
~ SCO® UNIX®
Operating System
User's Reference

I

sco® UNIX®
Operating System

User's Reference

sea

© 1983-1992 The Santa Cruz Operation, Inc.
© 1980-1992 Microsoft Corporation.
© 1989-1992 UNIX System Laboratories, Inc.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into any
human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual, or otherwise, without the prior written permission of the copyright owner, The Santa Cruz Operation,
Inc., 400 Encinal, Santa Cruz, California, 95061, U.S.A. Copyright infringement is a serious matter under the
United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use in strict accor­
dance with the End User License Agreement, which should be read carefully before commencing use of the soft­
ware. Information in this document is subject to change without notice and does not represent a commitment on
the part of The Santa Cruz Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights in Technical Data and Com­
puter Software Clause of the United States Department of Defense Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN SUBPARAGRAPH (c) (1) (ii) OF THE
RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE AT DFARS 52.227-7013.
"CONTRACTOR/SUPPLIER" IS THE SANTA CRUZ OPERATION, INC. 400 ENCINAL STREET, SANTA CRUZ,
CALIFORNIA 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are trademarks of Microsoft Corporation.
UNIX is a trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.
"ACER Fast File System" is a trademark of ACER Technologies Corporation.

Date: 31 January 1992
Document Version: 3.2.4C

Preface ...
Xttt

UNIX Reference manual sections ... xiii
Alphabetized list .. xv

Commands (C)

Intro(C) ... 1
300(C)•...•..•••....••.•..•...•..................•••..•.....................•••• 4
4014(C) ...•.•.•................•.................••.................. 6
450(C) ...•...•.•..................•....................•...............• 7
assign(C) .. 9
at(C) .. 11
auths(C) .. 15
awk(C) .. 17
banner(C) ... 34
basename(C) ... 35
bc(C) .. 36
bdiff(C) ... 51
bfs(C) .. 52
cal(C) ... 56
calendar(C) .. 57
cancel(C) .. 58
cat(C) ... 59
cd(C) .. 61
checkmail(C) ... 62
chgrp(C) .. 63
chmod(C) ... 64
chown(C) .. 68
clear(C) ... 69
cmchk(C) .. 70
cmp(C) .. 71
col(C) ... 72
comm(C) ... 74
compress(C) .. 75
copy(C) ... 77
cp(C) .. 79
cpio(C) .. 80
cron(C) .. 85
crontab(C) .. 86

Table of contents v

crypt(C) ... 90
csh(C) .. 92
csplit(C) .. 115
ct(C) ... 117
ctags(C) ... 119
cu(C) .. 121
cut(C) .. 127
date(C) .. 129
dc(C) .. 132
dd(C) ... 135
devnm(C) ... 138
df(C) .. 139
dfspace(C) .. 141
diff(C) .. 142
diffi(C) .. 144
dircmp(C) ... 146
dimame(C) .. 147
disable(C) .. 148
diskcp(C) .. 150
dos(C) .. 152
dtox(C) .. 159
dtype(C) ... 160
du(C) ... 162
echo(C) ... 163
ed(C) .. 165
enable(C) .. 177
env(C) ... 178
exeC) .. 179
expr(C) .. 181
factor(C) ... 185
false(C) ... 186
file(C)•.. 187
find(C) ... 188
finger(C) 191
fixhdr(C) 193
formate C) .. 195
getopt(C) .. 197
getopts(C) 199
gets(C) 202
greek(C) .. 203
grep(C) .. 204

vi

hd(C) ... 207
head(C) ... 209
hello(C) ... 210
hp(C) ... 211
hwconfig(C) ... 213
i286emul(C) ... 216
id(C) .. 218
ismpx(C) ... 219
join(C) ... 220
jterm(C) .. 222
jwin(C) ... 223
kill(C) .. 224
ksh(C) ... 225
last(C) 265
layers(C) ... 266
line(C) 269
In(C) .. 270
lock(C) .. 272
logname(C) .. 274
Ip(C) .. 275
Iprint(C) ... 281
Ipstat(C) .. 283
Is(C) ... 286
machid(C) .. 291
mail(C) .. 292
man(C) .. 307
mesg(C) .. 312
mkdir(C) ... 313

. mkfifo(C) .. 314
mknod(C) ... 315
mnt(C) ... 316
more(C) ... 320
mpstat(C) ... 324
mv(C) .. 327
newform(C) ... 328
newgrp(C) .. 333
news(C) .. 335
nice(C) .. 337
nl(C) .. 338
nohup(C) .. 340
od(C) ... 341

Table of contents vii

pack(C) ... 342
passwd(C) .. 345
paste(C) .. 353
pax(C) .. 355
pcpio(C) .. 361
pg(C) ... 365
pr(C) .. 369
prwam(C) .. 372
ps(C) .. 373
pstat(C) ... 378
ptar(C) ... 383
purge(C) ... 386
pwd(C) .. 389
quot(C) .. 390
random(C) .. 391
rcp(C) .. 392
rcvalert(C) .. 394
rcvfile(C) .. 395
rcvprint(C) ... 397
rcvtrip(C) .. 398
remote(C) ... 401
resend(C) .. 403
rm(C) ... 404
rmdir(C) ... 406
rsh(C) .. 407
sddate(C) .. 408
sdiff(C) .. " .. 409
sed(C) .. 411
setcolor(C) ... 415
setkey(C) .. 417
sg(C) .. 420
sh(C) .. 423
shl(C) .. 438
sleep(C) .. 441
slot(C) ... 442
sort (C) ... 444
spell(C) ... 448
spline(C) .. 451
split(C) .. 452
strings(C) ... 453
stty(C) 454

viii

su(C) .. 459
sum(C) .. 462
swconfig(C) ... 463
tabs(C) .. 465
tail(C) .. 469
tape(C) .. 470
tapecntl(C) ... 477
tapedump(C) ... 479
tar(C) ... 481
tee (C) ... 486
test(C) ... 487
tic (C) ...•......•... 489
time(C) .. 494
touch(C) .. 495
tput(C) .. 496
tr(C) ... 500
translate (C) .. 502
true(C) ... 504
tset(C) ... 505
tty(C) ... 508
umask(C) .. 509
uname(C) ... 510
uniq(C) ... 511
units(C) ... 512
uptime(C) ... 513
usemouse(C) ... 514
uucp(C) ... 518
uuencode(C) .. 522
uustat(C) .. 523
uuto(C) .. 525
uux(C) ... 527
vi(C) ... 530
vidi(C) ... 566
vmstat(C) ... 568
w(C) ... 571
wait(C) .. 573
wc(C) ... 574
what(C) ... 575
who(C) .. 576
whodo(C) ... 579
write(C) .. 580

Table of contents ix

x286emul(C) .. 582
xargs(C) .. 583
xtod(C) .. 586
xtract(C) .. 587
yes (C) .. 588

Miscellaneous (M)

Intro(M) .. 589
aio(M) ... 590
ascii(M) .. 594
chrtbl(M) .. 596
clone(M) ... 599
coltbl(M) .. 600
console(M) ... 602
daemon.mn(M) ... 603
environ(M) .. 605
error(M) .. 609
fcntl(M) .. 610
getclk(M) ... 612
getty(M) .. 613
init(M) .. 617
isverify(M) 622
jagent(M) ... 624
layers(M) 625
Id(M) ... 628
locale(M) 634
log(M) ... 636
login(M) ... 639
mapchan(M) .. 645
mapkey(M) .. 650
math(M) ... 652
mestbl(M) .. 654
montbl(M) ... 656
mscreen(M) ... 658
multiscreen(M) ... 662
numtbl(M) ... 664
prof(M) ... 666
profile(M) ... 668
ptmx(M) ... 669

x

rmb(M) ... 670
scanon(M) .. 671
streamio(M) ... 672
string(M) .. 682
subsystem(M) ... 683
sxt(M) .. 699
systty(M) .. 701
term(M) .. 702
terminals(M) ... 706
terminfo(M) .. 716
termio(M) ... 771
termios(M) ... 783
timod(M) .. 785
timtbl(M) ... 787
tirdwr(M) ... 790
trchan(M) ... 792
tty(M) .. 794
tz(M) .. 795
undocumented(M) ... 797
values(M) ... 799
xtproto(M) ... 801

Table of contents xi

xii

Preface

The Users Reference is one of a two-volume set that includes manual pages for
the entire sea UNIX System V /386 Operating System, including sections (C),
(M), (ADM), (F) and (HW).

This volume contains a complete set of the section (C) and (M) manual pages,
in that order.

The manual pages for section (C) contain comprehensive descriptions of user
commands.

The manual pages for section (M) contain miscellaneous information used for
access to devices, system maintenance and communication.

All of these manual pages are accessible online by using the man command.

UNIX Reference manual sections
The complete UNIX Reference is actually divided into parts and distributed as
individual reference sections in the various volumes of the Operating and De­
velopment Systems. The following table lists the name, content, and location
of each reference section.

xiii

Preface

xiv

Section

ADM

c

CP

DOS

F

FP

HW

K

M

S

XNX

Description

Administrative Commands - used for sys­
tem administration

Commands - used with the Operating Sys­
tem

Programming Commands - used with the
Development System

MS-DOS and OS/2 library routines - used
with the Development System

File Formats - description of various sys­
tem files used with the Operating System

Programming File Formats - used with the
Development System.

Hardware device manual pages - used
with the Operating System

Kernel routines - used for writing device
drivers

Miscellaneous - information used for
accessing devices, performing system
maintenance, and handling communi­
cations

System Calls and Library Routines - used
for C and assembly language programming
in the Development System

XENIX cross development manual pages -
used with the Development System

Volume

System
Administrator's
Reference

User's Reference

Programmer's
Reference Manual

Programmer's
Reference Manual

System
Administrator's
Reference

Programmer's
Reference Manual

System
Administrator's
Reference

Device Driver
Writer's Guide

User's Reference

Programmer's
Reference Manual

Programmer's
Reference Manual

The Permuted Index for Reference Manuals, which is distributed with the Operat­
ing System documentation set, is useful in matching a desired task with the
manual page that describes it.

Certain pages in the Operating System distribution make reference to include
files that are part of the Development System.

The alphabetized list given on the following pages is a complete listing of all
UNIX commands, system calls, library routines, and file formats.

User's Reference

Alphabetized list
Commands, system calls, library routines, and file formats

a.out ... a.out (FP) aiomemlock. aiomemlock (F)
abort .. abort (5) aio .. aio (F)
abs ... abs (5) aio ... aio(M)
acceptable_password accept_pw (5) alarm .. alann (5)
accept ... accept (ADM) ale .. ale (ADM)
access ... access (5) allocldptr .. ldptr (5)
acctcms ... acctcms (ADM) ap ... ap(ADM)
acctcom .. acctcom (ADM) archive .. archive (F)
acctconl ... acctcon (ADM) ar .. ar(CP)
acctcon2 ... acctcon (ADM) ar .. ar(FP)
acctcon ... acctcon (ADM) ar ... ar (XNX)
acctdisk .. acct (ADM) arc ... plot (5)
acctdusg ... acct (ADM) as ... as (cp)
acctmerg acctmerg (ADM) at .. at(C)
accton .. accton (ADM) ascii. ... ascii (M)
accton ... acct (ADM) asctime ... ctime (5)
acctprcl .. acctprc (ADM) asin ... trig (5)
acctprc2 .. acctprc (ADM) asktimer ... asktime (ADM)
acctprc .. acctprc (ADM) asktime ... asktime (ADM)
acctsh ... acctsh (ADM) asroot .. asroot (ADM)
acctwtmp ... acct (ADM) assert .. assert (5)
acct .. acct (ADM) assign ... assign (C)
acct ... acct (FP) atan ... trig (5)
acct ... acct (5) atan2 ... trig (5)
acos ... trig (5) atcronsh .. atcronsh (ADM)
adb ... adb (Cp) atexit ... atexit (5)
addch ... curses (5) atof ... atof (5)
addch ... , ... tam (5) atoi ... atof (5)
addch .. terminfo (5) atol ... atof (5)
addkey .. curses (5) attroff ... curses (5)
addkey .. terminfo (5) attroff ... tam (5)
addstr .. curses (5) attroff .. terminfo (5)
addstr ... tam (5) attron ... curses (5)
addstr .. terminfo (5) attron ... tam (5)
addxusers addxusers (ADM) attron .. terminfo (5)
admin ... admin (cp) attrset .. curses (5)
advance .. regexp (5) attrset .. terminfo (5)
agetcommand authcap (5) audit ... audit (HW)
agetdefault ... authcap (5) auditcmd auditcmd (ADM)
agetfile ... authcap (5) auditd .. auditd (ADM)
agetflag .. authcap (5) auditsh .. auditsh (ADM)
agettty .. authcap (5) audit_adjusCmask authaudit (5)
agetuser ... authcap (5) audicauth_entry authaudit (5)
aioinfo .. aioinfo (ADM) audiCclose .. audit (5)
aiolkinit .. aiolkinit (ADM) audit_lax_file authaudit (5)

xv

audiClock ... authaudit (S) calloc .. malloc (S)
audit_login authaudit (S) cancel .. cancel (C)
audiCno_resource authaudit (S) can_change_color curses (S)
audiCopen .. audit (S) can_change_color terminfo (S)
audiCpasswd authaudit (S) captoinfo captoinfo (ADM)
audit_read .. audit (S) cat .. cat(C)
audiCsubsystem authaudit (S) catclose .. catopen (S)
authaudit ... authaudit (S) catgets .. catgets (S)
authcap .. authcap (F) catopen .. catopen (S)
authcap .. authcap (S) cb .. cb(CP)
authck ... authck (ADM) cbreak, crmode .. tam (S)
authckrc .. tcbck (ADM) cbreak, crmode terminfo (S)
authorized_user subsystems (S) cbreak .. curses (S)
auths .. auths (C) cc .. cc(CP)
authsh ... authsh (ADM) cd .. cd (C)
autoboot autoboot (ADM) cdc .. cdc(CP)
awk ... awk (C) cdrom ... cdrom (HW)
a641 ... a641 (S) ceil .. floor (S)
backup ... backup (ADM) cfgetispeed .. cfspeed (S)
backupsh backupsh (ADM) cfgetospeed ... cfspeed (S)
badtrk. ... badtrk (ADM) cflow .. cflow (CP)
banner ... banner (C) cfree .. malloc (S)
basename .. basename (C) cfsetispeed .. cfspeed (S)
batch ... at (C) cfsetospeed ... cfspeed (S)
baudrate ... curses (S) cfspeed ... cfspeed (S)
baudrate .. tam (S) chargefee ... acctsh (ADM)
baudrate ... terminfo (S) chdir .. chdir (S)
bc ... bc (C) checkaddr checkaddr (ADM)
bcheckrc .. brc (ADM) checklist. .. checklist (F)
bdiff .. bdiff(C) checkmail ... checkmail (C)
beep ... curses (s) checkque checkque (ADM)
beep ... tam (S) checkup ... checkup (ADM)
beep ... terminfo (S) chgrp .. chgrp (C)
bessel ... bessel (S) chs-audit chs-audit (ADM)
bfs .. bfs (C) chkshlib ... chkshlib (CP)
bigcrypt .. getpasswd (S) chmod ... chmod (C)
bigcryptmax getpasswd (S) chmod .. chmod (S)
boot .. boot (HW) chown .. chown (C)
Bottom .. libwindows (S) chown .. chown (S)
bottom_panel ... panel (S) chroot ... chroot (ADM)
box ... curses (S) chroot .. chroot (S)
box ... plot (S) chrtbl .. chrtbl (M)
box ... terminfo (S) chsize ... c:hsize (S)
brc ... brc (ADM) chtype ... unretire (ADM)
brk ... brk(S) circle .. plot (S)
brkctl .. brkctI (S) ckpacct ... acctsh (ADM)
bsearch ... bsearch (S) cleanque cleanque (ADM)
btld .. btld (F) cleantmp cleantmp (ADM)
btldinstall btIdinstaIl (ADM) clear ... clear (C)
cal ... cal (C) clear ... curses (S)
calendar ... calendar (C) dear .. tam (S)

xvi User's Reference

clear ... terminfo (S) cprs ... cprs (cp)
clearerr ... ferror (S) cps ... fixmog (ADM)
clearok .. tam (S) crash ... crash (ADM)
clearok .. curses (S) creat .. creat (S)
clearok .. terminfo (S) creatsem ... creatsem (S)
clock .. clock (F) cron ... cron (C)
clock .. clock (S) crontab ... crontab (C)
clone ... clone (HW) crypt .. crypt (C)
clone .. clone (M) crypt .. crypt (S)
close ... close (S) cryptopen ... crypt (S)
closedir .. directory (S) crypt_close ... crypt (S)
closepl ... plot (S) cscope .. cscope (CP)
clri ... clri (ADM) csh ... csh (C)
clrtobot ... curses (S) csplit ... csplit (C)
clrtobot .. tam (S) ct ... ct (C)
clrtobot ... terminfo (S) ctags .. ctags (C)
clrtoeol .. curses (S) ctermid ... ctermid (S)
clrtoeol .. tam (S) ctime ... ctime (S)
clrtoeol ... terminfo (S) ctrace ... ctrace (CP)
cmchk ... cmchk (C) ctype ... ctype (S)
cmos .. cmos (HW) cu .. cu(C)
cmp ... cmp(C) curoff ... curses (S)
cnvtmbox cnvtmbox (ADM) curoff ... terminfo (S)
codeview ... codeview (CP) curon .. curses (S)
col .. col (C) curon ... terminfo (S)
color_content .. curses (S) Current ... libwindows (S)
color_content terminfo (S) curses ... curses (S)
coltbl ... coltbl (M) curs_set ... curses (S)
comb .. comb (CP) curs_set .. terminfo (S)
comm .. comm (C) curtbl .. montbl (M)
compress .. compress (C) cuserid .. cuserid (S)
compver ... compver (F) custom ... custom (ADM)
configure configure (ADM) cut. ... cut(C)
console .. console (M) cxref ... cxref (CP)
consoleprint consoleprint (ADM) daemon.mn daemon.mn (M)
cont .. plot (S) dat ... dat (HW)
cony ... cony (CP) date ... date (C)
convert ... convert (CP) dbm ... dbm(S)
convkey ... mapkey (M) dbmbuild dbmbuild (ADM)
copy ... copy (C) dbmedit ... dbmedit (ADM)
copydvagent getdvagent (S) dbminit .. dbm (S)
copyright ... copyright (F) dbxtra ... dbxtra (cp)
copywin .. curses (S) dc .. dc (C)
copywin ... terminfo (S) dcopy ... dcopy (ADM)
core .. core (FP) dd ... dd(C)
cos ... trig (S) deassign ... assign (C)
cosh ... sinh (S) default ... default (F)
cp .. cp(C) defopen ... defopen (S)
cpio ... cpio (C) defread .. defopen (S)
cpio .. cpio (F) deCprog...mode curses (S)
cpp ... cpp (CP) deCprog...mode terminfo (S)

xvii

deCshelCmode curses (S) dodisk .. acctsh (ADM)
deCshelCmode terminfo (S) dos .. dos(C)
delay_output ... curses (S) doscat .. dos (C)
delay_output terminfo (S) doscp ... dos (C)
de1ch .. curses (S) dosdir .. dos (C)
delch .. tam (S) dosformat ... dos (C)
delch ... terminfo (S) dosld .. dosld (cp)
Delete ... libwindows (S) dosls ... dos (C)
delete .. dbm (S) dosmkdir .. dos (C)
deleteln ... curses (5) dosrm ... dos (C)
deleteln ... tam (S) dosrmdir ... dos (C)
deleteln .. terminfo (S) doupdate .. curses (S)
deliver .. deliver (ADM) doupdate .. terminfo (S)
delta .. delta (CP) dparam .. dparam (ADM)
delwin ... curses (S) draino .. curses (5)
delwin .. terminfo (S) draino ... terminfo (S)
del_curterm ... curses (S) drand48 ... drand48 (S)
deCcurterm ... terminfo (S) dtox .. dtox (C)
del_panel ... panel (5) dtype ... dtype (C)
depend ... depend (F) du ... du(C)
des_crypt .. crypt (S) dump .. dump (cp)
des_encrypt ... crypt (S) dumpmsg dumpmsg (CP)
des_setkey ... crypt (S) dumpwin .. terminfo (S)
devices .. devices (F) dupwin ... curses (S)
devnm ... devnm (C) dupwin ... terminfo (S)
df ... df(C) dup ... dup(S)
dfsck ... fsck (ADM) dup2 .. dup2 (S)
dfspace .. dfspace (C) dup_field ... field (S)
dial .. dial (ADM) eaccess ... access (S)
dial .. dial (ADM) ecc ... ecc (ADM)
dia1codes .. dialcodes (F) echo .. curses (S)
dialers .. dialers (F) echo .. echo (C)
diff ... diff(C) echo .. tam (S)
difftime .. difftime (S) echo ... terminfo (S)
diff3 .. diff3 (C) eccd ... ecc (ADM)
dir ... dir (FP) echochar ... curses (5)
dircmp .. dircmp (C) echochar ... terminfo (S)
directory .. directory (S) ecvt .. ecvt (S)
dirent ... dirent (FP) ed .. ed (C)
dirname .. dirname (C) edata ... end (S)
disable .. disable (C) edit .. ex (C)
diskcmp .. diskcp (C) egrep .. grep (C)
diskcp .. diskcp (C) eisa .. eisa (ADM)
diskusg ... diskusg (ADM) enable .. enable (C)
displaypkg displaypkg (ADM) encrypt .. crypt (S)
dis .. dis (CP) end .. end(S)
div ... div(S) enddvagent getdvagent (S)
divvy ... divvy (ADM) endgrent ... getgrent (S)
dkinit .. dparam (ADM) endprdfent getprdfent (S)
dlvr_audit dlvr_audit (ADM) endprfient .. getprfient (5)
dmesg .. dmesg (ADM) endprpwent getprpwent (S)

xviii Users Reference

endprtcent .. getprtcent (5) false .. false (C)
endpwent ... getpwent (5) fclose .. fclose (5)
endutent ... getut (5) fcntl ... fcnt! (M)
endwin .. curses (5) fcntl ... fcnt! (5)
endwin .. tam (5) fcvt ... ecvt (5)
endwin ... terminfo (5) fd ... fd(HW)
env ... env (C) fdisk ... fdisk (ADM)
environ ... environ (M) fdopen .. fopen (5)

eof ... regexp (5) fdswap ... fdswap (ADM)
erand48 ... drand48 (5) feof .. ferror (5)
erase ... curses (5) ferror ... ferror (5)

erase ... plot (5) fetch .. dbm (5)

erase ... tam (5) ff.. .. ff(ADM)
erase .. terminfo (5) fflush ... fclose (5)
erasechar ... curses (5) fgetc ... getc (5)
erasechar .. terminfo (5) fgetgrent ... getgrent (5)
erf .. erf (5) fgetpasswd getpasswd (5)
erfc .. erf (5) fgetpos .. fgetpos (5)

ermo .. perror (5) fgetpwent. .. getpwent (5)
error .. error (M) fgets ... gets (5)

ERROR .. regexp (5) fgrep ... grep (C)
etext .. end (5) fields ... fields (5)

ev_block .. ev_block (5) fieldtype .. fieldtype (5)

ev _close .. ev _close (5) field ... field (5)

ev_count ... ev_count (5) field_arg ... field (5)
ev _flush .. ev _flush (5) field_back .. field (5)

ev ~etdev ... ev ~etdev (5) field_buffer ... field (5)

ev ~etemask ev ~etemask (5) field_count ... form (5)

ev ~indev ... ev ~ndev (5) field_fore ... field (5)

ev _init .. ev _init (5) field_index ... form (5)

ev _open .. ev _open (5) field_info ... field (5)

ev _pop .. ev _pop (5) field_init ... form (5)
ev _read .. ev _read (5) field_just .. field (5)

ev_resume ev _resume (5) field_opts ... field (5)

ev _setemask ev _setemask (5) field_opts_off .. field (5)

ev _suspend ev _suspend (5) field_opts_on .. field (5)

execl .. exec (5) field_pad .. field (5)

execle .. exec (5) field_status .. field (5)

execlp .. exec (5) field_term ... form (5)

execseg ... execseg (5) field_type .. field (5)
exec .. exec (5) field_userptr ... field (5)

execve ... exec (5) file ... file (C)

execvp ... exec (5) filehdr ... filehdr (FP)
execv ... exec (5) fileno ... ferror (5)
exit .. exit (5) filesys .. filesys (F)
Exit .. libwindows (5) filesystem .. filesystem (FP)
ex ... ex(C) filter ... curses (5)
exp .. exp (5) filter ... terminfo (5)
expr ... expr (C) find .. find (C)
fabs ... floor (5) findstr .. findstr (CP)
factor .. factor (C) finger ... finger (C)

xix

firstkey ... dbm (5) fsphoto .. fsphoto (ADM)
fixhdr ... fixhdr (C) fsstat .. fsstat (ADM)
fixmog ... fixmog (ADM) fstat ... stat (5)
fixperm .. fixperm (ADM) fstatfs .. sta tfs (5)
flash ... curses (5) fstyp ... fstyp (ADM)
flash .. tam (5) ftell .. fseek (5)
flash ... terminfo (5) ftime .. ". time (5)
floor .. floor (5) ftok ... ftok (5)
flushinp .. curses (5) ftw ... ftw (5)
flushinp ... ,. tam (5) fuser .. fuser (ADM)
flushinp .. terminfo (5) £Write ... fread (5)
fmod ... floor (5) £Wtmp ... fwtmp (ADM)
fopen .. fopen (5) fxlist .. xlist (5)
fork .. fork (5) gamma .. gamma (5)
form .. form (5) garbagedlines ... curses (5)
format .. format (C) garbagedlines terminfo (5)
form_driver .. form (5) gcvt .. ecvt (5)
form_init ... form (5) gencat .. geneat (CP)
form_opts .. form (5) genec .. genee (CP)
form_opts_off .. form (5) get ... get(CP)
form_opts_on ... form (5) getbegyx ... curses (5)
form_page ... form (5) getbegyx ... terminfo (5)
form_term ... form (5) gete ... gete (5)
fpatheonf ... patheonf (5) getch .. curses (5)
fpgetmask. fpgetround (5) geteh .. tam (5)
fpgetround fpgetround (5) geteh .. terminfo (5)
fpgetstieky fpgetround (5) getehar .. gete (5)
fprintf ... printf (5) getcIk .. getcIk (M)
fpsetmask fpgetround (5) getewd .. getcwd (5)
fpsetround fpgetround (5) gete .. regexp (5)
fpsetsticky fpgetround (5) getdents .. getdents (5)
fpute .. pute (5) getdim ... curses (5)
fputs .. puts (5) getdim .. terminfo (5)
fread .. fread (5) getdvagent. getdvagent (5)
free .. malloe (5) getdvagnam getdvagent (5)
freeldptr .. ldptr (5) getegid .. getuid (5)
free_field type fieldtype (5) getenv .. getenv (5)
free_field .. field (5) geteuid ... getuid (5)
free_form .. form (5) getgid .. getuid (5)
free_item .. item (5) getgrent ... getgrent (5)
free_menu ... menu (5) getgrgid .. getgrent (5)
freopen .. fopen (5) getgmam .. getgrent (5)
frexp .. frexp (5) getgroups .. getgroups (5)
fsave ... fsave (ADM) gethz ... gethx (5)
fscanf ... seanf (5) getlogin ... getlogin (5)
fsek ... fsek (ADM) getluid ... getluid (5)
fsdb .. fsdb (ADM) getmaxyx .. curses (5)
fseek .. fseek (5) getmaxyx .. terminfo (5)
fsetpos ... fsetpos (5) getmsg ... getmsg (5)
fsname ... fsname (ADM) getopt ... getopt (C)
fspec .. fspee (F) getopt .. getopt (5)

xx User's Reference

getoptcvt. ... getopts (C) gsignal ... ssignal (5)
getopts ... getopts (C) halfdelay .. curses (5)

getorg .. curses (5) halfdelay .. terrninfo (5)

getorg .. terminfo (5) haltsys .. haItsys (ADM)
getpass .. getpass (5) hashcheck .. spell (C)
getpasswd getpasswd (5) hashmake ... spell (C)
getpgrp ... getpid (5) has_colors .. curses (5)

getpid ... getpid (5) has_colors .. terrninfo (5)

getppid ... getpid (5) has_ic .. curses (5)

getprdfent .. getprdfent (5) has_ic .. terrninfo (5)

getprdfnam getprdfent (5) has_iI ... curses (5)

getprfient ... getprfient (5) has_iI .. terminfo (5)

getprfinam ... getprfient (5) hcreate .. hsearch (5)

getpriv ... getpriv (5) hd ... hd(C)
getprpwent getprpwent (5) hd ... hd(HW)
getprpwnam getprpwent (5) hdestroy ... hsearch (5)

getprpwuid getprpwent (5) hdr ... hdr (XNX)
getprtcent ... getprtcent (5) head ... head (C)
getprtcnam getprtcent (5) hello .. hello (C)
getpw .. getpw (5) help .. help (CP)
getpwent .. getpwent (5) hide_panel .. panel (5)

getpwnam .. getpwent (5) hp ... hp(C)
getpwuid .. getpwent (5) hs ... hs (F)

gets .. gets (C) hsearch ... hsearch (5)

gets ... gets (5) hwconfig .. hwconfig (C)
getstr .. curses (5) hypot .. hypot (5)

getstr ... terrninfo (5) iAPX286 ... machid (C)
getsyx .. curses (5) iconv .. iconv (CP)
getsyx .. terrninfo (5) id .. id (C)
getty ... getty (M) idaddld ... idaddld (ADM)
gettydefs ... gettydefs (F) idbuiId ... idbuild (ADM)
getuid ... getuid (5) idcheck ... idcheck (ADM)
getut .. getut (5) idconfig ... idbuild (ADM)
getutent .. getut (5) identity .. identity (5)
getutid .. getut (5) idinstall ... idinstall (ADM)
getutline ... getut (5) idld ... ld (M)
getw ... getc (5) idleout. ... idleout (ADM)
getyx .. curses (5) idlok .. curses (5)
getyx .. tam (5) idlok .. terrninfo (5)
getyx .. terminfo (5) idmkenv .. idbuild (ADM)
get_seed ... seed (5) idmkinit .. idmkinit (ADM)
gmtime ... ctime (5) idmknod idmknod (ADM)

goodpw ... goodpw (ADM) idmkunix .. idbuild (ADM)
gps ... gps(F) idscsi .. idbuild (ADM)
graph ... graph (ADM) idspace .. idspace (ADM)
greek .. greek (C) idtune .. idtune (ADM)
grep .. grep (C) idvidi ... idbuild (ADM)
group ... group (F) inch .. curses (5)
grpck ... grpck (ADM) inch ... terrninfo (5)
gr_idtoname pw_nametoid (5) infocmp ... infocmp (ADM)
gcnametoid pw _nametoid (5) init ... init (M)

xxi

init.base ... inittab (F) iserase .. iserase (5)
initcond ... initcond (ADM) isgraph ... ctype (5)
initscript initscript (ADM) isindexinfo isindexinfo (5)
initscr .. curses (5) islock .. islock (5)
initscr ... tam (5) islower ... ctype (5)
initscr .. terminfo (5) ismpx .. ismpx (C)
inittab ... inittab (F) isnan ... isnan (5)
init_color .. curses (5) isnand ... isnan (5)
init_color ... terminfo (5) isnanf .. isnan (5)
init_pair .. curses (5) isopen ... isopen (5)
init_pair ... terminfo (5) isprint ... ctype (5)
inode .. inode (FP) ispunct ... ctype (5)
insch .. curses (5) isread ... isread (5)
insch .. tam (5) isrelease .. isrelease (5)
insch .. terminfo (5) isrename .. isrename (5)
insertln ... curses (5) isrewcurr .. isrewcurr (5)
insertln .. tam (5) isrewrec .. isrewrec (5)
insertln ... terminfo (5) isrewrite ... isrewrite (5)
insertmsg .. insertmsg (CP) issetunique issetunique (5)
install ... install (ADM) isspace .. ctype (5)
installf .. installf (ADM) isstart ... isstart (5)
installpkg installpkg (ADM) issue ... issue (F)
integrity .. integrity (ADM) isuniqueid isuniqueid (5)
intrflush .. curses (5) isunlock .. isunlock (5)
intrflush ... terminfo (5) isupper ... ctype (5)
Intro .. intro (ADM) isverify .. isverify (M)
Intro .. Intro (CP) iswrcurr .. iswrcurr (5)
Intro ... Intro (C) iswrite .. iswrite (5)
Intro .. intro (F) isxdigit ... ctype (5)
Intro ... intro (HW) is_starting..,egid identity (5)
Intro .. Intro (M) is_starting..,euid identity (5)
Intro ... Intro (5) is_starting..,luid identity (5)
ioctl ... ioctl (5) is_starting..,rgid identity (5)
ipcrm ... ipcrm (ADM) is_starting..,ruid identity (5)
ipcs .. ipcs (ADM) item ... item (5)
isaddindex isaddindex (5) item_count .. item (5)
isalnum .. ctype (5) item_description item (5)
isalpha .. ctype (5) item_index .. menu (5)
isascii .. ctype (5) item_init .. menu (5)
isatty .. ttyname (5) item_name .. item (5)
isbuild ... isbuild (5) item_opts ... item (5)
isc10se ... isc10se (5) item_opts_off .. item (5)
iscntrl. ... ctype (5) item_opts_on .. item (5)
isconv ... isconv (5) item_term .. menu (5)
isdelcurr ... isdelcurr (5) item_userptr ... item (5)
isdelete ... isdelete (5) item_value .. item (5)
isdelindex ... isdeIindex (5) item_visible .. item (5)
isdelrec ... isdelrec (5) i286 .. rnachid (C)
isdigit ... ctype (5) i286emul... .. i286emul (CP)
isendwin .. curses (5) i286emul ... i286emul (C)
isendwin .. terminfo (5) i386 .. rnachid (C)

xxii Users Reference

i486 .. machid (C) ldlitem ... ldlread (5)
jagent ... jagent (M) ldlong ... isconv (5)
jn ... bessel (5) ldlread ... ldlread (5)
join ... join (C) ldlseek ... ldlseek (5)
jrand48 .. drand48 (5) ldnlseek .. ldlseek (5)
jterm ... jterm (C) ldnrseek .. ldrseek (5)
jwin .. jwin (C) ldnshread .. ldshread (5)
jO ... bessel (5) ldnsseek ... ldsseek (5)
jl ... bessel (5) ldohseek .. ldohseek (5)
kbmode .. kbmode (ADM) ldopen ... ldopen (5)
keyboard keyboard (HW) ldrseek .. ldrseek (5)
keyname ... curses (5) ldshread ... ldshread (5)
keyname .. terminfo (5) ldsseek .. ldsseek (5)
keypad .. curses (5) ldtbindex ... ldtbindex (5)
keypad ... tam (5) ld tbread .. ld tbread (5)
keypad .. terminfo (5) ldtbseek .. ldtbseek (5)
kill .. kill (C) leaveok ... curses (5)
kill ... kill (5) leaveok ... terminfo (5)
killall .. killall (ADM) lex .. lex (CP)
killchar ... curses (5) If ... ls(C)
killchar ... terminfo (5) lfind .. lsearch (5)
kmem .. mem (FP) libwindows libwindows (5)
ksh .. ksh(C) limits .. limits (FP)
1 ... ls (C) line ... line (C)
label ... plot (5) line ... plot (5)
labelit ... labelit (ADM) linemod .. plot (5)
labs ... labs (5) linenum .. linenum (FP)
langinfo .. langinfo (FP) link .. link (ADM)
last .. last (C) link ... link (5)

lastlogin .. acctsh (ADM) link_field type field type (5)
layers ... layers (C) link_field ... field (5)

layers .. layers (M) link_unix link_unix (ADM)

lc ... ls(C) lint .. lint (CP)
ld ... ld(CP) list ... list (ADM)
ld ... ld(M) list ... list (CP)
ld .. ld(XNX) llog ... llog (5)
lcong48 .. drand48 (5) ll_c1ose .. llog (5)

lconv ... lconv (FP) ll_err ... llog (5)

ldac10se ... ldclose (5) IChdinit .. llog (5)

Idahread .. ldahread (5) ll_init ... llog (5)
ldaopen ... ldopen (5) ll_log .. l1og (5)
ldc10se ... ldclose (5) ll_open .. llog (5)

lddbl ... isconv (5) In .. In (C)
ldexp ... frexp (5) locale .. locale (M)
ldfcn .. ldfcn (FP) localeconv .. localeconv (5)
ldfhread .. ldfhread (5) local time .. ctime (5)
ldfloat ... isconv (5) lock ... lock (C)
Idgetname .. ldgetname (5) lock .. lock (5)
ldint .. isconv (5) lockf ... lockf (5)
ldiv ... ldiv (5) locking .. locking (5)
Idlinit .. ldlread (5) log ... exp(S)

xxiii

log ... log (HW) map key .. mapkey (M)
10g ... 10g(M) mapscrn ... mapkey (M)
login ... login (M) mapstr .. mapkey (M)
logname ... logname (C) mar .. mar (CP)
logname ... logname (5) masm ... masm (CP)
logs .. logs (F) math ... math (M)
10g10 ... exp (5) matherr .. matherr (5)

longjmp ... setjmp (5) maxuuscheds maxuuseheds (F)

longname ... curses (5) maxuuxqts maxuuxqts (F)
longname ... terminfo (5) mblen .. mblen (5)
lorder .. lorder (CP) mbstowcs ... mblen (5)

lp .. lp (C) mbtowc ... mblen (5)

lp ... lp(HW) mcart ... tape (C)
Ipadmin ... Ipadmin (ADM) mcconfig .. mcconfig (F)
lpfilter ... lpfilter (ADM) mcdaemon .. meeonfig (F)
lpforms ... lpforms (ADM) mcs .. mes(CP)
lpmove .. lpsehed (ADM) mc68k ... machid (C)
lpr .. lp(C) mdevice .. mdeviee (F)
lprint .. lprint (C) mem ... mem(FP)
Iprof ... lprof (CP) memccpy .. memory (5)
lpsh .. lpsh (ADM) memchr ... memory (5)
lpsched ... lpsehed (ADM) memcmp ... memory (5)
Ipshut .. lpsched (ADM) memcpy .. memory (5)
lpusers ... lpusers (ADM) memmove .. memmove (5)
IpO ... lp(HW) memory ... memory (5)
Ipl ... 1p(HW) memset .. memory (5)
Ip2 ... 1p(HW) menu .. menu (5)
lr ... ls(C) menumerge menumerge (ADM)
lrand48 .. drand48 (5) menu_back ... menu (5)
Is ... Is (C) menu_driver ... menu (5)
lsearch ... lseareh (5) menu_fore ... menu (5)

lseek ... lseek (5) menu_format .. menu (5)
Istat ... stat (5) menu-srey .. menu (5)
lto13 ... 13tol (5) menu_opts .. menu (5)
lx ... ls (C) menu_opts_off ... menu (5)
13tol ... 13tol (5) menu_opts_on ... menu (5)
164a ... a641 (5) menu_pad ... menu (5)
machid ... maehid (C) menu_term .. menu (5)
mail .. mail (C) mesg .. mesg (C)
maildelivery maildelivery (F) mestbl ... mestbl (M)
mailx .. mail (C) meta ... curses (5)
majorsinuse majorsinuse (ADM) meta ... terminfo (5)
make ... make (CP) mfsys ... mfsys (FP)
makekey makekey (ADM) mkdev ... mkdev (ADM)
mallinfo .. mallinfo (FP) mkdir .. mkdir (C)
mallinfo ... malIoe (5) mkdir ... mkdir (5)
malloc ... malIoe (5) mkfifo .. mkfifo (C)
mallopt. .. malloe (5) mkfifo ... mkfifo (5)
man ... man (C) mkfs .. mkfs (ADM)
mapchan ... mapehan (F) mknod .. mknod (C)
mapchan .. mapehan (M) mknod ... mknod (5)

xxiv User's Reference

mkshlib .. mkshlib (CP) move .. curses (S)
mkstr ... mkstr (CP) move .. plot (S)
mktemp .. mktemp (S) move .. tam (S)
mktime ... mktime (S) move ... terminfo (S)
ml_adr ... ml_send (S) Move ... libwindows (S)
ml_aend .. ml_send (S) move_field : field (S)
ml_ee ... ml_send (S) move_panel .. panel (S)
ml_end : ml_send (S) mpstat ... mpstat (C)
ml_file ... ml_send (S) mrand48 .. drand48 (S)
ml_init .. ml_send (S) msereen ... mscreen (M)
ml_send .. ml_send (S) msg .. msg (FP)
ml_tinit ... ml_send (S) msgetl ... msgctl (S)
ml_to ... ml_send (S) msgget ... msgget (S)
ml_txt .. ml_send (S) msgop ... msgop (S)
ml_ladr ... ml_send (S) msgrcv .. msgop (S)
mmdf .. mmdf (ADM) msgsnd .. msgop (S)
mmdf ... mmdf (S) mtune .. mtune (F)
mmdfalias mmdfalias (ADM) multisereen multiscreen (M)
mmdftailor mmdftailor (F) mv ... mv(C)
mm_end .. mmdf (S) mvaddeh ... curses (S)
mm_init .. mmdf (S) mvaddeh ... tam (S)
mm_pkend ... mmdf (S) mvaddch .. terminfo (S)
mm_pkinit ... mmdf (S) mvaddstr .. curses (S)
mm_radr ... mmdf (S) mvaddstr ... tam (S)
mm_rinit ... mmdf (S) mvaddstr .. terminfo (S)
mm_rree .. mmdf (S) mveur .. curses (S)
mm_rrply .. mmdf (S) mveur .. terminfo (S)
mm_rstm ... mmdf (S) mvde1ch .. curses (S)
mm_rtxt ... mmdf (S) mvde1ch ... terminfo (S)
mm_sbend .. mmdf (S) mvdeviee : mvdevice (F)
mm_sbinit .. mmdf (S) mvdir .. mvdir (ADM)
mm_wadr ... mmdf (S) mvgeteh .. curses (S)
mm_waend .. mmdf (S) mvgeteh .. terminfo (S)
mm_winit ... mmdf(S) mvgetstr .. curses (S)
mm_wree .. mmdf (S) mvgetstr ... terminfo (S)
mm_wrply .. mmdf (S) mvineh .. curses (S)
mm_wstm ... mmdf (S) mvineh .. tam (S)
mm_wtend ... mmdf (S) mvinch ... terminfo (S)
mm_wtxt ... mmdf (S) mvinseh .. curses (S)
mnlist ... mnlist (ADM) mvinseh .. terminfo (S)
mnt .. mnt(C) mvprintw ... curses (S)
mnttab ... mnttab (F) mvprintw ... terminfo (S)
modf .. frexp (S) mvseanw .. curses (S)
monaect ... acctsh (ADM) mvseanw .. terminfo (S)
monitor .. monitor (S) mvwaddch ... curses (S)
montbl ... montbl (M) mvwaddeh ... terminfo (S)
more .. more (C) mvwaddstr ... curses (S)
mount .. mount (ADM) mvwaddstr .. terminfo (S)
mount ... mount (S) mvwde1ch .. curses (S)
mountall mountall (ADM) mvwde1ch .. terminfo (S)
mouse .. mouse (HW) mvwgeteh ... curses (S)

xxv

mvwgetch .. terminfo (5) nl_fprintf ... nl_printf (5)
mvwgetstr .. curses (5) nl_fscanf ... nl_scanf (5)

mvwgetstr .. terminfo (5) nl_init ... nl_init (5)

mvwin ... curses (5) nUanginfo nUanginfo (5)
mvwin .. terminfo (5) nl_printf .. nl_printf (5)

mvwinch .. curses (5) nl_scanf .. nl_scanf (5)

mvwinch .. terminfo (5) nCsprintf .. nl_printf (5)
mvwinsch ... curses (5) nl_sscanf ... nl_scanf (5)
mvwinsch .. terminfo.(S) nCstrcmp .. nCstrcmp (5)
mvwprintw .. curses (5) nl_strncmp .. nl_strcmp (5)
mvwprintw ... terminfo (5) nl_types ... nl_types (FP)
mvwscanw ... curses (5) nm ... nm(CP)
mvwscanw .. terminfo (5) nm .. nm(XNX)
m4 .. m4 (ep) nocbreak ... curses (5)

nap .. nap(S) nocbreak, nocrmode tam (5)
napms .. curses (5) nocbreak, nocrmode terminfo (5)
napms ... terminfo (5) nodelay ... curses (5)
nawk ... awk (e) nodelay ... tam (5)
nbwaitsem ... waitsem (5) nodelay .. terminfo (5)

ncheck .. ncheck (ADM) no echo ... curses (5)
netbuf ... netbuf (FP) noecho ... tam (5)

netconfig netconfig (ADM) no echo .. terminfo (5)
netutil ... netutil (ADM) nohup .. nohup (e)
New ... lib windows (5) nonl. ... curses (5)

newform ... newform (e) nonl .. tam (5)
newgrp .. newgrp (e) nonl ... terminfo (5)
Newlayer libwindows (5) noraw .. curses (5)
newpad ... curses (5) noraw .. terminfo (5)
newpad .. terminfo (5) notimeout. .. curses (5)
news ... news (e) notimeout .. terminfo (5)
newterm ... curses (5) nrand48 ... drand48 (5)
newterm ... terminfo (5) nssend ... nssend (FP)
newwin ... curses (5) null .. null (FP)
newwin .. terminfo (5) nulladm ... acctsh (ADM)
new_fieldtype field type (5) numtbl ... numtbl (M)
new _field ... field (5) oawk ... awk(e)
new _item ... item (5) od .. od(e)
new_page .. form (5) open ... open (5)

new_panel. .. panel (5) openagent libwindows (5)
nextkey .. dbm (5) openchan libwindows (5)
nice .. nice (e) opendir .. directory (5)
nice .. nice (5) openpl ... plot (5)
nictable : nictable (ADM) opensem .. opensem (5)
nl .. curses (5) os2Id ... os21d (ep)
nl. ... nl(e) overlay .. curses (5)
nl ... tam (5) overlay .. terminfo (5)
nl .. terminfo (5) overwrite .. curses (5)
nlist ... nlist (5) overwrite ... terminfo (5)
nlsadmin nlsadmin (ADM) paccess .. paccess (5)
nCascxtime nCcxtime (5) pack ... pack (e)
nCcxtime ... nCcxtime (5) page ... more (e)

xxvi User's Reference

pair_content .. curses (S) poll ... poll (S)
pair_content .. terminfo (S) Poll. day ... poll (F)
panel ... panel (S) Poll.hour ... poll (F)
paneCabove ... panel (S) popen .. popen (5)
paneCbelow ... panel (S) post_form .. form (5)
paneChidden ... panel (S) post_menu .. menu (S)
paneCuserptr ... panel (S) pos_form_cursor form (S)
paneCwindow ... panel (S) pos_menu_cursor menu (S)
parallel .. parallel (HW) pow ... exp(S)
passlen .. passlen (5) prctmp .. acctsh (ADM)
passwd .. passwd (C) prdaily ... acctsh (ADM)
passwd ... passwd (FP) prefresh ... curses (5)

paste ... paste (C) prefresh .. terminfo (S)
pathconf .. pathconf (5) prf .. prf (HW)
pause .. pause (5) prfdc ... profiler(ADM)
pax .. pax (C) prfld .. pro filer (ADM)
pcat .. pack (C) prfpr ... profiler (ADM)
pelose .. popen (5) prfsnap .. profiler (ADM)
pcpio .. pcpio (C) prfstat .. profiler (ADM)
pdpll .. machid (C) primary _auth subsystems (5)
pechochar ... curses (S) primary _oCsecondary _auth
pechochar .. terminfo (S) .. subsystems (S)
PEEKC ... regexp (S) printenv .. env (C)
permissions permissions (F) printf .. printf (S)
perror ... perror(S) printw ... curses (S)
pg .. pg (C) printw .. tam (S)
phs .. phs (S) printw ... terminfo (S)
phs..,get .. phs (S) proc ... proc(FP)
phs_msg .. phs (S) proctl .. proctl (S)
phs_note .. phs (S) prof ... prof (cp)
pipe .. pipe (ADM) prof ... prof (M)
pipe ... pipe (S) prof .. prof (XNX)
pkgadd .. pkgadd (ADM) profil ... profil (S)
pkgask ... pkgask (ADM) profile .. profile (M)
pkgchk .. pkgchk (ADM) profiler ... profiler (ADM)
pkginfo ... pkginfo (ADM) proto .. proto (ADM)
pkginfo .. pkginfo (F) prototype ... prototype (F)
pkgmap ... pkgmap (F) pr ... pr(C)
pkgmk .. pkgmk (ADM) prs ... prs (CP)
pkgparam pkgparam (ADM) prtacct .. acctsh (ADM)
pkgproto pkgproto (ADM) prwam .. prwam (C)
pkgrm .. pkgrm (ADM) ps ... ps(C)
pkgtrans pkgtrans (ADM) pstat. .. pstat (C)
plock ... plock (S) ptar .. ptar (C)
plot .. plot (FP) ptmx ... ptmx (M)
plot ... plot (5) ptrace ... ptrace (S)
pnch ... pnch (FP) pts??? ... ptmx (M)
pnoutrefresh .. curses (S) purge ... purge (C)
pnoutrefresh terminfo (S) purge .. purge (F)
point .. plot (5) putc ... putc (S)
Poll ... poll (F) putchar ... putc (S)

xxvii

putdvagnam getdvagent (5) refresh ... terminfo (5)
putenv ... putenv (5) regcmp ... regcmp (cp)
putmsg ... putmsg (5) regcmp .. regcmp (5)
putp ... curses (5) regcmp ; regex (5)
putp ... terminfo (5) regex .. regcmp (5)
putprdfnam getprdfent (5) regex .. regex (5)
putprfinam .. getprfient (5) regexp ... regexp (5)
putprpwnam getprpwent (5) reject .. accept (ADM)
putprtcnam getprtcent (5) relax .. relax (ADM)
putpwent ... putpwent (5) reloc ... reloc (FP)
puts ... puts (5) relogin .. relogin (ADM)
pututline .. getut (5) remote ... remote (C)
putw ... putc (5) remove .. remove (5)
pwck .. pwck (ADM) removef .. removef (ADM)
pwconv .. pwconv (ADM) removepkg removepkg (ADM)
pwd .. pwd(C) rename .. rename (5)
pwunconv pwconv (ADM) replace_panel ... panel (5)
pw_idtoname pw_nametoid (5) resend .. resend (C)
pw_nametoid pw _nametoid (5) resetty .. curses (5)
qsort ... qsort (5) resetty .. tam (5)
queue ... queue (F) resetty ... terminfo (5)
queuedefs ... queuedefs (F) reseCprog.,.mode curses (5)
quot .. quot (C) reset_prog.,.mode terminfo (5)
raise .. raise (5) reseCsheIl_mode curses (5)
ramdisk .. ramdisk (HW) reset_sheIl_mode terminfo (5)
rand ... rand (5) reset_tty ... curses (5)
random .. random (C) reset_tty ... tam (5)
randomword randomword (5) reset_tty .. terminfo (5)
ranlib ... ranlib (XNX) Reshape ... libwindows (5)
raw ... curses (5) restartterm .. curses (5)
raw ... terminfo (5) restartterm ... terminfo (5)
rcc .. rcc (CP) restore ... restore (ADM)
rcflow ... rcflow (CP) RETURN ... regexp (5)
rcp ... rcp(C) rewind ... fseek (5)
rcvalert ... rcvalert (C) rewinddir .. directory (5)
rcvfile .. rcvfile (C) ripoffline .. curses (5)
rcvprint ... rcvprint (C) rip offline .. terminfo (5)
rcvtrip .. rcvtrip (C) rksh .. ksh (C)
rcxref .. rcxref (CP) rlint ... rlint (CP)
rcO .. rcO (ADM) rm ... rm(C)
rc2 .. rc2 (ADM) rmail ... rmail (ADM)
rdchk .. rdchk (5) rmb ... rmb(M)
read ... read (5) rmdel ... rmdel (CP)
readdir ... directory (5) rmdir .. rmdir (C)
readlink .. readlink (5) rmdir ... rmdir (5)
reaIloc ... malloc (5) rmgroup ... rmuser (ADM)
reboot ... haltsys (ADM) rmpasswd .. rmuser (ADM)
red ... ed (C) rmuser .. rmuser (ADM)
reduce ... reduce (ADM) Routines .. Routines (5)
refresh ... curses (5) Routines .. Routines (DOS)
refresh ... tam (5) rsh .. rsh(C)

xxviii User's Reference

rte ... rtc (HW) scmapcode2kb sc_readkb (5)
runacct ... acctsh (ADM) sc_mapcode2str sc_readkb (5)
runacct ... runacct (ADM) sc_mapinit ... sc_init (5)
Runlayer .. libwindows (5) sc_mapin ... sc_readkb (5)
run_crypt .. crypt (5) sc_mapout ... sCJeadkb (5)
run_setkey ... crypt (5) sc_raw .. sc_raw (5)
sact ... sact (CP) sc_readkb .. sCJeadkb (5)
sadc ... sar (ADM) sCJeadmapcode sc_readkb (5)
sag .. sag (ADM) sc_readstr .. sc_readkb (5)
sar .. sar (ADM) sc_receive_kb ... sc_init (5)
savetty ... curses (5) sc_setfkeystr ... sc_init (5)
savetty ... tam (5) sc_setinfo .. sc_raw (5)
savetty .. terminfo (5) sc_setkeymap sc_init (5)
sal ... sar (ADM) sc_setled .. sc_init (5)
sa2 ... sar (ADM) sc_setscreenswitch sc_raw (5)
sbrk ... brk (5) sc_str2kb ... sc_readkb (5)
scale_form .. form (5) sc_unraw ... sc_raw (5)
scale_menu ... menu (5) sd .. sd(ADM)
scancode ... scancode (HW) sdb ... sdb(CP)
scanf .. scanf (5) sdd ... sd (ADM)
scanoff .. scanon (M) sddate .. sddate (C)
scanon .. scanon (M) sdenter .. sdenter (5)
scanw .. curses (5) sdevice .. sdevice (F)
scanw .. terminfo (5) sdfree .. sdget (5)
sccsdiff ... sccsdiff(CP) sdget. ... sdget (5)
sccsfile ... sccsfile (FP) sdgetv ... sdgetv (5)
schedule schedule (ADM) sdiff ... sdiff (C)
scnhdr .. scnhdr (FP) sdleave .. sdenter (5)
screen ... screen (HW) sdwaitv .. sdgetv (5)
scroll .. curses (5) secondary _auth subsystems (5)
scroll ... terminfo (5) sed .. sed (C)
scrollok ... curses (5) seed ... seed (5)
scrollok .. terminfo (5) seed48 .. drand48 (5)
scr_dump .. curses (5) seekdir ... directory (5)
sccdump .. scr_dump (FP) select ... select (5)
scr_dump ... terminfo (5) sem ... sem (FP)
scr_init .. curses (5) semctl. ... semctI (5)
sccinit .. terminfo (5) semget ... semget (5)
scr_restore .. curses (5) semop ... semop (5)
scr_restore ... terminfo (5) serial ... serial (HW)
scsi ... scsi (HW) setbuf .. setbuf (5)
sc_copyscstate sc_raw (5) setclock .. setclock (ADM)
sc_exit ... sc_init (5) setcolor .. setcolor (C)
sc..getfkeystr ... sc_init (5) setcolour ... setcolor (C)
sc..getinfo ... sc_raw (5) setdvagent getdvagent (5)
sc..getkbmap ... sc_init (5) setgid ... setuid (5)
sc..getkeymap ... sc_init (5) setgrent ... getgrent (5)
sc..getled , ... sc_init (5) setgroups ... setgroups (5)
sc..getscreenswitch sc_raw (5) setjmp .. setjmp (5)
sc_init ... sc_init (5) setkey .. crypt (5)
sc_kb2mapcode sCJeadkb (5) setkey ... setkey (C)

xxix

setlocale ... setlocale (5) set_item_ value ... item (5)
setluid .. setluid (5) set_menu_back .. menu (5)
setmnt ... setmnt (ADM) set_menu_fore ... menu (5)
setpgid .. setpgid (5) set_menu_format menu (5)
setpgrp ... setpgrp (5) set_menu~rey .. menu (5)
setprdfent .. getprdfent (5) set_menu_init .. menu (5)
setprfient ... getprfient (5) set_menu_items menu (5)
setpriv .. setpriv (5) set_menu_mark menu (5)
setprpwent getprpwent (5) set_menu_opts ... menu (5)
setprtcent .. getprtcent (5) set_menu_pad .. menu (5)
setpwent ... getpwent (5) set_menu_pattern menu (5)
setscrreg .. curses (5) set_menu_sub .. menu (5)
setscrreg ... terminfo (5) set_menu_term .. menu (5)
setsid .. setsid (5) set_menu_userptr menu (5)
setsyx ... curses (5) set_menu_win ... menu (5)
setsyx .. terminfo (5) set_new _page .. form (5)
settime ... settime (ADM) set_panel_userptr panel (5)
setuid .. setuid (5) set_seed ... seed (5)
setupterm ... curses (5) set_term .. curses (5)
setupterm ... terminfo (5) set_term .. terminfo (5)
setutent ... getut (5) set_top_row .. menu (5)
setvbuf .. setbuf (5) set_tty ... curses (5)
set_currenCfield form (5) set_tty .. terminfo (5)
set_currenCitem menu (5) sfmt .. sfmt (ADM)
set_curterm .. curses (5) sfsys ... sfsys (FP)
seCcurterm .. terminfo (5) sg ... sg(C)
seCfieldtype_arg field type (5) sgetl ... sputl (5)
seCfieldtype_choice field type (5) sh ... sh(C)
seCfield_back .. field (5) shl .. shl(C)
seCfield_buffer .. field (5) shm .. shm (FP)
set_field_fore .. field (5) shmat. ... shmop (5)
set_field_init .. form (5) shmctl ... shmctl (5)
set_field_just .. field (5) shmdt ... shmop (5)
set_field_opts ... field (5)
set_field_pad : field (5)

shmget .. shmget (5)
shmop .. shmop (5)

seCfield_status .. field (5) show_panel .. panel (5)
seCfield_term .. form (5) shutacct ... acctsh (ADM)
set_field_type ... field (5) shutdn ... shutdn (5)
seCfield_userptr .. field (5) shutdown shutdown (ADM)
seCform_fields .. form (5) sigaction .. sigaction (5)
seCform_init ... form (5) sigaddset ... sigset (5)
set_form_opts .. form (5) sigdelset .. sigset (5)
seCform_page ... form (5) sigemptyset .. sigset (5)
set_form_sub ... form (5) sigfillset ... sigset (5)
seCform_term ; form (5) sighold .. sigsetv (5)
seCform_userptr form (5) sigignore ... sigsetv (5)
set_form_win ... form (5) sigismember ... sigset (5)
set_item_init .. menu (5) siglongjmp .. sigsetjmp (5)
set_item_opts ... item (5) signal ... signal (5)
set_item_term .. menu (5) sigpause .. sigsetv (5)
set_item_userptr .. item (5) sigpending sigpending (5)

xxx User's Reference

sigprocmask sigprocmask (5) start_color .. terminfo (5)
sigrelse .. sigsetv (5) stat .. stat (FP)
sigsem .. sigsem (5) stat .. stat (5)
sigset .. sigset (5) statfs .. sta tfs (5)
sigset .. sigsetv (5) stdarg .. varargs (5)
sigsetjmp ... sigsetjmp (5) stdbl .. isconv (5)
sigsuspend sigsuspend (5) stderr .. stdio (5)
sin .. trig (5) stdin ... stdio (5)
sinh .. sinh (5) stdio ... stdio (5)
size .. size (ep) stdout .. stdio (5)
size ... size (XNX) step ... regexp (5)
sleep .. sleep (e) stfloat .. isconv (5)
sleep .. sleep (5) stime ... stime (5)
slk_clear ... curses (5) stint ... isconv (5)
slk_clear ... terminfo (5) sHong .. isconv (5)
slk_init. ... curses (5) stopio .. stopio (5)
slk_init ... terminfo (5) store .. dbm (5)
slk_label ... Cl'rses (5) strace ... strace (ADM)
slk_label .. terminfo (5) strcat ... string (5)
slk_noutrefresh curses (5) strchr .. string (5)
slk_noutrefresh terminfo (5) strclean ... strclean (ADM)
slk_refresh ... curses (5) strcmp .. string (5)
slk_refresh ... terminfo (5) strcoll ... strcoll (5)
slk_restore ... curses (5) strcpy .. string (5)
slk_restore ... terminfo (5) strcspn ... string (5)
slk_set ... curses (5) strdup ... string (5)
slk_set .. terminfo (5) streamio .. streamio (HW)
slk_touch .. curses (5) streamio .. streamio (M)
slk_touch ... terminfo (5) strerr ... strerr (ADM)
slot ... slot (e) strerror .. strerror (5)
smmck ... tcbck (ADM) strftime ... ctime (5)
sort ... sort (e) strftime .. strftime (5)
space .. plot (5) string ... string (M)
space ... space (F) string .. string (5)
spell ... spell (e) strings .. strings (e)
spellin ... spell (e) strip ... strip (XNX)
spline .. spline (e) stden .. string (5)
split .. split (e) strncat .. string (5)
sprintf .. printf (5) strncmp .. string (5)
sputl ... sput! (5) strncoll .. strcoll (5)
sqrt .. exp (5) strncPy ... string (5)
srand ... rand (5) strnxfrm .. strcoll (5)

srand48 .. drand48 (5) strp brk ... string (5)
sscanf .. scanf (5) strrchr ... string (5)

ssignal ... ssignal (5) strspn ... string (5)
standend ... curses (5) strtod .. strtod (5)
standend .. terminfo (5) strtok .. string (5)
standout. ... curses (5) strtol .. strtol (5)
standout ... terminfo (5) strtoul ... strtoul (5)
startup .. acctsh (ADM) strxfrm ... strcoll (5)
start_color .. curses (5) stty ... stty (e)

xxxi

stune ... stune (F) tape dump .. tapedump (C)
su ... su(C) tar ... tar (C)
submit .. submit (ADM) tar .. tar (F)
subpad .. curses (S) tcbck ... tcbck (ADM)
subpad .. terminfo (S) tcdrain ... tcflow (S)
subsystems subsystems (S) tcflow .. tcflow (S)
subsystem subsystem (M) tcflush ... tcflow (S)
subwin .. curses (S) tcgetattr .. tcattr (S)
subwin ... terminfo (S) tcgetpgrp ... tcpgrp (S)
sulogin .. sulogin (ADM) tcsendbreak ... tcflow (S)
sum ... sum (C) tcsetattr ... tcattr (S)
swab .. swab (S) tcsetpgrp .. tcpgrp (S)
swap ... swap (ADM) tdelete .. tsearch (S)
swconfig ... swconfig (C) tee .. tee (C)
sxt .. sxt(M) telinit .. init (M)
symlink ... symlink (S) telldir ... directory (S)
syms .. syms (FP) tempnam .. tmpnam (S)
sync .. sync (ADM) term ... term (M)
sync ... sync (S) term ... term (F)

sysadmcolor sysadmcolor (F) termcap ... termcap (F)
sysadmmenu sysadmmenu (F) termcap ... termcap (S)
sysadmsh sysadmsh (ADM) terminal ... terminal (HW)
sysconf .. sysconf (S) terminals ... terminals (M)
sysdef ... sysdef (ADM) terminfo ... terminfo (F)
sysfiles .. sysfiles (F) terminfo .. terminfo (M)
sysfs ... sysfs (S) terminfo ... terminfo (S)
sysi86 ... sysi86 (S) termio .. termio (M)
systemid .. systemid (F) termios .. termios (M)
systems .. systems (F) termupd ... ttyupd (ADM)
system .. system (S) test .. test (C)
systty .. systty (M) tfind .. tsearch (5)
sys_errlist ... perror(S) tgetent ... curses (S)
sys_nerr .. perror (S) tgetent ... termcap (S)
S_ISBLK .. stat (S) tgetent .. terminfo (S)
S_ISCHR ... stat (S) tgetflag .. curses (S)
S_ISDIR .. stat (S) tgetflag .. termcap (S)
S_ISFIFO ... stat (S) tgetflag .. terminfo (S)
S_ISNAM ... stat (S) tgetnum .. curses (S)
S_ISREG ... stat (S) tgetnum ... termcap (S)
tables .. tables (F) tgetnum .. terrninfo (5)
tabs .. tabs{C) tgetstr .. curses (S)
tail ... tail (C) tgetstr ... termcap (S)
tai_end ... tai (S) tgetstr .. terminfo (S)
tai~et .. tai (S) tgoto ... curses (S)
tai_init ... tai (S) tgoto ... termcap (S)
tam .. tam(S) tgoto .. terminfo (S)
tan ... trig (S) tic .. tic (C)
tanh ... sinh (S) tigetflag ... curses (S)
tape ... tape (C) tigetflag .. terminfo (S)
tape ... tape (HW) tigetnum ... curses (S)
tapecntl ... tapecntl (C) tigetnum .. terminfo (S)

xxxii User's Reference

tigetstr ... curses (S) tty .. tty(M)
tigetstr .. terminfo (S) ttyname ... ttyname (S)
time .. time (C) ttyslot .. ttyslot (S)
time ... time (S) tty type ... ttytype (F)
times ... times (S) ttyupd ... ttyupd (ADM)
timex ... timex (ADM) ttyl[a-h] ... serial (HW)
timezone ... timezone (F) tty2[a-h] ... serial (HW)
timod .. timod (HW) tumacct .. acctsh (ADM)
timod .. timod (M) twalk .. tsearch (S)
timtbl ... timtbl (M) typeahead ... curses (S)
tirdwr ... tirdwr (HW) typeahead .. terminfo (S)
tirdwr ... tirdwr (M) types ... types (FP)
tmpfile ... tmpfile (S) tz ... tz (M)
tmpnam .. tmpnam (S) tzset ... ctime (S)
toascii ... ctype (S) t_accept ... t_accept (S)
toascii ... toascii (S) t_alloc ... t_alloc (S)
todigit ... toascii (S) t_bind ... t_bind (S)
toint ... toascii (S) t_close .. t_close (S)
top ... top (F) t_connect .. t30nnect (S)
Top .. libwindows (S) t_error ... t_error(S)
top.next .. top (F) t_free ... t_free (S)
top_panel .. panel (S) t...,getinfo .. t~etinfo (S)
top_row ... menu (S) t..getstate ... t~etstate (S)
totaCauths subsystems (S) t_info ... t_info (FP)
touch .. touch (C) t..listen .. t_listen (S)
touchline .. curses (S) t_Iook .. t_Iook (S)
touchline .. terminfo (S) t_open .. t_open (S)
touchwin .. curses (S) t..optmgmt t_optmgmt (S)
touchwin .. terminfo (S) t..rcvconnect t_rcvconnect (S)
toupper ... ctype (S) t_rcvdis .. t_rcvdis (S)
toupper ... toascii (S) t_rcvrel ... t_rcvrel (S)
tparm ... curses (S) t..rcvudata .. t_rcvudata (S)
tparm ... terminfo (S) t..rcvuderr .. t_rcvuder (S)
tplot. .. tplot (ADM) t_rcv ... t_rcv (S)
tput ... tput (C) t..snddis .. t_snddis (S)
tputs ... curses (S) t_sndrel ... t_sndrel (S)
tputs ... termcap (S) t_sndudata t_sndudata (S)
tputs .. terminfo (S) t_snd ... t_snd (S)
tr ... tr (C) t_sync .. t_sync (S)
traceoff .. curses (S) t..unbind ... t_unbind (S)
traceoff .. terminfo (5) uadmin ... uadmin (ADM)
traceon .. curses (S) uadmin ... uadmin (S)
traceon .. terminfo (S) ulimit ... ulimit (S)
translate ... translate (C) umask .. umask (C)
trchan ... trchan (M) umask ... umask (S)
trig ... trig (S) umnt. ... mnt (C)
true .. true (C) umount ... mount (ADM)
tsearch ... tsearch (S) umount ... umount (ADM)
tset .. tset (C) umount .. umount (S)
tsort .. tsort (CP) umountall mountall (ADM)
tty ... tty (C) uname .. uname (C)

xxxiii

uname .. uname (5) uuxqt .. uuxqt (ADM)
uncompress compress (C) u3b15 .. machid (C)

unctrl ... curses (5) u3b2 .. machid (C)

unctrl .. terminfo (5) u3b5 .. machid (C)

undocumented undocumented (M) u3b .. machid (C)

unexecseg .. execseg (5) u370 ... , ... machid (C)

unget ... unget (CP) val ... val (cp)
ungetc .. ungetc (5) values .. values (M)

ungetch ... curses (5) varargs .. varargs (5)

ungetch .. terminfo (5) vax ... machid (C)
UNGETC ... regexp (5) va_alist ... varargs (5)

uniq .. uniq (C) va_arg .. varargs (5)

unistd ... unistd (FP) va_del .. varargs (5)

units .. units (C) va_end .. varargs (5)

unlink .. link (ADM) va_list ... varargs (5)
unlink ... unlink (5) va_start ... varargs (5)

unpack .. pack (C) vc ... vc(CP)
unpost_form .. form (5) vectorsinuse vectorsinuse (ADM)
unposCmenu ... menu (5) vedit .. vi (C)

unretire ... unretire (ADM) vfprintf .. vprintf (5)

update_panels .. panel (5) vi .. vi (C)

uptime .. uptime (C) vidattr .. curses (5)
usemouse .. usemouse (C) vidattr ... terminfo (5)
ustat ... ustat (5) vidi .. vidi (C)

utime .. utime (5) vidputs .. curses (5)
utmp .. utmp (F) vidputs ... terminfo (5)
utmpname .. getut (5) view ... ; vi (C)

uuchat. .. dial (ADM) vldldptr ... ldptr (5)
uucheck ... uucheck (ADM) vmstat. ... vmstat (C)

uucico .. uucico (ADM) vo1copy .. volcopy (ADM)
uuclean ... uuc1ean (ADM) vprintf ... vprintf (5)
uucp .. uucp (C) vsprintf .. vprintf (5)
uudecode .. uuencode (C) vwprintw ... curses (5)
uudemon uudemon (ADM) vwprintw ... terminfo (5)
uudemon.admin uudemon (ADM) vwscanw ... curses (5)
uudemon.clean uudemon (ADM) vwscanw .. terminfo (5)
uudemon.hour uudemon (ADM) w .. w(C)
uudemon.poll2 uudemon (ADM) waddch ... curses (5)
uudemon.poll uudemon (ADM) waddch ... terminfo (5)
uuencode .. uuencode (C) waddstr ... curses (5)
uugetty .. getty (M) waddstr .. terminfo (5)
uuinstall uuinstall (ADM) wait .. wait (C)
uulist ... uulist (ADM) wait ... wait (5)
uulog ... uucp (C) waitpid ... wait (5)
uuname .. uucp (C) waitsem .. waitsem (5)
uupick ... uuto (C) wall .. wall (ADM)
uusched ... uusched (ADM) wattroff ... curses (5)
uustat ... uustat (C) wattroff ... terminfo (5)
uuto .. uuto (C) wattron ... curses (5)
uutry .. uutry (ADM) wattron ... terminfo (5)
uux ... uux (C) wattrset ... curses (5)

xxxiv User's Reference

wattrset .. terminfo (5) wstandout .. curses (5)
wc .. wc(C) wstandout ... terminfo (5)

wclear .. curses (5) wtinit .. wtinit (ADM)
wclear ... terminfo (5) wtmpfix .. fwtmp (ADM)
wclrtobot .. curses (5) wtmp ... utmp (F)

wclrtobot ... terminfo (5) x.out ... x.out (FP)
wclrtoeol .. curses (5) xargs ... xargs (C)
wclrtoeol .. terminfo (5) xbackup .. xbackup (ADM)
wcstombs ... mblen (5) xbackup .. xbackup (F)
wctomb ... mblen (5) xdump ... xbackup (ADM)
wdelch .. curses (5) xdumpdir xdumpdir (ADM)
wdelch .. terminfo (5) xinstall ... xinstall (ADM)
wdeleteln ... curses (5) xlist .. xlist (5)
wdeleteln ... terminfo (5) xrestor ... xrestore (ADM)
wechochar .. curses (5) xrestore ... xrestore (ADM)
wechochar ... terminfo (5) xstr ... xstr (CP)
werase ... curses (5) xt .. xt(HW)
werase ... terminfo (5) xtd .. xtd (ADM)
wgetch ... curses (5) xtod .. xtod (C)
wgetch .. terminfo (5) xtproto ... xtproto (M)
wgetstr .. curses (5) xtract .. xtract (C)
wgetstr .. terminfo (5) xts .. xts (ADM)
what .. what (cp) xtt ... xtt (ADM)
what .. what (C) x286emul ... x286emul (CP)
who ... who (C) x286emul ... x286emul (C)
whodo ... whodo (C) yacc ... yacc (CP)
widesCauth subsystems (5) yes ... yes (C)
winch .. curses (5) yn .. bessel (5)

winch .. terminfo (5) yO .. bessel (5)

winsch ... curses (5) y1 .. bessel (5)
winsch .. terminfo (5) zcat .. compress (C)
winsertln .. curses (5) 86rel ... 86rel (FP)
winsertln ... terminfo (5) 300s ... 300 (C)
wmove .. curses (5) 80387 .. 80387 (HW)
wmove .. terminfo (5) 4014 .. 4014 (C)
wnoutrefresh ... curses (5) 300 ... 300 (C)

wnoutrefresh terminfo (5) 450 ... 450 (C)
wprintw .. curses (5) _nextchoice ... field type (5)
wprintw ... terminfo (5) _prevchoice .. field type (5)
wrefresh .. curses (5) _tolower ... ctype (5)
wrefresh .. tam (5) _tolower ... toascii (5)
wrefresh ... terminfo (5) [... test (C)
write ... write (C) _scoinfo .. _scoinfo (5)
write .. write (5)
write_authorizations subsystems (5)
wscanw ... curses (5)
wscanw .. terminfo (5)
wsetscrreg .. curses (5)
wsetscrreg .. terminfo (5)
wstandend ... curses (5)
wstandend ... terminfo (5)

xxxv

Commands (C)

Commands (C)

Intro(C)

Intro
introduces UNIX commands

Description

Syntax

This section describes the use of the individual commands available in the
UNIX Operating System. Each individual command is labeled with either a C,
or a CP for easy reference from other volumes. The letter "C" stands for "com­
mand". The letter "P" stands for commands that come with the optional De­
velopment System (Programming). For example, the reference date(C) indi­
cates a reference to a discussion of the date(C) command in the C section; the
reference cc(CP) indicates a reference to a discussion of the cc command in the
Development System. The Development System is an optional supplemental
package to the standard Operating System.

The "ADM" Administration section contains miscellaneous information
including a great deal of system maintenance information. Other reference
sections include the "M" Miscellaneous section, the "S" System Services sec­
tion, the "HW" Hardware section, and the "P" File Format section.

Unless otherwise noted, commands described in the "Syntax" section of a
manual page accept options and other arguments according to the following
syntax and should be interpreted as explained below.

name [-option ...] [cmdarg ... l

where:

[] Surround an option or cmdarg that is not required.

Indicates multiple occurrences of the option or cmdarg.

name The name of an executable file.

option (Always preceded by a "-".)
noargletter... or,
argletter optarg[, ...]

noargletter A single letter representing an option without an option­
argument. Note that more than one noargletter option can be
grouped after one "-" (Rule 5 in the following text).

argletter A single letter representing an option requiring an option­
argument.

1

Intro(C)

2

optarg

cmdarg

An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter
must be separated by commas or separated by white space and
quoted (Rule 8 below).

Path name (or other command argument) not beginning with
"_", or "_" by itself indicating the standard input.

Command syntax standard: rules
These command syntax rules are not followed by all current commands, but
all new commands use them. getopts(C) should be used by all shell pro­
cedures to parse positional parameters and to check for legal options. It sup­
ports Rules 3-10 below. The enforcement of the other rules must be done by
the command itself.

1. Command names (name above) must be between two and nine char-
acters long.

2. Command names must include only lowercase letters and digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by "_".

5. Options with no arguments may be grouped after a single "_".

6. The first option-argument (optarg above) following an option must
be preceded by white space.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (for
example, 8-0 xxx,z,yy or 8 -0 "xxx z yy").

9. All options must precede operands (cmdarg above) on the command
line.

10. "_" may be used to indicate the end of the options.

11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their
significance in ways determined by the command with which they
appear.

13. "-" preceded and followed by white space should only be used to
mean standard input.

Intro(C)

See also

getopts(C), exit(S), getopt(S), wait(S)

Diagnostics

Note

Upon termination, each command returns 2 bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of "normal"
termination) one supplied by the program (see wait(S) and exit(S». The
former byte is 0 for normal termination; the latter is customarily 0 for success­
ful execution and non-zero to indicate troubles such as erroneous parameters,
bad or inaccessible data. It is called variously "exit code", "exit status", or
"return code", and is described only where special conventions are involved.

Not all commands adhere to the syntax described here.

3

300(C)

300,300s
handle special functions of DASI 300 and 300s terminals

Syntax
300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

Description

4

300 - Handles special functions for the DASI 300 terminal

300s - Handles special functions for the DASI 300s terminal

The 300 command supports special functions and optimizes the use of the
DASI300 (GSI 300 or DTC 300) terminal; 300s performs the same functions for
the DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-line forward,
half-line reverse, and full-line reverse motions to the correct vertical motions.
In the following discussion of the 300 command, it should be noted that
unless your system contains the text processing software, references to certain
commands (for example, nroff, neqn, eqn, etc.) will not work. It also
attempts to draw Greek letters and other special symbols. It permits con­
venient use of 12-pitch text. It also reduces printing time by between 5% and
70%. The 300 command can be used to print equations neatly, in the
sequence:

neqn file ... I nroff I 300
WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle
12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor­
mally allow only two combinations: lO-pitch, 6 lines/inch, or 12-
pitch, 8 lines linch. To obtain the 12-pitch, 6 lines per inch combina­
tion, the user should tum the PITCH switch to 12, and use the +12
option.

-n controls the size of half-line spacing. A half-line is, by default, equal
to 4 vertical plot increments. Because each increment equals 1/48 of
an inch, a lO-pitch line-feed requires 8 increments, while a 12-pitch
line-feed needs only 6. The first digit of n overrides the default
value, thus allowing for individual taste in the appearance of sub­
scripts and superscripts. For example, nroff half-lines could be
made to act as quarter-lines by using -2. The user could also obtain
appropriate half-lines for 12-pitch, 8 lines/inch mode by using the
option -3 alone, having set the PITCH switch to 12-pitch.

See also

Notes

300(C)

-dt,l,c controls delay factors. The default setting is -d3,90,30. DASI 300 ter­
minals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless, non­
identical characters. One null (delay) character is inserted in a line
for every set of t tabs, and for every contiguous string of c non-blank,
non-tab characters. If a line is longer than I bytes, l+(total
length)/20 nulls are inserted at the end of that line. Items can be
omitted from the end of the list, implying use of the default values.
Also, a value of zero for t (c) results in two null bytes per tab (char­
acter). The former may be needed for C programs, the latter for files
like /etc/passwd. Because terminal behavior varies according to the
specific characters printed and the load on a system, the user may
have to experiment with these values to get correct output. The-d
option exists only as a last resort for those few cases that do not oth­
erwise print properly. For example, the file /etc/passwd may be
printed using -d3,30,5. The value -dO,l is a good one to use for C
programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing car­
riage return and line-feed delays. The stty(C) modes nlO cr2 or nlO
cr3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle of a docu­
ment. Instead of hitting the Return key in these cases, you must use the line­
feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files ... and nroff files ... I 300
nroff -T300-12 files ... and nroff files ... I 300 +12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of
300 may produce better aligned output.

450(C), mesg(C), graph(ADM), stty(C), tabs(C), tplot(ADM)

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and misaligning the first line of text after one or more reverse line-feeds.

5

4014(C)

4014
paginator for the TEKTRONIX 4014 terminal

Syntax
4014 [-t] [-n] [-eN] [-pL] [file]

Description

See also

6

The output of 4014 is intended for a TEKTRONIX 4014 terminal; 4014 arranges
for 66 lines to fit on the screen, divides the screen into N columns, and contri­
butes an eight-space page offset in the (default) single-column case. Tabs,
spaces, and backspaces are collected and plotted when necessary. TELETYPE
Model 37 half- and reverse-line sequences are interpreted and plotted. At the
end of each page, 4014 waits for a new-line (empty line) from the keyboard
before continuing on to the next page. In this wait state, the command !cmd
will send the cmd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the screen.

-eN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and 1 (lines);
default is lines.

pr(C)

450(C)

450
handle special functions of the DASI 450 terminal

Syntax
450 [-f]

Description

The 450 command supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical, such as the
Diablo 1620 or Xerox 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to
draw Greek letters and other special symbols in the same manner as 300(C).

The -f option sets up fast (1200 baud) output using the ETXj ACK protocol.
The following errors are possible when using -f:

1. Standard output is not a terminal.

2. Error when opening output terminal for read.

3. Output terminal did not respond to ETX.

4. Output terminal did not respond with ACK.

It should be noted that, unless your system contains text processing software,
certain commands (for example, eqn, nroff, tbl, etc.) will not work. Use 450 to
print equations neatly, in the sequence:

neqn file ... I nroff I 450

WARNING: Make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired position (either
10- or 12-pitch). In either case, vertical spacing is 6 lines/inch, unless dynami­
cally changed to 8 lines per inch by an appropriate escape sequence.

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of hit­
ting the RETURN key in these cases, you must use the LINE-FEED key to get
any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of
the following:

nroff -T450 files . ..

or

nroff -T 450-12 files ...

7

450(C)

See also

Notes

8

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of
450 may produce better aligned output.

graph(ADM), tplot(ADM), 300(C), mesg(C), stty(C), tabs(C),

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and misaligning the first line of text after one or more reverse line-feeds.

assign (e)

assign, deassign
assign and deassign devices

Syntax
assign [-u] [-v] [-d] [device] ...

deassign [-u] [-v] [device] ...

Description

assign - assigns devices

deassign - deassigns devices

The assign command attempts to assign device to the current user. The de­
vice argument must be an assignable device that is not currently assigned. An
assign command without an argument prints a list of assignable devices
along with the name of the user to whom they are assigned.

The deassign command is used to "deassign" devices. Without any argu­
ments, deassign will deassign all devices assigned to the user. With argu­
ments, an attempt is made to deassign each device given as an argument.

With these commands you can exclusively use a device, such as a tape drive
or floppy drive. This keeps other users from using the device. They have a
similar effect to chown(C) and chmod(C), although they only act on devices in
/dev. Other aspects are discussed further on.

Available options include:

-d Performs the action of deassign. The -d option can be embedded in de-
vice names to assign some devices and deassign others.

-v Gives verbose output.

-u Suppresses assignment or deassignment, but performs error checking.

The assign command will not assign any assignable devices if it cannot assign
all of them. deassign gives no diagnostic if the device cannot be deassigned.
Devices can be automatically deassigned at logout, but this is not guaranteed.
Device names can be just the beginning of the device required. For example,

assign fd

should be used to assign all floppy disk devices. Raw versions of device will
also be assigned, for example, the raw floppy disk devices /dev/rfd? would be
assigned in the above example.

9

assign (C)

Files

Note that in many installations the assignable devices such as floppy disks
have general read and write access, so the assign command may not be neces­
sary. This is particularly true on single-user systems. Devices supposed to be
assignable with this command should be owned by the user asg. The direc­
tory /dev should be owned by bin and have mode 755. The assign command
(after checking for use by someone else) will then make the device owned by
whoever invokes the command, without changing the access permissions.
This allows the system administrator to set up individual devices that are
freely available, assignable (owned byasg), or nonassignable and restricted
(not owned byasg and with some restricted mode).

Note that the first time assign is invoked, it builds the assignable devices
table /etc/atab. This table is used in subsequent invocations to save repeated
searches of the /dev directory. If one of the devices in /dev is changed to be
assignable or unassignable (that is, owned byasg), then /etc/atab should be
removed (by the superuser) so that a correct list will be built the next time the
command is invoked.

/etc/atab
/dev/asglock

Table of assignable devices
File to prevent concurrent access

Diagnostics

Note

10

Exit code 0 returned if successful, 1 if problems, 2 if device cannot be assigned.

Although it should never happen, if assign is aborted before completion (via
kill-9, a power failure, etc.), the lock file /dev/asglock may need to be removed
by root.

at(C)

at, batch
execute commands at a later time

Syntax
at time [date] [increment]

at -r job-id .. .

at -1 [job-id ...]

at -qletter time [date] [increment]

batch

Description

at - Schedules jobs for execution at a particular time

batch - Schedules jobs for execution when the system load permits

The at and batch commands both accept one or more commands from the
standard input to be executed at a later time. at and batch differ in the way
the set of commands, or job, is scheduled: at allows you to specify a time
when the job should be executed, while batch executes the job when the sys­
tem load level permits. After a job is queued with either command, the pro­
gram writes a job identifier (a number and a letter), along with the time the
job will execute, to standard error.

at takes the following arguments:

time

date

The time can be specified as 1,2, or 4 digits. One- and two­
digit numbers are taken to be hours, four digits to be hours
and minutes. The time can alternately be specified as two
numbers separated by a colon, meaning hour:minute. A suf­
fix am or pm can be appended; otherwise a 24-hour clock
time is understood. The suffix zulu can be used to indicate
Greenwich Mean Time (GMT). The special names noon,
midnight, and now are also recognized.

An optional date can be specified as either a month name
followed by a day number (and possibly year number pre­
ceded by an optional comma) or a day of the week (spelt in
full or abbreviated to three characters). Two special "days,"
today and tomorrow, are recognized. If no date is given,
today is assumed if the given hour is greater than the current
hour and tomorrow is assumed if it is less. If the given
month is less than the current month (and no year is given),
next year is assumed.

11

at(C)

12

increment

-rjob-id ...

-1 [job-id ...]

-qletter

The time and optional date arguments can be modified with
an increment argument of the form +n units, where n is an
integer and units is one of the following: minutes, hours,
days, weeks, months, or years. The singular form is also
accepted, and +1 unit can also be written next unit. Thus,
legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
atnow+1 day
at 5 pm Friday next week

Removes the specified job or jobs previously scheduled by
the at or batch command. job-id is a job identifier returned
by at or batch. Unless you are the superuser, you can only
remove your own jobs.

Lists schedule times of specified jobs. If no job-ids are speci­
fied, lists all jobs currently scheduled for the invoking user.
Unless you are the super user, you can only list your own
jobs.

Places the specified job in a queue denoted by letter, where
letter is any lowercase letter from /I a" to /I z". The queue
letter is appended to the job identifier. The following letters
have special significance:
a at queue
b batch queue
c cronqueue
For more information on the use of different queues, see the
queuedefs{P) manual page.

batch takes no arguments; it submits a job for immediate execution at lower
priority than an ordinary at job.

at and batch jobs are executed using sh{C). Standard output and standard
error output are mailed to the user unless they are redirected elsewhere. The
shell environment variables, current directory, umask, and ulimit are retained
when the commands are executed. Open file descriptors, traps, and priorities
are lost.

Users are permitted to use at and batch if their usernames (logins) appear in
the file /usr/lib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if a given user should be denied
access to at and batch. If neither file exists, only root is allowed to submit a
job. If only the at.deny file exists, and it is empty, global usage is permitted.
The allow / deny files consist of one user name per line.

Examples

Files

See also

at(C)

If the system is installed with C2 security (this is the default, unless the sys­
tem administrator has relaxed the security), the user will also need the
chmodsuid kernel authorization. For more information about system security
and kernel authorizations, see the User's Guide and the System Administrator's
Guide.

The simplest way to use at is to place a series of commands in a file, one per
line, and execute these commands at a specified time with the following com­
mand:

at time < file

The following sequence can be used at a terminal to format the file infile using
the text formatter nroff(CT), and place the output in the file outfile.

batch
nroff infile > outfile
(Ctrl)d

The next example demonstrates redirecting standard error to a pipe (I), which
is useful in a shell procedure. The file infile is formatted and the output
placed in outfile, with any errors generated being mailed to user (output
redirection is covered on the sh(C) manual page).

batch «~I
nroff infile2 > &1 > outfile I mail user
!

To have a job reschedule itself, invoke at from within the job. For example, if
you want shellfile to run every Thursday, executing a series of commands
and then rescheduling itself for the next Thursday, you can include code simi­
lar to the following within shellfile:

echo "sh shellfile" I at 1900 thursday next week

/usr/lib/cron
/usr/lib/cron/at.allow
/usr/lib/cron/at.deny
/usr/lib /cron/queuedefs
/usr/spool/cron/atjobs

main cron directory
list of allowed users
list of denied users
scheduling information
spool area

cron(C), kill (C), mail(C), nice (C), ps(C), queuedefs(F), sh(C)

13

aue)

Diagnostics

Complains about syntax errors and times out of range.

Standards conformance

at and batch are conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

14

auths(C)

auths
list and/or restrict kernel authorizations

Syntax
auths [-v] [-a authlist] [-r authlist] [-c command]

Description

The auths command performs actions associated with system privilege mani­
pulation. With no arguments, auths returns the kernel authorizations associ­
ated with the current process. All other uses of auths are discussed below.

Either of the -a or -r options allow the user to alter the kernel authorizations in
order to run a shell or a single command. The -a option requires a list of
comma-separated authorizations, which become the absolute set of kernel
authorizations for the new process. This new set must be a subset of the ker­
nel authorizations of the invoking process. To start a process with a null set of
kernel authorizations, use the empty string ""). The -r option also takes, as an
argument, a comma-separated list of authorizations. These are removed from
the authorization set of the invoking process when forming the kernel author­
izations for the new process.

The argument to the -c option is passed to the user's shell as specified in the
user's /etc/passwd entry which is run as a single command. The user's shell
must support the

-c command
syntax similar to sh(C). When the argument is absent (and -a or -r is speci­
fied), the user's shell is invoked as a process with adjusted authorizations.
Exiting that shell will resume execution in the previous shell and the original
kernel authorizations will be in effect. This option may be used to run a com­
mand with restricted authorizations, that is, fewer than those allowed the user
in the Protected Password Database entry.

The -v option lists the new kernel authorizations before the new command or
shell is run. It also warns with the -a option when more authorizations are
attempted to be set than already exist or with the -r option when more author­
izations are attempted to be removed than already exist.

The kernel authorizations are:
execsuid
writeaudit
configaudit
suspendaudit
chmodsugid
chown

allows the running of SUID programs
process can write directly to the audit trail
process can change audit subsystem parameters
process is not audited by the kernel
process can set SUID and GID bits on files
process can change ownership of files it owns

15

auths(C)

Examples

See also

To execute a shell without the execsuid kernel authorization:
auths -r execsuid

To list the current kernel authorizations:
auths

To execute yourprog with no kernel authorizations:

auths -a "" -c yourprog
To execute myprog with chmodsugid and execsuid:

auths -a chmodsugid,execsuid -c myprog

sh(C), getpriv(S), getprwent(S), setpriv(S)

"Using a secure system" in the User's Guide

Value added

16

auths is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

awk(C)

awk: awk, oawk, nawk
pattern scanning and processing language

Syntax
awk [-Fsep] [[-e] 'prog] ... [-f progfile] ... [[-v] var=value ...] [file .. ,]

Description

oawk - pattern scanning and processing language

nawk - pattern scanning and processing language

awk is an interpreted pattern-matching language with a wide range of appli­
cations. See the chapter on awk in the User's Guide for a complete discussion
of its use.

You can enter an awk program (prog) directly from the command-line, enclos­
ing it in single quotes to prevent interpretation by the shell. The -e flag
preceding prog is optional. For longer awk programs, it may be more con­
venient to fetch them from a file (progfile); this is done with the -f option. You
can specify multiple -e programs and -f files; they are concatenated together
(with intervening newlines) to form the program that is executed. (This is like
the -e and -f options in sed(C).)

Input files are read in order. If no files are given on the command line, the
standard input is used.

You can change the awk field separator on the command line with the -fsep
option, where the regular expression sep is the new delimiter. You can also
specify the field separator as a single character; this sets the field separator to
be that character. awk -Ft is a special case that sets the field separator to a tab.
(The field separator can also be changed within an awk program using the
variable FS.)

You can set the value of variables you are going to use in the awk program
from the command line using var=value, where var is the variable and value
is the initial value you want it to have. This can be preceded with an optional
-v.

What awk does with your program
After awk checks the syntax of your program, it reads each record (generally,
each line) of the input and attempts to match it against the patterns specified
in the program. For each pattern in the program, there may be an associated
action performed when an input record matches the pattern. Actions can be
made up of a single action statement, like print, or of a combination of state­
ments.

17

awk(C)

18

A pattern-action statement has the form:
pattern { action}

Either pattern or action may be omitted. If there is no action with a pattern,
the matching line is printed. If there is no pattern with an action, the action is
performed on every input line.

Programming conventions
Pattern-action statements, and individual statements within actions, generally
begin on a new line.

The opening brace ({) must be on the same line as the pattern for which the
actions should be performed. Multiple action statements may appear on a
single line if they are separated by semicolons (;).

A newline can be hidden with a backslash (\), so you can use backslash­
newline to continue a long line.

Comments in awk are introduced by a number sign (#) and end with the end
of the line. Comments can appear anywhere in a line.

Blank lines and whitespace (blanks and tabs) in an awk program are ignored.

Fields, records, and built-in variables
awk presumes that each field in a record is separated by whitespace, and that
each record consists of one line of input. Both of these defaults can be modi­
fied.

You can change the field separator on the command line, as discussed earlier,
using the -Fsep option. You can also reset the value of the input field separa­
tor variable FS from within your awk program. FS can be set to any regular
expression. The following action is a special case that resets FS to its default
behavior:

BEGIN { FS = " " }

The BEGIN in this example is a special pattern that matches before the first
record is read; this is the mechanism awk provides for doing introductory
processing.

Setting FS to a single blank is equivalent to:
BEGIN { FS = "[\t]+" }

That is, setting FS to a single blank tells awk to regard any combination of
blanks and tabs (any whitespace) as a field separator. Note that once you set
the input field separator to something other than a single blank (that is, to all
whitespace), leading whitespace (before the first field) is no longer ignored.

awk is designed to consider each line of input as a complete record, but you
can get awk to recognize multiline records by resetting the variable RS.

awk(C)

To get awk to recognize multiline records, set RS to the null string:
BEGIN { RS = "" }

Now, awk will presume that records are separated by one or more blank lines.
When you reset RS like this to use multiline records, newline is always con­
sidered a field separator, no matter what the value of FS is. To restore the
default record separator, reset RS to a newline:

{ RS = "\n" }

You can address any field in the input record using the syntax $1, $2, etc.,
where $1 is the first field in a record, $2 is the second field, and so on. The
entire record is referred to as $0.

Fields can also be referred to in relation to the built-in field variables, for
example, for a five-field record:

$(NF - 2)

would refer to the third field. The NF in this example is a built-in variable
awk provides that counts the number of fields in a current record. (Thus, $NF
refers to the last field in the current record.)

The following list shows all the built-in variables in awk:

Variable
ARGC

ARGV

ENVIRON

FILENAME

FNR

FS

NF

NR

OFMT

OFS

ORS

RS

RSTART

RLENGTH

SUBSEP

Meaning
number of command-line arguments plus 1

array of command-line arguments (ARGV[O ... ARGC-l])

array of environment variables, indexed by the name of
the variable

name of current input file

input record number in current file

input field separator (default: any whitespace)

number of fields in current input record

number of records read so far

output format for numbers (default: "%.6g"; see
printf(S»

output field separator (default: blank)

output record separator (default: newline)

input record separator (default: newline)

index of first character matched by matchO

length of string matched by matchO

separates multiple subscripts in array elements (default:
#\034")

19

awk(C)

20

Patterns
Patterns can be any of the following:

BEGIN
END
/expr/
relational expression
pattern && pattern
pattern I I pattern
(pattern)
!pattern
patternl,pattern2

BEGIN and END match before the first line is read, and after the last line has
been read, respectively.

All other patterns can contain extended regular expressions, like in egrep. See
grep(C) and ed(C) for the pattern-matching syntax of extended regular
expressions. (In the following discussion, extended regular expressions will
be referred to simply as regular expressions.)

You can create a string matching pattern using a regular expression in one of
three ways:

/regexpr/ This will match the current record if regexpr is con­
tained anywhere in the current record.

expression - /regexpr / This will match if regexpr is contained anywhere in
the string value of expression.

expression r /regexpr / This will match if regexpr is not contained anywhere
in the string value of expression.

A relational expression is made up of two numeric or string expressions com­
pared with one of the following operators:

Operator

<
<=
>
>=

!=

Meaning

less than
less than or equal to
greater than
greater than or equal to
equal to
not equal to

When strings are compared using relational operators «, <=, >, >=), they are
compared character by character using the sort order provided by the ma­
chine, which is usually the ASCII sort order. One string is less than another
string if it would appear earlier (before) the other in the sort order.

awk(C)

When one operand in a relational expression is a string, the other operand is
converted to a string as well and they are compared using the method
described above.

Patterns can be joined using the logical operators && (AND) and I I (OR).
When patterns are joined like this, the pattern matches the current record if
the entire pattern evaluates to true (nonzero or nonnull). A pattern can be
negated using the! logical NOT operator. Parentheses may be used for group­
ing patterns.

pattern && pattern matches a record when both the first pattern and the
second pattern match the record.

pattern I I pattern matches a record when either the first pattern or the second
pattern matches the record.

!pattern means "does not match pattern." That is, !pattern matches every
record that is not matched by pattern.

patternl, pattern2 defines a matching range. The accompanying action is per­
formed for all records that match from the first occurence of patternl to the
following occurence of pattern2, inclusive. (The action is performed for the
lines containing patternl and pattern2, as well as all the lines in between.)

Actions
The actual work your awk program does occurs in the action part of the pro­
gram.

Action statements can be made up of:

• expressions (numeric and string constants, variables, array refer­
ences, and so on)

• flow control statements (branches or loops)

• built-in arithmetic or string functions or functions you define yourself

Variables in awk are not explicitly declared; they simply spring into existence
when they are first used. awk determines from the context whether a variable
is numeric or string. Numeric variables are automatically initialized to 0;
string variables are automatically initialized to the empty string (""). (See
"Number or string" below, and the chapter on awk in the User's Guide for
more information about variable types and type coercion in awk.)

Values are assigned to variables in the usual way in awk:
a = 100

creates a numeric variable a with the value "100". You can assign several vari­
ables in a single statement:

water = oil = "wet"

This creates two string variables, water and oil, and sets them both to contain
the string "wet".

21

awk(C)

22

Assignment operators are evaluated from right to left.

The following assignment operators are available; the shorthand assignment
notation is borrowed from the C programming language:

Operator

a=b
a+=b
a-=b
a*=b
a/=b
a%=b
aA==b

Meaning
set a equal to b
set a equal to a + b
set a equal to a - b
set a equal to a *b
set a equal to a / b
set a equal to a % b; a becomes the remainder of a divided by b
set a equal to a A b; a becomes ab

awk offers the usual arithmetic operators: II +" (add), "_" (subtract), "*"
(multiply), II /" (divide), II %" (modulo; divide and give remainder), IIAII

(exponentiation; II ** II is a synonym). The unary II + II (plus) and II - II (minus)
are also available.

All arithmetic in awk is done in floating point.

Relational expressions in action statements use the same operators as rela­
tional expressions in patterns; consult the relational operators table in "Pat­
terns" above.

The logical AND and logical OR (&& and I I) are also available, as well as the
logical NOT (I, as in !expr).

There is also a conditional operator: "?":

expressionl ? expression2 : expression3

expression is evaluated, and if it is non-empty and non-zero, then the expres­
sion has the value of expression2. Otherwise, it has the value of expression3.

Variables can be incremented using prefix or postfix notation, as in C. x++ and
++x are both equivalent to x == x + 1, and x-- and --x both are equivalent to x ==
x-I. The difference between prefix (++x) and postfix (x++) is when x assumes
its new value. In prefix notation, x is immediately incremented; in postfix
notation, the current value of x is used and then x is incremented.

Parentheses can be used to alter the order of evaluation in arithmetic and rela­
tional expressions.

awk(C)

The following table of precedence shows all the available action statement
operators and the order in which they are evaluated. The table is in decreas­
ing order of precedence; operators higher in the table are evaluated before
operators lower in the table.

Operator
$
++ --

+ -
* / %

+ -
(no explicit operator)
< <= > >= != ==
- r
in
&&
II
?:
= += _= *= / = %= A=

Meaning
field
increment, decrement (prefix and postfix)
exponentiation (** is a synonym)
logical negation
unary plus, unary minus
multiply, divide, mod
add, subtract
string concatenation
relationals
regular expression match, negated match
array membership
logical AND

logical OR

conditional expression
assignment

All of these operators are evaluated from left to right (they are left associa­
tive), except for the assignment operators, the conditional expression opera­
tor, and exponentiation, which are evaluated from right to left (they are right
associative).

Arrays
One-dimensional arrays are available in awk. Like other variables in awk,
arrays and array elements do not need to be declared; they come into
existence upon their first use.

awk allows you to use strings as array subscripts; arrays that do this are
called associative arrays. This lets you group together data quite simply.

Say we have a data file listing employee names, department names, and the
number of sick days the employee has taken:

Steve Engineering 2
Chris Engineering 1
Susannah Documentation 0
Vipin Sales 2
Connie Marketing 3
Matt Documentation 1
Nancy Sales 1
Nigel Documentation 0

The first field, $1, contains the employee name; the second field, $2, contains
the department, and the third field, $3, contains the number of sick days for
that employee.

23

awk(C)

24

To accumulate the number of sick days in each department:
{ sickness [$2] t= $3 }

This creates the array sickness, which uses the values in the second field
("Engineering", "Documentation", "Sales", and ''Marketing'') as its subscripts.
The sick day totals in field three are then collected under the appropriate sub­
script.

The construct:
for (i in arr) statement

does statement for every subscript i in the array arr. Subscripts are looped
over in a random order. If the value of i is changed within statement,
unpredictable results may occur.

The split function splits input into subscripts in an array. It takes the form:

split(string,arr,ls)

where string is the string you want to split, arr is the array into which you
want to split it, and Is is the field separator on which you want to split. The
first component of string is stored in arr[1], the second in arr[2] and so on.
The return value is the number of fields.

Elements can be deleted from an array with the delete statement:
delete arr [subscript]

After this is done, arr [subscript] no longer exists.

awk does not support multi-dimensional arrays, but this can be simulated by
using a list of subscripts; see the User's Guide for details.

Flow of control
awk uses branching and looping statements borrowed from the C program­
ming language. In all the following constructs, a single statement can be
replaced by a statement list enclosed in { braces }.

Each statement in a statement list should begin on a new line or after a semi­
colon.

The following constructs are available:
if (expression) statementl else statement2

If expression is non-zero and non-empty, do statementl; otherwise, do state­
ment2. The "else statement2" is optional. If there are several ifs together
with an else, the else belongs with the nearest preceding if.

while (expression) statement

While expression is non-zero and non-empty, statement is executed.
for (expressionl; expression; expression2) statement

This is a generalized form of the while statement.

The for statement is the same as:

expressionl
while (expression2) {

statement
expression3

All three expressions are optional.

awk(C)

This is often used to go through a loop based on the value of a counter, where
expressionl is used to initialize a counter; expression is the test; and expres­
sion2 increments the counter. While expression is non-empty and non-zero,
statement is executed.

do statement while (expression)

statement is repeatedly executed until expression becomes null or zero.

The break, continue, and next statements can be used to break out of loops
that would otherwise keep going. break drops out of the innermost while,
for, or do loop. continue causes the next iteration of the loop to begin. Execu­
tion will go to the test expression in a while or do loop, and to expression3 in
a for loop. next reads the next record and starts the main input loop again.

exit will go straight to the END statements, if there are any. If exit occurs in
an END statement, the program itself exits. If a numeric expression is given
after exit, this expression is taken as the exit status for the awk program.

Output
The print and printf statements are used to write output in awk.

print exprl,expr2, ... ,exprn

will print the string value of each expression separated by the output field
separator, followed by the output record separator. Without the commas, the
expressions are concatenated.

print by itself is an abbreviation for print $0.

To print an empty line use:
print ""

The printf function in awk is like printf(S) in C:

printf format, exprl, expr2, ... , expn
format can be made up of regular characters, which are printed as-is, escaped
special characters, such as Tab (\t) or Newline (\n), and format keyletters that
specify how to print the expressions following the format. Format keyletters
begin with a II % " and can be preceded with a width specification, a precision
statement, and/or an instruction to left-justify an expression in its field. The
first expression replaces the first formatting keyletter, and so on.

25

awk(C)

26

If a print or printf statement includes an expression with the greater-than
operator (», this expression should be enclosed in parentheses to avoid con­
fusion between the greater-than operator and redirection into a file. For
example:

{ print $0 $2 > $3 }

This statement says "print the record and then field 2 into a file named by
field 3," while:

{ print $0 ($2 > $3) }

says "print the record, followed by a 1 if field 2 is greater than field 3, or a 0 it
is not."

printf keyletters are:

Keyletter
%c

%d
%e

%f
%g

%0
%s
%x
%%

Prints expr as
the ASCII character referred to by the least significant 8
bits of the numeric value of expr; truncates expr to the
nearest integer
a decimal integer; truncates expr to the nearest integer
scientific notation using the form [-Jd.ddddddE[+-]dd
scientific notation using the form [-]ddd.dddddd
the shorter of e or f conversion, with nonsignificant zeros
suppressed
an unsigned octal number
a string
unsigned hexadecimal number
prints a /I % ", no argument is converted

The following escape sequences are recognized within regular expressions
and strings:

Escape sequence
\b
\f
\n

\r
\t
\ddd

Meaning
Backspace
Formfeed
Newline
Carriage return
Tab
octal value ddd

Output can be redirected into files using:

> filename

and
» filename

Files are opened only once using the redirection operator. The first form will
overwrite whatever is in filename, if filename already exists, and will create
filename if it does not exist. The second form will append output to filename.

awk(C)

To send output to a pipe, use:

I command-line

where command-line is the command line to which you want to send the out­
put. Filenames and command lines can be expressions, variables, or literal
filenames or command lines. If you want to use a literal filename or com­
mand line, you must enclose it in double quotes, otherwise, awk will treat it
as a variable.

There is a limit to how many files and pipes you can open in an awk program
(see "Limits" below). Use the close statement to close files or pipes:

close(filename}
close(command-line)

where filename or command-line is the open file or pipe.

Input
awk provides the getline function to read in successive lines of input from a
file or a pipe.

getline getline by itself takes the next record of input as $0
and sets NF, NR, and FNR.

getline <file The next record from file becomes $0; NF is set.

getline var The next record of input is placed in var; NR and
FNR are set.

getline var <file The next record in file is placed in var.

command I getline The output of command is piped to getline. $0 and
NF are set.

command I getline var The output of command is piped to getline and
stored in var.

All forms of getline return 1 for successful input, a for end of file, and -1 for
an error.

To read input from a file until the file runs out, use:
while ((getline x < file) > 0) (...)

The "> 0" is needed so that the test catches a -1 error returned from getline.
Otherwise, the while loop would read -1 as true, since it is non-zero.

27

awk(C)

28

Functions
The following arithmetic functions are built into awk:

Function

atan2(y,x)

cos(x)

exp(x)

int(x)
log(x)
randO
sin(x)
sqrt(x)
srandO
srand(x)

Returns

arctangent of y Ix in the range -1t to 1t

cosine of x, with x in radians
exponential function of x, eX

integer part of Xi truncated toward 0 when x > 0
natural (base e) logarithm of x

random number r, where 0 <= r < 1
sine of x, with x in radians
square root of x
set the seed for randO from the time of day
x is new seed for randO

The string functions are:

gsub(r,s,t)

index(s,t)

length(s)

match(s,re)

split(s,a,ls)

globally substitutes the string 5 for the regular expression r in
the string t. If t is omitted, substitutions are made in the
current record ($0). The number of substitutions is returned.

returns the position in string 5 where string t first occurs, or 0
if it does not occur at all.

returns the length of its argument taken as a string, or of the
whole record if there is no argument.

returns the position in string 5 where the regular expression
re occurs, or 0 if it does not occur at all. RSTART i::> set to the
starting position (which is the same as the returned value),
and RLENGTH is set to the length of the matched string.

splits the string 5 into array elements a[l], a[2], a[n], and
returns n. The separation is done with the regular expression
15 or with the field separator FS if 15 is not given.

sprintf(format, expr,expr, ...)

sub(r,s,t)

formats the expressions according to the printf format and
returns the resulting string.

substitutes the string 5 in place of the first instance of the reg­
ular expression r in string t and returns the number of substi­
tutions. If t is omitted, awk substitutes in the current record
($0).

awk(C)

substr(s,p) returns the suffix of s starting at position p.

substr(s,p,n) returns the n-character substring of s that begins at position p.

toupper(s) returns a copy of the string s with lowercase letters converted
to uppercase.

tolower(s) returns a copy of the string s with uppercase letters converted
to lowercase.

awk provides the system function for running commands:
system(command-line)

executes command-line and returns its exit status.

You can define your own functions in awk. The syntax for this is:
function name(parameter-list) {

statements

name is the name of the function, parameter-list is a comma-separated list of
variable names, which, within the function refer to the arguments with which
the function was called, and statements are action statements that make up
the body of the function.

Function definitions can appear anywhere a pattern-action statement can
appear. Recursion is permitted within user-defined functions; that is, a func­
tion may call itself directly or indirectly.

Variables passed to functions (as arguments) are copied and a copy of the
variable is manipulated by the function; that is, these variables are passed by
value. The exception to this in awk is arrays, which are passed by reference,
that is, the actual array elements are manipulated by the function, so array
elements can be permanently altered, created, or deleted within a function.

Missing function arguments are set to null; extra arguments are ignored.

To define a return value for your function, you must include a statement

return expression
where expression is the value you want your function to return. expression
here is optional; if you leave it out, control will be returned to the caller of the
function, but the return value will be undefined. The return statement itself is
optional as well.

The formal parameters of a function (the argument list) are local to that func­
tion, but any other variables are global. You can use the argument list as a
way of creating variables local only to the function; like other variables in awk
these will be automatically initialized with null values.

29

awk(C)

30

Number or string?
In awk, variables come into being when they are used; there is no declaration
of a variable, and, therefore, you do not declare the type of a variable as a
string or a number. Instead, awk assumes the type of a variable from its con­
text.

In an assignment statement, such as v=e, the type of v becomes the type of e.
When the context is ambiguous, awk determines the types when the program
runs.

In comparisons, if both operands are numeric, they are compared as numbers;
otherwise, they are compared as strings. (A string is greater than another
string if it comes later in the sort sequence, and less than another string if it
comes earlier in the sort sequence.)

All field variables are of type string; in addition, each field can be considered
to have a numeric value (that is, the numeric value of a string). The numeric
value of a string is the value of the longest prefix of a string that looks
numeric. For example, if a field contains the string "123abc", the numeric
value of this would be 123.

The value of a variable in awk is initially 0 or the string "".

You can force a variable of one type to become another type; this is known as
type coercion. To force a number to a string:

number""

(Concatenate the null string to number.)

To force a string to a number:
string + 0

For more information about variable types, see the chapter on awk in the
User's Guide.

Limits
The following limits exist in this implementation of awk: (Limits marked
with an asterisk (*) are safe approximations; your mileage may vary.)

100 fields
3000* characters per input record
3000* characters per output record
3000* characters per field
3000* characters per printf string
400 characters per literal string or regular expression
250* characters per character class
55* open files or pipes
double precision floating point

Numbers are limited to what can be represented on your machine; numbers
outside this range will have string values only.

Examples

See also

awk(C)

The following examples are all individual awk programs; to try them out, you
will need to put them in a file and call the file with awk -f, or enclose them in
single quotes on the awk command line.

Print lines longer than 72 characters:
length > 72

Print only the first two fields in opposite order:
{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:
BEGIN {FS = ", [\t]* I [\t]t" }

{ print $2, $1 }

Add up the first column, print sum and average:
{ s t= $1 }

END {if (NR > 0) print "sum is", s," average is", s/NR }

Print fields in reverse order (on separate lines):
{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

Simulate echo(C):
BEGIN {

for (i = 1; i < ARGC; itt)
printf "%s ", ARGV[ij

printf "\n"
exit

Simple env(C):
BEGIN

for (e in ENVIRON)
print e "=" ENVIRON[e]

ed(C), grep(C), lex(CP), printf(S), sed(C)

"Simple programming with awk" in the User's Guide

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger,
The AWK Programming Language, Addison-Wesley, 1988.

31

awk(C)

Notes

32

Input whitespace is not preserved on output if fields are involved.

fune is an obsolete synonym for function.

This version of awk is the so-called "new awk" described in The A WK Pro­
gramming Language (referenced above). It is mostly compatible with an older
version of awk still in common use. On some systems, the "new awk" is
called nawk, the older one is oawk, and awk may be linked to either version.
The rtawk and oawk names do not exist on all systems, and even when they
do exist, are not reliable. Only the name awk should be used.

Known incompatibilities between this version of awk and older awks include:

• The definition of "what constitutes a number" is slightly different. In the
old awk, a string had a numeric value only if the entire string looked
numeric. In the new awk, a string has a numeric value if a prefix of the
string looks numeric, and the numeric value is the value of the longest such
prefix.

For example, the string:
123foo

does not have a numeric value in the old awk (and is treated as 0), but has
the value 123 in the new awk.

• Assigning to a nonexistent field in the new awk changes $0 to include that
field, whereas, in the old awk, $0 did not change. Thus, the progral)l:

{ $2 = $1; print }

produces different output if the input has only one field.

• The new awk allows user-defined functions; these are not recognized in the
old awk.

• There are several new reserved words in the new awk which could be used
as variable names in the old awk.

• In addition, the parsing has changed, which may result in some
ambiguous-looking expressions that were legal in the old awk failing with
thenewawk.

For example, in regular expressions, the character class:
[/l

is not legal in the new awk, but was in the old. The equivalent character
class for the new awk is:

[\/l

However, this character class, when used with the old awk, is not
equivalent to the original expression.

awk(C)

Standards conformance

awk is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

33

banner(C)

banner
print large letters

Syntax

banner strings

Description

See also

The banner command prints its arguments (each up to 10 characters long) in
large letters on the standard output. This is useful for printing names at the
front of printouts.

echo(C)

Standards conformance

banner is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

34

basename(C)

basename
remove directory names from path names

Syntax

basename string [suffix]

Description

Examples

See also

The basename command deletes any prefix ending in II / II and the suffix (if
present in string) from string, and prints the result on the standard output.
The result is the ''base'' name of the file, that is, the filename without any
preceding directory path and without an extension. It is used inside substitu­
tion marks (' ') in shell procedures to construct new filenames.

The related command dimame deletes the last level from string and prints the
resulting path on the standard output.

The following command displays the filename memos on the standard output:
basename /usr/johnh/memos.old .old

The following shell procedure, when invoked with the argument
/usr/src/cmd/cat.c, compiles the named file and moves the output to a file
named cat in the current directory:

cc $1
mv a.out 'basename $1 .c'

dirname(C),sh(C)

Standards conformance

basename is conformant with:

X/Open Portability Guide, Issue 3,1989.

35

bc(C)

be
invoke a calculator

Syntax
be[-e] [-1] [file ...]

Description

36

be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then reads
the standard input. The -1 argument stands for the name of an arbitrary preci­
sion math library.

be acts as a preprocessor for dc, a calculator which operates on Reverse Polish
Notation input. (be is easier to use than de.) Although substantial programs
can be written with be, it is often used as an interactive tool for performing
calculator-like computations. The language supports a complete set of con­
trol structures and functions that can be defined and saved for later execution.
The syntax of be has been deliberately selected to agree with the C language.
A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Common uses for be are:

• Computation with large integers.

• Computations accurate to many decimal places.

• Conversions of numbers from one base to another base.

There is a scaling provision that permits the use of decimal point notation.
Provision is made for input and output in bases other than decimal. Numbers
can be converted from decimal to octal simply by setting the output base
equal to 8.

The actual limit on the number of digits that can be h':lndled depends on the
amount of storage available on the machine, so manipulation of numbers with
many hundreds of digits is possible.

Tasks

bc(C)

This section describes how to perform common be tasks.

Computing with integers
The simplest kind of statement is an arithmetic expression on a line by itself.
For instance, the expression:

142857 + 285714

when evaluated, responds immediately with the line:

42857l

Other operators can also be used. The complete list includes:
+-*/%~

They indicate addition, subtraction, multiplication, division, modulo
(remaindering), and exponentiation, respectively. Division of integers pro­
duces an integer result truncated toward zero. Division by zero produces an
error message.

Any term in an expression can be prefixed with a minus sign to indicate that it
is to be negated (this is the "unary" minus sign). For example, the expression:

7 +-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are
interpreted just as in FORTRAN, with exponentiation n performed first, then
multiplication (*), division (j), modulo (%), and finally, addition (+), and sub­
traction (-). The contents of parentheses are evaluated before expressions out­
side the parentheses. All of the above operations are performed from left to
right, except exponentiation, which is performed from right to left.

Thus the following two expressions:
a~b~c and a~(bAc)

are equivalent, as are the two expressions:
a*b*c and (a*b)*e

be shares with FORTRAN and C the convention that a/b*c is equivalent to
(a/b)*c.

Internal storage registers to hold numbers have single lowercase letter names.
The value of an expression can be assigned to a register in the usual way, thus
the statement:

x=x+3

has the effect of increasing by 3 the value of the contents of the register named
x. When, as in this case, the outermost operator is the assignment operator
(=), then the assignment is performed but the result is not printed. There are
26 available named storage registers, one for each letter of the alphabet.

37

bc(C)

38

There is also a built-in square root function whose result is truncated to an
integer (see also Scaling, below). For example, the lines:

x = sqrt(191)
x

produce the printed result:
13

Specifying input and output bases
There are special internal quantities in be, called ibase (or base) and obase.
base and ibase can be used interchangeably. ibase is initially set to 10, and
determines the base used for interpreting numbers that are read in to be. For
example, the lines:

ibase = 8
11

produce the output line:
9

and sets up be to do octal to decimal conversions. Beware of trying to change
the input base back to decimal by entering:

ibase = 10
Because the number 10 is interpreted as octal, this statement has no effect. For
those who deal in hexadecimal notation, the uppercase characters A-F are per­
mitted in numbers (no matter what base is in effect) and are interpreted as
digits having values 10-15, respectively. These characters must be uppercase
and not lowercase.

The statement:
ibase = A

changes back to decimal input base no matter what the current input base is.
Negative and large positive input bases are permitted; however no mecha­
nism has been provided for the input of arbitrary numbers in bases less than 1
and greater than 16.

obase is used as the base for output numbers. The value of obase is initially
set to a decimal 10. The lines:

obase = 16
1000

produce the output line:
3E8

This is interpreted as a three-digit hexadecimal number. Very large output
bases are permitted. For example, large numbers can be output in groups of
five digits by setting obase to 100000. Even strange output bases, such as
negative bases, and 1 and 0, are handled correctly.

Very large numbers are split across lines with seventy characters per line. A
split line that continues on the next line ends with a backslash (\). Decimal
output conversion is fast, but output of very large numbers (that is, more than
100 digits) with other bases is rather slow.

bc(C)

The values of ibase and obase do not affect the course of internal computation
or the evaluation of expressions; they only affect input and output conversion.

Scaling quantities
A special internal quantity called scale is used to determine the scale of calcu­
lated quantities. Numbers can have up to 99 decimal digits after the decimal
point. This fractional part is retained in further computations. We refer to the
number of digits after the decimal point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic
operations, the result has a scale determined by the following rules:

Addition, subtraction The scale of the result is the larger of the scales of the
two operands. There is never any truncation of the
result.

Multiplication

Division

Modulo

Exponentiation

Square Root

The scale of the result is never less than the maximum
of the two scales of the operands, never more than the
sum of the scales of the operands, and subject to those
two restrictions, the scale of the result is set equal to
the contents of the internal quantity, scale.

The scale of a quotient is the contents of the internal
quantity, scale.

The scale of a remainder is the sum of the scales of the
quotient and the divisor.

The result of an exponentiation is scaled as if the
implied multiplications were performed. An exponent
must be an integer.

The scale of a square root is set to the maximum of the
scale of the argument and the contents of scale.

All of the internal operations are actually carried out in terms of integers, with
digits being discarded when necessary. In every case where digits are dis­
carded truncation is performed without rounding.

The contents of scale must be no greater than 99 and no less than O. It is ini­
tially set to O.

The internal quantities scale, ibase, and base can be used in expressions just
like other variables. The line:

scale = scale + 1
increases the value of scale by one, and the line:

scale
causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits to be
retained in internal computation even when ibase or obase are not equal to
10. The internal computations (which are still conducted in decimal, regard­
less of the bases) are performed to the specified number of decimal digits,
never hexadecimal or octal or any other kind of digits.

39

bc(C)

40

Using functions
The name of a function is a single lowercase letter. Function names are per­
mitted to use the same letters as simple variable names. Twenty-six different
defined functions are permitted in addition to the twenty-six variable names.

The line:
define a(x){

begins the definition of a function with one argument. This line must be fol­
lowed by one or more statements, which make up the body of the function,
ending with a right brace (}). Return of control from a function occurs when
a return statement is executed or when the end of the function is reached.

The return statement can take either of the two forms:
return
return(x)

In the first case, the returned value of the function is 0; in the second, it is the
value of the expression in parentheses.

Variables used in functions can be declared as automatic by a statement of the
form:

auto x,y,z
There can be only one auto statement in a function and it must be the first
statement in the definition. These automatic variables are allocated space and
initialized to zero on entry to the function and thrown away on return. The
values of any variables with the same names outside the function are not dis­
turbed. Functions can be called recursively and the automatic variables at
each call level are protected. The parameters named in a function definition
are treated in the same way as the automatic variables of that function, with
the single exception that they are given a value on entry to the function. An
example of a function definition follows:

define a (x, y) {
auto z
z = x*y
return(z)

The value of this function, when called, will be the product of its two argu­
ments.

A function is called by the appearance of its name, followed by a string of
arguments enclosed in parentheses and separated by commas. The result is
unpredictable if the wrong number of arguments is used.

If the function do_something is defined as shown above, then the line:
do_something(7,3.14)

would print the result:
21. 98

Similarly, the line:
x = do_something(so_something(3,4),5)

would cause the value of x to become 60.

bc(C)

Functions can require no arguments, but still perform some useful operation
or return a useful result. Such functions are defined and called using
parentheses with nothing between them. For example:

bO
calls the function named b.

Using subscripted variables
A single lowercase letter variable name followed by an expression in brackets
is called a subscripted variable and indicates an array element. The variable
name is the name of the array and the expression in brackets is called the sub­
script. Only one-dimensional arrays are permitted in be. The names of arrays
are permitted to collide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use. Subscripts
must be greater than or equal to zero and less than or equal to 2047.

Subscripted variables can be freely used in expressions, in function calls and
in return statements.

An array name can be used as an argument to a function, as in:
f(a[])

Array names can also be declared as automatic in a function definition with
the use of empty brackets:

define f(a[J)
auto a []

When an array name is so used, the entire contents of the array are copied for
the use of the function, then thrown away on exit from the function. Array
names that refer to whole arrays cannot be used in any other context.

Using control statements: if, while and for
The if, while, and for statements are used to alter the flow within programs or
to cause iteration. The range of each of these statements is a following state­
ment or compound statement consisting of a collection of statements enclosed
in braces. They are written as follows:

if (relation) statement
while (relation) statement
for (expression1 ; relation; expression2) statement

A relation in one of the control statements is an expression of the form:

expression1 rel-op expression2
where the two expressions are related by one of the six relational operators:

< > <= >= == !=

Note that a double equal sign (==) stands for "equal to" and an exclamation­
equal sign (!=) stands for "not equal to" . The meaning of the remaining rela­
tional operators is their normal arithmetic and logical meaning.

Beware of using a single equal sign (=) instead of the double equal sign (==) in
a relational. Both of these symbols are legal, so no diagnostic message is pro­
duced. However, the operation will not perform the intended comparison.

41

bc(C)

42

The if statement causes execution of its range if and only if the relation is true.
Then control passes to the next statement in the sequence.

The while statement causes repeated execution of its range as long as the rela­
tion is true. The relation is tested before each execution of its range and if the
relation is false, control passes to the next statement beyond the range of the
while statement.

The for statement begins by executing expressionl. Then the relation is tested
and, if true, the statements in the range of the for statement are executed.
Then expression2 is executed. The relation is tested, and so on. The typical
use of the for statement is for a controlled iteration, as in the statement:

for (i=li i<=10i i=i+l)
which will print the integers from 1 to 10.

The following are some examples of the use of the control statements:
define f(n) (

}

The line:
f (a)

auto i, x
x=l
for(i=l; i<=n; i=i+l) x=x*i
return(x)

prints a factorial if a is a positive integer.

The following is the definition of a function that computes values of the bino­
mial coefficient (m and n are assumed to be positive integers):

define b (n, m) (
auto x, j
x=l
for(j=l; j<=m; j=j+l) x=x*(n-j+l)/j
return(x)

The following function computes values of the exponential function by sum­
ming the appropriate series without regard to possible truncation errors:

scale = 20
define e (x) (

auto a, b, c, d, n
a = 1
b = 1
c = 1
d = 0
n = 1
while (1==1)

a ;: a*x
b = b*n
c = c + alb
n '" n + 1
if (c==d) return(c)
d = c

bc(C)

Using other language features
Language features which are less frequently used but still essential to know
about are listed below.

• Normally, statements are entered one to a line. It is also permissible to
enter several statements on a line if they are separated by semicolons.

• If an assignment statement is placed in parentheses, it then has a value and
can be used anywhere that an expression can. For example, the line:

(x=y+17)

not only makes the indicated assignment, but also prints the resulting
value.

The following is an example of a use of the value of an assignment state­
ment even when it is not placed in parentheses:

x = a[i=i+l]

This causes a value to be assigned to "x" and also increments "i" before it is
used as a subscript.

• The following constructions work in be in exactly the same manner as they
do in the C language:

Construction

x=y=z
x=+y
x=-y
x=*y
x=/y
x=%y
x=~y

x++
x-­
++x
--x

Equivalent

x =(y=z)
x=x+y
x=x-y
x=x*y
x=x/y
x=x%y
x=x~y

(x=x+1)-l
(x=x-l)+l
x=x+l
x=x-l

If one of these constructions is used inadvertently, it is possible for some­
thing legal but unexpected to happen. Some of these constructs are case­
sensitive. There is a real difference between x=-y and x= -Yo The first
replaces x by x-y and the second by -Yo

• The comment convention is identical to the C comment convention. Com­
ments begin with /* and end with */.

• There is a library of math functions that can be obtained by entering:
be -1

when be is invoked. This command loads the library functions sine, cosine,
arctangent, natural logarithm, exponential, and Bessel functions of integer
order. These are named s, U, a,l, e, and j(n,x) respectively. This library sets
scale to 20 by default.

43

bc(C)

• If be is loaded with:

be file ...
be will read and execute the named file or files before accepting commands
from the keyboard. In this way, user programs and function definitions can
be loaded.

Language reference

44

This section is a comprehensive reference to the be language. It contains a
more concise description of the features mentioned in earlier sections.

Tokens
Tokens are keywords, identifiers, constants, operators, and separators. Token
separators can be blanks, tabs or comments. Newline characters or semi­
colons separate statements.

Comments Comments are introduced by the characters / * and are ter­
minated by * /.

Identifiers

Keywords

Constants

There are three kinds of identifiers: ordinary identifiers,
array identifiers and function identifiers. All three types
consist of Single lowercase letters. Array identifiers are fol­
lowed by square brackets, enclosing an optional expression
describing a subscript. Arrays are singly dimensioned and
can contain up to 2048 elements. Indexing begins at 0 so an
array can be indexed from 0 to 2047. Subscripts are trun­
cated to integers. Function identifiers are followed by
parentheses, enclosing optional arguments. The three types
of identifiers do not conilict; a program can have a variable
named x, an array named x, and a function named x, all of
which are separate and distinct.

The following are reserved keywords:
base if sqrt auto
obase break length return
scale define while quit
for

Constants are arbitrarily long numbers with an optional
decimal point. The hexadecimal digits A-F are also recog­
nized as digits with decimal values 10-15, respectively.

bc(C)

Expressions
All expressions can be evaluated to a value. The value of an expression is
always printed unless the main operator is an assignment. The precedence of
expressions (that is, the order in which they are evaluated) is as follows:

Function calls
Unary operators
Multiplicative operators
Additive operators
Assignment operators
Relational operators

There are several types of expressions:

Named expressions
Named expressions are places where values are stored. Simply stated,
named expressions are legal on the left side of an assignment. The value
of a named expression is the value stored in the place named.

identifiers
Simple identifiers are named expressions. They have an initial
value of zero.

array-name [expression]
Array elements are named expressions. They have an initial value
of zero.

scale, ibase and obase

Constants

The internal registers scale, ibase, and obase are all named expres­
sions. scale is the number of digits after the decimal point to be
retained in arithmetic operations and has an initial value of zero.
ibase and obase are the input and output number radixes respec­
tively. Both ibase and obase have initial values of 10.

Constants are primitive expressions that evaluate to themselves.

Parenthetic Expressions
An expression surrounded by parentheses is a primitive expression.
The parentheses are used to alter normal operator precedence.

Function Calls
Function calls are expressions that return values. They are discussed in
the next section.

Function calls
A function call consists of a function name followed by parentheses contain­
ing a comma-separated list of expressions, which are the function arguments.
The syntax is as follows:

function-name ([expression [, expression ...]])

45

bc(C)

46

A whole array passed as an argument is specified by the array name followed
by empty square brackets. All function arguments are passed by value. As a
result, changes made to the formal parameters have no effect on the actual
arguments. If the function terminates by executing a return statement, the
value of the function is the value of the expression in the parentheses of the
return statement, or 0 if no expression is provided or if there is no return state­
ment. Three built-in functions are listed below:

sqrt (expr) The result is the square root of the expression and is trun­
cated in the least significant decimal place. The scale of the
result is the scale of the expression or the value of scale,
whichever is larger.

length (expr) The result is the total number of significant decimal digits in
the expression. The scale of the result is zero.

scale (expr) The result is the scale of the expression. The scale of the
result is zero.

Unary operators
The unary operators bind right to left.

-expr The result is the negative of the expression.

++ named_expr The named expression is incremented by one. The result is
the value of the named expression after incrementing.

--named_expr The named expression is decremented by one. The result is
the value of the named expression after decrementing.

named_expr ++ The named expression is incremented by one. The result is
the value of the named expression before incrementing.

named_expr-- The named expression is decremented by one. The result is
the value of the named expression before decrementing.

Multiplicative operators
The multiplicative operators (*, I, and %) bind from left to right.

expr*expr

exprlexpr

expr%expr

The result is the product of the two expressions. If "a" and
lib" are the scales of the two expressions, then the scale of the
result is:

min (a+b, max (scale, a, b))

The result is the quotient of the two expressions. The scale
of the result is the value of scale.

The modulo operator (%) produces the remainder of the
division of the two expressions. More precisely, a%b is
a-a/b*b. The scale of the result is the sum of the scale of the
divisor and the value of scale.

exprAexpr

bc(C)

The exponentiation operator binds right to left. The result is
the first expression raised to the power of the second expres­
sion. The second expression must be an integer. If "a" is the
scale of the left expression and "b" is the absolute value of
the right expression, then the scale of the result is:

min (a*b, max (scale, a))

Additive operators
The additive operators bind left to right.

expr+expr The result is the sum of the two expressions. The scale of the
result is the maximum of the scales of the expressions.

expr-expr The result is the difference of the two expressions. The scale
of the result is the maximum of the scales of the expressions.

Assignment operators
The assignment operators listed below assign values to the named expression
on the left side.

named_expr = expr
This expression results in assigning the value of the expres­
sion on the right to the named expression on the left.

named_expr =+ expr
The result of this expression is equivalent to:
named_expr = named_expr + expr.

named_expr =- expr
The result of this expression is equivalent to:
named_expr = named_expr - expr.

named_expr =* expr
The result of this expression is equivalent to
named_expr = named_expr * expr.

named_expr=/ expr
The result of this expression is equivalent to:
named_expr = named_expr / expr.

named_expr=% expr
The result of this expression is equivalent to:
named_expr = named_expr % expr.

named_expr = A expr
The result of this expression is equivalent to:
named_expr = named_expr A expr.

47

bc(C)

48

Relational operators
Unlike other operators, the relational operators are only valid as the object of
an if or while statement, or inside a for statement.

These operators are listed below:

expr<expr
expr>expr
expr<= expr
expr>= expr
expr==expr
expr!= expr

Storage classes
There are only two storage classes in be: global and automatic (local). Only
identifiers that are to be local to a function need to be declared with the auto
command. The arguments to a function are local to the function. All other
identifiers are assumed to be global and available to all functions.

All identifiers, global and local, have initial values of zero. Identifiers
declared as auto are allocated on entry to the function and released on return­
ing from the function. They, therefore, do not retain values between function
calls. Note that auto arrays are specified by the array namer, followed by
empty square brackets.

Automatic variables in be do not work the same way as in C. On entry to a
function, the old values of the names that appear as parameters and as
automatic variables are pushed onto a stack. Until return is made from the
function, reference to these names refers only to the new values.

Statements
Statements must be separated by a semicolon or a newline. Except where
altered by control statements, execution is sequential. There are four types of
statements: expression statements, compound statements, quoted string
statements, and built-in statements. Each kind of statement is discussed
below:

Expression statements
When a statement is an expression, unless the main operator is an
assignment, the value of the expression is printed, followed by a
newline character.

Compound statements
Statements can be grouped together and used when one statement
is expected by surrounding them with curly braces ({ and }).

Quoted string statements
For example:

"string'

prints the string inside the quotation marks.

bc(C)

Built-in statements
Built-in statements include auto, break, define, for, if, quit, return,
and while.

The syntax for each built-in statement is given below:

Auto statement
The auto statement causes the values of the identifiers to be
pushed down. The identifiers can be ordinary identifiers or
array identifiers. Array identifiers are specified by following
the array name by empty square brackets. The auto statement
must be the first statement in a function definition. Syntax of
the auto statement is:

auto identifier [, identifier]

Break statement
The break statement causes termination of a for or while state­
ment. Syntax for the break statement is:

break

Define statement
The define statement defines a function; parameters to the
function can be ordinary identifiers or array names. Array
names must be followed by empty square brackets. The syntax
of the define statement is:

define ([parameter [, parameter ... J]) {statements}

For statement
The for statement is the same as:

first-expression
while (relation) {

statement
last-expression

All three expressions must be present. Syntax of the for state­
mentis:

for (expression; relation; expression) statement

If statement
The statement is executed if the relation is true. The syntax is as
follows:

if (relation) statement

49

be(C)

Files

See also

Notes

50

Quit statement
The quit statement stops execution of a be program and returns
control to the Operating System when it is first encountered.
Because it is not treated as an executable statement, it cannot be
used in a function definition or in an if, for, or while statement.
Note that entering a (Ctrl)d at the keyboard is the same as enter­
ing "quit". The syntax of the quit statement is as follows:

quit

Return statement
The retum statement terminates a function, pops its auto vari­
ables off the stack, and specifies the result of the function. The
result of the function is the result of the expression in
parentheses. The first form is equivalent to "return(O)". The
syntax of the return statement is as follows:

retum(expr)

While statement
The statement is executed while the relation is true. The test
occurs before each execution of the statement. The syntax of
the while statement is as follows:

while (relation) statement

/usr/lib/lib.be
/usr/bin/de

Mathematical library
Desk calculator proper

de(C)

A for statement must have all three E's.

quit is interpreted when read, not when executed.

Trigonometric values should be given in radians.

bdiff(C)

bdiff
compare files too large for diff(C)

Syntax

bdiff file1 file2 [n] [-s]

Description

File

See also

Notes

The bdiff command compares two files, finds lines that are different, and
prints them on the standard output. It allows processing of files that are too
large for diff. bdiff splits each file into n-line segments, beginning with the
first non-matching lines, and invokes diff upon the corresponding segments.
The arguments are:

n The number of lines bdiff splits each file into for processing. The default
value is 3500. This is useful when 3500-line segments are too large for diff.

-s Suppresses printing of bdiff diagnostics. Note that this does not suppress
printing of diagnostics from diff.

If file1 (or file2) is a dash (-), the standard input is read.

The output of bdiff is exactly that of diff. Line numbers are adjusted to
account for the segmenting of the files, and the output looks as if the files had
been processed whole.

/tmp/bd?????

diff(C)

Because of the segmenting of the files, bdiff does not necessarily find a small­
est sufficient set of file differences.

Specify the maximum number of lines if the first difference is too far down in
the file for diff and an error is received.

51

bjs(C)

bfs
scan big files

Syntax

bfs [-] name

Description

52

bfs is like ed(C) except that it is read-only and processes much larger files.
Files can be up to 1024K bytes and 32K lines, with up to 255 characters per
line. bfs is usually more efficient than ed for scanning a file, since the file is
not copied to a buffer. It is most useful for identifying sections of a large file
where csplit(C) can be used to divide it into more manageable pieces for edit­
ing.

Normally, the size of the file being scanned is printed, in the same way as the
size of any file written with the w command. The optional dash (-) suppresses
printing of sizes. Input is prompted for with an asterisk (*) when "P" and
Return are typed. The "P" acts as a toggle, so prompting can be turned off
again by entering another "P" and a Return. Note that messages are given in
response to errors only if prompting is turned on.

All address expressions described under ed are supported. In addition, regu­
lar expressions may be surrounded with two symbols other than the standard
slash (f) and"?": A greater-than sign (» indicates downward search without
wraparound, and a less-than sign «) indicates upward search without wra­
paround. Note that parentheses and curly braces are special and need to be
escaped with a backslash (\). Since bfs uses a different regular expression­
matching routine from ed, the regular expressions accepted are slightly wider
in scope (see regex(S». Differences between ed and bfs are listed below:

+ A regular expression followed by "+" means "one or more
times". For example, [0-9]+ is equivalent to [0-9][0-9]*.

\{m\} \{m,\} \{m,u\}

(...)$n

Integer values enclosed in \{ \} indicate the number of times the
preceding regular expression is to be applied. m is the mini­
mum number and u is a number, less than 256, which is the
maximum. If only m is present (for example, \(m\}), it indicates
the exact number of times the regular expression is to be
applied. \{m, \} is analogous to \{m,infinity\}. The plus (+) and
star (*) operations are equivalent to \{1,\} and \{O,\} respec­
tively.

The value of the enclosed regular expression is to be returned.
The value will be stored in the (n+ l)th argument following the
subject argument. At most ten enclosed regular expressions are
allowed. regex makes its assignments unconditionally.

b[s(C)

(...) Parentheses are used for grouping. An operator, for example *,
+, \{ and \}, can work on a single character or a regular expres­
sion enclosed in parentheses. For example,

\ (a*\ (cb+\)*\)$0.

There is also a slight difference in mark names: only the letters "a" through "z"
may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =,! and null commands operate as described under ed
except that e does not remember filenames and g and v, when given no argu­
ments, return the line after the line you were on. Commands such as ---,
+++-, +++=, -12, and +4p are accepted. Note that 1,10p and 1,10 will both
print the first ten lines. The f command only prints the name of the file being
scanned; there is no remembered filename. The w command is independent
of output diversion, truncation, or crunching (see the xo, xl and xc commands,
below). The following additional commands are available:

xf file Further commands are taken from the named file. When an end­
of-file is reached or an interrupt signal is received, or an error
occurs, reading resumes with the file containing the xf. xf com­
mands may be nested to a depth of 10.

xo [file] Further output from the p and null commands is diverted to the
named file. If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation of
the file.

: label This positions a label in a command file. The label is terminated
by a newline, and blanks between the" :" and the start of the label
are ignored. This command may also be used to insert comments
into a command file, since labels need not be referenced.

(. , .)xb Iregular expressionllabel
A jump (either upward or downward) is made to label if the com­
mand succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and" $".

2. The second address is less than the first.

3. The regular expression does not match at least one line in the
specified range, including the first and last lines.

On success, dot (.) is set to the line matched and a jump is made to
label. This command is the only one that does not issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note that
the command

xbrllabel

is an unconditional jump.

53

bfs(C)

54

The xb command is allowed only if it is read from somewhere
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number Output from the p and null commands is truncated to a maximum
of number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. xv5100
or xv5 100 both assign the value 100 to the variable 5. xv61,100p
assigns the value 1,100p to the variable 6. To reference a variable,
put a "%" in front of the variable name. For example, using the
above assignments for variables 5 and 6:

1,%5p
1,%5
%6

prints the first 100 lines.

g/%5/p
globally searches for the characters "100" and prints each line con­
taining a match. To escape the special meaning of "%", a "&"
must precede it. For example,

g/".*[cdsl/p

could be used to match and list lines containing printf characters,
decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a UNIX command can be stored into a variable. The only
requirement is that the first character of value be a "!". For exam­
ple,

xv5!cat junk
!rmjunk
!echo "%5"
xv6!expr %6 + 1

puts the current line in variable 5, prints it, and increments the
variable 6 by 1. To escape the special meaning of " !" as the first
character of value, precede it with a" \". For example,

xv7date

stores the value !date into variable 7.

See also

xbz label
xbnlabel

b[s(C)

These two commands test the last saved return code from the
execution of a UNIX command !command) or nonzero value,
respectively, and jump to the specified label. The two examples
below search for the next five lines containing the string size:

xv55
; 1
/size/
xv5!expr %5-1
!if 0%5 != 0 exit 2
xbnl
xv45
; 1
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz 1

xc [switch] If switch is I, output from the p and null commands is
crunched; if switch is 0, it is not. Without an argument, xc rev­
erses switch. Initially switch is set for no crunching. Crunched
output has strings of tabs and blanks reduced to one blank and
blank lines suppressed.

csplit(C), ed(C), umask(C).

Diagnostics

" ?" for errors in commands if prompting is turned off. Self-explanatory error
messages when prompting is on.

55

cal (C)

cal
print a calendar

Syntax

cal [[month] year]

Description

Notes

The cal command prints a calendar for the specified year. If a month is also
specified, a calendar for that month only is printed. If no arguments are speci~
fied, the current, previous, and follOWing months are printed, along with the
current date and time. The year must be a number between 1 and 9999;
month must be a number between 1 and 12 or enough characters to specify a
particular month. For example, May must be given to distinguish it from
March, but S is sufficient to specify September. If only a month string is given,
only that .month of the current year is printed.

Beware that "cal 84" refers to the year 84, not 1984.

The calendar produced is that for England and her colonies. Note that Eng~
land switched from the Julian to the Gregorian calendar in September of 1752,
at which time eleven days were excised from the year. To see the result of this
switch, try "cal 9 1752".

Standards confonnance

cal is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

56

calendar(C)

calendar
invoke a reminder service

Syntax

calendar [-]

Description

Files

See Also

Note

calendar consults the file calendar in the user's current directory and mails the
user lines that contain today's or tomorrow's date. Most reasonable month­
day dates, such as "Sep. 14", "september 14", and "9/14", are recognized, but
not "14 September", or "14/9".

On weekends, "tomorrow" extends through Monday. Lines that contain the
date of a Monday will be sent to the user on the previous Friday. This is not
true for holidays.

When an argument is present, calendar does its job for every user who has a
file calendar in his login directory. Normally this is done daily, in the early
morning, under the control of cron(C).

calendar
/usr/lib/calprog
/etc/passwd
/tmp/cal*

cron(C), mail(C)

To calculate today's and tomorrow's dates

To get reminder service, a user's calendar file must have read permission for
all.

