
®

seo OpenServer 'M

Graphical
Environment Guide

seQ Qpen_Server TM

seQ QpenServer™
Graphical Environment Guide

© 1983-1995 The Santa Cruz Operation, Inc. All rights reserved.

© 1994 IX! Limited; © 1988 Massachusetts Institute of Technology; © 1989 Open Software Foundation, Inc.;
© 1988 UNIX Systems Laboratories, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into
any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without the prior written permission of the copyright owner, The Santa
Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California, 95060, USA. Copyright infringement is a
serious matter under the United States and foreign Copyright Laws.

Information in this document is subject to change without notice and does not represent a commitment on
the part of The Santa Cruz Operation, Inc.

sea, the sea logo, The Santa Cruz Operation, Open Desktop, aDT, Panner, sea Global Access, sea aK, sea
OpenServer, sea MultiView, sea Visual Tel, Skunkware, and VP/ix are trademarks or registered
trademarks of The Santa Cruz Operation, Inc. in the USA and other countries. UNIX is a registered
trademark in the USA and other countries, licensed exclusively through XI Open Company Limited. All
other brand and product names are or may be trademarks of, and are used to identify products or services
of, their respective owners.

Document Version: 5.0
1 May 1995

The sea software that accompanies this publication is commercial computer software and, together with
any related documentation, is subject to the restrictions on US Government use as set forth below. If this
procurement is for a DOD agency, the following DFAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restrictions
as set forth in subparagraph (c)(l)(ii) of Rights in Technical Data and Computer Software Clause at DFARS

252.227-7013. Contractor/Manufacturer is The Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz,
CA 95060.

If this procurement is for a civilian government agency, this FAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: This computer software is submitted with restricted rights under
Government Contract No. (and Subcontract No. , if appropriate). It may not be used,
reproduced, or disclosed by the Government except as provided in paragraph (g)(3)(i) of FAR Clause
52.227-14 alt III or as otherwise expressly stated in the contract. Contractor/Manufacturer is The Santa
Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, CA 95060.

The copyrighted software that accompanies this publication is licensed to the End User only for use in strict
accordance with the End User License Agreement, which should be read carefully before commencing use
of the software. This sea software includes software that is protected by these copyrights:

© 1983-1995 The Santa Cruz Operation, Inc.; © 1989-1994 Acer Incorporated; © 1989-1994 Acer America
Corporation; © 1990-1994 Adaptec, Inc.; © 1993 Advanced Micro Devices, Inc.; © 1990 Altos Computer
Systems; © 1992-1994 American Power Conversion, Inc.; © 1988 Archive Corporation; © 1990 AT!
Technologies, Inc.; © 1976-1992 AT&T; © 1992-1994 AT&T Global Information Solutions Company; © 1993
Berkeley Network Software Consortium; © 1985-1986 Bigelow & Holmes; © 1988-1991 Carnegie Mellon
University; © 1989-1990 Cipher Data Products, Inc.; © 1985-1992 Compaq Computer Corporation; ©
1986-1987 Convergent Technologies, Inc.; © 1990-1993 Cornell University; © 1985-1994 Corollary, Inc.; ©
1988-1993 Digital Equipment Corporation; © 1990-1994 Distributed Processing Technology; © 1991 D.L.S.
Associates; © 1990 Free Software Foundation, Inc.; © 1989-1991 Future Domain Corporation; © 1994
Gradient Technologies, Inc.; © 1991 Hewlett-Packard Company; © 1994 mM Corporation; © 1990-1993
Intel Corporation; © 1989 Irwin Magnetic Systems, Inc.; © 1988-1994 IX! Limited; © 1988-1991 JSB
Computer Systems Ltd.; © 1989-1994 Dirk Koeppen EDV-Beratungs-GmbH; © 1987-1994 Legent
Corporation; © 1988-1994 Locus Computing Corporation; © 1989-1991 Massachusetts Institute of
Technology; © 1985-1992 Metagraphics Software Corporation; © 1980-1994 Microsoft Corporation; ©
1984-1989 Mouse Systems Corporation; © 1989 Multi-Tech Systems, Inc.; © 1991 National Semiconductor
Corporation; © 1990 NEC Technologies, Inc.; © 1989-1992 Novell, Inc.; © 1989 Ing. C. Olivetti & C. SpA; ©
1989-1992 Open Software Foundation, Inc.; © 1993-1994 Programmed Logic Corporation; © 1989 Racal
InterLan, Inc.; © 1990-1992 RSA Data Security, Inc.; © 1987-1994 Secureware, Inc.; © 1990 Siemens Nixdorf
Informationssysteme AG; © 1991-1992 Silicon Graphics, Inc.; © 1987-1991 SMNP Research, Inc.; ©
1987-1994 Standard Microsystems Corporation; © 1984-1994 Sun Microsystems, Inc.; © 1987 Tandy
Corporation; © 1992-1994 3COM Corporation; © 1987 United States Army; © 1979-1993 Regents of the
University of California; © 1993 Board of Trustees of the University of Illinois; © 1989-1991 University of
Maryland; © 1986 University of Toronto; © 1976-1990 UNIX System Laboratories, Inc.; © 1988 Wyse
Technology; © 1992-1993 Xware; © 1983-1992 Eric P. Allman; © 1987-1989 JefferyD. Case and Kenneth W.
Key; © 1985 Andrew Cherenson; © 1989 Mark H. Colburn; © 1993 Michael A. Cooper; © 1982 Pavel Curtis;
© 1987 Owen DeLong; © 1989-1993 Frank Kardel; © 1993 Carlos Leandro and Rui Salgueiro; © 1986-1988
Larry McVoy; © 1992 David L. Mills; © 1992 Ranier Pruy; © 1986-1988 Larry Wall; © 1992 Q. Frank Xia. All
rights reserved. seo NFS was developed by Legent Corporation based on Lachman System V NFS. SCO
TCP /IP was developed by Legent Corporation and is derived from Lachman System V STREAMS TCP, a
joint development of Lachman Associates, Inc. (predecessor of Legent Corporation) and Convergent
Technologies, Inc.

About this book 1

How this book is organized 1
How to use the chapters in this book ... 4

Related documentation ... 5
For further reading 7

Typographical conventions ... 8
How can we improve this book? 9

Chapter 1

Overview of the Graphical Environment 11

Understanding servers and clients ... 11
Components of the Graphical Environment ... 12
Customizing the Graphical Environment 13
Graphical Environment configuration files .. 14

The .startxrc file .. 15
The .Xdefaults-hostname file ... 16
The pmwmrc and .mwmrc files .. 16
Desktop rule files .. 17

Guidelines for configuring the Graphical Environment 18
Looking at the Graphical Environment ... 19

Chapter 2

Configuring the Graphical Environment from
the Desktop 23

Using the Preferences Editor 24
Using the Preferences Editor dialog boxes 24
Preference categories ... 24
Using the Preferences Library ... 25

Changing how you start and exit the Graphical Environment 26
Changing colors with the Color control ... 27

Creating a new palette .. 28
Deleting a palette .. 28
Changing colors in a palette .. 28
Color buttons 29
Mixing colors 29

Table of contents v

Colors for grayscale monitors .. 30
Colors for DOS programs 30

Changing Desktop fonts ... 30
Changing the background pattern .. 31

Selecting the background pattern 32
Removing background patterns ... 32
Defining the bitmap/pixmap path ... 33

Changing mouse characteristics .. 33
Configuring the keyboard ... 35
Changing the system bell ... 35
Controlling access to your display ... 36
Changing desktop, directory, dialog box, and icon behavior 37

Main Desktop behavior options ... 38
Desktop window behavior options 38
Treeview desktop behavior options ... 39
Directory window behavior options .. 39
Dialog box behavior options .. 40
Icon behavior options .. 40

Configuring tools .. 41
Configuring devices .. 41

Chapter 3

Customizing startup of the Graphical
Environment 43

Starting a Graphical Environment session .. 43
Running scologin ... ~ 44
Running the startx script 46
Using the session manager ... 48

Using environment variables .. '" 51
Customizing scologin ... 53

Using the scologin administration script 54
Configuring scologin on multiple displays , 54
About XDMCP X server options ... 55
Running scologin with XDMCP 56
Running scologin with the Xservers file 57

Using X terminals .. 60
Managing an X terminal display with scologin 61
Running a session on an X terminal without scologin 63

vi

Chapter 4

Running remote programs 65

Gaining access to the remote client ... 65
Setting up access permissions to your display 66

Granting access to specific hosts .. 67
Granting access to specific accounts .. 68

Running the remote client .. 73
Running clients with the DISPLAY environment variable 73
Running clients with the -display option ... 74

Example of running a remote client on your display 74

Chapter 5

Understanding resources 79

About resources .. 80
Syntax for resource specifications 81

Using classes and instances in resource specifications 83
Using delimiters in resource specifications 84
Specifying values in resource specifications 85
Precedence rules for resource specifications 87

Methods for specifying resources .. 87
Setting resources in the X server ... 90

Examining the contents of the resource database 91
Loading new values into the resource database 91
Saving new specifications in a resource file 92
Removing resource definitions from the resource database 93

Using command line options to configure clients 93
Window appearance options ... 95
Display specification option ... 95
Font specification option ... 96
Window size and location option ... 96
Client name option .. 97
Window title option .. 97
Resource specifications on the command line 97

Guidelines for managing resources ... 98

Table of contents vii

Chapter 6

Changing colors 99

About colors .. 100
The color database ... 100
The RGB and HSV color models 101
The scocolor client .. 103
Colormaps .. 107

Changing colors for the entire system ... 109
Changing colors in an existing palette 109
Creating a new system-wide palette .. 111

Changing colors for individual users ... 112
Setting colors from the command line ... 116

The -xrm option 117
The -bg and -fg options ... 118

Adding custom colors to the database .. 118
Examples of changing colors .,. 121

Example 1: Using custom colors in default palettes 121
Example 2: Customizing colors with resources 123

Chapter 7

Changing fonts 125

About fonts .. 126
Font names ... 127
Using wildcards ... 128
Font aliases .. 129
The font server ... 130

Using the font server ... 130
Running the font server from the command line 131
Using the font server from scologin 131
Using the font server from startx ... 132
Running the font server from system startup files 132

Configuring the font server ... 133
Configuring available fonts 133
Configuring default font size and resolutions 134
Choosing a font server host .. 134
Changing font server TCP ports ... 135

viii

Configuring font server connection limits 136
Using the font server and local fonts ... 136
Using alternate font server configuration files 137

Listing available fonts on your system .. 138
Listing X server fonts with xlsfonts 138
Listing font server fonts with fslsfonts 139

Previewing a specific font ... 141
Specifying fonts .. 143

Specifying fonts for the entire system 143
Specifying fonts for individual users ; 146
Setting fonts from the command line 149

Creating a font alias .. 151
Adding a font to your system ... 152
Example of setting fonts ... 156

Chapter 8

Configuring window size and location 159

About window geometry ... 159
Desktop geometry 160

Configuring window geometry .. 160
Specifying geometry for the entire system 161
Specifying geometry for individual users 164
Specifying geometry from the command line 168

Resizing the Desktop .. 169
Example of specifying window geometry ... 170

Chapter 9

Changing cursor appearance 173

About cursor appearance .. 174
Desktop cursor appearance .. 174
scoterm cursor fonts ... 176
Root window cursor appearance 178

Changing the Desktop cursor ... 178
Specifying Desktop cursors for the entire system 179
Specifying Desktop cursors for individual users 182

Table of contents ix

Changing the scoterm cursor ... 186
Specifying scoterm cursors for the entire system 187
Specifying scoterm cursors for individual users 188
Setting scoterm cursors from the command line 190

Example of changing cursor appearance ... 192
Example 1: Changing Desktop cursor appearance 192
Example 2: Changing scoterm cursor appearance 194

Chapter 10

Configuring mouse behavior 195

Emulating a three-button mouse 196
Switching to a left-handed mouse .. 196
Configuring mouse acceleration ... 198
Specifying the mouse double-click duration 201

Defining the double-click duration with scomouse 202
Defining the double-click duration for the Desktop 202
Defining the double-click duration for the window manager 204

Example of configuring your mouse .. 206

Chapter 11

Configuring the keyboard for the server 209

About the server keyboard .. 209
Changing the modifier map 211
Changing the keymap table .. 213
Example of configuring the keyboard 216

Chapter 12

Customizing the window manager 219

Selecting between seo Panner and OSF/Motif modes 220
Creating a personal window manager configuration file 221
Examining the window manager configuration file 222
Using window manager functions .. 223

Function descriptions 223
Function constraints 230

x

Chapter 13

Customizing window manager menus 235

About window manager menus 235
Adding or modifying window manager menus 237
Changing the menu associated with the window menu button 245
Example of creating a window manager submenu 249

Chapter 14

Configuring window manager button bindings 253

Default button bindings .. 254
About window manager functions 256

Configuring button bindings ... 257
Creating a new button binding set .. 263
Example of creating a new button set .. 267

Chapter 15

Configuring window manager key bindings 269

Default key bindings ... 270
About mnemonics and accelerators .. 272
About window manager functions 272

Configuring key bindings .. 273
Creating a new key binding set .. 278
Example of configuring key bindings ... 282

Chapter 16

Customizing the Desktop with rules 285

Rule clauses .. 286
Defining the scope of rules ... 286

Specifying scope implicitly . ". 287
Specifying the scope explicitly ... 289

Effect of rules in different rule files ... 292
Rule file precedence .. 295
Structure of rule files .. 295

Table of contents xi

Processing filenames in rules .. 298
Referring to file and directory names ... 298
Canonical form .. 299
Filename processing commands ... 299
Specifying actions ... 299

Chapter 17

Using Desktop modules 301

Auto modules 302
Loop modules 302
Text displayed by modules ... 303

Chapter 18

Defining Desktop user types 305

Creating a new user type .. 306
Determining a user type .. 306

Chapter 19

Defining Desktop triggers 309

About triggers ... 310
Types of trigger ... 310

Static triggers .. 311
Dynamic triggers 311
Hold triggers 312
Icons and windows 312

Variables .. 313
Click or hold 313
Drag ... 314
Menu selection .. 314

xii

Chapter 20

Creating objects for the Desktop 315

Creating an object using the Object Builder 316
Changing an action definition .. 318
Opening an existing object 318
Installing action definitions 319
Installing a picture 320
Installing an executable ... 321
Saving an object 321
Opening a new object ... 322

Creating an object manually ... 322

Chapter 21

Configuring icons 327

Defining the appearance of icons ... 327
Defining rules for icons 328
Defining a picture for icons 329
Defining a title for icons 330

Defining the behavior of icons .. 330
Writing trigger rules ... 331

Chapter 22

Configuring Desktop windows 333

Defining the behavior of desktop windows .. 333
Defining the appearance of desktop windows 334
Example 334

Chapter 23

Configuring directory windows 337

Defining the behavior of directory windows 337
Example ... 338

Table of contents xiii

Chapter 24

Configuring Desktop menus 341

Defining menus ... 342
Menu clauses and commands ... 343
Mnemonics and accelerator keys .. 344
Pull-down menus .. 345
Pop-up menus 346
Disabling menu commands ... 347
Removing menus .. 348

Chapter 25

Writing Deskshell commands 349

Deskshell syntax ... 350
Quoting strings .. 350
Comments .. 351
Wildcards .. 351
Using variables ... 352
Variable substitutions .. 352
Subsets .. 353
Function arguments .. 353
Initialization ... 354

Operators ... 354
Assignment ... 355
Redirections .. 355
Command substitution .. 356
List substitution ... 356
Concatenation ... 357
Command terminators .. 357
Pipelines ... 358
List mark ... 358
Conditionals .. 359

Control constructs .. 360
Function definitions .. 360

Status ... 361
How Deskshell commands are executed 361

Threads .. 362
The state of threads .. 362
Local variables .. 363

xiv

Global variables 364
Variable overriding .. 364
How environments are inherited .. 365
System th read 365
Window threads .. 366
Background threads .. 366
Pipelines ... 367
Executing actions within the same thread 367
Signals .. 368
Standard signals ... 369

Chapter 26

Mapping mouse triggers for the Desktop 371

Modifying the mouse trigger mappings ... 372

Appendix A

OSF/Motif window manager resources 377

Resources for configuring window focus policies 379
Resource for specifying window manager fonts 382
Resources for coloring windows, icons, menus, and mattes 383
Resources for shading windows, icons, menus, and mattes 386
Resources for window decorations 389
Resources for controlling window size and position 391
Resources for configuring window manager icons 395
Resources for configuring the icon box .. 397
Other resources for controlling windows .. 399

Appendix B

Desktop resources 403

Resources for changing default rule files and directories 403
Resource for specifying Desktop fonts 404
Resources for specifying Desktop colors 405
Resources for specifying cursor appearance 407

Table of contents xv

Resources for configuring icon labels 408
Resources for controlling Desktop appearance and behavior 409
Resources for controlling directory appearance and behavior 411
Resources for defining message box appearance ,. 413
Resources for controlling Desktop mouse behavior .. , 413
Resources for mapping mouse triggers ... 414

AppendixC

Oeskshell command summary 415

Index .. 419

xvi

About this book

This book provides the information you need to customize and administer
sea OpenServer™ Graphical Environment sessions. It includes information
on configuring the X Window System ™ server, the sea® Panner™ window
manager, the Desktop, and other X clients.

You will find the information you need more quickly if you are familiar with:

• "How this book is organized" (this page)

• "Related documentation" (page 5)

• "Typographical conventions" (page 8)

Although we try to present information in the most useful way, you are the
ultimate judge of how well we succeed. Please let us know how we can
improve this book (page 9).

How this book is organized

This section describes the chapters presented in this book, as well as informa
tion on how the chapters are structured.

This book contains the following chapters:

• Chapter 1, "Overview of the Graphical Environment" (page 11) presents an
introduction to software that composes the sea OpenServer Graphical
Environment and how you can customize it. It also provides an overview
of many of the files you will use to configure the Graphical Environment.

• Chapter 2, "Configuring the Graphical Environment from the Desktop"
(page 23) discusses the various aspects of the Graphical Environment you
can configure directly from the Desktop, including colors, fonts, and win
dow background patterns.

1

About this book

2

• Chapter 3, #Customizing startup of the Graphical Environment" (page 43)
explains how to use scologin, the startx script, and scosession to manage
your X server sessions. It also includes instructions for configuring scoIog
in to manage multiple displays, including X terminals, and information on
how to start a Graphical Environment session on an X terminal.

• Chapter 4, #Running remote programs" (page 65) explains how to run
remote clients during an Graphical Environment session. This chapter
includes information on X security issues related to remote clients access
ing your display.

• Chapter 5, ''Understanding resources" (page 79) provides an overview of
some basic concepts in customizing the appearance and behavior of clients,
including how to define resource specifications and how to use the
resource database. This chapter is a useful reference for other chapters in
this guide that discuss the specifics of setting different types of resources.

• Chapter 6, #Changing colors" (page 99) discusses how to change the colors
using resources and how to use the scocolor client for administrative pur
poses.

• Chapter 7, #Changing fonts" (page 125) discusses how to specify the fonts
that are used during Graphical Environment sessions, including how to set
font resources and how to define font aliases.

• Chapter 8, #Configuring window size and location" (page 159) covers how
to specify a window's geometry, including the size and location of the
Desktop if you choose not to use it as your Root window.

• Chapter 9, #Changing cursor appearance" (page 173) explains how to
change the cursor appearance on the Desktop, in scoterm windows, and on
the Root window.

• Chapter 10, #Configuring mouse behavior" (page 195) describes how to
modify the functionality of your mouse so it accommodates left- or right
handed use. This chapter also discusses modifying the rate of speed at
which the mouse cursor moves on your screen and the time allowed
between clicks when a user performs a double-click operation.

• Chapter 11, #Configuring the keyboard for the server" (page 209) provides
information on how to configure the X server to accommodate different
keyboards and how to modify the keyboard layout to suit personal tastes.

• Chapter 12, #Customizing the window manager" (page 219) provides an
overview of the window manager configuration file, including a list of the
window manager functions that you can specify in this file, and describes
how to switch the sea Panner window manager from the default pmwm
mode to mwm. This chapter is useful as a reference when using the follow
ing chapters that cover specific aspects of window manager configuration.

Graphical Environment Guide

How this book is organized

• Chapter 13, "Customizing window manager menus" (page 235) explains
how to create and modify window manager menus, including the Window
and Root menus.

• Chapter 14, "Configuring window manager button bindings" (page 253)
describes how to customize the results of pressing various mouse button
combinations in different contexts.

• Chapter 15, "Configuring window manager key bindings" (page 269)
describes how to customize the results of pressing a key or sequence of
keys in various contexts.

• Chapter 16, "Customizing the Desktop with rules" (page 285) provides an
overview of the rules and rule files that control the behavior of the Desk
top.

• Chapter 17, "Using Desktop modules" (page 301) describes how to custom
ize the Desktop for all users without having to edit the system rule file.

• Chapter 18, "Defining Desktop user types" (page 305) describes how to cus
tomize the Desktop for groups of users.

• Chapter 19, "Defining Desktop triggers" (page 309) describes how to per
form an action specific to a particular icon or window.

• Chapter 20, "Creating objects for the Desktop" (page 315) explains how to
create objects for accessing applications from the Desktop, either using the
object builder (objbld) or manually. On the surface, objects are impossible
to distinguish from Desktop icons, but the actions performed by an object
are implemented differently than they are for icons.

• Chapter 21, "Configuring icons" (page 327) describes how to configure the
actions and appearance of Desktop icons, using icon rules.

• Chapter 22, "Configuring Desktop windows" (page 333) describes how to
configure the appearance and behavior of the main Desktop and other
desktop windows.

• Chapter 23, "Configuring directory windows" (page 337) describes how to
configure the characteristics of directory windows, including the results of
dropping an icon in a directory window.

• Chapter 24, "Configuring Desktop menus" (page 341) describes how to cre
ate and modify desktop and directory menus.

• Chapter 25, "Writing Deskshell commands" (page 349) describes the Desk
shell script language, including the conventions and syntax for coding the
scripts. These scripts are used in the various rule files and object scripts.

• Chapter 26, "Mapping mouse triggers for the Desktop" (page 371) describes
how to configure the actions that result when mouse actions such as click
ing and dragging are performed on the Desktop.

3

About this book

• Appendix A, "OSF /Motif window manager resources" (page 377) provides
a list and description of the resources you can use to configure the window
manager.

• Appendix B, "Desktop resources" (page 403) provides a list and description
of the resources you can use to configure the Desktop.

• Appendix C, "Deskshell command summary" (page 415) provides an
alphabetical list of all Deskshell commands.

How to use the chapters in this book

4

Most of the chapters in this book describe how to perform a general task, such
as changing colors, or creating new window manager menus. Other chapters
are more reference-oriented, providing overviews of how to use major config
uration components of the Graphical Environment, such as· X resources and
Desktop rules.

In general, the task-oriented chapters consist of several sections:

• Background information, such as important concepts and terms, is
presented first.

• The next sections cover the procedures that relate to performing the task
covered by the chapter. (In many cases, not all of the procedures covered
in a chapter are necessary to perform a task.) For example, the chapter that
covers the task of changing fonts includes several related procedures,
including how to preview available fonts on your system, how to create
font aliases, and how to implement a font resource specification for a client.

The procedure sections are designed to accommodate both new and experi
enced users. Each procedure begins with a list of steps that provides the
essential information for completing the procedure. Following the list of
steps are several subsections, one for each step required by the procedure.
These subsections provide details on performing the steps, including expla
nations of command or file syntax. If you are unclear about the goal or
desired outcome of performing a particular step, refer to that step's subsec
tion for more information.

• Finally, most chapters provide an example section. These examples
describe realistic scenarios and tie together many of the concepts and pro
cedures described throughout the chapter.

It is not intended that you read this manual sequentially. However, it is
recommended that you familiarize yourself with the following reference
chapters before attempting to configure the Graphical Environment: Chapter
1, "Overview of the Graphical Environment" (page 11); Chapter 5, "Under
standing resources" (page 79); Chapter 16, "Customizing the Desktop with
rules" (page 285); and Chapter 12, "Customizing the window manager" (page
219). You can use the task-oriented chapters on an as-needed basis.

Graphical Environment Guide

Related documentation

Related documentation

sca OpenServer systems include comprehensive documentation. Depending
on which sca OpenServer system you have, the following books are available
in online and/or printed form. Access online books by double-clicking on the
Desktop Help icon. Additional printed versions of the books are also avail
able. The Desktop and most sca OpenServer programs and utilities are
linked to extensive context-sensitive help, which in tum is linked to relevant
sections in the online versions of the following books. See "Getting help" in
the seQ Open Server Handbook.

NOTE When you upgrade or supplement your sca OpenServer software,
you might also install online documentation that is more current than the
printed books that came with the original system. For the most up-to-date
information, check the online documentation.

Release Notes
contain important late-breaking information about installation, hardware
requirements, and known limitations. The Release Notes also highlight the
new features added for this release.

seQ OpenServer Handbook
provides the information needed to get your sea OpenServer system up
and running, including installation and configuration instructions, and
introductions to the Desktop, online documentation, system administra
tion, and troubleshooting.

Graphical Environment help
provides online context-sensitive help for Calendar, Edit, the Desktop,
Help, Mail, Paint, the sca Panner window manager, and the UNIX®
command-line window.

Graphical Environment Reference
contains the manual pages for the X server (section X), the Desktop, and
X clients from sea and MIT (section XC).

Guide to Gateways for LAN Servers
describes how to set up sca® Gateway for NetWare® and LAN Manager
Client software on an sca OpenServer system to access printers, file
systems, and other services provided by servers running Novell®
NetWare® and by servers running LAN Manager over DOS, as/2®, or
UNIX systems. This book contains the manual pages for LAN Manager
Client commands (section LMC).

Mail and Messaging Guide
describes how to configure and administer your mail system. Topics
include sendmail, MMDF, sea Shell Mail, mailx, and the Post Office
Protocol (POP) server.

5

About this book

6

Networking Guide
provides information on configuring and administering TCP/IP, NFS®,
and IPX/SPXTM software to provide networked and distributed
functionality, including system and network management, applications
support, and file, name, and time services.

Networking Reference
contains the command, file, protocol, and utility manual pages for the
IPX/SPX (section PADM), NFS (sections NADM, NC, and NF), and TCP/IP
(sections ADMN, ADMP, SFF, and TC) networking software.

Operating System Administrator's Reference
contains the manual pages for system administration commands and
utilities (section ADM), system file formats (section F), hardware-specific
information (section HW), miscellaneous commands (section M), and sca
Visual Tcl™ commands (section TCL).

Operating System Tutorial
provides a basic introduction to the sca OpenServer operating system.
This book can also be used as a refresher course or a quick-reference
guide. Each chapter is a self-contained lesson designed to give hands-on
experience using the sca OpenServer operating system.

Operating System User's Guide
provides an introduction to sca OpenServer command-line utilities, the
sea Shell utilities, working with files and directories, editing files with
the vi editor, transferring files to disks and tape, using Das disks and files
in the sca OpenServer environment, managing processes, shell program
ming, regular expressions, awk, and sed.

Operating System User's Reference
contains the manual pages for user-accessible operating system com
mands and utilities (section C).

PC-Interface Guide
describes how to set up PC-Interface™ software on an sea OpenServer
system to provide print, file, and terminal emulation services to comput
ers running PC-Interface client software under Das or Microsoft® Win
dows™.

Performance Guide
describes performance tuning for uniprocessor, multiprocessor, and net
worked systems, including those with TCP /IP, NFS, and X clients. This
book discusses how the various subsystems function, possible per
formance constraints due to hardware limitations, and optimizing system
configuration for various uses. Concepts and strategies are illustrated
with case studies.

Graphical Environment Guide

Related documentation

sea Merge Users Guide
describes how to use and configure an sca® Merge™ system. Topics
include installing Windows, installing Das and Windows applications,
using Das with the sea OpenServer operating system, configuring hard
ware and software resources, and using sea Merge in an international
environment.

sea Wabi User's Guide
describes how to use sea® WabFM software to run Windows 3.1 applica
tions on the sea OpenServer operating system. Topics include installing
the sea Wabi software, setting up drives, configuring ports, managing
printing operations, and installing and running applications.

System Administration Guide
describes configuration and maintenance of the base operating system,
including account, filesystem, printer, backup, security, uuep, and
virtual disk management.

The sea OpenServer Development System includes extensive documentation
of application development issues and tools.

Many other useful publications about sea systems by independent authors
are available from technical bookstores.

For further reading

It is beyond the scope of this book to explain all the details of the industry
standard X Window System and aSF /Motif® window manager software. A
number of fine books and articles are available commercially for customers
who need more information.

The standard source of information about the X Window System is the X Win
dow System set published by O'Reilly & Associates, Inc. The information in
this book is particularly related to Volume 3 of the O'Reilly set (X Window Sys
tem User's Guide, aSF /Motif Edition).

7

About this book

Typographical conventions

8

This publication presents commands, filenames, keystrokes, and other special
elements as shown here:

Example:

lp or Ip(C)

/new/client.list

root

filename

(Esc)

Exit program?

yes or yes

"Description"

Cancel

Edit

Copy

File ¢ Find ¢ Text

open or open(S)

SHOME

SIGHUP

"adm3a"

employees

orders

buf

Used for:

commands, device drivers, programs, and utilities (names,
icons, or windows); the letter in parentheses indicates the
reference manual section in which the command, driver, pro
gram, or utility is documented

files, directories, and desktops (names, icons, or windows)

system, network, or user names

placeholders (replace with appropriate name or value)

keyboard keys

system output (prompts, messages)

user input

field names or column headings (on screen or in database)

button names

menu names

menu items

sequences of menus and menu items

library routines, system calls, kernel functions, C keywords;
the letter in parentheses indicates the reference manual section
in which the file is documented

environment or shell variables

named constants or signals

data values

database names

database tables

C program structures

structure members

Graphical Environment Guide

How can we improve this book?

How can we improve this book?

What did you find particularly helpful in this book? Are there mistakes in this
book? Could it be organized more usefully? Did we leave out information you
need or include unnecessary material? H so, please tell us.

To help us implement your suggestions, include relevant details, such as book
title, section name, page number, and system component. We would appreci
ate information on how to contact you in case we need additional explana
tion.

To contact us, use the card at the back of the sea Open Server Handbook or
write to us at:

Technical Publications
Attn: eFT
The Santa Cruz Operation, Inc.
PO Box 1900
Santa Cruz, California 95061-9969
USA

or e-mail us at:

techpubs@sco.com or ... uunet!sco!techpubs

Thank you.

9

About this book

10 Graphical Environment Guide

Chapter 1

Overview Of the Graphical Environment

This chapter provides an introduction to the various components that work
together to create the sea OpenServer™ Graphical Environment. An over
view of this nature is important in understanding how to administer and cus
tomize the various aspects of the Graphical Environment.

Understanding servers and clients

Before you begin administering and customizing the Graphical Environment,
you should familiarize yourself with the concepts of X servers and X clients.

The /IX server" is the software that controls a workstation's or X terminal's
hardware, such as its physical display, the keyboard, and mouse or other
pointer device. It relays messages between X clients and the hardware on
which the clients run. When you use the mouse, keyboard, or a drawing pad
to interact with a client, the client decides how to respond to the input (for
example, redraw a window, open a menu, and so forth). The client then sends
a message to the server, asking for the appropriate action to take place. In
response, the server interacts with the system's graphics adapter, whereby the
appropriate output is displayed on your screen.

It is the server that actually creates windows and draws images and text in
them, in response to requests from client programs. The X server does not ini
tiate actions itself; it only performs actions that are requested by client pro
cesses.

The sea OpenServer Graphical Environment uses the industry-standard X
Window System ™ server.

11

Overview of the Graphical Environment

An LlX client" is a program or application that is written specifically for the X
Window System, using X programming tools. These programs are called
clients because they act as customers of the X server, asking the server to per
form particular actions on their behalf. Clients cannot affect a window or dis
play directly; they can only send a request to the X server to do what they
require.

Two major clients of the Graphical Environment are the SCO® Panner™ win
dow manager (an enhanced version of the QSF/Motif® window manager)
and the Desktop.

The Graphical Environment uses the client-server architecture because it
allows each client to be hardware-independent. This way, clients are more
easily ported to different hardware and operating system platforms, and users
can access clients that reside on other machines.

Components of the Graphical Environment

12

The Graphical Environment is created through the combination of several
different software components. It is important to understand the relationship
between these components before you begin configuring your environment.

The Graphical Environment is comprised of the following components:

• MIT's X Window System, an industry-standard software system that pro
vides the X server for the seQ OpenServer Graphical Environment

• the seQ Panner window manager, an enhanced version of the QSF /Motif
window manager, a client that determines the Lllook and feel" of the win
dows. The window manager (pmwm) mediates communication between
the X server and other X clients, managing running programs, and control
ling the location and appearance of client windows (particularly window
borders), the contents of window menus, and the actions of mouse and key
clicks in relationship to the windows.

• the Desktop, a client that provides a graphical interface for running utilities
and applications, moving through directories, and manipulating icons. The
Desktop (xdt3) controls the appearance of desktop icons and directories,
the contents of desktop and directory menus, and the effects of mouse
clicks and drags on desktop icons, directories, and menus.

• SeD-provided X clients, such as seomail, seoealendar, scoeolor, and
seoterm, that allow you to perform many user and administrative tasks
graphically

• additional, industry-standard X clients, such as xc1ock, xIs fonts, and xmod
map, that provide many other user and administrative functions

Graphical Environment Guide

Customizing the Graphical Environment

When configuring or customizing the system, the parts of the Graphical
Environment with which you need to be concerned can be combined into the
following categories: X server characteristics, X client characteristics, window
manager characteristics, and Desktop characteristics.

See also:

• "Customizing the Graphical Environment" (this page)

Customizing the Graphical Environment

Customizing the Graphical Environment requires that you modify the
behavior of one or more of the X clients that work together to create the
environment you see when you run the system. As a user, you probably think
of the Graphical Environment as a single program, but to customize the
environment you must remember that the Graphical Environment is
comprised of several different programs, each of which control different
aspects of the Graphical Environment's functionality.

The following three major components of the Graphical Environment can be
customized:

• X resources:
These resources are data that define appearance and behavior of X clients.
These data include definitions for window size, window color, fonts, and
so forth. X resources are specified on a client basis, although they can be
defined to apply to all clients.

Because the window manager client manages every client window that
runs under the graphical environment, it has an especially large number of
resources that you can specify. The Desktop client also has a large number
of resources that you can configure.

• seQ Panner window manager characteristics:
In addition to the window manager resources mentioned above, you can
customize characteristics such as menus and button actions on windows.

• Desktop characteristics:
In addition to the Desktop resources mentioned above, you can configure
Desktop-specific features such as icon behavior, menu content, and mouse
actions used on the Desktop. These characteristics are defined in "rule
files" that may apply to one directory, one user, or the entire system.

See also:

• "Graphical Environment configuration files" (page 14)

13

Overview of the Graphical Environment

Graphical Environment configuration files

14

The major components of the Graphical Environment have their own configu
ration files. These files can be modified to implement the customizations to
the Graphical Environment that you desire.

There are at least two versions of each of these configuration files on the sys
tem: one that resides in the user's $HOME directory and affects only that user,
and one that provides default specifications for the entire system. Table 1-1,
"Files used to customize the Graphical Environment" summarizes the config
uration files that are used by the Graphical Environment.

Table 1·1 Files used to customize the Graphical Environment

System file

X server:
/usr /lib /X11 / sys.startxrc

X resources for clients:
/usr /lib /X11 / app~defaults / client

/usr/lib/X11/sco/startup/client

Window manager:
/usr /lib /Xll/system.pmwmrc

/usr /lib /X11 /system.mwmrc

Desktop:
/usr /lib /X11 /IXI/XDesktop /rules /system/xdtsysinfo

/usr/lib/X11/IXI/XDesktop/rules/modules/module

/usr/lib/X11/IXl/XDesktop/rules/SCO.user/Main.dt

/usr/lib/Xll/IXl/XDesktop/rules/SCO.user/ICTI'.prf

/usr /lib /X11/IXI/XDesktop /rules/SCO. user /Rule.dr
directory /.xdtdir / ICIT

Note the following:

User file

SHOME/ .startxrc

SHOME/ .Xdefaults~hostname

SHOME/ client

$HOME/ .pmwmrc

SHOME/.mwmrc

SHOME/ .xdtuserinfo

$HOME/ .xdCdir /modules/module

SHOME/Main.dt

SHOME/ .xdCdir linstalled.prf

$HOME/ directory /.xdtdir liCIT

• client is the class name of the X client to which the resource specifications
in the file apply

• hostname is the name of the system on which the client is running

• module is the name of the module file, and can include "autd' modules,
with the .auto suffix, and "loop" modules, prefixed with Loop_

Graphical Environment Guide

Graphical Environment con figuration files

• "_IT represents language and locale, where II is a two-character code for
the language (as defined by the ISO 639 standard) and ITis a two-character
code for the territory (as defined by the ISO 3166 standard). By default,
"en_US" is used.

• directory is the name of the directory in which the rule file exists.

• the desktop defines the $XDTHOME environment variable to be
/usr/lib/Xll/lXI/XDesktop and the $XDTUSERHOME environment variable
to be $HOME/.xdt_dir. You can use these variables to aid in locating the
desktop files listed in this table.

See also:

• liThe .startxrc file" (this page)

• liThe .xdefaults-hostname file" (page 16)

• "The pmwmrc and .mwmrc files" (page 16)

• "Desktop rule files" (page 17)

The .startxrc file

The startx runtime configuration file specifies the clients that the X server
should automatically run when a Graphical Environment session is started.

The system-wide version of this file is named sys.startxrc and is located in
/usr/lib/Xll. The user's version of this file is $HOME/.startxrc.

The .startxrc file is not placed in a user's home directory by default. If you
want your own personal copy of this file, copy it from the system-wide file
and rename it appropriately.

Because the Graphical Environment uses the scosession client to manage all
user sessions, scosession is the only client that is invoked by the default sys
tem sys.startxrc file. See Chapter 3, "Customizing startup of the Graphical
Environment" (page 43), for more information on this configuration file.

NOTE It is strongly recommended that you use the scosession client to con
figure the clients you want to run during a Graphical Environment session,
instead of modifying the .startxrc file. The scosession client is responsible
for starting all of the X daemon processes. For more information, see
Chapter 3, "Customizing startup of the Graphical Environment" (page 43).

15

Overview of the Graphical Environment

The .Xdefaults-hostname file

The .Xdefaults-hostname file, located in $HOME, defines resource specifica
tions for clients invoked by an individual user. hostname refers to the name of
the machine on which the clients are running.

If you run clients on multiple hosts, you need to create an .Xdefaults-hostname
file on each host.

The $HOME/.Xdefaults-hostname file is not created by default. If you want to
specify your own individual resources, you must first create this file.

The .Xdefaults-hostname file overrides default resource specifications that are
defined in client-specific resource files, located in /usr/lib/Xl1/app-defaults.
These files take the name client, where the client's class name is used. For
example, the ScoHelp file contains resource specifications for the scohel p
client, and the ScoTerm file contains resource specifications for the scoterm
client.

Finally, individual users can create client-specific resource files that only con
trol the clients they run without affecting other users on the system. As in the
/usr/lib/Xll/app-defaults directory, these files use a client's class name as their
filename; however, they are located in the user's home directory.

For example, if you want to define several unique Desktop resources and
store them in your own personal client-specific resource file, you would name
the file $HOME/XDesktop3.

See also:

• See Chapter 5, "Understanding resources" (page 79) for more information on the
.Xdefaults-hostname file, client-specific resource files, and specifying resources

The pmwmrc and .mwmrc files

16

The contents and functionality of window manager menus (including the
Window menu and the Root window), the behavior of the window manager
when you press a mouse button with the pointer focused in a window or
somewhere on a window border, and the keyboard keys that act as "accelera
tor keys" and what happens when you press an accelerator key are all defined
in the window manager configuration file.

The name of the window manager configuration file depends on the mode of
the sca Panner window manager that you are using: the default pmwm
mode, which provides the enhanced functionality of the panner, or mwm
mode, which provides standard aSF /Motif functionality.

Graphical Environment Guide

Graphical Environment con figuration files

The system-wide version of the configuration file is
/usr/lib/Xll/system.pmwmrc (for pmwm mode) and /usr/lib/Xll/system.mwmrc
(for mwm mode). The user's version of this file is $HOME/.pmwmrc or
$HOME/.mwmrc.

The local configuration file is not placed in a user's home directory by default.
If you want your own personal copy of this file, copy it from the system-wide
file and rename it appropriately.

NOTE If a window manager configuration file exists in a user's home direc
tory, it completely replaces the system file; the window manager never
reads the system file after it locates a local configuration file. Make sure you
copy the entire system file to your home directory, or you will lose critical
window manager functionality.

See also:

• Chapter 12, "Customizing the window manager" (page 219)

Desktop rule files

Rule files (including modules and user types) define characteristics of the
Desktop beyond those defined with resource specifications. Depending on its
location, a rule file may apply to files in a specific directory, to operations
done by an individual user, or to any operation on the system that is not
defined elsewhere.

Rather than create one rule file that is always in effect, a user can create
separate rule files for different environments. For instance, a user might want
to define one environment for programming, another for text-editing sessions,
and yet another for administrative tasks such as reading mail and scheduling
the calendar. Another user might want one environment for sending invoices,
one for recording receipts, and another for generating summary reports. Each
environment could display different data and executable files, use different
icons for the files, include different desktop and directory menus, or define
different actions for double-clicking or dragging a mouse button.

See also:

• Chapter 16, "Customizing the Desktop with rules" (page 285)

• Chapter 17, "Using Desktop modules" (page 301)

• Chapter 18, "Defining Desktop user types" (page 305)

17

Overview of the Graphical Environment

Guidelines for configuring the Graphical Environment

18

You should observe the following guidelines whenever you modify the
Graphical Environment configuration:

• It is recommended that you first copy the original version of a configura
tion file to another name (for example, .pmwmrc.old). This gives you an
easily accessible backup copy that can be restored if you make a serious
error or decide you want to return to the default configuration.

• Superuser (root) privileges are necessary to modify system configuration
files. Users, however, can modify their personal configuration files that are
located in their home directories.

• All Graphical Environment configuration files provide at least one version
of the file that can be customized by users and another version of the file
that defines the defaults for the system.

• It is a matter of local policy whether the administrator modifies users' con
figuration files or whether users are responsible for maintaining their own
files. H the administrator is responsible for maintaining many users' files
and wants to keep them all identical, it may be useful to link files with the
standard UNIX® system In(C) command. Linking configuration files
allows the administrator to edit one file and effectively change the contents
of several users' files. If you link configuration files, change the permis
sions so that users cannot edit them. However, if individual users are cus
tomizing their own environments, configuration files should not be linked.

• The names that are used for the various configuration files can be changed
through resources, specified in an .Xdefaults-hostname file. This guide
refers to the default pathnames and filenames for these files. It is recom
mended that you do not change these names.

Graphical Environment Guide

Looking at the Graphical Environment

Looking at the Graphical Environment

To clarify which configuration files you should use to customize the various
aspects of the Graphical Environment, it is useful to look at an active Graphi
cal Environment session. Figure 1-1, "Configurable Graphical Environment
characteristics - View 1" (this page) and Figure 1-2, "Configurable Graphical
Environment characteristics - View 2" (page 21) show possible screen dis
plays, with annotations that discuss each characteristic and how it is custom
ized.

1. Desktop layout 3. Icon titles

7. Action when you drag an icon
into a directory window

5. Action when you drag
one icon onto another

6. Menu bar and

8. Icons defined by an icon rule

Figure 1-1 Configurable Graphical Environment characteristics - View 1

19

Overview of the Graphical Environment

20

Figure 1-1, ILConfigurable Graphical Environment characteristics - View 1"
(page 19) illustrates a number of configurable characteristics, most of which
are controlled by the Desktop's various rules.

• The desktop_layout section of a rule file designates the icons that are dis
played on the Desktop and the order in which they are displayed (#1). The
locked_on_desktop section of a rule file specifies icons that cannot be
removed from the Desktop, such as the icon for your home directory. See
Chapter 16, "Customizing the Desktop with rules" (page 285) and Chapter
22, ILConfiguring Desktop windows" (page 333) for more information.

• Objects (#2) determine the pictures that are used for object icons (#4), the
label displayed for the icon (#3), the action when you click or double-click
on an icon, and the action when you drag one icon onto another (#5). See
Chapter 20, "Creating objects for the Desktop" (page 315) for more informa
tion.

Files and directories on your system are represented through icons that are
created with icon_rules (#8). Like objects, the icon_rules section of a rule
file determines an icon's picture, title, and behavior. See Chapter 21,
ILConfiguring icons" (page 327) for more information.

• You can also use icon_rules in rule files to define the action when you drag
an icon into a directory window (#7). See Chapter 23, ILConfiguring direc
tory windows" (page 337) for more information.

• The menu section of a rule file defines the contents of desktop and direc
tory menu bars and the contents of the menus on these menu bars (#6).
Note that window manager menus are defined in the window manager
configuration file rather than in rule files; see Figure 1-2, "Configurable
Graphical Environment characteristics - View 2" (page 21). See Chapter 24,
"Configuring Desktop menus" (page 341) for more information.

Graphical Environment Guide

Looking at the Graphical Environment

1. Client-specific fonts 3. Window foreground

2. Window background 4. Active window frame

5. Desktop icon fonts 6. Menu contents 7. Motif icons

Figure 1·2 Configurable Graphical Environment characteristics· View 2

21

Overview of the Graphical Environment

22

Figure 1-2, "Configurable Graphical Environment characteristics - View 2"
(page 21) illustrates configurable characteristics that are controlled by the
window manager or by X resources.

• The color of active window frames (#4), and of window foregrounds (#3)
and window backgrounds (#2) are controlled by X resources, specified in
system-wide resource files or in local .Xdefaults-hostname files. See
Chapter 6, "Changing colors" (page 99) for more information.

• The font used for display text for clients is also controlled by X resources
(#1). See Chapter 7, "Changing fonts" (page 125), for more information.

• The font used to display icon titles is defined by a Desktop resource (#5).
See Appendix B, "Desktop resources" (page 403) for more information.

• The window manager configuration file defines the contents of window
manager menus (#6). Local window manager configuration files can over
ride these menus. Note that Desktop menus are defined in rule files rather
than in the window manager configuration file; see Figure 1-1,
"Configurable Graphical Environment characteristics - View 1" (page 19).
See Chapter 13, "Customizing window manager menus" (page 235) for
more information.

• When a client is iconified, the picture that is used for the client's window
manager icon is defined either by the client or by the window manager,
depending on X resource specifications you make (#7). See Appendix A,
"OSF /Motif window manager resources" (page 377) for more information.

• Keyboard actions and mouse actions are controlled by X resources and the
window manager configuration file. For more information, see: Chapter
14, "Configuring window manager button bindings" (page 253), Chapter
15, "Configuring window manager key bindings" (page 269), Chapter 11,
"Configuring the keyboard for the server" (page 209). and Chapter 26,
"Mapping mouse triggers for the Desktop" (page 371),

Graphical Environment Guide

Chapter 2

Configuring the Graphical Environment
from the Desktop

Many of the customizations that you may want to make to the Graphical
Environment can be done graphically, using various tools provided in the
Preferences Editor.

Specifically, this chapter describes:

• ''Using the Preferences Editor" (page 24)

• "Changing how you start and exit the Graphical Environment" (page 26)

• "Changing colors with the Color control" (page 27)

• IIChanging Desktop fonts" (page 30)

• IIChanging the background pattern" (page 31)

• IIChanging mouse characteristics" (page 33)

• IIConfiguring the keyboard" (page 35)

• "Changing the system bell" (page 35)

• IIControlling access to your display" (page 36)

• IIChanging desktop, directory, dialog box, and icon behavior" (page 37)

• IIConfiguring tools" (page 41)

• IIConfiguring devices" (page 41)

23

Configuring the Graphical Environment from the Desktop

Using the Preferences Editor

You can easily tailor the Graphical Environment to suit your needs using the
Preferences Editor. To run the Preferences Editor, double-click on the Prefer
ences Editor icon, located in the Controls window.

In the Preferences Editor window, double-click on the icon that corresponds
to the part of the Graphical Environment's appearance or behavior that you
want to configure.

I NOTE If you only want to change aspects of a particular desktop or direc
tory window, use the Options menu in that window's menu bar.

Some of the icons in the Preferences Editor window launch applications that
control various aspects of the Graphical Environment, while others display
dialog boxes from which you can make configuration selections.

See also:

• "Using the Preferences Editor dialog boxes" (this page)

• "Preference categories" (this page)

• "Using the Preferences Library" (page 25)

Using the Preferences Editor dialog boxes

There are several kinds of Preferences Editor dialog boxes, including:

• the Font Selector, for changing fonts in desktop and directory windows

• the Pattern Selector, for changing the background in desktop and directory
windows

• list boxes, which provide alternatives for preferences. Click the down
arrow to display the list of alternatives and select the option you want.

• text or number entry boxes, into which you can enter the value you want

Preference categories

24

You can configure the following aspects of the Graphical Environment with
the Preferences Editor:

• how you start and exit (page 26) the Graphical Environment

• the colors (page 27) used through the Graphical Environment

Graphical Environment Guide

Using the Preferences Editor

• the fonts (page 30) and background patterns (page 31) used for specific
desktop and directory windows, including the main Desktop and the Trash
and Treeview desktops, and for icons, dialog boxes, and pop-up menus

• mouse characteristics, (page 33) including the double-click rate, speed of
the pointer, and whether the mouse is used right- or left-handed

• the key click volume and auto repeat for your keyboard (page 35)

• the pitch and duration of your system bell (page 35)

• who has access to your display (page 36)

• Main Desktop behavior, (page 37) including how icons are displayed and
whether or not the Desktop occupies the entire background

• Treeview desktop behavior, (page 37) including the display depth and the
expand rate

• desktop window behavior, (page 37) including how icons are displayed
and whether or not changes are automatically saved upon exit

• directory window behavior, (page 37) including how files are sorted and
displayed, and whether or not existing windows are reused

• icon appearance and behavior, (page 37) including image size

• dialog box appearance and behavior, (page 37) including positioning on the
screen

• the applications that are associated with various tools, (page 41) such as
your default text editor, mail reader, and calendar

• the devices (page 41) that are associated with the icons in the Devices win
dow

Using the Preferences Ubrary

The preference settings of the default Graphical Environment configuration
are stored in a file called installed.prJ, located in the .xdCdir directory in your
home directory. This file is updated whenever you change your preferences.

If you want to store several different sets of preferences, you can use the
Preferences Library. Double-click on the Preferences Library icon in the Con
trols window. Select Archive Installed Preference As from the Preferences
Library File menu.

To use a particular set of preferences, you simply double-click on its icon in
the Preferences Library window.

25

Configuring the Graphical Environment from the Desktop

The following preference files are supplied in the Preferences Library, to give
you some examples of the various changes you can make to your environ
ment:

sea sea user preferences

Small_icons small icons are used

Large_icons large icons are used

Changing how you start and exit the Graphical
Environment

26

To change how you start and exit the Graphical Environment, double-click on
the Session icon in the Preferences Editor,located in the Controls window.

You can continue working with the Desktop layout and programs in the same
state as your last session by selecting:

Resume previous session

(This selection restores only the Desktop layout and running programs; it
does not reopen the direcory windows, desktop windows or Treeview win
dows that were open when you logged out.)

Or, you can start each session with the default Desktop appearance by select
ing:

Start a new session (my desktop)

To change the default appearance, first configure your Graphical Environment
as desired. For example, you may want to have multiple desktops open auto
matically each time you log in, with some clients iconified, and special pro
grams running. Then select:

Save current configuration

You also have the option of deciding each time you log in whether you want
to use the default Desktop or the Desktop as you left it by selecting:

Ask each time

H you want to avoid logging out accidentally, select:

Confirm that I want to log out

This selection means that when you select Exit from the Desktop File menu,
you will need to respond to a dialog box asking you to confirm your selection
before you can completely exit.

After you have made your Session selections, click on OK.

Graphical Environment Guide

Changing colors with the Color control

See also:

• scosession(Xc) manual page

• Chapter 3, "Customizing startup of the Graphical Environment" (page 43)

Changing colors with the Color control

The Color control lets you change the color scheme (palette) used in the
Graphical Environment. The colors in the selected palette are assigned to
window components, including backgrounds, foregrounds, text, and frame
shadows. Palettes can be selected from a list, created, edited, and deleted. The
colors that make up a palette can be selected from a list or mixed using one of
two color mixing models.

To run the Color control, double-click on the Color icon in the Preferences
Editor, located in the Control window.

I
NOTE The Color control requires a display that supports at least 16 colors
or grayscales. If you try to run Color on a monochrome system, you see an
error message.

To select one of the provided palettes, select it from the list. If you like the
new color scheme, click on OK.

To exit Color without making any changes, click on Cancel. You are asked to
verify that you really want to discard your changes.

See also:

• "Creating a new palette" (page 28)

• "Changing colors in a palette" (page 28)

• "Deleting a palette" (page 28)

• "Colors for DOS programs" (page 30)

• "Colors for grayscale monitors" (page 30)

See Chapter 6, "Changing colors" (page 99) and the scocolor(XC) manual page
for information on how programs in the Graphical Environment support
palettes, on making color changes on a client-by-client basis, and on setting
colors from the UNIX command line.

27

Configuring the Graphical Environment from the Desktop

Creating a new palette

In the Color window, click on Add palette. You are asked to name the new
palette. (If the name field is not highlighted, click on it before typing.)

The new palette inherits the colors of the current palette. Change the colors in
your new palette as desired.

See also:

• "Changing colors in a palette" (this page)

• "Deleting a palette" (this page)

Deleting a palette

In the Color window, select a palette from the list, then click on Delete palette.

If you accidentally delete a palette, click on Cancel. The palette is not actually
deleted until you click on OK.

Only user-defined palettes can be deleted. The Delete palette button is dis
abled when one of the palettes supplied with your sca system is selected.

Changing colors in a palette

28

In the Color window, select a palette name from the list. Then click on one of
the color buttons to the right of the list.

In the Color Selection window that pops up, select a color from the list or mix
your own color. Click on Apply when you have the color you want. The
Color Selection window stays up so you can select other color buttons on the
Color window to modify as well. When you are finished changing colors,
click on OK.

I NOTE The color change for a button will be lost if you click on another
color button before clicking on Apply in the Color Selection window.

If you try to change the colors in one of the palettes supplied with your sca
system, you are prompted to provide a new palette name. Although you can
not change any of the supplied palettes, the new palette inherits the colors of
the supplied palette, along with your changes.

Graphical Environment Guide

Changing colors with the Color control

See also:

• "Color buttons" (this page)

• "Mixing colors" (this page)

• "Creating a new palette" (page 28)

• "Deleting a palette" (page 28)

Color buttons

Each color button in the Color window represents one of the colors in a
palette:

• The IIBackground" color is used for all windows on the screen, with the
exception of the window in which you are working.

• The "Foreground" color is used for text.

• The IITop shadow" color is used for the outline around all window frames.

• The" Active window" and II Active top shadow" colors are used to identify
the window you are working in. The" Active foreground" color is used for
text in the active window.

• The" Alternate background" color is used for the Desktop background, and
for scrollbar and slider bar troughs, and the icon box background, if in use.

• The "Highlight" color outlines buttons when you click on them.

Bottom shadows are always black.

Mixing colors

In the Color Selection window, drag the color mix sliders left or right to com
pose the color you want, then click on Apply.

To get to the Color Selection window, click on one of the color buttons on the
main Color window.

To change the color mixing model, click on the Color model button above the
sliders, then click on RGB or HSV in the pop-up menu.

RGB defines a color by the amount of red, green, and blue it contains. HSV

defines a color by its hue, saturation, and value.

See also:

• "Creating a new palette" (page 28)

• "Deleting a palette" (page 28)

• "The RGB and HSV color models" (page 101)

29

Configuring the Graphical Environment from the Desktop

Colors for grayscale monitors

Color palettes are automatically mapped to grayscale monitors. Because this
might not always yield optimal results, several grayscale palettes are pro
vided.

It is not necessary to select one of the grayscale palettes unless the screen is
difficult to read or looks odd.

Colors for DOS programs

Some X servers support 256 colors, others only support 16. If your machine
only supports 16 colors, DOS programs running in the SCO Merge window
may produce unreadable screens or distorted colors. This does not occur if
the SCO Merge window is zoomed to fill the whole screen.

If you encounter this problem, use Color to select the "DOS Primary Colors"
palette.

See also:

• "Colormaps" (page 107) for an explanation of the different ways sea Merge and X
Windows handle colors

Changing Desktop fonts

30

You can change the fonts that are used in the Desktop, including desktop and
directory windows, dialog boxes, menus, and icons.

To change a font:

1. Double-click on the Preferences Editor icon in the Controls window.

2. You can change the font used for:

• the main Desktop

• desktop and directory windows, including the Trash and Treeview
desktops

• dialog boxes

• pop-up menus

• icon labels

Double-click on the desired icon.

3. Click on the Font button in the window that appears. The Font Selector
dialog box is displayed.

Graphical Environment Guide

Changing the background pattern

4. Select a font family by clicking on one of the items in the "'Font family"
box. The available fonts in that family appear in the "'Matching font list"
box. Display an example of a font by clicking on it in the "'Matching font
list" box.

5. To change the font weight, click on one of the buttons under "'Weight".
Not every font family provides all the weights listed.

6. To change the font angle, click on one of the buttons under'" Angle". Not
every font family provides all the angles listed.

7. To change the font point size, click on one of the selections under "'Point
size". Not every font family provides all the points listed.

8. After defining all your font parameters, select a font listed in the "'Match
ing font list" box and click on OK.

9. Click on OK in the Preferences dialog box to implement the changes.

10. Restart the affected desktop or directory window to see your changes.

See also:

• Chapter 7, "Changing fonts" (page 125)

Changing the background pattern

You can change the background pattern displayed on your screen by selecting
bitmap or pixmap files.

• A bitmap is a picture or other graphical image that is stored as a series of
O's and l's. Each character represents a single dot in the image. A bitmap
can include only two colors.

• A pixmap is similar to a bitmap except it can include multiple colors.

See also:

• "Selecting the background pattern" (page 32)

• "Removing background patterns" (page 32)

• "Defining the bitmap/pixmap path" (page 33)

31

Configuring the Graphical Environment from the Desktop

Selecting the background pattern

To specify a background pattern:

1. Double-click on the Preferences Editor icon in the Controls window.

2. You can change the background for:

• the main Desktop

• desktop and directory windows, including the Trash and Treeview
desktops

• dialog boxes

Double-click on the desired icon.

3. Click on the Background pattern button in the window that appears. The
Pattern Selector dialog box is displayed.

4. Click on one of the bitmap or pixmap files displayed in the IIPatterns" box.
Or, open a new bitmap or pixmap directory by double-clicking on a direc
tory listed in the IIDirectories" box, then clicking on the appropriate
filename in the IIPatterns" box. An example of the bitmap or pixmap
appears as the current selection.

I

NOTE You can change the bitmap /pixmap path to specify where bit
maps or pixmaps are stored. For more information, see IIDefining the
bitmap /pixmap path" (page 33).

5. Click on OK to choose the bitmap or pixmap.

6. Click on OK in the the Preferences dialog box.

Removing background patterns

32

To remove a pattern from a window and return to the default background:

1. Double-click on the Preferences Editor icon in the Controls window.

2. Double-click on the icon for the part of the Desktop from which you want
to remove the background pattern.

3. Click on the Background pattern button in the window that appears. The
Pattern Selector dialog box is displayed.

4. Click on Remove pattern.

5. Click on OK to choose the bitmap or pixmap.

6. Click on OK in the the Preferences dialog box.

Graphical Environment Guide

Changing mouse characteristics

Defining the bitmap/pixmap path

The bitmap/pixmap path specifies where bitmap and pixmap files are stored.
To specify a path different from the default:

1. Double-click on the Preferences Editor icon in the Controls window.

2. You can change the background for:

• the main Desktop

• desktop and directory windows, including the Trash and Treeview
desktops

• dialog boxes

Double-click on the desired icon.

3. Click on the Background pattern button in the window that appears. The
Pattern Selector dialog box is displayed.

4. Type the name of the directory where the desired bitmap or pixmap files
are stored in the "Directory path filter" field. At the end of the directory
name, include the characters" /*" to ensure that all the files in the direc
tory are listed in the "Patterns" box. Be sure you enter a valid
bitmap /pixmap path name.

5. Click on Filter. The bitmap or pixmap files in the directory you specified
are displayed.

6. Select the desired background pattern. See "Selecting the background pat
tern" (page 32).

Changing mouse characteristics

With the Mouse control, you can specify:

• if the mouse is used right-handed or left-handed

• the speed of double clicks

• the speed at which you can move the pointer

To start the Mouse control, double-click on the Mouse icon in the Preferences
Editor, located in the Controls window.

33

Configuring the Graphical Environment from the Desktop

34

Each of the mouse settings are described below:

Right- or left-handed mouse

By default, the left mouse button is mouse button 1 (the select button).
This favors right-handed users, so left-handed users may find it easier to
change mouse button 1 to the right mouse button. See also Figure 3-1,
#Mouse buttons" in Using the Desktop.

NOTE All adjustments made to the mouse are effective immediately
within the Mouse control window. This lets you try your changes as
you make them, but can be confusing if you select Left Handed and
then do not realize that you must now use the right mouse button as
the select button instead of the left.

If you click the mouse button and nothing happens, the mouse may
be configured for use with the other hand.

Double click speed

You can change the maximum amount of time allowed between the two
clicks of a double-click. The slower the double-click setting, the more
time is allowed between the two clicks.

You can test your settings on the double-click test pad by selecting and
de-selecting it, using double-clicks.

I NOTE The newly defined double-click speed does not take effect in
windows that are currently open. To implement the new speed, you
must restart the Desktop.

Mouse speed

You can change the speed at which you can move the mouse pointer
across the screen.

The # Acceleration" slider bar sets the speed to which the pointer
accelerates after being moved a short distance. The faster the setting,
the faster the pointer can move. A fast setting lets you make short, pre
cise movements but still move quickly when you want to move across
the screen.

The #Distance moved before mouse accelerates" slider bar specifies the
distance the pointer moves before it accelerates. The longer the setting,
the longer it takes the pointer to accelerate.

Graphical Environment Guide

Changing the system bell

To exit and save your changes, select OK.

To restore your mouse settings to their state before you started modifying
them, select Cancel.

See also:

• Chapter 10, "Configuring mouse behavior" (page 195)

Configuring the keyboard

To start the Keyboard control, double-click on the Keyboard icon in the
Preferences Editor, located in the Controls window.

To adjust key click volume, move the slider bar. The number above the
slider bar changes to reflect the new volume, which can range from a (no
sound) to 100 (the loudest). Key click volume can only be controlled on X ter
minals; this feature is not supported by the sca X server.

To enable or disable keyboard auto repeat, click on the Auto Repeat button.
When auto repeat is on, holding down a key causes the corresponding charac
ter to repeat on the screen until you release that key. When auto repeat is off,
the character appears on the screen only once, regardless of how long the key
is held down.

I N.OTE Changes remain in effect only for the duration of your current ses
SlOn.

See also:

• xset(X) manual page.

Changing the system bell

To start the Bell control, double-click on the Bell icon in the Preferences Edi
tor, located in the Controls window.

To increase or decrease the bell volume, pitch, or duration, drag the respec
tive slider bar to the left or right. The system bell sounds when the mouse but
ton is released. Bell volume can only be controlled on X terminals; this feature
is not supported by the sca X server.

35

Configuring the Graphical Environment from the Desktop

To hear the current Bell settings, click on the bell icon at the top of the Bell
window.

To return to the default settings, (volume 50, pitch 40KHz, duration .10
seconds), click on the Default button.

I N.OTE Changes remain in effect only for the duration of your current ses
SIon.

To change the default slider bar ranges, see scobell(XC).

Controlling access to your display

36

Once the X server is running, the Host control allows you to grant or restrict
access to your X display. It also displays a list of hosts and users that have
access to your current session.

To start the Host control, double-click on the Host icon in the Preferences
Editor, located in the Controls window.

To grant access to your X server:

• click on Allow all connections. All remote users and hosts can display
images on your screen.

or

• click on the II Add host" field. Enter the name of any user or host that you
want to be able to access your X server; To grant access to more than one
user or host, press (Enter) after each entry you make. When you finish, click
on Apply.

If a given host does not exist, or if you entered the name incorrectly, Host
removes the host entry from the Access list and displays:

unable to add host hostname

To remove host access, select the host in the Access list, and click on Remove.
To select more than one host, drag the cursor over the desired hosts and then
click on Remove.

When you are finished, click on Apply. To exit, click on OK.

To restore your previous settings, click on Cancel.

See also:

• Chapter 4, "Running remote programs" (page 65) for more information on config
uring access to your display and on running remote clients

Graphical Environment Guide

Changing desktop, directory, dialog box, and icon behavior

Changing desktop, directory, dialog box, and icon
behavior

You can customize the behavior of:

• desktops, including the main Desktop, the Treeview desktop, and desktop
windows

• directory windows

• dialog boxes

• icons

To modify attributes for any of these parts of the Desktop:

1. Double-click on the Preferences Editor icon in the Controls window.

2. Double-click on the desired icon in the Preferences Editor window and a
Preferences dialog box is displayed.

3. Make your desired choices in the list boxes and/or text entry boxes:

• For list boxes, click the down arrow to display the list of alternatives
and select the item you want

• For text entry boxes, type in the value you want

4. Click on OK to implement your changes.

See also:

• "Main Desktop behavior options" (page 38)

• "Desktop window behavior options" (page 38)

• "Treeview desktop behavior options" (page 39)

• "Directory window behavior options" (page 39)

• "Dialog box behavior options" (page 40)

• "Icon behavior options" (page 40)

• "Configuring tools" (page 41)

• "Configuring devices" (page 41)

37

Configuring the Graphical Environment from the Desktop

Main Desktop behavior options

To change aspects of the main Desktop's behavior, double-click on the Main
Desktop Behavior icon in the Preferences Editor.

You can configure the following:

Desktop as root window

Default desktop display mode

sets whether or not the main Desktop occu
pies the Root window. If set to #True", the
Desktop fills the entire screen.

specifies whether icons are displayed as
images or names

Desktop opening display method if you change the way icons are displayed
on the main Desktop from the View menu,
specifies whether future desktops display
icons the same way (# Always inherit") or
display according to the value set in the
"Default desktop display mode" field
(#Never inherit")

Desktop traversal mode determines if opening a new desktop
reuses the current window, or displays a
new window

See also:

• "Desktop window behavior options" (this page)

Desktop window behavior options

38

To change the behavior of desktop windows, double-click on the Desktop
Behavior icon in the Preferences Editor.

You can configure the following:

Save on close

Default desktop display mode

sets whether or not you are prompted to
save changes made to the desktop win
dow before you close it

specifies whether icons are displayed as
images or names

Graphical Environment Guide

Changing desktop, directory, dialog box, and icon behavior

Desktop opening display method if you change the way icons are displayed
in a desktop window from the View menu,
specifies whether future desktop win
dows display icons the same way
ri Always inherit") or display according to
the value set in the "Default desktop dis
play mode" field ("Never inherit")

Desktop traversal mode determines if opening a new desktop
reuses the current window, or displays a
new window

See also:

• "Main Desktop behavior options" (page 38)

• "Treeview desktop behavior options" (this page)

Treeview desktop behavior options

To change the behavior of the Treeview desktop, double-click on the Treeview
Behavior icon in the Preferences Editor.

You can configure the following:

Initial display depth specifies the levels of subdirectories that are displayed

Expand rate when selecting Grow Branch from the Treeview desk
top File menu, determines the number of levels added
to the view

Directory window behavior options

To change the behavior of directory windows, double-click on the Directory
Behavior icon in the Preferences Editor.

You can configure the following:

Directory opening display method if you change the way icons are dis
played in a directory window from the
View menu, specifies whether future
directories display icons the same way
(" Always inherit") or display according
to the value set in the "Default directory
display mode" field ("Never inherit")

39

Configuring the Graphical Environment from the Desktop

Default sort order

Default directory details

Default directory display mode

Directory traversal mode

specifies the criteria used to sort and dis
play files

defines the information displayed when
you select Details from the directory View
menu

specifies whether icons are displayed as
images or names

determines if opening a new directory
reuses the current window, or displays a
new window

Dialog box behavior options

To change the behavior of dialog boxes, double-click on the Dialogs icon in
the Preferences Editor.

You can configure the following:

Dialog positioning specifies whether or not dialog boxes are
always centered on your screen when dis
played

Report Copy/Move progress specifies whether or not an fyi dialog box is
displayed when you perform a move or copy
by dragging and dropping icons

You can also define the Font used by dialog boxes. For more information, see
LlChanging Desktop fonts" (page 30).

Icon behavior options

40

To change the behavior of icons, double-click on Icon Configuration in the
Preferences Editor.

You can configure the following:

Picture areas sensitive specifies whether you can activate an icon by
double-clicking on the entire object, or just on the
picture

Graphical Environment Guide

Drag mode

Title background mode

Image size

Click on title behavior

Configuring devices

determines if the entire image moves when you
drag an icon, or if a symbolic cursor represents
the icon during a drag operation

specifies if icon labels are transparent or opaque

specifies how you want icons displayed. You can
select from several combinations of large or small
icons and large or small cursors.

allows you to alter the behavior of a single mouse
click on an icon label. "Alternate click" refers to
the second mouse button.

You can also define the Icon title fontset used by icon labels. For more infor
mation, see "Changing Desktop fonts" (page 30).

Configuring tools

You can configure many of the applications that are started by various Desk
top icons, including the editor, mail reader, and calendar.

To view the tools that can be configured, or to make configuration changes,
double-click on the Tools icon in the Preferences Editor.

Configuring devices

You can assign different physical devices and format commands to the 3.5"
and 5.25" device icons in the Devices window. .

To configure your device icons, double-click on the Device Configuration
icon in the Preferences Editor.

41

Configuring the Graphical Environment from the Desktop

42 Graphical Environment Guide

Chapter 3

Customizing startup of the Graphical
Environment

This chapter discusses how to customize the startup characteristics of the sea
OpenServer Graphical Environment. Specifically, this chapter covers how to:

• use the display manager (scologin) (page 44)

• use the startx script (page 46)

• use the session manager (scosession) (page 48)

• use environment variables (page 51)

• customize scologin to manage multiple servers (page 53)

• use the Graphical Environment on X terminals (page 60)

Starting a Graphical Environment session

By default, the Graphical Environment runs the scologin display manager on
the second of your console multiscreens (/dev/tty02). This display manager
starts the X server and keeps it running on your system, even when a user is
not engaged in a Graphical Environment session.

However, you can choose to turn the scologin client off and start the X server
manually, or you can run an additional server session on another multiscreen
manually. To run the X server manually, run the startx script.

43

Customizing startup of the Graphical Environment

Regardless of the method you use to actually run the X server, a default
Graphical Environment session is controlled by the session management
client, scosession. scosession defines the clients that are run when you start
the server and controls their appearance and behavior.

See also:

• "Running scologin" (this page)

• "Running the startx script" (page 46)

• "Using the session manager" (page 48).

The above sections assume that you are using clients in their default configu
ration.

Running scologin

44

The scologin display manager provides graphical login windows to local and
remote X servers, as well as services that are similar to those provided by log
in or getty. In particular, scologin:

• keeps the X server running

• prompts for user login and password

• authenticates users

• requests new passwords when appropriate

• establishes secure Graphical Environment sessions

I NOTE See "Customizing scologin" (page 53) for information on modifying
scologin to manage multiple displays, including X terminals.

The scologin client is started as a daemon from the P86scologin script in
!etc/rc2.d. By default, scologin controls the display on the second multiscreen,
/dev/tty02.

The scologin window appears on the screens of all active X servers for which
scologin is configured to manage. The scologin window contains two fields
into which you enter your login name and password. The box also contains
three buttons: Login, Restart, and Help. To start your session, enter your login
and password, then press (Enter) or click on Login. To restart the X server and
redisplay the scologin window, click on Restart.

If the login is successful, the following environment variables are set:
SDISPLAY, SHOME, and SPATH. If you run the Desktop client, the SLANG
environment variable is also set. These variables are discussed in "Using
environment variables" (page 51).

Graphical Environment Guide

Starting a Graphical Environment session

Once a user is successfully authenticated, several scripts are executed. These
scripts are located in /usr/lib/Xll/scologin and are listed in Table 3-1, "scologin
session scripts".

Table 3·1 scologin session scripts

Configuration file
Xstartup

Xsession,
Xsession-csh,
Xsession-ksh,
Xsession-sh

Description
a startup script that defines actions scologin takes before
beginning the user's session

defines the nature of the user's X server session by running
the lusrlbinlstartx script, which starts scosession

Xreset defines the actions that scologin takes when the user ends a
session

See also:

• "Configuring scologin's startup behavior" (this page)

• "Defining X server sessions" (this page)

• "Logging out of scologin" (page 46)

Configuring scologin's startup behavior
After scologin authenticates a user, it executes the startup script,
jusr/lib/Xl1jscologin/Xstartup.

I NOTE This script is run as root and as such, should be written with security
issues in mind.

This script does not execute any commands by default - it is empty except
for a few comment statements. You can place shell commands in the file to
perform custom startup tasks, such as mounting users' home directories from
file servers, displaying the message of the day, setting custom shell environ
ment variables, and so forth.

