

Configuring window manager key bindings

Step 5: Restarting the window manager
After you create your new key binding set, you must restart the window man­
ager so your changes can take effect. Restart the window manager by select­
ing the Restart Window Manager option from the Root menu. The Root menu
is accessed by pressing and holding mouse button 1 on the Desktop back­
ground or, if the Desktop is not running, in the Root window.

Verify that the new key binding set was created correctly by testing your new
key sequences in the appropriate contexts. The key bindings are effective
immediately after the window manager is restarted.

Example of configuring key bindings

282

This section provides a comprehensive example that ties together some of the
concepts and procedures discussed in this chapter.

The following example assumes that you are using the default pmwm mode
of the window manager, that you want to create a new key binding set for
your local environment, and you want to name the set #MyKeyBindings".
MyKeyBindings consists of four key binding definitions that produce the fol­
lowing results:

• Pressing (Shift)(Esc) with the keyboard input focus on either an icon or win­
dow posts the menu named for the Pmwm*windowMenu resource specifi­
cation. (See line 6 of the following sample file.)

• Pressing (Ctrl)(Space) with the keyboard input focus on either an icon or
window, or on the Root menu, posts the menu named "MyRootMenu".
(See line 7 of the following sample file.)

• Pressing (Alt)(Esc) with the keyboard input focus on either an icon or win­
dow, or on the Root menu, sets the keyboard input focus to the next icon or
window in the set of icons or windows managed by the window manager.
(See line 8 of the following sample file.)

• Pressing (Alt) (Shift)(Esc) with the keyboard input focus on either an icon or
window, or on the Root menu, sets the keyboard input focus to the previ­
ous icon or window in the set of icons or windows managed by the win­
dow manager. (See line 9 of the following sample file.)

To create this new set:

1. Open the .pmwmrc file in your $HOME directory for editing. (If .pmwmrc
does not already exist, create it by copying /usr/lib/Xll/system.pmwmrc to
.pmwmrc in your $HOME directory.)

2. Locate the #DefaultKeyBindings" section in the .pmwmrc file and place a
copy of the section underneath the default definitions. You can use this
copy as a template for your new key binding set.

Graphical Environment Guide

Example of con figuring key bindings

3. Rename "DefaultKeyBindings" to "MyKeyBindings".

4. Edit the template so that it looks like this:

1 #
2 # key binding descriptions
3 #
4 Keys MyKeyBindings
5 {
6
7

8
9

10

Shift<Key>Escape
Ctrl<Key>space
Alt<Key>Escape
Alt Shift<Key>Escape

icon I window
icon I window I root
icon I window I root
icon I window I root

f.post_wmenu
f.menu MyRootMenu
f.next_key
f.prev_key

5. Define the keyBindings resource to announce the new key binding set to
the window manager. Specify the resource in the $HOME/.Xdefaults­
hostname file, where hostname is the name of the host, or machine, where
the window manager is running. The resource specification should look
like this:

Pmwm*keyBindings: MyKeyBindings

6. Restart the window manager so that the new key binding information is
implemented.

283

Configuring window manager key bindings

284 Graphical Environment Guide

Chapter 16

Customizing the Desktop with rules

The behavior and appearance of the Desktop are not fixed, and are deter­
mined by files which you can alter to provide a different behavior or appear­
ance. These files are called the Desktop "rule files". Each rule file consists of a
sequence of "rule clauses".

For maximum flexibility, the physical appearance and design of the Desktop
can also be altered by changing the characteristics specified in the Desktop
resource files. See Appendix B, "Desktop resources" (page 403) for more infor­
mation.

Specifically, this chapter describes:

• rule clauses (page 286)

• the scope of rules (page 286)

• the effect of rules in different rule files (page 292)

• rule file precedence (page 295)

• rule file structure (page 295)

• the way filenames are processed in rules (page 298)

285

Customizing the Desktop with rules

Rule clauses

There are six different types of rule clauses, each dealing with a different
aspect of the Desktop's configuration. These are:

• desktop_layout

• icon_rules

• initial_actions

• locked_on_desktop

• menu

For example, icon_rules clauses define the behavior of an icon in the Desktop,
or the action when the user manipulates it in a particular way.

See also:

• Chapter 21, "Configuring icons" (page 327)

• Chapter 22, "Configuring Desktop windows" (page 333)

• Chapter 23, "Configuring directory windows" (page 337)

• Chapter 24, "Configuring Desktop menus" (page 341)

• Chapter 20, "Creating objects for the Desktop" (page 315) for an extensible way to
configure icon behavior and appearance

• desktop_layout, icon_rules, initiaCactions, locked_on_desktop, menu, and
final_actions in the xdt3(XC) manual page

Defining the scope of rules

286

It is possible to provide rules that will apply to all things of one type, such as
all the directory windows or all users of the system, by defining an appropri­
ate rule clause in a system-wide module. More usually, you will want to limit
the effect of your rules to certain icons, or certain users on the system. This is
referred to as defining the "scope" of the rules.

Usually, the location of the file containing a rule determines its scope. For
example, you can provide special behavior for one particular user by provid­
ing rule clauses in a suitable file in that user's home directory.

Graphical Environment Guide

Defining the scope of rules

There are two essentially different ways of specifying the scope of a rule:
"implicitly" and "explicitly". You can specify the scope implicitly by choosing
the location of the file containing the rule. However, for icon_rules clauses
you can also specify the scope explicitly, by specifying a pattern that matches
the files or directories to which you want the rule to apply.

In some cases these methods of specifying the scope are interchangeable. For
example, you could write a rule to apply to all the files in one directory using
either of the following two methods:

• provide an icon_rules clause matching all files, and put it in a local rule file
in the directory to be affected

• provide an icon_rules clause matching files with the appropriate path­
name, and put it in a system-wide module or a user rule file

See also:

• "Specifying scope implicitly" (this page)

• "Specifying the scope explicitly" (page 289)

Specifying scope implicitly

You can specify the scope implicitly by choosing where you locate the rule:

all users on the system use a system-wide module (page 301)

some users

one user

the icons in one directory

the icons on a desktop

dynamically

use a module specified for a particular UNIX
group ill, or a custom user type (page 305)

use a user rule file (page 288) in that user's home
directory

use a local rule file (page 289) in that directory

use the desktop rule file (page 289) for that desk­
top

use dynamically loaded rules (page 289)

287

Customizing the Desktop with rules

288

The contents of user rule files, modules, user type rules, and the system rule
file are only examined when the Desktop starts or after the Deskshell com­
mand reset.

See also:

• "Changing the behavior for all users" (this page)

• "Changing the behavior for different types of user" (this page)

• "Changing the behavior for a single user" (this page)

• "Changing the behavior of a directory" (page 289)

• "Changing the behavior of a desktop" (page 289)

• "Changing behavior dynamically" (page 289)

Changing the behavior for all users
To provide custom rules for all users, you should use a module. You should
not edit the system rule file.

See Chapter 17, "Using Desktop modules" (page 301) for more information.

Changing the behavior for different types of user
To provide rules for a particular type of user, create a user type.

See Chapter 18, "Defining Desktop user types" (page 305) for more informa­
tion.

Changing the behavior for a single user
To provide rules which will apply to a specific user on the system, you should
create a user rule file in that user's home directory. The name used for user
rule files is, by default, named .xdtuserinfo.

User rule files allow you to give each user's desktops a different appearance
and behavior. For example, for advanced users you can define short cuts for
all their frequently-used operations, whereas for less experienced users you
can provide a simpler system in which they are less likely to make mistakes.

If you have a large number of users of a particular type, you may like to con­
sider creating a new user type.

See also:

• Chapter 18, "Defining Desktop user types" (page 305)

Graphical Environment Guide

Defining the scope of rules

Changing the behavior of a directory
To provide different behavior for files in one directory, you should include
rules in a local rule file in that directory. The name of the local rule file is
.xdtdir/lCIT, where, by default, ICTT is set to en_US.

With local rule files you can define special behavior for items within specific
directories. For example, an archiving directory could be created which would
compress any file dragged into its directory window.

Changing the behavior of a desktop

To define the appearance and behavior of desktops, you should provide rules
in the desktop rule file. Generally, these rules specify which files and direc­
tories are on the desktop, and what their positions are. The desktop rule file
has the same name as the desktop, with the extension .dt.

The contents of desktop rule files are only examined when the file is loaded;
subsequent changes are ignored until the next time that desktop is opened.
When a desktop is closed, the rule file is automatically updated to reflect any
changes in icon positions.

Changing behavior dynamically
To change the behavior of the Desktop dynamically, you can load a rule using
the dynamic_rule Deskshell command. Dynamic rules cannot be changed
once loaded, but can be unloaded when no longer required.

See also:

• dynamic_rule in the deskcommands(XC) manual page

Specifying the scope explicitly

For icon_rules clauses, you specify the scope of the rule explicitly by provid­
ing a specification that matches the files or directories in which you are
interested.

289

Customizing the Desktop with rules

290

The format of the icon_rules clause is:

pattern [/class]
{

clauses applying to specified files

The specification consists of two parts:

• a pattern, which specifies the names of files or directories to which you
want the rules to apply, using wildcards to select groups of files

• an optional class, which allows you to filter out certain categories of file on
the basis of the ownership permissions, or the type of file

See also:

• "Patterns" (this page)

• "Classes" (page 291)

Patterns
Patterns look like filenames or pathnames, but can contain certain special
characters or wildcards. There must be at least one space or newline before
specifying a class.

The basename of a pattern can include the following wildcard characters:

?

*

[chars]

any single character. For example, a?c includes the files aac, abc and
so forth, but not the file abbc.

any sequence of characters, including none. For example, a*c
includes the files ac, abc, acbc and so forth.

anyone of the specified set of characters. For example, [abc]d
includes the files ad, bd and cd but no others.

[!chars] none of the specified characters. For example, [!a]bc includes bbc, cbc
and so forth, but not abc.

These patterns can be combined. For example, [!A]* means any file beginning
with a character other than A.

Graphical Environment Guide

Defining the scope of rules

See also:

• "Relative patterns" (this page)

• "Absolute patterns" (this page)

• "Rule file precedence" (page 295)

• basename in the deskcommands(XC) manual page

Relative patterns

If the pattern does not begin with a " / ", it is a LLrelative pattern", which can
match files anywhere in the system. The pattern cannot include" / ".

Rules following relative patterns in a local rule file apply to files in the direc­
tory that match the pattern. Rules following relative patterns in all other rule
files apply to all files whose basenames match the pattern.

Absolute patterns

If the pattern begins with a " /", it is an L/absolute pattern", which only
matches files in a specific directory.

Absolute patterns cannot occur in local rule files. Wildcards can only be
included after the last" /" in an absolute pattern.

Rules following absolute patterns apply to files in the directory given by the
pattern up to the last" /", and whose basename matches the part after the last
" /". These rules take precedence over those following relative patterns in any
rule file.

Classes
Classes are used to represent the properties of files in a concise form. These
properties fall into the following six sets:

• file type

• execute permissions

• read/write permissions

• ownership

• symbolic

• variation class

291

Customizing the Desktop with rules

A file has one property from each set. The properties are each represented by
a character, so that the class of a file consists of exactly six characters. The
Desktop always specifies classes in upper case, though it accepts classes in
either case. For example, an executable file might have the full class
definition:

FXWM-O

The classes restrict the group of files affected by the subsequent clauses, and
so omitting a specifier from one set of options will match all the alternatives.

The following examples show some of the most useful class specifications:

none everything

D directories

F files

FE executable files

FX files executable by the user

FN data files

FNW data files that the user can alter

FNR data files that the user can read

See also:

• fileclass in the deskcommands{XC) manual page for details on the different class
characters, and how to read the class of a file

Effect of rules in different rule files

292

The relationship between the different types of rule file, and the rule clauses
they can contain, is shown below.

• Local rule files:

icon_rules affect icons in the directory containing the rule file

locked_on_desktop ignored

desktop_layout ignored

initial_actions

final_actions

menu

occur when the directory is opened

occur when the directory is closed

available in the directory containing the rule file

Graphical Environment Guide

Effect of rules in different rule files

• Desktop rule files:

icon_rules affect icons on the desktop

locked_on_desktop applies to the desktop

desktop_layout applies to the desktop

initial_actions

finaLactions

menu

• User rule files:

icon_rules

occur when the desktop is opened

occur when the desktop is closed

available on the desktop

affect all of the user's icons

locked_on_desktop applies to the main Desktop.

desktop_layout applies to desktops not already holding a
desktop_layout clause

initial_actions

finaLactions

menu

occur when the Desktop starts (after the system rule
file's initial_actions)

occur when the Desktop exits (before the system rule
file's finaLactions)

available to all directories and desktops

• System rule file, user type rules, and modules:

affect all icons

locked_on_desktop applies to the main Desktop

desktop_layout applies to desktops not already holding a
desktop_layout clause

initial_actions

menu

occur when the Desktop starts (before the user rule
file's initiaLactions)

occur when the Desktop exits (after the user rule
file's finaLactions)

available to all directories and desktops

293

Customizing the Desktop with rules

294

• Dynamic rules:

icon_rules affect all icons while loaded

locked_on_desktop apply to the main Desktop

desktop_layout

initiaLactions

finaLactions

menu

• Built-in rules:

applies to desktops not already holding a
desktop_layout clause

occur when the rule is installed, if the -x option is
used when loading the rule

occur when the rule is removed, if the -x option is
used when unloading the rule

available to all directories and desktops

icon_rules affect all icons

locked_on_desktop none

desktop_layout none

initial_actions none

finaLactions none

menu available to all directories and desktops

See also:

• icon_rules, locked_on_desktop, desktop_layout, initiaCactions, finaCactions,
and menu in the xdt3(XC) manual page

Graphical Environment Guide

Structure of rule files

Rule file precedence

The rule files are searched in the order listed below:

1. Absolute patterns in:

• desktop file, if the file or directory is on a desktop

• dynamic rules, in the order specified when they are loaded

• user rule file

• system rule file, user type rules, and modules

• built-in rules

2. Relative patterns in:

• local rule file

• desktop file, if the file or directory is on a desktop

• dynamic rules, in the order specified when they are loaded

• user rule file

• system rule file, user type rules, and modules

• built-in rules

See also:

• "How Deskshell commands are executed" (page 361)

• initial_actions and finaCactions in the xdt3(XC) manual page

Structure of rule files

Rule files are text files, and can be created and edited using any suitable text
editor, such as vi or scoedit.

Rule files consist of sequences of "clauses". Each clause can have one of the
following two forms:

keyword=value ;

or

keyword { body } [;]

295

Customizing the Desktop with rules

296

Each rule clause in a rule file starts with a keyword specifying what type of
rule it is. The keyword may have an abbreviation. Each keyword is typically
followed by either a value, or a block enclosed in matching curly brackets con­
taining further clauses.

In the second form the semicolon is optional. The body is normally a
sequence of commands.

Rule files are block structured like the programming languages C or Pascal,
and in general the layout is not important. For example, the following two
rules are equivalent:

icon_rules {* ID{picture=dir.px;}* IF{picture=file.px;}}

and:

* ID

picture=dir.px

* IF

picture=file.px

The recommended layout, shown in the second example above, helps clarify
the structure of the rule, and makes it easier to match pairs of brackets. This
style of layout will be used for all the examples in this guide.

Within a rule file you can include:

• other rule files with %+filename+

• the values of UNIX environment variables with %$variable$

• comments with %11

Graphical Environment Guide

Structure of rule files

To illustrate the characteristics of a typical rule, look at the following simple
icon_rules clause, which defines the characteristics of an Edit icon:

Edit IF
{

picture=edit.px;
title=Editor;
trigger_action: drop
{

edit -merge $dynamic_args

The rule is introduced by the keyword icon_rules. This specifies it as a com­
mand to determine the behavior of an icon or group of icons.

The icons to which the command applies are defined by the construct Edi t
IF, where IF denotes files. In this case the rule applies to any file with the
filename Edit.

The picture command specifies the file containing the picture for the icon, and
the title command defines its title.

The trigger_action command defines what happens when the user performs
an action on, or "triggers", an icon in a particular way. In this case the trigger
"action" is drop, which occurs when the user drops one or more icons onto
this icon using mouse button 1. This is followed in curly brackets by the
action to be carried out under the specified circumstances.

Further examples of rules are given in the xdt3(XC) manual page. The default
system rules for your system can be found in
/usr/lib/Xll/IXI/XDesktop/ruleslsystem/xdtsysinfo. Please do not make any
changes to this file, as they will not be supported if you later choose to
upgrade. See Chapter 17, "Using Desktop modules" (page 301) and Chapter
18, "Defining Desktop user types" (page 305) for information on how to con­
figure system-wide Desktop behavior without modifying the system rule file.

See also:

• %+filename+, %$variable$, and %11 in the deskshell(XC) manual page

• drop, picture, title, and trigger_action in the xdt3(XC) manual page

297

Customizing the Desktop with rules

Processing filenames in rules

This section discusses how filenames are represented in rule file commands,
and describes the commands for manipulating filenames.

See also:

• "Referring to file and directory names" (this page)

• "Canonical form" (page 299)

• "Filename processing commands" (page 299)

• "Specifying actions" (page 299)

Referring to file and directory names

298

When a file or directory is referred to in the Desktop, its name may be used in
four ways:

absolute pathname the full name of the file or directory, which always
begins with a slash

basename the name of the file/directory within its directory. It is
the part of the absolute pathname following the last
slash. In addition, the file or directory name's "exten­
sion" is the part of the basename from the last dot.

dirname the name of the directory holding the file or directory. It
is the part of the absolute pathname preceding the last
slash.

relative pathname the path to a file or directory, starting from your home
directory

For example, the various names of the file /userlfred/work/letter.ed are:

absolute pathname /user/fred/work/letter.ed

basename letter.ed

extension .ed

dirname /user/fred/work

relative pathname work/letter

I NOTE There is one special case: the dirname of" /" is /. (slash-dot), and its
basename is / (slash).

Graphical Environment Guide

Processing filenames in rules

Canonical form

In representing filenames, "." represents the current directory and " .. "
represents the parent directory. The "canonical form" eliminates these sym­
bols from the pathname to represent the pathname without any redundancy.

Filename processing commands

These commands perform operations on each of a list of filenames. If they are
not used in a list substitution construct of the form '(...), then the results are
sent to standard output, separated by the value of the first string in the vari­
able ofs if there is more than one argument.

absreadlink absolute pathname of the value of a symbolic link

basename basename of its argument

canonical argument converted to canonical (non-redundant) form

dimame canonical form of the directory of its argument

extension extension of its argument

fileclass class of its argument

followlink absolute pathname of the final destination of a symbolic link

readlink contents of a symbolic link

relativepath pathname relative to the user's home directory

unextended canonical form of the argument with its extension removed

See also:

• 1(•••) and ofs in the deskshell(XC) manual page

Specifying actions

In the example in "Structure of rule files" (page 295), the action is a single
command to run the Edit program with suitable arguments, depending on the
files that were dragged onto its icon.

A list of the names of the files dragged onto the icon is provided in the vari­
able dynamic_args. So, for example, if the icons chapterl and chapter2 were
dragged onto the Edit icon the action would be to run the command:

edit -merge chapterl chapter2

See also:

• Chapter 19, "Defining Desktop triggers" (page 309) for more information about
defining actions

• dynamic_args in the deskshell(XC) manual page

299

Customizing the Desktop with rules

300 Graphical Environment Guide

Chapter 17

Using Desktop modules

To provide rules that apply to all users on the system, use a system-wide
"module". Modules are sets of rules that have the same effect as if they were in
the system rule file. You should not edit the system rule file itself.

Using modules provides the following advantages:

• you do not need to understand the system rule file

• your own sections are separated from others, making them easier to sup­
port

• it is easier to replace or update a module than to maintain an edited system
rule file

• modules can be specified for individual users or UNIX groups, using
resources

The MODULEDIR environment variable specifies which directories are
searched for modules. By default, this includes
jusr/lib/Xll/IXI/XDesktop/rules!modules (for system-wide modules) and
$HOME/.xdt_dir/modules (for your own custom modules).

301

Using Desktop modules

To specify modules for a user or UNIX group, the system administrator should
set the following system-wide resources, typically in the default preferences
file for the appropriate user type:

• XDesktop3.Rules.defaultModules: modulel module2 •..
The modulel, module2 modules are loaded for all users.

• XDesktop3.Rules.group_ID.groupModules: modulel ...
The modules are only loaded for those users in the UNIX group group_ID
(for example, 100). The group must be specified in numeric form, and not
by any symbolic group name.

• XDesktop3.Rules.usemame.userModules: modulel
The modules are loaded only for the user username.

In addition to the modules described here, there are two special types of
module: Llauto" and Llloop".

See also:

• " Auto modules" (this page)

• "Loop modules" (this page)

• "Text displayed by modules" (page 303)

• Chapter 18, "Defining Desktop user types" (page 305)

Auto modules

These modules are loaded automatically, per the values of the resources
specified in Chapter 17, LlUsing Desktop modules" (page 301). Auto modules
are distinguished by the suffix .auto.

Loop modules

302

These modules are performed periodically within a background loop. This
loop is run at start-up time and then every n seconds, where n is defined by
the XDesktop3.Rules.loopDelay resource.

Loop modules are distinguished by the prefix Loop_.

You should keep loop modules short. For example, the Desktop uses a loop
module for a directory contents checker. If you want a loop module to run
every ten times the main loop is run once, for example, you can use a counter
within the module.

Graphical Environment Guide

Text displayed by modules

The system administrator can specify loop modules on a per user or per
group basis, using the following system-wide resources:

• XDesktop3.Rules.defaultLoopModules

• XDesktop3.Rules.group _ID.groupLoopModules

• XDesktop3.Rules.user _name.userLoopModules

Text displayed by modules

All text strings displayed by a module should be stored in the file
module/lCTI', where II is a two-character code for the language (as defined by
the ISO 639 standard) and IT is a two-character code for the territory (as
defined by the ISO 3166 standard). By default, the text strings are located in
module/en_US.

The file should contain a number of Deskshell variable assignments. The rules
of the module should refer to the variable names to determine what text to
display.

303

Using Desktop modules

304 Graphical Environment Guide

Chapter 18

Defining Desktop user types

You may need to support users that have differing UNIX experience levels, or
otherwise configure the Desktop for a variety of user types. The Desktop pro­
vides a #user type" mechanism to allow you to do this.

All user type configuration files are kept within the main Desktop rules direc­
tory, /usr/lib/Xll/IXI/XDesktop/rules. Each user type has its own subdirectory
with name UserType.user, for example seQ. user.

A user type directory must contain a file called Rule.dr, which holds the
default rules for this user type. The Rule.dr file can read and manipulate any
files it needs to. For example, within the SeQ.user user type directory, you
may find the following:

Rule.dr the main rule file for this user type, which is treated as if it were
part of the system rule file

menus.dr a rule file used to set up all the menus for this user type

Main.dt the file used for the default main Desktop for each user of this type

objects a subdirectory containing the objects used by default for each user
of this type

ZCTT.prf The default preferences file for this user type, in the language ZCTT,
where II is a two-character code for the language (as defined by the
ISO 639 standard) and IT is a two-character code for the territory
(as defined by the ISO 3166 standard). By default, the SeQ.user user
type provides the en_US.prf file.

305

Defining Desktop user types

ICIT

See also:

The language file containing all the text strings used for this user
type, in the form of Deskshell variable assignments. The rules of
the user type should refer to the variable names to determine what
text to display.

• "Creating a new user type" (this page)

• "Determining a user type" (this page)

Creating a new user type

To create a new user type, copy an existing user type and modify the copy. It
is important to remember to replace all instances of the old user type name
(e.g. SeQ) in all the files with the new name, to ensure that the correct files are
used.

To specify the modules to use for this user type, use lines in the appropriate
preferences files (i.e., en_US.prfin the seQ. user directory) similar to:

irl 'XDesktop3.Rules.defaultModules: modules ... '
irl 'XDesktop3. Rules .group_ID. groupModules: modules ... '
irl 'XDesktop3. Rules. user_name. userModules: modules ... '

You can set any of the resources used for modules. These resource lines
should contain the full list of modules to be used for this user type; you may
need to examine the default Desktop resource file to discover the modules
used for the existing user type.

