. Information in this document is subject to change without notice and does not represent a commitment on
the part of The Santa Cruz Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights in Technical Data and Com-
puter Software Clause of the United States Department of Defense Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN SUBPARAGRAPH (c) (1) (ii) OF THE
RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE AT DFARS 52.227-7013.
"CONTRACTOR/SUPPLIER" IS THE SANTA CRUZ OPERATION, INC. 400 ENCINAL STREET, SANTA CRUZ,
CALIFORNIA 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are trademarks of Microsoft Corporation.
UNIX is a trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.
“ACER Fast File System” is a trademark of ACER Technologies Corporation.

Date: 31 January 1992
Document Version: 3.2.4C

Preface xiii

UNIX Reference manual sections xiii
Alphabetized list XV

Commands (C)

Intro(C) 1
300(C) 4
4014(C) 6
450(C) 7
assign(C) 9
at(C) X 11
auths(C) 15
awk(C) 17
banner(C) 34
basename(C) 35
bc(C) 36
bdiff(C) 51
bfs(C) . 52
cal(C) 56
calendar(C) 57
cancel(C) 58
cat(C) 59
cd(O) . 61
checkmail(C) 62
chgrp(C) 63
chmod(C) 64
chown(C) 68
clear(C) 69
cmchk(C) 70
cmp(C) 71
col(C) 72
comm(C) 74
compress(C) 75
copy(C) 77
cp(O) 79
cpio(C) 80
cron(C) 85
crontab(C) 86

Table of contents v

vl

crypt(C)

csh(C)

csplit(C)
ct(C)

ctags(C)

cu(C)

cut(C)
date(C)

dc(Q)

dd(C)

devnm(C)
df(C)

dfspace(C)

diff(C)
diff3(C)

diremp(C)
dirname(C)
disable(C)
diskcp(C)

dos(C)

dtox(C)

dtype(C)

du(C)

echo(C)
ed(C)

enable(C)

env(C)
ex(C)

expr(C)

factor(C)

false(C)

file(C)

find(C)

finger(C)
fixhdr(C)

format(C)

getopt(C)
getopts(C)
gets(C)

greek(C)

grep(C)

90

92
115
117
119
121
127
129
132
135
138
139
141
142
144
146
147
148
150
152
159
160
162
163
165
177
178
179
181
185
186
187
188
191
193
195
197
199
202
203
204

hd(C) . 207

head(C) ..., 209
hello(C) - 210
hp(C) 211
hwconfig(C) 213
i286emul(C) 216
id(C) 218
ismpx(C) 219
join(C) 220
jterm(C) 222
jwin(C) 223
kill(C) 224
ksh(C) 225
last(C) 265
layers(C) 266
line(C) ...ccovvvuecunnn. 269
In(C) 270
lock(C) 272
logname(C) 274
Ip(C) 275
lprint(C) ... 281
Ipstat(C) 283
1s(C) 286
machid(C) 291
mail(C) 292
man(C) 307
mesg(C) 312
mkdir(C) 313
- mkfifo(C) 314
mknod(C) 315
mnt(C) 316
MOTE(C) .ocininiitcincncicissncssssssssssessssssssises 320
mpstat(C) 324
mv(C) 327
newform(C) 328
newgrp(C) 333
news(C) 335
nice(C) 337
nl(C) 338
nohup(C) .. 340
od(C) 341

Table of contents vii

viii

pack(C)
passwd(C)
paste(C)

pax(C)
pcpio(C)

pg(O)

pr(O)

prwarn(C)
ps(O)

pstat(C)

ptar(C)
purge(C)

pwd(C)

quot(C)

random(C)
rep(C)

rcvalert(C)

rcvfile(C)
revprint(C)
revtrip(C)

remote(C)
resend(C)

m(C)

rmdir(C)

rsh(C)
sddate(C)

sdiff(C)

sed(C)

setcolor(C)
setkey(C)

sg(O)

sh(C)
shl(C)

sleep(C)

slot(C)
sort(C)

spell(C)

spline(C)
split(C)

strings(C)
stty(C)

342
345
353
355
361

369
372
373
378
383
386
389
390
391
392
394
395
397
398
401
403
404
406
407
408

411
415
417
420
423
438
441
442

448
451
452
453
454

su(C) 459

sum(C) 462
swconfig(C) 463
tabs(C) 465
tail(C) 469
tape(C) 470
tapecntl(C) 477
tapedump(C) 479
tar(C) 481
tee(C) 486
test(C) 487
tic(C) 489
time(C) 494
touch(C) 495
tput(C) 496
tx(C) 500
translate(C) 502
true(C) 504
tset(C) 505
tty(C) 508
umask(C) 509
uname(C) 510
uniq(C) 511
units(C) 512
uptime(C) 513
usemouse(C) 514
uucp(C) 518
uuencode(C) 522
uustat(C) 523
uuto(C) 525
uux(C) 527
vi(C) 530
vidi(C) 566
vmstat(C) 568
w(C) 571
wait(C) 573
wc(C) 574
what(C) 575
who(C) 576
whodo(C) 579
write(C) 580

Table of contents ix

x286emul(C) 582

xargs(C) 583
xtod(C) 586
xtract(C) 587
yes(C) 588
Miscellaneous (M)
Intro(M) 589
aio(M) 590
ascii(M) 594
chrtbl(M) 596
clone(M) 599
coltbl(M) 600
console(M) 602
daemon.mn(M) 603
environ(M) 605
error(M) 609
fentl(M) 610
getclk(M) 612
getty(M) 613
init(M) 617
isverify(M) 622
jagent(M) 624
layers(M) 625
1d(M) 628
locale(M) 634
log(M) 636
login(M) 639
mapchan(M) 645
mapkey(M) 650
math(M) 652
mestbl(M) 654
montbl(M) 656
mscreen(M) 658
multiscreen(M) 662
numtbl(M) 664
prof(M) 666
profile(M) 668

ptmx(M) 669

rmb(M) 670

scanon(M) 671
streamio(M) 672
string(M) 682
subsystem(M) 683
sxt(M) 699
systty(M) 701
term(M) 702
terminals(M) 706
terminfo(M) 716
termio(M) 771
termios(M) 783
timod(M) 785
timtb1(M) 787
tirdwr(M) 790
trchan(M) 792
tty(M) 794
tz(M) 795
undocumented (M) 797
values(M) 799
xtproto(M) 801

Table of contents xi

xii

Preface

The User’s Reference is one of a two-volume set that includes manual pages for
the entire SCO UNIX System V/386 Operating System, including sections (C),
(M), (ADM), (F) and (HW).

This volume contains a complete set of the section (C) and (M) manual pages,
in that order.

The manual pages for section (C) contain comprehensive descriptions of user
commands.

The manual pages for section (M) contain miscellaneous information used for
access to devices, system maintenance and communication.

All of these manual pages are accessible online by using the man command.

UNIX Reference manual sections

The complete UNIX Reference is actually divided into parts and distributed as
individual reference sections in the various volumes of the Operating and De-
velopment Systems. The following table lists the name, content, and location
of each reference section.

xiii

Preface

Xiv

Section Description Volume
ADM Administrative Commands - used for sys- System
tem administration Administrator’s
Reference
C Commands - used with the Operating Sys- User’s Reference
tem
CP Programming Commands - used with the = Programmer’s
Development System Reference Manual
DOS MS-DOS and OS/2 library routines - used = Programmer’s
with the Development System Reference Manual
F File Formats - description of various sys- System
tem files used with the Operating System Administrator’s
Reference
FP Programming File Formats - used with the =~ Programmer’s
Development System. Reference Manual
HW Hardware device manual pages - used System
with the Operating System Administrator’s
Reference
K Kernel routines - used for writing device = Device Driver
drivers Writer's Guide
M Miscellaneous - information used for User's Reference
accessing devices, performing system
maintenance, and handling communi-
cations
S System Calls and Library Routines - used = Programmer’s
for C and assembly language programming Reference Manual
in the Development System
XNX XENIX cross development manual pages - Programmer’s
used with the Development System Reference Manual

The Permuted Index for Reference Manuals, which is distributed with the Operat-
ing System documentation set, is useful in matching a desired task with the
manual page that describes it.

Certain pages in the Operating System distribution make reference to include
files that are part of the Development System.

The alphabetized list given on the following pages is a complete listing of all
UNIX commands, system calls, library routines, and file formats.

User's Reference

Alphabetized list

Commands, system calls, library routines, and file formats

a.out a.out (FP) aiomemlock aiomemlock (F)
abort abort (S) aio aio (F)
abs abs (S) aio aio (M)
acceptable_password accept_pw (S) alarm alarm(S)
accept accept (ADM) ale ale (ADM)
access access (S) allocldptr Idptr (S)
acctcms acctcms (ADM) ap ap (ADM)
acctcom acctcom (ADM) archive archive (F)
acctconl. acctcon (ADM) ar ar (CP)
acctcon2. acctcon (ADM) ar ar (FP)
acctcon acctcon (ADM) ar ar (XNX)
acctdisk acct (ADM) arc plot (S)
acctdusg acct (ADM) as as (CP)
acctmerg acctmerg (ADM) at at(Q)
accton accton (ADM) ascii. ascii (M)
accton acct (ADM) asctime ctime (S)
acctprcl acctprc (ADM) asin trig (S)
acctprc2 acctpre (ADM) asktimer asktime (ADM)
acctpre acctprc (ADM) asktime asktime (ADM)
acctsh acctsh (ADM) asroot. asroot (ADM)
acctwtmp acct (ADM) assert assert (S)
acct acct (ADM) assign assign (C)
acct acct (FP) atan trig ()
acct acct (S) atan2 trig (S)
acos trig (S) atcronsh atcronsh (ADM)
adb adb (CP) atexit atexit (S)
addch curses (S) atof atof (S)
addch..... tam (S) atoi atof (S)
addch terminfo (S) atol atof (S)
addkey curses (S) attroff curses (S)
addkey terminfo (S) attroff tam (S)
addstr curses (S) attroff terminfo (S)
addstr tam (S) attron curses (S)
addstr terminfo (S) attron tam (S)
addxusers addxusers (ADM) attron terminfo (S)
admin admin (CP) attrset curses (S)
advance regexp (S) attrset terminfo (S)
agetcommand authcap (S) audit audit (HW)
agetdefault authcap (S) auditemd auditcmd (ADM)
agetfile authcap (S) auditd auditd (ADM)
agetflag authcap (S) auditsh auditsh (ADM)
agettty authcap (S) audit_adjust_maskcececeeerrenee authaudit (S)
agetuser authcap (S) audit_auth_entry.......cccovuuvcnuunnnne authaudit (S)
aioinfo aioinfo (ADM) audit_close audit (S)
aiolkinit aiolkinit (ADM) audit_lax_file authaudit (S)

audit_lock authaudit (S)
audit_login authaudit (S)
audit_no_resourceccceeeeereeeeee authaudit (S)
audit_open audit (S)
audit_passwd authaudit (S)
audit_read audit (S)
audit_subsystem............ccoccoecereruece authaudit (S)
authaudit authaudit (S)
authcap authcap (F)
authcap authcap (S)
authck authck (ADM)
authckrc tcbck (ADM)
authorized_user............ccoeruvuennen. subsystems (S)
auths auths (C)
authsh authsh (ADM)
autoboot autoboot (ADM)
awk awk (C)
a64l a64l (S)
backup backup (ADM)
backupsh backupsh (ADM)
badtrk badtrk (ADM)
banner banner (C)
basename basename (C)
batch at (O
baudrate curses (S)
baudrate tam (S)
baudrate terminfo (S)
be bec ()
bcheckrc brc (ADM)
bdiff bdiff(C)
beep curses (S)
beep tam (S)
beep terminfo (S)
bessel bessel (S)
bfs bfs (C)
bigcrypt getpasswd (S)
bigcryptmax getpasswd (S)
boot boot (HW)
Bottom libwindows (S)
bottom_panel panel ()
box curses (S)
box plot (S)
box terminfo (S)
brc brc (ADM)
brk brk(S)
brkctl brketl (S)
bsearch bsearch (S)
btld btld (F)
btldinstall btldinstall (ADM)
cal cal (O
calendar calendar (C)
xvi

calloc malloc (S)
cancel cancel (C)
can_change_color. curses (S)
can_change_colorcoocuveereurnnnns terminfo (S)
captoinfo captoinfo (ADM)
cat cat (C)
catclose catopen (S)
catgets catgets (S)
catopen catopen (S)
cb cb (CP)
cbreak, crmode tam (S)
cbreak, crmode terminfo (S)
cbreak curses (S)
cc cc (CP)
od cd (O)
cdc cde (CP)
cdrom cdrom (HW)
ceil floor (S)
cfgetispeed cfspeed (S)
cfgetospeed cfspeed (S)
cflow cflow (CP)
cfree malloc (S)
cfsetispeed cfspeed (S)
cfsetospeed cfspeed (S)
cfspeed cfspeed (S)
chargefee acctsh (ADM)
chdir chdir (S)
checkaddr checkaddr (ADM)
checklist. checklist (F)
checkmail checkmail (C)
checkque checkque (ADM)
checkup checkup (ADM)
chgrp chgrp (O
chg_audit chg_audit (ADM)
chkshlib. chkshlib (CP)
chmod chmod (C)
chmod chmod (S)
chown chown (C)
chown chown (S)
chroot chroot (ADM)
chroot chroot (S)
chrtbl chrtbl (M)
chsize. chsize (S)
chtype unretire (ADM)
circle plot (S)
ckpacct acctsh (ADM)
cleanque cleanque (ADM)
cleantmp cleantmp (ADM)
clear clear(C)
clear curses (S)
clear tam (S)