Once this script has been executed, scologin begins the user's session.

Defining X server sessions
After executing the startup script, scologin searches for a script that defines
the X server session. First, it looks for a file called .xsession in the user's home
directory.

45

Customizing startup of the Graphical Environment

H no user-specific file is found, scologin looks for /usr/lih/Xll/scolog
in/Xsession-SHELL, where SHELL is the user's current shell. For example, a ses
sion that is running csh would use the Xsession-csh file.

The Xsession files are started as login shells, which set any environment vari
ables that are specified in the user's .profile or .login file. Then the Xsession files
run the startx -t script. Basically, scologin passes the responsibility for session
management to the startx script, which then passes control to the scosession
client. For more information on these next stages of session startup, see "Run
ning the startx script" (this page).

Logging out of scologin
When you end your Graphical Environment session and log out of the system,
scologin runs a "reset" script, called /usr/lib/Xll/scologin/Xreset. This script
executes as root and removes the session manager property from the Root
window.

You can also use this script to undo the effects of commands that were exe
cuted in the Xstartup script. For example, the Xreset script could unmount
directories from a file server that were mounted when the session was started.

When a Graphical Environment session is terminated, scologin resets the X
server and redisplays the scologin window.

Running the startx script

46

H you want to start a Graphical Environment session from the command line,
you must run the startx script:

startx &

H you started a session by logging in through the scologin window, scologin's
Xsession-SHELL file also runs the startx script, with the -t option. See "Defining
X server sessions" (page 45) for more information on the Xsession-SHELL file.

H the startx script is run without any options, it:

• modifies the $PATH environment variable to include /usr/bin/Xll, if neces
sary

• checks to see if the $DISPLAY environment variable is set or not. If not, it
sets the variable to:

hostname:display _number

where hostname is the name of the current host and :display_number is the
next available display. H no other servers are running, the :display_number
is set to zero.

Graphical Environment Guide

Starting a Graphical Environment session

• runs xinit, which starts the X server

• reads the $HOME/.startxrc file, if it exists, and executes any clients specified
in the file. If a .startxrc file is not located in the user's home directory, the
/usr/lib/Xll/sys.startxrc file is read.

If the startx script is executed with the -t option, as it is from the scologin
Xsession-SHELL file, the script does all of the tasks above, including modifying
the $PATH environment variable. However, the -t option does not set the
$DISPLAY environment variable or run xinit to start the X server. In the case
of the scologin display manager, it is unnecessary to start the server because
it is already running. The -t option is also useful if you want to run a Graphi
cal Environment session on an X terminal, which uses its own internal server.
For more information on using the Graphical Environment with X terminals,
see "U sing X terminals" (page 60).

NOTE If you run the startx script with the -t option, you must set the
$DISPLAY environment variable before you run startx. Otherwise, you see
the error message:

DISPLAY environment variable not set

For information on the $DISPLAY environment variable, see ~Dsing environ
ment variables" (page 51).

The !usr/lib/Xll/sys.startxrc file specifies the clients and commands that are
run by default in X server sessions for all users on the system. Because the
default configuration uses the session manager to control Graphical Environ
ment sessions, scosession is the only client that is run by the sys.startxrc file.
This file contains the following line:

exec scosession 2> Idev/null

If you want your system to use scosession to manage Graphical Environment
sessions, you should not modify this file.

The startx script also looks for a local .startxrc file, located in a user's home
directory. If a user wants to use the session manager, there is no need to put a
.startxrc file in $HOME. The sys.startxrc file is used to run scosession.

If, however, a user does not want to run scosession, a .startxrc file is needed in
$HOME to start the desired clients, particularly the window manager. The
.startxrc file is not placed in a user's home directory by default. To create this
file, copy !usr/lib/Xll/sys.startxrc to .startxrc in your home directory.

47

Customizing startup of the Graphical Environment

NOTE You are strongly urged to use scosession to control the clients you
want to run automatically in a Graphical Environment session, instead of
adding clients to either $HOME/.startxrc or /usrllib/Xll/sys.startxrc. If you do
not use the session manager, you may accidentally overlook starting an
important element of the Graphical Environment, resulting in the loss of
some functionality.

See also:

• startx{X) manual page

• "Using the session manager" (this page)

Using the session manager

48

The session manager client, scosession, is responsible for the startup and
shutdown of your X server session. Regardless of whether you start your X
server through scologin or by running startx on the command line, the
scosession client is invoked by the /usr/lib/Xll/sys.startxrc file by default.

scosession uses several files to determine its behavior. These files are located
in /usr/lib/Xll/sco/ScoSession, and are listed in Table 3-2, "scosession
configuration files".

Table 3-2 scosession configuration files

Configuration file
startup

static

shutdown

xrdbcomp

Description
defines scosession's tasks when a Graphical Environment
session is started

defines the clients that are run for the default session

defines scosession's tasks when a Graphical Environment
session is ended

compares the system resources loaded by xrdb with any
resources added to the resource database for the current
session and saves the settings so they can be used in future
sessions. For information on xrdb, see Chapter 5, "Under
standing resources" (page 79).

Graphical Environment Guide

Starting a Graphical Environment session

scosession also stores information on individual users' sessions in files in the
$HOME/.odtprej directory. These files are listed in Table 3-3, LlUser scosession
files".

Table 3·3 User scosession files

Configuration file
$HOME/ .odtpref/ScoSession

$HOME/ .odtpref/ScoSession/ dynamic

$HOME/.odtpref/ScoSession/static

Description
this directory contains files related
to the management of a user's ses
sion

contains the clients that are saved
from a previous session. These
clients are started if the user
resumes the previous session.

contains the clients that constitute
a user's default session. This file
only exists if the user selected to
save a session configuration from
the Session control. (page 26) Oth
erwise, the default session is
derived from the static file, located
in /usr/lib/Xll/sco/ScoSession.

$HOME/.odtpref/ScoSession/xrdb.save contains the resource settings from
the resource database that existed
at the end of a user's session.
Resources are stored in this file by
the xrdbcomp utility. These
resources are loaded into the
resource database the next time the
session is resumed.

The $HOME/.odtprej directory may contain other directories and files, depend
ing on the clients you use and configure.

See also:

• "Starting scosession" (page 50)

• "Stopping scosession" (page 50)

• "Using scosession options" (page 51)

• scosession(XC) manual page

• xrdb(XC) manual page

49

Customizing startup of the Graphical Environment

50

Starting scosession
When scosession is started, the /usr/lib/Xll/sco/ScoSession/startup script is
read. This file sets up your Graphical Environment session. In particular, it:

• loads resources located in files in /usr/lib/Xll/sco/startup into the resource
database, using the xrdb command. The script also loads resources stored
in the file $HOME/. odtpref/ScoSession/xrdb. save. (For information on
resources and the resource database, see Chapter 5, "Understanding
resources" (page 79).) These resources reside in the server and determine
the basic appearance and behavior of many of the clients you run.

• restores any state information from your previous session, including
mouse acceleration, threshold, mouse double-click interval, and left- or
right-handed button mapping preferences. This information is determined
by files located in $HOME/.odtpref

• reads the file $HOME/.odtpref/ScoSession/dynamic if you resume a previous
session or $HOME/.odtpref/ScoSession/static if you select the default session,
and starts all of the specified clients. If neither of these files are located,
scosession runs the clients indicated in/usr/lib/Xll/sco/ScoSession/static.

These files indicate not only the clients to run, but any special command
line options used to start the applications, their geometry (size and location
on the screen), the host machine from which the client can be accessed, and
whether or not the client should be run in an iconified or normal state.

• starts the window manager client that is specified by the
ScoSession*windowManager resource. By default, the SCO Panner win
dow manager, an enhanced version of the OSF /Motif window manager, is
run. See Chapter 5, "Understanding resources" (page 79), for more infor
mation on resource specifications.

Stopping scosession
When you end your Graphical Environment session and either stop the X
server or log out of scologin, scosession runs the
/usr/lib/Xl1/sco/ScoSession/shutdown file, which in turn calls
/usr/lib/Xl1/sco/ScoSession/xrdbcomp. These perform the following:

• Remove the resource database from the RESOURCE_MANAGER property of
the Root window. Any resources that you merged into the resource data
base during the session are stored in the file xrdb.save, located in
$HOME/.odtpref/ScoSession. These resources are also loaded into the
resource database the next time you run a Graphical Environment session.
(For more information on resources and the resource database, see Chapter
5, "Understanding resources" (page 79).)

Graphical Environment Guide

Using environment variables

• Note the state of clients left running when you ended your session and
save this information in $HOME/.odtprej/ScoSession/dynamic. These clients
are run in the same state for your next session, if you choose to resume the
previous session.

• Save all state information in the appropriate files in $HOME/.odtpref.

• Shut down all running clients, including the window manager, in a con
trolled manner.

Using scosession options
You can use the following options with scosession:

-stop shuts down the clients comprising the session and saves the
state of the session. If you run scosession -stop from a scoterm
window, you are logged out.

-configure configures how scosession starts and stops your session. This
option brings up a dialog box that allows you to specify if you
want subsequent sessions to start in the same state you left your
previous session, or if you want to start in the default state. This
dialog box also allows users to save the current session's state as
a customized default state and to choose the option of an
interactive logout prompt.

-help provides a list of the available scosession options

See also:

• scosession(XC) manual page

Using environment variables

When you start a Graphical Environment session, the $DISPLAY, $HOME, and
$PATH. environment variables are set. When you run the Desktop client, the
$LANG environment variable is also set.

The $PATH and $HOME environment variables are actually set when you first
log in, whether through a multiscreen running getty or through scologin.
However, the X server modifies the $PATH variable to include the /usr/bin/Xll
directory.

51

Customizing startup of the Graphical Environment

52

The $DISPLAY and $LANG environment variables are described below:

• The $DISPLAY environment variable is used to tell a client to which server
it should send its output.

The X display consists of one or more screens, a keyboard, and a mouse. A
system may have several displays, and each display may, in turn, have
more than one screen. Each display has exactly one server process control
ling all its input and output. Therefore, the terms "display" and "server"
are used synonymously.

When a client is run, it must open a connection to a display. You must be
able to tell the client the name of the display that you want it to use for out
put. You can also indicate a specific screen for the display. Because the
display can be anywhere on the network, you have to provide the network
name of the system to which the display is connected to fully identify the
display.

Use the following format when setting the $DISPLAY variable:

[hostname]:display _number[.screen_number]

where:

hostname specifies the name of the machine to which the display is
connected, and must be either a machine name or the
machine's network address. If the hostname is not
specified, the client assumes it should communicate with
the display on the same machine.

:display_number specifies the number of the display, or X server, that you
want the client to use. Each display on a system is
assigned a :display_number. If the display is managed
by scologin, the :display_number is specified explicitly in
the /usr/lib/Xll/scologin/Xservers file. If the X server is
started by startx, the server is assigned the first available
:display_number, starting with ":0".

Usually, if only one X server is running, its :dis
play_number is ":0". If more than one server is running
on your system, you must determine which display
number corresponds to the X server you want to specify.

screen_number specifies the screen on which the server is running.

The default display name is stored in the $DISPLAY environment variable
when the X server is started by either scologin or the startx script. How
ever, if you want a client to use a different display, you must reset the
$DISPLAY variable so it specifies the other server.

Graphical Environment Guide

Customizing scologin

For example, to run your clients on a remote server on a machine named
scooter, you would enter:

DISPLAY=scooter:O.O; export DISPLAY (jor sh, ksh)

or

setenv DISPLAY scooter:O.O (jor csh)

NOTE Most clients understand the -display command line option. This
option temporarily overrides the contents of the $DISPLAY variable. For
more information on using this command line option, see Chapter 5,
~'Understanding resources" (page 79).

• The $LANG environment variable specifies the language that is used on
your system. By default, the $LANG variable is set to #english_us.ascii".

Customizing scologin

The default configuration of scologin runs the X server, and the scologin
client, on the second multiscreen (/dev/tty02) of the console. You can change
this configuration so that scologin does not run at all, or you can specify that
scologin manage multiple displays, on your system or on remote systems,
including X terminals.

There are several files that are used to configure scologin's behavior. These
files are all located in /usr/lib/Xll/scologin and are listed in Table 3-4, "scologin
configuration files".

Table 3-4 scologin configuration files

Configuration file Description
Xconfig a special configuration file that specifies resources that

determine the scripts used by scologin. The resources in
this file configure the following files.

Xerrors scologin error messages that would otherwise go to stan
dard error (stderr) are directed to this file

Xhelp contains the help text that you see if you click on the Help
button on the scologin window .

Xresources contains resources that configure scologin's appearance.
These resources are loaded into the resource database by
xrdb.

Xservers contains entries for all of the non-XDMCP X servers that
scologin is to manage

53

Customizing startup of the Graphical Environment

See also:

• "Using the scologin administration script" (this page)

• "Configuring scologin on multiple displays" (this page)

• "Using X terminals" (page 60)

Using the scologin administration script

The Graphical Environment provides a script, /etc/scologin, that allows system
administrators to control the scologin process. The script must be run as root.

There are six options that you can use with this script:

start starts the scologin process, which in turn reads the files Xconfig,
Xservers, and Xresources, all located in /usr/lih/Xll/scologin

stop stops the scologin process. Run scologin stop to halt all current
sessions managed by scologin. For example, use the stop option if
you want to reclaim scologin-managed ttys and restore getty pro
cesses.

NOTE This option shuts down all scologin processes on your sys
tem, which results in the closure of any sessions running at the
time you run the script. You should notify users before you run
this script.

query shows the current state of the scologin process

disable stops the current scologin process and prevents scologin from
starting when the system re-boots; re-enables getty processes on
scologin-managed ttys

enable ensures that scologin starts when the system re-boots and starts the
scologin process if it is not already running

init if scologin is enabled, disables getty processes on screens that are
configured for scologin. scologin init should only be run by init at
boot time.

Configuring scologin on multiple displays

54

The scologin display manager can do more than run the simple session that
its default configuration provides. In fact, scologin can control multiple
servers, both on the local machine and on remote machines, or X terminals.

Graphical Environment Guide

Customizing scologin

There are two ways to specify the X servers that you want managed by
scologin:

• If the server supports the X Consortium standard X Display Manager Con
trol Protocol, also known as XDMCP, you can usually specify the name or
network address of a remote machine running scologin at the server.

XDMCP is a dynamic mechanism whereby connections are made when
requested by a display, such as a workstation or an X terminal, that can
communicate through the protocol. The sca X server (Xsco) supports
XDMCP.

• If you want to configure scologin to run on a set of console ttys (for exam
ple, on ttyOl through tty12), or if you want scologin to manage an X server
that does not support XDMCP, you can add an entry for each of the displays
in the /usr/lib/Xll/scologin/Xservers file. Each line in this file specifies a dis
play that should constantly be managed by scologin.

See also:

• "About XDMCP X server options" (this page) for a list of the X server options for
usingXDMCP

• "Running scologin with XDMCP" (page 56) for information on running scologin on
remote systems using XDMCP

• "Running scologin with the Xservers file" (page 57) for information on manually
configuring scologin sessions

• "Using X terminals" (page 60) for information on managing an X terminal's display
with scologin

About XDMCP X server options

Any X server that supports the XDMCP protocol can request a scologin ses
sion. To do this, the server must be started with the appropriate options to
request the session.

The sca X server (Xsco) uses the following options to determine how it uses
XDMCP:

-broadcast

-class display_class

enables XDMCP and broadcasts BroadcastQuery
packets to the network. The first responding display
manager is chosen for the session.

sets the value of the additional XDMCP display
qualifier, which is used in resource lookup for dis
play-specific options. By default, the value is "MIT
Unspecified".

55

Customizing startup of the Graphical Environment

-cookie xdm-auth-bits sets the value of a private key shared between the X
server and the manager, which is used when testing
XDM-AUTHENTICATION-l

-displayID display-id allows the display manager to identify each display
so that it can locate the shared key

-indirect host_name enables XDMCP and sends IndirectQuery packets to
the specified host

-once exits the X server after the first session is over. Nor
mally, the X server keeps starting sessions, one after
the other.

-port port_num specifies an alternate port number for XDMCP pack
ets. It must be specified before any -query,
-broadcast or -indirect options.

-query host-name enables XDMCP and sends Query packets to the
specified host

See also:

• Xsco(x) manual page for a complete list of X server options

Running scologin with XDMCP

56

To configure the seo X server to request a scologin session using the XDMCP
protocol, do one of the following. You must be logged onto the system as root.

• Specify the desired Xsco options from the command line - see "About
XDMCP X server options" (page 55) from the command line. For example:

lusrlbinIXlllXsco -broadcast -once

This broadcasts to all machines on the network for a scologin session. The
session is provided by the first machine on the network to answer.

You can also request a session from a specific machine with this command:

lusrlbinIX111Xsco -query hostname -once

This requests a session from the host hostname.

• Alternately, you can create a shell script that runs the Xsco server, as in one
of the examples above.

Graphical Environment Guide

Customizing sco!ogin

Running scologin with the Xservers file

You can use the /usr/lib/Xll/scologin/Xservers file to configure scologin
management of displays on your local system or on X servers that do not sup
port XDMCP. You can also use this approach if you do not want to reconfigure
the sca X server, as described in "Running scologin with XDMCP" (page 56).

To configure scologin to manage multiple displays using the Xservers file, use
the following procedure. You must be logged onto the system as root. For in
formation on each of the steps in this list, see the sections immediately follow
ing the procedure.

1. Use the scologin administration script to stop scologin, if it is currently
running on your system.

letc/scologin stop

2. On the host machine where you want to run scologin, add the servers you
want to manage to the /usr/lib/Xl1/scologin/Xservers file. Use the following
format when making entries in this file:

display_name [display_class] display_type [startup_command]

When you are finished, save and exit the file.

3. To manage a remote display, you must provide access to the server. On
the system where the display is to be managed, edit the /etc/Xn.hosts file,
where n represents the display number you want to use on the remote ma
chine, and add the name of the machine on which scologin will be run
ning.

4. When managing a remote display, you must start the X server on that dis
play before scologin can gain control. On the actual screen you want
managed by scologin, run the X server:

lusrlbinIX111X :display _number

On a local system, this step is unnecessary because scologin automatically
starts the X server.

5. Returning to the scologin host machine, use the scologin administration
script to restart scologin, so it reads its configuration files, including
Xservers:

letdscologin start

The scologin display manager should now be running on all of the displays
you configured.

57

Customizing startup of the Graphical Environment

58

Step 1: Stopping existing scologin processes
Before you set up scologin to manage multiple displays, you must first stop
any scologin processes that are currently running. You can do this using the
scologin administration script:

letclscologin stop

I
NOTE This script shuts down all scologin processes on your system, which
results in the closure of any Graphical Environment sessions running at the
time you run the script. You should notify users before you run this script.

Step 2: Editing the Xservers file
For every X server you want scologin to manage, you must add an entry to
the /usr/lib/Xl1/scologin/Xservers file. This file should include entries for addi
tional displays on the local machine and entries for displays on remote ma
chines.

Entries in the Xservers file use the following format:

display_name [display_class] display_type [startup_command]

The various segments of the format are described below:

display_name name of either a local X server or a remote X display
using the following syntax:

display_type

[hostname] : display _number[.screen_number]

hostname specifies the name of the machine to which
the display is connected. H you omit hostname, the dis
play on the current machine is assumed. :display_num
ber specifies the number of the display you want to use.
screen_number specifies the number of the screen on the
display that you want to use.

defines a display class with which display~ame is asso
ciated. Although display_class is optional, it is useful if
you have a large collection of similar displays and want
to set scologin configuration resources for groups of
them. To include several X displays in the same class,
use the same display_class in each Xservers entry.

indicates either a local or remote X server:

• if display _type is "local," scologin manages a local
display on which an X server should be run

• if display_type is "foreign," scologin manages a
remote display on which the X server is already running

Graphical Environment Guide

Customizing scologin

startup_command applies only to local displays, and by default is
lusrlbinIX111X. Use startup _command to specify com
mand line options to the X server, such as the local tty
you want scologin to manage.

For example, to manage a local display on /dev/tty03 that is not yet running
and a display on another sea system named scooter, include the following
lines in the /usr/lib/Xll/scologin/Xservers file:

1 :0 local /usr/bin/Xll/X :0 -crt /dev/tty03
2 scooter:l foreign

In this example, : 0 on line 1 and scooter: 1 on line 2 are the display_name.
Also, local on line 1 and foreign on line 2 are display_type. /usr/bin/Xll/X
: 0 -crt / dev / t tyO 3 is the startup _command. The -crt option associates the X
server with a particular console multiscreen, in this case /dev/tty03.

The scooter: 1 foreign entry indicates that you want scologin to manage the
second X server running on the remote machine, scooter.

Step 3: Enabling access to the remote display
H you only want to manage the local display, you can skip this step.

H you want scologin to manage a remote display that is running the X server,
you must enable the server to provide access to your host machine. On the
system where the display is to be managed, edit the /etc/Xn.hosts file, where n
represents the display number you want to use. Add the name of the host
machine where scologin will be running.

For example, to gain access to the scooter:1 display, include the name of the
scologin host machine in the /etc/Xl.hosts file on scooter.

Step 4: Running the X server on the remote display
H you only want to manage the local display, you can skip this step.

To enable scologin to manage a remote display, you must first start the X
server on the desired screen of the display where you want the scologin win
dow to appear:

lusrlbinIX111X :display _number

For example, for scologin to manage a second X server on the fourth mul
tiscreen on the machine scooter, you would log in on scooter's /dev/tty04 and
run:

lusrlbinIX111X :1

59

Customizing startup of the Graphical Environment

Step 5: Starting scologin
Now you are ready to start scologin on all of the displays you configured in
the Xservers file. On the host system, use the scologin script to start the client:

letdscologin start

This process reads the scologin configuration files, including
/usr/lib/Xll/scologin/Xservers. A scologin process is started for all of the dis
plays specified in the Xservers file.

Using X terminals

60

You can use X terminals to run Graphical Environment sessions. In fact, you
can configure your X terminal so the scologin display manager automatically
manages the X terminal's display. When you log in through the scologin win
dow, you start a Graphical Environment session, running on the host machine
and displaying on the X terminal.

Many X terminals can use the X Display Manager Control Protocol (XDMCP)
to facilitate the connection to remote hosts through scologin. From a user's
standpoint, the main advantage of XDMCP is that it allows you to turn an X
terminal off and instantly re-establish the connection to the scologin host ma
chine when you tum the X terminal back on. When you tum on an X termi
nal, scologin automatically displays a login window. The exchange of infor
mation between the X terminal and the remote host is invisible to the user. In
fact, XDMCP and scologin are intended to make X terminals as easy to use as
traditional character terminals. With XDMCP, an X terminal basically requests
a connection to a remote host, is recognized by the host, and is sent a login
prompt by scologin.

H you are using X terminals at your site, the way you set up scologin depends
on whether or not the terminals can communicate through XDMCP. H a termi
nal cannot communicate using XDMCP, you must include an entry for it in the
/usr/lib/Xll/scologin/Xservers file and the terminal must be left powered on at
all times to maintain the connection to the host machine.

H an X terminal can communicate through the protocol, the machine that will
host the scologin process requires no configuration. However, the X terminal
must be configured to communicate with the host through the X terminal's
setup procedures, which vary from one model to another. Some X terminals
let you specify the address of a host machine from which you want to run the
display manager. Some X terminals can broadcast a request for a host over
the network and then display a list of all available hosts from which the user
can choose. Other X terminals can broadcast a request and merely accept the
first available host.

Graphical Environment Guide

Using X terminals

See also:

• "Managing an X terminal display with scologin" (this page)

• "Running a session on an X terminal without scologin" (page 63)

Managing an X terminal display with scologin

The following procedures explain how to run the scologin display manager
so it manages the server on an X terminal.

Once configured, you can log in directly to the machine running scologin
using the scologin window. The scosession manager is started, the Desktop
appears, and you can begin your session. If an .Xdefaults-hostname file exists
in your home directory on the host machine, clients you run use the resources
defined in this file.

These procedures assume that the X terminal has already been correctly con
nected to the network and that the X terminal's name and IP address are
known to the machine that will host the scologin process. For information on
how to do this, refer to "Configuring TCP lIP" in the Networking Guide and to
the documentation supplied with your X terminal.

See also:

• "X terminals that do not support XDMCP" (this page)

• "X terminals that support XDMCP" (page 62)

X terminals that do not support XDMCP

If the X terminal does not support XDMCP, use this procedure to set up a
scologin session:

1. Log into the host machine as root. If scologin is currently running on the
host machine, use the scologin administration script to stop it:

letc/scologin stop

2. On the host machine, edit the /usr/lib/Xll/scologin/Xservers file so that it
contains an entry for the X terminal.

For example, to configure a terminal named vortex so it runs scologin from
a host machine named scooter, add the following line to the Xservers file on
scooter:

vortex:O foreign

61

Customizing startup of the Graphical Environment

62

3. Start scologin on the host machine by running letdscologin start.

4. On the X terminal, restart the X server. When the server is running again,
the scologin window appears on the X terminal screen.

See also:

• "Running scologin with the Xservers file" (page 57)

• "Using the scologin administration script" (page 54)

X terminals that support XDMCP

If the X terminal does support XDMCP, use the following procedure. Note
that you do not need to configure the Xservers file in this situation.

1. Configure the X terminal to use XDMCP. While there are three ways you
can do this, the most common method is mentioned first:

• Set the display manager access parameter to "Direct" and specify the IP
address of the machine on which scologin will be running. This
method transmits a Query packet directly to the specified host machine.

• Set the terminal's display manager access parameter to "Broadcast."
This method broadcasts a query packet, to which one or more hosts
may respond. Depending on how your X terminal functions, the dis
play can request management from the host that responds first or it can
provide a list of available hosts and allow you to pick one.

• Set the display manager access parameter to "Indirect." This method
transmits a query packet to an intermediate host, which relays it to
another host.

2. Verify that scologin is running on the host machine with the letc/scologin
query command. Enter letdscologin start to start the display manager if it
is not already running.

3. Restart the server session on the X terminal. The scologin window dis
plays on the X terminal's screen.

See also:

• The documentation supplied with your X terminal for more information on setting
display manager access

Graphical Environment Guide

Using X terminals

Running a session on an X terminal without scologin

You can run a Graphical Environment session on your X terminal without
going through the process of configuring scologin to manage your X
terminal's server. To do so:

1. Start a telnet session on the X terminal. Connect to the host machine on
which you want to run your Graphical Environment session.

2. Once you are logged into the host machine, set the $DISPLAY environment
variable to the X terminal's display. For example, if your X terminal is
named vortex, you would specify:

DISPLAY=vortex:O; export DISPLAY

3. Run the startx script, using the -t option, to start the session:

startx -t &

4. The scosession client is started, the Desktop appears, and you can begin
your session.

If an .Xdefaults-hostname file exists in your home directory on the host ma
chine, clients you run automatically use the resources defined in this file.

63

Customizing startup of the Graphical Environment

64 Graphical Environment Guide

Chapter 4

Running remote programs

Networking plays a large part in the sea OpenServer Graphical Environment;
it allows you to mount remote file systems, and it lets you execute X clients on
remote machines while interacting with them from your display. The ability
to operate programs over a network does, however, introduce the issue of
controlling which clients can access a display. For reasons of security, you
may not want every user on every system in your network to have permission
to use your X server.

There are three tasks you must perform before you can use remote clients on
your display:

• gain access to the remote client (this page)

• set up access permissions to your display (page 66)

• run the client (page 73)

This chapter describes how to do each of these tasks.

Gaining access to the remote client

Before you can run clients on other machines, you must also be able to access
the remote machines. If the client is NF5-mounted on your system, then you
can run it locally, and no display access permission is required. If, on the other
hand, you want the client to run on the remote machine, you need an account
on the remote machine to access the remote client by any of the following
methods:

• run the client remotely using the rcmd(TC) command

• log in to your account on the remote machine with telnet(TC) or rlogin(TC),
then run the client

65

Running remote programs

If you want to run the client via rcmd, you must have user equivalence on the
remote machine or the rcmd command returns a "Permission denied" error
message.

To establish user equivalence on the remote host:

1. Log in to the remote host machine.

2. Create a file named .rhosts in your $HOME directory, or if one already
exists, open it for editing and add the following line:

localhost login

localhost is the name of the machine on which you are running the X
server. login is your account name on localhost.

When you have finished, save and exit the file.

3. Make sure that the user ID (UID) of login is the same on both machines.
Check the file /etclpasswd on both machines and make sure the DID fields
match. You can also use the id(C) command to verify the UIDs on each
machine. For information about the structure of the /etc/passwd file, see the
passwd(F) manual page.

4. Log out from the remote host.

You can now use rcmd(TC) to run clients on the remote host. You can also log
in to the remote host without being prompted for your password.

For more details on the above network commands, see Networking Guide.

Setting up access permissions to your display

66

Before you can display a remote client on your X server, you must allow the
client to access your display. There are two ways you can control access to
your display:

• tell the X server to allow the remote machine to access your display (page
67)

• supply an authorization code to specific accounts on the remote machine
(page 68) so only those users can access your display

I NOTE For information on controlling access to X terminals, refer to your X
terminal documentation.

Each method has advantages and disadvantages. Granting access to a remote
host machine is easy to accomplish, but it provides no control over which
accounts on the remote host are able to access your display. In systems where
security is of greater concern, it is recommended that you use the authoriza
tion code method. Be aware that the security of a system that uses the author
ization method is only as secure as the user's account; if anyone else can read

Graphical Environment Guide

Setting up access permissions to your display

the authorization file that contains the authorization code, they can also
access your display. Also, the authorization code method only works with X
servers that are provided with the Graphical Environment (Xsco) or with X
terminals that support the XDMCP protocol.

Granting access to specific hosts

The X server maintains a list of machines that have access to the display. You
must establish this list even if you plan to only grant access to users with an
authorization code.

To grant access to your display for specific host machines, perform the follow
ing steps. For more information on each of the steps in this procedure, see the
sections immediately following this list.

1. To specify system-wide access permissions, edit the /etc/Xn.hosts file,
where n represents the display number that you want the host machine to
be able to access. Add the names of the host machines to which you want
to grant access. This step is optional. (Do not add hosts to this file if you
only want to grant access to your display for one session.) You must be
root to edit these files.

The access permissions take effect when the X server is restarted.

2. To specify display access permissions for a single X session, run the server
and add or remove host machines in the access permission list with
xhost(X). Any user can perform this step.

The desired host machines now have permission to access your display.

Step 1: Establishing system-wide host access
The X server maintains a list of machines that have access to your display.
This list is contained in the /etc/Xn.hosts files on the local machine, where n
represents the display number for which you want to assign access. The ma
chines listed in these files are granted access to displays 0 through 7 at the
time the servers are started. For example, to specify the host machines that
are allowed to access local display :0, add the names of these machines to
/etc/XO.hosts.

Each line in the Xn.hosts files consists of just the name of the host machine that
has access to the server. For example, to allow any user on boston to access the
tusconey:O display, add the following line to /etc/XO.hosts on tusconey:

boston

You must be logged in as root to edit these files. The changes you make take
effect when the server is restarted.

67

Running remote programs

Note that any user on a host machine specified in these files has access to your
display whenever the X server is running. If you only want to grant access to
a host for a single X session, do not modify these files. Instead, see Step 2 (this
page).

In addition to adding hosts to the Xn.hosts files, be sure to remove hosts that
you do not want to have access to your display.

Step 2: Setting temporary display access
Once the X server is running, you can examine the current host permissions
with the following command, from a local scoterm window:

xhost

Use this command on the local machine where the server is running. xhost
with no command line options displays a list of machines that currently have
access to your display. Use this list to determine if the system-wide configu
ration provides access to the appropriate host machine.

To add a host to the X server's host access list, execute the following com
mand:

xhost +hostname

If you omit hostname, the X server removes all access restrictions, allowing
any client on any machine on the network to access your display.

I NOTE Use xhost + with caution; it allows any user on any machine on the
network to access your display.

If there are hosts configured that you do not want accessing your X server,
remove them from the server's host access list by running the following com
mand:

xhost -hostname

This command removes hostname from the host access list. If you omit host
name, xhost specifies that no remote host can access your display for the
duration of the current session. This option is very useful to reverse the effect
of running xhost +.

Granting access to specific accounts

68

If you log in through scologin, you can control display access by using an
authorization protocol called MIT-MAGIC-COOKIE. If scologin's authorize
configuration resource is set, upon logging in, both the X server and the user
receive an authorization code called a "magic cookie". If a user attempts to
run a client on an X server but does not have the required authorization
record, the server denies the client access. For details on configuring scologin,
see "Customizing scologin" (page 53) and the scologin(XC) manual page.

Graphical Environment Guide

Setting up access permissions to your display

The user receives the magic cookie through an authorization file in the
$HOME directory, named .Xauthority. The authorization file may contain
authorization codes for multiple X servers, allowing the user to run clients on
these servers. For security, only the user has read or write permissions on
authorization files. The user that logged in through scologin can share
authorization records with other users, however.

NOTE Host access permissions override user authorization restrictions. If
the host machine has obtained access permission through one of the
/etc/Xn.hosts files or the xhost utility, any user on the host can access the dis
play without having the X server's authorization code. See "Granting access
to specific hosts" (page 67) for more information on /etc/Xn.hosts files and the
xhost utility.

To grant access permission to a specific user, perform the following steps. For
more information on each of these steps, see the sections immediately follow
ing this procedure. You must be logged in as root to perform this task.

1. Edit the /etc/Xn.hosts files and remove any host names listed.

2. Configure scologin so it runs the X server with the magic cookie authori
zation protocol. The /usr/lib/Xll/scologin/Xconjig file must contain the fol
lowing resource specification:

DisplayManager*authorize: true

When you have finished, restart scologin.

3. Log in through the scologin window.

4. Run xhost to make sure no other host access permissions exist for your
session. (For example, host permissions may be specified in
$HOME/.startxrc.) If any host does have access permission, remove the
permission with the following command:

xhost -

5. To make sure your authorization file includes an authorization record for
the X server, run the following command:

xauth list

Extract the X server's authorization code by running:

xauth extract temp filename display

In this command, temp filename is a temporary file in which the authoriza
tion code is stored before it is merged. The displayname is the name of the
display as shown by the previous xauth list command.

Finally, merge it with the other user's authorization file by running:

xauth merge temp filename

In this command, temp filename is the same temporary file created by the
xauth extract command.

69

Running remote programs

70

Step 1: Disabling system-wide display access
The X server only employs its authorization protocol if all host access is dis
abled. Because the X server obtains a list of authorized hosts each time it
starts, make sure the server provides no initial access permissions.

To disable initial host access, edit the /etc/Xn.hosts file that corresponds to your
display. The /etc/Xn.hosts files determine which host machines have access to
the X server, regardless of who starts the server. For example, to remove ini
tial access permissions for local display :0, remove all host names from
/etc/XO .hosts.

Make sure xhost is not executed automatically from your $HOME/.startxrc file
or from a file in your $HOME/.odtpref directory.

Step 2: Configuring scologin
The X server authorization protocol is only used if you log in through the dis
play manager, scologin. scologin must be configured to run your X server
with the authorization protocol. The authorization protocol is not used if you
start the X server by running startx(X), xinit(X), or Xsco(X).

To configure scologin for authorization, you must edit the /usr/lib/Xll/scolog
in/Xconfig file. However, if scologin is already running on your system, you
must stop it before you edit the Xconfig file. As root, use the scologin adminis
tration script to do this:

letdscologin stop

I

NOTE This script shuts down all scologin processes on your system, which
results in the closure of any Graphical Environment sessions running at that
time. You should notify users before you actually stop scologin.

Now you can edit the /usr/lib/Xll/scologin/Xconfig file and verify that the
scologin authorize resource is set to true. If this resource specification is not
yet defined, add the following line to the Xconfig file:

DisplayManager*authorize: true

or

DisplayManager*displayname*authorize: true

In almost all circumstances, the first resource specification is suitable. Only
use the latter syntax if you want specific X servers to use the magic cookie
protocol. For details on setting scologin configuration resources, see the
scologin(XC) manual page.

If you want to authorize access for a display other than the one scologin
manages by default (/dev/tty02), modify the /usr/lib/Xl1/scologin/Xservers file to
configure the desired X server and tty on which you want the server to run.

Graphical Environment Guide

Setting up access permissions to your display

See "Running scologin with the Xservers file" (page 57) for information on
how to do this.

Now you can start scologin, using the scologin administration script. As root,
run the following command:

letc/scologin start

If you want to store your authorization records in a file other than
$HOME/.Xauthority, add a line to your .login file that sets the $XAUTHORITY
environment variable to the desired filename.

Step 3: Logging in through scologin
Log in through the scologin window. scologin generates a random authori
zation code and passes it to the server. Your user account also receives the
authorization record in the authorization file in your $HOME directory. By
default this file is named .Xauthority.

Step 4: Disabling user-defined display access
If you personally configured access to your display for remote machines using
the xhost utility, you should disable this access.

You can examine the current host permissions, to see if any access is still per
mitted with the following command:

xhost

If this command returns a list of machines that still have permission to use
your display, run the following command to deactivate the permissions:

xhost -

This command eliminates access to your display for any machines you may
have configured earlier.

Step 5: Sharing authorization records with other users
To allow other users to access your display, transfer the authorization record
that scologin generates for your X server from your $HOME/.Xauthority file
into the $HOME/.Xauthority file of the other users.

Although it is easy to give other users copies of your $XAUTHORITY file, this
practice is not recommended, especially if the file needs to be transferred over
a network. Preferred practice is to run xauth to extract the authorization
record for a specific display and merge it into another user's authorization file.

First, list the servers for which you have authorization by running the follow
ing command:

xauth list

71

Running remote programs

72

Note that each line starts with a display name in the following format:

hostname:display_number

To extract the authorization record, run the following command:

xauth extract temp file displayname

Be sure displayname matches the string displayed by the xauth list com
mand. temp filename is a file that you and other users have agreed to use.

If the other users are going to merge the authorization record into their
authorization files themselves, be sure to set temp filename's permissions so
that the other users can access it.

The other users can now merge the authorization record in temp filename into
their own authorization files, or you can do it for them as root, with the fol
lowing command:

xauth merge temp filename

When the other users have merged the authorization record into their authori
zation files, delete temp filename.

If you do not want to create the temporary file, temp filename, you can use a
pipe to redirect the authorization record from the xauth extract command to
the xauth merge command as follows:

xauth extract - displayname I xauth -£ authfile merge -

The dashes in each xauth command cause output to be directed to standard
output instead of to a file, and for input to come from standard input instead
of from a file. In this case, authfile is the pathname of the other user's authori
zation file. You must have read and write permission to authfile for this com
mand to work.

You can use a similar command line to share authorization records across the
network. For example, if you log in on boston and want to give your server's
authorization record to your account on tusconey, execute the following com
mand on boston:

xauth extract - boston:O I rcmd tusconey lusrlbinIX11fxauth merge -

See also:

• xauth(X) manual page

Graphical Environment Guide

Running the remote client

Running the remote client

Once you have set access permission for the client and gained access to the
remote machine, you can execute clients on the remote machine. There are
two ways to tell the remote client which X server to interact with over the net
work:

• before running the client, set the $DISPLAY environment variable (this
page) on the remote machine to point to your X server

• specify your X server in the client command line with the -display option
(page 74)

Running clients with the DISPLAY environment variable

If you log in to the remote host to run clients, you can set the $DISPLAY
environment variable to point to your X server so that you do not have to
specify your server on the command line every time you run a client.

If you are using esh, set the $DISPLAY environment variable with the follow
ing command:

setenv DISPLAY displayname

If you are using sh or ksh, set the $DISPLAY environment variable with the
following command:

DISPLAY=displayname; export DISPLAY

The displayname specification uses the following form:

[hostname] :display_number[.screen_number]

hostname specifies the machine on which the display is running and must be
either a machine name or the machine's network address, as listed in/etc/hosts.
If you omit hostname, the display is presumed to be running locally.

:display_number specifies one of the displays on hostname. Each display on a
system is assigned a :display_number, beginning with O. screen_number
specifies the screen on which the display is running.

See also:

• IIRunning clie~ts with the -display option" (page 74)

• IIUsing environment variables" (page 51) for more information on the $DISPLAY
environment variable

73

Running remote programs

Running clients with the -display option

The X clients supplied with the system accept the standard "Xt" command
line options, including the -display option, which allows you to direct the out
put of the client to a specific X server when you start the client. Use the fol
lowing command line syntax:

client -display displayname

Display names are specified in the following form:

[hostname]:display_number[.screen_number]

See "Running clients with the DISPLAY environment variable" (page 73) for
more information on how to set displayname.

You can use the above syntax regardless of whether you are executing the
client while logged in to the host through rlogin or telnet, or through rcmd.
For example, if you are running the :0 server on boston and want to run the
xclock client on tusconey, run the following command from boston:

rcmd tusconey "/usrlbinIXlllxclock -display boston:O" &

Similarly, if you log in to tusconey with rlogin or telnet, execute the following
command:

lusrlbinIX11/xclock -display boston:O &

Note that in the above cases, the ampersand (&) runs the client in the back
ground so that you do not have to close the client to get your command line
back. You can close the client with the Window menu or by typing (Alt)(F4).

Example of running a remote client on your display

74

This section provides a comprehensive example that ties together many of the
concepts and procedures discussed in this chapter.

For the purposes of this example, let's assume you have accounts on two sea
OpenServer machines: one that sits on your desk, named boston, and another,
named tusconey, that resides in another room. The two machines are part of
the same network, and their names and IP addresses are listed in each other's
letc/hosts files. You have root privileges on boston, but you do not have root
privileges on tusconey. Your account name is the same on both machines. You
are accustomed to using the clients installed on boston from the default server
running on tty02. You just received mail that on the machine tusconey there is
a nicely-configured version of the desktop client, xdt3, and you want to try it
out.

Graphical Environment Guide

Example of running a remote client on your display

This example explains how to:

• establish user equivalence on tuseoney

• configure the X server on boston so that you are the only user on tuseoney
that can access boston's display

• log in through scologin using "failsafe" so the Desktop client does not start

• run xdt3 on tuseoney and display the client on boston.

The following steps result in tuseoney's Desktop client displaying on your X
server on boston:

1. On boston, switch to ttyOl by pressing (Ctrl)(Alt)(Fl).

2. Log into boston as root.

3. Log into tuseoney remotely, using the rlogin command. When prompted,
enter your login name and password.

4. On tuseoney, edit the .rhosts file in your home directory, or if that file does
not exist, create it. Add the following line:

boston username

In this command, username is your login name. When you have finished,
save and exit the file. You have established user equivalence on tuseoney.
You can now log off tuseoney.

5. Back on boston, change to the /ete directory and open the XO.hosts file for
editing. If XO.hosts contains any host machine names, remove them or
comment them out with "#" characters. When you have finished, save
and exit the file.

6. Change to the /usr/lib/Xl1/seologin directory and edit the Xeonfig file. If the
DisplayManager*authorize resource is not defined as "true," or if it is not
listed at all, add the following line:

DisplayManager*authorize: true

When you have finished, save and exit the file.

7. If you modified the contents of /usr/lib/Xl1/seologin/Xeonjig, run scologin
stop, then run scologin start.

NOTE This script shuts down all scologin processes on your system,
which results in the closure of any Graphical Environment sessions run
ning at that time. You should notify users before you actually stop
scologin.

8. Switch to tty02 by pressing (Ctrl)(Alt)(F2).

9. When the scologin window appears, start a "failsafe" session. Log in by
typing your user login and password in the appropriate fields, then press
(Fl) instead of a carriage return. This starts a failsafe session instead of

75

Running remote programs

76

running a default session managed by scosession. The failsafe session
consists of only a scoterm window. The window manager and Desktop
are not started. For more details on failsafe sessions, see the scologin(XC)
manual page.

10. Type the following command in the scoterm window:

xauth list

The result is a list of servers for which you have authorization records.
The line beginning with ''boston:O'' indicates that you have authorization
to your local X server.

11. To authorize your account on tusconey to access your display, run the fol
lowing command:

xauth extract - boston:O I rcmd tusconey lusrlbinIX111xauth merge -

If the .Xauthority file does not already exist, the following message
appears:

/usr/bin/Xll/xauthority: creating new authority file usennatne/ .Xauthority

In this message, username is your login name.

12. To make sure the authorization code was successfully transferred to your
account on tusconey, run the following command:

rcmd tusconey lusrlbinIXlllxauth list

The line beginning with ''boston:O'' indicates that your account on tusconey
has authorization to access your X server.

13. Log in to tusconey with the following command:

rlogin tusconey

Note that you are not prompted for a password because you have user
equivalence on tusconey. When you are logged in, run the following com
mands:

PATH=:/usrlbinIXll
DISPLAY=boston:O
export DISPLAY PATH
scosession 2>/dev/null &

When the Desktop appears, double-click on the UNIX icon to open a
scoterm window. In the window, run hostname to verify that you are
using tusconey's filesystem.

When you are done using the Desktop, exit through the File menu.

The preceding steps only apply to your current X session. If you want to
make these changes take effect every time you start a session, you must reau
thorize your account as shown in Step 11 above. You can do this automatical
ly by placing the command given in Step 11 in the file $HOMEj.startxrc.

Graphical Environment Guide

Example of running a remote client on your display

I
NOTE In the steps above, you logged in using the failsafe login. When you
exit the original "failsafe" window, this will not only close that window but
also end your current X session.

77

Running remote programs

78 Graphical Environment Guide

Chapter 5

Understanding resources

The sea OpenServer Graphical Environment provides a mechanism that
allows you to specify characteristics that take effect every time you run a
client. Almost every feature of a client program can be controlled by chang
ing the value associated with a variable called a resource. You can specify
how a client looks on the screen: its size and placement, its border and back
ground color or pattern, whether the window has a scroll bar, and so on.
Some applications even allow you to redefine the keystrokes or pointer
actions used to control the application.

You can also use command line options to customize your clients. However,
you are limited in the number of features you can change with command line
options.

Specifically, this chapter describes:

• what resources are (page 80)

• the syntax for setting resources (page 81)

• the different places you can specify resources (page 87)

• setting resources in the X server with xrdb (page 90)

• using command line options to set resources (page 93)

• guidelines for managing resources (page 98)

This chapter is provided as a reference for understanding what resources are
and how they are used. Following chapters discuss the specifics of changing
resources for colors, fonts, window geometry and so forth.

79

Understanding resources

About resources

80

A resource is any parameter that affects a client's behavior or appearance, such
as foreground colors, background colors, fonts, window size, and window
placement. A resource is set through a resource specification, which contains the
resource variable and a resource value. For example:

client*resource_name: resource_value

When you execute a client, it locates any resource specifications that affect it
and then uses those attributes to define its appearance and behavior.

A resource is typically named for the aspect of appearance or behavior that it
controls. For example, the fontList resource controls the font that is used to
display text in the Graphical Environment.

In applications written with the X Toolkit (or an Xt-based toolkit such as the
OSF /Motif toolkit), resources may be associated with separate widgets within
an application. This allows you to control an entire class of a widget in the
client, as well as control specific instances of a class. For example, you can set
all of a client's buttons to display in blue, except for the Help button, which
displays in red.

Thus, with resources, you can modify behavior and appearance on a general
level, or a very specific level. You can specify a resource that controls only
one feature of a single application or specify a resource that controls one fea
ture of multiple objects within multiple applications.

There are several ways you can specify resources: through the resource data
base (using a program called xrdb), with system resource files, with resource
files in your home directory, and from the command line.

• Generally, resources are specified in files. Depending on the file you use,
however, the precedence of your resource specifications vary.

• The system uses certain files to place some primary resource values
directly in the server, through the resource database. This approach makes
the values available to all clients, regardless of the host where the client is
executed. The resource database is managed by xrdb, the X resource data
base manager.

• The system also contains system-wide resource files that set defaults for
clients run by all users on the system. These resources are loaded when a
particular client is invoked. You can also create individual resource files
that contain resource settings for a variety of clients, for an individual user.
These values apply to the clients that are run on the host machine only.

• You can also set resources on the command line, using command line
options.

Graphical Environment Guide

Syntax for resource speci fications

A set of routines called the IIresource manager" determines things like the
order in which the various resource files are read, the syntax for resource
specifications, and the rules of precedence by which conflicting or competing
resource specifications are resolved.

The concepts and terminology associated with resources may seem complex
at first. However, once you read this chapter and spend some time experi
menting by creating your own resource specifications, you will find the task
of setting resources straightforward.

See also:

• "Syntax for resource specifications" (this page)

• "Setting resources in the X server" (page 90)

• "Using command line options to configure clients" (page 93)

Syntax for resource specifications

A resource specification consists of the following components,

[client]*[restrictions*restrictions ...]*resource_name: resource_value

where:

• client is the client or application to which you want this specification to
apply. You can supply either the client's binary or class name. This com
ponent is optional; if you omit this part of the specification, the resource
definition applies to all clients that support this resource.

• restrictions, usually in the form of widget names or classes, define the
extent to which you want the resource definition to effect a client's appear
ance or behavior. You can only supply restrictions that are used and under
stood by the client(s) you are customizing, otherwise the resource specifica
tion is ignored. You can specify any number of restriction components,
leaving the resource specification very general, or narrowing its focus to a
discrete part of a client's functionality. This component is optional; if you
omit this part of the specification, the resource definition applies to all
relevant widgets of the specified client.

• resource_name is the actual resource variable that you want to define. Each
client and each widget has a set of resources that it recognizes. (Refer to
the client's manual page for a list of the resources that can be used to cus
tomize the application's behavior and appearance.) This component must
be specified.

• resource_value is the value that you want to assign to the resource variable.
For example, if you want to define a font resource, you would supply a font
name as the value. Different resources require different types of input; an

81

Understanding resources

overview of the various resource values you can expect to use is provided
in "Specifying values in resource specifications" (page 85). Refer to the
manual pages of the clients you want to configure for the values that are
expected by the clients' supported resources .

• The various components of a resource specification are separated by a de
limiter, in this case the asterisk" *" character. If you are unsure about what
type of delimiter to use in a resource specification, you can always safely
use the asterisk. The delimiters, also known as "bindings", are described
later in ""Using delimiters in resource specifications" (page 84) .

• A colon and whitespace separate the client, restrictions, and
resource_name components from the resource_value.

NOTE Be careful that you do not omit the colon at the end of a resource
specification. This is an easy mistake to make and the resource manager
does not provide any error messages. If there is an error in a resource
specification, including a syntax error such as the omission of the colon,
or a misspelling, the specification is ignored and the value you set does
not take effect.

For information on choosing the actual names for the client, restrictions, and
resource_name components, see '''Using classes and instances in resource
specifications" (page 83).

The following examples show various combinations of the above components
and describe the effects the resource specifications have on the system:

*foreground: yellow specifies that the foreground color is yel
low. Because no client is specified, the color
applies to all clients. Because no restric
tions are indicated, the color applies every
where within all clients.

XClock*foreground: pink specifies that the foreground color for the
xclock client is pink. The specification
applies to all aspects of the xclock client
that use the foreground resource.

Xman*topBox*foreground: blue specifies that the foreground color is blue
for the topBox widget, which is xman's
main options menu. The topBox com
ponent of the resource specification is a re
striction, limiting the use of the foreground
resource to a small portion of the xman
client.

82 Graphical Environment Guide

Syntax for resource speci fications

Using classes and instances in resource specifications

When specifying the client, restrictions, and resource_name components of a
resource specification, you need to decide if you want to use the component's
class name or instance name. The IIclass" is the general category to which the
component belongs, whereas the lIinstance" is the actual client, widget, or
resource variable.

A class can consist of several different versions of an application, or several
different widgets or resources. For example, in the case of the scoterm client,
the background color resource (background), the active background color
resource (activeBackground), and the top shadow color resource (topSha
dow Color) are all instances of the same class, Background.

You might choose to specify a class name instead of an instance name, if you
wanted to set values for several resources that fell within the same class. This
way, you could create the following resource specification:

ScoTerm*Background: blue

This specification is much quicker to define and achieves the same result as:

ScoTerm*background: blue
ScoTerm*activeBackground: blue
ScoTerm*topShadowColor: blue

In the case of clients, you might want to specify an application's class name
instead of the binary name if, for example, there are different versions of the
same program (perhaps to accommodate different machine architecture) on
your network. By using the class name to set a resource, you could ensure
that the resource specification would be used by all versions of the same
client.

You can combine the use of class names and instance names in a resource
specification so that you define a default for a wide range of cases and then
define a particular case that varies from the default without overriding it. For
example, you could specify that the buttons in all of the dialog boxes for a
particular client be displayed in blue, with the exception of a particular but
ton, which you want displayed in red. You might create resource specifica
tions that read:

xclient*buttonbox*xmPushButton*foreground: blue
xclient*buttonbox*delete*foreground: red

The XmPushButton class configures all buttons in the dialog boxes, but the
delete instance overrides the default for the Delete button only. This type of
specification works because an instance name always overrides the corre
sponding class name.

83

Understanding resources

By convention, class names begin with an uppercase letter, while instance
names begin with a lowercase letter. However, if an instance name is a com
pound word, such as activeBackground, the second word is usually capital
ized.

To identify the class and instance names for the resource variables that you
can set for a client, refer to the client's manual pages.

Using delimiters in resource specifications

84

Components of a resource specification are separated with delimiters, which
are also known as '1>indings". The following delimiters can be used:

• an asterisk" * ", to specify a "loose" binding

• a dot" . If, to specify a "tight" binding

The asterisk is a wildcard character and signifies that there can be any number
of levels in the widget hierarchy between the two surrounding components.
On the other hand, the dot indicates that the components must be next to each
other in the hierarchy.

If you want to specify tight bindings, you must be very familiar with the
widget hierarchy; it is easy to use these bindings incorrectly.

For example, the following resource specification, indicating that xterm win
dows should be created with a scroll bar, does not work:

XTerm.scrollBar: true

This specification ignores the widget hierarchy of xterm, in which the VT100
window is considered one widget, the Tektronix window another, and the
menus a third. To configure xterm to use a scroll bar using tight bindings, you
would need to specify:

XTerm.VT100.scrollBar: true

Rather than decipher the widget hierarchy of a client and risk making a mis
take, it is far simpler to use the asterisk delimiter in your resource specifica
tions:

XTerm*scrollBar: true

The asterisk, acting as a wildcard, tells the resource manager to locate any
widgets in xterm's widget hierarchy that support a scroll bar and assign a
scroll bar to them.

Graphical Environment Guide

Syntax for resource speci fications

NOTE In an application that supports multiple levels of widgets, you can
mix loose and tight bindings. However, it is generally recommended that
you use the asterisk delimiter, even in resource specifications for IIsimple"
clients. This is because clients can change from release to release, incor
porating new widgets in the hierarchy. Using loose bindings ensures that
your resource specifications will work on future versions of a client.

Specifying values in resource specifications

The type of text string that you supply for a resource_value depends on the
nature of the resource variable. Resources tend to fall into eight categories,
each requiring a different type of value.

These basic categories are described below:

Colors: Color resources require a color value, as specified in the
color database, /usr/lib/Xll/rgb.txt. For example:

Fonts:

XClock*foreground: magenta
XCalc*background: aquamarine

Because the Graphical Environment provides seoeolor, a
color editor that allows you to create palettes of colors, it is
recommended that you refrain from using actual color
values with resources and instead assign palette resource
variables. These variables are then assigned actual color
values through seoeolor. The following example shows
how several color resources have been assigned appropri
ate palette resource variables instead of actual color values:

ScoEdit*background: scoBackground
ScoMail*foreground: scoForeground

For information on the color database, the seoeolor client
and its interaction with palette resource variables, and for
details on how to specify color resources, see Chapter 6,
IIChanging colors" (page 99).

Font resources require the name of an available font. You
can use either a full name, a wildcarded specification, or a
font alias. For example:

ScoTerm*Font: -adobe-courier-bold-r-normal--14-140-75-75-m-90-iso8859-1
ScoTerm*Font: *courier-bold-r*140*
ScoTerm*Font: courierB14

For information on fonts and specifying font resources, see
Chapter 7, "Changing fonts" (page 125).

85

Understanding resources

86

Geometry: Geometry resources require information to determine the
size of the client's window and/or x and y grid coordinates
to determine the location of the window. For example:

XCalc*geometry: 180x240-0-0
XClock*geometry: -0+5

For information on specifying geometry resources, see
Chapter 8, "Configuring window size and location" (page
159).

Cursor names: Cursor resources require the name of the file in
/usr/include/Xll/bitmaps that contains the cursor you want
to use. For example:

Pixmaps:

ScoTerm*pointerShape: gurnby

For information on specifying a different cursor pixmap for
the scoterm client, see Chapter 9, "Changing cursor appear
ance" (page 173).

Pixmaps are patterns, like bitmaps, that are used to texture
or color an area on your display. Pixmap resources are
specified like cursors or bitmaps. For example:

Pmwm*scocolor*backgroundPixmap: scales
*bottomShadowPixmap: mensetmanus

Numeric quantities:
Some resources require a numeric value. For example:

XClock*update: 30
XLoad*update: 60
XLogo*borderWidth: 10

Boolean values: Some resources require a boolean value, such as "true" or
"false", "yes" or "no', or "on" or "off'. For example:

Translations:

ScoTerm*scrollBar: false
Pmwm*focusAutoRaise: true

Some resources assign particular strings to keys, or assign
actions to keys or mouse buttons. These resources are
fairly complex and the meaning behind the values may be
hard to understand from a simple example. See Chapter
11, "Configuring the keyboard for the server" (page 209)
and Chapter 26, ""Mapping mouse triggers for the Desktop"
(page 371) for more information on specifying these types
of resources.

Graphical Environment Guide

Methods for specifying resources

Precedence rules for resource specifications

Because of the great flexibility you have in defining resource specifications, it
is not uncommon to create specifications that conflict with each other. For
example, take the following resource specifications for a hypothetical client,
xc1ient:

xclient*Buttons*background: blue
xclient*help*background: red

The first resource specification sets the background color of all buttons to
blue. The second resource specification overrides the value specified in the
first specification, but only for the instance of widgets with the name ''help.''
In the event of conflicting specifications such as this, there are a number of
rules that the resource manager follows in deciding which resource specifica
tion should have priority. In the case of a conflict, the most specific resource
definition is used.

The precedence rules are as follows:

• The dot delimiter takes precedence over the asterisk delimiter. For exam
ple, XTerm.VT100.geometry is more specific than XTerm*geometry.

• Instance names take precedence over class names. For example, *fore
ground is more specific than *Foreground.

• An instance or class name that is stated explicitly takes precedence over
one that is omitted. Specifying a component is more specific than omitting
it. For example, the following definition:

ScoTerm*XmMenuShell*XmRowColumn*XmLabel*fontList

is more specific than:

ScoTerm*fontList.

Methods for specifying resources

Overall, there are eight different ways to specify resources. These different
approaches can be grouped in the following categories:

Application-specific resources resource specifications, stored in files that are
named for the applications they configure.
These files are only read by the particular
client, when it is first started.

Server-specific resources resource specifications that apply to all
clients, regardless of the host on which an
application is running

87

Understanding resources

88

Host-specific settings

Command line options

resource specifications that relate only to the
host on which an application is running,
regardless of where the client is displayed

resource specifications for the current invoca
tion of a client

When a client is executed, the eight sources of resource definition are con
sulted in the following order. Resources that are defined later in this list have
precedence over resources defined earlier.

1. System-wide application-specific resource files:
These files contain site-wide defaults for classes of applications. The files
are named after the applications' class names and they are stored in the
/usr/lib/Xll/app-defaults directory. For example, the resource file for the
scoterm client is called /usr/lib/Xll/app-dejaults/ScoTerm. When a client is
executed, the resources in the client's resource file are loaded into the
resource manager.

2. User application-specific resource files:
These files have the same name as those above, however they are stored in
a different location, specified by the $XAPPLRESDIR environment variable.
If this variable is not set, the files are located in a user's home directory.
Use these files to override system-wide resource specifications for individ
ual users.

3. The X server's resource database:
A number of resources are automatically loaded into the resource data
base and stored in the X server when the scosession session manager is
first started. These resources are defined in files, named for an
application's class, in the /usr/lib/Xll/sco/startup directory. The resources
defined in these files are placed in the resource database by the xrdb client.
These resources are available to all applications, regardless of the host on
which they execute.

If scosession is not running, you can load resources into the resource data
base by running xrdb manually. These resources have the same level of
priority as resources loaded when scosession is started.

4. The $HOMEI.Xdefaults file:
This file is only used if resources are not loaded into the X server by xrdb.
If you are running scosession, which runs xrdb, this file is never used.
Resources specified in this file are only available on the local machine; you
need to create one of these files for each machine on which you run clients.

5. The file defined by $XENVIRONMENT:
The contents of any file specified by the $XENVIRONMENT variable are
loaded into the resource manager.

Graphical Environment Guide

Methods for specifying resources

6. The $HOMEI.Xdefaults-hostname file:
If the $XENVIRONMENT variable is not defined, the resource manager
looks for a file named .Xdefaults-hostname in a user's home directory,
where hostname is the name of the machine on which a client is running.
The resources defined in this file effect any client that is run on the local
machine, even if its output is sent to a remote display. You need to create
one of these files for each machine on which you run clients.

7. Application-specific options:
Some applications have specific command-line options that only work for
that client. For example, xclock's -chime option or xpr's -scale option.

S. X Toolkit-standard options:
Generally, all applications that use the X Toolkit, including the clients sup
plied with the system, accept a standard list of command-line options. In
particular, the -:xrm option can used to load any resource specification for
the current Graphical Environment session from the command line.

The resource manager searches these locations for valid resource specifica
tions, in the indicated order. All of the resource specifications are loaded and
sorted. If a conflict in resource specifications is located, the conflict is resolved
according to the precedence rules described earlier in this chapter. If the same
resource is assigned conflicting values, the last definition encountered is used.
For example, if the resource manager encounters the following resource speci
fication early on:

ScoTerm*scrollBar: false

and then locates the exact same specification, with a different value later, in a
host-specific file:

ScoTerm*scrollBar: true

the "true" value is used and scoterm is assigned a scroll bar.

After the resource manager determines which of the resource specifications
should be implemented for a particular client, the client then merges these
values with its own internal defaults, if any.

See also:

• "Setting resources in the X server" (page 90) for information on storing resources
directly in the X server with xrdb

• "Using command line options to configure clients" (page 93) for information on
using command line options to set resources

89

Understanding resources

Setting resources in the X server

90

Resources are loaded into the X server by the X resource database client, xrdb.
The xrdb client is run automatically by scosession when you log in through
scologin or when you run the lusrlbinlstartx script from the command line.

The /usr/lib/Xll/sco/startup directory contains several display-specific resource
files, named for the clients they represent. For example, the ScoHelp file con
tains resources for scohelp and the ScoMail file contains resources for seomail.
This directory also contains two other files, Colors and Fonts. These files con
tain global color and font resources that are used by clients unless they specif
ically define their own color and font values.

The xrdb client reads the values in these files when seosession is started and
loads them into the resource database, storing them directly in the X server.
(Technically speaking, the resource values are stored in a data structure
referred to as the RESOURCE_MANAGER property of the Root window for that
server. This property is simply referred to as the resource database.)

Resources that are stored in the X server are available to all clients, regardless
of the machine on which they are run.

While the xrdb client is run by seosession, it can also be invoked interactively,
using the following syntax:

xrdb [options] lfilename]

When using xrdb, note the following:

• The xrdb client takes several options, the most important of which are
described in the following sections. You can also refer to the xrdb(XC)
manual page for more information on these options.

• The optional filename argument specifies the name of a file from which you
want xrdb to read resource values. The filename you specify can be any
resource file, including the .Xdefaults-hostname file, if you made changes to
it during a Graphical Environment session. H no filename is specified, xrdb
reads its data from standard input.

I NOTE H you run xrdb during a Graphical Environment session without
using the -merge option, (page 91) you override all of the resources in the
resource database that were loaded when you first started the X server.

Graphical Environment Guide

Setting resources in the X server

See also:

• "Examining the contents of the resource database" (this page)

• "Loading new values into the resource database" (this page)

• "Saving new specifications in a resource file" (page 92)

• "Removing resource definitions from the resource database" (page 93)

• "Using the session manager" (page 48) for information on how scosession uses
xrdb

Examining the contents of the resource database

You can determine what resources are currently loaded in the resource data
base using the -query option. For example:

xrdb -query

The -query option produces a list of all of the currently recognized resource
specifications, such as:

*Background: scoBackground
Font: --helvetica-medium-r-*--lO-*-p-*
FontList: --helvetica-medium-r-*--lO-*-p-*
*Foreground: scoForeground
*XmLabel*FontList: -*-helvetica-medium-r-*--lO-*-p-*
*XmLabelGadget*FontList: -*-helvetica-medium-r-*--lO-*-p-*

Note that if your system was modified so that scosession (which runs xrdb) is
not started, or if you removed all definitions from the resource database, this
command produces no output.

Loading new values into the resource database

If you want to add new resource values to the resource database without
overriding the current values, you must use the -merge option with the xrdb
client.

For example, to add new resources that are stored in a file called myresources,
you would enter:

xrdb -merge myresources

As another example, if you wanted to configure subsequent versions of
scoterm to display scroll bars, you could use standard input and enter:

xrdb -merge
ScoTerm*scrollBar: True

When you are finished, press (Ctrl)d to end the standard input.

91

Understanding resources

Any new resource specifications that you add during a Graphical Environ
ment session will not affect any clients that are currently running. If you want
your current clients to reflect your new resource settings, you need to restart
them.

NOTE If you add a new resource specification but do not see the behavior
you expect, it may be that a more specific resource specification has already
been loaded into the resource database, and not that you used the -merge
option incorrectly.

If your specifications do not seem to work, use the -query option (page 91)
to list the current values in the resource database. Check this list for any
conflicting resource specifications.

Saving new specifications in a resource file

92

If you loaded new resource specifications into the resource database using
standard input or the -xrm command line option (page 97) and now you
would like to save the settings permanently in a resource file, you do not need
to edit the file manually (although you certainly could.) The -edit option
allows you to write the current contents of the resource database to a file. For
example:

xrdb -edit -1.Xdefaults-hostname

This example saves the current contents of the database in the file .Xdefaults
hostname, in your home directory.

NOTE If the file you specify already exists, its contents are overwritten with
the new values. However, xrdb is smart enough to preserve any comments
and preprocessor declarations in the file being overwritten, replacing only
the old resource specifications.

If you want to save a backup copy of an existing resource file, use the -backup
option, in addition to the -edit option:

xrdb -edit -1.Xdefaults-hostname -backup old

The string following the -backup option is used as an extension that is
appended to the old filename. In this example, the old copy of the .Xdefaults
hostname file is saved as .Xdefaults-hostnameold.

Graphical Environment Guide

Using command line options to con figure clients

Removing resource definitions from the resource database

You can remove the entire current contents of the resource database from the
X server, using the -remove option.

There is no way to delete a single resource definition other than to read the
current xrdb values into a file, remove the unwanted resource specifications
from the file, and then load the file back into the resource database.

For example:

xrdb -query > filename

Use an editor to edit the file, deleting the resource definitions you no longer
want and save the file. Then read the edited values back into the resource
database:

xrdb -load filename

If you are running scosession, these changes to the resource database are
stored and used again in future sessions. If you are not using scosession,
however, these modifications are only implemented for the current Graphical
Environment session. If you log out and log back in, the deleted resource
definitions are once again loaded into the resource database. To remove a
resource specification permanently without running scosession, you must
edit the resource file that contains the definition.

Using command line options to configure clients

Most clients have a set of command line options that control some of their
appearance and behavior characteristics. These options control X resource
specifications such as colors, fonts, window geometry, and so forth. (You can
use resource specifications to configure client appearance and behavior on a
much wider scale. However, resources are more complicated to set than the
command line options.)

You can use these command line options when launching any client from a
scoterm window. Ordinarily, the effects of a command line option are tem
porary, only existing for the current session. However, if you end your
Graphical Environment session while the client you configured with com
mand line options is still running, the client reappears in its same configura
tion in your next session.

For example, if you start the xclock client from a scoterm window, using the
-geometry command line option to place the window at the upper-left comer
of the screen, and then end your Graphical Environment session, the next time
you resume the session, xclock will still be located in the upper-left comer.
Note, however, that if you move the window to a new location, quit the

93

Understanding resources

94

session and then resume it at a later time, the xc10ck window is located in the
upper-left comer according to your command line argument, and not in the
location where you moved the window before quitting the Graphical Environ
ment.

Command line options also take precedence over all other resource specifica
tions, unless the command line setting is more general than a specified
resource definition.

A client's manual page lists all of the command line options that are valid to
use with that client. However, most clients support the options listed in Table
5-1, "Standard client command line options".

Table 5-1 Standard client command line options

Command
line option
-bg

-bd

-bw

-display

-fg

-fn

-geometry

-iconic

-name

-rv

+rv

-title

-xrm

Alternate option
-background

-border

-d

-foreground

-font

-reverse

Description
sets the background color of a client's window

sets the border color of a client's window
frame, if you are not running pmwm or mwm

sets the border width in pixels, if you are not
running pmwm or mwm

sets the name of the display you want the
client to use

sets the foreground color of a client's window
(usually the text)

specifies a font name

sets the size and location of a client window
on the display

starts the application in iconified form

specifies a name for the application being run

reverses foreground and background colors

does not reverse foreground and background
colors

sets the string that is used for the title in the
window frame

passes a resource specification to the resource
manager

Graphical Environment Guide

Using command line options to con figure clients

See also:

• "Window appearance options" (this page)

• "Display specification option" (this page)

• "Font specification option" (page 96)

• "Window size and location option" (page 96)

• "Client name option" (page 97)

• "Window title option" (page 97)

• "Resource specifications on the command line" (page 97)

Window appearance options

Most of the standard command line options determine the appearance of a
client's window. They specify the background color (-bg), the foreground
color (-fg), the border color (-bd) and the border width (-bw) in pixels. The
colors you assign must be available from the color database.

For example, to start a scoterm client so it uses yellow characters on a navy
background, you would enter the following command:

scoterm -bg navy -fg yellow &

If a color name includes embedded space, you must include the color name in
quotes. For example, to specify light blue as the background for scoterm, you
would enter:

scoterm -bg "light blue" &

The -rv option specifies that the client should reverse the colors that were
defined for the background and foreground resources.

I

NOTE Because the window manager places its frames over the window
borders provided by the X server, the -bd and -bw options have no effect
unless a window manager is not running.

See also:

• Chapter 6, "Changing colors" (page 99) for more information on colors, including
the color database

Display specification option

An important command line option is -display, which you can use to specify
the display on which you want the client's output to appear. You can use this
option as an alternative to setting the $DISPLAY environment variable before
starting the application.

95

Understanding resources

For example, if you want to run the xbiff client, and display its output on a
remote server on a machine named scooter, you would enter:

xbiff -display scooter:O.O &

where N scooter" is the name of the remote host machine.

See also:

• Chapter 4, "Running remote programs" (page 65) for more information on specify
ing remote displays

Font specification option

A client's font resource controls the font that is used to produce text output.
Like colors, fonts are specified by names; the font name you use must be
included in the font database.

For example, to configure the scoterm client to use a 12-point courier font, you
would enter:

scomail -fn -adobe-courier-medium-r-normal--12-120-75-75-m-60-iso8859-1 &

Instead of entering an entire font name, you can also use wildcard characters,
or a defined font alias.

See also:

• Chapter 7, "Changing fonts" (page 125) for more information on specifying fonts

Window size and location option

96

Another common option is -geometry, which is used to specify the size and
location of the client's main window. The geometry is specified in the follow
ing format:

[width x height] [±XofftyoffJ

The width and height values specify the size of the window in pixels. (For
scoterm or xterm, you must specify the width and height in terms of columns
and rows of text.) These values are optional.

The ±Xoff and ±yoff values indicate the position on the grid, in pixels, where
the window should be located. These values are also optional.

A positive xoft value indicates the number of pixels that the left side of the
window is offset from the left side of the screen. A negative xoftvalue, on the
other hand, specifies the number of pixels that the right edge of the window is
offset from the right edge of the screen. Similarly, positive and negative yoff

Graphical Environment Guide

Using command line options to con figure clients

values indicate offsets from the screen edges of the top and bottom edges of
the window, respectively.

For example, the following command places a 120-pixel by 120-pixel xclock
window in the upper right corner of your screen with a 16-pixel gap between
the clock's frame and the screen's top and right edges:

xclock -geometry 120x120-16+ 16 &

See also:

• Chapter 8, "Configuring window size and location" (page 159) for more informa
tion on specifying window geometry

Client name option

The -name option changes the name by which the X server identifies a client.
Changing the name of the application itself affects the way the application
interprets resource files.

Window title option

The -title option allows you to specify a text string as the title of a client's
window. If your client has a title bar or if the window manager puts title bars
on windows, this string appears in the title bar.

Window titles can be useful in distinguishing multiple instances of the same
application. For example, if you use two scoterm windows, one of which is
run on a remote host machine, you can set the title of the scoterm window so
it indicates the name of the host machine on which it is running. You would
enter the following:

scoterm -display hostname:display_number -title '''uname _nit! &

Resource specifications on the command line

The -xrm option allows you to define on the command line, any resource
specification that you would otherwise put into a resource file. For example:

scoterm -xrm 'ScoTerm*scrollBar: true' &

Note that the resource specification must be quoted using single quotes, as in
the above example.

Any resources that you specify with the -xrm option are implemented for the
current client session only. As a result, using this approach is a good way to

97

Understanding resources

temporarily change the appearance or behavior of a client without overwrit
ing the default settings.