See also:

• "Changing the behavior for all users" (page 288)

• irl in the deskcommands(XC) manual page

Determining a user type

Three resources are checked to determine the user type assigned to each user:

1. XDesktop3.Rules.user _name.userType

2. XDesktop3.Rules.group _ID.groupUserType

3. XDesktop3.Rules.defaultUserType

If none of these are set, then the user type "SCO" is used.

308 Graphical Environment Guide

Determining a user type

To assign a user a particular user type:

1. Edit the user's .Xdefaults-hostname file, where hostname is the name of the
machine on which the client is running, to include the resource:

XDesktop3.Rules*userType: UserType

2. Include the following line in the preferences files for that user type:

irl 'XDesktop3.Rules*userType: llserType'

3. Remove the user's $HOME/.xdt_dir directory, if it exists.

The userType resource is set in the user's .Xdefaults-hostname file to make the
initial switch to the new user type. After that, the setting is done as part of the
preferences file in the user type directory, and it does not matter if the user
removes the line from their personal resource file.

307

Defining Desktop user types

308 Graphical Environment Guide

Chapter 19

Defining Desktop triggers

A trigger is a general-purpose method for performing an action specific to a
particular icon or window. For instance, if you want an icon to do something
when you double-click on it, you should define an action for the activate
trigger for that icon.

Some triggers correspond directly to an action by the user, such as clicking
once on an icon to select it (the select trigger). These triggers are defined in the
Desktop #trigger table", which is specified by the Desktop trigger mappings
resource. Triggers not defined in the trigger table are commonly used for
higher-level functions such as requesting help on an icon, or printing.

This chapter describes:

• what triggers are (page 310)

• the different types of triggers (page 310)

• variables that can be set by triggers (page 313)

See also:

• Chapter 26, "Mapping mouse triggers for the Desktop" (page 371)

• Appendix B, "Desktop resources" (page 403)

309

Defining Desktop triggers

About triggers

When a user interacts with a Desktop icon or window background, the
interaction is looked up in the trigger table to derive the trigger name corre­
sponding to that action.

For example, if a user double-clicks on an icon with mouse button 1, this is
converted to the trigger name activate in the trigger table. The Desktop then
executes the command:

actions_of activate

Arguments are set to the appropriate values for the triggered icon and the
icon's location.

The actions_of command searches the icon_rules clauses that match the trig­
gered icon for the following clauses:

• trigger_action: activate

• trigger_action: s*

• trigger_action: *

The above clauses specify an exact match, a match against any static trigger,
and a match against any trigger at all, respectively.

The first match found causes a new thread to be created to execute the script
specified in the trigger_action clause.

See also:

• "Threads" (page 362)

• actions_of in the deskcommands(XC) manual page

• "*", s*, activate, icon_rules, and triggecaction in the xdt3(XC) manual page

Types of trigger

The three different types of trigger found in the trigger table are defined as fol­
lows:

static trigger the icon or window background is clicked or double-clicked
without moving the mouse

dynamic trigger the icon is dragged and dropped onto another icon or win­
dow background

hold trigger the mouse button is held down on an icon or window back­
ground

310 Graphical Environment Guide

Types of trigger

See also:

• "Static triggers" (this page)

• "Dynamic triggers" (this page)

• "Hold triggers" (page 312)

• "Icons and windows" (page 312)

Static triggers

Clicking once is called "single-clicking". Clicking twice in quick succession,
without moving the mouse pointer, is called "double-clicking" or "activating".
Single and double clicks are referred to as "static" triggers because the mouse
does not move during the action.

To make the rules as portable as possible, the static triggers are pre-defined
with names as follows:

select

alCselect

rename

alt_rename

activate

alt_activate

deselect

report

alt_report

s*

Dynamic triggers

single-click on an icon picture

single-click on an icon picture with mouse button 2

single-click on an icon title

single-click on an icon title with mouse button 2

double-click on an icon

double-click on an icon with mouse button 2

single-click on a window background

double-click on a window background

double-click on a window background with mouse button 2

matches any static trigger

The action of dragging one or more icons and dropping them onto another
icon is called a "dynamic" trigger, to contrast it with a static trigger. This is
also sometimes referred to as a "drag" trigger.

311

Defining Desktop triggers

The dynamic triggers are pre-defined as follows:

drop drop one or more icons on an icon or window background

alt_drop drop one or more icons on an icon or window background with
mouse button 2

d* matches any drag trigger

Hold triggers

"Hold" triggers activate an icon or directory window when the user presses
one of the mouse buttons and holds it down without moving the pointer.

The hold triggers are pre-defined as follows:

menu hold mouse button 3 on an icon picture or title

popup_menu hold mouse button 3 on a window background

h* matches any hold trigger

Icons and windows

312

You will notice that some triggers affect an icon, and some affect the back­
ground of a window. A slightly different command is used to define the
actions to perform in each case.

Icon triggers require a corresponding trigger_action clause in an icon_rules
clause matching that icon. Background triggers require a drop_in_action
clause in an icon_rules clause for that window.

Triggers requiring a drop _in_action clause are:

• drop and alt_drop (when referring to windows, not icons)

• report and alt_report

• deselect

All other triggers use a trigger_action clause.

See also:

• drop_in_action, icon_rules, and trigger_action in the xdt3(XC) manual page

Graphical Environment Guide

Variables

Variables

The Desktop sets some variables when a trigger occurs. You can use these in
rule files to find out what was triggered and how it was triggered.

You can also trigger things using commands, just as if the user had performed
the appropriate action. The same variables are set in this case.

The following sections describe the circumstances under which these vari­
ables are set:

• "Click or hold" (this page)

• "Drag" (page 314)

• "Menu selection" (page 314)

See also:

• trigger, d_desktop, s_desktop, d_position, s_position, dynamic_args, and
static_arg in the deskshell(Xc) manual page

Click or hold

When the user clicks or holds on an icon or window background, the follow­
ing variables are set to the values shown below.

trigger trigger name

static_arg

s_position

dynamic_args

d_position

d_desktop

s_desktop

icon or window name

position of the click or hold

selected icons

the string V, effectively meaning it does not matter

an empty list

click or hold in a:

• desktop window - the name of the desktop

• directory window - an empty list

313

Defining Desktop triggers

Drag

When the user drops one or more icons onto an icon or a window back­
ground, the following variables are set to the values shown below.

trigger trigger name

static_arg

s_position

icon or window name

position of the click or hold

dynamic_args if the drag started on a:

d_position

d_desktop

• selected icon - the name of that icon followed by all the
other selected icons

• non-selected icon - the name of that icon

• window background - an empty list

position of the start of the drag

if the drag started in a:

• desktop window - the name of the desktop

• directory window - an empty list

if the drag ended in a:

• desktop window - the name of the desktop

• directory window - an empty list

Menu selection

314

When the user chooses a command from a menu, the following variables are
set to the values shown below.

dynamic_args

d_desktop

if the menu was popped up from:

• an icon - the name of the icon

• window background - the name of the window

selected icons

if the menu was popped up in a:

• desktop window - the name of the desktop

• directory window - an empty list

Graphical Environment Guide

Chapter 20

Creating objects for the Desktop

Objects are useful for linking mouse actions or "triggers" to system or Desk­
top actions and tasks. Use objects when you want to implement applications
on the Desktop. A single object, represented by a user-selected icon, can have
different scripts to interact with a binary in different ways.

Because objects are used to define behavior for single icons, icon_rules
clauses are needed to define Desktop behavior that affects more than a single
icon. Whenever possible, however, objects should be used instead of
icon_rules clauses. For example, objects should be used to implement all
stand-alone applications on the Desktop, while icon_rules clauses in a local
rule file should be used to define behavior uniform to all icons in a particular
directory. For more information on icon_rules clauses, see "Rule clauses"
(page 286).

Some advantages of objects over icon_rules clauses is that objects are self­
contained, well-suited for portability, easily exchanged from user to user, sim­
ply structured and easy to debug.

There are two ways to create objects:

• using the Object Builder client, which is the preferred tool for creating
objects since it greatly simplifies the job, or

• by manually editing and creating the appropriate configuration files and
directories

315

Creating objects for the Desktop

Creating an object using the Object Builder

316

The Object Builder lets you define the title, picture (icon), double-click
actions, and drag-and-drop actions associated with a Desktop object.

There are two ways you can use the Object Builder to define an object. You
can:

• use an existing object as a template for defining a new object (page 318) by
opening the object, modifying its definitions, and then saving the object
under a new name, or

• open a new, undefined object (page 322) and install a picture and action
definitions separately

To use the Object Builder, open the Controls window and double-click on the
Object Builder icon.

Graphical Environment Guide

Creating an object using the Object Builder

When you start the Object Builder, you see the following:

Figure 20-1 Object Builder window

317

Creating objects for the Desktop

See also:

• "Changing an action definition" (this page)

• "Opening an existing object" (this page)

• "Installing action definitions" (page 319)

• "Installing a picture" (page 320)

• "Installing an executable" (page 321)

• "Saving an object" (page 321)

• "Opening a new object" (page 322)

• objbld(XC) manual page for information on running the Object Builder from the
UNIX command line.

Changing an action definition

You can use existing action scripts in a file to define the actions associated
with the object. To select an action script file:

• drop its icon on the Object Builder window, or

• select either Activate Actions or Drop Actions from the Install menu. You
must then select the appropriate script from the cascading menu. You have
the choice of selecting a script for double-clicking with either mouse button
1 (Activate) or mouse button 2 (Alt_Activate) and a script for dragging and
dropping with either mouse button 1 (Drop) or mouse button 2 (Alt_Drop).
The action script is installed in the appropriate field in the Object Builder
window.

Once the script is installed, you can edit it by clicking on that part of the win­
dow.

See also:

• "Installing action definitions" (page 319)

• deskcommands(XC) manual page for more information on action scripts

Opening an existing object

318

You can open an existing Desktop object and modify its picture or action
definitions, or you can use an existing object as a template for defining a new
object.

Graphical Environment Guide

Creating an object using the Object Builder

To open an existing object:

• drop its icon on the Object Builder window, or

• select Open Object from the File menu and then select the object from the
file selection box. The object's icon and its action scripts are installed in the
Object Builder window.

When you drop an object's icon on the Object Builder window, you are
prompted to specify which component(s) to load. You can choose to load the
picture only, the actions only, or both.

I NOTE Save the definitions for a new object by selecting Save As from the
File menu. Use Save to save changes to the original object.

Installing action definitions

Scripts that define actions for the object are displayed in the first two full­
length fields on the Object Builder window. You can define two types of
action sequences for the object:

• those taken when a user double clicks on the object. You can define actions
taken when the user double clicks with mouse button 1 (Activate)
separately from those taken when the user double clicks with mouse but­
ton 2 (Alt_Activate).

• those taken when a user drags and drops the object. You can define actions
taken when the object is dragged with mouse button 1 (Drop) or mouse but­
ton 2 (Alt_Drop).

You can define the actions to associate with the object in one of four ways:

• install the actions from an existing action script by dropping the file con­
taining the action script on the Object Builder window

• install the actions defined in an existing object by dropping the object on
the Object Builder window

• install default actions by dropping an executable on the Object Builder
window or by selecting Executable from the Install menu

• enter your own actions directly in the "Trigger Action" fields

When you drop a non-executable, non-directory file icon on the Object
Builder window, the Object Builder assumes it contains a script of action
definitions.

319

Creating objects for the Desktop

H you drop an action script, existing object, or an executable on the Object
Builder window, you must first specify the action sequence that you are
defining: Activate, AICActivate, Drop, or Alt_Drop. Make your choice using
the toggle buttons above the ~~Trigger Action" fields.

When you drop an object's icon on the Object Builder window, you are
prompted to specify which component(s) to load. You can choose to load the
picture only, the actions only, or both.

See also:

• "Changing an action definition" (page 318)

• "Opening an existing object" (page 318)

• "Installing an executable" (page 321)

• Chapter 25, "Writing Deskshell commands" (page 349) for information on writing
action scripts

Installing a picture

320

You can define a picture (an icon) to associate with the object in one of two
ways:

• install a picture defined in an existing pixmap or bitmap file

• drop an object or a directory icon on the Object Builder window to install
that icon

To install any existing picture file with the suffixes .xpm, .xbm, or .px, select
Picture from the Install menu. Some valid bitmap files do not include these
suffixes. H you want to install such a file, make a copy of it, appending one of
those suffixes, and then install it.

After you select the picture from the #Install Pictures" dialog box, you are
asked to assign the file to one of four icon categories: Normal, Activated, Small
normal, or Small activated. You can only assign the selected file to one of these
categories at a time. Click on OK to complete the selection.

The installed picture is displayed in the upper part of the Object Builder win­
dow, above the appropriate category label.

NOTE H you change an existing picture, you do not see the change in the
Desktop icon until you restart the Desktop. This is because the picture is
cached in memory (to improve access speed), and the cached picture is not
updated until the Desktop is restarted.

Graphical Environment Guide

Creating an object using the Object Builder

See also:

• "Step 2: Selecting an icon" (page 323) for more information on the four icon picture
types

Installing an executable

You can associate an executable file with an object by dropping the
executable's icon on the Object Builder window or by selecting Executable
from the Install menu and selecting the executable file from the file selection
box.

When you drop an executable icon on the Object Builder window, you are
prompted to specify whether or not the executable is a graphical application.
A graphical application is one that is designed to run in a graphical environ­
ment, such as the Desktop. A non-graphical application can be run outside
the graphical environment, or from a terminal emulation window (such as
scoterm).

• If you select Yes, the Object Builder generates default scripts for both
double-click and drag-and-drop actions.

• If you select No, you are prompted to specify whether or not you want the
user to press any key to continue after the executable has run. If the exe­
cutable displays any information that needs to be left in an open window
for the user to read, you should require a keystroke to continue. The appli­
cation will run in a shell window.

Saving an object

To save changes to an existing object, select Save from the File menu.

To save your changes under a different object name, select Save As. This is the
method to use when you have opened an existing object and used it as a tem­
plate for building a new object. A file selection dialog box prompts you for an
object name. Be sure you save the object in a directory in which you have
read and write permissions. A good choice is $HOME/.xdt_dir/objects.

To quit the Object Builder, select Exit from the File menu.

If you exit the Object Builder using Cancel after making changes, the Object
Builder checks to make sure you really want to discard your changes.

321

Creating objects for the Desktop

Opening a new object

You can start with a new Object Builder window by selecting New Object
from the File menu. This opens an unnamed object with no picture or action
definitions.

Creating an object manually

322

To create an object on the Desktop, perform the following steps. For more in­
formation on each of these steps, see the sections immediately following this
procedure.

1. Create an object directory with the desired name, followed by an .obj
extension.

2. Select pixmaps to represent the object and copy them to the object direc-
tory, using one of the following filenames:

picture.px
open.px
s-picture.px
s_open.px

3. Decide which mouse actions or triggers are to be applied to the object.

4. For each trigger, write an object script that will perform some Desktop or
system action.

5. Place each object script in the file specified by its corresponding trigger
name (for example, activate for the activate trigger).

Step 1: Creating the object directory
Every object has a corresponding object directory. This directory contains all
of the information that defines the object's behavior.

The object directory should be named by appending the extension .obj to the
desired name for the object. For example, an object called "Compress" has an
object directory named Compress.obj.

The object's title is specified in the name of the corresponding object directory.
Or you can define an object's title by storing it in a file called title, which you
should locate in a language subdirectory, ICIT, within the object directory. II
is a two-character code for the language (as defined by the ISO 639 standard)
and IT is a two-character code for territory (as defined by the ISO 3166 stan­
dard). By default, en_US is used.

Graphical Environment Guide

Creating an object manually

An object only appears on the Desktop or a desktop window if it is explicitly
dragged onto the Desktop or a desktop window using the Deskshell com­
mand get_out or if the object's parent directory is open. For example,
applications/My.obj is visible only if either the directory applications is open or
My.obj has been dragged out onto the Desktop or a desktop window.

If you wish to include an object Desktop-wide, you should create it or, if it
already exists, use an Applications or Tools directory and place the object direc­
tory there. The main Desktop's desktop rule file can then be configured so
that this Tools directory appears on it. The current default directory for the
applications directory is /usr/lib/Xll/XDesktop3/apps and the tools directory is
/usr/lib/Xll/XDesktop3/tools.

See also:

• deskcommands(XC) manual page for more information on Deskshell commands

Step 2: Selecting an icon
When defining an object, first consider what its icon or pictorial representa­
tion will look like. The icon for the object can be one of many pre-defined pic­
ture files or a custom-made icon.

By default, objects can contain four pixmap files to use for an icon. These are:

picture.px a large [64x64] image for the icon when not active. This is the
only file that must be present.

s-picfure.px a small [32x32] image for the icon when not active

open.px

s_open.px

a large [64x64] image for the icon when active

a small [32x32] image for the icon when active

All of the pre-defined Desktop picture files are located in the directory
/usr/lib/Xl1/lXI/XDesktop/bitmaps and in its following sub-directories:

local_large

xdt_Iarge

xdt_small

xdt_c_large

your own large [64x64] color icons

the Desktop's default large [64x64] color icons

the Desktop's default small [32x32] color icons

illrge[32x32]cursors

xdCc_small small [16x16] cursors

The picture files should be placed within an object directory's language sub­
directory if they are language-specific, otherwise, within the object directory
itself.

323

Creating objects for the Desktop

324

Picture files can be in either pixmap or bitmap format. Pixmap format is a
color bitmap format defined using standard ASCII characters. The resulting
files can be created and edited using a standard text editor. However it is
recommended that pixmaps are edited using the scopaint client.

Bitmap is a monochrome format and should only be used if backward compa­
tibility with sca Open Desktop, Release 1.1 is required.

To create a custom-made icon for an object, the best approach is to start with
an existing picture file and then edit it as follows:

1. Copy an existing picture file from one of the preceding directories or the
blank picture file blank.px into the object directory and rename it appropri­
ately, as described above.

2. Change to the object directory. At the command line, type scopaint
filename to execute the scopaint client. Edit the picture as desired.

3. When you are satisfied with the picture, exit from scopaint, selecting Save
or Save As from the File menu.

Step 3: Selecting trigger actions
The action of pointing at an icon with the mouse pointer and performing an
action such as double-clicking is referred to as Lltriggering" the icon. Triggers
are used to execute different Desktop and/or system actions and tasks. When
an object is triggered, it performs certain actions on the Desktop or the sys­
tem, depending the trigger type.

A trigger is either a click, a sequence of clicks only, or a sequence of clicks fol­
lowed by a hold or drag. You can trigger icons on the Desktop in three ways:
static triggers, hold triggers and drag triggers.

Clicking twice in succession without moving the mouse pointer is called
either double-clicking, activating the icon, or a Llstatic" trigger. Dragging one
or more icons and dropping them on to another icon is called a LI drag and
drop" or a Lldynamic" trigger. Pressing a mouse button and holding it down
while the pointer is over an object is referred to as a ''hold'' trigger.

The notation for the different triggers is based on the trigger type and the
mouse button used. The following are the pre-defined Desktop triggers:

• Static triggers:

select

alt_select

rename

single-click on an icon picture

single-click on an icon picture with mouse button 2

single-click on an icon title

Graphical Environment Guide

alt_rename

activate

alt_activate

deselect

report

alt_report

s*

Creating an object manually

single-click on an icon title with mouse button 2

double-click on an icon

double-click on an icon with mouse button 2

single-click on a window background

double-click on a window background

double-click on window background with mouse button 2

matches any static trigger

• Dynamic triggers:

drop drop one or more icons on an icon or window background

drop one or more icons on an icon or window background
with mouse button 2

d* matches any drag trigger

• Hold triggers:

menu hold mouse button 3 on an icon picture or title

popup_menu hold mouse button 3 on a window background

h* matches any hold trigger

To take advantage of triggers, first determine how many different actions you
want the object to perform, then assign each action to a unique trigger type.

See also:

• Chapter 26, "Mapping mouse triggers for the Desktop" (page 371) for information
on mapping your own triggers or changing the existing ones

Step 4: Writing trigger scripts
After the triggers to be applied to the objects are determined, the Desktop or
operating system actions and tasks that are to occur after each trigger action
must be defined.

The Deskshell command language is used to to define the actions that occur
when the icon is triggered. Deskshell scripts written explicitly for objects are
referred to as object scripts.

Deskshell is a command language, complete with a flexible range of control
structures and a wide range of commands. You can specify regular UNIX op­
erating system commands within Deskshell scripts. However, it is recom­
mended that you learn how to use the Deskshell commands and scripts.

325

Creating objects for the Desktop

326

Because Deskshell is designed specifically for use with the Desktop and
because Deskshell commands execute significantly faster than regular UNIX
shell commands, Deskshell commands are recommended for coding your
script.

See also:

• Chapter 25, "Writing Deskshell commands" (page 349)

Step 5: Naming trigger scripts
The final step involves naming the object scripts and placing them in the
proper location.

After an object script is written in Deskshell, it must be placed in a file.
Filenames correspond directly to the trigger names (i.e., activate for an activate
trigger and drop for a drop trigger).

I NOTE You should surround the commands in trigger files with begin and
finish, and not specify them as trigger_action clauses.

Trigger files should be placed directly in the object directory, not within any
language subdirectory.

Any text that you intend to display to the user should be represented by vari­
able names, and the definitions for these variables placed in the text file within
the object directory's language subdirectory. For example:

msgl='You have activated this object'
msg2='You have dropped an icon on this object'

See also:

• xdt3(XC) manual page

• deskshell(XC) manual page

• deskcommands(XC) manual page

Graphical Environment Guide

Chapter 21

Configuring icons

The desktop represents files and directories in the UNIX filing system by pic­
torial "icons", which provide the user with a convenient way of manipulating
files and give additional information about the types of files and their access
permissions.

In this chapter you will learn how to:

• define the appearance of icons (this page)

• configure the behavior of icons (page 330)

See also:

• Chapter 20, "Creating objects for the Desktop" (page 315) for information on a sim­
ple and flexible way to configure icons, using objects

Defining the appearance of icons

To alter the appearance of an icon or number of icons, use an icon_rules
clause matching the appropriate icons.

See also:

• "Defining rules for icons" (page 328)

• "Defining a picture for icons" (page 329)

• "Defining a title for icons" (page 330)

327

Configuring icons

Defining rules for icons

328

The icon_rules clauses use the following form:

icon_rules

filespec
{

picture=filename;
title=name;

The icon_rules keyword introduces the rules, and filespec specifies the icons
to which the rules should apply. filespec also specifies the filenames to be
matched, and the classes of files to be matched.

For each group of files specified by filespec, you can provide a picture clause,
a title clause, or both, specifying what the title or icon should be for those
files.

Note that a single icon_rules clause can include several filespec sections, to
provide pictures and/or titles for different groups of icons:

icon_rules

fi'especl
{

picture=filenamel i
title=namel ;

fi'espec2
{

picture=filename2 ;
title=name2;

If an icon matches more than one filespec, the title is determined by the first
matching clause containing a title, and the picture is determined by the first
matching clause containing a picture.

Graphical Environment Guide

Defining the appearance of icons

See also:

• "Defining a picture for icons" (this page)

• "Defining a title for icons" (page 330)

• "Defining the scope of rules" (page 286)

• "Classes" (page 291)

• icon_rules in the xdt3(xC) manual page

Defining a picture for icons

The picture clause specifies the name of the bitmap or pixmap file to be used
for the icons of all files in the specified group. It has the format:

picture=jilenamei

If filename begins with /I I ", it is taken as an absolute pathname. Otherwise,
the Desktop searches the sequence of picture file directories, specified by the
pictureDirectory resource. By default, the Desktop searches for pictures in the
following order:

• Iusr /lib/Xll/IXI/XDesktop/bitmapslxdt _c_Iarge

• $HOME/.xdt_dir/bitmapslxdt_large

• jusr /lib/Xl1/IXI/XDesktop/bitmapslxdt _large

Picture files are provided in the following subdirectories of
lusr/lib/Xll/IXI/XDesktop/bitmaps:

local_large

xdt_Iarge

your own large [64x64] color icons

the Desktop's default large [64x64] color icons

xdt_small the Desktop's default small [32x32] color icons

xdt_c_Iarge large [32x32] cursors

xdt_c_small small [16x16] cursors

See also:

• picture in the xdt3(XC) manual page

329

Configuring icons

Defining a title for icons

The title clause gives the title for the specified group of files. It has the format:

title=namei

The title is taken as the text from the #=" to the ";" characters, including any
spaces.