User's Reference

clear terminfo (S)
clearerr ferror(S)
clearok tam (S)
clearok curses (S)
clearok terminfo (S)
clock clock (F)
clock clock (S)
clone clone (HW)
clone clone (M)
close close (S)
closedir directory (S)
closepl plot (5)
clri clri (ADM)
clrtobot curses (S)
clrtobot tam (S)
clrtobot terminfo (S)
clrtoeol curses (S)
clrtoeol tam (S)
clrtoeol terminfo (S)
cmchk cmchk (C)
cmos cmos (HW)
cmp cmp (C)
cnvtmbox cnvtmbox (ADM)
codeview codeview (CP)
col col ()
color_content curses (S)
color_content terminfo (S)
coltbl coltbl (M)
comb comb (CP)
comm comm (C)
compress compress (C)
compver compver (F)
configure configure (ADM)
console console (M)
consoleprintcccoceenueeee. consoleprint (ADM)
cont plot (S)
conv conv (CP)
convert convert (CP)
convkey mapkey (M)
copy copy (O)
copydvagent getdvagent (S)
copyright copyright (F)
copywin curses (S)
copywin terminfo (S)
core core (FP)
cos trig (S)
cosh sinh (S)
cp cp Q)
cpio cpio (O
cpio cpio (F)
cpp cpp (CP)

cprs cprs (CP)
cps fixmog (ADM)
crash crash (ADM)
creat creat (S)
creatsem creatsem (S)
cron cron (C)
crontab crontab (C)
crypt crypt (O)
crypt crypt (S)
cryptopen crypt(S)
crypt_close crypt (S)
cscope cscope (CP)
csh csh(C)
csplit. csplit (C)
ct ct (C)
ctags ctags (C)
ctermid ctermid (S)
ctime ctime (S)
ctrace ctrace (CP)
ctype ctype (S)
cu cu(C)
curoff curses (S)
curoff terminfo (S)
curon curses (S)
curon terminfo (S)
Current libwindows (S)
curses curses (S)
curs_set curses (S)
curs_set terminfo (S)
curtbl montbl (M)
cuserid cuserid (S)
custom custom (ADM)
cut cut (C)
cxref cxref (CP)
daemon.mn daemon.mn (M)
dat dat (FIW)
date date (O
dbm dbm (5)
dbmbuild dbmbuild (ADM)
dbmedit dbmedit (ADM)
dbminit dbm (S)
dbxtra dbxtra (CP)
dc dc (O
dcopy dcopy (ADM)
dd dd (C)
deassign assign (C)
default default (F)
defopen defopen (S)
defread defopen (S)
def_prog_mode curses (S)
def_prog_mode terminfo (S)

xvii

def_shell_mode curses (S)
def_shell_modeccccoevvrerrervrrunnnee terminfo (S)
delay_output curses (S)
delay_output terminfo (S)
delch curses (S)
delch tam (S)
delch terminfo (S)
Delete libwindows (S)
delete dbm (S)
deleteln curses (S)
deleteln tam (S)
deleteln terminfo (S)
deliver deliver (ADM)
delta delta (CP)
delwin curses (S)
delwin terminfo (S)
del_curterm curses (S)
del_curterm terminfo (S)
del_panel panel (S)
depend depend (F)
des_crypt crypt ()
des_encrypt crypt(S)
des_setkey crypt (S)
devices devices (F)
devnm devnm (C)
df df (C)
dfsck fsck (ADM)
dfspace dfspace (C)
dial dial (ADM)
dial dial (ADM)
dialcodes dialcodes (F)
dialers dialers (F)
diff. diff(C)
difftime difftime (S)
diff3 diff3 (C)
dir dir (FP)
dircmp dircmp (C)
directory directory (S)
dirent dirent (FP)
dirname dirname (C)
disable disable (C)
diskcmp diskep (C)
diskcp diskep (C)
diskusg diskusg (ADM)
displaypkg.......ccccovcvrvirnirnnnn. displaypkg (ADM)
dis dis (CP)
div div (5)
divvy divvy (ADM)
dkinit dparam (ADM)
dlvr_audit............cu........ dlvr_audit (ADM)
dmesg dmesg (ADM)
Xviii

dodisk acctsh (ADM)
dos dos (C)
doscat dos (C)
doscp dos (C)
dosdir dos (O
dosformat dos (C)
dosld dosld (CP)
dosls. dos (O
dosmkdir dos (O
dosrm dos (C)
dosrmdir dos (C)
doupdate curses (S)
doupdate terminfo (S)
dparam dparam (ADM)
draino curses (S)
draino terminfo (S)
drand48 drand48 (S)
dtox dtox (C)
dtype dtype (C)
du du (O
dump dump (CP)
dumpmsg dumpmsg (CP)
dumpwin terminfo (S)
dupwin curses (S)
dupwin terminfo (S)
dup dup ()
dup2 dup2 (S)
dup_field field (S)
eaccess access (S)
ecc ecc (ADM)
echo curses (S)
echo echo (C)
echo tam (S)
echo terminfo (S)
eced ecc (ADM)
echochar curses (S)
echochar terminfo (S)
ecvt ecvt (S)
ed ed (O
edata end (S)
edit ex (C)
egrep grep (C)
eisa eisa (ADM)
enable enable (C)
encrypt crypt(S)
end end (S)
enddvagent getdvagent (S)
endgrent getgrent ()
endprdfent getprdfent (S)
endprfient getprfient (S)
endprpwent getprpwent (S)

User’s Reference

endprtcent getprtcent (S)
endpwent getpwent (S)
endutent getut (S)
endwin curses (S)
endwin tam (S)
endwin terminfo (S)
env env (C)
environ environ (M)
eof regexp (S)
erand48 drand48 (S)
erase curses (S)
erase plot (S)
erase tam (S)
erase terminfo (S)
erasechar. curses (S)
erasechar terminfo (S)
erf erf(S)
erfc erf(S)
errno perror (S)
error error (M)
ERROR regexp (S)
etext end (S)
ev_block ev_block (S)
ev_close ev_close (S)
ev_count ev_count (S)
ev_flush ev_flush (S)
ev_getdev ev_getdev (S)
ev_getemaskK.........ccccecuerierrcnnens ev_getemask (S)
ev_gindev. ev_gindev (S)
ev_init ev_init (S)
ev_open ev_open (S)
ev_pop ev_pop (S)
ev_read ev_read (S)
ev_resume ev_resume (S)

ev_setemask
ev_suspend

ev_setemask (S)

ev_suspend (S)

execl exec (S)
execle exec (S)
execlp exec (S)
execseg execseg (S)
exec exec (S)
execve exec (S)
execvp exec (S)
execv exec (S)
exit exit (S)
Exit libwindows (S)
ex ex(C)
exp exp (S)
expr. expr (C)
fabs floor (S)
factor factor (C)

false false (C)
fclose fclose (S)
fentl fentl (M)
fentl fentl (S)
fevt ecvt (S)
fd fd (HW)
fdisk fdisk (ADM)
fdopen fopen (S)
fdswap fdswap (ADM)
feof ferror(S)
ferror ferror (S)
fetch dbm (S)
ff ff (ADM)
fflush fclose (S)
fgetc getc (S)
fgetgrent getgrent (S)
fgetpasswd getpasswd (S)
fgetpos fgetpos (S)
fgetpwent. getpwent (S)
fgets gets (S)
fgrep grep(C)
fields fields (S)
fieldtype fieldtype (S)
field field (S)
field_arg field (S)
field_back field (S)
field_buffer field (S)
field_count form (S)
field_fore field (S)
field_index form (S)
field_info field (S)
field_init form (S)
field_just. field (S)
field_opts field (S)
field_opts_off. field (S)
field_opts_on field (S)
field_pad field (S)
field_status. field (S)
field_term form (S)
field_type field (S)
field_userptr field (S)
file file (C)
filehdr filehdr (FP)
fileno ferror (S)
filesys filesys (F)
filesystem. filesystem (FP)
filter curses (S)
filter terminfo (S)
find find (C)
findstr findstr (CP)
finger finger (C)

xix

firstkey dbm (S)
fixhdr fixhdr (C)
fixmog fixmog (ADM)
fixperm fixperm (ADM)
flash curses (S)
flash tam (S)
flash terminfo (S)
floor floor ()
flushinp curses (S)
flushinp tam (S)
flushinp terminfo (S)
fmod floor (S)
fopen fopen (S)
fork fork (S)
form form (S)
format format (C)
form_driver form(S)
form_init form (S)
form_opts form (S)
form_opts_off form (S)
form_opts_on form (S)
form_page form (S)
form_term form (S)
fpathconf pathconf (S)
fpgetmask fpgetround (S)
fpgetround fpgetround (S)
fpgetsticky fpgetround (S)
fprintf printf (S)
fpsetmask fpgetround (S)
fpsetround fpgetround (S)
fpsetsticky fpgetround (S)
fputc putc (S)
fputs puts (S)
fread fread (S)
free malloc (S)
freeldptr Idptr (S)
free_fieldtype fieldtype (S)
free_field field (5)
free_form form (S)
free_item item (S)
free_menu menu (S)
freopen fopen (5)
frexp frexp (S)
fsave fsave (ADM)
fscanf scanf (S)
fsck fsck (ADM)
fsdb fsdb (ADM)
fseek fseek (S)
fsetpos fsetpos (S)
fsname fsname (ADM)
fspec fspec (F)
xx

fsphoto fsphoto (ADM)
fsstat fsstat (ADM)
fstat stat (5)
fstatfs statfs (S)
fstyp fstyp (ADM)
ftell fseek (S)
ftime . time (S)
ftok ftok ()
ftw ftw ()
fuser fuser (ADM)
fwrite fread (S)
fwtmp fwtmp (ADM)
fxlist xlist (S)
gamma gamma (S)
garbagedlines curses (S)
garbagedlines terminfo (S)
gevt ecvt (S)
gencat gencat (CP)
gencc gencc (CP)
get get (CP)
getbegyx curses (S)
getbegyx. terminfo (S)
getc getc (S)
getch curses (S)
getch tam (S)
getch terminfo (S)
getchar getc ()
getclk. getclk (M)
getewd getewd (S)
getc regexp (S)
getdents. getdents (S)
getdim curses (S)
getdim terminfo (S)
getdvagent. getdvagent (S)
getdvagnam getdvagent (S)
getegid. getuid (S)
getenv getenv (S)
geteuid getuid (S)
getgid getuid (S)
getgrent getgrent (S)
getgrgid getgrent (S)
getgrnam getgrent (S)
getgroups getgroups (S)
gethz gethx (S)
getlogin getlogin (S)
getluid getluid (S)
getmaxyx curses (S)
getmaxyx terminfo (S)
getmsg getmsg (S)
getopt getopt (C)
getopt getopt (S)

User's Reference

etoptcvt. i

getopts Peops© halfdel e ®
alfdelay
getorg curses (S) halfd e ®
la i
e) elay terminfo (S)
getpagss terminfo (S) haltsys haltsys (ADM)
S o getpass (S) hashcheck spell (C)
e getpassw'd 6)) hashmake spell (C)
ot (;‘p getp}d S) has_cclors curses (S)
B id getp¥d () has_colors terminfo (S)
getprdfent getp%gtfre)ﬁ 8 :as-?c e ®
P rafasnn tprf as_ic terminfo (S)
E o efiont getpr f.ent (S) has_?l curses (S)
i getprf%ent () has_il terminfo (S)
B ey getprfient (S) hcreate hsearch (S)
getprpwent getpxg;:vp;rl:: g Eg hdh((I:l-Igl(V:)
g:ttgrp:vv:ia:ln getprpwent (S) hdestroy hsearch (s;
getpg; s getprpwent (S) hdr hdr (XNX)
getprtcent (S) head
h
§:$:t’cnam getprtcent (S) hello h:ialg Eg;
P went : getpwtr ES) h.elp help (CP)
B o gettgxeﬁt (‘;‘; hlde_panel panel (S)
2 (S p h
g::gwuld getpwent (S) hs If)s((i‘;
o gets (C) hsearch hsearch (S)
getstr cme® hypoter P ©
: h
g:::;rx terminfo 25; iAPX286 maZ}I:i?;((g;
curses (S iconv i
g:tt:yyx terminfo (S) id mm;ci((jc);
icis tgthfr ™) idaddld idaddld (ADM)
e gettydefs (F) }dblllld. idbuild (ADM)
Bt geteutilc: g 3dchec.k idcheck (ADM)
e getut P }dcon'ﬁg idbuild (ADM)
ot getut o }d?nhty identity (S)
S gemt © }gigstall idinstall (ADM)
i
g i 1d (M)
o, getc (S) }dleout. idleout (ADM)
o curses (S) 3dlok curses (S)
getyx. termitral?; g; jd‘"k e o)
i e }dmk.en.v idbuild (ADM)
B me : e }dmklmt. idmkinit (ADM)
o ctime (S) }dmknod idmknod (ADM)
i goodpw (ADI(\/I; idmkunix idbuild (ADM)
gps (F idscsi idbui

iy i idbuild (ADM)
grele,k graph ((eAl?(I\C/I; }dspace idspace (ADM)
g grr: P idtune idtune (ADM)
i grep }dv1d1 idbuild (ADM)
i glioup ® 3nch curses (S)
gr_idtoname......... S (/'\DM) }l‘lCh M)

rAdGOname. pw_nametoid (S) infocmp infocmp (ADM)
gr_nametoid.........ccecueecrennee pw_nametoid (S) init pinit ™)