NOTE If you are using scosession and you exit the Graphical Environment
with a client that was run from the command line still open on your display,
the client is restored when you resume your session. Any resources
specified with the -xrm option when the client was started are also restored.
In this way, the -xrm option can define client behavior on a more permanent
basis

The -:xrm option is most useful for setting classes, since most clients have
command line options that correspond to instance variable names. For exam
ple, the -fg command line option sets the foreground attribute of a window,
but -xrm must be used to set Foreground.

A resource that is specified with the -xrm option does not take effect if a
resource that has precedence has already been loaded into the resource data
base. For example, if the resource database contains the following resource
specification:

ScoTerm*pointerShape: bogosity

the following command line specification of another cursor for scoterm will
fail:

scoterm -xrm '*pointerShape: gumby' &

This failure results because the resource ScoTerm*pointerShape is more spe
cific than the resource *pointerShape. To override the resource database so
you can use the LlGumby" cursor, you need to use a resource specification that
is equally or more specific than the designation in the database. For example:

scoterm -xrm 'ScoTerm*pointerShape: gumby' &

Guidelines for managing resources

98

.Xdefaults-hostname files are searched sequentially. Consequently, some per
formance gain may be realized by putting resource specifications for fre
quently used clients (such as pmwm and xdt3) in front of resource specifica
tions for other clients (such as xclock).

If you have a resource specification that applies to a specific client and a glo
bal resource specification that applies to all clients for the same resource,
place the specific definition before the global definition.

These guidelines are particularly relevant if your .Xdefaults-hostname file is
large.

Graphical Environment Guide

Chapter 6

Changing colors

The sca OpenServer Graphical Environment provides a large color database
from which you can select colors. In most cases, you should use the scocolor
palette editor to make these color changes. However, there are times when
you will need to make a specific color designation using resources.

Specifically, this chapter describes:

• background information about the color database and color resources
(page 100)

• changing system-wide colors (page 109)

• changing colors for individual users (page 112)

• changing colors from the command line (page 116)

• adding custom colors to the color database (page 118)

There is also a section of examples (page 121) at the end of this chapter that
helps to tie together many of the concepts and procedures discussed in this
chapter.

See also:

• "Changing colors with the Color control" (page 27)

• Chapter 5, "Understanding resources" (page 79)

99

Changing co/Drs

About colors

There are several issues to consider when changing colors on your system.
Colors are available from a color database. The scocolor client, a convenient
tool for previewing colors and changing the color appearance of the Graphical
Environment, makes available the colors that are provided by this database,
as well as hundreds of other colors that you can create yourself.

The color database is based on the RGB (Red/Green/Blue) color model. The
scocolor client is based on the RGB color model, but also provides the option
of using the HSV (Hue/Saturation/Value) color model as an alternative.

While the color database provides hundreds of colors, there are limits on the
number of different colors that you can actually display at the same time. The
severity of this limitation depends on the X server you are using and, conse
quently, on the size of your system colormap.

See also:

• "The color database" (this page)

• "The RGB and HSV color models" (page 101)

• "The scocolor client" (page 103)

• "Colormaps" (page 107)

The color database

100

The color database, based on the RGB color model, provides a predefined set
of colors and shades of gray. This database specifies hundreds of different
colors, including various shades for some colors. The database also provides
101 shades of gray. This large number of precisely graduated grays provides
a wide variety of shading for gray scale screens.

The color database information is stored in compiled format in two files,
rgb.dir and rgb.pag, located in the /usr/lib/Xll directory. In the same directory,
the rgb.txt file lists all of the database information in Ascn format.

The rgb.txt file lists the name of each color defined in the database, variations
on the color names (differing only in spelling, spacing, and capitalization), and
the Red, Green, and Blue (RGB) values that are used to create each color. For
more information on the RGB color model, see the next section.

Graphical Environment Guide

About co/Drs

To examine the contents of the rgb.txt file, open it with any text editor. The
following is a partial listing of the rgb.txt file:

255 250 250 snow
248 248 255 ghost white
248 248 255 GhostWhite
245 245 245 white smoke
245 245 245 WhiteSmoke
220 220 220 gainsboro
255 250 240 floral white
255 250 240 FloralWhite
253 245 230 old lace
253 245 230 OldLace
250 240 230 linen
250 235 215 antique white
250 235 215 AntiqueWhite
255 239 213 papaya whip
255 239 213 PapayaWhip
255 235 205 blanched almond
255 235 205 BlanchedAlmond
255 228 196 bisque

You can also use the showrgb client to display the contents of the color data
base.

See also:

• showrgb(X) manual page

The RGB and HSV color models

Most color monitors on the market today are based on the RGB color model.
Each pixel on the screen is made up of three phosphors, or colors: Red, Green,
and Blue. When all three of these colors are illuminated, the pixel appears
white. When all three are dark, the pixel appears black. Various combina
tions of the three phosphors result in a large number of distinct colors and
shades. For example, equal portions of red and green, without any blue, result
in a shade of yellow.

The intensity of each of the phosphors is controlled by a three-part digital
value. As noted in the previous section, the rgb.txt file consists of lines such
as:

127 255 212 aquamarine

101

Changing colors

102

On each line, the three numeric fields represent the RGB components that
comprise the color. These components are decimal values and must be within
the range of 0 to 255, where 255 sets the color to full intensity. In the preced
ing example, the aquamarine color is created from 127/255ths of maximum
red, 255/255ths of maximum green, and 212/255ths of maximum blue.

In most cases, using the color names defined in the color database should be
adequate for customizing colors for the Graphical Environment. However, if
you want to specify a more precise color or use a color that is not defined in
the database, you can use a hexadecimal RGB value instead of a name to set a
resource or a command line option.

I NOTE If you are unfamiliar with hexadecimal numbering, see a basic com
puter textbook for more information.

Hexadecimal RGB values are somewhat different from the RGB definitions in
the rgb.txt file. When you specify a hexadecimal value, follow these rules:

• Begin the value with a pound sign" # "

• Specify the red, green, and blue values using 1 to 4 hex digits. Each color
must use the same number of hex digits.

• Use a value of "f£ff" to set the corresponding color to its maximum value; a
value of zero riO") indicates no color

• You must specify all three RGB values, even if the value for one of the
colors is "0"

Using these rules, you can choose from one of the following hexadecimal for
mats:

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

When fewer than four digits are used, they represent the most significant bits
of the value. For example, "#8E4" is the same as "#8000E0004000". In addi
tion, while #RGB and #RRRGGGBBB have the same relative intensities of the
three color components, the second value results in a much brighter color
than the first.

You can specify hexadecimal RGB values exactly as you would a color name:

client*resource_name: #RRRGGGBBB

Graphical Environment Guide

About colors

NOTE Because the precision of different adapters and monitors varies, the
exact same color values may not produce the exact same shade of color on
different displays.

The scocolor client (this page) is also based on the RGB color model. How
ever, it allows you to switch to the HSV color model to provide greater flexi
bility in choosing colors.

Unlike the RGB color model, which is hardware-oriented, the HSV model is
user-oriented, based on the more intuitive appeal of combining hue, satura
tion, and value elements to create a color.

However, the scocolor client automatically translates any colors that are
selected or created using the HSV model to corresponding RGB values. The
HSV option is provided only as an alternative interface for selecting colors.

The scocolor client

The Graphical Environment provides the scocolor client, a color palette edi
tor. This client allows users to control the colors that are used for the basic
display elements of the Graphical Environment, including window frames
and backgrounds. In general, this client is the preferred tool if a user wants to
change the colors used by the Graphical Environment.

NOTE The scocolor client requires an X server that supports at least 16
colors or grayscales. Only PseudoColor and grayscale visual X servers are
supported. If you try to run scocolor on a monochrome system, you see an
error message.

It is not the aim of this section to explain how to use the scocolor client.
Rather, this section focuses on how the scocolor client interacts with client
color resources to specify the color elements of the Graphical Environment
display. If you are unfamiliar with how to use the scocolor client, refer to
"Changing colors with the Color control" (page 27).

See also:

• "Color palettes" (page 104)

• "Color resources and the color palettes" (page 105)

103

Changing co/Drs

104

Color palettes
A color palette is a collection of eight colors that controls the color scheme for
the Graphical Environment. The eight palette colors are loaded into color but
tons, or cells, where each button controls a specific aspect of the environment.
The following list correlates each color button with the elements of the
environment it affects:

Background

Foreground

Top shadow

Active window

Active foreground

Active top shadow

Alternate background

Highlight

controls the background color of all windows on the
screen, including directory windows, scoterm win
dows, and windows in which other clients are run
ning

controls the foreground color of all windows. The
foreground usually consists of text, including lists,
menus, buttons, icon labels, and so forth.

controls the top shadow color of the window frame.
This resource gives a window its three-dimensional
appearance, especially if the color is a lighter shade
of the background color.

controls the background color in the window frame
for the currently active window

controls the foreground color in the window frame,
usually text, for the currently active window

controls the color of the top shadow on the frame of
the currently active window

controls the color of the Desktop background, as
well as the color for scrollbar and sliderbar troughs
and the icon box background, if in use

controls the color of a button when it is pressed

Note that the bottom shadow of a window frame is always black.

Graphical Environment Guide

About colors

The following diagram illustrates the effects the different color buttons have
on your Graphical Environment display:

Top shadow Foreground Active window

Alternate background Highlight Foreground Background

Figure 6-1 Effects of color palettes on the Graphical Environment

Color resources and the color palettes
All of the clients provided with the system, including the standard Xll clients,
have been configured to use colors defined by the current palette. If you
change the color in a palette, or select an entirely new palette, all of the clients
that you run adhere to the same color scheme.

105

Changing co/Drs

106

X clients are configured to use scocolor's palettes through "palette resource
variables". You assign a palette resource variable to a color resource instead of
specifying an actual color value for the resource. The X server replaces the
palette resource variables with the actual colors that are configured by the
current palette when a client is invoked.

Table 6-1, "Relationship between palette resource variables and color buttons"
lists the palette resource variables and the color buttons to which they corre
spond:

Table 6-1 Relationship between palette resource variables and color buttons

Palette resource variable
scoBackground
scoForeground
scoTopShadow
scoActiveBackground
scoActiveForeground
scoActiveTopShadow
scoAltBackground
scoHighlight

Corresponding color button
Background
Foreground
Top shadow
Active window
Active foreground
Active top shadow
Alternate background
Highlight

Some of the client resource files in the /usr/lib/Xll/sco/startup and
/usr/lib/Xll/app-defaults directories, such as Pmwm and ScoTerm, set color
resources using the resource variables described above. Other clients do not
set color resources, either because there is no resource file for the client, or the
file simply does not include color resources. These clients draw their color
designations from the global color resource file, Colors, located in
/usr/lib/Xll/sco/startup. This file defines all of the basic color resources a client
might need, using the appropriate palette resource variables.

The following example lists the resource settings specified in the Colors file:

*Background:
*Foreground:
*topShadowColor:
*bottomShadowColor:
*activeBackground:
*activeForeground:
*activeTopShadowColor:
*activeBottomShadowColor:
*troughColor:
*armColor:
*highlightColor:
*selectColor:
*borderColor:

scoBackground
scoForeground
scoTopShadow
Black
scoActiveBackground
scoActiveForeground
scoActiveTopShadow
Black
scoBackground
scoHighlight
scoForeground
scoForeground
Black

For example, if you run the xbiff client, which does not have a resource file,
the background of the xbiff window is assigned the color that is linked to the

Graphical Environment Guide

About colors

scoBackground palette resource variable. If you are using a palette that sets
window backgrounds to steel blue, then the background of the xbiff window
is steel blue. If you run the scoedit client, which has a resource file in
/usrllib/Xll/app-defaults that sets the *background resource to scoBackground,
then the background of the scoedit window is also steel blue.

While the scocolor client is generally the preferred method for customizing
colors, there may be occasions where you need to use an actual color value for
a resource specification. "Changing colors for individual users" (page 112)
explains how to specify color values instead of palette resource variables.

Colormaps

Although it is possible to use specific color values to establish different colors
for the Graphical Environment, you should avoid specifying too many colors
this way. Depending on the number of colors you can display on your moni
tor at the same time, there are limits to the number of resources you should
set with color values.

The number of colors you can display on your screen simultaneously depends
on the capabilities of your hardware, and, therefore, your X server. Some
graphics adapters are capable of displaying only 16 unique colors, while oth
ers can display 256 distinct colors. These hardware dependencies determine
whether your system has a 16-color or a 256-color X server.

The X server uses a colormap to keep track of its color usage. A" colormap",
sometimes called a color lookup table, is simply an array of color cells. Each
color cell contains the RGB values for a particular color. A 16-color server uses
a colormap with 16 color cells, and a 256-color server uses a 256-cell color
map.

When the X server is first started, two colors, black and white, are automati
cally loaded into the first two cells of the colormap. If you are running the
scosession session manager, a color palette daemon allocates the next eight
cells and assigns the values of the current color palette to these cells.

If you are using a 16-color X server, you only have six additional color cells in
the colormap that you can fill. These cells are allocated to clients on a first
come, first-serve basis. If you run an application whose color resources are
defined by palette resource variables, no additional cells are filled. But if an
application defines a specific color value, even if that color is part of the
current color palette, one of the remaining six color cells is assigned that color.
In most cases, other applications can then use this color cell as well.

The six extra color cells are only deallocated when the last application specify
ing one or all of the cells is terminated. Therefore, it is very easy to use up
these last six cells if you specify many unique color resources. When all 16

107

Changing colors

108

cells of the colormap are allocated for a 16-color X server, no new color desig
nations can be made until a cell is freed. If you make a color designation that
cannot fit in the colormap, you see an error message that indicates there are
no free color cells. The X server then tries to assign a color from the colormap
that is closest to the color you originally wanted.

Of course, if you have a 256-color server, your colormap is considerably larger
and you have more latitude for setting color resources with specific colors.

See also:

• "The sea Merge and sea Wabi colormaps" (this page)

The SeQ Merge and seQ Wabi colormaps
While most applications are designed to share the colors in a colormap, some
applications require their own colormaps. This is the case for sea Merge and
sea WabL

sea Merge requires the use of the 16 standard DOS colors. H you are using a
256-color X server, the standard colormap is probably large enough to accom
modate the colors you usually use and the 16 colors for DOS. However, if you
are using a 16-color X server, unavoidable color conflicts occur when running
sea Merge.

If you run a sea Merge session so your DOS application fills the entire screen,
even on a 16-color X server, you can avoid these color conflicts. The server
simply loads the DOS colormap and the DOS program can access any of the
colors it needs.

When you want to run a DOS application in a window, however, you must
take certain steps to avoid color conflicts. One possible solution to this prob
lem is to use scocolor to switch to the DOS Primary Colors palette before start
ing a seD Merge session. This palette provides eight of the primary colors
most often used by DOS programs. In most cases, these eight colors result in
readable text for all windows. However, there may still be cases where you
get unreadable windows.

sea Wabi also requires the use of its own colormap. See Appendix B, #Color
from Windows to the seD Wabi program" in the sea Wabi User's Guide for
more information.

See also:

• sea Merge User's Guide

• sea Wabi User's Guide

Graphical Environment Guide

Changing colors for the entire system

Changing colors for the entire system

In general, it is not recommended that you define color resources with specific
color values on a system-wide level. These specific color settings are loaded
into the colormap, in addition to the two cells allocated by the X server for
black and white and the eight cells allocated for the palette colors. If your sys
tem uses a 16-color X server and users are also defining unique color
resources, the likelihood of filling the colormap is very high.

However, there are two color configuration tasks that are appropriate for a
system administrator to do on a system-wide level: changing a color in an
existing palette (this page) and adding new palettes to the system (page 111).

See also:

• "Creating a new system-wide palette" (page 111)

• "Changing colors with the Color control" (page 27)

• "The sea Merge and sea Wabi colormaps" (page 108)

Changing colors in an existing palette

You can change the colors in any existing palette so that the color schemes of
the palettes better suit the needs of your users. You must be logged onto the
system as root to perform this task.

To change a color in an existing palette, perform the following steps. For more
information on each of these steps, see the sections immediately following
this procedure.

1. Select the color(s) that you want to replace the color settings in the palette.
Use one of the following methods to aid your choice:

• Run the scocolor client to preview the available colors. When you
decide on a color, note the Red, Green, and Blue decimal values for that
color.

• Examine the rgb.txt file in lusr/lib/Xll for a color you want to use. Note
the Red, Green, and Blue decimal values for that color.

2. In the system palettes file in /usr/lib/Xl1IscoIScoColor, locate the line that
corresponds to the color you want to change and replace it with the RGB
values for the new color.

109

Changing colors

110

Step 1: Selecting a replacement color
The scocolor client is an excellent tool for previewing different colors and
determining how they actually appear on your monitor. The Red, Green, and
Blue decimal values that are displayed above the RGB slider bars correspond
directly to the RGB values for the colors in the database.

When you decide on a particular color, note the RGB decimal values for the
color. You need to specify these values to replace the old color.

A quicker way to determine the RGB values for a color is to examine the
rgb.txt file in /usr/lib/Xll. This approach is most useful if you already know
the color that you want to use but do not know the color's RGB values.

NOTE Choosing a color from the rgb.txt file based simply on the color's
name may result in a disappointing appearance. Because of differences in
graphics adapters and monitors, colors are not always reproduced in the
way you might expect. For example, a color named Lemon Chiffon might
seem more beige than yellow on some displays.

Step 2: Adding the new color to the palette
All of the default, system-wide palettes are located in the palettes file in
/usr/lib/Xll/sco/ScoColor. Palette definitions in this file consist of nine lines of
information. The following example shows the definition for the Tropics
palette and a description of each line in the definition:

Tropics Name of palette
62 243 220 Background color (RGB values)
0 52 44 Foreground color (RGB values)
188 255 247 Top shadow color (RGB values)
255 255 0 Active background color (RGB values)
0 71 67 Active foreground color (RGB values)
255 255 255 Active top shadow color (RGB values)
255 124 171 Alternate background color (RGB values)
233 160 106 Highlight color (RGB values)

Locate the section that defines the palette you want to modify. Then replace
the line that contains the color you want to change with the RGB values for
your new color choice. Use tabs to separate the three columns.

Graphical Environment Guide

Changing colors for the entire system

NOTE You cannot comment out lines within a palette definition. H more
than nine lines exist for a palette, scocolor cannot access any of the palettes
that follow the altered palette definition.

H you want to save a copy of a default palette before altering it, either make
a backup copy of the palettes file or create a new palette, (page 111) based on
the default palette, from within scocolor.

Creating a new system-wide palette

You can add new palettes to your system that all users can access. Unfor
tunately, system administrators cannot use the scocolor client to create
system-wide palettes. The scocolor application always stores new palettes in
.odtprefIScoColor, in the user's home directory. If you run scocolor as root,
palettes you create are stored in the .odtpref directory in I, not in the system
wide palettes file. Because of this, you need to merge palettes you create into
the system-wide palettes file, after you are finished using scocolor.

To create a new palette that all users can select through the scocolor client,
perform the following steps. You must be logged onto the system as root to
perform this task. For more information on the steps in this procedure, see the
sections immediately following this list.

To create a new palette that all users can access through scocolor:

1. Run the scocolor client and create the new palette.

2. Append the new palette, located in /odtprefIScoColor, to the system-wide
palette file, /usr/libjXlllscoIScoColorlpalettes, by entering the following com
mand:

cat l.odtpreflScoColor » lusrlliblXll/sco/ScoColor/palettes

Step 1: Creating the new palette
To create a new palette, first run the scocolor client. From the scocolor win
dow, click on the Add palette button. You are prompted to supply a name for
the new palette.

The new palette inherits the colors of the current palette. H you want to build
a new palette using an existing palette as a baseline, select that palette before
clicking on Add palette.

111

Changing colors

Apply the desired colors to the eight palette buttons. When you finish creat
ing the palette, click on OK and then exit scocolor.

See also:

• "Changing colors with the Color control" (page 27)

Step 2: Adding the new palette
When you create a palette as root, the palette definition is stored in a file called
ScoColor, in the /.odtpref subdirectory. To make the new palette available to all
users, you need to incorporate the palette definition into the system-wide
palette file, palettes, located in lusr/lib/Xl1/sco/ScoColor.

Enter the following command to add the new palette definition to the end of
the palettes file:

cat l.odtpreflScoColor » lusrniblXll/sco/ScoColor/palettes

After you append the new palette, it is advisable to edit the palettes file and
verify that the format of the file is acceptable. There cannot be any blank lines
between palette definitions. Also, if there are additional palette definitions in
the /.odtpref/ScoColor file that you do not want other users to access, delete the
lines for those palettes from the system-wide file.

Changing colors for individual users

112

In general, users should use the scocolor client (page 27) when they want to
modify the colors that are used by the Desktop and other clients. However,
there may be circumstances where a user wants to change the color for a par
ticular aspect of the Graphical Environment display without changing the
colors defined in the current palette. For example, a user may run the scoedit
client often and want the background of the scoedit window to be a unique
color so it stands out on the display. Another user might want the back
ground of all non-active window frames to use a different color than the back
ground of the windows themselves. Color changes of this kind should be
made using an .Xdefaults-hostname resource file in the individual user's home
directory.

Before you actually make any color resource specifications, however, you
should be familiar with the information in Chapter 5, ''Understanding
resources" (page 79).

Graphical Environment Guide

Changing colors for individual users

The following procedure can be undertaken by either root or an individual
user. To change the color settings for a particular aspect of a client, perform
the following steps. For more information on each of these steps, see the sec
tions immediately following this procedure.

1. Create a file called .Xdefaults-hostname in the user's home directory.

2. Edit the .Xdefaults-hostname file and add the new color resource
specification, using the following format:

client*resource_name: color

Save your changes and exit the resource file when you are finished.

3. If you created the .Xdefaults-hostname file as root, assign the appropriate
user permissions to the file:

chown username .Xdefaults-hostname
chgrp groupname .Xdefaults-hostname

4. Start a Graphical Environment session.

Step 1: Creating an .Xdefaults-hostname file
Individual users can assign their own color values, instead of palette resource
variables, to color resources. A resource that uses a specific color value
always has precedence over the same resource set with a palette resource
variable.

Specific color resource settings are placed in a file called .Xdefaults-hostname,
where hostname is the name of the host, or machine, where the client is run
ning. This file must be located in the user's home directory.

You can add an .Xdefaults-hostname file to a user's home directory in one of
two ways:

• Create a file named .Xdefaults-hostname and then add the desired color
specifications to the file. This approach is most useful if you are only mak
ing a few color designations .

• Copy one or more of the client default files from /usr/lib/Xll/app-defaults to
the user's home directory, merging the files into a single file called
.Xdefaults-hostname. You can then use the file as a template, deleting
resources you do not want to change and entering specific color values for
the color resources you do want to change.

113

Changing colors

114

NOTE Lines in the resource files in the app-defaults directory do not specify
the client, because each file applies to only one client. If you create an
.Xdefaults-hostname file by copying the relevant lines from a file in the app
defaults directory, be sure to add the client's class or instance name to the
beginning of each line if it is not already there. Otherwise the color resource
specification will affect all clients.

When the user invokes a client, the client checks to see if an .Xdefaults
hostname file exists in $HOME. If such a file does exist, the resource values
specified in the user resource file take precedence over any values assigned to
the same resource in the resource database.

See also:

• "Methods for specifying resources" (page 87) for more information on the
.Xdefaults-hostname file

Step 2: Setting the color resource
As with all resources, color resource specifications must use the correct for
mat:

client*resource_name: color

client refers to the client you want to affect. You can supply either the client's
binary or class name. resource_name is the actual resource variable you want
to define. You can use either the resource's class or instance name. color is
either the name of the color you are selecting or the color's hexadecimal RGB
values. If you enter a color name, it must match an entry in the rgb.txt file.
Hexadecimal RGB values, (page 101) however, do not have to exist in the
color database.

There are many resources that control the colors used for the Graphical
Environment. Table 6-2, LlCommon color resources" lists the most commonly
used color resources. For a more complete list of color resources that are valid
for a client, refer to the client's manual page.

Graphical Environment Guide

Changing colors for individual users

Table 6·2 Common color resources

Resource name
Class: Foreground
*foreground

*activeForeground

*bottomShadowColor

Default value Effect

scoForeground Color of text in windows

scoActiveForeground Color of text in active window
frame

Black Bottom shadow color of win
dow frame

*activeBottomShadowColor Black Bottom shadow color of active
window frame

*normal*foreground

Class: Background
*background

*activeBackground

*topShadowColor

*activeTopShadowColor

*back*background

Black

scoBackground

Color of text in Desktop icon
labels

Window background color

scoActiveBackground Color of background in active
window frame

scoTopShadow Top shadow color of window
frame

scoActiveTopShadow Top shadow color of active win
dow frame

scoBackground Directory window background
color

*desktop*back*background scoAltBackground Desktop background color

Desktop icon label background
color

*normal*background White

Note that the resources in this table are grouped by class. If desired, you can
set all of the resource instances in a class to the same color value simply by
specifying the class in the .Xdefaults-hostname file. For example, to set all
instances of the Background class to yellow, specify the following:

c1ient*Background: yellow

Whether you are replacing a palette resource variable with a specific color
name or specifying anew, more specific resource, the resource line should use
the same format. For example, to specify that the background for a scoedit
window should be red, add the following resource line to the .Xdefaults
hostname file:

ScoEdit*background: red

See also:

• Chapter 5, "Understanding resources" (page 79) for more detailed information on
specifying resources

115

Changing co/Drs

Step 3: Assigning correct ownership permissions
If you generated an .Xdefaults-hostname file for a user from the root account,
whether by creating the file or by copying the file from files in
/usr/lib/Xll/app-defaults, you must assign the file the correct ownership per
missions. Run the chown command to assign the correct owner and the
chgrp command to assign the correct group to the .Xdefaults-hostname file.

If you created your own .Xdefaults-hostname file, you can omit this step. Your
ownership permissions are already correct.

Step 4: Starting a Graphical Environment session
To see your new color settings, start a Graphical Environment session, either
through scologin or by running startx from the command line.

Run the desired clients. When a client is started, it reads the
$HOME/.Xdefaults-hostname file for your personal resource specifications.
The new color settings are noted and specified colors are displayed accord
ingly.

If you created your own .Xdefaults-hostname file while running a Graphical
Environment session, and you want the new color values applied to clients
that are currently running, you need to restart the clients.

If you want the Desktop client to reflect your new color specifications, you
must end your session and then start the X server again, either by logging in
through a scologin window or by running the startx script from the command
line.

Setting colors from the command line

116

You can specify colors for different elements of a client's display on the com
mand line. If you specify a color resource from the command line, however,
the color is only set for the current client session. Subsequent sessions return
to the default color specification for the client.

NOTE If you are using scosession and you end your Graphical Environ
ment session with a client that was run from the command line still open on
the display, the client is restored when you resume your session. Any com
mand line options that were used to define the client are also restored. In
this way, command line options can define client behavior on a more per
manent basis.

Graphical Environment Guide

Setting co/Drs from the command line

To set different color characteristics for a client from the command line, open a
scoterm window and use one of the following command line options:

• the -xrm option (this page) sets an actual color resource

client -xrm 'client*resource_name: color' &

• the -bg and/or -fg options (page 118) sets specific background and fore
ground colors

client -bg color -fg color &

The -xrm option

The -xrm option allows you to set any resource value, including color specifi
cations, from the command line. You must enter the resource specification as
well as the desired color when using this option. You can specify a color by
using either its database name or its hexadecimal RGB values. (See "The RGB
and HSV color models" (page 101) for information on how to set resources
with hexadecimal RGB values.)

For example, to change the color of the active window frame for scoterm,
enter the following at the command line:

scoterm -xrm 'ScoTerm*activeBackground: red' &

When using the -xrm option, you should follow these rules:

• You must quote a resource specification using the single quote character (').

• You can specify more than one resource value from the command line at
the same time. You must enter the -xrm option for each specification you
make:

scoterm-xrm 'ScoTerm*activeBackground:red' -xrm 'ScoTerm*activeForeground:navy' &

A color resource specified at the command line with the -xrm option will not
take effect if X has already recognized a color resource, either in the resource
database or in an .Xdefaults-hostname file, that takes precedence. (See "Pre
cedence rules for resource specifications" (page 87) for information on the pre
cedence of resource specifications.) For example, you might create an
.Xdefaults-hostname file with the following resource specification:

ScoTerm*mainMenu*background: green

117

Changing colors

In this case, the following command line specification would not cause the
scoterm client to display an aquamarine-colored main menu:

scoterm -xrm 'ScoTerm*background: aquamarine' &

Because the ScoTerm*mainMenu*background designation is more specific,
the ScoTerm*background entry on the command line cannot change the back
ground color of scoterm's main menu.

To override the resource database and get the new menu background color,
you would need to use a resource equal to or more specific than the default
setting. For example, the resource ScoTerm*mainMenu*background would
provide the desired color change.

The -bg and -fg options

Most clients also accept the -bg and -fg command line options. These options
control the following elements of a client's display:

-bg sets the client window's background color

-fg sets the client window's foreground color (usually the color of the text in
the window)

You can set these options using either a color's database name or its hexade
cimal RGB values. (page 101)

For example, to run the xclock program with a plum background and navy
text, enter the following at the command line:

xclock -bg plum -fg navy &

H a color name includes blank spaces, you need to include quotation marks
around the name. For example, to specify light blue as the background for
xclock, enter:

xclock -bg "light blue" &

Adding custom colors to the database

118

By experimenting with the RGB slider bars in the scocolor client or with RGB
values on your own, you can create colors and shades that are not included in
the color database. H you create custom colors that you think might be useful,
you should add them to the color database.

Once incorporated in the database, the new colors become available to all
users on your system and can be selected through the scocolor client in
exactly the same way you would select any of the other default colors in the
database. You must be logged into the system as root to perform this task.

Graphical Environment Guide

Adding custom co/Drs to the database

To add a custom color to the color database, perform the following steps. For
more information on each of these steps, see the sections immediately follow
ing this procedure.

1. Edit the rgb.txt file in /usr/lib/Xll and add your new color, using the fol
lowing format:

colorname

Save and exit the file when you are finished.

2. From the /usr/lib/Xl1 directory, run the rgb command to recompile the
color database:

rgb < rgb.txt

3. Run the showrgb command to check that the new color is now listed in
the color database:

lusrlbinIX111showrgb I more

Step 1: Adding the new colors to rgb.txt
To add a new color to the color database, first include the color name and the
color's RGB decimal values to the rgb.txt file, located in /usr/lib/Xll. Use the
following format when adding the color to the file:

colorname

Red_value, Green_value, and Blue_value represent the percentages of red,
green, and blue, respectively, that are used to create the color. These three
entries must be specified with a decimal value between 0 and 255, where 255
indicates a color is at full intensity. colorname indicates the name of the color
that is associated with the related RGB decimal values. You can use blank
spaces or tabs to separate the four fields in an RGB designation.

I
NOTE Before you modify the rgb.txt file, it is recommended that you make a
backup copy of the file. This way, you can return to the original color data
base, if desired.

H the name you choose for your new color has more than one word or more
than one spelling (for example, gray and grey), you are advised to create
several different entries in the rgb.txt file to account for these differences. This
gives users a range of flexibility when entering color names in resource files.
Use the same RGB values for the alternate entries.

119

Changing colors

120

For example, you might create a custom color that you want to name "light
yellow silk." You might make the following entries in rgb.txt:

243 255 162 light yellow silk
243 255 162 LightYellowSilk

In the same way, if you create a color that you want to name "blue gray," you
should make the following entries:

94 139 157 blue gray
94 139 157 BlueGray
94 139 157 blue grey
94 139 157 BlueGrey

You can place your custom color definitions anywhere you want in the rgb.txt
file. However, the default colors in this file are arranged in groups of similar
shades. For example, all shades of blue are grouped together; all shades of
pink are grouped together, and so forth. Therefore, it may be advisable to add
your new colors within the shade groupings that best match the colors.

When you finish adding your color definitions to the rgb.txt file, save your
changes and exit the file.

Step 2: Running rgb
After you add your new color definitions to the rgb.txt file, you need to run
the rgb program to recompile the color database.

The rgb program uses the information in rgb.txt, including your new color
definitions, as input and then creates new versions of the rgb.dir and rgb.pag
files. You should change to the /usr/lib/Xll directory to run this command.

Enter the following command to recompile the color database:

rgb < rgb.txt

NOTE The rgb program does not make backups of the rgb.dir and rgb.pag
files before it overwrites them with the new versions. If you want to
preserve your old color database files, make sure you create backup ver
sions of rgb.dir and rgb.pag before you run rgb.

Step 3: Running showrgb
After you recompile the color database, you should check to make sure the
new colors are actually recognized in the database.

Graphical Environment Guide

Examples of changing colors

The showrgb command examines the rgb.dir and rgb.pag files and constructs a
list of all the colors it finds in the database. The command then displays this
list on your screen. The list includes the names assigned to the colors and the
RGB values used to generate the colors. Note that all the color names that are
displayed by this command are in lowercase letters only, even if the database
recognizes uppercase versions of a color.

Because the colors that are available in the database number in the hundreds,
you should use a paging command, such as more or pg, when you run
showrgb:

lusrlbinIXlVshowrgb I more

Your custom colors are now available to all users on the system. All users can
select anyone of the new colors from the list of available colors displayed by
scocolor.

Examples of changing colors

This section provides two examples that tie together many of the concepts
and procedures discussed in this chapter.

• The first example (this page) describes how to add a custom color to the
color database and then change a default palette so it uses the new color.

• The second example (page 123) explains how a user might customize the
colors that are used by the Graphical Environment.

Example 1: Using custom colors in default palettes

Let's assume you are an administrator for a system whose X server and clients
are accessed by several users. Your users have asked you to replace the win
dow background color in the default, system-wide palette called Northwoods
with a more muted shade of blue, because the current color, as it displays on
your monitors, is too bright.

After some experimentation, you decide that none of the shades of blue avail
able in the database will satisfy all of your users, so you create a custom color
to resolve the problem. This example covers all aspects of incorporating this
color into the Northwoods palette, including how to:

• add the custom color to the color database, and

• add the color to the system-wide palette file.

121

Changing colors

122

The following steps result in a modified default palette:

1. Log into the system as root. If you did not log into the root account
through a scologin window, start a Graphical Environment session by
entering:

startx &

2. From a scoterm window, change to the /usr/lib/Xll directory and open the
rgb.txt file for editing.

3. Because your new color is a shade of blue, locate the section of the rgb.txt
file that defines blue colors. This section starts with the following entry:

25 25 112 midnight blue

4. Within the blue section, open a line and enter the RGB values and the
name for your custom color. Color names are separated from the RGB
values by a tab.

For this example, enter:

184 216 255 alpine blue

Because the color name in this example consists of two words, you should
also enter the following:

184 216 255 Alpine Blue

5. Save and exit the rgb.txt file.

6. Recompile the color database with the rgb command so the X server can
recognize the new color:

rgb < rgb.txt

7. When your prompt returns, run the showrgb command to check that the
new color is now listed in the database:

showrgb I grep alpine

This command produces the definition line for the Alpine Blue color.
Remember to use lowercase letters when greping for a color name with
the showrgb client.

8. You are now ready to modify the Northwoods palette and add your new
color. Change directories to /usr/lib/Xll/sco/ScoColor and look for the file
named palettes. This file contains all of the system-wide palette
definitions.

9. Make a backup copy of the palettes file, in case you should want to return
to the original Northwoods palette some day:

cp palettes palettes.old

Graphical Environment Guide

Examp/es of changing co/Drs

10. Open the palettes file for editing and search for the Northwoods palette
definition. You should see:

Northwoods
172 199 224
52 0 0
255 241 241
158 228 151
16 86 124
255 238 255
255 220 180
255 148 48

11. The window background color is defined by the Background color button.
The color for this button is specified in the second line of the Northwoods
palette definition. Replace the second line, which reads 172 199 224,
with the RGB values for the new color, using tabs to separate the three
columns:

184 216 255

12. Save and exit the palettes file.

13. To verify that you correctly modified the Northwoods palette, run the
seoeolor client and select the Northwoods palette. You should see a much
more pleasing shade of blue for the backgrounds of your windows.

Example 2: Customizing colors with resources

For this example, let's assume that you use the seomail program frequently
and want to quickly distinguish its window from other windows on your
screen. A good way to do this is to change the colors that are used by the
seomail window without changing the colors that all other windows use.

This example covers how an individual user can make this kind of color
change without changing colors in the current palette. It is not recommended
that a system administrator change colors on a system-wide level in this
fashion, because possible colormap conflicts may arise for users.

The following steps result in a seomail client that displays colors that are
unique from those used by the rest of the Graphical Environment.

1. Log into the system. If you did not log in through a seologin window,
start a Graphical Environment session by entering:

startx &

2. Launch a seoterm window by double-clicking on the UNIX icon.

123

Changing co/Drs

124

3. In your home directory, create a file called .Xdefaults-hostname, where
hostname is the name of your system. This example uses scooter as your
host name.

4. Edit your .Xdefaults-scooter file and add the following resource specifica
tions:

SeoMail*baekground: blue
SeoMail*activeBaekground: yellow

These resource specifications tell the X server that the background of the
seomail window should be blue and the background of the window frame
should be yellow when the seomail window is active. With these color
settings, your seomail window will always be easy to distinguish.

5. When you finish entering the color resource specifications, save and exit
the .Xdefaults-scooter file.

6. To verify that the X server recognizes your color specifications, run the
seomail client. You should see a window with a blue background and a
yellow active border.

Graphical Environment Guide

Chapter 7

Changing fonts

The sea OpenServer system includes a variety of fonts for text that display
when you use the Graphical Environment. Most clients allow you to specify
the font that is used to display text in windows, in menus and icon labels, or
in any other text field. You make these font specifications through resources.

Specifically, this chapter describes:

• background information about fonts (page 126)

• using the font server (page 130)

• configuring the font server (page 133)

• listing available fonts on your system (page 138)

• previewing a specific font (page 141)

• specifying system-wide and personal fonts (page 143)

• creating font aliases (page 151)

• adding new fonts to your system (page 152)

There is also an example (page 156) at the end of this chapter that helps tie
together many of the concepts and procedures discussed in this chapter.

See also:

• "Changing Desktop fonts" (page 30) for information on changing Desktop fonts
using the Preferences Editor

• Chapter 5, "Understanding resources" (page 79) for a detailed explanation of
resources

125

Changing fonts

About fonts

126

The supported fonts on your system form a font database. By default, all font
files are located in subdirectories of the /usr/lib/Xlllfonts directory. The five
standard subdirectories are:

mise fixed-width fonts and cursor and glyph fonts

75dpi fixed- and variable-width fonts for 75 dots per inch (dpi) displays

100dpi fixed- and variable-width fonts for 100 dots per inch (dpi) displays

Speedo contains outline fonts for the Bitstream(r) Speedo rasterizer. A single
font face, in normal, bold, italic, and bold italic, is provided, contri
buted by Bitstream, Inc.

Typel scalable, PostScript Type1 fonts

Each of these directories includes a fonts.dir file, which together provide a
database for the X server. When the X server needs a font, it uses these files to
locate it.

The fonts.dir files contain two columns of information: the first column lists
all of the font files in the directory and the second column lists the full font
names associated with the font files. The first line in fonts.dir lists the number
of fonts available in that directory.

By default, the directories mise, 75dpi, 100dpi, Speedo, and Typel, in
/usr/lib/Xlllfonts constitute the font search path. The X server uses the search
path to determine where on the system it should look for font files. If needed,
other directories can be added to the font search path. For information about
adding new directories to the X server's font search path, see #Adding a font
to your system" (page 152).

The font search path is defined by the /usr/bin/startx script. You can see the
font search path by typing the following line at the shell prompt:

xset q

Fonts can be specified with a full name, wildcards, or aliases. For example, a
14-point courier bold font could be specified in any of the following ways:

-adobe-courier-bold-r-normal--14-140-75-75-m-90-iso8859-1
'*courier-bold-r*140*'
courierB14

The first line is the full name of the font, the second line uses wildcards,
and the third line uses an alias.

Graphical Environment Guide

See also:

• "Font names" (this page)

• "Using wildcards" (page 128)

• "Font aliases" (page 129)

• "The font server" (page 130)

Font names

The full name of a font is a string such as the following:

-adobe-courier-bold-o-norrnal--10-100-75-75-m-60-iso8859-1
1 2 3 4 5 6 7 8 9 10 11 12 13 14

About fonts

This is the full name of the courB010.pc! font in the /usr/lib/Xl1lfonts/75dpi
directory.

A font name is comprised of 14 fields, with a hyphen (-) separating each field.
The fields have the following meanings:

1. foundry that digitized and supplied the font

2. font family, based on standard typesetting names for various fonts. The
major families include Charter, Courier, Helvetica, Lucida, Lucidabright,
Lucidatypewriter, New Century Schoolbook, and Times.

3. font weight, usually "bold" or "medium"

4. font slant, usually "i" for italic, lid' for oblique, or "r" for Roman.

5. font proportionate width, as set by the foundry. Most fonts use "normal";
other possible values are "condensed", "narrow", and "double width."

6. add_style_name; used to provide additional information not covered in
the rest of the font name, for example "serif," or "decorated." Typically this
field is not used.

7. font size in pixels. This measurement depends on the resolution of the
font. For example, if the font has a resolution of 100 dots per inch (dpi), a
12-point font has a pixel size of 17. If a font has a resolution of 75 dpi,
there are fewer dots per pixel, so a 12-point font has a pixel size of 12.

8. font size in tenths of a point. A point is a printer's unit that measures 1/72
of an inch.

9. horizontal resolution in dots-per-inch

10. vertical resolution in dots-per-inch. Horizontal and vertical figures are
required because a screen may have different capacities for horizontal and
vertical resolution.

11. font spacing. The valid values are lim"~ for monofont (or fixed-width) and
"p" for proportional.

127

Changing fonts

12. average (mean) width of all characters in the font, measured in tenths of a
pixel (60)

13. font character set registry. This specification refers to the ISO 8859 charac
ter set. The Ascn character set is a part of ISO 8859.

14. character set encoding. "1" is the Latin character set.

You should also be aware of the following when dealing with font names:

• Font names are case sensitive. Whenever you enter a font name, be sure to
use the correct combination of upper- and lowercase letters.

• No spaces can be used anywhere in the font name, except when they are
contained within the font family specification, in which case they must be
enclosed in double quote characters.

• Terminal emulator clients (scoterm, xterm) require fixed-width (monofont)
fonts. Most other clients can use either a fixed-width or a variable-width
font, depending on your preference. Fixed-width fonts resemble the fonts
used on non-graphics terminals, whereas variable-width fonts resemble the
fonts used in typeset text.

Using wildcards

128

Wildcard characters can be used to shorten the string needed to specify a font.
The asterisk (*) and question mark (?) serve as wildcard characters in much
the same way they do for the operating system: an asterisk represents any
combination or variety of characters and a question mark represents any sin
gle character.

To prevent the shell from interpreting the wildcards, either enclose the entire
font name in quotes or use a backslash before each wildcard character. For
example, the two following lines are valid wildcard representations of the
font discussed in the previous section. In this example, the font is being
specified for the scoterm client using the -fn command line option.

scoterm -fn '*courier-bold-o-*-100*' &

scoterm -fn *courier-bold-o-*-100* &

You should be aware of the following when using wildcards in font specifica
tions:

• Font specifications using wildcards should explicitly name enough parts of
the font's full name to create an unambiguous reference. Wildcarded font
specifications usually specify the font family, weight, slant, and point size.

• If the wildcarded font specification is ambiguous (in other words, more
than one font matches the specification), the X server chooses which font to
use. If fonts from more than one font directory match the wildcarded

Graphical Environment Guide

About fonts

name, the server chooses a font from the directory that occurs first in the
font path. In other words, fonts defined in the 75dpi directory are chosen
rather than fonts in the 100dpi directory .

• It is better to match the point size field (which is measured in tenths of a
point) than the pixel field. This allows your wildcarded font name to work
properly with monitors of different resolutions, because the wildcarded
font name matches either the 75dpi or 100dpi font set.

Using font wildcards is a convenient method of specifying fonts. However, it
can also lead to unexpected results, so it is recommended that you test your
shortcut thoroughly before making it generally available. In many cases, font
aliases, described in the next section, provide a safer and easier way to shor
ten your references to full font names.

Font aliases

Another way to abbreviate font names is to create a font alias, a shorter name
that is used as an alternative to the full font name. Font aliases are specified in
a file calledfonts.alias. By default, the three directories mise, 75dpi, and 100dpi
in /usr/lib/Xll/fonts each contain a fonts.alias file. If you add new font direc
tories to your system, you can create fonts.alias files for those directories too.

The default fonts.alias files already contain several aliases. You should study
these files as you will probably find the aliases are more convenient to use
then specifying full font names, or even wildcarded names. Of course, you
are free to change the existing aliases, add new aliases, or even replace the
entire file, although this should be done with caution. Generally, it is a good
idea to simply add new aliases to the existing files.

NOTE The first two entries in the fonts.alias file in lusr/lib/Xll/mise should
not be changed or removed. These entries are shown below:

fixed -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-is08859-1
variable -*-helvetica-bold-r-normal-*-*-120-*-*-*-*-is08859-1

Many client font resource specifications use these aliases and if you remove
them the clients will not be able to display a font.

The fonts.alias files use a two-column format, much like the fonts.dir file. The
first column contains the aliases and the second column contains the full
names of the fonts being aliased.

129

Changing fonts

When creating aliases, you should be aware of the following:

• To specify an alias that contains spaces, enclose the alias in double quota
tionmarks.

• To include double quotation marks, backslashes, or other special characters
in your alias, precede each special character with a backslash.

• If you create an alias or an alias file while running an X server, the server
does not automatically recognize the additions. You must reset the server
to activate new aliases.

The font server

The font server, fs, provides a way to minimize disk use and standardize
available fonts for a network of X terminals and sea OpenServer systems.
The font server allows you to install fonts on a single machine, then access
those fonts from any capable X server on the network.

The font server uses the standard X fonts. The same rules about constructing
and using font files, directories and resources with the standard font system
apply to the font server. If you are running the font server, you can still use
local fonts by adding the appropriate font directories to your font path.

By default, the X server does not use the font server. You must start it from
the command line, or by editing a configuration or startup file. See "Using the
font server" (this page) for more information.

USing the font server

130

The font server can be started in one of several ways:

• from the command line (useful for testing the font server)

• from a system startup file such as letc!rc2.dIS91fontserv;

There are two parts to the process of using the font server:

1. Start the font server on a machine with fonts installed. That machine will
provide fonts, via the font server, to other machines on the network.

2. Configure the X servers on the network to request fonts from the font
server.

Each of these steps are described in the upcoming sections on starting the font
server.

Graphical Environment Guide

Using the font server

There are several ways you can configure font services, including setting up
multiple font server machines, setting an optimum number of servers to
quickest possible access to fonts, limiting the number of fonts available, and
changing the TCP ports used by the font server.

See also:

• "Configuring the font server" (page 133)

• "Running the font server from the command line" (this page)

• "Using the font server from scologin" (this page)

• "Using the font server from startx" (page 132)

• "The font server" (page 130)

Running the font server from the command line

To start the font server from the command line, at a shell prompt enter the fol
lowing:

letc/fontserv start

This starts the font server immediately, and uses the default configuration file
/usr/lib/Xll/fs/config·

NOTE Starting the font server from the command line is not recommended
for everyday use. If you want the font server to run consistently on the sys
tem, configure it to start when the system boots using letdfontserv enable,
which automatically creates the /etc/rc2.d/591jontserv file.

Using the font server from scologin

If you want scologin to control whether the X server uses the font server:

1. Edit the file /usr/lib/Xl1/scologin/Xservers.

2. Find the line that contains the X startup command. For example:

:0 local /usr/bin/Xll/X :0 -crt /dev/tty02

Change this line so that it starts the font server:

:0 local /usr/bin/Xll/X :0 -crt /dev/tty02 -fp tcp/server:7000

Replace server with the name of the server on which the font server will
run.

3. Restart scologin.

131

Changing fonts

Using the font server from startx

You can configure the font server to start when a user starts the X server using
startx. Follow these steps to start the font server either from the system file
sys.startxrc or from a user's $HOME/.startxrc file:

1. Edit the appropriate file, either /usr/lib/Xll/sys.startxrc or the .startxrc file in
a user's home directory.

2. Place the following line after the comment lines, but before any clients are
run:

xset fp=tcp/server:port

The server is the name of the machine on which the font server is running,
and port is the TCP port on which font server is broadcasting (by default
7000). For example, this line causes the X server to request fonts from the
server boston which is running a font server that is broadcasting on TCP
port 7000:

xset fp=tcp/boston:7000

3. If the X server is already running, shut it down, then restart it using the
startx command.

Running the font server from system startup files

132

You can enable the font server to start whenever the system enters multiuser
mode. This is useful if you want to run the font server on a system that will
not be running the Graphical Environment. Follow these steps:

1. Log in as root.

2. Enter this command:

fontserv enable

The next time the system enters multiuser mode, the font server is auto
matically started.

3. If you want to start the font server immediately, enter this command:

fontserv start

The fontserv enable creates the file /etc/rc2.d/S91jontserv, which is a script that
starts the font server when the system enters multiuser mode.

Graphical Environment Guide

Configuring the font server

Configuring the font server

The font server can be configured using command-line options, or using a
configuration file. You can change different aspects of the font server, includ
ing:

• the fonts that a server will make available to other font servers (this page)

• the default point size and resolutions the font server makes available to X
servers (page 134)

• the hostnames from which the X server will receive fonts (page 134) (from
font servers running on those hosts)

• the TCP port address that the font server uses (page 135)

• the number of connections to X servers that a given font server allows
(page 136) and the action the font server takes when that number of con
nections is exceeded

In addition, you can set up your X server to use a mix of local fonts and
remote fonts from a font server, (page 136) and even specify an alternate font
server configuration file. (page 137)

Configuring available fonts

You can configure available fonts using a combination of:

• installing a specific set of fonts, and

• specifying which fonts the font server will provide

To specify which fonts are available from the font server, follow these steps:

1. Log in as root.

2. Edit the font server configuration file. By default this is
/usr/lib/Xlllfs/config·

3. Change the fonts specified by the catalogue keyword. For example, to
provide only Speedo and Typel fonts:

catalogue = /usr/lib/Xll/fonts/Speedo,/usr/lib/Xll/fonts/Typel

4. To make the changes take effect, use the fontserv command:

fontserv re-read
fontserv flush

With the catalogue keyword, you can also specify another font server. For
example:

catalogue = /usr/lib/Xll/fonts/Speedo,tcp/boston:7001

133

Changing fonts

This sets the local font server's catalogue to include Speedo fonts and what
ever fonts are provided by the remote host boston.

NOTE Exercise care when referencing other font servers. Font server con
nections place a heavy demand on network resources and bandwidth. Also,
be careful not to let the number of references to other font servers become so
large that your system font system becomes unmanageable.

Configuring default font size and resolutions

You can change the default point size of fonts provided by the font server. To
do this, follow these steps:

1. Log in as root.

2. Edit the font server configuration file. By default this is
/usrllibIXll/fs!config·

3. To change the default point size, edit the value of the keyword default
point-size. For example, to make the default point size 12pts, change the
keyword line to this:

default-point-size = 120

You can only specify one default point size.

4. To change the default resolutions, change the default-resolutions key
word. For example, to specify resolutions of 75 dpi only, change the key
word to this:

default-resolutions = 75,75

To specify multiple resolutions, specify the resolution you want, each
separated by a comma.

5. To make the changes take effect, run the fontserv command:

fontserv re-read
fontserv flush

Choosing a font server host

134

To change which font server an X server uses, change the X server startup
command to specify the desired host. For example, if you are starting an X
server from the Xservers file, and you want the server to obtain fonts from the
host boston, follow these steps:

1. Log in as root.

2. Edit the file jusr/lib/Xll/scologin/Xservers.

Graphical Environment Guide

Configuring the font server

3. Change the hostname variable to the desired host. For example, to con
nect to the host boston using TCP port 7002:

:0 local /usr/bin/Xll/X :0 -crt /dev/tty02 -fp tcp/boston:7000

4. To make this change take effect, stop then restart the X server.

Note that in the Xservers file, you can set the font path to include not only a
remote font server but also local system fonts. For example, in step 2, above,
you could use the following font path:

-fp tcp/boston:7000,/usr/Xll/fonts/Speedo,/usr/lib/Xll/fonts/misc

This adds to the font path the directories Speedo and mise on the local system.

Changing font server TCP ports

To select a different TCP port for use with the font server, change the port
number for both the font server and for any X servers that use the font server.
For example, to change the port address for both the font server and the X
server, follow these steps.

1. Log in as root.

2. Edit the file /usrilib/Xlllfs/config.

3. On a line by itself, add the port keyword to specify the desired address:

port=7005

The font server now listens on TCP port 7005 on the local host.

4. Reconfigure any X servers that use the font server. For example, if you
specify the font server in the Xservers file:

:0 local /usr/bin/Xll/X :0 -crt /dev/tty02 -fp tcp/boston:7005

This causes the X server to connect to host boston on the TCP port 7005.

5. Shut down the X server, then shut down the font server (in this example,
on the server boston).

6. Restart the font server on the machine boston, then restart the X server.

135

Changing fonts

Configuring font server connection limits

It is possible to overload a given font server with requests for fonts. To
prevent this from happening, you can change two aspects of the font server:

• a limit on the number of clients that can connect to the font server

• whether or not a font server will clone itself if the client limit is reached

For example, you can configure the font server to limit the number of clients
that can connect to it at one time to 20. Then, if that limit is reached, clone
another font server.

To do this, follow these steps:

1. Log in as root.

2. Edit the font server configuration file. The default is /usr/lib/Xll/fs/config.

3. Insert the keyword client-limit. Set it to 20 (or whatever value you want):

client-limit = 20

4. Reset the font server with the fontserv command:

fontserv reset

Using the font server and local fonts

136

You can use local fonts at the same time as fonts from a font server. You can
do this in one of two ways:

• configure the X server to use a font server and local fonts, (this page) or

• use the xset to add the local fonts (or the font server fonts) (page 137)

Specifying multiple font sources with the X server
To configure the X server to use multiple font sources, including local and font
server fonts, follow these steps:

1. Log in as root.

2. Edit the file /usr/lib/Xll/scologin/Xservers.

3. Find the line that starts the X server. For example:

:0 local /usr/bin/Xll/X :0 -crt /dev/tty02

Graphical Environment Guide

Configuring the font server

4. To the end of this line, add the font path option, -fp and the desired fonts
(including the font server host and TCP port):

-fp tcp/boston:7000,/usr/Xl1/fonts/Speedo,/usr/lib/Xl1/fonts/misc

This sets the font path for the X server to include a font server running on
the server boston and the local font directories Speedo and misc.

5. To make this change take effect, stop then restart the X server.

Specifying multiple font sources with xset
Follow these steps to specify multiple font sources (local fonts and remote
font server fonts):

1. Log in as root.

2. Specify the font server in the X server startup file, for example
/usr/lib/Xll/scologin/Xservers:

:0 local /usr/bin/Xll/X :0 -crt /dev/tty02 -fp tcp/boston:7000

This causes the X server to request fonts from the font server running on
the host boston.

3. In one of the startx configuration files, for example jusr/lib/Xl1/sys.startxrc,
place the following line:

xset + fp fonClocation

Replace font_location with a list of directories that contain the fonts you
want to use.

4. Stop the X server, then restart it.

Using alternate font server configuration files

You can use font server configuration files other than the default. This is use
ful for starting a custom font server.

The following steps show how to start a font server that reads a custom con
figuration file:

1. Create the custom configuration file. For example, the file might be called
myfont.config and might reside in user tammyr's home directory /u/tammyr.

2. Edit the file from which the font server will start, for example .startxrc in
user tammyr's home directory. Add the command to start the font server
with the custom configuration file:

/usr/bin/Xll/fs -cf /u/tammyr/myfont.config &

3. Stop the X server, then restart it.

137

Changing fonts

Listing available fonts on your system

You can use either the xlsfonts or fslsfonts clients to display a list of all of the
fonts that are currently available to your X server. The command you use
depends upon whether or not you are using the font server, fs.

To display X server fonts, use xlsfonts. (this page) To display font server fonts,
use fslsfonts. (page 139)

Listing X server fonts with xlsfonts

138

To display fonts that are available from the X server, enter the following com
mand at the prompt in a scoterm window:

xlsfonts I more

This command is described in greater detail in the following section.

Running xlsfonts
When you run the xlsfonts client, you get a listing of the fonts that are avail
able from the X server. Note that the xlsfonts client can only list fonts that are
located in directories specified in the font search path. If you have font direc
tories on your system that are not included in the font search path, the fonts
located in those directories are not displayed.

Because there are so many available fonts, even if you only have the default
fonts on your system, you should use a paging command such as more or pg
when you run xlsfonts.

Graphical Environment Guide

Listing available fonts on your system

The xlsfonts client lists each font by its complete font name. For example,
you might see output such as:

-adobe-courier-bold-o-norrnal--10-100-75-75-m-60-iso8859-1
-adobe-courier-bold-o-normal--11-80-100-100-m-60-iso8859-1
-adobe-courier-bold-o-norrnal--12-120-75-75-m-70-iso8859-1
-adobe-courier-bold-o-norrnal--14-100-100-100-m-90-iso8859-1
-adobe-courier-bold-o-norrnal--14-140-75-75-m-90-iso8859-1
-adobe-courier-bold-o-norrnal--17-120-100-100-m-100-iso8859-1
-adobe-courier-bold-o-norrnal--18-180-75-75-m-110-iso8859-1
-adobe-courier-bold-o-norrnal--20-140-100-100-m-110-iso8859-1
-adobe-courier-bold-o-normal--24-240-75-75-m-150-iso8859-1
-adobe-courier-bold-o-norrnal--25-180-100-100-m-150-iso8859-1
-adobe-courier-bold-o-norrnal--34-240-100-100-m-200-iso8859-1
-adobe-courier-bold-o-norrnal--8-80-75-75-m-50-iso8859-1
-adobe-courier-bold-r-norrnal--10-100-75-75-m-60-iso8859-1
-adobe-courier-bold-r-norrnal--11-80-100-100-m-60-iso8859-1

See also:

• xlsfonts(XC) manual page for more information on the xlsfonts client

xfontsel(XC) manual page for information on how to use the xfontsel client to dis
play the fonts that the X server recognizes

Usting font server fonts with fslsfonts

If you are using the font server (fs), use the following command to fonts avail
able from the font server:

fslsfonts -server hostname:port I more

Replace hostname with the name of the host that is providing font service.
Use localhost if you want to query the font server on the local machine. For
the port address port, use the default of 7000, unless that default is changed.

This command is described in greater detail in the next section.

139

Changing fonts

140

Running fslsfonts
When you run the fslsfonts client, you get a listing of the fonts that are avail
able from the X server. The fslsfonts client can only list fonts that are located
in directories specified in the font server configuration file
lusr/lib/Xlllfs!config. If you have font directories on your system that the font
server is not configured to use the fonts located in those directories are not
displayed.

Because there are so many available fonts, even if the font server is configured
for the default fonts on the system, you should use a paging command when
you run fslsfonts.

The fslsfonts client lists each font by its complete font name. For example,
you might see output such as:

-adobe-courier-bold-o-normal--10-100-75-75-m-60-iso8859-1
-adobe-courier-bold-o-normal--11-80-100-100-m-60-iso8859-1
-adobe-courier-bold-o-normal--12-120-75-75-m-70-iso8859-1
-adobe-courier-bold-o-normal--14-100-100-100-m-90-iso8859-1
-adobe-courier-bold-o-normal--14-140-75-75-m-90-iso8859-1
-adobe-courier-bold-o-normal--17-120-100-100-m-100-iso8859-1
-adobe-courier-bold-o-normal--18-180-75-75-m-110-iso8859-1
-adobe-courier-bold-o-normal--20-140-100-100-m-110-iso8859-1
-adobe-courier-bold-o-normal--24-240-75-75-m-150-iso8859-1
-adobe-courier-bold-o-normal--25-180-100-100-m-150-iso8859-1
-adobe-courier-bold-o-normal--34-240-100-100-m-200-iso8859-1
-adobe-courier-bold-o-normal--8-80-75-75-m-50-iso8859-1
-adobe-courier-bold-r-normal--10-100-75-75-m-60-iso8859-1
-adobe-courier-bold-r-normal--11-80-100-100-m-60-iso8859-1

**(.1;.
If you want to view fonts on a specific server, use the -server option:

fslsfonts -server hostname:port I more

The hostname is the name of the host machine running the font server. The
port option specifies the TCP port to which the font server connects. By
default this is port 7000.

See also:

• fslsfonts(X) manual page

Graphical Environment Guide

Previewing a specific font

Previewing a specific font

You can display the complete character set of any valid font, using the xfd (X
font displayer) client. This tool provides an excellent means of determining
whether or not you might want to use a particular font for a client, an icon
label, and so forth.

Once you have located a font that seems interesting, you can preview its char
acteristics using the following steps. For more information on each of these
steps, see the sections immediately following this procedure.

1. Enter the following command at the prompt in a scoterm window:

xfd -fn fontname

2. Click on the Next Page and Prey Page buttons to scroll through multiple
screens, if necessary.

3. Click on a character's grid for information about that character.

4. Click on the Quit button when you have finished previewing the font.

Step 1: Running xfd
When running the xfd client, you must specify the font you want to preview
with the -fn option, followed by the name of the desired font. You can enter
the complete font name or use font name wildcards or a font alias.

NOTE If the font name includes spaces, the name must be surrounded with
asterisk characters (*) and enclosed in quotation marks. For example:

xfd -fn n*new century schoolbook*n

The xfd client opens a window and displays the entire character set of the
named font in a grid of boxes, each character in its own box. The characters
are shown in increasing order from left to right, top to bottom. The full name
of the font is displayed across the top of the window, even if you specified a
font alias.

141

Changing fonts

142

Figure 7·1 Example of xfd client

See also:

• xfd(XC) manual page

Step 2: Scrolling through multiple screens
Depending on the font you are previewing, it is possible that all of the font's
characters may not fit in the xfd window at the same time. If the characters
being displayed do not fit within the window, you can:

• Scroll forward through multiple screens by clicking a mouse button on the
Next Page button. When you reach the last available screen, Next Page
becomes inactive.

• Scroll back to the beginning screen by clicking a mouse button on the Prey
Page button. When you return to the first screen, Prey Page becomes inac
tive.

Graphical Environment Guide

Specifying fonts

Step 3: Displaying information on a character
You can display details about an individual character by clicking a mouse but
ton on the grid containing the character. You are shown statistics about the
character's width, left bearing, right bearing, ascent, and descent.

For more information on these statistics, see the x£d(XC) manual page.

Step 4: Quitting xfd
The xfd window remains on your screen until you click a mouse button on the
Quit button, or type q or Q.

Specifyi ng fonts

Fonts are X resources and, as such, can be changed like any other resource.
You have a great deal of control over the fonts that are used on your system.
For example, you can change the size of the icon label font, change the font for
one client but not for others, and so forth. Before you actually make any font
resource changes, however, you should be familiar with the information in
Chapter 5, "Understanding resources" (page 79).

As with other resources, you can make font resource changes on a system
wide level or on a user-level. You can also specify font changes at the com
mand line, affecting a client on a per-session basis.

All of these methods for specifying fonts are covered in the following sections.

Specifying fonts for the entire system

System-wide font resources are specified on a client basis, in the system-wide
resource files. If you want to make font resource changes that affect an appli
cation every time it is run on your system, you must make your font changes
in these files.

You must be logged into the system as root to perform this task.

To make a font resource change or addition in the resource database, perform
the following steps. For more information on each of these steps, see the sec
tions immediately following this procedure.

143

Changing fonts

144

1. Open the desired client resource file for editing:

• /usr/lib/Xll/sco/startup/client

• /usr/lib/Xll/app-dejaults/client

2. Make the desired font resource specification(s):

• For an existing font resource specification, replace the old font designa
tion with the desired font.

• For a new font resource specification, add the new resource setting,
using the following format:

client*resource_name: fontname

When you are finished, save your changes and exit the resource file.

3. If users are running clients that are affected by the new configuration at
the time you make these changes, they must restart the clients to see the
new fonts. In some cases, users may need to restart the X server itself to
see the new fonts.

Step 1: Editing the client resource files
Default resources for clients are stored in files in two locations on the system:
/usr/lib/Xll/sco/startup and /usr/lib/Xll/app-dejaults. These directories contain
several files, each named for the specific client they represent. The resource
specifications defined in these files control the appearance and behavior of
their specific client.

The files in /usr/lib/Xll/sco/startup contain server-specific resources. The
values of these resources are loaded into the resource database and stored in
the X server by the xrdb client when a Graphical Environment session is first
started. These resource specifications are available for all clients that you run,
regardless of the actual host that is running the applications.

The files in /usr/lib/Xll/app-dejaults contain the majority of resource specifica
tions for the clients on your system. The resources in these files are host-spe
cific and only affect clients that are run on your machine. These resource files
are read by the resource manager when the corresponding client is run.

If you want to configure a client to use a particular font, regardless of the ma
chine on which the client is run, you should edit the client's resource file in
/usr/lib/Xll/sco/startup. This approach has advantages and disadvantages: a
client generally executes more quickly if its resources are already recognized
by the X server, however, there is no guarantee that fonts that exist on your
system are available to remote clients on their host machine. If you run
remote clients, it is recommended that you set font resources in host-specific
resource files.

Graphical Environment Guide

Specifying fonts

If you want to configure a client to use a particular font only when it is run on
the local system, edit the appropriate client file in /usr/lib/Xll/app-dejaults.

If you intend to modify any of the files discussed here, it is recommended that
you either make a backup copy of the file before you enter your resource
changes, or comment out old resource values, using the " ! " comment charac
ter, before entering new ones. This way you are assured of regaining the
default values, if needed.

See also:

• "Methods for specifying resources" (page 87) for a more detailed explanation of
resource files

Step 2: Setting the font resource
As with all resources, font resource specifications must use the correct format:

client*resource _name: fontname

client refers to the client you want to affect. You can supply either the client's
binary or class name. resource_name is the actual resource variable you want
to define. You can use either the resource's class or instance name. fontname
is the actual name of the font you are selecting. You can use the full font
name, font name wildcards, or a font alias when setting this value.

There are two resources from which you can choose when specifying fonts:

fontList (Class: FontList) This resource specifies the font that is used to dis
play text. Most clients accept this resource. This
resource can also be used to specify lists of fonts,
to accommodate the possibility that some sys
tems may contain a set of fonts, while other sys
tems contain a different set. If you list multiple
fonts, they must be separated by white space.

font (Class: Font) Generally, this resource specifies the font that is
used for all Desktop icon labels. Other clients
may also use this resource, however fontList is
used more frequently.

Whether you are replacing the font of a currently defined resource or you are
adding anew, perhaps more specific, resource, the resource line should use
the same format. For example, if you want to change the default font for the
scocolor client so it displays larger text, the resource line would read:

ScoColor*fontList: -adobe-helvetica-bold-r-normal--20-140-100-100-p-105-is08859-1

145

Changing fonts

See also:

• Chapter 5, "Understanding resources" (page 79) for more detailed information on
specifying resources, including the use of class and instance names

Step 3: Activating the new fonts
Once you have made the desired font change to the client resource file or files,
the new specifications are immediately available to all users. However, if
users were running the affected clients while you set the new font values, they
need to restart the client to see the new fonts.

If you made font specifications in any of the server-specific resource files,
users will have to restart the X server before they see the new fonts.

Specifying fonts for individual users

146

Individual users can use their own unique set of fonts for the Desktop and
other clients. These font settings do not change the default resources that are
available to other users on the system.

To change fonts for an individual user, perform the following steps. For more
information on each of these steps, see the sections immediately following
this procedure.

1. Create a file called .Xdefaults-hostname in the user's home directory.

2. Edit the .Xdefaults-hostname file and add the new font resource
specification, using the following format:

client*resource_name: fontname

When you are finished, save your changes and exit the resource file.

3. If you created the .Xdefaults-hostname file as root, assign the appropriate
user permissions to the file:

chown username .Xdefaults-hostname
chgrp groupname .Xdefaults-hostname

4. Start a Graphical Environment session.

Step 1: Creating an .xdefaults-hostname file
Individual users can assign their own values to font resource specifications.
You can either change the value of a font resource already set in the resource
database, or you can set an entirely new font resource, perhaps a resource that
changes only a particular aspect of a client's font usage. User-specified
resources always override system defaults, allowing different users running
the same clients to specify personal font preferences.

Graphical Environment Guide

Specifying fonts

Individual resource settings are placed in a file called .Xdefaults-hostname,
where hostname is the name of the host, or machine, where the client is run
ning.

You can add an .Xdefaults-hostname file to a user's home directory in one of
two ways:

• Create a file named .Xdefaults-hostname, then add the desired font specifi
cations to the file. This approach is most useful if you are only making a
few changes.

• Copy one or more of the client default files from lusr/lib/Xl1/app-defaults to
the user's home directory, merging the files into a single file called
.Xdefaults-hostname. You can then use the file as a template, deleting
resources you do not want to change and specifying new font values for
the font resources you do want to change.

NOTE Lines in the resource files in the app-defaults directory do not always
specify the client, because each file applies to only one client. If you create
an .Xdefaults-hostname file by copying the relevant lines from a file in the
app-defaults directory, be sure to add the client's name to the beginning of
each line if it is not already there. Otherwise, the font resource specification
will affect all clients.

When the user invokes a client, the X server checks to see if an .Xdefaults
hostname file exists in $HOME. If such a file does exist, the resource values
specified in the user resource file take precedence over any values assigned to
the same resource in the resource database.

See also:

• "Methods for specifying resources" (page 87) for more information on the
.Xdefaults-hostname file

Step 2: Setting the font resource
Font resource specifications must use the correct format:

client*resource _name: fontname

client refers to the client you want to affect. You can supply either the client's
binary or class name. resource_name is the actual resource variable you want
to define. You can use either the resource's class or instance name. fontname
is the actual name of the font you are selecting. You can use the full font
name, font name wildcards, or a font alias when setting this value.

147

Changing fonts

148

There are two resources from which you can choose when specifying fonts:

fontList (Class: FontList) This resource specifies the font that is used to dis
play text. Most clients accept this resource. This
resource can also be used to specify lists of fonts,
to accommodate the possibility that some sys
tems may contain a set of fonts, while other sys
tems contain a different set. If you list multiple
fonts, they must be separated by white space.

font (Class: Font) Generally, this resource specifies the font that is
used for all Desktop icon labels. Other clients
may also use this resource, however fontList is
used more frequently.

Whether you are replacing the font of a currently defined resource or you are
adding a new, perhaps more specific, resource, the resource line should use
the same format. For example, if you want to change the default font for the
scocolor client so it displays larger text, the resource line would read:

ScoColor*fontList: -adobe-helvetica-bold-r-norrnal--20-140-100-100-p-105-iso8859-1

See also:

• Chapter 5, "Understanding resources" (page 79) for more detailed information on
specifying resources, including the use of class and instance names

Step 3: Assigning correct ownership permissions
If you generated an .Xdefaults-hostname file for a user from the root account,
whether by creating the file or by copying the file from files in
lusr/lib/Xlllapp-defaults, you must assign the file the correct ownership per
missions. Run the chown command to assign the correct owner and the
chgrp command to assign the correct group to the .Xdefaults-hostname file.

If you created your own .Xdefaults-hostname file, you can ignore this step.
Your ownership permissions are already correct.

Step 4: Starting a Graphical Environment session
To see your new font settings, start a Graphical Environment session, either
through scologin or by running startx from the command line.

Run the desired clients. When a client is started, it reads the
$HOME/.Xdefaults-hostname file for your personal resource specifications.
The new font settings are noted and the client's text is displayed accordingly.

Graphical Environment Guide

Specifying fonts

If you created your own .Xdefaults-hostname file during a session, and you
want the new font values applied to clients that are currently running, you
need to restart the clients.

If you want the Desktop client to reflect your new font specifications, you
must end your current session and then start the X server again, either by log
ging in through a scologin window or by running the startx script from the
command line.

Setting fonts from the command line

You can specify any resource setting on the command line that you would
otherwise put into a resource file, including font resources.

To change a font resource from the command line, use the -xrm option when
launching a client from a scoterm window:

client -xrm ' client*resource_name: fontname' &

If you specify a font resource from the command line, the font is only set for
the current client session. Subsequent sessions return to the default font spec
ification for the client.

NOTE If you are using scosession and you end your current session with a
client that was run from the command line still open on the display, the
client is restored when you resume your session. Any command line
options that were used to define the client are also restored. In this way,
command line options can define client behavior on a more permanent
basis.

See also:

• "Using the -xrm option" (this page)

• "Other command line font options" (page 150)

Using the -xrm option
The -xrm option allows you to set any resource value, including font specifi
cations, from the command line. You must enter the resource specification as
well as the desired font name when using this option. For example, to change
the text font for scoterm to a smaller fixed-width font, you would enter the
following at the command line:

scoterm -xrm 'ScoTerm*font: 5x8' &

149

Changing fonts

150

When using the -xrm option, you should be aware of the following:

• A resource specification must be quoted using the single quotation mark
(') .

• You can specify more than one resource value from the command line at
the same time. You must enter the -xrm option for each specification you
make:

scoterm -xrm 'ScoTerm*font: 5x8' -xrm 'ScoTerm*fontList: 5x8' &

Resource values specified at the command line only exist for the client session
you are invoking. The resource values do not become part of the resource
database and the values are not recreated the next time you run the client
unless you use the -xrm option again.