Standards Confonnance

calendar is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

57

cancel(C)

cancel
cancel requests to lineprinter

Syntax

cancel [request-ids] [printers]

Description

See also

The cancel command cancels printer requests that were made by the Ip(C)
shell command. The shell command line arguments may be either request-ids
(as returned by Ip(C» or printer names (for a complete list, use Ipstat(C».
Specifying a request-id cancels the associated request even if it is currently
printing. Specifying a printer cancels the request that is currently printing on
that printer. In either case, the cancellation of a request that is currently print­
ing frees the printer to print its next available request.

Ip(C),lpstat(C)

Standards conformance

cancel is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

58

cat(C)

cat
concatenates and displays files

Syntax
cat [-u] [-s] [-v] [-t] [-e] file ...

Description

Examples

cat reads each file in sequence and writes it on the standard output. If no
input file is given, or if a single dash (-) is given, cat reads from the standard
input. The options are:

-s Suppresses warnings about nonexistent files.

-u Causes the output to be unbuffered.

-v Causes non-printing characters (with the exception of tabs, newlines, and
form feeds) to be displayed. Control characters are displayed as AX
(Ctrl)x), where X is the key pressed with the (Ctrl) key (for example,
(Ctrl)m is displayed as AM). The (Del) character (octal 0177) is printed as
A? Non-ASCII characters (with the high bit set) are printed as M -x, where
x is the character specified by the seven low order bits.

-t Causes tabs to be printed as AI and form feeds as AL. This option is
ignored if the -v option is not specified.

-e Causes a /I $ /I character to be printed at the end of each line (prior to the
new-line). This option is ignored if the -v option is not set.

No input file may have the same name as the output file unless it is a special
file.

The following example displays file on the standard output:
cat file

The following example concatenates filel and file2 and places the result in
file3:

cat file1 file2 >file3

The following example concatenates filel and appends it to file2:
cat file1 » file2

59

cat(C)

See also

Warning

cp(C), pr(C)

Command lines such as:
cat filel file2 > filel

will cause the original data in filel to be lost; therefore, you must be careful
when using special shell characters.

Standards conformance
cat is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

60

cd(C)

cd
change working directory

Syntax

cd [directory]

Description

Note

See also

If specified, directory becomes the new working directory; otherwise the
value of the shell parameter $HOME is used. The process must have search
(execute) permission in all directories (components) specified in the full path­
name of directory.

Because a new process is created to execute each command, cd would be inef­
fective if it were written as a normal command; therefore, it is recognized and
executed by the shell.

If the shell is reading its commands from a terminal, and the specified direc­
tory does not exist (or some component cannot be searched), spelling correc­
tion is applied to each component of directory, in a search for the "correct"
name. The shell then asks whether or not to try and change directory to the
corrected directory name; an answer of n means "nd', and anything else is
taken as "yes".

The KornShell command, ksh, has extensions to the syntax for cd. Please
refer to ksh(C) for more information.

Wildcard designators will work with the cd command.

pwd(C), sh(C), chdir(S)

61

checkmail(C)

checkmail
check for mail which has been submitted but not delivered

Syntax

checkmail [-a] [-£] [-m]

Description

See also

Credit

62

checkmail checks the mail queue on the local machine for messages which
have been sent by the invoker. If invoked without any arguments, the "Sub­
ject:" of each message found is given along with a list of addressees who have
not yet received the message. Usually, messages are still in the queue because
the addressee's host machine is down.

The -a (all addresses) option causes all addresses to be shown (both delivered
and undelivered). Some delivered addresses may not appear since some sites
remove already delivered addresses from the address list files for efficiency.
The -£ (fast) option suppresses the printing of the "Subject" line. The -m (all
messages) option causes checkmail to check all messages in the mail queue,
not just those of the invoker. This is only useful for mail system maintainers
who wish to find obstinate hosts.

deliver(ADM), mmd£(ADM)

MMDF was developed at the University of Delaware and is used with permis­
sion.

ehgrp(C)

chgrp
change group ID

Syntax

chgrp group file ...

Description

chgrp changes the group ID of each file to group. The group may be either a
decimal group ID or a group name found in the file fete/group.

Files

See also

Note

/ete/passwd
fete/group

chown(C), group(F), passwd(FP), chown(S)

Only the owner or the superuser can change the group ID of a file.

Standards confonnance

chgrp is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

63

chmod(C)

chmod
change the access permissions of a file or directory

Syntax
chmod mode file
chmod [who] [+ I-I =] [permission ...] file ...

Description

64

The chmod command changes the access pernusslOns (or "mode") of a
specified file or directory. It is used to control file and directory access by
users other than the owner and super user. The mode may be an expression
composed of letters and operators (called "symbolic mode"), or a number
(called "absolute mode").

A chmod command using symbolic mode has the form:
chmod [who] [+ I-I =] [permission ...] file ...

In place of who you can use anyone, or a combination, of the following
letters:

a Stands for "all users". If who is not indicated on the command line, a
is the default.

g Stands for "group", all users who have the same group ID as the
owner of the file or directory.

o Stands for "others", all users on the system.

u Stands for "user", the owner of the file or directory.

The operators are:

+ Adds permission

- Removes permission

= Assigns the indicated permission and removes all other permissions (if
any) for that variable. If no permission is assigned, existing permissions
are removed.

chmod(C)

Permissions can be any combination of the following letters:

x Execute (search permission for directories)

r Read

w Write

s Sets owner or group ID on execution of the file to that of the owner of
the file. The mode "u+s" sets the user ID bit for the file. The mode
"g+s" sets the group ID bit. Other combinations have no effect.
When the group ID bit is set on a directory, all files created under it
subsequently receive the group ID of that directory. When the group
ID bit is not set, files are created with the group ID of the creating pro­
cess/user.

t This is known as the "sticky bit" (see chmod(S». Only the mode
"u+t" sets the sticky bit. All other combinations have no effect.
When this bit is set on a directory, files within the directory cannot be
removed by anyone but the owner or the super user. Only the super
user can set the sticky bit.

I Mandatory locking will occur during access

Multiple symbolic modes may be given, separated by commas, on a single
command line. See the following "Examples" section for sample permission
settings.

Mandatory file and record locking refers to a file having locked reading or
writing permissions while a program is accessing that file. A file cannot have
group execution permission and be able to be locked on execution. In addi­
tion, it is not possible to turn on the set-group-ID and enable a file to be locked
on execution at the same time. The following examples show illegal uses of
chmod and will generate error messages:

chmod g+x,+l filename

chmod g+s,+l filename

A chmod command using absolute mode has the form:
chmod mode filename

where mode is an octal number constructed by performing logical OR on the
following:

4000 Set user ID on execution

20#0 Set group ID on execution if" #" is 7, 5, 3, or 1 and enable manda­
tory locking if" #" is 6, 4, 2, or O.

1000 Sets the sticky bit (see chmod(S»

65

chmod(C)

Examples

66

0400 Read by owner

0200 Write by owner

0100 Execute (search in directory) by owner

0040 Read by group

0020 Write by group

0010 Execute (search in directory) by group

0004 Read by others

0002 Write by others

0001 Execute (search in directory) by others

0000 No permissions

Symbolic mode
The following command gives all users execute permission for file:

chmod +x file

The following command removes read and write permission for group and
others from file:

chmod go-rw file

The following command gives other users read and write permission for file:
chmod o+rw file

The following command gives read permission to group and others:

chmod g+r,o+r file

Absolute mode
The following command gives all users read, write and execute permission for
file:

chmod 0777 file

The following command gives read and write permission to all users for file:
chmod 0666 file

See also

Notes

chmod(C)

The following command gives read and write permission to the owner of file
only:

chmod 0600 file

The following example causes the file to be locked on access:

chmod +1 file

chmod(S),ls(C)

The setuid, setgid and sticky bit settings have no effect on shell scripts.

Standards confonnance

chmod is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

67

ehown(C)

chown
change owner 10

Syntax

chown owner file ...

Description

Files

See also

Notes

The chown command changes the owner ID of the files to owner. The owner
may be either a decimal user ID or a login name found in the file /ete/passwd.

/ete/passwd
fete/group

chgrp(C), chown(S), group(F), passwd(FP).

Use of this utility is governed by the chown kernel authorization. If this
authorization is not granted, ownership of files can only be changed by root.
Restricted chown is required for NIST FIPS 151-1 conformance. The chown
authorization should not be aSSigned to users if you wish to conform to these
requirements.

Standards confonnance

68

chown is conformant with:

AT&T SVID Issue 2;
NIST FIPS 151-1;
and X/Open Portability Guide, Issue 3, 1989.

clear(C)

clear
clear a terminal screen

Syntax

dear [term]

Description

File

See also

Note

The dear command dears the screen. If term is not specified, the terminal
type is obtained from the TERM environment variable.

If a video terminal does not have a clear screen capability, newlines are out­
put to scroll the screen clear. If the standard output is a hardcopy, the paper
is advanced to the top of the next page.

/etc/termcap

environ(M), termcap(F), tput(C)

If the standard output is not a terminal, dear issues an error message.

69

cmchk(C)

cmchk
report hard disk block sile

Syntax
cmchk

Description

Reports the hard disk block size in 512-byte blocks.

Value added

70

cmchk is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

cmp(C)

cmp
compare two files

Syntax

cmp [-1] [-s] file1 file2

Description

See also

cmp compares two files and, if they are different, displays the byte and line
number of the differences. If file1 is II - ", the standard input is used.

The options are:

-1 Prints the byte number (decimal) and the differing bytes (octal) for
each difference.

-s Returns an exit code only, 0 for identical files, 1 for different files, and 2
for inaccessible or missing files.

This command should be used to compare binary files; use diff(C) or diff3(C)
to compare text files.

comm(C), diff(C), diff3(C)

Standards conformance

cmp is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

71

col (C)

col
filter reverse linefeeds

Syntax

col [-bfxp]

Description

72

col prepares output from processes, such as the text formatter nro££(CT), for
output on devices that limit or do not allow reverse or half-line motions. col
is typically used to process nroff output text that contains tables generated by
the tbl program. A typical command line might be:

tbl file I nro££ I col I Ipr

col takes the following options:

-b Assumes the output device in use is not capable of backspacing. If two
or more characters appear in the same place, col outputs the last charac­
terread.

-£ Allows forward half linefeeds. If not given, col accepts half line motions
in its input, but text that would appear between lines is moved down to
the next full line. Reverse full and half linefeeds are never allowed with
this option.

-x Prevents conversion of whitespace to tabs on output. col normally con­
verts whites pace to tabs wherever possible to shorten printing time.

-p Causes col to ignore unknown escape sequences found in its input and
pass them to the output as regular characters. Because these characters
are subject to overprinting from reverse line motions, the use of this
option is discouraged unless the user is fully aware of the position of the
escape sequences.

col assumes that the ASCII control characters so (octal 016) and 51 (octal 017)
start and end text in an alternate character set. If you have a reverse linefeed
(ESC 7), reverse half Iinefeed (ESC 8), or forward half linefeed (ESC 9), within
an 51-SO sequence, the ESC 7, 8 and 9 are still recognized as line motions.

On input, the only control characters col accepts are Space, Backspace, Tab,
Return, Newline, reverse linefeed (ESC 7), reverse half linefeed (ESC 8), for­
ward half linefeed (ESC 9), alternate character start(SI), alternate character end
(SO), and vertical tag (VT). (The VT character is an alternate form of full
reverse linefeed, included for compatibility with some earlier programs of this
type.) All other non-printing characters are ignored.

See also

Notes

col(e)

nroff(CT), tbl(CT)

col cannot back up more than 128 lines.

col allows at most 800 characters, including backspaces, on a line.

Vertical motions that would back up over the first line of the document are
ignored. Therefore, the first line must not contain any superscripts.

Standards conformance

col is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

73

comm(C)

comm
select or reject lines common to two sorted files

Syntax

comm [-123] filel file2

Description

See also

comm reads filel and file2, which should be ordered according to the collat­
ing sequence defined by the current locale (see sort(C», and produces a three­
column output: lines only in filel; lines only in file2; and lines in both files.
The filename" -" means the standard input.

Flags I, 2, or 3 suppress printing of the corresponding column. Thus
comm -12 prints only the lines common to the two files; comm -23 prints only
lines in the first file but not in the second; comm -123 is a no-op (does
nothing).

cmp(C), diff(C), sort(C), uniq(C)

Standards confonnance

comm is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

74

compress(C)

compress, uncompress, zcat
compress data for storage, uncompress and display compressed files

Syntax

compress [-cdfFqv] [-b bits] file
compress -P fd
uncompress [-fqc] file
uncompress [-P fd]
zcat file

Description

compress - Compresses data

uncompress - Uncompresses data

zcat - Displays compressed files

The compress command takes a file and compresses it to a smaller size
(without loss of information), creates a compressed output file, and removes
the original file unless the -c option is present. Compression is achieved by
encoding common strings within the file. uncompress restores a previously
compressed file to its uncompressed state and removes the compressed ver­
sion. zcat uncompresses and displays a file on the standard output.

If the -P fd option is specified, compress reads a list of file names from the
pipe associated with the file deSCriptor fd. One filename is read from each suc­
cessive 1 K block of data in the pipe. Each filename is null terminated. File
names are read until a null character is encountered at the beginning of a
block or the pipe is closed. Each file is then compressed. The output files
have the same name as, and overwrite, the original files. This option can also
be used with uncompress.

If no file is specified on the command line, input is taken from the standard
input and the output is directed to the standard output. Output defaults to a
file with the same filename as the input file with the suffix ".Z" or it can be
directed through the standard output. The output files have the same permis­
sions and ownership as the corresponding input files or the user's standard
permissions if output is directed through the standard output.

If no space is saved by compression, the output file is not written unless the -F
flag is present on the command line.

If you attempt to compress a symbolic link, the link will be broken and a
compressed copy of the file to which the symbolic link pointed will be created
locally. compress will fail on a file with hard (non-symbolic) links.

75

compress(C)

Options

Notes

See also

The following options are available from the command line:

-b bits Specifies the maximum number of bits to use in encoding.

-c Writes output on the standard output and does not remove original
file.

-d Decompresses a compressed file.

-f Overwrites previous output file.

-F Writes output file even if compression saves no space.

-q Generates no output except error messages, if any.

-v Prints the name of the file being compressed, the percentage of
compression achieved. With uncompress, the name of of the
uncompressed file is printed.

The -P option is provided for internal use by tar(C).

the -v option is not compatible with the -c option.

ar(C), cat(C) pack(C), tar(C)

Value added

76

compress, uncompress and zcat are extensions of AT&T System V provided
by The Santa Cruz Operation, Inc.

copy(C)

copy
copy groups of files

Syntax
copy [option] . .. source ... dest

Description

The copy command copies the contents of directories to another directory. It
is possible to copy whole file systems since directories are made when
needed.

If files, directories, or special files do not exist at the destination, then they are
created with the same modes and flags as the source. In addition, the
superuser may set the user and group ID. The owner and mode are not
changed if the destination file exists.

Note that there may be more than one source directory. If so, the effect is the
same as if the copy command had been issued for each source directory with
the same destination directory for each copy.

Options do not have to be given as separate arguments, and may appear in
any order, even after the other arguments. The options are:

-a Asks the user before attempting a copy. If the response does not
begin with a II y ", then a copy is not done. When used together with
the -v option, it overrides the verbose option so that messages
regarding the copy action are not displayed.

-1 Uses links instead whenever they can be used. Otherwise a copy is
made. Note that links are never made for special files or directories.

-n Requires the destination file to be new. If not, then the copy com­
mand does not change the destination file. The -n flag is meaning­
less for directories. For special files a -n flag is assumed (that is, the
destination of a special file must not exist).

-0 If set, then every file copied has its owner and group set to those of
the source. If not set, then the file's owner is the user who invoked
the program.

-m If set, then every file copied has its modification time and access time
set to that of the source. If not set, then the modification time is set
to the time of the copy.

-r If set, then every directory is recursively examined as it is encoun­
tered. If not set then any directories that are found are ignored.

77

copy(C)

Examples

Note

78

-ad Asks the user whether a -r flag applies when a directory is discover­
ed. If the answer does not begin with a II y ", then the directory is
ignored.

-v Messages are printed that reveal what the program is doing. If used
with the -a option, the -a option is given priority so that it overrides
the verbose option, and the copy action message is not displayed.

Arguments to copy are:

source This may be a file, directory or special file. It must exist. If it is not a
directory, then the results of the command are the same as for the cp
command.

dest The destination must be either a file or directory name that is dif­
ferent from the source.

If the source and destination are anything but directories, then copy acts just
like a cp command. If both are directories, then copy copies each file into the
destination directory according to the flags that have been set.

This command line verbosely copies all files in the current directory to
/tmp/food:

copy -v . /tmp/food

The next command line copies all files, except for those that begin with a
dot (.), and copies the immediate contents of any child directories:

copy * /tmp/logic
This command is the same as the previous one, except that it recursively
examines all subdirectories, and it sets group and ownership permissions on
the destination files to be the same as the source files:

copy -ro * Itmp/logic

Special device files can be copied. When they are copied, any data associated
with the specified device is not copied.

cp(C)

cp
copy files

Syntax

cp filel file2

cp files directory

Description

See also

Notes

There are two ways to use the cp command. With the first way, filel is copied
to file2. Under no circumstance can filel and file2 be identical. With the
second way, directory is the location of a directory into which one or more
files are copied. This directory must exist prior to the execution of the cp
command.

cp follows symbolic links given as arguments.

copy(C), chmod(S), cpio(C), In(C), mv(C), rm(C)

Special device files can be copied. If the file is a named pipe, then the data in
the pipe is copied to a standard file. Similarly, if the file is a device, then the
file is read until the end-of-file is reached, and that data is copied to a stan­
dard file. It is not possible to copy a directory to a file.

Standards conformance

cp is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

79

cpio(C)

epio
copy file archives in and out

Syntax

cpio -0 [aBcLvV] [-Cbufsize] [[-Ofile] [-Kvolumesize] [-Mmessage]]

cpio -i [AbBcdkmrtTuvVfsS6] [-Cbufsize] [[-Ifile] [-Mmessage]]
[pattern ...]

cpio -p [adlLmuvV] directory

Description

80

cpio -0 (copy out) reads the standard input to obtain a list of pathnames and
copies those files onto the standard output together with pathname and status
information. Output is padded to a 512-byte boundary by default.

cpio -i (copy in) extracts files from the standard input, which is assumed to be
the product of a previous cpio -0. Only files with names that match patterns
are selected. patterns are regular expressions given in the filename­
generating notation of sh(C). In patterns, metacharacters ?, *, and [...] match
the slash U) character, and backslash (\) is an escape character. A II !" meta­
character means not. (For example, the !abc* pattern would exclude all files
that begin with abc.) Multiple patterns may be specified and if no patterns
are specified, the default for patterns is "*" (that is, select all files). Each pat­
tern must be enclosed in double quotes; otherwise, the name of a file in the
current directory is used. Extracted files are conditionally created and copied
into the current directory tree based upon the options described below. If
cpio is used to copy files by a process without appropriate privileges, the
access permissions are set in the same fashion that creat() would have set
them when given the mode argument, matching the file permissions supplied
by the c _mode field of the cpio format. The owner and group of the files will
be that of the current user unless the user is super user, which causes cpio to
retain the owner and group of the files of the previous cpio -0.

NOTE: If cpio -i tries to create a file that already exists and the existing file is
the same age or newer, cpio will output a warning message and not replace
the file. (The -u option can be used to unconditionally overwrite the existing
file.)

cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree
based upon the options described below. Archives of text files created by
cpio are portable between implementations of UNIX System V.

cpio(C)

The meanings of the available options are:

-a Reset access times of input files after they have been copied. Access
times are not reset for linked files when cpio -pIa is specified.

-A Suppresses absolute filenames. A leading II /" character is removed
from the filename during copy-in. If a pattern is provided, it should
match the relative (rather than the absolute) pathname.

-b Reverse the order of the bytes within each word. Use only with the
-i option.

-B Input/output is to be blocked 5,120 bytes to the record. The default
buffer size is 512 bytes when this and the -C options are not used.
(-B does not apply to the pass option; -B is meaningful only with
data directed to or from a character-special device, for example,
/dev/rdsk/fOq15dt.)

-c Write header information in ASCII character form for portability.
Always use this option when origin and destination machines are
different types.

-Cbufsize
Input/output is to be blocked bufsize bytes to the record, where buf­
size is replaced by a positive integer. The default buffer size is 512
bytes when this and -B options are not used. (-C does not apply to
the pass option; -C is meaningful only with data directed to or from
a character-special device, for example, /dev/rmt/cOsO.) When used
with the -K option, bufsize is forced to be a 1K multiple.

-d Directories are to be created as needed.

-£ Copy in all files except those in patterns. (See the paragraph on
cpio -i for a description of patterns.)

-Ifile Read the contents of file as input. If file is a character-special device,
when the first medium is full, replace the medium and type a car­
riage return to continue to the next medium. Use only with the -i
option.

-k Attempt to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is cor­
rupted or out of sequence, this option lets you read only those files
with good headers. (For cpio archives that contain other cpio
archives, if an error is encountered, cpio may terminate prematurely.
cpio will find the next good header, which may be one for a smaller
archive, and terminate when the smaller archive's trailer is encoun­
tered.) Used only with the -i option.

81

cpio(C)

82

-Kvolumesize
Specifies the size of the media volume. Must be in 1K blocks. For
example, a 1.2 MB floppy disk has a volumesize of 1200. Must
include the -C option with a bufsize multiple of 1K. If you specify an
incorrect size with -K, the command executes without error, but cpio
generates the message "out of sync: bad magic" when the volume is
read. (-K is not available with cpio -i.)

-1 Whenever possible, link files rather than copying them. Usable only
with the -p option.

-L Follow symbolic links.

-m Retain previous file modification time. This option is ineffective on
directories that are being copied.

-Mmessage
Define a message to use when switching media. When you use the
-0 or -I options and specify a character-special device, you can use
this option to define the message that is printed when you reach the
end of the medium. One %d can be placed in the message to print
the sequence number of the next medium needed to continue.

-Ofile Direct the output of cpio to file. If file is a character-special device,
when the first medium is full, replace the medium and type a car­
riage return to continue to the next medium. Use only with the -0

option.

-r Interactively rename files. If the user types a null line, the file is
skipped. If the user types a ".", the original pathname will be
copied. (Not available with cpio -p.)

-s Swap bytes within each half word. Use only with the -i option.

-S Swap halfwords within each word. Use only with the -i option.

-T Truncate long filenames to 14 characters. Use only with the -i
option.

-t Print a table of contents of the input. No files are created.

-u Copy unconditionally (normally, an older file will not replace a
newer file with the same name).

-v Verbose: causes a list of file names to be printed. When used with
the -t option, the table of contents looks like the output of an Is -1
command (see Is(C».

-V. Special Verbose: print a dot for each file seen. Useful to assure the
user that cpio is working without printing out all file names.

Examples

cpio(C)

-6 Process an old (that is, UNIX System Sixth Edition format) file. Use
only with the -i option.

NOTE: cpio assumes 4-byte words.

If cpio reaches end of medium (end of a diskette for example) when writing to
(-0) or reading from (-i) a character-special device, and -0 and -I are not used,
cpio will print the message:

If you want to go on, type device/file name
when ready.

To continue, you must replace the medium and type the character-special de­
vice name (/dev/rdsk/fOqlSdt for example) and a carriage return. You may want
to continue by directing cpio to use a different device. For example, if you
have two floppy drives, you may want to switch between them so cpio can
proceed while you are changing the floppies. (A carriage return alone causes
the cpio process to exit.)

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -0, it groups the files
so they can be directed (» to a single file (. . /newfile). The -c option insures
that the file will be portable to other machines. Instead of Is(C), you could use
find (C), echo(C), cat(C), etc., to pipe a list of names to cpio. You could direct
the output to a device instead of a file.

Is I cpio -oc > .. /newfile
cpio -i uses the output file of cpio-o (directed through a pipe with cat in the
example), extracts those files that match the patterns (memo/al, memo/b*),
creates directories below the current directory as needed (-d option), and
places the files in the appropriate directories. The -c option is used when the
file is created with a portable header. If no patterns were given, all files from
new file would be placed in the directory.

cat newfile I cpio -icd "memo/al" ''memo/b*''
cpio-p takes the file names piped to it and copies or links (-1 option) those files
to another directory on your machine (newdir in the example). The -d option
says to create directories as needed. The -m option says retain the modifica­
tion time. (It is important to use the -depth option of find(C) to generate path
names for cpio. This eliminates problems cpio could have trying to create
files under read-only directories.)

find. -depth -print I cpio -pdlmv newdir

83

cpio(C)

See also

Notes

cat(C), echo(C), find (C), Is(C), tar(C), cpio(F)

1. Path names are restricted to 256 characters.

2. Only the super user can copy special files.

3. Blocks are reported in 512-byte quantities.

4. If a file has 000 permissions, contains more than 0 characters of data, and
the user is not root, the file will not be saved or restored.

When find is used in conjunction with cpio, if the -L flag is used with cpio
(follow symbolic links), then the -follow expression must be used with find.

Standards conformance

cpio is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

84

cronce)

eron
execute commands scheduled by at, batch, and crontab

Syntax

/etc/cron

Description

Files

See also

The cron command is the clock daemon that executes commands at specified
dates and times. cron processes jobs submitted with at(C), batch(C), and
crontab(C). cron never exits; the cron command usually appears in the /etc/rc2
scripts to be invoked by init(M) when the system is brought up in multi-user
mode.

/etc/default/cran
/usr/lib/eron
/usr /lib /eran/atjabs
/usr /spaal/ eran/erantabs
/usr/lib/eron/lag
/usr /lib /eran/queuedefs
/usr/lib/eran/.prato

cron logging default information
main cron directory
at directory
crontab directory
accounting information
cron data file
cron environment information

at(C), crontab(C), queuedefs(F), sg(C), sh(C)

Diagnostics

Notes

A history of all actions by cron can be recorded in /usr/lib/cron/log. This log­
ging occurs only if the variable CRONLOG is set to YES in /ete/default/cran. By
default this value is set to NO and no logging occurs. If logging is turned on,
be sure to check the size of the log file regularly.

cron will set the supplemental group list to that of the user requesting the job.

Standards confonnance

cron is conformant with AT&T SVID Issue 2.

85

crontab(C)

crontab
schedule commands to be executed at regular intervals

Syntax
crontab [file]

crontab ·r

crontab -1

crontab -u user -r

crontab -u user-l

Description

86

The crontab command can be used to schedule commands to be executed at
regular intervals. These commands are stored in the user's crontab file,
/usr/spool/cron/crontabs/username. Any output or errors generated by the com­
mands are mailed to the user.

If called with no options, crontab copies the specified file, or standard input if
no file is specified, into the crontabs directory (if the user has a previous
crontab file, it is replaced).

crontab with the -r option removes the user's crontab file from the crontabs
directory.

crontab with the -1 option lists the contents of the user's crontab file.

The -u option allows crontab to maniplulate a different crontab file from
invoking users. If crontab is used from an su session then crontab by default
will manipulate the su'ed users crontab file. The -u option may be used to
direct crontab to manipulate the original login user's crontab file instead. The
super user (root) can also use the -u option to manipulate any users crontab
file.

If the file /usr/lib/cron/cron.allow exists, only the users listed in that file are
allowed to use crontab. If cron.allow does not exist, and the file
/usr/lib/cron/cron.deny does, then all users not listed in cron.deny are allowed
access to crontab, with an empty cron.deny allowing global usage. If neither
file exists, only the super user is allowed to submit a job. The allow/deny files
consist of one user name per line.

Examples

erontab(C)

The erontabs files consist of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the minute
(0-59), hour (0-23), day of the month (1-31), month of the year (1-12), and day
of the week (0-6, with O=Sunday). Each of these patterns may contain:

• A number in the (respective) range indicated above

• Two numbers separated by a minus (indicating an inclusive range)

• A list of numbers separated by commas (meaning all of these numbers)

• An asterisk (meaning all legal values)

Note that the specification of days may be made by two fields (day of the
month and day of the week). If both are specified as a list of elements, both
are adhered to. For example, 0 01,15 * 1 would run a command on the first
and fifteenth of each month, as well as on every Monday. To specify days by
only one field, the other field should be set to II *" (for example, 0 0 * * 1
would run a command only on Mondays).

The sixth field is a string that is executed by the shell at the specified time(S).
A "%" in this field is translated into a newline character. Only the first line
(up to a "%" or end-of-line) of the command field is executed by the shell.
The other lines are made available to the command as standard input.

The shell is invoked from your $HOME directory with an argO of sh. Users
who desire to have their .profile executed must explicitly do so in the crontab
file. cron supplies a default environment for every shell, defining HOME,
LOGNAME, SHELL (=/bin/sh), and PATH(=/bin:/usr/bin:).

An example erontabs file follows:
o 4 * * * calendar-
15 4 * * * find /usr/preserve -mtime +7 -exec rm -f {} ;
30 4 1 * 1 /usr/lib/uucp/uuclean
40 4 * * * find / -name '#*' -atime +3 -exec rm -f {} ;
1,21,41 * * * * (echo -n ' '; date; echo) >/dev/console

The lines in this example do the following: run the calendar program every
night at 4:00 am, clear old files from the fete/preserve directory every night at
4:15 am, clean up the uucp spool directory every Monday and the first of
every month at 4:30 am, find and remove any old files with names beginning
with "#" every night at 4:40 am, and echo the current date and time to the
console three times an hour at one minute, 21 minutes, and 41 minutes past
the hour.

87

crontab(C)

Files

See also

/usr/lib/cron
/usr/spool/cron/crontabs
/usr/lib/cron/cron.allow
/usr/lib/cron/cron.deny
/usr/lib/cron/.proto
/usr /lib /cron/queuedefs

at(C), cron(C), sh(C)

main cron directory
crontab directory
list of allowed users
list of denied users
cron environment information
cron data file

Diagnostics

Notes

88

crontab exits and returns a value of 55 if it cannot allocate enough memory. If
it exits for any other reason, it returns a value of 1.

If the user (of -u user) does not exist, crontab returns a value of 1 and an error
message.

crontab commands are executed by cron(C). cron reads the files in the cron­
tabs directory only on startup or when a new crontab is submitted with the
crontab command, so changes made to these files by hand will not take effect
until the system is rebooted. Changes submitted with the crontab conunand
will take effect as soon as cron is free to read them (that is, when cron is not in
the process of running a scheduled job or reading another newly submitted
at(C) or crontab job).

Users who do not wish to have output from their commands mailed to them
may want to redirect it to a file:

o * * * * who» /tmp/whofile 2> /dev/null

The example above would append the output of the who(C) command to a
file, and throwaway any errors generated. For more details on output
redirection, see the sh(C) manual page.

Users should remember to redirect the standard output and standard error of
their commands, otherwise any generated output or errors will be mailed to
the user.

crontab will overwrite any previous crontab submitted by the same user.

crontab(C)

Standards confonnance

crontab is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

89

crypt(C)

crypt
encode/decode

Syntax
crypt [password]

crypt [-k]

Description

90

The crypt command reads from the standard input and writes to the standard
output. The password is a key that selects a particular transformation. If no
argument is given, crypt demands a key from the terminal and turns off print­
ing to the screen while the key is being typed in. If the -k option is used, crypt
will use the key assigned to the environment variable CRYPTKEY. The crypt
command encrypts and decrypts with the same key:

crypt key <clear >cypher

crypt key <cypher I pr
Files encrypted by crypt are compatible with those treated by the editors
ed(C), edit, ex(C), and vi(C) in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be infeasi­
ble; "sneak paths" by which keys or clear text can become visible must be
minimized.

The crypt command implements a one-rotor machine designed along the lines
of the German Enigma, but with a 256-element rotor. Methods of attack on
such machines are known, but not widely; moreover the amount of work
required is likely to be large.

The transformation of a key into the internal settings of the machine is deli­
berately designed to be expensive, that is, to take a substantial fraction of a
second to compute. However, if keys are restricted to (say) three lower-case
letters, then encrypted files can be read by expending only a substantial frac­
tion of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visible to
users executing ps(C) or a derivative. To minimize this possibility, crypt takes
care to destroy any record of the key immediately upon entry. The choice of
keys and key security are the most vulnerable aspect of crypt.

File

See also

Notes

crypt(C)

/dev/tty for typed key

ed(C), ex(C), makekey(ADM), ps(C), stty(C), vi(C)

If two or more files encrypted with the same key are concatenated and an
attempt is made to decrypt the result, only the contents of the first of the origi­
nal files will be decrypted correctly.

Distribution of the crypt libraries and utilities is regulated by the u.s. Govern­
ment and they are not available to sites outside of the United States and its
territories. Because we cannot control the destination of the software, these
utilities are not included in the standard product. If your site is within the
U.S. or its territories, you can obtain the crypt software through your product
distributor or reseller.

91

csh(C)

csh
invoke a shell command interpreter with C-Iike syntax

Syntax

esh [-eefinstvVxX] [arg .. ,]

Description

92

esh is a command language interpreter. When it is first invoked, esh executes
commands from the file .cshrc, located in the home directory of the user. If it
is a login shell, it then executes commands from the file .login (in the same
directory). Subsequently, if it is running in interactive mode, esh reads com­
mands from the terminal, prompting the user for each new line by printing a
"%". Arguments to the shell, and the use of the shell to process files contain­
ing command scripts, will be described later.

The shell repeatedly performs the following actions: a line of command input
is read and broken into words. This sequence of words is placed on the com­
mand history list and then parsed. Finally, each command in the current line
is executed.

When a login shell terminates, it executes commands from the file .logout in
the user's home directory.

Lexical structure
The shell splits input lines into words at blanks and tabs with the following
exceptions. The characters & I ; < > (and) are treated as separate words.
Some of these characters can be paired up; the following pairs (&&, I I, «,
») are treated as single words. In order to use these metacharacters within
other words, their special meaning must be suppressed by preceding them
with a backslash (\). A newline preceded by a II \ " is equivalent to a blank.

In addition, strings enclosed in matched pairs of quotations, ('), (') or ("), form
parts of a word; metacharacters in these strings, including blanks and tabs, are
not treated as separate words. The semantics of quoted strings are described
below. Within quoted strings delimited by pairs of (') or (") characters, a new­
line preceded by a II \" gives a true newline character.

If the shell reads the character II #" in its input, it treats the rest of the current
line (that is, all the text to the right of the II #") as a comment, and ignores it.
The II #" character loses this special meaning if it is preceded by a backslash
character (\) or placed inside quotation marks (', " or ").

csh(C)

Commands
A simple command is a sequence of words, the first of which specifies the
command to be executed. A simple command or a sequence of simple com­
mands separated by " I " characters (pipes) forms a pipeline. The output from
each command in a pipeline is used as the input to the next command.
Sequences of pipelines may be separated by semi-colons (i)i the elements of
such a sequence are executed sequentially. A sequence of pipelines may be
executed without waiting for it to terminate by ending the command line with
an ampersand character (&). Such a sequence is protected from termination
by hangup signals sent by the shelli the nohup command need not be used.

Any of the above commands may be placed in parentheses to form a new sim­
ple command (which in turn may be used as a component of a pipeline or
some other more complex command.) It is also possible to separate pipelines
with the "&&" or " I I " expressions: these stand for logical-OR and logical­
AND respectively. (Due to an historical bug, csh assigns these symbols the
opposite meaning to that assumed by the "C" programming language and
other UNIX utilities.) Use of these expressions makes the execution of the
second pipeline conditional upon the success (logical-AND) or failure
(logical-OR) of the first. (See "Expressions" for more information.)

Substitutions
The following sections describe the various transformations the shell per­
forms on the input in the order in which they are carried out.

History substitutions
History substitutions can be used to reintroduce sequences of words from
previous commands, possibly altering them in the process. Thus, history sub­
stitutions provide a general redo facility.

History substitutions begin with the character "!" and may begin anywhere
in the input stream unless a history substitution is already in progress. A"!"
preceded by a backslash (\), or followed by a space, tab, newline, "= 11 or "(",
is treated as a literal" !" and its special meaning is suppressed. History sub­
stitutions may also occur when an input line begins with "A ". This special
abbreviation will be described later.

The text of any input line containing a history substitution is echoed on the
terminal after the substitution has been carried out, so that the user can see
the literal command that is being executed.

Commands entered at the terminal and consisting of one or more words are
saved on the history list, the size of which is controlled by the history vari­
able. The previous command is always retained. Commands are assigned
numbers incrementally, starting with" 1 " (the first command executed under
the current csh).

93

csh(C)

94

For example, enter the command:
history

This internal command causes csh to print a list of the commands stored on
the history list, along with their event numbers. Now, consider the following
(sample) output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

It is not usually necessary to use event numbers, but the current event number
can be made part of the prompt by placing a " ! " in the prompt string.

If the current event (the current command line) is 13, we can refer to previous
command lines in several ways:

By event number:
!11

to re-run cat oldwrite. c

By relative event number:
!-2

to go back two events; this will also re-run cat oldwri te. c

By part of a command:
!d

will re-run the most recent command starting with a "d", in this case diff
*write. c, while:

!?mic?

will re-run the most recent command containing the string "mic"; write
michael

These forms simply reproduce the words of the specified event, each
separated by a single blank. The special case"!!" refers to the previous com­
mand; thus the history substitution 1/ !!" means "repeat the last command."
The form" !#" references the current command (the one being entered on the
current line). It allows a word to be selected from further left in the line, for
example to avoid retyping a long name, as in " !#:1".

csh(C)

To select words from an event, we can follow the event specification by a
colon (:) and a designator for the desired words. The words of an input line
are numbered from 0, the first (usually command) word being 0, the second
word (first argument) being I, and so on. The basic word designators are:

o First (command) word

n nth argument

First argument, that is, 1

$ Last argument

% Word matched by (immediately preceding) ?s? search

x-y Range of words

-y Abbreviates O-y

* Abbreviates ~ -$, or nothing if only 1 word in event

x* Abbreviates x-$

x- Like x* but omitting word $

The" : /I separating the event specification from the word designator can be
omitted if the argument selector begins with a ~,$, *, - or %. After the optional
word designator, a sequence of modifiers can be placed, each preceded by a
colon. The following modifiers are defined:

h Removes a trailing pathname component

r Removes a trailing .xxx component

e Returns the trailing .xxx pathname component

sllirl Substitutes r for I

t Removes all leading pathname components

& Repeats the previous substitution

g Applies the change globally, prefixing the above

p Prints the new command but does not execute it

q Quotes the substituted words, preventing substitutions

x Like q, but breaks into words at blanks, tabs, and newlines

Unless preceded by a " g ", the modification is applied only to the first modifi­
able word. In any case it is an error for no word to be applicable.

95

csh(C)

96

The left sides of substitutions are not regular expressions like those recog­
nized by the editors, but rather strings. Any character may be used as the de­
limiter instead of " /"; if it is necessary to include an instance of the delimiter
character within one of the substitution strings, its special meaning may be
removed by preceding it with a 1/ \ ". An ampersand character (&) in the right
side of a substitution is replaced by the text from the left side of the substitu­
tion. An ampersand preceded by a backslash (\&) is treated as a literal
ampersand (&) with no special meaning. A null 1 uses the previous string
either from an 1 or from a contextual scan string 5 in "!?s?/I. The trailing de­
limiter in the substitution may be omitted if a newline follows immediately,
as may the trailing" ? /I in a contextual scan.

A history reference may be given without an event specification (for example,
!$). It is assumed that the reference is to the previous command unless a his­
tory substitution precedes it on the same line, in which case it is assumed to
refer to the last event substitution. Thus !?foon$ gives the first and last argu­
ments from the command matching ?foo?

A special abbreviation of a history reference occurs when the first nonblank
character of an input line is a "A /I. This is equivalent to !:SA, providing a con­
venient shorthand for substitutions on the text of the previous line. Thus
AlbAlib fixes the spelling of lib in the previous command. Finally, a history
substitution may be surrounded with "{ /I and "} /I if necessary to insulate it
from the characters that follow. Thus, after Is -ld Npaul we might do !{l}a to
do Is -ld Npaula, while !la would look for a command starting lao

Quotations with ' and "
Quoted (') or double quoted (") strings are exempt from some or all of the sub­
stitutions. Strings enclosed in single quotes are not subject to interpretation.
Strings enclosed in double quotes are subject to variable and command
expansion. Since history (!) substitution occurs within all quotes, you must
escape" ! /I with a backslash (\) even within quotes if you want to prevent his­
tory substitution.

In both cases, the resulting text becomes (all or part of) a single word; only in
one special case (see "Command substitution/l below) does a double quoted
string yield parts of more than one word; single quoted strings never do.

Alias substitution
The shell maintains a list of aliases which can be established, displayed and
modified by the alias and unalias commands. After a command line is
scanned, it is parsed into distinct commands and the first word of each com­
mand, left-to-right, is checked to see if it has an alias. If it does, then the text
of the alias for that command is reread, and the history mechanism is applied
to it as though that command were the previous input line. The resulting
words replace the command and argument list. If no reference is made to the
history list, then the argument list is left unchanged.

csh(C)

Thus, if the alias for "Is" is "Is -I", the command "Is lusr" would map to
"Is -1 lusr". Similarly if the alias for "lookup" was "grep \r letc/passwd",
then "lookup bill" would map to "grep bill letc/passwd".

If an alias is found, the word transformation of the input text is performed
and the aliasing process begins again on the newly generated input line.
Looping is prevented by flagging the first word of the old text; if the first
word of the new text is the same, further aliasing is prevented. Other loops
are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus
we can say:

alias print 'pr :* I lpr'

to make a command that paginates its arguments to the lineprinter.

There are four csh aliases distributed. These are pushd, popd, swapd, and
flipd. These aliases maintain a directory stack.

pushd dir Pushes the current directory onto the top of the directory stack,
then changes to the directory dir.

popd Changes to the directory at the top of the stack, then removes
(pops) the top directory from the stack, and announces the
current directory.

swapd Swaps the top two directories on the stack. The directory on the
top becomes the second to the top, and the second to the top
directory becomes the top directory.

flipd Flips between two directories, the current directory and the top
directory on the stack. If you are currently in dirl, and dir2 is on
the top of the stack, when flipd is invoked you change to dir2
and dirl is replaced as the top directory on the stack. When
flipd is again invoked, you change to dirl and dir2 is again the
top directory on the stack.

Variable substitution
The shell maintains a set of variables, each of which has a list of zero or more
words as its value. Some of these variables are set by the shell or referred to
by it. For instance, the argv variable is an image of the shell's argument list,
and words of this variable's value are referred to in special ways.

The values of variables may be displayed and changed by using the set and
unset commands. Of the variables referred to by the shell a number are tog­
gles; the shell does not care what their value is, only whether they are set or
not. For instance, the verbose variable is a toggle which causes command
input to be echoed. The setting of this variable results from the -v command
line option.

97

csh(C)

98

Other operations treat variables numerically. The at-sign (@) command per­
mits numeric calculations to be performed and the result assigned to a vari­
able. However, variable values are always represented as (zero or more)
strings. For the purposes of numeric operations, the null string is considered
to be zero, and the second and subsequent words of multiword values are
ignored.

After the input line is aliased and parsed, and before each command is exe­
cuted, variable substitution is performed, keyed by dollar sign ($) characters.
This expansion can be prevented by preceding the dollar sign with a
backslash (\) except within double quotation marks (") where it always
occurs, and within single quotation marks (') where it never occurs. Strings
quoted by back quotation marks (') are interpreted later (see "Command sub­
stitution" below) so dollar sign substitution does not occur there until later, if
at all. A dollar sign is passed unchanged if followed by a blank, tab, or end­
of-line.

Input and output redirections are recognized before variable expansion, and
are expanded separately. Otherwise, the command name and entire argu­
ment list are expanded together. It is thus possible for the first (command)
word to generate more than one word, the first of which becomes the com­
mand name, and the rest of which become arguments.

Unless enclosed in double quotation marks or given the:q modifier, the
results of variable substitution may eventually be subject to command and
filename substitution. Within double quotation marks ("), a variable whose
value consists of multiple words expands to a portion of a single word, with
the words of the variable's value separated by blanks. When the:q modifier is
applied to a substitution, the variable expands to multiple words with each
word separated by a blank and quoted to prevent later command or filename
substitution.

The following sequences are provided for introducing variable values into the
shell input. Except as noted, it is an error to reference a variable which is not
set.

$name
${name} Are replaced by the words of the value of variable name, each

separated by a blank. Braces insulate name from following char­
acters which would otherwise be part of it. Shell variables have
names consisting of up to 20 letters, digits, and underscores.

If name is not a shell variable, but is set in the environment, then
that value is returned (but: modifiers and the other forms given
below are not available in this case).

csh(C)

$name[selector]
${name[selector]}

$#name
${#name}

$0

$number
${number}

$*

May be used to select only some of the words from the value of
name. The selector is subjected to $ substitution and may con­
sist of a single number or two numbers separated by a "_". The
first word of a variable's value is numbered 1. If the first num­
ber of a range is omitted it defaults to 1. If the last member of a
range is omitted it defaults to $#name. The selector II *" selects
all words. It is not an error for a range to be empty if the second
argument is omitted or in range.

Gives the number of words in the variable. This is useful for
later use in a [selector].

Substitutes the name of the file from which command input is
being read. An error occurs if the name is not known.

Equivalent to $argv[number].

Equivalent to $argv[*].

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions above as
may :gh, :gt and :gr. If braces ({ and}) appear in the command form then the
modifiers must appear within the braces. Only one ": " modifier is allowed on
each II $" expansion.

The following substitutions may not be modified with II : " modifiers.

$?name
${?name}

$?O

$$

Substitutes the string 1 if name is set, 0 if it is not.

Substitutes 1 if the current input filename is known, 0 if it is not.

Substitutes the (decimal) process number of the (parent) shell.

Command and filename substitution
Command and filename substitution are applied selectively to the arguments
of built-in commands. This means that portions of expressions which are not
evaluated are not subjected to ,these expansions. For commands which are
not internal to the shell, the command name is substituted separately from the
argument list. This occurs very late, after input-output redirection is per­
formed, and in a child of the main shell.

99

csh(C)

100

Command substitution
Command substitution is indicated by a command enclosed in back quotation
marks ('). The output from such a command is normally broken into separate
words at blanks, tabs and newlines, with null words being discarded. This
text then replaces the original string. Within double quotation marks, only
newlines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is
possible for a command substitution to yield only part of a word, even if the
command outputs a complete line.

Filename substitution
If a word contains any of the characters * ? [{ or begins with the character" - ",
then that word is a candidate for filename substitution, also known as glob­
bing. This word is then regarded as a pattern, and is replaced with an alpha­
betically sorted list of filenames which match the pattern. In a list of words
specifying filename substitution it is an error for no pattern to match an exist­
ing filename, but it is not required for each pattern to match. Only the meta­
characters" * ", "? ", and" [" imply pattern matching. The characters" -" and
II {" are more akin to abbreviations.

In matching filenames, the character "." at the beginning of a filename or
immediately following a " / ", as well as the character" /" must be matched
explicitly. The character" *" matches any string of characters, including the
null string. The character "?" matches any single character. The sequence
within square brackets ([and]) matches anyone of the characters enclosed.
Within square brackets, a pair of characters separated by "-" matches any
character lexically between the two.

The character" -" at the beginning of a filename is used to refer to home direc­
tories. Standing alone, it expands to the invoker's home directory contained
in the variable HOME. When" -" is followed by a name consisting of letters,
digits, and underscore characters (like_this), the shell searches for a user with
that name and substitutes their home directory; thus Ken might expand to
/usr/ken and Kenlchmach to /usr/ken/chmach. If the character "-,, is followed
by a character other than a letter or " / ", or if it does not appear at the begin­
ning of a word, it is left unchanged.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left to right order
is preserved, with results of matches being sorted separately at a low level to
preserve this order. Thus -source/sl/{oldls,ls}.c expands to
/usr/source/sl/o1dls.c /usr/source/sl/1s.c, whether or not these files exist, assuming
that the home directory for source is /usr/source. Similarly .. /{memo,*box}
might expand to .. /memo .. /box .. /mbox. (Note that memo was not sorted with
the results of matching *box.) As a special case" {", "}" and" {}" are passed
unchanged. This construct can be nested.

csh(C)

Spelling checker
If the local variable cdspeU has been set, the shell checks spelling whenever
you use cd to change directories. For example, if you change to a different
directory using cd and misspell the directory name, the shell responds with an
alternative spelling of an existing directory. Enter "y" and press (Return) (or
just press (Return» to change to the offered directory. If the offered spelling is
incorrect, enter "n', then retype the command line. In this example the csh
response is boldfaced:

% cd /usr/spol/uucp
/usr/spool/uucp? y
ok

Input/Output
The standard input and standard output of a command may be redirected
with the following syntax:

<name

«word

> name
>! name
>&name
>&! name

Opens file name (after variable, command and filename expan­
sion) as the standard input.

Reads the shell input up to a line which is identical to word.
word is not subjected to variable, filename or command substi­
tution, and each input line is compared to word before any sub­
stitutions are done on this input line. Unless a quoting
backslash, double, or single quotation mark, or a back quotation
mark appears in word, variable and command substitution is
performed on the intervening lines, allowing" \ " to quote" $",
"\" and "'''. Commands which are substituted have all blanks,
tabs, and newlines preserved, except for the final newline which
is dropped. The resulting text is placed in an anonymous tem­
porary file which is given to the command as standard input.

The file name is used as standard output. If the file does not
exist, then it is created; if the file exists, it is overwritten.

If the variable no clobber is set, then an error results if the file
already exists or if it is not a character special file (for example, a
terminal or /dev/null). This helps prevent accidental destruction
of files. In this case, the " ! " forms can be used to suppress this
check.

The forms involving "&" route the standard error into the
specified file as well as the standard output. name is expanded
in the same way as " <" input filenames are.

101

csh(C)

102

»name
»&name
»! name
»&!name Uses file name as standard output like 1/ > 1/ but places output at

the end of the file. If the variable noclobber is set, then it is an
error for the file not to exist unless one of the 1/ ! " forms is given.
Otherwise similar to 1/ > ".

If a command is run in the background (followed by 1/ &") then the default
standard input for the command is the empty file /dev/null. Otherwise, the
command receives the input and output parameters from its parent shell.
Thus, unlike some previous shells, commands run from a file of shell com­
mands have no access to the text of the commands by default; rather they
receive the original standard input of the shell. The« mechanism should be
used to present inline data. This permits shell command scripts to function as
components of pipelines and allows the shell to block read its input.

The standard error may be directed through a pipe with the standard output.
Simply use the form" I &" rather than just 1/ I ".

Expressions
A number of the built-in commands (to be described later) take expressions,
in which the operators are similar to those of C, with the same precedence.
These expressions appear in the @, exit, if, and while commands. The follow­
ing operators are available:

I I && I ~ & == != <= >= < > « »
+-*/%!-()

Here the precedence increases to the right, == and !=, <=, >=, <, and >,« and
», + and -, * / and % being, in groups, at the same level. The == and !=
operators compare their arguments as strings, all others operate on numbers.
Strings which begin with "0" are considered octal numbers. Null or missing
arguments are considered O. The result of all expressions are strings, which
represent decimal numbers. Note that no two components of an expression
can appear in the same word unless the word is adjacent to components of
expressions that are syntactically significant to the parser (& I < > (». These
components should be surrounded by spaces.

Also available in expressions as primitive operands are command executions
enclosed in " {" and "}" and file enquiries of the form -1 name where 1 is one
of:

r Read access
w Write access
x Execute access
e Existence
0 Ownership
z Zero size
f Plain file
d Directory

csh(C)

Command and filename expansion is applied to the specified name, then the
result is tested to see if it has the specified relationship to the real user. If the
file does not exist or is inaccessible then all enquiries return false, that is o.
Command executions succeed, returning true, that is 1, if the command exits
with status 0, otherwise they fail, returning false, that is O.

If more detailed status information is required then the command should be
executed outside of an expression and the variable status examined.

Control flow
The shell contains a number of commands which can be used to regulate the
flow of control in command files (shell scripts) and (in limited but useful
ways) from terminal input. Due to the implementation, some restrictions are
placed on the word placement for the foreach, switch, and while statements,
as well as the if-then-else form of the if statement. Please pay careful atten­
tion to these restrictions in the descriptions in the next section.

If the shell's input is not seekable, the shell buffers up input whenever a loop
is being read and performs seeks in this internal buffer to accomplish the
rereading implied by the loop. (To the extent that this allows, backward goto
commands will succeed on nonseekable inputs.)

Built-in commands
Built-in commands are executed within the shell. If a built-in command
occurs as any component of a pipeline except the last, then it is executed in a
subshell.

alias
alias name
alias name word list

The first form prints all aliases. The second form prints the alias
for name. The final form assigns the specified wordlist as the
alias of name. wordlist is the command; filename substitution
may be applied to wordlist. name is not allowed to be alias or
unalias.

break Causes execution to resume after the end of the nearest enclos­
ing foreach or while statement. The remaining commands on
the current line are executed. Multilevel breaks are thus possi­
ble by writing them all on one line.

breaksw Causes a break from a switch, resuming after the endsw.

case label: This is part of the switch statement discussed below.

103

csh(C)

104

cd
cd name
chdir
chdir name Changes the shell's working directory to directory name. If no

argument is given, it then changes to the home directory of the
user. If name is not found as a subdirectory of the current direc­
tory (and does not begin with"!", ".!", or " .. !"), then each com­
ponent of the variable cdpath is checked to see if it has a sub­
directory name. Finally, if all else fails but name is a shell vari­
able whose value begins with"!", then this is tried to see if it is
a directory.

continue

default:

If cdspeU has been set, the shell runs a spelling check as follows.
If the shell is reading its commands from a terminal, and the
specified directory does not exist (or some component cannot be
searched), spelling correction is applied to each component of
directory in a search for the "correct" name. The shell then asks
whether or not to try and change the directory to the corrected
directory name; an answer of n means "nd', and anything else is
taken as "yes".

Continues execution of the nearest enclosing while or foreach.
The rest of the commands on the current line are executed.

Labels the default case in a switch statement. The default
should come after all case labels.

echo wordlist

else
end
endif
endsw

The specified words are written to the shell's standard output.
A " \c" causes the echo to complete without printing a newline.
A " \n" in wordlist causes a newline to be printed. Otherwise
the words are echoed, separated by spaces.

See the description of the foreach, if, switCH, and while state­
ments below.

exec command

exit
exit (expr)

The specified command is executed in place of the current shell.

The shell exits either with the value of the status variable (first
form) or with the value of the specified expr (second form).

csh(C)

foreach name (wordlist)

end The variable name is successively set to each member of
wordlist and the sequence of commands between this command
and the matching end are executed. (Both foreach name
(wordlist) and end must appear alone on separate lines.)

The built-in command continue may be used to continue the
loop prematurely and the built-in command break to terminate
it prematurely. When this command is read from the terminal,
the contents of the loop are read by prompting with "?" until
end is typed before any statements in the loop are executed.

glob wordlist
Like echo but no II \ " escapes are recognized and words are de­
limited by null characters in the output. Useful for programs
which wish to use the shell to apply filename expansion to a list
of words.

,goto word Filename and command expansion is applied to the specified
word to yield a string of the form label:. The shell rewinds its
input as much as possible and searches for a line of the form
label: possibly preceded by blanks or tabs. Execution continues
after the specified line.

history Displays the history event list.

if (expr) command

if (expr) then

If the specified expression evaluates true, then the single com­
mand with arguments is executed. Variable substitution on
command happens early, at the same time it does for the rest of
the if command. command must be a simple command, not a
pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, and com­
mand is not executed.

else if (expr2) then

else

endif If the specified expr is true then the commands before the first
else are executed; else if expr2 is true then the commands after
the second then and before the second else are executed, etc.
Any number of else-if pairs are pOSSible; only one endif is
needed. The else part is likewise optional. (The words else and
endif must appear at the beginning of input lines; the if (expr)
then must appear alone on its input line or after an else.)

105

csh(C)

106

logout Terminates a login shell. Use this if ignoreeof is set.

nice
nice +number
nice command
nice +number command

nohup

The first form sets the nice for this shell to 4. By default, com­
mands run under C-Shell have a "nice value" of O. The second
form sets the nice to the given number. The final two forms run
command at priority 4 and number respectively. The super user
may specify negative niceness by using "nice -number " The
command is always executed in a subshell, and the restrictions
placed on commands in simple if statements apply.

nohup command

onintr
onintr-

The first form can be used in shell scripts to cause hangups to be
ignored for the remainder of the script. The second form causes
the specified command to be run with hangups ignored. Unless
the shell is running in the background, nohup has no effect. All
processes running in the background with" &" are automatical­
lynohuped.

onintr label Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is to
terminate shell scripts or to return to the terminal command
input level. The second form, onintr -, causes all interrupts to be
ignored. The final form causes the shell to execute a goto label
when an interrupt is received or a child process terminates
because it was interrupted.

rehash

In any case, if the shell is running in the background, interrupts
are ignored whether any form of onintr is present or not.

Causes the internal hash table of the contents of the directories
in the path variable to be recomputed. This is needed if new
commands are added to directories in the path while you are
logged in.

repeat count command
The specified command, which is subject to the same restrictions
as the command in the simple if statement above, is executed
count times. I/O redirection occurs exactly once, even if count
is O.

csh(C)

set
set name
set name=word
set name[index]=word
set name=(wordlist)

The first form of the command shows the value of all shell vari­
ables. Variables which have other than a single word as value
print as a parenthesized word list. The second form sets name
to the null string. The third form sets name to the single word.
The fourth form sets the indexth component of name to word;
this component must already exist. The final form sets name to
the list of words in wordlist. Command and filename expan­
sion is applied in all cases.

These arguments may be repeated to set multiple values in a
single set command. Note however, that variable expansion
happens for all arguments before any setting occurs.

setenv name value

shift

Sets the value of the environment variable name to be value,
which must be a single string. Two useful environment vari­
ables are TERM, the type of your terminal and SHELL, the shell
you are using.

shift variable
In the first form, the members of argv are shifted to the left, dis­
carding argv[l]. It is an error for argv not to be set or to have
less than one word as a value. The second form performs the
same function on the specified variable.

source name The shell reads commands from name. Source commands may
be nested, but if they are nested too deeply, the shell may run
out of file descriptors. An error in a source at any level ter­
minates all nested source commands, including the csh process
from which source was called. If source is called from the login
shell, it is logged out. Input during source commands is never
placed on the history list.

107

csh(C)

108

switch (string)
case 5tr1:

breaksw

default:

breaksw
endsw

time

Command and filename substitution is applied to string; each
case label is then successively matched against the result. Vari­
able expansion is also applied to the case labels, so the file meta­
characters" * ", "? ", and" [...] " can be used. If none of the labels
match before a default label is found, then the execution begins
after the default label. Each case label and the default label must
appear at the beginning of a line. The command breaksw
causes execution to continue after the endsw. Otherwise con­
trol may fall through case labels and default labels, as in C. If no
label matches and there is no default, execution continues after
theendsw.

time command

umask

With no argument, a summary of CPU time used by this shell
and its children is printed. If arguments are given, the specified
simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra shell is
created to print the time statistic when the command completes.
command has the same restrictions as the simple if statement
described above.

umask value The file creation mask is displayed (no arguments) or set to the
specified value (one argument). The mask is given in octal.
Common values for the mask are 002 giving all access to the
group and read and execute access to others, or 022 giving read
and execute access to users in the group and all other users.

unalias pattern

unhash

unset pattern

All aliases whose names match the specified pattern are dis­
carded. Thus, all aliases are removed by unalias *. It is not an
error for nothing to be unaliased.

Use of the internal hash table to speed location of executed pro­
grams is disabled.

All variables whose names match the specified pattern are
removed. Thus, all variables are removed by unset *; use this
with care. It is not an error for nothing to be unset.

csh(C)

wait All child processes are waited for. If the shell is interactive, then
an interrupt can disrupt the wait, at which time the shell prints
names and process numbers of all children known to be out­
standing.

while (expr)

end While the specified expression evaluates nonzero, the com­
mands between the while and the matching end are evaluated.
break and continue may be used to terminate or continue the
loop prematurely. (The while (expr) and end must appear alone
on their input lines.) Prompting occurs here the first time
through the loop as for the foreach statement if the input is a
terminal.

@

@name=expr
@ namefindex] = expr

The first form prints the values of all the shell variables. The
second form sets the specified name to the value of expr. If the
expression contains <, >, & or I then at least this part of the
expression must be placed within (). The third form assigns the
value of expr to the indexth argument of name. Both name and
its indexth component must already exist.

The operators *=, +=, etc. are available as in C. The space
separating the name from the assignment operator is optional.
Spaces are mandatory in separating components of expr which
would otherwise be single words. The space between "@" and
name is also mandatory.

Special postfix ++ and -- operators increment and decrement
name respectively, that is <@ i++.

Predefined variables
The following variables have special meaning to the shell. Of these, argv,
child, home, path, prompt, shell and status are always set by the shell.
Except for child and status this setting occurs only at initialization; these vari­
ables will not be modified unless done explicitly by the user.

The shell copies the environment variable PATH into the variable path, and
copies the value back into the environment whenever path is set. Thus it is
not necessary to worry about its setting other than in the file .login since infe­
rior csh processes will import the definition of path from the environment.

argv

cdpath

Set to the arguments to the shell, it is from this variable that
positional parameters are substituted, that is, $1 is replaced
by argv[1], etc. argv[O] is not defined, but $0 is.

Gives a list of alternate directories searched to find subdirec­
tories in cd commands.

109

csh(C)

child

echo

histchars

history

home

ignoreeof

mail

noclobber

noglob

110

The process number of the last command forked with" &".
This variable is unset when this process terminates.

Set when the -x command line option is given. Causes each
command and its arguments to be echoed just before it is
executed. For nonbuilt-in commands all expansions occur
before echoing. Built-in commands are echoed before com­
mand and filename substitution, since these substitutions are
then done selectively.

Can be assigned a two-character string. The first character is
used as a history character in place of"!", the second charac­
ter is used in place of the "A II substitution mechanism. For
example, set histchars=",i" will cause the history characters
to be comma and semicolon.

Can be given a numeric value to control the size of the his­
tory list. Any command which has been referenced in this
many events will not be discarded. A history that is too
large may run the shell out of memory. The last executed
command is always saved on the history list.

The home directory of the invoker, initialized from the
environment. The filename expansion of II-II refers to this
variable.

If set, the shell ignores end-of-file from input devices that are
terminals. This prevents a shell from accidentally being ter­
minated by pressing (Ctrl)d.

The files where the shell checks for mail. This check is exe­
cuted after each command completion. The shell responds
with, ''You have new mail" if the file exists with an access
time not greater than its modify time.

If the first word of the value of mail is numeric, it specifies a
different mail checking interval: in seconds, rather than the
default, which is 10 minutes.

If multiple mail files are specified, then the shell responds
with "New mail in name', when there is mail in the file
name.

As described in the section "Input/Output", restrictions are
placed on output redirection to insure that files are not
accidentally destroyed, and that » redirections refer to
existing files.

If set, filename expansion is inhibited. This is most useful in
shell scripts which are not dealing with filenames, or after a
list of filenames has been obtained and further expansions
are not desirable.

nonomatch

path

prompt

shell

status

time

verbose

esh(C)

If set, it is not an error for a filename expansion to not match
any existing files; rather, the primitive paUern is returned. It
is still an error for the primitive pattern to be malformed,
that is, echo [still gives an error.

Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word
specifies the current directory. If there is no path variable,
then only full pathnames will execute. The usual search path
is jbin, jusrjbin, and ., but this may vary from system to sys­
tem. For the super-user, the default search path is jete, /bin
and /usr/bin. A shell which is given neither the -c nor the -t
option will normally hash the contents of the directories in
the path variable after reading .eshre, and each time the path
variable is reset. If new commands are added to these direc­
tories while the shell is active, it may be necessary to give the
rehash command, or the commands may not be found.

The string which is printed before reading each command
from an interactive terminal input. If a "!" appears in the
string, it will be replaced by the current event number unless
a preceding II \" is given. Default is II % ", or II #" for the
super user.

The file in which the shell resides. This is used in forking
shells to interpret files which have execute bits set, but
which are not executable by the system. (See the description
of "Nonbuilt-in command execution" below.) Initialized to
the home of the shell.

The status returned by the last command. If it terminated
abnormally, then 0200 is added to the status. Built-in com­
mands which fail return exit status 1, otherwise these com­
mands set status to O.

Controls automatic timing of commands. If set, then any
command which takes more than this many cpu seconds will
cause a line to be sent to the screen displaying user time, sys­
tem time, real time, and a utilization percentage which is the
ratio of user plus system times to real time.

Set by the -v command line option, causes the words of each
command to be printed after history substitution.

111

csh(C)

112

Nonbuilt-in command execution
When a command to be executed is found to not be a built-in csh command,
the shell attempts to execute the command via exec(S). Each word in the vari­
able path names a directory from which the shell will attempt to execute the
command. If it is given neither a -c nor a -t option, the shell will hash the
names in these directories into an internal table so that it will only try an exec
in a directory if there is a possibility that the command resides there. This
greatly speeds command location when a large number of directories are
present in the search path. If this mechanism has been turned off (via
unhash), or if the shell was given a -c or -t argument, and for each directory
component of path which does not begin with a II / ", the shell concatenates
each directory component of path with the given command name to form a
pathname of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus
(cd; pwd); pwd

prints the home directory but leaves you in the original directory, while
cd; pwd

moves you to the home directory.

If the file has execute permissions but is not an executable binary to the sys­
tem, then it is assumed to be a file containing shell commands and a new shell
is spawned to read it.

If there is an alias for shell then the words of the alias are prepended to the
argument list to form the shell command. The first word of the alias should
be the full pathname of the shell (for example, $shell). Note that this is a spe­
cial, late occurring, case of alias substitution, and only allows words to be
prepended to the argument list without modification.

Argument list processing
If argument 0 to the shell is II -" then this is a login shell. The flag arguments
are interpreted as follows:

-c Commands are read from the (single) following argument which must
be present. Any remaining arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally or yields
a nonzero exit status.

-f The shell will start faster, because it will neither search for nor execute
commands from the file .cshrc in the invoker's home directory.

-i The shell is interactive and prompts for its top-level input, even if it
appears to not be a terminal. Shells are interactive without this option if
their input and output are terminals.

-n Commands are parsed, but not executed. This may aid in syntactic
checking of shell scripts.

Files

csh(C)

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A /I \ /I may be used to
escape the newline at the end of this line and continue onto another line.

-v Causes the verbose variable to be set, with the effect that command
input is echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed
immediately before execution.

-V Causes the verbose variable to be set even before .cshrc is executed.

-x Causes the echo variable to be set even before .cshrc is executed.

After processing the flag arguments, if arguments remain but none of the -c, -
i, -s, or -t options were given, the first argument is taken as the name of a file
of commands to be executed. The shell opens this file, and saves its name for
possible resubstitution by $0. On a typical system, most shell scripts are writ­
ten for the standard shell (see sh(C». The C shell will execute such a standard
shell if the first character of the script is not a /I #/1 (that is, if the script does not
start with a comment). Remaining arguments initialize the variable argv.

Signal handling
The shell normally ignores quit signals. The interrupt and quit signals are
ignored for an invoked command if the command is followed by /I &/1; other­
wise the signals have the values which the shell inherited from its parent. The
shell's handling of interrupts can be controlled by onintr. By default, login
shells catch the terminate signal; otherwise this signal is passed on to children
from the state in the shell's parent. In no case are interrupts allowed when a
login shell is reading the file .logout.

7·cshrc
/etc/cshrc
7.login
-/.logout
/bin/sh
/tmp/sh*
Idev/null
/etc/passwd

Read by each shell at the beginning of execution
Systemwide default cshrc file for login C-shells
Read by login shell, after .cshrc at login
Read by login shell, at logout
Shell for scripts not starting with a /I #/1
Temporary file for «
Source of empty file
Source of home directories for -username

Limitations

Words can be no longer than 512 characters. The number of arguments to a
command which involves filename expansion is limited to the number of
characters allowed in an argument list, which is 5120, less the characters in the
environment. The length of any argument of a command after filename
expansion cannot exceed 159 characters. Also, command substitutions may
substitute no more characters than are allowed in an argument list.

113

csh(C)

See also

Credit

Notes

114

To detect looping, the shell restricts the number of alias substitutions on a sin­
gle line to 20.

access(S), a.out(FP), environ(M), exec(S), fork(S), pipe(S), signal(S), umask(S),
wait(S)

User's Guide

This utility was developed at the University of California at Berkeley and is
used with permission.

Built-in control structure commands like foreach and while cannot be used
with I, & or i.

Commands within loops, prompted for by "? ", are not placed in the history
list.

It is not possible to use the colon (:) modifiers on the output of command sub­
stitutions.

The C-shell has many built-in commands with the same name and func­
tionality as Bourne shell commands. However, the syntax of these C-shell
and Bourne shell commands often differs. Two examples are the nice and
echo commands. Be sure to use the correct syntax when working with these
built-in C-shell commands.

When a C-shell user logs in, the system reads and executes commands in
/etc/cshrc before executing commands in the user's $HOME/.cshrc and
$HOME/.login. You can, therefore, modify the default C-shell environment for
all users on the system by editing /etc/cshrc.

Ouring intervals of heavy system load, pressing the delete key while at a C­
shell prompt (%) may cause the shell to exit. If csh is the login shell, the user
is logged out.

csh attempts to import and export the PATH variable for use with regular
shell scripts. This only works for simple cases, where the PATH contains no
command characters.

The I I and && operators are reversed in this implementation.

csplit(C)

csplit
split files according to context

Syntax
csplit [-s] [-k] [-fprefix] file argl [..• argn]

Description

The csplit command reads file and separates it into n+ 1 sections, defined by
the arguments argl . .. argn. By default the sections are placed in files xxOO ...
xxn (n may not be greater than 99). These sections get the following pieces of
file:

00: From the start of file up to (but not including) the line referenced by
argl.

01: From the line referenced by argl up to the line referenced by arg2.

n+1: From the line referenced by argn to the end of file.

The options to csplit are:

-s csplit normally prints the character counts for each file created. If
the -s option is present, csplit suppresses the printing of all character
counts.

-k csplit normally removes created files if an error occurs. If the -k
option is present, csplit leaves previously created files intact.

-fprefix If the -f option is used, the created files are named prefixOO .. ,
prefixn. The default is xxOO . .. xxn.

The arguments (argl . " argn) to csplit can be a combination of the following:

/rexp/ A file is to be created for the section from the current line down to
(but not including) the line containing the regular expression rexp.
The current line becomes the line containing rexp. This argument
may be followed by an optional II + II or "_" some number of lines
(for example, IPage/-5).

%rexp% This argument is the same as /rexp/, except that no file is created for
the section.

Inno A file is to be created from the current line down to (but not includ­
ing) lnno. The current line becomes lnno.

115

csplitcq

Examples

See also

{num} Repeat argument. This argument may follow any of the above argu­
ments. If it follows an rexp-type argument, that argument is applied
num more times. If it follows Inno, the file will be split every Inno
lines (num times) from that point.

Enclose all rexp-type arguments that contain blanks or other characters mean­
ingful to the shell in the appropriate quotation marks. Regular expressions
may not contain embedded newlines. csplit does not affect the original file; it
is the user's responsibility to remove it.

csplit -f cobol file '/procedure division!' '/parS./' '/par16./'

This example creates four files, cobolOO ... cobolO3. After editing the "split"
files, they can be recombined as follows:

cat coboI0[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The-k
option causes the created files to be retained if there are less than 10,000 lines;
however, an error message would still be printed.

csplit-kprog.c '%main(%' T}/+1' {20}

Assuming that prog.c follows the normal C coding convention of ending rou­
tines with a } at the beginning of the line, and that main() is the first function
in prog.c, this example will create a file for each separate C routine, up to 21
routines.

ed(C), regex(S), sh(C)

Diagnostics

Self-explanatory except for:
arg - out of range

which means that the given argument did not reference a line between the
current position and the end of the file.

Standards confonnance

csplit is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3,1989.

116

ct(C)

ct
spawn getty to a remote terminal

Syntax
ct [-wn] [-xn] [-h] [-v] [-sspeed] telno ...

Description

The ct command dials the telephone number of a modem that is attached to a
terminal, and spawns a getty process to that terminal. telno is a telephone
number, with equal signs for secondary dial tones and minus signs for delays
at appropriate places. The set of legal characters for telno is 0 through 9, -, =,
*, and #. The maximum length telno is 58 characters. If more than one tele­
phone number is specified, ct will try each in succession until one answers;
this is useful for specifying alternate dialing paths.

ct will try each ACU line listed in the file /usr/lib/uucp/Devices until it finds an
available line with appropriate attributes or runs out of entries. If there are no
free lines, ct will ask if it should wait for one, and if so, for how many minutes
it should wait before it gives up. ct will continue to try to open the dialers at
one-minute intervals until the specified limit is exceeded. This value can also
be set on the command line by specifying the -wn option, where n is the max­
imum number of minutes that ct is to wait for a line.

The -xn option is used for debugging. It produces a detailed output of the
program execution on stderr. The debugging level, n, is a single digit; -x9 pro­
duces the most detailed output. If the -v option is used, ct will send a running
narrative to the standard error output stream.

Normally, ct will hang up the current line, so the line can answer the incom­
ing call. The -h option will prevent this action. The -h option will also wait
for the termination of the specified ct process before returning control to the
user's terminal.

The data rate may be set with the -s option, where speed is expressed in baud.
The default rate is 1200.

After the user on the destination terminal logs out, ct prompts, Reconnect? If
the response does not begin with the letter y, the line will be dropped; other­
wise, getty will be started again and the login: prompt will be printed.

To log out properly, the user must type (Ctrl}d.

(Of course, the destination terminal must be attached to a modem that can
answer the telephone.)

117

ct(C)

Files

See also

Notes

118

Whenever ct makes a successful connection, it writes a log file, /usr/adm/ctlog.
This log file contains the login name of the user who invoked ct, the speed of
the connection, the date and time of the connection, the length of the connec­
tion, and the telephone number that was dialed. The time of the connection is
shown as minutes:seconds or as hours:minutes:seconds, depending on how
long the call lasted.

For example:
root (1200) Mon Sept 16 14:55 1:25 264

In this example, the ctlog shows that root invoked ct at 1200 baud on Monday,
September 16 at 2:55. The connection lasted 1 minute and 25 seconds and the
telephone number dialed was 264.

/usr/lib/uucp/Devices
/usr/lib/uucp/LCK .. (tty-device)
/usr/adm/ctlog

cu(C), getty(M), login(M), uucp(C)

In hangup mode (-h not specified), when a suitable dialer has been allocated,
ct prompts Proceed to hang-up? If the response does not begin with the
letter y, the program simply exits. If you are logged in on a computer through
a local terminal and you want to connect a remote terminal to the computer,
you should use nohup with ct to accomplish this:

nohup ct -h -sspeed phone

After the command is executed, a login prompt is displayed on the remote ter­
minal. The user can then log in and work on the computer just as on a local
terminal.

ctags(C)

ctags
create a tags file

Syntax

ctags [-a] [-u] [-v] [-w] [-x] [file ...]

Description

File

The ctags command makes a tags file for vi(C) from the specified C or FOR­
TRAN sources. A tags file gives the locations of specified objects (in this case,
functions) in a group of files. Each line of the tags file contains the function
name, the file in which it is defined, and a scanning pattern used to find the
function definition. These are given in separate fields on the line, separated
by blanks or tabs. Using the tags file, vi can quickly find function definitions.

-a Append new values for the specified files to tags.

-u Update the specified files in tags; that is, all references to them are
deleted, and the new values are appended to the file. (This can be slow;
it is usually faster to simply rebuild the tags file.)

-v Produce a list of function names, the filename in which each function is
declared, and the function's line number. This list prints on the standard
output, and no tags file is created.

-w Suppress warning diagnostics.

-x Produce a function index, printing the line in which each function is
defined, along with the filename, function name, and line number. No
tags file is created.

Files whose names end in .c or .h are assumed to be C source files and are
searched for C routine and macro definitions. Otherwise, the files are scanned
for the FORTRAN keywords function, procedure, program, and subroutine. If
any of these keywords is found, ctags assumes file is a FORTRAN file; other­
wise, it assumes it is a C file.

The tag main is treated specially in C programs. The tag formed is created by
prefixing M to the name of the file, with a trailing .c. Leading pathname com­
ponents are also removed. This makes use of ctags practical in directories
with more than one program.

tags Output tags file

119

ctags(C)

See also

Credit

120

ex(C), vi(C)

This utility was developed at the University of California at Berkeley and is
used with permission.

cu(C)

cu
call another UNIXlXENIX system

Syntax
eu [-s speed] [-lline1 [-h] [-t] [-xn] [-0 I -e I -oe] [-n] teino

eu [-s speed] [-h] [-xn] [-0 I -e I -oe] -1 line[dir]

eu [-h] [-xn] [-0 I -e I -oe] systemname

Description

The eu command calls up another UNIX system, a terminal, or possibly a
non-UNIX system. It manages an interactive conversation with possible
transfers of ASCII files.

The eu command accepts the following options and arguments:

-sspeed

-lline

-h

-t

Specifies the transmission speed (150, 300, 600, 1200, 2400, 4800,
9600, 19200,38400). The default value is "Any" speed which will
depend on the order of the lines in the /usr/lib/uucp/Devices file.
A speed range can also be specified (for example, -s1200-4800).

Specifies a device name to use as the communication line. This
can be used to override the search that would otherwise take
place for the first available line having the right speed. When the
-1 option is used without the -s option, the speed of a line is
taken from the Devices file. When the -1 and -s options are both
used together, eu will search the Devices file to check if the
requested speed for the requested line is available. If so, the
connection will be made at the requested speed; otherwise, an
error message will be printed and the call will not be made. The
specified device is generally a directly connected asynchronous
line (for example, /dev/ttyab) in which case a telephone number
(teIno) is not required. The specified device need not be in the
/dev directory. If the specified device is associated with an auto
dialer, a telephone number must be provided. Use of this option
with systemname rather than teino will not give the desired
result (see systemname below).

Emulates local echo, supporting calls to other computer systems
which expect terminals to be set to half-duplex mode.

Used to dial an ASCII terminal which has been set to auto
answer. Appropriate mapping of carriage-return to carriage­
return-line-feed pairs is set.

121

cu(C)

122

-xn Causes diagnostic traces to be printed; it produces a detailed
output of the program execution on stderr. The debugging
level, n, is a single digit in the range 0 to 9; -x9 is the most useful
value.

-n For added security, -n will prompt the user to provide the tele­
phone number to be dialed rather than taking it from the com­
mandline.

telno When using an automatic dialer, the argument is the telephone
number with equal signs for secondary dial tone or minus signs
placed appropriately for delays of 4 seconds.

systemname A UUCP system name may be used rather than a telephone
number. In this case, eu will obtain an appropriate direct line or
telephone number from /usr/lib/uucp/Systems. Note: the system­
name option should not be used in conjunction with the -1 and -s
options as eu will connect to the first available line for the sys­
tem name specified, ignoring the requested line and speed.

dir The keyword dir can be used with eu -lUne, in order to talk
directly to a modem on that line, instead of talking to another
system via that modem. This can be useful when debugging or
checking modem operation. Note: only users with write access
to the Devices file are permitted to use eu -lline dir.

In addition, eu uses the following options to determine communications set­
tings:

-0 If the remote system expects or sends 7-bits with odd parity.

-e If the remote system expects or sends 7-bits with even parity.

-oe If the remote system expects or sends 7-bits, ignoring parity and sends
7-bits with either parity.

By default, eu expects and sends 8-bit characters without parity. If the login
prompt received appears to contain incorrect 8-bit characters, or a correct log­
in is rejected, use the 7-bit options described above.

After making the connection, eu runs as two processes: the transmit process
and the receive process. The transmit process reads data from standard input
and, except for lines beginning with" - ", passes the data to the remote system.
The receive process accepts data from the remote system and, except for lines
beginning with" - ", passes the data to standard output.

Normally, an automatic XON/XOFF protocol is used to control input from the
remote system so the buffer is not overrun.

Lines beginning with" -" have special meanings.

cu(C)

The transmit process interprets the following user-initiated commands:

terminate the conversation.

-!cmd ...

-$cmd ...

-+cmd ...

-%take from [to]

-% put from [to]

-line

-%break

-%debug

-%nostop

escape to an interactive shell on the local system.

run cmd on the local system (via sh -c).

run cmd locally and send its output to the remote sys­
tem.

run cmd on the local system but take standard input
from the remote system.

change the directory on the local system. Note: -!cd
will cause the command to be run by a sub-shell, prob­
ably not what was intended.

copy file from (on the remote system) to file to on the
local system. If to is omitted, the from argument is
used in both places.

copy file from (on the local system) to file to on the
remote system. If to is omitted, the from argument is
used in both places.

For both -%take and -%put commands, as each block
of the file is transferred, consecutive single digits are
printed to the terminal.

send the line -line to the remote system.

transmit a BREAK to the remote system (which can
also be specified as -% b).

toggles the -x debugging level between 0 and 9 (which
can also be specified as -%d).

prints the values of the termio structure variables for
the user's terminal (useful for debugging).

prints the values of the termio structure variables for
the remote communication line (useful for debugging).

toggles between XON /XOFF input control protocol and
no input control. This is useful in case the remote sys­
tem is one which does not respond properly to the
XON and XOFF characters.

The use of -%put requires stty(C) and cat(C) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to these current control characters on the local system. Backslashes
are inserted at appropriate places.

123

cu(C)

124

The use of -%take requires the existence of eeho(S) and eat(C) on the remote
system. Also, tabs mode (see stty(C» should be set on the remote system if
tabs are to be copied without expansion to spaces.

The receive process normally copies data from the remote system to its stan­
dard output. It may also direct output to local fiies.

You can construct take and put commands that work between UNIX and
non-UNIX systems by sending the appropriate characters to eu. To do thiS,
you will need to know the equivalent of eeho(C) and eat(C) on the non-UNIX
system.

For example, to transfer a file named fred from a remote non-UNIX system to
the file /tmp/fred on the local UNIX system, construct a command similar to the
following:

-%
echo '->':/tmp/fred
cat fred
echo' ->'

This creates a file /tmp/fred on the local UNIX system, putting the characters
"->" into it, which tells eu to start receiving data into this file. The file fred is
then sent to standard output on the remote machine, and eu therefore receives
it. Finally, a "->" is echoed into the file; this is a signal to eu to stop receiving
input. (Remember to replace eeho and eat with the equivalent commands for
the non-UNIX system.)

You can also append the file from the remote machine to an existing file on
the local system:

echo '-»':/tmp/fred
cat fred
echo' ->'

This appends the remote file onto the end of the existing file /tmp/fred.

When eu is used on systeml to connect to system2 and subsequently used on
system2 to connect to system3, commands on system2 can be executed by
using II-II. Executing a tilde command reminds the user of the local system
uname. For example, uname can be executed on systems 1,2, and 3 as fol­
lows:

uname
system3
-!uname
systeml
--!uname
system2

In general, II-II causes the command to be executed on the original machine,
and "-,, causes the command to be executed on the next machine in the
chain. .

Examples

Files

See also

cu(C)

To dial a system whose telephone number is 9 201 555 1212 using 1200 baud
(where dialtone is expected after the 9):

cu -s1200 9=12015551212
If the speed is not specified, /I Any" is the default value.

To login to a system connected by a direct line:
cu -1 Idev/ttyXX or cu -1 ttyXX

To dial a system with the specific line and a specific speed:
cu -s1200 -1 ttyXX

To dial a system using a specific line associated with an auto dialer:
cu -1 ttyXX 9=12015551212

To call up a system named huey:
cuhuey

To talk directly to an ACU (connect directly with the modem and enter
modem commands manually):

cu -lttyXX dir

/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
/usr /lib /uucp/LCK .. (tty-device)

cat(C), ct(C), echo(S), stty(C), uucp(C), uname(C)

Diagnostics

Warnings

Exit code is zero for normal exit, otherwise, one.

The cu command does not do any integrity checking on data it transfers. Data
fields with special cu characters may not be transmitted properly. Depending
on the interconnection hardware, it may be necessary to use a /1-./1 to ter­
minate the conversion even if sttyO has been used. Non-printing characters
are not dependably transmitted using either the -%put or -%take commands.
cu between an IMBR1 and a penril modem will not return a login prompt
immediately upon connection. A carriage return will return the prompt.

125

cu(C)

Note

There is an artificial slowing of transmission by eu during the -%put opera­
tion so that loss of data is unlikely.

Standards conformance

eu is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

126

cut(C)

cut
cut out selected fields of each line of a file

Syntax

cut -c list [filel file2 ...]

cut -f list [-d char] [-s] [filel file2 ...]

Description

Notes

Use cut to cut out columns from a table or fields from each line of a file. The
fields as specified by list can be fixed length, that is, character positions as on
a punched card (-c option), or the length can vary from line to line and be
marked with a field delimiter character like Tab (-f option). cut can be used as
a filter. If no files are given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integers (in increasing order), with an
optional dash (-), indicates ranges, as in the -0 option of nroff/troff
for page ranges; for example, 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3-
(short for third through last field).

-c list The list following -c (no space) specifies character positions (for
example, -c1-72 would keep the first 72 characters of each line).

-f list The list following -f is a list of fields assumed to be separated in the
file by a delimiter character (see -d); for example, -fl,7 copies the first
and seventh field only. Lines with no field delimiters will be passed
through intact (useful for table subheadings), unless -s is specified.

-d char The character following -d is the field delimiter (-f option only).
Default is Tab. Space or other characters with special meaning to the
shell must be quoted.

-s If the -f option is used, -s suppresses lines with no delimiter charac­
ters. Unless specified, lines with no delimiters will be passed
through untouched.

Either the -c or -f option must be specified.

Use grep(C) to make horizontal"cuts" (by context) through a file, or paste(C)
to put files together horizontally. To reorder columns in a table, use cut and
paste.

127

cut(C)

Examples

cut -d: -£ 1,5 /etdpasswd Maps user ID's to names.

name= 'who am i I cut -£1 -d" II' Sets name to current login name.

See also

grep(C), paste(C)

Diagnostics

line too long A line can have no more than 511 characters or fields.

bad list for c / f option
Missing -c or -£ option or incorrectly specified list. No
error occurs if a line has fewer fields than the list calls
for.

no fields The list is empty.

Standards conformance

cut is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

128

date(C)

date
print and set the date

Syntax
date [mmddhhmm[yy]] [+format]

Description

If no argument is given, or if the argument begins with +, the current date and
time are printed as defined by the locale. Otherwise, the current date is set.
The first mm is the month number; dd is the day number in the month; hh is
the hour number (24-hour system); the second mm is the minute number; yy
is the last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM, if the local language is set to English. The
current year is the default if no year is mentioned. The system operates in
GMT. date takes care of the conversion to and from local standard and day­
light time.

If the argument begins with +, the output of date is under the control of the
user. The format for the output is similar to that of the first argument to
printf(S). All output fields are of fixed size (zero padded if necessary). Each
field descriptor is preceded by a percent sign 1/ %" and will be replaced in the
output by its corresponding value. A single percent sign is encoded by dou­
bling the percent sign, that is, by specifying 1/ %%". All other characters are
copied to the output without change. The string is always terminated with a
new line character.

Field Descriptors:

A Full weekday name

B Full month name

D Date as mm/dd/yy

H Hour - 00 to 23

I Hour (12 hour clock) in the range 01 - 12

M Minute - 00 to 59

S Second - 00 to 59

T Time as HH:MM:SS

129

date(C)

Example

130

U Week number of the year (Sunday as the first day of the week) as a
decimal number in the range 00 - 53

W Week number of the year (Monday as the first day of the week) as a
decimal number in the range 00 - 53

X Current time, as defined by the locale

Y Year (including century), as decimal numbers

Z Timezone name, or no characters if no timezone exists

a Abbreviated weekday - Sun to Sat

b Abbreviated month name

c current date and time, as defined by the locale

d Day of month - 01 to 31

h Abbreviated month - Jan to Dec

j Day of the year - 001 to 366

m Month of year - 01 to 12

n Inserts a newline character

p Equivalent of a.m. or p.m. for current locale

r Time in AM/PM notation

t Inserts a tab character

w Day of the week - Sunday = 0

x Current date, as defined by the locale

y Last 2 digits of year - 00 to 99

The line

date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates as output:
DATE: 08/01/90
TIME: 14:45:05

Diagnostics

no permission

bad conversion

Standards confonnance

date(C)

You are not the super user and you are trying to
change the date.

The date set is syntactically incorrect.

date is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

131

dc(C)

de
invoke an arbitrary precision calculator

Syntax

dc[file]

Description

132

de is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but you may specify an input base, output base, and a num­
ber of fractional digits to be maintained. The overall structure of de is a stack­
ing (reverse Polish) calculator. If an argument is given, input is taken from
that file until its end, then from the standard input. The following construc­
tions are recognized:

number The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an under­
score U to input a negative number. Numbers may contain
decimal points.

+_I*%A
The top two values on the stack are added (+), subtracted (-), mul­
tiplied (*), divided (/), remaindered (%), or exponentiated n. The
two entries are popped off the stack and the result pushed on the
stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x,
where x may be any character. If the s is capitalized, x is treated as
a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the 1 is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged.

£. All values on the stack are printed.

q Exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

x Treats the top element of the stack as a character string and exe­
cutes it as a string of de commands.

Example

dc(C)

X Replaces the number on the top of the stack with its scale factor.

[...] Puts the bracketed ASCII string onto the top of the stack.

<X >x =x The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account, but
otherwise the scale factor is ignored.

c

i

I

o

o
k

z

z
?

, .

Interprets the rest of the line as a UNIX command.

All values on the stack are popped.

The top value on the stack is popped and used as the number
radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number
radix for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non­
negative scale factor; the appropriate number of places are printed
on output, and maintained during multiplication, division, and
exponentiation. The interaction of scale factor, input base, and
output base will be reasonable if all are changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the termi­
nal) and executed.

Used by be for array operations.

This example prints the first ten values of n!:
[lal +dsa *plalO>y]sy
Osal
lyx

133

dc(C)

See also

be(C)

Diagnostics

Notes

134

x is unimplemented
The octal number x corresponds to a character that is not
implemented as a command

stack empty Not enough elements on the stack to do what was asked

Out of space The free list is exhausted (too many digits)

Out of headers. Too many numbers being kept around

Out of pushdown Too many items on the stack

Nesting Depth Too many levels of nested execution

be is a preprocessor for dc, providing infix notation and a C-like syntax which
implements functions and reasonable control structures for programs. For
interactive use, be is preferred to de.

dd(C)

dd
convert and copy a file

Syntax
dd [option=value] ...

Description

dd copies the specified input file to the specified output with possible conver­
sions. The standard input and output are used by default. The input and out­
put block size may be specified to take advantage of raw physical I/O.

if=file

of=file

ibs=n

obs=n

bs=n

cbs=n

skip=n

seek=n

iseek=n

oseek=n

files=n

conv=block

Input filename; standard input is default

Output filename; standard output is default

Input block size is n bytes (default is BSIZE block size)

Output block size (default is BSIZE block size)

Sets both input and output block size, superseding ibs and
obs. If no conversion is specified, it is particularly efficient
since no in-core copy needs to be done

Conversion buffer size

Skips n input records before starting copy. (The records are
read but not output.)

Seeks n records from beginning of output file before copying

Same as skip, but seeks over the records (that is, uses
iseek(S»

As for seek.

Specify the number of input files to concatenate. This option
effectively causes a sequence of n EOFs to be ignored. (It is
generally only useful for tape.)

Convert ASCII to unblocked ASCII.

conv=unblock Convert unblocked ASCII to ASCII.

count=n

conv=ascii

Copies only n input records

Converts EBCDIC to ASCII

135

dd(C)

Examples

See also

conv=ebcdic Converts ASCII to EBCDIC

conv=ibm Slightly different map of ASCII to EBCDIC

conv=lcase Maps alphabetic characters to lowercase

conv=ucase Maps alphabetic characters to uppercase

conv=swab Swaps every pair of bytes

conv=noerror Does not stop processing on an error

conv=sync Pads every input record to ibs

conv= ... , . . . Several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with k, b, or w to specify multiplication by 1024, 512, or 2 respectively; a pair
of numbers may be separated by x to indicate a product.

cbs is used only if ascii, ebcdic, or ibm conversion is specified. In the former
case, cbs characters are placed into the conversion buffer, converted to ASCII,
and trailing blanks trimmed and newline added before sending the line to the
output. In the latter two cases, ASCII characters are read into the conversion
buffer, converted to EBCDIC, and blanks added to make up an output record
of size cbs.

After completion, dd reports the number of whole and partial input and out­
put blocks.

This command reads an EBCDIC tape, blocked ten SO-byte EBCDIC card
images per record, into the ASCII file outfile :

dd if=/dev/rdO of=outfile ibs=800 cbs=80 conv=ascii,lcase
Note the use of raw magtape. dd is especially suited to I/O on raw physical
devices because it allows reading and writing in arbitrary record sizes.

copy(e), cp(e), tar(e)

Diagnostics

f+p records in(out) Numbers of full and partial records read (written)

136

Notes

dd(C)

The ASCII/EBCDIC conversion tables are taken from the 256-character stan­
dard in the CACM Nov, 1968. The ibm conversion corresponds better to cer­
tain IBM print train conventions. There is no universal solution.

Newlines are inserted only on conversion to ASCII; padding is done only on
conversion to EBCDIC.

When using dd with a raw device, specify the block size as a multiple of 1K.
For example, to use a 9K block size, enter:

dd if=file of=/dev/rctO bs=18b
You could also enter:

dd if=file of=/dev/rctO bs=9K

Standards conformance

dd is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

137

devnm(C)

devnm
identify device name

Syntax

letddevnm [names]

Description

Examples

Files

See also

The devnm command identifies the special file associated with the mounted
filesystem where the argument name resides.

This command is most commonly used by the letdrc2 scripts to construct a
mount table entry for the root device.

Be sure to type full pathnames in this example:
letc/devnm lu

If /dev/hdl is mounted on lu, this produces:
hdl /u

Idev/*
letclrc2

Device names
Startup commands

setmnt(ADM)

Standards conformance

devnm is conformant with:

AT&T svm Issue 2.

138

df(C)

df
report number of free disk blocks

Syntax
df [-t] [-f] [-v -i] [filesystems]

Description

Files

See also

df prints out the number of free blocks and free inodes available for on-line
filesystems by examining the counts kept in the super-blocks; filesystems
may be specified by device name (for example, /de:v/root). If the filesystems
argument is unspecified, the free space on all of the mounted filesystems is
sent to the standard output. The list of mounted filesystems is given in
/etc/mnttab.

Options include:

-t Causes total allocated block figures to be reported as well as number of
free blocks.

-f Reports only an actual count of the blocks in the free list (free inodes are
not reported). With this option, df reports on raw devices.

-v Reports the percent of blocks used as well as the number of blocks used
and free.

-i Reports the percent of inodes used as well as the number of inodes used
and free. Use the -i option with the -v option to display counts of blocks
and inodes free as well as the percentage of inodes and blocks used.

The -v and -i options cannot be used with other df options.

/de:v/*
/etc/mnttab

fsck(ADM), mnttab(F), mount(ADM)

139

df(e)

Notes

See "Notes" under mount(ADM).

This utility reports sizes in 512 byte blocks. d£ will report 2 blocks less free
space, rather than 1 block, since the file uses one system block of 1024 bytes.

The directory /etc/fscmd.d/TYPE contains programs for each filesystem type d£
invokes the appropriate binary.

Authorization

The behavior of this utility is affected by assignment of the queryspace
authorization. Refer to the "Using a secure system" chapter of the User's Guide
for more details.

Standards conformance

d£ is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

140

d/spaee(C)

dfspace
report disk space

Syntax
/etc/dfspace [filesystem ...]

Description

Example

See also

dfspace is a shell script interface to the df(C) command.

/etc/dfspace with no arguments will report the disk space used for each
mounted file system, along with the total disk space available for that filesys­
tem, and the percentage of space currently used. Total disk space, total disk
space available, and percentage used are also reported. Disk space is reported
in megabytes.

You can see disk space for a particular filesystem by supplying that filesystem
as an argument to dfspace. You can specify filesystems by device name (for
example, /dev/root) if you wish.

dfspace is frequently used in the system startup files fete/profile or /ete/eshre.

df(C)

/etc/dfspace

/u
/z
/w

Disk space: 31.12 MB of 146.47 MB available (21.25%).
Disk space: 35.41 MB of 201.16 MB available (17.60%).
Disk space: 50.37 MB of 272.74 MB available (18.47%).
Disk space: 506.81 MB of 605.93 MB available (83.64%).

Total Disk Space: 623.72 MB of 1226.32 MB available (50.86%).

141

diff(C)

diff
compare two text files

Syntax
diff [-befh] filel file2

Description

142

The diff command tells the user what lines must be changed in two files to
bring them into agreement. If filel or file2 is a dash (-), the standard input is
used. If filel or file2 is a directory, diff uses the file in that directory that has
the same name as the file (file2 or filel respectively) it is compared to. For
example:

diff Itmp dog
compares the file named dog that is in the /tmp directory, with the file dog in
the current directory.

The normal output contains lines of these forms:

nl an3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The numbers
after the letters pertain to file2. In fact, by exchanging a for d and reading
backward, one can find out in just the same way how to convert file2 into
filel. As in ed, identical pairs where nl = n2 or n3 == n4 are abbreviated as a
single number.

Following each of these lines come all the lines that are affected in the first file
flagged by "< ", then all the lines that are affected in the second file flagged by
1/>".

The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c and d commands for the editor ed,
which will recreate file2 from filel. The -f option produces a similar script,
not useful with ed, in the opposite order. In connection with -e, the following
shell procedure helps maintain multiple versions of a file:

(shift; cat $*; echo 'l,$p') I ed - $1

Files

See also

diff(C)

This works by performing a set of editing operations on an original ancestral
file. This is done by combining the sequence of ed scripts given as all com­
mand line arguments except the first. These scripts are presumed to have
been created with diff in the order given on the command line. The set of
editing operations is then piped as an editing script to ed where all editing
operations are performed on the ancestral file given as the first argument on
the command line. The final version of the file is then printed on the standard
output. Only an ancestral file ($1) and a chain of version-to-version ed scripts
($2,$3, ...) made by diff need be on hand.

Except in rare circumstances, diff finds the smallest sufficient set of file differ­
ences.

The -h option does a fast, less-rigorous job. It works only when changed
stretches are short and well separated, but the files can be of unlimited length.
The -e and -f options cannot be used with the -h option.

/tmp/d?????
/usr/lib/diffh (executable used when -h option is specified)

cmp(C), comm(C), ed(C)

Diagnostics

Notes

Exit status is 0 for no differences, 1 for some differences, 2 for errors.

Editing scripts produced under the -e or -f option do not always work
correctly on lines consisting of a single dot (.).

Standards confonnance

diff is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

143

diff3(C)

diff3
compare three files

Syntax
diff3 [·ex3] filel file2 file3

Description

144

diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

===::::1

====2

====3

All three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some
other range is indicated in one of these ways:

f:nl a

f:nl,n2c

Text is to be appended after line number nl in file f,
where f = 1,2, or 3.

Text is to be changed in the range line nl to line n2.
If nl = n2, the range may be abbreviated to nl.

The original contents of the range follow immediately after a c indication.
When the contents of two files are identical, the contents of the lower-num·
bered file are suppressed.

Options are:

·e Publishes a script for the editor ed(C) that will incorporate into filel all
changes between file2 and file3, that is, the changes that normally would
be flagged =:;:== and ====3.

-x Produces a script to incorporate changes flagged with ====.

-3 Produces a script to incorporate changes flagged with ====3.

The following command applies a resulting editing script to filel:
(cat script; ec:ho 'l,$p') I ed - filel

Files

See also

Notes

/tmp/d3*
/usr/lib/diff3prog

diff(C), ed(C)

diff3(C)

None of the options work properly for lines consisting of a single period. The
input file size limit is 64K bytes.

145

dircmp(C)

dircmp
compare directories

Syntax

dircmp [-d] [-s] [-wn] dirl dir2

Description

See also

The dircmp command examines dirl and dir2 and generates tabulated infor­
mation about the contents of the directories. Listings of files that are unique to
each directory are generated in addition to a list that indicates whether the
files common to both directories have the same contents.

There are three options available:

-d Performs a full diff on each pair of like-named files if the contents of
the files are not identical.

-s Suppresses output of identical filenames.

-wn Changes the width of the output line to n characters. The default
width is 72.

cmp(C), diff(C)

Standards conformance

dircmp is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

146

dirname(C)

dirname
deliver directory part of pathname

Syntax

dirname string

Description

Examples

See also

The dirname command delivers all but the last component of the pathname
in string and prints the result on the standard output. If there is only one
component in the pathname, only a "dot" is printed. It is normally used
inside substitution marks (' ') within shell procedures.

The companion command basename deletes any prefix ending in a slash (/)
and the suffix (if present in string) from string, and prints the result on the
standard output.

The following example sets the shell variable NAME to /usr/src/cmd:

NAME='dirname lusrlsrc/cmd/cat.c'

This example prints I a Ib I c on the standard output:

dirname lalbldd

This example prints a "dot" on the standard output:

dirname file.ext

This example moves to the location of a file being searched for (lostfile):

cd 'find. -name lostfile -exec dimame {} ;'

basename(C), sh(C)

Standards confonnance

dirname is conformant with:

X/Open Portability Guide, Issue 3, 1989.

147

disable(C)

disable
turn off terminals and printers

Syntax
disable tty ...
disable [-c] [-r [reason]] printers

Description

Examples

Files

See also

148

For terminals, this program manipulates the /etc/conf/cf.d/init.base file and sig­
nals init to disallow logins on a particular terminal. For printers, disable
stops print requests from being sent to the named printer. The following
options can be used:

-c Cancels any requests that are currently printing. This option
cannot be used with the -W option.

-W Disables the specified printers when the print requests currently
printing have finished. This option cannot be used with the -c
option.

-r [reason] Associates a reason with disabling the printer. The reason
applies to all printers listed up to the next *r option. If the -r
option is not present or the -r option is given without a reason,
then a default reason is used. reason is reported by Ipstat(C).

In this example, a printer named linepr is disabled because of a paper jam:

disable *r''paper jam" linepr

/dev/tty*
/etc/conf/cf.d/init.base
/usr/spool/lp/*

login(M), enable(C), inittab(F), getty(M), init(M), Ip(C), Ipstat(C),
uugetty(ADM)

disable(C)

Authorization

The behavior of this utility is affected by assignment of the printerstat author­
ization, which is usually reserved for system administrators. Refer to the
"Using a secure system" chapter of the User's Guide for more details.

149

diskcp(C)

diskcp, diskcmp
copy or compare floppy disks

Syntax
diskcp [-f] [-d] [-r] [-s] [-u] [-48ds9] [-96ds9] [-96ds15]
[-135ds9] [-135ds18]

diskcmp [-d] [-s] [-48ds9] [-96ds9] [-96ds15] [-135ds9] [-135ds18]

Description

150

diskcp - Copies floppy disks

diskcmp - Compares floppy disks

diskcp is used to make an image (exact copy) of a source floppy disk on a tar­
get floppy disk. On machines with one floppy drive, diskcp temporarily
transfers the image to the hard disk until a target floppy is inserted into the
floppy drive. On machines with two floppy drives, diskcp immediately
places the image of the source floppy directly on the target floppy.

diskcmp functions similarly to diskcp. It compares the contents of one
floppy disk with the contents of a second floppy disk using the cmp utility.

The options are:

-f Format the target floppy disk before the image is copied (diskcp
only).

-d The computer has dual floppy drives. diskcp copies the image
directly onto the target floppy.

-s Uses sum(C) to compare the contents of the source and target flop-
pies; gives an error message if the two do not match.

-r Uses second floppy drive as source drive.

-u Prints usage message.

-48ds9 This setting is for low density 48tpi (360K) floppies. It is the
default setting.

-96ds9 This setting is for medium density 96tpi (720K) floppies.

-96ds15 This setting is for high density 96tpi (1.2M) floppies.

-135ds9 This setting is for low density 135tpi (720K) 3.5 inch floppies.

-135ds18 This setting is for high density 135tpi (1.44M) 3.5 inch floppies.

Examples

Notes

Files

See also

diskcp(C)

When using the -96ds9 and -96ds15 options of diskcp without the -£ option, if
the first target disk is unformatted, the program will note it, format it and
make the copy. If another copy is requested and another unformatted target
disk is inserted, diskcp exits with a "System error". Quit, format the floppy,
and reinvoke diskcp to make another copy.

To make a copy of a floppy, place the source floppy in the drive and type:
diskcp

When diskcp has finished copying to the hard disk, it prompts you to insert
the target floppy in the drive. If you specify the -£ flag when you invoke
diskcp, the program formats the target floppy. When the copy is finished,
diskcp asks if you would like to make another copy of the same source disk.
If you enter" n ", it asks if you would like to copy another source disk.

Specify the -d flag on the command line if you have two floppy drives:

diskcp -d

If diskcp encounters a write error while copying the source image to the tar­
get disk, it formats the disk and tries to write the source image again. This
happens most often when an unformatted floppy is used and the -£ flag is not
specified.

/usr/bin/diskcp
/usr/bin/diskcmp
/tmp/disk??? ?

cmp(C), dd(C), £ormat(C), sum (C)

Value added

diskcmp and diskcp are extensions of AT&T System V provided by The Santa
Cruz Operation, Inc.

151

dos(C)

dos: doseat, dosep, dosdir, dosformat, dosmkdir,
dosls, dosrm, dosrmdir
access to and manipulation of DOS files and DOS filesystems

Syntax
doscat [-r I -c I -m] file . ..

doscp [-r I -c I -m] filel file2

doscp [-r I -c I -m] file . .. directory

dosdir [-c] directory ...

dosformat [-fqv] drive

dosls [-c] directory . ..

dosrm [-c] file . ..

dosmkdir [-c] directory . . .

dosrmdir [-c] directory .. .

Description

152

doscat - Displays a DOS file

doscp - Copies a DOS file to UNIX System

dosdir - Lists DOS directories in the DOS DIR style

dosformat - Formats a DOS floppy

dosls - Lists DOS directories in the UNIX System Is style

dosrm - Removes files from a DOS disk

dosmkdir - Makes a directory on a DOS disk

dosrmdir - Removes directories from a DOS disk

The dos commands provide access to the files and directories on MS-DOS
floppy disks and on DOS partitions of a hard disk. Note that in order to use
these commands on a DOS 4.0 partition the DOS volume label must be non
null and the DOS serial number must be set. In order to use these commands
on a DOS 3 partition the DOS volume label must be non null. It is also possible
to mount and access a DOS filesystem while operating from the UNIX System
partition.

dos(C)

The dos commands perform the following actions:

doscat Copies one or more DOS files to the standard output. If -r is
given, the files are copied without newline conversions. If -m is
given, the files are copied with newline conversions (see
"Conversions" below). If -c is given, execution halts immedi­
ately if a file on a mounted filesystem is encountered (see
II Accessing UNIX System File Systems with DOS Utilities"
below).

doscp Copies files between a DOS disk and a UNIX System filesystem.
If filel and file2 are given, filel is copied to file2. If a directory
is given, one or more files are copied to that directory. If -r is
given, the files are copied without newline conversions. If -m is
given, the files are copied with newline conversions (see
"Conversions" below). If -c is given, execution halts immedi­
ately if a file on a mounted filesystem is encountered.

dosdir Lists DOS files in the standard DOS style directory format. If -c is
given, execution halts immediately if a file on a mounted filesys­
tern is encountered.

dosformat Creates a DOS 2.0 formatted diskette. The drive may be speci­
fied in either DOS drive convention, using the default file
/etc/default/msdos, or using the UNIX System special file name.
dosformat cannot be used to format a hard disk. The -f option
suppresses the interactive feature. The -q (quiet) option is used
to suppress information normally displayed during dosformat.
The -q option does not suppress the interactive feature. The-v
option prompts the user for a volume label after the diskette has
been formatted. The -c option causes execution to halt immedi­
ately if a file on a mounted filesystem is encountered. The max­
imum size of the volume label is 11 characters.

dosls Lists DOS directories and files in a UNIX System format (see
Is(C» The -c option causes execution to halt at once if a file on a
mounted filesystem is encountered.

dosrm Removes files from a DOS disk. If -c is given, execution halts
immediately if a file on a mounted filesystem is encountered.

dosmkdir Creates a directory on a DOS disk. If -c is given, execution halts
immediately if a file on a mounted filesystem is encountered.

dosrmdir Deletes a directory from a DOS disk. The -c option causes execu­
tion to stop if a file on a mounted filesystem is encountered.

153

dos(C)

The file and directory arguments for DOS files and directories have the form:
device:name

where device is a UNIX System pathname for the special device file containing
the DOS disk, and name is a pathname to a file or directory on the DOS disk.
The two components are separated by a colon (:). For example, the argument:

Idev/fdO:/srdfile.asm

specifies the DOS file, file.asm, in the directory, /src, on the disk in the device
file /dev/fdO. Note that slashes (and not backslashes) are used as filename
separators for DOS pathnames. Arguments without a device: are assumed to
be UNIX System files.

For convenience, the user configurable default file, /etc/default/msdos, can
define DOS drive names to be used in place of the special device file path­
names. It can contain lines with the following format:

A=/dev/fdO
C=/dev/dsk/OsC
D=/dev/dsk/OsD
K=/dev/dsk/1sC

The drive letter "N' may be used in place of special device file pathname
/dev/fdO when referencing DOS files (see "Examples" below). The drive letters
"C" or "K" refer to the DOS partition on the first or second hard disk, and ''D''
refers to a logical drive in the extended partition on the first hard drive.

The commands operate on the follOWing kinds of disks:

DOS partitions on a hard disk
5 ~inchDOS
3 Y2inch DOS
8,9,15, or 18 sectors per track
40 or 80 tracks per side
lor 2 sides
DOS versions 1.0,2.0,3.0,3.3 or 4.0

Conversions

154

In the case of doscp, certain conversions are performed when copying a UNIX
System file. Filenames with a basename longer than eight characters are trun­
cated. Filename extensions (the part of the name following separating period)
longer than three characters are truncated. For example, the file
123456789.12345 becomes 12345678.123. A message informs the user that the
name has been changed and the altered name is displayed. Filenames con­
taining illegal DOS characters are stripped when writing to the MS-DOS for­
mat. A message informs the user that characters have been removed and dis­
plays the name as written.

All DOS text files use a carriage-retum/linefeed combination, CR-LF, to indi­
cate a newline. UNIX System files use a single newline LF character. When
the doscat and doscp commands transfer DOS text files to the UNIX System
filesystem, they automatically strip the CR. When text files are transferred to
DOS, the commands insert a CR before each LF character.

Examples

dos(C)

Under some circumstances the automatic newline conversions do not occur.
The -m option may be used to ensure the newline conversion. The -r option
can be used to override the automatic conversion and force the command to
perform a true byte copy regardless of file type.

Note that the forward slash character (f) must be used as the directory
separator character when dealing with DOS filesystems under UNIX. This is at
variance with the usual DOS practice of using the backslash (\) character as
the directory separator character. For example,

doscat Idev/fdO:/docs/memo.txt

is used instead of the DOS path syntax, which would be

doscat a: \docs \memo.txt

Other examples of the dos(C) commands are:

doscat Itmp/fl Itmp/f2 Idev/fdO:/src/file.asm

doscp Ilmp/myfile.txt Idev/fdO:/docs/memo.txt
doscp Itmp/fl/tmp/f2/dev/£dO:lmydir

dosdir Idev/fdO:/src
dosdir A:/src A:/dev

dosformat Idev/fdO

dosls Idev/fdO:/src
dosls B:

dosrm Idev/fdO:/docs/memo.txt
dosrm A:/docs/memol.txt

dosmkdir Idev/fdO:lusr/docs

dosrmdir Idev/fdO:lusr/docs

Accessing DOS filesystems from the UNIX System partition

The ability to mount DOS filesystems is an extension of the DOS utilities docu­
mented here. There are several limitations within the DOS directory structure
which make this a difficult task.

In short, the DOS filesystem does not associate as much information with each
file as the UNIX System filesystem does. Therefore, allowances and assump­
tions have to be made for information that would be present under the UNIX
System but that does not exist under DOS.

155

dos(C)

156

The DOS directory structure contains the following information:

• Filename: up to 8 characters with 3 character extension ([oo.bat)

• File Attribute: read-only fread-write, hidden/visible file, system/normal
file, Volume name/normal file name, subdirectory /normal file,
archive/modified bit

• Time of last modification

• Date of last modification

• Starting point (reference through FAT)

• File size in bytes

Using this information, it is converted to a UNIX System inode. There are
some UNIX System provisions which cannot be carried over, because the
filesystem must remain sane under DOS.

• Any date in the UNIX System inode table for the DOS filesystem is the same
as the modification date (ctime = atime = mtime).

• The only types of nodes allowed in the DOS filesystem are directories and
normal files. Pipes, semaphores, and special device files do not exist
because they do not have a counterpart under DOS.

• The permissions are 0777 for readable/writable files and 0555 for read only
files. If a user can access the filesystem, the user will be limited by the per­
missions available under the DOS directory structure. This permission is
read-only or read write. When creating a file, the creator's umask/mode is
examined. The creation mode is based on the owner write bit.

• The GID /UID for all files on the DOS filesystem is the same as the mount
point. The mount point will maintain the necessary security. If a user can
get into the mount point, then the user has the same access as the owner.

• There is only one link for each file under the DOS filesystem. "." and " .. " are
a special case and are not links.

• On every change of the modification time (which on a UNIX system would
change atime, ctime, mtime) the DOS archive bit is set.

• Following DOS filesystem requirements, all blocks previous to a written
block are allocated before the original block is written. This differs from
UNIX systems where the program may seek out beyond the end of a file
and write a block. UNIX systems do not necessarily write blocks which
have been skipped over.

• If a program does not use the directory(S) system calls, but opens the direc­
tory in the DOS filesystem as a file, the program should see the DOS direc­
tory structure as it really exists. By using the directory system calls, the
filesystem switch code will put together a UNIX System style directory
entry.

• File contents are not mapped from the DOS filesystem. The file appears
exactly as it is under DOS. For example, \r\n combinations are left as \r\n
and not mapped to just \n. The file and directory names are mapped to
uppercase.

dos(C)

Accessing UNIX System File Systems with DOS Utilities

If an attempt is made to access a mounted UNIX System filesystem using the
DOS utilities the message

command: devicename is mounted

is printed on stderr and the attempt fails. If possible, the command continues
to operate on the remaining parameters and returns a value of 1. Upon nor­
mal completion, these commands return a value of o.
If the -c option is used, execution of the command halts immediately upon
encountering a file in a mounted filesystem.

DOS file conversion

Files

See also

Notes

The utilities xtod(C) and dtox(C) can be used to convert the EOL sequences
used to and from DOS, respectively.

/etc/default/msdos
/dev/fd*
/dev/dsk/

Default information
Floppy disk devices
Hard disk devices

assign(C), dtox(C), dtype(C), mkfs(C), xtod(C)

"MS-DOS and other DOS operating systems" in the System Administrator's
Guide

Using the DOS utilities, it is not possible to refer to DOS files with wild card
specifications. The programs mentioned above cooperate among themselves
so no two programs will access the same DOS disk. Only one process will
access a given DOS disk at any time, while other processes wait. If a process
has to wait too long, it displays the error message, "can't seize a device", and
exits with an exit code of 1.

You cannot use the dosformat command to format device A: because it is
aliased to /dev/install, which cannot be formatted. Use /dev/rfdO/ instead.

The Development System supports the creation of DOS executable files, using
cc(CP). Refer to the C User's Guide and C Library Guide for more information
on using your UNIX system to create programs suitable for DOS systems.

All of the DOS utilities leave temporary files in /tmp. These files are automati­
cally removed when the system is rebooted. They can also be manually
removed.

157

dos(C)

Value added

158

doscat, doscp, dosdir, dosformat, dosIs, dosmkdir, dosrm and dosrmdir are
extensions of AT&T System V provided by The Santa Cruz Operation, Inc.

dtox(C)

dtax
change file format from MS-DOS to UNIX

Syntax

dtox filename > output.file

Description

See also

The dtox command converts a file from MS-DOS format to UNIX format.
MS-DOS files terminate a line of text with a carriage return and a linefeed,
while UNIX files terminate a line with a linefeed only. Also MS-DOS places a
(Ctrl)z at the end of a file, while UNIX systems do not. Some programs and
utilities are sensitive to this difference and some are not. If a text or data file is
not being interpreted correctly, then use the dtox and xtod conversion utili­
ties. The dtox command strips the extra carriage return from the end of each
line and strips the (Ctrl)z from the end of the file. This utility is not required
for binary object files.

If no filename is specified on the command line, dtox takes input from stan­
dard input. Output of the utility goes to standard output.

xtod(C)

Value added

dtox is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

159

dtype(C)

dtype
determine disk type

Syntax
dtype [-s] device ...

Description

160

The dtype command determines the type of a disk and prints pertinent infor­
mation on the standard output (unless the silent (-s) option is selected), then
exits with a corresponding code (see below). When more than one argument
is given for device, the exit code corresponds to the last argument.

Miscellaneous Disk Types

Exit Code Message (optional)
60 error (specified)
61 empty or unrecognized data

Storage Disk Types

Exit Code
70
71
72
73

Message (optional)
backup format, volume n
tar format [, extent e of n]
cpio format
cpio character (-c) format

XENIX or UNIX Disk Types

Version
or type
System III

System V

Exit
Code
120

130
140

Message
(optional)
XENIX 2.x filesystem [needs cleaning]

XENIX 3.x or later filesystem [needs cleaning]
UNIX 1K filesystem [needs cleaning]

Notes

dtype(C)

MS·DOS Disk Types

Version
or type
l.x

2.x

data

3.x

Exit Message
Code (optional)

80 DOS l.x, 8 sec/ track, single sided
81 DOS l.x, 8 sec/track, dual sided

90 MS-DOS 8 sec/track, 40 tracks/side, single sided, 5.25
inch

91 MS-DOS 8 sec/track, 40 tracks/side, dual sided, 5.25 inch
92 MS-DOS 9 sec/track, 40 tracks/side, single sided, 5.25

inch
93 MS-DOS 9 sec/track, 40 tracks/side, dual sided, 5.25 inch
94 MS-DOS fixed disk

100 MS-DOS data disk, n sec/ track, single sided
101 MS-DOS data disk, n sec/ track, dual sided
102 MS-DOS data disk,9 sec/track, single sided
103 MS-DOS data disk,9 sec/track, dual sided

110 MS-DOS 9 (3.5 inch) or 15 (5.25 inch) sec/track, 80
tracks/side, dual sided

111 MS-DOS 18 sec/track, 80 tracks/side, dual sided, 3.5 inch
112 MS-DOS 8 sec/track, 80 tracks/side, single sided, 3.5 or

5.25 inch
113 MS-DOS 8 sec/track, 80 tracks/side, dual sided, 3.5 or

5.25 inch

"word-swapped" refers to byte ordering of long words in relation to the host
system.

XENIX filesystems and backup and cpia binary formats may not be recog­
nized if created on a foreign system. This is due to such system differences as
byte and word swapping and structure alignment.

This utility only works reliably for floppy diskettes.

Value added

dtype is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

161

du(C)

du
summarize disk usage

Syntax

du [-afrsu] [names]

Description

Notes

The du command gives the number of blocks contained in all files and direc­
tories recursively within each directory and file specified by the names argu­
ment. The block count includes the indirect blocks of the file. If names is
missing, the current directory is used.

The -s option causes only the grand total (for each of the specified names) to
be given. The -a option causes an entry to be generated for each file. Absence
of either causes an entry to be generated for each directory only.

The -f option causes du to display the usage of files in the current file system
only. Directories containing mounted file systems will be ignored. The-u
option causes du to ignore files that have more than one link.

du is normally silent about directories that cannot be read, files that cannot be
opened, and so on. The -r option will cause du to generate messages in such
instances.

A file with two or more links is only counted once. Symbolic links are not fol­
lowed, but the disk space used to hold the actual symbolic link is counted.

If the -a option is not used, non-directories given as arguments are not listed.

Files with holes in them will get an incorrect block count.

This utility reports sizes in 512 byte blocks. du interprets 1 block from a 1024
byte block system as 2 of its own 512 byte blocks.

Standards conformance

du is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3,1989.

162

echo(C)

echo
echo

Syntax
echo [-n] [arg] ...

Description

The echo command writes its arguments separated by blanks and terminated
by a new-line on the standard output. The -n option prints a line without the
new-line; this is the same as using the \c escape sequence.

echo also understands C-like escape conventions; beware of conflicts with the
shell's use of 1/ \ 1/:

\ b backspace

\c print line without new-line

\f form-feed

\n new-line

\r carriage return

\t tab

\v vertical tab

\ \ backslash

\n The 8-bit character whose ASCII code is a 1, 2 or 3-digit octal number.
In all cases, n must start with a zero. For example:

echo "\07"

echo "\007"

echo "\065"

echo "\0101"

Echoes (Ctrl)g.

Also echoes (Ctrl)g.

Echoes the number 1/ 5 ".

Echoes the letter 1/ A".

The echo command is useful for producing diagnostics in command files and
for sending known data into a pipe.

163

echo(C)

See also

Notes

164

sh(C), csh(C), ksh(C)

When representing an 8-bit character by using the escape convention \On, the
n must always be preceded by the digit zero (0).

For example, typing: echo ''WARNING:\07'' will print the phrase "WARNING:"
and sound the "bell" on your terminal. The use of single (or double) quotes
(or two backslashes) is required to protect the" \ " that precedes the" 07".

For the octal equivalents of each character, see ascii(M).

An internal version of this command is provided by ksh(C) and may behave
slightly differently; please refer to the ksh(C) entry for details.

ed(c)

ed, red
invoke the text editor

Syntax
ed [-] [-p string] [file]

red [-] [-p string] [file]

Description

Options

ed - Invokes the text editor

red - Invokes a restricted text editor

ed is the standard text editor. If the file argument is given, ed simulates an e
command (see below) on the named file; that is to say, the file is read into ed's
buffer so that it can be edited. ed operates on a copy of the file it is editing;
changes made to the copy have no effect on the file until a w (write) com­
mand is given. The copy of the text being edited resides in a temporary file
called the buffer. There is only one buffer.

red is a restricted version of ed(C). It will only allow editing of files in the
current directory. It prohibits executing sh(C) commands via the! command.
red displays an error message on any attempt to bypass these restrictions.

In general, red does not allow commands like !date or Ish.

Furthermore, red will not allow pathnames in its command line. For example,
the command:

red /etdpasswd
when the current directory is not fete causes an error.

The options to ed are:

Suppresses the printing of character counts by the e, r, and w com­
mands, of diagnostics from e and q commands, and the "!" prompt
after a ! shell command.

-p Allows the user to specify a prompt string.

ed supports formatting capability. After including a format specification as
the first line of file and invoking ed with your terminal in stty-tabs or sttytab3
mode (see stty(C», the specified tab stops will automatically be used when
scanning file. For example, if the first line of a file contained:

<:t5,10,15 s72:>
tab stops would be set at columns 5, 10, and 15, and a maximum line length of
72 would be imposed.

165

ed(C)

166

Note: While inputting text, tab characters are expanded to every eighth
column as the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in
the buffer. Every command that requires addresses has default addresses, so
that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in input mode. In this mode,
no commands are recognized; all input is merely collected. Input mode is left
by entering a period (.) alone at the beginning of a line.

ed supports a limited form of regular expression notation; regular expressions
are used in addresses to specify lines and in some commands (for example, s)
to specify portions of a line that are to be substituted. A regular expression
specifies a set of character strings. A member of this set of strings is said to be
matched by the regular expression. The regular expressions allowed by ed are
constructed as follows:

The following one-character regular expressions match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one­
character regular expression that matches itself.

1.2 A backslash (\) followed by any special character is a one-character reg­
ular expression that matches the special character itself. The special
characters are:

a. . * [and \ (dot, star, left square bracket, and backslash, respec­
tively), which are otherwise special, except when they appear
within square brackets ([D; see 1.4 below).

b. A (caret), which is special at the beginning of an entire regular
expression (see 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets (see 1.4 below).

c. $ (dollar sign), which is special at the end of an entire regular
expression (see 3.2 below).

d. The character used to bound (that is, delimit) an entire regular
expression, which is special for that regular expression (for exam­
ple, see how slash (f) is used in the g command below).

1.3 A period C.) is a one-character regular expression that matches any char­
acter except newline.

ed(C)

1.4 A nonempty string of characters enclosed in square brackets is a one­
character regular expression that matches anyone character in that
string. If, however, the first character of the string is a caret n, the one­
character regular expression matches any character except newline and
the remaining characters in the string. The star (*) also has this special
meaning only if it occurs first in the string. The dash (-) may be used to
indicate a range of consecutive ASCII characters; for example, [0-9] is
equivalent to [Ol23456789]. The dash loses this special meaning if it
occurs first (after an initial caret, if any) or last in the string. The right
square bracket (]) does not terminate such a string when it is the first
character within it (after an initial caret, if any); for example, []a-f]
matches either a right square bracket or one of the letters "a" through "f"
inclusive. Dot, star, left bracket, and the backslash lose their special
meaning within such a string of characters.

Ranges of characters (characters separated by " -" are treated according to the
current locale's collation sequence (see locale(M». Therefore, if the collation
sequence in use is A, a, B, b, C, c, then the expression [a-d] is equivalent to the
expression [aBbCcDd].

To specify a collation item within a class, the item must be enclosed between
II [. " and" .] ". Two character to one collation item mappings must be specified
this way. For example, if the current collation rules specify that the characters
"Ch" map to one character for collation purposes (as in Spanish), then this col­
lation item would be specified as l.Ch.] .

To specify a group of collation items, which are classified as equal unless all
other collation items in the string also match, in which case a secondary
"weight" becomes Significant, a single member of that group must be
enclosed between "[=" and "=]". For example, if the characters A and a are
in the same group then the class expressions [[=a=]b], [[=A=]b] and [Aab] are
all equivalent.

The ctype classes can also be specified within regular expressions. These are
enclosed between [: and :]. The possible ctype classes are:

[:alpha:] Matches alphabetic characters
[:upper:] Matches upper case characters
[:lower:l Matches lower case characters
[:digit:] Matches digits
[:alnum:] Matches alphanumeriC characters
[:space:] Matches white space
[:print:] Matches printable characters
[:punct:] Matches punctuation marks
[:graph:] Matches graphical characters
[:cntrl:] Matches control characters

The following rules may be used to construct regular expressions from one­
character regular expressions:

2.1 A one-character regular expression followed by a star (*) is a regular
expression that matches zero or more occurrences of the one-character
regular expression. If there is any choice, the longest leftmost string that
permits a match is chosen.

167

ed(C)

168

2.2 A one-character regular expression followed by \{m\}, \{m,\}, or
\{m,n\} is a regular expression that matches a range of occurrences of
the one-character regular expression. The values of m and n must be
nonnegative integers less than 255; \{m\} matches exactly m occurren­
ces; \{m, \} matches at least m occurrences; \{m,n\} matches any number
of occurrences between m and n, inclusive. Whenever a choice exists,
the regular expression matches as many occurrences as possible.

2.3 The concatenation of regular expressions is a regular expression that
matches the concatenation of the strings matched by each component of
the regular expression.

2.4 A regular expression enclosed between the character sequences "\ ("
and" \)" is a regular expression that matches whatever the unadorned
regular expression matches. See 2.5 below for a discussion of why this
is useful.

2.5 The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the same
regular expression. Here n is a digit; the sub expression specified is that
beginning with the n-th occurrence of \(counting from the left. For
example, the expression \(.*\)\1$ matches a line consisting of two
repeated appearances of the same string.

Finally, an entire regular expression may be constrained to match only an ini­
tial segment or final segment of a line (or both):

3.1 A caret at the beginning of an entire regular expression constrains that
regular expression to match an initial segment of a line.

3.2 A dollar sign ($) at the end of an entire regular expression constrains
that regular expression to match a final segment of a line. The construc­
tion ~entire regular expression$ constrains the entire regular expression
to match the entire line.

The null regular expression (for example, /I) is equivalent to the last regular
expression encountered.

To understand addressing in ed, it is necessary to know that there is a current
line at all times. Generally speaking, the current line is the last line affected by
a command; the exact effect on the current line is discussed under the descrip­
tion of each command. Addresses are constructed as follows:

1. The character" . " addresses the current line.

2. The character" $" addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which
must be a lowercase letter. Lines are marked with the k command
described below.

ed(C)

5. A regular expression enclosed by slashes U} addresses the first line
found by searching forward from the line following the current line
toward the end of the buffer and stopping at the first line containing a
string matching the regular expression. If necessary, the search wraps
around to the beginning of the buffer and continues up to and includ­
ing the current line, so that the entire buffer is searched.

6. A regular expression enclosed in question marks (?) addresses the first
line found by searching backward from the line preceding the current
line toward the beginning of the buffer and stopping at the first line
containing a string matching the regular expression. If necessary, the
search wraps around to the end of the buffer and continues up to and
including the current line. See also the last paragraph before "Files"
below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by
a decimal number specifies that address plus or minus the indicated
number of lines. The plus sign may be omitted.

8. If an address begins with "+" or "- ", the addition or subtraction is
taken with respect to the current line; for example, -5 is understood to
mean .-5.

9. If an address ends with" +" or "- ", then 1 is added to or subtracted
from the address, respectively. As a consequence of this rule and of
rule 8 immediately above, the address " -" refers to the line preceding
the current line. (To maintain compatibility with earlier versions of the
editor, the character "~,, in addresses is entirely equivalent to "- ".)
Moreover, trailing" +" and "-" characters have a cumulative effect, so
" -- " refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1, $, while a
semicolon (;) stands for the pair . , $.

Commands may require zero, one, or two addresses. Commands that require
no addresses regard the presence of an address as an error. Commands that
accept one or two addresses assume default addresses when an insufficient
number of addresses is given; if more addresses are given than such a com­
mand requires, the last address(es} are used.

Typically, addresses are separated from each other by a comma. They may
also be separated by a semicolon. In the latter case, the current line (.) is set to
the first address, and only then is the second address calculated. This feature
can be used to determine the starting line for forward and backward searches
(see rules 5 and 6 above). The second address of any two-address sequence
must correspond to a line that follows, in the buffer, the line corresponding to
the first address.

169

ed(C)

170

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address.

It is generally illegal for more than one command to appear on a line. How­
ever, any command (except e, f, r, or w) may be suffixed by p or by 1, in which
case the current line is either printed or listed, respectively, as discussed
below under the p and 1 commands.

(.)a
<text>

(.)C
<text>

(.,.)d

efile

Efile

ffile

The append command reads the given text and appends it after
the addressed line; dot is left at the address of the last inserted line,
or, if there were no inserted lines, at the addressed line. Address 0
is legal for this command: it causes the appended text to be placed
at the beginning of the buffer.

The change command deletes the addressed lines, then accepts
input text that replaces these lines; dot is left at the address of the
last line input, or, if there were none, at the first line that was not
deleted.

The Delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; dot is set to the last
line of the buffer. If no filename is given, the currently remem­
bered filename, if any, is used (see the f command). The number
of characters read is typed. file is remembered for possible use as
a default filename in subsequent e, r, and w commands. If file
begins with an exclamation (!), the rest of the line is taken to be a
shell command. The output of this command is read for the e and r
commands. For the w command, the file is used as the standard
input for the specified command. Such a shell command is not
remembered as the current filename.

The Edit command is like e, except the editor does not check to see
if any changes have been made to the buffer since the last w com­
mand.

If file is given, the filename command changes the currently
remembered filename to file; otherwise, it prints the currently
remembered filename.

ed(C)

(1, $)g1regular-expressionl command list
In the global command, the first step is to mark every line that
matches the given regular expression. Then, for every such line,
the given command list is executed with "." initially set to that
line. A single command or the first of a list of commands appears
on the same line as the global command. All lines of a multiline
list except the last line must be ended with a" \"; a, i, and c com­
mands and associated input are permitted; the "." terminating
input mode may be omitted if it would be the last line of the com­
mand list. An empty command list is equivalent to the p com­
mand. The g, G, v, and V commands are not permitted in the com­
mand list. See also "Notes" and the last paragraph before "Files"
below.

(1, $)Glregular-expressionl
In the interactive Global command, the first step is to mark every
line that matches the given regular expression. Then, for every
such line, that line is printed, dot (.) is changed to that line, and
anyone command (other than one of the a, c, i, g, G, v, and V com­
mands) may be input and is executed. After the execution of that
command, the next marked line is printed, and so on. A newline
acts as a null command. An ampersand (&) causes the re­
execution of the most recent command executed within the
current invocation of G. Note that the commands input as part of
the execution of the G command may address and affect any lines
in the buffer. The G command can be terminated by entering an
INTERRUPT (pressing the (Del) key).

h The help command gives a short error message that explains the
reason for the most recent? diagnostic.

H The Help command causes ed to enter a mode in which error mes­
sages are printed for all subsequent? diagnostics. It will also
explain the previous diagnostic if there was one. The H command
alternately turns this mode on and off. It is initially off.

(.)i
<text>

The insert command inserts the given text before the addressed
line; dot is left at the address of the last inserted line, or if there
were no inserted lines, at the addressed line. This command
differs from the a command only in the placement of the input
text. Address 0 is not legal for this command.

(. , .+1)j The join command joins contiguous lines by removing the
appropriate newline characters. If only one address is given, this
command does nothing.

(.)kx The mark command marks the addressed line with name x, which
must be a lowercase letter. The address 'x then addresses this line.
Dot is unchanged.

171

ed(C)

172

(• , •)1 The list command prints the addressed lines in an unambiguous
way: a few nonprinting characters (for example, tab, backspace)
are represented by mnemonic overstrikes, all other nonprinting
characters are printed in octal, and long lines are folded. An I
command may be appended to any command other than e, f, r, or
w.

(• , •)ma The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines. Dot is left at the
last line moved.

(. , .)n The number command prints the addressed lines, preceding each
line by its line number and a tab character. Dot is left at the last
line printed. The n command may be appended to any command
other than e, f, r, or w.

(. , .)p The print command prints the addressed lines. Dot is left at the
last line printed. The p command may be appended to any com­
mand other than e, f, r, or w; for example, dp deletes the current
line and prints the new current line.

P The editor will prompt with a II *" for all subsequent commands.
The P command alternately turns this mode on and off. It is ini­
tiallyoff.

q The quit command causes ed to exit. No automatic write of a file
is done.

Q The editor exits without checking if changes have been made in
the buffer since the last w command.

($)r file The read command reads in the given file after the addressed line.
If no filename is given, the currently remembered filename, if any,
is used (see e and f commands). The currently remembered
filename is not changed unless file is the very first filename men­
tioned since ed was invoked. Address 0 is legal for r and causes
the file to be read at the beginning of the buffer. If the read is suc­
cessful, the number of characters read is typed. Dot is set to the
address of the last line read in. If file begins with "! ", the rest of
the line is taken to be a shell command whose output is to be read.
Such a shell command is not remembered as the current filename.

ed(C)

(• , •)slregular-expressionlreplacement or
(.,.)slregular-expressionlreplacement/g or
(• , .)slregular-expressionlreplacementln n=1-512

(.,.)ta

u

The substitute command searches each addressed line for an oc­
currence of the specified regular expression. In each line in which
a match is found, all nonoverlapped matched strings are replaced
by replacement if the global replacement indicator g appears after
the command. If the global indicator does not appear, only the
first occurrence of the matched string is replaced. It is an error for
the substitution to fail on all addressed lines. Any character other
than space or newline may be used instead of If / If to delimit
regular-expression and replacement. Dot is left at the address of
the last line on which a substitution occurred.

The n character represents any number between one and 512. This
number indicates the instance of the pattern to be replaced on each
addressed line.

An ampersand (&) appearing in replacement is replaced by the
string matching the regular-expression on the current line. The
special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \n,
where n is a digit, are replaced by the text matched by the n-th reg­
ular subexpression of the specified regular expression enclosed
between If \(If and If \) If. When nested parenthesized subexpres­
sions are present, n is determined by counting occurrences of If \(If
starting from the left. When the character If % If is the only charac­
ter in replacement, the replacement used in the most recent substi­
tute command is used as the replacement in the current substitute
command. The If % If loses its special meaning when it is in a
replacement string of more than one character or when it is pre­
ceded by a If \ fl.

A line may be split by substituting a newline character into it. The
newline in the replacement must be escaped by preceding it with a
If \ fl. Such a substitution cannot be done as part of a g or v com­
mand list.

This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0). Dot
is left at the address of the last line of the copy.

The undo command nullifies the effect of the most recent com­
mand that modified anything in the buffer, namely the most recent
a, c, d, g, i, j, m, r, s, t, v, G, or V command.

(1 , $)v/regular-expressionlcommand list
This command is the same as the global command g except that
the command list is executed with dot initially set to every line
that does not match the regular expression.

173

ed(C)

174

(1, $)Vlregular-expressionl
This command is the same as the interactive global command G
except that the lines that are marked during the first step are those
that do not match the regular expression.

(1, $)w file
The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable and
writeable by everyone), unless the umask setting (see sh(C» dic­
tates otherwise. The currently remembered filename is not
changed unless file is the very first filename mentioned since ed
was invoked. If no filename is given, the currently remembered
filename, if any, is used (see e and f commands), and dot remains.
If the command is successful, the number of characters written is
displayed. If file begins with an exclamation (!), the rest of the line
is taken to be a shell command to which the addressed lines are
supplied as the standard input. Such a shell command is not
remembered as the current filename.

($)= The line number of the addressed line is typed. Dot is unchanged
by this command.

!shell command

(.+1)

The remainder of the line after the "!" is sent to the UNIX shell
(sh(C» to be interpreted as a command. Within the text of that
command, the unescaped character "%" is replaced with the
remembered filename. If a " !" appears as the first character of the
shell command, it is replaced with the text of the previous shell
command. Thus, "!!" will repeat the last shell command. If any
expansion is performed, the expanded line is echoed. Dot is
unchanged.

An address alone on a line causes the addressed line to be printed.
A RETURN alone on a line is equivalent to .+ 1p. This is useful for
stepping forward through the editing buffer a line at a time.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a question mark
(?) and returns to its command level.

ed has size limitations: 512 characters per line, 256 characters per global com­
mand list, 64 characters per filename, and 128K characters in the buffer. The
limit on the number of lines depends on the amount of user memory.

When reading a file, ed discards ASCII NUL characters and all characters after
the last newline. Files (for example, a.out) that contain characters not in the
ASCII set (bit 8 on) cannot be edited by ed.

Files

See also

ed(C)

If the closing delimiter of a regular expression or of a replacement string (for
example, II / ") would be the last character before a newline, that delimiter
may be omitted, in which case the addressed line is printed. Thus, the follow­
ing pairs of commands are equivalent:

s/s1/s2 s/s1/s2lp
glsl glsl/p
?sl ?sl?

/tmp/e#
ed.hup

Temporary; # is the process number
Work is saved here if the terminal is hung up

coltbl(M), grep(C), locale(M), regexp(S), sed(C), sh(C), stty(C)

Diagnostics

Notes

?
? file

Command errors
An inaccessible file

Use the help and Help commands for detailed explanations.

If changes have been made in the buffer since the last w command that wrote
the entire buffer, ed warns the user if an attempt is made to destroyed's
buffer via the e or q commands by printing "?" and allowing you to continue
editing. A second e or q command at this point will take effect. The dash (-)
command-line option inhibits this feature.

An exclamation 0) command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be
used if the the editor is invoked from a restricted shell (see sh(C».

The sequence \n in a regular expression does not match any character.

The 1 command mishandles DEL.

Because 0 is an illegal address for the w command, it is not possible to create
an empty file with ed.

If the editor input is coming from a command file; that is,
ed file < ed-cmd-file

the editor will exit at the first failure of a command in the command file.

175

ed(C)

Standards confonnance
ed is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

176

enable(C)

enable
turn on terminals and line printers

Syntax

enable tty ...

enable printers

Description

Examples

Files

See also

For terminals this program manipulates the /etc/conf/cf.d/init.base file and sig­
nals init to allow logins on a particular terminal.

For line printers, enable activates the named printers and enables them to
print requests taken by Ip(C). Use Ipstat(C) to find the status of the printers.

A simple command to enable tty01 follows:

enable ttyOl

jdev/tty*
/etc/conf/cf·d/init.base
/etc/conf/init.d/sio
/usr/spool/lp/*

disable(C), getty(M), init(M), inittab(F),login(M),lp(C), Ipstat(C), uugetty(M)

Authorization

The behavior of this utility is affected by assignment of the printerstat author­
ization. Refer to the "Using a secure system" chapter of the Users Guide for
more details.

177

env(C)

env
set environment for command execution

Syntax

env [-] [name=value] ... [command [args]]

Description

See also

Notes

printenv - print environment for command execution

The env command obtains the current "environment", modifies it according
to its arguments, then executes the command with the modified environment.
Arguments of the form name are merged into the inherited environment
before the command is executed. The" - 1/ flag causes the inherited environ­
ment to be ignored completely, so that the command is executed with exactly
the environment specified by the arguments.

If no command is specified, the environment is printed, one name-value pair
per line.

environ(M), exec(S), profile(F), sh(C)

The old printenv command was replaced in System V by the env command.
The current prinfenv is a link to env.

Standards conformance

env is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

178

ex(C)

ex, edit
invoke a text editor

Syntax
ex [-s] [-v] [-t tag] [-r file] [-L] [-R] [-c command] name ...

edit [-r] [-x] [-C] name ...

Description

Files

ex - Invokes the ex text editor

edit - Invokes a novice version of the ex text editor

The ex command is the root of the editors ex, vi(C), view, and vedit. ex is a
superset of ed, with the most notable extension being a display editing facil­
ity. Display-based editing is the focus of the vi family of editors.

edit is a variant of ex recommended for new or casual users who wish to use a
command-oriented editor. It operates precisely as ex with the following
options automatically set:

novice ON

report ON

showmode ON

magic OFF

These options can be turned on or off via the set command in ex.

Refer to the vi(C) page for a complete description of the ex commands.

/usr/lib/ex3.7strings
/usr/lib /ex3.7 recover
/usr/lib /ex3 .7preserve
/usr /lib /terminfo
$HOME/.exrc
/tmp/Exnnnnn
/tmp/Rxnnnnn
/usr/preserve

Error messages
Recover command
Preserve command
Describes capabilities of terminals
Editor startup file
Editor temporary
Named buffer temporary
Preservation directory

179

ex(C)

See also

Credit

awk(C), ctags(CP), ed(C), grep(C), infocmp(ADM), sed(C), tic(C), terminfo(F),
terminfo(M),vi(C)

This utility was developed at the University of California at Berkeley and is
used with permission.

Standards conformance

ex is conformant with:

AT&T svro Issue 2;
and X/Open Portability Guide, Issue 3,1989.

180

expr(C)

expr
evaluate arguments as an expression

Syntax
expr arguments

Description

The arguments are taken as an expression. After evaluation, the result is writ­
ten on the standard output. Terms of the expression must be separated by
blanks. Characters special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings contain­
ing blanks or other special characters should be quoted. Integer-valued argu­
ments may be preceded by a unary minus sign. Internally, integers are treated
as 32-bit,2's complement numbers.

The operators and keywords are listed below. Individual parameters within
expressions may need to be quoted or escaped, since many of the characters
that have special meaning in the shell also have special meaning in expr. The
list is in order of increasing precedence, with equal precedence operators
grouped within braces ({ and}). Parentheses () can be used for grouping; see
the Examples section below for the syntax.

expr is useful for performing variable arithmetic and other variable manipula­
tion within shell scripts. See the Examples section below for some ideas.

arg I arg

arg&arg

Returns the first arg if it is neither null nor 0, otherwise
returns the second argo

Returns the first arg if neither arg is null nor 0, otherwise
returnsO.

arg { =, ==, >, >=, <, <=,!= } arg

arg { *, I, % } arg

arg{ +,-} arg

Returns the result of an integer comparison if both argu­
ments are integers, otherwise returns the result of a lexi­
cal comparison, as defined by the locale. The result will
be 1 if the expression is true and 0 if the expression is
false. The double equals sign (==) does the same thing as
the single equals sign (=); it is simply an alternative syn­
tax.