The title can include the following special sequences, to substitute the corre­
sponding string into the title:

%BO basename of the file

%CO class of the file, given as six characters in standard order

%DO absolute pathname of the directory (page 298) holding the file

%EO as %BO but extensionIess - with the last dot and any characters fol­
lowing removed

%PO absolute pathname of the file

%RO relative pathname of the file, which within a directory window will be
the same as %BO

See also:

• "Referring to file and directory names" (page 298)

• "Classes" (page 291)

• title in the xdt3(XC) manual page

Defining the behavior of icons

330

The trigger table defines which triggers correspond to which actions by the
user. Some other triggers are also used for higher-level functions such as pro­
viding help on an icon.

To define the behavior of an icon when it is triggered in a particular way,
include a trigger_action clause for each trigger that should be understood by
that icon:

trigger_action: brigger

See also:

• "Writing trigger rules" (page 331)

• Chapter 19, "Defining Desktop triggers" (page 309)

Graphical Environment Guide

Defining the behavior of icons

Writing trigger rules

The trigger_action clauses are contained within icon_rules clauses, just like
the title and picture clauses described in "Defining a picture for icons" (page
329) and "Defining a title for icons" (page 330). They take the form:

trigger_action: trigger { script}

script specifies the Deskshell script that will be run when trigger is applied to
an icon matching filespec in the icon_rules clause. trigger can specify the
name of one of the triggers defined in the trigger table, or:

• s* to indicate any static trigger

• d* to indicate any drag trigger

• h* to indicate any hold trigger

• * to indicate any trigger

Alternatively, trigger can specify the name of any trigger that you want to
define for that icon.

See also:

• trigger_action, icon_rules, s*, d*, h*, and * in the xdt3(xc) manual page

331

Configuring icons

332 Graphical Environment Guide

Chapter 22

Configuring Desktop windows

In the default configuration of the Desktop, users can place icons on the main
Desktop or a desktop window by dragging the file icons into the appropriate
desktop.

This chapter describes how you can set up your own Desktop rules to tailor:

• the behavior of desktops (this page)

• the appearance of desktops (page 334)

Defining the behavior of desktop windows

To define the behavior that results from the following action:

Single-click on the desk­
top window background

Drag one or more icons
into the desktop window

Double-click on the back­
ground of the desktop
window

Open or close the desktop
window

include a drop _in_action: deselect clause in an
icon_rules clause applying to the desktop

include a drop _in_action: drop clause in an
icon_rules clause applying to the desktop

include a drop _in_action: report clause in an
icon_rules clause applying to the desktop

include an initial_actions or finaCactions clause
in the desktop rule file.

333

Configuring Desktop windows

See also:

• "Example" (this page)

• "Changing the behavior of a desktop" (page 289)

• "Changing desktop, directory, dialog box, and icon behavior" (page 37)

• deselect, drop, finaCactions, icon_rules, initiaCactions, and report in the
xdt3(XC) manual page

• drop _in_action in the deskcommands(XC) manual page

Defining the appearance of desktop windows

To define:

The position of icons on
the desktop

The icons that are locked
onto the desktop window

See also:

• "Example" (this page)

include a desktop _layout clause in the desktop
rule file

include a locked_on_desktop clause in the desk­
top rule file

• "Changing the behavior of a desktop" (page 289)

• desktop_layout and locked_on_desktop in the xdt3(XC) manual page

Example

334

This example shows a rule which defines a desktop window with the follow­
ing characteristics:

• single-clicking on the desktop window background displays an informa­
tion dialog box

• double-clicking on the desktop window background closes the desktop
window

• dropping one or more icons onto the desktop window puts them on the
desktop

• opening the desktop window displays an information dialog box

• the main Desktop icon is locked onto the desktop

Graphical Environment Guide

Example

The rules defining these characteristics are provided in the following desktop
rule file, which should be called demo.dt:

%/dt/
desktop_layout
{

%$HOME$/.ixi/xdt/Main.dt @GO,Oj

locked_on_desktop
{

%$HOME$/.ixi/xdt/Main.dti

initial_actions

for_info 'Welcome to the demo desktop'

demo.dt /F

drop_in_action: deselect
{

for_info You have clicked on the background of the demo desktop.

See also:

drop_in_action: report
{

drop_in_action: drop
{

• "Defining the scope of rules" (page 286) for information on the rule file in which to
insert the rules clauses to achieve the desired effect

335

Configuring Desktop windows

336 Graphical Environment Guide

Chapter 23

Configuring directory windows

In the default configuration of the Desktop, users can move and copy files
between directories simply by dragging the file icons into the appropriate
directory window.

This chapter:

• describes how you can set up your own local rules to tailor the behavior of
directories (this page) on your system, and

• provides an example of configuring directory behavior (page 338)

Defining the behavior of directory windows

To define the behavior that results from the following action:

Single-click on the direc­
tory window background

Drag one or more icons
into the directory win­
dow

Double-click the back­
ground of the directory
window

Open or close the direc­
tory window

include a drop_in_action: deselect clause in an
icon_rules clause applying to the directory

include a drop _in_action: drop clause in an
icon_rules clause applying to the directory

include a drop _in_action: report clause in an
icon_rules clause applying to the directory

include an initial_actions or final_actions clause
in the local rule file

337

Configuring directory windows

See also:

• "Example" (this page)

• "Changing the behavior of a directory" (page 289)

• drop_in_action in the deskcommands(XC) manual page

• deselect, drop, finaLactions, icon_rules, initial_actions, and report in the
xdt3(XC) manual page

Example

338

This example shows a rule that defines a directory with the following charac­
teristics:

• single-clicking on the directory window background displays an informa­
tion dialog box

• double-clicking on the directory window background closes the window
and opens the parent directory window

• dropping one or more icons onto the directory window copies them into
the directory

• closing the directory window displays a dialog box

The rules defining these characteristics are provided below:

icon_rules

TestDir /D

drop_in_action: deselect
{

for_info You have clicked on the TestDir directory background.

drop_in_action: report
{

display_directory $static_arg \ (dirname $static_arg)

drop_in_action: drop
{

Graphical Environment Guide

Example

You would also place the following rules in TestDir/xdtdir/lCIT (where, by
default, ZLIT is en_US):

final_actions

for_info Closing the TestDir directory.

See also:

• "Defining the scope of rules" (page 286) for information on the rule file in which to
insert the rule clauses to achieve the desired effect

339

Configuring directory windows

340 Graphical Environment Guide

Chapter 24

Configuring Desktop menus

The Desktop supports both pull-down menus, which drop down from a menu
name in a menu bar, and pop-up menus, which are usually displayed beneath
the mouse pointer.

For each type of menu, the menu commands can include mnemonics and
accelerator keys, and also display further cascade menus.

Each type of menu is defined using an identical syntax. However, the names
of the desktop, directory and treeview menu bars are defined in the Desktop
resource file.

This chapter describes how to:

• provide additional commands for users on the standard menus (page 342)

• define mnemonics and accelerator keys (page 344)

• provide additional pull-down (page 345) or pop-up menus (page 346)

• disable menu commands (page 347)

• remove menus (page 348)

See also:

• Appendix B,"Desktop resources" (page 403)

• Chapter 13, "Customizing window manager menus" (page 235)

341

Configuring Desktop menus

Defining menus

342

To define the following behavior:

Command available on a
menu

Action when the user
chooses a menu com­
mand

Cascade menu when the
user chooses a menu
command

Dividing line between
commands on a menu

Command that is dis­
abled if not applicable

See also:

include a menu clause defining the menu

include a menu_item clause defining the com­
mand

include a pull_off_menu clause in the
menu_item definition

include a dividin~line or thick_dividing_line
clause in the menu definition

include a enable_if clause in the menu_item
clause for the command

• "Menu clauses and commands" (page 343)

• "Mnemonics and accelerator keys" (page 344)

• "Pull-down menus" (page 345)

• "Pop-up menus" (page 346)

• "Disabling menu commands" (page 347)

• "Removing menus" (page 348)

• "Defining the scope of rules" (page 286)

• menu, menu_item, pull_off_menu, dividin~line, and thick_dividin~line in the
xdt3(XC) manual page

Graphical Environment Guide

Defining menus

Menu clauses and commands

The commands on a menu, and the action performed when any command is
chosen, are determined by the menu and menu_item clauses. These have the
format:

menu: menuname

menu_item clause

menu_i tem clause

NOTE The text your provide for menuname is an internal reference, and
does not appear as the title of the menu. To give a title to a menu, do not
specify an action for the first menu command. In this case the command will
automatically be centered rather than left-aligned.

Each menu_item clause contains a title clause specifying the name of the
command, and a select_action clause specifying the action to occur when the
command is chosen:

title=cmdnamei
select_action { script

Here cmdname gives the name of the menu command, and script is the action
to be performed if it is chosen.

Instead of a script, the menu_item clause can reference a pull_off_menu
clause, in which case choosing it displays the cascade menu of that name:

menu_item

title=cmdnamei
pull_off_menu=namei

For example, the Sort cascade menu would be defined by the following clause:

title=Sorti
pull_off_menu=Sort_Cascade;

343

Configuring Desktop menus

The menu_item clause also has a short form, as follows:

menu_i tem: cmdname

script

This is equivalent to:

menu_item

See also:

ti tle=cmdname ;
select_action

script

• menu, menu_item, pull_off_menu, selecLaction, and title in the xdt3(xC) manual
page

Mnemonics and accelerator keys

344

Mnemonics and accelerator keys let you choose a menu command without
using the mouse.

The cmdname assigned to a menu_item clause can end in a string of the form:

_m_key_keytext

The single character m defines a mnemonic for the menu command. The char­
acter m must occur in the name of the command, and the first occurrence of
the character in the name will be shown underlined on the menu. No two
commands should have the same mnemonic in a single menu.

The menus on a menu bar can also have mnemonics. To choose a menu com­
mand using its mnemonic, press (Alt) and the mnemonic for the menu, then
the mnemonic for the menu command itself. For example, if the File menu has
mnemonic F and the Open menu command has mnemonic 0, you would
press (AU) then o.

The string key defines an accelerator key for the menu command, using the
standard OSF/Motif syntax. For example, Ctrl<key>F represents the accelera­
tor key (Ctrl)F.

Graphical Environment Guide

Defining menus

The string key is an internal way of representing a key press, and so is not dis­
played. Instead, the string key text will be right-justified in the menu.

menu_item: New File_F_Ctrl<key>F_Ctrl+F

To choose a menu command you can press the accelerator key combination
directly. No two commands available from the same menu bar should have
the same accelerator key.

Pull-down menus

The Desktop resource file defines three special menu names: DesktopMenu­
Bar, DirMenuBar, and TreeMenuBar. Menu rules with these names define
the menu bars for desktop windows, directory windows and treeview win­
dows, respectively.

Each menu_item clause defines the name of one of the pull-down menus on
the menu bar, and should contain a pull_off_menu clause to define the com­
mands on that pull-down menu.

By default, the Desktop provides menu bars, in desktop windows, directory
windows and treeview windows, and these menu bars provide pull-down
menus for all of the most frequently-used commands that users need to per­
form within the Desktop.

The commands on these menus, and the actions they perform, are defined by
the rules for your user type. You do not need to change this file to configure
your own menus.

See also:

• "Pop-up menus" (page 346)

• "Changing the behavior for different types of user" (page 288)

• menu_item and pull_off_menu in the xdt3(XC) manual page

345

Configuring Desktop menus

Pop-up menus

346

Pop-up menus are defined using the same syntax as pull-down menus, and
are displayed by the popup command.

For example, a simple pop-up FooBar menu could be defined as follows:

menu: foobar_menu

menu_item: FooBar {} %11 menu title
dividing_line;

menu_item: Foa

fyi Foo

menu_item: Bar

fyi Bar

The accompanying icon_rules clause would resemble:

icon_rules

foobar IF
{

title=FooBar;
trigger_action: menu
{

popup foobar_menu

In the above example, foobar_menu refers to the menu clause of that name
already defined. The FooBar menu would appear when you hold down
mouse button 3 over the FooBar icon, which represents a file called foobar.

See also:

• "Pull-down menus" (page 345)

• icon_rules and popup in the xdt3(XC) manual page

Graphical Environment Guide

Defining menus

Disabling menu commands

A menu command can be disabled, to indicate to the user that it is not appli­
cable in the current situation.

It is better to disable an inapplicable menu command than to allow the user to
choose it and then display an error dialog box.

To disable a menu command, include an enable_if clause in the menu_item
clause defining the command. This has the form:

enable_if { script }

In this example, script is a script that is executed when the menu is displayed.
If it returns a "true" status the command is enabled; otherwise it is disabled.

For example, the following menu command is only enabled if at least one icon
has been selected:

menu: DesktopMyMenu
{

title=MyCommandi
enable_if

sels=' (query selections' (query thread_info -i $thread_name(2)))
-gt $#sels 0

select_action

See also:

• enable_if and menu_item in the xdt3(XC) manual page

347

Configuring Desktop menus

Removing menus

348

To tum off a menu, execute a dynamic_rule command with an empty menu
clause for that menu.

See also:

• dynamic_rule in the xdt3(XC) manual page

Graphical Environment Guide

Chapter 25

Writing Deskshell commands

This chapter describes the ''Deskshell script language" that you use to
describe the actions you want to perform in rules. It assumes some familiarity
with shell programming.

Deskshell is a general-purpose language, with control constructs, constants
and variables, and built-in commands to perform standard actions. Deskshell
allows you to write powerful Desktop rules that will execute totally within
the Desktop, without the need to start up a separate shell. Using Deskshell,
operations such as gti and yni can be incorporated into rules without perfor­
mance penalties, and with the added benefit that Desktop rules incorporating
Deskshell commands are completely portable across different UNIX installa­
tions, since they avoid the ambiguities of the Bourne shell.

Specifically, this chapter discusses:

• Deskshell syntax (page 350)

• Deskshell operators (page 354)

• Deskshell control constructs (page 360)

• Deskshell function definitions (page 360)

• how Deskshell commands are executed (page 361)

See also:

• Appendix C, "Deskshell command summary" (page 415)

• deskshell(XC) manual page

• deskcommands(XC) manual page

349

Writing Deskshell commands

Deskshell syntax

The syntax of Deskshell is similar to the standard Bourne shell language, but
with a simplified syntax and more consistent semantics. In particular:

• the use of lists, instead of strings, for variable values avoids the need to
treat strings containing spaces in a special way

• substituted values are never re-interpreted, so special characters can be
included in variable values without problems

• there is only one string quoting character, simplifying the syntax

See also:

• "Quoting strings" (this page)

• "Comments" (page 351)

• "Wildcards" (page 351)

• "Using variables" (page 352)

• "Variable substitutions" (page 352)

• "Subsets" (page 353)

• "Function arguments" (page 353)

• "Initialization" (page 354)

Quoting strings

350

Strings that contain special characters or spaces should be quoted with the
single-quote character. For example, to display the text "Press return", you
could use the command:

echo 'Press return'

To include a single quote in quoted text it should be repeated, as in:

echo 'Don"t press return'

No substitution takes place within quoted strings.

The following characters are special, and cannot be included in a string unless
they are quoted:

space, tab, or newline

bar

single quote

Graphical Environment Guide

& ampersand

() parentheses

$ dollar sign

{} braces (curly brackets)

backquote

< less than

> greater than

circumflex

colon

semicolon

\ backslash

% percent

equals

hash

Deskshell syntax

The following characters are interpreted as wildcards unless they are in a
quoted string:

* asterisk

open bracket

? question mark

Comments

Within a script, comments may be included by preceding them with 0/011. All
characters to the end of the line are ignored. For backward compatibility with
previous versions of the Desktop, the "#" character can also be used, but only
within Deskshell scripts.

Wildcards

When a command is executed, any argument containing a wildcard is
expanded into a list of filenames matching the wildcard, or an empty list if
none match. The wildcard characters have the following meanings:

* any string except" /" or leading dot

? any single character except" /" or leading dot

351

Writing Deskshell commands

[chars] anyone of the characters in chars, so for example [xyz] matches
either x, y or z. The # / " symbol must not appear in the brackets.

[!chars] any single character except those in chars, # /" and leading dot. For
example [!xyz] matches any character other than x, y, z, / and lead­
ing dot.

Using variables

In rule files, you can use variables to keep track of numbers and text strings. A
variable name can consist of any sequence of letters, digits, and, underscores
provided the first character is not a digit.

I
NOTE Variable names beginning with two underscores should be avoided,
as they are used in the standard rules. However, you can use names begin­
ning with one underscore and then a letter or digit.

Variables do not have to be specially defined, and you can give them a value
using an equals sign. For example, the following might specify a counter
value for the subsequent repetition of a command:

count=10

I NOTE There must not be any space on either side of the = sign.

For maximum flexibility, variables can be set to a list of values. The list is
specified by putting all the elements of the list in brackets. So, for example, the
following could be used to make the variable editors equal to a list of the
filenames of all the editors on the system:

editors=(vi xedit ed)

Variables are local to an executing script unless prefixed with a II: ".

Variable substitutions

352

The value of a variable can be substituted into a script with:

$name

So, for example, $editors will have the value:

vi xedit ed

You can find the number of elements in a list with variable. For example:

elements=$#editors

sets elements to 113".

Graphical Environment Guide

Deskshell syntax

Note that:

var=()

sets var to a list with no elements, so $#var is "0", whereas:

var="

sets var to an empty string, so $#Var is "1 ".

Subsets

You can extract specific elements from a list by putting one or more element
numbers after the variable name in brackets. Using the example in "Variable
substitutions" (page 352):

$editors(2)

will have the value:

xedit

I NOTE There must not be any spaces between the variable name and the
opening bracket.

More than one subscript can be given. For example, the following:

days=(mon tue wed thur fri sat sun)
echo $days(3 1 3)

will produce:

wed mon wed

Subscripts that are out of range are ignored, so the same result is obtained
with:

echo $days(3 0 1 8 3)

The element numbers may come from another variable or any other construct,
so:

$days ($#days)

is permitted and has the value

sun

Function arguments

The special variable "*" holds the list of arguments to the current function.
For example, in a drop _in_action: drop" script, the II * " variable will contain a
list of the filenames of the icons that were dropped into the window.

353

Writing Deskshell commands

The number of icons dropped is given by $#*. Each of the individual elements
in # *" can be obtained with $*(1), $*(2), and so forth. For convenience, these
can be abbreviated to $1, $2, and so forth.

Initialization

When the desktop starts, the value of each UNIX environment variable is
copied into the Deskshell variable of the same name. These variables start
with a list of one string.

The variable path is set from the environment variable PATH, by splitting its
value at each colon. Thus, if the environment variable PATH has the value
#.:/bin" then path will be set to the two strings LL." and # Ibin".

All other variables are set to contain no strings.

Operators

354

The following operators are provided in Deskshell:

assignment

<, > and» redirection

L (backquote) substitution

A (circumflex) concatenation

pipeline

&&and II conditionals

∧ termination

.. list mark

I NOTE The operator precedence determines in which order multiple com­
mands are evaluated.

Spaces may be included on either side of all of the above operators apart from
LL = " and LL A ", which must not have spaces on either side of them.

See also:

• "Assignment" (page 355)

• "Redirections" (page 355)

• "Command substitution" (page 356)

• "List substitution" (page 356)

• "Concatenation" (page 357)

Graphical Environment Guide

• "Command terminators" (page 357)

• "Pipelines" (page 358)

• "List mark" (page 358)

• "Conditionals" (page 359)

• deskshel1(XC) manual page for information on operator precedence

Assignment

The" =" operator assigns a value to a variable. For example:

count=lO

assigns "10" to count, and

fib=(l 1 2 3 5)

assigns the list "(11235)" to fib.

See also:

• "= " in the deskshel1(XC) manual page

Redirections

Operators

A redirection causes a UNIX file descriptor to be redirected to a different file.
The following options are available:

<filename the file is opened on descriptor 0, standard input, for reading
only; it must already exist

> filename the file is opened on descriptor 1, standard output, for writing,
and is truncated; it is created if necessary

»filename the file is opened on descriptor 1, standard output, for append
only; it is created if necessary

The following variants are available for each redirection. In each case " < " can
be replaced by" >" or"»".

< filename read from filename

<[number] filename read from filename on descriptor number

<[new=number] make new a duplicate of number

<[number:] close descriptor number

355

Writing Deskshell commands

For example:

for_info < $static_arg

displays the text from file $static_arg in a dialog box, and:

gti 'Enter name:' > name

saves the user's name in a file name.

See also:

• $static_arg in the deskshell(XC) manual page

Command substitution

Many Deskshell and UNIX commands perform an action and print a result.
You can trap the output of such a command, and use it in a Deskshell script,
with the '{ ... } construction.

The text output from the command is split into a list of strings at the character
specified in $ifs(l), or the characters space, tab or newline if ifs is unset.

For example:

size=' {ls -s $l}

assigns the string representing the size and name of the file $1 to the variable
size.

See also:

• I{ ••• } and $ifs(l) in the deskshell(XC) manual page

List substitution

356

Certain Deskshell commands generate text output. These may be used
directly, without requiring a separate process, using the form:

var=' (basename $list)

which sets var to a list of the basenames of the files in $list without requiring
another process to be run.

Functions can also generate text output for direct use using:

'(myfunction argl)

or

'myfunction

Graphical Environment Guide

Operators

Command and list substitutions may be nested to any depth.

See also:

• "Processing filenames in rules" (page 298) for information on basenames

Concatenation

Two words or lists can be concatenated, or joined together, using the 1/""

(circumflex or caret) character.

Lists can only be concatenated if they both contain the same number of ele­
ments, or if one of them only contains one element or is empty, as illustrated
by the following examples:

a
w
w
(wxy)
(wxy)
(wxy)

b
x
(xy z)
(ab c)
()
(a b)

aAb

wx
(wxwywz)
(waxb yc)
(wxy)
illegal

I NOTE There should not be any spaces around the 1/"" character.

Several concatenations can be included in one expression, as in:

s.A(in proc out)A.main.A(c h s)

which evaluates to:

(s.in.main.c s.proc.main.h s.out.main.s)

Deskshell allows circumflexes to be omitted when the context makes it unam­
biguous. For example, $file".c can be written as $file.c instead.

See also:

• II A " in the deskshell(XC) manual page

Command terminators

Each command in a script is terminated by 1/ ;" or 1/ &". If the command is ter­
minated with 1/ & ", it is run in a separate thread in the background. Otherwise
it is run in the current thread.

357

Writing Deskshell commands

The " ;" can be omitted after the last command on a line.

See also:

• "Threads" (page 362)

• ";" and" & 1/ in the deskshell(XC) manual page

Pipelines

Two commands can be linked by a pipeline using the " I " operator. The two
commands will be executed in separate new threads, and the output of the
first command will become the input to the second command.

When a pipeline is executed, Deskshell waits for all the /I children" (commands
in the pipeline) to terminate. The individual statuses are converted to strings,
and these are all stored in the variable status, in the same order as the com­
mands in the pipeline. For example, the pipeline true I false generates the
status "(0 1)".

The " I " can be followed by a construct to specify the output and input file
descriptors to be used, as in:

I [output=inputJ

In this case the brackets are part of the operator. If =input is omitted it
defaults to "0".

See also:

• /lThreads" (page 362)

• "I" and status in the deskshell(XC) manual page

List mark

358

Deskshell commands which take lists as arguments, for example list intersect
and list count, use the list mark /I :: " to separate each argument.

For example:

list count abc .. d e f g

gives the result:

(3 4)

Graphical Environment Guide

If the list mark" :: " was not included, for example in the form:

list count $listl $list2

Operators

the result would be a single value, as the values of the two variables would
combine to become a single list.

See also:

• list count and list intersect in the deskcommands(XC) manual page

Conditionals

The "&&" separator executes a command only if the previous command
returned a "true" status.