Note that a font resource specified at the command line does not take effect if
a font resource that takes precedence has already been loaded with xrdb. (See
"'Precedence rules for resource specifications" (page 87) for more information.)
For example, say you loaded a resource file that includes the specification:

ScoTerm*font: 9x15

In this case, the following command line specification would not result in the
scoterm client using a different font:

scoterm -xrm '*font: 5x8' &

Because the ScoTerm*font designation is more specific, the *font entry on the
command line cannot override the font setting in the resource database.

To override the resource database, and get the 5x8 font, you would need to
use a resource equally or more specific than the default setting. For example,
the resource ScoTerm*font would provide the desired font change.

Other command line font options
You can also specify different fonts at the command line for some clients with
an option other than -xrm. Most clients also accept the -fn option:

client -fn fontname

The -fn option can be useful in that you only need to know the name or alias
of the font you want to specify; you do not need to be concerned with specify
ing font resources. However, if the resource database or your personal
resource file sets this font value with a more specific resource, you do not see
any changes when you use the -fn option.

Graphical Environment Guide

Creating a font alias

Creating a font alias

You can assign aliases to fonts so you can specify them without having to
type their complete font names. This is particularly useful if you tend to set a
font often.

If you are creating aliases for fonts that exist within the /usr/lib/Xll/fonts sub
directories, you must be logged into the system as root. You should also
ensure that /usr/bin/Xll has been added to root's $PATH environment variable.

To create a font alias, perform the following steps. For more information on
each of these steps, see the sections immediately following this procedure.

1. In the directory that contains the font that you want to alias, edit the file
fonts.alias so that it contains at least one line with the following format:

alias fontname

2. Reset the X server's font database with the following command:

xset fp rehash

Once you have aliased a font and reset the X server, you can use the alias
rather than the full font name whenever you refer to that font.

Step 1: Editing the fonts.alias file
In most cases, fonts are located in /usr/lib/Xll/fonts in one of the following
subdirectories: 7Sdpi, 100dpi, mise, Speedo, or Typel. The first three of these
directories contain a fonts.alias file by default. You must be logged in as root to
edit any of these files.

When you add an alias to a fonts.alias file, you must enter the alias, the name
by which you want to refer to the font, in the first column, and the fontname,
the font's full name, in the second column.

An easy way to include a font's full name in the fonts.alias file is to open two
scoterm windows, one in which you are editing the fonts.alias file and one in
which you open the fonts.dir file that contains the full name of the desired
font. Use scoterm.'s cut and paste functionality to copy the full font name
from the fonts.dir file to the fonts.alias file. This approach reduces the possibil
ity of making a typographical error in typing the font's full name.

If you make an error entering a font's full name in the fonts.alias file, the alias
will not work when specified.

151

Changing fonts

A typical fonts.alias file in /usr/lib/Xll/fonts/75dpi might contain these two
aliases:

courier10 -adobe-courier-bold-o-normal--10-100-75-75-m-60-iso8859-1
courier12 -adobe-courier-bold-o-normal--12-120-75-75-m-60-iso8859-1

I
NOTE The directory that contains the font you want to alias must be
included in the font search path. By default, the font search path includes
the mise, 75dpi, and 100dpi directories in /usr/lib/Xlllfonts.

You can specify any number of aliases in fonts.alias files.

Step 2: Resetting the font database
If you created a font alias during a Graphical Environment session, you must
tell the X server to reread the font database so it recognizes your new alias. To
reset the font database, enter the following command from a scoterm win
dow:

xset fp rehash

You must reset the font database whenever you edit afonts.alias file while run
ning a Graphical Environment session.

If you created a font alias from the operating system command line (and your
SCQ system was not running), there is no need to update the X server. The
changes that you made to fonts.alias are incorporated automatically the next
time you start your system.

Adding a font to your system

152

It is possible to add additional fonts to your system. If you want to add fonts
to any of the default subdirectories in /usr/lib/Xll/fonts, you must be logged in
as root. You should also ensure that /usr/bin/Xll has been added to root's
$PATH environment variable.

To add one or more fonts to your X server, perform the following steps. You
must be logged onto the system as root. For more information on each of
these steps, see the sections immediately following this procedure.

1. Place the new font file or files in the directory in which you want to store
them.

2. Run the bdftopcf utility, if desired, to convert BDF font files to PCF files:

bdftopcf font.bd£ > font.pcf

Graphical Environment Guide

Adding a font to your system

3. Run the mkfontdir command and indicate the font's directory location, if
necessary:

mkfontdir font_location

4. If you added fonts to a directory not in the current font path, add the new
directory to the font search path:

xset fp+ font_location

5. Reset the server's font database with the following command:

xset fp rehash

Step 1: Placing the font files on your system
When you add new fonts to your system, you need to give some thought to
where you want to put the actual font files. Generally, fonts are located in
subdirectories of /usr/lib/Xll/fonts. You can put your new fonts in one of these
subdirectories, perhaps in /usr/lib/Xl1/fonts/mise, or anywhere else on the sys
tem, including subdirectories within individual users' accounts.

New font files can be in Bitmap Display Format (BDF), Server Natural Format
(SNF), or Portable Compiled Format (PCF). See Step 2 (this page) for more in
formation on these formats.

Step 2: Converting from BDF to PCF format
The standard font format is Bitmap Display Format (BDF). BDF font files are
portable and represent the characters of a font in ASCII. These files generally
have a .bdf extension. Fonts can also be compiled in the Portable Compiled
Format (PCF). PCF font files generally have a .pef extension.

The X server can use font files that are in BDF, PCF, or SNF format. However,
there are several good reasons to convert any BDF files on your system into
PCF files:

• BDF files are much larger in size than the compiled PCF files. By converting
BDF files to the Portable Compiled Format and then removing the BDF ver
sions of the fonts, you can save a great deal of disk space.

• On an appropriate architecture machine, PCF font files are loaded more
quickly than their larger BDF counterparts.

• In most cases, to use your fonts on an X terminal, the fonts must be com
piled as either PCF (or SNF) files.

153

Changing fonts

154

To convert BDF font files to PCF files, run the following command:

bdftopcf font.bdf > font.pcf

font.bdf refers to the actual name of the BDF font file that you want to convert.
The file font.pcf contains the converted font.

If you run the bdftopcf utility from a directory other than the one containing
the BDF file you want converted, remember to specify the complete pathname
of the file.

NOTE If you are converting BDF fonts for use with an X terminal, be sure to
read the manual that is supplied with your terminal for special instructions
on running the bdftopcf utility. Some X terminals require that you specify
various flags for the bdftopcf command; other X terminals only support
some of bdftopcf's options.

For more information on the flags that you can use with the bdftopcf com
mand, see the bdftopcf(X) manual page.

Step 3: Running mkfontdir
If you add new fonts to an existing fonts directory or create an entirely new
fonts directory, you must run the mkfontdir command. This command
checks for the existence of a fonts.dir file in the directory that contains the new
fonts. If such a file exists, mkfontdir adds an entry for each new font to the
file. If the font directory is new and does not already have a fonts.dir file,
mkfontdir creates the file for you.

If you run mkfontdir from the directory containing the new fonts, you do not
need to specify the directory name. By default, the mkfontdir command
operates on the current working directory. If, however, you run mkfontdir
from a different location on your system, you must specify the complete path
of the directory containing the new files. For example, if you added new fonts
to the mise directory, you should enter:

mkfontdir lusrniblXlllfonts/misc

NOTE To run mkfontdir on one of the default font directories
(/usr/lib/Xll/fonts/mise, /usr/lib/Xll/fonts/75dpi, /usr/lib/Xll/fonts/100dpi)
/usr/lib/Xl1/fonts/Speedo, or /usr/lib/Xl1/fonts/Typel), you must be logged in as
root.

Graphical Environment Guide

Adding a font to your system

If you added new fonts to a subdirectory named myfonts within your home
directory, you should enter:

mkfontdir $HOMElmyfonts

See also:

• mkfontdir(X) manual page

Step 4: Updating the font search path
If you placed your new font files in a directory that is not part of the font
search path, you need to add the font directory to the search path so the X
server can locate the new files. You can tell the server of the new directory
using xset and the fp+ option:

xset fp+ font_location

For example, if you added fonts to a subdirectory called myfonts in your home
directory, the following command appends the directory $HOME/myfonts to
the X server's font search path:

xset fp+ $HOMElmyfonts

You can add multiple directories to the font path at the same time. After the
fp option, each font directory should be separated by commas, as below:

xset fp+ $HOMElmyfonts,/usrlliblXll/fontslnewfonts

Step 5: Resetting the font database
To complete the font installation, you must make the X server aware of the
additions to the font database. The font files must be located in a directory
included in the font search path. To reset the font database, enter the follow
ing:

xset fp rehash

This command tells the X server to reread all of the fonts.dir and fonts.alias files
in the current font path. You should now be able to use your new fonts in a
resource file or on the command line.

155

Changing fonts

Example of setting fonts

This section provides a comprehensive example that ties together many of the
concepts and procedures discussed in this chapter.

Let's assume you are an administrator for a system whose X server and X
clients are accessed by several users. Many of these users have requested a
bigger default text font for the seomail client. This example explains the fol
lowing:

• choosing a particular font

• creating an alias for the font so you do not have to type the full font name
repeatedly

• incorporating the new font designation into the font database so the new
font is available to all users on your system

The following steps result in a bigger text font for the seoedit client.

1. Log into the system as root. If logging into the root account does not auto
matically start the X server, do so now by entering the following com
mand at the prompt:

startx &

2. Before you can decide on a font to use, you need to know what kinds of
fonts exist on your system. The xIs fonts client displays a list of all avail
able fonts. At the prompt in a seoterm window, enter:

xIs fonts I more

You see an extensive list of fonts. For this example, let's assume the fol
lowing font looks like it might be a possible choice:

-adobe-courier-medium-r-normal--18-180-75-75-m-110-iso8859-1

3. Run the xfd command to preview the characteristics of your font:

xfd -fn -adobe-courier-medium-r-normal-18-180-75-75-m-110-iso8859-1

You see a window that displays all of the characters of the font you
specified. After some examination, you decide that you want to use this
IB-point Courier font.

4. Create an alias for your chosen font so that you do not have to type the
full font name when making your font specifications. Because the font is a
75dpi font, change to the lusr/lib/Xlllfonts/75dpi directory and edit
fonts.alias, adding the following line to the end of the file:

courier18 -*-courier-medium-r-*--18-*-*-*-m-*-*-*

156 Graphical Environment Guide

Example of setting fonts

Notice that instead of specifying the full font name in the aliases file, you
can shorten the amount of typing you need to do by using wildcard char
acters to replace several parts of the font name.

5. Save and exit the fonts.alias file.

6. Reset the X server's font database so your new alias is active:

xset fp rehash

You can now use the courier18 alias to specify your font change.

7. You are ready to make the new font specification for the seomail client.
Change directories to /usr/lib/Xll/sco/startup and look for the file named
ScoMail. This is the default resource file that you need to edit to make
your font change.

8. Open the ScoMail file for editing and search for the following line:

ScoMail*XmText*fontList:

This is the resource that controls the font used to display text in the
seomail window.

9. Comment out the line containing the font value for this resource so that it
looks like this:

!ScoMail*XmText*fontList: -*-courier-medium-r-*--lO-*-m-*-iso8859-1

By commenting out the default resource setting, instead of simply deleting
the line, you leave yourself a safeguard. You can always return to this
default if you make a mistake when setting a new font value.

10. Now open a line immediately below the resource you just commented out
and enter your new resource designation, using the courier18 alias:

ScoMail*XmText*fontList: courier18

11. Save and exit the ScoMail file.

12. Now you should verify that the new font specification works. First, you
need to load the new font value into the resource database, to override the
original value for this font resource. Run the following command from a
seoterm window:

xrdb -merge SeoMail

Because you are currently located in the /usr/lib/Xll/sco/startup directory,
you only need to specify the name of the resource file you want to load
into the resource database. If you run the xrdb command from a directory
other than the one containing the modified resource file, you would need
to specify the complete pathname of the file.

When your seoterm prompt returns, run the seomail client. The font that
displays in the editing window should now be large enough to satisfy
your users.

157

Changing fonts

158 Graphical Environment Guide

Chapter 8

Configuring 'Window size and location

The size and location of a window is called its "geometry". Geometry
specifies four components of a window: height, width, horizontal location,
and vertical location.

This chapter describes:

• background on window geometry (this page)

• configuring the initial size and location of windows (page 160)

• resizing and repositioning the main Desktop (page 169) if you do not want
it to occupy the entire Root window

There is also an example (page 170) at the end of this chapter that helps tie
together many of the concepts and procedures discussed in this chapter.

About window geometry

The window manager controls the layout of windows on your screen. It
allows windows to overlap, and, when clients are first started, it positions
client windows in what it thinks are the best possible locations.

The session manager, scosession, stores the layout of the windows on your
screen in $HOME/.odtpref/ScoSession/dynamic. Each time you start the Graphi
cal Environment, you can specify that scosession either resumes with the
window specifications saved from your last session (the configurations saved
in the $HOME/.odtpref/ScoSession/dynamic file), or you can specify that scoses
sion start the Graphical Environment with the default configurations.

The default Graphical Environment configurations are those defined either by
you or by the system. You can change geometry configurations with the
mouse, or you can specify geometry configurations with the geometry

159

Configuring window size and location

resource variable or with the -geometry command line option. Both the
geometry resource variable and the -geometry command line option take the
same arguments: the window's width, height, xoff (x coordinate offset), and
yoff (y coordinate offset), where all four arguments are numbers specifying
size or location.

See also:

• "Desktop geometry" (this page)

• Chapter 3, "Customizing startup of the Graphical Environment" (page 43)

• scosession(XC) manual page

Desktop geometry

By default, the Desktop client occupies the entire Root window. In this mode,
the Desktop cannot be resized or repositioned with the mouse.

If you want to change the Desktop so that it does not occupy the entire screen,
you should specify this change using the Desktop Preferences Editor. The
Desktop is placed in a window, and it is then possible to further manipulate
its size and location with the mouse.

See also:

• "Resizing the Desktop" (page 169)

Configuring window geometry

160

geometry is an X resource variable and, as such, can be changed like any other
resource variable. Although the window manager manages client window
geometry, you have a great deal of control over a client's initial window
geometry. For example, you can change the location of only one client win
dow, change the location of several client windows, change the size of the
entire Desktop, and so forth.

See also:

• "Specifying geometry for the entire system" (page 161)

• "Specifying geometry for individual users" (page 164)

• "Specifying geometry from the command line" (page 168)

• Chapter 5, "Understanding resources" (page 79)

• Appendix A, "OSF /Motif window manager resources" (page 377)

Graphical Environment Guide

Configuring window geometry

Specifying geometry for the entire system

To change the geometry of a client window for all users, perform the follow
ing steps. You must be logged in as root to do this task. For more information
on each of the steps in this task, see the sections immediately following this
list.

1. Open the desired client resource file for editing:

• /usr/lib/Xll/sco/startup/client

• /usr/lib/Xll/app-defaults/client

2. Make the desired geometry resource specification(s):

• For an existing geometry resource specification, replace the old designa
tion with the desired geometry.

• For a new geometry resource specification, add the new resource set
ting, using the following syntax:

client*geometry: [widthxheight] [±XofftyoffJ

When you are finished, save your changes and exit the resource file.

3. H users are running clients that are affected by the new configuration at
the time you make these changes, they must restart the clients to see the
new geometry designations.

Step 1: Editing the client resource file
Default resources for clients are stored in files in two locations on the system:
/usr/lib/Xll/sco/startup and /usr/lib/Xll/app-defaults. These directories contain
several files, each named for the specific client they represent. The resource
specifications defined in these files control the appearance and behavior of
their specific client.

The files in /usr/lib/Xll/sco/startup contain server-specific resources. The
values of these resources are loaded into the resource database and stored in
the X server by the xrdb client when a Graphical Environment session is first
started. These resource specifications are available for all clients that you run,
regardless of the actual host that is running the applications.

The files in /usr/lib/Xll/app-defaults contain the majority of resource specifica
tions for the clients on your system. The resources in these files are host-spe
cific and only affect clients that are run on your machine. These resource files
are read by the resource manager when the corresponding client is run.

H you want to configure a client to use a particular geometry, regardless of the
machine on which the client is run, you should edit the client's resource file in
/usr /lib/Xll/sco/startup.

161

Configuring window size and location

162

If you want to configure a client to use a particular geometry only when it is
run on the local system, edit the appropriate client file in /usr/lih/Xll/app
defaults. If you intend to modify any of the files discussed here, it is recom
mended that you either make a backup copy of the file before you enter your
resource changes, or comment out old resource values, using the #!" com
ment character, before entering new ones. This way you are assured of
regaining the default values, if needed.

See also:

• "Methods for specifying resources" (page 87) for a more detailed explanation of
resource files

Step 2: Setting the geometry resource
As with all resources, geometry resource specifications must use the correct
format. The syntax of the geometry resource variable is:

client*geometry: [widthxheight] [±XofftyoffJ

client refers to the client you want to affect. You can supply either the client's
binary or class name. geometry is the resource variable you are setting. The
width and height arguments represent the size of the client window; most
client windows are measured in pixels; however, terminal emulators such as
scoterm and xterm are measured in characters. The xoff and yoff arguments
represent the x and y coordinates of the client window, respectively.

Both xoff and yoff are measured in pixels from the edge of the screen. They
must always be specified in pairs, and xoff must always be specified first.
Both specifications can be either negative or positive numbers.

The xoff argument represents the distance of a window from the left or right
edge of the screen. A window with a +0 (plus zero) x-offset is located on the
left side of your screen. A window with a -0 (negative zero) x-offset is located
on the right side of your screen.

The yoff argument represents the distance of a window from the top or bot
tom edge of the screen. A window with a +0 (plus zero) y-offset is located at
the top of your screen. A window with a -0 (negative zero) y-offset is located
at the bottom of your screen.

Graphical Environment Guide

Configuring window geometry

For example, to position a window in one of the four comers of the screen, use
one of the following xoff and yoff combinations:

• + 0 + 0 specifies the top, left edge of the screen

• + 0 - 0 specifies the bottom, left edge of the screen

• -0+0 specifies the top, right edge of the screen

• - 0 - 0 specifies the bottom, right edge of the screen

Figure 8-1, " Display coordinates" shows the x and y comer coordinates of
any given display.

Corner coordinates (x and y)

+0+0 .-----------, -0+0

+0-0 -0-0

Figure 8-1 Display coordinates

Because xoff and yoff are measured in pixels, which are small units, it is
difficult to specify a location and know exactly where that location is on your
screen. Because comer locations are always +0 or -0, it's much easier to
specify an exact comer location than it is to specify a location somewhere in
the middle of your screen.

The following is an example geometry specification:

ScoTerm*geometry: 80x2S+0+0

The size of this scoterm window is defined to be 80 characters wide by 25
characters high. It is located at the top, left edge of the screen.

You can specify both the size and location of a client window, or you can
specify one or the other. For example, to change the size of a scoterm window
only, specify:

ScoTerm*geometry:70x20

The scoterm window size is defined to be 70 characters wide by 20 characters
high. Either the scoterm client provides a default x and y coordinate position,
or if the scoterm client does not have a default position defined, the window
manager automatically positions the scoterm window.

163

Configuring window size and location

Likewise, you can specify only the location of a client and rely on the client or
the window manager to provide default size specifications. For example, to
define the scoterm window so it appears in the bottom, right edge of your
screen, specify:

ScoTerm*geometry: -0-0

See also:

• "Example of specifying window geometry" (page 170)

• Chapter 5, "Understanding resources" (page 79)

Step 3: Activating the new geometry settings
Once you have made the desired geometry changes to the client resources
files, the new specifications are immediately available to all users. However,
if users were running the affected clients while you set the new geometry
values, they need to restart the clients before the windows reflect the new
geometry settings.

Specifying geometry for individual users

164

Individual users can specify unique geometry settings for their client win
dows. These settings do not change the default geometry resources for other
users on the system.

To change the geometry for an individual user, perform the following steps.
For more information on each of these steps, see the sections immediately fol
lowing this procedure.

1. Create a file called .Xdefaults-hostname in the user's home directory.

2. Edit the .Xdefaults-hostname file and add the new geometry resource
specifications, using the following format:

client*geometry: [widthxheight][±Xoff±yoffl

When you are finished, save your changes and exit the resource file.

3. If you created the .Xdefaults-hostname file as root, assign the appropriate
user permissions to the file:

chown username .Xdefaults-hostname
chgrp username .Xdefaults-hostname

4. Start a Graphical Environment session.

Graphical Environment Guide

Configuring window geometry

Step 1: Creating an .Xdefaults-hostname file
Individual users can assign their own values to geometry resource specifica
tions. You can either change the value of a geometry resource already set in
the resource file, or you can set an entirely new geometry resource. These
user defaults always override system defaults, allowing different users run
ning the same clients to specify personal geometry preferences.

Individual resource settings are placed in a file called .Xdefaults-hostname,
where host is the name of the host, or machine, where the client is running.

You can add an .Xdefaults-hostname file to a user's home directory in one of
two ways:

• Create a file named .Xdefaults-hostname, then add the desired geometry
specifications to the file. This approach is most useful if you are only mak
ing a few changes.

• Copy one or more of the client default files from /usrllibIX11/app-defaults to
the user's home directory, merging the files into a single file called
.Xdefaults-hostname. You can then use the file as a template, deleting
resources you do not want to change and specifying new geometry values
for the geometry resources you do want to change.

NOTE Lines in the resource files in the app-defaults directory do not always
specify the client, because each file applies to only one client. If you create
an .Xdefaults-hostname file by copying the relevant lines from a file in the
app-defaults directory, be sure to add the client's class name or binary name
to the beginning of each line if it is not already there. Refer to the client's
man page to determine its class name.

When the user invokes a client, the client checks to see if an .Xdefaults
hostname file exists in $HOME. If such a file does exist, the resource values
specified in the user resource file take precedence over any values assigned to
the same resource in the resource database.

See also:

• "Methods for specifying resources" (page 87) for more information on the
.Xdefaults-hostname file

165

Configuring window size and location

166

Step 2: Setting the geometry resource
As with all resources, geometry resource specifications must use the correct
format. The syntax of the geometry resource variable is:

client*geometry: [widthxheight] [±Xofftyoff1

client refers to the client you want to affect. You can supply either the client's
binary or class name. geometry is the resource variable you are setting. The
width and height arguments represent the size of the client window (most
client windows are measured in pixels; however, terminal emulators such as
scoterm and xterm are measured in characters). xoff and yoff refer to the x
and y coordinates of the client window.

Both xoff and yoff are measured in pixels from the edge of the screen. They
must always be specified in pairs, and xoff must always be specified first.
Both specifications can be either negative or positive numbers.

The xoff argument represents the distance of a window from the left or right
edge of the screen. A window with a +0 (plus zero) x-offset is located on the
left side of your screen. A window with a -0 (negative zero) x-offset is located
on the right side of your screen.

The yoff argument represents the distance of a window from the top or bot
tom edge of the screen. A window with a +0 (plus zero) y-offset is located at
the top of your screen. A window with a -0 (negative zero) y-offset is located
at the bottom of your screen.

For example, to position a window in one of the four comers of the screen, use
one of the following xoff and yoff combinations:

• + 0 + 0 specifies the top, left edge of the screen

• + 0 - 0 specifies the bottom, left edge of the screen

• - 0 + 0 specifies the top, right edge of the screen

• - 0 - 0 specifies the bottom, right edge of the screen

Because xoff and yoff are measured in pixels, which are small units, it is
difficult to specify a location and know exactly where that location is on your
screen. Because comer locations are always +0 or -0, it is much easier to
specify an exact comer location than it is to specify a location somewhere in
the middle of your screen.

The following is an example geometry specification:

ScoTerm*geometry: 80x2S+0+0

The size of this scoterm window is defined to be 80 characters wide by 25
characters high. It is located at the top, left comer of the screen.

Graphical Environment Guide

Configuring window geometry

You can specify both the size and location of a client window, or you can
specify one or the other. For example, to change the size of a scoterm window
only, specify:

ScoTernl*geor,netry:70x20

The scoternl window size is defined to be 70 characters wide by 20 characters
high. Either the scoterm client provides a default x and y coordinate position,
or if the scoternl client does not have a default position defined, the window
manager automatically positions the scoternl window.

Likewise, you can specify only the location of a client and rely on the client to
provide default size specifications. For example, to define the scoterm win
dow so it appears in the bottom, right edge of your screen, specify:

ScoTernl*geor,netry: -0-0

See also:

• "Example of specifying window geometry" (page 170)

• Chapter 5, "Understanding resources" (page 79)

Step 3: Assigning correct ownership permissions
If you generated an .Xdefaults-hostname file for a user from the root account,
whether by creating the file or by copying the file from files in
/usr/lib/Xll/app-defaults, you must assign the file the correct ownership per
missions. Run the chown command to assign the correct owner and the
chgrp command to assign the correct group to the .Xdefaults-hostname file:

chown username .Xdefaults-hostname
chgrp username .Xdefaults-hostname

If you created your own .Xdefaults-hostname file, you can ignore this step.
Your ownership permissions are already correct.

Step 4: Starting a Graphical Environment session
To see your new geometry settings, start a Graphical Environment session,
either through scologin or by running startx from the command line.

Run the desired clients. When a client is started, it reads the
$HOME/.Xdefaults-hostname file for your personal resource specifications.
The new geometry settings are noted and the client's windows are configured
accordingly.

If you created your own .Xdefaults-hostname file during a session, and you
want the new geometry values applied to clients that are currently running,
you need to restart the clients.

167

Configuring window size and location

Specifying geometry from the command line

168

You can specify geometry settings for client windows from the command line.
If you specify a geometry specification from the command line, the setting
only exists for the current invocation of the client. Subsequent sessions return
to the default geometry specification for the client.

NOTE If you are using scosession and you end your current session with a
client that was run from the command line still open on the display, the
client is restored when you resume your session. Any command line
options that were used to define the client are also restored. In this way,
command line options can define client behavior on a more permanent
basis.

To configure a different window geometry from the command line, use the
following command line option when launching a client from the scoterm
window:

client -geometry [widthxheight] [±XofftyoffJ

client refers to the binary name or the class name of the client you want to
affect. width and height are the arguments to -geometry, representing the size
of the client window. The xoffand yoffarguments represent the x and y coor
dinates of the client window, respectively.

The -geometry option can be abbreviated to any substring of the word
"geometry", as long as the substring does not match any of the client's com
mand line options. For example, if the client you are resizing or repositioning
does not accept other options that begin with "g" or "geo", you can specify -
geometry with -g or -geo on the command line.

Because the -geometry command line option and the geometry resource vari
able take the same arguments, see Step 2 (page 166) in the previous section,
"Specifying geometry for individual users," for a more detailed explanation of
width, height, xoff, yoff.

You can also use the -xrm command line option to set the geometry resource
variable for clients, on a per-session basis. See LLResource specifications on the
command line" (page 97) for more information.

Graphical Environment Guide

Resizing the Desktop

Resizing the Desktop

To change the size of the Desktop so it does not occupy the entire Root win
dow, perform the following steps. For more information on these steps, see
the sections immediately following this procedure.

1. Reconfigure the Desktop so it no longer occupies the Root window, using
the Desktop Preferences Editor, located in the Controls window.

2. If desired, resize and reposition the new desktop window with the mouse.

Step 1: Using the Desktop Preferences Editor
If you want to change the Desktop so that it does not occupy the entire screen,
you should use the Desktop Preferences Editor. When you make this change,
the Desktop is placed in a window, and it is then possible to further manipu
late its size and location with the mouse.

To reconfigure the Desktop's geometry with the Preferences Editor:

1. Double-click on the Preferences Editor icon in the Controls window.

2. Double-click on the Main Desktop Behavior icon.

3. Click on the arrow next to the "Desktop as root window" field and select
"No" in the popup box.

4. Click on Apply. You are prompted to restart the Desktop. The Desktop
restarts when you select Yes.

When the Desktop restarts, the Desktop is placed in a window, similar in
size to other client windows.

See also:

• "Using the Preferences Editor" (page 24)

• "Main Desktop behavior options" (page 38)

Step 2: Resizing the Desktop with the mouse
If you want to further change the Desktop's size and location, you can now
resize and reposition it by dragging it with the mouse.

169

Configuring window size and location

Example of specifying window geometry

170

This section provides a comprehensive example that ties together many of the
concepts and procedures discussed in this chapter.

Let's assume you are an administrator for a system whose X server and clients
are accessed by several users. Many of these users have requested that the
scoterm client be run in a smaller window.

The following steps result in a smaller system-wide scoterm window.

NOTE Some full screen programs, vi(C) for example, automatically assume
that they are running on a window that is 80 characters wide by 25 charac
ters high. If you change the width and height dimensions on a terminal
emulator, you might also need to set the $LINES and $COLUMNS environ
ment variables to match the new terminal emulator geometry.

1. Log into the system as root.

2. Change directories to /usr/lib/Xll/app-dejaults and locate the file named
ScoTerm. This is the default resource file that you need to edit to make your
geometry changes.

3. Open the ScoTerm file for editing and search for ScoTerm*geometry. (If this
entry does not exist, enter the geometry specified in step 4.) For the pur
poses of this example, let's assume the line that contains this resource
looks like this:

ScoTerm*geornetry: 80x25+0+0

Comment out this line. By commenting out the default resource setting,
instead of simply deleting the line, you leave yourself a safeguard. You
can always return to this default if you make a mistake when setting a
new geometry value.

4. Now open a line immediately below the resource you just commented out
(or if a resource was not previously set, open a line anywhere in the file).
After seeing that the default size of the scoterm window was 80 characters
wide by 25 characters high, you decide that 60 by 20 would be a size that
would satisfy your users. Enter your new geometry specification:

ScoTerm*geometry: 60x20

Notice that you do not have to specify the location of the scoterm win
dow. If you want to make sure the old location remains the same, specify
the old x and y coordinates on the line you add, directly after 60x20. If
ScoTerm does not specify a default location, the window manager positions
it.

Graphical Environment Guide

Example of specifying window geometry

5. Save and exit the ScoTerm file.

6. To test the new scoterm geometry, start a Graphical Environment session,
by entering the following command at the prompt:

startx &

7. Run the scoterm client. The window should now be 60 characters wide by
20 characters high.

171

Configuring window size and location

172 Graphical Environment Guide

Chapter 9

Changing cursor appearance

This chapter explains how to change the cursors in the Graphical Environ
ment, on both a system-wide and individual basis. Specifically, you can
change the appearance of:

• the Desktop cursor (page 178)

• the scoterm cursor (page 186)

• the Root window cursor (page 178)

There is also a section of examples (page 192) at the end of this chapter that
help tie together many of the concepts and procedures discussed in this
chapter.

See also:

• "About cursor appearance" (page 174)

• Chapter 5, "Understanding resources" (page 79)

• Chapter 7, "Changing fonts" (page 125)

• the documentation supplied with your favorite bitmap editor

173

Changing cursor appearance

About cursor appearance

You can configure the cursors that are used in three different parts of the
Graphical Environment: the Desktop, scoterm windows, and the Root win
dow. The Desktop client cursors are composed of bitmap files; scoterm uses
fonts to control pointer cursor appearance; and the Root window cursor
accepts both bitmap files and fonts.

See also:

• "Desktop cursor appearance" (this page)

• "scoterm cursor fonts" (page 176)

• "Root window cursor appearance" (page 178)

Desktop cursor appearance

174

The Desktop cursor is a bitmap file. Each Desktop cursor has both a data bit
map and a mask bitmap component associated with it. These two com
ponents together form a cursor shape. The data bitmap defines the image
associated with the cursor. The mask bitmap acts as an outline, defining
which portion of the cursor is transparent.

The Desktop has several default cursors already defined, but any of them can
be redefined. Both users and system administrators can modify the default
Desktop cursors. In addition, they can create new bitmaps to create brand
new cursors.

Users make Desktop cursor specifications in their $HOME/XDesktop3 file. Sys
tem administrators make Desktop cursor specifications in the
/usr/lib/Xll/app-defaults/XDesktop3 file. Both a data pixmap and a mask pix
map must be specified; if only one pixmap is specified, the cursor designation
is ignored.

The default Desktop cursors are located in the default picture directories,
/usr/lib/Xll/IXI/XDesktop/bitrnaps/xdt_cJlarge I small]. You can examine the
files located in these directories to see the contents of sample bitmap files and
sample filenames, but do not edit the files in this directory. If you want to edit
a default Desktop cursor, copy the default bitmap file, then make desired
changes to the copy.

Graphical Environment Guide

About cursor appearance

The default Desktop cursors are defined as follows:

alert when an alert box is displayed (except within the box)

bgTrigger

busy

drag

fatal

when a user clicks on the background

when the Desktop is processing

when a single icon is being dragged

when an error box is displayed (except within the box)

icon Trigger when a user clicks on an icon to select it

idle when the Desktop is waiting for the user to do something

multiDrag when several icons are being dragged

rubber when a user is using "rubberbanding" to select one or more
icons

Note that bgTrigger, icon Trigger, and rubber all use the same pixmap hand.

The following table lists the default Desktop cursors:

Table 9-1 Resources that control Desktop cursor appearance

Data pixmap Class
alert. data
bgTrigger.data
busy. data
drag. data
fatal. data
icon Trigger .data
idle. data
multiDrag.data
rubber. data

Maskpixmap
alert.mask
bgTrigger .mask
busy. mask
drag.mask
fatal.mask
iconTrigger.mask
idle.mask
multiDrag.mask
rubber.mask

See also:

XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap

Class
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor. Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap
XDesktop3.Cursor.Bitmap

• "Changing the Desktop cursor" (page 178)

175

Changing cursor appearance

scoterm cursor fonts

176

The pointer cursor in scoterm windows (and xterm windows) is a type of
font. Both users and system administrators can change the pointer cursor
appearance with the pointerShape resource.

Users specify the pointerShape resource in their .Xdefaults-hostname file,
where hostname is the name of the host, or machine, where the client is run
ning. System administrators specify the pointerShape resource in the
/usr/lib/Xll/app-defaults/ScoTerm file.

The following table contains a list of the standard cursor font names:

Table 9·2 Standard cursor font names

X_cursor dotbox man sizing
arrow double_arrow middlebutton spider
based_arrow _down draft_large mouse spraycan
based_arrow _up draft_small pencil star
boat draped_box pirate target
bogosity exchange plus tcross
bottom_left_comer fleur question_arrow top_left_arrow
bottom_right_comer gobbler right_ptr top_left_comer
bottom_side gumby right_side top_right_comer
bottom_tee hand 1 right_tee top_side
box_spiral hand2 right button top_tee
center_ptr heart rtLlogo top_trek
circle icon sailboat ul_angle
clock iron_cross sb_down_arrow umbrella
coffee_mug left_ptr sb_h_double_arrow ure-angle
cross left_side sb_IefLarrow ur_angle
cross_reverse left_tee sb_right_arrow ur_angle
crosshair leftbutton sb_up_arrow ur_angle
diamond_cross ll_angle sb_v_double_arrow watch
dot lr_angle shuttle xterm

Graphical Environment Guide

About cursor appearance

Figure 9-1, "Cursor font character set" displays all of these standard cursor
fonts.

x)(If II
'f • J; 1& :::7- .. m

• l!;, ~ .::!.I ~ -..t.- Z. .L ..L ~ •
+ • 0 0 ia 11 ~ . • .JL + ~ ..,r

=.~ + + ...::11:::. • • • c:J 8 t I ""It?

;f 11 /' .Jf ~ 11 tt"" S + • ~-...;.l .,
~ ... ~ ~ ~ .. 0 C) C •

• • ~ ~ If- IE- l- I- • • L

L .J .I jt ~ U • 6 • ~
,

~ &: + + ~ t ~ ~ --71 -+I .,
-I II • EE!l III JL ~

~ ,
~ .. ~ .. t t t I iO .. I r~

iii *= ~ ~:: II A {k 0 G> + +
"- ~ ~ ~ 7il ;q l' ... T T ~

• r r ~ ~ , ., 0 • I I

Figure 9·1 Cursor font character set

See also:

• "Changing the scoterm cursor" (page 186)

177

Changing cursor appearance

Root window cursor appearance

When the Desktop is not covering the entire screen, you see the Root window.
If you want to change the pointer cursor appearance in the Root window, use
the xsetroot(XC) command.

xsetroot takes two cursor appearance options:

-cursor cursorfile mask file lets you change the pointer cursor (when it is out
side the Desktop) to whatever you want. Cursor
files and mask files are bitmaps, and can be made
with a bitmap program, such as scopaint(XC).

-cursor_name cursorname lets you change the pointer cursor to one of the
standard cursors from the cursor font

See also:

• xsetroot(XC) manual page for more information on changing the Root window cur
sor

• "Changing the Desktop cursor" (this page) and "Changing the scoterm cursor"
(page 186) for more information about cursors made of bitmap files or fonts

Changing the Desktop cursor

178

The Desktop cursors are bitmap files. Describing how to create bitmaps is
beyond the scope of this chapter. See the scopaint(XC) manual page for more
information about bitmaps. The following procedures assume that you
understand bitmap files, and that if you want to create a new Desktop cursor,
you have already created the bitmap picture.

Cursor resources can be changed like any other resource, and as with other
resources, you can make cursor resource changes on a system-wide level or
on a user level.

See also:

• "Specifying Desktop cursors for the entire system" (page 179)

• "Specifying Desktop cursors for individual users" (page 182)

• Chapter 5, "Understanding resources" (page 79)

Graphical Environment Guide

Changing the Desktop cursor

Specifying Desktop cursors for the entire system

To make a Desktop cursor change, perform the following steps. You must be
logged into the system as root to perform this task. For more information on
each of the steps in this task, see the sections immediately following this list.

1. Create a customized picture directory and move the new bitmap file into
this directory.

2. Open the system Desktop resource file, /usr/lih/Xll/app-dejaults/XDesktop3,
for editing.

3. Make the desired cursor resource specification(s):

• For an existing cursor resource specification, replace the old cursor
name and/or location with the desired name and/or location.

• For a new cursor resource specification, add the new resource setting,
using the following format:

!Cursor
!Name: xdt3.natne
!Class: XDesktop3.Cursor.Bitmap
*resource_natne. data: bitmap-filename

!Mask
!Name: xdt3.natne
!Class: XDesktop3.Cursor.Bitmap
*resource_name. mask: bitmap-filename

When you are finished, save your changes and exit the resource file.

4. If users are running the Desktop at the time you make cursor resource'
changes, they must restart the Desktop to see the new cursors.

Step 1: Creating a picture directory
The default Desktop cursors are located in the default picture directories,
/usr/lih/Xll/lXI/XDesktop/bitmaps/xdt_cJlarge I small]. You can look in the
files located in these directories to see sample bitmap files and filenames, but
do not edit the files in this directory. If you want to edit a default Desktop
cursor, copy the default bitmap file, then make desired changes to the copy.

179

Changing cursor appearance

180

In addition, instead of adding your new bitmap file(s) to one of these direc
tories, it is recommended that you create your own picture directory and store
the customized bitmaps in this new directory. The picture directory can be
located anywhere, but make sure it is in a logical place so that subsequent bit
map files can be stored in this directory also. For example, it is probably logi
cal to create a directory in a system path to store cursors that affect the Desk
top system-wide. A recommended location would be in /usr/include/Xll; for
example, creating a directory called /usr/include/Xll/Newbitmaps would prob
ably be more logical than creating a directory in your $HOME directory path.
Nevertheless, you can designate any directory to be the new bitmap directory.

Step 2: Editing the client resource file
The default resource file for the Desktop is /usr/lib/Xl1/app-defaults/XDesktop3.
The resources in this file are read when the Desktop is invoked. If you want
to specify Desktop resources that affect all users on your system, this is the file
to edit.

NOTE If you intend to modify the XDesktop3 file, it is recommended that
you either make a backup copy of the file before you enter your resource
changes, or comment out old resource values before entering new ones.
This way, you are assured of regaining the default values, if needed. Note
also that a risk of editing a system resource file is that changes can be
overwritten if your system is reinstalled.

See also:

• "Methods for specifying resources" (page 87) for a more detailed explanation of the
files used for resource specifications

Step 3: Setting the cursor resources
There are two different resource specifications you might need to set: the cur
sor resource specification, which consists of the pair of resources
resource_name. data and resource_name.mask, and the picture directory speci
fication, which involves setting the pictureDirectory resource.

Graphical Environment Guide

Changing the Desktop cursor

Cursor resource specifications must use the following format:

!Cursor
!Name: xdt3.natne
!Class: XDesktop3.Cursor.Bitmap
*resource_natne. data: bitmap-filenatne

!Mask
!Name: xdt3.natne
!Class: XDesktop3.Cursor.Bitmap
*resource_natne. mask: bitmap-filenatne

The lines preceded by an exclamation mark" ! " are comments. It is important
to comment your new resources so that you or other users can understand the
intent of the specifications.

*resource_name.data represents the resource name of the data pixmap. See
Table 9-1, "Resources that control Desktop cursor appearance" (page 175) for a
list of valid cursor names. The data pixmap defines the image associated with
the cursor, for example, a hand or an hourglass. *resource_name.mask
represents the resource name of the mask pixmap. The mask pixmap defines
the shape, or the outline, upon which the data pixmap is drawn. The mask is
needed so that the image shows up on any color of background.

bitmap-filename refers to the name and location of the new bitmap file. You
can indicate where the new bitmap file is located by specifying the new bit
map location with an absolute pathname in both the .data and .mask cursor
resources. For example, if your data and mask pixmap files are located in
/usr/include/Xll/picture in files hand_d_xbm and hand_m_xbm, respectively, and
you want these pixmaps to represent the idle cursor on the Desktop, specify
their location by adding the following to the cursor resource:

*idle.data : lusr/includelXll1Pictureslhandbit_d_xbm
*idle.mask : lusr/includelXll1Pictureslhandbit_m_xbm

If you do not indicate an absolute pathname in the .data and .mask resources,
you must specify the pictureDirectory resource.

The pictureDirectory resource contains the list of directories that are searched
when a picture file with a relative name is specified. This list is searched
sequentially, so the most frequently accessed directories should be placed at
the beginning of the list.

181

Changing cursor appearance

If you do not specify an absolute pathname for the .data and .mask cursor
resources, you must add the pathname of the new picture directory (the direc
tory where your bitmap file is located) to the pictureDirectory resource in the
XDesktop3 resource file. By default, the resource looks like this:

!Name: xdt3.pictureDirectory
!Class: XDesktop3.PictureDirectory
!Default: No default value.
*pictureDirectory: $XDTBITMAP/xdt_c_large
$HOME/.xdt_dir/bitmaps/xdt_large \
$XDTBITMAPS/xdt_large \
/usr/include/Xll/bitmaps

The first directory indicated is the first path searched, when relative path
names are specified in cursor resources.

Add the absolute pathname of the directory created in Step 1 (page 179) to the
beginning of this resource. For example, if you decide to store your bitmaps in
a directory called /usr/include/Xll/Pictures, make sure this directory is the first
directory indicated. The resource line is similar to this:

*pictureDirectory: /usr/include/Xll/pictures \
$XD':-HTMAP/xdt_c_large \
$HOME/.xdt_dir/bitmaps/xdt_large \
$XDTBITMAPS/xdt_large \
/usr/include/Xll/bitmaps

See also:

• Chapter 5, "Understanding resources" (page 79)

Step 4: Activating the new cursors
Once you have made the desired cursor changes to the Desktop resource file,
the new specifications are immediately available to all users. However, if
users were running the Desktop while you made your changes, they need to
restart the Desktop before they see the new cursors.

Specifying Desktop cursors for individual users

182

Individual users can use their own unique set of cursors on the Desktop.
These cursors do not change the default cursors that are available to other
users on the system.

To change the cursor for an individual user, perform the following steps. For
more information on each of these steps, see the sections immediately follow
ing this procedure.

Graphical Environment Guide

Changing the Desktop cursor

1. Create a customized picture directory and move the new bitmap file to
this directory.

2. Create a file called XDesktop3 in the user's home directory.

3. Edit the XDesktop3 file and add the new resource specifications, using the
following format:

!Cursor
!Name: xdt3.name
!Class: XDesktop3.Cursor.Bitmap
XDesktop3 * resource_name . data: bitmap-filename

!Mask
!Name: xdt3.name
!Class: XDesktop3.Cursor.Bitmap
XDesktop3 * resource_name . mask : bitmap-filename

When you are finished, save your changes and exit the resource file.

4. If you created the XDesktop3 file as root, assign the appropriate user per
missions to the file:

chown username XDesktop3
chgrp groupname XDesktop3

5. Restart the Desktop.

Step 1: Creating a picture directory
The default Desktop cursors are located in the default picture directory,
/usr/lib/Xll/IXI/XDesktop/bitmaps/xdt_cJlarge I small]. You can look in the
files located in this directory to see the contents of sample bitmap files and
sample filenames, but do not edit the files in this directory. If you want to edit
a default Desktop cursor, copy the default bitmap file, then make desired
changes to the copy.

In addition, instead of adding your new bitmap file(s) to one of these direc
tories, it is recommended that you store customized bitmaps in
$HOME/.xdt_dir/bitmaps.

Step 2: Creating an XDesktop3 file
Individual users can assign their own values to Desktop cursor resource spec
ifications. You can either change the value of a resource already set, or you
can set an entirely new resource. User defaults always override system
defaults, allowing different users running the same clients to specify personal
preferences.

183

Changing cursor appearance

184

Individual resource settings are placed in a file called XDesktop3 in the user's
home directory. If this file does not already exist, you can create it in one of
two ways:

• Create a file named XDesktop3, then add the desired cursor specifications to
the file. This approach is most useful if you are only making a few changes
or only adding a few lines.

• Copy the XDesktop3 default file, /usr/lih/Xll/app-deJaults/XDesktop3, to a file
called XDesktop3 in the user's home directory. You can then use the file as a
template, deleting resources you do not want to change and specifying new
cursor values.

NOTE If you create an XDesktop3 file by copying the relevant lines from the
XDesktop3 file in the app-defaults directory, be sure to add XDesktop3 (the
Desktop's class name) or xdt3 (the Desktop's binary name) to the beginning
of each line if it is not already there.

When the user invokes the Desktop, the X server checks to see if an XDesktop3
file exists in $HOME. If such a file does exist, the resource values specified in
the user resource file take precedence over any values assigned to the same
resource in the resource database.

See also:

• "Methods for specifying resources" (page 87) for more information on the XDesk
top3 file

Step 3: Setting the cursor resources
There are two different resource specifications you may need to set: the cur
sor resource specification, which consists of the pair of resources
resource_name.data and resource_name.mask, and the picture directory speci
fication, which involves setting the pictureDirectory resource.

Cursor resource specifications must use the following format:

!Cursor
!Name: xdt3.natne
!Class: XDesktop3.Cursor.Bitmap
XDesktop3 * resource . da ta: bitmap-filenatne

!Mask
!Name: xdt3.natne
!Class: XDesktop3.Cursor.Bitmap
XDesktop3 * resource . mask: bitmap-filenatne

Graphical Environment Guide

Changing the Desktop cursor

The lines preceded by an exclamation mark II ! " are comments. It is important
to comment your new resources so that you or other users can understand the
intent of the specifications.

*resource_name.data refers to the resource name of the data pixmap. See Table
9-1, "Resources that control Desktop cursor appearance" (page 175) for a list
of valid cursor names. The data pixmap defines the image associated with the
cursor, for example, a hand or an hourglass. *resource_name.mask refers to
the resource name of the mask pixmap. The mask pixmap defines the shape,
or the outline, upon which the data pixmap is drawn. The mask is needed so
that the image shows up on any color of background.

bitmap-filename refers to the name and location of the new bitmap file. You
can indicate where the new bitmap file is located by specifying the new bit
map location with an absolute pathname in both the .data and .mask cursor
resources. For example, if your data and mask pixmap files are located in
$HOME/.xdt_dir/bitmaps/Pictures in files hand_d_xbm and hand_m_xbm, respec
tively, and you want these pixmaps to represent the idle cursor on the Desk
top, specify their location by adding the following to the cursor resource:

XDesktop3*idle.data: $HOMEI.xdt_dirlbitmaps/Pictureslhandbit_d_xbm
XDesktop3*idle.mask: $HOMEI.xdt_dirlbitmapslPictureslhandbit_m_xbm

If you do not indicate an absolute pathname in the .data and .mask resources,
you must specify the pictureDirectory resource.

The pictureDirectory resource contains the list of directories that are searched
when a picture file with a relative name is specified. This list is searched
sequentially, so the most frequently accessed directories should be placed at
the beginning of the list.

If you do not specify an absolute pathname for the .data and .mask cursor
resources, you must add the pathname of the new picture directory (the direc
tory where your bitmap file is located) to the beginning of the pictureDirec
tory resource in the $HOME/XDesktop3 file. The resource would now look
similar to this:

!Cursor
!Name: xdt3.pictureDirectory
!Class: XDesktop3.PictureDirectory
XDesktop3*pictureDirectory: $XDTBITMAP/xdt_c_large \
$HOME/.xdt_dir/bitmaps/xdt_large \

$XDTBITMAPS/xdt_large \
/usr/include/Xll/bitmaps

185

Changing cursor appearance

The first directory indicated is the first path searched, so the new Pictures
directory is now searched first. The other directories in the resource are the
directories searched sequentially by default when relative pathnames are
specified.

See also:

• Chapter 5, "Understanding resources" (page 79)

Step 4: Assigning correct ownership permissions
If you generated an XDesktop3 file for a user from the root account, whether by
creating the file or by copying the /usr/lib/Xl1/app-dejaults/XDesktop3 file, you
must assign the file the correct ownership permissions. Run the chown com
mand to assign the correct owner, and the chgrp command to assign the
correct group to the $HOME/XDesktop3 file.

If you created your own XDesktop3 file, you can ignore this step. Your owner
ship permissions are already correct.

Step 5: Restarting the Desktop
If you are not running a Graphical Environment session, you must start the
Desktop before your new resource values can be recognized.

If you are running a Graphical Environment session, you must restart the
Desktop before your new resource values can be recognized. Use the Restart
Desktop Session option on the main Desktop File menu.

Changing the scoterm cursor

186

The pointer cursor in the scoterm window is a font. Fonts are X resources and
as such, can be changed like any other resource. You have a great deal of con
trol over the fonts used for the pointer cursors in your scoterm window.
Before you actually make any font resource changes, however, you should be
familiar with the information in Chapter 5, "Understanding resources" (page
79).

As with other resources, you can:

• make font resource changes for scoterm pointer cursors on a system-wide
level (page 187) or on a user level (page 188)

• specify font changes at the command line (page 190)

Graphical Environment Guide

Changing the scoterm cursor

Specifying scoterm cursors for the entire system

To make a pointer cursor font change, perform the following steps. You must
be logged into the system as root to perform this task. For more information
on each of the steps in this procedure, see the sections immediately following
this list.

1. Open the ScoTerm resource file in the /usr/lib/Xlllapp-defaults directory for
editing.

2. Make the desired font resource specification(s):

• For an existing font resource specification, replace the old font designa
tion with the desired font.

• For a new font resource specification, add the new resource setting,
using the following format:

ScoTerm*pointerShape: fontname

When you are finished, save your changes and exit the resource file.

3. H users are running the scoterm client at the time you make these changes,
they must restart the client to see the new cursor.

Step 1: Editing the system resource file
The default resource file for scoterm is named ScoTerm and is located in the
lusr/lib/Xlllapp-defaults directory. The resources in this file are read whenever
the scoterm client is run.

NOTE H you intend to modify the ScoTerm file, it is recommended that you
either make a backup copy of the file before you enter your resource
changes, or comment out old resource values before entering new ones.
This way, you are assured of regaining the default values, if needed.

See also:

• "Methods for specifying resources" (page 87) for a more detailed explanation of the
files used for resource specifications

187

Changing cursor appearance

Step 2: Setting the cursor font resource
As with all resources, cursor font resource specifications must use the correct
format:

ScoTerm*pointerShape: cursorname

When you specify the scoterm client, you can enter either the binary name,
scoterm, or the class name, ScoTerm. pointerShape is the resource variable
you are setting. It is part of the resource class, Cursor. cursorname is the
actual name of the cursor you are selecting. Use the cursor names listed in
Table 9-2, "Standard cursor font names" (page 176).

See also:

• Chapter 5, "Understanding resources" (page 79)

• Chapter 7, "Changing fonts" (page 125)

Step 3: Activating the new cursor
Once you have made the desired cursor changes to the scoterm resource file,
the new specifications are immediately available to all users. However, if
users were running a scoterm window while you made your changes, they
need to restart the client before they see the new cursors.

Specifying scoterm cursors for individual users

188

Individual users can use their own unique set of pointer cursors for scoterm.
These font settings do not change the default pointer cursors that are used by
other users on the system.

To change scoterm cursor fonts for an individual user, perform the following
steps. For more information on each of these steps, see the sections immedi
ately following this procedure.

1. Create a file called .Xdefaults-hostname in the user's home directory.

2. Edit the .Xdefaults-hostname file and add the new cursor font resource
specification, using the following format:

ScoTerm*pointerShape: cursorname

When you are finished, save your changes and exit the resource file.

Graphical Environment Guide

Changing the scoterm cursor

3. If you created the .Xdefaults-hostname file as root, assign the appropriate
user permissions to the file:

chown username .Xdefaults-hostname
chgrp groupname .Xdefaults-hostname

4. If necessary, restart the scoterm client.

Step 1: Creating an .Xdefaults-hostname file
Individual users can assign their own values to cursor font resource specifica
tions. You can either change the value of a font resource already set in the
resource database, or you can set an entirely new font resource. User defaults
always override system defaults, allowing different users running the same
clients to specify personal font preferences.

Individual resource settings are placed in a file called .Xdefaults-hostname,
where hostname is the name of the host, or machine, where the client is run
ning.

You can add an .Xdefaults-hostname file to a user's home directory in one of
two ways:

• Create a file named .Xdefaults-hostname, then add the desired cursor font
specifications to the file. This approach is most useful if you are only mak
ing a few changes.

• Copy the scoterm default file, /usr/lib/Xll/app-dejaults/ScoTerm, to the user's
home directory, into a file called .Xdefaults-hostname. You can then use the
file as a template, keeping relevant lines specifying a new font value for the
pointerShape resource.

I

NOTE If you create an .Xdefaults-hostname file by copying the relevant lines
from the ScoTerm file in the app-defaults directory, be sure to add scoterm or
ScoTerm to the beginning of each line if it is not already there.

When the user invokes scoterm, the X server checks to see if an .Xdefaults
hostname file exists in $HOME. If such a file does exist, the resource values
specified in the user resource file take precedence over any values assigned to
the same resource in the resource database.

See also:

• "Methods for specifying resources" (page 87) for more information on the
.Xdefaults-hostname file

189

Changing cursor appearance

Step 2: Setting the font resource
Font resource specifications must use the correct format:

ScoTerm*pointerShape: cursomame

When you specify the scoterm client, you can enter either the class name,
ScoTerm, or the binary name, scoterm. pointerShape is the resource variable
you are setting. It is part of the resource class, Cursor. cursomame is the
actual name of the cursor you are selecting. Use the font names listed in Table
9-2, "Standard cursor font names" (page 176).

See also:

• Chapter 5, "Understanding resources" (page 79)

Step 3: Assigning correct ownership permissions
If you generated an .Xdefaults-hostname file for a user from the root account,
whether by creating the file or by copying the ScoTerm file from
/usr/libIXll/app-defaults, you must assign the file the correct ownership per
missions. Run the chown command to assign the correct owner, and the
chgrp command to assign the correct group to the .Xdefaults-hostname file:

chown usemame .Xdefaults-hostname
chgrp groupname .Xdefaults-hostname

If you created your own .Xdefaults-hostname file, you can ignore this step.
Your ownership permissions are already correct.

Step 4: Restarting the scoterm client
If you are running a Graphical Environment session and you used the scoterm
window to make the desired changes to the resource file, you will not see the
effects of the changes until you exit scoterm and invoke it again.

Setting scoterm cursors from the command line

190

You can specify any resource setting on the command line that you would
otherwise put into a resource file, including font resources.

To change your pointer cursor from the command line, use the -xrm option
when launching scoterm from a scoterm window:

scoterm -xrm 'ScoTerm*pointerShape: cursomame' &

Graphical Environment Guide

Changing the scoterm cursor

If you specify a font resource from the command line, the pointer cursor font
is only set for that instance of scoterm. Subsequent sessions return to the cur
sor specified in the resource files for scoterm.

NOTE If you are using scosession and you end your current session with a
client that was run from the command line still open on the display, the
client is restored when you resume your session. Any command line
options that were used to define the client are also restored. In this way,
command line options can define client behavior on a more permanent
basis.

See also:

• "Using the -xrm option" (this page)

Using the -xrm option
The -xrm option allows you to set any resource value, including font specifi
cations, from the command line. You must enter the resource specification as
well as the desired font name when using this option. For example, to change
the pointer cursor font for scoterm to a double arrow, enter the following at
the command line:

scoterm -xrm 'ScoTerm*pointerShape: double_arrow' &

When using the -xrm option, you should be aware of the following:

• A resource specification must be quoted using the single quotation mark
"'"

• You can specify more than one resource value from the command line at
the same time. You must enter the -xrm option for each specification you
make.

Resource values specified at the command line only exist for the scoterm ses
sion you are invoking. The resource values do not become part of the
resource database and the values are not recreated the next time you run
scoterm unless you use the -xrm option again.

Note that a font resource specified at the command line does not take effect if
a font resource that takes precedence has already been specified. For example,
say you loaded a resource file that includes the specification:

ScoTerm*pointerShape: heart

191

Changing cursor appearance

In this case, the following command line specification would not result in the
scoterm client using the star pointer cursor font:

scoterm -xrm '*pointerShape: star' &

Because the ScoTerm*pointerShape designation is more specific, the *poin
terShape entry on the command line does not override the font setting in the
resource database.

To override the resource database, and get the star pointer cursor, you would
need to use a resource equally or more specific than the default setting. For
example, the resource ScoTerm*pointerShape would provide the desired
pointer cursor change.

Example of changing cursor appearance

This section provides two examples that tie together many of the concepts
and procedures discussed throughout this chapter. The examples in this sec
tion describe:

• how to change a user's Desktop cursor (this page)

• how to change a system-wide scoterm cursor (page 194)

Example 1: Changing Desktop cursor appearance

192

Let's assume you are a system administrator. One of the user's on your sys
tem has created a new bitmap with scopaint(XC) and wants it to display each
time the Desktop processor is busy. The user has named the data pixmap file
waiting_d.xbm and the mask pixmap file waiting_m.xbm. Both files are tem
porarily stored in the user's $HOME directory.

Graphical Environment Guide

Example of changing cursor appearance

The following steps result in a new Desktop cursor that appears in the user's
Graphical Environment when the Desktop processor is busy. Either root or
the user can make this change. Let's assume you do this change for the user
as the system administrator, logged in as root.

1. Change directories to the user's $HOME directory and locate the files
named waiting_d.xbm and waiting_m.xbm. The user's $HOME directory is
not a very appropriate place to store Desktop cursors, so you decide these
files need to be moved to a more appropriate picture directory.

2. Create a picture subdirectory called /picture in the user's
$HOME/.xdt_dir/bitmaps directory, and move waiting_d.xbm and
waiting_m.xbm to this new directory.

3. Now look for the file named $HOME/XDesktop3. For the purposes of this
example, let's assume this file already exists. (You will copy the relevant
lines from the Desktop default resource file, /usr/lib/Xll/app
defaults/XDesktop3, into this XDesktop3 file.)

4. Change directories to /usr/lib/Xll/app-dejaults, then search the XDesktop3
file for the lines that contain the resource that displays the busy cursor on
the Desktop, *busy.data and *busy.mask.

5. Copy the lines that contain the cursor value for this resource to
$HOME/XDesktop3, and comment out the the two lines containing the cur
sor value so that the file now looks like this:

and

Name: xdt3.busy.data
! Class: XDesktop3.Cursor.Bitmap
! Default: Internal picture
!*busy.data : wait_d.xbm

Name: xdt3.busy.mask
Class: XDesktop3.Cursor.Bitmap
Default: Internal picture

!*busy.mask : wait_m.xbm

6. Now open a line immediately below both resources, and enter your new
resource designations:

XDesktop3*busy.data: $HOMEI.xdt_dirlbitmapslPictureslwaiting_d.xbm
XDesktop3*busy.mask: $HOMEI.xdt_dirlbitmaps/Pictureslwaiting_m.xbm

7. Save and exit the XDesktop3 file.

8. When the user runs the Desktop, and the Desktop processor is busy, the
user's new cursor should appear.

193

Changing cursor appearance

Example 2: Changing scoterm cursor appearance

194

Let's assume you are an administrator for a system whose X server and clients
are accessed by several users. Your company just completed a deal with a
major boat manufacturer and, to celebrate, the president of your firm has
requested that the pointer cursor in the scoterm window be changed to a
boat-shape.

The following steps result in a system-wide boat shaped pointer cursor for the
scoterm client.

1. Log into the system as root.

2. Change directories to lusrllib/Xl1Iapp-defaults and locate the file named
ScoTerm. This is the default resource file that you need to edit to make
your pointer cursor resource change.

3. Open the ScoTerm file for editing and search for the following line:

ScoTerm*pointerShape:

This is the resource that controls the font that is used to display the
pointer cursor in the scoterm window.

If this resource does not exist, skip to Step 5.

4. If this resource exists, comment out the line containing the font value for
this resource so that it looks like this:

!ScoTerm*pointerShape: cursonnatne

By commenting out the default resource setting, instead of simply deleting
the line, you leave yourself a safeguard. You can always return to this
default if you make a mistake when setting a new font value.

5. Now open a line immediately below the resource you just commented out
(or if a resource was not previously set, open a line anywhere in the file)
and enter your new resource designation:

ScoTerm*pointerShape: boat

6. Save and exit the ScoTerm file.

7. As a final test, invoke scoterm. (If you are currently running a Graphical
Environment session, exit scoterm, then invoke it again.) The pointer cur
sor that displays in the scoterm window should now look like a boat.

Graphical Environment Guide

Chapter 10

Configuring mouse behavior

There are several aspects of your mouse's behavior that you can specify. You
can:

• emulate a three-button mouse if your mouse only has two buttons (page
196)

• configure your mouse for right- or left-handed use (page 196)

• specify the rate of acceleration (page 198) at which the mouse cursor (also
called the mouse pointer) moves across the screen and the number of pixels
the cursor must move before the mouse begins accelerating (page 199)

• define a new duration that is allowed between the two clicks that constitute
a double-click action (page 201)

There is also an example (page 206) at the end of this chapter that helps tie
together many of the concepts and procedures discussed in this chapter.

The steps for performing these configuration tasks are discussed in this
chapter. Note that a number of these tasks should be completed by individual
users using the scomouse client. The super-user cannot configure mouse
behavior on a system-wide level.

See also:

• "Changing mouse characteristics" (page 33)

195

Configuring mouse behavior

Emulating a three-button mouse

In previous releases of sea Open Desktop, if you wanted to emulate three
button mouse behavior with a two-button mouse, you had to remap mouse
triggers by modifying several resource lines in your personal resource file.
For this release, however, you do not have to make any configuration changes
to obtain this functionality.

If you have a correctly installed two-button mouse on your system, the oper
ating system automatically maps the mouse buttons so you can then perform
the same tasks as a user with a three-button mouse.

When you use a two-button mouse, the left button on the mouse performs all
the functions of mouse button 1, and the right button on the mouse performs
the functions of mouse button 3. To simulate mouse button 2, click both but
tons simultaneously. This technique is also referred to as "chording."

Switching to a left-handed mouse

196

By default, your mouse is configured for use by right-handed users. The left
mouse button assumes the behavior of mouse button 1, the middle button
behaves as mouse button 2, and the right button behaves as mouse button 3.
If you are left-handed, however, you can reverse the button order of your
mouse so that the mouse button on the right is treated as mouse button 1, and
so forth.

To switch your mouse for left-handed use, perform the following steps. For
more information on each of these steps, see the sections immediately follow
ing this procedure.

1. Use one of the following configuration tools:

• Run the scomouse client by double-clicking on the Mouse icon, located
in the Preferences Editor, in the Controls window, and click on the Left
Handed button.

• Run the xmodmap command from a scoterm window:

xmodmap -e "pointer = 3 2 1"

2. List the new mouse button mappings to verify that your mouse is now
configured for left-handed use:

xmodmap -pp

Graphical Environment Guide

Switching to a left-handed mouse

Step 1: Configuring the mouse for left-handed use
The scomouse client is very easy to use and is generally the preferred method
for configuring your mouse for left-handed use. When the client is running,
simply click mouse button 1 on the Left Handed button. The remapping of the
mouse buttons is immediate, and you can now use the right mouse button as
mouse button 1. This setting stays in effect until you change it.

The scomouse client stores this configuration information in a file called
ScoMouse, located in $HOMElodtpref. If you examine this file after you make
your selection, you see:

scomouse -s 2 -t 4 -1

The - s and - t entries refer to the acceleration and threshold values the mouse
uses. These issues are described in IIConfiguring mouse acceleration" (page
198). The -1 entry indicates the mouse is configured for left-handed use.

You can also switch to a left-handed mouse using the xmodmap command
with the -e option.

NOTE If you set your mouse for left-handed use with the xmodmap -e
command, the configuration is only in effect for the current session, unless
you add the xmodmap -e command to an executable script in your
$HOME/.odtpref directory.

The scomouse client is more intuitive to use than the xmodmap -e com
mand, and is the preferred method for configuring your mouse for left- or
right-handed use for multiple sessions.

To configure the mouse for left-handed use with xmodmap, enter:

xmodmap -e ''pointer = 3 2 1"

The mouse button mappings are now reversed so that the button on the right
behaves as mouse button 1, and so forth.

To return to a right-handed mouse using xmodmap, enter:

xmodmap -e "pointer = 1 2 3"

See also:

• xmodmap(X) manual page

197

Configuring mouse behavior

Step 2: Listing the new mouse button mappings
If you used the scomouse client to configure your mouse, you know that your
selection worked because the behavior of the mouse changes automatically.

However, if you switched your mouse with the xmodmap command, you
may want to verify that the mouse buttons are now mapped correctly for
left-handed use. Run the following command:

xmodmap -pp

If your configuration succeeded, you should see:
There are 3 pointer buttons defined.

Physical Button
Button Code

1 3
2 2
3 1

The Physical Button column indicates the actual buttons on the mouse, where
the button on the left is button 1, the middle button is button 2, and the right
button is button 3. The Button Code column indicates the current mouse but
ton mappings.

The example indicates that the mouse is now configured for left-handed use.
The left button, or physical button 1, performs the function of mouse button 3,
and so forth.

Configuring mouse acceleration

198

You can configure the rate at which the mouse cursor moves across the screen
and the point at which the mouse cursor actually begins to accelerate. By con
figuring these parameters, you can use the mouse for precise positioning
when it is moved slowly and you also have the flexibility to move the cursor
quickly across the screen.

To configure the mouse's movement parameters, perform the following steps.
For more information on each of these steps, see the sections immediately fol
lowing this procedure.

1. Use one of the following configuration tools:

• Run the scomouse client by double-clicking on the Mouse icon, located
in the Preferences Editor in the Controls window, and adjust the
Acceleration" and #Distance" slider bars to the desired levels .

• Run the xset command, with the m (mouse) option, from a scoterm
window:

xset m acceleration_value threshold_value

Graphical Environment Guide

Configuring mouse acceleration

2. Verify that your changes were successfully implemented by running the
following command:

xset q

Step 1: Setting the movement parameters
There are two parameters that control the movement of the mouse: accelera
tion and threshold. The acceleration parameter is a multiplier that is applied
to the mouse cursor motion. If the acceleration parameter is set to 1/4", the
mouse cursor moves across the screen four times faster than you move the
mouse.

Setting a high acceleration is convenient for quickly moving the mouse cursor
large distances on your screen. However, it can be awkward when you want
to position the mouse precisely. The pointer can move too quickly and it
becomes difficult to focus the mouse cursor on a small area on your screen. To
overcome this problem, you can set the threshold parameter. The threshold
controls the number of pixels the mouse cursor must move before the cursor
motion accelerates.

For example, suppose you set an acceleration value of 1/6" and a threshold
value of 1/8". The mouse is configured so that if you move the mouse cursor
more than 8 pixels, the cursor can then move 6 times as fast on the screen as
you actually move the physical mouse.

Use the following guidelines for deciding how to configure the mouse move
ment parameters:

• increase the acceleration parameter if you have a high resolution display or
are using a monitor or X terminal with a large screen

• increase the threshold value if you increase the acceleration value

• set the threshold parameter fairly high if you have a high resolution display

You can use either the scomouse client or the xset command to configure
these parameters.

199

Configuring mouse behavior

200

The scomouse client is generally the preferred method for setting the mouse
movement parameters:

• The acceleration parameter is set using the 1/ Acceleration" slider bar. The
further to the right you set the bar, the more the acceleration.

• The threshold parameter is set using the slider bar labeled "Distance
moved before mouse accelerates." The left-most position allows the mouse
to accelerate almost immediately upon being moved. Moving the slider
further to the right results in a longer delay before the mouse cursor begins
accelerating.

The parameters you set with the slider bars are implemented immediately
and remain in effect until you change them again through the scomouse
client. This allows you to test the mouse movement and fine-tune it to your
personal preference.

The scomouse client stores the settings for these parameters in a file called
ScoMouse, located in $HOME/.odtpref If you examine this file after you set
new values for the movement parameters, you see an entry similar to this:

scomouse -s 7 -t 10 -r

The - s entry indicates that the acceleration of the mouse has been set to 7 and
the -t entry indicates that the threshold has been set to 10. The -r entry indi
cates the mouse is configured for right-handed use.

You can also set the acceleration and threshold parameters using the xset
command, with the m (mouse) option.

NOTE Mouse movement parameters configured with the xset m command
are only in effect for the current session, unless you add the xset m com
mand to an executable script in your $HOME/.odtpref directory.

The scomouse client is more intuitive to use than the xset m command, and
is the preferred method for configuring mouse movement behavior for mul
tiple sessions.

To configure the mouse movement parameters with xset, enter:

xset m acceleration_value threshold_value

acceleration_value refers to the value you want for the acceleration parame
ter, and threshold_value refers to the value you want for the threshold param
eter. You must use positive integers to set these parameters.

Graphical Environment Guide

Specifying the mouse doub/e-click duration

If you only assign the xset m command one value, the value is assigned to the
acceleration parameter. If you want to change the threshold parameter and
leave the acceleration parameter unchanged, enter:

xset m default threshold_value

If you want to return to the default acceleration and threshold values, enter:

xset m default

The system defaults specify that the mouse uses an acceleration value of 4
and a threshold value of 2.

See also:

• xset(X) manual page

Step 2: Listing the new mouse settings
Once you have configured the mouse movement parameters, you may want
to verify that your changes were successfully implemented by the X server.
Enter the following command:

xset q

The q option lists the current values of all of the xset preferences. The mouse
movement parameters are included in this list, as shown in the following
example:

Pointer Control:
acceleration: 3 / 1 threshold: 4

This indicates that the mouse cursor on the screen moves three times as fast as
you actually move the physical mouse (3/1), and that this occurs after the
mouse pointer moves 4 pixels. The default is twice as fast (2/1).

Specifying the mouse double-click duration

You can modify the duration that is allowed between the two mouse clicks
that constitute a double-click action. There is a specific period of time, in mil
liseconds, that is used to judge if two mouse button presses are a double-click
or two single clicks. This behavior is defined through resources, and as such,
can be modified, either by using scomouse or by editing the Desktop resource
files.

You may find that the default settings require you to double-click the mouse
button more quickly than you would prefer. Perhaps you commonly double
click on an icon, only to find that you have selected the icon (instead of exe
cuting it) because the Desktop interpreted your action as two separate single
click actions. Or, you may feel that the default settings allow for too much
time between the clicks that constitute a double-click action.

201

Configuring mouse behavior

The following sections describe how to define the double-click duration:

• using scomouse (this page)

• for the Desktop only (this page)

• for the window manager only (page 204)

You will probably need to experiment with different settings before you find a
designation with which you are satisfied.

Defining the double-click duration with scomouse

Using the scomouse client, adjust the "double-click duration" slider bar. Mov
ing the slider to the right increases the amount of time allowed between
clicks. Moving the slider to the left decreases the amount of time allowed for
a double-click.

Defining the double-click duration for the Desktop

202

The following steps describe how to modify the double-click duration by edit
ing the appropriate resource files. For more information on each of these
steps, see the sections immediately following this procedure.

1. Open the desired resource file for editing:

• lusr/lib/Xll/app-defaults/XDesktop3 for system-wide changes

• $HOME/XDesktop3 for individual changes

2. Add the Desktop double-click resource specification, using the following
format:

XDesktop3.triggers.maxUpTime: resource_value

3. If desired, you can further customize mouse behavior on the Desktop with
the following resources:

• Set the XDesktop3.triggers.thresholdDownTime resource to control
the time, in milliseconds, that a mouse button can be held down before
it is considered a hold action instead of a click.

• Set the XDesktop3.triggers.maxMotion resource to control the dis
tance, in pixelsl that the mouse cursor can move before a mouse button
press is considered a drag action.

When you have finished, save your changes and exit the resource file.