Multiplication, division, or remainder of the integer­
valued arguments.

Addition or subtraction of integer-valued arguments.

181

expr(C)

Examples

182

arg: arg The matching operator (:) compares the first argument
with the second argument, which must be a regular
expression; regular expression syntax is the same as that
of ed(C), except that all patterns are "anchored" (that is,
begin with a caret n) and therefore the caret is not a spe­
cial character in that context. (Note that in the shell, the
caret has the same meaning as the pipe symbol (I).) Nor­
mally the matching operator returns the number of
characters matched (0 on failure). Alternatively, the
\(... \) pattern symbols can be used to return a portion
of the first argument.

match string rexp The match operator is identical in function to the colon
operator (:) described above, but with a different syntax.

substr string x y The substring operator takes three arguments: a string,
an integer index into the string, x; and the number of
characters to return from the string, y. substr goes to the
xth character in string and returns the next y characters.
If y is greater than the number of remaining characters in
the string, expr will return the remainder of the string. x
must be an integer greater than 0; y must be a positive
integer (0 is acceptable, if you want 0 as the result). See
the following section for an example.

length string The length operator returns the length (the number of
characters) of string.

index string r [stuv]
The index operator returns an integer indicating the place
of r in string. If r is not in string, 0 is returned. You can
specify as many characters as you like in the second argu­
ment; expr will then take the first character which
appears in string and return its place in the string as an
integer. See the following section for an example.

This is an example of how expr can be used in a shell script to do variable
arithmetic:

a=2
a='expr $a + l'
echo $a
3

Parentheses can be placed around the part of an expression you want
evaluated first. Be careful with the syntax; the backslashes and whitespace
are essential:

expr \(1 +-2 \) * 10
30

See also

expr(C)

The matching operator in expr (: or match) can be used to return a portion of a
pathname:

a=/usr/lulu/valentines/woowoo
expr $a : ' .*/\(.*\)'
woowoo

basename(C) does the same thing, however, and uses a simpler syntax:
a=/usr/lulu/valentines/woowoo
basename $a
woowoo

You can use the length operator to check the length of a string variable, and
assign this value to another variable, if you like:

a=/usr/lulu/valentines/woowoo
b='expr length $a'
echo $b
27

The substring (substr) operator pulls out a specific part of a string:
expr substr mongoose 4 7
goose

Here, the expr substring operator returns a substring of "mongoose" specified
by 4 (start from the fourth character) and 7 (give me the next seven charac­
ters). Note that there are not seven more characters in "mongoose" from the
"g', so expr only returns what is left.

The index operator tells you the place of a character in a string:
expr index wombat zoqb
2

In this example, the index operator takes the "d', the first character that is
actually in the string "wombat", and returns its place in the string. expr index
wombat 0 would have the same result.

awk(C), basename(C), bc(C), d(C), locale(M), oltbl(M), sh(C)

Diagnostics

As a side effect of expression evaluation, expr returns the following exit
values:

o If the expression is neither null nor zero
1 If the expression is null or zero
2 For invalid expressions

Other diagnostics include:

syntax error For operator loperand errors, including unset variables

nonnumeric argument
If arithmetic is attempted on a nonnumeric string

183

expr(C)

Notes

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an equals
sign (=), the command:

expr $a = "="

looks like:
expr

The arguments are passed to expr and will all be taken as the = operator. The
following permits comparing equals signs:

expr X$a = X=

Standards conformance

expr is conforrnant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

184

jactor(C)

factor
factor a number

Syntax
factor [number]

Description

When factor is invoked without an argument, it waits for a number to be
typed in. If you type in a positive number less than 246 (about 7.2xl013) it will
factor the number and print its prime factors; each one is printed the proper
number of times. Then it waits for another number. It exits if it encounters a
zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then
exits.

The time it takes to factor a number, n, is proportional to -.[n. It usually takes
longer to factor a prime or the square of a prime, than to factor other numbers.

Diagnostics

factor returns an error message if the supplied input value is greater than 246

or is not an integer number.

185

faise(C)

false
return with a non· zero exit value

Description

See also

false does nothing except return with a non-zero exit value. true (C), false's
counterpart, does nothing except return with a zero exit value. false is typi­
cally used in shell procedures such as:

until false
do

command
done

sh(C), true(C)

Diagnostics

false is any non-zero value.

Standards conformance

false is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

186

jile(C)

file
determine file type

Syntax

file [-cL] [-f !file] [-m mfile] arg ...

Description

Files

See also

The file command performs a series of tests on each argument in an attempt
to classify it. If an argument appears to be ASCII, file examines the first 512
bytes and tries to guess its language. If an argument is an executable a.out,
file will print the version stamp, provided it is greater than O.

-c The -c pption causes file to check the magic file for format errors. This
validation is not normally carried out for reasons of efficiency. No file
typing is done under -c.

-L The -L option causes file to follow symbolic links. By default, symbolic
links are not followed.

-f If the -f option is given, the next argument is taken to be a file containing
the names of the files to be examined.

-m The -m option instructs file to use an alternate magic file.

The file command uses the file /etc/magic to identify files that have some sort
of "magic number"; that is, any file containing a numeric or string constant
that indicates its type. Commentary at the beginning of /etc/magic explains its
format.

/etc/magic

filehdr(FP)

Standards conformance

file is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

187

find(C)

find
find files

Syntax
find pathname-list expression

Description

The find command is used to find files matching a certain set of selection cri­
teria. find recursively descends the directory hierarchy for each pathname in
the pathname-list (that is, one or more pathnames) seeking files that match a
boolean expression written in the primaries given below.

Expressions

188

For each file encountered, find evaluates the specified expression, formed of
one or more of the following primary expressions, which may evaluate as true
or false. In the descriptions, the argument n is used as a decimal integer
where +n means more than n, -n means less than nand n means exactly n.

-name pattern True if pattern matches the current file name. pattern is
similar to sh(C)'s filename matching syntax and therefore
care must be taken to escape or quote patterns containing
the following characters: the left bracket ([), the question
mark (?) and the star (*).

-perm onum True if the file permission flags exactly match onum (see
chmod(C». If onum is prefixed by a minus sign, all other
modes become Significant (see mknod(S», including the file
type, setuid, setgid, and sticky bits rather than just
read/write/execute modes for owner/group/other.

-type x True if the type of the file is x, where x is bb for block spe­
cial file, c for character special file, d for directory, p for
named pipe (first-in-first-out (FIFO», f for regular file, or I
for symbolic link.

-links n True if the file has n links.

-size n [c] True if the file is n blocks long (512 bytes per block). If n is
followed by a II c ", the size is in characters.

-follow Always true; causes symbolic links to be followed. When
following symbolic links, find keeps track of the directories
visited so that it can detect infinite loops. For example, an
infinite loop in a find would occur if a symbolic link
pointed to an ancestor. This expression should not be used
with the -type I expression.

-mount

-local

-inumnum

-useruname

-group gname

-atime n

-mtimen

-ctime n

-exec cmd

-okcmd

-cpio device

-depth

-print

-newer file

find(C)

Always true; restricts the search to the file system contain­
ing the directory specified, or if no directory was specified,
the current directory.

True if the file physically resides on the local system.

True if the file's inode is num. This is useful for locating
files with matching inodes.

True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/ete/passwd file, it is taken as a user ID.

True if the file belongs to the group gname. If gname is
numeric and does not appear in the fete/group file as a group
name, it is taken as a group ID.

True if the file was last accessed n days ago.

True if the data in the file was last modified n days ago.

True if the file's status was last changed (that is, created or
modified) n days ago.

Executes shell command cmd. The end of cmd must be
punctuated by an escaped semicolon. A command argu­
ment {} is replaced by the current path name. True if the
executed cmd returns a zero value as exit status (most com­
mands return a zero value on successful completion and a
non-zero value if an error is encountered).

Like -exec except that the generated command line is
printed with a question mark first, and is executed only if
the user responds by typing /I Y ".

Writes the current file on device in epio(F) format (5120-byte
records). Always true.

Causes all entries in a directory to be acted upon before the
directory itself. This cari be useful when used with cpio(C)
or the -cpio expression to transfer files located in directories
without write permission. Always true.

Causes the current path name to be printed. This option is
used to create a list of all files matched by the previous pri­
maries. Always true.

True if the current file has been modified more recently
than the argument file.

189

find (C)

Examples

Files

See also

(expression) True if the parenthesized expression is true. Usually used
with the -0 operator (see below), parentheses are used for
grouping. Parentheses are special to the shell and must be
escaped.

The primaries may be combined using the following operators (in order of
decreasing precedence):

The "!" operator specifies the negation of the next primary (that is,
! -newer file is true if the current file is not newer than file). This is the
equivalent of the logical "not" operator.

-0 Placing the -0 operator between two primaries creates an expression that
is true if either of the two primaries is true. It should be used with
parentheses (that is, \(-perm 644 -0 -perm 664 \) is true if the current file
has permissions 644 or 664). This is equivalent to the logical "inclusive or"
operator.

Note that placing two primaries next to each other is the equivalent of the log­
ical "and" operation. The precedence of this operation is less than that of the
" ! " operator but greater than that of the -0 operator.

The following command searches for files named ehapter1 in the current direc­
tory and all directories below it and sends the pathname of any such files it
finds to the standard output:

find. -name chapterl -print

The following removes all files named core or filenames ending in .out that
have not been accessed in the last seven days.

find I \(-name core -0 -name "*.out" \) -atime +7 -exec rm {} \;

/ete/passwd
fete/group

User names and uids
Group names and gids

cpio(C), cpio(F), sh(C), stat(S), test(C)

Standards conformance

find is conformant with:

AT&T svm Issue 2 ;
and X/Open Portability Guide, Issue 3, 1989.

190

finger(C)

finger
find information about users

Syntax

finger [-bfilpqsw] [loginl [login2 ...]]

Description

Files

By default finger lists the login name, full name, terminal name and write
status (as a /I * /I before the terminal name if write permission is denied), idle
time, login time, office location, and phone number (if they are known) for
each current user. (Idle time is minutes if it is a single integer, hours and
minutes if a colon (:) is present, or days and hours if a /I d " is present.)

A longer format also exists and is used by finger whenever a list of names is
given. (Account names as well as first and last names of users are accepted.)
This is a multi-line format; it includes all the information described above as
well as the user's home directory and login shell, any plan which the person
has placed in the file .plan in their home directory, and the project on which
they are working from the file .project which is also in the home directory.

finger options are:

-b Briefer long output format of users.

-f Suppresses the printing of the header line (short format).

-i Quick list of users with idle times.

-1 Forces long output format.

-p Suppresses printing of the .plan files.

-q Quick list of users.

-s Forces short output format.

-w Forces narrow format list of specified users.

who file /etc/utmp
/etc/passwd user names, offices, phones, login directories, and

shells
$HOME/.plan
$HOME/.project

plans
projects

191

finger(C)

See also

Credit

Notes

192

w(C), who(C)

This utility was developed at the University of California at Berkeley and is
used with permission.

Only the first line of the .project file is printed.

Entries in the /etc/passwd file have the following format:
login name:user password(coded):user ID:group ID:comments:home
directory:login shell

The comment field corresponds to what appears in the finger output. For
example, in the following /etc/passwd entry:

blf:*:47:5:Brian Foster, Mission, x70, 767-1234
:/u/blf:/bin/sh

the comment field, "Brian Foster, Mission, x70, 767-1234", contains data for the
"In Real Life", "Office", and "Home Phone" columns of the finger listings.

Idle time is computed as the elapsed time since any activity on the given ter­
minal. This includes previous invocations of finger which may have modi­
fied the terminal's corresponding device file /dev/tty??

fixhdr(C)

fixhdr
change executable binary file headers

Syntax
fixhdr option files

Description

fixhdr changes the header of output files created by link editors or assem­
blers. The kinds of modifications include changing the format of the header,
the fixed stack size, the standalone load address, and symbol names.

Using fixhdr allows the use of binary executable files, created under other
versions or machines, by simply changing the header information so that it is
usable by the target cpu.

These are the options to fixhdr:

-xa

-xb

-x4

-x5 [-n]

-ax -c [11,86]

-bx

-5x [-n]

-86x

-Fnum

Change the x.out format of the header to the a.out format.

Change the x.out format of the header to the b.out format.

Change the x.out format of the header to the 4.2BSD a.out
format.

Change the x.out format of the header to 5.2 (UNIXTM Sys­
tem V Release 2) a.out format. The -n flag causes leading
underscores on symbol names to be passed with no modif­
ications.

Change the a.out format of the header to the x.out format.
The -c flag specifies the target cpu. 11 specifies a PDP-11
cpu. 86 specifies one of the 8086 family of CPUs (8086,
8088, 80186, 80286 or 80386).

Change the b.out format of the header to the x.out format.

Change the 5.2 (UNIX System V Release 2) a.out format of
the header to the x.out format. The -n flag causes leading
underscores on symbol names to be passed with no modif­
ications.

Add the x.out header format to the 86rel object module
format. See 86rel(FP).

Add (or change) the fixed stack size specified in the x.out
format of the header. num must be a hexadecimal number.

193

fixhdr(C)

File

See also

Notes

-Anum

-M[smlh]

-v [2,3,5,7]

Add (or change) the standalone load address specified in
the x.out format of the header. num must be a hexadecimal
number.

Change the model of the x.out or 86rel format. Model
refers to the compiler model specified when creating the
binary. s refers to small model, m refers to medium model,
I refers to large model, and h refers to huge model.

Change the version of XENIX specified in the header.
XENIX Version 2 was based on UNIX Version 7.

-s 51=52 [-s 53=54] Change symbol names, where symbol name 51 is changed
to 52.

-r Ensure that the resolution table is of non-zero size.

-Ccpu Set the CPU type. cpu can be 186, 286, 386, 8086, or others.

/usr/bin/fixhdr

a.out(FP),86rel(FP)

Give fixhdr one option at a time. If you need to make more than one kind of
modification to a file, use fixhdr on the original file. Then use it again on the
fixhdr output, specifying the next option. Copy the original file if you need
an unmodified version as fixhdr makes the modifications directly to the file.

Value added

194

fixhdr is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

format(C)

format
format floppy disks

Syntax
format [-n] [-v] [-f] [-q] [device] [-i interleave]

Description

Options

The format command formats diskettes for use on a UNIX system. It may be
used either interactively or from the command line. The default drive is
specified in Jete/default/format.

The following command line options are available:

-f Suppresses the interactive feature. The format program does not wait
for user-confirmation before starting to format the diskette. Regardless
of whether you run format interactively, track and head information is
displayed.

device
This specifies the device to be formatted. The default device is specified
in Jete/default/format.

-i interleave
Specifies the interleave factor.

-q Quiet option. Suppresses the track and head output information nor­
mally displayed. Although this option does not suppress the interactive
prompt, it would typically be used with -£ to produce no output at all.

-v Specifies format verification.

-n Specifies that the diskette is not to be verified (overrides verify entry in
Jete/default/format).

The file Jete/default/format is used to specify the default device to be formatted
and whether or not each diskette is to be verified. The entries must be in the
format DEVICE=/dev/rfdnnn and VERIFY=[yYnN], as in the following example:

DEVICE=/dev/rfd096ds15
VERIFY=y

The device must be a character (raw) device.

195

format(C)

Usage

Files

See also

Notes

196

To run format interactively, enter:
format

followed by any of the legal options except -f, and press (Return). When you
run format interactively, you see the prompt:

insert diskette in drive and press return when ready

When you press (Return) at this prompt, format begins to format the diskette.

If you specify the -f option, you do not see this prompt. Instead, the program
begins formatting immediately upon invocation.

Unless you specify the -q option, format displays which track and head it is
currently on:

track # head #

The number signs above are replaced by the actual track and head informa­
tion.

Jete/default/format
/dev/rfdlO - nl

fd(HW)

The format utility does not format floppies for use under DOS; use the dosfor­
mat command documented in dos(C).

UNIX systems require error free floppies.

It is not advisable to format a low density (48tpi) diskette on a high density
(96tpi) floppy drive. Diskettes written on a high density drive should be read
on high density drives. A low density diskette written on a high density drive
may not be readable on a low density drive.

The device /dev/install is used only for installing and reading floppies.
Attempts made to format this device may result in an error.

getopt(C)

getopt
parse command options

Syntax
set - 'getopt optstring $*'

Description

Example

This command has been superseded, but is included for backwards compata­
bility; getopts(C) should be used instead.

getopt is used to check and break up options in command lines for parsing by
shell procedures. optstring is a string of recognized option letters (see
getopt(S». If a letter is followed by a colon, the option is expected to have an
argument which mayor may not be separated from it by whitespace. The
special option " --" is used to delimit the end of the options. getopt will place
" --" in the arguments at the end of the options, or recognize it if used explic­
itly. The shell arguments ($1 $2 ...) are reset so that each option is preceded
by a dash (-) and in its own shell argument. Each option argument is also in its
own shell argument.

The following code fragment shows how one can process the arguments for a
command that can take the options a and b, and the option 0, which requires
an argument:

set -- 'getopt abo: $*'
if [$? != 0 J
then

echo "usage: $0 [-a I -b] [-0 <arg>]"
exit 2

fi
for i in $*
do

done

case $i in
-a I -b)
-0)
--)
esac

shift; FLAG=$i;;
OARG=$3; shift; shift;;
shift; break; ;

197

getopt(C)

See also

This code will accept any of the following as equivalent:

cmd -aoarg
cmd -a -0 arg
cmd -oarg -a
cmd -a -oarg --

getopt(S), getopts(C), sh(C)

Diagnostics

Notes

getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

The "Syntax" given for this utility assumes the user has an sh(C) shell.

Standards conformance

getopt is conformant with:

AT&T SVID Issue 2.

198

getopts(C)

getopts, getoptcvt
parse command options

Syntax

getopts optstring name [arg ...]

/usrllib/getoptcvt [-b] file

Description

getopts - Parses positional parameters in shell procedures

getoptcvt - Converts shell scripts to use getopts instead of getopt

The getopts command is used by shell procedures to parse positional parame­
ters and to check for legal options. It supports all applicable rules of the com­
mand syntax standard (see Rules 3-10, Intro(C». It should be used in place of
the getopt(C) command. (See the "Notes" below.)

This feature is only available in the Bourne (sh) and Korn (ksh) shells.

optstring must contain the option letters the command using getopts will
recognize; if a letter is followed by a colon, the option is expected to have an
argument, or group of arguments, which must be separated from it by white
space.

Each time it is invoked, getopts will place the next option in the shell variable
name and the index of the next argument to be processed in the shell variable
OPTIND. Whenever the shell or a shell procedure is invoked, OPTIND is ini­
tialized to 1.

When an option requires an option-argument, getopts places it in the shell
variable OPTARG.

If an illegal option is encountered, " ? " will be placed in name.

When the end of options is encountered, getopts exits with a non-zero exit
status. The special option" -- " may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments
(arg ...) are given on the getopts command line, getopts will parse them
instead.

The lusr/lib/getoptcvt command reads the shell script in file, converts it to use
getopts(C) instead of getopt(C), and writes the results to the standard output.

199

getopts(C)

Example

See also

Notes

200

-b the results of running lusr/Hb/getoptcvt will be portable to earlier UNIX
releases. lusr/lib/getoptcvt modifies the shell script in file so that when
the resulting shell script is executed, it determines at run time whether
to invoke getopts(C) or getopt(C).

So all new commands will adhere to the command syntax standard described
in Intro(C), they should use getopts(C) or getopt(S) to parse positional param­
eters and check for options that are legal for that command (see "Notes"
below).

The following fragment of a shell program shows how one might process the
arguments for a command that can take the options a or b, as well as the
option 0, which requires an option-argument:

while get opts abo: c
do

case $c in
a I b) FLAG~$c;;
0) OARG=$OPTARG;;
?) echo $USAGE

exit 2;;
esac

done
shift 'expr $OPTIND - l'

This code will accept any of the following as equivalent:
cmd -a -b -0 "xxx Z yy"
cmd -a -b -0 "xxx Z yy"
cmd -ab -0 xxx,z,yy
cmd -ab -0 "xxx Z yy"
cmd -0 xxx,z,yy -b -a

Intro(C), getopt(S), sh(C)

Although the following command syntax rule (see Intro(C» relaxations are
permitted under the current implementation, they should not be used because
they may not be supported in future releases of the system. As in the "Exam­
ple" section above, a and b are options, and the option 0 requires an option­
argument:

cmd -abo filexxx (Rule 5 violation: options with option-arguments must
not be grouped with other options.)

cmd -ab -oxxx file (Rule 6 violation: there must be white space after an
option that takes an option-argument.)

getopts(C)

Changing the value of the shell variable OPTIND or parsing different sets of
arguments may lead to unexpected results.

Diagnostics

getopts prints an error message to the standard error when it encounters an
option letter not included in optstring.

201

gets(C)

gets
get a string from the standard input

Syntax

gets [string]

Description

See also

The gets command can be used with csh(C) to read a string from the standard
input. If string is given it is used as a default value if an error occurs. The
resulting string (either string or as read from the standard input) is written to
the standard output. If no string is given and an error occurs, gets exits with
exit status 1.

line(C), csh(C)

Value added

202

gets is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

greek(C)

greek
select terminal filter

Syntax

greek [-Tterminal]

Description

Files

See also

greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE Model 37 terminal
for certain other terminals. Special characters are simulated by overstriking, if
necessary and possible. If the argument is omitted, greek attempts to use the
environment variable $TERM (see environ(M». Currently, the following ter­
minals are recognized:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014.

/usr/bin/300
/usr/bin/300s
/usr/bin/4014
/usr/bin/450
/usr/bin/hp

300(C), 4014(C), 450(C), environ(M), hp(C), term(M), tplot(ADM)

203

grep(C)

grep, egrep, fgrep
search files for a pattern

Syntax

grep [-bchilnsvy] [-f expfile] [[-e] expression] [files]

egrep [-bchilnv] [-f expfile] [[-e] expression] [files]

fgrep [-bclnvxy] [-f expfile] [[-e] expression] [files]

Description

204

grep - Searches a file for a pattern

egrep - Searches a file for one or more patterns

fgrep - Searches a file for a fixed string

Commands of the grep family search the input files (or standard input if no
files are specified) for lines matching a pattern. Normally, each matching line
is copied to the standard output. If more than one file is being searched, the
name of the file in which each match occurs is also written to the standard
output along with the matching line (unless the -h option is used, see below).

grep patterns are limited regular expressions in the style of ed(C). grep uses a
compact nondeterministic algorithm. egrep patterns are full regular expres­
sions; it uses a fast deterministic algorithm that sometimes needs exponential
space. fgrep patterns are fixed strings. fgrep is fast and compact.

The following options are recognized:

-v All lines but those matching are displayed.

-x Displays only exact matches of an entire line. (fgrep only.)

-c Only a count of matching lines is displayed.

-1 Only the names of files with matching lines are displayed, separated by
newlines.

-h Prevents the name of the file containing the matching line from being
prepended to that line. Used when searching multiple files. (This
option works with grep and egrep only.)

-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was found. This
is sometimes useful in locating disk block numbers by context.

grep(C)

-s Suppresses error messages produced for nonexistent or unreadable
files. (grep only.) Note that the -s option will not suppress error mes­
sages generated by the -f option.

-i Turns on matching of letters of either case in the input so that case is
insignificant. Conversion between uppercase and lowercase letters is
dependent on the locale setting.

-y Turns on matching of letters of either case in the input so that case is
insignificant. Conversion between uppercase and lowercase letters is
dependent on the locale setting. -y does not work with egrep.
Note: -y is not a standard UNIX system option. It is maintained for
backwards compatibility with XENIX.

-e expression or strings
Same as a simple expression argument, but useful when the expression
begins with a dash (-).

-f expfile
The regular expression for grep or egrep, or strings list for fgrep is
taken from the expfile.

In all cases (except with -h) the filename is output if there is more than one
input file. Care should be taken when using the characters $ * [A I () and \ in
expression, because they are also meaningful to the shell. It is safest to
enclose the entire expression or strings argument in single quotation marks.
For example:

grep '[Ss]omeone' text.file

This command would find all lines containing the word "someone" in the file
text.file, whether the initial" s " is uppercase or lowercase.

Multiple strings can be specified in fgrep without using a separate strings file
by using the quoting conventions of the shell to imbed newlines in the string
argument. For example, if you were using the Bourne shell (sh(C» you might
enter the following on the command line:

fgrep 'Someone
someone' text. file

This would have the same effect as the grep example above. See the csh(C)
manual page for ways to imbed newlines in a string when using csh(C).

egrep accepts regular expressions as in ed(C), with the addition of the follow­
ing:

• A regular expression followed by a plus sign (+) matches one or more oc­
currences of the regular expression.

• A regular expression followed by a question mark (?) matches 0 or 1 occur­
rences of the regular expression.

• Two regular expressions separated by a vertical bar (I) or by a newline
match strings that are matched by either regular expression.

205

grep(C)

See also

• A regular expression may be enclosed in parentheses II ()" for grouping.
For example:

egrep '([Ss]ome I [Aa]ny)one' text.file
This example displays all lines in text.file containing the words "someone"
or "anyone", whether or not they are spelled with initial capital letters.
Without the parentheses, this example would display all lines containing
the words "some" or "anyone" (because the vertical bar (I) operator is of
lower precedence than concatenation, see below).

Because of the algorithm used, egrep does not support extended ranges as in
ed(C): Ranges like [a-z] are interpreted on the basis of the machine's collating
sequence, not the collating sequence defined by the locale. grep supports
col(C) extended ranges.

The \(and \) operators, supported by ed(C), are not supported by egrep.

The order of precedence of operators is [], then * ? +, then concatenation, then
backslash (\) with newline or vertical bar (I).

col(C), coltbl(M), ed(C),locale(M), sed(C), sh(C)

Diagnostics

Notes

Exit status is 0 if any matches are found, 1 if no matches are found, and 2 for
syntax errors or inaccessible files.

Ideally there should be only one grep, but there isn't a single algorithm that
spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters. Longer lines are truncated.

When using grep with the -y option, the search is not made totally case insen­
sitive in character ranges specified within brackets.

Standards conformance

egrep, fgrep and grep are conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

206

hd(C)

hd
display files in hexadecimal format

Syntax

hd [-format] [-8 offset] [-n count] [file] •..

Description

The hd command displays the contents of files in hexadecimal, octal, decimal,
and character formats. Control over the specification of ranges of characters
is also available. The default behavior is with the following flags set: -abx -A.
This says that addresses (file offsets) and bytes are printed in hexadecimal
and that characters are also printed. If no file argument is given, the standard
input is read.

Options include:

-8 offset Specify the beginning offset in the file where printing is to begin.
If no file argument is given, or if a seek fails because the input is a
pipe, offset bytes are read from the input and discarded. Other­
wise, a seek error will terminate processing of the current file.

The offset may be given in decimal, hexadecimal (preceded by Ox),
or octal (preceded by a 0). It is optionally followed by one of the
following multipliers: w, 1, b, or k; for words (2 bytes), long words
(4 bytes), half kilobytes (512 bytes), or kilobytes (1024 bytes),
respectively. Note that this is the one case where lib" does not
stand for bytes. Since specifying a hexadecimal offset in blocks
would result in an ambiguous trailing lib", any offset and multi­
plier may be separated by an asterisk (*). (The asterisk may need
to be escaped to protect it from the shell.)

-n count Specify the number of bytes to process. The count is in the same
format as offset, above.

Format flags

Format flags may specify addresses, characters, bytes, words (2 bytes) or
longs (4 bytes) to be printed in hex, decimal, or octal. Two special formats
may also be indicated: text or ASCII. Format and base specifiers may be freely
combined and repeated as desired in order to specify different bases (hexade­
cimal, decimal or octal) for different output formats (addresses, characters,
etc.). All format flags appearing in a single argument are applied as appropri­
ate to all other flags in that argument.

207

hd(C)

208

acbwlA Ol,ttput format specifiers for addresses, characters, bytes, words,
longs and ASCII respectively. Only one base specifier will be used
for addresses. The address will appear on the first line of output
that begins each new offset in the input.

The character format prints all printable characters without
change, special C escapes as defined in the language, and the
remaining values in the specified base.

The ASCII format prints all printable characters without change,
and all others as a dot (.). This format appears to the right of the
first of other specified output formats. A base specifier has no
meaning with the ASCII format. If no other output format (other
than addresses) is given, bx is assumed. If no base specifier is
given, all of xdo are used.

xdo Output base specifiers for hexadecimal, decimal and octal.

t Print a text file, each line preceded by the address in the file. Nor­
mally, lines should be terminated by a \n character; but long lines
will be broken up. Control characters in the range OxOO to Oxlf are
printed as "@ to "_. Bytes with the high bit set are preceded by a
tilde n and printed as if the high bit were not set. The special
characters ", - and \ are preceded by a backslash (\) to escape their
special meaning. As special cases, these two values are
represented numerically as '\177' and '\377'. This flag will over­
ride all output format specifiers except addresses.

If no output format is given, but a base specifier is present, the output format
is set to -acbwl. If no base specifier is given, but an output format is present,
the base specifier is set to -xdo. If neither is present, the format flag is set to
-abx-A.

head(C)

head
print the first few lines of a file

Syntax
head [-count] [file ...]

Description

See also

Credit

The head filter prints the first count lines of each of the specified files. If no
files are specified, head reads from the standard input. If no count is speci­
fied, then 10 lines are printed.

tail(C)

This utility was developed at the University of California at Berkeley and is
used with permission.

209

hello(C)

hello
send a message to another user

Syntax
hello user [tty]

Description

Files

See also

hello sends messages from one user to another. When first called, hello dis­
plays the following message:

Message from sender's-system! sender's-name sender's-tty

The recipient of the message should write back at this point. Communication
continues until interrupted. (On most terminals, pressing the (Del) key sends
an interrupt.) At that point hello prints (end of message) on the other termi­
nal, and exits.

To write to a user who is logged in more than once, the user can employ the
tty argument to specify the appropriate terminal name. The who(C) com­
mand can be used to determine the correct terminal name.

Permission to write may be allowed or denied by the recipient, using the
mesg command. Writing is disallowed by default. Certain commands, such
as nroff and pr, prohibit messages in order to prevent disruption of output.

If the character" ! " is found at the beginning of a line, hello calls the shell to
execute the rest of the line as a command.

The following protocol is suggested for using hello. When first writing to
another user, the sender should wait for that user to write back before sending
a message. Each party should end each message with a signal indicating that
the other may reply: 'd for "over" is conventional. The signal 'od for "over
and out" is suggested when conversation is about to be terminated.

/etc/utmp
/bin/sh

mai1(C), mesg(C), who(C), write(C)

Value added

210

hello is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

hp(C)

hp
handle special functions of Hewlett-Packard terminals

Syntax
hp [-e] [-m]

Description

hp supports the special functions of the Hewlett-Packard 2640 series of termi­
nals, with the primary purpose of producing accurate representations of most
nroff output. A typical usage is in conjunction with text processing software:

nroff -h files ... I hp
Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the "dis­
play enhancements" feature, subscripts and superscripts can be indicated in
distinct ways. If it has the "mathematical-symbol" feature, Greek and other
special characters can be displayed.

The flags are as follows:

-e It is assumed that your terminal has the "display enhancements" feature,
and so maximal use is made of the added display modes. Overstruck
characters are presented in the Underlined mode. Superscripts are
shown in Half-bright mode, and subscripts in Half-bright, Underlined
mode. If this flag is omitted, hp assumes that your terminal lacks the
"display enhancements" feature. In this case, all overstruck characters,
subscripts, and superscripts are displayed in Inverse Video mode, that is,
dark-on-light, rather than the usuallight-on-dark.

-m Requests minimization of output by changing new-lines to AM's. Any
contiguous sequence of 3 or more new-lines is converted into a sequence
of only 2 new-lines; that is, any number of successive blank lines pro­
duces only a single blank output line. This allows you to retain more
actual text on the screen.

With regard to Greek and other special characters, hp provides the same set
as 300(C) , except that "not" is apprOximated by a right arrow, and only the
top half of the integral sign is shown.

Diagnostics

line too long if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

211

hp(C)

See also

Notes

212

300(C) , greek(C)

An "overstriking sequence" is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if either
printing character is an underscore, the other printing character is shown
underlined or in Inverse Video; otherwise, only the first printing character is
shown (again, underlined or in Inverse Video). Nothing special is done if a
backspace is adjacent to an ASCII control character. Sequences of control
characters (for example, reverse line-feeds, backspaces) can make text "disap­
pear." In particular, tables generated by tbl(CT) that contain vertical lines will
often be missing the lines of text that contain the "foot" of a vertical line,
unless the input to hp is piped through col (C) .

Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

hwconfig(C)

hwconfig
read the configuration information

Syntax
letc!hwconfig [-nlhcq] [-f filename] [param] [param=val] ...

Description

Options

The hwconfig command returns the configuration information contained in
the file /usr/adm/hwconfig or in the file specified on the command line with the
-f filename option. Using combinations of the remaining options, the user can
view as much information as needed from the configuration file. The display
format is as follows:

magic_char device_name base+finish vec dma rest

where:

magic_char

device_name

is the character" % II

is the name of the device driver

base+finish are the starting and the finishing addresses of the
driver working space

vec

dma

is the interrupt vector number in decimal

is the DMA channel number

rest is a possibly empty list of parameterevalue pairs

The default hwconfig display looks similar to this:
fpu 13
floppy Ox3F2-0x3F7 6
serial Ox2F8-0x2FF 3
parallel Ox378-0x37A 7
console -
disk Ox1FO-Ox1F7 14

type=80387
2 unit=O type=96ds1S

unit=l type=Standard nports=l
unit=O
unit=ega type=O
type=WO unit=Q cyls=791 hds~16 secs=48

-n The device name is always printed out.

-1

-h

The long format of the device configuration content is used.

Use the long format, with headers.

-c Check for device conflicts, including I/O addresses, DMA
channels, and interrupt vectors which are being used by
more than one driver.

213

hwconfig(C)

Examples

214

-q

-ffile

Check quietly for device conflicts; display nothing. When
both -c and -q are given, display conflicts only.

Use file as the input file instead of the default
/usr/adm/hwconfig·

param Show all values of param throughout the configuration file.
param can be any valid system parameter. The current valid
system parameters are: name, base, offset, vee, dma, unit,
type, nports, hds, cyls, secs, and drvr.

param=val Show only information from the line where param equals the
value val.

The -n, -1 and -h options are in increasing overriding power. That is, if -n and
-1 are both specified, -I will be used. param on its own indicates a query for its
corresponding value(s), whereas param=value indicates a matching
<token,val> pair in the input file. -I is used by default if there are no queries
and no explicit option.

Command-line queries, that is, those with parameters only, are always dis­
played in short format.

hwconfig The entire contents of the file /usr/adm/hwconfig are printed.

hwconfig base
All the values of the base parameter found in /usr/adm/hwconfig are
printed.

hwconfig -f conf base=300 vec=19
All entries in con! that match the base and vec values given are
printed.

hwconfig name=floppy base
The name and value of base in /usr/adm/hwconfig for the drivers
with the name floppy are printed for all entries.

hwconfig -n base dma
The device name associated with the base and dma is displayed.
For example,

name=scsi base=Ox234 dma=4

hwconfig base dma vec=4
The base and dma values of all /usr/adm/hwconfig entries with
matching vec=4 are printed.

hwconfig -1 base dma vec=4
is like

hwconfig -I vec=4
except that base and dma values will be printed first.

Files

hwconfig(C)

hwconfig-h
Everything is printed in the long format, with a header similar to
the one shown at boot time. It will ignore all queries, but perform
matching on the token values. For example,

hwconfig -h vec=4 dma=l

will print in long format, with headers, all those entries with vec=4
anddma=l

hwconfig -ch
displays jusrjadm/hwconfig in an easy-to-read tabular format and
checks for device conflicts.

/etc/hwconfig
/usr/lib /hwconfig.awk
/usr/adm/hwconfig

program file
awk program which hwconfig uses
default source file

Diagnostics

Notes

hwconfig returns 0 for success, 1 for conflicts detected, 2 for invalid argu­
ments.

Information about conflicts is purely advisory because hwconfig can only
report about hardware devices which have been correctly recognized by a
kernel driver.

/etc/hwconfig is only runnable by root.

/usr/adm/hwconfig is not normally readable by users, but can be made so by the
system administrator.

/usr/adm/hwconfig is written by the error logger daemon. The logger daemon
does not run while in system maintenance mode. This means that the hwcon­
fig report is not up to date until the system is brought into multi-user mode.

Value added

hwconfig is an extension of AT&T System V provided by The Santa Cruz
Operation, Inc.

215

i286emul(C)

i286emul
emulate UNIX 80286

Syntax
i286emul [arg . ..] prog286

Description

216

i286emul is an emulator that allows programs from UNIX System V Release 2
or Release 3 on the Intel 80286 to run on UNIX System V Release 3 on the Intel
80386.

The UNIX system recognizes an attempt to exec{S) a 286 program, and auto~
matically exec's the 286 emulator with the 286 program name as an additional
argument. It is not necessary to specify the i286emul emulator on the com~
mand line. The 286 programs can be invoked using the same command for­
mat as on the 286 UNIX System V.

i286emul reads the 286 program's text and data into memory and maps them
through the LDT (Local Descriptor Table) (via sysi86{S» as 286 text and data
segments. It also sets callgate 89 in the GDT (Global Descriptor Table) (which
is used by 286 programs for system calls) to point to a routine in i286emul.
i286emul starts the 286 program by jumping to its entry point.

When the 286 program attempts to do a system call, i286emul takes control.
It does any conversions needed between the 286 system call and the
equivalent 386 system call, and performs the 386 system call. The results are
converted to the form the 286 program expects, and the 286 program is
resumed.

The following are some of the differences between a program running on a
286 and a 286 program using i286emul on a 386:

• A 286 program under 1286emui always has 64K in the stack segment if it is
a large-model process, or 64K in the data segment if it is a small-model pro­
cess.

• System calls and signal handling use more space on the stack under
i286emul than on a 286.

• Attempts to unlink or write on the 286 program will fail on the 286 with
ETXTBSY. Under i286emul, they will not fail.

• ptrace(S) is not supported under i286emul.

• The 286 program must be readable for the emulator to read it.

File

Notes

i286emul(C)

/bin/i286emul The emulator must have this name and be in /bin if it is to be
automatically invoked when exec(S) is used on a 286 pro­
gram.

The signal mechanism under the emulator is the System V release 2 signal
mechanism rather than the System V release 3 mechanism.

217

id(C)

id
print user and group IDs and names

Syntax

id [-1][-s]

Description

See also

218

The id command writes a message on the standard output, giving the user
and group IDs and the corresponding names of the invoking process. If the
effective and real IDs do not match, both are printed.

With the -s option, id also shows the supplemental group list. On systems
that support a large number of supplemental groups, the -s option may pro­
duce a very long line.

With the -I option, id outputs the Login User ID (LUID) of the caller.

id -I produces output with the following format:
uid=12460(fred) gid=7003(trusted) luid=12460(fred)

and id -I-s produces:
uid=12460(fred) gid=7003(trusted) luid=12460(fred)
groups=7003(trusted),50(group)

If the LUID is not set the output is:
uid=O(root) gid=O(root) luid=-l(not set)

logname(C) ,getuid(S) ,sg(C)

id is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

ismpx(C)

ismpx
return windowing terminal state

Syntax

ismpx [-s]

Description

The ismpx command reports whether its standard input is connected to a
multiplexed xt(HW) channel; that is, whether it is running under layers(C) or
not. It is useful for shell scripts that download programs to a windowing ter­
minal or depend on screen size.

The ismpx command prints yes and returns 0 if invoked under layers(C), and
prints no and returns 1 otherwise.

-s Do not print anything; just return the proper exit status.

Diagnostics

See also

Example

Returns 0 if invoked under layers(C), 1 if not.

jwin(C), layers(C), xt(HW)

if ismpx -s
then

jwin
fi

219

join(C)

join
join two relations

Syntax

join [options] filel file2

Description

See also

220

The join command prints to the standard output a join of the two relations
specified by the lines of filel and fUe2. If fUel is a dash (-), the standard input
is used.

filel and file2 must be sorted in increasing collating sequence (defined by the
current locale; see 10cale(M)} on the fields on which they are to be joined, nor­
mally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have
identical join fields. The output line normally consists of the common field,
then the rest of the line from filel, then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In this case, multiple
separators count as one, and leading separators are discarded.

These options are recognized:

-an

-e s

-j nm

-0 iist

-tc

In addition to the normal output, produces a line for each unpair­
able line in file n, where nisI or 2.

Replaces empty output fields by string s.

Joins on the mth field of file n. If n is missing, uses the mth field in
each file.

Each output line comprises the fields specified in iist, each ele­
ment of which has the form n.m where n is a file number and m is
a field number.

Uses character c as a field separator. Every appearance of c in a
line is significant.

awk(C}, comm(C), sort(C}

Notes

join (C)

With default field separation, the collating sequence is that of sort -b. With -t,
the sequence is that of a plain sort.

Standards confonnance

join is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

221

jterm(C)

jterm
reset layer of windowing terminal

Syntax

jterm

Description

The jterm command is used to reset a layer of a windowing terminal after
downloading a terminal program that changes the terminal attributes of the
layer. It is useful only under layers(C). In practice, it is most commonly used
to restart the default terminal emulator after using an alternate one provided
with a terminal-specific application package. For example, on the AT&T
TELETYPE 5620 DMD terminal, after executing the hp2621 command in a layer,
issuing the jterm command will restart the default terminal emulator in that
layer.

Diagnostics

Notes

See also

222

Returns 0 upon successful completion, 1 otherwise.

The layer that is reset is the one attached to standard error; that is, the win­
dow you are in when you type the jterm command.

layers(C)

jwin(C)

jwin
print size of layer

Syntax

jwin

Description

The jwin command runs only under layers(C) and is used to determine the
size of the layer associated with the current process. It prints the width and
the height of the layer in bytes (number of characters across and number of
lines, respectively). For bit-mapped terminals only, it also prints the width
and height of the layer in bits.

Diagnostics

Note

See also

Example

Returns 0 on successful completion, 1 otherwise.

If layers(C) has not been invoked, an error message is printed:
jwin: not mpx

The layer whose size is printed is the one attached to standard input; that is,
the window you are in when you type the jwin command.

layers(C)

In the following example, the user input is in bold:
$jwin
bytes: 86 25
bits: 780 406

223

kill (C)

kill
terminate a process

Syntax

kill [-signo] processid ...

Description

Note

See also

The kill command sends signal 15 (terminate) to the specified process(es).
This will normally kill processes that do not catch or ignore the signal. The
process number of each asynchronous process (background process) started
with II &" is reported by the shell (unless more than one process is started in a
pipeline, in which case the number of the last process in the pipeline is
reported). Process numbers can also be found by using ps(C).

For example, if process number 0 is specified, all processes in the process
group are signaled.

The killed process must belong to the current user unless he is the super user.

If a signal number preceded by "_" is given as the first argument, that signal
is sent instead of the terminate signal (see signal(S». In particular kill-9 ... is
a sure kill.

A version of kill is built into the Korn shell (ksh(C». It differs slightly from
the command described here. For further details, refer to the ksh(C) entry.

kill(S), ps(C), sh(C), csh(C), ksh(C), signal(S)

Standards conformance

kill is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

224

ksh(C)

ksh, rksh
KornShell, a standard/restricted command-and programming language

Syntax
ksh [±aefhikmnoprstuvx] [±o option] . .. [-c string] [arg ...]

rksh [±aefhikmnoprstuvx] [±o option] . .. [-c string] [arg ...]

Description

ksh - Invokes the Kom shell

rksh - Invokes a restricted Kom shell

ksh is a command and programming language that executes commands read
from a terminal or a file. rksh is a restricted version of the command inter­
preter ksh; it is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard shell. See
"Invocation" below for the meaning of arguments to the shell.

Definitions
A metacharacter is one of the following characters:

; & () I < > new-line space tab

A blank is a space or a tab.

An identifier is a sequence of letters, digits, or underscores starting with a
letter or underscore. Identifiers are used as names for functions and named
parameters.

A word is a sequence of characters separated by one or more non-quoted
metacharacters.

Commands
A command is a sequence of characters in the syntax of the shell language. The
shell reads each command and carries out the desired action either directly or
by invoking separate utilities.

A special command is a command that is carried out by the shell without creat­
ing a separate process. Except for documented side effects, most special com­
mands can be implemented as separate utilities.

225

ksh(C)

226

A simple-command is a sequence of blank-separated words which may be pre­
ceded by a parameter assignment list. (See "Environment" below). The first
word specifies the name of the command to be executed. Except as specified
below, the remaining words are passed as arguments to the invoked com­
mand. The command name is passed as argument 0 (see exec(S». The value
of a simple-command is its exit status if it terminates normally, or (octal)
200+status if it terminates abnormally (see signal(S) for a list of status
values).

A pipeline is a sequence of one or more commands separated by " I ". The
standard output of each command but the last is connected by a pipe(S) to the
standard input of the next command. Each command is run as a separate pro­
cess; the shell waits for the last command to terminate. The exit status of a
pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by; & && or II and
optionally terminated by ; & or I &. Of these five symbols, && and II have
highest precedence. The following three symbols, ; & and I & are of equal
precedence, as are && and II. A semicolon (;) causes sequential execution of
the preceding pipeline; an ampersand (&) causes asynchronous execution of
the preceding pipeline (that is, the shell does not wait for that pipeline to fin­
ish). The symbol I & causes asynchronous execution of the preceding com­
mand or pipeline with a two-way pipe established to the parent shell. The
parent shell can write to and read from the standard input and standard out­
put of the spawned command using the -p option of the special commands
read and print (described later). The symbol && (II) causes the list following
it to be executed only if the preceding pipeline returns a zero (non-zero) value.
An arbitrary number of new-lines may appear in a list, instead of a semicolon,
to delimit a command.

A command is either a Simple-command or one of the following compound­
commands. A compound-command is a command that results in the execution
of one or more simple-commands, depending upon the state of its input.
Unless otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

C,,_ .:..J _~~.&.: r .:_ ,.. ... ,,1 1 • ...1_ '';~.f. • ...1 __ _
LV.!. ,,"r;., } ,r;.1 L .Lll L4.1VI M ••• J ,wu, .. ,'-&v ~

Each time a for command is executed, identifier is set to the next word
taken from the in word list. If in word ... is omitted, then the for com­
mand executes the do list once for each positional parameter that is set (see
"Parameter substitution" below). Execution ends when there are no more
words in the list.

ksh(C)

select identifier [in word . ..] ido list idone
A select command prints on standard error (file descriptor 2), the set of
words, each preceded by a number. If in word . .. is omitted, then the posi­
tional parameters are used instead (see "Parameter substitution" below).
The PS3 prompt is printed and a line is read from the standard input. If this
line consists of the number of one of the listed words, then the value of the
parameter identifier is set to the word corresponding to this number. If
this line is empty the selection list is printed again. Otherwise the value of
the parameter identifier is set to null. The contents of the line read from
standard input is saved in the parameter REPLY. The list is executed for
each selection until a break or end-of-file is encountered.

case word in [[(] pattern [I pattern] ...) list ii] ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file­
name generation (see "File name generation" below).

if list ithen list [elif list ithen list] ... [ielse list] ifi
The list following if is executed and, if it returns a zero exit status, the list
following the first then is executed. Otherwise, the list following elif is
executed and, if its value is zero, the list following the next then is exe­
cuted. Failing that, the else list is executed. If no else list or then list is exe­
cuted, the if command returns a zero exit status.

while list ido list idone
until list idO list idone

A while command repeatedly executes the while list and, if the exit status
of the last command in the list is zero, executes the do list; otherwise the
loop terminates. If no commands in the do list are executed, then the while
command returns a zero exit status; until may be used in place of while to
negate the loop termination test.

(list)
Execute list in a separate environment. Note, that if two adjacent open
parentheses are needed for nesting, a space must be inserted to avoid arith­
metic evaluation as described below.

{ list i}
list is simply executed. Note that unlike the metacharacters "(" and "}",
" {" and "}" are reserved words and must be at the beginning of a line or
after a " ; " in order to be recognized.

[[expression]]
Evaluates expression and returns a zero exit status when expression is true.
See "Conditional expressions" below, for a description of expression.

function identifier { list i}
identifier 0 { list i}

Define a function which is referenced by identifier. The body of the func­
tion is the list of commands between" (" and"}". (See "Functions" below.)

227

ksh(C)

228

time pipeline
The pipeline is executed and the elapsed time as well as the user and sys­
tem time are printed on standard error.

The following reserved words are only recognized as the first word of a com­
mand and when not quoted:

if then
elif fi
esac for
until do
{} function
time [[])

Comments

else
case
while
done
select

A word beginning with II #" causes that word and all the following characters
up to a new-line to be ignored.

Aliasing
The first word of each command is replaced by the text of an alias if an alias
for this word has been defined. An alias name consists of any number of char­
acters excluding metacharacters, quoting characters, file expansion characters,
command substitution characters, and the equals sign (=). The replacement
string can contain any valid shell script including the metacharacters listed
above. The first word of each command in the replaced text, other than any
that are in the process of being replaced, will be tested for aliases. If the last
character of the alias value is a blank then the word following the alias will
also be checked for alias substitution. Aliases can be used to redefine special
built in commands but cannot be used to redefine the reserved words listed
above. Aliases can be created, listed, and exported with the alias command
and can be removed with the unalias command. Exported aliases remain in
effect for scripts invoked by name, but must be reinitialized for separate invo­
cations of the shell (see "Invocation" below).

Aliasing is performed when scripts are read, not while they are executed.
Thu-efore, for rut alias tv takt: t:ffed the aiias definition command has to be
executed before the command which references the alias is read.

Aliases are frequently used as an abbreviation for full path names. An option
to the aliasing facility allows the value of the alias to be automatically set to
the full patbname of the corresponding command. These aliases are called
tr~ked aliases. The value of a tracked alias is defined the first time the corre­
sponding command is looked up and becomes undefined each time the PATH
variable is reset. These aliases remain tracked so that the next subsequent
reference will redefine the value. Several tracked aliases are compiled into the
shell. The -h option of the set command makes each referenced command
name into a tracked alias.

ksh(C)

The following exported aliases are compiled into the shell but can be unset or
redefined:

autoload='typeset -fu'
£alse='let 0'
functions='typeset -f'
hash='alias -t'
history='£c -1'
integer='typeset -i'
n0!tup='?-ohup<'
r= £c -e-
true=':'
type='whence -v'

(The alias of nohup with a trailing space allows nohup to be used with
aliases.)

Tilde substitution
After alias substitution is performed, each word is checked to see if it begins
with an unquoted II-II. If it does, then the word up to a "/" is checked to see
if it matches a user name in the /etc/passwd file. If a match is found, the ,,- II

and the matched login name are replaced by the login directory of the
matched user. This is called a tilde substitution. If no match is found, the origi­
nal text is left unchanged. A "-II by itself, or in front of a " / ", is replaced by
the value of the HOME parameter. A" -II followed by a " + II or " - II is replaced
by $PWD and $OLDPWD respectively.

In addition, tilde substitution is attempted when the value of a variable assign­
ment parameter begins with a "-".

Command substitution
The standard output from a command enclosed in parentheses preceded by a
dollar sign ($) or a pair of grave accents r~) may be used as part or all of a
word; trailing new-lines are removed. In the second (archaic) form, the string
between the quotes is processed for special quoting characters before the com­
mand is executed. (See "Quoting".) The command substitution $(cat file) can
be replaced by the equivalent but faster $«fi'e). Command substitution of
most special commands that do not perform input/output redirection are car­
ried out without creating a separate process.

An arithmetic expression enclosed in double parentheses preceded by a dollar
sign ($«») is replaced by the value of the arithmetic expression within the
double parentheses.

Parameter substitution
A parameter is an identifier, one or more digits, or any of the characters *, @,
#,?, -, $, and!. A named parameter (a parameter denoted by an identifier) has
a value and zero or more attributes. Named parameters can be assigned
values and attributes by using the typeset special command. The attributes
supported by the shell are described later with the typeset special command.
Exported parameters pass values and attributes to the environment.

229

ksh(C)

230

The shell supports a one-dimensional array facility. An element of an array
parameter is referenced by a subscript. A subscript is denoted by a "[", fol­
lowed by an arithmetic expression (see "Arithmetic evaluation" below) fol­
lowed by a "]". To assign values to an array, use set -A name value The
value of all subscripts must be in the range of 0 through 1023. Arrays need
not be declared. Any reference to a named parameter with a valid subscript is
legal and an array will be created if necessary. ReferenCing an array without a
subscript is equivalent to referencing the element zero.

The value of a named parameter may also be assigned by writing:
name = value [name = value] ...

If the integer attribute, -i, is set for name the value is subject to arithmetic
evaluation as described below.

Positional parameters, parameters denoted by a number, may be assigned
values with the set special command. Parameter $0 is set from argument zero
when the shell is invoked.

The character" $ " is used to introduce substitutable parameters.

${parameter}
The shell reads all the characters from "${" to the matching "}" as part of
the same word even if it contains braces or metacharacters. The value, if
any, of the parameter is substituted. The braces are required when parame­
ter is followed by a letter, digit, or underscore that is not to be interpreted
as part of its name or when a named parameter is subscripted. If parame­
ter is one or more digits then it is a positional parameter. A positional
parameter of more than one digit must be enclosed in braces. If parameter
is " *" or "@", then all the positional parameters, starting with $1, are sub­
stituted (separated by a field separator character). If an array identifier
with subscript "*" or "@" is used, then the value for each of the elements
is substituted (separated by a field separator character).

${#parameter}
If parameter is "*" or "@", the number of positional parameters is substi­
tuted. Otherwise, the length of the value of the parampter is s1.!bstituted.

${ #identifier[* n
The number of elements in the array identifier is substituted.

${parameter:-word}
If parameter is set and is non-null then substitute its value; otherwise sub­
stitute word.

${parameter:=word}
If parameter is not set or is null then set it to word; the value of the parame­
ter is then substituted. Positional parameters may not be assigned to in this
way.

ksh(C)

${parameter:?wordl
If parameter is set and is non-null then substitute its value; otherwise, print
word and exit from the shell. If word is omitted then a standard message is
printed.

${parameter:+wordl
If parameter is set and is non-null then substitute word; otherwise substi­
tute nothing.

${parameter#patteml
${parameter##pattem}

If the shell pattern matches the beginning of the value of parameter, then
the value of this substitution is the value of the parameter with the
matched portion deleted; otherwise the value of this parameter is substi­
tuted. In the first form the smallest matching pattern is deleted and in the
second form the largest matching pattern is deleted.

${parameter%patteml
${parameter% %patteml

If the shell pattern matches the end of the value of parameter, then the
value of this substitution is the value of the parameter with the matched
part deleted; otherwise substitute the value of parameter. In the first form
the smallest matching pattern is deleted and in the second form the largest
matching pattern is deleted.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set
or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set or not.

The following parameters are automatically set by the shell:

?

$

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set com­
mand.

The decimal value returned by the last executed command.

The process number of this shell.

Initially, the value II _" is the absolute pathname of the shell
or script being executed as passed in the environment. Sub­
sequently it is assigned the last argument of the previous
command. This parameter is not set for commands which are
asynchronous. This parameter is also used to hold the name
of the matching MAIL file when checking for mail.

231

ksh(C)

232

The process number of the last background command
invoked.

ERRNO The value of ermo as set by the most recent failed system call.
This value is system dependent and is intended for debug­
ging purposes.

LlNENO The line number of the current line within the script or func­
tion being executed.

OLDPWD The previous working directory set by the cd command.

OPTARG The value of the last option argument processed by the
getopts special command.

OPTIND The index of the last option argument processed by the
getopts special command.

PPID The process number of the parent of the shell.

PWD The present working directory set by the cd command.

RANDOM Each time this parameter is referenced, a random integer, uni-
formly distributed between 0 and 32767, is generated. The
sequence of random numbers can be initialized by assigning
a numeric value to RANDOM.

REPLY This parameter is set by the select statement and by the read
special command when no arguments are supplied.

SECONDS Each time this parameter is referenced, the number of
seconds since shell invocation is returned. If this parameter is
assigned a value, then the value returned upon reference will
be the value that was assigned plus the number of seconds
since the assignment.

The following parameters are used by the shell:

CDPATH The search path for the cd command.

COLUMNS If this variable is set, the value is used to define the width of
the edit window for the shell edit modes and for printing
select lists.

EDITOR If the value of this variable ends in emacs, gmacs, or vi and
the VISUAL variable is not set, then the corresponding option
(see "Special commands" -- set below) will be turned on.

ksh(C)

ENV If this parameter is set, then parameter substitution is per­
formed on the value to generate the pathname of the script
that will be executed when the shell is invoked. (See "Invoca­
tion" below.) This file is typically used for alias and function
definitions.

FCEDIT The default editor name for the fc command.

FP ATH The search path for function definitions. This path is
searched when a function with the -u attribute is referenced
and when a command is not found. If an executable file is
found, then it is read and executed in the current environ­
ment.

IFS Internal field separators, normally space, tab, and new-line,
that are used to separate command words which result from
command or parameter substitution, and for separating
words with the special command read. The first character of
the IFS parameter is used to separate arguments for the $*
substitution. (See "Quoting" below.)

mSTFILE If this parameter is set when the shell is invoked, then the
value is the pathname of the file that will be used to store the
command history. (See "Command re-entry" below.)

mSTSIZE If this parameter is set when the shell is invoked, then the
number of previously entered commands that are accessible
by this shell will be greater than or equal to this number. The
default is 128.

HOME The default argument (home directory) for the cd command.

LINES If this variable is set, the value is used to determine the
column length for printing select lists. select lists will print
vertically until about two-thirds of LINES lines are filled.

MAIL If this parameter is set to the name of a mail file and the
MAILP ATH parameter is not set, then the shell informs the
user of arrival of mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will
check for changes in the modification time of any of the files
specified by the MAILP ATH or MAIL parameters. The default
value is 600 seconds. When the time has elapsed the shell
will check before issuing the next prompt.

233

ksh(C)

234.

MAILPATH A colon (:) separated list of file names. If this parameter is set
then the shell informs the user of any modifications to the
specified files that have occurred within the last MAILCHECK
seconds. Each file name can be followed by a "?" and a mes­
sage that will be printed. The message will undergo parame­
ter substitution with the parameter $_ defined as the name of
the file that has changed. The default message is

PATH

PSt

PS2

PS3

PS4

SHELL

TMOUT

VISUAL

you have mail in $_.

The search path for commands (see "Execution" below). The
user may not change PATH if executing under rksh (except in
.profile).

The value of this parameter is expanded for parameter substi­
tution to define the primary prompt string which by default
is "$ " (dollar-space). The character "!" in the primary
prompt string is replaced by the command number (see
"Command re-entry" below).

Secondary prompt string, by default "> ".

Selection prompt string used within a select loop, by default
"#? ".

The value of this parameter is expanded for parameter substi­
tution and precedes each line of an execution trace. If omit­
ted, the execution trace prompt is "+ ".

The pathname of the shell is kept in the environment. At
invocation, if the basename of this variable matches the pat­
tern *r*sh, then the shell becomes restricted.

If TMOUT is set to a value greater than zero, the shell will ter­
minate if a command is not entered within the prescribed
number of seconds after issuing the PSt prompt. (Note that
the shell can be compiled with a maximum bound for this
vaiue which cannot be exceeded.)

If the value of this variable ends in emacs, gmacs, or vi, then
the corresponding option (see "Special commands" below)
will be turned on.

The shell gives default values to PATH, PSt, PS2, MAILCHECK, TMOUT and
IFS, while HOME, SHELL, ENV, and MAIL are not set at all by the shell
(although HOME, MAIL, and SHELL are set by login(M».

ksh(C)

Blank interpretation
After parameter and command substitution, the results of substitutions are
scanned for field separator characters (those found in IFS) and split into dis­
tinct arguments where such characters are found.

Explicit null arguments ("" or ") are retained. Implicit null arguments (those
resulting from parameters that have no values) are removed.

File name generation
Following substitution, each command word is scanned for the characters *, ?,
and [unless the -£ option has been set. If one of these characters appears then
the word is regarded as a pattern. The word is replaced with lexicographi­
cally sorted file names that match the pattern. If no file name is found that
matches the pattern, then the word is left unchanged. When a pattern is used
for file name generation, the character "." at the start of a file name or
immediately following a 1/ /", as well as the character" /" itself, must be
matched explicitly. In other instances of pattern matching the " /" and " . "
are not treated specially.

* Matches any string, including the null string.

? Matches any single character.

[...] Matches anyone of the enclosed characters. A pair of characters
separated by "-" matches any character lexically between the pair,
inclusive. If the first character following the opening "[" is a "! "
then any character not enclosed is matched. A 1/ -" can be included
in the character set by putting it as the first or last character.

A pattern-list is a list of one or more patterns separated from each other with
a 1/ I". Composite patterns can be formed with one or more of the following:

?(pattern-list) Optionally matches anyone of the given patterns.

*(pattern-list) Matches zero or more occurrences of the given patterns.

+(pattern-list) Matches one or more occurrences of the given patterns.

@(pattern-list) Matches exactly one of the given patterns.

!(pattern-list) Matches anything, except one of the given patterns.

235

ksh(C)

236

Quoting
Each of the specified metacharacters (See "Definitions" above) has a special
meaning to the shell and causes termination of a word unless quoted. A char­
acter may be quoted (that is, made to stand for itself) by preceding it with a
backslash (\). The pair "\(Enter) n is ignored. All characters enclosed
between a pair of single quote marks (' ') are quoted. A single quote cannot
appear within single quotes. Inside double quote marks (....), parameter and
command substitution occur and "\ n quotes the characters \, " .. and $. The
meaning of $* and $@ is identical when not quoted or when used as a parame­
ter assignment value or as a file name. However, when used as a command
argument, $* is equivalent to "$Id $2d •.• ", where d is the first character of the
IFS parameter, whereas $@ is equivalent to "$1" .. $2...... Inside grave quote
marks r ') \ quotes the characters \, " and $. If the grave quotes occur within
double quotes then \ also quotes the character ".

The special meaning of reserved words or aliases can be removed by quoting
any character of the reserved word. The recognition of function names or spe­
cial command names listed below cannot be altered by quoting them.

Arithmetic evaluation
An ability to perform integer arithmetic is provided with the special com­
mand let. Evaluations are performed using long arithmetic. Constants are of
the form [base#]n where base is a decimal number between two and thirty­
six representing the arithmetic base and n is a number in that base. If base is
omitted then base 10 is used.

An arithmetic expression uses the syntax, precedence, and associativity of
expression of the C language. All the integral operators, other than ++, --, ?:,
and comma (,) are supported. Named parameters can be referenced by name
within an arithmetic expression without using the parameter substitution
syntax. When a named parameter is referenced, its value is evaluated as an
arithmetic expression.

An internal integer representation of a named parameter can be specified with
the -i option of the tvoeset snecial command_ Arithmetk ev~!!atio!!. is per­
formed -on the value-of each A assignment to a named parameter with the -i
attribute. If you do not specify an arithmetic base, the first assignment to the
parameter determines the arithmetic base. This base is used when parameter
substitution occurs.

Since many of the arithmetic operators require quoting, an alternative form of
the let command is prOvided. For any command which begins with a «, all
the characters until a matching)) are treated as a quoted expression. More
precisely, « ... » is equivalent to let" ... ".

ksh(C)

Prompting
When used interactively, the shell prompts with the value of PSi before read­
ing a command. If at any time a new-line is typed and further input is needed
to complete a command, then the secondary prompt (that is, the value of PS2)
is issued.

Conditional expressions
A conditional expression is used with the [[compound command to test
attributes of files and to compare strings. Word splitting and file name gen­
eration are not performed on the words between [[and ll. Each expression
can be constructed from one or more of the following unary or binary expres­
sions:

-a file

-b file

-c file

-dfile

-ffile

-gfile

-kfile

-nstring

-0 option

-p file

-rfile

-s file

-tfildes

-ufile

-w file

-x file

-z string

True, if file exists.

True, if file exists and is a block special file.

True, if file exists and is a character special file.

True, if file exists and is a directory.

True, if file exists and is an ordinary file.

True, if file exists and is has its setgid bit set.

True, if file exists and is has its sticky bit set.

True, if length of string is non-zero.

True, if option named option is on.

True, if file exists and is a fifo special file or a pipe.

True, if file exists and is readable by current process.

True, if file exists and has size greater than zero.

True, if file descriptor number fildes is open and associated
with a terminal device.

True, if file exists and is has its setuid bit set.

True, if file exists and is writable by current process.

True, if file exists and is executable by current process. If
file exists and is a directory, then the current process has
permission to search in the directory.

True, if length of string is zero.

237

ksh(C)

238

-Lfile

-0 file

-G file

filel -nt file2

filel -at file2

filel -ef file2

True, if file exists and is a symbolic link.

True, if file exists and is owned by the effective user id of
this process.

True, if file exists and its group matches the effective group
id of this process.

True, if filel exists and is newer than file2.

True, if filel exists and is older than file2.

True, if filel and file2 exist and refer to the same file.

string = pattern True, if string matches pattern.

string != pattern True, if string does not match pattern.

stringl < string2 True, if stringl comes before string2 based on ASCII value
of their characters.

stringl > string2 True, if stringl comes after string2 based on ASCII value of
their characters.

expl -eq exp2

expl -ne exp2

expl -It exp2

expl -gt exp2

expl -Ie exp2

expl -ge exp2

True, if expl is equal to exp2.

True, if expl is not equal to exp2.

True, if expl is less than exp2.

True, if expl is greater than exp2.

True, if expl is less than or equal to exp2.

True, if expl is greater than or equal to exp2.

In each of the above expressions, if file is of the form /dev/td/n, where n is an
integer, then the test is applied to thl" opE'n file W'hose descriptor mLT!1ber is :!'!.

A compound expression can be constructed from these primitives by using
any of the following, listed in decreasing order of precedence.

(expression)

! expression

expressionl && expression2

expressionl I I expression2

True, if expression is true. Used to group
expressions.

True if expression is false.

True, if expressionl and expression2 are
both true.

True, if either expressionl or expression2 is
true.

ksh(C)

Spelling checker
By default, the shell checks spelling whenever you use cd to change direc­
tories. For example, if you change to a different directory using cd and
misspell the directory name, the shell responds with an alternative spelling of
an existing directory. Enter "y" and press (Return) (or just press (Return» to
change to the offered directory. If the offered spelling is incorrect, enter "n",
then retype the command line. In this example the user input is boldfaced:

* cd /usr/spol/uucp
/usr/spool/uucp? y
ok

The spell check feature is controlled by the CDSPELL environment variable.
The default value of CDSPELL is set to the string "cdspell" whenever a ks11
session is run. A user can change it to any value, including the null string, but
the value is immaterial: if CDSPELL is set to any value, the spell check feature
is engaged.

To disable the spelling checker, enter the following at the ks11 prompt:
unset CD SPELL

When the user does a set at the ks11 prompt, CDSPELL is not listed if the unset
was successful.

Input/Output
Before a command is executed, its input and output may be redirected using a
special notation interpreted by the shell. The following may appear anywhere
in a Simple-command or may precede or follow a command, and are not
passed on to the invoked command. Command and parameter substitution
occurs before word or digit is used, except as noted below. File name genera­
tion occurs only if the pattern matches a single file and blank interpretation is
not performed.

<word

>word

> I word

»word

<>word

Use file word as standard input (file descriptor 0).

Use file word as standard output (file descriptor 1). If the file
does not exist then it is created. If the file exists, and the
noclobber option is on, this causes an error; otherwise, it is
truncated to zero length.

Same as >, except that it overrides the noclobber option.

Use file word as standard output. If the file exists then output
is appended to it (by first seeking to the end-of-file); other­
wise, the file is created.

Open file word for reading and writing as standard input.

239

ksh(C)

240

«[-]word

<&digit

<&-

<&p

>&p

The shell input is read up to a line that is the same as word, or
to an end-of-file. No parameter substitution, command sub­
stitution or file name generation is performed on word. The
resulting document, called a here-document, becomes the stan­
dard input. If any character of word is quoted, then no
interpretation is placed upon the characters of the document;
otherwise, parameter and command substitution occurs,
\new-line is ignored, and "\" must be used to quote the
characters \, $, " and the first character of word. If" -" is
appended to «, then all leading tabs are stripped from word
and from the document.

The standard input is duplicated from file descriptor digit
(see dup(S». Similarly for the standard output using >&digit.

The standard input is closed. Similarly for the standard out­
put using >&-.

The input from the co-process is moved to standard input.

The output to the co-process is moved to standard output.

If one of the above is preceded by a digit, then the file descriptor number
referred to is that specified by the digit (instead of the default 0 or 1). For
example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file
descriptor 1.

File descriptor 0 is standard input; 1 is standard output; 2 is standard error.

The order in which redirections are specified is significant. The shell evalu­
ates each redirection in terms of the file descriptor, file association at the time
of evaluation. For example:

... 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descrip­
tor 2 with the file associated with file descriptor 1 (that is, fname). If the order
of redirections were reversed, file deSCriptor 2 would be associated with the
terminal (assuming this was the initial state of file descriptor 1) and then file
descriptor 1 would be associated with file fname.

If a command is followed by "&" and job control is not active, then the
default standard input for the command is the empty file /dev/null. Otherwise,
the environment for the execution of a command contains the file descriptors
of the invoking shell as modified by input/output specifications.

ksh(C)

Environment
The environment (see environ(M» is a list of name-value pairs that is passed
to an executing process in the same way as a normal argument list. The
names must be identifiers and the values are character strings. The shell
interacts with the environment in several ways. On invocation, the shell scans
the environment and creates a parameter for each name found, giving it the
corresponding value and marking it export. Executed commands inherit the
environment. If the user modifies the values of these parameters or creates
new ones, using the export or typeset-x commands they become part of the
environment. The environment seen by any executed command is'thus com­
posed of any name-value pairs originally inherited by the shell, whose values
may be modified by the current shell, plus any additions which must be noted
in export or typeset-x commands.

The environment for any simple-command or function may be augmented by
prefixing it with one or more parameter assignments. A parameter assign­
ment argument is a word of the form identifier=value. Thus:

TERM=wy60 and args
and

(export TERM; TERM=wy60; and args)
are equivalent (as far as the above execution of and is concerned, except for
commands listed with one or two daggers (t) in the "Special commands" sec­
tion).

If the -k flag is set, all parameter assignment arguments are placed in the
environment, even if they occur after the command name. The following first
prints a=b c and then c:

echo a=b c
set -k
echo a=b c

This feature is intended for use with scripts written for early versions of the
shell and its use in new scripts is strongly discouraged. It is likely to disap­
pear in the future.

Functions
The function reserved word, described in the "Commands" section above, is
used to define shell functions. Shell functions are read in and stored inter­
nally. Alias names are resolved when the function is read. Functions are exe­
cuted like commands with the arguments passed as positional parameters.
(See H£xecution" below.)

241

ksh(C)

242

Functions execute in the same process as the caller and share all files and the
present working directory with the caller. Traps caught by the caller are reset
to their default action inside the function. A trap condition that is not caught
or ignored by the function causes the function to terminate and the condition
to be passed on to the caller. A trap on EXIT set inside a function is executed
after the function completes in the environment of the caller. Ordinarily, vari­
ables are shared between the calling program and the function. However, the
typeset special command used within a function defines local variables
whose scope includes the current function and all functions it calls.

The special command return is used to return from function calls. Errors
within functions return control to the caller.

Function identifiers can be listed with the -f or +f option of the typeset special
command. The text of functions will also be listed with -f. Function can be
undefined with the -f option of the unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf
option of the typeset command allows a function to be exported to scripts
that are executed without a separate invocation of the shell. Functions that
need to be defined across separate invocations of the shell should be specified
in the ENV file with the -xf option of typeset.

Jobs
If the monitor option of the set command is turned on, an interactive shell
associates a "job" with each pipeline. It keeps a table of current jobs, printed
by the jobs command, and assigns them small integer numbers. When a job is
started asynchronously with" & ", the shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number 1
and had one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key AZ
(control-Z) which sends a STOP signal to the current job. (This is known as
the suspend character, and is AZ by default; this can be changed in the stty
susp liru:: u1 a users .plofile file.) TliE: sru::l1 will tru21l llormally h-ldicate t1'1at the
job has been 'Stopped', and print another prompt. You can then manipulate
the state of this job, putting it in the background with the bg command, or run
some other commands and then eventually bring the job back into the fore­
ground with the foreground command fg. A AZ takes effect immediately and
is like an interrupt in that pending output and unread input are discarded
when it is typed.

A job being run in the background will stop if it tries to read from the termi­
nal. Background jobs are normally allowed to produce output, but this can be
disabled by giving the command "stty tostop". If you set this tty option, then
background jobs will stop when they try to produce output like they do when
they try to read input.

ksh(C)

There are several ways to refer to jobs in the shell. A job can be referred to by
the process id of any process of the job or by one of the following:

%number The job with the given number.

% string Any job whose command line begins with string.

% ?string Any job whose command line contains string.

% % Current job.

%+ Equivalentto %%.

%- Previous job.

The shell learns immediately whenever a process changes state. It normally
informs you whenever a job becomes blocked so that no further progress is
possible, but only just before it prints a prompt. This is done so that it does
not otherwise disturb your work.

When the monitor mode is on, each background job that completes triggers
any trap set for CHLD.

When you try to leave the shell while jobs are running or stopped, you will be
warned that 'You have stopped(running) jobs'. You may use the jobs com­
mand to see what they are. If you do this or immediately try to exit again, the
shell will not warn you a second time, and the stopped jobs will be ter­
minated.

Signals
The INT and QUIT signals for an invoked command are ignored if the com­
mand is followed by II & II and the job monitor option is not active. Other­
wise, signals have the values inherited by the shell from its parent (but see
also the trap command below).

Execution
Each time a command is executed, the above substitutions are carried out. If
the command name matches one of the "Special Commands" listed below, it
is executed within the current shell process. Next, the command name is
checked to see if it matches one of the user defined functions. If it does, the
positional parameters are saved and then reset to the arguments of the func­
tion call. When the function completes or issues a return, the positional
parameter list is restored and any trap set on EXIT within the function is exe­
cuted. The value of a function is the value of the last command executed. A
function is also executed in the current shell process. If a command name is
not a special command or a user defined function, a process is created and an
attempt is made to execute the command via exec(S).

243

ksh(C)

244

The shell parameter PATH defines the search path for the directory containing
the command. Alternative directory names are separated by a colon (:). The
default path is /bin:/usr/bin: (specifying /bin, /usr/bin, and the current directory
in that order). The current directory can be specified by two or more adjacent
colons, or by a colon at the beginning or end of the path list. If the command
name contains a 1/ / 1/ then the search path is not used. Otherwise, each direc­
tory in the path is searched for an executable file. If the file has execute per­
mission but is not a directory or an a.out file, it is assumed to be a file contain­
ing shell commands. A sub-shell is spawned to read it. All non-exported
aliases, functions, and named parameters are removed in this case. If the shell
command file doesn't have read permission, or if the setuid and/or setgid bits
are set on the file, then the shell executes an agent whose job it is to set up the
permissions and execute the shell with the shell command file passed down
as an open file. A parenthesized command is executed in a sub-shell without
removing non-exported quantities.

Command re-entry
The text of the last HISTSIZE (default 128) commands entered from a terminal
device is saved in a history file. The file $HOME/.sh_history is used if the
HISTFILE variable is not set or is not writable. A shell can access the com­
mands of all interactive shells which use the same named HISTFILE. The spe­
cial command fe is used to list or edit a portion of this file. The portion of the
file to be edited or listed can be selected by number or by giving the first char­
acter or characters of the command. A single command or range of com­
mands can be specified. If you do not specify an editor program as an argu­
ment to fe then the value of the parameter FCEDIT is used. If FCEDIT is not
defined then /bin/ed is used. The edited command(s) is printed and re­
executed upon leaving the editor. The editor name 1/ -" is used to skip the
editing phase and to re-execute the command. In this case a substitution
parameter of the form old=new can be used to modify the command before
execution. For example, if r is aliased to 'fe -e -' then typing r bad=good e will
re-execute the most recent command which starts with the letter 1/ c ", replac­
ing the first occurrence of the string bad with the string good.

In-line editing options
Normally, each command line entered from a terminal device is simply typed
followed by a new-line (RETURN or LINE FEED). If the emacs, gmaes, or vi
option is active, the user can edit the command line. To be in one of these edit
modes set the corresponding option. An editing option is automatically
selected each time the VISUAL or EDITOR variable is assigned a value ending
in either of these option names.

The editing features require that the user's terminal accept RETURN as car­
riage return without line feed and that a space (' ') must overwrite the current
character on the screen. ADM terminal users should set the "space - advance"
switch to 'space'. Hewlett-Packard series 2621 terminal users should set the
straps to 'bcGHxZ etX'.

ksh(C)

The editing modes implement a concept where the user is looking through a
window at the current line. The window width is the value of COLUMNS if it
is defined, otherwise 80. If the line is longer than the window width minus
two, a mark is displayed at the end of the window to notify the user. As the
cursor moves and reaches the window boundaries the window will be cen­
tered about the cursor. The mark is a 1/ >" «, *) if the line extends on the right
(left, both) side(s) of the window.

The search commands in each edit mode provide access to the history file.
Only strings are matched, not patterns, although a leading 1/ ~" in the string re­
stricts the match to begin at the first character in the line.

Emacs editing mode
This mode is entered by enabling either the emacs or gmacs option. The only
difference between these two modes is the way they handle ~T. To edit, the
user moves the cursor to the point needing correction and then inserts or
deletes characters or words as needed. All the editing commands are control
characters or escape sequences. The notation for control characters is caret n
followed by the character. For example, ~F is the notation for control F. This
is entered by depressing 'f' while holding down the (Ctrl) (control) key. The
(Shift) key is not depressed. (The notation ~? indicates the (Del) (delete) key.)

The notation for escape sequences is M- followed by a character. For exam­
ple, M-£ (pronounced Meta f) is entered by depressing (Esc) (ASCII 033) fol­
lowed by 'f'. (M-F would be the notation for (Esc) followed by (Shift) (capital)
'F'.)

All edit commands operate from any place on the line (not just at the begin­
ning). Neither the (Return) nor the LINE FEED key is entered after edit com­
mands except when noted.

Move cursor forward (right) one character.

Move cursor forward one word. (The emacs editor's idea of a
word is a string of characters consisting of only letters, digits and
underscores.)

Move cursor backward (left) one character.

Move cursor backward one word.

Move cursor to start of line.

Move cursor to end of line.

Move cursor forward to character char on current line.

M-A]char Move cursor back to character char on current line.

AXAX Interchange the cursor and mark.

245

ksh(C)

246

erase

AD

M-d

M_AH

M-h

M_A?

AT

AC

M-c

M-I

AK

(User defined erase character as defined by the stty(C) command,
usually AH or #.) Delete previous character.

Delete current character.

Delete current word.

(Meta-backspace) Delete previous word.

Delete previous word.

(Meta-DEL) Delete previous word (if your interrupt character is A?
(DEL, the default) then this command will not work).

Transpose current character with next character in emacs mode.
Transpose two previous characters in gmacs mode.

Capitalize current character.

Capitalize current word.

Change the current word to lower case.

Delete from the cursor to the end of the line. If preceded by a
numerical parameter whose value is less than the current cursor
position, then delete from given position up to the cursor. If pre­
ceded by a numerical parameter whose value is greater than the
current cursor position, then delete from cursor up to given cursor
position.

AW Kill from the cursor to the mark.

M-p Push the region from the cursor to the mark on the stack.

kill (User defined kill character as defined by the stty command, usu­
ally AU or @.) Kill the entire current line. If two kill characters are
entered in succession, all kill characters from then on cause a line
feed (usefui when using paper terminals).

Ay Restore last item removed from line. (Yank item back to the line.)

AL Line feed and print current line.

A@ (Null character) Set mark.

M-space (Meta space) Set mark.

AJ (New line) Execute the current line.

AM (Return) Execute the current line.

ksh(C)

eof End-of-file character, normally ~D, is processed as an End-of-file
only if the current line is null.

~P Fetch previous command. Each time ~P is entered the previous
command back in time is accessed. Moves back one line when not
on the first line of a multi-line command.

M-< Fetch the least recent (oldest) history line.

M-> Fetch the most recent (youngest) history line.

~N Fetch next command line. Each time ~N is entered the next com­
mand line forward in time is accessed.

~Rstring Reverse search history for a previous command line containing
string. If a parameter of zero is given, the search is forward.
string is terminated by a RETURN or NEW LINE. If string is pre­
ceded by a /I ~ ", the matched line must begin with string. If string
is omitted, then the next command line containing the most recent
string is accessed. In this case a parameter of zero reverses the
direction of the search.

~o Operate - Execute the current line and fetch the next line relative
to current line from the history file.

M-digits (Escape) Define numeric parameter, the digits are taken as a
parameter to the next command. The commands that accept a
parameter are ~F, ~B, erase, AC, ~D, ~K, ~R, AP, AN, A], M-., M_A], M--,
M-b, M-c, M-d, M-f, M-h, M-I and M_AH.

M-Ietter Soft-key - Your alias list is searched for an alias by the name _letter
and if an alias of this name is defined, its value will be inserted on
the input queue. The letter must not be one of the above meta­
functions.

M-lletter Soft-key - Your alias list is searched for an alias by the name
_letter (two underscores precede letter) and if an alias of this
name is defined, its value will be inserted on the input queue. This
can be used to program function keys on many terminals.

M-. The last word of the previous command is inserted on the line. If
preceded by a numeric parameter, the value of this parameter
determines which word to insert rather than the last word.

M-_ SameasM-..

M-* Attempt file name generation on the current word. An asterisk is
appended if the word doesn't match any file or contain any special
pattern characters.

247

ksh(C)

248

M-ESC

M-=

File name completion. The current word is treated as a root to
which an asterisk is appended. A search is conducted for files
matching the current word. The first match found then replaces
the current word. Subsequent matches are obtained by repeating
the M-ESC keystroke. If the match is both unique and a directory,
a " /" is appended to it. If it is unique but not a directory, a space
is appended to it.

List files matching current word pattern if an asterisk were
appended.

Multiply parameter of next command by 4.

Escape next character. Editing characters, the user's erase, kill and
interrupt (normally A?) characters may be entered in a command
line or in a search string if preceded by a "\ ". The" \" removes
the next character's editing features (if any).

Display version of the shell.

Insert a "#" at the beginning of the line and execute it. This causes
a comment to be inserted in the history file.

Vi editing mode
There are two typing modes. Initially, when you enter a command you are in
the input mode. To edit, the user enters control mode by typing (Esc) (033)
and moves the cursor to the point needing correction and then inserts or
deletes characters or words as needed. Most control commands accept an
optional repeat count prior to the command.

When in vi mode on most systems, canonical processing is initially enabled
and the command will be echoed again if the speed is 1200 baud or greater
and it contains any control characters or less than one second has elapsed
since the prompt was printed. The (Esc) character terminates canonical pro­
cessing for the remainder of the command and the user can then modify the
command line. This scheme has thp anvanta!7P'" of canonical nrocp<:<:in!7 'With - - - ---0--- --- ---------------- ,('"--------0 ------

the type-ahead echOing of raw mode.

If the option viraw is also set, the terminal will always have canonical pro­
cessing disabled. This may be helpful for certain terminals.

input edit commands
By default the editor is in input mode.

erase (User defined erase character as defined by the stty command,
usually AH or #.) Delete previous character.

AW Delete the previous blank separated word.

ksh(C)

AD Terminate the shell.

AV Escape next character. Editing characters, the user's erase or kill
characters may be entered in a command line or in a search
string if preceded by a AV. The AV removes the next character's
editing features (if any).

\ Escape the next erase or kill character.

motion edit commands
These commands will move the cursor.

[count]l Cursor forward (right) one character.

[count]w Cursor forward one alpha-numeric word.

[count]W Cursor to the beginning of the next word that follows a blank.

[count]e Cursor to end of word.

[count]E Cursor to end of the current blank delimited word.

[count]h Cursor backward (left) one character.

[count]b Cursor backward one word.

[count]B Cursor to preceding blank separated word.

[count] I Cursor to column count.

[count]£c Find the next character c in the current line.

[count]Fc Find the previous character c in the current line.

[count]tc Equivalent to £ followed by h.

[count]Tc Equivalent to F followed by 1.

[count]; Repeats count times, the last single character find command, £,
F, t, orT.

[count], Reverses the last single character find command count times.

o Cursor to start of line.

Cursor to first non-blank character in line.

$ Cursor to end of line.

249

ksh(C)

250

search edit commands
These commands access your command history.

[count]k Fetch previous command. Each time k is entered the previous
command back in time is accessed.

[count]- Equivalent to k.

[count1j Fetch next command. Each time j is entered the next command
forward in time is accessed.

[count]+ Equivalent to j.

[count]G The command number count is fetched. The default is the least
recent history command.

Istring

?string

n

N

Search backward through history for a previous command con­
taining string. string is terminated by a RETURN or NEW LINE.
If string is preceded by a "A ", the matched line must begin with
string. If string is null the previous string will be used.

Same as " /" except that search will be in the forward direction.

Search for next match of the last pattern to " /" or "?" com­
mands.

Search for next match of the last pattern to 1/ /" or "? ", but in
reverse direction. Search history for the string entered by the
previous" /" command.

text modification edit commands
These commands will modify the line.

a Enter input mode and enter text after the current character.

A Append text to the end of the line. Equivalent to $a.

[count] emotion
e[count]motion

Delete current character through the character that motion
would move the cursor to and enter input mode. If motion is
/I c ", the entire line will be deleted and input mode entered.

C Delete the current character through the end of line and enter
input mode. Equivalent to e$.

S Equivalent to ee.

D Delete the current character through the end of line. Equivalent
tod$.

ksh(C)

[count] dmotion
d[count]motion

Delete current character through the character that motion
would move to. If motion is 1/ d ", the entire line will be deleted.

i Enter input mode and insert text before the current character.

I Insert text before the beginning of the line. Equivalent to Oi.

[count]P Place the previous text modification before the cursor.

[count]p Place the previous text modification after the cursor.

R Enter input mode and replace characters on the screen with
characters you type overlay fashion.

[count]rc Replace the count character(s) starting at the current cursor
position with c, and advance the cursor.

[count]x

[count]X

[count].

[countr

[countL

*

\

Delete current character.

Delete preceding character.

Repeat the previous text modification command.

Invert the case of the count character(s) starting at the current
cursor position and advance the cursor.

Causes the count word of the previous command to be
appended and input mode entered. The last word is used if
count is omitted.

Causes a 1/ * " to be appended to the current word and file name
generation attempted. If no match is found, it rings the bell.
Otherwise, the word is replaced by the matching pattern and
input mode is entered.

Filename completion. Replaces the current word with the long­
est common prefix of all filenames matching the current word
with an asterisk appended. If the match is unique, a 1/ /" is
appended if the file is a directory and a space is appended if the
file is not a directory.

other edit commands
Miscellaneous commands.

[count]ymotion
y[count]motion

Yank current character through character that motion would
move the cursor to and puts them into the delete buffer. The
text and cursor are unchanged.

251

ksh(C)

252

Y Yanks from current position to end of line. Equivalent to y$.

u Undo the last text modifying command.

U Undo all the text modifying commands performed on the line.

[count]v Returns the command fe -e ${VISUAL:-${EDITOR:-viH count in
the input buffer. If count is omitted, then the current line is
used.

AL Line feed and print current line. Has effect only in control
mode.

AJ (New line) Execute the current line, regardless of mode.

AM (Return) Execute the current line, regardless of mode.

Sends the line after inserting a" #" in front of the line. Useful
for causing the current line to be inserted in the history without
being executed.

= List the file names that match the current word if an asterisk
were appended to it.

@letter Your alias list is searched for an alias by the name _'etter and if
an alias of this name is defined, its value will be inserted on the
input queue for processing.

Special commands
The following simple-commands are executed in the shell process.
Input/Output redirection is permitted. Unless otherwise indicated, the out­
put is written on file deSCriptor 1 and the exit status, when there is no syntax
error, is zero. Commands that are preceded by one or two t's are treated spe­
cially in the following ways:

1. Parameter assignment lists preceding the command remain in effect when
the command completes.

2. II a redirections are processed after parameter assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by tt that are in the format of a
parameter assignment, are expanded with the same rules as a parameter
assignment. This means that tilde substitution is performed after the "="
sign and word splitting and file name generation are not performed.

t:[arg ...]
The command only expands parameters.

ksh(C)

t . file [arg...]
Read the complete file then execute the commands. The syntax for this is
dot-space-file followed by optional arguments. The commands are exe­
cuted in the current shell environment. The search path specified by PATH
is used to find the directory containing file. If any arguments arg are given,
they become the positional parameters. Otherwise the positional parame­
ters are unchanged. The exit status is the exit status of the last command
executed.

tt alias [-tx] [name [= value]] ...
alias with no arguments prints the list of aliases in the form name=value on
standard output. An alias is defined for each name whose value is given.
A trailing space in value causes the next word to be checked for alias sub­
stitution. The -t flag is used to set anJ list tracked aliases. The value of a
tracked alias is the full pathname corresponding to the given name. The
value becomes undefined when the value of PATH is reset but the aliases
remained tracked. Without the -t flag, for each name in the argument list
for which no value is given, the name and value of the alias is printed. The
-x flag is used to set or print exported aliases. An exported alias is defined
for scripts invoked by name. The exit status is non-zero if a name is given,
but no value, for which no alias has been defined.

bg [job ...]
This command is only on systems that support job control. Puts each
specified job into the background. The current job is put in the background
if job is not specified. See "Jobs" for a description of the format of job.

t break [n]
Exit from the enclosing for, while, until, or select loop, if any. If n is speci­
fied then break n levels.

t continue [n]
Resume the next iteration of the enclOSing for, while, until, or select loop.
If n is specified then resume at the n-th enclosing loop.

cd [-LP] [arg]
cd [-LP] old new

This command can be in either of two forms. In the first form it changes
the current directory to argo If arg is "-" the directory is changed to the
previous directory. If no arg is specified, the shell parameter HOME is used
as a default argo The parameter PWD is set to the current directory. The
shell parameter CDPATH defines the search path for the directory contain­
ing argo Alternative directory names are separated by a colon (:). The
default path is <null> (specifying the current directory). Note that the
current directory is specified by a null path name, which can appear
immediately after the equal sign or between the colon delimiters anywhere
else in the path list. If arg begins with a II /" then the search path is not
used. Otherwise, each directory in the path is searched for argo

The second form of cd substitutes the string new for the string old in the
current directory name, PWD, and tries to change to this new directory.

253

ksh(C)

254

The -L and -P flags are relevant to systems with symbolic links. The
default, -L, preserves logical naming, so that cd -L .• will move up one com­
ponent towards the root. The physical option, -P, uses a physical model for
paths. Thus, if /usr/include/sys is a symbolic link to the directory /sys/h, then
after cd lusr/include/sys, a cd •• would make the current directory
/usr/include, while a cd -P .. would make it sys.

The cd command may not be executed by rksh.

echo [arg ...]
See echo(C) for usage and deSCription.

t eval[arg ...]
The arguments are read as input to the shell and the resulting command(s)
executed.

t exec [arg...]
If arg is given, the command specified by the arguments is executed in
place of this shell without creating a new process. Input/output argu­
ments may appear and affect the current process. If no arguments are
given the effect of this command is to modify file descriptors as prescribed
by the input/output redirection list. In this case, any file descriptor num­
bers greater than 2 that are opened with this mechanism are closed when
invoking another program.

t exit [n]
Causes the shell to exit with the exit status specified by n. If n is omitted
then the exit status is that of the last command executed. An end-of-file
will also cause the shell to exit except for a shell which has the ignoreeof
option (see "set" below) turned on.

tt export [name [== value]] ...
The given names are marked for automatic export to the environment of
subsequently-executed commands.

fc [-e ename] [-nir] [first [last]]
fc -e - [old=new] [command]

In the first form, a range of commands from first to last is selected from the
last HISTSIZE commands that were typed at the terminal. The arguments
first and last may be specified as a number or as a string. A string is used
to locate the most recent command that starts with that string. A negative
number is used as an offset to the current command number. If the flag -1,
is selected, the commands are listed on standard output. Otherwise, the
editor program ename is invoked on a file containing these keyboard com­
mands. If ename is not supplied, then the value of the parameter FCEDIT
(default /bin/ed) is used as the editor. When editing is complete, the
edited command(s) is executed. If last is not specified then it will be set to
first. If first is not specified the default is the previous command for edit­
ing and -16 for listing. The flag -r reverses the order of the commands and
the flag -n suppresses command numbers when listing. In the second form
the command is re-executed after the substitution old=new is performed.

ksh(C)

fg [job ...]
This command is only on systems that support job control. Each job speci­
fied is brought to the foreground. Otherwise, the current job is brought
into the foreground. See "Jobs" for a description of the format of job.

getopts optstring name [arg ...]
Checks arg for legal options. If arg is omitted, the positional parameters
are used. An option argument begins with a " +" or a "-". An option not
beginning with " +" or " -" or the special argument" - -" ends the options.
optstring contains the letters that getopts recognizes. If a letter is followed
by a ": If, that option is expected to have an argument. The options can be
separated from the argument by blanks.

getopts places the next option letter it finds inside variable name each time
it is invoked with a " +" prepended when arg begins with a " +". The index
of the next arg is stored in OPTIND. The option argument, if any, gets
stored in OPTARG.

A leading ":" in optstring causes getopts to store the letter of an invalid
option in OPTARG, and to set name to "?" for an unknown option and to
II : " when a required option is missing. Otherwise, getopts prints an error
message. The exit status is non-zero when there are no more options.

jobs [-lnp] [job . ..]
Lists information about each given job, or all active jobs if job is omitted.
The -1 flag lists process ids in addition to the normal information. The-n
flag only displays jobs that have stopped or exited since last notified. The
-p flag causes only the process group to be listed. See "Jobs" for a descrip­
tion of the format of job.

kill [-sig] job . ..
kill-l

Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by names
(as given in /usr/include/signal.h, stripped of the prefix "SIG"). If the signal
being sent is TERM (terminate) or HUP (hangup), then the job or process
will be sent a CONT (continue) signal if it is stopped. The argument job
can specify the process id of a process that is not a member of one of the
active jobs. See "Jobs" for a description of the format of job. In the second
form, kill-I, the signal numbers and names are listed.

let arg ...
Each arg is a separate arithmetic expression to be evaluated. See" Arith­
metic evaluation" above, for a description of arithmetic expression evalua­
tion.

The exit status is 0 if the value of the last expression is non-zero, and 1 oth­
erwise.

t newgrp [arg ...]
Equivalent to exec Ibinlnewgrp arg

255

ksh(C)

256

print [-Rnprsu[n]] [arg ...]
The shell output mechanism. With no flags or with flag II -" or II - -" the
arguments are printed on standard output as described by echo(C). In raw
mode, -R or -r, the escape conventions of echo are ignored. The -R option
will print all subsequent arguments and options other than -no The -p
option causes the arguments to be written onto the pipe of the process
spawned with I & instead of standard output. The -s option causes the
arguments to be written onto the history file instead of standard output.
The -u flag can be used to specify a one-digit file descriptor unit number n
on which the output will be placed. The default is 1. If the flag -n is used,
no new-line is added to the output.

pwd [-LP]
Equivalent to print -r - $PWD

The -L and -P flags are relevant only on systems with symbolic links. The
default, -L, uses a logical model, while -P uses a physical model, for paths.
Thus, if /usr/include/sys is a symbolic link to the directory /sys/h, then
cd lusr/indude/sys; pwd; pwd -P will print /usr/include/sys, followed by
/sys/h.

read [-prsu [n]] [name?prompt] [name ...]
The shell input mechanism. One line is read and is broken up into fields
using the characters in IFS as separators. In raw mode, -r, a II \ " at the end
of a line does not signify line continuation. The first field is assigned to the
first name, the second field to the second name, etc., with leftover fields
assigned to the last name. The -p option causes the input line to be taken
from the input pipe of a process spawned by the shell using I &. If the -s
flag is present, the input will be saved as a command in the history file.
The flag -u can be used to specify a one digit file descriptor unit to read
from. The file descriptor can be opened with the exec special command.
The default value of n is O. If name is omitted then REPLY is used as the
default name. The exit status is 0 unless an end-of-file is encountered. An
end-of-file with the -p option causes cleanup for this process so that
another can be spawned. If the first argument contains a "? ", the
remainder of this word is used as a prompt on standard error when the
she!! is interacti've. The eyJ,t stzd"'~s is a unless all end-u£-fJ€ is ellcourlt~rt:d.

tt readonly [name [= value]] ...
The given names are marked readonly and these names cannot be changed
by subsequent assignment.

t return [n]
Causes a shell function to return to the invoking script with the return
status specified by n. If n is omitted then the return status is that of the last
command executed. If return is invoked while not in a function or a "."
script, then it is the same as an exit.

ksh(C)

set [±aefhkmnopstuvx] [±o option] ... [±A name] [arg ...]
The flags for this command have meaning as follows:

-A Array assignment. Unset the variable name and assign values
sequentially from the list argo If +A is used, the variable name is
not unset first.

-a All subsequent parameters that are defined are automatically
exported.

-e If a command has a non-zero exit status, execute the ERR trap, if
set, and exit. This mode is disabled while reading profiles.

-f Disables file name generation.

-h Each command becomes a tracked alias when first encountered.

-k All parameter assignment arguments are placed in the environ­
ment for a command, not just those that precede the command
name.

-m Background jobs will run in a separate process group and a line
will print upon completion. The exit status of background jobs is
reported in a completion message. On systems with job control,
this flag is turned on automatically for interactive shells.

-n Read commands and check them for syntax errors, but do not exe­
cute them. Ignored for interactive shells.

-0 List all option settings.

The argument following -0 can be one of the following option
names:

allexport Same as -a.

errexit

bgnice

emacs

gmacs

Same as-e.

All background jobs are run at a lower priority. This is
the default mode.

Puts you in an emacs style in-line editor for command
entry.

Puts you in a gmacs style in-line editor for command
entry.

ignoreeof The shell will not exit on end-of-file. The command
exit must be used.

keyword Same as -k.

257

ksh(C)

258

markdirs All directory names resulting from file name genera­
tion have a trailing II /" appended.

monitor Same as -m.

noclobber Prevents output redirection (» from truncating exist­
ing files. Require> I to truncate a file when turned on.

noexec Same as -no

noglob Same as -f.

nolog Do not save function definitions in history file.

nounset Same as -u.

privileged Same as -po

trackall Same as -h.

verbose Same as -v.

vi Puts you in insert mode of a vi style in-line editor until
you hit escape character 033. This puts you in move
mode. A return sends the line.

viraw Each character is processed as it is typed in vi mode.

xtrace Same as -x.

If no option name is supplied then the current option settings are
printed.

-p Disables processing of the $HOME/.profile file and uses the file
/etc/suid-profile instead of the ENV file. This mode is on whenever
the effective uid (gid) is not equal to the real uid (gid). Turning
this off causes the effective uid and gid to be set to the real uid
~lnrl mn
------ 0---

-s Sort the positional parameters lexicographically.

-t Exit after reading and executing one command.

-u Treat unset parameters as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Turns off -x and -v flags and stops examining arguments for flags.

ksh(C)

Do not change any of the flags; useful in setting $1 to a value
beginning with "-". If no arguments follow this flag then the
positional parameters are unset.

Using" +" rather than" -" causes these flags to be turned off. These flags
can also be used upon invocation of the shell. The current set of flags may
be found in $-. Unless -A is specified, the remaining arguments are posi­
tional parameters and are assigned, in order, to $1 $2 If no arguments
are given then the names and values of all named parameters are printed
on the standard output. If the only argument is" + ", the names of all
named parameters are printed.

t shift[n]
The positional parameters from $n+l ... are renamed 1 ... , default n is 1.
The parameter n can be any arithmetic expression that evaluates to a non­
negative number less than or equal to $#.

t times
Print the accumulated user and system times for the shell and for processes
run from the shell.

t trap [arg] [sig] ... arg
is a command to be read and executed when the shell receives signal(s) sig.
(Note that arg is scanned once when the trap is set and once when the trap
is taken.) Each sig can be given as a number or as the name of the signal.
Trap commands are executed in order of signal number. Any attempt to
set a trap on a signal that was ignored on entry to the current shell is inef­
fective. If arg is omitted or is " - ", then all trap(s) sig are reset to their origi­
nal values. If arg is the null string then this signal is ignored by the shell
and by the commands it invokes. If sig is ERR then arg will be executed
whenever a command has a non-zero exit status. If sig is DEBUG then arg
will be executed after each command. If sig is 0 or EXIT and the trap state­
ment is executed inside the body of a function, then the command arg is
executed after the function completes. If sig is 0 or EXIT for a trap set out­
side any function then the command arg is executed on exit from the shell.
The trap command with no arguments prints a list of commands associated
with each signal number.

tt typeset [±HLRZfilrtux[n]] [name[=value]] ...
Sets attributes and values for shell parameters. When invoked inside a
function, a new instance of the parameter name is created. The parameter
value and type are restored when the function completes. The following
list of attributes may be specified:

-H This flag provides UNIX system to host-name file mapping on non­
UNIX system machines.

259

ksh(C)

260

-L Left justify and remove leading blanks from value. If n is non-zero it
defines the width of the field; otherwise it is determined by the width
of the value of first assignment. When the parameter is assigned to, it
is filled on the right with blanks or truncated, if necessary, to fit into
the field. Leading zeros are removed if the -Z flag is also set. The-R
flag is turned off.

-R Right justify and fill with leading blanks. If n is non-zero it defines the
width of the field; otherwise it is determined by the width of the value
of first assignment. The field is left filled with blanks or truncated
from the end if the parameter is reassigned. The -L flag is turned off.

-Z Right justify and fill with leading zeros if the first non-blank character
is a digit and the -L flag has not been set. If n is non-zero it defines the
width of the field; otherwise it is determined by the width of the value
of first assignment.

-£ The names refer to function names rather than parameter names. No
assignments can be made and the only other valid flags are -t, -u and
-x. The flag -t turns on execution tracing for this function. The flag -u
causes this function to be marked as undefined. The FPATH variable
will be searched to find the function definition when the function is
referenced. The flag -x allows the function definition to remain in
effect across shell procedures invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is non-zero
it defines the output arithmetic base; otherwise the first assignment
determines the output base.

-1 All upper-case characters converted to lower-case. The upper-case
flag, -u is turned off.

-r The given names are marked readonly and these names cannot be
changed by subsequent assignment.

-t Tags the named parameters. Tags are user definable and have no spe­
cial meaning to th", shelL

-u All lower-case characters are converted to upper-case characters. The
lower-case flag, -1, is turned off.

-x The given names are marked for automatic export to the environment
of subsequently-executed commands.

Using II +" rather than "_" causes these flags to be turned off. If no name
arguments are given but flags are specified, a list of names (and optionally
the values) of the parameters which have these flags set is printed. (Using
" +" rather than " -" keeps the values from being printed.) If no names and
flags are given, the names and attributes of all parameters are printed.

ksh(C)

ulimit [-HS] [limit]
Set or display a resource limit. The number of 512-byte blocks on files
written by child processes (files of any size may be read). The limit is set
when limit is specifed. The value of limit can be a number or the value
unlimited. The -H and -S flags specify whether the hard limit or the soft
limit is set. A hard limit cannot be increased once it is set. A soft limit can
be increased up to the value of the hard limit. If neither the -H or -S option
is specified, the limit applies to both. The current limit is printed when
limit is omitted. In this case the soft limit is printed unless -H is specified.

umask [mask]
The user file-creation mask is set to mask (see umask). mask can either be
an octal number or a symbolic value as described in chmod(C). If a sym­
bolic value is given, the new umask value is the complement of the result
of applying mask to the complement of the previous umask value. If
mask is omitted, the current value of the mask is printed.

unalias name . ..
The parameters given by the list of names are removed from the alias list.

unset [-f] name . ..
The parameters given by the list of names are unassigned, that is, their
values and attributes are erased. Readonly variables cannot be unset. If
the flag, -f, is set, then the names refer to function names. Unsetting
ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS,
TMOUT, and II _" removes their special meaning even if they are subse­
quently assigned to.

twait [job]
Wait for the specified job and report its termination status. If job is not
given then all currently active child processes are waited for. The exit
status from this command is that of the process waited for. See "Jobs" for
a description of the format of job.

whence [-pv] name . ..
For each name, indicate how it would be interpreted if used as a command
name.

The flag, -v, produces a more verbose report.

The flag, -p, does a path search for name .even if name is an alias, a func-
tion, or a reserved word. /

261

ksh(C)

262

Invocation
If the shell is invoked by exec(S), and the first character of argument zero ($0)
is "-", then the shell is assumed to be a login shell and commands are read
from /etc/profile and then from either .profile in the current directory or
$HOME/.profile, if either file exists. Next, commands are read from the file
named by performing parameter substitution on the value of the environment
parameter ENV if the file exists. If the -s flag is not present and arg is, then a
path search is performed on the first arg to determine the name of the script to
execute. The script arg must have read permission and any setuid and setgid
settings will be ignored. Commands are then read as described below; the fol­
lowing flags are interpreted by the shell when it is invoked:

-c string If the -c flag is present then commands are read from string.

-s If the -s flag is present or if no arguments remain then commands
are read from the standard input. Shell output, except for the out­
put of the special commands listed above, is written to file
descriptor 2.

-i If the -i flag is present or if the shell input and output are attached
to a terminal (as told by ioctI(S» then this shell is interactive. In
this case TERM is ignored (so that kill 0 does not kill an interactive
shell) and INTR is caught and ignored (so that wait is interrupti­
ble). In all cases, QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

rksh only
rksh is used to set up login names and execution environments whose capa­
bilities are more controlled than those of the standard shell. The actions of
rksh are identical to those of ksh, except that the following are disallowed:

changing directory (see ca(e)),
setting the value of SHELL, ENV, or PATH,
specifying path or command names containing II / ",

redirecting output (>, > I, <>, and »).

The restrictions above are enforced after .profile and the ENV files are inter­
preted.

When a command to be executed is found to be a shell procedure, rksh
invokes ksh to execute it. Thus, it is possible to provide shell procedures to
the end-user that have access to the full power of the standard shell, while
imposing a limited menu of commands; this scheme assumes that the end­
user does not have write and execute permissions in the same directory.

ksh(C)

The net effect of these rules is that the writer of the .profile has complete con­
trol over user actions, by performing guaranteed setup actions and leaving the
user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (for exam­
ple, /usr/rbin) that can be safely invoked by rksh. There is also a restricted edi­
tor, red.

Note that simply setting a user's login shell to rksh does not make their
account "safe". Some thought and care must be put into creating a properly
restricted environment.

Diagnostics

Files

See also

Notes

Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. Otherwise, the shell returns the exit status of the last
command executed (see also the exit command above). If the shell is being
used non-interactively then execution of the shell file is abandoned. Run-time
errors detected by the shell are reported by printing the command or function
name and the error condition. If the line number that the error occurred on is
greater than one, then the line number is also printed in square brackets ([])
after the command or function name.

/ete/passwd
/etc/profile
/ete/suid...Jlrofile
$HOME/ .profile
/tmp/sh*
/dev/null

('at(C), cd(C), chmod(C), cut(C), echo(C), env(C),ln(C), newgrp(C), paste(C),
stty(C), test(C), umask(C), vi(C), dup(S), exec(S), fork(S), ioctl(S), Iseek(S),
pipe(S), signal(S), umask(S), ulimit(S), wait(S), rand(S), a.out(FP), profile(M),
environ(M)

The chapter entitled "The Korn Shell" in the sca UNIX User's Guide.

If a command which is a tracked alias is executed, and then a command with
the same name is installed in a directory in the search path before the direc­
tory where the original command was found, the shell will continue to exec
the original command. Use the -t option of the alias command to correct this
situation.

263

ksh(C)

264

Some very old shell scripts contain a "A" as a synonym for the pipe character
(I).

Using the fc built-in command within a compound command will cause the
whole command to disappear from the history file.

The built-in command . file reads the whole file before any commands are
executed. Therefore, alias and unalias commands in the file will not apply to
any functions defined in the file.

Traps are not processed while a job is waiting for a foreground process. Thus,
a trap on CHLD won't be executed until the foreground job terminates.

last(C)

last
indicate last logins of users and teletypes

Syntax
last [-h] [-n limit] [-t tty] [-w wtmpfile] [name]

Description

File

See also

The last command checks the wtmp file, which records alliogins and logouts
for information about a user, a tty line or any group of users and lines. Argu­
ments specify a user name and/or tty.

last -t 01 root

would list all root sessions as well as all sessions on /dev/ttyOl. last prints the
sessions of the specified users and ttys, including login name, the line used,
the device name, the process ID, plus start time and elapsed time.

last with no arguments prints a record of all logins and logouts, in reverse
chronological order.

The options behave as follows:

-h

-n limit

-t line

no header.

limits the report to n lines.

specifies the tty.

-w wtmpfile uses wtmpfile instead of /etc/wtmp. Note that this file must have
the same format as /etc/wtmp.

/etc/wtmp login database

acd(FP), acdcom(ADM), acdon(ADM), finger(C), utmp(P)

Value added

last is an extension of AT&T System V provided by The Santa Cruz Operation,
Inc.

265

Iayers(C)

layers
layer multiplexer for windowing terminals

Syntax
layers [-s] [-t] [-d] [-p] [-f file] [layersys-prgm]

Description

266

The layers command manages asynchronous windows (see layers(M» on a
windowing terminal. On invocation, layers finds an unused xt(HW) channel
group and associates it with the terminal line on its standard output. It then
waits for commands from the terminal.

To use layers, you must have configured the xt driver. This is done using the
mkdev layers script. For more information, see mkdev(ADM).

Command-line options:

-s

-t

-d

-p

-f file

Reports protocol statistics on standard error at the end of the
session after you exit from layers. The statistics may be
printed during a session by invoking the program xts(ADM).

Turns on xt(HW) driver packet tracing, and produces a trace
dump on standard error at the end of the session after you
exit from layers. The trace dump may be printed during a
session by invoking the program xtt(ADM).

If a firmware patch has been downloaded, prints out the
sizes of the text, data, and bss portions of the firmware patch
on standard error.

If a firmware patch has been downloaded, prints the down­
loading protocol statistics and a trace on standard error-

Starts layers with an initial configuration specified by file.
Each line of the file represents a layer to be created, and has
the following format:

origin_x origin-y corner_x corner-y command_list

The coordinates specify the size and position of the layer on
the screen in the terminal's coordinate system. If all four are
0, the user must define the layer interactively.
command_list, a list of one or more commands, must be pro­
vided. It is executed in the new layer using the user's shell
(by executing: $SHELL -i -c "command_list"). This means
that the last command should invoke a shell, such as Ibinlsh.
(If the last command is not a shell, then, when the last com­
mand has completed, the layer will not be functional.)

Example

Notes

layers(C)

layersys-prgm A file containing a firmware patch that the layers command
downloads to the terminal before layers are created and
command_list is executed.

Each layer is in most ways functionally identical to a separate terminal. Char­
acters typed on the keyboard are sent to the standard input of the UNIX sys­
tem process attached to the current layer (called the host process), and charac­
ters written on the standard output by the host process appear in that layer.
When a layer is created, a separate shell is established and bound to the layer.
If the environment variable SHELL is set, the user will get that shell, other­
wise, Ibinlsh will be used. In order to enable communications with other
users via write(C), layers invokes the command relogj.n(ADM) when the first
layer is created. relogin(ADM) will reassign that layer as the users logged-in
terminal. An alternative layer can be designated by using relogin(ADM)
directly. layers will restore the original assignment on termination.

Layers are created, deleted, reshaped, and otherwise manipulated in a
terminal-dependent manner. For instance, the AT&T TELETYPE 5620 DMD ter­
minal provides a mouse-activated pop-up menu of layer operations. The
method of ending a layers session is also defined by the terminal.

layers -f startup
where startup contains:

8 8 700 200 date ; pwd ; exec $SHELL
8 300 780 850 exec $SHELL

The xt(HW) driver supports an alternate data transmission scheme known as
ENCODING MODE. This mode makes layers operation possible even over
data links which intercept control characters or do not transmit 8-bit charac­
ters. ENCODING MODE is selected either by setting a configuration option on
your windowing terminal or by setting the environment variable DMDLOAD
to the value hex before running layers:

export DMDLOAD; DMDLOAD=hex
If, after executing layers -f file, the terminal does not respond in one or more
of the layers, often the last command in the command-list for that layer did
not invoke a shell.

When invoking layers with the -s, -t, -d, or -p options, it is best to redirect
standard error to another file to save the statistics and tracing output (for
example, layers -s 2>stats); otherwise all or some of the output may be lost.

267

layers(C)

Files

See also

268

/dev/xt??[O-71
/usr/lib/layersys/lsys.8;7 ;3
/usr/lib/layersys/lsys.8;? ;?

layers(M), libwindows(S), mkdev(ADM), relogin(ADM), sh(C), write(C),
wtinit(ADM), xts(ADM), xtt(ADM), xt(HW)

line(C)

line
read one line

Syntax

line

Description

See also

The line command copies one line (up to a new line) from the standard input
and writes it on the standard output. It returns an exit code of 1 on end-of-file
and always prints at least a new line. It is often used within shell files to read
from the user's terminal.

gets(CP),sh(C)

Standards confonnance

line is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

269

In(C)

In
make a link to a file

Syntax

In [-s] [-f] sourcename targetname

In [-s] [-f] sourcenamel sourcename2 [sourcename3 ...] targetdirectory

Description

270

A link is a directory entry referring to a file; a single file (together with its size,
all its protection information, etc.) may have several links to it. There are two
kinds of link: hard links and symbolic links.

By default In makes hard links. A hard link to a file is indistinguishable from
the original directory entry; any changes to a file are effective independent of
the name used to reference the file. Hard links may not span file systems and
may not refer to directories.

The -s option causes In to create symbolic links. A symbolic link contains the
name of the file to which it is linked; this file does not need to exist prior to the
symbolic link. The referenced file is used when an open(S) operation is per­
formed on the link. A stat(S) on a symbolic link will return the linked-to file; a
stat(S) must be performed to obtain information about the link. The
readlink(S) call may be used to read the contents of a symbolic link. Symbolic
links may span file systems and may refer to directories.

Given two arguments, In creates a link to a file sourcename. If targetname is a
file, the link has that name; targetname may also be a directory in which to
place the link; otherwise it is placed in the current directory. If only the direc­
tory is specified, the link will be made to the last component of sourcename.

(:iw>n Tn(\1"P th;:m hArn ::l1"0'11Tnpnt" 1n Tnakp" links in tarvetdirectoru to all the -_. --- ----- - ------- - .. - ---0---------, --- ------ -- - - 0 ..,

named source files. The links made will have the same names as the files
being linked to. If In determines that the mode of target forbids writing, it
will print the mode (see chmod(C)), ask for a response, and read the standard
input for one line.

If the line begins with y, the In occurs, if permissible; if not, the command
exits.

When the -f option is used or if the standard input is not a terminal, no ques­
tions are asked and the In is performed.

See also

cp(C),Inv(C),rD1(C)

Standards confonnance

In is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

1n(e)

271

lock(C)

lock
lock a user's terminal

Syntax
lock [-v] [-number]

Description

Options

272

The lock command requests a password from the user, requests it again for
verification, then locks the terminal until the password is reentered. If a
-number is specified in the lock command, the terminal is automatically
logged out and made available to another user after that number of minutes
has passed.

This command uses the file /etc/default/lock. This file has two entries:
DEFLOGOUT = number
MAXLOGOUT = number

DEFLOGOUT specifies the default time in minutes that a terminal will remain
locked before the user is logged out. This default value is overridden if the
-number option is used on the command line. If DEFLOGOUT and -number
are not specified, the MAXLOGOUT value is used.

MAXLOGOUT is the maximum number of minutes a user is permitted to lock
a terminal. If a user attempts to lock a terminal for longer than this time, lock
will issue a warning to the user that it is using the system maximum time
limit. If DEFLOGOUT and -number and MAXLOGOUT are not specified, users
are not logged out.

DEFLOGOUT and MAXLOGOUT are configured by the system administrator
to reflect the demand for terminals at the site.

The lock may b~ te!'!rrDlated by killing the lock process. Only the super user
and the user who invoked lock may do so.

-number Sets the time limit for lock to number of minutes, instead of the sys­
tem default.

-v Specifies verbose operation.

File

Notes

/etc/default/lock

The file /etc/default/lock is shipped with the following default values:
DEFLOGOUT = 30
MAXLOGOUT = 60

lock(C)

Value added

lock is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

273

logname(C)

logname
get login name

Syntax

logname

Description

See also

logname returns the user's login name as found in /etc/utmp. If no login name
is found,logname returns the user's user ID number.

env(C), getlogin(S), getuid(S), id(C), login(M),logname(S)

Standards conformance

logname is conformant with:

X/Open Portability Guide, Issue 3, 1989.

274

Ip(C)

Ip, Ipr
send requests to lineprinter

Syntax
lp [options] files

lp -i request-id [options]

Description

Ipr - send request to lineprinter

The first form of the lp shell command arranges for the named files and asso­
ciated information (collectively called a request) to be printed. If no filenames
are specified on the command line, the standard input is assumed. The stan­
dard input may be specified along with named files on the command line, by
specifying the files as arguments to Ip before the standard input. The files
will be printed in the order they appear on the command line.

The second form of lp is used to change the options for a request. The print
request identified by the request-id is changed according to the printing
options specified with this shell command. The printing options available are
the same as those with the first form of the Ip shell command. If request-id
has finished printing, the change is rejected. If request-id is already printing,
it will be stopped and restarted from the beginning, unless the -P option has
been given.

lp associates a unique id with each request and prints it on the standard out­
put. This id can be used later to cancel, change, or find the status of the
request. (See Ipstat(C) for information about checking the status of a print
request.)

Options to lp must always precede filenames but may be listed in any order.
The following options are available for lp:

-c When lp runs, it immediately creates a copy of the files specified
for printing. The copies are subsequently printed. Changes
made to a file after the lp command is issued but before the file
is printed will therefore not be reflected in the printed output.
Versions of lp in earlier releases did not create a copy of the
print files unless the -c flag was used (to indicate that copies of
the print files should be made). Because this is now the default
behaviour for lp, this flag is retained solely for backward com­
patability, and need not be used.

275

lp(e)

276

-d dest Prints this request using dest as the printer or class of printers.
Under certain conditions (lack of printer availability, capabilities
of printers, and so on), requests for specific destinations may not
be accepted (see accept(ADM) and Ipstat(C». By default, dest is
taken from the environment variable LPDEST (if it is set). Oth­
erwise, a default destination (if one exists) for the computer sys­
tem is used. Destination names vary between systems (see
Ipstat(C».

-£ form-name [-d any]
Prints the request on the form form-name. The lp print service
ensures that the form is mounted on the printer. If form-name is
requested with a printer destination that cannot support the
form, the request is rejected. If form-name has not been defined
for the system or if the user is not allowed to use the form, the
request is rejected (see Ip£orms(ADM». When the -d any option
is given, the request is printed on any printer that has the
requested form mounted and can handle all other needs of the
print request.

-H special-handling
Prints the request according to the value of special-handling.
Acceptable values for special-handling are hold, resume, and
immediate, as defined below:

hold Will not print the request until notified. If already
printing, stops it. Other print requests will go
ahead of a held request until it is resumed.

resume Resumes a held request. If it had been printing
when held, it will be the next request printed,
unless subsequently overridden by an immediate
request.

immediate (Available only to lp administrators)
Prints the request next. If more than one request is
assismed immediate. the reauests are printed in
the ~everse order queued. If a request is currently
printing on the desired printer, you have to put it
on hold to allow the immediate request to print.

-m Sends mail (seemail(C» after the files have been printed. By
default, no mail is sent upon normal completion of the print
request.

-n number Prints number copies of the output (default is 1).

-0 option

lp(e)

Specifies printer-dependent or class-dependent options. Several
such options may be collected by specifying the -0 keyletter
more than once. The standard interface recognizes the follow­
ing options:

nobanner Does not print a banner page with this request.
(The administrator can disallow this option at any
time.)

nofilebreak Does not insert a form feed between the files given
if submitting a job to print more than one file.

stty=stty-option-list
Set the printer with a list of options valid for the
stty command. Enclose the list with quotes if it
contains blanks.

length=scaled-decimal-number
Prints the output of this request with pages
sea led- decimal-number lines long. A scaled­
decimal-number is an optionally scaled decimal
number that gives a size in lines, columns, inches,
or centimeters, as appropriate. The scale is indi­
cated by appending the letter "i" (for inches) or
the letter "c" (for centimeters). For length or
width settings, an unsealed number indicates lines
or columns; for line pitch or character pitch set­
tings, an unsealed number indicates lines per inch
or characters per inch (the same as a number
scaled with "i "). For example, length=66 indi­
cates a page length of 66 lines, length=l1i indi­
cates a page length of 11 inches, and length=27.94c
indicates a page length of 27.94 centimeters.

This option cannot be used with the -f option.

width=scaled-decimal-number
Prints the output of this request with page-width
set to scaled-decimal- number columns wide. (See
the explanation above for scaled-decimal­
numbers.) This option cannot be used with the -f
option.

Ipi=scaled-decimal-number
Prints this request for "lines per inch" with the line
pitch set to scaled-decimal-number lines per inch.
This option cannot be used with the -f option.

277

lp(e)

278

cpi=scaled-decimal-number
Prints this request for "characters per inch" with
the character pitch set to scaled-decimal-number
characters per inch. Character pitch can also be set
to pica (representing 10 columns per inch) or elite
(representing 12 columns per inch), or it can be
compressed, to print as many columns as the
printer can handle. There is no standard number
of columns per inch for all printers; see the
termin!o(F) database for the default character pitch
for your printer. The cpi option cannot be used in
conjunction with the -f option.

-p page-list Prints the page(s) specified in page-list. This option can be used
only if there is a filter available to handle it; otherwise, the print
request will be rejected.

The page-list may consist of range(s) of numbers, single page
numbers, or a combination of both. The pages will be printed in
ascending order.

-q priority-level

-s

Assigns this request priority-level in the printing queue. The
values of priority-level range from 0, the highest priority, to 39,
the lowest priority. If a priority is not specified, the default for
the print service is used, as assigned by the system administra­
tor.

Suppresses messages from Ip(C) such as "request id is ... ".

-s character-set [-d any]
-S print-wheel [-d any]

Prints this request using the specified character-set or print­
wheel. If a form has been specified that requires a character-set
or print-wheel other than the one specified with the -S option,
the request is rejected.

For printers that take print wheels: if the print-wheel specified
is not one listed by the administrator as acceptable for the print­
er involved in this request, the request is rejected unless the
print wheel is already mounted on the printer. For printers that
use selectable or programmable character sets: if the character­
set specified is not one defined in the terminfo database for the
printer (see terminfo(F» or is not an alias defined by the
administrator, the request is rejected.

When the -d any option is used, the request is printed on any
printer that has the print wheel mounted or any printer that can
select the character set and can handle all other needs of the
request.

- title

Ip(C)

Prints title on the banner page of the output. The default is no
title.

-T content-type [-r]
While the printer type information tells the print service what
type of printer is being added, the content type information tells
the print service what types of files can be printed. Prints the
request on a printer that can support the specified content-type.
If no printer accepts this type directly, a filter will be used to
convert the content into an acceptable type. If the -r option is
specified, a filter will not be used. If -r is specified but no printer
accepts the content-type directly, the request is rejected. If the
content-type is not acceptable to any printer, either directly or
with a filter, the request is rejected.

-w Writes a message on the user's terminal after the files have been
printed. If the user is not logged in or the terminal cannot be
written to (mesg is n), then mail will be sent instead.

-y mode-list Prints this request according to the printing modes listed in
mode-list. The allowed values for mode-list are locally defined.
This option can be used only if there is a filter available to han­
dle it; if there is no filter, the print request will be rejected.

-R Removes file after sending it.

-L Local printing option. Sends print job to printer attached to the
terminal.

The file /etc/default/lpd contains the setting of the variable BANNERS, whose
value is the number of pages printed as a banner identifying each printout.
This is normally set to either 0 or 1.

The variables LPR and PRIN1ER can each be set to spooler or local. These
variables let you send files to the spool printer or the terminal's local printer,
respectively. The file /usr/bin/spool contains the spooler setting for both vari­
ables. The file /usr/bin/local contains the local setting. The following are a few
examples of variable usage:

Ip -option spooler
LPR:::::local
LPR:::::spooler
spoollp -option device file

279

Ip(e)

Notes

Warning

Files

See also

Printers for which requests are not being accepted will not be considered
when the destination is any. (Use the lpstat -a command to see which print­
ers are accepting requests.) On the other hand, if a request is destined for a
class of printers and the class itself is accepting requests, all printers in the
class will be considered, regardless of their acceptance status, as long as the
printer class is accepting requests.

Ipr is a link to Ip. These names may be used interchangeably.

For printers that take mountable print wheels or font cartridges, if you do not
specify a particular print wheel or font with the -5 option, whichever happens
to be mounted at the time your request prints will be used. Use the Ipstat -p -1
command to see what print wheels are available. For printers that have
selectable character sets, you will get the standard set if you don't give the -5
option.

/usr/spool/lp/*
/etc/default/lpd

accept(ADM), cancel(C), enable(C), Ipadmin(ADM),lpfilter(ADM),
Ipforms(ADM),lpsched(ADM),lpstat(C), Ipusers(ADM), mail(C), terminfo(F)

Standards confonnance

Ip is conformant with:

AI & I 5VID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

280

Iprint(C)

Iprint
print to a printer attached to the user's terminal

Syntax
Iprint [-] [file]

Description

Options

Files

The Iprint(C) command accepts a filename to print or "_" to read from the
keyboard. If the terminal has local printing abilities, it will then print the file
to a printer attached to the printer port of the terminal.

This command uses the file /etc/termcap.

Tells Iprint to use the standard input for printing.

The variables LPR and PRINTER can each be set to 'spooler' or 'local'. These
variables let you send files to the spool printer or the terminal's local printer,
respectively. The file /usr/bin/spool contains the 'spooler' setting for both vari­
ables. The file /usr/bin/local contains the 'local' setting. The following are a
few examples of variable usage:

lp -option spooler
LPR=local
LPR=spooler
spoollp -option device file

/etc/termcap
/usr/bin/spool
/usr/bin/local

281

lprint(C)

Notes

See also

Only certain terminals have entries in /etc/termcap with this capability already
defined (for example, Tandy's DT-IOO and DT-I, and Hewlett-Packard's
HP-92).

To add attached printer capability to the termcap file for a different terminal,
add entries for PN (start printing) and PS (end printing) with the appropriate
control or escape characters for your terminal.

Terminal communications parameters (such as baud rate and parity) must be
set up on the terminal by the user.

termcap(F)

"Using printers" in the System Administrator's Guide

Value added

282

lprint is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

Ipstat(C)

Ipstat, rlpstat
print information about status of (remote) Ip print service

Syntax
Ips tat options

rlpstat local...printer _name

Description

rlpstat - print information about status of remote Ip print service

lpstat prints information about the current status of the Ip print service.

rlpstat prints information about the status of a print service on a remote host
connected via TCP lIP.

If no options are given, Ipstat prints the status of all requests made to Ip(C) by
the users. Any arguments that are not options are assumed to be request-ids
(as returned by Ip), printers, or printer classes. Ipstat prints the status of such
requests, printers, or printer classes. Options may appear in any order and
may be repeated and intermixed with other arguments. Some of the
keyletters below may be followed by an optional list that can be in one of two
forms: a list of items separated from one another by a comma, or a list of
items enclosed in double quotes and separated from one another by a comma
and/or one or more spaces. For example:

-u user1, user2, user3

Specifying all after any keyletters that take list as an argument causes all in­
formation relevant to the keyletter to be printed. For example, the command
Ipstat -oall prints the status of all output requests.

The arguments to Ipstat are as follows:

-a [list] Print acceptance status (with respect to Ip) of destinations for
requests (see accept(ADM». list is a list of intermixed printer
names and class names; the default is all.

-c [list] Print class names and their members. list is a list of class
names; the default is all.

-d Print the system default destination for Ip.

-f [list] [-1] Print a verification that the forms in form-list are recognized by
the Ip print service. The -1 option will list the form descriptions.

283

,

Ipstat(C)

284

-0 [list] [-I] Print the status of output requests. list is a list of intermixed
printer names, class names, and request-ids; the default is all.
The -I option gives a more detailed status of the request.

-p [list] [-D] [-1]
Print the status of printers named in list. If the -D option is
given, a brief description is printed for each printer in list. If the
-I option is given, a full description of each printers configura­
tion is given, including the form mounted, the acceptable con­
tent and printer types, a printer description, the interface used,
and so on.

-r Print the status of the Ip request scheduler.

-s Print a status summary, including the system default destina-
tion, a list of class names and their members, a list of printers
and their associated devices, a list of all forms currently
mounted, and a list of all recognized character sets and print
wheels.

-5 [list] [-I] Print a verification that the character sets or the print wheels
specified in list are recognized by the Ip print service. Items in
list can be character sets or print wheels; the default for the list
is all. If the -1 option is given, each line is appended by a list of
printers that can handle the print wheel or character set. The list
also shows whether the print wheel or character set is mounted
or specifies the built-in character set into which it maps.

-t Print all status information.

-u [list] Print status of output requests for users. list is a list of login
names. The default is all.

-v [list] Print the names of printers and the path names of the devices
associated with them. list is a list of printer names. The default
is all .

. dpstat allows the user to look at the queue of it ieinOle ,Prinle!. The coIIUlla.na
is invoked with the name of the printer as it is known locally (that is, by its
host computer). For example,

rlpstat local...,printer _name
rlpstat will find the machine on which the printer is physically connected and
do an Ipstat -0 local...printer _name to show the queue on that machine for that
printer.

Ipstat(C)

rlpstat makes the following assumptions:

• The user has Ip accounts on both the networked machines.

• The documented format of /usr/spool/lp/remote is adhered to.

• The first option of the Ip command to be executed on the remote machine
is the destination (-d local...printer_name).

File

/usr/spool/lp/*

See also

enabIe(C),Ip(C)

Standards confonnance

Ipstat is conformant with:

AT&T Sym Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

285

Is (C)

I, Ie, If, Ir, Is, Ix
list contents of directories

Syntax
1 [-ACFLRabedfginopqrstu] [directory I file ...]
Ie [-lAFLRabedfgilmnopqrstux] [directory I file ...]
If [-lALRabedfgilmnopqrstux] [directory I file ...]
Ir [-lAFLabedfgilmnopqrstux] [directory I file ...]
Is [-ACFLRabedfgilmnopqrstux] [directory I file ...]
Ix [-lACFLRabedfgilmnopqrstu] [directory I file ...]

Description

286

1 - Lists files with full (long) information

Ie - Lists files in columns

If - Lists files indicating directories, executables, and symbolic links

Ir - Lists files, recursively listing any subdirectories encountered

Is - Lists files

Ix - Lists files in columns, sorted across the page, rather than down the page

I, Ie, If, Ir, Is, and Ix make up the Is family of commands.

For each directory, the contents are listed. For each file, the filename is
repeated and any other requested information is displayed. By default, the
output is sorted alphabetically. When no argument is given, the current direc­
tory is listed. When several arguments are given, they are sorted appropri­
ately; file arguments are processed before directories and their contents.

le lists files in columns by default.

it lIsts tiles, indicating directories, executables, and symbolic links. If is a vari­
ant of Ie, so files are listed in columns by default.

1 provides a long listing, one file per line, by default.

Ir lists files, recursively listing any subdirectories encountered. Ir is a variant
of le, so files are listed in columns by default.

Is lists files alphabetically, one entry per line, by default.

lx, another variant of Ie, lists files in columns, but sorted across the page
rather than down the page.

[s(C)

You can also list files in stream (across the page) output format, separated by
commas, using Is -m.

Is determines the output format for the -C (le), -x (Ix), and -m options by using
an environment variable, COLUMNS, to determine the number of character
positions available on one output line. If this variable is not set, the termcap
database is used to determine the number of columns, based on the environ­
ment variable TERM. If this information cannot be obtained, 80 columns are
assumed.

Options are:

-1 Forces an output format with one entry per line, for le, If,Ir, and Ix.

-A Lists all entries. Entries whose name begin with a dot (.) are listed. Does
not list current directory" ." and directory above" .. ".

-C Lists in columns with entries sorted down the columns. If the
argument(s) are filename(s), output is across the page, rather than down
the page in columns.

-F Causes directories to be marked with a trailing" / ", executable files to
be marked with a trailing" * ", and symbolic links to be marked with a
trailing" @" symbol.

-L If an argument is a symbolic link, list the information for the file or
directory the link references.

-R Recursively lists subdirectories.

-a Lists all entries; " . " and " .. " are not suppressed.

-b Forces printing of non-graphic characters in the \ddd notation, in octal.

-c Uses time of last modification of the inode (file created, mode changed,
etc.) for sorting; use with -t option.

-d If an argument is a directory, lists only its name (not its contents); often
used with -1 to get the status of a directory.

-£ Forces each argument to be interpreted as a directory and lists the name
found in each slot. This option turns off -I, -t, -5, and -r, and turns on -a.
The order is the order in which entries appear in the directory.

-g The same as -I, except that the owner is not printed.

-i For each file, prints the inode number in the first column of the report.

287

Is (C)

288

-1 Lists in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file. If the file is a symbolic
link, the filename is printed followed by " ->" and the pathname of the
referenced file. If the file is a special file, the size field will contain the
major and minor device numbers, rather than a size. A total count of
blocks in the directory, including indirect blocks, is printed at the top of
long format listings. A description of the mode listing follows below.

-m Forces stream output format; files are listed across the page, separated
by commas.

-n The same as -1, except that the user ID (UID) and group ID (GID) num-
bers are printed, rather than the owner name and the group name.

-0 The same as -1, except that the group is not printed.

-p Puts a slash (j) after each directory.

-q Forces pri..nting of non-graphic characters in filenames as the character
I/?".

-r Reverses the order of sort to get reverse alphabetic or oldest first, as
appropriate.

-s Gives size in 512-byte blocks, including indirect blocks, for each entry.

-t Sorts by time modified (latest first) instead of by name.

-u Uses time of last access instead of time of last modification for sorting;
use with the -t option.

-x Lists in columns with entries sorted across, rather than down, the page.
If the argument(s) are filename(s), output is across the page, rather than
down the page in columns.

The mode printed under the -1 option (long listing, 1) consists of 10 characters.
The first character is:

If the entry is an ordinary file.

d If the entry is a directory.

1 If the entry is a symbolic link.

b If the entry is a block special file.

e If the entry is a character special file.

p If the entry is a named pipe.

Files

See also

Is (C)

s If the entry is a semaphore.

m If the entry is a shared data (memory) file.

The next 9 characters are the permissions, which control who can access the
file. Permissions are in 3 sets of 3 bits each. The first set refers to the owner
permissions; the second set to the group permissions; and the third set to per­
missions for all others.

Within each set, the three characters indicate permission to read, to write, or
to execute the file, respectively.

The permissions are as follows:

r Read.

w Write.

x Execute; on a directory, this gives search permission.

s Setuid, setgid: set the UID or GID of the executing process to that of the
file when the file is executed.

S Setuid/setgid is set, but the underlying execute permission is not set.

t On an executable file: the binary image of the file will remain in memory
after the first time it is used. On a directory: files in the directory can only
be removed by their owners, or by root.

T The sticky bit (t bit) is set, but the underlying execute permission is not
set.

No permission is set.

See chmod(C) for more information about permissions.

/ete/passwd
fete/group
/ete/termeap

where user IDs are found
where group IDs are found
where terminal information is found

chmod(C), coltbl(M), find(C), l(C), lc(C), locale(M), termcap(F)

289

ls(C)

Credit

Notes

Ie and its variants were developed at the University of California at Berkeley;
they are used with permission.

Is sorts according to the collating sequence defined by the locale.

New line and tab are considered printing characters in filenames.

Unprintable characters in filenames may confuse the columnar output
options.

Is -s interprets one l024-byte block (a standard sea UNIX block) as two of its
own S12-byte blocks. Thus a SOO-byte file is interpreted as two blocks rather
than one.

Standards conformance

Is is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

290

machid(C)

machid: i286, iAPX286, i386, i486 (also: vax,
mc68k,pdp11, u370,u3b, u3b15,u3b2, u3b5)
get truth value dependent on processor type

Syntax

i286
iAPX286
i386
i486
(also: vax, mc68k, pdpll, u370, u3b, u3b15, u3b2, u3b5)

Description

See also

i286 - Return a true value if a machine is a 286

iAPX286 - Return a true value if a machine is a 286

i386 - Return a true value if a machine is a 386 or fully compatible

i486 - Return a true value if a machine is a 486 or fully compatible

If the machine is a 286, the i286 and iAPX286 commands will return a true
value (exit code of 0); otherwise they will return a false (non-zero) value.

If the machine is a 386 or fully compatible with a 386 (such as a 486), the i386
command will return a true value; otherwise it will return a false value.

If the machine is a 486 or fully compatible with a 486, the i486 command will
return a true value; otherwise it will return a false value.

This type of command is often used within makefiles (see make(CP» and shell
procedures (see sh(C» to increase portability. Although sca UNIX does not
support these other machines, the commands vax, mc68k, pdpll, u370, u3b,
u3b15, u3b2, and u3b5 are all available and work in a similar manner (these
will all return a false value).

sh(C), test(C), true (C), make(CP)

291

mail (C)

mail, mailx
interactive message processing system

Syntax
mail [options] [name ...]
mailx [options] [name ...]

Description

292

mailx - interactive message processing system. mailx is a link to mail.

mail provides a flexible environment for sending and receiving messages
electronically. For reading mail, mail provides commands to allow saving,
deleting, and responding to messages. For sending mail, mail allows editing,
reviewing, and other modification of the message as it is entered.

Many of the remote features of mail will only work if the UUCP package is
installed on your system.

Incoming mail is stored in a standard file for each user, called the mailbox for
that user. When mail is called to read messages, the mailbox is the default
place to find them. As messages are read, they are marked to be moved to a
secondary file for storage, unless specific action is taken, so that the messages
need not be seen again. This secondary file is called the mbox and is normally
located in the user's HOME directory (see MBOX under "Environment vari­
ables"). Messages can be saved in other secondary files named by the user.
Messages remain in a secondary file until forcibly removed.

The user can access a secondary file by using the -f option of the mail com­
mand. Messages in the secondary file can then be read or otherwise pro­
cessed using the same commands as in the primary mailbox. This gives rise to
the notion of a current mailbox.

On the command line, options start with a dash (-) and any other arguments
are taken to be destinations (recipients). If no recipients are specified, mail
attempts to read messages from the mailbox. Command-line options are:

-e

-f[filename]

-F

Test for presence of mail. mail prints nothing and exits
with a successful return code if there is mail to read.

Read messages from filename instead of mailbox. If no
filename is specified, the mbox is used.

Record the message in a file named after the first recipient.
Overrides the record variable, if set (see "Environment
variables").

-hnumber

-H

-i

-n

-N

-raddress

-ssubject

-uuser

-u

mail(C)

The number of network "hops" made so far. This is pro­
vided for network software to avoid infinite delivery loops.
(See addsopt under "Environment variables".)

Print header summary only.

Ignore interrupts. (See ignore under "Environment
variables".)

Do not initialize from the system default .mailrc file.

Do not print initial header summary.

Pass address to network delivery software. All tilde com­
mands are disabled. (See addsopt under "Environment
variables".)

Set the Subject header field to subject.

Read user's mailbox. This is only effective if user's mailbox is
not read protected.

Convert UUCP style addresses to internet standards. Over­
rides the conv environment variable. (See addsopt under
"Environment variables".)

When reading mail, mail is in command mode. A header summary of the first
several messages is displayed, followed by a prompt indicating mail can
accept standard commands (see Commands below). When sending mail,
mail is in input mode. If no subject is specified on the command line, a prompt
for the subject is printed. (A subject longer than 1024 characters will cause
mail to dump core.) As the message is typed, mail will read the message and
store it in a temporary file. Commands may be entered by beginning a line
with the tilde n escape character followed by a single command letter and
optional arguments. See "Tilde escapes" for a summary of these commands.

At any time, the behavior of mail is governed by a set of environment variables.
These are flags and valued parameters which are set and cleared via the set
and unset commands. See "Environment variables" below for a summary of
these parameters.

Recipients listed on the command line may be of three types: login names,
shell commands, or alias groups. Login names may be any network address,
including mixed network addressing. If mail is found to be undeliverable, an
attempt is made to return it to the sender's mailbox. If the recipient name
begins with a pipe symbol (I), the rest of the name is taken to be a shell com­
mand to pipe the message through. This provides an automatic interface with
any program that reads the standard input, such as Ip(C), for recording outgo­
ing mail on paper. Alias groups are set by the alias command (see Com­
mands below) and are lists of recipients of any type.

293

mail(C)

294

Regular commands are in the format:
[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In input mode,
commands are recognized by the tilde escape character, and lines not treated
as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the
notion of a current message, marked by a right angle bracket (» in the header
summary. Many commands take an optional list of messages (msglist) to
operate on. The default for msglist is the current message. A msglist is a list
of message identifiers separated by spaces, which may include:

n Message number n.

The current message.

The first undeleted message.

$ The last message.

* All messages.

n-m An inclusive range of message numbers.

user All messages from user.

/string All messages with string in the subject line (case ignored).

:c All messages of type c, where c is one of:
d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this type of
message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the
command involved. File names, where expected, are expanded via the nor­
mal shell conventions (see sh(C». Special characters are recognized by certain
commands and are documented with the commands below.

At start-up time, mail tries to execute commands from the optional system­
wide file (/usr/lib/mail/mailrc) to initialize certain parameters, then from a
private start-up file ($HOME/.mailrc) for personalized variables. With the
exceptions noted below, standard commands are legal inside start-up files.
The most common use of a start-up file is to set up initial display options and
alias lists.

mail(C)

The following commands are not legal in the start-up file: !, C (copy), e (edit),
fo (forward), F (Forward), ho (hold), m (mail), pre (preserve), r (reply),
R (Reply), sh (shell), and v (visual). An error in the start-up file causes the
remaining lines in the file to be ignored. The .mailrc file is optional and must
be constructed locally.

Commands
The following is a complete list of mail commands:

! shell-command

comment

=

?

a alias name .. .

Execute shell command and return. (See SHELL under
"Environment variables".)

Null command (comment). This may be useful in .mailrc files.

Print the current message number.

Print a summary of commands.

g alias name ... Declare an alias for the given names; declare a group for the
given names. The names will be substituted when alias is
used as a recipient. Useful in the .mailrc file.

alt name ...

cd [directory]

Alternates. Declare a list of alternate names for your lOgin.
When responding to a message, these names are removed
from the list of recipients for the response. With no argu­
ments, alternates prints the current list of alternate names.
(See aHnet under "Environment variables".)

ch [directory] Change directory. (ch is an abbreviation of chdir.) If directory
is not specified, $HOME is used.

c [filename]
c [msglist] filename

C [msglist]

d [msglist]

copy messages to the file without marking the messages as
saved. Otherwise equivalent to the s (save) command.

Copy the specified messages to a file whose name is derived
from the author of the message to be saved, without marking
the messages as saved. Otherwise equivalent to the Save
command.

Delete messages from the mailbox. If autoprint is set, the next
message after the last one deleted is printed (see "Environ­
ment variables").

295

mail(C)

296

di [header-field ...]
ig [header-field ...]

dp [msglistl
dt [msglist]

ec string ...

e [msglist]

ex
x

fi [filename]

Discard or Ignore the header field. Suppress printing of the
specified header fields when displaying messages on the
screen. Examples of header fields to ignore are "status" and
"cc". The fields are included when the message is saved. The
Print and Type commands override these commands.

Delete the specified messages from the mailbox and print the
next message after the last one deleted. Roughly equivalent
to a delete command followed by a print command.

Echo the given strings (like echo(C».