xxi

init.base inittab (F)
initcond initcond (ADM)
initscript initscript (ADM)
initscr curses (S)
initscr tam (S)
initscr terminfo (S)
inittab inittab (F)
init_color curses (S)
init_color terminfo (S)
init_pair curses (S)
init_pair terminfo (S)
inode inode (FP)
insch curses (S)
insch tam (S)
insch. terminfo (S)
insertln curses (S)
insertln tam (S)
insertin terminfo (S)
insertmsg insertmsg (CP)
install install (ADM)
installf installf (ADM)
installpkg installpkg (ADM)
integrity integrity (ADM)
intrflush curses (S)
intrflush terminfo (S)
Intro intro (ADM)
Intro Intro (CP)
Intro Intro (C)
Intro intro (F)
Intro intro (HW)
Intro Intro (M)
Intro Intro (S)
ioctl ioctl (S)
ipcrm ipcrm (ADM)
ipcs. ipcs (ADM)
isaddindex isaddindex (S)
isalnum ctype (S)
isalpha ctype (S)
isascii ctype (S)
isatty ttyname (S)
isbuild isbuild (S)
isclose isclose (S)
iscntrl ctype (S)
isconv isconv (S)
isdelcurr isdelcurr (S)
isdelete isdelete (S)
isdelindex. isdelindex (S)
isdelrec isdelrec (S)
isdigit ctype (S)
isendwin curses (S)
isendwin terminfo (S)
xxii

iserase iserase (S)
isgraph ctype (S)
isindexinfo isindexinfo (S)
islock islock (S)
islower ctype (S)
ismpx ismpx (C)
isnan isnan (S)
isnand isnan (S)
isnanf isnan (S)
isopen isopen (S)
isprint ctype (S)
ispunct ctype (S)
isread isread (S)
isrelease isrelease (S)
isrename isrename (S)
isrewcurr isrewcurr (S)
isrewrec isrewrec (S)
isrewrite. isrewrite (S)
issetunique issetunique (S)
isspace ctype (S)
isstart isstart (S)
issue issue (F)
isuniqueid isuniqueid (S)
isunlock. isunlock (S)
isupper ctype (S)
isverify isverify (M)
iswrcurr iswrcurr (S)
iswrite iswrite (S)
isxdigit ctype (S)
is_starting_egid identity (S)
is_starting_euidcveeverrrrnrenrennenn. identity (S)
is_starting_luid identity (S)
is_starting_rgid identity (S)
is_starting_ruid identity (S)
item item (S)
item_count item (S)
item_description item (S)
item_index menu (S)
item_init menu (S)
item_name item (S)
item_opts item (S)
item_opts_off item (S)
item_opts_on item (S)
item_term menu (S)
item_userptr item (S)
item_value item (S)
item_visible item (S)
i286 machid (C)
i286emul. i286emul (CP)
i286emul i286emul (C)
1386 machid (C)

User’s Reference

486 machid (C)
jagent jagent (M)
jn bessel (S)
join join (C)
jrand4s8 drand48 (S)
jterm jterm (C)
jwin jwin (C)
jo bessel (S)
il bessel (S)
kbmode kbmode (ADM)
keyboardeeeienr e, keyboard (HW)
keyname curses (S)
keyname terminfo (S)
keypad curses (S)
keypad tam (S)
keypad terminfo (S)
kill kill (C)
kill kill (5)
killall killall (ADM)
killchar curses (S)
killchar terminfo (S)
kmem mem (FP)
ksh ksh (C)
1 Is(C)
label plot (5)
labelit labelit (ADM)
labs labs (S)
langinfo langinfo (FP)
last last (C)
lastlogin acctsh (ADM)
layers layers (C)
layers layers (M)
le Is(C)
1d 1d (CP)
1d 1d (M)
1d 1d (XNX)
Icong48 drand48 (S)
Iconv Iconv (FP)
ldaclose Idclose (S)
ldahread Idahread (S)
1daopen Idopen (S)
Idclose Idclose (S)
1ddbl isconv (S)
Idexp frexp (S)
1dfen Idfen (FP)
1dfhread Idfhread (S)
1dfloat isconv (S)
Idgetname ldgetname (S)
1dint isconv (S)
1div 1div (S)
1dlinit IdIread (S)

ldlitem IdIread (S)
ldlong isconv (S)
1dlread Idlread (S)
1dlseek Idlseek (S)
ldnlseek I1dlseek (S)
ldnrseek ldrseek (S)
ldnshread Idshread (S)
ldnsseek Idsseek (S)
ldohseek Idohseek (S)
ldopen Idopen (S)
ldrseek Idrseek (S)
ldshread ldshread (S)
ldsseek Idsseek (S)
ldtbindex 1dtbindex (S)
ldtbread Idtbread (S)
1dtbseek 1dtbseek (S)
leaveok curses (S)
leaveok terminfo (S)
lex lex (CP)
1f Is(C)
1find Isearch (S)
libwindows libwindows (S)
limits limits (FP)
line line (C)
line plot (S)
linemod plot (S)
linenum linenum (FP)
link. link (ADM)
link link (S)
link_fieldtype fieldtype (S)
link_field field (S)
link_unix link_unix (ADM)
lint lint (CP)
list list (ADM)
list list (CP)
llog llog (S)
11_close llog (S)
1l_err llog (S)
11_hdinit llog (S)
11_init llog (S)
11_log llog (S)
11_open llog (S)
In In(C)
locale locale (M)
localeconv localeconv (S)
localtime ctime (S)
lock lock (C)
lock lock (S)
lockf lockf (S)
locking locking (S)
log exp ()

xxiii

log log (HW)

log log (M)
login login (M)
logname logname (C)
logname logname (S)
logs logs (F)
log10 exp (S)
longjmp setjmp (S)
longname curses (S)
longname terminfo (S)
lorder lorder (CP)
Ip Ip(Q)
Ip Ip (HW)
Ipadmin Ipadmin (ADM)
Ipfilter Ipfilter (ADM)
Ipforms Ipforms (ADM)
Ipmove Ipsched (ADM)
Ipr Ip(©)
lprint lprint (C)
Iprof Iprof (CP)
Ipsh Ipsh (ADM)
Ipsched Ipsched (ADM)
Ipshut Ipsched (ADM)
Ipusers Ipusers (ADM)
1p0 Ip (HW)
Ip1 Ip (HW)
1p2 Ip (HW)
1Ir Is(©
Irand48 drand48 (S)
Is Is(O)
Isearch Isearch (S)
Iseek Iseek (S)
Istat stat (S)
Itol3 13tol (S)
Ix Is(C)
13tol 13tol (S)
164a a641(S)
machid machid (C)
mail mail (C)
maildeliverycocniunncunncs maildelivery (F)
mailx mail (C)
MAJOrSINUSE.ovvveerrecrrrnisnens majorsinuse (ADM)
make make (CP)
makekey. makekey (ADM)
mallinfo mallinfo (FP)
mallinfo malloc (S)
malloc malloc (S)
mallopt malloc (S)
man man (C)
mapchan mapchan (F)
mapchan mapchan (M)
XXiv

mapkey mapkey (M)
mapscrn mapkey (M)
mapstr mapkey (M)
mar mar (CP)
masm masm (CP)
math math (M)
matherr matherr (S)
maxuuscheds........ccoceverrerererenes maxuuscheds (F)
maxuuxqts maxuuxqts (F)
mblen mblen (S)
mbstowcs mblen (S)
mbtowc mblen (S)
mcart tape (C)
mcconfig mcconfig (F)
mcdaemon mcconfig (F)
mcs mcs (CP)
mc68k machid (C)
mdevice mdevice (F)
mem mem (FP)
memccpy memory (S)
memchr memory (S)
memcmp memory (S)
memcpy memory (S)
memmove memmove (S)
memory memory (S)
memset memory (S)
menu menu (S)
MENUIMEIE.......eerverren menumerge (ADM)
menu_back menu (5)
menu_driver menu (S)
menu_fore menu (S)
menu_format menu (S)
menu_grey menu (S)
menu_opts menu (S)
menu_opts_off menu (S)
menu_opts_on menu (S)
menu_pad menu (S)
menu_term menu (5)
mesg mesg (C)
mestbl mestbl (M)
meta curses (S)
meta terminfo (S)
mfsys mfsys (FP)
mkdev. mkdev (ADM)
mkdir mkdir (C)
mkdir mkdir (S)
mkfifo mkfifo (C)
mkfifo mkfifo (S)
mkfs mkfs (ADM)
mknod mknod (C)
mknod mknod (S)

User's Reference

mkshlib mbkshlib (CP)
mkstr mkstr (CP)
mktemp mktemp (S)
mktime mktime (S)
ml_adr ml_send (S)
ml_aend ml_send (S)
ml_cc ml_send (S)
ml_end ml_send (S)
ml_file ml_send (S)
ml_init ml_send (S)
ml_send ml_send (S)
ml_tinit ml_send (S)
ml_to ml_send (S)
ml_txt ml_send (S)
ml_ladr ml_send (S)
mmdf mmdf (ADM)
mmdf mmdf (S)
mmdfalias........ccccoreveverneerennnns mmdfalias (ADM)
mmdftailor mmdftailor (F)
mm_end mmdf (S)
mm_init mmdf (S)
mm_pkend mmdf (S)
mm_pkinit mmdf (S)
mm_radr mmdf (S)
mm_rinit mmdf (S)
mm_rrec mmdf (S)
mm_rrply mmdf (S)
mm_rstm mmdf (S)
mm_rtxt mmdf (S)
mm_sbend mmdf (S)
mm_sbinit mmdf (S)
mm_wadr mmdf (S)
mm_waend mmdf (S)
mm_winit mmdf (S)
mm_wrec mmdf (S)
mm_wrply mmdf (S)
mm_wstm mmdf (S)
mm_wtend mmdf (S)
mm_wixt mmdf (S)
mnlist. mnlist (ADM)
mnt mnt (C)
mnttab mnttab (F)
modf frexp (S)
monacct acctsh (ADM)
monitor monitor (S)
montbl montbl (M)
more more (C)
mount mount (ADM)
mount mount (S)
mountall mountall (ADM)
mouse mouse (HW)

move curses (S)
move plot (S)
move tam (S)
move terminfo (S)
Move libwindows (S)
move_field field (S)
move_panel panel (S)
mpstat mpstat (C)
mrand48 drand48 (S)
mscreen mscreen (M)
msg msg (FP)
msgctl msgctl (S)
msgget msgget (S)
msgop. msgop (S)
msgrcv msgop (S)
msgsnd msgop (S)
mtune mtune (F)
multiscreen multiscreen (M)
mv mv (C)
mvaddch curses (S)
mvaddch tam (S)
mvaddch terminfo (S)
mvaddstr curses (S)
mvaddstr tam (S)
mvaddstr terminfo (S)
mvcur curses (S)
mvcur terminfo (S)
mvdelch curses (S)
mvdelch terminfo (S)
mvdevice mvdevice (F)
mvdir mvdir (ADM)
mvgetch curses (S)
mvgetch terminfo (S)
mvgetstr curses (S)
mvgetstr terminfo (S)
mvinch curses (S)
mvinch tam (S)
mvinch terminfo (S)
mvinsch curses (S)
mvinsch. terminfo (S)
mvprintw curses (S)
mvprintw terminfo (S)
mvscanw curses (S)
mvscanw terminfo (S)
mvwaddch curses (S)
mvwaddch terminfo (S)
mvwaddstr curses (S)
mvwaddstr terminfo (S)
mvwdelch curses (S)
mvwdelch terminfo (S)
mvwgetch. curses (S)

. XXv

mvwgetch terminfo (S)
mvwgetstr curses (S)
mvwgetstr. terminfo (S)
mvwin curses (S)
mvwin terminfo (S)
mvwinch curses (S)
mvwinch terminfo (S)
mvwinsch. curses (S)
mvwinsch terminfo (S)
mvwprintw curses (S)
mvwprintw terminfo (S)
mvwscanw curses (S)
mvwscanw terminfo (S)
m4 m4 (CP)
nap nap (S)
napms curses (S)
napms terminfo (S)
nawk awk (C)
nbwaitsem waitsem (S)
ncheck ncheck (ADM)
netbuf netbuf (FP)
netconfig netconfig (ADM)
netutil netutil (ADM)
New. libwindows (S)
newform newform (C)
newgrp newgrp (C)
Newlayer libwindows (S)
newpad curses (S)
newpad terminfo (S)
news news (C)
newterm curses (S)
newterm terminfo (S)
newwin curses (S)
newwin terminfo (S)
new_fieldtype fieldtype (S)
new_field field (S)
new_item item (S)
new_page. form (S)
new_panel. panel (S)
nextkey dbm (S)
nice nice (C)
nice nice (S)
nictable. nictable (ADM)
nl curses (S)
nl nl(C)
nl tam (S)
nl terminfo (S)
nlist nlist (S)
nlsadmin nlsadmin (ADM)
nl_ascxtime nl_cxtime (S)
nl_cxtime nl_cxtime (S)
xxvi

nl_fprintf nl_printf (S)
nl_fscanf nl_scanf (S)
nl_init nl_init (S)
nl_langinfo nl_langinfo (S)
nl_printf nl_printf ()
nl_scanf nl_scanf (S)
nl_sprintf nl_printf ()
nl_sscanf. nl_scanf (S)
nl_strcmp nl_strcmp (S)
nl_strncmp nl_strcmp (S)
nl_types nl_types (FP)
nm nm (CP)
nm nm (XNX)
nocbreak curses (S)
nocbreak, nocrmode tam (S)
nocbreak, nocrmode...........cceuenee.. terminfo (S)
nodelay curses (S)
nodelay tam (S)
nodelay terminfo (S)
noecho curses (S)
noecho tam (S)
noecho terminfo (S)
nohup nohup (C)
nonl curses (S)
nonl tam (S)
nonl terminfo (S)
noraw curses (S)
noraw terminfo (S)
notimeout. curses (S)
notimeout terminfo (S)
nrand48 drand48(S)
nssend nssend (FP)
null null (FP)
nulladm acctsh (ADM).
numtbl numtbl (M)
oawk awk (O)
od od (C)
open open (S)
openagent libwindows (S)
openchan libwindows (S)
opendir directory (S)
openpl plot (S)
opensem opensem (S)
os2ld 0s2ld (CP)
overlay curses (S)
overlay terminfo (S)
overwrite curses (S)
overwrite terminfo (S)
paccess paccess (S)
pack pack (C)
page more (C)