4. Restart the Desktop.

Graphical Environment Guide

Specifying the mouse double-click duration

Step 1: Editing the resource file
You can change the duration allowed between the mouse button presses in a
double-click action so that all users on your system can use the new behavior,
or you can specify a new duration for an individual user only.

The majority of default Desktop resource settings are defined in the
/usr/lib/Xll/app-deJaults/XDesktop3 file. The resources in this file are read by
the resource manager when the Desktop is executed. If you want to modify
the time allowed for double-clicks for all users, you should edit this file. You
must have root privileges to edit this file. It is also a good idea to make a
backup copy of this file before making changes to it.

If they do not use scomouse, individual users can also change this behavior
using their personal Desktop resource file, $HOME/XDesktop3. When the user
starts the Desktop, it checks to see if an XDesktop3 file exists in SHOME. If the
file does exist, the resource values specified in the user resource file take pre
cedence over any values assigned to the same resource for the system, or in
the resource database.

See also:

• "Methods for specifying resources" (page 87) for a more detailed explanation of the
resource files

Step 2: Setting the maxUpTime resource
Use the triggers.maxUpTime resource to specify the duration allowed
between clicks so the action is interpreted as a double-click. The default value
of this resource is 500 milliseconds.

Use the following format to set this resource:

XDesktop3.triggers.maxUpTime: resource_value

For example, if you want to specify a duration of 1/1,000" milliseconds, set the
triggers.maxUpTime resource so it reads:

XDesktop3.triggers.maxUpTime: 1000

Step 3: Modifying other Desktop mouse resources
There are two other resources that you can set to refine the interaction of your
mouse with the Desktop client:

• The triggers.thresholdDownTime resource controls the time, in mil
liseconds, that a mouse button can be held down before it is considered a
hold action instead of a click. The default value for this resource is "700"
milliseconds.

203

Configuring mouse behavior

• The triggers.maxMotion resource controls the distance, in pixels, that the
mouse cursor can move before a mouse button press is considered a drag
action. The default value for this resource is 1/3" pixels.

Step 4: Restarting the Desktop
Once you have made the desired resource changes, you need to restart the
Desktop so the newly defined values will be read. Select Restart Desktop Ses
sion from the main Desktop File menu. In the Restart dialog box, click on Yes.
The Desktop starts again and reads your new resource values.

Defining the double-click duration for the window manager

204

To modify the time allowed between the clicks that constitute a double-click
action for the window manager, perform the following steps. For more infor
mation on each of these steps, see the sections immediately following this
procedure.

1. Open the desired resource file for editing .

• pmwmmode:

/usr/lib/Xll/app-defaults/pmwm for system-wide changes

• mwmmode:

/usr/lib/Xll/app-defaults/Mwm for system-wide changes

• both modes:

$HOME/.Xdefaults-hostname for local changes

2. Add the window manager double-click resource specification, using the
following format:

Pmwm*doubleClickTime: resource_value

or

Mwm*doubleClickTime: resource_value

When you have finished, save your changes and exit the resource file.

3. Restart the window manager.

Graphical Environment Guide

Specifying the mouse double-click duration

Step 1: Editing the resource file
You can change the duration allowed between the mouse button presses in a
double-click action so that all users on your system can use the new behavior,
or you can modify the duration for an individual user.

The majority of window manager resource settings are defined in the
/usr/lib/Xll/app-defaults/Pmwm (for pmwm mode) or the /usr/lib/Xll/app
defaults/Mwm (for mwm mode) resource file. The resources in this file are read
by the resource manager when the window manager is executed. If you want
to modify the window manager double-click duration for all users, you
should edit this file. You must have root privileges to perform this step.

Individual users can also change this behavior. Individual resource settings
are placed in a file called .Xdefaults-hostname, where hostname is the name of
the host, or machine, where the window manager is running.

NOTE The .Xdefaults-hostname file does not exist in the user's home direc
tory by default. If this file is not currently present, you must create it before
you can redefine the time allowed for mouse double-clicks.

If you create this file for a user from the root account, you must assign the
file the correct ownership permissions. Run the chown command to assign
the correct owner and the chgrp command to assign the correct group to the
.Xdefaults-hostname file. If you created this file yourself, these steps are
unnecessary.

When the user starts the window manager, it checks to see if an .Xdefaults
hostname file exists in $HOME. If the file does exist, the resource values
specified in the user resource file take precedence over any values assigned to
the same resource for the system, or in the resource database.

See also:

• "Methods for specifying resources" (page 87) for a more detailed explanation of
resource files

205

Configuring mouse behavior

Step 2: Setting the doubleClickTime resource
Use the doubleClickTime resource to specify the duration allowed between
clicks so the action is interpreted as a double-click. The default value of this
resource is 500 milliseconds.

Use the following format to set this resource:

Pmwm* double Click Time: resource_value

or

Mwm*doubleClickTime: resource_value

For example, if you want to specify a duration of 1/1,000" milliseconds, set the
doubleClickTime resource so it reads:

Pmwm*doubleClickTime: 1000

or

Mwm*doubleClickTime: 1000

Step 3: Restarting the window manager
After you have specified the new window manager resource value, you must
restart the window manager so your changes can take effect. Restart the win
dow manager by selecting the Restart Window Manager option from the Root
menu. The Root menu is accessed by pressing and holding mouse button 1 on
the Desktop background or, if the Desktop is not running, in the Root win
dow.

Verify that your new double-click designation is being used by the window
manager.

Example of configuring your mouse

206

This section provides a comprehensive example that ties together some of the
concepts and procedures discussed in this chapter.

Let's assume you are temporarily working on a system, using a departmental
account that is accessed by several users. While most of these users are right
handed, you are left-handed. Let's also assume the system uses a 20-inch,
high resolution display, but your colleagues have configured the mouse so it
moves more slowly over the large screen than you would prefer.

You want to reconfigure the mouse for left-handed use and speed up the
mouse cursor movement but you do not want to overwrite the mouse settings
that satisfy the majority of users who access the departmental account.

Graphical Environment Guide

Example of con figuring your mouse

This example covers how to make these changes for your current session
only. The commands used affect only the current session, unlike using
scomouse, which affects not only the current session but also all subsequent
sessions.

I
NOTE If you want to configure the behavior of your mouse on a more per
manent basis, you should use the scomouse utility. See "Changing mouse
characteristics" (page 33) for more information on using scomouse.

The following steps result in a mouse that is temporarily configured for left
handed use and faster movement across the display.

1. Log into the system. If logging in does not automatically start the X
server, do so now by entering the following command at the prompt:

startx &

2. To configure the mouse for left-handed use, enter the following command
from a scoterm window:

xmodmap -e "pointer = 3 2 1"

3. When the prompt returns, verify that the mouse buttons are now mapped
for left-handed use by entering:

xmodmap -pp

You should see the following:

There are 3 pointer buttons defined.

Physical Button
Button Code

1 3

2 2
3 1

You can now use the mouse button on the right to perform all mouse but
ton 1 actions.

4. Now you are ready to increase the rate at which the mouse cursor moves
across the screen. For this example, we'll assume you want the mouse cur
sor to move six times as fast as you move the mouse.

Because you also want to precisely position the mouse cursor, you need to
increase the rate of the mouse's threshold. For this example, we'll set the
threshold so the cursor must move over 8 pixels on the screen before the
mouse cursor actually accelerates.

To make these settings, enter the following command from a scoterm win
dow:

xset m 6 8

207

Configuring mouse behavior

208

5. Verify that the X server successfully implemented these new mouse set
tings by entering:

xset q

You see a list of all the current xset preferences, including the current
mouse movement parameter values:

Pointer Control:
acceleration: 6/1 threshold: 8

The mouse is now configured to suit your preferences. When you end
your session and log out, your temporary mouse configuration settings are
removed.

Graphical Environment Guide

Chapter 11

Configuring the keyboard for the server

When you run an sea OpenServer Graphical Environment session from the
console, all keystrokes are interpreted by the X server before they are passed
along to any clients that you are running. Consequently, the keyboard may
behave in a completely different manner when your are in a Graphical
Environment session than when you use a console multiscreen in text mode.

This chapter describes:

• background on the server keyboard (this page)

• configuring the X server to accommodate different keyboards (page 211)

• modifying the keyboard layout (page 213)

There is also an example (page 216) at the end of this chapter that helps tie
together many of the concepts and procedures discussed in this chapter.

About the server keyboard

Every time you press a key on your keyboard while running the X server, the
following signals are exchanged:

scancodes

keycodes

modifiers

hardware-dependent codes generated by keystrokes and
received by the X server

codes sent by the X server to the client indicating which key
was pressed. Keycodes by themselves do not indicate what
the keystroke means; the client must request that informa
tion from the X server.

flags, such as LLshift" and L'control," that the server sends with
each keycode to the client. The client's interpretation of the
keycode may depend on the state of the modifiers. For

209

Configuring the keyboard for the server

210

keysyms

example, the state of the shift modifier determines whether
an alphabetic character should be lowercase or uppercase.
Because the X server encodes the states of the eight modifiers
(shift, lock, control, mod1, mod2, mod3, mod4, and modS) in
a single byte of data, modifiers are often referred to as
"modifier bits."

codes that specify the glyphs appearing on the keys. The X
server also maintains a list of strings that describe the
keysyms, such as "a", "B", and "Control."

The X server keeps track of the mappings of keycodes to keysyms, and map
pings of keysyms to modifiers in two tables in its memory:

keymap table contains a list of keycodes that the X server sends, and the
keysyms and strings that correspond to them. The order of
keysyms in the keymap table determines which keysym cor
responds to the shifted or unshifted key.

modifier map contains a list of keysyms and keycodes to which each of the
eight modifiers are LLattached." For example, the default con
figuration attaches the mod1 modifier to the Alt_L and Alt_R
keysyms and to the keycodes corresponding to the left and
right (Alt) keys. When either (Alt) key is pressed, or when
any key mapped to the Alt_L or Alt_R keysyms is pressed,
the mod1 modifier is on.

To change the behavior of your keyboard while the X server is running, you
need only modify these two tables.

Because many non-U.S. keyboards have more than two symbols on each key,
the Shift modifier is supplemented by a modifier known as the "group
modifier," and the keysym, Mode_Switch. If the keymap table specifies more
than two keysyms for a key, the state of the group modifier determines
whether the Shift modifier toggles between the first and second keysyms,
which are referred to as "group 1," or between the third and fourth keysyms,
which are referred to as "group 2." When you configure the X server for a
non-U.s. keyboard, xsconfig.sh (see the xsconfig(X) manual page) maps
Mode_Switch to the mod3 modifier. Consequently, any key mapped to
Mode_Switch in the keymap table acts as the group modifier.

The X server's initial keyboard configuration is read from a configuration file,
.Xsco.cfg. If the X server finds .Xsco.cfg in the user's home directory, it reads
that file. Otherwise, it reads the system-wide default configuration file,
!usr/lib/Xll/.Xsco.cfg·

Graphical Environment Guide

Changing the modifier map

You can modify the contents of the keymap table and modifier map while the
X server is running, but the initial mapping of scancodes and key codes, and of
keysyms to strings, can only be modified by cornpiling a new configuration
file. You create keyboard configuration files with the xsconfig.sh script, which
allows you to create default keyboard configurations for a variety of character
sets, languages, and keyboards.

See also:

• xsconfig(X) manual page

Changing the modifier map

To change the X server's modifier map while it is running, perform the follow
ing steps. For more information on each of these steps, see the sections
immediately following this procedure.

1. Change the keysyms attached to a specific modifier by entering the follow
ing command in a scoterm window:

xmodmap -e expression

Repeat this step for every modifier map change you want to make.

2. Check the current modifier map by entering the following command at the
prompt in a scoterm window:

xmodmap -pm

Step 1: Changing a modifier map
To change modifier mappings run the following command in a scoterm win
dow:

xmodmap -e expression

expression is a quoted string that tells xmodmap how to change the modifier
map.

To add a keysym to a specific modifier, expression takes the following form:

"add modifier = keysym_name"

Modifiers can be attached to up to two keysyms. modifier is one of the fol
lowing: shift, lock, control, modl, mod2, mod3, mod4, or modS.
keysym_name is the name of a keysym to which you want to attach modifier.
For a list of valid keysyms, examine /usr/lib/Xlllxsconfig!keysymdef.h. Note
that you must not include the keysym's "XK_" prefix in keysym_list. Note
also that this command does not override any existing modifier attachments;
it only adds an attachment.

211

Configuring the keyboard for the server

212

I NOTE You must leave spaces around the # = " character.

For example, if the shift modifier is only mapped to the left (Shift) key, you can
attach the shift modifier to the right (Shift) key with the following command:

xmodmap -e "add shift = Shift_R"

To remove a keysym from a specific modifier, expression takes the following
form:

. ''remove modifier = keysym_name"

modifier is one of the following: shift, lock, control, modl, mod2, mod3,
mod4, or modS. keysym_name is the name of a keysym to which modifier is
already attached. For example, to remove the shift modifier's attachment to
the left (Shift) key, use the following command:

xmodmap -e "remove shift = Shift_IJ'

The above command does not affect the shift modifier's attachment to the
right (Shift) key.

Modifiers are usually attached not only to keysyms but also to specific scan
codes generated by the keyboard. Although you can change the keysyms to
which a modifier is attached, you cannot change the keys to which modifiers
are directly attached. If a modifier's attachment to a scancode prevents the
modifier mapping you desire, you can clear all of the modifier's attachments
with the following command:

xmodmap -e "clear modifier"

This command removes all of modifier'S attachments to keysyms and key
board scancodes. You can then attach the modifier to any desired keysyms. If
you need to attach the modifier to a keyboard scancode, however, you must
create a new .Xsco.cfg file with xsconfig(X).

NOTE The modifier map listing generated by xmodmap -pm only shows
the keysyms, not the keyboard scancodes, to which modifiers are attached.
If you want to remap modifiers, be sure to determine which keys the
modifiers are attached to by examining the lusrllib/Xlllxsconfigldefault.kbd
file or, if you are using a non-U.S. keyboard, the keyboard file from which
the configuration file was compiled, lusrlliblXlllxsconfig/mapkey.kbd. Note
that the scancodes in default.kbd correspond to server keycodes minus 7.

xmodmap can also accept commands from a file or standard input.

See also:

• xmodmap(X) manual page

• xsconfig(X) manual page

Graphical Environment Guide

Changing the keymap table

Step 2: Examining the modifier map
To view the current modifier map, run the following command at the prompt
in a scoterm window:

xmodmap -pm

A list of modifiers and the keysyms and keycodes to which they are attached
appears. The following is an example modifier map listing:

xmodmap: up to 2 keys per modifier, (keycodes in parentheses):

shift Shift_L (Ox31), Shift_R (Ox3d)
lock
control
modl
mod2
mod3
mod4
modS

Caps_Lock (Ox41)
Control_L (Ox24), Control_R (Ox87)
Alt_L (Ox3f), Alt_R (Ox88)
NUffi_Lock (Ox4c)

This listing indicates that the shift modifier is attached to the keysyms for
both the left and right (Shift) keys.

Changing the keymap table

To change the X server's keymap table while it is running, perform the follow
ing steps. For more information on each of these steps, see the sections
immediately following this procedure.

1. Check the current keymap table by entering the following command at the
prompt in a scoterm window:

xmodmap -pk

2. Change the keysyms attached to a specific keycode by entering the follow
ing command in a scoterm window:

xmodmap -e expression

Step 1: Examining the current keymap table
To view the current keymap table, run the following command in a scoterm
window:

xmodmap -pk

213

Configuring the keyboard for the server

214

A list of keycodes and the keysyms that are associated with them appears.
The following is a portion of a typical keymap listing generated by xmodmap
-pk:

There are 2 KeySyms per KeyCode; KeyCodes range from 8 to 150.

KeyCode Keysym (Keysym)
Value Value (Name)

8 Oxfflb (Escape)
9 Ox0031 (1) Ox0021 (exclaim)

10 Ox0032 (2) Ox0040 (at)
11 Ox0033 (3) Ox0023 (numbersign)
12 Ox0034 (4) Ox0024 (dollar)
13 Ox0035 (5) Ox0025 (percent)
14 Ox0036 (6) Ox005e (asciicircum)
15 Ox0037 (7) Ox0026 (ampersand)
16 Ox0038 (8) Ox002a (asterisk)
17 Ox0039 (9) Ox0028 (parenleft)
18 Ox0030 (0) Ox0029 (parenright)
19 Ox002d (minus) Ox005f (underscore)
20 Ox003d (equal) Ox002b (plus)
21 Oxff08 (BackSpace)
22 Oxff09 (Tab)
23 Ox0051 (Q)

24 Ox0057 (W)

25 Ox0045 (E)
26 Ox0052 (R)

27 Ox0054 (T)
28 Ox0059 (Y)

Make a note of the keycodes and keysyms that you want to remap.

In the above listing, the keysyms for #equal" and #plus" are associated with
keycode 20. Their order in the table specifies that the LLplus" keysym corre
sponds to the shifted key. H you swap their order in the table, however, the
#equal" keysym corresponds to the shifted key.

Step 2: Specifying keymap table changes
To change the mapping of keysyms to keycodes, run the following command
in a scoterm window:

xmodmap -e expression

expression is a quoted string that tells xmodmap how to change the keymap
table.

Graphical Environment Guide

Changing the keymap table

To redefine an entry in the keymap table, expression takes the following form:

keycode keycode_number = keysym_list

keycode_number specifies the keycode of the key you want to remap in the
keymap table. keysym_list is a list of keysym names, delimited by spaces,
that are mapped to keycode_number. For a list of valid keysyms, examine
lusr/lib/Xll/xsconfig!keysymdefh. Note that you must not include the keysym's
"XK_" prefix in keysym_list.

I NOTE You must leave spaces around the" =" character.

For example, to attach the bracketleft and braceleft keysyms to keycode 34 (to
which bracketright and braceright are currently attached), run the following
command in a scoterm window:

xmodmap -e "keycode 34 = bracketleft braceleft"

In this example, the keysyms bracketleft and braceleft are attached to keycode
34, and the keysyms bracketright and braceright are no longer attached.

To replace one keysym with another keysym or list of keysyms, expression
takes the following form:

keysym keysym_name = keysym_list

keysym_name is the name of a keysym that is currently mapped to a keycode
in the keymap table. keysym_list is a list of keysym names, delimited by
spaces, that replace keysym_name in the keymap table. For a list of valid
keysyms, examine /usr/lib/Xll/xsconfig!keysymdefh. Note that you must not
include the "XK_" prefix in keysym_list.

This command is very useful if you want to replace keysym attachments but
do not know the keycodes to which they are currently attached. Only the first
occurrence of this keysym_name in the keymap table is replaced. If the
keysym was mapped to multiple keycodes, you must use this command to
find each entry. For example, to attach the keysym Control_L to the keycode
to which the keysym CapsLock is attached, run the following command:

xmodmap -e ''keysym CapsLock = Control_C'

215

Configuring the keyboard for the server

Example of configuring the keyboard

216

This section provides a comprehensive example that ties together many of the
concepts and procedures discussed in this chapter.

For the purposes of this example, let's assume you are accustomed to working
from a terminal on which the left (Ctrl) key is directly above the left (Shift) key.
However, you run your system from the console of a machine on which the
(CapsLock) key is located where you expect the (CtrI) key, and the (CtrI) key is
where you expect to find the (CapsLock) key. This example explains how you
swap the function of these two keys.

1. Log in to the system. If logging in does not automatically start a Graphical
Environment session, do so now by entering the following command at
the prompt:

startx &

2. Start a scoterm window and run the following command:

xmodmap -pk I grep Caps_Lock

This displays the keycode(s) to which the Caps_Lock keysym is attached.
The output is similar to the following:

65 Oxffe5 (Caps_Lock)

3. To display the keycode(s) to which the Control_L keysym is attached, type
the following command:

xmodmap -pk I grep Control_L

The output is similar to the following:

36 Oxffe3 (Control_L)

4. Attach the ControLL keysym to the keycode to which the Caps_Lock
keysym is assigned with the following command:

xmodmap -e "keysym Caps_Lock = Control_U'

Graphical Environment Guide

Example of con figuring the keyboard

5. Now check the keymap table with the following command:

xmodmap -pk I grep Control_L

The output indicates that the ControLL keysym is now attached to the
keycode to which the Caps_Lock keysym was attached. The output is
similar to the following:

36 Oxffe3 (Control_L)
65 Oxffe3 (Control_L)

Note that you now need to attach the Caps_Lock keysym to the keycode
to which the Control_L keysym was originally attached, which in this case
is keycode 36.

6. Attach the Caps_Lock keysym to the keycode 36 with the following com
mand:

xmodmap -e "keycode 36 = Caps_Lock"

7. Verify that the Caps_Lock keysym has been mapped to the (Ctrl) key suc
cessfully with the following command:

xmodmap -pk I grep Caps_Lock

The output should show the Caps_Lock keysym attached to the keycode
to which the ControLL keysym was originally attached. The output
should be similar to the following:

36 Oxffe5 (Caps_Lock)

8. Verify that the ControLL keysym has been mapped to the (CapsLock) key
successfully with the following command:

xmodmap -pk I grep Control_L

The output should show the ControLL keysym attached to the keycode to
which the Caps_Lock keysym was originally attached. The output should
be similar to the following:

65 Oxffe3 (Control_L)

9. Test the new keyboard configuration.

217

Configuring the keyboard for the server

218 Graphical Environment Guide

Chapter 12

Customizing the window manager

The sea Panner window manager (pmwm), an enhanced version of the
aSF /Motif window manager (mwm), provides a wide variety of methods for
managing windows (for example, moving, resizing, iconifying, and so forth).
Virtually all of the window manager features can be customized.

The default window manager operation is largely controlled by a system
wide configuration file, lusr/lib/Xll/system.pmwmrc (or, if you opt to run the
window manager in mwm mode, /usr/lib/Xll/system.mwmrc). This file estab
lishes the contents of the Root and Window menus, how menus and menu
options are invoked, and what key and mouse button combinations can be
used to manage windows.

Individual users can customize this behavior, using their personal window
manager configuration file, $HOME/.pmwmrc or $HOME/.mwmrc.

Other window manager features that you can change, such as the appearance
of window frames, icons, and menus, the keyboard focus policy, and how
icons are arranged on the display, are controlled through resources.

This chapter discusses:

• changing the default pmwm mode of the sea Panner window manager to
the aSF /Motif mwm mode (page 220)

• creating a personal window manager configuration file (page 221)

• the syntax, structure, and content of the window manager configuration
file (page 222)

• using window manager functions (page 223)

219

Customizing the window manager

See also:

• Chapter 13, "Customizing window manager menus" (page 235)

• Chapter 14, "Configuring window manager button bindings" (page 253)

• Chapter 15, "Configuring window manager key bindings" (page 269)

• Appendix A, "aSF/Motif window manager resources" (page 377)

• Chapter I, "Introduction to sea Panner" in Using sea Panner

• "Setting sea Panner resources" in Using sea Panner

• mwm(XC) manual page

Selecting between seQ Panner and QSF/Motif modes

220

When the sca Panner window manager runs in the default pmwm mode, it
provides a virtual workspace that is much larger than the size of the physical
screen. A map of the entire workspace, divided into screen-size work areas, is
displayed in a panner window. You can manipulate both the actual windows
in the virtual workspace and the representations of the windows in the
panner.

While the virtual workspace aspects of pmwm are very useful, you may also
find that it places higher demands on your system, especially with regard to
memory usage.

You have the option of running the sca Panner window manager in mwm
mode, which provides standard aSF /Motif window manager functionality.

To switch to mwm mode, you can change the scosession *windowManager
resource in /usr/lib/Xll/app-defaults/ScoSession to:

*windowManager: lusrlbinIXll1mwm

This tells the session manager to run the window manager in mwm mode
(lusr/bin/Xll/mwm is linked to /usr/bin/Xll/pmwm, specifying the -mwm
option).

Alternatively, you can run:

lusrlbinIXll1pmwm -mwm

You could specify this command in a .startxrc file.

If you opt to use mwm mode, the window manager uses the
/usr/lib/Xll/system.mwmrc configuration file and the /usr/lib/Xll/app
defaults/Mwm resource file to determine its appearance and behavior.

Graphical Environment Guide

Creating a personal window manager con figuration file

See also:

• "Creating a personal window manager configuration file" (this page)

• "Running the startx script" (page 46)

• Chapter 1, "Introduction to sea Panner" in Using seQ Fanner for information on
how to use the sea Panner window manager features

Creating a personal window manager configuration file

If you want to customize your window manager menus, key bindings and
mouse button bindings, you can make your changes in either the
/usr/lib/Xll/system.pmwmrc or the /usr/lib/Xll/system.mwmrc file. However, if
you want to make customizations for individual users, you should add these
changes to the user's personal .pmwmrc or .mwmrc file, located in the user's
home directory, instead.

The .pmwmrc and .mwmrc files do not exist in $HOME by default. To create
either of these files, copy the corresponding system file to .pmwmrc or .mwmrc
in your home directory.

If you have created a personal window manager configuration file, you
should note the following:

• The system configuration file is ignored by the system if you have your
own .pmwmrc or .mwmrc file. Therefore, your personal file must include the
complete sections for menu specifications and button and key binding
specifications.

• If you change the default names of any menu, button, or key settings, you
must modify the appropriate X resources that define the names.

• Any changes that you designate in your personal window manager config
uration file only take effect after you restart the window manager. To do
this, select the Restart Window Manager option from the Root menu.

The window manager configuration file is a standard text file containing
items of information separated by blanks, tabs, and new-line characters. The
following guidelines apply to either a personal or system-wide window man
ager configuration file:

• Blank lines are ignored.

• The /I #" character at the beginning of a line is regarded as a comment. If
the " ! " character is the first character in a line, the line is also regarded as a
comment.

221

Customizing the window manager

• Items or characters that have special meaning are interpreted literally when
quoted. For example, if you quote the comment character, it is not inter
preted as the comment character.

• Items longer than one character are quoted with double quotes (").

• A single character is quoted by preceding it with a backslash (\).

Examining the window manager configuration file

222

The window manager configuration file is divided into the following sections:

• The Menu specifications section defines the contents of window manager
menus.

• The Button bindings section binds mouse button events to window manag
er functions.

• The Key bindings section binds key events to window manager functions.

The following pseudo-code illustrates the syntax of the window manager con
figuration file:

Menu menu_name

label [mnemonic] [accelerator] function

Buttons bindings_seCname
{

button context

Keys bindings_seCname
{

key context

function

function

By default, the menu section defines the contents of the Window and Root
menus. You can also specify submenus in this section, if desired. Menu items
are paired with predefined window manager functions. (page 223)

A "binding" is a mapping between a user action (such as a keystroke) and a
window manager function. The button bindings section specifies mouse but
tons or key/button combinations that can be used to invoke various window
manager functions. The key bindings section specifies keyboard keys that can
be used to invoke the predefined functions.

Graphical Environment Guide

Using window manager functions

See also:

• "Using window manager functions" (this page)

• Chapter 13, "Customizing window manager menus" (page 235)

• Chapter 14, "Configuring window manager button bindings" (page 253)

• Chapter IS, "Configuring window manager key bindings" (page 269)

USing window manager functions

Window manager functions are used to define the actions that occur when a
menu item, or a mouse or key event is selected. For example, binding mouse
button 1 to a client window with the f.raise function allows you to raise the
window to the top of your screen whenever you press mouse button 1 within
the boundary of that window.

The syntax for naming a function is the same for the three different sections in
the .mwmrc file. The syntax is:

function = function_name [function_args]

where function_name is one of the defined window manager functions, and
function_args is a valid argument to the function. If you do not specify a
function_args for a function that accepts arguments, all of the possible argu
ments are applied to the function.

See also:

• "Function descriptions" (this page)

• "Function constraints" (page 230)

Function descriptions

The following list describes all of the window manager functions and includes
the valid arguments for functions that accept arguments.

f.beep
This function causes a beep.

f.circle_down [icon I window]
This function places the window or icon that is on the top of the window
stack to the bottom of the window stack (so that it no longer obscures any
other window or icon). This function affects only those windows and icons
that are obscuring other windows and icons, or that are obscured by other
windows and icons. Secondary windows (that is, transient windows) are res
tacked with their associated "primary window." Secondary windows always

223

Customizing the window manager

224

stay on top of the associated primary window, and there can be no other pri
mary windows between the secondary windows and their primary window.

If the function argument is "icon," the function applies only to icons. If the
function argument is "window," the function applies only to windows.

f.circle_up [icon I window]
This function raises the window or icon on the bottom of the window stack
(so that it is not obscured by any other windows). This function affects only
those windows and icons that are obscuring other windows and icons, or that
are obscured by other windows and icons. Secondary windows (that is, tran
sient windows) are restacked with their associated primary window.

If the function argument is "icon," the function applies only to icons. If the
function argument is "window," the function applies only to windows.

f.exec or!
This function causes a command to be executed (using the value of the
$SHELL environment variable if it is set, otherwise Ibinlsh is used). This
allows you to execute any shell command from a keystroke, button press, or
menu item. The! notation can be used in place of the f.exec function name.

f.focus_color
This function sets the colormap focus to a client window. If this function is
executed in the Root window context, then the default colormap (set up by
the X server for the screen where the window manager is running) is installed,
and there is no specific client window colormap focus. This function is
treated as f.nop if the colormapFocusPolicy resource is not set to ~~explicit".

f.focus_key
This function sets the keyboard input focus to a client window or icon. This
function is treated as f.nop if the keyboardFocusPolicy resource is not explicit
or the function is executed in the Root window context.

f.hide_iconbox
This function unmaps the icon box, if mapped. (This function does not apply
in mwm mode.)

f.hide_panner
This function unmaps the panner window, if mapped. (This function does
not apply in mwm mode.)

f.identify
This function pops up a dialog box that provides useful information about the
window from which the dialog box was initiated. If on the Root window, in
formation about the operating system and the compile environment is dis
played. (This function does not apply in mwm mode.)

Graphical Environment Guide

Using window manager functions

f.kill
If the WM_DELETE_WINDOW protocol is set up, the client is sent a client mes
sage event indicating that the client window should be deleted. If the
WM_SAVE_ YOURSELF protocol is set up and the WM_DELETE_ WINDOW pro
tocol is not set up, the client is sent a client message event indicating that the
client should prepare to be terminated. If the client does not have either the
WM_DELETE_WINDOW or WM_SAVE_YOURSELF protocol set up, this func
tion causes a client's X connection to be terminated (usually resulting in ter
mination of the client). Refer to the description of the quitTimeout resource
and the WM_PROTOCOLS property in the mwm(XC) manual page.

f.lower [-client]
This function lowers a client window to the bottom of the window stack
(where it obscures no other window). Secondary windows (that is, transient
windows) are restacked with their associated primary window.

The -client argument indicates the name or class of a client to lower. If the
-client argument is not specified, the context in which the function was
invoked indicates the window or icon to lower.

f.maximize
This function displays a client window at its full size. This is also know as
maximizing a window.

f.menu menu_name
This function associates a submenu (or #cascading" menu) with a menu entry
or associates a menu with a button or key binding.

The menu_name argument identifies the menu to be used; this argument is
not optional.

f.minimize
This function minimizes (iconifies) a client window. A window is minimized
when no icon box is used, and its icon is placed on the bottom of the window
stack (such that it obscures no other window). If an icon box is used, then the
client's icon changes to its iconified form inside the icon box and the normal
window is removed from the screen. Secondary windows (that is, transient
windows) are minimized with their associated primary window. There is
only one icon for a primary window and all its secondary windows.

f.move
This function provides for interactive movement of a client window.

f.move_screen_to_c1ient [-client]
This function moves the active screen to a work area displaying the named
client or the activated icon. (This function does not apply in mwm mode.)

225

Customizing the window manager

226

f.nail
This function provides the behavior for the Toggle Nail option on the Window
menu. It acts as a toggle for either nailing or unnailing the current window.
(This function does not apply in mwm mode.)

f.next_cmap
This function installs the next colormap in the list of colormaps for the win
dow with the colormap focus. A client can install multiple colormaps. (See
the books listed in LlFor further reading" (page 7) for more information.) The
f.next_cmap function provides a mechanism that enables you to shuffle
through the colormaps.

f.next_key [icon I window I transient]
This function sets the keyboard input focus to the next window or icon in the
set of windows or icons managed by the window manager (the ordering of
this set is based on the stacking of windows on the screen). This function is
treated as f.nop if the keyboardFocusPolicy resource is not set to Llexplicit".
The keyboard input focus is only moved to windows that do not have an
associated secondary window that is application modal.

If the Lltransient" argument is specified, then transient (secondary) windows
are traversed. Otherwise, if only "window" is specified, traversal is done only
to the last focused window in a transient group.) If an "icon" function argu
ment is specified, then the function applies only to icons. If a ~/window" func
tion argument is specified, then the function applies only to windows.

f.nop
This function is a null function; no action is performed. When you want to
include a command line that temporarily causes no action, you can use f.nop
to satisfy the syntax requirement that a function of some type be named.

f.normalize
This function displays a client window in its normal size. Secondary win
dows (that is, transient windows) are placed in their normal state along with
their associated primary window.

f.normalize_and_raise
This function displays a window in normal size and raises it to the top of the
stack.

f. pack_icons
This function redraws icons on the Root window or in the icon box, based on
the layout policy in use. In general, this causes icons to be "packed" into the
icon grid.

Graphical Environment Guide

Using window manager functions

f. pan_activescreen ±x±y-percent
This function moves the active work area across the workspace in the direc
tion specified by a percentage of the screen. As an example, ±x±y-percent
could be specified as "+50-50". This would move the active workarea half a
screen (50 percent) to the right and half a screen (50 percent) up the
workspace. The following values can also be used:

+0+100
+0-100
-100+0
+100-0

up
down
left
right

(This function does not apply in mwm mode.)

f.pass_keys
This function enables or disables (toggles) the processing of key bindings for
window manager functions. When it disables key binding processing, all keys
are passed on to the window with the keyboard input focus, and no window
manager functions are invoked. If the f.pass_keys function is invoked with a
key binding to disable key binding processing, the same key binding can be
used to enable key binding processing.

f.post_wmenu
This function posts the Window menu that is defined by the windowMenu
resource (see Chapter 13, "Customizing window manager menus" (page 235)
for more details). If a key posts the Window menu and a window menu button
is present, the Window menu is automatically placed with its top-left comer
at the bottom-left comer of the window menu button for the client window.
If no window menu button is present, the Window menu is placed at the top
left comer of the client window.

f.prev _cmap
This function installs the previous colormap in the list of colormaps for the
window with the colormap focus. See f.next_cmap for more information.

f.prev_key [icon I window I transient]
This function sets the keyboard input focus to the previous window or icon in
the set of windows or icons managed by the window manager (the ordering
of this set is based on the stacking of windows on the screen). This function is
treated as f.nop if the keyboardFocusPolicy resource is not explicit. The key
board input focus is only moved to windows that do not have an associated
secondary window that is application modal.

227

Customizing the window manager

228

If the "transient" argument is specified, then transient (secondary) windows
are traversed. Otherwise, if only "window" is specified, traversal is done only
to the last focused window in a transient group. If an "icon" function argu
ment is specified, the function applies only to icons. If a "window" function
argument is specified, the function applies only to windows.

f.quit_mwm
This function terminates the window manager but not necessarily the X
server.

f.raise [-client]
This function raises a client window to the top of the window stack (where it
is obscured by no other window). Secondary windows (that is, transient win
dows) are restacked with their associated primary window.

The -client argument indicates the name or class of a client to raise. If the
-client argument is not specified, the context in which the function was
invoked indicates the window or icon to raise.

In pmwm mode only, this function also moves the current view area to the
work area in which the client window is visible.

f.raise_Iower
This function raises a client window to the top of the window stack if it is par
tially obscured by another window; otherwise, it lowers the window to the
bottom of the window stack. Secondary windows (that is, transient windows)
are restacked with their associated primary window.

f.refresh
This function redraws all windows on the display.

f.refresh_win
This function redraws a client window.

f.resize
This function allows interactive resizing of a client window.

f.restart
This function restarts the window manager, effectively terminating and re
executing pmwm or mwm.

f.send_msg message_number
This function sends a client message of the type _MOTIF_WM_MESSAGES,
with the message_number function argument that indicates the type of mes
sage. The client message is sent only if message_number is included in the
client's _MOTIF_WM_MESSAGES property. A menu item label is grayed if the
menu item is used to do f.send_msg of a message that is not included in the
client's _MOTIF_WM_MESSAGES property.

Graphical Environment Guide

Using window manager functions

f.separator
This function causes a menu separator to be placed in a menu, at the specified
location. You should use the "no-label" value for the label clause when you
use this function.

f.set_activescreen ±x±y I home
This function sets the active screen to ±x±y geometry coordinates. "home"
specifies the ±O±O coordinates. Negative x and y coordinates are relative to
the opposite side of the workspace. (This function does not apply in mwm
mode.)

f.set_behavior
This function causes the window manager to restart with the default OSF
behavior (if a custom behavior has been configured) or with a custom
behavior (if an OSF default behavior has been configured). The default
behavior is the internal appearance and behavior of the window manager,
including the contents of the Root and Window menus. A custom behavior
encompasses any resources that have been specified by a user, or user cus
tomizations to the window manager menus. You can toggle between these
two behaviors by pressing (Shift)(Ctrl)(Alt)!.

f.show _iconbox
This functions remaps the icon box. (This function does not apply in mwm
mode.)

f.show _panner
This function remaps the panner window. (This function does not apply in
mwmmode.)

f.snap
This function snaps the active screen to the closest specified grid position.
(This function does not apply in mwm mode.)

f.sort_icons [icontitle I name I clienttitle I disable]
This function sorts and displays the icons on the sort criteria specifies. If no
values are given, defaults to the value of the iconSortOrder resource. (This
function does not apply in mwm mode.)

f.title
This function inserts a title in a menu, at the specified location.

f.toggle_autopan [on I off]
This function turns the autopan functionality on or off, temporarily.

229

Customizing the window manager

Function constraints

230

Some functions cannot be used within some of the sections in the window
manager configuration file. For example, you cannot use the f.title function to
define a button or key binding; you can only use it in the menu specification
section.

There are also constraints regarding the context in which a function can be
used. For example, the f.minimize function only applies to windows; it does
not work when the pointer is on the Root menu or an icon.

You can configure a function's context as long as you stay within the limits of
that function's constraints. For example, you can configure the f.kill function
to work with icons, windows, or both. However, because the Root window is
not an available context in which to use f.kill, you cannot configure it for use
here.

Graphical Environment Guide

Using window manager functions

Table 12-1, "Function contexts" describes the seven contexts in which func
tions can be used.

Table 12·1 Function contexts

Context

app

border

frame

icon

Description

The function can be performed when the pointer is on the applica
tion window, not including the window frame.

The function can be performed when the pointer is on the border
of the window frame, not including the title bar.

The function can be performed when the pointer is on the win
dow frame around a client window, including the border and title
bar.

The function can be performed when the pointer is on an icon.
Note that icon refers to window manager icons only, not Desktop
icons.

root The function can be performed when:

1. the pointer is on the Root menu, and

2. neither a client window nor an icon is to be acted upon by the
function.

title The function can be performed when the pointer is on the title
area of the window frame.

window The function can be performed when the pointer is on a client
window, including the title bar and frame. Some functions, such
as f.maximize, apply only when the window is normalized. Oth
ers, such as f.normalize, apply only when the window is maxim
ized or minimized.

231

Customizing the window manager

232

Table 12-2, "Where functions can be used" describes the contexts that are
available to each of the window manager functions, as well as the sections of
the window manager configuration file in which you can use the functions.
Note that ''button'' represents the button binding section, "key" represents the
key binding section, and "menu" represents the menu specification section.

Table 12·2 Where functions can be used

Function Contexts .mwmrc sections
f.beep root,icon,window button,key,menu
f.circle_down root,icon, window button,key,menu
f.circle_up root,icon, window button,key,menu
f.exec root,icon,window button,key,menu
f.focus_color root,icon, window button,key,menu
f.focus_key root,icon, window button,key,menu
f.hide_iconbox root,icon, window button,key,menu
f.hide_panner root,icon,window button,key,menu
f.identify root,icon,window button,key,menu
f.kill icon, window button,key,menu
f.lower root,icon,window button,key,menu
f.maximize icon, window(normal) button,key,menu
f.menu root,icon, window button,key,menu
f.minimize window button,key,menu
f.move icon,window button,key,menu
f.move_screen_to_client icon button,key,menu
f.nail window button,key,menu
f.next_cmap root,icon,window button,key,menu
f.next_key root,icon, window button,key,menu
f.nop root,icon, window button,key,menu
f.normalize icon,window(maximized) button,key,menu
f.normalize_and_raise icon, window(maximized) button,key,menu
f. pack_icons root,icon, window button,key,menu
f.pan_activescreen root button,key,menu
f.pass_keys root,icon,window button,key,menu
f.post_wmenu root,icon, window button,key
f.prev _cmap root,icon, window button,key,menu
f.prev_key root,icon, window button,key,menu
f.quit_mwm root button,key,menu
f.raise root,icon, window button,key,menu
f.raise_Iower icon, window button,key,menu
f.refresh root,icon, window button,key,menu
f.refresh_ win window button,key,menu

(Continued on next page)

Graphical Environment Guide

Table 12·2 Where functions can be used
(Continued)

Function
f.resize
f.restart
f.send_msg
f.separator
f.set_activescreen
f.set_behavior
f.show _iconbox
f.show _panner
f.snap
f.sort_icons
f.title
f.toggle_autopan

Contexts
window
root
icon,window
root,icon, window
root
root,icon, window
root,icon, window
root,icon, window
root,icon, window
root,icon, window
root,icon, window
root,icon, window

Using window manager functions

.mwmrc sections
button,key,menu
button,key,menu
button,key,menu
menu
button,key,menu
button,key,menu
button,key,menu
button,key,menu
button,key,menu
button,key,menu
menu
button,key,menu

I

NOTE If a function is specified in a context that does not apply, or specified
in an incompatible section of the window manager configuration file, the
function is treated as f.nop.

233

Customizing the window manager

234 Graphical Environment Guide

Chapter 13

Customizing window manager menus

This chapter explains how you can create new window manager menus and
customize existing window manager menus for your entire system or for a
single user.

Specifically, this chapter describes:

• background about window manager menus (this page)

• adding or modifying window manager menus (page 237)

• changing the menu accessed by the window manager button (page 245)

There is also an example (page 249) at the end of this chapter that helps tie
together many of the concepts and procedures discussed in this chapter.

See also:

• Chapter 24, "Configuring Desktop menus" (page 341)

• Chapter 12, "Customizing the window manager" (page 219)

• Chapter 5, "Understanding resources" (page 79)

About window manager menus

By default, the window manager provides two menus: the Window menu and
the Root menu. The Window menu appears when you click on the window
menu button, which is on the top left of a window frame. The Root menu
appears when you press and hold mouse button 1 anywhere on the Desktop
background or, if the Desktop is not running, in the Root window.

235

Customizing window manager menus

236

The functionality of these menus is defined in the menu section of the win
dow manager configuration file (the /usr/lib/Xll/system.pmwmrc or
/usr/lib/Xll/system.mwmrc system-wide files or the $HOME/.pmwmrc or
$HOME/.mwmrc local files).

Depending on the window manager configuration file you use, you can
modify the default menus or create new window manager menus that affect
all users on your system or individual users only.

A window manager menu definition uses the following format:

Menu menu_name

label
label

label

[mnemonic]
[mnemonic]

[mnemonic]

[accelerator]
[accelerator]

[accelerator]

function
function

function

The action of a window manager menu is defined through window manager
functions. These functions define behavior, such as moving or iconifying a
window, or displaying a submenu. Window manager functions are contex
tual; if an action is inappropriate for a circumstance, the menu item is
dimmed.

Because window manager menus are not accessed from a menu bar, you also
need to define the mouse button or key events that display the menus, and the
context in which the menus are available .. For example, by default, the Root
menu is only available when you click and hold mouse button 1 in the Root
window. If you click and hold mouse button lover an iconified window, the
Root menu is not displayed.

See also:

• Chapter 12, "Customizing the window manager" (page 219) for more information
on the window manager configuration files and the sea Panner and OSF /Motif
modes of operation

Graphical Environment Guide

Adding or modifying window manager menus

Adding or modifying window manager menus

You can create completely new window manager menus that you can call to
the screen by pressing a mouse button or a key on the keyboard, or by select
ing it from an existing menu. You can also modify the existing window man
ager menus (the Root and Window menus) to include additional menu items
or submenus.

To create a new window manager menu, perform the following steps. For
more information on each of these steps, see the sections immediately follow
ing this procedure.

1. Open the desired window manager configuration file for editing .

• pmwmmode:

/usr/lib/Xll/system.pmwmrc for system-wide changes

$HOME/.pmwmrc for individual changes

• mwmmode:

/usr/lib/Xll/system.mwmrc for system-wide changes

$HOME/.mwmrc for individual changes

2. Within the section of the configuration file that contains menu definitions,
begin the new menu with the section type and section title, using the fol
lowing syntax:

Menu menu_name

3. Enter your menu items, using the following syntax:

{
label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function

label [mnemonic] [accelerator] function
}

237

Customizing window manager menus

238

4. Define the method by which you want to access the new menu:

• To access the menu as a submenu, add a new menu_item clause to the
parent menu's definition section, referencing your new menu's
menu_name with the f.menu function:

label [mnemonic] [accelerator] f.menu "menu_name"

• To use the menu through a mouse button or key sequence, define the
mouse button or keystroke that you want to use in the key and button
bindings sections of the configuration file:

button_event context f.menu menu_name

or

key_event context f.menu menu_name

See Chapter 14, HConfiguring window manager button bindings" (page
253) and Chapter 15, "Configuring window manager key bindings"
(page 269) for more information on button and key bindings.

When you have finished, save and exit the configuration file.

5. Restart the window manager.

You can also add new menu items to the existing Window and Root menus by
following these steps. In particular, pay attention to Step 1 (this page) and
Step 3. (page 240) H you are modifying existing window manager menus.
Step 4 (page 243) is unnecessary.

Step 1: Editing a window manager configuration file
The default operation of the window manager is largely controlled by a
system-wide file, called system.pmwmrc if you are using pmwm mode or
system.mwmrc if you are using mwm mode. This file's functions include
defining the contents of the Root and Window menus and how menu functions
are invoked. Individual users can also have a version of this file, located in
their home directories, called .pmwmrc (for pmwm mode) or .mwmrc (for
mwm mode). This file can be used to customize window manager menus for
an individual user without affecting other users on the system.

Open one of the following files for editing:

• the system-wide configuration file (/usr/lib/Xll/system.pmwmrc or
jusr/lib/Xll/system.mwmrc) if you want to create a new menu or modify an
existing menu so that all users are exposed to these customizations. You
must have root permissions to edit this file.

Graphical Environment Guide

Adding or modifying window manager menus

• the local configuration file ($HOME/.pmwmrc or $HOME/.mwmrc) if you
want to customize window manager menus for an individual user.

The $HOME/.pmwmrc and $HOME/.mwmrc files do not exist by default. If a
local configuration file does not already exist in your home directory, copy
the appropriate system-wide window manager configuration file to
$HOME and rename the file either .pmwmrc or .mwmrc.

NOTE Once the .pmwmrc or .mwmrc file exists in $HOME, it completely
overrides the system-wide window manager configuration file. There
fore, make sure you copy the entire system file to your home directory, to
avoid losing critical functionality.

See also:

• Chapter 12, "Customizing the window manager" (page 219) for more information
on the system-wide and local window manager configuration files

Step 2: Starting a new menu
The first section of the window manager configuration file defines the con
tents of the Root and Window menus. If you want to create a new widow
manager menu, add the menu definition to the end of this section.

A menu definition starts with the Menu section type and a title for the section,
designated by the menu_name specification:

Menu menu_name

The menu_name specification is an internal reference and does not appear as
the title of the menu. The string value that you assign to menu_name is often
referenced elsewhere in the window manager configuration file. In particular,
menu_name can be paired with a button action (in the button bindings section
of the configuration file) so you can press a particular mouse button to display
the menu. This concept is covered in greater detail in Step 4. (page 243)

NOTE The menu_name can also be used as the value for the rootMenu and
the window Menu resources. See #Changing the menu associated with the
window menu button" (page 245) and Appendix A, #OSF /Motif window
manager resources" (page 377) for more information on specifying these
resources.

The following example shows the section type and title for the default Root
menu:

Menu RootMenu

239

Customizing window manager menus

240

Step 3: Creating menu items
The syntax for defining items on a window manager menu is very simple.
Each item is defined by a line that uses the following format:

label [mnemonic] [accelerator] function

The syntax for items on the Root menu is slightly different because mnemon
ics and accelerators are not available.

When creating menu options, note the following:

• The label specification is used as the text for the menu option, and has the
following syntax:

label = character _strings or bitmap-file

label can consist of a character string or a graphic representation (bitmap
file). A character string must be compatible with the menu font that is
used. Character strings must be typed precisely, using one of the following
approaches:

- strings containing a space must be enclosed in quotation marks "" "".
For example: "Menu Name."

- single-word strings do not have to be enclosed in quotation marks.
However, it is preferable to do so for consistency. For example:
"MenuName."

If you are using a bitmap file instead of a character string, you need to tell
the window manager the full path of the file. There are several methods for
indicating a file's path:

Character
@

Function
the following string
is a pathname

the user's home
directory

Example
@/u/tammyr/bitmaps/root_weave

-Ibitmaps/root_weave

NOTE You can also set the bitmapDirectory resource to the path of the
directory containing the bitmaps. For example, if you set bitmapDirec
tory to Iultammyrlbitmaps, the bitmap file could be specified as:
@root_weave. For more information on setting resources, see Chapter 5,
"Understanding resources" (page 79).

Graphical Environment Guide

Adding or modifying window manager menus

• The mnemonic specification indicates the character, or mnemonic, that can
be used to select a menu item once the menu is open and displayed on the
screen. A mnemonic specification has the following syntax:

mnemonic = _character

The first character in the label specification that matches the designated
mnemonic is underlined on the menu. Note that the mnemonic specifica
tion is case sensitive.

If there is no matching character in label, no mnemonic is registered. The
character must match a character in label exactly; the mnemonic cannot
execute if any modifier (such as the (Shift) key) is pressed with the charac
ter.

This specification is optional, and is not available on the Root menu.

• The accelerator specification is an accelerator key event, with the same
syntax as the window manager key bindings. By default, an accelerator
key sequence is a Meta key, usually the (Alt) key, plus a function key.

The accelerator specification has the following syntax:

accelerator = Meta<key>funct_key

The accelerator sequence works whether or not the menu is displayed.
Because of this, you should be careful not to use key actions that are
already defined in the key bindings section of the window manager config
uration file. Key bindings are discussed in greater detail in Chapter 15,
#Configuring window manager key bindings" (page 269).

Because the key-action combination must be unique, accelerators use
modifiers to provide more key-action combinations. Modifiers are keys
that users must press simultaneously with the existing key event. All
modifiers specified are exclusive; that is, only the specified modifiers can be
present when the key event occurs.

241

Customizing window manager menus

The following list indicates the keys that can be used for modifiers:

modifiecname
Ctrl
Shift
Alt
Meta
Lock
ModI
Mod2
Mod3
Mod4
ModS

Description
Control Key
Shift Key
Alt/Meta Key
Metal Alt Key
Lock Key
Modifierl
Modifier2
Modifier3
Modifier4
ModifierS

This accelerator specification is optional, and is not available on the Root
menu.

• The function specification defines the action to be performed when a menu
item is selected. The syntax for naming a function is:

function = function_name [function_args]

where function_name is one of the defined window manager functions,
and function_args is a valid argument to the function.

There are a number of predefined window manager functions that you can
use for the function_name clause. Each of the window manager functions
has a name beginning with "f.". These functions define behavior, such as
resizing windows (f.resize), moving a window (f.move), and iconifying a
window (f.minimize). For a complete list of the available window manag
er functions and a description of their behavior, see "Using window
manager functions" (page 223).

There are several window manager functions that are particularly relevant
to the task of creating menus. These functions include:

Function Behavior
f.menu associates a submenu entry with a menu definition

f.title inserts a title in the menu at the specified location

f.separator inserts a dividing line in the menu at the specified location.
An f.separator is automatically inserted after an f.title.

242 Graphical Environment Guide

Adding or modifying window manager menus

Several of the window manager functions can accept arguments. The
nature of function_args depends on the specific function. In some cases,
you can define the context in which the action should happen (for example,
perform the action only on icons, or on windows and icons). Sometimes
the argument is a specific client name, or a menu name, as with the f.menu
function. Table 12-1, "Function contexts" (page 231) discusses the issue of
context and arguments for window manager functions in detail.

If a function_args contains any spaces, the argument must be contained
within double quotations"" "".

The following example shows how the label, mnemonic, accelerator, and
function clauses are defined for all of the items on the Window menu that is
used by default for pmwm mode:

"Restore" - R Alt<key>F5 Lnormalize
"Move" _M Alt<key>F7 f.move
"Size" S Alt<key>F8 f.resize
"Minimize" - n Alt<key>F9 f .minimize
"Lower" - L Alt<key>F3 Llower
"Raise" _a Alt Shift<key>F3 Lraise
"Toggle Nail" - a Alt Shift<key>F2 Lnail
"Hide" f.hideJ)anner

I NOTE Menu options are grayed if an entry performs the f.nop function, an
invalid function, or a function that is not available in the current context.

Step 4: Specifying how to access the new menu
Before you can use your new menu, you must specify the method by which it
can be accessed. You can attach the menu to an existing menu so it is avail
able as a "cascading" or submenu. You can also configure the menu so a
mouse button or key event displays the menu. These approaches are dis
cussed here. You can also replace the default Window menu with your new
menu, so it is automatically available by clicking on the window menu but
ton. This approach is discussed in "Changing the menu associated with the
window menu button" (page 245).

• To make your menu a submenu of an existing menu (perhaps the Root or
Window menus), locate the intended parent menu's definition section in the
local or system-wide window manager configuration file and add an
f.menu function. This function must be coupled with the menu_name you
used in your menu's definition section:

label [mnemonic] [accelerator] f.menu "menu_name"

243

Customizing window manager menus

244

For example, if you created a menu that you defined as #GamesMenu", and
you want to access it from the Root menu, you would enter the following
line within the Root menu definition section:

·Garnes Menu· f.menu • GarnesMenu·

• To access your new menu directly through a mouse button or key
sequence, you must add an f.menu function to the button or key binding
section of the window manager configuration file. The f.menu function
must be coupled with the menu_name you used in your menu's definition
section. You also need to specify the context in which the menu is avail
able.

[modifier_key]button_event context f.menu "menu_name"

or

[modifier_keys]<Key>key_name context f.menu "menu_name"

For example, if you created a menu that you defined as #GamesMenu", and
you want to access it by pressing the second mouse button on the Root
window, enter the following line within the button binding section of the
window manager configuration file:

<Btn2Down> root f.menu • GamesMenu·

You can also use the f.post_wmenu function if you want to post the
currently defined Window menu with a mouse button or key event. This
function automatically displays the menu that is defined by the window
manager windowMenu resource. H you intend to configure your new
menu so it functions as the Window menu, use the f.post_wmenu function.

For detailed information on the button and key binding sections, see
Chapter 14, #Configuring window manager button bindings" (page 253),
and Chapter 15, "Configuring window manager key bindings" (page 269).

When you have finished specifying how you can access your new menu, save
and exit the window manager configuration file.

Step 5: Restarting the window manager
After you have added your new menu information to either the local window
manager configuration file ($HOME/.pmwmrc or $HOME/.mwmrc) or the
system-wide file (/usr/lib/Xll/system.pmwmrc or system.mwmrc), you must res
tart the window manager before your changes can take effect and your new
menu can be displayed.

Restart the window manager by selecting the Restart Window Manager option
on the Root menu. The Root menu is accessed by pressing and holding mouse
button 1 anywhere on the Desktop background or, if the Desktop is not run
ning, in the Root window. After the window manager restarts, you can use
your new menu.

Graphical Environment Guide

Changing the menu associated with the window menu button

Changing the menu associated with the
window menu button

You can use the window manager windowMenu resource to change the
menu that appears when the user clicks on the window menu button. This
allows you to display a menu of your choice from the window menu button
without having to extensively remodel the default Window menu.

To associate a new menu with the window menu button, create the new
menu, as described in IL Adding or modifying window manager menus" (page
237), and then perform the following steps. For more information on each of
these steps, see the sections immediately following this procedure.

1. Open the desired resource file for editing.

• pmwmmode:

jusr/lib/Xll/app-defaultslPmwm for system-wide changes

• mwmmode:

jusr/lib/Xll/app-dejaults/Mwm for system-wide changes

• both modes:

$HOME/.Xdefaults-hostname for local changes

2. Add the Window menu resource specification, using the following format:

Pmwm*windowMenu: menu_name

or

Mwm*windowMenu: menu_name

3. If desired, you can further customize the Window menu with the following
resources:

• Set the wMenuButtonClick resource so the Window menu stays posted
on the screen or closes automatically when you finish clicking on the
window menu button:

Pmwm*wMenuButtonClick: boolean_value

or

Mwm*wMenuButtonClick: boolean_value

245

Customizing window manager menus

246

• Set the wMenuButtonClick2 resource to determine if double-clicking
on the window menu button closes the Window menu:

Pmwm*wMenuButtonClick2: boolean_value

or

Mwm*wMenuButtonClick2: boolean_value

When you have finished, save your changes and exit the resource file.

4. Restart the window manager.

Step 1: Editing the resource file
You can change the default Window menu so that all users on your system
access the new menu, or you can change the Window menu for an individual
user.

The majority of window manager resource settings are defined in the
/usr/lih/Xll/app-defaults/Pmwm (for pmwm mode) or the /usr/lih/Xll/app
defaults/Mwm (for mwm mode) resource file. The resources in this file are read
by the resource manager when the window manager is executed. If you want
to define the new windowMenu resource for all users on your system, you
should edit this file. You must have root privileges to perform this step.

Individual users can also change the Window menu that is displayed. Individ
ual resource settings are placed in a file called .Xdefaults-hostname, where
hostname is the name of the host, or machine, where the window manager is
running.

NOTE The .Xdefaults-hostname file does not exist in the user's home direc
tory by default. If this file is not present, you must create it before you can
specify a different Window menu.

If you create this file for a user from the root account, you must assign the
file the correct ownership permissions. Run the chown command to assign
the correct owner and the chgrp command to assign the correct group to the
.Xdefaults-hostname file. If you created this file yourself, these steps are
unnecessary.

Graphical Environment Guide

Changing the menu associated with the window menu button

When the user invokes a client, it checks to see if an .Xdefaults-hostname file
exists in $HOME. If such a file does exist, the resource values specified in the
user resource file take precedence over any values assigned to the same
resource for the system, or in the resource database.

See also:

• "Methods for specifying resources" (page 87) for a more detailed explanation of
resource files

Step 2: Setting the windowMenu resource
Use the window manager windowMenu resource to specify the menu that
you would like to use instead of the default Window menu. Note that it is
unlikely that this resource is actually defined in any of the window manager
resource files on your system. The default value of the windowMenu
resource is the name of the built-in Window menu specification, "DefaultWin
dowMenu".

Use the following format to set this resource:

Pmwm*windowMenu: menu_name

or

Mwm*windowMenu: menu_name

menu_name is the name you assigned your menu in the menu definition sec
tion of the window manager configuration file (/usr/lib/Xl11system.pmwmrc
and $HOME/.pmwmrc for pmwm mode or /usr/lib/Xl1/system.mwmrc and
$HOME/.mwmrc for mwm mode).

For example, if you created a menu that you defined as "MyMenu," and you
want to use this menu in place of the default Window menu, set the win
dowMenu resource so it reads:

Prnwm*windowMenu: MyMenu

or

Mwm*windowMenu: MyMenu

247

Customizing window manager menus

248

Window menus can also be assigned on a client class basis. This means that
the menu you specify is used as the Window menu for the designated client(s)
only, and the default Window menu is used for all other clients. To do this,
use the following format:

Pmwm *client*windowMenu: menu_name

or

Mwm*client*windowMenu: menu_name

client can be specified using either the application's binary or class name.
menu_name is the name you assigned the menu in the menu definition section
of the window manager configuration file.

For example, suppose you want to configure a particular menu of your own
creation, defined as EditorMenu" in the window manager configuration file.
To have it function as the Window menu only in a scoedit graphical editor
window, specify the following:

Pmwm*ScoEdit*windowMenu: EditorMenu

or

Mwm*ScoEdit*windowMenu: EditorMenu

Step 3: Modifying other Window menu resources
There are two other resources that you can set to customize the Window
menu. These resources can be set on their own, or in conjunction with assign
ing a custom menu to the window menu button.

• The wMenuButtonClick resource controls whether clicking the mouse
with the pointer over the window menu button posts (and leaves posted)
the Window menu. If this resource has a value of #true," the menu remains
displayed. #True" is the default value for this resource .

• The wMenuButtonClick2 resource indicates whether double-clicking the
mouse on the window menu button activates an f.kill function, thereby
terminating the client. The default value, true", causes an f.kill function.

Graphical Environment Guide

Example of creating a window manager submenu

Step 4: Restarting the window manager
After you have specified the new window manager resource values, you must
restart the window manager so your changes can take effect. Restart the win
dow manager by selecting the Restart Window Manager option from the Root
menu. The Root menu is accessed by pressing and holding mouse button 1 on
the Desktop background or, if the Desktop is not running, in the Root win
dow.

Verify that your new menu is now being used as the Window menu.

Example of creating a window manager submenu

This section provides an example that ties together many of the concepts and
procedures discussed in this chapter.

Let's assume that you use the sea Panner window manager in the default
pmwm mode. There are several clients that you run frequently and you
would like to be able to access these commands from the Root window
without having to first run a scoterm window or the Desktop. You can create
a menu from which you can launch these commands, and you can make this
menu accessible from the Root menu.

The following steps result in a Client submenu that is available from the Root
menu:

1. Open the local pmwm configuration file, .pmwmrc, for editing. This file is
located in your home directory.

If this file does not currently exist, copy the entire system-wide pmwm
configuration file, !usr/lib/Xll/sysfem.pmwmrc, to your home directory and
rename it .pmwmrc.

2. At the end of the menu section, open a line and begin your new menu
definition with the following:

Menu ClientMenu

3. Assign your menu a title by entering the following lines:

{
"Client Menu" f.title

249

Customizing window manager menus

250

4. Create your menu items by entering the following lines:

''xclock'' f.exec ''xclock''
''xload'' f.exec ''xload''
''xcalc'' f.exec ''xcalc''
''xb iff , f.exec ''xbifP'
''xmag'' f.exec ''xmag''
''xeyes'' f.exec ''xeyes''
no-label f.separator
"scoterm" f.exec "scoterm"
''xterm'' f.exec ''xterm''

}

When you have finished entering the menu items, the entire menu
definition should look like this:

Menu ClientMenu

"Client Menu" f.title
"xclock" f.exec "xclock"
"xload" f.exec "xload"
"xcalc" f.exec "xcalc"
"xbiff" f.exec "xbiff"
"xmag" f.exec "xmag"
"xeyes" f.exec "xeyes"
no-label f.separator
"scoterm" f.exec "scoterm"
"xterm" f.exec "xterm"

5. Now you need to add a menu item for your Client menu to the Root menu
definition. Let's add the submenu so it appears after the Refresh option
and before the Restart Window Manager option. And let's separate the
submenu option from the other options on the Root menu with a dividing
line.

Within the definition section of the Root menu, open a line below the
Refresh option and enter the following:

no-label f.separator
"Client Menu" f.menu ClientMenu

Graphical Environment Guide

Example of creating a window manager submenu

When you have finished, the Root menu definition section should look like
this:

Menu RootMenu

@sco-logosm.xbm
"Unix Window"
"Desktop"
"Mail"
"Calendar"
"Screen Lock"
no-label
"Help on SCQ Panner"
"Help"
no-label
"Panner/lcon Menu"
"Refresh"
no-label
"Client Menu"
no-label
"Restart Window Manager"
"Quit Window Manager"
no-label
"Exit Session"

f. title
f.exec "/usr/bin/Xll/scoterm"
f.exec "/usr/bin/Xll/xdt3"
f.exec "/usr/bin/Xll/scomail"
f.exec "/usr/bin/Xll/scocal"
f.exec "/usr/bin/Xll/scolock"
f.separator
f.exec "/usr/bin/Xll/scohelp ... "
f.exec "/usr/bin/Xll/scohelp·
f.separator
f.menu "PanMenu"
f.refresh
f.separator
f.menu ClientMenu
f.separator
f.restart
f.quit_mwm
f.separator
f.exec "/usr/bin/Xll/scosession -stop"

6. When you have finished writing the definition for your new menu and
adding the submenu to the Root menu, save and exit the .pmwmrc file.
Make sure you leave the remaining sections of the .pmwmrc file intact.

7. Access the Root menu and select the Restart Window Manager option. The
Root menu is available by pressing and holding mouse button 1 on the
Desktop background or, if the Desktop is not running, in the Root win
dow.

The window manager is restarted; the new menu information in your
.pmwmrc file is read, and your new Client submenu is now available from
the Root menu.

251

Customizing window manager menus

252 Graphical Environment Guide

Chapter 14

Configuring window manager button
bindings

"Button bindings" provide a way to define the action that is performed when
you press a mouse button in various window manager contexts. You can use
different mouse buttons, alone or in combination with keystrokes, to invoke
many different actions. The actions performed depend on where the pointer
(mouse cursor) is focused on the screen.

This chapter describes:

• background information about window manager button bindings (page
254)

• configuring new button bindings (page 257)

• creating new button binding sets (page 263)

There is also an example (page 267) at the end of this chapter that helps to tie
together many of the concepts and procedures discussed in this chapter.

See also:

• "Using window manager functions" (page 223)

• Chapter 5, "Understanding resources" (page 79)

253

Configuring window manager button bindings

Default button bindings

254

The button bindings that are provided with your system are referred to as
default button bindings. Most default button bindings can be reconfigured.

All bindings are located in the !usr/lib/Xll/system.pmwmrc file (for pmwm
mode) or the /usr/lib/Xll/system.mwmrc file (for mwm mode) in the Buttons
section type. The default bindings are defined by a set named "DefaultBut
tonBindings." System administrators can customize the functionality of some
button bindings and make system-wide changes by editing this file. Users can
customize the functionality of button bindings in their local environment by
copying the appropriate system-wide window manager configuration file to
either .prnwmrc (for pmwm mode) or .mwmrc (for mwm mode) in their
$HOME directory.

The entries in the "DefaultButtonBindings" section of the system-wide win
dow manager configuration file look similar to these:

Buttons DefaultButtonBindings

<BtnlDown>
<Btn2Down>

frame I icon
frame I icon

f.raise
f.post_wmenu

Each line in the "DefaultButtonBindings" section represents a button binding.
A button binding consists of a button action (such as BtnlDown), the window
manager context in which the action is valid (such as frame), and the function
the action provides (such as f.raise). Button actions, contexts, and functions
are discussed in more detail later in this chapter.

Graphical Environment Guide

Default button bindings

Table 14-1, "Default button bindings" lists the default button bindings. 1

Table 14-1 Default button bindings

Button action Context Function

For Pmwm mode:

BtnlDown frame I icon f.raise
Btn2Down frame I icon f.posCwmenu
Alt BtnlDown title f.move
Alt BtnlDown frame f.resize
BtnlDown root f.menu IRootMenu"
Btn2Down root f.menu IRootMenu"
Btn3Down root f.menu IPanMenu"
post menus
Shift BtnlClick root f.menu IRootMenu"
Shift Btn2Click root f.menu IRootMenu"
Shift Btn3Click root f.menu IPanMenu"
menus that pop-up under xdt
Ctrl BtnlDown root f.menu IRootMenu"
Ctrl Btn2Down root f.menu IRootMenu"
Ctrl Btn3Down root f.menu IPanMenu"
Shift Alt BtnlDown window I icon f.raise
Alt BtnlDown icon I window f.lower
Alt Btn2Down window I icon f.resize
Alt Btn3Down window f.move

ForMwmmode:

BtnlDown frame I icon f.raise
Btn2Down frame I icon f.post_wmenu
Alt BtnlDown title f.move
Alt BtnlDown frame f.resize
BtnlDown root f.menu IRootMenu"
Btn2Down root f.menu IRootMenu"
post menus
Shift BtnlClick root f.menu IRootMenu"
Shift Btn2Click root f.menu IRootMenu"
menus that pop-up under xdt
Ctrl BtnlDown root f.menu IRootMenu"
Ctrl Btn2Down root f.menu IRootMenu"
Shift Alt BtnlDown window I icon f.raise
Alt BtnlDown icon I window f.lower
Alt Btn2Down window I icon f.resize
Alt Btn3Down window f.move

1. A context of icon indicates window manager icons, not icons on the Desktop.

255

Configuring window manager button bindings

You can reconfigure the default button bindings or create new button bind
ings and add them to the default binding set. In addition, if you want to
underscore to yourself that you are using your own bindings rather than the
default bindings, you can create your own sets of button bindings.

See also:

• II About window manager functions" (this page)

• "Configuring button bindings" (page 257)

• "Creating a new button binding set" (page 263)

About window manager functions

256

Window manager functions are a component of every section of the system
wide window manager configuration file (system.pmwmrc or system.mwmrc)
and the local configuration file (.pmwmrc or .mwmrc). The system-wide and
local configuration files use window manager functions to define the behavior
of mouse buttons, keys, and menu panes.

You configure button bindings by associating each mouse button with at least
one window manager function. For example, the f.move function is defined
to allow a client window to be interactively moved. If you bind mouse button
3 to a client window with the f.move function, the window moves with the
mouse each time you press and hold down mouse button 3. This button bind
ing definition would look like this:

Buttons bindings_seCname

<Btn3Down> window f.move

See also:

• "Using window manager functions" (page 223) for a complete list and a detailed
explanation of all of the valid window manager functions

Graphical Environment Guide

Configuring button bindings

Configuring button bindings

To modify an existing button binding or to create a new button binding, per
form the following steps. For more information on each of these steps, see the
sections immediately following this procedure.

1. Open the desired window manager configuration file for editing .

• pmwmmode:

/usr/lib/Xll/system.pmwmrc for system-wide changes

$HOME/.pmwmrc for individual changes

• mwmmode:

/usr/lib/Xll/system.mwmrc for system-wide changes

$HOME/.mwmrc for individual changes

2. Locate the button binding section in the window manager configuration
file. The button binding section uses the following syntax:

Buttons bindings_seCname
{

button context function
button context function
button context function

button context function

3. Configure the button binding specification, if desired.

4. Configure the function specification, if desired.

5. Configure the context specification, if desired.

6. Restart the window manager and test your new button binding.

See also:

• "Example of creating a new button set" (page 267) for sample button binding
definitions

Step 1: Editing a window manager configuration file
If you want to make system-wide changes to the default button bindings,
open the system-wide window manager configuration file,
/usr/lib/Xll/system.pmwmrc if you are using pmwm mode or system.mwmrc if
you are using mwm mode. The system-wide file contains the default func
tionality for the window manager button bindings.

257

Configuring window manager button bindings

If you want to customize the button bindings in your local Graphical Environ
ment, edit your personal window manager configuration file,
$HOME/.pmwmrc if you are using pmwm mode or $HOME/.mwmrc if you are
using mwm mode. The personal configuration file is not provided with the
system by default. If it does not already exist, you must create your own by
copying the appropriate system-wide window manager configuration file to
.pmwmrc or .mwmrc in your $HOME directory.

NOTE Once the .pmwmrc or .mwmrc file exists in $HOME, it completely
overrides the system-wide window manager configuration file. Therefore,
make sure you copy the entire system file to your home directory, to avoid
losing critical functionality.

See also:

• Chapter 12, "Customizing the window manager" (page 219) for more information
on the system-wide and local window manager configuration files

Step 2: Locating the button binding section
When you locate the appropriate button binding section, you see entries with
the following syntax:

Buttons bindings_seCname
{

button context function
button context function

Buttons the type of the binding set being defined.

bindings_set_name the name assigned to a set of bindings. The default
name is "DefaultButtonBindings".

button the specification that defines the mouse button action or
the mouse button action plus a key sequence.

context the specification that defines the window manager con
text in which the button specification becomes active.
For example, the context of a window indicates that the
pointer must be on a client window or a window
management frame for the button specification to be
effective.

function the specification that defines one of the many window
manager functions or actions. See "Using window
manager functions" (page 223) for a list of these func
tions.

258 Graphical Environment Guide

Configuring button bindings

Step 3: Configuring the button binding specification
The window manager configuration files use window manager functions to
define the behavior and control the functionality of button events. A button
event describes an action that you take, such as pressing mouse button 1, to
execute a function (for example: raising a window). The button event specifi
cation has the following syntax:

button = [modifier _list]button_event_name

where:

modifier_list = modifier_name {modifier_name}

Table 14-2, "Button event definitions" lists the values that can be used for
button_event_name. Table 14-3, "Modifiers" (page 260) lists the values that
can be used for modifier_name.