Edit the given messages. The messages are placed in a
temporary file and the EDITOR variable is used to get the
name of the editor (see "Environment variables"). Default
editor is ed(C).

Exit from mail without changing the mailbox. No messages
are saved in the mbox (see also quit).

fold [filename] (Abbreviations for file or folder.) Quit from the current file of
messages and read in the specified file. Several special char­
acters are recognized when used as file names, with the
following substitutions:

folders

% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

Print the names of the files in the directory set by the folder
variable (see "Environment variables").

for [message] name ...
Forward the specified message to the specified users, shifting
the forwarded text to the right one tab stop.

F [message] name , ..

f [msglist]

Forward the specified message to the specified users, with no
indentation.

(Abbreviation for from.) Prints the header summary for the
specified messages.

g alias name ... group. See alias.

mail(C)

h [+ I - I msglistl

hel

ho [msglistl

headers. Lists the current range of headers. The screen vari­
able sets the number of headers per page (see "Environment
variables"). If a "+" argument is given, then the next page is
'printed, and if a II -" argument is given, the previous page is
printed. Both II +" and II -" can take a number to view a par­
ticular window. If a message list is given, it prints the speci­
fied headers, disregarding all windowing. See also the
z command.

(Abbreviation for help.) Prints a summary of commands.

(abbreviation for hold.) Holds the specified messages in the
mailbox.

is I r
mail-commands
el
mail-commands
en (Abbreviations: i is short for if, el is short for else, and en is

short for end.) Conditional execution, where s causes the first
mail commands, up to an el (else) or en (endiO to be executed
if the program is in send mode, and r causes the mail com­
mands to be executed only in receive mode. The mail­
commands after the else are executed if the program is in the
opposite mode from the one indicated. Useful in the mailrc
file.

ig header-field ...

Ii

I [msglistl

mname ...

Mname

mb [msglistl

n [messagel

ignore. See discard.

(Abbreviation: Ii is short for list.) Prints all commands avail­
able. No explanation is given.

(Abbreviation: I is short for ipr.) Print the specified messages
on the lineprinter.

Mail a message to the specified users.

Mail a message to the specified user and record a copy of it in
a file named after that user.

(Abbreviation: mb is short for mbox.) Arrange for the given
messages to end up in the standard mbox save file when mail
terminates normally. See the ex (exit) and q (quit) commands.

Go to next message matching message. A msglist may be
specified, but in this case the first valid message in the list is
the only one used. This is useful for jumping to the next mes­
sage from a specific user, since the name would be taken as a
command in the absence of a real command. See the discus­
sion of msglists above for a description of possible message
specifications.

297

mail(C)

298

pi [msglist] [shell-command]
I [msglist] [shell-command]

pre [msglistl

P [msglist]
T [msglist]

p [msglist]
t [msglist]

q

R [msglist]

r [message]

S [msglist]

s [filename]

Pipe the message through the given shell-command. The
message is treated as if it were read. If no arguments are
given, the current message is piped through the command
specified by the value of the cmd variable. If the page vari­
able is set, a form feed character is inserted after each message
(see "Environment variables").

Preserve (hold) the specified messages in the mailbox.

Print (or type) the specified messages on the screen, includ­
ing all header fields. Overrides suppression of fields by the
ig (ignore) command.

Print (or type) the specified messages. If crt is set, the mes­
sages longer than the number of lines specified by the crt vari­
able are paged through the command specified by the PAGER
variable. The default command is more(C) (see "Environment
variables").

(Abbreviation: q is short for quit.) Exit from mail, storing
messages that were read in mbox and unread messages in the
mailbox. Messages that have been explicitly saved in a file are
deleted from the mailbox.

Reply (or Respond) to the specified message, including all
other recipients of the message. If record is set to a file name,
the response is saved at the end of that file (see "Environment
variables").

(Abbreviation: r is short for reply or respond.) Send a
response to the author of each message in the msglist. The
subject line is taken from the first message. If record is set to a
file name, the response is saved at the end of that file (see
"Environment variables").

Save the specified messages in a file whose name is derived
from the author of the first message. The name of the file is
taken to be the author's name with all network addressing
stripped off. See also the C (copy) commands and outfolder
(see "Environment variables").

s [msglist] filename
Save the specified messages in the given file. The file is creat­
ed if it does not exist. The message is deleted from the mailbox
when mail terminates unless keepsave is set (see also
"Environment variables" and the ex (exit) and q (quit) com­
mands).

se
sename
se name=string
se name=number

mail(C)

(Abbreviation: se is short for set.) Define a variable called
name. The variable may be given a null, string, or numeric
value. Se by itself prints all defined variables and their
values. See "Environment variables" for detailed descriptions
of the mail variables.

sh Invoke an interactive shell (see SHELL under "Environment
variables").

si [msglistl Print the size in characters of the specified messages.

so filename (Abbreviation: so is short for source.) Read commands from
the given file and return to command mode.

to [msglistl Print the top few lines of the specified messages. If the top­
lines variable is set, it is taken as the number of lines to print
(see "Environment variables"). The default is 5.

tou [msglistl Touch the specified messages. If any message in msglist is
not specifically saved in a file, it will be placed in the mbox, or
the file specified in the MBOX environment variable, upon
normal termination. See ex (exit) and q (quit).

T [msglistl Type: see Print.

t [msglistl type: see print.

u [msglistl (Abbreviation: u is short for undelete.) Restore the specified
deleted messages. Messages are undeleted in the order they
were deleted; that is, the deleted messages are kept in a
queue, not a stack. Will only restore messages deleted in the
current mail session. If autoprint is set, the last message of
those restored is printed (see "Environment variables").

uns name ... (Abbreviation: uns is short for unset.) Causes the specified
variables to be erased. If the variable was imported from the
execution environment (that is, a shell variable), then it
cannot be erased.

ve Prints the current version and release date.

v.[msglistl (Abbreviation: v is short for visual.) Edit the given messages
with a screen editor. The messages are placed in a temporary
file and the VISUAL variable is used to get the name of the
editor (see "Environment variables").

299

mail(C)

300

w [msglist] filename

x

z[+I-]

Write the given messages on the specified file, minus the
header and trailing blank line. Otherwise equivalent to the
save command.

See e (exit) or q (quit).

Scroll the header display forward or backward one full screen.
The number of headers displayed is set by the screen variable
(see "Environment variables").

Tilde escapes
The following commands may be entered only from input mode, by beginning
a line with the tilde escape character n. See escape under "Environment
variables" for information on changing this special character.

-, shell-command

-:command
-_ command

-bname ...

-lAc name ...

- f [msglist]

Execute the shell command and return.

Simulate end of file (terminate message input).

Perform the command-level request. Valid only when send­
ing a message while reading mail.

Print a summary of tilde escapes.

Expand the given alias.

Insert the autograph string sign into the message (see
Environment variables).

Add the names to the blind carbon copy (Bcc) list.

Add the names to the carbon copy (Cc) list.

Read in the dead.letter file. (See DEAD under "Environment
variables" for a description of this file.)

Invoke the editor on the partial message. (See EDITOR under
"Environment variables".)

Forward the specified messages. The messages are inserted
into the message without alteration.

Prompt for "Subject line" and ''Td', "Cc", "Bcc", and "Return­
Receipt-td' lists. If the field is displayed with an initial value,
it may be edited as if you had just typed it.

mail(C)

-i variable Insert the value of the named variable into the text of the mes­
sage. For example, -A is equivalent to -iSign. Environment
variables set and exported in the shell are also accessible by -i.

-M [msglist] Insert the specified messages into the letter, with no indenta­
tion. Valid only when sending a message while reading mail.

-m [msglist] Insert the specified messages into the letter, shifting the new
text to the right one tab stop. Valid only when sending a
message while reading mail.

-p Print the message being entered.

-q Quit from input mode by simulating an interrupt. If the body

-rfilename
--<filename

of the message is not null, the partial message is saved in
dead.letter. (See DEAD under "Environment variables".)

--< !shell-command

-s string ...

-tname ...

-wfilename

Read in the specified file. If the argument begins with an exc­
lamation point (!), the rest of the string is taken as an arbitrary
shell command and is executed, with the standard output
inserted into the message.

Set the subject line to string.

Add the given names to the "Td' list.

Invoke a preferred screen editor on the partial message. (See
also VISUAL under "Environment variables".)

Write the partial message onto the given file, without the
header.

Exit as with -q except the message is not saved in dead.letter.

- I shell-command
Pipe the body of the message through the given shell­
command. If the shell-command returns a successful exit
status, the output of the command replaces the message.

Environment variables
The following are environment variables taken from the execution environ­
ment and are not alterable within mail.

HOME=directory
The user's base of operations.

MAILRC=filename
The name of the start-up file. Default is $HOME/.mailrc.

301

mail(C)

302

The following variables are internal mail variables. They may be imported
from the execution environment or set via the se (set) command at any time.
The uns (unset) command may be used to erase variables.

addsopt

aHnet

append

askcc

asksub

autoprint

bang

chron

Enabled by default. If Ibin/mail is not being used as the
deliverer, noaddsopt should be specified. (See "Notes"
below.)

All network names whose last component (login name)
matches are treated as identical. This causes the msglist mes­
sage specifications to behave similarly. Default is noallnet.
See also the all (alternates) command and the metoo variable.

Upon termination, append messages to the end of the mbox
file instead of prepending them. Default is noappend.

Prompt for the "Cc" list after message is entered. Default is
noaskcc.

Prompt for subject if it is not specified on the command line
with the -s option. Enabled by default.

Enable automatic printing of messages after d (delete) and u
(undelete) commands. Default is noautoprint.

Enable the special-casing of exclamation points (!) in shell
escape command lines as in vi(C). Default is nobang.

Cause messages to be displayed in chronological order. The
default is reverse chronolOgical order (most recent message
first). See also mchron below.

cmd=shell-command
Set the default command for the pi (pipe) command. Not set
by default.

conv=conversion

crl=number

Convert UUCP addresses to the specified address style. The
only valid conversion now is internet, which requires a mail
delivery program conforming to the RFC822 standard for elec­
tronic mail addressing. Conversion is disabled by default.
See also the sendmail variable and the -U command-line
option.

Pipe messages having more than number lines through the
command specified by the PAGER variable (more(C) by
default). Disabled by default.

DEAD=filename
The name of the file in which to save partial letters in case of
untimely interrupt. Default is $HOME/dead.letter.

debug

dot

mail(C)

Enable verbose diagnostics for debugging. Messages are not
delivered. Default is node bug.

Take a dot on a line by itself during input from a terminal as
end-of-file. Default is nodot.

EDITOR=shell-command

escape=c

The command to run when the e (edit) or -e command is
used. Default is ed(C).

Substitute c for the 11-" escape character. Takes effect with
next message sent.

folder=directory

header

hold

ignore

ignoreeof

keep

keepsave

The directory for saving standard mail files. User-specified
file names beginning with a plus (+) are expanded by preced­
ing the file name with this directory name to obtain the real
file name. If directory does not start with a slash (j), $HOME
is prepended to it. In order to use the plus (+) construct on a
mail command line, folder must be an exported sh environ­
ment variable. There is no default for the folder variable. See
also outfolder below.

Enable printing of the header summary when entering mail.
Enabled by default.

Preserve all messages that are read in the mailbox instead of
putting them in the standard mbox save file. Default is
nohold.

Ignore interrupts while entering messages. Useful for noisy
dial-up lines. Default is noignore.

Ignore end-of-file during message input. Input must be
terminated by a dot (.) on a line by itself or by the -. command.
Default is noignoreeof. See also the dot variable above.

When the mailbox is empty, truncate it to zero length instead
of removing it. Disabled by default.

Keep messages that have been saved in other files in the mail­
box instead of deleting them. Default is nokeepsave.

MBOX=filename
The name of the file to save messages which have been read.
The x (exit) command overrides this function, as does saving
the message explicitly in another file. Default is $HOME/mbox.

303

mail(C)

304

mchron

metoo

Cause message headers to be listed in numerical order (most
recently received first), but displayed in chronological order.
See also chron above.

If your login appears as a recipient, do not delete it from the
list. Default is nometoo.

LISTER=shell-command

onehop

outfolder

page

The command (and options) to use when listing the contents
of the folder directory. The default is Is(C).

When responding to a message that was originally sent to
several recipients, the other recipient addresses are normally
forced to be relative to the originating author's machine for
the response. This flag disables alteration of the recipients'
addresses, improving efficiency in a network where all ma­
chines can send directly to all other machines (that is, one hop
away).

Record outgoing messages in files located in the directory
specified by the folder variable unless the pathname is abso­
lute. Default is nooutfolder. See the folder variable above
and the S (Save) and C (Copy) commands.

Used with the pi (pipe) command to insert a form feed after
each message sent through the pipe. Default is nopage.

PAGER=shell-command
Use shell-command as a filter for paginating output. This can
also be used to specify the options to be used. Default is
more(C). For PAGER to function, the crt variable (see above)
must be set to a non-zero value.

prompt=string Set the command mode prompt to string. Default is I/? fl.

quiet Refrain from printing the opening message and version when
entering mail. Default is noquiet.

record=filename

save

screen=number

Record all outgoing mail in filename. Disabled by default.
See also outfolder above.

Enable saving of messages in dead.letter on interrupt or
delivery error. See DEAD for a description of this file.
Enabled by default.

Set the number of lines in a full screen of headers for the
h (headers) command.

Files

See also

Notes

mail (C)

sendmail=shell-command
Alternate command for delivering messages. Default is
rmail(C).

sendwait Wait for background mailer to finish before returning.
Default is nosendwait.

SHELL=shell-command
The name of a preferred command interpreter. Default is
sh(C).

showto When displaying the header summary and the message from
you, print the recipient's name instead of the author's name.

sign=string The variable inserted into the text of a message when the
-a (autograph) command is given. Not set by default (see -i
under "Tilde escapes").

Sign=string The variable inserted into the text of a message when the -A
command is given. Not set by default (see also -i under
"Tilde escapes").

toplines=number
The number of lines of header to print with the to (top) com­
mand. Default is 5.

VISUAL=shell-command
The name of a preferred screen editor. Default is vi(C).

$HOME/ .mailrc
$HOME/mbox
/usr/spool/mail
/usr/lib/mail/mail.help*
/usr/lib/mail/mailrci
/tmp/R[emqsx}*

ls(C), more(C)

personal start-up file
secondary storage file
post office directory
help message files
optional global start-up file
temporary files

The -h, -r and -U options can be used only if mail is built with a delivery
program other than /bin/mail.

Where shell-command is shown as valid, arguments are not always allowed.
Experimentation is recommended.

305

mail(C)

Internal variables imported from the execution environment cannot be uns
(unset).

The full internet addressing is not fully supported by mail. The new stan­
dards need some time to become established.

A line consisting only of a /I • /I is treated as the end of the message.

mailx is a link to the standard mail program; either name may be used.

Standards conformance

mail is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3,1989.

306

man (C)

man
print reference pages in this guide

Syntax
man [-afbcw] [-tproc] [-ppager] [-ddir] [-Tterm] [section] [title]

/usrllib/manprog file

Description

The man program locates and prints the named title from the designated
reference section. For historical reasons, "page" is often used as a synonym
for "entry" in this context.

Since UNIX commands are given in lowercase, the title is always entered in
lowercase. If no section is specified, the whole guide is searched for title and
the first occurrence of it is printed. You can search for a group of sections by
separating the section names with colons (:) on the command line.

(The only exceptions to the lowercase rule are the "introduction" (Intro)
pages. These pages describe the contents of their respective sections; they are
not UNIX commands as such.)

The options and their meanings are:

-a "All" mode. Displays all matching titles. Incompatible with the -f
option.

-f "First" mode. Displays only the first matching title. Incompatible
with -a option. This is the default mode for man.

-b Leaves blank lines in output. nroff(CT) pads entries with blank
lines for line printer purposes. man normally filters out these
excess blank lines. Normally, man does not display more than 2
consecutive blank lines. The -b flag leaves blank lines in the CRT
output.

-c Causes man to invoke col(C). Note that col is invoked automati­
cally by man unless term is one of the following: 300, 300s, 450,
37, 4000a, 382, 4014, tek, 1620, or X.

-w Prints on the standard output only the pathnames of the entries.

307

man(C)

-tproc

-ppager

-ddir

-Tterm

Indicates that if an unprocessed manual page is available, it is to
be passed to proc for formatting. proc can be any command script
in /usr/man/bin or an absolute filename of a text processing pro­
gram elsewhere on the system, for example !bin/nroff. The
scripts in /usr/man/bin invoke the actual processing programs
with the correct flags and arguments. The default processor is
lusr/manlbinlnr, which invokes !bin/nroff and produces output
that safely prints on any terminal. The text is also preprocessed
by eqn(CT) and tbl(CT) as a default.

Selects paging program pager to display the entry. Paging sys­
tems such as more(C), pg(C), cat(C), or any custom pagers that
you may have are valid arguments for this flag. The default
pager, pg, is set in fete/default/man.

Specifies directory dir to be added to the search path for entries.
You can specify several directories to be searched by separating
the directory names with colons (:) on the command line.

Format the entry and pass the given term value to the processing
program, then print it on the standard output (usually, the termi­
nan, where term is the terminal type (see term(M) and the expla­
nation below).

Section names
The names and general descriptions of the available manual sections are:

ADM System Administration
C Commands
M Miscellaneous
F File Formats
HW Hardware Depengent
S Subroutines and Libraries
CP Programming Commands
DOS DOS Subroutines and Libraries
LOCAL Local utilities for your system

You can add other section names as you wish. Each new section, however,
must follow the standard section directory structure. The LOCAL directory is
shipped without contents, as no LOCAL manual pages are included.

lusrlman directory structure

308

The source files for the man program are kept in the directory /usr/man. Each
man section is comprised of two directories, and there is a directory called bin
for programs and shell scripts related to man. There is also an index file
called index in /usr/man. This index is a list of all UNIX commands and their
sections.

mun(C)

Each manual section has two directories in /usr/man. These directories are
called man and cat, plus the name of the section as a suffix. For example, the
1/ C 1/ manual section comprises of two directories, man.C and eat.C, both
located in /usr/man.

The unprocessed source text is in the man directory and the printable pro­
cessed output is in the cat directory. When a title is requested, both directories
are checked. The most recent copy of the manual page is used as the current
copy. If the most recent title is in the source text directory and it is processed
by the default processor with the default terminal type, a display copy of the
output is placed in the cat directory for future use. Note that a file that must
be processed takes longer to appear on the screen than a display copy.

Environment variables
There is a shell environment variable for use with the man utility. This vari­
able is called MANP ATH and it is used to change or augment the path man
searches for entries. Multiple directories set with this variable must be delim­
ited by colon characters (:). If the MANPATH environment variable is present,
the directories are searched in the order that they appear. /usr/man must
appear in the MANP ATH list to be included. If you set this environment vari­
able, it supersedes the MANP ATH entry in the fete/default/man file. Alternate
subdirectories are expected to have the same form as the default directories in
/usr/man.

/etcldefault/man
There is a file called man in the fete/default directory that contains the default
settings for the man utility. The following options are set in fete/default/man:

PAGER=/usr/bin/pg
MANPATH=/usr/man
TERM=lp
ORDER=ADM:C:S:CP:M:F:HW:DOS:LOCAL
MODE=FIRST
PROC=nr

You can select a different paging system, search path, terminal type, search
order, mode, and processor for the man system by changing the information
in this file.

To change the search order for manual sections, edit the list following the
ORDER variable. Be certain the section names are separated with colons (:).
Section names not present in ORDER are searched in arbitrary order after
those specified in fete/default/man.

Creating new manual entries
You can create new manual pages for utilities and scripts that you have devel­
oped. Use an existing manual page as an example of manual page structure,
Use the man macros to format your manual page. For more information, refer
to the nroff(CT) manual page.

309

man (C)

310

You must be logged in as root (the "Super User") to place a new manual page
in your /usr/man directory structure. Place your new page in
/usr/man/man.LOCAL while logged in as root and view it using the man com­
mand, since only root has write permission for the cat-able directories. Once
man has produced the cat-able output, any user can view the new page in the
same manner as any other on line manual page.

Additionally, you can create your own custom sections by creating another
manual directory and putting it in the MANP ATH. For example, if subdirec­
tories man.X and cat.X are present, then man recognizes that "X" is a valid
manual section.

If you wish to use another text processing program (such as troff(CT» to pro­
cess your custom manual pages, use the -tproc flag of man. proc can be any
shell script in /usr/man/bin. To place a cat-able copy of the manual page in the
cat directory, use the tee (C) command to send the output to a file, as well as to
the standard output.

Your command should have the form:

man -tproc filename I tee pathname
In the above example, proc is the text processing script, filename is the manu­
al page source file, and pathname is the path of the directory for the cat-able
output.

Custom manual sections can have an index, if the format is the same as the
index in /usr/man. man uses the index to locate multiple commands that are
listed on the same page as well as commands that have pages in several dif­
ferent sections.

The man macro package
The man macro package is located in /usr/lib/macros/an. There are 15 basic
macros in the package. Here is a table of the macros and brief descriptions of
their functions:

Macro
.TH title
.SH title
.55 title
.SMtext
.PP
.lP
.HP
.TP
.RSn
.RE
.I text
.Btext
.R text
.PM

Description
Title Heading
Section Heading
Subsection Heading
Reduce Point Size
New Paragraph
Indented Paragraph
Hanging Paragraph
Tagged Paragraph
Relative Indent
Release Relative Indent
Italic Font
Bold Font
Roman Font
Proprietary Mark (copyright)

See also

Notes

man(C)

eqnchar(CT), nroff(CT), tbl(CT), troff(CT), environ(M), term (F)

All entries are supposed to be reproducible either on a typesetter or on a ter­
minal. However, on a terminal some information, such as eqn(CT) and
tbl(CT) output, is either lost or approximated as it cannot be exactly repro­
duced.

In order to make use of eqnchar, nroff, tbl, and troff, it is first necessary to
obtain and install the UNIX Text Processing System (available separately).

Value added

man is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

311

mesg(C)

mesg
permit or deny messages sent to a terminal

Syntax

mesg [nJ [yJ

Description

File

See also

The mesg command with argument n forbids messages via wrlte(C) by revok­
ing non-user write permission on the user's terminal. mesg with argument y
reinstates permission. By itself, mesg reports the current state without chang­
ing it.

/dev/tty*

wrlte(C)

Diagnostics

Exit status is 0 if messages are receivable, 1 if not, 2 on error.

Standards confonnance

mesg is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

312

mkdir(C)

mkdir
make a directory

Syntax

mkdir [-m mode] [-p] [-e] dirname ...

Description

See also

The mkdir command creates the named directories in mode 777 (possibly
altered by umask(C».

Standard entries in a directory (for example, the files 1/. ", for the directory
itself, and 1/ •• ", for its parent) are made automatically. mkdir cannot create
these entries by name. Creation of a directory requires write permission in the
parent directory.

The owner ID and group ID of the new directories are set to the process's real
user ID and group ID, respectively.

Three options apply to mkdir:

-m This option allows users to specify the mode to be used for new direc­
tories. Choices for modes can be found in chmod(C).

-p With this option, mkdir creates dirname by creating all the non-existing
parent directories first.

-e For historical compatibility, mkdir changes the ownership of the new
directory to the real user ID (RUID) and the real group ID (RGID). The-e
option says to use the effective user ID (EUID) and effective group ID
(EGID) instead.

mkdir(S), rm(C), rmdir(C), sh(C), umask(C)

Diagnostics

The mkdir command returns exit code 0 if all directories given in the com­
mand line were made successfully. Otherwise, it prints a diagnostic and
returns non-zero. An error code is stored in ermo.

Standards conformance

mkdir is conformant with AT&T SVID Issue 2.

313

mkfifo(C)

mkfifo
make a FIFO special file

Syntax

mkfifo path ...

Description

See also

The mkfifo command makes a first-in first-out pipe named by the pathname
path. The new FIFO has the permissions 666 (possibly altered by umask(C».

mkfifo(S), umask(C)

Diagnostics

mkfifo returns exit code a if all FIFO special files were created successfully.
Otherwise, it prints a diagnostic and returns non-zero. An error code is stored
in ermo.

Value added

314

mkfifo is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

mknod(C)

mknod
build special files

Syntax

letc/mknod name [c I b] major minor

letc/mknod name p

letc/mknod name s

letdmknod name m

Description

See also

Notes

The mknod command makes a directory entry and corresponding inode for a
special file. The first argument is the name of the entry. In the first case, the
second argument is b if the special file is block-type (disks, tape) or c if it is
character-type (other devices). The last two arguments are numbers specify­
ing the major device type and the minor device (for example, unit, drive, or
line number), which may be either decimal or octal. Minor numbers must be
in the range 0 to 255.

The assignment of major device numbers is specific to each system. Major de­
vice numbers can be found in the system source file /etc/conf/cf.d/mdevice.

mknod can also be used to create named pipes with the p option, semaphores
with the s option, and shared data (memory) with the m option.

Only the super user can use the first form of the syntax.

mknod(S)

mknod does not understand extended minor device numbers. It will impose
an upper limit of 255 on the minor device number parameter.

Standards conformance

mknod is conformant with:

AT&T SVID Issue 2.

315

mnt(C)

mnt, umnt
mount a filesystem

Syntax
lusrlbinlmnt [-urant] [directory]

lusrlbinJumnt directory

Description

316

mnt - Mount selected filesystems

umnt - Unmount selected filesystems

The mnt command allows users other than the super user to access the func­
tionality of the mount(ADM) command to mount selected filesystems. The
super user can define how and when a filesystem mount is permitted via the
/etc/default/filesys file.

The filesystem requirements are the same as defined for mount(ADM).

The umnt command unmounts the mountable filesystem previously mounted
in directory.

mnt is invoked from the /etc/rc scripts with the -r, the -n and possibly the -a
flag to mount filesystems when the system comes up as multiuser. The -a flag
is used when the system has autobooted. None of these flags should be speci­
fied during normal command line use.

The -n flag directs the system to mount all filesystems defined as fstyp "NFS"
with remount set to "yes" in the /etc/default/filesys file. Filesystems of this type
should have bdev defined as follows:

bdev=hostname:pathname

The edev entry is not necessary if the filesystem is of type ''NFS''. rcfsek
should be set to lind'.

The -t flag displays the contents of /etc/default/filesys.

The -u flag forces mnt to behave like umnt.

Options

mnt(C)

The following options can be defined in the /etc/default/filesys entry for a
filesystem:

bdev=/dev/device

cdev=/dev/device

mountdir=ldirectory

Name of block device associated with the
filesystem.

Name of character (raw) device associated
with the filesystem.

The directory the filesystem is to be mounted
on.

desc=name A string describing the filesystem.

passwd=string An optional password prompted for at mount
request time. Cannot be a simple string; must
be in the format permitted by /etc/passwd. (See
"Notes.")

fsck=yes, no, dirty, prompt If yes/no, tells explicitly whether or not to run
fsck. If dirty, fsck is run only if the filesystem
requires cleaning. If prompt, the user is
prompted for a choice. If no entry is given, the
default value is dirty.

fsckflags=flags Any flags to be passed to fsck.

rcfsck=yes, no, dirty, prompt Similar to fsck entry, but only applies when the
-r flag is passed.

maxcleans=n

mount=yes, no, prompt

rcmount=yes, no, prompt

mountflags=flags

The number of times to repeat cleaning of a
dirty filesystem before giving up. If undefined,
default is 4.

If yes or no, users are allowed or disallowed to
mount the filesystem, respectively. If prompt,
the user specifies whether the filesystem
should be mounted.

If yes, the filesystem is mounted by letdrc2
when the system comes up as multiuser. If no,
the filesystem is never mounted by letdrc2.
With prompt, a query is displayed at boot time
to mount the filesystem.

Any flags to be passed to mount.

317

mnt(C)

Examples

318

prep=yes, no, prompt

prepcmd=command

init=yes, no, prompt

initcmd=command

fstyp=type

nfsopts=opts

Indicates whether any prepcmd entry should
always be executed, never executed, or exe­
cuted as specified by the user.

An arbitrary shell command to be invoked
immediately following password check and
prior to running fsck.

Indicates whether an initcmd entry should
always be executed, never be executed, or exe­
cuted as specified by the user.

An optional, arbitrary shell command to be
invoked immediately following a successful
mount.

Defines the filesystem type. Available types
include NFS, S51K, XENIX, and DOS.

Defines NFS options for filesystems of type
NFS. Available options are described in the
mount(ADM) manual page.

Any entries containing spaces, tabs, or new lines must be contained in double
quotes (").

The only mandatory entries in /etc/default/filesys are bdev and mountdir. The
prepcmd and initcmd options can be used to execute another command
before or after mounting the filesystem. For example, initcmd could be
defined to send mail to root whenever a given filesystem is mounted.

When invoked without arguments, mnt attempts to mount all filesystems that
have the entries mount=yes or mount=prompt.

The following is a sample /etc/default/filesys file:
bdev=/dev/root cdev=/dev/rroot mountdir=/ \
desc="The Root Filesystem" rcmount=no mount=no

bdev=/dev/u cdev=/dev/ru mountdir=/u rcmount=yes
fsckflags=-y desc="The User Filesystem"

bdev=/dev/x cdev=/dev/rx mountdir=/u rcmount=no
mount=yes fsckflags=-y desc="The Extra Filesystem"

Of the examples above, only /x is mountable by non super users.

mnt(C)

File

/etc/default/filesys Filesystem data

See also

filesys(F), mount(ADM)

Diagnostics

Notes

mnt will fail if the filesystem to be mounted is currently mounted under
another name.

Busy filesystems cannot be unmounted with umnt. A filesystem is busy if it
contains an open file or if a user's present working directory resides within
the filesystem.

The NFS options are only valid if NFS is installed; refer to your NFS documen­
tation for mount options that are specific to NFS.

Some degree of validation is done on the filesystem; however it is generally
unwise to mount corrupt filesystems.

In order to create a password for a filesystem, the system administrator must
run the passwd(C) command using the -F option. Note that filesystem pass­
words are not supported on all systems.

Value added

mnt is an extension of AT&T System V provided by The Santa Cruz Operation,
Inc.

319

more(C)

more
view a file one screen full at a time

Syntax
more [-cdflrsuvw] [-n] [+linenumber] [+/pattern] [name. ..]

Description

320

more - view a file one screen full at a time

page - is a link to more

This filter allows examination of continuous text one screen full at a time. It
normally pauses after each full screen, displaying:

--More--

at the bottom of the screen. If the user then presses carriage return, one more
line is displayed. If the user presses the Space bar, another full screen is dis­
played. Other possibilities are described below.

The command line options are:

-n An integer which is the size (in lines) of the window which more will
use instead of the default.

-c more draws each page by beginning at the top of the screen and erasing
each line just before it draws on it. This avoids scrolling the screen,
making it easier to read while more is writing. This option is ignored if
the terminal does not have the ability to clear to the end of a line.

-d more prompts with the message "Hit space to continue, Rubout to
abort" at the end of each full screen. This is useful if more is being used
as a filter in some setting, such as a class, where many users may be
inexperienced.

-f This option causes more to count logical, rather than screen lines: that
is, long lines are not folded. This option is recommended if nroff output
is being piped through uI, since the latter may generate escape
sequences. These escape sequences contain characters that would ordi­
narily occupy screen positions, but do not print when they are sent to
the terminal as part of an escape sequence. Thus more may think that
lines are longer than they actually are and fold lines erroneously.

-1 Does not treat (Ctrl)l (form feed) specially. If this option is not given,
more pauses after any line that contains a (Ctrl}l, as if the end of a full
screen has been reached. Also, if a file begins with a form feed, the
screen is cleared before the file is printed.

more(C)

-r Causes carriage returns to be printed as "~M".

-s Squeezes multiple blank lines from the output, producing only one
blank line. Especially helpful when viewing nroff output, this option
maximizes the useful information present on the screen.

-u Normally, more handles underlining, such as that produced by nroff, in
a manner appropriate to the particular terminal: if the terminal can per­
form underlining or has a stand-out mode, more outputs appropriate
escape sequences to enable underlining or stand-out mode for under­
lined information in the source file. The -u option suppresses this pro­
cessing.

-v Normally, more ignores control characters that it does not interpret in
some way. The -v option causes these to be displayed as ~C where C is
the corresponding printable ASCII character. Non-printing non-ASCII
characters (with the high bit set) are displayed in the format M-C, where
C is the corresponding character without the high bit set. If output is
not going to a terminal, more does not interpret control characters.

-w Normally, more exits when it comes to the end of its input. With -w
more prompts and waits for any key to be struck before exiting.

+linenumber
Starts up at linenumber.

+/pattern
Starts up two lines before the line containing the regular expression pat­
tern.

more looks in /usr/lib/terminfo/* to determine terminal characteristics, and to
determine the default window size. On a terminal capable of displaying 24
lines, the default window size is 22 lines.

more looks in the environment variable MORE to preset any flags desired. For
example, if you prefer to view files using the -c mode of operation, the shell
command "MORE=-c" in the .profile file causes all invocations of more to use
this mode.

If more is reading from a file, rather than a pipe, a percentage is displayed
with the "--More--" prompt. This gives the fraction of the file (in characters,
not lines) that has been read so far.

Other sequences which may be entered when more pauses, and their effects,
are as follows (i is an optional integer argument, defaulting to 1 where not
specified otherwise):

i (Space)

(Ctrl)d

Displays i more lines, (or another full screen if no argument is
given).

Displays 11 more lines (a "scroll"). If i is given, then the scroll
size is set to i.

321

more(C)

322

d

iz

is

if

b

(Ctrl)b

qorQ

=
v

hor?

iexpr/

in

Same as (Ctrl)d.

Same as entering a space except that i, if present, becomes the
new window size.

Skips i lines and displays a full screen of lines.

Skips i full screens and displays a full screen of lines.

Skips back and displays the previous screen of lines.

Same as b.

Exits from more.

Displays the current line number.

Starts up the screen editor vi at the current line.

Help command; gives a description of all the more commands.

Searches for the ith occurrence of the regular expression expr. If
there are less than i occurrences of expr, and the input is a file
(rather than a pipe), then the position in the file remains
unchanged. Otherwise, a full screen is displayed, starting two
lines before the place where the expression was found. The
user's erase and kill characters may be used to edit the regular
expression. Erasing back past the first column cancels the
search command.

Searches for the ith occurrence of the last regular expression
entered.

(Single quotation mark) Goes to the point from which the last
search started. If no search has been performed in the current
file, this command goes back to the beginning of the file.

!command Invokes a shell with command. The characters /I % /I and /I!" in
command are replaced with the current filename and the previ­
ous shell command respectively. If there is no current filename,
/I %" is not expanded. The sequences /I \ % /I and /I \!" are
replaced by /I %" and "! /I respectively.

i:n Skips to the ith next file given in the command line (skips to last
file if i doesn't make sense).

i:p Skips to the ith previous file given in the command line. If this
command is given in the middle of printing out a file, more goes
back to the beginning of the file. If i doesn't make sense, more
skips back to the first file. If more is not reading from a file, the
bell rings and nothing else happens.

Files

See also

Credit

Notes

:f

:q or:Q

Displays the current filename and line number.

Exits from more (same as q or Q).

Repeats the previous command.

more(C)

The commands take effect immediately. It is not necessary to enter a carriage
return. Up to the time when the command character itself is given, the user
may enter the line kill character to cancel the numerical argument being
formed. In addition, the user may enter the erase character to redisplay the
"--More-- (xx%) " message.

The terminal is set to noecho mode by this program so that the output can be
continuous. What you enter will not show on your terminal, except for the
slash (/) and exclamation (!) characters.

If the standard output is not a teletype, more acts just like cat, except that a
header is printed before each file (if there is more than one).

/usr/lib/terminfo/*
/usr/lib /more .help

cat(C), csh(C), environ(M), sh(C)

Terminal database
Help file

This utility was developed at the University of California at Berkeley and is
used with permission.

The vi and help options may not be available.

Before displaying a file, more attempts to detect whether it is a non-printable
binary file such as a directory or executable binary image. However, more
cannot detect all possible kinds of non-printable files.

323

mpstat(C)

mpstat
multiprocessor CPU load status display

Syntax
mpstat [-x I c CPU 1 [-bho 1
mpstat [-V1

Description

324

The multiprocessor load display utility, mpstat, displays system processor
activity information on your screen for each of the processors installed on
your system. CPU load display information updates every second.

When you invoke mpstat, the Multiprocessor Activity window displays on
your screen. For each CPU installed on your system the following information
displays:

CPU activity display windows
The CPU Activity Display Window displays CPU activity. The percentage of
kernel code running, the percentage of user code running, and the percentage
of CPU idle time are indicated as follows:

• dark shaded block or ':' - specifies one unit (5%) of kernel code

• light shaded block or '#' - specifies one unit (5%) of user code

The amount of space within the CPU Activity Display Window indicates the
percentage of CPU idle time (one space eq:uals 5%).

Status
Each CPU is in one of three states:

• ACTIVE - The CPU is available to run any process.

• STATIC - The CPU can only run processes specifically designated to run on
that CPU.

• INACTIVE - The CPU runs no processes.

sys Specifies the number of system calls.

cs Specifies the number of context switches.

int Specifies the number of interrupts.

tr Specifies the number of traps.

mpstat(C)

The CPU load display utility displays status information for as many CPUs as
possible on your screen. If you have a large number of processors installed, it
may not be possible to display status information for all processors on one
screen. mpstat allows you to examine status information for all CPUs using
the screen movement keys. The screen movement keys are as follows:

(Ctrl)f
(Ctrl)d
(Ctrl)b
(Ctrl)u
(Home) or (Ctrl)h
(End) orG
(Up Arrow) or j
(Down Arrow) or k
(Ctrl)r or (Ctrl)l

scrolls forward one screen
scrolls forward one half screen
scrolls backward one screen
scrolls backward one half screen
moves to the first screen
moves to the last screen
scrolls forward one CPU
scrolls backward one CPU
refreshes the current screen

The Help window displays a full list of the screen movement keys. Press 'h'
from the Multiprocessor Activity window to display the Help window. The
Help window also displays Hotkey information. Hotkeys are used to move
between mpstat windows. The Hotkeys are as follows:

(Esc) or q
o

exit the current window
display the Options window

The mpstat utility allows you to lock this utility onto anyone CPU (with the
exception of the base CPU - CPUl). A lock on any CPU releases all other CPUs
for normal operation. This will produce accurate system processor activity in­
formation.

If you lock mpstat onto a CPU, that CPU will only execute mpstat and pro­
cesses currently designated to run on that CPU. The CPU displays on the
status information screen as being in a STATIC state.

Invoke mpstat with the -c CPU option or select the lock option from the
Options menu to lock mpstat to run on a specified CPU.

Invoke mpstat with the -x (default) option to allow mpstat to free run on any
CPU. Note that allowing mpstat to free run on any CPU does not produce
accurate processor load status information.

mpstat also allows you to hide the locked CPU. This option will move data on
the locked CPU from the status display screen into the background.

Invoke mpstat with the -h option or select the hide option from the Options
menu to hide the statistics of the locked CPU.

325

mpstat(C)

326

You can select the required options, on the Options screen, using the
(Up Arrow) and (Down Arrow) keys. Invoke mpstat with the -0 option or type
'd at the Multiprocessor Activity window to display the Options window.

mpstat can be run with none or any of the following command line
parameters:

-cCPU

-b

-h

-0

-x

-v

lock mpstat utility on processor number CPU. Cannot
be used with option -x

use current screen colors

hide statistics of locked CPU

run Options window

allow mpstat to free run on any CPU. Default option.
Cannot be used with option -c

display Corollary mpstat version number

mv(C)

mv
move or rename files and directories

Syntax
mv [-£] filel file2

mv [-£] directoryl directory2

mv [-£] file .•. directory

Description

See also

Notes

In the first form, the mv command moves (changes the name of) filel to file2
(or directoryl to directory2).

If file2 already exists, it is removed before filel is moved. If file2 has a mode
which forbids writing, mv prints the mode (see chmod(C» and prompts you
for confirmation. If you type "y", the move takes place; if not, mvexits.

No questions are asked (if file2 is not writeable) when the -£ option is given.

In the second form, mv can only move directories within a filesystem, the tar­
get directory2 should not exist.

In the third form, one or more files are moved to the directory, keeping their
original filenames.

mv refuses to move a file onto itself.

mv does not follow symbolic links given as arguments.

chmod(S), copy(C), cp(C), mvdir(ADM)

If filel and file2 lie on different filesystems, mv must copy the file and delete
the original. In this case the owner name becomes that of the copying process
and any linking relationship with other files is lost.

Standards conformance
mv is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

327

newform(C)

newform
change the format of a text file

Syntax
newform [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f]
[-c char] [-In] [file ...]

Description

328

The newform command reads lines from the named files, or the standard
input if no input file is named, and reproduces the lines on the standard out­
put. Lines are reformatted in accordance with command line options in effect.

Except for -s, command line options may appear in any order, may be
repeated, and may be intermingled with files. Command line options are pro­
cessed in the order typed. This means that option sequences like "-e15 -160"
will yield results different from "-160 -e15". Options are applied to all files on
the command line.

-s Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared, the
eighth character is replaced by a II *" and any characters to the
right of it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used
on a file without a tab on each line. The characters sheared off are
saved internally until all other options specified are applied to that
line. The characters are then added at the end of the processed
line.

-itabspec Input tab specification: expands tabs to spaces, according to the
tab specifications given. tabspec recognizes all tab specification
forms described below. In addition, tabspec may be " __ ", in which
newform assumes that the tab specification is to be found in the
first line read from the standard input. If no tab spec is given,
tabspec defaults to -8. A tabspec of -0 expects no tabs; if any are
found, they are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, according to the
tab specifications given. The tab specifications are the same as for
-itabspec. If no tabspec is given, tabspec defaults to -8. A tab spec
of -0 means that no spaces will be converted to tabs on output.

newform(C)

-bn Truncates n characters from the beginning of the line when the line
length is greater than the effective line length (see -In). The default
is to truncate the number of characters necessary to obtain the
effective line length. The default value is used when -b with no n
is used. This option can be used to delete the sequence numbers
from a COBOL program as follows:

newform -11 -b7 filename

The option -11 must be used to set the effective line length shorter
than any existing line in the file so that the -b option is activated.

-en Truncates n characters from the end of the line.

-pn Prefixes n characters (see -ck) to the beginning of a line when the
line length is less than the effective line length. The default is to
prefix the number of characters necessary to obtain the effective
line length.

-an Appends n characters to the end of a line. The default is to append
the number of characters necessary to get the effective line length.

-f Writes the tab specification format line on the standard output
before any other lines are output. The tab specification format line
which is printed will correspond to the format specified in the last
-0 option. If no -0 option is specified, the line which is printed will
contain the default specification of -8.

-ck Changes the prefix/append character to k. Default character for k
is a space (see options -p and -a).

-In 5ets the effective line length to n characters. If n is not typed, -1
defaults to 72. The default line length without the -1 option is 80
characters. Note that tabs and backspaces are considered to be
one character (use -i to expand tabs to spaces).

Tabs
Four types of tab specification are accepted for tabspec: "canned", repetitive,
arbitrary, and file. The lowest column number is 1. For tabs, column 1 always
refers to the leftmost column on a terminal, even one whose column markers
begin at 0, for example the DASI 300, DASI 3005, and DASI 450.

The "canned" tabs are given as -code where code (and its meaning) is from the
following list:

-a 1,10,16,36,72
Assembler, IBM 5/370, first format

-a2 1,10,16,40,72
Assembler, IBM 5/370, second format

329

new/orm(C)

330

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code,
the first typed character corresponds to card column 7, one space
gets you to column 8, and a tab reaches column 12. Files using this
tab setup should include a format specification as follows:

<:t-c2 m6 s66 d:>

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs
than COBOL -c2. This is the recommended format for COBOL. The
appropriate format specification is:

<:t-c3 m6 s66 d:>

-£ 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,53,57,61
PL/I

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns 1+n, 1+2*n, etc.
Note that such a setting leaves a left margin of n columns on Ter­
miNet terminals only. Of particular importance is the value -8:
this represents the UNIX system "standard" tab setting, and is the
most likely tab setting found at a terminal. It is required for use
with nro££(CT) -h option for high-speed output. Another special
case is the value -0, implying no tabs at all.

nl,n2,... The arbitrary format permits the user to type any chosen set of
number, separated by commas, in ascending order. Up to 40 num­
bers are allowed. If any number (except the first one) is preceded
by a plus sign, it is taken as an increment to be added to the previ­
ous value. Thus, the tab lists 1,10,20,30 and 1,10,+10,+10 are con­
sidered identical.

--file If the name of a file is given, new£orm reads the first line of the
file, searching for a format specification. If it finds one there, it
sets the tab stops according to it; otherwise it sets them as -8. This
type of specification may be used to make sure that a tabbed file is
printed with correct tab settings.

Example

new/orm(C)

Any of the following may be used also; if a given flag occurs more than once,
the last value given takes effect:

-Ttype

+mn

newform usually needs to know the type of terminal in order to
set tabs and always needs to know the type to set margins. type is
a name listed in term(CT). If no -T flag is supplied, newform
searches for the $TERM value in the environment (see environ(M».
If no type can be found, newform tries a sequence that will work
for many terminals.

The margin argument may be used for some terminals. It causes
all tabs to be moved over n columns by making column n+ 1 the
left margin. If +m is given without a value of n, the value assumed
is 10. For a TermiNet, the first value in the tab list should be I, or
the margin will move even further to the right. The normal (left­
most) margin on most terminals is obtained by +mO. The margin
for most terminals is reset only when the +m flag is given explic­
itly.

In the following example, newform converts a file named text with leading
digits, one or more tabs, and text on each line to a file beginning with the text
and the leading digits placed at the end of each line in column 73 (-s option).
All tabs after the first one are expanded to spaces (-i option). To reach the line
length of 72 characters (-1 option), spaces are appended to each line up to
column 72 (-a option) or lines are truncated at column 72 (-e option). To refor­
mat the sample file text in this manner, enter:

newform -s -i -1 -a -e text

Exit codes

See also

o -normal execution
1 - for any error

csplit(C)

Diagnostics

All diagnostics are fatal.

usage: .•.

not -s format

can't open file

newform was called with a bad option.

There was no tab on one line.

Self-explanatory.

331

newform(C)

Notes

332

internal line too long

tab spec in error

A line exceeds 512 characters after being
expanded in the internal work buffer.

A tab specification is incorrectly formatted, or
specified tab stops are not ascending.

tabspec indirection illegal A tabspec read from a file (or standard input)
may not contain a tabspec referencing another
file (or standard input).

newform normally only keeps track of physical characters; however, for the -i
and -0 options, newform will keep track of backspaces in order to line up tabs
in the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the standard
input (by use of -i, -- or -0-).

If the -f option is used, and the last -0 option specified was "-0 --", and was
preceded by either "-0 --" or a "_i __ ", the tab specification format line will be
incorrect.

newgrp(C)

newgrp
log user into a new group

Syntax
newgrp [-] group

Description

Files

See also

Notes

The newgrp command changes the effective group identification of its caller.
The same person remains logged in, and the current directory is unchanged,
but calculations of access permissions to files are performed with respect to
the new group ID.

newgrp without an argument changes the group identification to the group in
the password file.

If the first argument to newgrp is a hyphen (-), the user will actually be logged
in again as a member of the new group, group.

If the first argument to newgrp is a hyphen, but group is not specified, the
user will be logged in again as a member of the caller's original group identifi­
cation according to the password file.

fete/group
/ete/passwd

group(F), ksh(C), sg(C), login(M)

The newgrp command executes, but does not fork, a new shell. If your login
shell is a C -shell and you invoke newgrp, you will have to press (Ctrl)d when
you wish to log out. Typing the csh(C) logout command will result in an error
message. Note also that the newgrp command causes the csh history list to
start again at 1.

A version of newgrp is built into the Korn shell (ksh(C». Please refer to the
ksh(C) entry for details. This command has been effectively superseded by
the newer command sg(C), which should be used in preference to newgrp
wherever possible.

333

newgrp(C)

Standards confonnance

newgrp is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3,1989.

334

news(C)

news
print news items

Syntax
news [-a] [-n] [-s] [items]

Description

Files

See also

news is used to keep the user informed of current events. By convention,
these events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current
files in /usr/news, the most recent first, with each preceded by an appropriate
header. news stores the "currency" time as the modification date of a file
named .news_time in the user's home directory (the identity of this directory is
determined by the environment variable $HOME); only files more recent than
this currency time are considered "current."

The -a option causes news to print all items, regardless of currency. In this
case, the stored time is not changed.

The -n option causes news to report the names of the current items without
printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist, without
printing their names or contents, and without changing the stored time.

All other arguments are assumed to be specific news items that are to be
printed.

If the INTERRUPT key is struck during the printing of a news item, printing
stops and the next item is started. Another INTERRUPT within one second of
the first causes the program to terminate.

/usr/news/*
$HOME/.news_time

environ(M}, profile(M}

335

news (C)

Notes

This is not an interface for USENET news.

Standards conformance

news is conformant with:

AT&T svm Issue 2.

336

nice(C)

nice
run a command at a different scheduling priority

Syntax

nice [-increment] command [arguments]

Description

See also

The nice command is used to execute a command at a different scheduling
priority than usual. Each process has a "nice value" which is used to calculate
its priority. Nice values range from 0 to 39, with higher nice values resulting
in lower priorities. By default, commands have a nice value of 20. nice exe­
cutes command with a nice value equal to 20 plus increment. If no increment
is given, an increment of 10 is assumed.

The super user may run commands with priority higher than normal by using
a double negative increment. For example, an argument of --10 would decre­
ment the default to produce a nice value of 10, which is a higher scheduling
priority than the default of 20.

csh(C), nice(S), nohup(C)

Diagnostics

Notes

nice returns the exit status of command.

If the default nice value plus increment is larger than 39, a nice value of 39
will be used. If a nice value less than zero is requested, zero will be used.

Note also that this description of nice applies only to programs run under the
Bourne Shell. The C-Shell has its own nice command, which is documented
in csh(C).

Standards conformance

nice is conformant with:

AT&T svm Issue 2.

337

nl(C)

nl
add line numbers to a file

Syntax
nl [-h type] [-b type] [-f type] [-v start#] [-i incr] [-p] [-1 num]
[-s sep] [-w width] [-n format] file

Description

338

The nl command reads lines from the named file, or the standard input if no
file is named, and reproduces the lines on the standard output. Lines are
numbered on the left in accordance with the command options in effect.

nl views the text it reads in terms of logical pages. Line numbering is reset at
the start of each logical page. A logical page consists of a header, a body, and
a footer section. Empty sections are valid. Different line numbering options
are independently available for header, body, and footer (for example, no
numbering of header and footer lines while numbering blank lines only in the
body).

The start of logical page sections is signaled by input lines containing nothing
but one or more pairs of backslash-followed -by-colon:

Page Section

Header
Body
Footer

Line Contents

\:\:\:
\:\:
\:

Unless signaled otherwise, nl assumes the text being read is in a single logical
page body.

Command options may appear in any order and may be intermingled with an
optional filename. Only one file may be named. The options are:

-b type

-h type

-ftype

Specifies which logical page body lines are to be numbered.
Recognized types and their meaning are: a, number all lines; t,
number lines with printable text only; n, no line numbering;
pstring, number only lines that contain the regular expression
specified in string. Default type for logical page body is t (text
lines numbered).

Same as -b type except for header. Default type for logical page
header is n (no lines numbered).

Same as -b type except for footer. Default for logical page footer is
n (no lines numbered).

See also

nl(e)

-p Does not restart numbering at logical page delimiters.

-v start# start# is the initial value used to number logical page lines.

-i incr

-s sep

Default is 1.

incr is the increment value used to number logical page lines.
Default is 1.

sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

-w width width is the number of characters to be used for the line number.

-nformat

-lnum

Default width is 6.

format is the line numbering format. Recognized values are: In,
left justified, leading zeroes suppressed; m, right justified, leading
zeroes suppressed; rz, right justified, leading zeroes kept. Default
format is m (right justified).

num is the number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank being num­
bered (if the appropriate -ha, -ba, and/or -fa option is set). Default
is 1.

pr(C)

Standards confonnance

nl is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

339

nohup(C)

nohup
run a command immune to hangups and quits

Syntax
nohup command [arguments]

Description

Note

See also

The nohup command executes command with hangups and quits ignored. If
output is not redirected by the user, it will be sent to nohup.out. If the user
does not have write permission in the current directory, output is redirected
to $HOME/nohup.out.

The nohup(C) standalone program is used by the bourne shell sh. The other
shells have built in nohup commands which behave slightly differently. For
further details see csh(C) and ksh(C) repsectively.

nice(C), signal(S)

Standards confonnance

nohup is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

340

od(C)

od
display files in octal format

Syntax

od [-bcdox] [file] [[+] offset [.] [b]]

Description

See also

The od command displays file in one or more formats as selected by the first
argument. If the first argument is missing, -0 is the default. The meanings of
the format options are:

-b Interprets bytes in octal.

-c Interprets bytes in ASCII. Certain nongraphic characters appear as C
escapes: null=\O, backspace=\b, form feed=\f, newline=\n, return=\r,
tab=\t; others appear as 3-digit octal numbers.

-d Interprets words in decimal.

-0 Interprets words in octal.

-x Interprets words in hex.

The file argument specifies which file is to be displayed. If no file argument is
specified, the standard input is used.

The offset argument specifies the offset in the file where displaying is to start.
This argument is normally interpreted as octal bytes. If"." is appended, the
offset is !.....terpreted in decimal. If" b" is appended, the offset is interpreted in
blocks. If the file argument is omitted, the offset argument must be preceded
by"+".

The display continues until end-of-file.

adb(CP), hd(C)

Standards conformance

od is confprmant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

341

pack(C)

pack, peat, unpack
compress and expand files

Syntax

pack [-] name . ..

pcatname ...

unpack name . ..

Description

342

pack - Packs a file

pcat - Displays a packed file

unpack - Unpacks a file

The pack command attempts to store the specified files in a compressed form.
Wherever possible, each input file name is replaced by a packed file name.z
with the same access modes, access and modified dates, and the owner of
name. If pack is successful, name will be removed. Packed files can be
restored to their original form using unpack or pcat.

pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If
the 1/ -" argument is used, an internal flag is set that causes pack to display in­
formation about the file compression. Additional occurrences of 1/ -" in place
of name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and
the character frequency distribution. Because a decoding tree forms the first
part of each .z file, it is usually not worthwhile to pack files smaller than three
blocks, unless the character frequency distribution is very scattered, which
may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform distribu­
tion of characters, show little compression, the packed versions being about
90% of the original size.

pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

- The file appears to be already packed

- The filename has more than 253 characters

pack(C)

- The file has links

- The file is a directory

- The file cannot be opened

- No disk storage blocks will be saved by packing

- A file called name.z already exists

- The.z file cannot be created

- An I/O error occurred during processing

The last segment of the filename must contain no more than 253 characters to
allow space for the appended .z extension. Directories cannot be compressed.

pcat does for packed files what cat(C) does for ordinary files. The specified
files are unpacked and written to the standard output. To view a packed file
named name.z use:

pcatname.z

or just:

pcatname

To make an unpacked copy, say nnn, of a packed file named name.z without
destroying name.z, enter the command:

pcat name> nnn

pcat returns the number of files it was unable to unpack. Failure may occur if:

- The filename (exclusive of the .z) has more than 253 characters

- The file cannot be opened

- The file does not appear to be the output of pack

unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name.z (or just name, if name ends
in .z). If this file appears to be a packed file, it is replaced by its expanded ver­
sion. The new file has the .z suffix stripped from its name, and has the same
access modes, access and modification dates, and owner as those of the
packed file.

unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in pcat, as well as in a file
where the "unpacked" name already exists, or if the unpacked file cannot be
created.

343

pack(C)

Standards conformance

pack, pcat and unpack are conformant with:

AT&T SVID Issue 2;
ANd X/Open Portability Guide, Issue 3,1989.

344

passwd(C)

passwd
change login, modem (dialup shell), filesystem, or group password

Syntax
passwd [-m] [-dluf] [-n minimum] [-x expiration] [-r retries] [name]

passwd -s [-a] [name]

Description

The passwd command is used by ordinary users to:

• Change or delete their own login password.

• List some of the attributes that apply to their account.

In addition, system administrators can use the passwd command to:

• Change or delete any user's login password.

• Change or delete modem (dialup shell), filesystem mount, and group pass-
words.

• Lock or unlock any user's account.

• Invalidate (lock) dialup shell, filesystem, and group passwords.

• List some of the attributes of all users, or any single user.

• Change some of the attributes of any user.

However, it is recommended that system administrators use the
sysadmsh(ADM) Accounts selection to administrate passwords. A user is
considered to be a system administrator if they have auth subsystem authori­
zation. A user must have the passwd subsystem authorization to be able to
change the password of any account.

Choosing a good password
Your login password is one of the most important defenses against security
breaches. If a malicious person cannot log into a system, it is much harder for
that person to steal or tamper with your data. Hence, by choosing a hard-to­
guess password (either of your own invention or one suggested by the
system), regularly changing it, and keeping it secret, you can protect your
system.

In general, a password should:

• Consist of a mixture of upper- and lower-case letters, digits (0 - 9), and
other non-letters (such as @, *, -, I, space, tab, and control characters).

• Be changed frequently (at least once every six months to a year, and more
often as necessary).

345

passwd(C)

346

• Be different on different machines.

• Be easy to remember, so you do not have to write it down.

• Be kept secret and known only by you.

Passwords should not:

• Be the name of a person, place, or thing; nor should a password be the
same as any user's login name, any machine's name, or the name of any
group.

• Be a correctly spelt word, street or telephone number, ZIP or postal code;
nor should a password be a birthday or anniversary of you or anyone you
know.

• Be written down (anywhere! - not on paper or in a file); nor should pass­
words be stored in the function keys of a terminal or memory of an intelli­
gent modem.

• Be told to any other person (not even for use in an "emergency"); nor
should a password be kept if you suspect someone else knows it.

Spelling a word backwards or appending a digit to a word do not turn a poor
password choice into a "good" password. However, taking two or three unre­
lated words and combining them with some non-letters is a reasonable way of
choosing an easy-to-remember but hard-to-crack password. On sea UNIX
System V /386, passwords can be up to 80 characters long, so nonsensical
rhymes (for example) can also be used as passwords.

User login passwords
When passwd is used to change or delete the password for user name, the old
password (if any) is prompted for. (The password is not displayed as it is
being entered.) System administrators are not prompted for the old password
unless they are attempting to change their own password; the super user is
never prompted for the old password. The passwd command can only be
used to change or delete the password for user name by system administra­
tors and the user authorized to change user name's password. Normally,
users are authorized to change their own password.

Depending on how the system administrator has configured the account, the
user mayor may not be able to choose their own password, or may have a
password chosen for them. If they can neither choose their own password nor
have passwords generated for them, the password cannot be changed. If the
user is able to do both, passwd asks which should be done.

A password is considered valid until it has expired. Passwords expire if they
are not changed or deleted before the expiration time has passed. Once
expired, the user is required to change (not delete) their password the next
time they log in. If a user fails to do so before the password's lifetime has
passed, the password is considered dead and the user's account is locked.

passwd(C)

Once locked, the user may not log in, may not be su(C),ed to, and no at(C},
batch(C}, or cron(C} jobs for that user may run. Only a system administrator
can unlock a user with a dead password; a new password must be assigned.

To discourage re-use of the same password, the system administrator may set
a minimum change time. After changing or deleting a password, the password
may not be changed again (even by a system administrator) until at least that
much time has elapsed.

Passwords may be deleted (or changed to be empty) only if the user is author­
ized to not have a password. Users without passwords are not recom­
mended. (An empty password is prompted for when logging in, but a deleted
password is not prompted for at login.)

If a password is being changed and the user has elected (or is forced) to
choose a system-generated password, each suggested password is printed
along with a hyphenated spelling that suggests how the password could be
pronounced. To accept a suggested password, enter the password; if entered
correctly, passwd will prompt for the suggested password to be entered again
as confirmation. To reject a suggestion, just enter (Return); to abort the change
altogether, either enter "quit" or interrupt passwd.

If a password is being changed and the user has elected (or is forced) to assign
a password of their own choosing, the new password is prompted for twice.
It is checked for being "obvious" after the first prompt, and if deemed to be
acceptable is prompted for again. If the proposed password is successfully
entered a second time, it becomes the new password for user name.

Both system-generated and self-chosen passwords are checked for being
easy-to-guess. See the section on "Checking for obvious passwords" (below)
for a description of the checks.

When dealing with a user's login password, the following options are recog­
nized:

-d

-f

-1

-u

Delete the password. A password may be deleted only if the
user is authorized to not have a password. System adminis­
trators must always specify name; otherwise, the name of the
user who logged in is used.

Force user name to change their password the next time they
log in. This option may be specified only by system adminis­
trators, and only when the user's password is not being
changed or deleted; name must be explicitly given.

Lock user name out of the system by applying an adminis­
trative lock; only system administrators may do this and
they must specify name.

Remove any administrative lock applied to user name; only
system administrators may do this and they must specify
name.

347

passwd(C)

348

-n minimum Set the amount of time which must elapse between pass­
word changes for user name to minimum days. Only system
administrators may do this and they must specify name.

-x expiration Set the amount of time which may elapse before the pass­
word of user name expires to expiration days. Only system
administrators may do this and they must specify name.
Once a password has expired, the user must change it the
next time they log in.

-r retries Up to retries attempts may be made to choose a new pass­
word for user name.

-s Report the password attributes of user name (or, if the -a
option is given, of all users). The format of the report is:

name status mml ddlyy minimum expiration

where status is liPS" if the user has a password, /ILK" if the
user is administratively locked, or "NP" when the user does
not have a password. The date of the last successful pass­
word change (or deletion) is shown as mmlddlyy. If neither
name nor -a is specified, the name of the user who logged in
is assumed. Only system administrators can examine the
attributes of users other than themselves.

If no -d, -f, -I, -u, or -s option is specified, the password for user name is
changed as described above. If no name is given and no option which
requires name is given, then the name of the user who logged in is used. Only
the -a option may be specified with the -s option.

Modem (dialup shell) passwords
When a user whose login shell is listed in fetc#.passwd with a (encrypted)
password logs in on a terminal line listed in /etc/dialups, the password in
/etc/d-'passwd must be supplied before the login succeeds. The -m option to
password allows system administrators to change, delete, or invalidate (lock)
the passwords for login shell name:

-d

-1

-r retries

Delete the password.

Invalidate ("10ck") the password by arranging so that no
matter what the user enters, it will not be a valid password.
Doing so causes the old password to be lost.

Up to retries attempts may be made to choose a new pass­
word.

The name must always be specified. If name begins with a slash (f) then only
the password for the login shell which completely matches name is changed.
Otherwise, the password for every shell listed in /etc/d-'passwd whose
basename is name is changed.

passwd(C)

Note: this does not mean that only one line is needed per shell in /etc/d-passwd.
For example, to have the option of using either Ibin/csh or lusr/locallcsh, each
must be specified on a separate line in /etc/d-passwd. However, the dialup
passwd for both shells can be changed at once with the command:

passwd -m csh

If neither the -d nor -1 option is specified, the password is changed. The new
password is prompted for twice, and must pass checks similar to those for
login passwords (see below).

Filesystem mount passwords
A password may be required when mounting a filesystem; see mnt(C). The
options are the same as for modem passwords (see above).

Group passwords
A password may be required when a user changes their current working
group; see newgrp(C).

Checking for obvious passwords
To discourage poor password choices, various checks are applied to reject
unacceptable passwords. The checks which are applied depend on the type of
password being checked and the system.' s configuration. Most of the checks
for being easy-to-guess are configurable; see goodpw(ADM).

The check procedure is as follows (a password is restricted if, according to the
sysadmsh Accounts selection, it is to be "checked for obviousness"):

la. User login passwords only: the new password must not be the same as
the old password. The password must not be empty (or be deleted)
unless the user is not required to have a password.

1 b. All other passwords: the new and old password can be the same. Empty
passwords are treated as deleted passwords and are always acceptable.

2. All (non-empty) passwords: if the password is not empty, it must be at
least PASSLENGTH characters long (see below).

3. All (non-empty) passwords: if the goodpw utility can be run, it is used to
perform all further checks. If the file CHECKDIR exists (and can be read
by goodpw) that file is used to modify the default settings in
/etc/default/goodpw. The CHECKDIR is specified by CHECKDIR in
/etc/default/passwd and type is the kind of password being checked (user,
modem, group, or filsys). The strength is the degree of checking to be
done: secure if the user is restricted (or, for all other password types, if
the system default is restricted); otherwise weak.

4. When goodpw cannot be run (all passwords): if the password is not
empty, it must contain at least one character which is not a lowercase
letter (but must not consist solely of digits).

349

passwd(C)

350

5. When goodpw cannot be run (user login passwords only): finally, for
user login passwords which are restricted, the password must not be a
palindrome, any user's login name, the name of any group, or a correctly
spelled English word (American spelling); see accepCpw(S).

System-generated passwords are not checked unless the user is restricted (see
above), in which case the generated password must pass the checks in step 5
before it is suggested to the user. Generated passwords are never checked by
goodpw.

Defaults
Several parameters may be specified in /etc/default/passwd. The various set­
tings, and their default values are:

PASSLENGTH=*

RETRIES=3

The minimum length of a password. The maximum length of a
password is 80. Specifying PASSLENGTH overrides the computed
value based on the lifetime of the password, delay between login
attempts (and other variables - see passlen(S». To use the com­
puted value set PASSLENGTH to an asterisk (*).

The maximum number of repeated attempts to change a password
that has been rejected. If RETRIES is less than I, then 1 is assumed.

ONETRY=YES
If set to YES, a rejected password is added to the stop-list passed to
goodpw. This prevents simplistic modifications of a rejected pass­
word from being accepted on a later attempt.

DESCRIBE=/usr/lib/goodpw/describe
The contents of this file are shown once (before the new password
is prompted for) and should describe the the difference between
acceptable and unacceptable passwords.

SUMMARY=/usr/lib/goodpw/summary
The contents of this file are shown each time a password is
rejected, and should be a (short) reminder of what are and are not
acceptable passwords.

CHECKDIR=/usr/lib/goodpw/checks
A hierarchy of additional checks goodpw should perform, based
on password type and restrictions (see above).

Files

passwd(C)

GOODPW=NO
Defines the location of the goodpw program.. If set to NO then
goodpw is not used and the simpler internal checks are applied
instead. Under these circumstances the super user is not forced to
comply with the password construction requirements; the only
checks enabled are for minimum password length, and null pass­
words are allowed. If GOODPW is set to YES then
lusrlhin/goodpw is used to perform password checks. Alterna­
tively GOODPW can be set to the path of some other goodpw-style
program..

The values for the default settings may be changed to reflect the system's
security concerns.

If /ete/default/passwd does not exist or is not readable, the above default values
are used.

If the DESCRIBE or SUMMARY file defined in /ete/default/passwd does not exist
or cannot be read, short (and vague) descriptions or summaries are issued
instead. In addition, if the user who logged in is a system administrator, an
error message describing the problem is printed.

If the selected GOODPW program. does not exist or is not executable, the
simpler internal checks are performed (see above). In addition, if the user
who logged in is a system administrator, an error message describing the
problem is printed.

/ete/passwd List of user accounts.

/teb/files/auth/initiallname Protected Password database entry for user name
(where the first character in name is initial).

fete/group List of groups.

/ete/d-passwd List of dialup shells and passwords (one per line):
shell: encrypted-password: reserved

where shell is the pathname of a login shell as
used in /ete/passwd.

/ete/auth/system/files File Control database.

/ete/auth/system/default

/ete/default/passwd

System Defaults database; contains default
parameters.

Configurable settings (see above).

351

passwd(C)

See also

Notes

accepCpw(S), authcap(F), authsh(ADM), default(F), goodpw(ADM), group(F),
login(M), mnt(C), newgrp(C), passlen(S), passwd(FP)

Group passwords should be avoided; see newgrp(C) because not all systems
support group passwords.

Not all systems support filesystem mount passwords.

Not all systems support modem (dialup shell) passwords.

The -r option is mostly useful during installation to force the newly-installed
super user to have a password.

Value added

352

passwd includes extensions to AT&T System V provided by The Santa Cruz
Operation, Inc.

paste(C)

paste
merge lines of files

Syntax
paste filel file2 ...

paste -d list filel file2 ...

paste -s [-d list] filel file2 ...

Description

In the first two forms, paste concatenates corresponding lines of the given
input files filel, file2, etc. It treats each file as a column or columns of a table
and pastes them together horizontally (parallel merging). It is the counterpart
of cat(C) which concatenates vertically, that is, one file after the other. In the
last form above, paste subsumes the function of an older command with the
same name by combining subsequent lines of the input file (serial merging).
In all cases, lines are "glued" together with the tab character, or with charac­
ters from an optionally specified list. Output is to the standard output, so it
can be used as the start of a pipe, or as a filter, if "-" is used in place of a
filename.

The meanings of the options are:

-d Without this option, the new line characters of each but the last file (or
last line in case of the -s option) are replaced by a tab character. This
option allows replacing the tab character by one or more alternate char­
acters (see below).

list One or more characters immediately following -d replace the default tab
as the line concatenation character. The list is used circularly, that is,
when exhausted, it is re-used. In parallel merging (that is, no -s option),
the lines from the last file are always terminated with a new line charac­
ter, not from the list. The list may contain the special escape sequences:
\n (new line), \t (tab), \ \ (backslash), and \0 (empty string, not a null
character). Quoting may be necessary, if characters have special mean­
ing to the shell (for example, to get one backslash, use -d\ \ \ \).

-s Merges subsequent lines rather than one from each input file. Use tab
for concatenation, unless a list is specified with -d option. Regardless of
the list, the very last character of the file is forced to be a new line.

May be used in place of any filename to read a line from the standard
input. (There is no prompting.)

353

paste(C)

Examples

Is I paste -d"" -

Is I paste - - - -

paste -s -d" \ t\ n" file

Lists directory in one column

Lists directory in four columns

Combines pairs of lines into lines

See also

cut(C), grep(C), pr(C)

Diagnostics

line too long

too many files

Standards conformance

Output lines are restricted to 511 characters.

Except for -s option, no more than 12 input files may be
specified.

paste is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3,1989.

354

pax(C)

pax
portable archive exchange

Syntax
pax [-cimopuvy] [-f archive] [-s replstr] [-t device] [pattern . ..]

pax -r [-cimopuvy] [-f archive] [-s replstr] [-t device] [pattern ...]

pax -w [-adimuvyL] [-b blocking] [-f archive] [-s replstr] [-t device]
[-x format] [pathname . ..]

pax -rw [-ilmopuvyL] [-s replstr] [pathname ...] directory

Description

The pax command reads and writes archive files which conform to the
"Archive/Interchange File Format" specified in IEEE Std. 1003.1-1988. pax can
also read, but not write, a number of other file formats in addition to those
specified in the Archive/Interchange File Format description. Support for
these traditional file formats, such as V7 tar and System V binary cpio format
archives, is provided for backward compatibility and to maximize portability.

pax will also support traditional cpio and System V tar interfaces if invoked
with the name "cpid' or "tar" respectively. See the cpio(C) or tar(C) manual
pages for more details.

Combinations of the -r and -w command line arguments specify whether pax
will read, write or list the contents of the specified archive, or move the speci­
fied files to another directory.

The command line arguments are:

-w writes the files and directories specified by pathname operands to the
standard output together with the pathname and status information
prescribed by the archive format used. A directory pathname operand
refers to the files and (recursively) subdirectories of that directory. If no
pathname operands are given, then the standard input is read to get a
list of pathnames to copy, one pathname per line. In this case, only
those pathnames appearing on the standard input are copied.

-r pax reads an archive file from the standard input. Only files with names
that match any of the pattern operands are selected for extraction. The
selected files are conditionally created and copied relative to the current
directory tree, subject to the options described below. By default, the
owner and group of selected files will be that of the invoking process,
and the permissions and modification times will be the same as those in
the archive.

355

pax(C)

356

The supported archive formats are automatically detected on input. The
default output format is ustar, but may be overridden by the -x format
option described below.

-rw pax reads the files and directories named in the pathname operands and
copies them to the destination directory. A directory pathname operand
refers to the files and (recursively) subdirectories of that directory. If no
pathname operands are given, the standard input is read to get a list of
pathnames to copy, one pathname per line. In this case, only those
pathnames appearing on the standard input are copied. The directory
named by the directory operand must exist and have the proper permis­
sions before the copy can occur.

If neither the -r or -w options are given, then pax will list the contents of the
specified archive. In this mode, pax lists normal files one per line, hard link
pathnames as

pathname == linkname
and symbolic link pathnames (if supported by the implementation) as

pathname -> linkname
where pathname is the name of the file being extracted, and linkname is the
name of a file which appeared earlier in the archive.

If the -v option is specified, then pax lists normal pathnames in the same for­
mat used by the Is utility with the -1 option. Hard links are shown as

<Is -I listing> == linkname
and symbolic links (if supported) are shown as

<Is -1 listing> -> linkname

pax is capable of reading and writing archives which span multiple physical
volumes. Upon detecting an end of medium on an archive which is not yet
completed, pax will prompt the user for the next volume of the archive and
will allow the user to specify the location of the next volume.

Options
The following options are available:

-a

-b blocking

-c

The files specified by pathname are appended to the speci­
fied archive.

Block the output at blocking bytes per write to the archive
file. A k suffix multiplies blocking by 1024, a b suffix multi­
plies blocking by 512 and an m suffix multiplies blocking by
1048576 (1 megabyte). If not specified, blocking is automati­
cally determined on input and is ignored for -rw.

Complement the match sense of the pattern operands.

-d

-f archive

-i

-1

-m

-0

-p

-L

-s replstr

-t device

-u

pax(C)

Intermediate directories not explicitly listed in the archive
are not created. This option is ignored unless the -r option is
specified.

The -f archive option specifies the pathname of the input or
output archive, overriding the default of standard input for
-r or standard output for -w.

Interactively rename files. Substitutions specified by -s
options (described below) are performed before requesting
the new filename from the user. A file is skipped if an empty
line is entered and pax exits with an exit status of 0 if EOF is
encountered.

Files are linked rather than copied when possible.

File modification times are not retained.

Restore file ownership as specified in the archive. The
invoking process must have appropriate privileges to
accomplish this.

Preserve the access time of the input files after they have
been copied.

Follow symbolic links.

Filenames are modified according to the substitution expres­
sion using the syntax of ed(C) as shown:

-s loldlnew Ifgp]
Any non null character may be used as a delimiter (a 1/ I" is
used here as an example). Multiple -s expressions may be
specified; the expressions are applied in the order specified
terminating with the first successful substitution. The
optional trailing p causes successful mappings to be listed on
standard error. The optional trailing g causes the old expres­
sion to be replaced each time it occurs in the source string.
Files that substitute to an empty string are ignored both on
input and output.

The device option argument is an implementation-defined
identifier that names the input or output archive device,
overriding the default of standard input for -r and standard
output for -w.

Copy each file only if it is newer than a pre-existing file with
the same name. This implies -a.

357

pax(C)

358

-v

-x/onnat

-y

List filenames as they are encountered. Produces a verbose
table of contents listing on the standard output when both -r
and -ware omitted; otherwise, the filenames are printed to
standard error as they are encountered in the archive.

Specifies the output archive format. The input format,
which must be one of the following, is automatically deter­
mined when the -r option is used. The supported formats
are:

cpio The extended cpio interchange format specified in
"ExtendedCPIO Format" in IEEE Std. 1003.1-1988.

ustar The extended tar interchange format specified in
"Extended TAR Format" in IEEE Std. 1003.1-1988.
This is the default archive format.

Interactively prompt for the disposition of each file. Substi­
tutions specified by -5 options (described above) are per­
formed before prompting the user for disposition. EOF or an
input line starting with the character q caused pax to exit.
Otherwise, an input line starting with anything other than y
causes the file to be ignored. This option cannot be used in
conjunction with the -i option.

Only the last of multiple -f or -t options take effect.

When writing to an archive, the standard input is used as a list of pathnames
if no pathname operands are specified. The format is one pathname per line.
Otherwise, the standard input is the archive file, which is formatted according
to one of the specifications in "Archive/Interchange File Format" in IEEE Std.
1003.1-1988, or some other implementation-defined format.

The user ID and group ID of the process, together with the appropriate
privileges, affect the ability of pax to restore ownership and permissions
attributes of the archived files. (See format-reading utility in
"Archive /Interchange File Format" in IEEE Std. 1003.1-1988.)

The options -a,-c, -d,-i,-l,-p,-t, -u, and -yare provided for functional compa­
tibility with the historical cpio and tar utilities. The option defaults were
chosen based on the most common usage of these options, therefore, some of
the options have meanings different than those of the historical commands.

Examples

File

See also

pax(C)

Operands
The following operands are available:

directory

pathname

pattern

The destination directory pathname for copies when both
the -r and -w options are specified. The directory must exist
and be writable before the copy or error results.

A file whose contents are used instead of the files named on
the standard input. When a directory is named, all of its files
and (recursively) subdirectories are copied as well.

A pattern is given in the standard shell pattern matching
notation. The default if no pattern is specified is "* ", which
selects all files.

The following command
pax -w -£ Idev/rmtO .

copies the contents of the current directory to tape drive O.

The commands

mkdir newdir
cd olddir
pax -rw • newdir

copy the contents of olddir to newdir.

The command
pax -r -s ',I/*usrl/*,,' -£ pax.out

reads the archive pax.out with all files rooted in lusr in the archive extracted
relative to the current directory.

Idevltty used to prompt the user for information when the -i or -y options
are specified.

cpio(C), cpio(M), £ind(C), tar(C), tar(F)

359

pax(C)

Diagnostics

Notes

pax will terminate immediately, without processing any additional files on
the command line or in the archive.

pax will exit with one of the following values:

o All files in the archive were processed successfully.

>0 pax aborted due to errors encountered during operation.

Special permissions may be required to copy or extract special files.

Device, user ID, and group ID numbers larger than 65535 cause additional
header records to be output. These records are ignored by some historical
version of cpio(C) and tar(C).

The archive formats described in "Archive/Interchange File Format" have cer­
tain restrictions that have been carried over from historical usage. For exam­
ple, there are restrictions on the length of pathnames stored in the archive.

When getting an Is -1 style listing on tar format archives, link counts are listed
as zero since the ustar archive format does not keep link count information.

Copyright

Author

360

Copyright © 1989 Mark H. Colburn.
All rights reserved.

Redistribution and use in source and binary forms are permitted provided
that the above copyright notice is duplicated in all such forms and that any
documentation, advertising materials, and other materials related to such dis­
tribution and use acknowledge that the software was developed by Mark H.
Colburn and sponsored by The USENIX Association.

THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PUR­
POSE.

Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1
St. Paul, MN 55102
mark@jhereg.MN.ORG

Sponsored by The USENIX Association for public distribution.

pcpio(C)

pcpio
copy file archives in and out

Syntax
pcpio -0 [BLacv]

pcpio -i [Bcdfmrtuv] [pattern ...]

pcpio -p [aLdlmruv] directory

Description

The pcpio utility produces and reads files in the format specified by the cpio
Archive/Interchange File Format specified in IEEE Std. 1003.1-1988.

The pcpio -i (copy in) utility extracts files from the standard input, which is
assumed to be the product of a previous pcpio -0. Only files with names that
match patterns are selected. Multiple patterns may be specified and if no pat­
terns are specified, the default for patterns is II * ", selecting all files. The
extracted files are conditionally created and copied into the current directory,
and possibly any levels below, based upon the options described below. The
permissions of the files will be those of the previous pcpio -0. The owner and
group of the files will be that of the current user unless the user has appropri­
ate privileges, which causes pcpio to retain the owner and group of the files of
the previous pcpio -0.

The pcpio -p (pass) utility reads the standard input to obtain a list of path
names of files that are conditionally created and copied into the destination
directory based upon the options described below.

If an error is detected, the cause is reported and the pcpio utility will continue
to copy other files. pcpio will skip over any unrecognized files which it
encounters in the archive.

The following restrictions apply to the pcpio utility:

1 Pathnames are restricted to 256 characters.

2 Appropriate privileges are required to copy special files.

3 Blocks are reported in 512-byte quantities.

361

pcpio(C)

362

Options
The following options are available:

-B Input/output is to be blocked 5120 bytes to the record. Can only be
used with pcpio -0 or pcpio -i for data that is directed to or from char­
acter special files.

-L Follow symbolic links.

-a Reset access times of input files after they have been copied. When
the -1 option is also specified, the linked files do not have their access
times reset. Can only be used with pcpio -0 or pcpio -i.

-c Write header information in ASCII character for portability. Can only
be used with pcpio -i or pcpio -0. Note that this option should
always be used to write portable files.

-d Creates directories as needed. Can only be used with pcpio -i or
pcpio-p.

-f Copy in all files except those in patterns. Can only be used with
pcpio -i.

-1 Whenever possible, link files rather than copying them. Can only be
used with pcpio -p.

-m Retain previous modification times. This option is ineffective on
directories that are being copied. Can only be used with pcpio -i or
pcpio-p.

-r Interactively rename files. The user is asked whether to rename pat­
tern each invocation. Read and write permissions for /dev/tty are
required for this option. If the user types a null line, the file is
skipped. Should only be used with pcpio -i or pcpio -0.

-t Print a table of contents of the input. No files are created. Can only
be used with pcpio -i.

-u Copy files unconditionally; usually an older file will not replace a new
file with the same name. Can only be used with pcpio -i or pcpio -p.

-v Verbose: cause the names of the affected files to be printed. Can only
be used with pcpio -i. Provides a detailed listing when used with the
-toption.

Operands
The following operands are available:

patterns Simple regular expressions given in the name-generating notation
of the shell.

directory The destination directory.

File

See also

Note

pepio(e)

Exit status
The pepio utility exits with one of the following values:

o All input files were copied.

2 The utility encountered errors in copying or accessing files or direc­
tories. An error will be reported for nonexistent files or directories, or
permissions that do not allow the user to access the source or target
files.

It is important to use the -depth option of the find utility to generate path­
names for pepio. This eliminates problems pepio could have trying to create
files under read-only directories.

The following command:

Is I pepio -0 > Itmp/newfile
copies out the files listed by the Is utility and redirects them to the file
Itmplnewfile.

The following command:

cat Itmp/newfile I pepio -id ''memo/al'' ''memolb*''
uses the output file /tmp/newfile from the pepio -0 utility, takes those files that
match the patterns memo/al and memo/b*, creates the directories below the
current directory, and places the files in the appropriate directories.

The command

find. -depth -print I pepio -pdlmv newdir
takes the file names piped to it from the find utility and copies or links those
files to another directory named newdir, while retaining the modification time.

Idev/tty used to prompt the user for information when the -i or -r
options are specified.

find(C), pax(C), tar(C), tar(F)

When you use epio commands with find, if you use the -L option with epio,
then you must use the -follow option with find and vice-versa.

363

pcpio(C)

Copyright

Author

Copyright (c) 1989 MarkH. Colburn.
All rights reserved.

Redistribution and use in source and binary forms are permitted provided
that the above copyright notice is duplicated in all such forms and that any
documentation, advertising materials, and other materials related to such dis­
tribution and use acknowledge that the software was developed by Mark H.
Colburn and sponsored by The USENIX Association.

THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PUR­
POSE.

Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1
St. Paul, MN 55102
mark@jhereg.MN.ORG

Sponsored by The USENIX Association for public distribution.

Standards conformance

364

pcpio is conformant with:

IEEE POSIX Std 1003.1-1990 System Application Program Interface (API) [C
Language] (ISO/IEC 9945-1);
and NIST FIPS 151-1.

pg(C)

pg
paginate display for soft-copy terminals

Syntax
pg [-number] [-p string] [-cefns] [+linenumber] [+Ipatternl] [files . ..]

Description

The pg command is a filter which allows the examination of files one screen­
ful at a time on a soft-copy terminal. (The dash (-) command line option
and/or NULL arguments indicate that pg should read from the standard
input.) Each screenful is followed by a prompt. If you press the (Return) key,
another page is displayed; other possibilities are listed below. This command
is different from previous paginators because it allows you to back up and
review something that has already passed.

To determine terminal attributes, pg scans the termcap(F) database for the ter­
minal type specified by the environment variable TERM. If TERM is not
defined, the terminal type dumb is assumed.

The command line options are:

-number

-p string

-c

-e

-f

-n

Specifies the size (in lines) of the window that pg is to use
instead of the default. (On a terminal containing 24 lines, the
default window size is 23.)

Causes pg to use string as the prompt. If the prompt string con­
tains a "%d", the first occurrence of "%d" in the prompt will be
replaced by the current page number when the prompt is
issued. The default prompt string is a colon (:).

Homes the cursor and clears the screen before displaying each
page. This option is ignored if cl (clear screen) is not defined for
this terminal type in the termcap(F) database.

Causes pg not to pause at the end of each file.

Inhibits pg from splitting lines. In the absence of the -f option,
pg splits lines longer than the screen width, but some sequences
of characters in the displayed text (for example, escape
sequences for underlining) give undesirable results.

Normally, commands must be terminated by pressing the
(Return) key (ASCII newline character). This option causes an
automatic end of command as soon as a command letter is
entered.

365

pg(C)

366

-s Causes pg to display all messages and prompts in standout
mode (usually inverse video).

+linenumber Starts up at linenumber.

+Ipattern! Starts up at the first line containing the regular expression pat­
tern.

The responses that may be entered when pg pauses can be divided into three
categories: those that cause further perusal, those that search, and those that
modify the perusal environment.

Commands which cause further perusal normally take a preceding address
(an optionally signed number indicating the point from which further text
should be displayed). pg interprets this address in either pages or lines
depending on the command. A signed address specifies a point relative to the
current page or line, and an unsigned address ~pecifies an address relative to
the beginning of the file. Each command has a default address if no address is
provided.

The perusal commands and their defaults are as follows:

(+ 1) (Return) Causes one page to be displayed. The address is specified
in pages.

(+1) 1 With a signed address, causes pg to simulate scrolling the
screen, forward or backward, the number of lines specified.
With an unSigned address this command displays a full
screen of text beginning at the specified line.

(+ 1) d or (CtrI)d Simulates scrolling half a screen forward or backward.

The following perusal commands take no address:

. or (CtrI)l

$

Causes the current page of text to be redisplayed.

Displays the last screen of text in the file. Use with caution
when the input is a pipe.

The following commands are available for searching for text patterns in the
text. The regular expressions described in ed(C) are available. They must
always be terminated by a newline character, even if the -n option is specified.

i Ipattern!

i pattern A

i ?pattern

Search forward for the ith (default i=1) occurrence of pattern.
Searching begins immediately after the current page and contin­
ues to the end of the current file, without wrap-around.

Search backwards for the ith (default i=1) occurrence of pattern.
Searching begins immediately before the current page and con­
tinues to the beginning of the current file, without wrap-around.
The caret n notation is useful for terminals which will not prop­
erly handle the question mark (?).

Example

pg(C)

After searching, pg displays the line found at the top of the screen. You can
modify this by appending m or b to the search command to leave the line
found in the middle or at the bottom of the window from now on. Use the
suffix t to restore the original situation.

The following commands modify the environment of perusal:

i n Begins perusing the ith next file in the command line. The
default value of i is 1.

i P Begins perusing the ith previous file in the command line. The
default value of i is 1.

i w Displays another window of text. If i is present, set the window
size to i.

s filename Saves the input in the named file. Only the current file being
perused is saved. The white space between the s and filename
is optional. This command must always be terminated by a
newline character, even if the -n option is specified.

h Help displays abbreviated summary of available commands.

q or Q Quit pg.

!command command is passed to the shell, whose name is taken from the
SHELL environment variable. If this is not available, the default
shell is used. This command must always be terminated by a
newline character, even if the -n option is specified.

At any time when output is being sent to the terminal, the user can press the
QUIT key (normally (Ctrl) \) or the INTERRUPT key (normally (Break». This
causes pg to stop sending output, and display the prompt. The user may then
enter one of the above commands in the normal manner. Unfortunately, some
output is lost when this is done, because any characters waiting in the
terminal's output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat(C), except
that a header is printed before each file (if there is more than one).

To use pg to read system news, enter:
news I pg -p "(Page % d):"

367

pg(C)

Files

See also

Notes

/etc/termcap
/tmp/pg*

Terminal information database
Temporary file when input is from a pipe

cat(C), ed(C), grep(C), more(C), termcap(F)

If terminal tabs are not set every eight positions, undesirable results may
occur.

When using pg as a filter with another command that changes the terminal
I/O options, terminal settings may not be restored correctly.

While waiting for terminal input, pg responds to (Ctrl)(Break) 'and (Del) by ter­
minating execution. Between prompts, however, these signals interrupt pg's
current task and place you in prompt mode. Use these signals with caution
when input is being read from a pipe, since an interrupt is likely to terminate
the other commands in the pipeline.

The z and f commands used with more(C) are available, and the terminal
slash (/), caret n, or question mark (?) may be omitted from the searching
commands.

Standards conformance

pg is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

368

pr(C)

pr
print files on the standard output

Syntax
pr [options] [files]

Description

The pr command prints the named files on the standard output. If file is II - ",

or if no files are specified, the standard input is assumed. By default, the list­
ing is separated into pages, each headed by the page number, date and time of
file creation or last modification, and the name of the file.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -5 option is used, lines are not truncated
and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

Options may appear singly or combined in any order. Their meanings are:

+k Begins printing with page k (default is 1).

-k Produces k-column output (default is 1). The options -e and -i are
assumed for multi-column output.

-a Prints multi-column output across the page.

-m Merges and prints all files simultaneously, one per column (overrides
the -k, and -a options).

-d Double-spaces the output.

-eck Expands input tabs to character positions k+l, 2*k+l, 3*k+l, etc. If k is
o or is omitted, default tab settings at every 8th position are assumed.
Tab characters in the input are expanded into the appropriate number of
spaces. If c (any non-digit character) is given, it is treated as the input
tab character (default for c is the tab character).

-ick In output, replaces white space wherever possible by inserting tabs to
character positions k+ I, 2*k+ I, 3*k+ I, etc. If k is 0 or is omitted, default
tab settings at every 8th position are assumed. If c (any non-digit char­
acter) is given, it is treated as the output tab character (default for c is
the tab character).

369

pr(C)

Examples

See also

370

-nek Provides k-digit line numbering (default for k is 5). The number occu­
pies the first k+ 1 character positions of each column of normal output or
each line of -m output. If e (any non-digit character) is given, it is
appended to the line number to separate it from whatever follows
(default for e is a tab).

-wk Sets the width of a line to k character positions (default is 72 for equal­
. width multi-column output, no limit otherwise).

-ok Offsets each line by k character positions (default is 0). The number of
character positions per line is the sum of the width and offset.

-lk Sets the length of a page to k lines (default is 66).

-h Uses the next argument as the header to be printed instead of the
filename.

-p Pauses before beginning each page if the output is directed to a terminal
(pr will ring the bell at the terminal and wait for a carriage return).

-f Uses form feed character for new pages (default is to use a sequence of
linefeeds). Pauses before beginning the first page if the standard output
is associated with a terminal.

-r Prints no diagnostic reports on failure to open files.

-t Prints neither the 5-line identifying header nor the 5-line trailer normally
supplied for each page. Quits printing after the last line of each file
without spacing to the end of the page.

-se Separates columns by the single character e instead of by the appropri­
ate number of spaces (default for e is a tab).

The following prints filel and file2 as a double-spaced, three-column listing
headed by "file list":

pr -3dh "file list" filel file2

The following writes filel on file2, expanding tabs to columns 10, 19, 28,
37 ... :

pr -e9 -t <filel >file2

cat(C)

pr(C)

Standards confonnance

pr is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

371

pnvarn(C)

prwarn
warn about password expiration

Syntax
prwarn [-d days] [-t hh[mm]] [users]

Description

Files

See also

prwarn issues a warning if the user's password must be changed within days
and the user has not been warned of the impending expiry in the last hhmm,
where hh is hours and mm is minutes. By default, warnings will be issued if
the password is due to expire within seven days, at six hour intervals.

If days is infinite, and no warning has been issued in the last hh[mm], a warn­
ing is given. If hh[mm] is always, and the password must be changed within
days, a warning is issued. Thus:

prwarn -d infinite -t always
always issues a warning.

If no users are specified, then the logged-in user is assumed and the time that
the last report was issued is the modification time of .pnvarn_time in the user's
home directory.

System administrators (users with the auth subsystem authorization or
passwd secondary authorization) may check the password expiry status of
other users; the time interval between reports being issued is not checked.

The number of days left before the password expires, the date at which the
password expires, and whether the password can still be changed or is dead
(expired and exceeded its lifetime) is reported.

/usr/bin/pnvarn
$HOME/.pnvarn_time used to check time of last warning

passwd(C)

Value added

372

prwam is an extension of AT&T System V provided by The Santa Cruz
Operation, Inc.

ps(C)

ps
report process status

Syntax
ps [options]

Description

The ps command prints certain information about active processes. Without
options, information is printed about processes associated with the control­
ling terminal. Output consists of a short listing containing only the process
ID, terminal identifier, cumulative execution time, and the command name.
Otherwise, the information that is displayed is controlled by the selection of
options.

Options accept names or lists as arguments. Arguments can be either
separated from one another by commas or enclosed in double quotes and
separated from one another by commas or spaces. Values for proclist and
grplist must be numeric.

The options are given in descending order according to volume and range of
information provided:

-e Print information about every process now running.

-d Print information about all processes except process group
leaders.

-a Print information about all processes most frequently requested:
all those except process group leaders and processes not associ­
ated with a terminal.

-£ Generate a full listing (see below for significance of columns in a
full listing).

-1 Generate a long listing (see the following text).

-n name Valid only for users with a real user ID of root or a real group ID
of sys. Takes argument signifying an alternate system name in
place of /unix.

-t termlist List only process data associated with the terminal given in
term list. Terminal identifiers may be specified in one of two
forms: the device's filename (for example, tty04) or, if the de­
vice's filename starts with tty, just the digit identifier (for exam­
pIe, 04).

373

ps(C)

374

-p proclist List only process data whose process ID numbers are given in
proclist.

-u uidlist List only process data whose user ID number or login name is
given in uidlist. In the listing, the numerical user ID will be
printed unless you give the -£ option, which prints the login
name.

-ggrplist List only process data whose process group leaders ID num­
ber(s) appears in grplist. (A group leader is a process whose
process ID number is identical to its process group ID number.
A login shell is a common example of a process group leader.)

Under the -£ option, ps tries to determine the command name and arguments
given when the process was created by examining the user block. Failing this,
the command name is printed, as it would have appeared without the -£
option, in square brackets.

The column headings and the meaning of the columns in a .ps listing are given
in the following text; the letters II f II and II I" indicate the option (full or long,
respectively) that causes the corresponding heading to appear; all means that
the heading always appears. Note that these two options determine only
what information is provided for a process; they do not determine which pro­
cesses will be listed.

F (1) Flags (hexadecimal and additive) associated with the
process

00 Process has terminated: process table entry now
available.

01 A system process: always in primary memory.

02 Parent is tracing process.

04 Tracing parent's signal has stopped process: parent
is waiting (ptrace(S».

08 Process is currently in primary memory.

10 Process currently in primary memory: locked until
an event completes.

20 Process can not be swapped.

ps(C)

S (1) The state of the process:

0 Process is running on a processor.

S Sleeping: process is waiting for an event to com-
plete.

R Runnable: process is on run queue.

I Idle: process is being created.

Z Zombie state: process terminated and parent not
waiting.

T Traced: process stopped by a signal because parent
is tracing it.

X SXBRK state: process is waiting for more primary
memory.

UID (f,l) The user ID number of the process owner (the login name
is printed under the -f option).

PID (all) The process ID of the process (this number is needed in
order to kill a process).

PPID (f,l) The process ID of the parent process.

C (f,l) Processor utilization for scheduling.

PRI (1) The priority of the process (higher numbers mean lower
priority).

NI (1) Nice value, used in priority computation.

ADDR (1) The memory address of the process.

SZ (1) The size (in pages or clicks) of the swappable process's
image in main memory.

WCHAN (1) The address of an event for which the process is sleeping,
or in SXBRK state, (if blank, the process is running).

STIME (f) The starting time of the process, given in hours, minutes,
and seconds. (A process begun more than twenty-four
hours before the ps inquiry is executed is given in months
and days.)

TTY (all) The controlling terminal for the process (the message" ? "
is printed when there is no controlling terminal).

375

ps(C)

Files

See also

Notes

376

TIME (all) The cumulative execution time for the process.

COMMAND (all) The command name (the full command name and its
arguments are printed under the -f option).

A process that has exited and has a parent, but has not yet been waited for by
the parent, is marked <defunct>.

/dev
/dev/sxt/*
/dev/tty*
/dev/xt/*
/dev/kmem
/dev/swap
/dev/mem
/etc/passwd
/etc/ps_data
/unix

terminal (litty") names searcher files

kernel virtual memory
the default swap device
memory
UID information supplier
internal data structure
system name list

getty(ADM), kill(C), nice(C)

Things can change while ps is running; the snap-shot it gives is only true for a
split-second, and it may not be accurate by the time you see it. Some data
printed for defunct processes is irrelevant.

If no term list, proclist, uidlist, or grplist is specified, ps checks stdin, stdout,
and stderr in that order, looking for the controlling terminal and will attempt
to report on processes associated with the controlling terminal. In this situa­
tion, if stdin, stdout, and stderr are all redirected, ps will not find a controlling
terminal, so there will be no report.

On a heavily loaded system, ps may report an lseek(S) error and exit. ps may
seek to an invalid user area address: having obtained the address of a pro­
cess' user area, ps may not be able to seek to that address before the process
exits and the address becomes invalid.

ps -ef may not report the actual start of a tty login session, but rather an ear­
lier time, when a getty was last respawned on the tty line.

ps(C)

Authorization

The behavior of this utility is affected by assignment of the mem authoriza­
tion. Refer to the ''Using a secure system" chapter of the Users Guide for more
details.

Standards conformance

ps is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

377

pstat(C)

pstat
reports system information

Syntax
pstat [-aipf] [-u I-U ubasel ubase2] [-n name list] [-s swapfile] [file]

Description

378

The pstat command interprets the contents of certain system tables. pstat
searches for these tables in /dev/mem and /dev/kmem. With the file given, the
tables are sought in the specified file rather than /dev/mem. The required
namelist is taken from /unix.

pstat without options prints information for all three tables: the inode table,
the process table, and the file table.

Options are:

-a Must be used with -po Describe all process slots rather than just active
ones.

-i Prints the inode table with these headings:

LaC

FLAGS

The core location of this table entry.

Miscellaneous state variables:

L Locked

U Update time must be corrected

A Access time must be corrected

M File system is mounted here

W Wanted by another process (L flag is on)

T Contains a text (executable image) file

C Changed time must be corrected

CNT Number of open file table entries for this inode.

DEVICE Major and minor device number of file system in which this
inode resides.

INa I-number within the device.

FS

MODE

NLK

UID

Filesystem type. 1 indicates UNIX.

Mode bits, see chmod(S).

Number of links to this inode.

User ID of owner.

pstat(C)

SIZE/DEV Number of bytes in an ordinary file, or major and minor de­
vice of special file.

-p Prints process table for active processes with these headings:

LaC The core location of this table entry.

S Run state encoded thus:

0 No process.

1 Awaiting an event.

2 Running.

3 Process terminated but not waited for.

4 Process stopped by debugger.

5 Intermediate state in process creation.

6 Process is being run on a processor.

7 Process being xswapped.

F Miscellaneous state variables, ORed together:

OxOOOOOOOl System (resident) process.

Ox00000002 Process is being traced.

Ox00000004 Ptraced process has been given to parent by
wait(S); Don't return this process to parent
again until it runs first.

Ox00000008 Process cannot be awakened by a signal.

OxOOOOOOlO In core.

Ox00000020 Process cannot be swapped.

Ox00000040 Set when signal goes remote.

OxOOOOO080 Process in stream poll or doing select().

379

pstat(C)

380

OxOOOOOl00 Process is being stopped via /proc.

Ox00000200 Signal or syscall tracing via /proc.

Ox00000400 Doing I/O via /proc, so don't run.

Ox00000800 Stop on exec.

OxOOOOl000 Process is open via /proc.

Ox00002000 V-block in core.

Ox00004000 Set process running on last /proc close.

Ox00008000 Proc asleep, stop not allowed.

OxOOOl0000 Process is exiting via ptrace(S).

Ox00020000 Proc is stopped within a call to sleepO.

Ox00040000 V-block is being swapped in or out.

Ox00080000 Waiting for u-block swap to complete.

OxOOl00000 Restore old mask after taking signal.

Ox00200000 Child of a fork, but no exec yet.

PRI Scheduling priority, see nice(C).

SIG Signals received (signals 1-16 coded in bits 0-15).

UID Real user ID.

TIM Time resident in seconds; times over 127 coded as 127.

CPU Weighted integral of CPU time, for scheduler.

NI Nice level, see nice(C).

PGRP Process number of root of process group (the opener of the
controlling terminal).

PID The process ID number.

PPID The process ID of parent process.

ADDRI
ADDR2 If in core, the physical page frame numbers of the u-area of

the process. These numbers can be translated into the
addresses of the u-area, which is split and stored in two
pages. If swapped out, the position in the swap area is
measured in multiples of 1024 bytes.

WCHAN Wait channel number of a waiting process.

LINK Link pointer in list of runnable processes.

INODP Pointer to location of shared inode.

CLKT Countdown for alarm(S) measured in seconds.

-f Prints the open file table with these headings:

LaC

FLAGS

The core location of this table entry.

Miscellaneous state variables:

R Open for reading

W Open for writing

A Open for append

N No delay (non-blocking)

S Synchronized write operation

CNT Number of processes that know this open file.

INa The location of the inode table entry for this file.

OFFS The file offset, see Iseek(S).

-u ubasel ubase2

pstat(C)

Prints information about a user process. Information is drawn from the
user area as defined in /usr/include/user.h.

ubasel and ubase2 are the physical page frame numbers of the u-area of
the process. The numbers may be obtained by using the long listing (-1
option) of the ps(C) command. If the addresses ubasel and ubase2 do
not correspond to a valid u-page, then pstat exits with an error.

-u ubasel ubase2
-U is the same as -u, only it gets the u-area from the swap device.

-nnamelist
Use the file namelist as an alternate namelist in place of /unix.

-s swapfile
Use swapfile as the swapfile.

file Source of tables as an alternative to /dev/mem.

381

pstat(C)

Files

See also

/unix
/dev/mem
Idev/swap

Default namelist
Default source of tables
Default swap device

alarm(S), chmod(S), filesystem(FP), lseek(S), nice(C), ps(C), stat(S)

System Administrator's Guide

Authorization

The behavior of this utility is affected by assignment of the mem authorization.
If you do not have this authorization, the output will be restricted to data per­
taining to your activities only. Refer to the "Using a secure system" chapter of
the User's Guide for more details.

Value added

382

pstat is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

ptar(C)

ptar
process tape archives

Syntax

ptar -c [bLfvw] device block filename . . .

ptar -r [bLvw] device block [filename ...]

ptar -t [fv] device

ptar -u [bLvw] device block

ptar -x [flmovw] device [filename .. .]

Description

The ptar command reads and writes archive files which conform to the
Archive/Interchange File Format specified in IEEE Std. 1003.1-1988.

Options
The following options are available:

-c Creates a new archive; writing begins at the beginning of the archive,
instead of after the last file.

-r Writes named files to the end of the archive.

-t Lists the names of all of the files in the archive.

-u Causes named files to be added to the archive if they are not already
there, or have been modified since last written into the archive. This
implies the -r option.

-x Extracts named files from the archive. If a named file matches a directory
whose contents had been written onto the archive, that directory is recur­
sivelyextracted.

If a named file in the archive does not exist on the system, the file is created
with the same mode as the one on the archive, unless the process does not
have the appropriate privileges. In this case the access permissions are set in
the same fashion that creal would have set them when given the "mode" argu­
ment, matching the file permissions supplied by the "mode" field of the plar
format. The set-user-id and get-group-id modes are not set unless the user has
the appropriate privileges.

383

ptar(C)

File

See also

384

If the files exist, their modes are not changed except as described above. The
owner, group and modification time are restored if possible. If no filename
argument is given, the entire contents of the archive are extracted. Note that
if several files with the same name are in the archive, the last one will
overwrite all earlier ones.

-b Causes ptar to use the next argument on the command line as the block­
ing factor for tape records. The default is 1; the maximum is 20. This
option should only be used with raw magnetic tape archives. Normally,
the block size is determined automatically when reading tapes.

-L Causes ptar to follow symbolic links.

-f Causes ptar to use the next argument on the command line as the name
of the archive instead of the default, which is usually a tape drive. If" - II

is specified as a filename, ptar writes to the standard output or reads
from the standard input, whichever is appropriate for the options given.
Thus, ptar can be used as the head or tail of a pipeline.

-1 Tells ptar to report if it cannot resolve all of the links to the files being
archived. If -1 is not specified, no error messages are written to the stan­
dard output. This modifier is only valid with the -c, -r and -u options.

-m Tells ptar not to restore the modification times. The modification time of
the file will be the time of extraction. This modifier is invalid with the -t
option.

-0 Causes extracted files to take on the user and group identifier of the user
running the program rather than those on the archive. This modifier is
only valid with the -x option.

-v Causes ptar to operate verbosely. Usually, ptar does its work silently, but
the -v modifier causes it to print the name of each file it processes, pre­
ceded by the option letter. With the -t option, -v gives more information
about the archive entries than just the name.

-w Causes ptar to print the action to be taken, followed by the name of the
file, and then wait for the user's confirmation. If a word beginning with y
is given, the action is performed. Any other input means "nd'. This
modifier is invalid with the -t option.

/deo/tty used to prompt the user for information when the -i or -y options
are specified.

cpio(C), dd(C), find(C), pax(C), pcpio(C)

ptar(C)

Copyright

Author

Copyright (c) 1989 Mark H. Colburn.
All rights reserved.

Redistribution and use in source and binary forms are permitted provided
that the above copyright notice is duplicated in all such forms and that any
documentation, advertising materials, and other materials related to such dis­
tribution and use acknowledge that the software was developed by Mark H.
Colburn and sponsored by The USENIX Association.

THE SOFTWARE IS PROVIDED liAS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PUR­
POSE.

Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1
St. Paul, MN 55102
mark@jhereg.MN.ORG

Sponsored by The USENIX Association for public distribution.

Standards confonnance

ptar is conformant with:

IEEE POSIX Std 1003.1-1990 System Application Program Interface (API) [C
Language] (ISO/IEC 9945-1);
and NIST FIPS 151-1.

385

purge(C)

purge
overwrite specified files

Syntax
purge [-f] [-r] [-v] [-m num] [-suo] [-t type] ... [-z] [files] ...

Description

386

The purge command is used to overwrite various parts of the system. It
overwrites files specified on the command line, or those listed in a policy file
maintained by the system administrator. The policy file defines types of files
and devices which are purged as a group. The utility can be used to purge in­
dividual files, divvy(ADM) divisions, fdisk(ADM) partitions, or other devices
like magnetic tapes and floppies. An option even exists to zero memory.

The optional flags are outlined below:

-f Do not warn about files which are nof present or inaccessible.
Attempts to purge a floppy which is inaccessible (for example, the
door is open) will always generate a diagnostic on the system con­
sole.

-r Recursively purge directories. Without this flag no action is taken
upon directories.

-v Verbose operation, list the name of each file as it is overwritten.

-m num Overwrite. each file num times.

-s Overwrite files and devices designated as "system" in the policy
file. (EqUivalent to -tsystem.)

-u Overwrite files and devices designated as "user" in the policy file.
(Equivalent to -tuser.)

-0 Overwrite other <non-system and non-user) files and filesystems.
This purges all entries in the policy file which are not of either type
system or user. This flag, by the nature of its implicit definition, has
no -t equivalent.

-t type Overwrite the files identified in the policy file as being part of
group type.

-z Writes binary zeroes to system memory, including memory buffers
of intelligent devices (that is, disk controller cache, etc.). This will
close down the system immediately. This should only be done
from single-user mode, or when no users are logged on. The sys­
tem will autoboot if so configured (see autoboot(ADM». Only the
super user may use this option.

File

See also

purge(C)

files Regular, directory or special files to purge.

Similarly to regular files, most special files can be purged by being placed in
the policy file or with the command purge Idev/specialJile. Block special
files and some character special files can be overwritten. The console, ttys,
printers and other "infinite output" devices cannot be purged with this com­
mand. Disks, floppies and magnetic tapes can be overwritten. Tape devices
are first erased once and then overwritten the specified number of times.

When both types and files are specified on the command line, all of the indi­
cated files are overwritten by the utility. In particular, first the files selected
from the policy file, and then those specified on the command line, are
overwritten.

Each line in the policy file (fete/default/purge) designates a file, filesystem or de­
vice as a member of some type. The syntax of a line is:

file type [count]
The optional count field is the number of times to overwrite file. The default
count is one. The utility will overwrite file any time the command

purge -t type
is given.

Blank lines in the policy file and lines beginning with" #" are ignored.

/etc/default/purgeThe policy file

autoboot(ADM), dd(C), hd(C), od(C), rm(C), purge(F), sysadmsh(ADM)

Diagnostics

purge: warning: invalid entry in policy file (line n)

An invalid line was read from the policy file where n is the number of the
incorrectly formatted line.

purge: filename is a directory

If the -r switch is not specified no action is taken upon directories and this
diagnostic is displayed.

purge: only the superuser can zero memory

This message is displayed when a user other than the super user tries to use
the -z option.

387

purge(C)

Notes

When files are overwritten multiple times, the first pass writes binary zeros.
Subsequent passes alternate writing binary ones and binary zeros.

After being overwritten, od(C), dd(C), or hd(C) may be used to verify that no
data remains on the device or in the file.

Onlv the suoer user mav use the -z ontion to 7.PTO thp c;vc;tpm'c; mprrlonT
"... J J. --~----------------J-

Value added

388

purge is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

pwd(C)

pwd
print working directory name

Syntax

pwd

Description

Note

See also

pwd prints the pathname of the working (current) directory.

A version of pwd is built into the Kom shell (ksh(C». It differs slightly from
the program described here. For further information refer to the ksh(C) entry.

cd(C)

Diagnostics

"Cannot open ... " and "Read error in ... " indicate possible file system trou­
ble. In such cases, see the System Administrator's Guide for information on fix­
ing the filesystem.

Standards conformance

pwd is conformant with:

AT&TSVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

389

quot(C)

quot
summarize file system ownership

Syntax

quot [option] ... [filesystem]

Description

Files

See also

Notes

quot prints the number of blocks in the named filesystem currently owned by
each user. If no filesystem is named, the file systems given in /etc/mnttab are
examined.

The following options are available:

-n Processes standard input. This option makes it possible to produce a list
of all files and their owners with the following command:

ncheck file system I sort +On I quot -n filesystem

-c Prints three columns giving file size in blocks, number of files of that
size, and cumulative total of blocks in files of that size or smaller. Data
for files of size greater than 499 blocks is included in the figures for files
of exactly size 499.

-f Prints a count of the number of files as well as space owned by each
user.

/etc/passwd
/etc/mnttab

Gets user names
Contains list of mounted file systems

cmchk(C), du(C), Is (C), machine(HW)

Holes in files are counted as if they actually occupied space.

Blocks are reported in 512 byte blocks.

See also "Notes" under mount(ADM).

Value added

390

quot is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

random(C)

random
generate a random number

Syntax

random [-s] [scale]

Description

See also

Notes

The random command generates a random number on the standard output.
and returns the number as its exit value. By default, this number is either 0 or
1 (that is, scale is 1 by default). If scale is given a value between 1 and 255,
then the range of the random value is from 0 to scale. If scale is greater than
255, an error message is printed.

When the -s, "silent" option is given, the random number is returned as an
exit value but is not printed on the standard output. If an error occurs, ran­
dom returns an exit value of zero.

rand(S}

This command does not perform any floating point computations.

random uses the time of day as a seed.

391

rep(e)

rep
copy files across systems

Syntax
rep [options] [srcmachine:] srcfile [destmachine:] destfile

Description

392

The rep command copies files between systems in a Micnet network. The
command copies the srcmachine:srcfile to destmachine:destfile, where srcma­
chine: and destmachine: are optional names of systems in the network, and
srcfile and destfile are pathnames of files. If a machine name is not given, the
name of the current system is assumed. If "-" is given in place of srcfile, rep
uses the standard input as the source. Directories named on the destination
machine must have write permission, and directories and files named on a
remote source machine must have read permission.

The available options are:

-m Mails and reports completion of the command, whether there is an
error or not.

-u [machine:]user
Any mail goes to the named user on machine. The default machine is
the machine on which the rep command is completed or on which an
error was detected. If an alias for user exists in the system alias files on
that machine, the mail will be redirected to the appropriate
mailbox(es). Since system alias files are usually identical throughout
the network, any specified machine will most likely be overridden by
the aliasing mechanism. To prevent aliasing, user must be escaped
with at least two "\" characters (at least four if given as a shell com­
mand).

rep is useful for transferring small numbers of files across the network. The
network consists of daemons that periodically awaken and send files from
one system to another. The network must be installed using netutil(ADM)
before rep can be used.

Also, to enable transfer of files from a remote system, either:

This line should be in /ete/default/mienet on the systems in the network:
rcp=lusr/bin/rcp

Or, these lines should be in that file:
executeall
execpath=PATH=path

where path must contain /usr/bin.

rep (C)

Example

rep -m maehinel:/elc/mnttab Itmplvtape

See also

mail(C), micnet(FP), netutil(ADM), remote(C)

Diagnostics

Notes

If an error occurs, mail is sent to the user.

Full pathnames must be specified for remote files.

rep handles binary data files transparently: no extra options or protocols are
needed to handle them. Wildcards are not expanded on the remote machine.

Value added

rep is an extension of AT&T System V provided by The Santa Cruz Operation,
Inc.

393

rcvalert(C)

rcvalert
mail-receipt notification

Syntax
lusrlbinlrcvalert [size]

Description

Example

Files

See also

Credit

394

The rcvalert command displays a line of mail header information on your
screen when a letter is received. MMDF invokes rcvalert for you rather than
you running it yourself. This command is run when you insert a pipe entry to
rcvalert in your .maildelivery file in your home directory. The rcvalert com­
mand checks to see if you are logged on and if your terminal may be written
to. If so, rcvalert prints a scan listing of the message on your terminal.

The scan line rings the terminal's bell and then prints the number of charac­
ters in the message and the contents of the "Prom:" and "Subject:" com­
ponents, if present. If the "Subject:" component is not present or is very short,
some of the initial text from the body of the message is included.

The size argument to rcvalert specifies the size of the message.

The following entry in the .maildelivery file invokes rcvalert:
pipe R rcvalert $(size)

Specify the full pathname of the rcvalert program, if the /usr/bin directory is
not in your search path.

/etc/utmp used to see who is logged in
$HOME/.maildeliveryyour delivery specification file

rcvtrip{ C), maildelivery(F)

This utility was written by David H. Crocker.

MMDF was developed at the University of Delaware and is used with permis­
sion.

rcvfi'e(C)

rcvfile
put message into named file

Syntax
lusr/binlrcvfile directory [-llogfile] [-m]

Description

Example

This program is intended to be invoked from your $HOME/.maildelivery file.
This command examines the "Subject:" field of a mail message and stores the
message in a file if the "Subject:" line contains the rcvfile keyword as the first
word in the line. The rcvfile command can be invoked manually if desired,
and a mail message piped into the command.

To have mail filed by rcvfile, format the "Subject:" line as follows:
Subject: rcvfile output-filename

The destination file name is created by concatenation of the directory value, a
slash (/), and the filename given in the subject field after the rcvfile keyword.
The filename from the subject field is not allowed to contain any " .. " direc­
tory components. If any are found, rcvfile quits. When a message is stored,
the message headers are removed and only the text is stored in the specified
file.

The directory argument is required. The -1 option sets the logfile where a
record of rcvfile activity is made. The file must already exist and be writable
to the recipient. The -m option enables the creation of missing directories in
the pathname of a file to be created. The created directories are given permis­
sion modes of 0755.

The owner of the created file is notified by mail when a file is delivered, with
information about who sent it and other relevant facts. It is possible that the
owner may not be the recipient if the referenced file existed, was owned by
another user, and was writable. If the file delivery fails for any reason, the
message is delivered as normal mail.

A typical entry in your .maildelivery can be:
subject rcvfile pipe A rcvfile

or
Addr user=file pipe A rcvfile

395

rcvfile(C)

File

See also

Credit

396

Specify the full pathname of rcvfile if /usr/bin is not in your search path.

$HOME/.maildelivery

maildelivery(P}

This utility was written by David H. Crocker.

MMDF was developed at the University of Delaware and is used with permis­
sion.

rcvprint(C)

rcvprint
print message automatically

Syntax
lusrlbinlrcvprint

Description

Example

File

See also

Credit

This command is intended to be run from your $HOME/.maildelivery file. The
purpose of rcvprint is to pipe the body of the message into a program that
prints the message on a line printer. The rcvprint program tries a variety of
different programs until it finds one that will execute. It then waits to see
how the program coped and reports back to the local channel.

A typical entry in your $HOME/.maildelivery file is:
subject printer pipe A rcvprint

Specify the full pathname of rcvprint if the /usr/bin directory is not in your
search path.

$HOME/ .maildelivery

maildelivery(F)

This utility was written by David H. Crocker.

MMDF was developed at the University of Delaware and is used with permis­
sion.

397

rcvtrip(C)

rcvtrip
notify mail sender that recipient is away

Syntax
/usrlhinlrcvtrip [-d] [address]

Description

398

The rcvtrip command makes it possible for you to notify the sender of a mes­
sage that you are away on a trip and you won't be answering your mail for
some time. MMDF runs rcvtrip on your behalf rather than you running it
directly.

To enable use of rcvtrip, put the following line in your .maildelivery file:
* pipe R rcvtrip $(sender)

Make sure that your .maildelivery file is not writable by anyone but you. You
may also place a "custom" reply message in a file named tripnote. Finally, you
should create an empty triplog file.

When rcvtrip processes a message, it performs the following steps:

1. Decide if this type of message should receive a reply.

2. Decide to whom the reply should be sent.

3. Decide whether this sender has already received a reply.

The rcvtrip command decides whether this is the type of message that should
get a reply by looking at the contents of the "Resent-To:", "Resent-Cc:", "To:"
and "Cc:" header fields. If the recipient has an .alter 3gos file (described next),
then one of the addresses in that file must appear in one of these header fields
for a reply to be sent. If the recipient does not have an .alter _egos file, then the
recipient's name or a first-order alias of the recipient's name (for example,
dlong-->long) must appear in one of these header fields fot a reply to be sent.
This procedure ensures that rcvtrip will not reply to messages sent to mailing
lists, unless the recipient's name (or some variant of the recipient's name) is
explicitly mentioned in a header field.

If rcvtrip decides it should send a reply to the message, it looks at several
other address fields to determine to whom the reply should be sent. It uses, in
order of precedence:

1. addresses in "Resent-Reply-To:"

2. addresses in "Resent-From:" and, if present, "Resent-Sender:"

3. addresses in "Reply-To:"

4. addresses in "From:" and either "Sender:", if present, or the address argu­
ment from the command line.

Files

rev trip (C)

The rcvtrip command notifies any originator of mail who has not previously
been notified unless you pre-load their address into the trip log file (refer to the
"Files" section). The reply begins with some standard text (supplied by
rcvtrip) followed by whatever text the user has placed in the tripnote file, or
the following message if the tripnote file is missing:

Your mail has been received by the Mail System.
The person you are trying to contact is not here right now.
The Mail System does not know where to forward your message,
so it will be stored here until the recipient returns to read it.
This may take some time.

The originators' names are recorded in triplog, along with the date and time
the message came in, an indication of whether it was answered (" +" = yes),
and the first few characters of the subject. This appears as:

+ jpo@nott.ac.uk Wed Oct 8 16:08 » about your last message

$HOME/tripnote contains a reply message to be sent to those sending
you mail.

$HOME/triplog contains a list of who sent a message, what was its sub­
ject, when it arrived, and if a response was sent. It can
also be initialized by hand to contain the addresses,
one per line, which are not to receive replies.

$HOME/logfile if it exists, becomes an output file for logging diagnos­
tic information. If the -d option is specified, then
extensive output is generated for debugging purposes.
It is not a good idea to leave -d enabled if this file is left
lying around, as the output can be quite voluminous.

$HOME/.alter 3gos an optional file composed of "user®domain" lines for
all addresses to be considered 'you'. This is needed if
you have multiple hosts forwarding their mail to you.
If this file is present, then the standard comparisons
against your username and first-level aliases of your
username do not occur.

$HOME/.maildelivery is your mail delivery specification file. The previous
example shows the line that should be added to .mail­
delivery to enable use of rcvtrip. In this line, the
$(sender) argument is optional (but recommended).
You may need to give the full pathname of rcvtrip if it
is not in your search path.

399

rcvtrip(C)

See also

Credit

400

maildelivery{F)

MMDF was developed at the University of Delaware and is used with permis­
sion.

remote(C)

remote
execute commands on a remote system

Syntax
remote [-] [-f file] [-m] [-u user] machine command [arguments]

Description

remote is a limited networking facility that permits execub;,r, of UNIX com­
mands across serial lines. Commands on any connected system may be exe­
cuted from the host system using remote. A command line consisting of com­
mand and any blank-separated arguments is executed on the remote machine.
A machine's name is located in the file /etc/systemid. Note that wild cards are
not expanded on the remote machine, so they should not be specified in argu­
ments. The optional -m switch causes mail to be sent to the user telling
whether the command is successful.

The available options follow:

-ffile

-m

-u user

A dash Signifies that standard input is used as the standard input
for command on the remote machine. Standard input comes from
the local host and not from the remote machine.

Use the specified file as the standard input for command on the
remote machine. The file exists on the local host and not on the
remote machine.

Mails the user to report completion of the command. By default,
mail reports only errors.

Any mail goes to the named user on machine. The default ma­
chine is the machine on which an error was detected, or on which
the remote command was completed. The mail will be redirected
to the appropriate mailbox(es), if an alias for user exists in the sys­
tem alias files on that machine. Since system alias files are usually
identical throughout the network, any specified machine will most
likely be overridden by the aliasing mechanism. To prevent alias­
ing, user must be escaped with at least two 1/ \ " characters (at least
four if given as a shell command).

Before remote can be used successfully, a network of systems must be set up
and the proper daemons initialized using netutil(ADM). Also, entries for the
command to be executed using remote must be added to the /etc/default/micnet
files on each remote machine.

401

remote(C)

Example

See also

Note

402

The following command executes an Is command on the directory /tmp of the
machine machinel:

remote machinel1s Itmp

mail (C), micnet(F), netutil(ADM), rcp(C)

The mail command uses the equivalent of remote to send mail between ma­
chines.

resend(C)

resend
redistribute mail using the Resent- notation

Syntax
resend [-rw] [--subargs] addresses [-t addresses] [-c addresses]

Description

File

See also

The resend command is responsible for taking as input a standard mail mes­
sage, adding the various Resent- components to it, and then handing it over to
submit(ADM).

The usual method of operation is to pipe a message into resend and supply
the addresses to which to resend the message on the command line. The
default behavior can be changed with the following flags:

-r This specifies that error returns for this message are not required.

-w This flag enables you to follow the delivery attempt. submit and its
children will print out what they are doing.

Any argument starting in this manner is passed directly to submit after
losing the --.

After the flags have been processed, the address lists for the message are built
up. Normally all addresses are put onto one "Resent-To:" line, but they can be
broken up onto several "Resent-To:" lines by prefixing a block of addresses
with the -t flag. Alternatively the -c flag will start building up a list of
"Resent-Cc:" addresses. resend looks after all the other headers, such as
"Resent-Date", "Resent-From" etc.

login directoryf.fullname

submit(ADM)

403

nn(C)

rm
remove files or directories

Syntax
rm [-£ri] file ...

Description

Options

404

The rm command removes the entries for one or more files from a directory.
If an entry was the last link to the file, the file is destroyed. Removal of a file
requires write permission in its directory, but neither read nor write permis­
sion on the file itself. If a file is a symbolic link, the link will be removed, but
the file or directory to which it refers will not be deleted.

If the user does not have write permission on a specified file and the standard
input is a terminal, the user is prompted for confirmation. The file's name and
permissions are printed and a line is read from the standard input. If that line
begins with y, the file is deleted; otherwise, the file remains. If the -f option is
given or if the standard input is not a terminal, no messages are issued; files
are simply removed.

rm will not delete directories unless the -r option is used.

The following options are recognized.

-f When invoked with the -f option, rm does not prompt the user for confir­
mation for files on which the user does not have write permission. The
files are Simply removed.

-r The -r (recursive) option causes rm to recursively delete the entire contents
of the any directories specified, and the directories themselves. Symbolic
links encountered with this option will not be traversed. Note that the
rmdir(C) command is a safer way of removing directories.

-i The -i (interactive) option causes rm to ask whether to delete each file, and
if the -r option is in effect, whether to examine each directory.

The special option "-" can be used to delimit options. For example, a file
named" -f" could not be removed by rm because the hyphen is interpreted as
an option; the command rm -f would do nothing, since no file is specified.
Using rm - -f removes the file successfully.

See also

Notes

rm(C)

chmod(C), rmdir(C)

It is forbidden to remove the file .. to avoid the consequences of inadvertently
doing something like:

rm -r.*

It is also forbidden to remove the root directory of a given file system.

No more than 17 levels of subdirectories can be removed using the -r option.

If the "sticky" (t) bit is set on a directory, only the owner of a file can remove
that file from the directory. See chmod(C) for more information about
"sticky" bits.

Standards confonnance

rm is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

405

rmdir(C)

rmdir
remove directories

Syntax

rmdir [-p] [-8] dirname ...

Description

See also

The rmdir command removes the entries for one or more sub-directories from
a directory. A directory must be empty before it can be removed. (Note that
the rm -r dir command is a more dangerous alternative to rmdir.) If the
parent directory has the "sticky" bit set, removal occurs only if one of the fol­
lowing is true:

• the parent directory is owned by the user

• the dirname directory is owned by the user

• the dirname directory is writable to the user

• the user is the super user

The -p option allows users to remove the directory dirname and its parent
directories which become empty. A message is printed on standard output as
to whether the whole path is removed or part of the path remains for some
reason.

The -s option is used to suppress the message printed on standard error when
-p is in effect.

rmdir will refuse to remove the root directory of a mounted filesystem.

rm(C}

Diagnostics

rmdir returns an exit code of 0 if all the specified directories are removed suc­
cessfully. Otherwise, it returns a non-zero exit code.

Standards conformance

rmdir is conformant with:

AT&T SVID Issue 2.

406

rsh(C)

rsh
invoke a restricted shell (command interpreter)

Syntax
rsh [flags] [name [argl ...]]

Description

See also

rsh is a restricted version of the standard command interpreter sh(C). It is
used to set up login names and execution environments whose capabilities
are more controlled than those of the standard shell. The actions of rsh are
identical to those of sh, except that changing directory with cd, setting the
value of $P ATH, using command names containing slashes, and redirecting
output using> and» are all disallowed.

When invoked with the name -rsh, rsh reads the user's .profile (from
$HOME/.profile). It acts as the standard sh while doing this, except that an
intE;rmpt causes an immediate exit, instead of causing a return to command
level. The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes
sh to execute it. Thus, it is possible to provide shell procedures to the end
user that have access to the full power of the standard shell, while restricting
the user to a limited menu of commands; this scheme assumes that the end
user does not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete con­
trol over user actions, by performing guaranteed setup actions, then leaving
the user in an appropriate directory (probably not the login directory).

rsh is actually just a link to sh and any flags arguments are the same as for
sh(C).

The system administrator often sets up a directory of commands that can be
safely invoked by rsh.

sh(C), profile(M)

407

sddate(C)

sddate
print and set backup dates

Syntax

sddate [name lev date]

Uescription

File

See also

If no argument is given to sddate the contents of the backup date file /etc/ddate
are printed. The backup date file is maintained by backup(C) and contains the
date of the most recent backup for each backup level for each filesystem.

If arguments are given, an entry is replaced or made in /etc/ddate. name is the
last component of the device pathname, lev is the backup level number (from
o to 9), and date is a time in the form taken by date(C):

mmddhhmm[yy]
where the first mm is a two-digit month in the range 01-12, dd is a two-digit
day of the month from 01-31, hh is a two-digit military hour from 00-23, and
the final mm is a two-digit minute from 00-59. An optional two-digit year, yy,
is presumed to be an offset from the year 1900, that is, 19yy.

Some sites may wish to back up filesystems by copying them in their entirety
to backup media. sddate could be used to make a "level 0" entry in /etc/ddate,
which would then allow incremental backups.

For example:
sddate rhdO 5 10081520

makes an /etc/ddate entry showing a level 5 backup of /dev/rhdO on October 8,
at 3:20 pm.

/etc/ddate

backup(C), date(C), dump(C)

Diagnostics

bad conversion If the date set is syntactically incorrect.

Value added

408

sddate is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

sdiff(C)

sdiff
compare files side-by-side

Syntax
sdiff [options ...] filel file2

Description

The sdiffcomrnand uses the output of diff(C) to produce a side-by-side listing
of two files indicating those lines that are different. Each line of the two files is
printed with a blank gutter between them if the lines are identical, a "<" in
the gutter if the line only exists in filel, a ">" in the gutter if the line only
exists in file2, and a " I " for lines that are different.

For example:
x
a
b
c
d

<
<

y
a

d
> C

The following options exist:

-wn

-I

-s

-0 output

Uses the next argument, n, as the width of the output line. The
default line length is 130 characters.

Only prints the left side of any lines that are identical.

Does not print identical lines.

Uses the next argument, output, as the name of a third fik that
is created as a user-controlled merging of filel and file2. Identi­
cal lines of filel and file2 are copied to output. Sets of differ­
ences, as produced by diff(C), are printed where a set of differ­
ences share a common gutter character. After printing each set
of differences, sdiff prompts the user with a % and waits for one
of the following user-entered commands:

I Appends the left column to the output file

r Appends the right column to the output file

s Turns on silent mode; does not print identical lines

v Turns off silent mode

409

sdiff(C)

See also

410

e I Calls the editor with the left column

e r Calls the editor with the right column

e b Calls the editor with the concatenation of left and right

e Calls the editor with a zero length file

q Exits from the program

On exit from the editor, the resulting file is concatenated on the end of the
output file.

diff(C), ed(C)

sed (C)

sed
invoke the stream editor

Syntax
sed [-n] [-e script] [-£ sfile] [files]

Description

The sed command copies the named files (standard input default) to the stan­
dard output, edited according to a script of commands. The -e option causes
the script to be read literally from the next argument, which is usually quoted
to protect it from the shell. The -£ option causes the script to be taken from
file sfile; these options accumulate. If there is just one -e option and no -£
options, the flag -e may be omitted. The -n option suppresses the default out­
put. A script consists of editing commands, one per line, of the following
form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all
commands whose addresses select that pattern space, and at the end of the
script copies the pattern space to the standard output (except under -n) and
deletes the pattern space.

A semicolon (;) can be used as a command delimiter.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a "$" that addresses the last line of input, or a context address,
that is, a/regular expression/ in the style of ed(C) modified as follows:

• In a context address, the construction \?regular expression?, where"?" is
any character, is identical to /regular expression/. Note that in the context
address \xabc\xdefx, the second x stands for itself, so that the standard
expression is abcxdef.

• The escape sequence \n matches a newline embedded in the pattern space.

• A dot (.) matches any character except the terminal newline of the pattern
space.

• A command line with no addresses selects every pattern space.

• A command line with one address selects each pattern space that matches
the address.

411

sed(C)

412

• A command line with two addresses separated by a comma selects the
inclusive range from the first pattern space that matches the first address
through the next pattern space that matches the second. (If the second
address is a number less than or equal to the line number first selected,
only one line is selected.) Thereafter, the process is repeated, looking again
for the first address.

Editing commands can be applied only to nonselected pattern spaces by use
of the negation function "!" (below).

In the following list of functions, the maximum number of permissible
addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end
with backslashes to hide the newlines. Backslashes in text are treated like
backslashes in the replacement string of an s command, and may be used to
protect initial blanks and tabs against the stripping that is done on every
script line. The rfile or wfile argument must terminate the command line and
must be preceded by one blank. Each wfile is created before processing
begins. There can be at most 10 distinct wfile arguments.

(1) a \ text Appends text, placing it on the output before reading the next
input line.

(2) b label Branches to the: command bearing the label. If label is empty,
branches to the end of the script.

(2) c\ text Changes text by deleting the pattern space and then appending
text. With 0 or 1 address or at the end of a 2-address range, places
text on the output and starts the next cycle.

(2) d Deletes the pattern space and starts the next cycle.

(2) D Deletes the initial segment of the pattern space through the first
newline and starts the next cycle.

(2) g Replaces the contents of the pattern space with the contents of the
hold space.

(2) G Appends the contents of the hold space to the pattern space.

(2) h Replaces the contents of the hold space with the contents of the
pattern space.

(2) H Appends the contents of the pattern space to the hold space.

(1) i\ text Insert. Places text on the standard output.

(2) 1 Lists the pattern space on the standard output with nonprinting
characters spelled in two-digit ASCII and long lines folded.

sed(C)

(2) n Copies the pattern space to the standard output. Replaces the pat­
tern space with the next line of input.

(2) N Appends the next line of input to the pattern space with an
embedded newline. (The current line number changes.)

(2) p Prints (copies) the pattern space on the standard output.

(2) P Prints (copies) the initial segment of the pattern space through the
first newline to the standard output.

(1) q Quits sed by branching to the end of the script. No new cycle is
started.

(2) r rfile Reads the contents of rfile and places them on the output before
reading the next input line.

(2) s /regular expression/replacement/flags
Substitutes the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of II /". For a more detailed description, see ed(C). Flags is
zero or more of:

n n==1-S12. Substitute for just the nth occurrence of the reg­
ular expression.

g Globally substitutes for all non-overlapping instances of
the regular expression rather than just the first one.

p Prints the pattern space if a replacement was made.

w wfile Writes the pattern space to wfile if a replacement was
made.

(2) t label Branches to the colon (:) command bearing label if any substitu­
tions have been made since the most recent reading of an input
line or execution of a t command. If label is empty, t branches to
the end of the script.

(2) w wfile Writes the pattern space to wfile.

(2) x Exchanges the contents of the pattern and hold spaces.

(2) y /stringl/string2/
Replaces all occurrences of characters in stringl with the corre­
sponding characters in string2. The lengths of stringl and string2
must be equal.

(2) ! function
Applies the function (or group, if function is II {") only to lines
NOT selected by the address(es).

413

sed (C)

See also

Notes

(0) : label This command does nothing; it bears a label for band t commands
to branch to.

(1) = Places the current line number on the standard output as a line.

(2) { Executes the following commands through a matching "}" only
when the pattern space is selected.

(0) An empty command is ignored.

awk(C), ed(C), grep(C)

This command is explained in detail in the User's Guide.

Standards conformance

sed is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

414

setcolor(C)

setcolor, setcolour
set screen color and other screen attributes

Syntax
setcolor - [knbrgopc] argument [argument]

Description

setcolor - Sets screen colors and other attributes

setcolour - Sets screen colours and other attributes

The setcolor command allows the user to set the screen color on a color
screen. Both foreground and background colors can be set independently in a
range of 16 colors. setcolor can also set the reverse video and graphicS char­
acter colors. setcolor with no arguments produces a usage message that dis­
plays all available colors, then resets the screen to its previous state.

For example, the following strings are possible colors.

blue
It_blue
cyan
It_cyan

magenta
It_magenta
white
hCwhite

brown
yellow
green
lU~reen

black
gray
red
lCred

The following flags are available. In the arguments below, color is taken from
the above list.

-n [color [color]] Reset the screen to default settings, and switch off -k
option. If no arguments are given the screen is set to white
characters on a black background; otherwise the specified
colors are used.

color [color] Set the foreground to the first color. Sets background to
second color if a second color choice is specified.

-b color Set the background to the specified color.

-k Switch on keydick option.

-r color [color] Set the foreground reverse video characters to the first
color. Set reverse video characters' background to second
color.

-g color [color] Set the foreground graphics characters to the first color. Set
graphics characters' background to second color.

415

setcolor(C)

Notes

See also

-0 Set the color of the screen border (overscan region). This
only works on eGA adaptors.

-p pitch duration Set the pitch and duration of the bell. Pitch is the period in
microseconds, and duration is measured in fifths of a
second. When using this option, a (Ctrl)g (bell) must be
echoed to the screen for the command to work. For exam­
ple:

-e first last

seteolor -p 2500 2
eehoAG

Set the first and last scan lines of the cursor. (For more in­
formation see sereen(HW).)

The ability of seteolor to set any of these described functions is ultimately
dependent on the ability of devices to support them. setcolor emits an escape
sequence that mayor may not have an effect on monochrome devices.

Occasionally changing the screen color can help prolong the life of your
monitor.

screen(HW)

Value added

416

seteolor and seteolour are extensions of AT&T System V provided by The
Santa Cruz Operation, Inc.

setkey(C)

set key
assign the function keys

Syntax
setkey keynum string

Description

Notes

The setkey command assigns the given ANSI string to be the output of the
computer function key given by keynum. For example, the command:

setkey 1 date
assigns the string "date" as the output of function key 1. The string can con­
tain control characters, such as a newline character, and should be quoted to
protect it from processing by the shell. For example, the command:

setkey 2 ''pwd ; Ie \n"
assigns the command sequence "pwd; le" to function key 2. Notice how the
newline character is embedded in the quoted string. This causes the com­
mands to be carried out when function key 2 is pressed. Otherwise, the (Enter)
key would have to be pressed after pressing the function key, as in the previ­
ous example.

setkey translates "A" into "M", which, when passed to the screen driver, is
interpreted as a right angle bracket (», or greater than key.

setkey works only on the console keyboard and on terminals running in scan­
code mode.

The function keys are defined in the string mapping table. This is an array of
512 bytes (typedef strmap_t) where null terminated strings can be put to rede­
fine the function keys. The first null terminated string is assigned to the first
string key, the second to the second string key, and so on. There is one string
mapping table per multi-screen.

Although the size of the setkey string mapping table is 512 bytes, there is a
limit of 30 characters that can be assigned to any individual function key.

Assigning more than 512 characters to the string mapping table causes the
function key buffer to overflow. When this happens, the sequences sent by the
arrow keys are overwritten, effectively disabling them. Once the function key
buffer overflows, the only way to enable the arrow keys is to reboot the sys­
tem.

417

setkey(C)

The table below lists the keynum values for the function keys:

Function key keynum Function key keynum
(FI) 1 (Ctrl)(FIO) 34
(F2) 2 (Ctrl)(Fll) 35
(F3) 3 (Ctrl)(FI2) 36
(F4) 4 (Ctrl)(Shift)(FI) 37
(F5) 5 (Ctrl)(Shift)(F2) 38
(F6) 6 (Ctrl)(Shift)(F3) 39
(F7) 7 (Ctrl)(Shift)(F4) 40
(FB) 8 (Ctrl)(Shift)(FS) 41
(F9) 9 (Ctrl)(Shift)(F6) 42
(FlO) 10 (Ctrl)(Shift)(F7) 43
(Fll) 11 (Ctrl)(Shift)(FB) 44
(FI2) 12 (Ctrl)(Shift)(F9) 45
(Shift)(FI) 13 (Ctrl)(Shift)(FIO) 46
(Shift)(F2) 14 (Ctrl)(Shift)(FII) 47
(Shift)(F3) 15 (Ctrl)(Shift)(FI2) 48
(Shift)(F4) 16
(Shift)(FS) 17 Numeric Key-Pad keynum
(Shift)(F6) 18
(Shift)(F7) 19 7 49
(Shift)(FB) 20 8 50
(Shift)(F9) 21 9 51
(Shift)(FlO) 22 52
(Shift)(FII) 23 4 53
(Shift)(FI2) 24 5 54
(Ctrl)(FI) 25 6 55
(Ctrl)(F2) 26 + 56
(Ctrl)(F3) 27 1 57
(Ctrl)(F4) 28 2 58
(Ctrl)(FS) 29 3 59
(Ctrl)(F6) 30 0 60
(Ctrl)(F7) 31
(Ctrl)(FB) 32
(Ctrl)(F9) 33

For a table of the escape sequences, refer to keyboard(HW).

418

setkey(C)

File

/bin/setkey

See also

keyboard(HW}, scancode(HW}

Value added

setkey is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

419

sg(C)

sg
set groups

Syntax
sg [-e] [-t] [-v] [-g group] [-a group list] [-r group list] [-s group list]
[-c cummanti J

Description

Options

420

The sg command allows users to run shells and commands with a different
group ID and a modified supplemental group list.

You are limited to working with the groups of which you are a member.

You are a member of a group if anyone of the following conditions is true:

• You are the super user. (The super user is considered a member of all
groups.)

• The group is your login group, listed in /etc/passwd.

• You are listed as a member of the group in jete/group.
• The group is the current real (RGID) or effective group ID (EGID).

• The group is in the current effective supplemental group access list.

• The group has a password which you know.

-e

-t

-v

-ggroup

Display the supplemental group access list of the current pro­
cess. This is the default.

Display the user's login group plus any groups the user is a
member of in jete/group. The super user is considered to be a
member of all groups listed in the group me.
Display the new supplemental group access list before each
command or shell is run. With -a or -s, -v warns if a group to be
added is already in the supplemental group access list or if a
group cannot be added because the supplemental group access
list is full. With the -r option, it warns if a group to be removed
is not in the supplemental group access list.

Set the real and effective group ID to group for subsequent com­
mands to be executed by sg. group can be a group name or a
group ID, but must be a group of which the user is a member.

Examples

sg(C)

-a group list Add groups to the supplemental group list. See below for the
syntax of group list.

-r group list Remove groups from the supplemental group list. See below for
the syntax of grouplist. (You do not need to be a member of the
group being removed. Neither is there a requirement that the
group being removed is actually in the supplemental group list.)

-s group list Set the supplemental group list to group list. See below for the
syntax of group list.

-c command Pass command to the user's login shell for execution with the
specifed supplemental group and/or group ID modifications.
The shell must support the -c command syntax similar to sh(C).
Giving the empty string "" as the argument to -c causes the
user's shell to be run. Exiting that shell will resume execution of
sg.

A group list is a comma- or whitespace- (tab or space) separated list of group
names and group IDs. The user must be a member of any groups specified in
group list.

If group or grouplist are an empty string "", or just contain separators, the -s
option sets the supplemental group access list to empty, and -a, -r, and -s have
no effect.

sg reads its options from left to right and performs them as they are read. The
-g, -a, -r and -s options are cumulative, but they only take effect when a com­
mand is executed by the -c option.

If at least one of the -g, -a, -r or -s options has been specified since the previ­
ous -c option was performed, and the end of the argument list is reached, the
user's shell is invoked with the specified group ID and supplemental group
access list.

When sg terminates, the user's original shell and supplemental group access
list will be in effect.

Assuming the user is listed as a member of groups work and eng (with group
IDs of 100 and 200), to execute a shell with both groups added to the current
supplemental group access list:

5g -a work, eng -c""

This can also be achieved by:
5g -a "100 200"

421

sg(C)

Files

See also

To execute yourprog with a group 10 of 100 and an empty supplemental
group access list:

5g -g work -5 "" -c yourprog

fete/group
/ete/passwd

Group file
Password file

login(M), newgrp(C), sh(C)

Diagnostics

Notes

If sg detects an error, it displays an appropriate error message and exits with a
status greater than zero. If no errors are encountered, sg exits with a status of
zero.

Each process has a supplemental group access list (maintained by the kernel),
which is used in determining file access permissions in addition to the effec­
tive group 10. The maximum number of group IDs which can be held in the
supplemental group access list is defined by the tunable kernel parameter
NGROUPS.

sg can potentially output very long lines on systems with a large value of
NGROUPS configured. sg executes as setuid zero, resetting the effective user
10 to the real user ID before executing any commands.