The " I I " separator executes a command only if the previous command
returned a "false" status. Thus:

This example:
a lib
a&&b
a&&b II c

Can also be written:
if a; else b; fi
if a; then b; fi
if if a; then b; fi else c; fi

After any of the separators" & ", " I ", " I I ", or "&&", a newline is ignored.
Thus the last example above can be written:

a &&
b II
c

The operators" I ", "&", ";", ":: ", "&&", and " I I " can also be preceded or
followed by spaces and tabs.

See also:

• /I && 11 and /I I I 11 in the deskshel1(XC) manual page

359

Writing Deskshell commands

Control constructs

Deskshell provides the following control constructs, which perform similar
functions to the corresponding commands in other languages such as C or
Pascal:

for executes a script for each value of a list

while executes a script while a condition is true

until executes a script until a condition becomes true

if executes a script depending on the value of a condition

case executes a script depending on the value of a variable

See also:

• deskshell(XC) manual page

Function definitions

360

Functions can be defined to perform frequently-needed sequences of com­
mands. The syntax is:

function name { script }

which assigns name as the name of script.

The script is not evaluated at this point, though it will be parsed and checked
for syntax errors.

The assignment can be canceled with:

function natne { }

The list of arguments to the function is passed to the function in the variable
1/*"

A function can return a result, which can be used with the '() syntax. For
example:

function make day
{

return $*"'day'

defines a function to append' day' to each of its arguments. Thus:

A=Sun
B=' (makeday $A)

sets $B to IIISunday'''.

Graphical Environment Guide

How Deskshell commands are executed

Status

When a command is executed, it generates a status (a numerical value
between 0 and 1023), indicating the results of executing the command. That
status is converted to a string and stored in the variable status. When a pipe­
line is executed, the individual statuses are collected and the strings all stored
in the variable status, in the same order as the commands in the pipeline.

A status value of zero is taken to mean L1true", and a non-zero value to mean
#false".

The value of status is used implicitly by the following commands:

• if ... then ... else ... fi

• while ... do ... done

• until ... do ... done

• #&&"

For example, you can test whether a user pressed Cancel in a gti dialog box as
follows:

file=' (gti 'Enter filename:')
if -ne $status 0; then exit; fi

See also:

• status and II &&" in the deskshell(XC) manual page

• gti in the deskcommands(XC) manual page

How Oeskshell commands are executed

This section describes how Desktop commands are executed within threads,
to enable different actions to be processed concurrently. It explains how each
thread inherits its context from the thread that invokes it, and explains how
you can pass values between threads using global variables.

See also:

• IIThreads" (page 362)

• liThe state of threads" (page 362)

• IILocal variables" (page 363)

• IIGlobal variables" (page 364)

361

Writing Oeskshel/ commands

• "Variable overriding" (page 364)

• "How environments are inherited" (page 365)

• "System thread" (page 365)

• "Window threads" (page 366)

• "Background threads" (page 366)

• "Pipelines" (page 367)

• "Executing actions within the same thread" (page 367)

• "Signals" (page 368)

• "Standard signals" (page 369)

Threads

A "thread" is an instance of a Deskshell script being executed. When the Desk­
top is running, there is always at least one thread being executed - the "sys­
tem thread".

A new thread is created in the following situations:

• for each desktop window

• for each directory window

• for each Treeview window

• when the user triggers an icon

• when a script executes a command in the background, using the "&"
operator

• when a script performs an actions_of, drop_in_actions_of, or
menu_actions_of command

• when a pipeline is executed

See also:

• actions_of, drop_in_actions_of, and menu_actions_of in the deskcommands{XC)
manual page

The state of threads

362

Threads can be in one of three different states:

executing

suspended

commands within the thread are being executed in sequence

system and window threads can be suspended until a specified
condition is satisfied, or the thread receives a signal terminating
it

Graphical Environment Guide

waiting

See also:

How Deskshell commands are executed

the thread is waiting for a program to run. While waiting, it can­
not receive any signals until the thread is unblocked. A thread is
also blocked by a sleep command, by internal commands such
as for_info and gti that wait for the user, and by running a pipe­
line.

• for_info, gti, and sleep in the deskcommands(XC) manual page

Local variables

Each thread can use local variables, which are distinct from the local variables
in other threads. For example, consider the following icon_rules clause:

icon_rules

demo IF
{

trigger_action: activate
{

xs=x
until == $xs xxxxxx
do

for_info 'In activate: ,A$XS
xs=xA$xs

done

trigger_action: alt_activate
{

xs=x
until == $xs xxxxxx
do

for_info 'In alt_activate: ,A$XS
xs=xA$xs

done

H the user double-clicks on the demo icon with mouse button 1 and then
again with mouse button 2, two threads will be created to execute the com­
mands in the two trigger_action clauses. In whatever order the user presses
OK on each dialog, the two instances of the local variable xs are kept separate,
and changes to its value in one thread do not affect its value in the other
thread.

363

Writing Deskshell commands

See also:

• "Global variables" (this page)

• icon_rules and triggecaction in the xdt3(xC) manual page

Global variables

Global variables can be accessed by all threads in a Desktop session. They are
created by prefixing the variable name with " : ".

For example:

:count=10

creates a global variable count with the value J'
110".

Global variables can be accessed with the constructs $:var, $#:var, and so
forth. Global variables are distinct from local variables with the same name,
so you can have:

count=12

and

:count=10

as separate variables. However, $var will give the value of the global variable
var if no local variable has been defined.

See also:

• "Local variables" (page 363)

Variable overriding

364

A local variable can be given a value for the duration of one command by
prefixing the command with the variable assignment. For example:

var=2
var=l for_info 'var=' $var
for_info 'var=' $var

will first display the value of var as "I", and then as "2".

If the command is a function call, then the new value applies for the duration
of the function call, after which the variable reverts to its previous value. It
makes no difference whether or not the function also alters the value.

Graphical Environment Guide

How Deskshell commands are executed

How environments are inherited

The parent of each thread, (Le. the thread that created it), defines the environ­
ment that it inherits. The environment consists of the local variables and func­
tions of the parent thread, and the name of the current directory. The new
thread can also create its own set of local variables and functions, and its own
current directory.

Each thread has a name, and when it is created, its name is inserted at the
front of the local variable thread_name. Thus, within any thread,
$thread_name(l) is the name of the thread, $thread_name(2) the name of the
parent thread, and so forth. The name of a thread can be queried using query
thread_info.

See also:

• thread_name in the deskshel1(XC) manual page

• query thread_info in the deskcommands(XC) manual page

System thread

When the Desktop is first run, the system thread is created. The name of this
thread is the empty string.

The system thread executes the following sequence of commands:

• initial actions in system rule file

• initial actions in user rule file

• suspend

• final actions in user rule file

• final actions in system rule files

The initial and final actions of dynamic rules are run by the system thread, as
if they were signals.

The system thread stays in the suspended state until the Desktop shuts down,
using the die command.

See also:

• "Signals" (page 368)

• die in the deskcommands(XC) manual page

365

Writing Deskshell commands

Window threads

Each desktop, directory or treeview window has an associated thread called
the "window thread". These are always children of the system thread. Win­
dow thread names end with the name of the desktop or directory window. To
get the window name, use the query thread_info command.

Each window thread executes the following sequence of commands:

• initial actions in directory or desktop rule file

• suspend

• final actions in directory or desktop rule file

The window thread is suspended until the window is closed.

All other threads are children of the thread that created them. For example,
double-clicking on an icon in a desktop window creates a new thread which is
a child of the desktop window thread.

See also:

• query thread_info in the deskcommands(XC) manual page

Background threads

366

A thread can also be created by running a command in the background with
the " & " operator. In this case the thread is a child of the thread that created it.

For example, the following illustration shows the inheritance tree for a thread
created when the user double-clicks on a clock icon in the home directory
window with the following icon_rules clause:

icon_rules

clock
{

trigger_action: activate
{

for_info hello &
xc lock

Thread Tl will create the new thread T2. This will display the for_info dialog
box. Thread Tl will then run xclock, and will stay blocked until the xclock
window is closed. Thread Tl will then terminate.

Graphical Environment Guide

How Deskshell commands are executed

Thread T2 will block until the user closes the for_info dialog by clicking on
the OK button.

Several commands may be run in the background by enclosing them in "{ }"
and putting ii &" after the closing bracket, as in:

string='Hello'
for_info $string
&

In the parent thread the name of the child thread is placed in the local variable
last_background_action and the parent does not wait for the child to ter­
minate.

See also:

• icon_rules in the xdt3(XC) manual page

• focinfo in the deskcommands(XC) manual page

• "&"," { } ", and lasCbackground_action in the deskshell(XC) manual page

Pipelines

The pipeline operator, " I ", creates two child threads from the parent thread,
and the parent is blocked until both children have finished executing.

For example, the command:

sort < F I uniq > F2

sorts records from the file F and sends the output to the uniq command,
which then removes duplicate lines, and sends the output to a file F2.

See also:

• pipeline operator (" I ") in the deskshell(XC) manual page

Executing actions within the same thread

The do_actions_of, do_drop_in_actions_of, do_menu_actions_of, and source
commands execute the specified actions within the same thread, rather than
in a separate thread.

367

Writing Deskshell commands

You might want to do this to keep control over the order in which the actions
are executed. For example, the following script sends the example myprint
trigger, below, to a sequence of icons in the variable $*:

for i in $*
do

do_actions_of myprint $i
done

Because a do_actions_o£ command is used, each myprint action executes and
completes before the next one is started.

NOTE Because the action commands are executed in the same thread,
changing a local variable in the trigger action for myprint will affect local
variables in the current thread. Generally this is not a problem because only
loop variables will be used in both scripts, and these are protected.

See also:

• do_actions_of, do_drop_in_actions_of, do_menu_actions_of, and source in the
deskcommands(XC) manual page

Signals

368

Signals provide a way of passing messages between two threads. Any thread
can send a signal to any other thread using the kill command.

Signal handlers are defined in exactly the same way as functions, with names
that must begin with sig.

When a thread receives a signal, the function with the same name as the sig­
nal is called, interrupting any other action that the thread is carrying out.
When the function returns, the previous action continues. If no function has
been defined, or inherited from parent threads, the signal is ignored.

Graphical Environment Guide

How Deskshel/ commands are executed

For example, the following program shows how a signal can be used to give
the user the option of canceling a lengthy compress operation:

function sigstop
{

&

stop=true

if yni Cancel?
then kill sigstop $threadnarne(2)
fi

stop=false
for i in $dynarnic_args
do

compress $i
if $stop then exit fi

done

This command compresses icons that are dropped onto a hypothetical
compress icon. Before compressing any of the icons, it puts up a yni dialog
box in the background to give the user the option of canceling the command
at any time. If the user chooses Yes, the background thread sends the specially
defined signal sigstop to its parent thread, $thread_name (2), and this has the
effect of setting the variable stop to L/true". The next time the if $stop ... line is
read, the operation will be canceled.

See also:

• $thread_name(2) in the deskshell(XC) manual page

• kill and yni in the deskcommands(XC) manual page

Standard signals

A number of standard signals are defined in the system thread, and these can
be used in other threads for particular functions. The default signal is sigint,
and this is used if no signal name is given in the kill command. By default,
this displays a for_info dialog box and then terminates the thread with an exit
command.

Threads that need to exit in a particular way can redefine sigint. The example
in LlSignals" (page 368) could also have been written to use sigint rather than
the user defined signal sigstop.

369

Writing Deskshell commands

370

The sigexit signal is sent to the thread when it terminates. Normally no
sigexit function is defined, so this has no action and the thread terminates
immediately. However, you can define a sigexit function if you need to per­
form some cleaning up when the thread exits, such as deleting temporary
files.

The signal sigkill causes a thread to terminate immediately, without calling
the sigexit or sigkill functions.

See also:

• exit in the deskshel1(XC) manual page

• for_info and kill in the deskcommands(XC) manual page

Graphical Environment Guide

Chapter 26

Mapping mouse triggers for the Desktop

The actions that are taken in response to a mouse action (clicking, dragging,
or holding one or more mouse buttons) are defined by associating them with a
trigger name instead of a specific physical mouse button. For example, the
action "select an icon" is associated with the trigger name Ilactivate" instead of
being directly defined as the mouse action "double-click mouse button 1."

This mapping of mouse actions with trigger names allows you to define
action sequences for any type of mouse containing one to five mouse buttons.

NOTE Although the sea OpenServer system offers this flexibility in map­
ping triggers, you are advised against modifying this mapping indiscrim­
inately. The trigger mapping is optimized to the particular mouse supplied
with your system. Make changes with caution because any change you
make has possible effects on other trigger functionality. Furthermore, the
mouse trigger mappings are currently defined so that they are aSF /Motif
compliant for three-button mice. Altering these trigger mappings will alter
this compliance.

There are three resources that define mouse actions for the Desktop:
triggers.maxUpTime, triggers.threshol dD own Time, and
triggers.maxMotion. These resources control the time (milliseconds) that a
mouse button can be up before a trigger ends (used to judge whether two but­
ton presses are a double-click or two independent clicks), the time (mil­
liseconds) that a mouse button can be held before it is considered a hold
instead of a click, and the distance (pixels) that the mouse pointer can move
before a mouse button press is considered a drag, respectively. For more in­
formation on these resources, see Chapter 10, IIConfiguring mouse behavior"
(page 195).

371

Mapping mouse triggers for the Desktop

See also:

• "Modifying the mouse trigger mappings" (this page)

Modifying the mouse trigger mappings

372

To change the mouse trigger mapping, perform the following steps. For more
information on each of these steps, see the sections immediately following
this procedure.

1. Open the desired resource file for editing:

• /usr/lih/Xll/app-defaults/XDesktop3 for system-wide changes

• $HOME/XDesktop3 for individual changes

2. Redefine the trigger mapping, using this syntax:

trigger [: modifiers] [/ context] = {trigger_name I action}

where modifiers can be c, s, 1, or ml - m5 and context can be b, p, or t.
When you are finished, save your changes and exit the resource file.

3. Restart the Desktop.

Step 1: Editing the resource file
You can change the default trigger mappings so that all users on your system
use the new definitions, or you can simply change the mappings for an indi­
vidual user.

NOTE Changing the trigger mappings should not be taken lightly. The
trigger mapping is optimized to the particular mouse supplied with your
system. Furthermore, the mouse trigger mappings are currently defined so
that they are aSF /Motif compliant. Altering these trigger mappings will
alter this compliance.

The default trigger mappings are defined in /usr/lih/Xll/app­
defaults/XDesktop3. You must have root privileges to edit this file. It is good
practice to make a backup copy of the file before making changes to it.

Individual users can also change the mouse trigger mappings for their own
use by copying the trigger mapping section from /usr/lih/Xll/app­
defaults/XDesktop3 to a file called $HOME/XDesktop3. This file is used to
specify personal resource specifications that are used by the Desktop. Unlike
the $HOME/.Xdefaults-hostname file (used for many resource specifications),
which is specific to a given host machine, the Desktop consults
$HOME/XDesktop3 on any host.

Graphical Environment Guide

Modifying the mouse trigger mappings

NOTE The XDesktop3 file does not exist in the user's home directory by
default. If this file is not currently present, you must create it before you can
redefine the trigger mappings.

If you create this file for a user from the root account, you must assign the
file the correct ownership permissions. Run the chown command to assign
the correct owner and the chgrp command to assign the correct group to the
XDesktop3 file. If you created this file yourself, these steps are unnecessary.

When the Desktop starts, it checks to see if an XDesktop3 file exists in $HOME.
If such a file does exist, the resource values specified in the user resource file
take precedence over any values assigned to the same resource for the system,
or in the resource database.

See also:

• "Methods for specifying resources" (page 87) for a more detailed explanation of the
resource files mentioned above

Step 2: Redefining the trigger mapping
Type the new trigger mapping using the syntax described below. The entry
must begin with the resource *triggers*mapping and each trigger string must
be followed by a semicolon, 1/ ; ". The mapping may span multiple lines if all
but the last line ends with a backslash, "\ ".

The syntax for a trigger mapping string is:

trigger [: modifiers] [/ context] = {trigger_name I action}

where modifiers can be c, s, 1, or ml - m5 and context can be b, p, or t.

Here are the meanings of the various flags and the other arguments:

• The trigger component of a trigger mapping string defines a mouse action
by specifying one to five comma-separated steps (button presses). Each
step can include presses of one or more mouse buttons.

For example, a double-click of mouse button 1 is represented by:

1,1

A chording of mouse buttons 1 and 3 (pressing both buttons simultane­
ously) is represented by:

13

When a step includes more than one button, the step ends when all buttons
are released; the order in which the buttons are pressed does not matter.

If a trigger contains more than five steps, it is ignored.

373

Mapping mouse triggers for the Desktop

374

• The modifiers component of a trigger mapping string, if any, defines
dependencies the trigger has on the modifier keys (CtrI), (Shift), and
(CapsLock).

The modifiers are:

Character Meaning
c (CtrI) key
s (Shift) key
I (CapsLock) key

ml-m5 system-defined modifiers

If a modifier key is not specified, it is ignored unless the modifiers list is
preceded by one of the following:

Character Meaning
specified modifier keys must not be pressed
specified modifier keys must be pressed and other modifier
keys may not be pressed

For example, specify a press of mouse button 2 in which the (Shift) and
(CapsLock) keys may not be pressed with this modifier:

2:-51

Specify a press of mouse button 1 in which the (CtrI) key must be pressed
and no other modifier key may be pressed with this modifier:

1: !c

• The context component of a trigger mapping string, if any, defines where
the mouse pointer must be located for the trigger to be recognized.

The context specifications are:

Character
b
P
t

Meaning
directory, desktop, or treeview window background
icon picture
icon title (name)

For example, specify a press of mouse button 2 on an icon picture and title
with this context:

2/pt

• The trigger _name is one of the two component choices on the right side of a
trigger mapping string. A trigger _name can refer to a trigger in rule files
(trigger_action and drop_in_action clauses) and in Deskshell commands
(actions_of and drop_in_actions_of commands).

Graphical Environment Guide

Modifying the mouse trigger mappings

For more information on the trigger_action and drop_in_action clauses,
see the xdt3(XC) manual page. For more information on using Deskshell
commands, see Chapter 25, #Writing Deskshell commands" (page 349).

The trigger_name can be one of the following one-letter identifiers, which
specify the type of button press in the trigger:

Character Meaning
s static trigger (implies a single- or double-click)
d dynamic trigger (implies drag)
h hold trigger

The one-letter identifier can be followed by a number from 1 to 3 to
represent the corresponding mouse button, or by a space and a name. Any
name can be assigned except a single letter followed by numbers.

For example, this trigger _name assigns the identifier h3 when button 3 is
pressed on an icon picture or title (name):

3/pt=h3

This trigger _name assigns the name deselect to a press of mouse button 1
on a desktop or directory window background:

l/b=s deselect

• The action is one of the two component choices on the right side of a
trigger mapping string. Use an action when you want to associate a speci­
fic action directly with a trigger.

An action includes a one-letter identifier to specify the type of action:

Character Meaning
m menu
r rename
s selection

Menu actions

Use a menu action if you want a menu to be displayed when a hold trigger
occurs. Specify a menu action with m menuname.

For example, this action displays the Desktop Help menu, defined by the
#DesktopHelpMenu" rule, when a hold trigger occurs:

m DesktopHelpMenu

375

Mapping mouse triggers for the Desktop

376

Rename actions

Use a rename action to invoke a rename command. A rename action takes no
argument, but the trigger must occur on an icon and the last step must be a
click:

r

Selection actions

Use a selection action to select one or more icons. If the pointer is in a direc­
tory window, the main Desktop, or another desktop window, and not on an
icon, the action affects all icons in the window.

Specify the type of selection using:

Sequence
!s or Irs
+s or +rs
-s or -rs
-s or -rs

Meaning
select icon(s) and unselect any previous selections
select icons(s) and add to previous selection list
unselect icon(s) from previous selection list
toggle select/unselect

Use the rs sequences to specify that the icon selections are to be made with a
rectangle that the user drags from the point of origin to surround the selected
icons.

For example, this action specification lets the user select one or more icons
with a rubber-band selection rectangle, then unselects any previously selected
icons:

1/b:bpt= !rs

See also:

• Chapter 19, "Defining Desktop triggers" (page 309) for a summary of the names
and meanings of the currently defined triggers

Step 3: Restarting the Desktop
Once you have made the desired resource changes, you need to restart the
Desktop so the newly defined values will be read. Select Restart Desktop Ses­
sion from the main Desktop File menu. You are prompted to confirm that you
want to restart the Desktop by a dialog box; click on Yes.

The Desktop starts again and reads your new resource values.

Graphical Environment Guide

Appendix A

OSF/Motij window manager resources

Because the window manager is a major component of the sea OpenServer
Graphical Environment, there are a number of window manager resources
that you may be interested in using. This appendix describes these resources.

NOTE The aSF /Motif resources discussed here are relevant to the sea
Panner window manager in both pmwm and mwm modes. However, some
of the resources have different default values in the different modes. Where
this is true, both values are described. (See "Selecting between sea Panner
and aSF /Motif modes" (page 220) for information on the different sea
Panner window manager modes.)

The pmwm mode uses a number of resources that are not applicable to
mwm mode. These resources are described in "Setting sea Panner
resources" in Using sea Panner.

The window manager uses three categories of resources:

• Specific appearance and behavior resources: These resources specify
overall window manager appearance and behavior, such as keyboard and
mouse behavior, icon size and placement, focus policies, and window
frame size and shape. These resources do not control individual window
manager components such as color or font style.

The syntax for defining this category of resource is:

Pmwm *resource_name: resource_value

or

Mwm*resource_name: resource_value

• Component appearance resources: These resources control the appear­
ance of window frames, window manager menus, and icons. Pixmaps,
colors, and fonts are the most commonly configured component appear­
ance resources.

377

OSFIMotif window manager resources

378

The syntax for defining this category of resource is:

Pmwm [*component] *resource_name: resource_value

or

Mwm[*component]*resource_name: resource_value

The component argument can take one of the following values:

client indicates the window frames of all clients

feedback indicates the dialog boxes displayed by the window manager

icon refers to the icon box

menu refers to the menus displayed by the window manager

You can omit the component argument when specifying a component
appearance resource. If you do, the resource specification is defined for all
of the window manager components.

To configure the title area of a client window frame specifically, use this
syntax:

Pmwm*client*title*resource_name: resource_value

or

Mwm*client*title*resource_name: resource_value

To configure the appearance of all window manager menus specifically,
use this syntax:

Pmwm*menu *menuname*resource_name: resource_value

or

Mwm*menu *menuname*resource_name: resource_value

• Client-specific resources: These resources control the appearance and
behavior of the windows that are associated with a client or a class of
clients. You can use these resources to customize the behavior of the win­
dow manager for individual clients.

The syntax for defining this category of resource is:

Pmwm *client*resource_name: resource_value

or

Mwm *client*resource_name: resource_value

Here client identifies the client to which the resource applies. You can use
either the client's binary name or class name. resource_name is the actual
window manager resource variable you want to specify. Note that you can
only use a client-specific window manager resource variable for resource
specifications of this category.

Graphical Environment Guide

The following sections describe the resources that you can use to customize
the window manager in both pmwm and mwm modes. These resources are
listed in reference tables, which organize the resources according to the aspect
of the window manager that they configure. Following each reference table,
in alphabetical order, is a description of each of the resources mentioned in
the table. These description sections indicate if a resource belongs to the spe­
cific appearance and behavior category, the component appearance category,
or the client-specific category.