Table 14·2 Button event definitions

button_evenCname Description
Btn1Down Button 1 press
Btn1Up Button 1 release
Btn1Click Button 1 press and release
Btn1Click2 Button 1 double click
Btn2Down Button 2 press
Btn2Up Button 2 release
Btn2Click Button 2 press and release
Btn2Click2 Button 2 double click
Btn3Down Button 3 press
Btn3Up Button 3 release
Btn3Click Button 3 press and release
Btn3Click2 Button 3 double click
Btn4Down Button 4 press
Btn4Up Button 4 release
Btn4Click Button 4 press and release
Btn4Click2 Button 4 double click
Btn5Down Button 5 press
Btn5Up Button 5 release
Btn5Click Button 5 press and release
Btn5Click2 Button 5 double click

259

Configuring window manager button bindings

260

To make sure you are not selecting already existing button-action combina
tions, you might want to modify the button event by requiring a simultaneous
key press with the button action. These required key presses are called
#modifiers". All modifiers specified are exclusive; that is, only the specified
modifiers can be present when the button event occurs. Table 14-3,
#Modifiers" (this page) indicates the values that can be used for
modifier_name.

I NOTE The (Alt) key is frequently labeled Extend or Meta. Alt and Meta can
be used interchangeably for an event specification.

Table 14·3 Modifiers

modifier_name
Ctrl
Shift
Alt
Meta
Lock
Mod1
Mod2
Mod3
Mod4
ModS

Description
Control Key
Shift Key
Alt/Meta Key
Metal Alt Key
Lock Key
Modifierl
Modifier2
Modifier3
Modifier4
ModifierS

For example, in the following sample button binding definition, the button
specification is Meta(Btn3Down). When the pointer is in a client window and
you press the Meta key simultaneously with mouse button 3, you execute the
f.move function.

Buttons bindings_seCname
{

Meta<Btn3Down> window f.move

If you are editing an existing button binding, replace the old button specifica
tion with the new one. Make sure you do not try to reconfigure the default
button bindings listed in Table 14-1, #Default button bindings" (page 255).

If you are adding a new button binding, put the new button specification on a
newline.

Graphical Environment Guide

Configuring button bindings

Step 4: Configuring the function specification
The syntax for naming a function' is the same, no matter what type the func
tion describes. The syntax for naming a function is:

function = function_name [function_args]

function_name is one of the valid window manager functions, and func
tion_args is a valid argument to the function. H function_args contains more
than one word, the argument must be contained in quotes.

H you are editing an existing button binding, replace the old function specifi
cation with the new one.

H you are adding a new button binding, put the new function specification on
a new line, after the related button specification.

See also:

• "Using window manager functions" (page 223) for a complete list and a detailed
explanation of all the valid window manager functions

Step 5: Configuring the context specification
The syntax for the context specification is:

context = app I border I frame I icon I root I title I window

The context specification defines the window manager context in which the
button specification becomes active; it indicates where the pointer must be
for the button specification to be effective. For example, the context of a win
dow indicates that the pointer must be on a client window or a window
management frame for the button binding to be effective. The button specifi
cation can be active in more than one context.

261

Configuring window manager button bindings

262

Table 14-4, "Button binding contexts" lists and describes the values that can be
used for context.

Table 14-4 Button binding contexts

Context
app

border

frame

icon

Description
The button binding is effective when the pointer is on the applica
tion window, not including the window management frame.

The button binding is effective when the pointer is on the border
of the window management frame, not including the title bar.

The button binding is effective when the pointer is on the window
management frame around a client window, border, and title bar.

The button binding is effective when the pointer is on an icon.
Note that icon refers to window manager icons only, not Desktop
icons.

root The button binding is effective when:

1. the pointer is on the Root window, and
2. neither a client window nor an icon is to be acted upon by the

function.

title The button binding is effective when the pointer is on the title area
of the window management frame.

window The button binding is effective when the pointer is on a client win
dow, title bar, or a window management frame.

If you are editing an existing button binding, replace the old context specifica
tion with the new one.

If you are adding a new button binding, put the context specification on a new
line, after the related button and function specifications. See "Function con
straints" (page 230) and Table 12-2, ~'Where functions can be used" (page 232)
for a list of the contexts that are available to each of the window manager
functions.

Step 6: Restarting the window manager
After you configure your new button bindings, you must restart the window
manager before your changes can take effect. Restart the window manager by
selecting the Restart Window Manager option from the Root menu. The Root
menu is accessed by pressing and holding mouse button 1 on the Desktop
background or, if the Desktop is not running, in the Root window.

Verify that the new button bindings are configured correctly by testing your
new button sequences in the appropriate contexts. The button bindings are
effective immediately after the window manager is restarted.

Graphical Environment Guide

Creating a new button binding set

Creating a new button binding set

To create a new button binding set, perform the following steps. For more in
formation on each of these steps, see the sections immediately following this
procedure.

1. Open the desired window manager configuration file for editing .

• pmwmmode:

/usr/lib/Xll/system.pmwmrc for system-wide changes

$HOME/.pmwmrc for individual changes

• mwmmode:

/usr/lib/Xll/system.mwmrc for system-wide changes

$HOME/.mwmrc for individual changes

2. Locate the "DefaultButtonBindings" section in the window manager con
figuration file, copy it, then use it as a template for your new set.

3. Configure the new button, function, and context specifications.

4. Configure the new button binding set for use by the window manager
with the buttonBindings resource. Add this resource to /usr/lib/Xll/app
defaults/pmwm (for pmwm mode), /usr/lib/Xl1/app-defaults/Mwm (for mwm
mode), or to the $HOME/.Xdefaults-hostname file, where hostname is the
name of the machine on which the window manager is running. Use the
following syntax:

Pmwm * buttonBindings: bindings_set_name

or

Mwm *buttonBindings: bindings_set_name

5. Restart the window manager and test your new button binding set.

See also:

• "Example of creating a new button set" (page 267) to see sample button binding
definitions

Step 1: Editing a window manager configuration file
If you want to make system-wide changes to the default button bindings,
open the system-wide window manager configuration file,
/usr/lib/Xll/system.pmwmrc if you are using pmwm mode or system.mwmrc if
you are using mwm mode. The system-wide file contains the default func
tionality for the window manager button bindings.

263

Configuring window manager button bindings

264

If you want to customize the button bindings in your local Graphical Environ
ment, edit your personal window manager configuration file,
$HOME/.pmwmrc if you are using pmwm mode or $HOME/.mwmrc if you are
using mwm mode. The personal configuration file is not provided with the
system by default. If it does not already exist, you must create your own by
copying the appropriate system-wide window manager configuration file to
.pmwmrc or .mwmrc in your $HOME directory.

NOTE Once the .pmwmrc or .mwmrc file exists in $HOME, it completely
overrides the system-wide window manager configuration file. Therefore,
make sure you copy the entire system file to your home directory, to avoid
losing critical functionality.

See also:

• Chapter 12, "Customizing the window manager" (page 219) for more information
on the system-wide and local window manager configuration files

Step 2: Locating the DefaultButtonBindings section
When you locate the IIDefaultButtonBindings" section, you see entries with
the following syntax:

Buttons DefaultButtonBindings
{

Buttons

button context function
button context function

the type of the binding set being defined

IIDefaultButtonBindings" the default name assigned to a set of bindings

button

context

the specification that defines the mouse button
action or the mouse button action plus a key
sequence. See Table 14-2, IIButton event
definitions" (page 259) for a list of the values that
can be used for button. See Table 14-3, IIModifiers"
(page 260) for a list of modifiers that can be used
with the button actions.

the specification that defines the context in which
the button specification becomes active. See Table
14-4, IIButton binding contexts" (page 262) for a list
and description of the values that can be used for
context.

Graphical Environment Guide

function

Creating a new button binding set

the specification that defines one of the many win
dow manager functions or actions. See "About
window manager functions" (page 256) for a basic
description of functions. See ''Using window
manager functions" (page 223) for a list and a
detailed description of functions.

Create a template for your new binding set by copying the "DefaultButton
Bindings" section, placing the copy below the existing section. Assign the
new set a different name.

Step 3: Defining button, function, and context specifications
Each button binding definition consists of button event, function, and context
specifications. Use the template you created in Step 2 (page 264) to create
these new specifications.

• Define the new button event specification. The button event specification
has the following syntax:

button = [modifier_list]button_event_name

where:

modifier_list = modifier_name {modifier_name}

See Table 14-2, "Button event definitions" (page 259) and Table 14-3,
"Modifiers" (page 260) for lists of the values that can be used for
button_event_name and modifier_name.

• Define the function specification, after the button event specification. The
syntax for naming a function is:

function = function_name [function_args]

where function_name is one of the valid window manager functions, and
function_args is a valid argument to the function. H function_args contains
more than one word, the argument must be contained in quotes.

See "Using window manager functions" (page 223) for a complete list and a
detailed explanation of all the default window manager functions.

• Define the context specification after the function specification. The syntax
for the context specification is:

context = app I border I frame I icon I root I title I window

The context specification defines the context in which the button specifica
tion becomes active; it indicates where the pointer must be for the button
specification to be effective. The button specification can be active in more
than one context. See Table 14-4, "Button binding contexts" (page 262) for a
list and description of the values that can be used for context.

265

Configuring window manager button bindings

266

Step 4: Specifying the buttonBindings resource
Define the new button binding set through the buttonBindings resource,
using the appropriate resource file.

If you are making local changes, you must define the new binding set in the
$HOME/.Xdefaults-hostname file. (If this file does yet not exist, create a file in
your $HOME directory named .Xdefaults-hostname, where hostname is the
name of the host, or machine, where the window manager is running.)

If you want the new button bindings to be used by all users on your system,
specify the resource in /usr/lih/Xll/app-default/pmwm (if you are using pmwm
mode) or /usr/lih/Xll/app-dejault/Mwm (if you are using mwm mode).

The syntax of the resource specification is the same for all of the window
manager configuration files:

Pmwm *buttonBindings: new _button_bindings_set_name

or

Mwm *buttonBindings: new _button_bindings_set _name

See also:

• Chapter 5, "Understanding resources" (page 79) for more information on resources
and the .Xdefaults-hostname file

Step 5: Restarting the window manager
After you create your new button binding set, you must restart the window
manager so your changes can take effect. Restart the window manager by
selecting the Restart Window Manager option from the Root menu. The Root
menu is accessed by pressing and holding mouse button 1 on the Desktop
background or, if the Desktop is not running, in the Root window.

Verify that the new button binding set was created correctly by testing your
new button sequences in the appropriate contexts. The button bindings are
effective immediately after the window manager is restarted.

Graphical Environment Guide

Example of creating a new button set

Example of creating a new button set

This section provides a comprehensive example that ties together some of the
concepts and procedures discussed in this chapter.

The following example assumes that you are using the default pmwm mode
of the window manager, that you want to create a new button binding set for
your local environment, and you want to name the set "MyButtonBindings".
MyButtonBindings consists of five new button binding definitions that pro
duce the following results:

• Pressing mouse button 1 when the pointer is on the Root menu posts the
menu named "MyRootMenu". (See line six of the following sample file.)

• Pressing mouse button 1 when the pointer is on a window frame raises the
window. (See line seven of the following sample file.)

• Pressing mouse button 2 or 3 when the pointer is on either the window
frame or on a window manager icon posts the menu specified by the
Pmmwm*windowMenu resource. (See lines eight and nine of the follow
ing sample file.)

• Pressing the Meta key and mouse button 1 Simultaneously, with the
pointer on either an icon or a window, raises the icon or the window to the
top of the window stack if it is partially obscured by another icon or win
dow; otherwise, it lowers the icon or window to the bottom of the window
stack. (See line ten of the following sample file.)

• Pressing the Meta key and mouse button 2 simultaneously, with the
pointer on a window, sets the colormap focus to the window. (See line
eleven of the following sample file.)

To create this new set:

1. Open the .pmwmrc file in your $HOME directory for editing. (If .pmwmrc
does not already exist, create it by copying lusr/lib/Xlllsystem.pmwmrc to
.mwmrc in your $HOME directory).

2. Locate the "DefaultButtonBindings" section in the .pmwmrc file and place a
copy of the section underneath the default definitions. You can use this
copy as a template for your new button binding set.

3. In the copy of the default definitions, rename "DefaultButtonBindings" to
"MyButtonBindings."

267

Configuring window manager button bindings

268

4. Edit the template so that it looks like this:

1 #
2 # button binding descriptions
3 #
4 Buttons MyButtonBindings
5 {

6 <BtnlDown> root
7 <BtnlDown> frame
8 <Btn2Down> framelicon
9 <Btn3Down> framelicon

10 Meta<Btn1Down> icon I window
11 Meta<Btn2Down> window
}

f.menu MyRootMenu
f.raise
f.post_wmenu
f.post_wmenu
f.raise_lower
f.focus_color

Note that for the f.focus_color function to have an effect, the pmwm color
mapFocusPolicy resource must be set to ""explicit". See Chapter 12, ""Cus
tomizing the window manager" (page 219) and Appendix A, "'OSF /Motif
window manager resources" (page 377) for more information.

5. Define the buttonBindings resource to announce the new button binding
set to the window manager. Specify the resource in the
$HOME/.Xdefaults-hostname file, where hostname is the name of the host,
or machine, where the window manager is running. The resource specifi
cation should look like this:

Pmwm *buttonBindings: MyButtonBindings

6. Restart the window manager so that the new button binding information
is implemented.

Graphical Environment Guide

Chapter 15

Configuring 'Window manager key
bindings

Key bindings provide a way to define the action that is performed when you
press a key or a sequence of keys in various window manager contexts. You
can use many combinations of keystrokes to invoke many different actions.
The actions performed depend on where the keyboard input focus is on the
screen.

This chapter describes:

• background information about window manager accelerator and
mnemonic key bindings (page 270)

• configuring new key bindings (page 273)

• creating new key binding sets (page 278)

There is also an example (page 282) at the end of this chapter that helps tie
together many of the concepts and procedures discussed in this chapter.

This chapter does not discuss translation tables and hardcoding key bindings
into applications. For more information about translation tables refer to
O'Reilly and Associates' X Toolkit Intrinsics Programming Manual Volume Four.

See also:

• Chapter 12, "Customizing the window manager" (page 219)

• Chapter 5, "Understanding resources" (page 79)

269

Configuring window manager key bindings

Default key bindings

270

The key bindings that are provided with your system are referred to as default
key bindings. Most default key bindings define the basic functionality of the
window manager.

All key bindings are located in the fusr/lib/Xll/system.pmwmrc file (for pmwm
mode) or the /usr/lib/Xll/system.mwmrc file (for mwm mode) in the Keys sec
tion type. The default bindings are defined by a set named #DefaultKeyBind
ings." System administrators can customize the functionality of some button
bindings and make system-wide changes by editing this file. Users can cus
tomize the functionality of key bindings in their local environment by copying
the appropriate system-wide window manager configuration file to either
.pmwmrc (for pmwm mode) or .mwmrc (for mwm mode) in their $HOME
directory. Customizing default bindings is discussed in more detail in
#Configuring key bindings" (page 273).

The entries in the "DefaultKeyBindings" section of the system-wide window
manager configuration file look similar to these:

Keys DefaultKeyBindings
{

Shift<Key>Escape iconJwindow
Alt<Key>space icon Jwindow

f.post_wmenu
f.post_wmenu

Each line represents a key binding. A key binding consists of a key press
action (such as Shift(Key)Escape), the window manager context in which the
action is valid (such as icon or window), and the function the key press pro
vides (such as f.post_wmenu). Key press actions, contexts, and functions are
discussed in more detail later in this chapter.

Graphical Environment Guide

Default key bindings

Table 15-1, "Default key bindings" lists the default key bindings.1

Table 15-1 Default key bindings

Key action Context Function
Shift<Key> Escape icon I window f.post_wmenu
Alt<Key>space icon I window f.post_wmenu
Alt<Key> Tab root I icon I window f.next_key
Alt Shift <Key> Tab root I icon I window f.prev_key
Alt<Key> Escape root I icon I window f.next_key
Alt Shift <Key> Escape root I icon I window f.prev_key
Alt Ctrl Shift<Key>exclam root I icon I window f.set_behavior
Alt<Key>F6 window f.next_key transient
Alt<Key> Left root I icon I window f.pan_activescreen left 100
Alt<Key> Right root I icon I window f.pan_activescreen right 100
Alt<Key>Vp root I icon I window f.pan_activescreen up 100
Alt<Key>Down root I icon I window f.pan_activescreen down 100
Alt<Key> Home root I icon I window f.set_activescreen home
Alt<Key>End root I icon I window f.set_activescreen "-0-0"
Alt<Key>minus root I icon I window f.toggle_autopan
Alt<Key>F2 window f.identify
Alt<Key>F2 root f.identify

See also:

• "About mnemonics and accelerators" (page 272)

• " About window manager functions" (page 272)

• "Configuring key bindings" (page 273)

1. A context of icon indicates window manager icons, not icons on the Desktop.

271

Configuring window manager key bindings

About mnemonics and accelerators

Mnemonics and accelerators are types of key bindings. Their most common
use is to supply a keyboard interface to an application that is usually pointer
driven. Both accelerators and mnemonics allow you to invoke a variety of
menu items without using the mouse. They are defined in association with
window manager functions.

See also:

• "About window manager functions" (this page)

• "Adding or modifying window manager menus" (page 237) for information on
how to specify mnemonics and accelerators

About window manager functions

272

Window manager functions are a component of every section of the window
manager configuration files. The system-wide and local configuration files
use window manager functions to define the behavior of keys, mouse buttons,
and menu panes.

You configure key bindings by associating each key press sequence with at
least one window manager function. For example, if you bind Ctrl(Key)Space
to a client menu with the f.menu function, the client menu posts each time
you press the (Ctrl)(Space) keys simultaneously. This key binding definition
would look like this:

Keys bindings_set_name
{

Ctrl<Key>Space window

See also:

f. menu clienCmenu

• "Using window manager functions" (page 223) for a complete list and a detailed
explanation of all of the default window manager functions

Graphical Environment Guide

Configuring key bindings

Configuring key bindings

To modify an existing key binding or to create a new key binding, perform the
following steps. For more information on each of these steps, see the sections
immediately following this procedure.

1. Open the desired window manager configuration file for editing .

• pmwmmode:

/usr/lib/Xll/system.pmwmrc for system-wide changes

$HOME/.pmwmrc for individual changes

• mwmmode:

/usr/lib/Xll/system.mwmrc for system-wide changes

$HOME/.mwmrc for individual changes

2. Locate the key binding section in the window manager configuration file.
The key binding section uses the following syntax:

Keys bindings_seCname
{

key context function
key context function
key context function

key context function

3. Configure the key binding specification, if desired.

4. Configure the function specification, if desired.

5. Configure the context specification, if desired.

6. Restart the window manager and test your new key binding.

See also:

• "Example of configuring key bindings" (page 282) for sample key binding
definitions

273

Configuring window manager key bindings

274

Step 1: Editing a window manager configuration file
If you want to make system-wide changes to the default key bindings, open
the system-wide window manager configuration file,
/usrllib/Xll/system.pmwmrc if you are using pmwm mode or system.mwmrc if
you are using mwm mode. The system-wide file contains the default func
tionality for the window manager key bindings.

If you want to customize the key bindings in your local Graphical Environ
ment, edit your personal window manager configuration file,
$HOME/.pmwmrc if you are using pmwm mode or $HOME/.mwmrc if you are
using mwm mode. The personal configuration file is not provided with the
system by default. If it does not already exist, you must create your own by
copying the appropriate system-wide window manager configuration file to
.pmwmrc or .mwmrc in your $HOME directory.

NOTE Once the .pmwmrc or .mwmrc file exists in $HOME, it completely
overrides the system-wide window manager configuration file. Therefore,
make sure you copy the entire system file to your home directory, to avoid
losing critical functionality.

See also:

• Chapter 12, "Customizing the window manager" (page 219) for more information
on the system-wide and local window manager configuration files

Step 2: Locating the key binding section
When you locate the appropriate key binding section, you see entries with the
following syntax:

Keys

Keys bindings_seCname
{

key context function
key context function

the type of the binding set being defined

bindings_set_name the name assigned to a set of bindings. The default
name is ~~DefaultKeyBindings".

keys the specification that defines the key press action

Graphical Environment Guide

context

function

Configuring key bindings

the specification that defines the window manager con
text in which the key specification becomes active. For
example, a context of a window indicates that the key
board input focus must be on a client window or a win
dow management frame for the key specification to be
effective.

the specification that defines one of the many window
manager functions or actions. See ''Using window
manager functions" (page 223) for a list of these func
tions.

Step 3: Configuring the key binding specification
The window manager configuration files use window manager functions to
define the behavior and control the functionality of key events. A key event
describes an action that you take, such as pressing the "r" key to execute a
function (for example: redrawing a window). Key events are single key
presses; key releases are ignored. The key event specification has the follow
ingsyntax:

key = [modifier_list] (Key)key_name

where:

modifier_list = modifier_name {modifier_name}

Designate any single key for the value in key_name. If you are creating a
mnemonic key binding, do not designate a value for modifier_name.

If you are creating an accelerator key binding, make sure your key-action
combination is unique by selecting one or more of the values in Table 15-2,
"Modifiers" for the value in modifier_name.

I NOTE The (AU) key is frequently labeled Extend or Meta. Alt and Meta can
be used interchangeably for an event specification.

275

Configuring window manager key bindings

276

Table 15·2 Modifiers

modifiecname
Ctrl
Shift
Alt
Meta
Lock
Modl
Mod2
Mod3
Mod4
ModS

Description
Control Key
Shift Key
Alt/Meta Key
Metal Alt Key
Lock Key
Modifierl
Modifier2
Modifier3
Modifier4
ModifierS

If you are editing an existing key binding, replace the old key specification
with the new one. If you modify any of the default key bindings, make sure
you do not remove functionality that you need.

If you are adding a new key binding, put the new key specification on a new
line.

Step 4: Configuring the function specification
The syntax for naming a function is the same, no matter what type the func
tion describes. The syntax for naming a function is:

function = function_name [function_argsl

function_name is one of the valid window manager functions, and func
tion_args is a valid argument to the function. If function_args contains more
than one word, the argument must be contained in quotes.

If you are editing an existing key binding, replace the old function specifica
tion with the new one.

If you are adding a new key binding, put the new function specification on a
new line, after the related key specification.

See also:

• See "Using window manager functions" (page 223) for a complete list and a
detailed explanation of all of the valid window manager functions

Step 5: Configuring the context specification
The syntax for the context specification is:

context = app I border I frame I icon I root I title I window

The context specification defines the window manager context in which the
key specification becomes active; it indicates where the keyboard input focus

Graphical Environment Guide

Configuring key bindings

must be for the key specification to be effective. For example, a context of a
window indicates that the keyboard input focus must be on a client window
or a window management frame for the key binding to be effective. The but
ton specification can be active in more than one context.

Table 15-3, "Key binding contexts" lists and describes the values that can be
used for context.

Table 15-3 Key binding contexts

Context

app

border

frame

icon

root

Description
The key binding is effective when the keyboard input focus is on
the application window, not including the window management
frame.

The key binding is effective when the keyboard input focus is on
the border of the window management frame, not including the
title bar.

The key binding is effective when the keyboard input focus is on
the window management frame around a client window, border,
and title bar.

The key binding is effective when the keyboard input focus is on an
icon. Note that icon refers to window manager icons only, not
Desktop icons.

The key binding is effective when:

1. the keyboard input focus is on the Root menu, and

2. neither a client window nor an icon is to be acted upon by the
function.

title The key binding is effective when the keyboard input focus is on
the title area of the window frame.

window The key binding is effective when the keyboard input focus is on a
client window, title bar, or a window management frame.

If you are editing an existing key binding, replace the old context specification
with the new one.

If you are adding a new key binding, put the context specification on a new
line, after the related key and function specifications. See "Function con
straints" (page 230) and Table 12-2, "Where functions can be used" (page 232)
for a list of the contexts that are available to each of the window manager
functions.

277

Configuring window manager key bindings

Step 6: Restarting the window manager
After you configure your new key bindings, you must restart the window
manager before your changes can take effect. Restart the window manager by
selecting the Restart Window Manager option from the Root menu. The Root
menu is accessed by pressing and holding mouse button 1 on the Desktop
background or, if the Desktop is not running, in the Root window.

Verify that the new key bindings are configured correctly by testing your new
key sequences in the appropriate contexts. The key bindings are effective
immediately after the window manager is restarted.

Creating a new key binding set

278

To create a new key binding set, perform the following steps. For more infor
mation on each of these steps, see the sections immediately following this
procedure.

1. Open the desired window manager configuration file for editing .

• pmwmmode:

/usr/lib/Xll/system.pmwmrc for system-wide changes

$HOME/.pmwmrc for individual changes

• mwmmode:

/usr/lib/Xll/system.mwmrc for system-wide changes

$HOME/.mwmrc for individual changes

2. Locate the "DefaultKeyBindings" section in the window manager configu
ration file, copy it, then use it as a template for your new set.

3. Configure the new key, function, and context specifications.

4. Configure the new key binding set for use by the window manager with
the keyBindings resource.

Add this resource to /usr/lib/X1l/app-dejaults/Pmwm (for pmwm mode),
/usr/lib/Xll/app-dejaults/Mwm (for mwm mode), or to the
$HOME/.Xdefaults-hostname file, using the following syntax:

Pmwm * keyBindings: bindings_set_name

or

Mwm * keyBindings: bindings_set_name

5. Restart the window manager and test your new key binding set.

Graphical Environment Guide

Creating a new key binding set

See also:

• "Example of configuring key bindings" (page 282) for sample key binding
definitions

Step 1: Editing a window manager configuration file
If you want to make system-wide changes to the default key bindings, open
the system-wide window manager configuration file,
!usr/lib/Xll/system.pmwmrc if you are using pmwm mode or system.mwmrc if
you are using mwm mode. The system-wide file contains the default func
tionality for the window manager key bindings.

If you want to customize the key bindings in your local Graphical Environ
ment, edit your personal window manager configuration file,
$HOME/.pmwmrc if you are using pmwm mode or $HOME/.mwmrc if you are
using mwm mode. The personal configuration file is not provided with the
system by default. If it does not already exist, you must create your own by
copying the appropriate system-wide window manager configuration file to
.pmwmrc or .mwmrc in your $HOME directory.

NOTE Once the .pmwmrc or .mwmrc file exists in $HOME, it completely
overrides the system-wide window manager configuration file. Therefore,
make sure you copy the entire system file to your home directory, to avoid
losing critical functionality.

See also:

• Chapter 12, "Customizing the window manager" (page 219) for more information
on the system-wide and local window manager configuration files

Step 2: Locating the DefaultKeyBindings section
When you locate the "DefaultKeyBindings" section, you see entries with the
following syntax:

Keys DefaultKeyBindings
{

keys context function
keys context function

Keys the type of the binding set being defined

"DefaultKeyBindings" the default name assigned to a set of bindings

279

Configuring window manager key bindings

280

keys

context

the specification that defines the key press action.
See Table 15-2, "Modifiers" (page 276) for a list of
modifiers that can be used with the key press actions.

the specification that defines the context in which the
key specification becomes active. See Table 15-3, "Key
binding contexts" (page 277) for a list and description
of the values that can be used for context.

function the specification that defines one of the many win
dow manager functions or actions. See "About win
dow manager functions" (page 272) for a basic
description of functions. See "Using window
manager functions" (page 223) for a list and a
detailed description of window manager functions.

Create a template for your new binding set by copying the "DefaultKeyBind
ings" section and placing the copy below the existing section. Assign the new
set a different name.

Step 3: Defining key, function, and context specifications
Each key binding definition consists of key event, function, and context speci
fications. Use the template you created in Step 2 (page 279) to create these
new specifications.

• Define the new key event specification on the first line. The key event spec
ification has the following syntax:

key = [modifier_listl(Key)key_name

where:

modifier_list = modifier _name {modifier_name}

Key events are single key presses; key releases are ignored. Designate any
single key for the value in key_name. If you are creating a mnemonic key
binding, do not designate a value for modifier _name. If you are creating an
accelerator key binding, make sure your key-action combination is unique
by selecting one or more of the values in Table 15-2, "Modifiers" (page 276)
for the value in modifier_name.

• Define the function specification, after the key event specification. The syn
tax for naming a function is:

function = function_name lfunction_argsl

function_name is one of the valid window manager functions and func
tion_args is a valid argument to the function. If function_args contains
more than one word, the argument must be contained in quotes.

See ''Using window manager functions" (page 223) for a complete list and a
detailed explanation of all of the valid window manager functions.

Graphical Environment Guide

Creating a new key binding set

• Define the context specification after the function specification. The syntax
for the context specification is:

context = app I border I frame I icon I root I title I window

The context specification defines the context in which the key specification
becomes active; it indicates where the keyboard input focus must be for
the key specification to be effective. The button specification can be active
in more than one context. See Table 15-3, "Key binding contexts" (page
277) for a list and description of the values that can be used for context.

Step 4: Specifying the keyBindings resource
Define the name of the new key binding set through the keyBindings
resource, using the appropriate resource file.

If you are making local changes, you must define the new binding set in the
$HOME/.Xdefaults-hostname file. (If this file does yet not exist, create a file in
your $HOME directory named .Xdefaults-hostname, where hostname is the
name of the host, or machine, where the window manager is running.)

If you want the new key binding set to be used by all users on your system,
specify the resource in /usr/lib/Xll/app-default/pmwm (if you are using pmwm
mode) or /usr/lib/Xll/app-default/Mwm (if you are using mwm mode).

The syntax of the resource specification is the same for all of the window
manager configuration files:

Pmwm*keyBindings: new_key_bindings_set_name

or

See also:

• Chapter 5, "Understanding resources" (page 79) for more information on resources
and the .Xdefaults-hostname file

281

Configuring window manager key bindings

Step 5: Restarting the window manager
After you create your new key binding set, you must restart the window man
ager so your changes can take effect. Restart the window manager by select
ing the Restart Window Manager option from the Root menu. The Root menu
is accessed by pressing and holding mouse button 1 on the Desktop back
ground or, if the Desktop is not running, in the Root window.

Verify that the new key binding set was created correctly by testing your new
key sequences in the appropriate contexts. The key bindings are effective
immediately after the window manager is restarted.

Example of configuring key bindings

282

This section provides a comprehensive example that ties together some of the
concepts and procedures discussed in this chapter.

The following example assumes that you are using the default pmwm mode
of the window manager, that you want to create a new key binding set for
your local environment, and you want to name the set #MyKeyBindings".
MyKeyBindings consists of four key binding definitions that produce the fol
lowing results:

• Pressing (Shift)(Esc) with the keyboard input focus on either an icon or win
dow posts the menu named for the Pmwm*windowMenu resource specifi
cation. (See line 6 of the following sample file.)

• Pressing (Ctrl)(Space) with the keyboard input focus on either an icon or
window, or on the Root menu, posts the menu named "MyRootMenu".
(See line 7 of the following sample file.)

• Pressing (Alt)(Esc) with the keyboard input focus on either an icon or win
dow, or on the Root menu, sets the keyboard input focus to the next icon or
window in the set of icons or windows managed by the window manager.
(See line 8 of the following sample file.)

• Pressing (Alt) (Shift)(Esc) with the keyboard input focus on either an icon or
window, or on the Root menu, sets the keyboard input focus to the previ
ous icon or window in the set of icons or windows managed by the win
dow manager. (See line 9 of the following sample file.)

To create this new set:

1. Open the .pmwmrc file in your $HOME directory for editing. (If .pmwmrc
does not already exist, create it by copying /usr/lib/Xll/system.pmwmrc to
.pmwmrc in your $HOME directory.)

2. Locate the #DefaultKeyBindings" section in the .pmwmrc file and place a
copy of the section underneath the default definitions. You can use this
copy as a template for your new key binding set.

Graphical Environment Guide

Example of con figuring key bindings

3. Rename "DefaultKeyBindings" to "MyKeyBindings".

4. Edit the template so that it looks like this:

1 #
2 # key binding descriptions
3 #
4 Keys MyKeyBindings
5 {
6
7

8
9

10

Shift<Key>Escape
Ctrl<Key>space
Alt<Key>Escape
Alt Shift<Key>Escape

icon I window
icon I window I root
icon I window I root
icon I window I root

f.post_wmenu
f.menu MyRootMenu
f.next_key
f.prev_key

5. Define the keyBindings resource to announce the new key binding set to
the window manager. Specify the resource in the $HOME/.Xdefaults
hostname file, where hostname is the name of the host, or machine, where
the window manager is running. The resource specification should look
like this:

Pmwm*keyBindings: MyKeyBindings

6. Restart the window manager so that the new key binding information is
implemented.

283

Configuring window manager key bindings

284 Graphical Environment Guide

Chapter 16

Customizing the Desktop with rules

The behavior and appearance of the Desktop are not fixed, and are deter
mined by files which you can alter to provide a different behavior or appear
ance. These files are called the Desktop "rule files". Each rule file consists of a
sequence of "rule clauses".

For maximum flexibility, the physical appearance and design of the Desktop
can also be altered by changing the characteristics specified in the Desktop
resource files. See Appendix B, "Desktop resources" (page 403) for more infor
mation.

Specifically, this chapter describes:

• rule clauses (page 286)

• the scope of rules (page 286)

• the effect of rules in different rule files (page 292)

• rule file precedence (page 295)

• rule file structure (page 295)

• the way filenames are processed in rules (page 298)

285

Customizing the Desktop with rules

Rule clauses

There are six different types of rule clauses, each dealing with a different
aspect of the Desktop's configuration. These are:

• desktop_layout

• icon_rules

• initial_actions

• locked_on_desktop

• menu

For example, icon_rules clauses define the behavior of an icon in the Desktop,
or the action when the user manipulates it in a particular way.

See also:

• Chapter 21, "Configuring icons" (page 327)

• Chapter 22, "Configuring Desktop windows" (page 333)

• Chapter 23, "Configuring directory windows" (page 337)

• Chapter 24, "Configuring Desktop menus" (page 341)

• Chapter 20, "Creating objects for the Desktop" (page 315) for an extensible way to
configure icon behavior and appearance

• desktop_layout, icon_rules, initiaCactions, locked_on_desktop, menu, and
final_actions in the xdt3(XC) manual page

Defining the scope of rules

286

It is possible to provide rules that will apply to all things of one type, such as
all the directory windows or all users of the system, by defining an appropri
ate rule clause in a system-wide module. More usually, you will want to limit
the effect of your rules to certain icons, or certain users on the system. This is
referred to as defining the "scope" of the rules.

Usually, the location of the file containing a rule determines its scope. For
example, you can provide special behavior for one particular user by provid
ing rule clauses in a suitable file in that user's home directory.

Graphical Environment Guide

Defining the scope of rules

There are two essentially different ways of specifying the scope of a rule:
"implicitly" and "explicitly". You can specify the scope implicitly by choosing
the location of the file containing the rule. However, for icon_rules clauses
you can also specify the scope explicitly, by specifying a pattern that matches
the files or directories to which you want the rule to apply.

In some cases these methods of specifying the scope are interchangeable. For
example, you could write a rule to apply to all the files in one directory using
either of the following two methods:

• provide an icon_rules clause matching all files, and put it in a local rule file
in the directory to be affected

• provide an icon_rules clause matching files with the appropriate path
name, and put it in a system-wide module or a user rule file

See also:

• "Specifying scope implicitly" (this page)

• "Specifying the scope explicitly" (page 289)

Specifying scope implicitly

You can specify the scope implicitly by choosing where you locate the rule:

all users on the system use a system-wide module (page 301)

some users

one user

the icons in one directory

the icons on a desktop

dynamically

use a module specified for a particular UNIX
group ill, or a custom user type (page 305)

use a user rule file (page 288) in that user's home
directory

use a local rule file (page 289) in that directory

use the desktop rule file (page 289) for that desk
top

use dynamically loaded rules (page 289)

287

Customizing the Desktop with rules

288

The contents of user rule files, modules, user type rules, and the system rule
file are only examined when the Desktop starts or after the Deskshell com
mand reset.

See also:

• "Changing the behavior for all users" (this page)

• "Changing the behavior for different types of user" (this page)

• "Changing the behavior for a single user" (this page)

• "Changing the behavior of a directory" (page 289)

• "Changing the behavior of a desktop" (page 289)

• "Changing behavior dynamically" (page 289)

Changing the behavior for all users
To provide custom rules for all users, you should use a module. You should
not edit the system rule file.

See Chapter 17, "Using Desktop modules" (page 301) for more information.

Changing the behavior for different types of user
To provide rules for a particular type of user, create a user type.

See Chapter 18, "Defining Desktop user types" (page 305) for more informa
tion.

Changing the behavior for a single user
To provide rules which will apply to a specific user on the system, you should
create a user rule file in that user's home directory. The name used for user
rule files is, by default, named .xdtuserinfo.

User rule files allow you to give each user's desktops a different appearance
and behavior. For example, for advanced users you can define short cuts for
all their frequently-used operations, whereas for less experienced users you
can provide a simpler system in which they are less likely to make mistakes.

If you have a large number of users of a particular type, you may like to con
sider creating a new user type.

See also:

• Chapter 18, "Defining Desktop user types" (page 305)

Graphical Environment Guide

Defining the scope of rules

Changing the behavior of a directory
To provide different behavior for files in one directory, you should include
rules in a local rule file in that directory. The name of the local rule file is
.xdtdir/lCIT, where, by default, ICTT is set to en_US.

With local rule files you can define special behavior for items within specific
directories. For example, an archiving directory could be created which would
compress any file dragged into its directory window.

Changing the behavior of a desktop

To define the appearance and behavior of desktops, you should provide rules
in the desktop rule file. Generally, these rules specify which files and direc
tories are on the desktop, and what their positions are. The desktop rule file
has the same name as the desktop, with the extension .dt.

The contents of desktop rule files are only examined when the file is loaded;
subsequent changes are ignored until the next time that desktop is opened.
When a desktop is closed, the rule file is automatically updated to reflect any
changes in icon positions.

Changing behavior dynamically
To change the behavior of the Desktop dynamically, you can load a rule using
the dynamic_rule Deskshell command. Dynamic rules cannot be changed
once loaded, but can be unloaded when no longer required.

See also:

• dynamic_rule in the deskcommands(XC) manual page

Specifying the scope explicitly

For icon_rules clauses, you specify the scope of the rule explicitly by provid
ing a specification that matches the files or directories in which you are
interested.

289

Customizing the Desktop with rules

290

The format of the icon_rules clause is:

pattern [/class]
{

clauses applying to specified files

The specification consists of two parts:

• a pattern, which specifies the names of files or directories to which you
want the rules to apply, using wildcards to select groups of files

• an optional class, which allows you to filter out certain categories of file on
the basis of the ownership permissions, or the type of file

See also:

• "Patterns" (this page)

• "Classes" (page 291)

Patterns
Patterns look like filenames or pathnames, but can contain certain special
characters or wildcards. There must be at least one space or newline before
specifying a class.

The basename of a pattern can include the following wildcard characters:

?

*

[chars]

any single character. For example, a?c includes the files aac, abc and
so forth, but not the file abbc.

any sequence of characters, including none. For example, a*c
includes the files ac, abc, acbc and so forth.

anyone of the specified set of characters. For example, [abc]d
includes the files ad, bd and cd but no others.

[!chars] none of the specified characters. For example, [!a]bc includes bbc, cbc
and so forth, but not abc.

These patterns can be combined. For example, [!A]* means any file beginning
with a character other than A.

Graphical Environment Guide

Defining the scope of rules

See also:

• "Relative patterns" (this page)

• "Absolute patterns" (this page)

• "Rule file precedence" (page 295)

• basename in the deskcommands(XC) manual page

Relative patterns

If the pattern does not begin with a " / ", it is a LLrelative pattern", which can
match files anywhere in the system. The pattern cannot include" / ".

Rules following relative patterns in a local rule file apply to files in the direc
tory that match the pattern. Rules following relative patterns in all other rule
files apply to all files whose basenames match the pattern.

Absolute patterns

If the pattern begins with a " /", it is an L/absolute pattern", which only
matches files in a specific directory.

Absolute patterns cannot occur in local rule files. Wildcards can only be
included after the last" /" in an absolute pattern.

Rules following absolute patterns apply to files in the directory given by the
pattern up to the last" /", and whose basename matches the part after the last
" /". These rules take precedence over those following relative patterns in any
rule file.

Classes
Classes are used to represent the properties of files in a concise form. These
properties fall into the following six sets:

• file type

• execute permissions

• read/write permissions

• ownership

• symbolic

• variation class

291

Customizing the Desktop with rules

A file has one property from each set. The properties are each represented by
a character, so that the class of a file consists of exactly six characters. The
Desktop always specifies classes in upper case, though it accepts classes in
either case. For example, an executable file might have the full class
definition:

FXWM-O

The classes restrict the group of files affected by the subsequent clauses, and
so omitting a specifier from one set of options will match all the alternatives.

The following examples show some of the most useful class specifications:

none everything

D directories

F files

FE executable files

FX files executable by the user

FN data files

FNW data files that the user can alter

FNR data files that the user can read

See also:

• fileclass in the deskcommands{XC) manual page for details on the different class
characters, and how to read the class of a file

Effect of rules in different rule files

292

The relationship between the different types of rule file, and the rule clauses
they can contain, is shown below.

• Local rule files:

icon_rules affect icons in the directory containing the rule file

locked_on_desktop ignored

desktop_layout ignored

initial_actions

final_actions

menu

occur when the directory is opened

occur when the directory is closed

available in the directory containing the rule file

Graphical Environment Guide

Effect of rules in different rule files

• Desktop rule files:

icon_rules affect icons on the desktop

locked_on_desktop applies to the desktop

desktop_layout applies to the desktop

initial_actions

finaLactions

menu

• User rule files:

icon_rules

occur when the desktop is opened

occur when the desktop is closed

available on the desktop

affect all of the user's icons

locked_on_desktop applies to the main Desktop.

desktop_layout applies to desktops not already holding a
desktop_layout clause

initial_actions

finaLactions

menu

occur when the Desktop starts (after the system rule
file's initial_actions)

occur when the Desktop exits (before the system rule
file's finaLactions)

available to all directories and desktops

• System rule file, user type rules, and modules:

affect all icons

locked_on_desktop applies to the main Desktop

desktop_layout applies to desktops not already holding a
desktop_layout clause

initial_actions

menu

occur when the Desktop starts (before the user rule
file's initiaLactions)

occur when the Desktop exits (after the user rule
file's finaLactions)

available to all directories and desktops

293

Customizing the Desktop with rules

294

• Dynamic rules:

icon_rules affect all icons while loaded

locked_on_desktop apply to the main Desktop

desktop_layout

initiaLactions

finaLactions

menu

• Built-in rules:

applies to desktops not already holding a
desktop_layout clause

occur when the rule is installed, if the -x option is
used when loading the rule

occur when the rule is removed, if the -x option is
used when unloading the rule

available to all directories and desktops

icon_rules affect all icons

locked_on_desktop none

desktop_layout none

initial_actions none

finaLactions none

menu available to all directories and desktops

See also:

• icon_rules, locked_on_desktop, desktop_layout, initiaCactions, finaCactions,
and menu in the xdt3(XC) manual page

Graphical Environment Guide

Structure of rule files

Rule file precedence

The rule files are searched in the order listed below:

1. Absolute patterns in:

• desktop file, if the file or directory is on a desktop

• dynamic rules, in the order specified when they are loaded

• user rule file

• system rule file, user type rules, and modules

• built-in rules

2. Relative patterns in:

• local rule file

• desktop file, if the file or directory is on a desktop

• dynamic rules, in the order specified when they are loaded

• user rule file

• system rule file, user type rules, and modules

• built-in rules

See also:

• "How Deskshell commands are executed" (page 361)

• initial_actions and finaCactions in the xdt3(XC) manual page

Structure of rule files

Rule files are text files, and can be created and edited using any suitable text
editor, such as vi or scoedit.

Rule files consist of sequences of "clauses". Each clause can have one of the
following two forms:

keyword=value ;

or

keyword { body } [;]

295

Customizing the Desktop with rules

296

Each rule clause in a rule file starts with a keyword specifying what type of
rule it is. The keyword may have an abbreviation. Each keyword is typically
followed by either a value, or a block enclosed in matching curly brackets con
taining further clauses.

In the second form the semicolon is optional. The body is normally a
sequence of commands.

Rule files are block structured like the programming languages C or Pascal,
and in general the layout is not important. For example, the following two
rules are equivalent:

icon_rules {* ID{picture=dir.px;}* IF{picture=file.px;}}

and:

* ID

picture=dir.px

* IF

picture=file.px

The recommended layout, shown in the second example above, helps clarify
the structure of the rule, and makes it easier to match pairs of brackets. This
style of layout will be used for all the examples in this guide.

Within a rule file you can include:

• other rule files with %+filename+

• the values of UNIX environment variables with %$variable$

• comments with %11

Graphical Environment Guide

Structure of rule files

To illustrate the characteristics of a typical rule, look at the following simple
icon_rules clause, which defines the characteristics of an Edit icon:

Edit IF
{

picture=edit.px;
title=Editor;
trigger_action: drop
{

edit -merge $dynamic_args

The rule is introduced by the keyword icon_rules. This specifies it as a com
mand to determine the behavior of an icon or group of icons.

The icons to which the command applies are defined by the construct Edi t
IF, where IF denotes files. In this case the rule applies to any file with the
filename Edit.

The picture command specifies the file containing the picture for the icon, and
the title command defines its title.

The trigger_action command defines what happens when the user performs
an action on, or "triggers", an icon in a particular way. In this case the trigger
"action" is drop, which occurs when the user drops one or more icons onto
this icon using mouse button 1. This is followed in curly brackets by the
action to be carried out under the specified circumstances.

Further examples of rules are given in the xdt3(XC) manual page. The default
system rules for your system can be found in
/usr/lib/Xll/IXI/XDesktop/ruleslsystem/xdtsysinfo. Please do not make any
changes to this file, as they will not be supported if you later choose to
upgrade. See Chapter 17, "Using Desktop modules" (page 301) and Chapter
18, "Defining Desktop user types" (page 305) for information on how to con
figure system-wide Desktop behavior without modifying the system rule file.

See also:

• %+filename+, %$variable$, and %11 in the deskshell(XC) manual page

• drop, picture, title, and trigger_action in the xdt3(XC) manual page

297

Customizing the Desktop with rules

Processing filenames in rules

This section discusses how filenames are represented in rule file commands,
and describes the commands for manipulating filenames.

See also:

• "Referring to file and directory names" (this page)

• "Canonical form" (page 299)

• "Filename processing commands" (page 299)

• "Specifying actions" (page 299)

Referring to file and directory names

298

When a file or directory is referred to in the Desktop, its name may be used in
four ways:

absolute pathname the full name of the file or directory, which always
begins with a slash

basename the name of the file/directory within its directory. It is
the part of the absolute pathname following the last
slash. In addition, the file or directory name's "exten
sion" is the part of the basename from the last dot.

dirname the name of the directory holding the file or directory. It
is the part of the absolute pathname preceding the last
slash.

relative pathname the path to a file or directory, starting from your home
directory

For example, the various names of the file /userlfred/work/letter.ed are:

absolute pathname /user/fred/work/letter.ed

basename letter.ed

extension .ed

dirname /user/fred/work

relative pathname work/letter

I NOTE There is one special case: the dirname of" /" is /. (slash-dot), and its
basename is / (slash).

Graphical Environment Guide

Processing filenames in rules

Canonical form

In representing filenames, "." represents the current directory and " .. "
represents the parent directory. The "canonical form" eliminates these sym
bols from the pathname to represent the pathname without any redundancy.

Filename processing commands

These commands perform operations on each of a list of filenames. If they are
not used in a list substitution construct of the form '(...), then the results are
sent to standard output, separated by the value of the first string in the vari
able ofs if there is more than one argument.

absreadlink absolute pathname of the value of a symbolic link

basename basename of its argument

canonical argument converted to canonical (non-redundant) form

dimame canonical form of the directory of its argument

extension extension of its argument

fileclass class of its argument

followlink absolute pathname of the final destination of a symbolic link

readlink contents of a symbolic link

relativepath pathname relative to the user's home directory

unextended canonical form of the argument with its extension removed

See also:

• 1(•••) and ofs in the deskshell(XC) manual page

Specifying actions

In the example in "Structure of rule files" (page 295), the action is a single
command to run the Edit program with suitable arguments, depending on the
files that were dragged onto its icon.

A list of the names of the files dragged onto the icon is provided in the vari
able dynamic_args. So, for example, if the icons chapterl and chapter2 were
dragged onto the Edit icon the action would be to run the command:

edit -merge chapterl chapter2

See also:

• Chapter 19, "Defining Desktop triggers" (page 309) for more information about
defining actions

• dynamic_args in the deskshell(XC) manual page

299

Customizing the Desktop with rules

300 Graphical Environment Guide

Chapter 17

Using Desktop modules

To provide rules that apply to all users on the system, use a system-wide
"module". Modules are sets of rules that have the same effect as if they were in
the system rule file. You should not edit the system rule file itself.

Using modules provides the following advantages:

• you do not need to understand the system rule file

• your own sections are separated from others, making them easier to sup
port

• it is easier to replace or update a module than to maintain an edited system
rule file

• modules can be specified for individual users or UNIX groups, using
resources

The MODULEDIR environment variable specifies which directories are
searched for modules. By default, this includes
jusr/lib/Xll/IXI/XDesktop/rules!modules (for system-wide modules) and
$HOME/.xdt_dir/modules (for your own custom modules).

301

Using Desktop modules

To specify modules for a user or UNIX group, the system administrator should
set the following system-wide resources, typically in the default preferences
file for the appropriate user type:

• XDesktop3.Rules.defaultModules: modulel module2 •..
The modulel, module2 modules are loaded for all users.

• XDesktop3.Rules.group_ID.groupModules: modulel ...
The modules are only loaded for those users in the UNIX group group_ID
(for example, 100). The group must be specified in numeric form, and not
by any symbolic group name.

• XDesktop3.Rules.usemame.userModules: modulel
The modules are loaded only for the user username.

In addition to the modules described here, there are two special types of
module: Llauto" and Llloop".

See also:

• " Auto modules" (this page)

• "Loop modules" (this page)

• "Text displayed by modules" (page 303)

• Chapter 18, "Defining Desktop user types" (page 305)

Auto modules

These modules are loaded automatically, per the values of the resources
specified in Chapter 17, LlUsing Desktop modules" (page 301). Auto modules
are distinguished by the suffix .auto.

Loop modules

302

These modules are performed periodically within a background loop. This
loop is run at start-up time and then every n seconds, where n is defined by
the XDesktop3.Rules.loopDelay resource.

Loop modules are distinguished by the prefix Loop_.

You should keep loop modules short. For example, the Desktop uses a loop
module for a directory contents checker. If you want a loop module to run
every ten times the main loop is run once, for example, you can use a counter
within the module.

Graphical Environment Guide

Text displayed by modules

The system administrator can specify loop modules on a per user or per
group basis, using the following system-wide resources:

• XDesktop3.Rules.defaultLoopModules

• XDesktop3.Rules.group _ID.groupLoopModules

• XDesktop3.Rules.user _name.userLoopModules

Text displayed by modules

All text strings displayed by a module should be stored in the file
module/lCTI', where II is a two-character code for the language (as defined by
the ISO 639 standard) and IT is a two-character code for the territory (as
defined by the ISO 3166 standard). By default, the text strings are located in
module/en_US.

The file should contain a number of Deskshell variable assignments. The rules
of the module should refer to the variable names to determine what text to
display.

303

Using Desktop modules

304 Graphical Environment Guide

Chapter 18

Defining Desktop user types

You may need to support users that have differing UNIX experience levels, or
otherwise configure the Desktop for a variety of user types. The Desktop pro
vides a #user type" mechanism to allow you to do this.

All user type configuration files are kept within the main Desktop rules direc
tory, /usr/lib/Xll/IXI/XDesktop/rules. Each user type has its own subdirectory
with name UserType.user, for example seQ. user.

A user type directory must contain a file called Rule.dr, which holds the
default rules for this user type. The Rule.dr file can read and manipulate any
files it needs to. For example, within the SeQ.user user type directory, you
may find the following:

Rule.dr the main rule file for this user type, which is treated as if it were
part of the system rule file

menus.dr a rule file used to set up all the menus for this user type

Main.dt the file used for the default main Desktop for each user of this type

objects a subdirectory containing the objects used by default for each user
of this type

ZCTT.prf The default preferences file for this user type, in the language ZCTT,
where II is a two-character code for the language (as defined by the
ISO 639 standard) and IT is a two-character code for the territory
(as defined by the ISO 3166 standard). By default, the SeQ.user user
type provides the en_US.prf file.

305

Defining Desktop user types

ICIT

See also:

The language file containing all the text strings used for this user
type, in the form of Deskshell variable assignments. The rules of
the user type should refer to the variable names to determine what
text to display.

• "Creating a new user type" (this page)

• "Determining a user type" (this page)

Creating a new user type

To create a new user type, copy an existing user type and modify the copy. It
is important to remember to replace all instances of the old user type name
(e.g. SeQ) in all the files with the new name, to ensure that the correct files are
used.

To specify the modules to use for this user type, use lines in the appropriate
preferences files (i.e., en_US.prfin the seQ. user directory) similar to:

irl 'XDesktop3.Rules.defaultModules: modules ... '
irl 'XDesktop3. Rules .group_ID. groupModules: modules ... '
irl 'XDesktop3. Rules. user_name. userModules: modules ... '

You can set any of the resources used for modules. These resource lines
should contain the full list of modules to be used for this user type; you may
need to examine the default Desktop resource file to discover the modules
used for the existing user type.

See also:

• "Changing the behavior for all users" (page 288)

• irl in the deskcommands(XC) manual page

Determining a user type

Three resources are checked to determine the user type assigned to each user:

1. XDesktop3.Rules.user _name.userType

2. XDesktop3.Rules.group _ID.groupUserType

3. XDesktop3.Rules.defaultUserType

If none of these are set, then the user type "SCO" is used.

308 Graphical Environment Guide

Determining a user type

To assign a user a particular user type:

1. Edit the user's .Xdefaults-hostname file, where hostname is the name of the
machine on which the client is running, to include the resource:

XDesktop3.Rules*userType: UserType

2. Include the following line in the preferences files for that user type:

irl 'XDesktop3.Rules*userType: llserType'

3. Remove the user's $HOME/.xdt_dir directory, if it exists.

The userType resource is set in the user's .Xdefaults-hostname file to make the
initial switch to the new user type. After that, the setting is done as part of the
preferences file in the user type directory, and it does not matter if the user
removes the line from their personal resource file.

307

Defining Desktop user types

308 Graphical Environment Guide

Chapter 19

Defining Desktop triggers

A trigger is a general-purpose method for performing an action specific to a
particular icon or window. For instance, if you want an icon to do something
when you double-click on it, you should define an action for the activate
trigger for that icon.

Some triggers correspond directly to an action by the user, such as clicking
once on an icon to select it (the select trigger). These triggers are defined in the
Desktop #trigger table", which is specified by the Desktop trigger mappings
resource. Triggers not defined in the trigger table are commonly used for
higher-level functions such as requesting help on an icon, or printing.

This chapter describes:

• what triggers are (page 310)

• the different types of triggers (page 310)

• variables that can be set by triggers (page 313)

See also:

• Chapter 26, "Mapping mouse triggers for the Desktop" (page 371)

• Appendix B, "Desktop resources" (page 403)

309

Defining Desktop triggers

About triggers

When a user interacts with a Desktop icon or window background, the
interaction is looked up in the trigger table to derive the trigger name corre
sponding to that action.

For example, if a user double-clicks on an icon with mouse button 1, this is
converted to the trigger name activate in the trigger table. The Desktop then
executes the command:

actions_of activate

Arguments are set to the appropriate values for the triggered icon and the
icon's location.

The actions_of command searches the icon_rules clauses that match the trig
gered icon for the following clauses:

• trigger_action: activate

• trigger_action: s*

• trigger_action: *

The above clauses specify an exact match, a match against any static trigger,
and a match against any trigger at all, respectively.

The first match found causes a new thread to be created to execute the script
specified in the trigger_action clause.

See also:

• "Threads" (page 362)

• actions_of in the deskcommands(XC) manual page

• "*", s*, activate, icon_rules, and triggecaction in the xdt3(XC) manual page

Types of trigger

The three different types of trigger found in the trigger table are defined as fol
lows:

static trigger the icon or window background is clicked or double-clicked
without moving the mouse

dynamic trigger the icon is dragged and dropped onto another icon or win
dow background

hold trigger the mouse button is held down on an icon or window back
ground

310 Graphical Environment Guide

Types of trigger

See also:

• "Static triggers" (this page)

• "Dynamic triggers" (this page)

• "Hold triggers" (page 312)

• "Icons and windows" (page 312)

Static triggers

Clicking once is called "single-clicking". Clicking twice in quick succession,
without moving the mouse pointer, is called "double-clicking" or "activating".
Single and double clicks are referred to as "static" triggers because the mouse
does not move during the action.

To make the rules as portable as possible, the static triggers are pre-defined
with names as follows:

select

alCselect

rename

alt_rename

activate

alt_activate

deselect

report

alt_report

s*

Dynamic triggers

single-click on an icon picture

single-click on an icon picture with mouse button 2

single-click on an icon title

single-click on an icon title with mouse button 2

double-click on an icon

double-click on an icon with mouse button 2

single-click on a window background

double-click on a window background

double-click on a window background with mouse button 2

matches any static trigger

The action of dragging one or more icons and dropping them onto another
icon is called a "dynamic" trigger, to contrast it with a static trigger. This is
also sometimes referred to as a "drag" trigger.

311

Defining Desktop triggers

The dynamic triggers are pre-defined as follows:

drop drop one or more icons on an icon or window background

alt_drop drop one or more icons on an icon or window background with
mouse button 2

d* matches any drag trigger

Hold triggers

"Hold" triggers activate an icon or directory window when the user presses
one of the mouse buttons and holds it down without moving the pointer.

The hold triggers are pre-defined as follows:

menu hold mouse button 3 on an icon picture or title

popup_menu hold mouse button 3 on a window background

h* matches any hold trigger

Icons and windows

312

You will notice that some triggers affect an icon, and some affect the back
ground of a window. A slightly different command is used to define the
actions to perform in each case.

Icon triggers require a corresponding trigger_action clause in an icon_rules
clause matching that icon. Background triggers require a drop_in_action
clause in an icon_rules clause for that window.

Triggers requiring a drop _in_action clause are:

• drop and alt_drop (when referring to windows, not icons)

• report and alt_report

• deselect

All other triggers use a trigger_action clause.

See also:

• drop_in_action, icon_rules, and trigger_action in the xdt3(XC) manual page

Graphical Environment Guide

Variables

Variables

The Desktop sets some variables when a trigger occurs. You can use these in
rule files to find out what was triggered and how it was triggered.

You can also trigger things using commands, just as if the user had performed
the appropriate action. The same variables are set in this case.

The following sections describe the circumstances under which these vari
ables are set:

• "Click or hold" (this page)

• "Drag" (page 314)

• "Menu selection" (page 314)

See also:

• trigger, d_desktop, s_desktop, d_position, s_position, dynamic_args, and
static_arg in the deskshell(Xc) manual page

Click or hold

When the user clicks or holds on an icon or window background, the follow
ing variables are set to the values shown below.

trigger trigger name

static_arg

s_position

dynamic_args

d_position

d_desktop

s_desktop

icon or window name

position of the click or hold

selected icons

the string V, effectively meaning it does not matter

an empty list

click or hold in a:

• desktop window - the name of the desktop

• directory window - an empty list

313

Defining Desktop triggers

Drag

When the user drops one or more icons onto an icon or a window back
ground, the following variables are set to the values shown below.

trigger trigger name

static_arg

s_position

icon or window name

position of the click or hold

dynamic_args if the drag started on a:

d_position

d_desktop

• selected icon - the name of that icon followed by all the
other selected icons

• non-selected icon - the name of that icon

• window background - an empty list

position of the start of the drag

if the drag started in a:

• desktop window - the name of the desktop

• directory window - an empty list

if the drag ended in a:

• desktop window - the name of the desktop

• directory window - an empty list

Menu selection

314

When the user chooses a command from a menu, the following variables are
set to the values shown below.

dynamic_args

d_desktop

if the menu was popped up from:

• an icon - the name of the icon

• window background - the name of the window

selected icons

if the menu was popped up in a:

• desktop window - the name of the desktop

• directory window - an empty list

Graphical Environment Guide

Chapter 20

Creating objects for the Desktop

Objects are useful for linking mouse actions or "triggers" to system or Desk
top actions and tasks. Use objects when you want to implement applications
on the Desktop. A single object, represented by a user-selected icon, can have
different scripts to interact with a binary in different ways.

Because objects are used to define behavior for single icons, icon_rules
clauses are needed to define Desktop behavior that affects more than a single
icon. Whenever possible, however, objects should be used instead of
icon_rules clauses. For example, objects should be used to implement all
stand-alone applications on the Desktop, while icon_rules clauses in a local
rule file should be used to define behavior uniform to all icons in a particular
directory. For more information on icon_rules clauses, see "Rule clauses"
(page 286).

Some advantages of objects over icon_rules clauses is that objects are self
contained, well-suited for portability, easily exchanged from user to user, sim
ply structured and easy to debug.

There are two ways to create objects:

• using the Object Builder client, which is the preferred tool for creating
objects since it greatly simplifies the job, or

• by manually editing and creating the appropriate configuration files and
directories

315

Creating objects for the Desktop

Creating an object using the Object Builder

316

The Object Builder lets you define the title, picture (icon), double-click
actions, and drag-and-drop actions associated with a Desktop object.

There are two ways you can use the Object Builder to define an object. You
can:

• use an existing object as a template for defining a new object (page 318) by
opening the object, modifying its definitions, and then saving the object
under a new name, or

• open a new, undefined object (page 322) and install a picture and action
definitions separately

To use the Object Builder, open the Controls window and double-click on the
Object Builder icon.

Graphical Environment Guide

Creating an object using the Object Builder

When you start the Object Builder, you see the following:

Figure 20-1 Object Builder window

317

Creating objects for the Desktop

See also:

• "Changing an action definition" (this page)

• "Opening an existing object" (this page)

• "Installing action definitions" (page 319)

• "Installing a picture" (page 320)

• "Installing an executable" (page 321)

• "Saving an object" (page 321)

• "Opening a new object" (page 322)

• objbld(XC) manual page for information on running the Object Builder from the
UNIX command line.

Changing an action definition

You can use existing action scripts in a file to define the actions associated
with the object. To select an action script file:

• drop its icon on the Object Builder window, or

• select either Activate Actions or Drop Actions from the Install menu. You
must then select the appropriate script from the cascading menu. You have
the choice of selecting a script for double-clicking with either mouse button
1 (Activate) or mouse button 2 (Alt_Activate) and a script for dragging and
dropping with either mouse button 1 (Drop) or mouse button 2 (Alt_Drop).
The action script is installed in the appropriate field in the Object Builder
window.

Once the script is installed, you can edit it by clicking on that part of the win
dow.

See also:

• "Installing action definitions" (page 319)

• deskcommands(XC) manual page for more information on action scripts

Opening an existing object

318

You can open an existing Desktop object and modify its picture or action
definitions, or you can use an existing object as a template for defining a new
object.

Graphical Environment Guide

Creating an object using the Object Builder

To open an existing object:

• drop its icon on the Object Builder window, or

• select Open Object from the File menu and then select the object from the
file selection box. The object's icon and its action scripts are installed in the
Object Builder window.

When you drop an object's icon on the Object Builder window, you are
prompted to specify which component(s) to load. You can choose to load the
picture only, the actions only, or both.

I NOTE Save the definitions for a new object by selecting Save As from the
File menu. Use Save to save changes to the original object.

Installing action definitions

Scripts that define actions for the object are displayed in the first two full
length fields on the Object Builder window. You can define two types of
action sequences for the object:

• those taken when a user double clicks on the object. You can define actions
taken when the user double clicks with mouse button 1 (Activate)
separately from those taken when the user double clicks with mouse but
ton 2 (Alt_Activate).

• those taken when a user drags and drops the object. You can define actions
taken when the object is dragged with mouse button 1 (Drop) or mouse but
ton 2 (Alt_Drop).

You can define the actions to associate with the object in one of four ways:

• install the actions from an existing action script by dropping the file con
taining the action script on the Object Builder window

• install the actions defined in an existing object by dropping the object on
the Object Builder window

• install default actions by dropping an executable on the Object Builder
window or by selecting Executable from the Install menu

• enter your own actions directly in the "Trigger Action" fields

When you drop a non-executable, non-directory file icon on the Object
Builder window, the Object Builder assumes it contains a script of action
definitions.

319

Creating objects for the Desktop

H you drop an action script, existing object, or an executable on the Object
Builder window, you must first specify the action sequence that you are
defining: Activate, AICActivate, Drop, or Alt_Drop. Make your choice using
the toggle buttons above the ~~Trigger Action" fields.

When you drop an object's icon on the Object Builder window, you are
prompted to specify which component(s) to load. You can choose to load the
picture only, the actions only, or both.

See also:

• "Changing an action definition" (page 318)

• "Opening an existing object" (page 318)

• "Installing an executable" (page 321)

• Chapter 25, "Writing Deskshell commands" (page 349) for information on writing
action scripts

Installing a picture

320

You can define a picture (an icon) to associate with the object in one of two
ways:

• install a picture defined in an existing pixmap or bitmap file

• drop an object or a directory icon on the Object Builder window to install
that icon

To install any existing picture file with the suffixes .xpm, .xbm, or .px, select
Picture from the Install menu. Some valid bitmap files do not include these
suffixes. H you want to install such a file, make a copy of it, appending one of
those suffixes, and then install it.

After you select the picture from the #Install Pictures" dialog box, you are
asked to assign the file to one of four icon categories: Normal, Activated, Small
normal, or Small activated. You can only assign the selected file to one of these
categories at a time. Click on OK to complete the selection.

The installed picture is displayed in the upper part of the Object Builder win
dow, above the appropriate category label.

NOTE H you change an existing picture, you do not see the change in the
Desktop icon until you restart the Desktop. This is because the picture is
cached in memory (to improve access speed), and the cached picture is not
updated until the Desktop is restarted.

Graphical Environment Guide

Creating an object using the Object Builder

See also:

• "Step 2: Selecting an icon" (page 323) for more information on the four icon picture
types

Installing an executable

You can associate an executable file with an object by dropping the
executable's icon on the Object Builder window or by selecting Executable
from the Install menu and selecting the executable file from the file selection
box.

When you drop an executable icon on the Object Builder window, you are
prompted to specify whether or not the executable is a graphical application.
A graphical application is one that is designed to run in a graphical environ
ment, such as the Desktop. A non-graphical application can be run outside
the graphical environment, or from a terminal emulation window (such as
scoterm).

• If you select Yes, the Object Builder generates default scripts for both
double-click and drag-and-drop actions.

• If you select No, you are prompted to specify whether or not you want the
user to press any key to continue after the executable has run. If the exe
cutable displays any information that needs to be left in an open window
for the user to read, you should require a keystroke to continue. The appli
cation will run in a shell window.

Saving an object

To save changes to an existing object, select Save from the File menu.

To save your changes under a different object name, select Save As. This is the
method to use when you have opened an existing object and used it as a tem
plate for building a new object. A file selection dialog box prompts you for an
object name. Be sure you save the object in a directory in which you have
read and write permissions. A good choice is $HOME/.xdt_dir/objects.

To quit the Object Builder, select Exit from the File menu.

If you exit the Object Builder using Cancel after making changes, the Object
Builder checks to make sure you really want to discard your changes.

321

Creating objects for the Desktop

Opening a new object

You can start with a new Object Builder window by selecting New Object
from the File menu. This opens an unnamed object with no picture or action
definitions.

Creating an object manually

322

To create an object on the Desktop, perform the following steps. For more in
formation on each of these steps, see the sections immediately following this
procedure.

1. Create an object directory with the desired name, followed by an .obj
extension.

2. Select pixmaps to represent the object and copy them to the object direc-
tory, using one of the following filenames:

picture.px
open.px
s-picture.px
s_open.px

3. Decide which mouse actions or triggers are to be applied to the object.

4. For each trigger, write an object script that will perform some Desktop or
system action.

5. Place each object script in the file specified by its corresponding trigger
name (for example, activate for the activate trigger).

Step 1: Creating the object directory
Every object has a corresponding object directory. This directory contains all
of the information that defines the object's behavior.

The object directory should be named by appending the extension .obj to the
desired name for the object. For example, an object called "Compress" has an
object directory named Compress.obj.

The object's title is specified in the name of the corresponding object directory.
Or you can define an object's title by storing it in a file called title, which you
should locate in a language subdirectory, ICIT, within the object directory. II
is a two-character code for the language (as defined by the ISO 639 standard)
and IT is a two-character code for territory (as defined by the ISO 3166 stan
dard). By default, en_US is used.

Graphical Environment Guide

Creating an object manually

An object only appears on the Desktop or a desktop window if it is explicitly
dragged onto the Desktop or a desktop window using the Deskshell com
mand get_out or if the object's parent directory is open. For example,
applications/My.obj is visible only if either the directory applications is open or
My.obj has been dragged out onto the Desktop or a desktop window.

If you wish to include an object Desktop-wide, you should create it or, if it
already exists, use an Applications or Tools directory and place the object direc
tory there. The main Desktop's desktop rule file can then be configured so
that this Tools directory appears on it. The current default directory for the
applications directory is /usr/lib/Xll/XDesktop3/apps and the tools directory is
/usr/lib/Xll/XDesktop3/tools.

See also:

• deskcommands(XC) manual page for more information on Deskshell commands

Step 2: Selecting an icon
When defining an object, first consider what its icon or pictorial representa
tion will look like. The icon for the object can be one of many pre-defined pic
ture files or a custom-made icon.

By default, objects can contain four pixmap files to use for an icon. These are:

picture.px a large [64x64] image for the icon when not active. This is the
only file that must be present.

s-picfure.px a small [32x32] image for the icon when not active

open.px

s_open.px

a large [64x64] image for the icon when active

a small [32x32] image for the icon when active

All of the pre-defined Desktop picture files are located in the directory
/usr/lib/Xl1/lXI/XDesktop/bitmaps and in its following sub-directories:

local_large

xdt_Iarge

xdt_small

xdt_c_large

your own large [64x64] color icons

the Desktop's default large [64x64] color icons

the Desktop's default small [32x32] color icons

illrge[32x32]cursors

xdCc_small small [16x16] cursors

The picture files should be placed within an object directory's language sub
directory if they are language-specific, otherwise, within the object directory
itself.

323

Creating objects for the Desktop

324

Picture files can be in either pixmap or bitmap format. Pixmap format is a
color bitmap format defined using standard ASCII characters. The resulting
files can be created and edited using a standard text editor. However it is
recommended that pixmaps are edited using the scopaint client.

Bitmap is a monochrome format and should only be used if backward compa
tibility with sca Open Desktop, Release 1.1 is required.

To create a custom-made icon for an object, the best approach is to start with
an existing picture file and then edit it as follows:

1. Copy an existing picture file from one of the preceding directories or the
blank picture file blank.px into the object directory and rename it appropri
ately, as described above.

2. Change to the object directory. At the command line, type scopaint
filename to execute the scopaint client. Edit the picture as desired.

3. When you are satisfied with the picture, exit from scopaint, selecting Save
or Save As from the File menu.

Step 3: Selecting trigger actions
The action of pointing at an icon with the mouse pointer and performing an
action such as double-clicking is referred to as Lltriggering" the icon. Triggers
are used to execute different Desktop and/or system actions and tasks. When
an object is triggered, it performs certain actions on the Desktop or the sys
tem, depending the trigger type.

A trigger is either a click, a sequence of clicks only, or a sequence of clicks fol
lowed by a hold or drag. You can trigger icons on the Desktop in three ways:
static triggers, hold triggers and drag triggers.

Clicking twice in succession without moving the mouse pointer is called
either double-clicking, activating the icon, or a Llstatic" trigger. Dragging one
or more icons and dropping them on to another icon is called a LI drag and
drop" or a Lldynamic" trigger. Pressing a mouse button and holding it down
while the pointer is over an object is referred to as a ''hold'' trigger.

The notation for the different triggers is based on the trigger type and the
mouse button used. The following are the pre-defined Desktop triggers:

• Static triggers:

select

alt_select

rename

single-click on an icon picture

single-click on an icon picture with mouse button 2

single-click on an icon title

Graphical Environment Guide

alt_rename

activate

alt_activate

deselect

report

alt_report

s*

Creating an object manually

single-click on an icon title with mouse button 2

double-click on an icon

double-click on an icon with mouse button 2

single-click on a window background

double-click on a window background

double-click on window background with mouse button 2

matches any static trigger

• Dynamic triggers:

drop drop one or more icons on an icon or window background

drop one or more icons on an icon or window background
with mouse button 2

d* matches any drag trigger

• Hold triggers:

menu hold mouse button 3 on an icon picture or title

popup_menu hold mouse button 3 on a window background

h* matches any hold trigger

To take advantage of triggers, first determine how many different actions you
want the object to perform, then assign each action to a unique trigger type.

See also:

• Chapter 26, "Mapping mouse triggers for the Desktop" (page 371) for information
on mapping your own triggers or changing the existing ones

Step 4: Writing trigger scripts
After the triggers to be applied to the objects are determined, the Desktop or
operating system actions and tasks that are to occur after each trigger action
must be defined.

The Deskshell command language is used to to define the actions that occur
when the icon is triggered. Deskshell scripts written explicitly for objects are
referred to as object scripts.

Deskshell is a command language, complete with a flexible range of control
structures and a wide range of commands. You can specify regular UNIX op
erating system commands within Deskshell scripts. However, it is recom
mended that you learn how to use the Deskshell commands and scripts.

325

Creating objects for the Desktop

326

Because Deskshell is designed specifically for use with the Desktop and
because Deskshell commands execute significantly faster than regular UNIX
shell commands, Deskshell commands are recommended for coding your
script.