Authorization

The execsuid kernel authorization is required to run sg.

Value added

422

sg is an extension of AT&T System V provided by The Santa Cruz Operation,
Inc.

sh(C)

sh
invoke the shell command interpreter

Syntax

sh [-aceiknrstuvx] [args]

Description

The shell is the standard command programming language that executes
commands read from a terminal or a file. See "Invocation" below for the
meaning of arguments to the shell.

Commands
A simple-command is a sequence of nonblank words separated by blanks (a blank
is a tab or a space). The first word specifies the name of the command to be
executed. Except as specified below, the remaining words are passed as argu­
ments to the invoked command. The command name is passed as argument 0
(see exec(S)). The value of a simple-command is its exit status if it terminates
normally, or (octal) lOOO+status if it terminates abnormally. See signal(S) for a
list of status values.

A pipeline is a sequence of one or more commands separated by a vertical bar
(I). (The caret n, is an obsolete synonym for the vertical bar and should not
be used in a pipeline. Scripts that use "~,, for pipelines are incompatible with
the Kom shell.) The standard output of each command but the last is con­
nected by a pipe(S) to the standard input of the next command. Each com­
mand is run as a separate process; the shell waits for the last command to ter­
minate.

A list is a sequence of one or more pipelines separated by i, &, &&, or I I, and
optionally terminated by i or &. Of these four symbols, i and & have equal
precedence, which is lower than that of && and I I. The symbols && and I I
also have equal precedence. A semicolon (i) causes sequential execution of
the preceding pipeline; an ampersand (&) causes asynchronous execution of
the preceding pipeline (that is, the shell does not wait for that pipeline to fin­
ish). The symbol && (I I) causes the list following it to be executed only if the
preceding pipeline returns a zero (nonzero) exit status. An arbitrary number
of newlines may appear in a list, instead of semicolons, to delimit commands.

423

sh(C)

424

A command is either a simple-command or one of the following commands.
Unless otherwise stated, the value returned by a command is that of the last
simple-command executed in the command:

for name [in word . ..]
do

done
list

Each time a for command is executed; namp ic: 'let to the next !!.Jard t:!ken
from the in word list. If in word is omitted, then the for command exe­
cutes the do list once for each positional parameter that is set (see
"Parameter substitution" below). Execution ends when there are no
more words in the list.

case word in
[pattern [I pattern] ... } list

esac

if list
then

;;]

A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
filename generation (see "Filename generation" below).

list
[elif list then

list]

[else list]
fi

The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list following the next then is
executed. Failing that, the else list is executed. If no else list or then
list is executed, then the if command returns a zero exit status.

while list
do

done
list

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; other­
wise the loop terminates. If no commands in the do list are executed,
then the while command returns a zero exit status; until may be used in
place of while to negate the loop termination test.

sh(C)

until list
do

done

(list)

{list;}

list

until is similar to while, only until continues execution until the first
list returns a zero exit status. In other words, until works until the test
condition succeeds (it works the whole time the command is failing);
while works until the test condition fails. until is useful when you are
waiting for a particular event to occur.

Executes list in a subshell.

list is simply executed.

name () {list;}
Define a function which is referenced by name. The body of functions is
the list of commands between { and }. Execution of functions is
described later (see "Execution".)

The following words are recognized only as the first word of a command and
when not quoted:

if
for

then else elif
while until do

Comments

fi case
done {

esac
}

A word beginning with # causes that word and all the following characters up
to a newline to be ignored.

Command substitution
The standard output from a command enclosed between grave accents (, ,)
may be used as part or all of a word; trailing newlines are removed.

No interpretation is done on the command string before the string is read,
except to remove backslashes (\) used to escape other characters. Backslashes
may be used to escape grave accents n or other backslashes and are removed
before the command string is read. Escaping grave accents allows nested
command substitution. If the command substitution lies within a pair of dou­
ble quotes ('" ... ' "), backslashes used to escape a double quote (\") will be
removed; otherwise, they will be left intact.

If a backslash is used to escape a newline character, both the backslash and
the newline are removed (see the section on "Quoting"). In addition,
backslashes used to escape dollar signs (\$) are removed. Since no interpre­
tation is done on the command string before it is read, inserting a backslash to
escape a dollar sign has no effect. Backslashes that precede characters other
than \, " ", newline, and $ are left intact.

425

sh(C)

426

Parameter substitution
The character $ is used to introduce substitutable parameters. There are two
types of parameters, positional and keyword. If parameter is a digit, it is a
positional parameter. Positional parameters may be assigned values by set.
Keyword parameters, (also known as variables) may be assigned values by
writing:

name = value [name = value] ...
Pattern-!!1atci"ir:.g is net perfvi'iTled Oi-l uu.lue. Tllt!rt! cannot be a function and a
variable with the same name.

${parameter}
A parameter is a sequence of letters, digits, or underscores (a name), a
digit, or any of the characters *, @, #, ?, -, $, and!. The value, if any, of
the parameter is substituted. The braces are required only when param­
eter is followed by a letter, digit, or underscore that is not to be inter­
preted as part of its name. A name must begin with a letter or under­
score. If parameter is a digit then it is a positional parameter. If parame­
ter is * or @, then all the positional parameters, starting with $1, are sub­
stituted (separated by spaces). Parameter $0 is set from argument zero
when the shell is invoked.

${parameter:-word}
If parameter is set and is not a null argument, substitute its value; other­
wise substitute word.

${parameter:=word}
If parameter is not set or is null, then set it to word; the value of the
parameter is then substituted. Positional parameters may not be
assigned to in this way.

${parameter:?word}
If parameter is set and is not a null argument, substitute its value; other­
wise, print word and exit from the shell. If word is omitted, the message
"parameter null or not set" is printed.

${parameter:+word}
If parameter is set and is not a null argument, substitute word; other­
wise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that in the following example, pwd is executed only if d is not set or
is null:

echo ${d:-'pwd'}

If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set.

sh(C)

The following parameters are automatically set by the shell:

The number of positional parameters in decimal

Flags supplied to the shell on invocation or by the set command

? The decimal value returned by the last synchronously executed com­
mand

$ The process number of this shell

The process number of the last background command invoked

The following parameters are used by the shell:

CDPATH Defines search path for the cd command. See the section "cd"
under "Special commands" below.

HOME The default argument (home directory) for the cd command

PATH The search path for commands (see "Execution" below)

MAIL If this variable is set to the name of a mail file, then the shell
informs the user of the arrival of mail in the specified file

MAILCHECK This parameter specifies how often (in seconds) the shell will
check for the arrival of mail in the files specified by the MAIL­
PATH or MAIL parameters. The default value is 600 seconds
(10 minutes). If set to 0, the shell will check before each
prompt.

MAILPATH A colon (:) separated list of filenames. If this parameter is set,
the shell informs the user of the arrival of mail in any of the
specified files. Each filename can be followed by "% 11 and a
message that will be printed when the modification time
changes. The default message is "you have mail".

PSt Primary prompt string, by d~fault 1/$ 11

PS2 Secondary prompt string, by default "> "

IFS Internal field separators, normally space, tab, and newline

SHELL When the shell is invoked, it scans the environment (see
"Environment" below) for this name. If it is found and there
is an 't in the file name part of its value, the shell becomes a
restricted shell.

The shell gives default values to PATH, PSt, PS2, and IFS, while HOME and
MAIL are not set at all by the shell (although HOME is set by login(M».

427

sh(C)

428

Blank interpretation
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null argu­
ments (1111 or") are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

Filename generation
Following substitution, each command word is scanned for the characters .,7,
and [. If one of these characters appears, the word is regarded as a pattern.
The word is replaced with alphabetically sorted filenames that match the pat­
tern. If no filename is found that matches the pattern, the word is left
unchanged. The character " ." at the start of a filename or immediately fol­
lowing a " / ", as well as the character" /" itself, must be matched explicitly.
These characters and their matching patterns are:

* Matches any string, including the null string.

7 Matches any single character.

[...] Matches anyone of the enclosed characters. A pair of characters
separated by "-" matches any character lexically between the pair,
inclusive. If the first character following the opening bracket ([) is an
exclamation mark (0, then any character not enclosed is matched.

Quoting
The following characters have a special meaning to the shell and cause termi­
nation of a word unless quoted:

; & () I A < > newline space tab

A character may be quoted (that is, made to stand for itself) by preceding it
with a " \". The pair \newline is ignored. All characters enclosed between a
pair of single quotation marks (' '), except a single quotation mark, are
quoted. Inside double quotation marks (" "), parameter and command substi­
tution occurs and" \ " quotes the characters \, " ", and $. "$*" is equivalent to
"$1 $2 ... ", whereas "$@" is equivalent to "$1" "$2" ...

Prompting
When used interactively, the shell prompts with the value of PSl before read­
ing a command. If at any time a newline is typed and further input is needed
to complete a command, the secondary prompt (that is, the value of PS2) is
issued.

sh(C)

Spelling checker
When using cd(C) the shell checks spelling. For example, if you change to a
different directory using cd and misspell the directory name, the shell
responds with an alternative spelling of an existing directory. Enter "y" and
press RETURN (or just press RETURN) to change to the offered directory. If the
offered spelling is incorrect, ent~r "n', then retype the command line. In this
example the sh(C) response is boldfaced:

$ cd /usr/spol/uucp
cd /usr/spool/uucp?y
ok

Input/Output
Before a command is executed, its input and output may be redirected using a
special notation interpreted by the shell. The following may appear anywhere
in a simple-command or may precede or follow a command. They are not
passed on to the invoked command; substitution occurs before word or digit
is used:

<word

>word

»word

«[-]word

<&digit

<&-

Use file word as standard input (file descriptor 0).

Use file word as standard output (file descriptor 1). If the file
does not exist, it is created; otherwise, it is truncated to zero
length.

Use file word as standard output. If the file exists, output is
appended to it (by first seeking the end-of-file); otherwise, the
file is created.

The shell input is read up to a line that is the same as word, or
to an end-of-file. The resulting document becomes the stan­
dard input. If any character of word is quoted, no interpreta­
tion is placed upon the characters of the document; otherwise,
parameter and command substitution occurs, (unescaped)
\newline is ignored, and" \" must be used to quote the char­
acters \, $, " and the first character of word. If "-" is
appended to «, all leading tabs are stripped from word and
from the document.

The standard input is duplicated from file descriptor digit
(see dupeS»~. Similarly for the standard output using >.

The standard input is closed. Similarly for the standard out­
putusing>.

If one of the above is preceded by a digit, the file descriptor created is that
specified by the digit (instead of the default 0 or 1). For example:

••. 2>&1

creates file descriptor 2 that is a duplicate of file descriptor 1.

429

sh(C)

430

If a command is followed by "& ", the default standard input for the com­
mand is the empty file /dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking shell as modified
by input/output specifications.

Environment
The environment (see environ(M» is a list of name-value pairs that is passed to
an executed program in the same way as a normal argument list. The shell
interacts with the environment in seve!'!:'.l ~7!:'.y5_ Or!. invocatio!1, the shell SC~!1S
the environment and creates a parameter for each name found, giving it the
corresponding value. Executed commands inherit the same environment. If
the user modifies the values of these parameters or creates new ones, none of
these affect the environment unless the export command is used to bind the
shell's parameter to the environment. The environment seen by any executed
command is composed of any unmodified name-value pairs originally inher­
ited by the shell, minus any pairs removed by unset, plus any modifications
or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

TERM=wy60 cmd args
and

(export TERM; TERM=wy60; cmd args)
are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment,
even if they occur after the command name.

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by " &"; otherwise signals have the values inherited by
the shell from its parent, with the exception of signal 11. See the trap com­
mandbelow.

Execution
Each time a command is executed, the above substitutions are carried out. If
the command name does not match a Special Command, but matches the name
of a defined function, the function is executed in the shell process (note how
this differs from the execution of shell procedures). The positional parameters
$1, $2, ... are set to the arguments of the function. If the command name
matches neither a Special Command nor the name of a defined function, a new
process is created and an attempt is made to execute the command via
exec(S).

sh(C)

The shell parameter PATH defines the search path for the directory containing
the command. Alternative directory names are separated by a colon (:). The
default path is :/bin:/usr/bin (specifying the current directory, /bin, and /usr/bin,
in that order). Note that the current directory is specified by a null pathname,
which can appear immediately after the equal sign or between the colon de­
limiters anywhere else in the path list. If the command name contains a II /",

then the search path is not used. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but is not an
a.out file, it is assumed to be a file containing shell commands. A subshell
(that is, a separate process) is spawned to read it. A parenthesized command
is also executed in a subshell.

Shell procedures are often used by users running the esh. However, if the first
character of the procedure is a II #" (comment character), esh assumes the pro­
cedure is a esh script, and invokes Ibin/esh to execute it. Always start sh pro­
cedures with some other character if esh users are to run the procedure at any
time. This invokes the standard shell Ibin/sh.

The location in the search path where a command was found is remembered
by the shell (to help avoid unnecessary exees later). If the command was
found in a relative directory, its location must be re-determined whenever the
current directory changes. The shell forgets all remembered locations when­
ever the PATH variable is changed or the hash -r command is executed (see
hash in next section).

Special commands
Input/output redirection is permitted for these commands:

No effect; the command does nothing. A zero exit code is returned .

. file Reads and executes commands from file and returns. The search path
specified by PATH is used to find the directory containing file.

break [n]
Exits from the enclosing for, while, or until loop, if any. If n is specified,
it breaks n levels.

eontinue [n]
Resumes the next iteration of the enclosing for, while, or until loop. If n
is specified, it resumes at the n-th enclosing loop.

ed [arg]
Changes the current directory to argo The shell parameter HOME is the
default argo The shell parameter CDP ATH defines the search path for the
directory containing argo Alternative directory names are separated by a
colon (:). The default path is <null> (specifying the current directory).
Note that the current directory is specified by a null path name, which
can appear immediately after the equal sign or between the colon delim­
iters anywhere else in the path list. If arg begins with a II /", the search
path is not used. Otherwise, each directory in the path is searched for
argo

431

sh(C)

432

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched), spel­
ling correction is applied to each component of directory, in a search for
the "correct" name. The shell then asks whether or not to try and
change directory to the corrected directory name; an answer of n means
"nd', and anything else is taken as "yes".

echo [arg]
Writes arguments separated by blanks and terminated by a newline on
the standard output. Arguments may be enclosed in quotes. Quotes are
required so that the shell correctly interprets these special escape
sequences:

\b Backspace
\c Prints line without newline.
\£ Form feed
\n Newline
\r Carriage return
\t Tab
\ v Vertical tab
\ \ Backslash
\n The 8-bit character whose ASCII code is the 1, 2 or 3-digit

octal number n. n must start with a zero.

eval[arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this
shell without creating a new process. Input/output arguments may
appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n]
Causes the shell to exit with the exit status specified by n. If n is omit­
ted, the exit status is that of the last command executed. An end-of-file
will also cause the shell to exit.

export [name ...]
The given names are marked for automatic export to the environment of
subsequently executed commands. If no arguments are given, a list of
all names that are exported in this shell is printed.

getopts
Used in shell scripts to support command syntax standards (see
Intro(C»; it parses positional parameters and checks for legal options.
See getopts(C) for usage and description.

sh(C)

hash [-r] [name ...]
For each name, the location in the search path of the command specified
by name is determined and remembered by the shell. The -r option
causes the shell to forget all remembered locations. If no arguments are
given, information about remembered commands is presented. ''Hits'' is
the number of times a command has been invoked by the shell process.
"Cost" is a measure of the work required to locate a command in the
search path. There are certain situations which require that the stored
location of a command be recalculated. Commands for which this will
be done are indicated by an asterisk (*) adjacent to the "hits" informa­
tion. "Cost" will be incremented when the recalculation is done.

newgrp [arg ...]

pwd

Equivalent to exec newgrp arg ...

Print the current working directory. See pwd(C) for usage and descrip­
tion.

read [name ...]
One line is read from the standard input and the first word is assigned
to the first name, the second word to the second name, etc., with leftover
words assigned to the last name. The return code is 0 unless an
end-of-file is encountered.

read only [name ...]
The given names are marked readonly and the values of these names
may not be changed by subsequent assignment. If no arguments are
given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is
omitted, the return status is that of the last command executed.

set [-aefhknuvx [arg ...]]

-a Mark variables which are modified or created for export.

-e If the shell is noninteractive, exits immediately if a command exits
with a nonzero exit status.

-£ Disables filename generation.

-h Locates and remembers function commands as functions are
defined (function commands are normally located when the func­
tion is executed).

For example, if h is set, thin/tty is added to the hash table when:
showtty () {

tty

is declared. If h is unset, the function is not added to the hash table
until showtty is called.

433

sh(C)

434

-k Places all keyword arguments in the environment for a command,
not just those that precede the command name.

-n Reads commands but does not execute them.

-u Treats unset variables as an error when substituting.

-v Prints shell input lines as they are read.

-x Prints commands and their arguments as they are executed.
Although this flag is passed to subshells, it does not enable tracing
in those subshells.

Does not change any of the flags; useful in setting $1 to II - ".

Using II +" rather than II - 11 causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set of
flags may be found in $-. The remaining arguments are positional
parameters and are assigned, in order, to $1, $2, . .. If no arguments are
given, the values of all names are printed.

shift [n]

test

times

The positional parameters from $2 . .. are renamed $1 ...

If n is specified, shift the positional parameters by n places.

shift is the only way to access positional parameters above $9.

Evaluates conditional expressions. See test(C) for usage and description.

Prints the accumulated user and system times for processes run from
the shell.

trap [arg] [n] ...
arg is a command to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set and once
when the trap is taken.) Trap commands are executed in order of signal
number. The highest signal number allowed is 16. Any attempt to set a
trap on a signal that was ignored on entry to the current shell is ineffec­
tive. An attempt to trap on signal 11 (memory fault) produces an error.
If arg is absent, all trap(s) n are reset to their original values. If arg is the
null string, this signal is ignored by the shell and by the commands it
invokes. If n is 0, the command arg is executed on exit from the shell.
The trap command with no arguments prints a list of commands associ­
ated with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a com­
mandname.

sh(C)

ulimit [n]
imposes a size limit of n blocks on files written by the shell and its child
processes (files of any size may be read). Any user may decrease the file
size limit, but only the super user (root) can increase the limit. With no
argument, the current limit is printed. If no option is given and a num­
ber is specified, -£ is assumed.

unset [name ...]
For each name, remove the corresponding variable or function. The
variables PATH, PSt, PS2, MAILCHECK and IFS cannot be unset.

umask [000]

The user file-creation mask is set to the octal number 000 where 0 is an
octal digit (see umask(C». If 000 is omitted, the current value of the
mask is printed.

wait [n]
Waits for the specified process to terminate, and reports the termination
status. If n is not given, all currently active child processes are waited
for. The return code from this command is always O.

Invocation
If the shell is invoked through exec(S) and the first character of argument 0 is
" - ", commands are initially read from fete/profile and then from
$HOMEf.profile, if such files exist. Thereafter, commands are read as described
below, which is also the case when the shell is invoked as /bin/sh. The flags
below are interpreted by the shell on invocation only; note that unless the -c
or -s flag is specified, the first argument is assumed to be the name of a file
containing commands, and the remaining arguments are passed as pOSitional
parameters to that cbmmand file:

-c string If the -c flag is present, commands are read from string.

-s If the -s flag is present or if no arguments remain, commands are
read from the standard input. Any remaining arguments specify
the positional parameters. Shell output is written to file descriptor
2.

-t If the -t flag is present, a single command is read and executed,
and the shell exits. This flag is intended for use by C programs
only and is not useful interactively.

-i If the -i flag is present or if the shell input and output are attached
to a terminal, this shell is interactive. In this case, TERMINATE is
ignored (so that kill 0 does not kill an interactive shell) and
INTERRUPT is caught and ignored (so that wait is interruptible).
In all cases, QUIT is ignored by the shell.

-r If the -r flag is present, the shell is a restricted shell (see rsh(C».

The remaining flags and arguments are described under the set command
above.

435

sh(C)

Exit status

Files

See also

Notes

436

Errors detected by the shell, such as syntax errors, cause the shell to return a
nonzero exit status. If the shell is being used noninteractively, execution of
the shell file is abandoned. Otherwise, the shell returns the exit status of the
last command executed. See the exit command above.

fete/profile

$HOME/.profile
/tmp/sh*
/dev/null

system default profile, read by login shells before
$HOME/ .profile
read by login shell at login
temporary file for«
source of empty file

a.out(FP), cd(C), dup(S), env(C), environ(M), exec(S), fork(S), ksh(C),login(M),
newgrp(C), pipe(S), profile(M), rsh(C), signal(S), test(C), umask(C), umask(S),
wait(S)

The command readonly (without arguments) produces the same type of out­
put as the command export.

If « is used to provide standard input to an asynchronous process invoked
by &, the shell gets mixed up about naming the input document; a garbage
file /tmp/sh* is created and the shell complains about not being able to find
that file by another name.

If a command is executed, and a command with the same name is installed in
a directory in the search path before the directory where the original com­
mand was found, the shell will continue to exec the original command. Use
the hash command to correct this situation.

If you move the current directory or one above it, pwd may not give the
correct response. Use the cd command with a full pathname to correct this
situation.

When a sh user logs in, the system reads and executes commands in /etc/profile
before executing commands in the user's $HOME/.profile. You can, therefore,
modify the environment for all sh users on the system by editing /etc/profile.

The shell doesn't treat the high (eighth) bit in the characters of a command
line argument specially, nor does it strip the eighth bit from the characters of
error messages. Previous versions of the shell used the eighth bit as a quoting
mechanism.

Warnings

sh(C)

Existing programs that set the eighth bit of characters in order to quote them
as part of the shell command line should be changed to use of the standard
shell quoting mechanisms (see the section on "Quoting").

Words used to specify filenames in input/output redirection are not
expanded for filename generation (see the section on "Filename generation").
For example, cat filel > a* will create a file named a*.

Because commands in pipelines are run as separate processes, variables set in
a pipeline have no effect on the parent shell.

If you get the error message:
fork failed - too many processes

try using the wait(C) command to clean up your background processes. If
this doesn't help, the system process table is probably full or you have too
many active foreground processes (there is a limit to the number of processes
that be can associated with your login, and the number the system can keep
track of).

Not all processes of a 3 or more stage pipeline are children of the shell, and
thus cannot be waited for.

For wait n, if n is not an active process id, all your shell's currently active
background processes are waited for and the return code will be zero.

Standards conformance

sh is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

437

shl(C)

shl
shell layer manager

Syntax
shl

Description

The shl command allows a user to interact with more than one shell from a
single terminal. The user controls these shells, known as layers, using the
commands described below.

The current layer is the layer that can receive input from the keyboard. Other
layers attempting to read from the keyboard are blocked. Output from multi­
ple layers is multiplexed onto the terminal. To have the output of a layer
blocked when it is not current, the stty(C) option loblk may be set within the
layer.

The stty character swtch (set to (Ctrl)z if NUL) is used to switch control to shl
from a layer. shl has its own prompt, "»>", to help distinguish it from a
layer.

A layer is a shell that has been bound to a virtual tty device (fdevfsxt??[O-71 or
fdevfsxtf??[O-7]). The virtual device can be manipulated like a real tty device
using stty(C) and ioctl(S). Each layer has its own process group id.

Definitions

A name is a sequence of characters delimited by a blank, tab or newline. Only
the first eight characters are significant. The names (1) through (7) cannot be
used when creating a layer. They are used by shl when no name is supplied.
They may be abbreviated to just the digit.

Commands

438

The following commands may be issued from the shl prompt level. Any
unique prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If no argu­
ment is given, a layer will be created with a name of the form "(#)'
where" #" is the last digit of the virtual device bound to the layer.
The shell prompt variable PSt is set to the name of the layer followed
by a space, or, if super user, the name followed by a sharp (#) and a
space. A maximum of seven layers can be created.

Files

See also

shl(C)

block name [name . ..]
For each name, block the output of the corresponding layer when it
is not the current layer. This is equivalent to setting the stty option
loblk within the layer.

delete name [name ...]
For each name, delete the corresponding layer. All processes in the
process group of the layer are sent the SIGHUP Signal (see signal(S».

help (or?)
Print the syntax of the shl commands.

layers [-1] [name ...]
For each name, list the layer name and its process group. The-l
option produces a ps(C)-like listing. If no arguments are given, in­
formation is presented for all existing layers.

resume [name]
Make the layer referenced by name the current layer. If no argument
is given, the last existing current layer will be resumed.

toggle Resume the layer that was current before the last current layer.

unblock name [name ...]
For each name, do not block the output of the corresponding layer
when it is not the current layer. This is equivalent to setting the stty
option loblk within the layer.

quit Exit shl. All layers are sent the SIGHUP signal.

name Make the layer referenced by name the current layer.

Virtual tty devices
/dev/sxt??[O-71 or
/dev/sxt/?? [0-71
$SHELL Variable containing pathname of the shell to use

(default is /bin/sh).

ioctl(S), mkdev(ADM), sh(C), signal(S), stty(C), sxt(M)

439

shl(C)

Note

It is inadvisable to kill shl.

shl normally accesses sxt??? devices correctly at all times. Other programs
may be able to work with these devices if they have the correct protocol and
device name; however some programs may not expect devices to be located
outside Idev, and some programs may expect all terminal devices to begin
with the prefix tty.

If shl does not run properly on a particular terminal, you may have to set
istrip for that terminal's line by entering the following command at the termi­
nal:

stty istrip
By default, the Operating System is not configured for shell layers. To add
this to kernel, use the command:

mkdev shl
This executes a script which prompts you for the number of sessions desired.
The script also allows you to relink the kernel. The new session limit becomes
effective after the kernel is rebooted. (For more information, see
mkdev(ADM).)

Standards conformance

shl is conformant with:

AT&T svm Issue 2.

440

sleep(C)

sleep
suspend execution for an interval

Syntax

sleep time

Description

See also

Notes

The sleep command suspends execution for time seconds. It is used to exe­
cute a command after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:
while true

do

done

alarm(S), sleep(S)

command
sleep 37

It is recommended that time be less than 65536 seconds. If this amount is
exceeded, time will be arbitrarily set to some value less than 65536 seconds.

Standards conformance
sleep is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

441

slot(C)

slot
read the microchannel configuration registers

Syntax

letdslot [-a adid] [-s slot] [-f adnamesfile]

Description

442

The slot command displays the contents of the configuration pas registers on
a microchannel architecture machine, and names the adapter cards currently
configured in each slot.

For each of the eight adapter slots, slot shows the slot number, the unique
adapter id (four digits in hexadecimal from registers OxlOO and Ox10l), the
contents of the remaining six pas registers (two hexadecimal digits each), fol­
lowed by the adapter card name.

The default slot display looks similar to this:
Slot AdID Regs Ox102-0x107 Adapter Name
1 -- -- -- -- Empty Slot
2 Of If 01 3b f7 31 ff ff Adaptec 1640 SCSI Host Adapter
3 -- -- -- -- Empty Slot
4 6bbc 81 00 00 85 ff ff Apricot Synchronous Communications Adapter
5 6bba 81 00 00 b6 ff ff Apricot Ethernet Controller
6 dfbf 05 02 ff ff ff ff IBM 6157 Streaming Tape
7 -- -- -- -- Empty Slot
8 -- -- -- -- Empty Slot

The available slot options select a particular adapter id, a particular slot, or
select an alternative names file.

-a adid shows only the information for those slots in which an
adapter of that id is configured (no display if no such
adapter). adid should be specified in hexadecimal. For
example, letdslot -a dfbf shows only those slots which con­
tain an IBM 6157 Streaming Tape adapter card.

-s slot shows only the information for that slot (no display if that
slot is empty). For example, letdslot -s 6 shows only the in­
formation for slot 6.

-f adnamesfile the text displayed by letdslot is normally read from the file
fete/default/slot. This option redirects it to read from an alter­
native file adnamesfile. For example, letdslot -f Idev/null
shows only the register contents of occupied slots, without
the accompanying text, which can be useful when processing
the output automatically in a shell script.

slot(C)

Diagnostics

Files

Notes

See also

Returns 0 upon successful completion. Returns 1 if incorrectly invoked, if the
machine is not a microchannel architecture machine (/dev/meapos unreadable),
if the selected adapter id is not found, or if the selected slot is empty.

fete/default/slot This file contains the headers, footers and adapter names
shown by the slot utility. The text in this file may be
translated, or extended as new adapters are announced. The
display of header lines, empty slots, and footers may be
suppressed by omitting their text.

/dev/meapos The slot utility reads the 64 bytes of MCA pas register con­
figuration information from this device.

If run on a machine which does not have the microchannel architecture, slot
reports "not an MCA machine" and exits with diagnostic 1.

If an adapter id is not listed in fete/default/slot, slot reports "Unknown card" for
that slot. The System Administrator should add an entry for that adapter id to
fete/default/slot.

slot reports what adapter is configured in which slot. No indication is given
as to whether that adapter is working, nor whether that adapter is connected
to working hardware. No indication is given as to whether the current sea
UNIX System V /386 kernel supports that adapter, nor whether a driver for
that adapter is available for sea UNIX System V /386.

slot cannot be used to change the configuration shown. To change the config­
uration, use the setup disk supplied with your machine. Consult the hardware
documentation supplied with your machine for details concerning the use of
the setup disk.

hwconfig(C)

Value added

slot is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc.

443

sart(e)

sort
sort and merge files

Syntax
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-b] [-tx] [+posl]
[-pos2] [files]

Description

444

sort sorts lines of aU the named files together and writes the result on the
standard output. The standard input is read if II - II is used as a file name or if
no input files are named.

Comparisons are based on one or more sort keys extracted from each line of
input. By default, there is one sort key, the entire input line, and ordering is
determined by the collating sequence defined by the locale (see 10eale(M».

The following options alter the default behavior:

-e Check that the input file is sorted according to the ordering rules;
give no output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal keys.
This option can result in unwanted characters placed at the end of
the sorted file.

-ooutput The argument given is the name of an output file to use instead of
the standard output. This file may be the same as one of the
inputs. There may be optional blanks between -0 and output.

-ykmem The amount of main memory used by the sort has a large impact
on its performance. Sorting a small file in a large amount of mem­
ory is a waste. If this option is omitted, sort begins using a system
default memory size, and continues to use more space as needed.
If this option is presented with a value, kmem, sort will start using
that number of kilobytes of memory, unless the administrative
minimum or maximum is violated, in which case the corre­
sponding extremum will be used. Thus, -yO is guaranteed to start
with minimum memory. By convention, -y (with no argument)
starts with maximum memory.

-zrecsz

sort(C)

Causes sort to use a buffer size of recsz bytes for the merge phase.
Input lines longer than the buffer size will cause sort to terminate
abnormally. Normally, the size of the longest line read during the
sort phase is recorded and this maximum is used as the record size
during the merge phase, eliminating the need for the -z option.
However, when the sort phase is omitted (-c or -m options) a sys­
tem default buffer size is used, and if this is not large enough, the
-z option should be used to prevent abnormal termination.

The following options override the default ordering rules.

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons. Dictionary order is defined by the locale set­
ting (see locale(M».

-f Fold lowercase letters into uppercase. Conversion between lowercase
and uppercase letters are governed by the locale setting (see locale(M».

-i Ignore non-printable characters in non-numeric comparisons. Non­
printable characters are defined by the locale setting (see locale(M».

-M Compare as months. The first three non-blank characters of the field are
folded to uppercase and compared so that "JAN" < "FEB" < ... < "DEC".
Invalid fields compare low to "JAN". The -M option implies the -b
option (see below).

-n An initial numeric string, consisting of optional blanks, an optional
minus sign, and zero or more digits with optional decimal point, is
sorted by arithmetic value. The -n option implies the -b option (see
below). Note that the -b option is only effective when restricted sort key
specifications are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys. When attached
to a specific sort key (described below), the specified ordering options over­
ride cJI global ordering options for that key.

The notation +pos1 -pos2 restricts a sort key to one beginning at pos1 and
ending at pos2. The characters at positions pos1 and pos2 are included in the
sort key (provided that pos2 does not precede pos1). A missing -pos2 means
the end of the line.

445

sort(e)

Examples

446

Specifying posl and pos2 involves the notion of a field (a minimal sequence of
characters followed by a field separator or a newline). By default, the first
blank (space or tab) of a sequence of blanks acts as the field separator. All
blanks in a sequence of blanks are considered to be part of the next field; for
example, all blanks at the beginning of a line are considered to be part of the
first field. The treatment of field separators can be altered using the options:

-tx Use x as the field separator character; x is not considered to be part of a
field (although it may be included in a sort key). Each occurrence of x is
significant (for example, xx delimits an empty field).

-b Ignore leading blanks when determining the starting and ending posi­
tions of a restricted sort key. If the -b option is specified before the first
+posl argument, it will be applied to all +posl arguments. Otherwise,
the b flag may be attached independently to each +posl or -pos2 argu­
ment (see below).

posl and pos2 each have the form m.n optionally followed by one or more of
the flags b, d, f, i, n, or r. A starting position specified by +m.n is interpreted
to mean the n+1st character in the m+1st field. A missing.n means .0, indicat­
ing the first character of the m+1st field. If the b flag is in effect, n is counted
from the first non-blank in the m+ 1st field; +m.Ob refers to the first non-blank
character in the m+ 1st field.

A last position specified by -m.n is interpreted to mean the nth character
(including separators) after the last character of the mth field. A missing .n
mean~ .0, indicating the last character of the mth field. If the b flag is in effect,
n is counted from the last leading blank in the m+ 1st field; -m.Ob refers to the
first non-blank in the m+ 1st field.

When there are multiple sort keys, later keys are compared only after all ear­
lier keys compare equal. Lines that otherwise compare equal are ordered with
all bytes significant.

Sort the contents of infile with the second field as the sort key:
sort +1 -2 infile

Sort, in reverse order, the contents of infilel and infile2, placing the output in
outfile and using the first character of the second field as the sort key:

sort -r -0 outfile +1.0 -1.2 infilel infile2

Sort, in reverse order, the contents of infilel and infile2 using the first non­
blank character of the second field as the sort key:

sort -r +1.0b -l.lb in£ilel infile2

Files

See also

sort(C)

Print the password file (passwd(F) sorted by the numeric user ID (the third
colon-separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first oc­
currence of lines having the same third field (the options -urn with just one
input file make the choice of a unique representative from a set of equal lines
predictable):

sort -urn +2 -3 infile

/usr / tmp /stm? ? ?

coltbl(M), cornrn(C), join(C), locale(M), uniq(C)

Diagnostics

Comments and exits with non-zero status for various trouble conditions (for
example, when input lines are too long), and for disorders discovered under
the -c option.

When the last line of an input file is missing a newline character, sort appends
one, prints a warning message, and continues.

Standards conformance

sort is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

447

spell(C)

spell, hashmake, spellin, hashcheck
find spelling errors

Syntax
spell [-v] [-b] [-x] [-I] [-i] [+localJile] [files]

/usr/lib/speillhashmake

/usr/Ub/speillspellin n

/usr/lib/speillhashcheck spelling_list

Description

448

spell - Checks spelling against a hashed spelling list.

hashmake - Generates hash codes for a list of words.

spellin - Writes a spelling list from hash codes.

hashcheck - Recreates the hash codes in a hashed spelling list.

The spell command collects words from the named files and looks them up iin
a spelling list. Words that neither occur among nor are derivable (by applying
certain inflections, prefixes, and/or suffixes) from words in the spelling list
are printed on the standard output. If no files are named, words are collected
from the standard input.

spell ignores most troff(CT), tbl(CT), and eqn(CT) constructions.

Under the -v option, all words not literally in the spelling list are printed, and
plaUSible derivations from the words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in
words like standardise.

Under the -x option, every plaUSible stem is printed with II = II for each word.

By default, spell (like deroff(CT» follows chains of included files (.so and .nx
troff requests), unless the names of such included files begin with /usr/lib.
Under the -1 option, spell will follow the chains of all included files. Under
the -i option, spell will ignore all chains of included files.

Under the +localJile option, words found in localJile are removed from
spell's output. localJile is the name of a user-provided file that contains a
sorted list of words, one per line. With this option, the user can specify a set
of words that are correct spellings (in addition to spell's own spelling list) for
each job.

Examples

spell(C)

The spelling list is based on many sources, and while more haphazard than an
ordinary dictionary, it is also more effective with respect to proper names and
popular technical words. Coverage of the specialized vocabularies of biology,
medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below
with their default settings (see "Files"). Copies of all output are accumulated
in the history file. The stop list filters out misspellings (for example,
thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes the cor-
responding nine-digit hash codes on the standard output.

spellin n Reads n hash codes from the standard input and writes a
compressed, or hashed spelling_list such as /usr/lib/spell/hlista or
/usr/lib/spell/hlistb, on the standard output. Information about the
hash coding is printed on standard error.

hashcheck Reads a compressed, or hashed spelling_list, such as
/usr/lib/spell/hlista or /usr/lib/spell/hlistb, and recreates the nine-digit
hash codes for all the words in it, writing these codes on the stan­
dard output.

This example adds the words in newwords to the on-line dictionary
(/usr/lib/spell/hlista):

cd /usr/1ib/spe11
cat newwords I . /hashmake I sort -u > newcodes
cat hlista I . /hashcheck > hashcodes
cat newcodes hashcodes I sort -u > newhash
cat newhash I ./spe11in 'cat newhash I wc -1' > h1ist

mv h1ista h1ista.OO
mv hlist hlista

cd /usr/dict
cat newwords words I sort -du > tempwords
mv words words.OO
mv tempwords words

Remember to remove all temporary files after you are sure everything works.

449

spel1(C)

Files

See also

Notes

The following example removes words from the on-line dictionary. You
should first make a copy of /usr/diet/words that does not have the words you
want to remove. Make sure the file is sorted in alphabetical order. Then, fol­
low these steps:

cd /usr/lib/spel1
cat /usr/dict/words I ./hashmake > hashcodes
cat hashcodes I ./spe11in 'cat hashcodes I wc -1' > newh1ist

mv h1ista h1ista.OO
mv newh1ist h1ista

Note that when you are manipulating large text, hash and hash code files, you
should use cat(C) to open the files, since they may be extremely large.

D _SPELL=/usr/lib /spell/hlistlab]

S_SPELL=/usr/lib/spell/hstop

H_SPELL=/usr/lib/spell/spellhist

lusr/lib/spelllspellprog

hashed spelling lists, American & British

hashed stop list

history file

program

deroff(CT), eqn(CT), sed(C), sort(C), tbl(CT), tee (C), troff(CT)

The spelling list coverage is uneven; new installations will probably wish to
monitor the output for several months to gather local additions; typically,
these are kept in a separate local file that is added to the hashed spelling_list
via spellin.

By default, logging of errors to /usr/lib/spell/spellhist is turned off.

D_SPELL and S_SPELL can be overridden by placing alternate definitions in
your environment.

Standards confonnance

hashcheck, hashmake and spellin are conformant with:
AT&T svm Issue 2.

spell is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3,1989.

450

spline(C)

spline
interpolate smooth curve

Syntax
spline [option] ...

Description

The spline command takes pairs of numbers from the standard input as
abscissas and ordinates of a function. It produces a similar set, which is
approximately equally spaced and includes the input set, on the standard out­
put. The cubic spline output has two continuous derivatives, and enough
points to look smooth when plotted.

The following options are recognized, each as a separate argument.

-a t1 Supplies abscissas automatically (they are missing from the input);
spacing is given by the next argument, or is assumed to be 1 if next
argument is not a number.

-k n The constant n used in the boundary value computation

y~ = ky~ , ... , y~ = ky~-l

is set by the next argument. By default n = o.
-n n Spaces output points so that approximately n intervals occur

between the lower and upper x limits. (Default n = 100.)

-p Makes output periodic, that is, matches derivatives at ends. First
and last input values should normally agree.

-x I [u] Next 1 (or 2) arguments are lower (and upper) x limits. Normally
these limits are calculated from the data. Automatic abscissas
start at lower limit (default 0).

Diagnostics

Note

When data is not strictly monotone in x, spline reproduces the input without
interpolating extra points.

A limit of 1000 input points is silently enforced.

451

split(C)

split
split a file into pieces

Syntax
split [-n] [file [name]]

Description

See also

The split command reads file and writes it in as many n-line pieces as neces­
sary (default 1000), onto a set of output files. The name of the first output file
is name with aa appended, and so on lexicographically. If no output name is
given, x is default.

If no input file is given, or if a dash (-) is given instead, the standard input file
is used.

bfs(C), csplit(C)

Standards conformance
split is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3,1989.

452

strings(C)

strings
find the printable strings in an object file

Syntax
strings [-] [-0] [-number] filename . ..

Description

See also

Credit

The strings command looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline or a null
character. Unless the II -" flag is given, strings only looks in the initialized
data space of object files. If the -0 flag is given, then each string is preceded
by its decimal offset in the file. If the -number flag is given then number is
used as the minimum string length rather than 4.

strings is useful for identifying random object files and many other things.

hd(C),od(C)

This utility was developed at the University of California at Berkeley and is
used with permission.

453

stty(C)

stty, STTV
set the options for a terminal

Syntax
stty [-a] [-g] [options]

Description

454

STTY - set the options for a terminal. STTY is a link to stty.

The stty command sets certain terminal I/O options for the device that is the
current standard input; without arguments, it reports the settings of certain
options. With the -a option, stty reports all of the option settings. The-g
option causes stty to output the current stty settings of the terminal as a list of
fourteen hexadecimal numbers separated by colons. This output may be used
as a command line argument to stty to restore these settings later on. It is a
more compact form than stty -a. For example, the following shell script uses
stty -g to store the current stty settings, then turns off character echo while
reading a line of input. The stored stty values are then restored to the
terminal:

echo "Enter your secret code: \c"
old='stty -g'
stty -echo intr ,A a,
read code
stty Sold

The various modes are discussed in several groups that follow. Detailed in­
formation about the modes listed in the first four groups may be found in
termio(M). Options in the last group are implemented using multiple options
in the previous groups. Refer to vidi(C) for hardware specific information that
describes control modes for the video monitor and other display devices.

Common control modes
parenb (-parenb) Enables (disables) parity generation and detection.

parodd (-parodd) Selects odd (even) parity.

csS cs6 cs7 csS Selects character size (see termio(M».

o Hangs up phone line immediately.

50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 19200 38400
Sets terminal baud rate to the number given, if possible.

ospeed 50 75110 134150200300600120018003400480096001920038400
Sets terminal output baud rate separately.

stty(C)

ispeed 50 75110 134150 200 300 600 1200 18003400480096001920038400
Sets terminal input baud rate separately.

hupcl (-hupcl) Hangs up (does not hang up) phone connection on last
close.

hup (-hup) Same as hupcl (-hupcl).

cstopb (-cstopb) Uses two(one) stop bits per character.

cread (-cread) Enables (disables) the receiver.

clocal (-clocal) Assumes a line without (with) modem control.

ctsflow (-ctsflow) Enables CTS protocol for a modem or non-modem line.

rtsflow (-rtsflow) Enables RTS signaling for a modem or non-modem line.

Input modes
ignbrk (-ignbrk) Ignores (does not ignore) break on input.

brkint (-brkint) Signals (does not signal) INTERRUPT on break.

ignpar (-ignpar) Ignores (does not ignore) parity errors.

parmrk (-parmrk) . Marks (does not mark) parity errors (see termio(M».

inpck (-inpck)

istrip (-is trip)

inler (-inler)

igncr (-igncr)

icml (-icml)

iuclc (-iucle)

ixon (-ixon)

ixany (-ixany)

ixoff (-ixoff)

Enables (disables) input parity checking.

Strips (does not strip) input characters to 7 bits.

Maps (does not map) NL to CR on input.

Ignores (does not ignore) CR on input.

Maps (does not map) CR to NL on input.

Maps (does not map) uppercase alphabetics to lowercase
on input.

Enables (disables) START/STOP output control. Output
is stopped by sending an ASCII DC3 and started by send-
ing an ASCII DCl.

Allows any character (only DCl) to restart output.

Requests that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

isscancode (-isscancode)
Expect the terminal device to send (not send) PC scan­
codes.

455

stty(C)

456

xseaneode (-xseaneode)
Translate (do not translate) PC scancodes to characters on
input.

es2seaneode (-es2seaneode)
Put console keyboard into codeset 2/(AT) mode (or
codeset 1/ (XT) mode) and interpret the transmitted codes
accordingly.

Do not use the -iseaneode or -xseaneode options on the console, as the con­
sole keyboard always sends scancodes and needs them translated.

Some console keyboards do not support AT mode. Use kbmode(C) to deter­
mine whether your keyboard supports this mode.

The sUy -a command displays these option settings (along with the settings of
all other options). However, if the tty is in -isseaneode mode, stty -a does not
display the state of xseaneode es2seaneode.

Output modes
opost (-opost)

olcue (-olcue)

onlcr (-onlcr)

oeml (-oeml)

onoer (-onoer)

onlret (-onlret)

ofill (-of ill)

of del (-ofdel)

erO erl er2 er3

nlOnll

Post-processes output (does not post-process output;
ignores all other output modes).

Maps (does not map) lowercase alphabetics to uppercase
on output.

Maps (does not map) NL to CR-NL on output.

Maps (does not map) CR to NL on output.

Does not (does) output CRs at column zero.

On the terminal NL performs (does not perform) the CR
function.

Uses fill characters (uses timing) for delays.

Fill characters are DELETEs (NULs).

Selects style of delay for RETURNs (see termio(M».

Selects style of delay for LINEFEEDs (see termio(M».

tabO tabl tab2 tab3 Selects style of delay for horizontal TABs (see termio(M».

bsObsl

ffO ££1

vtO vtl

Selects style of delay for BACKSPACEs (see termio(M».

Selects style of delay for FORMFEEDs (see termio(M».

Selects style of delay for vertical TABs (see termio(M».

stty(C)

Local modes
isig (-isig) Enables (disables) the checking of characters against the

special control characters INTERRUPT, SWITCH and
QUIT.

icanon (-icanon) Enables (disables) canonical input (ERASE and KILL pro-
cessing).

xcase (-xcase) Canonical (unprocessed) upper/lowercase presentation.

echo (-echo) Echoes back (does not echo back) every character typed.

echoe (-echoe) Echoes (does not echo) ERASE character as a backspace,
space, backspace sequence. Note: this mode will erase
the ERASE character on many CRT terminals; however, it
does not keep track of column position and, as a result,
may be confusing on escaped characters, TABs, and
BACKSPACEs.

echok (-echok) Echoes (does not echo) NL after KILL character.

Ifkc (-lfkc) The same as echok (-echok); obsolete.

echonl (-echonl) Echoes (does not echo) NL.

no£lsh (-no£lsh) Disables (enables) flush after INTERRUPT or QUIT.

iexten (-iexten) Enables extended implementation (implementation­
defined) functions.

to stop (-tostop) Disables/enables background process group to write to
controlling terminal (only if job control is supported).

Control assignments
control-character C Sets control-character to C, where control-character is

erase, kill, intr (interrupt), quit, eof, eoI, swtch (switch),
start, stop or susp.

min i, time i

line i

start and stop are available as possible control characters
for the control-character C assignment.

If C is preceded by a caret n (escaped from the shell),
then the value used is the corresponding control charac­
ter (for example, AD is a (Ctrl}d; A? is interpreted as
DELETE and A_ is interpreted as undefined.)

(0 < i < 127) When -icanon is set, and one character has
been received, read requests are not satisfied until at least
min characters have been received or the timeout value
time has expired and one character has been received.
See termio(M).

Sets the line discipline to i (0 < i < 127).

457

stty(C)

See also

Note

Combination modes
evenp or parity Enables parenb and es7..

oddp Enables parenb, es7, and parodd.

-parity, -evenp, or -oddp
Disables parenb, and sets esS.

raw (-raw or cooked)

nl (-nl)

lease (-lease)

LCASE (-LCASE)

Enables (disables) raw input and output (no ERASE,
KILL, INTERRUPT, QUIT, EOT, or output post-pro­
cessing).

Unsets (sets) icml, onler. In addition -nl unsets inler,
igner, oeml, and onlret.

Sets (unsets) xease, iude, and oleue.

Same as lease (-lease).

tabs (-tabs or tab3) Preserves (expands to spaces) tabs when printing.

ek

sane

term

Resets ERASE and KILL characters back to normal (Ctrl)h
and (CtrI)u.

Resets all modes to some reasonable values. Useful
when a terminal's settings have been hopelessly scram­
bled. This includes setting xseaneode if isseaneode is set.

Sets all modes suitable for the terminal type term, where
term is one of tty33, tty37, vt05, tn300, ti700, or tek.

eonsole{M), ioctl{S), seaneode(HW), seanon(M), seanoff{M), termio(M),
termios(M), tty{M), kbmode(C), vidi(C)

Many combinations of options make no sense, but no checking is performed.

Standards conformance

stty is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

458

su(C)

su
make the user a super user or another user

Syntax
su [-] [name [arg ...]]

Description

The su command allows authorized users to change their user id to that of
another user without logging off. The default user name is root (that is, super
user).

If a user has su authorization they can su to any account, providing they
know the password for that account. If the user does not have su authoriza­
tion, they can su only to their own account or to another account that they
own, or to an account that has the same owner as the current account.

To use su, the appropriate password must be supplied (unless you are already
the super user). If the password is correct, su will execute a new shell with
the user ID, group ID, and supplemental group list set to those of the specified
user. The new shell also has the kernel and subsystem authorizations of the
specified user, although the LUID is not changed. The new shell will be the
optional program named in the shell field of the specified user's password file
(lbinlsh if none is specified (see sh(C))). To restore normal user ID privileges,
press EOF (Ctrl}d to exit the new shell.

Any additional arguments given on the command line are passed to the pro­
gram invoked as the shell. When using programs like sh(C), an arg of the
form -c string executes string via the shell and an arg of -r gives the user a re­
stricted shell. You must specify a username with the -c option; for example,
su root -c sysadmsh. When you exit the system administration shell, you will
no longer be root.

The following statements are true only if the optional program named in the
shell field of the specified user's password file entry is like sh. If the first
argument to su is a "- ", the environment is changed to what would be
expected if the user actually logged in as the specified user. This is done by
invoking the program used as the shell with an argO value whose first charac­
ter is" - ", thus causing first the system's profile (/ete/profile) and then the speci­
fied user's profile (.profile in the new HOME directory) to be executed. Other­
wise, the environment is passed along with the possible exception of $P ATH,
which is set to /bin:/ete:/usr/bin for root. The" -" option should never be used
in letdrc scripts.

Note that if the optional program used as the shell is Ibinlsh, the user's .profile
can check argO for -sh or -su to determine if it was invoked by login(M) or su,
respectively. If the user's program is other than Ibinlsh, then .profile is
invoked with an argO of -program by both login and suo

459

su(C)

Examples

Files

460

The file /ete/default/su can be used to control several aspects of how su is used.
Several entries can be placed in /ete/default/su:

SULOG Name of log file to record all attempts to use suo Usually
/usr/adm/sulog. If this is not set, no logfile is kept. (See below.)

PATH The PATH environment variable to set for non-root users. If not
set, it defaults to :/bin:/usr/bin. The current PATH environment
variable is ignored.

SUPATH The PATH environment variable to set for root. If not set, it
defaults to /bin:/ete:/usr/bin. The current PATH is ignored.

CONSOLE Attempts to use su are logged to the named device, independently
ofSULOG.

For example, if you want to log all attempts by users to become root, edit the
file fete/default/suo In this file, place a string similar to:

SULOG=/usr/adm/sulog

This causes all attempts by any user to switch user IDs to be recorded in the
file /usr/adm/sulog. This filename is arbitrary. The su logfile records the origi­
nal user, the DID of the su attempt, and the time of the attempt. If the attempt
is successful, a plus sign (+) is placed on the line describing the attempt. A
minus sign (-) indicates an unsuccessful attempt.

To become user bin while retaining your previously exported environment,
enter:

subin

To become user bin but change the environment to what would be expected if
bin had originally logged-in, enter:

su- bin

To execute command with the temporary environment and permissions of
user bin, enter:

su - bin -c command args

/ete/passwd
/ete/default/su
fete/profile
$HOME/.profile

The system password file
File containing control options
The system profile
The user profile

su(C)

See also

auths(C), nv(C), environ(M),login(M), passwd(FP), profile(M), sh(C), sg(C)

Standards conformance

su is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

461

sum(C)

sum
calculate a checksum and count the blocks in a file

Syntax

sum [-rl] [file] ...

Description

See also

The sum command calculates and prints a checksum for the named file, and
also prints the number of 512-byte blocks in the file.

If no file is named, standard input is used.

Options are:

-1 Print a long (32-bit) checksum. (The default is to print a short (16-bit)
checksum.)

-r Use an alternate (older) algorithm to compute the checksum. This alter­
nate algorithm is sensitive to the order of the bytes in the data; the stan­
dard algorithm is not.

sum is typically used to validate data after being transported across unreliable
media. It is also useful when you want to reduce the contents of a file into a
representative value.

cmchk(C), machine(HW), wc(C)

Diagnostics

"Read error" is indistinguishable from "End-of-file" on most devices, so you
need to check the block count.

Standards confonnance

sum is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3,1989.

462

swconfig(C)

swconfig
produce a list of the software modifications to the system

Syntax

swconfig [-a] [-p]

Description

Options

The swconfig command displays the modifications to the system software
since its initialization, in much the same way that hwconfig tells the user
what hardware is installed on the system. The program can tell the user what
sets have been installed or removed from the system, as well as what release
and what parts of the packages were installed at that time.

Additional flags let the user ask to see all of the description of each installa­
tion on the system.

The default behavior is simple so that the information is displayed quickly.
Additional flags can be used to perform more complex manipulations.
Updates are recognized and noted as such. The release number is displayed
in all cases.

Without options, swconfig generates a display similar to the following
example:
Set Release

Operating System 2.3.la
International XENIX O.S. Supplem 2.0.0e
Development System 2.3.0b

Notes

partially removed
partially installed
removed

-a The -a flag lists all the information contained in /usr/lib/custom/history,
but sorted by date. It groups products that were installed at the same
time, but displays entries in reverse chronological order.

-p The flag -p is used to display package information in addition to the
default information. A list of all the packages in a set is stored and their
installed status tracked by the sequence of information in
/usr/lib/custom/history.

463

swconfig(C)

Examples

See also

Here is a sample output using the -a option:
Set: Operating System (prd = xos)

Fri Mar 17 07:51:02 PST 1989
removed successful
Packages: HELP MOUSE

Release 2.3.1a

Fri Mar 17 10:43:09 PST 1989
removed successful Release 2.3.1a
Packages: VSH

Set: International XENIX O.S. Supplement (prd = sup.os)
Fri Dec 16 10:32:53 PST 1988
installed successful Release 2.0.0e
Packages: RTSUP BASE SYSADM FILE

Fri Dec 16 11:03:37 PST 1988
installed successful
Packages: MAPFILE

Release 2.0.0e

Here is a sample output generated by the -p option:
Set Release

Operating System 2.3.1a
Operating System 2.3.1a
International XENIX O.S. Supplem 2.0.0e

International XENIX O.S. Supplem 2.0.0e
Develoment System 2.3.0b

custom(ADM)

Notes

removed
removed
installed

installed
removed

Type: 386GT

Type: 386GT

Type: n286

Type: n286

Packages

HELP MOUSE
VSH
RTSUP BASE
SYSADM FILE
MAPFILE
ALL

Value added

464

swconfig is an extension of AT&T System V provided by The Santa Cruz
Operation, Inc.

tabs (C)

tabs
set tabs on a terminal

Syntax
tabs [tabspec] [-Ttype] [+mn]

Description

The tabs command sets the tab stops on the user's terminal according to the
tab specification tab spec, after clearing any previous settings. The user's ter­
minal must have remotely-settable hardware tabs.

tabspec Four types of tab specification are accepted for tabspec. They are
described below: canned (-code), repetitive (-n), arbitrary (nl,n2, •.•),
and file (--file). If no tabspec is given, the default value is "-8", that
is, "standard" UNIX tabs. The lowest column number is 1. Note that
for tabs, column 1 always refers to the leftmost column on a termi­
nal, even one whose column markers begin at 0, for example, the
DASI 300, DASI 300s, and DASI 450.

-code Use one of the codes listed below to select a canned set of
tabs. The legal codes and their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM 5/370, first format

-a2 1,10,16,40,72
Assembler, IBM 5/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using
this code, the first typed character corresponds to card
column 7, one space gets you to column 8, and a tab
reaches column 12. Files using this tab setup should
include a format specification as follows (see
fspec(F»: <:t-c2 m6 s66 d:>

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with
more tabs than -c2. This is the recommended format
for COBOL. The appropriate format specification is
(see fspec(F»: <:t-c3 m6 s66 d:>

-f 1,7,11,15,19,23
FORTRAN

465

tabs(C)

466

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

-n A repetitive specification requests tabs at columns 1 +n,
1+2*n, etc. Of particular importance is the value 8: this
represents the "standard" UNIX tab setting, and is the most
likely tab setting to be found at a terminal. Another special
case is the value 0, implying no tabs at all.

nl,n2,... The arbitrary format permits the user to type any chosen
set of numbers, separated by commas, in ascending order.
Up to 40 numbers are allowed. If any number (except the
first one) is preceded by a plus sign, it is taken as an incre­
ment to be added to the previous value. Thus, the formats
1,10,20,30, and 1,10,+10,+10 are considered identical.

--file If the name of a file is given, tabs reads the first line of the
file, searching for a format specification (see fspec(F». If it
finds one there, it sets the tab stops according to it: other­
wise it sets them as -8. This type of specification may be
used to make sure that a tabbed file is printed with correct
tab settings, and would be used with the pr(C) command:

tabs -- file; pr file

Any of the following also may be used; if a given flag occurs more than once,
the last value given takes effect:

-Ttype tabs usually needs to know the type of terminal in order to set tabs
and always needs to know the type to set margins. type is a name
listed in term(M). If no -T flag is supplied, tabs uses the value of the
environment variable TERM. If TERM is not defined in the environ­
ment (see environ(M», tabs tries a sequence that will work for many
terminals.

+mn The margin argument may be used for some terminals. It causes all
tabs to be moved over n columns by making column n+ 1 the left
margin. If +m is given without a value of n, the value assumed is 10.
For a TermiNet, the first value in the tab list should be 1, or the mar­
gin will move even further to the right. The normal (leftmost) mar­
gin on most terminals is obtained by +mO. The margin for most ter­
minals is reset only when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output.

Examples

tabs -a

tabs -8

tabs 1,8,36

tabs (C)

example using -code (canned specification) to set tabs to the
settings required by the IBM assembler:
columns 1,10,16,36,72.

example of using -n (repetitive specification), where n is 8,
causes tabs to be set every eighth position:
1+(1*8),1+(2*8), ... which evaluate to columns 9, 17, ...

example of using nl,n2,... (arbitrary specification) to set tabs at
columns 1,8, and 36.

tabs --$HOME/fspec.listiatt4425
example of using --file (file specification) to indicate that tabs
should be set according to the first line of
$HOME/fspec.list/att4425 (see fspec(F».

Diagnostics

See also

Notes

illegal tabs when arbitrary tabs are ordered incorrectly

illegal increment when a zero or missing increment is found in an arbi­
trary specification

unknown tab code when a canned code cannot be found

can't open if --file option used and file can't be opened

file indirection if --file option used and the specification in that file
points to yet another file. Indirection of this form is not
permitted.

environ(M), fspec(F), newform(C), pr(C), terminfo(F), term(M), tput(C)

There is no consistency among different terminals regarding ways of clearing
tabs and setting the left margin.

The tabs command clears only 20 tabs (on terminals requiring a long
sequence), but is willing to set 64.

The tabspec used with the tabs command is different from the one used with
the newform(C) command. For example, tabs -8 sets every eighth position;
whereas newform -i-8 indicates that tabs are set every eighth position.

467

tabs(C)

Standards conformance

tabs is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

468

tail(C)

tail
display the last part of a file

Syntax

tail [±[number] [Ibc] [-f]] [file]

Description

See also

Notes

The tail command copies the named file to the standard output beginning at a
designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the
end of the input (if number is null, the value 10 is assumed). number is
counted in units of lines, blocks, or characters, according to the appended
option 1, b, or c. When no units are specified, counting is by lines.

With the -f ("follow") option, if the input file is not a pipe, the program will
not terminate after the last line of the input file has been copied, but will enter
an endless loop, in which it sleeps for a second and then attempts to read and
copy further records from the input file. Thus it may be used to monitor the
growth of a file that is being written by some other process. For example, the
command:

tail -f file

will print the last ten lines of file, followed by any lines that are appended to
file between the time tail is initiated and killed.

dd(C)

Tails relative to the end of the file are kept in a buffer, and thus are limited to
approximately 300 lines. Unpredictable results can occur if character special
files are "tailed."

Standards conformance

tail is conformant with:

AT&T Sym Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

469

tape(C)

tape, mcart
magnetic tape maintenance program

Syntax
tape [-esf8i] [-a arg] command [device]

meart command [device]

Description

470

tape - sends commands to, and receives status from, the tape subsystem

meart - sends commands to, and receives status from, the Irwin tape driver

The tape command sends commands to, and receives status from, the tape
subsystem. tape can communicate with QIC -02 cartridge tape drives, SCSI
tape drives, and QIC-40, QIC-80 and Irwin mini-cartridge tape drives. (The
meart program is automatically invoked by tape when options specific to the
Irwin driver are used.)

The tape command reads fete/default/tape to find the default device name for
sending commands and receiving status. For example, the following line in
fete/default/tape will cause tape to communicate with the QIC-02 cartridge tape
device:

device = /dev/xctO

If a device name is specified on the command line, it overrides the default de­
vice. tape queries the device to determine its device type. If the device does
not respond to the query, tape will print a warning message and assume the
device is a QIC-02 cartridge tape.

The Irwin driver has a special default file /ete/default/meeonfig that contains
special driver options (see meeonfig(F) for details). In addition, the Irwin
driver uses a daemon startup program, lete/medaemon, to provide back­
ground ECC encode/decode.

Options

tape(C)

You can explicitly specify the type of the device by using the device type flags,
as follows:

-c QIC-02 cartridge tape
-s SCSI tape
-f QIC-40 mini-cartridge tape
-8 QIC-80 mini-cartridge tape
-i Irwin mini-cartridge tape

The -a flag allows you to pass an argument to commands that can use them.
The command to format a DAT tape into two partitions requires the size to be
passed as an argument. The -a option can also be used with the format com­
mand (used only with QIC-40, QIC-80, and Irwin tape drives) and the setblk
command (only valid with SCSI drives).

The following commands can be used with the various tape drivers sup­
ported under UNIX. The letters following each description indicate which
drivers support each command:

A All drivers
C QIC-02 cartridge tape driver
5 SCSI tape driver
F QIC-40 and QIC-80 mini-cartridge tape drivers
I Irwin mini-cartridge tape driver

amount Report amount of data in current or last transfer. (C,S,F)

Erase and retension the tape cartridge. (C,S,F) erase

load

reset

reten

rewind

status

Load the tape cartridge. (5)

Reset tape controller and tape drive. Clears error conditions and
returns tape subsystem to power-up state. (C,S,F)

Retension tape cartridge. Should be used periodically to
remedy slack tape problems. Tape slack can cause an unusually
large number of tape errors. (A)

Rewind to beginning of tape (BOT). (For HP DAT tapes: if the
tape is partitioned, the logical partition is rewound to the logical
BOT. (See dat(HW) for details.) (A)

The status output looks like this:
status: status message
soft errors: n
under runs: m

Status is a report of the current status of the drive; "no car­
tridge", "write protected", or "beginning of tape" are typical
status messages.

471

tape(C)

partition

unload

format

getbb

map

472

Soft errors is the number of recoverable errors that occurred dur­
ing the last tape operation. A recoverable error is one which is
correctable by the drive or controller. An example of a non­
recoverable "hard" error is an attempt to write to a write­
protected cartridge. Note that if the number of soft errors
greatly exceeds the manufacturer's specifications, the drive may
require service or replacement, or you may be using a defective
tape.

Underruns is the number of times the tape drive had to stop and
restart due to tape buffer underflows. Underruns are not an
error indication; they mean that the data transfer did not occur
at the drive's maximum data transfer rate. The number of
underruns can be affected by system load. (C,S,F)

Partition an HP DAT tape into logical partitions 1 and 2. The size
(in megabytes) of partition 2 is specified on the command line.
(The size of partition 1 is the remainder of the tape.) For
example: tape -a 200 partition creates a 200 megabyte parti­
tion (in partition 2) while partition 1 comprises the rest of the
tape. (For a 1300 megabyte unformatted DAT tape, partition 1
contains approximately 1100 megabytes of data.) (HP DAT only.
See dat(HW) for additional information.)

Unloads the tape cartridge. (S)

Format the tape cartridge. Floppy controller-based tapes must
be formatted before they can be used. This command takes
approximately one minute per megabyte of tape capacity. If an
argument is provided with the -a flag, the number of tracks
specified by the argument will be formatted. Only even num­
bers less than or equal to the number of tracks on the tape are
allowed. (See tape(HW) for more information.) If no argument
is given, the entire tape will be formatted. (F,n

Reformatted tapes are available and highly recommended. Pre­
formatted tapes are more reliable than user-formatted tapes.
Before reformatting a used tape, you must erase it with a bulk
eraser. Proper use of a bulk eraser is not trivial; refer to the
documentation for your bulk eraser.

Prints a list of bad tape blocks detected during the last tape
operation. This listing can be saved in a file for use by the putbb
command. (F)

Prints out a map of the bad blocks on the tape. The format is a
series of lines of the format:
track n: -------------x------ ...
Each "- 11 represents a good block on the track; an "X 11

represents a block marked as bad. (F)

putbb

rfm

rsm

wfm

wsm

eod

setblk

tape(C)

Reads a list of bad tape blocks from the standard input and adds
them to the bad block table on the tape. The format expected by
putbb is the same as generated by the getbb command. (F)

Wind tape forward to the next file mark. (C,S)

Position tape forward to the next setmark. (HP DAT only. See
the dat(HW) manual page for more information.)

Write a file mark at the current tape position. (C,S)

Write a setmark at the current tape position. (HP DAT only. See
the dat(HW) manual page for more information.)

Position the tape to the EOD (the end of written data) (HP DAT
only. See the dal(HW) manual page for more information.)

Set the tape block size to a specified byte size (S). For example,
the following command sets the tape block size to 512 Bytes:
tape -a 512 setblk

Invin-specific commands

The following commands are all specific to Irwin drives.

drive displays information about the Irwin driver and the tape drive.
An example display is:
Special file: /dev/rctmini
Driver version: 1.0.6a
Drive type: 285XL
Drive firmware: AO
Controller type: SYSFDC
Unit select (0-3): 3

Special file is the name of the special file used to access the
driver.

Driver version is the version of the driver linked with the kernel.

Drive type is an "equivalent" tape drive model number as deter­
mined by the Me driver. Since the exact model number of the
tape drive depends on the drive's form factor and whether the
drive is mounted in its own cabinet, the equivalent model num­
ber may not be the exact model of the installed tape drive. The
following is a list of equivalent drives:

110:

120[XL]:

125:

110,310,410

120,220,320,420,720,2020

125,225,325,425,725

473

tape(C)

474

145[XL]:

165:

285XL:

287XL:

145,245,345,445,745,2040

165,265,465,765

285,485,785,2080

287,487,787,2120

The brackets in the 120[XL] and 145[XL] mean the letters "XL"
mayor may not be present. When the letters "XL" appear, the
drive is capable of servo writing extra long (that is, 307.5 foot
DC2120) tapes.

Note: When this field displays "125/145," either a 125 drive or
an early model 145 drive with a DC1000 is present: the driver
can't distinguish between the two. A 125 drive will only accept
a DC1000 cartridge (a DC2000 or DC2120 will not fit). A 145
drive will accommodate DC1000, DC2000, or DC2120 cartridges.

Drive firmware is the firmware part number and revision level.
This line is present only for drives which report this informa­
tion.

Controller type is a mnemonic for the floppy controller to which
the tape drive is attached:

Mnemonic
SYSFDC
ALTFDC
4100MC
4100MCB
4100
4100B

Description
System floppy controller
Alternate floppy controller
Irwin 4100MC Micro Channel controller
Second 4100MC Micro Channel controller
Irwin 4100 PC Bus controller
Second 4100 PC Bus controller

Unit select (0-3) gives the controller's unit select, in the range 0
through 3. The unit select selects the drive.

info displays Irwin cartridge information. For example:
Cartridge state: Formatted
Cartridge format: 145
Write protect slider position: RECORD

Cartridge state is the current state of the cartridge's format.

Cartridge format indicates the format on the cartridge's tape. The
format is given in a code which is the same as the drive model
on which the cartridge was originally formatted (see drive and
tape(HW) for details). When the cartridge is blank, the code has
the format which would be applied by the format command.

Write protect slider position is RECORD or PROTECT.

Files

capacity

kapacity

cartridge capacity in 512-byte blocks.

cartridge capacity in 1024-byte blocks.

tape(C)

These two commands give the total usable data storage capacity
of a formatted tape cartridge. Variations in cartridge capacity
are due to differing numbers of bad blocks.

Devices:

/dev/rStpO
/dev/nrStpO
/dev/xStpO
/dev/rftO
/dev/xftO

/dev/retO
/dev/nretO
/dev/ret2
/dev/nrct2
/dev/xetO

fete/default/tape
/ete/default/meeonfig
/ete/medaemon

/dev/eretO
/dev/xetO
/dev/retmini
/dev/xetmini
/dev/rmeO

For DAT tapes:

/dev/urStpO.O
/dev/nurStpO.O
/dev/nrStpO.O
/dev/xStpO.O

/dev/urStpO.l
/dev/nurStpO.1
/dev/nrStpO.1
/dev/xStpO.l

·/dev/rmc1
/dev/medaemon

The DAT partition 1 is linked to the default SCSI tape device locations:

/dev/rStpO
/dev/rStpO.O
/dev/nrStpO
/dev/xStpO
/dev/urStpO
/dev/rStpO.l

linked to
linked to
linked to
linked to
linked to
linked to

/dev/nurStpO.O
/dev/nurStpO.O
/dev/nrStpO.O
/dev/xStpO.O
/dev/urStpO.O
/dev/nurStpO.l

Note that if you have not installed a cartridge tape on your system, SCSI tapes
device are linked to /dev/retO.

Include files:

/usr/include/sys/tape.h
/usr/include/sys/et.h
/usr/include/sys/ft·h
/usr/include/sys/ir.h

475

tape(C)

See also

Notes

baekup(ADM), epio(C), dd(C), meeonfig(F), medaemon(F), restore(ADM),
tape(HW), tar(C), xbaekup(ADM), xrestore(ADM)

See tape(HW) and the Release Notes for a list of supported tape drives.

The amount and reset commands can be used while the tape is busy with
other operations. All other commands wait until the currently executing com­
mand has been completed before proceeding.

If you use the status command while the tape drive is busy, no message is dis­
played until the drive is free.

When you are using the non-rewinding tape device or the tape commands
rfm and wfm, the tape drive light remains on after the command has been
completed, indicating that more operations may be performed on the tape.
The tape rewind command may be used to clear this condition.

For more information on device files, (listed above), see the tape(HW) manual
page.

Value added

476

tape and meart are extensions of AT&T System V provided by The Santa Cruz
Operation, Inc.

tapecntl(C)

tapecntl
AT&T tape control for QIC-24/QIC-02 tape device

Syntax

tapecntl [-etrw] [-p arg]

Description

tapecntl will send the optioned commands to the tape device driver sub-de­
vice /deo/rmt/cOsO for all commands except "position", which will use sub-de­
vice /deo/rmt/cOsOn using the ioctl command function. Sub-device
/deo/rmt/cOsO provides a rewind on close capability, while /deo/rmt/cOsOn allows
for closing of the device without rewind. Error messages will be written to
standard error.

The following options are available:

-e erase tape

-t retension tape

-r reset tape device

-w rewind tape

-p[n] position tape to "end of file" mark - n

Erasing the tape causes the erase bar to be activated while moving the tape
from end to end, causing all data tracks to be erased in a single pass over the
tape.

Retensioning the tape causes the tape to be moved from end to end, thereby
repacking the tape with the proper tension across its length.

Reset of the tape device initializes the tape controller registers and positions
the tape at the beginning of the tape mark (BOT).

Rewinding the tape will move the tape to the BOT.

Positioning the tape command requires an integer argument. Positioning the
tape will move the tape forward relative to its current position to the end of
the specified file mark. The positioning option used with an argument of zero
will be ignored. illegal or out-of-range value arguments to the positioning
command will leave the tape positioned at the end of .the last valid file mark.

Options may be used individually or strung together with selected options
being executed sequentially from left to right in the command line.

477

tapecntl(C)

Files

Notes

/usr/lib/tape/tapecntl
/dev/rmt/cOsOn
/dev/rmt/cOsO

Exit codes and their meanings are as follows:

exit (1) device function could not initiate properly due to misconnected
cables or poorly inserted tape cartridge.

exit (2) device function failed to complete properly due to unrecoverable
error condition, either in the command setup or due to mechanical
failure.

exit (3) device function failed due to the cartridge being write protected or to
the lack of written data on the tape.

exit (4) device /dev/rmt/cOsOn or /dev/rmt/cOsO failed to open properly due to
already being opened or claimed by another process.

Value added

478

tapecntl is an extension of AT&T System V provided by The Santa Cruz
Operation, Inc.

tapedump(C)

tapedump
dump magnetic tape to output file

Syntax
tapedump [-a I -e] [-0 I -h] [-btsnnum] tape_device outputJile

Description

Options

The tapedump command dumps the contents of magnetic tapes according to
the options specified. Options include conversion from input format to user
specified output format, specification of input and output blocksize, and the
ability to specify that the dump begin at a specific start block on the tape and
proceed for a specified number of blocks.

tape_device The input tape device.

-a Convert from EBCDIC input to ASCII output.

-e Convert from ASCII input to EBCDIC output.

-0 Display tape output in octal format.

-h Display tape output in hexadecimal format.

-s num Skip num input records before starting dump.

-t num Specify which tape file to begin dump from, where num is
the tape file sequence number.

-b num[bkw] Set both input and output block size. num is the number of
blocks, which can include b, k, or w to indicate the block
size, which correspond to 1024-, 512-, or 2-byte blocks,
respectively. If block size is not specified, b is assumed.

-n num Specify dump of only num blocks.

outputJile The output filename; standard output is the default.

479

tapedump(C)

Examples

See also

Note

This command reads a tape starting at block 400 and outputs the results in
hexadecimal format into a user specified file called /tmp/hex.dump:

tapedump -b400 -h Idev/rdO Ilmplhexdump

This command reads an EBCDIC tape and converts the standard output to
ASCII:

tapedump -a Idev/rdO

sysadmsh(ADM), dd(C), hd(C), od(C), tape(C)

The output file may be specified to be another tape device.

Value added

tapedump is an extension of AT&T System V provided by The Santa Cruz
Operation, Inc. '

480

tar(C)

tar
archive files

Syntax
tar [key] [files]

Description

The tar command saves and restores files to and from an archive medium,
which is typically a floppy disk or tape, or a standard file. Its actions are con­
trolled by the key argument. The key is a string of characters containing at
most one function letter and possibly one or more function modifiers. Valid
function letters are r, x, t, u, c, and e. Other arguments to the command are
files (or directory names) specifying which files are to be backed up or
restored. In all cases, a directory name refers to the files and (recursively) the
subdirectories of that directory. The rand u options cannot be used with tape
devices.

The function portion of the key is specified by one of the following letters:

r The named files are written to the end of an existing archive.

x The named files are extracted from the archive. If a named file
matches a directory whose contents had been written onto the
archive, this directory is (recursively) extracted. The owner,
modification time, and mode are restored (if possible). If no files
argument is given, the entire contents of the archive are extracted.
Note that if several files with the same name are on the archive,
the last one overwrites all earlier ones.

t The names of the specified files are listed each time that they occur
on the archive. If no files argument is given, all the names on the
archive are listed.

u The named files are added to the archive if they are not already
there, or if they have been modified since last written on that
archive.

c Creates a new archive; writing begins at the beginning of the
archive, instead of after the last file.

The following characters may be used in addition to the letter that selects the
desired function:

0, ... ,9999 This modifier selects the drive on which the archive is mounted.
The default is found in the file fete/default/tar.

481

tar(C)

482

v Normally, tar does its work silently. The v (verbose) option causes
it to display the name of each file it treats, preceded by the func­
tion letter. With the t function, v gives more information about the
archive entries than just the name.

w Causes tar to display the action to be taken, followed by the name
of the file, and then wait for the user's confirmation. If a word
beginning with "y" is given, the action is performed. Any other
input means lind'.

f Causes tar to use the next argument as the name of the archive
instead of the default device listed in fete/default/tar. If the name of
the file is a dash (-), tar writes to the standard output or reads from
the standard input, whichever is appropriate. Thus, tar can be
used as the head or tail of a pipeline. tar can also be used to move
hierarchies with the command:

cd fromdir; tar cf -. I (cd todir; tar xf -)
b Causes tar to use the next argument as the blocking factor for

archive records. The default is I, the maximum is 20. This option
should only be used with raw magnetic tape archives (see f
above). The block size is determined automatically when reading
tapes (key letters x and t) ..

F Causes tar to use the next argument as the name of a file from
which succeeding arguments are taken.

1 Tells tar to display an error message if it cannot resolve all of the
links to the files being backed up. If I is not specified, no error
messages are displayed.

m Tells tar not to restore the modification times. The modification
time of the file is the time of extraction.

k Causes tar to use the next argument as the size of an archive vol­
ume in kilobytes. The minimum value allowed is 250. Very large
files are split into "extents" across volumes. When restoring from
a multi-volume archive, tar only prompts for a new volume if a
split file has been partially restored. To override the value of k in
the default file, specify k as 0 on the command line.

e Prevents files from being split across volumes (tapes or floppy
disks). If there is not enough room on the present volume for a
given file, tar prompts for a new volume. This is only valid when
the k option is also specified on the command line.

n Indicates the archive device is not a magnetic tape. The k option
implies this. Listing and extracting the contents of an archive are
faster because tar can seek over files it wishes to skip. Sizes are
printed in kilobytes instead of tape blocks.

tar(e)

p Indicates that files are extracted using their original permissions.
It is possible that a non-super user may be unable to extract files
because of the permissions associated with the files or directories
being extracted.

A Suppresses absolute filenames. Any leading " /" characters are
removed from filenames. During extraction arguments given
should match the relative (rather than the absolute) pathnames.
With the c, r, and u options, the A option can be used to inhibit
putting leading slashes in the archive headers.

q During extraction causes tar to exit immediately after each file on
the command line has been extracted, rather than continuing to
look for additional files of the same name.

L Follow symbolic links. By default, symbolic links are not followed;
when tar encounters a symbolic link, it issues a warning message,
skips over the link, and continues with the rest of the files.

tar reads fete/default/tar to obtain default values for the device, blocking factor,
volume size, and the device type (tape or non-tape). If no numeric key is
specified on the command, tar looks for a line in the default file beginning
with the string archive=. Following this pattern are 4 blank separated strings
indicating the values for the device, blocking factor, volume size and device
type, in that order. A volume size of '0' indicates infinite volume length. This
entry should be modified to reflect the size of the tape volumes used.

For example, the following is the default device entry from fete/default/tar:
archive=/dev/fd096ds15 10 1200 n

The n in the last field means that this device is not a tape. Use y for tape de­
vices. Any default value may be overridden on the command line. The
numeric keys (0-9999) select the line from the default value beginning with
archive#=, where # is the numeric key. When the f key letter is specified on
the command line, the entry archivef= is used. In this case, the default file
entry must still contain 4 strings, but the first entry (specifying the device) is
not significant. The default file fete/default/tar need not exist if a device is
specified on the command line.

A critical consideration when creating a tar volume involves the use of abso­
lute or relative pathnames. Consider the following tar command examples, as
executed from the directory /u/target:

tar cv Iultargetlarrow
tar cv arrow

The first command creates a tar volume with the absolute pathname:
/ultarget/arrow. The second yields a tar volume with a relative pathname:
.Iarrow. (The .1 is implicit and shown here as an example; .1 should not be
specified when retrieving the file from the archive.) When restored, the first
example results in the file arrow being written to the directory lultarget (if it
exists and you have write permission) no matter what your working direc­
tory. The second example simply writes the file arrow to your present work­
ing directory.

483

tar(e)

Examples

Files

See also

484

Absolute pathnames specify the location of a file in relation to the root direc­
tory (I>; relative pathnames are relative to the current directory. This must be
taken into account when making a tar tape or disk. Backup volumes use
absolute pathnames so that they can be restored to the proper directory. Use
relative pathnames when creating a tar volume where absolute pathnames are
unnecessary.

If the name of a floppy disk device is /dev/fdl, then a tar format file can be cre­
ated on this device by entering:

assign Idev/fd
tar cvfk Idev/fd1360 files

where files are the names of files you want archived and 360 is the capacity of
the floppy disk in kilobytes. Note that arguments to key letters are given in
the same order as the key letters themselves, thus the fk key letters have cor­
responding arguments /dev/fdl and 360. If you assign(C) the disk at the begin­
ning, remember to deassign it when you have finished.

To display a listing of the archive, enter:
tar tvf Idev/fdl

At some later time you may want to extract the files from the archive floppy.
You can do this by entering:

tar xvf Idev/fdl

The above command extracts all files from the archive, using the exact same
pathnames as used when the archive was created. Because of this behavior, it
is normally best to save archive files with relative pathnames rather than
absolute ones, since directory permissions may not let you read the files into
the absolute directories specified. (See the A flag under "Options".)

In the above examples, the v verbose option is used simply to confirm the
reading or writing of archive files on the screen. Also, a normal file could be
substituted for the floppy device /dev/fdl shown in the examples.

Jete/default/tar

/tmp/tar*

assign(C)

Default devices, blocking and volume sizes, device
type

tar(C)

Diagnostics

Notes

Displays an error message about bad key characters and archive read/write
errors.

Displays an error message if not enough memory is available to hold the link
tables.

There is no way to ask for the nth occurrence of a file.

tar does not verify the selected media type.

The u option can be slow.

The limit on filename length is 100 characters.

When archiving a directory that contains subdirectories, tar will only access
those subdirectories that are within 17 levels of nesting. Subdirectories at
higher levels will be ignored after tar displays an error message.

When using tar with a raw device, specify the block size with the b option as a
multiple of 512 bytes. For example, to use a 9K block size, enter:

tar cvfb Idev/rfdO 18 file

Do not enter:

tarxfF --
This would imply taking two things from the standard input at the same time.

Use error-free floppy disks for best results with tar.

Standards conformance

tar is conformant with:

AT&T svm Issue 2;
and X/Open Portability Guide, Issue 3, 1989.

485

tee(C)

tee
create a tee in a pipe

Syntax

tee [-i] [-a] [-u] [file] ...

Description

Examples

The tee command transcribes the standard input to the standard output and
makes copies in the files. The -i option ignores interrupts; the -a option
causes the output to be appended to the files rather than overwriting them.
The -u option causes the output to be unbuffered.

The following example illustrates the creation of temporary files at each stage
in a pipeline:

grep ABC I tee ABC.grep I sort I tee ABC.sort I more

This example shows how to tee output to the terminal screen:

grep ABC I tee /dev/tty I sort I uniq >final.file

Standards confonnance

tee is conformant with:

AT&T SVID Issue 2;
and X/Open Portability Guide, Issue 3,1989.

486

te5t(C)

test
test conditions

Syntax
test expr

[expr]

Description

[- test conditions

The test command evaluates the expression expr, and if its value is true,
returns a zero (true) exit status; otherwise, test returns a non-zero exit status
if there are no arguments. The following primitives are used to construct
expr:

-r file

-w file

-x file

-ffile

-dfile

-hfile

-cfile

-b file

-ufile

-gfile

-kfile

-s file

True if file exists and is readable.

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a symbolic link. With all other primitives
(except -L file), the symbolic links are followed. This primitive is
identical to-L.

True if file exists and is a character special file.

True if file exists and is a block special file.

True if file exists and its set-user-ID bit is set.

True if file exists and its set-group-ID bit is set.

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

-t [fildes] True if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

-z 51 True if the length of string 51 is zero.

487

test(C)

Note

See also

Warning

-nss1

-Lfile

51=52

51 !=52

51

True if the length of string 51 is non-zero.

True if file exists and is a symbolic link. With all other primitives
(except -h file), the symbolic links are followed by default. This
primitive is identical to -h.

True if strings 51 and 52 are identical.

True if strings 51 and 52 are not identical.

True if 51 is not the null string.