User’s Reference

pair_content

curses (S)

pair_content terminfo (S)
panel panel (S)
panel_above panel (S)
panel_below panel (S)
panel_hidden panel (S)
panel_userptr panel (S)
panel_window panel (S)
parallel parallel (HW)
passlen. passlen (S)
passwd passwd (C)
passwd passwd (FP)
paste paste (C)
pathconf pathconf (S)
pause pause (S)
pax pax (C)
pcat pack (C)
pclose popen (S)
pcpio pepio (C)
pdp1l. machid (C)
pechochar curses (S)
pechochar terminfo (S)
PEEKC regexp (S)
permissions permissions (F)
perror perror(S)
P8 pg(©
=
phs_get phs (S
phs_msg phs (S)
phs_note phs ()
pipe pipe (ADM)
pipe pipe ()
pkgadd pkgadd (ADM)
pkgask pkgask (ADM)
pkgchk pkgchk (ADM)
pkginfo pkginfo (ADM)
pkginfo pkginfo (F)
pkgmap pkgmap (F)
pkgmk pkgmk (ADM)
pkgparam pkgparam (ADM)
pkgproto pkgproto (ADM)
pkgrm pkgrm (ADM)
pkgtrans pkgtrans (ADM)
plock plock (S)
plot plot (FP)
plot plot (S)
pnch pnch (FP)
pnoutrefresh curses (S)
pnoutrefresh terminfo (S)
point plot (S)
Poll poll (F)

poll poll (S)
Poll.day poll (F)
PolLhour poll (F)
popen popen (S)
post_form form (S)
post_menu menu (S)
pos_form_cursor form (S)
pos_menu_cursor menu (S)
pow exp (S)
prctmp acctsh (ADM)
prdaily acctsh (ADM)
prefresh curses (S)
prefresh terminfo (S)
prf prf (HW)
prfdc profiler (ADM)
prfld profiler (ADM)
prfpr profiler (ADM)
prfsnap profiler (ADM)
prfstat profiler (ADM)
primary_auth subsystems (S)

primary_of_secondary_auth

subsystems (S)

printenv env (C)
printf printf (S)
printw curses (S)
printw tam (S)
printw terminfo (S)
proc proc (FP)
proctl proctl ()
prof prof (CP)
prof prof (M)
prof prof (XNX)
profil profil (S)
profile profile (M)
profiler profiler (ADM)
proto proto (ADM)
prototype prototype (F)
pr pr(C)
prs prs(CP)
prtacct acctsh (ADM)
prwarn prwarn (C)
ps ps(C)
pstat. pstat (C)
ptar ptar (C)
ptmx ptmx (M)
ptrace ptrace (S)
pts??? ptmx (M)
purge purge (C)
purge purge (F)
putc putc (S)
putchar putc (S)

Xxvii

putdvagnam getdvagent (S)
putenv putenv (S)
putmsg putmsg (S)
putp curses (S)
putp terminfo (S)
putprdfnam getprdfent (S)
putprfinam getprfient (S)
PUtPIPWNAMoncteerecernerrreneens getprpwent (S)
putprtcnam getprtcent (S)
putpwent putpwent (S)
puts puts (S)
pututline getut (S)
putw putc (S)
pwck pwck (ADM)
pwconv pwconv (ADM)
pwd pwd (C)
pwunconv pweconv (ADM)

pw_idtoname
pw_nametoid

pw_nametoid (S)
pw_nametoid (S)

qsort gsort (S)
queue queue (F)
queuedefs queuedefs (F)
quot quot (C)
raise raise (S)
ramdisk ramdisk (HW)
rand rand (S)
random random (C)
randomword...........ccoeevvereeenennn. randomword (S)
ranlib ranlib (XNX)
raw curses (S)
raw terminfo (S)
rec rcc (CP)
rcflow rcflow (CP)
rcp rcp (C)
rcvalert rcvalert (C)
revfile revfile (C)
revprint revprint (C)
revirip revtrip (C)
rexref. rcxref (CP)
rc0 rc0 (ADM)
re2 rc2 (ADM)
rdchk rdchk (S)
read read (S)
readdir directory (S)
readlink readlink (S)
realloc malloc (S)
reboot haltsys (ADM)
red ed (Q)
reduce reduce (ADM)
refresh curses (S)
refresh tam (S)
Xxviii

refresh terminfo (S)
regcmp regemp (CP)
regcmp regcmp (S)
regcmp . regex (S)
regex regcmp (S)
regex regex (S)
regexp regexp (S)
reject accept (ADM)
relax relax (ADM)
reloc reloc (FP)
relogin relogin (ADM)
remote remote (C)
remove remove (S)
removef removef (ADM)
1€MOVEPKE ..ovvvveirrninnresaensns removepkg (ADM)
rename rename (S)
replace_panel panel (S)
resend resend (C)
resetty. curses (S)
resetty tam (S)
resetty terminfo (S)
reset_prog_mode curses (S)
reset_prog_mode..........cc.euurivrrrerrrens terminfo (S)
reset_shell_mode curses (S)
reset_shell_modececeourererererenene terminfo (S)
reset_tty curses (S)
reset_tty tam (S)
reset_tty terminfo (S)
Reshape libwindows (S)
restartterm curses (S)
restartterm terminfo (S)
restore restore (ADM)
RETURN regexp (S)
rewind fseek (S)
rewinddir directory (S)
ripoffline curses (S)
ripoffline terminfo (S)
rksh ksh (C)
rlint rlint (CP)
rm rm(C)
rmail rmail (ADM)
rmb rmb (M)
rmdel rmdel (CP)
rmdir rmdir (C)
rmdir. rmdir (S)
rmgroup rmuser (ADM)
rmpasswd rmuser (ADM)
rmuser rmuser (ADM)
Routines Routines (S)
Routines Routines (DOS)
rsh rsh (O

User’s Reference

rtc rtc (HW)
runacct acctsh (ADM)
runacct runacct (ADM)
Runlayer libwindows (S)
run_crypt crypt (S)
run_setkey crypt (S)
sact. sact (CP)
sadc sar (ADM)
sag sag (ADM)
sar sar (ADM)
savetty curses (S)
savetty tam (S)
savetty terminfo (S)
sal sar (ADM)
sa2 sar (ADM)
sbrk brk (S)
scale_form form(S)
scale_menu menu (S)
scancode scancode (HW)
scanf scanf (S)
scanoff scanon (M)
scanon scanon (M)
scanw curses (S)
scanw terminfo (S)
scesdiff scesdiff (CP)
scesfile sccsfile (FP)
schedule schedule (ADM)
scnhdr scnhdr (FP)
screen screen (HW)
scroll curses (S)
SCIOLL ... eereeereeseeaenes terminfo (S)
scrollok curses (S)
scrollok terminfo (S)
scr_dump curses (S)
scr_dump scr_dump (FP)
scr_dump terminfo (S)
scr_init curses (S)
scr_init. terminfo (S)
scr_restore curses (S)
scr_restore terminfo (S)
scsi scsi (HW)
sc_copyscstate sc_raw (S)
sc_exit sc_init (S)
sc_getfkeystr sc_init (S)
sc_getinfo sc_raw (S)
sc_getkbmap sc_init (S)
sc_getkeymap sc_init (S)
sc_getled sc_init (S)
sc_getscreenswitch ..., sc_raw (S)
sc_init sc_init (S)

sc_kb2mapcode

.................. sc_readkb (S)

sc_mapcode2kb
sc_mapcode2str
sc_mapinit

................. sc_readkb (S)
................. sc_readkb (S)

sc_init (S)

sc_mapin

sc_readkb (S)

sc_readkb (S)

sc_mapout

sc_raw
sc_readkb

sc_raw (S)
sc_readkb (S)

sc_readmapcode

.............................. sc_readkb (S)

sc_readstr
sc_receive_kb

sc_readkb (S)
sc_init (S)

sc_setfkeystr

sc_init (S)

sc_setinfo

sc_raw (S)

sc_setkeymap

..sc_init (S)

sc_setled

sc_init (S)

sc_setscreenswitch

............................... sc_raw (S)

sc_str2kb sc_readkb (S)
sc_unraw sc_raw (S)
sd sd (ADM)
sdb sdb (CP)
sdd sd (ADM)
sddate sddate (C)
sdenter sdenter (S)
sdevice sdevice (F)
sdfree sdget (S)
sdget. sdget (S)
sdgetv sdgetv (S)
sdiff sdiff (C)
sdleave sdenter (S)
sdwaitv sdgetv (S)
secondary_authccccevvereennen subsystems (S)
sed sed (C)
seed seed (S)
seed48 drand48 (S)
seekdir directory (S)
select select (S)
sem sem (FP)
semctl. semctl (S)
semget semget (S)
semop semop (S)
serial serial (HW)
setbuf setbuf (S)
setclock setclock (ADM)
setcolor setcolor (C)
setcolour setcolor (C)
setdvagent getdvagent (S)
setgid setuid (S)
setgrent getgrent (S)
setgroups setgroups (S)
setjmp setjmp (S)
setkey crypt(S)
setkey setkey (C)

XXix

setlocale setlocale (S)
setluid setluid (S)
setmnt setmnt (ADM)
setpgid setpgid (S)
setpgrp setpgrp (S)
setprdfent getprdfent (S)
setprfient getprfient (S)
setpriv setpriv (S)
setprpwent getprpwent (S)
setprtcent getprtcent (S)
setpwent. getpwent (S)
setscrreg curses (S)
setscrreg terminfo (S)
setsid setsid (S)
setsyx curses (S)
setsyx terminfo (S)
settime settime (ADM)
setuid setuid (S)
setupterm curses (S)
setupterm. terminfo (S)
setutent getut (S)
setvbuf setbuf (S)
set_current_field form (S)
set_current_item menu (S)
set_curterm curses (S)
set_curterm terminfo (S)
set_fieldtype_arg........cccccoevcuvvrcrnnennn. fieldtype (S)
set_fieldtype_choicecceucuuuucen. fieldtype (S)
set_field_back field (S)
set_field_buffer field (S)
set_field_fore field (5)
set_field_init form (S)
set_field_just field (S)
set_field_opts field (S)
set_field_pad field (S)
set_field_status field (S)
set_field_term form (S)
set_field_type field (5)
set_field_userptr field (S)
set_form_fields form (S)
set_form_init form (S)
set_form_opts form (S)
set_form_page form (S)
set_form_sub form (S)
set_form_term form (S)
set_form_userptr form (S)
set_form_win form (S)
set_item_init menu (S)
set_item_opts item (S)
set_item_term menu (S)
set_item_userptr item (S)

xXXx

set_item_value item (S)
set_menu_back menu (S)
set_menu_fore menu (S)
set_menu_format menu (S)
set_menu_grey menu (S)
set_menu_init menu (S)
set_menu_items menu (S)
set_menu_mark menu (S)
set_menu_opts. menu (S)
set_menu_pad menu (S)
set_menu_pattern menu (S)
set_menu_sub menu (S)
set_menu_term menu (S)
set_menu_userptr menu (S)
set_menu_win ment (S)
set_new_page form (S)
set_panel_userptr. panel (S)
set_seed seed (S)
set_term curses (S)
set_term terminfo (S)
set_top_row menu (S)
set_| curses (S)
set_tty terminfo (S)
sfmt sfmt (ADM)
sfsys sfsys (FP)
sg sg(C)
sgetl sputl (S)
sh sh(C)
shl shl(C)
shm shm (FP)
shmat, shmop (S)
shmctl shmctl (S)
shmdt shmop (S)
shmget shmget (S)
shmop shmop (S)
show_panel panel (S)
shutacct acctsh (ADM)
shutdn shutdn (S)
shutdown shutdown (ADM)
sigaction sigaction (S)
sigaddset sigset (S)
sigdelset sigset (S)
sigemptyset sigset (S)
sigfillset sigset (S)
sighold sigsetv (S)
sigignore sigsetv (S)
sigismember sigset (S)
siglongjmp sigsetjmp (S)
signal signal (S)
sigpause sigsetv (S)
sigpending sigpending (S)