See also:

• Chapter 25, "Writing Deskshell commands" (page 349)

Step 5: Naming trigger scripts
The final step involves naming the object scripts and placing them in the
proper location.

After an object script is written in Deskshell, it must be placed in a file.
Filenames correspond directly to the trigger names (i.e., activate for an activate
trigger and drop for a drop trigger).

I NOTE You should surround the commands in trigger files with begin and
finish, and not specify them as trigger_action clauses.

Trigger files should be placed directly in the object directory, not within any
language subdirectory.

Any text that you intend to display to the user should be represented by vari
able names, and the definitions for these variables placed in the text file within
the object directory's language subdirectory. For example:

msgl='You have activated this object'
msg2='You have dropped an icon on this object'

See also:

• xdt3(XC) manual page

• deskshell(XC) manual page

• deskcommands(XC) manual page

Graphical Environment Guide

Chapter 21

Configuring icons

The desktop represents files and directories in the UNIX filing system by pic
torial "icons", which provide the user with a convenient way of manipulating
files and give additional information about the types of files and their access
permissions.

In this chapter you will learn how to:

• define the appearance of icons (this page)

• configure the behavior of icons (page 330)

See also:

• Chapter 20, "Creating objects for the Desktop" (page 315) for information on a sim
ple and flexible way to configure icons, using objects

Defining the appearance of icons

To alter the appearance of an icon or number of icons, use an icon_rules
clause matching the appropriate icons.

See also:

• "Defining rules for icons" (page 328)

• "Defining a picture for icons" (page 329)

• "Defining a title for icons" (page 330)

327

Configuring icons

Defining rules for icons

328

The icon_rules clauses use the following form:

icon_rules

filespec
{

picture=filename;
title=name;

The icon_rules keyword introduces the rules, and filespec specifies the icons
to which the rules should apply. filespec also specifies the filenames to be
matched, and the classes of files to be matched.

For each group of files specified by filespec, you can provide a picture clause,
a title clause, or both, specifying what the title or icon should be for those
files.

Note that a single icon_rules clause can include several filespec sections, to
provide pictures and/or titles for different groups of icons:

icon_rules

fi'especl
{

picture=filenamel i
title=namel ;

fi'espec2
{

picture=filename2 ;
title=name2;

If an icon matches more than one filespec, the title is determined by the first
matching clause containing a title, and the picture is determined by the first
matching clause containing a picture.

Graphical Environment Guide

Defining the appearance of icons

See also:

• "Defining a picture for icons" (this page)

• "Defining a title for icons" (page 330)

• "Defining the scope of rules" (page 286)

• "Classes" (page 291)

• icon_rules in the xdt3(xC) manual page

Defining a picture for icons

The picture clause specifies the name of the bitmap or pixmap file to be used
for the icons of all files in the specified group. It has the format:

picture=jilenamei

If filename begins with /I I ", it is taken as an absolute pathname. Otherwise,
the Desktop searches the sequence of picture file directories, specified by the
pictureDirectory resource. By default, the Desktop searches for pictures in the
following order:

• Iusr /lib/Xll/IXI/XDesktop/bitmapslxdt _c_Iarge

• $HOME/.xdt_dir/bitmapslxdt_large

• jusr /lib/Xl1/IXI/XDesktop/bitmapslxdt _large

Picture files are provided in the following subdirectories of
lusr/lib/Xll/IXI/XDesktop/bitmaps:

local_large

xdt_Iarge

your own large [64x64] color icons

the Desktop's default large [64x64] color icons

xdt_small the Desktop's default small [32x32] color icons

xdt_c_Iarge large [32x32] cursors

xdt_c_small small [16x16] cursors

See also:

• picture in the xdt3(XC) manual page

329

Configuring icons

Defining a title for icons

The title clause gives the title for the specified group of files. It has the format:

title=namei

The title is taken as the text from the #=" to the ";" characters, including any
spaces.

The title can include the following special sequences, to substitute the corre
sponding string into the title:

%BO basename of the file

%CO class of the file, given as six characters in standard order

%DO absolute pathname of the directory (page 298) holding the file

%EO as %BO but extensionIess - with the last dot and any characters fol
lowing removed

%PO absolute pathname of the file

%RO relative pathname of the file, which within a directory window will be
the same as %BO

See also:

• "Referring to file and directory names" (page 298)

• "Classes" (page 291)

• title in the xdt3(XC) manual page

Defining the behavior of icons

330

The trigger table defines which triggers correspond to which actions by the
user. Some other triggers are also used for higher-level functions such as pro
viding help on an icon.

To define the behavior of an icon when it is triggered in a particular way,
include a trigger_action clause for each trigger that should be understood by
that icon:

trigger_action: brigger

See also:

• "Writing trigger rules" (page 331)

• Chapter 19, "Defining Desktop triggers" (page 309)

Graphical Environment Guide

Defining the behavior of icons

Writing trigger rules

The trigger_action clauses are contained within icon_rules clauses, just like
the title and picture clauses described in "Defining a picture for icons" (page
329) and "Defining a title for icons" (page 330). They take the form:

trigger_action: trigger { script}

script specifies the Deskshell script that will be run when trigger is applied to
an icon matching filespec in the icon_rules clause. trigger can specify the
name of one of the triggers defined in the trigger table, or:

• s* to indicate any static trigger

• d* to indicate any drag trigger

• h* to indicate any hold trigger

• * to indicate any trigger

Alternatively, trigger can specify the name of any trigger that you want to
define for that icon.

See also:

• trigger_action, icon_rules, s*, d*, h*, and * in the xdt3(xc) manual page

331

Configuring icons

332 Graphical Environment Guide

Chapter 22

Configuring Desktop windows

In the default configuration of the Desktop, users can place icons on the main
Desktop or a desktop window by dragging the file icons into the appropriate
desktop.

This chapter describes how you can set up your own Desktop rules to tailor:

• the behavior of desktops (this page)

• the appearance of desktops (page 334)

Defining the behavior of desktop windows

To define the behavior that results from the following action:

Single-click on the desk
top window background

Drag one or more icons
into the desktop window

Double-click on the back
ground of the desktop
window

Open or close the desktop
window

include a drop _in_action: deselect clause in an
icon_rules clause applying to the desktop

include a drop _in_action: drop clause in an
icon_rules clause applying to the desktop

include a drop _in_action: report clause in an
icon_rules clause applying to the desktop

include an initial_actions or finaCactions clause
in the desktop rule file.

333

Configuring Desktop windows

See also:

• "Example" (this page)

• "Changing the behavior of a desktop" (page 289)

• "Changing desktop, directory, dialog box, and icon behavior" (page 37)

• deselect, drop, finaCactions, icon_rules, initiaCactions, and report in the
xdt3(XC) manual page

• drop _in_action in the deskcommands(XC) manual page

Defining the appearance of desktop windows

To define:

The position of icons on
the desktop

The icons that are locked
onto the desktop window

See also:

• "Example" (this page)

include a desktop _layout clause in the desktop
rule file

include a locked_on_desktop clause in the desk
top rule file

• "Changing the behavior of a desktop" (page 289)

• desktop_layout and locked_on_desktop in the xdt3(XC) manual page

Example

334

This example shows a rule which defines a desktop window with the follow
ing characteristics:

• single-clicking on the desktop window background displays an informa
tion dialog box

• double-clicking on the desktop window background closes the desktop
window

• dropping one or more icons onto the desktop window puts them on the
desktop

• opening the desktop window displays an information dialog box

• the main Desktop icon is locked onto the desktop

Graphical Environment Guide

Example

The rules defining these characteristics are provided in the following desktop
rule file, which should be called demo.dt:

%/dt/
desktop_layout
{

%$HOME$/.ixi/xdt/Main.dt @GO,Oj

locked_on_desktop
{

%$HOME$/.ixi/xdt/Main.dti

initial_actions

for_info 'Welcome to the demo desktop'

demo.dt /F

drop_in_action: deselect
{

for_info You have clicked on the background of the demo desktop.

See also:

drop_in_action: report
{

drop_in_action: drop
{

• "Defining the scope of rules" (page 286) for information on the rule file in which to
insert the rules clauses to achieve the desired effect

335

Configuring Desktop windows

336 Graphical Environment Guide

Chapter 23

Configuring directory windows

In the default configuration of the Desktop, users can move and copy files
between directories simply by dragging the file icons into the appropriate
directory window.

This chapter:

• describes how you can set up your own local rules to tailor the behavior of
directories (this page) on your system, and

• provides an example of configuring directory behavior (page 338)

Defining the behavior of directory windows

To define the behavior that results from the following action:

Single-click on the direc
tory window background

Drag one or more icons
into the directory win
dow

Double-click the back
ground of the directory
window

Open or close the direc
tory window

include a drop_in_action: deselect clause in an
icon_rules clause applying to the directory

include a drop _in_action: drop clause in an
icon_rules clause applying to the directory

include a drop _in_action: report clause in an
icon_rules clause applying to the directory

include an initial_actions or final_actions clause
in the local rule file

337

Configuring directory windows

See also:

• "Example" (this page)

• "Changing the behavior of a directory" (page 289)

• drop_in_action in the deskcommands(XC) manual page

• deselect, drop, finaLactions, icon_rules, initial_actions, and report in the
xdt3(XC) manual page

Example

338

This example shows a rule that defines a directory with the following charac
teristics:

• single-clicking on the directory window background displays an informa
tion dialog box

• double-clicking on the directory window background closes the window
and opens the parent directory window

• dropping one or more icons onto the directory window copies them into
the directory

• closing the directory window displays a dialog box

The rules defining these characteristics are provided below:

icon_rules

TestDir /D

drop_in_action: deselect
{

for_info You have clicked on the TestDir directory background.

drop_in_action: report
{

display_directory $static_arg \ (dirname $static_arg)

drop_in_action: drop
{

Graphical Environment Guide

Example

You would also place the following rules in TestDir/xdtdir/lCIT (where, by
default, ZLIT is en_US):

final_actions

for_info Closing the TestDir directory.

See also:

• "Defining the scope of rules" (page 286) for information on the rule file in which to
insert the rule clauses to achieve the desired effect

339

Configuring directory windows

340 Graphical Environment Guide

Chapter 24

Configuring Desktop menus

The Desktop supports both pull-down menus, which drop down from a menu
name in a menu bar, and pop-up menus, which are usually displayed beneath
the mouse pointer.

For each type of menu, the menu commands can include mnemonics and
accelerator keys, and also display further cascade menus.

Each type of menu is defined using an identical syntax. However, the names
of the desktop, directory and treeview menu bars are defined in the Desktop
resource file.

This chapter describes how to:

• provide additional commands for users on the standard menus (page 342)

• define mnemonics and accelerator keys (page 344)

• provide additional pull-down (page 345) or pop-up menus (page 346)

• disable menu commands (page 347)

• remove menus (page 348)

See also:

• Appendix B,"Desktop resources" (page 403)

• Chapter 13, "Customizing window manager menus" (page 235)

341

Configuring Desktop menus

Defining menus

342

To define the following behavior:

Command available on a
menu

Action when the user
chooses a menu com
mand

Cascade menu when the
user chooses a menu
command

Dividing line between
commands on a menu

Command that is dis
abled if not applicable

See also:

include a menu clause defining the menu

include a menu_item clause defining the com
mand

include a pull_off_menu clause in the
menu_item definition

include a dividin~line or thick_dividing_line
clause in the menu definition

include a enable_if clause in the menu_item
clause for the command

• "Menu clauses and commands" (page 343)

• "Mnemonics and accelerator keys" (page 344)

• "Pull-down menus" (page 345)

• "Pop-up menus" (page 346)

• "Disabling menu commands" (page 347)

• "Removing menus" (page 348)

• "Defining the scope of rules" (page 286)

• menu, menu_item, pull_off_menu, dividin~line, and thick_dividin~line in the
xdt3(XC) manual page

Graphical Environment Guide

Defining menus

Menu clauses and commands

The commands on a menu, and the action performed when any command is
chosen, are determined by the menu and menu_item clauses. These have the
format:

menu: menuname

menu_item clause

menu_i tem clause

NOTE The text your provide for menuname is an internal reference, and
does not appear as the title of the menu. To give a title to a menu, do not
specify an action for the first menu command. In this case the command will
automatically be centered rather than left-aligned.

Each menu_item clause contains a title clause specifying the name of the
command, and a select_action clause specifying the action to occur when the
command is chosen:

title=cmdnamei
select_action { script

Here cmdname gives the name of the menu command, and script is the action
to be performed if it is chosen.

Instead of a script, the menu_item clause can reference a pull_off_menu
clause, in which case choosing it displays the cascade menu of that name:

menu_item

title=cmdnamei
pull_off_menu=namei

For example, the Sort cascade menu would be defined by the following clause:

title=Sorti
pull_off_menu=Sort_Cascade;

343

Configuring Desktop menus

The menu_item clause also has a short form, as follows:

menu_i tem: cmdname

script

This is equivalent to:

menu_item

See also:

ti tle=cmdname ;
select_action

script

• menu, menu_item, pull_off_menu, selecLaction, and title in the xdt3(xC) manual
page

Mnemonics and accelerator keys

344

Mnemonics and accelerator keys let you choose a menu command without
using the mouse.

The cmdname assigned to a menu_item clause can end in a string of the form:

_m_key_keytext

The single character m defines a mnemonic for the menu command. The char
acter m must occur in the name of the command, and the first occurrence of
the character in the name will be shown underlined on the menu. No two
commands should have the same mnemonic in a single menu.

The menus on a menu bar can also have mnemonics. To choose a menu com
mand using its mnemonic, press (Alt) and the mnemonic for the menu, then
the mnemonic for the menu command itself. For example, if the File menu has
mnemonic F and the Open menu command has mnemonic 0, you would
press (AU) then o.

The string key defines an accelerator key for the menu command, using the
standard OSF/Motif syntax. For example, Ctrl<key>F represents the accelera
tor key (Ctrl)F.

Graphical Environment Guide

Defining menus

The string key is an internal way of representing a key press, and so is not dis
played. Instead, the string key text will be right-justified in the menu.

menu_item: New File_F_Ctrl<key>F_Ctrl+F

To choose a menu command you can press the accelerator key combination
directly. No two commands available from the same menu bar should have
the same accelerator key.

Pull-down menus

The Desktop resource file defines three special menu names: DesktopMenu
Bar, DirMenuBar, and TreeMenuBar. Menu rules with these names define
the menu bars for desktop windows, directory windows and treeview win
dows, respectively.

Each menu_item clause defines the name of one of the pull-down menus on
the menu bar, and should contain a pull_off_menu clause to define the com
mands on that pull-down menu.

By default, the Desktop provides menu bars, in desktop windows, directory
windows and treeview windows, and these menu bars provide pull-down
menus for all of the most frequently-used commands that users need to per
form within the Desktop.

The commands on these menus, and the actions they perform, are defined by
the rules for your user type. You do not need to change this file to configure
your own menus.

See also:

• "Pop-up menus" (page 346)

• "Changing the behavior for different types of user" (page 288)

• menu_item and pull_off_menu in the xdt3(XC) manual page

345

Configuring Desktop menus

Pop-up menus

346

Pop-up menus are defined using the same syntax as pull-down menus, and
are displayed by the popup command.

For example, a simple pop-up FooBar menu could be defined as follows:

menu: foobar_menu

menu_item: FooBar {} %11 menu title
dividing_line;

menu_item: Foa

fyi Foo

menu_item: Bar

fyi Bar

The accompanying icon_rules clause would resemble:

icon_rules

foobar IF
{

title=FooBar;
trigger_action: menu
{

popup foobar_menu

In the above example, foobar_menu refers to the menu clause of that name
already defined. The FooBar menu would appear when you hold down
mouse button 3 over the FooBar icon, which represents a file called foobar.

See also:

• "Pull-down menus" (page 345)

• icon_rules and popup in the xdt3(XC) manual page

Graphical Environment Guide

Defining menus

Disabling menu commands

A menu command can be disabled, to indicate to the user that it is not appli
cable in the current situation.

It is better to disable an inapplicable menu command than to allow the user to
choose it and then display an error dialog box.

To disable a menu command, include an enable_if clause in the menu_item
clause defining the command. This has the form:

enable_if { script }

In this example, script is a script that is executed when the menu is displayed.
If it returns a "true" status the command is enabled; otherwise it is disabled.

For example, the following menu command is only enabled if at least one icon
has been selected:

menu: DesktopMyMenu
{

title=MyCommandi
enable_if

sels=' (query selections' (query thread_info -i $thread_name(2)))
-gt $#sels 0

select_action

See also:

• enable_if and menu_item in the xdt3(XC) manual page

347

Configuring Desktop menus

Removing menus

348

To tum off a menu, execute a dynamic_rule command with an empty menu
clause for that menu.

See also:

• dynamic_rule in the xdt3(XC) manual page

Graphical Environment Guide

Chapter 25

Writing Deskshell commands

This chapter describes the ''Deskshell script language" that you use to
describe the actions you want to perform in rules. It assumes some familiarity
with shell programming.

Deskshell is a general-purpose language, with control constructs, constants
and variables, and built-in commands to perform standard actions. Deskshell
allows you to write powerful Desktop rules that will execute totally within
the Desktop, without the need to start up a separate shell. Using Deskshell,
operations such as gti and yni can be incorporated into rules without perfor
mance penalties, and with the added benefit that Desktop rules incorporating
Deskshell commands are completely portable across different UNIX installa
tions, since they avoid the ambiguities of the Bourne shell.

Specifically, this chapter discusses:

• Deskshell syntax (page 350)

• Deskshell operators (page 354)

• Deskshell control constructs (page 360)

• Deskshell function definitions (page 360)

• how Deskshell commands are executed (page 361)

See also:

• Appendix C, "Deskshell command summary" (page 415)

• deskshell(XC) manual page

• deskcommands(XC) manual page

349

Writing Deskshell commands

Deskshell syntax

The syntax of Deskshell is similar to the standard Bourne shell language, but
with a simplified syntax and more consistent semantics. In particular:

• the use of lists, instead of strings, for variable values avoids the need to
treat strings containing spaces in a special way

• substituted values are never re-interpreted, so special characters can be
included in variable values without problems

• there is only one string quoting character, simplifying the syntax

See also:

• "Quoting strings" (this page)

• "Comments" (page 351)

• "Wildcards" (page 351)

• "Using variables" (page 352)

• "Variable substitutions" (page 352)

• "Subsets" (page 353)

• "Function arguments" (page 353)

• "Initialization" (page 354)

Quoting strings

350

Strings that contain special characters or spaces should be quoted with the
single-quote character. For example, to display the text "Press return", you
could use the command:

echo 'Press return'

To include a single quote in quoted text it should be repeated, as in:

echo 'Don"t press return'

No substitution takes place within quoted strings.

The following characters are special, and cannot be included in a string unless
they are quoted:

space, tab, or newline

bar

single quote

Graphical Environment Guide

& ampersand

() parentheses

$ dollar sign

{} braces (curly brackets)

backquote

< less than

> greater than

circumflex

colon

semicolon

\ backslash

% percent

equals

hash

Deskshell syntax

The following characters are interpreted as wildcards unless they are in a
quoted string:

* asterisk

open bracket

? question mark

Comments

Within a script, comments may be included by preceding them with 0/011. All
characters to the end of the line are ignored. For backward compatibility with
previous versions of the Desktop, the "#" character can also be used, but only
within Deskshell scripts.

Wildcards

When a command is executed, any argument containing a wildcard is
expanded into a list of filenames matching the wildcard, or an empty list if
none match. The wildcard characters have the following meanings:

* any string except" /" or leading dot

? any single character except" /" or leading dot

351

Writing Deskshell commands

[chars] anyone of the characters in chars, so for example [xyz] matches
either x, y or z. The # / " symbol must not appear in the brackets.

[!chars] any single character except those in chars, # /" and leading dot. For
example [!xyz] matches any character other than x, y, z, / and lead
ing dot.

Using variables

In rule files, you can use variables to keep track of numbers and text strings. A
variable name can consist of any sequence of letters, digits, and, underscores
provided the first character is not a digit.

I
NOTE Variable names beginning with two underscores should be avoided,
as they are used in the standard rules. However, you can use names begin
ning with one underscore and then a letter or digit.

Variables do not have to be specially defined, and you can give them a value
using an equals sign. For example, the following might specify a counter
value for the subsequent repetition of a command:

count=10

I NOTE There must not be any space on either side of the = sign.

For maximum flexibility, variables can be set to a list of values. The list is
specified by putting all the elements of the list in brackets. So, for example, the
following could be used to make the variable editors equal to a list of the
filenames of all the editors on the system:

editors=(vi xedit ed)

Variables are local to an executing script unless prefixed with a II: ".

Variable substitutions

352

The value of a variable can be substituted into a script with:

$name

So, for example, $editors will have the value:

vi xedit ed

You can find the number of elements in a list with variable. For example:

elements=$#editors

sets elements to 113".

Graphical Environment Guide

Deskshell syntax

Note that:

var=()

sets var to a list with no elements, so $#var is "0", whereas:

var="

sets var to an empty string, so $#Var is "1 ".

Subsets

You can extract specific elements from a list by putting one or more element
numbers after the variable name in brackets. Using the example in "Variable
substitutions" (page 352):

$editors(2)

will have the value:

xedit

I NOTE There must not be any spaces between the variable name and the
opening bracket.

More than one subscript can be given. For example, the following:

days=(mon tue wed thur fri sat sun)
echo $days(3 1 3)

will produce:

wed mon wed

Subscripts that are out of range are ignored, so the same result is obtained
with:

echo $days(3 0 1 8 3)

The element numbers may come from another variable or any other construct,
so:

$days ($#days)

is permitted and has the value

sun

Function arguments

The special variable "*" holds the list of arguments to the current function.
For example, in a drop _in_action: drop" script, the II * " variable will contain a
list of the filenames of the icons that were dropped into the window.

353

Writing Deskshell commands

The number of icons dropped is given by $#*. Each of the individual elements
in # *" can be obtained with $*(1), $*(2), and so forth. For convenience, these
can be abbreviated to $1, $2, and so forth.

Initialization

When the desktop starts, the value of each UNIX environment variable is
copied into the Deskshell variable of the same name. These variables start
with a list of one string.

The variable path is set from the environment variable PATH, by splitting its
value at each colon. Thus, if the environment variable PATH has the value
#.:/bin" then path will be set to the two strings LL." and # Ibin".

All other variables are set to contain no strings.

Operators

354

The following operators are provided in Deskshell:

assignment

<, > and» redirection

L (backquote) substitution

A (circumflex) concatenation

pipeline

&&and II conditionals

∧ termination

.. list mark

I NOTE The operator precedence determines in which order multiple com
mands are evaluated.

Spaces may be included on either side of all of the above operators apart from
LL = " and LL A ", which must not have spaces on either side of them.

See also:

• "Assignment" (page 355)

• "Redirections" (page 355)

• "Command substitution" (page 356)

• "List substitution" (page 356)

• "Concatenation" (page 357)

Graphical Environment Guide

• "Command terminators" (page 357)

• "Pipelines" (page 358)

• "List mark" (page 358)

• "Conditionals" (page 359)

• deskshel1(XC) manual page for information on operator precedence

Assignment

The" =" operator assigns a value to a variable. For example:

count=lO

assigns "10" to count, and

fib=(l 1 2 3 5)

assigns the list "(11235)" to fib.

See also:

• "= " in the deskshel1(XC) manual page

Redirections

Operators

A redirection causes a UNIX file descriptor to be redirected to a different file.
The following options are available:

<filename the file is opened on descriptor 0, standard input, for reading
only; it must already exist

> filename the file is opened on descriptor 1, standard output, for writing,
and is truncated; it is created if necessary

»filename the file is opened on descriptor 1, standard output, for append
only; it is created if necessary

The following variants are available for each redirection. In each case " < " can
be replaced by" >" or"»".

< filename read from filename

<[number] filename read from filename on descriptor number

<[new=number] make new a duplicate of number

<[number:] close descriptor number

355

Writing Deskshell commands

For example:

for_info < $static_arg

displays the text from file $static_arg in a dialog box, and:

gti 'Enter name:' > name

saves the user's name in a file name.

See also:

• $static_arg in the deskshell(XC) manual page

Command substitution

Many Deskshell and UNIX commands perform an action and print a result.
You can trap the output of such a command, and use it in a Deskshell script,
with the '{ ... } construction.

The text output from the command is split into a list of strings at the character
specified in $ifs(l), or the characters space, tab or newline if ifs is unset.

For example:

size=' {ls -s $l}

assigns the string representing the size and name of the file $1 to the variable
size.

See also:

• I{ ••• } and $ifs(l) in the deskshell(XC) manual page

List substitution

356

Certain Deskshell commands generate text output. These may be used
directly, without requiring a separate process, using the form:

var=' (basename $list)

which sets var to a list of the basenames of the files in $list without requiring
another process to be run.

Functions can also generate text output for direct use using:

'(myfunction argl)

or

'myfunction

Graphical Environment Guide

Operators

Command and list substitutions may be nested to any depth.

See also:

• "Processing filenames in rules" (page 298) for information on basenames

Concatenation

Two words or lists can be concatenated, or joined together, using the 1/""

(circumflex or caret) character.

Lists can only be concatenated if they both contain the same number of ele
ments, or if one of them only contains one element or is empty, as illustrated
by the following examples:

a
w
w
(wxy)
(wxy)
(wxy)

b
x
(xy z)
(ab c)
()
(a b)

aAb

wx
(wxwywz)
(waxb yc)
(wxy)
illegal

I NOTE There should not be any spaces around the 1/"" character.

Several concatenations can be included in one expression, as in:

s.A(in proc out)A.main.A(c h s)

which evaluates to:

(s.in.main.c s.proc.main.h s.out.main.s)

Deskshell allows circumflexes to be omitted when the context makes it unam
biguous. For example, $file".c can be written as $file.c instead.

See also:

• II A " in the deskshell(XC) manual page

Command terminators

Each command in a script is terminated by 1/ ;" or 1/ &". If the command is ter
minated with 1/ & ", it is run in a separate thread in the background. Otherwise
it is run in the current thread.

357

Writing Deskshell commands

The " ;" can be omitted after the last command on a line.

See also:

• "Threads" (page 362)

• ";" and" & 1/ in the deskshell(XC) manual page

Pipelines

Two commands can be linked by a pipeline using the " I " operator. The two
commands will be executed in separate new threads, and the output of the
first command will become the input to the second command.

When a pipeline is executed, Deskshell waits for all the /I children" (commands
in the pipeline) to terminate. The individual statuses are converted to strings,
and these are all stored in the variable status, in the same order as the com
mands in the pipeline. For example, the pipeline true I false generates the
status "(0 1)".

The " I " can be followed by a construct to specify the output and input file
descriptors to be used, as in:

I [output=inputJ

In this case the brackets are part of the operator. If =input is omitted it
defaults to "0".

See also:

• /lThreads" (page 362)

• "I" and status in the deskshell(XC) manual page

List mark

358

Deskshell commands which take lists as arguments, for example list intersect
and list count, use the list mark /I :: " to separate each argument.

For example:

list count abc .. d e f g

gives the result:

(3 4)

Graphical Environment Guide

If the list mark" :: " was not included, for example in the form:

list count $listl $list2

Operators

the result would be a single value, as the values of the two variables would
combine to become a single list.

See also:

• list count and list intersect in the deskcommands(XC) manual page

Conditionals

The "&&" separator executes a command only if the previous command
returned a "true" status.

The " I I " separator executes a command only if the previous command
returned a "false" status. Thus:

This example:
a lib
a&&b
a&&b II c

Can also be written:
if a; else b; fi
if a; then b; fi
if if a; then b; fi else c; fi

After any of the separators" & ", " I ", " I I ", or "&&", a newline is ignored.
Thus the last example above can be written:

a &&
b II
c

The operators" I ", "&", ";", ":: ", "&&", and " I I " can also be preceded or
followed by spaces and tabs.

See also:

• /I && 11 and /I I I 11 in the deskshel1(XC) manual page

359

Writing Deskshell commands

Control constructs

Deskshell provides the following control constructs, which perform similar
functions to the corresponding commands in other languages such as C or
Pascal:

for executes a script for each value of a list

while executes a script while a condition is true

until executes a script until a condition becomes true

if executes a script depending on the value of a condition

case executes a script depending on the value of a variable

See also:

• deskshell(XC) manual page

Function definitions

360

Functions can be defined to perform frequently-needed sequences of com
mands. The syntax is:

function name { script }

which assigns name as the name of script.

The script is not evaluated at this point, though it will be parsed and checked
for syntax errors.

The assignment can be canceled with:

function natne { }

The list of arguments to the function is passed to the function in the variable
1/*"

A function can return a result, which can be used with the '() syntax. For
example:

function make day
{

return $*"'day'

defines a function to append' day' to each of its arguments. Thus:

A=Sun
B=' (makeday $A)

sets $B to IIISunday'''.

Graphical Environment Guide

How Deskshell commands are executed

Status

When a command is executed, it generates a status (a numerical value
between 0 and 1023), indicating the results of executing the command. That
status is converted to a string and stored in the variable status. When a pipe
line is executed, the individual statuses are collected and the strings all stored
in the variable status, in the same order as the commands in the pipeline.

A status value of zero is taken to mean L1true", and a non-zero value to mean
#false".

The value of status is used implicitly by the following commands:

• if ... then ... else ... fi

• while ... do ... done

• until ... do ... done

• #&&"

For example, you can test whether a user pressed Cancel in a gti dialog box as
follows:

file=' (gti 'Enter filename:')
if -ne $status 0; then exit; fi

See also:

• status and II &&" in the deskshell(XC) manual page

• gti in the deskcommands(XC) manual page

How Oeskshell commands are executed

This section describes how Desktop commands are executed within threads,
to enable different actions to be processed concurrently. It explains how each
thread inherits its context from the thread that invokes it, and explains how
you can pass values between threads using global variables.

See also:

• IIThreads" (page 362)

• liThe state of threads" (page 362)

• IILocal variables" (page 363)

• IIGlobal variables" (page 364)

361

Writing Oeskshel/ commands

• "Variable overriding" (page 364)

• "How environments are inherited" (page 365)

• "System thread" (page 365)

• "Window threads" (page 366)

• "Background threads" (page 366)

• "Pipelines" (page 367)

• "Executing actions within the same thread" (page 367)

• "Signals" (page 368)

• "Standard signals" (page 369)

Threads

A "thread" is an instance of a Deskshell script being executed. When the Desk
top is running, there is always at least one thread being executed - the "sys
tem thread".

A new thread is created in the following situations:

• for each desktop window

• for each directory window

• for each Treeview window

• when the user triggers an icon

• when a script executes a command in the background, using the "&"
operator

• when a script performs an actions_of, drop_in_actions_of, or
menu_actions_of command

• when a pipeline is executed

See also:

• actions_of, drop_in_actions_of, and menu_actions_of in the deskcommands{XC)
manual page

The state of threads

362

Threads can be in one of three different states:

executing

suspended

commands within the thread are being executed in sequence

system and window threads can be suspended until a specified
condition is satisfied, or the thread receives a signal terminating
it

Graphical Environment Guide

waiting

See also:

How Deskshell commands are executed

the thread is waiting for a program to run. While waiting, it can
not receive any signals until the thread is unblocked. A thread is
also blocked by a sleep command, by internal commands such
as for_info and gti that wait for the user, and by running a pipe
line.

• for_info, gti, and sleep in the deskcommands(XC) manual page

Local variables

Each thread can use local variables, which are distinct from the local variables
in other threads. For example, consider the following icon_rules clause:

icon_rules

demo IF
{

trigger_action: activate
{

xs=x
until == $xs xxxxxx
do

for_info 'In activate: ,A$XS
xs=xA$xs

done

trigger_action: alt_activate
{

xs=x
until == $xs xxxxxx
do

for_info 'In alt_activate: ,A$XS
xs=xA$xs

done

H the user double-clicks on the demo icon with mouse button 1 and then
again with mouse button 2, two threads will be created to execute the com
mands in the two trigger_action clauses. In whatever order the user presses
OK on each dialog, the two instances of the local variable xs are kept separate,
and changes to its value in one thread do not affect its value in the other
thread.

363

Writing Deskshell commands

See also:

• "Global variables" (this page)

• icon_rules and triggecaction in the xdt3(xC) manual page

Global variables

Global variables can be accessed by all threads in a Desktop session. They are
created by prefixing the variable name with " : ".

For example:

:count=10

creates a global variable count with the value J'
110".

Global variables can be accessed with the constructs $:var, $#:var, and so
forth. Global variables are distinct from local variables with the same name,
so you can have:

count=12

and

:count=10

as separate variables. However, $var will give the value of the global variable
var if no local variable has been defined.

See also:

• "Local variables" (page 363)

Variable overriding

364

A local variable can be given a value for the duration of one command by
prefixing the command with the variable assignment. For example:

var=2
var=l for_info 'var=' $var
for_info 'var=' $var

will first display the value of var as "I", and then as "2".

If the command is a function call, then the new value applies for the duration
of the function call, after which the variable reverts to its previous value. It
makes no difference whether or not the function also alters the value.

Graphical Environment Guide

How Deskshell commands are executed

How environments are inherited

The parent of each thread, (Le. the thread that created it), defines the environ
ment that it inherits. The environment consists of the local variables and func
tions of the parent thread, and the name of the current directory. The new
thread can also create its own set of local variables and functions, and its own
current directory.

Each thread has a name, and when it is created, its name is inserted at the
front of the local variable thread_name. Thus, within any thread,
$thread_name(l) is the name of the thread, $thread_name(2) the name of the
parent thread, and so forth. The name of a thread can be queried using query
thread_info.

See also:

• thread_name in the deskshel1(XC) manual page

• query thread_info in the deskcommands(XC) manual page

System thread

When the Desktop is first run, the system thread is created. The name of this
thread is the empty string.

The system thread executes the following sequence of commands:

• initial actions in system rule file

• initial actions in user rule file

• suspend

• final actions in user rule file

• final actions in system rule files

The initial and final actions of dynamic rules are run by the system thread, as
if they were signals.

The system thread stays in the suspended state until the Desktop shuts down,
using the die command.

See also:

• "Signals" (page 368)

• die in the deskcommands(XC) manual page

365

Writing Deskshell commands

Window threads

Each desktop, directory or treeview window has an associated thread called
the "window thread". These are always children of the system thread. Win
dow thread names end with the name of the desktop or directory window. To
get the window name, use the query thread_info command.

Each window thread executes the following sequence of commands:

• initial actions in directory or desktop rule file

• suspend

• final actions in directory or desktop rule file

The window thread is suspended until the window is closed.

All other threads are children of the thread that created them. For example,
double-clicking on an icon in a desktop window creates a new thread which is
a child of the desktop window thread.

See also:

• query thread_info in the deskcommands(XC) manual page

Background threads

366

A thread can also be created by running a command in the background with
the " & " operator. In this case the thread is a child of the thread that created it.

For example, the following illustration shows the inheritance tree for a thread
created when the user double-clicks on a clock icon in the home directory
window with the following icon_rules clause:

icon_rules

clock
{

trigger_action: activate
{

for_info hello &
xc lock

Thread Tl will create the new thread T2. This will display the for_info dialog
box. Thread Tl will then run xclock, and will stay blocked until the xclock
window is closed. Thread Tl will then terminate.

Graphical Environment Guide

How Deskshell commands are executed

Thread T2 will block until the user closes the for_info dialog by clicking on
the OK button.

Several commands may be run in the background by enclosing them in "{ }"
and putting ii &" after the closing bracket, as in:

string='Hello'
for_info $string
&

In the parent thread the name of the child thread is placed in the local variable
last_background_action and the parent does not wait for the child to ter
minate.

See also:

• icon_rules in the xdt3(XC) manual page

• focinfo in the deskcommands(XC) manual page

• "&"," { } ", and lasCbackground_action in the deskshell(XC) manual page

Pipelines

The pipeline operator, " I ", creates two child threads from the parent thread,
and the parent is blocked until both children have finished executing.

For example, the command:

sort < F I uniq > F2

sorts records from the file F and sends the output to the uniq command,
which then removes duplicate lines, and sends the output to a file F2.

See also:

• pipeline operator (" I ") in the deskshell(XC) manual page

Executing actions within the same thread

The do_actions_of, do_drop_in_actions_of, do_menu_actions_of, and source
commands execute the specified actions within the same thread, rather than
in a separate thread.

367

Writing Deskshell commands

You might want to do this to keep control over the order in which the actions
are executed. For example, the following script sends the example myprint
trigger, below, to a sequence of icons in the variable $*:

for i in $*
do

do_actions_of myprint $i
done

Because a do_actions_o£ command is used, each myprint action executes and
completes before the next one is started.

NOTE Because the action commands are executed in the same thread,
changing a local variable in the trigger action for myprint will affect local
variables in the current thread. Generally this is not a problem because only
loop variables will be used in both scripts, and these are protected.

See also:

• do_actions_of, do_drop_in_actions_of, do_menu_actions_of, and source in the
deskcommands(XC) manual page

Signals

368

Signals provide a way of passing messages between two threads. Any thread
can send a signal to any other thread using the kill command.

Signal handlers are defined in exactly the same way as functions, with names
that must begin with sig.

When a thread receives a signal, the function with the same name as the sig
nal is called, interrupting any other action that the thread is carrying out.
When the function returns, the previous action continues. If no function has
been defined, or inherited from parent threads, the signal is ignored.

Graphical Environment Guide

How Deskshel/ commands are executed

For example, the following program shows how a signal can be used to give
the user the option of canceling a lengthy compress operation:

function sigstop
{

&

stop=true

if yni Cancel?
then kill sigstop $threadnarne(2)
fi

stop=false
for i in $dynarnic_args
do

compress $i
if $stop then exit fi

done

This command compresses icons that are dropped onto a hypothetical
compress icon. Before compressing any of the icons, it puts up a yni dialog
box in the background to give the user the option of canceling the command
at any time. If the user chooses Yes, the background thread sends the specially
defined signal sigstop to its parent thread, $thread_name (2), and this has the
effect of setting the variable stop to L/true". The next time the if $stop ... line is
read, the operation will be canceled.

See also:

• $thread_name(2) in the deskshell(XC) manual page

• kill and yni in the deskcommands(XC) manual page

Standard signals

A number of standard signals are defined in the system thread, and these can
be used in other threads for particular functions. The default signal is sigint,
and this is used if no signal name is given in the kill command. By default,
this displays a for_info dialog box and then terminates the thread with an exit
command.

Threads that need to exit in a particular way can redefine sigint. The example
in LlSignals" (page 368) could also have been written to use sigint rather than
the user defined signal sigstop.

369

Writing Deskshell commands

370

The sigexit signal is sent to the thread when it terminates. Normally no
sigexit function is defined, so this has no action and the thread terminates
immediately. However, you can define a sigexit function if you need to per
form some cleaning up when the thread exits, such as deleting temporary
files.

The signal sigkill causes a thread to terminate immediately, without calling
the sigexit or sigkill functions.

See also:

• exit in the deskshel1(XC) manual page

• for_info and kill in the deskcommands(XC) manual page

Graphical Environment Guide

Chapter 26

Mapping mouse triggers for the Desktop

The actions that are taken in response to a mouse action (clicking, dragging,
or holding one or more mouse buttons) are defined by associating them with a
trigger name instead of a specific physical mouse button. For example, the
action "select an icon" is associated with the trigger name Ilactivate" instead of
being directly defined as the mouse action "double-click mouse button 1."

This mapping of mouse actions with trigger names allows you to define
action sequences for any type of mouse containing one to five mouse buttons.

NOTE Although the sea OpenServer system offers this flexibility in map
ping triggers, you are advised against modifying this mapping indiscrim
inately. The trigger mapping is optimized to the particular mouse supplied
with your system. Make changes with caution because any change you
make has possible effects on other trigger functionality. Furthermore, the
mouse trigger mappings are currently defined so that they are aSF /Motif
compliant for three-button mice. Altering these trigger mappings will alter
this compliance.

There are three resources that define mouse actions for the Desktop:
triggers.maxUpTime, triggers.threshol dD own Time, and
triggers.maxMotion. These resources control the time (milliseconds) that a
mouse button can be up before a trigger ends (used to judge whether two but
ton presses are a double-click or two independent clicks), the time (mil
liseconds) that a mouse button can be held before it is considered a hold
instead of a click, and the distance (pixels) that the mouse pointer can move
before a mouse button press is considered a drag, respectively. For more in
formation on these resources, see Chapter 10, IIConfiguring mouse behavior"
(page 195).

371

Mapping mouse triggers for the Desktop

See also:

• "Modifying the mouse trigger mappings" (this page)

Modifying the mouse trigger mappings

372

To change the mouse trigger mapping, perform the following steps. For more
information on each of these steps, see the sections immediately following
this procedure.

1. Open the desired resource file for editing:

• /usr/lih/Xll/app-defaults/XDesktop3 for system-wide changes

• $HOME/XDesktop3 for individual changes

2. Redefine the trigger mapping, using this syntax:

trigger [: modifiers] [/ context] = {trigger_name I action}

where modifiers can be c, s, 1, or ml - m5 and context can be b, p, or t.
When you are finished, save your changes and exit the resource file.

3. Restart the Desktop.

Step 1: Editing the resource file
You can change the default trigger mappings so that all users on your system
use the new definitions, or you can simply change the mappings for an indi
vidual user.

NOTE Changing the trigger mappings should not be taken lightly. The
trigger mapping is optimized to the particular mouse supplied with your
system. Furthermore, the mouse trigger mappings are currently defined so
that they are aSF /Motif compliant. Altering these trigger mappings will
alter this compliance.

The default trigger mappings are defined in /usr/lih/Xll/app
defaults/XDesktop3. You must have root privileges to edit this file. It is good
practice to make a backup copy of the file before making changes to it.

Individual users can also change the mouse trigger mappings for their own
use by copying the trigger mapping section from /usr/lih/Xll/app
defaults/XDesktop3 to a file called $HOME/XDesktop3. This file is used to
specify personal resource specifications that are used by the Desktop. Unlike
the $HOME/.Xdefaults-hostname file (used for many resource specifications),
which is specific to a given host machine, the Desktop consults
$HOME/XDesktop3 on any host.

Graphical Environment Guide

Modifying the mouse trigger mappings

NOTE The XDesktop3 file does not exist in the user's home directory by
default. If this file is not currently present, you must create it before you can
redefine the trigger mappings.

If you create this file for a user from the root account, you must assign the
file the correct ownership permissions. Run the chown command to assign
the correct owner and the chgrp command to assign the correct group to the
XDesktop3 file. If you created this file yourself, these steps are unnecessary.

When the Desktop starts, it checks to see if an XDesktop3 file exists in $HOME.
If such a file does exist, the resource values specified in the user resource file
take precedence over any values assigned to the same resource for the system,
or in the resource database.

See also:

• "Methods for specifying resources" (page 87) for a more detailed explanation of the
resource files mentioned above

Step 2: Redefining the trigger mapping
Type the new trigger mapping using the syntax described below. The entry
must begin with the resource *triggers*mapping and each trigger string must
be followed by a semicolon, 1/ ; ". The mapping may span multiple lines if all
but the last line ends with a backslash, "\ ".

The syntax for a trigger mapping string is:

trigger [: modifiers] [/ context] = {trigger_name I action}

where modifiers can be c, s, 1, or ml - m5 and context can be b, p, or t.

Here are the meanings of the various flags and the other arguments:

• The trigger component of a trigger mapping string defines a mouse action
by specifying one to five comma-separated steps (button presses). Each
step can include presses of one or more mouse buttons.

For example, a double-click of mouse button 1 is represented by:

1,1

A chording of mouse buttons 1 and 3 (pressing both buttons simultane
ously) is represented by:

13

When a step includes more than one button, the step ends when all buttons
are released; the order in which the buttons are pressed does not matter.

If a trigger contains more than five steps, it is ignored.

373

Mapping mouse triggers for the Desktop

374

• The modifiers component of a trigger mapping string, if any, defines
dependencies the trigger has on the modifier keys (CtrI), (Shift), and
(CapsLock).

The modifiers are:

Character Meaning
c (CtrI) key
s (Shift) key
I (CapsLock) key

ml-m5 system-defined modifiers

If a modifier key is not specified, it is ignored unless the modifiers list is
preceded by one of the following:

Character Meaning
specified modifier keys must not be pressed
specified modifier keys must be pressed and other modifier
keys may not be pressed

For example, specify a press of mouse button 2 in which the (Shift) and
(CapsLock) keys may not be pressed with this modifier:

2:-51

Specify a press of mouse button 1 in which the (CtrI) key must be pressed
and no other modifier key may be pressed with this modifier:

1: !c

• The context component of a trigger mapping string, if any, defines where
the mouse pointer must be located for the trigger to be recognized.

The context specifications are:

Character
b
P
t

Meaning
directory, desktop, or treeview window background
icon picture
icon title (name)

For example, specify a press of mouse button 2 on an icon picture and title
with this context:

2/pt

• The trigger _name is one of the two component choices on the right side of a
trigger mapping string. A trigger _name can refer to a trigger in rule files
(trigger_action and drop_in_action clauses) and in Deskshell commands
(actions_of and drop_in_actions_of commands).

Graphical Environment Guide

Modifying the mouse trigger mappings

For more information on the trigger_action and drop_in_action clauses,
see the xdt3(XC) manual page. For more information on using Deskshell
commands, see Chapter 25, #Writing Deskshell commands" (page 349).

The trigger_name can be one of the following one-letter identifiers, which
specify the type of button press in the trigger:

Character Meaning
s static trigger (implies a single- or double-click)
d dynamic trigger (implies drag)
h hold trigger

The one-letter identifier can be followed by a number from 1 to 3 to
represent the corresponding mouse button, or by a space and a name. Any
name can be assigned except a single letter followed by numbers.

For example, this trigger _name assigns the identifier h3 when button 3 is
pressed on an icon picture or title (name):

3/pt=h3

This trigger _name assigns the name deselect to a press of mouse button 1
on a desktop or directory window background:

l/b=s deselect

• The action is one of the two component choices on the right side of a
trigger mapping string. Use an action when you want to associate a speci
fic action directly with a trigger.

An action includes a one-letter identifier to specify the type of action:

Character Meaning
m menu
r rename
s selection

Menu actions

Use a menu action if you want a menu to be displayed when a hold trigger
occurs. Specify a menu action with m menuname.

For example, this action displays the Desktop Help menu, defined by the
#DesktopHelpMenu" rule, when a hold trigger occurs:

m DesktopHelpMenu

375

Mapping mouse triggers for the Desktop

376

Rename actions

Use a rename action to invoke a rename command. A rename action takes no
argument, but the trigger must occur on an icon and the last step must be a
click:

r

Selection actions

Use a selection action to select one or more icons. If the pointer is in a direc
tory window, the main Desktop, or another desktop window, and not on an
icon, the action affects all icons in the window.

Specify the type of selection using:

Sequence
!s or Irs
+s or +rs
-s or -rs
-s or -rs

Meaning
select icon(s) and unselect any previous selections
select icons(s) and add to previous selection list
unselect icon(s) from previous selection list
toggle select/unselect

Use the rs sequences to specify that the icon selections are to be made with a
rectangle that the user drags from the point of origin to surround the selected
icons.

For example, this action specification lets the user select one or more icons
with a rubber-band selection rectangle, then unselects any previously selected
icons:

1/b:bpt= !rs

See also:

• Chapter 19, "Defining Desktop triggers" (page 309) for a summary of the names
and meanings of the currently defined triggers

Step 3: Restarting the Desktop
Once you have made the desired resource changes, you need to restart the
Desktop so the newly defined values will be read. Select Restart Desktop Ses
sion from the main Desktop File menu. You are prompted to confirm that you
want to restart the Desktop by a dialog box; click on Yes.

The Desktop starts again and reads your new resource values.

Graphical Environment Guide

Appendix A

OSF/Motij window manager resources

Because the window manager is a major component of the sea OpenServer
Graphical Environment, there are a number of window manager resources
that you may be interested in using. This appendix describes these resources.

NOTE The aSF /Motif resources discussed here are relevant to the sea
Panner window manager in both pmwm and mwm modes. However, some
of the resources have different default values in the different modes. Where
this is true, both values are described. (See "Selecting between sea Panner
and aSF /Motif modes" (page 220) for information on the different sea
Panner window manager modes.)

The pmwm mode uses a number of resources that are not applicable to
mwm mode. These resources are described in "Setting sea Panner
resources" in Using sea Panner.

The window manager uses three categories of resources:

• Specific appearance and behavior resources: These resources specify
overall window manager appearance and behavior, such as keyboard and
mouse behavior, icon size and placement, focus policies, and window
frame size and shape. These resources do not control individual window
manager components such as color or font style.

The syntax for defining this category of resource is:

Pmwm *resource_name: resource_value

or

Mwm*resource_name: resource_value

• Component appearance resources: These resources control the appear
ance of window frames, window manager menus, and icons. Pixmaps,
colors, and fonts are the most commonly configured component appear
ance resources.

377

OSFIMotif window manager resources

378

The syntax for defining this category of resource is:

Pmwm [*component] *resource_name: resource_value

or

Mwm[*component]*resource_name: resource_value

The component argument can take one of the following values:

client indicates the window frames of all clients

feedback indicates the dialog boxes displayed by the window manager

icon refers to the icon box

menu refers to the menus displayed by the window manager

You can omit the component argument when specifying a component
appearance resource. If you do, the resource specification is defined for all
of the window manager components.

To configure the title area of a client window frame specifically, use this
syntax:

Pmwm*client*title*resource_name: resource_value

or

Mwm*client*title*resource_name: resource_value

To configure the appearance of all window manager menus specifically,
use this syntax:

Pmwm*menu *menuname*resource_name: resource_value

or

Mwm*menu *menuname*resource_name: resource_value

• Client-specific resources: These resources control the appearance and
behavior of the windows that are associated with a client or a class of
clients. You can use these resources to customize the behavior of the win
dow manager for individual clients.

The syntax for defining this category of resource is:

Pmwm *client*resource_name: resource_value

or

Mwm *client*resource_name: resource_value

Here client identifies the client to which the resource applies. You can use
either the client's binary name or class name. resource_name is the actual
window manager resource variable you want to specify. Note that you can
only use a client-specific window manager resource variable for resource
specifications of this category.

Graphical Environment Guide

The following sections describe the resources that you can use to customize
the window manager in both pmwm and mwm modes. These resources are
listed in reference tables, which organize the resources according to the aspect
of the window manager that they configure. Following each reference table,
in alphabetical order, is a description of each of the resources mentioned in
the table. These description sections indicate if a resource belongs to the spe
cific appearance and behavior category, the component appearance category,
or the client-specific category.

• #Resources for configuring window focus policies" (this page)

• #Resource for specifying window manager fonts" (page 382)

• #Resources for coloring windows, icons, menus, and mattes" (page 383)

• #Resources for shading windows, icons, menus, and mattes" (page 386)

• #Resources for window decorations" (page 389)

• #Resources for controlling window size and position" (page 391)

• #Resources for configuring window manager icons" (page 395)

• #Resources for configuring the icon box" (page 397)

• #Other resources for controlling windows" (page 399)

Resources for configuring window focus policies

The following resources control colormap and keyboard input focus policies:

Table A-1 Focus policy resources

Name Class Value Type Default
autoKeyFocus AutoKeyFocus true/false true
autoRaiseDelay AutoRaiseDelay milliseconds 500
colormapFocusPolicy ColormapFocusPolicy string keyboard
deiconifyKeyFocus DeiconifyKeyFocus true/false true
enforceKeyFocus EnforceKeyFocus true/false true
execshell ExecShell string null
focusAutoRaise FocusAutoRaise true/false true
keyboardFocusPolicy KeyboardFocusPolicy string explicit
passButtons PassButtons true/false false
passSelectButton PassSelectButton true/false true
raiseKeyFocus RaiseKeyFocus true/false false
startupKeyFocus StartupKeyFocus true/false true
xGranularity XGranularity pixels 0
yGranularity YGranularity pixels 0

379

OSFIMotif window manager resources

380

These resources are described in more detail below:

autoKeyFocus (Class: AutoKeyFocus)
This resource applies only when the keyboardFocusPolicy resource is set to
"explicit." This resource controls what happens to the focus when the current
active window is iconified. If the autoKeyFocus resource is "true," the focus
automatically goes to the window that previously had the focus. (This is a
specific appearance and behavior resource.)

autoRaiseDelay (Class: AutoRaiseDelay)
If the focusAutoRaise resource is "true" and the keyboardFocusPolicy
resource is set to "pointer," the autoRaiseDelay resource is read. This
resource specifies the number of milliseconds the window manager should
wait before raising a window (bringing the resource to the top of the stack of
windows) once the window has received the input focus. The default is 500
milliseconds. (This is a specific appearance and behavior resource.)

colormapFocusPolicy (Class: ColormapFocusPolicy)
This resource controls the colormap focus for the window whose colormap is
currently installed and used for displaying everything in a server. The color
mapFocusPolicy resource can take one of the following three values:

• "keyboard" means the window with input focus has colormap focus.

• "pointer" means the window with the pointer has the colormap focus.

• "explicit" means that the colormap has to be explicitly selected for a win
dow.

To allow explicit selection of a colormap, assign a button or key to the func
tion named f.focus_color. (See Chapter 12, "Customizing the window
manager" (page 219) for more information on the f.focus_color function.) The
default value of the colormapFocusPolicy resource is "keyboard." (This is a
specific appearance and behavior resource.)

deiconifyKeyFocus (Class: DeiconifyKeyFocus)
If this resource is set to "true" and keyboardFocusPolicy is "explicit," a win
dow receives input focus when it is deiconified, or converted to normal size
from an icon. The default value is "true." (This is a specific appearance and
behavior resource.)

enforceKeyFocus (Class: EnforceKeyFocus)
If this resource is "true," the window manager sets the input focus to a
selected window even if it is a globally active window (a window that can be
operated without setting focus to it.) If the resource is "false," input focus is
not set to any globally active window (such as a scroll bar). This resource is
"true" by default. (This is a specific appearance and behavior resource.)

Graphical Environment Guide

execshell (Class: ExecShell)
This resource indicates the shell that the window manager uses when it exe
cutes a new client. The possible shells values are" /bin/.sh", "/bin/.ksh", and
"/bin/.csh". The default value is "null", which specifies to execute a client
from the user's home shell. (This is a specific appearance and behavior
resource.)

focusAutoRaise (Class: FocusAutoRaise)
If this resource is "true," the window manager raises a window to the top of
the stacking order when the window receives the input focus. The default
value depends on the keyboardFocusPolicy resource, but in most cases is
"true". If keyboardFocusPolicy is "explicit," focusAutoRaise is set to "true";
otherwise, focusAutoRaise is toggled to "false." However, you can assign a
"true" or "false" value to this resource yourself, regardless of the value key
boardFocusPolicy is using. (This is a client-specific resource.)

keyboardFocusPolicy (Class: KeyboardFocusPolicy)
This resource specifies how the window manager should assign the input
focus to a window, so the window with the input focus receives your key
strokes. This resource can take one of two values:

• "explicit" means you indicate the focus window by pressing the first mouse
button with the pointer in the window.

• "pointer" means the keyboard focus follows the mouse pointer.

The default setting for keyboardFocusPolicy is "explicit." (This is a specific
appearance and behavior resource.)

passButtons (Class: Pass Buttons)
If this resource is "true," the window manager passes button-press events to
the client, even after the events are used for some window manager functions.
The default value is "false." The window manager does not forward button
press events that it uses for window management functions. (This is a specif
ic appearance and behavior resource.)

passSelectButton (Class: PassSelectButton)
This resource indicates whether a button-press that assigns input focus to a
window is passed as an event to that window. By default this resource is
"true," which means that the window manager passes the button-press event
to the window after giving the keyboard focus to that window. This resource
applies only when keyboardFocusPolicy is "explicit," because this is the only
case that requires you to transfer input focus by clicking on a window. (This
is a specific appearance and behavior resource.)

raiseKeyFocus (Class: RaiseKeyFocus)
This resource is available only when the keyboardFocusPolicy resource is set
to "explicit." When this resource is "true," it specifies that a window raised by
the f.normalize_and_raise function also receives the input focus. The default
value is "false." (This is a specific appearance and behavior resource.)

381

OSFIMotif window manager resources

starlupKeyFocus (Class: StartupKeyFocus)
If this resource is "true" and keyboardFocusPolicy is set to "explicit," the win
dow manager transfers input focus to a window when it is mapped. This
resource is "true" by default. (This is a specific appearance and behavior
resource.)

xGranularity (Class: XGranularity)
This resource indicates where your window will be redrawn when you move
the sides of it to a non-standard location on the background. This feature
improves the redraw rate of your window. The new location is specified as a
value (x) that represents the number of horizontal pixels that comprise an
interval between standard redraw locations. For example, if you move your
window to horizontal pixel number 15 and the xGranularity resource is set to
"9," the window is redrawn at pixel number 18, the nearest location that is a
multiple of 9. The default value is "0". (This is a specific appearance and
behavior resource.)

yGranularity (Class: YGranularity)
This resource indicates where your window will be redrawn when you move
either the top or bottom to a non-standard location on the background. This
feature improves the redraw rate of your window. The new location is
specified as a value (y) that represents the number of vertical pixels that
comprise an interval between standard redraw locations. For example, if you
move your window to vertical pixel number 7 and the xGranularity resource
is set to "3," the window is redrawn at pixel number 6, the nearest location
that is a multiple of 3. The default value is "0". (This is a specific appearance
and behavior resource.)

Resource for specifying window manager fonts

382

The fontList resource specifies the fonts that are used in all window manager
decorations. The class for the fontList resource is FontList.

When specifying this resource, use the full font name, font name wildcards, or
a font alias for the resource value. The default is the "-*-helvetica-medium-r
normal--12-*-*-*-*-*-iso8859-1" font. (See Chapter 7, "Changing fonts" (page
125) for more information on how to specify font resources.)

This resource can be used to specify lists of fonts, to accommodate the possi
bility that some systems may contain a set of fonts, while other systems con
tain a different set. If you list multiple fonts, they must be separated by white
space.

Graphical Environment Guide

Resources for coloring windows, icons, menus, and mattes

The following resources control the colors that are used in active and inactive
window frames, icon images, menus, and mattes:

Table A-2 Color resources

Value
Name Class type Default

Windows, icons, and menus

activeBackground Background color scoActiveBackground
activeBottomShadowColor Foreground color black
activeF oreground Foreground color scoActiveF oreground
activeTopShadowColor Background color scoActiveTopShadow
background Background color scoBackground
bottomShadowColor Foreground color black
foreground Foreground color scoForeground
topShadowColor Background color scoTop Sha dow

Mattes

matteBackground Background color value of *background
matteBottomShadowColor Foreground color black
matteForeground Foreground color value of *foreground
matteTopShadowColor Background color scoBackground
matteWidth MatteWidth pixels 0

Icon images

iconImageBackground Background color value of *background
iconImageBottomShadowColor Foreground color black
iconImageForeground Foreground color value of *foreground
iconImageTopShadowColor Background color value of *topShadowColor

NOTE Most of these color resources specify a palette resource variable,
instead of a specific color. For example, the activeForeground resource
specifies a value of "scoActiveForeground." These palette resource vari
ables are replaced with a color value, depending on the color choices you
make with the scocolor client. See Chapter 6, "Changing colors" (page 99)
for more information.

The resources listed in Table A-2, "Color resources" (this page) are described
in more detail below:

activeBackground (Class: Background)
This resource specifies the color of the active window manager window
frame. The default value is "scoActiveBackground." (This is a component
appearance resource.)

383

OSFIMotif window manager resources

384

activeBottomShadowColor (Class: Foreground)
This resource specifies the color of the lower and right bevels of the active
window frame. The default value is "black." (This is a component appearance
resource.)

activeForeground (Class: Foreground)
This resource specifies the color of text in the active window frame. The
default value is "scoActiveForeground." (This is a component appearance
resource.)

activeTopShadowColor (Class: Background)
This resource specifies the color of the upper and left bevels of the active win
dow frame. The default value is "scoActiveTopShadow." (This is a com
ponent appearance resource.)

background (Class: Background)
This resource specifies the background color used in all components of the
window manager, particularly the background of windows. The default
value is "scoBackground." (This is a component appearance resource.)

bottomShadowColor (Class: Foreground)
This resource specifies the color of the lower and right bevels in all window
frames. The default value is ''black.'' (This is a component appearance
resource.)

foreground (Class: Foreground)
This resource specifies the color of text used in all components of the window
manager, particularly in windows. The default value is "scoForeground."
(This is a component appearance resource.)

iconlmageBackground (Class: Background)
This resource specifies the background color for the window manager icon
image. The default value is the color specified by the *background or
*icon*background window manager resources. (This is a client-specific
resource.)

iconlmageBottomShadowColor (Class: Foreground)
This resource specifies the color used to create the bottom shadow of the icon
image. The default value is ''black.'' (This is a client-specific resource.)

iconlmageForeground (Class: Foreground)
This resource specifies the foreground color of the icon image. The default
value is the color specified by the *foreground or *icon*foreground window
manager resources. (This is a client-specific resource.)

Graphical Environment Guide

iconlmageTopShadowColor (Class: Background)
This resource specifies the color used to create the top shadow of the icon
image. The default value is the color specified by the *topShadowColor win
dow manager resource. (This is a client-specific resource.)

maUeBackground (Class: Background)
This resource specifies the background color of the matte. The matte is a
three-dimensional border between the client's window and the window frame
added by the window manager. This resource is used only if matteWidth is
greater than zero. The default value is the color specified by the *background
or *client*background window manager resources. (This is a client-specific
resource.)

maUeBoUomShadowColor (Class: Foreground)
This resource specifies the color used to create the bottom shadow of the
matte. This resource is used only if maUeWidth is greater than zero. The
default value is ~'black." (This is a client-specific resource.)

maUeForeground (Class: Foreground)
This resource specifies the foreground color of the matte. This resource is
used only if maUeWidth is greater than zero. The default value is the color
specified by the *foreground or *client*foreground window manager
resources. (This is a client-specific resource.)

maUeTopShadowColor (Class: Background)
This resource specifies the color used to create the top shadow of the matte.
This resource is used only if maUeWidth is greater than zero. The default
value is the color specified by the *topShadowColor window manager
resource. (This is a client-specific resource.)

maUeWidth (Class: MatteWidth)
This resource specifies the width of the matte, in pixels. The default value is
zero; no matte appears by default. (This is a client-specific resource.)

topShadowColor (Class: Background)
This resource specifies the color of the top and left bevels in all window
frames. The default value is "scoTopShadow." (This is a component appear
ance resource.)

385

OSFIMotif window manager resources

Resources for shading windows, icons, menus, and mattes

The following resources control the shading elements of windows, icons,
menus, mattes, and icon images. Shading resources are most valuable when
used with a monochrome display.

Table A-3 Shading resources

Name

Windows, icons, and menus

activeBackgroundPixmap

activeBottomShadowPixmap

activeTopShadow Pixmap

backgroundPixmap

bottomShadowPixmap

topShadowPixmap

clean Text

Mattes

matteBottomShadowPixmap

matteTopShadowPixmap

Icon images

iconImageBottomShadowPixmap

iconImageTopShadowPixmap

Class

BackgroundPixmap

BottomShadowPixmap

TopShadowPixmap

BackgroundPixmap

BottomShadowPixmap

TopShadowPixmap

Clean Text

BottomShadowPixmap

TopShadowPixmap

BottomShadowPixmap

TopShadowPixmap

Value type Default

pixmap varies t

pixmap varies t

pixmap varies t

pixmap varies t

pixmap varies t

pixmap varies t

true/false true

pixmap *bottomShadowPixmap

pixmap *topShadowPixmap

pixmap *icon*bottomShadowPixmap

pixmap *icon*topShadowPixmap

t The default values for these resources are calculated dynamically,
depending on your display and the values assigned to other color
resources. For example, a monochrome display is assigned different
default values than a color display.

All of the resources in this section, with the exception of cleanText, require a
pixmap as a value. The following list describes the pixmap values that you
can assign to these resources:

background the background color (solid)

foreground the foreground color (solid)

25_foreground a mix of 25 percent foreground to 75 percent background

50_foreground a mix of 50 percent foreground to 50 percent background

75_foreground a mix of 75 percent foreground to 25 percent background

horizontaLtile horizontal lines alternating between the foreground and
background colors

386 Graphical Environment Guide

diagonal lines slanting to the left, alternating between the
foreground and background colors

diagonal lines slanting to the right, alternating between the
foreground and background colors

vertical lines alternating between the foreground and back
ground colors

Figure A-I provides examples of how each of these pixmaps are displayed.

foreground background

75_foreground horizontal ti Ie

slant left

-
Figure A-1 Examples of valid pixmap values

The resources listed in Table A-3, "Shading resources" (page 386) are
described in more detail below:

activeBackgroundPixmap (Class: BackgroundPixmap)
This resource specifies the pixmap used as the background in the window
manager decorations of an active window. (This is a component appearance
resource.)

activeBottomShadowPixmap (Class: BottomShadowPixmap)
This resource specifies the pixmap used for the lower and right bevels of the
active window frame. (This is a component appearance resource.)

activeTopShadowPixmap (Class: TopShadowPixmap)
This resource specifies the pixmap used for the upper and left bevels of the
active window frame. (This is a component appearance resource.)

387

OSFIMotif window manager resources

388

backgroundPixmap (Class: BackgroundPixmap)
This resource specifies the background pixmap used to decorate the window
frame of an inactive window. (This is a component appearance resource.)

bottomShadowPixmap (Class: BottomShadowPixmap)
This resource specifies the pixmap used in the lower and right bevels of all
inactive window manager frames. (This is a component appearance
resource.)

cleanText (Class: CleanText)
This resource can be used to make text easier to read on monochrome systems
where a backgroundPixmap resource is specified. If this resource is set to
"true," text appearing in a windows title and in the window manager's dialog
boxes is displayed with a clear background. If this resource is "false," text is
drawn directly on top of the existing background, even if the background uses
a pattern. The default value for this resource is "true." (This is a specific
appearance and behavior resource.)

iconlmageBottomShadowPixmap (Class: BottomShadowPixmap)
This resource specifies the pixmap used for the bottom shadow of the icon
image. The default value is the pixmap specified by the
*icon*bottomShadowPixmap window manager resource. (This is a com
ponent appearance resource.)

iconlmageTopShadowPixmap (Class: TopShadowPixmap)
This resource specifies the pixmap used for the top shadow of the icon image.
The default value is the pixmap specified by the *icon*topShadowPixmap
window manager resource. (This is a client-specific resource.)

matteBottomShadowPixmap (Class: BottomShadowPixmap)
This resource specifies the pixmap used for the bottom shadow of the matte.
This resource is used only if matteWidth is greater than zero. The default
value is the pixmap specified by the *bottomShadowPixmap or the
*client*bottomShadowPixmap window manager resource. (This is a client
specific resource.)

matteTopShadowPixmap (Class: TopShadowPixmap)
This resource specifies the pixmap used for the top shadow of the matte. This
resource is used only if matteWidth is greater than zero. The default value is
the pixmap specified by the *topShadowPixmap or the
*client*topShadowPixmap window manager resource. (This is a client-spe
cific resource.)

topShadowPixmap (Class: TopShadowPixmap)
This resource specifies the pixmap used in the top and left bevels of all inac
tive window frames. (This is a component appearance resource.)

Graphical Environment Guide

Resources for window decorations

The following resources are used to declare applicable functions and decora
tion elements for a client:

Table A-4 Window decoration resources

Value
Name Class type Default
clientDecoration ClientDecoration string all
clientFunctions ClientFunctions string all
transientDecoration TransientDecoration string title border resizeh
transientFunctions TransientFunctions string move resize

These resources are described in more detail below:

clientDecoration (Class: ClientDecoration)
This resource specifies the amount of decoration (buttons and frames) that the
window manager applies to a client's top-level window. The value of this
resource is a combination of one or more of the following names:

• "all" includes all decorations listed below.

• ''border'' displays the window border.

• "maximize" adds the maximize button, including the title bar.

• "menu" displays the Window menu button, including the title bar.

• "minimize" adds the minimize button, including the title bar.

• "resizeh" shows the border with resize handles.

• "none" suppresses all decoration.

• "title" adds the title bar and a border to the window.

The default for the clientDecoration resource is "all." You specify new values
for this resource in two ways:

• Enable selected decorations. For example, if you want the xclock client's
window to have a title bar with a Window menu and a resizable border
only:

Pmwm*XClock*clientDecoration: menu resizeh

• Disable selected decorations. The syntax requires a minus sign to precede
the first value. For example, if you want all the decorations except the
maximize and minimize buttons, you would specify:

Pmwm*XClock*clientDecoration: -maximize minimize

(This is a client-specific resource.)

389

aSF/Motif window manager resources

390

c1ientFunctions (Class: ClientFunctions)
This resource specifies which of the window manager functions apply to a
client's top-level window. (See "Using window manager functions" (page
223) for more information.) The value of this resource is a combination of one
or more of the following names:

• "all" includes all functions listed below.

• "close" refers to the f.kill function.

• "maximize" refers to the f.maximize function.

• "minimize" refers to the f.minimize function.

• "move" refers to the f.move function.

• "none" suppresses invocation of all functions.

• "resize" refers to the f.resize function.

The default for the c1ientFunctions resource is "all." You specify new values
for this resource in two ways:

• Enable selected functions. For example, if you want to invoke only the
f.move and f.resize functions on the xc10ck window, you can set this
resource as follows:

pmwm*xclock*clientFunctions: move resize

• Disable selected functions. The syntax requires a minus sign to precede the
first value. For example, if you want to apply all functions except f.maxi
mize and f.minimize, you would specify:

pmwm*xclock*clientFunctions: -maximize minimize

Note that if you disable functions that are used by Root and Window menu
options, or by window manager button and key bindings, the affected menu
options are removed from menus and the affected button and key bindings no
longer work.

(This is a client-specific resource.)

transientDecoration (Class: TransientDecoration)
This resource controls the amount of decoration that the window manager
places around a transient (temporary) window, identified by the
WM_TRANSIENT_FOR property on the window. The syntax for specifying
this resource is the same as that for the clientDecoration resource. The
default value for this resource is "title border resizeh," which means that tran
sient windows appear with a title bar (without the Window menu button,
minimize button and maximize button), a window border, and resize handles.
(This is a specific appearance and behavior resource.)

Graphical Environment Guide

transientFunctions (Class: TransientFunctions)
This resource specifies the window manager functions that the window man
ager allows for a transient (temporary) window, identified by the
WM_TRANSIENT_FOR property on the window. The syntax for specifying
this resource is the same as that for the clientFunctions resource. The default
value for this resource is "move resize," which means that the window man
ager applies the functions £.move and £.resize to transient windows. (See
"Using window manager functions" (page 223) for more information.) (This
is a specific appearance and behavior resource.)

Resources for controlling window size and position

The following resources control the size and location of windows:

Table A·5 Window size and position resources

Name Class Value type Default
Size resources

frameBorderWidth FrameBorderWidth pixels 5
limitResize LimitResize true/false truet
maximumClientSize MaximumClientSize wxh fill the screen
maximumMaximumSize MaximumMaximumSize wxh 2X screen
resizeBorderWidth ResizeBorderWidth pixels varies
resizeCursors ResizeCursors true/false true

Position resources

clientAutoPlace ClientAutoPlace true/false true
interactivePlacement InteractivePlacement true/false false
moveOpaque MoveOpaque true/false false
moveThreshold MoveThreshold pixels 4
positionIsFrame PositionIsFrame true/false true
positionOnScreen PositionOnScreen true/false false
showFeedback ShowFeedback string all

Other resources

enableWarp EnableWarp true/false true

t In pmwm mode, this resource is set to "false".

These resources are described in more detail below:

clientAutoPlace (Class: ClientAutoPlace)
This resource affects how the window manager places a client's window on
the screen. If clientAutoPlace is "true," the window manager positions each

391

OSF/Motif window manager resources

392

window with the upper left comer of the frame offset horizontally and verti
cally so that no two windows completely overlap. The default for clientAuto
Place is "true." (This is a specific appearance and behavior resource.)

enableWarp (Class: EnableWarp)
If this resource is "true," the window manager moves the mouse pointer
("warps" it) to the center of the window being resized and moves through
keyboard accelerators (key combinations that activate menu options without
displaying the menu.) If enableWarp is "false," the pointer is left at its previ
ous position. The default setting is "true." (This is a specific appearance and
behavior resource.)

frameBorderWidth (Class: FrameBorderWidth)
This resource specifies the width, in pixels, of the window frame border. This
border width includes the three-dimensional shadows. The default value is 5
pixels. (This is a specific appearance and behavior resource.)

interactivePlacement (Class: InteractivePlacement)
If this resource is "true," the window manager prompts you for the position of
each new window. You must press the mouse button to indicate where the
window should be placed. By default, this resource is "false" and the window
manager does not prompt you for the window position. (This is a specific
appearance and behavior resource.)

limitResize (Class: LimitResize)
If this resource is "true," you cannot resize a window so it is larger than the
maximum size. The default value for pmwm mode is "false," and "true" for
mwm mode. (This is a specific appearance and behavior resource.)

maximumClientSize (Class: MaximumClientSize)
This resource sets the size of the client's window when it is maximized. Its
value is width x height, in pixels. For example, if you have a display that uses
a resolution of 800x600 and you want a client window that can be resized to
twice the size of your screen, you would supply this resource a value of
"1600x1200". If this resource is not set, the maximum size is such that the
window fills the screen. Values assigned to this resource override values
specified for the maximumMaximumSize resource. (This is a client-specific
resource.)

maximumMaximumSize (Class: MaximumMaximumSize)
This resource sets the upper limit on the maximum size that you can specify
for a client window. The dimensions are given in pixels. For example, if you
set this resource to .t'800x600," client windows cannot be larger than 800x600
pixels. The default value is twice the size of your screen. For example, if your
display is 800x600 pixels, the default value for this resource would be
" 1600x1200". (This is a specific appearance and behavior resource.)