n1 -eq n2 True if the integers n1 and n2 are algebraically equal. Any of the
~~~~~~~~~~~~in~~~ 

These primaries may be combined with the following operators: 

-a 

-0 

(expr) 

Unary negation operator 

Binary and operator 

Binary or operator (-a has higher precedence than -0) 

Parentheses for grouping 

Notice that all the operators and flags are separate arguments to test. Notice 
also, that parentheses are meaningful to the shell and, therefore, must be 
escaped. 

A version of test is built into sh(C) and ksh(C). For details, refer to the 
appropriate section. 

find (C), sh(C) 

In the second form of the command (that is, the one that uses [ ], rather than 
the word test), the square brackets must be delimited by blanks. 

Standards confonnance 

test is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

488 



tie (e) 

tic 
terminfo compiler 

Syntax 
tic [ -v [ n ] ] [ -c ] file 

Description 

Files 

See also 

The tic command translates a terminfo(F) file from the source format into the 
compiled format. The results are placed in the directory /usr/lib/terminfo. The 
compiled format is necessary for use with the library routines described in 
curses(S). 

-v n (verbose) output to standard error trace information showing tic's 
progress. The optional integer n is a number from 1 to 10, inclusive, 
indicating the desired level of detail of information. If n is omitted, 
the default level is 1. If n is specified and greater than I, the level of 
detail is increased. 

-c only check file for errors. Errors in use= links are not detected. 

file contains one or more terminfo(F) terminal descriptions in source for­
mat (see terminfo(F». Each description in the file describes the capa­
bilities of a particular terminal. When a "use=entry-name" field is 
discovered in a terminal entry currently being compiled, tic reads in 
the binary from /usr/lib/terminfo to complete the entry. (Entries creat­
ed from file will be used first. If the environment variable TER­
MINFO is set, that directory is searched instead of /usr/lib/terminfo.) 
tic duplicates the capabilities in "entry-name" for the current entry, 
with the exception of those capabilities that are explicitly defined in 
the current entry. 

If the environment variable TERMINFO is set, the compiled results are placed 
there instead of /usr/lib/terminfo. 

/usr/lib/terminfo/? /* compiled terminal description database 

captoinfo(ADM), curses(S), infocmp(ADM), term(F), terminfo(F) 

489 



tie(e) 

Notes 

Total compiled entries cannot exceed 4096 bytes. The name field cannot 
exceed 128 bytes. 

Terminal names exceeding 14 characters will be truncated to 14 characters and 
a warning message will be printed. 

When the -c option is used, duplicate terminal names will not be diagnosed; 
however, when -c is not used, they will be. 

To allow existing executables from the previous release of the UNIX system to 
continue to run with the compiled terminfo entries created by the new terminfo 
compiler, cancelled capabilities will not be marked as cancelled within the ter­
minfo binary unless the entry name has a " +" within it. (Such terminal names 
are only used for inclusion within other entries via a use= entry. Such names 
would not be used for real terminal names.) 

For example: 
4415+nl, kf1@, kf2@, 

4415+base, kfl=\EOc, kf2=\EOd, 

4415-nl14415 terminal without keys, 
use=4415+nl, use=4415+base, 

The above example works as expected; the definitions for the keys do not 
show up in the 4415-nl entry. However, if the entry 4415+nl did not have a 
plus sign within its name, the cancellations would not be marked within the 
compiled file and the definitions for the function keys would not be cancelled 
within 4415-nl. 

Diagnostics 

490 

Most diagnostic messages produced by tic during the compilation of the 
source file are preceded with the approximate line number and the name of 
the terminal currently being worked on. 

mkdir ... returned bad status 
The named directory could not be created. 

File does not start with terminal names in column one 
The first thing seen in the file, after comments, must be the list of terminal 
names. 

Token after an lseek(S) not NAMES 
Somehow the file being compiled changed during the compilation. 



Not enough memory for use list element 
or 

Out of memory 
Not enough free memory was available (malloc(S) failed). 

Can't open ... 
The named file could not be created. 

Error in writing ... 
The named file could not be written to. 

Can't link ... to .. , 
A link failed. 

Error in re-reading compiled file ... 
The compiled file could not be read back in. 

Premature EOF 
The current entry ended prematurely. 

Backspaced off beginning of line 
This error indicates an error happened within tic. 

Unknown Capability - " ... " 
The named invalid capability was found within the file. 

Wrong type used for capability" ... " 
For example, a string capability was given a numeric value. 

Unknown token type 

tic(C) 

Tokens must be followed by II @/ to cancel, ", II for Booleans, II #" for num­
bers, or II = II for strings. 

" ... ": bad term name 
or 

Line ... : Illegal terminal name - " ... " 
Terminal names must start with a letter or digit 

The given name was invalid. Names must not contain white space or 
slashes, and must begin with a letter or digit. 

" ... ": terminal name too long. 
An extremely long terminal name was found. 

" ..• ": terminal name too short. 
A one-letter name was found. 

" ... " filename too long, truncating to " .•• " 
The given name was truncated to 14 characters due to UNIX system file 
name length limitations. 

" ... " defined in more than one entry. Entry being used is .. .. 
An entry was found more than once. 

491 



tic(C) 

492 

Terminal name " ... " synonym for itself 
A name was listed twice in the list of synonyms. 

At least one synonym should begin with a letter. 
At least one of the names of the terminal should begin with a letter. 

Illegal character - " ... " 
The given invalid character was found in the input file. 

New-line in middle of terminal name 
The trailing comma was probably left off the list of names. 

Missing comma 
A comma was missing. 

Missing numeric value 
The number was missing after a numeric capability. 

NULL string value 
The proper way to say that a string capability does not exist is to cancel it. 

Very long string found. Missing comma? 
A comma was anticipated but not found. 

Unknown option. Usage is: 
An invalid option was entered. 

Too many file names. Usage is: 
or 

" ... " nonexistent or permission denied 
The given directory could not be written into. 

" ... " is not a directory 
or 

" ... ": Permission denied 
Access denied. 

" ... ": Not a directory 
tic wanted to use the given name as a directory, but it already exists as a 
file 

SYSTEM ERROR!! Fork failed!!! 
A fork(S) failed. 

Error in following up use-links. Either there is a loop in the 
links or they reference nonexistent terminals. The following is a 
list of the entries involved: 

A terminfo(F) entry with a "use=name" capability either referenced a nonex­
istent terminal called name or name somehow referred back to the given 
entry. 



tic (C) 

Standards conformance 

tic is conformant with: 

AT&T SVID Issue 2. 

493 



time(C) 

time 
time a command 

Syntax 

time command 

Description 

Note 

See also 

The given command is executed; after it is complete, time prints the elapsed 
time during the command, the time spent in the system, and the time spent in 
execution of the command. Times are reported in seconds. 

The times are printed on the standard error. 

This command is dupicated internally by the Korn shell (ksh(C». 

times(S), ksh(C). 

Standards conformance 

time is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

494 



touch (C) 

touch 
update access and modification times of a file 

Syntax 

touch [-amc] [mmddhhmm[yy] ] files 

Description 

See also 

The touch command causes the access and modification times of each argu­
ment to be updated. If no time is specified (see date(C» the current time is 
used. If a new file is created using touch, the modification and access times 
can be set to any time. However, the creation time is automatically set to the 
current time at the time of creation, and cannot be changed. The first mm 
refers to the month, dd refers to the day, hh refers to the hour, the second mm 
refers to the minute, and yy refers to the year. The -a and -m options cause 
touch to update only the access or modification times respectively (default is 
-am). The -c option silently prevents touch from creating the file if it did not 
previously exist. 

The return code from touch is the number of files for which the times could 
not be successfully modified (including files that did not exist and were not 
created). 

date(C) ,utime(S) 

Standards confonnance 

touch is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

495 



tput(C) 

tput 
query the terminfo database 

Syntax 
tput [ -T type] [ -S ] capname [ parms ... ] 
tput [ -T type] [ -S ] it 
tput [ -T type] [ -S ] reset 
tput [ -T type] [ -S ] longname 

Description 

496 

The tput command uses the terminfo(F) database to make the values of 
terminal-dependent capabilities and information available to the shell (see 
sh(C», to initialize or reset the terminal, or return the long name of the 
requested terminal type. tput outputs a string if the attribute (capability 
name) is of type string, or an integer if the attribute is of type integer. If the 
attribute is of type Boolean, tput simply sets the exit code (0 for TRUE if the 
terminal has the capability, 1 for FALSE if it does not), and produces no out­
put. Before using a value returned on standard output, the user should test 
the exit code ($?, see sh(C» to be sure it is O. (See "Exit codes" and "Diagnos­
tics" below.) For a complete list of capabilities and the capname associated 
with each, see terminfo(F). 

-T type indicates the type of terminal. Normally, this option is unneces­
sary because the default is taken from the environment variable 
TERM. If -Tis specified, then the shell variables LINES and 
COLUMNS and the layer size (see layers(C» will not be refer­
enced. 

-S causes the capname to be read in from standard input instead of 
from the command line. 

capname indicates the attribute from the terminfo(F) database. 

parms If the attribute is a string that takes parameters, the arguments 
parms will be inserted into the string. An all numeric argument 
will be passed to the attribute as a number. 

init If the terminfo(F) database is present and an entry for the user's 
terminal exists (see -T type, above), the following will occur: 

• if present, the terminal's initialization strings will be output 
(isl, is2, is3, if, iprog), 

• any delays (for example, new line) specified in the entry will 
be set in the tty driver, 



Examples 

tput(C) 

• tabs expansion will be turned on or off according to the specif­
ication in the entry, 

• if tabs are not expanded, standard tabs will be set (every 8 
spaces). 

If an entry does not contain the information needed for any of the 
four above activities, that activity will be silently skipped. 

reset Instead of putting out initialization strings, the terminal's reset 
strings will be output, if present (rsl, rs2, rs3, rf). If the reset 
strings are not present, but initialization strings are, the initializa­
tion strings will be output. Otherwise, reset acts identically to 
init. 

longname If the terminfo(F) database is present and an entry for the user's 
terminal exists (see -T type above), then the long name of the ter­
minal will be output. The long name is the last name in the first 
line of the terminal's description in the terminfo(F) database (see 
term(M)). 

tput init Initialize the terminal according to the type of terminal 
in the environmental variable TERM. This command 
should be included in everyone's .profile after the 
environmental variable TERM has been exported, as 
illustrated on the manual page. 

tput -T5620 reset Reset an AT&T 5620 terminal, overriding the type of 
terminal in the environment variable TERM. 

tput cup 0 0 Send the sequence to move the cursor to row 0, column 
o (the upper left corner of the screen, usually known as 
the "home" cursor position). 

tput clear Echo the clear-screen sequence for the current terminal. 

tput cols Print the number of columns for the current terminal. 

tput -Twy60 cols Print the number of columns for a Wyse 60 terminal. 

bold='tput smso' 
offbold='tput rmso' Set the shell variables bold to begin stand-out mode 

sequence, and offbold to end stand-out mode 
sequence, for the current terminal. This might be fol­
lowed by a prompt: 
echo "${bold}Please type in your name: ${offbold}\c" 

tput he Set exit code to indicate if the current terminal is a 
hardcopy terminal. 

497 



tput(C) 

Files 

See also 

tput cup 23 4 

tput longname 

Send the sequence to move the cursor to row 23, 
column 4. 

Print the long name from the terminfo(F) database for 
the type of terminal specified in the environmental 
variable TERM. 

/usr/lib/terminfo/?/* compiled terminal description database 

/usr/include/curses.h curses(S) header file 

/usr/include/term.h terminfo(F) header file 

/usr/lib/tabset/* tab settings for some terminals, in a format appropriate 
to be output to the terminal (escape sequences that set 
margins and tabs); for more information, see the ''Tabs 
and initialization" section of terminfo(F) 

profile(ADM), stty(C), tabs(C), terminfo(F) 

Exit codes 

498 

If capname is of type Boolean, a value of 0 is set for TRUE and 1 for FALSE. 

If capname is of type string, a value of 0 is set if the capname is defined for 
this terminal type (the value of capname is returned on standard output); a 
value of 1 is set if capname is not defined for this terminal type (a null value is 
returned on standard output). 

If capname is of type integer, a value of 0 is always set, whether or not cap­
name is defined for this terminal type. To determine if capname is defined for 
this terminal type, the user must test the value of standard output. A value of 
-1 means that capname is not defined for this terminal type. 

Any other exit code indicates an error; see "Diagnostics", below. 



tput(C) 

Diagnostics 

tput prints the following error messages and sets the corresponding eXit 
codes: 

exit code 
o 

1 
2 
3 
4 

error message 
-1 (capname is a numeric value that is not specified in the 
terminfo(F) database for this terminal type, for example, 
tput -T450 lines and tput -T2621 xmc) 
no error message is printed, see "Exit codes" above 
usage error 
unknown terminal type or no terminfo(F) database 
unknown terminfo(F) capability capname 

Standards conformance 

tput is conformant with AT&T SVID Issue 2. 

499 



tr(C) 

tr 
translate characters 

Syntax 
tr [ -cds] [ string1 [ string2 ] ] 

Description 

See also 

500 

The tr command copies the standard input to the standard output with substi­
tution or deletion of selected characters. Input characters found in string1 are 
mapped into the corresponding characters of string2. Any combination of the 
options -cds may be used: 

-c Complements the set of characters in string1 with respect to the 
universe of characters whose ASCII codes are 001 through 377 octal 

-d Deletes all input characters in string1 

-s Squeezes all strings of repeated output characters that are in string2 
to single characters 

The following abbreviation conventions may be used to introduce ranges of 
characters or repeated characters into the strings: 

[a-z] Stands for the string of characters whose ASCII codes run from char­
acter "a" to character" z ", inclusive. 

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is considered 
octal; otherwise, n is taken to be decimal. A zero or missing n is 
taken to be huge; this facility is useful for padding string2. 

The escape character" \ " may be used as in the shell to remove special mean­
ing from any character in a string. In addition, /I \ " followed by I, 2, or 3 octal 
digits, stands for the character whose ASCII code is given by those digits. 

The following example creates a list of all the words in filel, one per line in 
file2, where a word is taken to be a maximal string of alphabetics. The strings 
are quoted to protect the special characters from interpretation by the shell; 
012 is the ASCII code for newline: 

tr -cs "[A-Z][a-z]" "[\012*]" <filel >file2 

ascii(M), ed(C), sh(C) 



Notes 

tr(C) 

tr will not handle ASCII NUL in stringl or string2; it always deletes NUL from 
the input. 

Standards confonnance 

tr is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3, 1989. 

501 



translate(C) 

translate 
translate files from one format to another 

Syntax 

translate option [ in file ] [ outfile ] 

Description 

Options 

Files 

See also 

502. 

The translate command translates files according to the options specified. 

translate uses standard input and standard output unless otherwise specified 
via the optional filename arguments, infile and outfile. 

-ea From EBCDIC to ASCII. 

-ae From ASCII to EBCDIC. 

-fe format From a user defined format to EBCDIC format. 

-fa format From a user defined format to ASCII format. 

-ef format From EBCDIC format to a user defined format. 

-af format From ASCII format to a user defined format. 

-bm From binary lobject code to mailable ASCII uuencode format. 

-mb From mailable ASCII uuencode format to original binary. 

format is assumed to be a file in the directory /usr/lib/translate if a full path­
name is not provided. 

/usr/lib/translate/* 

dd( C}, mapchan(M}, sysadmsh(ADM}, uuencode( C} 



Notes 

translate(C) 

The -bm and -mb options are, for example, used to translate executable object 
code format to ASCII for transfer across communications networks. 

The syntax for the user defined format file is the same as the syntax for the 
mapping files for mapchan(M) and trchan. 

Use dd to convert character and file formats (especially tapes) to the format 
specified. For example: 

dd if=/dev/rmtO of=outfile ibs=800 cbs=80 conv=ascii,lcase 

This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC card 
images per record, into the ASCII file outfile. For more information on conver­
sion options, refer to dd(C) in the User's Reference. 

Value added 

translate is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 

503 



true(C) 

true 
return with a zero exit value 

Syntax 

true 

Description 

See also 

true does nothing except return with a zero exit value. false(C), true's coun­
terpart, does nothing except return with a nonzero exit value. true is typically 
used in shell procedures such as: 

while true 
do 

command 
done 

false(C), sh(C) 

Diagnostics 

true has exit status zero. 

Standards conformance 

true is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3, 1989. 

504 



tset(C) 

tset 
set terminal modes 

Syntax 
tset [ - ] [ -hrsuIQS ] [ -e[c] ] [ -E[c] ] [ -k[c] ] 
[ -m [ident] [test baudrate ]:type ] [ type] 

Description 

The tset command allows the user to set a terminal's ERASE and KILL charac­
ters, and define the terminal's type and capabilities by creating values for the 
TERM environment variable. It is driven by the /etc/ttytype file and the ter­
minfo database. 

tset initializes or resets the terminal with tput(C). 

The type of terminal is specified by the type argument. The type may be any 
type given in the terminfo database. If the type is not specified with the -s 
option, tset creates information for a terminal of the type defined by the value 
of the environment variable, TERM, unless the -h or -m option is given. If the 
TERM variable is defined, tset uses the terminfo database entry. If the -h or -m 
options are used, tset searches the /etc/ttytype file for the terminal type corre­
sponding to the current serial port; it then creates information for a terminal 
based on this type. If the serial port is not found in /etc/ttytype, the terminal 
type is set to unknown. 

When the tty is in isscancode mode, tset invokes mapstr to read the function 
key values. These values are in a mapstr format file in 
/usr/lib/keyboard/strings.d that corresponds to the terminal type. The mapstr 
utility then issues an ioctl(S) call to put the values into the kernel. 

tset is most useful when included in the .login (for csh) or .profile (for sh oj' 
ksh) file executed automatically at login, with -m mapping used to specify the 
terminal type you most frequently dial in on. 

tset displays the created information on standard output. The information is 
in a form that can be used to set the current environment variables. The exact 
form depends on the login shell from which tset was invoked. 

There are the following options: 

-e[c] Sets the ERASE character to c on all terminals. The default setting is 
the BACKSPACE, or CTRL-H. 

-E[c] Identical to the -e command except that it only operates on terminals 
that can BACKSPACE. 

505 



tset(C) 

506 

-k[c] Sets the KILL character to c, defaulting to CTRL-U. 

Prints the terminal type on the standard output. 

-s Outputs the setenv commands (for csh(C», or export and assign­
ment commands (for sh(C) or ksh(C». The type of commands are 
determined by the user's login shell. 

For sh, set up the terminal with: 
eval 'tset -5' 

-h Forces tset to search /etc/ttytype for information and to overlook the 
environment variable, TERM. 

-5 Only outputs the strings to be placed in the environment variables, 
without the shell commands printed for -so 

To use this information to set up a terminal in csh, enter: 
set noglob 
set term=('tset -S') 
setenv TERM $term[l] 
setenv TERMCAP $term[2] 
unset term 
unset noglob 

-r Prints the terminal type on the diagnostic output. 

-Q Suppresses the printing of the "Erase set td' and "Kill set td' mes-
sages. 

-I Suppresses printing of the terminal initialization strings, for exam­
ple, spawns tput reset instead of tput init. If the terminal is in scan­
code mode, set -I will prevent the invocation of mapstr(S). 

-m[ident][test baudrate]:type 
Allows a user to specify how a given serial port is to be mapped to 
an actual terminal type. The option applies to any serial port in 
/etc/ttytype whose type is indeterminate (for example, dialup, plug­
board, etc.). The type specifies the terminal type to be used, and 
ident identifies the name of the indeterminate type to be matched. If 
no ident is given, all indeterminate types are matched. The test bau­
drate defines a test to be performed on the serial port before the type 
is assigned. The baudrate must be as defined in stty(C). 

The test may be any combination of: >, =, <, @, and!. If the type 
begins with a question mark, the user is asked if they really want 
that type. A null response means to use that type; otherwise, 
another type can be entered which will be used instead. The ques­
tion mark must be escaped to prevent filename expansion by the 
shell. If more than one -m option is given, the first correct mapping 
prevails. 



Examples 

Files 

See also 

Credit 

Set the terminal type to gt42: 
tset gt42 

Use the -m option to map the "dialup" terminal type: 
tset -mdialup\>300:adm3a -mdialup:dw2 -Qr -e# 

tset(C) 

If the entry in /etc/ttytype corresponding to the login port is "dialup", and the 
port speed is greater than 300 baud, set the termianl type to adm3a. If the 
/etc/ttytype entry is "dialup" and the port speed is less than or equal to 300 
baud, set the terminal type to dw2. Set the erase character to "#', and display 
the terminal type (but not the erase or kill characters) on standard error. 

tset -m dial:ti733 -m plug:\?hp2621 -m unknown:\? -e -k'U 

If the /etc/ttytype entry begins with "dial", the terminal type becomes ti733. If 
the entry begins with "plug", tset prompts with: 

TERM = (hp2621) 

You would then press (Return) to accept hp2621 or type in an alternate termi­
nal type and (Return). If the entry is "unknown", tset prompts with: 

TERM = (unknown) 

In any case, erase is set to the terminal's backspace character, kill is set to 
CTRL-U, and the terminal type is displayed on standard error. 

/etc/ttytype 
/usr/lib/terminfo/* 

Port name to terminal type map database 
Terminal capability database 

csh(C), ksh(C), sh(C), stty(C), terminfo(F), termio(M), tput(C), tty(M) 

This utility was developed at the University of California at Berkeley and is 
used with permission. 

507 



tty(C) 

tty 
get the terminal's name 

Syntax 

tty[-s] 

Description 

The tty command prints the pathname of the user's terminal on the standard 
output. The -s option inhibits printing, allowing you to test just the exit code. 

Exit codes 

o if the standard input is a terminal, 1 otherwise. 

Diagnostics 

not a tty If the standard input is not a terminal and -s is not specified 

Standards conformance 

tty is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

508 



umask(C) 

umask 
set file-creation mode mask 

Syntax 

umask [ mask] 

Description 

See also 

The user file-creation mode mask is set to mask. mask consists of three octal 
digits which refer to read/write/execute permissions for owner, group, and 
others, respectively. Only the low-order 9 bits of cmask and the file mode 
creation mask are used. The value of each specified digit is "subtracted" from 
the corresponding "digit" specified by the system for the creation of any file 
(see umask(S) or creat(S). This is actually a binary masking operation, and 
thus the name "urnask". In general, binary ones remove a given permission, 
and zeros have no effect at all. For example, umask 022 removes group and 
others write permission (files normally created with mode 777 become mode 
755 ; files created with mode 666 become mode 644). 

If mask is omitted, the current value of the mask is printed. 

umask is recognized and executed by the shell. By default, login shells have a 
urnask of 022. 

umask is built in to csh and sh. 

chmod(C), chmod(S), creat(S), csh(C), sh(C), umask(S) 

Standards confonnance 

umask is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3, 1989. 

509 



uriUme(C) 

uname 
print the name of the current system 

Syntax 

uname [ -snrvmaX ] 
uname [ -8 system name] 

Description 

See also 

The uname command prints the current system name of the UNIX system on 
the standard output file. It is mainly useful to determine which system one is 
using. The options cause selected information returned by uname(S) to be 
printed: 

-s print system name (default). 

-n print nodename (the nodename is the name by which the system is 
known to a communications network). 

-r print the operating system release. 

-v print the operating system version. 

-m print the machine hardware name. 

-a print all the above information. 

-x print all the above information, plus OEM number, kernel 10, bus type, 
serial number, processor, license (2-user or unlimited), origin number, 
and number of CPUs. 

-8 system name 
On your computer, the system name and the nodename may be changed 
by specifying a system name argument to the -8 option. (The system 
name and the nodename will then be the same.) The system name argu­
ment is restricted to 8 characters. Only the super user is allowed this 
capability. 

uname(S) 

Standards confonnance 

uname is conformant with: 

AT&T svm Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

510 



uniq\C) 

uniq 
report repeated lines in a file 

Syntax 

uniq [ -udc [ +n ] [ -n ] ] [ input [ output] ] 

Description 

See also 

The uniq command reads the input file and compares adjacent lines. In the 
normal case, the second and succeeding copies of repeated lines are removed 
and the lines are compared according to the collating sequence defined by the 
current locale (see locale(M»; the remainder is written to the output file. 
input and output should always be different. Note that repeated lines must 
be adjacent in order to be found; see sorl(C). If the -u flag is used, just the 
lines that are not repeated in the original file are output. The -d option speci­
fies that one copy of just the repeated lines is to be written. The normal mode 
output is the union of the -u and -d mode outputs. 

The -c option supersedes -u and -d and generates an output report in default 
style but with each line preceded by a count of the number of times it 
occurred. 

The n arguments specify skipping an initial portion of each line in the com­
parison: 

-n The first n fields together with any blanks before each are ignored. A 
field is defined as a string of nonspace, nontab characters separated by 
tabs and spaces from its neighbors. 

+n The first n characters are ignored. Fields are skipped before characters. 

comm(C), sorl(C) 

Standards conformance 

uniq is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

511 



units(C) 

units 
convert units 

Syntax 
units 

Description 

File 

512 

The units command converts quantities expressed in various standard scales 
to their equivalents in other scales. It works interactively in this fashion: 

You have: inch 
You want: em 

* 2.540000e+OO 
I 3.937008e-Ol 

A quantity is specified as a multiplicative combination of units optionally pre­
ceded by a numeric multiplier. Powers are indicated by suffixed positive 
integers, division is shown by the usual sign: 

You have: 15 Ibs force/in2 
You want: atm 

* l.02068ge+OO 
I 9.79729ge-Ol 

units only does multiplicative scale changes; thus it can convert Kelvin to 
Rankine, but not Centigrade to Fahrenheit. Most familiar units, abbreviations, 
and metric prefixes are recognized, as well as the following: 

pi 
c 
e 
g 
force 
mole 
water 
au 

Ratio of circumference to diameter 
Speed of light 
Charge on an electron 
Acceleration of gravity 
Sameasg 
Avogadrds number 
Pressure head per unit height of water 
Astronomical unit 

Pound is not recognized as a unit of mass; Ib is. Compound names are run 
together, (for example, lightyear). British units that differ from their US coun­
terparts are prefixed with "br". For a complete list of units, enter: 

cat lusr/lib/unittab 

/usr/lib/unittab 



uptime(C) 

uptime 
display information about system activity 

Syntax 

uptime 

Description 

See Also 

The uptime command prints the current time of day, the length of time the 
system has been up, the number of users logged onto the system, and load 
averages. Load averages are the number of processes in the run queue aver­
aged over 1, 5, and 15 minutes. All of this information is also contained in the 
first line of the w( C) command. 

w(C) 

Value Added 

uptime is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 

513 



usemouse(C) 

usemouse 
map mouse input to keystrokes 

Syntax 
usemouse [ -f conffile I -t type] [ -h horiz_sens ] [ -v verCsens ] [ -c and ] 
[ -b ] parameters 

Description 

514 

The usemouse command merges data from a mouse into the input stream of a 
tty. The mouse data is translated to arrow keys or any other arbitrary ASCII 
strings. Mouse movements up, down, left, right, up-left, up-right, down-left, 
and down-right, as well as individual up and down button transitions, are 
programmable. This permits the mouse to be used with programs that are not 
designed to accept mouse input. 

usemouse with no arguments sets the mouse for use with the default map 
/etc/default/usemouse. A new shell is invoked. To terminate usemouse, exit the 
shell with (Ctrl)d. 

Alternate map files can be found in the directory lusr/lib/mouse. Users can cre­
ate their own map files based on the default file. Quoted strings may be used 
in a map file, as well as the octal sequences found in the ascii(M) manual 
page. Map files can be located anywhere on the system and accessed with the 
-f option (see below). 

The default map file has the following values: 

Mouse 
Left Button 
Middle Button 
Right Button 
Up 
Down 
Left 
Right 
Up and Left 
Up and Right 
Down and Left 
Down and Right 
Bells 

Keystroke 
vi top of file (1 G) command 
vi delete character (x) command 
vi bottom of file (G) command 
Up Arrow Key 
Down Arrow Key 
Left Arrow Key 
Right Arrow Key 
not defined 
not defined 
not defined 
not defined 
no 



Options 

-£ conffile 

-t type 

usemouse(C) 

Select an alternate configuration file, conffile. conffile should 
use the format of /etc/default/usemouse. 

Select a predefined configuration file. type can be any file in 
/usr/lib/mouse, such as vi, rogue, or sysadmsh. These files are 
identical in format to /etc/default/usemouse. 

The vi-specific map maps the traditional h-j-k-l direction keys 
to the mouse movements. The terminal bell is automatically 
silenced by the vi map entry bells=no. This is done to 
prevent the bell being activated continuously when the user 
generates a spurious command with the mouse. 

-h horiz_sens Defines the horizontal sensitivity. Horizontal mouse move­
ments smaller than this threshold are ignored. Mouse move­
ments that are multiples of this value generate multiple 
strings. The sensitivity defaults to 5 units. The minimum 
value is 1 unit, and the maximum is 100 units. The lower the 
value, the more sensitive your mouse is to motion. Note that 
setting a high value may cause your mouse to behave as 
though it is not functioning, due to the large motion required 
to generate a signal. 

-v verCsens Defines the vertical sensitivity. Vertical mouse movements 
smaller than this threshold are ignored. Mouse movements 
that are multiples of this value generate multiple strings. The 
sensitivity defaults to 5 units. The minimum value is 1 unit, 
and the maximum is 100 units. The lower the value, the more 
sensitive your mouse is to motion. Note that setting a high 
value may cause your mouse to behave as though it is not 
functioning, due to the large motion required to generate a 
signal. 

-c cmd Run cmd with usemouse. cmd defaults to the shell specified 
in the SHELL environment variable. If SHELL is unspecified, 
/bin/sh is used. Note that the command given with this flag 
can contain blank spaces if the entire command is placed 
within double quotes. For example: 

-b 

usemouse -c ''vi /etdtermcap" 
is valid. When cmd terminates, usemouse terminates as well. 

Suppresses bell CG) for the duration of mouse usage. Useful 
with vi(C). 

515 



usemouse(C) 

Examples 

Files 

516 

parameters These are name=value pairs indicating what ASCII string to 
insert into the tty input stream, when the given event is 
received. Valid parameters include: 
rbu=string 
rbd=string 
mbu=string 
mbd=string 
lbu=string 
lbd=string 
rt=string 
It=string 
up=string 
dn=string 
ul=string 
ur=string 
dr=string 
dl=string 
hsens=num 
vsens=num 
bells=yes/no 

String to generate on right button up 
String to generate on right button down 
String to generate on middle button up 
String to generate on middle button down 
String to generate on left button up 
String to generate on left button down 
String to generate on mouse right 
String to generate on mouse left 
String to generate on mouse up 
String to generate on mouse down 
String to generate on mouse up-left 
String to generate on mouse up-right 
String to generate on mouse down-right 
String to generate on mouse down-left 
Sensitivity to horizontal motion 
Sensitivity to vertical motion 
Whether to remove AG characters 

Parameters may be specified in any order. They may contain 
octal escapes. They should be quoted with single or double 
quotes if they contain blank spaces. Any parameter may be 
omitted; its value is then taken from the configuration file. 

To set up the mouse for use with vi, type: usemouse -t vi. This will not start 
vi. 

To start up the mouse for use with vi, and start vi, type: usemouse -t vi -c vi. 
This invokes the vi map along with the command; when you quit out of vi the 
mouse disengages. 

To start up vi using the default mouse map, but redefining the middle button 
(mbd) to be insert in vi, type: usemouse -c vi mbd=i. To start the mouse in vi 
using the customized map mine, type: usemouse -f mine -c vi 

/dev/mouse 
/etc/default/usemouse 
/usr/lib/event/devices 
/usr/lib/event/ttys 
/usr/lib/mouse/* 

Directory for mouse-related special device files. 
Default map file for mouse-generated characters. 
File containing device information for mice. 
File listing ttys eligible to use mice. 
Alternate map files for mice. 



usemouse(C) 

See also 

ascii(M), mouse(HW), vi(C) 

Value added 

usemouse is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 

517 



uucp(C) 

uucp, uulog, uuname 
UNIX-to-UNIX system copy 

Syntax 

uucp [-c I -C] [-d I -f] [ -ggrade ] [ -j ] [ -m ] [ -nuser] [ -r] [ -sfile ] 
[ -xdebug_Ievel ] source-files destination-file 

uulog [ -ssystem ] [ -x ] 

uulog -fsystem [-number] [ -x ] 

uuname [ -I ] [ -c ] 

Description 

518 

uucp - Performs a UNIX-to-UNIX copy 

uulog - Queries a log of uucp or uuxqt transactions 

uuname - Lists names of systems known to uucp 

The uucp command copies files named by the source-file arguments to the 
destination-file argument. A filename may be a pathname on your machine, 
or may have the form: 

system-name!pathname 
where system-name is taken from a list of system names that uucp knows 
about. The system-name may also be a list of names such as 

system-name!system-name! ... !system-name!pathname 
in which case an attempt is made to send the file via the specified route, to the 
destination. See "Notes" below for restrictions. Care should be taken to 
ensure that intermediate nodes in the route are willing to forward informa­
tion. 

The shell metacharacters "? ", "*" and [ ... ] appearing in pathname will be 
expanded on the appropriate system. 

Pathnames may be one of: 

1. a full pathname; 

2. a pathname preceded by -user where user is a login name on the 
specified system and is replaced by that user's login directory; 



uucp(C) 

3. a pathname preceded by 7destination where destination is 
appended to /usr/spool/uucppublic; this destination will be treated as a 
filename unless more than one file is being transferred by this 
request or the destination is already a directory. To ensure that des­
tination is a directory, follow the destination with a" /" For exam­
ple, -/dan/ as the destination will make the directory 
/usr/spool/uucppublic/dan if it does not exist and put the requested 
file(s) in that directory. 

4. anything else, which gets prefixed by the current directory. 

If the result is an erroneous pathname for the remote system, the copy will 
fail. If the destination-file is a directory, the last part of the source-file name 
is used. 

If a simple -user destination is inaccessible to uucp, data is copied to a spool 
directory and the user is notified by mail(C). 

uucp preserves execute permissions across the transmission and gives 0666 
read and write permissions (see chmod(C». 

The following options are interpreted by uucp: 

-c Do not copy local file to the spool directory for transfer to the 
remote machine (default). 

-C Force the copy of local files to the spool directory for transfer. 

-d Make all necessary directories for the file copy (default). 

-£ Do not make intermediate directories for the file copy. 

-ggrade grade is a single letter/number; lower ASCII sequence characters 
will cause the job to be transmitted earlier during a particular 
conversation. 

-j Print the job identification ASCII string on standard output. This 
job identification can be used by uustat to obtain the status or ter­
minate a job. 

-m Send mail to the requester when the copy is completed. 

-nuser 

-r 

-sfile 

The -m option will only work when sending files or receiving a 
single file. Receiving multiple files specified by special shell char­
acters "?", "*", [ ... ] will not activate the -m option. 

Notify user on the remote system that a file was sent. 

Do not start the file transfer, just queue the job. 

Report status of the transfer to file. Note that the file must be a 
full pathname. 

519 



uucp(C) 

Files 

See also 

Notes 

520 

-xdebug_Ievel 
Produce debugging output on standard output. The debug_level 
is a number between 0 and 9; higher numbers give more detailed 
information. 

uulog queries a log file of uuep or uuxqt(ADM) transactions in a file 
/usr/spooi/uucp/.Log/uucico/system, or /usr/spooi/uucp/.Log/uuxqt/system. 

The options cause uulog to print logging information: 

-ssystem Print information about file transfer work involving system sys­
tem. 

-fsystem Does a tail -f of the file transfer log for system. (You must press 
DELETE or BREAK to exit this function.) 

Other options used in c<;mjunction with the above: 

-x Look in the uuxqt log file for the given system, instead of the uucico 
log file (default). 

-number Indicates that a tail command of number lines should be executed. 

uuname lists the names of systems known to uuep. The -e option returns the 
names of systems known to cu. (The two lists are the same, unless your ma­
chine is using different Systems files for eu and uuep. See sysfiles(F).) The-l 
option returns the local system name. 

/usr/spool/uucp 
/usr/spooi/uucppublic/* 
/usr/lib/uucp/* 

spool directories 
public directory for receiving and sending 
other data and program files 

chmod(S), mail(C), sysfiles(F), uustat(C), uux(C), uuxqt(ADM) 

The domain of remotely accessible files can (and for obvious security reasons, 
usually should) be severely restricted. You may be unable to fetch files by 
pathname; ask a responsible person on the remote system to send them to 
you. For the same reasons, you may not be able to send files to arbitrary path­
names. As distributed, the remotely accessible files are those whose names 
begin /usr/spool/uucppublic (equivalent to 7). 

All files received by uuep will be owned by uuep. 



uucp(C) 

Protected files and files that are in protected directories that are owned by the 
requester can be sent by uucp. However, if the requester is root, and the direc­
tory is not searchable by "other" or the file is not readable by "other", the 
request will fail. 

The forwarding of files through other systems may not be compatible with 
older (non-HDB) versions of uucp. If forwarding is used, all systems in the 
route must have the same version of uucp. 

Standards conformance 

uucp, uulog, and uuname are conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

521 



uuencode(C) 

uuencode,uudecode 
encode/decode a binary file for transmission via mail 

Syntax 
uuencode [source] remotedest I mail sys1!sys2! .. !decode 
uudecode [ file] 

Description 

See also 

uuencode - Encodes a binary file for mail transmission 

uudecode - Decodes a uuencoded binary file 

The uuencode and uudecode commands are used to send a binary file via 
uucp(C) (or other) mail. This combination can be used over indirect mail 
links. 

uuencode takes the named source file (default standard input) and produces 
an encoded version on the standard output. The encoding uses only printing 
ASCII characters, and includes the mode of the file and the remotedest for 
recreation on the remote system. 

uudecode reads an encoded file, strips off any leading and trailing lines 
added by mailers, and recreates the original file with the specified mode and 
name. 

The encode file has an ordinary text form and can be edited by any text editor 
to change the mode or remotedest decoded name. 

mail (C), uucp(C), uux(ADM) 

Restrictions 

522 

The file is expanded by 35% (3 bytes become 4 plus control information) caus­
ing it to take longer to transmit. 

The user on the remote system who is invoking uudecode (often uucp) must 
have write permission on the specified file. 



uustat(C) 

uustat 
uucp status inquiry and job control 

Syntax 

uustat [-a] 
uustat [-m] 
uustat [-p] 
uustat [-q] 
uustat [ -kjobid ] 
uustat [ -rjobid ] 
uustat [ -ssystem ] [ -uuser ] 

Description 

The uustat command will display the status of, or cancel, previously specified 
uucp commands, or provide general status on UUCP connections to other sys­
tems. Only one of the following options can be specified with uustat per com­
mand execution: 

-a Output all jobs in queue. 

-m Report the status of accessibility of all machines. 

-p Execute a lipS -fIP" for all the process-ids that are in the lock files. 

-q List the jobs queued for each machine. If a status file exists for the 
machine, its date, time and status information are reported. In 
addition, if a number appears in ( ) next to the number of C or X 
files, it is the age in days of the oldest C./X. file for that system. 
The Retry field represents the number of hours until the next pos­
sible call. The Count is the number of failure attempts. 

NOTE: for systems with a moderate number of outstanding jobs, this could 
take 30 seconds or more of real-time to execute. As an example of the output 
produced by the -q option: 

eagle 
mh3bs3 

3C 
2C 

04/07-11: 07 
07/07-10:42 

NO DEVICES AVAILABLE 
SUCCESSFUL 

The above output tells how many command files are waiting for each system. 
Each command file may have zero or more files to be sent (zero means to call 
the system and see if work is to be done). The date and time refer to the previ­
ous interaction with the system followed by the status of the interaction. 

-kjobid Kill the uucp request whose job identification is jobid. The killed 
uucp request must belong to the person issuing the uustat com­
mand unless one is the super user. 

523 



uustat(C) 

File 

See also 

-rjobid Rejuvenate jobid. The files associated with jobid are touched so 
that their modification time is set to the current time. This 
prevents the cleanup daemon from deleting the job until the jobs' 
modification time reaches the limit imposed by the daemon. 

Either or both of the following options can be specified with uustat: 

-ssystem Report the status of all uucp requests for remote system system. 

-uuser Report the status of all uucp requests issued by user. 

Output for both the -s and -u options has the following format: 

eaglenOOOO 
eagleNlbd7 
eagleC1bd8 

4/07-11: 01: 03 
4/07-11: 07 
4/07-11: 07 
4/07-11: 07 

(POLL) 
s 
s 
s 

eagle 
eagle 
eagle 

dan 
dan 
dan 

522 /usr/dan/A 
59 D.3b2al2ce4924 
rmail mike 

With the above two options, the first field is the jobid of the job. This is fol­
lowed by the date/time. The next field is either an '5' or'R' depending on 
whether the job is to send or request a file. This is followed by the user-id of 
the user who queued the job. The next field contains the size of the file, or in 
the case of a remote execution (rmail - the command used for remote mail), 
the name of the command. When the size appears in this field, the file name 
is also given. This can either be the name given by the user or an internal 
name (for example, D.3b2alce4924) that is created for data files associated with 
remote executions (rmail in this example). 

When no options are given, uustat outputs the status of all uucp requests 
issued by the current user. 

/usr/spool/uucp/* spool directories 

uucp(C) 

Standards confonnance 

uustat is conformant with: 

AT&T svm Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

524 



uuto(C) 

uuto, uupick 
public UNIX-to-UNIX system file copy 

Syntax 
uuto [ -mp ] source-files destination 
uupick [ -5 system] 

Description 

uuto - Sends files via UUCP 

uupick - Accepts or rejects the files transmitted to the user 

uuto sends source-files to destination. uuto uses the uucp(C) facility to send 
files, while it allows the local system to control the file access. A source-file 
name is a pathname on your machine. destination has the form: 

system!user 

where system is taken from a list of system names that UUCP knows about 
(see "uuname"). user is the login name of someone on the specified system. 

Options are: 

-m Send mail to the sender when the copy is complete. 

-p Copy the source file into the spool directory before transmission. 

The files (or sub-trees if directories are specified) are sent to 
/usr/spool/uucppublic. Specifically, the files are sent to: 

/usr/spool/uucppublic/receive/user Imysystemlfiles. 

The destined recipient is notified by mail(C) of the arrival of files. 

uupick accepts or rejects the files transmitted to the user. Specifically, uupick 
searches /usr/spool/uucppublic for files destined for the user. For each entry (file 
or directory) found, the following message is printed on the standard output: 

from system : [file filename 1 [ dir dirname 1 ? 

uupick then reads a line from the standard input to determine the disposition 
of the file: 

<newline> Go on to next entry. 

d Delete the entry. 

525 



uuto(C) 

File 

See also 

Notes 

m [dir] 

a [dir] 

p 

q 

EOT (Ctrl)d 

!command 

* 

Move the entry to named directory dir. If dir is not specified 
as a complete pathname (in which $HOME is legitimate), a 
destination relative to the current directory is assumed. If no 
destination is given, the default is the current directory. 

Same as m except move all the files sent from system. 

Print the content of the file. 

Quit. 

Same as q. 

Escape to the shell to do command. 

Print a command summary. 

uupick invoked with the -ssystem option will only search /usr/spool/uucppublic 
for files sent from system. 

/usr/spool/uucppublic public directory 

mai1(C), uuc1ean(ADM), uucp(C), uustat(C), uux(C) 

In order to send files that begin with a dot (for example, .profile) the files must 
by qualified with a dot. For example: .profile, .prof, .profil? are correct; 
whereas *prof, ?profile are incorrect. 

Standards conformance 

uupick and uuto are conformant with: 

AT&TSVID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

526 



uux(C) 

uux 
UNIX-to-UNIX system command execution 

Syntax 

uux [ options] command-string 

Description 

uux will gather zero or more files from various systems, execute a command 
on a specified system and then send standard output to a file on a specified 
system. 

NOTE: For security reasons, most installations limit the list of commands exe­
cutable on behalf of an incoming request from uux, permitting only the 
receipt of mail (see mail(C». (Remote execution permissions are defined in 
/usr/lib /uucp/Permissions.) 

The command-string is made up of one or more arguments that look like a 
shell command line, except that the command and file names may be prefixed 
by system-name. A null system-name is interpreted as the local system. 

File names may be one of 

1. a full path name; 

2. a path name preceded by xxx where xxx is a login name on the specified 
system and is replaced by that user's login directory; 

3. anything else is prefixed by the current directory. 

As an example, the command 

uux "!diff usg!lusr/danJfile1 pwba!la4ldanJfile2 > ndan/file.di£:f' 
will get the filel and file2 files from the usg and pwba machines, execute a 
di£f(C) command and put the results in file.diff in the local PUBDIR/dan/ direc­
tory. 

Any special shell characters such as < > ; and I should be quoted either by 
quoting the entire command-string, or quoting the special characters as indi­
vidual arguments. 

uux will attempt to get all files to the execution system. For files that are out­
put files, the filename must be escaped using parentheses. For example, the 
command 

uux aleut -f1 b!lusr/file \ (c!/usr/£i1e) 

gets /usr/file from system b and sends it to system a, performs a cut command 
on that file and sends the result of the cut command to system c. 

527 



uux(C) 

Files 

528 

uux will notify you if the requested command on the remote system was 
disallowed. This notification can be turned off by the -n option. The response 
comes by remote mail from the remote machine. 

The following options are interpreted by uux: 

The standard input to uux is made the standard input to the 
command-string. 

-aname Use name as the user identification replacing the initiator user-id. 
(Notification will be returned to the user.) 

-b Return whatever standard .input was provided to the uux com­
mand if the exit status is non-zero. 

-c Do not copy local file to the spool directory for transfer to the 
remote machine (default). 

-C Force the copy of local files to the spool directory for transfer. 

-g grade grade is a single letter/number; lower ASCII sequence characters 
will cause the job to be transmitted earlier during a particular 
conversation. 

-j Output the jobid ASCII string on the standard output which is the 
job identification. This job identification can be used by uustat to 
obtain the status or terminate a job. 

-n Do not notify the user if the command fails. 

-p Same as " -"; the standard input to uux is made the standard input 
to the command-string. 

-r Do not start the file transfer, just queue the job. 

-sfile Report status of the transfer-in file. 

-xdebug_Ievel 
Produce debugging output on the standard output. The 
debug_level is a number between 0 and 9; higher numbers give 
more detailed information. 

-z Send success notification to the user. 

/usr/spool/uucp/* 
/usr/lib/uucp/Permissions 
/usr/lib/uucp/* 

spool directories 
remote execution permissions 
other data and programs 



See also 

Warnings 

Notes 

uux(C) 

mail(C), uucp(C), uustat(C) 

Only the first command of a shell pipeline may have a system-name. All 
other commands are executed on the system of the first command. 
The use of the shell metacharacter "*" will probably not do what you want it 
to do. The shell tokens "«" and "»" are not implemented. 

The execution of commands on remote systems takes place in an execution 
directory known to the uucp system. All files required for the execution will 
be put into this directory unless they already reside on that machine. There­
fore, the simple file name (without path or machine reference) must be unique 
within the uux request. The following command will NOT work: 

uux "a!diff b!/usr/danlxyz c!/usr/danlxyz > !xyz.diff" 
but the command 

uux "a!diff a!/usr/danlxyz c!/usr/danlxyz > !xyz.diff" 
will work (if diff is a permitted command). 

Protected files and files that are in protected directories that are owned by the 
requester can be sent in commands using uux. However, if the requester is 
root, and the directory is not searchable by "other", the request will fai1. 

Standards conformance 

uux is conformant with: 

AT&T svm Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

529 



vice) 

vi, view, vedit 
invoke a screen-oriented display editor 

Syntax 
vi [ -option ... ] [ command ... ] [filename ... ] 

view [ -option ... ] [ command ... ] [filename ... ] 

vedit [ -option ... ] [ command ... ] [filename ... ] 

Description 

530 

vi - Invokes a screen-oriented display editor 

view - Invokes a read-only vi 

vedit - Invokes a novice version of vi 

The vi command offers a powerful set of text editing operations based on a 
set of mnemonic commands. Most commands are single keystrokes that per­
form simple editing functions. vi displays a full screen "window" into the file 
you are editing. The contents of this window can be changed quickly and 
easily within vi. While editing, visual feedback is provided (the name vi itself 
is short for "visual"). 

The view command is the same as vi except that the read-only option (-R) is 
set automatically. The file cannot be changed with view. 

The vedit command is the same as vi except for differences in the option set­
tings. vedit uses novice mode, turns off the magic option, sets the option 
report=1 and turns on the options showmode and redraw. 

The showmode option informs the vedit user, in a message in the lower right 
hand comer of the screen, which mode is being used. For instance after the 
(Esc)i command is used, the message reads INSERT MODE. 

Note that you can not set the novice option from within vi or ex. If you want 
to use the novice option you must use the vedit utility. (It is possible to set 
the nonovice option from within vedit.) 

vi and the line editor ex are one and the same editor: the names vi and ex 
identify a particular user interface rather than any underlying functional 
difference. The differences in user interface, however, are quite striking. ex is 
a powerful line-oriented editor, similar to the editor ed. However, in both ex 
and ed, visual updating of the terminal screen is limited, and commands are 
entered on a command line. vi, on the other hand, is a screen-oriented editor 



vice) 

designed so that what you see on the screen corresponds exactly and immedi­
ately to the contents of the file you are editing. In the following discussion, vi 
commands and options are printed in boldface type. 

Options available on the vi command line include: 

-x 

-c 

Encryption option; when used, the file will be encrypted as it is 
being written and will require an encryption key to be read. vi 
makes an educated guess to determine if a file is encrypted or 
not. See crypt(C). Also, see the 'Warnings" section at the end of 
this manual page. 

Encryption option; the same as -x except that vi assumes files 
are encrypted. 

-c command Begin editing by executing the specified editor command (usu­
ally a search or positioning command). 

-t tag 

-r file 

-1 

-L 

-wn 

-R 

Equivalent to an initial tag command; edits the file containing 
tag and positions the editor at its definition. 

Used in recovering after an editor or system crash, retrieves the 
last saved version of the named file. 

Specific to editing LISP, this option sets the showmatch and lisp 
options. 

List the names of all files saved as a result of an editor or system 
crash. Files may be recovered with the -r option. 

Sets the default window size to n. Useful on dialups to start in 
small windows. 

Sets a read-only option so that files can be viewed but not 
edited. 

The editing buffer 
vi performs no editing operations on the file that you name during invocation. 
Instead, it works on a copy of the file in an "editing buffer". 

When you invoke vi with a single filename argument, the named file is copied 
to a temporary editing buffer. The editor remembers the name of the file 
specified at invocation, so that it can later copy the editing buffer back to the 
named file. The contents of the named file are not affected until the changes 
are copied back to the original file. 

531 



vi(C) 

532 

Modes of operation 
Within vi there are three distinct modes of operation: 

Command Mode Within command mode, signals from the keyboard are 
interpreted as editing commands. 

Insert Mode Insert mode can be entered by typing any of the vi insert, 
append, open, substitute, change, or replace commands. 
Once in insert mode, letters typed at the keyboard are 
inserted into the editing buffer. 

ex Escape Mode The vi and ex editors are one and the same editor differ­
ing mainly in their user interface. In vi, commands are 
usually single keystrokes. In ex, commands are lines of 
text terminated by a RETURN. vi has a special"escape" 
command that gives access to many of these line-oriented 
ex commands. To use the ex escape mode, type a colon 
(:). The colon is echoed on the status line as a prompt for 
the ex command. An executing command can be aborted 
by pressing INTERRUPT. Most file manipulation com­
mands are executed in ex escape mode (for example, the 
commands to read in a file and to write out the editing 
buffer to a file). 

Special keys 
There are several special keys in vi. The following keys are used to edit, de­
limit, or abort commands and command lines. 

(Esc) 

(Return) 

Used to return to vi command mode or to cancel partially 
formed commands. 

Terminates ex commands when in ex escape mode. Also used 
to start a newline when in insert mode. 

INTERRUPT Often the same as the (Del) or RUBOUT key on many terminals. 

I 

Generates an interrupt, telling the editor to stop what it is doing. 
Used to abort any command that is executing. 

Used to specify a string to be searched for. The slash appears on 
the status line as a prompt for a search string. The question 
mark (?) works exactly like the slash key, except that it is used to 
search backward in a file instead of forward. 

The colon is a prompt for an ex command. You can then type in 
any ex command, followed by an (Esc) or (Return), and the given 
ex command is executed. 



vice) 

The following characters are special in insert mode: 

(Bksp) 

(Ctrl)U 

(Ctrl)V 

(Ctrl)W 

(Ctrl)T 

(Ctrl)@ 

Backs up the cursor one character on the current line. The last 
character typed before the (Bksp) is removed from the input buffer, 
but remains displayed on the screen. 

Moves the cursor back to the first character of the insertion and 
restarts insertion. 

Removes the special significance of the next typed character. Use 
(Ctrl)V to insert control characters. Linefeed and (Ctrl)J cannot be 
inserted in the text except as newline characters. Both (Ctrl)Q and 
(Ctrl)S are trapped by the operating system before they are inter­
preted by vi, so they too cannot be inserted as text. 

Moves the cursor back to the first character of the last inserted 
word. 

During an insertion, with the auto indent option set and at the 
beginning of the current line, entering this character will insert 
shiftwidth whitespace. 

If entered as the first character of an insertion, it is replaced with 
the last text inserted, and the insertion terminates. Only 128 char­
acters are saved from the last insertion. If more than 128 charac ... 
ters were inserted, then this command inserts no characters. A 
(Ctrl)@ cannot be part of a file, even if quoted. 

Starting and exiting vi 
To enter vi, enter: 

vi Edits empty editing buffer 

vi file Edits named file 

vi +123 file Goes to line 123 

vi + 45 file Goes to line 45 

vi +/word file Finds first occurrence of "word" 

vi +/tty file Finds first occurrence of "tty" 

533 



vi(C) 

There are several ways to exit the editor: 

:wq This command writes the editing buffer to the file you are editing, quits 
the editor, and returns to the UNIX shell. 

ZZ The editing buffer is written to the file only if any changes were made. 

:x The editing buffer is written to the file only if any changes were made. 

:ql Cancels an editing session. The exclamation mark (!) tells vi to quit 
unconditionally. In this case, the editing buffer is not written out. 

vi commands 

534 

vi is a visual editor with a window on the file. What you see on the screen is 
vi's notion of what the file contains. Commands do not cause any change to 
the screen until the complete command is entered. Most commands may take 
a preceding count that specifies repetition of the command. This count 
parameter is not given in the following command deSCriptions, but is implied 
unless overridden by some other prefix argument. When vi gets an improp­
erly formatted command, it rings a bell. 

Cursor movement 
The cursor movement keys allow you to move your cursor around in a file. 
Note in particular the direction keys (if available on your terminal), the h, j, k, 
1, and cursor keys, and (Space), (Bksp), (Ctrl)N, and (Ctrl)P. These three sets of 
keys perform identical functions. 

Forward Space -1, (Space), or right direction key 

Syntax: 1 
(Space) 
right direction key 

Function: Moves the cursor forward one character. If a count is given, move 
forward count characters. You cannot move past the end of the 
line. 

Backspace - h, (Bksp), or left direction key 

Syntax: h 
(Bksp) 
left direction key 

Function: Moves cursor backward one character. If a count is given, moves 
backward count characters. Note that you cannot move past the 
beginning of the current line. 



Next Line - +, (Return), j, (Ctrl}N, (LF), and down direction key 

Syntax: + 
(Return) 

Function: Moves the cursor down to the beginning of the next line. 

Syntax: j 
(Ctrl}N 
(LF) 
down direction key 

vice) 

Function: Moves the cursor down one line, remaining in the same column. 
Note the difference between these commands and the preceding 
set of next line commands which move to the beginning of the next 
line. 

Previous Line - k, (Ctrl}P, and up direction key 

Syntax: k 
(Ctrl)P 
up direction key 

Function: Moves the cursor up one line, remaining in the same column. If a 
count is given, the cursor is moved count lines. 

Syntax: 

Function: Moves the cursor up to the beginning of the previous line. If a 
count is given, the cursor is moved up count lines. 

Beginning of Line - 0 and A 

Syntax: 
o 

Function: Moves the cursor to the beginning of the current line. Note that 0 
always moves the cursor to the first character of the current line. 
The caret n works somewhat differently: it moves to the first 
character on a line that is not a tab or a space. This is useful when 
editing files that have a great deal of indentation, such as program 
texts. 

End of Line - $ 

Syntax: $ 

Function: Moves the cursor to the end of the current line. Note that the cur­
sor resides on top of the last character on the line. If a count is 
given, the cursor is moved forward count-l lines to the end of the 
line. 

535 



vi~C) 

536 

Golo Line-G 

Syntax: [linenumber]G 

Function: Moves the cursor to the beginning of the line specified by linenum­
ber. If no linenumber is given, the cursor moves to the beginning 
of the last line in the file. To find the line number of the current 
line, use (Ctrl)G. 

Column- I 

Syntax: [column] I 

Function: Moves the cursor to the column in the current line given by 
column. If no column is given, the cursor is moved to the first 
column in the current line. 

Word Forward - wand W 

Syntax: w 
W 

Function: Moves the cursor forward to the beginning of the next word. The 
lowercase w command searches for a word defined as a string of 
alphanumeric characters separated by punctuation or whitespace 
(that is, tab, newline, or space characters). The uppercase W com­
mand searches for a word defined as a string of nonwhitespace 
characters. 

Back Word - band B 

Syntax: b 
B 

Function: Moves the cursor backward to the beginning of a word. The 
lowercase b command searches backward for a word defined as a 
string of alphanumeric characters separated by punctuation or 
whitespace (that is, tab, newline, or space characters). The upper­
case B command searches for a word defined as a string of non­
whitespace characters. If the cursor is already within a word, it 
moves backward to the beginning of that word. 

End-eandE 

Syntax: e 
E 

Function: Moves the cursor to the end of a word. The lowercase e command 
moves the cursor to the last character of a word, where a word is 
defined as a string of alphanumeric characters separated by punc­
tuation or whitespace (that is, tab, newline, or space characters). 
The uppercase E moves the cursor to the last character of a word 



vi(C) 

where a word is defined as a string of nonwhitespace characters. 
1£ the cursor is already within a word, it moves to the end of that 
word. 

Sentence - ( and) 

Syntax: ( 
) 

Function: Moves the cursor to the beginning (left parenthesis) or end of a 
sentence (right parenthesis). A sentence is defined as a sequence 
of characters ending with a dot (.), question mark (?), or exclama­
tion mark (!) followed by either two spaces or a newline. A sen­
tence begins on the first nonwhitespace character following a 
preceding sentence. Sentences are also delimited by paragraph 
and section delimiters. See below. 

Paragraph - { and } 

Syntax: } 
{ 

Function: Moves the cursor to the beginning II {" or end "}" of a paragraph. 
A paragraph is defined with the paragraphs option. By default, 
paragraphs are delimited by the nroff macros .IP, .LP, .P, .QP, and 
.bp. Paragraphs also begin after empty lines. 

Section - [[ and ]] 

Syntax: )] 
[[ 

Function: Moves the cursor to the beginning II [[" or end "]] " of a section. A 
section is defined with the sections option. By default, sections 
are delimited by the nroff macros .NH and .SH. Sections also start 
at formfeeds (lL) and at lines beginning with a brace <D. 

Match Delimiter - % 

Syntax: % 

Function: Moves the cursor to a matching delimiter, where a delimiter is a 
parenthesis, a bracket, or a brace. This is useful when matching 
pairs of nested parentheses, brackets, and braces. 

537 



vice) 

538 

Home-H 

Syntax: [offsetlH 

Function: Moves the cursor to the upper left comer of the screen. Use this 
command to move quickly to the top of the screen. If an offset is 
given, the cursor is homed offset-l number of lines from the top of 
the screen. Note that the command dH deletes all lines from the 
current line to the top line shown on the screen. 

Middle Screen - M 

Syntax: M 

Function: Moves the cursor to the beginning of the screen's middle line. Use 
this command to move quickly to the middle of the screen from 
either the top or the bottom. Note that the command dM deletes 
from the current line to the line specified by the M command. 

Lower Screen - L 

Syntax: [offsetlL 

Function: Moves the cursor to the lowest line on the screen. Use this com­
mand to quickly move to the bottom of the screen. If an offset is 
given, the cursor is homed offset-l number of lines from the bot­
tom of the screen. Note that the command dL deletes all lines 
from the current line to the bottom line shown on the screen. 

Previous Context - " and" 

Syntax: 
'character 

'character 

Function: Moves the cursor to previous context or to context marked with 
the m command. If the single quotation mark or back quotation 
mark is doubled, the cursor is moved to previous context. If a sin­
gle character is given after either quotation mark, the cursor is 
moved to the location of the specified mark as defined by the m 
command. The previous context is the location in the file of the 
last "nonrelative" cursor movement. The single quotation mark (') 
syntax is used to move to the beginning of the line representing 
the previous context. The back quotation mark (') syntax is used 
to move to the previous context within a line. 



vi(e) 

The screen commands 
The screen commands are not cursor movement commands and cannot be 
used in delete commands as the delimiters of text objects. However, the 
screen commands do move the cursor and are useful in paging or scrolling 
through a file. These commands are described below: 

Scroll- (Ctrl)U and (Ctrl)D 

Syntax: [size](Ctrl)U 
[size](Ctrl)D 

Function: Scrolls the screen up a half window «Ctrl)U) or down a half win­
dow «Ctrl)D). If size is given, the scroll is size number of lines. 
This value is remembered for all later scrolling commands. 

Page - (Ctrl)F and (Ctrl)B 

Syntax: (Ctrl)F 
(Ctrl)B 

Function: Pages screen forward and backward. Two lines of continuity are 
kept between pages if possible. A preceding count gives the num­
ber of pages to move forward or backward. 

Status - (Ctrl)G 

Syntax: BELL 
(Ctrl)G 

Function: Displays vi status on status line. This gives you the name of the 
file you are editing, whether it has been modified, the current line 
number, the number of lines in the file, and the percentage of the 
file (in lines) that precedes the cursor. 

Zero Screen - z 

Syntax: [linenumberlz[size] (Return) 
[linenumber]z[size]. 
[linenumber]z[size]-

Function: Redraws the display with the current line placed at or "zeroed" at 
the top, middle, or bottom of the screen, respectively. If you give a 
size, the number of lines displayed is equal to size. If a preceding 
linenumber is given, the given line is placed at the top of the 
screen. If the last argument is a (Return), the current line is placed 
at the top of the screen. If the last argument is a dot (.), the current 
line is placed in the middle of the screen. If the last argument is a 
minus sign (-), the current line is placed at the bottom of the 
screen. 

539 



vice) 

540 

Redraw - (Ctrl)R or (Ctrl)L 

Syntax: (Ctrl)R 
(Ctrl}L 
(Command depends on terminal type.) 

Function: Redraws the screen. Use this command to erase any system mes­
sages or line noise that may scramble your screen. Note that sys­
tem messages do not affect the file you are editing. 

Text insertion 
The text insertion commands always place you in insert mode. Exit from 
insert mode is always done by pressing (Esc). The following insertion com­
mands are pure insertion commands; no text is deleted when you use them. 
This differs from the text modification commands, change, replace, and sub­
stitute, which delete and then insert text in one operation. 

Insert - i and I 

Syntax: i[text](Esc) 
l[text](Esc) 

Function: Insert text in editing buffer. The lowercase i command places you 
in insert mode. Text is inserted before the character beneath the 
cursor. To insert a newline, press a (Return). Exit insert mode by 
typing the (Esc) key. The uppercase I command places you in 
insert mode, but begins text insertion at the beginning of the 
current line, rather than before the cursor. (The beginning of the 
line here is the first non-blank character on the line.) 

Append - a and A 

Syntax: a[text] (Esc) 
A[text](Esc) 

Function: Appends text to the editing buffer. The lowercase a command 
works exactly like the lowercase i command, except that text 
insertion begins after the cursor and not before. This is the only 
way to add text to the end of a line. The uppercase A command 
begins appending text at the end of the current line rather than 
after the cursor. 



Open New Line - 0 and 0 

Syntax: o[text] (Esc) 
O[text](Esc) 

vice) 

Function: Opens a new line and inserts text. The lowercase 0 command 
opens a new line below the current line; uppercase 0 opens a new 
line above the current line. After the new line has been opened, 
both these commands work like the I command. 

Text deletion 
Many of the text deletion commands use the II d II key as an operator. This 
operator deletes text objects delimited by the cursor and a cursor movement 
command. Deleted text is always saved in a buffer. The delete commands are 
described below: 

Delete Character - x and X 

Syntax: x 
X 

Function: Deletes a character. The lowercase x command deletes the charac­
ter beneath the cursor. With a preceding count, count characters 
are deleted to the right beginning with the character beneath the 
cursor. This is a quick and easy way to delete a few characters. 
The uppercase X command deletes the character just before the 
cursor. With a preceding count, count characters are deleted back­
ward, beginning with the character just before the cursor. 

Delete - d and D 

Syntax: dcursor-movement 
dd 
D 

Function: Deletes a text object. The lowercase d command takes a cursor­
movement as an argument. If the cursor-movement is an intraline 
command, deletion takes place from the cursor to the end of the 
text object delimited by the cursor-movement. Deletion forward 
deletes the character beneath the cursor; deletion backward does 
not. If the cursor-movement is a multi-line command, deletion 
takes place from and including the current line to the text object 
delimited by the cursor-movement. 

The dd command deletes whole lines. The uppercase D command 
deletes from and including the cursor to the end of the current 
line. 

541 



vice) 

542 

Deleted text is automatically pushed on a stack of buffers num­
bered 1 through 9. The most recently deleted text is also placed in 
a special delete buffer that is logically buffer o. This special buffer 
is the default buffer for all (put) commands using the double quo­
tation mark (") to specify the number of the buffer for delete, put, 
and yank commands. The buffers 1 through 9 can be accessed 
with the p and P (put) commands by appending the double quota­
tion mark (") to the number of the buffer. For example: 

"4p 
puts the contents of delete buffer number 4 in your editing buffer 
just below the current line. Note that the last deleted text is "put" 
by default and does not need a preceding buffer number. 

Text modification 
The text modification commands all involve the replacement of text with 
other text. This means that some text will necessarily be deleted. All text 
modification commands can be "undone" with the u command: 

Undo-uandU 

Syntax: u 
U 

Function: Undoes the last insert or delete command. The lowercase u com-

Repeat-. 

Syntax: 

. mand undoes the last insert or delete command. This means that 
after an insert, u deletes text; and after a delete, u inserts text. For 
the purposes of undo, all text modification commands are con­
sidered insertions. 

The uppercase U command restores the current line to its state 
before it was edited, no matter how many times the current line 
has been edited since you moved to it. 

Function: Repeats the last insert or delete command. A special case exists 
for repeating the p and P "put" commands. When these com­
mands are preceded by the name of a delete buffer, successive u 
commands display the contents of the delete buffers. 

Change - c and C 

Syntax: ccursor-movement text (Esc) 
Ctext(Esc} 
cctext (Esc) 

Function: Changes a text object and replaces it with text. Text is inserted as 
with the i command. A dollar sign ($) marks the extent of the 



vi(C) 

change. The c command changes arbitrary text objects delimited 
by the cursor and a cursor-movement. C affects from the cursor to 
the end of the line, cc affects the whole line; otherwise, they are 
identical in function. 

Replace - rand R 

Syntax: rchar 
Rtext(Esc) 

Function: Overstrikes character or line with char or text, respectively. Use r 
to overstrike a single character and R to overstrike a whole line. A 
count multiplies the replacement text count times. 

Substitute - sand S 

Syntax: stext (Esc) 
5text(Esc) 

Function: Substitutes current character or current line with text. Use s to 
replace a single character with new text. Use 5 to replace the 
current line with new text. If a preceding count is given, text sub­
stitutes for count number of characters or lines depending on 
whether the command is s or 5, respectively. 

Filter -! 

Syntax: !cursor-movement cmd (Return) 

Function: Filters the text object delimited by the cursor and cursor­
movement through the UNIX command, cmd. For example, the fol­
lowing command sorts all lines between the cursor and the bottom 
of the screen, substituting the designated lines with the sorted 
lines: 

!Lsort 
Arguments and shell metacharacters may be included as part of 
cmd; however, standard input and output are always associated 
with the text object being filtered. 

Join Lines - J 

Syntax: J 

Function: Joins the current line with the following line. If a count is given, 
count lines are joined. 

543 



vice) 

544 

Shift - < and> 

Syntax: >[cursor-movement] 
<[cursor-movement] 
» 
« 

Function: Shifts text right (» or left «). Text is shifted by the value of the 
option shiftwidth, which is normally set to eight spaces. Both the 
> and < commands shift all lines in the text object delimited by the 
current line and cursor-movement. The» and « commands 
affect whole lines. All versions of the command can take a preced­
ing count that acts to multiply the number of objects affected. 

Text movement 
The text movement commands move text in and out of the named buffers a-z 
and out of the delete buffers 1-9. These commands either "yank" text out of 
the editing buffer and into a named buffer or "put" text into the editing buffer 
from a named buffer or a delete buffer. By default, text is put and yanked 
from the "unnamed buffer", which is also where the most recently deleted text 
is placed. Thus it is quite reasonable to delete text, move your cursor to the 
location where you want the deleted text placed, and then put the text back 
into the editing buffer at this new location with the p or P command. 

The named buffers are most useful for keeping track of several sections of text 
that you want to keep on hand for later access, movement, or rearrangement. 
These buffers are named with the letters a through z. To refer to one of these 
buffers (or one of the numbered delete buffers) in a command, use a quotation 
mark. For example, to yank a line into the buffer named a, enter: 

"ayy 
To put this text back into the file, enter: 

"ap 
If you delete text in the buffer named A rather than a, text is appended to the 
buffer named a (that is, A and a refer to the same buffer but are handled dif­
ferently). 

Note that the contents of the named buffers are not destroyed when you 
switch files. Therefore, you can delete or yank text into a buffer, switch files, 
and then do a put. Buffer contents are destroyed when you exit the editor, so be 
careful. 

Put-pandP 

Syntax: ["alphanumeric]p 
["alphanumeric]P 

Function: Puts text from a buffer into the editing buffer. If no buffer name is 
specified, text is put from the unnamed buffer. The lowercase p 
command puts text either below the current line or after the 



vi(e) 

cursor, depending on whether the buffer contains a partial line or 
not. The uppercase P command puts text either above the current 
line or before the cursor, again depending on whether the buffer 
contains a partial line or not. 

Yank-y and Y 

Syntax: ["letter]ycursor-movement 
["letter]yy 
["letter] 

Function: Copies text in the editing buffer to a named buffer. If no buffer 
name is specified, text is yanked into the unnamed buffer. If an 
uppercase letter is used, text is appended to the buffer and does 
not overwrite and destroy the previous contents. When a cursor­
movement is given as an argument, the delimited text object is 
yanked. The Y and yy commands yank a single line, or, if a 
preceding count is given, multiple lines can be yanked. 

Searching 
The search commands search either forward or backward in the editing buffer 
for text that matches a given regular expression. 

Search -/ and? 

Syntax: /[pattern]l[offset](Return) 
/[pattern](Return) 
?[pattern]?[offset] (Return) 
?[pattern](Return) 

Function: Searches forward (f) or backward (?) for pattern. A string is actu­
ally a regular expression. The trailing delimiter is not required. If 
no pattern is given, then the last pattern searched for is used. 
After the second delimiter, an offset may be given, specifying the 
beginning of a line relative to the line on which pattern was found. 
For example: 

/word/-

finds the beginning of the line immediately preceding the line con­
taining word and the following command: 

/word/+2 

finds the beginning of the line two lines after the line containing 
word. See also the ignorecase and magic options. 

Next String - nand N 

Syntax: n 
N 

545 



vi(C) 

546 

Function: Repeats the last search command. The n command repeats the 
search in the same direction as the last search command. The N 
command repeats the search in the opposite direction of the last 
search command. 

Find Character - f and F 

Syntax: fchar 
Fchar 

Function: Finds character char on the current line. The lowercase f searches 
forward on the line; the uppercase F searches backward. The 
semicolon (;) repeats the last character search. The comma (,) rev­
erses the direction of the search. 

To Character - t and T 

Syntax: tchar 
Tchar 

Function: Moves the cursor up to but not on char. The semicolon (;) repeats 
the last character search. The comma (,) reverses the direction of 
the search. 

Mark-m 

Syntax: mletter 

Function: Marks a place in the file with a lowercase letter. You can move to 
a mark using the "to mark" commands described below. It is often 
useful to create a mark, move the cursor, and then delete from the 
cursor to the mark "a" with the following command: 

d'a 
To Mark - ' and' 

Syntax: 'letter 
'letter 

Function: Move to letter. These commands let you move to the location of a 
mark. Marks are denoted by single lowercase alphabetic charac­
ters. Before you can move to a mark, it must first be created with 
the m command. The back quotation mark n moves you to the 
exact location of the mark within a line; the forward quotation 
mark (') moves you to the beginning of the line containing the 
mark. Note that these commands are also legal cursor movement 
commands. 



vi(C) 

Exit and escape commands 
There are several commands that are used to escape from vi command mode 
and to exit the editor. These are described in the following section. 

ex Escape -: 

Syntax: 

Function: Enters ex escape mode to execute an ex command. The colon 
appears on the status line as a prompt for an ex command. You 
then can enter an ex command line terminated by either a (Return) 
or an (Esc) and the ex command will execute. You are then 
prompted to type (Return) to return to vi command mode. During 
the input of the ex command line or during execution of the ex 
command, you may press INTERRUPT to stop what you are doing 
and return to vi command mode. 

Exit Editor - ZZ 

Syntax: ZZ 

Function: Exit vi and write out the file if any changes have been made. This 
returns you to the shell from which you started vi. 

Quit to ex-Q 

Syntax: Q 

Function: Enters the ex editor. When you do this, you will still be editing the 
same file. You can return to vi by entering the vi command from 
ex. 

ex commands 

Entering the colon (:) escape command when in command mode produces a 
colon prompt on the status line. This prompt is for a command available in 
the line-oriented editor, ex. In general, ex commands let you write out or read 
in files, escape to the shell, or switch editing files. 

Many of these commands perform actions that affect the "current" file by 
default. The current file is normally the file that you named when you started 
vi, although the current file can be changed with the "file" command, f, or 
with the "next" command, n. In most respects, these commands are identical 
to similar commands for the editor, ed. All such ex commands are aborted by 
either (Return) or INTERRUPT. We shall use (Return) in our examples. Com­
mand entry is terminated by typing INTERRUPT. 

547 



vi(C) 

548 

Command structure 
Most ex command names are English words, and initial prefixes of the words 
are acceptable abbreviations. In descriptions, only the abbreviation is dis­
cussed, since this is the most frequently used form of the command. The 
ambiguity of abbreviations is resolved in favor of the more commonly used 
commands. As an example, the command substitute can be abbreviated s, 
while the shortest available abbreviation for the set command is se. 

Most commands accept prefix addresses specifying the lines in the file that 
they are to affect. A number of commands also may take a trailing count 
specifying the number of lines to be involved in the command. Counts are 
rounded down if necessary. Thus, the command lOp displays the tenth line in 
the buffer while move 5 moves the current line after line 5. 

Some commands take other information or parameters, stated after the com­
mand name. Examples might be option names in a set command, such as set 
number, a filename in an edit command, a regular expression in a substitute 
command, or a target address for a copy command. For example: 

1,5 copy 25 
A number of commands have variants. The variant form of the command is 
invoked by placing an exclamation mark (!) immediately after the command 
name. Some of the default variants may be controlled by options; in this case, 
the exclamation mark turns off the meaning of the default. 

In addition, many commands take flags, including the characters p and 1. A P 
or 1 must be preceded by a blank or tab. In this case, the command abbrevi­
ated by these characters is executed after the command completes. Since ex 
normally displays the new current line after each change, p is rarely neces­
sary. Any number of plus (+) or minus (-) characters may also be given with 
these flags. If they appear, the specified offset is applied to the current line 
value before the printing command is executed. 

Most commands that change the contents of the editor buffer give feedback if 
the scope of the change exceeds a threshold given by the report option. This 
feedback helps to detect undesirably large changes so that they may be 
quickly and easily reversed with the undo command. After commands with 
global effect, you will be informed if the net change in the number of lines in 
the buffer during this command exceeds this threshold. 

Command addressing 
The following specifies the line addressing syntax for ex commands: 

n 

The current line. Most commands leave the current line as 
the last line which they affect. The default address for most 
commands is the current line, thus "." is rarely used alone as 
an address. 

The nth line in the editor's buffer, lines being numbered 
sequentially from 1. 



$ 

% 

+nor-n 

vi(C) 

The last line in the buffer. 

An abbreviation for 1/1,$", the entire buffer. 

An offset, n relative to the current buffer line. The forms 
".+3" "+3" and "+++" are all equivalent. If the current line is 
line 100 they all address line 103. 

/pattern/ or ?pattern? 
Scan forward and backward respectively for a text matching 
the regular expression given by pattern. Scans normally 
wrap around the end of the buffer. If all that is desired is to 
print the next line containing pattern, the trailing slash (f) or 
question mark (?) may be omitted. If pattern is omitted or 
explicitly empty, the string matching the last specified regu­
lar expression is located. The forms "(Return)" and 
"?(Return}" scan using the last named regular expression. 
After a substitute, "(Return)" and "??(Retum}" would scan 
using that substitute's regular expression. 

or 'x Before each nonrelative motion of the current line dot (.), the 
previous current line is marked with a label, subsequently 
referred to with two single quotation marks ("). This makes 
it easy to refer or return to this previous context. Marks are 
established with the vi m command, using a single lower­
case letter as the name of the mark. Marked lines are later 
referred to with the following notation: 

'x. 

where x is the name of a mark. 

Addresses to commands consist of a series of addresses, separated by a 
comma (,) or a semicolon (;). Such address lists are evaluated left to right. 
When addresses are separated by a semicolon (;) the current line (.) is set to 
the value of the previous addreSSing expression before the next address is 
interpreted. If more addresses are given than the command requires, all but 
the last one or two are ignored. If the command takes two addresses, the first 
addressed line must precede the second in the buffer. Null address specifica­
tions are permitted in a list of addresses, the default in this case is the current 
line (.); thus ",100" is equivalent to ".,100". It is an error to give a prefix 
address to a command which expects none. 

Command format 
The following is the format for all ex commands: 

[address] [command] [I] [parameters] [count] [flags] 

All parts are optional depending on the particular command and its options. 
The following section describes specific commands. 

549 



vi(C) 

550 

Argument list commands 
The argument list commands allow you to work on a set of files, by 
remembering the list of filenames that are specified when you invoke vi. The 
args command lets you examine this list of filenames. The file command 
gives you information about the current file. The n (next) command lets you 
either edit the next file in the argument list or change the list. The rewind 
command lets you restart editing the files in the list. All of these commands 
are described below: 

args 

f 

ffile 

n 

n! 

The members of the argument list are displayed, with the 
current argument delimited by brackets. 

For example, a list might look like this: 
filel file2 [file3] file4 fileS 

The current file is file3. 

Displays the current filename, whether it has been modified 
since the last write command, whether it is read-only, the 
current linenumber, the number of lines in the buffer, and the 
percentage of the buffer that you have edited. In the rare case 
that the current file is I/[Not edited]", this is noted also; in this 
case you have to use w! to write to the file, since the editor is 
not sure that a w command will not destroy a file unrelated to 
the current contents of the buffer. 

The current filename is changed to file which is considered 
I/[Not edited]". 

The next file in the command line argument list is edited. 

This variant suppresses warnings about the modifications to 
the buffer not having been written out, discarding irretriev-
ably any changes that may have been made. 

n [+command] filelist 

rew 

rew! 

The specified file list is expanded and the resulting list 
replaces the current argument list; the first file in the new list 
is then edited. If command is given (it must contain no 
spaces), then it is executed after editing the first such file. 

The argument list is rewound, and the first file in the list is 
edited. 

Rewinds the argument list discarding any changes made to 
the current buffer. 

If you use C-Shell and set the prompt variable to output a prompt for non­
interactive shells, the prompt is interpreted as a filename when you use these 
commands. This causes unexpected problems. To avoid these problems, the 
default prompt should be set as shown in /usr/lib/mkuser/csh/cshrc. 



vice) 

Edit commands 
To edit a file other than the one you are currently editing, you will often use 
one of the variations of the e command. 

In the following discussions, note that the name of the current file is always 
remembered by vi and is specified by a percent sign (%). The name of the pre­
vious file in the editing buffer is specified by a number sign (#). 

The edit commands are described below: 

e file 

e! file 

e +nfile 

(Ctrlt 

Used to begin an editing session on a new file. The editor first 
checks to see if the buffer has been modified since the last w 
command was issued. If it has been, a warning is issued and the 
command is aborted. The command otherwise deletes the 
entire contents of the editor buffer, makes the named file the 
current file, and displays the new filename. After ensuring that 
this file is sensible, (that is, it is not a binary file, directory, or a 
device), the editor reads the file into its buffer. If the read of the 
file completes without error, the number of lines and characters 
read is displayed on the status line. If no errors occurred, the 
file is considered edited. If the last line of the input file is miss­
ing the trailing newline character, it is supplied and a complaint 
issued. The current line is initially the first line of the file. 

This variant form suppresses the complaint about modifications 
having been made and not written from the editor buffer, thus 
discarding all changes that have been made before editing the 
new file. 

Causes the editor to begin editing at line n rather than at the first 
line. The argument n may also be an editor command contain­
ing no spaces; for example, "+ /pattern". 

This is a shorthand equivalent for:e #(Return) which returns to 
the previous position in the last edited file. If you do not want 
to write the file, you should use :e! #(Return) instead. 

Write commands 
The write commands let you write out all or part of your editing buffer to 
either the current file or to some other file. These are described below: 

wfile Writes changes made back to file, displaying the number of 
lines and characters written. Normally, file is omitted and 
the buffer is written to the name of the current file. If file is 
specified, text is written to that file. The editor writes to a 
file only if it is the current file and is edited, or if the file does 
not exist. Otherwise, you must give the variant form w! to 
force the write. If the file does not exist it is created. The 
current filename is changed only if there is no current 
filename; the current line is never changed. 

551 



vice) 

552 

w» file 

w!name 

w!command 

If an error occurs while writing the current and edited file, 
the editor displays: 

No write since last change 

even if the buffer had not previously been modified. 

Appends the buffer contents at the end of an existing file. 
Previous file contents are not destroyed. 

Overrides the checking of the normal write command, and 
writes to any file that the system permits. 

Writes the specified lines into command. Note the difference 
in spacing between 

w!file 
which overrides checks and 

w!cmd 

which writes to a command. (A blank or tab before the excla­
mation mark is mandatory.) The output of this command is 
displayed on the screen and not inserted in the editing 
buffer. 

Read commands 
The read commands let you read text into your editing buffer at any location 
you specify. The text you read in must be at least one line long, and can be 
either a file or the output from a command. 

rfile 

r!command 

Places a copy of the text of the given file in the editing buffer 
after the specified line. If no file is given, the current 
filename is used. The current filename is not changed unless 
there is none, in which case the file becomes the current 
name. If the file buffer is empty and there is no current 
name, this is treated as an e command. 

Address 0 is legal for this command and causes the file to be 
read at the beginning of the buffer. Statistics are given as for 
the e command when the r successfully terminates. After an 
r the current line is the last line read. 

Reads the output of command into the buffer after the speci­
fied line. A blank or tab before the exclamation mark (!) is 
mandatory. 



vi(C) 

Quit commands 
There are several ways to exit vi. Some abort the editing session, some write 
out the editing buffer before exiting, and some warn you if you decide to exit 
without writing out the buffer. All of these ways of exiting are described 
below: 

q Exits vi. No automatic write of the editor buffer to a file is per­
formed. However, vi displays a warning message if the file has 
changed since the last w command was issued, and does not 
quit. vi also displays a diagnostic if there are more files in the 
argument list left to edit. Normally, you will wish to save your 
changes, and you should enter a w command. If you wish to 
discard them, enter the q! command variant. 

q! Quits from the editor, discarding changes to the buffer without 
complaint. 

wq name Like a wand then a q command. 

wq! name Overrides checking normally made before execution of the w 
command to any file. For example, if you own a file but do not 
have write permission turned on, the wq! allows you to update 
the file anyway. 

x name If any changes have been made and not written, writes the 
buffer out and then quits. Otherwise, it just quits. 

Global and substitute commands 
The global and substitute commands allow you to perform complex changes 
to a file in a single command. Learning how to use these commands is a must 
for an experienced vi user. 

g/pattern/cmds The g command has two distinct phases. In the first phase, 
each line matching pattern in the editing buffer is marked. 
Next, the given command list is executed with the current 
line, dot (.), initially set to each marked line. 

The command list consists of the remaining commands on 
the current input line and may continue to multiple lines by 
ending all but the last such line with a backslash (\). This 
multiple-line option will not work from within vi. You must 
switch to ex to do it. The vi command Q can be used to exit 
to ex, and the ex command vi will return you to visual mode. 
If cmds (or the trailing slash (/) delimiter) is omitted, each 
line matching pattern is displayed. 

553 



vi(C) 

554 

The g command itself may not appear in cmds. The options 
autoprint and autoindent are inhibited during a global com­
mand and the value of the report option is temporarily infin­
ite, in deference to a report for the entire global. Finally, the 
context mark ( I ) or ( , ) is set to the value of the current line 
(.) before the global command begins and is not changed 
during a global command. 

The following global commands, most of them substitutions, 
cover the most frequent uses of the global command. 

gls1/p This command simply prints all lines that contain the string 
s1. 

gls1/slls21 This command substitutes the first occurrence of s1 on all 
lines that contain it with the string s2. 

gls1/slls2/g This command substitutes all occurrences of s1 with the 
string s2. This includes multiple occurrences of s1 on a line. 

gls1/slls2/gp This command works the same as the preceding example, 
except that in addition, all changed lines are displayed on the 
screen. 

gls1/slls2/gc This command prompts you to confirm that you want to 
make each substitution of the string s1 with the string s2. If 
you enter a Y, the given substitution is made, otherwise it is 
not. 

glsO/s/s1/s2/g This command marks all those lines that contain the string 
sO, and then for those lines only, substitutes all occurrences 
of the string s1 with s2. 

g!lpatternlcmds This variant form of g runs cmds at each line not matching 
pattern. 

grtsll Ig This command inserts blank spaces at the beginning of each 
line in a file. 

s/patternlreplloptions 
On each specified line, the first instance of text matching the 
regular expression pattern is replaced by the replacement 
text repl. If the global indicator option character g appears, 
all instances on a line are substituted. If the confirm indica­
tion character c appears, before each substitution the line to 
be substituted is printed on the screen with the string to be 
substituted marked with caret n characters. By entering Y, 
you cause the substitution to be performed; any other input 
causes no change to take place. After an s command, the 
current line is the last line substituted. 



vice) 

v/pattern/cmds A synonym for the global command variant g!, running the 
specified cmds on each line that does not match pattern. 

Text movement commands 
The text movement commands are largely superseded by commands avail­
able in vi command mode. However, the following two commands are still 
quite useful: 

co addr flags 

[rangelmaddr 

A copy of the specified lines is placed after addr, which may 
be "a". The current line (.) addresses the last line of the 
copy. 

The m command moves the lines specified by range after the 
line given by addr. For example, m+ swaps the current line 
and the following line, since the default range is just the 
current line. The first of the moved lines becomes the 
current line (dot). 

Shell escape commands 
You will often want to escape from the editor to execute normal UNIX com­
mands. You may also want to change your working directory so that your 
editing can be done with respect to a different working directory. These 
operations are described below: 

cd directory 

sh 

!command 

The specified directory becomes the current directory. If no 
directory is specified, the current value of the home option is 
used as the target directory. After a cd, the current file is not 
considered to have been edited so that write restrictions on 
preexisting files still apply. 

A new shell is created. You may invoke as many commands 
as you like in this shell. To return to vi, enter a (Ctrl)D to ter­
minate the shell. 

The remainder of the line after the exclamation (I) is sent to 
a shell to be executed. Within the text of command, the char­
acters If %" and If #" are expanded as the filenames of the 
current file and the last edited file and the character If!" is 
replaced with the text of the previous command. Thus, in 
particular, If !! " repeats the last such shell escape. If any such 
expansion is performed, the expanded line is echoed. The 
current line is unchanged by this command. 

If there has been "[No writel" of the buffer contents since the last change to 
the editing buffer, a diagnostic is displayed before the command is executed, 
as a warning. A single exclamation (!) is displayed when the command com­
pletes. 

555 



vice) 

556 

If you use C-Shell and set the prompt variable to output a prompt for non­
interactive shells, the prompt is interpreted as an argument for command in 
shell escapes. This causes unexpected problems. To avoid these problems, 
use the default prompt value as shown in /usr/lib/mkuser/csh/cshrc. 

Other commands 
The following command descriptions explain how to use miscellaneous ex 
commands that do not fit into the above categories. 

The abbr, map, and set commands can also be defined with the EXINIT 
environment variable, which is read by the editor each time it starts up. For 
more information, see environ(M). Alternatively, these commands can be 
placed in a .exrc file in your home directory, which the editor reads if EXINIT 
is not defined. 

abbr 

map, map! 

nu 

preserve 

= 

recover file 

Maps the first argument to the following string. For example, 
the following command 

:abbr rainbow yellow green blue red 
maps "rainbow" to "yellow green blue red". Abbreviations 
can be turned off with the unabbreviate command, as in: 

:una rainbow 
Maps any character or escape sequence to a command 
sequence. For example, the following command maps the 
(Ctrl)A key to a shell escape that runs the clear(C) command: 

map A A:!clearAM 

To include the (Ctrl)A and (Ctrl)M characters in the mapping, 
you must use vi's (Ctrl)V escape. 

Characters mapped with map work in command mode, while 
characters mapped with map! work in insert mode. Charac­
ters mapped with map! cannot be unmapped using unmap. 

Displays each specified line preceded by its buffer line num­
ber. The current line is left at the last line displayed. To get 
automatic line numbering of lines in the buffer, set the num­
beroption. 

The current editor buffer is saved as though the system had 
just crashed. This command is for use only in emergencies 
when a w command has resulted in an error and you do not 
know how to save your work. 

Displays the line number of the addressed line. The current 
line is unchanged. 

Recovers file from the system save area. The system saves a 
copy of the editing buffer only if you have made changes to 
the file, the system crashes, or you execute a preserve com­
mand. When you use preserve, you are notified by mail. 



vi(C) 

set argument With no arguments, set displays those options whose values 
have been changed from their defaults; with the argument all, 
it displays all of the option values. 

tag label 

unmap 

Giving an option name followed by a question mark (?) 
causes the current value of that option to be displayed. The 
question mark is unnecessary unless the option is a Boolean 
value. Switch options are given values either with: 

set option 
to turn them on or: 

set nooption 
to turn them off. String and numeric options are assigned 
with: 

set option=value 

More than one option can be given to set; all are interpreted 
from left to right. See "Options" for a complete list and 
descriptions. 

The focus of editing switches to the location of label. If neces­
sary, vi will switch to a different file in the current directory to 
find label. If you have modified the current file before giving 
a tag command, you must first write it out. If you give 
another tag command with no argument, the previous label is 
used. 

Similarly, if you press (CtrI)], vi searches for the word immedi­
ately after the cursor as a tag. This is equivalent to entering 
":tag", the word following the cursor, and then pressing the 
(Return) key. 

The tags file is normally created by a program such as ctags, 
and consists of a number of lines with three fields separated 
by blanks or tabs. The first field gives the name of the tag, the 
second the name of the file where the tag resides, and the 
third gives an addressing form which can be used by the edi­
tor to find the tag. This field is usually a contextual scan 
using /pattern/ to be immune to minor changes in the file. 
Such scans are always performed as if the nomagic option 
was set. The tag names in the tags file must be sorted alpha­
betically. 

Unmaps any character or escape sequence that has been 
mapped using the map command. 

557 



vice) 

558 

Options 
There are a number of options that can be set to affect the vi environment. 
These can be set with the ex set command while editin& with the EXINIT 
environment variable, or in the vi start-up file, .exrc. This file normally sets 
the user's preferred options so that they do not need to be set manually each 
time you invoke vi. 

The first thing that must be done before you can use vi, is to set the terminal 
type so that vi understands how to talk to the particular terminal you are 
using. 

There are only two kinds of options: switch options and string options. A 
switch option is either on or off. A switch is turned off by prefixing the word 
no to the name of the switch within a set command. String options are strings 
of characters that are assigned values with the syntax option=string. Multiple 
options may be specified on a line. vi options are listed below: 

auto indent, ai (default: noai) 
Can be used to ease the preparation of structured program text. For each 
line created by an append, change, insert, open, or substitute operation, vi 
looks at the preceding line to determine and insert an appropriate amount 
of indentation. To back the cursor up to the preceding tab stop, press 
(Ctrl}D. The tab stops going backward are defined as multiples of the 
shiftwidth option. You cannot backspace over the indent, except by press­
ing (Ctrl}D. 

Specially processed in this mode is a line with no characters added to it, 
which turns into a completely blank line (the whitespace provided for the 
auto indent is discarded). Also, specially processed in this mode are lines 
beginning with a caret n and immediately followed by a (Ctrl}D. This 
causes the input to be repositioned at the beginning of the line, but retains 
the previous indent for the next line. Similarly, a "0" followed by a (Ctrl}D, 
repositions the cursor at the beginning without retaining the previous 
indent. Autoindent does not happen in global commands. 

autoprintap (default: ap) 
Causes the current line to be displayed after each ex copy, move, or substi­
tute command. This has the same effect as supplying a trailing "P" to each 
such command. Autoprint is suppressed in globals, and only applies to the 
last command on a line. 

autowrite, aw (default: noaw) 
Causes the contents of the buffer to be automatically written to the current 
file if you have modified it when you give a next, rewind, tag, or ! com­
mand, or a (Ctrlt (switch files) or (Ctrl)] (goto tag) command. 

beautify, bf (default: nobeautify) 
Causes all control characters except tab, newline and formfeed to be dis­
carded from the input. A complaint is registered the first time a backspace 
character is discarded. Beautify does not apply to command input. 



vi(C) 

directory, dir (default: dir=/tmp) 
Specifies the directory in which vi places the editing buffer file. If the direc­
tory does not have write permission, the editor will exit abruptly when it 
fails to write to the buffer file. 

edcompatible (default: noedcompatible) 
Causes the presence or absence of g and c suffixes on substitute commands 
to be remembered, and to be toggled on and off by repeating the suffixes. 
The suffix r causes the substitution to be like the tilde n command, instead 
of like the ampersand (&) command. 

errorbells, eb (default: noeb) 
Error messages are preceded by a bell. If possible, the editor always places 
the error message in inverse video instead of ringing the bell. 

hardtabs, ht (default: ht=8) 
Gives the boundaries on which terminal hardware tabs are set or on which 
tabs the system expands. 

ignorecase, ic (default: noic) 
Maps all uppercase characters in the text to lowercase in regular expression 
matching. In addition, all uppercase characters in regular expressions are 
mapped to lowercase except in character class specifications enclosed in 
brackets. 

lisp (default: nolisp) 
Autoindent indents appropriately for LISP code, and the ( ) { } [[ and )] 
commands are modified to have meaning for LISP. 

list (default: nolist) 
All printed lines are displayed, showing tabs and end-of-lines. 

magic (default: magic) 
If nomagic is set, the number of regular expression metacharacters is 
greatly reduced, with only caret n and dollar sign ($) having special 
effects. In addition, the metacharacters tilde n and ampersand (&) in 
replacement patterns are treated as normal characters. All the normal 
metacharacters may be made magic when nomagic is set by preceding 
them with a backslash (\). 

mesg (default: nomesg) 
Causes write permission to be turned off to the terminal while you are in 
visual mode, if nomesg is set. This prevents people writing to your screen 
with the UNIX write command and scrambling your screen as you edit. 

number, n (default: nonumber) 
Causes all output lines to be printed with their line numbers. 

optimize, opt (default: optimize) 
Output of text to the screen is expedited by setting the terminal so that it 
does not perform automatic carriage returns when displaying more than 
one line of output, thus greatly speeding output on terminals without 
addressable cursors when text with leading whitespace is printed. 

559 



vice) 

560 

paragraphs, para (default: para =IPLPPPQPP TPbp) 
Specifies paragraph delimiters for the { and } operations. The pairs of char­
acters in the option's value are the names of the nroff macros that start 
paragraphs. 

prompt (default: prompt) 
ex input is prompted for with a colon (:). If noprompt is set, when ex com­
mand mode is entered with the Q command, no colon prompt is displayed 
on the status line. 

redraw (default: noredraw) 
The editor simulates (using great amounts of output), an intelligent termi­
nal on a dumb terminal. Useful only at very high speed. 

remap (default: remap) 
If on, mapped characters are repeatedly tried until they are unchanged. For 
example, if 0 is mapped to 0 and 0 is mapped to I, 0 will map to I if remap 
is set, and to 0 if noremap is set. 

report (default: report=5) 
Specifies a threshold for feedback from commands. Any command that 
modifies more than the specified number of lines will provide feedback as 
to the scope of its changes. For global commands and the undo command, 
the net change in the number of lines in the buffer is presented at the end of 
the command. Thus notification is suppressed during a g command on the 
individual commands performed. 

scroll (default: scroll=Y.a window) 
Determines the number of logical lines scrolled when (Ctrl)D is received 
from a terminal input in command mode, and the number of lines dis­
played by a command mode z command (double the value of scroll). 

sections (default: sections=SHNHH HU) 
Specifies the section macros for the [[ and)] operations. The pairs of char­
acters in the option's value are the names of the nroff macros that start sec­
tions. 

shell, sh (default: sh=/bin/sh) 
Gives the pathname of the shell forked for the shell escape (0 command, 
and by the shell command. The default is taken from SHELL in the 
environment, if present. 

shiftwidth, sw (default:sw=8) 
Gives the width of a software tab stop, used in reverse tabbing with (Ctrl)D 
when using auto indent to append text, and by the shift commands. 

showmatch, sm (default: nosm) 
When a ")" or " }" is typed, moves the cursor to the matching "(" or " { " 
for one second if this matching character is on the screen. 



vi(C) 

showmode (default:noshowmode) 
Causes the message INPUT MODE to appear on the lower right corner of the 
screen when insert mode is activated. 

slowopen (default: noslowopen) 
Postpones update of the display during inserts. 

tabstop, ts (default: ts=8) 
The editor expands tabs in the input file to be on n boundaries for the pur­
poses of display. 

taglength, t1 (default: t1=O) 
The first n characters in a tag name are significant, but all others are 
ignored. A value of zero (the default) means that all characters are signifi­
cant. 

tags (default: tags=tags /usr/lib/tags) 
A path of files to be used as tag files for the tag command. A requested tag 
is searched for in the specified files, sequentially. By default, files named 
tags are searched for in the current directory and in /usr/lib. 

term (default=value of shell TERM variable) 
The terminal type of the output device. 

terse (default: noterse) 
Shorter error diagnostics are produced for the experienced user. 

timeout [=n], to [=n] (default: to=xxx) 
Milliseconds to wait for subsequent input characters. This is the maximum 
allowed waiting time between characters in "multicharacter" sequences, 
such as arrow keys or :map functions. If no value is given, vi determines 
the timeout period from the type and speed of the terminal connection; set­
ting notimeout requires the next character to be input, and is not the same 
as setting timeout to "0" (never waiting). 

warn (default: warn) 
Warn if there has been "[No write since last change]" before a shell escape 
command !. 

window (default: window = speed dependent) 
This specifies the number of lines in a text window. The default is 8 at slow 
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full 
screen (minus one line) at higher speeds. 

w300,w1200,w9600 
These are not true options but set window (above) only if the speed is slow 
(300), medium (1200), or high (9600), respectively. 

wrapscan, ws (default: ws) 
Searches, using the regular expressions in addressing, will wrap around 
past the end of the file. 

561 



vice) 

wrapmargin, wm (default: wm=O) 
Defines the margin for automatic insertion of newlines during text input. 
The value specified is the width of the margin at the right-hand side of the 
screen within which word wrap will be carried out. A newline will be 
inserted immediately after a word that ends in the margin. A value of zero 
specifies no wrap margin. 

writeany, wa (default: nowa) 
Inhibits the checks normally made before write commands, allowing a 
write to any file that the system protection mechanism will allow. 

Regular expressions 

562 

A regular expression specifies a set of strings of characters. A member of this 
set of strings is said to be "matched" by the regular expression. vi remembers 
two previous regular expressions: the previous regular expression used in a 
substitute command and the previous regular expression used elsewhere, 
referred to as the previous scanning regular expression. The previous regular 
expression can always be referred to by a null regular expression: for exam­
ple, " / /" or "??". 

The regular expressions allowed by vi are constructed in one of two ways 
depending on the setting of the magic option. The ex and vi default setting of 
magic gives quick access to a powerful set of regular expression metacharac­
ters. The disadvantage of magic is that the user must remember that these 
metacharacters are magic and precede them with the backslash (\) to use 
them as "ordinary" characters. With nomagic set, regular expressions are 
much simpler, there being only two metacharacters. The power of the other 
metacharacters is still available by preceding the now ordinary character with 
aI/ \". Note that 1/ \" is always a metacharacter. In this discussion, the magic 
option is assumed. With nomagic, the only special characters are the caret n 
at the beginning of a regular expression, the dollar sign ($) at the end of a reg­
ular expression, and the backslash (\). The tilde n and the ampersand (&) 
also lose their special meanings related to the replacement pattern of a substi­
tute. 

The following basic constructs are used to construct magic mode regular 
expressions. 

char An ordinary character matches itself. Ordinary characters are any 
characters except a caret n at the beginning of a line, a dollar sign ($) 
at the end of line, a star (*) as any character other than the first, and 
any of the following characters: 

. \ [ -
These characters must be preceded by a backslash (\) if they are to 
be treated as ordinary characters. 



vice) 

At the beginning of a pattern, forces the match to succeed only at the 
beginning of a line. 

$ At the end of a regular expression, forces the match to succeed only 
at the end of the line. 

Matches any single character except the newline character. 

\< Forces the match to occur only at the beginning of a "word"; that is, 
either at the beginning of a line, or just before a letter, digit, or under­
line and after a character not one of these. 

\> Similar to \<, but matching the end of a "word", that is, either the 
end of the line or before a character which is not a letter, a digit, or 
the underline character. 

[string] Matches any single character in the class defined by string. Most 
characters in string define themselves. A pair of characters 
separated by a dash (-) in string defines the set of characters between 
the specified lower and upper bounds, thus "[a-z]" as a regular 
expression matches any single lowercase letter. If the first character 
of string is a caret n then the construct matches those characters 
which it otherwise would not. Thus "[Aa_z]" matches anything but a 
lowercase letter or a newline. To place any of the characters caret, 
left bracket, or dash in string they must be escaped with a preceding 
backslash (\). 

The concatenation of two regular expressions first matches the leftmost regu­
lar expression and then the longest string that can be recognized as a regular 
expression. The first part of this new regular expression matches the first reg­
ular expression and the second part matches the second. Any of the single 
character matching regular expressions mentioned above may be followed by 
a star (*) to form a regular expression that matches zero or more adjacent oc­
currences of the characters matched by the prefixing regular expression. The 
tilde n may be used in a regular expression to match the text that defined the 
replacement part of the last s command. A regular expression may be 
enclosed between the sequences 1/\(" and "\)" to remember the text matched 
by the enclosed regular expression. This text can later be interpolated into the 
replacement text using the following notation: 

\ digit 
where digit enumerates the set of remembered regular expressions. 

The basic metacharacters for the replacement pattern are the ampersand (&) 
and the tilde n; these are given as "\ &" and "\ -II when nomagic is set. Each 
instance of the ampersand is replaced by the characters matched by the search 
pattern. In the replacement pattern, the tilde stands for the text of the previ­
ous replacement pattern. 

563 



vi(C) 

Files 

Credit 

Notes 

564 

Other metasequences possible in the replacement pattern are always intro­
duced by a backslash (\). The sequence "\ ti' is replaced by the text matched 
by the nth regular subexpression enclosed between "\ (" and "\ )". When 
nested, parenthesized subexpressions are present, n is determined by count­
ing occurrences of "\ (" starting from the left. The sequences "\ u" and "\ 1" 
cause the immediately following character in the replacement to be converted 
to uppercase or lowercase, respectively, if this character is a letter. The 
sequences "\ U" and "\ 1" turn such conversion on, either until "\ E" or "\ e' 
is encountered, or until the end of the replacement pattern. 

/tmp 

/usr/lib/terminfo/? /* 

default directory where temporary work files are 
placed; it can be changed using the directory 
option (see the ex(C) set command). 

compiled terminal description database 

This utility was developed at the University of California at Berkeley and is 
used with permission. 

The /usr/lib/expreserve program can be used to restore vi buffer files that were 
lost as a result of a system crash. The program searches the /tmp directory for 
vi buffer files and places them in the directory /usr/preserve. The owner can 
retrieve these files using the -r option. 

The /usr/lib/expreserve program must be placed in the system startup file, 
/etc/rc.d/3/recovery, before the command that cleans out the /tmp directory. See 
the System Administrator's Guide for more information on the letdrc2 scripts. 

Two options, although they continue to be supported, have been replaced in 
the documentation by the options that follow the Command Syntax Standard 
(see Intro(C». A -r option that is not followed with an argument has been 
replaced by -L, and +command has been replaced by -c command . 

.. 
vi does not strip the high bit from 8-bit characters read in from text files, text 
insertion, and editing commands. It does not look for "magic numbers" of 
object files when reading in a text file. It also writes out text and displays text 
without stripping the high bit. 



Warnings 

vi(C) 

vi uses the LC_CTYPE environment variable to determine if a character is 
printable, displaying the octal codes of non-printable 8-bit characters. It also 
uses LC_CTYPE and LANG to convert between upper and lowercase charac­
ters for the tilde command and for the ignorecase option. 

When the percent sign (%) is used in a shell escape from vi via the exclama­
tion mark (I), the" %" is replaced with the name of the file being edited. In 
previous versions of vi, each character in this replacement had the high bit set 
to 1 to quote it; in the current version of vi it is left alone. 

Tampering with the entries in /usr/lib/tenninfo/?/* (for example, changing or 
removing an entry) can affect programs such as vi that expect all entries to be 
present and correct. In particular, removing the "dumb" terminal entry may 
cause unexpected problems. 

Software tabs using AT work only immediately after the autoindent. 

Left and right shifts on intelligent terminals do not make use of insert and 
delete operations in the terminal. 

Refer to the crypt(C) page for information about restrictions on the availabil­
ity of encryption options. 

Standards confonnance 

vedit and view are conformant with: 

AT&T SVID Issue 2. 

vi is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

565 



vidi(C) 

vidi 
set the font and video mode for a video device 

Syntax 
vidi [ -d ] [ -f fontfile ] font 

vidimode 

Description 

566 

The vidi command has two functions. With arguments it loads/extracts a 
font or sets the video mode for the current standard input device. Without 
arguments, it lists all of the valid video mode and font commands. 

Font options 
Some video cards support changeable character fonts. Available fonts are 
font8x8, font8x14, and font8x16. The font options are used as follows: 

vidifont 

vidi-dfont 

loads font from /usr/lib/vidi/font. 

writes font to the standard output. 

vidi -d -f font fontfile writes font to fontfile. 

vidi -f fontfile font loads font from fontfile instead of default directory. 

Mode options 
vidi also sets the mode of the video adapter connected to the standard input. 
The modes are: 

mono move current screen to the monochrome adapter. 

ega move current screen to the Color Graphics adapter. 

ega move current screen to the Enhanced Graphics adapter. 

vga move current screen to the Video Graphics adapter. 

internal activate the internal monitor on Compaq portable with a plasma 
screen. 

external activate the external monitor on Compaq portable with a plasma 
screen. 



See also 

Note 

vidi(C) 

Text and graphics modes 
The following tables list the available modes. 

Text Modes 

Mode 
c40x25 
e40x25 
v40x25 
m80x25 
c80x25 
em80x25 
e80x25 
vm80x25 
v80x25 
e80x43 

Graphics Modes 

Mode 
mode5 
mode6 
modeD 
modeE 
modeF 
modelO 
mode11 
mode12 
mode13 

screen(HW) 

Cols Rows 
40 25 
40 
40 
80 
80 
80 
80 
80 
80 
80 

25 
25 
25 
25 
25 
25 
25 
25 
43 

Pixel Resolution 
320x200 
640x200 
320x200 
640x200 
640x350 
640x350 
640,,480 
640x480 
320x200 

Font 
8x8 
8x14 
8x16 
8x14 
8x8 
8x14 
8x14 
8x16 
8x16 
8x14 

Adapter 
eGA (EGA VGA) 
EGA (VGA) 
VGA 
MONO (EGA_MONO VGA_MONO) 
eGA (EGA VGA) 
EGA_MONO (VGA_MONO) 
EGA (VGA) 
VGA_MONO 
VGA 
EGA (VGA) 

Colors 
4 
2 

16 
16 
2 (mono) 

16 
2 

16 
256 

Adapter 
eGA (EGA VGA) 
eGA (EGA VGA) 
EGA (VGA) 
EGA (VGA) 
EGA (VGA) 
EGA (VGA) 
VGA 
VGA 
VGA 

The internal and external commands should only be used on Compaq com­
patible displays. 

Value added 

vidi is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 

567 



vmstat(C) 

vmstat 
report paging and system statistics 

Syntax 
vmstat [ -fs ] [ -n name list ] [ -I lines ] [ interval [ count ]] 

Description 

5.68 

vmstat reports some statistics kept by the system on processes, demand pag­
ing, and cpu and trap activity. Three types of reports are available: 

(default) 

-f 

-s 

A summary of the number of processes in various states, paging 
activity, system activity, and cpu cycle consumption. 

Number of fork(S)s done. 

A verbose listing of paging and trap activity. 

If no interval or count is specified, the totals since system bootup are dis­
played. 

If an interval is given, the number of events that have occurred in the last 
interval seconds is shown. If no count is specified, this display is repeated 
forever every interval seconds. Otherwise, when a count is also specified, the 
information is displayed count times. 

Other flags that may be specified include: 

-n namelist Use file namelist as an alternate symbol table instead of /unix. 

-llines For the default display, repeat the header every lines reports 
(default is 20). 

The fields in the default report are: 

procs The number of processes which are: 

r In the run queue. 
b Blocked waiting for resources. 
w Swapped out. 

These values always reflect the current situation, even if the 
totals since boot are being displayed. 



Files 

See also 

paging 

system 

vmstat(C) 

Reports on the performance of the demand paging system. 
Unless the totals since boot are being displayed, this information 
is averaged over the preceding interval seconds: 

frs Free swap space. 
dmd Demand zero and demand fill pages. 
sw Pages on swap. 
cch Pages in cache. 
fli Pages on file. 
pft Protection faults. 
frp Pages freed. 
pos Processes swapped out successfully. 
pif Processes swapped out unsuccessfully. 
rso Regions swapped out. 
rsi Regions swapped in. 

Reports on the general system activity. Unless the totals since 
boot are being shown, these figures are averaged over the last 
interval seconds: 

sy Number of system calls. 
cs Number of context switches. 

cpu Percentage of cpu cycles spent in various operating modes: 

us User. 
su System. 
id Idle. 

The -f and -s reports are a series of lines of the form: 
number description 

which means that number of the items described by description happened 
(either since boot or in the last interval seconds, as appropriate). These 
reports should be self-explanatory. 

/unix 
/dev/kmem 

Default namelist. 
Default source of statistics. 

fork(S), ps(C), pstat(C) 

569 



vmstat(C) 

Authorization 

The behavior of this utility is affected by assignment of the mem authoriza­
tion. If you do not have this authorization, the command will not work. Refer 
to the "Using a secure system" chapter of the Users Guide for more details. 

Value added 

570 

vmstat is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 



w(C) 

w 
display information about who is on the system and what they are doing 

Syntax 

w [ -hlqtw ] [ -n name list ] [ -s swapdev ] [ -u utmpfile ] [ users ... ] 

Description 

The w command prints a summary of the current activity on the system, 
including what each user is doing. The heading line shows the current time of 
day, how long the system has been up, the number of users logged onto the 
system, and load averages. Load averages are the number of processes in the 
run queue averaged over 1, 5, and 15 minutes. 

The options are: 

-h Do not print the heading or title lines. 

-I Long format (default): for each user, w outputs the users login 
name, the terminal or pseudo terminal the user is currently 
using, when the user logged onto the system, the number of 
minutes the user has been idle (how much time has expired 
since the user last typed anything), the CPU time used by all pro­
cesses and their children attached to the terminal, the CPU time 
used by the currently active process, and the name and argu­
men.ts of the currently active process. 

-q Quick format: for each user, w outputs the users login name, 
the terminal or pseudo terminal the user is currently using, the 
number of minutes the user has been idle, and the name of the 
currently active process. 

-t Only the heading line is output (equivalent to uptime(C». 

-w Both the heading line and the summary of users is output. 

-nnamelist The argument is taken as the name of an alternate name list 
(Junix is the default). 

-sswapdev Uses the file swapdev in place of /dC'o/swap. This is useful when 
examining a corefile. 

-uutmpfile The file utmpfile is used instead of /etc/utmp as a record of who 
is currently logged in. 

If any users are given, the user summary is restricted to reporting on those 
users. 

571 



w(C) 

Files 

See also 

Notes 

/unix 
/etc/utmp 
/dev/kmem 
/dev/swap 

date(C), finger(C), ps(C), uptime(C), who(C), whodo(C) 

The "currently active process" is only an approximation and is not always 
correct. Pipelines can produce strange results, as can some background pro­
cesses. If w is completely unable to guess at the currently active process, it 
prints" -". 

Authorization 

The behavior of this utility is affected by assignment of the mem authoriza­
tion, which is usually reserved for system administrators. If you do not have 
this authorization, the output will be restricted to data pertaining to your 
activities only. Refer to the "Using a secure system" chapter of the User's 
Guide for more details. 

Value added 

572 

w is an extension of AT&T System V provided by The Santa Cruz Operation, 
Inc. 



wait(C) 

wait 
await completion of background processes 

Syntax 

wait 

Description 

See also 

Notes 

The wait command waits until all background processes started with an 
ampersand (&) have finished, and reports on abnormal terminations. 

wait is built in to csh and sh. 

Because the wait(S) system call must be executed in the parent process, the 
shell itself executes wait, without creating a new process. 

csh(C), sh(C) 

Not all the processes of a pipeline with three or more stages are children of 
the shell, and thus cannot be waited for. 

Standards confonnance 

wait is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3, 1989. 

573 



wc(C) 

we 
counts lines, words and characters 

Syntax 

lYe [ -Iwe ] [ names] 

Description 

The we command counts lines, words and characters in the named files, or in 
the standard input if no names appear. It also keeps a total count for all 
named files. A word is a maximal string of characters delimited by spaces, 
tabs, or newlines. 

The options I, w, and c may be used in any combination to specify that a sub­
set of lines, words, and characters are to be reported. The default is -Iwc. 

When names are specified on the command line, they are printed along with 
the counts. 

Standards conformance 

we is conformant with: 

AT&T svm Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

574 



what(C) 

what 
identifies files 

Syntax 

what files 

Description 

See also 

The what command searches the given files for all occurrences of the pattern 
@(#) and prints out what follows until the first tilde n, greater-than sign (», 
new-line, backslash (\) or null character. The secs command get(CP) substi­
tutes this string as part of the @(#)string. 

For example, if the shell procedure in file print contains 
# @(#)this is the print program 
# @(#)syntax: print [files] 
pr $* I lpr 

then the command 

what print 

displays the name of the file print and the identifying strings in that file: 
print: 

this is the print program 
syntax: print [files] 

what is intended to be used with the get(CP) command, which automatically 
inserts identifying information, but it can also be used where the information 
is inserted manually. 

admin(CP), get(CP) 

Standards conformance 

what is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3, 1989. 

575 



who(C) 

who 
list who is on the system 

Syntax 
who [ -uATHldtasqbrfp ] [file] 

who ami 

who amI 

Description 

576 

The who command can list the user's name, terminal line, login time, and the 
elapsed time since activity occurred on the line; it also lists the process ID of 
the command interpreter (shell) for each current user. It examines the 
/etc/inittab file to obtain information for the Comments column, and /etc/utmp 
to obtain all other information. If file is given, that file is examined. Usually, 
file will be /etc/wtmp, which contains a history of all the logins since the file 
was last created. 

who with the am i or am I option identifies the invoking user. 

Except for the default -s option, the general format for output entries is: 
name [state] line time activity pid [comment] [exit] 

With options, who can list logins, logoffs, reboots, and changes to the system 
clock, as well as other processes spawned by the init process. These options 
are: 

-u This option lists only those users who are currently logged in. The 
"name" is the user's login name. The "line" is the name of the line as 
found in the directory /dev. The "time" is the time that the user logged 
in. The "activity" is the number of hours and minutes since activity last 
occurred on that particular line. A dot (.) indicates that the terminal 
has seen activity in the last minute and is therefore "current." If more 
than twenty-four hours have elapsed or the line has not been used 
since boot time, the entry is marked "old." This field is useful when try­
ing to determine whether a person is working at the terminal or not. 
The "pid" is the process ID of the user's shell. The "comment" is the 
comment field. It can contain information about where the terminal is 
located, the telephone number of the dataset, the type of terminal if 
hard-wired, etc. 

-A This option displays UNIX accounting information. 



who (C) 

-T This option is the same as the -u option, except that the "state" of the 
terminal line is printed. The "state" describes whether someone else 
can write to that terminal. A plus character (+) appears if the terminal 
is writable by anyone; a minus character (-) appears if it is not. root can 
write to all lines having a plus character or a minus character in the 
"state" field. If a bad line is encountered, a question mark (?) is dis­
played. 

-H This option displays column headings above the regular output. 

-1 This option lists only those lines on which the system is waiting for 
someone to login. The "name" field is LOGIN in such cases. Other 
fields are the same as for user entries except that the "state" field does 
not exist. 

-d This option displays all processes that have expired and have not been 
respawned by init. The "exit" field appears for dead processes and 
contains the termination and exit values (as returned by wait(C», of 
the dead process. This can be useful in determining why a process ter­
minated. 

-t This option indicates the last change to the system clock (via the 
date(C)command) su(C). 

-a This option processes the /etc/utmp file or the named file with all 
options turned on. 

-5 This option is the default and lists only the "name", "line", and "time" 
fields. 

-q This is a quick who, displaying only the names and the number of 
users currently logged on. When this option is used, all other options 
are ignored. 

-b This option indicates the time and date of the last reboot. 

-r This option indicates the current run level of the init process. In addi-
tion, it produces the process termination status, process id, and process 
exit status (see utmp(F» under the "idle", "pid", and "comment" head­
ings, respectively. 

-£ The -£ option will suppress psuedo-ttys from who output, except for 
remote logins. 

-p This option lists any other process which is currently active and has 
been previously spawned by init. The "name" field is the name of the 
program executed by init as found in /etc/inittab. The "state", "line", 
and "idle" fields have no meaning. The "comment" field shows the 
"id" field of the line from /etc/inittab that spawned this process. See 
inittab(F). 

577 



who(C) 

Files 

See also 

/etc/utmp 
/etc/wtmp 
/etc/inittab 

date(C), inittab(F), login(M), mesg(C), su(C), utmp(F), wait(S) 

Standards conformance 

who is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3, 1989. 

578 



whodo(C) 

whodo 
determine who is doing what 

Syntax 

Ibinlwhodo 

Description 

See also 

The whodo command produces merged, reformatted, and dated output from 
the who( C) and ps( C) commands. 

ps(C), who (C) 

Authorization 

The behavior of this utility is affected by assignment of the mem authoriza­
tion. If you do not have this authorization, the output will be restricted to 
data pertaining to your activities only. Refer to the "Using a secure system" 
chapter of the User's Guide for more details. 

Standards conformance 

whodo is conformant with: 

AT&T SVID Issue 2. 

579 



write(C) 

write 
write to another user 

Syntax 
write user [ tty ] 

Description 

Files 

See also 

580 

The write command copies lines from your terminal to that of another user. 
When first called, it sends the message: 

Message from your-logname your-tty ... 

The recipient of the message should write back at this point. Communication 
continues until an end-of-file is read from the terminal or an interrupt is sent. 
At that point, write displays: 

(end of message) 

on the other terminal and exits. 

If you want to write to a user who is logged in more than once, the tty argu­
ment may be used to indicate the appropriate terminal. 

Permission to receive messages from other users of the system may be 
granted or denied by use of the mesg( C) command. By default, users are not 
allowed to receive messages (this is for security). This may be altered by issu­
ing the mesg command from the .login script. 

If the character" !" is found at the beginning of a line, write calls the shell to 
execute the rest of the line as a command. Output from the command is sent 
to the terminal; it is not sent to the remote user. 

The following protocol is suggested for using write: when you first write to 
another user, wait for him or her to write back before starting to send. Each 
party should end each message with a distinctive signal «0) for "over" is con­
ventional), indicating that the other may reply; (00) for "over and out" is sug­
gested when conversation is to be terminated. 

/etc/utmp 
/bin/sh 

To find user 
To execute " ! " 

hello(C), mail(C), mesg(C), who(C) 



write(C) 

Standards conformance 

write is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3, 1989. 

581 



x286emul(C) 

x286emul 
emulate XENIX 80286 

Syntax 
x286emul [ arg . .. ] prog286 

Description 

File 

582 

x286emul is an emulator that allows programs from XENIX System V /286 
Release 2.3 or XENIX System V /286 Release 2.3.2 on the Intel 80286 to run on 
the Intel 80386 processor under UNIX System V Release 3.2 or later. 

The UNIX system recognizes an attempt to exec(S) a 286 program, and auto­
matically exec's the 286 emulator with the 286 program name as an additional 
argument. It is not necessary to specify the x286emul emulator on the com­
mand line. The 286 programs can be invoked using the same command for­
mat as on the XENIX System V /286. 

x286emul reads the 286 program's text and data into memory and maps them 
through the LDT (via sysi86(S» as 286 text and data segments. It also fills in 
the jam area, which is used by XENIX programs to do system calls and signal 
r~tums. x286emul starts the 286 program by jumping to its entry point. 

When the 286 program attempts to do a system call, x286emul takes control. 
It does any conversions needed between the 286 system call and the 
equivalent 386 system call, and performs the 386 system call. The results are 
converted to the form the 286 program expects, and the 286 program is 
resumed. 

The following are some of the differences between a program running on a 
286 and a 286 program using x286emul on a 386: 

• Attempts to unlink or write on the 286 program will fail on the 286 with 
ETXTBSY. Under x286emul, they will not fail. 

• ptrace(S) is not supported under x286emul. 

• The 286 program must be readable for the emulator to read it. 

/bin/x286emul The emulator must have this name and be in /bin if it is to be 
automatically invoked when exec(S) is used on a 286 pro­
gram. 



xargs(C) 

xargs 
construct and execute commands 

Syntax 
xargs [ flags] [ command [ initial-arguments] ] 

Description 

The xargs command combines the fixed initial-arguments with arguments 
read from the standard input to execute the specified command one or more 
times. The number of arguments read for each command invocation and the 
manner in which they are combined are determined by the flags specified. 

command, which may be a shell file, is searched for using the shell $PATH 
variable. If command is omitted, !bin/echo is used. 

Arguments read in from standard input are defined to be contiguous strings 
of characters delimited by one or more blanks, tabs, or newlines; empty lines 
are always discarded. Blanks and tabs may be embedded as part of an argu­
ment if escaped or quoted: Characters enclosed in quotes (single or double) 
are taken literally, and the delimiting quotes are removed. Outside of quoted 
strings, a backslash (\) will escape the next character. 

Each argument list is constructed starting with the initial-arguments, fol­
lowed by some number of arguments read from standard input (exception: 
see -i flag). Flags -i, -I, and -n determine how arguments are selected for each 
command invocation. When none of these flags are coded, the initial­
arguments are followed by arguments read continuously from standard input 
until an internal buffer is full, and command is executed with the accumulated 
args. This process is repeated until there are no more args. When there are 
flag conflicts (for example, -1 vs. -n), the last flag has precedence. flag values 
are: 

-lnumber command is executed for each number lines of nonempty argu­
ments from the standard input. This is instead of the default 
single line of input for each command. The last invocation of 
command will be with fewer lines of arguments if fewer than 
number remain. A line is considered to end with the first new­
line unless the last character of the line is a blank or a tab; a trail­
ing blank/tab signals continuation through the next nonempty 
line. If number is omitted, 1 is assumed. Option -x is forced. 

583 



xargs(C) 

584 

-ireplstr 

-nnumber 

-t 

-p 

-x 

-ssize 

-eeo/str 

Insert mode: command is executed for each line from the stan­
dard input, taking the entire line as a single argument, inserting 
it in initial-arguments for each occurrence of replstr. A max­
imum of 5 arguments in initial-arguments may each contain 
one or more instances of replstr. Blanks and tabs at the begin­
ning of each line are thrown away. Constructed arguments may 
not grow larger than 255 characters, and option -x is also forced. 
" { } " is assumed for replstr if not specified. 

Executes command, using as many standard input arguments as 
possible, up to the number of arguments maximum. Fewer 
arguments are used if their total size is greater than size charac­
ters, and for the last invocation if there are fewer than number 
arguments remaining. If option -x is also coded, each number of 
arguments must fit in the size limitation, or xargs terminates 
execution. 

Trace mode: the command and each constructed argument list 
are echoed to file descriptor 2 just prior to their execution. 

Prompt mode: the user is prompted whether to execute com­
mand at each invocation. Trace mode (-t) is turned on to display 
the command instance to be executed, followed by a "? ... " 
prompt. A reply of "y" (optionally followed by anything), will 
execute the command; anything else, including a carriage 
return, skips that particular invocation of command. 

Causes xargs to terminate if any argument list would be greater 
than size characters; -x is forced by the options -i and -1. When 
none of the options -i, -1, or -n are coded, the total length of all 
arguments must be within the size limit. 

The maximum total size of each argument list is set to size char­
acters; size must be a positive integer less than or equal to 470. If 
-s is not coded, 470 is taken as the default. Note that the charac­
ter count for size includes one extra character for each argument 
and the count of characters in the command name. 

eo/str is taken as the logical end-of-file string. Underscore U is 
assumed for the logical EOF string if -e is not coded. -e with no 
eo/str coded turns off the logical EOF string capability (under­
score is taken literally). xargs reads standard input until either 
end-of-file or the lOgical EOF string is encountered. 

xargs terminates if it either receives a return code of -1 from, or if it cannot 
execute, command. When command is a shell program, it should explicitly 
exit (see sh(C» with an appropriate value to avoid accidentally returning with 
-1. 



Examples 

xargs(C) 

The following will move all files from directory $1 to directory $2, and echo 
each move command just before doing it: 

Is $1 I xargs -i -t mv $1I{ } $21{ } 

The following will combine the output of the parenthesized commands onto 
one line, which is then echoed to the end-of-file log: 

(logname; date; echo $0 $*) I xargs »Iog 

The user is prompted to enter which files in the current directory are to be 
printed and prints them one at a time: 

Is I xargs -p -llpr 
or many at a time: 

Is I xargs -p -1 I xargs Ipr 

The following will execute diff(C) with successive pairs of arguments origi­
nally entered as shell arguments: 

echo $* I xargs -n2 diff 

Standards conformance 

xargs is conformant with: 

AT&T svm Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

585 



xtod(C) 

xtod 
change file format from UNIX to MS-DOS 

Syntax 

xtod [filename] > [output.file] 

Description 

See also 

586 

The xtod command converts a file from UNIX format to MS-DOS format. The 
MS-DOS files terminate a line of text with a carriage return and a linefeed, 
while UNIX files terminate a line with a linefeed only. Also MS-DOS places a 
(Ctrl)z at the end of a file, while UNIX does not. Some programs and utilities 
are sensitive to this difference and some are not. If a text or data file is not 
being interpreted correctly, use the dtox and xtod conversion utilities. The 
xtod command adds the extra carriage return to the end of each line and adds 
the (Ctrl)z to the end of the file. This utility is not required for converting 
binary object files. 

If no filename is specified on the command line, xtod takes input from stan­
dard input. Output of the utility goes to standard output. 

dtox(C) 



xtract(C) 

xtract 
extract a file from a cpio archive and stop. 

Syntax 

extract cpio _options pattern archive 

Description 

See also 

xtract is used to extract a single file from a cpio archive. Unlike using cpio 
directly, this allows for the quick extraction of a single file without reading the 
entire archive. The extraction is performed using the -iv options. 

cpio(C) 

Standards conformance 

xtract is conformant with: 

AT&T SVID Issue 2. 

587 



yes (C) 

yes 
print string repeatedly 

Syntax 

yes [ string] 

Description 

588 

yes repeatedly outputs "y", or if a single string argument is given, arg is out­
put repeatedly. The command will continue indefinitely unless aborted. This 
is useful in pipes to commands that prompt for input and require a"y" 
response for a yes. In this case, yes terminates when the command it pipes to 
terminates, so that no infinite loop occurs. 



Miscellaneous (M) 



Miscellaneous (M) 



Intro(M) 

Intro 
introduction to miscellaneous features and files 

Description 

This section contains miscellaneous information useful in maintaining the 
system. Included are descriptions of files, devices, tables and programs that 
are important in maintaining the entire system. 

589 



aio(M) 

aio 
Asynchronous Disk 1/0 ioctl commands 

Syntax 
#include <sys/async.h> 
int ioctl (fildes, command, arg) 
int fildes, command, arg; 

Description 

AIO I/O control commands (ioctls) are a subset of ioctl(S) system calls that 
perform asynchronous I/O operations on raw disk partitions. This allows a 
program to do other processing while the kernel performs the I/O requests; a 
later ioctl command polls the status of issued operations. A program may 
have several disk partitions open, and have multiple AIO requests issued to 
each partition. 

Use of AIO requires disk driver support; all SCO hard disk drivers support 
AIO. The DKIOCASTAT ioctl can be used to query whether a given open file 
descriptor supports AIO. 

AIO supports the option of locking an area of physical memory for the use of 
AIO transfers; this can be configured by the UNIX system administrator by 
using the /usr/lib/aiomemlock file and the letdaiolkinit command. AIO can be 
performed whether or not such a lock is available. 

Command functions 

590 

DKIOCMLOCK Signals the intent of the program to perform AIO on the pro­
vided file descriptor; this call also locks physical memory if 
this is permitted for the user. The arg argument to ioctl 
pOints to the following structure: 

typedef struct asyncmlock 
( 

char *avaddr; /* starting user virtual addr */ 
uint asize; /* size of area to be locked */ 

ASYNCMLOCK; 

The area of memory spanned by the ASYNCMLOCK struc­
ture must already be allocated to the calling program, for 
example, by a previous call to malloc(S). If asize is 0, or the 
user does not have AIO memory lock privileges, 
DKIOCMLOCK does not lock physical memory, but returns 
without an error. Possession of memory locking privileges 
by a user does not affect the success or failure of a locking 
call, but determines whether or not the call does anything. 



aio(M) 

Similarly, a memory locking length of zero is not an error, 
but is treated as a no-op. 

If the program is doing AlO to multiple partitions, 
DKIOCMLOCK must be called on each open file descriptor. 
The DKIOCMLOCK for all calls by one process must refer to 
the same area of memory, and DKIOCMLOCK should only 
be called once for each file descriptor. Memory should not 
be locked more than once for any file descriptor. 

On failure, ermo is set to one of the following values: 

[EAGAIN] No internal AlO per-process structure could 
be allocated (too many processes doing 
AIO). 

[EFAULT] The arg pointer is not within the user's 
space, or the memory area specified is not 
within the user's space. 

[EINVAL] DKIOCMLOCK has been called with dif­
ferent ASYNCMLOCK values than a previ­
ous call, or AlO is not supported for this fd, 
or AlO has not been linked into the running 
kernel. 

[ENOMEM] Not enough memory was available to 
satisfy the lock request. 

DKIOCASTRT Initiates an AlO request. arg is a pointer to the following 
structure: 

typedef struct 
long 
long 
char 
long 
char 

AREQBUF; 

/* 
* Command bits 
*/ 

areqbuf { 
au_cmd; 
au_daddr; 
*au maddr; 
au_size; 
*au_ref; 

#define AU READ 01 
#define AU WRITE 02 

au cmd is set to either AU_READ or AU_WRITE. 

au _ daddr is the (512 byte) disk block number where the I/O 
is to start from. 

au _ maddr is the user's address for I/O. 

591 



aio(M) 

592 

au_size is the length in bytes ofthe transfer. 

ar_ref is a context pointer for the caller's use. It is returned 
with the status from the I/O request. 

The Ala facility imposes restrictions on the I/O request 
parameters. au_size must be a multiple of 512 (that is, only 
multiples of 512 byte disk blocks are permitted). au_maddr 
must be aligned on a 512 byte address boundary. The entire 
transfer must fit within an MMU page, that is, within a 4K 
aligned page in the user's space. Finally, for a given process 
doing asynchronous I/O o:nly one memory range can be 
locked, and the same range must be specified for all file 
descriptors; otherwise an error will result. 

On failure, Ala sets erma to one of the following values (the 
disk driver itself may set other values on errors). 

[EFAULT] The arg pointer is not within the user's 
space, or the transfer address is not in the 
user's space. 

[EINVAL] One of the above alignment restrictions has 
been violated, au _ cmd is unrecognized, the 
user has locked Ala memory and the 
transfer is not within this locked range, Ala 
is not supported for this file descriptor, or 
Ala has not been linked into the running 
kernel. 

[EAGAIN] 

[ENXIO] 

Some Ala resource could not be allocated 
(for example, too many Ala requests for the 
system, or for this user). 

The disk block was beyond the range of the 
partition. 

DKIOCASTAT Returns information for any completed requests (up to 15) 
on this file descriptor. If more than 15 requests have been 
issued on this file descriptor, or if all the requests have not 
completed, then DKIOCASTAT will need to be called more 
than once. 

DKIOCASTAT also determines whether a particular open file 
descriptor supports Ala. If Ala is not supported, the ioctl 
returns -I, and erma is set to EINV AL. 



aio(M) 

arg is a pointer to an ASYNCSTATUS structure, which is filled in 
by the ioctl system call: 

#define MAXSTATUS 15 

typedef struct asyncstatus 
{ 

long 
IOSTAT 

ASYNCSTATUS; 

typedef struct 
{ 

short 
short 
char 
char 

IOSTAT; 

aiostat 

acount; 
astatus[MAXSTATUS]; 

iostatus; 
iobsize; 
*iomaddr; 
*ioref; 

acount is set to the number of IOSTAT structures actually 
returned in this call. iostatus is set to 0 for a successful I/O 
request, and to nonzero (typically a valid ermo code) on an 
error. iobsize is set to the number of bytes transferred. 
iomaddr is the user's transfer address as given in the AREQBUF 
structure, and ioref is the context pointer; these two values 
associate the returned status with the initial request. 

On failure, Ala sets ermo to one of the following values: 

[EFAULT] 

1 

2 

The arg pointer is not within the user's 
space. 

Ala is not supported by this driver, or Ala 
is not configured into the kernel. 

Diagnostics 

The Ala ioctls return 0 on success, and -1 on error. 

See also 

aio(F), aioinfo(ADM), aiolkinit(ADM), aiomemlock(F) 

593 



ascii(M) 

ascii 
map of the ASCII character set 

Description 

ascii is a map of the 7-bit ASCII character set. It lists both octal and hexade­
cimal equivalents of each character. It contains: 

Octal 

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel 
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si 
020 die 021 del 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb 
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us 
040sp 041 ! 042 " 043 # 044 $ 045 % 046 & 047" 
050 ( 051 ) 052 * 053 + 054 , 055 - 056 . 057 / 
060 0 061 1 062 2 063 3 0644 065 5 066 6 067 7 
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ? 
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G 
110 H 111 I 112J 113 K 114 L 115 M 116 N 1170[ 
120 P 121 Q 122 R 123 5 124 T 125 U 126 V 127 W 
130 X 131 Y 132 Z 133 [ 134 \ 135 1 136 A 137 -
140 " 141 a 142 b 143 c 144 d 145 e 146 f 147 g 
150 h 151 i 152 j 153 k 154 I 155 m 156 n 157 0 

160 P 161 q 162 r 163 5 164 t 165 u 166 v 167 w 
170 x 171 Y 172 z 173 { 174 I 175 } 176 - 177 del 

Hexadecimal 
00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel 
08 bs 09 ht Oa nl Db vt Dc np Od cr De so Of si 
10 die 11 del 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb 
18 can 19 em 1a sub Ib esc Ie fs Id gs Ie rs If us 
20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 " 
28 ( 29 ) 2a * 2b + 2c, 2d - 2e . 2f / 
30 0 31 1 32 2 33 3 344 35 5 36 6 37 7 
38 8 39 9 3a : 3b; 3c < 3d = 3e > 3f ? 
40 @ 41 A 42 B 43 C 44D 45 E 46 F 47 G 
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f 0 
50 P 51 Q 52 R 53 5 54T 55 U 56 V 57 W 
58 X 59 Y 5a Z 5b [ 5c \ 5d 1 5e A 5f -
60 " 61 a 62 b 63 c 64d 65 e 66 f 67 g 
68 h 69 i 6a j 6b k 6c I 6d m 6e n 6f 0 

70 P 71q 72r 73 s 74 t 75 u 76 v 77w 
78 x 79 y 7a z 7b{ 7c I 7d} 7e - 7f del 

594 



File 

ascii(M) 

The extended 8-bit ASCII character set is shown here, again with the octal and 
hexadecimal value of each character. The mapchan(C) utility allows access to 
these characters. Display of these characters is dependent on the capabilities 
of the hardware device. (A m indicates an unassigned character.) 

Octal 

200 m 201 m 202 m 203 m 204 ind 205 nel 206 ssa 207 esa 
210 hts 211 htj 212 vts 213 pld 214 plu 215 ri 216 ss2 217 ss3 
220 des 221 pul 222 pu2 223 sts 224 eeh 225 mw 226 spa 227 epa 
230 m 231 m 232 m 233 esi 234 st 235 ose 236 pm 237 ape 
240 nbsp 241 i 242 If- 243 £ 244 a 245 ¥ 246 I 247 § 
250·· 251© 252 • 253 « 254 -, 255 shy 256 ® 257 -
260 0 261 ± 262 2 263 3 264 ' 265 f1 266 'lI 267 . 

270 , 271 1 272 Q 273 » 274 y. 275 Y, 276 % 277 l 
300 A 301 A 302 A 303 A 304 A 305 A 306 }E 307 <;: 
310 E 311 E 312 E 313 E 314 t 315 f 316 i 317 I 
320 D 321 ]\I 3226 3236 3246 3256 3266 327 m 
330 0 331 U 332 D 333 -0 334 U 335 Y 336 P 337 g 

340fl 341 a 342 a 343 a 344 a 345 re 346 re 347<; 
350 e 351 e 352 e 353 e 354 i 355 i 356 i 3571 
360 a 361 Ii 362 b 363 0 364 0 365 0 366 0 367 m 
370 '" 371 U 372 11 373 U 374 ii 375 Y 376 P 377 Y 

Hexadecimal 

80 m 81 m 82 m 83 m 84 ind 85 nel 86 ssa 87 esa 
88 hts 89 htj 8a vts 8b pld 8e plu 8d ri 8e ss2 8f ss3 
90 des 91 pu1 92 pu2 93 sts 94 eeh 95 mw 96 spa 97 epa 
98 m 99 m 9a m 9b esi ge st 9d ose ge pm 9f ape 
aO nbsp al i a2 If- a3 £ a4 a a5 ¥ a6 I a7 § 
a8·· a9 © aa • ab « ae -, ad shy ae ® af -
bO 0 bl ± b2 2 b3 3 b4' b5 f1 b6 'lI b7· 
b8 , b9 1 ba Q bb » be Y. bd Y, be % bf l 
cO A c1A e2 A e3 A e4 A e5 A e6 }E e7 <;: 
e8 E e9 E ea E eb E ee t cd f ee i cfI 
dO D dl ]\I d26 d36 d46 d56 d66 d7 m 
d80 d9 U da D db -0 de U dd Y de p df g 

eO fl el a e2 a e3 a e4 li e5 a e6 re e7 <; 
e8 e e9 e ea e eb e ee i ed i ee i ef 1 
fDa f1 Ii f2 b f30 f4 0 f5 0 f6 5 f7m 
f8 '" f9u fa 11 fuu fe ii fd Y fe p ffy 

/usr/pub/ascii 

595 



chrtbl(M) 

chrtbl 
create a ctype locale table 

Syntax 
chrtbl [specfile ] 

Description 

596 

The utility chrtbl is provided to allow new LC_CTYPE locales to be defined; it 
reads a specification file, containing definitions of the attributes of characters 
in a particular character set, and produces a binary table file, to be read by 
setlocale(S), which determines the behavior of the ctype(S) and conv(S) rou­
tines. 

The information supplied in the specification file consists of lines in the fol­
lowing format: 

char type conv 

The three fields, which are separated by space or tab characters, have the fol­
lowing meanings and syntax: 

char This is the character which is being defined. It may be specified in 
one of six different ways (the following examples all specify the 
ASCII character II N'): 

65 decimal 
0101 octal 
Ox41 hexadecimal 
'A: quoted character 
'\101' quoted octal 
'\x41' quoted hexadecimal 

type This specifies the classification of the character, as reported by the 
ctype(S) routines. There are 7 basic classifications: 

C iscntrl 
D sdigit 
L islower 
P ispunct 
5 isspace 
U isupper 
X isxdigit 



chrtbl(M) 

Other ctype macros use combinations of these 7 basic classifications. 
Zero, one or more of these classification letters can be specified, in 
any order, although only certain combinations are logically reason­
able, as follows: 

C control character 
CS spacing control character 
U uppercase alphabetic 
UX uppercase alphabetic hex digit 
UL dual case character 
L lowercase alphabetic 
LX lowercase alphabetic hex digit 
DX decimal and hex digit 
S spacing character 
P punctuation (all other printing chars) 
blank undefined (all classifications false) 

conv This optional field specifies the corresponding uppercase character 
for a lowercase character, or the corresponding lowercase character 
for an uppercase character. Dual case characters should have their 
own values repeated in this field. 

The syntax is as for the char field. 

All characters following a hash (#) are treated as a comment and ignored up to 
the end of the line, unless the hash is within a quoted character. 

The initial LC_CTYPE table used is that for the ascii(M) character set, with the 
entries for the higher 128 characters (Ox80 - Ox££) set to zero (that is, all classifi­
cations false). Thus an empty specification file will result in a table for US 
ASCII. Any specifications found in the input to chrtbl will overwrite the spe­
cifications for that character only, thus additions and modifications to the 
ASCII table can be made without respecifying those characters which are 
unchanged. 

The binary table output is placed in a file named ctype, within the current 
directory. This file should be copied or linked to the correct place in the setlo­
cale file tree (see locale(M». To prevent accidental corruption of the output 
data, the file is created with no write permission; if the chrtbl utility is run in a 
directory containing a write-protected "ctype" file, the utility will ask if the 
existing file should be replaced; any response other than "yes" or "y" will 
cause chrtbl to terminate without overwriting the existing file. 

If the spec file argument is missing, the specification information is read from 
the standard input. 

597 



chrtbl(M) 

Diagnostics 

If the input table file cannot be opened for reading, processing will terminate 
with the error message, "Cannot open specification file". 

Any lines in the specification file which are syntactically incorrect will cause 
an error message to be issued to the standard error output, specifying the line 
number on which the error was detected. The line will be ignored, and pro­
cessing will continue. 

If the output file, "ctype", cannot be opened for writing, processing will ter­
minate with the error message, "Cannot create table file." 

Any error conditions encountered will cause the program to exit with a non­
zero return code; successful completion is indicated with a zero return code. 

Specification file format 

File 

See also 

The chrtbl specification file has the following format (the order of the specifi­
cations is not significant): 

* * chrtbl file for TVI 7-bit Spanish character set 
* Note that only non-ASCII characters need be specified 

* '@' p * inverted ? 
, [' L ' J' # n tilde 
'\\' p # inverted ! 
'J ' U ' [' # N tilde 
" , p # degree sign 

/usr/include/ctype.h 

ascii(M), conv{S), ctype{S), locale{M), setlocale{S) 

Value added 

598 

chrtbl is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 



clone(M) 

clone 
open any minor device on a STREAMS driver 

Description 

Warnings 

See also 

clone is a STREAMS software driver that finds and opens an unused minor de­
vice on another STREAMS driver. The minor device passed to clone during 
the open is interpreted as the major device number of another STREAMS 
driver for which an unused minor device is to be obtained. Each such open 
results in a separate stream to a previously unused minor device. 

The clone driver consists solely of an open function. This open function per­
forms all of the necessary work so that subsequent system calls (including 
close(S» require no further involvement of clone. 

clone will generate an ENXIO error, without opening the device, if the minor 
device number provided does not correspond to a valid major device, or if the 
driver indicated is not a STREAMS driver. 

clone will generate an ENODEV error, without opening the device, if a pipe 
cannot be created. 

Multiple opens of the same minor device cannot be done through the clone 
interface. Executing stat(S) on the file system node for a doned device yields 
a different result from executing fstat(S) using a file descriptor obtained from 
opening the node. 

log(M), pipe(ADM), pipe(S) 

STREAMS Programmer's Guide 

599 



coltbl(M) 

coltbl 
create a collation locale table 

Syntax 

coltbl [ spec file ] 

Description 

600 

The utility coltbl is provided to allow LC_COLLATE locales to be defined. It 
reads in a specification file (or standard input if spec file is not defined), con­
taining definitions for a particular locale's collation ordering, and produces a 
concise format table file, to be read by setlocale(S). 

In general, characters may be specified in one of six different ways (the fol­
lowing examples all specify the ASCII character liN): 

65 decimal 
0101 octal 
Ox41 hexadecimal 
'Pi quoted character 
'\101' quoted octal 
'\x41' quoted hexadecimal 

The information in the specification file is to an extent free format. A particu­
lar type of definition is started by one of the following keywords: 

PRIM: ZERO: EQUIV: DOUBLE: 

The keywords, PRIM:, ZERO: and EQUIV:, are concerned directly with the set­
ting of the collation ordering of characters. 

A group of characters which are to be collated as equal, unless all other char­
acters in a pair of strings are also equal, are grouped together with the PRIM: 
keyword. The position of a particular group in the specification file is signifi­
cant as far as the collation ordering is concerned. Collating elements following 
the PRIM: keyword are separated by white spaces. A two-character collating 
element can be specified here by (ab), where a and b are the two characters 
making up the sequence. The order of the collating elements defined in one 
group is significant in secondary collation ordering. It is also possible to 
define a range of characters, for example: 

PRIM: 'a' -'z 
Collating elements following the ZERO: keyword, are to be ignored when col­
lating. The format of the definitions is the same as with PRIM:. Ranges of 
characters can also be defined, as for example: 

ZERO: Ox80 - Ox9f 



See also 

coltbl(M) 

EQUIV: is used to give two collating elements identical positions in the colla­
tion ordering. The syntax is: 

EQUIV:a= b 

where a and b are the two equal collating elements. There can be only one 
definition for each occurrence of this keyword. 

Single characters which are to be collated as two characters, for example the 
German sharp s, are defined with the DOUBLE: keyword. The syntax is: 

DOUBLE: a = (b c) 

where a is the single character, and band c are the two characters in the collat­
ing sequence. There can be only one definition for each occurrence of this key­
word. The single character a must not also appear after a PRIM:, a ZERO: or an 
EQUIV: keyword. 

All characters following the hash character are treated as a comment and 
ignored up to the end of the line, unless the hash is within a quoted string. 

The concise format locale table is placed in a file named collate in the current 
directory. This file should be copied or moved to the correct place in the 
setlocale(S) file tree (see locale{M». To prevent accidental corruption of the 
output data, the file is created with no write permission; if the coltbl utility is 
run in a directory containing a write-protected collate file, the utility will ask if 
the existing file should be replaced - any response other than "yes" or "y" will 
cause coltbl to terminate without overwriting the existing file. 

chrtbl(M), collation(S), locale(M), mestbl(M), montbl(M), numtbl(M), 
setlocale(S), timtbl(M) 

Diagnostics 

All error messages printed are self explanatory. 

Value added 

coltbl is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 

601 



console(M) 

console 
system console device 

Description 

File 

See also 

Notes 

602 

The file /dev/console is the device used by the system administrator for system 
maintenance (single-user) operations. It is the tty to which the first default 
shell is attached. 

The system console device can be either a terminal (a serial adapter device, 
ttyla) or a sytem keyboard display adapter monitor (tty01). 

Many programs, such as the UNIX kernel, redirect error messages to 
/dev/console. Initially /dev/console is linked to /dev/systty. 

/dev/console 

boot(HW), screen(HW), systty(M), tty(M) 

/dev/console should not be enabled: instead either the the display adapter 
(tty01) or the serial adapter device (ttyla) should be enabled. 

A serial console cannot be attached to a multiport card or one that uses special 
drivers; it must be on a standard COMl card. 



daemon.mn(M) 

daemon.mn 
micnet mailer daemon 

Syntax 

lusr/lib/mailldaemon.mn [-ex] 

Description 

The mailer daemon performs the "backend" networking functions of the mail, 
rep, and remote commands by establishing and servicing the serial communi­
cation link between computers in a Micnet network. 

When invoked, the daemon creates multiple copies of itself, one copy for each 
serial line used in the network. Each copy opens the serial line, creates a 
startup message for the LOG file, and waits for a response from the daemon at 
the other end. The startup message lists the names of the machines to be con­
nected, the serial line to be used, and the current date and time. If the daemon 
receives a correct response, it establishes the serial link and adds the message 
"first handshake complete" to the LOG file. If there is no response, the dae­
mon waits indefinitely. 

If invoked with the -x switch, the daemon records each transmission in the 
LOG file. A transmission entry shows the direction of the transmission (tx for 
transmit, rx for receive), the number of bytes transmitted, the elapsed time for 
the transmission (in minutes and seconds), and the time of day of the 
transmission (in hours, minutes, and seconds). Each entry has the form: 

direction byte_count elapsed_time time_of_day 

The daemon also records the date and time every hour. The date and time 
have the same format as described for the date command. 

If invoked with the -e switch, the daemon records all transmission errors in 
the LOG file. An error entry shows the cause of the error preceded by the 
name of the daemon subroutine which detected the error. 

The mailer daemon is normally invoked by the start option of the nelutil 
command and is stopped by the stop option. 

During the normal course of execution, the mailer daemon uses several files in 
the /usr/spool/micnet/remote directory. These files provide storage for LOG 
entries, commands issued by the remote(C) command, and a list of processes 
under daemon control. 

603 



daemon.mn(M) 

Files 

See also 

/usr/lib/mail/daemon.mn 
/usr/spool/micnet/remote/* /LOG 
/usr/spool/micnet/remote/*/mn 
/usr/spool/micnet/remote/local/mn* 
/usr/spool/micnet/remote/lock 
/usr/spool/micnet/remote/pids 

netutil(ADM) 

Value added 

604 

daemon.mn is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 



environ(M) 

environ 
the user environment 

Description 

The user environment is a collection of information about a user, such as login 
directory, mailbox, and terminal type. The environment is stored in special 
"environment variables," which can be assigned character values, such as 
names of files, directories, and terminals. These variables are automatically 
made available to programs and commands invoked by the user. The com­
mands can then use the values to access the user's files and terminal. 

The following is a short list of commonly used environment variables. 

PATH Defines the search path for the directories containing commands. 
The system searches these directories whenever a user types a 
command without giving a full pathname. The search path is one 
or more directory names separated by colons (:). Initially, PATH is 
set to :/bin:/usr/bin. 

HOME Names the user's login directory. Initially, HOME is set to the log­
in directory given in the user's passwd file entry. 

EDITOR Used to set the editor. The default editor is ed(C). Using vi as an 
example, for Bourne Shell users, the syntax is: 

EXINIT 

EDITOR = !bin/vi 
For C-Shell users, the syntax is: 
setenv EDITOR !binlvi 

Used to set vi options and define vi abbreviations and mappings. 
For Bourne Shell users, the syntax is: 
EXINIT = 'set options' 

For C-Shell users, the syntax is: 
setenv EXINIT 'set options' 

For example, a C-Shell user might place the following command in 
$HOME/ .cshrc: 
setenv EXINIT 'set wm=24 I map g lG' 

This would automatically set vi's wrapmargin option to 24 and 
would define the "g /I key to move to the top of the file (just as 
1/ G /I moves to the bottom of the file). 

605 



environ(M) 

TERM 

TZ 

606 

You can set more than one option with the same set command. If 
you define abbreviations or mappings with this environment vari­
able, you must separate the abbr and map commands from the set 
command and from each other with a bar ( I). The function of the 
bar is similar to that of the semicolon that separates commands on 
a shell command line. 

If you are defining many customizations, you might prefer to use 
the .exrc file, where each command can be listed one per line (see 
vi(C». 

Defines the type of terminal being used. This information is used 
by commands such as more(C) which rely on information about 
the capabilities of the user's terminal. The variable may be set to 
any valid terminal name (see terminals(M» directly or by using 
the tset( C) command. 

Defines time zone information. This information is used by 
date(C) to display the appropriate time. The variable may have 
any value of the form: 
std offset [ dst [ offset ],[ start [ / time ], end [ / time ]]] 
(You may also have: 

std offset [ dst [ offset ];[ start [ / time], end [ / time ]]] 
which is the XENIX format. Note that this format is not POSIX 
compatible.) 

std, the standard local time zone abbreviation (1-9 characters), and 
offset, the difference between the local time and GMT, are the only 
mandatory fields. 

offset should be specified as: 
[+ I -] hh [ :mm [ :ss ]] 

where hh is hours (0-24), mm is minutes (0-59), and ss is seconds 
(0-59). Only the hours field is mandatory. If offset is preceded by 
a minus (-), it is east of the Prime Meridian, otherwise it is 
assumed to be west (this can be specified with an optional 
plus (+». 

dst is a 1-9 character abbreviation for the local summertime 
timezone. If dst is not specified, the system will not be aware of 
summertime; it will always be on standard time. 

The offset after dst is the difference between local standard time 
and local summertime. If you do not specify an offset, it is 
assumed to be one hour. (This is usually what you want.) 



HZ 

LANG 

environ(M) 

Everything following the second offset is the rule for when to 
change from standard to summertime. start/time is when the 
change to summertime occurs; end/time is when the time changes 
back. (Note that, for systems in the Southern Hemisphere, 
start/time does not have to come earlier in the year than 
end/time.) 

start and end describe the day, while time specifies the time. time 
is specified in the same way as offset (see above), but the leading 
" +" or " -" is not valid. If time is not specified, it is assumed to be 
02:00:00 (2 AM.). 

start and end can be specified in any of the following ways: 

In The Julian day (1-365). Leap years are not counted; 
February 28 is day 59 and March 1 is day 60, always. 

n The zero-based Julian day (0-365); you can refer to 
February 29 in a leap year. 

Wn.d The dth day (0-6, where 0 is Sunday) of week n (1-4). 

Mm.n.d The dth day (0-6, where 0 is Sunday) of week n (1-5) of 
month m (1-12). If you specify the week (n) as 5, this 
means the last d day in m month, as in M8.5.1 which 
would be the last Monday in August. 

If you specify the comma starting off the summertime rule, it is 
advisable to specify the rest of the rule. 

A sample TZ for Eastern Standard Time, EST, might look like this: 
EST5:00:00EDT4:00:00,M4.1.0/2:00:00,M10.5.0/2:00:00. 

We start off with "EST5:00": this names our time zone and defines 
it as five hours west of Greenwich Mean Time. Summertime in 
this locale is called EDT (Eastern Daylight Time), and is four hours 