User’s Reference

sigprocmaskeeuuee. sigprocmask (S)
sigrelse sigsetv (S)
sigsem sigsem (S)
sigset sigset (S)
sigset sigsetv (S)
sigsetjmp sigsetjmp (S)
sigsuspend sigsuspend (S)
sin trig (S)
sinh sinh (S)
size size (CP)
size size (XNX)
sleep sleep (C)
sleep sleep (S)
slk_clear curses (S)
slk_clear terminfo (S)
slk_init. curses (S)
slk_init terminfo (S)
slk_label curses (S)
slk_label terminfo (S)
slk_noutrefresh curses (S)
slk_noutrefresh terminfo (S)
slk_refresh curses (S)
slk_refresh terminfo (S)
slk_restore curses (S)
slk_restore terminfo (S)
slk_set curses (S)
slk_set terminfo (S)
slk_touch curses (S)
slk_touch terminfo (S)
slot slot (C)
smmck tcbck (ADM)
sort sort (C)
space plot (S)
space space (F)
spell spell (C)
spellin spell (C)
spline spline (C)
split split (C)
sprintf printf (S)
sputl sputl S)
sqrt exp (S)
srand rand (S)
srand48 drand48 (S)
sscanf scanf (S)
ssignal ssignal (S)
standend curses (S)
standend terminfo (S)
standout. curses (S)
standout terminfo (S)
startup acctsh (ADM)
start_color curses (S)

start_color terminfo (S)
stat stat (FP)
stat stat (S)
statfs statfs (S)
stdarg varargs (S)
stdbl isconv (S)
stderr. stdio (S)
stdin stdio (S)
stdio stdio (S)
stdout stdio (S)
step regexp (S)
stfloat isconv (S)
stime stime (S)
stint isconv (S)
stlong isconv (S)
stopio stopio (S)
store dbm (S)
strace strace (ADM)
strcat string (S)
strchr string (S)
strclean strclean (ADM)
strcmp string (S)
strcoll. strcoll (S)
strcpy. string (S)
strespn string (S)
strdup string (S)
streamio streamio (HW)
streamio streamio (M)
strerr strerr (ADM)
strerror strerror (S)
strftime ctime (S)
strftime strftime (S)
string. string (M)
string string (S)
strings strings (C)
strip strip (XNX)
strlen string (S)
strncat string (S)
strncmp string (S)
strncoll streoll (S)
strnepy string (S)
strnxfrm streoll (S)
strpbrk string (S)
strrchr string (S)
strspn string (S)
strtod strtod (S)
strtok string (S)
strtol strtol (S)
strtoul strtoul (S)
strxfrm strcoll (S)
stty stty (C)

xxxi

stune stune (F)
su su (C)
submit submit (ADM)
subpad curses (S)
subpad terminfo (S)
subsystems subsystems (S)
subsystem subsystem (M)
subwin curses (S)
subwin terminfo (S)
sulogin sulogin (ADM)
sum sum (C)
swab swab (5)
swap swap (ADM)
swconfig sweonfig (C)
sxt sxt (M)
symlink symlink (S)
syms syms (FP)
sync sync (ADM)
sync sync (S)
sysadmcoloroerrcrvcernens sysadmcolor (F)
sysadmment..........coceevrererennennne sysadmmenu (F)
sysadmsh sysadmsh (ADM)
sysconf sysconf (S)
sysdef sysdef (ADM)
sysfiles sysfiles (F)
sysfs sysfs (S)
sysi86 sysi86 (S)
systemid systemid (F)
systems systems (F)
system system (S)
systty systty (M)
sys_errlist perror (S)
sys_nerr perror (S)
S_ISBLK stat (S)
S_ISCHR stat (S)
S_ISDIR stat (S)
S_ISFIFO stat (S)
S_ISNAM stat (S)
S_ISREG stat (S)
tables. tables (F)
tabs tabs{C)
tail tail (C)
tai_end tai (S)
tai_get tai (S)
tai_init tai (S)
tam tam (S)
tan trig (S)
tanh sinh (S)
tape tape (C)
tape tape (HW)
tapecntl tapecntl (C)
xxxii

tapedump tapedump (C)
tar tar (C)
tar tar (F)
tcbek. tcbek (ADM)
tedrain teflow (S)
tcflow tcflow (S)
tcflush teflow (S)
tegetattr tcattr (S)
tegetpgrp tcpgrp (S)
tcsendbreak tcflow (S)
tesetattr teattr (S)
tesetpgrp tcpgrp (S)
tdelete. tsearch (S)
tee tee (C)
telinit init (M)
telldir directory (S)
tempnam tmpnam (S)
term term (M)
term term (F)
termcap termcap (F)
termcap termcap (S)
terminal terminal (HW)
terminals terminals (M)
terminfo terminfo (F)
terminfo terminfo (M)
terminfo terminfo (S)
termio termio (M)
termios termios (M)
termupd ttyupd (ADM)
test test (C)
tfind tsearch (S)
tgetent curses (S)
tgetent termcap (S)
tgetent terminfo (S)
tgetflag curses (S)
tgetflag termcap (S)
tgetflag terminfo (S)
tgetnum curses (S)
tgetnum termcap (S)
tgetnum terminfo (S)
tgetstr curses (S)
tgetstr. termcap (S)
tgetstr terminfo (S)
tgoto curses (S)
tgoto termcap (S)
tgoto terminfo (S)
tic tic (C)
tigetflag curses (S)
tigetflag terminfo (S)
tigetnum curses (S)
tigetnum terminfo (S)

User’s Reference

tigetstr curses (S)
tigetstr terminfo (S)
time time (C)
time time (S)
times times (S)
timex timex (ADM)
timezone timezone (F)
timod timod (HW)
timod timod (M)
timtbl timtbl (M)
tirdwr tirdwr (HW)
tirdwr tirdwr (M)
tmpfile tmpfile (S)
tmpnam tmpnam (S)
toascii ctype (S)
toascii toascii (S)
todigit toascii (S)
toint toascii (S)
top top (F)
Top libwindows (S)
top.next top (F)
top_panel panel (S)
top_row menu (S)
total_auths subsystems (S)
touch touch (C)
touchline curses (S)
touchline. terminfo (S)
touchwin curses (S)
touchwin. terminfo (S)
toupper ctype (S)
toupper toascii (S)
tparm curses (S)
tparm terminfo (S)
tplot. tplot (ADM)
tput tput (C)
tputs. curses (S)
tputs termcap (S)
tputs terminfo (S)
tr tr (C)
traceoff curses (S)
traceoff terminfo (5)
traceon curses (S)
traceon terminfo (S)
translate. translate (C)
trchan trchan (M)
trig trig (S)
true true (C)
tsearch tsearch (S)
tset tset (C)
tsort tsort (CP)
tty tty (O)

tty tty (M)
ttyname ttyname (S)
ttyslot ttyslot (S)
ttytype ttytype (F)
ttyupd ttyupd (ADM)
ttyl[a-h] serial (HW)
tty2[a-h] serial (HW)
turnacct acctsh (ADM)
twalk tsearch (S)
typeahead. curses (S)
typeahead terminfo (S)
types types (FP)
tz tz (M)
tzset ctime (S)
t_accept t_accept (S)
t_alloc t_alloc (S)
t_bind t_bind (S)
t_close t_close (S)
t_connect t_connect (S)
t_error t_error(S)
t_free t_free(S)
t_getinfo t_getinfo (S)
t_getstate t_getstate (S)
t_info t_info (FP)
t_listen t_listen (S)
t_look t_look (S)
t_open t_open (S)
t_optmgmt t_optmgmt (S)
t_reveonnectoeeeeeeeenevennenenne t_rcvconnect (S)
t_rcvdis t_rcvdis (S)
t_rcvrel t_rcvrel (S)
t_rcvudata t_rcvudata (S)
t_rcvuderr t_rcvuder (S)
t_rcv t_rcv (S)
t_snddis t_snddis (S)
t_sndrel t_sndrel (S)
t_sndudata. t_sndudata (S)
t_snd t_snd (S)
t_sync t_sync (S)
t_unbind t_unbind (S)
uadmin uadmin (ADM)
uadmin uadmin (S)
ulimit ulimit (S)
umask umask (C)
umask umask (S)
umnt mnt (C)
umount mount (ADM)
umount umount (ADM)
umount umount (S)
umountall mountall (ADM)
uname uname (C)

xxxiii

uname uname (S)
uncompress compress (C)
unctrl curses (S)
unctrl terminfo (S)
undocumented undocumented (M)
unexecseg execseg (S)
unget unget (CP)
ungetc ungetc (S)
ungetch curses (S)
ungetch terminfo (S)
UNGETC regexp (S)
uniq uniq (C)
unistd unistd (FP)
units units (C)
unlink link (ADM)
unlink unlink (S)
unpack pack (C)
unpost_form form (S)
unpost_menu menu (S)
unretire unretire (ADM)
update_panels. panel (S)
uptime uptime (C)
usemouse. usemouse (C)
ustat ustat (S)
utime utime (S)
utmp utmp (F)
utmpname getut (S)
uuchat. dial (ADM)
uucheck uucheck (ADM)
uucico uucico (ADM)
uuclean uuclean (ADM)
uucp uucp (C)
uudecode uuencode (C)
uudemon uudemon (ADM)
uudemon.admin..... uudemon (ADM)
uudemon.clean uudemon (ADM)
uudemon.hour-.... uudemon (ADM)
uudemon.poll2 uudemon (ADM)
uudemon.poll.................. uudemon (ADM)
uuencode uuencode (C)
uugetty getty (M)
uuinstall uuinstall (ADM)
uulist uulist (ADM)
uulog. uucp (C)
uuname uucp (C)
uupick uuto (O
uusched uusched (ADM)
uustat uustat (C)
uuto uuto (C)
uutry uutry (ADM)
uux uux (C)
XXXiv

uuxqt uuxqt (ADM)
u3b15 machid (C)
u3b2 machid (C)
u3b5 machid (C)
u3b machid (C)
u370.... machid (C)
val val (CP)
values values (M)
varargs varargs (S)
vax machid (C)
va_alist varargs (S)
va_arg. varargs (S)
va_dcl varargs (S)
va_end varargs (S)
va_list varargs (S)
va_start varargs (S)
ve vc (CP)
VeCtOrSINUSEcevevveererenennee vectorsinuse (ADM)
vedit vi(C)
viprintf vprintf (S)
vi vi(C)
vidattr. curses (S)
vidattr terminfo (S)
vidi vidi (C)
vidputs curses (S)
vidputs terminfo (S)
view vi(C)
vldldptr Idptr (S)
vmstat vmstat (C)
volcopy volcopy (ADM)
vprintf vprintf (5)
vsprintf vprintf (S)
vwprintw curses (S)
vwprintw terminfo (S)
vwscanw. curses (S)
vwscanw terminfo (S)
w w(Q)
waddch curses (S)
waddch terminfo (S)
waddstr curses (S)
waddstr terminfo (S)
wait wait (C)
wait wait (S)
waitpid. wait (S)
waitsem waitsem (S)
wall wall (ADM)
wattroff curses (S)
wattroff terminfo (S)
wattron curses (S)
wattron terminfo (S)
wattrset curses (S)

User's Reference

wattrset terminfo (S)
wce we (Q)
wclear curses (S)
wclear terminfo (S)
weclrtobot curses (S)
wclrtobot terminfo (S)
weclrtoeol curses (S)
weclrtoeol terminfo (S)
wcstombs mblen (S)
wctomb mblen (S)
wdelch curses (S)
wdelch terminfo (S)
wdeleteln curses (S)
wdeleteln. terminfo (S)
wechochar curses (S)
wechochar terminfo (S)
werase curses (S)
werase. terminfo (S)
wgetch. curses (S)
wgetch terminfo (S)
wgetstr curses (S)
wgetstr. terminfo (S)
what what (CP)
what what (C)
who. who (C)
whodo whodo (C)
widest_auth subsystems (S)
winch curses (S)
winch terminfo (S)
winsch. curses (S)
winsch terminfo (S)
winsertln curses (S)
winsertln terminfo (S)
wmove curses (S)
wmove terminfo (S)
wnoutrefresh curses (S)
wnoutrefresh terminfo (S)
wprintw curses (S)
wprintw terminfo (S)
wrefresh curses (S)
wrefresh tam (S)
wrefresh terminfo (S)
write write (C)
write write (S)
write_authorizations subsystems (S)
wscanw curses (S)
wscanw terminfo (S)
wsetscrreg curses (S)
wsetscrreg. terminfo (S)
wstandend curses (S)
wstandend. terminfo (S)

wstandout curses (S)
wstandout terminfo (S)
wtinit. witinit (ADM)
wtmpfix fwtmp (ADM)
wtmp utmp (F)
x.out x.out (FP)
xargs xargs (C)
xbackup xbackup (ADM)
xbackup xbackup (F)
xdump xbackup (ADM)
xdumpdir xdumpdir (ADM)
xinstall xinstall (ADM)
xlist xlist (S)
xrestor xrestore (ADM)
xrestore xrestore (ADM)
xstr xstr (CP)
xt xt (HW)
xtd xtd (ADM)
xtod xtod (C)
xtproto xtproto (M)
xtract xtract (C)
xts xts (ADM)
xtt xtt (ADM)
x286emul x286emul (CP)
x286emul x286emul (C)
yacc yacc (CP)
yes yes(C)
yn bessel (5)
yo bessel (S)
yl bessel (S)
zcat compress (C)
86rel 86rel (FP)
300s 300(C)
80387 80387 (HW)
4014 4014 (C)
300 300 (©)
450 450(Q)
_nextchoice fieldtype (S)
_prevchoice fieldtype (S)
_tolower ctype (5)
_tolower toascii (S)
[test (C)
__scoinfo __scoinfo (S)

XXX0

Commands (C)

Commands (C)

Intro

Intro(C)

introduces UNIX commands

Description

Syntax

This section describes the use of the individual commands available in the
UNIX Operating System. Each individual command is labeled with either a C,
or a CP for easy reference from other volumes. The letter “C” stands for “com-
mand”. The letter “P” stands for commands that come with the optional De-
velopment System (Programming). For example, the reference date(C) indi-
cates a reference to a discussion of the date(C) command in the C section; the
reference cc(CP) indicates a reference to a discussion of the cc command in the
Development System. The Development System is an optional supplemental
package to the standard Operating System.

The “ADM” Administration section contains miscellaneous information
including a great deal of system maintenance information. Other reference
sections include the “M” Miscellaneous section, the “5” System Services sec-
tion, the “HW” Hardware section, and the “F” File Format section.

Unless otherwise noted, commands described in the “Syntax” section of a
manual page accept options and other arguments according to the following
syntax and should be interpreted as explained below.

name [-option...] [cmdarg...]

where:

[1 Surround an option or cmdarg that is not required.
Indicates multiple occurrences of the option or cmdarg.

name The name of an executable file.

option (Always preceded by a “-”".)

noargletter... or,
argletter optargl,...]

noargletter A single letter representing an option without an option-
argument. Note that more than one noargletter option can be
grouped after one “-” (Rule 5 in the following text).

argletter A single letter representing an option requiring an option-
argument.