Graphical Environment Guide

moveOpaque (Class: MoveOpaque) This resource is used to control the
appearance of a window while it is being dragged. When "true," the entire
window moves instead of just the wire frame. The default value is "false."
(This is a specific appearance and behavior resource.)

moveThreshold (Class: MoveThreshold)
This resource controls how sensitive the window manager is to mouse drag
operations. The value is interpreted as the number of pixels by which the
mouse must move before the window manager reacts to it. The default value
is 4 pixels. (This is a specific appearance and behavior resource.)

positionIsFrame (Class: PositionIsFrame)
This resource specifies how the window manager interprets the information
about a client window's position as it appears in the WM_NORMAL_HINTS
property or in geometry specifications. If this resource is "true," the position
is taken to be that of the frame placed around the client window by the win
dow manager; otherwise the position is that of the client window alone. The
default value is "true." (This is a specific appearance and behavior resource.)

positionOnScreen (Class: PositionOnScreen)
If this resource is "true," the window manager places a client window entirely
inside the screen. If the window's size exceeds the screen size, the window
manager places the upper left comer of the window within the boundaries of
the screen. The default value is "false," in which case, the window is located
according to its defined geometry, even if that location is off the screen. (This
is a specific appearance and behavior resource.)

resizeBorderWidth (Class: ResizeBorderWidth)
This resource specifies the width, in pixels, of a window frame that allows
you to resize the window by dragging the border. For mwm mode, the
default value is 5, 7, or 10 pixels, depending on the resolution of your display.
For pmwm mode, the default is 8 pixels. (This is a specific appearance and
behavior resource.)

resizeCursors (Class: ResizeCursors)
If this resource is "true," the cursor changes shape to indicate that the resize
operation is available whenever the mouse pointer enters the window frame.
By default, this resource is set to "false"; the cursor does not change shape
when the pointer is focused on the window frame. (This is a specific appear
ance and behavior resource.)

393

OSFIMotif window manager resources

394

showFeedback (Class: ShowFeedback)
This resource specifies when the window manager displays feedback infor
mation, which includes dialog boxes and boxes displaying window size and
position during move and resize operations. The value of this resource is a
combination of one or more of the following names:

• "all" shows all feedback information.

• "behavior" uses feedback to confirm any changes in the window manager's
behavior.

• Ilkill" shows a dialog box when a SIGKILL signal is received.

• "move" shows position during moves.

• Iinone" suppresses all feedback.

• "placement" shows position and size during initial placement of window.

• "quit" displays a dialog box for confirming a request to exit the window
manager.

• Ilresize" shows size when window is being resized.

• "restart" shows a dialog box to confirm any attempt to restart the window
manager.

The default for the showFeedback resource is I/all." You specify new values
for this resource in two ways:

• Enable selected feedback. For example, if you want feedback during move
and resize operations only, you can specify this resource as follows:

Pmwm*showFeedback: move resize

• Disable selected feedback. The syntax requires a minus sign to precede the
first value. For example, if you want feedback in all cases except during
move, resize, and placement, you would specify:

Pmwm*showFeedback: -move resize placement

(This is a specific appearance and behavior resource.)

Graphical Environment Guide

Resources for configuring window manager icons

The following resources are used to configure window manager icons (not to
be confused with the Desktop icons):

Table A-6 Icon resources

Name
iconAutoPlace
iconClick
iconDecoration
iconImage
iconlmageMaximum
iconImageMinimum
iconPlacement
iconPlacementMargin
lowerOnIconify
useClientIcon

Class
IconAutoPlace
IconClick
IconDecoration
IconImage
IconImageMaximum
IconImageMinimum
IconPlacement
IconPlacementMargin
LowerOnIconify
UseClientIcon

These resources are described in more detail below:

iconAutoPlace (Class: IconAutoPlace)

Value type
true/false
true/false
string
pathname
wxh
wxh
string
number
true/false
true/false

Default
true
true
all
varies
50x50
16x16
right bottom
null
true
false

This resource controls where the window manager places the icon for a mini
mized window. If the resource is ILtrue," the window manager places all icons
in a specific area of the screen, determined by the iconPlacement resource. If
this resource is ILfalse," you can place the icons anywhere on the screen. The
default setting for this resource is ILtrue." (This is a specific appearance and
behavior resource.)

iconClick (Class: IconClick)
If this resource is the default value of ILtrue," the Window menu of an icon is
displayed and left visible when you click on the icon. If this resource is set to
ILfaIse", no Window menu is displayed when clicking on an icon. (This is a
specific appearance and behavior resource.)

iconDecoration (Class: IconDecoration)
This resource affects the amount of decoration on the icon. The value of the
resource can be a combination of the follOWing values:

• lLall" includes all settings below.

• ILlabel" indicates that only the label, truncated to the width of the icon, is
displayed.

• lLimage" means that only the image of the icon is displayed.

395

OSFIMotif window manager resources

396

• "activelabel" specifies that the complete label, not truncated, is shown
when the icon is active. For icons appearing in the icon box, the default
value of iconDecoration is "image label." For icons displayed on the screen
when the icon box is not activated, the setting is Ilimage label activelabel."
(If your display supports resolution lower than BOOx600, the default value
is Illabel" only.)

(This is a specific appearance and behavior resource.)

iconlmage (Class: Iconlmage)
This resource specifies the name, including the full path, of an X bitmap file
that the window manager uses as the icon for a client when the client's win
dow is minimized. By default, the window manager displays a built-in, stan
dard icon image for all applications. Note that the useClientlcon resource
affects this resource. If useClientlcon is Iltrue," an image supplied by the
client application takes precedence over an icon you specify here. Also, see
"Other resources for controlling windows" (page 399) for information on the
bitmapDirectory resource, which specifies the default pathname for bitmap
files. (This is a client-specific resource.)

iconlmageMaximum (Class: IconlmageMaximum)
This resource takes a value of the form w x h, where w and h specify the max
imum width and height of an icon's image. The default is IISOXSO," in pixels.
The maximum allowed is "12Bx12B." (This is a specific appearance and
behavior resource.)

iconlmageMinimum (Class: IconlmageMinimum)
This resource takes a value of the form w x h, where w and h specify the mini
mum width and height of an icon's image. The default value for this resource
is 1116x16," in pixels. This value is also the minimum size supported by the
window manager. (This is a specific appearance and behavior resource.)

iconPlacement (Class: IconPlacement)
This resource specifies where the window manager should place the icons.
The value is a sequence of two keywords of the form:

primary secondary

Here primary and secondary can take one of the following values:

• Iltop" specifies top-ta-bottom placement.

• l'bottom" specifies bottom-ta-top placement.

• "left" specifies left-ta-right placement.

• llrighf' specifies right-to-Ieft placement.

The primary layout specifies where an icon is placed (in a row or a column)
and in which direction. The secondary layout specifies where to place new
rows or columns. The default value for iconPlacement is "right bottom,"

Graphical Environment Guide

which means that the icons are placed from right to left on the screen, with
the first row at the bottom, and any new rows added in the bottom-to-top
direction. (This is a specific appearance and behavior resource.)

iconPlacementMargin (Class: IconPlacementMargin)
This resource specifies the margin, in pixels, between the edge of the screen
and the icons appearing at the edge of the screen. The default value is vari
able, depending on the size of your display. The window manager deter
mines the maximum number of icons that can fit in each row and column on
your screen, including the space that should be used to separate the icons.
This space value is then assigned to the iconPlacementMargin resource as its
default value. You can change this resource by specifying a positive value.
(This is a specific appearance and behavior resource.)

lowerOnlconify (Class: LowerOnlconify)
If this resource is "true," the window manager places a window's icon at the
bottom of the stack when the window is minimized. This resource is "true"
by default. (This is a specific appearance and behavior resource.)

useClientlcon (Class: UseClientlcon)
If the useClientlcon resource is "true," an image supplied by the client takes
precedence over an icon you specify through the imagelcon resource. The
default value is "false." (This is a client-specific resource.)

Resources for configuring the icon box

The following resources configure the icon box:

Table A-7 Icon box resources

Name Class Value type
fadeNormallcon FadeNormallcon true/false
iconBoxGeometry IconBoxGeometry [columns x rows] [±Xoff±yoff]
iconBoxName IconBoxName string
iconBoxTitle IconBoxTitle string
useIconBox UseIconBox true/false

These resources are described in more detail below:

fadeNormalIcon (Class: FadeNormalIcon)

Default
false
lx6-0-0
iconbox
Icons
false

If this resource is Iitrue," the window manager grays out an icon that has been
normalized. The uselconBox resource must be set to "true", for this resource
to function. The default setting is "false", in which case the appearance of an
icon is normal. (This is a specific appearance and behavior resource.)

397

OSFIMotif window manager resources

398

iconBoxGeometry (Class: IconBoxGeometry)
This resource is a geometry specification for the icon box. The resource takes
the value [columnsxrows][±Xo!ftyof/l, where columns and rows represent the
size of the icon box, in icons, and ±Xoffand ±yoffrepresent the x and y coordi
nates of the window. For example, if you specify the value of "4x3+0-0," the
window manager creates a box large enough to hold three rows of four icons
across and positions the box at the lower left comer of the screen. The default
value for this resource is I/lx6-0-0." (This is a specific appearance and behavior
resource.)

iconBoxName (Class: IconBoxName)
This resource specifies the name that is used to set resources for the icon box.
The default name is "iconbox." H you specify a new value for this resource,
the window manager ignores any resources that use the name "iconbox."
(This is a specific appearance and behavior resource.)

iconBoxTitle (Class: IconBoxTitle)
This resource specifies a string that is displayed in the title of the icon box.
The default name is "Icons." (This is a specific appearance and behavior
resource.)

useIconBox (Class: UseIconBox)
H this resource is "true," the window manager places all icons in an icon box.
H this resource is "false," the window manager places the icons on the Desk
top, or, if the Desktop is not running or is running in a window, on the Root
window. The default value is "false." (This is a specific appearance and
behavior resource.)

Graphical Environment Guide

Other resources for controlling windows

The following resources control miscellaneous aspects of window manage
ment and behavior:

Table A-a Window control resources

Name

Bindings

buttonBindings

keyBindings

Screen management

multiScreen

screens

Client management

quitTimeout
saveUnder

Mouse timing

doubleClickTime

Resource directories

bitmapDirectory

configFile

Root menu

rootMenu

Window menus

wMenuButtonClick

wMenuButtonClick2

windowMenu

Class

ButtonBindings

KeyBindings

MultiScreen

Screens

QuitTimeout

SaveUnder

DoubleClickTime

BitmapDirectory

ConfigFile

RootMenu

WMenuButtonClick

WMenuButtonClick2

WindowMenu

t In pmwm mode, this resource is set to "5000".

Value type

string

string

true/false

string

milliseconds

true/false

milliseconds

directory

file

string

true/false

true/false

string

tt In pmwm mode, this resource is set to ".pmwmrc".

These resources are described in more detail below:

bitmapDirectory (Class: BitmapDirectory)

Default

DefaultButtonBindings

DefaultKeyBindings

false

varies

1000t
false

500

/usr /include/X11 /bitmaps

.mwmrctt

RootMenu

true

true

DefaultWindowMenu

This resource specifies a directory that the window manager searches to
locate any bitmaps needed by other window manager resources. The default
setting of this resource is lusr lincludejXlljbitmaps. (This is a specific appear
ance and behavior resource.)

399

OSFIMotif window manager resources

400

buttonBindings (Class: ButtonBindings)
This resource specifies a set of button bindings (a table that assigns an action
to a button-press) that augments the built-in button bindings of the window
manager. The value should be the name of a button binding from the window
manager configuration file. The default value of the buttonBindings resource
is LLDefaultButtonBindings," as specified in the /usr!lib/Xll/system.pmwmrc or
/usr!lib/Xll/system.mwmrc files. See Chapter 14, LLConfiguring window
manager button bindings" (page 253) for more information. (This is a specific
appearance and behavior resource.)

configFile (Class: ConfigFile)
This resource specifies the pathname of the window manager configuration
file, which is a file with menu definitions, and button and key bindings. If the
pathname specified by the configFile resource begins with -/ (the tilde char
acter followed by slash), the window manager considers that pathname to be
absolute; otherwise, the path is assumed to be relative to the current directory.
Here is how the window manager uses this resource:

1. If the environment variable $LANG is set, the window manager looks for
the specified configuration file in the directory $HOME/lang, which means
in a subdirectory of your home directory, where the name of the subdirec
tory is specified by the language portion of the $LANG environment vari
able.

2. If the specified configuration file does not exist in $HOME/lang or if the
$LANG environment variable is not defined, the window manager looks
for that file in $HOME.

3. If you do not specify a configFile resource or if the specified file does not
exist in one of the places listed in the first two steps, the window manager
looks for a configuration file named .pmwmrc (for pmwm mode) or .mwmrc
(for mwm mode). If the $LANG environment variable is set, it looks for
$HOME/lang/.pmwmrc or .mwmrc; otherwise, it looks for $HOME/.pmwmrc
or.mwmrc.

4. If neither a .pmwmrc or .mwmrc file exist, the window manager looks for a
file named system.pmwmrc or system.mwmrc, first in the directory
/usr!lib/Xll/lang and then in/usr!lib/Xll.

Typically, the lusr!lib/Xl1/system.pmwmrc or system.mwmrc file contains the
default configuration for the window manager. You can copy this file to
your home directory under the name .pmwmrc or .mwmrc, and modify it to
suit your needs. See Chapter 12, LLCustomizing the window manager"
(page 219) for more information.

(This is a specific appearance and behavior resource.)

Graphical Environment Guide

doubleClickTime (Class: DoubleClickTime)
This resource specifies the maximum time, in milliseconds, that can elapse
between two clicks that are to be interpreted by the window manager as a
double-click. The default value is 500 milliseconds. (This is a specific appear
ance and behavior resource.)

keyBindings (Class: KeyBindings)
This resource specifies a set of key bindings (a table that assigns an action to
one or more key press events) that replaces the built-in key bindings of the
window manager. The value should be the name of a key binding from the
the window manager configuration file. The default value of the keyBindings
resource is #DefaultKeyBindings," as specified in the
!usr/lib/Xll/sysfem.pmwmrc or !usr/lib/Xl1/sysfem.mwmrc file. See Chapter 15,
#Configuring window manager key bindings" (page 269) for more informa
tion. (This is a specific appearance and behavior resource.)

multiScreen (Class: MultiScreen)
If this resource is "true," the window manager controls windows displayed in
all screens of a display. The default value is "false," which means the window
manager manages only one screen by default. Note that this resource should
not be used with the Xsco server, which does not support displays with multi
ple screens. (This is a specific appearance and behavior resource.)

quitTimeout (Class: QuitTimeout)
This is the amount of time, in milliseconds, that the window manager waits
for a client to respond to a WM_SA VE_ YOURSELF message. The client is sup
posed to reply by updating the WM_COMMAND property. The default value
is 1000 milliseconds for mwm mode or 5000 milliseconds for pmwm mode.
This resource applies only to those clients that have a WM_SAVE_YOURSELF
atom but do not have a WM_DELETE_WINDOW atom in the WM_PROTOCOLS
property of their top-level window. (This is a specific appearance and
behavior resource.)

rootMenu (Class: RootMenu)
This resource specifies the name of the menu that is displayed when a mouse
button is clicked in the Root window. The value of the resource must be the
name of a menu defined in the window manager configuration file, the file
specified by the resource configFile. The default for this resource is "Root
Menu," as specified in the system-wide window manager configuration file.
See Chapter 13, "Customizing window manager menus" (page 235) for more
information.

saveUnder (Class: SaveUnder)
This resource indicates whether "save unders" are used for window manager
components. For this to have any effect, save unders must be implemented by
the X server. If save unders are implemented, as they are in the Xsco server,
the server saves the contents of windows obscured by windows that have the

401

OSFIMotif window manager resources

402

save under attribute set. If the saveUnder resource has a value of "true," the
window manager sets the save under attribute on the window manager frame
for any client that has it set. If the value is "false," save unders are not used on
any window manager frames. The default value is "false." (This is a specific
appearance and behavior resource.)

screens (Class: Screens)
This resource specifies the resource names to use for the screens managed by
the window manager. If the window manager is managing a single screen,
only the first name in the list is used. If the window manager is managing
multiple screens (which is not supported by the sea OpenServer system), the
names are assigned to the screens in order, starting with screen O. Screen 0 is
assigned the first name, screen 1 the second name, and so forth. The default
screen names are 0, 1, and so on. (This is a specific appearance and behavior
resource.)

wMenuButtonClick (Class: WMenuButtonClick)
If this resource is "true," the window manager displays the Window menu in
response to a button click on the Window menu button and leaves it dis
played until another button click elsewhere on the screen. If this resource is
"false," the Window menu remains on the screen only as long as you press and
hold the mouse button. This resource is "true" by default. (This is a specific
appearance and behavior resource.)

wMenuButtonClick2 (Class: WMenuButtonClick2)
If this resource is "true," and you double-click on the Window menu button,
the window manager invokes the f.kill function to remove the client window.
If this resource is "false," double-clicking on the Window menu button only
posts that menu. This resource is "true" by default. (This is a specific appear
ance and behavior resource.)

windowMenu (Class: WindowMenu)
This resource specifies the name of the menu that is displayed when the Win
dow menu button is pressed. The value of the resource must be the name of a
menu defined in the window manager configuration file, the file specified by
the resource configFile. The default for this resource is "DefaultWin
dowMenu," as specified in the system-wide window manager configuration
file. See Chapter 13, "Customizing window manager menus" (page 235) for
more information. (This is a client-specific resource.)

Graphical Environment Guide

Appendix B

Desktop resources

Because the Desktop (xdt3) is a major component of the seQ OpenServer
Graphical Environment, there are a number of xdt3 resources that you may be
interested in using.

The following sections describe the resources that you can use to customize
xdt3. These resources are listed in reference tables, which organize the
resources according to the aspect of xdt3 that they configure. In most sec
tions, a description of each of the resources follows the table.

I
NOTE Many of these resources are better changed using the Desktop
Preferences Editor. See IIUsing the Preferences Editor" (page 24) for more
information.

Resources for changing default rule files and directories

The following resources define the names and locations of the default rule
files. (Refer to Chapter 16, IICustomizing the Desktop with rules" (page 285)
for information on the various types of rule files.) There is also a resource that
defines the directories that are searched for bitmap and pixmap files.

I NOTE In general, you should not change the rule file resources unless abso
lutely necessary.

403

Desktop resources

Table B·1 Rule file resources

Name

directoryRuleFile

userRuleFile

systemRuleFile

pictureDirectory

Class

DirectoryRuleFile

U serRuleFile

SystemRuleFile

PictureDirectory

Default value

.xdtdir / ICTT

.xdtuserinfo

/usr /lib /XII /IXI/XDesktop /rules /system/xdtsysinfo

/usr/lib/XII/IXI/XDesktop/bitmaps/xdCclarge

$HOME/ .xdCdir /bitmaps/xdClarge

/usr /lib /XII /IXI/XDesktop /bitmaps /xdClarge

/usr / include/XII/bitmaps

All resources listed in Table B-1, "Rule file resources" (this page) accept a file
name or a full pathname for the resource value.

These resources are described in more detail below:

directoryRuleFile (Class: DirectoryRuleFile)
This resource defines the name of the directory rule file. The default value is
".xdtdir/lCIT," where ICTT is set to "en_US." If nothing is found, the Desktop
then checks for an ".xdtdirinfo" file.

pictureDirectory (Class: PictureDirectory)
This resource defines the list of directories that is searched when a picture file
with a relative name is specified. You can specify multiple directories with
this resource but you must use colons or white space to separate the direc
tories. This list is searched sequentially, so the most frequently accessed direc
tories should be placed at the beginning of the list. The default directories
listed in Table B-1, "Rule file resources" (this page) are searched in the order
shown.

systemRuleFile (Class: SystemRuleFile)
This resource defines the name of the system rule file. This resource should
only be changed when it is impossible to install the system rule file in its
default location. This resource should never be set in a user's .Xdefaults
hostname file. The default value for this resource is
~~ /usr/lib/X11/IXI/XDesktop/rules/system/xdtsysinfo".

userRuleFile (Class: UserRuleFile) This resource defines the name of the user
rule file. The default value is ".xdtuserinfo".

Resource for specifying Desktop fonts

404

The fontList resource specifies the fonts that are used for text in the Desktop.
The class for the fontList resource is FontList.

Graphical Environment Guide

When specifying this resource, use the full font name, font name wildcards, or
a font alias for the resource value. The default is the "-*-helvetica-bold-r-*--
14-*-p-*" font. See "Changing Desktop fonts" (page 30) and Chapter 7,
"Changing fonts" (page 125) for more information on how to specify font
resources.

This resource can be used to specify lists of fonts, to accommodate the possi
bility that some systems may contain a set of fonts, while other systems con
tain a different set. H you list multiple fonts, they must be separated by white
space.

I
NOTE The fontList resource controls all xdt3 fonts except the icon label
fonts. The resource for specifying icon label fonts is discussed in "Resources
for configuring icon labels" (page 408).

Resources for specifying Desktop colors

The following resources control the general color characteristics of the xdt3
client:

Table 8-2 Desktop color resources

Value
Name Class type Default

activeBackground Background color scoActiveBackground
activeBottomShadowColor Foreground color black
activeForeground Foreground color scoActiveF oreground
activeTopShadowColor Background color scoActiveTopShadow
background Background color scoBackground
bottomShadowColor Foreground color black
desktop.back.background Desktop.Back. Background color scoAltBackground
foreground Foreground color scoForeground
topShadowColor Background color scoTopShadow

NOTE Most of these color resources specify a palette resource variable,
instead of a specific color. For example, the topShadowColor resource
specifies a value of "scoTopShadow." These palette resource variables are
replaced with a color value, depending on the color choices you made with
the scocolor client. See Chapter 6, "Changing colors" (page 99) for more in
formation.

Generally, it is recommended that you use scocolor to change your Desktop
colors instead of using these resources. See "Changing colors with the Color
control" (page 27) for more information.

405

Desktop resources

406

The resources listed in Table B-2, "Desktop color resources" (page 405) are
described in more detail below:

activeBackground (Class: Background)
This resource specifies the background color used in directory and desktop
window frames, when a window is active. The default value is the scoAc
tiveBackground palette resource variable.

activeBottomShadowColor (Class: Foreground)
This resource specifies the color of lower and right bevels of the directory and
desktop window frame, when a window is active. The default value is
''black.''

activeForeground (Class: Foreground)
This resource specifies the color of text used in directory and desktop window
frames, when a window is active. The default value is the scoActiveFore
ground palette resource variable.

activeTopShadowColor (Class: Background)
This resource specifies the color of upper and left bevels of the directory and
desktop window frames, when a window is active. The default value is the
scoActiveTopShadow palette resource variable.

background (Class: Background)
This resource specifies the background color of directory and desktop win
dows. The default value is the scoBackground palette resource variable.

bottomShadowColor (Class: Foreground)
This resource specifies the color used in the lower and right bevels of the
directory and desktop window frames. The default value is ''black.''

desktop.back.background (Class: Desktop.Back.Background)
This resource specifies the background color of the main Desktop, including
the menu bar. The default value is the scoAltBackground palette resource
variable.

foreground (Class: Foreground)
This resource specifies the color of text used by xdt3. The default value is the
scoForeground palette resource variable.

topShadowColor (Class: Background)
This resource specifies the color used in the top and left bevels of the directory
and desktop window frames. The default value is the scoTopShadow palette
resource variable.

Graphical Environment Guide

Resources for specifying cursor appearance

The following resources control the appearance of the xdt3 cursor under vari
ous circumstances. The default cursors are built into the Desktop, but any of
them can be redefined.

Each type of cursor has a data and mask pixmap component associated with it.
Together, these components form a cursor shape. The data pixmap defines
the image associated with the cursor and the mask pixmap defines the shape
upon which the data pixmap is drawn. To modify a cursor's appearance, you
must specify both a data and a mask pixmap for the cursor. If only one pix
map is specified, the resource is ignored.

The first element in each cursor resource specification indicates the type of
cursor that you want to define. The different cursors are defined as follows:

alert when an alert box is displayed (except within the text entry
field)

bgTrigger when a user clicks on the background

busy when xdt3 is processing

drag when a single icon is being dragged

fatal when an error box is displayed (except within the box)

iconTrigger when a user clicks on an icon to select it

idle when xdt3 is waiting for the user to perform a task

multiDrag when more than one icon is being dragged

rubber when a user is using #rubberbanding" to select one or more
icons

407

Desktop resources

Table 8-3 Cursor appearance resources

Data pixmap Maskpixmap

Name Class File Name Class File

alert. data Cursor. Bitmap explode_d.xbm alert.mask Cursor.Bitmap explode_m.xbm

bgTrigger.data Cursor. Bitmap grip_d.xbm bgTrigger.mask Cursor.Bitmap grip_m.xbm

busy.data Cursor. Bitmap wait_d.xbm busy.mask Cursor. Bitmap waiCm.xbm

drag. data Cursor. Bitmap drag...d.xbm drag.mask Cursor. Bitmap drag...d.xbm

fatal.data Cursor .Bitmap fatal_d.xbm fatal.mask Cursor. Bitmap fatal_m.xbm

iconTrigger.data Cursor.Bitmap grip_d.xbm iconTrigger.mask Cursor. Bitmap grip_mxbm

idle.data Cursor .Bitmap press_d.xbm idle.mask Cursor. Bitmap press_m.xbm

multiDrag.data Cursor .Bitmap mdrag_d.xbm multiDrag.mask Cursor. Bitmap mdrag_m.xbm

rubber.data Cursor .Bitmap grip_d.xbm rubber.data Cursor. Bitmap grip_m.xbm

All resources listed in Table B-3, #Cursor appearance resources" (this page)
accept filenames as values. Unless an absolute pathname is specified, the
default picture directory, as defined by the pictureDirectory resource, is
searched for the specified file. To change the default picture directory, see
"Resources for changing default rule files and directories" (page 403). Pixmap
files specify icon dimensions in pixels; no default values are assigned.

See Chapter 9, "Changing cursor appearance" (page 173) for more information
on specifying the resources described in this section.

Resources for configuring icon labels

408

The following resources control general characteristics of icon labels on the
Desktop and in directory and desktop windows:

Table 8-4 Icon label resources

Name

font
hilight.background
hilight.foreground
normal.background
normal.foreground

Class

Font
Hilight.Background
Hilight.Foreground
Normal.Background
Normal.Foreground

Value
type Default

string -*-helvetica-medium-r-*--12-*-*-*-p-*-*-*
color black
color white
color transparent
color black

Graphical Environment Guide

These resources are described in more detail below:

font (Class: Font)
This resource specifies the font that is used by all icon labels. The default
value is # -*-helvetica-medium-r-*--12-*-*-*-p-*-*-*".

hilight.background and hilight.foreground
(Classes: Hilight.Background and Hilight.Foreground)
These resources specify the colors that are used for the background and text
of selected icons. The default values render "white" text on ''black'' labels.

normal.background and normal.foreground
(Classes: Normal.Background and Normal.Foreground)
These resources specify the colors that are used for the background and text
of unselected icons. The default values render ''black'' text on "white"labels.

Resources for controlling Desktop appearance and behavior

The following resources control the default appearance and behavior of the
Desktop, and to a certain degree, desktop windows:

Table 8·5 Desktop resources

Name Class Value type Default

desktop.menubar Desktop.Menubar menu rule DesktopMenuBar

exitConfirmEnabled ExitConfirmEnabled true/false true

exitEnabled ExitEnabled true/false true

exitOnClose ExitOnClose string main
iconGrid.aisleWidth IconGrid.AisleWidth pixels 4

iconGrid.xOffset IconGrid.XOffset pixels 2

Maindt.geometry Desktop.Geometry [width x height][±Xofftyoff] unspecified

isRoot IsRoot true/false true

isRoot.borderColor IsRoot.BorderColor color white
isRoot.borderWidth IsRoot.BorderWidth pixels 4

isRoot.focusToggle IsRoot.FocusToggle key sequence Shift Alt<Key>F2

NOTE The Desktop is an XmPrimitive widget called base. It has an ances
tor that is an XmForm widget called desktop. These elements may be
included in resource specifications to change the bitmap patterns and colors
of individual portions of the Desktop.

409

Desktop resources

410

The resources listed in Table B-5, "Desktop resources" (page 409) are
described in more detail below:

desktop.menubar (Class: Desktop.Menubar)
This resource specifies the menu rule, located in the system rule file, that
defines the contents of the Desktop menu bar. The default value is "Desktop
MenuBar." See Chapter 24, "Configuring Desktop menus" (page 341) for more
information on menu rules and Desktop menu bars.

exitConfirmEnabled (Class: ExitConfirmEnabled)
This resource specifies whether or not you are prompted to confirm an exit
from the Desktop. A "true" value, which is also the default value, prompts
you to confirm the exit. If the exitEnabled resource is set to "false," this
resource is ignored. This resource is also ignored if the isRoot resource is set
to "true."

exitEnabled (Class: ExitEnabled)
This resource specifies whether or not you can log out from the Desktop. The
default value for this resource is "true." This resource is ignored if the isRoot
resource is set to "true."

exitOnClose (Class: ExitOnClose)
This resource specifies some controls over conditions under which you can
exit the Desktop. The following values can be used:

• "last" specifies that you can exit only after the last desktop window has
been closed.

• "main" specifies that you can exit upon dosing the main Desktop.

• "never" specifies that you cannot exit.

The default value for this resource is "main."

iconGrid.aisleWidth (Class: lconGrid.AisleWidth)
This resource specifies the number of pixels that exists between xdt3 icons
when they are laid out in grid positions. The default value is 4 pixels.

iconGrid.xOffset (Class: IconGrid.XOffset)
This resource specifies the width, in pixels, of the left hand margin when lay
ing out xdt3 icons in grid positions. The default value is 2 pixels.

Maindt.geometry (Class: Maindt.Geometry)
You can use the Maindt.geometry resource to determine the size and location
of the Desktop. You can also assign this resource with the name of a different
desktop window, to specify its size and location. For example, to resize a
desktop window called spreadsheet.dt, you would specify the spread
sheetdt.Geometry resource.

Graphical Environment Guide

This resource takes the value [width x height][±Xofftyoffl, where width and
height represent the size of the window in pixels and ±Xoffand ±yoffrepresent
the x and y coordinates of the window.

isRoot (Class: IsRoot)
This resource specifies whether or not the Desktop occupies the Root win
dow. If this resource is set to "true," the Desktop is expanded to cover the
entire Root window. If this resource is set to "false," the Desktop is displayed
ina window.

I
NOTE It is strongly recommended that you change this behavior using the
Desktop Preferences Editor instead of modifying this resource. See ''Using
the Preferences Editor" (page 24).

isRoot.borderColor (Class: IsRoot.BorderColor)
This resource specifies the color of the border that is displayed around the
Desktop. The default value is "white."

isRoot.borderWidth (Class: IsRoot.BorderWidth)
This resource specifies the thickness, in pixels, of the border that is displayed
around the Desktop. The default value is 4 pixels.

isRoot.focusToggle (Class: IsRoot.FocusToggle)
This resource specifies the key combination that enables the Desktop to grab
the keyboard focus. The default value is "(Shlft)(Alt)(F2)," which is specified as
"Shift Alt<Key> F2".

If the isRoot resource is set to "true," you must assign a key to toggle the key
board focus, otherwise you cannot use the xdt3 menu accelerators or answer
prompts on the Desktop.

Resources for controlling directory appearance and behavior

The following resources control the appearance and behavior of xdt3 direc
tory windows:

Table 8·6 Directory window resources

Name

directory.menubar

directory .enableStatusBar

directory .statusBarTellFile
directory.statusBarTellHidden

Class

Directory.MenuBar

Directory .EnableStatusBar

Directory.StatusBarTellFile

Directory.StatusBarTellHidden

Value type Default

menu rule DirMenuBar

true/false true

true/false true

true/false false

411

Desktop resources

412

NOTE Directories are constructed from a Dir widget, all with the name
directory. directory has the following descendents:

• The background is an XmPrimitive widget called back.

• The scroll bars are XmScrollBar widgets called hscroll and vscroll.

• The status bar is an XmLabel widget called back.

These elements may be included in resource specifications to change the bit
map patterns and colors of individual portions of directory windows. For
example, to specify the color of the background of directory windows, use
the following resource specification:

XDesktop3*directory*back*background: resource_value

The resources listed in Table B-6, "Directory window resources" (page 411) are
described in more detail below:

directory.menubar (Class: Directory.Menubar)
This resource specifies the menu rule, located in the system rule file, that
defines the contents of the Directory menu bar. The default value is "Dir
MenuBar." See Chapter 24, ~~Configuring Desktop menus" (page 341) for more
information on menu rules and Directory menu bars.

directory.enableStatusBar (Class: Dir.EnableStatusBar)
This resource controls whether or not directory windows have status bars.
The default value is "true."

directory.statusBarTellFile (Class: Directory.StatusBarTellFile)
This resource specifies whether or not to display the number of files that are
contained in a directory window. The default value is "true."

directory .statusBarTellHidden (Class: Directory.StatusBarTellHidden)
This resource specifies whether or not to display the number of hidden (or
dot) files contained in a directory window. The default value is "false."

Graphical Environment Guide

Resources for defining message box appearance

The following resources specify the pixmaps that are used when displaying
an alert, fatal, fyi, gti, or yni message. fyi messages provide information, gti
messages prompt you for text input, and yni messages prompt you for a yes
or no response.

Table 8-7 Message box appearance resources

Name

message.alert.pixmap
message.fatal.pixmap
message.fyi.pixmap
message.gti.pixmap
message.yni.pixmap

Class

Message.Logo.Pixmap
Message.Logo.Pixmap
Message.Logo.Pixmap
Message.Logo.Pixmap
Message.Logo.Pixmap

Value type

pixmap file
pixmap file
pixmap file
pixmap file
pixmap file

Resources for controlling Desktop mouse behavior

Default

Uses Motif default
Uses Motif default
Uses Motif default
Uses Motif default
Uses Motif default

The following resources control several aspects of a mouse's behavior when it
is used with xdt3. Also refer to Chapter 10, "Configuring mouse behavior"
(page 195) for more information on using these resources.

Table 8-8 Mouse behavior resources

Name

triggers.maxMotion
triggers.maxUpTime
triggers.thresholdDownTime

Class

Triggers.MaxMotion
Triggers.Time
Triggers.Time

These resources are described in more detail below:

triggers.maxMotion (Class: Triggers.MaxMotion)

Value type

pixels
milliseconds
milliseconds

Default

3
500
700

This resource controls the number of pixels the mouse pointer must move
before a mouse button click is interpreted as a drag action. The default value
is 3 pixels.

triggers.maxUpTime (Class: Triggers.Time)
This resource controls the length of time, in milliseconds, that a mouse button
must be up before a trigger ends. The default value is 500 milliseconds.

triggers.thresholdDownTime (Class: Triggers.Time)
This resource controls the time, in milliseconds, that a mouse button must be
pressed before a click is considered a "long click" rather than a "short click."
The default value is 700 milliseconds.

413

Desktop resources

Resources for mapping mouse triggers

414

The following resource controls the mouse trigger mechanisms:

triggers.mapping (Class: Triggers.Mapping)
Chapter 26, "Mapping mouse triggers for the Desktop" (page 371) discusses
triggers (which are double-clicks or drags of the mouse buttons) and how to
associate actions with specific triggers using the trigger_actions clause in rule
files. These trigger actions can be modified or completely redefined.

Although xdt3 offers flexibility in mapping triggers, you are advised against
modifying this mapping on a whim. The trigger mapping has been optimized
to the particular mouse supplied with your system. The /usr/lih/Xl1/app
defaults/XDesktop3 resource file includes alternate trigger mechanisms that are
commented out. You may want to try using these definitions as an alternate.
See Chapter 26, "Mapping mouse triggers for the Desktop" (page 371) for a
detailed discussion on this issue.

Graphical Environment Guide

Appendix C

Deskshell command summary

The following table lists all the Deskshell commands in alphabetical order. For
each command, the following information is provided:

• whether it returns a list of strings

• whether it sets status apart from if the arguments are incorrect. /I?" indi
cates that status is only set in some circumstances.

• whether it is allowed in a priority thread

• whether it generates a sub-list of the list argument. "yo" indicates that the
sub-list is ordered.

Table C-1 Deskshell commands in alphabetical order

Command Text Status Priority Sub-list

" " n ? n n
-predicate n y y n
absreadlink y n y n
act n y n n
aUr y y y n
basename y n y n
break n n y n
brin~to_front n y n n
btf n y n n
canonical y n y n
cd n y y n
cdt n y n n

(Continued on next page)

415

Deskshel/ command summary

Table C-1 Oeskshell commands in alphabetical order
(Continued)

Command Text Status Priority Sub-list
cdw n y n n
check n y n n
chk n y n n
cldt n y n n
close_desktop n y n n
close_directory n y n n
continue n n y n
copy_desktop n y n n
copy_into n y n n
cpi n y n n
die n y n n
dimame y n y n
display_directory n y n n
dup n y n n
dupl n y n n
duplicate_file n y n n
duplicate_link n y n n
duplicate_symlink n y n n
dupsl n y n n
dynamic_rule n y n n
exit n ? y n
extension y n y n
false n y y n
fileclass y n y n
followlink y n y n
for_info n y n n
fyi n y n n
get_attribute y y y n
get_out n y n y
get_resource y n y n
goi n y n n
gti y Y n n
help n y n n
idr n y n n
in_text_ window n y n n
irl n y n n
join y n y n
kill n y n n

(Continued on next page)

416 Graphical Environment Guide

Table C-1 Oeskshell commands in alphabetical order
(Continued)

Command Text Status Priority Sub-list
link_into n y n n
list_count y n y n
list intersect y n y yo
list sort y n y y
list subtract y n y yo
list uniq y n y yo
lni n y n n
make_new _file n y n n
mark_changed_directory n y n n
mcd n y n n
menu n y n n
merge y n y n
mkf n y n n
move_into n y n n
mvi n y n n
odt n y n n
odw n y n n
open_desktop n y n n
pbi n y n n
pixmap_check n y n n
popup n y n n
put_back n y n n
pwd y n y n
pxc n y n n
query contents y y y n
query main_desktop y n y n
query open_desktops y n y n
query open_directories y n y n
query picture y y y n
query pixmap y y y n
query selections y y y n
query size y y y n
query thread_info y y y n
query title y y y n
query visibility y n y n
rdr n y n n
readlink y n y n
relativepath y n y n

(Continued on next page)

417

Deskshell command summary

Table C-1 Deskshell commands in alphabetical order
(Continued)

Command Text Status Priority Sub-list
remove n y n n
remove_dynaMic_rule n y n n
rename n y n n
reorganize_desktop n y n n
report n y n n
report_status n y n n
reset n y n n
resource_line n y n n
return n ? y n
rgw n y n n
rmi n y n n
sel n y n n
select n y n n
sequence y n y n
sh n y n n
shell n y n n
shell_window n y n n
show -8reeting n y n n
sleep n n n n
sli n y n n
source n ? n n
split y n y n
symlink_into n y n n
tdg n y n n
tds n y n n
tidy_desktop n y n n
tolower y n y n
toupper y n y n
true n y y n
unextended y n y n
variables y n y n
variation_class n y n n
vclass n y n n
yni n y n n

418 Graphical Environment Guide

Index

Symbols, numbers
! (exclamation point), 224

A
accelerators, Desktop menus, 344
actions_of Deskshell command, 310, 362
activate trigger, 310, 311
activeBackground resource, 106, 114, 383,
406

activeBackgroundPixmap resource, 387
activeBottomShadowColor resource, 106,
114, 384, 406

activeBottomShadowPixmap resource, 387
activeForeground resource, 106, 114,384,
406

activeTopShadowColor resource, 106, 114,
384,406

activeTopShadowPixmap resource, 387
alert cursor (xdt3), 174, 175
alt_activate trigger, 311
alt_drop trigger, 311
alt_rename trigger, 311
alt_report trigger, 311
alt_select trigger, 311
applications, configuring, 41
armColor resource, 106
auto modules, See modules
autoKeyFocus resource, 380
autoRaiseDelay resource, 380

B
background patterns

changing, 31
defining bitmap /pixmap path, 33
removing, 32
using the Preferences Editor, 24

background resource, 106, 114, 384, 406
backgroundPixmap resource, 388
bdftopcf command, 153
Bell, changing, 35
bgTrigger cursor (xdt3), 174, 175

bitmap pictures
See also cursor; pixmaps
assigning, 323
bitmap /pixmap path, 33
creating, 179, 183
cursor, 174, 180,183
data, 174, 175, 180, 184
default location of bitmap files, 329
defined,31, 324
file default location, 174,323
mask,174, 175,180, 184

bitmapDirectory resource, 240,399
boolean values, 86
borderColor resource, 106
bottomShadowColor resource, 106,114,
384,406

bottomShadowPixmap resource, 388
busy cursor (xdt3), 174, 175
button binding

See also .pmwmrc/.mwmrc file; window
manager

configuring, 22, 253, 257
context, 231,232, 261,262,265

. creating, 263
default, 254,255,264
defined,222, 253
event definitions, 259,265
modifier~259,260,265

specifying resource, 266
syntax, 254, 258
window manager functions, 223,230,
256,261,265

buttonBindings resource, 266, 400

c
changing

background patterns, 24, 31, 32
colors, 27, 100
cursors, 173
Desktop behavior, 37
Desktop behavior temporarily, 289, 294
desktop window behavior, 38
dialog box behavior, 40
directory behavior, 39

419

classes

changing (continued)
fonts, 24,30,126,143
icon behavior, 40
key click volume, 35
keyboard auto repeat, 35
main Desktop behavior, 38
menus, 235, 341
system bell, 35
Treeview desktop behavior, 39

classes, 83
cleanText resource, 388
client

See also host machines; remote clients
defined, 12
resource files, 16, 88, 113, 144, 146, 161,
180,187,203,205,246,372

running on X terminal, 63
with rcmd, 65,73,74

Client submenu, 249
clientAutoPlace resource, 391
clientDecoration resource, 389
clientFunctions resource, 390
color

See also color database; resource; scocolor
changing, 22,27, 100, 104, 109, 112, 116,
118, 121

colormaps, 30, 100, 107, 108
command line options, 95, 116, 117, 118
grayscale monitors, 30, 103
HSV model, 29, 100, 101
monochrome system, 103
resources, 85, 105, 112, 114,405
RGB model, 29,100,101,119

color database
adding new, 118
contents, 100, 101, 120
recompiling, 120
rgb command, 120
rgb.txt file, 100,110,119,120
showrgb command, 101, 120

colormapFocusPolicy resource, 224, 380
command line options

See also resource
-bg (background color), 95, 118
-display (display location), 74,95
-fg (foreground color), 95, 118
-fn (font), 96, 150
-geometry (window), 96, 159, 168
-name (client name), 97
scosession, 51
-title (window title), 97

420

command line options (continued)
-xrm (resource specification), 97, 117, 149,
168,190

Xt options, 89
comment character

Deskshell scripts, 351
.pmwmrc/.mwmrc file, 221
rule files, 351

configFile resource, 400
configuring

applications, 41
button bindings, 253
floppy disk devices, 41
icon label resources, 408
key bindings, 269
mouse behavior, 33, 195, 196, 198
remote access, 36, 65
session exit, 26
session startup, 26
tools, 41
window geometry, 159, 160, 169

creating
bitmap pictures, 179, 183
icons, 327, 328
menus, 235, 341
objects, 315
.pmwmrc/.mwmrc file, 16,221,238,257,
263,274,279

.startxrc file, 15,47

.xdefaults-hostname file, 16, 88,113,146,
165, 189,205,246

cursor
See also bitmap pictures; resource
bitmap resources, 175, 180, 184
changing, 178, 179, 182, 186,187,188
command line option, 190
Desktop, 174, 178, 179, 182
new bitmaps, 180
Root window, 178
scoterm, 176, 186, 187, 188
specifying resources, 86,179,180,182,
184,187,188,190

storing new bitmaps, 183
xterm,176

cursor appearance, using resources, 407

Graphical Environment Guide

D
data bitmap, See bitmap pictures
defaultLoopModules resource, 303
defaultModules resource, 302
defaultUserType resource, 306
deiconifyKeyFocus resource, 380
deselect trigger, 311
Deskshell command language

See also Deskshell commands
assignment, 355
command substitution, 356
command terminators, 357
comments, 351
concatenation, 357
conditionals, 359
control constructs, 360
defined, 325
function arguments, 353
function definitions, 360
initialization, 354
list mark, 358
Iffitsubstitution,356
operators, 354
pipelines, 358
quoting, 350
redirections, 355
status, 361
subsets, 353
syntax, 350
variable substitution, 352
variables, 352
wildcards, 351

Deskshell commands
See also Deskshell command language
background threads, 366
environment inheritance, 365
executing actions within the same
thread, 367

how commands are executed, 361
list of all commands, 415
system thread, 365
thread global variables, 364
thread local variables, 363
thread pipeline operators, 367
thread signals, 368, 369
thread states, 362
threads, 362
variable overriding, 364
window threads, 366

directory*enableStatusBar

Desktop
See also Deskshell command language;
rule files; rules

appearance, 24
behavior, 37, 38
changing behavior temporarily, 289, 294
colors, 29,104,114,405
controlling behavior, 285, 286, 289, 301
cursors, 174, 178
defined, 12
desktop window behavior, 38
desktop windows, 289, 333
dialog box behavior, 40
directory behavior, 39,289,337
double-click duration, 201,202, 203
fonts, 30, 145, 148,404
icons, 40, 327, 328
layout, 333, 334
locking icons, 334
menus, 341
mouse triggers, 371, 372
objects, 315, 316,322
Preferences Editor, 160
Preferences Library, 25
resizing, 169
resources, 203, 373,403
Root window, 160,169
system-wide behavior, 288, 301
Treeview behavior, 39
user types, 288, 305
using the Preferences Editor, 24

Desktop menus, 342
Desktop rule files, 287, 289, 293
desktop*back*background resource, 114
desktop_layout rule, 286

See also rule files
adding icons to Desktop, 334
defined, 20
position arguments, 334
writing, 292

desktop*menubar resource, 410
devices, configuring, 41
~alog box, Desktop, changing behavior, 40
die Deskshell command, 365
directories, changing defaults, 403
directory behavior, 39

defining, 289, 292, 337
directory menus, 342
directory windows, configuring with
resources, 411

directory*enableStatusBar resource, 412

421

directory*menubar

directory*menubar resource, 412
directoryRuleFile resource, 404
disabling, scologin, 54
disk devices, configuring, 41
display

See also host machines; remote clients
access, 66, 67, 68, 71
authorization codes (xauth), 66, 68, 71, 72
command line option, 95
DISPLAY environment variable, 46, 51, 73
granting access permission, 36
host permission list, 67
managing multiple, 54, 55, 59
managing multiple with Xservers, 57
XO.hosts through X7.hosts files 59 67 69 70 ' , , ,

.Xauthority file, 69, 71
xhost command, 68, 69,70,71

DISPLAY environment variable 44 46 51 73 ' , , ,

display manager, See scologin display man-
ager
dividin~line clause, 342
do_actions_of Deskshell command, 367
documentation, guidelines, 4
do_drop_in_actions_of Deskshell
command, 367

do_menu_actions_of Deskshell command
367 '

DOS colormap, 30
double-click duration, 201, 202, 203, 204,
206

doubleClickTime resource, 206, 401
drag cursor (xdt3), 174,175
drop trigger, 311
drop_in_action clause, 312, 333, 337, 374
drop_in_actions_of Deskshell command
362 '

dynamiC file (scosession), 49
dynamic rules

See also rule files
creating, 287, 289, 294
removing menus, 348

dynamic_rule Deskshell command, 289, 348

422

E
enable_if clause, 342, 347
enableWarp resource, 392
enforceKeyFocus resource, 380
environment variable

DISPLAY, 44, 46, 51, 73
HOME, 44, 51
LANG, 44, 51
MODULEDIR,301
PATH, 44, 46, 51
XAPPLRESDIR, 88
XDTHOME,15
XDTUSERHOME, 15
XENVIRONMENT,88

examples
button binding set, 267
color palettes, 121
color resources, 123
defining directory behavior, 338
Desktop cursors, 192
determining Desktop layout, 334
key binding set, 282
keyboard configuration, 216
menus, 249
mouse configuration, 206
remote clients, 74
scoterm cursors, 194
setting fonts, 156
window geometry, 170

execshell resource, 381
exit Deskshell command, 369
exitConfirmEnabled resource, 410
exitEnabled resource, 410
exiting, the Graphical Environment, 26
exitOnClose resource, 410

F
fadeNormalicon resource, 397
fatal cursor (xdt3), 174,175
f.beep function, 223
f.circle_down function, 223
f.circle_up function, 224
f.exec function, 224
f.focus_color function, 224
f.focus_key function, 224
f.hide_iconbox function, 224
f.hide_panner function, 224
£.identify function, 224

Graphical Environment Guide

files
client resource, 14,16,88,187
Desktop rule files, 14, 17,292,301
Desktop user type files, 305
host access, 67, 69, 70
scologin configuration, 45,46,53,58
scosession configuration, 48, 49, 50
server configuration, 14,15,47
user resource, 14, 16, 88
window manager configuration, 14, 16,
221,236,238,254,257,263,270,274,279

finaLactions rule, 286,292,333,337
See also rule files

f.kill function, 225,248
floppy disk devices, configuring, 41
f.lower function, 225
f.maximize function, 225
f.menu function, 225, 242, 244
f.minimize function, 225
f.move function, 225
f.move_screen_to_client function, 225
f.nail function, 226
f.nexCcmap function, 226
f.nexCkey function, 226
f.nop function, 226, 243
f.normalize function, 226
f.normalize_and_raise function, 226
focusAutoRaise resource, 381
font resource, 409
font server, 130

See also fonts
automatically in multiuser mode, 132
configuring, 133
connection limits, 136
default font size, 134
font catalogue, 133
from scologin, 131
from startx, 132
port address, 140
S9lfontserv script, 130, 131, 132
setting font server host, 134
starting, 130
TCP ports, 132, 135

fontList resource, 145, 148,382,404
fonts

100dpi, 126
75dpi,126
See also cursor; resource
available, 138
bitmap display format (BDF), 153
changing,22,30,143,146,149

f.separator

fonts (continued)
character set, 141
command line options, 96, 149
creating aliases, 129, 151
cursor names, 176, 177
database, 126, 152, 155
font server, 130
icon title, 22, 30, 145, 148
installing new, 152
misc directory, 126
multiple font sources, 135, 136, 137
naming conventions, 127
portable compiled format (PCF), 153
previewing, 141
resources,85,148
search path, 126, 152, 155
specifying resources, 143, 145, 146, 147,
404

Speedo, 126
Type1, 126
using the Preferences Editor, 24
using wildcards, 128
X terminal, 154

fonts.alias file, 129, 151
fonts.dir file, 126
fontserv command

enable font server, 132
flush font information, 133
re-read configuration, 133
start font server, 132

foreground resource, 106, 114, 384
focinfo Deskshell command, 363, 366, 369
f.pack_icons function, 226
f.pan_activescreen function, 227
f.pass_keys function, 227
f.post_wmenu function, 227,244
f.prev_cmap function, 227
f.prev _key function, 227
f.quit_mwm function, 228
f.raise function, 228
f.raise_Iower function, 228
frameBorderWidth resource, 392
f.refresh function, 228
f.refresh_ win function, 228
f.resize function, 228
f.restart function, 228
fs client

configuring, 133
font server, 130

f.send_msg function, 228
f.separator function, 229, 242

423

f.seLactivescreen

i.set_activescreen function, 229
i.seCbehavior function, 229
i.show _iconbox function, 229
i.show _panner function, 229
fslsfonts

cOrnTInand,138,139
specifying a server, 140

f.snap function, 229
f.sorCicons function, 229
f.title function, 229,242
f.toggle_autopan function, 229

G
geometry

See also resource
cOrnTInand line option, 96, 159, 168
Desktop resizing, 160, 169
height value, 160, 162, 163, 166, 168
resource setting, 85, 159, 160, 161, 162,
163, 164, 166

width value, 160, 162, 163, 166, 168
window size and location, 159,160
xoff value, 160, 162, 163, 166, 168
yoffvalue, 160, 162, 163, 166, 168

Graphical Environment
configuration files, 14
customizing, 11,13,18,23,37,43
defined, 12

groupLoopModules, 303
groupModules resource, 302
groupUserType resource, 306
gti Deskshell command, 363

H
highlightColor resource, 106
hilight*background resource, 409
hilight*foreground resource, 409
HOME environment variable, 44, 51
host machines

See also display; remote clients
accessing, 36, 65
authorization codes (xauth), 66, 68, 71, 72
DISPLAY environment variable, 73
host permission list, 67
user equivalence, 66
XO.hosts through X7.hosts files, 67, 69, 70

424

host machines (continued)
.Xauthority file, 69, 71
xhost command, 68,69, 70, 71

HSV color model, 29, 101

I
icon

See also icon_rules; pixmaps; triggers
adding to Desktop, 327
application to launch, 41
configuring labels, 408
creating, 315, 316,322,328
defining icon behavior, 330
Desktop, 315, 327
label font, 30
locked on Desktop, 334
object, 316, 322
pictures, 323, 329
position on Desktop, 333,334
titles, 322, 330
triggers, 312
window manager, 22

iconAutoPlace resource, 395
iconBoxGeometry resource, 398
iconBoxName resource, 398
iconBoxTitle resource, 398
iconDecoration resource, 395
iconGrid*aisleWidth resource, 410
iconGrid*xOffset resource, 410
iconImageBackground resource, 384
iconImageBottomShadowColor resource,
384

iconImageBottomShadow Pixmap resource,
388

iconImageForeground resource, 384
iconImageMaximum resource, 396
iconImageMinimum resource, 396
iconImageTopShadowColor resource, 385
iconImageTopShadowPixmap resource, 388
iconPlacement resource, 396
iconPlacementMargin resource, 397
icon_rules

See also objects; rule files
assigning attributes, 328
behavior, 315
defined, 20
defining icon behavior, 286, 292
defining trigger actions, 310,330,333
drop actions for directory or desktop, 333

Graphical Environment Guide

icon rules (continued)
dr~p_in_action clause, 312, 333
icon picture, 329
icon title, 330
picture clause, 329, 331
specifying the file class, 328
title clause, 330, 331
trigger_action clause, 312, 330, 331
writing, 328

iconTrigger cursor (xdt3), 174,175
idle cursor (xdt3), 174, 175
initial_actions rule, 286, 292, 333, 337

See also rule files
instances, 83
interactivePlacement resource, 392
isRoot resource, 411

K
key binding

See also .pmwmrc/.mwmrc file; window
manager

accelerators, 272
configuring, 22, 269, 273, 275,280
context, 231,232, 276, 280
creating new, 278
default, 270, 271, 279
defined, 222, 269
key event definition, 275,280
mnemonics, 272
modifiers, 275, 280
specifying resource, 281
syntax, 270, 274
window manager functions, 223, 230,
272,276,280

key click, changing the volume, 35
keyBindings resource, 281, 401
keyboard

changing auto repeat, 35
changing key click volume, 35
server keyboard mapping, 209,211,213
window manager key bindings, 269, 273

keyboard mapping
See also server
keycodes, 209, 213,214,215
keymap table, 210,213,214,215
keysyms, 210, 211, 213, 214,215
modifiers, 209, 210, 211, 213
non-U.S. English keyboards, 210
redefining, 22

menu

keyboard mapping (continued)
scancodes, 209
.xsco.cfg file, 210, 212

keyboardFocusPolicy resource, 224, 226,
227,381

keycodes,209,213,214,215
keymap table, 210
keysyms, 210, 211, 213, 214, 215
kill Deskshell command, 369

L
LANG environment variable, 44, 51
lang file, 15 .
last_background_action Deskshell vanable,
367

limitResize resource, 392
list count Deskshell command, 358
list intersect Deskshell command, 358
local rule files (.xdtdir), 287, 289, 292
localizing, 15,303
locked_on_desktop rule, 20, 286, 292, 334

See also rule files
locking icons on Desktop, 286, 292, 334
loop modules, See modules
lowerOnIconify resource, 397

M
Maindt*geometry resource, 410
mapping

keyboard, 22, 209, 211, 213
mouse triggers, 22, 371, 372

mask bitmap, See bitmap pictures
matteBackground resource, 385
matteBottomShadowColor resource, 385
matteBottomShadowPixmap resource, 388
matteForeground resource, 385
matteTopShadowColor resource, 385
matteTopShadowPixmap resource, 388
matteWidth resource, 385
maximumClientSize resource, 392
maximumMaximumSize resource, 392
maxMotion resource, 203, 413
maxUpTime resource, 203, 413
menu

See also menu rule (xdt3); menu section
(window manager)

creating, 235, 237, 341
disabling options, 342, 347

425

menu

menu (continued)
modifying, 235,237, 341
pop-up menus, 346
pull-down menus, 345
removing, 348

menu bars, defining, 345
menu rule (xdt3)

accelerators, 344
adding menu items, 342
adding to menu bar, 345
creating a new menu, 342
defined, 20, 286
disabling options, 347
dividing_line clause, 342
enable_if clause, 342, 347
menu_item clause, 342, 343, 345
mnemonics, 344
modifying an existing menu, 342
popup command, 346
pull_off_menu clause, 342, 343, 345
removing menus, 348
selecCaction clause, 343
thick_dividins--line clause, 342
title clause, 343
using separators, 342
writing, 292, 342, 343

menu section (window manager)
See also Root menu; Window menu
accelerators, 241
accessing, 236, 243,244
adding, 240, 243
context, 231,232
creating new, 22
defined, 222, 235
f.menu function, 225,242,244
f.posCwmenu function, 227,244
f.separator function, 229,242
f.title function, 229,242
mnemonics, 241
modUfyUGg, 239, 244
submenus, 243
syntax, 236, 240
using separators, 242
window manager functions, 223, 230,
236,242,243

menu trigger, 312
menu_actions_of Deskshell command, 362
menu_item clause, 342, 343, 345
Merge, See seo Merge
message boxes, defining using resources,
413

426

message*alert*Pixmap resource, 413
message*fatal*Pixmap resource, 413
message*fyi*Pixmap resource, 413
message*greeting*Pixmap resource, 413
meta key, 260, 275
MIT-MAGIC-COOKIE authorization protocol,
68

mkfontdir command, 154
mnemonics, Desktop menus, 344
modifiers, 209, 210, 211, 213
MODULEDIR environment variable, 301
modules

auto modules, 302
changing system-wide behavior, 287,
288, 293, 301

loop modules, 302
text strings, 303

monochrome systems, See color
Motif window manager, See window man
ager

mouse
See also mouse actions; mouse trigger
mapping; scomouse

acceleration, 34, 198, 199,200
buttons, 196
double-click duration, 34, 201, 202, 203,
204,206

drag behavior, 203
left-handed use, 34,196, 197
movement, 198,199,200
threshold, 34, 198, 199,200
two-button, 196

mouse actions
window manager button bindings, 253
xdt3 mouse triggers, 309, 371, 372

mouse behavior, controlling using
resources, 413

mouse trigger mapping
action, 375, 376
context, 374
defined, 371
Desktop trigger table, 309
redefining, 22, 373
syntax, 373
trigger name, 373, 374
triggers*mapping resource, 373
using modifiers, 374

mouse triggers, mapping using resources,
414

moveOpaque resource, 393
moveThreshold resource, 393

Graphical Environment Guide

multiDrag cursor (xdt3), 174,175
multiScreen resource, 401
mwm, See window manager

N
normal*background resource, 114, 409
normal*foreground resource, 114,409

o
Object Builder, creating objects, 316
objects

See also Deskshell command language;
icon_rules; triggers

changing an action definition, 318
creating, 315
creating manually, 322
creating with Object Builder, 316
defined, 20, 315
directory, 322
icon, 322, 323
naming conventions, 322
scripts, 325, 326
trigger actions, 324
triggers, 312

.odtpref directory, 49,197,200
OSF /Motif window manager, See window
manager

p
palette resource variable, 106
Panner, See window manager
passButtons resource, 381
passSelectButton resource, 381
PATH environment variable, 44,46,51
picture clause, 329, 331
picture files, See pixmaps
pictureDirectory resource, 180, 181, 184,
185,329,404

pixmaps
See also bitmap pictures; icon
assigning, 323
bitmap /pixmap path, 33
creating, 324
default location of pixmap files, 329
defined, 31, 324
file default location, 323

pulLofLmenu

pixmaps (continued)
resources, 86
values, 386

pmwm, See window manager
.pmwmrc/ .mwmrc file

See also window manager
button bindings section, 22, 222, 254, 257,
258,263,264

creating, 16,221,238,257,263,274,279
key bindings section, 22,222,270,274,
279

menu section, 22, 222, 236, 238, 239
window manager functions, 223,230,
231,232,236,242,243,256,261,262,272,
276

pointerShape resource, 176, 188, 190
popup Desktop command, 346
pop-up menus, 346
popup_menu trigger, 312
positionlsFrame resource, 393
positionOnScreen resource, 393
precedence of

resources, 87
rules, 295

Preferences Editor
See also Preferences Library
background patterns, 24, 32
bitmap/pixmap path, 33
colors, 27
desktop window behavior, 38
dialog boxes, 40
directory behavior, 39
display access, 36
floppy disk devices, 41
fonts, 24, 30
icon behavior, 40, 41
key click volume, 35
keyboard auto repeat, 35
main Desktop behavior, 38
mouse behavior, 33
resizing the Desktop, 160,169
session exit, 26
session startup, 26
system bell, 35
tools, 41
Treeview behavior, 39
using, 23,24,37

Preferences Library, 25
See also Preferences Editor

pull-down menus, 345
pull_off_menu clause, 342, 343, 345

427

query

Q
query thread_info Deskshell command,
365,366

quitTimeout resource, 225, 401

R
raiseKeyFocus resource, 381
rcmd command, 65, 74
remote clients

See also display; host machines
accessing, 36, 65
authorization codes (xauth), 66, 68, 71, 72
display access permission, 66, 67
DISPLAY environment variable, 73
with rcmd, 65,73,74

removing, background patterns, 32
rename trigger, 311
report trigger, 311
resizeBorderWidth resource, 393
resizeCursors resource, 393
resizing the Desktop, 160,169
resource

changing defaults, 403
classes, 83
client files, 16, 88, 144, 161, 180, 187,203,
205,246,372

color, 22,85, 112, 114, 116,405
command line setting, 89,93,94,97,116,
117,118,149,159,168,190

common values, 85,86
configuring directory windows, 411
configuring icon labels, 408
controlling mouse behavior, 413
cursor, 86,179, 180, 182, 184, 187, 188,
190,407

defined, 13, 80
delimiters, 84
Desktop fonts, 404
fonts, 22,85,143,145,146,147
instances, 83
mapping mouse triggers, 414
message box appearance, 413
precedence, 87
scologin resource file, 53
server-specific files, 88, 161
specifying, 90
syntax, 80, 81
user files, 16, 88,146,165,174,183,189,
203,205,246,372

428

resource (continued)
widget hierarchy, 84
window geometry, 85, 159, 160, 161, 162,
164,166

window manager resources, 206, 245,
247,248,263,278,377

.xdefaults-hostname file, 16, 88,113,146,
165,189,205,266,281

xdt3 resources, 203, 302, 303, 373, 403
resource database

contents, 91, 92
defined, 80, 90
loading resources, 50, 88, 90
merging resources, 90, 91
removing resources, 50, 93

resource manager, 81, 89
RESOURCE_MANAGER property, 50, 90
RGB color model, 29,100,101,119
rgb command, 120
rgb.txt file, 100, 110, 119, 120
.rhosts file, 66
Root menu

adding items, 240
Client submenu, 249
modifying, 237

Root window, cursors, 178
rootMenu resource, 239, 401
rubber cursor (xdt3), 174, 175
rule files

See also Deskshell command language;
Desktop; modules; objects; rules; user
type

built-in rules, 294
changing defaults, 403
defined, 17,285
desktop rule files, 287, 289, 293
dynamic rules, 294
elements of, 295
local rule files, 287, 289, 292
precedence of, 295
processing filenames, 298
selecting the right file, 286, 287, 292
specifying file/directory pathnames, 298
structure of, 295
system rule file, 293
user rule files, 287, 288, 293
variables, 299, 313

Rule.dr file, 305

Graphical Environment Guide

rules
See also Deskshell command language;
Desktop; modules; objects; rule files;
triggers; user type

basename, 290
built-in rules, 294
canonical form, 299
coding with Deskshell, 349
desktop_layout, 20,286,292,334
dynamic rules, 287,289,348
effects in rule files, 286, 287, 292
file classes, 291
final_actions, 286,292,333,337
icon_rules, 20,286, 292, 315,328, 333
initial_actions, 286,292,333, 337
internal precedence of, 295
locked_on_desktop,20,286,292,334
nnenu, 20,286, 292, 342
patterns, 290
processing filenannes, 298, 299
scope, 286,287,289
specifying actions, 299
specifying file/directory pathnannes, 298
trigger_action, 312
variables, 313

s
saveUnder resource, 401
scancodes, 209
sea Merge, colormap, 108
sea Panner window manager, See window
nnanager

sea Wabi, colormap, 108
scoActiveBackground variable, 106
scoActiveForeground variable, 106
scoActiveTopShadow variable, 106
scoAltBackground variable, 106
scoBackground variable, 106
scobell,35
scocolor

See also color
color buttons, 29
color palettes, 104, 105, 106, 109
creating new color palettes, 28
defined, 103
deleting color palettes, 28
DOS colors, 30
grayscale monitors, 30
mixing colors, 29

scosession

scocolor (continued)
nnodifying color palettes, 28
new palettes, 111
selecting color palettes, 27
using, 27

scoForeground variable, 106
scoHighlight variable, 106
scohost

adding tennporary display access, 36
rennoving host access list, 36

scologin display nnanager
administration script, 54, 71
authorization protocol, 68,70
customizing, 53
defined, 43, 44
defining sessions, 45
disabling, 54
enabling, 54
failsafe login, 75
nnanaging servers, 43, 44,53
nnanaging X ternninals, 54, 60, 61
nnultiple servers, 54, 55
nnultiple servers with Xservers, 57
rennote displays, 59
starting, 54
startup behavior, 45
stopping, 54
using XDMCP, 55
.Xauthority file, 69, 71
Xconfig file, 53,70
Xreset file, 45, 46
Xresources file, 53
Xservers file, 53, 58,70
Xsession file, 45
Xstartup file, 45

sconnouse
See also nnouse
acceleration, 34, 198, 199,200
configuring nnouse behavior, 33
double-click duration, 34, 202
left-handed use, 34, 196, 197
threshold, 34, 198, 199,200

scopaint,178,324
scosession

configuration files, 48, 49
configure option, 51
configuring the session, 26
defined, 44, 48
executable scripts, 197,200
help option, 51
nnanaging sessions, 44, 47

429

scoterm

scosession (continued)
starting, 50
stopping, 50,51

scoterm terminal emulator
cursors, 176, 186, 187, 188
fonts, 128

scoTopShadow variable, 106
screens resource, 402
select trigger, 311
select_action clause, 343
selectColor resource, 106
server

See also display
colormap, 100, 107, 108
default session, 43, 46
defined,ll
keyboard mapping, 209, 211, 213
remote clients, 65, 73, 74
resource files, 88, 144, 161
.startxrc file, 15, 47
using scologin, 54, 55

session manager, See scosession
show Feedback resource, 394
showrgb command, 101, 120
sleep Deskshell command, 363
source Deskshell command, 367
specifying

command line options, 93,94,116,117,
118,149,159,168,190

display, 73,74
resources, 81, 85, 87, 88, 90

starting
Graphical Environment, 26,43
scologin, 54

startupKeyFocus resource, 382
startx script, 44, 46, 47
.startxrc file, 15, 47
static file (scosession), 49
stopping

scologin, 54
the Graphical Environment, 26

sys.startxrc file, See .startxrc file
system rule file (xdtsysinfo), 293,301

See also modules
system.mwmrc file, See .pmwmrc/.mwmrc
file

system.pmwmrc file, See
.pmwmrc/.mwmrc file

systemRuleFile resource, 404

430

T
thick_dividingJine clause, 342
thread_name Deskshell variable, 365
threads

See also Deskshell commands
background threads, 366
defined,362
environment inheritance, 365
executing actions within the same, 367
global variables, 364
local variables, 363
pipelines, 367
signals, 368, 369
states, 362
system thread, 365
variable overriding, 364
window threads, 366

thresholdDownTime resource, 203, 413
title clause, 330, 331
tools, configuring, 41
topShadowColor resource, 106, 114,385,
406

topShadow Pixmap resource, 388
transientDecoration resource, 390
transientFunctions resource, 391
translation tables, 269
Treeview desktop, customizing behavior
39 '

trigger table, 309
triggecaction clause, 310, 312, 330, 331, 374
triggers

activate, 310,311
alCactivate, 311
alt_drop,311
alCrename, 311
alt_report, 311
alCselect, 311
click/hold variables, 313
defined, 309, 310
deselect, 311
drag, 311
drag variables, 314
drop, 311
dynamic, 311
hold,312
icon triggers, 312,330
match all drag triggers, 311
match all hold triggers, 312
match all static triggers, 311
menu,312

Graphical Environment Guide

triggers (continued)
menu variables, 314
popup_menu, 312
rename, 311
report, 311
select, 311
static, 311
using resources for mapping mouse, 414
variables, 313, 314
window background triggers, 312

triggers*mapping resource, 373, 414
troughColor resource, 106

u
useClientIcon resource, 397
useIconBox resource, 398
user equivalence, 66
user rule files (.xdtuserinfo), 287,288,293
user type

changing behavior, 287, 288, 293, 305
creating, 306
determining, 306
Rule.dr file, 305
sea. user, 305

userLoopModules,303
userModulesresource,302
userRuleFile resource, 404
userType resource, 306

w
Wabi, See sea Wabi
widget hierarchy, 84
window background (xdt3), triggers, 312
window height, 160, 162, 163, 166, 168
window manager

behavior, 377
bindings, 219, 222,253,257
button bindings, 22
colors, 29, 104, 114
component appearance, 377
component arguments, 378
configuration file, 219
defined, 12
double-click duration, 201, 204, 206
fonts, 145, 148
bunctions,223,230,236,242,243,256,261,
272,276

icon, 22

.Xdefaults-hostname

window manager (continued)
key bindings, 22, 269, 273
menus, 22, 219, 222,235, 237
pixmap values, 386
resources, 206, 245, 247,248, 263, 278, 377
Root menu, 235, 237
Root window, 178
specific-appearance, 377
Window menu, 235, 237
window size and location, 159,160

Window menu
adding, 240
modifying, 237
replacing default, 244, 245

window size and location, See geometry
window width, 160, 162, 163, 166, 168
windowMenu resource, 227, 239,244,245,
246, 247, 402

wMenuButtonClick resource, 248, 402
wMenuButtonClick2 resource, 248, 402
writing

Deskshell scripts, 349
rules, 285, 286, 292, 301,328

x
X client, See client
x coordinate offset (xoff), 160, 162, 163, 166,
168

X resource, See resource
X server

See also server
multiple fonts, 136
setting font server host, 134

X terminals
configuring, 60, 61
restricting access, 66
running clients, 63
using scologin, 54,60,61
XDMCP, 54, 60, 61, 67

XO.hosts through X7.hosts files, 59,67,69,
70

XAPPLRESDIR environment variable, 88
xauth command, 71, 72
.Xauthority file, 69, 71
Xconfig file, 53,70
.Xdefaults-hostname file, 16, 88, 113, 146,
165,189,205,246,266,281

431

XOesktop3

XDesktop3 file, 16, 88, 174, 180, 183,203,
372

xdm, See scologin display manager
XDMCP,54,55, 60, 61
xdt3, See Desktop
.xdtdir rule files, 289, 292
XDTHOME environment variable, 15
xdtsysinfo rule file, 293, 301

See also modules
XDTUSERHOME environment variable, 15
.xdtuserinfo rule files, 288, 293
XENVIRONMENT environment variable, 88
Xerrors file, 53
xfd command, 141
xfontsel command, 139
xGranularity resource, 382
xhost command, 68, 71
xinit,47
xlsfonts command, 138
xmodmap command, 197, 198,211,212,
213,215

xrdb client
-edit, 92
-load, 93
-merge, 90, 91
-query, 91
-remove, 93
using, 50, 80, 88, 90, 161

xrdbcomp,48
Xreset file, 45,46
Xresources file, 53
Xsco

requesting scologin with XDMCP, 55
XDMCP options, 55

.Xsco.cfg file, 210, 212
xsconfig.sh, 210, 212
Xservers file, 53, 58, 70

managing multiple displays, 57
Xsession file, 45
xsetcommand,137, 152, 155,200,201
xserrootcommand,178
Xstartup file, 45
xterm terminal emulator, 128, 176

y
y coordinate offset (yoff), 160, 162, 163, 166,
168

yGranularity resource, 382
yni Deskshell command, 369

432 Graphical Environment Guide

1 May 1995

AU20009POOl