ahead of GMT. Summertime starts on a Sunday in the first week in 
April at 2 AM., and standard time resumes on the last Sunday in 
October at 2 AM. 

Refer to the tz(M) and timezone(F) manual pages for more infor­
mation on TZ. 

Defines, with a numerical value, the number of clock interrupts 
per second. The value of this variable is dependent on the hard­
ware, and configured in the file /etc/initscript. If HZ is not defined, 
programs which depend on this hertz value, such as prof(CP) and 
times(S), will not run. 

Represents the international locale in the format lan­
guagejerritory.codeset. This is used by setiocale(S) to establish 
the default locale on program startup. 

607 



environ(M) 

See also 

Individual locale-specific functions can be affected independently using the 
following optional environment variables: 

LC_CTYPE Locale affecting character classification routines (ctype(S». 

LC_NUMERIC Locale affecting numeric formatting. 

LC_TIME Locale affecting time and date format. 

LC_COLLATE Locale affecting collation/sorting sequence. 

LC_MESSAGES Locale affecting message language. 

LC_MONETARY Locale affecting currency formatting. 

The environment can be changed by assigning a new value to a variable. An 
a!'signment has the form: 

name = value 

For example, the assignment: 

TERM=h29 
sets the TERM variable to the value "h29". The new value can be "exported" 
to each subsequent invocation of a shell by exporting the variable with the 
export command (see sh(C» or by using the env(e) command. 

You may also add variables to the environment, but you must be sure that the 
new names do not conflict with exported shell variables such as MAIL, PSt, 
PS2, and IFS. Placing assignments in the .profile file is a useful way to change 
the environment automatically before a session begins. 

Note that the environment is made available to all programs as an array of 
strings. Each string has the form: 

name=value 

where the name is the name of an exported variable and the value is the 
variable's current value. For programs started with a exec(S) call, the environ­
ment is available through the external pointer environ. For other programs, 
individual variables in environment are available through getenv(S) calls. 

env(e), exec(S), getenv(S), initscript(F), locale(M), login(M), profile(M), 
setlocale(S), sh(e), timezone(F), tz(F) 

Standards conformance 

608 

environ is conformant with: 

AT&T svm Issue 2; 
IEEE POSIX Std 1003.1-1990 System Application Program Interface (API) [C 
Language] (Iso/lEe 9945-1); 
and NIST FIPS 151-1. 



error(M) 

error 
kernel error output device 

Description 

File 

System error messages are collected and made available to error logging dae­
mons through the Ideo/error device. Ideo/error is a read-only device which 
returns one error per read and no EOF character. The /etc/rc2 scripts use a util­
ity to read messages from Ideo/error and write them to the system error log file 
/usr/adm/messages: 

jete/logger /dev/error /usr/adrn/rnessages & 

Any process can read /deo/error or arrange to be signaled when errors are 
queued in Ideo/error. The following ioctl causes the error device to signal the 
process with SIGUSRl when an error message is queued in /dev/error. 

#inelude <signal.h> 
#inelude <sys/eio.h> 
#inelude <fentl.h> 

int fd; 

fd = open("/dev/error", 0 RDONLY); 
ioetl(fd, EMSG_SIG, SIGUSR1); 

Before exiting, the process must return /deo/orror to its normal state. Do this 
with the following ioctl: 

ioetl(fd,EMSG_NOSIG, 0); 

Panic error messages are not logged in Ideo/error. 

/deo/error 

Value added 

error is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 

609 



/cntl(M) 

fcntl 
file control options 

Syntax 

#include <fcntl.h> 

Description 

610 

The fcnt1(S) function provides for control over open files. This include file 
describes requests and arguments to fcntl and open(S). 

/* Flag values accessible to open(S) and fcntl(S) */ 
/* (The first three can only be set by open) */ 
#define a RDONLY 0 
#define a WRONLY 
#define a RDWR 2 
#define a NDELAY 04 /* Non-blocking I/O */ 
#define a APPEND 010 /* append (writes guaranteed at the end) 
#define a SYNC 020 /* synchronous write option */ 

/* Flag values accessible only to open(S) */ 

*/ 

#define O_CREAT 00400 /* open with file create (uses third open arg)*/ 
#define a TRUNC 01000 /* open with truncation */ 
#define a EXCL 02000 /* exclusive open */ 

/* fcntl(S) requests */ 
#define F DUPFD 0 /* Duplicate fildes */ 
#define F GETFD /* Get fildes flags */ 
#define F SETFD /* Set fildes flags */ 
ildefine F GETFL /* Get file flags */ 
ildefine F SETFL /* Set file flags */ 
ildefine F GETLK 5 /* Get file lock */ 
ildefine F SETLK 6 /* Set file lock */ 
ildefine F SETLKW /* Set file lock and wait */ 
ildefine F CHKFL /* Check legality of file flag changes 

/* file segment locking control structure */ 
struct flock { 

short 1_ type; 
short 
long 
long 
short 
short 

I_whence; 
I_start; 
l_len; 
l_sysid; 
l_pid; 

/* if 0 then until EOF */ 
/* returned with F_GETLK*/ 
/* returned with F_GETLK*/ 

/* file segment locking types */ 
ildefine F RDLCK 01 /* Read lock */ 
ildefine F WRLCK 
#define F UNLCK 

02 
03 

/* Write lock */ 
/* Remove locks */ 

*/ 



jcntl(M) 

See also 

fcnt1(S), open(S) 

Standards confomtance 

fcntl is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3, 1989. 

611 



getclk(M) 

getclk 
get string from real-time clock 

Syntax 

/etdgetclk 

Description 

See also 

612 

getclk gets a string suitable for date(C) from the real-time clock and writes it 
to stdout. It returns exit code 1 if it doesn't work, or 0 if successful. 

date(C) 



getty(M) 

getty, uugetty 
set terminal type, modes, speed, and line discipline 

Syntax 
letdgetty [ -h] [ -t timeout] line [ speed [ type [ linedisc ] ] ] 

letdgetty -c file 

lusrllib/uucp/uugetty [-a[-d dialer]] [-t timeout] line [speed [type [linedisc] ] ] 

lusrllib/uucpluugetty -c file 

Description 

uugetty - permit logins over bidirectional lines 

getty is a program that is invoked by init(M). It is the second process in the 
series, (init-getty-login-shell), that ultimately connects a user with the UNIX 
system. getty uses initcond(ADM) to secure the terminal for IOgins. 

In previous versions, getty was complemented by the command uugetty, 
which allowed bidirectional line use. In this release of UNIX, uugetty exists as 
a shell script that calls getty, which now recognizes all the arguments 
required by uugetty. 

Initially getty displays the login message field for the entry it is using from 
/etc/gettydefs. getty reads the user's login name and invokes the login(M) com­
mand with the user's name as argument. While reading the name, getty 
attempts to adapt the system to the speed and type of device being used. 

line is the name of a tty line in /dev to which getty is to attach itself. getty uses 
this string as the name of a file in the /dev directory to open for reading and 
writing. 

The available options are as follows: 

-a Enables automatic baud rate detection. The baud rate is 
detected by reading the dialer entry in /usr/lib/uucp/Devices (or 
the equivalent file if the system has been customized). 

-d dialer Specifies dialer to be used for automatic baud rate detection. 
This option is ignored if the dialer entry is present in 
/usr/lib/uucp/Devices or the equivalent file. 

-t timeout Specifies that getty should exit if the open on the line succeeds 
and there is no response to the login prompt in timeout seconds. 

613 



getty(M) 

614 

line 

speed 

type 

linedisc 

-h 

-c file 

Defines the name of the line to which getty will attach itself. 
The line name will point to an entry in the /dev directory: for 
example, /dev/ttyOO. 

Defines the entry to use from the /etc/gettydefs file. The entry 
defines the line speed, the login message, the initial tty setting, 
and the next speed to try if the user says the speed is inappropri­
ate (by sending a break character). If no speed is supplied, the 
first entry in /etc/gettydefs is used. If /etc/gettydefs cannot be read, 
a default speed of 300 baud is used. 

Defines the type of terminal connected to the line. The default 
terminal is none, representing a normal terminal unknown to 
the system. For terminal type to have any meaning, the virtual 
terminal handlers must be compiled into the operating system. 
They are available, but not compiled in the default condition. 

Sets the line discipline to use on the line. The hooks for line dis­
ciplines are available in the operating system; four are available, 
numbered LDISCO - LDISC4. The default is LDISCO. 

This argument is provided for internal use by ct, and is not 
documented here. 

Checks the speed and tty definitions in file and sends the results 
to standard output. Unrecognized modes and improperly con­
structed entries are reported. For correct entries, flag values are 
printed. file is replaced by /etc/gettydefs or a similarly structured 
file. 

getty displays the login message before reading the user's name a character at 
a time. If a null character (or framing error) is received, it is assumed to be the 
result of the user pressing the (Break) key. This will cause getty to attempt the 
next speed in the series determined by what it finds in the file /etc/gettydefs. 

The user's name is terminated by a new-line or carriage-return character. This 
is used to define the subsequent treatment of carriage returns (see ioctl(S». 

The user's name is scanned to see if it contains any lowercase alphabetic char­
acters. getty suggests that the user use all lowercase characters. If the user 
uses uppercase characters, the system is told to map any future uppercase 
characters into the corresponding lowercase characters. 

Finally, login is executed with the user's name as an argument. Additional 
arguments may be typed after the login name. These are passed to login, 
which will place them in the environment (see 10gin(M». 

A check option is prOvided. When getty is invoked with the -c option and 
file, it scans the file as if it were scanning /etc/gettydefs and prints out the 
results to the standard output. If there are any unrecognized modes or 
improperly constructed entries, it reports these. If the entries are correct, it 
displays the values of the various flags. See ioctl(S) to interpret the values. 
Note that some values are added to the flags automatically. 



Files 

See also 

Notes 

getty(M) 

/etc/gettydefs 
/etc/issue 
/usr/lib/uucp/Devices 

ct(C), cu(C), dial(ADM), gettydefs(F), init(M), initcond(ADM), inittab(F), 
ioctl(S), login(M), tty(HW), uucico(ADM). 

While getty understands simple single character quoting conventions, it is not 
possible to quote certain special control characters used by getty. Thus, you 
cannot log in via getty and type a #, @, /, !, _, AU, AD, & or backspace as part of 
your login name or arguments. getty uses them to determine when the end of 
the line has been reached, which protocol is being used, and what the erase 
character is. They will always be interpreted as having these special mean­
ings. 

ct will not work when [uu1getty is used with an intelligent modem such as 
penril or ventel. 

In order for a line to be used in both directions, there must be an entry for that 
line in /usr/lib/uucp/Devices. 

If a line is being used in both directions, [uu1getty will wait to read a character 
before it outputs the login message, thus preventing two gettys from looping. 

[uu1getty allows users to log in on bidirectional lines, but if the line is free 
uucico, cu, or ct can use it for dialing out. The implementation depends on 
the fact that uucico, cu, and ct create lock files when devices are used. When 
the open returns (or when the first character is read when the line is being 
used in both directions) the status of the lock file indicates whether the line is 
being used by uucico, cu, ct, or by someone trying to log in. Note that when 
the line is being used in both directions, several carriage-return characters 
may be required before the login message is output. Human users should be 
able to handle this slight inconvenience. uucico trying to log in will have to 
be told by using the following login script: 

"" \r\d\r\d\r\d\r in:--in: ... 

where the ... is whatever would normally be used for the login sequence. 

If /etc/gettydefs is unreadable, getty sets the speed of the interface to 300 baud, 
specifies that raw mode will be used (awaken on every character), that echo 
will be suppressed, either parity allowed, that new-line characters will be con­
verted to carriage return-line feed, and that tab expansion is performed on the 
standard output. 

615 



getty(M) 

616 

If there is a getty on one end of a direct line between two machines, there 
must be a getty or uugetty on the other end as well. Here is an /etc/inittab 
entry using getty on an intelligent modem or direct line: 

30:2:respawn:/usr/lib/uucp/uugetty -t 60 ttyOO 1200 



init(M) 

init, telinit 
process control initialization 

Syntax 
/etc/init [ 0123456SsQqabc] 

/binltelinit [ 0123456SsQqabc ] 

Description 

init - A general process spawner started during the last phase of kernel ini­
tialization. 

telinit - telinit is a link to init. When the command telinit is run, init is 
invoked. 

init is a general process spawner. Its primary role is to create processes from 
information stored in the file /ete/inittab (see inittab(F) for further details). 

At any given time, the system is in one of eight possible run-levels. A run­
level is a software configuration of the system under which only a selected 
group of processes exist. The processes spawned by init for each of these 
run-levels are defined in /ete/inittab. init can be in one of eight run-levels, 0-6 
and S or s (run-levels Sand s are identical). The run-level changes when a 
privileged user runs /etc/init. This user-spawned init sends appropriate sig­
nals to the original init spawned by the operating system when the system 
was booted, telling it which run-level to change to. 

If the file fete/default/boot contains the string MAPKEY=YES, init invokes the 
mapkey program (see mapkey(M» to map the console keyboard. If the call to 
mapkey succeeds, the console is set to 8-bits no parity. If the call fails, and the 
string SERIAL8=YES appears in fete/default/boot, a serial console device is 
assumed and set to 8-bits no parity. For additional information on keywords, 
see the "Default file Settings" section of boot(HW). 

The following are the arguments to init: 

o shut the machine down so it is safe to remove the power. Have the 
machine remove power if it can. This state can be executed only 
from the console. 

1 put the system in single-user mode. Unmount all file systems 
except root. All user processes are killed except those connected to 
the console. This state can be executed only from the console. 

2 put the system in multiuser mode. All multiuser environment ter­
minal processes and daemons are spawned. This state is com­
monly referred to as the multiuser state. 

617 



init(M) 

618 

3 start the remote file sharing processes and daemons. Mount and 
advertise remote resources. Run-level 3 extends multiuser mode 
and is known as the remote-file-sharing state. 

4 is available to be defined as an alternative multiuser environment 
configuration. It is not necessary for system operation and is usu­
ally not used. 

5 Stop the UNIX system and go to the firmware monitor. 

6 Stop the UNIX system and reboot to the state defined by the initde­
fault entry in /ete/inittab. 

a,b,c process only those /ete/inittab entries having the a, b or c run-level 
set. These are pseudo-states, which may be defined to run certain 
commands, but which do not cause the current run-level to change. 

Q,q re-examine /ete/inittab. 

s,s enter Single-user mode. When this occurs, the terminal which exe­
cuted this command becomes the system console (see "Notes" for 
more information about console device assignment). This is the 
only run-level that doesn't require the existence of a properly for­
matted /ete/inittab file. If this file does not exist, then by default the 
only legal run-level that init can enter is the single-user mode. 
When the system enters S or s, all mounted file systems remain 
mounted and only processes spawned by init are killed. 

When a UNIX system is booted, init is invoked and the following occurs. init 
first looks in fete/default/boot to determine if autoboot on panic is desired. init 
then looks to see if DEFAULT_LEVEL=n is specified in fete/default/boot. If it is, 
then n is the default level, otherwise, the user is prompted to see if they wish 
to go to multiuser or system maintenance mode (single-user mode). In the 
single-user state, the virtual console terminal is assigned to the user's terminal 
and is opened for reading and writing. The sulogin command, which requires 
the user to enter the root password, is invoked and a message is generated on 
the physical console saying where the virtual console has been relocated. Use 
either init or telinit to signal init to change the run-level of the system. Note 
that if the shell is terminated (via an end-of-file), init will only re-initialize to 
the single-user state if the /ete/inittab file does not exist. 

If a 0 through 6 is entered, init enters the corresponding run-level. Note that, 
on the 80386 computer, the run-levels 0, 1, 5, and 6 are reserved states for 
shutting the system down; the run-levels 2, 3, and 4 are available as normal 
operating states. 

On your computer, the run-levels 0 and 1 are reserved states for shutting the 
system down, and run-levels 2, 3, and 4 are available as normal operating 
states. 



init(M) 

If this is the first time since power up that init has entered a run-level other 
than single-user state, init first scans /etc/inittab for boot and bootwait entries 
(see inittab(F». These entries are performed before any other processing of 
/etc/inittab takes place, providing that the run-level entered matches that of the 
entry. In this way, any special initialization of the operating system, such as 
mounting filesystems, can take place before users are allowed onto the sys­
tem. init then scans /etc/inittab and executes all other entries that are to be 
processed for that run-level. 

In a multiuser environment, /etc/inittab is set up so that init will create a getty 
process for each terminal that the administrator sets up to respawn. 

To spawn each process in /etc/inittab, init reads each entry and for each entry 
that should be respawned, it forks a child process. init spawns each process 
by forking a shell to run the job in. To set up the environment for this shell, 
init uses the /etc/initscript file which contains the definitions of some global 
variables, for example, TZ, HZ, and PATH. (For more information about 
/etc/initscript, see initscript(F).) 

After init has spawned all of the processes specified by /etc/inittab, it waits for 
one of its descendant processes to die, a powerfail signal, or a signal from 
another init or telinit process to change the system's run-level. When one of 
these conditions occurs, init re-examines /etc/inittab. New entries can be 
added to /etc/inittab at any time; however, init still waits for one of the above 
three conditions to occur before re-examining /etc/inittab. To get around this, 
an init Q or init q command wakes init to re-examine /etc/inittab immediately. 

When init comes up at boot time and whenever the system changes from the 
single-user state to another run state, init sets the ioctl(S) states of the virtual 
console to those modes saved in the file /etc/ioctl.syscon. This file is written by 
init whenever the single-user state is entered. 

When a run-level change request is made, init sends the warning signal 
(SIGTERM) to all processes that are undefined in the target run-level. init 
waits 5 seconds before forcibly terminating these processes via the kill signal 
(SIGKILL). 

The shell running on each terminal will terminate when the user types an 
end-of-file or hangs up. When init receives a signal telling it that a process it 
spawned has died, it records the fact and the reason it died in /etc/utmp and 
/etc/wtmp if it exists (see who(C». A history of the processes spawned is kept 
in /etc/wtmp. 

If init receives a "powerfail" signal (SIGPWR) it scans /etc/inittab for special 
entries of the type "powerfail" and "powerwait". These entries are invoked (if 
the run-levels permit) before any further processing takes place. In this way 
init can perform various cleanup and recording functions during the power­
down of the operating system. Note that in the single-user states, Sand s, 
only "powerfail" and "powerwait" entries are executed. telinit, which is 
linked to letdinit, is used to direct the actions of init. It takes a one-character 
argument and signals init to take the appropriate action. 

619 



init(M) 

Files 

See also 

fete/default/boot 
/ete/inittab 
/ete/utmp 
/ete/wtmp 
/ete/ioetl.syseon 
/ete/initseript 
/dev/eonsole 
/1ev/eontty 

boot(HW), disable(C), enable(C), getty(M), gettydefs(F), initcond(ADM), 
initscript(F), inittab(F), kill(S), login(M), sh(C), shutdown(M), stty(C), sulog­
in(ADM), termio(HW), utmp(F), who(C) 

Diagnostics 

Notes 

620 

If init finds that it is respawning an entry from /ete/inittab more than 10 times 
in 2 minutes, it will assume that there is an error in the command string in the 
entry, and generate an error message on the system console. It will then 
refuse to respawn this entry until either 5 minutes has elapsed or it receives a 
signal from a user-spawned init (telinit). This prevents init from eating up 
system resources when someone makes a typographical error in the inittab file 
or a program is removed that is referenced in /ete/inittab. 

When attempting to boot the system, failure of init to prompt for a new run­
level may be because the virtual system console is linked to a device other 
than the physical system console. 

init and telinit can be run only by someone who is super user. 

The S or s state must not be used indiscriminately in the /ete/inittab file. A 
good rule to follow when modifying this file is to avoid adding this state to 
any line other than the initdefault. 

The assignment of the console device may seem confusing at first. Whenever 
the system is rebooted, the first boot up messages will be displayed on the 
"normal" system console (ttyOn, then the prompt for going multiuser will be 
displayed on the the tty from which init S was last invoked, which could be 
any tty on the system. The system console device (/dev/syseon) remains linked 
to the tty from which the last init S is invoked. Rebooting the system does not 
reset this to ttyOl. 

If the /ete/initscript file is not present, init will print a warning on the console 
and spawn the job without setting up the global environment. 



init(M) 

The change to /etc/gettydefs described in the "Notes" section of the gettydefs(F) 
manual page will permit terminals to pass 8 bits to the system as long as the 
system is in multiuser state (run-level greater than 1). When the system 
changes to single-user state, the getty is killed and the terminal attributes are 
lost. To permit a terminal to pass 8 bits to the system in single-user state, after 
you are in single-user state, type: 

stty -is trip es8 

The /etc/TIMEZONE file should exist. /etdinitseript tries to execute this file to 
set the correct TZ variable for the system. 

Standards conformance 

init is conformant with: 

AT&T SVID Issue 2. 

621 



isverify(M) 

isverify 
verify ISAM database records 

Syntax 
isverify [ -Iilpyn] tablelist 

Description 

Options 

622 

isverify detects and, if specified, repairs inconsistencies between ISAM 
(Indexed Sequential Access Method) data (.dat) files and index (.idx) files. The 
isverify utility checks that every valid record in the data file is properly 
represented in the index file; it also checks that every index entry points to a 
valid data record. 

tablelist is the list of tables to be checked by isverify. The .dat and .idx suffixes 
should not be included in the table list. 

You can specify any of the following flags when invoking isverify: 

-I after a system restore, an ISAM application can fail with the message: 
Error: Incorrect sea Runtime System installed 

You can correct this situation by logging in as root and invoking 
isverify -I. 

-i check only the index file (as opposed to checking both the index and 
the data files) for consistency. Use this option as a quick check if you 
think the data files are probably not corrupted. 

-1 prints a long listing of the information for each defined key (index), 
along with the associated data record pointer. The key value for each 
data record is displayed by key part, along with the byte position of the 
data record in the data file. This information is useful only if you 
understand the Indexed Sequential Access Method (ISAM). 

-p pauses after displaying information about each index. If you select this 
option, you must press the (Bksp) key before the isverify process con­
tinues. 

-y causes isverify to assume a "yes" answer to each error state and to 
attempt to make the specified correction. It is recommended that you 
use this flag so that the isverify utility attempts to correct any 
discrepancies automatically. 



isverify(M) 

-n causes isverify to assume a lind' answer to each error state and to leave 
the files unchanged. It also allows you see where errors are by display­
ing them on the screen. 

Whether or not you use isverify with the -lor -p flags, if an error is detected, 
you have the option of making a correction or leaving the files unchanged. If 
no errors are detected, no response is required. If you choose to make a correc­
tion, isverify attempts to repair the files. Unless the -y or -n flags are specified 
on the command line, you must choose interactively whether or not to make 
each correction. 

623 



jagent(M) 

jagent 
host control of windowing terminal 

Syntax 

#include <sys/jioct1.h> 

ioctl (cntlfd, JAGENT, &arg) 
intcntlfd 
struct bagent arg 

Description 

See also 

The ioctl(S) system call, when performed on an xt(HW) device with the 
JAGENT request, allows a host program to send information to a windowing 
terminal. 

ioctl has three arguments: 

cntlfd the xt control channel file descriptor 

JAGENT the xt ioctl request to invoke a windowing terminal agent routine. 

arg the address of a baqent structure, defined in <sys/jioctl.h> as fol­
lows: 

struct bagent 
long size; 1* size of src in & dest out *1 
char *src; 1* the source byte string *1 
char *dest; 1* the destination byte string *1 

}; 

The src pointer must be initialized to point to a byte string which is sent to 
the windowing terminal. See layers(M) for a list of JAGENT strings recognized 
by windowing terminals. Likewise, the dest pointer must be initialized to the 
address of a buffer to receive a byte string returned by the terminal. When 
ioctl is called, the size argument must be set to the length of the src string. 
Upon return, size is set by ioctl to the length of the destination byte string, 
dest. 

ioctl(S), layers(M), libwindows(S), xt(HW) 

Diagnostics 

624 

Upon successful completion, the size of the destination byte string is returned. 
If an error occurs, -1 is returned. 



layers(M) 

layers 
protocol used between host and windowing terminal under layers(C) 

Syntax 
#inc1ude <sys/jioctl.h> 

Description 

layers are asynchronous windows supported by the operating system in a 
windowing terminal. Communication between the UNIX system processes 
and terminal processes under layers(C) occurs via multiplexed channels 
managed by the respective operating systems using a protocol as specified in 
xtproto(M). 

To use layers, you must have configured the xt driver. This is done using the 
mkdev layers script. For more information, see mkdev(ADM). 

The contents of packets transferring data between a UNIX system process and 
a layer are asymmetric. Data sent from the UNIX system to a particular termi­
nal process is undifferentiated and it is up to the terminal process to interpret 
the contents of packets. 

Control information for terminal processes is sent via channel O. Process 0 in 
the windowing terminal performs the designated functions on behalf of the 
process connected to the designated channel. These packets take the form: 

command, channel 

except for timeout and jagent information which take the form: 
command, data ... 

The commands are the bottom eight bits extracted from the following ioctl(S) 
codes: 

JBOOT 

JTERM 

JTIMO 

JTIMOM 

Prepare to load a new terminal program into the designated 
layer. 

Kill the downloaded layer program and restore the default win­
dow program. 

Set the timeout parameters for the protocol. The data consists of 
two bytes: the value of the receive timeout in seconds and the 
value of the transmit timeout in seconds. 

Set the timeout parameters for the protocol. The data consists of 
four bytes in two groups: the value of the receive timeout in 
milliseconds (the low eight bits followed by the high eight bits) 
and the value of the transmit timeout (in the same format). 

625 



layers(M) 

626 

JZOMBOOT Like JBOOT, but do not execute the program after loading. 

JAGENT Send a source byte string to the terminal agent routine and wait 
for a reply byte string to be returned. 

The data are from a bagent structure (see jagent(M» and con­
sists of a one-byte size field followed by a two-byte agent com­
mand code and parameters. Two-byte integers transmitted as 
part of an agent command are sent with the high-order byte 
first. The response from the terminal is generally identical to the 
command packet, with the two command bytes replaced by the 
return code: 0 for success, -1 for failure. Note that the routines 
in the Hbwindows(S) library all send parameters in an agentrect 
structure. The agent command codes and their parameters are 
as follows: 

A_NEWLA YER followed by a two-byte channel number 
and a rectangle structure (four two-byte 
coordinates). 

A_CURRENT followed by a two-byte channel number. 

A_DELETE followed by a two-byte channel number. 

A_TOP followed by a two-byte channel number. 

A_BOTTOM followed by a two-byte channel number. 

A_MOVE followed by a two-byte channel number 
and a point to move to (two two-byte coor­
dinates). 

A_RESHAPE followed by a two-byte channel number 
and the new rectangle (four two-byte coor­
dinates). 

A_NEW followed by a two-byte channel number 
and a rectangle structure (four two-byte 
coordinates). 

A_EXIT no parameters needed. 

A_ROMVERSION no parameters needed. The response 
packet contains the size byte, two-byte 
return code, two unused bytes, and the 
parameter part of the terminal id string (for 
example, 1/8;7;31/). 



See also 

layers(M) 

Packets from the windowing terminal to the UNIX system all take the follow­
ingform: 

command, data ... 
The single-byte commands are as follows: 

Send the next byte to the UNIX system process. 

Create a new UNIX system process group for this layer. 
Remember the window size parameters for this layer. 
The data for this command is in the form described by 
the jwinsize structure. The size of the window is 
specified by two 2-byte integers, sent low byte first. 

Unblock transmission to this layer. There is no data for 
this command. 

Delete the UNIX system process group attached to this 
layer. There is no data for this command. 

Exit. Kill all UNIX system process groups associated 
with this terminal and terminate the session. There is 
no data for this command. 

Layer program has died: send a terminate signal to the 
UNIX system process groups associated with this ter­
minal. There is no data for this command. 

The rest of the data are characters to be passed to the 
UNIX system process. 

The layer has been reshaped. Change the window size 
parameters for this layer. The data takes the same 
form as for the C_NEW command. 

jagent(M), layers(C), libwindows(S), mkdev(ADM), xt(HW), xtproto(M) 

627 



ld(M) 

Id, idld 
invoke the link editor 

Syntax 
ld [ options] filename 

Description 

628 

idld - invoke the link editor 

The ld command combines several object files into one, performs relocation, 
resolves external symbols, and supports symbol table information for sym­
bolic debugging. It creates an executable program by combining one or more 
object files and copying the executable result to the file a.out. The filename 
must name an object or library file. By convention these names have the ".d' 
(for object) or ".a' (for archive library) extensions. If more than one name is 
given, the names must be separated by one or more spaces. If any input file, 
filename, is not an object file, ld assumes it is either an archive library or a text 
file containing link editor directives. By default, the file a.out is executable if 
no errors occurred during the load. If errors occur while linking, ld displays 
an error message; the resulting a.out file is unexecutable. 

ld concatenates the contents of the given object files in the order given in the 
command line. Library files in the command line are examined only if there 
are unresolved external references encountered from previous object files. 

The library is searched iteratively to satisfy as many references as possible 
and only those routines that define unresolved external references are con­
catenated. The library (archive) symbol table (see ar(F)) is searched sequen­
tially with as many passes as are necessary to resolve external references 
which can be satisfied by library members. Thus, the ordering of library 
members is functionally unimportant, unless multiple library members exist 
defining the same external symbol. The library may be either a relocatable 
archive library or a shared library. Object and library files are processed at the 
point they are encountered in the argument list, so the order of files in the 
command line is important. In general, all object files should be given before 
library files. ld sets the entry point of the resulting program to the beginning 
of the first routine. 

ld should be invoked using the cc(CP) command instead of invoking it 
directly. cc invokes Id as the last step of compilation, providing all the neces­
sary C-Ianguage support routines. Invoking ld directly is not recommended 
since failure to give command line arguments in the correct order can result in 
errors. 



Id(M) 

Generating COFF vs. x.out binaries 

When ld is called, it scans all the object files that are to be linked. If they are all 
COFF objects, then the resulting binary will be in COFF format. If any of the 
object files to be linked are in x.out format, any COFF modules in the group 
will be converted to x.out and the resulting binary will be in x.out format. 

Common options 

The following options are recognized by ld, and are common to producing 
both COFF and x.out binaries. Refer to the sections "Linking COFF binaries" 
and "Linking x.out binaries" for options specific to producing these binaries. 

-0 name 

-r 

Sets the executable program filename to name instead of a.out. 

XENIX VERSION: invokes the incremental linker, llib/ldr, with 
the arguments passed to Id to produce a relocatable output file. 

AT&T VERSION: retains relocation entries in the output object 
file. Relocation entries must be saved if the output file is to 
become an input file in a subsequent ld run. The link editor will 
not complain about unresolved references, and the output file 
will not be executable. 

-s Strips line number entries and symbol table information from 
the output object file. 

-u symbol Designates the specified symbol as undefined. This is useful for 
loading entirely from a library, since initially the symbol table is 
empty and an unresolved reference is needed to force the load­
ing of the first routine. The placement of this option on the ld 
line is significant; it must be placed before the library which will 
define the symbol. 

-v Outputs a message giving information about the version of ld 
being used. 

Linking COFF binaries 

The following options are recognized by Id for linking COFF binaries: 

-e epsym 

-fjill 

Set the default entry point address for the output file to be that 
of the symbol epsym. 

Set the default fill pattern for "holes" within an output section as 
well as initialized bss sections. The argument fill is a two-byte 
constant. 

629 



Id(M) 

630 

-Ix Search a library libx.a, where x is up to nine characters. A library 
is searched when its name is encountered, so the placement of a 
-1 is significant. By default, libraries are located in LlBDIR or 
LLlBDIR. 

-m Produce a map or listing of the input/output sections on the 
standard output. 

-a Create an absolute file. This is the default if the -r option is not 
used. Used with the -r option, -a allocates memory for common 
symbols. 

-t Turn off the warning about multiply-defined symbols that are 
not the same size. 

-x Do not preserve local symbols in the output symbol table; enter 
external and static symbols only. This option saves some space 
in the output file. 

-z Do not bind anything to address zero. This option will allow 
runtime detection of null pointers. 

-L dir Change the algorithm of searching for libx.a to look in dir before 
looking in LlBDIR and LLlBDIR. This option is effective only if 
it precedes the -1 option on the command line. 

-M Output a message for each multiply-defined external definition. 

-N Put the text section at the beginning of the text segment rather 
than after all header information, and put the data section 
immediately following text in the core image. 

-VS num Use num as a decimal version stamp identifying the a.out file 
that is produced. The version stamp is stored in the optional 
header. 

-Y[ LU],dir Change the default directory used for finding libraries. If L is 
specified, the first default directory which ld searches, LlBDIR, 
is replaced by dir. If U is specified and ld has been built with a 
second default directory, LLlBDIR, then that directory is 
replaced by dir. If ld was built with only one default directory 
and U is specified, a warning is printed and the option is 
ignored. 



Id(M) 

Linking x.out binaries 

The user must make sure that the most recent library versions have been pro­
cessed with ranlib(CP) before linking. Library files for x.out format binaries 
must be in ranlib(CP) format: that is, the first member must be named 
__ .SYMDEF, which is a dictionary for the library. ld compares the modifica­
tion dates of the library and the __ .SYMDEF entry, so if object files have been 
added to the library since __ SYMDEF was created, the link may result in an 
"invalid object module" that cannot run. 

The following options are recognized by ld for linking x.out binaries: 

-Anum 

-Bnum 

-cnum 

-c 

-Dnum 

-Fnum 

-g 

-i 

-La 

Creates a standalone program whose expected load address (in 
hexadecimal) is num. This option sets the absolute flag in the 
header of the a.out file. Such program files can only be executed 
as standalone programs. Options -A and -F are mutually 
exclusive. 

Sets the text selector bias to the specified hexadecimal number. 

Alters the default target CPU in the x.out header. num can be 0, 
1, 2, or 3 indicating 8086, 80186, 80286 and 80386 processors, 
respectively. The default on 8086/80286 systems is O. The 
default on 80386 systems is 3. Note that this option only alters 
the default; if object modules containing code for a higher num­
bered processor are linked, then that will take precedence over 
the default. 

Causes the link editor to ignore the case of symbols. 

Sets the data selector bias to the specified hexadecimal number. 

Sets the size of the program stack to num bytes where num is a 
hexadecimal number. This option is ignored for 80386 programs 
which have a variable sized stack. By default 8086 programs 
have a variable stack located at the top of the first data segment, 
and 80286 programs have a fixed size 4096 byte stack. The-F 
option is incompatible with the -A option that cannot be opened 
by more than one user at the same time. 

Includes symbolic information for sdb. 

Creates separate instruction and data spaces for small model 
programs. When the output file is executed, the program text 
and data areas are allocated separate physical segments. The 
text portion will be read-only and shared by all users executing 
the file. 

Sets advisory file locking. Advisory locking is used on files with 
access modes that do not require mandatory locking. 

631 



Id(M) 

Files 

See also 

632 

-Lm 

-mname 

-Mx 

-ttnum 

-Nnum 

-p 

-R 

-Rdnum 

-Rtnum 

-Snum 

Sets mandatory file locking. Mandatory file locking is used on 
files that cannot be opened by more than one process at a time. 

Creates a link map file named name that includes public sym­
bols. 

Specifies the memory model. x can have the following values: 
s small 
m middle 
I large 
h huge 
e mixed 

Truncates symbols to the length specified by num. 

Sets the pagesize to hex-num (which should be a multiple of 
512) - the default is 1024 for 80386 programs. 8086/80186/80286 
programs do not normally have page-aligned x.out files and the 
default for these is O. 

Disables packing of segments 

Ensures that the relocation table is of non-zero size. Important 
for 8086 compatibility. 

Specify the data segment relocation offset (80386 only). num is 
hexadecimal. 

Specify the text segment relocation offset (80386 only). num is 
hexadecimal. 

Sets the maximum number of segments to num. If no argument 
is given, the default is 128. 

/bin/ld 
LIBDIR/libx.a 
LLIBDIR/libx.a 
a.out 

libraries 
libraries 
output file 
usually /lib 
usually /usr/lib 

LIBDIR 
LLIBDIR 

a.out(FP), ar(F), as(CP), cc(CP), end(S), exit(S), masm(CP), mkshHb(CP), 
ranlib(CP) 



Notes 

Id(M) 

Through its options and input directives, the common link editor gives users 
great flexibility; however, those who use the input directives must assume 
some added responsibilities. Input directives and options should insure the 
following properties for programs: 

• C defines a zero pointer as null. 

• A pointer to which zero has been assigned must not point to any object. 

To satisfy this, users must not place any object at virtual address zero in the 
program s address space. 

When the link editor is called through cc(CP), a startup routine is linked with 
the user's program. This routine calls exitO (see exit(S» after execution of the 
main program. If the user calls the link editor directly, then the user must 
insure that the program always calls exitO rather than falling through the end 
of the entry routine. 

The symbols etext, edata, and end (see end(S» are reserved and are defined 
by the link editor. It is incorrect for a user program to redefine them. 

If the link editor does not recognize an input file as an object file or an archive 
file, it will assume that it contains link editor directives and will attempt to 
parse it. This will occasionally produce an error message complaining about 
"syntax errors". 

Arithmetic expressions may only have one forward referenced symbol per 
Expression. 

If you are using XENIX binaries, please refer to the manual entry for this utility 
in the XENIX Development Guide for information on the appropriate usage with 
XENIX binaries. 

Standards conformance 

ld is conformant with: 

AT&T SVID Issue 2. 

633 



locale(M) 

locale 
the international locale 

Syntax 
language [ _ [ territory] [. [codeset]]] 

"C" 

Description 

634 

The international locale is a definition of the local conventions to be used by 
UNIX libraries (and hence utilities and applications) for features whose 
behavior varies internationally. 

The locale is specified by a character string of the form: 

language_territory.codeset 
where: 

language 

territory 

codeset 

represents both the language of text files being used, and 
the preferred language for messages (where the utility or 
application is capable of displaying messages in many lan­
guages), 

represents the geographical location (usually the country) 
determining such factors as currency and numeric formats, 
and 

represents the character set in use for the internal represen­
tation of text. 

The locale string IIfrench_canada.8859" could therefore represent a Canadian 
user using the French language, processing data using the ISO 8859/1 stan­
dard international character set. 

Each element (language, territory or codeset) can be up to 14 characters long, 
and should use only alphanumeric ASCII characters (see ascii(M». 

Note that the locale is not required to be completely specified: territory and 
codeset are optional. When a locale is incompletely specified, missing values 
are sought in the following sequence: 

1. For each subclass, such as LC_TIME, in an environment variable of the 
same name as the subclass. 

2. In the LANG environment variable. 

3. In the file fete/default/lang. 



See also 

loeale(M) 

The special locale string "C", used to represent the minimal environment 
needed for the C programming language, is taken to be equivalent to 
"english_ us. ascii" . 

The format of the file fete/default/lang is at least one line, of the form: 

LANG="language _territory.eodeset" 
A partly specified locale string will be expanded to the first LANG= entry in 
which the specified locale fields match. 

Thus if the fete/default/lang file contains the following: 
LANG=english_us.ascii 
LANG=english_uk.8859 
LANG=french france.8859 

A locale string "english_uk" will get expanded to "english_uk.8859", whereas 
a locale string "french" will get expanded to "french_france.8859". 

The information used to configure a particular locale is generated by the utili­
ties chrtbl(M), coltbl(M), mestbl(M), montbl(M), numtbl(M) and timtbl(M). 
The output files produced by these utilities (etype, collate, currency, messages, 
numeric and time respectively) must be installed in the correct place in the 
directory structure /usr/lib/lang. The correct directory name is found by sub­
stituting the language, territory and codeset names into the string 
"/usr/lib/lang/language/territory/eodeset". The files should be installed into 
this directory with their existing file name (such as ctype). 

A suggested naming convention for locales is as follows: 

language The name of the language, in English, such as: english, 
french, german. 

territory The name of the nation, in English, such as: us, uk, canada, 
france, germany, switzerland. 

eodeset An identification of the codeset, such as: ascii,8859. 

chrtbl(M), coltbl(M), environ(M), mestbl(M), montbl(M), numtbl(M), 
setlocale(S), timtbl(M) 

Value added 

locale is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 

635 



Iog(M) 

log 
interface to STREAMS error logging and event tracing 

Description 

636 

log is a STREAMS software device driver that provides an interface for the 
STREAMS error logging and event tracing processes (see strerr(ADM), 
strace(ADM». log presents two separate interfaces: a function call interface in 
the kernel through which STREAMS drivers and modules submit log mes­
sages; and a subset of ioctl(S) system calls and STREAMS messages for interac­
tion with a user level error logger, a trace logger, or processes that need to 
submit their own log messages. 

Kernel interface 
log messages are generated within the kernel by calls to the function strlog: 

strlog (mid, sid, level, flags, fmt, argl, ••. ) 
short mid, sid; 
char level; 
ushort flags; 
char *fmt; 
unsigned argl; 

Required definitions are contained in <sys/strlog.h> and <sys/log.h>. mid is the 
STREAMS module id number for the module or driver submitting the log mes­
sage. sid is an internal sub-id number usually used to identify a particular 
minor device of a driver. level is a tracing level that allows for selective 
screening out of low priority messages from the tracer. flags are any combi­
nation of SL_ERROR (the message is for the error logger), SL_TRACE (the mes­
sage is for the tracer), SL_FATAL (advisory notification of a fatal error), and 
SL_NOTIFY (request that a copy of the message be mailed to the system 
administrator). fmt is a printf(C) style format string, except that %s, %e, %E, 
%g, and %G conversion specifications are not handled. Up to NLOGARGS 
(currently 3) numeric or character arguments can be provided. 

User interface 
log is opened via the clone interface, Ideo/log. Each open of Ideo/log obtains a 
separate stream to log. In order to receive log messages, a process must first 
notify log whether it is an error logger or trace logger via a STREAMS CSTR 
ioctl call (see below). For the error logger, the CSTR ioctl has an ic _ cmd field 
of CERRLOG with no accompanying data. For the trace logger, the ioctl has 
an ic_cmd field of CTRCLOG, and must be accompanied by a data buffer con­
taining an array of one or more struct trace_ids elements. Each trace_ids 
structure specifies an mid, sid, and level from which messages will be 
accepted. strlog will accept messages whose mid and sid exactly match those 
in the trace_ids structure, and whose level is less than or equal to the level 
given in the trace_ids structure. A value of -1 in any of the fields of the 
trace_ids structure indicates that any value is accepted for that field. 



Examples 

Iog(M) 

At most one trace logger and one error logger can be active at a time. Once 
the logger process has identified itself via the ioctl call, log will begin sending 
up messages subject to the restrictions noted above. These messages are 
obtained via the getmsg(S) system call. The control part of this message con­
tains a lose ctl structure, which specifies the mid, sid, level, flags, time in 
ticks since boot that the message was submitted, the corresponding time in 
seconds since Jan. 1,1970, and a sequence number. The time in seconds since 
1970 is provided so that the date and time of the message can be easily com­
puted, and the time in ticks since boot is provided so that the relative timing 
of log messages can be determined. 

Different sequence numbers are maintained for the error and trace logging 
streams, and are provided so that gaps in the sequence of messages can be 
determined (during times of high message traffic, some messages may not be 
delivered by the logger to avoid hogging system resources). The data part of 
the message contains the unexpanded text of the format string (null ter­
minated), followed by NLOGARGS words for the arguments to the format 
string, aligned on the first word boundary following the format string. 

A process may also send a message of the same structure to log, even if it is 
not an error or trace logger. The only fields of the log_ ctl structure in the 
control part of the message that are accepted are the level and flags fields; 
all other fields are filled in by log before being forwarded to the appropriate 
logger. The data portion must contain a null terminated format string, and 
any arguments (up to NLOGARGS) must be packed one word each, on the 
next word boundary following the end of the format string. 

Attempting to issue an CTRCLOG or CERRLOG when a logging process of 
the given type already exists will result in the error ENXIO being returned. 
Similarly, ENXIO is returned for CTRCLOG ioctls without any trace_ids 
structures, or for any unrecognized CSTR ioctl calls. Incorrectly formatted 
log messages sent to the driver by a user process are silently ignored (no error 
results). 

Example of CERRLOG notification: 

struet strioetl ioe; 

ioe. ie emd = I ERRLOG; 
ioe.ie-timout ~ 0; 
ioe.ie-len = 0; 
ioe.ie=dp = NULL; 

ioetl (log, I _STR, &ioc) ; XXX 

/* default timeout (15 sees.) */ 

637 



log(M) 

Files 

See also 

Example of CTRCLOG notification: 

struct trace_ids tid[2]; 

tid[O] .ti mid = 2; 
tid[O] .ti-sid = 0; 
tid[O] .ti=level = 1; 

tid[l].ti mid = 1002; 
tid[l].ti-sid = -1; 
tid[l] .ti=level = -1; 

ioc. ic cmd = I TRCLOG; 

ioc.ic=timout ~ 0; 

/* any sub-id will be allowed */ 
/* any level will be allowed */ 

ioc.ic len = 2 * sizeof(struct trace_ids); 
ioc.ic=dp = (char *)tid; 

ioctl(log, I_STR, &ioc); 

Example of submitting a log message (no arguments): 

struct strbuf ctl, dati 
struct log_ctl lc; 
char *message = "Don't forget to pick up some milk on the way home"; 

ctl.len = ctl.maxlen = sizeof(lc); 
ctl.buf = (char *)&lc; 

dat.len = dat.maxlen = strlen(message); 
dat.buf = message; 

lc.level = 0; 
lc.flags = SL_ERRORISL_NOTIFY; 

putmsg(log, &ctl, &dat, 0); 

/dev/log 
<sys/log.h> 
<sys/strlog.h> 

clone(M), getmsg(S), intro(S), putmsg(S), strace(ADM), strerr(ADM) 

STREAMS Programmer's Guide 

Value added 

638 

log is an extension of AT&T System V provided by The Santa Cruz Operation, 
Inc. 



login(M) 

login 
give access to the system 

Syntax 
login [ name [ env-var ] ] 

login [ -r remotehost remotename localname ] ... 

Description 

The login command is used at the beginning of each terminal session to iden­
tify users and allow them access to the system. It cannot be invoked except 
when a connection is first established, or after the previous user has logged 
out by sending an end-of-file «Ctrl)d) to their initial shell. 

login asks for a user name (if not supplied as an argument), and, if appropri­
ate, the user's password and a dialup password. (For information on dialup 
passwords, refer to passwd(C». Echoing is turned off (where possible) during 
the typing of the passwords, so it will not appear on the written record of the 
session. 

If the user makes a mistake in the login procedure the user will receive the 
message "Login incorrect" and a new login prompt will appear. The number 
of login attempts the user is allowed is configurable. If the user makes too 
many unsuccessful login attempts, the user or the terminal can be locked out. 

If the login sequence is not completed successfully within a configurable peri­
od of time (for example, one minute), the user is returned to the "login:" 
prompt or silently disconnected from a dial-in line. 

The -r form of the command is used for remote logins across a network. The 
remote login must supply parameters in the order indicated; these are the 
name of the remote host from which the login is being attempted, the user's 
name on the remote host, and the user's name on the local host (on which the 
login process is running). This form of the login command is intended for use 
by network software rather than users. 

After a successful login, accounting files (/ete/utmp and /ete/wtmp) are updated, 
the user is notified if they have mail, and the start-up shell files (.profile for the 
Bourne shell or .login for the C-shell) if any, are executed. 

Login sets the user's supplemental groups list. If the file .suppgroups is in the 
user's home directory, the supplemental groups list is taken from this. The 
.suppgroups file contains a list of group names, one per line. Groups are 
verified before they are added to the supplemental group list. To able to use a 
group, a user must either be explicitly listed in that group in Jete/group, or the 
group must have the group ID listed for the user in the /ete/passwd file. If no 
.suppgroups file is found, the supplemental groups list is set from the Jete/group 
file plus the login group ID. 

639 



login(M) 

640 

If the hushlogin feature is enabled in jete/default/login and a file named 
.hushlogin exists in the user's home directory, login suppresses the printing of 
the last successful and last unsuccessful login times and the copyright mes­
sages. login also sets the environment variable HUSHLOGIN to TRUE, so the 
system and user initialization files are aware a hushlogin is taking place and 
can suppress output as appropriate (typically the message of the day, and the 
calling of mail(C) and news(C) are suppressed). The .hushlogin file itself does 
not need to contain anything; it only needs to exist. 

login checks jete/default/login for the following definitions of the form 
DEFINE=value: 

ALTSHELL If ALTSHELL is set to YES or if it is not present in 
jete/default/login, then the SHELL environment variable is set to 
whatever shell is specified in the user's /ete/passwd entry. If 
ALTSHELL is set to NO, then the SHELL environment variable 
is set only if the shell is defined in the /usr/lib/mkuser directory 
(which is list of recognized shells). 

CONSOLE The CONSOLE=device entry means that root can only log in 
on the device listed. For example, CONSOLE=/dev/console re­
stricts root logins to the console device. 

ALLOWHUSH The ALLOWHUSH entry is used to enable or disable the 
hushlogin feature on a system-wide basis. If 
ALLOWHUSH=YES, login checks for the existence of a 
.hushlogin file in the user's home directory. If the file exists, 
the environment variable HUSHLOGIN is set to TRUE and a 
quiet login takes place. If ALLOWHUSH=NO or 
ALLOWHUSH=YES and there is no .hushlogin file in the user's 
home directory, the environment variable HUSHLOGIN is set 
to FALSE and the normal login messages appear. If there is no 
ALLOWHUSH entry, the HUSHLOGIN environment variable 
is not set and the normal login messages appear. 

IDLEWEEKS If a password has expired, the user is prompted to choose a 
new one. If it has expired beyond IDLEWEEKS, the user is not 
allowed to log in, and must consult system administrator. 
This works in conjunction with passwd(C). See cautions 
under "Notes". 

OVERRIDE This allows root to log in on the console even if the Protected 
Password database entry for root is corrupted. login checks 
jete/default/login to see if there is an entry similar to the follow­
ing, which identifies the tty to be used when doing an over­
ride login for root: 

OVERRIDE=ttyOl 



Files 

PASSREQ 

SUPATH 

ULIMIT 

UMASK 

login(M) 

If PASSREQ=YES, a password is required. Users who do not 
have a password will be forced to select one. P ASSREQ=NO 
allows users to have accounts without passwords. See cau­
tions under "Notes". 

If a user's UID is 0 (that is, if this is the super user), the PATH 
variable is set to SUPATH, if SUPATH is specified in 
fete/default/login. It is not advisable for SUP ATH to include the 
current directory symbol 1/. ". Note that an empty directory 
(1/:: II or 1/: II at the beginning or end) is equivalent to 1/ • ". 

This variable defines the maximum allowable file size. The 
default is 2,097,152 blocks, or 1 gigabyte. When setting 
ULIMIT, be sure to specify even numbers, as the ULIMIT vari­
able accepts a number of 512-byte blocks. 

This is the default file creation mask (see umask(C)). 

login initializes the user and group IDs and the working directory, then exe­
cutes a command interpreter (usually sh(C») according to specifications found 
in the /ete/passwd file. Argument 0 of the command interpreter is a dash (-) fol­
lowed by the last component of the interpreter's pathname. The basic environ­
ment (see environ(M)) is initialized to: 

HOME= user-login-directory 
SHELL=last field of passwd entry 
MAIL=/usr/spool/mail/user-Iogin-name 

Possible HUSHLOGIN=TRUE or FALSE 

Initially, umask is set to octal 022 by login. 

/ete/utmp Information on current logins 
History of logins since last multiuser 
Mailbox for user name 
Message of the day 

/ete/wtmp 
/usr/spool/mail/name 
/ete/motd 
Jete/default/login Default values for environment variables and log­

in behavior 
/etc/passwd 
fete/profile 
$HOME/ .profile 
$HOME/.login 
$HOME/.eshre 
$HOME/.suppgroups 
$HOME/ .hushlogin 

Password file 
System profile for Bourne or Korn shell 
Personal profile for Bourne or Korn shell 
Personal C shell login file 
Personal C shell initialization file 
Supplemental groups file 
Make login quieter 

641 



login(M) 

See also 

environ(M), getty(ADM), initscript(F), machine(HW), mail (C), newgrp(C), 
passwd(C), passwd(F), profile(M), sh(C), sg(C), su(C), ulimit(S), umask(C), 
who(C) 

Diagnostics 

642 

Not on system console 
login is set up to allow root to log on to the console only, and the user is 
not on the system console. 

Login incorrect 
The login or dialup password is incorrect. 

Unable to change directory to dir 
login cannot change directories to the home directory as specified by 
/etc/passwd. 

No utmp entry. You must exec 'login' from the lowest level 'sh'. 
init did not put an entry in utmp. 

No Root Directory 
The shell field starts with a "* ", and the attempt to do a chroot to the 
home directory failed. 

You don't have a password. 
A password is required and it has not been set previously. 

Protected Password information suddenly vanished 
During the course of working with the Protected Password database in­
formation the pointer pointing to the static version of the information 
has suddenly disappeared. 

Cannot execute passwd program 
The password program cannot be executed for some reason. 

Login aborted due to no password .. 
The password program has returned an error while setting a password, 
as when the (Del) key is pressed. 

Can't rewrite Protected Password entry for user name, 
Authentication error; see Account Administrator 

The login program cannot update the Protected Password database 
entry. 



login(M) 

Protected Password database problem 
After updating Protected Password data, login reads the information 
again and the entry cannot be read. This can be caused by redundant 
database backup files and/or lockfiles; these may be distinguished by a 
-t suffix. See tcbck(ADM) for information on these files and how to 
remove them from the system. 

Account is disabled but console login is allowed. 
Account is disabled -- see Account Administrator. 

If the account is locked, but root is logging in on the console (OVERRIDE 
tty), the first message is displayed; an ordinary user will see the second. 

Account has been retired -- logins are no longer allowed. 
The account is retired - see unretire(ADM) and rmuser(ADM) on how to 
unretire or remove an account. 

Cannot set terminal mode. 
The chmod of the tty failed. 

Bad login user id. 
No UID has been set. This can be due to a missing critical database file, 
such as /etc/auth/system/authorize. Run authck(ADM) and check any error 
messages. This message will also be issued if login is run from an esta­
blished login session rather that from init(M). 

Wait for login retry. 
Wait for login exit. 

A login attempt has failed, and the system is configured to enforce a 
delay between login attempts. 

user appears in /etc/passwd but not in Protected Password database 
If the user is in /etc/passwd but not in the Protected Password database, 
there is no message printed, but login generates the audit record shown 
above. 

Cannot obtain database information on this terminal 
login cannot get information from /etc/auth/system/ttys for the tty line. 

Error in terminal setup. 
Something is wrong with the terminal setup (for example, stdin, stdout, 
and stderr are the same thing.) 

Cannot obtain settings for this terminal 
The ioctl(S) on the tty device failed. 

No login program on root 
When attempting to do a sublogin (chrooting to a subtree for a restricted 
login), no login program was found. 

Can't rewrite terminal control entry for tty, 
Authentication error; see Account Administrator 

The information for the login tty cannot be updated. 

643 



login(M) 

Notes 

644 

Terminal Control information suddenly vanished 
During the course of working with the terminal database information 
the pointer pointing to the static version of the information suddenly 
disappeared. 

Bad priority setting. 
nice failed to set the nice value specified in the Protected Password 
entry for the user. 

Bad supplemental group list. 
The call to setgroups failed. 

Bad group id. 
The call to setgid failed. 

Bad user id. 
The call to setuid failed. 

Unable to set kernel authorizations. 
The call to set the kernel authorizations failed. 

Login timed out 
login received an ALARM signal. Note: login sets this itself, but it could 
conceivably come from somewhere else. 

Terminal is disabled but root login is allowed. 
Terminal is disabled -- see Account Administrator. 

If the terminal is disabled and root attempts to login on the (OVERRIDE) 
tty the first message is displayed; the second message is displayed 
when any other user attempts to login on a disabled terminal. 

The security databases are corrupt. 
However, root login at terminal tty is allowed, 

This is the message displayed when the OVERRIDE tty is used during a 
security problem. 

Impossible to execute Ibin/sh! 
login cannot execute the shell program for doing an OVERRIDE. 

login cannot be executed from a shell. 

Environment variables such as HZ, PATH, and so forth should not be defined 
in fete/default/login. Instead use /ete/initseript to set global variables. 

Sublogins (indicated by a shell of "*") are not supported and cause a warn­
ing. 

Although IDLEWEEKS and PASSREQ are supported for compatibility with 
other UNIX systems, their use is not recommended. The proper way to set the 
behavior defined by these variables is by use of the sysadmsh(ADM) Accounts 
selection. 



mapchan(M) 

mapchan 
configure tty device mapping 

Syntax 

mapchan [ -ans ] [ -f mapfile ] [ channels . .. ] 

map chan [ [ -0 ] [ -d ] ] [ channel] 

Description 

The mapchan utility configures the mapping of information input and output. 
mapchan is intended for users of applications that employ languages other 
than English (character sets other than 7-bit ASCII). 

mapchan translates codes sent by peripheral devices, such as tenninals, to the 
internal character set used by the UNIX system. mapchan can also map codes 
in the internal character set to other codes, for output to peripheral devices 
(such as terminals, printers, console screen, etc.). Note that PC keyboard con­
figuration is accomplished through the mapkey(M) utility. 

map chan has several uses: to map a channel (-a or -s); to unmap a channel (-n 
and optionally -a); or to display the map on a channel (optionally -0, -d, chan­
nels). 

mapchan with no options displays the map on the user's channel. The map 
displayed is suitable as input for map chan. 

The options are: 

-a when used alone, sets all channels given in the default file 
(/etc/default/mapchan) with the specified map. When used with -n, it 
refers to all channels given in the default file. Super user maps or 
unmaps all channels, other users map only channels they own. -a can­
not be used with -d, -0, or -5. 

-d causes the mapping table currently in use on the given device, channel, 
to be displayed in decimal instead of the default hexadecimal. An ASCII 
version is displayed on standard output. This output is suitable as an 
input file to mapchan for another channel. Mapped values are dis­
played. Identical pairs are not output. -d cannot be used with -a, -f, -n, -
0, or -5. 

-f causes the current channel or list of channels to be mapped with map­
file. -f cannot be used with -d, -n, -5, or -0. 

645 



mapchan(M) 

646 

-n causes null mapping to be performed. All codes are input and output as 
received. Mapping is turned off for the user's channel or for other chan­
nels, if given. -a used with -n will turn mapping off on all channels 
given in the default file. This is the default mapping for all channels 
unless otherwise configured. -n cannot be used with -d, -f, -0, or -5. 

-0 causes the mapping table currently in use on the given device, channel, 
to be displayed in octal instead of the default hexadecimal. An ASCII 
version is displayed on standard output. This output is suitable as an 
input file to map chan for another port. Mapped values are displayed. 
Identical pairs are not output. -0 cannot be used with -a, -d, -f, -n, or -5. 

-s sets the user's current channel with the mapfile given in the default file. 
-5 can not be used with any other option. 

The user must own the channel in order to map it. The super user can map 
any channel. Read or write permission is required to display the map on a 
channel. 

Each tty device channel (display adapter and video monitor on computer, 
parallel port, serial port, etc.) can have a different map. When UNIX boots, 
mapping is off for all channels. 

mapchan is usually invoked in the letdrc2 scripts. These scripts are executed 
when the system enters multi-user mode and sets up the default mapping for 
the system. Users can invoke mapchan when they log in by including a map­
chan command line in their .profile or .login file. In addition, users can remap 
their channel at any time by invoking mapchan from the command line. 
Channels not listed in the default file are not automatically mapped. Chan­
nels are not changed on logout. Whatever mapping was in place for the last 
user remains in effect for the next user, unless they modify their .profile or .log­
in file. 

For example, the default file /etc/default/mapchan can contain: 
tty02 
ttyla 
tty2a 
Ip 

ibm 

wy60.ger 
ibm 

The default directory containing mapfiles is /usr/lib/mapchan. The default 
directory containing channel files is /dev. Full pathnames may be used for 
channels or map files. If a channel has no entry, or the entry field is blank, no 
mapping is enabled on that channel. Additional channels added to the sys­
tem, (for example, adding a serial or parallel port) are not automatically 
entered in the mapchan default file. If mapping is required, the system 
administrator must make the entries. 

The format of the mapfiles is documented in the mapchan(F) manual page. 



mapchan(M) 

Using a mapped channel 
The input information is assumed to be 7- or 8-bit codes sent by the peripheral 
device. The device may make use of "dead" or "compose" keys to produce 
the codes. If the device does not have dead or compose keys, these keys can 
be simulated using mapchan. 

One-to-one mapped characters are displayed when the key is pressed, and the 
mapped value is passed to the kernel. 

Certain keys are designated as dead keys in the mapfile. Dead key sequences 
are two keystrokes that produce a single mapped value that is passed to the 
kernel. The dead key is usually a diacritical character, the second key is usu­
ally the letter being modified. For example, the sequence' e could be mapped 
to the ASCII value OxE9, and display as e. 
One key is designated as the compose key in the mapfile. Compose key 
sequences are made up of three keystrokes that produce a single mapped 
value that is passed to the kernel. The compose key is usually a seldom-used 
character or (Ctrl)letter combination. The second key is usually the letter being 
modified. The third key may be another character being combined, or a 
diacritical character. For example, if 1/ @" is the compose key, the sequence 
@ c 0 could be mapped to the ASCII value OxA9, and display as ©. 

Characters are not echoed to the screen during a dead or compose sequence. 
The mapped character is echoed and passed to the kernel once the sequence is 
correctly completed. 

Characters are always put through the input map, even when part of dead or 
compose sequences. The character is then checked for the internal value. The 
value may also be mapped on output. This should be kept in mind when 
preparing mapfiles. 

The following conditions will cause an error during input: 

• non-recognized (not defined in the mapfile) dead or compose sequence 

• restarting a compose sequence before completion by pressing the compose 
key in the middle of a dead or compose sequence. This is an error, but a 
new compose sequence is initiated. 

If the mapfile contains the keyword beep, a bell sounds when either of the 
above conditions occurs. In either case, the characters are not echoed to the 
screen, or passed to the kernel. 

In order to allow for character sequences sent to control the terminal (move 
the cursor, and so on) rather than to print characters on the screen, mapchan 
allows character sequences to be specified as special sequences which are not 
passed through the normal mapping procedure. Two sections may be speci­
fied, one for each of the input (keyboard) and output (screen) controls. 

647 



mapchan(M) 

Files 

See also 

Notes 

648 

Character sets 
The internal character set used is defined by the mapfiles used. By default, 
this is the ISO 8859/1 character set which is also known as the dpANS X3.4.2 
and ISO/TC97/SC2. It supports most of the Latin alphabet and can represent 
most European languages. 

Several partial mapfiles are provided as examples. They must be modified for 
use with specific peripheral devices. Consult your hardware manual for the 
codes needed to display the desired characters. Two mapfiles are provided 
for use with the console device: /usr/lib/mapchan/ibm for systems with a stan­
dard PC character set ROM, and /usr/lib/mapchan/iso for systems with an 
optional ISO 8859/1 character set ROM. 

Care should be taken that the stty(C) settings are correct for 8-bit terminals. 
The /etc/gettydefs file may require modification to allow logging in with the 
correct settings. 

7-bit U.s. ASCII (ANSI X3.4) should be used if no mapping is enabled on the 
channel. 

/etc/default/mapchan 
/usr/lib/mapchan/* 

ascii(M), keyboard(HW), Ip(C), Ipadmin(ADM), mapchan(F), mapkey(M), 
parallel(HW), screen(HW), serial(HW), setkey(C), trchan(M), tty(M) 

Some non-US keyboards and display devices do no support characters com­
mon~y used by UNIX command shells and the C programming language. It is 
not recommended that these devices be used for system administration tasks. 

IPnters can be mapped, output only, and can either be sent 8-bit codes or 
one-to-many character strings using mapchan. Line printer spooler interface 
scripts can be used (setuid root) to change the output map on the printer 
when different maps are required (as in changing print wheels to display a 
different character set). See Ip(C) and Ipadmin(ADM) for information on in­
stalling and administering interface scripts. 

Not all terminals or printers can display all the characters that can be 
represented using this utility. Refer to the device's hardware manual for infor­
mation on the capabilities of the peripheral device. 



Warnings 

mapchan(M) 

Use of mapfiles that specify a different "internal" character set per-channel, or 
a set other than the 8-bit ISO 8859 set supplied by default can cause strange 
side effects. It is especially important to retain the 7-bit ASCII portion of the 
character set (see ascii(M». UNIX utilities and many applications assume 
these values. 

Media transported between machines with different internal code set map­
pings may not be portable as no mapping is performed on block devices, such 
as tape and floppy drives. However, trchan with an appropriate mapfile can 
be used to "translate" from one internal character set to another. 

Do not set ISTRIP (see stty(C» when using mapchan. This option causes the 
eighth bit to be stripped before mapping occurs. 

Value added 

map chan is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 

649 



mapkey(M) 

mapkey, mapscrn, mapstr, convkey 
configure monitor screen mapping 

Syntax 

map key [ -adox] [ datafile ] 

mapscrn [ -d ] [ datafile ] 

mapstr [ -d ] [ datafile ] [ -f] [ term type ] 

convkey [ in [ out] ] 

Description 

650 

mapkey - Configures keyboard mapping 

mapscrn - Configures monitor screen mapping 

mapstr - Configures function key mapping 

convkey - Translates an old-style mapkey file into the current format 

mapscrn configures the output mapping of the monitor screen on which it is 
invoked. map key and mapstr configure the mapping of the keyboard and 
string keys (for example, function keys) of the monitor and terminals running 
with the scancode facility enabled. The super user can map or unmap any ter­
minal device, while other users can map only the terminal devices that they 
own. 

mapstr functions on a per-screen basis. If the mapstr -f command does not 
specify a terminal type, mapstr gets the terminal type from the TERM 
environment variable. The tset utility calls mapstr -f to set function keys. 
mapstr reads the function key values from the file in /usr/lib/keyboard/string.d 
that corresponds to the terminal type and passes them to tset. Mapping 
strings on one screen does not affect any other screen. 

The mapstr utility expects 12 function keys. If your terminal uses more or less 
than 12 function keys, your function keys might have unexpected effects 
when you run your terminal in scancode mode. For example, function keys 
above (F12) might behave like shifted function keys below (F12) (that is, 
(Shift)(Fl), (Shift}(F2), and so on). 

If a file name is given on the argument line the respective mapping table is 
configured from the contents of the input file. If no file is given, the default 
files in /usr/lib/keyboard and /usr/lib/console are used. The -d option causes the 
mapping table to be read from the kernel instead of written and an ASCII ver­
sion to be displayed on the standard output. The format of the output is suit­
able for input files to mapscrn, map key, or mapstr. Non-super users can run 
mapkeyand mapstr when the -d option is given. 



Files 

Notes 

See also 

mapkey(M) 

With the -0 or -x options, map key displays the mapping table in octal or hexa­
decimal. 

The -a option sets mapping according to the file /etc/default/mapkey. Each line 
in this file names a tty line and a file in the /usr/lib/keyboard directory; for 
example: 

ttyOl keys.fr 

If map key -a is run with the above entry in /etc/default/mapkey, the terminal 
device /dev/tty01 is mapped using the file /usr/lib/keyboard/keys.fr. A common 
use for the map key -a command is to include it in a directory under /etc/rc.d, 
so that it is executed as part of system startup. 

convkey translates an old-style map key file into the current format. If in or 
out are missing, they default to stdin or stdout. 

/usr/lib/keyboard/* 
/usr/lib/console/* 

There is no way to specify that the map utilities read their configuration tables 
from standard input. 

If map key -a is run but the correct tty line cannot be found in 
/etc/default/mapkey, map key reads the default file /usr/lib/keyboard/keys. Like­
wise, if no key file is specified against the appropriate tty entry in 
/etc/default/mapkey map key -a uses /usr/lib/keyboard/keys. 

keyboard(HW), scancode(HW), screen(HW), setkey(C), tset(C) 

Value added 

convkey, mapkey, mapscm and mapstr are extensions of AT&T System V 
provided by The Santa Cruz Operation, Inc. 

651 



math(M) 

math 
math functions and constants 

Syntax 
#include <math.h> 

Description 

652 

This file contains declarations of all the functions in the Development System 
Math Library as well as various functions in the C Library that return 
floating-point values. 

It defines the structure and constants used by the matherr(S) error-handling 
mechanisms, including the following constant used as an error-return value: 

HUGE The maximum value of a single-precision floating-point 
number. 

The following mathematical constants are defined for user convenience: 

M_E The base of natural logarithms (e). 

M_LOG2E 

M_LOGIOE 

M_LN2 

M_LNIO 

M_PI 

M_PC2 

M_PC4 

M_l_PI 

M_2]I 

M_2_SQRTPI 

M_SQRT2 

M_SQRTl_2 

The base-2logarithm of e. 

The base-lO logarithm of e. 

The natural logarithm of 2. 

The natural logarithm of 10. 

1t, the ratio of the circumference of a circle to its diameter. 

1t/2. 

1t/4. 

1/1t. 

2/1t. 

2/ -l1t. 

The positive square root of 2. 

The positive square root of Y:!. 

For the definitions of various machine-dependent "constants," see the descrip­
tion of the <values.h> header file. 



See also 

intro(S), matherr(S), values(M) 

Standards confonnance 

math is conforrnant with: 

X/Open Portability Guide, Issue 3,1989. 

math(M) 

653 



mestbl(M) 

mestbl 
create a messages locale table 

Syntax 
mestbl [ spec file ] 

Description 

654 

The utility mestbl is provided to allow LC_MESSAGES locales to be defined. It 
reads in a specification file (or standard input if spec file is not defined), con­
taining a definition for a particular locale's response strings to yes/no queries, 
and produces a concise format table file, to be read by setlocale(S). 

The response strings may be specified as a string held within double quotes or 
as a series of characters which are specified in one of six different ways (the 
follOWing examples all specify the ASCII character" A"): 

65 -decimal 
0101 - octal 
Ox41 - hexadecimal 
'A' - quoted character 
'\101' - quoted octal 
'\x41' - quoted hexadecimal 

or a combination of both methods, for example: 
'y' "es" 

is identical to: 

To specify the response strings, the above string definitions must be preceded 
by the keyword YESSTR= for affirmative responses, and NOSTR= for negative 
responses. 

If a hash character (#) appears in any line, all characters following the hash 
character are treated as a comment and ignored up to the end of the line, 
unless the hash is within a quoted string. 

The concise format locale table is placed in a file named messages in the 
current directory. This file should be copied or moved to the correct place in 
the setlocale(S) file tree (see locale(M». To prevent accidental corruption of 
the output data, the file is created with no write permission; if the mestbl util­
ity is run in a directory containing a write-protected messages file, the utility 
will ask if the existing file should be replaced - any response other than "yes" 
or "y" will cause mestbl to terminate without overwriting the existing file. 



See also 

chrtbl(M), coltbl(M), locale(M), montbl(M), numtbl(M), setlocale(S), 
timtbl(M) 

Diagnostics 

All error messages printed are self-explanatory. 

Value added 

mestbl(M) 

mestbl is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 

655 



montbl(M) 

montbl 
create a currency locale table 

Syntax 
montbl [ spec file ] 

Description 

656 

curtbl - create a currency locale table 

The utility montbl is provided to allow new LC_MONETARY locales to be 
defined; it reads a specification file, containing a definition of the currency 
symbol for a particular locale, and produces a binary table file, to be read by 
setlocale(S), which determines the behavior of the nClanginfo(S) routine. 

The information supplied in the specification file consists of a line in the fol­
lowing format: 

CRNCYSTR = string 

The" =" can be separated from the keyword and string fields by zero or more 
space or tab characters. 

The string is a sequence of characters surrounded by quotes ("). The first 
character of the string should be "-" if the symbol is to precede the currency 
value, or " +" if it should appear after the value. Characters within the string 
can be specified both literally and using "\" escapes; the following three 
strings are equivalent: 

"+DM" literal 
"+ \x44M" hexadecimal escapes 
"+D\l1S" octal escapes 

All characters following a hash (#) are treated as a comment and ignored up to 
the end of the line, unless the hash is within a quoted string. 

The binary table output is placed in a file named currency, within the current 
directory. This file should be copied or linked to the correct place in the setlo­
cale file tree (see locale(M». To prevent accidental corruption of the output 
data, the file is created with no write permission; if the montbl utility is run in 
a directory containing a write-protected currency file, the utility will ask if the 
existing file should be replaced - any response other than "yes" or "y" will 
cause montbl to terminate without overwriting the existing file. 

If the spec file argument is missing, the specification information is read from 
the standard input. 



See also 

montbl(M) 

chrtbl(M),locale(M), msgtbl(M), nClanginfo(S), numtbl(M), setlocale(S), 
timtbl(M) 

Diagnostics 

Notes 

If the input table file cannot be opened for reading, processing will terminate 
with the error message, "Cannot open specification file". 

Any lines in the specification file which are syntactically incorrect, or contain 
an unrecognized value instead of CRNCYSTR, will cause an error message to 
be issued to the standard error output, specifying the line number on which 
the error was detected. The line will be ignored, and processing will continue. 

If the output file, currency, cannot be opened for writing, processing will ter­
minate with the error message, "Cannot create table file". 

Any error conditions encountered will cause the program to exit with a non­
zero return code; successful completion is indicated with a zero return code. 

This utility was formerly known as curtbl. A link with this name is provided 
to maintain backward compatability. 

Value added 

montbl is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 

657 



mscreen(M) 

mscreen 
serial multi screens utility 

Syntax 
mscreen [ -s ] [ -n number] [ -t ] 

Description 

mscreen allows a serial terminal to have multiple login screens similar to the 
multiscreen(M) console. 

Note: For full mscreen support the terminal must have the ability to switch 
internal screen pages on command and it must retain a separate cursor posi­
tion for each screen page. 

The options are as follows: 

-s Silent mode. This flag suppresses the startup messages, and on "dumb" 
terminals it suppresses the screen switch messages. 

-n Selects the number of serial multiscreens desired up to the maximum 
defined for the terminal type. 

-t Disables the transparent tty checking. mscreen normally exits silently if 
the terminal device name starts with the characters "ttyp". Device names 
beginning with "ttyp" are used as slave devices for mscreen. The correct 
names for the master tty devices begin with "ptyp". 

mscreen can be used on both "smart" and "dumb" terminals. Although it is 
optimized to take advantage of smart terminals with screen memory, mscreen 
also works on dumb terminals, although the screen images are not saved dur­
ing screen changes. mscreen also supports terminals with two (or more) 
serial ports that are connected to different computers. 

mscreen is designed to be invoked from the .profile or .login files. Use mscreen 
in place of the SHELL variable so that serial multiscreens can be automatic at 
login time. The "stop" and "quit" keys allow you to logout from all screens 
with a single keystroke. 

Configuration 

658 

mscreen determines the terminal type of the terminal it is invoked from by 
examining the environment variable TERM. mscreen looks in /etc/mscreencap 
or in the filename contained in the environment variable MSCREENCAP to get 
the capabilities for the terminal type. 



mscreen(M) 

The pseudo terminals assigned to the user are automatically determined at 
startup by mscreen. Manual assignment of ttys can be accomplished by creat­
ing a file in the user's home directory called .mscreenrc. 

mscreencap format 
mscreencap contains an entry for each terminal type supported. An entry 
may have several names if the support for several terminal types is the same. 
Within an entry are the key mappings for each potential pseudo terminal. 
Each pseudo terminal has a help key string, an input string (the sequence gen­
erated by the key that selects this screen), and an optional output string (the 
sequence to send to the terminal that will cause a page switch). The input and 
output strings are in a termcap like format: (the backslash and caret are spe­
ciallead in (escape) characters). 

\nnn an octal number, one to three digits are allowed 

\n newline 

\r carriage return 

\t tab 

\b backspace 

\f form feed 

\E escape (hex 1b octal 33). 

\ \ enter backslash as a data character 

\ A enter caret as a data character 

\ AX (Ctrl)x, where x can be: 
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[r_ 
Effectively the caret can generate hex 01 through hex If. 

If a terminal type has no output strings then it is assumed to be a dumb termi­
nal that does not have multiple internal memory pages. 

There are five special entries that allow the user to define keys to support the 
other functions of mscreen. They are the "help" key (prints a list of all of the 
keys that are currently available and their functions), the "whd' key (prints 
the name of the current screen), the "stop" key (terminates mscreen and 
returns a good (zero) shell return code), and "quit" key (terminates mscreen 
and returns a bad (non-zero) shell return code and the dummy entry that is 
used for terminals with multiple ports. 

659 



mscreen(M) 

660 

The format is: 
#this is a comment and may only appear between entries 
entrynamelaliasllaliasl ... laliasn: 

:specialname,helpname,inputstring,pageselectstring: 
:specialname,helpname,inputstring,pageselectstring: 

entrynamelaliasllaliasl ... laliasn: 
:specialname,helpname,inputstring,pageselectstring: 
:specialname,helpname,inputstring,pageselectstring: 

The specialname is empty for real screen entries. See the provided 
/etc/mscreencap for examples . 

. mscreenrc format 

.mscreenrc contains a list of ttynames if the user wants to allocate a fixed set of 
ttys for use: 

ttypO 
ttypl 
ttypn 

Shell return codes and auto login/logout 
mscreen exits with a bad (non-zero) return code if there is an error or when 
the "quit" key is pressed. The "stop" key causes mscreen to exit with a good 
(zero) return code. This allows users to place mscreen in the .login or .profile 
files. The .login or .profile files should set up an automatic logout if the 
mscreen return code is good (zero). The following is a csh sample invocation 
of mscreen for a .login file: 

mscreen-n4 
if ($status == 0) logout 

The single key logout feature of mscreen works as if a normal logout was 
entered on each pseudo-terminal. A hangup signal is sent to all of the pro­
cesses on all the pseudo terminals. 

Multiple port option 
mscreen provides a dummy entry type. It allows mscreen to be placed in an 
inactive state while the user uses his terminal to converse through another 
(physical) I/O port to another computer. See the provided /etc/mscreentermmap 
for an example. To use it, you must take the example and configure it for your 
needs. 

mscreen driver 
The mscreen driver is already installed in the UNIX kernel with eight pseudo 
terminals available for use. You must enable a pseudo terminal before you 
can use it. See the link-kit instructions for relinking the kernel to have more 
available pseudo terminals. 



Notes 

See also 

mscreen has a VTIM timeout of 1/5 second for input strings. 

mscreen has a limit of twenty multiscreens per user. 

mscreen(M) 

You should not switch screen pages in mscreen when output is occurring 
because if an escape sequence is cut in half it may leave the terminal in an 
indeterminate state and distort the screen image. 

Terminals that save the cursor location for each screen often do not save states 
such as insert mode, inverse video, and others. For example, you should not 
change screens if you are in insert mode in vi, and you should not change 
screens during an inverse video output sequence. 

For inactive screens (screens other than the current one) mscreen saves the 
last 2048 characters of data (2K). Data older than this is lost. This limit occa­
sionally results in errors for programs that require a memory of more data 
than this. The user-defined screen redraw key restores the screen to normal 
appearance. 

mscreen depends on the pseudo terminal device names starting with "ttyp" 
for the slave devices and "ptyp" for the master devices. The number of trail­
ing characters in the device name is not significant. 

enable(C), multiscreen(M) 

"Administering serial terminals" in the System Administrator's Guide 

Value added 

mscreen is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 

661 



multiscreen(M) 

multiscreen 
multiple screens (device files) 

Syntax 
(Alt)(Fn) 
(Alt)(Ctrl)(Fn) 
(Alt)(Shift)(Fn) 
(Alt)(Ctrl)(Shift)(Fn) 

Description 

Access 

662 

With the multiscreen feature, a user can access up to twelve different 
"screens," each corresponding to a separate device file. Each screen can be 
viewed one at a time through the primary monitor video display. 

The number of screens on a system depends upon the amount of memory in 
the computer. The system displays the number of enabled screens during the 
boot process. 

To see the next consecutive screen, enter: 
(Ctrl)(PrtSc) 

To move to any screen from any other screen, enter: 
(Alt)(Fn) or (Alt)(Ctrl)(Fn) or 
(Alt)(Shift)(Fn) 
(Alt)(Fn) or (Alt)(Ctrl)(Fn) (screens 1-12) 
(Alt)(Shift)(Fn) or (Alt)(Ctrl)(Shift)(Fn) (screens 11-16, 7-12) 

where n is the number of one of the" F" function keys on the primary monitor 
keyboard. For example: 

(Alt)(F2) 

selects tty02, and all output in that device's screen buffer is displayed on the 
monitor screen. 

The second form (using the (Shift) key) permits access to screens 11 and 12 on 
keyboards that have only ten function keys. It is possible to configure the ker­
nel for up to 16 screens, but 12 is the default. 

The function key combinations used to display the various screens are 
defined in the keyboard mapping file. The /usr/lib/keyboard/keys or other 
mapkey(ADM) file can be modified to allow different key combinations to 
change multiscreens. Use the map key utility to create a new keyboard map. 



File 

See also 

Notes 

multiscreen(M) 

/dev/ttylOl-12] multiscreen devices 
(number available depends on system memory) 

mapkey(ADM), keyboard(HW), screen(HW), serial(HW), stty(C) 

Any system error messages are normally output on the console device file 
(/dev/console). When an error message is output, the video display reverts to 
the console device file, and the message is displayed on the screen. The con­
sole device is the only teletype device open during the system boot sequence 
and when in single-user, or system maintenance mode. 

Limitations to the number of multiscreens available on a system does not 
affect the number of serial lines or devices available. See serial(M) for infor­
mation on available serial devices. 

Note that the keystrokes given here are the default, but your keyboard may be 
different. If so, see keyboard(M) for the appropriate substitutes. Also, any 
key can be programmed to generate the screen switching sequences by using 
the map key utility. 

Value added 

multiscreen is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 

663 



numtbl(M) 

numtbl 
create a numeric locale table 

Syntax 
numtbl [ tableJile ] 

Description 

664 

This utility will create a numeric locale table to be interpreted by the 
setlocale(S) system call. 

The tableJile contains information about the numeric locale in a user read­
able form. 

At present, two pieces of information can be supplied. These are: the character 
to be used as a decimal place marker (radix character), and the character to be 
used as a thousands delimiter, for example the commas in 1,000,000. To 
specify these, there must be lines, in the table file, of the form: 

DECIMAL=d 
THOUSANDS=tXXX 

Where "d" is the character to be used as the decimal place mark and" t" is the 
character to be used as the thousands delimiter. The characters "d" and "t" 
may be specified in six different ways. The following lines show different for­
mats for the letter "b". 

98 - decimal 
0142 - octal 
Ox62 - hexadecimal 
'b' - quoted character 
'\0142' - quoted octal 
'\x62' - quoted hexadecimal 

Any line starting with a hash (#) is treated as a comment. 

The output is a file, called numeric, which is placed in the current directory. 
This file is in a form which can be interpreted by the setlocale(S) system call. 
For more information on where this file should be placed, please see 
locale(M). 

If no table file is specified, the information is taken from the standard input. 
The format of the information is identical. 

If either DECIMAL or THOUSANDS is not specified, its value will default to " . " 
or " , ", respectively. 



numtbl(M) 

See also 

locale(M), environ(M) 

Diagnostics 

Notes 

Any lines of input which are in the wrong format will cause a warning to be 
issued on the terminal, but will not terminate the program. 

"Character syntax error' will be issued on the terminal if the format of the 
character specification does not match one of those specified above. The pro­
gram will then terminate. 

If the input table file cannot be opened for reading, the program will also ter­
minate with the error message, "Cannot open table file". 

If the output file, numeric, cannot be opened for writing, the program will ter­
minate with the error message, "Cannot create numeric locale file". 

The thousands delimiter is not currently used within any of the standard 
UNIX libraries or utilities, although it can be accessed by application programs 
using the nl_langinfo(S) function. 

The string RADIX CHAR may be used as an alternative to DECIMAL, and 
THOUSEP as an alternative to THOUSANDS, if required. These alternatives 
are provided for consistency with the identifiers used by nClanginfo(S). 

Value added 

numtbl is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 

665 



pro[(M) 

prof 
profile within a function 

Syntax 
#define MARK 
#include <prof.h> 

void MARK (name) 

Description 

666 

MARK will introduce a mark called name that will be treated the same as a 
function entry point. Execution of the mark will add to a counter for that 
mark, and program-counter time spent will be accounted to the immediately 
preceding mark or to the function if there are no preceding marks within the 
active function. 

name may be any valid C identifier. Each name in a single compilation must 
be unique, but may be the same as any ordinary program symbol. 

For marks to be effective, the symbol MARK must be defined before the 
header file <prof.h> is included. This may be defined by a preprocessor direc­
tive as in the synopsis or by a command line argument, that is: 

cc -p -DMARK foo.c 

If MARK is not defined, the MARK(name) statements may be left in the source 
files containing them and will be ignored. 



Examples 

See also 

proteM) 

In this example, marks can be used to determine how much time is spent in 
each loop. Unless this example is compiled with MARK defined on the com­
mand line, the marks are ignored. 

#include <prof.h> 
foo ( ) 
{ 

int i, j; 

MARK(loopl); 
for (i = 0; i < 2000; itt) { 

MARK(loop2); 
for (j = 0; j < 2000; jtt) { 

prof(C), profil(S), monitor(S) 

667 



profile(M) 

profile 
set up an environment at login time 

Description 

Files 

See Also 

668 

The optional file, .profile, permits automatic execution of commands whenever 
a user logs in. The file is generally used to personalize a user's work environ­
ment by setting exported environment variables and terminal mode (see 
environ(M». 

When a user logs in, the user's login shell looks for .profile in the login direc­
tory. If found, the shell executes the commands in the file before beginning 
the session. The commands in the file must have the same format as if they 
were entered at the keyboard. Any line beginning with the number sign (#) is 
considered a comment and is ignored. The following is an example of a typi­
cal file: 

# Tell me when new mail comes in 
MAIL=/usr/mail/myname 
# Add my /bin directory to the shell search sequence 
PATH=$PATH:$HOME/bin 
# Make some environment variables global 
export MAIL PATH TERM 
# Set file creation mask 
umask 22 

Note that the file fete/profile is a system-wide profile that, if it exists, is exe­
cuted for every user before the user's .profile is executed. 

$HOME/ .profile 
/etc/profile 

env(C), login(M), mail(C), sh(C), stty(C), su(C), environ(M) 



ptmx(M) 

ptmx, pts??? 
STREAMS master pseudo-tty device 

Description 

Files 

See also 

Notes 

The file /dev/ptmx is the device node used by applications to open STREAMS­
based master pseudo-tty devices. This is a single device node which allows 
access to multiple devices via the clone(M) driver. Successive open(S) calls to 
/dev/ptmx return different file descriptors, each referring to a new cloned de­
vice. 

The master pseudo-tty device opened is used to transfer data between the 
application and one of the slave pseudo-tty nodes /dev/pts???, where ??? is a 3 
digit decimal number with leading zeros. 

/dev/ptmx 
/dev/pts??? 

clone(M) 

STREAMS Programmer's Guide 
STREAMS Primer 

Although /dev/ptmx is referred to as a pseudo-tty, the master device does not 
have tty characteristics and therefore cannot become the controlling tty of a 
process group. The slave side of the connection does have the characteristics 
of a real tty and can become the controlling tty of a process group. 

669 



rmb(M) 

rmb 
remove extra blank lines from a file 

Syntax 

lusrlbinlrmb 

Description 

See also 

Notes 

lusr/binlrmb acts as a filter to remove any series of blank lines greater than 
two lines in length. This means that all long sequences of blank lines will be 
reduced to two blank lines. This is particularly useful for cleaning nroff(CT) 
output of blank lines before putting the output in a file. 

man(C), nroff(CT) 

Because lusrlbinlrmb is a filter, it must be used within a piped command 
sequence as shown in the following examples: 

cat infile I lusrlbinlrmb > outfile 

nroff infile I lusrlbinlrmb > outfile 
It cannot be used in the form lusr/binlrmb filename. 

Value added 

670 

rmb is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 



scanon(M) 

scanon,scanoff 
enable and disable scancode-to-character mapping 

Syntax 

scanon [ /dev/ttyline ... ] 

scanoff [ /dev/ttyline ... ] 

Description 

Files 

Notes 

See also 

The scanon script simultaneously sets the terminal and the serial line to send 
PC scancodes (turns on PC-scancode mode). The scanoff script turns off PC­
scancode mode. With no arguments, scanon and scanoff affect the current tty. 

scanon also calls the mapstr function to set up the strings for the terminals 
function keys. 

/etc/ttype 
/usr/lib/keyboard/strings.d/* 

When scanon or scanoff are called without parameters, the $TERM environ­
ment variable is used to determine the terminal type. When a device is 
specified on the command line, the connect terminal type for the device must 
be entered in the /etc/ttytype file for the command to work correctly. Note that 
for a Wyse-60 terminal the type (or $TERM, if the command is run from the 
terminal itself) must be set to wy60-pc. 

stty(C), tput(C), mapstr(M), ttytype(F) 

671 



streamio(M) 

streamio 
STREAMS ioctl commands 

Syntax 
#indude<stropts.h> 
int ioctl (fildes, command, arg) 
int fildes, command; 

Description 

STREAMS (see intro(S» ioctl commands are a subset of ioctl(S) system calls 
which perform a variety of control functions on "streams". The arguments 
command and arg are passed to the file designated by fildes and are inter­
preted by the "stream head". Certain combinations of these arguments may 
be passed to a module or driver in the stream. 

fildes is an open file descriptor that refers to a stream. command determines 
the control function to be performed as described below. arg represents addi­
tional information that is needed by this command. The type of arg depends 
upon the command, but it is generally an integer or a pointer to a command­
specific data structure. 

Since these STREAMS commands are a subset of ioctl, they are subject to the 
errors described there. In addition to those errors, the call will fail with ermo 
set to EINV AL, without processing a control function, if the stream referenced 
by fildes is linked below a multiplexer, or if command is not a valid value for a 
stream. 

Also, as described in ioctl, STREAMS modules and drivers can detect errors. In 
this case, the module or driver sends an error message to the stream head con­
taining an error value. This causes subsequent system calls to fail with ermo 
set to this value. 

Command functions 

672 

The following ioctl commands, with error values indicated, are applicable to 
all STREAMS files: 

CPUSH Pushes the module whose name is pointed to by arg onto the 
top of the current stream, just below the stream head. It then 
calls the open routine of the newly-pushed module. On failure, 
ermo is set to one of the following values: 

[EINVAL] Invalid module name. 
[EFAULT] 

[ENXIOJ 

[ENXIO) 

arg points outside the allocated address space. 
Open routine of new module failed. 
Hangup received on fildes. 



I]OP 

CLOOK 

CFLUSH 

CSETSIG 

streamio(M) 

Removes the module just below the stream head of the stream 
pointed to by fildes. arg should be 0 in an CPOP request. On 
failure, ermo is set to one of the following values: 

[EINVAL] No module present in the stream. 

[ENXIO] Hangup received on fildes. 

Retrieves the name of the module just below the stream head 
of the stream pointed to by fildes, and places it in a null ter­
minated character string pointed at by argo The buffer pointed 
to by arg should be at least FMNameSZ+l bytes long. An 
#indude <sys/conf.h> declaration is required. On failure, 
ermo is set to one of the following values: 

[EFAULT] argpoints outside the allocated address space. 
[EINVAL] No module present in stream. 

This request flushes all input and/or output queues, depend­
ing on the value of argo Legal arg values are: 

FLUSHR Flush read queues. 
FLUSHW 

FLUSHRW 

Flush write queues. 

Flush read and write queues. 

On failure, ermo is set to one of the following values: 

[ENOSR] Unable to allocate buffers for flush message due 
to insufficient STREAMS memory resources. 

[EINVAL] 

[ENXIO] 

Invalid arg value. 

Hangup received on fildes. 

Informs the stream head that the user wishes the kernel to 
issue the SIGPOLL signal (see signal(S) and sigset(S» when a 
particular event has occurred on the stream associated with 
fildes. CSETSIG supports an asynchronous processing capa­
bility in STREAMS. The value of arg is a bitmask that specifies 
the events for which the user should be signaled. It is the 
bitwise-OR of any combination of the following constants: 

S_INPUT A non-priority message has arrived on a stream 
head read queue, and no other messages existed 
on that queue before this message was placed 
there. This is set even if the message is of zero 
length. 

S_HIPRI A priority message is present on the stream 
head read queue. This is set even if the message 
is of zero length. 

S_OUTPUT The write queue just below the stream head is 
no longer full. This notifies the user that there is 
room on the queue for sending (or writing) data 
downstream. 

673 



streamio(M) 

CGETSIG 

CFIND 

CPEEK 

674 

A STREAMS signal message that contains the 
SIGPOLL signal has reached the front of the 
stream head read queue. 

A user process may choose to be signaled only of priority mes­
sages by setting the arg bitmask to the value S_HIPRI. 

Processes that wish to receive SIGPOLL signals must explicitly 
register to receive them using CSETSIG. If several processes 
register to receive this signal for the same event on the same 
Stream, each process will be signaled when the event occurs. 

If the value of arg is zero, the calling process will be unre­
gistered and will not receive further SIGPOLL signals. On 
failure, ermo is set to one of the following values: 
[EINVAL] arg value is invalid or arg is zero and process is 

not registered to receive the SIGPOLL signal. 
[EAGAIN] Allocation of a data structure to store the signal 

request failed. 

Returns the events for which the calling process is currently 
registered to be sent a SIGPOLL signal. The events are 
returned as a bitmask pointed to by arg, where the events are 
those specified in the description of CSETSIG above. On 
failure, ermo is set to one of the following values: 
[EINV AL] Process not registered to receive the SIGPOLL 

signal. 
[EFAULT] arg points outside the allocated address space. 

Compares the names of all modules currently present in the 
stream to the name pointed to by arg, and returns 1 if the 
named module is present in the stream. It returns 0 if the 
named module is not present. On failure, ermo is set to one of 
the following values: 
[EFAULT] arg points outside the allocated address space. 
[EINV AL] arg does not contain a valid module name. 

Allows a user to retrieve the information in the first message 
on the stream head read queue without taking the message off 
the queue. arg points to a strpeek structure which contains the 
following members: 

struct strbuf ctlbuf; 
struct strbuf databuf; 
long flags; 

The maxI en field in the ctlbuf and databuf strbuf structures 
(see getmsg(S» must be set to the number of bytes of control 
information and/or data information, respectively, to retrieve. 
If the user sets flags to RS_HIPRI, CPEEK will only look for a 
priority message on the stream head read queue. 



CSRDOPT 

streamio(M) 

CPEEK returns 1 if a message was retrieved, and returns 0 if no 
message was found on the stream head read queue, or if the 
RS_HIPRI flag was set in flags and a priority message was not 
present on the stream head read queue. It does not wait for a 
message to arrive. On return, ctlbuf specifies information in 
the control buffer, databuf specifies information in the data 
buffer, and flags contains the value 0 or RS_HIPRI. On failure, 
ermo is set to one of the following values: 

[EFAULT] arg points, or the buffer area specified in ctlbuf 
or databuf is, outside the allocated address 
space. 

[EBADMSG] Queued message to be read is not valid for 
CPEEK 

Sets the read mode using the value of the argument argo Legal 
arg values are: 

RNORM Byte-stream mode, the default. 

RMSGD 

RMSGN 

Message-discard mode. 
Message-nondiscard mode. 

Read modes are described in read(S). On failure, ermo is set to 
the following value: 

[EINVAL] arg is not one of the above legal values. 

CGRDOPT Returns the current read mode setting in an int pointed to by 
the argument argo Read modes are described in read(S). On 
failure, ermo is set to the following value: 

[EFAULT] argpoints outside the allocated address space. 

CNREAD Counts the number of data bytes in data blocks in the first mes­
sage on the stream head read queue, and places this value in 
the location pointed to by argo The return value for the com­
mand is the number of messages on the stream head read 
queue. For example, if zero is returned in arg, but the ioctl 
return value is greater than zero, this indicates that a zero­
length message is next on the queue. On failure, ermo is set to 
the following value: 

[EFAULT] arg points outside the allocated address space. 

CFDINSERT Creates a message from user specified buffer(s), adds informa­
tion about another stream and sends the message downstream. 
The message contains a control part and an optional data part. 
The data and control parts to be sent are distinguished by 
placement in separate buffers, as described below. 

675 



streamio(M) 

676 

arg points to a strfdinsert structure which contains the fol­
lowing members: 

struct strbuf ctlbuf; 
struct strbuf databuf; 
long flags; 
int fildes; 
int offset; 

The len field in the ctlbuf strbuf structure (see putmsg(S» 
must be set to the size of a pointer plus the number of bytes of 
control information to be sent with the message. fildes in the 
strfdinsert structure specifies the file descriptor of the other 
stream. offset, which must be word-aligned, specifies the 
number of bytes beyond the beginning of the control buffer 
where CFDINSERT will store a pointer. This pointer will be 
the address of the read queue structure of the driver for the 
stream corresponding to fildes in the strfdinsert structure. 
The len field in the databuf strbuf structure must be set to the 
number of bytes of data information to be sent with the mes­
sage or zero if no data part is to be sent. 

flags specifies the type of message to be created. A non­
priority message is created if flags is set to 0, and a priority 
message is created if flags is set to RS_HIPRI. For non-priority 
messages, CFDINSERT will block if the stream write queue is 
full due to internal flow control conditions. For priority mes­
sages, CFDINSERT does not block on this condition. For non­
priority messages, CFDINSERT does not block when the write 
queue is full and O_NDELAY is set. Instead, it fails and sets 
ermo to EAGAIN. 

CFDINSERT also blocks, unless prevented by lack of internal 
resources, waiting for the availability of message blocks in the 
stream, regardless of priority or whether O_NDELAY has been 
specified. No partial message is sent. On failure, ermo is set to 
one of the following values: 
[EAGAIN] A non-priority message was specified, the 

O_NDELAY flag is set, and the stream write 
queue is full due to internal flow control condi­
tions. 

[ENOSR] Buffers could not be allocated for the message 

[EFAULT] 

that was to be created due to insufficient 
STREAMS memory resources. 
arg points, or the buffer area specified in ctlbuf 
or databuf is, outside the allocated address 
space. 



CSTR 

[EINVAL] 

[ENXIO] 

[ERANGE] 

streamio(M) 

One of the following: fildes in the strfdinsert 
structure is not a valid, open stream file descrip­
tor; the size of a pointer plus offset is greater 
than the len field for the buffer specified 
through ctlptr; offset does not specify a prop­
erly aligned location in the data buffer; an unde­
fined value is stored in flags. 

Hangup received on tildes of the ioctl call or 
fildes in the strfdinsert structure. 
The len field for the buffer specified through 
databuf does not fall within the range specified 
by the maximum and minimum packet sizes of 
the topmost stream module, or the len field for 
the buffer specified through databuf is larger 
than the maximum configured size of the data 
part of a message, or the len field for the buffer 
specified through ctlbuf is larger than the max­
imum configured size of the control part of a 
message. 

CFDINSERT can also fail if an error message was received by 
the stream head of the stream corresponding to fildes in the 
strfdinsert structure. In this case, ermo will be set to the 
value in the message. 

Constructs an internal STREAMS ioctl message from the data 
pointed to by arg and sends that message downstream. 

This mechanism is provided to send user ioctl requests to 
downstream modules and drivers. It allows information to be 
sent with the ioctl and will return to the user any information 
sent upstream by the downstream recipient. CSTR blocks until 
the system responds with either a positive or negative ack­
nowledgment message or until the request "times out" after 
some period of time. If the request times out, it fails with ermo 
set to ETIME. 

At most, one CSTR can be active on a stream. Further CSTR 
calls will block until the active CSTR completes at the stream 
head. The default timeout interval for these requests is 15 
seconds. The O_NDELAY (see open(S» flag has no effect on 
this call. 

To send requests downstream, arg must point to a strioctl 
structure which contains the following members: 

int ic cmd; /* downstream command */ 
int ic_timout; /* ACK/NAK timeout */ 
int ic len; - /* length of data arg */ 
char *ic_dp; /* ptr to data arg */ 

677 



streamio(M) 

CSENDFD 

678 

ic cmd is the internal iodl command intended for a down­
stream module or driver; and ic timout is the number of 
seconds (-1 = infinite, 0 = use default, >0 = as specified) an 
CSTR request will wait for acknowledgment before timing out. 
ic_len is the number of bytes in the data argument and ic_dp 
is a pointer to the data argument. The ic_len field has two 
uses: on input, it contains the length of the data argument 
passed in, and on return from the command, it contains the 
number of bytes being returned to the user (the buffer pointed 
to by ic _ dp should be large enough to contain the maximum 
amount of data that any module or the driver in the stream can 
return). 

The stream head will convert the information pointed to by the 
strioctl structure to an internal ioctl command message and 
send it downstream. 

On failure, ermo is set to one of the following values: 
[ENOSR] Unable to allocate buffers for the ioctl message 

due to insufficient STREAMS memory resources. 
[EFAULT] arg points, or the buffer area specified by ic _ dp 

and ic _len (separately for data sent and data 
returned), is outside the allocated address space. 

[EINVAL] ic_len is less than 0 or ic_len is larger than the 
maximum configured size of the data part of a 
message or ic_timout is less than -1. 

[ENXIO] Hangup received on fildes. 

[ETIME] A downstream ioctl timed out before ack­
nowledgment was received. 

An CSTR can also fail while waiting for an acknowledgment if 
a message indicating an error or a hangup is received at the 
stream head. In addition, an error code can be returned in the 
positive or negative acknowledgment message, in the event 
that the ioctl command sent downstream fails. For these cases, 
CSTR will fail with ermo set to the value in the message. 

Requests the stream associated with fildes to send a message, 
containing a file pointer, to the stream head at the other end of 
a stream pipe. The file pointer corresponds to arg, which must 
be an integer file descriptor. 

CSENDFD converts arg into the corresponding system file 
pointer. It allocates a message block and inserts the file pointer 
in the block. The user id and group id associated with the 
sending process are also inserted. This message is placed 
directly on the read queue (see intro(S» of the stream head at 
the other end of the stream pipe to which it is connected. On 
failure, ermo is set to one of the following values: 



CRECVFD 

[EAGAIN] 

[EAGAIN] 

[EBADF] 

[EINVAL] 

[ENXIO] 

streamio(M) 

The sending stream is unable to allocate a mes­
sage block to contain the file pointer. 
The read queue of the receiving stream head is 
full and cannot accept the message sent by 
CSENDFD. 

arg is not a valid, open file descriptor. 
fildes is not connected to a stream pipe. 
Hangup received on fildes. 

Retrieves the file descriptor associated with the message sent 
by an CSENDFD ioctl over a stream pipe. arg is a pointer to a 
data buffer large enough to hold an strrecvfd data structure 
containing the following members: 

int fd; 
unsigned short uid; 
unsigned short gid; 
char fill[8]; 

fd is an integer file descriptor. uid and gid are the user id and 
group id, respectively, of the sending stream. 

If O_NDELAY is not set (see open(S», CRECVFD will block 
until a message is present at the stream head. If O_NDELAY is 
set, CRECVFD will fail with ermo set to EAGAIN if no message 
is present at the stream head. 

If the message at the stream head is a message sent by an 
CSENDFD, a new user file descriptor is allocated for the file 
pointer contained in the message. The new file descriptor is 
placed in the fd field of the strrecvfd structure. The structure 
is copied into the user data buffer pointed to by argo On 
failure, ermo is set to one of the following values: 
[EAGAIN] A message was not present at the stream head 

read queue, and the O_NDELAY flag is set. 
[EBADMSG] The message at the stream head read queue was 

not a message containing a passed file descrip­
tor. 

[EFAULT] arg points outside the allocated address space. 
[EMFILE] No files file descriptors are currently open. 
[ENXIO] Hangup received on fildes. 

679 



streamio(M) 

680 

The following two commands are used for connecting and disconnecting mul­
tiplexed STREAMS configurations. 

CLINK 

CUNLINK 

Connects two streams, where fildes is the file descriptor of the 
stream connected to the multiplexing driver, and arg is the file 
descriptor of the stream connected to another driver. The 
stream designated by arg gets connected below the multiplex­
ing driver. CLINK requires the multiplexing driver to send an 
acknowledgment message to the stream head regarding the 
linking operation. This call returns a multiplexer ID number 
(an identifier used to disconnect the multiplexer, see 
CUNLINK) on success, and a -Ion failure. On failure, ermo is 
set to one of the following values: 
[ENXIO] Hangup received on fildes. 
[ETIME] 

[EAGAIN] 

[ENOSR] 

[EBADF] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

Time out before acknowledgment message was 
received at stream head. 

Temporarily unable to allocate storage to per­
form the CLINK. 

Unable to allocate storage to perform the CLINK 
due to insufficient STREAMS memory resources. 

arg is not a valid, open file deSCriptor. 
fildes stream does not support multiplexing. 

arg is not a stream, or is already linked under a 
multiplexer. 
The specified link operation would cause a 
"cycle" in the resulting configuration; that is, if a 
given stream head is linked into a multiplexing 
configuration in more than one place. 

An CLINK can also fail while waiting for the multiplexing 
driver to acknowledge the link request, if a message indicating 
an error or a hangup is received at the stream head of fildes. In 
addition, an error code can be returned in the positive or nega­
tive acknowledgment message. For these cases, CLINK will 
fail with ermo set to the value in the message. 

Disconnects the two streams specified by fildes and argo fildes 
is the file descriptor of the stream connected to the multiplex­
ing driver. fildes must correspond to the stream on which the 
ioctl CLINK command was issued to link the stream below the 
multiplexing driver. arg is the multiplexer ID number that was 
returned by the CLINK. If arg is -1, then all streams which 
were linked to fildes are disconnected. As in CLINK, this com­
mand requires the multiplexing driver to acknowledge the 
unlink. On failure, ermo is set to one of the following values: 



See also 

[ENXIO] 

[ETIME] 

[ENOSR] 

[EINVAL] 

streamio(M) 

Hangup received on tildes. 
Time out before acknowledgment message was 
received at stream head. 

Unable to allocate storage to perform the 
CUNLINK due to insufficient STREAMS memory 
resources. 

arg is an invalid multiplexer ID number or tildes 
is not the stream on which the CLINK that 
returned arg was performed. 

An CUNLINK can also fail while waiting for the multiplexing 
driver to acknowledge the link request, if a message indicating 
an error or a hangup is received at the stream head of fildes. In 
addition, an error code can be returned in the positive or nega­
tive acknowledgment message. For these cases, CUNLINK will 
fail with ermo set to the value in the message. 

close(S), fcnt1(S), getmsg(S), intro(S), ioctl(S), open(S), poll(S), putmsg(S), 
read(S), signal(S), sigset(S), write(S) 

STREAMS Programmer's Guide 
STREAMS Primer 

Diagnostics 

Unless specified otherwise above, the return value from ioctl is 0 upon suc­
cess and -1 upon failure with ermo set as indicated. 

681 



string(M) 

string 
access boot, configuration, or package string 

Description 

See also 

There are three string devices (the number in the first column is the string de­
vice's minor device number): 

1. Idev/string/boot Read/write access to the bootstring. 
2. /dev/string/pkg Read-only access to the package string. 
3. /dev/string/efg Read-only access to the configuration string. 

The bootstring (bootstring) is the string built by /boot from user input and 
from fete/default/boot. The package string (pkgstring) lists what has been 
linked into the kernel at boot time. The configuration string (cfgstring) is a 
concatenation of all the output from printcfg(K). 

The routines getbsvalue(K), getbsflag(K), getpkgvalue(K), and getpkgflag(K) 
provide an interface to Idev/string/boot and /dev/string/pkg. /dev/string/efg can 
only be accessed directly. 

Reading from the devices is non-blocking and non-destructive. 

boot(HW), cfgstart(K), close(S), getbsflag(K), getbsflag(S), getbsvalue(K), 
getbsvalue(S), getcfgline(K), getpkgvalue(K), getpkgvalue(S), getpkgflag(K), 
getpkgflag(S), open(S), printcfg(K), read(S), write(S) 

Deviee Drivers Writer's Guide 

Value added 

682 

/dev/string is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 



subsystem(M) 

subsystem 
security subsystem component description 

Description 

The operating system includes extensions to the UNIX system that segregate 
commands and data which are used to implement system services. Many of 
these commands have been grouped into subsystems. A group of commands 
and data performing similar security relevant tasks or together protecting a 
set of resources is termed a protected subsystem. 

The operating system has the following protected subsystems: 

• Memory 
• Terminal 

• Line Printer 

• Backup 
• Authentication 

• Cron 
• Audit 

The description of each subsystem includes the following information: 

Group and Subsystem Authorization Name 

Commands 

Each subsystem is associated with a subsystem authoriza­
tion. The commands and files associated with the subsys­
tem take the subsystem authorization name as their group 
name. Users wishing to use the subsystem must have the 
appropriate subsystem authorization. 

Each subsystem has a set of commands. 

Helper Programs Some subsystems use helper programs. These are pro­
grams which call other programs. 

Data Files A subsystem's programs use permanent and temporary 
data files. 

The administrative function$ associated with each subsystem can be selected 
from the sysadmsh menu. Help information is available with each option. 

The memory subsystem 

The mem subsystem authorization is defined to grant users the ability to use 
the memory subsystem commands to view total system activity. Users 
without this authorization may only view their own processes. Traditional 
UNIX allowed any user to view total system activity. This authorization was 
introduced to allow the administrator to isolate users, and restrict their ability 
to sense the activity of other users. 

683 



subsystem(M) 

684 

Mem authorization and group name 
In order to look at information in the mem subsystem, an administrator must 
have the mem authorization. The administrator responsible for maintaining 
users' processes should be the only person with this authorization. This 
administrator may need to list users' processes in order to select one or more 
of them for removal (using the kill(e) command). The following is a table of 
command modifications managed by the mem authorization: 

Command With mem Without mem 
ps lists all processes 

(standard behavior) 
list processes owned by login user 10, or 
owned by real user 10 of current process 
on current terminal 

whodo lists all processes 
(standard behavior) 

list processes on terminals owned by 
user 

ipcs lists all objects 
(standard behavior) 

list objects for which user is creator or 
owner or for which user has read access 

sysadmsh selection 
The Memory subsystem does not have a sysadmsh selection as the Printer 
subsystem does. The Memory subsystem includes the system tables that con­
tain information about memory and processes, which is accessed by several 
commonly-used UNIX utilities. 

Commands 
ps 

whodo 

ipcs 

crash 

An administrator with mem authorization can use the ps(e) com­
mand to list all users' processes. Using the command without the 
mem authorization shows only those processes associated with 
the user invoking it. 

An administrator with mem authorization can use the 
whodo(ADM) command to list processes by terminal. Someone 
using the command without mem authorization sees only the pro­
cesses associated with their terminal. 

An administrator with mem authorization can use this command 
to view active semaphores, shared memory segments and mes­
sage queues (known collectively as IPe entities). Without mem 
authorization, a user is restricted to viewing IPe entities that they 
own or created and those which have read permission. Even enti­
ties that are writable, but not readable, cannot be displayed. 

An administrator with mem authorization can run the crash pro­
gram to report information on kernel data structures. The report 
includes security information. 

An administrator can search for information by running crash and 
specifying an identifier name. 



subsystem(M) 

Helper programs 
timex Because timex uses internal kernel data structures, it must be run 

from an account in the mem group. 

Accounting programs 
Accounting programs such as sa(ADM), acdcom(ADM), and sar(ADM) also 
use information in the mem subsystem. These programs must be run from an 
account in the mem group. 

Data files 
All files through which programs may access kernel memory are protected 
with owner root, group mem, and mode -r-r-----. As for all files, the root 
account bypasses the discretionary check on these files, and root programs 
may violate the System Architecture requirement. All root programs (those 
running with effective ID equal to root) must take care when running other 
programs, because those programs inherit the right to modify the running 
copy of the TCB. The following files are protected by the mem subsystem 
according to the above owner, group, and mode: 

/etc/ps.data cache relevant parts of the kernel symbol table to avoid lengthy 
lookups for each run of ps. 

/dev/mem special device allowing access to physical memory including the 
operating system and all resident processes. 

/dev/kmem special device allowing access to the operating system image. 

Idev/swap special file for the disk partition used as the system swap de­
vice, storing memory images of non-resident processes. 

/unix executable file containing the binary copy of the operating sys­
tem. Writing this file modifies the executing copy of the TCB 
when the system is rebooted. 

The terminal subsystem 

The terminal subsystem protects the use of terminals by restricting the use of 
the write( C) and mesg( C) commands. 

Terminal authorization and group name 
In order to send information from one terminal to another, the user sending 
information must have the terminal authorization and the receiving terminal 
must be configured to accept information from other terminals. 

All terminals belong to the terminal group. Each terminal is owned by and 
can only be used by a given user identity. 

685 



subsystem(M) 

686 

sysadmsh selection 
The terminal subsystem does not control sysadmsh functions. 

Commands 
When an unauthorized user uses the write command, any special control 
codes or escape sequences he sends are trapped and converted to presentable 
ASCII characters. All control codes are output as 

~(char) 

where (char) is the character whose ASCII code is the character sent plus 0100. 
For instance, ASCII NUL (0), SOH (1), and ACK (6) are output as A@ (@ is 0100), 
AA (A is 0101) and AF respectively on the recipient's terminal. The ASCII ESC 
(033) character writes as A[ and the DEL (0177) character writes as ~? 

As an example of using the trusted write command, assume there is a 
hypothetical terminal that silently stores any string between two ASCII DC4 
(024) characters. This string is transmitted from the same hypothetical termi­
nal to the computer when the terminal receives a DC2 (022) character. 
Assume that a devious user knows the recipient of a write command has this 
terminal and tries to corrupt the recipient's session by sending a damaging 
message. If this user did not have the terminal authorisation, the recipient 
would see the message: 

How are y·Trm *·Tou today·E? 

The recipient would be alerted to an attempt on his session. In addition, the 
terminal subsystem audits this event so you can locate suspect activity. On 
the other hand, if the sending user has the terminal authorization, the reci­
pient would see the message: 

How are you today? 

The following commands are modified to support the terminal subsystem. 

Command 
write 

mesg 

With Terminal 
unrestricted 
(standard behavior) 
changes sense of group 
write permission only 

Without Terminal 
control codes output as ~(char) 

same 

A person with terminal authorization can use the write(C) command to write 
to another terminal and send control codes and escape sequences. A mali­
cious user might use the command to send malicious commands and breach 
system security. 

Without the authorization, a user can use the write(C) command, but control 
codes and escape sequences are displayed on the receiving terminal in their 
ASCII form, thus warning the recipient of suspicious activity. Such activity is 
recorded by the audit facilities. 



subsystem(M) 

The mesg y form of the command allows messages, but sets write permission 
for the terminal device group that has been set to terminal by the login pro­
gram. The new write command is scm to terminal, which allows it to send 
characters to user terminals that have used mesg y of the file enough for the 
terminal group to write to the terminal. The new write command handles 
this change. Unlike the less trusted mesg, UNIX mesg never allows any per­
mission to all users. 

Data files 
The data files for the terminal subsystem are the terminals themselves. They 
belong to the terminal group at the start and end of each session, and all 
access is denied except to the user. The preferred way for a user to open and 
close access to a terminal is to use the mesg command. When a session is not 
in progress on a terminal, only the super user can access the device file. Some 
terminal files are presented below. 

/dev/console This is the system console. Use of this terminal as a user termi­
nal is discouraged because: 

/dev/tty* 

• Messages from the kernel appear on /dev/console. To avoid 
losing these messages or intermixing them with user mes­
sages, it is better to use the console solely for the message 
output. 

• On some systems, physical access to the console is equivalent 
to having access to the entire system. Use another terminal 
unless the system configuration prevents this. In any event, 
allow physical access to /dev/console only to the most trusted 
users of the system. 

Most of the terminals on the system are named /dev/ttyl, 
/dev/tty2, /dev/tty3, ... These devices-may at times be owned by a 
protected subsystem (such as uucp or terminal) and be unavail­
able for general use. You have the option of configuring the ter­
minals for login sessions, protected subsystems, or for nothing. 

Line printer subsystem 

The purpose of the lp subsystem is to provide an administrative role that has 
control over printing facilities. Unlike the less trusted version of the Ip com­
mands, the trusted version does not require a special printer account that 
owns and executes (with the sum bit set) all the printer programs. Instead, 
there is an lp group with multiple users as its members. 

Authorization/Group name 
The lp authorization allows the user to be a printer administrator. This allows 
multiple Printer administrators. They force the administrator to have a login 
userid (LUID) of 0 or a login name of Ip, a scheme that does not allow you 
much flexibility in account setups or individual accountability. 

687 



subsystem(M) 

688 

All printer administrators are allowed to execute some commands that non­
authorized users cannot, and can perform certain actions within commands 
that are restricted from other users. Only administrators may run accept, 
Ipadmin, lpmove, lpsched, lpshut, reject and topq. For the other commands, 
enhancements due to Ip authorization are detailed under each command 
heading. 

sysadmsh selection 
The lp authorization allows access to the printing functions under the 
System c:> Printer selection as described in the "Using Printers" chapter. 

Commands 
To determine the invoker, the Printer subsystem command uses the immut­
able login user ID (LUID). Less trusted versions use various other schemes, all 
of which could be fooled. The commands listed here perform exactly like 
their traditional (less trusted) versions except where noted: 

accept 

cancel 

disable 

enable 

lp 

The accept command may only be used by printer administra­
tors. 

The less trusted version of cancel allowed any user to cancel any 
job. The originating user is notified of the cancellation via mail. 
The trusted version of cancel gives this right to printer adminis­
trators only. Mail is still sent to the originator when a job is can­
celed by the printer administrator. Other users can only remove 
jobs they submitted. 

The disable command operates without change from the less 
trusted version. 

The enable command operates without change from the less 
trusted version. 

The trusted version of the lp command, with the -w option 
enabled by you, never writes to the terminal directly as does the 
less trusted version of lp. The trusted version of lp knows that 
the system prohibits direct writing to another user's terminal. 
Instead, the write( C) program refer to the previous discussion of 
write in the terminal subsystem. 

The trusted version of the lp command creates an output label 
for each file submitted. The output label contains the system 
label (the same as seen on most terminals), the owner, group, 
and mode of the file. To accurately determine the output label, 
the Ip command cannot accept input from pipes. This is 
because the discretionary attributes of a file are not available if 
the file was accessed on the other end of a pipe. Note that input 
redirection and temporary files may still be printed. 



subsystem(M) 

Printer files are always copied to the printer spool by assuming 
the -c (copy) option, even if the user did not explicitly request it. 
By doing this, the Ip subsystem ensures that the file cannot be 
altered between the time the request was made and the time it is 
printed. (The less trusted version of lp does not guarantee that 
the file cannot be updated, even while the printer is running.) 
As added protection, the file being copied is locked during the 
formation of the output label and the copy operation, so that the 
file and label output accurately reflects the file being printed. 

Ipadmin This command may only be used by printer administrators. 

lpforms The lpforms command operates without change from the less 
trusted version. 

lpmove This command may only be used by printer administrators. 

lpsched The Ipsched command may only be used by printer administra­
tors. When the Ipsched command uses a printer device dedi­
cated to the Ip subsystem, the subsystem guarantees exclusive 
use of the printer device each time it is used. Any prior activity 
(outside the Ip subsystem) on that device is forcibly stopped. In 
this way, the lp subsystem ensures that the file being output is 
not interspersed with other output, unlike less trusted versions. 

lpshut The lpshut command may only be used by printer administra­
tors. 

lpstat The trusted version of lpstat does not display other users' jobs if 
the invoking user does not have the Ip authorization. Knowing 
the jobs of other users is not necessary since unauthorized users 
cannot hold or cancel those jobs anyway. Printer administrators 
see all printer jobs, and they can hold or cancel any job that has 
been submitted. 

reject This command may only be used by printer administrators. 

topq The topq command may only be used by printer administrators. 

Data file 
/usr/spool/lp All the files in this file hierarchy have the same formats and pur­

poses as their counterparts in less trusted versions of UNIX. In 
the trusted version, the files are accessible by any printer 
administrator, so that the group permissions are the only ones 
of true importance. In all cases, the spool, its directories, and all 
data files allow no access to the user population. Hence, a user 
can be assured that a private file that is spooled for printing can­
not be accessed or changed by untrusted users. 

689 



subsystem(M) 

Backup subsystem 

690 

The purpose of the backup subsystem is to provide a full set of disk and tape 
management tools without requiring detailed knowledge of UNIX. The 
backup administrator assumes responsibility of file system maintenance. The 
backup administrator is responsible for all actions which do not modify the 
format of file systems, while the root account is still responsible for format­
ting, configuring, and maintaining the consistency of file system disk parti­
tions. 

Authorization/Group name 
The user with backup authorization, a Backup administrator, may perform 
file backups. Restorations can only be made by the root user. The following 
authorizations are defined for the backup subsystem: 

Authorization Type Purpose 
backup 
queryspace 

primary 
secondary 

enables system backup command 
allows use of df program 

All disk partitions are protected with owner root, group backup and mode 
-r--r----. The mount table (/etc/mnttab) is publicly readable, modified only by 
the mount command. The df program is SCID to backup, which enforces the 
queryspace and backup authorizations. 

sysadmsh selection 
The backup authorization allows access to the backup functions under the 
Backups selection. 

Commands 
df 

mkfs 

labelit 

The df command may only be used by Backup adminis­
trators. Otherwise, the options and output format remain 
the same as the less trusted version. 

The mkfs command may only be used by a member of 
the backup group (or by the super user, which is 
discouraged). As always, this command must be used to 
initialize a filesystem after the partitions are laid out. 
Immediately after mkfs is run, you should run labelit to 
complete the initialization. 

The labelit program, documented in vo1copy(ADM), 
associates the filesystem with a directory mount point. 



subsystem(M) 

Helper programs 
letdmount This program is used by backupif to display and modify 

the mounted file systems. 

letdfsck 

lusr/binlbackup 

Ibinlxbackup 

Ibinlxrestore 

lusrlbinlrestore 

lusr/binlcpio 

Data files 
/etc/default/filesys 

/dev/lr]d[s]k* 

This is used by backup to check and repair filesystems. 

This program is used to copy entire UNIX and XENIX 
filesystems to either magtape or cartridge tape. 

This program is used to copy entire XENIX disk filesys­
tems to either magtape or cartridge tape. 

This program is used to replace entire XENIX filesystem 
images on magtape or cartridge tape to a clean (newly 
formatted with mkfs) 

This program is used to replace entire XENIX or UNIX 
filesystem images on magtape or cartridge tape. 

This is the default backup program. cpio makes non­
filesystem specific copies of filesystem data. 

This file contains the relationship between mounted 
filesystem devices and the directories on which they are 
mounted (mount points). It is used to display that rela­
tionship in both df and the backup selection. Because 
altering this file would display erroneous information to 
backup administrators and reading this file defaults the 
access protection created for the backup subsystem, this 
file must be accessible to the backup group only. 

These block and character special files are the buffered 
interfaces to the disk partitions you have set up. They are 
used for mounting the filesystem they contain onto a 
directory. The backup group must be able to read and 
write these files. It is a severe security breach if others 
can access these files in any way. 

Authentication subsystem 

The Authentication subsystem provides you with an exhaustive set of 
account management services. These services are: 

• self-checking to prevent dangerous actions, and 

• monitored extensively by the auditing system. 

691 



subsystem(M) 

692 

Authorization/Group name 
The auth authorization allows an Authentication administrator to perform 
sensitive actions on the Authentication database. This database contains all 
information on account ownership, types, authorizations, locked status, login 
times, password change times, and various other parameters. 

With the auth authorization, an Authentication administrator may alter 
Authentication parameters for other users. Because this database directly 
controls the attributes of any account on the system, this subsystem controls 
tiser access to your system. The trust you place in the system can be no 
greater than that placed in the Authentication administrators. Not only must 
they be trustworthy people, but they must also not leave any uncorrected mis­
takes when assigning authorizations to the accounts they manage. 

sysadmsh selection 
The auth authorization allows access to the user account management func­
tions under Accounts. 

Commands 
passwd 

login 

The passwd command in UNIX has been greatly enhanced for 
both security and flexibility. The trusted system checks on 
system-wide password parameters as well as user-specific ones 
and, depending on the results found, the user has a choice of 
choosing their own password or having one chosen for them. 
You can set each account to do either one of these, or do both. A 
closely related change is that, regardless of the method for get­
ting the password, you can have the system screen passwords 
that are probable guesses by intruders. The password selection 
method, as well as the optional restriction screening, are set by 
Authentication administrators in sysadmsh for a single account 
or for system-wide use. 

The login command is no longer available as a command used 
in a session to start a new session. Instead, a user must first log 
out before logging in as another user. 

Sublogins are forbidden since the LUID of a session may not change once it is 
set. This is to guarantee to you that the owner of a session is known at all 
times. If the login program were allowed to be run from a session, the login 
USERID would have to change and the guarantee would be broken. 



subsystem(M) 

The login program is still invoked from getty to start a user session. The pro­
cedure for logging in is almost the same. The user supplies a login name and 
the system requests a password. Once the password is entered, the system 
either lets the user log in or rejects the login attempt. A user may be rejected 
for a number of reasons: 

1. The account does not exist. 

2. The password was entered incorrectly. 

3. The password lifetime has been passed. 

4. The number of unsuccessful attempts made to the account has surpassed 
a system or account threshold. 

S. The number of unsuccessful attempts made to the terminal has surpassed 
a system or terminal threshold. 

6. An Authentication administrator has unconditionally locked the account. 

Reasons 3 through 6 notify the user that the Authentication administrator has 
locked the account. 

If the user enters the correct login name/password combination, the last suc­
cessful and unsuccessful login times are displayed on the terminal. The user 
should view the dates and times of each to determine if someone else has 
used the account. These dates may also be used to determine whether a Tro­
jan horse program is simulating the login procedure to obtain a password. A 
user with doubts about the authenticity of the login dates and times should 
report it to you. The earlier you take action on this, the better you can use 
fresh audit trails and people's recollections to find the source of the problem. 

su 

newgrp 

auths 

The su program has been strengthened a great deal for security. 
It now uses information from the Authentication database in 
determining whether or not to allow a user to "switch" to 
another user. The following rules apply: 

• A user cannot use su to enter an account that has been 
locked. 

• The su command cannot be used as a means to bypass the 
lock-checking done by login, at, and cron. 

The newgrp command operates without change from the less 
trusted version. 

The auths command is especially tailored for UNIX to allow all 
users to adjust their authorizations. No user can increase 
authorizations, but one can temporarily decrease authorizations 
in order to run an untrusted program or to prevent mistakes. 
More details on the authorizations and syntax are given in the 
man page for auths(C). 

693 



subsystem(M) 

694 

Data files 
/usr/adm/sulog This file keeps track of the history of use of the su program. 

Each line represents an attempt to run the su program. The 
date and time are first recorded on the line. Then, a ,,_ II 
means the attempt failed; a "+ II means the attempt suc­
ceeded. After the "- II or "+ II code, the terminal of the 
attempt is provided. Last, the login name (using the login 
UID) of the invoker of su, together with the login name of 
the (attempted) changed real UID is presented. As an exam­
ple, the following log excerpt presents some interesting 
situations: 

SU 02/29 19:19 + tty?? root-Ip 
SU 03/01 20:22 + tty2 bIf-root 
SU 03/04 04:13 + tty2 fred-proj1 
SU 03/07 20:30 - tty2 reese-star 
SU 03/07 20:30 + tty2 reese-star 
SU 03/07 21:38 + modem auth-root 
SU 03/07 21:39 + tty2 bIf-root 
SU 03/07 21:39 - tty7 daa-root 
SU 03/07 21:40 - tty7 daa-root 
SU 03/07 21:40 - tty7 daa-root 
SU 03/07 21:41 - tty7 daa-root 
SU 03/07 21:41 - tty7 daa-root 
SU 03/07 21:47 + tty2 fred-proj1 

• Foremost, it appears as though the user daa is attempting 
to· break into the root account, for there are many unsuc­
cessful attempts (denoted with the II - II attribute) in rapid 
succession. That should be investigated further. 

• The su program does not require one to become the root 
user. In the log above, users root, fred and reese chose to 
assume the identities of other users. 

• In the effort by reese to become the star user, the first 
attempt failed and the next immediately succeeded. This 
occurs frequently and is quite natural when users mistype 
the password of the other account. You should get suspi­
cious, however, when the number of unsuccessful 
attempts becomes large. Such attempts, like the case with 
daa above, probably means a breach of security. 

• The su program was used by root to enter the Ip account. 
This occurrence was detached from any terminal, because 
of the special terminal designation of tty?? This particular 
case occurred from letdrc where the lpsched daemon is 
run. 

The /usr/adm/sulog file needs attention periodically. It should 
be examined and then pruned, saving the most recent 
entries. The entries removed from the file should be 
archived if possible rather than completely deleted. 



subsystem(M) 

/tcb/files/auth This directory consists of subdirectories that contain private 
account data for all the accounts in the system. There is a file 
for each account. Because of the sensitive nature of the data 
here, all these files are completely protected from the users. 

/etc/auth/system This directory contains the system-wide authorization data 
for the machine. The /etc/auth/system directory contains the 
Terminal Control database, the File Control database, the 
Command Control database and the System Defaults data­
base. This information is accessible to the users but not writ­
able. The /etc/auth/subsystems directory contains one file per 
protected subsystem, each containing the user permissions 
for that protected subsystem. This permissions file may only 
be read by the programs that are part of that protected sub­
system, and is written by the auth user. 

cron subsystem 

The purpose of the cron subsystem is to allow cron, at, and batch services that 
are audited as closely as normal login sessions. The cron subsystem provides 
a useful interface for controlling these facilities. 

Authorization/Group name 
The authorization for the cron subsystem is given to cron administrators who 
are allowed to view or alter the authority for users to run the services associ­
ated with the cron subsystem. A user may run the programs of the cron sub­
system (excluding the use of the sysadmsh selections) without the authoriza­
tion, provided that a cron administrator has granted the authority. 

sysadmsh selection 
The cron authorization allows access to the process management functions 
under Jobs. 

Commands 
at, batch, crontab These at commands operate in the same way as the less 

trusted version, except that the LUID (login urD), rather 
than the real urD, is used by at in determining the user. 
Because the LUID cannot be altered during a session, it 
promotes better accountability. at and batch jobs run 
with all of the login, real, and effective UIDs set to that of 
the login user. 

Helper programs 
/tcb/lib/cron This is the cron daemon that actually runs all at, batch, 

and crontab jobs. The at, batch, and crontab commands 
merely queue the jobs for the cron daemon to run. This 
daemon validates the account (ensures the account is not 
locked) before running the job. 

695 



subsystem(M) 

696 

Data files 
Although enumerated here, these data files are not manipulated directly by 
the cron administrator because of the arcane rules historically applied to them 
by the cron subsystem programs. Instead, the sysadmsh provides a more 
coherent interface, reducing the possibility that users or permissions are set 
up incorrectly. 

/usr/lib/cron 

/usr/lib/cron/at.allow 

/usr/lib/cron/at.deny 

/usr/lib/cron/cron.allow 

/usr/lib /cron/cron.deny 

/usr/lib/cron/.proto 

/usr/lib/cron/.proto.b 

/usr/lib/cron/log 

jusr/lib/cron/OLDlog 

This is the directory containing all the cron adminis­
trative files. 

This file lists the users allowed to execute the at or 
batch programs. If this file exists, it is used to deter­
mine the user's authority. 

This file lists the users denied access to the at or 
batch programs. If /usr/lib/cron/at.allow does not 
exist, /usr/lib/cron/at.deny is used to determine the 
user's authority. You should be aware that an empty 
at.deny file permits access for all users. 

This file lists the users allowed to execute the cron­
tab program. If this file exists, it is used to determine 
the user's authority. 

This file lists the users denied access to the crontab 
program. If /usr/lib/cron/cron.aUow does not exist, 
/usr/lib/cron/cron.deny is used to determine the user's 
authority. You should be aware that an empty 
cron.deny file permits access for all users. 

This file contains a list of commands that are exe­
cuted before every at job. It contains commands pri­
marily used to fix and restrict the environment of the 
user before running the job submitted. 

This file contains a list of commands that are exe­
cuted before every batch job. It contains commands 
primarily used to fix and restrict the environment of 
the user before running the job submitted. 

This is a log of all at, batch, and crontab activity 
reported by the cron daemon since the system was 
rebooted. It provides an accurate ASCII log of all 
user initiated non-terminal activity. If the system is 
up for a very long time and there are many job sub­
missions or crontab activity, this file should be peri­
odically examined, pruned, and archived. 

This is the log associated with the last time the sys­
tem was up. Upon startup, the cron daemon moves 
any /usr/lib/cron/log file here. 



/usr/spool/cron 

Audit subsystem 

subsystem(M) 

This is the root of the subtree where all at, crontab, 
and batch jobs are stored. at and batch jobs are auto­
matically cleared when they have finished executing. 
The -r option of crontab removes a crontab job. 

The purpose of the audit subsystem is to provide an administrative role that 
has control over auditing facilities. 

Authorization/Group name 
The audit authorization allows the user to be the audit administrator. The 
audit administrator can enable and disable auditing, examine audit records, 
generate reports and alter audit parameters. 

sysadmsh selection 
The audit authorization allows access to the audit functions under the 
System ¢ Audit selection as described in the "Maintaining system security" 
chapter. 

Commands 
auditcmd 

auditd 

reduce 

The command interface for audit subsystem activa­
tion, termination, statistic retrieval, and subsystem 
notification. 

The auditd utility is the daemon that runs when 
auditing is enabled. 

This program performs audit data analysis and 
reduction. 

Data files 
/tcb/files/audit/audif...Jlarms 

/tcb/files/audit/* 

/tcb/audittmp 

Audit parameters file. 

Audit log file directory. 

Audit compaction file directory. 

697 



subsystem(M) 

Creating a new subsystem 

See also 

The system administrator can create additional subsystems as desired. 

To create a new subsystem, do the following: 

1. Add a line to /etc/auth/system/authorize of the following format: 
subsystem:classl,class2,. .. ,classn 

where: 
subsystem 
classl .•. n 

For example: 

the name of your new subsystem 
optional name(s) of the authorizations 

backup:dump,freespace 

This defines the ''backup'' subsystem (used to control read access to 
filesystems), which has two special cases: "dump", actually make a 
backup of the filesystem, and "freespace", ability to read the filesystem to 
determine how full it is (but for no other reason). 

2. Create a group with the same name as the subsystem. Make the (empty) 
file /etc/auth/subsystems/subsystem, owner auth or bin, and the group owner 
is the new group subsystem with a mode of at least 440 (the mode must 
not grant any write permission to "other"). 

You are finished creating the new subsystem. It should be automatically 
recognized and understood by the system and the sysadmsh. There can be at 
most 32 subsystems and all names must be unique. 

audit(HW), auditcmd(ADM), auditd(ADM), authck(ADM), auths(C), 
authcap(F), ch~audit(ADM), integrity(ADM), reduce(ADM) 

"Maintaining System Security" in the System Administrator's Guide 

Value added 

698 

subsystem is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 



sxt(M) 

sxt 
pseudo-device driver 

Description 

sxt is a pseudo-device driver that interposes a discipline between the standard 
tty line disciplines and a real device driver. The standard disciplines manipu­
late virtual tty structures (channels) declared by the sxt driver. sxt acts as a 
discipline manipulating a real tty structure declared by a real device driver. 
The sxt driver is currently only used by the shl(C) command. 

Virtual ttys are named /dev/sxt?? or /dev/sxt/?? (where ?? is a combination of 
two digits, each in the range 0 .. 7 ) and are allocated in groups of up to eight. 
Filenames end in three digits, where the first two digits represent the group 
and the last digit represents the virtual tty number of the group. The /dev/sxt 
form of the name increases the size of /dev, which adversely affects some com­
mands; the /dev/sxt/ form is not understood by most commands. To allocate a 
group, a program should exclusively open a file with a name of the form 
/dev/sxt??O (channel 0) or /dev/sxt/??O and then execute a SXTIOCLINK ioctl 
call to initiate the multiplexing. 

Only one channel, the controlling channel, can receive input from the keyboard 
at a time; others attempting to read will be blocked. 

There are two groups of ioctl(S) commands supported by sxt. The first group 
contains the standard ioctl commands described in termio(M), with the addi­
tion of the follOWing: 

TIOCEXCL 

TIOCNXCL 

Set exclusive use mode: no further opens are permitted 
until the file has been closed. 

Reset exclusive use mode: further opens are once again 
permitted. 

The second group are directives to sxt itself. Some of these may only be exe­
cuted on channel O. 

SXTIOCLINK Allocate a channel group and multiplex the virtual ttys 
onto the real tty. The argument is the number of chan­
nels to allocate. This command may only be executed 
on channel O. Possible errors include: 

EINVAL The argument is out of range. 

ENOTTY The command was not issued from a real 
tty. 

ENXIO linesw is not configured with sxt. 

699 



sxt(M) 

Files 

See also 

700 

SXTIOCSWTCH 

SXTIOCWF 

SXTIOCUBLK 

SXTIOCSTAT 

SXTIOCTRACE 

EBUSY An SXTIOCLINK command has already 
been issued for this real tty. 

ENOMEM There is no system memory available for 
allocating the virtual tty structures. 

EBADF Channel 0 was not opened before this 
call. 

Set the controlling channel. Possible errors include: 

EINVAL 

EPERM 

An invalid channel number was given. 

The command was not executed from 
channelO. 

Cause a channel to wait until it is the controlling chan­
nel. This command will return the error, EINV AL, if an 
invalid channel number is given. 

Tum off the loblk control flag in the virtual tty of the 
indicated channel. The error EINVAL will be returned 
if an invalid number or channel 0 is given. 

Get the status (blocked on input or output) of each 
channel and store in the sxtblock structure referenced 
by the argument. The error EFAULT will be returned if 
the structure cannot be written. 

Enable tracing. Tracing information is written to the 
console. This command has no effect if tracing is not 
configured. 

SXTIOCNOTRACE Disable tracing. This command has no effect if tracing 
is not configured. 

/dev/sxt??[O-71 
/dev/sxt/??[o-71 
/usr/include/sys/sxt.h 

virtual tty devices 

driver specific definitions 

ioctl(S), open(S), shl(C), stty(C), termio(M) 



systty(M) 

systty 
system maintenance device 

Description 

File 

See also 

The file /dev/systty is the device on which system error messages are dis­
played. The actual physical device accessed via /dev/systty is selected during 
boot, and is typically the device used to control the bootup procedure. The 
default physical device /dev/systty is determined by boot(HW) when the sys­
tem is brought up. 

Initially /dev/console is linked to /dev/systty. 

/dev/systty 

boot(HW), console(M) 

701 



term(M) 

term 
conventional names for terminals 

Description 

702 

These names are used by certain commands (for example, man(C), tabs(C), 
tput(C), vi(C) and curses(S» and are maintained as part of the shell environ­
ment in the environment variable TERM (see sh(C), profile(F), and 
environ(M». 

Entries in terminfo(F) source files consist of a number of comma-separated 
fields. (To obtain the source description for a terminal, use the -I option of 
infocmp(ADM).) White space after each comma is ignored. The first line of 
each terminal description in the terminfo(F) database gives the names by 
which terminfo(F) knows the terminal, separated by bar ( I) characters. The 
first name given is the most common abbreviation for the terminal (this is the 
one to use to set the environment variable TERMINFO in $HOME.profile; see 
profile(F». The last name given should be a long name fully identifying the 
terminal, and all others are understood as synonyms for the terminal name. 
All names but the last should contain no blanks and must be unique in the 
first 14 characters; the last name may contain blanks for readability. 

Terminal names (except for the last, verbose entry) should be chosen using the 
following conventions. The particular piece of hardware making up the ter­
minal should have a root name chosen. For example, for the AT&T 4425 termi­
nal, the root name is att4425. This name should not contain hyphens, except 
that synonyms may be chosen that do not conflict with other names. Up to 8 
characters, chosen from [a-zO-9], make up a basic terminal name. Names 
should generally be based on original vendors, rather than local distributors. 
A terminal acquired from one vendor should not have more than one distinct 
basic name. Terminal sub-models, operational modes that the hardware can 
be in, or user preferences, should be indicated by appending a hyphen and an 
indicator of the mode. Thus, an AT&T 4425 terminal in 132 column mode 
would be att4425-w. The following suffixes should be used where possible: 

Suffix Meaning Example 
-w Wide mode (more than 80 columns) att4425-w 
-am With auto. margins (usually default) vt100-am 
-nam Without automatic margins vt100-nam 
-n Number of lines on the screen aaa-60 
-na No arrow keys (leave them in local) c100-na 
-np Number of pages of memory c100-4p 
-rv Reverse video att4415-rv 



term(M) 

To avoid conflicts with the naming conventions used in describing the 
different modes of a terminal (for example, -w), it is recommended that a 
terminal's root name not contain hyphens. Further, it is good practice to make 
all terminal names used in the terminfo(F) database unique. Terminal entries 
that are present only for inclusion in other entries via the use= facilities 
should have a " +" in their name, as in 441S+nl. 

Some of the known terminal names may include the following (for a complete 
list, type: Is -c lusr/lib/terminfol? ): 

2621,hp2621 
2631 
2631-c 

2631-e 

2640,hp2640 
2645,hp2645 
3270 
33,tty33 
35,tty35 
37,tty37 
4000a 
4014,tek4014 
40,tty40 
43,tty43 
4410,5410 

441 0-nfk,541 O-nfk 
441 0-nsl,541 O-nsl 
4410-w,5410-w 
4410v1,5410v1 

4410v1-w,541Ovl-w 

4415,5420 
4415-nl,5420-nl 
4415-rv,5420-rv 
4415-rv-nl,5420-rv-nl 

4415-w,5420-w 
4415-w-nl,5420-w-nl 

4415-w-rv,5420-w-rv 
4415-w-rv-nl,5420-w-rv-nl 

4418,5418 
4418-w,5418-w 
4420 
4424 
4424-2 

4425,5425 

(Continued on next page) 

Hewlett-Packard 2621 series 
Hewlett-Packard 2631 line printer 
Hewlett-Packard 2631 line printer - compressed mode 

Hewlett-Packard 2631 line printer - expanded mode 

Hewlett-Packard 2640 series 
Hewlett-Packard 2645 series 
IBM Model 3270 
AT&T TELETYPE Model 33 KSR 

AT&T TELETYPE Model 35 KSR 
AT&T TELETYPE Model 37 KSR 
Trendata 4000a 
TEKTRONIX 4014 
AT&T TELETYPE Dataspeed 40/2 
AT&T TELETYPE Model 43 KSR 
AT&T 4410/5410 terminal in 80-column mode - version 2 

AT&T 4410/5410 without function keys - version 1 
AT&T 4410/5410 without pin defined 
AT&T 4410/5410 in 132-column mode 
AT&T 4410/5410 terminal in 80-column mode - version 1 

AT&T 4410/5410 terminal in 132-column mode - version 1 

AT&T 4415/5420 in 80-column mode 
AT&T 4415/5420 without changing labels 
AT&T 4415/542080 columns in reverse video 
AT&T 4415/5420 reverse video without changing labels 

AT&T 4415/5420 in 132-column mode 
AT&T 4415/5420 in 132-column mode without changing labels 

AT&T 4415/5420132 columns in reverse video 
AT&T 4415/5420 132 columns reverse video without changing 
labels 

AT&T 5418 in 80-column mode 
AT&T 5418 in 132-column mode 
AT&T TELETYPE Model 4420 
AT&T TELETYPE Model 4424 
AT&T TELETYPE Model 4424 in display function group ii 

AT&T 4425/5425 

703 



term(M) 

File 

See also 

704 

(Continued) 

4425-fk,5425-fk 
4425-nl,5425-nl 

4425-w,5425-w 
4425-w-fk,5425-w-fk 

4425-nl-w,5425-nl-w 

4426 
450 
450-12 
500,attSOO 
510,510a 
513bct,att513 
5320 
5420_2 
5420_2-w 
5620,dmd 
5620-24,dmd-24 
5620-34,dmd-34 
61 0,61 Obet 
610-w,610bet-w 
7300,pc7300,unix_pc 
735,ti 
745 
dumb 

hp 
lp 
pt505 
pt505-24 
sync 

AT&T 4425/5425 without function keys 
AT&T 4425/5425 without changing labels in 80-column mode 

AT&T 4425/5425 in 132-column mode 
AT&T 4425/5425 without function keys in 132-column mode 

AT&T 4425/5425 without changing labels in 132-column mode 

AT&T TELETYPE Model 4426S 
DASI450 (same as Diablo 1620) 
DASI450 in 12-pitch mode 
AT&T-IS 500 terminal 
AT&T 510/51Oa in 80-column mode 
AT&T 513 bct terminal 
AT&T 5320 hardcopy terminal 
AT&T 5420 model 2 in 80-column mode 
AT&T 5420 model 2 in 132-column mode 
AT&T 5620 terminal 88 columns 
AT&T TELETYPE Model DMD 5620 in a 24x80 layer 
AT&T TELETYPE Model DMD 5620 in a 34xBO layer 
AT&T 610 bet terminal in 80-column mode 
AT&T 610 bet terminal in 132-column mode 
AT&T UNIX PC Model 7300 
Texas Instruments TI735 and TI725 
Texas Instruments TI745 
generic name for terminals that lack reverse line-feed and other 
special escape sequences 

Hewlett-Packard (same as 2645) 
generic name for a line printer 
AT&T Personal Terminal 505 (22 lines) 
AT&T Personal Terminal 505 (24-line mode) 
generic name for synchronous TELETYPE Model 4540-compatible 
terminals 

Commands whose behavior depends on the type of terminal should accept 
arguments of the form -Tterm where term is one of the names given above; if 
no such argument is present, such commands should obtain the terminal type 
from the environment variable TERM, which, in tum, should contain term. 

/usr/lib/terminfo/? compiled terminal description database 

curses(S), profile(F), terminfo(M), terminfo(F), environ(M), infocmp(ADM), 
sh(C), stty(C), tabs(C), tput(C), tplot(ADM), vi(C) 



term(M) 

Notes 

Not all programs follow the above naming conventions. 

705 



terminals(M) 

terminals 
list of supported terminals 

Description 

706 

The following list, derived from the file /etc/termcap, shows the terminal name 
(suitable for use as a TERM shell variable), and a short description of the ter­
minal. The advice in termcap(F) will assist users in creating termcap entries 
for terminals not currently supported. 

Name 
1200 
1620 
1640 
2392 
2392an 
2392ne 
2621 
2621k45 
2621nl 
2621nt 
2621 wi 
2622 
262x 
2640 
2640b 
300 
3045 
33 
37 
40 
4025 
4025-17 
4025-17ws 
4025ex 
43 
515 
5410 
5410-nfk 
5410132 
5420132 
5425 
5425-w 
610bct 

Terminal 
Terminet 1200 
Diablo 1620 
Diablo 1640 
239x series 
Hp 239x in ansi mode 
239x series 
HP2621 
HP 2621 with 45 keyboard 
HP 2621 with no labels 
HP 2621 wino tabs 
HP 2621 with labels 
HP2622 
HP 262x series 
HP2640a 
HP 264x series 
Terminet300 
Datamedia 3045a 
Model 33 teletype 
Model 37 teletype 
Teletype dataspeed 40/2 
Tektronix 4024/4025 14027 
Tek 4025 171ine window 
Tek 4025 171ine window in workspace 
Tek4025 wi! 
Model 43 teletype 
AT&T-IS 515 terminal in native mode 
5410 terminal 80 columns 
Version 1 tty5410 entry without function keys 
5410 132 columns 
5420 132columns 
AT&T Teletype 542580 columns 
AT&T Teletype 5425 132 columns 
AT&T 610; 80 column; 98key keyboard 

(Continued on next page) 



(Continued) 

Name 
615mt 
620mtg 
7900 
8001 
912b 
925 
925so 
ATI5620 
Ma2 
TWO 
a980 
aa 
aaa 
aaa30 
aaa48db 
aaadb 
act5s 
adds 
adds25 
admll 
adm12 
adm2 
adm3 
adm31 
adm3a 
adm3a+ 
adm3a19.2 
adm3aso 
adm42 
adm5 
aj830 
altos3 
altos4 
altos5 
am219w 
amp219 
amp232 
ampex 
ansi 
ansi-nam 
arpanet 
at386 
at386-m 
atarist 

Terminal 
AT&T 615; 80 column; 98key keyboard 
AT&T 620; 80 column; 98key keyboard 
NCR 7900-1 
Intecolor 
New Televideo 
Newer Televideo 

terminals(M) 

Newer Televideo with attribute byte workaround 
5620 terminal 88 columns 
Ampex Model 232 / 132 lines 
Altos Computer Systems II 
Adds Consul 980 
Ann Arbor 
Ann Arbor Ambassador /48 lines 
Ann Arbor Ambassador 30/ destructive backspace 
Ann Arbor Ambassador 48/destructive backspace 
Ann Arbor Ambassador 48/ destructive backspace 
Skinnyact5 
Adds Viewpoint 
Adds Regent 25 with local printing 
Lsiadmll 
Lsiadm12 
Lsiadm2 
Lsiadm3 
Lear Siegler ADM31 
Lsiadm3a 
Lsiadm3a+ 
Lsi adm3a at 19.2 baud 
Lsi adm3a with {} for standout 
Lsiadm42 
Lsiadm5 
Anderson Jacobson 
Altos III 
Altos IV 
Altos V 
Ampex 132 Cols 
Ampex with Automargins 
Ampex Model 232 
Ampex dialogue 80 
Ansi standard crt 
Ansi standard crt without automargin 
Network 
At/386 console 
At/386 console 
Atari ST vt52 

(Continued on next page) 

707 



terminals(M) 

708 

(Continued) 

Name 
att513 

att513-w 

att605 
att630 
bct500 
bh3m 
big2621 
c100 
cl004p 
clOOrv 
clOOrv4p 
clOOrv4pna 
clOOrv4ppp 
clOOrvs 
clOOs 
c3102 
carlock 
cci 
cdc456 
cdc456tst 
cdi 
cie467 
c~t80 
cit80nam 
compucolor 
d132 
datapoint 
delta 
dg 
digilog 
dm1520 
dm1521 
dm2500 
dm3025 
dmterm 
dosansi 
dtlOO 
dtlOOw 
dt200 
dt80 
dt80132 

Termina.1 
AT&T-IS 513 Business Communications Terminal 80 
columns 
AT&T-IS 513 Business Communications Terminal 132 
columns 
AT&T 605 BCT 
AT&T 630 windowing terminal 
Teletype 5541 
BeehiveIIIm 
48 line 2621 
Concept 100 
clOO w/4 pages 
c100 rev video 
clOO w/4 pages 
clOO with no arrows 
clOO with printer port 
Slow reverse concept 100 
Slow concept 100 
Cromemco 3102 
K1c 
Cci4574 
Cdc 
Cdc456tst 
Cdi1203 
C.Itoh 467, 414 Graphics 
C.Itoh 80 
C.Itoh 80 without automargins 
CompucolorII 
Datagraphix 132a 
Datapoint 3360 
Delta data 5000 
Data general 6053 
Digilog333 
Datamedia 1520 
Datamedia 1521 
Datamedia 2500 
Datamedia 3025a 
Tandy deskmate terminal 
ANSLSYS standard crt 
Tandy DT-I00 terminal 
Tandy DT-I00 terminal 
Tandy DT-200 
Datamedia dt80/1 
Datamedia dt80/1 in 132 char mode 

(Continued on next page) 



(Continued) 

Name 

dtc300s 
du 
dumb 
dwl 
dw2 
ep40 
ep48 
esp925 
espHA 
ethernet 
exidy 
fos 
fox 
freel00 
freellO 
ftl024 
gt40 
gt42 
h1500 
h1510 
h1520 
h1552 
h1552rv 
h19 
h19a 
h19nk 
h2000 
hp 
hp2626 
hp2648 
hpansi 

hpansi-24 
hpex 
hpsub 
noo 
ibm3101 
ibm3151 
ibm3161 
ibm3163 
ibm3164 
ibm5151 
ibmcons 

Terminal 

Dtc300s 
Dialup 
Unknown 
DecwriterI 
Decwriter II 
Execuport 4000 
Execuport 4080 
Esprit tvi925 emulation 
Esprit 6310 in hazeltine emulation mode 
Network 
Exidy sorcerer as dm2500 
Fortune system 
Perkin Elmer 1100 
Liberty Freedom 100 
Freedom 110 
Forward Technology graphics controller 
Decgt40 
Dec gt42 
Hazeltine 1500 
Hazeltine 1510 
Hazeltine 1520 
Hazeltine 1552 
Hazeltine 1552 reverse video 
Heathkit h19 w / function keypad 
Heathkit h19 ansi mode 

terminals(M) 

Heathkit w /numeric keypad (not function keys) 
Hazeltine 2000 
HP 264x series 
HP2626 
HP 2648a graphics terminal 
Hewlett Packard 700/44 in HP-PCterm mode, PC 
character set 
HP 700/44 in HP-PCterm 24 line mode, PC character set 
HP extended capabilites 
HP terminals -- capability subset 
General Terminall00A (formerly Infoton 100) 
IBM 3101-10 
3151 
3161 
3163 
3164 
IBM console 
Ansi standard with EGA 

(Continued on next page) 

709 



terminals(M) 

710 

(Continued) 

Name 
ibmcons-43 
intext 
ipc 
kl0 
kn 
kt7ix 
lisa 
ml00 
macterm 
macterm-nam 
mdlllO 
microb 
micro term 
microterm5 
mime 
mime2a 
mime2as 
mime3a 
mime3ax 
mimefb 
mimehb 
mt70 
nabu 
netx 
nucterm 
oadm31 
omron 
otBO 
owl 
pe550 
pixel 
plasma 
ptl500 
pt2lO 
qume5 
qvtlOl 
qvtlOl+ 
qvt101+so 
qvt101b 
qvtl02 
qvtl03 
qvtlOB 
qvtl09 
qvt119 

Terminal 
Ansi EGA console in 43 line mode 
ISC modified owl 1200 
IntelIPC 
KayprolO 
Kt70pcix 
Kimtron kt-7 
Apple Lisa xenix console display (white on black) 
Radio Shack model 100 
Macintosh MacTerm in vt-l00 mode 
MacTerm in vt-l00 mode with automargin NOT set 
Cybemex mdl-ll0 
Micro Bee series 
Microterm act iv 
Microterm act v 
Microterm mimel 
Microterm mime2a (emulating an enhanced vt52) 
Microterm mime2a (emulating an enhanced soroc iq120) 
Mimel emulating 3a 
Mimel emulating enhanced 3a 
Full Bright Mimel 
Half Bright Mimel 
Morrowmt70 
Nabu terminal 
Netronics 
NUC homebrew 
Oldadm31 
Omron B025AG 
OnyxotBO 
Perkin Elmer 1200 
Perkin Elmer 550 
Pixel terminal 
Plasma panel 
Convergent Technologies PT 
TandyTRS-BO PT-210 printing terminal 
Qume Sprint 5 
Qume QVT-I0l vers c 
Qume QVT-I0l Plus vers c 
Qume QVT-I0l+ with protected mode/standout 
QVT -101 with cursor set to blinking underline 
QumeQVTI02 
Qume QVT -103 
QVT-lOB 
QVT-I09 
Qume QVT -119 

(Continued on next page) 



(Continued) 

Name 
qvtl19+ 
qvt201 
qvt202 
qvt203 
regent 
regentlOO 
regent20 
regent25 
regent25a 
regent40 
regent60 
regent60na 
rx303 
sbl 
sb2 
sexidy 
sk8620 
soroc 
sun 
sun-cmd 

sun-nic 

sunl 
superbeeic 
svtlOO 
svtl210 
svtl220 
svt52 
switch 
swtp 
tl061 
tl061f 
t3700 
t3800 
td200 
tek 
tek4013 
tek4014 
tek4014sm 
tek4015 
tek4015sm 
tek4023 

Terminal 
Qume QVT -119 Plus vers c 
Qume QVT-201 
Qume QVT-202 
Qume QVT 203 PLUS 
Adds Regent series 
Adds Regent 100 
Adds Regent 20 
Adds Regent 25 
Adds Regent 25a 
Adds Regent 40 
Adds Regent 60 
Regent 60 w /no arrow keys 
Rexon 303 terminal 
Beehive Super Bee 
Fixed Super Bee 
ExidySmart 
Seiko8620 
Soroc 120 
Sun Microsystems Workstation console 

terminals(M) 

Sun Microsystems Workstation console with scrollable 
history 
Sun Microsystems Workstation console without insert 
character 
old Sun Microsystems Workstation console 
Super Bee with insert char 
1220/PC, Sperry in VT100 mode 
Sperry 1210, standard setup 
Sperry 1220, standard setup 
121O/1220/PC, Sperry in VT52 mode 
Intelligent switch 
Southwest Technical Products ct82 
Teleray 1061 
Teleray 1061 with fast PROMs 
Dumb Teleray 3700 
Teleray 3800 series 
Tandy 200 
Tektronix 4012 
Tektronix 4013 
Tektronix 4014 
Tektronix 4014 in small font 
Tektronix 4015 
Tektronix 4015 in small font 
Tektronix 4023 

(Continued on next page) 

711 



terminals(M) 

712 

(Continued) 

Name 
tek4107 
teletec 
terak 
ti 
ti745 
ti924 
ti924-8 
ti926 
ti931 
trsl00 
trs16 
trs600 
tty4420 
tty4424 
tty4424-w 
tty541 0 
tty5410-w 
tvi910 
tvi91 0+ 
tvi912 
tvi9220 
tvi9220w 
tvi924 
tvi950 
tvi950-2p 
tvi950-4p 
tvi950-ap 
tvi950b 
tvi950ns 
v50 
v55 
vi200 
vi200f 
vi200ic 
vi200rv 
vi200rvic 
vi50 
vi55 
vis613 
vs100 
vs100s 
vt100 
vt100n 
vt100nam 

Terminal 
Tektronix 4107 
Teletec Datascreen 
Terak emulating Datamedia 1520 
Ti silent 700 
Ti silent 745 
Texas Instruments 924 VDT 7 bit 
Texas Instruments 924 VDT 8 bit 
Texas Instruments 926 VDT 
Texas Instruments 931 VDT 
Tandy TRS-80 Model 100 
Tandy trs-80 model 16 console 
Tandy Model 600 
Teletype 4420 
Teletype 4424 
Teletype 4424 in display function group ii 
Teletype 5410 terminal in 80 column mode 
Teletype 5410 in 132 column mode 
old Televideo 910 
Televideo 910 PLUS 
old Televideo 
Televideo 9220 w Istatus line @ bottom 
Televideo 9220 132 col w Istatus line @ bottom 
Televideo924 
Televideo950 
TV! 950 w 12 pages 
TV! 950 wi 4 pages 
TVI 950 w lalt pages 
bare TVI950 no is 
TVI950 wino standout 
Visual 50 emulation of DEC VT52 
Visual 55 emulation of DEC VT52 (called V55) 
Visual 200 with function keys 
Visual 200 no function keys 
Visual 200 using insert char 
Visual 200 reverse video 
Visual 200 reverse video using insert char 
Visual 50 in ADDS viewpoint emulation 
Visual 55 using ADDS emulation 
Visual 613 
Xterm terminal emulator 
Xterm terminal emulator (small screen 24x80) 
DEC vt100 
VT100 wino init 
DEC VT100 without automargins 

(Continued on next page) 



(Continued) 

Name 
vt100s 
vt100w 
vtl02 
vtl31 
vtl32 
vt220 
vt220d 

vt50 
vt50h 
vt52 
vt52so 
vtz 
w2110A 
ws584 
ws584fr 
ws584gr 
ws584nr 
ws584sp 
ws584sw 
ws584uk 
ws584us 
ws685 
wylOO 
wy120 
wy120-25 
wyl20-vb 
wyl20-wvb 
wy120w 
wy120w-25 
wy150 
wy150-25 
wyl50-vb 
wyl50-wvb 
wy150w 
wy150w-25 
wy30 
wy30-vb 
wy350 
wy350-vb 
wy350-wvb 
wy350w 
wy50 

Terminal 
DEC vt100 132 cols 14 lines 
DEC vt100 132 cols 
DECvtl02 
DECdec vtl31 
VT-132 
DEC vt220 generic 

terminals(M) 

DEC VT220 in vt100 mode with DEC function key 
labeling 
DECvt50 
DECvt50h 
DEC vt52 
DEC vt52 with brackets added for standout use 
Zilog vtz 2/10 
Wang 2110 Asynch Data Entry Terminal- 80 column 
Olivetti WS584 
Olivetti WS584 with French keyboard 
Olivetti WS584 with German keyboard 
Olivetti WS584 with Norwegian/Danish keyboard 
Olivetti WS584 with Spanish keyboard 
Olivetti WS584 with Swedish/Finnish keyboard 
Olivetti WS584 with u.K. keyboard 
Olivetti WS584 with U.S.A. keyboard 
Olivetti WS685 
Wysel00 
Wyse 120 
Wyse 120 80-column 25-lines 
Wyse 120 Visible bell 
Wysel20-wvb 
Wyse 120 132-column 
Wyse 120 132-column 25-lines 
Wyse150 
Wyse 150 80-column 25-lines 
Wyse 150 Visible bell 
Wysel50-wvb 
Wyse 150 132-column 
Wyse 150 132-column 25-lines 
Wyse WY -30 in wy30 mode 
Wyse 30 Visible bell 
Wyse 350 80 column color terminal emulating wy50 
Wyse 350 Visible bell 
Wyse 350 132-column Visible bell 
Wyse 350 132 column color terminal emulating wy50 
Wyse 50/80 Wyse WY-50 with 80 column screen 

(Continued on next page) 

713 



terminals(M) 

714 

(Continued) 

Name 
wy50-wvb 
wy50l 

wy50n 
"Y)'50vb 
wy50w 
wy60 

wy60-25 
wy60-42 
wy60-43 
wy60-vb 
wy60ak 
wy60w 

wy60w-25 
wy60w-42 
wy60w-43 
wy60w-vb 
wy75 
wy75-mc 
wy75-vb 
wy75-wvb 
wy75ap 

wy75w 
wy75x 
wy85 
wy85-vb 
wy85-wvb 
wy85w 
wy85w 
wy99gt 
wy99gt-25 
wy99gt-25-w 
wy99gt-vb 
wy99gt-w 
wy99gt-w-vb 
wyse120ak 
xl720 
xitex 
z29 
z39 

Terminal 
Wyse 50 132-column Visible bell 
Wyse WY-60 with 80 column/43 line screen in WY50+ 
mode 
Wyse WY-50 - 80 column screen, no automargin 
Wyse WY-50/80vb Wyse WY-50/80 with visible bell 
Wyse WY-50/132 Wyse WY-50 with 132 column screen 
Wyse WY-60 with 80 column/24 line screen in wy60 
mode 
Wyse 60 80-column 25-lines 
Wyse 60 80-column 42-lines 