• #Resources for configuring window focus policies" (this page)

• #Resource for specifying window manager fonts" (page 382)

• #Resources for coloring windows, icons, menus, and mattes" (page 383)

• #Resources for shading windows, icons, menus, and mattes" (page 386)

• #Resources for window decorations" (page 389)

• #Resources for controlling window size and position" (page 391)

• #Resources for configuring window manager icons" (page 395)

• #Resources for configuring the icon box" (page 397)

• #Other resources for controlling windows" (page 399)

Resources for configuring window focus policies

The following resources control colormap and keyboard input focus policies:

Table A-1 Focus policy resources

Name Class Value Type Default
autoKeyFocus AutoKeyFocus true/false true
autoRaiseDelay AutoRaiseDelay milliseconds 500
colormapFocusPolicy ColormapFocusPolicy string keyboard
deiconifyKeyFocus DeiconifyKeyFocus true/false true
enforceKeyFocus EnforceKeyFocus true/false true
execshell ExecShell string null
focusAutoRaise FocusAutoRaise true/false true
keyboardFocusPolicy KeyboardFocusPolicy string explicit
passButtons PassButtons true/false false
passSelectButton PassSelectButton true/false true
raiseKeyFocus RaiseKeyFocus true/false false
startupKeyFocus StartupKeyFocus true/false true
xGranularity XGranularity pixels 0
yGranularity YGranularity pixels 0

379

OSFIMotif window manager resources

380

These resources are described in more detail below:

autoKeyFocus (Class: AutoKeyFocus)
This resource applies only when the keyboardFocusPolicy resource is set to
"explicit." This resource controls what happens to the focus when the current
active window is iconified. If the autoKeyFocus resource is "true," the focus
automatically goes to the window that previously had the focus. (This is a
specific appearance and behavior resource.)

autoRaiseDelay (Class: AutoRaiseDelay)
If the focusAutoRaise resource is "true" and the keyboardFocusPolicy
resource is set to "pointer," the autoRaiseDelay resource is read. This
resource specifies the number of milliseconds the window manager should
wait before raising a window (bringing the resource to the top of the stack of
windows) once the window has received the input focus. The default is 500
milliseconds. (This is a specific appearance and behavior resource.)

colormapFocusPolicy (Class: ColormapFocusPolicy)
This resource controls the colormap focus for the window whose colormap is
currently installed and used for displaying everything in a server. The color­
mapFocusPolicy resource can take one of the following three values:

• "keyboard" means the window with input focus has colormap focus.

• "pointer" means the window with the pointer has the colormap focus.

• "explicit" means that the colormap has to be explicitly selected for a win­
dow.

To allow explicit selection of a colormap, assign a button or key to the func­
tion named f.focus_color. (See Chapter 12, "Customizing the window
manager" (page 219) for more information on the f.focus_color function.) The
default value of the colormapFocusPolicy resource is "keyboard." (This is a
specific appearance and behavior resource.)

deiconifyKeyFocus (Class: DeiconifyKeyFocus)
If this resource is set to "true" and keyboardFocusPolicy is "explicit," a win­
dow receives input focus when it is deiconified, or converted to normal size
from an icon. The default value is "true." (This is a specific appearance and
behavior resource.)

enforceKeyFocus (Class: EnforceKeyFocus)
If this resource is "true," the window manager sets the input focus to a
selected window even if it is a globally active window (a window that can be
operated without setting focus to it.) If the resource is "false," input focus is
not set to any globally active window (such as a scroll bar). This resource is
"true" by default. (This is a specific appearance and behavior resource.)

Graphical Environment Guide

execshell (Class: ExecShell)
This resource indicates the shell that the window manager uses when it exe­
cutes a new client. The possible shells values are" /bin/.sh", "/bin/.ksh", and
"/bin/.csh". The default value is "null", which specifies to execute a client
from the user's home shell. (This is a specific appearance and behavior
resource.)

focusAutoRaise (Class: FocusAutoRaise)
If this resource is "true," the window manager raises a window to the top of
the stacking order when the window receives the input focus. The default
value depends on the keyboardFocusPolicy resource, but in most cases is
"true". If keyboardFocusPolicy is "explicit," focusAutoRaise is set to "true";
otherwise, focusAutoRaise is toggled to "false." However, you can assign a
"true" or "false" value to this resource yourself, regardless of the value key­
boardFocusPolicy is using. (This is a client-specific resource.)

keyboardFocusPolicy (Class: KeyboardFocusPolicy)
This resource specifies how the window manager should assign the input
focus to a window, so the window with the input focus receives your key­
strokes. This resource can take one of two values:

• "explicit" means you indicate the focus window by pressing the first mouse
button with the pointer in the window.

• "pointer" means the keyboard focus follows the mouse pointer.

The default setting for keyboardFocusPolicy is "explicit." (This is a specific
appearance and behavior resource.)

passButtons (Class: Pass Buttons)
If this resource is "true," the window manager passes button-press events to
the client, even after the events are used for some window manager functions.
The default value is "false." The window manager does not forward button­
press events that it uses for window management functions. (This is a specif­
ic appearance and behavior resource.)

passSelectButton (Class: PassSelectButton)
This resource indicates whether a button-press that assigns input focus to a
window is passed as an event to that window. By default this resource is
"true," which means that the window manager passes the button-press event
to the window after giving the keyboard focus to that window. This resource
applies only when keyboardFocusPolicy is "explicit," because this is the only
case that requires you to transfer input focus by clicking on a window. (This
is a specific appearance and behavior resource.)

raiseKeyFocus (Class: RaiseKeyFocus)
This resource is available only when the keyboardFocusPolicy resource is set
to "explicit." When this resource is "true," it specifies that a window raised by
the f.normalize_and_raise function also receives the input focus. The default
value is "false." (This is a specific appearance and behavior resource.)

381

OSFIMotif window manager resources

starlupKeyFocus (Class: StartupKeyFocus)
If this resource is "true" and keyboardFocusPolicy is set to "explicit," the win­
dow manager transfers input focus to a window when it is mapped. This
resource is "true" by default. (This is a specific appearance and behavior
resource.)

xGranularity (Class: XGranularity)
This resource indicates where your window will be redrawn when you move
the sides of it to a non-standard location on the background. This feature
improves the redraw rate of your window. The new location is specified as a
value (x) that represents the number of horizontal pixels that comprise an
interval between standard redraw locations. For example, if you move your
window to horizontal pixel number 15 and the xGranularity resource is set to
"9," the window is redrawn at pixel number 18, the nearest location that is a
multiple of 9. The default value is "0". (This is a specific appearance and
behavior resource.)

yGranularity (Class: YGranularity)
This resource indicates where your window will be redrawn when you move
either the top or bottom to a non-standard location on the background. This
feature improves the redraw rate of your window. The new location is
specified as a value (y) that represents the number of vertical pixels that
comprise an interval between standard redraw locations. For example, if you
move your window to vertical pixel number 7 and the xGranularity resource
is set to "3," the window is redrawn at pixel number 6, the nearest location
that is a multiple of 3. The default value is "0". (This is a specific appearance
and behavior resource.)

Resource for specifying window manager fonts

382

The fontList resource specifies the fonts that are used in all window manager
decorations. The class for the fontList resource is FontList.

When specifying this resource, use the full font name, font name wildcards, or
a font alias for the resource value. The default is the "-*-helvetica-medium-r­
normal--12-*-*-*-*-*-iso8859-1" font. (See Chapter 7, "Changing fonts" (page
125) for more information on how to specify font resources.)

This resource can be used to specify lists of fonts, to accommodate the possi­
bility that some systems may contain a set of fonts, while other systems con­
tain a different set. If you list multiple fonts, they must be separated by white
space.

Graphical Environment Guide

Resources for coloring windows, icons, menus, and mattes

The following resources control the colors that are used in active and inactive
window frames, icon images, menus, and mattes:

Table A-2 Color resources

Value
Name Class type Default

Windows, icons, and menus

activeBackground Background color scoActiveBackground
activeBottomShadowColor Foreground color black
activeF oreground Foreground color scoActiveF oreground
activeTopShadowColor Background color scoActiveTopShadow
background Background color scoBackground
bottomShadowColor Foreground color black
foreground Foreground color scoForeground
topShadowColor Background color scoTop Sha dow

Mattes

matteBackground Background color value of *background
matteBottomShadowColor Foreground color black
matteForeground Foreground color value of *foreground
matteTopShadowColor Background color scoBackground
matteWidth MatteWidth pixels 0

Icon images

iconImageBackground Background color value of *background
iconImageBottomShadowColor Foreground color black
iconImageForeground Foreground color value of *foreground
iconImageTopShadowColor Background color value of *topShadowColor

NOTE Most of these color resources specify a palette resource variable,
instead of a specific color. For example, the activeForeground resource
specifies a value of "scoActiveForeground." These palette resource vari­
ables are replaced with a color value, depending on the color choices you
make with the scocolor client. See Chapter 6, "Changing colors" (page 99)
for more information.

The resources listed in Table A-2, "Color resources" (this page) are described
in more detail below:

activeBackground (Class: Background)
This resource specifies the color of the active window manager window
frame. The default value is "scoActiveBackground." (This is a component
appearance resource.)

383

OSFIMotif window manager resources

384

activeBottomShadowColor (Class: Foreground)
This resource specifies the color of the lower and right bevels of the active
window frame. The default value is "black." (This is a component appearance
resource.)

activeForeground (Class: Foreground)
This resource specifies the color of text in the active window frame. The
default value is "scoActiveForeground." (This is a component appearance
resource.)

activeTopShadowColor (Class: Background)
This resource specifies the color of the upper and left bevels of the active win­
dow frame. The default value is "scoActiveTopShadow." (This is a com­
ponent appearance resource.)

background (Class: Background)
This resource specifies the background color used in all components of the
window manager, particularly the background of windows. The default
value is "scoBackground." (This is a component appearance resource.)

bottomShadowColor (Class: Foreground)
This resource specifies the color of the lower and right bevels in all window
frames. The default value is ''black.'' (This is a component appearance
resource.)

foreground (Class: Foreground)
This resource specifies the color of text used in all components of the window
manager, particularly in windows. The default value is "scoForeground."
(This is a component appearance resource.)

iconlmageBackground (Class: Background)
This resource specifies the background color for the window manager icon
image. The default value is the color specified by the *background or
*icon*background window manager resources. (This is a client-specific
resource.)

iconlmageBottomShadowColor (Class: Foreground)
This resource specifies the color used to create the bottom shadow of the icon
image. The default value is ''black.'' (This is a client-specific resource.)

iconlmageForeground (Class: Foreground)
This resource specifies the foreground color of the icon image. The default
value is the color specified by the *foreground or *icon*foreground window
manager resources. (This is a client-specific resource.)

Graphical Environment Guide

iconlmageTopShadowColor (Class: Background)
This resource specifies the color used to create the top shadow of the icon
image. The default value is the color specified by the *topShadowColor win­
dow manager resource. (This is a client-specific resource.)

maUeBackground (Class: Background)
This resource specifies the background color of the matte. The matte is a
three-dimensional border between the client's window and the window frame
added by the window manager. This resource is used only if matteWidth is
greater than zero. The default value is the color specified by the *background
or *client*background window manager resources. (This is a client-specific
resource.)

maUeBoUomShadowColor (Class: Foreground)
This resource specifies the color used to create the bottom shadow of the
matte. This resource is used only if maUeWidth is greater than zero. The
default value is ~'black." (This is a client-specific resource.)

maUeForeground (Class: Foreground)
This resource specifies the foreground color of the matte. This resource is
used only if maUeWidth is greater than zero. The default value is the color
specified by the *foreground or *client*foreground window manager
resources. (This is a client-specific resource.)

maUeTopShadowColor (Class: Background)
This resource specifies the color used to create the top shadow of the matte.
This resource is used only if maUeWidth is greater than zero. The default
value is the color specified by the *topShadowColor window manager
resource. (This is a client-specific resource.)

maUeWidth (Class: MatteWidth)
This resource specifies the width of the matte, in pixels. The default value is
zero; no matte appears by default. (This is a client-specific resource.)

topShadowColor (Class: Background)
This resource specifies the color of the top and left bevels in all window
frames. The default value is "scoTopShadow." (This is a component appear­
ance resource.)

385

OSFIMotif window manager resources

Resources for shading windows, icons, menus, and mattes

The following resources control the shading elements of windows, icons,
menus, mattes, and icon images. Shading resources are most valuable when
used with a monochrome display.

Table A-3 Shading resources

Name

Windows, icons, and menus

activeBackgroundPixmap

activeBottomShadowPixmap

activeTopShadow Pixmap

backgroundPixmap

bottomShadowPixmap

topShadowPixmap

clean Text

Mattes

matteBottomShadowPixmap

matteTopShadowPixmap

Icon images

iconImageBottomShadowPixmap

iconImageTopShadowPixmap

Class

BackgroundPixmap

BottomShadowPixmap

TopShadowPixmap

BackgroundPixmap

BottomShadowPixmap

TopShadowPixmap

Clean Text

BottomShadowPixmap

TopShadowPixmap

BottomShadowPixmap

TopShadowPixmap

Value type Default

pixmap varies t

pixmap varies t

pixmap varies t

pixmap varies t

pixmap varies t

pixmap varies t

true/false true

pixmap *bottomShadowPixmap

pixmap *topShadowPixmap

pixmap *icon*bottomShadowPixmap

pixmap *icon*topShadowPixmap

t The default values for these resources are calculated dynamically,
depending on your display and the values assigned to other color
resources. For example, a monochrome display is assigned different
default values than a color display.

All of the resources in this section, with the exception of cleanText, require a
pixmap as a value. The following list describes the pixmap values that you
can assign to these resources:

background the background color (solid)

foreground the foreground color (solid)

25_foreground a mix of 25 percent foreground to 75 percent background

50_foreground a mix of 50 percent foreground to 50 percent background

75_foreground a mix of 75 percent foreground to 25 percent background

horizontaLtile horizontal lines alternating between the foreground and
background colors

386 Graphical Environment Guide

diagonal lines slanting to the left, alternating between the
foreground and background colors

diagonal lines slanting to the right, alternating between the
foreground and background colors

vertical lines alternating between the foreground and back­
ground colors

Figure A-I provides examples of how each of these pixmaps are displayed.

foreground background

75_foreground horizontal ti Ie

slant left

-
Figure A-1 Examples of valid pixmap values

The resources listed in Table A-3, "Shading resources" (page 386) are
described in more detail below:

activeBackgroundPixmap (Class: BackgroundPixmap)
This resource specifies the pixmap used as the background in the window
manager decorations of an active window. (This is a component appearance
resource.)

activeBottomShadowPixmap (Class: BottomShadowPixmap)
This resource specifies the pixmap used for the lower and right bevels of the
active window frame. (This is a component appearance resource.)

activeTopShadowPixmap (Class: TopShadowPixmap)
This resource specifies the pixmap used for the upper and left bevels of the
active window frame. (This is a component appearance resource.)

387

OSFIMotif window manager resources

388

backgroundPixmap (Class: BackgroundPixmap)
This resource specifies the background pixmap used to decorate the window
frame of an inactive window. (This is a component appearance resource.)

bottomShadowPixmap (Class: BottomShadowPixmap)
This resource specifies the pixmap used in the lower and right bevels of all
inactive window manager frames. (This is a component appearance
resource.)

cleanText (Class: CleanText)
This resource can be used to make text easier to read on monochrome systems
where a backgroundPixmap resource is specified. If this resource is set to
"true," text appearing in a windows title and in the window manager's dialog
boxes is displayed with a clear background. If this resource is "false," text is
drawn directly on top of the existing background, even if the background uses
a pattern. The default value for this resource is "true." (This is a specific
appearance and behavior resource.)

iconlmageBottomShadowPixmap (Class: BottomShadowPixmap)
This resource specifies the pixmap used for the bottom shadow of the icon
image. The default value is the pixmap specified by the
*icon*bottomShadowPixmap window manager resource. (This is a com­
ponent appearance resource.)

iconlmageTopShadowPixmap (Class: TopShadowPixmap)
This resource specifies the pixmap used for the top shadow of the icon image.
The default value is the pixmap specified by the *icon*topShadowPixmap
window manager resource. (This is a client-specific resource.)

matteBottomShadowPixmap (Class: BottomShadowPixmap)
This resource specifies the pixmap used for the bottom shadow of the matte.
This resource is used only if matteWidth is greater than zero. The default
value is the pixmap specified by the *bottomShadowPixmap or the
*client*bottomShadowPixmap window manager resource. (This is a client­
specific resource.)

matteTopShadowPixmap (Class: TopShadowPixmap)
This resource specifies the pixmap used for the top shadow of the matte. This
resource is used only if matteWidth is greater than zero. The default value is
the pixmap specified by the *topShadowPixmap or the
*client*topShadowPixmap window manager resource. (This is a client-spe­
cific resource.)

topShadowPixmap (Class: TopShadowPixmap)
This resource specifies the pixmap used in the top and left bevels of all inac­
tive window frames. (This is a component appearance resource.)

Graphical Environment Guide

Resources for window decorations

The following resources are used to declare applicable functions and decora­
tion elements for a client:

Table A-4 Window decoration resources

Value
Name Class type Default
clientDecoration ClientDecoration string all
clientFunctions ClientFunctions string all
transientDecoration TransientDecoration string title border resizeh
transientFunctions TransientFunctions string move resize

These resources are described in more detail below:

clientDecoration (Class: ClientDecoration)
This resource specifies the amount of decoration (buttons and frames) that the
window manager applies to a client's top-level window. The value of this
resource is a combination of one or more of the following names:

• "all" includes all decorations listed below.

• ''border'' displays the window border.

• "maximize" adds the maximize button, including the title bar.

• "menu" displays the Window menu button, including the title bar.

• "minimize" adds the minimize button, including the title bar.

• "resizeh" shows the border with resize handles.

• "none" suppresses all decoration.

• "title" adds the title bar and a border to the window.

The default for the clientDecoration resource is "all." You specify new values
for this resource in two ways:

• Enable selected decorations. For example, if you want the xclock client's
window to have a title bar with a Window menu and a resizable border
only:

Pmwm*XClock*clientDecoration: menu resizeh

• Disable selected decorations. The syntax requires a minus sign to precede
the first value. For example, if you want all the decorations except the
maximize and minimize buttons, you would specify:

Pmwm*XClock*clientDecoration: -maximize minimize

(This is a client-specific resource.)

389

aSF/Motif window manager resources

390

c1ientFunctions (Class: ClientFunctions)
This resource specifies which of the window manager functions apply to a
client's top-level window. (See "Using window manager functions" (page
223) for more information.) The value of this resource is a combination of one
or more of the following names:

• "all" includes all functions listed below.

• "close" refers to the f.kill function.

• "maximize" refers to the f.maximize function.

• "minimize" refers to the f.minimize function.

• "move" refers to the f.move function.

• "none" suppresses invocation of all functions.

• "resize" refers to the f.resize function.

The default for the c1ientFunctions resource is "all." You specify new values
for this resource in two ways:

• Enable selected functions. For example, if you want to invoke only the
f.move and f.resize functions on the xc10ck window, you can set this
resource as follows:

pmwm*xclock*clientFunctions: move resize

• Disable selected functions. The syntax requires a minus sign to precede the
first value. For example, if you want to apply all functions except f.maxi­
mize and f.minimize, you would specify:

pmwm*xclock*clientFunctions: -maximize minimize

Note that if you disable functions that are used by Root and Window menu
options, or by window manager button and key bindings, the affected menu
options are removed from menus and the affected button and key bindings no
longer work.

(This is a client-specific resource.)

transientDecoration (Class: TransientDecoration)
This resource controls the amount of decoration that the window manager
places around a transient (temporary) window, identified by the
WM_TRANSIENT_FOR property on the window. The syntax for specifying
this resource is the same as that for the clientDecoration resource. The
default value for this resource is "title border resizeh," which means that tran­
sient windows appear with a title bar (without the Window menu button,
minimize button and maximize button), a window border, and resize handles.
(This is a specific appearance and behavior resource.)

Graphical Environment Guide

transientFunctions (Class: TransientFunctions)
This resource specifies the window manager functions that the window man­
ager allows for a transient (temporary) window, identified by the
WM_TRANSIENT_FOR property on the window. The syntax for specifying
this resource is the same as that for the clientFunctions resource. The default
value for this resource is "move resize," which means that the window man­
ager applies the functions £.move and £.resize to transient windows. (See
"Using window manager functions" (page 223) for more information.) (This
is a specific appearance and behavior resource.)

Resources for controlling window size and position

The following resources control the size and location of windows:

Table A·5 Window size and position resources

Name Class Value type Default
Size resources

frameBorderWidth FrameBorderWidth pixels 5
limitResize LimitResize true/false truet
maximumClientSize MaximumClientSize wxh fill the screen
maximumMaximumSize MaximumMaximumSize wxh 2X screen
resizeBorderWidth ResizeBorderWidth pixels varies
resizeCursors ResizeCursors true/false true

Position resources

clientAutoPlace ClientAutoPlace true/false true
interactivePlacement InteractivePlacement true/false false
moveOpaque MoveOpaque true/false false
moveThreshold MoveThreshold pixels 4
positionIsFrame PositionIsFrame true/false true
positionOnScreen PositionOnScreen true/false false
showFeedback ShowFeedback string all

Other resources

enableWarp EnableWarp true/false true

t In pmwm mode, this resource is set to "false".

These resources are described in more detail below:

clientAutoPlace (Class: ClientAutoPlace)
This resource affects how the window manager places a client's window on
the screen. If clientAutoPlace is "true," the window manager positions each

391

OSF/Motif window manager resources

392

window with the upper left comer of the frame offset horizontally and verti­
cally so that no two windows completely overlap. The default for clientAuto­
Place is "true." (This is a specific appearance and behavior resource.)

enableWarp (Class: EnableWarp)
If this resource is "true," the window manager moves the mouse pointer
("warps" it) to the center of the window being resized and moves through
keyboard accelerators (key combinations that activate menu options without
displaying the menu.) If enableWarp is "false," the pointer is left at its previ­
ous position. The default setting is "true." (This is a specific appearance and
behavior resource.)

frameBorderWidth (Class: FrameBorderWidth)
This resource specifies the width, in pixels, of the window frame border. This
border width includes the three-dimensional shadows. The default value is 5
pixels. (This is a specific appearance and behavior resource.)

interactivePlacement (Class: InteractivePlacement)
If this resource is "true," the window manager prompts you for the position of
each new window. You must press the mouse button to indicate where the
window should be placed. By default, this resource is "false" and the window
manager does not prompt you for the window position. (This is a specific
appearance and behavior resource.)

limitResize (Class: LimitResize)
If this resource is "true," you cannot resize a window so it is larger than the
maximum size. The default value for pmwm mode is "false," and "true" for
mwm mode. (This is a specific appearance and behavior resource.)

maximumClientSize (Class: MaximumClientSize)
This resource sets the size of the client's window when it is maximized. Its
value is width x height, in pixels. For example, if you have a display that uses
a resolution of 800x600 and you want a client window that can be resized to
twice the size of your screen, you would supply this resource a value of
"1600x1200". If this resource is not set, the maximum size is such that the
window fills the screen. Values assigned to this resource override values
specified for the maximumMaximumSize resource. (This is a client-specific
resource.)

maximumMaximumSize (Class: MaximumMaximumSize)
This resource sets the upper limit on the maximum size that you can specify
for a client window. The dimensions are given in pixels. For example, if you
set this resource to .t'800x600," client windows cannot be larger than 800x600
pixels. The default value is twice the size of your screen. For example, if your
display is 800x600 pixels, the default value for this resource would be
" 1600x1200". (This is a specific appearance and behavior resource.)

Graphical Environment Guide

moveOpaque (Class: MoveOpaque) This resource is used to control the
appearance of a window while it is being dragged. When "true," the entire
window moves instead of just the wire frame. The default value is "false."
(This is a specific appearance and behavior resource.)

moveThreshold (Class: MoveThreshold)
This resource controls how sensitive the window manager is to mouse drag
operations. The value is interpreted as the number of pixels by which the
mouse must move before the window manager reacts to it. The default value
is 4 pixels. (This is a specific appearance and behavior resource.)

positionIsFrame (Class: PositionIsFrame)
This resource specifies how the window manager interprets the information
about a client window's position as it appears in the WM_NORMAL_HINTS
property or in geometry specifications. If this resource is "true," the position
is taken to be that of the frame placed around the client window by the win­
dow manager; otherwise the position is that of the client window alone. The
default value is "true." (This is a specific appearance and behavior resource.)

positionOnScreen (Class: PositionOnScreen)
If this resource is "true," the window manager places a client window entirely
inside the screen. If the window's size exceeds the screen size, the window
manager places the upper left comer of the window within the boundaries of
the screen. The default value is "false," in which case, the window is located
according to its defined geometry, even if that location is off the screen. (This
is a specific appearance and behavior resource.)

resizeBorderWidth (Class: ResizeBorderWidth)
This resource specifies the width, in pixels, of a window frame that allows
you to resize the window by dragging the border. For mwm mode, the
default value is 5, 7, or 10 pixels, depending on the resolution of your display.
For pmwm mode, the default is 8 pixels. (This is a specific appearance and
behavior resource.)

resizeCursors (Class: ResizeCursors)
If this resource is "true," the cursor changes shape to indicate that the resize
operation is available whenever the mouse pointer enters the window frame.
By default, this resource is set to "false"; the cursor does not change shape
when the pointer is focused on the window frame. (This is a specific appear­
ance and behavior resource.)