Intro(C)

optarg

cmdarg

An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter
must be separated by commas or separated by white space and
quoted (Rule 8 below).

Path name (or other command argument) not beginning with

“ n "

-”, or “-” by itself indicating the standard input.

Command syntax standard: rules

These command syntax rules are not followed by all current commands, but
all new commands use them. getopts(C) should be used by all shell pro-
cedures to parse positional parameters and to check for legal options. It sup-
ports Rules 3-10 below. The enforcement of the other rules must be done by
the command itself.

AL S i

N

10.
11.
12.

13.

Command names (name above) must be between two and nine char-
acters long.

Command names must include only lowercase letters and digits.

Option names (option above) must be one character long.

" n
= .

All options must be preceded by

Options with no arguments may be grouped after a single “-”.
The first option-argument (optarg above) following an option must
be preceded by white space.

Option-arguments cannot be optional.

Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (for
example, 8-0 xxx,z,yy or 8 -o "xxx z yy").

All options must precede operands (cmdarg above) on the command
line.

“w - n

may be used to indicate the end of the options.
The order of the options relative to one another should not matter.

The relative order of the operands (cmdarg above) may affect their
significance in ways determined by the command with which they
appear.

“-” preceded and followed by white space should only be used to
mean standard input.

See also

Intro(C)

getopts(C), exit(S), getopt(S), wait(S)

Diagnostics

Note

Upon termination, each command returns 2 bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of “normal”
termination) one supplied by the program (see wait(S) and exit(S)). The
former byte is 0 for normal termination; the latter is customarily 0 for success-
ful execution and non-zero to indicate troubles such as erroneous parameters,
bad or inaccessible data. It is called variously “exit code”, “exit status”, or
“return code”, and is described only where special conventions are involved.

Not all commands adhere to the syntax described here.

300(C)

300, 300s

handle special functions of DASI 300 and 300s terminals

Syntax
300 [+12][-n][-dt]c]
300s[+12][-n][-d¢tlc]
Description

300 - Handles special functions for the DASI 300 terminal
300s - Handles special functions for the DASI 300s terminal

The 300 command supports special functions and optimizes the use of the
DASI 300 (GSI 300 or DTC 300) terminal; 300s performs the same functions for
the DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-line forward,
half-line reverse, and full-line reverse motions to the correct vertical motions.
In the following discussion of the 300 command, it should be noted that
unless your system contains the text processing software, references to certain
commands (for example, nroff, neqn, eqn, etc.) will not work. It also
attempts to draw Greek letters and other special symbols. It permits con-
venient use of 12-pitch text. It also reduces printing time by between 5% and
70%. The 300 command can be used to print equations neatly, in the
sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle
12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor-
mally allow only two combinations: 10-pitch, 6 lines/inch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch combina-
tion, the user should turn the PITCH switch to 12, and use the +12
option.

-n controls the size of half-line spacing. A half-line is, by default, equal
to 4 vertical plot increments. Because each increment equals 1/48 of
an inch, a 10-pitch line-feed requires 8 increments, while a 12-pitch
line-feed needs only 6. The first digit of n overrides the default
value, thus allowing for individual taste in the appearance of sub-
scripts and superscripts. For example, nroff half-lines could be
made to act as quarter-lines by using -2. The user could also obtain
appropriate half-lines for 12-pitch, 8 lines/inch mode by using the
option -3 alone, having set the PITCH switch to 12-pitch.

See also

300(C)

-dt,l,c controls delay factors. The default setting is -d3,90,30. DASI 300 ter-
minals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless, non-
identical characters. One null (delay) character is inserted in a line
for every set of t tabs, and for every contiguous string of ¢ non-blank,
non-tab characters. If a line is longer than I bytes, 1+(total
length)/20 nulls are inserted at the end of that line. Items can be
omitted from the end of the list, implying use of the default values.
Also, a value of zero for ¢ (c) results in two null bytes per tab (char-
acter). The former may be needed for C programs, the latter for files
like /etc/passwd. Because terminal behavior varies according to the
specific characters printed and the load on a system, the user may
have to experiment with these values to get correct output. The -d
option exists only as a last resort for those few cases that do not oth-
erwise print properly. For example, the file /efc/passwd may be
printed using -d3,30,5. The value -d0,1 is a good one to use for C
programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing car-
riage return and line-feed delays. The stty(C) modes nl0 cr2 or nl0
cr3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle of a docu-
ment. Instead of hitting the Return key in these cases, you must use the line-
feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files ... and nroff files ... | 300
nroff -T300-12 files ... and nroff files ... | 300 +12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of
300 may produce better aligned output.

Notes

450(C), mesg(C), graph(ADM), stty(C), tabs(C), tplot(ADM)

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and /or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and misaligning the first line of text after one or more reverse line-feeds.

4014(C)

4014

paginator for the TEKTRONIX 4014 terminal

Syntax

4014 [-t][-n][-N1[-pL]Ifilel

Description

See also

The output of 4014 is intended for a TEKTRONIX 4014 terminal; 4014 arranges
for 66 lines to fit on the screen, divides the screen into N columns, and contri-
butes an eight-space page offset in the (default) single-column case. Tabs,
spaces, and backspaces are collected and plotted when necessary. TELETYPE
Model 37 half- and reverse-line sequences are interpreted and plotted. At the
end of each page, 4014 waits for a new-line (empty line) from the keyboard
before continuing on to the next page. In this wait state, the command !emd
will send the emd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the screen.
-cN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and 1 (lines);
default is lines.

pr(C)

450(C)

450

handle special functions of the DASI 450 terminal

Syntax

450 [f]

Description

The 450 command supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical, such as the
Diablo 1620 or Xerox 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to
draw Greek letters and other special symbols in the same manner as 300(C).

The -f option sets up fast (1200 baud) output using the ETX/ACK protocol.
The following errors are possible when using -f:

1. Standard output is not a terminal.

2. Error when opening output terminal for read.
3. Output terminal did not respond to ETX.

4. Output terminal did not respond with ACK.

It should be noted that, unless your system contains text processing software,
certain commands (for example, eqn, nroff, tbl, etc.) will not work. Use 450 to
print equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: Make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired position (either
10- or 12-pitch). In either case, vertical spacing is 6 lines/inch, unless dynami-
cally changed to 8 lines per inch by an appropriate escape sequence.

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of hit-
ting the RETURN key in these cases, you must use the LINE-FEED key to get
any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of
the following:

nroff -T450 files ...
or
nroff -T450-12 files ...

450(C)

See also

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of
450 may produce better aligned output.

Notes

graph(ADM), tplot(ADM), 300(C), mesg(C), stty(C), tabs(C),

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and misaligning the first line of text after one or more reverse line-feeds.

assign(C)

assign, deassign

assign and deassign devices

Syntax
assign[-u][-v][-d][device]..
deassign [-u][-v][device] ...
Description

assign - assigns devices

deassign - deassigns devices

The assign command attempts to assign device to the current user. The de-
vice argument must be an assignable device that is not currently assigned. An
assign command without an argument prints a list of assignable devices
along with the name of the user to whom they are assigned.

The deassign command is used to “deassign” devices. Without any argu-
ments, deassign will deassign all devices assigned to the user. With argu-
ments, an attempt is made to deassign each device given as an argument.

With these commands you can exclusively use a device, such as a tape drive
or floppy drive. This keeps other users from using the device. They have a
similar effect to chown(C) and chmod(C), although they only act on devices in
/dev. Other aspects are discussed further on.

Available options include:

-d Performs the action of deassign. The -d option can be embedded in de-
vice names to assign some devices and deassign others.

-v Gives verbose output.
-u Suppresses assignment or deassignment, but performs error checking.

The assign command will not assign any assignable devices if it cannot assign
all of them. deassign gives no diagnostic if the device cannot be deassigned.
Devices can be automatically deassigned at logout, but this is not guaranteed.
Device names can be just the beginning of the device required. For example,

assign fd

should be used to assign all floppy disk devices. Raw versions of device will
also be assigned, for example, the raw floppy disk devices /dev/rfd? would be
assigned in the above example.

assign(C)

Note that in many installations the assignable devices such as floppy disks
have general read and write access, so the assign command may not be neces-
sary. This is particularly true on single-user systems. Devices supposed to be
assignable with this command should be owned by the user asg. The direc-
tory /dev should be owned by bin and have mode 755. The assign command
(after checking for use by someone else) will then make the device owned by
whoever invokes the command, without changing the access permissions.
This allows the system administrator to set up individual devices that are
freely available, assignable (owned by asg), or nonassignable and restricted
(not owned by asg and with some restricted mode).

Note that the first time assign is invoked, it builds the assignable devices
table /etc/atab. This table is used in subsequent invocations to save repeated
searches of the /dev directory. If one of the devices in /dev is changed to be
assignable or unassignable (that is, owned by asg), then /etc/atab should be
removed (by the superuser) so that a correct list will be built the next time the
command is invoked.

Files

Jetclatab Table of assignable devices

/devfasglock File to prevent concurrent access
Diagnostics

Exit code 0 returned if successful, 1 if problems, 2 if device cannot be assigned.
Note

10

Although it should never happen, if assign is aborted before completion (via
kill -9, a power failure, etc.), the lock file /dev/asglock may need to be removed
by root.

at, batch

at(C)

execute commands at a later time

Syntax

at time [date] [increment]

at -rjob-id ...
at-1[job-id ...]

at -qletter time [date][increment]

batch

Description

at - Schedules jobs for execution at a particular time

batch - Schedules jobs for execution when the system load permits

The at and batch commands both accept one or more commands from the
standard input to be executed at a later time. at and batch differ in the way
the set of commands, or job, is scheduled: at allows you to specify a time
when the job should be executed, while batch executes the job when the sys-
tem load level permits. After a job is queued with either command, the pro-
gram writes a job identifier (a number and a letter), along with the time the
job will execute, to standard error.

at takes the following arguments:

time

date

The time can be specified as 1, 2, or 4 digits. One- and two-
digit numbers are taken to be hours, four digits to be hours
and minutes. The time can alternately be specified as two
numbers separated by a colon, meaning hour:minute. A suf-
fix am or pm can be appended; otherwise a 24-hour clock
time is understood. The suffix zulu can be used to indicate
Greenwich Mean Time (GMT). The special names noon,
midnight, and now are also recognized.

An optional date can be specified as either a month name
followed by a day number (and possibly year number pre-
ceded by an optional comma) or a day of the week (spelt in
full or abbreviated to three characters). Two special “days,”
today and tomorrow, are recognized. If no date is given,
today is assumed if the given hour is greater than the current
hour and tomorrow is assumed if it is less. If the given
month is less than the current month (and no year is given),
next year is assumed.

11

at(C)

12

increment The time and optional date arguments can be modified with
an increment argument of the form +n units, where n is an
integer and units is one of the following: minutes, hours,
days, weeks, months, or years. The singular form is also
accepted, and +1 unit can also be written next unit. Thus,
legitimate commands include:

at 0815am Jan 24

at 8:15am Jan 24

at now + 1 day

at 5 pm Friday next week

-1 job-id ... Removes the specified job or jobs previously scheduled by
the at or batch command. job-id is a job identifier returned
by at or batch. Unless you are the superuser, you can only
remove your own jobs.

-1[job-id...] Lists schedule times of specified jobs. If no job-ids are speci-
fied, lists all jobs currently scheduled for the invoking user.
Unless you are the super user, you can only list your own
jobs.

-qletter Places the specified job in a queue denoted by letter, where
letter is any lowercase letter from “a” to “z”. The queue
letter is appended to the job identifier. The following letters

have special significance:

a at queue
b batch queue
C cron queue

For more information on the use of different queues, see the
queuedefs(F) manual page.

batch takes no arguments; it submits a job for immediate execution at lower
priority than an ordinary at job.

at and batch jobs are executed using sh(C). Standard output and standard
error output are mailed to the user unless they are redirected elsewhere. The
shell environment variables, current directory, umask, and ulimit are retained
when the commands are executed. Open file descriptors, traps, and priorities
are lost.

Users are permitted to use at and batch if their usernames (logins) appear in
the file [usr/libjcronfatallow. If that file does not exist, the file
[usr/libcron/at.deny is checked to determine if a given user should be denied
access to at and batch. If neither file exists, only root is allowed to submit a
job. If only the at.deny file exists, and it is empty, global usage is permitted.
The allow/deny files consist of one user name per line.

Examples

at(C)

If the system is installed with C2 security (this is the default, unless the sys-
tem administrator has relaxed the security), the user will also need the
chmodsuid kernel authorization. For more information about system security
and kernel authorizations, see the User's Guide and the System Administrator’s
Guide.

The simplest way to use at is to place a series of commands in a file, one per
line, and execute these commands at a specified time with the following com-
mand:

at time < file

The following sequence can be used at a terminal to format the file infile using
the text formatter nroff(CT), and place the output in the file outfile.

batch
nroff infile > outfile
(Ctrl)d

The next example demonstrates redirecting standard error to a pipe (1), which
is useful in a shell procedure. The file infile is formatted and the output
placed in outfile, with any errors generated being mailed to user (output
redirection is covered on the sh(C) manual page).

batch <<!

nroff infile2 > &1 > outfile | mail user

!
To have a job reschedule itself, invoke at from within the job. For example, if
you want shellfile to run every Thursday, executing a series of commands
and then rescheduling itself for the next Thursday, you can include code simi-
lar to the following within shellfile:

echo "sh shellfile" | at 1900 thursday next week

Files
[usr/libjcron main cron directory
[usr/libjcron/at.allow list of allowed users
[usr/libjcron/at.deny list of denied users
[usr/libJcron/queuedefs scheduling information
[usr/spool/cron/atjobs spool area

See also

cron(C), kill(C), mail(C), nice(C), ps(C), queuedefs(F), sh(C)

13

at(C)

Diagnostics

Complains about syntax errors and times out of range.