Wyse 60 80-column 43-lines 
Wyse 60 Visible bell 
Wyse 60 in wy60 mode with ANSI arrow keys + 
Wyse WY-60 with 132 column/24 line screen in wy60 
mode 
Wyse 60 132-column 25-lines 
Wyse 60 132-column 42-lines 
Wyse 60 132-column 43-lines 
Wyse 60 132-column Visible bell 
Wyse WY-75 with 80 column line 
Wyse 75 with magic cookies 
Wyse 75 with visible bell 
Wyse 75 with visible be11132 columns 
Wyse WY-75 with Applications and Cursor keypad 
modes 
Wyse WY-75 in 132 column mode 
Wyse WY -75 with 132 column lines in vi editor mode 
Wyse 85 in 80 column mode, vt100 emulation 
Wyse 85 with visible bell 
Wyse 85 with visible bell 132-columns 
Wyse 85 in 132 column mode, vt100 emulation 
Wyse 85 in 132-column mode 
Wyse99gt 
Wyse 99gt 80-column 25-lines 
Wyse 99gt 132-column 25-lines 
Wyse 99gt Visible bell 
Wyse 99gt 132-column 
Wyse99gt-wvb 
Wyse 120 with ANSI key values 
Xerox 1720 
Xitex scHOO 
Zenithz29 
ZenithZ-39 

(Continued on next page) 



File 

See also 

(Continued) 

Name 
zen30 
zen40 
zen50 
zephyr 
zephyrnam 

/etc/termcap 

Terminal 
Zentec 30 
Zentec40 
Zentec 50 
Zentec zephyr220 in vt100 mode 

terminals(M) 

Zentec zephyr220 in vt100 mode w lout automargins 

tset(C), environ(M), termcap(F) 

715 



terminfo(M) 

terminfo 
terminal capability database 

Syntax 

/usr/lib/terminfo/? /* 

Description 

716 

terminfo is a compiled database (see tic(C» describing the capabilities of ter­
minals. Terminals are described in terminfo source descriptions by giving a set 
of capabilities which they have, by describing how operations are performed, 
by describing padding requirements, and by specifying initialization 
sequences. This database is used, for example, by vi(C) and curses(S), so they 
can work with a variety of terminals without changes to the programs. To 
obtain the source description for a terminal, use the -I option of 
infocmp(ADM). When doing an infocmp for the terminal you are on, there is 
no difference between infocmp and infocmp -I. 

Entries in terminfo source files consist of a number of fields separated by com­
mas. White space after each comma is ignored. The first line of each terminal 
description in the terminfo database gives the name by which terminfo knows 
the terminal, separated by bar ( I ) characters. The first name given is the most 
common abbreviation for the terminal (this is the one to use to set the 
environment variable TERM in $HOME.profile; see profile(F»; the last name 
given should be a long name fully identifying the terminal, and all others are 
understood as synonyms for the terminal name. All names but the last should 
contain no blanks and must be unique in the first 14 characters; the last name 
may contain blanks for readability. 

Terminal names (except for the last verbose entry) should be chosen using the 
following conventions. The particular piece of hardware making up the ter­
minal should have a root name chosen, for example, for the AT&T 4425 termi­
nal, att4425. Modes that the hardware can be in, or user preferences, should 
be indicated by appending a hyphen and an indicator of the mode. See 
term(M) for examples and more information on choosing names and 
synonyms. 



terminfo(M) 

PART 1: TERMINAL CAPABILITIES 
Capabilities in terminfo are of three types: boolean capabilities (which show 
that the terminal has some particular feature), numeric capabilities (which 
specify the size of the terminal or particular features), and string capabilities 
(which provide a sequence that can be used to perform particular terminal 
operations). 

In the following tables, a "Variable" is the name by which a C programmer. 
accesses a capability (at the terminfo level). A "Capname" is the short name 
for a capability used in the source description. It is used by a person updating 
the database and by the tput(C) command when asking what the value of the 
capability is for a particular terminal. A "Termcap Code" is a two-letter code 
that corresponds to the old termcap capability name. 

Capability names have no hard length limit, but an informal limit of five char­
acters has been adopted to keep them short. Whenever possible, names are 
chosen to be the same as or similar to those specified by the ANSI X3.64-1979 
standard. Semantics are also intended to match those of the ANSI standard. 

All string capabilities listed below may have padding specified, with the 
exception of those used for input. Input capabilities, listed under the 
"Strings" section in the following table, have names beginning with key _. The 
following indicators may appear at the end of the "Description" for a variable. 

(G) indicates that the string is passed through tparm() with parameters 
(parms) as given (#i) 

(*) indicates that padding may be based on the number of lines affected 

(# i) indicates the ith parameter 

(**) not present in all versions of termcap. 

717 



terminfo(M) 

Booleans 

Variable Cap- Termcap Descrtption 
name Code 

auto_left_margin bw bw cubl wraps from column 0 to last column 
auto_righCmargin am am Terminal has automatic margins 
back_color_erase bce be Screen erased with background color 
can3hange ccc cc Terminal can re-define existing color 
ceoCstandout..glitch xhp xs Standout not erased by overwriting (hp) 
c?Caddr..glitch xhpa YA Only positive motion for hpa/mhpa caps 
cpi_changes_res cpix YF Changing character pitch changes resolution 
cr_cancels_micro_mode crxm YB Using cr turns off micro mode 
eat_newline..glitch xenl xn Newline ignored after 80 columns (Concept) 
erase_overstrike eo eo Can erase overstrikes with a blank 
generic_type gn gn Generic line type (for example, dialup, switch) 
hard_copy hc hc Hardcopy terminal 
hard_cursor chts HC Cursor is hard to see 
has_meta_key km km Has a meta key (shift, sets parity bit) 
has_print_wheel daisy YC Printer needs operator to change character set 
has_status_line hs hs Has extra "status line" 
hue_lightness_saturation hIs hI Terminal uses only HLS color notation (Tektronix) 
insert_null..glitch in in Insert mode distinguishes nulls 
lpi_changes_res lpix YG Changing line pitch changes resolution 
memory_above da da Display may be retained above the screen 
memory_below db db Display may be retained below the screen 
move_insert_mode mir mi Safe to move while in insert mode 
move_stand out_mode msgr ms Safe to move in standout modes 
needs_xon_xoff nxon nx Padding won't work, xon/xoff required 
no_esc_ctk xsb xb Beehive (f1=escape, f2=ctrl C) 
no_pad_char npc NP Pad character doesn't exist 
non_dest_scroll_region ndscr ND Scrolling region is non-destructive 
non_rev _rmcup nrrmc NR smcup does not reverse rmcup 
over_strike os os Terminal overstrikes on hard-copy terminal 
prtr_silent mc5i 
row _addr..glitch xvpa YD Only positive motion for vpa/mvpa caps 
semCauto_right_margin sam YE Printing in last column causes cr 
status_line_esc_ok eslok es Escape can be used on the status line 
dest_tabs_magic_smso xt xt Destructive tabs, magic smso char (tl061) 
tilde..glitch hz hz Hazeltine; cannot print tilde n 
transparent_underline ul ul Underline character overstrikes 
xon_xoff xon xo Terminal uses xon/xoff handshaking 

718 



termin/o(M) 

Numbers 

Variable Cap- Termcap Description 
name Code 

buffer3apacity bufsz Ya Number of bytes buffered before printing 
columns cols co Number of columns in a line 
dot_ vert_spacing spinv Yb Spacing of pins vertically in pins per inch 
dot_horz_spacing spinh Yc Spacing of dots horizontally in dots per inch 
init_tabs it it Tabs initially every # spaces 
labeCheight Ih Ih Number of rows in each label 
labeCwidth lw lw Number of columns in each label 
lines lines li Number of lines on a screen or a page 
lines_oCmemory 1m 1m Lines of memory if > linesi 0 means varies 
magic_cookie_glitch xmc sg Number of blank characters left by smso or rmso 
max_attributes rna rna Maximum combined video attributes terminal can 

display 

max_colors colors Co Maximum number of colors on the screen 
max_micro_address maddr Yd Maximum value in micro_ ..• _address 
max_microjump mjump Ye Maximum value in parm_ ... _micro 
max_pairs pairs pa Maximum number of color-pairs on the screen 
maximum_windows wnum MW Maximum number of definable windows 
micro_col_size mcs Yf Character step size when in micro mode 
micro_line_size mls Yg Line step size when in micro mode 
no_color_video ncv NC Video attributes that can't be used with colors 
number_oCpins npins Yh Number of pins in print-head 
num_labels nlab NI Number of labels on screen (start at 1) 
output_res_char orc Yi Horizontal resolution in units per character 
outputJes_line or! Yj Vertical resolution in units per line 
outputJes_horz_inch orhi Yk Horizontal resolution in units per inch 
output_res_ vert_inch orvi Yl Vertical resolution in units per inch 
padding..baud_rate pb pb Lowest baud rate where padding needed 
printJate cps Ym Print rate in characters per second 
virtuaC terminal vt vt Virtual terminal number (UNIX system) 
wide_char_size widcs Yn Character step size when in double wide mode 
width_status_line wsl ws Number of colurrins in status line 

719 



terminfo(M) 

Strings 

Variable Cap- Termcap Description 
name Code 

acs_chars acsc ac Graphic charset pairs aAbBcC - def=vt100 
back_tab cbt bt Back tab 
bell bel bl Audible signal (bell) 
carriage]eturn cr cr Carriage return (*) 
change_char_pitch cpi ZA Change number of characters per inch** 
change_line_pitch lpi ZB Change number of lines per inch** 
change_res_horz chr ZC Change horizontal resolution** 
change]es_ vert cvr ZD Change vertical resolution** 
change_scroll_region csr cs Change to lines #1 through #2 (vt100) (G) 
char_padding rmp rP Like ip but when in replace mode 
char_set_names csnm Zy List of character set names 
dear_all_tabs tbc ct Clear all tab stops 
dear_margins mgc MC Clear all margins (top, bottom, and sides) 
dear_screen clear cl Clear screen and home cursor (*) 
dr_bol ell cb Clear to beginning of line, inclusive 
elr_eol el ce Clear to end of line 
clr_eos ed cd Clear to end of display (*) 
column_address hpa ch Horizontal position absolute (G) 
command_character cmdch CC Terminal settable cmd character in prototype 
create_window cwin CW Define win #1 to go from #2,#3to #4,#5 
cursor_address cup cm Move to row #1 col #2 (G) 
cursor_down cud1 do Down one line 
cursor_home home ho Home cursor (if no cup) 
cursor_invisible civis vi Make cursor invisible 
cursor_left cub1 Ie Move left one space 
cursor_mem_address mrcup CM Memory relative cursor addressing (G) 
cursor_normal cnorm ve Make cursor appear normal (undo vslvi) 
cursor_right cufl nd Non-destructive space (cursor or carriage right) 
cursor_to_ll II II Last line, first column (if no cup) 
cursor_up cuu1 up Upline (cursor up) 
cursor_visible cvvis vs Make cursor very visible 
define_char defc ZE Define a character in a character set ** 
delete_character dch1 dc Delete character (*) 

delete_line dll dl Delete line (*) 

delete_phone dial DI Dial phone number #1 
dis_status_line dsl ds Disable status line 
display_clock dclk DK Display time-of-day clock 
display _pc_char dispc 51 Displays PC character 
down_halCline hd hd Half-line down (forward 1/2linefeed) 
ena_acs enacs eA Enable alternate character set 
enter_alt_charset_mode smacs as Start alternate character set 
enter_am_mode smam SA Turn on automatic margins 

(Continued on next page) 

720 



termin/o(M) 

(Continued) 

Variable Cap- Termcap Description 
name Code 

enter_blink_mode blink mb Turn on blinking 
enter_bold_mode bold md Turn on bold (extra bright) mode 
enter_ca_mode smcup ti String to begin programs that use cup 
enter_delete_mode smdc dm Delete mode (enter) 
enter_dim_mode dim mh Turn on half-bright mode 
enter_doublewide_mode swidm ZF Enable double wide printing 
enter _draft_quality sdrfq ZG Set draft quality print 
enter_insert_mode smir im Insert mode (enter) 
enter _italics_mode sitm ZH Enable italics 
enter_leftward_mode slm ZI Enable leftward carriage motion 
enter_micra_mode smicm Z] Enable micro motion capabilities 
enter _near_letter_quality snlq ZK Set near-letter quality print 
enter _normae quality snrmq ZL Set normal quality print 
enter _pc_ charset_mode smsc 54 Enables PC-scancode mode 
enter _protected_mode prot mp Turn on protected mode 
enter _reverse_mode rev mr Turn on reverse video mode 
enter_secure_mode invis mk Turn on blank mode (characters invisible) 
enter_shadow _mode sshm ZM Enable shadow printing 
enter_standout_mode smso so Begin standout mode 
enter_subscript_mode ssubm ZN Enable subscript printing 
enter_superscript_mode ssupm ZO Enable superscript printing 
enter_underline_mode smul us Start underscore mode 
enter_upward_mode sum ZP Enable upward carriage motion 
enter_xon_mode srnxon SX Turn on xon/xoff handshaking 
erase_chars ech ec Erase #1 characters (G) 
exit_alt_charset_mode rmacs ae End alternate character set 
exit_am_mode rmam RA Turn off automatic margins 
exit_attribute_mode sgrO me Turn off all attributes 
exit_ca_mode rmcup te String to end programs that use cup 
exit_delete_mode rmdc ed End delete mode 
exit_doublewide_mode rwidm ZQ Disable double wide printing 
exit_insert_mode rmir ei End insert mode 
exit_italics_mode ritm ZR Disable italics 
exit_leftward_mode rim ZS Enable rightward (normal) carriage motion 
exit_micro_mode rmicm ZT Disable micro motion capabilities 
exit_pc_charset_mode rmsc S5 Disables PC-scancode mode 
exit_shadow _mode rshm ZU Disable shadow printing 
exit_standout_mode rmso se End standout mode 
exit_subscript_mode rsubm ZV Disable subscript printing 
exit_superscript_mode rsupm ZW Disable superscript printing 
exit_underline_mode rmul ue End underscore mode 
exit_upward_mode rum ZX Enable downward (normal) carriage motion 
exit_xon_mode rrnxon RX Turn off xon/xoff handshaking 

(Continued on next page) 

721 



terminfo(M) 

(Continued) 

Variable Cap- Termcap Description 
name Code 

fixed_pause pause PA Pause for 2-3 seconds 
flash_hook hook fh Flash the switch hook 
flash_screen flash vb Visible bell (may not move cursor) 
form_feed ff ff Hardcopy terminal page eject (*) 

from_status_line fsl fs Return from status line 
goto_window wingo WG Got to window #1 
hangup hup HU Hang-up phone 
init_1string isl il Terminal or printer initialization string 
init_2string is2 is Terminal or printer initialization string 
init_3string is3 i3 Terminal or printer initialization string 
iniUile if if Name of initialization file 
init_prog iprog iP Path name of program for initialization 
initialize_color initc Ie Initialize the definition of color 
initialize_pair initp Ip Initialize color-pair 
insert_character ichl ic Insert character 
iI).serUine ill al Add new blank line (*) 
insert_padding ip ip Insert pad after character inserted (*) 

key_al kal Kl KEY _Al, 0534, upper left of keypad 
key_a3 ka3 K3 KEY _A3, 0535, upper right of keypad 
key_b2 kb2 K2 KEY _B2, 0536, center of keypad 
key_backspace kbs kb KEY_BACKSPACE, 0407, sent by backspace key 
key_beg kbeg @1 KEY_BEG, 0542, sent by beg(inning) key 
key_btab kcbt kB KEY_BTAB, 0541, sent by back-tab key 
key_c1 kc1 K4 KEY_Cl, 0537, lower left of keypad 
key_c3 kc3 K5 KEY_C3, 0540, lower right of keypad 
key_cancel kcan @2 KEY_CANCEL, 0543, sent by cancel key 
key_catab ktbc ka KEY_CATAB,0526, sent by clear-aU-tabs key 
key_clear kclr kC KEY_CLEAR, 0515, sent by clear-screen or erase key 
key_close kclo @3 KEY_CLOSE, 0544, sent by close key 
key_command kcmd @4 KEY_COMMAND,0545, sent by cmd (command) key 
key_copy kcpy @5 KEY_COPY, 0546, sent by copy key 
key_create kcrt @6 KEY_CREATE, 0547, sent by create key 
key_ctab kctab kt KEY_CTAB,0525, sent by clear-tab key 
key_dc kdchl kD KEY_DC, 0512, sent by delete-character key 
key_dl kdll kL KEY_DL, 0510, sent by delete-line key 
key_down kcudl kd KEY_DOWN, 0402, sent by terminal down-arrow key 
key_eic krmir kM KEY _EIC, 0514, sent by rmir or smir in insert mode 

keY3nd kend @7 KEY_END,0550, sent by end key 
key_enter kent @8 KEY_ENTER, 0527, sent by enter/send key 
key_eol kel kE KEY_EOL, 0517, sent by clear-to-end-of-line key 
key_eos ked kS KEY_EOS, 0516, sent by clear-to-end-of-screen key 
key_exit kext @9 KEY_EXIT, 0551, sent by exit key 
keyjO kfO kO KEY_F(O), 0410, sent by function key fO 

(Continued on next page) 

722 



terminfo(M) 

(Continued) 

Variable Cap- Termcap Description 
name Code 

key_fl kfl kl KEY](I), 0411, sent by function key fl 
key_f2 kf2 k2 KEY_F(2), 0412, sent by function key f2 
key_f3 kf3 k3 KEY](3), 0413, sent by function key f3 
keyj4 kf4 k4 KEY](4), 0414, sent by function key £4 
key_f5 kf5 k5 KEY](5), 0415, sent by function key f5 
key_f6 kf6 k6 KEY](6), 0416, sent by function key f6 
key_f7 kf7 k7 KEY](7), 0417, sent by function key f7 
key_f8 kf8 k8 KEY](8),0420, sent by function key £8 
keyj9 kf9 k9 KEY](9), 0421, sent by function key f9 
key_flO kfl0 ki KEY](10),0422, sent by function key flO 
key_f11 kfll Fl KEY_F(l1), 0423, sent by function key f11 
key_fl2 kfl2 F2 KEY _F(12),0424, sent by function key fl2 
key_fl3 kf13 F3 KEY _F(13), 0425, sent by function key £13 
key_£14 kf14 F4 KEY_F(14),0426, sent by function key £14 
key_fl5 kf15 F5 KEY](15),0427, sent by function key £15 
key_fl6 kf16 F6 KEY _F(16),0430, sent by function key fl6 
key_f17 kf17 F7 KEY](17), 0431, sent by function key fl7 
key_f18 kf18 F8 KEY](18),0432, sent by function key f18 
keyj19 kf19 F9 KEY](19),0433, sent by function key f19 
keyj20 kf20 FA KEY_F(20),0434, sent by function key f20 
key_f21 kf21 FB KEY _F(21),0435, sent by function key f21 
key_f22 kf22 FC KEY](22),0436, sent by function key f22 
keyj23 kf23 FD KEY](23),0437, sent by function key f23 
key_f24 kf24 FE KEY](24), 0440, sent by function key f24 
key_f25 kf25 FF KEY _F(25), 0441, sent by function key f25 
keyj26 kf26 FG KEY_F(26), 0442, sent by function key f26 
keyj27 kf27 PH KEY](27), 0443, sent by function key f27 
key_f28 kf28 PI KEY](28),0444, sent by function key f28 
key_f29 kf29 FJ KEY](29),0445, sent by function key f29 
key_f30 kf30 FK KEY](30),0446, sent by function key f30 
key_f31 kf31 FL KEY](31),0447, sent by function key f31 
key_f32 kf32 PM KEY](32), 0450, sent by function key f32 
keyj33 kf33 FN KEY_F(33), 0451, sent by function key f13 
key_f34 kf34 FO KEY](34), 0452, sent by function key £34 
keyj35 kf35 FP KEY](35),0453, sent by function key £35 
key_f36 kf36 FQ KEY_F(36),0454, sent by function key f36 
keyj37 kf37 FR KEY](37),0455, sent by function key £37 
keyj38 kf38 FS KEY_F(38),0456, sent by function key f38 
key_f39 kf39 Ff KEY_F(39),0457, sent by function key £39 
key_f40 kf40 FU KEY_F(40),0460, sent by function key f40 
key_f41 kf41 FV KEY_F(41), 0461, sent by function key £41 
keyj42 kf42 FW KEY_F(42),0462, sent by function key f42 
key_f43 kf43 FX KEY_F(43),0463, sent by function key £43 

(Continued on next page) 

723 



terminjo(M) 

(Continued) 

Variable Cap- Termcap Description 
name Code 

keyj44 kf44 FY KEY](44),0464, sent by function key £44 
keyj45 kf45 FZ KEY](45),0465, sent by function key f45 
keyj46 kf46 Fa KEY _F(46), 0466, sent by function key f46 
keyj47 kf47 Fb KEY](47),0467, sent by function key f47 
keyj48 kf48 Fc KEY](48), 0470, sent by function key f48 
keyj49 kf49 Fd KEY](49), 0471, sent by function key £49 
key_f50 kf50 Fe KEY](50), 0472, sent by function key £50 
key_f51 kf51 Ff KEY](51), 0473, sent by function key £51 
keyj52 kf52 Fg KEY](52), 0474, sent by function key f52 
keyj53 kf53 Fh KEY](53), 0475, sent by function key £53 
keyj54 kf54 Fi KEY](54), 0476, sent by function key £54 
keyj55 kf55 Fj KEY](55), 0477, sent by function key £55 
keyj56 kf56 Fk KEY](56), 0500, sent by function key £56 
keyj57 kf57 Fl KEY _F(57), 0501, sent by function key £57 
keyj58 kf58 Fm KEY_F(58),0502, sent by function key £58 
key_f59 kf59 Fn KEY ](59),0503, sent by function key £59 
keyj60 kf60 Fo KEY_F(60), 0504, sent by function key £60 
keyj61 kf61 Fp KEY_F(61), 0505, sent by function key f61 
keyj62 kf62 Fq KEY_F(62),0506, sent by function key £62 
key_f63 kf63 Fr KEY _F(63), 0507, sent by function key f63 
key_find kfnd @O KEY_FIND, 0552, sent by find key 
key_help khlp %1 KEY_HELP,0553, sent by help key 
key_home khome kh KEY_HOME,0406, sent by home key 
key_ic kichl kl KEY _IC, 0513, sent by ins-char/enter ins-mode key 

key_il kill kA KEY_IL, 0511, sent by insert-line key 
key_left kcubl kl KEY_LEFT, 0404, sent by terminal left-arrow key 
key_ll kll kH KEY _ LL, 0533, sent by home-down key 
key_mark kmrk %2 KEY_MARK,0554, sent by mark key 
key_message kmsg %3 KEY_MESSAGE, 0555, sent by message key 
key_move kmov %4 KEY_MOVE,0556, sent by move key 
key_next knxt %5 KEY_NEXT, 0557, sent by next key 
key_npage knp kN KEY_NPAGE, 0522, sent by next-page key 
key_open kopn %6 KEY_OPEN, 0560, sent by open key 
key_options kopt %7 KEY_OPTIONS, 0561, sent by options key 
key_ppage kpp kP KEY]PAGE, 0523, sent by previous-page key 
key_previous kprv %8 KEY_PREVIOUS, 0562, sent by previous-object key 
key_print kprt %9 KEY]RINT, 0532, sent by print or copy key 
key_redo krdo 0 KEY_REDO, 0563, sent by redo key 
key_reference kref &1 KEY_REFERENCE,0564, sent by ref(erence) key 
key_refresh krfr &2 KEY_REFRESH,0565, sent by refresh key 
keYJeplace krpl &3 KEY_REPLACE, 0566, sent by replace key 
keYJestart krst &4 KEY_RESTART,0567, sent by restart key 

(Continued on next page) 

724 



terminfo(M) 

(Continued) 

Variable Cap- Termcap Description 
name Code 

key_resume kres &5 KEY_RESUME, 0570, sent by resume key 
key_right kcufl kr KEY_RIGHT, 0405, sent by terminal right-arrow key 
key_save ksav &6 KEY_SAVE, 0571, sent by save key 
key_sbeg kBEG &9 KEY_SBEG, 0572, sent by shifted beginning key 
key _scancel kCAN &0 KEY _SCANCEL, 0573, sent by shifted cancel key 
key _scommand kCMD *1 KEY_SCOMMAND,0574, sent by shifted command 

key 

key_scopy kCPY *2 KEY_SCOPY,0575, sent by shifted copy key 
key _screate kCRT *3 KEY_SCREATE, 0576, sent by shifted create key 
key_sdc kDC *4 KEY _SDC, 0577, sent by shifted delete-char key 
key_sdl kDL *5 KEY _SDL, 0600, sent by shifted delete-line key 
key_select kslt *6 KEY_SELECT, 0601, sent by select key 
key_send kEND *7 KEY_SEND, 0602, sent by shifted end key 
key_seol kEOL *8 KEY _SEOL, 0603, sent by shifted clear-line key 
key_sexit kEXT *9 KEY_SEXIT, 0604, sent by shifted exit key 
key_sf kind kF KEY_SF, 0520, sent by scroll-forward/down key 
key_sfind kFND *0 KEY_SFIND,0605, sent by shifted find key 
key_shelp kHLP #1 KEY_SHELP, 0606, sent by shifted help key 
key_shome kHOM #2 KEY _SHOME, 0607, sent by shifted home key 
key_sic kIC #3 KEY_SIC, 0610, sent by shifted input key 
key_sleft kLFT #4 KEY_SLEFT, 0611, sent by shifted left-arrow key 
key _smessage kMSG %a KEY _SMESSAGE, 0612, sent by shifted message key 
key_smove kMOV %b KEY_SMOVE, 0613, sent by shifted move key 
key_snext kNXT %c KEY _SNEXT, 0614, sent by shifted next key 
key _soptions kOPT %d KEY_SOPTIONS, 0615, sent by shifted options key 
key _sprevious kPRV %e KEY_SPREVIOUS, 0616, sent by shifted prev key 
key_sprint kPRT %f KEY_SPRINT, 0617, sent by shifted print key 
key_sr kri kR KEY_SR, 0521, sent by scroll-backward/up key 
key_sredo kRDO %g KEY_SREDO, 0620, sent by shifted redo key 
key _sreplace kRPL %h KEY_SREPLACE, 0621, sent by shifted replace key 
key_sright kRIT %i KEY_SRIGHT,0622, sent by shifted right-arrow key 
key_srsume kRES %j KEY _SRSUME, 0623, sent by shifted resume key 
key_ssave kSAV !1 KEY _SSA VE, 0624, sent by shifted save key 
key _ssuspend kSPD !2 KEY _SSUSPEND, 0625, sent by shifted suspend key 
key_stab khts kT KEY_STAB, 0524, sent by set-tab key 
key_sundo kUND !3 KEY _SUNDO, 0626, sent by shifted undo key 
key_suspend kspd &7 KEY_SUSPEND, 0627, sent by suspend key 
key_undo kund &8 KEY_UNDO, 0630, sent by undo key 
key_up kcuul ku KEY_UP, 0403, sent by terminal up-arrow key 
keypad_local rmkx ke Out of "keypad-transmit" mode 
keypad_xmit smkx ks Put terminal in "keypad-transmit" mode 
lab_fO If 0 10 Labels on function key fO if not fO 
lab_fl Ifl 11 Labels on function key fl if not fl 

(Continued on next page) 

725 



terminfo(M) 

(Continued) 
. 

Variable Cap- Termcap Description 
name Code 

labj2 If2 12 Labels on function key f2 if not f2 
labj3 If3 13 Labels on function key f3 if not f3 
labj4 1£4 14 Labels on function key f4 if not f4 
labj5 If5 15 Labels on function key f5 if not f5 
lab_f6 1£6 16 Labels on function key f6 if not f6 
lab_f7 If7 17 Labels on function key f7 if not f7 
labj8 1£8 18 Labels on function key f8 if not f8 
labj9 1£9 19 Labels on function key f9 if not f9 
labjlO 1£10 la Labels on function key flO if not flO 
labeljormat fln 1£ Label format 
label_off rmln LF Turn off soft labels 
labeCon smln LO Turn on soft labels 
meta_off rmm mo Turn off "meta mode" 
meta_on smm mm Turn on "meta mode" (8th bit) 
micro_column_address mhpa zy Like column_address for micro adjustment ** 
micro_down mcudl ZZ Like cursor_down for micro adjustment 
micro_left mcubl Za Like cursor_left for micro adjustment 
micro_right moofl Zb Like cursor_right for micro adjustment 
micro]ow _address mvpa Zc Like row_address for micro adjustment ** 
micro_up mcuul Zd Like cursor_up for micro adjustment 
newline nel nw Newline (behaves like cr followed by If) 
order_oepins porder Ze Matches software bits to print-head pins 
orig_colors oc oc Set all color(-pair)s to the original ones 
orig_pair op op Set default color-pair to the original one 
pad_char pad pc Pad character (rather than null) 
parm_dch dch DC Delete #1 chars (G*) 
parm_delete_line dl DL Delete #1 lines (G*) 
parm_down_cursor cud DO Move down #1 lines. (G*) 
parm_down_micro mcud Zf Like parm_down_cursor for micro adjust. (G*) 
parm_ich ich IC Insert #1 blank chars (G*) 
parm_index indn SF Scroll forward #1 lines. (G) 
parm_inserUine il AL Add #1 new blank lines (G*) 
parm_left_cursor cub LE Move cursor left #1 spaces (G) 
parm_left_micro mcub Zg Like parm_left3ursor for micro adjust. ** 
parm_right_cursor cuf RI Move right #1 spaces. (G*) 
parm_right_micro mcuf Zh Like parm_right_cursor for micro adjust. ** 
parm_rindex rin SR Scroll backward #1 lines. (G) 
parm_up3ursor cuu UP Move cursor up #1 lines. (G*) 
parm_up _micro mcuu Zi Like parm_up_CUlSor for micro adjust. ** 
pkey_key pfkey pk Prog funct key #1 to type string #2 
pkeyJocal pfloc pI Prog funct key #1 to execute string #2 
pkey_xmit pfx px Prog funct key #1 to xmit string #2 
plab_norm pIn pn Prog label #1 to show string #2 

(Continued on next page) 

726 



terminio(M) 

(Continued) 

Variable Cap- Termcap Description 
name Code 

print_screen mcO ps Print contents of the screen 
prtr_non mc5p pO Turn on the printer for #1 bytes 
prtr_off mc4 pf Turn off the printer 
prtr_on mc5 po Turn on the printer 
pulse pulse PU Select pulse dialing 
quick_dial qdial QD Dial phone number #1, without progress detection 
remove_clock rmclk RC Remove time-of-day clock 
repeat_char rep rp Repeat char #1 #2 times (G*) 
req_for_input rfi RF Send next input char (for ptys) 
reset_l string rsl rl Reset terminal completely to sane modes 
reset_2string rs2 r2 Reset terminal completely to sane modes 
reset_3string rs3 r3 Reset terminal completely to sane modes 
reset_file rf rf Name of file containing reset string 
restore_cursor rc rc Restore cursor to position of last sc 
row_address vpa cv Vertical position absolute (G) 
save_cursor sc sc Save cursor position 
scroll_forward ind sf Scroll text up 
scroll_reverse ri sr Scroll text down 
select_char_set scs Zj Select character set ** 
set_attributes sgr sa Define the video attributes (G) #1-#9 
set_background setb Sb Set current background color 
set_bottom_margin smgb Zk Set bottom margin at current line 
set_bottom_margin_parm smgbp Zl Set bottom margin at line #1 ** 
set_clock sclk SC Set time-of-day clock 
set_color_pair scp sp Set current color-pair 
setjoreground setf Sf Set current foreground colorl 
set_left_margin smgl ML Set left margin at current line 
set_left_margin_parm smglp Zm Set left margin at column #1 ** 
set_right_margin smgr MR Set right margin at current column 
set_right_margin_parm smgrp Zn Set right margin at column #1 ** 
set_tab hts st Set a tab in all rows, current column 
set_top_margin '\ smgt Zo Set top margin at current line 
set_top _margin_parm smgtp Zp Set top margin at line #1 ** 
set_window wind wi Current window is lines #1-#2cols #3-#4{G) 
start_bit_image sbim Zq Start printing bit image graphics ** 
start_char_set_def scsd Zr Start definition of a character set ** 
stop_bit_image rbim Zs End printing bit image graphics 
stop_char_set_def rcsd Zt End definition of a character set 
subscript_characters subcs Zu List of "subscript-able" characters 
superscript_characters supcs Zv List of "superscript-able" characters 
tab ht ta Tab to next 8-space hardware tab stop 
these_cause_cr docr Zw Printing any of these chars causes cr 
to_status_line tsl ts Go to status line, col #1 (G) 

(Continued on next page) 

727 



termin/o(M) 

(Continued) 

Variable Cap- Termcap Description 
name Code 

tone tone TO Select touch tone dialing 
underline_char uc uc Underscore one char and move past it 
up_half_line hu hu Half-line up (reverse 1/2linefeed) 
userD uD uD User string D 
userl ul ul User string 1 
user2 u2 u2 User string 4 
user3 u3 u3 User string 3 
user4 u4 u4 User string 4 
userS uS uS User string S 
user6 u6 u6 User string 6 
user7 u7 u7 User string 7 
userS uS uS User string S 
user9 u9 u9 User string 9 
wait_tone wait WA Wait for dial tone 
xofCcharacter xoffc XF X-off character 
xon_character xonc XN X-on character 
xon_character xonc XN Alternate XON character (scancode mode) 
xofC character xoffc XF Alternate XOFF character (scancode mode) 
zero_motion zerom Zx No motion for the subsequent character 

728 



terminfo(M) 

Booleans 

Cap- Variable Termcap Description 
name Code 
am auto_right_margin am Terminal has automatic margins 
bw auto_left_margin bw cubl wraps from column 0 to last column 
ccc can_change cc Terminal can re-define existing color 
chts hard_cursor HC Cursor is hard to see 
cpix cpi_changes_res YF Changing character pitch changes resolution 
cps print_rate Ym Print rate in characters per second 
crxm cr_cancels_micro_modem YB Using cr turns off micro mode 
cwin create_window CW Define win #1 to go from #2,#3to #4,#5 
da memory_above da Display may be retained above the screen 
daisy has_print_wheel YC Printer needs operator to change character set 
dclk display_clock DK Display time-of-day clock 
db memory_below db Display may be retained below the screen 
dial dial_phone DI Dial phone number #1 
eo erase_overstrike eo Can erase overstrikes with a blank 
eslok status_line_esc_ok es Escape can be used on the status line 
gn generic_type gn Generic line type (e.g., dialup, switch) 
hc hard_copy hc Hardcopy terminal 
hIs hue_lightness_saturation hI Terminal uses only HLS color notation (Tektronix) 
hs has_status_line hs Has extra "status line" 
hz tilde~litch hz Hazeltine; can't print tilde n 
in insert_null~litch in Insert mode distinguishes nulls 
km has_meta_key km Has a meta key (shift, sets parity bit) 
lpix Ipi_changesJes YG Changing line pitch changes resolution 
mc5i prtr_silent 
mir move_insert_mode mi Safe to move while in insert mode 
msgr move_standout_mode ms Safe to move in standout modes 
npc no_pad_char NP Pad character doesn't exist 
nrrmc non_rev _rmcup NR smcup does not reverse rmcup 
nxon needs_xon_xoff nx Padding won't work, xon/xoff required 
os over_strike os Terminal overstrikes on hard-copy terminal 
sam semi_auto _right_margin YE Printing in last column causes cr 
ul transparent_underline ul Underline character overstrikes 
xenl eat_newline~litch xn Newline ignored after 80 columns (Concept) 

xhp ceol_standout~litch xs Standout not erased by overwriting (hp) 
xhpa coCaddr~litch YA Only positive motion for hpa/mhpa caps 
xon xon_xoff xo Terminal uses xon/xoff handshaking 
xsb no_esc_ctlc xb Beehive (f1=escape, f2=ctrl C) 
xt dest_tabs_magic_smso xt Destructive tabs, magic smso char (tl061) 
xvpa row _addr~litch YO Only positive motion for vpa/mvpa caps 

729 



termin/o(M) 

Numbers 

Cap- Variable Termcap Description 
name Code 
bufsz buffer_capacity Ya Number of bytes buffered before printing 
colors max_colors Co Maximum number of colors on the screen 
cols columns co Number of columns in a line 
cps print_rate Ym Average print rate in characters per second 
it, init_tabs it Tabs initially every # spaces 
Ih label_height Ih Number of rows in each label 
lines lil'~5 li Number of lines on a screen or a page 
1m Llles_oCmemory 1m Lines of memory if > lines; 0 means varies 
lw label_width lw Number of columns in each label 
maddr max_micro _address Yd Maximum value in micro_ ... _address 
mcs micro_col_size Yf Character step size when in micro mode 
mjump max_micro_jump Ye Maximum value in parm_ ... _micro 
rills micro_line_size Yg Line step size when in micro mode 
ncv no_color_video NC Video attributes that can't be used with colors 
nlab num_labels Nl Number of labels on screen (start at 1) 

npins number_oCpins Yh Number of pins in print-head 
orc output_res_char Yi Horizontal resolution in units per character 
orhi outputJes_horz_inch Yk Horizontal resolution in units per inch 
or! output_res_line Yj Vertical resolution in units per line 
orvi outputJes_ vert_inch Yl Vertical resolution in units per inch 
pairs max_pairs pa Maximum number of color-pairs on the screen 
pb padding_baud_rate pb Lowest baud rate where padding needed 
spinh dot_horz_spacing Yc Spacing of dots horizontally in dots per inch 
spinv dot_ vert_spacing Yb Spacing of pins vertically in pins per inch 
vt virtuaCterminal vt Virtual terminal number (UNIX system) 
widcs wide_char_size Yn Character step size when in double wide mode 
wsl width_status_line ws Number of columns in status line 
xmc magic_ cookie_glitch sg Number of biank characters left by smso or rmso 

730 



terminio(M) 

Strings 

Cap- Variable Termcap Description 
name Code 
acsc acs_chars ac Graphic charset pairs aAbBcC - def=vt100 
bel bell bl Audible signal (bell) 
blink enter_blink_mode mb Tum on blinking 
bold enter_bold_mode md Tum on bold (extra bright) mode 
cbt back_tab bt Back tab 
chr change_res_horz ZC Change horizontal resolution ** 

civis cursor_invisible vi Make cursor invisible 
clear clear_screen cl Clear screen and home cursor (*) 

cmdch command_character CC Terminal settable cmd character in prototype 
cnorm cursor_normal ve Make cursor appear normal (undo vs/vi) 
cpi change_char_pitch ZA Change number of characters per inch ** 
cr carriage_return cr Carriage return (*) 
csnm char_set_names Zy List of character set names 
csr change_scron_region cs Change to lines #1 through #2 (vt100) (G) 
cub parm_Ieft_cursor LE Move cursor left #1 spaces (G) 
cubl cursor_left Ie Move left one space. 
cud parm_down_ cursor DO Move down #1 lines. (G*) 
cuf parm_right_cursor RI Move right #1 spaces. (G*) 
cufl cursor_right nd Non-destructive space (cursor or carriage right) 
cup cursor_address cm Move to row #1 col #2 (G) 
cuu parm_up_cursor UP Move cursor up #1 lines. (G*) 
cvr change_res_ vert ZD Change vertical resolution ** 
cvvis cursor_visible vs Make cursor very visible 
dch parm_dch DC Delete #1 chars (G*) 
dchl delete_character dc Delete character (*) 
defc define_char ZE Define a character in a character set 
dim enter_dim_mode mh Tum on half-bright mode 
dl delete_line dll Delete line (*) 
dl parm_delete_line DL Delete #1 lines (G*) 
do cursor_down do Down one line 
docr these_cause_cr Zw Printing any of these chars causes cr 
dsl dis_status_line ds Disable status line 
ech erase_chars ec Erase #1 characters (G) 
ed clr_eos cd Clear to end of display (*) 
el clr_eol ce Clear to end of line 
ell clr_bol cb Clear to beginning of line, inclusive 
enacs ena_acs eA Enable alternate character set 
ff form_feed ff Hardcopy terminal page eject (*) 
flash flash_screen vb Visible bell (may not move cursor) 
fln label_format Lf Label format 
fsl from_status_line fs Return from status line 
hd down_half_line hd Half-line down (forward 1/2linefeed) 

(Continued on next page) 

731 



terminfo(M) 

(Continued) 

Cap- Variable Termcap Description 
name Code 
home cursor_home ho Home cursor (if no cup) 
hook flash_hook fh Flash the switch hook 
hpa column_address ch Horizontal position absolute (G) 
ht tab ta Tab to next 8-space hardware tab stop 
hts set_tab st Set a tab in all rows, current column 
hu up_halUine hu Half-line up (reverse 1/2linefeed) 
hup hangup HU Hang-up phone 
ich parm_ich IC Insert #1 blank chars (G*) 
ich1 insert_character ic Insert character 
if iniUile if Name of initialization file 
il parm_insert_line AL Add #1 new blank lines (G*) 
ill insert_line al Add new blank line (*) 
ind scrolljorward sf Scroll text up 
indn parm_index SF Scroll forward #1 lines. (G) 
initc initialize_color Ie Initialize the definition of color 
initp initialize_pair Ip Initialize color-pair 
invis enter_secure_mode mk Turn on blank mode (characters invisible) 
ip insert_padding ip Insert pad after character inserted (*) 
iprog init_prog iP Path name of program for initialization 
is1 init_1string i1 Terminal or printer initialization string 
is2 init_2string is Terminal or printer initialization string 
is3 init_3string i3 Terminal or printer initialization string 
kBEG key_sbeg &9 KEY_SBEG, 0572, sent by shifted beginning key 
kCAN key _scance! &0 KEY_SCANCEL, 0573, sent by shifted cancel key 
kCMD key _scommand *1 KEY_SCOMMAND,0574, sent by shifted command key 
kCPY key_scopy *2 KEY_SCOPY, 0575, sent by shifted copy key 
kCRT key _screate *3 KEY _SCREATE, 0576, sent by shifted create key 
kDC key_sdc *4 KEY_SDC, 0577, sent by shifted delete-char key 
kDL key_sdl *5 KEY_SDL, 0600, sent by shifted delete-line key 
kEND key_send *7 KEY_SEND, 0602, sent by shifted end key 
kEOL key_seol *8 KEY_SEOL, 0603, sent by shifted clear-line key 
kEXT key_sexit *9 KEY_SEXIT, 0604, sent by shifted exit key 
kFND k~y_sfind *0 KEY _SFlND, 0605, sent by shifted find key 
kHLP key_shelp #1 KEY_SHELP, 0606, sent by shifted help key 
kHOM key_shome #2 KEY_SHOME,0607, sent by shifted home key 
klC key_sic #3 KEY_SIC, 0610, sen~ by shifted input key 
kLFT key_sleft #4 KEY _SLEFT, 0611, sent by shifted left-arrow key 
kMOV key_smove b KEY_SMOVE, 0613, sent by shifted move key 
kMSG key _smessage %a KEY_SMESSAGE, 0612, sent by shifted message key 
kNXT key_snext %c KEY_SNEXT, 0614, sent by shifted next key 
kOPT key _soptions %d KEY _SOPTIONS, 0615, sent by shifted options key 
kPRT key_sprint %f KEY_SPRINT, 0617, sent by shifted print key 
kPRV key _sprevious %e KEY_SPREVIOUS, 0616, sent by shifted prevkey 

(Continued on next page) 

732 



termin/o(M) 

(Continued) 

Cap- Variable Termcap Description 
name Code 
kRDO key_sredo %g KEY _SREDO, 0620, sent by shifted redo key 

kRES key_srsume %j KEY_SRSUME, 0623, sent by shifted resume key 

kRIT key_sright %i KEY _SRIGHT, 0622, sent by shifted right-arrow key 

kRPL key _sreplace %h KEY _SREPLACE, 0621, sent by shifted replace key 

kSAV key_ssave !1 KEY _SSA VE, 0624, sent by shifted save key 
kSPD key _ssuspend !2 KEY _SSUSPEND, 0625, sent by shifted suspend key 
kUND key_sundo !3 KEY _SUNDO, 0626, sent by shifted undo key 
ka1 key_a 1 Kl KEY_AI, 0534, upper left of keypad 
ka3 key_a3 K3 KEY_A3, 0535, upper right of keypad 
kb2 key_b2 K2 KEY_B2,0536, center of keypad 
kbeg key_beg @1 KEY_BEG, 0542, sent by beg(inning) key 
kbs key_backspace kb KEY_BACKSPACE, 0407, sent by backspace key 

kc1 key_c1 K4 KEY _ Cl, 0537, lower left of keypad 

kc3 key_c3 K5 KEY _ C3,0540, lower right of keypad 
kcan key_cancel @2 KEY_CANCEL, 0543, sent by cancel key 

kcbt key_btab kB KEY_BTAB, 0541, sent by back-tab key 
kclo key_close @3 KEY_CLOSE, 0544, sent by close key 

kclr key_clear kC KEY_CLEAR, 0515, sent by clear-screen or erase key 

kcmd key_command @4 KEY_COMMAND, 0545, sent by cmd (command) key 

kcpy key_copy @5 KEY_COPY, 0546, sent by copy key 
kcrt key_create @6 KEY_CREATE, 0547, sent by create key 
kctab key_ctab kt KEY_crAB, 0525, sent by clear-tab key 
kcubl key_left kl KEY_LEFT, 0404, sent by terminal left-arrow key 
kcudl key_down kd KEY_DOWN, 0402, sent by terminal down-arrow key 

kcufl key_right kr KEY_RIGHT, 0405, sent by terminal right-arrow key 

kcuul key_up ku KEY_UP, 0403, sent by terminal up-arrow key 
kdchl key_dc kD KEY_DC, 0512, sent by delete-character key 

kdll key_dl kL KEY_DL, 0510, sent by delete-line key 
ked key_eos ked KEY_EOS, 0516, sent by clear-to-end-of-screen key 
kel key_eol kE KEY_EOL, 0517, sent by clear-to-end-of-line key 
kend key_end @7 KEY_END, 0550, sent by end key 
kent key_enter @8 KEY_ENTER, 0527, sent by enter/send key 
kext key_exit @9 KEY_EXIT, 0551, sent by exit key 

kfO key_fO kO KEY](O), 0410, sent by function key fo 
kfl key_fl kl KEY_F(C), 0411, sent by function key fl 

kflO key_flO k , KEY_F(ADM),0422, sent by function key flO 

kfll key_fll Fl KEY](ADM),0423, sent by function key f11 

kf12 key_fl2 F2 KEY_F(ADM),0424, sent by function key f12 

kf13 key_f13 F3 KEY](ADM),0425, sent by function key f13 

kf14 key_f14 F4 KEY](ADM),0426, sent by function key fl4 

kf15 key_fl5 F5 KEY](ADM),0427, sent by function key fl5 
kf16 key_f16 F6 KEY_F(ADM),0430, sent by function key f16 

(Continued on next page) 

733 



terminjo(M) 

(Continued) 

Cap- Variable Termcap Description 
name Code 
kf17 keyj17 F7 KEY](ADM), 0431, sent by function key f17 
kf18 keyj18 F8 KEY](ADM),0432, sent by function key f18 
kf19 key_f19 F9 KEY](ADM),0433, sent by function key f19 
kf2 keyj2 k2 KEY_F(S), 0412, sent by function key f2 
kf20 key_f20 FA KEY_F(20), 0434, sent by function key f20 
kf21 key_f21 FB KEY](21),0435, sent by function key f21 
kf22 key_f22 FC KEY](22),0436, sent by function key f22 
kf23 key_f23 FD KEY](23),0437, sent by function key f23 
kf24 keyj24 FE KEY](24),0440, sent by function key f24 
kf25 key_f25 FF KEY](25), 0441, sent by function key f25 
kf26 key_f26 FG KEY _F(26), 0442, sent by function key f26 
kf27 key_f27 PH KEY](27), 0443, sent by function key f27 
kf28 key_f28 PI KEY](28),0444, sent by function key f28 
kf29 keyj29 FJ KEY](29),0445, sent by function key f29 
kf3 key_f3 k3 KEY](S), 0413, sent by function key f3 
kf30 keyj30 FK KEY](S),0446, sent by function key f30 
kf31 keyj31 FL KEY](S),0447, sent by function key f31 
kf32 keyj32 PM KEY](S), 0450, sent by function key f32 
kf33 key_f33 FN KEY _F(ADM), 0451, sent by function key f33 
kf34 key_f34 FO KEY _F(S), 0452, sent by function key f34 
kf35 keyj35 FP KEY](S),0453, sent by function key f35 
kf36 key_f36 FQ KEY](S),0454, sent by function key f36 
kf37 key_f37 FR KEY_F(S),0455, sent by function key f37 
kf38 key_f38 FS KEY_F(S),0456, sent by function key f38 
kf39 key_f39 Fr KEY](S),0457, sent by function key f39 
kf4 key_f4 k4 KEY_F(F),0414, sent by function key f4 
kf40 key_f40 FU KEY_F(40),0460, sent by function key f40 
kf41 keyj41 FV KEY](41), 0461, sent by function key f41 
kf42 keyj42 FW KEY](42), 0462, sent by function key f42 
k~43 key_f43 FX KEY](43), 0463, sent by function key f43 
kf44 keyj44 FY KEY](44), 0464, sent by function key f44 
kf45 key_f4S FZ KEY](45),0465, sent by function key f45 
kf46 key_f46 Fa KEY_F(46), 0466, sent by function key f46 
kf47 keyj47 Fb KEY _F(47),0467, sent by function key f47 
kf48 keyj4R Fc KEY_F(48), 0470, sent by function key f48 
kf49 keyj49 Fd KEY](49), 0471, sent by function key f49 
kfS key_fS k5 KEY _F(M), 0415, sent by function key fS 
kf50 key_f50 Fe KEY](50),0472, sent by function key fSO 
kf51 key_f51 Ff KEY_F(51),0473, sent by function key f51 
kfS2 key_f52 Fg KEY ](52), 0474, sent by function key fS2 
kf53 key_f53 Ph KEY](53),0475, sent by function key fS3 
kfS4 key_f54 Fi KEY](54), 0476, sent by function key f54 
kfSS key_fS5 Fi KEY_F(S5), 0477, sent by function key f55 

(Continued on next page) 

734 



terminfo(M) 

(Continued) 

Cap- Variable Termcap Description 
name Code 
kf56 keyj56 Fk KEY](56),0500, sent by function key f56 
kf57 keyj57 F1 KEY](57), 0501, sent by function key f57 
kf58 key_f58 Fm KEY ](58), 0502, sent by function key f58 
kf59 keyj59 Fn KEY ](59), 0503, sent by function key f59 
kf6 keyj6 k6 KEY](6), 0416, sent by function key f6 
kf60 key_f60 Fo KEY](60), 0504, sent by function key f60 
kf61 keyj61 Fp KEY](61), 0505, sent by function key f61 
kf62 keyj62 Fq KEY_F(62), 0506, sent by function key f62 
kf63 keyj63 Fr KEY](63), 0507, sent by function key f63 
kf7 key_f7 k7 KEY_F(7), 0417, sent by function key f7 
Kf8 key_f8 k8 KEY_F(8), 0420, sent by function key f8 
kf9 keyj9 k9 KEY_F(9), 0421, sent by function key f9 
kfnd key_find @O KEY_FIND,0552, sent by find key 
khlp key_help %1 KEY_HELP, 0553, sent by help key 
khome key_home kh KEY_HOME,0406, sent by home key 
khts key_stab kT KEY_STAB,0524, sent by set-tab key 
kichl key_ic kl KEY_IC, 0513, sent by ins-char /enter ins-mode key 
kill key_il kA KEY_IL, 0511, sent by insert-line key 
kind key_sf kF KEY_SF,0520, sent by scroll-forward/down key 
kll key_ll kH KEY_LL, 0533, sent by home-down key 
kmov key_move %4 KEY_MOVE,0556, sent by move key 
kmrk key_mark %2 KEY_MARK, 0554, sent by mark key 
kmsg key_message %3 KEY_MESSAGE,0555, sent by message key 
knp key_npage kN KEY _NPAGE, 0522, sent by next-page key 
knxt key_next %5 KEY_NEXT, 0557, sent by next-object key 
kopn key_open %6 KEY_OPEN, 0560, sent by open key 
kopt key_options %7 KEY_OPTIONS, 0561, sent by options key 
kpp key_ppage kP KEY]PAGE, 0523, sent by previous-page key 
kprt key_print %9 KEY]RINT, 0532, sent by print or copy key 
kprv key_previous %8 KEY]REVIOUS,0562, sent by previous-object key 
krdo key_redo %0 KEY_REDO, 0563, sent by redo key 
kref key_reference &1 KEY_REFERENCE,0564, sent by ref(erence) key 
kres key_resume &5 KEY_RESUME,0570, sent by resume key 
krfr key_refresh &2 KEY_REFRESH,0565, sent by refresh key 
kri key_sr kR KEY_SR, 0521, sent by scroll-backward/up key 
krmir key_eic kM KEY _EIC, 0514, sent by rmir or smir in insert mode 
krpl key_replace &3 KEY_REPLACE, 0566, sent by replace key 
krst keYJestart &4 KEY_RESTART,0567, sent by restart key 
ksav key_save &6 KEY_SAVE, 0571, sent by save key 
kslt key_select *6 KEY_SELECT, 0601, sent by select key 
kspd key_suspend &7 KEY_SUSPEND, 0627, sent by suspend key 
ktbc key_catab ka KEY_CATAB,0526, sent by clear-all-tabs key 
kund key_undo &8 KEY_UNDO, 0630, sent by undo key 

(Continued on next page) 

735 



ter11!info(M) 

(Continued) 

Cap- Variable Termcap Description 
name Code 
!f0 lab_fO 10 Labels on function key fO if not fO 
Ifl lab_fl 11 Labels on function key fl if not fl 
!flO lab_flO la Labels on function key fl 0 if not fl 0 
If2 lab_f2 12 Labels on function key f2 if not f2 
!f3 labj3 13 Labels on function key f3 if not f3 
!f4 lab_f4 14 Labels on function key f4 if not f4 
If 5 lab_fS IS Labels on function key fS if not f5 
If6 lab_f6 16 Labels on function key f6 if not f6 
1f7 lab_f7 17 Labels on function key f7 if not f7 
!f8 lab_f8 18 Labels on function key f8 if not f8 
lf9 labj9 19 Labels on function key f9 if not f9 
11 cursor_to_ll 11 Last line, first column (if no cup) 
Ipi change_line_pitch ZB Change number of lines per inch ** 
ma max_attributes ma Maximum combined video attributes terminal can displa 
mcO print_screen ps Print contents of the screen 
mc4 prtr_off pf Turn off the printer 
mc5 prtr_on po Turn on the printer 
mcSp prtr_non pO Turn on the printer for #1 bytes 
mcub parm_Ieft_micro Zg Like parm_IefCcursor for micro adjust. ** 
mcub1 micro_left Za Like cursor_left for micro adjustment 
mcud parm_down_micro Zf Like parm_down_cursor for micro adjust. (G*) 
mcud1 micro_down ZZ Like cursor_down for micro adjustment 
mcuf parm_right_micro Zh Like parm_righCcursor for micro adjust. ** 
mcufl micro_right Zb Like cursor_right for micro adjustment 
mcuu parm_up_micro Zi Like parm_up_cursor for micro adjust. ** 
mcuu1 micro_up Zd Like cursor_up for micro adjustment 
mgc clear_margins MC Clear all margins (top, bottom, and sides) 
mhpa micro_column_address zy Like column_address for micro adjustment ** 
mrcup cursor_mem_address CM Memory relative cursor addressing (G) 
mvpa micro_row_address Zc Like row_address for micro adjustment ** 
ndscr non_dest_scroll_region ND Scrolling region is non-destructive 
nel newline nw Newline (behaves like cr followed by If) 
oc orig_colors oc Set all color(-pair)s to the original ones 
op orig_pair op Set default color-pair to the original one 
pad pad_char pc Pad character (rather than null) 
pause fixed_pause PA Pause for 2-3 seconds 
pfkey pkey_key pk Prog funct key #1 to type string #2 
pfloc pkey_Iocal pi Prog funct key #1 to execute string #2 
pfx pkey_xmit px Prog funct key #1 to xmit string #2 
pin plab_norm pn Prog label #1 to show string #2 
porder order_oepins Ze Matches software bits to print-head pins 
prot enter _protected_mode mp Turn on protected mode 
pulse pulse PU Select pulse dialing 

(Continued on next page) 

736 



terminfo(M) 

(Continued) 

Cap- Variable Termcap Description 
name Code 
qdial quick_dial QD Dial phone number #1, without progress detection 
rbim stop _bit_image Zs End printing bit image graphics 
rc restore_cursor rc Restore cursor to position of last sc 
rcsd stop_char_set_def Zt End definition of a character set 
rep repeat_char rp Repeat char #1 #2 times (G*) 
rev enter _reverse_mode mr Turn on reverse video mode 
rf reset_file rf Name of file containing reset string 
rfi req_for_input RF Send next input char (for ptys) 
ri scroll_reverse sr Scroll text down 
rin parm_rindex SR Scroll backward #1 lines. (G) 
ritm exit_italics_mode ZR Disable italics 
rim exit_leftward_mode ZS Enable rightward (normal) carriage motion 
rmacs exit_alt_charset_mode ae End alternate character set 
rmam exit_am_mode RA Turn off automatic margins 
rmclk remove_clock RC Remove time-of-day clock 
rmcup exit_ca_mode te String to end programs that use cup 
rmdc exit_delete_mode ed End delete mode 
rmicm exit_micro_mode ZT Disable micro motion capabilities 
rmir exit_insert_mode ei End insert mode 
rmkx keypad_local ke Out of "keypad-transmit" mode 
rmln label_off LF Turn off soft labels 
rmm meta_off mo Turn off "meta mode" 
rmp char_padding rP Like ip but when in replace mode 
rmso exit_standout_mode se End standout mode 
rmul exit_underline_mode ue End underscore mode 
rrnxon exit_xon_mode RX Turn off xon/xoff handshaking 
rsl reset_lstring rl Reset terminal completely to sane modes 
rs2 reset_2string r2 Reset terminal completely to sane modes 
rs3 reset_3string r3 Reset terminal completely to sane modes 
rshm exit_shadow _mode ZU Disable shadow printing 
rsubm exit_subscript_mode ZV Disable subscript printing 
rsupm exit_superscript_mode ZW Disable superscript printing 
rum exit_upward_mode ZX Enable downward (normal) carriage motion 
rwidm exit_doublewide_mode ZQ Disable double wide printing 
sbim start_bit_image Zq Start printing bit image graphics ** 
sc save_cursor sc Save cursor position 
sclk set_clock SC Set time-of-day clock 
scp set_color_pair sp Set current color-pair 
scs select_char_set Zj Select character set ** 
scsd start_char_set_def Zr Start definition of a character set ** 
sdrfq enter_draft_quality ZG Set draft quality print 
setb set_background Sb Set current background color 
setf set_foreground Sf Set current foreground color 

(Continued on next page) 

737 



terminfo(M) 

(Continued) 

Cap- Variable Termcap Description 
name Code 
sgr set_attributes sa Define the video attributes #1-#9(G) 
sgrO exit_attribute_mode me Turn off all attributes 
sitm enter_italics_mode ZH Enable italics 
slm enter_leftward_mode ZI Enable leftward carriage motion 
smacs enter_alt3harset_mode as Start alternate character set 
smam enter_am_mode SA Turn on automatic margins 
smcup enter_ca_mode ti String to begin programs that use cup 
smd'c enter_delete_mode dm Delete mode (enter) 
smgb set_bottom_margin Zk Set bottom margin at current line 
smgbp set_bottom_margin_parm ZI Set bottom margin at line #1 ** 
smgl set_left_margin ML Set left margin at current line 
smglp set_Ieft_margin_parm Zm Set left margin at column #1 ** 
smgr set_right_margin MR Set right margin at current column 
smgrp set_right_margin_parm Zn Set right margin at column #1 ** 
smgt set_top_margin Zo Set top margin at current line 
smgtp set_top_margin_parm Zp Set top margin at line #1 ** 
smicm enter_micro_mode ZJ Enable micro motion capabilities 
smir enter_insert_mode im Insert mode (enter) 
smkx keypad_xmit ks Put terminal in "keypad-transmif' mode 
smln label_on LO Turn on soft labels 
smm meta_on mm Turn on "meta mode" (8th bit) 
smso enter_standout_mode so Begin standout mode 
smxon enter_xon_mode SX Turn on xon/xoff handshaking 
snlq enter _near_letter_quality ZK Set near-letter quality print 
snrmq enter_normal_quality ZL Set normal quality print 
sshm enter_shadow _mode ZM Enable shadow printing 
ssubm enter_subscript_mode ZN Enable subscript printing 
ssupm enter_superscript_mode ZO Enable superscript printing 
subcs subscript_characters Zu List of "subscript-able" characters 
sum enter_upward_mode ZP Enable upward carriage motion 
supes superscript_characters Zv List of "superscript-able" characters 
swidm enter_doublewide_mode ZF Enable double wide printing 
tbc clear_all_tabs ct Clear all tab stops 
tone tone TO Select touch tone dialing 
tsl to_status_line ts Go to status line, col #1 (G) 
uO userO uO User string 0 
ul user1 ul User string 1 
u2 user2 u2 User string 2 
u3 user3 u3 User string 3 
u4 user4 u4 User string 4 
uS userS uS User string S 
u6 user6 u6 User string 6 
u7 user7 u7 User string 7 

(Continued on next page) 

738 



(Continued) 

Cap­
name 
uS 
u9 

Variable 

userS 

terminfo(M) 

Termcap Description 
Code 
uS User string S 
u9 User string 9 

uc 
user9 
underline_char 
cursor_up 
row_address 
wait_tone 
set_window 

uc Underscore one char and move past it 
up 
vpa 
wait 
wind 
wingo 
wnum 
xoffc 
xonc 
zerom 

Sample entry 

goto _window 
maximum_windows 
xofCcharacter 
xon_character 
zero_motion 

cuul Upline (cursor up) 
cv Vertical position absolute (G) 
WA Wait for dial tone 
wi Current window is lines #1-#2cols #3-#4(G) 
WG Got to window #1 
MW Maximum number of definable windows 
XF X-off character 
XN X-on character 
Zx No motion for the subsequent character 

The following entry, which describes the AT&T 610 terminal, is among the 
more complex entries in the terminfo file at this time. 

610 I 610bct I ATT610 I att610 I AT&T 610; 80 column; 98key keyboard 
am, eslok, hs, mir, msgr, xenl, xon, 
cols#80, it#8, lh#2, lines#24, lw#8, nlab#8, wsl#80, 
acsc= "aaffggj jkkllmmnnooppqqrrssttuuvvwwxxyyzz {{ I I }} - -, 
bel='G, blink=\E[5m, bold=\E[lm, cbt=\E[Z, 
civis=\E[?25l, clear=\E[H\E[J, cnorm=\E[?25h\E[?12l, 
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b, 
cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cuf1=\E[C, 
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A, 
cvvis=\E[?12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m, 
dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[lK, 
flash=\E[?5h$<200>\E[?5l, fsl=\E8, home=\E[H, ht=\t, 
ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=\ED, 
invis=\E[8m, 
is1=\E[8;O I \E[?3;4;5;13;151\E[13;20l\E[?7h\E[12h\E(B\E)O, 
is2=\E[Om'O, is3=\E(B\E)0, kLFT=\E[\s@, kRIT=\E[\sA, 
kbs=\b, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcudl=\E[B, 
kcufl=\E[C, kcuu1=\E[A, kf1=\EOc, kflO=\ENp, 
kf11=\ENq, kf12=\ENr, kf13=\ENs, kf14=\ENt, kf2=\EOd, 
kf3=\EOe, kf4=\EOf, kf5=\EOg, kf6=\EOh, kf7=\EOi, 
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T, 
11=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE, 
pfx=\E[%p1%d;%p2%l%02dq\s\s\sF%p1%ld\s\s\s\s\s 

\s\s\s\s\s\s%p2%s, 
pln=\E[%p1%d;0;0;Oq%p2%:-16.16s, rc=\E8, rev=\E[7m, 
ri=\EM, rmacs='O, rmir=\E[4l, rmln=\E[2p, rmso=\E[m, 
rmul=\E[m, rs2=\Ec\E[?31, sc=\E7, 
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t;5%; 

%?%p3%pl% I %t;7%;%?%p7%t;8%;m%?%p9%t'N%e'O%;, 
sgrO=\E[m'O, smacs='N, smir=\E[4h, smln=\E[p, 
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%pl%dx, 

739 



terminfo(M) 

740 

Types of capabilities in the sample entry 
The sample entry shows the formats for the three types of terminfo capabilities 
listed: Boolean, Numeric, and String. The names of Boolean capabilities are 
often listed as abbreviations or acronyms, such as am (short for "automatic 
margins") in the sample entry. ("Automatic margins" is a short description of 
an automatic return and linefeed when the end of a line is reached.) 

Numeric capabilities are followed by the character" #" and then the value. 
Thus, in the sample, cols (which shows the number of columns available on a 
terminal) gives the value 80 for the AT&T 610. (Values for numeric capabilities 
may be specified in decimal, octal or hexadecimal, using normal C conven­
tions.) 

Finally, string-valued capabilities such as el (clear to end-of-line sequence) are 
listed by a two- to five-character capname, an "=", and a string ended by the 
next occurrence of a comma. A delay in milliseconds may appear anywhere 
in such a capability, enclosed in $< .. > brackets, as in el= \EK$<3>. Padding 
characters are supplied by tputs(). The delay can be any of the following: a 
number (5), a number followed by a "*" (5*), a number followed by a " /" 
(5/), or a number followed by both (5*/). A "*" shows that the padding 
required is proportional to the number of lines affected by the operation, and 
the amount given is the per-affected-unit padding required. (In the case of 
insert characters, the factor is still the number of lines affected. This is always 
1 unless the terminal has in and the software uses it.) When a "*" is speci­
fied, it is sometimes useful to give a delay of the form 3.5 to specify a delay 
per unit to tenths of milliseconds. (Only one decimal place is allowed.) 

A " / II indicates that the padding is mandatory. Absence of a " /" is not 
shown, if the terminal has xon defined. Padding information is advisory and 
will be used only for cost estimates or when the terminal is in raw mode. 
Mandatory padding will be transmitted regardless of the setting of xon. 

A number of escape sequences are provided in the string valued capabilities 
for easy encoding of characters there. Both \E and \e map to an ESCAPE char­
acter, AX maps to a control-x for any appropriate X, and the sequences \n, \1, 
\r, \t, \b, \£, and \s give a newline,linefeed, return, tab, backspace, formfeed, 
and space, respectively. Other escapes include: \" for caret (,,); \ \ for 
backslash (\); \, for comma (,); \: for colon (:); and \0 for null. (\0 will 
actually produce \200, which does not terminate a string but behaves as a null 
character on most terminals.) Finally, characters may be given as three octal 
digits after a backslash (for example, \123). 

Sometimes individual capabilities must be commented out. To do this, put a 
period before the capability name. For example, see the second ind in the 
example above. Note that capabilities are defined in a left-to-right order and, 
therefore, a prior definition will override a later definition. 



terminfo(M) 

Preparing descriptions 
The most effective way to prepare a terminal description is by imitating the 
description of a similar terminal in terminfo and building up a description gra­
dually, using partial descriptions with vi(C) to check that they are correct. Be 
aware that a very unusual terminal may expose deficiencies in the ability of 
the terminfo file to describe it or the inability of vi(C} to work with that termi­
nal. To test a new terminal description, set the environment variable TER­
MINFO to a pathname of a directory containing the compiled description you 
are working on: programs will then look there rather than in /usr/lib/terminfo. 
To get the padding for insert-line correct (if the terminal manufacturer did not 
document it) a severe test is to comment out xon, edit a large file at 9600 baud 
with vi(C), delete 16 or so lines from the middle of the screen, then hit the (u) 
key several times quickly. If the display is corrupted, more padding is usually 
needed. A similar test can be used for insert-character. 

Section 1-1: Basic capabilities 
The number of columns on each line for the terminal is given by the cols 
numeric capability. If the terminal has a screen, then the number of lines on 
the screen is given by the lines capability. If the terminal can clear its screen, 
leaving the cursor in the home position, then this is given by the clear string 
capability. If the terminal overstrikes (rather than clearing a position when a 
character is struck over) then it should have the 08 capability. If the terminal 
is a printing terminal, with no soft copy unit, give it both hc and os. (os 
applies to storage scope terminals, such as the Tektronix 4010 series, as well as 
hard-copy and APL terminals.) If there is a code to move the cursor to the left 
edge of the current row, give this as cr. (Normally this will be carriage return, 
control M.) If there is a code to produce an audible signal (such as a bell or a 
beep), specify it as bel. If the terminal uses the xon-xoff flow-control protocol, 
like most terminals, specify xon. 

If there is a code to move the cursor one position to the left (such as back­
space), that capability should be given as cubl. Similarly, codes to move to 
the right, up, and down should be given as cufl, cuul, and cudl. These local 
cursor motions should not alter the text they pass over; for example, you 
would not normally use" cufl= \s" because the space would erase the charac­
ter moved over. 

A very important point here is that the local cursor motions encoded in ter­
minfo are undefined at the left and top edges of a screen terminal. Programs 
should never attempt to backspace around the left edge, unless bw is given, 
and should never attempt to go up locally off the top. In order to scroll text 
up, a program will go to the bottom left comer of the screen and send the ind 
(index) string. 

To scroll text down, a program goes to the top left comer of the screen and 
sends the ri (reverse index) string. The strings ind and ri are undefined when 
not on their respective comers of the screen. 

741 



terminfo(M) 

742 

Parameterized versions of the scrolling sequences are indn and rin which 
have the same semantics as ind and ri except that they take one parameter, 
and scroll that many lines. They are also undefined except at the appropriate 
edge of the screen. 

If the terminal wraps around to the beginning of the next line when it reaches 
the right margin, then it should have the am capability. The am capability 
tells whether the cursor sticks at the right edge of the screen when text is out­
put, but this does not necessarily apply to a cufl from the last column. The 
only local motion which is defined from the left edge is if bw is given: then a 
cubl from the left edge will move to the right edge of the previous row. If bw 
is not given, the effect is undefined. This is useful for drawing a box around 
the edge of the screen, for example. If the terminal has switch selectable 
automatic margins, the terminfo file usually assumes that this is on; that is, am. 
If the terminal has a command which moves to the first column of the next 
line, that command can be given as nel (newline). It does not matter if the 
command clears the remainder of the current line, so if the terminal has no cr 
and If it may still be possible to craft a working nel out of one or both of them. 

These capabilities suffice to describe hardcopy and screen terminals. Thus the 
model 33 teleprinter is described as: 

he, os, xon 
eols#72 , 
bel='G, er=\r, eudl=\n, ind=\n, 

while the Lear Siegler ADM-3 is described as: 

adm3 Ilsi adm3, 
am, bel='G, elear='Z, eols#80, er='M, eubl='H, 
eudl=' J, ind=' J, lines#2 4, 

Section 1-2: Parameterized strings 
Cursor addressing and other strings requiring parameters in the terminal are 
described by a parameterized string capability, with printf(S) -like escapes 
(%x) in it. For example, to address the cursor, the cup capability is given, 
using two parameters: the row and column to address to. (Rows and 
columns are numbered from zero and refer to the physical screen visible to 
the user, not to any unseen memory.) If the terminal has memory-relative 
cursor addressing, that can be indicated by mrcup. 

The parameter mechanism uses a stack and special % codes to manipulate it 
in the manner of a Reverse Polish Notation (postfix) calculator. Typically, a 
sequence will push one of the parameters onto the stack and then print it in 
some format. Often more complex operations are necessary. Binary opera­
tions are in postfix form with the operands in the usual order. That is, to get 
x-5 one would use %gx%{5}%-. 



terminfo(M) 

The % encodings have the following meanings: 

%% outputs '%' 
% [[:]{lags] [width[.precision]] [doxXs] 

as in printf, flags are [-+#] and space 
%c print popO gives %c 

%p[1-9] 
%P[a-z] 
%g[a-z] 
%'c 
%{nn} 
%1 

h .th pus I parm 
set variable [a-z] to popO 
get variable [a-z] and push it 
push char constant c 
push decimal constant nn 
push strlen(pop()) 

%+%-%* %/ %m 

%&%1 %~ 
%== %> %< 
%A%O 

arithmetic (%m is mod): push(popO op popO) 
bit operations: push(popO op popO) 
logical operations: push(popO op popO) 
lOgical operations: and, or 
unary operations: push(op popO) 
(for ANSI terminals) 
add 1 to first parm, if one parm present, 
or first two parms, if more than one parm present 

%? expr %t thenpart %e elsepart %; 
if-then-else, %e elsepart is optional; 
else-if's are possible ala Algol 68: 
%?c1 %tb1 %ec2 %tb2 %ec3 %tb3 %ec4 %tb4 %ebs%; 
c. are conditions, b. are bodies. 

1 1 

If the "_" flag is used with "%[doxXs]", then a colon (:) must be placed 
between the "%" and the "-" to differentiate the flag from the binary "%-" 
operator, for example, "%:-16.16s". 

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, 
needs to be sent \E&a12c03Y padded for 6 milliseconds. Note that the order 
of the rows and columns is inverted here, and that the row and column are 
zero-padded as two digits. Thus its cup capability is 
"cup== \E&a%p2%2.2dc%p1 %2.2dY$<6>". 

The Micro-Term ACT-IV needs the current row and column sent preceded by a 
"T, with the row and column simply encoded in binary, 
"cup=="T%p1 %c%p2%c". Terminals which use "%c" need to be able to back­
space the cursor (cubl), and to move the cursor up one line on the screen 
(cuul). This is necessary because it is not always safe to transmit \n, "D, and 
\r, as the system may change or discard them. (The library routines dealing 
with terminfo set tty modes so that tabs are never expanded, so \t is safe to 
send. This turns out to be essential for the Ann Arbor 4080.) 

743 



termin/o(M) 

744 

A final example is the LSI ADM-3a, which uses row and column offset by a 
blank character, thus "cup=\E=%pl%'\s'%+%c%p2%'\s'%+%c". After send­
ing "\E=", this pushes the first parameter, pushes the ASCII value for a spat::e 
(5), adds them (pushing the sum on the stack in place of the two previous 
values), and outputs that value as a character. Then the same is done for the 
second parameter. More complex arithmetic is possible using the stack. 

Section 1-3: Cursor motions 
If the terminal has a fast way to home the cursor (to very upper left comer of 
screen) then this can be given as home; similarly a fast way of getting to the 
lower left-hand comer can be given as 11; this may involve going up with cuul 
from the home position, but a program should never do this itself (unless 11 
does) because it can make no assumption about the effect of moving up from 
the home position. Note that the home position is the same as addressing to 
(0,0): to the top left comer of the screen, not of memory. (Thus, the \EH 
sequence on Hewlett-Packard terminals cannot be used for home without los­
ing some of the other features on the terminal.) 

If the terminal has row or column absolute-cursor addressing, these can be 
given as single parameter capabilities hpa (horizontal position absolute) and 
vpa (vertical position absolute). Sometimes these are shorter than the more 
general two-parameter sequence (as with the Hewlett-Packard 2645) and can 
be used in preference to cup. If there are parameterized local motions (for 
example, move n spaces to the right) these can be given as cud, cub, cuf, and 
cuu with a single parameter indicating how many spaces to move. These are 
primarily useful if the terminal does not have cup, such as the Tektronix 4025. 

Section 1-4: Area clears 
If the terminal can clear from the current position to the end of the line, leav­
ing the cursor where it is, this should be given as el. If the terminal can clear 
from the beginning of the line to the current position inclusive, leaving the 
cursor where it is, this should be given as ell. If the terminal can clear from 
the current position to the end of the display, then this should be given as ed. 
ed is only defined from the first column of a line. (Thus, it can be simulated 
by a request to delete a large number of lines, if a true ed is not available.) 

Section 1-5: Insert/delete line 
If the terminal can open a new blank line before the line where the cursor is, 
this should be given as ill; this is done only from the first position of a line. 
The cursor must then appear on the newly blank line. If the terminal can 
delete the line which the cursor is on, then this should be given as dll; this is 
done only from the first position on the line to be deleted, Versions of ill and 
dll which take a single parameter and insert or delete that many lines can be 
given as il and dl. 

If the terminal has a settable destructive scrolling region (like the VT100) the 
command to set this can be described with the csr capability, which takes two 
parameters: the top and bottom lines of the scrolling region. The cursor posi­
tion is, unfortunately, undefined after using this command. It is possible to 



terminfo(M) 

get the effect of insert or delete line using this command -- the sc and rc (save 
and restore cursor) commands are also useful. Inserting lines at the top or 
bottom of the screen can also be done using ri or ind on many terminals 
without a true insert/delete line, and is often faster even on terminals with 
those features. 

To determine whether a terminal has destructive scrolling regions or non­
destructive scrolling regions, create a scrolling region in the middle of the 
screen, place data on the bottom line of the scrolling region, move the cursor 
to the top line of the scrolling region, and do a reverse index (ri) followed by a 
delete line (dll) or index (ind). If the data that was originally on the bottom 
line of the scrolling region was restored into the scrolling region by the dll or 
ind, then the terminal has non-destructive scrolling regions. Otherwise, it has 
destructive scrolling regions. Do not specify csr if the terminal has non­
destructive scrolling regions, unless ind, ri, indn, rin, dl, and dl1 all simulate 
destructive scrolling. 

If the terminal has the ability to define a window as part of memory, which all 
commands affect, it should be given as the parameterized string wind. The 
four parameters are the starting and ending lines in memory and the starting 
and ending columns in memory, in that order. 

If the terminal can retain display memory above, then the da capability 
should be given; if display memory can be retained below, then db should be 
given. These indicate that deleting a line or scrolling a full screen may bring 
non-blank lines up from below or that scrolling back with ri may bring down 
non-blank lines. 

Section 1-6: Insert/delete character 
There are two basic kinds of intelligent terminals with respect to insert/delete 
character operations which can be described using terminfo. The most com­
mon insert/delete character operations affect only the characters on the 
current line and shift characters off the end of the line rigidly. Other termi­
nals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction 
between typed and untyped blanks on the screen, shifting upon an insert or 
delete only to an untyped blank on the screen which is either eliminated, or 
expanded to two untyped blanks. You can determine the kind of terminal you 
have by clearing the screen and then typing text separated by cursor motions. 
Type "abc def" using local cursor motions (not spaces) between the abc and 
the def. Then position the cursor before the abc and put the terminal in insert 
mode. If typing characters causes the rest of the line to shift rigidly and char­
acters to fall off the end, then your terminal does not distinguish between 
blanks and untyped positions. If the abc shifts over to the def which then 
move together around the end of the current line and onto the next as you 
insert, you have the second type of terminal, and should give the capability 
in, which stands for "insert null". While these are two logically separate 
attributes (one line versus multiline insert mode, and special treatment of 
untyped spaces) no terminals whose insert mode cannot be described with the 
single attribute have been seen. 

745 



terminfo(M) 

746 

terminfo can describe both terminals which have an insert mode and terminals 
which send a simple sequence to open a blank position on the current line. 
Give as smir the sequence to get into insert mode. Give as rmir the sequence 
to leave insert mode. Now give as ichl any sequence needed to be sent just 
before sending the character to be inserted. Most terminals with a true insert 
mode will not give iehl; terminals which send a sequence to open a screen 
position should give it here. (If your terminal has both, insert mode is usually 
preferable to ichl. Do not give both unless the terminal actually requires both 
to be used in combination.) If post-insert padding is needed, give this as a 
number of milliseconds padding in ip (a string option). Any other sequence 
which may need to be sent after an insert of a single character may also be 
given in ip. If your terminal needs both to be placed into an 'insert mode' and 
a special code to precede each inserted character, then both smir/rmir and 
ichl can be given, and both will be used. The ich capability, with one param­
eter, n, will insert n blanks. 

If padding is necessary between characters typed while not in insert mode, 
give this as a number of milliseconds padding in rmp. 

It is occasionally necessary to move around while in insert mode to delete 
characters on the same line (for example, if there is a tab after the insertion 
position). If your terminal allows motion while in insert mode you can give 
the capability mir to speed up inserting in this case. Omitting mir will affect 
only speed. Some terminals (notably Datamedia's) must not have mir 
because of the way their insert mode works. 

Finally, you can specify dehl to delete a single character, deh with one param­
eter, n, to delete n characters, and delete mode by giving smde and rmde to 
enter and exit delete mode (any mode the terminal needs to be placed in for 
dehl to work). 

A command to erase n characters (equivalent to outputting n blanks without 
moving the cursor) can be given as eeh with one parameter. 

Section 1-7: Highlighting, underlining, and visible bells 
Your terminal may have one or more kinds of display attributes that allow 
you to highlight selected characters when they appear on the screen. The fol­
lowing display modes (shown with the names by which they are set) may be 
available: a blinking screen (blink), bold or extra-bright characters (bold), dim 
or half-bright characters (dim), blanking or invisible text (invis), protected text 
(prot), a reverse-video screen (rev), and an alternate character set (smaes to 
enter this mode and rmaes to exit it). (If a command is necessary before you 
can enter alternate character set mode, give the sequence in enaes or lienable 
alternate-character-set" mode.) Turning on any of these modes singly mayor 
may not turn off other modes. 

If you set any display attributes for highlighting, you will also want to pro­
vide the capability for turning them off. To do so, set sgrO. 



terminfo(M) 

You should choose one display method as standout mode (see curses(S» and 
use it to highlight error messages and other kinds of text to which you want to 
draw attention. Choose a form of display that provides strong contrast but 
that is easy on the eyes. (We recommend reverse-video plus half-bright or 
reverse-video alone.) The sequences to enter and exit standout mode are 
given as smso and rmso, respectively. If the code to change into or out of 
standout mode leaves one or even two blank spaces on the screen, as the TVI 
912 and Teleray 1061 do, then xmc should be given to tell how many spaces 
are left. 

Codes to begin underlining and end underlining can be given as smul and 
rmul, respectively. If the terminal has a code to underline the current charac­
ter and move the cursor one space to the right, such as the Micro-Term MIME, 
this can be given as uc. 

For historical reasons, some programs interpret rmso, rmul to mean "turn off 
all attributes", not just standout and underline, respectively. 

If there is a sequence to set arbitrary combinations of modes, this should be 
given as sgr (set attributes), taking nine parameters. Each parameter is either 
o or non-zero, as the corresponding attribute is on or off. The nine parameters 
are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, 
alternate character set. Not all modes need to be supported by sgr; only those 
for which corresponding separate attribute commands exist should be sup­
ported. (See the example at the end of this section.) 

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" 
when they receive mode-setting sequences, which affect the display algorithm 
rather than having extra bits for each character. Some terminals, such as the 
Hewlett-Packard 2621, automatically leave standout mode when they move 
to a new line or the cursor is addressed. Programs using standout mode 
should exit standout mode before moving the cursor or sending a newline, 
unless the msgr capability, asserting that it is safe to move in standout mode, 
is present. 

If the terminal has a way of flashing the screen to indicate an error quietly (a 
bell replacement), then this can be given as flash; it must not move the cursor. 
A good flash can be done by changing the screen into reverse video, pad for 
200 ms, then return the screen to normal video. 

If the cursor needs to be made more visible than normal when it is not on the 
bottom line (for example, to make a non-blinking underline into an easier-to­
find block or blinking underline) give this sequence as cvvis. The boolean 
chts should also be given. If there is a way to make the cursor completely 
invisible, give that as civis. The capability cnorm should be given which 
undoes the effects of either of these modes. 

If the terminal needs to be in a special mode when running a program that 
uses these capabilities, the codes to enter and exit this mode can be given as 
smcup and rmcup. This arises, for example, from terminals, such as the Con­
cept, with more than one page of memory. If the terminal has only memory 

747 



terminfo(M) 

748 

relative cursor addressing and not screen relative cursor addressing, a one 
screen-sized window must be fixed into the terminal for cursor addressing to 
work properly. This is also used for the Tektronix 4025, where smcup sets the 
command character to be the one used by terminfo. If the smcup sequence will 
not restore the screen after a rmcup sequence is output (to the state prior to 
outputting rmcup), specify nrrmc. 

If your terminal generates underlined characters by using the underline char­
acter (with no special codes needed) even though it does not otherwise over­
strike characters, then you should give the capability ul. For terminals where 
a character overstriking another leaves both characters on the screen, give the 
capability os. If overstrikes are erasable with a blank, then this should be indi­
cated by giving eo. 

Example of highlighting: assume that the terminal under question needs the 
following escape sequences to tum on various modes. 

tparm attribute escape sequence 
parameter 

none \E[Om 
pI standout \E[O;4;7m 
p2 underline \E[0;3m 
p3 reverse \E[0;4m 
p4 blink \E[0;5m 
p5 dim \E[0;7m 
p6 bold \E[0;3;4m 
p7 invis \E[O;Sm 
pS protect not available 
p9 altcharset "0 (off) "N(on) 

Note that each escape sequence requires a 0 to tum off other modes before 
turning on its own mode. Also note that, as suggested above, standout is set 
up to be the combination of reverse and dim. Also, because this terminal has 
no bold mode, bold is set up as the combination of reverse and underline. In 
addition, to allow combinations, such as underline+blink, the sequence to use 
would be \E[Oi3i5m. The terminal does not have protect mode, either, but that 
cannot be simulated in any way, so p8 is ignored. The altcharset mode is dif­
ferent in that it is either "0 or "N, depending on whether it is off or on. If all 
modes were to be turned on, the sequence would be \E[Oi3i4i5i7i8m"N. 



terminfo(M) 

Now look at when different sequences are output. For example, ;3 is output 
when either p2 or p6 is true; that is, if either underline or.bold modes are turned 
on. Writing out the above sequences, along with their dependencies, gives the 
following: 

sequence 
\E[O 
;3 

when to output 
always 
ifp2 or p6 

terminfo translation 
\E[O 
%?%p2%p6% I %t;3%; 

;4 
;5 

if pI or p3 or p6 
ifp4 

% ?%pl %p3% I %p6% I %t;4%; 
%?%p4%t;5%; 

;7 
;8 
m 
"N or "0 

if pI or p5 
ifp7 
always 
if p9 "N, else "0 

%?%pl%p5% I %t;7%; 
%?%p7%t;8%; 
m 
% ?%p9%t"N%e"0%; 

Putting this all together into the sgr sequence gives: 

sgr=\E[O%?%p2%p6% I %t;3%;%?%pl%p3% I %p6% I %t;4%;%?%p5%t;5%; 
%?%pl %p5% I %t;7%;%?%p7%t;8%;m%?%p9%t "N%e"O%;, 

Section 1-8: Keypad 
If the terminal has a keypad that transmits codes when the keys are pressed, 
this information can be given. Note that it is not possible to handle terminals 
where the keypad only works in local (this applies, for example, to the 
unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or 
not transmit, give these codes as smkx and rmkx. Otherwise the keypad is 
assumed to transmit. 

The codes sent by the left arrow, right arrow, up arrow, down arrow, and 
home keys can be given as keubl, keufl, keuul, keudl, and khome respec­
tively. If there are function keys such as £0, £1, ... , f63, the codes they send can 
be given as kfO, kfl, ... , kf63. If the first 11 keys have labels other than the 
default fO through £10, the labels can be given as 1£0, 1£1, ... , 1£10. The codes 
transmitted by certain other special keys can be given: kll (home down), kbs 
(backspace), ktbe (clear all tabs), kctab (clear the tab stop in this column), kclr 
(clear screen or erase key), kdehl (delete character), kdll (delete line), krmir 
(exit insert mode), kel (clear to end of line), ked (clear to end of screen), kichl 
(insert character or enter insert mode), kill (insert line), knp (next page), kpp 
(previous page), kind (scroll forward/down), kri (scroll backward/up), khts 
(set a tab stop in this column). In addition, if the keypad has a 3 by 3 array of 
keys including the four arrow keys, the other five keys can be given as kal, 
ka3, kb2, kel, and ke3. These keys are useful when the effects of a 3 by 3 
directional pad are needed. Further keys are defined above in the capabilities 
list. 

749 



terminfo(M) 

750 

Strings to program function keys can be given as pfkey, pfloe, and pfx. A 
string to program their soft-screen labels can be given as pIn. Each of these 
strings takes two parameters: the function key number to program (from 0 to 
10) and the string to program it with. Function key numbers out of this range 
may program undefined keys in a terminal-dependent manner. The differ­
ence between the capabilities is that pfkey causes pressing the given key to 
give the same result as the user typing the given string; pfloe causes the string 
to be executed by the terminal in local mode; and pfx causes the string to be 
transmitted to the computer. The capabilities nlab, lw, and lh define how 
many soft labels there are and their width and height. If there are commands 
to turn the labels on and off, give them in smln and rmln. smln is normally 
output after one or more pIn sequences to make sure that the change becomes 
visible. 

Section 1-9: Tabs and initialization 
If the terminal has hardware tabs, the command to advance to the next tab 
stop can be given as ht (usually control I). A "backtab" command which 
moves left to the next tab stop can be given as ebt. By convention, if the tele­
type modes indicate that tabs are being expanded by the computer rather than 
being sent to the terminal, programs should not use ht or ebt even if they are 
present, since the user may not have the tab stops properly set. If the terminal 
has hardware tabs which are initially set every n spaces when the terminal is 
p,owered up, the numeric parameter it is given, showing the number of spaces 
the tabs are set to. This is normally used by tput init (see tput(C» to deter­
mine whether to set the mode for hardware tab expansion and whether to set 
the tab stops. If the terminal has tab stops that can be saved in nonvolatile 
memory, the terminfo description can assume that they are properly set. If 
there are commands to set and clear tab stops, they can be given as tbe (clear 
all tab stops) and hts (set a tab stop in the current column of every row). 

Other capabilities include: isl, is2, and is3, initialization strings for the termi­
nal; iprog, the path name of a program to be run to initialize the terminal; and 
if, the name of a file containing long initialization strings. These strings are 
expected to set the terminal into modes consistent with the rest of the terminfo 
description. They must be sent to the terminal each time the user logs in and 
be output in the following order: run the program iprog; output isl; output 
is2; set the margins using mge, smgl, and smgr; set the tabs using tbe and hts; 
print the file if; and finally output is3. This is usually done using the init 
option of tput(C); see profile(F). 

Most initialization is done with is2. Special terminal modes can be set up 
without duplicating strings by putting the common sequences in is2 and spe­
cial cases in isl and is3. Sequences that do a harder reset from a totally 
unknown state can be given as rsl, rs2, rt, and rs3, analogous to isl, is2, is3, 
and if. (The method using files, if and rt, is used for a few terminals, from 
/usr/lib/tabset/*; however, the recommended method is to use the initialization 
and reset strings.) These strings are output by tput reset, which is used when 
the terminal gets into a wedged state. Commands are normally placed in rsl, 
rs2, rs3, and rt only if they produce annoying effects on the screen and are not 
necessary when logging in. 



terminio(M) 

For example, the command to set a terminal into 80-column mode would nor­
mally be part of is2, but on some terminals it causes an annoying glitch on the 
screen and is not normally needed since the terminal is usually already in 80-
column mode. 

If a more complex sequence is needed to set the tabs than can be described by 
using tbe and hts, the sequence can be placed in is2 or if. 

Any margin can be cleared with mge. (For instructions on how to specify 
commands to set and clear margins, see "Margins" below under "PRINTER 
CAPABILITIES" .) 

Section 1-10: Delays 
Certain capabilities control padding in the tty(7) driver. These are primarily 
needed by hard-copy terminals, and are used by tput init to set tty modes 
appropriately. Delays embedded in the capabilities cr, ind, cubI, ££, and tab 
can be used to set the appropriate delay bits to be set in the tty driver. If pb 
(padding baud rate) is given, these values can be ignored at baud rates below 
the value of pb. 

Section 1-11: Status lines 
If the terminal has an extra "status line" that is not normally used by software, 
this fact can be indicated. If the status line is viewed as an extra line below 
the bottom line, into which one can cursor address normally (such as the 
Heathkit hl9's 25th line, or the 24th line of a VT100 which is set to a 23-line 
scrolling region), the capability hs should be given. Special strings that go to 
a given column of the status line and return from the status line can be given 
as tsl and fs1. (fsl must leave the cursor position in the same place it was 
before lsI. If necessary, the sc and rc strings can be included in tsl and fsl to 
get this effect.) The capability lsI takes one parameter, which is the column 
number of the status line the cursor is to be moved to. 

If escape sequences and other special commands, such as tab, work while in 
the status line, the flag eslok can be given. A string which turns off the status 
line (or otherwise erases its contents) should be given as dsl. If the terminal 
has commands to save and restore the position of the cursor, give them as se 
and rc. The status line is normally assumed to be the same width as the rest 
of the screen, for example, cols. If the status line is a different width (possibly 
because the terminal does not allow an entire line to be loaded) the width, in 
columns, can be indicated with the numeric parameter ws1. 

Section 1-12: Line graphics 
If the terminal has a line drawing alternate character set, the mapping of 
glyph to character would be given in acsc. The definition of this string is 
based on the alternate character set used in the DEC VT100 terminal, extended 
slightly with some characters from the AT&T 4410vl terminal. 

751 



terminfo(M) 

752 

glyph name vt100+ 
character 

arrow pointing right + 
arrow pointing left 
arrow pointing down 
solid square block 0 
lantern symbol I 
arrow pointing up 
diamond 
checker board (stipple) a 
degree symbol f 
plus/minus g 
board of squares h 
lower right corner j 
upper right corner k 
upper left corner I 
lower left corner m 
plus n 
scan line 1 0 

horizontal line q 
scan line 9 s 

left tee (f-) t 
right tee (-I> u 
bottom tee (1) v 
top tee n) w 
vertical line x 
bullet 

The best way to describe a new terminal's line graphics set is to add a third 
column to the above table with the characters for the new terminal that pro­
duce the appropriate glyph when the terminal is in the alternate character set 
mode. For example, 

glyph name vt100+ new tty 
character character 

upper left corner R 
lower left corner m F 
upper right corner k T 
lower right corner j G 
horizontal line q 
vertical line x 

Now write down the characters left to right, as in "acsc=IRmFkTjGq\'x.". 

In addition, terminfo allows you to define multiple character sets. See 
Section 2-5 for details. 



termin/o(M) 

Section 1-13: Color manipulation 
There are two methods of color manipulation: the HP method and the Tek­
tronix method. Most existing color terminals belong to one of these two 
classes. 

The Tektronix method uses a set of N predefined colors (usually 8) from 
which a user can select "current" foreground and background colors. Thus the 
terminal can support up to N colors mixed into N*N color-pairs to be dis­
played on the screen at the same ti.me. 

The HP method restricts the user from defining the foreground independently 
of the background, or vice-versa. Instead, the user must define an entire 
color-pair at once. Up to M color-pairs, made from 2*M different colors, can 
be defined this way. 

The numeric variables colors and pairs define the number of colors and 
color-pairs that can be displayed on the screen at the same time. lf a terminal 
can change the definition of a color (for example, the Tektronix 4100 and 4200 
series terminals can do this), this should be specified with ccc (can change 
color). To change the definition of a color (Tektronix method), use initc (ini­
tialize color). It requires four arguments: color number (ranging from 0 to 
colors-I) and three RGB (red, green, and blue) values (ranging from 0 to 1,000). 

Tektronix 4100 series terminals use a type of color notation called HLS (Hue 
Lightness Saturation) instead of RGB color notation. For such terminals one 
must define a boolean variable his. The last three arguments to the initc 
string would then be HLS values: H, ranging from 0 to 360; and Land 5, rang­
ing from 0 to 100. 

lf a terminal can change the definitions of colors, but uses a color notation dif­
ferent from RGB and HLS, a mapping to either RGB or HLS must be developed. 

To set current foreground or background to a given color, use self (set fore­
ground) and setb (set background). They require one parameter: the number 
of the color. To initialize a color-pair (HP method), use initp (initialize pair). 
It requires seven parameters: the number of a color-pair (range::: 0 to pairs-I), 
and six RGB values: three for the foreground followed by three for the back­
ground. (Each of these groups of three should be in the order RGB.) When 
inite or initp are used, RGB or HLS arguments should be in the order "red, 
green, blue" or "hue, lightness, saturation"), respectively. To make a color-pair 
current, use scp (set color-pair). It takes one parameter, the number of a 
color-pair. 

Some terminals (for example, most color terminal emulators for pes) erase 
areas of the screen with current background color. In such cases, bee (back­
ground color erase) should be defined. The variable op (original pair) con­
tains a sequence for setting the foreground and the background colors to what 
they were at the terminal start-up time. Similarly, oe (original colors) contains 
a control sequence for setting all colors (for the Tektronix method) or color­
pairs (for the HP method) to the values they had at the terminal start-up time. 

753 



terminjo(M) 

754 

Some color terminals substitute color for video attributes. Such video 
attributes should not be combined with colors. Information about these video 
attributes should be packed into the ncv (no color video) variable. There is a 
one-to-one correspondence between the nine least significant bits of that vari­
able and the video attributes. The following table depicts this corre­
spondence. 

Attribute 

A_STANDOUT 
A_UNDERLINE 
A_REVERSE 
A_BLINK 
A_DIM 
A_BOLD 
A_INVIS 
A]ROTECT 
A_ALTCHARSET 

NCV Bit 
Number 
o 
1 
2 
3 
4 
5 
6 
7 
8 

When a particular video attribute should not be used with colors, the corre­
sponding ncv bit should be set to 1; otherwise it should be set to zero. For 
example, if the terminal uses colors to simulate reverse video and bold, bits 2 
and 5 should be set to 1. The resulting values for ncv will be 22. 

Section 1-14: Miscellaneous 
If the terminal requires other than a null (zero) character as a pad, then this 
can be given as pad. Only the first character of the pad string is used. If the 
terminal does not have a pad character, specify npc. 

If the terminal can move up or down half a line, this can be indicated with hu 
(half-line up) and hd (half-line down). This is primarily useful for super­
scripts and subscripts on hardcopy terminals. If a hardcopy terminal can eject 
to the next page (form feed), give this as ff (usually control L). 

If there is a command to repeat a given character a given number of times (to 
save time transmitting a large number of identical characters) this can be indi­
cated with the parameterized string rep. The first parameter is the character 
to be repeated and the second is the number of times to repeat it. Thus, 
tparm(repeaCchar, 'x, 10) is the same as xxxxxxxxxx. 

If the terminal has a settable command character, such as the Tektronix 4025, 
this can be indicated with cmdch. A prototype command character is chosen 
which is used in all capabilities. This character is given in the cmdch capabil­
ity to identify it. The following convention is supported on some UNIX sys­
tems: If the environment variable CC exists, all occurrences of the prototype 
character are replaced with the character in cc. 

Terminal descriptions that do not represent a specific kind of known terminal, 
such as switch, dialup, patch, and network, should include the gn (generic) 
capability so that programs can complain that they do not know how to talk 



terminfo(M) 

to the terminal. (This capability does not apply to virtual terminal descrip­
tions for which the escape sequences are known.) If the terminal is one of 
those supported by the UNIX system virtual terminal protocol, the terminal 
number can be given as vt. A line-tum-around sequence to be transmitted 
before doing reads should be specified in rfi. 

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding 
information should still be included so that routines can make better decisions 
about costs, but actual pad characters will not be transmitted. Sequences to 
turn on and off xon/xoff handshaking may be given in smxon and rmxon. If 
the characters used for handshaking are not "S and "Q, they may be specified 
with xone and xoffe. 

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of 
any character transmitted, this fact can be indicated with km. Otherwise, soft­
ware will assume that the 8th bit is parity and it will usually be cleared. If 
strings exist to turn this "meta mode" on and off, they can be given as smm 
andrmm. 

If the terminal has more lines of memory than will fit on the screen at once, 
the number of lines of memory can be indicated with 1m. A value of Im#O 
indicates that the number of lines is not fixed, but that there is still more mem­
ory than fits on the screen. 

Media copy strings which control an auxiliary printer connected to the termi­
nal can be given as meO: print the contents of the screen, me4: turn off the 
printer, and me5: turn on the printer. When the printer is on, all text sent to 
the terminal will be sent to the printer. A variation, me5p, takes one parame­
ter, and leaves the printer on for as many characters as the value of the param­
eter, then turns the printer off. The parameter should not exceed 255. If the 
text is not displayed on the terminal screen when the printer is on, specify 
me5i (silent printer). All text, including me4, is transparently passed to the 
printer while an me5p is in effect. 

Section 1-15: Special cases 
The working model used by terminfo fits most terminals reasonably well. 
However, some terminals do not completely match that model, requiring spe­
cial support by terminfo. These are not to be construed as deficiencies in the 
terminals; they are just differences between the working model and the actual 
hardware. They may be unusual devices or, for some reason, do not have all 
the features of the terminfo model implemented. 

Terminals which can not display tilde (-) characters, such as certain Hazeltine 
terminals, should indicate hz. 

Terminals which ignore a linefeed immediately after an am wrap, such as the 
Concept 100, should indicate xenl. Those terminals whose cursor remains on 
the right-most column until another character has been received, rather than 
wrapping immediately upon receiving the right-most character, such as the 
VT100, should also indicate xenl. 

755 



terminfo(M) 

756 

If el is required to get rid of standout (instead of writing normal text on top of 
it), xhp should be given. 

Those Teleray terminals whose tabs tum all characters moved over to blanks, 
should indicate xt (destructive tabs). This capability is also taken to mean that 
it is not possible to position the cursor on top of a "magic cookie" therefore, to 
erase standout mode, it is instead necessary to use delete and insert line. 

Those Beehive Superbee terminals which do not transmit the escape or 
control-C characters, should specify xsb, indicating that the (FI) key is to be 
used for escape and the (F2) key for (Ctrl}c. 

Section 1-16: Similar tenninals 
If there are two very similar terminals, one can be defined as being just like 
the other with certain exceptions. The string capability use can be given with 
the name of the similar terminal. The capabilities given before use override 
those in the terminal type invoked by use. A capability can be canceled by 
placing xX@ to the left of the capability definition, where xx is the capability. 
For example, the entry 

att4424-2lTeletype 4424 in display function group ii, 
rev@, sgr@, smul@, use=att4424, 

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul capa­
bilities, and hence cannot do highlighting. This is useful for different modes 
for a terminal, or for different user preferences. More than one use capability 
may be given. 

PART 2: PRINTER CAPABILITIES 
The terminfo database allows you to define capabilities of printers as well as 
terminals. To find out what capabilities are available for printers as well as 
for terminals, see the two lists under "TERMINAL CAPABILITIES" that list 
capabilities by variable and by capability name. 

Section 2-1: Rounding values 
Because parameterized string capabilities work only with integer values, we 
recommend that terminfo designers create strings that expect numeric values 
that have been rounded. Application designers should note this and should 
always round values to the nearest integer before using them with a 
parameterized string capability. 

Section 2-2: Printer resolution 
A printer's resolution is defined to be the smallest spacing of characters it can 
achieve. In general printers have independent resolution horizontally and 
vertically. Thus the vertical resolution of a printer can be determined by 
measuring the smallest achievable distance between consecutive printing 
baselines, while the horizontal resolution can be determined by measuring the 
smallest achievable distance between the left-most edges of consecutive 
printed, identical, characters. 



terminfo(M) 

All printers are assumed to be capable of printing with a uniform horizontal 
and vertical resolution. The view of printing that the terminfo currently 
'Presents is one of printing inside a uniform matrix: All characters are printed 
at fixed positions relative to each "cell" in the matrix; furthermore, each cell 
has the same size given by the smallest horizontal and vertical step sizes dic­
tated by the resolution. (The cell size can be changed as will be seen later.) 

Many printers are capable of "proportional printing", where the horizontal 
spacing depends on the size of the character last printed. The terminfo does 
not make use of this capability, although it does provide enough capability 
definitions to allow an application to simulate proportional printing. 

A printer must not only be able to print characters as close together as the hor­
izontal and vertical resolutions suggest, but also of "moving" to a position an 
integral multiple of the smallest distance away from a previous position. 
Thus printed characters can be spaced apart a distance that is an integral mul­
tiple of the smallest distance, up to the length or width of a single page. 

Some printers can have different resolutions depe:nding on different "modes". 
In "normal mode", the existing terminfo capabilities are assumed to work on 
columns and lines, just like a video terminal. Thus the old lines capability 
would give the length of a page in lines, and the cols capability would give 
the width of a page in columns. In "micro mode", many terminfo capabilities 
work on increments of lines and columns. With some printers the micro 
mode may be concomitant with normal mode, so that all the capabilities work 
at the same time. 

Section 2-3: Specifying printer resolution 
The printing resolution of a printer is given in several ways. Each specifies 
the resolution as the number of smallest steps per distance: 

Specification of Printer Resolution 

Characteristic Number of smallest steps 
orhi 
orvi 
orc 
od 

Steps per inch horizontally 
Steps per inch vertically 
Steps per column 
Steps per line 

When printing in normal mode, each character printed causes movement to 
the next column, except in special cases described later; the distance moved is 
the same as the per-column resolution. Some printers cause an automatic 
movement to the next line when a character is printed in the rightmost posi­
tion; the distance moved vertically is the same as the per-line resolution. 
When printing in micro mode, these distances can be different, and may be 
zero for some printers. 

757 



terminio(M) 

758 

Specification of Printer Resolution 

Automatic motion after printing 
Normal Mode:. 
orc 
orl 
Micro Mode: 
mcs 
mls 

Steps moved horizontally 
Steps moved vertically 

Steps moved horizontally 
Steps moved vertically 

Some printers are capable of printing wide characters. The distance moved 
when a wide character is printed in normal mode may be different from when 
a regular width character is printed. The distance moved when a wide char­
a.cter is printed in micro mode may also be different from when a regular 
character is printed in micro mode, but the differences are assumed to be 
related: If the distance moved for a regular character is the same whether in 
normal mode or micro mode (mcs=ore), then the distance moved for a wide 
character is also the same whether in normal mode or micro mode. This 
doesn't mean the normal character distance is necessarily the same as the 
wide character distance, just that the distances do not change with a change in 
normal to micro mode. However, if the distance moved for a regular charac­
ter is different in micro mode from the distance moved in normal modeS 
(mes<orc), the micro mode distance is assumed to be the same for a wide 
character printed in micro mode, as the table below shows. 

Specification of Printer Resolution 

Automatic Motion after Printing Wide Character 
Normal Mode or Micro Mode (mes = ore); 
widcs Steps moved horizontally 
Micro Mode (mes < ore): 
mcs Steps moved horizontally 



termin[o(M) 

There may be control sequences to change the number of columns per inch 
(the character pitch) and to change the number of lines per inch (the line 
pitch). If these are used, the resolution of the printer changes, but the type of 
change depends on the printer: 

Specification of Printer Resolution 

Changing the Character/Line Pitches 
Change character pitch cpi 

cpix If set, cpi changes orhi, otherwise changes orc 
lpi 
lpix 
chr 
cvr 

Change line pitch 
If set, lpi changes orvi, otherwise changes od 
Change steps per column 
Change steps per line 

The cpi and lpi string capabilities are each used with a single argument, the 
pitch in columns (or characters) and lines per inch, respectively. The chr and 
cvr string capabilities are each used with a single argument, the number of 
steps per column and line, respectively. 

Using any of the control sequences in these strings will imply a change in 
some of the values of orc, orhi, od, and orvi. Also, the distance moved when 
a wide character is printed, widcs, changes in relation to orc. The distance 
moved when a character is printed in micro mode, mcs, changes similarly, 
with one exception: if the distance is 0 or I, then no change is assumed (see 
item marked with ** in the following table). 

Programs that use cpi, Ipi, chr, or cvr should recalculate th~ printer resolution 
(and should recalculate other values - see "Section 2-7: Effect of changing 
printing resolution"). 

759 



termin/o(M) 

760 

Specification of Printer Resolution 

Effects of Changing the Character/Line Pitches 
Before After 
Using cpi with cpix clear: 
orhi' 
orc' 

Using cpi with cpix set: 
orhi' 
orc' 
Using lpi with lpix clear: 
orvi' 

orl ' 

Using lpi with Ipix set: 
orvi ' 
orl ' 
Usingchr: 
orhi' 
orc' 
Usingcvr: 
orvi' 
orl ' 
Using cpi or chr: 
widcs' 

mcs ,** 

orhi 
orhi orc=-­
V epi 

orhi=orc' V epi 
orc 

orvi 
orvi orl=-­
V lpi 

Orvi=orl'VIpi 
orl 

orhi 
V ehr 

orvi 
Vevr 

'd 'd' orc WI CS=WI CS --, 
orc 

,orc 
mcs=mcs -­

orc' 

V epi' V Ipi' V ehr, and Vevr are the arguments used with cpi, lpi, chr, and cvr 
respectively. The ** mark indicates the old value. 

Section 2-4: Capabilities that cause movement 
In the following descriptions, "movement" refers to the motion of the "current 
position". With video terminals this would be the cursor; with some printers 
this is the carriage position. Other printers have different equivalents. In gen­
eral, the current position is where a character would be displayed if printed. 



terminfo(M) 

terminfo has string capabilities for control sequences that cause movement a 
number of full columns or lines. It also has equivalent string capabilities for 
control sequences that cause movement a number of smallest steps. 

String Capabilities for Motion 

mcubl 
mcufl 
mcuul 
mcudl 

mcub 
mcuf 
mcuu 
mcud 

mhpa 
mvpa 

Move 1 step left 
Move 1 step right 
Move 1 step up 
Move 1 step down 

Move N steps left 
Move N steps right 
Move N steps up 
Move N steps down 

Move N steps from the left 
Move N steps from the top 

The latter six strings are each used with a single argument, N. 

Sometimes the motion is limited to less than the width or length of a page. 
Also, some printers do not accept absolute motion to the left of the current 
position. terminfo has capabilities for specifying these limits. 

Limits to Motion 

mjump 
maddr 

xhpa 
xvpa 

Limit on use of mcubl, mcufl, mcuul, mcudl 
Limit on use of mhpa, mvpa 

If set, hpa and mhpa can't move left 
If set, vpa and mvpa can't move up 

If a printer needs to be in a "micro mode" for the motion capabilities described 
above to work, there are string capabilities defined to contain the control 
sequence to enter and exit this mode. A boolean is available for those printers 
where using a carriage return causes an automatic return to normal mode. 

Entering/Exiting Micro Mode 

smicm 
rmicm 

crxm 

Enter micro mode 
Exit micro mode 

Using cr exits micro mode 

The movement made when a character is printed in the rightmost position 
varies among printers. Some make no movement, some move to the begin­
ning of the next line, others move to the beginning of the same line. terminfo 
has boolean capabilities for describing all three cases. 

What Happens After Character Printed in Rightmost Position 

sam Automatic move to beginning of same line 

761 



terminfo(M) 

762 

Some printers can be put in a mode where the normal direction of motion is 
reversed. This mode can be especially useful when no capabilities exist for 
leftward or upward motion, because those capabilities can be built from the 
motion reversal capability and the rightward or downward motion capabili­
ties. It is best to leave it up to an application to build the leftward or upward 
capabilities, though, and not enter them in the term info database. This allows 
several reverse motions to be strung together without intervening wasted 
steps that leave and reenter reverse mode. 

Entering/Exiting Reverse Modes 

slm 
rIm 
sum 
rum 

Reverse sense of horizontal motions 
Restore sense of horizontal motions 
Reverse sense of vertical motions 
Restore sense of vertical motions 

While sense of horizontal motions reversed: 
mcubl Move 1 step right 
mcufl Move 1 step left 
mcub Move N steps right 
mcuf Move N steps left 
cubl Move 1 column right 
cufl Move 1 column left 
cub Move N columns right 
cuf Move N columns left 

While sense of vertical motions reversed: 
mcuul Move 1 step down 
mcudl Move 1 step up 
mcuu Move N steps down 
mcud Move N steps up 
cuul Move 1 line down 
cud 1 Move 1 line up 
cuu Move N lines down 
cud Move N lines up 

The reverse motion modes should not affect the mvpa and mhpa absolute 
motion capabilities. The reverse vertical motion mode should, however, also 
reverse the action of the line "wrapping" that occurs when a character is 
printed in the right most position. Thus printers that have the standard ter­
minfo capability am defined should experience motion to the beginning of the 
previous line when a character is printed in the right-most position under 
reverse vertical motion mode. 

The action when any other motion capabilities are used in reverse motion 
modes is not defined; thus, programs must exit reverse motion modes before 
using other motion capabilities. 

Two miscellaneous capabilities complete the list of new motion capabilities. 
One of these is needed for printers that move the current position to the 
beginning of a line when certain control characters, like "line-feed" or "form­
feed", are used. The other is used for the capability of suspending the motion 
that normally occurs after printing a character. 



terminfo(M) 

Miscellaneous Motion Strings 
List of control characters causing cr docr 

zerom Prevent auto motion after printing next single character 

Margins 
terminfo provides two strings for setting margins on terminals: one for the left 
and one for the right margin. Printers, however, have two additional margins, 
for the top and bottom margins of each page. Furthermore, some printers do 
not require using motion strings to move the current position to a margin and 
fixing the margin there, as with the existing capabilities, but require the spe­
cification of where a margin should be regardless of the current position. 
Therefore terminfo offers six additional strings for defining margins with 
printers. 

Setting 

smgl 
smgr 
smgb 
smgt 
smgbp 
smglp 
smgrp 
smgtp 

Margins 

Set left margin at current column 
Set right margin at current column 
Set soft bottom margin at current line 
Set soft top margin at current line 
Set soft bottom margin at line N 
Set soft left margin at column N 
Set soft right margin at column N 
Set soft top margin at line N 

The last four strings are used with a single argument, N, that gives the line or 
column number, where line 0 is the top line and column 0 is the leftmost 
column. 

Note: Not all printers use 0 for the top line or the leftmost column. 

All margins can be cleared with mgc. 

763 



terminfo(M) 

764 

Shadows, italics, wide characters, superscripts, subscripts 
Five new sets of strings are used to describe the capabilities printers have of 
enhancing printed text. 

Enhanced Printing 
sshm 
rshm 

sitm 
ritm 

swidm 
rwidm 

ssupm 
rsupm 
supcs 

ssubm 
rsubm 
subcs 

Enter shadow-printing mode 
Exit shadow-printing mode 

Enter italicizing mode 
Exit italicizing mode 

Enter wide character mode 
Exit wide character mode 

Enter superscript mode 
Exit superscript mode 
List of characters available as superscripts 

Enter subscript mode 
Exit subscript mode 
List of characters available as subscripts 

If a printer requires the sshm control sequence before every character to be 
shadow-printed, the rshm string is left blank. Thus programs that find a con­
trol sequence in sshm but none in rshm should use the sshm control sequence 
before every character to be shadow-printed; otherwise, the sshm control 
sequence should be used once before the set of characters to be shadow­
printed, followed by rshm. The same is also true of each of the sitm/ritm, 
swidm/rwidm, ssupm/rsupm, and ssubm/rsubm pairs. 

Note that terminfo also has a capability for printing emboldened text (bold). 
While shadow printing and emboldened printing are similar in that they 
"darken" the text, many printers produce these two types of print in slightly 
different ways. Generally, emboldened printing is done by overstriking the 
same character one or more times. Shadow printing likewise usually involves 
overstriking, but with a slight movement up and/or to the side so that the 
character is "fatter". 

It is assumed that enhanced printing modes are independent modes, so that it 
would be possible, for instance, to shadow print italicized subscripts. 

As mentioned earlier, the amount of motion automatically made after printing 
a wide character should be given in wides. 

If only a subset of the printable ASCII characters can be printed as superscripts 
or subscripts, they should be listed in supes or subes strings, respectively. If 
the ssupm or ssubm strings contain control sequences, but the corresponding 
supes or subes strings are empty, it is assumed that all printable ASCII charac­
ters are available as superscripts or subscripts. 



terminfo(M) 

Automatic motion made after printing a superscript or subscript is assumed 
to be the same as for regular characters. Thus, for example, printing any of 
the following three examples will result in equivalent motion: 

BiB. Bi 
1 

Note that the existing msgr boolean capability describes whether motion con­
trol sequences can be used while in Jlstandout mode". This capability is 
extended to cover the enhanced printing modes added here. msgr should be 
set for those printers that accept any motion control sequences without affect­
ing shadow, italicized, widened, superscript, or subscript printing. Con­
versely, if msgr is not set, a program should end these modes before attempt­
ing any motion. 

Section 2-5: Alternate character sets 
In addition to allowing you to define line graphics (described in Section 1-12), 
terminfo also lets you define alternate character sets. The following capabili­
ties cover printers and terminals with multiple selectable or definable charac­
ter sets. 

Alternate Character Sets 

scs 
scsd 
defc 
rcsd 
csnm 
daisy 

Select character set N 
Start definition of character set N, M characters 
Define character A, B dots wide, descender D 
End definition of character set N 
List of character set names 
Printer has manually changed print-wheels 

The scs, rcsd, and csnm strings are used with a single argument, N, a number 
from 0 to 63 that identifies the character set. The scsd string is also used with 
the argument N and another, M, that gives the number of characters in the set. 
The defc string is used with three arguments: A gives the ASCII code 
representation for the character, B gives the width of the character in dots, 
and D is zero or one depending on whether the character is a Jldescender" or 
not. The defe string is also followed by a string of Jlimage-data" bytes that 
describe how the character looks (see below). 

Character set 0 is the default character set present after the printer has been 
initialized. Not every printer has 64 character sets, of course; using ses with 
an argument that does not select an available character set should cause a null 
result from tparm(). 

If a character set has to be defined before it can be used, the scsd control 
sequence is to be used before defining the character set, and the rcsd is to be 
used after. They should also cause a null result from tparm() when used with 
an argument N that doesn't apply. If a character set still has to be selected 
after being defined, the scs control sequence should follow the rcsd control 
sequence. By examining the results of using each of the scs, scsd, and rcsd 
strings with a character set number in a call to tparm(), a program can deter­
mine which of the three are needed. 

765 



terminfo(M) 

766 

Between use of the sesd and resd strings, the defe string should be used to 
define each character. To print any character on printers covered by terminfo, 
the ASCII code is sent to the printer. This is true for characters in an alternate 
s~t as well as "normal" characters. Thus the definition of a character includes 
the ASCII code that represents it. In addition, the width of the character in 
dots is given, along with an indication of whether the character should des­
cend below the print line (like the lower case letter "g" in most character sets). 
The width of the character in dots also indicates the number of image-data 
bytes that will follow the defe string. These image-data bytes indicate where 
in a dot-matrix pattern ink should be applied to "draw" the character; the 
number of these bytes and their form are defined below under "Dot-mapped 
graphics". 

It is easiest for the creator of terminfo entries to refer to each character set by 
number; however, these numbers will be meaningless to the application de­
veloper. The esnm string alleviates this problem by providing names for each 
number. 

When used with a character set number in a call to tparmO, the csnm string 
will produce the equivalent name. These names should be used as a reference 
only. No naming convention is implied, although anyone who creates a ter­
minfo entry for a printer should use names consistent with the names found in 
user documents for the printer. Application developers should allow a user 
to specify a character set by number (leaving it up to the user to examine the 
csnm string to determine the correct number), or by name, where the applica­
tion examines the esnm string to determine the corresponding character set 
number. 

These capabilities are likely to be used only with dot-matrix printers. If they 
are not available, the strings should not be defined. For printers that have 
manually changed print-wheels or font cartridges, the boolean daisy is set. 

Section 2-6: Dot-matrix graphics 
Dot-matrix printers typically have the capability of reproducing "raster­
graphics" images. Three new numeric capabilities and three new string capa­
bilities can help a program draw raster-graphics images independent of the 
type of dot-matrix printer or the number of pins or dots the printer can handle 
at one time. 

Dot-Matrix Graphics 
npins 
spinv 
spinh 
porder 
sbim 
rbim 

Number of pins, N, in print-head 
Spacing of pins vertically in pins per inch 
Spacing of dots horizontally in dots per inch 
Matches software bits to print-head pins 
Start printing bit image graphics, B bits wide 
End printing bit image graphicS 



terminfo(M) 

The sbim. string is used with a single argument, B, the width of the image in 
dots. 

The model of dot-matrix or raster-graphics that the terminfo presents is similar 
to the technique used for most dot-matrix printers: each pass of the printer's 
print-head is assumed to produce a dot-matrix that is N dots high and B dots 
wide. This is typically a wide, squat, rectangle of dots. The height of this rec­
tangle in dots will vary from one printer to the next; this is given in the npins 
numeric capability. The size of the rectangle in fractions of an inch will also 
vary; it can be deduced from the spinv and spinh numeric capabilities. With 
these three values an application can divide a complete raster-graphics image 
into several horizontal strips, perhaps interpolating to account for different 
dot spacing vertically and horizontally. 

The sbim and rbim strings are used to start and end a dot-matrix image, 
respectively. The sbim string is used with a single argument that gives the 
width of the dot-matrix in dots. A sequence of "image-data bytes" are sent to 
the printer after the sbim string and before the rbim. string. The number of 
bytes is an integral multiple of the width of the dot-matrix; the multiple and 
the form of each byte is determined by the porder string as described below. 

The porder string is a comma separated list of pin numbers; the position of 
each pin number in the list corresponds to a bit in a data byte. The pins are 
numbered consecutively from 1 to npins, with 1 being the top pin. Note that 
the term "pin" is used loosely here; "ink-jet" dot-matrix printers do not have 
pins, but can be considered to have an equivalent method of applying a single 
dot of ink to paper. The bit positions in porder are in groups of 8, with the 
first position in each group the most significant bit and the last position the 
least significant bit. 

The "image-data bytes" are to be computed from the dot-matrix image, map­
ping vertical dot positions in each print-head pass into eight-bit bytes, using a 
1 bit where ink should be applied and 0 where no ink should be applied. If a 
position is skipped in porder, a 0 bit is used. There must be a multiple of 8 bit 
positions used or skipped in porder; if not, 0 bits are used to fill the last byte 
in the least significant bits. 

Section 2-7: Effect of changing printing resolution 
If the control sequences to change the character pitch or the line pitch are 
used, the pin or dot spacing may change: 

Dot-Matrix Graphics 
Changing the Character/Line Pitches 

cpi 
cpix 

lpi 
lpix 

Change character pitch 
If set, cpi changes spinh 

Change line pitch 
If set, lpi changes spinv 

767 



terminfo(M) 

768 

Programs that use cpi or lpi should recalculate the dot spacing: 

Dot-Matrix Graphics 
Effects of Changing the Character/Line Pitches 
Before After 
Using cpi with cpix clear: 
spinh ' 

Using cpi with cpix set: 
spinh' 

Using lpi with lpix clear: 
spiny' 

Using lpi with lpix set: 
spinY' 

Using chr: 
spinh' 

Usingcvr: 
spinY' 

spinh 

'nh 'nh' orhi Spl =SPI '--.-, 
orhl 

spinY 

. ., orhi 
spmv=spmv '--.-, 

orhl 

spinh 

spiny 

orhi' and orhi are the values of the horizontal resolution in steps per inch, 
before using cpi and after using cpi, respectively. Likewise, orvi' and orvi are 
the values of the vertical resolution in steps per inch, before using lpi and 
after using lpi, respectively. Thus, the changes in the dots per inch for dot­
matrix graphics follow the changes in steps per inch for printer resolution. 

Section 2-8: Print quality 
Many dot-matrix printers can alter the dot spacing of printed text to produce 
near "letter quality" printing or "draft quality" printing. Usually, it is impor­
tant to be able to choose one or the other because the rate of printing generally 
falls off as the quality improves. There are three new strings used to describe 
these capabilities. 

Print Quality 
snlq 
snrmq 
sdrfq 

Set near-letter quality print 
Set normal quality print 
Set draft quality print 

The capabilities are listed in decreasing levels of quality. If a printer does not 
have all three levels, one or two of the strings should be left blank as 
appropriate. 



terminfo(M) 

Section 2-9: Printing rate and buffer size 
Because there is no standard protocol that can be used to keep a program syn­
chronized with a printer, and because modem printers can buffer data before 
printing it, a program generally cannot determine at any time what has been 
printed. Two new numeric capabilities can help a program estimate what has 
been printed. 

Print Rate/Buffer Size 

cps 
bufsz 

Nominal print rate in characters per second 
Buffer capacity in characters 

cps is the nominal or average rate at which the printer prints characters; if this 
value is not given, the rate should be estimated at one-tenth the prevailing 
baud rate. bufsz is the maximum number of subsequent characters buffered 
before the guaranteed printing of an earlier character, assuming proper flow 
control has been used. If this value is not given it is assumed that the printer 
does not buffer characters, but prints them as they are received. 

As an example, if a printer has a 1000-character buffer, then sending the letter 
"a" followed by 1000 additional characters is guaranteed to cause the letter "a" 
to print. If the same printer prints at the rate of 100 characters per second, 
then it should take 10 seconds to print all the characters in the buffer, less if 
the buffer is not full. By keeping track of the characters sent to a printer, and 
knowing the print rate and buffer size, a program can synchronize itself with 
the printer. 

Note that most printer manufacturers advertise the maximum print rate, not 
the nominal print rate. A good way to get a value to put in for cps is to gen­
erate a few pages of text, count the number of printable characters, then see 
how long it takes to print the text. 

Applications that use these values should recognize the variability in the print 
rate. Straight text, in short lines, with no embedded control sequences will 
probably print at close to the advertised print rate and probably faster than 
the rate in cps. Graphics data with a lot of control sequences, or very long 
lines of text, will print at well below the advertised rate and below the rate in 
cps. If the application is using cps to decide how long it should take a printer 
to print a block of text, the application should pad the estimate. If the applica­
tion is using cps to decide how much text has already been printed, it should 
shrink the estimate. The application will thus err in favor of the user, who 
wants, above all, to see all the output in its correct place. 

769 



terminfo(M) 

Files 

See also 

Warning 

770 

/usr/lib/terminfo/? /* 

/usr/lib/.COREterm/?/* 

/usr/lib/tabset/* 

compiled terminal description database 

subset of compiled terminal description database 

tab settings for some terminals, in a format 
appropriate to be output to the terminal (escape 
sequences that set margins and tabs) 

captoinfo(ADM), curses(S), infocmp(ADM), printf(S), profile(F), term(M), -
terminfo(F), tic (C), tput(C), vi(C) 

As described in the "Tabs and initialization" section above, a terminal's initial­
ization strings, isl, is2, and is3, if defined, must be output before a curses(S) 
program is run. An available mechanism for outputting such strings is tput 
init (see tput(C) and profile(F». 

If a null character (\0) is encountered in a string, the null and all characters 
after it are lost. Therefore it is not possible to code a null character (\0) and 
send it to a device (either terminal or printer). The suggestion of sending a 
\0200, where a \0 (null) is needed can succeed only if the device (terminal or 
printer) ignores the eighth bit. For example, because all eight bits are used in 
the standard international ASCII character set, devices that adhere to this stan­
dard will treat \0200 differently from \0. 

Tampering with entries in /usr/lib/.COREterm/?/* or /usr/lib/terminfo/?/* (for 
example, changing or removing an entry) can affect programs such as vi(C) 
that expect the entry to be present and correct. In particular, removing the 
description for the "dumb" terminal will cause unexpected problems. 



termio(M) 

termio 
general terminal interface 

Description 

All asynchronous communications ports use the same general interface, no 
matter what hardware is involved. The remainder of this section discusses 
the common features of this interface. 

When a terminal file is opened, it normally causes the process to wait until a 
connection is established. In practice, users' programs seldom open these 
files; they are opened by getty(M) and become a user's standard input, output, 
and error files. (To do this, getty(M) opens the terminal for read/write access, 
then FDUP's it twice.) The very first terminal file opened by the process 
group leader of a terminal file not already associated with a process group 
becomes the "control terminal" for that process group. The control terminal 
plays a special role in handling quit and interrupt signals, as discussed below. 
The control terminal is inherited by a child process during a fork(S). A pro­
cess can break this association by changing its process group using setpgrp(S). 

A terminal associated with one of these files ordinarily operates in full-duplex 
mode. Characters can be entered at any time, even while output is occurring, 
and are only lost when the system's character input buffers become com­
pletely full, which is rare, or when the user has accumulated the maximum 
allowed number of input characters that have not yet been read by some pro­
gram. Currently, this limit is 256 characters. When the input limit is reached, 
all the saved characters are thrown away without notice. 

Normally, terminal input is processed in units of lines. A line is delimited by 
a newline (ASCII LF) character, an end-of-file (ASCII EDT) character, or an 
end-of-line character. This means that a program attempting to read will be 
suspended until an entire line has been entered. Also, no matter how many 
characters are requested in the read call, one line will be returned at most. It is 
not, however, necessary to read a whole line at once; any number of charac­
ters, even one, may be requested in a read without lOSing information. 

Erase and kill processing is normally performed during input. By default, a 
(Ctrl)h or (Bksp) erases the last character typed, except that it will not erase 
beyond the beginning of the line. By default, a (Ctrl)u kills (deletes) the entire 
input line, and optionally outputs a newline character. Both these characters 
operate on a keystroke basis, independent of any backspacing or tabbing that 
may have been done. Both the erase and kill characters may be entered 
literally by preceding them with the escape character (\). In this case, the 
escape character is not read. The erase and kill characters may be changed 
(see stty(C». 

771 



termio(M) 

772 

Certain characters have special functions on input. These functions and their 
default character values are summarized as follows: 

INTR (Rubout or ASCII DEL) Generates an interrupt signal which is sent to 
all processes with the associated control terminal. Normally, each 
such process is forced to terminate, but arrangements may be made 
either to ignore the signal or to receive a trap to an agreed-upon loca­
tion; see signal(S). 

QUIT «CtrI) \ or ASCII PS) Generates a quit signal. Its treatment is identical 
to the interrupt signal except that, unless a receiving process has 
made other arrangements, it will not only be terminated, but a core 
image file (called core) will be created in the current working direc­
tory. 

SWTCH (ASCII NUL) Is used by the shell layers facility, shl(C), to change the 
current layer to the control layer. 

ERASE «CtrI}h) Erases the preceding character. It will not erase beyond the 
start of a line, as delimited by an NL, EOP, or EOL character. 

KILL {(Ctrl}u) Deletes the entire line, as delimited by a NL, EOP, or EOL 
character. 

EOP «CtrI}d or ASCII EOT) May be used to generate an end-of-file from a 
terminal. When received, all the characters waiting to be read are 
immediately passed to the program, without waiting for a newline, 
and the EOP is discarded. Thus, if there are no characters waiting, 
which is to say the EOP occurred at the beginning of a line, zero char­
acters will be passed back, which is the standard end-of-file indica­
tion. 

NL (ASCII LP) Is the normal line delimiter. It cannot be changed or 
escaped. 

EOL (ASCII NUL) Is an additional line delimiter, like NL. It is not nor­
mallyused. 

STOP «Ctrl}s or ASCII DC3) Temporarily suspends output. It is useful with 
CRT terminals to prevent output from disappearing before it can be 
read. While output is suspended, STOP characters are ignored and 
not read. 

START «CtrI}q or ASCII DCI) Resumes output which has been suspended by 
a STOP character. While output is not suspended, START characters 
are ignored and not read. The START/STOP characters cannot be 
changed or escaped within termio (but see termios(M) for further in­
formation). 

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOP, and EOL may 
be changed to suit individual tastes. The ERASE, KILL, and EOP characters 
may be escaped by a preceding backslash (\) character, in which case no spe­
cial function is carried out. 



termio(M) 

When the carrier signal from the dataset drops, a "hangup" signal is sent to all 
processes that have this terminal as the control terminal. Unless other 
arrangements have been made, this signal causes the processes to terminate. 
If the hangup signal is ignored, any subsequent read returns with an end-of­
file indication. Thus, programs that read a terminal and test for an end-of-file 
can terminate appropriately when hung up on. 

When one or more characters are written, they are transmitted to the terminal 
as soon as the previously typed characters have been entered. Input charac­
ters are echoed by putting them in the output queue as they arrive. If a pro­
cess produces characters more rapidly than they can be typed, it will be 
suspended when its output queue exceeds a given limit. When the queue has 
drained down to the given threshold, the program is resumed. 

Several ioctl(S) system calls apply to terminal files. The primary calls use the 
following structure, defined in the file <termio.h>: 
#define NCC 8 
struct 

I ; 

termio { 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
char 
unsigned char 

c_iflag; 
c_oflag; 
c_cflag; 
c lflag; 
c)ine; 
c_cc[NCC]; 

/* input modes */ 
/* output modes */ 
/* control modes */ 
/* local modes */ 
/* line discipline */ 
/* control chars */ 

The special control characters are defined by the array c _ cc. The relative posi­
tions and initial values for each function are as follows: 

o 
1 
2 
3 
4 
5 
6 
7 

VINTR 
VQUlT 
VERASE 
VKILL 
VEOF/VMIN 
VEOL/VTIME 
VEOL2 
VSWTCH 

DEL 
FS 
Ctrl-H 
Ctrl-U 
EOT 
NUL 
EOL 
NUL 

The c _ iflag field describes the basic terminal input control: 
IGNBRK 0000001 Ignores break condition 
BRKINT 0000002 Signals interrupt on break 
IGNPAR 0000004 Ignores characters with parity errors 
PARMRK 0000010 Marks parity errors 
INPCK 0000020 Enables input parity check 
ISTRIP 0000040 Strips high bit from character 
INLCR 0000100 Maps NL to CR on input 
IGNCR 0000200 Ignores CR 
ICRNL 0000400 Maps CR to NL on input 
IUCLC 0001000 Maps uppercase to lowercase on input 
IXON 0002000 Enables start/stop output control 
IXANY 0004000 Enables any character to restart output 
IXOFF 0010000 Enables start/stop input control 

773 



termio(M) 

774 

If IGNBRK is set, the break condition (a character framing error with data all 
zeros) is ignored, that is, not put on the input queue and therefore not read by 
any process. Otherwise, if BRKINT is set, the break condition will generate an 
interrupt signal and flush both the input and output queues. If IGNP AR is set, 
characters with other framing and parity errors are ignored. 

If PARMRK is set, a character with a framing or parity error which is not 
ignored is read as the 3-character sequence: 0377, O,X, where X is the data of 
the character received in error. To avoid ambiguity in this case, if ISTRIP is 
not set, a valid character of 0377 is read as 0377, 0377. If PARMRK is not set, a 
framing or parity error which is not ignored is read as the character NUL (0). 

If INPCK is set, input parity checking is enabled. If INPCK is not set, input 
parity checking is disabled. This allows output parity generation without 
input parity errors. 

If ISTRIP is set, valid input characters are first stripped to 7 bits, otherwise all 
8 bits are processed. 

If INLCR is set, a received NL character is translated into a CR character. If 
IGNCR is set, a received CR character is ignored (not read). Otherwise, if 
ICRNL is set, a received CR character is translated into a NL character. 

If mCLC is set, a received uppercase alphabetic character is translated into the 
corresponding lowercase character. 

If IXON is set, start/stop output control is enabled. A received STOP character 
will suspend output and a received START character will restart output. All 
start/stop characters are ignored and not read. If lXANY is set, any input 
character will restart output which has been suspended. 

If IXOFF is set, the system will transmit START characters when the input 
queue is nearly empty and STOP characters when nearly full. 

The initial input control value is all bits clear. 



The c _ oflag field specifies the system treatment of output: 
OPOST 0000001 Postprocesses output 
OLCUC 0000002 Maps lowercase to uppercase on output 
ONLCR 0000004 Maps NL to CR-NL on output 
OCRNL 0000010 Maps CR to NL on output 
ONOCR 0000020 No CR output at column 0 
ONLRET 0000040 NL performs CR function 
OFILL 0000100 Uses fill characters for delay 
OFDEL 0000200 Fills is DEL, else NUL 
NLDLY 0000400 Selects newline delays: 
NLO 0 
NL1 0000400 
CRDLY 0003000 Selects carriage return delays: 
CRO 0 
CR1 0001000 
CR2 0002000 
CR3 0003000 
TABDLY 0014000 Selects horizontal tab delays: 
TABO 0 
TABl 0004000 
TAB2 0010000 
TAB3 0014000 Expands tabs to spaces 
BSDLY 0020000 Selects backspace delays: 
BSO 0 
BS1 0020000 
VTDLY 0040000 Selects vertical tab delays: 
VTO 0 
VT1 0040000 
FFDLY 0100000 Selects form feed delays: 
FFO 0 
FFl 0100000 

termio(M) 

If OPOST is set, output characters are post-processed as indicated by the 
remaining flags, otherwise characters are transmitted without change. 

If OLCUC is set, a lowercase alphabetic character is transmitted as the corre­
sponding uppercase character. This function is often used in conjunction with 
IUCLe. 

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If 
OCRNL is set, the CR character is transmitted as the NL character. If ONOCR 
is set, no CR character is transmitted when at column 0 (first position). If 
ONLRET is set, the NL character is assumed to perform the carriage return 
function and the column pointer is set to 0 and the delays specified for CR will 
be used. Otherwise, the NL character is assumed to perform the linefeed func­
tion; the column pointer will remain unchanged. The column pointer is also 
set to 0 if the CR character is actually transmitted. 

775 



termio(M) 

776 

The delay bits specify how long transmission stops to allow for mechanical or 
other movement when certain characters are sent to the terminal. In all cases, 
a value of 0 indicates no delay. If OFILL is set, fill characters will be transmit­
ted for delay instead of a timed delay. This is useful for high baud rate termi­
nals which need only a minimal delay. If OFDEL is set, the fill character is 
DEL, otherwise NUL. 

If a form feed or vertical tab delay is specified, it lasts for about 2 seconds. 

Newline delay lasts about 0.10 seconds. If ONLRET is set, the carriage return 
delays are used instead of the newline delays. If OFILL is set, 2 fill characters 
will be transmitted. 

Carriage return delay type 1 is dependent on the current column position, 
type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is set, 
delay type 1 transmits 2 fill characters, and type 2 transmits 4 fill characters. 

Horizontal tab delay type 1 is dependent on the current column position. 
Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be expanded 
into spaces. If OFILL is set, 2 fill characters will be transmitted for any delay. 

Backspace delay lasts about 0.05 seconds. If OFILL is set, 1 fill character will 
be transmitted. 

The actual delays depend on line speed and system load. 

The initial output control value is all bits clear. 

~he c _ cflag field describes the hardware control Qf the terminal: 
CBAUD 0000017 Baud rate: 
BO 0 Hang up 
B50 0000001 50 baud 
B75 0000002 75 baud 
B110 0000003 110 baud 
B134 0000004 134.5 baud 
B150 0000005 150 baud 
B200 0000006 200 baud 
B300 0000007 300 baud 
B600 0000010 600 baud 
B1200 0000011 1200 baud 
B1800 0000012 1800 baud 
B2400 0000013 2400 baud 
B4800 0000014 4800 baud 
B9600 0000015 9600 baud 
EXTA 0000016 External A 
EXTB 0000017 External B 



CSIZE 0000060 Character size: 
CS5 0 5 bits 
CS6 0000020 6 bits 
CS7 0000040 7 bits 
CS8 0000060 8 bits 
CSTOPB 0000100 Sends two stop bits, else one 
CREAD 0000200 Enables receiver 
PARENB 0000400 Parity enable 
PARODD 0001000 Odd parity, else even 
HUPCL 0002000 Hangs up on last close 
CLOCAL 0004000 Local line, else dial-up 
LOBLK 0010000 Block layer output 
CTSFLOW 0020000 Enables CTS protocol for a modem line 
RTSFLOW 0040000 Enables RTS signaling for a modem line 
CRTSFL 0100000 Enables bidirectional hardware flow control 

termio(M) 

If CTSFLOW and RTSFLOW are set, IXON and lXANY should not be set (or 
vice versa) so that these two types of flow control do not interfere with each 
other. 

CTSFLOW and RTSFLOW are available for modem lines which support 
CTS/RTS signaling. RTSFLOW, CTSFLOW or -RTSFLOW, -CTSFLOW are the 
only permissable settings. (The RS-232 line must also be wired correctly for 
RTS/CTS handshaking.) The use of these settings is strictly hardware depen­
dant and should only be used between devices capable of supporting 
CTS/RTS signalling. 

The RTS and CTS lines for the R5-232 (that is, serial) interface were originally 
intended as handshaking signals between a Data Terminal Equipment (DTE) 
device (computer, printer, etc,) and a Data Communications Equipment (DCE) 
device (almost always a modem). The RTS (Ready To Send) line is asserted by 
the DTE when it is ready to send data to the DCE. The DCE asserts the CTS 
(Clear To Send) line when it is ready to receive data. If the CTS line goes low, 
then the DTE should stop sending data until CTS goes high again. 

CRTSFL is a new (in Release 3.2 v4) c cflag. CRTSFL controls the flow of data 
along the modem line using hardware signals. The RTS and CTS lines can be 
used to transfer binary files in raw mode if required. 

CRTSFL enables bidirectional hardware flow control between the computer 
and a modem-style device or another computer. Before setting CRTSFL check 
that: 

• The RS-232C line has the following connections: 

777 



termio(M) 

778 

For direct lines: 

1 1 

2 >< 2 

3 3 

4 >< 4 

5 5 

6 6 

7 7 

8 >< 8 

20 20 

For modem connections: 

1 1 

2 >< 2 

3 3 

4 >< 4 

5 5 

6 6 

7 7 

8 8 

20 20 

• CTSFLOW and RTSFLOW are not set. If either CTSFLOW or RTSFLOW are 
set, CRTSFL is disabled. 



termio(M) 

Back to back connection with a device supporting RTS/CTS flow control is 
possible as long as the device does not send data when its incoming CTS line 
is low, and asserts RTS while it has room in its buffer cache for more data. 

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang 
up the connection. If BO is specified, the data-terminal-ready signal will not 
be asserted. Without this signal, the line is disconnected if it is connected 
through a modem. For any particular hardware, impossible speed changes 
are ignored. 

The CSIZE bits specify the character size in bits for both transmission and 
reception. This size does not include the parity bit, if any. If CSTOPB is set, 2 
stop bits are used, otherwise 1 stop bit. For example, at 110 baud, 2 stops bits 
are required. 

If P ARENB is set, parity generation and detection is enabled and a parity bit is 
added to each character. If parity is enabled, the PARODD flag specifies odd 
parity if set, otherwise even parity is used. 

If CREAD is set, the receiver is enabled. Otherwise no characters will be 
received. 

If HUPCL is set, the line will be disconnected when the last process with the 
line open closes it or terminates: that is, the data-terminal-ready signal will 
not be asserted. 

If CLOCAL is set, the line is assumed to be a local, direct connection with no 
modem control. The data-terminal-ready and request-to-send signals are 
asserted, but incoming modem signals are ignored. If CLOCAL is not set, 
modem control is assumed. This means the data-terminal-ready and request­
to-send signals are asserted. Also, the carrier-detect signal must be returned 
before communications can proceed. 

If LOBLK is set, the output of a shell layer will be blocked when it is not the 
current layer. Otherwise the output generated by that layer will be multi­
plexed onto the current layer. 

The initial hardware control value after open is B9600, CS8, CREAD, HUPCL. 

The c_lflag field of the argument structure is used by the line discipline to 
control terminal functions. The basic line discipline (0) provides the follow­
ing: 
ISIG 0000001 Enable signals 
ICANON 0000002 Canonical input (erase and kill processing) 
XCASE 0000004 Canonical upper/lower presentation 
ECHO 0000010 Enables echo 
ECHOE 0000020 Echoes erase character as BS-SP-BS 
ECHOK 0000040 Echoes NL after kill character 
ECHONL 0000100 Echoes NL 
NOFLSH 0000200 Disables flush after interrupt or quit 
XCLUDE 0100000 Exclusive use of the line 

779 



termio(M) 

780 

If ISIG is set, each input character is checked against the special control char­
acters INTR, SWTCH and QUIT. If an input character matches one of these 
control characters, the function associated with that character is performed 
(that is, the signal associated with that character is generated)'. If ISIG is not 
set, no checking is done. Thus, these special input functions are possible only 
if ISIG is set. These functions may be disabled individually by changing the 
value of the control character to an unlikely or impossible value (for example, 
0377). 

If ICANON is set, canonical processing is enabled. This enables the erase and 
kill edit functions, and the assembly of input characters into lines delimited by 
NL, EOF and EOL. If ICANON is not set, read requests are satisfied directly 
from the input queue. A read will not be satisfied until at least VMIN charac­
ters have been received or the timeout value VTIME has expired and at least 
one character has been input. This allows fast bursts of input to be read effi­
ciently while still allowing single character input. (See the discussion of 
VMIN and VTIME below.) 

The VMIN and VTIME values are stored in the position for the EOF and EOL 
characters respectively. VMIN and VTIME are interpreted as EOF and EOL if 
ICANON is set. Default VMIN and VTIME values are stored in the 
/usr/include/sys/termio.h file. To change these values, set ICANON to off and use 
stty(C) to change the VMIN and VTIME values as represented by EOF and 
EOL. The VTIME value represents tenths of seconds. 

If XCASE and ICANON are set, an uppercase letter is accepted on input by 
preceding it with a " \ " character, and is output preceded by a " \ " character. 
In this mode, the following escape sequences are generated on output and 
accepted on input: 

For: Use: 
\If 
\! 
\A 

{ \( 
} \) 
\ \\ 

For example, A is input as \a, \n as \ \n, and \N as \ \ \n. 

If ECHO is set, characters are echoed when they are received. 

When ICANON is set, the following echo functions are possible. If ECHO and 
ECHOE are set, the erase character is echoed as ASCII BS SP BS, which will 
clear the last character from a CRT screen. If ECHOE is set and ECHO is not 
set, the erase character is echoed as ASCII SP BS. If ECHOK is set, the NL char­
acter will be echoed after the kill character to emphasize that the line will be 
deleted. Note that an escape character preceding the erase or kill character 
removes any special function. If ECHONL is set, the NL character will be 
echoed even if ECHO is not set. This is useful for terminals set to local echo 
(so-called half duplex). Unless escaped, the EOF character is not echoed. 
Because EOT is the default EOF character, this prevents terminals that respond 
to EOT from hanging up. 



termio(M) 

If NOFLSH is set, the normal flush of the input and output queues associated 
with the quit and interrupt characters will not be done. 

If XCLUDE is set, any subsequent attempt to open the tty device using open(S) 
will fail for all users except the super-user. If the call fails, it returns EBUSY in 
ermo. XCLUDE is useful for programs which must have exclusive use of a 
communications line. It is not intended for the line to the program's control­
ling terminal. XCLUDE must be cleared before the setting program terminates, 
otherwise subsequent attempts to open the device will fail. 

VMIN represents the minimum number of characters that should be received 
when the read is satisfied (that is, the characters are returned to the user). 
VTIME is a timer of 0.10 second granularity used to time-out bursty and 
short-term data transmissions. The four possible values for VMIN and VTIME 
and their interactions are: 

VMIN > 0, VTIME > 0 In this case, VTIME serves as an inter-character timer 
activated after the first character is received, and 
reset upon receipt of each character. VMIN and 
VTIME interact as follows: 

As soon as one character is received the inter­
character timer is started. 

If VMIN characters are received before the inter­
character timer expires the read is satisfied. 

If the timer expires before VMIN characters are 
received the characters received to that point are 
returned to the user. 

A read(S) operation will sleep until the VMIN and 
VTIME mechanisms are activated by the receipt of 
the first character; thus, at least one character must 
be returned. 

VMIN > 0, VTIME = a In this case, because VTIME = 0, the timer plays no 
role and only VMIN is significant. A read(S) opera­
tion is not satisfied until VMIN characters are 
received. 

VMIN = 0, VTIME > 0 In this case, because VMIN = 0, VTIME no longer 
serves as an inter-character timer, but now serves as 
a read timer that is activated as soon as the read(S) 
operation is processed. A read(S) operation is satis­
fied as soon as a single character is received or the 
timer expires, in which case, the read(S) operation 
will not return any characters. 

VMIN = 0, VTIME = 0 In this case, return is immediate. If characters are 
present, they will be returned to the user. 

781 



termio(M) 

Files 

See also 

The initial line-discipline control value is all bits clear. 

The primary ioctl(S} system calls have the form: 
ioctl (fildes, command, arg) 
struct termio *arg; 

The commands using this form are: 

TCGETA Gets the parameters associated with the terminal and stores 
them in the termio structure referenced by argo 

TCSETA Sets the parameters associated with the terminal from the 
structure referenced by argo The change is immediate. 

TCSETAW Waits for the output to drain before setting the new parame­
ters. This form should be used when changing parameters 
that will affect output. 

TCSETAF Waits for the output to drain, then flushes the input queue 
and sets the new parameters. 

Additional ioctl(S} calls have the form: 
ioctl (fildes, command, arg) 
int arg 

The commands using this form are: 

TCSBRK Waits for the output to drain. If arg is 0, then sends a break 
(zero bits for 0.25 seconds). 

TCXONC Starts/stops control. If arg is 0, suspends output; if I, restarts 
suspended output; if 2, block; if 3, unblock. 

TCFLSH If arg is 0, flushes the input queue; if I, flushes the output 
queue; if 2, flushes both the input and output queues. 

/dev/tty 
/dev/tty* 
/dev/console 

fork(S}, getty(M}, ioctl(S}, mapchan(F}, mapchan(M}, read(S), setgprp(S}, 
shl(C), signal(S}, stty(C}, termios(M}, tty(M} 

Standards conformance 

termio is conformant with: 

AT&T SYID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

782 



termios(M) 

termios 
POSIX general terminal interface 

Description 

This entry discusses the POSIX termios extensions to the termio(M) interface. 
Only those functions not described in termio(M) are described here. 

Certain characters have special functions on input. These functions and their 
default character values are summarized as follows: 

SUSP (Unset by default) If the ISIG flag is enabled, receipt of the SUSP 
character causes a SIGTSTP signal to be sent to the current process 
group. The SUSP character is discarded when processed. It is often 
set to Ctrl-Z. 

Several library functions apply to terminal files. The primary calls use the fol­
lowing structure, defined in the file <termios.h>: 

ide fine NCCS 13 
struct termios { 

tcflag_t 
tcflag_t 
tcflag_t 
tcflag_t 
char 

) ; 

cc t 
char 
char 

c_iflag; 
c_oflag; 
c _ cflag; 
c_lflag; 
c_line; 
c cc[NCCS]; 
c) speed; 
c_ospeed; 

/* input modes */ 
/* output modes */ 
/* control modes */ 
/* local (line discipline) 
/* line discipline */ 
/* control chars */ 
/* input baud rate */ 
/* output baud rate */ 

modes */ 

The additional special control characters defined by the array c _ CC. are: 
10 VSUSP NUL 
11 VSTART DC1 
12 VSTOP DC3 

The following additional line discipline (0) functions are available in the 
c _lflag field: 

IEXTEN 0000400 enable extended functions 
TOSTOP 0001000 SIGTTOU on background output 

If IEXTEN is set, additional non-POSIX functions are recognized. This is the 
default. If IEXTEN is not set, the modes ICANON, ISIG, IXON, and IXOFF are 
assumed. 

783 



termios(M) 

Files 

See also 

If TOSTOP is set, the signal SIGTTOU is sent to the process group of a process 
that tries to write to its controlling terminal if it is not the foreground process 
group. By default, this signal stops the members of the process group. If 
TOSTOP is not set, the output generated by the process is output to the 
current output stream. 

The associated library functions are found in tcattr(S) and tcflow(S). 

/dev/tty 
/dev/tty* 
/dev/console 

ioctl(S), signal(S), stty(C), tcattr(S), tcflow(s), termio(M), tty(M) 

Standards conformance 

termios is conformant with: 

lEEE POSIX Std 1003.1-1990 System Application Program Interface (API) [C 
Language] (ISO/lEC 9945-1); 
and X/Open Portability Guide, Issue 3,1989. 

Value added 

784 

termios is an extension of AT&T System V provided by The Santa Cruz 
Operation, Inc. 



timod(M) 

timod 
Transport Interface cooperating STREAMS module 

Description 

timod is a STREAMS module for use with the Transport Interface (TI) functions 
of the Network Services library. The timod module converts a set of ioctl(S) 
calls into STREAMS messages that may be consumed by a transport protocol 
provider which supports the Transport Interface. This allows a user to initiate 
certain TI functions as atomic operations. 

The timod module must only be pushed (see "Streams primer") onto a stream 
terminated by a transport protocol provider which supports the TI. 

All STREAMS messages, with the exception of the message types generated 
from the ioctl commands described below, will be transparently passed to the 
neighboring STREAMS module or driver. The messages generated from the 
following ioctl commands are recognized and processed by the timod 
module. The format of the ioctl call is: 

<#include <sys/stropts.h> 

struct strioctl strioctl; 

strioctl.ic_cmd = cntd; 
strioctl.ic timeout = INFTIM; 
strioctl.ic-len = size; 
strioctl.ic=dp = (char *)bUf 
ioctl(fildes, I_STR, &strioctl); 

where, on issuance, size is the size of the appropriate TI message to be sent to 
the transport provider and on return, size is the size of the appropriate TI 
message from the transport provider in response to the issued TI message. 
but is a pointer to a buffer large enough to hold the contents of the appropri­
ate TI messages. The TI message types are defined in <sys/tihdr.h>. The possi­
ble values for the cmd field are: 

TCBIND 

TCUNBIND 

Bind an address to the underlying transport protocol pro­
vider. The message issued to the TCBIND ioctl is equivalent 
to the TI message type T_BIND_REQ and the message 
returned by the successful completion of the ioctl is 
equivalent to the TI message type T_BIND_ACK. 

Unbind an address from the underlying transport protocol 
provider. The message issued to the TCUNBIND ioctl is 
equivalent to the TI message type T_UNBIND_REQ and the 
message returned by the successful completion of the ioctl is 
equivalent to the TI message type T_OK_ACK. 

785 



timod(M) 

Files 

See also 

TCGETINFO Get the TI protocol specific information from the transport 
protocol provider. The message issued to the TCGETINFO 
ioctl is equivalent to the TI message type T_INFO_REQ and 
the message returned by the successful completion of the 
ioctl is equivalent to the TI message type T_INFO_ACK. 

TCOPTMGMT Get, set, or negotiate protocol specific options with the trans­
port protocol provider. The message issued to the 
TCOPTMGMT ioctl is equivalent to the TI message type 
T_OPTMGMT_REQ, and the message returned by the suc­
cessful completion of the ioctl is equivalent to the TI mes­
sage type T_OPTMGMT_ACK. 

<sys/timod.h> 
<sys/tiuser.h> 
<sys/tihdr.h> 
<sys/errno.h> 

tirdwr(M) 

STREAMS Primer 
STREAMS Programmer's Guide 
Network Programmer's Guide 

Diagnostics 

786 

If the ioctl system call returns with a value greater than 0, the lower 8 bits of 
the return value will be one of the TI error codes as defined in <sys/tiuser.h>. If 
the TI error is of type TSYSERR, then the next 8 bits of the return value will 
contain an error as defined in <sys/errno.h> (see Intro(S)). 



timtbl(M) 

timtbl 
create a time locale table 

Syntax 

timtbl [ specfile ] 

Description 

The utility timtbl is provided to allow new LC_TIME locales to be defined. It 
reads a specification file, which contains definitions of the way in which time 
and date information is presented for a particular locale, and produces a 
binary table file, to be read by setlocale(S), which determines the behavior of 
the strftime(S) routine. 

The information supplied in the specification file consists of lines in the fol­
lowing format: 

item = string 

The "=" can be separated from the item and string fields by zero or more 
space or tab characters. The following values are meaningful for item: 

DATE_FMT specification of the format string for representing the date. It 
will contain "%" directives representing variable items such as 
the month number, as used in the format string for strftime(S). 

TIME]MT specification of the format string for representing the time of 
day. 

F_NOON string indicating 12-hour clock times before midday, for exam­
ple "AM". 

A_NOON string indicating 12-hour clock times after midday, for example 
"PM". 

D_T_FMT string for formatting combined date and time. 

DAY_l full name of the first day of the week (Sunday). 

DAY_7 full name of the seventh day of the week. 

787 



timtbl(M) 

788 

ABDAY_l abbreviated name of the first day of the week, for example 
"Sun". 

ABDAYJ abbreviated name of the seventh day of the week. 

MON_l full name of the first month in the Gregorian calendar. 

MON_12 full name of the twelfth month. 

ABMON_l abbreviated name of the first month. 

ABMON_12 full name of the twelfth month. 

The string is a sequence of characters surrounded by quotes ("). Characters 
within the string can be specified both literally and using "\" escapes; the fol­
lowing three strings are equivalent: 

"Tuesday" -literal 
"\x54ue \x73da \x79" - hexadecimal escapes 
1\124ue\163da\171" - octal escapes 

The strings for the items DATE_FMT, TIME_FMT and D_T_FMT will also 
include "%" directives as detailed in the strftime(S) manual page, to specify 
variable portions of the string. 

All characters following a hash (#) are treated as a comment and ignored up to 
the end of the line, unless the hash is within a quoted string. 

The various items may be specified in any order. If any items are not speci­
fied, a warning message will be produced, and the null string ("") substituted. 

The binary table output is placed in a file named "time", within the current 
directory. This file should be copied or linked to the correct place in the setlo­
cale file tree (see locale(M». To prevent accidental corruption of the output 
data, the file is created with no write permission; if the timtbl utility is run in 
a directory containing a write-protected "ctype" file, the utility will ask if the 
existing file should be replaced: any response other than "yes" or "y" will 
cause timtbl to terminate without overwriting the existing file. 

If the spec file argument is missing, the specification information is read from 
the standard input. 



timtbl(M) 

See also 

chrtbl(M),locale(M), numtbl(M), setlocale(S), strftime(S) 

Diagnostics 

Notes 

If the input table file cannot be opened for reading, processing will terminate 
with the error message, "Cannot open specification file". 

Any lines in the specification file which are syntactically incorrect, or contain 
an unrecognized value for the item, will cause an error message to be issued 
to the standard error output, specifying the line number on which the error 
was detected. The line will be ignored, and processing will continue. 

If a particular item is specified more than once, a warning message will be 
produced, and processing will continue. 

If the specification file does not contain specifications for all possible items, a 
warning message will be produced. 

If the output file, time, cannot be opened for writing, processing will terminate 
with the error message, "Cannot create table file". 

Any error conditions encountered will cause the program to exit with a non­
zero return code; successful completion is indicated with a zero return code. 

The strings D_FMT, T_FMT, AM_STR and PM_STR may be used as alternatives 
to DATE_FMT, TIME_FMT, F_NOON and A_NOON respectively, if required. 
These alternatives are proVided for consistency with the identifiers used by 
nClanginfo(S). 

Value added 

timtbl is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 

789 



tirdwr(M) 

tirdwr 
Transport Interface readlwrite interface STREAMS module 

Description 

790 

tirdwr is a STREAMS module that provides an alternate interface to a transport 
provider which supports the Transport Interface (TI) functions of the Network 
Services library (see Section 3N). This alternate interface allows a user to com­
municate with the transport protocol provider using the read(S) and write(S) 
system calls. The putmsg(S) and getmsg(S) system calls may also be used. 
However, putmsg and getmsg can only transfer data messages between user 
and stream. 

The tirdwr module must only be pushed (see CPUSH in streamio(M» onto a 
stream terminated by a transport protocol provider which supports the TI. 
After the tirdwr module has been pushed onto a stream, none of the Transport 
Interface functions can be used. Subsequent calls to TI functions will cause an 
error on the stream. Once the error is detected, subsequent system calls on the 
stream will return an error with ermo set to EPROTO. 

The following are the actions taken by the tirdwr module when pushed on the 
stream, popped (see CPOP in streamio(M» off the stream, or when data passes 
through it. 

push When the module is pushed onto a stream, it will check any exist­
ing data destined for the user to ensure that only regular data mes­
sages are present. It will ignore any messages on the stream that 
relate to process management, such as messages that generate sig­
nals to the user processes associated with the stream. If any other 
messages are present, the CPUSH will return an error with ermo 
set to EPROTO. 

write The module will take the following actions on data that originated 
from a write system call: 

• All messages with the exception of messages that contain con­
trol portions (see the putmsg and getmsg system calls) will be 
transparently passed onto the module's downstream neighbor. 

• Any zero length data messages will be freed by the module and 
they will not be passed onto the module's downstream neigh­
bor. 

• Any messages with control portions will generate an error, and 
any further system calls associated with the stream will fail with 
ermo set to EPROTO. 



See also 

tirdwr(M) 

read The module will take the following actions on data that originated 
from the transport protocol provider: 

• All messages with the exception of those that contain control 
portions (see the putmsg and getmsg system calls) will be tran­
sparently passed onto the module's upstream neighbor. 

• The action taken on messages with control portions will be as 
follows: 

Messages that represent expedited data will generate an 
error. All further system calls associated with the stream 
will fail with ermo set to EPROTO. 

Any data messages with control portions will have the 
control portions removed from the message prior to pass­
ing the message to the upstream neighbor. 

- Messages that represent an orderly release indication 
from the transport provider will generate a zero length 
data message, indicating the end-of-file, which will be 
sent to the reader of the stream. The orderly release mes­
sage itself will be freed by the module. 

- Messages that represent an abortive disconnect indication 
from the transport provider will cause all further write 
and putmsg system calls to fail with ermo set to ENXIO. 
All further read and getmsg system calls will return zero 
length data (indicating end of file) once all previous data 
has been read. 

- With the exception of the above rules, all other messages 
with control portions will generate an error and all further 
system calls associated with the stream will fail with ermo 
set to EPROTO. 

• Any zero length data messages will be freed by the module and 
they will not be passed onto the module's upstream neighbor. 

pop When the module is popped off the stream or the stream is closed, 
the module will take the following action: 

• If an orderly release indication has been previously received, 
then an orderly release request will be sent to the remote side of 
the transport connection. 

streamio(M), timod(M), intro(S), getmsg(S), putmsg(S), read(S), write(S), 
inlro(S) 

STREAMS Primer 
STREAMS Programmer's Guide 
Network Programmer's Guide 

791 



trchan(M) 

trchan 
translate character sets 

Syntax 

trchan [ -ciko ] mapfile 

Description 

File 

See also 

Note 

792 

trchan performs mapping as a filter, using the same format of mapfile as 
mapchan(M) (described in mapchan(F». This allows a file consisting of one 
internal character set to be "translated" to another internal character set. 

trchan reads standard input, maps it, and writes to standard output. A map­
file must be given on the command line. Errors cause trchan to stop pro­
cessing unless -c is specified. 

The following options can be used with trchan: 

-c causes errors to be echoed on stderr, and processing is continued. 

-i specifies that the "input" section of the mapfile is used when translat-
ingdata. 

-k specifies that the "dead" and "compose" sections of the mapfile are 
used when translating data. 

-0 specifies that the "output" section of the mapfile is used when translat­
ingdata. 

The -i, -k and -0 options can be specified in any combination; if none 
are specified, trchan uses the entire mapfile, as if all three were speci­
fied together. 

/usr/lib/mapchan/* 

ascii(M), mapchan(F), mapchan(M) 

trchan currently ignores the control sections of the mapfile. 



trchan(M) 

Value added 

trchan is an extension of AT&T System V provided by The Santa Cruz Opera­
tion, Inc. 

793 



tty(M) 

tty 
special terminal interface 

Description 

Files 

See also 

The file /dev/tty is, in each process, a synonym for the control terminal associ­
ated with the process group of that process, if any. It is useful for programs or 
shell sequences that wish to be sure of writing messages on the terminal no 
matter how output has been redirected. It can also be used for programs that 
demand the name of a file for output, when typed output is desired, and 
when it is tiresome to find out what terminal is currently in use. 

The general terminal interface is described in termio(M). 

/dev/tty 
/dev/tty* 

termio(M) 

Standards conformance 

tty is conformant with: 

AT&T SVID Issue 2; 
and X/Open Portability Guide, Issue 3,1989. 

794 



tz(M) 

tz 
time zone environment variable 

Syntax 

letdtz 

Description 

Files 

See also 

TZ is the shell environment variable for the time zone of the system and is set 
in the me /etc/TIMEZONE (see timezone(F) for a complete description of the 
syntax for defining TZ). 

The shell script letdtz, generally run during installation, prompts for the 
correct time zone, prompts for the dates when time is shifted from standard to 
daylight time and back, and for the number of hours to shift (partial hours in 
the form of hh:mm:ss are acceptable). and sets TZ correctly in the appropriate 
meso The following files are examined to see if they read from /etc/TIMEZONE 
to set TZ for their environment: 

/ete/eshre 
jete/profile 
/etc/re2 
/.profile 

If these files do not read from /ete/TIMEZONE, a warning is issued. 

Users living in a time zone different than that of the host machine may change 
TZ in their $HOME/.profile or $HOME/.login meso 

To change the time zone for the entire system, run the shell script letdtz (as 
root) or use an editor to change the variable TZ in the me /ete/TIMEZONE. 

/ete/rc2 
fete/default/login 
/ete/tz 
$HOME/ .profile 
$HOME/.login 

ctime(S), date(C), environ(M), timezone(F) 

795 



tz(M) 

Notes 

The date(C) automatically switches from Standard Time to Summer Time 
(Daylight Saving Time). Leap days are properly accounted for. 

Changes to TZ are immediately effective, (that is, if a process changes the TZ 
variable, the next call to a ctime(S) routine returns a value based on the new 
value of the variable). 

Value added 

796 

tz is an extension of AT&T System V provided by The Santa Cruz Operation, 
Inc. 



undocumented(M) 

undocumented 
programs not documented elsewhere in these manuals 

Description 
Several programs distributed with sea UNIX System V /386 are not fully 
documented. In general, these programs fall into two categories: programs 
retained to provide compatability with earlier versions of sea UNIX System 
V /386, and programs intended for execution by other programs, which are 
rarely of interest to the end user. 

This page lists undocumented programs, together with brief notes on their 
functionality and relevance. Note that this list is likely to change with future 
releases of sea UNIX System V /386. We strongly recommend that you make 
no attempt to use or remove programs on this list; doing, so may interfere 
with the functionality of other programs. 

Undocumented but useful programs are as follows: 

letclcleanup Shell script occasionally run by the root crontab file to 
clean up log files. 

letclmemsize Called directly by crash(ADM). 

letclutmp...,getty Provided for mscreen(M) support. 

lusr/bin/menu_add Link to /bin/true. 

lusr/bin/menu_del Link to /bin/true. 

lusr/bin/message Used by installpkg(ADM), displaypkg(ADM), and 
removepkg(ADM). 

lusr/binlpwdmenu Used by backup(ADM). 

/bin/idas 

/bin/mt 

letclbrand 

letcldebrand 

lusr/bin/checkeq 

lusr/bin/ibmipopt 

Program used by Link Kit during Kernel builds. 

Lists the drive model number. Specific to (obsolete) 
Intel tape drive. 

Used by installation scripts; documented in Product 
Engineering Toolkit. 

Used by installation scripts; documented in Product 
Engineering Toolkit. 

eqn(cr) macro checker. 

Used by the print service; displays Ip options specific 
to the IBM ProPrinter. 

797 



undocumented(M) 

See also 

798 

The following unsupported binaries are included in the operating system 
because they are part of the base distribution. . 

fusrlbinlasa 

fusrlbinlepset 

fusrlbinldseonfig 

fusrlbinlupdate 

fusrlbinlmlist 

fusrlbinlnewmail 

fusrlbinlfixshlib 

fusrlbinliniperm 

fetclekbupsed 

fetcl_fst 

fus~ibfemaetovi 

fetclfree 

fetclfsba 

fetclrstab 

fetclsetclk 

fetclfsanek 

Intro(ADM), lntro(C), Intro(F), Intro(HW), Intro(M) 



values(M) 

values 
machine-dependent values 

Syntax 

#include <values.h> 

Description 

This file contains a set of manifest constants, conditionally defined for partic­
ular processor architectures. 

The model assumed for integers is binary representation (ones or twos com­
plement), where the sign is represented by the value of the high-order bit. 

BITS(type) 

HIBITS 

HIBITL 

HIBITI 

MAXSHORT 

MAXLONG 

MAXINT 

MAXFLOAT 
LN_MAXFLOAT 

MAXDOUBLE 
LN_MAXDOUBLE 

MINFLOAT 
LN_MINFLOAT 

The number of bits in a specified type (for example, 
int). 

The value of a short integer with only the high-order 
bit set (in most implementations, Ox8000). 

The value of a long integer with only the high-order bit 
set (in most implementations, Ox80000000). 

The value of a regular integer with only the high-order 
bit set (usually the same as HIBITS or HIBITL). 

The maximum value of a signed short integer (in most 
implementations, Ox7FFF == 32767). 

The maximum value of a signed long integer (in most 
implementations, Ox7FFFFFFF - 2147483647). 

The maximum value of a signed regular integer (usu­
ally the same as MAXSHORT or MAXLONG). 

The maximum value of a single-precision floating­
point number, and its natural logarithm. 

The maximum value of a double-precision floating­
point number, and its natural logarithm. 

The minimum positive value of a single-precision 
floating-point number, and its natural logarithm. 

799 



vaiues(M) 

See also 

MINDOUBLE 
LN_MINDOUBLE 

FSIGNIF 

DSIGNIF 

The minimum positive value of a double-precision 
floating-point number, and its natural logarithm. 

The number of significant bits in the mantissa of a 
Single-precision floating-point number. 

The number of significant bits in the mantissa of a 
double-precision floating-point number. 

Intro(S), limits(F), math(M) 

Standards confonnance 

values is conformant with: 

X/Open Portability Guide, Issue 3,1989. 

800 



xtproto(M) 

xtproto 
multiplexed channels protocol used by xt(HW) driver 

Description 

File 

See also 

The xt(HW) driver contains routines which implement a multiplexed, multi­
buffered, full-duplex protocol with guaranteed delivery of ordered data via an 
8-bit byte data stream. This protocol is used for communication between 
multiple UNIX system host processes and an AT&T windowing terminal oper­
ating under layers(C). 

The protocol uses packets with a 2-byte header containing a 3-bit sequence 
number, 3-bit channel number, control flag, and data size. The data part of a 
packet may not be larger than 32 bytes. The trailer contains a CRC-16 code in 
2 bytes. Each channel is double-buffered. 

Correctly received packets in sequence are acknowledged with a control 
packet containing an ACK; however, out of sequence packets generate a con­
trol packet containing a NAK, which will cause the retransmission in sequence 
of all unacknowledged packets. 

Unacknowledged packets are retransmitted after a timeout interval which is 
dependent on baud rate. Another timeout parameter specifies the interval 
after which incomplete receive packets are discarded. 

/usr/include/sys/xtproto.h channel multiplexing protocol definitions 

layers(M), layers( C), xt(HW) 

801 



xtproto(M) 

802 



Please help us to write computer manuals that meet your needs by completing this 
form. Please post the completed form to the Technical Publications Research 
Coordinator nearest you: The Santa Cruz Operation, Ltd., Croxley Centre, Hatters 
Lane, Watford WDI 8YN, United Kingdom; The Santa Cruz Operation, Inc., 400 
Encinal Street, P.O. Box 1900, Santa Cruz, California 95061, USA or SCO Canada, 
Inc., 130 Bloor Street West, 10th Floor, Toronto, Ontario, Canada M5S INS. 

Volumetitle: __________________________________________________ __ 
(Copy this from the title page of the manual, for example, seo UNIX Operating System User's Guide) 

Product: ____________________________________________________ _ 
(for example, seo UNIX System V Release 3.2 Operating System Version 4.0) 

How long have you used this product? 

o Less than one month o Less than six months 0 Less than one year 

o 1 to 2 years o More than 2 years 

How much have you read of this manual? 

o Entire manual 0 Specific chapters o Used only for reference 

Agree Disagree 

The software was fully and accurately described 0 0 0 
The manual was well organized 0 0 0 
The writing was at an appropriate technical level 
(neither too complicated nor too simple) 0 0 0 
It was easy to find the information I was looking for 0 0 0 
Examples were clear and easy to follow 0 0 0 
Illustrations added to my understanding of the software 0 0 0 
I liked the page design of the manual 0 0 0 

If you have specific comments or if you have found specific inaccuracies, 
please report these on the back of this form or on a separate sheet of paper. 
In the case of inaccuracies, please list the relevant page number. 

0 
0 

0 
0 
0 
0 
0 

May we contact you further about how to improve seo UNIX documentation? 
If so, please supply the following details: 

0 
0 

0 

0 
0 
0 
0 

Name ________________________ __ Position ______________________ _ 

Company __________________________________________________ __ 

Address ______________________________________________________ __ 

City & Post/Zip Code ___________________ _ 

Count~-----------------------------------------------------

Tel~hone---------------------- Facsimile ______________________ _ 







31 January 1992 

BH01208P000 
58075 





CLUSTER MANUAL 

11111111111111111111111111111111111111111111111111111111111111111 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~~IIIIIIIIIIII111111111 
BJ01206POOO AU01212POOO 