393

OSFIMotif window manager resources

394

showFeedback (Class: ShowFeedback)
This resource specifies when the window manager displays feedback infor­
mation, which includes dialog boxes and boxes displaying window size and
position during move and resize operations. The value of this resource is a
combination of one or more of the following names:

• "all" shows all feedback information.

• "behavior" uses feedback to confirm any changes in the window manager's
behavior.

• Ilkill" shows a dialog box when a SIGKILL signal is received.

• "move" shows position during moves.

• Iinone" suppresses all feedback.

• "placement" shows position and size during initial placement of window.

• "quit" displays a dialog box for confirming a request to exit the window
manager.

• Ilresize" shows size when window is being resized.

• "restart" shows a dialog box to confirm any attempt to restart the window
manager.

The default for the showFeedback resource is I/all." You specify new values
for this resource in two ways:

• Enable selected feedback. For example, if you want feedback during move
and resize operations only, you can specify this resource as follows:

Pmwm*showFeedback: move resize

• Disable selected feedback. The syntax requires a minus sign to precede the
first value. For example, if you want feedback in all cases except during
move, resize, and placement, you would specify:

Pmwm*showFeedback: -move resize placement

(This is a specific appearance and behavior resource.)

Graphical Environment Guide

Resources for configuring window manager icons

The following resources are used to configure window manager icons (not to
be confused with the Desktop icons):

Table A-6 Icon resources

Name
iconAutoPlace
iconClick
iconDecoration
iconImage
iconlmageMaximum
iconImageMinimum
iconPlacement
iconPlacementMargin
lowerOnIconify
useClientIcon

Class
IconAutoPlace
IconClick
IconDecoration
IconImage
IconImageMaximum
IconImageMinimum
IconPlacement
IconPlacementMargin
LowerOnIconify
UseClientIcon

These resources are described in more detail below:

iconAutoPlace (Class: IconAutoPlace)

Value type
true/false
true/false
string
pathname
wxh
wxh
string
number
true/false
true/false

Default
true
true
all
varies
50x50
16x16
right bottom
null
true
false

This resource controls where the window manager places the icon for a mini­
mized window. If the resource is ILtrue," the window manager places all icons
in a specific area of the screen, determined by the iconPlacement resource. If
this resource is ILfalse," you can place the icons anywhere on the screen. The
default setting for this resource is ILtrue." (This is a specific appearance and
behavior resource.)

iconClick (Class: IconClick)
If this resource is the default value of ILtrue," the Window menu of an icon is
displayed and left visible when you click on the icon. If this resource is set to
ILfaIse", no Window menu is displayed when clicking on an icon. (This is a
specific appearance and behavior resource.)

iconDecoration (Class: IconDecoration)
This resource affects the amount of decoration on the icon. The value of the
resource can be a combination of the follOWing values:

• lLall" includes all settings below.

• ILlabel" indicates that only the label, truncated to the width of the icon, is
displayed.

• lLimage" means that only the image of the icon is displayed.

395

OSFIMotif window manager resources

396

• "activelabel" specifies that the complete label, not truncated, is shown
when the icon is active. For icons appearing in the icon box, the default
value of iconDecoration is "image label." For icons displayed on the screen
when the icon box is not activated, the setting is Ilimage label activelabel."
(If your display supports resolution lower than BOOx600, the default value
is Illabel" only.)

(This is a specific appearance and behavior resource.)

iconlmage (Class: Iconlmage)
This resource specifies the name, including the full path, of an X bitmap file
that the window manager uses as the icon for a client when the client's win­
dow is minimized. By default, the window manager displays a built-in, stan­
dard icon image for all applications. Note that the useClientlcon resource
affects this resource. If useClientlcon is Iltrue," an image supplied by the
client application takes precedence over an icon you specify here. Also, see
"Other resources for controlling windows" (page 399) for information on the
bitmapDirectory resource, which specifies the default pathname for bitmap
files. (This is a client-specific resource.)

iconlmageMaximum (Class: IconlmageMaximum)
This resource takes a value of the form w x h, where w and h specify the max­
imum width and height of an icon's image. The default is IISOXSO," in pixels.
The maximum allowed is "12Bx12B." (This is a specific appearance and
behavior resource.)

iconlmageMinimum (Class: IconlmageMinimum)
This resource takes a value of the form w x h, where w and h specify the mini­
mum width and height of an icon's image. The default value for this resource
is 1116x16," in pixels. This value is also the minimum size supported by the
window manager. (This is a specific appearance and behavior resource.)

iconPlacement (Class: IconPlacement)
This resource specifies where the window manager should place the icons.
The value is a sequence of two keywords of the form:

primary secondary

Here primary and secondary can take one of the following values:

• Iltop" specifies top-ta-bottom placement.

• l'bottom" specifies bottom-ta-top placement.

• "left" specifies left-ta-right placement.

• llrighf' specifies right-to-Ieft placement.

The primary layout specifies where an icon is placed (in a row or a column)
and in which direction. The secondary layout specifies where to place new
rows or columns. The default value for iconPlacement is "right bottom,"

Graphical Environment Guide

which means that the icons are placed from right to left on the screen, with
the first row at the bottom, and any new rows added in the bottom-to-top
direction. (This is a specific appearance and behavior resource.)

iconPlacementMargin (Class: IconPlacementMargin)
This resource specifies the margin, in pixels, between the edge of the screen
and the icons appearing at the edge of the screen. The default value is vari­
able, depending on the size of your display. The window manager deter­
mines the maximum number of icons that can fit in each row and column on
your screen, including the space that should be used to separate the icons.
This space value is then assigned to the iconPlacementMargin resource as its
default value. You can change this resource by specifying a positive value.
(This is a specific appearance and behavior resource.)

lowerOnlconify (Class: LowerOnlconify)
If this resource is "true," the window manager places a window's icon at the
bottom of the stack when the window is minimized. This resource is "true"
by default. (This is a specific appearance and behavior resource.)

useClientlcon (Class: UseClientlcon)
If the useClientlcon resource is "true," an image supplied by the client takes
precedence over an icon you specify through the imagelcon resource. The
default value is "false." (This is a client-specific resource.)

Resources for configuring the icon box

The following resources configure the icon box:

Table A-7 Icon box resources

Name Class Value type
fadeNormallcon FadeNormallcon true/false
iconBoxGeometry IconBoxGeometry [columns x rows] [±Xoff±yoff]
iconBoxName IconBoxName string
iconBoxTitle IconBoxTitle string
useIconBox UseIconBox true/false

These resources are described in more detail below:

fadeNormalIcon (Class: FadeNormalIcon)

Default
false
lx6-0-0
iconbox
Icons
false

If this resource is Iitrue," the window manager grays out an icon that has been
normalized. The uselconBox resource must be set to "true", for this resource
to function. The default setting is "false", in which case the appearance of an
icon is normal. (This is a specific appearance and behavior resource.)

397

OSFIMotif window manager resources

398

iconBoxGeometry (Class: IconBoxGeometry)
This resource is a geometry specification for the icon box. The resource takes
the value [columnsxrows][±Xo!ftyof/l, where columns and rows represent the
size of the icon box, in icons, and ±Xoffand ±yoffrepresent the x and y coordi­
nates of the window. For example, if you specify the value of "4x3+0-0," the
window manager creates a box large enough to hold three rows of four icons
across and positions the box at the lower left comer of the screen. The default
value for this resource is I/lx6-0-0." (This is a specific appearance and behavior
resource.)

iconBoxName (Class: IconBoxName)
This resource specifies the name that is used to set resources for the icon box.
The default name is "iconbox." H you specify a new value for this resource,
the window manager ignores any resources that use the name "iconbox."
(This is a specific appearance and behavior resource.)

iconBoxTitle (Class: IconBoxTitle)
This resource specifies a string that is displayed in the title of the icon box.
The default name is "Icons." (This is a specific appearance and behavior
resource.)

useIconBox (Class: UseIconBox)
H this resource is "true," the window manager places all icons in an icon box.
H this resource is "false," the window manager places the icons on the Desk­
top, or, if the Desktop is not running or is running in a window, on the Root
window. The default value is "false." (This is a specific appearance and
behavior resource.)

Graphical Environment Guide

Other resources for controlling windows

The following resources control miscellaneous aspects of window manage­
ment and behavior:

Table A-a Window control resources

Name

Bindings

buttonBindings

keyBindings

Screen management

multiScreen

screens

Client management

quitTimeout
saveUnder

Mouse timing

doubleClickTime

Resource directories

bitmapDirectory

configFile

Root menu

rootMenu

Window menus

wMenuButtonClick

wMenuButtonClick2

windowMenu

Class

ButtonBindings

KeyBindings

MultiScreen

Screens

QuitTimeout

SaveUnder

DoubleClickTime

BitmapDirectory

ConfigFile

RootMenu

WMenuButtonClick

WMenuButtonClick2

WindowMenu

t In pmwm mode, this resource is set to "5000".

Value type

string

string

true/false

string

milliseconds

true/false

milliseconds

directory

file

string

true/false

true/false

string

tt In pmwm mode, this resource is set to ".pmwmrc".

These resources are described in more detail below:

bitmapDirectory (Class: BitmapDirectory)

Default

DefaultButtonBindings

DefaultKeyBindings

false

varies

1000t
false

500

/usr /include/X11 /bitmaps

.mwmrctt

RootMenu

true

true

DefaultWindowMenu

This resource specifies a directory that the window manager searches to
locate any bitmaps needed by other window manager resources. The default
setting of this resource is lusr lincludejXlljbitmaps. (This is a specific appear­
ance and behavior resource.)

399

OSFIMotif window manager resources

400

buttonBindings (Class: ButtonBindings)
This resource specifies a set of button bindings (a table that assigns an action
to a button-press) that augments the built-in button bindings of the window
manager. The value should be the name of a button binding from the window
manager configuration file. The default value of the buttonBindings resource
is LLDefaultButtonBindings," as specified in the /usr!lib/Xll/system.pmwmrc or
/usr!lib/Xll/system.mwmrc files. See Chapter 14, LLConfiguring window
manager button bindings" (page 253) for more information. (This is a specific
appearance and behavior resource.)

configFile (Class: ConfigFile)
This resource specifies the pathname of the window manager configuration
file, which is a file with menu definitions, and button and key bindings. If the
pathname specified by the configFile resource begins with -/ (the tilde char­
acter followed by slash), the window manager considers that pathname to be
absolute; otherwise, the path is assumed to be relative to the current directory.
Here is how the window manager uses this resource:

1. If the environment variable $LANG is set, the window manager looks for
the specified configuration file in the directory $HOME/lang, which means
in a subdirectory of your home directory, where the name of the subdirec­
tory is specified by the language portion of the $LANG environment vari­
able.

2. If the specified configuration file does not exist in $HOME/lang or if the
$LANG environment variable is not defined, the window manager looks
for that file in $HOME.

3. If you do not specify a configFile resource or if the specified file does not
exist in one of the places listed in the first two steps, the window manager
looks for a configuration file named .pmwmrc (for pmwm mode) or .mwmrc
(for mwm mode). If the $LANG environment variable is set, it looks for
$HOME/lang/.pmwmrc or .mwmrc; otherwise, it looks for $HOME/.pmwmrc
or.mwmrc.

4. If neither a .pmwmrc or .mwmrc file exist, the window manager looks for a
file named system.pmwmrc or system.mwmrc, first in the directory
/usr!lib/Xll/lang and then in/usr!lib/Xll.

Typically, the lusr!lib/Xl1/system.pmwmrc or system.mwmrc file contains the
default configuration for the window manager. You can copy this file to
your home directory under the name .pmwmrc or .mwmrc, and modify it to
suit your needs. See Chapter 12, LLCustomizing the window manager"
(page 219) for more information.

(This is a specific appearance and behavior resource.)

Graphical Environment Guide

doubleClickTime (Class: DoubleClickTime)
This resource specifies the maximum time, in milliseconds, that can elapse
between two clicks that are to be interpreted by the window manager as a
double-click. The default value is 500 milliseconds. (This is a specific appear­
ance and behavior resource.)

keyBindings (Class: KeyBindings)
This resource specifies a set of key bindings (a table that assigns an action to
one or more key press events) that replaces the built-in key bindings of the
window manager. The value should be the name of a key binding from the
the window manager configuration file. The default value of the keyBindings
resource is #DefaultKeyBindings," as specified in the
!usr/lib/Xll/sysfem.pmwmrc or !usr/lib/Xl1/sysfem.mwmrc file. See Chapter 15,
#Configuring window manager key bindings" (page 269) for more informa­
tion. (This is a specific appearance and behavior resource.)

multiScreen (Class: MultiScreen)
If this resource is "true," the window manager controls windows displayed in
all screens of a display. The default value is "false," which means the window
manager manages only one screen by default. Note that this resource should
not be used with the Xsco server, which does not support displays with multi­
ple screens. (This is a specific appearance and behavior resource.)

quitTimeout (Class: QuitTimeout)
This is the amount of time, in milliseconds, that the window manager waits
for a client to respond to a WM_SA VE_ YOURSELF message. The client is sup­
posed to reply by updating the WM_COMMAND property. The default value
is 1000 milliseconds for mwm mode or 5000 milliseconds for pmwm mode.
This resource applies only to those clients that have a WM_SAVE_YOURSELF
atom but do not have a WM_DELETE_WINDOW atom in the WM_PROTOCOLS
property of their top-level window. (This is a specific appearance and
behavior resource.)

rootMenu (Class: RootMenu)
This resource specifies the name of the menu that is displayed when a mouse
button is clicked in the Root window. The value of the resource must be the
name of a menu defined in the window manager configuration file, the file
specified by the resource configFile. The default for this resource is "Root­
Menu," as specified in the system-wide window manager configuration file.
See Chapter 13, "Customizing window manager menus" (page 235) for more
information.

saveUnder (Class: SaveUnder)
This resource indicates whether "save unders" are used for window manager
components. For this to have any effect, save unders must be implemented by
the X server. If save unders are implemented, as they are in the Xsco server,
the server saves the contents of windows obscured by windows that have the

401

OSFIMotif window manager resources

402

save under attribute set. If the saveUnder resource has a value of "true," the
window manager sets the save under attribute on the window manager frame
for any client that has it set. If the value is "false," save unders are not used on
any window manager frames. The default value is "false." (This is a specific
appearance and behavior resource.)

screens (Class: Screens)
This resource specifies the resource names to use for the screens managed by
the window manager. If the window manager is managing a single screen,
only the first name in the list is used. If the window manager is managing
multiple screens (which is not supported by the sea OpenServer system), the
names are assigned to the screens in order, starting with screen O. Screen 0 is
assigned the first name, screen 1 the second name, and so forth. The default
screen names are 0, 1, and so on. (This is a specific appearance and behavior
resource.)

wMenuButtonClick (Class: WMenuButtonClick)
If this resource is "true," the window manager displays the Window menu in
response to a button click on the Window menu button and leaves it dis­
played until another button click elsewhere on the screen. If this resource is
"false," the Window menu remains on the screen only as long as you press and
hold the mouse button. This resource is "true" by default. (This is a specific
appearance and behavior resource.)

wMenuButtonClick2 (Class: WMenuButtonClick2)
If this resource is "true," and you double-click on the Window menu button,
the window manager invokes the f.kill function to remove the client window.
If this resource is "false," double-clicking on the Window menu button only
posts that menu. This resource is "true" by default. (This is a specific appear­
ance and behavior resource.)

windowMenu (Class: WindowMenu)
This resource specifies the name of the menu that is displayed when the Win­
dow menu button is pressed. The value of the resource must be the name of a
menu defined in the window manager configuration file, the file specified by
the resource configFile. The default for this resource is "DefaultWin­
dowMenu," as specified in the system-wide window manager configuration
file. See Chapter 13, "Customizing window manager menus" (page 235) for
more information. (This is a client-specific resource.)

Graphical Environment Guide

Appendix B

Desktop resources

Because the Desktop (xdt3) is a major component of the seQ OpenServer
Graphical Environment, there are a number of xdt3 resources that you may be
interested in using.

The following sections describe the resources that you can use to customize
xdt3. These resources are listed in reference tables, which organize the
resources according to the aspect of xdt3 that they configure. In most sec­
tions, a description of each of the resources follows the table.

I
NOTE Many of these resources are better changed using the Desktop
Preferences Editor. See IIUsing the Preferences Editor" (page 24) for more
information.

Resources for changing default rule files and directories

The following resources define the names and locations of the default rule
files. (Refer to Chapter 16, IICustomizing the Desktop with rules" (page 285)
for information on the various types of rule files.) There is also a resource that
defines the directories that are searched for bitmap and pixmap files.

I NOTE In general, you should not change the rule file resources unless abso­
lutely necessary.

403

Desktop resources

Table B·1 Rule file resources

Name

directoryRuleFile

userRuleFile

systemRuleFile

pictureDirectory

Class

DirectoryRuleFile

U serRuleFile

SystemRuleFile

PictureDirectory

Default value

.xdtdir / ICTT

.xdtuserinfo

/usr /lib /XII /IXI/XDesktop /rules /system/xdtsysinfo

/usr/lib/XII/IXI/XDesktop/bitmaps/xdCclarge

$HOME/ .xdCdir /bitmaps/xdClarge

/usr /lib /XII /IXI/XDesktop /bitmaps /xdClarge

/usr / include/XII/bitmaps

All resources listed in Table B-1, "Rule file resources" (this page) accept a file
name or a full pathname for the resource value.

These resources are described in more detail below:

directoryRuleFile (Class: DirectoryRuleFile)
This resource defines the name of the directory rule file. The default value is
".xdtdir/lCIT," where ICTT is set to "en_US." If nothing is found, the Desktop
then checks for an ".xdtdirinfo" file.

pictureDirectory (Class: PictureDirectory)
This resource defines the list of directories that is searched when a picture file
with a relative name is specified. You can specify multiple directories with
this resource but you must use colons or white space to separate the direc­
tories. This list is searched sequentially, so the most frequently accessed direc­
tories should be placed at the beginning of the list. The default directories
listed in Table B-1, "Rule file resources" (this page) are searched in the order
shown.

systemRuleFile (Class: SystemRuleFile)
This resource defines the name of the system rule file. This resource should
only be changed when it is impossible to install the system rule file in its
default location. This resource should never be set in a user's .Xdefaults­
hostname file. The default value for this resource is
~~ /usr/lib/X11/IXI/XDesktop/rules/system/xdtsysinfo".

userRuleFile (Class: UserRuleFile) This resource defines the name of the user
rule file. The default value is ".xdtuserinfo".

Resource for specifying Desktop fonts

404

The fontList resource specifies the fonts that are used for text in the Desktop.
The class for the fontList resource is FontList.

Graphical Environment Guide

When specifying this resource, use the full font name, font name wildcards, or
a font alias for the resource value. The default is the "-*-helvetica-bold-r-*--
14-*-p-*" font. See "Changing Desktop fonts" (page 30) and Chapter 7,
"Changing fonts" (page 125) for more information on how to specify font
resources.

This resource can be used to specify lists of fonts, to accommodate the possi­
bility that some systems may contain a set of fonts, while other systems con­
tain a different set. H you list multiple fonts, they must be separated by white
space.

I
NOTE The fontList resource controls all xdt3 fonts except the icon label
fonts. The resource for specifying icon label fonts is discussed in "Resources
for configuring icon labels" (page 408).

Resources for specifying Desktop colors

The following resources control the general color characteristics of the xdt3
client:

Table 8-2 Desktop color resources

Value
Name Class type Default

activeBackground Background color scoActiveBackground
activeBottomShadowColor Foreground color black
activeForeground Foreground color scoActiveF oreground
activeTopShadowColor Background color scoActiveTopShadow
background Background color scoBackground
bottomShadowColor Foreground color black
desktop.back.background Desktop.Back. Background color scoAltBackground
foreground Foreground color scoForeground
topShadowColor Background color scoTopShadow

NOTE Most of these color resources specify a palette resource variable,
instead of a specific color. For example, the topShadowColor resource
specifies a value of "scoTopShadow." These palette resource variables are
replaced with a color value, depending on the color choices you made with
the scocolor client. See Chapter 6, "Changing colors" (page 99) for more in­
formation.

Generally, it is recommended that you use scocolor to change your Desktop
colors instead of using these resources. See "Changing colors with the Color
control" (page 27) for more information.

405

Desktop resources

406

The resources listed in Table B-2, "Desktop color resources" (page 405) are
described in more detail below:

activeBackground (Class: Background)
This resource specifies the background color used in directory and desktop
window frames, when a window is active. The default value is the scoAc­
tiveBackground palette resource variable.

activeBottomShadowColor (Class: Foreground)
This resource specifies the color of lower and right bevels of the directory and
desktop window frame, when a window is active. The default value is
''black.''

activeForeground (Class: Foreground)
This resource specifies the color of text used in directory and desktop window
frames, when a window is active. The default value is the scoActiveFore­
ground palette resource variable.

activeTopShadowColor (Class: Background)
This resource specifies the color of upper and left bevels of the directory and
desktop window frames, when a window is active. The default value is the
scoActiveTopShadow palette resource variable.

background (Class: Background)
This resource specifies the background color of directory and desktop win­
dows. The default value is the scoBackground palette resource variable.

bottomShadowColor (Class: Foreground)
This resource specifies the color used in the lower and right bevels of the
directory and desktop window frames. The default value is ''black.''

desktop.back.background (Class: Desktop.Back.Background)
This resource specifies the background color of the main Desktop, including
the menu bar. The default value is the scoAltBackground palette resource
variable.

foreground (Class: Foreground)
This resource specifies the color of text used by xdt3. The default value is the
scoForeground palette resource variable.

topShadowColor (Class: Background)
This resource specifies the color used in the top and left bevels of the directory
and desktop window frames. The default value is the scoTopShadow palette
resource variable.

Graphical Environment Guide

Resources for specifying cursor appearance

The following resources control the appearance of the xdt3 cursor under vari­
ous circumstances. The default cursors are built into the Desktop, but any of
them can be redefined.

Each type of cursor has a data and mask pixmap component associated with it.
Together, these components form a cursor shape. The data pixmap defines
the image associated with the cursor and the mask pixmap defines the shape
upon which the data pixmap is drawn. To modify a cursor's appearance, you
must specify both a data and a mask pixmap for the cursor. If only one pix­
map is specified, the resource is ignored.

The first element in each cursor resource specification indicates the type of
cursor that you want to define. The different cursors are defined as follows:

alert when an alert box is displayed (except within the text entry
field)

bgTrigger when a user clicks on the background

busy when xdt3 is processing

drag when a single icon is being dragged

fatal when an error box is displayed (except within the box)

iconTrigger when a user clicks on an icon to select it

idle when xdt3 is waiting for the user to perform a task

multiDrag when more than one icon is being dragged

rubber when a user is using #rubberbanding" to select one or more
icons

407

Desktop resources

Table 8-3 Cursor appearance resources

Data pixmap Maskpixmap

Name Class File Name Class File

alert. data Cursor. Bitmap explode_d.xbm alert.mask Cursor.Bitmap explode_m.xbm

bgTrigger.data Cursor. Bitmap grip_d.xbm bgTrigger.mask Cursor.Bitmap grip_m.xbm

busy.data Cursor. Bitmap wait_d.xbm busy.mask Cursor. Bitmap waiCm.xbm

drag. data Cursor. Bitmap drag...d.xbm drag.mask Cursor. Bitmap drag...d.xbm

fatal.data Cursor .Bitmap fatal_d.xbm fatal.mask Cursor. Bitmap fatal_m.xbm

iconTrigger.data Cursor.Bitmap grip_d.xbm iconTrigger.mask Cursor. Bitmap grip_mxbm

idle.data Cursor .Bitmap press_d.xbm idle.mask Cursor. Bitmap press_m.xbm

multiDrag.data Cursor .Bitmap mdrag_d.xbm multiDrag.mask Cursor. Bitmap mdrag_m.xbm

rubber.data Cursor .Bitmap grip_d.xbm rubber.data Cursor. Bitmap grip_m.xbm

All resources listed in Table B-3, #Cursor appearance resources" (this page)
accept filenames as values. Unless an absolute pathname is specified, the
default picture directory, as defined by the pictureDirectory resource, is
searched for the specified file. To change the default picture directory, see
"Resources for changing default rule files and directories" (page 403). Pixmap
files specify icon dimensions in pixels; no default values are assigned.