Standards conformance

at and batch are conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

14

auths(C)

auths

list and/or restrict kernel authorizations

Syntax

auths [-v][-a authlist] [-r authlist][-c command]

Description

The auths command performs actions associated with system privilege mani-
pulation. With no arguments, auths returns the kernel authorizations associ-
ated with the current process. All other uses of auths are discussed below.

Either of the -a or -r options allow the user to alter the kernel authorizations in
order to run a shell or a single command. The -a option requires a list of
comma-separated authorizations, which become the absolute set of kernel
authorizations for the new process. This new set must be a subset of the ker-
nel authorizations of the invoking process. To start a process with a null set of
kernel authorizations, use the empty string ""). The -r option also takes, as an
argument, a comma-separated list of authorizations. These are removed from
the authorization set of the invoking process when forming the kernel author-
izations for the new process.

The argument to the -c option is passed to the user’s shell as specified in the
user’s /etc/passwd entry which is run as a single command. The user’s shell
must support the

-c command

syntax similar to sh(C). When the argument is absent (and -a or -r is speci-
fied), the user’s shell is invoked as a process with adjusted authorizations.
Exiting that shell will resume execution in the previous shell and the original
kernel authorizations will be in effect. This option may be used to run a com-
mand with restricted authorizations, that is, fewer than those allowed the user
in the Protected Password Database entry.

The -v option lists the new kernel authorizations before the new command or
shell is run. It also warns with the -a option when more authorizations are
attempted to be set than already exist or with the -r option when more author-
izations are attempted to be removed than already exist.

The kernel authorizations are:

execsuid allows the running of SUID programs
writeaudit process can write directly to the audit trail
configaudit process can change audit subsystem parameters
suspendaudit process is not audited by the kernel
chmodsugid process can set SUID and GID bits on files
chown process can change ownership of files it owns

15

auths(C)

Examples

To execute a shell without the execsuid kernel authorization:
auths -r execsuid
To list the current kernel authorizations:
auths
To execute yourprog with no kernel authorizations:
auths -a """ -c yourprog
To execute myprog with chmodsugid and execsuid:
auths -a chmodsugid,execsuid -c myprog

See also

sh(C), getpriv(S), getprwent(S), setpriv(s)

“Using a secure system” in the User's Guide

Value added

auths is an extension of AT&T System V provided by The Santa Cruz Opera-
tion, Inc.

16

awk(C)

awk: awk, oawk, nawk

pattern scanning and processing language

Syntax

awk [-Fsep] [[-e] ‘prog 1 ...[-f progfile] ... [[-v] var=value ...][file ...]

Description

oawk - pattern scanning and processing language

nawk - pattern scanning and processing language

awk is an interpreted pattern-matching language with a wide range of appli-
cations. See the chapter on awk in the User's Guide for a complete discussion
of its use.

You can enter an awk program (prog) directly from the command-line, enclos-
ing it in single quotes to prevent interpretation by the shell. The -e flag
preceding prog is optional. For longer awk programs, it may be more con-
venient to fetch them from a file (progfile); this is done with the -f option. You
can specify multiple -e programs and -f files; they are concatenated together
(with intervening newlines) to form the program that is executed. (This is like
the -e and -f options in sed(C).)

Input files are read in order. If no files are given on the command line, the
standard input is used.

You can change the awk field separator on the command line with the -fsep
option, where the regular expression sep is the new delimiter. You can also
specify the field separator as a single character; this sets the field separator to
be that character. awk -Ft is a special case that sets the field separator to a tab.
(The field separator can also be changed within an awk program using the
variable FS.)

You can set the value of variables you are going to use in the awk program
from the command line using var=value, where var is the variable and value
is the initial value you want it to have. This can be preceded with an optional
-v.

What awk does with your program

After awk checks the syntax of your program, it reads each record (generally,
each line) of the input and attempts to match it against the patterns specified
in the program. For each pattern in the program, there may be an associated
action performed when an input record matches the pattern. Actions can be
made up of a single action statement, like print, or of a combination of state-
ments.

17

awk(C)

18

A pattern-action statement has the form:
pattern { action)

Either pattern or action may be omitted. If there is no action with a pattern,
the matching line is printed. If there is no pattern with an action, the action is
performed on every input line.

Programming conventions

Pattern-action statements, and individual statements within actions, generally
begin on a new line.

The opening brace ({) must be on the same line as the pattern for which the
actions should be performed. Multiple action statements may appear on a
single line if they are separated by semicolons (;).

A newline can be hidden with a backslash (\), so you can use backslash-
newline to continue a long line.

Comments in awk are introduced by a number sign (#) and end with the end
of the line. Comments can appear anywhere in a line.

Blank lines and whitespace (blanks and tabs) in an awk program are ignored.

Fields, records, and built-in variables

awk presumes that each field in a record is separated by whitespace, and that
each record consists of one line of input. Both of these defaults can be modi-
fied.

You can change the field separator on the command line, as discussed earlier,
using the -Fsep option. You can also reset the value of the input field separa-
tor variable FS from within your awk program. FS can be set to any regular
expression. The following action is a special case that resets FS to its default
behavior:

BEGIN { FS =" "}
The BEGIN in this example is a special pattern that matches before the first

record is read; this is the mechanism awk provides for doing introductory
processing.

Setting FS to a single blank is equivalent to:

BEGIN { FS = "[\t]+" }
That is, setting FS to a single blank tells awk to regard any combination of
blanks and tabs (any whitespace) as a field separator. Note that once you set

the input field separator to something other than a single blank (that is, to all
whitespace), leading whitespace (before the first field) is no longer ignored.

awk is designed to consider each line of input as a complete record, but you
can get awk to recognize multiline records by resetting the variable RS.

awk(C)

To get awk to recognize multiline records, set RS to the null string:
BEGIN { RS = "" }

Now, awk will presume that records are separated by one or more blank lines.
When you reset RS like this to use multiline records, newline is always con-
sidered a field separator, no matter what the value of FS is. To restore the
default record separator, reset RS to a newline:
{ RS = "\n" }

You can address any field in the input record using the syntax $1, $2, etc.,
where $1 is the first field in a record, $2 is the second field, and so on. The
entire record is referred to as $0.

Fields can also be referred to in relation to the built-in field variables, for
example, for a five-field record:

$(NF - 2)

would refer to the third field. The NF in this example is a built-in variable
awk provides that counts the number of fields in a current record. (Thus, $NF
refers to the last field in the current record.)

The following list shows all the built-in variables in awk:

Variable Meaning

ARGC number of command-line arguments plus 1

ARGV array of command-line arguments (ARGVI0 ... ARGC-1])

ENVIRON array of environment variables, indexed by the name of
the variable

FILENAME name of current input file

FNR input record number in current file

FS input field separator (default: any whitespace)

NF number of fields in current input record

NR number of records read so far

OFMT output format for numbers (default: "%.6g"; see
printf(S))

OFS output field separator (default: blank)

ORS output record separator (default: newline)

RS input record separator (default: newline)

RSTART index of first character matched by match()

RLENGTH length of string matched by match()

SUBSEP ic\e}())g?t)es multiple subscripts in array elements (default:

19

awk(C)

20

Patterns
Patterns can be any of the following:

BEGIN

END

/expr/

relational expression
pattern && pattern
pattern | | pattern
(pattern)

Ipattern
patternl,pattern2

BEGIN and END match before the first line is read, and after the last line has
been read, respectively.

All other patterns can contain extended regular expressions, like in egrep. See
grep(C) and ed(C) for the pattern-matching syntax of extended regular
expressions. (In the following discussion, extended regular expressions will
be referred to simply as regular expressions.)

You can create a string matching pattern using a regular expression in one of
three ways:

/regexpr/ This will match the current record if regexpr is con-
tained anywhere in the current record.

expression ~ [regexpr/ This will match if regexpr is contained anywhere in
the string value of expression.

expression ! /regexpr/ This will match if regexpr is not contained anywhere
in the string value of expression.

A relational expression is made up of two numeric or string expressions com-
pared with one of the following operators:

Operator Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to
== equal to

I= not equal to

When strings are compared using relational operators (<, <=, >, >=), they are
compared character by character using the sort order provided by the ma-
chine, which is usually the ASCII sort order. One string is less than another
string if it would appear earlier (before) the other in the sort order.

awk(C)

When one operand in a relational expression is a string, the other operand is
converted to a string as well and they are compared using the method
described above.

Patterns can be joined using the logical operators && (AND) and || (OR).
When patterns are joined like this, the pattern matches the current record if
the entire pattern evaluates to true (nonzero or nonnull). A pattern can be
negated using the ! logical NOT operator. Parentheses may be used for group-
ing patterns.

pattern && pattern matches a record when both the first pattern and the
second pattern match the record.

pattern | | pattern matches a record when either the first pattern or the second
pattern matches the record.

!pattern means “does not match pattern.” That is, !pattern matches every
record that is not matched by pattern.

patternl, pattern2 defines a matching range. The accompanying action is per-
formed for all records that match from the first occurence of patternl to the
following occurence of pattern2, inclusive. (The action is performed for the
lines containing patternl and pattern2, as well as all the lines in between.)

Actions

The actual work your awk program does occurs in the action part of the pro-
gram.

Action statements can be made up of:

e expressions (numeric and string constants, variables, array refer-
ences, and so on)

¢ flow control statements (branches or loops)
e built-in arithmetic or string functions or functions you define yourself

Variables in awk are not explicitly declared; they simply spring into existence
when they are first used. awk determines from the context whether a variable
is numeric or string. Numeric variables are automatically initialized to 0;
string variables are automatically initialized to the empty string (™). (See
“Number or string” below, and the chapter on awk in the User's Guide for
more information about variable types and type coercion in awk.)

Values are assigned to variables in the usual way in awk:
a =100

creates a numeric variable a with the value “100”. You can assign several vari-
ables in a single statement:

water = o0il = "wet"

This creates two string variables, water and oil, and sets them both to contain
the string “wet”.

21

awk(C)

22

Assignment operators are evaluated from right to left.

The following assignment operators are available; the shorthand assignment
notation is borrowed from the C programming language:

Operator Meaning

a=b setaequaltob

a+=b setaequaltoa+b

a-= setaequaltoa-b

a*=b setaequaltoa*b

a/= setaequaltoa /b

a%= set a equal to a % b; a becomes the remainder of a divided by b
a“=b set a equal to a " b; a becomes aP

awk offers the usual arithmetic operators: “+” (add), “-” (subtract), “*”
(multiply), “/"” (divide), “%” (modulo; divide and give remainder), “*”
(exponentiation; “**” is a synonym) The unary “+” (plus) and “-” (minus)
are also available.

All arithmetic in awk is done in floating point.

Relational expressions in action statements use the same operators as rela-
tional expressions in patterns; consult the relational operators table in “Pat-
terns” above.

The logical AND and logical OR (&& and | |) are also available, as well as the
logical NOT (!, as in lexpr).

There is also a conditional operator: “?”:
expressionl ? expression2 : expression3

expression is evaluated, and if it is non-empty and non-zero, then the expres-
sion has the value of expression2. Otherwise, it has the value of expression3.

Variables can be incremented using prefix or postfix notation, as in C. x++ and
++x are both equivalent to x = x + 1, and x-- and --x both are equivalent to x =
x-1. The difference between prefix (++x) and postfix (x++) is when x assumes
its new value. In prefix notation, x is immediately incremented; in postfix
notation, the current value of x is used and then x is incremented.

Parentheses can be used to alter the order of evaluation in arithmetic and rela-
tional expressions.

awk(C)

The following table of precedence shows all the available action statement
operators and the order in which they are evaluated. The table is in decreas-
ing order of precedence; operators higher in the table are evaluated before
operators lower in the table.

Operator Meaning

$ field

++ - increment, decrement (prefix and postfix)
" exponentiation (** is a synonym)

! logical negation

+ - unary plus, unary minus

*/ % multiply, divide, mod

+ - add, subtract

(no explicit operator) string concatenation

<<=>>=l=== relationals

- r regular expression match, negated match
in array membership

&& logical AND

I logical OR

% conditional expression

= 4= -= *= [= %= "= assignment

All of these operators are evaluated from left to right (they are left associa-
tive), except for the assignment operators, the conditional expression opera-
tor, and exponentiation, which are evaluated from right to left (they are right
associative).

Arrays
One-dimensional arrays are available in awk. Like other variables in awk,

arrays and array elements do not need to be declared; they come into
existence upon their first use.

awk allows you to use strings as array subscripts; arrays that do this are
called associative arrays. This lets you group together data quite simply.

Say we have a data file listing employee names, department names, and the
number of sick days the employee has taken:

Steve Engineering 2
Chris Engineering 1
Susannah Documentation 0
Vipin Sales 2
Connie Marketing 3
Matt Documentation 1
Nancy Sales 1
Nigel Documentation 0

The first field, $1, contains the employee name; the second field, $2, contains
the department, and the third field, $3, contains the number of sick days for
that employee.

23

awk(C)

24

To accumulate the number of sick days in each department:
{ sickness[$2] += $3 }

This creates the array sickness, which uses the values in the second field
(“Engineering”, “Documentation”, “Sales”, and “Marketing”) as its subscripts.
The sick day totals in field three are then collected under the appropriate sub-
script.

The construct:
for (i in arr) statement

does statement for every subscript i in the array arr. Subscripts are looped
over in a random order. If the value of i is changed within statement,
unpredictable results may occur.

The split function splits input into subscripts in an array. It takes the form:
split(string,arr.fs)

where string is the string you want to split, arr is the array into which you
want to split it, and fs is the field separator on which you want to split. The
first component of string is stored in arr[1], the second in arr[2] and so on.
The return value is the number of fields.