See Chapter 9, "Changing cursor appearance" (page 173) for more information
on specifying the resources described in this section.

Resources for configuring icon labels

408

The following resources control general characteristics of icon labels on the
Desktop and in directory and desktop windows:

Table 8-4 Icon label resources

Name

font
hilight.background
hilight.foreground
normal.background
normal.foreground

Class

Font
Hilight.Background
Hilight.Foreground
Normal.Background
Normal.Foreground

Value
type Default

string -*-helvetica-medium-r-*--12-*-*-*-p-*-*-*
color black
color white
color transparent
color black

Graphical Environment Guide

These resources are described in more detail below:

font (Class: Font)
This resource specifies the font that is used by all icon labels. The default
value is # -*-helvetica-medium-r-*--12-*-*-*-p-*-*-*".

hilight.background and hilight.foreground
(Classes: Hilight.Background and Hilight.Foreground)
These resources specify the colors that are used for the background and text
of selected icons. The default values render "white" text on ''black'' labels.

normal.background and normal.foreground
(Classes: Normal.Background and Normal.Foreground)
These resources specify the colors that are used for the background and text
of unselected icons. The default values render ''black'' text on "white"labels.

Resources for controlling Desktop appearance and behavior

The following resources control the default appearance and behavior of the
Desktop, and to a certain degree, desktop windows:

Table 8·5 Desktop resources

Name Class Value type Default

desktop.menubar Desktop.Menubar menu rule DesktopMenuBar

exitConfirmEnabled ExitConfirmEnabled true/false true

exitEnabled ExitEnabled true/false true

exitOnClose ExitOnClose string main
iconGrid.aisleWidth IconGrid.AisleWidth pixels 4

iconGrid.xOffset IconGrid.XOffset pixels 2

Maindt.geometry Desktop.Geometry [width x height][±Xofftyoff] unspecified

isRoot IsRoot true/false true

isRoot.borderColor IsRoot.BorderColor color white
isRoot.borderWidth IsRoot.BorderWidth pixels 4

isRoot.focusToggle IsRoot.FocusToggle key sequence Shift Alt<Key>F2

NOTE The Desktop is an XmPrimitive widget called base. It has an ances­
tor that is an XmForm widget called desktop. These elements may be
included in resource specifications to change the bitmap patterns and colors
of individual portions of the Desktop.

409

Desktop resources

410

The resources listed in Table B-5, "Desktop resources" (page 409) are
described in more detail below:

desktop.menubar (Class: Desktop.Menubar)
This resource specifies the menu rule, located in the system rule file, that
defines the contents of the Desktop menu bar. The default value is "Desktop­
MenuBar." See Chapter 24, "Configuring Desktop menus" (page 341) for more
information on menu rules and Desktop menu bars.

exitConfirmEnabled (Class: ExitConfirmEnabled)
This resource specifies whether or not you are prompted to confirm an exit
from the Desktop. A "true" value, which is also the default value, prompts
you to confirm the exit. If the exitEnabled resource is set to "false," this
resource is ignored. This resource is also ignored if the isRoot resource is set
to "true."

exitEnabled (Class: ExitEnabled)
This resource specifies whether or not you can log out from the Desktop. The
default value for this resource is "true." This resource is ignored if the isRoot
resource is set to "true."

exitOnClose (Class: ExitOnClose)
This resource specifies some controls over conditions under which you can
exit the Desktop. The following values can be used:

• "last" specifies that you can exit only after the last desktop window has
been closed.

• "main" specifies that you can exit upon dosing the main Desktop.

• "never" specifies that you cannot exit.

The default value for this resource is "main."

iconGrid.aisleWidth (Class: lconGrid.AisleWidth)
This resource specifies the number of pixels that exists between xdt3 icons
when they are laid out in grid positions. The default value is 4 pixels.

iconGrid.xOffset (Class: IconGrid.XOffset)
This resource specifies the width, in pixels, of the left hand margin when lay­
ing out xdt3 icons in grid positions. The default value is 2 pixels.

Maindt.geometry (Class: Maindt.Geometry)
You can use the Maindt.geometry resource to determine the size and location
of the Desktop. You can also assign this resource with the name of a different
desktop window, to specify its size and location. For example, to resize a
desktop window called spreadsheet.dt, you would specify the spread­
sheetdt.Geometry resource.

Graphical Environment Guide

This resource takes the value [width x height][±Xofftyoffl, where width and
height represent the size of the window in pixels and ±Xoffand ±yoffrepresent
the x and y coordinates of the window.

isRoot (Class: IsRoot)
This resource specifies whether or not the Desktop occupies the Root win­
dow. If this resource is set to "true," the Desktop is expanded to cover the
entire Root window. If this resource is set to "false," the Desktop is displayed
ina window.

I
NOTE It is strongly recommended that you change this behavior using the
Desktop Preferences Editor instead of modifying this resource. See ''Using
the Preferences Editor" (page 24).

isRoot.borderColor (Class: IsRoot.BorderColor)
This resource specifies the color of the border that is displayed around the
Desktop. The default value is "white."

isRoot.borderWidth (Class: IsRoot.BorderWidth)
This resource specifies the thickness, in pixels, of the border that is displayed
around the Desktop. The default value is 4 pixels.

isRoot.focusToggle (Class: IsRoot.FocusToggle)
This resource specifies the key combination that enables the Desktop to grab
the keyboard focus. The default value is "(Shlft)(Alt)(F2)," which is specified as
"Shift Alt<Key> F2".

If the isRoot resource is set to "true," you must assign a key to toggle the key­
board focus, otherwise you cannot use the xdt3 menu accelerators or answer
prompts on the Desktop.

Resources for controlling directory appearance and behavior

The following resources control the appearance and behavior of xdt3 direc­
tory windows:

Table 8·6 Directory window resources

Name

directory.menubar

directory .enableStatusBar

directory .statusBarTellFile
directory.statusBarTellHidden

Class

Directory.MenuBar

Directory .EnableStatusBar

Directory.StatusBarTellFile

Directory.StatusBarTellHidden

Value type Default

menu rule DirMenuBar

true/false true

true/false true

true/false false

411

Desktop resources

412

NOTE Directories are constructed from a Dir widget, all with the name
directory. directory has the following descendents:

• The background is an XmPrimitive widget called back.

• The scroll bars are XmScrollBar widgets called hscroll and vscroll.

• The status bar is an XmLabel widget called back.

These elements may be included in resource specifications to change the bit­
map patterns and colors of individual portions of directory windows. For
example, to specify the color of the background of directory windows, use
the following resource specification:

XDesktop3*directory*back*background: resource_value

The resources listed in Table B-6, "Directory window resources" (page 411) are
described in more detail below:

directory.menubar (Class: Directory.Menubar)
This resource specifies the menu rule, located in the system rule file, that
defines the contents of the Directory menu bar. The default value is "Dir­
MenuBar." See Chapter 24, ~~Configuring Desktop menus" (page 341) for more
information on menu rules and Directory menu bars.

directory.enableStatusBar (Class: Dir.EnableStatusBar)
This resource controls whether or not directory windows have status bars.
The default value is "true."

directory.statusBarTellFile (Class: Directory.StatusBarTellFile)
This resource specifies whether or not to display the number of files that are
contained in a directory window. The default value is "true."

directory .statusBarTellHidden (Class: Directory.StatusBarTellHidden)
This resource specifies whether or not to display the number of hidden (or
dot) files contained in a directory window. The default value is "false."

Graphical Environment Guide

Resources for defining message box appearance

The following resources specify the pixmaps that are used when displaying
an alert, fatal, fyi, gti, or yni message. fyi messages provide information, gti
messages prompt you for text input, and yni messages prompt you for a yes
or no response.

Table 8-7 Message box appearance resources

Name

message.alert.pixmap
message.fatal.pixmap
message.fyi.pixmap
message.gti.pixmap
message.yni.pixmap

Class

Message.Logo.Pixmap
Message.Logo.Pixmap
Message.Logo.Pixmap
Message.Logo.Pixmap
Message.Logo.Pixmap

Value type

pixmap file
pixmap file
pixmap file
pixmap file
pixmap file

Resources for controlling Desktop mouse behavior

Default

Uses Motif default
Uses Motif default
Uses Motif default
Uses Motif default
Uses Motif default

The following resources control several aspects of a mouse's behavior when it
is used with xdt3. Also refer to Chapter 10, "Configuring mouse behavior"
(page 195) for more information on using these resources.

Table 8-8 Mouse behavior resources

Name

triggers.maxMotion
triggers.maxUpTime
triggers.thresholdDownTime

Class

Triggers.MaxMotion
Triggers.Time
Triggers.Time

These resources are described in more detail below:

triggers.maxMotion (Class: Triggers.MaxMotion)

Value type

pixels
milliseconds
milliseconds

Default

3
500
700

This resource controls the number of pixels the mouse pointer must move
before a mouse button click is interpreted as a drag action. The default value
is 3 pixels.

triggers.maxUpTime (Class: Triggers.Time)
This resource controls the length of time, in milliseconds, that a mouse button
must be up before a trigger ends. The default value is 500 milliseconds.

triggers.thresholdDownTime (Class: Triggers.Time)
This resource controls the time, in milliseconds, that a mouse button must be
pressed before a click is considered a "long click" rather than a "short click."
The default value is 700 milliseconds.

413

Desktop resources

Resources for mapping mouse triggers

414

The following resource controls the mouse trigger mechanisms:

triggers.mapping (Class: Triggers.Mapping)
Chapter 26, "Mapping mouse triggers for the Desktop" (page 371) discusses
triggers (which are double-clicks or drags of the mouse buttons) and how to
associate actions with specific triggers using the trigger_actions clause in rule
files. These trigger actions can be modified or completely redefined.

Although xdt3 offers flexibility in mapping triggers, you are advised against
modifying this mapping on a whim. The trigger mapping has been optimized
to the particular mouse supplied with your system. The /usr/lih/Xl1/app­
defaults/XDesktop3 resource file includes alternate trigger mechanisms that are
commented out. You may want to try using these definitions as an alternate.
See Chapter 26, "Mapping mouse triggers for the Desktop" (page 371) for a
detailed discussion on this issue.

Graphical Environment Guide

Appendix C

Deskshell command summary

The following table lists all the Deskshell commands in alphabetical order. For
each command, the following information is provided:

• whether it returns a list of strings

• whether it sets status apart from if the arguments are incorrect. /I?" indi­
cates that status is only set in some circumstances.

• whether it is allowed in a priority thread

• whether it generates a sub-list of the list argument. "yo" indicates that the
sub-list is ordered.

Table C-1 Deskshell commands in alphabetical order

Command Text Status Priority Sub-list

" " n ? n n
-predicate n y y n
absreadlink y n y n
act n y n n
aUr y y y n
basename y n y n
break n n y n
brin~to_front n y n n
btf n y n n
canonical y n y n
cd n y y n
cdt n y n n

(Continued on next page)

415

Deskshel/ command summary

Table C-1 Oeskshell commands in alphabetical order
(Continued)

Command Text Status Priority Sub-list
cdw n y n n
check n y n n
chk n y n n
cldt n y n n
close_desktop n y n n
close_directory n y n n
continue n n y n
copy_desktop n y n n
copy_into n y n n
cpi n y n n
die n y n n
dimame y n y n
display_directory n y n n
dup n y n n
dupl n y n n
duplicate_file n y n n
duplicate_link n y n n
duplicate_symlink n y n n
dupsl n y n n
dynamic_rule n y n n
exit n ? y n
extension y n y n
false n y y n
fileclass y n y n
followlink y n y n
for_info n y n n
fyi n y n n
get_attribute y y y n
get_out n y n y
get_resource y n y n
goi n y n n
gti y Y n n
help n y n n
idr n y n n
in_text_ window n y n n
irl n y n n
join y n y n
kill n y n n

(Continued on next page)

416 Graphical Environment Guide

Table C-1 Oeskshell commands in alphabetical order
(Continued)

Command Text Status Priority Sub-list
link_into n y n n
list_count y n y n
list intersect y n y yo
list sort y n y y
list subtract y n y yo
list uniq y n y yo
lni n y n n
make_new _file n y n n
mark_changed_directory n y n n
mcd n y n n
menu n y n n
merge y n y n
mkf n y n n
move_into n y n n
mvi n y n n
odt n y n n
odw n y n n
open_desktop n y n n
pbi n y n n
pixmap_check n y n n
popup n y n n
put_back n y n n
pwd y n y n
pxc n y n n
query contents y y y n
query main_desktop y n y n
query open_desktops y n y n
query open_directories y n y n
query picture y y y n
query pixmap y y y n
query selections y y y n
query size y y y n
query thread_info y y y n
query title y y y n
query visibility y n y n
rdr n y n n
readlink y n y n
relativepath y n y n

(Continued on next page)

417

Deskshell command summary

Table C-1 Deskshell commands in alphabetical order
(Continued)

Command Text Status Priority Sub-list
remove n y n n
remove_dynaMic_rule n y n n
rename n y n n
reorganize_desktop n y n n
report n y n n
report_status n y n n
reset n y n n
resource_line n y n n
return n ? y n
rgw n y n n
rmi n y n n
sel n y n n
select n y n n
sequence y n y n
sh n y n n
shell n y n n
shell_window n y n n
show -8reeting n y n n
sleep n n n n
sli n y n n
source n ? n n
split y n y n
symlink_into n y n n
tdg n y n n
tds n y n n
tidy_desktop n y n n
tolower y n y n
toupper y n y n
true n y y n
unextended y n y n
variables y n y n
variation_class n y n n
vclass n y n n
yni n y n n

418 Graphical Environment Guide

Index

Symbols, numbers
! (exclamation point), 224

A
accelerators, Desktop menus, 344
actions_of Deskshell command, 310, 362
activate trigger, 310, 311
activeBackground resource, 106, 114, 383,
406

activeBackgroundPixmap resource, 387
activeBottomShadowColor resource, 106,
114, 384, 406

activeBottomShadowPixmap resource, 387
activeForeground resource, 106, 114,384,
406

activeTopShadowColor resource, 106, 114,
384,406

activeTopShadowPixmap resource, 387
alert cursor (xdt3), 174, 175
alt_activate trigger, 311
alt_drop trigger, 311
alt_rename trigger, 311
alt_report trigger, 311
alt_select trigger, 311
applications, configuring, 41
armColor resource, 106
auto modules, See modules
autoKeyFocus resource, 380
autoRaiseDelay resource, 380

B
background patterns

changing, 31
defining bitmap /pixmap path, 33
removing, 32
using the Preferences Editor, 24

background resource, 106, 114, 384, 406
backgroundPixmap resource, 388
bdftopcf command, 153
Bell, changing, 35
bgTrigger cursor (xdt3), 174, 175

bitmap pictures
See also cursor; pixmaps
assigning, 323
bitmap /pixmap path, 33
creating, 179, 183
cursor, 174, 180,183
data, 174, 175, 180, 184
default location of bitmap files, 329
defined,31, 324
file default location, 174,323
mask,174, 175,180, 184

bitmapDirectory resource, 240,399
boolean values, 86
borderColor resource, 106
bottomShadowColor resource, 106,114,
384,406

bottomShadowPixmap resource, 388
busy cursor (xdt3), 174, 175
button binding

See also .pmwmrc/.mwmrc file; window
manager

configuring, 22, 253, 257
context, 231,232, 261,262,265

. creating, 263
default, 254,255,264
defined,222, 253
event definitions, 259,265
modifier~259,260,265

specifying resource, 266
syntax, 254, 258
window manager functions, 223,230,
256,261,265

buttonBindings resource, 266, 400

c
changing

background patterns, 24, 31, 32
colors, 27, 100
cursors, 173
Desktop behavior, 37
Desktop behavior temporarily, 289, 294
desktop window behavior, 38
dialog box behavior, 40
directory behavior, 39

419

classes

changing (continued)
fonts, 24,30,126,143
icon behavior, 40
key click volume, 35
keyboard auto repeat, 35
main Desktop behavior, 38
menus, 235, 341
system bell, 35
Treeview desktop behavior, 39

classes, 83
cleanText resource, 388
client

See also host machines; remote clients
defined, 12
resource files, 16, 88, 113, 144, 146, 161,
180,187,203,205,246,372

running on X terminal, 63
with rcmd, 65,73,74

Client submenu, 249
clientAutoPlace resource, 391
clientDecoration resource, 389
clientFunctions resource, 390
color

See also color database; resource; scocolor
changing, 22,27, 100, 104, 109, 112, 116,
118, 121

colormaps, 30, 100, 107, 108
command line options, 95, 116, 117, 118
grayscale monitors, 30, 103
HSV model, 29, 100, 101
monochrome system, 103
resources, 85, 105, 112, 114,405
RGB model, 29,100,101,119

color database
adding new, 118
contents, 100, 101, 120
recompiling, 120
rgb command, 120
rgb.txt file, 100,110,119,120
showrgb command, 101, 120

colormapFocusPolicy resource, 224, 380
command line options

See also resource
-bg (background color), 95, 118
-display (display location), 74,95
-fg (foreground color), 95, 118
-fn (font), 96, 150
-geometry (window), 96, 159, 168
-name (client name), 97
scosession, 51
-title (window title), 97

420

command line options (continued)
-xrm (resource specification), 97, 117, 149,
168,190

Xt options, 89
comment character

Deskshell scripts, 351
.pmwmrc/.mwmrc file, 221
rule files, 351

configFile resource, 400
configuring

applications, 41
button bindings, 253
floppy disk devices, 41
icon label resources, 408
key bindings, 269
mouse behavior, 33, 195, 196, 198
remote access, 36, 65
session exit, 26
session startup, 26
tools, 41
window geometry, 159, 160, 169

creating
bitmap pictures, 179, 183
icons, 327, 328
menus, 235, 341
objects, 315
.pmwmrc/.mwmrc file, 16,221,238,257,
263,274,279

.startxrc file, 15,47

.xdefaults-hostname file, 16, 88,113,146,
165, 189,205,246

cursor
See also bitmap pictures; resource
bitmap resources, 175, 180, 184
changing, 178, 179, 182, 186,187,188
command line option, 190
Desktop, 174, 178, 179, 182
new bitmaps, 180
Root window, 178
scoterm, 176, 186, 187, 188
specifying resources, 86,179,180,182,
184,187,188,190

storing new bitmaps, 183
xterm,176

cursor appearance, using resources, 407

Graphical Environment Guide

D
data bitmap, See bitmap pictures
defaultLoopModules resource, 303
defaultModules resource, 302
defaultUserType resource, 306
deiconifyKeyFocus resource, 380
deselect trigger, 311
Deskshell command language

See also Deskshell commands
assignment, 355
command substitution, 356
command terminators, 357
comments, 351
concatenation, 357
conditionals, 359
control constructs, 360
defined, 325
function arguments, 353
function definitions, 360
initialization, 354
list mark, 358
Iffitsubstitution,356
operators, 354
pipelines, 358
quoting, 350
redirections, 355
status, 361
subsets, 353
syntax, 350
variable substitution, 352
variables, 352
wildcards, 351

Deskshell commands
See also Deskshell command language
background threads, 366
environment inheritance, 365
executing actions within the same
thread, 367

how commands are executed, 361
list of all commands, 415
system thread, 365
thread global variables, 364
thread local variables, 363
thread pipeline operators, 367
thread signals, 368, 369
thread states, 362
threads, 362
variable overriding, 364
window threads, 366

directory*enableStatusBar

Desktop
See also Deskshell command language;
rule files; rules

appearance, 24
behavior, 37, 38
changing behavior temporarily, 289, 294
colors, 29,104,114,405
controlling behavior, 285, 286, 289, 301
cursors, 174, 178
defined, 12
desktop window behavior, 38
desktop windows, 289, 333
dialog box behavior, 40
directory behavior, 39,289,337
double-click duration, 201,202, 203
fonts, 30, 145, 148,404
icons, 40, 327, 328
layout, 333, 334
locking icons, 334
menus, 341
mouse triggers, 371, 372
objects, 315, 316,322
Preferences Editor, 160
Preferences Library, 25
resizing, 169
resources, 203, 373,403
Root window, 160,169
system-wide behavior, 288, 301
Treeview behavior, 39
user types, 288, 305
using the Preferences Editor, 24

Desktop menus, 342
Desktop rule files, 287, 289, 293
desktop*back*background resource, 114
desktop_layout rule, 286

See also rule files
adding icons to Desktop, 334
defined, 20
position arguments, 334
writing, 292

desktop*menubar resource, 410
devices, configuring, 41
~alog box, Desktop, changing behavior, 40
die Deskshell command, 365
directories, changing defaults, 403
directory behavior, 39

defining, 289, 292, 337
directory menus, 342
directory windows, configuring with
resources, 411

directory*enableStatusBar resource, 412

421

directory*menubar

directory*menubar resource, 412
directoryRuleFile resource, 404
disabling, scologin, 54
disk devices, configuring, 41
display

See also host machines; remote clients
access, 66, 67, 68, 71
authorization codes (xauth), 66, 68, 71, 72
command line option, 95
DISPLAY environment variable, 46, 51, 73
granting access permission, 36
host permission list, 67
managing multiple, 54, 55, 59
managing multiple with Xservers, 57
XO.hosts through X7.hosts files 59 67 69 70 ' , , ,

.Xauthority file, 69, 71
xhost command, 68, 69,70,71

DISPLAY environment variable 44 46 51 73 ' , , ,

display manager, See scologin display man-
ager
dividin~line clause, 342
do_actions_of Deskshell command, 367
documentation, guidelines, 4
do_drop_in_actions_of Deskshell
command, 367

do_menu_actions_of Deskshell command
367 '

DOS colormap, 30
double-click duration, 201, 202, 203, 204,
206

doubleClickTime resource, 206, 401
drag cursor (xdt3), 174,175
drop trigger, 311
drop_in_action clause, 312, 333, 337, 374
drop_in_actions_of Deskshell command
362 '

dynamiC file (scosession), 49
dynamic rules

See also rule files
creating, 287, 289, 294
removing menus, 348

dynamic_rule Deskshell command, 289, 348

422

E
enable_if clause, 342, 347
enableWarp resource, 392
enforceKeyFocus resource, 380
environment variable

DISPLAY, 44, 46, 51, 73
HOME, 44, 51
LANG, 44, 51
MODULEDIR,301
PATH, 44, 46, 51
XAPPLRESDIR, 88
XDTHOME,15
XDTUSERHOME, 15
XENVIRONMENT,88

examples
button binding set, 267
color palettes, 121
color resources, 123
defining directory behavior, 338
Desktop cursors, 192
determining Desktop layout, 334
key binding set, 282
keyboard configuration, 216
menus, 249
mouse configuration, 206
remote clients, 74
scoterm cursors, 194
setting fonts, 156
window geometry, 170

execshell resource, 381
exit Deskshell command, 369
exitConfirmEnabled resource, 410
exitEnabled resource, 410
exiting, the Graphical Environment, 26
exitOnClose resource, 410

F
fadeNormalicon resource, 397
fatal cursor (xdt3), 174,175
f.beep function, 223
f.circle_down function, 223
f.circle_up function, 224
f.exec function, 224
f.focus_color function, 224
f.focus_key function, 224
f.hide_iconbox function, 224
f.hide_panner function, 224
£.identify function, 224

Graphical Environment Guide

files
client resource, 14,16,88,187
Desktop rule files, 14, 17,292,301
Desktop user type files, 305
host access, 67, 69, 70
scologin configuration, 45,46,53,58
scosession configuration, 48, 49, 50
server configuration, 14,15,47
user resource, 14, 16, 88
window manager configuration, 14, 16,
221,236,238,254,257,263,270,274,279

finaLactions rule, 286,292,333,337
See also rule files

f.kill function, 225,248
floppy disk devices, configuring, 41
f.lower function, 225
f.maximize function, 225
f.menu function, 225, 242, 244
f.minimize function, 225
f.move function, 225
f.move_screen_to_client function, 225
f.nail function, 226
f.nexCcmap function, 226
f.nexCkey function, 226
f.nop function, 226, 243
f.normalize function, 226
f.normalize_and_raise function, 226
focusAutoRaise resource, 381
font resource, 409
font server, 130

See also fonts
automatically in multiuser mode, 132
configuring, 133
connection limits, 136
default font size, 134
font catalogue, 133
from scologin, 131
from startx, 132
port address, 140
S9lfontserv script, 130, 131, 132
setting font server host, 134
starting, 130
TCP ports, 132, 135

fontList resource, 145, 148,382,404
fonts

100dpi, 126
75dpi,126
See also cursor; resource
available, 138
bitmap display format (BDF), 153
changing,22,30,143,146,149

f.separator

fonts (continued)
character set, 141
command line options, 96, 149
creating aliases, 129, 151
cursor names, 176, 177
database, 126, 152, 155
font server, 130
icon title, 22, 30, 145, 148
installing new, 152
misc directory, 126
multiple font sources, 135, 136, 137
naming conventions, 127
portable compiled format (PCF), 153
previewing, 141
resources,85,148
search path, 126, 152, 155
specifying resources, 143, 145, 146, 147,
404

Speedo, 126
Type1, 126
using the Preferences Editor, 24
using wildcards, 128
X terminal, 154

fonts.alias file, 129, 151
fonts.dir file, 126
fontserv command

enable font server, 132
flush font information, 133
re-read configuration, 133
start font server, 132

foreground resource, 106, 114, 384
focinfo Deskshell command, 363, 366, 369
f.pack_icons function, 226
f.pan_activescreen function, 227
f.pass_keys function, 227
f.post_wmenu function, 227,244
f.prev_cmap function, 227
f.prev _key function, 227
f.quit_mwm function, 228
f.raise function, 228
f.raise_Iower function, 228
frameBorderWidth resource, 392
f.refresh function, 228
f.refresh_ win function, 228
f.resize function, 228
f.restart function, 228
fs client

configuring, 133
font server, 130

f.send_msg function, 228
f.separator function, 229, 242

423

f.seLactivescreen

i.set_activescreen function, 229
i.seCbehavior function, 229
i.show _iconbox function, 229
i.show _panner function, 229
fslsfonts

cOrnTInand,138,139
specifying a server, 140

f.snap function, 229
f.sorCicons function, 229
f.title function, 229,242
f.toggle_autopan function, 229

G
geometry

See also resource
cOrnTInand line option, 96, 159, 168
Desktop resizing, 160, 169
height value, 160, 162, 163, 166, 168
resource setting, 85, 159, 160, 161, 162,
163, 164, 166

width value, 160, 162, 163, 166, 168
window size and location, 159,160
xoff value, 160, 162, 163, 166, 168
yoffvalue, 160, 162, 163, 166, 168

Graphical Environment
configuration files, 14
customizing, 11,13,18,23,37,43
defined, 12

groupLoopModules, 303
groupModules resource, 302
groupUserType resource, 306
gti Deskshell command, 363

H
highlightColor resource, 106
hilight*background resource, 409
hilight*foreground resource, 409
HOME environment variable, 44, 51
host machines

See also display; remote clients
accessing, 36, 65
authorization codes (xauth), 66, 68, 71, 72
DISPLAY environment variable, 73
host permission list, 67
user equivalence, 66
XO.hosts through X7.hosts files, 67, 69, 70

424

host machines (continued)
.Xauthority file, 69, 71
xhost command, 68,69, 70, 71

HSV color model, 29, 101

I
icon

See also icon_rules; pixmaps; triggers
adding to Desktop, 327
application to launch, 41
configuring labels, 408
creating, 315, 316,322,328
defining icon behavior, 330
Desktop, 315, 327
label font, 30
locked on Desktop, 334
object, 316, 322
pictures, 323, 329
position on Desktop, 333,334
titles, 322, 330
triggers, 312
window manager, 22

iconAutoPlace resource, 395
iconBoxGeometry resource, 398
iconBoxName resource, 398
iconBoxTitle resource, 398
iconDecoration resource, 395
iconGrid*aisleWidth resource, 410
iconGrid*xOffset resource, 410
iconImageBackground resource, 384
iconImageBottomShadowColor resource,
384

iconImageBottomShadow Pixmap resource,
388

iconImageForeground resource, 384
iconImageMaximum resource, 396
iconImageMinimum resource, 396
iconImageTopShadowColor resource, 385
iconImageTopShadowPixmap resource, 388
iconPlacement resource, 396
iconPlacementMargin resource, 397
icon_rules

See also objects; rule files
assigning attributes, 328
behavior, 315
defined, 20
defining icon behavior, 286, 292
defining trigger actions, 310,330,333
drop actions for directory or desktop, 333

Graphical Environment Guide

icon rules (continued)
dr~p_in_action clause, 312, 333
icon picture, 329
icon title, 330
picture clause, 329, 331
specifying the file class, 328
title clause, 330, 331
trigger_action clause, 312, 330, 331
writing, 328

iconTrigger cursor (xdt3), 174,175
idle cursor (xdt3), 174, 175
initial_actions rule, 286, 292, 333, 337

See also rule files
instances, 83
interactivePlacement resource, 392
isRoot resource, 411

K
key binding

See also .pmwmrc/.mwmrc file; window
manager

accelerators, 272
configuring, 22, 269, 273, 275,280
context, 231,232, 276, 280
creating new, 278
default, 270, 271, 279
defined, 222, 269
key event definition, 275,280
mnemonics, 272
modifiers, 275, 280
specifying resource, 281
syntax, 270, 274
window manager functions, 223, 230,
272,276,280

key click, changing the volume, 35
keyBindings resource, 281, 401
keyboard

changing auto repeat, 35
changing key click volume, 35
server keyboard mapping, 209,211,213
window manager key bindings, 269, 273

keyboard mapping
See also server
keycodes, 209, 213,214,215
keymap table, 210,213,214,215
keysyms, 210, 211, 213, 214,215
modifiers, 209, 210, 211, 213
non-U.S. English keyboards, 210
redefining, 22

menu

keyboard mapping (continued)
scancodes, 209
.xsco.cfg file, 210, 212

keyboardFocusPolicy resource, 224, 226,
227,381

keycodes,209,213,214,215
keymap table, 210
keysyms, 210, 211, 213, 214, 215
kill Deskshell command, 369

L
LANG environment variable, 44, 51
lang file, 15 .
last_background_action Deskshell vanable,
367

limitResize resource, 392
list count Deskshell command, 358
list intersect Deskshell command, 358
local rule files (.xdtdir), 287, 289, 292
localizing, 15,303
locked_on_desktop rule, 20, 286, 292, 334

See also rule files
locking icons on Desktop, 286, 292, 334
loop modules, See modules
lowerOnIconify resource, 397

M
Maindt*geometry resource, 410
mapping

keyboard, 22, 209, 211, 213
mouse triggers, 22, 371, 372

mask bitmap, See bitmap pictures
matteBackground resource, 385
matteBottomShadowColor resource, 385
matteBottomShadowPixmap resource, 388
matteForeground resource, 385
matteTopShadowColor resource, 385
matteTopShadowPixmap resource, 388
matteWidth resource, 385
maximumClientSize resource, 392
maximumMaximumSize resource, 392
maxMotion resource, 203, 413
maxUpTime resource, 203, 413
menu

See also menu rule (xdt3); menu section
(window manager)

creating, 235, 237, 341
disabling options, 342, 347

425

menu

menu (continued)
modifying, 235,237, 341
pop-up menus, 346
pull-down menus, 345
removing, 348

menu bars, defining, 345
menu rule (xdt3)

accelerators, 344
adding menu items, 342
adding to menu bar, 345
creating a new menu, 342
defined, 20, 286
disabling options, 347
dividing_line clause, 342
enable_if clause, 342, 347
menu_item clause, 342, 343, 345
mnemonics, 344
modifying an existing menu, 342
popup command, 346
pull_off_menu clause, 342, 343, 345
removing menus, 348
selecCaction clause, 343
thick_dividins--line clause, 342
title clause, 343
using separators, 342
writing, 292, 342, 343

menu section (window manager)
See also Root menu; Window menu
accelerators, 241
accessing, 236, 243,244
adding, 240, 243
context, 231,232
creating new, 22
defined, 222, 235
f.menu function, 225,242,244
f.posCwmenu function, 227,244
f.separator function, 229,242
f.title function, 229,242
mnemonics, 241
modUfyUGg, 239, 244
submenus, 243
syntax, 236, 240
using separators, 242
window manager functions, 223, 230,
236,242,243

menu trigger, 312
menu_actions_of Deskshell command, 362
menu_item clause, 342, 343, 345
Merge, See seo Merge
message boxes, defining using resources,
413

426

message*alert*Pixmap resource, 413
message*fatal*Pixmap resource, 413
message*fyi*Pixmap resource, 413
message*greeting*Pixmap resource, 413
meta key, 260, 275
MIT-MAGIC-COOKIE authorization protocol,
68

mkfontdir command, 154
mnemonics, Desktop menus, 344
modifiers, 209, 210, 211, 213
MODULEDIR environment variable, 301
modules

auto modules, 302
changing system-wide behavior, 287,
288, 293, 301

loop modules, 302
text strings, 303

monochrome systems, See color
Motif window manager, See window man­
ager

mouse
See also mouse actions; mouse trigger
mapping; scomouse

acceleration, 34, 198, 199,200
buttons, 196
double-click duration, 34, 201, 202, 203,
204,206

drag behavior, 203
left-handed use, 34,196, 197
movement, 198,199,200
threshold, 34, 198, 199,200
two-button, 196

mouse actions
window manager button bindings, 253
xdt3 mouse triggers, 309, 371, 372

mouse behavior, controlling using
resources, 413

mouse trigger mapping
action, 375, 376
context, 374
defined, 371
Desktop trigger table, 309
redefining, 22, 373
syntax, 373
trigger name, 373, 374
triggers*mapping resource, 373
using modifiers, 374

mouse triggers, mapping using resources,
414

moveOpaque resource, 393
moveThreshold resource, 393

Graphical Environment Guide

multiDrag cursor (xdt3), 174,175
multiScreen resource, 401
mwm, See window manager

N
normal*background resource, 114, 409
normal*foreground resource, 114,409

o
Object Builder, creating objects, 316
objects

See also Deskshell command language;
icon_rules; triggers

changing an action definition, 318
creating, 315
creating manually, 322
creating with Object Builder, 316
defined, 20, 315
directory, 322
icon, 322, 323
naming conventions, 322
scripts, 325, 326
trigger actions, 324
triggers, 312

.odtpref directory, 49,197,200
OSF /Motif window manager, See window
manager

p
palette resource variable, 106
Panner, See window manager
passButtons resource, 381
passSelectButton resource, 381
PATH environment variable, 44,46,51
picture clause, 329, 331
picture files, See pixmaps
pictureDirectory resource, 180, 181, 184,
185,329,404

pixmaps
See also bitmap pictures; icon
assigning, 323
bitmap /pixmap path, 33
creating, 324
default location of pixmap files, 329
defined, 31, 324
file default location, 323

pulLofLmenu

pixmaps (continued)
resources, 86
values, 386

pmwm, See window manager
.pmwmrc/ .mwmrc file

See also window manager
button bindings section, 22, 222, 254, 257,
258,263,264

creating, 16,221,238,257,263,274,279
key bindings section, 22,222,270,274,
279

menu section, 22, 222, 236, 238, 239
window manager functions, 223,230,
231,232,236,242,243,256,261,262,272,
276

pointerShape resource, 176, 188, 190
popup Desktop command, 346
pop-up menus, 346
popup_menu trigger, 312
positionlsFrame resource, 393
positionOnScreen resource, 393
precedence of

resources, 87
rules, 295

Preferences Editor
See also Preferences Library
background patterns, 24, 32
bitmap/pixmap path, 33
colors, 27
desktop window behavior, 38
dialog boxes, 40
directory behavior, 39
display access, 36
floppy disk devices, 41
fonts, 24, 30
icon behavior, 40, 41
key click volume, 35
keyboard auto repeat, 35
main Desktop behavior, 38
mouse behavior, 33
resizing the Desktop, 160,169
session exit, 26
session startup, 26
system bell, 35
tools, 41
Treeview behavior, 39
using, 23,24,37

Preferences Library, 25
See also Preferences Editor

pull-down menus, 345
pull_off_menu clause, 342, 343, 345

427

query

Q
query thread_info Deskshell command,
365,366

quitTimeout resource, 225, 401

R
raiseKeyFocus resource, 381
rcmd command, 65, 74
remote clients

See also display; host machines
accessing, 36, 65
authorization codes (xauth), 66, 68, 71, 72
display access permission, 66, 67
DISPLAY environment variable, 73
with rcmd, 65,73,74

removing, background patterns, 32
rename trigger, 311
report trigger, 311
resizeBorderWidth resource, 393
resizeCursors resource, 393
resizing the Desktop, 160,169
resource

changing defaults, 403
classes, 83
client files, 16, 88, 144, 161, 180, 187,203,
205,246,372

color, 22,85, 112, 114, 116,405
command line setting, 89,93,94,97,116,
117,118,149,159,168,190

common values, 85,86
configuring directory windows, 411
configuring icon labels, 408
controlling mouse behavior, 413
cursor, 86,179, 180, 182, 184, 187, 188,
190,407

defined, 13, 80
delimiters, 84
Desktop fonts, 404
fonts, 22,85,143,145,146,147
instances, 83
mapping mouse triggers, 414
message box appearance, 413
precedence, 87
scologin resource file, 53
server-specific files, 88, 161
specifying, 90
syntax, 80, 81
user files, 16, 88,146,165,174,183,189,
203,205,246,372

428

resource (continued)
widget hierarchy, 84
window geometry, 85, 159, 160, 161, 162,
164,166

window manager resources, 206, 245,
247,248,263,278,377

.xdefaults-hostname file, 16, 88,113,146,
165,189,205,266,281

xdt3 resources, 203, 302, 303, 373, 403
resource database

contents, 91, 92
defined, 80, 90
loading resources, 50, 88, 90
merging resources, 90, 91
removing resources, 50, 93

resource manager, 81, 89
RESOURCE_MANAGER property, 50, 90
RGB color model, 29,100,101,119
rgb command, 120
rgb.txt file, 100, 110, 119, 120
.rhosts file, 66
Root menu

adding items, 240
Client submenu, 249
modifying, 237

Root window, cursors, 178
rootMenu resource, 239, 401
rubber cursor (xdt3), 174, 175
rule files

See also Deskshell command language;
Desktop; modules; objects; rules; user
type

built-in rules, 294
changing defaults, 403
defined, 17,285
desktop rule files, 287, 289, 293
dynamic rules, 294
elements of, 295
local rule files, 287, 289, 292
precedence of, 295
processing filenames, 298
selecting the right file, 286, 287, 292
specifying file/directory pathnames, 298
structure of, 295
system rule file, 293
user rule files, 287, 288, 293
variables, 299, 313

Rule.dr file, 305

Graphical Environment Guide

rules
See also Deskshell command language;
Desktop; modules; objects; rule files;
triggers; user type

basename, 290
built-in rules, 294
canonical form, 299
coding with Deskshell, 349
desktop_layout, 20,286,292,334
dynamic rules, 287,289,348
effects in rule files, 286, 287, 292
file classes, 291
final_actions, 286,292,333,337
icon_rules, 20,286, 292, 315,328, 333
initial_actions, 286,292,333, 337
internal precedence of, 295
locked_on_desktop,20,286,292,334
nnenu, 20,286, 292, 342
patterns, 290
processing filenannes, 298, 299
scope, 286,287,289
specifying actions, 299
specifying file/directory pathnannes, 298
trigger_action, 312
variables, 313

s
saveUnder resource, 401
scancodes, 209
sea Merge, colormap, 108
sea Panner window manager, See window
nnanager

sea Wabi, colormap, 108
scoActiveBackground variable, 106
scoActiveForeground variable, 106
scoActiveTopShadow variable, 106
scoAltBackground variable, 106
scoBackground variable, 106
scobell,35
scocolor

See also color
color buttons, 29
color palettes, 104, 105, 106, 109
creating new color palettes, 28
defined, 103
deleting color palettes, 28
DOS colors, 30
grayscale monitors, 30
mixing colors, 29

scosession

scocolor (continued)
nnodifying color palettes, 28
new palettes, 111
selecting color palettes, 27
using, 27

scoForeground variable, 106
scoHighlight variable, 106
scohost

adding tennporary display access, 36
rennoving host access list, 36

scologin display nnanager
administration script, 54, 71
authorization protocol, 68,70
customizing, 53
defined, 43, 44
defining sessions, 45
disabling, 54
enabling, 54
failsafe login, 75
nnanaging servers, 43, 44,53
nnanaging X ternninals, 54, 60, 61
nnultiple servers, 54, 55
nnultiple servers with Xservers, 57
rennote displays, 59
starting, 54
startup behavior, 45
stopping, 54
using XDMCP, 55
.Xauthority file, 69, 71
Xconfig file, 53,70
Xreset file, 45, 46
Xresources file, 53
Xservers file, 53, 58,70
Xsession file, 45
Xstartup file, 45

sconnouse
See also nnouse
acceleration, 34, 198, 199,200
configuring nnouse behavior, 33
double-click duration, 34, 202
left-handed use, 34, 196, 197
threshold, 34, 198, 199,200

scopaint,178,324
scosession

configuration files, 48, 49
configure option, 51
configuring the session, 26
defined, 44, 48
executable scripts, 197,200
help option, 51
nnanaging sessions, 44, 47

429

scoterm

scosession (continued)
starting, 50
stopping, 50,51

scoterm terminal emulator
cursors, 176, 186, 187, 188
fonts, 128

scoTopShadow variable, 106
screens resource, 402
select trigger, 311
select_action clause, 343
selectColor resource, 106
server

See also display
colormap, 100, 107, 108
default session, 43, 46
defined,ll
keyboard mapping, 209, 211, 213
remote clients, 65, 73, 74
resource files, 88, 144, 161
.startxrc file, 15, 47
using scologin, 54, 55

session manager, See scosession
show Feedback resource, 394
showrgb command, 101, 120
sleep Deskshell command, 363
source Deskshell command, 367
specifying

command line options, 93,94,116,117,
118,149,159,168,190

display, 73,74
resources, 81, 85, 87, 88, 90

starting
Graphical Environment, 26,43
scologin, 54

startupKeyFocus resource, 382
startx script, 44, 46, 47
.startxrc file, 15, 47
static file (scosession), 49
stopping

scologin, 54
the Graphical Environment, 26

sys.startxrc file, See .startxrc file
system rule file (xdtsysinfo), 293,301

See also modules
system.mwmrc file, See .pmwmrc/.mwmrc
file

system.pmwmrc file, See
.pmwmrc/.mwmrc file

systemRuleFile resource, 404

430

T
thick_dividingJine clause, 342
thread_name Deskshell variable, 365
threads

See also Deskshell commands
background threads, 366
defined,362
environment inheritance, 365
executing actions within the same, 367
global variables, 364
local variables, 363
pipelines, 367
signals, 368, 369
states, 362
system thread, 365
variable overriding, 364
window threads, 366

thresholdDownTime resource, 203, 413
title clause, 330, 331
tools, configuring, 41
topShadowColor resource, 106, 114,385,
406

topShadow Pixmap resource, 388
transientDecoration resource, 390
transientFunctions resource, 391
translation tables, 269
Treeview desktop, customizing behavior
39 '

trigger table, 309
triggecaction clause, 310, 312, 330, 331, 374
triggers

activate, 310,311
alCactivate, 311
alt_drop,311
alCrename, 311
alt_report, 311
alCselect, 311
click/hold variables, 313
defined, 309, 310
deselect, 311
drag, 311
drag variables, 314
drop, 311
dynamic, 311
hold,312
icon triggers, 312,330
match all drag triggers, 311
match all hold triggers, 312
match all static triggers, 311
menu,312

Graphical Environment Guide

triggers (continued)
menu variables, 314
popup_menu, 312
rename, 311
report, 311
select, 311
static, 311
using resources for mapping mouse, 414
variables, 313, 314
window background triggers, 312

triggers*mapping resource, 373, 414
troughColor resource, 106

u
useClientIcon resource, 397
useIconBox resource, 398
user equivalence, 66
user rule files (.xdtuserinfo), 287,288,293
user type

changing behavior, 287, 288, 293, 305
creating, 306
determining, 306
Rule.dr file, 305
sea. user, 305

userLoopModules,303
userModulesresource,302
userRuleFile resource, 404
userType resource, 306

w
Wabi, See sea Wabi
widget hierarchy, 84
window background (xdt3), triggers, 312
window height, 160, 162, 163, 166, 168
window manager

behavior, 377
bindings, 219, 222,253,257
button bindings, 22
colors, 29, 104, 114
component appearance, 377
component arguments, 378
configuration file, 219
defined, 12
double-click duration, 201, 204, 206
fonts, 145, 148
bunctions,223,230,236,242,243,256,261,
272,276

icon, 22

.Xdefaults-hostname

window manager (continued)
key bindings, 22, 269, 273
menus, 22, 219, 222,235, 237
pixmap values, 386
resources, 206, 245, 247,248, 263, 278, 377
Root menu, 235, 237
Root window, 178
specific-appearance, 377
Window menu, 235, 237
window size and location, 159,160

Window menu
adding, 240
modifying, 237
replacing default, 244, 245

window size and location, See geometry
window width, 160, 162, 163, 166, 168
windowMenu resource, 227, 239,244,245,
246, 247, 402

wMenuButtonClick resource, 248, 402
wMenuButtonClick2 resource, 248, 402
writing

Deskshell scripts, 349
rules, 285, 286, 292, 301,328

x
X client, See client
x coordinate offset (xoff), 160, 162, 163, 166,
168

X resource, See resource
X server

See also server
multiple fonts, 136
setting font server host, 134

X terminals
configuring, 60, 61
restricting access, 66
running clients, 63
using scologin, 54,60,61
XDMCP, 54, 60, 61, 67

XO.hosts through X7.hosts files, 59,67,69,
70

XAPPLRESDIR environment variable, 88
xauth command, 71, 72
.Xauthority file, 69, 71
Xconfig file, 53,70
.Xdefaults-hostname file, 16, 88, 113, 146,
165,189,205,246,266,281

431

XOesktop3

XDesktop3 file, 16, 88, 174, 180, 183,203,
372

xdm, See scologin display manager
XDMCP,54,55, 60, 61
xdt3, See Desktop
.xdtdir rule files, 289, 292
XDTHOME environment variable, 15
xdtsysinfo rule file, 293, 301

See also modules
XDTUSERHOME environment variable, 15
.xdtuserinfo rule files, 288, 293
XENVIRONMENT environment variable, 88
Xerrors file, 53
xfd command, 141
xfontsel command, 139
xGranularity resource, 382
xhost command, 68, 71
xinit,47
xlsfonts command, 138
xmodmap command, 197, 198,211,212,
213,215

xrdb client
-edit, 92
-load, 93
-merge, 90, 91
-query, 91
-remove, 93
using, 50, 80, 88, 90, 161

xrdbcomp,48
Xreset file, 45,46
Xresources file, 53
Xsco

requesting scologin with XDMCP, 55
XDMCP options, 55

.Xsco.cfg file, 210, 212
xsconfig.sh, 210, 212
Xservers file, 53, 58, 70

managing multiple displays, 57
Xsession file, 45
xsetcommand,137, 152, 155,200,201
xserrootcommand,178
Xstartup file, 45
xterm terminal emulator, 128, 176

y
y coordinate offset (yoff), 160, 162, 163, 166,
168

yGranularity resource, 382
yni Deskshell command, 369

432 Graphical Environment Guide

1 May 1995

AU20009POOl