Elements can be deleted from an array with the delete statement:
delete arr [subscript]
After this is done, arr [subscript] no longer exists.

awk does not support multi-dimensional arrays, but this can be simulated by
using a list of subscripts; see the User's Guide for details.

Flow of control

awk uses branching and looping statements borrowed from the C program-
ming language. In all the following constructs, a single statement can be
replaced by a statement list enclosed in { braces }.

Each statement in a statement list should begin on a new line or after a semi-
colon.

The following constructs are available:
if (expression) statementl else statement2

If expression is non-zero and non-empty, do statementl; otherwise, do state-
ment2. The “else statement2” is optional. If there are several ifs together
with an else, the else belongs with the nearest preceding if.

while (expression) statement

While expression is non-zero and non-empty, statement is executed.
for (expressionl; expression; expression2) statement

This is a generalized form of the while statement.

awk(C)

The for statement is the same as:

expressionl

while (expression2) {
statement
expression3

All three expressions are optional.

This is often used to go through a loop based on the value of a counter, where
expressionl is used to initialize a counter; expression is the test; and expres-
sion2 increments the counter. While expression is non-empty and non-zero,
statement is executed.

do statement while (expression)
statement is repeatedly executed until expression becomes null or zero.

The break, continue, and next statements can be used to break out of loops
that would otherwise keep going. break drops out of the innermost while,
for, or do loop. continue causes the next iteration of the loop to begin. Execu-
tion will go to the test expression in a while or do loop, and to expression3 in
a forloop. next reads the next record and starts the main input loop again.

exit will go straight to the END statements, if there are any. If exit occurs in
an END statement, the program itself exits. If a numeric expression is given
after exit, this expression is taken as the exit status for the awk program.

Output
The print and printf statements are used to write output in awk.
print exprl,expr2, ... exprn

will print the string value of each expression separated by the output field
separator, followed by the output record separator. Without the commas, the
expressions are concatenated.

print by itself is an abbreviation for print $0.

To print an empty line use:

print nn
The printf function in awk is like printf(S) in C:

printf format, exprl, expr2, ..., expn
format can be made up of regular characters, which are printed as-is, escaped
special characters, such as Tab (\t) or Newline (\n), and format keyletters that
specify how to print the expressions following the format. Format keyletters
begin with a “ % ” and can be preceded with a width specification, a precision

statement, and /or an instruction to left-justify an expression in its field. The
first expression replaces the first formatting keyletter, and so on.

25

awk(C)

26

If a print or printf statement includes an expression with the greater-than
operator (>), this expression should be enclosed in parentheses to avoid con-
fusion between the greater-than operator and redirection into a file. For
example:

{ print $0 $2 > $3 }

This statement says “print the record and then field 2 into a file named by
field 3,” while:

{ print $0 ($2 > $3) }
says “print the record, followed by a 1 if field 2 is greater than field 3, or a 0 it
is not.”

printf keyletters are:

Keyletter Prints expr as

%oc the ASCII character referred to by the least significant 8
bits of the numeric value of expr; truncates expr to the
nearest integer

%d a decimal integer; truncates expr to the nearest integer

Joe scientific notation using the form [-]d.ddddddE[+-]dd

%of scientific notation using the form [-]ddd.dddddd

%g the shorter of e or f conversion, with nonsignificant zeros
suppressed

%0 an unsigned octal number

%os a string

Pox unsigned hexadecimal number

% % prints a “ % ”, no argument is converted

The following escape sequences are recognized within regular expressions
and strings:

Escape sequence Meaning
\b Backspace
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\ddd octal value ddd
Output can be redirected into files using:
> filename
and
>> filename

Files are opened only once using the redirection operator. The first form will
overwrite whatever is in filename, if filename already exists, and will create
filename if it does not exist. The second form will append output to filename.

awk(C)

To send output to a pipe, use:

| command-line
where command-line is the command line to which you want to send the out-
put. Filenames and command lines can be expressions, variables, or literal
filenames or command lines. If you want to use a literal filename or com-

mand line, you must enclose it in double quotes, otherwise, awk will treat it
as a variable.

There is a limit to how many files and pipes you can open in an awk program
(see “Limits” below). Use the close statement to close files or pipes:

close(filename)
close(command-line)

where filename or command-line is the open file or pipe.

Input
awk provides the getline function to read in successive lines of input from a
file or a pipe.

getline getline by itself takes the next record of input as $0
and sets NF, NR, and FNR.

getline <file The next record from file becomes $0; NF is set.

getline var The next record of input is placed in var; NR and
FNR are set.

getline var <file The next record in file is placed in var.

command | getline The output of command is piped to getline. $0 and
NF are set.

command | getlinevar The output of command is piped to getline and
stored in var.

All forms of getline return 1 for successful input, 0 for end of file, and -1 for
an error.

To read input from a file until the file runs out, use:
while ((getline x < file) > 0) { ... }

The “> 0” is needed so that the test catches a -1 error returned from getline.
Otherwise, the while loop would read -1 as true, since it is non-zero.

27

awk(C)

28

Functions

The following arithmetic functions are built into awk:
Function Returns

atan2(y,x) arctangent of y/x in the range -n to
cos(x) cosine of x, with x in radians

exp(x) exponential function of x, e

int(x) integer part of x; truncated toward 0 when x >0
log(x) natural (base e) logarithm of x

rand() random number r, where 0 <=r<1

sin(x) sine of x, with x in radians

sqrt(x) square root of x

srand() set the seed for rand() from the time of day
srand(x) x is new seed for rand()

The string functions are:

gsub(r,s,t)

index(s,t)

length(s)

match(s,re)

split(s,a,fs)

globally substitutes the string s for the regular expression r in
the string t. If ¢ is omitted, substitutions are made in the
current record ($0). The number of substitutions is returned.

returns the position in string s where string ¢ first occurs, or 0
if it does not occur at all.

returns the length of its argument taken as a string, or of the
whole record if there is no argument.

returns the position in string s where the regular expression
re occurs, or 0 if it does not occur at all. RSTART is set to the
starting position (which is the same as the returned value),
and RLENGTH is set to the length of the matched string.

splits the string s into array elements a[ll, a[2], a[n], and
returns n. The separation is done with the regular expression
fs or with the field separator FS if fs is not given.

sprintf(format, expr,expr, ...)

sub(r,s,t)

formats the expressions according to the printf format and
returns the resulting string.

substitutes the string s in place of the first instance of the reg-
ular expression r in string ¢ and returns the number of substi-
tutions. If tis omitted, awk substitutes in the current record

($0).

awk(C)

substr(s,p) returns the suffix of s starting at position p.

substr(s,p,n) returns the n-character substring of s that begins at position p.

toupper(s) returns a copy of the string s with lowercase letters converted
to uppercase.
tolower(s) returns a copy of the string s with uppercase letters converted

to lowercase.

awk provides the system function for running commands:
system(command-line)
executes command-line and returns its exit status.

You can define your own functions in awk. The syntax for this is:

function name(parameter-list) {
statements
}

name is the name of the function, parameter-list is a comma-separated list of
variable names, which, within the function refer to the arguments with which
the function was called, and statements are action statements that make up
the body of the function.

Function definitions can appear anywhere a pattern-action statement can
appear. Recursion is permitted within user-defined functions; that is, a func-
tion may call itself directly or indirectly.

Variables passed to functions (as arguments) are copied and a copy of the
variable is manipulated by the function; that is, these variables are passed by
value. The exception to this in awk is arrays, which are passed by reference,
that is, the actual array elements are manipulated by the function, so array
elements can be permanently altered, created, or deleted within a function.

Missing function arguments are set to null; extra arguments are ignored.

To define a return value for your function, you must include a statement
return expression

where expression is the value you want your function to return. expression
here is optional; if you leave it out, control will be returned to the caller of the
function, but the return value will be undefined. The return statement itself is
optional as well.

The formal parameters of a function (the argument list) are local to that func-
tion, but any other variables are global. You can use the argument list as a
way of creating variables local only to the function; like other variables in awk
these will be automatically initialized with null values.

29

awk(C)

30

Number or string?

In awk, variables come into being when they are used; there is no declaration
of a variable, and, therefore, you do not declare the type of a variable as a
string or a number. Instead, awk assumes the type of a variable from its con-
text.

In an assignment statement, such as v=e, the type of v becomes the type of e.
When the context is ambiguous, awk determines the types when the program
runs.

In comparisons, if both operands are numeric, they are compared as numbers;
otherwise, they are compared as strings. (A string is greater than another
string if it comes later in the sort sequence, and less than another string if it
comes earlier in the sort sequence.)

All field variables are of type string; in addition, each field can be considered
to have a numeric value (that is, the numeric value of a string). The numeric
value of a string is the value of the longest prefix of a string that looks
numeric. For example, if a field contains the string “123abc”, the numeric
value of this would be 123.

e

The value of a variable in awk is initially O or the string ™.

You can force a variable of one type to become another type; this is known as
type coercion. To force a number to a string:

number "
(Concatenate the null string to number.)

To force a string to a number:
string + 0

For more information about variable types, see the chapter on awk in the
User's Guide.

Limits
The following limits exist in this implementation of awk: (Limits marked
with an asterisk (*) are safe approximations; your mileage may vary.)

100 fields

3000* characters per input record

3000* characters per output record

3000* characters per field

3000* characters per printf string

400 characters per literal string or regular expression

250* characters per character class

55* open files or pipes

double precision floating point
Numbers are limited to what can be represented on your machine; numbers
outside this range will have string values only.

Examples

awk(C)

See also

The following examples are all individual awk programs; to try them out, you
will need to put them in a file and call the file with awk -f, or enclose them in
single quotes on the awk command line.

Print lines longer than 72 characters:
length > 72
Print only the first two fields in opposite order:
{ print $2, $1 }
Same, with input fields separated by comma and /or blanks and tabs:

BEGIN { FS =", [\t]l* | [\tl+" }
{ print $2, $1 }

Add up the first column, print sum and average:

{ s += 351}
END {if (NR > 0) print "sum is", s, " average is", s/NR }

Print fields in reverse order (on separate lines):
{ for (1 = NF; i > 0; --1) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

Simulate echo(C):

BEGIN {
for (i = 1; 1 < ARGC; i++)
printf "%s ", ARGV[i]
printf "\n"
exit
}
Simple env(C):

BEGIN {
for (e in ENVIRON)
print e "=" ENVIRON[e]
}

ed(C), grep(C), lex(CP), printf(S), sed(C)
“Simple programming with awk” in the User's Guide

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger,
The AWK Programming Language, Addison-Wesley, 1988.

31

awk(C)

Notes

32

Input whitespace is not preserved on output if fields are involved.

func is an obsolete synonym for function.

This version of awk is the so-called “new awk” described in The AWK Pro-
gramming Language (referenced above). It is mostly compatible with an older
version of awk still in common use. On some systems, the “new awk” is
called nawk, the older one is oawk, and awk may be linked to either version.
The nawk and oawk names do not exist on all systems, and even when they
do exist, are not reliable. Only the name awk should be used.

Known incompatibilities between this version of awk and older awks include:

The definition of “what constitutes a number” is slightly different. In the
old awk, a string had a numeric value only if the entire string looked
numeric. In the new awk, a string has a numeric value if a prefix of the
string looks numeric, and the numeric value is the value of the longest such
prefix.

For example, the string:
123foo

does not have a numeric value in the old awk (and is treated as 0), but has
the value 123 in the new awk.

Assigning to a nonexistent field in the new awk changes $0 to include that
field, whereas, in the old awk, $0 did not change. Thus, the program:

{ $2 = $1; print }
produces different output if the input has only one field.

The new awk allows user-defined functions; these are not recognized in the
old awk.

There are several new reserved words in the new awk which could be used
as variable names in the old awk.

In addition, the parsing has changed, which may result in some
ambiguous-looking expressions that were legal in the old awk failing with
the new awk.

For example, in regular expressions, the character class:
[/]

is not legal in the new awk, but was in the old. The equivalent character
class for the new awk is:

\/1]

However, this character class, when used with the old awk, is not
equivalent to the original expression.

awk(C)

Standards conformance

awk is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

33

banner(C)

banner

print large letters

Syntax

banner strings

Description

The banner command prints its arguments (each up to 10 characters long) in
large letters on the standard output. This is useful for printing names at the
front of printouts.

See also

echo(C)

Standards conformance

banner is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

34

basename(C)

basename

remove directory names from pathnames

Syntax

basename string [suffix]

Description

The basename command deletes any prefix ending in “ /” and the suffix (if
present in string) from string, and prints the result on the standard output.
The result is the “base” name of the file, that is, the filename without any
preceding directory path and without an extension. It is used inside substitu-
tion marks (" *) in shell procedures to construct new filenames.

The related command dirname deletes the last level from string and prints the
resulting path on the standard output.

Examples

The following command displays the filename memos on the standard output:
basename /usr/johnh/memos.old .old

The following shell procedure, when invoked with the argument
[usr/srcfcmd/cat.c, compiles the named file and moves the output to a file
named cat in the current directory:

cc $1
mv a.out ‘basename $1 .c°

See also

dirname(C), sh(C)

Standards conformance

basename is conformant with:

X/Open Portability Guide, Issue 3, 1989.

35

be(C)

bc

invoke a calculator

Syntax

be[-c][-1]][file..]

Description

36

bc is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then reads
the standard input. The -1 argument stands for the name of an arbitrary preci-
sion math library.

bc acts as a preprocessor for dc, a calculator which operates on Reverse Polish
Notation input. (bc is easier to use than dc.) Although substantial programs
can be written with bg, it is often used as an interactive tool for performing
calculator-like computations. The language supports a complete set of con-
trol structures and functions that can be defined and saved for later execution.
The syntax of bc has been deliberately selected to agree with